This repository has been archived by the owner on Dec 20, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 353
/
Copy pathAFMotor.cpp
667 lines (601 loc) · 18.1 KB
/
AFMotor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
// Adafruit Motor shield library
// copyright Adafruit Industries LLC, 2009
// this code is public domain, enjoy!
#if (ARDUINO >= 100)
#include "Arduino.h"
#else
#if defined(__AVR__)
#include <avr/io.h>
#endif
#include "WProgram.h"
#endif
#include "AFMotor.h"
static uint8_t latch_state;
#if (MICROSTEPS == 8)
uint8_t microstepcurve[] = {0, 50, 98, 142, 180, 212, 236, 250, 255};
#elif (MICROSTEPS == 16)
uint8_t microstepcurve[] = {0, 25, 50, 74, 98, 120, 141, 162, 180, 197, 212, 225, 236, 244, 250, 253, 255};
#endif
AFMotorController::AFMotorController(void) {
TimerInitalized = false;
}
void AFMotorController::enable(void) {
// setup the latch
/*
LATCH_DDR |= _BV(LATCH);
ENABLE_DDR |= _BV(ENABLE);
CLK_DDR |= _BV(CLK);
SER_DDR |= _BV(SER);
*/
pinMode(MOTORLATCH, OUTPUT);
pinMode(MOTORENABLE, OUTPUT);
pinMode(MOTORDATA, OUTPUT);
pinMode(MOTORCLK, OUTPUT);
latch_state = 0;
latch_tx(); // "reset"
//ENABLE_PORT &= ~_BV(ENABLE); // enable the chip outputs!
digitalWrite(MOTORENABLE, LOW);
}
void AFMotorController::latch_tx(void) {
uint8_t i;
//LATCH_PORT &= ~_BV(LATCH);
digitalWrite(MOTORLATCH, LOW);
//SER_PORT &= ~_BV(SER);
digitalWrite(MOTORDATA, LOW);
for (i=0; i<8; i++) {
//CLK_PORT &= ~_BV(CLK);
digitalWrite(MOTORCLK, LOW);
if (latch_state & _BV(7-i)) {
//SER_PORT |= _BV(SER);
digitalWrite(MOTORDATA, HIGH);
} else {
//SER_PORT &= ~_BV(SER);
digitalWrite(MOTORDATA, LOW);
}
//CLK_PORT |= _BV(CLK);
digitalWrite(MOTORCLK, HIGH);
}
//LATCH_PORT |= _BV(LATCH);
digitalWrite(MOTORLATCH, HIGH);
}
static AFMotorController MC;
/******************************************
MOTORS
******************************************/
inline void initPWM1(uint8_t freq) {
#if defined(__AVR_ATmega8__) || \
defined(__AVR_ATmega48__) || \
defined(__AVR_ATmega88__) || \
defined(__AVR_ATmega168__) || \
defined(__AVR_ATmega328P__)
// use PWM from timer2A on PB3 (Arduino pin #11)
TCCR2A |= _BV(COM2A1) | _BV(WGM20) | _BV(WGM21); // fast PWM, turn on oc2a
TCCR2B = freq & 0x7;
OCR2A = 0;
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
// on arduino mega, pin 11 is now PB5 (OC1A)
TCCR1A |= _BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc1a
TCCR1B = (freq & 0x7) | _BV(WGM12);
OCR1A = 0;
#elif defined(__PIC32MX__)
#if defined(PIC32_USE_PIN9_FOR_M1_PWM)
// Make sure that pin 11 is an input, since we have tied together 9 and 11
pinMode(9, OUTPUT);
pinMode(11, INPUT);
if (!MC.TimerInitalized)
{ // Set up Timer2 for 80MHz counting fro 0 to 256
T2CON = 0x8000 | ((freq & 0x07) << 4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=<freq>, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0
TMR2 = 0x0000;
PR2 = 0x0100;
MC.TimerInitalized = true;
}
// Setup OC4 (pin 9) in PWM mode, with Timer2 as timebase
OC4CON = 0x8006; // OC32 = 0, OCTSEL=0, OCM=6
OC4RS = 0x0000;
OC4R = 0x0000;
#elif defined(PIC32_USE_PIN10_FOR_M1_PWM)
// Make sure that pin 11 is an input, since we have tied together 9 and 11
pinMode(10, OUTPUT);
pinMode(11, INPUT);
if (!MC.TimerInitalized)
{ // Set up Timer2 for 80MHz counting fro 0 to 256
T2CON = 0x8000 | ((freq & 0x07) << 4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=<freq>, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0
TMR2 = 0x0000;
PR2 = 0x0100;
MC.TimerInitalized = true;
}
// Setup OC5 (pin 10) in PWM mode, with Timer2 as timebase
OC5CON = 0x8006; // OC32 = 0, OCTSEL=0, OCM=6
OC5RS = 0x0000;
OC5R = 0x0000;
#else
// If we are not using PWM for pin 11, then just do digital
digitalWrite(11, LOW);
#endif
#else
#error "This chip is not supported!"
