diff --git a/Insect Detection and Classification using DL/Dataset/README.md b/Insect Detection and Classification using DL/Dataset/README.md new file mode 100644 index 000000000..cf2787f94 --- /dev/null +++ b/Insect Detection and Classification using DL/Dataset/README.md @@ -0,0 +1,3 @@ +The link to the dataset is given below :- + +# Link :- https://www.kaggle.com/datasets/vencerlanz09/insect-village-synthetic-dataset \ No newline at end of file diff --git a/Insect Detection and Classification using DL/Images/DenseNet121/1cce4d35-a9e2-49e6-bec1-8f540ef6c640.png b/Insect Detection and Classification using DL/Images/DenseNet121/1cce4d35-a9e2-49e6-bec1-8f540ef6c640.png new file mode 100644 index 000000000..9851c63f3 Binary files /dev/null and b/Insect Detection and Classification using DL/Images/DenseNet121/1cce4d35-a9e2-49e6-bec1-8f540ef6c640.png differ diff --git a/Insect Detection and Classification using DL/Images/DenseNet121/aedd4d8a-e516-42a4-b16b-1a063173efaa.png b/Insect Detection and Classification using DL/Images/DenseNet121/aedd4d8a-e516-42a4-b16b-1a063173efaa.png new file mode 100644 index 000000000..34e621626 Binary files /dev/null and b/Insect Detection and Classification using DL/Images/DenseNet121/aedd4d8a-e516-42a4-b16b-1a063173efaa.png differ diff --git a/Insect Detection and Classification using DL/Images/DenseNet121/e0e74036-b174-421c-9222-757ca1059eb7.png b/Insect Detection and Classification using DL/Images/DenseNet121/e0e74036-b174-421c-9222-757ca1059eb7.png new file mode 100644 index 000000000..4b305c660 Binary files /dev/null and b/Insect Detection and Classification using DL/Images/DenseNet121/e0e74036-b174-421c-9222-757ca1059eb7.png differ diff --git a/Insect Detection and Classification using DL/Images/DenseNet121/ef9173f3-63b2-4119-ad96-81a93c4c1aac.png b/Insect Detection and Classification using DL/Images/DenseNet121/ef9173f3-63b2-4119-ad96-81a93c4c1aac.png new file mode 100644 index 000000000..8ffcfd877 Binary files /dev/null and b/Insect Detection and Classification using DL/Images/DenseNet121/ef9173f3-63b2-4119-ad96-81a93c4c1aac.png differ diff --git a/Insect Detection and Classification using DL/Images/InceptionV3_predictions/28c05d19-f793-4a18-859a-13e8e68756b5.png b/Insect Detection and Classification using DL/Images/InceptionV3_predictions/28c05d19-f793-4a18-859a-13e8e68756b5.png new file mode 100644 index 000000000..9851c63f3 Binary files /dev/null and b/Insect Detection and Classification using DL/Images/InceptionV3_predictions/28c05d19-f793-4a18-859a-13e8e68756b5.png differ diff --git a/Insect Detection and Classification using DL/Images/InceptionV3_predictions/3df0fda8-f842-4a34-91c5-4687e1112e14.png b/Insect Detection and Classification using DL/Images/InceptionV3_predictions/3df0fda8-f842-4a34-91c5-4687e1112e14.png new file mode 100644 index 000000000..1cece011b Binary files /dev/null and b/Insect Detection and Classification using DL/Images/InceptionV3_predictions/3df0fda8-f842-4a34-91c5-4687e1112e14.png differ diff --git a/Insect Detection and Classification using DL/Images/InceptionV3_predictions/68e783d1-408d-4314-8b3c-a9c1439a6494.png b/Insect Detection and Classification using DL/Images/InceptionV3_predictions/68e783d1-408d-4314-8b3c-a9c1439a6494.png new file mode 100644 index 000000000..8d7710265 Binary files /dev/null and b/Insect Detection and Classification using DL/Images/InceptionV3_predictions/68e783d1-408d-4314-8b3c-a9c1439a6494.png differ diff --git a/Insect Detection and Classification using DL/Images/InceptionV3_predictions/8a4134d7-8ad2-4eac-a738-b3453efded17.png b/Insect Detection and Classification using DL/Images/InceptionV3_predictions/8a4134d7-8ad2-4eac-a738-b3453efded17.png new file mode 100644 index 000000000..34e621626 Binary files /dev/null and b/Insect Detection and Classification using DL/Images/InceptionV3_predictions/8a4134d7-8ad2-4eac-a738-b3453efded17.png differ diff --git a/Insect Detection and Classification using DL/Images/ResNet101V2_predictions/1a2bbd11-337c-4763-b853-9c34877eaab3.png b/Insect Detection and Classification using DL/Images/ResNet101V2_predictions/1a2bbd11-337c-4763-b853-9c34877eaab3.png new file mode 100644 index 000000000..8d7710265 Binary files /dev/null and b/Insect Detection and Classification using DL/Images/ResNet101V2_predictions/1a2bbd11-337c-4763-b853-9c34877eaab3.png differ diff --git a/Insect Detection and Classification using DL/Images/ResNet101V2_predictions/776d63f5-4fd0-41fc-bfd2-90ea5872f76b.png b/Insect Detection and Classification using DL/Images/ResNet101V2_predictions/776d63f5-4fd0-41fc-bfd2-90ea5872f76b.png new file mode 100644 index 000000000..9851c63f3 Binary files /dev/null and b/Insect Detection and Classification using DL/Images/ResNet101V2_predictions/776d63f5-4fd0-41fc-bfd2-90ea5872f76b.png differ diff --git a/Insect Detection and Classification using DL/Images/ResNet101V2_predictions/9b8bd6b4-b5cb-4c8c-ad12-29aca4d74d00.png b/Insect Detection and Classification using DL/Images/ResNet101V2_predictions/9b8bd6b4-b5cb-4c8c-ad12-29aca4d74d00.png new file mode 100644 index 000000000..1cece011b Binary files /dev/null and b/Insect Detection and Classification using DL/Images/ResNet101V2_predictions/9b8bd6b4-b5cb-4c8c-ad12-29aca4d74d00.png differ diff --git a/Insect Detection and Classification using DL/Images/ResNet101V2_predictions/ead5d95c-7b1f-4e59-a9c6-f28e56c574c0.png b/Insect Detection and Classification using DL/Images/ResNet101V2_predictions/ead5d95c-7b1f-4e59-a9c6-f28e56c574c0.png new file mode 100644 index 000000000..34e621626 Binary files /dev/null and b/Insect Detection and Classification using DL/Images/ResNet101V2_predictions/ead5d95c-7b1f-4e59-a9c6-f28e56c574c0.png differ diff --git a/Insect Detection and Classification using DL/Images/Resnet50V2_predictions/3ea9611d-9697-460b-bfaf-4c418cee524c.png b/Insect Detection and Classification using DL/Images/Resnet50V2_predictions/3ea9611d-9697-460b-bfaf-4c418cee524c.png new file mode 100644 index 000000000..9851c63f3 Binary files /dev/null and b/Insect Detection and Classification using DL/Images/Resnet50V2_predictions/3ea9611d-9697-460b-bfaf-4c418cee524c.png differ diff --git a/Insect Detection and Classification using DL/Images/Resnet50V2_predictions/7098ef1d-a285-437a-a23a-d4cf99d385a9.png b/Insect Detection and Classification using DL/Images/Resnet50V2_predictions/7098ef1d-a285-437a-a23a-d4cf99d385a9.png new file mode 100644 index 000000000..34e621626 Binary files /dev/null and b/Insect Detection and Classification using DL/Images/Resnet50V2_predictions/7098ef1d-a285-437a-a23a-d4cf99d385a9.png differ diff --git a/Insect Detection and Classification using DL/Images/Resnet50V2_predictions/8f659648-c411-4792-a3fc-3a3116a9ab57.png b/Insect Detection and Classification using DL/Images/Resnet50V2_predictions/8f659648-c411-4792-a3fc-3a3116a9ab57.png new file mode 100644 index 000000000..1cece011b Binary files /dev/null and b/Insect Detection and Classification using DL/Images/Resnet50V2_predictions/8f659648-c411-4792-a3fc-3a3116a9ab57.png differ diff --git a/Insect Detection and Classification using DL/Images/Resnet50V2_predictions/b3f8ba55-849c-47b6-b705-59fe79005f17.png b/Insect Detection and Classification using DL/Images/Resnet50V2_predictions/b3f8ba55-849c-47b6-b705-59fe79005f17.png new file mode 100644 index 000000000..8d7710265 Binary files /dev/null and b/Insect Detection and Classification using DL/Images/Resnet50V2_predictions/b3f8ba55-849c-47b6-b705-59fe79005f17.png differ diff --git a/Insect Detection and Classification using DL/Images/Xception_predictions/35d1cedc-35ce-4b22-8902-0e910812e0f0.png b/Insect Detection and Classification using DL/Images/Xception_predictions/35d1cedc-35ce-4b22-8902-0e910812e0f0.png new file mode 100644 index 000000000..1cece011b Binary files /dev/null and b/Insect Detection and Classification using DL/Images/Xception_predictions/35d1cedc-35ce-4b22-8902-0e910812e0f0.png differ diff --git a/Insect Detection and Classification using DL/Images/Xception_predictions/4cf60ed1-2d77-47f6-92b0-36d8aa288246.png b/Insect Detection and Classification using DL/Images/Xception_predictions/4cf60ed1-2d77-47f6-92b0-36d8aa288246.png new file mode 100644 index 000000000..9851c63f3 Binary files /dev/null and b/Insect Detection and Classification using DL/Images/Xception_predictions/4cf60ed1-2d77-47f6-92b0-36d8aa288246.png differ diff --git a/Insect Detection and Classification using DL/Images/Xception_predictions/630a36ad-e213-4bff-b3bd-196f8735c95e.png b/Insect Detection and Classification using DL/Images/Xception_predictions/630a36ad-e213-4bff-b3bd-196f8735c95e.png new file mode 100644 index 000000000..8d7710265 Binary files /dev/null and b/Insect Detection and Classification using DL/Images/Xception_predictions/630a36ad-e213-4bff-b3bd-196f8735c95e.png differ diff --git a/Insect Detection and Classification using DL/Images/Xception_predictions/c4c6adf8-d347-4a62-9ec1-6b1163dcaf02.png b/Insect Detection and Classification using DL/Images/Xception_predictions/c4c6adf8-d347-4a62-9ec1-6b1163dcaf02.png new file mode 100644 index 000000000..34e621626 Binary files /dev/null and b/Insect Detection and Classification using DL/Images/Xception_predictions/c4c6adf8-d347-4a62-9ec1-6b1163dcaf02.png differ diff --git a/Insect Detection and Classification using DL/Images/bar.png b/Insect Detection and Classification using DL/Images/bar.png new file mode 100644 index 000000000..af58df646 Binary files /dev/null and b/Insect Detection and Classification using DL/Images/bar.png differ diff --git a/Insect Detection and Classification using DL/Images/image_path_distribution.png b/Insect Detection and Classification using DL/Images/image_path_distribution.png new file mode 100644 index 000000000..7bcd392d0 Binary files /dev/null and b/Insect Detection and Classification using DL/Images/image_path_distribution.png differ diff --git a/Insect Detection and Classification using DL/Images/pie_chart.png b/Insect Detection and Classification using DL/Images/pie_chart.png new file mode 100644 index 000000000..ceb163b0a Binary files /dev/null and b/Insect Detection and Classification using DL/Images/pie_chart.png differ diff --git a/Insect Detection and Classification using DL/Models/README.md b/Insect Detection and Classification using DL/Models/README.md new file mode 100644 index 000000000..5b7980960 --- /dev/null +++ b/Insect Detection and Classification using DL/Models/README.md @@ -0,0 +1,194 @@ +# Insect Detection and Classification using DL + +## ๐ŸŽฏ Goal +The main purpose of this project is to **identify and classify different insects such as moth , butterfly , scorpion , grasshopper etc.** from the dataset (mentioned below) using various image detection/recognition models and comparing their accuracy. + +## ๐Ÿงต Dataset + +The link to the dataset is given below :- + +**Link :- https://www.kaggle.com/datasets/vencerlanz09/insect-village-synthetic-dataset** + +## ๐Ÿงพ Description + +This project involves the comparative analysis of **Five** Keras image detection models, namely **ResNet101V2** , **ResNet50V2** , **InceptionV3** , **DenseNet121** and **Xception** applied to a specific dataset. The dataset consists of annotated images related to a particular domain, and the objectives include training and evaluating these models to compare their accuracy scores and performance metrics. Additionally, exploratory data analysis (EDA) techniques are employed to understand the dataset's characteristics, explore class distributions, detect imbalances, and identify areas for potential improvement. The methodology encompasses data preparation, model training, evaluation, comparative analysis of accuracy and performance metrics, and visualization of EDA insights. + +## ๐Ÿงฎ What I had done! + +### 1. Data Loading and Preparation: + Loaded the dataset containing image paths and corresponding labels into a pandas DataFrame for easy manipulation and analysis. + +### 2. Exploratory Data Analysis (EDA): + Bar Chart for Label Distribution: Created a bar chart to visualize the frequency distribution of different labels in the dataset. + + Pie Chart for Label Distribution: Generated a pie chart to represent the proportion of each label in the dataset. + +### 3. Data Analysis: + Counted the number of unique image paths to ensure data uniqueness and quality. + Analyzed the distribution of image paths by label for the top 20 most frequent paths. + Displayed the number of unique values for each categorical column to understand data variety. + Visualized missing values in the dataset using a heatmap to identify and address potential data quality issues. + Summarized and printed the counts of each label. + +### 4. Image Preprocessing and Model Training: + Loaded and preprocessed the test images, ensuring normalization of pixel values for consistency. + Iterated through multiple models (VGG16, ResNet50 , Xception) saved in a directory and made predictions on the test dataset. + Saved the predictions to CSV files for further analysis and comparison. + +### 5. Model Prediction Visualization: + Loaded models and visualized their predictions on a sample set of test images to qualitatively assess model performance. + Adjusted image preprocessing for models requiring specific input sizes (e.g., 299x299 for Xception). + +## ๐Ÿš€ Models Implemented + +Trained the dataset on various models , each of their summary is as follows :- + +### Xception + +When implementing the Xception model in code, we leverage its sophisticated architecture to bolster our image classification tasks. By loading the pre-trained Xception model with weights from the ImageNet dataset, we harness its comprehensive knowledge. + +**Reasons for choosing Xception:** : Lightweight (88 MB) , +**Excellent Accuracy** (Xception achieves high accuracy in image classification tasks .) , +Reduced Parameters (22.9M) , +Faster Inference Speed (CPU - 39.4, GPU - 5.2) + +Visualization of Predicted Labels on test set :-
+![alt text](../Images/Xception_predictions/35d1cedc-35ce-4b22-8902-0e910812e0f0.png)
+ +![alt text](../Images/Xception_predictions/4cf60ed1-2d77-47f6-92b0-36d8aa288246.png)
+ +![alt text](../Images/Xception_predictions/630a36ad-e213-4bff-b3bd-196f8735c95e.png)
+ +![alt text](../Images/Xception_predictions/c4c6adf8-d347-4a62-9ec1-6b1163dcaf02.png) + + + +### ResNet101V2 + +Incorporating the ResNet101V2 model into our codebase brings a wealth of advantages to our image processing workflows. By initializing the pre-trained ResNet101V2 model with weights from the ImageNet dataset, we tap into its profound understanding of visual data. + +**Reasons for selecting ResNet101V2:** +- Deep Architecture (ResNet101V2's deeper network allows for learning complex patterns and features in images.) +- Proven Accuracy (ResNet101V2 consistently ranks high in various image recognition benchmarks.) +- Extensive Parameters (44.5M) +- Robust Efficiency (CPU - 50, GPU - 15) + +Visualization of Predicted Labels on test set :-
+ +![alt text](../Images/ResNet101V2_predictions/1a2bbd11-337c-4763-b853-9c34877eaab3.png) + +![alt text](../Images/ResNet101V2_predictions/776d63f5-4fd0-41fc-bfd2-90ea5872f76b.png) + +![alt text](../Images/ResNet101V2_predictions/9b8bd6b4-b5cb-4c8c-ad12-29aca4d74d00.png) + +![alt text](../Images/ResNet101V2_predictions/ead5d95c-7b1f-4e59-a9c6-f28e56c574c0.png) + + + +### ResNet50V2 + +Implementing transfer learning with the ResNet50V2 model allows us to benefit from pre-trained weights, significantly reducing the training duration necessary for image classification tasks. This strategy is particularly advantageous when dealing with limited training data, as we can leverage the comprehensive representations learned by the base model from extensive datasets like ImageNet. + +**Reasons for opting for ResNet50V2:** Relatively lightweight (98 MB) , High Accuracy (92.1 % Top 5 accuracy), Moderate Parameters (25.6M) , Reasonable Inference Speed on GPU (CPU - 32.1, GPU - 4.7) + +Visualization of Predicted Labels on test set :-
+ +![alt text](../Images/Resnet50V2_predictions/3ea9611d-9697-460b-bfaf-4c418cee524c.png)
+ +![alt text](../Images/Resnet50V2_predictions/7098ef1d-a285-437a-a23a-d4cf99d385a9.png)
+ +![alt text](../Images/Resnet50V2_predictions/8f659648-c411-4792-a3fc-3a3116a9ab57.png)
+ +![alt text](../Images/Resnet50V2_predictions/b3f8ba55-849c-47b6-b705-59fe79005f17.png) + + + + + +### InceptionV3 +When implementing the InceptionV3 model in code, we leverage its powerful architecture to enhance our image classification tasks. By loading the pre-trained InceptionV3 model with weights from the ImageNet dataset, we benefit from its extensive knowledge. + +**Reason for choosing :-** +lightweighted (92 MB) , better accuracy , less parameters (23.9M) , less inference speed (CPU - 42.2 , GPU - 6.9) + +Visualization of Predicted Labels on test set :-
+![alt text](../Images/InceptionV3_predictions/28c05d19-f793-4a18-859a-13e8e68756b5.png)
+ +![alt text](../Images/InceptionV3_predictions/3df0fda8-f842-4a34-91c5-4687e1112e14.png)
+ +![alt text](../Images/InceptionV3_predictions/68e783d1-408d-4314-8b3c-a9c1439a6494.png)
+ +![alt text](../Images/InceptionV3_predictions/8a4134d7-8ad2-4eac-a738-b3453efded17.png) + + + +### DenseNet121 + +When implementing the DenseNet121 model in code, we leverage its densely connected architecture to enhance our image classification tasks. By loading the pre-trained DenseNet121 model with weights from the ImageNet dataset, we benefit from its extensive knowledge. + +**Reason for choosing:** Lightweight (33 MB) +, High accuracy , Moderate number of parameters (8M) , Efficient inference speed (CPU - ~45 ms, GPU - ~10 ms). + +Visualization of Predicted Labels on test set :-
+ +![alt text](../Images/DenseNet121/1cce4d35-a9e2-49e6-bec1-8f540ef6c640.png)
+ +![alt text](../Images/DenseNet121/aedd4d8a-e516-42a4-b16b-1a063173efaa.png)
+ +![alt text](../Images/DenseNet121/e0e74036-b174-421c-9222-757ca1059eb7.png)
+ +![alt text](../Images/DenseNet121/ef9173f3-63b2-4119-ad96-81a93c4c1aac.png) + +## ๐Ÿ“š Libraries Needed + +1. **NumPy:** Fundamental package for numerical computing. +2. **pandas:** Data analysis and manipulation library. +3. **scikit-learn:** Machine learning library for classification, regression, and clustering. +4. **Matplotlib:** Plotting library for creating visualizations. +5. **Keras:** High-level neural networks API, typically used with TensorFlow backend. +6. **tqdm:** Progress bar utility for tracking iterations. +7. **seaborn:** Statistical data visualization library based on Matplotlib. + +## ๐Ÿ“Š Exploratory Data Analysis Results + +### Bar Chart :- + A bar chart showing the distribution of labels in the training dataset. It visually represents the frequency of each label category, providing an overview of how the labels are distributed across the dataset. + +![alt text](../Images/bar.png) + + +### Pie Chart :- +A pie chart illustrating the distribution of labels in the training dataset. The percentage value displayed on each segment indicates the relative frequency of each label category. + +![alt text](../Images/pie_chart.png) + +### Image paths distribution :- + Visualizes the distribution of top 20 image paths by label, displays unique values in categorical columns. + + +![alt text](../Images/image_path_distribution.png) + +## ๐Ÿ“ˆ Performance of the Models based on the Accuracy Scores + +| Models | Accuracy Scores| +|------------ |------------| +|Xception |97% ( Validation Accuracy: 0.9680)| +|InceptionV3 | 96% (Validation Accuracy: 0.9650) | +|DenseNet121 | 95% (Validation Accuracy:0.9520) | +|ResNet50V2 | 92% (Validation Accuracy: 0.9220) | +|ResNet101V2 | 90% (Validation Accuracy: 0.9010) | + + +## ๐Ÿ“ข Conclusion + +**According to the accuracy scores it can be concluded that Xception , InceptionV3 and DenseNet121 were able to perform good on this dataset.** + +Even though most of the models implemented above are giving above 90% accuracy which is great when it comes to image recognition. + +## โœ’๏ธ Your Signature + +Full name:-Aaradhya Singh +Github Id :- https://github.com/kyra-09 +Email ID :- aaradhyasinghgaur@gmail.com +LinkdIn :- https://www.linkedin.com/in/aaradhya-singh-0b1927250/
+Participant Role :- Contributor / GSSOC (Girl Script Summer of Code ) - 2024 \ No newline at end of file diff --git a/Insect Detection and Classification using DL/Models/models_Insect_Detection_and_Classification.ipynb b/Insect Detection and Classification using DL/Models/models_Insect_Detection_and_Classification.ipynb new file mode 100644 index 000000000..45a730c09 --- /dev/null +++ b/Insect Detection and Classification using DL/Models/models_Insect_Detection_and_Classification.ipynb @@ -0,0 +1,9218 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "sbGw0t3BHn7d" + }, + "source": [ + "## **Insect Detection and Classification using DL**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O-9XyrVCdxG5" + }, + "source": [ + "# Downloading the Dataset\n", + "First, we need to install the Kaggle API and authenticate it to download the \"insect-village-synthetic\" dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 94 + }, + "collapsed": true, + "id": "WW2-hczC79i9", + "outputId": "fa81574f-1e40-45b6-9103-cb45797b77a3" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + " \n", + " \n", + " Upload widget is only available when the cell has been executed in the\n", + " current browser session. Please rerun this cell to enable.\n", + " \n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saving kaggle.json to kaggle.json\n" + ] + } + ], + "source": [ + "!pip install -q kaggle\n", + "from google.colab import files\n", + "files.upload()\n", + "!mkdir ~/.kaggle\n", + "!cp kaggle.json ~/.kaggle/\n", + "!chmod 600 ~/.kaggle/kaggle.json" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xSrXVWuj8BwW", + "outputId": "c6fa70fd-ba9c-4369-fa98-8dcad57cc8a6" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1;30;43mStreaming output truncated to the last 5000 lines.\u001b[0m\n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000000.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000001.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000002.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000003.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000004.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000005.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000006.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000007.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000008.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000009.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000010.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000011.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000012.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000013.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000014.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000015.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000016.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000017.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000018.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000019.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000020.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000021.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000022.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000023.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000024.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000025.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000026.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000027.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000028.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000029.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000030.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000031.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000032.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000033.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000034.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000035.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000036.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000037.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000038.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000039.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000040.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000041.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000042.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000043.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000044.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000045.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000046.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000047.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000048.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000049.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000050.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000051.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000052.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000053.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000054.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000055.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000056.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000057.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000058.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000059.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000060.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000061.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000062.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000063.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000064.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000065.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000066.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000067.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000068.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000069.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000070.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000071.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000072.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000073.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000074.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000075.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000076.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000077.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000078.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000079.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000080.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000081.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000082.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000083.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000084.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000085.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000086.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000087.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000088.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000089.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000090.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000091.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000092.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000093.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000094.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000095.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000096.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000097.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000098.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000099.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000100.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000101.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000102.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000103.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000104.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000105.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000106.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000107.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000108.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000109.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000110.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000111.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000112.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000113.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000114.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000115.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000116.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000117.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000118.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000119.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000120.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000121.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000122.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000123.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000124.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000125.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000126.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000127.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000128.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000129.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000130.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000131.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000132.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000133.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000134.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000135.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000136.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000137.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000138.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000139.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000140.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000141.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000142.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000143.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000144.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000145.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000146.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000147.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000148.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000149.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000150.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000151.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000152.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000153.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000154.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000155.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000156.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000157.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000158.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000159.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000160.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000161.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000162.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000163.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000164.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000165.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000166.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000167.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000168.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000169.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000170.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000171.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000172.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000173.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000174.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000175.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000176.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000177.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000178.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000179.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000180.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000181.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000182.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000183.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000184.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000185.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000186.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000187.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000188.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000189.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000190.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000191.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000192.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000193.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000194.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000195.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000196.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000197.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000198.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000199.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000200.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000201.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000202.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000203.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000204.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000205.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000206.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000207.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000208.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000209.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000210.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000211.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000212.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000213.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000214.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000215.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000216.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000217.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000218.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000219.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000220.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000221.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000222.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000223.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000224.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000225.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000226.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000227.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000228.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000229.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000230.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000231.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000232.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000233.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000234.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000235.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000236.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000237.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000238.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000239.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000240.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000241.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000242.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000243.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000244.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000245.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000246.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000247.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000248.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000249.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000250.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000251.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000252.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000253.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000254.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000255.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000256.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000257.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000258.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000259.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000260.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000261.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000262.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000263.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000264.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000265.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000266.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000267.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000268.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000269.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000270.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000271.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000272.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000273.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000274.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000275.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000276.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000277.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000278.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000279.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000280.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000281.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000282.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000283.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000284.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000285.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000286.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000287.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000288.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000289.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000290.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000291.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000292.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000293.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000294.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000295.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000296.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000297.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000298.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000299.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000300.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000301.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000302.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000303.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000304.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000305.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000306.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000307.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000308.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000309.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000310.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000311.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000312.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000313.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000314.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000315.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000316.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000317.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000318.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000319.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000320.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000321.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000322.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000323.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000324.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000325.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000326.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000327.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000328.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000329.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000330.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000331.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000332.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000333.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000334.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000335.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000336.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000337.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000338.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000339.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000340.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000341.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000342.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000343.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000344.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000345.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000346.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000347.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000348.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000349.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000350.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000351.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000352.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000353.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000354.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000355.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000356.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000357.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000358.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000359.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000360.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000361.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000362.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000363.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000364.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000365.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000366.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000367.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000368.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000369.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000370.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000371.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000372.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000373.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000374.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000375.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000376.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000377.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000378.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000379.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000380.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000381.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000382.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000383.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000384.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000385.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000386.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000387.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000388.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000389.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000390.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000391.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000392.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000393.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000394.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000395.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000396.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000397.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000398.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000399.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000400.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000401.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000402.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000403.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000404.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000405.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000406.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000407.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000408.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000409.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000410.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000411.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000412.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000413.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000414.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000415.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000416.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000417.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000418.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000419.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000420.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000421.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000422.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000423.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000424.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000425.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000426.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000427.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000428.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000429.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000430.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000431.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000432.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000433.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000434.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000435.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000436.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000437.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000438.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000439.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000440.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000441.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000442.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000443.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000444.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000445.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000446.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000447.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000448.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000449.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000450.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000451.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000452.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000453.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000454.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000455.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000456.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000457.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000458.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000459.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000460.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000461.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000462.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000463.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000464.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000465.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000466.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000467.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000468.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000469.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000470.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000471.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000472.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000473.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000474.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000475.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000476.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000477.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000478.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000479.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000480.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000481.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000482.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000483.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000484.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000485.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000486.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000487.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000488.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000489.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000490.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000491.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000492.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000493.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000494.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000495.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000496.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000497.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000498.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000499.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000500.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000501.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000502.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000503.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000504.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000505.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000506.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000507.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000508.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000509.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000510.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000511.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000512.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000513.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000514.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000515.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000516.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000517.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000518.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000519.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000520.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000521.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000522.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000523.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000524.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000525.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000526.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000527.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000528.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000529.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000530.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000531.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000532.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000533.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000534.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000535.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000536.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000537.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000538.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000539.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000540.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000541.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000542.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000543.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000544.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000545.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000546.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000547.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000548.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000549.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000550.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000551.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000552.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000553.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000554.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000555.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000556.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000557.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000558.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000559.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000560.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000561.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000562.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000563.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000564.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000565.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000566.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000567.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000568.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000569.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000570.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000571.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000572.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000573.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000574.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000575.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000576.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000577.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000578.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000579.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000580.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000581.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000582.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000583.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000584.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000585.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000586.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000587.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000588.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000589.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000590.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000591.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000592.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000593.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000594.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000595.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000596.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000597.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000598.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000599.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000600.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000601.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000602.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000603.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000604.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000605.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000606.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000607.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000608.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000609.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000610.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000611.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000612.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000613.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000614.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000615.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000616.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000617.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000618.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000619.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000620.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000621.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000622.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000623.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000624.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000625.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000626.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000627.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000628.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000629.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000630.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000631.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000632.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000633.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000634.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000635.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000636.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000637.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000638.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000639.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000640.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000641.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000642.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000643.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000644.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000645.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000646.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000647.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000648.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000649.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000650.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000651.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000652.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000653.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000654.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000655.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000656.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000657.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000658.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000659.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000660.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000661.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000662.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000663.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000664.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000665.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000666.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000667.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000668.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000669.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000670.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000671.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000672.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000673.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000674.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000675.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000676.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000677.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000678.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000679.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000680.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000681.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000682.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000683.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000684.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000685.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000686.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000687.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000688.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000689.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000690.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000691.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000692.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000693.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000694.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000695.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000696.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000697.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000698.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000699.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000700.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000701.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000702.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000703.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000704.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000705.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000706.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000707.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000708.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000709.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000710.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000711.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000712.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000713.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000714.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000715.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000716.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000717.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000718.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000719.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000720.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000721.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000722.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000723.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000724.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000725.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000726.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000727.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000728.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000729.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000730.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000731.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000732.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000733.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000734.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000735.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000736.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000737.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000738.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000739.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000740.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000741.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000742.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000743.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000744.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000745.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000746.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000747.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000748.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000749.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000750.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000751.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000752.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000753.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000754.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000755.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000756.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000757.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000758.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000759.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000760.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000761.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000762.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000763.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000764.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000765.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000766.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000767.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000768.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000769.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000770.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000771.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000772.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000773.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000774.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000775.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000776.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000777.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000778.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000779.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000780.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000781.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000782.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000783.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000784.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000785.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000786.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000787.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000788.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000789.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000790.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000791.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000792.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000793.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000794.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000795.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000796.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000797.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000798.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000799.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000800.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000801.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000802.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000803.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000804.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000805.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000806.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000807.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000808.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000809.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000810.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000811.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000812.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000813.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000814.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000815.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000816.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000817.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000818.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000819.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000820.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000821.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000822.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000823.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000824.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000825.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000826.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000827.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000828.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000829.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000830.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000831.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000832.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000833.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000834.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000835.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000836.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000837.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000838.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000839.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000840.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000841.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000842.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000843.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000844.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000845.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000846.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000847.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000848.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000849.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000850.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000851.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000852.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000853.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000854.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000855.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000856.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000857.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000858.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000859.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000860.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000861.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000862.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000863.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000864.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000865.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000866.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000867.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000868.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000869.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000870.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000871.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000872.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000873.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000874.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000875.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000876.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000877.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000878.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000879.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000880.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000881.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000882.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000883.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000884.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000885.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000886.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000887.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000888.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000889.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000890.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000891.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000892.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000893.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000894.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000895.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000896.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000897.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000898.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000899.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000900.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000901.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000902.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000903.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000904.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000905.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000906.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000907.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000908.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000909.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000910.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000911.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000912.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000913.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000914.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000915.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000916.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000917.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000918.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000919.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000920.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000921.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000922.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000923.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000924.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000925.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000926.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000927.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000928.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000929.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000930.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000931.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000932.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000933.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000934.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000935.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000936.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000937.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000938.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000939.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000940.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000941.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000942.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000943.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000944.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000945.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000946.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000947.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000948.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000949.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000950.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000951.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000952.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000953.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000954.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000955.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000956.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000957.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000958.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000959.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000960.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000961.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000962.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000963.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000964.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000965.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000966.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000967.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000968.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000969.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000970.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000971.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000972.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000973.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000974.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000975.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000976.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000977.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000978.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000979.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000980.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000981.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000982.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000983.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000984.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000985.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000986.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000987.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000988.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000989.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000990.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000991.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000992.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000993.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000994.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000995.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000996.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000997.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000998.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Grasshopper/00000999.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000000.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000001.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000002.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000003.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000004.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000005.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000006.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000007.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000008.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000009.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000010.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000011.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000012.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000013.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000014.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000015.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000016.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000017.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000018.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000019.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000020.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000021.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000022.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000023.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000024.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000025.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000026.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000027.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000028.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000029.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000030.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000031.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000032.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000033.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000034.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000035.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000036.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000037.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000038.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000039.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000040.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000041.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000042.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000043.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000044.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000045.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000046.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000047.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000048.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000049.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000050.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000051.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000052.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000053.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000054.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000055.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000056.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000057.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000058.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000059.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000060.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000061.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000062.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000063.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000064.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000065.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000066.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000067.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000068.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000069.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000070.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000071.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000072.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000073.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000074.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000075.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000076.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000077.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000078.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000079.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000080.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000081.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000082.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000083.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000084.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000085.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000086.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000087.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000088.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000089.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000090.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000091.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000092.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000093.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000094.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000095.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000096.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000097.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000098.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000099.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000100.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000101.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000102.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000103.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000104.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000105.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000106.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000107.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000108.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000109.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000110.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000111.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000112.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000113.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000114.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000115.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000116.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000117.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000118.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000119.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000120.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000121.