diff --git a/datahub-web-react/src/app/ingest/source/builder/constants.ts b/datahub-web-react/src/app/ingest/source/builder/constants.ts index f892f0ed525d2..58525b3e88f97 100644 --- a/datahub-web-react/src/app/ingest/source/builder/constants.ts +++ b/datahub-web-react/src/app/ingest/source/builder/constants.ts @@ -38,6 +38,7 @@ import sigmaLogo from '../../../../images/sigmalogo.png'; import sacLogo from '../../../../images/saclogo.svg'; import cassandraLogo from '../../../../images/cassandralogo.png'; import datahubLogo from '../../../../images/datahublogo.png'; +import neo4j from '../../../../images/neo4j.png'; export const ATHENA = 'athena'; export const ATHENA_URN = `urn:li:dataPlatform:${ATHENA}`; @@ -137,6 +138,8 @@ export const DATAHUB_GC = 'datahub-gc'; export const DATAHUB_LINEAGE_FILE = 'datahub-lineage-file'; export const DATAHUB_BUSINESS_GLOSSARY = 'datahub-business-glossary'; export const DATAHUB_URN = `urn:li:dataPlatform:${DATAHUB}`; +export const NEO4J = 'neo4j'; +export const NEO4J_URN = `urn:li:dataPlatform:${NEO4J}`; export const PLATFORM_URN_TO_LOGO = { [ATHENA_URN]: athenaLogo, @@ -180,6 +183,7 @@ export const PLATFORM_URN_TO_LOGO = { [SAC_URN]: sacLogo, [CASSANDRA_URN]: cassandraLogo, [DATAHUB_URN]: datahubLogo, + [NEO4J_URN]: neo4j, }; export const SOURCE_TO_PLATFORM_URN = { diff --git a/datahub-web-react/src/app/ingest/source/builder/sources.json b/datahub-web-react/src/app/ingest/source/builder/sources.json index 44b8a37f14655..776b6703895c3 100644 --- a/datahub-web-react/src/app/ingest/source/builder/sources.json +++ b/datahub-web-react/src/app/ingest/source/builder/sources.json @@ -325,5 +325,13 @@ "description": "Ingest databases and tables from any Iceberg catalog implementation", "docsUrl": "https://datahubproject.io/docs/generated/ingestion/sources/iceberg", "recipe": "source:\n type: \"iceberg\"\n config:\n env: dev\n # each thread will open internet connections to fetch manifest files independently, \n # this value needs to be adjusted with ulimit\n processing_threads: 1 \n # a single catalog definition with a form of a dictionary\n catalog: \n demo: # name of the catalog\n type: \"rest\" # other types are available\n uri: \"uri\"\n s3.access-key-id: \"access-key\"\n s3.secret-access-key: \"secret-access-key\"\n s3.region: \"aws-region\"\n profiling:\n enabled: false\n" + }, + { + "urn": "urn:li:dataPlatform:neo4j", + "name": "neo4j", + "displayName": "Neo4j", + "description": "Import Nodes and Relationships from Neo4j.", + "docsUrl": "https://datahubproject.io/docs/generated/ingestion/sources/neo4j/", + "recipe": "source:\n type: 'neo4j'\n config:\n uri: 'neo4j+ssc://host:7687'\n username: 'neo4j'\n password: 'password'\n env: 'PROD'\n\nsink:\n type: \"datahub-rest\"\n config:\n server: 'http://localhost:8080'" } ] diff --git a/datahub-web-react/src/images/neo4j.png b/datahub-web-react/src/images/neo4j.png new file mode 100644 index 0000000000000..b03b2a4532b3b Binary files /dev/null and b/datahub-web-react/src/images/neo4j.png differ diff --git a/metadata-ingestion/docs/sources/neo4j/neo4j.md b/metadata-ingestion/docs/sources/neo4j/neo4j.md new file mode 100644 index 0000000000000..d4dab2c6c7e1f --- /dev/null +++ b/metadata-ingestion/docs/sources/neo4j/neo4j.md @@ -0,0 +1,20 @@ +## Integration Details + + + +Neo4j metadata will be ingested into DataHub using +`CALL apoc.meta.schema() YIELD value UNWIND keys(value) AS key RETURN key, value[key] AS value;` +The data that is returned will be parsed +and will be displayed as Nodes and Relationships in DataHub. Each object will be tagged with describing what kind of DataHub +object it is. The defaults are 