-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
executable file
·225 lines (177 loc) · 7.75 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!/usr/bin/env python3
import argparse
import glob
import gzip
import json
import platform
import re
import subprocess
import warnings
from email.message import EmailMessage
from io import BytesIO
from datetime import datetime, timedelta, date, time
import matplotlib
import numpy as np
import pandas as pd
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib import dates
# https://matplotlib.org/gallery/text_labels_and_annotations/date.html
# https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html#matplotlib.pyplot.subplots
# https://matplotlib.org/api/dates_api.html#matplotlib.dates.MonthLocator
# https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot
# https://matplotlib.org/tutorials/introductory/pyplot.html
data_files = glob.iglob('/var/log/syslog*')
FIG_SIZE = (7, 3)
# Two syslog formats:
# Oct 1 15:20:05 deadly zone0temp[21414]: zone0 temp OK 50.0° [raw 50306 49768]
# 2024-10-01T15:40:04.446169+01:00 deadly zone0temp[30563]: zone0 temp OK 51.9° [raw 51920 51920]
LOG_PATTERN_OLD = re.compile(r'(.{15}) \S+ zone0temp.* ([\d.]+)°')
LOG_PATTERN_NEW = re.compile(r'([\d\-:T]{19})[\d.+:]+ \S+ zone0temp.* ([\d.]+)°')
TIME_FORMAT_OLD = '%b %d %H:%M:%S'
TIME_FORMAT_NEW = '%Y-%m-%dT%H:%M:%S'
IMG_TYPE = 'png'
def meanr(x):
# ignore NaN (blank fields in the CSV) and averages over missing times
with warnings.catch_warnings():
warnings.filterwarnings(action='ignore', category=RuntimeWarning, message='Mean of empty slice')
result = round(np.nanmean(x), 1)
return result
def medianr(x):
# ignore NaN (blank fields in the CSV) and averages over missing times
with warnings.catch_warnings():
warnings.filterwarnings(action='ignore', category=RuntimeWarning, message='Mean of empty slice')
result = round(np.nanmedian(x), 1)
return result
def read_raw_data(warnings1, options1, min_temp, max_temp):
data_to_use = dict()
# epoch time -> temperature (float)
# collect all the valid data from the files
for data_file in data_files:
if options1.verbose:
print('Reading', data_file)
if data_file.endswith('.gz'):
with gzip.open(data_file, 'rt', encoding='utf-8-sig', errors='ignore') as f0:
for line in f0.readlines():
process_line(line, data_to_use, warnings1, min_temp, max_temp)
else:
with open(data_file, 'r', encoding='utf-8-sig', errors='ignore') as f0:
for line in f0.readlines():
process_line(line, data_to_use, warnings1, min_temp, max_temp)
return data_to_use
def process_line(line, data_to_use, warnings1, min_temp, max_temp):
match_new = LOG_PATTERN_NEW.match(line)
match_old = LOG_PATTERN_OLD.match(line)
if match_new:
epoch = parse_date(match_new.group(1), TIME_FORMAT_NEW)
temp = float(match_new.group(2))
if min_temp <= temp <= max_temp:
data_to_use[epoch] = temp
else:
warnings1.append("Rejected %s" % line)
elif match_old:
epoch = parse_date(match_old.group(1), TIME_FORMAT_OLD)
temp = float(match_old.group(2))
if min_temp <= temp <= max_temp:
data_to_use[epoch] = temp
else:
warnings1.append("Rejected %s" % line)
return
def parse_date(log_date_str: str, time_format: str) -> int:
log_date = datetime.strptime(log_date_str, time_format)
log_date = log_date.replace(year=datetime.now().year)
if log_date > datetime.now():
log_date = log_date.replace(year=datetime.now().year - 1)
# year is missing from syslog entries but the log entry cannot be in the future
return round(log_date.timestamp())
def reverse_days(max_days=None):
if max_days:
backdate = (date.today() - timedelta(days=max_days))
return int(datetime.combine(backdate, time(0, 0, 0)).timestamp())
return 0
def read_and_plot(options1, config1, warnings1):
raw_data = read_raw_data(warnings1, options1, config1['min_temp'], config1['max_temp'])
# raw_data is dict: epoch timestamp -> temperature
df = pd.DataFrame.from_dict(raw_data, orient='index', columns=['temperature'])
df['timestamp'] = pd.to_datetime(df.index, unit='s')
df['date'] = df['timestamp'].dt.date
if options1.verbose:
print('full data:', df.shape)
print(df['timestamp'].min(), df['timestamp'].max())
print(df['date'].min(), df['date'].max())
if config1['max_days_ago']:
cutoff_date = date.today() - timedelta(days=config1['max_days_ago'])
df = df[df['date'] >= cutoff_date]
if options1.verbose:
print('cutoff data', df.shape)
columns = ['min', meanr, medianr, 'max']
dated = df.groupby('date').agg({'temperature': columns}).rename(columns={'meanr': 'mean', 'medianr': 'mdn'})
if options1.verbose:
print('dated data:', dated.shape)
if config1['averaging']:
df = df.groupby(pd.Grouper(key='timestamp', freq=config1['averaging'])).agg({'temperature': columns})
if options1.verbose:
print('final data:', df.shape)
days = dates.DayLocator(interval=1)
days_minor = dates.HourLocator(byhour=[0, 6, 12, 18])
days_format = dates.DateFormatter('%d')
buffer0 = BytesIO()
fig0, ax0 = plt.subplots(figsize=FIG_SIZE)
ax0.xaxis.set_major_locator(days)
ax0.xaxis.set_major_formatter(days_format)
ax0.xaxis.set_minor_locator(days_minor)
ax0.format_xdata = days_format
ax0.grid(True, which='major', color='gray')
ax0.grid(True, which='minor', color='lightgray')
ax0.plot(df.index, df['temperature'], '-')
fig0.autofmt_xdate(rotation=60)
plt.savefig(buffer0, dpi=200, format=IMG_TYPE)
plt.close(fig0)
buffer1 = BytesIO()
fig1, ax1 = plt.subplots(figsize=FIG_SIZE)
ax1.xaxis.set_major_locator(days)
ax1.xaxis.set_major_formatter(days_format)
ax1.format_xdata = days_format
ax1.grid(True, which='major')
ax1.plot(dated.index, dated['temperature'], '-')
fig1.autofmt_xdate(rotation=60)
plt.savefig(buffer1, dpi=200, format=IMG_TYPE)
plt.close(fig1)
return buffer0, buffer1, dated.to_html()
oparser = argparse.ArgumentParser(description="Plotter for CPU temperature",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
oparser.add_argument("-v", dest="verbose",
default=False,
action='store_true',
help="verbose")
oparser.add_argument("-c", dest="config_file",
required=True,
metavar="FILE",
help="JSON config file")
options = oparser.parse_args()
with open(options.config_file) as f:
config = json.load(f)
text = [datetime.now().isoformat(timespec='seconds'), platform.node()]
buffer_0, buffer_1, table = read_and_plot(options, config, text)
mail = EmailMessage()
mail.set_charset('utf-8')
mail['To'] = ', '.join(config['mail_to'])
mail['From'] = config['mail_from']
mail['Subject'] = 'CPU temperature %s (averaging %s)' % (platform.node(), config['averaging'])
buffer_0.seek(0)
img_data0 = buffer_0.read()
buffer_1.seek(0)
img_data1 = buffer_1.read()
# puremagic says '.png' rather than 'png'
mail.add_attachment(img_data0, maintype='image',
disposition='inline',
subtype=IMG_TYPE)
mail.add_attachment(img_data1, maintype='image',
disposition='inline',
subtype=IMG_TYPE)
mail.add_attachment(table.encode('utf-8'), disposition='inline',
maintype='text', subtype='html')
mail.add_attachment('\n'.join(text).encode('utf-8'),
disposition='inline',
maintype='text', subtype='plain')
subprocess.run(["/usr/sbin/sendmail", "-t", "-oi"], input=mail.as_bytes())