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000122.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000123.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000124.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000125.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000126.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000127.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000128.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000129.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000130.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000131.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000132.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000133.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000134.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000135.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000136.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000137.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000138.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000139.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000140.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000141.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000142.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000143.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000144.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000145.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000146.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000147.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000148.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000149.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000150.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000151.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000152.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000153.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000154.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000155.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000156.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000157.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000158.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000159.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000160.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000161.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000162.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000163.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000164.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000165.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000166.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000167.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000168.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000169.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000170.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000171.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000172.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000173.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000174.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000175.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000176.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000177.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000178.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000179.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000180.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000181.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000182.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000183.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000184.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000185.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000186.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000187.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000188.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000189.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000190.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000191.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000192.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000193.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000194.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000195.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000196.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000197.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000198.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000199.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000200.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000201.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000202.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000203.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000204.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000205.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000206.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000207.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000208.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000209.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000210.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000211.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000212.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000213.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000214.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000215.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000216.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000217.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000218.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000219.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000220.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000221.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000222.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000223.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000224.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000225.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000226.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000227.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000228.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000229.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000230.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000231.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000232.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000233.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000234.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000235.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000236.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000237.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000238.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000239.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000240.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000241.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000242.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000243.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000244.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000245.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000246.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000247.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000248.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000249.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000250.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000251.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000252.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000253.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000254.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000255.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000256.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000257.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000258.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000259.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000260.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000261.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000262.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000263.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000264.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000265.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000266.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000267.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000268.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000269.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000270.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000271.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000272.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000273.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000274.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000275.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000276.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000277.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000278.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000279.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000280.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000281.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000282.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000283.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000284.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000285.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000286.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000287.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000288.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000289.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000290.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000291.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000292.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000293.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000294.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000295.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000296.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000297.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000298.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000299.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000300.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000301.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000302.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000303.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000304.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000305.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000306.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000307.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000308.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000309.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000310.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000311.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000312.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000313.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000314.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000315.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000316.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000317.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000318.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000319.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000320.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000321.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000322.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000323.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000324.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000325.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000326.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000327.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000328.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000329.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000330.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000331.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000332.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000333.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000334.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000335.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000336.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000337.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000338.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000339.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000340.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000341.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000342.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000343.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000344.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000345.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000346.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000347.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000348.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000349.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000350.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000351.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000352.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000353.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000354.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000355.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000356.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000357.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000358.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000359.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000360.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000361.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000362.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000363.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000364.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000365.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000366.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000367.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000368.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000369.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000370.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000371.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000372.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000373.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000374.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000375.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000376.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000377.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000378.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000379.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000380.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000381.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000382.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000383.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000384.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000385.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000386.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000387.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000388.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000389.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000390.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000391.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000392.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000393.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000394.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000395.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000396.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000397.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000398.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000399.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000400.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000401.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000402.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000403.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000404.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000405.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000406.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000407.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000408.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000409.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000410.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000411.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000412.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000413.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000414.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000415.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000416.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000417.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000418.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000419.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000420.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000421.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000422.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000423.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000424.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000425.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000426.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000427.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000428.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000429.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000430.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000431.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000432.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000433.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000434.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000435.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000436.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000437.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000438.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000439.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000440.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000441.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000442.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000443.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000444.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000445.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000446.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000447.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000448.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000449.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000450.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000451.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000452.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000453.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000454.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000455.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000456.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000457.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000458.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000459.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000460.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000461.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000462.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000463.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000464.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000465.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000466.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000467.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000468.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000469.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000470.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000471.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000472.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000473.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000474.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000475.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000476.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000477.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000478.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000479.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000480.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000481.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000482.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000483.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000484.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000485.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000486.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000487.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000488.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000489.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000490.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000491.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000492.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000493.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000494.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000495.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000496.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000497.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000498.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000499.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000500.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000501.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000502.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000503.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000504.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000505.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000506.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000507.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000508.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000509.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000510.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000511.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000512.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000513.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000514.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000515.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000516.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000517.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000518.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000519.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000520.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000521.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000522.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000523.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000524.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000525.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000526.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000527.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000528.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000529.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000530.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000531.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000532.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000533.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000534.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000535.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000536.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000537.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000538.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000539.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000540.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000541.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000542.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000543.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000544.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000545.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000546.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000547.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000548.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000549.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000550.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000551.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000552.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000553.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000554.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000555.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000556.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000557.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000558.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000559.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000560.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000561.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000562.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000563.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000564.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000565.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000566.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000567.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000568.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000569.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000570.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000571.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000572.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000573.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000574.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000575.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000576.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000577.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000578.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000579.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000580.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000581.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000582.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000583.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000584.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000585.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000586.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000587.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000588.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000589.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000590.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000591.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000592.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000593.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000594.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000595.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000596.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000597.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000598.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000599.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000600.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000601.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000602.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000603.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000604.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000605.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000606.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000607.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000608.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000609.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000610.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000611.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000612.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000613.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000614.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000615.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000616.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000617.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000618.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000619.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000620.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000621.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000622.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000623.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000624.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000625.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000626.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000627.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000628.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000629.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000630.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000631.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000632.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000633.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000634.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000635.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000636.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000637.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000638.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000639.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000640.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000641.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000642.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000643.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000644.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000645.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000646.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000647.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000648.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000649.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000650.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000651.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000652.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000653.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000654.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000655.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000656.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000657.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000658.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000659.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000660.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000661.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000662.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000663.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000664.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000665.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000666.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000667.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000668.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000669.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000670.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000671.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000672.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000673.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000674.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000675.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000676.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000677.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000678.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000679.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000680.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000681.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000682.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000683.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000684.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000685.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000686.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000687.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000688.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000689.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000690.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000691.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000692.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000693.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000694.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000695.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000696.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000697.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000698.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000699.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000700.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000701.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000702.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000703.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000704.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000705.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000706.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000707.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000708.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000709.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000710.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000711.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000712.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000713.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000714.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000715.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000716.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000717.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000718.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000719.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000720.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000721.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000722.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000723.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000724.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000725.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000726.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000727.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000728.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000729.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000730.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000731.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000732.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000733.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000734.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000735.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000736.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000737.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000738.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000739.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000740.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000741.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000742.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000743.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000744.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000745.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000746.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000747.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000748.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000749.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000750.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000751.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000752.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000753.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000754.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000755.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000756.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000757.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000758.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000759.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000760.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000761.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000762.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000763.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000764.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000765.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000766.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000767.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000768.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000769.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000770.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000771.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000772.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000773.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000774.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000775.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000776.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000777.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000778.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000779.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000780.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000781.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000782.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000783.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000784.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000785.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000786.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000787.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000788.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000789.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000790.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000791.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000792.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000793.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000794.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000795.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000796.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000797.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000798.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000799.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000800.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000801.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000802.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000803.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000804.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000805.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000806.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000807.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000808.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000809.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000810.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000811.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000812.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000813.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000814.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000815.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000816.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000817.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000818.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000819.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000820.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000821.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000822.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000823.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000824.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000825.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000826.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000827.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000828.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000829.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000830.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000831.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000832.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000833.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000834.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000835.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000836.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000837.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000838.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000839.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000840.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000841.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000842.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000843.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000844.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000845.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000846.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000847.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000848.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000849.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000850.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000851.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000852.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000853.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000854.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000855.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000856.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000857.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000858.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000859.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000860.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000861.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000862.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000863.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000864.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000865.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000866.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000867.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000868.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000869.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000870.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000871.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000872.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000873.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000874.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000875.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000876.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000877.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000878.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000879.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000880.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000881.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000882.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000883.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000884.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000885.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000886.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000887.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000888.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000889.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000890.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000891.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000892.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000893.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000894.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000895.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000896.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000897.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000898.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000899.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000900.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000901.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000902.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000903.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000904.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000905.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000906.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000907.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000908.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000909.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000910.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000911.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000912.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000913.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000914.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000915.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000916.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000917.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000918.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000919.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000920.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000921.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000922.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000923.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000924.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000925.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000926.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000927.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000928.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000929.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000930.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000931.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000932.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000933.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000934.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000935.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000936.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000937.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000938.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000939.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000940.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000941.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000942.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000943.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000944.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000945.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000946.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000947.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000948.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000949.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000950.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000951.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000952.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000953.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000954.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000955.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000956.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000957.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000958.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000959.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000960.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000961.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000962.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000963.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000964.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000965.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000966.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000967.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000968.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000969.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000970.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000971.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000972.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000973.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000974.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000975.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000976.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000977.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000978.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000979.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000980.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000981.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000982.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000983.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000984.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000985.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000986.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000987.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000988.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000989.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000990.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000991.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000992.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000993.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000994.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000995.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000996.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000997.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000998.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Moth/00000999.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000000.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000001.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000002.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000003.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000004.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000005.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000006.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000007.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000008.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000009.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000010.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000011.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000012.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000013.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000014.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000015.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000016.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000017.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000018.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000019.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000020.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000021.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000022.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000023.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000024.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000025.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000026.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000027.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000028.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000029.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000030.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000031.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000032.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000033.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000034.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000035.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000036.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000037.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000038.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000039.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000040.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000041.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000042.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000043.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000044.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000045.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000046.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000047.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000048.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000049.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000050.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000051.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000052.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000053.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000054.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000055.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000056.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000057.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000058.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000059.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000060.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000061.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000062.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000063.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000064.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000065.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000066.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000067.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000068.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000069.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000070.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000071.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000072.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000073.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000074.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000075.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000076.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000077.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000078.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000079.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000080.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000081.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000082.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000083.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000084.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000085.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000086.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000087.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000088.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000089.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000090.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000091.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000092.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000093.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000094.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000095.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000096.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000097.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000098.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000099.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000100.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000101.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000102.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000103.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000104.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000105.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000106.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000107.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000108.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000109.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000110.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000111.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000112.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000113.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000114.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000115.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000116.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000117.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000118.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000119.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000120.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000121.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000122.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000123.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000124.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000125.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000126.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000127.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000128.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000129.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000130.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000131.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000132.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000133.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000134.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000135.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000136.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000137.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000138.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000139.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000140.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000141.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000142.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000143.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000144.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000145.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000146.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000147.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000148.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000149.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000150.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000151.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000152.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000153.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000154.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000155.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000156.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000157.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000158.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000159.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000160.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000161.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000162.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000163.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000164.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000165.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000166.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000167.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000168.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000169.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000170.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000171.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000172.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000173.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000174.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000175.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000176.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000177.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000178.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000179.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000180.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000181.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000182.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000183.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000184.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000185.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000186.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000187.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000188.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000189.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000190.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000191.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000192.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000193.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000194.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000195.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000196.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000197.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000198.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000199.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000200.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000201.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000202.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000203.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000204.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000205.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000206.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000207.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000208.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000209.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000210.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000211.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000212.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000213.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000214.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000215.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000216.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000217.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000218.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000219.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000220.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000221.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000222.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000223.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000224.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000225.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000226.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000227.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000228.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000229.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000230.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000231.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000232.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000233.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000234.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000235.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000236.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000237.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000238.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000239.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000240.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000241.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000242.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000243.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000244.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000245.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000246.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000247.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000248.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000249.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000250.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000251.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000252.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000253.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000254.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000255.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000256.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000257.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000258.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000259.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000260.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000261.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000262.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000263.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000264.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000265.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000266.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000267.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000268.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000269.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000270.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000271.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000272.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000273.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000274.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000275.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000276.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000277.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000278.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000279.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000280.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000281.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000282.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000283.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000284.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000285.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000286.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000287.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000288.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000289.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000290.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000291.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000292.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000293.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000294.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000295.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000296.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000297.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000298.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000299.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000300.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000301.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000302.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000303.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000304.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000305.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000306.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000307.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000308.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000309.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000310.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000311.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000312.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000313.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000314.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000315.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000316.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000317.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000318.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000319.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000320.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000321.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000322.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000323.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000324.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000325.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000326.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000327.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000328.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000329.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000330.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000331.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000332.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000333.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000334.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000335.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000336.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000337.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000338.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000339.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000340.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000341.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000342.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000343.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000344.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000345.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000346.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000347.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000348.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000349.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000350.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000351.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000352.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000353.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000354.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000355.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000356.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000357.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000358.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000359.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000360.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000361.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000362.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000363.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000364.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000365.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000366.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000367.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000368.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000369.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000370.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000371.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000372.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000373.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000374.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000375.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000376.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000377.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000378.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000379.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000380.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000381.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000382.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000383.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000384.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000385.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000386.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000387.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000388.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000389.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000390.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000391.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000392.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000393.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000394.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000395.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000396.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000397.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000398.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000399.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000400.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000401.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000402.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000403.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000404.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000405.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000406.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000407.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000408.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000409.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000410.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000411.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000412.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000413.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000414.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000415.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000416.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000417.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000418.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000419.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000420.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000421.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000422.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000423.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000424.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000425.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000426.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000427.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000428.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000429.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000430.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000431.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000432.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000433.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000434.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000435.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000436.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000437.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000438.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000439.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000440.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000441.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000442.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000443.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000444.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000445.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000446.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000447.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000448.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000449.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000450.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000451.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000452.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000453.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000454.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000455.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000456.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000457.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000458.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000459.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000460.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000461.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000462.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000463.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000464.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000465.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000466.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000467.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000468.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000469.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000470.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000471.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000472.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000473.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000474.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000475.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000476.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000477.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000478.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000479.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000480.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000481.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000482.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000483.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000484.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000485.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000486.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000487.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000488.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000489.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000490.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000491.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000492.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000493.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000494.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000495.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000496.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000497.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000498.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000499.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000500.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000501.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000502.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000503.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000504.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000505.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000506.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000507.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000508.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000509.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000510.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000511.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000512.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000513.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000514.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000515.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000516.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000517.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000518.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000519.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000520.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000521.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000522.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000523.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000524.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000525.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000526.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000527.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000528.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000529.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000530.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000531.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000532.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000533.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000534.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000535.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000536.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000537.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000538.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000539.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000540.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000541.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000542.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000543.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000544.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000545.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000546.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000547.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000548.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000549.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000550.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000551.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000552.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000553.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000554.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000555.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000556.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000557.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000558.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000559.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000560.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000561.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000562.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000563.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000564.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000565.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000566.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000567.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000568.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000569.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000570.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000571.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000572.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000573.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000574.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000575.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000576.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000577.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000578.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000579.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000580.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000581.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000582.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000583.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000584.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000585.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000586.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000587.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000588.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000589.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000590.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000591.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000592.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000593.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000594.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000595.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000596.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000597.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000598.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000599.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000600.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000601.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000602.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000603.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000604.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000605.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000606.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000607.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000608.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000609.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000610.