'Node' and 'Relationship'. These tag values can be overwritten in the recipe. + + + +## Metadata Ingestion Quickstart + +### Prerequisites + +In order to ingest metadata from Neo4j, you will need: + +* Neo4j instance with APOC installed + diff --git a/metadata-ingestion/docs/sources/neo4j/neo4j_recipe.yml b/metadata-ingestion/docs/sources/neo4j/neo4j_recipe.yml new file mode 100644 index 0000000000000..463d65e7ba323 --- /dev/null +++ b/metadata-ingestion/docs/sources/neo4j/neo4j_recipe.yml @@ -0,0 +1,12 @@ +source: + type: 'neo4j' + config: + uri: 'neo4j+ssc://host:7687' + username: 'neo4j' + password: 'password' + env: 'PROD' + +sink: + type: "datahub-rest" + config: + server: 'http://localhost:8080' \ No newline at end of file diff --git a/metadata-ingestion/setup.py b/metadata-ingestion/setup.py index d7e056b31370d..c6d55fb5bcc56 100644 --- a/metadata-ingestion/setup.py +++ b/metadata-ingestion/setup.py @@ -525,6 +525,7 @@ "qlik-sense": sqlglot_lib | {"requests", "websocket-client"}, "sigma": sqlglot_lib | {"requests"}, "sac": sac, + "neo4j": {"pandas", "neo4j"}, } # This is mainly used to exclude plugins from the Docker image. @@ -673,6 +674,7 @@ "sigma", "sac", "cassandra", + "neo4j", ] if plugin for dependency in plugins[plugin] @@ -792,6 +794,7 @@ "sigma = datahub.ingestion.source.sigma.sigma:SigmaSource", "sac = datahub.ingestion.source.sac.sac:SACSource", "cassandra = datahub.ingestion.source.cassandra.cassandra:CassandraSource", + "neo4j = datahub.ingestion.source.neo4j.neo4j_source:Neo4jSource", ], "datahub.ingestion.transformer.plugins": [ "pattern_cleanup_ownership = datahub.ingestion.transformer.pattern_cleanup_ownership:PatternCleanUpOwnership", diff --git a/metadata-ingestion/src/datahub/ingestion/source/common/subtypes.py b/metadata-ingestion/src/datahub/ingestion/source/common/subtypes.py index 9fbb15500a863..a5eecf198a9b4 100644 --- a/metadata-ingestion/src/datahub/ingestion/source/common/subtypes.py +++ b/metadata-ingestion/src/datahub/ingestion/source/common/subtypes.py @@ -22,6 +22,8 @@ class DatasetSubTypes(StrEnum): SAC_MODEL = "Model" SAC_IMPORT_DATA_MODEL = "Import Data Model" SAC_LIVE_DATA_MODEL = "Live Data Model" + NEO4J_NODE = "Neo4j Node" + NEO4J_RELATIONSHIP = "Neo4j Relationship" # TODO: Create separate entity... NOTEBOOK = "Notebook" diff --git a/metadata-ingestion/src/datahub/ingestion/source/neo4j/__init__.py b/metadata-ingestion/src/datahub/ingestion/source/neo4j/__init__.py new file mode 100644 index 0000000000000..e69de29bb2d1d diff --git a/metadata-ingestion/src/datahub/ingestion/source/neo4j/neo4j_source.py b/metadata-ingestion/src/datahub/ingestion/source/neo4j/neo4j_source.py new file mode 100644 index 0000000000000..2c9107b967e4f --- /dev/null +++ b/metadata-ingestion/src/datahub/ingestion/source/neo4j/neo4j_source.py @@ -0,0 +1,331 @@ +import logging +import time +from dataclasses import dataclass +from typing import Any, Dict, Iterable, List, Optional, Type, Union + +import pandas as pd +from neo4j import GraphDatabase +from pydantic.fields import Field + +from datahub.configuration.source_common import EnvConfigMixin +from datahub.emitter.mce_builder import make_data_platform_urn, make_dataset_urn +from datahub.emitter.mcp import MetadataChangeProposalWrapper +from datahub.ingestion.api.common import PipelineContext +from datahub.ingestion.api.decorators import ( + SupportStatus, + config_class, + platform_name, + support_status, +) +from datahub.ingestion.api.source import Source, SourceReport +from datahub.ingestion.api.workunit import MetadataWorkUnit +from datahub.ingestion.source.common.subtypes import DatasetSubTypes +from