#endif
#if !defined(PIC32_USE_PIN9_FOR_M1_PWM) && !defined(PIC32_USE_PIN10_FOR_M1_PWM)
pinMode(11, OUTPUT);
#endif
}
inline void setPWM1(uint8_t s) {
#if defined(__AVR_ATmega8__) || \
defined(__AVR_ATmega48__) || \
defined(__AVR_ATmega88__) || \
defined(__AVR_ATmega168__) || \
defined(__AVR_ATmega328P__)
// use PWM from timer2A on PB3 (Arduino pin #11)
OCR2A = s;
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
// on arduino mega, pin 11 is now PB5 (OC1A)
OCR1A = s;
#elif defined(__PIC32MX__)
#if defined(PIC32_USE_PIN9_FOR_M1_PWM)
// Set the OC4 (pin 9) PMW duty cycle from 0 to 255
OC4RS = s;
#elif defined(PIC32_USE_PIN10_FOR_M1_PWM)
// Set the OC5 (pin 10) PMW duty cycle from 0 to 255
OC5RS = s;
#else
// If we are not doing PWM output for M1, then just use on/off
if (s > 127)
{
digitalWrite(11, HIGH);
}
else
{
digitalWrite(11, LOW);
}
#endif
#else
#error "This chip is not supported!"
#endif
}
inline void initPWM2(uint8_t freq) {
#if defined(__AVR_ATmega8__) || \
defined(__AVR_ATmega48__) || \
defined(__AVR_ATmega88__) || \
defined(__AVR_ATmega168__) || \
defined(__AVR_ATmega328P__)
// use PWM from timer2B (pin 3)
TCCR2A |= _BV(COM2B1) | _BV(WGM20) | _BV(WGM21); // fast PWM, turn on oc2b
TCCR2B = freq & 0x7;
OCR2B = 0;
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
// on arduino mega, pin 3 is now PE5 (OC3C)
TCCR3A |= _BV(COM1C1) | _BV(WGM10); // fast PWM, turn on oc3c
TCCR3B = (freq & 0x7) | _BV(WGM12);
OCR3C = 0;
#elif defined(__PIC32MX__)
if (!MC.TimerInitalized)
{ // Set up Timer2 for 80MHz counting fro 0 to 256
T2CON = 0x8000 | ((freq & 0x07) << 4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=<freq>, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0
TMR2 = 0x0000;
PR2 = 0x0100;
MC.TimerInitalized = true;
}
// Setup OC1 (pin3) in PWM mode, with Timer2 as timebase
OC1CON = 0x8006; // OC32 = 0, OCTSEL=0, OCM=6
OC1RS = 0x0000;
OC1R = 0x0000;
#else
#error "This chip is not supported!"
#endif
pinMode(3, OUTPUT);
}
inline void setPWM2(uint8_t s) {
#if defined(__AVR_ATmega8__) || \
defined(__AVR_ATmega48__) || \
defined(__AVR_ATmega88__) || \
defined(__AVR_ATmega168__) || \
defined(__AVR_ATmega328P__)
// use PWM from timer2A on PB3 (Arduino pin #11)
OCR2B = s;
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
// on arduino mega, pin 11 is now PB5 (OC1A)
OCR3C = s;
#elif defined(__PIC32MX__)
// Set the OC1 (pin3) PMW duty cycle from 0 to 255
OC1RS = s;
#else
#error "This chip is not supported!"