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000611.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000612.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000613.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000614.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000615.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000616.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000617.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000618.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000619.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000620.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000621.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000622.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000623.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000624.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000625.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000626.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000627.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000628.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000629.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000630.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000631.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000632.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000633.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000634.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000635.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000636.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000637.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000638.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000639.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000640.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000641.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000642.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000643.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000644.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000645.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000646.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000647.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000648.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000649.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000650.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000651.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000652.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000653.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000654.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000655.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000656.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000657.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000658.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000659.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000660.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000661.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000662.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000663.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000664.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000665.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000666.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000667.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000668.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000669.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000670.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000671.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000672.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000673.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000674.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000675.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000676.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000677.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000678.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000679.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000680.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000681.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000682.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000683.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000684.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000685.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000686.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000687.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000688.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000689.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000690.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000691.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000692.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000693.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000694.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000695.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000696.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000697.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000698.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000699.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000700.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000701.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000702.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000703.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000704.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000705.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000706.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000707.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000708.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000709.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000710.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000711.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000712.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000713.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000714.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000715.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000716.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000717.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000718.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000719.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000720.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000721.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000722.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000723.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000724.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000725.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000726.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000727.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000728.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000729.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000730.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000731.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000732.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000733.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000734.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000735.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000736.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000737.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000738.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000739.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000740.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000741.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000742.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000743.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000744.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000745.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000746.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000747.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000748.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000749.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000750.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000751.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000752.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000753.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000754.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000755.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000756.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000757.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000758.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000759.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000760.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000761.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000762.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000763.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000764.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000765.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000766.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000767.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000768.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000769.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000770.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000771.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000772.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000773.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000774.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000775.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000776.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000777.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000778.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000779.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000780.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000781.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000782.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000783.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000784.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000785.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000786.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000787.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000788.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000789.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000790.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000791.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000792.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000793.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000794.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000795.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000796.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000797.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000798.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000799.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000800.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000801.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000802.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000803.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000804.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000805.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000806.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000807.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000808.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000809.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000810.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000811.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000812.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000813.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000814.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000815.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000816.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000817.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000818.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000819.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000820.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000821.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000822.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000823.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000824.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000825.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000826.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000827.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000828.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000829.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000830.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000831.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000832.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000833.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000834.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000835.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000836.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000837.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000838.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000839.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000840.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000841.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000842.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000843.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000844.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000845.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000846.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000847.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000848.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000849.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000850.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000851.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000852.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000853.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000854.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000855.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000856.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000857.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000858.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000859.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000860.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000861.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000862.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000863.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000864.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000865.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000866.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000867.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000868.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000869.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000870.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000871.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000872.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000873.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000874.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000875.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000876.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000877.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000878.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000879.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000880.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000881.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000882.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000883.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000884.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000885.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000886.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000887.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000888.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000889.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000890.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000891.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000892.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000893.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000894.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000895.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000896.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000897.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000898.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000899.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000900.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000901.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000902.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000903.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000904.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000905.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000906.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000907.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000908.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000909.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000910.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000911.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000912.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000913.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000914.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000915.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000916.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000917.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000918.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000919.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000920.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000921.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000922.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000923.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000924.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000925.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000926.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000927.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000928.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000929.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000930.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000931.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000932.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000933.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000934.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000935.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000936.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000937.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000938.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000939.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000940.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000941.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000942.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000943.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000944.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000945.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000946.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000947.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000948.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000949.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000950.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000951.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000952.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000953.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000954.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000955.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000956.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000957.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000958.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000959.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000960.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000961.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000962.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000963.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000964.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000965.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000966.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000967.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000968.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000969.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000970.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000971.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000972.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000973.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000974.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000975.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000976.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000977.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000978.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000979.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000980.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000981.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000982.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000983.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000984.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000985.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000986.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000987.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000988.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000989.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000990.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000991.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000992.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000993.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000994.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000995.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000996.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000997.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000998.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Scorpion/00000999.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000000.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000001.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000002.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000003.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000004.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000005.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000006.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000007.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000008.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000009.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000010.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000011.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000012.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000013.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000014.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000015.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000016.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000017.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000018.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000019.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000020.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000021.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000022.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000023.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000024.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000025.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000026.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000027.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000028.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000029.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000030.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000031.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000032.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000033.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000034.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000035.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000036.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000037.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000038.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000039.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000040.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000041.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000042.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000043.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000044.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000045.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000046.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000047.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000048.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000049.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000050.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000051.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000052.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000053.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000054.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000055.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000056.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000057.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000058.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000059.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000060.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000061.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000062.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000063.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000064.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000065.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000066.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000067.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000068.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000069.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000070.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000071.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000072.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000073.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000074.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000075.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000076.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000077.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000078.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000079.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000080.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000081.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000082.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000083.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000084.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000085.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000086.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000087.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000088.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000089.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000090.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000091.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000092.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000093.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000094.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000095.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000096.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000097.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000098.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000099.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000100.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000101.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000102.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000103.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000104.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000105.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000106.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000107.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000108.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000109.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000110.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000111.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000112.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000113.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000114.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000115.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000116.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000117.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000118.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000119.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000120.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000121.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000122.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000123.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000124.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000125.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000126.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000127.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000128.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000129.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000130.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000131.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000132.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000133.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000134.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000135.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000136.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000137.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000138.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000139.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000140.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000141.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000142.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000143.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000144.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000145.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000146.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000147.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000148.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000149.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000150.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000151.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000152.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000153.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000154.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000155.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000156.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000157.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000158.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000159.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000160.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000161.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000162.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000163.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000164.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000165.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000166.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000167.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000168.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000169.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000170.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000171.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000172.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000173.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000174.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000175.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000176.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000177.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000178.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000179.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000180.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000181.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000182.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000183.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000184.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000185.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000186.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000187.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000188.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000189.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000190.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000191.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000192.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000193.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000194.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000195.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000196.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000197.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000198.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000199.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000200.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000201.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000202.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000203.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000204.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000205.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000206.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000207.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000208.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000209.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000210.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000211.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000212.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000213.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000214.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000215.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000216.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000217.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000218.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000219.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000220.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000221.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000222.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000223.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000224.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000225.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000226.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000227.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000228.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000229.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000230.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000231.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000232.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000233.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000234.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000235.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000236.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000237.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000238.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000239.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000240.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000241.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000242.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000243.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000244.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000245.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000246.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000247.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000248.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000249.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000250.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000251.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000252.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000253.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000254.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000255.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000256.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000257.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000258.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000259.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000260.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000261.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000262.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000263.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000264.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000265.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000266.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000267.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000268.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000269.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000270.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000271.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000272.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000273.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000274.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000275.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000276.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000277.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000278.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000279.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000280.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000281.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000282.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000283.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000284.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000285.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000286.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000287.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000288.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000289.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000290.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000291.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000292.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000293.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000294.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000295.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000296.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000297.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000298.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000299.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000300.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000301.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000302.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000303.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000304.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000305.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000306.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000307.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000308.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000309.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000310.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000311.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000312.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000313.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000314.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000315.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000316.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000317.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000318.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000319.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000320.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000321.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000322.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000323.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000324.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000325.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000326.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000327.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000328.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000329.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000330.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000331.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000332.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000333.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000334.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000335.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000336.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000337.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000338.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000339.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000340.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000341.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000342.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000343.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000344.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000345.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000346.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000347.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000348.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000349.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000350.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000351.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000352.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000353.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000354.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000355.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000356.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000357.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000358.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000359.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000360.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000361.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000362.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000363.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000364.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000365.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000366.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000367.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000368.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000369.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000370.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000371.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000372.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000373.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000374.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000375.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000376.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000377.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000378.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000379.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000380.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000381.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000382.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000383.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000384.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000385.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000386.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000387.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000388.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000389.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000390.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000391.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000392.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000393.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000394.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000395.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000396.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000397.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000398.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000399.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000400.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000401.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000402.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000403.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000404.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000405.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000406.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000407.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000408.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000409.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000410.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000411.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000412.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000413.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000414.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000415.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000416.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000417.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000418.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000419.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000420.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000421.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000422.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000423.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000424.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000425.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000426.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000427.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000428.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000429.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000430.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000431.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000432.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000433.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000434.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000435.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000436.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000437.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000438.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000439.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000440.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000441.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000442.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000443.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000444.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000445.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000446.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000447.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000448.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000449.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000450.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000451.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000452.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000453.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000454.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000455.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000456.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000457.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000458.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000459.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000460.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000461.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000462.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000463.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000464.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000465.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000466.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000467.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000468.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000469.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000470.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000471.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000472.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000473.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000474.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000475.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000476.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000477.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000478.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000479.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000480.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000481.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000482.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000483.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000484.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000485.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000486.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000487.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000488.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000489.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000490.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000491.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000492.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000493.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000494.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000495.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000496.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000497.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000498.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000499.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000500.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000501.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000502.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000503.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000504.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000505.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000506.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000507.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000508.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000509.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000510.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000511.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000512.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000513.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000514.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000515.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000516.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000517.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000518.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000519.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000520.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000521.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000522.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000523.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000524.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000525.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000526.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000527.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000528.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000529.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000530.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000531.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000532.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000533.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000534.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000535.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000536.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000537.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000538.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000539.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000540.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000541.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000542.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000543.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000544.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000545.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000546.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000547.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000548.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000549.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000550.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000551.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000552.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000553.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000554.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000555.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000556.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000557.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000558.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000559.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000560.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000561.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000562.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000563.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000564.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000565.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000566.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000567.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000568.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000569.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000570.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000571.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000572.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000573.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000574.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000575.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000576.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000577.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000578.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000579.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000580.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000581.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000582.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000583.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000584.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000585.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000586.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000587.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000588.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000589.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000590.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000591.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000592.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000593.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000594.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000595.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000596.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000597.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000598.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000599.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000600.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000601.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000602.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000603.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000604.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000605.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000606.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000607.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000608.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000609.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000610.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000611.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000612.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000613.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000614.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000615.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000616.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000617.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000618.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000619.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000620.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000621.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000622.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000623.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000624.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000625.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000626.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000627.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000628.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000629.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000630.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000631.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000632.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000633.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000634.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000635.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000636.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000637.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000638.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000639.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000640.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000641.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000642.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000643.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000644.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000645.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000646.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000647.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000648.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000649.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000650.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000651.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000652.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000653.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000654.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000655.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000656.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000657.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000658.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000659.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000660.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000661.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000662.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000663.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000664.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000665.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000666.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000667.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000668.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000669.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000670.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000671.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000672.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000673.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000674.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000675.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000676.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000677.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000678.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000679.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000680.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000681.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000682.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000683.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000684.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000685.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000686.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000687.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000688.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000689.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000690.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000691.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000692.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000693.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000694.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000695.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000696.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000697.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000698.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000699.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000700.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000701.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000702.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000703.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000704.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000705.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000706.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000707.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000708.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000709.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000710.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000711.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000712.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000713.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000714.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000715.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000716.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000717.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000718.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000719.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000720.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000721.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000722.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000723.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000724.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000725.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000726.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000727.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000728.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000729.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000730.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000731.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000732.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000733.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000734.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000735.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000736.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000737.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000738.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000739.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000740.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000741.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000742.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000743.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000744.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000745.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000746.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000747.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000748.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000749.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000750.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000751.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000752.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000753.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000754.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000755.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000756.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000757.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000758.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000759.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000760.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000761.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000762.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000763.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000764.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000765.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000766.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000767.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000768.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000769.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000770.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000771.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000772.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000773.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000774.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000775.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000776.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000777.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000778.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000779.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000780.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000781.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000782.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000783.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000784.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000785.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000786.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000787.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000788.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000789.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000790.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000791.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000792.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000793.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000794.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000795.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000796.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000797.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000798.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000799.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000800.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000801.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000802.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000803.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000804.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000805.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000806.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000807.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000808.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000809.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000810.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000811.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000812.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000813.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000814.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000815.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000816.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000817.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000818.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000819.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000820.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000821.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000822.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000823.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000824.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000825.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000826.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000827.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000828.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000829.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000830.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000831.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000832.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000833.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000834.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000835.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000836.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000837.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000838.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000839.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000840.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000841.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000842.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000843.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000844.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000845.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000846.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000847.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000848.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000849.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000850.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000851.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000852.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000853.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000854.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000855.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000856.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000857.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000858.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000859.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000860.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000861.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000862.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000863.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000864.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000865.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000866.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000867.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000868.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000869.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000870.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000871.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000872.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000873.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000874.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000875.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000876.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000877.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000878.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000879.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000880.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000881.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000882.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000883.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000884.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000885.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000886.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000887.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000888.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000889.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000890.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000891.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000892.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000893.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000894.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000895.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000896.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000897.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000898.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000899.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000900.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000901.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000902.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000903.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000904.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000905.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000906.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000907.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000908.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000909.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000910.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000911.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000912.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000913.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000914.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000915.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000916.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000917.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000918.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000919.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000920.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000921.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000922.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000923.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000924.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000925.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000926.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000927.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000928.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000929.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000930.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000931.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000932.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000933.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000934.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000935.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000936.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000937.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000938.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000939.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000940.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000941.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000942.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000943.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000944.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000945.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000946.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000947.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000948.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000949.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000950.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000951.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000952.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000953.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000954.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000955.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000956.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000957.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000958.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000959.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000960.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000961.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000962.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000963.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000964.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000965.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000966.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000967.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000968.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000969.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000970.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000971.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000972.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000973.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000974.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000975.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000976.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000977.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000978.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000979.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000980.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000981.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000982.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000983.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000984.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000985.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000986.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000987.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000988.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000989.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000990.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000991.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000992.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000993.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000994.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000995.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000996.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000997.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000998.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Snail/00000999.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000000.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000001.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000002.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000003.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000004.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000005.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000006.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000007.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000008.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000009.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000010.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000011.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000012.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000013.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000014.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000015.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000016.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000017.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000018.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000019.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000020.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000021.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000022.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000023.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000024.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000025.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000026.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000027.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000028.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000029.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000030.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000031.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000032.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000033.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000034.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000035.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000036.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000037.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000038.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000039.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000040.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000041.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000042.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000043.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000044.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000045.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000046.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000047.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000048.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000049.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000050.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000051.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000052.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000053.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000054.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000055.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000056.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000057.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000058.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000059.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000060.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000061.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000062.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000063.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000064.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000065.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000066.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000067.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000068.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000069.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000070.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000071.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000072.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000073.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000074.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000075.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000076.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000077.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000078.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000079.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000080.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000081.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000082.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000083.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000084.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000085.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000086.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000087.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000088.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000089.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000090.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000091.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000092.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000093.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000094.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000095.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000096.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000097.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000098.