datahub.metadata.com.linkedin.pegasus2avro.schema import SchemaFieldDataType +from datahub.metadata.schema_classes import ( + AuditStampClass, + BooleanTypeClass, + DatasetPropertiesClass, + DateTypeClass, + NullTypeClass, + NumberTypeClass, + OtherSchemaClass, + SchemaFieldClass, + SchemaMetadataClass, + StringTypeClass, + SubTypesClass, + UnionTypeClass, +) + +log = logging.getLogger(__name__) +logging.basicConfig(level=logging.INFO) + +_type_mapping: Dict[Union[Type, str], Type] = { + "list": UnionTypeClass, + "boolean": BooleanTypeClass, + "integer": NumberTypeClass, + "local_date_time": DateTypeClass, + "float": NumberTypeClass, + "string": StringTypeClass, + "date": DateTypeClass, + "node": StringTypeClass, + "relationship": StringTypeClass, +} + + +class Neo4jConfig(EnvConfigMixin): + username: str = Field(description="Neo4j Username") + password: str = Field(description="Neo4j Password") + uri: str = Field(description="The URI for the Neo4j server") + env: str = Field(description="Neo4j env") + + +@dataclass +class Neo4jSourceReport(SourceReport): + obj_failures: int = 0 + obj_created: int = 0 + + +@platform_name("Neo4j", id="neo4j") +@config_class(Neo4jConfig) +@support_status(SupportStatus.CERTIFIED) +class Neo4jSource(Source): + NODE = "node" + RELATIONSHIP = "relationship" + PLATFORM = "neo4j" + + def __init__(self, ctx: PipelineContext, config: Neo4jConfig): + self.ctx = ctx + self.config = config + self.report = Neo4jSourceReport() + + @classmethod + def create(cls, config_dict, ctx): + config = Neo4jConfig.parse_obj(config_dict) + return cls(ctx, config) + + def get_field_type(self, attribute_type: Union[type, str]) -> SchemaFieldDataType: + type_class: type = _type_mapping.get(attribute_type, NullTypeClass) + return SchemaFieldDataType(type=type_class()) + + def get_schema_field_class( + self, col_name: str, col_type: str, **kwargs: Any + ) -> SchemaFieldClass: + if kwargs["obj_type"] == self.NODE and col_type == self.RELATIONSHIP: + col_type = self.NODE + else: + col_type = col_type + return SchemaFieldClass( + fieldPath=col_name, + type=self.get_field_type(col_type), + nativeDataType=col_type, + description=col_type.upper() + if col_type in (self.NODE, self.RELATIONSHIP) + else col_type, + lastModified=AuditStampClass( + time=round(time.time() * 1000), actor="urn:li:corpuser:ingestion" + ), + ) + + def add_properties( + self, + dataset: str, + description: Optional[str] = None, + custom_properties: Optional[Dict[str, str]] = None, + ) -> MetadataChangeProposalWrapper: + dataset_properties = DatasetPropertiesClass( + description=description, + customProperties=custom_properties, + ) + return MetadataChangeProposalWrapper( + entityUrn=make_dataset_urn( + platform=self.PLATFORM, name=dataset, env=self.config.env + ), + aspect=dataset_properties, + ) + + def generate_neo4j_object( + self, dataset: str, columns: list, obj_type: Optional[str] = None + ) -> MetadataChangeProposalWrapper: + try: + fields = [ + self.get_schema_field_class(key, value.lower(), obj_type=obj_type) + for d in columns + for key, value in d.items() + ] + mcp = MetadataChangeProposalWrapper( + entityUrn=make_dataset_urn( + platform=self.PLATFORM, name=dataset, env=self.config.env + ), + aspect=SchemaMetadataClass( + schemaName=dataset, + platform=make_data_platform_urn(self.PLATFORM), + version=0, + hash="", + platformSchema=OtherSchemaClass(rawSchema=""), + lastModified=AuditStampClass( + time=round(time.time() * 1000), + actor="urn:li:corpuser:ingestion", + ), + fields=fields, + ), + ) + self.report.obj_created += 1 + except Exception as e: + log.error(e) + self.report.obj_failures += 1 + return mcp + + def get_neo4j_metadata(self, query: str) -> pd.DataFrame: + driver = GraphDatabase.driver( + self.config.uri, auth=(self.config.username, self.config.password) + ) + """ + This process retrieves the metadata for Neo4j objects using an APOC query, which returns a dictionary + with two columns: key and value. The key represents the Neo4j object, while the value contains the + corresponding metadata. + + When data is returned from Neo4j, much of the relationship metadata is stored with the relevant node's + metadata. Consequently, the objects are organized into two separate dataframes: one for nodes and one for + relationships. + + In the node dataframe, several fields are extracted and added as new columns. Similarly, in the relationship + dataframe, certain fields are parsed out, while others require metadata from the nodes dataframe. + + Once the data is parsed and these two dataframes are created, we combine a subset of their columns into a + single dataframe, which will be used to create the DataHub objects. + + See the docs for examples of metadata: metadata-ingestion/docs/sources/neo4j/neo4j.md + """ + try: + log.info(f"{query}") + with driver.session() as session: + result = session.run(query) + data = [record for record in result] + log.info("Closing Neo4j driver") + driver.close() + + node_df = self.process_nodes(data) + rel_df = self.process_relationships(data, node_df) + + union_cols = ["key", "obj_type", "property_data_types", "description"] + df = pd.concat([node_df[union_cols], rel_df[union_cols]]) + except Exception as e: + self.report.failure( + message="Failed to get neo4j metadata", + exc=e, + ) + + return df + + def process_nodes(self, data: list) -> pd.DataFrame: + nodes = [record for record in data if record["value"]["type"] == self.NODE] + node_df = pd.DataFrame( + nodes, + columns=["key", "value"], + ) + node_df["obj_type"] = node_df["value"].apply( + lambda record: self.get_obj_type(record) + ) + node_df["relationships"] = node_df["value"].apply( + lambda record: self.get_relationships(record) + ) + node_df["properties"] = node_df["value"].apply( + lambda record: self.get_properties(record) + ) + node_df["property_data_types"] = node_df["properties"].apply( + lambda record: self.get_property_data_types(record) + ) + node_df["description"] = node_df.apply( + lambda record: self.get_node_description(record, node_df), axis=1 + ) + return node_df + + def process_relationships(self, data: list, node_df: pd.DataFrame) -> pd.DataFrame: + rels = [ + record for record in data if record["value"]["type"] == self.RELATIONSHIP + ] + rel_df = pd.DataFrame(rels, columns=["key", "value"]) + rel_df["obj_type"] = rel_df["value"].apply( + lambda record: self.get_obj_type(record) + ) + rel_df["properties"] = rel_df["value"].apply( + lambda record: self.get_properties(record) + ) + rel_df["property_data_types"] = rel_df["properties"].apply( + lambda record: self.get_property_data_types(record) + ) + rel_df["description"] = rel_df.apply( + lambda record: self.get_rel_descriptions(record, node_df), axis=1 + ) + return rel_df + + def get_obj_type(self, record: dict) -> str: + return record["type"] + + def get_rel_descriptions(self, record: dict, df: pd.DataFrame) -> str: + descriptions = [] + for _, row in df.iterrows(): + relationships = row.get("relationships", {}) + for relationship, props in relationships.items(): + if record["key"] == relationship: + if props["direction"] == "in": + for prop in props["labels"]: + descriptions.append( + f"({row['key']})-[{record['key']}]->({prop})" + ) + return "\n".join(descriptions) + + def get_node_description(self, record: dict, df: pd.DataFrame) -> str: + descriptions = [] + for _, row in df.iterrows(): + if record["key"] == row["key"]: + for relationship, props in row["relationships"].items(): + direction = props["direction"] + for node in set(props["labels"]): + if direction == "in": + descriptions.append( + f"({row['key']})<-[{relationship}]-({node})" + ) + elif direction == "out": + descriptions.append( + f"({row['key']})-[{relationship}]->({node})" + ) + + return "\n".join(descriptions) + + def get_property_data_types(self, record: dict) -> List[dict]: + return [{k: v["type"]} for k, v in record.items()] + + def get_properties(self, record: dict) -> str: + return record["properties"] + + def get_relationships(self, record: dict) -> dict: + return record.get("relationships", None) + + def get_workunits_internal(self) -> Iterable[MetadataWorkUnit]: + df = self.get_neo4j_metadata( + "CALL apoc.meta.schema() YIELD value UNWIND keys(value) AS key RETURN key, value[key] AS value;" + ) + for index, row in df.iterrows(): + try: + yield MetadataWorkUnit( + id=row["key"], + mcp=self.generate_neo4j_object( + columns=row["property_data_types"], + dataset=row["key"], + ), + is_primary_source=True, + ) + + yield MetadataWorkUnit( + id=row["key"], + mcp=MetadataChangeProposalWrapper( + entityUrn=make_dataset_urn( + platform=self.PLATFORM, + name=row["key"], + env=self.config.env, + ), + aspect=SubTypesClass( + typeNames=[ + DatasetSubTypes.NEO4J_NODE + if row["obj_type"] == self.NODE + else DatasetSubTypes.NEO4J_RELATIONSHIP + ] + ), + ), + ) + + yield MetadataWorkUnit( + id=row["key"], + mcp=self.add_properties( + dataset=row["key"], + custom_properties=None, + description=row["description"], + ), + ) + + except Exception as e: + raise e + + def get_report(self): + return self.report diff --git a/metadata-ingestion/tests/unit/test_neo4j_source.py b/metadata-ingestion/tests/unit/test_neo4j_source.py new file mode 100644 index 0000000000000..62586718e8606 --- /dev/null +++ b/metadata-ingestion/tests/unit/test_neo4j_source.py @@ -0,0 +1,221 @@ +import unittest +from pathlib import Path + +import pandas as pd +import pytest + +from datahub.ingestion.api.common import PipelineContext +from datahub.ingestion.source.neo4j.neo4j_source import Neo4jConfig, Neo4jSource + + +@pytest.fixture +def tracking_uri(tmp_path: Path) -> str: + # return str(tmp_path / "neo4j") + return "neo4j+ssc://host:7687" + + +@pytest.fixture +def source(tracking_uri: str) -> Neo4jSource: + return Neo4jSource( + ctx=PipelineContext(run_id="neo4j-test"), + config=Neo4jConfig( + uri=tracking_uri, env="Prod", username="test", password="test" + ), + ) + + +def data(): + return [ + { + "key": "Node_1", + "value": { + "count": 433026, + "relationships": { + "RELATIONSHIP_1": { + "count": 1, + "properties": { + "Relationship1_Property1": { + "existence": False, + "type": "STRING", + "indexed": False, + "array": False, + } + }, + "direction": "in", + "labels": ["Node_2"], + } + }, + "RELATIONSHIP_2": { + "count": 2, + "properties": { + "Relationship2_Property1": { + "existence": False, + "type": "STRING", + "indexed": False, + "array": False, + } + }, + "direction": "in", + "labels": ["Node_3"], + }, + "type": "node", + "properties": { + "Node1_Property1": { + "existence": False, + "type": "DATE", + "indexed": False, + "unique": False, + }, + "Node1_Property2": { + "existence": False, + "type": "STRING", + "indexed": False, + "unique": False, + }, + "Node1_Property3": { + "existence": False, + "type": "STRING", + "indexed": False, + "unique": False, + }, + }, + "labels": [], + }, + }, + { + "key": "Node_2", + "value": { + "count": 3, + "relationships": { + "RELATIONSHIP_1": { + "count": 