forked from torch/nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConcat.lua
114 lines (104 loc) · 3.79 KB
/
Concat.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
local Concat, parent = torch.class('nn.Concat', 'nn.Container')
function Concat:__init(dimension)
parent.__init(self)
self.size = torch.LongStorage()
self.dimension = dimension
end
function Concat:updateOutput(input)
local outs = {}
for i=1,#self.modules do
local currentOutput = self.modules[i]:updateOutput(input)
outs[i] = currentOutput
if i == 1 then
self.size:resize(currentOutput:dim()):copy(currentOutput:size())
else
self.size[self.dimension] = self.size[self.dimension] + currentOutput:size(self.dimension)
end
end
self.output:resize(self.size)
local offset = 1
for i,module in ipairs(self.modules) do
local currentOutput = outs[i]
self.output:narrow(self.dimension, offset, currentOutput:size(self.dimension)):copy(currentOutput)
offset = offset + currentOutput:size(self.dimension)
end
return self.output
end
function Concat:updateGradInput(input, gradOutput)
self.gradInput:resizeAs(input)
local offset = 1
for i,module in ipairs(self.modules) do
local currentOutput = module.output
local currentGradInput = module:updateGradInput(input, gradOutput:narrow(self.dimension, offset, currentOutput:size(self.dimension)))
if currentGradInput then -- if the module does not produce a gradInput (for example first layer), then ignore it and move on.
if i==1 then
self.gradInput:copy(currentGradInput)
else
self.gradInput:add(currentGradInput)
end
end
offset = offset + currentOutput:size(self.dimension)
end
return self.gradInput
end
function Concat:accGradParameters(input, gradOutput, scale)
scale = scale or 1
local offset = 1
for i,module in ipairs(self.modules) do
local currentOutput = module.output
module:accGradParameters(
input,
gradOutput:narrow(self.dimension, offset, currentOutput:size(self.dimension)),
scale)
offset = offset + currentOutput:size(self.dimension)
end
end
function Concat:backward(input, gradOutput, scale)
self.gradInput:resizeAs(input)
scale = scale or 1
local offset = 1
for i,module in ipairs(self.modules) do
local currentOutput = module.output
local currentGradInput = module:backward(input, gradOutput:narrow(self.dimension, offset, currentOutput:size(self.dimension)), scale)
if currentGradInput then -- if the module does not produce a gradInput (for example first layer), then ignore it and move on.
if i==1 then
self.gradInput:copy(currentGradInput)
else
self.gradInput:add(currentGradInput)
end
end
offset = offset + currentOutput:size(self.dimension)
end
return self.gradInput
end
function Concat:accUpdateGradParameters(input, gradOutput, lr)
local offset = 1
for i,module in ipairs(self.modules) do
local currentOutput = module.output
module:accUpdateGradParameters(
input,
gradOutput:narrow(self.dimension, offset, currentOutput:size(self.dimension)),
lr)
offset = offset + currentOutput:size(self.dimension)
end
end
function Concat:__tostring__()
local tab = ' '
local line = '\n'
local next = ' |`-> '
local ext = ' | '
local extlast = ' '
local last = ' ... -> '
local str = torch.type(self)
str = str .. ' {' .. line .. tab .. 'input'
for i=1,#self.modules do
if i == self.modules then
str = str .. line .. tab .. next .. '(' .. i .. '): ' .. tostring(self.modules[i]):gsub(line, line .. tab .. extlast)
else
str = str .. line .. tab .. next .. '(' .. i .. '): ' .. tostring(self.modules[i]):gsub(line, line .. tab .. ext)
end
end
str = str .. line .. tab .. last .. 'output'
str = str .. line .. '}'
return str
end