-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdata.py
169 lines (134 loc) · 6.38 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import h5py
import torch
import torch.utils.data as data
from torchvision import datasets, transforms
import os
import numpy as np
from PIL import Image
import urllib.request
import scipy.io
class fixedMNIST(data.Dataset):
""" Binarized MNIST dataset, proposed in
http://proceedings.mlr.press/v15/larochelle11a/larochelle11a.pdf """
train_file = 'binarized_mnist_train.amat'
val_file = 'binarized_mnist_valid.amat'
test_file = 'binarized_mnist_test.amat'
def __init__(self, root, train=True, transform=None, download=False):
# we ignore transform.
self.root = os.path.expanduser(root)
self.train = train # training set or test set
if download: self.download()
if not self._check_exists():
raise RuntimeError('Dataset not found.' + ' You can use download=True to download it')
self.data = self._get_data(train=train)
def __getitem__(self, index):
img = self.data[index]
img = Image.fromarray(img)
img = transforms.ToTensor()(img).type(torch.FloatTensor)
return img, torch.tensor(-1) # Meaningless tensor instead of target
def __len__(self):
return len(self.data)
def _get_data(self, train=True):
with h5py.File(os.path.join(self.root, 'data.h5'), 'r') as hf:
data = hf.get('train' if train else 'test')
data = np.array(data)
return data
def get_mean_img(self):
return self.data.mean(0).flatten()
def download(self):
if self._check_exists():
return
if not os.path.exists(self.root):
os.makedirs(self.root)
print('Downloading MNIST with fixed binarization...')
for dataset in ['train', 'valid', 'test']:
filename = 'binarized_mnist_{}.amat'.format(dataset)
url = 'http://www.cs.toronto.edu/~larocheh/public/datasets/binarized_mnist/binarized_mnist_{}.amat'.format(dataset)
print('Downloading from {}...'.format(url))
local_filename = os.path.join(self.root, filename)
urllib.request.urlretrieve(url, local_filename)
print('Saved to {}'.format(local_filename))
def filename_to_np(filename):
with open(filename) as f:
lines = f.readlines()
return np.array([[int(i)for i in line.split()] for line in lines]).astype('int8')
train_data = np.concatenate([filename_to_np(os.path.join(self.root, self.train_file)),
filename_to_np(os.path.join(self.root, self.val_file))])
test_data = filename_to_np(os.path.join(self.root, self.val_file))
with h5py.File(os.path.join(self.root, 'data.h5'), 'w') as hf:
hf.create_dataset('train', data=train_data.reshape(-1, 28, 28))
hf.create_dataset('test', data=test_data.reshape(-1, 28, 28))
print('Done!')
def _check_exists(self):
return os.path.exists(os.path.join(self.root, 'data.h5'))
class stochMNIST(datasets.MNIST):
""" Gets a new stochastic binarization of MNIST at each call. """
def __getitem__(self, index):
if self.train:
img, target = self.train_data[index], self.train_labels[index]
else:
img, target = self.test_data[index], self.test_labels[index]
img = Image.fromarray(img.numpy(), mode='L')
img = transforms.ToTensor()(img)
img = torch.bernoulli(img) # stochastically binarize
return img, target
def get_mean_img(self):
imgs = self.train_data.type(torch.float) / 255
mean_img = imgs.mean(0).reshape(-1).numpy()
return mean_img
class omniglot(data.Dataset):
""" omniglot dataset """
url = 'https://github.com/yburda/iwae/raw/master/datasets/OMNIGLOT/chardata.mat'
def __init__(self, root, train=True, transform=None, download=False):
# we ignore transform.
self.root = os.path.expanduser(root)
self.train = train # training set or test set
if download: self.download()
if not self._check_exists():
raise RuntimeError('Dataset not found. You can use download=True to download it')
self.data = self._get_data(train=train)
def __getitem__(self, index):
img = self.data[index].reshape(28, 28)
img = Image.fromarray(img)
img = transforms.ToTensor()(img).type(torch.FloatTensor)
img = torch.bernoulli(img) # stochastically binarize
return img, torch.tensor(-1) # Meaningless tensor instead of target
def __len__(self):
return len(self.data)
def _get_data(self, train=True):
def reshape_data(data):
return data.reshape((-1, 28, 28)).reshape((-1, 28*28), order='fortran')
omni_raw = scipy.io.loadmat(os.path.join(self.root, 'chardata.mat'))
data_str = 'data' if train else 'testdata'
data = reshape_data(omni_raw[data_str].T.astype('float32'))
return data
def get_mean_img(self):
return self.data.mean(0)
def download(self):
if self._check_exists():
return
if not os.path.exists(self.root):
os.makedirs(self.root)
print('Downloading from {}...'.format(self.url))
local_filename = os.path.join(self.root, 'chardata.mat')
urllib.request.urlretrieve(self.url, local_filename)
print('Saved to {}'.format(local_filename))
def _check_exists(self):
return os.path.exists(os.path.join(self.root, 'chardata.mat'))
def data_loaders(dataset, dataset_dir, batch_size, eval_batch_size):
if dataset == 'omniglot':
loader_fn, root = omniglot, './dataset/omniglot'
elif dataset == 'fixed_mnist':
loader_fn, root = fixedMNIST, './dataset/fixedmnist'
elif dataset == 'sto_mnist':
loader_fn, root = stochMNIST, './dataset/stochmnist'
else:
raise NotImplementedError('Dataset not supported yet!')
kwargs = {'num_workers': 4, 'pin_memory': True} if torch.cuda.is_available() else {}
train_loader = torch.utils.data.DataLoader(
loader_fn(root, train=True, download=True, transform=transforms.ToTensor()),
batch_size=batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader( # need test bs <=64 to make L_5000 tractable in one pass
loader_fn(root, train=False, download=True, transform=transforms.ToTensor()),
batch_size=eval_batch_size, shuffle=False, **kwargs)
return train_loader, test_loader