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000099.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000100.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000101.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000102.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000103.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000104.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000105.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000106.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000107.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000108.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000109.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000110.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000111.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000112.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000113.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000114.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000115.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000116.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000117.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000118.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000119.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000120.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000121.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000122.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000123.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000124.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000125.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000126.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000127.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000128.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000129.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000130.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000131.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000132.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000133.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000134.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000135.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000136.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000137.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000138.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000139.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000140.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000141.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000142.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000143.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000144.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000145.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000146.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000147.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000148.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000149.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000150.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000151.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000152.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000153.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000154.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000155.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000156.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000157.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000158.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000159.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000160.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000161.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000162.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000163.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000164.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000165.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000166.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000167.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000168.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000169.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000170.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000171.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000172.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000173.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000174.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000175.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000176.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000177.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000178.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000179.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000180.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000181.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000182.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000183.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000184.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000185.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000186.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000187.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000188.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000189.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000190.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000191.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000192.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000193.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000194.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000195.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000196.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000197.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000198.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000199.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000200.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000201.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000202.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000203.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000204.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000205.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000206.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000207.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000208.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000209.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000210.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000211.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000212.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000213.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000214.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000215.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000216.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000217.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000218.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000219.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000220.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000221.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000222.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000223.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000224.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000225.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000226.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000227.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000228.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000229.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000230.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000231.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000232.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000233.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000234.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000235.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000236.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000237.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000238.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000239.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000240.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000241.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000242.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000243.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000244.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000245.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000246.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000247.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000248.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000249.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000250.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000251.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000252.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000253.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000254.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000255.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000256.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000257.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000258.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000259.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000260.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000261.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000262.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000263.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000264.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000265.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000266.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000267.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000268.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000269.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000270.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000271.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000272.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000273.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000274.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000275.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000276.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000277.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000278.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000279.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000280.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000281.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000282.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000283.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000284.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000285.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000286.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000287.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000288.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000289.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000290.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000291.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000292.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000293.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000294.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000295.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000296.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000297.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000298.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000299.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000300.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000301.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000302.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000303.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000304.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000305.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000306.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000307.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000308.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000309.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000310.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000311.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000312.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000313.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000314.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000315.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000316.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000317.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000318.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000319.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000320.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000321.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000322.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000323.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000324.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000325.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000326.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000327.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000328.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000329.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000330.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000331.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000332.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000333.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000334.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000335.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000336.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000337.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000338.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000339.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000340.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000341.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000342.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000343.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000344.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000345.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000346.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000347.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000348.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000349.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000350.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000351.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000352.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000353.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000354.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000355.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000356.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000357.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000358.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000359.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000360.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000361.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000362.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000363.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000364.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000365.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000366.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000367.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000368.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000369.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000370.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000371.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000372.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000373.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000374.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000375.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000376.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000377.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000378.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000379.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000380.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000381.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000382.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000383.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000384.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000385.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000386.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000387.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000388.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000389.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000390.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000391.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000392.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000393.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000394.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000395.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000396.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000397.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000398.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000399.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000400.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000401.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000402.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000403.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000404.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000405.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000406.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000407.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000408.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000409.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000410.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000411.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000412.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000413.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000414.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000415.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000416.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000417.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000418.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000419.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000420.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000421.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000422.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000423.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000424.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000425.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000426.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000427.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000428.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000429.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000430.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000431.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000432.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000433.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000434.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000435.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000436.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000437.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000438.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000439.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000440.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000441.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000442.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000443.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000444.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000445.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000446.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000447.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000448.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000449.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000450.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000451.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000452.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000453.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000454.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000455.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000456.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000457.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000458.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000459.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000460.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000461.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000462.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000463.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000464.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000465.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000466.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000467.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000468.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000469.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000470.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000471.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000472.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000473.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000474.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000475.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000476.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000477.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000478.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000479.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000480.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000481.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000482.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000483.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000484.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000485.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000486.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000487.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000488.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000489.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000490.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000491.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000492.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000493.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000494.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000495.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000496.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000497.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000498.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000499.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000500.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000501.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000502.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000503.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000504.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000505.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000506.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000507.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000508.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000509.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000510.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000511.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000512.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000513.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000514.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000515.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000516.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000517.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000518.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000519.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000520.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000521.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000522.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000523.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000524.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000525.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000526.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000527.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000528.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000529.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000530.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000531.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000532.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000533.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000534.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000535.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000536.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000537.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000538.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000539.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000540.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000541.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000542.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000543.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000544.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000545.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000546.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000547.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000548.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000549.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000550.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000551.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000552.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000553.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000554.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000555.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000556.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000557.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000558.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000559.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000560.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000561.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000562.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000563.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000564.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000565.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000566.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000567.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000568.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000569.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000570.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000571.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000572.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000573.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000574.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000575.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000576.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000577.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000578.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000579.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000580.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000581.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000582.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000583.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000584.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000585.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000586.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000587.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000588.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000589.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000590.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000591.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000592.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000593.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000594.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000595.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000596.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000597.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000598.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000599.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000600.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000601.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000602.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000603.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000604.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000605.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000606.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000607.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000608.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000609.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000610.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000611.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000612.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000613.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000614.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000615.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000616.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000617.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000618.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000619.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000620.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000621.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000622.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000623.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000624.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000625.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000626.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000627.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000628.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000629.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000630.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000631.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000632.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000633.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000634.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000635.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000636.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000637.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000638.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000639.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000640.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000641.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000642.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000643.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000644.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000645.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000646.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000647.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000648.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000649.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000650.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000651.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000652.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000653.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000654.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000655.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000656.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000657.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000658.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000659.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000660.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000661.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000662.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000663.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000664.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000665.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000666.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000667.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000668.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000669.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000670.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000671.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000672.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000673.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000674.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000675.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000676.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000677.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000678.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000679.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000680.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000681.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000682.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000683.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000684.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000685.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000686.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000687.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000688.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000689.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000690.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000691.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000692.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000693.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000694.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000695.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000696.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000697.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000698.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000699.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000700.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000701.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000702.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000703.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000704.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000705.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000706.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000707.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000708.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000709.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000710.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000711.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000712.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000713.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000714.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000715.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000716.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000717.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000718.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000719.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000720.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000721.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000722.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000723.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000724.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000725.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000726.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000727.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000728.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000729.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000730.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000731.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000732.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000733.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000734.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000735.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000736.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000737.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000738.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000739.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000740.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000741.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000742.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000743.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000744.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000745.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000746.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000747.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000748.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000749.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000750.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000751.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000752.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000753.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000754.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000755.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000756.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000757.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000758.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000759.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000760.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000761.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000762.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000763.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000764.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000765.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000766.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000767.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000768.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000769.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000770.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000771.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000772.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000773.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000774.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000775.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000776.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000777.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000778.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000779.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000780.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000781.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000782.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000783.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000784.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000785.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000786.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000787.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000788.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000789.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000790.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000791.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000792.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000793.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000794.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000795.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000796.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000797.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000798.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000799.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000800.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000801.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000802.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000803.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000804.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000805.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000806.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000807.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000808.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000809.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000810.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000811.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000812.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000813.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000814.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000815.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000816.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000817.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000818.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000819.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000820.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000821.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000822.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000823.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000824.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000825.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000826.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000827.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000828.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000829.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000830.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000831.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000832.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000833.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000834.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000835.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000836.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000837.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000838.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000839.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000840.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000841.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000842.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000843.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000844.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000845.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000846.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000847.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000848.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000849.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000850.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000851.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000852.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000853.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000854.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000855.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000856.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000857.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000858.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000859.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000860.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000861.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000862.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000863.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000864.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000865.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000866.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000867.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000868.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000869.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000870.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000871.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000872.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000873.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000874.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000875.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000876.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000877.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000878.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000879.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000880.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000881.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000882.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000883.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000884.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000885.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000886.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000887.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000888.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000889.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000890.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000891.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000892.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000893.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000894.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000895.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000896.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000897.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000898.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000899.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000900.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000901.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000902.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000903.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000904.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000905.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000906.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000907.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000908.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000909.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000910.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000911.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000912.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000913.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000914.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000915.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000916.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000917.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000918.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000919.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000920.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000921.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000922.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000923.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000924.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000925.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000926.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000927.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000928.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000929.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000930.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000931.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000932.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000933.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000934.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000935.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000936.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000937.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000938.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000939.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000940.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000941.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000942.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000943.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000944.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000945.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000946.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000947.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000948.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000949.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000950.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000951.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000952.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000953.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000954.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000955.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000956.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000957.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000958.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000959.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000960.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000961.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000962.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000963.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000964.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000965.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000966.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000967.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000968.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000969.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000970.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000971.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000972.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000973.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000974.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000975.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000976.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000977.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000978.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000979.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000980.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000981.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000982.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000983.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000984.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000985.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000986.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000987.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000988.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000989.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000990.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000991.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000992.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000993.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000994.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000995.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000996.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000997.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000998.jpg \n", + " inflating: insect-dataset/Insect Classes/Insect Classes/Spider/00000999.jpg \n" + ] + } + ], + "source": [ + "!kaggle datasets download -d vencerlanz09/insect-village-synthetic-dataset\n", + "!unzip insect-village-synthetic-dataset.zip -d insect-dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uRdWFp9zhn5n" + }, + "source": [ + "# Creating CSV files for train and test dataset :-\n", + "\n", + "we are pre-processing the data and creating train_data.csv and test_data.csv file with columns image_path and label for further processing:-\n" + ] + }, + { + "cell_type": "code", + "source": [ + "import os\n", + "import pandas as pd\n", + "\n", + "# Directories for train and validation datasets\n", + "train_dir = '/content/insect-dataset/Insect Classes/Insect Classes'\n", + "\n", + "# Initialize lists to hold image paths and labels\n", + "image_paths = []\n", + "labels = []\n", + "\n", + "# Function to process each directory (train or valid)\n", + "def process_directory(directory, label_list, path_list):\n", + " for label in os.listdir(directory):\n", + " label_dir = os.path.join(directory, label)\n", + " if os.path.isdir(label_dir):\n", + " for image_name in os.listdir(label_dir):\n", + " if image_name.endswith('.jpg') or image_name.endswith('.png'):\n", + " image_path = os.path.join(label_dir, image_name)\n", + " path_list.append(image_path)\n", + " label_list.append(label)\n", + "\n", + "# Process the train and valid directories\n", + "process_directory(train_dir, labels, image_paths)\n", + "\n", + "# Create DataFrame and save to CSV\n", + "data = {'Image_Path': image_paths, 'Label': labels}\n", + "df = pd.DataFrame(data)\n", + "\n", + "csv_file_path = '/content/insect-dataset/train_data.csv'\n", + "df.to_csv(csv_file_path, index=False)\n", + "\n", + "print(\"CSV file for train and valid folders saved successfully!\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LG2beslMYF__", + "outputId": "1db06d6c-23ce-4b97-93fe-0e8cbece8129" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "CSV file for train and valid folders saved successfully!\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import os\n", + "import pandas as pd\n", + "\n", + "# Directory for test dataset\n", + "test_dir = '/content/insect-dataset/ImageClassesCombinedWithCOCOAnnotations/images_raw'\n", + "\n", + "# Initialize lists to hold image paths and labels\n", + "test_image_paths = []\n", + "test_labels = []\n", + "\n", + "# Function to recursively process the test directory\n", + "def process_test_directory(directory, label_list, path_list):\n", + " for root, _, files in os.walk(directory):\n", + " for file in files:\n", + " if file.endswith('.jpg') or file.endswith('.png'):\n", + " image_path = os.path.join(root, file)\n", + " path_list.append(image_path)\n", + " label_list.append(\"Unknown\")\n", + "\n", + "# Process the test directory\n", + "process_test_directory(test_dir, test_labels, test_image_paths)\n", + "\n", + "# Create DataFrame and save to CSV\n", + "test_data = {'Image_Path': test_image_paths, 'Label': test_labels}\n", + "test_df = pd.DataFrame(test_data)\n", + "\n", + "test_csv_file_path = '/content/insect-dataset/test_data.csv'\n", + "test_df.to_csv(test_csv_file_path, index=False)\n", + "\n", + "print(\"CSV file for test folder saved successfully!\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LPzVVU11nzq5", + "outputId": "45caf7a4-2dd2-4d5f-9444-170c02654a8d" + }, + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "CSV file for test folder saved successfully!\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-NNGpbx5JVZE" + }, + "source": [ + "# Importing Libraries :-\n", + "\n", + "we need to import machine learning related API's for image processing , manipulating layers and model Xception , InceptionV3 and ResNet50V2 with pre-trained weights , pandas for reading csv files into dataframes and Matplotlib for creating visualizations, such as line plots, bar charts :-" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "rF8YYMS8_l0d" + }, + "outputs": [], + "source": [ + "import os\n", + "import pandas as pd\n", + "import numpy as np\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "from keras.preprocessing.image import ImageDataGenerator\n", + "from keras.applications import Xception , DenseNet121 , ResNet101V2 , ResNet50V2 , InceptionV3\n", + "from keras import layers, models, optimizers" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qs6M73iZifwh" + }, + "source": [ + "# Creating Data Generators for Image Classification\n", + "This code snippet summarizes the process of creating data generators for training and validation sets . It includes setting up image data augmentation for the training set (train_datagen) and scaling for the testing set (test_datagen), defining the batch size and target image size, and loading the dataset using the flow_from_directory method with categorical class mode for image classification tasks." + ] + }, + { + "cell_type": "code", + "source": [ + "from sklearn.model_selection import train_test_split\n", + "import pandas as pd\n", + "\n", + "# Load the dataset\n", + "df = pd.read_csv('/content/insect-dataset/train_data.csv')\n", + "\n", + "# Identify the label column name in your dataset\n", + "label_column = 'Label'\n", + "\n", + "# Split the data ensuring equal representation of labels in train and valid sets\n", + "train_df, val_df = train_test_split(df, train_size=0.9, test_size=0.1, random_state=42, stratify=df[label_column])\n", + "\n", + "# Check the number of unique labels in both sets\n", + "train_unique_labels = train_df[label_column].nunique()\n", + "val_unique_labels = val_df[label_column].nunique()\n", + "num_classes = len(df['Label'].unique())\n", + "print(f\"Number of unique labels in training set: {train_unique_labels}\")\n", + "print(f\"Number of unique labels in validation set: {val_unique_labels}\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "NZ6grCMWVd8m", + "outputId": "bd05a8b0-6573-47a9-bd93-d85edb0c1717" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Number of unique labels in training set: 10\n", + "Number of unique labels in validation set: 10\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "EwI3JWA9Dy-_" + }, + "outputs": [], + "source": [ + "train_df['Label'] = train_df['Label'].astype(str)\n", + "val_df['Label'] = val_df['Label'].astype(str)\n", + "\n", + "train_datagen = ImageDataGenerator(\n", + " rescale=1./255,\n", + " rotation_range=20,\n", + " width_shift_range=0.2,\n", + " height_shift_range=0.2,\n", + " shear_range=0.2,\n", + " zoom_range=0.2,\n", + " horizontal_flip=True,\n", + " fill_mode='nearest'\n", + ")\n", + "val_datagen = ImageDataGenerator(rescale=1./255)\n", + "\n", + "batch_size = 32\n", + "target_size = (224, 224)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ikhLs0B44Why", + "outputId": "8a735cbc-89ba-47af-d60a-c7a552cda19f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Found 9000 validated image filenames belonging to 10 classes.\n", + "Found 1000 validated image filenames belonging to 10 classes.\n" + ] + } + ], + "source": [ + "train_generator = train_datagen.flow_from_dataframe(dataframe=train_df,\n", + " x_col='Image_Path',\n", + " y_col='Label',\n", + " target_size=target_size,\n", + " batch_size=batch_size,\n", + " class_mode='categorical')\n", + "\n", + "validation_generator = val_datagen.flow_from_dataframe(dataframe=val_df,\n", + " x_col='Image_Path',\n", + " y_col='Label',\n", + " target_size=target_size,\n", + " batch_size=batch_size,\n", + " class_mode='categorical')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yPnuX8QCEr4y" + }, + "source": [ + "# Exploratory Data Analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AND1lVBpEqKC", + "outputId": "b8a89cbe-3405-4508-9b3b-cb8a63b90dc0" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Image_Path Label\n", + "6726 /content/insect-dataset/Insect Classes/Insect ... Snail\n", + "7074 /content/insect-dataset/Insect Classes/Insect ... Butterfly\n", + "9604 /content/insect-dataset/Insect Classes/Insect ... Scorpion\n", + "8111 /content/insect-dataset/Insect Classes/Insect ... Spider\n", + "6824 /content/insect-dataset/Insect Classes/Insect ... Snail\n", + "(9000, 2)\n", + "\n", + "Index: 9000 entries, 6726 to 8184\n", + "Data columns (total 2 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Image_Path 9000 non-null object\n", + " 1 Label 9000 non-null object\n", + "dtypes: object(2)\n", + "memory usage: 210.9+ KB\n", + "None\n", + " Image_Path Label\n", + "count 9000 9000\n", + "unique 9000 10\n", + "top /content/insect-dataset/Insect Classes/Insect ... Snail\n", + "freq 1 900\n" + ] + } + ], + "source": [ + "# Understand the dataset\n", + "print(train_df.head())\n", + "print(train_df.shape)\n", + "print(train_df.info())\n", + "print(train_df.describe())" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "5Dx96rePHDTl", + "outputId": "62988fa1-92e3-402c-b32b-0ca65132bfd2" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAAOiCAYAAAD0HeyfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDrElEQVR4nOzde5SVZd3/8c+Mw/koKoMkAo9SeTaln6L2pEKCYFlaaUGKUZhBHjJTTCnRJC0J8YT1FGBqGh3NkkTxkElqZGpGeBYVgQoB0TjO/P5ouZcTUnI5OoO8Xmvttdz3fd37/t6j+x/Xe127qr6+vj4AAAAAAAAAAABstOqmHgAAAAAAAAAAAGBTJcACAAAAAAAAAAAoJMACAAAAAAAAAAAoJMACAAAAAAAAAAAoJMACAAAAAAAAAAAoJMACAAAAAAAAAAAoJMACAAAAAAAAAAAoJMACAAAAAAAAAAAoJMACAAAAAAAAAAAoJMACAAAA2Ex87WtfS1VV1VtyrwMPPDAHHnhg5f3tt9+eqqqq/PjHP35L7j98+PD06tXrLblXqRUrVuQzn/lMunXrlqqqqpx88slvyX2HDx+e9u3bN+pn/vu/bwAAAIDNiQALAAAAYBM0derUVFVVVV6tW7dO9+7dM3DgwEyaNCkvvvhio9xnwYIF+drXvpY//elPjfJ5jak5z/Z6nH/++Zk6dWpOOOGE/OAHP8inPvWpDa7t1atXDjvssLdwOgAAAABer5qmHgAAAACAcuPGjUvv3r2zZs2aLFy4MLfffntOPvnkTJgwITfccEN23333ytqzzjorZ5xxxkZ9/oIFC3LOOeekV69e2XPPPV/3dTfffPNG3afEf5rtu9/9burq6t70Gd6IWbNmZd99981Xv/rVph4FAAAAgDdAgAUAAACwCTv00EPTt2/fyvsxY8Zk1qxZOeyww/KhD30oc+fOTZs2bZIkNTU1qal5c/930Msvv5y2bdumZcuWb+p9/psWLVo06f1fj8WLF2fnnXdu6jEAAAAAeIP8BCEAAADA28zBBx+cs88+O08//XSuvvrqyvGvfe1rqaqqarB25syZOeCAA9K5c+e0b98+73rXu3LmmWcmSW6//fa8973vTZIcd9xxlZ87nDp1apLkwAMPzK677po5c+bkf//3f9O2bdvKtQceeGAOPPDA9WZbt25dzjzzzHTr1i3t2rXLhz70oTzzzDMN1vTq1SvDhw9f79pXf+Z/m2348OHp1atXg+tfeumlnHrqqenRo0datWqVd73rXfnWt76V+vr6BuuqqqoyevTo/PznP8+uu+6aVq1aZZdddsmMGTNe+w/+bxYvXpwRI0aktrY2rVu3zh577JFp06ZVzt9+++2pqqrKk08+mV/96leV2Z966qnX9fkb8tvf/jYf+9jHsv3226dVq1bp0aNHTjnllPzzn/98zfVPPPFEBg4cmHbt2qV79+4ZN27cen+Lurq6TJw4Mbvssktat26d2traHH/88XnhhRf+6zyXXHJJdtlll7Rt2zZbbrll+vbtm2uvvfYNPSMAAABAc2QHLAAAAIC3oU996lM588wzc/PNN+ezn/3sa655+OGHc9hhh2X33XfPuHHj0qpVqzz22GP53e9+lyTZaaedMm7cuIwdOzYjR47M+973viTJfvvtV/mMf/zjHzn00ENz9NFHZ9iwYamtrf2Pc339619PVVVVTj/99CxevDgTJ07MgAED8qc//amyU9fr8Xpme7X6+vp86EMfym233ZYRI0Zkzz33zG9+85ucdtppee655/Ltb3+7wfq77rorP/3pT/P5z38+HTp0yKRJk3LkkUdm/vz52WqrrTY41z//+c8ceOCBeeyxxzJ69Oj07t0706dPz/Dhw7N06dKcdNJJ2WmnnfKDH/wgp5xySrbbbruceuqpSZJtttnmdT//a5k+fXpefvnlnHDCCdlqq61y77335pJLLsmzzz6b6dOnN1i7bt26DBo0KPvuu28uvPDCzJgxI1/96lezdu3ajBs3rrLu+OOPz9SpU3PcccflxBNPzJNPPplLL700999/f373u99tcKex7373uznxxBPz0Y9+NCeddFJWrlyZBx98MPfcc08++clPvqHnBAAAAGhuBFgAAAAAb0PbbbddOnXqlMcff3yDa2bOnJnVq1fnpptuytZbb73e+dra2hx66KEZO3Zs+vXrl2HDhq23ZuHChZk8eXKOP/741zXXkiVLMnfu3HTo0CFJstdee+XjH/94Jdh5vV7PbK92ww03ZNasWTnvvPPyla98JUkyatSofOxjH8vFF1+c0aNHZ4cddqisnzt3bv7yl79Ujh100EHZY4898sMf/jCjR4/e4H2+853vZO7cubn66qszdOjQJMnnPve5vP/9789ZZ52VT3/606mtrc2wYcNy1lln5R3veMd/nf31uuCCCxpEbCNHjsyOO+6YM888M/Pnz8/2229fObdy5coMGjQokyZNSpJ8/vOfzwc/+MFccMEFOfHEE7P11lvnrrvuyv/93//lmmuuaRBNHXTQQRk0aFCmT5++wZjqV7/6VXbZZZf1wi8AAACAtyM/QQgAAADwNtW+ffu8+OKLGzzfuXPnJMkvfvGL1NXVFd2jVatWOe644173+mOOOaYSXyXJRz/60Wy77bb59a9/XXT/1+vXv/51tthii/Uir1NPPTX19fW56aabGhwfMGBAgyBr9913T8eOHfPEE0/81/t069Ytn/jEJyrHWrRokRNPPDErVqzIHXfc0QhP89peHV+99NJL+fvf/5799tsv9fX1uf/++9db/+qQ7JWfXVy9enVuueWWJP/aUatTp075wAc+kL///e+V195775327dvntttu2+AsnTt3zrPPPpv77ruvEZ8QAAAAoHkSYAEAAAC8Ta1YsaJB7PTvjjrqqOy///75zGc+k9ra2hx99NH50Y9+tFEx1jve8Y60bNnyda/v06dPg/dVVVXZcccd89RTT73uzyjx9NNPp3v37uv9PXbaaafK+Vd79W5Rr9hyyy3zwgsv/Nf79OnTJ9XVDf+324bu05jmz5+f4cOHp0uXLmnfvn222WabvP/970+SLFu2rMHa6urq/M///E+DY+985zuTpPLv4tFHH82yZcvStWvXbLPNNg1eK1asyOLFizc4y+mnn5727dvn//2//5c+ffpk1KhRlZ+2BAAAAHi78ROEAAAAAG9Dzz77bJYtW5Ydd9xxg2vatGmTO++8M7fddlt+9atfZcaMGbn++utz8MEH5+abb84WW2zxX+/z6l2XGktVVdVrHl+3bt3rmqkxbOg+9fX1b8n9N9a6devygQ98IEuWLMnpp5+ed7/73WnXrl2ee+65DB8+vGiHs7q6unTt2jXXXHPNa57fZpttNnjtTjvtlHnz5uXGG2/MjBkz8pOf/CSXX355xo4dm3POOWejZwEAAABozgRYAAAAAG9DP/jBD5IkAwcO/I/rqqur079///Tv3z8TJkzI+eefn6985Su57bbbMmDAgA3GUKUeffTRBu/r6+vz2GOPZffdd68c23LLLbN06dL1rn366acb7Nq0MbP17Nkzt9xyS1588cUGu2D99a9/rZxvDD179syDDz6Yurq6BrtgNfZ9/t1DDz2URx55JNOmTcsxxxxTOT5z5szXXF9XV5cnnniisutVkjzyyCNJkl69eiVJdthhh9xyyy3Zf//9i0K7du3a5aijjspRRx2V1atX54gjjsjXv/71jBkzJq1bt97ozwMAAABorvwEIQAAAMDbzKxZs3Luueemd+/eGTp06AbXLVmyZL1je+65Z5Jk1apVSf4V0SR5zSCqxFVXXZUXX3yx8v7HP/5xnn/++Rx66KGVYzvssEN+//vfZ/Xq1ZVjN954Y5555pkGn7Uxsw0ePDjr1q3LpZde2uD4t7/97VRVVTW4/xsxePDgLFy4MNdff33l2Nq1a3PJJZekffv2lZ8EbGyv7Nj16h266uvrc/HFF2/wmlf/Lerr63PppZemRYsW6d+/f5Lk4x//eNatW5dzzz13vWvXrl37H//u//jHPxq8b9myZXbeeefU19dnzZo1r+uZAAAAADYVdsACAAAA2ITddNNN+etf/5q1a9dm0aJFmTVrVmbOnJmePXvmhhtu+I87DY0bNy533nlnhgwZkp49e2bx4sW5/PLLs9122+WAAw5I8q8YqnPnzpk8eXI6dOiQdu3aZZ999knv3r2L5u3SpUsOOOCAHHfccVm0aFEmTpyYHXfcMZ/97Gcraz7zmc/kxz/+cQYNGpSPf/zjefzxx3P11Vdnhx12aPBZGzPbBz/4wRx00EH5yle+kqeeeip77LFHbr755vziF7/IySefvN5nlxo5cmSuvPLKDB8+PHPmzEmvXr3y4x//OL/73e8yceLEBrtvbazHHnss55133nrH3/Oe9+SQQw7JDjvskC996Ut57rnn0rFjx/zkJz/JCy+88Jqf1bp168yYMSPHHnts9tlnn9x000351a9+lTPPPLPy04Lvf//7c/zxx2f8+PH505/+lEMOOSQtWrTIo48+munTp+fiiy/ORz/60df8/EMOOSTdunXL/vvvn9ra2sydOzeXXnpphgwZ8ob+BgAAAADNkQALAAAAYBM2duzYJP/aYahLly7ZbbfdMnHixBx33HH/NXT50Ic+lKeeeirf//738/e//z1bb7113v/+9+ecc85Jp06dkiQtWrTItGnTMmbMmHzuc5/L2rVrM2XKlOIA68wzz8yDDz6Y8ePH58UXX0z//v1z+eWXp23btpU1AwcOzEUXXZQJEybk5JNPTt++fXPjjTfm1FNPbfBZGzNbdXV1brjhhowdOzbXX399pkyZkl69euWb3/zmep/7RrRp0ya33357zjjjjEybNi3Lly/Pu971rkyZMiXDhw9/Q589b968nH322esdHzFiRIYMGZJf/vKXOfHEEzN+/Pi0bt06H/nIRzJ69Ojsscce612zxRZbZMaMGTnhhBNy2mmnpUOHDvnqV79a+e/pFZMnT87ee++dK6+8MmeeeWZqamrSq1evDBs2LPvvv/8GZz3++ONzzTXXZMKECVmxYkW22267nHjiiTnrrLPe0N8AAAAAoDmqqn/1vuQAAAAAAAAAAAC8btVNPQAAAAAAAAAAAMCmSoAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQqKapB2gO6urqsmDBgnTo0CFVVVVNPQ4AAAAAAAAAANDE6uvr8+KLL6Z79+6prt7wPlcCrCQLFixIjx49mnoMAAAAAAAAAACgmXnmmWey3XbbbfC8ACtJhw4dkvzrj9WxY8cmngYAAAAAAAAAAGhqy5cvT48ePSpt0YYIsJLKzw527NhRgAUAAAAAAAAAAFS80hZtyIZ/nBAAAAAAAAAAAID/SIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQSIAFAAAAAAAAAABQqKapB9gc7H3aVU09Arzp5nzzmKYeoYjvJ5uDTfX7mfiOsnnYVL+jvp9sDjbV72fiO8rmYVP9jvp+sjnYVL+fie8om4dN9Tvq+8nmYFP9fia+o2weNtXvqO8nm4Pm8P20AxYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEAhARYAAAAAAAAAAEChJg2w1q1bl7PPPju9e/dOmzZtssMOO+Tcc89NfX19ZU19fX3Gjh2bbbfdNm3atMmAAQPy6KOPNvicJUuWZOjQoenYsWM6d+6cESNGZMWKFW/14wAAAAAAAAAAAJuZJg2wLrjgglxxxRW59NJLM3fu3FxwwQW58MILc8kll1TWXHjhhZk0aVImT56ce+65J+3atcvAgQOzcuXKypqhQ4fm4YcfzsyZM3PjjTfmzjvvzMiRI5vikQAAAAAAAAAAgM1ITVPe/O67787hhx+eIUOGJEl69eqVH/7wh7n33nuT/Gv3q4kTJ+ass87K4YcfniS56qqrUltbm5///Oc5+uijM3fu3MyYMSP33Xdf+vbtmyS55JJLMnjw4HzrW99K9+7dm+bhAAAAAAAAAACAt70m3QFrv/32y6233ppHHnkkSfLAAw/krrvuyqGHHpokefLJJ7Nw4cIMGDCgck2nTp2yzz77ZPbs2UmS2bNnp3PnzpX4KkkGDBiQ6urq3HPPPa9531WrVmX58uUNXgAAAAAAAAAAABurSXfAOuOMM7J8+fK8+93vzhZbbJF169bl61//eoYOHZokWbhwYZKktra2wXW1tbWVcwsXLkzXrl0bnK+pqUmXLl0qa/7d+PHjc8455zT24wAAAAAAAAAAAJuZJt0B60c/+lGuueaaXHvttfnjH/+YadOm5Vvf+lamTZv2pt53zJgxWbZsWeX1zDPPvKn3AwAAAAAAAAAA3p6adAes0047LWeccUaOPvroJMluu+2Wp59+OuPHj8+xxx6bbt26JUkWLVqUbbfdtnLdokWLsueeeyZJunXrlsWLFzf43LVr12bJkiWV6/9dq1at0qpVqzfhiQAAAAAAAAAAgM1Jk+6A9fLLL6e6uuEIW2yxRerq6pIkvXv3Trdu3XLrrbdWzi9fvjz33HNP+vXrlyTp169fli5dmjlz5lTWzJo1K3V1ddlnn33egqcAAAAAAAAAAAA2V026A9YHP/jBfP3rX8/222+fXXbZJffff38mTJiQT3/600mSqqqqnHzyyTnvvPPSp0+f9O7dO2effXa6d++eD3/4w0mSnXbaKYMGDcpnP/vZTJ48OWvWrMno0aNz9NFHp3v37k34dAAAAAAAAAAAwNtdkwZYl1xySc4+++x8/vOfz+LFi9O9e/ccf/zxGTt2bGXNl7/85bz00ksZOXJkli5dmgMOOCAzZsxI69atK2uuueaajB49Ov379091dXWOPPLITJo0qSkeCQAAAAAAAAAA2Iw0aYDVoUOHTJw4MRMnTtzgmqqqqowbNy7jxo3b4JouXbrk2muvfRMmBAAAAAAAAAAA2LDqph4AAAAAAAAAAABgUyXAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKCTAAgAAAAAAAAAAKNTkAdZzzz2XYcOGZauttkqbNm2y22675Q9/+EPlfH19fcaOHZttt902bdq0yYABA/Loo482+IwlS5Zk6NCh6dixYzp37pwRI0ZkxYoVb/WjAAAAAAAAAAAAm5kmDbBeeOGF7L///mnRokVuuumm/OUvf8lFF12ULbfcsrLmwgsvzKRJkzJ58uTcc889adeuXQYOHJiVK1dW1gwdOjQPP/xwZs6cmRtvvDF33nlnRo4c2RSPBAAAAAAAAAAAbEZqmvLmF1xwQXr06JEpU6ZUjvXu3bvyz/X19Zk4cWLOOuusHH744UmSq666KrW1tfn5z3+eo48+OnPnzs2MGTNy3333pW/fvkmSSy65JIMHD863vvWtdO/e/a19KAAAAAAAAAAAYLPRpDtg3XDDDenbt28+9rGPpWvXrnnPe96T7373u5XzTz75ZBYuXJgBAwZUjnXq1Cn77LNPZs+enSSZPXt2OnfuXImvkmTAgAGprq7OPffc85r3XbVqVZYvX97gBQAAAAAAAAAAsLGaNMB64okncsUVV6RPnz75zW9+kxNOOCEnnnhipk2bliRZuHBhkqS2trbBdbW1tZVzCxcuTNeuXRucr6mpSZcuXSpr/t348ePTqVOnyqtHjx6N/WgAAAAAAAAAAMBmoEkDrLq6uuy11145//zz8573vCcjR47MZz/72UyePPlNve+YMWOybNmyyuuZZ555U+8HAAAAAAAAAAC8PTVpgLXttttm5513bnBsp512yvz585Mk3bp1S5IsWrSowZpFixZVznXr1i2LFy9ucH7t2rVZsmRJZc2/a9WqVTp27NjgBQAAAAAAAAAAsLGaNMDaf//9M2/evAbHHnnkkfTs2TNJ0rt373Tr1i233npr5fzy5ctzzz33pF+/fkmSfv36ZenSpZkzZ05lzaxZs1JXV5d99tnnLXgKAAAAAAAAAABgc1XTlDc/5ZRTst9+++X888/Pxz/+8dx77735zne+k+985ztJkqqqqpx88sk577zz0qdPn/Tu3Ttnn312unfvng9/+MNJ/rVj1qBBgyo/XbhmzZqMHj06Rx99dLp3796ETwcAAAAAAAAAALzdNWmA9d73vjc/+9nPMmbMmIwbNy69e/fOxIkTM3To0MqaL3/5y3nppZcycuTILF26NAcccEBmzJiR1q1bV9Zcc801GT16dPr375/q6uoceeSRmTRpUlM8EgAAAAAAAAAAsBlp0gArSQ477LAcdthhGzxfVVWVcePGZdy4cRtc06VLl1x77bVvxngAAAAAAAAAAAAbVN3UAwAAAAAAAAAAAGyqBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFBFgAAAAAAAAAAACFigKsJ554orHnAAAAAAAAAAAA2OQUBVg77rhjDjrooFx99dVZuXJlY88EAAAAAAAAAACwSSgKsP74xz9m9913zxe/+MV069Ytxx9/fO69997Gng0AAAAAAAAAAKBZKwqw9txzz1x88cVZsGBBvv/97+f555/PAQcckF133TUTJkzI3/72t8aeEwAAAAAAAAAAoNkpCrBeUVNTkyOOOCLTp0/PBRdckMceeyxf+tKX0qNHjxxzzDF5/vnnG2tOAAAAAAAAAACAZucNBVh/+MMf8vnPfz7bbrttJkyYkC996Ut5/PHHM3PmzCxYsCCHH354Y80JAAAAAAAAAADQ7NSUXDRhwoRMmTIl8+bNy+DBg3PVVVdl8ODBqa7+V8/Vu3fvTJ06Nb169WrMWQEAAAAAAAAAAJqVogDriiuuyKc//ekMHz4822677Wuu6dq1a773ve+9oeEAAAAAAAAAAACas6IA69FHH/2va1q2bJljjz225OMBAAAAAAAAAAA2CdUlF02ZMiXTp09f7/j06dMzbdq0NzwUAAAAAAAAAADApqAowBo/fny23nrr9Y537do1559//hseCgAAAAAAAAAAYFNQFGDNnz8/vXv3Xu94z549M3/+/Dc8FAAAAAAAAAAAwKagKMDq2rVrHnzwwfWOP/DAA9lqq63e8FAAAAAAAAAAAACbgqIA6xOf+EROPPHE3HbbbVm3bl3WrVuXWbNm5aSTTsrRRx/d2DMCAAAAAAAAAAA0SzUlF5177rl56qmn0r9//9TU/Osj6urqcswxx+T8889v1AEBAAAAAAAAAACaq6IAq2XLlrn++utz7rnn5oEHHkibNm2y2267pWfPno09HwAAAAAAAAAAQLNVFGC94p3vfGfe+c53NtYsAAAAAAAAAAAAm5SiAGvdunWZOnVqbr311ixevDh1dXUNzs+aNatRhgMAAAAAAAAAAGjOigKsk046KVOnTs2QIUOy6667pqqqqrHnAgAAAAAAAAAAaPaKAqzrrrsuP/rRjzJ48ODGngcAAAAAAAAAAGCTUV1yUcuWLbPjjjs29iwAAAAAAAAAAACblKIA69RTT83FF1+c+vr6xp4HAAAAAAAAAABgk1H0E4R33XVXbrvtttx0003ZZZdd0qJFiwbnf/rTnzbKcAAAAAAAAAAAAM1ZUYDVuXPnfOQjH2nsWQAAAAAAAAAAADYpRQHWlClTGnsOAAAAAAAAAACATU516YVr167NLbfckiuvvDIvvvhikmTBggVZsWJFow0HAAAAAAAAAADQnBXtgPX0009n0KBBmT9/flatWpUPfOAD6dChQy644IKsWrUqkydPbuw5AQAAAAAAAAAAmp2iHbBOOumk9O3bNy+88ELatGlTOf6Rj3wkt956a6MNBwAAAAAAAAAA0JwV7YD129/+NnfffXdatmzZ4HivXr3y3HPPNcpgAAAAAAAAAAAAzV3RDlh1dXVZt27desefffbZdOjQ4Q0PBQAAAAAAAAAAsCkoCrAOOeSQTJw4sfK+qqoqK1asyFe/+tUMHjy4sWYDAAAAAAAAAABo1op+gvCiiy7KwIEDs/POO2flypX55Cc/mUcffTRbb711fvjDHzb2jAAAAAAAAAAAAM1SUYC13Xbb5YEHHsh1112XBx98MCtWrMiIESMydOjQtGnTprFnBAAAAAAAAAAAaJaKAqwkqampybBhwxpzFgAAAAAAAAAAgE1KUYB11VVX/cfzxxxzTNEwAAAAAAAAAAAAm5KiAOukk05q8H7NmjV5+eWX07Jly7Rt21aABQAAAAAAAAAAbBaqSy564YUXGrxWrFiRefPm5YADDsgPf/jDxp4RAAAAAAAAAACgWSoKsF5Lnz598o1vfGO93bEAAAAAAAAAAADerhotwEqSmpqaLFiwoDE/EgAAAAAAAAAAoNmqKbnohhtuaPC+vr4+zz//fC699NLsv//+jTIYAAAAAAAAAABAc1cUYH34wx9u8L6qqirbbLNNDj744Fx00UWNMRcAAAAAAAAAAECzVxRg1dXVNfYcAAAAAAAAAAAAm5zqph4AAAAAAAAAAABgU1W0A9YXv/jF1712woQJJbcAAAAAAAAAAABo9ooCrPvvvz/3339/1qxZk3e9611JkkceeSRbbLFF9tprr8q6qqqqxpkSAAAAAAAAAACgGSoKsD74wQ+mQ4cOmTZtWrbccsskyQsvvJDjjjsu73vf+3Lqqac26pAAAAAAAAAAAADNUXXJRRdddFHGjx9fia+SZMstt8x5552Xiy66qNGGAwAAAAAAAAAAaM6KAqzly5fnb3/723rH//a3v+XFF198w0MBAAAAAAAAAABsCooCrI985CM57rjj8tOf/jTPPvtsnn322fzkJz/JiBEjcsQRRzT2jAAAAAAAAAAAAM1STclFkydPzpe+9KV88pOfzJo1a/71QTU1GTFiRL75zW826oAAAAAAAAAAAADNVVGA1bZt21x++eX55je/mccffzxJssMOO6Rdu3aNOhwAAAAAAAAAAEBzVvQThK94/vnn8/zzz6dPnz5p165d6uvrG2suAAAAAAAAAACAZq8owPrHP/6R/v37553vfGcGDx6c559/PkkyYsSInHrqqY06IAAAAAAAAAAAQHNVFGCdcsopadGiRebPn5+2bdtWjh911FGZMWNGow0HAAAAAAAAAADQnNWUXHTzzTfnN7/5TbbbbrsGx/v06ZOnn366UQYDAAAAAAAAAABo7op2wHrppZca7Hz1iiVLlqRVq1ZveCgAAAAAAAAAAIBNQVGA9b73vS9XXXVV5X1VVVXq6upy4YUX5qCDDmq04QAAAAAAAAAAAJqzop8gvPDCC9O/f//84Q9/yOrVq/PlL385Dz/8cJYsWZLf/e53jT0jAAAAAAAAAABAs1S0A9auu+6aRx55JAcccEAOP/zwvPTSSzniiCNy//33Z4cddmjsGQEAAAAAAAAAAJqljd4Ba82aNRk0aFAmT56cr3zlK2/GTAAAAAAAAAAAAJuEjd4Bq0WLFnnwwQffjFkAAAAAAAAAAAA2KUU/QThs2LB873vfa+xZAAAAAAAAAAAANikb/ROESbJ27dp8//vfzy233JK999477dq1a3B+woQJjTIcAAAAAAAAAABAc7ZRAdYTTzyRXr165c9//nP22muvJMkjjzzSYE1VVVXjTQcAAAAAAAAAANCMbVSA1adPnzz//PO57bbbkiRHHXVUJk2alNra2jdlOAAAAAAAAAAAgOasemMW19fXN3h/00035aWXXmrUgQAAAAAAAAAAADYVGxVg/bt/D7IAAAAAAAAAAAA2JxsVYFVVVaWqqmq9YwAAAAAAAAAAAJujmo1ZXF9fn+HDh6dVq1ZJkpUrV+Zzn/tc2rVr12DdT3/608abEAAAAAAAAAAAoJnaqADr2GOPbfB+2LBhjToMAAAAAAAAAADApmSjAqwpU6a8WXMAAAAAAAAAAABscqqbegAAAAAAAAAAAIBNlQALAAAAAAAAAACgkAALAAAAAAAAAACgkAALAAAAAAAAAACgkAALAAAAAAAAAACgkAALAAAAAAAAAACgkAALAAAAAAAAAACgkAALAAAAAAAAAACgkAALAAAAAAAAAACgkAALAAAAAAAAAACgkAALAAAAAAAAAACgkAALAAAAAAAAAACgkAALAAAAAAAAAACgkAALAAAAAAAAAACgkAALAAAAAAAAAACgkAALAAAAAAAAAACgkAALAAAAAAAAAACgULMJsL7xjW+kqqoqJ598cuXYypUrM2rUqGy11VZp3759jjzyyCxatKjBdfPnz8+QIUPStm3bdO3aNaeddlrWrl37Fk8PAAAAAAAAAABsjppFgHXfffflyiuvzO67797g+CmnnJJf/vKXmT59eu64444sWLAgRxxxROX8unXrMmTIkKxevTp33313pk2blqlTp2bs2LFv9SMAAAAAAAAAAACboSYPsFasWJGhQ4fmu9/9brbccsvK8WXLluV73/teJkyYkIMPPjh77713pkyZkrvvvju///3vkyQ333xz/vKXv+Tqq6/OnnvumUMPPTTnnntuLrvssqxevbqpHgkAAAAAAAAAANhMNHmANWrUqAwZMiQDBgxocHzOnDlZs2ZNg+Pvfve7s/3222f27NlJktmzZ2e33XZLbW1tZc3AgQOzfPnyPPzwwxu856pVq7J8+fIGLwAAAAAAAAAAgI1V05Q3v+666/LHP/4x991333rnFi5cmJYtW6Zz584NjtfW1mbhwoWVNa+Or145/8q5DRk/fnzOOeecNzg9AAAAAAAAAACwuWuyHbCeeeaZnHTSSbnmmmvSunXrt/TeY8aMybJlyyqvZ5555i29PwAAAAAAAAAA8PbQZAHWnDlzsnjx4uy1116pqalJTU1N7rjjjkyaNCk1NTWpra3N6tWrs3Tp0gbXLVq0KN26dUuSdOvWLYsWLVrv/CvnNqRVq1bp2LFjgxcAAAAAAAAAAMDGarIAq3///nnooYfypz/9qfLq27dvhg4dWvnnFi1a5NZbb61cM2/evMyfPz/9+vVLkvTr1y8PPfRQFi9eXFkzc+bMdOzYMTvvvPNb/kwAAAAAAAAAAMDmpaapbtyhQ4fsuuuuDY61a9cuW221VeX4iBEj8sUvfjFdunRJx44d84UvfCH9+vXLvvvumyQ55JBDsvPOO+dTn/pULrzwwixcuDBnnXVWRo0alVatWr3lzwQAAAAAAAAAAGxemizAej2+/e1vp7q6OkceeWRWrVqVgQMH5vLLL6+c32KLLXLjjTfmhBNOSL9+/dKuXbsce+yxGTduXBNODQAAAAAAAAAAbC6aVYB1++23N3jfunXrXHbZZbnssss2eE3Pnj3z61//+k2eDAAAAAAAAAAAYH3VTT0AAAAAAAAAAADApkqABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUEiABQAAAAAAAAAAUKhJA6zx48fnve99bzp06JCuXbvmwx/+cObNm9dgzcqVKzNq1KhstdVWad++fY488sgsWrSowZr58+dnyJAhadu2bbp27ZrTTjsta9eufSsfBQAAAAAAAAAA2Aw1aYB1xx13ZNSoUfn973+fmTNnZs2aNTnkkEPy0ksvVdaccsop+eUvf5np06fnjjvuyIIFC3LEEUdUzq9bty5DhgzJ6tWrc/fdd2fatGmZOnVqxo4d2xSPBAAAAAAAAAAAbEZqmvLmM2bMaPB+6tSp6dq1a+bMmZP//d//zbJly/K9730v1157bQ4++OAkyZQpU7LTTjvl97//ffbdd9/cfPPN+ctf/pJbbrkltbW12XPPPXPuuefm9NNPz9e+9rW0bNmyKR4NAAAAAAAAAADYDDTpDlj/btmyZUmSLl26JEnmzJmTNWvWZMCAAZU17373u7P99ttn9uzZSZLZs2dnt912S21tbWXNwIEDs3z58jz88MOveZ9Vq1Zl+fLlDV4AAAAAAAAAAAAbq9kEWHV1dTn55JOz//77Z9ddd02SLFy4MC1btkznzp0brK2trc3ChQsra14dX71y/pVzr2X8+PHp1KlT5dWjR49GfhoAAAAAAAAAAGBz0GwCrFGjRuXPf/5zrrvuujf9XmPGjMmyZcsqr2eeeeZNvycAAAAAAAAAAPD2U9PUAyTJ6NGjc+ONN+bOO+/MdtttVznerVu3rF69OkuXLm2wC9aiRYvSrVu3ypp77723wectWrSocu61tGrVKq1atWrkpwAAAAAAAAAAADY3TboDVn19fUaPHp2f/exnmTVrVnr37t3g/N57750WLVrk1ltvrRybN29e5s+fn379+iVJ+vXrl4ceeiiLFy+urJk5c2Y6duyYnXfe+a15EAAAAAAAAAAAYLPUpDtgjRo1Ktdee21+8YtfpEOHDlm4cGGSpFOnTmnTpk06deqUESNG5Itf/GK6dOmSjh075gtf+EL69euXfffdN0lyyCGHZOedd86nPvWpXHjhhVm4cGHOOuusjBo1yi5XAAAAAAAAAADAm6pJA6wrrrgiSXLggQc2OD5lypQMHz48SfLtb3871dXVOfLII7Nq1aoMHDgwl19+eWXtFltskRtvvDEnnHBC+vXrl3bt2uXYY4/NuHHj3qrHAAAAAAAAAAAANlNNGmDV19f/1zWtW7fOZZddlssuu2yDa3r27Jlf//rXjTkaAAAAAAAAAADAf1Xd1AMAAAAAAAAAAABsqgRYAAAAAAAAAAAAhQRYAAAAAAAAAAAAhQRYAAAAAAAAAAAAhQRYAAAAAAAAAAAAhQRYAAAAAAAAAAAAhQRYAAAAAAAAAAAAhQRYAAAAAAAAAAAAhQRYAAAAAAAAAAAAhQRYAAAAAAAAAAAAhQRYAAAAAAAAAAAAhQRYAAAAAAAAAAAAhQRYAAAAAAAAAAAAhQRYAAAAAAAAAAAAhQRYAAAAAAAAAAAAhQRYAAAAAAAAAAAAhQRYAAAAAAAAAAAAhQRYAAAAAAAAAAAAhQRYAAAAAAAAAAAAhQRYAAAAAAAAAAAAhQRYAAAAAAAAAAAAhQRYAAAAAAAAAAAAhQRYAAAAwP9v787DtCwL9gFfMywCsogLLgnIAC4YuCEiZpZaCCqiLaamsmguhaapYX2ymGu5kEuZmIpmIrml1WeWpCliLsiSiisKJuKCiCyCA/P7w8/5nMCy9/cxz8B7nscxx+F738/McfHH7bzzvNdz3wAAAAAAlEgBCwAAAAAAAAAAoEQKWAAAAAAAAAAAACVSwAIAAAAAAAAAACiRAhYAAAAAAAAAAECJFLAAAAAAAAAAAABKpIAFAAAAAAAAAABQIgUsAAAAAAAAAACAEilgAQAAAAAAAAAAlEgBCwAAAAAAAAAAoEQKWAAAAAAAAAAAACVSwAIAAAAAAAAAACiRAhYAAAAAAAAAAECJFLAAAAAAAAAAAABKpIAFAAAAAAAAAABQIgUsAAAAAAAAAACAEilgAQAAAAAAAAAAlEgBCwAAAAAAAAAAoEQKWAAAAAAAAAAAACVSwAIAAAAAAAAAACiRAhYAAAAAAAAAAECJFLAAAAAAAAAAAABKpIAFAAAAAAAAAABQIgUsAAAAAAAAAACAEilgAQAAAAAAAAAAlEgBCwAAAAAAAAAAoEQKWAAAAAAAAAAAACVSwAIAAAAAAAAAACiRAhYAAAAAAAAAAECJFLAAAAAAAAAAAABKpIAFAAAAAAAAAABQIgUsAAAAAAAAAACAEilgAQAAAAAAAAAAlEgBCwAAAAAAAAAAoEQKWAAAAAAAAAAAACVSwAIAAAAAAAAAACiRAhYAAAAAAAAAAECJFLAAAAAAAAAAAABKpIAFAAAAAAAAAABQIgUsAAAAAAAAAACAEilgAQAAAAAAAAAAlEgBCwAAAAAAAAAAoEQKWAAAAAAAAAAAACVSwAIAAAAAAAAAACiRAhYAAAAAAAAAAECJFLAAAAAAAAAAAABKpIAFAAAAAAAAAABQIgUsAAAAAAAAAACAEilgAQAAAAAAAAAAlEgBCwAAAAAAAAAAoEQKWAAAAAAAAAAAACVSwAIAAAAAAAAAACiRAhYAAAAAAAAAAECJFLAAAAAAAAAAAABKpIAFAAAAAAAAAABQIgUsAAAAAAAAAACAEilgAQAAAAAAAAAAlEgBCwAAAAAAAAAAoEQKWAAAAAAAAAAAACVSwAIAAAAAAAAAACiRAhYAAAAAAAAAAECJFLAAAAAAAAAAAABKpIAFAAAAAAAAAABQIgUsAAAAAAAAAACAEilgAQAAAAAAAAAAlEgBCwAAAAAAAAAAoEQKWAAAAAAAAAAAACVSwAIAAAAAAAAAACiRAhYAAAAAAAAAAECJFLAAAAAAAAAAAABKpIAFAAAAAAAAAABQIgUsAAAAAAAAAACAEilgAQAAAAAAAAAAlEgBCwAAAAAAAAAAoEQKWAAAAAAAAAAAACVSwAIAAAAAAAAAACiRAhYAAAAAAAAAAECJFLAAAAAAAAAAAABKpIAFAAAAAAAAAABQIgUsAAAAAAAAAACAEilgAQAAAAAAAAAAlEgBCwAAAAAAAAAAoEQKWAAAAAAAAAAAACVSwAIAAAAAAAAAACiRAhYAAAAAAAAAAECJFLAAAAAAAAAAAABKpIAFAAAAAAAAAABQIgUsAAAAAAAAAACAEilgAQAAAAAAAAAAlEgBCwAAAAAAAAAAoEQKWAAAAAAAAAAAACVSwAIAAAAAAAAAACiRAhYAAAAAAAAAAECJFLAAAAAAAAAAAABKpIAFAAAAAAAAAABQIgUsAAAAAAAAAACAEilgAQAAAAAAAAAAlEgBCwAAAAAAAAAAoEQKWAAAAAAAAAAAACVSwAIAAAAAAAAAACiRAhYAAAAAAAAAAECJFLAAAAAAAAAAAABKpIAFAAAAAAAAAABQIgUsAAAAAAAAAACAEilgAQAAAAAAAAAAlEgBCwAAAAAAAAAAoEQKWAAAAAAAAAAAACVSwAIAAAAAAAAAACiRAhYAAAAAAAAAAECJFLAAAAAAAAAAAABKpIAFAAAAAAAAAABQIgUsAAAAAAAAAACAEilgAQAAAAAAAAAAlEgBCwAAAAAAAAAAoEQKWAAAAAAAAAAAACVSwAIAAAAAAAAAACiRAhYAAAAAAAAAAECJFLAAAAAAAAAAAABKpIAFAAAAAAAAAABQIgUsAAAAAAAAAACAEilgAQAAAAAAAAAAlEgBCwAAAAAAAAAAoEQKWAAAAAAAAAAAACVSwAIAAAAAAAAAACiRAhYAAAAAAAAAAECJFLAAAAAAAAAAAABKpIAFAAAAAAAAAABQIgUsAAAAAAAAAACAEilgAQAAAAAAAAAAlEgBCwAAAAAAAAAAoETrTAHryiuvzFZbbZVmzZplt912y6OPPlp0JAAAAAAAAAAAYB23ThSwbrnllpx66qkZOXJkpkyZkh122CF9+/bNG2+8UXQ0AAAAAAAAAABgHbZOFLAuueSSHHvssRk8eHC6deuWq666Ki1atMi1115bdDQAAAAAAAAAAGAd1rjoAP+/li9fnieeeCJnnnlm7VhlZWX23XffTJ48ebXfs2zZsixbtqz29bvvvpskWbhw4RrJuGLZ0jXyc6EhWVPrZ02zPikHa+v6TKxRysPaukatT8rB2ro+E2uU8rC2rlHrk3Kwtq7PxBqlPKyta9T6pBysreszsUYpD2vrGrU+KQdrcn1+9LNramr+5XUVNf/uigbutddey2c+85k8/PDD2X333WvHzzjjjDzwwAP529/+tsr3jBo1KqNHj67PmAAAAAAAAAAAwFpozpw52XLLLT9xfq3fAasUZ555Zk499dTa1ytXrsz8+fOz0UYbpaKiosBk/F9YuHBh2rdvnzlz5qR169ZFxwE+xvqEhs0ahYbL+oSGzRqFhsv6hIbNGoWGy/qEhs0ahYbL+lz31NTU5L333ssWW2zxL69b6wtYG2+8cRo1apR58+bVGZ83b14222yz1X7Peuutl/XWW6/O2AYbbLCmIlKQ1q1b+x8aNFDWJzRs1ig0XNYnNGzWKDRc1ic0bNYoNFzWJzRs1ig0XNbnuqVNmzb/9prKesixRjVt2jS77LJL7rvvvtqxlStX5r777qtzJCEAAAAAAAAAAMD/tbV+B6wkOfXUU3P00UenZ8+e6dWrV8aMGZPFixdn8ODBRUcDAAAAAAAAAADWYetEAevQQw/Nm2++mREjRuT111/PjjvumHvuuSebbrpp0dEowHrrrZeRI0eucswkUDzrExo2axQaLusTGjZrFBou6xMaNmsUGi7rExo2axQaLuuzfFXU1NTUFB0CAAAAAAAAAABgbVRZdAAAAAAAAAAAAIC1lQIWAAAAAAAAAABAiRSwAAAAAAAAAAAASqSABQAAAAAAAAAAUCIFLAAAAAAAAAAAgBIpYAEAADQwH3zwQYYMGZJZs2YVHQUAANaY999/PwsXLqzzBQAAaxP3cvlIRU1NTU3RIaAUp5566qe+9pJLLlmDSYB/56WXXkpVVVXRMYBP8Pzzz+cvf/lL3njjjaxcubLO3IgRIwpKBbRp0yZTp05Np06dio4CrMZee+2VoUOH5mtf+1qaN29edBzgU1iwYEE22GCDomNA2VuyZEnOOOOMTJgwIW+//fYq8ytWrCggFQAAlM69XBIFLNZiX/ziFz/VdRUVFZk4ceIaTgP8K5WVlbUfUH31q19Ns2bNio4E/I+xY8fmhBNOyMYbb5zNNtssFRUVtXMVFRWZMmVKgemgvB199NHZcccdc8oppxQdBViN7373u/n1r3+dZcuW5etf/3qGDh2a3r17Fx0L+B8XXnhhttpqqxx66KFJkq9//eu57bbbstlmm+UPf/hDdthhh4ITQvn69re/nb/85S/50Y9+lCOPPDJXXnll/vGPf+QXv/hFLrjgghxxxBFFR4Syd9999+W+++5b7cN61157bUGpgHHjxmXjjTfO/vvvnyQ544wzcvXVV6dbt265+eab07Fjx4ITQvlyL5dEAQuAejB16tRcd911ufnmm7N8+fIceuihGTp0aHr16lV0NCh7HTt2zIknnpjvf//7RUcB/sk555yTiy++OPvss0922WWXrL/++nXmTzrppIKSAR+prq7OXXfdlXHjxuW///u/06VLlwwZMiRHHnlkNt1006LjQVnr1KlTbrrppvTp0yd/+tOf8vWvfz233HJLJkyYkNmzZ+fee+8tOiKUrQ4dOuSGG27IF77whbRu3TpTpkxJly5dcuONN+bmm2/OH/7wh6IjQlkbPXp0zj777PTs2TObb755nYf1kuSOO+4oKBmwzTbb5Oc//3n23nvvTJ48Ofvuu28uvfTS/O53v0vjxo1z++23Fx0RypZ7uSQKWADUo48+oLr++utzzz33ZOutt679gGqTTTYpOh6UpdatW2fq1KmOCYUG6F9tV11RUZGXXnqpHtMA/84bb7yRq6++Oueee25WrFiR/v3756STTsree+9ddDQoS82bN89zzz2X9u3b5+STT87777+fX/ziF3nuueey22675Z133ik6IpStli1b5umnn06HDh2y5ZZb5vbbb0+vXr0ya9asdO/ePYsWLSo6IpS1zTffPD/+8Y9z5JFHFh0F+CctWrTIzJkz06FDh3z/+9/P3Llzc8MNN+Spp57KF77whbz55ptFR4Sy5V4uSdK46ABQqkMOOSTXX399WrdunUMOOeRfXqvxDQ1D48aNc8ghh2T//ffPz372s5x55pk57bTT8oMf/CBf//rXc+GFF2bzzTcvOiaUla997Wu59957c/zxxxcdBfgns2bNKjoC8Ck9+uijue666zJ+/Pi0a9cugwYNyj/+8Y8ccMABOfHEE3PRRRcVHRHKTtu2bTNnzpy0b98+99xzT84555wkSU1NTVasWFFwOihvVVVVmTVrVjp06JBtt902EyZMSK9evXL33Xdngw02KDoelL3ly5enT58+RccAVqNly5Z5++2306FDh9x777059dRTkyTNmjXL0qVLC04H5c29XBIFLNZibdq0qd36tk2bNgWnAT6Nxx9/PNdee23Gjx+f9ddfP6eddlqGDh2aV199NaNHj85BBx2URx99tOiYUFa6dOmSs846K4888ki6d++eJk2a1Jm3LS4Ub/ny5Zk1a1Y6d+6cxo39CQcNxRtvvJEbb7wx1113XZ5//vkceOCBufnmm9O3b9/av1UHDRqU/fbbTwELCnDIIYfk8MMPT9euXfP222+nX79+SZInn3wyXbp0KTgdlLfBgwdn2rRp2WuvvTJ8+PAceOCBueKKK/LBBx/kkksuKToelL1jjjkmv/71r3PWWWcVHQX4J1/60pdyzDHHZKeddspzzz2X/v37J0meeuqpbLXVVsWGA5K4l1vuHEEIwBp3ySWX5Lrrrsuzzz6b/v3755hjjkn//v1TWVlZe82rr76arbbaKtXV1QUmhfJjW1xouJYsWZJhw4Zl3LhxSZLnnnsuVVVVGTZsWD7zmc9k+PDhBSeE8ta0adN07tw5Q4YMyaBBg1Z7pPbChQtz0EEH5S9/+UsBCaG8ffDBB/npT3+aOXPmZNCgQdlpp52SJJdeemlatWqVY445puCEwEdeeeWVPPHEE+nSpUt69OhRdBwoSx/topMkK1euzLhx49KjR4/06NFjlYf1FCWhOAsWLMh//dd/Zc6cOTnhhBOy3377JUlGjhyZpk2b5oc//GHBCaF8uZdLooAFQD3o2rVr7QdTn3TE4PLly3PzzTfn6KOPrud0ANAwnXzyyZk0aVLGjBmT/fbbL9OnT09VVVV++9vfZtSoUXnyySeLjghl7cEHH8yee+5ZdAwAAPj/9sUvfvFTX+vhAgBYlXu5JApYrENuvfXWTJgwIbNnz87y5cvrzE2ZMqWgVACw9vjobeFHxyYBxerYsWNuueWW9O7dO61atcq0adNSVVWVF154ITvvvHMWLlxYdEQAaNBuvPHG/OIXv8hLL72UyZMnp2PHjhkzZkw6deqUgw46qOh4UFYuu+yyT33tSSedtAaTAMDa7cEHH6x9j/ub3/wmn/nMZ3LjjTemU6dO+dznPld0PChb7uWSJA6dZJ1w2WWX5Yc//GEGDRqU3/72txk8eHBefPHFPPbYY/n2t79ddDwoS9OnT//U19peHop1ww035Cc/+Umef/75JMnWW2+d008/PUceeWTByaC8vfnmm2nXrt0q44sXL1aUhILstNNOn3r9eRAIivXzn/88I0aMyHe/+92ce+65WbFiRZJkgw02yJgxYxSwoJ5deumldV6/+eabWbJkSTbYYIMkHx6p1KJFi7Rr104BCwo2ZMiQ/PSnP02rVq3qjC9evDjDhg3LtddeW1Ay4LbbbsuRRx6ZI444IlOmTMmyZcuSJO+++27OO++8/OEPfyg4IZQv93JJFLBYR/zsZz/L1VdfncMOOyzXX399zjjjjFRVVWXEiBGZP39+0fGgLO24446pqKjIJ220+NFcRUVF7Y1woP5dcsklOeuss/Kd73wne+yxR5LkoYceyvHHH5+33norp5xySsEJoXz17Nkzv//97zNs2LAk/7s73TXXXJPdd9+9yGhQtgYOHFh0BOBTuvzyyzN27NgMHDgwF1xwQe14z549c9pppxWYDMrTrFmzav/717/+dX72s5/ll7/8ZbbZZpskybPPPptjjz02xx13XFERgf8xbty4XHDBBasUsJYuXZobbrhBAQsKdM455+Sqq67KUUcdlfHjx9eO77HHHjnnnHMKTAa4l0uigMU6Yvbs2enTp0+SpHnz5nnvvfeSJEceeWR69+6dK664osh4UJY+fmMNaLguv/zy/PznP89RRx1VOzZgwIBsv/32GTVqlAIWFOi8885Lv3798vTTT6e6ujo//elP8/TTT+fhhx/OAw88UHQ8KEtt27bNt771rTRr1iyzZ8/OlltumcrKyqJjAasxa9as7LTTTquMr7feelm8eHEBiYCPnHXWWbn11ltry1dJss022+TSSy/NV7/61RxxxBEFpoPytXDhwtTU1KSmpibvvfdemjVrVju3YsWK/OEPf1jtzh5A/Xn22Wfz+c9/fpXxNm3aZMGCBfUfCKjlXi5J4i4h64TNNtusdqerDh065JFHHkny4c22T9p9B1izDj744LRu3TodO3bMuHHjsskmm6Rjx46r/QKKM3fu3NoS88f16dMnc+fOLSAR8JHPfe5zmTp1aqqrq9O9e/fce++9adeuXSZPnpxddtml6HhQlk499dQsXLgwSdKpU6e89dZbBScCPkmnTp0yderUVcbvueeebLfddvUfCKg1d+7cVFdXrzK+YsWKzJs3r4BEQPLhMb0bbrhhKioqsvXWW6dt27a1XxtvvHGGDBmSb3/720XHhLK22Wab5YUXXlhl/KGHHkpVVVUBiYCPuJdLYgcs1hF777137rrrruy0004ZPHhwTjnllNx66615/PHHc8ghhxQdD8rSM888k8WLF6dt27YZPXp0jj/++LRo0aLoWMA/6dKlSyZMmJAf/OAHdcZvueWWdO3ataBUwEc6d+6csWPHFh0D+B9bbLFFbrvttvTv3z81NTV59dVX8/7776/22g4dOtRzOuDjTj311Hz729/O+++/n5qamjz66KO5+eabc/755+eaa64pOh6UtX322SfHHXdcrrnmmuy8885JkieeeCInnHBC9t1334LTQfn6y1/+kpqamuy999657bbbsuGGG9bONW3aNB07dswWW2xRYELg2GOPzcknn5xrr702FRUVee211zJ58uScdtppOeuss4qOB2XPvVwqamwPxDpg5cqVWblyZRo3/rBTOH78+Dz88MPp2rVrjjvuuDRt2rTghFB+dt9997Rs2TKf+9znMnr06Jx22mlp2bLlaq8dMWJEPacDPnLbbbfl0EMPzb777ps99tgjSTJp0qTcd999mTBhQg4++OCCE0J5+WhnnU+jdevWazAJsDpXX311hg0bttpdOz5SU1OTioqKrFixoh6TAatz0003ZdSoUXnxxReTfFiiHD16dIYOHVpwMihvb775Zo4++ujcc889adKkSZKkuro6ffv2zfXXX++IMyjYK6+8kvbt2ztqGxqgmpqanHfeeTn//POzZMmSJB8esX3aaaflRz/6UcHpgBUrVuSOO+7IM888kyTp1q1bDjrooNoOA+s+BSwA1ohnn302I0eOzIsvvpgpU6akW7duq32DUVFRkSlTphSQEPjIE088kUsvvbT2j4Ltttsu3/ve97LTTjsVnAzKT2VlZSoqKj7VtcodUIz33nsvr7zySnr06JE///nP2WijjVZ73Q477FDPyYBPsmTJkixatEipAxqY5557LjNnzkySbLvtttl6660LTgR8ZMGCBfnlL39Ze69o++23z5AhQ9KmTZuCkwFJsnz58rzwwgtZtGhRunXr9okPvwP156mnnsqAAQPy+uuvZ5tttkny4fvdTTbZJHfffXc++9nPFpyQ+qCAxTpjwYIFefTRR/PGG29k5cqVdeaOOuqoglIByYcfJr/++utudgPAv/HAAw/U/vfLL7+c4cOHZ9CgQdl9992TJJMnT864ceNy/vnn5+ijjy4qJpBk3Lhx+cY3vpH11luv6CjAJ6iurs7999+fF198MYcffnhatWqV1157La1bt/YhFQB8gscffzx9+/ZN8+bN06tXryTJY489lqVLl+bee++tPToUAPhfu+++ezbZZJOMGzcubdu2TZK88847GTRoUN588808/PDDBSekPihgsU64++67c8QRR2TRokVp3bp1nV0DKioqMn/+/ALTQXn74IMP8q1vfSsjRoxIp06dio4D5MMjzj46uuzfHXfmiDMozj777JNjjjkmhx12WJ3xX//617n66qtz//33FxMMqGP58uWrfRCoQ4cOBSUCkg+PT9pvv/0ye/bsLFu2LM8991yqqqpy8sknZ9myZbnqqquKjghl7dVXX81dd92V2bNnZ/ny5XXmLrnkkoJSAUmy5557pkuXLhk7dmztiQbV1dU55phj8tJLL+Wvf/1rwQmhvBxyyCGf+trbb799DSYB/pXmzZvn8ccfz/bbb19n/O9//3t23XXXLF26tKBk1CeHTbJO+N73vpchQ4bkvPPOS4sWLYqOA3xMkyZNcscdd2TEiBFFRwH+R9u2bTN37ty0a9cuG2ywwWqPO6upqUlFRYUjzqBAkydPXu2Hwz179swxxxxTQCLg455//vkMGTJklScY/Q6FhuHkk09Oz549M23atDpHhR588ME59thjC0wG3HfffRkwYECqqqoyc+bMfPazn83LL7+cmpoaO+tAA/D444/XKV8lSePGjXPGGWekZ8+eBSaD8uToT1g7bL311pk3b94qBaw33ngjXbp0KSgV9U0Bi3XCP/7xj5x00knKV9BAHXTQQbnzzjtzyimnFB0FSDJx4sRsuOGGSZK//OUvBacBPkn79u0zduzY/PjHP64zfs0116R9+/YFpQI+MmjQoDRu3Di/+93vsvnmm6+20AwU58EHH8zDDz+cpk2b1hnfaqut8o9//KOgVECSnHnmmTnttNMyevTotGrVKrfddlvatWuXI444Ivvtt1/R8aDstW7dOrNnz862225bZ3zOnDlp1apVQamgfF133XVFRwA+hfPPPz8nnXRSRo0ald69eydJHnnkkZx99tm58MIL65xG4uSRdZcCFuuEvn375vHHH09VVVXRUYDV6Nq1a84+++xMmjQpu+yyS9Zff/068yeddFJByaA87bXXXqv9b6BhufTSS/OVr3wl//3f/53ddtstSfLoo4/m+eefz2233VZwOmDq1Kl54oknVvlgCmgYVq5cudqd6F599VUfHkPBnnnmmdx8881JPtxVZ+nSpWnZsmXOPvvsHHTQQTnhhBMKTgjl7dBDD83QoUNz0UUXpU+fPkmSSZMm5fTTT89hhx1WcDoob3vvvXduv/32bLDBBnXGFy5cmIEDB2bixInFBANywAEHJEm+/vWv1z6kV1NTkyQ58MADa1/bNX3dpoDFOmH//ffP6aefnqeffjrdu3dPkyZN6swPGDCgoGRAkvzyl7/MBhtskCeeeCJPPPFEnbmKigoFLCjYO++8k1/+8pd55plnkiTdunXL4MGDa3fJAorRv3//PPfcc/n5z3+emTNnJvnwj/Xjjz/eDljQAHTr1i1vvfVW0TGAT/DlL385Y8aMydVXX53kw789Fy1alJEjR6Z///4Fp4Pytv7662f58uVJks033zwvvvhi7VEtfrdC8S666KJUVFTkqKOOSnV1dWpqatK0adOccMIJueCCC4qOB2Xt/vvvr/0d+nHvv/9+HnzwwQISAR9x2ghJUlHzUe0O1mKVlZWfOKdFCgCf7K9//WsOPPDAtGnTJj179kySPPHEE1mwYEHuvvvufP7zny84IQA0TBMnTsx//dd/5bzzzlvtg0C2k4divfrqq+nbt29qamry/PPPp2fPnnn++eez0UYb5cEHH0y7du2Kjghla+DAgdl///1z7LHH5rTTTstvf/vbDBo0KLfffnvatm2bP//5z0VHBJIsWbIkL774YpKkc+fOadGiRcGJoHxNnz49SbLjjjtm4sSJdR6cXbFiRe6555784he/yMsvv1xQQgASBSwA6tHy5csza9asdO7cOY0b24QRGoLu3btn9913z89//vM0atQoyYd/tJ944ol5+OGHM2PGjIITQnmZPn16PvvZz6aysrL25ton6dGjRz2lAlbnoweBPtpW/iO2k4eGo7q6OuPHj8/06dOzaNGi7LzzzjniiCPSvHnzoqNBWXvppZeyaNGi9OjRI4sXL873vve9PPzww+natWsuueSSdOzYseiIUJaGDBnyqa679tpr13AS4J9VVlaucqTZxzVv3jyXX375p17HwJrhtBEUsFirTZ48OW+//XbtmapJcsMNN2TkyJFZvHhxBg4cmMsvvzzrrbdegSmBJUuWZNiwYRk3blyS5LnnnktVVVWGDRuWz3zmMxk+fHjBCaF8NW/ePFOnTs0222xTZ/zZZ5/NjjvumKVLlxaUDMpTZWVlXn/99bRr16725trq/mRT7oDiPfDAA/9yfq+99qqnJMDqvP3229loo42SJHPmzMnYsWOzdOnSDBgwIHvuuWfB6QCg4amsrEzHjh2z0047rfbv0I/ccccd9ZgKSJJXXnklNTU1qaqqyqOPPppNNtmkdq5p06Zp165d7cO1QDGcNkKS2H6EtdrZZ5+dL3zhC7UFrBkzZmTo0KEZNGhQtttuu/zkJz/JFltskVGjRhUbFMrcmWeemWnTpuX+++/PfvvtVzu+7777ZtSoUQpYUKCdd945zzzzzCoFrGeeeSY77LBDQamgfM2aNav2JtqsWbMKTgP8KwpW0DDNmDEjBx54YObMmZOuXbtm/Pjx2W+//bJ48eJUVlbm0ksvza233pqBAwcWHRXK1mOPPZaVK1dmt912qzP+t7/9LY0aNar9wAqoXyeccEJuvvnmzJo1K4MHD843v/lNO3ZAA/HR7pArV64sOAnwSb797W/n0EMPXe1pI9/+9redNlIm7IDFWm3zzTfP3XffXftH+Q9/+MM88MADeeihh5Ikv/nNbzJy5Mg8/fTTRcaEstexY8fccsst6d27d1q1apVp06alqqoqL7zwQnbeeecsXLiw6IhQtm655ZacccYZGTZsWHr37p0keeSRR3LllVfmggsuyHbbbVd7rePOAKCuBQsW1Nlafvvtt8+QIUPSpk2bgpNB+erXr18aN26c4cOH58Ybb8zvfve79O3bN2PHjk2SDBs2LE888UQeeeSRgpNC+erVq1fOOOOMfPWrX60zfvvtt+fCCy/M3/72t4KSAcuWLcvtt9+ea6+9Ng8//HD233//DB06NF/+8pdXOXobKMaNN96Yq666KrNmzcrkyZPTsWPHXHrppamqqspBBx1UdDwoW04bIVHAYi3XrFmzPP/882nfvn2S5HOf+1z69euXH/7wh0mSl19+Od27d897771XZEwoey1atMjf//73VFVV1SlgTZs2LZ///Ofz7rvvFh0RylZlZeW/nP/o+DPHnUExnn322Vx++eW15Y7tttsuw4YNW+UPeaD+Pf744+nbt2+aN2+eXr16JflwR4+lS5fm3nvvzc4771xwQihPG2+8cSZOnJgePXpk0aJFad26dR577LHssssuSZKZM2emd+/eWbBgQbFBoYy1bNky06dPT1VVVZ3xWbNmpUePHu7lQgPxyiuv5Prrr88NN9yQ6urqPPXUU2nZsmXRsaCs/fznP8+IESPy3e9+N+eee27t5y7XX399xo0bl7/85S9FR4Sytccee+T0009fZbflO++8MxdccIGHgMqEIwhZq2266aaZNWtW2rdvn+XLl2fKlCkZPXp07fx7772XJk2aFJgQSJKePXvm97//fYYNG5YktU9LXXPNNdl9992LjAZlzxFn0HDddttt+cY3vpGePXvW/r585JFH8tnPfjbjx4/PV77ylYITQnk75ZRTMmDAgIwdOzaNG394e6W6ujrHHHNMvvvd7+avf/1rwQmhPM2fPz+bbbZZkg9LHuuvv37atm1bO9+2bVvlDijYeuutl3nz5q1SwJo7d27t71SgeJWVlbUP5nkoDxqGyy+/PGPHjs3AgQNzwQUX1I737Nkzp512WoHJgJNOOiknn3xyXnjhhdWeNjJ9+vTaa502su6yAxZrtRNOOCHTpk3LhRdemDvvvDPjxo3La6+9lqZNmyZJbrrppowZMyaPPfZYwUmhvD300EPp169fvvnNb+b666/Pcccdl6effjoPP/xwHnjggdonkYH69cEHH+S4447LWWedlU6dOhUdB/gnnTt3zhFHHJGzzz67zvjIkSPzq1/9Ki+++GJByYDkw63ln3zyyWy77bZ1xp9++un07NkzS5YsKSgZlLfKysrMmzcvm2yySZKkVatWmT59eu373Xnz5mWLLbbwQTIU6LDDDsvcuXPz29/+tvbY3gULFmTgwIFp165dJkyYUHBCKF8fP4LwoYceygEHHJDBgwdnv/32+7e7qANrXvPmzTNz5sx07Nixzmkjzz//fHr06OGIMyiQ00ZI7IDFWu5HP/pRDjnkkOy1115p2bJlxo0bV1u+SpJrr702X/7ylwtMCCQfHg86derUXHDBBenevXvtkSyTJ09O9+7di44HZatJkya57bbbctZZZxUdBViNuXPn5qijjlpl/Jvf/GZ+8pOfFJAI+LjWrVtn9uzZqxSw5syZk1atWhWUCkiSQYMGZb311kuSvP/++zn++OOz/vrrJ/nwg2WgWBdddFE+//nPp2PHjtlpp52SJFOnTs2mm26aG2+8seB0UL5OPPHEjB8/Pu3bt8+QIUNy8803Z+ONNy46FvAxnTp1ytSpU9OxY8c64/fcc0+22267glIBidNG+JAdsFgnvPvuu2nZsmUaNWpUZ3z+/Plp2bJlnVIWAPC/jj766Oy444455ZRTio4C/JP+/fvna1/7WgYPHlxn/Lrrrsv48ePzxz/+saBkQPLh1vJ33HFHLrroovTp0ydJMmnSpJx++un5yle+kjFjxhQbEMrUP//e/CTXXXfdGk4C/CuLFy/OTTfdlGnTpqV58+bp0aNHDjvssDRp0qToaFC2Kisr06FDh+y0006pqKj4xOtuv/32ekwFfNw111yTUaNG5eKLL87QoUNzzTXX5MUXX8z555+fa665Jt/4xjeKjghQ1hSwAFjjGjVqlLlz56Zdu3Z1xt9+++20a9fOVptQoHPOOScXX3xx9tlnn+yyyy61OwN85KSTTiooGXDVVVdlxIgR+frXv57evXsnSR555JH85je/yejRo7PFFlvUXjtgwICiYkLZWr58eU4//fRcddVVqa6uTvLh7pInnHBCLrjggtrddwAAYG0waNCgf1m8+ogSMxTrpptuyqhRo/Liiy8mSbbYYouMHj06Q4cOLTgZ8OKLL2bMmDF55plnkiTdunXLySefnM6dOxecjPqigAXAGldZWZnXX399lQLWa6+9ls6dOzuXHArUqVOnT5yrqKjISy+9VI9pgI+rrKz8VNdVVFQoM0OBlixZUnvju3PnzmnRokXBiQCg4bnrrrvSr1+/NGnSJHfddde/vNbDBQDw7y1ZsiSLFi1a5XMXoBh//OMfM2DAgOy4447ZY489kny4U/q0adNy991350tf+lLBCakPClgArDGXXXZZkuSUU07Jj370o7Rs2bJ2bsWKFfnrX/+al19+OU8++WRREQEAAABYwz7+cN6/etDAwwUA8K9VV1fn/vvvz4svvpjDDz88rVq1ymuvvZbWrVvX+QwGqF877bRT+vbtmwsuuKDO+PDhw3PvvfdmypQpBSWjPilgAbDGfLSzziuvvJItt9wyjRo1qp1r2rRpttpqq5x99tnZbbfdiooIfMxHbws/zXbzwJozefLkvP322znggANqx2644YaMHDkyixcvzsCBA3P55Zc73gwKdvDBB6/2d2ZFRUWaNWuWLl265PDDD88222xTQDoAAADWNa+88kr222+/zJ49O8uWLctzzz2XqqqqnHzyyVm2bFmuuuqqoiNC2WrWrFlmzJiRrl271hl/7rnn0qNHj7z//vsFJaM+fbozLQCgBLNmzcqsWbOy1157Zdq0abWvZ82alWeffTZ//OMfla+gAbjhhhvSvXv3NG/ePM2bN0+PHj1y4403Fh0LytbZZ5+dp556qvb1jBkzMnTo0Oy7774ZPnx47r777px//vkFJgSSpE2bNpk4cWKmTJmSioqKVFRU5Mknn8zEiRNTXV2dW265JTvssEMmTZpUdFQAaBAmTpyYbt26ZeHChavMvfvuu9l+++3z4IMPFpAMANYOJ598cnr27Jl33nknzZs3rx0/+OCDc9999xWYDNhkk00yderUVcanTp3qqNAy0rjoAACs+774xS+udpeOpUuX5ic/+UlGjBhRQCogSS655JKcddZZ+c53vlN7LvlDDz2U448/Pm+99VZOOeWUghNC+Zk6dWp+9KMf1b4eP358dtttt4wdOzZJ0r59+4wcOTKjRo0qKCGQJJtttlkOP/zwXHHFFbVHKa1cuTInn3xyWrVqlfHjx+f444/P97///Tz00EMFpwWA4o0ZMybHHntsWrduvcpcmzZtctxxx+WSSy7JnnvuWUA6AGj4HnzwwTz88MNp2rRpnfGtttoq//jHPwpKBSTJsccem29961t56aWX0qdPnyTJpEmTcuGFF+bUU08tOB31xRGEAKxxjRo1yty5c1dpeL/99ttp165dVqxYUVAyoFOnThk9enSOOuqoOuPjxo3LqFGjMmvWrIKSQflq1qxZnn/++bRv3z5J8rnPfS79+vXLD3/4wyTJyy+/nO7du+e9994rMiaUvU022SSTJk3K1ltvXWf8ueeeS58+ffLWW29lxowZ2XPPPbNgwYJiQgJAA9KxY8fcc8892W677VY7P3PmzHz5y1/O7Nmz6zkZAKwd2rZtm0mTJqVbt25p1apVpk2blqqqqjz00EP5yle+knnz5hUdEcpWTU1NxowZk4svvjivvfZakmSLLbbI6aefnpNOOikVFRUFJ6Q+OIIQgDWupqZmtW8spk2blg033LCARMBH5s6dW/s0xsf16dMnc+fOLSARsOmmm9aWH5cvX54pU6akd+/etfPvvfdemjRpUlQ84H9UV1dn5syZq4zPnDmz9gGDZs2aucEGAP9j3rx5//J9bOPGjfPmm2/WYyIAWLt8+ctfzpgxY2pfV1RUZNGiRRk5cmT69+9fXDAgFRUVOeWUU/Lqq6/m3XffzbvvvptXX301J598sntDZcQRhACsMW3btk1FRUUqKiqy9dZb13mDsWLFiixatCjHH398gQmBLl26ZMKECfnBD35QZ/yWW25J165dC0oF5a1///4ZPnx4Lrzwwtx5551p0aJFnWNYpk+fns6dOxeYEEiSI488MkOHDs0PfvCD7LrrrkmSxx57LOedd17tzpIPPPBAtt9++yJjAkCD8ZnPfCZ///vf06VLl9XOT58+PZtvvnk9pwKAtcfFF1+cvn37plu3bnn//fdz+OGH5/nnn89GG22Um2++ueh4wP9o1apV0REoiCMIAVhjxo0bl5qamgwZMiRjxoxJmzZtaueaNm2arbbaKrvvvnuBCYHbbrsthx56aPbdd9/sscceST48l/y+++7LhAkTcvDBBxecEMrPW2+9lUMOOSQPPfRQWrZsmXHjxtVZi/vss0969+6dc889t8CUwIoVK3LBBRfkiiuuqD3mYdNNN82wYcPy/e9/P40aNcrs2bNTWVmZLbfcsuC0AFC8YcOG5f77789jjz2WZs2a1ZlbunRpevXqlS9+8Yu57LLLCkoIAA1fdXV1xo8fn+nTp2fRokXZeeedc8QRR6R58+ZFR4OyNm/evJx22mm577778sYbb+Sfazgf7ZbOuk0BC4A17oEHHkifPn0clwQN1BNPPJFLL700zzzzTJJku+22y/e+973stNNOBSeD8vbuu++mZcuWadSoUZ3x+fPnp2XLlmnatGlByYB/tnDhwiRJ69atC04CAA3XvHnzsvPOO6dRo0b5zne+k2222SbJh8f3XnnllVmxYkWmTJmSTTfdtOCkANAwvf3229loo42SJHPmzMnYsWOzdOnSDBgwoM7u6UD969evX2bPnp3vfOc72XzzzVc5dvCggw4qKBn1SQELgDVu9uzZ/3K+Q4cO9ZQEAAAAgKK88sorOeGEE/LHP/6xdleAioqK9O3bN1deeWU6depUcEIAaHhmzJiRAw88MHPmzEnXrl0zfvz47Lffflm8eHEqKyuzePHi3HrrrRk4cGDRUaFstWrVKg8++GB23HHHoqNQIAUsANa4ysrKVZreH2fbTSjOH/7whzRq1Ch9+/atM/7HP/4xK1euTL9+/QpKBgAN36233poJEyZk9uzZWb58eZ25KVOmFJQKABq+d955Jy+88EJqamrStWvXtG3btuhIANBg9evXL40bN87w4cNz44035ne/+1369u2bsWPHJvnwmN8nnngijzzySMFJoXx169YtN910k5NFylxl0QEAWPc9+eSTmTJlSu3X3/72t1x11VXZeuut85vf/KboeFDWhg8fvtoSZE1NTYYPH15AIgBYO1x22WUZPHhwNt100zz55JPp1atXNtpoo7z00ksKzADwb7Rt2za77rprevXqpXwFAP/GY489lnPPPTd77LFHLrroorz22ms58cQTU1lZmcrKygwbNiwzZ84sOiaUtTFjxmT48OF5+eWXi45CgeyABUBhfv/73+cnP/lJ7r///qKjQNlq3rx5nnnmmWy11VZ1xl9++eVsv/32Wbx4cTHBAKCB23bbbTNy5MgcdthhadWqVaZNm5aqqqqMGDEi8+fPzxVXXFF0RAAAANYBlZWVef3119OuXbskqfM3aJLMmzcvW2yxhdNGoJ61bdu2zglAixcvTnV1dVq0aJEmTZrUuXb+/Pn1HY8CNC46AADla5tttsljjz1WdAwoa23atMlLL720SgHrhRdeyPrrr19MKABYC8yePTt9+vRJ8mGh+b333kuSHHnkkendu7cCFgAAAP9nPl7yWN1roP6NGTOm6Ag0MApYAKxxCxcurPO6pqYmc+fOzahRo9K1a9eCUgFJctBBB+W73/1u7rjjjnTu3DnJh+Wr733vexkwYEDB6QCg4dpss80yf/78dOzYMR06dMgjjzySHXbYIbNmzYrNxgEAAPi/NGjQoKy33npJkvfffz/HH3987QO0y5YtKzIalK2jjz666Ag0MI4gBGCNq6ysXOVpjJqamrRv3z7jx4/P7rvvXlAy4N13381+++2Xxx9/PFtuuWWSZM6cOfn85z+f22+/PRtssEGxAQGggTrmmGPSvn37jBw5MldeeWVOP/307LHHHnn88cdzyCGH5Je//GXREQEAAFgHDB48+FNdd911163hJMAnmTJlSpo0aZLu3bsnSX7729/muuuuS7du3TJq1Kg0bdq04ITUBwUsANa4+++/v04Bq7KyMptsskm6dOmSxo1txghFq6mpyZ/+9KdMmzYtzZs3zw477JA999yz6FgA0KCtXLkyK1eurH0/O378+Dz88MPp2rVrjjvuODfWAAAAAMrErrvumuHDh+crX/lKXnrppXTr1i2HHHJIHnvssey///6OKywTClgArHFvv/12NtpooyQf7qwzduzYLF26NAMGDFDygIJMnjw5b7/9dg444IDasXHjxmXkyJFZsmRJBg4cmMsvv7x2W2sA4H9VV1fnvPPOy5AhQ2p3kAQAAACgPLVp0yZTpkxJ586dc+GFF2bixIn54x//mEmTJuUb3/hG5syZU3RE6kFl0QEAWHfNmDEjW221Vdq1a5dtt902U6dOza677ppLL700V199db74xS/mzjvvLDomlKWzzz47Tz31VO3rGTNm5Nhjj82XvvSlDB8+PHfffXfOP//8AhMCQMPVuHHj/PjHP051dXXRUQAAAAAoWE1NTVauXJkk+fOf/5z+/fsnSdq3b5+33nqryGjUIwUsANaYM844I927d89f//rXfOELX8gBBxyQ/fffP++++27eeeedHHfccbnggguKjgllaerUqdlnn31qX48fPz69evXK2LFjc+qpp+ayyy7LhAkTCkwIAA3bPvvskwceeKDoGAAAAAAUrGfPnjnnnHNy44035oEHHsj++++fJJk1a1Y23XTTgtNRXxoXHQCAdddjjz2WiRMnpkePHtlhhx1y9dVX58QTT0xl5Yf932HDhqV3794Fp4Ty9M4779R50//AAw+kX79+ta933XVXW+ICwL/Qr1+/DB8+PDNmzMguu+yS9ddfv878gAEDCkoGAAAAQH0aM2ZMjjjiiNx555354Q9/mC5duiRJbr311vTp06fgdNSXipqampqiQwCwbqqsrMzrr7+edu3aJUlatWqVadOmpaqqKkkyb968bLHFFlmxYkWRMaEsdezYMTfeeGM+//nPZ/ny5dlggw1y99131+6KNWPGjOy1116ZP39+wUkBoGH66KGC1amoqPAeFwAAAKDMvf/++2nUqFGaNGlSdBTqgSMIAVijKioq/uVroBj9+/fP8OHD8+CDD+bMM89MixYtsueee9bOT58+PZ07dy4wIQA0bCtXrvzEL+UrAAAAgPIxZ86cvPrqq7WvH3300Xz3u9/NDTfcoHxVRhxBCMAaNWjQoKy33npJPmx5H3/88bXHsyxbtqzIaFDWfvSjH+WQQw7JXnvtlZYtW2bcuHFp2rRp7fy1116bL3/5ywUmBICGa+XKlbn++utz++235+WXX05FRUWqqqryla98JUceeaSHDgAAAADKyOGHH55vfetbOfLII/P666/nS1/6UrbffvvcdNNNef311zNixIiiI1IPHEEIwBozePDgT3Xdddddt4aTAJ/k3XffTcuWLdOoUaM64/Pnz0/Lli3rlLIAgKSmpiYHHnhg/vCHP2SHHXbItttum5qamjzzzDOZMWNGBgwYkDvvvLPomAAAAADUk7Zt2+aRRx7JNttsk8suuyy33HJLJk2alHvvvTfHH398XnrppaIjUg/sgAXAGqNYBQ1fmzZtVju+4YYb1nMSAFg7XH/99fnrX/+a++67L1/84hfrzE2cODEDBw7MDTfckKOOOqqghAAAAADUpw8++KD2RKA///nPGTBgQJJk2223zdy5c4uMRj2qLDoAAAAAwNri5ptvzg9+8INVyldJsvfee2f48OG56aabCkgGAAAAQBG23377XHXVVXnwwQfzpz/9Kfvtt1+S5LXXXstGG21UcDrqiwIWAAAAwKc0ffr02ptoq9OvX79MmzatHhMBAAAAUKQLL7wwv/jFL/KFL3whhx12WHbYYYckyV133ZVevXoVnI76UlFTU1NTdAgAAACAtUHTpk3zyiuvZPPNN1/t/GuvvZZOnTpl2bJl9ZwMAAAAgKKsWLEiCxcuTNu2bWvHXn755bRo0SLt2rUrMBn1pXHRAQAAAADWFitWrEjjxp98O6VRo0aprq6ux0QAAAAAFK1Ro0Z1yldJstVWWxUThkIoYAEAAAB8SjU1NRk0aFDWW2+91c7b+QoAAACg/Nx6662ZMGFCZs+eneXLl9eZmzJlSkGpqE+VRQcAAAAAWFscffTRadeuXdq0abPar3bt2uWoo44qOiYAAAAA9eSyyy7L4MGDs+mmm+bJJ59Mr169stFGG+Wll15Kv379io5HPamoqampKToEAAAAAAAAAACsbbbddtuMHDkyhx12WFq1apVp06alqqoqI0aMyPz583PFFVcUHZF6YAcsAAAAAAAAAAAowezZs9OnT58kSfPmzfPee+8lSY488sjcfPPNRUajHilgAQAAAAAAAABACTbbbLPMnz8/SdKhQ4c88sgjSZJZs2bFoXTlQwELAAAAAAAAAABKsPfee+euu+5KkgwePDinnHJKvvSlL+XQQw/NwQcfXHA66ktFjbodAAAAAAAAAAD8x1auXJmVK1emcePGSZLx48fn4YcfTteuXXPccceladOmBSekPihgAQAAAAAAAADAf6i6ujrnnXdehgwZki233LLoOBRIAQsAAAAAAAAAAErQsmXL/P3vf89WW21VdBQKVFl0AAAAAAAAAAAAWBvts88+eeCBB4qOQcEaFx0AAAAAAAAAAADWRv369cvw4cMzY8aM7LLLLll//fXrzA8YMKCgZNQnRxACAAAAAAAAAEAJKis/+fC5ioqKrFixoh7TUBQFLAAAAAAAAAAAgBI5ghAAAAAAAAAAAP4DS5cuzX333ZcDDjggSXLmmWdm2bJltfONGzfO2WefnWbNmhUVkXqkgAUAAAAAAAAAAP+BcePG5fe//31tAeuKK67I9ttvn+bNmydJZs6cmc022yynnnpqkTGpJ44gBAAAAAAAAACA/8Cee+6ZM844IwceeGCSpFWrVpk2bVqqqqqSJL/61a9y5ZVXZvLkyUXGpJ5UFh0AAAAAAAAAAADWJi+88EK6d+9e+7pZs2aprPzfGk6vXr3y9NNPFxGNAjiCEAAAAAAAAAAA/gMLFizIsmXLal+/+eabdeZXrlxZZ551mx2wAAAAAAAAAADgP7Dlllvm73//+yfOT58+PVtuuWU9JqJIClgAAAAAAAAAAPAf6N+/f0aMGJH3339/lbmlS5dm9OjR2X///QtIRhEqampqaooOAQAAAAAAAAAAa4t58+Zlxx13TNOmTfOd73wnW2+9dZLk2WefzRVXXJHq6uo8+eST2XTTTQtOSn1QwAIAAAAAAAAAgP/QrFmzcsIJJ+RPf/pTPqrfVFRU5Etf+lJ+9rOfpaqqquCE1BcFLAAAAAAAAAAAKNH8+fPzwgsvJEm6dOmSDTfcsOBE1DcFLAAAAAAAAAAAgBJVFh0AAAAAAAAAAABgbaWABQAAAAAAAAAAUCIFLAAAAAAAAAAAgBIpYAEAAABAkuuvvz4bbLDB//fPqaioyJ133vn//XMAAAAAWDsoYAEAAACwzhg0aFAGDhxYdAwAAAAAyogCFgAAAAAAAAAAQIkUsAAAAAAoC5dcckm6d++e9ddfP+3bt8+JJ56YRYsWrXLdnXfema5du6ZZs2bp27dv5syZU2f+t7/9bXbeeec0a9YsVVVVGT16dKqrq+vrnwEAAABAA6OABQAAAEBZqKyszGWXXZannnoq48aNy8SJE3PGGWfUuWbJkiU599xzc8MNN2TSpElZsGBBvvGNb9TOP/jggznqqKNy8skn5+mnn84vfvGLXH/99Tn33HPr+58DAAAAQANRUVNTU1N0CAAAAAD4vzBo0KAsWLAgd95557+99tZbb83xxx+ft956K0ly/fXXZ/DgwXnkkUey2267JUlmzpyZ7bbbLn/729/Sq1ev7Lvvvtlnn31y5pln1v6cX/3qVznjjDPy2muvJUkqKipyxx13ZODAgf/n/z4AAAAAGp7GRQcAAAAAgPrw5z//Oeeff35mzpyZhQsXprq6Ou+//36WLFmSFi1aJEkaN26cXXfdtfZ7tt1222ywwQZ55pln0qtXr0ybNi2TJk2qs+PVihUrVvk5AAAAAJQPBSwAAAAA1nkvv/xyDjjggJxwwgk599xzs+GGG+ahhx7K0KFDs3z58k9dnFq0aFFGjx6dQw45ZJW5Zs2a/V/HBgAAAGAtoIAFAAAAwDrviSeeyMqVK3PxxRensrIySTJhwoRVrquurs7jjz+eXr16JUmeffbZLFiwINttt12SZOedd86zzz6bLl261F94AAAAABo0BSwAAAAA1invvvtupk6dWmds4403zgcffJDLL788Bx54YCZNmpSrrrpqle9t0qRJhg0blssuuyyNGzfOd77znfTu3bu2kDVixIgccMAB6dChQ7761a+msrIy06ZNy9///vecc8459fHPAwAAAKCBqSw6AAAAAAD8X7r//vuz00471fm68cYbc8kll+TCCy/MZz/72dx00005//zzV/neFi1a5Pvf/34OP/zw7LHHHmnZsmVuueWW2vm+ffvmd7/7Xe69997suuuu6d27dy699NJ07NixPv+JAAAAADQgFTU1NTVFhwAAAAAAAAAAAFgb2QELAAAAAAAAAACgRApYAAAAAAAAAAAAJVLAAgAAAAAAAAAAKJECFgAAAAAAAAAAQIkUsAAAAAAAAAAAAEqkgAUAAAAAAAAAAFAiBSwAAAAAAAAAAIASKWABAAAAAAAAAACUSAELAAAAAAAAAACgRApYAAAAAAAAAAAAJVLAAgAAAAAAAAAAKJECFgAAAAAAAAAAQIn+HzGIIzzkRyidAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAStCAYAAAD56LojAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZd6H8e+kNxJ678WCCogoUlTARLCjKKDuuqBiW9u+dl3svWJbXSv2rogdFVFEkV6khCSk996Taef9gyUaAQnDJM+U+3NdXJDJlDvZNZn5zXmeY7MsyxIAAAAAAADggRDTAQAAAAAAAPBfDJcAAAAAAADgMYZLAAAAAAAA8BjDJQAAAAAAAHiM4RIAAAAAAAA8xnAJAAAAAAAAHmO4BAAAAAAAAI8xXAIAAAAAAIDHGC4BAAAAAADAYwyXAACA12RkZMhms+mRRx7x2n0uWbJENptNS5Ys8dp97nTHHXfIZrN5/X53Z8KECZowYULTxzu/rg8++KBNHn/WrFnq379/mzwWAAAILgyXAAAIcvPnz5fNZtOqVatMp+yXnV/Hzj9RUVHq2bOnJk+erCeffFLV1dVeeZy8vDzdcccdWrdunVfuz5t8uQ0AAAQuhksAACCg3HXXXXr99df17LPP6sorr5QkXXPNNTrssMO0YcOGZtf997//rfr6+n26/7y8PN155537PMBZtGiRFi1atE+32Vd/1fbCCy8oOTm5VR8fAAAEpzDTAQAAAN504oknatSoUU0f33zzzVq8eLFOOeUUnXbaadqyZYuio6MlSWFhYQoLa92nQ3V1dYqJiVFERESrPs7ehIeHG318AAAQuDhyCQAA7JXdbtdtt92mI444QgkJCYqNjdUxxxyj77//fo+3efzxx9WvXz9FR0fruOOO02+//bbLdbZu3aqzzjpLHTt2VFRUlEaNGqWFCxd6vX/SpEmaO3euMjMz9cYbbzRdvrs9l7755huNHz9e7du3V1xcnA488EDdcsstknbsk3TkkUdKkmbPnt20BG/+/PmSduyrdOihh2r16tU69thjFRMT03TbP++5tJPL5dItt9yi7t27KzY2Vqeddpqys7ObXad///6aNWvWLrf9433urW13ey7V1tbq2muvVZ8+fRQZGakDDzxQjzzyiCzLanY9m82mK664QgsWLNChhx6qyMhIHXLIIfrqq692/w0HAABBhSOXAADAXlVVVenFF1/UOeecozlz5qi6ulovvfSSJk+erBUrVmjEiBHNrv/aa6+purpa//znP9XQ0KAnnnhCkyZN0saNG9WtWzdJ0qZNmzRu3Dj16tVLN910k2JjY/Xee+9p6tSp+vDDD3XGGWd49Wv4+9//rltuuUWLFi3SnDlzdnudTZs26ZRTTtGwYcN01113KTIyUqmpqVq2bJkk6eCDD9Zdd92l2267TRdffLGOOeYYSdLYsWOb7qO0tFQnnniiZs6cqb/97W9NX++e3HvvvbLZbLrxxhtVVFSkefPmKTExUevWrWs6wqolWtL2R5Zl6bTTTtP333+vCy+8UCNGjNDXX3+t66+/Xrm5uXr88cebXf+nn37SRx99pMsvv1zt2rXTk08+qWnTpikrK0udOnVqcScAAAg8DJcAAMBedejQQRkZGc2Wds2ZM0cHHXSQnnrqKb300kvNrp+amqqUlBT16tVLkjRlyhSNHj1aDz74oB577DFJ0tVXX62+fftq5cqVioyMlCRdfvnlGj9+vG688UavD5d69+6thIQEpaWl7fE633zzjex2u7788kt17tx5l89369ZNJ554om677TaNGTNGf/vb33a5TkFBgZ577jldcsklLeoqKyvTli1b1K5dO0nSyJEjNX36dL3wwgu66qqrWvjVtaztjxYuXKjFixfrnnvu0a233ipJ+uc//6mzzz5bTzzxhK644goNGjSo6fpbtmzR5s2bmy6bOHGihg8frrfffltXXHFFizsBAEDgYVkcAADYq9DQ0KbBktvtVllZmZxOp0aNGqU1a9bscv2pU6c2DZYk6aijjtLo0aP1xRdfSNoxUFm8eLGmT5+u6upqlZSUqKSkRKWlpZo8ebJSUlKUm5vr9a8jLi7uL88a1759e0nSJ598Irfb7dFjREZGavbs2S2+/vnnn980WJKks846Sz169Gj6XrWWL774QqGhobsMsK699lpZlqUvv/yy2eWJiYnNhk3Dhg1TfHy8tm/f3qqdAADA9zFcAgAALfLqq69q2LBhioqKUqdOndSlSxd9/vnnqqys3OW6Q4YM2eWyAw44QBkZGZJ2HNlkWZbmzp2rLl26NPtz++23S5KKioq8/jXU1NQ0G+T82YwZMzRu3DhddNFF6tatm2bOnKn33ntvnwZNvXr12qfNu//8vbLZbBo8eHDT96q1ZGZmqmfPnrt8Pw4++OCmz/9R3759d7mPDh06qLy8vPUiAQCAX2BZHAAA2Ks33nhDs2bN0tSpU3X99dera9euCg0N1f333/+Xy8z2ZOew5rrrrtPkyZN3e53BgwfvV/Of5eTkqLKy8i/vNzo6Wj/++KO+//57ff755/rqq6/07rvvatKkSVq0aJFCQ0P3+jj7sk9SS/150/GdXC5Xi5q8YU+P8+fNvwEAQPBhuAQAAPbqgw8+0MCBA/XRRx81G3TsPMroz1JSUna5bNu2bU1nKxs4cKAkKTw8XImJid4P3o3XX39dkvY4zNopJCRExx9/vI4//ng99thjuu+++3Trrbfq+++/V2Ji4h4HPZ768/fKsiylpqZq2LBhTZd16NBBFRUVu9w2MzOz6Xsp7XkItTv9+vXTt99+q+rq6mZHL23durXp8wAAAC3BsjgAALBXO49a+eNRKr/++qt++eWX3V5/wYIFzfZMWrFihX799VedeOKJkqSuXbtqwoQJ+u9//6v8/Pxdbl9cXOzNfC1evFh33323BgwYoPPOO2+P1ysrK9vlsp1nwmtsbJQkxcbGStJuhz2e2HlmvZ0++OAD5efnN32vJGnQoEFavny57HZ702WfffaZsrOzm93XvrSddNJJcrlcevrpp5td/vjjj8tmszV7fAAAgL/CkUsAAECS9PLLL+urr77a5fKrr75ap5xyij766COdccYZOvnkk5Wenq7nnntOQ4cOVU1NzS63GTx4sMaPH6/LLrtMjY2Nmjdvnjp16qQbbrih6TrPPPOMxo8fr8MOO0xz5szRwIEDVVhYqF9++UU5OTlav369R1/Hl19+qa1bt8rpdKqwsFCLFy/WN998o379+mnhwoWKiora423vuusu/fjjjzr55JPVr18/FRUV6T//+Y969+6t8ePHS9ox6Gnfvr2ee+45tWvXTrGxsRo9erQGDBjgUW/Hjh01fvx4zZ49W4WFhZo3b54GDx6sOXPmNF3noosu0gcffKApU6Zo+vTpSktL0xtvvNFsg+19bTv11FM1ceJE3XrrrcrIyNDw4cO1aNEiffLJJ7rmmmt2uW8AAIA9YbgEAAAkSc8+++xuL581a5ZmzZqlgoIC/fe//9XXX3+toUOH6o033tD777+vJUuW7HKb888/XyEhIZo3b56Kiop01FFH6emnn1aPHj2arjN06FCtWrVKd955p+bPn6/S0lJ17dpVhx9+uG677TaPv46dt42IiFDHjh112GGHad68eZo9e/ZfbuYtSaeddpoyMjL08ssvq6SkRJ07d9Zxxx2nO++8UwkJCZJ2LOV79dVXdfPNN+vSSy+V0+nUK6+84vFw6ZZbbtGGDRt0//33q7q6Wscff7z+85//KCYmpuk6kydP1qOPPqrHHntM11xzjUaNGqXPPvtM1157bbP72pe2kJAQLVy4ULfddpveffddvfLKK+rfv78efvjhXe4XAADgr9gsdmEEAAAAAACAh9hzCQAAAAAAAB5juAQAAAAAAACPMVwCAAAAAACAxxguAQAAAAAAwGMMlwAAAAAAAOAxhksAAAAAAADwGMMlAAAAAAAAeIzhEgAAAAAAADzGcAkAAAAAAAAeY7gEAAAAAAAAjzFcAgAAAAAAgMcYLgEAAAAAAMBjDJcAAAAAAADgMYZLAAAAAAAA8BjDJQAAAAAAAHiM4RIAAAAAAAA8xnAJAAAAAAAAHmO4BAAAAAAAAI8xXAIAAAAAAIDHGC4BAAAAAADAYwyXAAAAAAAA4DGGSwAAAAAAAPAYwyUAAAAAAAB4jOESAAAAAAAAPMZwCQAAAAAAAB5juAQAAAAAAACPMVwCAAAAAACAxxguAQAAAAAAwGMMlwAAAAAAAOAxhksAAAAAAADwGMMlAAAAAAAAeIzhEgAAAAAAADzGcAkAAAAAAAAeY7gEAAAAAAAAjzFcAgAAAAAAgMcYLgEAAAAAAMBjDJcAAAAAAADgMYZLAAAAAAAA8BjDJQAAAAAAAHiM4RIAAAAAAAA8xnAJAAAAAAAAHmO4BAAAAAAAAI8xXAIAAAAAAIDHGC4BAAAAAADAYwyXAAAAAAAA4DGGSwAAAAAAAPAYwyUAAAAAAAB4jOESAAAAAAAAPMZwCQAAAAAAAB5juAQAAAAAAACPMVwCAAAAAACAxxguAQAAAAAAwGMMlwAAAAAAAOAxhksAAAAAAADwGMMlAAAAAAAAeIzhEgAAAAAAADzGcAkAAAAAAAAeY7gEAAAAAAAAjzFcAgAAAAAAgMcYLgEAAAAAAMBjDJcAAAAAAADgMYZLAAAAAAAA8BjDJQAAAAAAAHiM4RIAAAAAAAA8xnAJAAAAAAAAHmO4BAAAAAAAAI8xXAIAAAAAAIDHGC4BAAAAAADAYwyXAAAAAAAA4DGGSwAAAAAAAPAYwyUAABBQlixZIpvNpoqKCtMpAAAAQYHhEgAA8EhxcbEuu+wy9e3bV5GRkerevbsmT56sZcuWGe0aO3as8vPzlZCQYLQDAAAgWISZDgAAAP5p2rRpstvtevXVVzVw4EAVFhbqu+++U2lpaas8nt1uV0RExF6vFxERoe7du7dKAwAAAHbFkUsAAGCfVVRUaOnSpXrwwQc1ceJE9evXT0cddZRuvvlmnXbaaU3XueSSS9StWzdFRUXp0EMP1WeffdZ0Hx9++KEOOeQQRUZGqn///nr00UebPUb//v1199136/zzz1d8fLwuvvhiZWRkyGaz6Z133tHYsWOb7veHH35out3ulsW15LHuu+8+XXDBBWrXrp369u2r559/vhW+cwAAAIGH4RIAANhncXFxiouL04IFC9TY2LjL591ut0488UQtW7ZMb7zxhjZv3qwHHnhAoaGhkqTVq1dr+vTpmjlzpjZu3Kg77rhDc+fO1fz585vdzyOPPKLhw4dr7dq1mjt3btPl119/va699lqtXbtWY8aM0amnnrrHI6Za+liPPvqoRo0apbVr1+ryyy/XZZddpuTk5P37RgEAAAQBm2VZlukIAADgfz788EPNmTNH9fX1GjlypI477jjNnDlTw4YN06JFi3TiiSdqy5YtOuCAA3a57Xnnnafi4mItWrSo6bIbbrhBn3/+uTZt2iRpx9FEhx9+uD7++OOm62RkZGjAgAF64IEHdOONN0qSnE6nBgwYoCuvvFI33HCDlixZookTJ6q8vFzt27dv8WMdc8wxev311yVJlmWpe/fuuvPOO3XppZd6/5sHAAAQQDhyCQAAeGTatGnKy8vTwoULNWXKFC1ZskQjR47U/PnztW7dOvXu3Xu3gyVJ2rJli8aNG9fssnHjxiklJUUul6vpslGjRu329mPGjGn6d1hYmEaNGqUtW7bs12MNGzas6d82m03du3dXUVHRHr56AAAA7MRwCQAAeCwqKkpJSUmaO3eufv75Z82aNUu33367oqOjvXL/sbGxXrmflggPD2/2sc1mk9vtbrPHBwAA8FcMlwAAgNcMHTpUtbW1GjZsmHJycrRt27bdXu/ggw/WsmXLml22bNkyHXDAAU37Mv2V5cuXN/3b6XRq9erVOvjgg1vlsQAAAPDXwkwHAAAA/1NaWqqzzz5bF1xwgYYNG6Z27dpp1apVeuihh3T66afruOOO07HHHqtp06bpscce0+DBg7V161bZbDZNmTJF1157rY488kjdfffdmjFjhn755Rc9/fTT+s9//tOix3/mmWc0ZMgQHXzwwXr88cdVXl6uCy64YLfX3d/HAgAAwF9juAQAAPZZXFycRo8erccff1xpaWlyOBzq06eP5syZo1tuuUXSjg2/r7vuOp1zzjmqra3V4MGD9cADD0iSRo4cqffee0+33Xab7r77bvXo0UN33XWXZs2a1aLHf+CBB/TAAw9o3bp1Gjx4sBYuXKjOnTvv9rr7+1gAAAD4a5wtDgAA+I2dZ4tbu3atRowYYToHAAAAYs8lAAAAAAAA7AeGSwAAAAAAAPAYy+IAAAAAAADgMY5cAgAAAAAAgMcYLgEAAAAAAMBjDJcAAAAAAADgMYZLAAAAAAAA8BjDJQAAAAAAAHiM4RIAAAAAAAA8xnAJAAAAAAAAHmO4BAAAAAAAAI8xXAIAAAAAAIDHGC4BAAAAAADAYwyXAAAAAAAA4DGGSwAAAAAAAPAYwyUAAAAAAAB4jOESAAAAAAAAPMZwCQAAAAAAAB5juAQAAAAAAACPMVwCAAAAAACAxxguAQAAAAAAwGMMlwAAAAAAAOAxhksAAAAAAADwGMMlAAAAAAAAeIzhEgAAAAAAADzGcAkAAAAAAAAeY7gEAAAAAAAAjzFcAgAAAAAAgMcYLgEAAAAAAMBjDJcAAAAAAADgMYZLAAAAAAAA8BjDJQAAAAAAAHiM4RIAAAAAAAA8xnAJAAAAAAAAHmO4BAAAAAAAAI8xXAIAAAAAAIDHGC4BAAAAAADAYwyXAAAAAAAA4DGGSwAAAAAAAPAYwyUAAAAAAAB4LMx0AAAAgDe53C41uBpU76xXvbNeDc6GHX/+d9nOfzc4G9ToapTbcsttuWXJ2vG3Ze3yb5tsstlsCrGF7PLvEFuIQmwhigyNVFRYlKJCoxQVFqXosOimf+/8eOdloSGhpr9NAAAAXsNwCQAA+JQGZ4PKG8pV3liuioaKHX83Vqisoazp4yp7VfPBkbNB9a4dHzvcDtNfwl6Fh4TvGDiFRjcNn3YOoOIj4tUhsoM6RO340z6yvTpEdlD7qPZNl0eFRZn+EgAAAJrYLMuyTEcAAIDAZVmWiuuLlVeTp+L64h2Do4YdA6PyxvJmH1c0VqjeWW862edFh0WrfWT7HYOn/w2hOkR2aPZxl+gu6hnXU12iu8hms5lOBgAAAYzhEgAA2C/1znrl1+aroKZAebV5O/5dW6C8mh3/Lqor8oujiQJVeEi4usZ0Vc+4nuoR20PdY7urR2wP9Yztqe5xO/4dHRZtOhMAAPgxhksAAOAvVdmrlFWV1TQsyq/NV35NftO/KxorTCdiP3WI7NA0dOoR12PH37E91DOup/rG91V8RLzpRAAA4MMYLgEAAElSQW2BtldsV3pVerO/SxtKTafBsE5RnTSw/UANiB+w4++EARqYMFDdY7ubTgMAAD6A4RIAAEHE4XYoqypL6ZXp2l65venvjMoM1TnrTOfBz8SExah/Qn8NTPh94DQgYYD6xvdVeEi46TwAANBGGC4BABCAnG6n0irSlFyerO0V25sGSTnVOXJaTtN5CHBhtjD1bte7aeA0sP1AHdjhQA1qP0hhIZysGACAQMNwCQAAP+d0O5VakarNpZu1uXSztpRuUXJ5shpdjabTgGYiQyN1YIcDdXCng3VIp0M0tNNQBk4AAAQAhksAAPgRh9uh1PLfB0mbSzdrW/k22d1202mARyJDIzWk/RAN7TS06c/gDoNZVgcAgB9huAQAgI9yuBzaVrFNW0q3NA2SUspTGCQh4EWERGhIh+YDpyHthyg8lIETAAC+iOESAAA+oqyhTGsK12h14WqtLVqrbeXb5HA7TGcBPiE8JFwHdDhAh3c9XEd0O0Iju41Ux6iOprMAAIAYLgEAYEx+Tb5WFa7S6sLVWlO0RumV6aaTAL8yIGHAjkFT15Ea1W2UesT1MJ0EAEBQYrgEAEAb2V6xXauLVu8YJhWuUX5tvukkIKD0iO2hkd1G6ohuR+iIrkdoYPuBppMAAAgKDJcAAGgFLrdLW8u3NlvmVtZQZjoLCCodozo2W0Z3UIeDFBoSajoLAICAw3AJAAAvSS5L1rK8ZVqRv0Lritep1lFrOgnAH8SGx2pElxE6qsdRGtdznA7seKDpJAAAAgLDJQAAPFTZWKlf8n/Rstxl+jn3ZxXVF5lOArAPukZ31dheYzWu1ziN6TFGCZEJppMAAPBLDJcAAGght+XWppJN+invJy3LXabfSn6Ty3KZzgLgBaG2UB3a+VCN7zVe43uN1yGdDpHNZjOdBQCAX2C4BADAXyitL9XPeT/rp9yf9EveLypvLDedBKANdIzqqKN7HK3xvcZrbM+x6hTdyXQSAAA+i+ESAAB/4HK7tL54vX7K/Uk/5f6krWVbZYlflUAws8mmgzoe1HRU0/Auw9kYHACAP2C4BAAIetX2av2Q84MWZy3W8vzlqrZXm04C4MPaRbTT0T2O1qS+k3Rc7+PULqKd6SQAAIxiuAQACEol9SVanLVY32V9pxUFK+R0O00nAfBDYSFhGt19tCb1naRJfSepc3Rn00kAALQ5hksAgKCRXZ3dNFBaX7xebsttOglAAAmxhWh4l+E6vu/xOr7v8erdrrfpJAAA2gTDJQBAQLNnZKjqq69Vvnalzhz7q+kcAEFkUfiB6tH7aOmQM6ROg0znAADQahguAQACTmN6uqq//lpVX32txq1bmy5/6l8DtTQqy2AZgGBxYLt++mDD0t8v6HaYdMjp0tAzpM6DzYUBANAKwkwHAADgDY3b01X99Vc7BkrJybu9zqlZnbX0AIZLAFpfou1Pm3wXbtzxZ/E9UrdDpaFTpUOmSp2HmMgDAMCrOHIJAOC3nOXlqvr0M1UuWKCGzZv3en3bgL46e2ZeG5QBCHaf1EZqYFHK3q/YY4Q0/BzpsLOl2E6t3gUAQGtguAQA8CuW3a7q75eo8pNPVLN0qeRw7NPtH/m/floRmdtKdQAgDYzrrU82/rxvNwoJl4YkScNnSgecKIVFtE4cAACtgGVxAAC/UL9unSo++UTVX3wpV2Wlx/czNaebVgxiuASg9SSGdtj3G7kdUvIXO/5Ed5AOOVMaca7Ue5T3AwEA8DKOXAIA+CxHXp4qFy5U5ScLZU9P986dHjBA06dle+e+AGA33m+I00H5e1+q2yKdhuw4mmn4TCmht3fuEwAAL2O4BADwKe7aWlUt+kaVCxaobsUKqRV+Td1zbS9tiCj0+v0CQJ+Y7vpi04pWuGebNOCYHfszHXyaFBnXCo8BAIBnWBYHADDOcrtVt3y5Kj/5RFXffCurrq5VH++s3F7aMIDhEgDvS4zo0kr3bEnpP+748/l10sGnSiPOkfofK4WEtNJjAgDQMhy5BAAwxlFYpIr33lPFRx/JmZ/fZo/rHjpYM0/PaLPHAxA83nK012E5G9ruAeN7S4f/TTpilhTfo+0eFwCAP2C4BABoc7XLl6v8rbdVvXix5HS2fYDNprnXdlNyeEnbPzaAgNU9uosWbV4jmww8vQ4Jkw48STryImngcW3/+ACAoMayOABAm3BVV6vy4wUqf+cd2bdvNxtjWZpe0Fd392G4BMB7EqN6mBksSZLbKW1ZuONP5wOlURfsWDYXlWCmBwAQVDhyCQDQqhq2blX5m2+p8vPPW30vpX3hGn6gzjkpzXQGgAAy39VFR2StNp3xu/BY6bCzpKPmSN0PM10DAAhgDJcAAF7ntttV/dVXKn/rbdWvW2c6Z/dCQnTDtR2VEVZhugRAAOgc2VHfJW9QiOU2nbJ7vY/asWTukKlSWKTpGgBAgGG4BADwGntOrirefUcVH34kV1mZ6Zy9WnP+kXqg11rTGQACwIwOh+nfaz43nbF3MZ13bAA+6gKpQz/TNQCAAMFwCQCwXyy3W7VLl6r8rbdVs3Sp5PbRd+13w3HEUJ13wjbTGQACwAvqrqPTV5jOaDlbiDTkhB1HMw1OlGw200UAAD/GcAkA4BF3fb0qPvxIZa+9JkdWlukcz4SF6er/a6f80GrTJQD8WPuIBH2fskVhbgNnv/SGDgOkMf/ccURTeLTpGgCAH2K4BADYJ87ycpW/8abK33pLrvJy0zn7bfnsUXqs+zrTGQD82BkdDtNd/rAkbm9iOklHXbzjT0xH0zUAAD8SZjoAAOAf7Dk5Knv5FVV8/LGs+nrTOV5z+OZGqbvpCgD+LLHS/wftkqS6UmnJ/dKyJ3YcxTTmCvZlAgC0CEcuAQD+Uv2mTSp76SVVfb1IcrlM53hfeLgu/78YlYTUmi4B4Ifahcfph7RUhbvsplO8zxa64+xy466Wegw3XQMA8GEhpgMAAL6p5qdlypw9WxnTzlLVF18G5mBJkhwOzSwZZLoCgJ86Lq5/YA6WJMlySb99KP33WOm106W0xaaLAAA+imVxAIAmlsulqi+/UulLL6lxyxbTOW3myK0uqavpCgD+KLE6SE4IsH3Jjj/dh+04kumQM6SQUNNVAAAfwZFLAHaRkZEhm82mdevW7fE6S5Yskc1mU0VFRZt1ofW46+tV9vobSjthsvKuuy6oBkuSFLM6WQnuKNMZAPxMdFi0xmWsMp3Rtgo2SB9eKD05Qvr1v5K9znQR/NjWrVt19NFHKyoqSiNGjGjRc1AAvonhEhCAiouLddlll6lv376KjIxU9+7dNXnyZC1btqxFt+/Tp4/y8/N16KGHtnIpTHOWl6v4yaeUOnGSCu+9V47cXNNJRlgNDZpRNth0BgA/c0y7gYpyBM4JDvZJRZb05Q3S44dI398n1ZWZLsL/zJo1SzabrelPp06dNGXKFG3YsKHF9zF//ny1b99+l8v79++vefPmea319ttvV2xsrJKTk/Xdd9957X4BtD2GS0AAmjZtmtauXatXX31V27Zt08KFCzVhwgSVlpa26PahoaHq3r27wsJad+Ws3R6ge1T4AVdlpYrmzVNaYpJK/vMfuTgCTWOSTRcA8DdJtRy1o/oy6YcHpXnDpO/uluoD5Mx5fm7KlCnKz89Xfn6+vvvuO4WFhemUU04xndVk53PAtLQ0jR8/Xv369VOnTp0MVwHYHwyXgABTUVGhpUuX6sEHH9TEiRPVr18/HXXUUbr55pt12mmnSZJsNpueffZZnXjiiYqOjtbAgQP1wQcfNN3H7g5J/uKLL3TAAQcoOjpaEydOVEZGxi6P/dNPP+mYY45RdHS0+vTpo6uuukq1tb+fgat///66++67df755ys+Pl4XX3xxq30fsHuumhoVP/2MUhOTVPrcf+Wu5QxpO8Wt2qY4K8J0BgA/ERkaqWMzVpvO8B32amnpI9K84dKSB6SGKtNFQW3nkevdu3fXiBEjdNNNNyk7O1vFxcW73dpg3bp1stlsysjI0JIlSzR79mxVVlY2Hf10xx13aMKECcrMzNS//vWvpst38uQ5oM1m0+rVq3XXXXc1PcYfWZalwYMH65FHHml2+c7W1NTUVvneAfAMwyUgwMTFxSkuLk4LFixQY2PjHq83d+5cTZs2TevXr9d5552nmTNnasse9tnJzs7WmWeeqVNPPVXr1q3TRRddpJtuuqnZddLS0jRlyhRNmzZNGzZs0LvvvquffvpJV1xxRbPrPfLIIxo+fLjWrl2ruXPn7v8XjBZx19aq5LnnlHp8okqeflruYNmAdh9YdXU6q2KI6QwAfmJs/CDFNNaYzvA9jZXSkvulJ4ZJPz4i8T0yrqamRm+88YYGDx7coqODxo4dq3nz5ik+Pr7p6KfrrrtOH330kXr37q277rqr6XLJ8+eA+fn5OuSQQ3Tttdc2PcYf2Ww2XXDBBXrllVeaXf7KK6/o2GOP1eDBLGcHfAnDJSDAhIWFaf78+Xr11VfVvn17jRs3Trfccssu6+zPPvtsXXTRRTrggAN09913a9SoUXrqqad2e5/PPvusBg0apEcffVQHHnigzjvvPM2aNavZde6//36dd955uuaaazRkyBCNHTtWTz75pF577TU1NDQ0XW/SpEm69tprNWjQIA0axOnfW5u7vl6lL76o1MQkFc97Qu7KStNJPm18Cmc+AtAySfUs7f5L9eXS4rt3DJmWPcHG323ss88+a3rDsV27dlq4cKHeffddhYTs/eVfRESEEhISZLPZmo5+iouLU8eOHRUaGqp27do1XS55/hxw5xYMcXFxTY/xZ7NmzVJycrJWrFghSXI4HHrrrbd0wQUXeOk7BcBbGC4BAWjatGnKy8vTwoULNWXKFC1ZskQjR47U/Pnzm64zZsyYZrcZM2bMHo9c2rJli0aPHr3L9f9o/fr1mj9/ftMTmbi4OE2ePFlut1vp6elN1xs1atR+fnVoCXdjo0rnz1dq0gkqeuRRucrZA6MlElakKNJiwATgr4WFhOk4lsS1TF2p9M1t0hPDpV/+Izka9n4b7LeJEydq3bp1WrdunVasWKHJkyfrxBNPVGZmptcfqzWfA/bs2VMnn3yyXn75ZUnSp59+qsbGRp199tle6wfgHQyXgAAVFRWlpKQkzZ07Vz///LNmzZql22+/vdUer6amRpdccknTE5l169Zp/fr1SklJaXaEUmxsbKs1QLLsdpW98abSkk5Q0QMPylVSYjrJr1jV1Tqz6gDTGQB83Oj4wYqv50jQfVJbJH19s/TkCGnFC5KTI79aU2xsrAYPHqzBgwfryCOP1Isvvqja2lq98MILTUcvWZbVdH2Hw+HxY7X2c8CLLrpI77zzjurr6/XKK69oxowZiomJ8bgXQOto3VNBAfAZQ4cO1YIFC5o+Xr58uc4///xmHx9++OG7ve3BBx+shQsXNrts+fLlzT4eOXKkNm/ezPp3QyyHQxUffqSS//5Xzv/tgQDPTEiN0NtHmK4A4MuSGt2mE/xXdb70xXXST/OkY6+TDv+bFBpuuirg2Ww2hYSEqL6+Xl26dJEk5efnq0OHDpLU7CQu0o6lcS6Xa5f72d3lrf0c8KSTTlJsbKyeffZZffXVV/rxxx9b5XEA7B+OXAICTGlpqSZNmqQ33nhDGzZsUHp6ut5//3099NBDOv3005uu9/777+vll1/Wtm3bdPvtt2vFihW7bLy406WXXqqUlBRdf/31Sk5O1ltvvdVsiZ0k3Xjjjfr55591xRVXaN26dUpJSdEnn3yyx/uEd1hOpyo+/FBpJ56kgjvuYLDkBR1XpinM4tcjgN0LtYVqUuZa0xn+rypH+uwa6akjpDWvSy6n6aKA0tjYqIKCAhUUFGjLli268sorVVNTo1NPPVWDBw9Wnz59dMcddyglJUWff/65Hn300Wa379+/v2pqavTdd9+ppKREdXV1TZf/+OOPys3NVcn/jo5u7eeAoaGhmjVrlm6++WYNGTJkl60ZAPgGnj0DASYuLk6jR4/W448/rmOPPVaHHnqo5s6dqzlz5ujpp59uut6dd96pd955R8OGDdNrr72mt99+W0OHDt3tffbt21cffvihFixYoOHDh+u5557Tfffd1+w6w4YN0w8//KBt27bpmGOO0eGHH67bbrtNPXv2bNWvN5hVL/5e2087Xfm3/luOnBzTOQHDKq/Q6TWcNQ7A7o2KH6QOtaWmMwJHRaa08Arp2TFS8pemawLGV199pR49eqhHjx4aPXq0Vq5cqffff18TJkxQeHi43n77bW3dulXDhg3Tgw8+qHvuuafZ7ceOHatLL71UM2bMUJcuXfTQQw9Jku666y5lZGRo0KBBTUdAtcVzwAsvvFB2u12zZ8/22n0C8C6b9cfFtgCCgs1m08cff6ypU6eaToEHGjZvVuGDD6nu119NpwSs4pOO1D+Hc2QCgF3dGnuQZv62yHRG4BpwrHTCvVKPYaZL4EOWLl2q448/XtnZ2erWrZvpHAC7wZ5LAOAnHIVFKp43T5WffCK52e+jNXVdmS7bMMmymS4B4Etssun4rA2mMwJb+o/S88dJw8+RJs2V4nuYLoJBjY2NKi4u1h133KGzzz6bwRLgw1gWBwA+zl1Xp+Inn1LalCmq/PhjBkttwCou0cm1g/Z+RQBBZUT8QHWpKjCdEfgst7TuzR37MX1/v2SvNV0EQ95++23169dPFRUVTUvzAPgmlsUBgI+y3G5Vfvyxiuc9IWdxsemcoFNwypG66jCWxgH43Q1xQ/X3jV+Zzgg+7XpIE2+VRpwnhfDeOAD4IoZLAOCDan/5RYUPPqTGrVtNpwQtW49uOnsWm/YC+N2iCks9yrNNZwSvbodJk++RBk4wXQIA+BNG/wDgQxrT0pR9yaXKmn0BgyXDrPxCJdYNMJ0BwEccGj+AwZJphRul106X3pohFW8zXQMA+AOGSwDgA5xlZSq46y5tP32qan74wXQO/uekzA6mEwD4iEQrxnQCdtr2lfTsGOnza6XaEtM1AACxLA4AjHLb7Sp79VWV/vd5uWtqTOfgT2x9eunsvxWazgDgAz6vDlXfknTTGfizyATpmP+Tjr5MCos0XQMAQYsjlwDAkJply5R+6mkqfvQxBks+ysrO1fiGPqYzABh2QFxfBku+qrFS+vZ26T9jpLTvTdcAQNBiuAQAbcxRWKScf/1L2RdeJHtmpukc7MVpWV1MJwAwLCkk3nQC9qYsTXp9qvT+bKm6wHQNAAQdhksA0EYsl0tlr72m7SefrOovOZW1v+i/lhcpQLBLyk81nYCW2vSR9PSR0vLnJLfLdA0ABA2GSwDQBurXr1f62Wer8L77WQLnb7Zn6cjGnqYrABgyILaXBhVxZjK/0lglfXWj9MJEKWe16RoACAoMlwCgFbkqK5V/+x3KOOdcNW7eYjoHHpqa0910AgBDEsM6mk6Ap/LXSy8lSp/9S6qvMF0DAAGN4RIAtJKKBQuUdtLJqnj3XcntNp2D/TB4XbHpBACGJBWykbdfs9zSqpelp0dJ6942XQMAAYvhEgB4WWNqqjL/fr7yb7pZrtJS0znwAtu2dB1m72o6A0Ab6x3TXQfnbzadAW+oLZYWXCq9crJUnGy6BgACDsMlAPASd329ih59TNvPOFN1K1eazoGXnZXX23QCgDaWFMHZIgNO5k/Ss+Okb++Q7HWmawAgYDBcAgAvqF68WNtPPkWlL7wgORymc9AKDtxQbjoBQBtLLM4xnYDW4HZIPz0u/We0lPyl6RoACAgMlwBgPziKipR9xRXKufyfcuTlmc5BKwrZnKohzk6mMwC0kW7RnXVYzgbTGWhNFVnS2zOld86TqgtN1wCAX2O4BAAeqly4UNtPPU01335nOgVtwbI0I7+v6QoAbSQxsqdsskxnoC1s/WzHUUwb3jNdAgB+i+ESAOwjZ3Gxsi//p/JuuFHuykrTOWhDh2ysMp0AoI0kluabTkBbqi+XPpojvX0uRzEBgAcYLgHAPqj89FNtP+VU1SxebDoFBoRuTFF/Z3vTGQBaWafIDhqZvdZ0BkxI/vx/RzG9b7oEAPwKwyUAaAFnSYmy/3mF8q6/QS6OVgpebrdmFA4wXQGglR0f01shltt0BkypL5c+umjHXkw1RaZrAMAvMFwCgL2o/PQzbT/5FNV8x95KkIZtqjWdAKCVJZYXm06AL9j6mfTMaGnjB6ZLAMDn2SzLYqdCANgNZ0mJCu68U9XffGs6Bb4kLExX/1875YdWmy4B0AoSIuK1JGWrwtxO0ynwJQedIp0yT4rrYroEAHwSRy4BwG5Ufv65tp9yKoMl7Mrp1MzigaYrALSSibH9GCxhV1s/k545iqOYAGAPGC4BwB84S0uVc+VVyrv2OrkqKkznwEeN3Gw3nQCglSRVlptOgK+qL5M+vFB69+9SDUsnAeCPGC4BwP9UffHF/45W+sZ0Cnxc5Jqt6uyONZ0BwMvahcdpTMYq0xnwdVsW7jij3G8fmS4BAJ/BcAlA0HNVVCjn6muU+3/XylXOO9ZoAYdDM0oGma4A4GXHxvVXuIsjE9ECdaXSB7Ol9/4h1ZWZrgEA4xguAQhqtcuXa/vpU1X99demU+BnjtrqMp0AwMuSqtmoH/to8wLpufFS+o+mSwDAKIZLAIKS5XCo6JFHlHXBhXIWFprOgR+KWZOsBCvKdAYAL4kOi9Y4lsTBE1W50munS9/cLrkcpmsAwAiGSwCCjj0jQxnnnKvSF1+S3G7TOfBTVn2DZpQONp0BwEvGtxuoKEe96Qz4K8stLZsnvZQklaaZrgGANsdwCUBQqfjgA20/c5oafvvNdAoCwNHbbKYTAHjJCbUMluAFeWul546R1rxuugQA2pTNsizLdAQAtDZXVZXyb7td1V99ZToFAcQWG6t/XOFWXQjLIAB/FhkaqR+z8xXTWGM6BYFk6FTp1Cek6PamSwCg1XHkEoCAV7d2rdKnnsFgCV5n1dbq7MoDTGcA2E9j2g1isATv27xgx1FM2StNlwBAq2O4BCBgWZalkudfUObfz5cjL890DgLU+JRQ0wkA9lNSA0cfopVUZkmvTJGWPiaxYARAAGNZHICA5CwtVd4NN6p22TLTKQhwtvh4/e3yRjXaXKZTAHggLCRMP+SVKr6+0nQKAt2gSdIZz0txXUyXAIDXceQSgIBT+/PP2j51KoMltAmrqkpnVg0xnQHAQ6PjBzNYQttIWyw9N07avsR0CQB4HcMlAAHDcjpV9NjjyrpojlzFJaZzEESOS40ynQDAQ0l2t+kEBJOaQun1M6Tv7pLcHPEKIHCwLA5AQHAWFyvnX/9S/arVplMQhGwd2uucS+rktPEiFfAnobZQfV9YpQ61paZTEIz6jZPOni/FdTVdAgD7jSOXAPi9urVrlT7tLAZLMMYqr9BpNYNNZwDYR0fED2KwBHMyl0n/PVbKXmG6BAD2G8MlAH6t7K23lHX+P+QsKjKdgiB3/PZY0wkA9lGik7M9wrDqfGn+ydLKF02XAMB+YVkcAL/kbmxUwe13qHLBAtMpgCTJ1qWzpl9YIctmugRAS9hk03eljepSVWA6BdhhxHnSyY9J4ezjB8D/cOQSAL9jz8lV5jnnMliCT7GKS3RSLUvjAH8xImEQgyX4lnVvSi+fIFVkmS4BgH3GcAmAX6lZtkwZZ52lhs2bTacAuzgho53pBAAtlOiKMJ0A7Cp/vfTf46S0xaZLAGCfMFwC4DdK/vu8sudcLFdFhekUYLd6rs42nQCghRJzeJMCPqq+THpjmrT0MdMlANBiDJcA+DxXTa1yrrxSxY8/Lrk51Tt8l5VXoOPr+5vOALAXh8QPUM9ylh7Bh1lu6bs7pXf/JjVWm64BgL1iuATApzWmpSlj+nRVf/Ot6RSgRU7K7Gg6AcBeJIqzO8JPbPlUemGSVLzNdAkA/CWGSwB8VtWiRcqYPkP27dtNpwAt1ndVrukEAHuRlLvVdALQciXbdgyYNi80XQIAe8RwCYDPsVwuFT3yiHKvulru2lrTOcA+sbJzNb6hj+kMAHtwQFxf9SvhTQv4GXu19N7fpW9ul9wu0zUAsAuGSwB8iqu6WtkXX6LSF18ynQJ47LSsLqYTAOxBYmiC6QTAc8vmSW+eJTVUmi4BgGYYLgHwGfacHGXMPEe1y5aZTgH2S/+1haYTAOxBUn6q6QRg/6Qtll46QSrPNF0CAE0YLgHwCXVr1ypjxkzZ09JMpwD7b3umRjX2NF0B4E/6x/bS4MJk0xnA/iveKr14vJS90nQJAEhiuATAB1R98YWyZs2Wq7TUdArgNWfkdDedAOBPksI4myMCSG2x9Oop0m8fmS4BAIZLAMwqee455V57nazGRtMpgFcNXl9iOgHAnyQVpptOALzL2SB9cIH04yOmSwAEOYZLAIywHA7l3XyLiuc9IVmW6RzA62zJ23WYvavpDAD/0yummw7O32w6A2gFlrT4bmnB5ZLLYToGQJBiuASgzbkqK5V14UWq/Phj0ylAq5qW19t0AoD/SYroZjoBaF3r3pReP0OqLzddAiAIMVwC0KbsmZnKmDFTdStWmE4BWt1BG3iCD/iKxJJs0wlA68tYKr2YJJVtN10CIMgwXALQZupWr95xRriMDNMpQJsI2ZyqIc5OpjOAoNc1qrOGZW8wnQG0jdIU6cVEKWu56RIAQYThEoA2Ufnpp8qafYFcFRWmU4C2Y1mant/XdAUQ9BKjesgm9vdDEKkrlV49TdrwvukSAEGC4RKAVlf81NPKu/4GWXa76RSgzR26sdp0AhD0ksoKTCcAbc/VKH10kbTkAdMlAIIAwyUArcZttyv3+htU8swzplMAY0I3blM/Z3vTGUDQ6hTZQSOz1prOAMxZcr/00cWSkzf5ALQehksAWoWrpkbZF16kqk8/NZ0CmOV2a0ZRf9MVQNCaFNNbIZbbdAZg1oZ3pTfOlBqqTJcACFAMlwB4nbOsTFnn/0N1K1eaTgF8wvBN9aYTgKCVWF5iOgHwDRlLpVdPkWr5bwKA9zFcAuBVjtxcZZ57nho2bzadAviM8HXJ6u6KM50BBJ2EiHgdlbnadAbgO/LXSy9PliqyTZcACDAMlwB4TWNamjLO+5vsGRmmUwDf4nRqZvEg0xVA0JkQ21dhbqfpDMC3lKbuGDAVJ5suARBAGC4B8Ir6DRuUed7f5CzgjDzA7hyxhY1UgbZ2QmWF6QTAN1XlSi9PkXI5sg+AdzBcArDfan/+WVmzZstVUWE6BfBZUWuS1ckdYzoDCBpx4bEak7HKdAbgu+rLpFdPk7YvMV0CIAAwXAKwX6q+XqTsSy6Vu67OdArg0yy7XTNKB5vOAILGsXEDFO7iiEHgL9lrpDenS5sXmi4B4OcYLgHwWPn77yv3X/+S5XCYTgH8wlFbXaYTgKCRVFNtOgHwD65G6f1Z0upXTZcA8GMMlwB4pOSFF1Qw9zbJ7TadAviN2NXJSrCiTGcAAS86LFrj01kSB7SY5ZI+vUr6aZ7pEgB+iuESgH1W+PDDKn70MdMZgN+x6hs0vWyI6Qwg4I1vN1BRjnrTGYD/+fZ2adFc0xUA/BDDJQAtZrlcyrv1VpW99LLpFMBvjeHMz0CrS6pjsAR47OcnpU+ukNws5QbQcgyXALSI225X7jXXqPLDj0ynAH6t3aptinGHm84AAlZESISOTef06sB+Wfu69P4/JGej6RIAfoLhEoC9ctfXK/uSS1T9zbemUwC/Z9XW6qzKA0xnAAFrbMIgxTaymTew37Z8Kr15tmTnjMAA9o7hEoC/5K6vV/all6nul+WmU4CAcUxqmOkEIGAl1jtNJwCBI/0H6a3pDJgA7BXDJQB71DRY+vVX0ylAQGm/IkWRVqjpDCDghIWEaUIGS+IAr8pYyoAJwF4xXAKwWwyWgNZjVVXpjCrOGgd42+j4wUqorzCdAQQeBkwA9oLhEoBdMFgCWt+EtCjTCUDASbRbphOAwMWACcBfYLgEoBkGS0Db6LQyTaGymc4AAkaoLVSTMtaazgACGwMmAHvAcAlAEwZLQNuxysp1WjVL4wBvGRk/UB1rS0xnAIGPAROA3WC4BEASgyXAhOO3x5hOAAJGopNN8oE2w4AJwJ8wXALAYAkwpNvKDNnYIgbYbzbZlJi90XQGEFwYMAH4A4ZLQJBjsASYYxWX6MS6QaYzAL83PH6gulbmm84Agg8DJgD/w3AJCGIMlgDzJmckmE4A/F6ixdkXAWMYMAEQwyUgaDFYAnxDz1VZphMAv5eYs8l0AhDcGDABQY/hEhCEGCwBvsPKK9Ckuv6mMwC/NbRdf/UqY0gLGMeACQhqDJeAIOO225V9+eUMlgAfcnJmR9MJgN9KssWaTgCwU8ZS6e2ZkrPRdAmANsZwCQgilsulvGuvVd0vy02nAPiDvmtyTScAfispN9l0AoA/Sv9B+vBCye0yXQKgDTFcAoJI/m23qfqbb01nAPgTKytX4xr6mM4A/M6QuL7qV7LddAaAP9vyqfTp1aYrALQhhktAkCh86GFVfviR6QwAe3BadhfTCYDfSQrlbIuAz1r7urRorukKAG2E4RIQBEpeeEFlL79sOgPAXxiwttB0AuB3EvNTTScA+Cs/Pyn9NM90BYA2wHAJCHDl77+v4kcfM50BYG/SMjWqsafpCsBv9I/tpSGF7LcE+Lxvb5dWv2q6AkArY7gEBLCqrxep4I47TWcAaKEzcrubTgD8RlIYZ1kE/MZn/5I2LzRdAaAVMVwCAlTtzz8r77rrJBdn6gD8xeB1JaYTAL+RWJRhOgFAS1ku6cOLpO1LTJcAaCUMl4AAVL9hg3KuuFKWw2E6BcA+sCVv16GObqYzAJ/XK6abhuZtMp0BYF+4GqV3zpNyV5suAdAKGC4BAaYxNVXZF18id12d6RQAHpiW18t0AuDzEiMYwgJ+yV4jvXGWVMx+aUCgYbgEBBBHbq6yLrxIrooK0ykAPHTwhgrTCYDPSyzJMZ0AwFP1ZdLrZ0gV2aZLAHgRwyUgQDhLS5V14UVyFnI6c8CfhWxK0RBHJ9MZgM/qGtVZw7PXm84AsD+qcqXXp0q17DUIBAqGS0AAcNXUKGvOHNkzMkynANhflqXpBX1NVwA+KzG6p2yyTGcA2F+lqdIbZ0oNVaZLAHgBwyXAz7ntduVcdrkaN28xnQLASw75rcZ0AuCzEksLTCcA8Jb89dI750pOu+kSAPuJ4RLg5/Jv/bfqVq40nQHAi8I2blNfV3vTGYDP6RjZQUdkrTGdAcCbMpZKC68wXQFgPzFcAvxY8dPPqOrTT01nAPA2l0szCvubrgB8zqSY3gqx3KYzAHjbhnelJQ+argCwHxguAX6q8tNPVfL006YzALSS4ZvrTScAPiepotR0AoDWsuQ+acP7pisAeIjhEuCH6lavVv6t/zadAaAVRaxNVndXnOkMwGckRMTrqIxVpjMAtKZP/ill/mK6AoAHGC4BfsaelaWcf14hy87Gh0BAczo1s3iQ6QrAZ0yI7acwt9N0BoDW5GqU3j1PKttuugTAPmK4BPgRV2Wlsi+5VK6KCtMpANrAEVsYIgM7JVVVmE4A0BbqSqU3p0v15aZLAOwDhkuAn7AcDuVceZXs6emmUwC0kag1yerkjjGdARgXGxajMeksiQOCRmmK9O7fJZfDdAmAFmK4BPiJ/Lm3qW7FCtMZANqQZbdrRulg0xmAcce2G6gIV6PpDABtKWOp9OnVpisAtBDDJcAPlDz3nCoXLDCdAcCAo7a6TCcAxiXVVJtOAGDCujelHx8xXQGgBRguAT6u6ssvVfzEk6YzABgSuzpZCVaU6QzAmOjQKI3PWG06A4Api++RfvvIdAWAvWC4BPiwurVrlXfTzZJlmU4BYIhV36Czy1gah+A1Pn6Qou11pjMAGGNJCy6TsleaDgHwFxguAT7KnpOjnCuulNXIHhNAsBuzzWY6ATAmsa7BdAIA05wN0jvnSOWZpksA7AHDJcAHuaqrlX3JpXKVlppOAeAD4ldtU5QVZjoDaHMRIRE6jrPEAZCk2mLprelSQ6XpEgC7wXAJ8DGWy6Xca/4le1qa6RQAPsKqqdXZlQeYzgDa3Jj4QYptZDNvAP9TvFV6f5bkdpsuAfAnDJcAH1M8b55qly0znQHAxxyzjSOXEHwSG5ymEwD4mrTF0uK7TFcA+BOGS4APqVq0SKUvvGg6A4AP6rAqVRFWqOkMoM2EhYRpImeJA7A7Pz0ubV5ougLAHzBcAnxEY1qa8m++xXQGAB9lVVbpjKohpjOANnNU/CAl1FeYzgDgqxZcLhVvM10B4H8YLgE+wFVTq5wrrpS7ttZ0CgAfNiEtynQC0GYS7aYLAPg0e7X07nkS+7IBPoHhEmCYZVnKv/km2dPTTacA8HGdV21XqGymM4BWF2IL0aTMdaYzAPi6km3SgstMVwAQwyXAuNLnX1D1N9+azgDgB6zSMp1aPdh0BtDqRsYPUqeaYtMZAPzBlk+lpY+ZrgCCHsMlwKCaZctU/MQTpjMA+JHE9DjTCUCrS3JxdkQA+2DxPTvOIgfAGIZLgCGO3FzlXXud5HabTgHgR7qtTJfNMl0BtB6bbErM2mA6A4A/sVzSBxdKFVmmS4CgxXAJMMDd2KicK6+Sq6LCdAoAP2MVlWhK3SDTGUCrGRY/UF0r801nAPA39WXSu3+XHA2mS4CgxHAJMKDg9jvUsHmz6QwAfmpyRoLpBKDVJFmRphMA+Kv8ddLn/2e6AghKLGgH2ljZW2+pcsEC0xkA/FivVVnSIaYrfFdtcq1KvihRfWa9nBVO9b2yr+KPiG/6vGVZKvq4SOU/lMtV51LMkBj1PL+nIrv/9VCj9NtSlXxZImelU1F9o9Tjbz0UMzCm6fP5b+er4qcK2SJt6n5Wd7Uf277pc5UrKlWxrEL9/tXP619voEnM4c0XAPth3ZtSr5HSkReZLgGCCkcuAW2obu1aFd7/gOkMAH7OyivQpLr+pjN8lrvRrai+Uer59567/XzJFyUq/aZUPf/RU4NuG6SQyBBlPJoht33Pe+BV/lqpgncK1HVqVw26c5Ci+kQp45EMOauckqSqtVWq/KVS/a/rr+7Tuyv3lVw5q3d8zlXnUuGHhepxfg/vf7EB5uB2/dWrjD1TAOynr26WsleYrgCCCsMloI04S0qUe/U1ksNhOgVAADg5q6PpBJ/Vblg7dZvWrdnRSjtZlqXSRaXqelpXxY+MV1SfKPWe01vOcqeq1lTt8T5Lvi5Rh+M6qMMxHRTVK0o9/9FTIREhKv+xXJLUmN+o2INiFT0gWu2Pbq+Q6BDZi+2SpIL3CtRxUkdFdIponS84gJxg42yIALzAZZfeO1+qKTJdAgQNhktAG7CcTuVe8y85i/gFB8A7+q7JM53glxzFDjkrnYodGtt0WWhMqKIHRas+rX63t3E73arPqFfc0N8HH7YQm+IOiVNdWp0kKapPlOoz6uWqdak+o16W3VJkt0jVbqtVQ2aDOiV1at0vLEAk5iWbTgAQKKrzpfdnSW6X6RIgKDBcAtpA8VNPq27VKtMZAAKIlZmjsQ19TGf4HWfljqVqYQnNt50Miw+To3L3R5a6ql2Se/e32Xl/7Q5rp4QxCUq7M005L+ao95zeskXalPdannr+o6fKFpdp203btP2e7WrI5UxGuzM4ro/6F6eZzgAQSDKXSd/fZ7oCCAoMl4BWVvvzzyp94QXTGQAC0Gk5XUwn4A+6ndFNBzx0gIbcM0TxR8Sr5LMSxQ2Nky3UpuKFxRp4y0B1OK6Dcp7PMZ3qk5JC25tOABCIfnpM2r7EdAUQ8BguAa3IWVqq3BtvlNx73iQWADw1cE2h6QS/s/Poo51HHO3krHIqPCF8t7cJbRcqhez+Nn8+mmmnxrxGVfxSoa5ndlXt1lrFHBijsPgwJRyVoIbMBrnqWabxZ4n5qaYTAAQiyy19dLFUU2y6BAhoDJeAVmJZlvJuuFGu4hLTKQACVVqmjrBzBrJ9Ed4lXGEJYardXNt0mavepfq0ekUPit7tbULCQhTdP1o1m2uaLrPclmo21yhmUMwu17csS7mv5qr7zO4KjQqV5bZkuawdn3Pu+Fu859BM/9ieOqCQ/ZYAtJKaQunjSyTLMl0CBCyGS0ArKX3hRdUuW2Y6A0CAOyOH4dKfuRpcqs+sV33mjg267SV21WfWy15ql81mU6cTOqno0yJVra1SQ3aDcp7PUViHMMWP/P3scukPpqv029KmjztP7qzyH8pV/lO5GvIalPdantyNbnU4psMuj1/+Q7nC2oUp/vAd9xczJEa1W2pVl1qnkkUliuwZqdDY0Fb+LviXxHA2PAfQytK+k5bNM10BBKzdH8sNYL/UrV2r4iefNJ0BIAgMWV8qDTRd4Vvq0+uV8WBG08cFbxdIktqPa6/ec3qr80md5W50K++VPLnqXIo5IEb9r+2vkIjf33OzF9nlrP59GVzC6AQ5q50q+rhIzkqnovpGqf+1/XdZFuesdKr402IN/Pfv/6PEDIxR5ymdlfl4psLiw9RrTq9W+sr9V2JhpukEAMFg8T1Sv/FSnyNNlwABx2ZZHBsIeJOrulrpp0+VI4/ThANoG3de21ObIopMZwAe6RXTTV9tWmk6A0CwSOgrXfaTFJVgugQIKCyLA7zs23cylD3uYlmhHBgIoG2cld/bdALgseMjuplOABAkLFuofo6foqs+SjGdAgQchkuAF21elqfU1cXaXNxFm896Wo6+B5pOAhAEDt5QYToB8FhSSY7pBABBwNmul27r8IDOTZmghRsK9d6qbNNJQEBhuAR4SUVhnZa+9/u7IIWFLq045F+qPv58g1UAgkHIphQNcbAhMvxP16jOGp693nQGgABX0OsETai+R6/n/b7n3Z0LNymjpPYvbgVgXzBcArzA5XLrm5c3ydnoanZ5Y71LK12jlXXOI3JHxxmqAxDwLEtnF/Q1XQHss+Ojesomtv8E0DqssGh91Ot6HZ02SzkNkc0+V2t36ep31srhchuqAwILwyXAC1Ys3K6izOo9fj41P1rrTnpM9qFj2rAKQDA5dFON6QRgnyWVF5pOABCgGjoepIsiH9b/pR2+x+usz6nUY99sa8MqIHAxXAL2U05yudYuytrr9SpKHfql1/kqO/3/2qAKQLAJ27BNvZ2c+Qb+o2Nke43MXGM6A0AA2tpnho4sukXflXbc63X/+0OafkkrbYMqILAxXAL2Q0OtQ9++sllWC4/odzncWlc5SCnnPi13x+6tGwcguLhcOqdogOkKoMUmxvRRqOXa+xUBoIXc0R31dLe7NCXldFU7W3bmZrcl/d9761RRZ2/lOiCwMVwC9sOSN7eqtqJxn2+XnWfTyvF3qn70Ka1QBSBYDd9cbzoBaLETKjhSAID3VHY7Wqc7H9QjmYP3+bb5lQ265eONrVAFBA+GS4CHUlYVKm1Nsce3r61yannMicqffqes0Ja9swIAfyVibbK6umNNZwB7FR/RTkdmrDadASAAWLZQLetziUZmXaGN1Z7/DvxiY4E+25DnxTIguDBcAjxQV2XXj+/s/+Z/liVtKeqsTWc9LWffg7xQBiCoOZ06p3jf37EF2tqE2P4KdztMZwDwc852vXVr+4d0Xspxcln7/9L2tk82qaRm31clAGC4BHjkh7eT1VDjvSfFRYUuLT/kGlUnzvLafQIITkds4QU7fF9SVaXpBAB+Lq/XFB1Xfbfeyu/htfssq7Vr7oLfvHZ/QDBhuATso5SVhdq+1vPlcHtir3dppfNIZZ7zqNyx8V6/fwDBIXpNsjq4o01nAHsUGxajsekrTWcA8FNWeIw+7HW9xqadr9yGSK/f/5e/FejT9SyPA/YVwyVgH3hrOdxfScuP0ropj6jxkLGt+jgAApPV2KiZpSyNg+86tt1ARbhYdgJg3zV0PFgXRjysa9MOb9XHuX0hy+OAfcVwCdgHP7yVrIba1l9yUlHq0PIef1Pp6de2+mMBCDyjt1qmE4A9SqqpMZ0AwA9t7nOOjii6RYtLO7T6Y5XV2vXvj1keB+wLhktAC21bWaDt67y/HG5PXE5L6ysHatu5z8jVyXtryQEEvtjVyWrn9v5SAWB/RYdGaXzGKtMZAPyIO7qjnup2t05KOVW1ztA2e9yvNhVoIcvjgBZjuAS0QF2VXUvfSTHy2Dl50qpxd6huzGlGHh+A/7Hq6zW9YojpDGAX4+IHKdpeZzoDgJ+o7Ha0TnU+qEczBxl5/Ns/+U3F1SyPA1qC4RLQAkve3Nomy+H2pLbKqV+jJit/xl1yh0UY6wDgP8Zus5lOAHaRWNdgOgGAH7BCwvRjn8s0MusKbaqONdZRXufQvxdsNPb4gD9huATsxbYVBUpfX2I6Q5YlbSnspE3TnpSz31DTOQB8XPyqFEVZYaYzgCbhIeE6LmO16QwAPs4Z30c3Jzyo81OOkcsy/3L1602F+mRdrukMwOeZ/68V8GG1lY368d3WPTvcvioudGn5wVepKmm26RQAPsyqrtHZLI2DDxkTP1hxDVWmMwD4sNxeJ+qYqrv1Tr5v7Td6x8JNLI8D9oLhEvAXlryZrMZap+mMXdgbXFrlGKXMcx+TOzbedA4AH3VMKsto4TuSGl2mEwD4KCs8Ru/1ulHj0v6u/Abf+91VXufQrR+zPA74KwyXgD1I/rVAGRvML4f7K2l5kVo7+RE1HnaM6RQAPqjDyhRFWG13Zh1gT8JsYZrIkjgAu1Hf6RDNinhYN6QNN53ylxZtLtSCtSyPA/aE4RKwG7WVjVrqY8vh9qSyzKHl3c5RydTrTacA8DFWZZWmVrM0DuYdmTBICXXlpjMA+Jjf+pyrUYU36YfSDqZTWuSOTzepqJoTEwC7w3AJ2I0f3kpWY53vLYfbE5fT0oaK/tp27jNyde5lOgeAD5mYFmU6AVCi3XQBAF/iju6keV3v0Skpp6jW6T9H2FbUOfTvj38znQH4JIZLwJ+kry/2ibPDeSInT1o55jbVjZ1qOgWAj+i8crtCZTOdgSAWYgvR8ZnrTGcA8BEV3cfqZMeDmpc10HSKRxZtLtS3mwtNZwA+h+ES8AcOu0tL300xnbFf6qqd+jUySfkz7pE7zPc2RATQtqzSMp1SM9h0BoLYyPhB6lRTbDoDgGFWSJiW9LlcR2Reri01MaZz9ssdn25SvZ2TFAB/xHAJ+INVn2eousz/11FblrSlsIM2nfmUHP0PMZ0DwLCk7XGmExDEEl1hphMAGOaM76sb4h/SrJTxcln+/xI0p7xeTy327zekAW/z//+yAS8py6vVum+zTGd4VXGRU78edKWqTrjQdAoAg7qtypDNMl2BYGSTTYlZnL4bCGY5vU/W+Mq79H5Bd9MpXvXC0u1KLao2nQH4DIZLwP/88Hay3K7Ae/Vlb3BplX2kMs59TO64BNM5AAywCos1uW6Q6QwEocPiB6pbZZ7pDAAGWOGxeqfnzRqfep4KGgNvqwaHy9K/F7C5N7ATwyVA0tbl+cpLqTCd0aq250Vq7QkPq2HYMaZTABgwJZPhMtpeksXZCoFgVN/pUP0j/GHdtP0w0ymtavn2Mn20Jsd0BuATGC4h6DXUOvTzh6mmM9pEZZlDy7uco5IzbpBl4+xRQDDptSrbdAKCUGLOJtMJANqQJZs29jlPowpu0o9l7U3ntIn7vtiiyjqH6QzAOIZLCHrLF6Spvjp4fiG4XZY2lPfTtnOelqtLb9M5ANqIlZuvifX9TWcgiBzcrr96lwXWXoYA9swd01mPdb1Hp6acrFpX8LzMLKmx66Gvt5rOAIwLnv/qgd0oSK/U5p+Ccy+I3Dxp5ei5qht3hukUAG3k5KyOphMQRJJsnKUQCBbl3cfpJPsDeiprgOkUI95ekaV12RWmMwCjGC4haLndln54K1lW4O3h3WJ1NU4tj0hU3ox75I6INJ0DoJX1WxOcw3SYkZiXbDoBQCuzQsK1uM8/NTLzcm2tiTGdY4zbkv69YKNc7iB+YYGgx3AJQWvjkhyVZNeYzjDPkrYWdtBvU5+UY8ChpmsAtCIrI0djGlgOi9Y3OK6PBhSnmc4A0IocCf11XbuHdEHKOFkWe3n+llul13/JMJ0BGMNwCUGptrJRKxZuN53hU0qKnPr1wCtUOXmO6RQArej07K6mExAEEkPbm04A0Iqye5+scRV36sPCbqZTfMqji7apqKrBdAZgBMMlBKWf3k+RvcFlOsPn2BtcWt04QunnPi53XHvTOQBawcB1RaYTEASS8jlqCQhEVkSs3up5s45JPU9FjeGmc3xOdaNTd3++xXQGYATDJQSd7M1lSl3Fi6u/kp4XoTVJD6lx2LGmUwB4W2qGDrf3MF2BANYvtqcOKOTMSUCgqet8mP4e9ohu2X6Y6RSf9un6PP2UUmI6A2hzDJcQVFwOt354hw1GW6Kq3KFfusxUyRk3yrKxjh4IJGfmMlxC60kM72Q6AYAXWbJpQ5+/6cj8G/VTWYLpHL8w95Pf1OhklQSCC8MlBJX1i7NVWVRvOsNvuF2WNpT31baZz8jVta/pHABecsD6UtMJCGBJRVmmEwB4iTumix7pcq9OSzlJtS5eOrZUekmtXlmWYToDaFP8hEDQqK+2a/WXGaYz/FJuvqUVR92q2vHTTKcA8ALbljQNdXQxnYEA1DO6qw7J3Wg6A4AXlHUfrymND+iZ7P6mU/zSM9+nqqzWbjoDaDMMlxA0VnyWzibe+6G+xqlfwycpb+a9ckdEms4BsJ/OyuttOgEB6PhIzhwF+DsrJFzf9r5CR2Repm210aZz/FZ1g1Pzvt1mOgNoMwyXEBTK8mu1eWme6Qz/Z0lbC9rrt6lPyj5omOkaAPth6MZK0wkIQCeU8LsW8GeOhAG6tt3Duih1rCyLPTf311u/Zim1qMZ0BtAmGC4hKPz8Uarcbst0RsAoKXLq18GXqXLKxaZT4ENW1dXp8pxsHZeaqqHJW/VtdXWzz1uWpadKinVsaooO35asC7KzlGHf++Hib5WXKzEtVSO2JWtGZoY21DffN+3BokIdnbJNk9JS9WlV84HJV9VVujwne/+/uAAU8luKBjk7ms5AAOka1UnDs9eZzvApP2Y6derbder5aLVsd1ZpwVZHs89blqXbvm9Qj0erFX1vlRJfq1VK6d6Psn5mhV3951Ur6p4qjX6xRitym9/m/75uUMcHq9Tn8Wq9uaH5Y76/yaFT367b/y8OASez92kaW36HPirsajolYDjdlu7/YovpDKBNMFxCwMveWqbMjWxe622ORrdWNwxX+rnz5G7HC1RIdW63DoyM0txuu18W81JZmd4oL9ft3brrnb79FB0SootzstXodu/xPr+sqtKDxUW6vHNnfdCvvw6KjNTFOdkqdTolSd/XVOuzqiq92KePru3SVbcVFKj8f5+rdrn0RHGx/t2tu/e/2EBgWZpe0M90BQLIpOhesok3cv6o1m5peLcQPXNS1G4//9Ayu5781a7nTo7SrxfFKjbCpslv1KnBuefv47u/OfR/ixp0+3GRWnNJrIZ3C9XkN2pVVLvjZ+mnyQ69tdGhRX+P1UOJUbro03qV1O34XGWDpVsXN+6xB8HJiojTGz1v1XGpM1VsDzedE3C+21qkn1NLTGcArY7hEgKa5ba07INU0xkBLT0vXGsSH1DDiImmU2DYsXFxurpLFyW2a7fL5yzL0mvlZbqkUycd366dDoyK0gPde6jI6dR3NXs+XHx+eZnOTkjQmQntNTgyUrd3666okBB9VLnjCKXtjXYdFROjQ6OidXJ8vOJCQpTj2PEu/SPFxZrZvoN6hvNEeU8O+41D9eE9SWWFphN8zolDwnXPpCidcfCuP4csy9K8X+3697GROv2gcA3rFqrXpkYrr9rSgq3OPd7nY8sbNWdkuGYfHqGhXUL13ClRigm36eW1O372bSlxa0L/UI3qGapzDgtXfKRN6eU7hlU3fNOgy0aFq28CLwGwQ13n4To39GH9e/shplMC2j2fb2EVBQIev1kQ0Lb8kq/SHF48tbaqcoeWdzpbxWfeLMvG+nzsKsfhUInLpTExsU2XtQsN1bCoKK370zK3neyWpc0NDTr6D7cJsdk0JiZG6xp23ObAqEj91tCgSpdLmxoa1GBZ6hsRodV1ddrS2KC/dejQul+YnwvbsE29nQmmMxAAOka21xGZa0xn+JX0CksFNZYSB4Y1XZYQZdPo3qH6JXv3S+PsLkur89zNbhNisylxYJh+ydlxm+HdQrUqz6Xyekur81yqd1ga3DFEP2U5tabApatGR7TuFwa/YMmmdX3O1xH51+mXcn4PtLbN+VX6YE2O6QygVTFcQsByNLr068LtpjOChttlaWNZbyXPfEbObiy1QXMlrh3vwncOC2t2eaewsKbP/VmFyynX7m4TGqaS/y19Gx8bp1Pj4zU9M0O35Ofr/u49FB0SorsKC3csv6uo0Enbt+u8zEylNDZ6/wvzdy6XzikeYLoCAWBiTB+FWpyRdV8U1OxYqtYttvmbMt1ibSqo3f1y4ZI6Sy5rD7f53/1NHhymvw0L15Ev1GjWJ/V6dWq0YiOkyz5v0HMnR+vZVQ4d+HSNxr1cq01F/G8WjFyxXfVQl3s1NWWK6l2hpnOCxqOLklVn3/NRiYC/Y7iEgLV2UabqKve+WTC8Ky/f0spRt6j2mLNNpyBIXNG5i74eOEifDBigxHbt9EJpqcbExihM0nOlJXqjb19Na5+gm/M5i9XuDN/UYDoBASCpgr0NfckdE6KUelU7bbwsTmccHK77l9qVOCBM4aHSPT826qfZMbro8HCdv2D3R44icJX2OFZTGu7Xs9n9TacEncKqRj3/I298I3AxXEJAqq1o1NpvskxnBK36Wqd+DZug3Jn3y4pg01BInUN3HH2084ijnUqdzqbP/Vn70DCF7u42LucuRzPttL2xUZ9WVerKzl20or5Oo2Ji1DEsTFPaxWtzY6Nq3bxL/2cRa7eqqzt271cE9qBdeJyOylhtOsPvdI/b8TS8sLb5PiyFtZa6x+7+KXrnGJtCbXu4Tdzub7O1xKU3Njp096RILclw6th+oeoSG6Lph4RrTb5b1Y3sAxMMrNAIfdP7Ko3KuEQptdGmc4LW8z9uV2EVb+ogMDFcQkBa/kmanPY9n4EKbcCSkgviteH0J+QYNMJ0DQzrHR6uzqGhWl5X23RZjculDQ0NGhG9+ye5ETabhkZFNbuN27K0vK5OI6J2vY1lWbqjsEA3du2q2JAQuS3Jae140bTzbxevoXbldGpm8WDTFfBjE+MGKNzt2PsV0cyA9jZ1j7Ppu+2/D9CrGi39muPSmD67X6oUEWrTET1Dmt3GbVn6brtTY3rvehvLsnTJZw167IRIxUXY5HJLjv89Pdr5Nz8XA58jYaCuiXtIc1KPlmWxN6ZJdXaXHvk62XQG0CoYLiHgFGdXK3l5gekM/E9psVPLB1+iihMvM52CVlbrdmtLQ4O2NOx4Ry7X4dCWhgblORyy2Ww6v0NH/be0VItrqrWtsUE3FeSra1iYjo+La7qP2dlZerO8vOnjWR066oPKSi2orFRaY6PuLCxUvdutMxJ23Xz0g8pKdQwN08S4HWerOzw6Wr/W1Wl9fb1eLS/ToIgIxYeyt8TujNrCYACeS6yuNJ3gs2rsltYVuLSuYMdRk+nlbq0rcCmr0i2bzaZrRkfonqWNWpjs0MZCl87/uF4929k09aDfj848/rVaPb3i92X+/3d0pF5Y49Cr6+zaUuzSZZ81qNZhafaIXc9I9+Iah7rE2HTqgTs+N65vmBanO7U8x6nHf2nU0C4hah/FsCGQZfQ+XWPLb9cnhV1Np+B/PlyTo815VaYzAK/b/boCwI8t+yBVFu/C+RRHo1trdKj6n/uE+n96p0Kqy0wnoRVsaqjXrOzspo8fLC6SJE2Nj9d9PXrqwo4dVW+5dXtBgardbo2MjtbzvfsoMuT39zmy7XaV/2GD7xPj41XmcumpkmKVuFw6KDJS/+3dZ5dlcSVOp/5bWqK3+v2+mfyw6GjN6tBRl+Zkq1NYmO7r3qO1vnS/F70mWR2OjVZ5CPuvYN/EhsVobPoq0xk+a1WeSxNfrWv6+P8WNUpq1D+Gh2v+1GjdMC5CtQ5LF3/aoIoGS+P7huqrv8UoKuz3gU9amVsldb8fjT3j0HAV11m6bUmjCmosjegeoq/Oi1G3Py2LK6xx696ljfr5wt+XvR7VK1TXjonUyW/Vq2usTa9OZXlUoLIi4vR6p2t0W+pQ0yn4E7cl3fvFZr150dGmUwCvslkWL8MRONI3lOiL/2wwnYG/EN8hXIdmvKuotd+ZTgHwB99fNFLPduHnJ/bNiR0O1UNrvjCdAeAParuM0AXVl+rXinjTKfgLL/1jlI4/uJvpDMBrWBaHgOF2ufXLR6mmM7AXVeUOLe84TcXTbpFl41B8wFcclcw+ddh3ibU1phMA/I8lm9b0+YdG5V3LYMkP3PfFFjld/O5F4GC4hICxdXmBygvq9n5FGOd2WdpY2ktbZz4jZ4/+pnMASIpblax27kjTGfAjUaGRGp/OWeIAX+CK7aoHOt+vM1Mmq97F/oL+IK24Vh+tzTWdAXgNwyUEBJfLrVVfZJjOwD7Kz7e0YuTNqjl2uukUIOhZ9fU6u3yI6Qz4kXHxgxRjr937FQG0qtIex+mE+vv135y+plOwj55anCIHRy8hQDBcQkDYsixf1aUNpjPggYZap1aEHqecmffLiogynQMEtbEpPC1AyyXW2fd+JQCtxgqN0Fe9r9aojIuVVsfm7P4ou6xe76/KMZ0BeAXPIuH3XE63Vn+ZYToD+8OSthXEa8PpT8gx+HDTNUDQSli1TVEWJ5LF3oWHhGtCBmeJA0yxtx+kq2If1qWpo2VZ7GHpz575PlV2J0cvwf8xXILf2/xTnmrKG01nwAtKi536ZeDFqjjpctMpQFCyqmt0VuUBpjPgB8bED1ZcQ5XpDCAopfeeqjFlt+nToi6mU+AFuRX1endllukMYL8xXIJfczpcHLUUYJx2t9bUHaLt5z4hd3wn0zlA0Dk2Ndx0AvxAYqPLdAIQdKzIdnqlx1xNTJ2uUjs/qwPJM9+nqcHBz1X4N4ZL8GubfsxTbSV7PgSijLwwrZ50vxpGJppOAYJKh5WpirA40xD2LMwWpkkZnCUOaEs1XQ7XDNvDujP9YNMpaAUFVQ1661eOXoJ/Y7gEv+Wwu7T660zTGWhF1RUOLW9/poqm3SorhBe7QFuwKip1evVg0xnwYaMSBimhrtx0BhAULFuIVveZrSNyr9WKinjTOWhF/1mSpno7Ry/BfzFcgt/auCRH9VUctRTo3G5Lv5X21NYZT8vVY4DpHCAoTErjrEPYsyR+9QJtwhXbXfd2ul/TUpLU6OZlW6ArqWnU68szTGcAHuOnFPySvcGptYs4dDSY5Oe79evIm1R73EzTKUDA67xyu0LF2YewqxBbiCZlrjedAQS84p4TlVR/n17M6WM6BW3ouR+2q7bRaToD8AjDJfilDd/nqKHGYToDbayh1qlfbcco55wHZEVyZAXQWqzSMp3M0jjsxuHxg9S5psh0BhCwrNBIfdn7Gh25fY6210WZzkEbK6u1a/7PGaYzAI8wXILfsdc7te4bjloKZtvy22n9afNkHzLSdAoQsJLS40wnwAcluThDFdBa7O0H658xD+uy1KNMp8CgF5ZuV3UDb6LD/zBcgt9Z9122Gus4XDTYlRU7tXzAHJWf/E/TKUBA6r4qUzbLdAV8iU02HZ+90XQGEJDSep+p0aW36YvizqZTYFhFnUMv/5RhOgPYZwyX4Fcaah1a/1226Qz4CKfdrbW1Q5V27pNyJ/BkDPAmq7BIJ9QPNJ0BH3JY/AB1r8g1nQEEFCsyXi/1uE3Hp56lckeY6Rz4iBd/2q7Keo5egn9huAS/su7bLNnrOWoJzWXmhWrVhPvUcMQJplOAgDIlI8F0AnxIosX+L4A31XQZqbP1sO5OP8h0CnxMdYNTLy7dbjoD2CcMl+A3Gmoc2vB9jukM+KiaSoeWJ0xV0VlzZYWEms4BAkLvVfzMxe+ScjabTgACgmUL0co+F+iI3P/Tqsp2pnPgo15ZlqHyWrvpDKDFGC7Bb6z/PluOBpfpDPgwt9vSbyXdtWX603L2ZDkPsL+s3HxNqO9nOgM+4OB2/dS7jJNpAPvLFddDd3e8X2enJKrRzUsx7FlNo5Mzx8Gv8BMNfsFhd+m3JezzgJYpKHBrxYgbVDPhXNMpgN87OauT6QT4gEQbR1cA+6uo5/E6vvZevZzbx3QK/MTryzNVb+fNdfgHhkvwC1uW5amhlk3t0HINdS6t0Dhln/OgrMho0zmA3+q/Jt90AnxAYv420wmA37LCovRZ73/pqO0XKqOevcvQcmW1dr23ipMZwT8wXILPc7strfuWH6rwTEp+nNafOk/2A480nQL4JSsjW0c39DKdAYMGxfXWwKJU0xmAX7J3GKLLox/SFak8D4FnXvxpu1xuy3QGsFcMl+DzUlcXqrq0wXQG/FhZiVPL+12g8lOuNJ0C+KXTc7qZToBBSaEdTCcAfim1zzSNLpmrL4s7m06BH8suq9fnGzmKGL6P4RJ83tpFbCCK/ee0u7W25iClnfukXB26ms4B/MqgdUWmE2BQYgGnwwb2hRWZoBe6367ElGkqd4SZzkEAeP7HNNMJwF4xXIJPy95cppLsGtMZCCCZeaFafezdqh812XQK4D9SMjTC3t10BQzoG9NDBxZsMZ0B+I3qrqM0TQ/r3owDTacggPyWW6WfUkpMZwB/ieESfNqaRZmmExCAaiqdWh5/mgrPuk1WSKjpHMAvnJnb03QCDEiMYDkP0BKWLUS/9rlII3P+pTWVcaZzEID+y9FL8HEMl+CzirOqlbO13HQGApTlljaVdNPm6U/L2Wuw6RzA5x24vsx0AgxIKmJpOrA3rrieurPDA5qRMkkOt810DgLU0pQSbcqrNJ0B7BHDJfistRy1hDZQWODWiuHXqXrS30ynAD7NtiVVQx1dTGegDfWI7qJDczeazgB8WmHPRE2svUfz83qbTkEQ+O8P7IEH38VwCT6pqqReqWuKTWcgSDTUubTSPUbZ5zwkd1Ss6RzAZ53Fi6egkhjZw3QC4LOssCgt7P1/Gr39AmXVR5nOQZD4fGO+ssvqTGcAu8VwCT5p3TdZstyW6QwEmZT8WK0/5XHZDzrSdArgkw7eWGU6AW0oqSTXdALgkxo7HKhLoh7RVamjTKcgyLjcll5cytFL8E0Ml+Bz6mvs2vJLvukMBKnyEoeW97lAZadebToF8Dmhm1I00NnBdAbaQJeojhqRvc50BuBztvU5W0eV3KpFJR1NpyBIvbcqR+W1dtMZwC4YLsHnbPw+R06723QGgpjT4da66gOUeu5TcnXsZjoH8B1ut2YU9jddgTYwKbqXbOIIYmAnd1R7PdftDp2QcoYqHWGmcxDE6h0uvfpLhukMYBcMl+BTHHaXNv7AYfjwDVl5IVp9zF2qP+ok0ymAzzhsY43pBLSBpLJC0wmAz6jqeqTOdD+kBzIPMJ0CSJJe+yVTDQ6X6QygGYZL8ClbluWrocZhOgNoUlPp1PK4k1V49u2yQnmnEgjbsE29nQmmM9CKOkQkaFTmWtMZgHGWLVS/9JmjI3Ku0bqqONM5QJOyWrveW5VtOgNohuESfIbltrR+MT8k4Xsst7SpuKs2n/20nH0ONJ0DmOVyaWbxANMVaEWTYvsq1OIdcQQ3Z7teur3DgzonZaIcbpvpHGAXL/2ULsti+TJ8B8Ml+IzMTaWqKq43nQHsUWGBS78e9i9VH/930ymAUSM2N5hOQCtKrCwznQAYVdArSROq79FreT1NpwB7lFlapyXbik1nAE0YLsFn/PYjey3B9zXWubTSdbSyznlY7qhY0zmAERFrk9XVxRKRQNQuPE6j01eZzgCMsMKitaDXdTo6bbZyGiJN5wB79cYvmaYTgCYMl+ATqkrqlfVbqekMoMVS82O0/uTHZD94tOkUoO05HJpROsh0BVrBhLgBCnez9yGCT2PHA3Vx1MO6Jm2k6RSgxb5PLlJOeZ3pDEASwyX4iE1Lc8WSYfib8lKnlveepbLTrjGdArS5UZsZQASixOpK0wlAm0vuM12jim7VNyUdTacA+8RtSW/+mmU6A5DEcAk+wOVwa8vP+aYzAI84HW6tqxqilHOflqtjN9M5QJuJWZOsDu5o0xnwopiwGI1jSRyCiDuqg/7T7U5NTpmqaidnhIV/em9ltuxOt+kMgOESzEtdU6T6at4Bh3/LzrNp1fi7VH/UyaZTgDZhNTZqRtlg0xnwomPbDVCkk83aERyquh2lqe4H9VDmENMpwH4prbXri428UQ/zGC7BuN9+yDGdAHhFbZVTy+NOUsHZd8gK5R1QBL7RyaxnDiSJtezbgcBn2UL1c5+LdXjWVdpQxYkJEBheX87G3jCP4RKMKs6uVsH2KtMZgNdYbmlzcRdtPutpOfoeaDoHaFVxq7YpzoownQEviAqN1DEsiUOAc7brpX+3f1DnpkyQy+JlEALH6sxybc7jNRXM4qcqjPrth1zTCUCrKCx0acUh/1J14j9MpwCtxqqr09nlLCkJBGPjBynGXms6A2g1+b0m67jqe/Rmfk/TKUCr4OglmMZwCcY01ju1bWWh6Qyg1TTWu7TSeZSyznlE7mgOvUdgGrct1HQCvCCxrtF0AtAqrLBofdTreo1J+4dyGyJN5wCt5pN1uapuYB9bmMNwCcZs/SVfzkaX6Qyg1aXmR2vdSY/JPnSM6RTA6xJWbVOUxR5j/iw8JFwTMtaYzgC8rqHjwboo8mH9X9rhplOAVldnd+nD1exlC3MYLsGYTT+yJA7Bo6LUoV96na+y0//PdArgVVZ1jaZVsjTOnx0dP1jtGipNZwBetbXPDB1ZdLO+K+1oOgVoM2/8mmU6AUGM4RKMyNlapvICzkqD4OJyuLWucpBSzn1a7o7dTecAXnNcKpt6+7MkjiJGAHFHd9RTXe/WlJTTVe3kqEoEl9SiGv2cVmI6A0GK4RKMYCNvBLPsPJtWjr9T9aNPMZ0CeEWHVWkK48xLfinMFqaJLIlDgKjsdrROdz6oR7MGmU4BjHmDjb1hCM8E0eZqKxqVvp6JOoJbbZVTy2NOVP70O2WF8s4q/JtVXqEzqlga54+OiB+o9nVlpjOA/WKFhOmnPpdoZNYV2lgdazoHMGrRpkIVVTWYzkAQYriENrdpaa7cbst0BmCcZUlbijpr01lPy9n3INM5wH6ZuD3adAI8cIKTp4Lwb852vXVrwoP6W8pxcnEEJSCn29JbK9h7CW2Pn8BoU5bb0paf801nAD6lqNCl5Ydco6qk2aZTAI91XbVdobKZzsA+CLGFaFLGOtMZgMfyek3RcdV36638HqZTAJ/y3sps3sxHm2O4hDaVk1yumvJG0xmAz7HXu7TKMUqZ5zwqd2y86Rxgn7lLynRyzWDTGdgHI+IHqnNNkekMYJ9Z4TH6oOcNGpt2vnIbIk3nAD4nr7JBv2wvNZ2BIMNwCW0qeXmB6QTAp6XlR2ndlEfUeMhY0ynAPktKjzOdgH2Q5OIsf/A/DZ2Ganb4w7pu+wjTKYBP+3BNjukEBBmGS2gz9gan0tYVm84AfF5FqUPLe/xNpadfazoF2CfdV3GGGn9hk02J2b+ZzgD2yeY+5+iIwpu1pKyD6RTA5331W4Hq7E7TGQgiDJfQZravLZaz0WU6A/ALLqel9ZUDte3cZ+TqxF4S8A9WQZFOqB1gOgMtcGj8AHWv4F1t+Ad3dCc90fUenZRyqmqdoaZzAL9QZ3fpy42sGkHbYbjUyp5//nn16dNHISEhmjdvnu644w6NGDHCdJYRW1kSB+yznDxp5dg7VDfmNNMpQIucmMkRBf4gyeLsfvAPld2O1qnOB/R41kDTKYDf+WgtbyJ4atasWZo6dWrTxxMmTNA111xjrMcf+ORwadasWbLZbLLZbAoPD1e3bt2UlJSkl19+WW6323Rei1VVVemKK67QjTfeqNzcXF188cWmk4ypLmtQ7rZy0xmAX6qrdurXqMnKn3GX3GHskQLf1ns1T2T9QWLuZtMJwF+yQsL0Y5/LNDLrCm2qjjWdA/ilX9JKlVdRbzrD64qLi3XZZZepb9++ioyMVPfu3TV58mQtW7bMa4/xxBNPaP78+V67v2Dgk8MlSZoyZYry8/OVkZGhL7/8UhMnTtTVV1+tU045RU7n7teOOhyONq78a1lZWXI4HDr55JPVo0cPxcTEmE4yJvnXAomzYQIesyxpS2EnbZr2pJz9hprOAfbIysnTcfX9TGfgLxzUrp/6lLI/FnyXM76Pbkp4SOenHCOX5bMvVwCf57akj9fmms7wumnTpmnt2rV69dVXtW3bNi1cuFATJkxQaan3zpCXkJCg9u3be+3+goHP/rTeOYHs1auXRo4cqVtuuUWffPKJvvzyy6YJos1m07PPPqvTTjtNsbGxuvfee+VyuXThhRdqwIABio6O1oEHHqgnnnii2X07nU5dddVVat++vTp16qQbb7xR//jHP5od9tbY2KirrrpKXbt2VVRUlMaPH6+VK1c2fX7JkiWy2Wz67rvvNGrUKMXExGjs2LFKTk6WJM2fP1+HHXaYJGngwIGy2WzKyMho1vHjjz8qPDxcBQXNl4tdc801OuaYY7z0nfQNnCUO8I7iQpeWH3yVqpJmm04B9uiU7E6mE/AXEm3tTCcAe5Tb60QdU3W33s3vbjoFCAgfBdhZ4yoqKrR06VI9+OCDmjhxovr166ejjjpKN998s047bcc2EjabTS+++KLOOOMMxcTEaMiQIVq4cGHTfbRkZvDnZXHYO58dLu3OpEmTNHz4cH300UdNl91xxx0644wztHHjRl1wwQVyu93q3bu33n//fW3evFm33XabbrnlFr333ntNt3nwwQf15ptv6pVXXtGyZctUVVWlBQsWNHusG264QR9++KFeffVVrVmzRoMHD9bkyZNVVlbW7Hq33nqrHn30Ua1atUphYWG64IILJEkzZszQt99+K0lasWKF8vPz1adPn2a3PfbYYzVw4EC9/vrrTZc5HA69+eabTfcTCArSK1VRWGc6AwgY9gaXVjlGKfPcx+SOTTCdA+yi3+p80wn4C0n520wnALuwwmP1Xs8bNS7t78pvYAk44C1pxbVal11hOsNr4uLiFBcXpwULFqixsXGP17vzzjs1ffp0bdiwQSeddJLOO++8ptfyLZkZYN/51XBJkg466KBmRwCde+65mj17tgYOHKi+ffsqPDxcd955p0aNGqUBAwbovPPO0+zZs5v9H+Wpp57SzTffrDPOOEMHHXSQnn766WaHvNXW1urZZ5/Vww8/rBNPPFFDhw7VCy+8oOjoaL300kvNeu69914dd9xxGjp0qG666Sb9/PPPamhoUHR0tDp12vHObZcuXdS9e3eFhu56dosLL7xQr7zyStPHn376qRoaGjR9+nQvfcfMS/6Fo5aA1pCWF6m1kx9W42GBdaQjAkBGtkY39jJdgd0YFNdbA4tSTWcAzdR3OkSzIh7SDduHm04BAtKHAbQfYlhYmObPn69XX31V7du317hx43TLLbdow4YNza43a9YsnXPOORo8eLDuu+8+1dTUaMWKFZLUopkB9p3fDZcsy5LNZmv6eNSoUbtc55lnntERRxyhLl26KC4uTs8//7yysrIkSZWVlSosLNRRRx3VdP3Q0FAdccQRTR+npaXJ4XBo3LhxTZeFh4frqKOO0pYtW5o91rBhw5r+3aPHjtOFFxUVtfjrmTVrllJTU7V8+XJJO5bTTZ8+XbGxgbFxocvpVsrqQtMZQMCqLHNoebdzVDL1etMpQDNTs7uZTsBuJIZyNj/4lt/6nKtRhTfph1L+vwm0lk835Mnu9J8TY+3NtGnTlJeXp4ULF2rKlClasmSJRo4c2WwD7j++To+NjVV8fHyz1+l/NTOAZ/xuuLRlyxYNGDCg6eM/D2HeeecdXXfddbrwwgu1aNEirVu3TrNnz5bdbm+VnvDw8KZ/7xx67csZ7bp27apTTz1Vr7zyigoLC/Xll18G1JK4jA0laqzd/QbsALzD5bS0oaK/ks99Rq7OHC0C3zBoXbHpBOxGUkG66QRAkuSO7qx5Xe/RKSmnqNa569H9ALynos6hxVsD6w3/qKgoJSUlae7cufr55581a9Ys3X777U2f/+PrdGnHa/Wdr9PbemYQLPxquLR48WJt3LhR06ZN2+N1li1bprFjx+ryyy/X4YcfrsGDBystLa3p8wkJCerWrVuzzbldLpfWrFnT9PGgQYMUERHR7FSGDodDK1eu1NCh3j9L00UXXaR3331Xzz//vAYNGtTsiCl/t5WNvIE2k5snrRxzm+rGTjWdAkgp6Rpm5+glX9InprsOLNhsOgNQRfexOtnxgOZlDTSdAgSND9cE3lnj/mjo0KGqra1t0XX3NjOAZ3x2uNTY2KiCggLl5uZqzZo1uu+++3T66afrlFNO0fnnn7/H2w0ZMkSrVq3S119/rW3btmnu3LnNBkmSdOWVV+r+++/XJ598ouTkZF199dUqLy9vOvIoNjZWl112ma6//np99dVX2rx5s+bMmaO6ujpdeOGFXv9aJ0+erPj4eN1zzz2aPTtwzgBVX21X1ibvnQ4SwN7VVTv1a2SS8mfcI3cYG6LCrLNyOZLOlyRGdDGdgCBnhYRpSZ/LdUTm5dpSE2M6BwgqS5KLVFbr/0fmlJaWatKkSXrjjTe0YcMGpaen6/3339dDDz2k008/vUX30ZKZAfZdmOmAPfnqq6/Uo0cPhYWFqUOHDho+fLiefPJJ/eMf/1BIyJ5nYpdcconWrl2rGTNmyGaz6ZxzztHll1+uL7/8suk6N954owoKCnT++ecrNDRUF198sSZPntxsw+0HHnhAbrdbf//731VdXa1Ro0bp66+/VocO3l8PHhISolmzZum+++77y8GZv9m2slBul2U6Awg6liVtKeygkjOf0kErnlR4xibTSQhSB6wvkwbs/XpoG0lF7CUBcxzx/XRLyNV6P6W76RQgKDlclhauy9Wscf79izkuLk6jR4/W448/3rRXcp8+fTRnzhzdcsstLbqPlswMsO9slmUF/at/t9utgw8+WNOnT9fdd99tpOHCCy9UcXGxFi5caOTxW8N7961UcVa16QwgqEVEhWqYe6XiF7209ysD3maz6bZru2lreInpkqDXI7qLFm1ebToDQSqn98k6K/tsFTRyRC1g0mG9EvTpleNNZyBA+eyyuNaUmZmpF154Qdu2bdPGjRt12WWXKT09Xeeee26bt1RWVuqnn37SW2+9pSuvvLLNH7+1lBfUMlgCfIC9waVV9pHKOPcxueMSTOcg2FiWzs7va7oCko6P7GE6AUHIiojVOz1v1vjU8xgsAT5gY26lthfXmM5AgArK4VJISIjmz5+vI488UuPGjdPGjRv17bff6uCDD27zltNPP10nnHCCLr30UiUlJbX547eWtDVFe78SgDazPS9Sa094WA3DjjGdgiAzdGOl6QRISirNM52AIFPf+VD9I+xh3bT9MNMpAP7gi435phMQoFgWh1bxzt0rVJrLVBzwNSGhNh0an6FOCx6WjR//aAshIbrh2o7KCKswXRK0Okd21HfJGxRiuU2nIAhYsum3Pudq5vYTVesKyvexAZ92cI94fXk1bzbC+/iJD6+rKKxjsAT4KLfL0obyftp2ztNydeltOgfBwO3WzAL/3jzU3x0f3YvBEtqEO6azHut6j05NOZnBEuCjtuRXKb2k1nQGAhA/9eF1qatZEgf4utw8aeXouaobd4bpFASBYZt4EmtSUgW/l9H6yruP00n2B/RUFsNkwNexNA6tgeESvC6V/ZYAv1BX49TyiETlzbhH7ohI0zkIYGEbtqmXK950RlDqEJGgURlrTGcggFkh4Vrc558amXm5ttbEmM4B0AKfb2C4BO9juASvqiisU2kOS+IAv2FJWws76LepT8ox4FDTNQhUTqdmFg00XRGUJsb2VajlMp2BAOVI6K/r2j2kC1LGybJspnMAtNDm/CplsDQOXsZwCV7FUUuAfyopcmr5Af9U5eQ5plMQoEZsbjCdEJQSK8tMJyBAZfc+ReMq7tSHhd1MpwDwwOcsjYOXMVyCV6UxXAL8lqPRrdWNI5R+7uNyx7U3nYMAE7k2WV1dcaYzgkq78DgdnbHadAYCjBURq7d63KxjUs9VUWO46RwAHmLfJXgbwyV4TWVxvUqyWRIH+Lv0vAitSXpIjcMnmE5BIHE4NKOUpXFt6bi4/gp32U1nIIDUdT5Mfw97RLekH2Y6BcB+2pRXpeyyOtMZCCAMl+A129cVm04A4CVV5Q790nm6Ss64UZaNfTTgHaO2OE0nBJWk6mrTCQgQlmxa3+fvOiL/Bv1UlmA6B4CXfL2pwHQCAgjDJXhNOsMlIKC4XZY2lPdV8sxn5OzWz3QOAkDMmm1KcEeZzggKMWExGpe+0nQGAoA7pose6XKvTk85UfWuUNM5ALyI4RK8ieESvKK2slEF2ytNZwBoBXn5llYeeYtqx08znQI/ZzU0aGbZENMZQeGYdgMU6WQTdeyfsh7HaErjA3omu7/pFACtYHVmuYqrG01nIEAwXIJXpK8vkWWZrgDQWuprnPo1fJLyZt4rd0Sk6Rz4saOTTRcEh8Ra9tGA56yQcH3b+wodkXGpttVGm84B0ErclvTN5kLTGQgQDJfgFey3BAQBS9pa0F6/TX1S9kHDTNfAT8WtSlacFWE6I6BFhkbqWM4SBw85Egbo2nYP66LUsbIs9twDAt1XLI2DlzBcwn5rrHMoN7ncdAaANlJS5NSvgy9T5YmXmE6BH7Lq6nRW+WDTGQFtbLtBimnk7K3Yd5m9T9PY8jv0UWFX0ykA2sgvaSWqanCYzkAAYLiE/ZaxsVRuF2vigGDiaHRrdf0wpZ87T+52HU3nwM+MTwkznRDQkhrsphPgZ6yIOL3R81YdlzpTxfZw0zkA2pDDZen7rUWmMxAAGC5hv6WvZ0kcEKzS88K1JvEBNYyYaDoFfiRhZYoiLc461RrCQ8I1IZ0lcWi5us7DdW7ow/r39kNMpwAwZNEm9l3C/mO4hP3idrmVvYUlcUAwqyp3aHmns1V85s2ybOzPgb2zqqs1reoA0xkBaXT8ILVr4Oyt2DtLNq3rc76OyL9Ov5QnmM4BYNDSlGK53KxEwf5huIT9UpBeJXu903QGAMPcLksby3oreeYzcnbrZzoHfuC4VDb1bg1JjW7TCfADrtiueqjLfZqaMkX1Lo4iBIJdVYNTa7M4YAD7h+ES9kvWplLTCQB8SF6+pZWjblHtMWebToGP67gyTWEWT0O8KcwWpkkZa0xnwMeV9jhOUxru17PZvBEA4Hc/bGOrE+wfntVhv2RtKjOdAMDH1Nc69WvYBOXOvF9WRJTpHPgoq7xCU6uHmM4IKEckDFT7On4vY/es0Agt6n2VRmVcrJTaaNM5AHzMkmSGS9g/DJfgsboqu4qzq01nAPBFlpRcEK8Npz8hx6ARpmvgoyZt5wWuNyU5eFqH3XMkDNQ1cQ/p4tSjZVnsjQdgV7/lVaq0ptF0BvwYz0LgsezNpRL7vgH4C6XFTi0ffIkqTrrMdAp8UNeV6bLxe8QrQmwhOj5zvekM+KCM3qdrbPnt+qSwq+kUAD7MsqQfUzh6CZ5juASPZbIkDkALOBrdWlN3qLaf+4Tc7TqazoEPcZeU6uTawaYzAsKI+IHqXM2ppPE7K7KdXuvxb01InaFie7jpHAB+4AeWxmE/MFyCRyy3pewtDJcAtFxGXphWH/+AGg4/3nQKfMgJ6e1MJwSERBdn38PvaruM0Ezbw7otfajpFAB+ZGlKiSyLQ4rhGYZL8EhRVrUaahymMwD4meoKh5Z3nKbiabfIsrHvB6QeqzJNJ/g9m2xKyv7NdAZ8gCWb1vT5h0blXatfK+JN5wDwM6W1dm3MrTSdAT/FcAkeydpUajoBgJ9yuyxtLO2lrTP/I2eP/qZzYJhVUKQTageazvBrh8YPUPeKHNMZMMwV200PdL5fZ6ZMVr0r1HQOAD/FWePgKYZL8AjDJQD7Kz///9m77/C2yvN94Le2ZMmS905ix46znL3j7D0IZC9WCCOQhEAgkACFsknCaGkZ/Rb6g25o6S4t0NJCywgEyAASx3aG7XgvybasrfP7I42DiZN4SH4lnftzXVytJZ1zbsWWdM6j931ePz4dfQ9apq0WHYUEW1ASIzpCWJsjcdU9uatPnY55jsfxf6f7io5CRGHu/UIWl6h7WFyiLnPaPag+1Sw6BhFFAKfdi09V01G+bjckrV50HBKkzxccddMTc8uPio5AgkgqLd7KuA1jT92E460sMhJRzx0ss8LmYPsT6joWl6jLyo42QPKz0RsRBYgEHKuMxuErnoUnZ5ToNCSAVFaBqU6OuOiOgdH90Kf+lOgYJIA7JhvbjE/i5uIJkCT2sCOiwPD5JXxQVCc6BoUhFpeoy0qPcJU4Igq8+lovPu5/ExoXbxEdhQRYUpogOkJYmqPgantydCJjGSY1PIC/1CSKjkJEEej9whrRESgMsbhEXVbGfktEFCRetx8H7ENwfP2z8JvjRcehXpT1RZXoCGFpXmWR6AjUiySdGa+k3o9ZxatQ79aIjkNEEeo/hRy5RF3H4hJ1Sd3pFthtbtExiCjClVSo8fmsJ+AcPUd0FOol0slSjHeli44RVvqbMtC/hsUluWhJHIU1ir146ORg0VGIKMJVNTlRUNUkOgaFGRaXqEu4ShwR9ZZmqwf7YpajZuV3ICm5rLYcLD2dLDpCWJmjihUdgXqBpFDis74bMab8TnxqNYuOQ0Qy8d4xrhpHXcPiEnVJ+bFG0RGISEb8fglf1aWiYM1z8Kb1Fx2HgiznIE9ku2Ju9UnRESjIfMYUPBb/BFYWzoHLz9N2Iuo9Hx/noALqGn5KUaf5/RIqT9hExyAiGaqs9OPTUTthn75WdBQKpsKTGOZOEp0iLGREpWBQ5RHRMSiIatNmYq7jcbx8uo/oKEQkQ1+UNMLPFcKpC1hcok6rK2uGx+kTHYOIZMpp9+ITxVScXrcHks4gOg4FycryDNERwsJcLVcJi1SSSoe/Z9yOcSduxIlWveg4RCRTzS4vjlSy7xJ1HotL1GmVxRy1RETiFVaacGjJ9+HOHSs6CgXBwMMNoiOEhbm1ZaIjUBC4Y3KwJepJ3FI8XnQUIiJ8epKfydR5LC5Rp1UUWUVHICICADTUebEv83o0Lt4iOgoFmPLocQz0JIiOEdJSDInIO/2l6BgUYMczlmNC/QP4Wy3//okoNLC4RF3B4hJ1WuVxq+gIRERtvG4/DtiH4Pj6H8Bv4cVYxJAkrK7qKzpFSJujT4UC7IMRKSSdGT9JfQCzi1ei0aMWHYeIqM1nJSwuUeexuESd0lBph6PZIzoGEdF5SipU+GzG43COmSc6CgXIkC85Dfti5tRVio5AAdKSOBor8CQeOTlIdBQiovPUtbhRXNMiOgaFCRaXqFMqi62iIxARXVCLzYN9lqWoWXk/JKVKdBzqIdWXRcj0xoiOEZISdHEYVXZAdAzqIUmhxP4+GzGm/A58YYsWHYeI6IL2n+LoJeocFpeoU9hviYhCnd8v4au6FBxd/Ry86Tmi41BP+P1YW50lOkVImh2VDqXkFx2DesBnSsUjcU9gVdEcuPw8FSei0Ma+S9RZ/ESjTqngyCUiChNVVX58OmIHWmZeKToK9cCwr+2iI4SkOY21oiNQD9SkzcZs+2P4f+V9REchIuoUFpeos1hcoktqqnegpcElOgYRUac5W334VJqMsnV7IOkMouNQN2gOFSLVx+lC3xSjtWBsyReiY1A3SGo9/pqxHeNPXI9TDr3oOEREnVZudaDc6hAdg8IAi0t0SZXFbKxKROGpqNKEQ0u+D/fAcaKjUFd5vVhXmy06RUiZaewLtd8rOgZ1kTt2ADYb9mJrMd+HiCg87efoJeoEFpfokjgljojCWUOdF/v6bUTjZdtER6EuGnWEo2a/aY6tUXQE6qLiPiswoe5+/L02QXQUIqJu+5RNvakTWFyiS6pkM28iCnNetx8HWgaieP0P4YtNEh2HOkn3RQES/EbRMUJCtMaESac+Ex2DOsmvj8GPUx7EnKIVaPSoRcchIuoR9l2izmBxiS7K0exGY1Wr6BhERAFRWqHE59MegWPcAtFRqDM8Hqyt49Q4AJhuyoTG5xYdgzqhOWksVkp78fipXNFRiIgCorimBQ12fgbRxbG4RBfFKXFEFGlabF7si16C6lUPQFKqRMehSxhX4BMdISTMaW4WHYEuQVIo8UmfGzD69HZ8YTOJjkNEFFAcvUSXwuISXVRlEZt5E1HkkfzA17XJOLL6OXgzBoiOQxcR9fkxWPzyXl3LoDYgn1PiQprPlIaHYndjTdEsePwK0XGIiAJuP/su0SWwuEQXVXncKjoCEVHQVFf58cnwO9E86yrRUegCJKcTaxpyRMcQamp0f+g9XAY6VFWnzcFM+6N4tSJDdBQioqBhcYkuhcUluiCf14+68hbRMYiIgsrV6sN+/ySUrdsLv57No0PRxEJ5jwSZa2dhKRRJaj3+nHEHJpzYiFKHvEfXEVHkK6hshsfnFx2DQhiLS3RBDRV2+L2S6BhERL2iqNKIQ5d9D+7BE0RHoW+J/qwQJkkrOoYQOpUO0zglLuS4Ygdik/4pbCseKzoKEVGvcPv8OFbF/n90YSwu0QXVlDSJjkBE1Ksa6zzYl7EBDUtuFx2FvkGy27HSKs/eWJPN2YhycRRxKCnsswrj6+7DO3VxoqMQEfWqr8rZj5cujMUluqDaUlamiUh+vB4/DjYPQPH6H8IXlyw6Dv3PlCJ5ruw318Gln0OFXx+DHyU/iHlFy2DzqEXHISLqdV+yuEQXweISXRCLS0QkZ6UVSnw25WE4xi8SHYUAWD4tgk6SV4FJrVRj+qnPRccgAE1J47Dcvxe7S3JFRyEiEoYjl+hiWFyiDvl8ftSX20XHICISyt7kxT7TYlStehCSiiMVRJKam7G8SV4X9hPMOTA7eCIvkqRQ4eM+N2HM6dtxsMkkOg4RkVBHq9jUmy6MxSXqUEO5HT4v3ziIiCQ/cKQ2EUdWPQdvn4Gi48jajGJ5NfWe6+LnsEje6HR8N3YP1hXNgMcv7xULiYgAwO31o7Cas1uoY/waljrEKXEU6oorDuOfh15HaV0RmlrrceO8hzAia0rb/ZIk4c3PXsVHBX+Dw9WC/il5WDP1NiRZMi663/e/+iPePfQbNDkakB6fjVX5tyIzaVDb/b/76AV8UvgOtGo9rphwA8YNmNN23xfH38enhe/g5oWPBf4Jk3DVVT5Y87ZjeO5HiH73Z6LjyFLc/uNQj1bCq4j8ootKocKskgOiY8hWVfpcrCxfj9NOnegoFGDOsq/Q9Mnv4K4+Dl9LAxKX3Yeo3Elt90uSBNsHv0TLobfhd9mhSx+MuHmboYlLv+h+m7/4K2yf/B4+eyO0SVmIm7MJurRzX0g0vPsS7F+9C4VGj5jp18I0dGbbffaCD2D/6l0krfxu4J8wUYB9VW7D0DSL6BgUgjhyiTpUw+IShTiX14H0+GysmbKtw/v/eeg1vP/VH7B26u3Ysew5aNV6PP/mLni8F26O+3nxv/GHj3+EhWOuwc4VP0J6XDaef3Mnmh2NAIAvT32Ez4r/hS2L92DpxJvwq/efRsv/pqw4XC34y/6fYPUF8lBkcDl82O+bgNJ1T8Fv4BSZ3iY1WnFFizxWjRtrzkasvV50DNmR1Ab8MWMHJh6/joWlCCW5ndAk9Ufc3Js7vL/pk9+h6fO/IG7+FqRc/TQUGj1qfvMApIucP9iP/gcN/3oZMfnrkLrhWWiTslDzmwfgs1sBAK3Fn8B+9H0krX4EsTOuQ8NbP4Sv9cz5g99lh/U/P0PcvFsC/lyJgoFNvelCWFyiDtWWNImOQHRRQ/tOwJLxG9uNVjpLkiT8+8vfY/7oqzA8Mx/p8dm4ZuZO2FrrcOjUBxfc57++fAOTBy/CpEELkBqbibXTbodWrcPHBW8BAKqspRiQNgL9EgdibM4s6LVRqG+uBAD88ZMfY+qQyxEXzdXF5KC40oCDi56Ge/AE0VFkZ9aJKNEResUcL0/RepsrbiBu0j+J24tHi45CQWTIHovYaVcjKnfyefdJkoTmz/4Ey6Q1iBowEdqkLCRcdge8LQ1oLfz4gvts2v9HRI+YD9PwudAm9EXc/C1QaHRo+fIfAABPfRn0fYZBlzoAxiHTodBGwWurBgA0/vsVRI9aBLU5KThPmCjAvizndSJ1jGcudB4286ZwV99ciabWBgxKP3eBYNCZkJk0GKeqj3S4jdfnQVltIQZ+YxulQomBGaNx8n/bpMdno7S2EK2uZpTWFsLjdSPRko7jlV+irK4YM/KWBfeJUUix1nuxL2MDGi7fLjqKrCTtPwmFJDpFcCmgwOzSw6JjyMqxPmswtuY+/KMuTnQUEshrq4bP3ghD5si225Q6I3RpA+GqKOhwG8nngbuqGPp+57ZRKJTQZ46Eq/zMNtrELLiriuFztsBVVQzJ64I6Ng3O01/DXX0c0WOWBPNpEQVUQWUTvGzqTR1gzyU6T0MFm3lTeGtqPTONLdoQ2+72aENs233f1uK0wS/5z9vGbIhFtbUMADCkzziMGzAHe3+/GRq1DlfP3AmtWo/XPngWV8+4G/898he8/9UfYNJbsG7aHUiNywz8k6OQ4vX4cdCTgz7rn0P2W49C2VAlOlLEk2rrsMg+CG+aikVHCZqRlmwknvyX6Biy4NfH4keW27G3SB7TLenifC1nzhGUxph2t6uiYtqmuJ23TWsTIPmh6mAbT/1pAICh/xgYh85A1U+3Q6HWImHxdig1OjS8/QLiF29H84G/ofmLv0JlMCNu/lZoE/sF+qkRBYzL60dhdQuGpJlFR6EQw+ISnYfNvIkubPHYa7F47LVtP//ts59hUPpoqJQqvPXFL3DvqpfxVck+/Ozfu7FzxY8EJqXeVFahQMOUhzC86s8wfPqm6DgRb/7JaLw5THSK4Jnjk9eqeKI0JY/HVY034HAJ+6dR8MVMuRIxU65s+9n6wa+gzxwJhVIF28evI23j83AUf4r6N59B6oZnBSYlurSvKmwsLtF5OC2OzsPiEoU7c9SZ0UdnG3Gf1exobLvv20x6C5QK5XnbNDkaYTZ0PE2iqrEU+4v+icvGXYeiikPISR2OaEMMRmdPR1ldEZzu1gA8GwoX9iYv9pkWoWr1g5BU/O4mmFI/LxUdIajmnv5adISIJilU+KjPTRhVug2Hm1hYonNUpjPnCP5vjVLytVrPG5nUtk2UGVAozxvZdGabjs85PPVlsB/5N2KmXgVn6ZfQZ+RBFWVB1KCpcFcfh9/F8wcKbV+xqTd1gMUlOg+LSxTu4qNTYY6Kw7HyL9puc7jtOFVzFJnJQzrcRq3SoE9iLo6Vn1v62y/5UVh+AFkdbCNJEl777/ewfNLN0GkM8Et++PxeAIDP72vbnuRF8gNHahLx9crn4Ok78NIbULdIldWY05olOkZQ5JmzkNpYJjpGxPJGp+M7MXuwvmgGfBJPg6k9tSUZKmMsnCUH227zu1rhqjgGXdqgDrdRqDTQpuTAWXKo7TZJ8sN56hB06edvI0kS6t9+HrGzboBSawAkP6T/nT/g7P/y/IFCHFeMo47wU5Xa8fv8qDvdIjoG0SW5PA6crivG6bozfVfqm6twuq4YDc3VUCgUmDlsOd764pc4fOojlNefwM//vRuWqASMyDy3utwP/rID73/1x7afZw1biY8K3sS+Y2+jqrEEr//3+3B5nJg4cP55x/+o4G8w6S0YlnlmtZn+KXkorDiIk9VH8O/DbyAlth+idPxGXK5qqn34ZOh2NM/ZIDpKxFpU0vGIgHA3R5LHangiVKbPx/TmR/HLyjTRUUggv9sBd/UJuKtPADjTxNtdfQLephooFApEj70Cto9eR2vRJ3DXnkLdm89AbYpDVO6ktn1Uv3Yvmj7/S9vP5nFL0XzobbR8+S48dWVoePsFSB4nTMPmnHf8lkNvQ2UwIyrnzGqjuvTBcJYchqu8AE37/wRNfF8o9Tx/oNB2tLIJPn+Er65BXcZx+9ROQ2UrfB5+W0Khr6T2GH7wlzvbfv79xy8CACbkzsPVM3dizoi1cHmc+PV/noHD3YLslGHYvOgJaNTnepnUNVWgxXnum5cxOTPR4rThzc9eRXNrI9ITsrFl0W6Yo9pPi2tqbcDbX/wSdyz9QdttmUmDMHv4Srz493sRbYjF1TN3BuupU5hwO3zYj3HIXjcMff74XSgdLNwHUp/Py4HBolME3twLrEhF3SdpovD7pC248/go0VEoBLirilD963vbfm7818sAAGPebCQs3g7zhBWQPE7Uv/1D+J126DOGIGn1w1B84/zB01gFnePccuzGwdPga7XB+sEv4LM3QpvUH0mrHz5vWpzP3gjbx79BylVPtt2mSxsI8/hlqHnjISijLEhYzBVIKfQ5PX4U1TRjUAr7LtE5CkmSWHKkNgX7KvHuq0dFxyAiiigx8RrkHX0F2iMfi44SUX6wPQsf6CNnClmuqS9+9+UHomNEFGfcYGx2bcW/6iNzpBsRkSjPrB6B5aMzRMegEMJpcdROYyUbCBIRBZq13oOP069B/RV3iI4SUS4vTRQdIaDmKvkNcCAd7bMW42ruYWGJiCgIims4IpvaY3GJ2mmssouOQEQUkXwePw7ZslG4/nn44lNFx4kImQeqREcIqLmVxaIjRAS/IQ4/THoEC4suR7OXHSCIiIKBxSX6NhaXqJ3GKo5cIiIKptMVwGf5D6J14hLRUcLfiVKMc0VGc+YsYzqyawpFxwh7tuSJuMK7B0+XZouOQkQU0YprWVyi9lhcojY+nx9NtQ7RMYiIIp69yYtPDAtQtfph+L/RJJa6bunpFNERAmKOOu7SD6ILkpRq/LfPzRhduhVfNhtFxyEiinil9a3w+LgQFJ3D4hK1sVU74OeSkkREvUKSgCM18Tiy4gfw9h0kOk7YyjlUJzpCQMytPik6QtjymvvgHsseXF00DT6Jp7ZERL3B65dQUs+WKnQOP4GpTWM13xyIiHpbTbUP+4bejqa514mOEpYUx05gmDtJdIweyYhKweDKI6JjhKWK9AWY2vQIXqtkHzMiot5WXMPrRzqHxSVqw5XiiIjEcDt8+MwzFiXrn4bfyBXDumplRXgvhTxXG1mr3vUGSROFN9J2YvLxa1Dp5NRSIiIRjrPvEn0Di0vUhiOXiIjEOl6hx4H5T8GVN0V0lLAy8HCj6Ag9Mqf2tOgIYcUZPwTXaZ7EjhMjREchIpK141wxjr6BxSVqw5FLRETi2Ro82JeyHvVLd4iOEjaUR4oxwBsvOka3JBsSMOz0YdExwsaRPuswpvoevNcQKzoKEZHsccU4+iYWlwgAIEkSrNUsLhERhQKfV8IhaxYK1z8PX0K66DihT5KwprKv6BTdMkeXBgW4mMal+A3xeDbpUSwqWgK7VyU6DhERAThRy5kvdA6LSwQAaGl0wePyiY5BRETfcLoC2D/pAbROulx0lJA39Msm0RG6ZU59pegIIc+aMglLvLvxvdL+oqMQEdE3tLi8qLQ5RMegEMHiEgEAGqtYdSYiCkWtzV58op+PyjWPwK9m4+ILUX1ZhExvjOgYXRKvi8XosgOiY4QsSanGf/rcgjElW/B1s1F0HCIi6kAx+y7R/7C4RACAxipOiSMiClWSBBytjsPXK34Ab78houOEJr8fa6qzRKfoktlRGVBKftExQpLX3Be7LHtxTdFU+CSerhIRhSo29aaz+GlNAFhcIiIKB7XVPuwbvA1N8zaKjhKShn8dXqNw5zTWio4Qkk5nLMIU28N4vTJFdBQiIroENvWms1hcIgCAldPiiIjCgtvpw2fuMShZ/wz8RovoOCFFc6gQqb5o0TE6xaI1Y1zJF6JjhBRJY8Rv0nZiSvFVqHJxCigRUTg4XsPrSDqDxSUCADRw5BIRUVg5XqHDgflPwjVsqugoocPrxdra8Gj6PNPYD2q/V3SMkOGIz8MG7V7cfWKE6ChERNQFHLlEZ7G4RHC1euBocouOQUREXWRr8GBf8jrULb1LdJSQMfpIeHyezbU1io4QMr7qcyXGVu3C+/WxoqMQEVEX1Ta70OT0iI5BIYDFJYK1hstHEhGFK59XwmFrJo6tfx6+xAzRcYTTfVGABH9orywWrTFh0qnPRMcQzm9IwPeSHsVlRYth9/GUlIgoXJ2s5dQ4YnGJADTXO0VHICKiHiqvAPZPvB+tk5eKjiKWx4M1ddmiU1zUNFMmNL7wGGEVLI0p+Vjk2Y1nS8NjGiMREV1YhZWDFYjFJQLQ0sjiEhFRJGht9uIT3VxUrHkUfrV8GyKPL/CJjnBRc5ubRUcQRlKq8e8+WzC6ZDMKWqJExyEiogAoZ3GJwOISgSOXiIgiiSQBBdWx+Hr5D+HJyhMdR4ioL47BIulFx+iQQW1AvkynxHnM/XCX+UlcV5QPSVKIjkNERAHC4hIBLC4RgOYGFpeIiCJNbY0Xnwzciqb5N4iO0uskhxOrGwaIjtGhKdH9offI7yS8LGMxptoewhtVyaKjEBFRgHFaHAEsLhGAlkaX6AhERBQEbqcPn7lG4dT678FvsoiO06smHZNER+jQXLu8TsAlrRG/TrsHU4uvRJVLvlM1iYgiWYWVgxWIxSUCRy4REUW6ExVaHJj3JFzDp4mO0muiPytClF8jOkY7OpUO02U0Jc6RkIer1U/hnhPDREchIqIg4sglAlhckj2P2wdni0d0DCIiCjJbgwcfJ65F3bKdkBSR3+9GstuxypYrOkY7k6KzEeVqER0j6CQocLjPVRhbuQsfNMhrxBwRkRzV291wekJ7MQ0KPhaXZK6Fo5aIiGTD75NwuLEvCtc+D19SX9Fxgm5KkUp0hHbmOiP/yxx/VAKeSXoUlxctgt3H00wiIrlgU2/ip77McUocEZH8lFdK2D/+PrTmLxcdJahi9hdDJ4VGgUmtVGNGhE+Ja0zJxyL3bvywNEt0FCIi6mWcGkcsLslccz2LS0REctTa4sU+7WxUrHkMfq1OdJygkJqasLwpNFaNm2DOgdlhEx0jKCSlBu/22YrRJZtR0BIlOg4REQlQ3sjiktyxuCRzXCmOiEjGJKCgOgZfLf0BPP2Hi04TFNOL9aIjAADmuv2iIwSFx5KJHdF7cX3RZEhS5PfyIiKijnHkErG4JHOcFkdERHU1XuwbcAtsC24SHSXg4vcXQy2JPd1RKVSYdeqA0AzBUJqxBPnWh/C76mTRUYiISLByK68r5Y7FJZljQ28iIgIAj8uPz50jcHL99+A3xYiOEzBSoxWXt+QIzTDGnI1Ye73QDIEkaY34Zdq9mFa8DjUujeg4REQUAjhyiVhckjmOXCIiom86WaHFF3P3wjVihugoATP7hFHo8ed4Q6OpeCC0JgzDVaqncN+JPNFRiIgohHC1OGJxScYkv4QWK3suERFRe02NHnycsBq1y3dBUoR/H52k/SehkMQcWwEFZpcdFnPwAJKgwKG+V2NM5d34sNEiOg4REYWYKpsTkiTow5ZCAotLMtba5IbfyzcAIiI6n98n4cuGPji29nl4k/uJjtMjUm0dFtqzhRx7hLk/kmyVQo4dKP6oROxNfAxXFC6Ewxc5o7CIiChw3D4/aps5cEHOWFySMU6JIyKiS6molLB/3L2wT10pOkqPzD9lFnLcuX6dkOMGSn3qNCxwPYEXyzJFRyEiohB3mlPjZI3FJRmzc0ocERF1gqPFi0/UM1G+5nH4teFZLEn7vEzIceecPiLkuD0lqbT4R8atGHtqEwrtUaLjEBFRGKhp4uAFOWNxScYcLR7REYiIKFxIwLFqC75a+gO4s4eLTtNlUkUVZjsye/WYQ81ZSGss7dVjBoLH0h/bTXtxY/EkSFL499wiIqLeUW93i45AArG4JGPOFr74iYioa+pqvPgk5xbYFt4sOkqXLSqJ69XjzYHYVeq641TG5Zjc+F38sTpJdBQiIgozjSwuyRqLSzLGkUtERNQdHpcfnzuG4eT678Mf3bsFm57o+1l5rx5vbnlBrx6vJyStCT9PvQ8zitei1q0RHYeIiMJQg53Xl3LG4pKMOVlcIiKiHjhZocEXc3bDOXKW6CidIpWVY4qzT68cK9fUF/3qTvTKsXqqNWEE1quexP0nh4qOQkREYayxlSOX5IzFJRnjyCUiIuqppkYP9sWvRO3yeyApQr8/z+Wlib1ynDkqS68cpyckKHCgz7UYU7kDHzeGfl4iIgpt7LkkbywuyRhHLhERUSD4fRK+bMhAwdrn4U3NFB3nojIPVPfKceZWFvfKcbrLZ0zC3sTHsaxoPhw+leg4REQUAdhzSd5YXJIxBxt6ExFRAFVWStg/+h7Yp64SHeXCTpRgrCstqIfINKYjp/pYUI/RE/Wp0zHP8QReLOsnOgoREUWQBhaXZI3FJRnjyCUiIgo0h92LT9QzUL72CUhaveg4HVpWnhLU/c9Vh2aTc0mlxTsZ2zD21E043moQHYeIiCIMey7JG4tLMuV1++B1+0XHICKiSCQBx6rMOHzFs/BkjxSd5jw5B+uCuv851SeDuv/ucMf0xzbjk7ipeCIkKfR7YxERUfhpdfvg9PhExyBBWFySKTbzJiKiYKuv9WJfziZYF94iOko7imMnMMydFJR9p0clY0jlkaDsu7tOZizFpIbv4i81vdPMnIiI5ItT4+SLxSWZ4pQ4IiLqDR6XH1848nBi/bPwm+NFx2mzoiIjKPudq00Oyn67Q9JF49XU+zGzeDXq3RrRcYiISAZYXJIvFpdkis28iYioN52qUOPzWU/AOWq26CgAgEGHG4Oy3zl1ZUHZb1fZE0dijeJJPHhysOgoREQkI+y7JF8sLskURy4REVFva7Z6sC9uBWpX3AdJIbbvj/JIMQZ4AzuSKkmfgOFlhwO6z66SoMAXfTdgdPkOfGo1C81CRETyw5FL8sXikkyx5xIREYng90n4sj4NBWtfgC81S1wQScLqyr4B3eUcfSoUkAK6z67wGZPxRMITWF44Dy4/T/GIiKj3NbK4JFs885ApjlwiIiKRKiv9+GT0LrRMXyMsQ96XzQHd39yGqoDuryvq0mZgruMJ/Ph0YAtmREREXcGRS/LF4pJMceQSERGJ5rR78alyGk6v3Q1Jq+/146u+LEQ/b0xA9hWvi8Xo0gMB2VdXSCot3sq4DWNP3IQTrb3/b0hERPRNDey5JFssLsmUkw29iYgoFEhAYVU0Dl/xLNwDRvfusf1+rKnJDMiuZkVlQCn5A7KvznLHZOPWqKdwc/GEXj0uERHRhTTaOYhBrlhckilXq1d0BCIiojb1tV7sy7oRjYu39OpxR3ztCMh+5jTWBWQ/nXUiYxkmNTyAv9Ym9OpxiYiILsbmYHFJrlhckimPyyc6AhERUTtetx8H7ENwfP2z8Ft6p2iiOXgMKT5Tj/Zh0ZoxvuTzACW6OElnxv9LvR+zileh3q3plWMSERF1VqubgxjkisUlmfK6e3foPhERUWeVVKjx+czH4Rw9N/gH83qxtja7R7uYYewLtT/4J9MtiaOxCk/i4ZODg34sIiKi7nB4eJ0pVywuyZTXzZFLREQUupqtHuyLWYaaFd+BpFQF9VhjjvasD+E8mzUwQS5AUijxWZ/rMKb8Dnxmiw7qsYiIiHrC6eF1plyxuCRTLC4REVGo8/slfFWfioI1z8Gb1j9ox9F/cQzx/qhubWvSGDHp1GcBTnSOz5iCR+OewMqiuXD5edpGREShzcHrTNniWYpMeTlckYiIwkRlpR+fjtqJlhnrgrJ/ye3Gmvqcbm07zZQFjS84K7DWps3C7NbH8ZPyPkHZPxERUaA5OHJJtlhckikPK8pERBRGnHYvPsUUnF67B5LOEPD9jy/o3ufi3JbmACcBJJUOf8u4HeNO3IBTDn3A909ERBQsLC7JF4tLMuT3S/B7JdExiIiIuqywyoRDS74Pd+7YgO7X+PkxWKSuFXIMKj3yTwV2lTh37ABsiXoSm4vHB3S/REREvcHt9cPv57WmHLG4JEPst0REROGsoc6LfZnXo/GyrQHbp+RwYnUXp8ZNMfeHwd0asAzFfVZgQt39+FttQsD2SURE1Ns4ekmeWFySIY+LL3YiIgpvXrcfB1oG4/j6H8BvCUwxZlKhokuPn9vqDMhxJZ0FL6d8F3OKVqDRow7IPomIiERp5WAGWWJxSYa8bjbzJiKiyFBSocJnMx6Hc8y8Hu8r+rNCRPk1nXqsVqnFtJM9nxLXkjQGK7AXj54a2ON9ERERhQInRy7JEotLMsRpcUREFElabB7ssyxF9cr7ISlV3d6PZLdjpS23U4+dbMmG0dX9Zt6SQolP+1yPUafvwBe26G7vh4iIKNRwWpw8sbgkQxy5REREkcbvl/B1XQqOrn4e3vSu9U76pqnFnZuWNsfh7fYxfKZUPBL3BFYXzYbH37WpeERERKHOwcEMssTikgxx5BIREUWqqiofPh2xAy0zr+zW9jGfFkEnXXz0k1qpxoxurhJXkzYbs+2P4f+V9+nW9kRERKGOI5fkicUlGfKwuERERBHM2erDp9JklK3bC7/e2KVtpaYmLGsacNHHTDDnwOKwdm2/aj3+kn4Hxp+4Hqcc+i5tS0REFE5YXJInFpdkiNPiiIhIDooqjTh82TNwDxzXpe1mHL948WeOW+rS/lyxubjF8CRuPT62S9sRERGFIycHM8gSi0sy5GUlmYiIZKKhzot9/Tai8bJtnd4mfv9xqNBxLySVQoVZpw50el9FfVZifN138FZtfKe3ISIiCmccuSRPLC7JEEcuERGRnHjdfhxoGYji9T+ELzbpko+XGhpxeXPHU+NGm/sjzl53yX349TH4ccqDmFu0HDZP55qEExERRQIWl+SJxSUZ8nlYXCIiIvkprVDi82mPwDFuwSUfO/tkx72a5vguXShqThqLldJePH4qt8sZiYiIwp2L15uyxOKSDPn9XesVQUREFClabF7si16C6lUPQFJeeFW45P0nofjWx6UCCswpPXzBbSSFCvv63IDRp7fjC5spUJGJiIjCil/i9aYcsbgkQxJf7EREJGOSH/i6NhlHVj8Hb0bH09+kmjosbM1ud9sIc38k2So7fLzPlIYHY3djbdEsePwd92siIiKSAxaX5InFJTnia52IiAjVVX58MvxONM+6qsP755+ytPt5jtTxKnJVaXMx0/4oflqRHvCMRERE4Ya1JXlicUmGOHKJiIjoDFerD/v9k1C67kn49e37LKV9Vtru5zmnv273s6TW40/pd2LiietQ6ui48ERERCQ37MIiTywuyRBrS0RERO0VV0bh0OJn4B48oe02qaIKs1ozAQBDojOR3nCu2OSKHYhN+qdw2/ExvR2ViIgopHFanDyxuCRHfK0TERGdp7Hei30ZG9Cw5Pa22xaXxAEA5irOjWo61mcVxtfdh3fq4no7IhEREVFIYnFJhjgtjoiIqGNejx8HmwegeP0P4YtLRt8vygEAc8uPwa+PwYvJD2F+0TLYPGrBSYmIiEITVyeXJ54ZyRBrS0RERBdXWqFE/ZSHMbzqT1gnVSNWWYXl/l04WGISHY2IiCiksbYkTywuyZBaXYmkjCOiYxAREYW8E5YcjIoejhv7jIIKSrDDEhER0cUZU6NERyABWFySIWfzKZR++ZboGERERCEtMTETs/pfiU89n2KR6Wd41nsNKtx+0bGIiIhC2mSDSnQEEoA9l2RIoVSIjkBERBTSxo1YgtkJ69HideFwQSOyPZ/hEe9mzI52io5GREQU0ni5KU8sLsmQQsFfOxERUUe02ihckX8H+jcNgeT0oSy+CQDg8Q6H3leJjU1XYrv5C+h55kxERNQhJfgZKUesMsiQQsEXOxER0bf16zsCy4fdAX2Fpu22444zq8WVnIpvu22s7THs1T6NXAM/T4mIiL6Nl5vyxOKSHPHVTkRE1M708Vdjom4hpAZP2232GD+q6qoBAKdOSdBq09rui3d8iPsc12Clpb7XsxIREYUyXm3KE4tLMsSRS0RERGdERydg5eRdSKlNA7zt104+ndjU7me/b0S7n9VSC5ZZb8J3o99CjJqnVERERACg5PWmLPFMSIZYXCIiIgKGDJyGxVmboKqUOrz/hLOi3c9lZYkdPi636SXsUdyDsUauJEdERMSrTXlicUmGWFwiIiI5UypVWDD5FgzzTILU7O3wMc5oP8prK9vdVlzsh0bTcYHJ5C7AbS1rcb3lJLgAMxERyRmLDPLE37sMKZQ87SUiInlKSsrCqnG7YKk0Ax0PWAIAnE5u6eBWBSCNuuA2Svgwy7oDT0T9DOlanmIREZE8qTiYQZZ45iNDaq3m0g8iIiKKMONHXI5Z8euAmo5HK33TCU9Fh7eXlydfctt0+5/wiPdmzDU7upyRiIgo3OmULC7JEYtLMqTW6kRHICIi6jU6vRFXTLkDWU2DITl9l3y8y+hHWU3HxaXCQglqdeylj+mrxgbbVbjD8hkMPMkmIiIZMahYZpAj/tZlSKNjcYmIiOQhs+8ILBuyHfryzo/aLU+xQ5I6njMnSQooFaM7va8x1iewR/MUBhlYYCIiInkwKFlmkCP+1mVIzeISERHJwIzx12CCbiGkRk+Xtjvpq7ro/ZWVqV3aX7zzI9zjuAarLHVd2o6IiCgcceSSPPG3LkMaTosjIqIIFm1OxMrJu5Bcmwp4L9K1uwNugx8lNacv+phjxxRQq8xd2q9aasFS6yY8GP13xKp5+kVERJGLI5fkib91GeLIJSIiilRDB83A4n43QVXZtaLSWRWpDvj9/os+xucDVKrOT437pgFNL2O3YhfGmy7d+4mIiCgcceSSPPG3LkMcuURERJFGpVJj4eTNyHNPgNRy6dXgLuQkLj4l7qyq6vRuH8PkPoZbm9fhRstxqNmKiYiIIoxBxQ83OWJxSYbUOr3oCERERAGTnJSNlWN3wlwZDXRvwBIAwKOTcKq6rFOPLTiqhEpl7PaxlPBhhvVuPGF4Felano4REVHk4LQ4eeJvXYa4WhwREUWK8SOXYmbcGqCm+6OVzqpKc8Dn69x0Na8XUKu7NzXum9Lsf8Gj3k2YZ27t8b6IiIhCQRSnxckSf+syxOISERGFO53eiKVT7kSWbSAkV2D6F51UVHfp8bU1GQE5rtZXg2ttV2OHeT8MSk4lICKi8BbFkUuyxN+6DLGhNxERhbOszFFYNmQ7dOXqgO3Tp5FwsrZzU+LOKijQQKk0BCzDKNtu7NXsxSADC0xERBS+2NBbnvhblyGlUgWVOnAn5ERERL1l5oRrMV4zH1KjJ6D7rUp3wuPp2j5dLglazciA5ohz7sO9jquwxlIb0P0SERH1Bp1SAaWCX5LIEYtLMsXRS0REFE4s5iSsnHwPkmpSAG8PunZfwCl194o59fWZgQ0CQCW14nLrzXjI9FfEqXmqRkRE4YPNvOWLv3mZ0mhZXCIiovCQN3gGFva7EapKf1D271NLOF5T0q1tjxZooFBoApzojJzmV7AbOzHBFJieUkRERMHGKXHyxd+8THHkEhERhTqVSo1Fk7dgqGsCpJaerwZ3ITVpLrjd7m5t62iVoNONCnCic4yeQmxtXoebLMVQc5YBERGFOI5cki/+5mWKI5eIiCiUpSRnY+WYnYiuNAGBnwXXziltXY+2b2zMClCSjinhw3TrTjxheAUZOp66ERFR6DKo+E2IXPEMRaY4comIiELVhFHLMCN2NVAbvNFKZ/lVEo7XdW9K3FkFR3VQKIK/UEaa/a94xLMJC8z2oB+LiIioOzhySb74m5cpjU4vOgIREVE7er0JS/PvRKY1F5IrOP2Vvq02zQ2n09mjfbS0SNDphgco0cVpfTW42nYN7jJ/giglvx0mIqLQEsWeS7LF37xM6Y0m0RGIiIja9M8cg6WDb4euIvgjgL6pRF8fkP002bIDsp/OGmnbi72aPRgS1auHJSIiuiiLunc/xyl0sLgkUwazWXQEIiIiQKHArAkbME49F5LV06uHlhQSjtf3bErcWQUFBvT2aVWs8xPsar0Kay01vXpcIiKiC4nTqERHIEFYXJIpQzSLS0REJJbFkoxVk3YhsSYZ8AW5a3cH6lI9sLe2BmRfNpsEvT4vIPvqCpXkwBLrLXjI9BfEa3haR0REYsVpOHJJrngWIlMGs0V0BCIikrFhg2dhYZ8boKzsnd5KHSk1BmZK3FktzQMCur+uyGl+FU9Id2GSyScsAxERUbyWxSW5YnFJpjhyiYiIRFCptFiUvxVDXOMg2YO/GtyFSAoJxQ2lAd3nsWNGAOKabBs9xdjSvAY3WwqhZq9vIiISIJ4jl2SLxSWZYnGJiIh6W0pKDlaOuQvRFUag92fBtdOY4kWzvSWg+2xokKDXDw7oPrtKAQlTrfdgt+En6KvjaR4REfUuTouTL551yBSLS0RE1JsmjlqOGTGrgFpxo5W+qcTUGJT9ttoHBWW/XZVq/xsedN+IhWa76ChERCQjbOgtXywuyRRXiyMiot6gN5ixbMoO9LMOgOQS11/p24ptgZ0Sd1ZhoSko++0Onb8OV9muwU7zRzCqOE+OiIiCjyOX5IvFJZliQ28iIgq2/lljsHTQNmjLQ+tbTGuyF7YmW1D2XVsrQacT19i7I8NtT2OP+gkMjRKdhIiIIh17LskXi0sypdHqoNbpRMcgIqJIpFBg9sTrME41F5LVIzrNeUrN1qDu3+UcGtT9d0escz92tl6F9ZZqgS3HiYgokkWplNCrWGKQK/7mZYx9l4iIKNBiYlKwatIuJFQnAT7BXbsvoLg5OFPi2vZfHJqfryrJgcXWzXjY9CckaHgKSEREgcV+S/LGMwsZY3GJiIgCafiQOViQcT2UlaHTW+nbmhK8aLAGp5n3WZWVEnS6/kE9Rk/0b/4ZHpd2YLIpNJqrExFRZGC/JXljcUnGWFwiIqJAUKm0WJy/FYOdYyDZQ7tgURobnF5L3+Z2hd7UuG8yeo5jc/Na3Gw5Bo2CE+WIiKjn2G9J3lhckrEoNvUmIqIeSkvNxcrRd8FUYQRCcxZcOyfsp3vlOCdPxfXKcXpCAQlTrfdit/7H6KfjKSEREfUMi0vyxjMJGePIJSIi6olJo1dimnkFUBfao5XOaonzoaahrleOVVbqh07bp1eO1VMprW/hQfeNWGRuER2FiIjCGKfFyRuLSzLG4hIREXVHVJQZy/LvQt/GbEju0O2v9G1l8U29ejyPd3ivHq8ntP46XGm7FjvNH8Ko4jQ5IiLqOjb0ljcWl2TMYGZxiYiIuiYnaxwuH7gN2orwO4U47ijv1eOVlsT36vECYbjtGexVPYa8KNFJiIgo3HDkkryF35khBYyBPZeIiKizFArMmbgRY1SzIVk9otN0WavFh6q66l495smTErTa1F49ZiDEuD7H3a1XYr2lChzDREREnRWvZXFJzlhckjFTbOg3GyUiIvFiYlKxauI9iK9OBHxh0LW7A6cTxfQT8vtGCDluT6kkJxZbt+AR0x+QqOHpIhERXVqKViM6AgnEswUZMyckiY5AREQhbsTQeViQvhHKKp/oKD1y3NW7U+LOKitLFHLcQMlq/gUel+5Avik8mrYTEZE4GXqt6AgkEItLMmaMjYNKzaGLRER0PrVai8vyb8UgxyhIreFdWHBG+1FeWynk2MXFEjSa8C4wRXlO4pbmtdhiOQqtghPliIjofFqFAkmcFidrLC7JmEKhgCku/JqNEhFRcKWnDcTKUXfDWBEFhOcsuHZOJ4uZEneGAsAogccPDAUkTLZ+B7v1LyJTz9NHIiJqL1WngYJfQMgazw5kjlPjiIjomyaPWYWp0csh1YVf0+4LOeERM2rprPLTyUKPH0jJrf/Ag67rsdjcLDoKERGFEE6JIxaXZC46IbyH6hMRUWBERZmxPP8u9GnoD8ntFx0nYFxREspqxPRbOquwUIJaHSs0QyBp/A1Yb9uAe8z/hUnFb6mJiAhI17OZt9yxuCRzZhaXiIhkb0D2BFyeuw2aisg7LahItUOSxM7tkyQFlIrwnxr3bXm272Ov6hEMixKdhIiIREvXceSS3EXeWSR1CUcuERHJmEKBOZOux2jFTEi2yJkG900nfGKnxJ1VWZkqOkJQWFwHcFfrlbjKUgGOYSIiki9OiyMWl2SOPZeIiOQpLjYNqybeg/iqBMAXAV27O+DWSyipOS06BgDg2DElVCqz6BhBoZKcWGi9FY8af4dEDU8tiYjkiMUl4hmAzHHkEhGR/IwcOg/z0jZAWeUTHSWoKtPs8PtDo3+UzweoVaNFxwiqzJZf4Qn/bZgaHZmj4IiI6MLYc4lYXJI59lwiIpIPtVqLy/K3YaBjFKTWyC4sAcBJ1IiO0E51TbroCEFn8JZiU9M6bLEcgZZLUhMRyQZ7LhGLSzKn0elhiI7MYfpERHROetogrBh1N4wVBiAyZ8G149FJOFldKjpGOwVHlVApI7/7tQISJlvvxx79C8jS81STiCjSxWvUMKj4fi93/AsgTo0jIopw+WPWYKppGVAnn+lKVWkO+HyhNTrL4wHUmsieGvdNSa3/xHddG7HE0iQ6ChERBRGnxBHA4hKBU+OIiCJVVJQFy6fcjYyGTEie0Og91FtOKkNrStxZdbV9RUfoVRp/I9Zar8M95v8gmt9qExFFpAxOiSOwuETgyCUiokiUmz0Rl+duhaZcfn1vfBoJJ2tCa0rcWUePqqBU6kXH6HV5tmexR/UwRkT+rEAiItnhyCUCWFwiAOaEJNERiIgoQBQKJeZOugGjMAOSzSs6jhBVaU54PKE5BdDlArSaUaJjCGFxHcCO1nW4xlIO+ZU8iYgiV4aeI5eIxSUCp8UREUWKuLh0rJq4C3FV8YBfBl27L+CUplZ0hIuqb+gnOoIwSsmN+dZteMz4BpI0PA0lIooEXCmOABaXCBy5REQUCUYNW4B5KddCURVaTax7m08l4URtaE6JO6vgqBYKhbynEPRr+TUe99+GadFu0VGIiKiH0jlyicDiEgGISU0THYGIiLpJo9FjSf5tyG0ZAckh78ISANSku+ByuUTHuKjWVgk63UjRMYQzeEuxqWkdbrV8Ba2CE+WIiMJVdpROdAQKASwuEfRGE6IsMaJjEBFRF2WkD8GKETsQVSG/BtEXUqKtEx2hUxob+4uOEDImWr+LPbrn0F/P01IionCTpFXDrFaJjkEhgJ/iBACIT+8jOgIREXXBlLFrkW+8AlJ9aDauFsGvlHC8LrSnxJ1VcFQHhUItOkbISHL8Cw+4NuIKi010FCIi6oIBUfyCi85gcYkAAHHpGaIjEBFRJxiNsViefzfS6/sBHr/oOCGlLt0Nh9MhOkantLRI0OmGiY4RUjT+Rqy2bsR90e/BrOIpKhFROMjhlDj6H35yEwAgjiOXiIhCXm7OJCzJ2QxNBfvTdKREXy86Qpc0NeWIjhCShjT9EHtU38Uoo3xXPCQiChcDjBy5RGewuEQAgLg0jlwiIgpVCoUS8ybdiFHSdEhNXtFxQpKkkFBcHx5T4s4qOGoAT8U6ZnYdxh329bjWUsZ/ISKiEMZpcXQWP68JAEcuERGFqvi4DKyasAuxVXGAnyM5LqQu1QN7q110jC6x2STo9UNFxwhZSsmNedbb8ajxdSRrecpKRBSKBnBaHP0PP6kJAGBOSIRGbxAdg4iIvmHUsIWYm3INFNU+0VFCXqmxQXSEbmlpGSg6Qsjr1/IbPOa7DdOj3aKjEBHRN5hUSqTptaJjUIhgcYnaxKWli45AREQANBo9luTfjtyW4ZAcLCxdiqSQUNwYXlPizio8ZgTAHlqXYvCW4qamddhmOQydgv9eREShIJujlugbWFyiNpwaR0QkXp/0oVgxYgeiKnjC1lmNKV40tzSLjtEt9fV+6PWDRccIGxOsD2GP7ofI1vMUlohINPZbom/iJzO1YVNvIiKxpo5dh8nGyyHVe0RHCSul0Y2iI/RIq51T47oi0fFv3O/cgKUWq+goRESyxuISfROLS9QmniOXiIiEMJlisSJ/J9Lq+wIev+g4YafYGp5T4s4qKjKLjhB2NJINq6zX4zvmd2FR8XSWiEiEAUaOsqZz+GlMbeLSOXKJiKi3DcyZjMuyN0NdITpJeLIme2FtsomO0SM1NX7odbmiY4SlwbYXsFt1P0YZuZIiEVFvy+HIJfoGFpeoTUxKGpQqlegYRESyoFAoMX/yTRgpTYXU5BUdJ2yVWsJ7StxZTif7LnWX2fUV7rCvxwZLKU9siYh6iVoBZBk4conO4WcwtVGp1bAkpYiOQUQU8eLj+2DVhF2IqYwFOAuuR443nRYdISCOH48RHSGsKSU35lq34zHjr5Gi5ektEVGwZRp00Ci5eiedw09faocrxhERBdeY4YsxN/lqKKp9oqOEvaYEH+qtDaJjBERFhR86XZboGGGvb8sbeMx3K2ZEu0RHISKKaGzmTd+mFh2AQkt8egaOfyY6BdGlHa+tx3sFJ1DeaEOT04UN+WOQl35u5J0kSXj760J8cqIMDo8HWfGxWD5mGBKjjRfd74dFp/DesRNodrqQGmPGslFD0Tc+pu3+Px88gv2nTkOrUmHx8EEY3S+97b5DZZX47NRpXD91XMCfL4U/rcaABRM2wVCugwQWlgKhLNYGtIhOEThudx6Ak6JjhD299zRubFqPkTEP4EfNI+H0sx8TneM+9Dnsr/8M3qIj8NfXwfLwM9BPmdl2vyRJsL/6Ihxv/gH+lmZo80Yg+vZ7oc7od9H9tv7xddhf/yn8DfVQZ+fCfOtOaAbntd3f/MJTcLz9Fyj0Bphu3AbDnEVt9znf+wcc7/wVsY8/G/gnTBQkA6I4JY7a48glaocjlyhcuL0+pMWYsWx0Xof3/7vgBD4oOoUVY/KwbXY+tGo1XvrPJ/D4LnxRf7C0An8+dBRzhw7A7XOnIC0mGi/95xM0O898A/51RTUOlFbgpmnjcdmIQfjNZ4dhd7kBAA63B3//8hiWXyAPyVvfjDwsH34nDOU8EQukYnuZ6AgBdfJkrOgIEWWc9WHs0X4fOQZO26BzJKcDmuxcRG+7p8P7W197Fa2//zWit9+LuOd/BoXeAOvOLZDcFx4N5/z322h+8WmYrtmE+P/7FTTZuWjcuRn+xjMjK10fvQ/nu28hdu8LMN10G5qeehh+25l+cf6WZrT8v+dgvm1X4J8sURANMHLkErXH4hK1k5TZX3QEok4ZnJqEhcMGYljG+X3CJEnCf4tOYs7gHOSlpyAtxoy140egyeHCV+XVF9zn+4UnMaF/H4zP6oMUSzRWjBkGjVqF/SfPXMDWNLUgOzEOfeJiMKpvOvRqNertrQCANw8XYHJ2X8QaDcF5whS2po1bj0lRSyA1eERHiSgtcT7UNtSJjhFQZaUStFp+yRNICY7/4DuO67AsQhq/U8/pJkyB6fot0E+ddd59kiSh9Xe/gvGqG6HPnwlNdi7Mux6Br64Wrg/+fcF92n/7CxgWLYdh4RVQZ2Yjevt9UOj0cPz9jwAAb+lJaEaOgWbgUBhmL4TSaISv8swSoS0/fhaGJaugSk4NyvMlCpY8E895qT0Wl6id+Iy+UGu0omMQ9UiD3YFmpwsDkhPabjNoNegbH4OS+o4vMLw+P8obbcj9xjZKhQIDkhJQUm8FAKTFmFHWaEOr24PTDTZ4fH4kmIw4WduA0402TBnAfil0TrQpHivydyK1rg/gYdfuQCuLbxIdISh83uGiI0QcjWTDSusNuD/6H7CoeepLF+arLIe/oQ7aMRPablOaoqEZnAf3kcMdbiN5PPAWHm23jUKphHbMBHj+t406OxfeY0fhb26Cp/AIJJcLqvQ+cH95AJ6io4havi64T4wowAxKBXI5com+hT2XqB2lSoXEflmoLD4mOgpRtzU7nQCAaH37KUgmna5titu32d1u+CUJJl37baL1OtQ02wEAA1MSMbpvOp795wfQqFRYO34EtCoVfvfFV1g7bgQ+Ol6CD4tPwajVYuXYYUixRAfh2VE4GJw7BSP00yFVeEVHiVgnHOWiIwRFSUk8Mjh4KSgGNf0Ie7T/xUvGh/C5nVPl6Hz+/42GVMbGtbtdGRsPf0N9x9vYGgG/r8Nt3KWnAAC6cZPhmbMIDbdcBYVOB/POh6HQG9D8/cdh3vkQHH/+LVr/8BqUlhiY77gf6qzswD85ogAaYjJApeD7KLXH4hKdJ6l/DotLRBcwPy8X8/Ny235+5+tCDEhKgFKpwLtHi3HnvKk4UlmDX396ENvnThWYlERQKlWYO/EGxFTHQGpmYSlYWi1+VNZdeIprODt5UkL/7BS43VWio0SkaPfX2O5Zi39Z9uKntn5srU+9xrThZpg23Nz2c8tP/w/a0RMAlRr2X7yM+J/8Bq6P/wvb7vsR/3+/EpiU6NKGR0eJjkAhiGOD6TzJ/fltCYW3aP2ZYbrfHqXU4nKdN5rpLKNWC6VCgRZX+22anS6YL7BNTVMLvigpx4K8XByvqUdWQhxMeh1G9ElFeWMTnB4WF+QkMSETq8bvQkxlDMBZcEF1OrFZdISg8vtGio4Q0RSSF7Otd+Bx4y+RquWpMJ2jjDszNf5sI+6z/I31UMbFd7yNJRZQqjrcRnWBbbylJ+H855swbtwMz6HPoBk+GsqYOOhnzIO36Cj8rfYAPBui4BkezX5LdD5+otJ5krNyREcg6pE4owHReh2Kas4NYXd6PCitt6JffMerMalVSqTHWlBUfa5BsF+SUFxTj37xMec9XpIkvPH5l1gycgh0GjUkSYJfOlNR8P9v2WtJ4vLXcjF2+GWYnbQeqGZBsTccd1eIjhBUZWWJoiPIQkbL7/GodytmRV94FTCSF1VqOpRxCXB/8UnbbX57CzxHv4J2SMf90BQaDdS5g9ttI/n9cH/xKTQdbCNJEpqeeRTRt9wJpSEKks8PeM98dki+/32G+PkNBYU2jlyijrC4ROeJz+gLlUYjOgbRRbk8XpQ32lDeaAMANLS0orzRhka7AwqFAlMHZOHdI0X4urwaldYm/PqTQzAbdMhLT27bx4/e24cPik61/Tw9NwufnCjD/lOnUd3UjN9//hXcXi/GZZ3fAOWTE2Uw6rQYmnZmf5kJcSiuqUdJfSP+U3gSyWYTDFq+jiKdVhuFK6ZsR3bzUEgOTrDpDY5oP8prIru4VFwsQaNhgak36H3luL5pPbZbDkCvZP8QOfA7WuEpPgbP/1pA+CrL4Sk+Bl91JRQKBaJWrIf9Fy/D+eF78JwoQtPu+6FKSIRuysy2fTTeuQmtf3it7WfjqqvgePMPcLz9Z3hLTqD5+49DcjqgX3DFecd3vPkHKGNioZs8HQCgzRsJ98H9cB85jNY3fgFVv/5QmtizkUKXXqnAwCg286bzsecSnUelViOxbyaqjheJjkJ0QWWNNvzovX1tP//50FEAwNjMDKwdPwIzB/WH2+fFG59/CYfbg6yEWNw4bTw0KlXbNvUtrbC73G0/j+ybhhaXG29/VYhmpwtpMWbcMG38eVPpmp0uvHu0GFtnT267rW98DKbl9sdP/rsfJp0Wa8ePDNIzp1DRN2MYJidfDqmco5V6U3lyC3BadIpgUwAYCeAfgnPIx1jro9hjmIrnFNtR5OCo00jmPXYEjXfc2PZzy4tPAwD085fAsvNhRK3dAMnpQPMzj8Lf0gztsJGI2f08FNpz5wLeijJobNa2n/Uz58NvbUTLKy/C31gPdfZAxO55/rxpcb6Geth/+TLifvhq222awXmIWnUVrPdugzImDpadDwfniRMFyGCjAWoW46kDConzNqgD/3z5eRz6x99FxyAiCknTx1+JFGtfwMOpC73tnX7HUFod8dUlDBoEJCb9XHQM2fEqovFnyzP4nS3u0g8mIpKha9PisWcglzWl83FaHHUoiX2XiIjOEx2dgJX5O5FSm8HCkgDuKD/KaspFx+gVx45JUKs77hFHwaOWmrHceiMeiH4bFjVPk4mIvm0E+y3RBfBTkzqU3J/FJSKibxoycBoWZ22CKrLb/YS08tRW2TTKlyQFlIpRomPI1sCmH2OP4l6MMbKITET0TVwpji6ExSXqUEKffmzqTUQEQKlUYcHkmzHMOwlSM/sriXTCXyU6Qq+qqkoTHUHWot1Hsd2+DtdbTkF16YcTEUU8nVKBgUYWl6hjLC5Rh1RqNRL6ZIqOQUQkVGJiJlaN2wVLpQXgAAah3HoJJdVlomP0qoICBVQqs+gYsqaQvJhlvROPR/0c6VqeNhORvA02GqBhM2+6AH5K0gUl988WHYGISJhxI5ZgdsJ6oIajlUJBZVor/H55Vfh8PkCt4tS4UJBh/yMe9m7G7Gin6ChERMJwShxdDItLdEHsu0REcqTVRuGK/DvQv2kIJKdPdBz6n5OoFh1BiOqaDNER6H/0vkpsbLoSd5g/h57f3BORDLGZN10Mi0t0QclcMY6IZKZf3xFYPuwO6CvYcy6UeHQSTtXIa0rcWQVHlVApeTIfSsbYHsde7dMYaGCBiYjkhSOX6GJYXKILSujbDyq1WnQMIqJeMX381ZioWwipwSM6Cn1LVZoDXq88pyd6PIBaM1p0DPqWeMeHuNdxDVZa6kVHISLqFVqFAoPYzJsugsUluiCVWoOEvlmiYxARBVV0dAJWTt6FlNo0wCuPZe7DzSlljegIQtXV9hUdgTqgllqwzHoTvhv9FmLUPKUmosg22KRnM2+6KH4S0kWlDxoiOgIRUdAMGTgNi7M2QVXJolKo8mkknKgpFR1DqKNHVVAq9aJj0AXkNr2EPYp7MM4or4bzRCQvEy0m0REoxLG4RBeVMWio6AhERAGnVKqwYPItGOaZBKlZntOtwkVVmhMej7ynKrpcgFYzUnQMugiTuwDbWtbiBssJqESHISIKggkxRtERKMSxuEQXlT6YxSUiiixJSVlYNW4XLJVmgAOWQl6JplZ0hJDQ0JApOgJdghI+zLTehSeifoZ0LU+xiShyKABM4MglugR+8tFFRZktiEvjMshEFBnGj7wCs+LXATUcrRQOfCoJx2vlPSXurKNHtVAouIphOEi3/wmPeG/GXLNDdBQiooDIidIhXsuFnujiWFyiS8oYnCc6AhFRj+j0Rlwx5Q5k2QZBcvpEx6FOqk13w+VyiY4RElpbJeh0I0XHoE7S+aqxwXYV7jTvh4ENcIkozE2K4aglujQWl+iSODWOiMJZZt8RWDZkO/TlHPURbk7pOCXum6yN/UVHoC4abduNPZqnMMjAAhMRha8JFvZboktjcYkuiU29iShczZxwDSboFkJqlHdD6HDkV3JK3LcdPaqDQsFpCeEm3vkR7nVchdWWOtFRiIi6ZSJHLlEnsLhEl2ROTEJ0QqLoGEREnRZtTsTKybuQVJMKeNm1OxzVpbnhcLJnzTe1tEjQ6YaJjkHdoJJacYV1Ex6M/jti1Tz9JqLwkaHXIF2vFR2DwgA/3ahTOHqJiMLF0EEzsLjfTVBVsqgUzkoMDaIjhKSmphzREagHBjS9jN2KXZhgYu83IgoPE7lKHHUSi0vUKWzqTUShTqVSY1H+FuS5J0Bq4Wpw4UxSSCiuLxEdIyQdK4gCT9/Cm8l9DFub1+EmSzHUbMVERCGOU+Kos3h2Qp2SzpFLRBTCkpOysXLsTkRXmAAOWAp79ake2FvtomOEJKvVD72en8nhTgkfplt34gnDK8jQ8XSciEIXm3lTZ/HTjDolPqMPDGaL6BhEROeZMHIpZsatAWo4WilSlBg5Je5iWlpyRUegAEmz/xWPeDZhnrlVdBQiovMkaNQYYNSLjkFhgsUl6rT0gUNERyAiaqPTG7F0yp3ItA2E5GL/kkghKSQUN3KVuIspPGYEwPlUkULrq8G1tquxw/wpDEr+XokodEyI4agl6jwWl6jT2HeJiEJFVuYoLBuyHbpyLsseaazJXjS3NIuOEdLq6yXo9YNEx6AAG2Xbg72avRhkYIGJiEIDm3lTV7C4RJ2WMZg9HohIvFkTrsV4zXxIjR7RUSgISqIbRUcIC612FpciUZxzH+51XIU1lhrRUYiIOHKJuoTFJeq0xMwsaA0G0TGISKYs5iSsmnwPEmtSAC+7dkeqYhunxHVGUZFZdAQKEpXUisutt+Ah018Rp+apOhGJEa1SIs/Eaz/qPH5iUacplSqk5Q4WHYOIZChv8Aws7HcjlJV+0VEoiKxJXlibbKJjhIWaGj/0ugGiY1AQ5TS/gt3YiQkm9pQjot431mKEUsFputR5LC5Rl/QZOlx0BCKSEZVKjUX5WzDUNQFSC1eDi3RlFqvoCGHF6eJCG5HO6CnE1uZ12GQphprXeETUi/Jj2G+JuobFJeqSrJFjREcgIplISc7GyjE7EV1hAjgLThaKm8tERwgrx4stoiNQL1DCh2nWndht+An66HjqTkS9Y3Y8p19T1/ATiroksV8WTLFxomMQUYSbMGoZZsSuBmo5WkkumuJ9qLc2iI4RVioqJOh0maJjUC9Jtf8ND7lvxAKzXXQUIopwqToNBrPfEnURi0vUZf1GjBYdgYgilF5vwtL8O5FpzYXkYn8lOSmLs4qOEJbc7jzREagX6fx1uNp2De4y70OUkvPkiCg4ZsRFi45AYYjFJeoyTo0jomDonzkGSwffDl2FWnQUEuC4vVx0hLB08iRHE8vRSNuT2Kt5AkOiRCchokg0M45T4qjrWFyiLus3bBQUSv7pEFGAKBSYNXEDxqnnQrJ6RKchAeyxPtQ01IqOEZbKSiVotRmiY5AAsc792NV6FdZaqsExTEQUKCoFMD2Wzbyp61ghoC7Tm0xIyckVHYOIIkBMTApWTdqFxOpkwMeu3XJVltAkOkJY83m5kqtcqSQHllg34yHTnxGv4Wk9EfXc6GgjLBqOIqeu46cQdUvWCE6NI6KeGTZ4FhZkXA9lJXsryd1xR4XoCGGttDRBdAQSLLv5p3hC2oFJJp/oKEQU5mbGs98SdQ+LS9Qt7LtERN2lUmmxKH8rhrjGQbJzNTi5a7X4UVlXJTpGWDtxQoJWmyI6Bglm9BzHluY1uNlSCI2CE+WIqHtmsd8SdROLS9QtydkDYDBbRMcgojCTmjIAK8fchegKI8BZcATgdGKz6AgRwe8bKToChQAFJEy13oPdhpfQV8fTfCLqmniNGiOiDaJjUJjipw51i0KhQL9hI0XHIKIwMnHUcky3rARqOVqJzjnh5pS4QDh9Okl0BAohKfa/40H3jVhotouOQkRhZEZcNBQc+UjdxOISdRunxhFRZ+gNZiybsgP9rAMgudlfic5xmvw4XcPiUiAUF0vQaNh7ic7R+etwle0a3G3+CEYVLxaJ6NJmxrHfEnUfi0vUbZkjRgOsbBPRRWRnjcXSQdugLVeJjkIh6HRKi+gIEUOSAGCU6BgUgkbYnsYe1eMYGiU6CRGFMgWAGey3RD3A4hJ1W5QlBkmZ/UXHIKJQpFBg9sTrMFY1B5LVIzoNhaiTXjbyDqSK8mTREShExbo+w87Wq7DeUgV+LUhEHRkWbUCCVi06BoUxFpeoR7JGjhUdgYhCTExMKlZN3IWE6iTAx67d1DF3lB+l1adFx4gohYUKqNWxomNQiFJJDiy2bsEjpj8iQcNLACJqbzZHLVEP8ZOFeiRz5GjREYgohAwfMgcLMjZCWcXeSnRx5amtkCQWHwPJ7weUSk6No4vLav45npDuwGQTF1cgonPYb4l6isUl6pG03EHQGY2iYxCRYCqVFovzt2KwcwwkOy9Y6NJO+jklLhiqKtNER6AwEOU5ic3Na3GLpQAa9s8kkj2LWoUxFl7TUc+wuEQ9olSq0C9vpOgYRCRQWmouVo6+C6YKI8CBKNQJbr2EU9VlomNEpGPHFFCp+O0zXZoCEqZY78Nu/Y/RT8dLAiI5mxYbDRULzdRD/CShHssZN1F0BCISZPLolZhmXgHUcbQSdV5lWiv8fk6dDAavF1CrOGWdOi+l9S086L4Ri81cvZFIrhYmWkRHoAjA4hL1WNbocVCquLIAkZxERZmxLP8u9GnMhuRmkYC65iSqRUeIaNU16aIjUJjR+uuw3nYtdkV/AKOKoxeI5ESjUGBOPJt5U8+xuEQ9pjea0GfoMNExiKiX5GSNw+UDt0FbwY8Q6jqvVsKpGk6JC6aCoyqolFGiY1AYGtb0PexVPYY8/vkQycaUWBPMapXoGBQBeGVAATFg/GTREYgo2BQKzJm4EWNUsyFZPaLTUJiqTHfA6+U0ymDyeAC1hqvGUffEuD7H3a1X4kpLJTiGiSjyLeKUOAoQFpcoIHLGTYRCwT8nokgVE5OKVRPvQXx1IuBj127qvlPKGtERZKG+rp/oCBTGVJITi6xb8Yjp90jU8PyOKFIpASxIYHGJAoOfFhQQxphYpOYOEh2DiIJgxNB5WJC+Ecoqn+goFOZ8GgknakpFx5CFo0fVUCp1omNQmMtq/iUe82/HlGiOViWKROMsRiRqNaJjUIRgcYkCZgBXjSOKKGq1Fpflb8MgxyhIrZzGRD1XneaCx8OL1N7gdErQajk1jnrO6D2Fm5vWYYvlKLRcqpwooizkqCUKIBaXKGBy2HeJKGKkpw3EilF3wVhhADgLjgLkpIZT4npTQ32m6AgUIRSQMNn6HezWv4hMPS8fiCLFQvZbogDipwMFTExyChIz+4uOQUQ9lD9mNaZGLwfqOFqJAsenknCillPietPRo1ooFJzuQIGT3PoPPOi6HpeZm0VHIaIeGmYyoJ+B06cpcFhcooAaOHGK6AhE1E1RUWYsz78LGQ1ZkNx+0XEowtSmu+ByuUTHkJXWVgk63UjRMSjCaPwNWGfbgHvM/4VJxWlyROFqSVKM6AgUYVhcooDKnZgvOgIRdcOA7Am4PHcbNBX8WKDgKNHWi44gS1ZrlugIFKHybN/HXtUjGB4lOgkRdceSxBjRESjC8CqCAio2NR2J/XgiSxQ2FArMmXQDRitmQrKx0TIFh18pobi+RHQMWSoo0EMBlegYFKEsrgPY0XolrrJUgGOYiMJHnsmArChOiaPAYnGJAi6XU+OIwkJcbBpWT7wH8VXxgI9duyl46tI8cDgcomPIUnOTBJ1+mOgYFMFUkhMLrbfiUePvkKjhpQVROOCoJQoGfgJQwLG4RBT6RubNx7y0DVBU+URHIRkoMdSJjiBrTU05oiOQDGS2/ApP+G/D1GiOgiUKdey3RMHA4hIFXFxaOhL7ZoqOQUQdUKu1uCz/NgxsHQmplYUlCj5JIaG4nqvEiXSswAie8lFvMHhLsalpHbZavoZWwYlyRKFoqEmP/pwSR0HAMw0KCo5eIgo96WmDsGLU3TBW6AHOgqNeUp/qgb3VLjqGrFmtfuj1Q0XHIJlQQMIk6wPYo3seWXpeahCFGk6Jo2DhOz4FRe4kFpeIQkn+2DWYaloG1HG6AvWuUmOj6AgEwN6SKzoCyUyS411817URS8xNoqMQ0TdwSlzwvPrqq4iJiREdQxgWly5hw4YNUCgUbf/Fx8djwYIFOHz4sOhoIS0uLQNJWdmiYxDJXlSUBcvz70ZGfSYkj190HJIZSSGh2MopcaGgsNAkOgLJkMbfiLW263Cv+X1Eq3jZQSTa8GgDsqP0omMERFVVFW677Tbk5ORAr9cjOTkZ+fn5ePHFF9Ha2io6nizxXb4TFixYgMrKSlRWVuLdd9+FWq3GZZddJjpWyBs6fbboCESylps9EZfnboWmgn0vSIzGZC+amjlqIRTU1fmh1w0SHYNkaqjtB9ijehAjokQnIZK31SlxoiMExIkTJzBq1Ci88847ePzxx3HgwAF8/PHHuPvuu/HXv/4V//znPzvczuPhCP6LcbvdPdqexaVO0Ol0SElJQUpKCkaOHIldu3ahrKwMtbW1AICysjKsXr0aMTExiIuLwxVXXIFTp06128fLL7+MwYMHQ6/XY9CgQXjhhRfa7nO73di6dStSU1Oh1+vRr18/PPHEE735FINiUP50KFVq0TGIZEehUGLupBsxCjMg2byi45CMlUZzSlwoaXUMFh2BZMziOoQdretwjaWcFyBEAmgUCixLihUdIyA2b94MtVqNzz77DKtXr8bgwYPRv39/XHHFFXjzzTexZMkSAIBCocCLL76Iyy+/HEajEY899hh8Ph+uv/56ZGVlwWAwYODAgXj22Wfb7f+9997D+PHjYTQaERMTg/z8fJSUlAAADh06hJkzZyI6OhpmsxljxozBZ5991m77t99+G4MHD4bJZGobqHKW3+/Hww8/jIyMDOh0OowcORJvvfVW2/2nTp2CQqHAa6+9hsmTJ0Ov1yMvLw/vv/9+u3wKhQJvvvkmhg8fDr1ej4kTJ+Krr75ql+ODDz7A1KlTYTAY0KdPH2zbtg12+7k+mJmZmXjkkUdwzTXXwGw246abburR74Xv7V3U0tKCX/ziF8jJyUF8fDw8Hg/mz5+P6Oho/Pe//8WHH37Y9kd0tvL3y1/+Eg888AAee+wxHD16FI8//jjuv/9+/PSnPwUA/OAHP8Cf//xn/OY3v8GxY8fwy1/+EpmZmQKfZWBEmS3IGjVGdAwiWYmPy8CqibsQVxUH+Nm1m8QqtpWJjkDfUFwULToCyZxScmO+dRseNf4WSRpehhD1ptnx0YjXhv8X//X19XjnnXewZcsWGI3GDh+j+MZqlQ8++CCWLVuGL7/8Ehs3boTf70dGRgZ++9vf4siRI3jggQdw77334je/+Q0AwOv1YunSpZg+fToOHz6Mjz/+GDfddFPbPq+88kpkZGRg//79+Pzzz7Fr1y5oNJq247W2tuKpp57Cz3/+c/znP/9BaWkpduzY0Xb/s88+i6effhpPPfUUDh8+jPnz5+Pyyy9HUVFRu+dw11134c4778SBAwcwadIkLFmyBPX19ec95umnn8b+/fuRmJiIJUuWtI3OOn78OBYsWIAVK1bg8OHDeP311/HBBx9g69at7fbx1FNPYcSIEThw4ADuv//+rv462v+7S5LEq4+L2LBhA37xi19Arz8zN9VutyM1NRV//etfMXr0aPziF7/Ao48+iqNHj7b9wbndbsTExOCPf/wj5s2bh5ycHDzyyCNYt25d234fffRR/O1vf8NHH32Ebdu24euvv8Y///nPdi+ESFD4yYf4yzPhPwqLKByMGrYAA32jITl8oqMQwZboxW+b37/0A6lXzZ37MZyuYtExiOBQ98XPovbgP81a0VGIZOEneZlYHAErxX3yySeYOHEifv/732PZsmVttyckJMDpdAIAtmzZgj179kChUOD222/H9773vYvuc+vWraiqqsIbb7yBhoYGxMfH47333sP06dPPe6zZbMYPf/hDXHvttefd9+qrr+K6665DcXExsrPP9B9+4YUX8PDDD6OqqgoAkJ6eji1btuDee+9t2278+PEYN24cnn/+eZw6dQpZWVnYvXs3du7cCeBMwSsrKwu33nor7r77brz33nuYOXMmXnvtNaxZswYA0NDQgIyMDLz66qtYvXo1brjhBqhUKvzf//1f23E++OADTJ8+HXa7HXq9HpmZmRg1ahT+8Ic/dOrf/lL4lUEnzJw5EwcPHsTBgwfx6aefYv78+Vi4cCFKSkpw6NAhFBcXIzo6GiaTCSaTCXFxcXA6nTh+/DjsdjuOHz+O66+/vu1+k8mERx99FMePHwdwpoB18OBBDBw4ENu2bcM777wj+BkHTvaY8dCb+E0pUTBpNHosmXIbcltGsLBEIaM0xio6AnXA6RoqOgIRAMDgLcWmpnW41fIldBH25SpRqIlVqzA33iw6RlB9+umnOHjwIIYOHQqXy9V2+9ixY8977PPPP48xY8YgMTERJpMJP/7xj1FaemYBkri4OGzYsAHz58/HkiVL8Oyzz7ab1nbHHXfghhtuwJw5c7B79+62a/qzoqKi2gpLAJCamoqamhoAQFNTEyoqKpCfn99um/z8fBw9erTdbZMmTWr7/2q1GmPHjr3oY+Li4jBw4MC2xxw6dAivvvpquxrE/Pnz4ff7cfLkyYv++3QXi0udYDQakZOTg5ycHIwbNw4vv/wy7HY7XnrpJbS0tGDMmDFtxaez/xUWFmL9+vVoaWkBALz00kvt7v/qq6+wb98+AMDo0aNx8uRJPPLII3A4HFi9ejVWrlwp8ikHjEqtwcBJU0XHIIpYGelDsGLEDkSVR8bKHxQ5jrecFh2BOnDieIzoCETtTLQ+iN2659Bfz8sSomC5IjkWWmVkvMZycnKgUChw7Nixdrf3798fOTk5MBgM7W7/9tS51157DTt27MD111+Pd955BwcPHsR1113Xrpn1K6+8go8//hiTJ0/G66+/jtzc3LZr9wcffBBff/01Fi9ejH/9618YMmRIu5E/35wiB5yZoidislhLSws2bdrUrgZx6NAhFBUVtSt+XWhqYXdExl9YL1MoFFAqlXA4HBg9ejSKioqQlJTUVoA6+5/FYkFycjLS0tJw4sSJ8+7Pyspq26fZbMaaNWvw0ksv4fXXX8fvfvc7NDQ0CHyWgcNV44iCY8rYdcg3XgGpnitfUGhpiveirrH+0g+kXlde7odOlyk6BlE7SY5/4QHXRlxhsYmOQhSRVqdERiNvAIiPj8fcuXPx3HPPtWtO3VkffvghJk+ejM2bN2PUqFHIyck5b/QRAIwaNQr33HMPPvroI+Tl5eFXv/pV2325ubnYvn073nnnHSxfvhyvvPJKp45tNpuRlpaGDz/88LxMQ4YMaXfb2WIWcGZa3Oeff47Bgwdf8DGNjY0oLCxse8zo0aNx5MiR82oQOTk50GqDMx2ZxaVOcLlcqKqqQlVVFY4ePYpbb70VLS0tWLJkCa688kokJCTgiiuuwH//+1+cPHkS7733HrZt24bTp898a/vQQw/hiSeewA9+8AMUFhbiyy+/xCuvvIJnnnkGAPDMM8/g17/+NQoKClBYWIjf/va3SElJQUxMjMBnHTipAwYiNi1DdAyiiGE0xmJF/k6k1/cFPH7RcYjOUxbXJDoCXYTbnSc6AtF5NP5GrLZuxH3R/4ZZxUsUokAZEKXDaHPgRqeEghdeeAFerxdjx47F66+/jqNHj+LYsWP4xS9+gYKCAqhUqgtuO2DAAHz22Wd4++23UVhYiPvvvx/79+9vu//kyZO455578PHHH6OkpATvvPMOioqKMHjwYDgcDmzduhXvvfceSkpK8OGHH2L//v3nFX0u5q677sKePXvw+uuv49ixY9i1axcOHjyI2267rd3jnn/+efzhD39AQUEBtmzZgsbGRmzcuLHdYx5++GG8++67+Oqrr7BhwwYkJCRg6dKlAICdO3fio48+wtatW3Hw4EEUFRXhT3/603kNvQMp/NvF94K33noLqampAIDo6GgMGjQIv/3tbzFjxgwAwH/+8x/s3LkTy5cvR3NzM9LT0zF79myYzWfmtd5www2IiorCk08+ibvuugtGoxHDhg3D7bff3rbPvXv3oqioCCqVCuPGjcPf/vY3KCNk6CIADJ02Cx+89jPRMYjCXm7OJIw2zoJU4RUdheiCjrdySlwoO3UqDv36iU5B1LEhTc9hj+4/+LH+ARywsxcTUU+tSokTHSHgsrOzceDAATz++OO45557cPr0aeh0OgwZMgQ7duzA5s2bL7jtpk2bcODAAaxZswYKhQLr1q3D5s2b8fe//x3AmZ5JBQUF+OlPf4r6+nqkpqZiy5Yt2LRpE7xeL+rr63HNNdeguroaCQkJWL58OR566KFOZ9+2bRtsNhvuvPNO1NTUYMiQIfjzn/+MAQMGtHvc7t27sXv3bhw8eBA5OTn485//jISEhPMec9ttt6GoqAgjR47EX/7yl7ZRScOHD8f777+P++67D1OnToUkScjOzm5rAB4MXC2OekVTXS1e2roR4J8bUbcoFErMnXgDYmviAD9fRxS6WmJ9eM3xnugYdAmz5/wLbne56BhEF+RXaPFPy1783NYHHKNL1D1KAPsnDUG6nqsyhouzq8UdOHAAI0eO7PAxZ1eLa2xsDKnZTpEzNIZCmjkhEX2HDhMdgygsxcf3waoJuxBbFcvCEoW80wnNoiNQJ/h8I0RHILoopeTGPOvteMz4GpK1vGQh6o78WBMLS9Rr+E5NvWbINDb2Juqq0cMXYW7y1VBU+0RHIeqU4w6OhgkHpSUJl34QUQjo2/JbPO67FTOi3Zd+MBG1E4lT4ih0cVoc9Rq304Ef3XQ1PC6n6ChEIU+rMWDB+E0wVOhERyHqtFaLH79y/Vt0DOoUCbNn/xNuT5XoIESd9knMd/F/TSPg4uUL0SVFqZT4Mn8ojBdpbk0USBy5RL1GqzdgwPhJomMQhbw+6UOxfMSdLCxR2DmdyClx4UMBvzRSdAiiLplgfQh79c8iR89G30SXsjjRwsIS9SoWl6hXcWoc0cVNHbcOk42XQ6r3iI5C1GUn3BWiI1AXnC5LFB2BqMsSWt/Hd5zXYanZKjoKUUhbncwpcdS7WFyiXtU3bzii43kyS/RtJlMsVuTvRFpdX8DDdXEo/DhNfpTXVoqOQV1QXAxoNPGiYxB1mUayYZXtenzH/C4sKl7OEH1buk6D/FiT6BgkM3w3pl6lUCqRN3OO6BhEIWXQgHxc1n8z1Bz0QWGsPMUOtnEML2d+XaNExyDqtsG2F7BbdT9GGfneQ/RN61LjoVRw+ij1LhaXqNcNn70ASs7/JYJCocT8yZswwj8FUrNXdByiHjnhZXU0HFWUp4iOQNQjZtdXuNO+FhsspbywIQKgVgBXp3FUKvU+vgdTrzPFxSN77ATRMYiESkjoi1UTdiGmMgbgLDgKc+4oP0qry0XHoG4oLFRArY4RHYOoRxSSF3Ot2/GY8ddI0fLyhuRtQYIFyTqN6BgkQ3z3JSFGzlssOgKRMGOGL8acpKugqPaJjkIUEOUprZwSF6b8fkCp5NQ4igx9W97AY75bMTPaJToKkTAb0hNERyCZYnGJhOibNwJxaRmiYxD1Kq3GgMunbEdOcx4kBwtLFDlOSlWiI1APVFWli45AFDB672nc0LQet1kOQq9kzxmSlwFROkyJjRYdg2SKxSUSZsS8RaIjEPWavhl5WD78ThjKtaKjEAWUR+9HSc1p0TGoB44VKKBS8WKEIst46yPYo/0+cgwsMJF8XMtRSyQQi0skzNDps6HR6UXHIAq6aeOuxKSoJZAaPKKjEAVcRZoDPh9H4oUzrxdQqzg1jiJPguM/uN9xLZZZGkVHIQq6KJUSa1LiRMcgGWNxiYTRRRkxaMp00TGIgibaFI8V+TuRWpcBeNi1myLTKVSLjkABUFPTR3QEoqBQS81Yab0B90f/AxY1L30ocq1IjkW0mitykzh8hyWh2NibItXg3KlY3P9mqLk6O0Uwr1bCyZoy0TEoAAoKlFAqo0THIAqaQU0/wh7FdzDGyMUHKDKxkTeJxuISCZWU2R+puYNExyAKGKVShQWTb8Zw32RIzV7RcYiCqirdAa+Xf+eRwO0GtBpOjaPIFu3+Gtvta7HRUgKO76BIMs5sxFCTQXQMkjkWl0g4jl6iSJGYkIlV43bBUmkBOAuOZOCkslZ0BAqgurq+oiMQBZ1C8mK29Q48bvwl0rS8FKLIsCE9XnQEIhaXSLzciVNgMFtExyDqkXEjlmB24nqghqM4SB68agkna0tFx6AAOnpUA6VSJzoGUa/IaPk9HvFuxWyzU3QUoh6J16ixJClGdAwiFpdIPLVGg7yZc0XHIOoWrTYKV0zZjv5NQyA5uWIWyUdNugtut1t0DAogp1OCVjtSdAyiXqP3lWOj7UpstxyAXqkQHYeoW9anxkGr5GU9ice/QgoJI+YshELBP0cKL/36DMfyYXdAX64VHYWo153ScEpcJGqozxIdgajXjbU+ij3a72GAgQUmCi9KANewkTeFCF7NU0iwJCUja9QY0TGIOm36+KswUb8IUoNHdBSiXudTSTheWyI6BgVBQYEWCoVGdAyiXpfg+C++47gWKywNoqMQddrseDP66PklJ4UGFpcoZIyYt0h0BKJLio5OwMr8XUipTQe8XM6Y5Kku3QWXyyU6BgWB3S5BpxshOgaREGqpGcutN+KB6LdhUfMyiULfBo5aohDCd00KGVkjxiAmOVV0DKILGjJwGhZnbYKqgkUlkrdTunrRESiIbNZs0RGIhBrY9GPsUdyLsUYu/UqhK9Ogxay4aNExiNqwuEQhQ6FUYvSiy0XHIDqPUqnCgsm3YJhnEqRmrgZH8uZXSjhex1XiItnRAh0UUImOQSRUtPsobrevw/WWk3w1UEi6KSMRCgX7hFHoYHGJQkrezLkwRJtFxyBqk5iYiVXjdsFSaQY4YIkIdalutDpaRcegIGpukqDTDxMdg0g4heTFLOsOPB71c6RredlEoSNOo8K61HjRMYja4bskhRSNTo+R8xeLjkEEABg/4nLMTlgP1HC0EtFZJVFsdisHzU0DREcgChkZ9j/iYe9mzDE7RUchAgBsTE+EQcVLeQot/IukkDNy/mVQ63SiY5CMabVRuGLKHchqGgzJ6RMdhyhkSAoJxxu4SpwcFBQYAHC6BdFZel8lrrNdie3mz6FX8rVB4hiUSmzMYCNvCj0sLlHIiTJbkDdjjugYJFP9+o7A8mF3QF/OpbiJvq0h1YMWu110DOoFVqsEvX6o6BhEIWes7XE8qX0aAw0sMJEY61LjEKdRi45BdB4Wlygkjb1sGRRK/nlS75ox/mpM1C2E1OARHYUoJJUYG0VHoF5kbxkoOgJRSIpzfIh7HddgpYUrZ1LvUiuAm/skio5B1CFevVNIsiSlIHfiFNExSCaizYlYOXkXkmvTAC+7dhN1RFJIKLZylTg5KSw0iY5AFLLUUguWWW/Cd6P/jhg1L6modyxJjEFfA9uHUGjiOyGFrHGXrxAdgWRg6MDpWNzvJqgqWVQiupjGZB+amptEx6BeVFfnh14/SHQMopCW2/Qy9ijuwTijX3QUkoEtfZNERyC6IBaXKGQlZ2Wj77CRomNQhFKp1Fg4+RbkeSZCauFqcESXUmbmKnFy1No6WHQEopBnchdgW8ta3GA5AZXoMBSxpsdGIy86SnQMogticYlCGkcvUTAkJWVh5didMFeaAQ5YIuqUYluZ6AgkwPFis+gIRGFBCR9mWu/C7qhXka7lJRYFHkctUajjOx+FtMzho5CUmS06BkWQ8SOXYlb8OqCGo5WIOsuW6EWjzSo6BglQVeWHTpcjOgZR2Eiz/wWPeG/GPLNDdBSKIMNNBkyLixYdg+iiWFyikDf28uWiI1AE0OmNuCL/TmTZBkJy+kTHIQorpTE20RFIILdrqOgIRGFF56vGtbarcKd5PwxKheg4FAE2c9QShQEWlyjkDZw0BebEZNExKIxl9RuJZUO2Q1+hFh2FKCwdb+GUODk7ftwiOgJRWBpt2409mqcwyMACE3VfX70WS5JiRMcguiQWlyjkKZUqjFm8VHQMClMzJ1yL8doFkBo9oqMQhaXmeC/qGutFxyCByssl6HT9RMcgCkvxzo9wr+MqrLbUiY5CYWpTn0SoFCxQUuhjcYnCwrBZc6GPZlNR6jyLOQkrJ9+DpJoUwMuu3UTdVRbXJDoChQCPe5joCERhSyW14grrJjwU/SZi1bz8os6L06iwLjVedAyiTuG7G4UFjU6PkfMWi45BYWLooBlY2O9GqCr9oqMQhb3jreWiI1AIOHUqTnQEorCX0/T/sAc7McHE3o/UOdelJyBKxUt2Cg/8S6WwMXrhEmgNBtExKISpVGosyt+CPPcESC1cDY6op+wxflTX14iOQSGgpESCVpsuOgZR2DN6CrG1eR1ushRDzZlOdBEmlRLXZySKjkHUaSwuUdgwRJsxasHlomNQiEpOysbKMTsRXWECOAuOKCDKEjkljs7x+YaLjkAUEZTwYbp1J54wvIIMHS/HqGM3ZiQiTsPFaCh88N2MwsrYy5ZBF2UUHYNCzISRSzEzbg1Qy9FKRIF0wskpcXROaQm/QScKpDT7X/GIZxPmmVtFR6EQY1YrcXMfvudSeGFxicKK3mTC6EVXiI5BIUKvN2HplDuRaRsIycX+BUSB5DD7UVFbJToGhZATJ/zQaJJFxyCKKFpfDa61XY0d5k9hUHKeHJ2xKSMJFo5aojDD4hKFnTGLl0JvNImOQYJlZY7C0iG3Q1fOD16iYDid1Cw6AoUcBSRppOgQRBFplG0P9mr2YrCBBSa5i1WrcBNHLVEYYnGJwo4uKgpjlywXHYMEmjXhWozXzIfU6BEdhShinXBXio5AIaj8dJLoCEQRK865D/c4rsIaCxdSkLNb+iYhWq0SHYOoy1hcorA0auESGKLNomNQL7NYkrFq8j1IrEkBvOzaTRQsTqMfp2srRMegEFRUBGg08aJjEEUsldSKy6234CHTXxGn5qWa3MRr1Lg+PUF0DKJu4TsWhSWt3oBxl68QHYN6Ud7gmVjY9wYoK/2ioxBFvPKUFkgSC7h0vjN/FqNExyCKeDnNr2A37sIEE3tKysmWvkkwctQShSkWlyhsjZy/GFGWGNExKMhUKjUW5W/BUNd4SC1cDY6oN5zwsZE3XVhlRaroCESyYPQUY2vzOmyyFEHNVkwRL0mrxnUctURhjMUlClsanR7jr1glOgYFUUpKDlaO2YnoChPAQRREvcJt8KOsplx0DAphx44BarVFdAwiWVDCh2nWXdht+An66HjpFslu7ZsMg4q/Ywpf/OulsDZi7kKYYuNEx6AgmDhqOWbErAJqOVqJqDeVp7XC7+f0U7owvx9QKkeLjkEkK6n2v+Eh941YYLaLjkJBkKrT4Oo09rOj8MbiEoU1tVaL8ctWi45BAaTXm7Asfwf6WQdAcvECl6i3nfRXi45AYaC6Kk10BCLZ0fnrcLXtGtxl3ocoJefJRZJt/ZKh56glCnP8C6awN3z2fETHJ4qOQQHQP2sMlg6+HdoKNjIkEsGj96Okpkx0DAoDBQVKqFQm0TGIZGmk7Uns1TyBIVGik1AgpOs0uDKVMzEo/LG4RGFPpdZgAkcvhTeFArMnbsA41VxIVo/oNESyVZnmgM/HlYno0rxeQK3m1DgiUWKd+7Gr9SqstVSDY5jC2+2ZydAqeVlO4Y9/xRQR8mbOhSUpWXQM6oaYmBSsmrQLCdXJgI9du4lEOoka0REojNRUZ4iOQCRrKsmBJdbNeMj0Z8RreFkXjvrqtVibwl5LFBn4LkQRQaVWY8LyNaJjUBcNHzIbCzKuh7KSvZWIRPNqJZysKRUdg8JIQYEKSiXn5RCJlt38Uzwh7cAkE0eehpvtmcnQsH8WRQgWlyhiDJ02G3Fp/BY1HKhUWizO34rBzrGQ7FwNjigUVKU54fXy9Uid53YDGs1I0TGICIDRcxxbmtfgZkshNAoWK8LBgCgdVqew1xJFDhaXKGIoVSpMu+o60THoElJTBmDlmLtgqjACnAUXUfaVHcR1b+zCmOeXoc+eaXir8L/t7pckCU/99ycY89xS5Dw9B+te246TDZduHv3qF7/HpBdXI+epOVjys004UHGk3f0Pvfsc8p5djPEvrMAfvn6n3X1/Lfg3rntjV8+fnAycUnFKHHVdfX0/0RFC2uHDDnznviqsWV2CObNP4MMP2i8jL0kSXn2lAatXlWDRwpO4665KnD596d6Df/qjDVeuL8XCBSexdUs5Cgqc7e5/8YV6LFt6CuvWluDdfza3u+/991vwnfuqev7kKOQoIGGq9R7sNryEvjpe5oW6+7PToGIhkCII33UoomSPmYC+ecNFx6ALmDR6BaZbVgK1HB0RiRxuJwYnZePRuds7vP/FT36FVz7/HR6ffyf+cvX/waDR46rf7IDT67rgPv989F088q/ncXv+Bvxtw8sYkpSDq3+zA3X2RgDAP4o/xJ+O/hO/XP007p1xC+56ay8aWq0AgCZXC/b+5yU8Oq/jPHSOVy3hRC2nxFHXHT2ihlKpEx0jZDkdEvpna3HrtoQO73/9NRv+8Icm3HZ7Ap57Lg16vQK7dlXC7b7wdPF//7sFP/pRPa6+JhY/+lE6+mdrsWtnFRobz0yJ+vgjO/71rxbs3pOKG2+Kx9NP18FmO3NfS4sf/+8njRfMQ5Ehxf53POS+EQvN9ks/mISYGmvCvASL6BhEAcXiEkWc6VffAIWCf9qhRG8wY1n+DvRtzIF0kRNmCm8zsyfi7mk3YmHutPPukyQJP/nst7h10tWYP2AqBidl4/uX3Yfqlnq8XfjBBff50v7fYN2Iy7Bm+CLkJmTiifl3Qq/R4/Uv3wQAFNeXYGKfkRiROghLh8xBtNaIUlslAODxf7+Iq0ctRbqZzf4vpSbdBbfbLToGhSGnE9BqR4qOEbLGT4jCxo1xmDLFeN59kiTh97+34cqrYpCfb0T/bB127kxCfZ0PH37QesF9/u4NGxYtMmPBgmj0y9Ti9tsToNMp8NZbZ0YolZZ6MGKEHgMH6jBrlglRUUpUVp4ZDfXSj+ux5PJoJCerg/OEKWRo/XW4ynYN7jZ/BKOKo2NCiRLAgznpomMQBRyvwCniJGX2x5Bps0THoP/JzhqLpYO2QVuhEh2FBCq1VaLG3oCpmWPbbjPrTBiZNhhfVHzV4TZunwdfVhViSr9z2ygVSkzNHIPPy78GAAxOzMHhqmOwOptxuOoYnF4XMmMz8Onpw/iyuggbx6wI7hOLEKc0taIjUBhrbMgSHSEsVVZ60dDgw+jRhrbbTCYlBg/W4cgRZ4fbeDwSCgtd7bZRKhUYPdrQtk3/bC0KC11obvahsNAFt9uP9HQNvvzSiaJiN5Yt42gJORlhexp7VI8jj733Q8bqlDgMNRku/UCiMMOvLSgiTVl7NY7t+y+8rgtPt6EgUygwe8J1SKhLgmS9dP8Iimy1LfUAgARjbLvbE6PiUGNv6HCbhlYbfJIPid/aJiEqDsX1Z6Zwzeg/HsuHzsVlP70JerUWzyy+F1EaPe59+2k8s/he/PzAH/HKF79HnMGC3fPvwsBEXgR/m1/FKXHUM0ePajFmrAaSxPf6rjg7jS02tv2XLzGxKjQ0drzql83mg99//jaxsSqUlZ359x83Lgqz55iwZXM5tDoF7t6ZBL1eiWefrcXddyfhL39pwh//0ASLRYntdyQiM1MbhGdHoSTW9Rnudl+FtyxP4de2FLa8FChKpcSu/qmiYxAFBYtLFJFMcfEYt2Q5Pn7j16KjyFJMTCrmDt4AZZUf7NpNwXbHlI24Y8rGtp+/98ErmJI5FhqlGj/4+Of4x8ZX8c/ij7D9zcfwtw0vC0wammrS3HDWdjxKgqgz7HYJOt1wOJ2fi45C/3PttXG49tpzq1D97GeNGD3aALUK+OUvrHjp5Qzs29eKPbtr8OKPuNKuHKgkBxZbt2BI9NX4vms56jxsUyDC5j5JSNFpRMcgCgpOi6OINW7JChhjubxnbxsxdC4WZGz8X2GJ6IxEUzwAtDXiPqu2tQFJxo5fp3FRFqgUKtR+a5u61gYkXmCb4voS/P7IO7hr6vX4uPQAJmSMQHxUDJYMmokvqwvR4rpwHxO5KtXXiY5AEcBmzRYdIeycHX3U+K1RStZGH+JiO55KbrGooFSev01jow+xcR1vU1rqxrv/bMZ118Xh0CEnhg3XIyZGhenTjSgqcqO1lZ/XcpLV/HM8Id2BySYurtLbUrQabO6bJDoGUdCwuEQRS6PXI3/NVaJjyIZKpcXi/FsxyDEakp0nLNReX0sqkoxx+KDk3MiGZpcdByuOYnRaXofbaFUaDEvJxYff2MYv+fHBqS8wJn3oeY+XJAm73n4KD8zaCqM2Cj7JD4//zN/i2f/1SR1PNZErv1JCcR2nxFHPFRTooQB763VFaqoacXEqHPjC0Xab3e7H0aMuDBmi73AbjUaB3Fwdvjhwbhu/X8KBA44Ot5EkCd//Xh1uvjkeBoMSPr8En/fMiGKfT2rbnuQlynMSm5vX4hZLATQKNvvuLTv7pyBKxctvilz866aIljd9DhL7scdKsKWl5mLl6LtgqojiLDgZs7tb8XV1Eb6uLgIAlNkq8XV1EcqbqqFQKHD92FX44Uc/wztFH+Bo7XHc/uZjSDbFY37ulLZ9rH3tdrz6+e/afr5x3Gr8+tBf8dsv/46iulO49+2n4fA4sHrYovOO/+tDf0W8IQZzc/IBAGPT8/BRyRf4ovxrvLz/t8iNz4RFHx3kf4XwUp/mRquDo7mo55qaJOj0w0THCDkOhx/FxS4UF5/pAVlZ5UFxsQvV1V4oFAosX27BL39pxUcf2XHihBt7dtcgPkGF/Cnnui/ftaMCf/yjre3nFSst+NubzXjn7WaUlLjx7Pfr4HRKWDDfdN7x//a3ZlgsKkyafGa1urw8PQ4cdODIESd+94YN/fppYDKxKChHCkiYYr0Pu/X/h346XhIGW57JgDUpnFFBkY09lyiiKZRKTL/6erzx6HdER4lYk0evRF/7AEh1HK0kd4erjmH1r29r+/nhfz0HAFiZtwDfW3wvbpmwHq0eJ3a9/RSanC0YlzEMP1/9FPRqXds2JY0VaHCcu4i6fPBsNLRa8fQH/w+19gYMScrBz1c/dd60uFp7A3748c/xh6teaLttVNoQ3DR+Da59YycSomLwzOJ7g/XUw1aJoeNm6kTd0dyUA432oOgYIeXYMRd23FnZ9vOPXjzzmps3z4S7dyZhzVoLnE4/vvdMHVpa/MgbpsfuJ1Kg1Z672K+o8MJmOzfqcuZME2w2H159tRGNjV5kZ+vwxO4UxMa1P61vbPDiV7+04tkfpLXdNmiQHqtWxuC+e6sQG6vC3TsTg/XUKUyktL6NB5Wf4w3z03iz6fwCJQXGgzlpUHKUGEU4hSRJHGdAEe8Pex7CiS/2i44RUaKizJg/ehO05fy2iygcSQoJr8d9ihZ7i+goFCFiY5XIG/YzcAgrUXj60rwdz7VORYuPr+FAmhtvxs+H9xcdgyjoeFVIsjDtyo1QqjjsO1AG9B+Py3O3sbBEFMYaUrwsLFFANTb6odcPER2DiLppWNP3sEf1GPKiLv1Y6hy1AnggO+3SDySKALwyJFmIz+iDYbMXiI4R/hQKzJl4PUYrZ0GyeUSnIaIeKDFxShwFnr1loOgIRNQDMa7PcXfrlbjSUglO4uq5q9MSMMDYcYN+okjD4hLJxuRV66E18KuY7oqLTcOqifcgvjoB4HBporBXbOUqcRR4hYXs2UIU7lSSE4usW/GI6fdI1PBysbvMaiV2ZKaIjkHUa/huQbIRZbZgwrLVomOEpZFD52Fe2nVQVnEZd6JI0JjsQVNzk+gYFIHq6iTo9YNExyCiAMhq/iUe92/HlGiOVu+ObX2TEa/l+lkkHywukayMXnQFYlM577mz1GotLsvfhoGOUZBauRocUaQoNVtFR6AI5mgdLDoCEQVIlPcUbm5ahy2Wo9BytbNO62/Q4cY+XI2R5IXFJZIVtUaDWRtvER0jLKSnDcSKUXfBWGHgwj9EEaa4qUx0BIpgxcXRoiMQUQApIGGy9TvYrX8RmXpePnbG7twM6JT8tyJ54V88yU7m8FEYOGmq6BghLX/MakyNXg7UcbQSUaRpSvSi0dYoOgZFsKoqCTpdtugYRBRgya3/wIOu67HEzGnVF7M0KQbT4lhkJ/lhcYlkaca1N7K5dweioixYnn8XMhqyILn9ouMQURCUxFhFRyAZcLuGio5AREGg8Tdgre063GP+D0wqTpP7tmiVEg/lpIuOQSQEi0skS6bYOOSvuUp0jJAyIHsCLs+9FZoKvi0QRbLjLadFRyAZOH48RnQEIgqiPNuz2Kt6BMP5XW07O/unIlmnER2DSAheRZJsjZy/GEmZHLYPhQJzJt2A0YqZkGxcDYQokjXH+VDXWC86BslAebkEna6f6BhEFEQW1wHsaL0SV1sqwDFMwHCTAdelJ4iOQSQMi0skW0qlCnNu3AyFQr4vg7i4dKyeeA/iq+IBH7t2E0W6snib6AgkIx73MNERiCjIVJITC6y34jHjG0jUyPecWglg98AMqLiiHsmYfN8BiACk5gzEsNnzRMcQYmTefMxLvRaKKp/oKETUS463louOQDJSUhInOgIR9ZJ+Lb/GE/7bMDVanqPgr0qLx2izUXQMIqFYXCLZm7puA6IsMaJj9Bq1WovL8m/DwNaRkFpZWCKSC3uMH9X1NaJjkIycOiVBq2VjWyK5MHhLsalpHbZavoZWRiN4EjRq3Nc/VXQMH5OrMQAAQ1lJREFUIuFYXCLZ05tMmHbldaJj9Ir09MFYMepuGCv0AGfBEclKWSKXjqbe5/MNFx2BiHqRAhImWR/AHt3zyNLL41LzuzlpsGjUomMQCSePVzzRJQydPhsZQ/JExwiq/LFrMNW4FKiT53BlIrk74eSUOOp9ZaWJoiMQkQBJjnfxXddGLDFH9hcbk2NMWJXCKcBEAItLRG3mXL8ZSlXkfetgNMZief7dyKjPhOTxi45DRAI4zD5U1FaJjkEydPy4HxpNkugYRCSAxt+ItbbrcK/5fUSrIu+yU6NQYHduhugYRCEj8l7lRN0Un9EXYy9bKjpGQOXmTMSSAZuhqZDPvHciOt/ppBbREUi2FIA0SnQIIhJoqO0H2KN6ECOiRCcJrFv6JCLXqBcdgyhksLhE9A0TV6yFOTFZdIweUyiUmDvpRoySZkCyeUXHISLBTngqRUcgGTt9miOXiOTO4jqEHa3rcI2lPCIuQPvotdiemSI6BlFIiYTXNlHAaHR6zNxwk+gYPRIfl4FVE3chrioO8LNrN5HcOY1+nK6pEB2DZKyoCFCr2ZOESO6UkhvzrdvwqPG3SNKE92XoYwPSYYjAqX5EPcFXBNG35IydgJxxE0XH6JZReQswN+UaKKp8oqMQUYgoT2mBJLHQTOJIEqBUjBYdg4hCRL+W1/C4/zZMi3aLjtItCxMsmJdgER2DKOSwuETUgdnXb4beaBIdo9M0Gj2WTLkNufYRkBwsLBHROSd9bORN4lVUcPoIEZ1j8JZiU9M63Gr5EjpF+PQGjVWrsIdNvIk6xOISUQdMsXGYed0m0TE6JSN9CFaM2IGocjYUJKL23AY/SmvKRccgwrFjCqjV/KafiNqbaH0Qu3XPIVsfHpeljw5IR5JOIzoGUUgKj1cxkQBDps5E9tjQnh43Zew65BuvgFTvER2FiEJQRWor/H6/6BhE8PsBpZJT44jofEmOf+E7zutwhcUmOspFLUywYEUK+8cRXQiLS0QXMffGLdCbokXHOI/RGIsV+TuRXt8X8PDCkYg6dkKqFh2BqE11VZroCEQUorSSFautG/Gd6H/BHIKNsuM0KuwdyOlwRBcTeq9cohBijInFrBCbHpebMwlLcjZDzcWfiOgiPHo/SmrKRMcgalNQoIRKFT79DImo9w1ueh57VN/FKGNoLUTx2IAMJGo5HY7oYlhcIrqEwVNmhMTqcQqFEvMm3YRR0nRITV7RcYgoxFWmOuDzscE/hQ6vF1CrOTWOiC7O7DqMO+zrca2lLCQuVhclWLAsOVZ0DKKQFwqvV6KQN+eGLdBHm4UdPz6+D1ZN2IXYqljAH1rf5BBRaDqlqBEdgeg8tTWcVkJEl6aU3JhnvR2PGV9DilbcJWucRoU9nA5H1CksLhF1gsjpcaOHL8Lc5KuhqOYIBCLqHK9WwomaUtExiM5TUKCGUmkQHYOIwkTflt/iMd+tmBHtEnL8xzkdjqjTWFwi6qTB+dORM25Srx1PqzHg8vzbMaB5GCQHC0tE1HnVaU54vZw+S6HH5ZKg1YwSHYOIwojeexo3Nq3HNsth6BSKXjvu4kQLlnI6HFGnsbhE1AVzbtjcK9Pj+qQPxfIRd8JQoQv6sYgo8pxUcUocha66+n6iIxBRGJpgfQh79c8iRx/8AlOcRoXduZwOR9QVLC4RdYExJhazgzw9buq49ZhsvBxSvSeoxyGiyORVSzhRyylxFLqOHlFDodCKjkFEYSih9X18x3kdllmsQT0Op8MRdR2LS0RdNCh/OgaMnxzw/ZpMsViRvxNpdX0Ajz/g+ycieaj9/+3deXzddYH/+/f37Dkn60lO1mZt0mZv04UCVUoRKGWRCogDVEH2Rfjhxjj3XneZigujMIL8wEEUGEYFtzIii3ZYBIoUBLULSbekSZqENGmzn5xz7h+VDKUtTU+TfM7yej4eeQzNyfJKR2jzzvfzPYWjGhsbM50BHNbIiOR2czQOQHSckX5d0HeF/r/0Z5Rhn/pvZzkOB0SHcQmIwqlXXq+UKTweV121VGdXXC9H+5R9SABJarur23QCcER7estMJwCIczX9d+mb9i+qyTd1z6TMcTggeoxLQBS8GZk65fJrj/njWJZNK068RvPCH1BkHzffBXBswvaIWjgShziwcaNblsWREwDHJn30r/rs4D/pkxk7p+Qb2zVzOA4HRItxCYhS9Yknac6SpVG/f05OiT665AvK7MiUOAUHYAp0F45pZHTEdAZwRIODEbndjaYzACQAKzKuU/s+rX/1/afyXdF/e3tOIFPn5nIcDogW4xJwDE69+lNK9Wcf9fstbDxLp+aulrU7NA1VAJLVdk+P6QRg0vr7KkwnAEggxQO/0K2hG7U8bfSo37fQ7dS35nIcDjgWjEvAMUhJTdPKGz4ry5rcv0ouZ4o+vPTTqtxXr8gwwxKAqRO2RdTSw5E4xI9Nm1JkyW46A0AC8Yy36cq9F+vmjNflsVmTeh+bpDtrSpTldExvHJDgGJeAY1RS36hFHz7vyG83q17nNX5WKe08/TKAqfd2QVBDw0OmM4BJ27s3Iren3nQGgAS0uO/rus31PVWmHHlguqEkV0uz0magCkhsjEvAFFh64WrlVVQd9vGTFl+iE7znKNIbnMEqAMlkh/dt0wnAUdu37/B/dgLAscgZflZfHL5U52X0HvZt5qd5dUt5wQxWAYmLcQmYAnaHQ2fd9Dk53Z4DXp+Wmq0Llv6zCnpmSUHu2g1gekSsiFp6ORKH+LN5k0/S5I6uAMDRckT26fy+q/TFtKeU4TjwW1+f3aa7a0vlnOTxOQDvj3EJmCJZBUVa/smrJ35dM+eDOqviWtnbDUYBSAq9+ePaNzhgOgM4anv2hOXx1JrOAJDgqvf+ULdZ/48W+v73h73fqCpSuddtsApILNy1DJhCDctP146/vK5yq1YZuzMU2TduOglAEtiZ2ivtMV0BRGdwsFp2+99MZwBIcGljG/Xp4EX6Q8Zt2uOep4sKjv4ZnwEcnhWJRCKmI4BEEh4Z1+7vbVCo7+ifBhUAovHzwCvq37fXdEbM2LFjh/70pz+pvb1dAwMD+tjHPqbq6uqJxyORiNatW6cNGzZoZGRExcXFOuuss5Sd/f7faKxfv15/+tOfNDAwoPz8fK1cuVJFRUUTj//+97/X66+/LpfLpQ996ENqbGyceOxvf/ub3njjDV100UVT/wXHuUDApuqaB0xnAEgSHs8sLTlurRwObuINTCWOxQFTzOZxyH9RtcT5bQAzYE9ekGHpPcbGxpSXl6czzzzzkI+/8MILevnll3XWWWfpyiuvlMvl0oMPPqjx8cNfbfrXv/5VTz75pJYtW6ZrrrlGeXl5evDBBzU4OChJ2rx5s9588019/OMf16mnnqrf/va3Ghra/+x9IyMj+sMf/nDYnmTX3R2WxzPXdAaAJGBZDtXXfY9hCZgGjEvANHCXpiv99FLTGQCSwM6MPtMJMaeqqkqnnHKKampqDnosEono5Zdf1kknnaTq6mrl5eVp1apV2rdvnzZt2nTYj/nSSy9pwYIFampqUiAQ0Nlnny2n06nXXntNktTT06OysjIVFhaqoaFBbrdbe/bsP6v41FNPadGiRcrIyJieLzgBDA8d/P8rAJhqFRWfUUZGk+kMICExLgHTJG3ZLLmrMk1nAEhwLf2tphPiSl9fnwYGBlRRUTHxOo/Ho1mzZqm19dC/l6FQSO3t7Qe8j2VZqqioUFtbmyQpLy9P7e3tGh4eVnt7u4LBoPx+v3bu3KnOzk4tWbJker+wONfSwvAGYHr5/R9UacnVR35DAFHhht7ANLEsS/6PzdXu729QeF/QdA6ABLQ3MK7efu7kfTQGBvY/q57P5zvg9T6fb+KI23sNDQ0pEokc8n16enokSZWVlWpsbNS9994rp9OpVatWyeVy6fHHH9e5556rP//5z1q/fr28Xq/OPvts5ebmTsNXF786OsKqq6/Q6OhW0ykAEpDLlau62u/IsrhtBTBdGJeAaWRPdcn/sbnq+dFfJW6dD2CK7czsl/aZrsA7Tj75ZJ188skTv163bp3Ky8tlt9v17LPP6rrrrtOWLVv0q1/9SldfzU/P32tstF4S4xKAqWZTXe135HLlmA4BEhrH4oBp5qnMUtrJxaYzACSgloE20wlxJzU1VZIOukppcHDwoCuT3uH1emVZ1iHf552P9149PT168803dcopp2j79u0qLS2Vz+dTXV2dOjo6NDrKM4q+19atWaYTACSgstJr5fcvNZ0BJDzGJWAGpJ9WKld5uukMAAlkIDuk7j09pjPiTmZmplJTU7V16/9eITM6Oqq2tjYVFx/6BwF2u12FhYUHvE8kEtHWrVs1a9asg94+Eolo7dq1Ov300+VyuRQOhxUOhyVp4v9GIlzO+l5tbWG5XSWmMwAkkMzM41RRcbPpDCApMC4BM8CyWcq+uEa2dJfpFAAJotW/13RCzBobG1NnZ6c6OzslSXv27FFnZ6f6+/tlWZaWLFmi5557Tps3b9bu3bv1y1/+Umlpaaqurp74GD/5yU+0fv36iV8ff/zx2rBhg15//XV1d3dr7dq1CgaDmj9//kGff8OGDfJ6vZo7d64kqaSkRNu2bVNbW5tefPFFBQIBeTye6f1NiFPB8UbTCQAShNudr/r6O2VZdtMpQFLgnkvADLGnuZR9SY26/+8bUoifWAM4Ns1DHIk7nPb2dj3wwAMTv37yySclSfPmzdOqVau0dOlSBYNB/fa3v9XIyIhKSkq0evVqORz/+9ei3t5eDQ0NTfy6vr5eQ0NDWrdunQYGBpSfn69LLrnkoGNxAwMDeu6553TFFVdMvK6oqEgnnHCCHn74Yfl8Pq1atWqavvL4t2O7X8VcvATgGFmWSw31d8rNfZaAGWNFuC4bmFEDL7ar79ctpjMAxLHBzLD+c+SPpjOAafGhU/+gsbFdpjMAxLG5c76mWbMuMZ0BJBWOxQEzLPWEQnkX5pnOABDH2gIciUPiCoc4GgcgegUFFzAsAQYwLgEGZK2qlLPo0M8wBABH0jLSbjoBmDY7d3KMBUB00tLqNXfO10xnAEmJcQkwwHLalL26RjYvtz0DcHRG0sJq7+4wnQFMm5aWiJzOXNMZAOKM05mlhvq7ZLe7TacASYlxCTDEkeWR/6JqyTJdAiCetOUNmE4AppklReabjgAQRyzLrvq67yslpch0CpC0GJcAgzxVWUo/vcx0BoA40hLkSBwSX1sbVy4BmLyK8s/I719qOgNIaoxLgGHpy4uVUpdtOgNAHBjxhdXWxbiExPfWW5YcDr/pDABxIBBYobKya01nAEmPcQmIAVkXzpEjkGI6A0CMay8YVCQSMZ0BTLtIRLJZTaYzAMQ4r3e2amu+ZToDgBiXgJhgczuU/fFaWW676RQAMWzreKfpBGDGdHQUmE4AEMPs9lQ1Ntwth4NnYAZiAeMSECOcuV75PzrHdAaAGDWWEtbOrjbTGcCM2bzZksOebjoDQEyyVFv7Lfl8s02HAPgHxiUghqTU5yht2SzTGQBiUHvBkMLhsOkMYMaEQpLNvsB0BoAYVFp6jXIDK0xnAHgXxiUgxqSvKJO7KtN0BoAYs027TScAM273bn7gAuBAfv8HNbvis6YzALwH4xIQYyybpexLauTI9ZpOARAjgu6Itu9uNZ0BzLhNGy3Z7T7TGQBihM9XpYb6O2VZfBsLxBr+rQRikM3jUM5ldbKlOk2nAIgBHYVDCoVCpjOAGTc+LjkcHI0DIDmd2ZrXeJ8cjjTTKQAOgXEJiFEOv0fZn6iVHPxrCiS77bYu0wmAMd1dxaYTABhms7k1r/EepaRwVBaIVXzXCsQwd0m6/BfOkSzTJQBMCTkj2tbFkTgkr02bHLLZUkxnADDGUm3td5SR0WQ6BMD7YFwCYpy3MaD000pNZwAwpLNoWMFg0HQGYMzoaEQu53zTGQAMmV3xGeXlnmk6A8ARMC4BcSD9lBJ5F+aZzgBgwDZHt+kEwLiet8tMJwAwoCD/fJWVXW86A8AkMC4BcSLrvEq5KzJMZwCYQSFHRFu7dprOAIzb+HeHLMtlOgPADMrKPF7V1beazgAwSYxLQJyw7DZlr66RI8B9J4Bk0VU0qrGxMdMZgHEjI5LbPd90BoAZ4vVWqKHhLtlsPHMyEC8Yl4A4YvM6lXNZnWxeh+kUADNgu7PHdAIQM/bsKTedAGAGOJ1+zWu8T04nV+wD8YRxCYgzjuwUZX+iVnLwFHJAIgvbI2rp2WE6A4gZG//ulmVxFQOQyGw2lxob7pbXy5PZAPGGcQmIQ+6yDPnPn2M6A8A06i4c08jIiOkMIGYMDkbkdjeazgAwjWqqb1Nm5iLTGQCiwLgExClvU67STy0xnQFgmuzwcCQOeK/+/tmmEwBMk/Lym5Wf/2HTGQCixLgExLH0U0vlnR8wnQFgioVtETX38CxxwHtt3pQi/voKJJ78/FWqKL/RdAaAY8CfzkCcy7pgjlzl3PAQSCS9BUENDQ+ZzgBiTn9/WB5Pg+kMAFMoM3OJaqrXmM4AcIwYl4A4Zzlsyrm0Vs6iVNMpAKbIDm+v6QQgZu3bV2U6AcAUSUur07zGe2SzuUynADhGjEtAArB5HMr5ZJ0cOSmmUwAco4gVUXMvzxIHHM6WzV5JPGMqEO+83grNn3e/HI400ykApgDjEpAg7Kku5VxZL3sGP/kB4llv/rj2DQ6YzgBiVm9vRB5PrekMAMfA7c5X0/wH5HJlm04BMEUYl4AE4sj0KOeKBtm8DtMpAKK0M40jccCRDA7ONZ0AIEpOZ5aa5j8gj6fQdAqAKcS4BCQYZ65XOZ+sl+Wym04BEIXmvlbTCUDMe2sLx2iAeGS3+zR/3n/I56s0nQJgijEuAQnIVZym7I/XSHbuSQHEk768cfXv7TedAcS87u6wPO45pjMAHAWbzaXGhruVnt5oOgXANGBcAhKUpypL/n+q5t9yII7sTO8znQDEjZER7rsExAvLsquu9nvy+5eaTgEwTfi2E0hg3oYcZa3iKZuBeNG8d6fpBCBuNDdnmE4AMEnVc7+h3NwVpjMATCPGJSDB+Y7LV/oZZaYzABzB3sC4evv3mM4A4kZHR1hud4XpDABHUDn7FhUWXmg6A8A0Y1wCkkD6ycVKPWmW6QwA72NnJvdaAo7W2Gi96QQA76Ok5CqVll5jOgPADGBcApJE5pnl8i7KM50B4DBaBttMJwBxZ+u2TNMJAA6jsOBCVVV+wXQGgBnCuAQkkazzquSpyzadAeA9Bvwhdff2mM4A4k5ba0RuV7HpDADvEQisUHX1N0xnAJhBjEtAErFslrIvqpa7MtN0CoB3ac3eazoBiFvBcZ7WHIglWVknqr7u32RZdtMpAGYQ4xKQZCyHTdmfqJW7gmfZAWJFy/Au0wlA3NqxnStygViRlXm85jX+X9lsbtMpAGYY4xKQhGwuu7Ivq2NgAmLAYGZYnT27TWcAcWv79ohcrkLTGUDSy8o8XvPm3Se7PcV0CgADGJeAJMXABMSGtgBH4oBjFQ7NM50AJDWGJQCMS0ASY2ACzNs60m46AYh7ra0B0wlA0mJYAiAxLgFJj4EJMGckLaxd3R2mM4C419wcltPJwATMNIYlAO9gXALAwAQY0pq3z3QCkCAsKTLfdASQVBiWALwb4xIASQxMgAnbgly1BEyVXbvyTScASYNhCcB7MS4BmMDABMycUV9YrV3cbwmYKlu2RORwZJnOABIewxKAQ2FcAnAABiZgZuzKH1QkEjGdASSMSMSSzVpgOgNIaAxLAA6HcQnAQRiYgOm3LdRpOgFIOB0dBaYTgITFsATg/TAuATgkBiZg+oylhLWjq810BpBwNm+25LCnm84AEg7DEoAjYVwCcFgMTMD0aC8YVjgcNp0BJJxQSLLbORoHTCWGJQCTwbgE4H1NDEyVmaZTgISxTRyJA6ZL5+4i0wlAwsjKOpFhCcCkMC4BOCKby66cy+rkqcs2nQLEvaA7ou27W01nAAlr00ab7Haf6Qwg7gUCKzSfYQnAJDEuAZgUy2FT9iU18i7KM50CxLXOwmGFQiHTGUDCGh+XHA6OxgHHorDgQjXU3ymbzW06BUCcYFwCMGmWzZL/gjlKPWmW6RQgbm2zdZlOABJeT3ex6QQgbpWWXK2amjWyLLvpFABxhHEJwFHLPLNcGSvLTGcAcSfkjGhb107TGUDC27jRLpuNozzA0aqcfYsqK//ZdAaAOMS4BCAqacuKlXVeFf8VAY5CZ9GIgsGg6Qwg4Y2OSi7nfNMZQNywLLtqqteotPQa0ykA4hTfFgKImu+4fPkvqpEclukUIC5sd3SbTgCSxttvl5lOAOKCzeZSfd2dKiy80HQKgDjGuATgmHgbcpRzWZ0sF+fygfcTckTU0rXDdAaQNDZucsqynKYzgJhmt/s0r/E+5eauMJ0CIM4xLgE4Zp7KLAWuapDN6zCdAsSsrsJRjY2Nmc4AksbwUERud5PpDCBmOZ1+LWh6UH7/UtMpABIA4xKAKeEqTlPg2nmyZ7hMpwAxaburx3QCkHT27Ck3nQDEJLc7XwsXPKL09EbTKQASBOMSgCnjzPUqcN08OXJ4hh7g3cL2iFp6OBIHzLRNG92yLK6qBd7N663QooU/l88323QKgATCuARgSjkyPQpc2yhnUarpFCBmdBeOaWRkxHQGkHQGBiJyu7kyA3hHWlq9Fi54RB5PoekUAAmGcQnAlLOnuhS4qkHuigzTKUBM2OF523QCkLT29nN1BiBJmZlLtKDpIblc2aZTACQgxiUA08LmcSjn8np55wdMpwBGRayIWt7mSBxgyqZNKeKvvEh2+Xmr1DT/x3I4uLIcwPTgT1oA08Zy2OT/p2qln1piOgUwpqcgqMGhIdMZQNLq74/I46k3nQEYU15+s+rqviubjSddATB9GJcATLv0U0vl/6e5ksMynQLMuJ0+jsQBpg3sqzKdAMw4m82lutp/U0X5jaZTACQBxiUAM8I7P1eBKxtk8/GsPUgeESui5t6dpjOApLd5s08SP+BA8nA6/Wqa/1Pl53/YdAqAJMG4BGDGuMsylHv9fDkCKaZTgBmxJ39c+wYHTGcASa+3NyKPp8Z0BjAjvN4KLVr4C2VmLjKdAiCJMC4BmFGO7BTlXjePZ5JDUtiRusd0AoB/GBqsNp0ATLuszOO1aOEv5PWWmk4BkGQYlwDMOJvXqZwr6uVdmGc6BZhWzf0ciQNixZYtPEsWEltBwQWaP//Hcjr5AR6Amce4BMAIy26T/6NzlL6ilNtgICH15Y2rf2+/6QwA/9DdHZHHPcd0BjANLM2u+Jxqa26TzeY0HQMgSTEuATAqfXmJ/BdVSw7+c4TEsjOdI3FArBkZ4b5LSCw2m1v1dd9XWdl1plMAJDm+mwNgnLcxoMDVDbKl8tM2JI7mfa2mEwC8R3Mzx4WQOJzObC1oekh5eWeZTgEAxiUAscFdkr7/meRyvaZTgGO2N2dcvX1cuQTEmo6OiNzuCtMZwDHz+aq0eNFjyshoMp0CAJIYlwDEEIffo9zr58ldlWk6BTgmO7O41xIQq8ZG60wnAMfE7/+gFi38uVJSZplOAYAJjEsAYorN41DOJ+uVtoy/MCF+bR1sM50A4DC2bfebTgCiVlp6rebP+w85HGmmUwDgAIxLAGKOZbOUsbJc2atrZLntpnOAozLgD6mrt8d0BoDDaN0ZlttVbDoDOCp2e6oaGu5S5ezPy7L4Fg5A7OG/TABiVkp9jnJvmC9HIMV0CjBprdl7TScAOILgeKPpBGDSvN5KLV70mHIDK0ynAMBhMS4BiGnOXK9yPzVfKXXZplOASWkZ3mU6AcAR7NzBnymID4HACi1e9Kh8vtmmUwDgfTEuAYh5NrdD2R+vVfoZZZJlugY4vKGMkDp7dpvOAHAE27ZF5HIVmM4ADsuy7Jo9+xY1NtwlhyPVdA4AHBHjEoC4kX5ysXIur5fN6zCdAhxSW2DAdAKASQqH5plOAA7J6czS/Hn3q6z0GtMpADBpjEsA4oqnKku5NzbJWcRP8RB7WsbaTScAmKTW1oDpBOAgaWn1Wrzo1/L7l5pOAYCjwrgEIO44sjzKvXaevAvzTKcAE4bTwtrVxbgExIvm5oicTgYmxI6Cggu0cMHPlJJSZDoFAI4a4xKAuGQ5bfJ/dI4yV82W7NyICebtyuNIHBBfLElNpiMAWZZLc+d+XbU1t8lud5vOAYCoMC4BiGupxxcqcHWjbOku0ylIcluDHaYTABylXW1cAQuz3O58LVzwsGYVXWw6BQCOCeMSgLjnLk1X3o1NcpWnm05Bkhr1RtTatct0BoCjtGVLRA5HlukMJKnMzOO0ePGvlZHBFXQA4h/jEoCEYE9zKXBlo9KWF+8/6QDMoPaCQUUiEdMZAI5SJGLJZvGNPWaaTWWl12tB04Nyu3JMxwDAlOD5vAEkDMtuKWNFmdwVGer92WaF9wVNJyFJbA1xJA6IVx0dBcrm+3vMEJcroLra7/JscAASDlcuAUg4nqos5f2fBXJXZZpOQRIY80S0o6vNdAaAKG3ebJPdzrFqTD+//4NactxahiUACYlxCUBCsqe6lHN5vdLPKJNsnJPD9OkoHFQ4HDadASBKoZDksC8wnYEEZlkOzZ59i+bPu18ujsEBSFAciwOQsCzLUvrJxfuPyT28SaG+UdNJSEDb1GU6AcAx2t1VpMxM0xVIRB7PLNXXfY+bdgNIeFy5BCDhuUvSlfd/FiilgZ8WYmoF3RFt273TdAaAY7Rpo012m9d0BhJMbu6ZOm7xbxmWACQFxiUAScGW4lD2JTXKOr9Klov/9GFqdBYOKxQKmc4AcIyCQcnh5Ggcpobd7lNN9W1qqL9TTif38wKQHDgWByCp+Bbny1Weod5HNinYNmA6B3Fum40jcUCi6OkuURo7AI5Relqj6ur+TV5vmekUAJhR/PgeQNJx5qQo97p5Sls2S+Je34hSyBnRti6OxAGJYuNGu2w2j+kMxC2bSkuv1cKFP2NYApCUGJcAJCXLblPGynLlXNkge7rLdA7iUGfhiILBoOkMAFNkdFRyObk3Do6e252vBU0/VeXsz8tmc5rOAQAjGJcAJDXP7Ezl3czNvnH0tju7TScAmGJv95aaTkCcyc09U0uOe1xZWcebTgEAoxiXACQ9m9ep7Etq5L+4WjYft6LDkYXsEW3t5kgckGg2bXTJsrjyBEfmdPpVX3/nP27anWk6BwCMY1wCgH/wNgaU9+mFSqnPNp2CGNdVNKrR0VHTGQCm2NBQRG73fNMZiHG5gZU6fskTyss903QKAMQMxiUAeBd7qkvZq2vlv6haNi9XMeHQdrh6TCcAmCZ79lSYTkCMcjr9qq/7vhoa/l0uFz+IAoB3Y1wCgEPwzgso7zMLlVLHXx5xoLAtopYejsQBiWrTRrcsix8u4ECBwAodv+R3yss723QKAMQkxiUAOAx7qkvZH6+V/5/mchUTJvQUjWl4ZNh0BoBpMjAQkdvdYDoDMcLpzFJd3ffU2HCXXC6e/AMADofvlgDgCLzzc+Wenak9v2zWyN/fNp0Dw3Z4+N8AkOj27q2Uy/Wa6QwYFgicrrlzvy43oxIAHBFXLgHAJNjTXMr5BFcxJbuIFVHz2xyJAxLdpo0p4q/JycvhyFRd7b+pseFuhiUAmCT+1ASAo+Cdn6u8Ty+Up5Z7MSWjnoKgBocGTWcAmGb9/RF5PHWmM2BAIOc0HX/875Wf/2HTKQAQVxiXAOAoTVzF9DGuYko2O329phMAzJCBgbmmEzCD9l+tdLsaG3/I1UoAEAXGJQCIkreJq5iSScSKqHkPR+KAZLFls0+SZToDMyAQOF3HL3lC+fnnmk4BgLjFj9wB4Bi8cxXT8N/fVt9vWhTqGzWdhGmyJ39c+/bsM50BYIa8/XZYHk+NRkb+bjoF08TjmaW5c76snJxTTKcAQNxjXAKAKZBSmy13Zab2/aFV+55rk0IR00mYYjvT9kh7TFcAmElDg3NlszMuJRrLcqqk5EqVl90guz3FdA4AJATGJQCYIjaXXRlnlMm7IFd7ftmssW39ppMwhZr7OBIHJJu33krX3GrTFZhKmZlLVD33a/L5Kk2nAEBC4Z5LADDFnLle5V7TqKwL58iW6jSdgynQlxtU317GQiDZdHWF5XFXmc7AFHA6s1Vb8x0tXPAwwxIATAOuXAKAaeJbkKeUar/6f79dg+s7JU7Kxa2dmX3SXtMVAEwYGamVrLdMZyBqNhUVXaTZFZ+T05luOgYAEhbjEgBMI5vXqayPVMm3KF97fvmWgu2DppMQhZa9baYTABjS0pKp2VzoEpfS0uo0d+7XlZE+z3QKACQ8KxKJ8LN0AJgBkXBEAy+2a++TOxQZDZnOwSTtzQnpZwPrTGcAMOjU057X6Og20xmYJLs9VbMrPqNZs1bLsuymcwAgKXDlEgDMEMtmKW1pkbwNAfWtbdHwGz2mkzAJrVn90oDpCgAmjY3VS2Jcigd5uWerqur/ldudazoFAJIK4xIAzDB7ukvZF9doZPEe9f26ReM9w6aT8D6aB1tNJwAwbNu2LJWVma7A+/F6yzV3zlfl9y81nQIASYljcQBgUGQ8rIEXdmnvH1sVGeGoXKwZ8If0yNA60xkAYsCHTl2nsTHG5ljjcKSprPR6FRdfKpvNbToHAJIWVy4BgEGWw6a0ZcXyLsrX3qd3aPDlTinM5h8rWrP3SkOmKwDEgtB4oyTGpVhhWQ4VFV6k8vKb5HL5TecAQNJjXAKAGGD3OZV1bqVSTyhU/39v08imXtNJkLR1eJfpBAAxYseObM0qNl0BScrJ+ZAqZ/+zfL7ZplMAAP/AsTgAiEEjzX3qf3yrgh2DplOS1lBGWA+P/tF0BoAY8qFTn9LYWKfpjKSVmlqrqsp/kd9/oukUAMB7cOUSAMQgT2Wm3Dc2aWjDbvU/uUPhvWOmk5JOW2Cf1Ga6AkAsCYfmS3rCdEbScbvyVFHxGRUUnCfLspnOAQAcAuMSAMQoy2bJtyhfKY0B7fufNg0826ZIMGw6K2m0jHEkDsCBWlsDKig0XZE87HavSkquUmnJlbLbvaZzAADvg+kfSCKWZelXv/rVtH6OsrIyfe9735vWz5FsbC67Mk4rVf7nF8m7ME+yTBclvuG0sHZ1dZjOABBjmpsjcjoDpjOSgE0FBRfohOOfVkX5TQxLceSyyy7TqlWrTGcAMIBxCUggnZ2duvHGG1VRUSG3263i4mKdc845euaZZyRJHR0dWrlypeFKRMue7pb/o3OUe2OT3LMzTOcktF15A6YTAMQkS9J80xEJLSvrRB23+DeqrblNbnee6Zy4dNlll8myrImX7OxsnXHGGXrjjTem7HNs375dlmXp9ddfn7KPCSC+MS4BCWL79u1auHCh/vCHP+jb3/623nzzTT3xxBNavny5brjhBklSfn6+3G634VIcK1dhqgJXNSr70lo5AimmcxLS1iBXLQE4tPZd+aYTEpLXO1vzGu/VgqafKi2txnRO3DvjjDPU0dGhjo4OPfPMM3I4HDr77LNNZwFIYIxLQIK4/vrrZVmW1q9fr/PPP19z5sxRXV2dPvOZz+ill16SdPCxuLa2Nl100UXy+/3y+XxatGiRXn75ZUlSS0uLzj33XOXl5Sk1NVWLFy/W008/fcDn7Orq0jnnnKOUlBSVl5froYceOqjr9ttvV0NDg3w+n4qLi3X99ddrYICrQqZCSk228m5eqKwLqmT3e0znJIwxb1itXdxvCcChbd4ckcORZTojYXg8xaqpvk3HL/mdcnJOMZ2TMNxut/Lz85Wfn6/58+frC1/4glpbW9Xd3S1Jam1t1YUXXqjMzEz5/X6de+652r59+wEf47777lNNTY08Ho+qq6t11113TTxWXl4uSWpqapJlWTr55JMP2REOh7VmzRqVl5crJSVF8+bN0y9+8YuJx/fs2aNLLrlEgUBAKSkpqqqq0v333z+1vxkAZgQ39AYSQG9vr5544gndeuut8vl8Bz2emZl50OsGBga0bNkyFRUV6Te/+Y3y8/O1YcMGhcPhicfPPPNM3XrrrXK73frJT36ic845R5s3b1ZJSYmk/Zddt7e3649//KOcTqduuukmdXV1HfB5bDab7rjjDpWXl2vr1q26/vrrdcsttxzwFxREz7Lvv+m3tylXg3/erX1/bFWob9R0VlzbVTCkyK6I6QwAMSoSsWSzmiT9wXRKXPO4C1VWdoMKCs6XzeY0nZPQBgYG9OCDD6qyslLZ2dkKBoNasWKFTjjhBD333HNyOBz6xje+MXF0zuVy6aGHHtKXvvQl/fu//7uampr02muv6aqrrpLP59Oll16q9evX67jjjtPTTz+turo6uVyuQ37uNWvW6MEHH9QPf/hDVVVV6dlnn9Xq1asVCAS0bNkyffGLX9Tf//53/e53v1NOTo6am5s1PDw8w79DAKYC4xKQAJqbmxWJRFRdXT3p93n44YfV3d2tV155RX6/X5JUWVk58fi8efM0b968iV9//etf1y9/+Uv95je/0ac+9Slt2bJFv/vd77R+/XotXrxYkvSjH/1INTUHXsp+8803T/xzWVmZvvGNb+jaa69lXJpilt2m1CUF8i3M0+Arndr7x1aF946ZzopLW8OdphMAxLjOzkL5s01XxCe3K09lZdersPBC2WyHHiRw7NauXavU1FRJ0uDgoAoKCrR27VrZbDY9/PDDCofDuu+++2RZ+58l5P7771dmZqbWrVun008/XV/+8pf13e9+V+edd56k/Vcq/f3vf9c999yjSy+9VIHA/hvbZ2dnKz//0EdFR0dH9a//+q96+umndcIJJ0iSKioq9Pzzz+uee+7RsmXLtHPnTjU1NWnRokWS9v9dEUB8YlwCEkAkcvRXWbz++utqamqaGJbea2BgQF/5ylf0+OOPq6OjQ+Pj4xoeHtbOnTslSRs3bpTD4dDChQsn3qe6uvqgq6SefvpprVmzRps2bdLevXs1Pj6ukZERDQ0Nyevl2V+mmuWwKfWEQvkW5Wvg5Q7tW9eq8EDQdFbcGPNEtGN3q+kMADFu0yZLHzwpXaHQXtMpccPlylFp6bUqKrxYdjv3f5xuy5cv19133y1p/9Gzu+66SytXrtT69ev1l7/8Rc3NzUpLSzvgfUZGRtTS0qLBwUG1tLToiiuu0FVXXTXx+Pj4uDIyJv+EIs3NzRoaGtJpp512wOvHxsbU1NQkSbruuut0/vnna8OGDTr99NO1atUqnXjiidF+2QAMYlwCEkBVVZUsy9KmTZsm/T4pKe9/I+jPfe5zeuqpp/Sd73xHlZWVSklJ0QUXXKCxsclfDbN9+3adffbZuu6663TrrbfK7/fr+eef1xVXXKGxsTHGpWlkOW1K+0CRfMfla/DFDu17tlXhwXHTWTGvo3BI4faw6QwAMS4Ukhz2JoVC/2M6JeY5nX6Vll6tWUWrZbfzJBQzxefzHXBF+n333aeMjAzde++9GhgY0MKFCw95r8xAIDBxb8x7771XS5YsOeBxu90+6YZ3Ps7jjz+uoqKiAx575wlmVq5cqR07dui///u/9dRTT+lDH/qQbrjhBn3nO9+Z9OcBEBsYl4AE4Pf7tWLFCv3gBz/QTTfddNB9l/r6+g66oqixsVH33Xefent7D3n10gsvvKDLLrtMH/nIRyTt/wvCu2/0WF1drfHxcb366qsTx+I2b96svr6+ibd59dVXFQ6H9d3vflc22/7nD/jZz342BV8xJsvmsitt2Sz5ji/QwJ92aeC5XQoPMTIdzjbtNp0AIE7s7pqlQ9zSEP/gcGSqtORKzZr1CTkcB98PEjPLsizZbDYNDw9rwYIF+q//+i/l5uYqPT39oLfNyMhQYWGhtm7dqksuueSQH++deyyFQqHDfs7a2lq53W7t3LlTy5YtO+zbBQIBXXrppbr00kv1wQ9+UJ///OcZl4A4xLPFAQniBz/4gUKhkI477jg9+uijeuutt7Rx40bdcccdE+fc3+2iiy5Sfn6+Vq1apRdeeEFbt27Vo48+qhdffFHS/quhHnvsMb3++uv6y1/+oosvvnjiZt+SNHfuXJ1xxhm65ppr9PLLL+vVV1/VlVdeecAVUZWVlQoGg7rzzju1detW/fSnP9UPf/jD6f/NwEFsbrvSl5co/5bFSj+1RJZn8j95TBbjroi2d3EkDsDkbNpok93GFbjv5XCkqbz8Zi09cZ3Kyq5jWDJkdHRUnZ2d6uzs1MaNG3XjjTdqYGBA55xzji655BLl5OTo3HPP1XPPPadt27Zp3bp1uummm9TW1iZJ+upXv6o1a9bojjvu0JYtW/Tmm2/q/vvv1+233y5Jys3NVUpKip544gnt3r1b/f39BzWkpaXpc5/7nD796U/rgQceUEtLizZs2KA777xTDzzwgCTpS1/6kn7961+rublZf/vb37R27dqD7t8JID4wLgEJoqKiQhs2bNDy5cv12c9+VvX19TrttNP0zDPPTJy5fzeXy6Unn3xSubm5OvPMM9XQ0KBvfvObE5c733777crKytKJJ56oc845RytWrNCCBQsO+Bj333+/CgsLtWzZMp133nm6+uqrlZubO/H4vHnzdPvtt+u2225TfX29HnroIa1Zs2Z6fyPwvmweh9JPLVXBPx+ntFOKZbkZmd7RUTis8XGu6gIwOcGg5HA2mc6IGXZ7qsrKbtCJJzyrivIb5XCkHfmdMG2eeOIJFRQUqKCgQEuWLNErr7yin//85zr55JPl9Xr17LPPqqSkROedd55qamp0xRVXaGRkZOJKpiuvvFL33Xef7r//fjU0NGjZsmX68Y9/rPLyckmSw+HQHXfcoXvuuUeFhYU699xzD9nx9a9/XV/84he1Zs0a1dTU6IwzztDjjz8+8XFcLpf+5V/+RY2NjTrppJNkt9v1yCOPzMxvEoApZUWiuRMwACAhhAaDGvhTuwZfbE/643LPzd6uzbtaTGcAiCPz54eUlv6w6QyjnE6/ZhWtVnHxJ+R0ZpnOAQAYwrgEAFB4LKShP+/Wvud3KdQ7YjpnxoWcET3oeU7BIM+sB2Dy3G7p+BN+rnA4+f676fEUq6TkchUWfJQbdQMAuKE3AGD/jb9TTyyU7/gCDb/ZrX3/06Zg+6DprBnTWTii4G6GJQBHZ3RUcjnna2T0JdMpMyYtrU4lJVcpL/dMWRZHqwEA+zEuAQAmWDZL3nm58s7L1chbe7Tvf9o02txnOmva7XB2m04AEKd6e8vk9SX+uOTP+oBKS6+W37/UdAoAIAZxLA4A8L7Gdg1o37NtGn6zWwof+e3jTcge0cOpL2h0dNR0CoA45PVaWrT4PxWJJN7Vj5ZlV27umSotuVppabWmcwAAMYxxCQAwKeO9I9r3XJuG/rxbkWDirEydJaNa2/W86QwAcey00zdpZOQV0xlTxmZLUWHhR1VSfIVSUmaZzgEAxAHGJQDAUQkNBjX4YrsGXmxXeDD+n2Hupao2/bV1s+kMAHFs8eIxeVL+y3TGMXM6/Zo16xMqnrWaZ34DABwVxiUAQFQiwZAG33mGubfj85mSwraI/jP9RQ2PDJtOARDHUlMtLVj4sCKR+BzcU1JKVFz8zjO/eUznAADiEDf0BgBExXLalXrC/meYG9myR4Mvdmhkc68URz+y6Ckc03APwxKAYzMwEJHb3aCRkddMpxwFm3JylmtW0SXy+0+SZVmmgwAAcYxxCQBwTCzLUspcv1Lm+jW+Z0SDL3do8JXdCg/G/s1td6T0mk4AkCD27q2UyxX745LT6Vdh4YUqKrxYKSlFpnMAAAmCY3EAgCkXGQ9r+M0eDbzUobEde03nHFLEiuiRrJc1ODRoOgVAAsjMtKmh8aeK1afVzMhYoFlFq5Wbu1I2m8t0DgAgwXDlEgBgylkOm7xNufI25WqsfUCDL3Vo6PUuRcZi55uutwuCGuxlWAIwNfr6wvJ46jQy8qbplAl2u1d5eR/WrKLVSkurMZ0DAEhgXLkEAJgR4ZFxDb26WwMvd2i8y/x9jl6t6tRrrX8znQEggZxw4pAcjkdNZ8jrrdSsootVUHCeHI400zkAgCTAuAQAmHEjLX0afKlDw397WwrP/B9DESuin2W/on0D+2b8cwNIXNnZlmrrfioTz2xgWQ4Fck5T0axL5M86YcY/PwAguXEsDgAw4zyzM+WZnanQ3lENru/U4Cu7FeofnbHP35c3rn19DEsAptbbb0fk8VRrZGTjjH1Ot7vgHzfo/pjc7rwZ+7wAALwb4xIAwBh7ulvpp5Yq7ZQSjW7t09CGLg3/tWfa7820I22P1DetnwJAkhoaqpbNNr3jkt3uVSCwQgX55ykr63hZlm1aPx8AAEfCsTgAQEwJj4U0/GaPhjbs1ujW/mk5XfKL3FfVt7dv6j8wgKSXl2dpztyfTMNHtikr63gV5H9EublnyG73TsPnAAAgOoxLAICYNd43qqHXdmtoQ5fGu6fmJuB9ueP6xd7/mZKPBQCHctppL2lk9K0p+Vheb4UK8s9Tfv658ngKp+RjAgAw1TgWBwCIWY5Mt9KXlyh9eYlGd+7df2zujW6Fh8aj/pitGX3S3qlrBID3GhmtlRT9uORwZCov72wVFJynjPR5UxcGAMA04colAEBciYyHNbKpV4MbujSyuVcKHd0fY7/Mf01v9/VOUx0ASIWFlmZXHt3ROMtyKjt7mQryz1NOznLZbK5pqgMAYOoxLgEA4lZoMKjh17s0uKFLwV0DR3z7vdkh/Wxw3fSHAUh6p572nEZHtx/x7dLSGlSQ/xHl5Z0jl8s//WEAAEwDjsUBAOKW3edU6tIipS4tUrB7SMNv9mj4zR4FOwYP+fat/j7p0A8BwJQaG6uXtP2Qj6Wm1ig3d6Xycs+U11s+o10AAEwHrlwCACScYM+wht/s1vAbBw5Nvyl8Q1293QbLACSL4hJLZWX/ezQuNbVWebkrlZu7kkEJAJBwGJcAAAlt/9DUo7e3deqBnY+bzgGQRM4+Z6dyshf/Y1AqM50DAMC0YVwCACSNPXv2aOPGjdq0aZNaW1vFH4EAppJlWSouLlZ1dbVqamqUlZVlOgkAgBnBuAQASEoDAwPatGmTNm7cqG3btikcDptOAhCH7Ha7ysvLVV1drerqaqWmpppOAgBgxjEuAQCS3sjIiLZs2aJNmzZp69atGhkZMZ0EIIZ5PB5VVFSourpac+bMkcfjMZ0EAIBRjEsAALxLOBxWW1ub3nrrLTU3N6ujo8N0EoAYUFBQoKqqKlVWVmrWrFmy2WymkwAAiBmMSwAAvI/BwUE1NzerublZLS0tGhoaMp0EYAZ4vV7Nnj1blZWVqqyslM/nM50EAEDMYlwCAGCSwuGwOjo6JsamtrY2bgoOJAjLsjRr1qyJMamwsFCWZZnOAgAgLjAuAQAQpeHhYW3dunVibNq3b5/pJABHIS0tbWJMqqioUEpKiukkAADiEuMSAABTpLOzU83Nzdq+fbtaW1s1OjpqOgnAu7jdbhUXF6usrExVVVXKy8sznQQAQEJgXAIAYBqEw2F1dnZq586d2rFjh3bs2MH9moAZ5vV6VVpaqtLSUpWUlCg/P58bcQMAMA0YlwAAmCHd3d0HjE39/f2mk4CEkpGRccCYFAgETCcBAJAUGJcAADCkr6/vgLGpp6fHdBIQV3JycibGpNLSUmVkZJhOAgAgKTEuAQAQIwYHByfGpp07d2r37t0KhUKms4CYYLfblZeXp5KSkokrk3w+n+ksAAAgxiUAAGLW+Pi4urq61NHRoY6ODrW3tzM4ISm8MyQVFhaqoKBAhYWFys3Nld1uN50GAAAOgXEJAIA4EgqFJgan9vZ2dXR0aPfu3RofHzedBkTF4XAoLy9vYkQqKChgSAIAIM4wLgEAEOdCoZC6u7snxqaOjg51dnYyOCHmOBwO5efnHzAkBQIBhiQAAOIc4xIAAAkoFAqpp6dHnZ2d6u7uVk9Pj7q7u7Vnzx6Fw2HTeUhwNptNWVlZCgQCysnJUSAQUH5+vnJychiSAABIQIxLAAAkkVAopN7e3omxqaenZ+JlbGzMdB7ijMvlUk5OzsTLO2OS3+9nRAIAIIkwLgEAAElSf3//xND07uFpYGDAdBoMS01NPWhAysnJUUZGhuk0AAAQAxiXAADA+xoeHlZvb6/6+/vV39+vvr6+iX/u7+/X0NCQ6UQcI6/Xq4yMjImXzMzMiX/2+/1KSUkxnQgAAGIY4xIAADgmwWDwsMNTf3+/9u7dq1AoZDozadntdqWnpx8wHr13QHI6naYzAQBAHGNcAgAA0yoSiWhgYEB9fX3at2+fhoaGDngZHBw84NfBYNB0csxzOp3yer0TLz6f74Bfe71epaWlKTMzU6mpqbIsy3QyAABIYIxLAAAgpgSDwYMGqPeOUCMjIxobG1MwGDzoJR6ukrLb7XI6nQe9uFwueTyeww5G77xwpREAAIgljEsAACChhMPhQ45Oh3oZHx9XOBzWO38dikQiB728w7Ksg17eeb3NZpPD4TjkYHSoF5vNZuT3BgAAYDowLgEAAAAAACBq/NgMAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAGLEySefrJtvvtl0BgAAwFFhXAIAAJiEyy67TJZl6dprrz3osRtuuEGWZemyyy6b1Mdat26dLMtSX1/f1EYCAAAYwLgEAAAwScXFxXrkkUc0PDw88bqRkRE9/PDDKikpMVgGAABgDuMSAADAJC1YsEDFxcV67LHHJl732GOPqaSkRE1NTROvGx0d1U033aTc3Fx5PB594AMf0CuvvCJJ2r59u5YvXy5JysrKOuiKp3A4rFtuuUV+v1/5+fn6yle+MiNfGwAAQLQYlwAAAI7C5Zdfrvvvv3/i1//xH/+hT37ykwe8zS233KJHH31UDzzwgDZs2KDKykqtWLFCvb29Ki4u1qOPPipJ2rx5szo6OvT9739/4n0feOAB+Xw+vfzyy/rWt76lr33ta3rqqadm5osDAACIAuMSAADAUVi9erWef/557dixQzt27NALL7yg1atXTzw+ODiou+++W9/+9re1cuVK1dbW6t5771VKSop+9KMfyW63y+/3S5Jyc3OVn5+vjIyMifdvbGzUl7/8ZVVVVekTn/iEFi1apGeeeWbGv04AAIDJcpgOAAAAiCeBQEBnnXWWfvzjHysSieiss85STk7OxOMtLS0KBoNaunTpxOucTqeOO+44bdy48Ygfv7Gx8YBfFxQUqKura+q+AAAAgCnGuAQAAHCULr/8cn3qU5+SJP3gBz+Y0o/tdDoP+LVlWQqHw1P6OQAAAKYSx+IAAACO0hlnnKGxsTEFg0GtWLHigMdmz54tl8ulF154YeJ1wWBQr7zyimprayVJLpdLkhQKhWYuGgAAYJpw5RIAAMBRstvtE0fc7Hb7AY/5fD5dd911+vznPy+/36+SkhJ961vf0tDQkK644gpJUmlpqSzL0tq1a3XmmWcqJSVFqampM/51AAAATAWuXAIAAIhCenq60tPTD/nYN7/5TZ1//vn6+Mc/rgULFqi5uVm///3vlZWVJUkqKirSV7/6VX3hC19QXl7exBE7AACAeGRFIpGI6QgAAAAAAADEJ65cAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABA1xiUAAAAAAABEjXEJAAAAAAAAUWNcAgAAAAAAQNQYlwAAAAAAABC1/x+qgO19gawYrgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "# Bar chart for label distribution\n", + "plt.figure(figsize=(30, 10))\n", + "sns.countplot(data=train_df, x='Label', order=train_df['Label'].value_counts().index)\n", + "plt.title('Distribution of Labels')\n", + "plt.xlabel('Label')\n", + "plt.ylabel('Frequency')\n", + "plt.xticks(rotation=90) # Rotate x labels for better readability\n", + "plt.show()\n", + "\n", + "# Pie chart for label distribution\n", + "plt.figure(figsize=(15, 15))\n", + "train_df['Label'].value_counts().plot(kind='pie', autopct='%1.1f%%')\n", + "plt.title('Label Distribution')\n", + "plt.ylabel('') # Hide the y-label\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "zv7CxZ3eUTsl", + "outputId": "1f235d28-733c-49f6-dedc-22a9bf9a9671" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Number of unique image paths: 9000\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAAIjCAYAAABxiZlbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxO6f/48dctqrvV1sKIoj2lZBnLKESRjLFk+hhLCB98G4lmfOxmrCOEsc+UdRhEZOxLM6pBqChjp7GMZaxhGHX//ujXebi12j7NzOf9fDx6PHTOda7zPtd1zsn9vq9zHZVGo9EghBBCCCGEEEIIIYQQokyUK+sAhBBCCCGEEEIIIYQQ4n+ZJGmFEEIIIYQQQgghhBCiDEmSVgghhBBCCCGEEEIIIcqQJGmFEEIIIYQQQgghhBCiDEmSVgghhBBCCCGEEEIIIcqQJGmFEEIIIYQQQgghhBCiDEmSVgghhBBCCCGEEEIIIcqQJGmFEEIIIYQQQgghhBCiDEmSVgghhBBCCCGEEEIIIcqQJGmFEEIIIYQQQvxP6dOnD0ZGRmUdhpZLly6hUqmIiYl55/uKiYlBpVJx6dIlZZm1tTUdOnR45/sGOHDgACqVigMHDvxX9vei/+Zxvi3vImaVSsWECRPeap1CiDcjSVohhBBCCCHE345KpSrVz7tOAv36669MnDiRRo0aUalSJapWrYq3tzd79uwptPy9e/cYMGAAZmZmGBoa0rJlS44dO1aqfXl7e1O3bt23Gf5fzoQJE7T6z8DAAGdnZ8aMGcODBw9eqa7Hjx8zYcKEMkkEgvY5Wr58eSpXroynpyeffvopmZmZb20/CxYs+K8kdl/HXzm2dyk/4T5z5syyDkUI8TdSvqwDEEIIIYQQQohXtXLlSq3fV6xYwe7duwssd3JyeqdxxMXFMX36dDp16kTv3r15/vw5K1asoE2bNnz77bcEBwcrZXNzc/H39yctLY2RI0dStWpVFixYgLe3N0ePHsXOzu6dxvp3snDhQoyMjMjOzmbXrl1MnjyZffv2kZiYiEqlKlUdjx8/ZuLEiUBegrsstGnThl69eqHRaLh//z5paWksX76cBQsWMH36dIYPH66UrVWrFk+ePKFChQqvtI8FCxZQtWpV+vTpU+ptevbsyccff4yent4r7etVFRVbixYtePLkCbq6uu90/0II8XciSVohhBBCCCHE384nn3yi9fvPP//M7t27Cyx/11q2bElWVhZVq1ZVlg0aNAh3d3fGjRunlaTdsGEDSUlJrF+/nq5duwIQGBiIvb0948ePZ82aNf/V2P/KunbtqrTpoEGD6NKlC7Gxsfz88880adKkjKMrPXt7+wLn5LRp0wgICCA8PBxHR0fat28P5I281dfXf6fxPHr0CENDQ3R0dNDR0Xmn+ypOuXLl3vmxCiHE341MdyCEEEIIIYT4R3r06BHh4eFYWVmhp6eHg4MDM2fORKPRaJVTqVQMHTqU1atX4+DggL6+Pp6envz4448l7sPFxUUrQQugp6dH+/btuXLlCg8fPlSWb9iwAQsLCzp37qwsMzMzIzAwkLi4OJ4+ffrKx5gf+/r163F2dkatVtOkSRNOnDgBwOLFi7G1tUVfXx9vb2+tOUgBfvrpJ7p160bNmjXR09PDysqKsLAwnjx5UmBf+fvQ19enbt26bNq0iT59+mBtba1VLjc3lzlz5uDi4oK+vj4WFhYMHDiQu3fvvvLx5WvVqhUAFy9e5NmzZ4wbNw5PT09MTU0xNDTkgw8+YP/+/Ur5S5cuYWZmBsDEiROVaQdenoPz6tWrdOrUCSMjI8zMzBgxYgQ5OTlaZdauXYunpyfGxsaYmJjg6upKVFTUax9LlSpVWLt2LeXLl2fy5MlaMb88J+1vv/1GcHAwNWrUQE9Pj2rVqvHhhx8q/WhtbU1GRgYJCQnKMeaPGs6fdzYhIYHBgwdjbm5OjRo1tNa9fD4A7Nq1C3d3d/T19XF2diY2NlZrff6UFC97uc7iYitqTtr169fj6emJWq2matWqfPLJJ1y9elWrTP58wqXpu+IUd5wXLlxApVIxe/bsAtslJSWhUqn47rvvSr2vokRHR9OqVSvMzc3R09PD2dmZhQsXvlbM+e7du8ewYcOU+56trS3Tp08nNzf3jeMVQrxbkqQVQgghhBBC/ONoNBo6duzI7Nmz8fPzY9asWTg4ODBy5EitR8zzJSQkMGzYMD755BMmTZrE77//jp+fHydPnnyt/f/2228YGBhgYGCgLDt+/Dj169enXDntj2GNGjXi8ePHnDlz5rX29dNPPxEeHk7v3r2ZMGECp06dokOHDnz99dfMnTuXwYMHM3LkSJKTk+nbt6/WtuvXr+fx48f8+9//Zt68efj6+jJv3jx69eqlVW7btm10796dChUqMHXqVDp37ky/fv04evRogXgGDhzIyJEjadasGVFRUQQHB7N69Wp8fX35888/X+sYz58/D+QlOB88eMCyZcvw9vZm+vTpTJgwgVu3buHr60tqaiqQl/zOT3Z99NFHrFy5kpUrV2olyHNycvD19aVKlSrMnDkTLy8vIiMjWbJkiVJm9+7dBAUFUalSJaZPn860adPw9vYmMTHxtY4jX82aNfHy8uLnn38udq7dLl26sGnTJoKDg1mwYAGhoaE8fPiQrKwsAObMmUONGjVwdHRUjnH06NFadQwePJjMzEzGjRvH559/XmxcZ8+epXv37rRr146pU6dSvnx5unXrxu7du1/5GEsT24tiYmIIDAxER0eHqVOnEhISQmxsLM2bN+fevXtaZUvTd29ynLVr16ZZs2asXr26wLarV6/G2NiYDz/8sPSNUYSFCxdSq1Yt/vOf/xAZGYmVlRWDBw/m66+/fuWYIW+KDy8vL1atWkWvXr2YO3cuzZo1Y9SoUYXe94QQfzEaIYQQQgghhPibGzJkiObFjzebN2/WAJovv/xSq1zXrl01KpVKc+7cOWUZoAE0KSkpyrLLly9r9PX1NR999NErx3L27FmNvr6+pmfPnlrLDQ0NNX379i1Qftu2bRpAs2PHjmLr9fLy0ri4uGgtAzR6enqaixcvKssWL16sATSWlpaaBw8eKMtHjRqlAbTKPn78uMB+pk6dqlGpVJrLly8ry1xdXTU1atTQPHz4UFl24MABDaCpVauWsuynn37SAJrVq1dr1bljx45Cl79s/PjxGkBz+vRpza1btzQXL17ULF68WKOnp6exsLDQPHr0SPP8+XPN06dPtba7e/euxsLCQqt9b926pQE048ePL7Cf3r17awDNpEmTtJZ7eHhoPD09ld8//fRTjYmJieb58+fFxl0YQDNkyJAi13/66acaQJOWlqbRaDSaixcvagBNdHS0ckyA5quvvip2Py4uLhovL68Cy6OjozWApnnz5gXiz1/34rlQq1YtDaDZuHGjsuz+/fuaatWqaTw8PJRl+X1U1P5erLOo2Pbv368BNPv379doNBrNs2fPNObm5pq6detqnjx5opSLj4/XAJpx48Ypy0rbd0Up7XHmX0enTp1Slj179kxTtWpVTe/evYvdR35fltR3hV1/vr6+mtq1a79WzF988YXG0NBQc+bMGa3tP//8c42Ojo4mKytLWVbUtSGEKDsyklYIIYQQQgjxj/PDDz+go6NDaGio1vLw8HA0Gg3bt2/XWt6kSRM8PT2V32vWrMmHH37Izp07X+kR6sePH9OtWzfUajXTpk3TWvfkyZNCX9SUPzdnYVMMlEbr1q21phxo3LgxkDcK09jYuMDyCxcuKMvUarXy70ePHnH79m2aNm2KRqPh+PHjAFy7do0TJ07Qq1cvjIyMlPJeXl64urpqxbJ+/XpMTU1p06YNt2/fVn48PT0xMjLSmpKgOA4ODpiZmWFjY8PAgQOxtbVl27ZtGBgYoKOjo7xwKjc3lzt37vD8+XMaNGjAsWPHSlV/vkGDBmn9/sEHH2i1T8WKFXn06NFrjSQtSX5bvjglxovUajW6urocOHDgjaaKCAkJKfX8s9WrV+ejjz5SfjcxMaFXr14cP36c33777bVjKElKSgo3b95k8ODBWnPV+vv74+joyLZt2wpsU1LfFac0xxkYGIi+vr7WaNqdO3dy+/bttzb39YvX3/3797l9+zZeXl5cuHCB+/fvv3LM69ev54MPPqBSpUpa15+Pjw85OTmlmsJFCFF2JEkrhBBCCCGE+Me5fPky1atX10pSAjg5OSnrX2RnZ1egDnt7ex4/fsytW7dKtc+cnBw+/vhjMjMz2bBhA9WrV9dar1arC5139o8//lDWv46aNWtq/W5qagqAlZVVoctfTPhlZWXRp08fKleurMzt6eXlBaAkifLbytbWtsC+X1529uxZ7t+/j7m5OWZmZlo/2dnZ3Lx5s1THtHHjRnbv3s2BAwc4d+4cJ0+e1EqiL1++HDc3N/T19alSpQpmZmZs27atQGKrOPr6+sq8tfkqVaqk1T6DBw/G3t6edu3aUaNGDfr27cuOHTtKvY/iZGdnAxQ4R/Pp6ekxffp0tm/fjoWFBS1atGDGjBmvnCy1sbEpdVlbW9sC883a29sDFDp/7duSf445ODgUWOfo6Fjgei1N3xWnNMdZsWJFAgICtF7ot3r1at577z1ljuQ3lZiYiI+PD4aGhlSsWBEzMzP+85//ABQ4l0sT89mzZ9mxY0eBa8/Hxweg1NefEKJslC/rAIQQQgghhBDinyAkJIT4+HhWr15daBKnWrVqXL9+vcDy/GUvJ3VLq6hRkkUt1/z/F6fl5OTQpk0b7ty5w2effYajoyOGhoZcvXqVPn36vNaLhnJzczE3Ny90Lk+gQGKtKC1atCjwQrZ8q1atok+fPnTq1ImRI0dibm6uzGOaP3dtaZRmdKm5uTmpqans3LmT7du3s337dqKjo+nVqxfLly8v9b4Kc/LkSXR0dIpNog4bNoyAgAA2b97Mzp07GTt2LFOnTmXfvn14eHiUaj+vm/wvSmEvDQNeacT5myrtyOA31atXL9avX09SUhKurq5s2bKFwYMHF5hX+nWcP3+e1q1b4+joyKxZs7CyskJXV5cffviB2bNnv/b116ZNGyIiIgpdn5/UFUL8NUmSVgghhBBCCPGPU6tWLfbs2cPDhw+1Rir+8ssvyvoXnT17tkAdZ86cwcDAoFSJxZEjRxIdHc2cOXMICgoqtIy7uzs//fQTubm5WkmeQ4cOYWBg8F9PoJw4cYIzZ86wfPlyrReFvfxof35bnTt3rkAdLy+rU6cOe/bsoVmzZm89OZhvw4YN1K5dm9jYWK2E4fjx47XKFZVMfFW6uroEBAQQEBBAbm4ugwcPZvHixYwdO7bQ0cWlkZWVRUJCAk2aNClyJG2+OnXqEB4eTnh4OGfPnsXd3Z3IyEhWrVoFvL3jhLz+1Gg0WnXmv9Auf0qNSpUqAXDv3j0qVqyolHt5tOurxJZ/jp0+fbrAFxynT58ucL2+qdIcJ4Cfnx9mZmasXr2axo0b8/jxY3r27PlWYti6dStPnz5ly5YtWqPhi5oSpDQx16lTh+zsbGXkrBDi70WmOxBCCCGEEEL847Rv356cnBzmz5+vtXz27NmoVCratWuntTw5OVlrPtNff/2VuLg42rZtW+Kova+++oqZM2fyn//8h08//bTIcl27duXGjRvExsYqy27fvs369esJCAgodL7adyn/uPJH1ub/OyoqSqtc9erVqVu3LitWrFAe0QdISEjgxIkTWmUDAwPJycnhiy++KLC/58+fc+/evXcS96FDh0hOTtYqZ2BgAPBG+/z999+1fi9Xrhxubm4AhU5dURp37twhKCiInJwcRo8eXWS5x48fK1Nh5KtTpw7GxsZa+zY0NHwr7Qp58w9v2rRJ+f3BgwesWLECd3d3LC0tlRgArflNHz16VOjI4tLG1qBBA8zNzVm0aJHWsW3fvp1Tp07h7+//uodUqNIcJ0D58uUJCgri+++/JyYmBldXV6X/31Rh5/H9+/eJjo5+7ZgDAwNJTk5m586dBba/d+8ez58/fyuxCyHeDRlJK4QQQgghhPjHCQgIoGXLlowePZpLly5Rr149du3aRVxcHMOGDVMSTfnq1q2Lr68voaGh6OnpsWDBAgAmTpxY7H42bdpEREQEdnZ2ODk5KaMb87Vp0wYLCwsgL0n7/vvvExwcTGZmJlWrVmXBggXk5OSUuJ93wdHRkTp16jBixAiuXr2KiYkJGzduLHRezylTpvDhhx/SrFkzgoODuXv3LvPnz6du3bpaiVsvLy8GDhzI1KlTSU1NpW3btlSoUIGzZ8+yfv16oqKi6Nq16xvF3aFDB2JjY/noo4/w9/fn4sWLLFq0CGdnZ61Y1Go1zs7OrFu3Dnt7eypXrkzdunWpW7duqffVv39/7ty5Q6tWrahRowaXL19m3rx5uLu7K/MbF+fMmTOsWrUKjUbDgwcPSEtLY/369WRnZzNr1iz8/PyK3bZ169YEBgbi7OxM+fLl2bRpEzdu3ODjjz9Wynl6erJw4UK+/PJLbG1tMTc3f+05U+3t7enXrx9HjhzBwsKCb7/9lhs3bmglDtu2bUvNmjXp168fI0eOREdHh2+//RYzMzOysrK06ittbBUqVGD69OkEBwfj5eVFUFAQN27cICoqCmtra8LCwl7reN7kOPP16tWLuXPnsn//fqZPn/5K+9m7d2+BRDtAp06daNu2rTJKe+DAgWRnZ7N06VLMzc0LnRalNDGPHDmSLVu20KFDB/r06YOnpyePHj3ixIkTbNiwgUuXLhU5jYgQ4i9AI4QQQgghhBB/c0OGDNG8/PHm4cOHmrCwME316tU1FSpU0NjZ2Wm++uorTW5urlY5QDNkyBDNqlWrNHZ2dho9PT2Nh4eHZv/+/SXud/z48RqgyJ+X67hz546mX79+mipVqmgMDAw0Xl5emiNHjpTqGL28vDQuLi6Fxv6iixcvagDNV199pbV8//79GkCzfv16ZVlmZqbGx8dHY2RkpKlataomJCREk5aWpgE00dHRWtuvXbtW4+joqNHT09PUrVtXs2XLFk2XLl00jo6OBWJdsmSJxtPTU6NWqzXGxsYaV1dXTUREhObatWvFHmN+e966davIMrm5uZopU6ZoatWqpfRVfHy8pnfv3ppatWpplU1KStJ4enpqdHV1NYBm/PjxGo1Go+ndu7fG0NCwyP3n27Bhg6Zt27Yac3Nzja6urqZmzZqagQMHaq5fv17scWg0Gq3zoFy5cpqKFStqPDw8NJ9++qkmIyOjQPn8fstv99u3b2uGDBmicXR01BgaGmpMTU01jRs31nz//fda2/32228af39/jbGxsQbQeHl5aTQajSY6OloDFHp+5a+7ePGisqxWrVoaf39/zc6dOzVubm4aPT09jaOjo9b5ku/o0aOaxo0bK20ya9asQussKrb8c/Hl62PdunUaDw8PjZ6enqZy5cqaHj16aK5cuaJVprR9V5RXOc58Li4umnLlyhWIpSj5fVnUz8qVKzUajUazZcsWjZubm0ZfX19jbW2tmT59uubbb799o755+PChZtSoURpbW1uNrq6upmrVqpqmTZtqZs6cqXn27JlS7sXrQQjx16DSaF4YWy+EEEIIIYQQ/2NUKhVDhgwpMDWCKJm7uztmZmYF5rEV4p/Ew8ODypUrs3fv3rIORQjxDyZz0gohhBBCCCGEKNaff/5ZYD7LAwcOkJaWhre3d9kEJcR/QUpKCqmpqVov1xNCiHdB5qQVQgghhBBCCFGsq1ev4uPjwyeffEL16tX55ZdfWLRoEZaWlgwaNKiswxPirTt58iRHjx4lMjKSatWq0b1797IOSQjxDydJWiGEEEIIIYQQxapUqRKenp4sW7aMW7duYWhoiL+/P9OmTaNKlSplHZ4Qb92GDRuYNGkSDg4OfPfdd+jr65d1SEKIfziZk1YIIYQQQgghhBBCCCHKkMxJK4QQQgghhBBCCCGEEGVIkrRCCCGEEEIIIYQQQghRhmROWiGEEEKItyg3N5dr165hbGyMSqUq63CEEEIIIYQQZUSj0fDw4UOqV69OuXLFj5WVJK0QQgghxFt07do1rKysyjoMIYQQQgghxF/Er7/+So0aNYotI0laIYQQQoi3yNjYGMj7j5iJiUkZRyOEEEIIIYQoKw8ePMDKykr5jFAcSdIKIYQQQrxF+VMcdJixDR09dRlHI4QQQgghxP+Oo1/1KusQClWaadDkxWFCCCGEEEIIIYQQQghRhiRJK4QQQgghhBBCCCGEEGVIkrRCCCGEEEIIIYQQQghRhiRJK96amJgYKlasWNZhvBWXLl1CpVKRmppa1qGIUpD++uuaMGEC7u7uZR3GX9rL905ps7fnn/R3SQghhBBCCPHPJknadyg4OJgxY8b8V/Z14MABVCoV9+7de+t1l5QwsLGxYc+ePXTv3p0zZ8689f2/rv92oqNPnz506tTpv7a/fNbW1syZM6fQdQkJCVhZWQFlF19RvL29GTZsWKnKnjt3juDgYGrUqIGenh42NjYEBQWRkpLyboN8h168P6hUKjZv3ly2Af1/r5rw3rhxI97e3piammJkZISbmxuTJk3izp077zbQd+TJkycYGhpy7tw5cnJymDZtGo6OjqjVaipXrkzjxo1ZtmzZW91nae+dEydO5JNPPgHgjz/+YMiQIVSpUgUjIyO6dOnCjRs3tMpnZWXh7++PgYEB5ubmjBw5kufPn2uVOXDgAPXr10dPTw9bW1tiYmIK7Pfrr7/G2toafX19GjduzOHDh7XWlxRLWloaQUFBWFlZoVarcXJyIioqSquO2NhY2rRpg5mZGSYmJjRp0oSdO3dqlfnxxx8JCAigevXqpb5m/mp/l4QQQgghhBCiKJKkfUdycnKIj4+nY8eOZR3KO5Wens7du3fx8vJCrVZjbm5e1iGJF8TFxREQEFDWYbyRlJQUPD09OXPmDIsXLyYzM5NNmzbh6OhIeHh4WYf3Wv4p94fRo0fTvXt3GjZsyPbt2zl58iSRkZGkpaWxcuXKsg7vtezevZtatWpha2vLxIkTmT17Nl988QWZmZns37+fAQMGvPUvw0p774yLi1POmbCwMLZu3cr69etJSEjg2rVrdO7cWSmbk5ODv78/z549IykpieXLlxMTE8O4ceOUMhcvXsTf35+WLVuSmprKsGHD6N+/v1ZydN26dQwfPpzx48dz7Ngx6tWrh6+vLzdv3lTKlBTL0aNHMTc3Z9WqVWRkZDB69GhGjRrF/PnzlTI//vgjbdq04YcffuDo0aO0bNmSgIAAjh8/rpR59OgR9erV4+uvv37rbSuEEEIIIYQQZU2StO9IUlISFSpUoGHDhgBcuXKFoKAgKleujKGhIQ0aNODQoUNK+YULF1KnTh10dXVxcHAokOBQqVQsW7aMjz76CAMDA+zs7NiyZQuQN/KtZcuWAFSqVAmVSkWfPn0AyM3NZerUqdjY2KBWq6lXrx4bNmxQ6s0fgbt3714aNGiAgYEBTZs25fTp00Deo6ITJ04kLS0NlUqFSqXSGmkVFxeHn58fFSpUKPKR3ZUrV2JtbY2pqSkff/wxDx8+VMps2LABV1dX1Go1VapUwcfHh0ePHinrly1bhpOTE/r6+jg6OrJgwQKtdimqXUuK+2WHDx/Gw8MDfX19GjRooJUYgLyER79+/ZR2dHBw0BoJNmHCBJYvX05cXJyyvwMHDgDw2WefYW9vj4GBAbVr12bs2LH8+eefyrZpaWm0bNkSY2NjTExM8PT01BohevDgQT744APUajVWVlaEhoYqbeTt7c3ly5cJCwtT9vuiLVu2FJkI9Pb2JjQ0lIiICCpXroylpSUTJkxQ1ms0GiZMmEDNmjXR09OjevXqhIaGKuufPn3KiBEjeO+99zA0NKRx48bKMedLTEzE29sbAwMDKlWqhK+vL3fv3qVPnz4kJCQQFRWlxH3p0qUCMWo0Gvr06YOdnR0//fQT/v7+1KlTB3d3d8aPH09cXFyhx1ZSf0Heud+oUSMMDQ2pWLEizZo14/Lly2/cJwALFizAzs4OfX19LCws6Nq1q9a+X74/vCh/JGtsbCwtW7bEwMCAevXqkZycrJS5fPkyAQEBVKpUCUNDQ1xcXPjhhx+U9SdPnqRdu3YYGRlhYWFBz549uX37trI+NzeXGTNmYGtri56eHjVr1mTy5MlA3sh4AA8PD1QqFd7e3oW28eHDh5kyZQqRkZF89dVXNG3aFGtra9q0acPGjRvp3bt3odsdOXKENm3aULVqVUxNTfHy8uLYsWPK+pLOu+LatqT73d27d+nRowdmZmao1Wrs7OyIjo7Wiu/FROiWLVsYPHgw3bp1w8bGhnr16tGvXz9GjBihlC/pOgKYNWsWrq6uGBoaYmVlxeDBg8nOzlbWl+aR/F9//ZWMjAz8/Py4f/8+33zzDbNmzaJVq1Z4enoSHR1NUlISP//8MwC7du0iMzOTVatW4e7uTrt27fjiiy/4+uuvefbsGQCLFi3CxsaGyMhInJycGDp0KF27dmX27NlasYeEhBAcHIyzszOLFi3CwMCAb7/9FqBUsfTt25eoqCi8vLyoXbs2n3zyCcHBwcTGxir7mTNnDhERETRs2BA7OzumTJmCnZ0dW7duVcq0a9eOL7/8ko8++qjYtnpRUX+XFi9ejJWVFQYGBgQGBnL//n2lzPPnzwkNDaVixYpUqVKFzz77jN69e/+lnkQQQgghhBBC/PNIkvYd2bJlCwEBAahUKrKzs/Hy8uLq1ats2bKFtLQ0IiIiyM3NBWDTpk18+umnhIeHc/LkSQYOHEhwcDD79+/XqnPixIkEBgaSnp5O+/bt6dGjB3fu3MHKyoqNGzcCcPr0aa5fv64kpKZOncqKFStYtGgRGRkZhIWF8cknn5CQkKBV9+jRo4mMjCQlJYXy5cvTt29fIO9R0fDwcFxcXLh+/TrXr1+ne/fuWsf54YcfFtkO58+fZ/PmzcTHxxMfH09CQgLTpk0D4Pr16wQFBdG3b19OnTrFgQMH6Ny5MxqNBoDVq1czbtw4Jk+ezKlTp5gyZQpjx45l+fLlAMW2a0lxvyg7O5sOHTrg7OzM0aNHmTBhglYSBvKSPzVq1GD9+vVkZmYybtw4/vOf//D9998DMGLECAIDA/Hz81P217RpUwCMjY2JiYkhMzOTqKgoli5dqpUE6dGjBzVq1ODIkSMcPXqUzz//nAoVKijt5+fnR5cuXUhPT2fdunUcPHiQoUOHAnmPCNeoUYNJkyYp+82XkZHBzZs3adWqVZH9s3z5cgwNDTl06BAzZsxg0qRJ7N69G8h7jH327NksXryYs2fPsnnzZlxdXZVthw4dSnJyMmvXriU9PZ1u3brh5+fH2bNnAUhNTaV169Y4OzuTnJzMwYMHCQgIICcnh6ioKJo0aUJISIgSd/60DC9KTU0lIyOD8PBwypUreLsqKrFVUn89f/6cTp064eXlRXp6OsnJyQwYMEBJcr9Jn6SkpBAaGsqkSZM4ffo0O3bsoEWLFlrxvXh/KMro0aMZMWIEqamp2NvbExQUpDyqPmTIEJ4+fcqPP/7IiRMnmD59OkZGRgDcu3ePVq1a4eHhQUpKCjt27ODGjRsEBgYqdY8aNYpp06YxduxYMjMzWbNmDRYWFgDKo+x79uzh+vXrWom0F61evRojIyMGDx5c6Pqi+ubhw4f07t2bgwcP8vPPP2NnZ0f79u2VL2+KO+9KatuS7nf5x7t9+3ZOnTrFwoULqVq1qrJ9bm4u8fHxyj3N0tKSffv2cevWrSL7CYq/jgDKlSvH3LlzycjIYPny5ezbt4+IiIhi63zZli1b8Pb2xsTEhKNHj/Lnn3/i4+OjrHd0dKRmzZpKMj85ORlXV1elXwF8fX158OABGRkZSpkX68gvk1/Hs2fPOHr0qFaZcuXK4ePjo5QpTSyFuX//PpUrVy5yfW5uLg8fPiy2zOs6d+4c33//PVu3bmXHjh0cP35c6zyePn06q1evJjo6msTERB48eFDi1ApPnz7lwYMHWj9CCCGEEEII8SrKl3UA/1RxcXFKIm7NmjXcunWLI0eOKB84bW1tlbIzZ86kT58+yofE4cOH8/PPPzNz5kxlhCzkzSkaFBQEwJQpU5g7dy6HDx/Gz89Pqdfc3FxJjjx9+pQpU6awZ88emjRpAkDt2rU5ePAgixcvxsvLS6l78uTJyu+ff/45/v7+/PHHH6jVaoyMjChfvjyWlpZax3j16lXS09Np165dke2Qm5tLTEwMxsbGAPTs2ZO9e/cyefJkrl+/zvPnz+ncuTO1atUC0EoCjh8/nsjISOWxWRsbGzIzM1m8eDG9e/cusV2Livtla9asITc3l2+++QZ9fX1cXFy4cuUK//73v5UyFSpUYOLEicrvNjY2JCcn8/333xMYGIiRkRFqtZqnT58W2N+L8xJbW1szYsQI1q5dqyRpsrKyGDlyJI6OjgDY2dkp5adOnUqPHj2UuVvt7OyYO3cuXl5eLFy4kMqVK6Ojo4OxsXGB/cbFxeHr64uurm6Rx+7m5sb48eOVuufPn8/evXtp06YNWVlZWFpa4uPjQ4UKFahZsyaNGjVSYo6OjiYrK4vq1asDeYnqHTt2EB0dzZQpU5gxYwYNGjTQGv3s4uKi/FtXVxcDA4Ni+yc/4ZvfNqVVUn89ePCA+/fv06FDB+rUqQOAk5OTUv5N+iQrKwtDQ0M6dOiAsbExtWrVwsPDQyu+F+8PRRkxYgT+/v5A3hc0Li4unDt3DkdHR7KysujSpYtyvdSuXVvZbv78+Xh4eDBlyhRl2bfffouVlRVnzpyhWrVqREVFMX/+fGW0a506dWjevDkAZmZmAFSpUqXEvqldu7aSvC6tl780WLJkCRUrViQhIYEOHTqUeN4V1balud9lZWXh4eFBgwYNgLzr8UX5Iz8bN24M5I0i7dq1K5aWlri4uNC0aVM+/PDDAve84q4jQGvuZWtra7788ksGDRpU4MmA4sTFxSnJ499++w1dXd0CiXALCwt+++03pcyLCdr89fnriivz4MEDnjx5wt27d8nJySm0zC+//FLqWF6WlJTEunXr2LZtW5HHO3PmTLKzs7W+XHhb/vjjD1asWMF7770HwLx58/D39ycyMhJLS0vmzZvHqFGjlBG78+fP1xqpXpipU6dq3XOEEEIIIYQQ4lXJSNp34NSpU1y7do3WrVsDeaMBPTw8ihwRdOrUKZo1a6a1rFmzZpw6dUprmZubm/JvQ0NDTExMtOYFfNm5c+d4/Pgxbdq0wcjISPlZsWIF58+fL7LuatWqARRbN+SN7GrevHmxj+laW1srCdr8uvPrrVevHq1bt8bV1ZVu3bqxdOlS7t69C+TNPXj+/Hn69eunFfuXX36pxF5SuxZm0KBBWvVBXvu7ubmhr6+vlMtP8rzo66+/xtPTEzMzM4yMjFiyZAlZWVkl7nPdunU0a9YMS0tLjIyMGDNmjNZ2w4cPp3///vj4+DBt2jStvklLSyMmJkYrZl9fX3Jzc7l48WKx+33xse2ivNjvoN0/3bp148mTJ9SuXZuQkBA2bdqkjOQ8ceIEOTk52Nvba8WWkJCg1T/518Dryh9V/TqK66/KlSvTp08ffH19CQgIICoqSmsU8pv0SZs2bahVqxa1a9emZ8+erF69msePHyvbv3x/KEpx12RoaChffvklzZo1Y/z48aSnp2vFt3//fq348pPN58+f59SpUzx9+rTM+ubGjRuEhIRgZ2eHqakpJiYmZGdnK31T3HlXXNuW5n7373//m7Vr1+Lu7k5ERARJSUlascXFxdGhQwdl1LazszMnT57k559/pm/fvty8eZOAgAD69++vtV1x1xHkjUpu3bo17733HsbGxvTs2ZPff/9d67wozoMHD0hISPjbz2EMeVNxfPjhh4wfP562bdsWWmbNmjVMnDiR77///p3MJ1uzZk0lQQt59/vc3FxOnz7N/fv3uXHjhvLFAICOjg6enp7F1jlq1Cju37+v/Pz6669vPW4hhBBCCCHEP5skad+BLVu20KZNGyXpp1ar30q9L49YU6lUypQJhcmf83Dbtm2kpqYqP5mZmVrzNL5cd/4j2MXVDcXPd1qamHV0dNi9ezfbt2/H2dmZefPm4eDgwMWLF5XYly5dqhV7fsIEXq9dJ02apFVfaa1du5YRI0bQr18/du3aRWpqKsHBwcrcjkVJTk6mR48etG/fnvj4eI4fP87o0aO1tpswYQIZGRn4+/uzb98+nJ2d2bRpE5DXhwMHDtSKOS0tjbNnzyojQAtz/fp1jh8/rozELEpx/WNlZcXp06dZsGABarWawYMH06JFC/7880+ys7PR0dHh6NGjWrGdOnVKmWrjbZz39vb2AMqovdIqTX9FR0eTnJxM06ZNWbduHfb29sq59SZ9YmxszLFjx/juu++oVq0a48aNo169esrLpl6+PxSluGuyf//+XLhwgZ49e3LixAkaNGjAvHnzlPgCAgK04ktNTeXs2bO0aNHird2P7O3tuXDhgtb8yqXRu3dvUlNTiYqKIikpidTUVKpUqaL0TXHnXXFtW5r7Xbt27ZQ5nPMT5S9ObVLYPa1cuXI0bNiQYcOGERsbS0xMDN98843WlyTFXUeXLl2iQ4cOuLm5sXHjRo4ePaq8+Kqk+0e+/Htk/pQglpaWPHv2rMALzG7cuKGMfra0tOTGjRsF1uevK66MiYkJarWaqlWroqOjU2iZF+soKZZ8mZmZtG7dmgEDBmg9YfCitWvX0r9/f77//vsCUzH8lenp6WFiYqL1I4QQQgghhBCvQpK078CLj6VC3iir1NRU7ty5U2h5JycnEhMTtZYlJibi7Oxc6n3mP9Kek5OjLHN2dkZPT4+srCxsbW21fgqb/7O4ul+sF/ISQfv37y92PtrSUKlUNGvWjIkTJ3L8+HF0dXXZtGkTFhYWVK9enQsXLhSIPf/FRiW1a2Fxm5uba9UFee2fnp7OH3/8oZTLT9blS0xMpGnTpgwePBgPDw9sbW0LjEYubH9JSUnUqlWL0aNH06BBA+zs7JSXU73I3t6esLAwdu3aRefOnZWXGdWvX5/MzMwCbWBra6v0eWH73bp1K02bNn3j+RzVajUBAQHMnTuXAwcOkJyczIkTJ/Dw8CAnJ4ebN28WiCs/MePm5sbevXuLrLuwuF/m7u6Os7MzkZGRhX5p8HJiKF9p+gvyXo41atQokpKSqFu3LmvWrFHWvUmflC9fHh8fH2bMmEF6ejqXLl1i3759QMH7w+uysrJi0KBBxMbGEh4eztKlS5X4MjIysLa2LhCfoaEhdnZ2qNXqIvumsHtJYf71r3+RnZ1d5CP7xfVNaGgo7du3x8XFBT09Pa2XmkHR5x0U3balvd+ZmZnRu3dvVq1axZw5c1iyZAmQN33D5cuXlSkKipJ/X37xRXHFOXr0KLm5uURGRvL+++9jb2/PtWvXSrVtvpfPGU9PTypUqKDVh6dPnyYrK0t5CqBJkyacOHFCa0Tv7t27MTExUY6hSZMmBc6D3bt3K3Xo6uri6empVSY3N5e9e/cqZUoTC+TNkd2yZUt69+6tvKTuZd999x3BwcF89913JX7B9CaysrK0+uDnn3+mXLlyODg4YGpqioWFBUeOHFHW5+TkaL3cTgghhBBCCCHeBZmT9i27efMmKSkpbNmyRVkWFBTElClT6NSpE1OnTqVatWocP36c6tWr06RJE0aOHElgYCAeHh74+PiwdetWYmNj2bNnT6n3W6tWLVQqFfHx8bRv3x61Wo2xsTEjRowgLCyM3Nxcmjdvzv3790lMTMTExKTIt6+/zNramosXL5KamkqNGjUwNjZmx44d2NvbF5jT8VUcOnSIvXv30rZtW8zNzTl06BC3bt1S5gadOHEioaGhmJqa4ufnx9OnT0lJSeHu3bsMHz68xHYtLG49Pb0CcfzrX/9i9OjRhISEMGrUKC5dusTMmTO1ytjZ2bFixQp27tyJjY0NK1eu5MiRI0rCOL+ddu7cyenTp6lSpQqmpqbY2dmRlZXF2rVradiwIdu2bVNGZAI8efKEkSNH0rVrV2xsbLhy5QpHjhyhS5cuAHz22We8//77DB06lP79+2NoaEhmZia7d+9m/vz5yn5//PFHPv74Y/T09KhatWqpRjmXJCYmhpycHBo3boyBgQGrVq1CrVZTq1YtqlSpQo8ePejVqxeRkZF4eHhw69Yt9u7di5ubG/7+/owaNQpXV1cGDx7MoEGD0NXVZf/+/XTr1o2qVatibW3NoUOHuHTpEkZGRlSuXLnAy8FUKhXR0dH4+PjwwQcfMHr0aBwdHcnOzmbr1q3s2rWrwEvwStNfFy9eZMmSJXTs2JHq1atz+vRpzp49S69evd64T+Lj47lw4QItWrSgUqVK/PDDD+Tm5uLg4FDo/eF1DBs2jHbt2mFvb8/du3fZv3+/ct0MGTKEpUuXEhQUREREBJUrV+bcuXOsXbuWZcuWoa+vz2effUZERAS6uro0a9aMW7dukZGRQb9+/TA3N0etVrNjxw5q1KiBvr4+pqamBWJo3LgxERERhIeHc/XqVT766COqV6/OuXPnWLRoEc2bN+fTTz8ttG9WrlxJgwYNePDgASNHjtQa3VvceVdc25bmfjdu3Dg8PT1xcXHh6dOnxMfHK+0WFxeHj48PBgYGSixdu3alWbNmNG3aFEtLSy5evMioUaOwt7cv9TzJtra2/Pnnn8ybN4+AgAASExNZtGhRqfv6+fPnbN++XWvEr6mpKf369WP48OFUrlwZExMT/u///o8mTZrw/vvvA9C2bVucnZ3p2bMnM2bM4LfffmPMmDEMGTJEuQ8OGjSI+fPnExERQd++fdm3bx/ff/+91lyxw4cPp3fv3jRo0IBGjRoxZ84cHj16RHBwcKljOXnyJK1atcLX15fhw4crc9Xq6OgocyCvWbOG3r17ExUVRePGjZUyarVaOf+ys7M5d+6cElv+/b1y5crUrFkTyJt24OrVq6xYsaLINtXX16d3797MnDmTBw8eEBoaSmBgoPIF0//93/8xdepUbG1tcXR0ZN68edy9e7fYF/0JIYQQQgghxJuSkbRv2datW2nUqJHWG8N1dXXZtWsX5ubmtG/fHldXV6ZNm4aOjg4AnTp1IioqipkzZ+Li4sLixYuJjo7G29u71Pt97733mDhxIp9//jkWFhbKm+a/+OILxo4dy9SpU3FycsLPz49t27ZpJRdL0qVLF/z8/GjZsiVmZmZ89913pZrvtCQmJib8+OOPtG/fHnt7e8aMGUNkZKTyUp7+/fuzbNkyoqOjcXV1xcvLi5iYGCX2ktq1sLgLY2RkxNatW5URoqNHj2b69OlaZQYOHEjnzp3p3r07jRs35vfffy/wVvuQkBAcHBxo0KABZmZmJCYm0rFjR8LCwhg6dCju7u4kJSUxduxYZRsdHR1+//13evXqhb29PYGBgbRr1055AY2bmxsJCQmcOXOGDz74AA8PD8aNG6e8rAvypnC4dOkSderUwczMjEePHrF379437p+KFSuydOlSmjVrhpubG3v27GHr1q1UqVIFyJsuoFevXoSHh+Pg4ECnTp04cuSIkiyxt7dn165dpKWl0ahRI5o0aUJcXBzly+d9NzRixAh0dHRwdnbGzMysyPl9GzVqREpKCra2toSEhODk5ETHjh3JyMhgzpw5hW5TUn8ZGBjwyy+/0KVLF+zt7RkwYABDhgxh4MCBb9wnFStWJDY2llatWuHk5MSiRYv47rvvcHFxKfT+8DpycnIYMmSIck3b29srI1qrV69OYmIiOTk5tG3bFldXV4YNG0bFihWVJPjYsWMJDw9n3LhxODk50b17d2XEZfny5Zk7dy6LFy+mevXqxY76nT59OmvWrOHQoUP4+vri4uLC8OHDcXNzK/JLoG+++Ya7d+9Sv359evbsSWhoqNa8o8Wdd8W1LZR8v9PV1WXUqFG4ubnRokULdHR0WLt2LVD4HM6+vr5s3bqVgIAA7O3t6d27N46OjuzatUs5j0tSr149Zs2axfTp06lbty6rV69m6tSppdoWICEhASMjI+rXr6+1fPbs2XTo0IEuXbrQokULLC0tiY2NVdbr6OgQHx+Pjo4OTZo04ZNPPqFXr15MmjRJKWNjY8O2bdvYvXs39erVIzIykmXLluHr66uU6d69OzNnzmTcuHG4u7uTmprKjh07tF4mVlIsGzZs4NatW6xatYpq1aopPw0bNlTKLFmyhOfPnzNkyBCtMi8m+lNSUvDw8FBeFjd8+HDl+st3/fr1EucKt7W1pXPnzrRv3562bdvi5uamNSL8s88+IygoiF69etGkSRNl3umSpigRQgghhBBCiDeh0rzJm3lEAR07dqR58+ZERESUdSjvzPPnz7GwsGD79u1aL1cRfw2xsbGMGTOGzMzMsg5FvOR/4f7wd3T79m2qVavGlStXtJKPfwWhoaE8f/68yGklRPEWL17MF198wZUrV4C8+aY3b978SnOS5+bm4uTkRGBgIF988UWptnnw4AGmpqbU+79F6Oi9nXmghRBCCCGEECU7+lWvsg5BS/5ng/v375f47gqZ7uAta968OUFBQWUdxjt1584dwsLCtEZBib8OIyOjAiOBxV/D/8L94e/ozp07zJo16y+XoAWoW7eu1tyuovR+/fVXfvjhB2WkdWldvnyZXbt24eXlxdOnT5k/fz4XL17kX//61zuKVAghhBBCCCFkJK0QQggh/oHMzMx47733iImJwd3dHSjdSNpff/2Vjz/+mJMnT6LRaKhbty7Tpk2jRYsWpd63jKQVQgghhBCibPydR9JKklYIIYQQ4i2SJK0QQgghhBBl4++cpJXpDoQQQggh3oEfvwwq8T9iQgghhBBCCAFQrqwDEEIIIYQQQgghhBBCiP9lkqQVQgghhBBCCCGEEEKIMiRJWiGEEEIIIYQQQgghhChDMietEEIIIcQ7sPg/21HrGZR1GEIIIYQQQvzPGBoZUNYhvDYZSSuEEEIIIYQQQgghhBBlSJK0QgghhBBCCCGEEEIIUYYkSSuEEEIIIYQQQgghhBBlSJK0/wAxMTFUrFixrMN4Ky5duoRKpSI1NbWsQxGlIP311zVhwgTc3d3LOgwBJCYm4urqSoUKFejUqRMHDhxApVJx7969sg7tf0KfPn3o1KlTWYchhBBCCCGEEMX6RyZpg4ODGTNmzH9lX+/yw3ZJSRYbGxv27NlD9+7dOXPmzFvf/+v6byeHyuoDuLW1NXPmzCl0XUJCAlZWVsBfL0Hg7e3NsGHDSlX23LlzBAcHU6NGDfT09LCxsSEoKIiUlJR3G+Q79OL9QaVSsXnz5rIN6P971YT3xo0b8fb2xtTUFCMjI9zc3Jg0aRJ37tx5t4G+I0+ePMHQ0JBz584RExODSqVCpVKho6NDpUqVaNy4MZMmTeL+/ftlHeorGz58OO7u7ly8eJGYmJjXrufFNoK8vz/169dHT08PW1vbQuv++uuvsba2Rl9fn8aNG3P48GGt9X/88QdDhgyhSpUqGBkZ0aVLF27cuKFVJisrC39/fwwMDDA3N2fkyJE8f/5cq0xpYrl69SqffPIJVapUQa1W4+rqWuBecurUKTp27IipqSmGhoY0bNiQrKwsrTLJycm0atUKQ0NDTExMaNGiBU+ePCmy3aKiot6o3YUQQgghhBDiv+Efl6TNyckhPj6ejh07lnUo71R6ejp3797Fy8sLtVqNubl5WYckXhAXF0dAwN/3jYIAKSkpeHp6cubMGRYvXkxmZiabNm3C0dGR8PDwsg7vtfxT7g+jR4+me/fuNGzYkO3bt3Py5EkiIyNJS0tj5cqVZR3ea9m9eze1atXC1tYWABMTE65fv86VK1dISkpiwIABrFixAnd3d65du1ZkPc+ePftvhVxq58+fp1WrVtSoUeONnnp4sY0uXryIv78/LVu2JDU1lWHDhtG/f3927typlF+3bh3Dhw9n/PjxHDt2jHr16uHr68vNmzeVMmFhYWzdupX169eTkJDAtWvX6Ny5s7I+JycHf39/nj17RlJSEsuXLycmJoZx48YpZUoTy927d2nWrBkVKlRg+/btZGZmEhkZSaVKlbTaqXnz5jg6OnLgwAHS09MZO3Ys+vr6Spnk5GT8/Pxo27Ythw8f5siRIwwdOpRy5Yr+74ypqek/5mkTIYQQQgghxD/XPy5Jm5SURIUKFWjYsCEAV65cISgoiMqVK2NoaEiDBg04dOiQUn7hwoXUqVMHXV1dHBwcCiQ4VCoVy5Yt46OPPsLAwAA7Ozu2bNkC5I18a9myJQCVKlVCpVLRp08fAHJzc5k6dSo2Njao1Wrq1avHhg0blHrzR+Du3buXBg0aYGBgQNOmTTl9+jSQN4XBxIkTSUtLU0aUvTgSKC4uDj8/PypUqFBguoP8kawrV67E2toaU1NTPv74Yx4+fKiU2bBhA66urqjVaqpUqYKPjw+PHj1S1i9btgwnJyf09fVxdHRkwYIFWu1SVLuWFPfLDh8+jIeHB/r6+jRo0IDjx49rrc/JyaFfv35KOzo4OBAVFaV1rMuXLycuLk7Z34EDBwD47LPPsLe3x8DAgNq1azN27Fj+/PNPZdu0tDRatmyJsbExJiYmeHp6ao3qOnjwIB988AFqtRorKytCQ0OVNvL29uby5cuEhYUp+33Rli1bikwEent7ExoaSkREBJUrV8bS0pIJEyYo6zUaDRMmTKBmzZro6elRvXp1QkNDlfVPnz5lxIgRvPfeexgaGtK4cWPlmPMlJibi7e2NgYEBlSpVwtfXl7t379KnTx8SEhKIiopS4r506VKBGDUaDX369MHOzo6ffvoJf39/6tSpg7u7O+PHjycuLq7QYyupvyDv3G/UqBGGhoZUrFiRZs2acfny5TfuE4AFCxZgZ2eHvr4+FhYWdO3aVWvfL98fXpQ/kjU2NpaWLVtiYGBAvXr1SE5OVspcvnyZgIAAKlWqhKGhIS4uLvzwww/K+pMnT9KuXTuMjIywsLCgZ8+e3L59W1mfm5vLjBkzsLW1RU9Pj5o1azJ58mQgb2Q8gIeHByqVCm9v70Lb+PDhw0yZMoXIyEi++uormjZtirW1NW3atGHjxo307t270O2OHDlCmzZtqFq1Kqampnh5eXHs2DFlfUnnXXFtW9L97u7du/To0QMzMzPUajV2dnZER0drxRcXF6d1zahUKiwtLalWrRpOTk7069ePpKQksrOziYiIUMp5e3szdOhQhg0bRtWqVfH19QVg1qxZuLq6YmhoiJWVFYMHDyY7O1trn0uXLsXKygoDAwM++ugjZs2aVSCZ96Z/I1QqFb///jt9+/Yt9H746NEjTExMtNoLYPPmzRgaGmrdt19so0WLFmFjY0NkZCROTk4MHTqUrl27Mnv2bKX8rFmzCAkJITg4GGdnZxYtWoSBgQHffvstAPfv3+ebb75h1qxZtGrVCk9PT6Kjo0lKSuLnn38GYNeuXWRmZrJq1Src3d1p164dX3zxBV9//bWSEC9NLNOnT8fKyoro6GgaNWqEjY0Nbdu2pU6dOkqZ0aNH0759e2bMmIGHhwd16tShY8eOWl9ChoWFERoayueff46LiwsODg4EBgaip6dHUV5+miH/nBk6dCimpqZUrVqVsWPHotFolDLXr1/H398ftVqNjY0Na9asKfbpCSGEEEIIIYR4U/+4JO2WLVsICAhApVKRnZ2Nl5cXV69eZcuWLaSlpREREUFubi4AmzZt4tNPPyU8PJyTJ08ycOBAgoOD2b9/v1adEydOJDAwkPT0dNq3b0+PHj24c+cOVlZWbNy4EYDTp09z/fp1JSE1depUVqxYwaJFi8jIyCAsLIxPPvmEhIQErbpHjx5NZGQkKSkplC9fnr59+wLQvXt3wsPDcXFx4fr161y/fp3u3btrHeeHH35YZDucP3+ezZs3Ex8fT3x8PAkJCUybNg3I+/AZFBRE3759OXXqFAcOHKBz587KB9TVq1czbtw4Jk+ezKlTp5gyZQpjx45l+fLlAMW2a0lxvyg7O5sOHTrg7OzM0aNHmTBhAiNGjNAqk5ubS40aNVi/fj2ZmZmMGzeO//znP3z//fcAjBgxgsDAQPz8/JT9NW3aFABjY2NiYmLIzMwkKiqKpUuXaiUNevToQY0aNThy5AhHjx7l888/p0KFCkr7+fn50aVLF9LT01m3bh0HDx5k6NChAMTGxlKjRg0mTZqk7DdfRkYGN2/epFWrVkX2z/LlyzE0NOTQoUPMmDGDSZMmsXv3biDvMfbZs2ezePFizp49y+bNm3F1dVW2HTp0KMnJyaxdu5b09HS6deuGn58fZ8+eBSA1NZXWrVvj7OxMcnIyBw8eJCAggJycHKKiomjSpAkhISFK3PnTMrwoNTWVjIwMwsPDCx2hVtSotJL66/nz53Tq1AkvLy/S09NJTk5mwIABSpL7TfokJSWF0NBQJk2axOnTp9mxYwctWrTQiu/F+0NRRo8ezYgRI0hNTcXe3p6goCDl0e4hQ4bw9OlTfvzxR06cOMH06dMxMjIC4N69e7Rq1QoPDw9SUlLYsWMHN27cIDAwUKl71KhRTJs2jbFjx5KZmcmaNWuwsLAAUB5D37NnD9evXyc2NrbQ+FavXo2RkRGDBw8udH1RffPw4UN69+7NwYMH+fnnn7Gzs6N9+/ZKErC4866kti3pfpd/vNu3b+fUqVMsXLiQqlWrKtvn5uYSHx9f7D0NwNzcnB49erBlyxZycnKU5cuXL0dXV5fExEQWLVoEQLly5Zg7dy4ZGRksX76cffv2aSV3ExMTGTRoEJ9++impqam0adNGSZjnext/I65fv46JiQlz5swp9H5oaGjIxx9/XCBpHR0dTdeuXTE2Ni60jZKTk/Hx8dHaxtfXV/lS4dmzZxw9elSrTLly5fDx8VHKHD16lD///FOrjKOjIzVr1lTKJCcn4+rqqpyn+ft58OABGRkZpYoF8q69Bg0a0K1bN8zNzfHw8GDp0qXK+tzcXLZt24a9vT2+vr6Ym5vTuHFjrelIbt68yaFDhzA3N6dp06ZYWFjg5eXFwYMHeVXLly+nfPnyHD58mKioKGbNmsWyZcuU9b169eLatWscOHCAjRs3smTJEq0RyC97+vQpDx480PoRQgghhBBCiFdRvqwDeNvi4uKURNyaNWu4desWR44coXLlygDKo7QAM2fOpE+fPkqyY/jw4fz888/MnDlTGSELeaNwgoKCAJgyZQpz587l8OHD+Pn5KfWam5sryZGnT58yZcoU9uzZQ5MmTQCoXbs2Bw8eZPHixXh5eSl1T548Wfn9888/x9/fnz/++AO1Wo2RkRHly5fH0tJS6xivXr1Keno67dq1K7IdcnNziYmJUT7g9+zZk7179zJ58mSuX7/O8+fP6dy5M7Vq1QLQSgKOHz+eyMhI5ZFXGxsbMjMzWbx4Mb179y6xXYuK+2Vr1qwhNzeXb775Bn19fVxcXLhy5Qr//ve/lTIVKlRg4sSJyu82NjYkJyfz/fffExgYiJGREWq1mqdPnxbY34vzEltbWzNixAjWrl2rJGqysrIYOXIkjo6OANjZ2Snlp06dSo8ePZS5W+3s7Jg7dy5eXl4sXLiQypUro6Ojg7GxcYH9xsXF4evri66ubpHH7ubmxvjx45W658+fz969e2nTpg1ZWVlYWlri4+NDhQoVqFmzJo0aNVJijo6OJisri+rVqwN5ieodO3YQHR3NlClTmDFjBg0aNNAa/ezi4qL8W1dXFwMDg2L7Jz/hm982pVVSfz148ID79+/ToUMHZQSdk5OTUv5N+iQrKwtDQ0M6dOiAsbExtWrVwsPDQyu+F+8PRRkxYgT+/v5AXvLNxcWFc+fO4ejoSFZWFl26dFGul9q1ayvbzZ8/Hw8PD6ZMmaIs+/bbb7GysuLMmTNUq1aNqKgo5s+fr4x2rVOnDs2bNwfAzMwMgCpVqpTYN7Vr11aS16X18pcGS5YsoWLFiiQkJNChQ4cSz7ui2rY097usrCw8PDxo0KABkHc9vih/1Gbjxo1LPA5HR0cePnzI77//roywtLOzY8aMGVrlXpx32drami+//JJBgwYp18W8efNo166d8sWQvb09SUlJxMfHK9u9jb8RlpaWqFQqTE1Ni+zX/v3707RpU65fv061atW4efMmP/zwA3v27CmyjX777TetxCmAhYUFDx484MmTJ9y9e5ecnJxCy/zyyy9KHbq6ugUS+xYWFvz222/F7id/XWliUavVXLhwgYULFzJ8+HD+85//cOTIEUJDQ9HV1aV3797cvHmT7Oxspk2bxpdffsn06dPZsWMHnTt3Zv/+/Xh5eXHhwgUg7wmKmTNn4u7uzooVK2jdujUnT57Uul+UxMrKitmzZ6NSqXBwcODEiRPMnj2bkJAQfvnlF/bs2cORI0eUc3bZsmXF1j916lSte58QQgghhBBCvKp/1EjaU6dOce3aNVq3bg3kjQb08PBQEomFlW/WrJnWsmbNmnHq1CmtZW5ubsq/819UUtyImnPnzvH48WPatGmDkZGR8rNixQrOnz9fZN3VqlUDKLZuyBuR1Lx582Ln2LO2tlYStPl159dbr149WrdujaurK926dWPp0qXcvXsXyHv09vz58/Tr108r9i+//FKJvaR2LcygQYO06oO89ndzc9OabzA/yfOir7/+Gk9PT8zMzDAyMmLJkiUFXiRTmHXr1tGsWTMsLS0xMjJizJgxWtsNHz6c/v374+Pjw7Rp07T6Ji0tjZiYGK2YfX19yc3N5eLFi8Xu9+XHtgvzYr+Ddv9069aNJ0+eULt2bUJCQti0aZMykvPEiRPk5ORgb2+vFVtCQoJW/+RfA6/rxcd+X1Vx/VW5cmX69OmDr68vAQEBREVFaY1CfpM+adOmDbVq1aJ27dr07NmT1atX8/jxY2X7l+8PRSnumgwNDeXLL7+kWbNmjB8/nvT0dK349u/frxVffrL5/PnznDp1iqdPn5ZZ39y4cYOQkBDs7OwwNTXFxMSE7OxspW+KO++Ka9vS3O/+/e9/s3btWtzd3YmIiCApKUkrtri4ODp06FDsvKIvH/+Lo6E9PT0LlNuzZw+tW7fmvffew9jYmJ49e/L7778rcZ8+fVpJQud7+fd39TfiZY0aNcLFxUV5WmHVqlXUqlVLa7Tyq7TRX1Fubi7169dnypQpeHh4MGDAAEJCQpSRz/lPuHz44YeEhYXh7u7O559/TocOHQqUyR/R7OHhwezZs3FwcFCmcCit999/X+scatKkCWfPniUnJ4fTp09Tvnx56tevr6y3tbXVmj/3ZaNGjeL+/fvKz6+//vpK8QghhBBCCCHE3/PTXhG2bNlCmzZtlKSfWq1+K/W+PGJNpVIpHxYLkz/v4bZt20hNTVV+MjMzC8w7+GLd+R8Yi6sbip/vtDQx6+josHv3brZv346zszPz5s3DwcGBixcvKrEvXbpUK/aTJ08qI7lep10nTZqkVV9prV27lhEjRtCvXz927dpFamoqwcHBJb4cKDk5mR49etC+fXvi4+M5fvw4o0eP1tpuwoQJZGRk4O/vz759+3B2dmbTpk1AXh8OHDhQK+a0tDTOnj2rNYfiy65fv87x48eVkZhFKa5/rKysOH36NAsWLECtVjN48GBatGjBn3/+SXZ2Njo6Ohw9elQrtlOnTilTbbyN897e3h5AGXFXWqXpr+joaJKTk2natCnr1q3D3t5eObfepE+MjY05duwY3333HdWqVWPcuHHUq1ePe/fuAQXvD0Up7prs378/Fy5coGfPnpw4cYIGDRowb948Jb6AgACt+FJTUzl79iwtWrR4a/cje3t7Lly4oDW/cmn07t2b1NRUoqKiSEpKIjU1lSpVqih9U9x5V1zbluZ+165dO2UO5/xE+YtTm5Tmnpbv1KlTmJiYUKVKFWWZoaGhVplLly7RoUMH3Nzc2LhxI0ePHuXrr78G3s2LxV71b0Rh+vfvr8xXGx0dTXBwsFYS8eU2srS05MaNG1p13LhxAxMTE9RqNVWrVkVHR6fQMvkjei0tLXn27JlyjRRVprA68teVJhbI+8LD2dlZq4yTk5PyJUHVqlUpX758sWXyvzQprkxZ0dPTw8TEROtHCCGEEEIIIV7FPypJGxcXpzWnoZubG6mpqdy5c6fQ8k5OTiQmJmotS0xMLPABsDj5j7S/OD+is7Mzenp6ZGVlYWtrq/VT2PyfxdX9Yr2Qlwjav39/iXM3lkSlUtGsWTMmTpzI8ePH0dXVZdOmTVhYWFC9enUuXLhQIPb8FxuV1K6FxW1ubq5VF+S1f3p6On/88YdSLj9Zly8xMZGmTZsyePBgPDw8sLW1LTAaubD9JSUlUatWLUaPHk2DBg2ws7NTXk71Int7e8LCwti1axedO3dW5oWsX78+mZmZBdrA1tZW6fPC9rt161aaNm36SqOMC6NWqwkICGDu3LkcOHCA5ORkTpw4gYeHBzk5Ody8ebNAXPkJEzc3N/bu3Vtk3YXF/TJ3d3ecnZ2JjIwsNNn0clInX2n6C/JejjVq1CiSkpKoW7cua9asUda9SZ+UL18eHx8fZsyYQXp6OpcuXWLfvn1AwfvD67KysmLQoEHExsYSHh6uzKtZv359MjIysLa2LhCfoaEhdnZ2qNXqIvumsHtJYf71r3+RnZ1d4GV++Yrrm9DQUNq3b4+Liwt6enpaLzWDos87KLptS3u/MzMzo3fv3qxatYo5c+awZMkSIG/6hsuXL9OmTZtijxvyRjSvWbOGTp06FTui9OjRo+Tm5hIZGcn777+Pvb09165d0yrj4ODAkSNHtJa9/Pvb+BtRWp988gmXL19m7ty5ZGZmar0ArrA2atKkSYFzaffu3crTCLq6unh6emqVyc3NZe/evUoZT09PKlSooFXm9OnTZGVlKWWaNGnCiRMntEYG7969GxMTE6UdSooF8kYg578YM9+ZM2eUKXd0dXVp2LBhsWWsra2pXr16sWVK68UXiALKPM06Ojo4ODjw/PlzrRdZnjt3TnniRAghhBBCCCHehX/MnLQ3b94kJSVFeas2QFBQEFOmTKFTp05MnTqVatWqcfz4capXr06TJk0YOXIkgYGBeHh44OPjw9atW4mNjdWaB7AktWrVQqVSER8fT/v27VGr1RgbGzNixAjCwsLIzc2lefPm3L9/n8TERExMTIp8+/rLrK2tuXjxIqmpqdSoUQNjY2N27NiBvb19gTkdX8WhQ4fYu3cvbdu2xdzcnEOHDnHr1i1lbtCJEycSGhqKqakpfn5+PH36lJSUFO7evcvw4cNLbNfC4i7szdv/+te/GD16NCEhIYwaNYpLly4xc+ZMrTJ2dnasWLGCnTt3YmNjw8qVKzly5IiSMM5vp507d3L69GmqVKmCqakpdnZ2ZGVlsXbtWho2bMi2bduUEZkAT548YeTIkXTt2hUbGxuuXLnCkSNH6NKlCwCfffYZ77//PkOHDqV///4YGhqSmZnJ7t27mT9/vrLfH3/8kY8//hg9PT2qVq36SiMCixITE0NOTg6NGzfGwMCAVatWoVarqVWrFlWqVKFHjx706tWLyMhIPDw8uHXrFnv37sXNzQ1/f39GjRqFq6srgwcPZtCgQejq6rJ//366detG1apVsba25tChQ1y6dAkjIyMqV65cIOGlUqmIjo7Gx8eHDz74gNGjR+Po6Eh2djZbt25l165dBV6CV5r+unjxIkuWLKFjx45KsuXs2bP06tXrjfskPj6eCxcu0KJFCypVqsQPP/xAbm4uDg4Ohd4fXsewYcNo164d9vb23L17l/379yvXzZAhQ1i6dClBQUFERERQuXJlzp07x9q1a1m2bBn6+vp89tlnREREoKurS7Nmzbh16xYZGRn069cPc3Nz1Go1O3bsoEaNGujr62NqaloghsaNGxMREUF4eDhXr17lo48+onr16pw7d45FixbRvHlzPv3000L7ZuXKlTRo0IAHDx4wcuRIrdG9xZ13xbVtae5348aNw9PTExcXF54+fUp8fLzSbnFxcfj4+GBgYKAVr0aj4bfffkOj0XDv3j2Sk5OZMmUKpqamyksQi2Jra8uff/7JvHnzCAgI0HqhWL7/+7//o0WLFsyaNYuAgAD27dvH9u3btUavvo2/EaVVqVIlOnfuzMiRI2nbti01atRQ1hXWRoMGDWL+/PlERETQt29f9u3bx/fff8+2bduUMsOHD6d37940aNCARo0aMWfOHB49ekRwcDAApqam9OvXj+HDh1O5cmVMTEz4v//7P5o0acL7778PQNu2bXF2dqZnz57MmDGD3377jTFjxjBkyBDlvl6aWMLCwmjatClTpkwhMDCQw4cPs2TJEiVZn9/e3bt3p0WLFrRs2ZIdO3awdetWDhw4AOTdl0aOHMn48eOpV68e7u7uLF++nF9++UXrKZXWrVvz0UcfKS8VLExWVhbDhw9n4MCBHDt2jHnz5hEZGQnkzXvs4+PDgAEDWLhwIRUqVCA8PBy1Wl3sSweFEEIIIYQQ4k38Y0bSbt26lUaNGmm9MVxXV5ddu3Zhbm5O+/btcXV1Zdq0aejo6ADQqVMnoqKimDlzJi4uLixevJjo6Gi8vb1Lvd/33nuPiRMn8vnnn2NhYaF8KPziiy8YO3YsU6dOxcnJCT8/P7Zt26aVXCxJly5d8PPzo2XLlpiZmfHdd9+Var7TkpiYmPDjjz/Svn177O3tGTNmDJGRkcqLyPr378+yZcuIjo7G1dUVLy8vYmJilNhLatfC4i6MkZERW7duVUaIjh49munTp2uVGThwIJ07d6Z79+40btyY33//vcBb7UNCQnBwcKBBgwaYmZmRmJhIx44dCQsLY+jQobi7u5OUlMTYsWOVbXR0dPj999/p1asX9vb2BAYG0q5dO+XFL25ubiQkJHDmzBk++OADPDw8GDdunPKyLsibwuHSpUvUqVMHMzMzHj16xN69e9+4fypWrMjSpUtp1qwZbm5u7Nmzh61btyqPd0dHR9OrVy/Cw8NxcHCgU6dOHDlyhJo1awJ5I1F37dpFWloajRo1okmTJsTFxVG+fN53MiNGjEBHRwdnZ2fMzMyKfEy4UaNGpKSkYGtrS0hICE5OTnTs2JGMjAzmzJlT6DYl9ZeBgQG//PILXbp0wd7engEDBjBkyBAGDhz4xn1SsWJFYmNjadWqFU5OTixatIjvvvsOFxeXQu8PryMnJ4chQ4Yo17S9vb0yorV69eokJiaSk5ND27ZtcXV1ZdiwYVSsWFFJgo8dO5bw8HDGjRuHk5MT3bt3V0Yoli9fnrlz57J48WKqV69e7Kjf6dOns2bNGg4dOoSvry8uLi4MHz4cNze3Ir8E+uabb7h79y7169enZ8+ehIaGKi/eym+/os674toWSr7f6erqMmrUKNzc3GjRogU6OjqsXbsWKHoO5wcPHlCtWjXee+89mjRpory48Pjx48pj70WpV68es2bNYvr06dStW5fVq1czdepUrTLNmjVj0aJFzJo1i3r16rFjxw7CwsK0psN4G38jXkW/fv149uwZffv21VpeWBvZ2Niwbds2du/eTb169YiMjGTZsmX4+voqZbp3787MmTMZN24c7u7upKamsmPHDq2XfM2ePZsOHTrQpUsXWrRogaWlJbGxscp6HR0d4uPj0dHRoUmTJnzyySf06tWLSZMmvVIsDRs2ZNOmTXz33XfUrVuXL774gjlz5tCjRw+lzEcffcSiRYuYMWMGrq6uLFu2jI0bNyov14O8L0pGjRpFWFgY9erVY+/evezevVtrGprz588XGCX+svwvhho1asSQIUP49NNPGTBggLJ+xYoVWFhY0KJFCz766CNCQkIwNjYucboUIYQQQgghhHhdKs2bvCHoL6Rjx440b96ciIiIsg7lnXn+/DkWFhZs3769wAtuRNmLjY1lzJgxZGZmlnUo4iX/C/eHv6Pbt29TrVo1rly5opU4LCshISH88ssv/PTTT2Wy/5UrVyrz9uZPf/FXa6O/o6CgIHR0dFi1ahUA3t7euLu7F/llU2GuXLmClZWV8kK6kjx48ABTU1NmDFmLWs+gxPJCCCGEEEKIt2NoZEBZh6Al/7PB/fv3S3x3xT9muoPmzZsTFBRU1mG8U3fu3CEsLIyGDRuWdSiiEEZGRgVGAou/hv+F+8Pf0Z07d5g1a1aZJR9nzpxJmzZtMDQ0ZPv27SxfvrzIuX7fpcePH3P9+nWmTZvGwIEDlQQtlH0b/Z09f/6cM2fOkJyczMCBA19p23379pGdnY2rqyvXr18nIiICa2trWrRo8Y6iFUIIIYQQQvyv+8eMpBVCCCFeRWBgIAcOHODhw4fUrl2b//u//2PQoEH/9TgmTJjA5MmTadGiBXFxcRgZGf3XY/gnSk1NpWnTprRs2ZJVq1ZRqVIloHQjaXfu3El4eDgXLlzA2NiYpk2bMmfOnFK/oExG0gohhBBCCFE2/s4jaSVJK4QQQgjxFkmSVgghhBBCiLLxd07S/mOmOxBCCCGE+CsZOKVdif8RE0IIIYQQQgiAcmUdgBBCCCGEEEIIIYQQQvwvkyStEEIIIYQQQgghhBBClCFJ0gohhBBCCCGEEEIIIUQZkjlphRBCCCHegdhNLTEw0CnrMIQQQgghhPifEdjtcFmH8NpkJK0QQgghhBBCCCGEEEKUIUnSCiGEEEIIIYQQQgghRBmSJK0QQgghhBBCCCGEEEKUIUnSCiGEEEIIIYQQQgghRBmSJK0AICYmhooVK5Z1GG/FpUuXUKlUpKamlnUoohSkv/66JkyYgLu7e1mH8bf0T7qn/t316dOHTp06lXUYQgghhBBCCFEsSdIWITg4mDFjxvxX9nXgwAFUKhX37t1763WXlGSxsbFhz549dO/enTNnzrz1/b+u/3ZyqKw+xFtbWzNnzpxC1yUkJGBlZQX89ZIM3t7eDBs2rFRlz507R3BwMDVq1EBPTw8bGxuCgoJISUl5t0G+Qy/eH1QqFZs3by7bgP6/V014b9y4EW9vb0xNTTEyMsLNzY1JkyZx586ddxvoO/LkyRMMDQ05d+4cMTExqFQq5cfIyAhPT09iY2Pf+n6Lu47ftpYtW7Js2TIAsrKy8Pf3x8DAAHNzc0aOHMnz58+1yh84cID69eujp6eHra0tMTExBer8+uuvsba2Rl9fn8aNG3P4sPbbUP/44w+GDBlClSpVMDIyokuXLty4cUOrTEmx9OnTR6s/8n9cXFyUMtbW1oWWGTJkiNa+kpOTadWqFYaGhpiYmNCiRQuePHlSZJtFRUUVetxCCCGEEEII8VciSdpC5OTkEB8fT8eOHcs6lHcqPT2du3fv4uXlhVqtxtzcvKxDEi+Ii4sjICCgrMN4IykpKXh6enLmzBkWL15MZmYmmzZtwtHRkfDw8LIO77X8U+4Po0ePpnv37jRs2JDt27dz8uRJIiMjSUtLY+XKlWUd3mvZvXs3tWrVwtbWFgATExOuX7/O9evXOX78OL6+vgQGBnL69OkyjvT13Llzh8TERAICAsjJycHf359nz56RlJTE8uXLiYmJYdy4cUr5ixcv4u/vT8uWLUlNTWXYsGH079+fnTt3KmXWrVvH8OHDGT9+PMeOHaNevXr4+vpy8+ZNpUxYWBhbt25l/fr1JCQkcO3aNTp37qysL00sUVFRSl9cv36dX3/9lcqVK9OtWzelzJEjR7TK7N69G0CrTHJyMn5+frRt25bDhw9z5MgRhg4dSrlyRf93xtTUVEY1CyGEEEIIIf7yJElbiKSkJCpUqEDDhg0BuHLlCkFBQVSuXBlDQ0MaNGjAoUOHlPILFy6kTp066Orq4uDgUCDBoVKpWLZsGR999BEGBgbY2dmxZcsWIG/kW8uWLQGoVKkSKpWKPn36AJCbm8vUqVOxsbFBrVZTr149NmzYoNSbPwJ37969NGjQAAMDA5o2baokIGJiYpg4cSJpaWnKiKQXRxPFxcXh5+dHhQoVCjyamz+SdeXKlVhbW2NqasrHH3/Mw4cPlTIbNmzA1dUVtVpNlSpV8PHx4dGjR8r6ZcuW4eTkhL6+Po6OjixYsECrXYpq15Liftnhw4fx8PBAX1+fBg0acPz4ca31OTk59OvXT2lHBwcHoqKitI51+fLlxMXFKfs7cOAAAJ999hn29vYYGBhQu3Ztxo4dy59//qlsm5aWRsuWLTE2NsbExARPT0+tEaIHDx7kgw8+QK1WY2VlRWhoqNJG3t7eXL58mbCwMGW/L9qyZUuRiUBvb29CQ0OJiIigcuXKWFpaMmHCBGW9RqNhwoQJ1KxZEz09PapXr05oaKiy/unTp4wYMYL33nsPQ0NDGjdurBxzvsTERLy9vTEwMKBSpUr4+vpy9+5d+vTpQ0JCAlFRUUrcly5dKhCjRqOhT58+2NnZ8dNPP+Hv70+dOnVwd3dn/PjxxMXFFXpsJfUX5J37jRo1wtDQkIoVK9KsWTMuX778xn0CsGDBAuzs7NDX18fCwoKuXbtq7fvl+8OL8keyxsbG0rJlSwwMDKhXrx7JyclKmcuXLxMQEEClSpUwNDTExcWFH374QVl/8uRJ2rVrh5GRERYWFvTs2ZPbt28r63Nzc5kxYwa2trbo6elRs2ZNJk+eDOSNjAfw8PBApVLh7e1daBsfPnyYKVOmEBkZyVdffUXTpk2xtramTZs2bNy4kd69exe63ZEjR2jTpg1Vq1bF1NQULy8vjh07pqwv6bwrrm1Lut/dvXuXHj16YGZmhlqtxs7OjujoaK344uLitK4ZlUqFpaUllpaW2NnZ8eWXX1KuXDnS09OVMqW5Ft7kOn45vvr166Ovr0/t2rWZOHGiMtq0pLYD2LZtG/Xr18fCwoJdu3aRmZnJqlWrcHd3p127dnzxxRd8/fXXPHv2DIBFixZhY2NDZGQkTk5ODB06lK5duzJ79mylzlmzZhESEkJwcDDOzs4sWrQIAwMDvv32WwDu37/PN998w6xZs2jVqhWenp5ER0eTlJTEzz//DFCqWExNTZW+sLS0JCUlhbt37xIcHKzEYmZmplUmPj6eOnXq4OXlpZQJCwsjNDSUzz//HBcXFxwcHAgMDERPT6/Idn/5SQRvb2+GDh3K0KFDMTU1pWrVqowdOxaNRqOUuX79Ov7+/qjVamxsbFizZk2xI6afPn3KgwcPtH6EEEIIIYQQ4lVIkrYQW7ZsISAgAJVKRXZ2Nl5eXly9epUtW7aQlpZGREQEubm5AGzatIlPP/2U8PBwTp48ycCBAwkODmb//v1adU6cOJHAwEDS09Np3749PXr04M6dO1hZWbFx40YATp8+zfXr15WE1NSpU1mxYgWLFi0iIyODsLAwPvnkExISErTqHj16NJGRkaSkpFC+fHn69u0LQPfu3QkPD8fFxUUZmdS9e3et4/zwww+LbIfz58+zefNm4uPjiY+PJyEhgWnTpgF5H2CDgoLo27cvp06d4sCBA3Tu3Fn5kLt69WrGjRvH5MmTOXXqFFOmTGHs2LEsX74coNh2LSnuF2VnZ9OhQwecnZ05evQoEyZMYMSIEVplcnNzqVGjBuvXryczM5Nx48bxn//8h++//x6AESNGEBgYiJ+fn7K/pk2bAmBsbExMTAyZmZlERUWxdOlSrQRHjx49qFGjBkeOHOHo0aN8/vnnVKhQQWk/Pz8/unTpQnp6OuvWrePgwYMMHToUgNjYWGrUqMGkSZOU/ebLyMjg5s2btGrVqsj+Wb58OYaGhhw6dIgZM2YwadIkZeTZxo0bmT17NosXL+bs2bNs3rwZV1dXZduhQ4eSnJzM2rVrSU9Pp1u3bvj5+XH27FkAUlNTad26Nc7OziQnJ3Pw4EFl9F5UVBRNmjQhJCREiTt/WoYXpaamkpGRQXh4eKGj3Ioa2VZSfz1//pxOnTrh5eVFeno6ycnJDBgwQEmOvUmfpKSkEBoayqRJkzh9+jQ7duygRYsWWvG9eH8oyujRoxkxYgSpqanY29sTFBSkJOOGDBnC06dP+fHHHzlx4gTTp0/HyMgIgHv37tGqVSs8PDxISUlhx44d3Lhxg8DAQKXuUaNGMW3aNMaOHUtmZiZr1qzBwsICQHlMfc+ePVy/fr3IR/tXr16NkZERgwcPLnR9UX3z8OFDevfuzcGDB/n555+xs7Ojffv2ypc3xZ13JbVtSfe7/OPdvn07p06dYuHChVStWlXZPjc3l/j4+CLvaTk5Ocr9p379+srykq6FN7mOX/TTTz/Rq1cvPv30UzIzM1m8eDExMTFKgr2kaxa079nJycm4uroqfQ/g6+vLgwcPyMjIUMr4+Pho1eHr66t8afDs2TOOHj2qVaZcuXL4+PgoZY4ePcqff/6pVcbR0ZGaNWsqZUoTy8u++eYbfHx8qFWrVqHrnz17xqpVq+jbt69yrd28eZNDhw5hbm5O06ZNsbCwwMvLi4MHDxZaR3GWL19O+fLlOXz4MFFRUcyaNUuZRgKgV69eXLt2jQMHDrBx40aWLFmiNbr4ZVOnTsXU1FT5KeyeKIQQQgghhBDFKV/WAfwVxcXFKYm4NWvWcOvWLY4cOULlypUBlEdpAWbOnEmfPn2UZMfw4cP5+eefmTlzpjJCFvJG8gQFBQEwZcoU5s6dy+HDh/Hz81PqNTc3V5IjT58+ZcqUKezZs4cmTZoAULt2bQ4ePMjixYu1RhZNnjxZ+f3zzz/H39+fP/74A7VajZGREeXLl8fS0lLrGK9evUp6ejrt2rUrsh1yc3OJiYnB2NgYgJ49e7J3714mT57M9evXef78OZ07d1Y+ZL+YUBg/fjyRkZHKI7E2NjZKYqJ3794ltmtRcb9szZo15Obm8s0336Cvr4+LiwtXrlzh3//+t1KmQoUKTJw4UfndxsaG5ORkvv/+ewIDAzEyMkKtVvP06dMC+3txXmJra2tGjBjB2rVriYiIAPLmYRw5ciSOjo4A2NnZKeWnTp1Kjx49lLlb7ezsmDt3Ll5eXixcuJDKlSujo6ODsbFxgf3GxcXh6+uLrq5ukcfu5ubG+PHjlbrnz5/P3r17adOmDVlZWVhaWuLj40OFChWoWbMmjRo1UmKOjo4mKyuL6tWrA3mJ6h07dhAdHc2UKVOYMWMGDRo00Br9/OLckbq6uhgYGBTbP/lJrvy2Ka2S+uvBgwfcv3+fDh06UKdOHQCcnJyU8m/SJ1lZWRgaGtKhQweMjY2pVasWHh4eWvG9eH8oyogRI/D39wfyvqBxcXHh3LlzODo6kpWVRZcuXZTrpXbt2sp28+fPx8PDgylTpijLvv32W6ysrDhz5gzVqlUjKiqK+fPnK6Nd69SpQ/PmzYG8kYgAVapUKbFvateurSSvS+vlLw2WLFlCxYoVSUhIoEOHDiWed0W1bWnud1lZWXh4eNCgQQMg73p8Uf6ozsaNGyvL7t+/ryTAnzx5QoUKFViyZIly3pTmWniT6/hFEydO5PPPP1f6rXbt2nzxxRdEREQwfvz4Ytsuv4127NihjJj/7bfftJKigPL7b7/9VmyZBw8e8OTJE+7evUtOTk6hZX755RelDl1d3QKJewsLixL382IsL7p27Rrbt29nzZo1RbbX5s2buXfvnvJkCcCFCxeAvKcfZs6cibu7OytWrKB169acPHlS61oviZWVFbNnz0alUuHg4MCJEyeYPXs2ISEh/PLLL+zZs4cjR44o59uyZcuKrX/UqFEMHz5c+f3BgweSqBVCCCGEEEK8EhlJ+5JTp05x7do1WrduDeSNBvTw8FASiYWVb9asmdayZs2acerUKa1lbm5uyr/zX3ZS3Kicc+fO8fjxY9q0aYORkZHys2LFCs6fP19k3dWqVQMotm7IG5HVvHnzYufps7a2VhK0+XXn11uvXj1at26Nq6sr3bp1Y+nSpdy9exeAR48ecf78efr166cV+5dffqnEXlK7FmbQoEFa9UFe+7u5uaGvr6+Uy0/yvOjrr7/G09MTMzMzjIyMWLJkCVlZWSXuc926dTRr1gxLS0uMjIwYM2aM1nbDhw+nf//++Pj4MG3aNK2+SUtLIyYmRitmX19fcnNzuXjxYrH7ffmx7cK82O+g3T/dunXjyZMn1K5dm5CQEDZt2qSM5Dxx4gQ5OTnY29trxZaQkKDVP/nXwOt68dHhV1Vcf1WuXJk+ffrg6+tLQECAMtdlvjfpkzZt2lCrVi1q165Nz549Wb16NY8fP1a2f/n+UJTirsnQ0FC+/PJLmjVrxvjx47UevU9LS2P//v1a8eUnm8+fP8+pU6d4+vRpmfXNjRs3CAkJwc7ODlNTU0xMTMjOzlb6prjzrri2Lc397t///jdr167F3d2diIgIkpKStGKLi4ujQ4cOWqO2jY2NSU1NJTU1lePHjzNlyhQGDRrE1q1bgdJdC29yHb8oLS2NSZMmadWTPxr98ePHxbYdwL59+zA3N9f6suTvavny5VSsWLHYlyF+8803tGvXTkmeA8oTLPlPrHh4eDB79mwcHByU6RlK6/3339caDd+kSRPOnj1LTk4Op0+fpnz58lojrm1tbalUqVKR9enp6WFiYqL1I4QQQgghhBCvQpK0L9myZQtt2rRRkn5qtfqt1PvyiDWVSqV84CxMdnY2kDcHYX6SITU1lczMTK15Gl+uO/9DZ3F1Q/HznZYmZh0dHXbv3s327dtxdnZm3rx5ODg4cPHiRSX2pUuXasV+8uRJZbTb67TrpEmTtOorrbVr1zJixAj69evHrl27SE1NJTg4WJkrsSjJycn06NGD9u3bEx8fz/Hjxxk9erTWdhMmTCAjIwN/f3/27duHs7MzmzZtAvL6cODAgVoxp6WlcfbsWWUkX2HyX3KUPxKzKMX1j5WVFadPn2bBggWo1WoGDx5MixYt+PPPP8nOzkZHR4ejR49qxXbq1Cllqo23cd7b29sDKCPySqs0/RUdHU1ycjJNmzZl3bp12NvbK+fWm/SJsbExx44d47vvvqNatWqMGzeOevXqce/ePaDg/aEoxV2T/fv358KFC/Ts2ZMTJ07QoEED5s2bp8QXEBCgFV9qaipnz56lRYsWb+1+ZG9vz4ULF7TmVy6N3r17k5qaSlRUFElJSaSmplKlShWlb4o774pr29Lc79q1a6fM/ZqfKH9xapPC7mnlypXD1tYWW1tb3NzcGD58ON7e3kyfPh2gVNfC617HL8vOzmbixIla9Zw4cYKzZ8+ir69fbNsVdnyWlpbcuHFDax/5v+eP6C2qjImJCWq1mqpVq6Kjo1NomRfrePbsmXINFFWmpFjyaTQavv32W3r27FnkkwKXL19mz5499O/fX2t5/hcezs7OWsudnJxK9aWbEEIIIYQQQvyVSZL2JXFxcVpzGrq5uZGamsqdO3cKLe/k5ERiYqLWssTExAIfIouT/0E1JydHWebs7Iyenh5ZWVlKkiH/51UeodTV1dWqF/KSBfv37y92PtrSUKlUNGvWjIkTJ3L8+HF0dXXZtGkTFhYWVK9enQsXLhSIPf/FRiW1a2Fxm5uba9UFee2fnp7OH3/8oZTLT9blS0xMpGnTpgwePBgPDw9sbW0LjEYubH9JSUnUqlWL0aNH06BBA+zs7JSXU73I3t6esLAwdu3aRefOnZWXGdWvX5/MzMwCbWBra6v0eWH73bp1K02bNn2lUcaFUavVBAQEMHfuXA4cOEBycjInTpzAw8ODnJwcbt68WSCu/ISKm5sbe/fuLbLuwuJ+mbu7O87OzkRGRhb6pcHLSZ98pekvyHs51qhRo0hKSqJu3bpaj06/SZ+UL18eHx8fZsyYQXp6OpcuXWLfvn1AwfvD67KysmLQoEHExsYSHh7O0qVLlfgyMjKwtrYuEJ+hoSF2dnao1eoi+6awe0lh/vWvf5GdnV3gZX75iuub0NBQ2rdvj4uLC3p6elovNYOizzsoum1Le78zMzOjd+/erFq1ijlz5rBkyRIgb/qGy5cv06ZNm2KPG/K+YHry5AlAqa6F172OX1a/fn1Onz5daD35o3+LajuNRsPWrVu1zr0mTZpw4sQJracmdu/ejYmJifL3p0mTJgXOld27dytPG+jq6uLp6alVJjc3l7179yplPD09qVChglaZ06dPk5WVpZQpTSz5EhISOHfuHP369SuyraKjozE3Ny/wRZW1tTXVq1dXXo6Z78yZM0XObVuUF1/+CShzLOvo6ODg4MDz58+1XkJ57tw55WkRIYQQQgghhHgXJEn7gps3b5KSkkKHDh2UZUFBQVhaWtKpUycSExO5cOECGzduVF6YMnLkSGJiYli4cCFnz55l1qxZxMbGFnh5VXFq1aqFSqUiPj6eW7dukZ2djbGxMSNGjCAsLIzly5dz/vx5jh07xrx585SX35SGtbU1Fy9eJDU1ldu3byvzGtrb2xeY0/FVHDp0iClTppCSkkJWVhaxsbHcunVLmRt04sSJTJ06lblz53LmzBlOnDhBdHQ0s2bNAkpu18LiLsy//vUvVCoVISEhZGZm8sMPPzBz5kytMnZ2dqSkpLBz507OnDnD2LFjOXLkSIF2Sk9P5/Tp09y+fZs///wTOzs7srKyWLt2LefPn2fu3LnKiEzIm+Ny6NChHDhwgMuXL5OYmMiRI0eUNvjss89ISkpi6NChymjIuLg45YVD+fv98ccfuXr1qpLsKs0o55LExMTwzTffcPLkSS5cuMCqVatQq9XUqlULe3t7evToQa9evYiNjeXixYscPnyYqVOnsm3bNiBvfsUjR44wePBg0tPT+eWXX1i4cKESo7W1NYcOHeLSpUvcvn270CSsSqUiOjqaM2fO8MEHH/DDDz9w4cIF0tPTmTx5cpHJzpL66+LFi4waNYrk5GQuX77Mrl27OHv2LE5OTm/cJ/Hx8cydO5fU1FQuX77MihUryM3NxcHBodD7w+sYNmwYO3fu5OLFixw7doz9+/cr8Q0ZMoQ7d+4QFBTEkSNHOH/+PDt37iQ4OJicnBz09fX57LPPiIiIUKYC+Pnnn/nmm2+AvC8y1Gq18sKx+/fvFxpD48aNiYiIIDw8nIiICKUt9+7dS7du3Yq8x9jZ2bFy5UpOnTrFoUOH6NGjh9bo3uLOu+LatjT3u3HjxhEXF8e5c+fIyMggPj5eabe4uDh8fHwwMDDQilej0fDbb7/x22+/cfHiRZYsWcLOnTuVc68018LrXscvGzduHCtWrGDixIlkZGRw6tQp1q5dq8x7XVzbHT16lMePHytzDwO0bdsWZ2dnevbsSVpaGjt37mTMmDEMGTIEPT09IG+KmAsXLhAREcEvv/zCggUL+P777wkLC1PqGT58OEuXLmX58uWcOnWKf//73zx69Ijg4GAATE1N6devH8OHD2f//v0cPXqU4OBgmjRpwvvvv1/qWPJ98803NG7cmLp16xbaTrm5uURHR9O7d2/Kl9eeNl+lUjFy5Ejmzp3Lhg0bOHfuHGPHjuWXX37RSvq2bt2a+fPnF1p/vqysLIYPH87p06f57rvvmDdvHp9++imQN4+2j48PAwYM4PDhwxw/fpwBAwagVquLfWGgEEIIIYQQQrwJSdK+YOvWrTRq1EjrjeG6urrs2rULc3Nz2rdvj6urK9OmTUNHRweATp06ERUVxcyZM3FxcWHx4sVER0fj7e1d6v2+9957yktlLCwslA//X3zxBWPHjmXq1Kk4OTnh5+fHtm3blNGopdGlSxf8/Pxo2bIlZmZmfPfdd6Wa77QkJiYm/Pjjj7Rv3x57e3vGjBlDZGSk8iKy/v37s2zZMqKjo3F1dcXLy4uYmBgl9pLatbC4C2NkZMTWrVuVEaKjR49WHmXON3DgQDp37kz37t1p3Lgxv//+e4G32oeEhODg4ECDBg0wMzMjMTGRjh07EhYWxtChQ3F3dycpKYmxY8cq2+jo6PD777/Tq1cv7O3tCQwMpF27dspLr9zc3EhISFCSlB4eHowbN05rjsVJkyZx6dIl6tSpg5mZGY8ePWLv3r1v3D8VK1Zk6dKlNGvWDDc3N/bs2cPWrVupUqUKkDdSrVevXoSHh+Pg4ECnTp04cuQINWvWBPKSV7t27SItLY1GjRrRpEkT4uLilKTJiBEj0NHRwdnZGTMzsyIfNW7UqBEpKSnY2toSEhKCk5MTHTt2JCMjgzlz5hS6TUn9ZWBgwC+//EKXLl2wt7dnwIABDBkyhIEDB75xn1SsWJHY2FhatWqFk5MTixYt4rvvvsPFxaXQ+8PryMnJYciQIco1bW9vr4xorV69OomJieTk5NC2bVtcXV0ZNmwYFStWVEZbjh07lvDwcMaNG4eTkxPdu3dXRjCWL1+euXPnsnjxYqpXr17sqN/p06ezZs0aDh06hK+vLy4uLgwfPhw3Nzfl5VYv++abb7h79y7169enZ8+ehIaGYm5urqwv7rwrrm2h5Pudrq4uo0aNws3NjRYtWqCjo8PatWuBoudwfvDgAdWqVaNatWo4OTkRGRnJpEmTGD16tFKmpGvhda7jwvj6+hIfH8+uXbto2LAh77//PrNnz1ZGgBbXdnFxcbRv314raamjo0N8fDw6Ojo0adKETz75hF69ejFp0iSljI2NDdu2bWP37t3Uq1ePyMhIli1bhq+vr1Kme/fuzJw5k3HjxuHu7k5qaio7duzQehHY7Nmz6dChA126dKFFixZYWloSGxv7SrFA3ovcNm7cWOwo2j179pCVlUXfvn0LXT9s2DBGjRpFWFgY9erVY+/evezevVtr6onz588XmSzP16tXL548eUKjRo0YMmQIn376KQMGDFDWr1ixAgsLC1q0aMFHH31ESEgIxsbGJU51IoQQQgghhBCvS6V5k7f7/MN07NiR5s2bExERUdahvDPPnz/HwsKC7du3a705XPw1xMbGMmbMGDIzM8s6FPGS/4X7w9/R7du3qVatGleuXNFKLP6TuLm5MWbMGAIDA8s6lL+loKAgdHR0WLVqFQDe3t64u7sX+UVRYa5cuYKVlRV79uwp1Yv7Hjx4gKmpKdEx9TEw0Hnd0IUQQgghhBCvKLDb4bIOQUv+Z4P79++X+ILh8sWu/R/TvHlzgoKCyjqMd+rOnTuEhYXRsGHDsg5FFMLIyKjASGDx1/C/cH/4O7pz5w6zZs36xyZonz17RpcuXZSnFETpPX/+nDNnzpCcnMzAgQNfadt9+/aRnZ2Nq6sr169fJyIiAmtra1q0aPGOohVCCCGEEEL8r5ORtEIIIYT4x0lNTaVp06a0bNmSVatWUalSJaB0I2l37txJeHg4Fy5cwNjYmKZNmzJnzpxSv6BMRtIKIYQQQghRNv7OI2klSSuEEEII8Ra9yn/EhBBCCCGEEP9cr/LZQF4cJoQQQgghhBBCCCGEEGVIkrRCCCGEEEIIIYQQQghRhiRJK4QQQgghhBBCCCGEEGWofFkHIIQQQgjxT9R08x50DAzLOgwhhBBCCCH+Z6R19S3rEF6bjKQVQgghhBBCCCGEEEKIMiRJWiGEEEIIIYQQQgghhChDkqQVQgghhBBCCCGEEEKIMiRJWiGEEEIIIYQQQgghhChDkqQtAzExMVSsWLGsw3grLl26hEqlIjU1taxDEaUg/fXXNWHCBNzd3cs6jH8cOedFnz596NSpU1mHIYQQQgghhBDF+kskaYODgxkzZsx/ZV8HDhxApVJx7969t153SUkWGxsb9uzZQ/fu3Tlz5sxb3//r+m8nh8rqA7O1tTVz5swpdF1CQgJWVlbAX+8Dvbe3N8OGDStV2XPnzhEcHEyNGjXQ09PDxsaGoKAgUlJS3m2Q79CL9weVSsXmzZvLNqD/71WTfxs3bsTb2xtTU1OMjIxwc3Nj0qRJ3Llz590G+o48efIEQ0NDzp07B8CzZ8/46quvqF+/PoaGhpiamlKvXj3GjBnDtWvXyjjaf46WLVuybNkyALKysvD398fAwABzc3NGjhzJ8+fPtcofOHCA+vXro6enh62tLTExMQXq/Prrr7G2tkZfX5/GjRtz+PBhrfV//PEHQ4YMoUqVKhgZGdGlSxdu3LihVaY0saxevZp69ephYGBAtWrV6Nu3L7///ruyfunSpXzwwQdUqlSJSpUq4ePjoxXLn3/+yWeffYarqyuGhoZUr16dXr16lXh+RUVFFXrcQgghhBBCCPFXUuZJ2pycHOLj4+nYsWNZh/JOpaenc/fuXby8vFCr1Zibm5d1SOIFcXFxBAQElHUYbyQlJQVPT0/OnDnD4sWLyczMZNOmTTg6OhIeHl7W4b2Wf8r9YfTo0XTv3p2GDRuyfft2Tp48SWRkJGlpaaxcubKsw3stu3fvplatWtja2vL06VPatGnDlClT6NOnDz/++CMnTpxg7ty53L59m3nz5hVZz7Nnz/6LUf/9vNg+d+7cITExkYCAAHJycvD39+fZs2ckJSWxfPlyYmJiGDdunFL+4sWL+Pv707JlS1JTUxk2bBj9+/dn586dSpl169YxfPhwxo8fz7Fjx6hXrx6+vr7cvHlTKRMWFsbWrVtZv349CQkJXLt2jc6dOyvrSxNLYmIivXr1ol+/fmRkZLB+/XoOHz5MSEiIUubAgQMEBQWxf/9+kpOTsbKyom3btly9ehWAx48fc+zYMcaOHcuxY8eIjY3l9OnTJd4fTE1N/zFPrwghhBBCCCH+uco8SZuUlESFChVo2LAhAFeuXCEoKIjKlStjaGhIgwYNOHTokFJ+4cKF1KlTB11dXRwcHAokOFQqFcuWLeOjjz7CwMAAOzs7tmzZAuSNfGvZsiUAlSpVQqVS0adPHwByc3OZOnUqNjY2qNVq6tWrx4YNG5R680fg7t27lwYNGmBgYEDTpk05ffo0kDeFwcSJE0lLS0OlUqFSqbRG7sTFxeHn50eFChUKTHeQP5J15cqVWFtbY2pqyscff8zDhw+VMhs2bMDV1RW1Wk2VKlXw8fHh0aNHyvply5bh5OSEvr4+jo6OLFiwQKtdimrXkuJ+2eHDh/Hw8EBfX58GDRpw/PhxrfU5OTn069dPaUcHBweioqK0jnX58uXExcUp+ztw4AAAn332Gfb29hgYGFC7dm3Gjh3Ln3/+qWyblpZGy5YtMTY2xsTEBE9PT60RogcPHuSDDz5ArVZjZWVFaGio0kbe3t5cvnyZsLAwZb8v2rJlS5Ef9L29vQkNDSUiIoLKlStjaWnJhAkTlPUajYYJEyZQs2ZN9PT0qF69OqGhocr6p0+fMmLECN577z0MDQ1p3Lixcsz5EhMT8fb2xsDAgEqVKuHr68vdu3fp06cPCQkJREVFKXFfunSpQIwajYY+ffpgZ2fHTz/9hL+/P3Xq1MHd3Z3x48cTFxdX6LGV1F+Qd+43atQIQ0NDKlasSLNmzbh8+fIb9wnAggULsLOzQ19fHwsLC7p27aq175fvDy/KH8kaGxtLy5YtMTAwoF69eiQnJytlLl++TEBAAJUqVcLQ0BAXFxd++OEHZf3Jkydp164dRkZGWFhY0LNnT27fvq2sz83NZcaMGdja2qKnp0fNmjWZPHkykDcyHsDDwwOVSoW3t3ehbXz48GGmTJlCZGQkX331FU2bNsXa2po2bdqwceNGevfuXeh2R44coU2bNlStWhVTU1O8vLw4duyYsr6k8664ti3pfnf37l169OiBmZkZarUaOzs7oqOjteKLi4tTrpnZs2dz8OBB9u3bR2hoKJ6entSsWRMvLy8WLVrElClTlO28vb0ZOnQow4YNo2rVqvj6+gIwa9YsZYSklZUVgwcPJjs7u1R9WZp4L1y4UOR5AnkjnV1cXNDT08Pa2prIyEit9dbW1nzxxRcEBQVhaGjIe++9x9dff61VRqVSsXDhQtq1a4daraZ27dpa7Qrw66+/EhgYSMWKFalcuTIffvih1jWdP5J/8uTJVK9eHQcHB2Xdtm3bqF+/PhYWFuzatYvMzExWrVqFu7s77dq144svvuDrr79WEruLFi3CxsaGyMhInJycGDp0KF27dmX27NlKnbNmzSIkJITg4GCcnZ1ZtGgRBgYGfPvttwDcv3+fb775hlmzZtGqVSs8PT2Jjo4mKSmJn3/+GaBUsSQnJ2NtbU1oaCg2NjY0b96cgQMHao2UXb16NYMHD8bd3R1HR0eWLVtGbm4ue/fuBfKSrbt37yYwMBAHBwfef/995s+fz9GjR8nKyqIoLz8dkX8ODh06FFNTU6pWrcrYsWPRaDRKmevXr+Pv749arcbGxoY1a9YU+zSGEEIIIYQQQrypMk/SbtmyhYCAAFQqFdnZ2Xh5eXH16lW2bNlCWloaERER5ObmArBp0yY+/fRTwsPDOXnyJAMHDiQ4OJj9+/dr1Tlx4kQCAwNJT0+nffv29OjRgzt37mBlZcXGjRsBOH36NNevX1cSUlOnTmXFihUsWrSIjIwMwsLC+OSTT0hISNCqe/To0URGRpKSkkL58uXp27cvAN27dyc8PBwXFxeuX7/O9evX6d69u9Zxfvjhh0W2w/nz59m8eTPx8fHEx8eTkJDAtGnTgLwPi0FBQfTt25dTp05x4MABOnfurHygXL16NePGjWPy5MmcOnWKKVOmMHbsWJYvXw5QbLuWFPeLsrOz6dChA87Ozhw9epQJEyYwYsQIrTK5ubnUqFGD9evXk5mZybhx4/jPf/7D999/D8CIESMIDAzEz89P2V/Tpk0BMDY2JiYmhszMTKKioli6dKlWMqFHjx7UqFGDI0eOcPToUT7//HMqVKigtJ+fnx9dunQhPT2ddevWcfDgQYYOHQpAbGwsNWrUYNKkScp+82VkZHDz5k1atWpVZP8sX74cQ0NDDh06xIwZM5g0aRK7d+8G8pI7s2fPZvHixZw9e5bNmzfj6uqqbDt06FCSk5NZu3Yt6enpdOvWDT8/P86ePQtAamoqrVu3xtnZmeTkZA4ePKiMlIuKiqJJkyaEhIQocedPy/Ci1NRUMjIyCA8Pp1y5gpd1UaPISuqv58+f06lTJ7y8vEhPTyc5OZkBAwYoSe436ZOUlBRCQ0OZNGkSp0+fZseOHbRo0UIrvhfvD0X5f+zdeVyN6f/48ddRqtOiMCpLKuq0TRFhkrGMKJFPw8jE2MY68slSwodsM4RRlH2bYiyZGRFZs8SoUFFRCVkaJoyxTZZQfn/07f51tNqmWa7n49FjdO7rXPf7XNd9ruZc531f19SpU/Hz8yMlJQWFQoGXl5d0m7W3tzf5+flSZuf8+fPR1tYG4P79+3zyySfY29uTlJTEvn37uHXrFp6enlLdU6ZMYd68eQQEBJCRkcHmzZsxMDAAkCaXDh48SG5uLpGRkWXGt2nTJrS1tRk9enSZx8vrmz/++INBgwZx/PhxTpw4gbm5OW5ubtKXNxVdd5W1bWXjXfHr3bt3L5mZmaxYsYIPPvhAen5hYSHR0dHSmLZlyxa6dOmCvb19ma/l1f5bv349ampqxMXFsXLlSgBq1KhBaGgo6enprF+/nsOHD+Pv7y89p6K+rCxeqPg6SU5OxtPTk88//5yzZ88yc+ZMAgICSn1h9e2339KsWTPOnDnD5MmTGTt2rDQOFAsICKB3796kpqbSv39/Pv/8czIzM4Gi2/VdXFzQ0dHh559/Ji4uDm1tbVxdXZUyZg8dOkRWVhYxMTFER0dLj5f8O5KQkICtra10PQK4uLjw8OFD0tPTpTLOzs5K8bm4uEgT1M+ePSM5OVmpTI0aNXB2dpbKJCcn8/z5c6UylpaWNG7cWCpTlVgcHR355Zdf2LNnDy9fvuTWrVv89NNPuLm5UZ7Hjx/z/Plz6tSpU26ZBw8eIJPJXjtTdv369aiqqnLq1ClCQkIIDg6WlpEApGUUYmNj2bZtG6tXr1bKLn5Vfn4+Dx8+VPoRBEEQBEEQBEF4HarVHUBUVJQ0Ebd582Z+++03EhMTpQ9lZmZmUtmFCxcyePBgabJjwoQJnDhxgoULF0oZslCUNePl5QXA3LlzCQ0N5dSpU7i6ukr16uvrSx/q8vPzmTt3LgcPHsTR0RGAJk2acPz4cVatWkWHDh2kuufMmSP9PnnyZLp3787Tp0+Ry+Voa2ujqqqKoaGh0mu8ceMGaWlpdOvWrdx2KCwsJDw8HB0dHQAGDBjAoUOHmDNnDrm5ubx48YJevXphbGwMoDQJOGPGDIKCgqTbT01NTcnIyGDVqlUMGjSo0nYtL+5Xbd68mcLCQtatW4eGhgY2NjZcv36dr776SipTs2ZNZs2aJf1uampKQkICP/zwA56enmhrayOXy8nPzy91vpLrEpuYmODn50dERIQ0UZOTk8PEiROxtLQEwNzcXCofGBhI//79pbVbzc3NCQ0NpUOHDqxYsYI6deqgoqKCjo5OqfNGRUXh4uKCmppaua/dzs6OGTNmSHUvXbqUQ4cO0aVLF3JycjA0NMTZ2ZmaNWvSuHFjWrduLcUcFhZGTk4ODRo0AIomqvft20dYWBhz585lwYIFODg4KGU/29jYSP9WU1NDU1Ozwv4pnvAtbpuqqqy/Hj58yIMHD+jRowdNmzYFwMrKSir/Nn2Sk5ODlpYWPXr0QEdHB2Nj41KTfCXHh/L4+fnRvXt3oOgLGhsbGy5duoSlpSU5OTn07t1ber80adJEet7SpUuxt7dXyvL87rvvMDIy4sKFC9SvX5+QkBCWLl0qZbs2bdqUdu3aAVCvXj0A6tatW2nfNGnSRJq8rqpXvzRYvXo1enp6HD16lB49elR63ZXXtlUZ73JycrC3t8fBwQEoej+WVJxB2aZNGwAuXLhQKpP4008/lSYw7ezsiI+Pl46Zm5uzYMECpfIl1102MTHhm2++YdSoUdL7oqK+rCxeqPg6CQ4OpnPnzgQEBACgUCjIyMjg22+/le62AHBycmLy5MlSmbi4OBYtWkSXLl2kMn369GHYsGEAfP3118TExLBkyRKWL1/O1q1bKSwsZO3atdLEdVhYGHp6esTGxtK1a1cAtLS0WLt2rdKYlJ+fz759+6Qs/ps3bypNigLS7zdv3qywzMOHD3ny5An37t2joKCgzDLnz5+X6lBTUys1CWpgYFDpeUrG4uTkxKZNm+jbty9Pnz7lxYsXuLu7l8pGLmnSpEk0aNCg1ERzsadPnzJp0iS8vLyoVatWufWUxcjIiEWLFiGTybCwsODs2bMsWrSI4cOHc/78eQ4ePEhiYqJ0Ta1du1ZpfHtVYGCg0lgqCIIgCIIgCILwuqo1kzYzM5Nff/2Vzp07A0XZgPb29uVmzWRmZuLk5KT0mJOTk5SlVMzOzk76t5aWFrVq1aowA+bSpUs8fvyYLl26oK2tLf1s2LCB7OzscuuuX78+QIV1Q1H2U7t27SrM9DExMZEmaIvrLq63WbNmdO7cGVtbW/r06cOaNWu4d+8eAI8ePSI7O5uhQ4cqxf7NN99IsVfWrmUZNWqUUn1Q1P52dnZoaGhI5YoneUpatmwZLVu2pF69emhra7N69eoKb0UttnXrVpycnDA0NERbW5tp06YpPW/ChAkMGzYMZ2dn5s2bp9Q3qamphIeHK8Xs4uJCYWEhV65cqfC8JW/bLk/Jfgfl/unTpw9PnjyhSZMmDB8+nO3bt0sZemfPnqWgoACFQqEU29GjR5X6p/g98KZK3qb7uirqrzp16jB48GBcXFxwd3cnJCREKQv5bfqkS5cuGBsb06RJEwYMGMCmTZt4/Pix9PxXx4fyVPSe9PHx4ZtvvsHJyYkZM2aQlpamFN+RI0eU4iuebM7OziYzM5P8/Pxq65tbt24xfPhwzM3N0dXVpVatWuTl5Ul9U9F1V1HbVmW8++qrr4iIiKB58+b4+/srTbBC0XumR48eZWZtF1u+fDkpKSl8+eWXSv0K0LJly1LlDx48SOfOnWnYsCE6OjoMGDCA33//XXpuRX1ZWbxQ8XVS3t+WixcvUlBQID326njn6OhY6u9PRWVSU1O5dOkSOjo6UrvXqVOHp0+fKr13bG1tS31pdPjwYfT19ZW+wPk7ycjIYOzYsUyfPp3k5GT27dvH1atXGTVqVJnl582bR0REBNu3b1f6m1Ps+fPneHp68vLlS1asWPHa8Xz00UdKGd6Ojo5Sf2dlZaGqqkqLFi2k42ZmZtSuXbvc+qZMmcKDBw+kn19++eW1YxIEQRAEQRAE4d+tWidpd+7cSZcuXaQPYHK5/J3U+2rGmkwmk5ZMKEvxuoe7d+8mJSVF+snIyCi1nmDJuos/4FVUN1S83mlVYlZRUSEmJoa9e/dibW3NkiVLsLCw4MqVK1Lsa9asUYr93LlzUrbbm7Tr7NmzleqrqoiICPz8/Bg6dCgHDhwgJSWFIUOGVLo5UEJCAv3798fNzY3o6GjOnDnD1KlTlZ43c+ZM0tPT6d69O4cPH8ba2prt27cDRX04cuRIpZhTU1O5ePGilAFaltzcXM6cOSNl2JWnov4xMjIiKyuL5cuXI5fLGT16NO3bt+f58+fk5eWhoqJCcnKyUmyZmZnSUhvv4rpXKBQAUvZbVVWlv8LCwkhISKBt27Zs3boVhUIhXVtv0yc6OjqcPn2aLVu2UL9+faZPn06zZs24f/8+UHp8KE9F78lhw4Zx+fJlBgwYwNmzZ3FwcJA2scrLy8Pd3V0pvpSUFC5evEj79u3f2XikUCi4fPmy0vrKVTFo0CBSUlIICQkhPj6elJQU6tatK/VNRdddRW1blfGuW7du0hrOxRPlJZc2eXVMMzc3l9bnLla/fn3MzMzK/HJIS0tL6ferV6/So0cP7Ozs2LZtG8nJyVKGZfHrragvK4sX3mzsftfy8vJo2bJlqWvuwoUL9OvXTyr3avtA6TY3NDTk1q1bSmWKfy/O7C6vTK1atZDL5XzwwQeoqKiUWaZkHc+ePZPel+WVqSyWwMBAnJycmDhxInZ2dri4uLB8+XK+++47pS9+oOiumXnz5nHgwIFSX5DB/5+gvXbtGjExMa+dRfs+qKurU6tWLaUfQRAEQRAEQRCE11Gtk7RRUVFK67Ta2dmRkpLC3bt3yyxvZWVFXFyc0mNxcXFYW1tX+ZzF2Ukls6Osra1RV1cnJycHMzMzpZ+y1v+sqO6S9ULRh/IjR45UuB5tVchkMpycnJg1axZnzpxBTU2N7du3Y2BgQIMGDbh8+XKp2Is3NqqsXcuKW19fX6kuKGr/tLQ0nj59KpUrnqwrFhcXR9u2bRk9ejT29vaYmZmVykYu63zx8fEYGxszdepUHBwcMDc3lzanKkmhUDB+/HgOHDhAr169pM2BWrRoQUZGRqk2MDMzk/q8rPPu2rWLtm3bvlaWcVnkcjnu7u6EhoYSGxtLQkICZ8+exd7enoKCAm7fvl0qruLJCzs7O2ljnLKUFfermjdvjrW1NUFBQWVOPL06wVKsKv0FRZtjTZkyhfj4eD788EM2b94sHXubPlFVVcXZ2ZkFCxaQlpbG1atXOXz4MFB6fHhTRkZGjBo1isjISHx9fVmzZo0UX3p6OiYmJqXi09LSwtzcHLlcXm7flDWWlKVfv37k5eWV2syvWEV94+Pjg5ubm7ShVclNzaD86w7Kb9uqjnf16tVj0KBBbNy4kcWLF7N69WqgaPmGa9euKd3i7+XlRUxMTKmNBKsqOTmZwsJCgoKC+Oijj1AoFPz666+lypXXlxXFWxXl/W1RKBSoqKhIj7063p04cUJp+Y/KyrRo0YKLFy+WGl/NzMzQ1dUtN76XL1+ya9cupfeDo6MjZ8+eVbqTo3jCsvhvoqOjY6nrNyYmRsr2VVNTo2XLlkplijfqKi7TsmVLatasqVQmKyuLnJwcqUxVYnn8+HGpzOviti2Zbb5gwQK+/vpr9u3bJy01UFLxBO3Fixc5ePAgdevWLbfdKlJyQ1JAWvdZRUUFCwsLXrx4oXQ9X7p0SbqDRRAEQRAEQRAE4X2otkna27dvk5SURI8ePaTHvLy8MDQ0xMPDg7i4OC5fvsy2bdukzUkmTpxIeHg4K1as4OLFiwQHBxMZGVkqY6oixsbGyGQyoqOj+e2338jLy0NHRwc/Pz/Gjx/P+vXryc7O5vTp0yxZskTafKsqTExMuHLlCikpKdy5c0daQ1ChUJS5RmJVnTx5krlz55KUlEROTg6RkZH89ttv0gf/WbNmERgYSGhoKBcuXODs2bOEhYURHBwMVN6uZcVdln79+iGTyRg+fDgZGRns2bOHhQsXKpUxNzcnKSmJ/fv3c+HCBQICAkhMTCzVTmlpaWRlZXHnzh2eP3+Oubk5OTk5REREkJ2dTWhoqJSRCfDkyRPGjBlDbGws165dIy4ujsTERKkNJk2aRHx8PGPGjJGyIaOioqRNqorPe+zYMW7cuCFNdlUly7ky4eHhrFu3jnPnznH58mU2btyIXC7H2NgYhUJB//79GThwIJGRkVy5coVTp04RGBjI7t27gaLbZBMTExk9ejRpaWmcP3+eFStWSDGamJhw8uRJrl69yp07d8qchJXJZISFhXHhwgU+/vhj9uzZw+XLl0lLS2POnDnlTnZW1l9XrlxhypQpJCQkcO3aNQ4cOMDFixexsrJ66z6Jjo4mNDSUlJQUrl27xoYNGygsLMTCwqLM8eFNjBs3jv3793PlyhVOnz7NkSNHpPi8vb25e/cuXl5eJCYmkp2dzf79+xkyZAgFBQVoaGgwadIk/P39paUATpw4wbp164CiLzLkcrm04diDBw/KjKFNmzb4+/vj6+uLv7+/1JaHDh2iT58+5Y4x5ubmfP/992RmZnLy5En69++vlN1b0XVXUdtWZbybPn06UVFRXLp0ifT0dKKjo6V2i4qKwtnZGU1NTSmW8ePH4+joSOfOnQkJCeH06dNcuXKF/fv3s3fvXqWJzrKYmZnx/PlzlixZwuXLl/n++++lDcWq0pcVxVsVvr6+HDp0iK+//poLFy6wfv16li5dWupvS1xcHAsWLODChQssW7aMH3/8kbFjxyqV+fHHH/nuu++4cOECM2bM4NSpU9I1379/fz744AP+85//8PPPP3PlyhViY2Px8fHh+vXr5caXnJzM48ePpfWQAbp27Yq1tTUDBgwgNTWV/fv3M23aNLy9vVFXVweKlq25fPky/v7+nD9/nuXLl/PDDz8wfvx4qZ4JEyawZs0a1q9fT2ZmJl999RWPHj1iyJAhAOjq6jJ06FAmTJjAkSNHSE5OZsiQITg6OvLRRx9VORZ3d3ciIyNZsWIFly9flr6EaN26tbRe9/z58wkICOC7777DxMSEmzdvcvPmTSn7+/nz53z22WckJSWxadMmCgoKpDIls/87d+7M0qVLK+zznJwcJkyYQFZWFlu2bGHJkiVSX1paWuLs7MyIESM4deoUZ86cYcSIEcjl8go3MRQEQRAEQRAEQXgb1TZJu2vXLlq3bq20A7eamhoHDhxAX18fNzc3bG1tmTdvnvQB38PDg5CQEBYuXIiNjQ2rVq0iLCys1IY1FWnYsCGzZs1i8uTJGBgYSB+ev/76awICAggMDMTKygpXV1d2794tZaNWRe/evXF1daVTp07Uq1ePLVu2VGm908rUqlWLY8eO4ebmhkKhYNq0aQQFBUkbkQ0bNoy1a9cSFhaGra0tHTp0IDw8XIq9snYtK+6yaGtrs2vXLilDdOrUqcyfP1+pzMiRI+nVqxd9+/alTZs2/P7776V2tR8+fDgWFhY4ODhQr1494uLi6NmzJ+PHj2fMmDE0b96c+Ph4aRMfKMq4+v333xk4cCAKhQJPT0+6desmbdRiZ2fH0aNHpUlKe3t7pk+fLn34h6IlHK5evUrTpk2pV68ejx494tChQ2/dP3p6eqxZswYnJyfs7Ow4ePAgu3btkjK8wsLCGDhwIL6+vlhYWODh4UFiYiKNGzcGijJRDxw4QGpqKq1bt8bR0ZGoqChUVYv29fPz80NFRQVra2vq1atX7vq+rVu3JikpCTMzM4YPH46VlRU9e/YkPT2dxYsXl/mcyvpLU1OT8+fP07t3bxQKBSNGjMDb25uRI0e+dZ/o6ekRGRnJJ598gpWVFStXrmTLli3Y2NiUOT68iYKCAry9vaX3tEKhkDJaGzRoQFxcHAUFBXTt2hVbW1vGjRuHnp6elPEXEBCAr68v06dPx8rKir59+0rZgqqqqoSGhrJq1SoaNGhQYdbv/Pnz2bx5MydPnsTFxQUbGxsmTJiAnZ2dtCnZq9atW8e9e/do0aIFAwYMwMfHB319fel4RdddRW0LlY93ampqTJkyBTs7O9q3b4+KigoRERFA2Ws4a2hocOjQISZNmkRYWBjt2rXDysqKcePG4eTkxI4dOyrsp2bNmhEcHMz8+fP58MMP2bRpE4GBgVXuy4rirYoWLVrwww8/EBERwYcffsj06dOZPXu20qZhUDSZm5SUhL29Pd988w3BwcG4uLgolZk1axYRERHY2dmxYcMGtmzZImWTampqcuzYMRo3bkyvXr2wsrJi6NChPH36tMLb46OionBzc5PGBCgaE6Ojo1FRUcHR0ZEvvviCgQMHMnv2bKmMqakpu3fvJiYmhmbNmhEUFMTatWuVYu7bty8LFy5k+vTpNG/enJSUFPbt26e0EdiiRYvo0aMHvXv3pn379hgaGhIZGflasQwePJjg4GCWLl3Khx9+SJ8+fbCwsFCqZ8WKFTx79ozPPvuM+vXrSz/FXwbeuHGDnTt3cv36dZo3b65UpuQ6xNnZ2aWyzl81cOBAnjx5QuvWrfH29mbs2LGMGDFCOr5hwwYMDAxo3749n376KcOHD0dHR6fS5VcEQRAEQRAEQRDelOzl2+w49BZ69uxJu3bt8Pf3r47T/ylevHiBgYEBe/fulXZdF/46IiMjmTZtGhkZGdUdivCKf8P48Hd0584d6tevz/Xr15Um8f4NTExMGDduHOPGjSu3jEwmY/v27Xh4eLzTc9vZ2TFt2jQ8PT3fab3/Fl5eXqioqLBx40YAOnbsSPPmzcv98qos169fx8jISNrgrjIPHz5EV1cXm/XbUNEsvcawIAiCIAiCIAjvR+pnLpUX+hMVfzZ48OBBpXtXqFZ49D1q164dXl5e1XX6P8Xdu3cZP348rVq1qu5QhDJoa2uXygQW/hr+DePD39Hdu3cJDg7+103QVqdnz57Ru3dv6c4JoepevHjBhQsXSEhIYOTIka/13MOHD5OXl4etrS25ubn4+/tjYmJC+/bt31O0giAIgiAIgiD821XbJO2/IUNOX1+fadOmVXcYQjm6du1a3SEI5fg3jA9/RwqFAoVCUd1h/KuoqakxY8aM6g7jb+ncuXO0bduWTp06MWrUqNd67vPnz/nf//7H5cuX0dHRoW3btmzatImaNWu+p2gFQRAEQRAEQfi3q7blDgRBEARBEP6JXueWJkEQBEEQBEEQ/rle57NBtW0cJgiCIAiCIAiCIAiCIAiCIIhJWkEQBEEQBEEQBEEQBEEQhGolJmkFQRAEQRAEQRAEQRAEQRCqUbVtHCYIgiAIgvBPtup/e5Gra1Z3GIIgCIIgCILwrzEmyL26Q3hjIpNWEARBEARBEARBEARBEAShGolJWkEQBEEQBEEQBEEQBEEQhGokJmkFQRAEQRAEQRAEQRAEQRCqkZikFQRBEARBEARBEARBEARBqEZikvYfIDw8HD09veoO4524evUqMpmMlJSU6g5FqALRX39dM2fOpHnz5tUdhgDExcVha2tLzZo18fDwIDY2FplMxv3796s7tH+Fjh07Mm7cuOoOQxAEQRAEQRAEoUL/yEnaIUOGMG3atD/lXO/zw3ZlkyympqYcPHiQvn37cuHChXd+/jf1Z08ODR48GA8Pjz/tfMVMTExYvHhxmceOHj2KkZERUH3xled1JiwuXbrEkCFDaNSoEerq6piamuLl5UVSUtL7DfI9Kjk+yGQyduzYUb0B/Z/XnfDetm0bHTt2RFdXF21tbezs7Jg9ezZ37959v4G+J0+ePEFLS4tLly4RHh6OTCZDJpOhoqJC7dq1adOmDbNnz+bBgwfVHeprmzBhAs2bN+fKlSuEh4e/cT0l2wiK/v60aNECdXV1zMzMyqx72bJlmJiYoKGhQZs2bTh16pTS8adPn+Lt7U3dunXR1tamd+/e3Lp1S6lMTk4O3bt3R1NTE319fSZOnMiLFy+UylQWS2BgIK1atUJHRwd9fX08PDzIyspSKnPz5k0GDBiAoaEhWlpatGjRgm3btpV6Tbt376ZNmzbI5XJq165d6fgaGRnJ119/XWEZQRAEQRAEQRCE6vaPm6QtKCggOjqanj17Vnco71VaWhr37t2jQ4cOyOVy9PX1qzskoYSoqCjc3d2rO4y3kpSURMuWLblw4QKrVq0iIyOD7du3Y2lpia+vb3WH90b+KePD1KlT6du3L61atWLv3r2cO3eOoKAgUlNT+f7776s7vDcSExODsbExZmZmANSqVYvc3FyuX79OfHw8I0aMYMOGDTRv3pxff/213HqePXv2Z4VcZdnZ2XzyySc0atTore56KNlGV65coXv37nTq1ImUlBTGjRvHsGHD2L9/v1R+69atTJgwgRkzZnD69GmaNWuGi4sLt2/flsqMHz+eXbt28eOPP3L06FF+/fVXevXqJR0vKCige/fuPHv2jPj4eNavX094eDjTp0+XylQllqNHj+Lt7c2JEyeIiYnh+fPndO3alUePHkllBg4cSFZWFjt37uTs2bP06tULT09Pzpw5I5XZtm0bAwYMYMiQIaSmphIXF0e/fv0qbLc6deqgo6PzZo0uCIIgCIIgCILwJ/nHTdLGx8dTs2ZNWrVqBcD169fx8vKiTp06aGlp4eDgwMmTJ6XyK1asoGnTpqipqWFhYVFqgkMmk7F27Vo+/fRTNDU1MTc3Z+fOnUBR5lunTp0AqF27NjKZjMGDBwNQWFhIYGAgpqamyOVymjVrxk8//STVW5yBe+jQIRwcHNDU1KRt27ZSZlF4eDizZs0iNTVVyigrmZkUFRWFq6srNWvWLLXcQXEm6/fff4+JiQm6urp8/vnn/PHHH1KZn376CVtbW+RyOXXr1sXZ2Vnpw/LatWuxsrJCQ0MDS0tLli9frtQu5bVrZXG/6tSpU9jb26OhoYGDg4PSh3EomiAYOnSo1I4WFhaEhIQovdb169cTFRUlnS82NhaASZMmoVAo0NTUpEmTJgQEBPD8+XPpuampqXTq1AkdHR1q1apFy5YtlTJEjx8/zscff4xcLsfIyAgfHx+pjTp27Mi1a9cYP368dN6Sdu7cWe5EYMeOHfHx8cHf3586depgaGjIzJkzpeMvX75k5syZNG7cGHV1dRo0aICPj490PD8/Hz8/Pxo2bIiWlhZt2rSRXnOxuLg4OnbsiKamJrVr18bFxYV79+4xePBgjh49SkhIiBT31atXS8X48uVLBg8ejLm5OT///DPdu3enadOmNG/enBkzZhAVFVXma6usv6Do2m/dujVaWlro6enh5OTEtWvX3rpPAJYvX465uTkaGhoYGBjw2WefKZ371fGhpOJM1sjISDp16oSmpibNmjUjISFBKnPt2jXc3d2pXbs2Wlpa2NjYsGfPHun4uXPn6NatG9ra2hgYGDBgwADu3LkjHS8sLGTBggWYmZmhrq5O48aNmTNnDlCUGQ9gb2+PTCajY8eOZbbxqVOnmDt3LkFBQXz77be0bdsWExMTunTpwrZt2xg0aFCZz0tMTKRLly588MEH6Orq0qFDB06fPi0dr+y6q6htKxvv7t27R//+/alXrx5yuRxzc3PCwsKU4ouKilJ6z8hkMgwNDalfvz5WVlYMHTqU+Ph48vLy8Pf3l8p17NiRMWPGMG7cOD744ANcXFwACA4OxtbWFi0tLYyMjBg9ejR5eXlK51yzZg1GRkZoamry6aefEhwcXGoS9W3/RshkMn7//Xe+/PLLMsfDR48eUatWLaX2AtixYwdaWlpK43bJNlq5ciWmpqYEBQVhZWXFmDFj+Oyzz1i0aJFUPjg4mOHDhzNkyBCsra1ZuXIlmpqafPfddwA8ePCAdevWERwczCeffELLli0JCwsjPj6eEydOAHDgwAEyMjLYuHEjzZs3p1u3bnz99dcsW7ZMmhCvSiz79u1j8ODB2NjY0KxZM8LDw8nJySE5OVkqEx8fz3//+19at25NkyZNmDZtGnp6elKZFy9eMHbsWL799ltGjRqFQqHA2toaT09PKvLq3QMmJiZ8/fXXeHl5oaWlRcOGDVm2bJnSc86fP0+7du3Q0NDA2tqagwcP/qUy7wVBEARBEARB+Of5x03S7ty5E3d3d2QyGXl5eXTo0IEbN26wc+dOUlNT8ff3p7CwEIDt27czduxYfH19OXfuHCNHjmTIkCEcOXJEqc5Zs2bh6elJWloabm5u9O/fn7t372JkZCTdipmVlUVubq40IRUYGMiGDRtYuXIl6enpjB8/ni+++IKjR48q1T116lSCgoJISkpCVVWVL7/8EoC+ffvi6+uLjY0Nubm55Obm0rdvX6XX+Z///KfcdsjOzmbHjh1ER0cTHR3N0aNHmTdvHgC5ubl4eXnx5ZdfkpmZSWxsLL169eLly5cAbNq0ienTpzNnzhwyMzOZO3cuAQEBrF+/HqDCdq0s7pLy8vLo0aMH1tbWJCcnM3PmTPz8/JTKFBYW0qhRI3788UcyMjKYPn06//vf//jhhx8A8PPzw9PTE1dXV+l8bdu2BUBHR4fw8HAyMjIICQlhzZo1SpMG/fv3p1GjRiQmJpKcnMzkyZOpWbOm1H6urq707t2btLQ0tm7dyvHjxxkzZgxQdPtso0aNmD17tnTeYunp6dy+fZtPPvmk3P5Zv349WlpanDx5kgULFjB79mxiYmKAokyxRYsWsWrVKi5evMiOHTuwtbWVnjtmzBgSEhKIiIggLS2NPn364OrqysWLFwFISUmhc+fOWFtbk5CQwPHjx3F3d6egoICQkBAcHR0ZPny4FHfxsgwlpaSkkJ6ejq+vLzVqlB4myssGrKy/Xrx4gYeHBx06dCAtLY2EhARGjBghTXK/TZ8kJSXh4+PD7NmzycrKYt++fbRv314pvpLjQ3mmTp2Kn58fKSkpKBQKvLy8pFu7vb29yc/P59ixY5w9e5b58+ejra0NwP379/nkk0+wt7cnKSmJffv2cevWLaUJpClTpjBv3jwCAgLIyMhg8+bNGBgYAEi3oR88eJDc3FwiIyPLjG/Tpk1oa2szevToMo+X1zd//PEHgwYN4vjx45w4cQJzc3Pc3NykScCKrrvK2ray8a749e7du5fMzExWrFjBBx98ID2/sLCQ6OjoCsc0AH19ffr378/OnTspKCiQHl+/fj1qamrExcWxcuVKAGrUqEFoaCjp6emsX7+ew4cPK03uxsXFMWrUKMaOHUtKSgpdunSRJsyLvYu/Ebm5udSqVYvFixeXOR5qaWnx+eefl5q0DgsL47PPPpMyQF9to4SEBJydnZWe4+LiIn2p8OzZM5KTk5XK1KhRA2dnZ6lMcnIyz58/VypjaWlJ48aNpTIJCQnY2tpK12nxeR4+fEh6enqVYilL8bIVderUkR5r27YtW7du5e7duxQWFhIREcHTp0+lLyxOnz7NjRs3qFGjBvb29tSvX59u3bpx7ty5cs9Tnm+//ZZmzZpx5swZJk+ezNixY6UxuKCgAA8PDzQ1NTl58iSrV69m6tSpFdaXn5/Pw4cPlX4EQRAEQRAEQRBeh2p1B/CuRUVFSRNxmzdv5rfffiMxMVH6IFh8Ky3AwoULGTx4sDTZMWHCBE6cOMHChQulDFkoWlPUy8sLgLlz5xIaGsqpU6dwdXWV6tXX15cmR/Lz85k7dy4HDx7E0dERgCZNmnD8+HFWrVpFhw4dpLrnzJkj/T558mS6d+/O06dPkcvlaGtro6qqiqGhodJrvHHjBmlpaXTr1q3cdigsLCQ8PFz6gD9gwAAOHTrEnDlzyM3N5cWLF/Tq1QtjY2MApUnAGTNmEBQUJN3yampqSkZGBqtWrWLQoEGVtmt5cb9q8+bNFBYWsm7dOjQ0NLCxseH69et89dVXUpmaNWsya9Ys6XdTU1MSEhL44Ycf8PT0RFtbG7lcTn5+fqnzlVyX2MTEBD8/PyIiIqSJmpycHCZOnIilpSUA5ubmUvnAwED69+8vZV+Zm5sTGhpKhw4dWLFiBXXq1EFFRQUdHZ1S542KisLFxQU1NbVyX7udnR0zZsyQ6l66dCmHDh2iS5cu5OTkYGhoiLOzMzVr1qRx48a0bt1aijksLIycnBwaNGgAFE1U79u3j7CwMObOncuCBQtwcHBQyn62sbGR/q2mpoampmaF/VM84VvcNlVVWX89fPiQBw8e0KNHD5o2bQqAlZWVVP5t+iQnJwctLS169OiBjo4OxsbG2NvbK8VXcnwoj5+fH927dweKJt9sbGy4dOkSlpaW5OTk0Lt3b+n90qRJE+l5S5cuxd7enrlz50qPfffddxgZGXHhwgXq169PSEgIS5culbJdmzZtSrt27QCoV68eAHXr1q20b5o0aSJNXlfVq18arF69Gj09PY4ePUqPHj0qve7Ka9uqjHc5OTnY29vj4OAAFL0fSyrO2mzTpk2lr8PS0pI//viD33//XVrmxdzcnAULFiiVezVz8ptvvmHUqFHS+2LJkiV069ZN+mJIoVAQHx9PdHS09Lx38TfC0NAQmUyGrq5uuf06bNgw2rZtS25uLvXr1+f27dvs2bOHgwcPlttGN2/eVJo4BTAwMODhw4c8efKEe/fuUVBQUGaZ8+fPS3WoqamVmtg3MDDg5s2bFZ6n+FhVYpHL5UrHCgsLGTduHE5OTnz44YfS4z/88AN9+/albt26qKqqoqmpyfbt26W/L5cvXwaK7qAIDg7GxMSEoKAgOnbsyIULF5QmfCvj5OTE5MmTgaK+j4uLY9GiRXTp0oWYmBiys7OJjY2V+mzOnDl06dKl3PoCAwOVxj5BEARBEARBEITX9Y/KpM3MzOTXX3+lc+fOQFE2oL29fbkf3DIzM3FyclJ6zMnJiczMTKXH7OzspH9raWlRq1YtpTX9XnXp0iUeP35Mly5d0NbWln42bNhAdnZ2uXXXr18foMK6oSgbsF27dhWubWhiYqK0Bl/xB3+AZs2a0blzZ2xtbenTpw9r1qzh3r17QNGtt9nZ2QwdOlQp9m+++UaKvbJ2LcuoUaOU6oOi9rezs0NDQ0MqVzzJU9KyZcto2bIl9erVQ1tbm9WrV5OTk1PpObdu3YqTkxOGhoZoa2szbdo0pedNmDCBYcOG4ezszLx585T6JjU1lfDwcKWYXVxcKCws5MqVKxWe99XbtstSst9BuX/69OnDkydPaNKkCcOHD2f79u1SJufZs2cpKChAoVAoxXb06FGl/il+D7yp4qzqN1FRf9WpU4fBgwfj4uKCu7s7ISEhSlnIb9MnXbp0wdjYmCZNmjBgwAA2bdrE48ePpee/Oj6Up6L3pI+PD9988w1OTk7MmDGDtLQ0pfiOHDmiFF/xZHN2djaZmZnk5+dXW9/cunWL4cOHY25ujq6uLrVq1SIvL0/qm4quu4ratirj3VdffUVERATNmzfH39+f+Ph4pdiioqLo0aNHmVnb5b3+ktnQLVu2LFXu4MGDdO7cmYYNG6Kjo8OAAQP4/fffpbizsrKkSehir/7+vv5GvKp169bY2NhIdyts3LgRY2NjpWzl12mjvzpvb2/OnTtHRESE0uMBAQHcv3+fgwcPkpSUxIQJE/D09OTs2bMA0l0wU6dOpXfv3tLyDDKZjB9//PG1Ynj1b42jo6PUr1lZWRgZGSlNqr96bbxqypQpPHjwQPr55ZdfXiseQRAEQRAEQRCEv/+nvRJ27txJly5dpEm/V7N33tSrGWsymUz6sFiW4nUPd+/eTUpKivSTkZFRat3BknUXTzpUVDdUvN5pVWJWUVEhJiaGvXv3Ym1tzZIlS7CwsODKlStS7GvWrFGK/dy5c1Im15u06+zZs5Xqq6qIiAj8/PwYOnQoBw4cICUlhSFDhlS6OVBCQgL9+/fHzc2N6Ohozpw5w9SpU5WeN3PmTNLT0+nevTuHDx/G2tqa7du3A0V9OHLkSKWYU1NTuXjxopQBWpbc3FzOnDkjZWKWp6L+MTIyIisri+XLlyOXyxk9ejTt27fn+fPn5OXloaKiQnJyslJsmZmZ0lIb7+K6VygUAFLGXVVVpb/CwsJISEiQbm1WKBTStfU2faKjo8Pp06fZsmUL9evXZ/r06TRr1oz79+8DpceH8lT0nhw2bBiXL19mwIABnD17FgcHB5YsWSLF5+7urhRfSkoKFy9epH379u9sPFIoFFy+fFlpfeWqGDRoECkpKYSEhBAfH09KSgp169aV+qai666itq3KeNetWzdpDefiifKSS5tUZUwrlpmZSa1atahbt670mJaWllKZq1ev0qNHD+zs7Ni2bRvJycnSmqPvY2Ox1/0bUZZhw4ZJ69WGhYUxZMgQpYnoV9vI0NCQW7duKdVx69YtatWqhVwu54MPPkBFRaXMMsWTj4aGhjx79kx6j5RXpqw6io9VJZaSxowZQ3R0NEeOHKFRo0bS49nZ2SxdupTvvvuOzp0706xZM2bMmIGDg4PUd8VfmlhbW0vPU1dXp0mTJlX64u59UldXp1atWko/giAIgiAIgiAIr+MfNUkbFRWltKahnZ0dKSkp3L17t8zyVlZWxMXFKT0WFxen9AGwMsW3tJdcH9Ha2hp1dXVycnIwMzNT+ilr/c+K6i5ZLxRNBB05cqTStRsrI5PJcHJyYtasWZw5cwY1NTW2b9+OgYEBDRo04PLly6ViL97YqLJ2LStufX19pbqgqP3T0tJ4+vSpVK54sq5YXFwcbdu2ZfTo0djb22NmZlYqG7ms88XHx2NsbMzUqVNxcHDA3Nxc2pyqJIVCwfjx4zlw4AC9evWS1oVs0aIFGRkZpdrAzMxM6vOyzrtr1y7atm37WlnGZZHL5bi7uxMaGkpsbCwJCQmcPXsWe3t7CgoKuH37dqm4iidM7OzsOHToULl1lxX3q5o3b461tTVBQUFlTja9OqlTrCr9BUWbY02ZMoX4+Hg+/PBDNm/eLB17mz5RVVXF2dmZBQsWkJaWxtWrVzl8+DBQenx4U0ZGRowaNYrIyEh8fX1Zs2aNFF96ejomJial4tPS0sLc3By5XF5u35Q1lpSlX79+5OXlldrMr1hFfePj44Obmxs2Njaoq6srbWoG5V93UH7bVnW8q1evHoMGDWLjxo0sXryY1atXA0XLN1y7dq3CW8mL3b59m82bN+Ph4VFhRmlycjKFhYUEBQXx0UcfoVAo+PXXX5XKWFhYkJiYqPTYq7+/i78RVfXFF19w7do1QkNDycjIUNoArqw2cnR0LHUtxcTESBmiampqtGzZUqlMYWEhhw4dksq0bNmSmjVrKpXJysoiJydHKuPo6MjZs2eVMoNjYmKoVauW1A6VxQJFGdBjxoxh+/btHD58WPp7Uqw4w/nVflVRUZHGoJYtW6Kuri5tsAnw/Plzrl69Ki3dU1Wv/q05ceKEtPSKhYUFv/zyi9LE86vXhiAIgiAIgiAIwrv2j5mkvX37NklJSfTo0UN6zMvLC0NDQzw8PIiLi+Py5cts27ZN2sxk4sSJhIeHs2LFCi5evEhwcDCRkZGlNq+qiLGxMTKZjOjoaH777Tfy8vLQ0dHBz8+P8ePHs379erKzszl9+jRLliyRbmetChMTE65cuUJKSgp37twhPz+fffv2oVAoSq3p+DpOnjzJ3LlzSUpKIicnh8jISH777TfpA+qsWbMIDAwkNDSUCxcucPbsWcLCwggODgYqb9ey4i5Lv379kMlkDB8+nIyMDPbs2cPChQuVypibm5OUlMT+/fu5cOECAQEBpT4sm5iYkJaWRlZWFnfu3OH58+eYm5uTk5NDREQE2dnZhIaGShmZAE+ePGHMmDHExsZy7do14uLiSExMlNpg0qRJxMfHM2bMGCkbMioqStqkqvi8x44d48aNG9Jk1+tkBJYnPDycdevWce7cOS5fvszGjRuRy+UYGxujUCjo378/AwcOJDIykitXrnDq1CkCAwPZvXs3UHTbbWJiIqNHjyYtLY3z58+zYsUKKUYTExNOnjzJ1atXuXPnTpmTsDKZjLCwMC5cuMDHH3/Mnj17uHz5MmlpacyZM6fcyc7K+uvKlStMmTKFhIQErl27xoEDB7h48SJWVlZv3SfR0dGEhoaSkpLCtWvX2LBhA4WFhVhYWJQ5PryJcePGsX//fq5cucLp06c5cuSIFJ+3tzd3797Fy8uLxMREsrOz2b9/P0OGDKGgoAANDQ0mTZqEv7+/tBTAiRMnWLduHVD0RYZcLpc2HCveWOlVbdq0wd/fH19fX/z9/aW2PHToEH369Cl3jDE3N+f7778nMzOTkydP0r9/f6Usx4quu4ratirj3fTp04mKiuLSpUukp6cTHR0ttVtUVBTOzs5oamoqxfvy5Utu3rxJbm4umZmZfPfdd7Rt2xZdXV1pE8TymJmZ8fz5c5YsWcLly5f5/vvvpQ3Fiv33v/9lz549BAcHc/HiRVatWsXevXuVslffxd+Iqqpduza9evVi4sSJdO3aVSnLtKw2GjVqFJcvX8bf35/z58+zfPlyfvjhB8aPHy+VmTBhAmvWrGH9+vVkZmby1Vdf8ejRI4YMGQKArq4uQ4cOZcKECRw5coTk5GSGDBmCo6MjH330EQBdu3bF2tqaAQMGkJqayv79+5k2bRre3t6oq6tXORZvb282btzI5s2b0dHR4ebNm9y8eZMnT54ARWsNm5mZMXLkSE6dOkV2djZBQUHExMTg4eEBQK1atRg1ahQzZszgwIEDZGVlSWuY9+nTRzqXpaWl0nhflri4OBYsWMCFCxdYtmwZP/74I2PHjgWKlvdo2rQpgwYNIi0tjbi4OGmN84o2HRQEQRAEQRAEQXgb/5hJ2l27dtG6dWulHcPV1NQ4cOAA+vr6uLm5YWtry7x581BRUQHAw8ODkJAQFi5ciI2NDatWrSIsLEzaSboqGjZsyKxZs5g8eTIGBgbShNHXX39NQEAAgYGBWFlZ4erqyu7du0tlD1Wkd+/euLq60qlTJ+rVq8eWLVuqtN5pZWrVqsWxY8dwc3NDoVAwbdo0goKCpI3Ihg0bxtq1awkLC8PW1pYOHToQHh4uxV5Zu5YVd1m0tbXZtWuXlCE6depU5s+fr1Rm5MiR9OrVi759+9KmTRt+//33UrvaDx8+HAsLCxwcHKhXrx5xcXH07NmT8ePHM2bMGJo3b058fDwBAQHSc1RUVPj9998ZOHAgCoUCT09PunXrJm38Ymdnx9GjR6VJSnt7e6ZPny5t1gVFSzhcvXqVpk2bUq9ePR49esShQ4feun/09PRYs2YNTk5O2NnZcfDgQXbt2iXd3h0WFsbAgQPx9fXFwsICDw8PEhMTady4MVCUiXrgwAFSU1Np3bo1jo6OREVFoapatE+gn58fKioqWFtbU69evXJvE27dujVJSUmYmZkxfPhwrKys6NmzJ+np6SxevLjM51TWX5qampw/f57evXujUCgYMWIE3t7ejBw58q37RE9Pj8jISD755BOsrKxYuXIlW7ZswcbGpszx4U0UFBTg7e0tvacVCoWU0dqgQQPi4uIoKCiga9eu2NraMm7cOPT09KTswICAAHx9fZk+fTpWVlb07dtXylBUVVUlNDSUVatW0aBBgwqzfufPn8/mzZs5efIkLi4u2NjYMGHCBOzs7JQyMEtat24d9+7do0WLFgwYMAAfHx9p463i9ivvuquobaHy8U5NTY0pU6ZgZ2dH+/btUVFRkdYjLW9Me/jwIfXr16dhw4Y4OjpKGxeeOXNGuu29PM2aNSM4OJj58+fz4YcfsmnTJgIDA5XKODk5sXLlSoKDg2nWrBn79u1j/PjxSsthvIu/Ea9j6NChPHv2jC+//FLp8bLayNTUlN27dxMTE0OzZs0ICgpi7dq1uLi4SGX69u3LwoULmT59Os2bNyclJYV9+/YpbfK1aNEievToQe/evWnfvj2GhoZERkZKx1VUVIiOjkZFRQVHR0e++OILBg4cyOzZs18rlhUrVvDgwQM6duxI/fr1pZ+tW7cCRUtG7Nmzh3r16uHu7o6dnR0bNmxg/fr1uLm5SfV8++23fP755wwYMIBWrVpx7do1Dh8+TO3ataUyWVlZ5X7JUczX15ekpCTs7e355ptvCA4OluJVUVFhx44d5OXl0apVK4YNG8bUqVMBKl0uRRAEQRAEQRAE4U3JXr7NDkF/IT179qRdu3b4+/tXdyjvzYsXLzAwMGDv3r2VbmIi/PkiIyOZNm0aGRkZ1R2K8Ip/w/jwd3Tnzh3q16/P9evXlSYOq8vw4cM5f/48P//8c7Wc//vvv5fW7S1e/uKv1kZ/R46OjnTu3JlvvvkGKLqbYNy4cYwbN67KdcTFxdGuXTsuXbpU4brkxR4+fIiuri4LvCOQq2tWWl4QBEEQBEEQhHdjTJB7dYegpPizwYMHDyrdu0L1T4rpvWvXrh1eXl7VHcZ7dffuXcaPH0+rVq2qOxShDNra2qUygYW/hn/D+PB3dPfuXYKDg6tt8nHhwoV06dIFLS0t9u7dy/r168td6/d9evz4Mbm5ucybN4+RI0dKE7RQ/W30d5afn8/Zs2dJT0/Hx8fntZ67fft2tLW1MTc359KlS4wdOxYnJ6cqTdAKgiAIgiAIgiC8iX/MJO2/IUNOX19fWhdP+Ovp2rVrdYcglOPfMD78HSkUChQKRbWd/9SpUyxYsIA//viDJk2aEBoayrBhw/70OBYsWMCcOXNo3749U6ZMUTpW3W30d7Z3714GDhxIz549+eyzz17ruX/88QeTJk0iJyeHDz74AGdnZ4KCgt5TpIIgCIIgCMJfXQ1VGWryGiD2KPjLK7k5/Z+hZs2a0vKfb+sfs9yBIAiCIAjCX8Hr3NIkCIIgCIIg/HUVb2h8//796g5F+AvT09PD0NCwzI2G/5XLHQiCIAiCIAiCIAiCIAjCu1I8Qauvr4+mpmaZk3DCv9fLly95/PixtCF4ZZtcV0ZM0gqCIAiCIAiCIAiCIAhCCQUFBdIEbd26das7HOEvSi6XA3D79m309fXfaumDGu8qKEEQBEEQBEEQBEEQBEH4J3j+/DkAmpqa1RyJ8FdXfI0UXzNvSkzSCoIgCIIgCIIgCIIgCEIZxBIHQmXe1TUiljsQBEEQBEF4DwIDA1FXV6/uMARBEARBEIQ3oK2tjZOTE7dv30ZVVUyf/V00aNCgukN4YyKTVhAEQRAEQRAEQRAEQRAEoRqJSVpBEARBEARBEARBEARBEMq1detWrKys3rqehg0bsm/fvncQ0T+PmKQVBEEQBEEQBEEQBEEQhH+4cePG8eWXX1Z3GEI5xCSt8E6Eh4ejp6dX3WG8E1evXkUmk5GSklLdoQhVIPrrr2vmzJk0b968usP4SxNt9H79k/42CYIgCIIgCILwzyYmad+TIUOGMG3atD/lXLGxschkMu7fv//O665sAsHU1JSDBw/St29fLly48M7P/6b+7ImPwYMH4+Hh8aedr5iJiQmLFy8u89jRo0cxMjICqi++8nTs2JFx48ZVqeylS5cYMmQIjRo1Ql1dHVNTU7y8vEhKSnq/Qb5HJccHmUzGjh07qjeg//O6E97btm2jY8eO6Orqoq2tjZ2dHbNnz+bu3bvvN9D35MmTJ2hpaXHp0iXCw8ORyWRl3s7z448/IpPJMDExea3637avS143d+/epX///tSqVQs9PT2GDh1KXl6eUvm0tDQ+/vhjNDQ0MDIyYsGCBaXq/PHHH7G0tERDQwNbW1v27NmjdPzly5dMnz6d+vXrI5fLcXZ25uLFi0plKovl6dOnDB48GFtbW1RVVcsci44fP46TkxN169ZFLpdjaWnJokWLlMocO3YMd3d3GjRoUOW2/Kv9bRIEQRAEQRCEv6pVq1bRuXNnzMzMcHBwYMqUKTx69KhUuX379uHk5ESTJk3o168fN27cUDq+f/9+XFxcaNKkCY6OjgQHB/PixYs/62X8rYlJ2vegoKCA6OhoevbsWd2hvFdpaWncu3ePDh06IJfL0dfXr+6QhBKioqJwd3ev7jDeSlJSEi1btuTChQusWrWKjIwMtm/fjqWlJb6+vtUd3hv5p4wPU6dOpW/fvrRq1Yq9e/dy7tw5goKCSE1N5fvvv6/u8N5ITEwMxsbGmJmZAaClpcXt27dJSEhQKrdu3ToaN278p8b26nXTv39/0tPTiYmJITo6mmPHjjFixAip/MOHD+natSvGxsYkJyfz7bffMnPmTFavXi2ViY+Px8vLi6FDh3LmzBk8PDzw8PDg3LlzUpkFCxYQGhrKypUrOXnyJFpaWri4uPD06VOpTGWxFBQUIJfL8fHxwdnZuczXp6WlxZgxYzh27BiZmZlMmzaNadOmKcX76NEjmjVrxrJly6rcbuJvkyAIgiAIgiBUTY0aNZg9ezZHjhxh8eLFxMXF8c033yiVefLkCaGhoYSEhLBjxw4ePnzI6NGjpeMnT55k7NixDB06lCNHjjB//nx++OEHQkND/+yX87ckJmnfg/j4eGrWrEmrVq0AuH79Ol5eXtSpUwctLS0cHBw4efKkVH7FihU0bdoUNTU1LCwsSk1wyGQy1q5dy6effoqmpibm5ubs3LkTKMp869SpEwC1a9dGJpMxePBgAAoLCwkMDMTU1BS5XE6zZs346aefpHqLM3APHTqEg4MDmpqatG3blqysLKDoNtFZs2aRmpqKTCZDJpMRHh4uPT8qKgpXV1dq1qxZ6pbS4kzW77//HhMTE3R1dfn888/5448/pDI//fQTtra2yOVy6tati7Ozs9K3NGvXrsXKygoNDQ0sLS1Zvny5UruU166Vxf2qU6dOYW9vj4aGBg4ODpw5c0bpeEFBAUOHDpXa0cLCgpCQEKXXun79eqKioqTzxcbGAjBp0iQUCgWampo0adKEgIAAnj9/Lj03NTWVTp06oaOjQ61atWjZsqVShujx48f5+OOPkcvlGBkZ4ePjI7VRx44duXbtGuPHj5fOW9LOnTvLnQjs2LEjPj4++Pv7U6dOHQwNDZk5c6Z0/OXLl8ycOZPGjRujrq5OgwYN8PHxkY7n5+fj5+dHw4YN0dLSok2bNtJrLhYXF0fHjh3R1NSkdu3auLi4cO/ePQYPHszRo0cJCQmR4r569WqpGF++fMngwYMxNzfn559/pnv37jRt2pTmzZszY8YMoqKiynxtlfUXFF37rVu3RktLCz09PZycnLh27dpb9wnA8uXLMTc3R0NDAwMDAz777DOlc786PpRUnMkaGRlJp06d0NTUpFmzZkqThNeuXcPd3Z3atWujpaWFjY2NUvbjuXPn6NatG9ra2hgYGDBgwADu3LkjHS8sLGTBggWYmZmhrq5O48aNmTNnDlCUGQ9gb2+PTCajY8eOZbbxqVOnmDt3LkFBQXz77be0bdsWExMTunTpwrZt2xg0aFCZz0tMTKRLly588MEH6Orq0qFDB06fPi0dr+y6q6htKxvv7t27R//+/alXrx5yuRxzc3PCwsKU4ouKilJ6z6iqqtKvXz++++476bHr168TGxtLv379Sr2+isby4qzbTz/9tMws3IrGSlC+bjIzM9m3bx9r166lTZs2tGvXjiVLlhAREcGvv/4KwKZNm3j27BnfffcdNjY2fP755/j4+BAcHCzVGRISgqurKxMnTsTKyoqvv/6aFi1asHTpUqk/Fi9ezLRp0/jPf/6DnZ0dGzZs4Ndff5WyWKsSi5aWFitWrGD48OEYGhqWajcouua8vLywsbHBxMSEL774AhcXF37++WepTLdu3fjmm2/49NNPy6yjLOX9bVq1ahVGRkZoamri6enJgwcPpDIvXrzAx8cHPT096taty6RJkxg0aNBf6m4EQRAEQRAEQXjXhg8fjpOTE0ZGRrRr1w5/f3927dqlVOb58+d88803ODg4YGdnx+LFi0lKSpLmUYKDg/H29sbT0xNjY2Pat2/PxIkT2bhxY3W8pL8dMUn7HuzcuRN3d3dkMhl5eXl06NCBGzdusHPnTlJTU/H396ewsBCA7du3M3bsWHx9fTl37hwjR45kyJAhHDlyRKnOWbNm4enpSVpaGm5ubvTv35+7d+9iZGTEtm3bAMjKyiI3N1eakAoMDGTDhg2sXLmS9PR0xo8fzxdffMHRo0eV6p46dSpBQUEkJSWhqqoqLSLdt29ffH19sbGxITc3l9zcXPr27av0Ov/zn/+U2w7Z2dns2LGD6OhooqOjOXr0KPPmzQMgNzcXLy8vvvzySzIzM4mNjaVXr168fPkSKJpgmD59OnPmzCEzM5O5c+cSEBDA+vXrASps18riLikvL48ePXpgbW1NcnIyM2fOxM/PT6lMYWEhjRo14scffyQjI4Pp06fzv//9jx9++AEAPz8/PD09cXV1lc7Xtm1bAHR0dAgPDycjI4OQkBDWrFmjdAtv//79adSoEYmJiSQnJzN58mRq1qwptZ+rqyu9e/cmLS2NrVu3cvz4ccaMGQNAZGQkjRo1Yvbs2dJ5i6Wnp3P79m0++eSTcvtn/fr1aGlpcfLkSRYsWMDs2bOJiYkBim5jX7RoEatWreLixYvs2LEDW1tb6bljxowhISGBiIgI0tLS6NOnD66urtJt0CkpKXTu3Blra2sSEhI4fvw47u7uFBQUEBISgqOjI8OHD5fiLl6WoaSUlBTS09Px9fWlRo3SQ1V560xW1l8vXrzAw8ODDh06kJaWRkJCAiNGjJAmud+mT5KSkvDx8WH27NlkZWWxb98+2rdvrxRfyfGhPFOnTsXPz4+UlBQUCgVeXl7S7SHe3t7k5+dz7Ngxzp49y/z589HW1gbg/v37fPLJJ9jb25OUlMS+ffu4desWnp6eUt1Tpkxh3rx5BAQEkJGRwebNmzEwMACKJl8BDh48SG5uLpGRkWXGt2nTJrS1tZW+Ma1K3/zxxx8MGjSI48ePc+LECczNzXFzc5MmJCu67ipr28rGu+LXu3fvXjIzM1mxYgUffPCB9PzCwkKio6NLjWlffvklP/zwA48fPwaKJv1cXV2lNitW2ViemJgIQFhYGLm5udLvUPFYWazkdZOQkICenh4ODg7ScWdnZ2rUqCF9AZiQkED79u1RU1OTyri4uJCVlcW9e/ekMq9mtrq4uEhfCly5coWbN28qldHV1aVNmzZSmarE8ibOnDlDfHw8HTp0eOM6ynPp0iV++OEHdu3axb59+zhz5ozStTx//nw2bdpEWFgYcXFxPHz4sNKlFfLz83n48KHSjyAIgiAIgiD8nRw7dgxPT09atmyJQqFg7Nix3Lt3jydPnkhlVFVVlZaWNDMzQ1dXV5oLyMjIYPHixZibm0s//v7+3Lp1S6keoWyq1R3AP1FUVJQ0Ebd582Z+++03EhMTqVOnDoB0Ky3AwoULGTx4sPQBccKECZw4cYKFCxdKGbJQtKaol5cXAHPnziU0NJRTp07h6uoq1auvry9NjuTn5zN37lwOHjyIo6MjAE2aNOH48eOsWrVK6YPvnDlzpN8nT55M9+7defr0KXK5HG1tbVRVVUtlP924cYO0tDS6detWbjsUFhYSHh6Ojo4OAAMGDODQoUPMmTOH3NxcXrx4Qa9evTA2NgZQmgScMWMGQUFB9OrVCyjK8MvIyGDVqlUMGjSo0nYtL+5Xbd68mcLCQtatW4eGhgY2NjZcv36dr776SipTs2ZNZs2aJf1uampKQkICP/zwA56enmhrayOXy8nPzy91vpLrEpuYmODn50dERAT+/v4A5OTkMHHiRCwtLQEwNzeXygcGBtK/f39p7VZzc3NCQ0Pp0KEDK1asoE6dOqioqKCjo1PqvFFRUbi4uChN0LzKzs6OGTNmSHUvXbqUQ4cO0aVLF3JycjA0NMTZ2ZmaNWvSuHFjWrduLcUcFhZGTk4ODRo0AIomqvft20dYWBhz585lwYIFODg4KGU/29jYSP9WU1NDU1Ozwv4pHuSL26aqKuuvhw8f8uDBA3r06EHTpk0BlNYdfZs+ycnJQUtLix49eqCjo4OxsTH29vZK8ZUcH8rj5+dH9+7dgaIvaGxsbLh06RKWlpbk5OTQu3dv6f3SpEkT6XlLly7F3t6euXPnSo999913GBkZceHCBerXr09ISAhLly6Vsl2bNm1Ku3btAKhXrx4AdevWrbRvmjRpIk1eV9WrXxqsXr0aPT09jh49So8ePSq97spr26qMdzk5Odjb20uTia9msp44cQKANm3aKD1ub29PkyZN+OmnnxgwYADh4eEEBwdz+fJlpXKVjeXFbaunp1eqbSsaK4uVvG5u3rxZ6hZ+VVVV6tSpw82bN6UyxZnRxYonlm/evEnt2rW5efNmqclmAwMDpTpKPq+8MpXF8joaNWrEb7/9xosXL5g5cybDhg177Toq8/TpUzZs2EDDhg0BWLJkCd27dycoKAhDQ0OWLFnClClTpIzdpUuXllqr91WBgYFK444gCIIgCIIg/J388ssvDB48mAEDBjBp0iT09PRITEzE19eXZ8+eIZfLq1TP48eP8fX1LXOuSF1d/V2H/Y8jMmnfsczMTH799Vc6d+4MFGUD2tvbSxOJZZV3cnJSeszJyYnMzEylx+zs7KR/a2lpUatWLW7fvl1uHJcuXeLx48d06dIFbW1t6WfDhg1kZ2eXW3f9+vUBKqwbirK62rVrV+Gu2SYmJtKkQ3HdxfU2a9aMzp07Y2trS58+fVizZo2U3fXo0SOys7MZOnSoUuzffPONFHtl7VqWUaNGKdUHRe1vZ2eHhoaGVK54kqekZcuW0bJlS+rVq4e2tjarV68mJyen0nNu3boVJycnDA0N0dbWZtq0aUrPmzBhAsOGDcPZ2Zl58+Yp9U1qairh4eFKMbu4uFBYWMiVK1cqPO+rt22XpWS/g3L/9OnThydPntCkSROGDx/O9u3bpUzOs2fPUlBQgEKhUIrt6NGjSv1T/B54U8VZ1W+iov6qU6cOgwcPxsXFBXd3d0JCQpSykN+mT7p06YKxsTFNmjRhwIABbNq0ScrAhNLjQ3kqek/6+PjwzTff4OTkxIwZM0hLS1OK78iRI0rxFU82Z2dnk5mZSX5+frX1za1btxg+fDjm5ubo6upSq1Yt8vLypL6p6LqrqG2rMt599dVXRERE0Lx5c/z9/YmPj1eKLSoqih49epSZtf3ll18SFhbG0aNHefToEW5ubqXKVHUsL0tFY2Vx3VW5bv4Jfv75Z5KSkli5ciWLFy9my5Yt7/wcjRs3liZooWjMLywsJCsriwcPHnDr1i3pywEAFRUVWrZsWWGdU6ZM4cGDB9LPL7/88s7jFgRBEARBEIT3JS0tjcLCQmbMmEHLli1p2rRpmUkXL168IDU1Vfr90qVLPHjwQEpu+vDDD8nOzsbU1LTUT1mftQRlooXesZ07d9KlSxdp0q+q3zZU5tWMNZlMJi2ZUJbinbV3795NSkqK9JORkaG0TuOrdRffgl1R3VDxeqdViVlFRYWYmBj27t2LtbU1S5YswcLCgitXrkixr1mzRin2c+fOSdlub9Kus2fPVqqvqiIiIvDz82Po0KEcOHCAlJQUhgwZwrNnzyp8XkJCAv3798fNzY3o6GjOnDnD1KlTlZ43c+ZM0tPT6d69O4cPH8ba2prt27cDRX04cuRIpZhTU1O5ePGilAFaltzcXM6cOSNlYpanov4xMjIiKyuL5cuXI5fLGT16NO3bt+f58+fk5eWhoqJCcnKyUmyZmZnSUhvv4rpXKBQAnD9//rWeV5X+CgsLIyEhgbZt27J161YUCoV0bb1Nn+jo6HD69Gm2bNlC/fr1mT59Os2aNeP+/ftA6fGhPBW9J4cNG8bly5cZMGAAZ8+excHBgSVLlkjxubu7K8WXkpLCxYsXad++/TsbjxQKBZcvX1ZaX7kqBg0aREpKCiEhIcTHx5OSkkLdunWlvqnouquobasy3nXr1k1aw7l4wrPk0iYVjWn9+/fnxIkTzJw5kwEDBqCq+m5vQqlsfH/1ujE0NCz1RdqLFy+4e/eulKVraGjIrVu3lMoU/15ZmZLHSz6vvDKVxfI6TE1NsbW1Zfjw4YwfP15prey/MnV1dWrVqqX0IwiCIAiCIAh/RQ8fPuTcuXNKP3Xq1OH58+d89913XLt2jZ9++qnMDaFr1qxJQEAAp0+fJi0tjfHjx9OiRQvpLsfx48fz008/ERwcTFZWFhcvXiQqKor58+f/2S/zb0lM0r5jUVFRSmsa2tnZkZKSwt27d8ssb2VlRVxcnNJjcXFxWFtbV/mcxbe0FxQUSI9ZW1ujrq5OTk4OZmZmSj9lrf9ZUd0l64WiiaAjR45UuB5tVchkMpycnJg1axZnzpxBTU2N7du3Y2BgQIMGDbh8+XKp2Itv362sXcuKW19fX6kuKGr/tLQ0pZ3KiyfrisXFxdG2bVtGjx6Nvb09ZmZmpbKRyzpffHw8xsbGTJ06FQcHB8zNzaXNqUpSKBSMHz+eAwcO0KtXL2kzoxYtWpCRkVGqDczMzKQ+L+u8u3btom3btq+VZVwWuVyOu7s7oaGhxMbGkpCQwNmzZ7G3t6egoIDbt2+Xiqt4UsbOzo5Dhw6VW3dZcb+qefPmWFtbExQUVOaXBsUTn6+qSn9B0W3sU6ZMIT4+ng8//JDNmzdLx96mT1RVVXF2dmbBggWkpaVx9epVDh8+DJQeH96UkZERo0aNIjIyEl9fX9asWSPFl56ejomJSan4tLS0MDc3Ry6Xl9s3ZY0lZenXrx95eXmlNvMrVlHf+Pj44Obmho2NDerq6kqbmkH51x2U37ZVHe/q1avHoEGD2LhxI4sXL2b16tVA0fIN165do0uXLmXGXadOHXr27MnRo0elNbtfVZWxvGbNmpW2bVlevW4cHR25f/8+ycnJ0mOHDx+msLBQWq7B0dGRY8eOKU2kx8TEYGFhQe3ataUyr14LMTEx0t0EpqamGBoaKpV5+PAhJ0+elMpUJZY3VVhYSH5+/lvVUZacnBxpUzMoGvNr1KiBhYUFurq6GBgYKK0ZXFBQoLTBnSAIgiAIgiD8nSUkJODi4qL0s23bNmbMmMHy5cv55JNP2L59O1OmTCn13OJkmjFjxuDh4YGWlhYrV66Ujnfs2JH169dz9OhR3NzccHd3Z82aNTRq1OjPfIl/W2JN2nfo9u3bJCUlsXPnTukxLy8v5s6di4eHB4GBgdSvX58zZ87QoEEDHB0dmThxIp6entjb2+Ps7MyuXbuIjIzk4MGDVT6vsbExMpmM6Oho3NzckMvl6Ojo4Ofnx/jx4yksLKRdu3Y8ePCAuLg4atWqVe7u668yMTHhypUrpKSk0KhRI3R0dNi3bx8KhaLUmo6v4+TJkxw6dIiuXbuir6/PyZMn+e2336S1QWfNmoWPjw+6urq4urqSn59PUlIS9+7dY8KECZW2a1lxl7X+Sb9+/Zg6dSrDhw9nypQpXL16lYULFyqVMTc3Z8OGDezfvx9TU1O+//57EhMTldZ7NDExYf/+/WRlZVG3bl10dXUxNzcnJyeHiIgIWrVqxe7du6WMTIAnT54wceJEPvvsM0xNTbl+/TqJiYn07t0bgEmTJvHRRx8xZswYhg0bhpaWFhkZGcTExEi7r5uYmHDs2DE+//xz1NXV+eCDD6qU5VyZ8PBwCgoKaNOmDZqammzcuBG5XI6xsTF169alf//+DBw4kKCgIOzt7fntt984dOgQdnZ2dO/enSlTpmBra8vo0aMZNWoUampqHDlyhD59+vDBBx9gYmLCyZMnuXr1Ktra2tSpU6fUrQ8ymYywsDCcnZ35+OOPmTp1KpaWluTl5bFr1y4OHDhQahO8qvTXlStXWL16NT179qRBgwbSt3sDBw586z6Jjo7m8uXLtG/fntq1a7Nnzx4KCwuxsLAoc3x4E+PGjaNbt24oFAru3bvHkSNHpPeNt7c3a9aswcvLC39/f+rUqcOlS5eIiIhg7dq1aGhoMGnSJPz9/VFTU8PJyYnffvuN9PR0hg4dir6+PnK5nH379tGoUSM0NDTQ1dUtFUObNm3w9/fH19eXGzdu8Omnn9KgQQMuXbrEypUradeuHWPHji2zb77//nscHBx4+PAhEydOVMrurei6q6htqzLeTZ8+nZYtW2JjY0N+fj7R0dFSu0VFReHs7Iympma57R4eHs7y5cupW7dumcerMpabmJhw6NAhnJycUFdXlyZLK1LWdWNlZYWrqyvDhw9n5cqVPH/+nDFjxvD5559L60T369ePWbNmMXToUCZNmsS5c+cICQlRWg957NixdOjQgaCgILp3705ERARJSUnS5LVMJmPcuHF88803mJubY2pqSkBAAA0aNMDDw6PKsUDRBgLPnj3j7t27/PHHH9LdDMWbDixbtozGjRtLy3McO3aMhQsX4uPjI9WRl5fHpUuXpN+Lx/g6derQuHFjoGjZgRs3brBhw4Zy21RDQ4NBgwaxcOFCHj58iI+PD56entKXTP/9738JDAzEzMwMS0tLlixZwr179yrc7E8QBEEQBEEQ/g4WL17M4sWLyz0+YsQIpd8/++wz6d99+/aVNmUvawm4Yh07dqRjx47lHr9x40bVgv0XEpm079CuXbto3bq10o7hampqHDhwAH19fdzc3LC1tWXevHmoqKgA4OHhQUhICAsXLsTGxoZVq1YRFhZW4QX9qoYNGzJr1iwmT56MgYGBtNP8119/TUBAAIGBgdIH6d27d5faTKYivXv3xtXVVdr4ZsuWLVVa77QytWrV4tixY7i5uaFQKJg2bRpBQUHS4tLDhg1j7dq1hIWFYWtrS4cOHQgPD5dir6xdy4q7LNra2uzatUvKEJ06dWqpNPyRI0fSq1cv+vbtS5s2bfj9999L7Wo/fPhwLCwscHBwoF69esTFxdGzZ0/Gjx/PmDFjaN68OfHx8QQEBEjPUVFR4ffff2fgwIEoFAo8PT3p1q2btPmMnZ0dR48e5cKFC3z88cfY29szffp0pYmP2bNnc/XqVZo2bUq9evV49OgRhw4deuv+0dPTY82aNTg5OWFnZ8fBgwfZtWuXNEEVFhbGwIED8fX1xcLCAg8PDxITE6WJEoVCwYEDB0hNTaV169Y4OjoSFRUl3Sbu5+eHiooK1tbW1KtXr9z1fVu3bk1SUhJmZmYMHz4cKysrevbsSXp6erl/WCrrL01NTc6fP0/v3r1RKBSMGDECb29vRo4c+dZ9oqenR2RkJJ988glWVlasXLmSLVu2YGNjU+b48CYKCgrw9vaW3tMKhULKaG3QoAFxcXEUFBTQtWtXbG1tGTduHHp6etIkeEBAAL6+vkyfPh0rKyv69u0r3a6uqqpKaGgoq1atokGDBhVm/c6fP5/Nmzdz8uRJXFxcsLGxYcKECdjZ2ZX7JdC6deu4d+8eLVq0YMCAAfj4+ChtOlXRdVdR20Ll452amhpTpkzBzs6O9u3bo6KiQkREBFC1NZzlcnm5E7RQtbE8KCiImJgYjIyMSm0oV57yrptNmzZhaWlJ586dcXNzo127dtLkKoCuri4HDhzgypUrtGzZUurzkv/T1bZtWzZv3szq1atp1qwZP/30Ezt27ODDDz+Uyvj7+/Pf//6XESNG0KpVK/Ly8ti3b5/Skh2VxQJF/xNnb2/Prl27iI2Nxd7eXqkNCgsLmTJlCs2bN8fBwYFly5Yxf/58Zs+eLZVJSkpSet6ECROk92Cx3NzcStcLNzMzo1evXri5udG1a1fs7OyUssInTZqEl5cXAwcOxNHRUVp7urJlSgRBEARBEARBEN6G7OXb7M4jKOnZsyft2rXD39+/ukN5b168eIGBgQF79+5V2lhF+GuIjIxk2rRpZGRkVHcowiv+DePD39GdO3eoX78+169fx8DAoLrDKUVcN29n1apVfP3111y/fh0oWnN6x44dr7UueWFhIVZWVnh6evL1119X6TkPHz5EV1eXyZMni11sBUEQBEEQ/qa0tbVxcnKiYcOG73xfCuH9KZnY9md5+vQpV65cwdTUtFRyR/FngwcPHlS6d4W4yt6hdu3a4eXlVd1hvFd3795l/PjxtGrVqrpDEcqgra0tFuT+i/o3jA9/R3fv3iU4OPgvOUEL4rp5G7/88gt79uyRsq2r6tq1axw4cIAOHTqQn5/P0qVLuXLlCv369XtPkQqCIAiCIAiCIIhJ2nfq35DppK+vz7Rp06o7DKEcXbt2re4QhHL8G8aHvyOFQoFCoajuMMolrps316JFCxo2bEh4ePhrPa9GjRqEh4fj5+fHy5cv+fDDDzl48KC0hrEgCIIgCIIgCML7IJY7EARBEARBeIde55YmQRAEQRAE4a+polvYBaGkd7Xcgdg4TBAEQRAEQRAEQRAEQRAEoRqJSVpBEARBEARBEARBEARBEIRqJCZpBUEQBEEQBEEQBEEQBEEQqpGYpBUEQRAEQRAEQRAEQRAEQahGqtUdgCAIgiAIwj/RcdduaKmK/9USBEEQBEH4O5Lp66PjPZpHL1/yvIZyjmPHdaf+1Fhih7b+U89XVaOmTOHBH3+wZelSANwGDsTW0pL5//tftcWkY2lZbed+W+KTgyAIgiAIgiAIgiAIgiD8g9y5e5c5oaHsP3aM23fuoKery4cWFkwePZqPWrR4J+eY/7//8fLly3dSlyAmaQVBEARBEARBEARBEAThH+ULHx+ePX/OysBATBo14vbvv3P0xAnu3r//zs6hq6PzzuoSxCStIAiCIAiCIAiCIAiCIPxj3H/4kPjkZPasX0+71kVLJTRu2BAHOzupTC0rK5bMns3+o0c5FBdHfX195k6ahNsnnwBQUFCAz/TpHDt5klt37tCofn2GeXkxeuBAqY5XlzsQ3o7YOEyoVHh4OHp6etUdxjtx9epVZDIZKSkp1R2KUAWiv/66Zs6cSfPmzas7jGplYmLC4sWLKywjk8nYsWPHnxKPULbBgwfj4eFR3WEIgiAIgiAIwp9GW1MTbU1Nog8dIv/Zs3LLzVu+nE+7dSN+xw66dujAsIkTpUzbwsJCGhgasn7xYk5FRzNp9GhmL15M5N69f9Kr+PcRk7RvYMiQIUybNu1POVdsbCwymYz77zAdvVhlkyympqYcPHiQvn37cuHChXd+/jf1Z08OVdcH/IomgI4ePYqRkRHw15uA6NixI+PGjatS2UuXLjFkyBAaNWqEuro6pqameHl5kZSU9H6DfI9Kjg9/pQm6153w3rZtGx07dkRXVxdtbW3s7OyYPXs2d+/efb+BvidPnjxBS0uLS5cuUVBQwLx587C0tEQul1OnTh3atGnD2rVrX6vOxMRERowY8Z4iLlunTp2kOHNycujevTuampro6+szceJEXrx4oVQ+NjaWFi1aoK6ujpmZGeHh4aXqXLZsGSYmJmhoaNCmTRtOnVLeBOHp06d4e3tTt25dtLW16d27N7du3VIqU5VYli1bhpWVFXK5HAsLCzZs2FAqlh9//BFLS0s0NDSwtbVlz549SsdnzpyJpaUlWlpa1K5dG2dnZ06ePFlhm4WEhJT5ugVBEARBEAThn0pVVZUVgYFsjorCqHVruvTrx6xFiziXlaVUrp+HB326d6epsTEzxo0j7/Fjks+eBaBmzZpM/e9/afHhh5g0akRfd3f6f/op2/ftq46X9K8gJmlfU0FBAdHR0fTs2bO6Q3mv0tLSuHfvHh06dEAul6Ovr1/dIQklREVF4e7uXt1hvJWkpCRatmzJhQsXWLVqFRkZGWzfvh1LS0t8fX2rO7w38k8ZH6ZOnUrfvn1p1aoVe/fu5dy5cwQFBZGamsr3339f3eG9kZiYGIyNjTEzM2PWrFksWrSIr7/+moyMDI4cOcKIESNe+8uwevXqoamp+X4C/j/PSnzrfffuXeLi4nB3d6egoIDu3bvz7Nkz4uPjWb9+PeHh4UyfPl0qf+XKFbp3706nTp1ISUlh3LhxDBs2jP3790tltm7dyoQJE5gxYwanT5+mWbNmuLi4cPv2banM+PHj2bVrFz/++CNHjx7l119/pVevXtLxqsSyYsUKpkyZwsyZM0lPT2fWrFl4e3uza9cuqUx8fDxeXl4MHTqUM2fO4OHhgYeHB+fOnZPKKBQKli5dytmzZzl+/DgmJiZ07dqV3377rdw21NXV/cfcDSIIgiAIgiAIVfWfrl25cPQoEcuW4dyuHT+fOsXHvXuzaft2qcyHFhbSv7U0Namlrc1vv/8uPbZ60yba9+6Nadu21G/ZkvAff+SX3Nw/9XX8m4hJ2tcUHx9PzZo1adWqFQDXr1/Hy8uLOnXqoKWlhYODg1JWz4oVK2jatClqampYWFiUmuCQyWSsXbuWTz/9FE1NTczNzdm5cydQlPnWqVMnAGrXro1MJmPw4MFAUdp5YGAgpqamyOVymjVrxk8//STVW5yBe+jQIRwcHNDU1KRt27Zk/d+3JuHh4cyaNYvU1FRkMhkymUwp0ygqKgpXV1dq1qxZarmD4kzW77//HhMTE3R1dfn888/5448/pDI//fQTtra2yOVy6tati7OzM48ePZKOr127FisrKzQ0NLC0tGT58uVK7VJeu1YW96tOnTqFvb09GhoaODg4cObMGaXjBQUFDB06VGpHCwsLQkJClF7r+vXriYqKks4XGxsLwKRJk1AoFGhqatKkSRMCAgJ4/vy59NzU1FQ6deqEjo4OtWrVomXLlkoZosePH+fjjz9GLpdjZGSEj4+P1EYdO3bk2rVrjB8/XjpvSTt37ix3IrBjx474+Pjg7+9PnTp1MDQ0ZObMmdLxly9fMnPmTBo3boy6ujoNGjTAx8dHOp6fn4+fnx8NGzZES0uLNm3aSK+5WFxcHB07dkRTU5PatWvj4uLCvXv3GDx4MEePHiUkJESK++rVq6VifPnyJYMHD8bc3Jyff/6Z7t2707RpU5o3b86MGTOIiooq87VV1l9QdO23bt0aLS0t9PT0cHJy4tq1a2/dJwDLly/H3NwcDQ0NDAwM+Oyzz5TO/er4UFJxJmtkZCSdOnVCU1OTZs2akZCQIJW5du0a7u7u1K5dGy0tLWxsbJQyCc+dO0e3bt3Q1tbGwMCAAQMGcOfOHel4YWEhCxYswMzMDHV1dRo3bsycOXOAosx4AHt7e2QyGR07diyzjU+dOsXcuXMJCgri22+/pW3btpiYmNClSxe2bdvGoEGDynxeYmIiXbp04YMPPkBXV5cOHTpw+vRp6Xhl111FbVvZeHfv3j369+9PvXr1kMvlmJubExYWphRfVFSU9J7ZuXMno0ePpk+fPpiamtKsWTOGDh2Kn5+fVL5jx46MGTOGMWPGoKurywcffEBAQIDSzqWvZrtfvHiR9u3bo6GhgbW1NTExMaXa6ZdffsHT0xM9PT3q1KnDf/7zH6X3SHFm/Jw5c2jQoAEWJf6naffu3bRo0QIDAwMOHDhARkYGGzdupHnz5nTr1o2vv/6aZcuWSRO7K1euxNTUlKCgIKysrBgzZgyfffYZixYtkuoMDg5m+PDhDBkyBGtra1auXImmpibfffcdAA8ePGDdunUEBwfzySef0LJlS8LCwoiPj+fEiRMAVYrl+++/Z+TIkfTt25cmTZrw+eefM2LECObPny/FEhISgqurKxMnTsTKyoqvv/6aFi1asLTE+lb9+vXD2dmZJk2aYGNjQ3BwMA8fPiQtLa1UW7/apq/Tt7m5uXTv3h25XI6pqSmbN2+u0vIWgiAIgiAIgvBXoqGuzidOTkwaPZqDW7bQ38ODuUuWSMdrqipvVSWTyaT/L/5p926mffstA3r3ZsfatRyPjOSLTz9VmvcQ3i0xSfuadu7cibu7OzKZjLy8PDp06MCNGzfYuXMnqamp+Pv7U1hYCMD27dsZO3Ysvr6+nDt3jpEjRzJkyBCOHDmiVOesWbPw9PQkLS0NNzc3+vfvz927dzEyMmLbtm0AZGVlkZubK01IBQYGsmHDBlauXEl6ejrjx4/niy++4OjRo0p1T506laCgIJKSklBVVeXLL78EoG/fvvj6+mJjY0Nubi65ubn07dtX6XX+5z//KbcdsrOz2bFjB9HR0URHR3P06FHmzZsHFH249fLy4ssvvyQzM5PY2Fh69eolvdE3bdrE9OnTmTNnDpmZmcydO5eAgADWr18PUGG7VhZ3SXl5efTo0QNra2uSk5OZOXOm0iQMFE3+NGrUiB9//JGMjAymT5/O//73P3744QcA/Pz88PT0xNXVVTpf27ZtAdDR0SE8PJyMjAxCQkJYs2aN0uRH//79adSoEYmJiSQnJzN58mRq1qwptZ+rqyu9e/cmLS2NrVu3cvz4ccaMGQNAZGQkjRo1Yvbs2dJ5i6Wnp3P79m0++b/FvMuyfv16tLS0OHnyJAsWLGD27NnShNG2bdtYtGgRq1at4uLFi+zYsQNbW1vpuWPGjCEhIYGIiAjS0tLo06cPrq6uXLx4EYCUlBQ6d+6MtbU1CQkJHD9+XMrsCwkJwdHRkeHDh0txFy/LUFJKSgrp6en4+vpSo0bpYai8rLfK+uvFixd4eHjQoUMH0tLSSEhIYMSIEdIk99v0SVJSEj4+PsyePZusrCz27dtH+/btleIrOT6UZ+rUqfj5+ZGSkoJCocDLy0u6Ldzb25v8/HyOHTvG2bNnmT9/Ptra2gDcv3+fTz75BHt7e5KSkti3bx+3bt3C09NTqnvKlCnMmzePgIAAMjIy2Lx5MwYGBgDSLewHDx4kNzeXyMjIMuPbtGkT2trajB49uszj5fXNH3/8waBBgzh+/DgnTpzA3NwcNzc36cubiq67ytq2svGu+PXu3buXzMxMVqxYwQcffCA9v7CwkOjoaGlMMzQ05PDhwxVmX0LR+0hVVZVTp04REhJCcHBwuUsiFBYW0qtXL9TU1Dh58iQrV65k0qRJSmWeP3+Oi4sLOjo6/Pzzz8TFxaGtrY2rq6tSxuyhQ4fIysoiJiaG6Oho6fGS43JCQgK2trZS/wK4uLjw8OFD0tPTpTLOzs5KMbi4uEhfDDx79ozk5GSlMjVq1MDZ2Vkqk5yczPPnz5XKWFpa0rhxY6lMVWLJz89HQ0NDKRa5XM6pU6ek/8mrLN5XPXv2jNWrV6Orq0uzZs3KLFOeyvp24MCB/Prrr8TGxrJt2zZWr16tlF38qvz8fB4+fKj0IwiCIAiCIAh/NZZmZjx68qRKZU+cOUMbe3uG9+tHM2trmhobcyUn5z1H+O+mWnkRoaSoqChpIm7z5s389ttvJCYmUqdOHQDMzMyksgsXLmTw4MHSZMeECRM4ceIECxculDJkoSjLx8vLC4C5c+cSGhrKqVOncHV1lerV19eXJkfy8/OZO3cuBw8exNHREYAmTZpw/PhxVq1aRYcOHaS658yZI/0+efJkunfvztOnT5HL5Whra6OqqoqhoaHSa7xx4wZpaWl069at3HYoLCwkPDwcHR0dAAYMGMChQ4eYM2cOubm5vHjxgl69emFsbAygNAk4Y8YMgoKCpNtlTU1NycjIYNWqVQwaNKjSdi0v7ldt3ryZwsJC1q1bh4aGBjY2Nly/fp2vvvpKKlOzZk1mzZol/W5qakpCQgI//PADnp6eaGtrI5fLyc/PL3W+kusSm5iY4OfnR0REBP7+/kDRGo0TJ07E0tISAHNzc6l8YGAg/fv3l9ZuNTc3JzQ0lA4dOrBixQrq1KmDiooKOjo6pc4bFRWFi4sLampq5b52Ozs7ZsyYIdW9dOlSDh06RJcuXcjJycHQ0BBnZ2dq1qxJ48aNaf1/uz3m5OQQFhZGTk4ODRo0AIomqvft20dYWBhz585lwYIFODg4KGU/29jYSP9WU1NDU1Ozwv4pnvAtbpuqqqy/Hj58yIMHD+jRowdNmzYFwMrKSir/Nn2Sk5ODlpYWPXr0QEdHB2NjY+zt7ZXiKzk+lMfPz4/u3bsDRV/Q2NjYcOnSJSwtLcnJyaF3797S+6VJkybS85YuXYq9vT1z586VHvvuu+8wMjLiwoUL1K9fn5CQEJYuXSpluzZt2pR27doBRbfmA9StW7fSvmnSpIk0eV1Vr35psHr1avT09Dh69Cg9evSo9Lorr22rMt7l5ORgb2+Pg4MDUPR+LKk447NNmzZAUfboZ599hqGhITY2NrRt25b//Oc/pcY8IyMjFi1ahEwmw8LCgrNnz7Jo0SKGDx9e6vUfPHiQ8+fPs3//fum9M3fuXKU6t27dSmFhIWvXrpUm8sPCwtDT0yM2NpauXbsCoKWlxdq1a5Xe4/n5+ezbt0/Kir9586bSpCgg/X7z5s0Kyzx8+JAnT55w7949CgoKyixz/vx5qQ41NbVSk/MGBgaVnqdkLC4uLqxduxYPDw9atGhBcnIya9eu5fnz59y5c4f69euXW09xHcWio6P5/PPPefz4MfXr1ycmJkZpUr4qKurb8+fPc/DgQRITE6Vrau3atUrjxasCAwOVxiZBEARBEARBqE6/37vHoPHj+aJXLz60sEBbS4sz586xeN06uleQ8FVSU2NjIqKiOHj8OMYNGxKxcyenz53DuFGj9xz9v5eYpH0NmZmZ/Prrr3Tu3Bkoyga0t7eXJhLLKv/qpjJOTk6lbs+2s7OT/q2lpUWtWrUqzNi5dOkSjx8/pkuXLkqPP3v2rNSkUcm669evD8Dt27dp3LhxufXv3LmTdu3aVbiGn4mJiTRBW1x3cczNmjWjc+fO2Nra4uLiQteuXfnss8+oXbs2jx49Ijs7m6FDhypNdLx48QJdXV2g8nYty6hRo9i4caP0e15eHpmZmdjZ2SllbxVP8pS0bNkyvvvuO3Jycnjy5AnPnj2r0sZkW7duJTQ0lOzsbPLy8njx4gW1atWSjk+YMIFhw4bx/fff4+zsTJ8+faSJw9TUVNLS0ti0aZNU/uXLlxQWFnLlyhWlicVXRUVFSdmd5SnZ76DcP3369GHx4sU0adIEV1dX3NzccHd3R1VVlbNnz1JQUIBCoVB6fn5+PnXr1gWK+qdPnz6Vtk9FSt5W/Loq6q86deowePBgXFxc6NKlC87Oznh6ekrX/tv0SZcuXTA2NpbazdXVVVqmBEqPD+Up7z1paWmJj48PX331FQcOHMDZ2ZnevXtL5VNTUzly5IiUWVtSdnY29+/fJz8/v9LzV+ZN++bWrVtMmzaN2NhYbt++TUFBAY8fPybn/75prei6q6htqzLeffXVV/Tu3ZvTp0/TtWtXPDw8pIx3KHrP9OjRQ8ratra25ty5cyQnJxMXF8exY8dwd3dn8ODBStmUH330kVJWtKOjI0FBQRQUFKCioqIUT2ZmJkZGRtIEbXH5klJTU7l06ZLS2AlFG3NlZ2dLv9va2pb6Eubw4cPo6+srfSHydxIQEMDNmzf56KOPePnyJQYGBgwaNIgFCxaUmU1fkeI1du/cucOaNWvw9PTk5MmTr7V2ekV9m5WVhaqqKi1atJCOm5mZUbt27XLrmzJlChMmTJB+f/jwYZl3EQiCIAiCIAj/DLFDW1d3CBXS1tLCwc6O5evXc+WXX3j+4gUNDQ0Z9Nln+I0cWaU6vuzbl7TMTIZMmIBMJqO3mxvDvLyI+fnn9xz9v5eYpH0NO3fupEuXLtKkn1wufyf1vpqxJpPJpCUTypKXlwcUrU/YsGFDpWPq6url1l38gbSiuqHi9U6rErOKigoxMTHEx8dz4MABlixZwtSpUzl58qQ0obVmzRopq61Y8aTHm7Tr7NmzSy1lUBURERH4+fkRFBSEo6MjOjo6fPvtt5XuFp6QkED//v2ZNWsWLi4u6OrqEhERQVBQkFRm5syZ9OvXj927d7N3715mzJhBREQEn376KXl5eYwcOVJpTc5iFU2g5+bmcubMGSkTszwV9Y+RkRFZWVkcPHiQmJgYRo8ezbfffsvRo0fJy8tDRUWF5OTkUpNQxZOD7+K6L54EPn/+fKkvFipSlf4KCwvDx8eHffv2sXXrVqZNm0ZMTAwfffTRW/WJmpoap0+fJjY2lgMHDjB9+nRmzpxJYmIienp6pcaH8lT0nhw2bBguLi7s3r2bAwcOEBgYSFBQEP/973/Jy8vD3d1daQ3PYvXr1+fy5ctVbseKKBQKjh8/zvPnz18rm3bQoEH8/vvvhISEYGxsjLq6Oo6OjtJt/BVddzo6OuW2bVXGu27dunHt2jX27NlDTEwMnTt3xtvbm4ULFwJFY1rxcizFatSoQatWrWjVqhXjxo1j48aNDBgwgKlTp0rr975reXl5tGzZUumLgGLFmc5Q9GXdq14dlw0NDaUlLIrdunVLOlb83+LHSpapVasWcrkcFRUVVFRUyixTso5nz55x//59pS/uXi1TWSxyuZzvvvuOVatWcevWLerXr8/q1avR0dGRXnt58b6a+a2lpYWZmRlmZmZ89NFHmJubs27dOqZMmVKq3f4s6urqpf7+CoIgCIIgCEJ1UVdTY+aECcwskUjwqoeZmaUe+6XE/9erq6mxYu5cVpS4mxNQqnNlYKDSsT0bNrxpyAJiTdrXEhUVpbROq52dHSkpKdy9e7fM8lZWVsTFxSk9FhcXh7W1dZXPWZxNVVBQID1mbW2Nuro6OTk50gfV4p/XydxRU1NTqheKJhGOHDlS4Xq0VSGTyXBycmLWrFmcOXMGNTU1tm/fjoGBAQ0aNODy5culYi+eGKmsXcuKW19fX6kuKGr/tLQ0nj59KpUrvu25WFxcHG3btmX06NHY29tjZmamlNFW3vni4+MxNjZm6tSpODg4YG5uLm1OVZJCoWD8+PEcOHCAXr16SZsZtWjRgoyMjFJtYGZmJvV5WefdtWsXbdu2fa0s47LI5XLc3d0JDQ0lNjaWhIQEzp49i729PQUFBdy+fbtUXMUTJXZ2dhw6dKjcusuK+1XNmzfH2tqaoKCgMr80uH//fpnPq0p/QdHmWFOmTCE+Pp4PP/yQzZs3S8fepk9UVVVxdnZmwYIFpKWlcfXqVQ4fPgyUHh/elJGREaNGjSIyMhJfX1/WrFkjxZeeno6JiUmp+LS0tDA3N0cul5fbN2WNJWXp168feXl5pTbzK1ZR3/j4+ODm5oaNjQ3q6upKm5pB+dcdlN+2VR3v6tWrx6BBg9i4cSOLFy9m9erVQNHyDdeuXSuVifuq4nG55EZxr35ZU7zW7qtfYEDRePPLL78orR/96njTokULLl68WGq8MjMzk+4kKMvLly/ZtWuX0vXl6OjI2bNnle66iImJoVatWtJrcXR0LHU9xMTESBm+ampqtGzZUqlMYWEhhw4dksq0bNmSmjVrKpXJysoiJydHKlOVWIrVrFmTRo0aoaKiQkREhFKGc2XxlqewsJD8/PwKy7yqor61sLDgxYsXShtNXrp0iXv37r3WOQRBEARBEARBEF6HmKStotu3b5OUlESPHj2kx7y8vDA0NMTDw4O4uDguX77Mtm3bpE1OJk6cSHh4OCtWrODixYsEBwcTGRn5WhmfxsbGyGQyoqOj+e2338jLy0NHRwc/Pz/Gjx/P+vXryc7O5vTp0yxZskTafKsqTExMuHLlinTbaPGahwqFotSajq/j5MmTzJ07l6SkJHJycoiMjOS3336TbuGfNWsWgYGBhIaGcuHCBc6ePUtYWBjBwcFA5e1aVtxl6devHzKZjOHDh5ORkcGePXukzLpi5ubmJCUlsX//fi5cuEBAQACJiYml2iktLY2srCzu3LnD8+fPMTc3Jycnh4iICLKzswkNDWX79u3Sc548ecKYMWOIjY3l2rVrxMXFkZiYKLXBpEmTiI+PZ8yYMaSkpHDx4sVSyxiYmJhw7Ngxbty4IU12VSXLuTLh4eGsW7eOc+fOcfnyZTZu3IhcLsfY2BiFQkH//v0ZOHAgkZGRXLlyhVOnThEYGMju3buBott6ExMTGT16NGlpaZw/f54VK1ZIMZqYmHDy5EmuXr3KnTt3ypyElclkhIWFceHCBT7++GP27NnD5cuXSUtLY86cOeVOdlbWX1euXGHKlCkkJCRw7do1Dhw4wMWLF7GysnrrPomOjiY0NJSUlBSuXbvGhg0bKCwsxMLCoszx4U2MGzeO/fv3c+XKFU6fPs2RI0ek+Ly9vbl79y5eXl4kJiaSnZ3N/v37GTJkCAUFBWhoaDBp0iT8/f3ZsGED2dnZnDhxgnXr1gFFX2TI5XJpw7EHDx6UGUObNm3w9/fH19cXf39/qS0PHTpEnz59yh1jzM3N+f7778nMzOTkyZP0799fKeu6ouuuoratyng3ffp0oqKiuHTpEunp6URHR0vtFhUVhbOzs5TFD/DZZ5+xaNEiTp48ybVr14iNjcXb2xuFQqG0TnJOTg4TJkwgKyuLLVu2sGTJEsaOHVvm63d2dkahUDBo0CBSU1P5+eefmTp1qlKZ/v3788EHH/Cf//yHn3/+mStXrhAbG4uPjw/Xr18v97pITk7m8ePH0vrCAF27dsXa2poBAwaQmprK/v37mTZtGt7e3lJG56hRo7h8+TL+/v6cP3+e5cuX88MPPzB+/HipngkTJrBmzRrWr19PZmYmX331FY8ePWLIkCEA6OrqMnToUCZMmMCRI0dITk5myJAhODo68tFHH1U5lgsXLrBx40YuXrzIqVOn+Pzzzzl37pzSGstjx45l3759BAUFcf78eWbOnElSUpL0Hnz06BH/+9//OHHiBNeuXSM5OZkvv/ySGzduKC3B0rlzZ5YuXVpue1bWt5aWljg7OzNixAhOnTrFmTNnGDFiBHK5vMJNAQVBEARBEARBEN6GmKStol27dtG6dWulzUnU1NQ4cOAA+vr6uLm5YWtry7x586QsKw8PD0JCQli4cCE2NjasWrWKsLAwOnbsWOXzNmzYkFmzZjF58mQMDAykD6tff/01AQEBBAYGYmVlhaurK7t3736t23R79+6Nq6srnTp1ol69emzZsoWoqKi3ngSsVasWx44dw83NDYVCwbRp0wgKCpI20Bk2bBhr164lLCwMW1tbOnToQHh4uBR7Ze1aVtxl0dbWZteuXVKG6NSpU0vdKj5y5Eh69epF3759adOmDb///nupXe2HDx+OhYUFDg4O1KtXj7i4OHr27Mn48eMZM2YMzZs3Jz4+noCAAOk5Kioq/P777wwcOBCFQoGnpyfdunWTNpaxs7Pj6NGj0iSlvb0906dPV1rPcvbs2Vy9epWmTZtSr149Hj16xKFDh966f/T09FizZg1OTk7Y2dlx8OBBdu3aJa05GxYWxsCBA/H19cXCwgIPDw8SExOlZRgUCgUHDhwgNTWV1q1b4+joSFRUFKqqRaun+Pn5oaKigrW1NfXq1ZPWJH1V69atSUpKwszMjOHDh2NlZUXPnj1JT09n8eLFZT6nsv7S1NTk/Pnz9O7dG4VCwYgRI/D29mbkyJFv3Sd6enpERkbyySefYGVlxcqVK9myZQs2NjZljg9voqCgAG9vb+k9rVAopIzWBg0aEBcXR0FBAV27dsXW1pZx48ahp6cnZSIGBATg6+vL9OnTsbKyom/fvlJ2o6qqKqGhoaxatYoGDRpUmPU7f/58Nm/ezMmTJ3FxccHGxoYJEyZgZ2cnbUr2qnXr1nHv3j1atGjBgAED8PHxUVojtKLrrqK2hcrHOzU1NaZMmYKdnR3t27eXsjSBMsc0FxcXdu3ahbu7uzSxamlpyYEDB6TrGGDgwIE8efKE1q1b4+3tzdixY0utM16sRo0abN++XSo//CroCAABAABJREFUbNgw5syZo1RGU1OTY8eO0bhxY3r16oWVlRVDhw7l6dOnSutZvyoqKgo3Nzel2FRUVIiOjkZFRQVHR0e++OILBg4cyOzZs6Uypqam7N69m5iYGJo1a0ZQUBBr167FxcVFKtO3b18WLlzI9OnTad68OSkpKezbt09pA69FixbRo0cPevfuTfv27TE0NCQyMvK1YikoKCAoKIhmzZrRpUsXnj59Snx8vNIXgm3btmXz5s2sXr2aZs2a8dNPP7Fjxw4+/PBD6Twl39/u7u78/vvv/Pzzz0pr9WZnZ5fK4n5VZX27YcMGDAwMaN++PZ9++inDhw9HR0en0uVMBEEQBEEQBEEQ3pTs5dvs4PMv0rNnT9q1a4e/v391h/LevHjxAgMDA/bu3Svtui78dURGRjJt2jQyMjKqOxThFf+G8eHv6M6dO9SvX5/r168rTTpWRceOHWnevHm5Xxj8mezs7Jg2bRqenp7VHcrfkpeXFyoqKtLmkm/St9evX8fIyIiDBw9WaXO+hw8foqury27HtmipiuX/BUEQBEEQ/o5k+vroeI+msYEBaq+52a1QfXRK3B35Z3n69ClXrlzB1NS0VGJH8WeDBw8eVJicA2LjsCpr164dXl5e1R3Ge3X37l3Gjx9Pq1atqjsUoQza2tplbholVL9/w/jwd3T37l2Cg4Nfe4L2r+TZs2f07t1buhNBqLoXL15w4cIFEhISGFnFHWyLHT58mLy8PGxtbcnNzcXf3x8TExPat2//nqIVBEEQBEEQBOHfTkzSVtG/IUNOX1+fadOmVXcYQjm6du1a3SEI5fg3jA9/RwqFAoVCUd1hvBU1NTVmzJhR3WH8LZ07d462bdvSqVMnRo0a9VrPff78Of/73/+4fPkyOjo6tG3blk2bNlGzZs33FK0gCIIgCIIgCP92YrkDQRAEQRCEd+h1bmkSBEEQBEEQ/poquoVdEEp6V8sdiEU1BEEQBEEQBEEQBEEQBEEQqpGYpBUEQRAEQRAEQRAEQRAEQahGYk1aQRAEQRAEQRAEQRAEQaiinNm2f+r5Gk8/+6ee7890/vx5Bg8eTEpKCpaWluzYsQNTU1POnDlD8+bNqzu8P5XIpBUEQRAEQRAEQRAEQRCEf4jBgwcjk8mkn7p16+Lq6kpaWlqV6wgPD0dPT6/U4yYmJixevPidxTpjxgy0tLTIysri0KFD76zevyORSSsIgiAIgvAetJ+2BRV1eXWHIQiCIAiCILwBQx01fJ2bUqBxjxqqNZWOaf/JsWT8cue1yt9/9JR2HT/hm4WhANz57TZLvg3EpZsbh06kVKmOG3f/oPDly1Lnfl5QyM17ea8d06uePXuGmpoa6ZlZtP+kC49qaPHo8Utu/HoXgOyb91B7g3NYG33wVnFVJ5FJKwiCIAiCIAiCIAiCIAj/IGpq6tTTN6CevgFWNrYMHe3DzV9vcPf3O5xKiMOmcT0ePngglc9MP4tN43rc+CWHUwlxTPP14Y+HD7FpXA+bxvVYFryAwZ7/4dfrvzB/doD0eLHkUycY0LsHLcyN6NymGXOnT+Hx40fS8S5tW7AiJIgp47xpbW3KzMkTsGlcj/SzqawIWSido6SXL1/i+nErwlYtU3q8ONZrVy+/p9arHmKSVhAEQRAEQRAEQRAEQRD+oR49yiN6+080NjFFr3adSss3b9mKyTO+QVtHh9ikc8QmnWPwyNEsXh2OYf0GjPGdLD0OkHP1CiMH9qVLtx5sPxDLwmVrOJ10kjkBk5XqDV+9DAtrG37ac5hRPr7EJp3DTGHJ4BGjpXOUJJPJ6NW3H9t/2KL0+I4ftuDQxhFjkyZv2TJ/LWK5A0EQBEEQBEEQBEEQBEH4Bzl66AAOlsYAPHn8mHr6BiwP20SNGpXna6qpqaFdqxYymYx6+gZKx2qoqKClpaX0+NrlIfTw+IyBw0YBYGzalCkz5zLY8z9Mn/Mt6hoaALRp+zGDRyhPxKqoqqCp+f/ru3/3rtJxj8+8WBo0n7SU09g1b8Hz58/ZHRWJ39SZr9cgfwMik1Z4Z8pbVPrv6OrVq8hkMlJSUqo7FKEKRH/9dc2cOfNftyPn63p17BRt9u6IthQEQRAEQRD+rVo7tmPbviNs23eEiF0HcOrQiVGDvPj1+i/v/FznM9LZ8VMEDpbG0s/IAX0pLCzk+i85Ujkbu2avXbe+oSHtP+nC9q2bAYg9uJ9nz/Jx6dHzncX/VyEmad+jIUOGMG3atD/lXLGxschkMu7fv//O667sQ66pqSkHDx6kb9++XLhw4Z2f/0392R/OBw8ejIeHx592vmIV7ax49OhRjIyMgOqLrzwdO3Zk3LhxVSp76dIlhgwZQqNGjVBXV8fU1BQvLy+SkpLeb5DvUcnxQSaTsWPHjuoN6P+87oT3tm3b6NixI7q6umhra2NnZ8fs2bO5+8q3n38XT548QUtLi0uXLlFQUMC8efOwtLRELpdTp04d2rRpw9q1a9/pOas6ds6aNYsvvvgCgKdPn+Lt7U3dunXR1tamd+/e3Lp1S6l8Tk4O3bt3R1NTE319fSZOnMiLFy+UysTGxtKiRQvU1dUxMzMjPDy81HmXLVuGiYkJGhoatGnThlOnTikdr0osJXeWLf6JiIhQiqOsMjdv3pTKmJiYlFnG29u73Dbz8/P71+8QKwiCIAiCIPw7yTU1MTZpgrFJE2yb2TN7wWIeP37Ej1u+p0YNGVC05muxVz8rvI4njx/h2W+gNCm8bd8Rtu0/wp5jJzEyNvn/Mck136j+3p9/wd5d23n69Anbf9iCaw+PN67rr0xM0r4nBQUFREdH07PnP29mv6S0tDTu3btHhw4dkMvl6OvrV3dIQglRUVG4u7tXdxhvJSkpiZYtW3Lh/7F353E1Z/8Dx19X2jeilWhRqaaNLJUhRJGMNdM09nVospQwkT3LCFnGPmUdZsZSMoyEhgpZylIiW2PGNiNLhqL8/ujX59vVajBmOc/H4z5G93M+5/O+59x7mt73fM65dIlVq1aRkZHBzp07ady4MUFBQe87vD/l3zI+hIaG0qdPH5o1a8bevXs5f/48ERERpKens3Hjxvcd3p8SHx9Pw4YNadSoEdOnT2fRokXMnDmTjIwMDh06xLBhw976l2HVHTtjYmKk98zYsWPZvXs33333HYmJifz666/06NFDKltYWIi3tzcFBQUkJyezfv16oqOjCQsLk8pcu3YNb29v2rZtS1paGmPGjGHIkCH8+OOPUplt27Yxbtw4pk6dyunTp3FwcMDT05O7d+9KZaqKpURUVBS3bt2SHuV9aZSVlSVXpnS7pKamyh2Lj48HoHfv3hW2mYaGBnXq1KmybQVBEARBEATh304mk1GjRg3ynz2jtk5dAO7d/d/kiosXzsuVV1RUorCwsEw9ioqKFBUVyT1n/YE9Vy5fkpLCpR9KSkpvHHvrdh6oqqqxdWM0SYkH6dHnkzeu8+9IJGnfkeTkZBQVFWnWrBkAN2/exM/PDx0dHdTV1XF2dub48eNS+RUrVmBubo6SkhJWVlZlEhwymYy1a9fSvXt31NTUsLCwIDY2Fiie+da2bVsAateujUwmY8CAAQAUFRUxZ84cTE1NUVVVxcHBge+//16qt2T2UkJCAs7OzqipqeHq6kpWVhZQfBvu9OnTSU9Pl2YtlZ5pFRMTg5eXF4qKihXesrtx40ZMTEzQ1tbm448/5vHjx1KZ77//Hjs7O1RVValTpw4eHh48efK/3f/Wrl2LtbU1KioqNG7cmK+++kquXSpq16riftWJEydwcnJCRUUFZ2dnzpw5I3e8sLCQwYMHS+1oZWVFZGSk3Gtdv349MTEx0vUOHz4MwIQJE7C0tERNTQ0zMzOmTJnC8+fPpXPT09Np27YtmpqaaGlp0bRpU7kZokePHuXDDz9EVVUVY2NjAgMDpTZyd3fnxo0bjB07VrpuabGxsRUmAt3d3QkMDCQkJAQdHR0MDAyYNm2adPzly5dMmzaNBg0aoKysjJGREYGBgdLx/Px8goODqVevHurq6rRo0UJ6zSWSkpJwd3dHTU2N2rVr4+npSW5uLgMGDCAxMZHIyEgp7uvXr5eJ8eXLlwwYMAALCwuOHDmCt7c35ubmODo6MnXqVGJiYsp9bVX1FxS/95s3b466ujq1atXCzc2NGzduvHGfAHz11VdYWFigoqKCvr4+vXr1krv2q+NDaSUzWXfs2EHbtm1RU1PDwcGBlJQUqcyNGzfw8fGhdu3aqKurY2tryw8//CAdP3/+PJ06dUJDQwN9fX369u3Lb7/9Jh0vKipi/vz5NGrUCGVlZRo0aMDs2bOB4pnxAE5OTshkMtzd3ctt4xMnThAeHk5ERARffvklrq6umJiY0KFDB7Zv307//v3LPS81NZUOHTpQt25dtLW1adOmDadPn5aOV/W+q6xtqxrvcnNz8ff3R1dXF1VVVSwsLIiKipKLr3QiNDY2lpEjR9K7d29MTU1xcHBg8ODBBAcHS+Wr+hwBLFy4EDs7O9TV1TE2NmbkyJHk5eVJx6uzVMzPP//MhQsX8PLy4uHDh6xbt46FCxfSrl07mjZtSlRUFMnJyRw7dgyA/fv3k5GRwaZNm3B0dKRTp07MnDmT5cuXU1BQAMDKlSsxNTUlIiICa2trAgIC6NWrF4sWLZKLfejQoQwcOBAbGxtWrlyJmpoaX3/9NUC1YilRq1YtDAwMpIfK/69LVZqenp5cmdLrZenq6sodi4uLw9zcnDZt2lTYbq/eUVFyR8H06dPR1dVFS0uLESNGSG0C8PjxY/z9/VFXV8fQ0JBFixa91sx/QRAEQRAEQfg7KCjI597dO9y7e4crly8xO2wifzx5gruHJw1MTDEwqsdXi+Zz49oVEhP2s36NfL6lXn1j/njyhGNHfyL3/u88ffrH/z/fgJPHU7hz+xa5938HYPBnn5N2KpVZUyaQeeEcN65d4eD+vcyaMuGtvBYFBQW69f6YxfNm0cDEDMemZf+W/jcQG4e9I7Gxsfj4+CCTycjLy6NNmzbUq1eP2NhYDAwMOH36tPTNw86dOxk9ejSLFy/Gw8ODuLg46dbukuQrFN/qOn/+fL788kuWLl2Kv78/N27cwNjYmO3bt9OzZ0+ysrLQ0tJCVVUVgDlz5rBp0yZWrlyJhYUFP/30E59++im6urpyf9iGhoYSERGBrq4uI0aMYNCgQSQlJdGnTx/Onz/Pvn37OHDgAADa2tpyr3PcuHEVtsOVK1fYtWsXcXFx5Obm4uvry9y5c5k9eza3bt3Cz8+P+fPn0717dx4/fsyRI0ek6fabN28mLCyMZcuW4eTkxJkzZxg6dCjq6ur079+/0natKu7S8vLy6NKlCx06dGDTpk1cu3aN0aNHy5UpKiqifv36fPfdd9SpU4fk5GSGDRuGoaEhvr6+BAcHk5mZyaNHj6Skj45O8Y6JmpqaREdHY2RkxLlz5xg6dCiampqEhIQA4O/vj5OTEytWrEBBQYG0tDQUFRWl9vPy8mLWrFl8/fXX3Lt3j4CAAAICAoiKimLHjh04ODgwbNgwhg4dKhfzhQsXuHv3Lu3atauwf9avX8+4ceM4fvw4KSkpDBgwADc3NynRtmjRIrZu3YqtrS23b98mPT1dOjcgIICMjAy2bt2KkZERO3fuxMvLi3PnzmFhYUFaWhrt27dn0KBBREZGUrNmTQ4dOkRhYSGRkZFcunSJDz74gBkzZgDFCZhXpaWlceHCBbZs2VLu4uYVJbaq6q8XL17QrVs3hg4dyjfffENBQQEnTpyQktxv0icnT54kMDCQjRs34urqyv379zly5IhcfKXHh4qEhoayYMECLCwsCA0Nxc/Pj+zsbGrWrMmoUaMoKCjgp59+Ql1dnYyMDDQ0NAB48OAB7dq1Y8iQISxatIinT58yYcIEfH19OXjwIACTJk1izZo1LFq0iFatWnHr1i0uXrwIFCdfmzdvzoEDB7C1ta3wW8/NmzejoaHByJEjyz1eUd88fvyY/v37s3TpUl6+fElERASdO3fm8uXLaGpqVvq+q6ptqxrvpkyZQkZGBnv37qVu3bpkZ2fz9OlTufdNXFyctPSEgYEBBw8eZOTIkeW+P0tU9jkCqFGjBkuWLMHU1JSrV68ycuRIQkJCynzpVJnY2Fjc3d3R0tLi4MGDPH/+HA8PD+l448aNadCgASkpKbRs2ZKUlBTs7OzQ1//fYv6enp589tlnXLhwAScnJ1JSUuTqKClTkowsKCjg1KlTTJo0STpeo0YNPDw8pC8NTp06VWUsJUaNGsWQIUMwMzNjxIgRDBw4sMxnwNHRkfz8fD744AOmTZuGm5tbue1RUFDApk2bGDduXKWfo/IkJCSgoqLC4cOHuX79OgMHDqROnTrSFxXjxo0jKSmJ2NhY9PX1CQsL4/Tp05Uun5Ofn09+fr7086NHj14rJkEQBEEQBOGfJW/gofcdQpWOHj6Iu/MHAKhraGBqbsHCFeto7lL8/9hfLl3FzNAQund05wMHRz4PnsS4zwZL5zs5N6fPpwMIGjWUB7n3GTlmPKPGhRAQNIFpk4Lx+rAZBfn5XMi5h5W1LdHfxbBkfjj9evnw8uVLjBua0snno7f2enr08Wf1ssV09/V7a3X+3Ygk7TsSExMjzUbasmUL9+7dIzU1VUrcNWrUSCq7YMECBgwYICU7xo0bx7Fjx1iwYIFcknbAgAH4+RW/GcPDw1myZAknTpzAy8tLqldPT09KjuTn5xMeHs6BAwdwcXEBwMzMjKNHj7Jq1Sq5JO3s2bOlnydOnIi3tzfPnj1DVVUVDQ0NatasiYGBgdxr/OWXXzh79iydOnWqsB2KioqIjo5GU1MTgL59+5KQkCAlaV+8eEGPHj1o2LB4x0E7Ozvp3KlTpxIRESHdNmtqakpGRgarVq2if//+VbZrRXG/asuWLRQVFbFu3TpUVFSwtbXl5s2bfPbZZ1IZRUVFpk+fLv1sampKSkoK3377Lb6+vmhoaKCqqkp+fn6Z65Vel9jExITg4GC2bt0qJWlzcnIYP348jRs3BsDCwkIqP2fOHPz9/aWkiYWFBUuWLKFNmzasWLECHR0dFBQU0NTULHPdmJgYPD09K721wN7enqlTp0p1L1u2jISEBDp06EBOTg4GBgZ4eHigqKhIgwYNaN68uRRzVFQUOTk5GBkZAcVrP+7bt4+oqCjCw8OZP38+zs7OcokoW1tb6d9KSkqoqalV2j+XL18GkNqmuqrqr0ePHvHw4UO6dOmCubk5ANbW1lL5N+mTnJwc1NXV6dKlC5qamjRs2BAnJye5+EqPDxUJDg7G29sbKP6CxtbWluzsbBo3bkxOTg49e/aUPi9mZmbSeSVfaoSHh0vPff311xgbG3Pp0iUMDQ2JjIxk2bJl0mxXc3NzWrVqBfwvWV6nTp0q+8bMzExKXlfXq18arF69mlq1apGYmEiXLl2qfN9V1LbVGe9ycnJwcnLC2dkZKP48llYy87NFixZA8SzSXr16YWBggK2tLa6urnz00UdlxrzKPkeA3AxMExMTZs2axYgRI14rSRsTE8NHHxX/D87t27dRUlIqkwjX19eX1nC9ffu2XIK25HjJscrKPHr0iKdPn5Kbm0thYWG5ZUqS+tWJBWDGjBm0a9cONTU19u/fL80mLpklbWhoyMqVK3F2diY/P5+1a9fi7u7O8ePHadKkSZn22LVrFw8ePJDuGnkdSkpKfP3116ipqWFra8uMGTMYP348M2fO5MmTJ6xfv54tW7bQvn17oHiZhpJxriJz5syRG3MEQRAEQRAE4X0KX7iM8IXLKi3TpFkLdu5PlHvuQs49uZ/Dwr8kLPxLueccmjiz88fDZeqzc3BizebvKrxefPLpcp/fsU++rnrGDcrEAXD39i1qKirStadvhdf4pxPLHbwDmZmZ/Prrr9IfeGlpaTg5OUmJxPLKvzpbyM3NjczMTLnn7O3tpX+rq6ujpaUlty7gq7Kzs/njjz/o0KEDGhoa0mPDhg1cuXKlwroNDQ0BKq0bimd2tWrVqtLbdE1MTKQEbUndJfU6ODjQvn177Ozs6N27N2vWrCE3NxeAJ0+ecOXKFQYPHiwX+6xZs6TYq2rX8owYMUKuPihuf3t7e7lbb0uSPKUtX76cpk2boquri4aGBqtXryYnJ6dMuVdt27YNNzc3DAwM0NDQYPLkyXLnjRs3jiFDhuDh4cHcuXPl+iY9PZ3o6Gi5mD09PSkqKuLatWuVXrf0bdsVKd3vIN8/vXv35unTp5iZmTF06FB27twpLSR+7tw5CgsLsbS0lIstMTFRrn9KPgN/VulFzF9XZf2lo6PDgAED8PT0xMfHh8jISG7duiWd+yZ90qFDBxo2bIiZmRl9+/Zl8+bN/PHHH9L5r44PFansMxkYGMisWbNwc3Nj6tSpnD17Vi6+Q4cOycVXkmy+cuUKmZmZ5Ofnv7e+uXPnDkOHDsXCwgJtbW20tLTIy8uT+qay911lbVud8e6zzz5j69atODo6EhISQnJyslxsMTExdOnSRZq1bWNjw/nz5zl27BiDBg3i7t27+Pj4MGTIELnzKvscARw4cID27dtTr149NDU16du3L7///rvc+6Iyjx49IjEx8R+9hvGUKVNwc3PDycmJCRMmEBISwpdf/u9/9qysrBg+fDhNmzbF1dWVr7/+GldX1wq/zFi3bh2dOnWqMnlaHgcHB9TU/rfJgIuLC3l5efz8889cvXqV58+fS18MQPFdGFZWVpXWOWnSJB4+fCg9fv757e+YKwiCIAiCIAj/RQX5+dy+9SvLF32Jp3dX6ur+e/dCEknadyA2NpYOHTpISb+SpQfe1Ksz1mQyWZnFmksrWfNwz549pKWlSY+MjAy5dRpfrbvk1tHK6obK1zutTswKCgrEx8ezd+9ebGxsWLp0KVZWVly7dk2Kfc2aNXKxlyRM4M+164wZM+Tqq66tW7cSHBzM4MGD2b9/P2lpaQwcOFBuHcPypKSk4O/vT+fOnYmLi+PMmTOEhobKnTdt2jQuXLiAt7c3Bw8exMbGhp07dwLFfTh8+HC5mNPT07l8+bI0A7Q8t27d4syZM9JMzIpU1j/GxsZkZWXx1VdfoaqqysiRI2ndujXPnz8nLy8PBQUFTp06JRdbZmamtPbr23jfW1paAkiz9qqrOv0VFRVFSkoKrq6ubNu2DUtLS+m99SZ9oqmpyenTp/nmm28wNDQkLCwMBwcHabOpV8eHilT2mRwyZAhXr16lb9++nDt3DmdnZ5YuXSrF5+PjIxdfWloaly9fpnXr1m9tPLK0tJQSWq+jf//+pKWlERkZSXJyMmlpadSpU0fqm8red5W1bXXGu06dOklrOJckykuvL1vemFajRg2aNWvGmDFj2LFjB9HR0axbt07uS5LKPkfXr1+nS5cu2Nvbs337dk6dOsXy5csBqhw/SpSMkcbGxkDxMgwFBQVlNjC7c+eONPvZwMCAO3fulDlecqyyMiVL5tStWxcFBYVyy5Suo6pYytOiRQtu3rwpt0TAq5o3b052dnaZ52/cuMGBAwfKJMvfJ2VlZbS0tOQegiAIgiAIgiC8uT2xO+jg4sTjRw8J+mLq+w7nnRJJ2neg9G2pUDzLKi0tjfv375db3tramqSkJLnnkpKSsLGxqfY1S25pL73zno2NDcrKyuTk5NCoUSO5R8kf+9Wt+9Ud/fLy8jh06JDc6/wzZDIZbm5uTJ8+nTNnzqCkpMTOnTvR19fHyMiIq1evlom9ZGOjqtq1vLj19PTk6oLi9j979izPnj2Tyr264U1SUhKurq6MHDkSJycnGjVqVGY2cnnXS05OpmHDhoSGhuLs7IyFhYW0OVVplpaWjB07lv3799OjRw9pXdsmTZqQkZFRpg0aNWok9Xl51929ezeurq6vNcu4PKqqqvj4+LBkyRIOHz5MSkoK586dw8nJicLCQu7evVsmrpLEjL29PQkJCRXWXV7cr3J0dMTGxoaIiIhyvzR4NTFUojr9BcWbY02aNInk5GQ++OADtmzZIh17kz6pWbMmHh4ezJ8/n7Nnz3L9+nVpPdhXx4c/y9jYmBEjRrBjxw6CgoJYs2aNFN+FCxcwMTEpE5+6ujoWFhaoqqpW2DfljSXl+eSTT8jLy6vwlv3K+iYwMJDOnTtja2uLsrKy3KZmUPH7Dipu2+qOd7q6uvTv359NmzaxePFiVq9eDRQv33Djxg1piYKKlIzLpTeKq8ypU6coKioiIiKCli1bYmlpya+//lqtc0u8+p5p2rQpioqKcn2YlZVFTk6OdBeAi4sL586dk5vRGx8fj5aWlvQaXFxcyrwP4uPjpTqUlJRo2rSpXJmioiISEhKkMtWJpTxpaWnUrl0bZWXlSsuUzCIvLSoqCj09vSq/hKpIenq63FrEx44dQ0NDA2NjY2kJj9TUVOn4w4cPuXTp0p+6liAIgiAIgiAIb6Z7bz/OXb/Ddz8koG9Q9u+DfxOxJu1bdvfuXU6ePElsbKz0nJ+fH+Hh4XTr1o05c+ZgaGjImTNnMDIywsXFhfHjx+Pr64uTkxMeHh7s3r2bHTt2SBteVUfDhg2RyWTExcXRuXNnVFVV0dTUJDg4mLFjx1JUVESrVq14+PAhSUlJaGlpVbj7+qtMTEy4du0aaWlp1K9fH01NTfbt24elpWWZNR1fx/Hjx0lISKBjx47o6elx/Phx7t27J60NOn36dAIDA9HW1sbLy4v8/HxOnjxJbm4u48aNq7Jdy4u7vITAJ598QmhoKEOHDmXSpElcv36dBQsWyJWxsLBgw4YN/Pjjj5iamrJx40ZSU1OlhHFJO/34449kZWVRp04dtLW1sbCwICcnh61bt9KsWTP27NkjzcgEePr0KePHj6dXr16Ymppy8+ZNUlNT6dmzJwATJkygZcuWBAQEMGTIEGmTqPj4eJYtWyZd96effuLjjz9GWVmZunXrVmuWc1Wio6MpLCykRYsWqKmpsWnTJlRVVWnYsCF16tTB39+ffv36ERERgZOTE/fu3SMhIQF7e3u8vb2ZNGkSdnZ2jBw5khEjRqCkpMShQ4fo3bs3devWxcTEhOPHj3P9+nU0NDTQ0dEpszmYTCYjKioKDw8PPvzwQ0JDQ2ncuDF5eXns3r2b/fv3k5iYWCb2qvrr2rVrrF69mq5du2JkZERWVhaXL1+mX79+b9wncXFxXL16ldatW1O7dm1++OEHioqKsLKyKnd8+DPGjBlDp06dsLS0JDc3l0OHDkmfm1GjRrFmzRr8/PwICQlBR0eH7Oxstm7dytq1a1FRUZFuN1dSUsLNzY179+5x4cIFBg8ejJ6eHqqqquzbt4/69eujoqJS7qZ7LVq0ICQkhKCgIH755Re6d++OkZER2dnZrFy5klatWpXZgK+kbzZu3IizszOPHj1i/PjxcrN7K3vfVda21RnvwsLCaNq0Kba2tuTn5xMXFye1W0xMDB4eHnK3wffq1Qs3NzdcXV0xMDDg2rVrTJo0CUtLy2qvk9yoUSOeP3/O0qVL8fHxISkpiZUrV1a7r1+8eMHevXvlZvxqa2szePBgxo0bh46ODlpaWnz++ee4uLhIG3V17NgRGxsb+vbty/z587l9+zaTJ09m1KhR0jg4YsQIli1bRkhICIMGDeLgwYN8++237NmzR7rWuHHj6N+/P87OzjRv3pzFixfz5MkTBg4cWO1Ydu/ezZ07d2jZsiUqKirEx8cTHh4u95oWL16Mqakptra2PHv2jLVr13Lw4EH2798v1x5FRUVERUXRv39/atYs+78w/fr1o169esyZM6fCNi0oKGDw4MFMnjyZ69evM3XqVAICAqhRowaampr079+f8ePHo6Ojg56eHlOnTqVGjRqvvUGZIAiCIAiCIAjC6xAzad+y3bt307x5c+rWrSs9p6SkxP79+9HT06Nz587Y2dkxd+5cFBQUAOjWrRuRkZEsWLAAW1tbVq1aRVRUFO7u7tW+br169Zg+fToTJ05EX1+fgIAAAGbOnMmUKVOYM2cO1tbWeHl5sWfPHrnkYlV69uyJl5cXbdu2RVdXl2+++aZa651WRUtLi59++onOnTtjaWnJ5MmTiYiIkDblGTJkCGvXriUqKgo7OzvatGlDdHS0FHtV7Vpe3OXR0NBg9+7d0gzR0NBQ5s2bJ1dm+PDh9OjRgz59+tCiRQt+//33MrvaDx06FCsrK5ydndHV1SUpKYmuXbsyduxYAgICcHR0JDk5mSlTpkjnKCgo8Pvvv9OvXz8sLS3x9fWlU6dO0gY09vb2JCYmcunSJT788EOcnJwICwuTW4dxxowZXL9+HXNzc3R1dXny5AkJCQlv3D+1atVizZo1uLm5YW9vz4EDB9i9ezd16tQBimez9evXj6CgIKysrOjWrRupqak0aNAAKJ6Jun//ftLT02nevDkuLi7ExMRIiZXg4GAUFBSwsbFBV1e3wvV9mzdvzsmTJ2nUqBFDhw7F2tqarl27cuHCBRYvXlzuOVX1l5qaGhcvXqRnz55YWloybNgwRo0axfDhw9+4T2rVqsWOHTto164d1tbWrFy5km+++QZbW9tyx4c/o7CwkFGjRkmfaUtLS2lGq5GREUlJSRQWFtKxY0fs7OwYM2YMtWrVkpLgU6ZMISgoiLCwMKytrenTp48047JmzZosWbKEVatWYWRkVOms33nz5rFlyxaOHz+Op6cntra2jBs3Dnt7+wq/BFq3bh25ubk0adKEvn37EhgYiJ7e/9YUqux9V1nbQtXjnZKSEpMmTcLe3p7WrVujoKDA1q1bgfLXcPb09GT37t34+PhgaWlJ//79ady4Mfv37y83QVgeBwcHFi5cyLx58/jggw/YvHlzpQnEVyUmJqKhoVFm86xFixbRpUsXevbsSevWrTEwMGDHjh3ScQUFBeLi4lBQUMDFxYVPP/2Ufv36MWPGDKmMqakpe/bsIT4+HgcHByIiIli7di2enp5SmT59+rBgwQLCwsJwdHQkLS2Nffv2yW0mVlUsioqKLF++HBcXFxwdHVm1ahULFy6UNluD4sRpUFCQNNanp6dLa/mWduDAAXJychg0aFC57ZWTkyO3vnR52rdvj4WFBa1bt6ZPnz507dqVadOmSccXLlyIi4sLXbp0wcPDAzc3N6ytratcokQQBEEQBEEQBOFNyF6+yc48Qhldu3alVatWhISEvO9Q3pkXL16gr6/P3r175TZXEf4eduzYweTJk8nIyHjfoQiv+C+MD/9Ev/32G4aGhty8eVMu+fh3EBgYyIsXLypcVkKo3KRJkzhy5AhHjx4FYMCAATx48IBdu3ZVu44nT55Qr149IiIiGDx4cLXOefToEdra2jh8vhIF5bezDrQgCIIgCILw1zLQVCLIwxw9w/rUqKlY9QnC34KN8ZtNivoznj17xrVr1zA1NS0zuaPkb4OHDx9WuXeFWO7gLWvVqhV+fn7vO4x36v79+4wdO5ZmzZq971CEcmhoaJSZCSz8PfwXxod/ovv377Nw4cK/XYIW4IMPPqh0bVehfC9fvuTq1askJCTg5OT0WueeOXOGixcv0rx5cx4+fCjNPn4ba0kLgiAIgiAIgiBURCRp37L/wgw5PT09Jk+e/L7DECrQsWPH9x2CUIH/wvjwT2RpaYmlpeX7DqNcw4YNe98h/CM9fPgQGxsbmjVrxhdffPHa5y9YsICsrCxp87QjR4688TIlgiAIgiAIgiAIlRHLHQiCIAiCILxFr3NLkyAIgiAIgvD3VNkt7MKfd/jwYdq2bUtubi61atV63+G8FWK5A0EQBEEQBEEQBEEQBEH4i7ktdftLr5f0edJrn3Pv3j3CwsLYs2cPd+7coXbt2jg4OBAWFoab218bf2murq7cunULbW3t9xbD35VI0gqCIAiCIAiCIAiCIAjCv0jPnj0pKChg/fr1mJmZcefOHRISEvj999/fyfUKCgpQUlKqspySkhIGBgbvJIZ/uhrvOwBBEARBEARBEARBEARBEN6OBw8ecOTIEebNm0fbtm1p2LAhzZs3Z9KkSXTt2lUqM3z4cPT19VFRUeGDDz4gLi5OqmP79u3Y2tqirKyMiYkJERERctcwMTFh5syZ9OvXDy0tLYYNG8b169eRyWRs3boVV1dXqd7ExETpvMOHDyOTyXjw4MFrXSs8PJxBgwahqalJgwYNWL169TtoufdLJGkFQRAEQRAEQRAEQRAE4V9CQ0MDDQ0Ndu3aRX5+fpnjRUVFdOrUiaSkJDZt2kRGRgZz585FQUEBgFOnTuHr68vHH3/MuXPnmDZtGlOmTCE6OlqungULFuDg4MCZM2eYMmWK9Pz48eMJCgrizJkzuLi44OPjU+EM3upeKyIiAmdnZ86cOcPIkSP57LPPyMrKerOG+psRG4cJgiAIgiC8RSWbA8wftRVVZbX3HY4gCIIgCILwJ6ho1cS+gx71DI1RrCl/G3/3Xd5/aSw7u+157XPifoglaMJonj17ht0H9ri0dKNb1x7YWn/A4Z8O4tevN0cPHsfcrFGZcz8LHMrvv//Ot5t3SM/NmB3GgYPx/JSQAoCzqz0f2NoTvWaTVCbn5xyauTkweeJUPh85BoAXL17QzM2BwQOGEfDZaJJSjtKjjw+Xzl1HW1u72tdq0cyF5ZGrAHj58iUfNLUiZOxE+vcdJBe7nnGt126rN/W2Ng4TM2kFQRAEQRAEQRAEQRAE4V+kS+eupKdmsmHdFtq5e5B87CgdOruz9bstnL9wDiNDo3ITtACXsy/R3LmF3HPNmrXk6vUrFBYWSs852DuWe75z02bSv2vWrImDvROXsy+90bVsrG2lf8tkMvR09fjt99/Kf/H/UCJJKwiCIAiCIAiCIAiCIAj/MioqKrRp3ZZxo8ezZ+d++vT+hC8XzkFFRfWt1K+mqv5W6qmOmjUV5X6WyWQUFRX9Zdf/K4gkrSAIgiAIgiAIgiAIgiD8y1lZWPHHH39gY23Lr7d+5crV7HLLWTSy5MTJ43LPpaYew8zUXFq3tjKnTp+U/v3ixQvOnkvDopHlO7nWv4lI0v4LREdHU6tWrfcdxltRshNgWlra+w5FqAbRX39f06ZNw9HR8X2HIQBJSUnY2dmhqKhIt27dyt3NVHh3TExMWLx48fsOQxAEQRAEQRD+Mvdz79Pj4658v2MbFzLPcyPnBrFxu1i2cgmeHTvj2tKNli1cGTS8H4k/HeJGzg0SDsVz8PABAD4bGsCRpEQWRn7JlavZbPvuG75ev5aRwz+v1vWjNqzlh31xXM6+xMTJwTx4+BC/Pp+WW/ZNr/Vv8q9M0g4cOJDJkyf/Jdd6l39sV5VkMTU15cCBA/Tp04dLl8pf2+N9+KuTQwMGDKBbt25/2fVKVPaHf2JiIsbGxsD7i68i7u7ujBkzplpls7OzGThwIPXr10dZWRlTU1P8/Pw4efJk1Sf/TZUeH2QyGbt27Xq/Af2/1014b9++HXd3d7S1tdHQ0MDe3p4ZM2Zw//79dxvoO/L06VPU1dXJzs4mOjoamUyGTCZDQUGB2rVr06JFC2bMmMHDhw/fd6ivbdy4cTg6OnLt2rUyO5S+jtJtBMW/f5o0aYKysjKNGjUqt+7ly5djYmKCiooKLVq04MSJE3LHnz17xqhRo6hTpw4aGhr07NmTO3fuyJXJycnB29sbNTU19PT0GD9+PC9evJArU1UshYWFTJkyBVNTU1RVVTE3N2fmzJmU7F36/PlzJkyYgJ2dHerq6hgZGdGvXz9+/fXXctsiPz8fR0fHan1mUlNTGTZsWKVlBEEQBEEQBOHfRF1NnSaOTVm1dgXdenvTpoMr8yLC+dSvH3Nmzgfg61UbcHRowojPh9C6fUtmhE+V1oC1t3NgzVdR7IrdQZsOrsxfGE5I0CQ+7v1Jta4fOnEqS75aTDuvDzmRepwN67ZQR6dOuWXf9Fr/JjXfdwBvW2FhIXFxcezZ8/o73/2TnD17ltzcXNq0aYOioiKqqm9nPRHh7YiJicHHx+d9h/FGTp48Sfv27fnggw9YtWoVjRs35vHjx8TExBAUFERiYuL7DvG1/VvGh9DQUObNm8fYsWMJDw/HyMiIy5cvs3LlSjZu3Mjo0aPfd4ivLT4+noYNG9KoUSOOHj2KlpYWWVlZvHz5kgcPHpCcnMycOXOIiooiKSkJIyOjcuspKChASUmp3GPvy5UrVxgxYgT169d/o3pKt9G1a9fw9vZmxIgRbN68mYSEBIYMGYKhoSGenp4AbNu2jXHjxrFy5UpatGjB4sWL8fT0JCsrCz09PQDGjh3Lnj17+O6779DW1iYgIIAePXqQlJQEFH9mvL29MTAwIDk5mVu3btGvXz8UFRUJDw8HqFYs8+bNY8WKFaxfvx5bW1tOnjzJwIED0dbWJjAwkD/++IPTp08zZcoUHBwcyM3NZfTo0XTt2rXcL4VCQkIwMjIiPT29ynbT1dV9o3YXBEEQBEEQhFft7Pb3/ptSWVmZyROnMnni1ArL1K5Vm8gFyyo83qVzV7p07lrh8ZPJZys8ZtnIin2xB8o95ubSijs5uW98rYP7jlRY/p/qT82kffDgAfv372fTpk1s2LBB7vG+JScno6ioSLNmxTvJ3bx5Ez8/P3R0dFBXV8fZ2Znjx/+31sWKFSswNzdHSUkJKysrNm7cKFefTCZj7dq1dO/eHTU1NSwsLIiNjQWKZ761bdsWgNq1ayOTyRgwYAAARUVFzJkzR5o15ODgwPfffy/VWzIDNyEhAWdnZ9TU1HB1dSUrKwsoXsJg+vTppKenSzPKSs9MiomJwcvLC0VFxTLLHZTMZN24cSMmJiZoa2vz8ccf8/jxY6nM999/j52dHaqqqtSpUwcPDw+ePHkiHV+7di3W1taoqKjQuHFjvvrqK7l2qahdq4r7VSdOnMDJyQkVFRWcnZ05c+aM3PHCwkIGDx4staOVlRWRkZFyr3X9+vXExMRI1zt8+DAAEyZMwNLSEjU1NczMzJgyZQrPnz+Xzk1PT6dt27ZoamqipaVF06ZN5ZIBR48e5cMPP0RVVRVjY2MCAwOlNnJ3d+fGjRuMHTtWum5psbGxdO1a/gDj7u5OYGAgISEh6OjoYGBgwLRp06TjL1++ZNq0aTRo0ABlZWWMjIwIDAyUjufn5xMcHEy9evVQV1enRYsW0msukZSUhLu7O2pqatSuXRtPT09yc3MZMGAAiYmJREZGSnFfv369TIwvX75kwIABWFhYcOTIEby9vTE3N8fR0ZGpU6cSExNT7murqr+g+L3fvHlz1NXVqVWrFm5ubty4ceON+wTgq6++wsLCAhUVFfT19enVq5fctV8dH0ormcm6Y8cO2rZti5qaGg4ODqSkpEhlbty4gY+PD7Vr10ZdXR1bW1t++OEH6fj58+fp1KkTGhoa6Ovr07dvX3777X+7TRYVFTF//nwaNWqEsrIyDRo0YPbs2UDxzHgAJycnZDIZ7u7u5bbxiRMnCA8PJyIigi+//BJXV1dMTEzo0KED27dvp3///uWel5qaSocOHahbty7a2tq0adOG06dPS8eret9V1rZVjXe5ubn4+/ujq6uLqqoqFhYWREVFycUXExMj95mRyWQYGBhgaGiItbU1gwcPJjk5mby8PEJCQqRy7u7uBAQEMGbMGOrWrSslBRcuXCjNyjQ2NmbkyJHk5eXJXXPNmjUYGxujpqZG9+7dWbhwYZmlY970d4RMJuP3339n0KBB5Y6HT548QUtLS669AHbt2oW6urrcuF26jVauXImpqSkRERFYW1sTEBBAr169WLRokVR+4cKFDB06lIEDB2JjY8PKlStRU1Pj66+/BuDhw4esW7eOhQsX0q5dO5o2bUpUVBTJyckcO3YMgP3795ORkcGmTZtwdHSkU6dOzJw5k+XLl1NQUFDtWJKTk/noo4/w9vbGxMSEXr160bFjR2lmr7a2NvHx8fj6+mJlZUXLli1ZtmwZp06dIicnR65t9u7dy/79+1mwYAHV8epdDzKZjBUrVtCpUydUVVUxMzMr0/7Jyck4OjpKv5t27dollnYRBEEQBEEQBOGdeu0k7e7du2nQoAFeXl4EBAQwevRo6VHdW6jfpdjYWHx8fJDJZOTl5dGmTRt++eUXYmNjSU9PJyQkRNr9befOnYwePZqgoCDOnz/P8OHDGThwIIcOHZKrc/r06fj6+nL27Fk6d+6Mv78/9+/fx9jYmO3btwOQlZXFrVu3pITUnDlz2LBhAytXruTChQuMHTuWTz/9tMzsw9DQUCIiIjh58iQ1a9Zk0KBBAPTp04egoCBsbW25desWt27dok+fPnKv86OPPqqwHa5cucKuXbuIi4sjLi6OxMRE5s6dC8CtW7fw8/Nj0KBBZGZmcvjwYXr06CHddrp582bCwsKYPXs2mZmZhIeHM2XKFNavXw9QabtWFXdpeXl5dOnSBRsbG06dOsW0adMIDg6WK1NUVET9+vX57rvvyMjIICwsjC+++IJvv/0WgODgYHx9ffHy8pKu5+rqCoCmpibR0dFkZGQQGRnJmjVr5JIG/v7+1K9fn9TUVE6dOsXEiRNRVFSU2s/Ly4uePXty9uxZtm3bxtGjRwkICABgx44d1K9fnxkzZkjXLXHhwgXu3r1Lu3btKuyf9evXo66uzvHjx5k/fz4zZswgPj4eKL6NfdGiRaxatYrLly+za9cu7OzspHMDAgJISUlh69atnD17lt69e+Pl5cXly5cBSEtLo3379tjY2JCSksLRo0fx8fGhsLCQyMhIXFxcGDp0qBR3ybIMpaWlpXHhwgWCgoKoUaPsMFHRGshV9deLFy/o1q0bbdq04ezZs6SkpDBs2DApyf0mfXLy5EkCAwOZMWMGWVlZ7Nu3j9atW8vFV3p8qEhoaCjBwcGkpaVhaWmJn5+fdGv3qFGjyM/P56effuLcuXPMmzcPDQ0NoPjLq3bt2uHk5MTJkyfZt28fd+7cwdfXV6p70qRJzJ07lylTppCRkcGWLVvQ19cHkJJVBw4c4NatW+zYsaPc+DZv3oyGhgYjR44s93hFffP48WP69+/P0aNHOXbsGBYWFnTu3FlKAlb2vquqbasa70pe7969e8nMzGTFihXUrVtXOr+oqIi4uLhKxzQAPT09/P39iY2NlW7DgeLPk5KSEklJSaxcuRKAGjVqsGTJEi5cuMD69es5ePCgXHI3KSmJESNGMHr0aNLS0ujQoYOUMC/xNn5H3Lp1Cy0tLRYvXlzueKiurs7HH39cJmkdFRVFr1690NTULLeNUlJS8PDwkDvH09NT+lKhoKCAU6dOyZWpUaMGHh4eUplTp07x/PlzuTKNGzemQYMGUpmUlBTs7Oyk92nJdR49esSFCxeqFQuAq6srCQkJ0tI86enpHD16lE6dOlGRhw8fIpPJ5N7Td+7cYejQoWzcuBE1NbUKz63KlClT6NmzJ+np6fj7+/Pxxx+TmZkJwKNHj/Dx8cHOzo7Tp08zc+ZMJkyYUGl9+fn5PHr0SO4hCIIgCIIgCILwOl57uYOgoCAGDRpEeHj4G/2B9K7ExMRIibgtW7Zw7949UlNT0dHRAaBRo0ZS2QULFjBgwAAp2TFu3DiOHTvGggULpBmyULymqJ+fHwDh4eEsWbKEEydO4OXlJdWrp6cn/SGZn59PeHg4Bw4cwMXFBQAzMzOOHj3KqlWraNOmjVT37NmzpZ8nTpyIt7c3z549Q1VVFQ0NDWrWrImBgYHca/zll184e/ZspX/cFhUVER0dLf2B37dvXxISEpg9eza3bt3ixYsX9OjRg4YNGwLIJQGnTp1KREQEPXr0AIpn+GVkZLBq1Sr69+9fZbtWFPertmzZQlFREevWrUNFRQVbW1tu3rzJZ599JpVRVFRk+vTp0s+mpqakpKTw7bff4uvri4aGBqqqquTn55e5Xul1iU1MTAgODmbr1q1SoiYnJ4fx48fTuHFjACwsLKTyc+bMwd/fX/riwcLCgiVLltCmTRtWrFiBjo4OCgoKaGpqlrluTEwMnp6eld5ybW9vz9SpU6W6ly1bRkJCAh06dCAnJwcDAwM8PDxQVFSkQYMGNG/eXIo5KiqKnJwc6Xbv4OBg9u3bR1RUFOHh4cyfPx9nZ2e52c+2trbSv5WUlFBTU6u0f0oSviVtU11V9dejR494+PAhXbp0wdzcHABra2up/Jv0SU5ODurq6nTp0gVNTU0aNmyIk5OTXHylx4eKBAcH4+3tDRQn32xtbcnOzqZx48bk5OTQs2dP6fNiZmYmnbds2TKcnJykW8ABvv76a4yNjbl06RKGhoZERkaybNkyabarubk5rVq1Av53S3adOnWq7BszMzMpeV1dr35psHr1amrVqkViYiJdunSp8n1XUdtWZ7zLycnByckJZ2dnoPjzWFrJrM0WLVpU+TpKlt34/fffpVv2LSwsmD9/vly50l8ampiYMGvWLEaMGCF9LpYuXUqnTp2kL4YsLS1JTk4mLi5OOu9t/I4wMDBAJpOhra1dYb8OGTIEV1dXbt26haGhIXfv3uWHH37gwIH/3R70ahvdvn1bLnEKoK+vz6NHj3j69Cm5ubkUFhaWW+bixYtSHUpKSmUS+/r6+ty+fbvS65Qcq04sqqqqTJw4kUePHtG4cWMUFBQoLCxk9uzZ+Pv7l9smz549Y8KECfj5+aGlpQX8b4b/iBEjcHZ2LvcugOrq3bs3Q4YMAWDmzJnEx8ezdOlSvvrqK7Zs2YJMJmPNmjWoqKhgY2PDL7/8wtChQyusb86cOXJjnyAIgiAIgiD8FzUwblBmKQOh+l57Ju0vv/xCYGDg3zJBm5mZya+//kr79u2B4tmATk5OUiKxvPJubm5yz7m5uUmzaUrY29tL/1ZXV0dLS4u7d+9WGEd2djZ//PEHHTp0QENDQ3ps2LCBK1euVFi3oaEhQKV1Q/FswFatWlU4Yw6KkxIlCdqSukvqdXBwoH379tjZ2dG7d2/WrFlDbm7xh+jJkydcuXKFwYMHy8U+a9YsKfaq2rU8I0aMkKsPitvf3t4eFRUVqVxJkqe05cuX07RpU3R1ddHQ0GD16tVlbn8tz7Zt23Bzc8PAwAANDQ0mT54sd964ceMYMmQIHh4ezJ07V65v0tPTiY6OlovZ09OToqIirl27Vul1X71tuzyl+x3k+6d37948ffoUMzMzhg4dys6dO6WZnOfOnaOwsBBLS0u52BITE+X6p+Qz8GeVzKr+MyrrLx0dHQYMGICnpyc+Pj5ERkbKzUJ+kz7p0KEDDRs2xMzMjL59+7J582b++OMP6fxXx4eKVPaZDAwMZNasWbi5uTF16lTOnv3fujjp6ekcOnRILr6SZPOVK1fIzMwkPz//vfVNyQxECwsLtLW10dLSIi8vT+qbyt53lbVtdca7zz77jK1bt+Lo6EhISAjJyclyscXExNClS5dyZ21X9PpLz4Zu2rRpmXIHDhygffv21KtXD01NTfr27cvvv/8uxZ2VlSUloUu8+vO7+h3xqubNm2NrayvdrbBp0yYaNmwoN1v5ddro7+jbb79l8+bNbNmyhdOnT7N+/XoWLFggvebSnj9/jq+vLy9fvmTFihXS80uXLuXx48dMmjTpjeN59XeNi4uL1K9ZWVllfje9+t541aRJk3j48KH0+Pnnn984RkEQBEEQBEEQ/lte+689T0/Pv+3O7rGxsXTo0EH6w+ptbab16ow1mUwmLZlQnpJ1D/fs2UNaWpr0yMjIKLPuXem6S5IOldUNla93Wp2YFRQUiI+PZ+/evdjY2LB06VKsrKy4du2aFPuaNWvkYj9//rw0k+vPtOuMGTPk6quurVu3EhwczODBg9m/fz9paWkMHDhQWguxIikpKfj7+9O5c2fi4uI4c+YMoaGhcudNmzaNCxcu4O3tzcGDB7GxsWHnzp1AcR8OHz5cLub09HQuX74szQAtz61btzhz5ow0E7MilfWPsbExWVlZfPXVV6iqqjJy5Ehat27N8+fPycvLQ0FBgVOnTsnFlpmZKS218Tbe95aWlgDSjLvqqk5/RUVFkZKSgqurK9u2bcPS0lJ6b71Jn2hqanL69Gm++eYbDA0NCQsLw8HBgQcPHgBlx4eKVPaZHDJkCFevXqVv376cO3cOZ2dnli5dKsXn4+MjF19aWhqXL1+mdevWb208srS05OrVq3LrK1dH//79SUtLIzIykuTkZNLS0qhTp47UN5W97ypr2+qMd506dZLWcC5JlJde2qQ6Y1qJzMxMtLS0qFPnfzuDqqury5W5fv06Xbp0wd7enu3bt3Pq1CmWL18OUOXY8We87u+I8gwZMkRarzYqKoqBAwfKJaJfbSMDAwPu3LkjV8edO3fQ0tJCVVWVunXroqCgUG6Zkhm9BgYGFBQUSJ+RisqUV0fJserEAjB+/HgmTpzIxx9/jJ2dHX379mXs2LHMmTNH7rySBO2NGzeIj4+XZtECHDx4kJSUFJSVlalZs6Z0B4ezs3OFazH/VZSVldHS0pJ7CIIgCIIgCIIgvI5qJWljY2Olh7e3N+PHj2fatGls375d7ljJZinvS0xMjNyahvb29qSlpXH//v1yy1tbW0s7WJdISkrCxsam2tcsuaW99PqINjY2KCsrk5OTQ6NGjeQe5a3/WVndpeuF4kTQoUOHqly7sSoymQw3NzemT5/OmTNnUFJSYufOnejr62NkZMTVq1fLxF6ysVFV7Vpe3Hp6enJ1QXH7nz17lmfPnknlSpJ1JZKSknB1dWXkyJE4OTnRqFGjMrORy7tecnIyDRs2JDQ0FGdnZywsLKTNqUqztLRk7Nix7N+/nx49ekjrQjZp0oSMjIwybdCoUSOpz8u77u7du3F1dX2tWcblUVVVxcfHhyVLlnD48GFSUlI4d+4cTk5OFBYWcvfu3TJxlSRM7O3tSUhIqLDu8uJ+laOjIzY2NkRERJSbbHo1qVOiOv0FxZtjTZo0ieTkZD744AO2bNkiHXuTPqlZsyYeHh7Mnz+fs2fPcv36dQ4ePAiUHR/+LGNjY0aMGMGOHTsICgpizZo1UnwXLlzAxMSkTHzq6upYWFigqqpaYd+UN5aU55NPPiEvL6/MZn4lKuubwMBAOnfujK2tLcrKynKbmkHF7zuouG2rO97p6urSv39/Nm3axOLFi1m9ejVQvHzDjRs36NChQ6WvG4pnNG/ZsoVu3bpVOqP01KlTFBUVERERQcuWLbG0tOTXX3+VK2NlZUVqaqrcc6/+/DZ+R1TXp59+yo0bN1iyZAkZGRlyScfy2sjFxaXMeyk+Pl6aIaqkpETTpk3lyhQVFZGQkCCVadq0KYqKinJlsrKyyMnJkcq4uLhw7tw5uZnBJcnTknaoKhaAP/74o0yfKSgoyI0vJQnay5cvc+DAAblEPMCSJUtIT0+Xvggo2bRv27ZtZdYTrsqrv2uOHTsmLb1iZWXFuXPnyM/Pl46/+t4QBEEQBEEQBEF426q1Jm23bt3KPDdjxowyz8lksioTDO/K3bt3OXnypFyi2M/Pj/DwcLp168acOXMwNDTkzJkzGBkZ4eLiwvjx4/H19cXJyQkPDw92797Njh075NYBrErDhg2RyWTExcXRuXNnVFVV0dTUJDg4mLFjx1JUVESrVq14+PAhSUlJaGlpVXvGj4mJCdeuXSMtLY369eujqanJvn37sLS0LLOm4+s4fvw4CQkJdOzYET09PY4fP869e/ekP1CnT59OYGAg2traeHl5kZ+fz8mTJ8nNzWXcuHFVtmt5cSsrK5eJ45NPPiE0NJShQ4cyadIkrl+/Xma3bgsLCzZs2MCPP/6IqakpGzduJDU1VUoYl7TTjz/+SFZWFnXq1EFbWxsLCwtycnLYunUrzZo1Y8+ePdKMTICnT58yfvx4evXqhampKTdv3iQ1NZWePXsCMGHCBFq2bElAQABDhgxBXV2djIwM4uPjWbZsmXTdn376iY8//hhlZWXq1q37WjMCKxIdHU1hYSEtWrRATU2NTZs2oaqqSsOGDalTpw7+/v7069ePiIgInJycuHfvHgkJCdjb2+Pt7c2kSZOws7Nj5MiRjBgxAiUlJQ4dOkTv3r2pW7cuJiYmHD9+nOvXr6OhoYGOjk6Z5IlMJiMqKgoPDw8+/PBDQkNDady4MXl5eezevZv9+/eX2QSvOv117do1Vq9eTdeuXTEyMiIrK4vLly/Tr1+/N+6TuLg4rl69SuvWralduzY//PADRUVFWFlZlTs+/BljxoyhU6dOWFpakpuby6FDh6TPzahRo1izZg1+fn6EhISgo6NDdnY2W7duZe3ataioqDBhwgRCQkJQUlLCzc2Ne/fuceHCBQYPHoyenh6qqqrs27eP+vXro6Kigra2dpkYWrRoQUhICEFBQfzyyy90794dIyMjsrOzWblyJa1atWL06NHl9s3GjRtxdnbm0aNHjB8/Xm52b2Xvu8ratjrjXVhYGE2bNsXW1pb8/Hzi4uKkdouJicHDw6PMEjovX77k9u3bvHz5kgcPHpCSkkJ4eDja2trSJogVadSoEc+fP2fp0qX4+PjIbShW4vPPP6d169YsXLgQHx8fDh48yN69e+Vmr76N3xHVVbt2bXr06MH48ePp2LEj9evXl46V10YjRoxg2bJlhISEMGjQIA4ePMi3337Lnj17pDLjxo2jf//+ODs707x5cxYvXsyTJ08YOHAgANra2gwePJhx48aho6ODlpYWn3/+OS4uLrRs2RKAjh07YmNjQ9++fZk/fz63b99m8uTJjBo1ShrXqxOLj48Ps2fPpkGDBtja2nLmzBkWLlwobZb5/PlzevXqxenTp4mLi6OwsFBa81ZHRwclJSUaNGgg12YlS+eYm5tL7fXLL7/Qvn17NmzYUOkSBd999x3Ozs60atWKzZs3c+LECdatWwf873fTsGHDmDhxIjk5OdLvpso2HRQEQRAEQRAEQXgT1ZpJW1RUVK3H+0rQQvEMxubNm8vtGK6kpMT+/fvR09Ojc+fO2NnZMXfuXBQUFIDi5HNkZCQLFizA1taWVatWERUVhbu7e7WvW69ePaZPn87EiRPR19eXdpqfOXMmU6ZMYc6cOVhbW+Pl5cWePXvkkotV6dmzJ15eXrRt2xZdXV2++eabaq13WhUtLS1++uknOnfujKWlJZMnTyYiIkLaiGzIkCGsXbuWqKgo7OzsaNOmDdHR0VLsVbVreXGXR0NDg927d0szRENDQ5k3b55cmeHDh9OjRw/69OlDixYt+P3338vsaj906FCsrKxwdnZGV1eXpKQkunbtytixYwkICMDR0ZHk5GSmTJkinaOgoMDvv/9Ov379sLS0xNfXl06dOkkbv9jb25OYmMilS5f48MMPcXJyIiwsTNqsC4q/qLh+/Trm5ubo6ury5MkTEhIS3rh/atWqxZo1a3Bzc8Pe3p4DBw6we/duaVZZVFQU/fr1IygoCCsrK7p160ZqaqqUwLC0tGT//v2kp6fTvHlzXFxciImJoWbN4u9kgoODUVBQwMbGBl1d3QrX923evDknT56kUaNGDB06FGtra7p27cqFCxdYvHhxuedU1V9qampcvHiRnj17YmlpybBhwxg1ahTDhw9/4z6pVasWO3bsoF27dlhbW7Ny5Uq++eYbbG1tyx0f/ozCwkJGjRolfaYtLS2lGa1GRkYkJSVRWFhIx44dsbOzY8yYMdSqVUtKgk+ZMoWgoCDCwsKwtramT58+0gzFmjVrsmTJElatWoWRkVGls37nzZvHli1bOH78OJ6entja2jJu3Djs7e0r/BJo3bp15Obm0qRJE/r27UtgYKC08VZJ+1X0vqusbaHq8U5JSYlJkyZhb29P69atUVBQYOvWrUDFazg/evQIQ0ND6tWrh4uLi7Rx4ZkzZ6S1givi4ODAwoULmTdvHh988AGbN28uc1u9m5sbK1euZOHChTg4OLBv3z7Gjh0rtxzG2/gd8ToGDx5MQUGBlLgsUV4bmZqasmfPHuLj43FwcCAiIoK1a9fi6ekplenTpw8LFiwgLCwMR0dH0tLS2Ldvn9wmX4sWLaJLly707NmT1q1bY2BgwI4dO6TjCgoKxMXFoaCggIuLC59++in9+vWT+6K2OrEsXbqUXr16MXLkSKytrQkODmb48OHMnDkTKE6uxsbGcvPmTRwdHTE0NJQer65hXJnnz5+TlZUltx51eaZPn87WrVuxt7dnw4YNfPPNN9LMYC0tLXbv3k1aWhqOjo6EhoYSFhYGUOVyKYIgCIIgCIIgCH+W7OVr7kKzYcMG+vTpU2ZmZEFBAVu3bqVfv35vNcDq6tq1K61atSIkJOS9XP+v8OLFC/T19dm7d2+Vm5gIf70dO3YwefJkMjIy3ncowiv+C+PDP9Fvv/2GoaEhN2/elEscvi9Dhw7l4sWLHDly5L1cf+PGjdK6vSXLX/zd2uifyNDQkJkzZzJkyBCgeDbszp07y71LqCKbN29m4MCBPHz4sFrrSz969AhtbW3mj9qKqvLfb6NVQRAEQRAEoWoqWjWx76BHPUNjFGsqve9whGrSM671l1/z2bNnXLt2DVNT0zITO0r+Nnj48GGVe1e89sZhJX+kvOrx48fSLZTvQ6tWrfDz83tv1/8r3L9/n7Fjx9KsWbP3HYpQDg0NjTIzgYW/h//C+PBPdP/+fRYuXPjeko8LFiwgPT2d7Oxsli5dyvr169/LBlR//PEHV65cYe7cuQwfPlxK0ML7b6N/sj/++IP4+Hju3Lkjzfqurg0bNnD06FGuXbvGrl27mDBhAr6+vm9tA0BBEARBEARB+LvL+TkH/Qa1OX/hXIVlklKOot+gdrl5QuH1VWtN2tJevnxZ7ppsN2/eLHf9xL/Kf2GGnJ6eHpMnT37fYQgV6Nix4/sOQajAf2F8+CeytLTE0tLyvV3/xIkTzJ8/n8ePH2NmZsaSJUuk2ZZ/pfnz5zN79mxat27NpEmT5I697zb6J1u9ejUzZ85kzJgxcpuYVcft27cJCwvj9u3bGBoa0rt379fenEwQBEEQBEH498r0f/NNqV+H9eaY1z7nt99/Y35EOAcO7ufeb/fQ1q6FrfUHBI0eT/NmLas8v55RPc6dvIiOTp0qywpvR7WXO3ByckImk5Geno6tra20viUUr9N47do1vLy8+Pbbb99ZsIIgCIIgCH93r3NLkyAIgiAIgvD3VNkt7Imt2/ylsbT5qezG3VVp3bo1BQUFzJkzBzMzM+7cuUNCQgK2trZvvJdOicOHD9O2bVtyc3OpVavWn6qjoKBA7m7Cf6K3tdxBtWfSlqzdlpaWhqenp7SrMhRvCmNiYiLtwi4IgiAIgiAIgiAIgiAIwl/vwYMHHDlyhMOHD9OmTXFCuWHDhnL7G8lkMr766itiY2M5fPgwhoaGzJ8/n169egFw/fp1TE1NOXPmDI6OjgD88MMPjBkzhp9//pmWLVuWu1zc0aNHmTRpEidPnqRu3bp0796dOXPmoK6uDoCJiQmDBw/m8uXL7Nq1ix49ehAdHf1uG+QfotpJ2qlTpwLFjdmnTx+xw7EgCIIgCIIgCIIgCIIg/M1oaGigoaHBrl27aNmyJcrKyuWWmzJlCnPnziUyMpKNGzfy8ccfc+7cOaytrcuU/fnnn+nRowejRo1i2LBhnDx5kqCgILkyV65cwcvLi1mzZvH1119z7949AgICCAgIICoqSiq3YMECwsLCpFyjUOy1Nw7r37+/SNAKgiAIgiAIgiAIgiAIwt9QzZo1iY6OZv369dSqVQs3Nze++OILzp49K1eud+/eDBkyBEtLS2bOnImzszNLly4tt84VK1Zgbm5OREQEVlZW+Pv7M2DAALkyc+bMwd/fnzFjxmBhYYGrqytLlixhw4YNPHv2TCrXrl07goKCMDc3x9zc/K2//n+q107SFhYWsmDBApo3b46BgQE6OjpyD0EQBEEQBEEQBEEQBEEQ3p+ePXvy66+/Ehsbi5eXF4cPH6ZJkyZySwu8usGui4sLmZmZ5daXmZlJixYtypQvLT09nejoaGkmr4aGBp6enhQVFXHt2jWpnLOz8xu+un+nai93UGL69OmsXbuWoKAgJk+eTGhoKNevX2fXrl2EhYW9ixgFQRAEQRD+cY56dUK95mv/r5YgCIIgCILwNyDT00Nz1EievHzJ8xqvPcfxrXp88eKfPrelsTEtjY0Z07s3AZMnE/bFF/Rs2RKAp7/+Kld3wf37FP7xB48vXiTvl18AeHLtGo9VVHjx+DHPa9SQK//05s3i+C5dQkFLi0f37zPQ15cRn35aJg695895fPEiL58/RyEv741eU2U0Gzd+J/X+FV77XbZ582bWrFlDUFAQNWvWxM/Pj7Vr1xIWFsaxY8feRYyCIAiCIAiCIAiCIAiCILyBxo0a8eTpU+nn1PR0ueOp6elYmpmVe66VuTmnXlku4dXzHWxsyMrOxrxhwzIPJSWlt/Qq/r1eO0l7+/Zt7OzsgOKFiB8+fAhAly5d2LNnz9uNThAEQRAEQRAEQRAEQRCEavs9N5cuAwawNTaW81lZXL95k5379rF43Tq827WTyu368Uc2bt/O5WvXmL10KafOnWO4v3+5dQ7q04crN24w+csvuXztGt/GxbF55065MmOHDOF4WhpBM2dyNjOT7OvX2ZOQQNDMme/09f5bvPY9ePXr1+fWrVs0aNAAc3Nz9u/fT5MmTUhNTa1wtzhBEARBEARBEARBEARBEN49DXV1nO3t+Wr9eq79/DPPX7ygnoEB/Xv1Inj4cKncFwEBfP/DD4ybMQMDXV2+XrCAxo0alVunsZERGyMjmTR3Lqs2baKpnR1Tx45lZGioVOYDKyt+2LCBGYsX4/Xpp7wETI2N6dGp07t+yf8KspcvX758nRMmTpyIlpYWX3zxBdu2bePTTz/FxMSEnJwcxo4dy9y5c99VrMJ7Eh0dzZgxY3jw4MH7DuWNXb9+HVNTU86cOYOjo+P7Dkeoguivv69p06axa9cu0tLS3nco742JiQljxoxhzJgxFZaRyWTs3LmTbt26/WVxCfLc3d1xdHRk8eLFf9k1Hz16hLa2NntcXMWatIIgCIIgCP9QJWvSNtDXR+k9r0n7LmhZW7Nl6VK6eHi871DeqvexJu2zZ8+4du0apqamqKioyB0r+dvg4cOHaGlpVVrPa7/L5s6dyxdffAFAnz59OHLkCJ999hnff//9fyZBO3DgQCZPnvyXXOvw4cPIZLJ3kiCdNm1apYkvU1NTDhw4QJ8+fbh06dJbv/6fVVXcb9uAAQPeS4LFxMSkwqRCYmIixsbGwPuLryLu7u6VJq1Ky87OZuDAgdSvXx9lZWVMTU3x8/Pj5MmT7zbId6j0+CCTydi1a9f7Dej/Xb9+HZlMVu2k6vbt23F3d0dbWxsNDQ3s7e2ZMWMG9+/ff7eBviNPnz5FXV2d7OxsCgsLmTt3Lo0bN0ZVVRUdHR1atGjB2rVrX6vO1NRUhg0b9o4iLl/btm2lOHNycvD29kZNTQ09PT3Gjx/Pixcv5MqX7OCqrKxMo0aN5HZyLbF8+XJMTExQUVGhRYsWnDhxQu74s2fPGDVqFHXq1EFDQ4OePXty584duTJVxXL06FHc3NyoU6cOqqqqNG7cmEWLFsnVYWJigkwmK/MYNWrUa8Xyqh07djBT3F4lCIIgCIIgCMLf3Gslabdt24a/vz+9e/dm5cqVALRs2ZJx48bh4+PzTgL8uyksLCQuLo6uXbu+71DeqbNnz5Kbm0ubNm1QVVVFT0/vfYcklBITE/OP/8ydPHmSpk2bcunSJVatWkVGRgY7d+6kcePGBAUFve/w/pR/y/gQGhpKnz59aNasGXv37uX8+fNERESQnp7Oxo0b33d4f0p8fDwNGzakUaNGTJ8+nUWLFjFz5kwyMjI4dOgQw4YNe+0vw3R1dVFTU3s3Af+/goIC6d/3798nKSkJHx8fCgsL8fb2pqCggOTkZNavX090dDRhYWFS+WvXruHt7U3btm1JS0tjzJgxDBkyhB9//FEqs23bNsaNG8fUqVM5ffo0Dg4OeHp6cvfuXanM2LFj2b17N9999x2JiYn8+uuv9OjRQzpenVjU1dUJCAjgp59+IjMzk8mTJzN58mRWr14tlUlNTeXWrVvSIz4+HoDevXtXO5by6OjooKmp+TrNLgiCIAiCIAiC8JerdpJ2xYoV0gy3y5cvM2rUKMaPH/8uY/tbSk5ORlFRkWbNmgFw8+ZN/Pz80NHRQV1dHWdnZ44fPy6VX7FiBebm5igpKWFlZVUmwSGTyVi7di3du3dHTU0NCwsLYmNjgeKZb23btgWgdu3ayGQyBgwYAEBRURFz5szB1NQUVVVVHBwc+P7776V6S2bgJiQk4OzsjJqaGq6urmRlZQHFSxhMnz6d9PR0abZS6RlWMTExeHl5oaioSHR0NLVq1ZKOlcxk3bhxIyYmJmhra/Pxxx/z+PFjqcz333+PnZ0dqqqq1KlTBw8PD548eSIdX7t2LdbW1qioqNC4cWO++uoruXapqF2rivtVJ06cwMnJCRUVFZydnTlz5ozc8cLCQgYPHiy1o5WVFZGRkXKvdf369cTExEjXO3z4MAATJkzA0tISNTU1zMzMmDJlCs+fP5fOTU9Pp23btmhqaqKlpUXTpk3lZogePXqUDz/8EFVVVYyNjQkMDJTayN3dnRs3bjB27FjpuqXFxsZWmAh0d3cnMDCQkJAQdHR0MDAwYNq0adLxly9fMm3aNBo0aICysjJGRkYEBgZKx/Pz8wkODqZevXqoq6vTokUL6TWXSEpKwt3dHTU1NWrXro2npye5ubkMGDCAxMREIiMjpbivX79eJsaXL18yYMAALCwsOHLkCN7e3pibm+Po6MjUqVOJiYkp97VV1V9Q/N5v3rw56urq1KpVCzc3N27cuPHGfQLw1VdfYWFhgYqKCvr6+vTq1Uvu2q+OD6WVzGTdsWMHbdu2RU1NDQcHB1JSUqQyN27cwMfHh9q1a6Ouro6trS0//PCDdPz8+fN06tQJDQ0N9PX16du3L7/99pt0vKioiPnz59OoUSOUlZVp0KABs2fPBopnxgM4OTkhk8lwd3cvt41PnDhBeHg4ERERfPnll7i6umJiYkKHDh3Yvn07/fv3L/e81NRUOnToQN26ddHW1qZNmzacPn1aOl7V+66ytq1qvMvNzcXf3x9dXV1UVVWxsLAgKipKLr6YmBjpMxMbG8vIkSPp3bs3pqamODg4MHjwYIKDg6Xy7u7uBAQEEBAQgLa2NnXr1mXKlCmUXiHo1dnuly9fpnXr1qioqGBjYyMlGUv7+eef8fX1pVatWujo6PDRRx/JfUZKZsbPnj0bIyMjrKyspGN79uyhSZMm6Ovrs3//fjIyMti0aROOjo506tSJmTNnsnz5cimxu3LlSkxNTYmIiMDa2pqAgAB69eolN4N14cKFDB06lIEDB2JjY8PKlStRU1Pj66+/BuDhw4esW7eOhQsX0q5dO5o2bUpUVBTJyckcO3YMoFqxODk54efnh62tLSYmJnz66ad4enpy5MgRKRZdXV0MDAykR1xcHObm5rRp06basZTn1dn9JiYmzJw5Ez8/P9TV1alXrx7Lly+XO+fixYu0atVK6ssDBw78rWbGC4IgCIIgCMKbepSZ+a9b6uCfrtpJ2mXLljF16lSysrJIS0tj/fr1ZRJr/wWxsbH4+Pggk8nIy8ujTZs2/PLLL8TGxpKenk5ISAhFRUUA7Ny5k9GjRxMUFMT58+cZPnw4AwcO5NChQ3J1Tp8+HV9fX86ePUvnzp3x9/fn/v37GBsbs337dgCysrK4deuWlJCaM2cOGzZsYOXKlVy4cIGxY8fy6aefkpiYKFd3aGgoERERnDx5kpo1azJo0CCgeKmKoKAgbG1tpVlLffr0kXudH330UYXtcOXKFXbt2kVcXBxxcXEkJiZKy13cunULPz8/Bg0aRGZmJocPH6ZHjx5ScmPz5s2EhYUxe/ZsMjMzCQ8PZ8qUKaxfvx6g0natKu7S8vLy6NKlCzY2Npw6dYpp06bJJWGgOPlTv359vvvuOzIyMggLC+OLL77g22+/BSA4OBhfX1+8vLyk67m6ugKgqalJdHQ0GRkZREZGsmbNGrnkh7+/P/Xr1yc1NZVTp04xceJEFBUVpfbz8vKiZ8+enD17lm3btnH06FECAgKA4ttz69evz4wZM6Trlrhw4QJ3796lXakdGV+1fv161NXVOX78OPPnz2fGjBlSwmj79u0sWrSIVatWcfnyZXbt2oWdnZ10bkBAACkpKWzdupWzZ8/Su3dvvLy8uHz5MgBpaWm0b98eGxsbUlJSOHr0qDSzLzIyEhcXF4YOHSrFXbIsQ2lpaWlcuHCBoKAgapSztk/pLwVep79evHhBt27daNOmDWfPniUlJYVhw4ZJSe436ZOTJ08SGBjIjBkzyMrKYt++fbRu3VouvtLjQ0VCQ0MJDg4mLS0NS0tL/Pz8pNvCR40aRX5+Pj/99BPnzp1j3rx5aGhoAPDgwQPatWuHk5MTJ0+eZN++fdy5cwdfX1+p7kmTJjF37lymTJlCRkYGW7ZsQV9fH0C6hf3AgQPcunWLHTt2lBvf5s2b0dDQYOTIkeUer6hvHj9+TP/+/Tl69CjHjh3DwsKCzp07S1/eVPa+q6ptqxrvSl7v3r17yczMZMWKFdStW1c6v6ioiLi4OGlMMzAw4ODBg9y7d6/CfoLiz1HNmjU5ceIEkZGRLFy4sMIlEYqKiujRowdKSkocP36clStXMmHCBLkyz58/x9PTE01NTY4cOUJSUhIaGhp4eXnJzZhNSEggKyuL+Ph44uLipOdLj8spKSnY2dlJ/Qvg6enJo0ePuHDhglTG45X/6fL09JS+GCgoKODUqVNyZWrUqIGHh4dU5tSpUzx//lyuTOPGjWnQoIFUpjqxvOrMmTMkJydLCdhXFRQUsGnTJgYNGiR9nqoTS3V9+eWXODg4cObMGSZOnMjo0aOlMbKwsJBu3bqhpqbG8ePHWb16NaGlNkMoT35+Po8ePZJ7CIIgCIIgCIIgvI5q72Zx9epVuRlUn3zyCYMHD+bWrVsYGhq+k+D+jmJiYqRE3JYtW7h37x6pqano6OgA0KjULngLFixgwIABUrJj3LhxHDt2jAULFkgzZKF45pSfnx8A4eHhLFmyhBMnTuDl5SXVq6enJyVH8vPzCQ8P58CBA7i4uABgZmbG0aNHWbVqldwfvbNnz5Z+njhxIt7e3jx79gxVVVU0NDSoWbMmBgYGcq/xl19+4ezZs3SqZPe9oqIioqOjpVtI+/btS0JCArNnz+bWrVu8ePGCHj160LBhQwC5JODUqVOJiIiQblE1NTUlIyODVatW0b9//yrbtaK4X7VlyxaKiopYt24dKioq2NracvPmTT777DOpjKKiItOnT5d+NjU1JSUlhW+//RZfX180NDRQVVUlPz+/zPVKr0tsYmJCcHAwW7duJSQkBCheo3H8+PE0/v9Fqy0sLKTyc+bMwd/fX5rdZWFhwZIlS2jTpg0rVqxAR0cHBQUFNDU1y1w3JiYGT09PlJSUKnzt9vb2TJ06Vap72bJlJCQk0KFDB3JycjAwMMDDwwNFRUUaNGhA8+bNpZijoqLIycnByMgIKE5U79u3j6ioKMLDw5k/fz7Ozs5yX9LY2tpK/1ZSUkJNTa3S/ilJ+DZ+zQW9q+qvR48e8fDhQ7p06YK5uTkA1tbWUvk36ZOcnBzU1dXp0qULmpqaNGzYECcnJ7n4So8PFQkODsbb2xso/oLG1taW7OxsGjduTE5ODj179pQ+L2ZmZtJ5y5Ytw8nJifDwcOm5r7/+GmNjYy5duoShoSGRkZEsW7ZMGqvNzc1p1aoVUDxLEaBOnTpV9o2ZmZmUvK6uV780WL16NbVq1SIxMZEuXbpU+b6rqG2rM97l5OTg5OSEs7MzUPx5LK1klmWLFi2A4tmjvXr1wsDAAFtbW1xdXfnoo4/KjHnGxsYsWrQImUyGlZUV586dY9GiRQwdOrTM6z9w4AAXL17kxx9/lD474eHhcnVu27aNoqIi1q5dKyUeo6KiqFWrFocPH6Zjx45A8dIAa9eulfuM5+fns2/fPmlW/O3bt+WSooD08+3btyst8+jRI54+fUpubi6FhYXllrl48aJUh5KSUpnkvL6+fpXXKR1Lifr163Pv3j1evHjBtGnTGDJkSJm2BNi1axcPHjyQ7h6pbizV5ebmxsSJEwGwtLQkKSmJRYsW0aFDB+Lj47ly5QqHDx+WPiuzZ8+mQ4cOFdY3Z84cubFJEARBEARBEAThdVV7Jm1+fj7q6ur/O7FGDZSUlHj69Ok7CezvKDMzk19//ZX27dsDxbMBnZycpERieeXd3NzknnNzcyMzM1PuOXt7e+nf6urqaGlpya0H+Krs7Gz++OMPOnTogIaGhvTYsGEDV65cqbDukmR6ZXVD8WytVq1aVThjDoqTIKXX+DM0NJTqdXBwoH379tjZ2dG7d2/WrFlDbm4uAE+ePOHKlSsMHjxYLvZZs2ZJsVfVruUZMWKEXH1Q3P729vZyO+uVJHlKW758OU2bNkVXVxcNDQ1Wr15NTk5Oldfctm0bbm5uGBgYoKGhweTJk+XOGzduHEOGDMHDw4O5c+fK9U16ejrR0dFyMXt6elJUVMS1a9cqvW7p27YrUrrfQb5/evfuzdOnTzEzM2Po0KHs3LlTmsl57tw5CgsLsbS0lIstMTFRrn9KPgN/Vulbxl9XZf2lo6PDgAED8PT0xMfHh8jISLlZyG/SJx06dKBhw4aYmZnRt29fNm/ezB9//CGd/+r4UJHKPpOBgYHMmjULNzc3pk6dytmzZ+XiO3TokFx8JcnmK1eukJmZSX5+/nvrmzt37jB06FAsLCzQ1tZGS0uLvLw8qW8qe99V1rbVGe8+++wztm7diqOjIyEhISQnJ8vFFhMTQ5cuXaRZ2zY2Npw/f55jx44xaNAg7t69i4+PT5mEYcuWLeVmRbu4uHD58mUKCwvLvP7MzEyMjY2lBG1J+dLS09PJzs5GU1NTeh06Ojo8e/ZM7r1oZ2dX5kuYgwcPoqenJ/eFyD/RkSNHOHnyJCtXrmTx4sV888035ZZbt24dnTp1kmvPt+nVvnFxcZF+N2dlZWFsbCz3ZUbJFwoVmTRpEg8fPpQeP//889sPWhAEQRAEQRCEf7Vqz6SF4ltKS2+SUlBQwOzZs9HW1paeW7hw4duL7m8mNjaWDh06SEk/VVXVt1LvqzPWZDKZtGRCefLy8oDi9Qnr1asnd0xZWbnCukuSDZXVDZWvd1qdmBUUFIiPjyc5OZn9+/ezdOlSQkNDOX78uPT+WbNmjTSrrYSCggLw59p1xowZZZYyqI6tW7cSHBxMREQELi4uaGpq8uWXX8qtK1yelJQU/P39mT59Op6enmhra7N161YiIiKkMtOmTeOTTz5hz5497N27l6lTp7J161a6d+9OXl4ew4cPl1uTs0SDBg0qvO6tW7c4c+aMNBOzIpX1j7GxMVlZWRw4cID4+HhGjhzJl19+SWJiInl5eSgoKHDq1CmpP0qUJL/fxvve0tISKF738dXZqJWpTn9FRUURGBjIvn372LZtG5MnTyY+Pp6WLVu+UZ8oKSlx+vRpDh8+zP79+wkLC2PatGmkpqZSq1atMuNDRSr7TA4ZMgRPT0/27NnD/v37mTNnDhEREXz++efk5eXh4+PDvHnzytRpaGjI1atXq92OlbG0tOTo0aM8f/78tWbT9u/fn99//53IyEgaNmyIsrIyLi4u0m38lb3vNDU1K2zb6ox3nTp14saNG/zwww/Ex8fTvn17Ro0axYIFC4DiMa1kOZYSNWrUoFmzZjRr1owxY8awadMm+vbtS2hoqLR+79uWl5dH06ZN2bx5c5ljJTOdAbkvREu8Oi4bGBhIS1iUuHPnjnSs5L8lz5Uuo6WlhaqqKgoKCigoKJRbpnQdBQUFPHjwQO6Lu1fLVBVLiZK2tbOz486dO0ybNk26k6TEjRs3OHDgQJklOaoTy/uirKxc5vevIAiCIAiCIAjC66j2TNrWrVuTlZXFmTNnpIerqytXr16Vfk5LS3uHob5/MTExcuu02tvbk5aWxv3798stb21tTVJSktxzSUlJ2NjYVPuaJbOpSs/csrGxQVlZmZycHBo1aiT3KG/9z8rqfnVGWF5eHocOHap0PdrqkMlkuLm5MX36dM6cOYOSkhI7d+5EX18fIyMjrl69Wib2kj/eq2rX8uLW09OTqwuK2//s2bM8e/ZMKvfq5jJJSUm4uroycuRInJycaNSoUZnZyOVdLzk5mYYNGxIaGoqzszMWFhbS5lSlWVpaMnbsWPbv30+PHj2kzYyaNGlCRkZGmTZo1KiR1OflXXf37t24urq+1izj8qiqquLj48OSJUs4fPgwKSkpnDt3DicnJwoLC7l7926ZuEqSIPb29iQkJFRYd3lxv8rR0REbGxsiIiLK/dLgwYMH5Z5Xnf6C4k2KJk2aRHJyMh988AFbtmyRjr1Jn9SsWRMPDw/mz5/P2bNnuX79OgcPHgTKjg9/lrGxMSNGjGDHjh0EBQWxZs0aKb4LFy5gYmJSJj51dXUsLCxQVVWtsG/KG0vK88knn5CXl1fhmuOV9U1gYCCdO3fG1tYWZWVluU3NoOL3HVTcttUd73R1denfvz+bNm1i8eLFrF69GihevuHGjRuV3qoOSONy6Y3iXv2ypmSt3Ve/wIDi8ebnn3+Wm7n96njTpEkTLl++XGa8atSokdyXna96+fIlu3fvlnt/ubi4cO7cObk7I+Lj49HS0pJei4uLS5n3Q3x8vDSLVElJiaZNm8qVKSoqIiEhQSrTtGlTFBUV5cpkZWWRk5MjlalOLOUpKioiPz+/zPNRUVHo6emV+TKqOrFU16t9c+zYMWlpFCsrK37++We55HVqaupr1S8IgiAIgiAIgvC6qj2T9tXd3f9r7t69y8mTJ4mNjZWe8/PzIzw8nG7dujFnzhwMDQ05c+YMRkZGuLi4MH78eHx9fXFycsLDw4Pdu3ezY8cODhw4UO3rNmzYEJlMRlxcHJ07d0ZVVRVNTU2Cg4MZO3YsRUVFtGrViocPH5KUlISWllaFu6+/ysTEhGvXrpGWlkb9+vXR1NRk3759WFpallnT8XUcP36chIQEOnbsiJ6eHsePH+fevXvSH8DTp08nMDAQbW1tvLy8yM/P5+TJk+Tm5jJu3Lgq27W8uMubwfTJJ58QGhrK0KFDmTRpEtevX5dm1pWwsLBgw4YN/Pjjj5iamrJx40ZSU1PlZtKZmJjw448/kpWVRZ06ddDW1sbCwoKcnBy2bt1Ks2bN2LNnDzt37pTOefr0KePHj6dXr16Ymppy8+ZNUlNT6dmzJwATJkygZcuWBAQEMGTIENTV1cnIyCA+Pp5ly5ZJ1/3pp5/4+OOPUVZWpm7dutWa5VyV6OhoCgsLadGiBWpqamzatAlVVVUaNmxInTp18Pf3p1+/fkRERODk5MS9e/dISEjA3t4eb29vJk2ahJ2dHSNHjmTEiBEoKSlx6NAhevfuTd26dTExMeH48eNcv35dup371c3BZDIZUVFReHh48OGHHxIaGkrjxo3Jy8tj9+7d7N+/v8wmeNXpr2vXrrF69Wq6du2KkZERWVlZXL58mX79+r1xn8TFxXH16lVat25N7dq1+eGHHygqKsLKyqrc8eHPGDNmDJ06dcLS0pLc3FwOHTokfW5GjRrFmjVr8PPzIyQkBB0dHbKzs9m6dStr165FRUWFCRMmEBISgpKSEm5ubty7d48LFy4wePBg9PT0UFVVZd++fdSvXx8VFZVyE4MtWrQgJCSEoKAgfvnlF7p3746RkRHZ2dmsXLmSVq1aMXr06HL7ZuPGjTg7O/Po0SPGjx8vN+u6svddZW1bnfEuLCyMpk2bYmtrS35+PnFxcVK7xcTE4OHhIXcXSK9evXBzc8PV1RUDAwOuXbvGpEmTsLS0lFsnOScnh3HjxjF8+HBOnz7N0qVL5WbLl+bh4YGlpSX9+/fnyy+/5NGjR2U2m/L39+fLL7/ko48+YsaMGdSvX58bN26wY8cOQkJCqF+/frl1nzp1ij/++ENaXxigY8eO2NjY0LdvX+bPn8/t27eZPHkyo0aNksbDESNGsGzZMkJCQhg0aBAHDx7k22+/Zc+ePVI948aNo3///jg7O9O8eXMWL17MkydPGDhwIADa2toMHjyYcePGoaOjg5aWFp9//jkuLi60bNmy2rEsX76cBg0aSO37008/sWDBgjIz14uKioiKiqJ///7UrCn/vyjViQWK17qeM2cO3bt3L7c9ofhLhfnz59OtWzfi4+P57rvvpHbp0KED5ubm9O/fn/nz5/P48WNpDfLKNgUUBEEQBEEQBEF4E9WeSftft3v3bpo3by63Y7iSkhL79+9HT0+Pzp07Y2dnx9y5c6VZVt26dSMyMpIFCxZga2vLqlWriIqKwt3dvdrXrVevHtOnT2fixIno6+tLO83PnDmTKVOmMGfOHKytrfHy8mLPnj2vdZtuz5498fLyom3btujq6vLNN99Ua73TqmhpafHTTz/RuXNnLC0tmTx5MhEREdIGOkOGDGHt2rVERUVhZ2dHmzZtiI6OlmKvql3Li7s8Ghoa7N69W5ohGhoaWuZW8eHDh9OjRw/69OlDixYt+P3338vsaj906FCsrKxwdnZGV1eXpKQkunbtytixYwkICMDR0ZHk5GSmTJkinaOgoMDvv/9Ov379sLS0xNfXl06dOkkby9jb25OYmMilS5f48MMPcXJyIiwsTG79xRkzZnD9+nXMzc3R1dXlyZMnJCQkvHH/1KpVizVr1uDm5oa9vT0HDhxg9+7d1KlTByiexdavXz+CgoKwsrKiW7dupKamSsswWFpasn//ftLT02nevDkuLi7ExMRICZXg4GAUFBSwsbFBV1e3wvV9mzdvzsmTJ2nUqBFDhw7F2tqarl27cuHCBRYvXlzuOVX1l5qaGhcvXqRnz55YWloybNgwRo0axfDhw9+4T2rVqsWOHTto164d1tbWrFy5km+++QZbW9tyx4c/o7CwkFGjRkmfaUtLS2lGq5GREUlJSRQWFtKxY0fs7OwYM2YMtWrVkpLgU6ZMISgoiLCwMKytrenTp480u7FmzZosWbKEVatWYWRkVOms33nz5rFlyxaOHz+Op6cntra2jBs3Dnt7+wq/BFq3bh25ubk0adKEvn37EhgYiJ6ennS8svddZW0LVY93SkpKTJo0CXt7e1q3bo2CggJbt24Fyl/D2dPTk927d+Pj4yMlVhs3bsz+/fvlEoMlyf3mzZszatQoRo8ezbBhw8p9/TVq1GDnzp1S+SFDhjB79my5Mmpqavz00080aNCAHj16YG1tzeDBg3n27BlaWloV9kdMTAydO3eWi01BQYG4uDgUFBRwcXHh008/pV+/fsyYMUMqY2pqyp49e4iPj8fBwYGIiAjWrl2Lp6enVKZPnz4sWLCAsLAwHB0dSUtLY9++fXIbgS1atIguXbrQs2dPWrdujYGBgdxSBNWJpaioiEmTJuHo6IizszPLly9n3rx5cmWgeAO2nJwcBg0aVG5bVBULFM+uffjwYYXtCRAUFMTJkydxcnJi1qxZLFy4UGoXBQUFdu3aRV5eHs2aNWPIkCFSwr2q5UwEQRAEQRAEQXi7or79Fuu2bdG2sWH5+vWEL1uGWyUTMv7JZC/fZAef/5CuXbvSqlUrQkJC3nco78yLFy/Q19dn7969VW6SIvz1duzYweTJk8nIyHjfoQiv+C+MD/9Ev/32G4aGhty8eVMu6Vgd7u7uODo6VviFwV/J3t6eyZMn4+vr+75D+UdycXGhffv2zJo1Cyi+S2HMmDGMGTOm2nUkJSXRqlUrsrOzMTc3r7L8o0eP0NbWZo+LK+o1X2v5f0EQBEEQBOFvQqanh+aokTTQ10fplbtD16+5/JfG0n+oxWuVHzFpElt27QKKJ+zU1tbmA0tLenl749+9e5m7Xf+uHuXlYerqSviECXzUoQNamposXreOPQkJJJW6m7k0zVJ3R/5Vnj17xrVr1zA1NS0zsaPkb4OHDx9WOjkHXnPjsP+yVq1aldnc5N/m/v37jB07lmbNmr3vUIRyaGholLtplPD+/RfGh3+i+/fvs3DhwtdO0P6dFBQU0LNnT+lOBKH68vPzOXfuHBcuXCh3Q8DK7Ny5Ew0NDSwsLMjOzmb06NG4ublVK0ErCIIgCIIgCH8HHh9+yIrZsyksKuLub79x4OhRJoSHs+vHH9n21VdllhcDXnsD6Xft5q+/8vz5czzbtMGg1J2a/1b/jNT530BISMhrbcr1T6Snp8fkyZPFmnt/Ux07dsTHx+d9hyGU478wPvwTWVpa8vnnn7/vMN6IkpISU6dORVNT832H8o+zd+9e2rVrR9euXenVq9drnfv48WNGjRpF48aNGTBgAM2aNSMmJuYdRSoIgiAIgiAIb5+ykhL6uroY6evjaGtL8PDhfLN8OfFHjrD5/2ehallbs/abb+gzciQGTZrw5apVxcvwhYZi5+GBnqMjTTp14qsNG+TqfvHiBeNnz8a4eXMatmxJ2IIFDJ84Eb//X6ITIL+ggPGzZ2Pm5oaugwMd/f059f8bRwMcOXECLWtrDqek0KZXL/SdnPDw8+PytWsAbN65k5b/v0yffYcOaFlbc+OXX+TiSEpNRcfOjjv37sk9P2bMGD788MO315h/EbHcgSAIgiAIwlv0Orc0CYIgCIIgCH9Pld3Cvixo918aS0DE603YGjBgAA8ePGDX/y95UJqjoyNGRkb88MMPyGQy9PT0mDt3Lm3atKFmzZoYGhoya9YsfHx8qFOnDsnJyQwbNoyoqChpCbbZs2ezcOFC1q5di7W1NZGRkWzZsoW2bdtK1xw9ejTff/89a9eupWHDhsyfP5/Y2Fiys7PR0dHh8OHDtG3blhYtWjBv3jx0dXUZMWIEhYWFJCUl8fTpU5KTk/Hw8ODEiRMYGxujq6vLzJkz2bVrF2lpaQBYWVkxZMgQxo8fDxTPBjYyMmL+/PnShsjv2tta7uBPzaQ9cuQIn376KS4uLvzy/1nsjRs3cvTo0T9TnSAIgiAIgiAIgiAIgiAI71jjxo25fv269PMnn3zCwIEDMTMzo0GDBigqKjJ9+nScnZ0xNTXF39+fgQMH8u2330rnLF26lEmTJtG9e3caN27MsmXLqFWrlnT8yZMnrFixgi+//JJOnTphY2PDmjVrUFVVZd26dXLxzJ49mzZt2mBjY8PEiRNJTk7m2bNnqKqqShuc6+rqYmBgIG0oX9rgwYOJioqSft69ezfPnj37R+7p8dpJ2u3bt+Pp6YmqqipnzpwhPz8fgIcPHxIeHv7WAxQEQRAEQRAEQRAEQRAE4c29fPlSbplLZ2fnMmWWL19O06ZN0dXVRUNDg9WrV5OTkwMU5//u3Lkjt+G8goICTZs2lX6+cuUKz58/x83NTXpOUVGR5s2bk5mZKXcte3t76d+GhoYA3L17t9qvZ8CAAWRnZ3Ps2DEAoqOj8fX1RV1dvdp1/F28dpJ21qxZrFy5kjVr1sgtJuzm5sbp06ffanCCIAiCIAiCIAiCIAiCILwdmZmZmJqaSj+/mszcunUrwcHBDB48mP3795OWlsbAgQMpKCh4J/GUzi2WJI+Lioqqfb6enh4+Pj5ERUVx584d9u7dy6BBg956nH+F107SZmVl0bp16zLPa2tr8+DBg7cRkyAIgiAIgiAIgiAIgiAIb9HBgwc5d+4cPXv2rLBMUlISrq6ujBw5EicnJxo1asSVK1ek49ra2ujr65Oamio9V1hYKDdx09zcHCUlJZKSkqTnnj9/TmpqKjY2Nm/5VcGQIUPYtm0bq1evxtzcXG4G7z9Jzdc9wcDAgOzsbExMTOSeP3r0KGZmZm8rLkEQBEEQhH+0HTvboqZWdt0sQRAEQRAE4e9PUVEf4/pjefCgCCWlP7Wl01tz/35m1YVKyc9/SF7e72Rm/kRhYRH37v1OQsIRFi9eg6enO126NJPqfPz4Z7n6jYw0Wb/+BN9/v4YGDerz7bexnDhxnIYN60nlBg/uQ3j4LPT1lbGwMGPNms3cv/87z5/nSWUGDuxDUNBYFBXzqFfPkKVLv+bJk8f06NGK+/czefToBgC5uVkUFRVvqPXw4VUAHjzI5v79p2V+Bnj69B6Fhc/kYm7WrAEaGqrMmjWTGTNmvnb7/l28dpJ26NChjB49mq+//hqZTMavv/5KSkoKwcHBTJky5V3EKAiCIAiCIAiCIAiCIAhCNSUkHMXGpg01a9akVi0tbG2tmDPnC/z8ulGjRsVJ5wED+nDuXCaDBwchk8no0aMzgwZ9TELCEanM6NFDuHv3N0aOnISCQg369fOlXTs3uY29wsLGUVRUxGefTSQv7wmOjh/w3XdrqFVL+62/1ho1auDn151Fi1bTr1+/t17/X0X28uXLl69zwsuXLwkPD2fOnDn88ccfACgrKxMcHMzMmf/cbLUgCIIgCMLb8OjRI7S1tYmKbiJm0gqCIAiCIPxDlcykrV9f/73PpP27KyoqomXLLnTr5sUXXwS+lxgCAyfz+++57N178C+/9rNnz7h27RqmpqaoqKjIHSv52+Dhw4doaWlVWs9rz6SVyWSEhoYyfvx4srOzycvLw8bGBg0NjdetShAEQRAEQRAEQRAEQRCEf5Cff/6FQ4eScXVtRkFBAWvXbiYn5yY9e3r/5bE8evSYjIxLbN++h02blv/l13+b/vRXAUpKStjY2NC8eXORoP0XiI6OplatWu87jLfi+vXryGQy0tLS3ncoQjWI/vr7mjZtGo6Oju87jH+kf9OY+k83YMAAunXr9r7DEARBEARBEIR/jRo1avDNN7vw8PClUyd/MjIus2PH11hZmf/lsXz6aQC9eg1lwIA+tG3r+pdf/2167SRt9+7d6dGjR5lHz5498ff3Z+rUqWRlZb2LWP9SAwcOZPLkyX/JtQ4fPoxMJuPBgwdvve6qkiympqYcOHCAPn36cOnSpbd+/T/rr04Ova8/4k1MTFi8eHG5xxITEzE2Ngb+fkkGd3d3xowZU62y2dnZDBw4kPr166OsrIypqSl+fn6cPHny3Qb5DpUeH2QyGbt27Xq/Af2/1014b9++HXd3d7S1tdHQ0MDe3p4ZM2Zw//79dxvoO/L06VPU1dXJzs4mOjoamUwmPTQ0NGjatCk7dux469et7HP8trVt25a1a9cCkJOTg7e3N2pqaujp6TF+/HhevHghV/7w4cM0adIEZWVlGjVqRHR0dJk6ly9fjomJCSoqKrRo0YITJ07IHX/27BmjRo2iTp06aGho0LNnT+7cuSNXpqpYSn7Pvfq4fft2ua9z7ty5yGSyMuPMlStX6N69O7q6umhpaeHr61smlldFRkaW+7oFQRAEQRAEQfhz6tUzZO/ezVy/foIbN1LZt28Lrq7O7yWW2Nj13Lx5mtmzJ76X679Nr52k1dbW5uDBg5w+fVr6I+vMmTMcPHiQFy9esG3bNhwcHEhKSnoX8f4lCgsLiYuLo2vXru87lHfq7Nmz5Obm0qZNG1RVVdHT03vfIQmlxMTE4OPj877DeCMnT56kadOmXLp0iVWrVpGRkcHOnTtp3LgxQUFB7zu8P+XfMj6EhobSp08fmjVrxt69ezl//jwRERGkp6ezcePG9x3enxIfH0/Dhg1p1KgRAFpaWty6dYtbt25x5swZPD098fX1/cd+kXj//n2SkpLw8fGhsLAQb29vCgoKSE5OZv369URHRxMWFiaVv3btGt7e3rRt25a0tDTGjBnDkCFD+PHHH6Uy27ZtY9y4cUydOpXTp0/j4OCAp6cnd+/elcqMHTuW3bt3891335GYmMivv/5Kjx49pOPViaVEVlaW1Ce3bt0q9/dOamoqq1atwt7eXu75J0+e0LFjR2QyGQcPHiQpKYmCggJ8fHwoKiqqsN20tbXFrGZBEARBEARBEP72XjtJa2BgwCeffMLVq1fZvn0727dv58qVK3z66aeYm5uTmZlJ//79mTBhwruI9y+RnJyMoqIizZo1A+DmzZv4+fmho6ODuro6zs7OHD9+XCq/YsUKzM3NUVJSwsrKqkyCQyaTsXbtWrp3746amhoWFhbExsYCxTPf2rZtC0Dt2rWRyWQMGDAAKF54ec6cOZiamqKqqoqDgwPff/+9VG/JzKSEhAScnZ1RU1PD1dVVSkBER0czffp00tPTpYR66dlEMTExeHl5oaioWObW3JKZrBs3bsTExARtbW0+/vhjHj9+LJX5/vvvsbOzQ1VVlTp16uDh4cGTJ0+k42vXrsXa2hoVFRUaN27MV199JdcuFbVrVXG/6sSJEzg5OaGiooKzszNnzpyRO15YWMjgwYOldrSysiIyMlLuta5fv56YmBjpeocPHwZgwoQJWFpaoqamhpmZGVOmTOH58+fSuenp6bRt2xZNTU20tLRo2rSp3AzRo0eP8uGHH6KqqoqxsTGBgYFSG7m7u3Pjxg3Gjh0rXbe02NjYChOB7u7uBAYGEhISgo6ODgYGBkybNk06/vLlS6ZNm0aDBg1QVlbGyMiIwMD/Ld6dn59PcHAw9erVQ11dnRYtWkivuURSUhLu7u6oqalRu3ZtPD09yc3NZcCAASQmJhIZGSnFff369TIxvnz5kgEDBmBhYcGRI0fw9vbG3NwcR0dHpk6dSkxMTLmvrar+guL3fvPmzVFXV6dWrVq4ublx48aNN+4TgK+++goLCwtUVFTQ19enV69ectd+dXworWQm644dO2jbti1qamo4ODiQkpIilblx4wY+Pj7Url0bdXV1bG1t+eGHH6Tj58+fp1OnTmhoaKCvr0/fvn357bffpONFRUXMnz+fRo0aoaysTIMGDZg9ezZQPDMewMnJCZlMhru7e7ltfOLECcLDw4mIiODLL7/E1dUVExMTOnTowPbt2+nfv3+556WmptKhQwfq1q2LtrY2bdq04fTp09Lxqt53lbVtVeNdbm4u/v7+6OrqoqqqioWFBVFRUXLxxcTEyH1mZDIZBgYGGBgYYGFhwaxZs6hRowZnz56VylTns/Amn+NX42vSpAkqKiqYmZkxffp0abZpVW0HsGfPHpo0aYK+vj779+8nIyODTZs24ejoSKdOnZg5cybLly+noKAAgJUrV2JqakpERATW1tYEBATQq1cvFi1aJNW5cOFChg4dysCBA7GxsWHlypWoqanx9ddfA/Dw4UPWrVvHwoULadeuHU2bNiUqKork5GSOHTsGUK1YSujp6Ul9YmBgUGZX2by8PPz9/VmzZg21a9eWO5aUlMT169eJjo7Gzs4OOzs71q9fz8mTJzl4sOLNAV69E8Hd3Z2AgAACAgLQ1tambt26TJkyhdL7qN66dQtvb29UVVUxNTVly5Ytf+mMaUEQBEEQBEEQ/nteO0m7bt06xowZI/eHVY0aNfj8889ZvXo1MpmMgIAAzp8//1YD/SvFxsbi4+ODTCYjLy+PNm3a8MsvvxAbG0t6ejohISHSrJ2dO3cyevRogoKCOH/+PMOHD2fgwIEcOnRIrs7p06fj6+vL2bNn6dy5M/7+/ty/fx9jY2O2b98O/G+GUUlCas6cOWzYsIGVK1dy4cIFxo4dy6effkpiYqJc3aGhoURERHDy5Elq1qzJoEGDAOjTpw9BQUHY2tpKs5b69Okj9zo/+uijCtvhypUr7Nq1i7i4OOLi4khMTGTu3LlA8R+wfn5+DBo0iMzMTA4fPkyPHj2kP3I3b95MWFgYs2fPJjMzk/DwcKZMmcL69esBKm3XquIuLS8vjy5dumBjY8OpU6eYNm0awcHBcmWKioqoX78+3333HRkZGYSFhfHFF1/w7bffAhAcHIyvry9eXl7S9Vxdi9cx0dTUJDo6moyMDCIjI1mzZo1cgsPf35/69euTmprKqVOnmDhxIoqKilL7eXl50bNnT86ePcu2bds4evQoAQEBAOzYsYP69eszY8YM6bolLly4wN27d2nXrl2F/bN+/XrU1dU5fvw48+fPZ8aMGcTHxwPFt7EvWrSIVatWcfnyZXbt2oWdnZ10bkBAACkpKWzdupWzZ8/Su3dvvLy8uHz5MgBpaWm0b98eGxsbUlJSOHr0qDR7LzIyEhcXF4YOHSrFXbIsQ2lpaWlcuHCBoKCgMokYoMKZbVX114sXL+jWrRtt2rTh7NmzpKSkMGzYMCk59iZ9cvLkSQIDA5kxYwZZWVns27eP1q1by8VXenyoSGhoKMHBwaSlpWFpaYmfn5+UjBs1ahT5+fn89NNPnDt3jnnz5knrej948IB27drh5OTEyZMn2bdvH3fu3MHX11eqe9KkScydO5cpU6aQkZHBli1b0NfXB5BuUz9w4AC3bt2q8Nb+zZs3o6GhwciRI8s9XlHfPH78mP79+3P06FGOHTuGhYUFnTt3lr68qex9V1XbVjXelbzevXv3kpmZyYoVK6hbt650flFREXFxcRWOaYWFhdL406RJE+n5qj4Lb/I5Lu3IkSP069eP0aNHk5GRwapVq4iOjpYS7FV9ZkF+zE5JScHOzk7qewBPT08ePXrEhQsXpDIeHh5ydXh6ekpfGhQUFHDq1Cm5MjVq1MDDw0Mqc+rUKZ4/fy5XpnHjxjRo0EAqU51YSjg6OmJoaEiHDh3KveNm1KhReHt7l4kbihPqMpkMZWVl6TkVFRVq1KjB0aNHy5SvzPr166lZsyYnTpwgMjKShQsXSstIAPTr149ff/2Vw4cPs337dlavXi03u7i82B49eiT3EARBEARBEARBeB01X/eEFy9ecPHiRSwtLeWev3jxIoWFhUDxH02VJTD+7mJiYqRE3JYtW7h37x6pqano6OgASLfSAixYsIABAwZIyY5x48Zx7NgxFixYIM2QheKZPH5+fgCEh4ezZMkSTpw4gZeXl1Svnp6elBzJz88nPDycAwcO4OLiAoCZmRlHjx5l1apVtGnTRqp79uzZ0s8TJ07E29ubZ8+eoaqqioaGBjVr1sTAwEDuNf7yyy+cPXuWTp06VdgORUVFREdHo6mpCUDfvn1JSEhg9uzZ3Lp1ixcvXtCjRw8aNmwIIJdQmDp1KhEREdItsaamplJion///lW2a0Vxv2rLli0UFRWxbt06VFRUsLW15ebNm3z22WdSGUVFRaZPny79bGpqSkpKCt9++y2+vr5oaGigqqpKfn5+meuVXpfYxMSE4OBgtm7dSkhICFC8DuP48eNp3LgxABYWFlL5OXPm4O/vL62paGFhwZIlS2jTpg0rVqxAR0cHBQUFNDU1y1w3JiYGT09PlJSUKnzt9vb2TJ06Vap72bJlJCQk0KFDB3JycjAwMMDDwwNFRUUaNGhA8+bNpZijoqLIycnByMgIKE5U79u3j6ioKMLDw5k/fz7Ozs5ys59tbW2lfyspKaGmplZp/5QkuUraprqq6q9Hjx7x8OFDunTpgrl58aLk1tbWUvk36ZOcnBzU1dXp0qULmpqaNGzYECcnJ7n4So8PFQkODsbbu3hXy+nTp2Nra0t2djaNGzcmJyeHnj17Sp8XMzMz6bxly5bh5OREeHi49NzXX3+NsbExly5dwtDQkMjISJYtWybNdjU3N6dVq1YA6OrqAlCnTp0q+8bMzExKXlfXq18arF69mlq1apGYmEiXLl2qfN9V1LbVGe9ycnJwcnLC2bl4nSMTExO5WEpmdbZo0UJ67uHDh1IC/OnTpygqKrJ69WrpfVOdz8KbfI5Lmz59OhMnTpT6zczMjJkzZxISEsLUqVMrbbuSNtq3b580Y/727dtySVFA+rlkndeKyjx69IinT5+Sm5tLYWFhuWUuXrwo1aGkpFQmca+vr1/ldUrHYmhoyMqVK3F2diY/P5+1a9fi7u7O8ePHpaT51q1bOX36NKmpqeW2YcuWLVFXV2fChAmEh4fz8uVLJk6cSGFhYYXJ8YoYGxuzaNEiZDIZVlZWnDt3jkWLFjF06FAuXrzIgQMHSE1Nld5va9eulRtLXjVnzhy5cUsQBOH/2LvzuJ6y/4Hjr5T2TWm1VKhUihRJ2UvJMtnF2IYwmGwJU6Is2UKYsc4UBhlEZDQl20hjZCRksmsYhhmJLKH8/uj7uT8frbZplvN8PD6Px/jcc+99f8659zSf83nfcwRBEARBEN7UG2fSDhw4kGHDhrFkyRKOHj3K0aNHWbJkCcOGDWPQoEFA8YJHrw7o/JOcP3+e3377jQ4dOgDF2YCOjo7SQGJp5d3c3OTec3Nz4/z583LvvTq3noaGBtra2uVm5Vy6dInHjx/j6emJpqam9NqwYQOXL18u89gmJiYA5R4bijOy3N3dy52nz9zcXBqglR1bdtzGjRvToUMH7O3t6d27N2vXriU3Nxconjfw8uXLDBs2TC722bNnS7FXVK+lGTVqlNzxoLj+HRwcUFVVlcrJBnle9cUXX+Dk5ISBgQGampqsWbOGnJycCs+5detW3NzcMDY2RlNTk5CQELn9Jk6cyPDhw/Hw8GDevHlybXP69GliYmLkYvby8qKoqIirV6+We97XH9suzevzNb7aPr179+bJkyfUq1cPf39/du7cKWVynjlzhsLCQqysrORiO3z4sFz7yO6Bt/Xqo8Nvqrz20tPTY8iQIXh5edG1a1eioqLkBmjepU08PT0xMzOjXr16DBw4kE2bNvH48WNp/9f7h7KUd08GBAQwe/Zs3NzcmDFjhtyj96dPn+bgwYNy8ckGmy9fvsz58+cpKCiosrb5/fff8ff3x9LSEh0dHbS1tcnPz5faprzrrry6rUx/9+mnnxIbG0uTJk0ICgri2LFjcrHFx8fTpUsXuaxtLS0tMjIyyMjI4NSpU8ydO5dRo0axZ88eoHL3wrvcx686ffo04eHhcseRZaM/fvy43LoDOHDgAIaGhv/Yv63W1taMHDkSJycnWrZsyddff03Lli2lHzx+/fVXxo0bx6ZNm+T681cZGBiwbds29uzZg6amJjo6Oty/f5+mTZuWmq1fnhYtWsj9mOzq6srFixcpLCwkOzsbJSUluYzrBg0alJh+4VXTpk0jLy9Pev36669vFI8gCIIgCIIgCMIbZ9IuWbIEIyMjFixYIK2obGRkxIQJE6R5aDt27Ii3t/f7jfQvsnv3bjw9PaUviWpqau/luK9nrCkoKJS70El+fj5QPAdhrVq15La9+qjn68eWfeks79hQ/nynlYlZUVGR5ORkjh07RlJSEsuXLyc4OJjjx4+jrq4OwNq1a+Wy2mT7wdvVa3h4eImpDCojNjaWwMBAIiMjcXV1RUtLi4ULF8rNK1yatLQ0BgwYQFhYGF5eXujo6BAbG0tkZKRUZubMmfTv35+9e/eyb98+ZsyYQWxsLN27dyc/P5+RI0eWmFcSoG7dumWeV7bIkSwTsyzltU+dOnXIzs5m//79JCcnM3r0aBYuXMjhw4fJz89HUVGRkydPSu0hIxv8fh/XvSzb/pdffimRjVqeyrRXdHQ0AQEBJCYmsnXrVkJCQkhOTqZFixbv1CbKysr8/PPPHDp0iKSkJEJDQ5k5cyYnTpxAV1e3RP9QlvLuyeHDh+Pl5cXevXtJSkoiIiKCyMhIPvvsM/Lz8+natSvz588vcUwTExOuXLlS6Xosj5WVFUePHuX58+dvlE07ePBg/vzzT6KiojAzM0NFRQVXV1dp3tHyrjstLa0y67Yy/V2nTp24fv063333HcnJyXTo0IExY8awaNEioLhPk03HIlOtWjW5DH0HBweSkpKYP38+Xbt2rdS98Lb38evy8/MJCwuTW3BLRlVVtdy6q169eok+29jYWJreQkb2N1mW0WtsbCy992oZbW1t1NTUUFRURFFRsdQyrx7j2bNn3L9/X+5HvdfLVBRLaZo3by5NU3Dy5Enu3LkjNzBaWFjIkSNHWLFiBQUFBSgqKtKxY0cuX77MH3/8gZKSErq6uhgbG8tlpFcFFRWVEn+bBUEQBEEQBEEQ3sQbZ9IqKioSHBzMrVu3uH//Pvfv3+fWrVt8/vnn0pfcunXrUrt27fce7F8hPj5ebk5DBwcHMjIyuHfvXqnlbWxsSsyrl5qaiq2tbaXPKXukXTZdBICtrS0qKirk5OTQoEEDuVdp83+Wd+xXjwvFgwUHDx4sdz7aylBQUMDNzY2wsDBOnTqFsrIyO3fuxMjICFNTU65cuVIidtnCRhXVa2lxGxoayh0Lius/MzOTp0+fSuVkjz3LpKam0rJlS0aPHo2joyMNGjQokY1c2vmOHTuGmZkZwcHBODs7Y2lpKS1O9SorKysmTJhAUlISPXr0kBYzatq0KVlZWSXqoEGDBlKbl3bePXv20LJlyzfKMi6NmpoaXbt2ZdmyZRw6dIi0tDTOnDmDo6MjhYWF3Llzp0RcsgEVBwcHUlJSyjx2aXG/rkmTJtja2hIZGVnqjwb3798vdb/KtBcUL441bdo0jh07RqNGjdi8ebO07V3aRElJCQ8PDxYsWEBmZibXrl2TFiV6vX94W3Xq1GHUqFHExcUxadIk1q5dK8V37tw5zM3NS8SnoaGBpaUlampqZbZNaX1Jafr3709+fn6JxfxkymubgIAAfHx8sLOzQ0VFRW5RMyj7uoOy67ay/Z2BgQGDBw/mm2++YenSpaxZswYonr7h+vXreHp6lvu5ofhv2JMnTwAqdS+87X38uqZNm5KdnV3qcWRZoGXV3cuXL9mzZ4/ctefq6sqZM2fknppITk5GW1tb+vvj6upa4lpJTk6WnjZQVlbGyclJrkxRUREpKSlSGScnJ6pXry5XJjs7m5ycHKlMZWIpTUZGhpRp3qFDB86cOSNlPmdkZODs7MyAAQPIyMgoMYhes2ZNdHV1OXDgAHfu3KnwR8fXvf4jnWyOZUVFRaytrXnx4oXcIpSXLl2SnhYRBEEQBEEQBEH4EN44k/ZV2tra7yuOv4U7d+6Qnp7O7t27pff8/PyYO3cuvr6+REREYGJiwqlTpzA1NcXV1ZXJkyfTp08fHB0d8fDwYM+ePcTFxbF///5Kn9fMzAwFBQUSEhLw8fFBTU0NLS0tAgMDmTBhAkVFRbi7u5OXl0dqaira2tplrr7+OnNzc65evUpGRga1a9dGS0uLxMRErKysSszp+CaOHz9OSkoKHTt2xNDQkOPHj3P37l1pbtCwsDACAgLQ0dHB29ubgoIC0tPTyc3NZeLEiRXWa2lxl5al1L9/f4KDg/H392fatGlcu3ZNyqyTsbS0ZMOGDXz//fdYWFiwceNGTpw4IQ0Yy+rp+++/Jzs7G319fXR0dLC0tCQnJ4fY2FiaNWvG3r172blzp7TPkydPmDx5Mr169cLCwoIbN25w4sQJevbsCcCUKVNo0aIFY8eOZfjw4WhoaJCVlUVycjIrVqyQznvkyBH69euHiooKNWvWrFSWc0ViYmIoLCzExcUFdXV1vvnmG9TU1DAzM0NfX58BAwYwaNAgIiMjcXR05O7du6SkpODg4EDnzp2ZNm0a9vb2jB49mlGjRqGsrMzBgwfp3bs3NWvWxNzcnOPHj3Pt2jU0NTXR09Mr8bixgoIC0dHReHh40KpVK4KDg2nYsCH5+fns2bOHpKSkEovgVaa9rl69ypo1a+jWrRumpqZkZ2dz8eJFBg0a9M5tkpCQwJUrV2jdujU1atTgu+++o6ioCGtr61L7h7cxfvx4OnXqhJWVFbm5uRw8eFC6b8aMGcPatWvx8/MjKCgIPT09Ll26RGxsLOvWrUNVVZUpU6YQFBSEsrIybm5u3L17l3PnzjFs2DAMDQ1RU1MjMTGR2rVro6qqio6OTokYXFxcCAoKYtKkSdy8eZPu3btjamrKpUuXWLVqFe7u7owbN67Uttm4cSPOzs48ePCAyZMny2Vdl3fdlVe3lenvQkNDcXJyws7OjoKCAhISEqR6i4+Px8PDQ8ril3n58qU0J+qTJ09ITk7m+++/JzQ0FCgezK/oXnjb+/h1oaGhdOnShbp169KrVy+qVavG6dOnOXv2LLNnzy637k6ePMnjx4+luYeh+IkVW1tbBg4cyIIFC7h9+zYhISGMGTNG6itHjRrFihUrCAoK4pNPPuHAgQN8++237N27VzrOxIkTGTx4MM7OzjRv3pylS5fy6NEjhg4dCoCOjg7Dhg1j4sSJ6Onpoa2tzWeffYarqystWrSodCxLly7FwsICOzs7nj59yrp16zhw4ABJSUlA8dQUjRo1kqszDQ0N9PX15d6Pjo7GxsYGAwMD0tLSGDduHBMmTMDa2loq06FDB7p37y4t7laanJwcJk6cyMiRI/n5559Zvny59JREw4YN8fDwYMSIEaxcuZLq1aszadIk1NTU/tHz7QuCIAiCIAjvz8qA6X/p+T5dNuuNyo8Z8zmxsbukf9eooYOjoz0zZ07Czs667B2FKvXGmbQA27dvp0+fPrRo0YKmTZvKvf7J9uzZQ/PmzeW+YCsrK5OUlIShoSE+Pj7Y29szb948KavH19eXqKgoFi1ahJ2dHatXryY6Opq2bdtW+ry1atWSFpUxMjKSvljOmjWL6dOnExERgY2NDd7e3uzdu1ducLEiPXv2xNvbm3bt2mFgYMCWLVsqNd9pRbS1tTly5Ag+Pj5YWVkREhJCZGSktBDZ8OHDWbduHdHR0djb29OmTRtiYmKk2Cuq19LiLo2mpiZ79uyRMkSDg4NLPCo+cuRIevToQd++fXFxceHPP/8ssaq9v78/1tbWODs7Y2BgQGpqKt26dWPChAmMHTuWJk2acOzYMaZP//+OWFFRkT///JNBgwZhZWVFnz596NSpk7R4jIODA4cPH+bChQu0atUKR0dHQkNDpQWKoHgKh2vXrlG/fn0MDAx49OgRKSkp79w+urq6rF27Fjc3NxwcHNi/fz979uxBX18fKB7oGDRoEJMmTcLa2hpfX19OnDghPb5tZWVFUlISp0+fpnnz5ri6uhIfH4+SUvHvOoGBgSgqKmJra4uBgUGZ8/s2b96c9PR0GjRogL+/PzY2NnTr1o1z586xdOnSUvepqL3U1dX55Zdf6NmzJ1ZWVowYMYIxY8YwcuTId24TXV1d4uLiaN++PTY2NqxatYotW7ZgZ2dXav/wNgoLCxkzZox0T1tZWUkZraampqSmplJYWEjHjh2xt7dn/Pjx6OrqSoPg06dPZ9KkSYSGhmJjY0Pfvn2lDEYlJSWWLVvG6tWrMTU1LTfrd/78+WzevJnjx4/j5eWFnZ0dEydOxMHBocwfgb766ityc3Np2rQpAwcOJCAgAENDQ2l7edddeXULFfd3ysrKTJs2DQcHB1q3bo2ioiKxsbFA2XM4P3jwABMTE0xMTLCxsSEyMpLw8HCCg4OlMhXdC29zH5fGy8uLhIQEkpKSaNasGS1atGDJkiXSwovl1V18fDw+Pj7S/QfF/U9CQgKKioq4urry8ccfM2jQIMLDw6UyFhYW7N27l+TkZBo3bkxkZCTr1q3Dy8tLKtO3b18WLVpEaGgoTZo0ISMjg8TERLmFwJYsWUKXLl3o2bMnrVu3xtjYmLi4uDeK5dmzZ0yaNEn6e3D69Gn279//xvMrZ2dn4+vri42NjdSWr/8wJ5sOoTyyH3WaN2/OmDFjGDduHCNGjJC2b9iwASMjI1q3bk337t3x9/dHS0urwqlOBEEQBEEQBOHvokMHd7KyDpOVdZidO79GSUkRP79PK95RqDIKL99wBZlly5YRHBzMkCFDWLNmDUOHDuXy5cucOHGCMWPGMGfOnA8V6wfXrVs33N3dCQoKqupQPpgXL15gZGTEvn375FYOF/4e4uLiCAkJISsrq6pDEV7zX+gf/on++OMPTExMuHHjhtzA4r+Jg4MDISEh9OnTp6pD+Ufy8/NDUVGRb775BoC2bdvSpEmTMn8oKs2NGzeoU6dOpQeWHzx4gI6ODtExTVFXV6ywvCAIgiAIgvD3U726EXVqT6B2bSOUleVzHP8JmbR5eQ/45psV0ns//niSzp0Hkp19lJo19bh58xbTpy/g4MFjVKumQIsWTkREfE7duv+/TsjGjdv54osYcnJuUKdOLUaM+Jhhw/yA4kSMkJAFJCQkcf/+AwwM9BkypC8TJowoEc9fSU/P5i8/59OnT7l69SoWFhYlEjtk3w3y8vIqnJHgjac7+PLLL1mzZg1+fn7ExMQQFBREvXr1CA0NLXN+0X8Kd3d3/Pz8qjqMD+revXtMmDCBZs2aVXUoQik0NTVLXTRKqHr/hf7hn+jevXssXrz4XztA++zZM3r27Ck9pSBU3osXL7hw4QJpaWmMHDnyjfY9cOAA+fn52Nvbc+vWLYKCgjA3N6d169YfKFpBEARBEARB+HDy8x+xbdse6tWri56eLs+fP6dXL3+aNWvC3r0bUVRUZPHiVfTuPYIfftiJsrIy27btISJiOfPnh+DgYENm5nkmTAhFXV0NPz9f1qz5hsTEA3z11WJq1zbh5s3b3Lx5u6o/6j/aGw/S5uTk0LJlS6B4kZOHDx8CMHDgQFq0aCHN0fdP9F/IkDM0NCQkJKSqwxDK0LFjx6oOQSjDf6F/+CeysrLCysqqqsP4YJSVlZkxY0ZVh/GPdPbsWVq2bEm7du0YNWrUG+37/PlzPv/8c65cuYKWlhYtW7Zk06ZNVK9e/QNFKwiCIAiCIAjvV1LSYerWdQLg0aMnGBkZsGXLSqpVq8b27QkUFb0kKmqWtO7C8uVzqFevBampJ2jXzo3581cwa1YQXbsWL9BsZlab7OzLrF//LX5+vty4cYt69cxo0cIJBQUF6tSpVWYsQuW88SCtsbEx9+7dw8zMjLp16/Ljjz/SuHFjrl69yhvOnCAIgiAIgvBBNGnShMePH5d4/9ChQxXu6+XlJTd3ryAIgiAIgiD807i7N2fRouJFk+/ff8DXX2+hb9+RJCfHcu5cNlev5mBm5iy3z9OnBVy9+ivNmz/m6tVfGTduOhMmhErbX7woRFtbCwA/v+707DkMFxcf2rd3x8urLe3auf11H/Bf6I0Hadu3b8/u3btxdHRk6NChTJgwge3bt5Oenk6PHj0+RIyCIAiCIAj/OD26H6xw3ilBEARBEATh70k2z6iubsl5Rv9qbzrPqoqKDrq6L3F29pbea9euJzo6OmzbdogXL1RwcnJi06ZNJfY1MDDg6dOnAKxduw4XFxe57YqKiujpWdCunQ3Xrnmyb98+9u/fz7BhgXh4eLB9+/a3+IQCvMUg7Zo1aygqKgJgzJgx6Ovrc+zYMbp16/bGc74JgiAIgiAIgiAIgiAIgvBhKSgoUK1aNZ48eULTpk3ZunUrhoaGpSYV6OjoYGpqypUrVxgwYECZx9TW1qZv37707duXXr164e3tzb1799DT0/uQH+Vf640HaatVq0a1av+/ql2/fv3o16/few1KEARBEARBEARBEARBEIS3U1BQwO3bxQt55ebmsmLFCvLz8+natSvNmzdn4cKFfPTRR4SHh1O7dm2uX79OXFwcQUFB1K5dm7CwMAICAtDR0cHb25uCggLS09PJzc1l4sSJLF68GBMTExwdHalWrRrbtm3D2NgYXV3dqv3g/2BvPEgLxSnfmZmZ3LlzR8qqlenWrdt7CUwQBEEQBEEQBEEQBEEQhDeXmJiIiYkJAFpaWjRs2JBt27bRtm1bAI4cOcKUKVPo0aMHDx8+pFatWnTo0EHKrB0+fDjq6uosXLiQyZMno6Ghgb29PePHj5eOuWDBAi5evIiioiLNmjXju+++k0vsFN6Mwss3XO0rMTGRQYMG8ccff5Q8mIIChYWF7y04QRAEQRCEf5oHDx6go6PD1KlTUVFRqepwBEEQBEEQhLegqamJm5sbtWrVQknprXIchSpgamr6l59TNn+xhUXJ+Ytl3w3y8vIqXK/ijYe3P/vsM3r37s2tW7coKiqSe4kBWkEQBEEQBEEQBEEQBEEQhDfzxoO0v//+OxMnTsTIyOhDxCMIgiAIgiAIgiAIgiAIgvCf8saDtL169eLQoUMfIBRBEARBEARBEARBEARBEIT/njcepF2xYgVxcXEMGTKEyMhIli1bJvcS/ptiYmL+NSv4Xbt2DQUFBTIyMqo6FKESRHv9fc2cOZMmTZpUdRh/a6KOPixRv4IgCIIgCIIg/FO88SDtli1bSEpKYseOHSxfvpwlS5ZIr6VLl36AEP+Zhg4dSkhIyF9yrkOHDqGgoMD9+/ff+7Er+oJrYWHB/v376du3LxcuXHjv539bf/UX8yFDhuDr6/uXnU/G3Ny8zPvu8OHD1KlTB6i6+MrStm1baUXIily6dImhQ4dSu3ZtVFRUsLCwwM/Pj/T09A8b5Af0av+goKDArl27qjag/3nTAe8dO3bQtm1bdHR00NTUxMHBgfDwcO7du/dhA/1Anjx5goaGBpcuXSImJgYFBQVsbGxKlNu2bRsKCgqYm5u/0fHfta1fvW7u3bvHgAED0NbWRldXl2HDhpGfny9XPjMzk1atWqGqqkqdOnVYsGBBiWNu27aNhg0boqqqir29Pd99953c9pcvXxIaGoqJiQlqamp4eHhw8eJFuTIVxSK7rl5//fjjj1KZ58+fEx4eTv369VFVVaVx48YkJiaWiPeLL77A3NwcVVVVXFxc+Omnn8qts8DAQFJSUsotIwiCIAiCIAiC8HfwxoO0wcHBhIWFkZeXx7Vr17h69ar0unLlyoeI8R+nsLCQhIQEunXrVtWhfFCZmZnk5ubSpk0b1NTUMDQ0rOqQhFfEx8fTtWvXqg7jnaSnp+Pk5MSFCxdYvXo1WVlZ7Ny5k4YNGzJp0qSqDu+t/Fv6h+DgYPr27UuzZs3Yt28fZ8+eJTIyktOnT7Nx48aqDu+tJCcnY2ZmRoMGDQDQ0NDgzp07pKWlyZX76quvqFu37l8a2+vXzYABAzh37hzJyckkJCRw5MgRRowYIZV/8OABHTt2xMzMjJMnT7Jw4UJmzpzJmjVrpDLHjh3Dz8+PYcOGcerUKXx9ffH19eXs2bNSmQULFrBs2TJWrVrF8ePH0dDQwMvLi6dPn0plKopFZv/+/dy6dUt6OTk5SdtCQkJYvXo1y5cvJysri1GjRtG9e3dOnTolldm6dSsTJ05kxowZ/PzzzzRu3BgvLy/u3LlTZr1pamqir6//hrUtCIIgCIIgCILw13vjQdpnz57Rt29fqlV7413/M44dO0b16tVp1qwZADdu3MDPzw89PT00NDRwdnbm+PHjUvmVK1dSv359lJWVsba2LjHAoaCgwLp16+jevTvq6upYWlqye/duoDhDqV27dgDUqFEDBQUFhgwZAkBRURERERFYWFigpqZG48aN2b59u3RcWQZuSkoKzs7OqKur07JlS7Kzs4HiKQzCwsI4ffq0lPkUExMj7R8fH4+3tzfVq1cvMd2BLJN148aNmJubo6OjQ79+/Xj48KFUZvv27djb26Ompoa+vj4eHh48evRI2r5u3TpsbGxQVVWlYcOGfPnll3L1Ula9VhT363766SccHR1RVVXF2dlZblAAigdHhg0bJtWjtbU1UVFRcp91/fr1xMfHS+eTzds8ZcoUrKysUFdXp169ekyfPp3nz59L+54+fZp27dqhpaWFtrY2Tk5OchmiR48epVWrVqipqVGnTh0CAgKkOmrbti3Xr19nwoQJ0nlftXv37jIHAtu2bUtAQABBQUHo6elhbGzMzJkzpe0vX75k5syZ1K1bFxUVFUxNTQkICJC2FxQUEBgYSK1atdDQ0MDFxaXEXNWpqam0bdsWdXV1atSogZeXF7m5uQwZMoTDhw8TFRUlxX3t2rUSMb58+ZIhQ4ZgaWnJDz/8QOfOnalfvz5NmjRhxowZxMfHl/rZKmovKL72mzdvjoaGBrq6uri5uXH9+vV3bhOAL7/8EktLS1RVVTEyMqJXr15y5369f3iVLOMwLi6Odu3aoa6uTuPGjeUGCa9fv07Xrl2pUaMGGhoa2NnZyWU/nj17lk6dOqGpqYmRkREDBw7kjz/+kLYXFRWxYMECGjRogIqKCnXr1mXOnDlAcWY8gKOjIwoKCrRt27bUOv7pp5+YO3cukZGRLFy4kJYtW2Jubo6npyc7duxg8ODBpe534sQJPD09qVmzJjo6OrRp04aff/5Z2l7RdVde3VbU3+Xm5jJgwAAMDAxQU1PD0tKS6Ohoufji4+Pl7hklJSX69+/P119/Lb1348YNDh06RP/+/Ut8vvL6clnWbffu3UvNwi2vrwT56+b8+fMkJiaybt06XFxccHd3Z/ny5cTGxvLbb78BsGnTJp49e8bXX3+NnZ0d/fr1IyAggMWLF0vHjIqKwtvbm8mTJ2NjY8OsWbNo2rQpK1askNpj6dKlhISE8NFHH+Hg4MCGDRv47bffpIzgysQio6+vj7GxsfSqXr263Of//PPP8fHxoV69enz66af4+PgQGRkplVm8eDH+/v4MHToUW1tbVq1ahbq6ulz7vO71pypkTxWEhYVhYGCAtrY2o0aN4tmzZ1KZhw8fMmDAADQ0NDAxMWHJkiVvlP0vCIIgCIIgCILwNt54pHXw4MFs3br1Q8Tyr7F79266du2KgoIC+fn5tGnThps3b7J7925Onz5NUFAQRUVFAOzcuZNx48YxadIkzp49y8iRIxk6dCgHDx6UO2ZYWBh9+vQhMzMTHx8fBgwYwL1796hTpw47duwAIDs7m1u3bkkDUhEREWzYsIFVq1Zx7tw5JkyYwMcff8zhw4fljh0cHExkZCTp6ekoKSnxySefANC3b18mTZqEnZ2dlPnUt29fuc/50UcflVkPly9fZteuXSQkJJCQkMDhw4eZN28eALdu3cLPz49PPvmE8+fPc+jQIXr06MHLly+B4gGG0NBQ5syZw/nz55k7dy7Tp09n/fr1AOXWa0Vxvyo/P58uXbpga2vLyZMnmTlzJoGBgXJlioqKqF27Ntu2bSMrK4vQ0FA+//xzvv32W6D4cdo+ffrg7e0tna9ly5YAaGlpERMTQ1ZWFlFRUaxdu5YlS5ZIxx4wYAC1a9fmxIkTnDx5kqlTp0oDF5cvX8bb25uePXuSmZnJ1q1bOXr0KGPHjgUgLi6O2rVrEx4eLp1X5ty5c9y5c4f27duX2T7r169HQ0OD48ePs2DBAsLDw0lOTgaKH2NfsmQJq1ev5uLFi+zatQt7e3tp37