#endif
}
inline void initPWM3(uint8_t freq) {
#if defined(__AVR_ATmega8__) || \
defined(__AVR_ATmega48__) || \
defined(__AVR_ATmega88__) || \
defined(__AVR_ATmega168__) || \
defined(__AVR_ATmega328P__)
// use PWM from timer0A / PD6 (pin 6)
TCCR0A |= _BV(COM0A1) | _BV(WGM00) | _BV(WGM01); // fast PWM, turn on OC0A
//TCCR0B = freq & 0x7;
OCR0A = 0;
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
// on arduino mega, pin 6 is now PH3 (OC4A)
TCCR4A |= _BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc4a
TCCR4B = (freq & 0x7) | _BV(WGM12);
//TCCR4B = 1 | _BV(WGM12);
OCR4A = 0;
#elif defined(__PIC32MX__)
if (!MC.TimerInitalized)
{ // Set up Timer2 for 80MHz counting fro 0 to 256
T2CON = 0x8000 | ((freq & 0x07) << 4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=<freq>, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0
TMR2 = 0x0000;
PR2 = 0x0100;
MC.TimerInitalized = true;
}
// Setup OC3 (pin 6) in PWM mode, with Timer2 as timebase
OC3CON = 0x8006; // OC32 = 0, OCTSEL=0, OCM=6
OC3RS = 0x0000;
OC3R = 0x0000;
#else
#error "This chip is not supported!"
#endif
pinMode(6, OUTPUT);
}
inline void setPWM3(uint8_t s) {
#if defined(__AVR_ATmega8__) || \
defined(__AVR_ATmega48__) || \
defined(__AVR_ATmega88__) || \
defined(__AVR_ATmega168__) || \
defined(__AVR_ATmega328P__)
// use PWM from timer0A on PB3 (Arduino pin #6)
OCR0A = s;
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
// on arduino mega, pin 6 is now PH3 (OC4A)
OCR4A = s;
#elif defined(__PIC32MX__)
// Set the OC3 (pin 6) PMW duty cycle from 0 to 255
OC3RS = s;
#else
#error "This chip is not supported!"
#endif
}
inline void initPWM4(uint8_t freq) {
#if defined(__AVR_ATmega8__) || \
defined(__AVR_ATmega48__) || \
defined(__AVR_ATmega88__) || \
defined(__AVR_ATmega168__) || \
defined(__AVR_ATmega328P__)
// use PWM from timer0B / PD5 (pin 5)
TCCR0A |= _BV(COM0B1) | _BV(WGM00) | _BV(WGM01); // fast PWM, turn on oc0a
//TCCR0B = freq & 0x7;
OCR0B = 0;
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
// on arduino mega, pin 5 is now PE3 (OC3A)
TCCR3A |= _BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc3a
TCCR3B = (freq & 0x7) | _BV(WGM12);
//TCCR4B = 1 | _BV(WGM12);
OCR3A = 0;
#elif defined(__PIC32MX__)
if (!MC.TimerInitalized)
{ // Set up Timer2 for 80MHz counting fro 0 to 256
T2CON = 0x8000 | ((freq & 0x07) << 4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=<freq>, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0
TMR2 = 0x0000;
PR2 = 0x0100;
MC.TimerInitalized = true;
}
// Setup OC2 (pin 5) in PWM mode, with Timer2 as timebase
OC2CON = 0x8006; // OC32 = 0, OCTSEL=0, OCM=6
OC2RS = 0x0000;
OC2R = 0x0000;
#else
#error "This chip is not supported!"
#endif
pinMode(5, OUTPUT);
}
inline void setPWM4(uint8_t s) {
#if defined(__AVR_ATmega8__) || \
defined(__AVR_ATmega48__) || \
defined(__AVR_ATmega88__) || \
defined(__AVR_ATmega168__) || \
defined(__AVR_ATmega328P__)
// use PWM from timer0A on PB3 (Arduino pin #6)
OCR0B = s;
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
// on arduino mega, pin 6 is now PH3 (OC4A)
OCR3A = s;
#elif defined(__PIC32MX__)
// Set the OC2 (pin 5) PMW duty cycle from 0 to 255
OC2RS = s;
#else
#error "This chip is not supported!"