1, + "properties": { + "Relationship1_Property1": { + "existence": False, + "type": "STRING", + "indexed": False, + "array": False, + } + }, + "direction": "out", + "labels": ["Node_2"], + } + }, + "type": "node", + "properties": { + "Node2_Property1": { + "existence": False, + "type": "DATE", + "indexed": False, + "unique": False, + }, + "Node2_Property2": { + "existence": False, + "type": "STRING", + "indexed": False, + "unique": False, + }, + "Node2_Property3": { + "existence": False, + "type": "STRING", + "indexed": False, + "unique": False, + }, + }, + "labels": [], + }, + }, + { + "key": "RELATIONSHIP_1", + "value": { + "count": 4, + "type": "relationship", + "properties": { + "Relationship1_Property1": { + "existence": False, + "type": "STRING", + "indexed": False, + "array": False, + } + }, + }, + }, + ] + + +def test_process_nodes(source): + df = source.process_nodes(data=data()) + assert type(df) is pd.DataFrame + + +def test_process_relationships(source): + df = source.process_relationships( + data=data(), node_df=source.process_nodes(data=data()) + ) + assert type(df) is pd.DataFrame + + +def test_get_obj_type(source): + results = data() + assert source.get_obj_type(results[0]["value"]) == "node" + assert source.get_obj_type(results[1]["value"]) == "node" + assert source.get_obj_type(results[2]["value"]) == "relationship" + + +def test_get_node_description(source): + results = data() + df = source.process_nodes(data=data()) + assert ( + source.get_node_description(results[0], df) + == "(Node_1)<-[RELATIONSHIP_1]-(Node_2)" + ) + assert ( + source.get_node_description(results[1], df) + == "(Node_2)-[RELATIONSHIP_1]->(Node_2)" + ) + + +def test_get_property_data_types(source): + results = data() + assert source.get_property_data_types(results[0]["value"]["properties"]) == [ + {"Node1_Property1": "DATE"}, + {"Node1_Property2": "STRING"}, + {"Node1_Property3": "STRING"}, + ] + assert source.get_property_data_types(results[1]["value"]["properties"]) == [ + {"Node2_Property1": "DATE"}, + {"Node2_Property2": "STRING"}, + {"Node2_Property3": "STRING"}, + ] + assert source.get_property_data_types(results[2]["value"]["properties"]) == [ + {"Relationship1_Property1": "STRING"} + ] + + +def test_get_properties(source): + results = data() + assert list(source.get_properties(results[0]["value"]).keys()) == [ + "Node1_Property1", + "Node1_Property2", + "Node1_Property3", + ] + assert list(source.get_properties(results[1]["value"]).keys()) == [ + "Node2_Property1", + "Node2_Property2", + "Node2_Property3", + ] + assert list(source.get_properties(results[2]["value"]).keys()) == [ + "Relationship1_Property1" + ] + + +def test_get_relationships(source): + results = data() + record = list( + results[0]["value"]["relationships"].keys() + ) # Get the first key from the dict_keys + assert record == ["RELATIONSHIP_1"] + + +if __name__ == "__main__": + unittest.main() diff --git a/metadata-service/configuration/src/main/resources/bootstrap_mcps/data-platforms.yaml b/metadata-service/configuration/src/main/resources/bootstrap_mcps/data-platforms.yaml index 1625df4a99540..0b3d815c71098 100644 --- a/metadata-service/configuration/src/main/resources/bootstrap_mcps/data-platforms.yaml +++ b/metadata-service/configuration/src/main/resources/bootstrap_mcps/data-platforms.yaml @@ -727,3 +727,14 @@ displayName: Cassandra type: KEY_VALUE_STORE logoUrl: "/assets/platforms/cassandralogo.png" +- entityUrn: urn:li:dataPlatform:neo4j + entityType: dataPlatform + aspectName: dataPlatformInfo + changeType: UPSERT + aspect: + datasetNameDelimiter: "." + name: neo4j + displayName: Neo4j + type: OTHERS + logoUrl: "/assets/platforms/neo4j.png" +