#endif
}
AF_DCMotor::AF_DCMotor(uint8_t num, uint8_t freq) {
motornum = num;
pwmfreq = freq;
MC.enable();
switch (num) {
case 1:
latch_state &= ~_BV(MOTOR1_A) & ~_BV(MOTOR1_B); // set both motor pins to 0
MC.latch_tx();
initPWM1(freq);
break;
case 2:
latch_state &= ~_BV(MOTOR2_A) & ~_BV(MOTOR2_B); // set both motor pins to 0
MC.latch_tx();
initPWM2(freq);
break;
case 3:
latch_state &= ~_BV(MOTOR3_A) & ~_BV(MOTOR3_B); // set both motor pins to 0
MC.latch_tx();
initPWM3(freq);
break;
case 4:
latch_state &= ~_BV(MOTOR4_A) & ~_BV(MOTOR4_B); // set both motor pins to 0
MC.latch_tx();
initPWM4(freq);
break;
}
}
void AF_DCMotor::run(uint8_t cmd) {
uint8_t a, b;
switch (motornum) {
case 1:
a = MOTOR1_A; b = MOTOR1_B; break;
case 2:
a = MOTOR2_A; b = MOTOR2_B; break;
case 3:
a = MOTOR3_A; b = MOTOR3_B; break;
case 4:
a = MOTOR4_A; b = MOTOR4_B; break;
default:
return;
}
switch (cmd) {
case FORWARD:
latch_state |= _BV(a);
latch_state &= ~_BV(b);
MC.latch_tx();
break;
case BACKWARD:
latch_state &= ~_BV(a);
latch_state |= _BV(b);
MC.latch_tx();
break;
case RELEASE:
latch_state &= ~_BV(a); // A and B both low
latch_state &= ~_BV(b);
MC.latch_tx();
break;
}
}
void AF_DCMotor::setSpeed(uint8_t speed) {
switch (motornum) {
case 1:
setPWM1(speed); break;
case 2:
setPWM2(speed); break;
case 3:
setPWM3(speed); break;
case 4:
setPWM4(speed); break;
}
}
/******************************************
STEPPERS
******************************************/
AF_Stepper::AF_Stepper(uint16_t steps, uint8_t num) {
MC.enable();
revsteps = steps;
steppernum = num;
currentstep = 0;
if (steppernum == 1) {
latch_state &= ~_BV(MOTOR1_A) & ~_BV(MOTOR1_B) &
~_BV(MOTOR2_A) & ~_BV(MOTOR2_B); // all motor pins to 0
MC.latch_tx();
// enable both H bridges
pinMode(11, OUTPUT);
pinMode(3, OUTPUT);
digitalWrite(11, HIGH);
digitalWrite(3, HIGH);
// use PWM for microstepping support
initPWM1(STEPPER1_PWM_RATE);
initPWM2(STEPPER1_PWM_RATE);
setPWM1(255);
setPWM2(255);
} else if (steppernum == 2) {
latch_state &= ~_BV(MOTOR3_A) & ~_BV(MOTOR3_B) &
~_BV(MOTOR4_A) & ~_BV(MOTOR4_B); // all motor pins to 0
MC.latch_tx();
// enable both H bridges
pinMode(5, OUTPUT);
pinMode(6, OUTPUT);
digitalWrite(5, HIGH);
digitalWrite(6, HIGH);
// use PWM for microstepping support
// use PWM for microstepping support
initPWM3(STEPPER2_PWM_RATE);
initPWM4(STEPPER2_PWM_RATE);
setPWM3(255);
setPWM4(255);
}
}
void AF_Stepper::setSpeed(uint16_t rpm) {
usperstep = 60000000 / ((uint32_t)revsteps * (uint32_t)rpm);
steppingcounter = 0;
}
void AF_Stepper::release(void) {
if (steppernum == 1) {
latch_state &= ~_BV(MOTOR1_A) & ~_BV(MOTOR1_B) &
~_BV(MOTOR2_A) & ~_BV(MOTOR2_B); // all motor pins to 0
MC.latch_tx();
} else if (steppernum == 2) {
latch_state &= ~_BV(MOTOR3_A) & ~_BV(MOTOR3_B) &
~_BV(MOTOR4_A) & ~_BV(MOTOR4_B); // all motor pins to 0
MC.latch_tx();
}
}
void AF_Stepper::step(uint16_t steps, uint8_t dir, uint8_t style) {
uint32_t uspers = usperstep;
uint8_t ret = 0;
if (style == INTERLEAVE) {
uspers /= 2;
}
else if (style == MICROSTEP) {
uspers /= MICROSTEPS;
steps *= MICROSTEPS;
#ifdef MOTORDEBUG
Serial.print("steps = "); Serial.println(steps, DEC);
#endif
}
while (steps--) {
ret = onestep(dir, style);
delay(uspers/1000); // in ms
steppingcounter += (uspers % 1000);
if (steppingcounter >= 1000) {
delay(1);
steppingcounter -= 1000;
}
}
if (style == MICROSTEP) {
while ((ret != 0) && (ret != MICROSTEPS)) {
ret = onestep(dir, style);
delay(uspers/1000); // in ms
steppingcounter += (uspers % 1000);
if (steppingcounter >= 1000) {
delay(1);
steppingcounter -= 1000;
}
}
}
}
uint8_t AF_Stepper::onestep(uint8_t dir, uint8_t style) {
uint8_t a, b, c, d;
uint8_t ocrb, ocra;
ocra = ocrb = 255;
if (steppernum == 1) {
a = _BV(MOTOR1_A);
b = _BV(MOTOR2_A);
c = _BV(MOTOR1_B);
d = _BV(MOTOR2_B);
} else if (steppernum == 2) {
a = _BV(MOTOR3_A);
b = _BV(MOTOR4_A);
c = _BV(MOTOR3_B);
d = _BV(MOTOR4_B);
} else {
return 0;
}
// next determine what sort of stepping procedure we're up to
if (style == SINGLE) {
if ((currentstep/(MICROSTEPS/2)) % 2) { // we're at an odd step, weird
if (dir == FORWARD) {
currentstep += MICROSTEPS/2;
}
else {
currentstep -= MICROSTEPS/2;
}
} else { // go to the next even step
if (dir == FORWARD) {
currentstep += MICROSTEPS;
}
else {
currentstep -= MICROSTEPS;
}
}
} else if (style == DOUBLE) {
if (! (currentstep/(MICROSTEPS/2) % 2)) { // we're at an even step, weird
if (dir == FORWARD) {
currentstep += MICROSTEPS/2;
} else {
currentstep -= MICROSTEPS/2;
}
} else { // go to the next odd step
if (dir == FORWARD) {
currentstep += MICROSTEPS;
} else {
currentstep -= MICROSTEPS;
}
}
} else if (style == INTERLEAVE) {
if (dir == FORWARD) {
currentstep += MICROSTEPS/2;
} else {
currentstep -= MICROSTEPS/2;
}
}
if (style == MICROSTEP) {
if (dir == FORWARD) {
currentstep++;
} else {
// BACKWARDS
currentstep--;
}
currentstep += MICROSTEPS*4;
currentstep %= MICROSTEPS*4;
ocra = ocrb = 0;
if ( (currentstep >= 0) && (currentstep < MICROSTEPS)) {
ocra = microstepcurve[MICROSTEPS - currentstep];
ocrb = microstepcurve[currentstep];
} else if ( (currentstep >= MICROSTEPS) && (currentstep < MICROSTEPS*2)) {
ocra = microstepcurve[currentstep - MICROSTEPS];
ocrb = microstepcurve[MICROSTEPS*2 - currentstep];
} else if ( (currentstep >= MICROSTEPS*2) && (currentstep < MICROSTEPS*3)) {
ocra = microstepcurve[MICROSTEPS*3 - currentstep];
ocrb = microstepcurve[currentstep - MICROSTEPS*2];
} else if ( (currentstep >= MICROSTEPS*3) && (currentstep < MICROSTEPS*4)) {
ocra = microstepcurve[currentstep - MICROSTEPS*3];
ocrb = microstepcurve[MICROSTEPS*4 - currentstep];
}
}
currentstep += MICROSTEPS*4;
currentstep %= MICROSTEPS*4;
#ifdef MOTORDEBUG
Serial.print("current step: "); Serial.println(currentstep, DEC);
Serial.print(" pwmA = "); Serial.print(ocra, DEC);
Serial.print(" pwmB = "); Serial.println(ocrb, DEC);
#endif
if (steppernum == 1) {
setPWM1(ocra);
setPWM2(ocrb);
} else if (steppernum == 2) {
setPWM3(ocra);
setPWM4(ocrb);
}
// release all
latch_state &= ~a & ~b & ~c & ~d; // all motor pins to 0
//Serial.println(step, DEC);
if (style == MICROSTEP) {
if ((currentstep >= 0) && (currentstep < MICROSTEPS))
latch_state |= a | b;
if ((currentstep >= MICROSTEPS) && (currentstep < MICROSTEPS*2))
latch_state |= b | c;
if ((currentstep >= MICROSTEPS*2) && (currentstep < MICROSTEPS*3))
latch_state |= c | d;
if ((currentstep >= MICROSTEPS*3) && (currentstep < MICROSTEPS*4))
latch_state |= d | a;
} else {
switch (currentstep/(MICROSTEPS/2)) {
case 0:
latch_state |= a; // energize coil 1 only
break;
case 1:
latch_state |= a | b; // energize coil 1+2
break;
case 2:
latch_state |= b; // energize coil 2 only
break;
case 3:
latch_state |= b | c; // energize coil 2+3
break;
case 4:
latch_state |= c; // energize coil 3 only
break;
case 5:
latch_state |= c | d; // energize coil 3+4
break;
case 6:
latch_state |= d; // energize coil 4 only
break;
case 7:
latch_state |= d | a; // energize coil 1+4
break;
}
}
MC.latch_tx();
return currentstep;
}