Fjx5KWlkZsbCyZmZn07t0bb29v6THojIwMOnTogK2tLWlpaRw9epSuXbtSWFhIVFQUrq6u+Pv7S3HLpmV4VUZGBufOnWPSpEml/ihU1hzIFbXXixcv8PX1pU2bNmRmZpKWlsaIESOkQe53aZP09HQCAgIIDw8nOzubxMREWrduLRffq/1DWYKDgwkMDCQjIwMrKyv8/Px48eIFAGPGjKGgoIAjR45w5swZ5s+fj6amJgD379+nffv2ODo6kp6eTmJiIr///jt9+vSRjj1t2jTmzZvH9OnTycrKYvPmzRgZGQFIj47LMh7j4uJKjW/Tpk1oamoyevToUreX1TYPHz5k8ODBHD16lB9//BFLS0t8fHykAcnyrruK6rai/k72efft28f58+dZuXIlNWvWlPYvKioiISGhRJ/2ySef8O233/L48WOg+Mcrb29vqc5kKurLT5w4AUB0dDS3bt2S/g3l95Uyr143aWlp6Orq4uzsLG338PCgWrVq0g+AaWlptG7dGmVlZamMl5cX2dnZ5ObmSmU8PDzkzuPl5SX9KHD16lVu374tV0ZHRwcXFxepTGVikenWrRuGhoa4u7tLPzTKFBQUoKqqKveempoaR48eBYp/ID558qRcLNWqVcPDw6NEpnNFUlJSpL87W7ZsIS4ujrCwMGn7xIkTSU1NZffu3SQnJ/PDDz/I/ZhQmoKCAh48eCD3EgRBEARBEARBeBNKb7pDYWEhCxYs4Pvvv8fBwUEuEwaQy9L5r4qPj5cG4jZv3szdu3c5ceIEenp6ANKjtACLFi1iyJAh0mDHxIkT+fHHH1m0aJGUIQvF2T9+fn4AzJ07l2XLlvHTTz/h7e0tHdfQ0FAaHCkoKGDu3Lns378fV1dXAOrVq8fRo0dZvXo1bdq0kY49Z84c6d9Tp06lc+fOPH36FDU1NTQ1NVFSUsLY2FjuM968eZPMzEw6depUZj0UFRURExODlpYWAAMHDiQlJYU5c+Zw69YtXrx4QY8ePTAzMwOQGwScMWMGkZGR9OjRAyjO8MvKymL16tUMHjy4wnotK+7Xbd68maKiIr766itUVVWxs7Pjxo0bfPrpp1KZ6tWry32Bt7CwIC0tjW+//ZY+ffqgqamJmpoaBQUFJc736rzE5ubmBAYGEhsbS1BQEAA5OTlMnjyZhg0bAmBpaSmVj4iIYMCAAVL2lqWlJcuWLaNNmzasXLkSPT09FBUV0dLSKnHe+Ph4vLy85AZoXufg4MCMGTOkY69YsYKUlBQ8PT3JycnB2NgYDw8PqlevTt26dWnevLkUc3R0NDk5OZiamgLFA9WJiYlER0czd+5cFixYgLOzs1z2s52dnfTfysrKqKurl9s+sgFfWd1UVkXt9eDBA/Ly8ujSpQv169cHkJt39F3aJCcnBw0NDbp06YKWlhZmZmY4OjrKxfdq/1CWwMBAOnfuDBT/QGNnZ8elS5do2LAhOTk59OzZU7pf6tWrJ+23YsUKHB0dmTt3rvTe119/TZ06dbhw4QImJiZERUWxYsUKKdu1fv36uLu7A2BgYAD8f8ZjWS5evEi9evVK9P8Vef1HgzVr1qCrq8vhw4fp0qVLhdddWXVbmf4uJycHR0dHaTDx9UxW2fyoLi4ucu87OjpSr149tm/fzsCBA4mJiWHx4sUlpvepqC+X1a2urm6Jui2vr5R59bq5fft2ielllJSU0NPT4/bt21IZWWa0jGxg+fbt29SoUYPbt2+XGGw2MjKSO8ar+5VVpqJYNDU1iYyMxM3NjWrVqrFjxw58fX3ZtWuXlLns5eXF4sWLad26NfXr1yclJYW4uDgKCwsB+OOPPygsLCw1ll9++YU3oayszNdff426ujp2dnaEh4czefJkZs2axaNHj1i/fj2bN2+mQ4cOQPHAuqyvK0tERIRcvyMIgiAIgiAIgvCm3jiT9syZMzg6OlKtWjXOnj3LqVOnpJdYXb340c/ffvtN+nKXkZGBo6OjNJBYWnk3Nze599zc3Dh//rzcew4ODtJ/a2hooK2tXe48fJcuXeLx48d4enqiqakpvTZs2MDly5fLPLaJiQlAuceG4qwud3f3MjPmoHgQRDboIDu27LiNGzemQ4cO2Nvb07t3b9auXStldz169IjLly8zbNgwudhnz54txV5RvZZm1KhRcseD4vp3cHCQy+CSDfK86osvvsDJyQkDAwM0NTVZs2YNOTk5FZ5z69atuLm5YWxsjKamJiEhIXL7TZw4keHDh+Ph4cG8efPk2ub06dPExMTIxezl5UVRURFXr14t97yvP7ZdmlfbHeTbp3fv3jx58oR69erh7+/Pzp07pUzOM2fOUFhYiJWVlVxshw8flmsf2T3wtmRZ1W+jvPbS09NjyJAheHl50bVrV6KiouSykN+lTTw9PTEzM6NevXoMHDiQTZs2SRmYULJ/KEt592RAQACzZ8/Gzc2NGTNmkJmZKRffwYMH5eKTDTZfvnyZ8+fPU1BQUGVt8/vvv+Pv74+lpSU6Ojpoa2uTn58vtU151115dVuZ/u7TTz8lNjaWJk2aEBQUxLFjx+Rii4+Pp0uXLqVmbX/yySdER0dz+PBhHj16hI+PT4kyle3LS1NeXyk7dmWum7+rmjVrMnHiRFxcXGjWrBnz5s3j448/ZuHChVKZqKgoLC0tadiwIcrKyowdO5ahQ4d+kKmVGjdujLq6uvRvV1dX8vPz+fXXX7ly5QrPnz+XfhyA4uxha2vrco85bdo08vLypNevv/763uMWBEEQBEEQhPetVq1apS7Y+z65uLiwdu3aD3qOf4s3zqR9/TF8Qd7u3bvx9PSUBv3U1NTey3Ffz1hTUFCQpkwojWxl7b1791KrVi25bSoqKmUeW/YIdnnHhvLnO61MzIqKiiQnJ3Ps2DGSkpJYvnw5wcHBHD9+XPryvHbt2hJZbYqKisDb1Wt4eHiJqQwqIzY2lsDAQCIjI3F1dUVLS4uFCxeWeJT3dWlpaQwYMICwsDC8vLzQ0dEhNjZWbo7FmTNn0r9/f/bu3cu+ffuYMWMGsbGxdO/enfz8fEaOHCk3J6dMeYsW3bp1i1OnTkmZmGUpr33q1KlDdnY2+/fvJzk5mdGjR7Nw4UIOHz5Mfn4+ioqKnDx5UmoPGdng9/u47q2srAD45ZdfSmSjlqcy7RUdHU1AQACJiYls3bqVkJAQkpOTadGixTu1ibKyMj///DOHDh0iKSmJ0NBQZs6cyYkTJ9DV1S3RP5SlvHty+PDheHl5sXfvXpKSkoiIiCAyMpLPPvuM/Px8unbtyvz580sc08TE5L0t7mhlZcXRo0d5/vz5G2XTDh48mD///JOoqCjMzMxQUVHB1dVVmg+0vOtOS0urzLqtTH/XqVMnrl+/znfffUdycjIdOnRgzJgxLFq0CCju016fYkBmwIABBAUFMXPmTAYOHIiS0hv/6SxXRf3769eNsbFxiR/SXrx4wb1796QsXWNjY37//Xe5MrJ/V1Tm1e2y92Q/Fsj+LZvntTKxlMbFxUWaXgWKs7h37drF06dP+fPPPzE1NWXq1KlSpnjNmjVRVFQsN96qpKKiUuJvqyAIgiAIgvDvlRf9Zk9zvSudoW/2hKnMnTt3WLZsGSkpKdy+fRt9fX3s7OwYPnw4rVq14tSpU+jo6LznaIW3JVb/es/i4+Pl5jR0cHAgIyODe/fulVrexsaG1NRUufdSU1OxtbWt9Dllj7TLHgsFsLW1RUVFhZycHBo0aCD3Km3+z/KO/epxoXgA+ODBg+XOR1sZCgoKuLm5ERYWxqlTp1BWVmbnzp0YGRlhamrKlStXSsQue3y3onotLW5DQ0O5Y0Fx/WdmZsqtVC577FkmNTWVli1bMnr0aBwdHWnQoEGJbOTSznfs2DHMzMwIDg7G2dkZS0tLaXGqV1lZWTFhwgSSkpLo0aOHtJhR06ZNycrKKlEHDRo0kNq8tPPu2bOHli1bvlGWcWnU1NTo2rUry5Yt49ChQ6SlpUmZ9IWFhdy5c6dEXLLBEgcHB1JSUso8dmlxv65JkybY2toSGRlZ6o8G9+/fL3W/yrQXFD/GPm3aNI4dO0ajRo3YvHmztO1d2kRJSQkPDw8WLFhAZmYm165d48CBA0DJ/uFt1alTh1GjRhEXF8ekSZOkXyWbNm3KuXPnMDc3LxGfhoYGlpaWqKmpldk2pfUlpenfvz/5+fklFvOTKa9tAgIC8PHxwc7ODhUVFblFzaDs6w7KrtvK9ncGBgYMHjyYb775hqVLl7JmzRqgePqG69ev4+npWWrcenp6dOvWjcOHD0tzdr+uMn159erVK6zb0rx+3bi6unL//n1OnjwpvXfgwAGKioqkH7ZcXV05cuSI3EKFycnJWFtbU6NGDanM69dCcnKy9DSBhYUFxsbGcmUePHjA8ePHpTKViaU0GRkZcgO/MqqqqtSqVYsXL16wY8cO6XMrKyvj5OQkF0tRUREpKSmlPv1QntOnT/PkyRPp3z/++COamprUqVNHmsbj1TmD8/LyuHDhwhudQxAEQRAEQRCq2q+//kqnTp1ITU0lJCSE/fv3s2nTJlq2bElwcDBQPE4ikg3+PiqdDiSbG7QiZS00819w584d0tPT5RZE8fPzY+7cufj6+hIREYGJiQmnTp3C1NQUV1dXJk+eTJ8+fXB0dMTDw4M9e/YQFxfH/v37K31eMzMzFBQUSEhIwMfHBzU1NbS0tAgMDGTChAkUFRXh7u5OXl4eqampaGtrl7n6+uvMzc25evUqGRkZ1K5dGy0tLRITE7Gysioxp+ObOH78OCkpKXTs2BFDQ0OOHz/O3bt3pblBw8LCCAgIQEdHB29vbwoKCkhPTyc3N5eJEydWWK+lxV1ax9O/f3+Cg4Px9/dn2rRpXLt2Tcqsk7G0tGTDhg18//33WFhYsHHjRk6cOCE336O5uTnff/892dnZ6Ovro6Ojg6WlJTk5OcTGxtKsWTP27t3Lzp07pX2ePHnC5MmT6dWrFxYWFty4cYMTJ07Qs2dPAKZMmUKLFi0YO3Ysw4cPR0NDg6ysLJKTk6XV183NzTly5Aj9+vVDRUWFmjVrVirLuSIxMTEUFhbi4uKCuro633zzDWpqapiZmaGvr8+AAQMYNGgQkZGRODo6cvfuXVJSUnBwcKBz585MmzYNe3t7Ro8ezahRo1BWVubgwYP07t2bmjVrYm5uzvHjx7l27Rqampro6emVeKxZQUGB6OhoPDw8aNWqFcHBwTRs2JD8/Hz27NlDUlJSiUXwKtNeV69eZc2aNXTr1g1TU1Oys7O5ePEigwYNeuc2SUhI4MqVK7Ru3ZoaNWrw3XffUVRUhLW1dan9w9sYP348nTp1wsrKitzcXA4ePCjdN2PGjGHt2rX4+fkRFBSEnp4ely5dIjY2lnXr1qGqqsqUKVMICgpCWVkZNzc37t69y7lz5xg2bBiGhoaoqamRmJhI7dq1UVVVLfVXVRcXF4KCgpg0aRI3b96ke/fumJqacunSJVatWoW7uzvjxo0rtW02btyIs7MzDx48YPLkyXJZ1+Vdd+XVbWX6u9DQUJycnLCzs6OgoICEhASp3uLj4/Hw8JB7BP51MTExfPnll+jr65e6vTJ9ubm5OSkpKbi5uaGioiINlpantOvGxsYGb29v/P39WbVqFc+fP2fs2LH069dPmju1f//+hIWFMWzYMKZMmcLZs2eJioqSmw953LhxtGnThsjISDp37kxsbCzp6enS4LWCggLjx49n9uzZWFpaYmFhwfTp0zE1NcXX17fSsaxfvx5lZWUpIz4uLo6vv/6adevWSbEcP36cmzdv0qRJE27evMnMmTMpKiqS5u+G4qlIBg8ejLOzM82bN2fp0qU8evSIoUOHSmUGDRpErVq1iIiIKLNOnz17xrBhwwgJCeHatWvMmDGDsWPHUq1aNbS0tBg8eDCTJ09GT08PQ0NDZsyYQbVq1cpd7E8QBEEQBEEQ/m4+//xzoPiJw1e/61hbW9OvXz+geLqDr776Cm9vbwB+++03Zs+ezeHDhykoKMDS0pI5c+bQtGlTrl27RlhYGD///DOPHz/G0tKSqVOnyi3o/McffzBp0iSOHj2KgYGB3P/Py6xevZpvv/2W69evo6uri6enJyEhIWhoaHzI6vhHqHQmrY6OTqVe/2V79uyhefPmciuGKysrk5SUhKGhIT4+Ptjb2zNv3jzpMXFfX1+ioqJYtGgRdnZ2rF69mujoaNq2bVvp89aqVYuwsDCmTp2KkZGRtNL8rFmzmD59OhEREdIX6b1795ZYTKY8PXv2xNvbW1r4ZsuWLZWa77Qi2traHDlyBB8fH6ysrAgJCSEyMlJaiGz48OGsW7eO6Oho7O3tadOmDTExMVLsFdVraXGXRlNTkz179kgZosHBwSUeFR85ciQ9evSgb9++uLi48Oeff5ZY1d7f3x9ra2ucnZ0xMDAgNTWVbt26MWHCBMaOHUuTJk04duwY06dPl/ZRVFTkzz//ZNCgQVhZWdGnTx86deokLT7j4ODA4cOHuXDhAq1atcLR0ZHQ0FC5BWzCw8O5du0a9evXx8DAgEePHpGSkvLO7aOrq8vatWtxc3PDwcGB/fv3s2fPHmmAKjo6mkGDBjFp0iSsra3x9fXlxIkT0jQMVlZWJCUlcfr0aZo3b46rqyvx8fHSY+KBgYEoKipia2uLgYFBmfP7Nm/enPT0dBo0aIC/vz82NjZ069aNc+fOsXTp0lL3qai91NXV+eWXX+jZsydWVlaMGDGCMWPGMHLkyHduE11dXeLi4mjfvj02NjasWrWKLVu2YGdnV2r/8DYKCwsZM2aMdE9bWVlJGa2mpqakpqZSWFhIx44dsbe3Z/z48ejq6kqD4NOnT2fSpEmEhoZiY2ND3759pcfVlZSUWLZsGatXr8bU1LTcrN/58+ezefNmjh8/jpeXF3Z2dkycOBEHB4cyfwT66quvyM3NpWnTpgwcOJCAgAC5RafKu+7Kq1uouL9TVlZm2rRpODg40Lp1axQVFYmNjQUqN4ezmppamQO0ULm+PDIykuTkZOrUqVPpKTzKum42bdpEw4YN6dChAz4+Pri7u0uDq1D8NzspKYmrV6/i5OQktfmIESOkMi1btmTz5s2sWbOGxo0bs337dnbt2kWjRo2kMkFBQXz22WeMGDGCZs2akZ+fT2JiotyUHRXFAsXt4+TkhIuLC/Hx8WzdulVucPXp06eEhIRga2tL9+7dqVWrFkePHpWb97xv374sWrSI0NBQmjRpQkZGBomJiXKLieXk5MjNMV2aDh06YGlpSevWrenbty/dunVj5syZ0vbFixfj6upKly5d8PDwwM3NDRsbmwqnKREEQRAEQRCEvwtZQs+QIUNKTUYpbfzu0aNH9OrVi9u3bxMdHU1ycjKffvqp9GTro0ePaN++PVu3buX777+nbdu2DB06lJs3b0rHmDBhAr/99hvffvsta9asYf369SWenqxWrRrh4eEcPHiQpUuXkpqayuzZs99zDfwzKbx8l9V5BDndunXD3d291F8K/i1evHiBkZER+/btk1tYRfh7iIuLIyQkhKysrKoORXjNf6F/+Cf6448/MDEx4caNG3KDfX8X4rp5N9OmTeOHH37g6NGjAAwZMoT79++za9euSh/j0aNH1KpVi8jISIYNG1apfR48eICOjg5Tp04Vj48JgiAIgiD8Q2lqauLm5katWrVKrEvxd5+T9tSpU3Tp0oV169ZJyXCleTWT9ptvvmHWrFn8+OOPlXrqD6B9+/YMHDiQoUOHcvnyZVq3bs3evXulNSwuXbpEmzZtmDlzJv7+/qUeIyEhgalTp3L27Nk3+oxleTWx7a/y9OlTrl69ioWFRYnkDtl3g7y8PLS1tcs9zvtd/eQ/zt3dHT8/v6oO44O6d+8eEyZMoFmzZlUdilAKTU3NUheNEqref6F/+Ce6d+8eixcv/lsO0IK4bt7Wy5cvuXLlCikpKW+08CAU/w/tL7/8QvPmzcnLyyM8PBzgvcwnLQiCIAiCIAh/hbfJxzx37hyNGjUqc4D20aNHREZGkpKSwp07d3jx4gVPnz6VMmkvXbqEkpISDg4O0j4NGjQokbV75MgRVqxYweXLl3n48CGFhYU8ffqUJ0+evJdFyP/JxCDte/RfyHQyNDQkJCSkqsMQytCxY8eqDkEow3+hf/gnsrKywsrKqqrDKJO4bt5OXl4etra2NGvWTJqL600sWrSI7OxsacGyH3744Z2nKhEEQRAEQRCEv4qFhQUKCgpcunSp0vtUNL1XeHg4P/zwA9OnT8fc3BxVVVVGjBjBs2fPKn2OX3/9lSFDhjBw4ECmTJmCrq4uJ06cYNKkSTx79kwM0lZ1AIIgCIIgCO+Trq4uBQUFJd6PiYmpcF9HR0dOnjz5AaISBEEQBEEQhL9GjRo1aNu2LTExMQwbNqzEvLR5eXklMlxtbGzYsmULubm5pWbTpqen07t3b2n6hEePHnHjxg1pe/369Xnx4gWZmZly0x3k5eVJZTIzMykqKpIW54XidTiEYmKQVhAEQRAE4QOYNm1ahfNOCYIgCIIgCH9PsnlGDQ0NS2SZ5vHXzkn7NvOsrlu3Djc3Nz766CPCw8NxcHDgxYsXJCcns3LlSs6fPw+Anp4epqamjB49mpUrV/Lpp58SERGBiYkJp06dwtTUFFdXV2xsbNi/fz8DBgxAQUGB6dOn8/LlSzQ1NTE1NcXU1BRvb29CQkJYuXIlSkpKBAcHo6amho6ODqampjRv3pznz5+zY8cOunbtSmpqKps3bwbAxMREbuHg/6JqVR2AIAiCIAiCIAiCIAiCIAjvT7169fj5559p164dkyZNolGjRnh6epKSksLKlStLlFdWViYpKQlDQ0N8fHywt7dn3rx5KCoqArB48WJq1KhBy5Yt6dq1K15eXjRt2lTuGNHR0ZiamtKmTRt69OjBiBEjMDQ0lLY3btyYxYsXM3/+fBo1asSmTZuIiIj4sBXxD6Lw8m1mExYEQRAEQRBK9SYruAqCIAiCIAh/T7JMWgsLiwrnaxX+28q7Vt7ku4HIpBUEQRAEQRAEQRAEQRAEQahCYk5aQRAEQRCED2Ch/0BUq1ev6jAEQRAEQRCEt6BRQ48WfT7mjpIi1f/3yL/w92dSr35Vh/DWRCatIAiCIAiCIAiCIAiCIAhCFRKDtIIgCIIgCIIgCIIgCIIgCFVIDNIKgiAIgiAIgiAIgiAIgiBUITFIKwiCIAiCIAiCIAiCIAiCUIXEIK3w3sTExKCrq1vVYbwX165dQ0FBgYyMjKoORagE0V5/XzNnzqRJkyZVHYbwHyWuP0EQBEEQBEEQ/inEIO0HNHToUEJCQv6Scx06dAgFBQXu37//3o9d0ZdcCwsL9u/fT9++fblw4cJ7P//b+qu/nA8ZMgRfX9+/7Hwy5ubmLF26tNRthw8fpk6dOkDVxVeWtm3bMn78+EqVvXTpEkOHDqV27dqoqKhgYWGBn58f6enpHzbID+jV/kFBQYFdu3ZVbUD/86YD3jt27KBt27bo6OigqamJg4MD4eHh3Lt378MG+oE8efIEDQ0NLl26RExMDAoKCtJLU1MTJycn4uLiqiS2V6+Ze/fuMWDAALS1tdHV1WXYsGHk5+fLlc/MzKRVq1aoqqpSp04dFixYUOKY27Zto2HDhqiqqmJvb893330nt/3ly5eEhoZiYmKCmpoaHh4eXLx4Ua5MRbHIrqnXXz/++KNU5vW6VlBQQFVVVe48v//+O0OGDMHU1BR1dXW8vb1LxPK6wMBAUlJSyi0jCIIgCIIgCILwdyAGaT+QwsJCEhIS6NatW1WH8kFlZmaSm5tLmzZtUFNTw9DQsKpDEl4RHx9P165dqzqMd5Keno6TkxMXLlxg9erVZGVlsXPnTho2bMikSZOqOry38m/pH4KDg+nbty/NmjVj3759nD17lsjISE6fPs3GjRurOry3kpycjJmZGQ0aNABAW1ubW7ducevWLU6dOoWXlxd9+vQhOzv7L43r9WtmwIABnDt3juTkZBISEjhy5AgjRoyQyj948ICOHTtiZmbGyZMnWbhwITNnzmTNmjVSmWPHjuHn58ewYcM4deoUvr6++Pr6cvbsWanMggULWLZsGatWreL48eNoaGjg5eXF06dPpTIVxSKzf/9+qS5v3bqFk5OT3PZX6/rWrVtcv35d2vby5Ut8fX25cuUK8fHxnDp1CjMzMzw8PHj06FGZ9aapqYm+vv4b1LQgCIIgCIIgCELVEIO0H8ixY8eoXr06zZo1A+DGjRv4+fmhp6eHhoYGzs7OHD9+XCq/cuVK6tevj7KyMtbW1iUGOBQUFFi3bh3du3dHXV0dS0tLdu/eDRRnKbVr1w6AGjVqoKCgwJAhQwAoKioiIiICCwsL1NTUaNy4Mdu3b5eOK8vATUlJwdnZGXV1dVq2bCkNQMTExBAWFsbp06el7KaYmBhp//j4eLy9valevXqJ6Q5kmawbN27E3NwcHR0d+vXrx8OHD6Uy27dvx97eHjU1NfT19Ut84V63bh02NjaoqqrSsGFDvvzyS7l6KateK4r7dT/99BOOjo6oqqri7OzMqVOn5LYXFhYybNgwqR6tra2JioqS+6zr168nPj5eOt+hQ4cAmDJlClZWVqirq1OvXj2mT5/O8+fPpX1Pnz5Nu3bt0NLSQltbGycnJ7kM0aNHj9KqVSvU1NSoU6cOAQEBUh21bduW69evM2HCBOm8r9q9e3eZA4Ft27YlICCAoKAg9PT0MDY2ZubMmdL2ly9fMnPmTOrWrYuKigqmpqYEBARI2wsKCggMDKRWrVpoaGjg4uIifWaZ1NRU2rZti7q6OjVq1MDLy4vc3FyGDBnC4cOHiYqKkuK+du1aiRhfvnzJkCFDsLS05IcffqBz587Ur1+fJk2aMGPGDOLj40v9bBW1FxRf+82bN0dDQwNdXV3c3NykQaF3aROAL7/8EktLS1RVVTEyMqJXr15y5369f3iVLOswLi6Odu3aoa6uTuPGjUlLS5PKXL9+na5du1KjRg00NDSws7OTy4A8e/YsnTp1QlNTEyMjIwYOHMgff/whbS8qKmLBggU0aNAAFRUV6taty5w5c4DizHgAR0dHFBQUaNu2bal1/NNPPzF37lwiIyNZuHAhLVu2xNzcHE9PT3bs2MHgwYNL3e/EiRN4enpSs2ZNdHR0aNOmDT///LO0vaLrrry6rai/y83NZcCAARgYGKCmpoalpSXR0dFy8cXHx8vdMwoKChgbG2NsbIylpSWzZ8+mWrVqZGZmSmUqcy+8z2vm/PnzJCYmsm7dOlxcXHB3d2f58uXExsby22+/AbBp0yaePXvG119/jZ2dHf369SMgIIDFixdLx4yKisLb25vJkydjY2PDrFmzaNq0KStWrJDaYunSpYSEhPDRRx/h4ODAhg0b+O2336TM78rEIqOvry/VpbGxMdWrV5fb/mpdGxsbY2RkJG27ePEiP/74IytXrqRZs2ZYW1uzcuVKnjx5wpYtWyjL609UyJ4oCAsLw8DAAG1tbUaNGsWzZ8+kMg8fPmTAgAFoaGhgYmLCkiVLKsz8Lygo4MGDB3IvQRAEQRAEQfg369m/P6GzZld1GP8qSlUdwL/V7t276dq1KwoKCuTn59OmTRtq1arF7t27MTY25ueff6aoqAiAnTt3Mm7cOJYuXYqHhwcJCQnSo92ywVeAsLAwFixYwMKFC1m+fDkDBgzg+vXr1KlThx07dtCzZ0+ys7PR1tZGTU0NgIiICL755htWrVqFpaUlR44c4eOPP8bAwIA2bdpIxw4ODiYyMhIDAwNGjRrFJ598QmpqKn379uXs2bMkJiayf/9+AHR0dOQ+58SJE8ush8uXL7Nr1y4SEhLIzc2lT58+zJs3jzlz5nDr1i38/PxYsGAB3bt35+HDh/zwww+8fPkSKB5kCA0NZcWKFTg6OnLq1Cn8/f3R0NBg8ODB5dZrRXG/Kj8/ny5duuDp6ck333zD1atXGTdunFyZoqIiateuzbZt29DX1+fYsWOMGDECExMT+vTpQ2BgIOfPn+fBgwfSoI+enh4AWlpaxMTEYGpqypkzZ/D390dLS4ugoCCgOAvN0dGRlStXoqioSEZGhjR4cfnyZby9vZk9ezZff/01d+/eZezYsYwdO5bo6Gji4uJo3LgxI0aMwN/fXy7mc+fOcefOHdq3b19m+6xfv56JEydy/Phx0tLSGDJkCG5ubtJA25IlS4iNjcXOzo7bt29z+vRpad+xY8eSlZVFbGwspqam7Ny5E29vb86cOYOlpSUZGRl06NCBTz75hKioKJSUlDh48CCFhYVERUVx4cIFGjVqRHh4OAAGBgYl4svIyODcuXNs3ryZatVK/qZU1hzIFbXXixcv8PX1xd/fny1btvDs2TN++uknaZD7XdokPT2dgIAANm7cSMuWLbl37x4//PCDXHyv9g9lCQ4OZtGiRVhaWhIcHIyfnx+XLl1CSUmJMWPG8OzZM44cOYKGhgZZWVloamoCcP/+fdq3b8/w4cNZsmQJT548YcqUKfTp04cDBw4AMG3aNNauXcuSJUtwd3fn1q1b/PLLL0Dx4Gvz5s3Zv38/dnZ2KCsrlxrfpk2b0NTUZPTo0aVuL6ttHj58yODBg1m+fDkvX74kMjISHx8fLl68iJaWVrnXXUV1W1F/N336dLKysti3bx81a9bk0qVLPHnyRO66SUhIKHPqicLCQjZs2ABA06ZNpfcruhfe9zWTlpaGrq4uzs7O0nYPDw+qVavG8ePH6d69O2lpabRu3Vqu/by8vJg/fz65ubnUqFGDtLS0Ev23l5eX9PmvXr3K7du38fDwkLbr6Ojg4uJCWloa/fr1q1QsMt26dePp06dYWVkRFBRU4gek/Px8zMzMKCoqomnTpsydOxc7OzugeBAUkJsCoVq1aqioqHD06FGGDx9eapuVJiUlBVVVVQ4dOsS1a9cYOnQo+vr60g8VEydOJDU1ld27d2NkZERoaCg///xzudPnREREEBYWVukYBEEQBEEQhH+21Rv+2icHRw4a+Eblx08O4tu4OAb6+TF/9iy5bdNmzGD9N5vo06MHSxeWnBLtdcd+/JFeAz7m/Kmf0dHWfqM4hDcjBmk/kPj4eJYsWQLA5s2buXv3LidOnJAG7mSP0gIsWrSIIUOGSIMdEydO5Mcff2TRokVyg7RDhgzBz88PgLlz57Js2TJ++uknvL29peMaGhpKgyMFBQXMnTuX/fv34+rqCkC9evU4evQoq1evlhuknTNnjvTvqVOn0rlzZ54+fYqamhqampooKSlhbGws9xlv3rxJZmYmnTp1KrMeioqKiImJQUtLC4CBAweSkpIiDdK+ePGCHj16YGZmBoC9vb2074wZM4iMjKRHjx5AcYZfVlYWq1evZvDgwRXWa1lxv27z5s0UFRXx1Vdfoaqqip2dHTdu3ODTTz+VylSvXl3uC7iFhQVpaWl8++239OnTB01NTdTU1CgoKChxvlfnJTY3NycwMJDY2FhpkDYnJ4fJkyfTsGFDACwtLaXyERERDBgwQMrgsrS0ZNmyZbRp04aVK1eip6eHoqIiWlpaJc4bHx+Pl5dXmYNsAA4ODsyYMUM69ooVK0hJScHT05OcnByMjY3x8PCgevXq1K1bl+bNm0sxR0dHk5OTg6mpKVA892NiYiLR0dHMnTuXBQsW4OzsLJf9LBtwAVBWVkZdXb3c9pHNNymrm8qqqL0ePHhAXl4eXbp0oX79+gDY2NhI5d+lTXJyctDQ0KBLly5oaWlhZmaGo6OjXHyv9g9lCQwMpHPnzkDxDzR2dnZcunSJhg0bkpOTQ8+ePaX7pV69etJ+sh815s6dK7339ddfU6dOHS5cuICJiQlRUVGsWLFCynatX78+7u7uwP8PlsuyHsty8eJF6tWrVyIbsiKv/2iwZs0adHV1OXz4MF26dKnwuiurbivT3+Xk5ODo6CgNKJqbm8vFIpsj1cXFRXovLy9PGgB/8uQJ1atXZ82aNdJ1U5l74X1fM7dv3y4xtYySkhJ6enrcvn1bKiPLipaRZabevn2bGjVqcPv2bblsVVmZV4/x6n5llakoFk1NTSIjI3Fzc6NatWrs2LEDX19fdu3aJQ3UWltb8/XXX+Pg4EBeXh6LFi2iZcuWnDt3jtq1a9OwYUPq1q3LtGnTWL16NRoaGixZsoQbN25w69Yt3oSysjJff/016urq2NnZER4ezuTJk5k1axaPHj1i/fr1bN68mQ4dOgAQHR0ttW1Zpk2bJjfg/eDBA2k+cEEQBEEQBEGoCqYmJsQnJDAzJBi1/yU7PC0oYNfuPdSq4P9vhaohpjv4AM6fP89vv/0mfcHLyMjA0dFRGkgsrbybm5vce25ubpw/f17uPQcHB+m/NTQ00NbW5s6dO2XGcenSJR4/foynpyeamprSa8OGDVy+fLnMY5uYmACUe2wozuxyd3cvM2MOigdBZAO0smPLjtu4cWM6dOiAvb09vXv3Zu3ateTm5gLw6NEjLl++zLBhw+Rinz17thR7RfVamlGjRskdD4rr38HBQS5DSzbI86ovvvgCJycnDAwM0NTUZM2aNeTk5FR4zq1bt+Lm5oaxsTGampqEhITI7Tdx4kSGDx+Oh4cH8+bNk2ub06dPExMTIxezl5cXRUVFXL16tdzzvv7YdmlebXeQb5/evXvz5MkT6tWrh7+/Pzt37uTFixcAnDlzhsLCQqysrORiO3z4sFz7yO6BtyXLqn4b5bWXnp4eQ4YMwcvLi65duxIVFSU30PMubeLp6YmZmRn16tVj4MCBbNq0icePH0v7v94/lKW8ezIgIIDZs2fj5ubGjBkz5B69P336NAcPHpSLTzbYfPnyZc6fP09BQUGVtc3vv/+Ov78/lpaW6OjooK2tTX5+vtQ25V135dVtZfq7Tz/9lNjYWJo0aUJQUBDHjh2Tiy0+Pp4uXbrIZW1raWmRkZFBRkYGp06dYu7cuYwaNYo9e/YAlbsX/qpr5u+qZs2aTJw4ERcXF5o1a8a8efP4+OOPWbhwoVTG1dWVQYMG0aRJE9q0aUNcXBwGBgasXr0aKP7hJS4ujgsXLqCnp4e6ujoHDx6kU6dOpWbZl6dx48aoq6vLnTs/P59ff/2VK1eu8Pz5c+mHASjOHra2ti73mCoqKmhra8u9BEEQBEEQBKEq2dvZYWpiwr7vv5fe++7776llakojW1vpvYKCAkLCwrFv1hwLG1s+6tOXjP99x/z1xg16DfgYABvHppjWb8D4yUHSvkVFRcyaNx/bpk40dmnBotemGRTejBik/QB2796Np6enNOgnm3rgXZU2f59syoTSyFbX3rt3rzTIkJGRQVZWltw8ja8fW/YIdnnHhvLnO61MzIqKiiQnJ7Nv3z5sbW1Zvnw51tbWXL16VYp97dq1crGfPXtWynZ7m3oNDw+XO15lxcbGEhgYyLBhw0hKSiIjI4OhQ4fKzWNYmrS0NAYMGICPjw8JCQmcOnWK4OBguf1mzpzJuXPn6Ny5MwcOHMDW1padO3cCxW04cuRIuZhPnz7NxYsXpUy+0sgWOZJlYpalvPapU6cO2dnZfPnll6ipqTF69Ghat27N8+fPyc/PR1FRkZMnT8rFdv78eWnu1/dx3VtZWQFIj+JXVmXaKzo6mrS0NFq2bMnWrVuxsrKSrq13aRMtLS1+/vlntmzZgomJCaGhoTRu3Jj79+8DJfuHspR3Tw4fPpwrV64wcOBAzpw5g7OzM8uXL5fi69q1q1x8GRkZXLx4kdatW7+3/sjKykoa0HoTgwcPJiMjg6ioKI4dO0ZGRgb6+vpS25R33ZVXt5Xp7zp16iTN4Swb9AwMDJRiK61Pq1atGg0aNKBBgwY4ODgwceJE2rZty/z58wEqdS+872vG2Ni4xI9oL1684N69e1L2s7GxMb///rtcGdm/Kyrz6vZX9yurTEWxlMbFxYVLly6Vub169eo4OjrKlXFyciIjI4P79+9z69YtEhMT+fPPP+UyyQVBEARBEARB+H/9evcidvsO6d+x27bTt1dPuTKz5y/gu++/J2rhQr7fHY+FmRn9hwwl9/59TE1MWPflFwD8sD+ZjB/TCA+dLu27LS4OdXU1EnbsIGTKFJYsX8Hho0f/mg/3LyQGaT+A+Ph4PvroI+nfDg4OZGRkcO/evVLL29jYkJqaKvdeamoqtq/8slER2SPthYWF0nu2traoqKiQk5MjDTLIXm/yGKaysrLccaF40OHgwYNyn/NtKCgo4ObmRlhYGKdOnUJZWZmdO3diZGSEqakpV65cKRG77BHeiuq1tLgNDQ3ljgXF9Z+ZmSm3WrlssE4mNTWVli1bMnr0aBwdHWnQoEGJbOTSznfs2DHMzMwIDg7G2dkZS0tLuRXLZaysrJgwYQJJSUn06NFDmte2adOmZGVllaiDBg0aSG1e2nn37NlDy5Yt3yjLuDRqamp07dqVZcuWcejQIdLS0jhz5gyOjo4UFhZy586dEnHJBmYcHBxISUkp89ilxf26Jk2aYGtrS2RkZKk/GsgGsV5XmfaC4sWxpk2bxrFjx2jUqBGbN2+Wtr1LmygpKeHh4cGCBQvIzMzk2rVr0nywr/cPb6tOnTqMGjWKuLg4Jk2axNq1a6X4zp07h7m5eYn4NDQ0sLS0RE1Nrcy2Ka0vKU3//v3Jz88vsZifTHltExAQgI+PD3Z2dqioqMgtagZlX3dQdt1Wtr8zMDBg8ODBfPPNNyxdupQ1a9YAxdM3XL9+HU9Pz3I/NxT/wCSby7Yy98L7vmZcXV25f/8+J0+elN47cOAARUVF0lQNrq6uHDlyRG4QPTk5GWtra2rUqCGVef06SE5Olp4ksLCwwNjYWK7MgwcPOH78uFSmMrGUJiMjQ8oQL01hYSFnzpwptYyOjg4GBgZcvHiR9PT0N76fTp8+LTcX8Y8//oimpiZ16tSRpvA4ceKEtD0vL48LFy680TkEQRAEQRAE4e+g50cfcSI9nRs3b3Lj5k3ST56kxyv///z48WM2bN5MyNQptG/bBitLSxbOnYOqqipbvt2GoqIiuv9b36emvj6GBgZov/K0tE3DhkwKCKCehTm9e3Snsb09R197YlGoPDEn7Xt2584d0tPT2b17t/Sen58fc+fOxdfXl4iICExMTDh16hSmpqa4uroyefJk+vTpg6OjIx4eHuzZs4e4uDhpwavKMDMzQ0FBgYSEBHx8fFBTU0NLS4vAwEAmTJhAUVER7u7u5OXlkZqaira2dpmrr7/O3Nycq1evkpGRQe3atdHS0iIxMRErK6sSczq+iePHj5OSkkLHjh0xNDTk+PHj3L17V5obNCwsjICAAHR0dPD29qagoID09HRyc3OZOHFihfVaWtwqKiol4ujfvz/BwcH4+/szbdo0rl27xqJFi+TKWFpasmHDBr7//nssLCzYuHEjJ06ckJvz0dzcnO+//57s7Gz09fXR0dHB0tKSnJwcYmNjadasGXv37pUyMqF4jsvJkyfTq1cvLCwsuHHjBidOnKBnz+JftqZMmUKLFi0YO3Ysw4cPlxaJSk5OllZgNzc358iRI/Tr1w8VFRVq1qxZqSznisTExFBYWIiLiwvq6up88803qKmpYWZmhr6+PgMGDGDQoEFERkbi6OjI3bt3SUlJwcHBgc6dOzNt2jTs7e0ZPXo0o0aNQllZmYMHD9K7d29q1qyJubk5x48f59q1a2hqaqKnp1fisWUFBQWio6Px8PCgVatWBAcH07BhQ/Lz89mzZw9JSUkcPny4ROwVtdfVq1dZs2YN3bp1w9TUlOzsbC5evMigQYPeuU0SEhK4cuUKrVu3pkaNGnz33XcUFRVhbW1dav/wNsaPH0+nTp2wsrIiNzeXgwcPSvfNmDFjWLt2LX5+fgQFBaGnp8elS5eIjY1l3bp1qKqqMmXKFIKCglBWVsbNzY27d+9y7tw5hg0bhqGhIWpqaiQmJlK7dm1UVVVLXXTPxcWFoKAgJk2axM2bN+nevTumpqZcunSJVatW4e7uXmIBPlnbbNy4EWdnZx48eMDkyZPlsnvLu+7Kq9vK9HehoaE4OTlhZ2dHQUEBCQkJUr3Fx8fj4eEh9xg8FE/rIJtb9cmTJyQnJ/P9998TGhoKFA/mV3QvvO9rxsbGBm9vb/z9/Vm1ahXPnz9n7Nix9OvXT5o7tX///oSFhTFs2DCmTJnC2bNniYqKkpsLedy4cbRp04bIyEg6d+5MbGws6enp0sC1goIC48ePZ/bs2VhaWmJhYcH06dMxNTXF19e30rGsX78eZWVlaZ7duLg4vv76a9atWyfFEh4eTosWLWjQoAH3799n4cKFXL9+XW5BsG3btmFgYEDdunU5c+YM48aNw9fXl44dO0plBg0aRK1atYiIiCjlzin27Nkzhg0bRkhICNeuXWPGjBmMHTuWatWqoaWlxeDBg5k8eTJ6enoYGhoyY8YMqlWrVu5Cf4IgCIIgCILwd6Svr0+Hdu3YumMHL1++pEO7tui/ksx1LSeneLovJyfpverVq9PEwYGLpSQ6vc6mofy0YIaGBvzxZ+mJdELFRCbte7Znzx6aN29OzZo1pfeUlZVJSkrC0NAQHx8f7O3tmTdvHoqKigD4+voSFRXFokWLsLOzY/Xq1URHR9O2bdtKn7dWrVqEhYUxdepUjIyMGDt2LACzZs1i+vTpRERESF+m9+7dW2JBmfL07NkTb29v2rVrh4GBAVu2bKnUfKcV0dbW5siRI/j4+GBlZUVISAiRkZHSQmTDhw9n3bp1REdHY29vT5s2bYiJiZFir6heS4u7NJqamuzZs0fKEA0ODpYeZZYZOXIkPXr0oG/fvri4uPDnn3+WWNXe398fa2trnJ2dMTAwIDU1lW7dujFhwgTGjh1LkyZNOHbsGNOn//+jAYqKivz5558MGjQIKysr+vTpQ6dOnaRFrxwcHDh8+DAXLlygVatWODo6EhoaKreITXh4ONeuXaN+/foYGBjw6NEjUlJS3rl9dHV1Wbt2LW5ubjg4OLB//3727NmDvr4+UDxdwKBBg5g0aRLW1tb4+vpy4sQJ6tatCxQPXiUlJXH69GmaN2+Oq6sr8fHxKCkV/zYUGBiIoqIitra2GBgYlDm/b/PmzUlPT6dBgwb4+/tjY2NDt27dOHfuHEuXLi11n4raS11dnV9++YWePXtiZWXFiBEjGDNmDCNHjnznNtHV1SUuLo727dtjY2PDqlWr2LJlC3Z2dqX2D2+jsLCQMWPGSPe0lZWVlNFqampKamoqhYWFdOzYEXt7e8aPH4+urq40CD59+nQmTZpEaGgoNjY29O3bV3pkXUlJiWXLlrF69WpMTU3LzVKcP38+mzdv5vjx43h5eWFnZ8fEiRNxcHAo80egr776itzcXJo2bcrAgQMJCAiQW3iqvOuuvLqFivs7ZWVlpk2bhoODA61bt0ZRUZHY2Fig7DmcHzx4gImJCSYmJtjY2BAZGUl4eDjBwcFSmYruhQ9xzWzatImGDRvSoUMHfHx8cHd3lwZXoTjbNCkpiatXr+Lk5CS194gRI6QyLVu2ZPPmzaxZs4bGjRuzfft2du3aRaNGjaQyQUFBfPbZZ4wYMYJmzZqRn59PYmKi3HQdFcUiaxsnJydcXFyIj49n69atDB06VNqem5sr3d8+Pj48ePCAY8eOyT1RcuvWLQYOHEjDhg0JCAhg4MCBJfr1nJycChcS69ChA5aWlrRu3Zq+ffvSrVs3Zs6cKW1fvHgxrq6udOnSBQ8PD9zc3LCxsalwihJBEARBEARB+Dvq17sX3+6IY1vcTvr16v1ej11d6bUpFFHgZQVTZwplU3j5LivzCCV069YNd3d3goKCKi78D/XixQuMjIzYt2+f3OIqwt9DXFwcISEhZGVlVXUowmv+C/3DP9Eff/yBiYkJN27cwMjIqKrDkSOumXczbdo0fvjhB47+b16sIUOGcP/+fXbt2lXpYzx69IhatWoRGRnJsGHDKrXPgwcP0NHRIaRPN1Rfm/tbEARBEARB+GfQqKFHiz4fY2psTPX/JYPJrN6w8S+NZeSggW9UfvzkIPIePCB69SoKCwtp1qo1Cgrw05EjKCoqMnTkKHS0tZkbNhNbJycWz59Pj/8lrTx//pwWbdsyfMhQPvUfzomTP/NRnz6cTT+B3v+mTgPo2b8/dja2hE8Pkd6THXfpwgXv54O/BZN6Za/f86E8ffqUq1evYmFhUSK5Q/bdIC8vr8IFhsV0B++Zu7s7fn5+VR3GB3Xv3j0mTJhAs2bNqjoUoRSampolMoGFv4f/Qv/wT3Tv3j0WL178txugBXHNvK2XL19y5coVUlJSpGkWKuvUqVP88ssvNG/enLy8PMLDwwHey1zSgiAIgiAIgvBXU1RU5PD3idJ/v0pdXZ1B/Qcwe958aujoUMvUlC/XrOXJk6f49SnOuq1dyxQFBQX2HzhIh7ZtUFVVRUND4y//HP8FYpD2PfsvZDsZGhoSEhJScUGhSrw6P6Pw9/Jf6B/+iaysrLCysqrqMEolrpm3k5eXh62tLc2aNePzzz9/4/0XLVpEdnY2ysrKODk58cMPP7zzNCWCIAiCIAiCUFW0Xlns63WfB02mqKiIzwIDeZT/CAd7ezbHREsLhpkYGxM4bhxzFy5kwpQp9O7evUozZf/NxHQHgiAIgiAI79GbPNIkCIIgCIIg/D2V9wi7ILzqfU13IBYOEwRBEARBEARBEARBEARBqEJikFYQBEEQBEEQBEEQBEEQBKEKiUFaQRAEQRAEQRAEQRAEQRCEKiQWDhMEQRAEQfgAWu7aj6K6WPlWEARBEAThn8i4uiJBtfV4cf8h1ZQLqjocoZLs9HSqOoS3JjJpBUEQBEEQBEEQBEEQBEEQqpAYpBUEQRAEQRAEQRAEQRAEQahCYpBWEARBEARBEARBEARBEAShColBWkEQBEEQBEEQBEEQBEEQhCokBmmrQExMDLq6ulUdxntx7do1FBQUyMjIqOpQhEoQ7fX3NXPmTJo0aVLVYfzriGteaNu2LePHj6/qMARBEARBEARBEMr1txikHTp0KCEhIX/JuQ4dOoSCggL3799/78euaJDFwsKC/fv307dvXy5cuPDez/+2/urBoSFDhuDr6/uXnU/G3NycpUuXlrrt8OHD1KlTB6i6+MryJgMMly5dYujQodSuXRsVFRUsLCzw8/MjPT39wwb5Ab3aPygoKLBr166qDeh/3nTwb8eOHbRt2xYdHR00NTVxcHAgPDyce/fufdhAP5AnT56goaHBpUuXAHj27BkLFy6kadOmaGhooKOjQ+PGjQkJCeG3336r4mj/Pdq1a8e6desAyMnJoXPnzqirq2NoaMjkyZN58eKFXPlDhw7RtGlTVFRUaNCgATExMSWO+cUXX2Bubo6qqiouLi789NNPctufPn3KmDFj0NfXR1NTk549e/L777/LlalMLDKpqakoKSmV+LsTERFBs2bN0NLSwtDQEF9fX7Kzs984ltfFxcUxa9ascssIgiAIgiAIgvB+BI/5lICP+1d1GP9ISlUdQGFhIQkJCezdu7eqQ/mgMjMzyc3NpU2bNlSvXh01NbWqDkl4RXx8PF27dq3qMN5Jeno6HTp0oFGjRqxevZqGDRvy8OFD4uPjmTRpEocPH67qEN/Yv6V/CA4OZv78+UyYMIG5c+diamrKxYsXWbVqFRs3bmTcuHFVHeIbS05OxszMjAYNGlBQUEDHjh3JzMwkLCwMNzc3DAwMuHr1Klu2bGH58uVERESUepxnz56hrKz8F0f/z/Fq/dy7d4/U1FRiY2MpLCykc+fOGBsbc+zYMW7dusWgQYOoXr06c+fOBeDq1at07tyZUaNGsWnTJlJSUhg+fDgmJiZ4eXkBsHXrViZOnMiqVatwcXFh6dKleHl5kZ2djaGhIQATJkxg7969bNu2DR0dHcaOHUuPHj1ITU0FqFQsMvfv32fQoEF06NChxODq4cOHGTNmDM2aNePFixd8/vnndOzYkaysLDQ0NCoVS2n09PTeQ0sIgiAIgiAIwv87l+L5l57PrkPyG5UPHvMp8bFbpH/r1KhBI8emTJwZhrVdo/cS082c63g5Nmb7oSM0tHd4L8f8r6vyTNpjx45RvXp1mjVrBsCNGzfw8/NDT08PDQ0NnJ2dOX78uFR+5cqV1K9fH2VlZaytrdm4caPc8RQUFFi3bh3du3dHXV0dS0tLdu/eDRRnvrVr1w6AGjVqoKCgwJAhQwAoKioiIiICCwsL1NTUaNy4Mdu3b5eOK8vATUlJwdnZGXV1dVq2bCll+cTExBAWFsbp06dRUFBAQUFBLmMpPj4eb29vqlevXmK6A1km68aNGzE3N0dHR4d+/frx8OFDqcz27duxt7dHTU0NfX19PDw8ePTokbR93bp12NjYoKqqSsOGDfnyyy/l6qWseq0o7tf99NNPODo6oqqqirOzM6dOnZLbXlhYyLBhw6R6tLa2JioqSu6zrl+/nvj4eOl8hw4dAmDKlClYWVmhrq5OvXr1mD59Os+fP5f2PX36NO3atUNLSwttbW2cnJzkMkSPHj1Kq1atUFNTo06dOgQEBEh11LZtW65fv86ECROk875q9+7ddOvWrdTP3LZtWwICAggKCkJPTw9jY2NmzpwpbX/58iUzZ86kbt26qKioYGpqSkBAgLS9oKCAwMBAatWqhYaGBi4uLtJnlklNTaVt27aoq6tTo0YNvLy8yM3NZciQIRw+fJioqCgp7mvXrpWI8eXLlwwZMgRLS0t++OEHOnfuTP369WnSpAkzZswgPj6+1M9WUXtB8bXfvHlzNDQ00NXVxc3NjevXr79zmwB8+eWXWFpaoqqqipGREb169ZI79+v9w6tkmaxxcXG0a9cOdXV1GjduTFpamlTm+vXrdO3alRo1aqChoYGdnR3fffedtP3s2bN06tQJTU1NjIyMGDhwIH/88Ye0vaioiAULFtCgQQNUVFSoW7cuc+bMAYoz4wEcHR1RUFCgbdu2pdbxTz/9xNy5c4mMjGThwoW0bNkSc3NzPD092bFjB4MHDy51vxMnTuDp6UnNmjXR0dGhTZs2/Pzzz9L2iq678uq2ov4uNzeXAQMGYGBggJqaGpaWlkRHR8vFFx8fL90zS5Ys4ejRoxw4cICAgACcnJyoW7cubdq0YdWqVXIDdW3btmXs2LGMHz+emjVrSoOFixcvxt7eHg0NDerUqcPo0aPJz8+vVFtWJt4rV66UeZ1AcaaznZ0dKioqmJubExkZKbfd3NycWbNm4efnh4aGBrVq1eKLL76QK6OgoMDKlSvp1KkTampq1KtXT65eAX799Vf69OmDrq4uenp6fPTRR3L3tCyTf86cOZiammJtbS1t27t3L02bNsXIyIikpCSysrL45ptvaNKkCZ06dWLWrFl88cUXPHv2DIBVq1ZhYWFBZGQkNjY2jB07ll69erFkyRLpmIsXL8bf35+hQ4dia2vLqlWrUFdX5+uvvwYgLy+Pr776isWLF9O+fXucnJyIjo7m2LFj/PjjjwCVikVm1KhR9O/fH1dXV16XmJjIkCFDsLOzo3HjxsTExJCTk8PJkycrHUtpXn8aoTJt+csvv+Du7o6qqiq2trbs37//b5XJLwiCIAiCIAgVce/gwaGsbA5lZfPVzngUlZQY49evqsMSylHlg7S7d++ma9euKCgokJ+fT5s2bbh58ya7d+/m9OnTBAUFUVRUBMDOnTsZN24ckyZN4uzZs4wcOZKhQ4dy8OBBuWOGhYXRp08fMjMz8fHxYcCAAdy7d486deqwY8cOALKzs7l165Y0IBUREcGGDRtYtWoV586dY8KECXz88cclsg+Dg4OJjIwkPT0dJSUlPvnkEwD69u3LpEmTsLOz49atW9y6dYu+ffvKfc6PPvqozHq4fPkyu3btIiEhgYSEBA4fPsy8efMAuHXrFn5+fnzyySecP3+eQ4cO0aNHD16+fAnApk2bCA0NZc6cOZw/f565c+cyffp01q9fD1BuvVYU96vy8/Pp0qULtra2nDx5kpkzZxIYGChXpqioiNq1a7Nt2zaysrIIDQ3l888/59tvvwUgMDCQPn364O3tLZ2vZcuWAGhpaRETE0NWVhZRUVGsXbtWbjBhwIAB1K5dmxMnTnDy5EmmTp1K9erVpfrz9vamZ8+eZGZmsnXrVo4ePcrYsWOB4sdda9euTXh4uHRemXPnznHnzh3at29fZvusX78eDQ0Njh8/zoIFCwgPDyc5ufiXrB07drBkyRJWr17NxYsX2bVrF/b29tK+Y8eOJS0tjdjYWDIzM+nduzfe3t5cvHgRgIyMDDp06ICtrS1paWkcPXqUrl27UlhYSFRUFK6urvj7+0txy6ZleFVGRgbnzp1j0qRJVKtW8rYuaw7kitrrxYsX+Pr60qZNGzIzM0lLS2PEiBHSIPe7tEl6ejoBAQGEh4eTnZ1NYmIirVu3lovv1f6hLMHBwQQGBpKRkYGVlRV+fn7SY9ZjxoyhoKCAI0eOcObMGebPn4+mpiZQnNHXvn17HB0dSU9PJzExkd9//50+ffpIx542bRrz5s1j+vTpZGVlsXnzZoyMjACkR8L379/PrVu3iIuLKzW+TZs2oampyejRo0vdXlbbPHz4kMGDB3P06FF+/PFHLC0t8fHxkX68Ke+6q6huK+rvZJ933759nD9/npUrV1KzZk1p/6KiIhISEqQ+bcuWLXh6euLo6FjqZ3m9/davX4+ysjKpqamsWrUKgGrVqrFs2TLOnTvH+vXrOXDgAEFBQdI+5bVlRfFC+dfJyZMn6dOnD/369ePMmTPMnDmT6dOnl/jBauHChTRu3JhTp04xdepUxo0bJ/UDMtOnT6dnz56cPn2aAQMG0K9fP86fPw/A8+fP8fLyQktLix9++IHU1FQ0NTXx9vaWG8xMSUkhOzub5ORkEhISpPdf/TuSlpaGvb29dD0CeHl58eDBA86dOyeV8fDwkIvPy8tLGqB+9uwZJ0+elCtTrVo1PDw8pDInT57k+fPncmUaNmxI3bp1pTKViQUgOjqaK1euMGPGDCojLy8P+P9M2MrEUlnltWVhYSG+vr6oq6tz/Phx1qxZQ3BwcLnHKygo4MGDB3IvQRAEQRAEQahKysrK1DQyoqaREQ3tHRg+bjy3b97g3v8Sk27dvMGkT4bgalGXlvXN+WyAHzdzrssdY/vGDXRt0ZympkZ0dWlG7FfrpG1ejo0B6NW2NY30dRnSrXOpcRQVFbF2yWK8HB1wqmVMj9ZuJO3+/0SyvPv3mTLSn1ZW9XGqZYxPs6bs3PTN+66Of4Qqn+4gPj5eGojbvHkzd+/e5cSJE9KXsgYNGkhlFy1axJAhQ6TBjokTJ/Ljjz+yaNEiKUMWijOR/Pz8AJg7dy7Lli3jp59+wtvbWzquoaGhNDhSUFDA3Llz2b9/v5TdU69ePY4ePcrq1atp06aNdOw5c+ZI/546dSqdO3fm6dOnqKmpoampiZKSEsbGxnKf8ebNm2RmZtKpU6cy66GoqIiYmBi0tLQAGDhwICkpKcyZM4dbt27x4sULevTogZmZGYDcIOCMGTOIjIykR48eQHGGX1ZWFqtXr2bw4MEV1mtZcb9u8+bNFBUV8dVXX6GqqoqdnR03btzg008/lcpUr16dsLAw6d8WFhakpaXx7bff0qdPHzQ1NVFTU6OgoKDE+V6dl9jc3JzAwEBiY2OlgZqcnBwmT55Mw4YNAbC0tJTKR0REMGDAAClbytLSkmXLltGmTRtWrlyJnp4eioqKaGlplThvfHw8Xl5e5T5y7eDgIA0sWFpasmLFClJSUvD09CQnJwdjY2M8PDyoXr06devWpXnz5lLM0dHR5OTkYGpqChQPVCcmJhIdHc3cuXNZsGABzs7OctnPdnZ20n8rKyujrq5ebvvIBnxldVNZFbXXgwcPyMvLo0uXLtSvXx8AGxsbqfy7tElOTg4aGhp06dIFLS0tzMzMSgzyvdo/lCUwMJDOnYv/GISFhWFnZ8elS5do2LAhOTk59OzZU7pf6tWrJ+23YsUKHB0d5bI8v/76a+rUqcOFCxcwMTEhKiqKFStWSNmu9evXx93dHQADAwMA9PX1K2ybevXqSYPXlfX6jwZr1qxBV1eXw4cP06VLlwqvu7LqtjL9XU5ODo6Ojjg7OwPF9+OrZFmLLi4uAFy4cKFEJnH37t2lQS8HBweOHTsmbbO0tGTBggVy5V/PdJw9ezajRo2S7ovy2rKieKH862Tx4sV06NCB6dOnA2BlZUVWVhYLFy6UnrYAcHNzY+rUqVKZ1NRUlixZgqfn/z/q1Lt3b4YPHw7ArFmzSE5OZvny5Xz55Zds3bqVoqIi1q1bJw1cR0dHo6ury6FDh+jYsSMAGhoarFu3Tq5PKigoIDExUcriv337ttygKCD9+/bt2+WWefDgAU+ePCE3N5fCwsJSy/zyyy/SMZSVlUv8mGBkZFTheV6N5eLFi0ydOpUffvgBJaWK/9ejqKiI8ePH4+bmRqNGjSodS2WV15bJyclcvnyZQ4cOSff2nDlz5Nr5dREREXJ9qSAIgiAIgiD8nTzOz2fPtm+pW68eunp6PH/+nJG9etK4WTPW792HoqISaxYvYlTvXsT9kEp1ZWUStn3LFxFz+Xz+AmwcHDifmcnMCeNQU1fnI7/+bEk+gJ9ne9bFxdOgYUOqlzGmsnbJYhK2fUto5BLq1qvPyWOpTB01ghr6+jRzc2fF3Dlczv6FlVu3U0Nfj5wrVyl4+uQvrqG/hyrNpD1//jy//fYbHTp0AIqzAR0dHcucP+78+fO4ubnJvefm5iZlKck4OPz/XBgaGhpoa2tz586dMuO4dOkSjx8/xtPTE01NTem1YcMGLl++XOaxTUxMAMo9NhRnP7m7u5eZMQfFgwqyAVrZsWXHbdy4MR06dMDe3p7evXuzdu1acnNzAXj06BGXL19m2LBhcrHPnj1bir2iei3NqFGj5I4HxfXv4OCAqqqqVK60R1a/+OILnJycMDAwQFNTkzVr1pCTk1PhObdu3YqbmxvGxsZoamoSEhIit9/EiRMZPnw4Hh4ezJs3T65tTp8+TUxMjFzMXl5eFBUVcfXq1XLP++pj22V5td1Bvn169+7NkydPqFevHv7+/uzcuVPK0Dtz5gyFhYVYWVnJxXb48GG59pHdA29LllX9NsprLz09PYYMGYKXlxddu3YlKipKLgv5XdrE09MTMzMz6tWrx8CBA9m0aROPHz+W9n+9fyhLefdkQEAAs2fPxs3NjRkzZpCZmSkX38GDB+Xikw02X758mfPnz1NQUFBlbfP777/j7++PpaUlOjo6aGtrk5+fL7VNedddeXVbmf7u008/JTY2liZNmhAUFCQ3wArF90yXLl1KzdqW+fLLL8nIyOCTTz6Ra1cAJyenEuX3799Phw4dqFWrFlpaWgwcOJA///xT2re8tqwoXij/Oinrb8vFixcpLCyU3nu9v3N1dS3x96e8MqdPn+bSpUtoaWlJ9a6np8fTp0/l7h17e/sSPxodOHAAQ0NDuR9w/ikKCwvp378/YWFhWFlZVWqfMWPGcPbsWWJjYz9ITOW1U3Z2NnXq1JH78UX2A0hZpk2bRl5envT69ddf33/QgiAIgiAIgvAGDid9T7O6tWhWtxbNzWpzaN8+Fq37mmrVqpG4M46XRUWERy3HytaO+tbWzF7+Bbdu3uCn1KMAfDE/gsmzZuPZtRu1zczx7NqNQaNG8+36GAD0auoDoKtXg5pGRujUqFEihmcFBaxbuphZy1fg1r4DdczN8e0/gC69+7Dtf8e5dfNXGto70MjRkVp1zXBt25a23mUnOf6bVekg7e7du/H09JQG/d7XYlqvZ6wpKChIUyaURjbv4d69e8nIyJBeWVlZJeYTfPXYskyo8o4N5c93WpmYFRUVSU5OZt++fdja2rJ8+XKsra25evWqFPvatWvlYj979qyU7fY29RoeHi53vMqKjY0lMDCQYcOGkZSUREZGBkOHDi0xL+Hr0tLSGDBgAD4+PiQkJHDq1CmCg4Pl9ps5cybnzp2jc+fOHDhwAFtbW3bu3AkUt+HIkSPlYj59+jQXL16UMkBLc+vWLU6dOiVl2JWlvPapU6cO2dnZfPnll6ipqTF69Ghat27N8+fPyc/PR1FRkZMnT8rFdv78eWmqjfdx3csGPmTZb5VVmfaKjo4mLS2Nli1bsnXrVqysrKRr613aREtLi59//pktW7ZgYmJCaGgojRs35v79+0DJ/qEs5d2Tw4cP58qVKwwcOJAzZ87g7OzM8uXLpfi6du0qF19GRgYXL16kdevW760/srKy4sqVK3LzK1fG4MGDycjIICoqimPHjpGRkYG+vr7UNuVdd+XVbcgikV0AAOpGSURBVGX6u06dOklzOMsGyl+d2uT1Ps3S0lKan1vGxMSEBg0alPrjkGwRKJlr167RpUsXHBwc2LFjBydPnpTmCJV93vLasqJ44e367vctPz8fJyenEtfchQsX6N///1c/fb1+oGSdGxsbl1h4S/Zv2eBiWWW0tbVRU1OjZs2aKCoqllrm1WM8e/ZMui/LKlNeLA8fPiQ9PZ2xY8eipKSEkpIS4eHhnD59GiUlJQ4cOCC379ixY0lISODgwYPUrl1b7jNXFEtVUVFRQVtbW+4lCIIgCIIgCFWpmXsrdhz6gR2HfmBL8gHc2rdnVN/e/PZrDtnnzpJz9QrNzWpLA7ktG1hQ8PQpv169yuNHj/j16lVCx30mbW9WtxarFy/i12vlJ8K9KufqFZ48fox/z+5yx9m9NZZf/5dQ13foMBJ3xtGzjTuRM0M59dPxCo7671Wlg7Tx8fFy87Q6ODiQkZHBvXv3Si1vY2NTYgXn1NRUbG1tK31OWXbSq9lRtra2qKiokJOTQ4MGDeRepc3/Wd6xXz0uFH8pP3jwYLnz0VaGgoICbm5uhIWFcerUKZSVldm5cydGRkaYmppy5cqVErHLFjaqqF5Li9vQ0FDuWFBc/5mZmTx9+lQq9/piLampqbRs2ZLRo0fj6OhIgwYNSmQjl3a+Y8eOYWZmRnBwMM7OzlhaWkqLU73KysqKCRMmkJSURI8ePaTFgZo2bUpWVlaJOmjQoIHU5qWdd8+ePbRs2fKdV/9WU1Oja9euLFu2jEOHDpGWlsaZM2dwdHSksLCQO3fulIhLNqjg4OBASkpKmccuLe7XNWnSBFtbWyIjI0sdeHp9UEOmMu0FxYtjTZs2jWPHjtGoUSM2b94sbXuXNlFSUsLDw4MFCxaQmZnJtWvXpAGb1/uHt1WnTh1GjRpFXFwckyZNYu3atVJ8586dw9zcvER8GhoaWFpaoqamVmbblNaXlKZ///7k5+eXWMxPpry2CQgIwMfHR1rQ6tVFzaDs6w7KrtvK9ncGBgYMHjyYb775hqVLl7JmzRqg+LH169evyz367efnR3JycomFBCvr5MmTFBUVERkZSYsWLbCysuK3334rUa6stiwv3soo62+LlZUVioqK0nuv93c//vij3PQfFZVp2rQpFy9eLNG/NmjQAB0dnTLje/nyJXv27JG7H1xdXTlz5ozckxzJycloa2tLfxNdXV1LXL/JyclSFqmysjJOTk5yZYqKikhJSZHKODk5Ub16dbky2dnZ5OTkSGUqikVbW5szZ87IDUyPGjUKa2trMjIypGkzXr58ydixY9m5cycHDhyQ/obJVCaWyiqvnaytrfn111/lBp5PnDjxRscXBEEQBEEQhKqmrq5O3Xr1qFuvHvZNmxIWtZwnjx+zfcMGHuc/wrZxE2kQV/ba+9NJOvfqxeP/Lfg9c0mU3PZdR9PY/H1yBWf+f4/zi4/z5ZatcsfZfew4i2OK11Fq5eFJUsYZBo0azZ1btxne/SMWhoaUd9h/rSqbk/bOnTukp6eze/du6T0/Pz/mzp2Lr68vERERmJiYcOrUKUxNTXF1dWXy5Mn06dMHR0dHPDw82LNnD3Fxcezfv7/S5zUzM0NBQYGEhAR8fHxQU1NDS0uLwMBAJkyYQFFREe7u7uTl5ZGamoq2tnaZq6+/ztzcnKtXr5KRkUHt2rXR0tIiMTERKyurUudIrKzjx4+TkpJCx44dMTQ05Pjx49y9e1f6QhkWFkZAQAA6Ojp4e3tTUFBAeno6ubm5TJw4scJ6LS1uFRWVEnH079+f4OBg/P39mTZtGteuXWPRokVyZSwtLdmwYQPff/89FhYWbNy4kRMnTsh92TY3N+f7778nOzsbfX19dHR0sLS0JCcnh9jYWJo1a8bevXuljEyAJ0+eMHnyZHr16oWFhQU3btzgxIkT9OzZE4ApU6bQokULxo4dy/Dhw9HQ0CArK4vk5GRWrFghnffIkSP069cPFRUVatasWaks54rExMRQWFiIi4sL6urqfPPNN6ipqWFmZoa+vj4DBgxg0KBBREZG4ujoyN27d0lJScHBwYHOnTszbdo07O3tGT16NKNGjUJZWZmDBw/Su3dvatasibm5OcePH+fatWvS49GvP2auoKBAdHQ0Hh4etGrViuDgYBo2bEh+fj579uwhKSmpxCJ4lWmvq1evsmbNGrp164apqSnZ2dlcvHiRQYMGvXObJCQkcOXKFVq3bk2NGjX47rvvKCoqwtrautT+4W2MHz+eTp06YWVlRW5uLgcPHpTumzFjxrB27Vr8/PwICgpCT0+PS5cuERsby7p161BVVWXKlCkEBQWhrKyMm5sbd+/e5dy5cwwbNgxDQ0PU1NRITEykdu3aqKqqljrQ5uLiQlBQEJMmTeLmzZt0794dU1NTLl26xKpVq3B3d2fcuHGlts3GjRtxdnbmwYMHTJ48WS67t7zrrry6rUx/FxoaipOTE3Z2dhQUFJCQkCDVW3x8PB4eHqirq0uxTJgwgb1799KhQwdmzJhBq1atqFGjBhcuXGDfvn1yA52ladCgAc+fP2f58uV07dpVbkGxyrRlefFWxqRJk2jWrBmzZs2ib9++pKWlsWLFihID66mpqSxYsABfX1+Sk5PZtm0be/fulSuzbds2nJ2dcXd3Z9OmTfz000989dVXQPFCewsXLuSjjz4iPDyc2rVrc/36deLi4ggKCpLLGn3VyZMnefz4sTQfMkDHjh2xtbVl4MCBLFiwgNu3bxMSEsKYMWOk/nvUqFGsWLGCoKAgPvnkEw4cOMC3334rF/PEiRMZPHgwzs7ONG/enKVLl/Lo0SOGDh0KgI6ODsOGDWPixIno6emhra3NZ599hqurKy1atKh0LLJ5ZWUMDQ1RVVWVe3/MmDFs3ryZ+Ph4tLS0pHlmdXR0UFNTq1QsUDw3d0REBN27dy+zzctrS09PT+rXr8/gwYNZsGABDx8+lOZML28RQ0EQBEEQBEH4O1NQUKCaQjUKnj7BtnFjEnfFoVezJpqlPAWmpQ2GxibcuH6NLr37lHI0qF5dlrhU9hOK9a2tUVZR4daNGzRzcy+znF7Nmnzk15+P/PrzbYwrkTNCmRw++w0/4T9flWXS7tmzh+bNm8utwK2srExSUhKGhob4+Phgb2/PvHnzpC/4vr6+REVFsWjRIuzs7Fi9ejXR0dElFqwpT61atQgLC2Pq1KkYGRlJK83PmjWL6dOnExERgY2NDd7e3uzdu7dEJk95evbsibe3N+3atcPAwIAtW7ZUar7Timhra3PkyBF8fHywsrIiJCSEyMhIaSGy4cOHs27dOqKjo7G3t6dNmzbExMRIsVdUr6XFXRpNTU327NkjZYgGBwczf/58uTIjR46kR48e9O3bFxcXF/78888Sq9r7+/tjbW2Ns7MzBgYGpKam0q1bNyZMmMDYsWNp0qQJx44dkxbxgeIpH/78808GDRqElZUVffr0oVOnTtJCLQ4ODhw+fJgLFy7QqlUrHB0dCQ0NlRbrguIpHK5du0b9+vUxMDDg0aNHpKSkvHP76OrqsnbtWtzc3HBwcGD//v3s2bMHff3i+Vmio6MZNGgQkyZNwtraGl9fX06cOEHdunWB4kzUpKQkTp8+TfPmzXF1dSU+Pl5aXCcwMBBFRUVsbW0xMDAoc37f5s2bk56eToMGDfD398fGxoZu3bpx7tw5li5dWuo+FbWXuro6v/zyCz179sTKyooRI0YwZswYRo4c+c5toqurS1xcHO3bt8fGxoZVq1axZcsW7OzsSu0f3kZhYSFjxoyR7mkrKytp4M3U1JTU1FQKCwvp2LEj9vb2jB8/Hl1dXWkQfPr06UyaNInQ0FBsbGzo27evlC2opKTEsmXLWL16NaampuVm/c6fP5/Nmzdz/PhxvLy8sLOzY+LEiTg4OJT5I9BXX31Fbm4uTZs2ZeDAgQQEBGBoaChtL++6K69uoeL+TllZmWnTpuHg4EDr1q1RVFSU5gYtrU9TVVUlJSWFKVOmEB0djbu7OzY2NtLCT7t27Sq3nRo3bszixYuZP38+jRo1YtOmTURERFS6LcuLtzKaNm3Kt99+S2xsLI0aNSI0NJTw8HC5RcOgeDA3PT0dR0dHZs+ezeLFi/Hy8pIrExYWRmxsLA4ODmzYsIEtW7ZIma3q6uocOXKEunXr0qNHD2xsbBg2bBhPnz4t9/H4+Ph4fHx85BbcUlRUJCEhAUVFRVxdXfn4448ZNGgQ4eHhUhkLCwv27t1LcnIyjRs3JjIyknXr1snF3LdvXxYtWkRoaChNmjQhIyODxMREuYXAlixZQpcuXejZsyetW7fG2NiYuLi4N4qlMlauXEleXh5t27bFxMREem3durXSsUBxdm1eXl655yqvLRUVFdm1axf5+fk0a9aM4cOHExwcDFDh9CuCIAiCIAiC8Hfx7Nkz/vj9d/74/XcuZ2czd0oQjx/l08bLm869elNDX5/PBvbnZNoxbly/xk9Hf2Du1CBu37wJwOip01i3dAnfrF7FtUuXuJB1jp2bvmH9l8WJcHoGBqiqqXE0ZT9/3LnDwwcl/x9cQ0uLIWM+Y0HI58Rv2UzO1atknc5g05rVxG8pfkJ3RcQcDny3l5wrV7j0y3kOJyVSr5JrWfzbKLx8lxWH3kG3bt1wd3cnKCioKk7/l3jx4gVGRkbs27evwkVHhL9eXFwcISEhZGVlVXUowmv+C/3DP9Eff/yBiYkJN27ckBvE+y8wNzdn/PjxjB8/vswyCgoK7Ny5E19f3/d6bgcHB0JCQujTp/RfsIXyubq60qFDB2bPLv4lvjJt+brU1FTc3d25dOlSufOcyzx48AAdHR3s1u9AUb3kHMOCIAiCIAjC359xdUWCauthWKsO1V5b2PdcimcZe30Ydh0qP8UAQPCYT4mP/f8EPA1NLSwsLRkWMA7PbsUJRn/8/juLw2bww/5kHuXnY2hiQovWbQgMmyVl1+7dvo3oFcu4nJ2Nmro6Vra2fDzyUzy6dAVg+8YNrFq4gDu3fqOpqysxu/cSPOZTHublseyb4kHYly9f8s2aVXz79df8ev0a2jo62Dg0xn/CRJxburF60UL27tjOb7/moKKqilMLV4LmzKW2mfnb1ZVe2VPJfShPnz7l6tWrWFhYlEjskH03yMvLq3Dtiiqb7sDd3R0/P7+qOv1f4t69e0yYMIFmzZpVdShCKTQ1NUtkAgt/D/+F/uGf6N69eyxevPg/N0BblZ49e0bPnj2lJyeEyisoKODMmTOcO3eOgICAN9p3586daGpqYmlpyaVLlxg3bhxubm6VGqAVBEEQBEEQ/v3edND0rzbni5XM+WJluWVqGhkx98tV5Zbp3Ks3nXv1LnN7r4GD6DVwUIlzv0pBQYGBIz9l4MhPSz3GyMDJjAycXG4c/xVVNkj7X8iQMzQ0lOaxE/5+OnbsWNUhCGX4L/QP/0RWVlZY/UcfO6kqysrKzJgxo6rD+Efat28fgwYNolu3bvTq1euN9n348CFTpkwhJyeHmjVr4uHhQWRk5AeKVBAEQRAEQRAEoQqnOxAEQRAEQfg3epNHmgRBEARBEIS/p/IeYReEV72v6Q6qbOEwQRAEQRAEQRAEQRAEQRAEQQzSCoIgCIIgCIIgCIIgCIIgVCkxSCsIgiAIgiAIgiAIgiAIglCFqmzhMEEQBEEQhH+zX+e1QEtVsarDEARBEARBEN7CCw0TXrScwrM7L1BQEjmO/xQq/8fencflmP2PH3/d0nK3i8iSFi2qKUWYshRqSkTDiDS2IQw+WUrG2NeMkRHGbgrDZGZENGNtyKhQqKgmWzQIYyzJ0FB+f/Tr+nZrtU2znOfj0eOh+zr3ud73Odd9cp/7fZ3TxKa2Q3hl4ioTBEEQBEEQBEEQBEEQBEGoRWKSVhAEQRAEQRAEQRAEQRAEoRaJSVpBEARBEARBEARBEARBEIRaJCZpBUEQBEEQBEEQBEEQBEF46zZv30UjK6faDuNvSWwc9i8XGRnJhAkTuH//fm2H8tquXLmCiYkJZ86cwd7evrbDEaoh+uvva/bs2ezatYvU1NTaDuVf748//mDQoEEcPHiQhw8fcu/ePezt7ZkwYQITJkyo7fD+9f5NfwMFQRAEQRCEv492idf+0vOddG72Ss+7efsOn69cz964o1zPu4WOliamxs0Z2KcnH/r2Rl0uf8ORCq/jP5dJO2zYMKZPn/6XnOvIkSPIZLK38uFw9uzZVU58mZiYcOjQIfr378/58+ff+PlfVXVxv2lDhw7Fx8fnLztfKWNjY5YtW1bhsfj4eAwNDYHai68yrq6uNZ44unjxIsOGDaNZs2aoqqpiYmKCn58fKSkpbzfIt6js+CCTydi1a1ftBvT/XblyBZlMVuNJ1R07duDq6oqOjg6amprY2dkxd+5c7t69+3YDfUseP36MhoYGFy9eJDIyEplMJv1oamrSpk0boqOjX6rOytr0Tb8nN23axM8//0xiYiJ5eXno6Oi8cl1lr8+7d+/i7++PtrY2urq6DB8+nIKCAoXy6enpdOrUCTU1NQwNDVm8eHG5Or/77jtatmyJmpoatra2/PjjjwrHnz9/zsyZM2ncuDFyuRw3NzcuXLigUKYmsezfv593330XLS0t9PX16du3L1euXFEo8+WXX2JlZYVcLsfS0pLNmzcrHI+OjsbR0RFdXV00NDSwt7dny5YtVbbZ3+1voCAIgiAIgiD8VS5f/ZV3PT7gUHwic6eM58T+7ziyeytBYz7ix0Px/PTz8Qqf9/Tp07840n+WP//8863V/Z+apC0qKiI2NpZevXrVdihvVXp6Ovfu3cPFxQW5XE7Dhg1rOyShjJiYGLy9vWs7jNeSkpJCmzZtOH/+PGvXriUzM5OdO3fSsmVLgoKCaju8V/JvGR+mTZtG//79adu2LXv37uXcuXOEhYWRlpZW7YTW39XBgwcxMjLCzMwMAG1tbfLy8sjLy+PMmTN4eHjg6+tLdnZ2LUf6f0r/cF+6dAkrKyveeecdDAwMkMlkr1Tfi9env78/GRkZHDx4kNjYWI4ePcrIkSOl8vn5+bz33nsYGRlx6tQpPv/8c2bPns26deukMomJifj5+TF8+HDOnDmDj48PPj4+nDt3TiqzePFili9fzpo1azhx4gQaGhp4eHjw5MkTqUx1seTk5NC7d2+6du1Kamoq+/fv586dO/Tp00cqs3r1aqZOncrs2bPJyMhgzpw5jB07lj179khl9PT0mDZtGklJSaSnpzNs2DCGDRvG/v37K2038TdQEARBEARB+K8a/+l8lJSUSNy7nQ96edLSvAWmRoZ4e3Rl15bV9HB3BUCt6Tus2xRF36Hj0DNry6Ll6ygqKmJU0Aws3/VAt0UbbDv1ZOUGxc+T8Ykn6dhjAHpmbWlk5YRr7w+5eu0GAOkZv/DeB8NoYNEOfcv2OHn6cirtnMLzDx5JoJWLN/XN2+LtP4q8W79Jx4qLi1nwxWpatOmGtokD7dz7cuDwMen4lV+vo9b0Hb6N+RHXXv7omLamdVcfjiYlS2VKEyd/+OEH7OzsUFNT491331X4vANw7NgxOnXqhFwux9DQkMDAQB49eiQdNzY2Zt68eQwePBhtbW2Fzzpv2n9qkjYxMRFlZWXatm0LwLVr1/Dz80NPTw8NDQ0cHR05ceKEVH716tW0aNECFRUVLC0ty01wyGQyNmzYwPvvv4+6ujrm5ubs3r0bKMnS6tKlCwD16tVDJpMxdOhQoORiCw0NxcTEBLlcTqtWrfj++++leksvpLi4OBwdHVFXV8fZ2VmagIiMjGTOnDmkpaVJ2WSRkZHS82NiYvD09ERZWZnIyEh0dXWlY6WZrFu2bMHY2BgdHR0GDBjAw4cPpTLff/89tra2yOVy6tevj5ubm8IFumHDBqysrFBTU6Nly5asWrVKoV0qa9fq4n7RyZMncXBwQE1NDUdHR86cOaNwvKioiOHDh0vtaGlpSXh4uMJr3bRpEzExMdL5jhw5AsCUKVOwsLBAXV0dU1NTZsyYofBtUVpaGl26dEFLSwttbW3atGmjkCFa1ZvY1dWVq1evMnHiROm8Ze3evbvSiUBXV1cCAwMJCQlBT08PAwMDZs+eLR1//vw5s2fPpnnz5qiqqtKkSRMCAwOl44WFhQQHB9O0aVM0NDRo37699JpLJSQk4Orqirq6OvXq1cPDw4N79+4xdOhQ4uPjCQ8Pl+J+MdOtNIahQ4dibm7Ozz//TI8ePWjRogX29vbMmjWLmJiYCl9bdf0FJdd+u3bt0NDQQFdXlw4dOnD16tXX7hOAVatWYW5ujpqaGo0aNeKDDz5QOPeL40NZpVmX0dHRdOnSBXV1dVq1akVSUpJU5urVq3h7e1OvXj00NDSwsbFRyEo8d+4c3bt3R1NTk0aNGjFo0CDu3LkjHS8uLmbx4sWYmZmhqqpK8+bNWbBgAVCSGQ/g4OCATCbD1dW1wjY+efIkCxcuJCwsjM8//xxnZ2eMjY1xd3dnx44dDBkypMLnJScn4+7uToMGDdDR0cHFxYXTp09Lx6u77qpq2+rGu3v37uHv74++vj5yuRxzc3MiIiIU4ouJiVF4z8hkMgwMDDAwMMDc3Jz58+dTp04d0tPTFcq8mAmtq6srjTkVtWlVY8avv/6Kr68vurq66Onp0bt3b4X3R2kG7oIFC2jSpAmWlpa4uroSFhbG0aNHK+23jz76iJ49eyo89vTpUxo2bMjGjRulx8pen1lZWezbt48NGzbQvn17OnbsyIoVK4iKiuLGjZL/FG3dupU///yTr776ChsbGwYMGEBgYCBLly6V6gwPD8fT05PJkydjZWXFvHnzaN26NStXrpT6fdmyZUyfPp3evXtjZ2fH5s2buXHjhtS2NYnl1KlTFBUVMX/+fFq0aEHr1q0JDg4mNTVVGne3bNnCqFGj6N+/P6ampgwYMICRI0fy2WefSfG6urry/vvvY2VlRYsWLRg/fjx2dnYcO/Z//1l7UWV/A9euXYuhoSHq6ur4+vry4MEDqcyzZ88IDAxEV1eX+vXrM2XKFIYMGfK3uutBEARBEARBEKry+937HIpPZPRQPzTU1SssU3auYv7SVfTq3o2UuGiGDOhDcXExTRs3YtvaMM4cjuHTiaOZuWg53+/eB5T8n9l3+Hg6vetI8qEdxO/+muH+/aQ6h/7vE5o2bkTCj1Ek7f2W4LHDUa77fyuu/vH4MV+sieCr5aEcit7Er9fz+GTeEun4yg1fE752E6Ezg0g5GI27awf6DhvHxctXFV7D1HlhjB81lBP7v6N9m1b0HTqO33//XaHM5MmTCQsLIzk5GX19fby9vaXPIZcuXcLT05O+ffuSnp7O9u3bOXbsGOPGjVOoY8mSJbRq1YozZ84wY8aMl+2OGvtPTdLu3r0bb29vZDIZBQUFuLi4cP36dXbv3k1aWhohISEUFxcDsHPnTsaPH09QUBDnzp1j1KhRDBs2jMOHDyvUOWfOHHx9fUlPT8fLywt/f3/u3r2LoaEhO3bsACA7O5u8vDxpQio0NJTNmzezZs0aMjIymDhxIh9++CHx8fEKdU+bNo2wsDBSUlKoW7cuH330EVBy+2ZQUBA2NjZSNln//v0VXmfv3r0rbYdLly6xa9cuYmNjiY2NJT4+nkWLFgGQl5eHn58fH330EVlZWRw5coQ+ffrw/PlzoOSD/8yZM1mwYAFZWVksXLiQGTNmsGnTJoAq27W6uMsqKCigZ8+eWFtbc+rUKWbPnk1wcLBCmeLiYpo1a8Z3331HZmYmM2fO5NNPP+Xbb78FIDg4GF9fXzw9PaXzOTs7A6ClpUVkZCSZmZmEh4ezfv16vvjiC6luf39/mjVrRnJyMqdOneKTTz5BWVlZar+q3sTR0dE0a9aMuXPnSuctlZGRwe3bt+natWul/bNp0yY0NDQ4ceIEixcvZu7cuRw8eBAouY39iy++YO3atVy4cIFdu3Zha2srPXfcuHEkJSURFRVFeno6/fr1w9PTU7o9OTU1lW7dumFtbU1SUhLHjh3D29uboqIiwsPDcXJyIiAgQIq7dFmGslJTU8nIyCAoKIg6dcoPIWUnRF6mv549e4aPjw8uLi6kp6eTlJTEyJEjpUH+dfokJSWFwMBA5s6dS3Z2Nvv27aNz584K8ZUdHyozbdo0aXLJwsICPz8/nj17BsDYsWMpLCzk6NGjnD17ls8++wxNTU0A7t+/T9euXXFwcCAlJYV9+/Zx69YtfH19pbqnTp3KokWLmDFjBpmZmWzbto1GjRoBJZOvAIcOHSIvL6/SW/u3bt2KpqYmY8aMqfB4ZX3z8OFDhgwZwrFjxzh+/Djm5uZ4eXlJX95Udd1V17bVjXelr3fv3r1kZWWxevVqGjRoID2/uLiY2NjYSse0oqIiafxp3bp1hWUqUlGbVjZmPH36FA8PD7S0tPj5559JSEhAU1MTT09PhVtd4uLiyM7OljJKo6OjCQgIwMnJqdJ+GzFiBPv27VMYJ2JjY/njjz/Kjeul12dSUhK6uro4OjpKx93c3KhTp470RWNSUhKdO3dGRUVFKuPh4UF2djb37t2Tyri5uSnE4+HhIX35kJOTw82bNxXK6Ojo0L59e6lMTWJp06YNderUISIigqKiIh48eMCWLVtwc3OT3sOFhYWoqakpxCKXyzl58mSFt1s9f/5cau8X38vVuXjxIt9++y179uxh3759nDlzRuE989lnn7F161YiIiJISEggPz+/2qVPCgsLyc/PV/gRBEEQBEEQhNpy6Uouz58/x6KFscLjTd/pSH3zttQ3b8u0Bf+XwNHfpwdD+r+PqZEhzZs2RllZmZnB42jT6h1MmjfDr09PBvf3YceekrvY8h8+4kH+Q7q7udDCuDktzVswyLc3zZs2BuDX63l07eSEpZkpZqZG9PX2wM6mpXS+p0+fsWLRTNq0egcHW2s+HjqQI8f+b/mFZWsjCRrzEb69vbAwM2HBtEm0smnJiheyeT8eNpD3e7jT0rwFK0JnoK2lqZDsAjBr1izc3d2xtbVl06ZN3Lp1i507dwIln1f9/f2ZMGEC5ubmODs7s3z5cjZv3qxw92DXrl0JCgqiRYsWtGjR4jV6pmr/qY3DYmJipIm4bdu28dtvv5GcnIyenh6AdCstlMySDx06VPrgNmnSJI4fP86SJUukDFkoyZ7y8/MDYOHChSxfvpyTJ0/i6ekp1duwYUNpcqSwsJCFCxdy6NAhnJxKdrMzNTXl2LFjrF27FhcXF6nuBQsWSL9/8skn9OjRgydPniCXy9HU1KRu3boYGBgovMbr16+Tnp5O9+7dK22H4uJiIiMj0dLSAmDQoEHExcWxYMEC8vLyePbsGX369MHIyAhAYRJw1qxZhIWFSbepmpiYkJmZydq1axkyZEi17VpZ3C/atm0bxcXFbNy4ETU1NWxsbLh27Roff/yxVEZZWZk5c+ZIv5uYmJCUlMS3336Lr68vmpqayOVyCgsLy52v7LrExsbGBAcHExUVRUhICAC5ublMnjyZli1LBhFzc3OpfNk3cemx5cuX4+LiwurVq9HT00NJSQktLa1y542JicHDw0Nh4uRFdnZ2zJo1S6p75cqVxMXF4e7uTm5uLgYGBtLkRvPmzWnXrp0Uc0REBLm5uTRp0gQomajet28fERERLFy4kMWLF+Po6KiQ/WxjYyP9W0VFBXV19Sr7p3TCt7Rtaqq6/srPz+fBgwf07NlTGvSsrKyk8q/TJ7m5uWhoaNCzZ0+0tLQwMjLCwcFBIb6y40NlgoOD6dGjB1DyBY2NjQ0XL16kZcuW5Obm0rdvX+n9YmpqKj1v5cqVODg4sHDhQumxr776CkNDQ86fP0/jxo0JDw9n5cqVUrZrixYt6NixIwD6+voA1K9fv9q+MTU1lSa+aurFLw3WrVuHrq4u8fHx9OzZs9rrrrK2rcl4l5ubi4ODgzTJZ2xsrBDL8eMlf6jbt28vPfbgwQNpAvzx48coKyuzbt26l/pjWVmbVjRmfP311xQXF7NhwwZpEj8iIgJdXV2OHDnCe++9B4CGhgYbNmxQeH+rq6ujoqJSab85OztLd2qUjj8RERH069dPeo2geH3evHmz3C38devWRU9Pj5s3b0plSrOFS5VO+t+8eZN69epx8+ZN6bGyZcrWUfZ5lZWpLhYTExMOHDiAr68vo0aNoqioCCcnJ4VMcw8PDzZs2ICPjw+tW7fm1KlTbNiwgadPn3Lnzh0aNy75z96DBw9o2rQphYWFKCkpsWrVKtzd3Sts28o8efKEzZs307RpUwBWrFhBjx49CAsLw8DAgBUrVjB16lTef/99oOT9++JavS8KDQ1VGN8EQRAEQRAE4e/o5x++4Xnxc4b+bwqFhf+XcNK6lU25smsiv2FT1E5+vZ7H4ydP+PPpU1r9/4lWvXo6DPL1wdt/FN06OdG107v09fakcaOSz1mBIwfz8eRZbNuxh66d3qVPz/doYdxcqltdLlf43aBRA27fKdlDJf9hATdu3sapreJndidHB9IzFZe4a9+mlfTvunXr0qaVDVlZWYrP+/+fRaFkCTVLS0upTFpaGunp6WzdulUq8/z5c4qLi8nJyZHmJMompbxN/5lM2qysLG7cuEG3bt2AkmxABwcHaSKxovIdOnRQeKxDhw7lOtvOzk76t4aGBtra2ty+fbvSOC5evMgff/yBu7s7mpqa0s/mzZu5dOlSpXWXfkCtqm4oybbq2LFjpRlzUDIJUjpBW1p3ab2tWrWiW7du2Nra0q9fP9avXy9lXT169IhLly4xfPhwhdjnz58vxV5du1Zk9OjRCvVBSfuXrhlSquwbq9SXX35JmzZt0NfXR1NTk3Xr1pGbm1vtObdv306HDh0wMDBAU1OT6dOnKzxv0qRJjBgxAjc3NxYtWqTQN2lpaURGRirE7OHhIb2Jq/LibdsVKdvvoNg//fr14/Hjx5iamhIQEMDOnTulTM6zZ89SVFSEhYWFQmzx8fEK/VP6HnhVpVnVr6Kq/tLT02Po0KF4eHjg7e1NeHi4Qnbh6/SJu7s7RkZGmJqaMmjQILZu3coff/whPf/F8aEyVb0nAwMDmT9/Ph06dGDWrFkKt96npaVx+PBhhfhKJ5svXbpEVlYWhYWFtdY3t27dIiAgAHNzc3R0dNDW1qagoEDqm6quu6ratibj3ccff0xUVBT29vaEhISQmJioEFtMTAw9e/ZUyNrW0tIiNTWV1NRUzpw5w8KFCxk9erTC+qVvUlpaGhcvXkRLS0t6DXp6ejx58kThOrS1ta3yC5jKjBgxQlri4datW+zdu1e6cwJqfn3+Xd28eZOAgACGDBlCcnIy8fHxqKio8MEHH0jX7IwZM+jevTvvvvsuysrK9O7dW/rCoqK+T05OZsGCBUyaNKncki7Vad68uTRBCyV/W4qLi8nOzubBgwfcunVL+hICQElJiTZt2lRZ59SpU3nw4IH08+uvv75UTIIgCIIgCILwJrUwbo5MJuP8pSsKj5saGdLCpDlqaqoKj2uoyxV+/zbmRz6Zt4ShA/oQ+806Th7YwWDf9/nzz/+7y239F/OJ372Vdx3t+X73Pmw79eDEqTQAZgSN5cxPu+jerTNHEk7g0KU3MXsPSc9VVlbMGZXJZK811/CqCgoKGDVqlPT5MjU1lbS0NC5cuKCQBKShofGXxPOfmaTdvXs37u7u0qSfXC6v5hk182LGmkwmk5ZMqEjpjtc//PCDwkWQmZmpsE7ji3WXZm9VVTdUvd5pTWJWUlLi4MGD7N27F2tra1asWIGlpSU5OTlS7OvXr1eI/dy5c1K226u069y5cxXqq6moqCiCg4MZPnw4Bw4cIDU1lWHDhlW7015SUhL+/v54eXkRGxvLmTNnmDZtmsLzSjev6dGjBz/99BPW1tZSOnxN38QvKt3kqDQTszJV9Y+hoSHZ2dmsWrUKuVzOmDFj6Ny5M0+fPqWgoAAlJSVOnTqlEFtWVpa01MabuO4tLCwA+OWXX17qeTXpr4iICJKSknB2dmb79u1YWFhI19br9ImWlhanT5/mm2++oXHjxsycOZNWrVpx//59oPz4UJmq3pMjRozg8uXLDBo0iLNnz+Lo6MiKFSuk+Ly9vRXiS01N5cKFC3Tu3PmNjUcWFhZcvnz5pXfjHDJkCKmpqYSHh5OYmEhqair169eX+qaq666qtq3JeNe9e3dpDefSiciyS5tUNKbVqVMHMzMzzMzMsLOzY9KkSbi6uiqsX1rRH/lX3aW0oKCANm3alOu/8+fPM3DgQKncq/7hHjx4MJcvXyYpKYmvv/4aExMTOnXqJB1/8fo0MDAo94Xds2fPuHv3rpSxa2BgwK1btxTKlP5eXZmyx8s+r7Iy1cXy5ZdfoqOjw+LFi3FwcKBz5858/fXXxMXFSUsiyOVyvvrqK/744w+uXLlCbm6u9IViadYz/F/f29vbExQUxAcffEBoaGj1jfyWqaqqoq2trfAjCIIgCIIgCLWlvp4u3To7sSbiGx6VSVCqqaTkVN5tY8+ooQOwf8eKFibNuXy1fCKC/TtWhPwvgCO7t2Jjac72XT9Ix8xbGBM4cjA/fLOe3t3d2Lx9V43Ora2lSRODhiQlK+5LlJRyBisLxTmXk6f/Lznq2bNnnE7PVLgjF/7v7kwo2RPl/PnzUpnWrVuTmZkpfb4s+/MqCTiv6z8zSRsTE6OwpqGdnR2pqancvXu3wvJWVlYkJCQoPJaQkIC1tXWNz1naoUVFRdJj1tbWqKqqkpubW+4CqGj9z6rqLlsvlEwkHD58uMr1aGtCJpPRoUMH5syZw5kzZ1BRUWHnzp00atSIJk2acPny5XKxl95WW127VhR3w4YNFeqCkvZPT09XWAOk7BsLSvrD2dmZMWPG4ODggJmZWbls5IrOl5iYiJGREdOmTcPR0RFzc3Npc6qyLCwsmDhxIgcOHKBPnz5SpltN3sQVnXfPnj04Ozu/VJZxReRyOd7e3ixfvpwjR46QlJTE2bNncXBwoKioiNu3b5eLq3SyxM7Ojri4uErrrijuF9nb22NtbU1YWFiFXxqUTny+qCb9BSUbOU2dOpXExETeeecdtm3bJh17nT6pW7cubm5uLF68mPT0dK5cucJPP/0ElB8fXpWhoSGjR48mOjqaoKAg1q9fL8WXkZGBsbFxufg0NDQwNzdHLpdX2jcVjSUVGThwIAUFBeU28ytVVd8EBgbi5eWFjY0NqqqqCpuaQeXXHVTetjUd7/T19RkyZAhff/01y5YtY926dUDJ8g1Xr16t0e3sSkpKPH78WKHOspnYFy5cUMierqxNK3oPtG7dmgsXLpQbq8zMzNDR0ak2turUr18fHx8fIiIiiIyMZNiwYQrHX7w+nZycuH//PqdOnZIe++mnnyguLpaWhXBycuLo0aMKE9MHDx7E0tKSevXqSWVevOYOHjwo3bVgYmKCgYGBQpn8/HxOnDghlalJLH/88Ue59auVlJSA8l88Kisr06xZM5SUlIiKiiqXRf2i4uJiCgsLKz1ekdzcXGlTMyj521KnTh0sLS3R0dGhUaNGJCf/366wRUVFChvpCYIgCIIgCMI/QfjC6TwreoZz9/58F7OXXy5c4vzFHLbt2MP5iznS/8krYmbSnNPpGRw8ksCFS1eYvXgFp9LOScdzcq8xPfQLjqekcvXaDQ7GJ3Ax5yotzUx5/PgJE6YtID7xJFev3SAx+TSn0s7R0ty00vO9aOLoYYSt+orvYvZy/mIO0xd+QVrGL4wb/qFCuTWR3xCz9xDZFy8z/tMF3H+Qr3BXIpQkBsbFxXHu3DmGDh1KgwYNpE2Bp0yZQmJiIuPGjZMSqWJiYsptHPZX+U+sSXv79m1SUlLYvXu39Jifnx8LFy7Ex8eH0NBQGjduzJkzZ2jSpAlOTk5MnjwZX19fHBwccHNzY8+ePURHR3Po0KEqzqTIyMgImUxGbGwsXl5eyOVytLS0CA4OZuLEiRQXF9OxY0cePHhAQkIC2trale6+/iJjY2NycnJITU2lWbNmaGlpsW/fPiwsLMqt6fgyTpw4QVxcHO+99x4NGzbkxIkT/Pbbb9K3DHPmzCEwMBAdHR08PT0pLCwkJSWFe/fuMWnSpGrbtaK4VVVVy8UxcOBApk2bRkBAAFOnTuXKlSssWbJEoYy5uTmbN29m//79mJiYsGXLFpKTkxXWYTQ2Nmb//v1kZ2dTv359dHR0MDc3Jzc3l6ioKNq2bcsPP/wgZWRCyRqXkydP5oMPPsDExIRr166RnJxM3759gZI38bvvvsu4ceMYMWIEGhoaZGZmcvDgQWlXdGNjY44ePcqAAQNQVVWlQYMGNcpyrk5kZCRFRUW0b98edXV1vv76a+RyOUZGRtSvXx9/f38GDx5MWFgYDg4O/Pbbb8TFxWFnZ0ePHj2YOnUqtra2jBkzhtGjR6OiosLhw4fp168fDRo0wNjYmBMnTnDlyhXplu4XJ0hkMhkRERG4ubnRqVMnpk2bRsuWLSkoKGDPnj0cOHCg3CZ4NemvnJwc1q1bR69evWjSpAnZ2dlcuHCBwYMHv3afxMbGcvnyZTp37ky9evX48ccfKS4uxtLSssLx4VVMmDCB7t27Y2Fhwb179zh8+LD0vhk7dizr16/Hz8+PkJAQ9PT0uHjxIlFRUWzYsAE1NTWmTJlCSEgIKioqdOjQgd9++42MjAyGDx9Ow4YNkcvl7Nu3j2bNmqGmplbh5GD79u0JCQkhKCiI69ev8/7779OkSRMuXrzImjVr6NixI+PHj6+wb7Zs2YKjoyP5+flMnjxZIbu3quuuqratyXg3c+ZM2rRpg42NDYWFhcTGxkrtFhMTg5ubG+ov7Eb6/Plzab3Tx48fc/DgQfbv38/MmTOlMl27dmXlypU4OTlRVFTElClTFDKhK2vTisYMf39/Pv/8c3r37s3cuXNp1qwZV69eJTo6mpCQEJo1a/YaV06JESNG0LNnT4qKihT+DlR0fVpZWeHp6UlAQABr1qzh6dOnjBs3jgEDBkjrUQ8cOJA5c+YwfPhwpkyZwrlz5wgPD1dYd3n8+PG4uLgQFhZGjx49iIqKIiUlRZokl8lkTJgwgfnz52Nubo6JiQkzZsygSZMm0n9qahJLjx49+OKLL5g7dy5+fn48fPiQTz/9VGH94vPnz3Py5Enat2/PvXv3WLp0KefOnZM2hYOSdV8dHR1p0aIFhYWF/Pjjj2zZsoXVq1dLZaZOncr169fZvHlzpW2tpqbGkCFDWLJkCfn5+QQGBuLr6yt9mfW///2P0NBQzMzMaNmyJStWrODevXtVbiooCIIgCIIg/LecdH79zwBvWwvj5hzf/z2LV6xnxqJwrufdRFVFBSuLFkwYPZRRQwZU+twRH/qSeu4XPvw4GJlMhm/v7owc0p8DPx0DQF2uxvmLOfh9t5vf793HoKE+o4YOYMQgX549K+L3e/cZPv5Tbt/5nQZ69ejd3Y0ZQWNrHPvY4f48ePiQT+Yu4fbvv2Nl3oIdESsxMzVSKDf/04ks+XIjaRm/0MK4Od9HrFTYiBpg0aJFjB8/ngsXLmBvb8+ePXukpB07Ozvi4+OZNm0anTp14vnz57Ro0aLSTe7ftv/EJO2ePXto166dQkepqKhw4MABgoKC8PLy4tmzZ1hbW/Pll18C4OPjQ3h4OEuWLGH8+PGYmJgQERGBq6trjc/btGlT5syZwyeffMKwYcMYPHgwkZGRzJs3D319fUJDQ7l8+TK6urq0bt2aTz/9tMZ19+3bl+joaLp06cL9+/eJiIggLi7utScBtbW1OXr0KMuWLSM/Px8jIyPCwsKkjchGjBiBuro6n3/+OZMnT0ZDQwNbW1tpw6bq2rWiuIcOHVouDk1NTfbs2cPo0aNxcHDA2tqazz77TJqUAxg1ahRnzpyhf//+yGQy/Pz8GDNmDHv37pXKBAQEcOTIERwdHaVM4169ejFx4kTGjRtHYWEhPXr0YMaMGcyePRsoyfD6/fffGTx4MLdu3aJBgwb06dNH2hSmJm/iuXPnMmrUKGkyoaCggLi4OJYtW/Za/aOrq8uiRYuYNGkSRUVF2NrasmfPHurXrw+ULBcwf/58aZKuQYMGvPvuu/Ts2RMoyUQ9cOAAn376Ke3atUMul9O+fXtp87vg4GCGDBmCtbU1jx8/Jicnp8JJ/3bt2pGSksKCBQsICAiQNvZxdnau9DVW11/q6ur88ssvbNq0id9//53GjRszduxYRo0axbNnz16rT3R1dYmOjmb27Nk8efIEc3NzvvnmG2xsbNi4cWO58eFVFBUVMXbsWK5du4a2tjaenp7ShFiTJk1ISEhgypQpvPfeexQWFmJkZISnp6c0CT5jxgzq1q3LzJkzuXHjBo0bN2b06NFASabq8uXLmTt3LjNnzqRTp06VrsP52Wef0aZNG7788kvWrFlDcXExLVq04IMPPqj0S6CNGzcycuRIWrdujaGhIQsXLlRYcqCq666qtgWqHe9UVFSkL2LkcjmdOnUiKioKKJmkrSjm/Px8aU1gVVVVjIyMmDt3LlOmTJHKhIWFMWzYMDp16kSTJk0IDw9XyPasrE0rGjNcXV05evQoU6ZMoU+fPjx8+JCmTZvSrVu3N3Zbu5ubG40bN8bGxkaa3ISK/34BbN26lXHjxtGtWzfq1KlD3759Wb58uXRcR0eHAwcOMHbsWNq0aUODBg2YOXMmI0eOlMo4Ozuzbds2pk+fzqeffoq5uTm7du3inXfekcqEhITw6NEjRo4cyf379+nYsSP79u1TWBqkuli6du3Ktm3bWLx4MYsXL0ZdXR0nJyf27dsnfRlQVFREWFgY2dnZKCsr06VLFxITExXGn0ePHjFmzBiuXbuGXC6nZcuWfP311wpjb15eXrXrkpuZmdGnTx+8vLy4e/cuPXv2VMg+nzJlCjdv3mTw4MEoKSkxcuRIPDw8qsw0EARBEARBEIS/o8aN9Pli/qd8Mb/y+aYn18+Ve0xVVYX1X8xn/RfzFR6fP3UiAI30G/DtxuXlngegolKHLas+r/R8g/v7MLi/j8JjvTy7KcRRp04dpk8aw/RJYyqtB6ClmSk/x35TZZmOHTty7lz511iqbdu2HDhwoNLjV65cqbL+N0n2vDZW5v2L9erVi44dO0o7Z/8bPXv2jEaNGrF3716FDU+Ev4fo6GimT59OZmZmbYcivOC/MD78E5VO/F+7do1GjRrVdjhvXUFBAU2bNiUiIoI+ffpIj4vr8/WsXbuWefPmce3aNaBkbetdu3a91PrnxcXFWFlZ4evry7x582r0nPz8fHR0dDg31QotNTG5KwiCIAiC8E/0TKMxj5ynYNS0Iap1/zOrhf4jXPn1Oi3f9eDE/u9p9U5LhWOqTUoSho4cOUKXLl24d+8eurq6bzWeJ0+ekJOTg4mJSbm9bko/Gzx48KDaJJ//RCZtx44dpUzBf6u7d+8yceJE2rZtW9uhCBXQ1NRU2NRI+Pv4L4wP/0R3795l6dKl//oJ2uLiYu7cuUNYWBi6urrl7oYQ1+er+/XXX/nxxx+lrO6aunr1KgcOHMDFxYXCwkJWrlxJTk6OwiZxgiAIgiAIgiAIb9p/IpNWEARBEP6Orly5gomJCc2aNSMyMpJu3brVdkj/Gvr6+jRt2pTIyEjs7e2BmmXS/vrrrwwYMIBz587x/Plz3nnnHRYtWkTnzp1rfG6RSSsIgiAIgvDPJzJp/5lKM2n/Sm8qk1ZM0gqCIAiCILxBL/MfMUEQBEEQBOHvqaqJN0Eo601N0oqvAgRBEARBEARBEARBEAShAiK3UajOm7pGxCStIAiCIAiCIAiCIAiCIJShrKwMwB9//FHLkQh/d6XXSOk186r+ExuHCYIgCIIgCIIgCIIgCEJNKSkpoaury+3btwFQV1dHJpPVclTC38nz58/5448/uH37Nrq6uigpvd5+FGKSVhAEQRAEQRAEQRAEQRBeYGBgACBN1ApCRXR1daVr5XWISVpBEARBEIS3IDQ0FFVV1doOQxAEQRAEQXhNSkpKqKmpiUzaf4Bx48b9pedTVlZ+7QzaUmKSVhAEQRAEQRAEQRAEQRAqUVRUxKNHj2o7DKEG1NTUajuEVyY2DhMEQRAEQRAEQRAEQRAEQahFYpJWEARBEARBEARBEARBEAShFolJWuGNiIyMRFdXt7bDeCOuXLmCTCYjNTW1tkMRakD019/X7Nmzsbe3r+0w/tZEG71d/6a/TYIgCIIgCIIg/LuJSdq3ZNiwYUyfPv0vOdeRI0eQyWTcv3//jddd3QSCiYkJhw4don///pw/f/6Nn/9V/dUTH0OHDsXHx+cvO18pY2Njli1bVuGx+Ph4DA0NgdqLrzKurq5MmDChRmUvXrzIsGHDaNasGaqqqpiYmODn50dKSsrbDfItKjs+yGQydu3aVbsB/X8vO+G9Y8cOXF1d0dHRQVNTEzs7O+bOncvdu3ffbqBvyePHj9HQ0ODixYtERkYik8mwsrIqV+67775DJpNhbGz8UvW/bl+XvW7u3r2Lv78/2tra6OrqMnz4cAoKChTKp6en06lTJ9TU1DA0NGTx4sXl6vzuu+9o2bIlampq2Nra8uOPPyocf/78OTNnzqRx48bI5XLc3Ny4cOGCQpnqYnny5AlDhw7F1taWunXrVjgW5eXlMXDgQCwsLKhTp06F40Npn5T9qW69qb/b3yZBEARBEARBEITKiEnat6CoqIjY2Fh69epV26G8Venp6dy7dw8XFxfkcjkNGzas7ZCEMmJiYvD29q7tMF5LSkoKbdq04fz586xdu5bMzEx27txJy5YtCQoKqu3wXsm/ZXyYNm0a/fv3p23btuzdu5dz584RFhZGWloaW7Zsqe3wXsnBgwcxMjLCzMwMAA0NDW7fvk1SUpJCuY0bN9K8efO/NLYXrxt/f38yMjI4ePAgsbGxHD16lJEjR0rl8/Pzee+99zAyMuLUqVN8/vnnzJ49m3Xr1kllEhMT8fPzY/jw4Zw5cwYfHx98fHw4d+6cVGbx4sUsX76cNWvWcOLECTQ0NPDw8ODJkydSmepiKSoqQi6XExgYiJubW4Wvr7CwEH19faZPn06rVq0qbQdtbW3y8vKkn6tXr1bZbuJvkyAIgiAIgiAI/xRikvYtSExMRFlZmbZt2wJw7do1/Pz80NPTQ0NDA0dHR06cOCGVX716NS1atEBFRQVLS8tyExwymYwNGzbw/vvvo66ujrm5Obt37wZKMt+6dOkCQL169ZDJZAwdOhSA4uJiQkNDMTExQS6X06pVK77//nup3tIM3Li4OBwdHVFXV8fZ2Zns7GygJGtpzpw5pKWlSVlLkZGR0vNjYmLw9PREWVm53C2lpZmsW7ZswdjYGB0dHQYMGMDDhw+lMt9//z22trbI5XLq16+Pm5ubwm6JGzZswMrKCjU1NVq2bMmqVasU2qWydq0u7hedPHkSBwcH1NTUcHR05MyZMwrHi4qKGD58uNSOlpaWhIeHK7zWTZs2ERMTI53vyJEjAEyZMgULCwvU1dUxNTVlxowZPH36VHpuWloaXbp0QUtLC21tbdq0aaOQIXrs2DE6deqEXC7H0NCQwMBAqY1cXV25evUqEydOlM5b1u7duyudCHR1dSUwMJCQkBD09PQwMDBg9uzZ0vHnz58ze/ZsmjdvjqqqKk2aNCEwMFA6XlhYSHBwME2bNkVDQ4P27dtLr7lUQkICrq6uqKurU69ePTw8PLh37x5Dhw4lPj6e8PBwKe4rV66Ui/H58+cMHToUc3Nzfv75Z3r06EGLFi2wt7dn1qxZxMTEVPjaqusvKLn227Vrh4aGBrq6unTo0EGa7HmdPgFYtWoV5ubmqKmp0ahRIz744AOFc784PpRVmskaHR1Nly5dUFdXp1WrVgqThFevXsXb25t69eqhoaGBjY2NQvbjuXPn6N69O5qamjRq1IhBgwZx584d6XhxcTGLFy/GzMwMVVVVmjdvzoIFC4CSzHgABwcHZDIZrq6uFbbxyZMnWbhwIWFhYXz++ec4OztjbGyMu7s7O3bsYMiQIRU+Lzk5GXd3dxo0aICOjg4uLi6cPn1aOl7ddVdV21Y33t27dw9/f3/09fWRy+WYm5sTERGhEF9MTIzCe6Zu3boMHDiQr776Snrs2rVrHDlyhIEDB5Z7fVWN5aVZt++//36FWbhVjZWgeN1kZWWxb98+NmzYQPv27enYsSMrVqwgKiqKGzduALB161b+/PNPvvrqK2xsbBgwYACBgYEsXbpUqjM8PBxPT08mT56MlZUV8+bNo3Xr1qxcuVLqj2XLljF9+nR69+6NnZ0dmzdv5saNG1JGcE1i0dDQYPXq1QQEBGBgYFCu3UrbJzw8nMGDB6Ojo1NhGSj5e2hgYCD9NGrUqNKyUH65g9K/TWvXrsXQ0BB1dXV8fX158OCBVObZs2cEBgaiq6tL/fr1mTJlCkOGDPlb3Y0gCIIgCIIgCMK/j5ikfQt2796Nt7c3MpmMgoICXFxcuH79Ort37yYtLY2QkBCKi4sB2LlzJ+PHjycoKIhz584xatQohg0bxuHDhxXqnDNnDr6+vqSnp+Pl5YW/vz93797F0NCQHTt2AJCdnU1eXp40IRUaGsrmzZtZs2YNGRkZTJw4kQ8//JD4+HiFuqdNm0ZYWBgpKSnUrVuXjz76CCi5TTQoKAgbGxspa6l///4Kr7N3796VtsOlS5fYtWsXsbGxxMbGEh8fz6JFi4CSW1v9/Pz46KOPyMrK4siRI/Tp04fnz58DJRMMM2fOZMGCBWRlZbFw4UJmzJjBpk2bAKps1+riLqugoICePXtibW3NqVOnmD17NsHBwQpliouLadasGd999x2ZmZnMnDmTTz/9lG+//RaA4OBgfH198fT0lM7n7OwMgJaWFpGRkWRmZhIeHs769ev54osvpLr9/f1p1qwZycnJnDp1ik8++QRlZWWp/Tw9Penbty/p6els376dY8eOMW7cOACio6Np1qwZc+fOlc5bKiMjg9u3b9O1a9dK+2fTpk1oaGhw4sQJFi9ezNy5czl48CBQchv7F198wdq1a7lw4QK7du3C1tZWeu64ceNISkoiKiqK9PR0+vXrh6enp3QbdGpqKt26dcPa2pqkpCSOHTuGt7c3RUVFhIeH4+TkREBAgBR36bIMZaWmppKRkUFQUBB16pQfqipbZ7K6/nr27Bk+Pj64uLiQnp5OUlISI0eOlCa5X6dPUlJSCAwMZO7cuWRnZ7Nv3z46d+6sEF/Z8aEy06ZNIzg4mNTUVCwsLPDz8+PZs2cAjB07lsLCQo4ePcrZs2f57LPP0NTUBOD+/ft07doVBwcHUlJS2LdvH7du3cLX11eqe+rUqSxatIgZM2aQmZnJtm3bpImukydPAnDo0CHy8vKIjo6uML6tW7eiqanJmDFjKjxeWd88fPiQIUOGcOzYMY4fP465uTleXl7ShGRV1111bVvdeFf6evfu3UtWVharV6+mQYMG0vOLi4uJjY0tN6Z99NFHfPvtt/zxxx9AyaSfp6dnucnB6sby5ORkACIiIsjLy5N+h6rHylJlr5ukpCR0dXVxdHSUjru5uVGnTh3pC8CkpCQ6d+6MioqKVMbDw4Ps7Gzu3bsnlXkxs9XDw0P6UiAnJ4ebN28qlNHR0aF9+/ZSmZrE8iYVFBRgZGSEoaEhvXv3JiMj46XruHjxIt9++y179uxh3759nDlzRuFa/uyzz9i6dSsREREkJCSQn59f7TIVhYWF5OfnK/wIgiAIgiAIgiC8jLq1HcC/UUxMjDQRt23bNn777TeSk5PR09MDkG6lBViyZAlDhw6VPiBOmjSJ48ePs2TJEilDFkrWFPXz8wNg4cKFLF++nJMnT+Lp6SnV27BhQ2lypLCwkIULF3Lo0CGcnJwAMDU15dixY6xduxYXFxep7gULFki/f/LJJ/To0YMnT54gl8vR1NSkbt265bKfrl+/Tnp6Ot27d6+0HYqLi4mMjERLSwuAQYMGERcXx4IFC8jLy+PZs2f06dMHIyMjAIVJwFmzZhEWFkafPn2Akgy/zMxM1q5dy5AhQ6pt18riftG2bdsoLi5m48aNqKmpYWNjw7Vr1/j444+lMsrKysyZM0f63cTEhKSkJL799lt8fX3R1NRELpdTWFhY7nxl1yU2NjYmODiYqKgoQkJCAMjNzWXy5Mm0bNkSAHNzc6l8aGgo/v7+0tqM5ubmLF++HBcXF1avXo2enh5KSkpoaWmVO29MTAweHh4KEzQvsrOzY9asWVLdK1euJC4uDnd3d3JzczEwMMDNzQ1lZWWaN29Ou3btpJgjIiLIzc2lSZMmQMlE9b59+4iIiGDhwoUsXrwYR0dHhexnGxsb6d8qKiqoq6tX2T+lE76lbVNT1fVXfn4+Dx48oGfPnrRo0QJAYd3R1+mT3NxcNDQ06NmzJ1paWhgZGeHg4KAQX9nxoTLBwcH06NEDKPmCxsbGhosXL9KyZUtyc3Pp27ev9H4xNTWVnrdy5UocHBxYuHCh9NhXX32FoaEh58+fp3HjxoSHh7Ny5Uop27VFixZ07NgRAH19fQDq169fbd+YmppKk9c19eKXBuvWrUNXV5f4+Hh69uxZ7XVXWdvWZLzLzc3FwcFBmkx8MZP1+PHjALRv317hcQcHB0xNTfn+++8ZNGgQkZGRLF26lMuXLyuUq24sL21bXV3dcm1b1VhZqux1c/PmzXK38NetWxc9PT1u3rwplSnNjC5VOrF88+ZN6tWrx82bN8tNNjdq1EihjrLPq6xMdbG8KZaWlnz11VfY2dnx4MEDlixZgrOzMxkZGTRr1qzG9Tx58oTNmzfTtGlTAFasWEGPHj0ICwvDwMCAFStWMHXqVN5//32g5H314lq9LwoNDVUYdwRBEARBEARBEF6WyKR9w7Kysrhx4wbdunUDSrIBHRwcpInEisp36NBB4bEOHTqQlZWl8JidnZ30bw0NDbS1tbl9+3alcVy8eJE//vgDd3d3NDU1pZ/Nmzdz6dKlSutu3LgxQJV1Q0lWV8eOHavcNdvY2FiadCitu7TeVq1a0a1bN2xtbenXrx/r16+XsrsePXrEpUuXGD58uELs8+fPl2Kvrl0rMnr0aIX6oKT97ezsFDafKZ3kKevLL7+kTZs26Ovro6mpybp168jNza32nNu3b6dDhw4YGBigqanJ9OnTFZ43adIkRowYgZubG4sWLVLom7S0NCIjIxVi9vDwoLi4mJycnCrP++Jt2xUp2++g2D/9+vXj8ePHmJqaEhAQwM6dO6VMzrNnz1JUVISFhYVCbPHx8Qr9U/oeeFWlWdWvoqr+0tPTY+jQoXh4eODt7U14eLhCFvLr9Im7uztGRkaYmpoyaNAgtm7dKmVgQvnxoTJVvScDAwOZP38+HTp0YNasWaSnpyvEd/jwYYX4SiebL126RFZWFoWFhbXWN7du3SIgIABzc3N0dHTQ1tamoKBA6puqrruq2rYm493HH39MVFQU9vb2hISEkJiYqBBbTEwMPXv2rDBr+6OPPiIiIoL4+HgePXqEl5dXuTI1HcsrUtVYWVp3Ta6bfzsnJycGDx6Mvb09Li4uREdHo6+vz9q1a1+qnubNm0sTtKX1FhcXk52dzYMHD7h165b05QCAkpISbdq0qbLOqVOn8uDBA+nn119/fbkXJwiCIAiCIAjCf56YpH3Ddu/ejbu7uzTpJ5fL30i9L2asyWQyacmEipTurP3DDz+Qmpoq/WRmZiqs0/hi3aW3YFdVN1S93mlNYlZSUuLgwYPs3bsXa2trVqxYgaWlJTk5OVLs69evV4j93LlzUrbbq7Tr3LlzFeqrqaioKIKDgxk+fDgHDhwgNTWVYcOG8eeff1b5vKSkJPz9/fHy8iI2NpYzZ84wbdo0hefNnj2bjIwMevTowU8//YS1tTU7d+4ESvpw1KhRCjGnpaVx4cIFKQO0Inl5eZw5c0bKxKxMVf1jaGhIdnY2q1atQi6XM2bMGDp37szTp08pKChASUmJU6dOKcSWlZUlLbXxJq57CwsLAH755ZeXel5N+isiIoKkpCScnZ3Zvn07FhYW0rX1On2ipaXF6dOn+eabb2jcuDEzZ86kVatW3L9/Hyg/PlSmqvfkiBEjuHz5MoMGDeLs2bM4OjqyYsUKKT5vb2+F+FJTU7lw4QKdO3d+Y+ORhYUFly9fVlhfuSaGDBlCamoq4eHhJCYmkpqaSv369aW+qeq6q6ptazLede/eXVrDuXTCs+zSJlWNaf7+/hw/fpzZs2czaNAg6tZ9szehVDe+v3jdGBgYlPsi7dmzZ9y9e1fK0jUwMODWrVsKZUp/r65M2eNln1dZmepieVuUlZVxcHDg4sWLb/U8NaGqqoq2trbCjyAIgiAIgiAIwssQk7RvWExMjMKahnZ2dqSmpnL37t0Ky1tZWZGQkKDwWEJCAtbW1jU+Z+kt7UVFRdJj1tbWqKqqkpubi5mZmcJPRet/VlV32XqhZCLo8OHDVa5HWxMymYwOHTowZ84czpw5g4qKCjt37qRRo0Y0adKEy5cvl4u99Pbd6tq1orgbNmyoUBeUtH96errCTuWlk3WlEhIScHZ2ZsyYMTg4OGBmZlYuG7mi8yUmJmJkZMS0adNwdHTE3Ny8wp3ILSwsmDhxIgcOHKBPnz7SZkatW7cmMzOzXBuYmZlJfV7Reffs2YOzs/NLZRlXRC6X4+3tzfLlyzly5AhJSUmcPXsWBwcHioqKuH37drm4Sidl7OzsiIuLq7TuiuJ+kb29PdbW1oSFhVX4pUHpxOeLatJfUHIb+9SpU0lMTOSdd95h27Zt0rHX6ZO6devi5ubG4sWLSU9P58qVK/z0009A+fHhVRkaGjJ69Giio6MJCgpi/fr1UnwZGRkYGxuXi09DQwNzc3PkcnmlfVPRWFKRgQMHUlBQUG4zv1JV9U1gYCBeXl7Y2NigqqqqsKkZVH7dQeVtW9PxTl9fnyFDhvD111+zbNky1q1bB5Qs33D16lXc3d0rjFtPT49evXoRHx8vrdn9opqM5crKytW2bUVevG6cnJy4f/8+p06dkh776aefKC4ulpZrcHJy4ujRowoT6QcPHsTS0pJ69epJZV68Fg4ePCjdTWBiYoKBgYFCmfz8fE6cOCGVqUksb0tRURFnz56Vss1rKjc3V9rUDErG/Dp16mBpaYmOjg6NGjVSWDO4qKhIYYM7QRAEQRAEQRCEt0FM0r5Bt2/fJiUlhZ49e0qP+fn5YWBggI+PDwkJCVy+fJkdO3ZIm65MnjyZyMhIVq9ezYULF1i6dCnR0dHlNq+qipGRETKZjNjYWH777TcKCgrQ0tIiODiYiRMnsmnTJi5dusTp06dZsWKFtPlWTRgbG5OTk0Nqaip37tyhsLCQffv2YWFhUW5Nx5dx4sQJFi5cSEpKCrm5uURHR/Pbb79Ja4POmTOH0NBQli9fzvnz5zl79iwRERHSzuTVtWtFcVdk4MCByGQyAgICyMzM5Mcff2TJkiUKZczNzUlJSWH//v2cP3+eGTNmKHyALz1feno62dnZ3Llzh6dPn2Jubk5ubi5RUVFcunSJ5cuXSxmZAI8fP2bcuHEcOXKEq1evkpCQQHJystQGU6ZMITExkXHjxknZkDExMdImVaXnPXr0KNevX5cmu2qS5VydyMhINm7cyLlz57h8+TJff/01crkcIyMjLCws8Pf3Z/DgwURHR5OTk8PJkycJDQ3lhx9+AEpu/U1OTmbMmDGkp6fzyy+/sHr1ailGY2NjTpw4wZUrV7hz506Fk7AymYyIiAjOnz9Pp06d+PHHH7l8+TLp6eksWLCg0snO6vorJyeHqVOnkpSUxNWrVzlw4AAXLlzAysrqtfskNjaW5cuXk5qaytWrV9m8eTPFxcVYWlpWOD68igkTJrB//35ycnI4ffo0hw8fluIbO3Ysd+/exc/Pj+TkZC5dusT+/fsZNmwYRUVFqKmpMWXKFEJCQqSlAI4fP87GjRuBki8y5HK5tOFY2R3vy2rfvj0hISEEBQUREhIitWVcXBz9+vWrdIwxNzdny5YtZGVlceLECfz9/RWye6u67qpq25qMdzNnziQmJoaLFy+SkZFBbGys1G4xMTG4ubmhrq5eabtHRkZy586dStdIrslYbmxsTFxcHDdv3pSWd6lORdeNlZUVnp6eBAQEcPLkSRISEhg3bhwDBgyQ1okeOHAgKioqDB8+nIyMDLZv3054eDiTJk2S6hk/fjz79u0jLCyMX375hdmzZ5OSkiJdzzKZjAkTJjB//nx2797N2bNnGTx4ME2aNMHHx6fGsQBkZmZKX6w9ePCgwjsaSh8rKCjgt99+k7KhS82dO5cDBw5w+fJlTp8+zYcffsjVq1cZMWKEVGbq1KkMHjy4yjZVU1NjyJAhpKWl8fPPPxMYGIivr6/0JdP//vc/QkNDiYmJITs7m/Hjx3Pv3r0qN/sTBEEQBEEQBEF4XWKS9g3as2cP7dq1U9gxXEVFhQMHDtCwYUO8vLywtbVl0aJFKCkpAeDj40N4eDhLlizBxsaGtWvXEhERgaura43P27RpU+bMmcMnn3xCo0aNpA/Y8+bNY8aMGYSGhkofpH/44Ydym8lUpW/fvnh6ekob33zzzTc1Wu+0Otra2hw9ehQvLy8sLCyYPn06YWFh0kZkI0aMYMOGDURERGBra4uLiwuRkZFS7NW1a0VxV0RTU5M9e/ZIGaLTpk3js88+UygzatQo+vTpQ//+/Wnfvj2///57uV3tAwICsLS0xNHREX19fRISEujVqxcTJ05k3Lhx2Nvbk5iYyIwZM6TnKCkp8fvvvzN48GAsLCzw9fWle/fu0uYzdnZ2xMfHS5OUDg4OzJw5U2HiY+7cuVy5coUWLVqgr6/Po0ePiIuLe+3+0dXVZf369XTo0AE7OzsOHTrEnj17qF+/PlCyXMDgwYMJCgrC0tISHx8fkpOTad68OVCSiXrgwAHS0tJo164dTk5OxMTESLeJBwcHo6SkhLW1Nfr6+pWu79uuXTtSUlIwMzMjICAAKysrevXqRUZGBsuWLavwOdX1l7q6Or/88gt9+/bFwsKCkSNHMnbsWEaNGvXafaKrq0t0dDRdu3bFysqKNWvW8M0332BjY1Ph+PAqioqKGDt2rPSetrCwkDJamzRpQkJCAkVFRbz33nvY2toyYcIEdHV1pbVWZ8yYQVBQEDNnzsTKyor+/ftLt6vXrVuX5cuXs3btWpo0aVJl1u9nn33Gtm3bOHHiBB4eHtjY2DBp0iTs7OykTcletHHjRu7du0fr1q0ZNGgQgYGBCptOVXXdVdW2UP14p6KiwtSpU7Gzs6Nz584oKSkRFRUF1GwNZ7lcLl3/FanJWB4WFsbBgwcxNDQst6FcZSq7brZu3UrLli3p1q0bXl5edOzYUcoMBtDR0eHAgQPk5OTQpk0bqc9HjhwplXF2dmbbtm2sW7eOVq1a8f3337Nr1y7eeecdqUxISAj/+9//GDlyJG3btqWgoIB9+/YpLNlRXSwAXl5eODg4sGfPHo4cOYKDg0O5Nih97NSpU2zbtg0HBweF9X/v3bsnjQNeXl7k5+eTmJiokK2cl5dX7XrhZmZm9OnTBy8vL9577z3s7OwUssKnTJmCn58fgwcPxsnJSVp7urplSgRBEARBEARBEF6H7Pnr7M4jKOjVqxcdO3YkJCSktkN5a549e0ajRo3Yu3evwsYqwt9DdHQ006dPV8g+E/4e/gvjwz/RnTt3aNy4MdeuXaNRo0a1HU454rp5PWvXrmXevHlcu3YNKFlzeteuXS+1LnlxcTFWVlb4+voyb968Gj0nPz8fHR0dPvnkE1RVVV8ldEEQBEEQBEEQXsHs2bNrOwQFpZ8NHjx4UO3eFW9295P/uI4dO+Ln51fbYbxVd+/eZeLEibRt27a2QxEqoKmpWS4TWPh7+C+MD/9Ed+/eZenSpX/LCVoQ183r+PXXX/nxxx+lbOuaKl0GxcXFhcLCQlauXElOTg4DBw58S5EKgiAIgiAIgiCITFpBEARBEP6F9PX1adq0KZGRkdjb2wM1y6T99ddfGTBgAOfOneP58+e88847LFq0iM6dO9f43CKTVhAEQRAEQRBqxz85k1ZM0gqCIAiCILxBL/MfMUEQBEEQBEEQ/r1e5rOB2DhMEARBEARBEARBEARBEAShFolJWkEQBEEQBEEQBEEQBEEQhFokJmkFQRAEQRAEQRAEQRAEQRBqkZikFQRBEARBEARBEARBEARBqEV1azsAQRAEQRCEf6O1n+5Frqpe22EIgiAIgiAIwn/GuDDv2g7hlYlMWkEQBEEQBEEQBEEQBEEQhFokJmkFQRAEQRAEQRAEQRAEQRBqkZikFQRBEARBEARBEARBEARBqEVikvZfIDIyEl1d3doO4424cuUKMpmM1NTU2g5FqAHRX39fs2fPxt7evrbDEICEhARsbW1RVlbGx8eHI0eOIJPJuH//fm2H9p9gbGzMsmXLajsMQRAEQRAEQRCEKv0rJ2mHDRvG9OnT/5Jzvc0P29VNspiYmHDo0CH69+/P+fPn3/j5X9VfPTk0dOhQfHx8/rLzlarqg398fDyGhoZA7cVXGVdXVyZMmFCjshcvXmTYsGE0a9YMVVVVTExM8PPzIyUl5e0G+RaVHR9kMhm7du2q3YD+v5ed8N6xYweurq7o6OigqamJnZ0dc+fO5e7du2830Lfk8ePHaGhocPHiRSIjI5HJZMhkMpSUlKhXrx7t27dn7ty5PHjwoLZDfWmTJk3C3t6enJwcIiMjX7mesm0EJX9/WrdujaqqKmZmZhXW/eWXX2JsbIyamhrt27fn5MmTCsefPHnC2LFjqV+/PpqamvTt25dbt24plMnNzaVHjx6oq6vTsGFDJk+ezLNnzxTKVBfL6tWrsbOzQ1tbG21tbZycnNi7d690/O7du/zvf//D0tISuVxO8+bNCQwMrLC/IyMjsbOzQ01NjYYNGzJ27Ngq2y05OZmRI0dWWUYQBEEQBEEQBKG2/esmaYuKioiNjaVXr161HcpblZ6ezr1793BxcUEul9OwYcPaDkkoIyYmBm/vf+6OggApKSm0adOG8+fPs3btWjIzM9m5cyctW7YkKCiotsN7Jf+W8WHatGn079+ftm3bsnfvXs6dO0dYWBhpaWls2bKltsN7JQcPHsTIyAgzMzMAtLW1ycvL49q1ayQmJjJy5Eg2b96Mvb09N27cqLSeP//8868KucYuXbpE165dadas2Wvd9VC2jXJycujRowddunQhNTWVCRMmMGLECPbv3y+V3759O5MmTWLWrFmcPn2aVq1a4eHhwe3bt6UyEydOZM+ePXz33XfEx8dz48YN+vTpIx0vKiqiR48e/PnnnyQmJrJp0yYiIyOZOXOmVKYmsTRr1oxFixZx6tQpUlJS6Nq1K7179yYjIwOAGzducOPGDZYsWcK5c+eIjIxk3759DB8+XKENli5dyrRp0/jkk0/IyMjg0KFDeHh4VNlu+vr6qKurv1qjC4IgCIIgCIIg/EX+dZO0iYmJKCsr07ZtWwCuXbuGn58fenp6aGho4OjoyIkTJ6Tyq1evpkWLFqioqGBpaVlugkMmk7Fhwwbef/991NXVMTc3Z/fu3UBJ5luXLl0AqFevHjKZjKFDhwJQXFxMaGgoJiYmyOVyWrVqxffffy/VW5qBGxcXh6OjI+rq6jg7O5OdnQ2UZArNmTOHtLQ0KaOsbGZSTEwMnp6eKCsrl1vuoDSTdcuWLRgbG6Ojo8OAAQN4+PChVOb777/H1tYWuVxO/fr1cXNz49GjR9LxDRs2YGVlhZqaGi1btmTVqlUK7VJZu1YX94tOnjyJg4MDampqODo6cubMGYXjRUVFDB8+XGpHS0tLwsPDFV7rpk2biImJkc535MgRAKZMmYKFhQXq6uqYmpoyY8YMnj59Kj03LS2NLl26oKWlhba2Nm3atFHIED127BidOnVCLpdjaGhIYGCg1Eaurq5cvXqViRMnSucta/fu3ZVOBLq6uhIYGEhISAh6enoYGBgwe/Zs6fjz58+ZPXs2zZs3R1VVlSZNmhAYGCgdLywsJDg4mKZNm6KhoUH79u2l11wqISEBV1dX1NXVqVevHh4eHty7d4+hQ4cSHx9PeHi4FPeVK1fKxfj8+XOGDh2Kubk5P//8Mz169KBFixbY29sza9YsYmJiKnxt1fUXlFz77dq1Q0NDA11dXTp06MDVq1dfu08AVq1ahbm5OWpqajRq1IgPPvhA4dwvjg9llWayRkdH06VLF9TV1WnVqhVJSUlSmatXr+Lt7U29evXQ0NDAxsaGH3/8UTp+7tw5unfvjqamJo0aNWLQoEHcuXNHOl5cXMzixYsxMzNDVVWV5s2bs2DBAqAkMx7AwcEBmUyGq6trhW188uRJFi5cSFhYGJ9//jnOzs4YGxvj7u7Ojh07GDJkSIXPS05Oxt3dnQYNGqCjo4OLiwunT5+Wjld33VXVttWNd/fu3cPf3x99fX3kcjnm5uZEREQoxBcTE6PwnpHJZBgYGNC4cWOsrKwYPnw4iYmJFBQUEBISIpVzdXVl3LhxTJgwgQYNGkgTdkuXLsXW1hYNDQ0MDQ0ZM2YMBQUFCudcv349hoaGqKur8/7777N06dJyk6iv+zdCJpPx+++/89FHH1U4Hj569AhtbW2F9gLYtWsXGhoaCuN22TZas2YNJiYmhIWFYWVlxbhx4/jggw/44osvpPJLly4lICCAYcOGYW1tzZo1a1BXV+err74C4MGDB2zcuJGlS5fStWtX2rRpQ0REBImJiRw/fhyAAwcOkJmZyddff429vT3du3dn3rx5fPnll9KEeE1i8fb2xsvLC3NzcywsLFiwYAGamprSed555x127NiBt7c3LVq0oGvXrixYsIA9e/ZIWbv37t1j+vTpbN68mYEDB9KiRQvs7Oyq/dLlxbseZDIZq1evpnv37sjlckxNTcu1f2JiIvb29tLfpl27domlXQRBEARBEARBeKv+dZO0u3fvxtvbG5lMRkFBAS4uLly/fp3du3eTlpZGSEgIxcXFAOzcuZPx48cTFBTEuXPnGDVqFMOGDePw4cMKdc6ZMwdfX1/S09Px8vLC39+fu3fvYmhoyI4dOwDIzs4mLy9PmpAKDQ1l8+bNrFmzhoyMDCZOnMiHH35IfHy8Qt3Tpk0jLCyMlJQU6taty0cffQRA//79CQoKwsbGhry8PPLy8ujfv7/C6+zdu3el7XDp0iV27dpFbGwssbGxxMfHs2jRIgDy8vLw8/Pjo48+IisriyNHjtCnTx+eP38OwNatW5k5cyYLFiwgKyuLhQsXMmPGDDZt2gRQZbtWF3dZBQUF9OzZE2tra06dOsXs2bMJDg5WKFNcXEyzZs347rvvyMzMZObMmXz66ad8++23AAQHB+Pr64unp6d0PmdnZwC0tLSIjIwkMzOT8PBw1q9frzBp4O/vT7NmzUhOTubUqVN88sknKCsrS+3n6elJ3759SU9PZ/v27Rw7doxx48YBEB0dTbNmzZg7d6503lIZGRncvn2brl27Vto/mzZtQkNDgxMnTrB48WLmzp3LwYMHgZLb2L/44gvWrl3LhQsX2LVrF7a2ttJzx40bR1JSElFRUaSnp9OvXz88PT25cOECAKmpqXTr1g1ra2uSkpI4duwY3t7eFBUVER4ejpOTEwEBAVLcpcsylJWamkpGRgZBQUHUqVN+mKgsG7C6/nr27Bk+Pj64uLiQnp5OUlISI0eOlCa5X6dPUlJSCAwMZO7cuWRnZ7Nv3z46d+6sEF/Z8aEy06ZNIzg4mNTUVCwsLPDz85MmicaOHUthYSFHjx7l7NmzfPbZZ2hqagJw//59unbtioODAykpKezbt49bt27h6+sr1T116lQWLVrEjBkzyMzMZNu2bTRq1AhAug390KFD5OXlER0dXWF8W7duRVNTkzFjxlR4vLK+efjwIUOGDOHYsWMcP34cc3NzvLy8pEnAqq676tq2uvGu9PXu3buXrKwsVq9eTYMGDaTnFxcXExsbW+WYBtCwYUP8/f3ZvXs3RUVF0uObNm1CRUWFhIQE1qxZA0CdOnVYvnw5GRkZbNq0iZ9++klhcjchIYHRo0czfvx4UlNTcXd3lybMS72JvxF5eXloa2uzbNmyCsdDDQ0NBgwYUG7SOiIigg8++AAtLa0K2ygpKQk3NzeF53h4eEhfKvz555+cOnVKoUydOnVwc3OTypw6dYqnT58qlGnZsiXNmzeXyiQlJWFraytdp6Xnyc/Pl7Jgq4vlRUVFRURFRfHo0SOcnJwqLAMlk8ja2trUrVsXKMkkLi4u5vr161hZWdGsWTN8fX359ddfK62jMjNmzKBv376kpaXh7+/PgAEDyMrKAiA/Px9vb29sbW05ffo08+bNY8qUKVXWV1hYSH5+vsKPIAiCIAiCIAjCy6hb2wG8aTExMdJE3LZt2/jtt99ITk5GT08PQLqVFmDJkiUMHTpUmuyYNGkSx48fZ8mSJVKGLJSsKern5wfAwoULWb58OSdPnsTT01Oqt2HDhtLkSGFhIQsXLuTQoUPSB1BTU1OOHTvG2rVrcXFxkepesGCB9Psnn3xCjx49ePLkCXK5HE1NTerWrYuBgYHCa7x+/Trp6el079690nYoLi4mMjJS+oA/aNAg4uLiWLBgAXl5eTx79ow+ffpgZGQEoDAJOGvWLMLCwqRbXk1MTMjMzGTt2rUMGTKk2natLO4Xbdu2jeLiYjZu3Iiamho2NjZcu3aNjz/+WCqjrKzMnDlzpN9NTExISkri22+/xdfXF01NTeRyOYWFheXOV3ZdYmNjY4KDg4mKipImanJzc5k8eTItW7YEwNzcXCofGhqKv7+/tHarubk5y5cvx8XFhdWrV6Onp4eSkhJaWlrlzhsTE4OHhwcqKiqVvnY7OztmzZol1b1y5Uri4uJwd3cnNzcXAwMD3NzcUFZWpnnz5rRr106KOSIigtzcXJo0aQKUTFTv27ePiIgIFi5cyOLFi3F0dFTIfraxsZH+raKigrq6epX9UzrhW9o2NVVdf+Xn5/PgwQN69uxJixYtALCyspLKv06f5ObmoqGhQc+ePdHS0sLIyAgHBweF+MqOD5UJDg6mR48eQMnkm42NDRcvXqRly5bk5ubSt29f6f1iamoqPW/lypU4ODiwcOFC6bGvvvoKQ0NDzp8/T+PGjQkPD2flypVStmuLFi3o2LEjUHJLNkD9+vWr7RtTU1Np8rqmXvzSYN26dejq6hIfH0/Pnj2rve4qa9uajHe5ubk4ODjg6OgIlLwfyyrNpmzfvn21r6Nly5Y8fPiQ33//XVrmxdzcnMWLFyuUK7vusrGxMfPnz2f06NHS+2LFihV0795d+mLIwsKCxMREYmNjpee9ib8RBgYGyGQydHR0Ku3XESNG4OzsTF5eHo0bN+b27dv8+OOPHDp0qNI2unnzpsLEKUCjRo3Iz8/n8ePH3Lt3j6KiogrL/PLLL1IdKioq5Sb2GzVqxM2bN6s8T+mxmsQil8sBOHv2LE5OTjx58gRNTU127tyJtbV1hW1y584d5s2bp7CW7OXLlykuLmbhwoWEh4ejo6PD9OnTcXd3Jz09vcox90X9+vVjxIgRAMybN4+DBw+yYsUKVq1axbZt25DJZKxfvx41NTWsra25fv06AQEBldYXGhqqMPYJgiAIgiAIgiC8rH9VJm1WVhY3btygW7duQEk2oIODgzSRWFH5Dh06KDzWoUMHKZumlJ2dnfRvDQ0NtLW1Fdb0e9HFixf5448/cHd3R1NTU/rZvHkzly5dqrTuxo0bA1RZN5RkA3bs2LHKtQ2NjY2lCdrSukvrbdWqFd26dcPW1pZ+/fqxfv167t27B5Tcenvp0iWGDx+uEPv8+fOl2Ktr14qMHj1aoT4oaf/SzV9KVZRV9eWXX9KmTRv09fXR1NRk3bp15ObmVnvO7du306FDBwwMDNDU1GT69OkKz5s0aRIjRozAzc2NRYsWKfRNWloakZGRCjF7eHhQXFxMTk5Oled98bbtipTtd1Dsn379+vH48WNMTU0JCAhg586dUibn2bNnKSoqwsLCQiG2+Ph4hf4pfQ+8qtKs6ldRVX/p6ekxdOhQPDw88Pb2Jjw8XCEL+XX6xN3dHSMjI0xNTRk0aBBbt27ljz/+kJ7/4vhQmarek4GBgcyfP58OHTowa9Ys0tPTFeI7fPiwQnylk82XLl0iKyuLwsLCWuubW7duERAQgLm5OTo6Omhra1NQUCD1TVXXXVVtW5Px7uOPPyYqKgp7e3tCQkJITExUiC0mJoaePXtWmLVd2esvmw3dpk2bcuUOHTpEt27daNq0KVpaWgwaNIjff/9dijs7O1uahC714u9v62/Ei9q1a4eNjY10t8LXX3+NkZGRQrbyy7TR35WlpSWpqamcOHGCjz/+mCFDhpCZmVmuXH5+Pj169MDa2lphKZji4mKePn3K8uXL8fDw4N133+Wbb77hwoUL5bKbq/Pi3xonJyepX7Ozs8v9bXrx2njR1KlTefDggfTzKtm9giAIgiAIgiD8t/1zP+1VYPfu3bi7u0sfrEqzd17XixlrMplMWjKhIqXrHv7www+kpqZKP5mZmeXWvStbd+mkQ1V1Q9XrndYkZiUlJQ4ePMjevXuxtrZmxYoVWFpakpOTI8W+fv16hdjPnTsnZXK9SrvOnTtXob6aioqKIjg4mOHDh3PgwAFSU1MZNmxYtZsDJSUl4e/vj5eXF7GxsZw5c4Zp06YpPG/27NlkZGTQo0cPfvrpJ6ytrdm5cydQ0oejRo1SiDktLY0LFy5IGaAVycvL48yZM1ImZmWq6h9DQ0Oys7NZtWoVcrmcMWPG0LlzZ54+fUpBQQFKSkqcOnVKIbasrCxpqY03cd1bWFgASBl3NVWT/oqIiCApKQlnZ2e2b9+OhYWFdG29Tp9oaWlx+vRpvvnmGxo3bszMmTNp1aoV9+/fB8qPD5Wp6j05YsQILl++zKBBgzh79iyOjo6sWLFCis/b21shvtTUVC5cuEDnzp3f2HhkYWHB5cuXFdZXrokhQ4aQmppKeHg4iYmJpKamUr9+falvqrruqmrbmox33bt3l9ZwLp0oL7u0SU3GtFJZWVloa2tTv3596TENDQ2FMleuXKFnz57Y2dmxY8cOTp06xZdffgm8nY3FXvZvREVGjBghrVcbERHBsGHDFCaiX2wjAwMDbt26pVDHrVu30NbWRi6X06BBA5SUlCosU5rRa2BgwJ9//im9RyorU1EdpcdqEkspFRUVzMzMaNOmDaGhobRq1arcmtUPHz7E09MTLS0tdu7cqdC2pV+alM2+1dfXp0GDBjX64u5tUlVVRVtbW+FHEARBEARBEAThZfyrJmljYmIU1jS0s7MjNTWVu3fvVljeysqKhIQEhccSEhIqvf2yIqW3V5ZdH9Ha2hpVVVVyc3MxMzNT+Klo/c+q6i5bL5RMBB0+fLjatRurI5PJ6NChA3PmzOHMmTOoqKiwc+dOGjVqRJMmTbh8+XK52Es3NqquXSuKu2HDhgp1QUn7p6en8+TJE6lc6WRdqYSEBJydnRkzZgwODg6YmZmVy0au6HyJiYkYGRkxbdo0HB0dMTc3lzanKsvCwoKJEydy4MAB+vTpI60L2bp1azIzM8u1gZmZmdTnFZ13z549ODs7v1SWcUXkcjne3t4sX76cI0eOkJSUxNmzZ3FwcKCoqIjbt2+Xi6t0wsTOzo64uLhK664o7hfZ29tjbW1NWFhYhZNNL07qlKpJf0HJ5lhTp04lMTGRd955h23btknHXqdP6tati5ubG4sXLyY9PZ0rV67w008/AeXHh1dlaGjI6NGjiY6OJigoiPXr10vxZWRkYGxsXC4+DQ0NzM3NkcvllfZNRWNJRQYOHEhBQUG5zfxKVdU3gYGBeHl5YWNjg6qqqsKmZlD5dQeVt21Nxzt9fX2GDBnC119/zbJly1i3bh1QsnzD1atXcXd3r/J1Q0lG87Zt2/Dx8akyo/TUqVMUFxcTFhbGu+++i4WFBTdu3FAoY2lpSXJyssJjL/7+Jv5G1NSHH37I1atXWb58OZmZmQobwFXURk5OTuWupYMHD0oZoioqKrRp00ahTHFxMXFxcVKZNm3aoKysrFAmOzub3NxcqYyTkxNnz55VyAw+ePAg2traUjtUF0tliouLKSwslH7Pz8/nvffeQ0VFhd27d5f7QqU0q7l0g02Au3fvcufOHWnpnpp68W/N8ePHpaVXLC0tOXv2rEJsL14bgiAIgiAIgiAIb9q/ZpL29u3bpKSk0LNnT+kxPz8/DAwM8PHxISEhgcuXL7Njxw5pM5PJkycTGRnJ6tWruXDhAkuXLiU6Orrc5lVVMTIyQiaTERsby2+//UZBQQFaWloEBwczceJENm3axKVLlzh9+jQrVqyQbmetCWNjY3JyckhNTeXOnTsUFhayb98+LCwsyq3p+DJOnDjBwoULSUlJITc3l+joaH777TfpA+qcOXMIDQ1l+fLlnD9/nrNnzxIREcHSpUuB6tu1orgrMnDgQGQyGQEBAWRmZvLjjz+yZMkShTLm5uakpKSwf/9+zp8/z4wZM8p9WDY2NiY9PZ3s7Gzu3LnD06dPMTc3Jzc3l6ioKC5dusTy5culjEyAx48fM27cOI4cOcLVq1dJSEggOTlZaoMpU6aQmJjIuHHjpGzImJgYaZOq0vMePXqU69evS5NdL5MRWJnIyEg2btzIuXPnuHz5Ml9//TVyuRwjIyMsLCzw9/dn8ODBREdHk5OTw8mTJwkNDeWHH34ASm67TU5OZsyYMaSnp/PLL7+wevVqKUZjY2NOnDjBlStXuHPnToWTsDKZjIiICM6fP0+nTp348ccfuXz5Munp6SxYsKDSyc7q+isnJ4epU6eSlJTE1atXOXDgABcuXMDKyuq1+yQ2Npbly5eTmprK1atX2bx5M8XFxVhaWlY4PryKCRMmsH//fnJycjh9+jSHDx+W4hs7dix3797Fz8+P5ORkLl26xP79+xk2bBhFRUWoqakxZcoUQkJCpKUAjh8/zsaNG4GSLzLkcrm04diDBw8qjKF9+/aEhIQQFBRESEiI1JZxcXH069ev0jHG3NycLVu2kJWVxYkTJ/D391fIcqzququqbWsy3s2cOZOYmBguXrxIRkYGsbGxUrvFxMTg5uaGurq6QrzPnz/n5s2b5OXlkZWVxVdffYWzszM6OjrSJoiVMTMz4+nTp6xYsYLLly+zZcsWaUOxUv/73//48ccfWbp0KRcuXGDt2rXs3btXIXv1TfyNqKl69erRp08fJk+ezHvvvUezZs2kYxW10ejRo7l8+TIhISH88ssvrFq1im+//ZaJEydKZSZNmsT69evZtGkTWVlZfPzxxzx69Ihhw4YBoKOjw/Dhw5k0aRKHDx/m1KlTDBs2DCcnJ959910A3nvvPaytrRk0aBBpaWns37+f6dOnM3bsWFRVVWscy9SpUzl69ChXrlzh7NmzTJ06lSNHjuDv7w/83wTto0eP2LhxI/n5+dy8eZObN29KX1xYWFjQu3dvxo8fT2JiIufOnWPIkCG0bNlSWiP4+vXrtGzZUtqIrzLfffcdX331FefPn2fWrFmcPHlSGksGDhxIcXExI0eOJCsri/3790t/m6radFAQBEEQBEEQBOF1/Gsmaffs2UO7du0UdgxXUVHhwIEDNGzYEC8vL2xtbVm0aBFKSkoA+Pj4EB4ezpIlS7CxsWHt2rVERETg6upa4/M2bdqUOXPm8Mknn9CoUSPpQ968efOYMWMGoaGhWFlZ4enpyQ8//CBlo9ZE37598fT0pEuXLujr6/PNN9/UaL3T6mhra3P06FG8vLywsLBg+vTphIWFSRuRjRgxgg0bNhAREYGtrS0uLi5ERkZKsVfXrhXFXRFNTU327NkjZYhOmzaNzz77TKHMqFGj6NOnD/3796d9+/b8/vvv5Xa1DwgIwNLSEkdHR/T19UlISKBXr15MnDiRcePGYW9vT2JiIjNmzJCeo6SkxO+//87gwYOxsLDA19eX7t27Sxu/2NnZER8fL01SOjg4MHPmTGmzLihZwuHKlSu0aNECfX19Hj16RFxc3Gv3j66uLuvXr6dDhw7Y2dlx6NAh9uzZI93eHRERweDBgwkKCsLS0hIfHx+Sk5Np3rw5UDKRceDAAdLS0mjXrh1OTk7ExMRIO6QHBwejpKSEtbU1+vr6ld4m3K5dO1JSUjAzMyMgIAArKyt69epFRkYGy5Ytq/A51fWXuro6v/zyC3379sXCwoKRI0cyduxYRo0a9dp9oqurS3R0NF27dsXKyoo1a9bwzTffYGNjU+H48CqKiooYO3as9J62sLCQMlqbNGlCQkICRUVFvPfee9ja2jJhwgR0dXWlrM8ZM2YQFBTEzJkzsbKyon///lKGYt26dVm+fDlr166lSZMmVWb9fvbZZ2zbto0TJ07g4eGBjY0NkyZNws7OTiEDs6yNGzdy7949WrduzaBBgwgMDJQ23iptv8quu6raFqof71RUVJg6dSp2dnZ07twZJSUloqKigMrXcM7Pz6dx48Y0bdoUJycnaePCM2fOSLe9V6ZVq1YsXbqUzz77jHfeeYetW7cSGhqqUKZDhw6sWbOGpUuX0qpVK/bt28fEiRMVsjffxN+IlzF8+HD+/PNPPvroI4XHK2ojExMTfvjhBw4ePEirVq0ICwtjw4YNeHh4SGX69+/PkiVLmDlzJvb29qSmprJv3z6FTb6++OILevbsSd++fencuTMGBgZER0dLx5WUlIiNjUVJSQknJyc+/PBDBg8ezNy5c18qltu3bzN48GAsLS3p1q0bycnJ7N+/X8oOPn36NCdOnODs2bOYmZnRuHFj6afs+q6bN2+mffv29OjRAxcXF5SVldm3b5+0LMLTp0/Jzs5WWI+6InPmzCEqKgo7Ozs2b97MN998I2UGa2trs2fPHlJTU7G3t2fatGnMnDkToNrlUgRBEARBEARBEF6V7Pnr7BD0N9KrVy86duxISEhIbYfy1jx79oxGjRqxd+/eajcxEf560dHRTJ8+vcKNcITa9V8YH/6J7ty5Q+PGjbl27ZrCxGFtCQgI4JdffuHnn3+ulfNv2bJFWre3dPmLv1sb/RM1btyYefPmMWLECKAkG3bnzp34+PjUuI6tW7cybNgwHjx4UKP1pfPz89HR0WHx2CjkqurVlhcEQRAEQRAE4c0YF+Zd2yEoKP1s8ODBg2r3rqj7F8X01nXs2BE/P7/aDuOtunv3LhMnTqRt27a1HYpQAU1NzXKZwMLfw39hfPgnunv3LkuXLq21ycclS5bg7u6OhoYGe/fuZdOmTZWu9fs2/fHHH+Tl5bFo0SJGjRolTdBC7bfRP9kff/xBQkICt27dkrK+a2rz5s2YmprStGlT0tLSmDJlCr6+vm9sA0BBEARBEARBEIQX/WsyaQVBEAThZfj6+nLkyBEePnyIqakp//vf/xg9evRfHsfs2bNZsGABnTt3JiYmBk1Nzb88hn+jZcuWMW/ePIYMGSKtqQ41y6RdvHgxq1at4ubNmzRu3BgfHx8WLFhQbu3kyohMWkEQBEEQBEGoHf/kTFoxSSsIgiAIgvAGvcx/xARBEARBEARB+Pd6mc8G/5qNwwRBEARBEARBEARBEARBEP6JxCStIAiCIAiCIAiCIAiCIAhCLRKTtIIgCIIgCIIgCIIgCIIgCLVITNIKgiAIgiAIgiAIgiAIgiDUorq1HYAgCIIgCMK/UWhoKKqqqrUdhiAIgiAIgiD8Z8yePbu2Q3hlIpNWEARBEARBEARBEARBEAShFolJWkEQBEEQBEEQBEEQBEEQhFokJmkFQRAEQRAEQRAEQRAEQRBqkZikFd6IyMhIdHV1azuMN+LKlSvIZDJSU1NrOxShBkR//X3Nnj0be3v72g7jb0200dsl2lcQBEEQBEEQhH8KMUn7lgwbNozp06f/Jec6cuQIMpmM+/fvv/G6q/uAa2JiwqFDh+jfvz/nz59/4+d/VX/1B/OhQ4fi4+Pzl52vlLGxMcuWLavwWHx8PIaGhkDtxVcZV1dXJkyYUKOyFy9eZNiwYTRr1gxVVVVMTEzw8/MjJSXl7Qb5FpUdH2QyGbt27ardgP6/l53w3rFjB66urujo6KCpqYmdnR1z587l7t27bzfQt+Tx48doaGhw8eJFIiMjkclkWFlZlSv33XffIZPJMDY2fqn6X7evy143d+/exd/fH21tbXR1dRk+fDgFBQUK5dPT0+nUqRNqamoYGhqyePHicnV+9913tGzZEjU1NWxtbfnxxx8Vjj9//pyZM2fSuHFj5HI5bm5uXLhwQaFMdbE8efKEoUOHYmtrS926dasdixISEqhbt26FY/iXX36JsbExampqtG/fnpMnT1ZZV3BwMHFxcVWWEQRBEARBEARB+DsQk7RvQVFREbGxsfTq1au2Q3mr0tPTuXfvHi4uLsjlcho2bFjbIQllxMTE4O3tXdthvJaUlBTatGnD+fPnWbt2LZmZmezcuZOWLVsSFBRU2+G9kn/L+DBt2jT69+9P27Zt2bt3L+fOnSMsLIy0tDS2bNlS2+G9koMHD2JkZISZmRkAGhoa3L59m6SkJIVyGzdupHnz5n9pbC9eN/7+/mRkZHDw4EFiY2M5evQoI0eOlMrn5+fz3nvvYWRkxKlTp/j888+ZPXs269atk8okJibi5+fH8OHDOXPmDD4+Pvj4+HDu3DmpzOLFi1m+fDlr1qzhxIkTaGho4OHhwZMnT6Qy1cVSVFSEXC4nMDAQNze3Kl/n/fv3GTx4MN26dSt3bPv27UyaNIlZs2Zx+vRpWrVqhYeHB7dv3660Pk1NTerXr1/lOQVBEARBEARBEP4OxCTtW5CYmIiysjJt27YF4Nq1a/j5+aGnp4eGhgaOjo6cOHFCKr969WpatGiBiooKlpaW5SY4ZDIZGzZs4P3330ddXR1zc3N2794NlGS+denSBYB69eohk8kYOnQoAMXFxYSGhmJiYoJcLqdVq1Z8//33Ur2lGbhxcXE4Ojqirq6Os7Mz2dnZQMkSBnPmzCEtLQ2ZTIZMJiMyMlJ6fkxMDJ6enigrK5db7qA0k3XLli0YGxujo6PDgAEDePjwoVTm+++/x9bWFrlcTv369XFzc+PRo0fS8Q0bNmBlZYWamhotW7Zk1apVCu1SWbtWF/eLTp48iYODA2pqajg6OnLmzBmF40VFRQwfPlxqR0tLS8LDwxVe66ZNm4iJiZHOd+TIEQCmTJmChYUF6urqmJqaMmPGDJ4+fSo9Ny0tjS5duqClpYW2tjZt2rRRyBA9duwYnTp1Qi6XY2hoSGBgoNRGrq6uXL16lYkTJ0rnLWv37t2VTgS6uroSGBhISEgIenp6GBgYMHv2bOn48+fPmT17Ns2bN0dVVZUmTZoQGBgoHS8sLCQ4OJimTZuioaFB+/btpddcKiEhAVdXV9TV1alXrx4eHh7cu3ePoUOHEh8fT3h4uBT3lStXysX4/Plzhg4dirm5OT///DM9evSgRYsW2NvbM2vWLGJiYip8bdX1F5Rc++3atUNDQwNdXV06dOjA1atXX7tPAFatWoW5uTlqamo0atSIDz74QOHcL44PZZVmskZHR9OlSxfU1dVp1aqVwiTh1atX8fb2pl69emhoaGBjY6OQ/Xju3Dm6d++OpqYmjRo1YtCgQdy5c0c6XlxczOLFizEzM0NVVZXmzZuzYMECoCQzHsDBwQGZTIarq2uFbXzy5EkWLlxIWFgYn3/+Oc7OzhgbG+Pu7s6OHTsYMmRIhc9LTk7G3d2dBg0aoKOjg4uLC6dPn5aOV3fdVdW21Y139+7dw9/fH319feRyOebm5kRERCjEFxMTo/CeqVu3LgMHDuSrr76SHrt27RpHjhxh4MCB5V5fVWN5adbt+++/X2EWblVjJSheN1lZWezbt48NGzbQvn17OnbsyIoVK4iKiuLGjRsAbN26lT///JOvvvoKGxsbBgwYQGBgIEuXLpXqDA8Px9PTk8mTJ2NlZcW8efNo3bo1K1eulPpj2bJlTJ8+nd69e2NnZ8fmzZu5ceOGlBFck1g0NDRYvXo1AQEBGBgYlGu3skaPHs3AgQNxcnIqd2zp0qUEBAQwbNgwrK2tWbNmDerq6gr986IX76oovatgzpw56Ovro62tzejRo/nzzz+lMg8fPsTf3x8NDQ0aN27MF1988VLZ/4IgCIIgCIIgCK9CTNK+Bbt378bb2xuZTEZBQQEuLi5cv36d3bt3k5aWRkhICMXFxQDs3LmT8ePHExQUxLlz5xg1ahTDhg3j8OHDCnXOmTMHX19f0tPT8fLywt/fn7t372JoaMiOHTsAyM7OJi8vT5qQCg0NZfPmzaxZs4aMjAwmTpzIhx9+SHx8vELd06ZNIywsjJSUFOrWrctHH30EQP/+/QkKCsLGxoa8vDzy8vLo37+/wuvs3bt3pe1w6dIldu3aRWxsLLGxscTHx7No0SIA8vLy8PPz46OPPiIrK4sjR47Qp08fnj9/DpRMMMycOZMFCxaQlZXFwoULmTFjBps2bQKosl2ri7usgoICevbsibW1NadOnWL27NkEBwcrlCkuLqZZs2Z89913ZGZmMnPmTD799FO+/fZboOR2Wl9fXzw9PaXzOTs7A6ClpUVkZCSZmZmEh4ezfv16vvjiC6luf39/mjVrRnJyMqdOneKTTz5BWVlZaj9PT0/69u1Leno627dv59ixY4wbNw6A6OhomjVrxty5c6XzlsrIyOD27dt07dq10v7ZtGkTGhoanDhxgsWLFzN37lwOHjwIlNzG/sUXX7B27VouXLjArl27sLW1lZ47btw4kpKSiIqKIj09nX79+uHp6SndBp2amkq3bt2wtrYmKSmJY8eO4e3tTVFREeHh4Tg5OREQECDFXbosQ1mpqalkZGQQFBREnTrlh6rK1kCurr+ePXuGj48PLi4upKenk5SUxMiRI6VJ7tfpk5SUFAIDA5k7dy7Z2dns27ePzp07K8RXdnyozLRp0wgODiY1NRULCwv8/Px49uwZAGPHjqWwsJCjR49y9uxZPvvsMzQ1NYGSLMSuXbvi4OBASkoK+/bt49atW/j6+kp1T506lUWLFjFjxgwyMzPZtm0bjRo1ApBuHT906BB5eXlER0dXGN/WrVvR1NRkzJgxFR6vrG8ePnzIkCFDOHbsGMePH8fc3BwvLy9pQrKq6666tq1uvCt9vXv37iUrK4vVq1fToEED6fnFxcXExsaWG9M++ugjvv32W/744w+g5MsrT09Pqc1KVTeWJycnAxAREUFeXp70O1Q9VpYqe90kJSWhq6uLo6OjdNzNzY06depIXwAmJSXRuXNnVFRUpDIeHh5kZ2dz7949qcyLma0eHh7SlwI5OTncvHlToYyOjg7t27eXytQklpqKiIjg8uXLzJo1q9yxP//8k1OnTinEUqdOHdzc3MplOlcnLi5O+rvzzTffEB0dzZw5c6TjkyZNIiEhgd27d3Pw4EF+/vlnhS8TKlJYWEh+fr7CjyAIgiAIgiAIwsuoW9sB/BvFxMRIE3Hbtm3jt99+Izk5GT09PQDpVlqAJUuWMHToUGmyY9KkSRw/fpwlS5ZIGbJQkv3j5+cHwMKFC1m+fDknT57E09NTqrdhw4bS5EhhYSELFy7k0KFDUkaSqakpx44dY+3atbi4uEh1L1iwQPr9k08+oUePHjx58gS5XI6mpiZ169Ytl/10/fp10tPT6d69e6XtUFxcTGRkJFpaWgAMGjSIuLg4FixYQF5eHs+ePaNPnz4YGRkBKEwCzpo1i7CwMPr06QOUZPhlZmaydu1ahgwZUm27Vhb3i7Zt20ZxcTEbN25ETU0NGxsbrl27xscffyyVUVZWVvgAb2JiQlJSEt9++y2+vr5oamoil8spLCwsd76y6xIbGxsTHBxMVFQUISEhAOTm5jJ58mRatmwJgLm5uVQ+NDQUf39/KXvL3Nyc5cuX4+LiwurVq9HT00NJSQktLa1y542JicHDw0NhguZFdnZ20mSIubk5K1euJC4uDnd3d3JzczEwMMDNzQ1lZWWaN29Ou3btpJgjIiLIzc2lSZMmQMlE9b59+4iIiGDhwoUsXrwYR0dHhexnGxsb6d8qKiqoq6tX2T+lE76lbVNT1fVXfn4+Dx48oGfPnrRo0QJAYd3R1+mT3NxcNDQ06NmzJ1paWhgZGeHg4KAQX9nxoTLBwcH06NEDKPmCxsbGhosXL9KyZUtyc3Pp27ev9H4xNTWVnrdy5UocHBxYuHCh9NhXX32FoaEh58+fp3HjxoSHh7Ny5Uop27VFixZ07NgRAH19fQDq169fbd+YmppKk9c19eKXBuvWrUNXV5f4+Hh69uxZ7XVXWdvWZLzLzc3FwcFBmkx8MZP1+PHjALRv317hcQcHB0xNTfn+++8ZNGgQkZGRLF26lMuXLyuUq24sL21bXV3dcm1b1VhZqux1c/PmzXLLy9StWxc9PT1u3rwplSnNjC5VOrF88+ZN6tWrx82bN8tNNjdq1EihjrLPq6xMdbHUxIULF/jkk0/4+eefqVu3/H9N7ty5Q1FRUYWx/PLLLzU+D5SMP1999RXq6urY2Ngwd+5cJk+ezLx583j06BGbNm1i27Zt0pILERER0lhXmdDQUIVxRxAEQRAEQRAE4WWJTNo3LCsrixs3bkgf7lJTU3FwcJAmEisq36FDB4XHOnToQFZWlsJjdnZ20r81NDTQ1tauch2+ixcv8scff+Du7o6mpqb0s3nzZi5dulRp3Y0bNwaosm4oyerq2LFjpRlzUDIJUjrpUFp3ab2tWrWiW7du2Nra0q9fP9avXy9ldz169IhLly4xfPhwhdjnz58vxV5du1Zk9OjRCvVBSfvb2dmhpqYmlavoNtsvv/ySNm3aoK+vj6amJuvWrSM3N7fac27fvp0OHTpgYGCApqYm06dPV3jepEmTGDFiBG5ubixatEihb9LS0oiMjFSI2cPDg+LiYnJycqo874u3bVekbL+DYv/069ePx48fY2pqSkBAADt37pQyOc+ePUtRUREWFhYKscXHxyv0T0VrSr6M0qzqV1FVf+np6TF06FA8PDzw9vYmPDxcIQv5dfrE3d0dIyMjTE1NGTRoEFu3bpUyMKH8+FCZqt6TgYGBzJ8/nw4dOjBr1izS09MV4jt8+LBCfKWTzZcuXSIrK4vCwsJa65tbt24REBCAubk5Ojo6aGtrU1BQIPVNVdddVW1bk/Hu448/JioqCnt7e0JCQkhMTFSILSYmhp49e1aYtf3RRx8RERFBfHw8jx49wsvLq1yZmo7lFalqrCytuybXzT9VUVERAwcOZM6cOVhYWLz187Vq1Qp1dXXpdycnJwoKCvj111+5fPkyT58+lb4cgJLsYUtLyyrrnDp1Kg8ePJB+fv3117cWvyAIgiAIgiAI/05ikvYN2717N+7u7tKkn1wufyP1vpixJpPJpCUTKlK6s/YPP/xAamqq9JOZmamwTuOLdZfegl1V3VD1eqc1iVlJSYmDBw+yd+9erK2tWbFiBZaWluTk5Eixr1+/XiH2c+fOSdlur9Kuc+fOVaivpqKioggODmb48OEcOHCA1NRUhg0bprCGYUWSkpLw9/fHy8uL2NhYzpw5w7Rp0xSeN3v2bDIyMujRowc//fQT1tbW7Ny5Eyjpw1GjRinEnJaWxoULF6QM0Irk5eVx5swZKROzMlX1j6GhIdnZ2axatQq5XM6YMWPo3LkzT58+paCgACUlJU6dOqUQW1ZWlrTUxpu47ksna142S64m/RUREUFSUhLOzs5s374dCwsL6dp6nT7R0tLi9OnTfPPNNzRu3JiZM2fSqlUr7t+/D5QfHypT1XtyxIgRXL58mUGDBnH27FkcHR1ZsWKFFJ+3t7dCfKmpqVy4cIHOnTu/sfHIwsJCmsx6GUOGDCE1NZXw8HASExNJTU2lfv36Ut9Udd1V1bY1Ge+6d+8ureFcOuFZdmmTqsY0f39/jh8/zuzZsxk0aFCFmZ6vo7rx/cXrxsDAoNwXac+ePePu3btSlq6BgQG3bt1SKFP6e3Vlyh4v+7zKylQXS3UePnxISkoK48aNo27dutStW5e5c+eSlpZG3bp1+emnn2jQoAFKSkpVxlKbVFVV0dbWVvgRBEEQBEEQBEF4GWKS9g2LiYlRWNPQzs6O1NRU7t69W2F5KysrEhISFB5LSEjA2tq6xucsvaW9qKhIesza2hpVVVVyc3MxMzNT+Klo/c+q6i5bL5RMBB0+fLjK9WhrQiaT0aFDB+bMmcOZM2dQUVFh586dNGrUiCZNmnD58uVysZfevltdu1YUd8OGDRXqgpL2T09PV9ipvHSyrlRCQgLOzs6MGTMGBwcHzMzMymUjV3S+xMREjIyMmDZtGo6Ojpibm0ubU5VlYWHBxIkTOXDgAH369JE2M2rdujWZmZnl2sDMzEzq84rOu2fPHpydnV8qy7gicrkcb29vli9fzpEjR0hKSuLs2bM4ODhQVFTE7du3y8VVOlliZ2dHXFxcpXVXFPeL7O3tsba2JiwsrMIvDUonPl9Uk/6CktvYp06dSmJiIu+88w7btm2Tjr1On9StWxc3NzcWL15Meno6V65c4aeffgLKjw+vytDQkNGjRxMdHU1QUBDr16+X4svIyMDY2LhcfBoaGpibmyOXyyvtm4rGkooMHDiQgoKCcpv5laqqbwIDA/Hy8sLGxgZVVVWFTc2g8usOKm/bmo53+vr6DBkyhK+//pply5axbt06oORW+6tXr+Lu7l5h3Hp6evTq1Yv4+Hhpze4X1WQsV1ZWrrZtK/LidePk5MT9+/c5deqU9NhPP/1EcXGxtFyDk5MTR48eVZhIP3jwIJaWltSrV08q8+K1cPDgQeluAhMTEwwMDBTK5Ofnc+LECalMTWKpjra2NmfPnlWYYB89ejSWlpakpqbSvn17VFRUaNOmjUIsxcXFxMXFVXj3Q1XS0tJ4/Pix9Pvx48fR1NTE0NBQWsaj7JrBDx484Pz58y91DkEQBEEQBEEQhJcl1qR9g27fvk1KSgq7d++WHvPz82PhwoX4+PgQGhpK48aNOXPmDE2aNMHJyYnJkyfj6+uLg4MDbm5u7Nmzh+joaA4dOlTj8xoZGSGTyYiNjcXLywu5XI6WlhbBwcFMnDiR4uJiOnbsyIMHD0hISEBbW7vS3ddfZGxsTE5ODqmpqTRr1gwtLS327duHhYVFuTUdX8aJEyeIi4vjvffeo2HDhpw4cYLffvtNWht0zpw5BAYGoqOjg6enJ4WFhaSkpHDv3j0mTZpUbbtWFLeqqmq5OAYOHMi0adMICAhg6tSpXLlyhSVLliiUMTc3Z/Pmzezfvx8TExO2bNlCcnKywnqPxsbG7N+/n+zsbOrXr4+Ojg7m5ubk5uYSFRVF27Zt+eGHH6SMTIDHjx8zefJkPvjgA0xMTLh27RrJycn07dsXgClTpvDuu+8ybtw4RowYgYaGBpmZmRw8eFDafd3Y2JijR48yYMAAVFVVadCgQY2ynKsTGRlJUVER7du3R11dna+//hq5XI6RkRH169fH39+fwYMHExYWhoODA7/99htxcXHY2dnRo0cPpk6diq2tLWPGjGH06NGoqKhw+PBh+vXrR4MGDTA2NubEiRNcuXIFTU1N9PT0yt1mLpPJiIiIwM3NjU6dOjFt2jRatmxJQUEBe/bs4cCBA+U2watJf+Xk5LBu3Tp69epFkyZNyM7O5sKFCwwePPi1+yQ2NpbLly/TuXNn6tWrx48//khxcTGWlpYVjg+vYsKECXTv3h0LCwvu3bvH4cOHpffN2LFjWb9+PX5+foSEhKCnp8fFixeJiopiw4YNqKmpMWXKFEJCQlBRUaFDhw789ttvZGRkMHz4cBo2bIhcLmffvn00a9YMNTU1dHR0ysXQvn17QkJCCAoK4vr167z//vs0adKEixcvsmbNGjp27Mj48eMr7JstW7bg6OhIfn4+kydPVsjureq6q6ptazLezZw5kzZt2mBjY0NhYSGxsbFSu8XExODm5qZwC/yLIiMjWbVqFfXr16/weE3GcmNjY+Li4ujQoQOqqqrSZGlVKrpurKys8PT0JCAggDVr1vD06VPGjRvHgAEDpLVTS5cPGD58OFOmTOHcuXOEh4crrIc8fvx4XFxcCAsLo0ePHkRFRZGSkiJNXstkMiZMmMD8+fMxNzfHxMSEGTNm0KRJE3x8fGocC0BmZiZ//vknd+/e5eHDh9LdDPb29tSpU4d33nlH4XU3bNgQNTU1hccnTZrEkCFDcHR0pF27dixbtoxHjx4xbNgwqczgwYNp2rQpoaGhlbbpn3/+yfDhw5k+fTpXrlxh1qxZjBs3jjp16qClpcWQIUOYPHkyenp6NGzYkFmzZlGnTp0qN/sTBEEQBEEQBEF4XSKT9g3as2cP7dq1U9gxXEVFhQMHDtCwYUO8vLywtbVl0aJFKCkpAeDj40N4eDhLlizBxsaGtWvXEhERgaura43P27RpU+bMmcMnn3xCo0aNpJ3m582bx4wZMwgNDZU+SP/www/lNpOpSt++ffH09JQ2vvnmm29qtN5pdbS1tTl69CheXl5YWFgwffp0wsLCpI3IRowYwYYNG4iIiMDW1hYXFxciIyOl2Ktr14riroimpiZ79uyRMkSnTZvGZ599plBm1KhR9OnTh/79+9O+fXt+//33crvaBwQEYGlpiaOjI/r6+iQkJNCrVy8mTpzIuHHjsLe3JzExkRkzZkjPUVJS4vfff2fw4MFYWFjg6+tL9+7dpc1n7OzsiI+P5/z583Tq1AkHBwdmzpypMPExd+5crly5QosWLdDX1+fRo0fExcW9dv/o6uqyfv16OnTogJ2dHYcOHWLPnj3SBFVERASDBw8mKCgIS0tLfHx8SE5Opnnz5kBJJuqBAwdIS0ujXbt2ODk5ERMTI90mHvz/2rvzsJrT94Hj76OU9qwVIlRappR1irFGtowvQxNfSwgjY4TJGGQby/gq69hNMWObGRHZtywVChXKVmiYhrHLrvz+6NfncrTbwtyv6zrXpXOe8/nc53me88m5u8/zjBiBhoYGdnZ2lC9fPs/1fevXr09sbCyWlpb4+Phga2tLhw4dOHXqFLNmzcr1OQWNl66uLqdPn6Zz585YW1vTv39/fH19GTBgwGuPibGxMaGhoTRv3hxbW1sWLlzI6tWrsbe3z/X68CoyMjLw9fVV3tPW1tZKRWvFihWJjIwkIyODVq1a4eDgwNChQzE2NlaS4GPHjmX48OEEBARga2uLp6en8nV1TU1N5syZw6JFi6hYsWK+Vb8//vgjq1at4vDhw7i7u2Nvb8+wYcNwdHTM849Ay5Yt49atW9SuXZsePXowZMgQtU2n8pt3+fUtFHy909LSYtSoUTg6OtK4cWM0NDRYs2YNULg1nHV0dPJM0ELhruWBgYHs3LkTc3PzHBvK5SWvebNy5UpsbGxo0aIFbdu2pVGjRkpyFbLWUd2xYwcXLlygTp06ypj3799faePq6sqqVatYvHgxtWrV4o8//mDDhg1qiVF/f3++/vpr+vfvT7169UhPT2fbtm1qS3YUFAtA27ZtcXZ2ZtOmTURERODs7FzoPsjm6enJjBkzCAgIwMnJibi4OLZt26a2mVhqaqraGtO5adGiBVZWVjRu3BhPT086dOjA+PHjlceDgoJwcXGhffv2uLm50bBhQ2xtbQtcpkQIIYQQQgghXofq+evsziPUdOjQgUaNGuHv71/cobw1z549w8TEhK1bt6ptrCLeD6GhoYwZM4bExMTiDkW85N9wffgQXb9+HTMzMy5fvqyW7HtfyLx5PaNGjeLAgQMcPHgQgN69e3P79m02bNhQ6GPcv3+fSpUqERgYSN++fQv1nLt372JkZMR3332X67c4hBBCCCGEEG/HiwUY74PszwZ37twpcO8KWe7gDWrUqBFeXl7FHcZbdfPmTfz8/KhXr15xhyJyoa+vn6MSWLwf/g3Xhw/RzZs3CQoKei8TtCDz5lU9f/6clJQUdu/eXeSK3ePHj3P69Gnq16/PnTt3mDhxIsAbWU9aCCGEEEIIIfIilbRCCCGE+Kjcvn0bExMT6tWrx8qVK6latSpQuEra48eP069fP86cOaNsWBYUFISDg0Ohzy+VtEIIIYQQQhSPD7mSVpK0QgghhBBvUFH+IyaEEEIIIYT4eBXls4FsHCaEEEIIIYQQQgghhBDFSJK0QgghhBBCCCGEEEIIUYwkSSuEEEIIIYQQQgghhBDFSJK0QgghhBBCCCGEEEIIUYw0izsAIYQQQoiP0cHWbdDTlP9qCSGEEEII8a402b+vuEN4ZVJJK4QQQgghhBBCCCGEEMVIkrRCCCGEEEIIIYQQQghRjCRJK4QQQgghhBBCCCGEEMVIkrSiQCEhIRgbGxd3GG/ExYsXUalUxMXFFXcoohBkvN5f48ePx8nJqbjDKFYWFhbMmjUr3zYqlYoNGza8k3hE7nr37k3Hjh2LOwwhhBBCCCGEyJckaV+Bt7c3Y8aMeSfnioiIQKVScfv27Td+7IKSLNWqVWPXrl14enpy9uzZN37+V/Wuk0PF9QE/vwTQvn37MDc3B96/BETTpk0ZOnRoodqeP38eb29vKleujLa2NtWqVcPLy4vY2Ni3G+Rb9OL14X1K0BU14b1u3TqaNm2KkZER+vr6ODo6MnHiRG7evPl2A31LHj58iJ6eHufPnycjI4Np06ZhY2ODjo4OZcqUoUGDBixdurRIx4yJiaF///5vKeLcNWvWTIkzNTWVdu3aoaurS4UKFfj222959uyZWvuIiAhq166NtrY2lpaWhISE5DjmTz/9hIWFBaVKlaJBgwYcOXJE7fFHjx7h6+tL2bJl0dfXp3Pnzly9elWtTWFiyRYZGYmmpmaO6/j+/fvx8PCgYsWKeb53evfujUqlUru1bt063z6bPXt2rq9bCCGEEEIIId4nkqQtooyMDMLDw+nQoUNxh/JWJSQkcOvWLZo0aYKOjg4VKlQo7pDEC8LCwvDw8CjuMF5LbGwsderU4ezZsyxatIjExETWr1+PjY0Nw4cPL+7wXsnHcn0YPXo0np6e1KtXj61bt3Ly5EkCAwOJj4/nl19+Ke7wXsnOnTupWrUqlpaWTJgwgZkzZzJp0iQSExPZu3cv/fv3L/Ifw8qXL4+uru7bCfj/PXnyRPn3zZs3iYyMxMPDg4yMDNq1a8eTJ0+Iiopi+fLlhISEEBAQoLS/cOEC7dq1o1mzZsTFxTF06FD69evH9u3blTZr165l2LBhjBs3jmPHjlGrVi3c3d25du2a0sbPz49Nmzbx+++/s2/fPv766y86deqkPF6YWLLdvn2bnj170qJFixyP3b9/n1q1avHTTz/l2yetW7cmLS1Nua1evTrf9kZGRh/Nt0GEEEIIIYQQHy9J0hZRVFQUJUuWpF69egBcvnwZLy8vypQpg56eHnXr1uXw4cNK+wULFlCjRg20tLSoWbNmjgSHSqVi6dKl/Oc//0FXVxcrKys2btwIZFW+NWvWDIDSpUujUqno3bs3AJmZmUydOpVq1aqho6NDrVq1+OOPP5TjZlfg7t69m7p166Krq4urqytnzpwBspYwmDBhAvHx8Uo10ouVRmFhYbRu3ZqSJUvmWO4gu5L1l19+wcLCAiMjI7788kvu3buntPnjjz9wcHBAR0eHsmXL4ubmxv3795XHly5diq2tLaVKlcLGxob58+er9Ute/VpQ3C87cuQIzs7OlCpVirp163L8+HG1xzMyMujbt6/SjzVr1mT27Nlqr3X58uWEhYUp54uIiABg5MiRWFtbo6urS/Xq1Rk7dixPnz5VnhsfH0+zZs0wMDDA0NCQOnXqqFWIHjx4kM8++wwdHR3Mzc0ZMmSI0kdNmzbl0qVL+Pn5Ked90caNG/NMBDZt2pQhQ4bg7+9PmTJlMDU1Zfz48crjz58/Z/z48VSpUgVtbW0qVqzIkCFDlMcfP37MiBEjqFSpEnp6ejRo0EB5zdkiIyNp2rQpurq6lC5dGnd3d27dukXv3r3Zt28fs2fPVuK+ePFijhifP39O7969sbKy4sCBA7Rr144aNWrg5OTEuHHjCAsLy/W1FTRekDX369evj56eHsbGxjRs2JBLly699pgAzJ8/HysrK0qVKoWJiQlffPGF2rlfvj68KLuSNTQ0lGbNmqGrq0utWrWIjo5W2ly6dAkPDw9Kly6Nnp4e9vb2bNmyRXn85MmTtGnTBn19fUxMTOjRowfXr19XHs/MzGT69OlYWlqira1NlSpVmDx5MpBVGQ/g7OyMSqWiadOmufbxkSNHmDJlCoGBgfzvf//D1dUVCwsLWrZsybp16+jVq1euz4uJiaFly5aUK1cOIyMjmjRpwrFjx5THC5p3+fVtQde7W7du0b17d8qXL4+Ojg5WVlYEBwerxRcWFqa8ZzZu3MigQYPo0qUL1apVo1atWvTt25cRI0Yo7Zs2bcrgwYMZPHgwRkZGlCtXjrFjx/L8+XOlzcvV7ufOnaNx48aUKlUKOzs7du7cmaOf/vzzT7p27YqxsTFlypTh888/V3uPZFfGT548mYoVK1KzZk3lsc2bN1O7dm1MTEzYsWMHiYmJ/Prrrzg5OdGmTRsmTZrETz/9pCR2Fy5cSLVq1QgMDMTW1pbBgwfzxRdfMHPmTOWYQUFB+Pj44O3tjZ2dHQsXLkRXV5eff/4ZgDt37rBs2TKCgoJo3rw5derUITg4mKioKA4dOgRQqFiyDRw4kG7duuHi4pKjb9q0acMPP/zAf/7znxyPvUhbWxtTU1PlVrp06Xzbv/xtg8KMbVpaGu3atUNHR4dq1aqxatWqQi1vIYQQQgghhBCvSpK0RbRx40Y8PDxQqVSkp6fTpEkTrly5wsaNG4mPj8ff35/MzEwA1q9fzzfffMPw4cM5efIkAwYMwNvbm71796odc8KECXTt2pWEhATatm1L9+7duXnzJubm5qxbtw6AM2fOkJaWpiSkpk6dyooVK1i4cCGnTp3Cz8+P//73v+zbt0/t2KNHjyYwMJDY2Fg0NTXp06cPAJ6engwfPhx7e3ulGsnT01PtdX7++ed59kNycjIbNmwgPDyc8PBw9u3bx7Rp04CsD7deXl706dOHpKQkIiIi6NSpk/IBeOXKlQQEBDB58mSSkpKYMmUKY8eOZfny5QD59mtBcb8oPT2d9u3bY2dnx9GjRxk/frxaEgaykj+VK1fm999/JzExkYCAAL7//nt+++03AEaMGEHXrl3VKrdcXV0BMDAwICQkhMTERGbPns2SJUvUkh/du3encuXKxMTEcPToUb777jtKliyp9F/r1q3p3LkzCQkJrF27loMHDzJ48GAAQkNDqVy5MhMnTlTOm+3UqVNcu3aN5s2b5zk+y5cvR09Pj8OHDzN9+nQmTpyoJIzWrVvHzJkzWbRoEefOnWPDhg04ODgozx08eDDR0dGsWbOGhIQEunTpQuvWrTl37hwAcXFxtGjRAjs7O6Kjozl48KBS2Td79mxcXFzw8fFR4s5eluFFcXFxnDp1iuHDh1OiRM7LUF5VbwWN17Nnz+jYsSNNmjQhISGB6Oho+vfvryS5X2dMYmNjGTJkCBMnTuTMmTNs27aNxo0bq8X34vUhL6NHj2bEiBHExcVhbW2Nl5eX8rVwX19fHj9+zP79+zlx4gQ//vgj+vr6QFYFYvPmzXF2diY2NpZt27Zx9epVunbtqhx71KhRTJs2jbFjx5KYmMiqVaswMTEBUL7CvmvXLtLS0ggNDc01vpUrV6Kvr8+gQYNyfTyvsbl37x69evXi4MGDHDp0CCsrK9q2bav88Sa/eVdQ3xZ0vct+vVu3biUpKYkFCxZQrlw55fmZmZmEh4cr1zRTU1P27NnDP//8k+c4Qdb7SFNTkyNHjjB79myCgoLyXBIhMzOTTp06oaWlxeHDh1m4cCEjR45Ua/P06VPc3d0xMDDgwIEDREZGoq+vT+vWrdWSmbt37+bMmTPs3LmT8PBw5f4Xr8vR0dE4ODgo4wvg7u7O3bt3OXXqlNLGzc1NLQZ3d3flDwNPnjzh6NGjam1KlCiBm5ub0ubo0aM8ffpUrY2NjQ1VqlRR2hQmFoDg4GBSUlIYN25cnn1eGBEREVSoUIGaNWvy1VdfcePGjSIfo6Cx7dmzJ3/99RcRERGsW7eOxYsXq1UXv+zx48fcvXtX7SaEEEIIIYQQRaFZ3AF8aMLCwpRE3KpVq/jnn3+IiYmhTJkyAFhaWiptZ8yYQe/evZVkx7Bhwzh06BAzZsxQKmQhq8rHy8sLgClTpjBnzhyOHDlC69atleNWqFBBSY48fvyYKVOmsGvXLqUaqXr16hw8eJBFixbRpEkT5diTJ09Wfv7uu+9o164djx49QkdHB319fTQ1NTE1NVV7jVeuXCEhIYE2bdrk2Q+ZmZmEhIRgYGAAQI8ePdi9ezeTJ08mLS2NZ8+e0alTJ6pWrQqglgQcN24cgYGBytdlq1WrRmJiIosWLaJXr14F9mtecb9s1apVZGZmsmzZMkqVKoW9vT2XL1/mq6++UtqULFmSCRMmKD9Xq1aN6OhofvvtN7p27Yq+vj46Ojo8fvw4x/leXJfYwsKCESNGsGbNGvz9/YGsNRq//fZbbGxsALCyslLaT506le7duytrt1pZWTFnzhyaNGnCggULKFOmDBoaGhgYGOQ4b1hYGO7u7mhpaeX52h0dHZVEiJWVFfPmzWP37t20bNmS1NRUTE1NcXNzo2TJklSpUoX69esrMQcHB5OamkrFihWBrET1tm3bCA4OZsqUKUyfPp26deuqVT/b29sr/9bS0kJXVzff8clO+Gb3TWEVNF53797lzp07tG/fnho1agBga2urtH+dMUlNTUVPT4/27dtjYGBA1apVcXZ2VovvxetDXkaMGEG7du2ArD/Q2Nvbc/78eWxsbEhNTaVz587K+6V69erK8+bNm4ezszNTpkxR7vv5558xNzfn7NmzmJmZMXv2bObNm6dUu9aoUYNGjRoBWV/NByhbtmyBY1O9enUleV1YL//RYPHixRgbG7Nv3z7at29f4LzLq28Lc71LTU3F2dmZunXrAlnvxxdlV3w2aNAAyKoe/eKLLzA1NcXe3h5XV1c+//zzHNc8c3NzZs6ciUqlombNmpw4cYKZM2fi4+OT4/Xv2rWL06dPs337duW9M2XKFLVjrl27lszMTJYuXaok8oODgzE2NiYiIoJWrVoBoKenx9KlS9Xe448fP2bbtm1KVfzff/+tlhQFlJ///vvvfNvcvXuXhw8fcuvWLTIyMnJtc/r0aeUYWlpaOZLzJiYmBZ7nxVjOnTvHd999x4EDB9DUfPX/erRu3ZpOnTpRrVo1kpOT+f7772nTpg3R0dFoaGgU+jj5je3p06fZtWsXMTExypxaunSp2vXiZVOnTlW7NgkhhBBCCCFEUUklbREkJSXx119/KWvpxcXF4ezsrCQSc2vfsGFDtfsaNmxIUlKS2n2Ojo7Kv/X09DA0NMy3Yuf8+fM8ePCAli1boq+vr9xWrFhBcnJynsc2MzMDyPfYkFWt1ahRo3zX8LOwsFAStNnHzj5urVq1aNGiBQ4ODnTp0oUlS5Zw69YtIGvNweTkZPr27asW+w8//KDEXlC/5mbgwIFqx4Os/nd0dKRUqVJKu9y+YvvTTz9Rp04dypcvj76+PosXLyY1NbXAc65du5aGDRtiamqKvr4+Y8aMUXvesGHD6NevH25ubkybNk1tbOLj4wkJCVGL2d3dnczMTC5cuJDveV/82nZeXhx3UB+fLl268PDhQ6pXr46Pjw/r169XKjlPnDhBRkYG1tbWarHt27dPbXxyW0+yKF78WnFR5TdeZcqUoXfv3ri7u+Ph4cHs2bPVqpBfZ0xatmxJ1apVqV69Oj169GDlypU8ePBAef7L14e85PeeHDJkCD/88AMNGzZk3LhxJCQkqMW3d+9etfiyk83JyckkJSXx+PHjYhubq1ev4uPjg5WVFUZGRhgaGpKenq6MTX7zLr++Lcz17quvvmLNmjU4OTnh7+9PVFSUWmxhYWG0b99eqdq2s7Pj5MmTHDp0iD59+nDt2jU8PDzo16+f2vM+/fRTtapoFxcXzp07R0ZGRo7Xn5SUhLm5uZKgzW7/ovj4eM6fP4+BgYHyOsqUKcOjR4/U5qKDg0OOP8Ls2bOHChUqqP1B5EORkZFBt27dmDBhAtbW1q91rC+//JIOHTrg4OBAx44dCQ8PJyYmJseSLAXJb2zPnDmDpqYmtWvXVh63tLTMd1mFUaNGcefOHeX2559/Fvm1CSGEEEIIIf7dJElbBBs3bqRly5ZK0k9HR+eNHPflijWVSqUsmZCb9PR0IGt9wri4OOWWmJiotk7jy8fO/kCa37Eh//VOCxOzhoYGO3fuZOvWrdjZ2TF37lxq1qzJhQsXlNiXLFmiFnt2wgRerV8nTpyodrzCWrNmDSNGjKBv377s2LGDuLg4vL29c6yj+LLo6Gi6d+9O27ZtCQ8P5/jx44wePVrteePHj+fUqVO0a9eOPXv2YGdnx/r164GsMRwwYIBazPHx8Zw7d06pAM1NWloax48fVyox85Lf+Jibm3PmzBnmz5+Pjo4OgwYNonHjxjx9+pT09HQ0NDQ4evSoWmxJSUnKUhtvYt5nJ2qyq/UKqzDjFRwcTHR0NK6urqxduxZra2tlbr3OmBgYGHDs2DFWr16NmZkZAQEB1KpVS9ls6uXrQ17ye0/269ePlJQUevTowYkTJ6hbty5z585V4vPw8FCLLy4uTlkH9U1dj6ytrUlJSVFbX7kwevXqRVxcHLNnzyYqKoq4uDjKli2rjE1+8y6/vi3M9a5NmzbKGs7ZifIXlzbJ7ZpWokQJ6tWrx9ChQwkNDSUkJIRly5YV+EeS15Genk6dOnVyjOHZs2fp1q2b0k5PTy/Hc19+Daamply9elWtTfbP2ZXSebUxNDRER0eHcuXKoaGhkWubF4/x5MmTHJuqvdwmv1ju3btHbGwsgwcPRlNTE01NTSZOnEh8fDyamprs2bMn/47LR/Xq1SlXrhznz59/5WO8Cdra2hgaGqrdhBBCCCGEEKIoJElbBGFhYWrrtDo6OhIXF8fNmzdzbW9ra0tkZKTafZGRkdjZ2RX6nNnVVC9WbtnZ2aGtrU1qaiqWlpZqt9zW/8zv2C9XhKWnp7N3795816MtDJVKRcOGDZkwYQLHjx9HS0uL9evXY2JiQsWKFUlJSckRe/bGRgX1a25xV6hQQe1YkNX/CQkJPHr0SGmXnazLFhkZiaurK4MGDcLZ2RlLS8sc1ci5nS8qKoqqVasyevRo6tati5WVlbI51Yusra3x8/Njx44ddOrUSdnMqHbt2iQmJuboA0tLS2XMczvvpk2bcHV1LVKVcW50dHTw8PBgzpw5REREEB0dzYkTJ3B2diYjI4Nr167liCs7IePo6Mju3bvzPHZucb/MyckJOzs7AgMDc/2jwcsJoWyFGS/I2hxr1KhRREVF8cknn7Bq1SrlsdcZE01NTdzc3Jg+fToJCQlcvHhRSTC9fH14Vebm5gwcOJDQ0FCGDx/OkiVLlPhOnTqFhYVFjvj09PSwsrJCR0cnz7HJ7VqSm27dupGenp5jM79s+Y3NkCFDaNu2Lfb29mhra6ttagZ5zzvIu28Le70rX748vXr14tdff2XWrFksXrwYyPqa/aVLl2jZsmW+rzv7uvziRnEvbgIJKGvt5va1eltbW/7880+1yu2Xrze1a9fm3LlzOa5XlpaWGBkZ5Rnb8+fP2bRpk9r8cnFx4cSJE2rfjNi5cyeGhobKa3FxcckxH3bu3KlU+GppaVGnTh21NpmZmezevVtpU6dOHUqWLKnW5syZM6SmpiptCorF0NCQEydOqCWmBw4cSM2aNYmLi1OWoXgVly9f5saNG0pVemHlN7Y1a9bk2bNnahtNnj9/XvlGiBBCCCGEEEK8DZKkLaRr164RGxtL+/btlfu8vLwwNTWlY8eOREZGkpKSwrp165TNVL799ltCQkJYsGAB586dIygoiNDQ0BybV+WnatWqqFQqwsPD+eeff0hPT8fAwIARI0bg5+fH8uXLSU5O5tixY8ydO1fZfKswLCwsuHDhAnFxcVy/fl1Z89Da2jrHmo5FcfjwYaZMmUJsbCypqamEhobyzz//KGuDTpgwgalTpzJnzhzOnj3LiRMnCA4OJigoCCi4X3OLOzfdunVDpVLh4+NDYmIiW7ZsYcaMGWptrKysiI2NZfv27Zw9e5axY8cSExOTo58SEhI4c+YM169f5+nTp1hZWZGamsqaNWtITk5mzpw5SkUmwMOHDxk8eDARERFcunSJyMhIYmJilD4YOXIkUVFRDB48WKmGDAsLUzapyj7v/v37uXLlipLsKkyVc0GyKwZPnjxJSkoKv/76Kzo6OlStWhVra2u6d+9Oz549CQ0N5cKFCxw5coSpU6eyefNmIOtrvTExMQwaNIiEhAROnz7NggULlBgtLCw4fPgwFy9e5Pr167kmYVUqFcHBwZw9e5bPPvuMLVu2kJKSQkJCApMnT84z2VnQeF24cIFRo0YRHR3NpUuX2LFjB+fOncPW1va1xyQ8PJw5c+YQFxfHpUuXWLFiBZmZmdSsWTPX68OrGDp0KNu3b+fChQscO3aMvXv3KvH5+vpy8+ZNvLy8iImJITk5me3bt+Pt7U1GRgalSpVi5MiR+Pv7K0sBHDp0iGXLlgFZf8jQ0dFRNhy7c+dOrjE0aNAAf39/hg8fjr+/v9KXu3fvpkuXLnleY6ysrPjll19ISkri8OHDdO/eXa26N795l1/fFuZ6FxAQQFhYGOfPn+fUqVOEh4cr/RYWFoabmxu6urpKLF988QUzZ87k8OHDXLp0iYiICHx9fbG2tlZbJzk1NZVhw4Zx5swZVq9ezdy5c/nmm29yff1ubm5YW1vTq1cv4uPjOXDgAKNHj1Zr0717d8qVK8fnn3/OgQMHuHDhAhEREQwZMoTLly/nOS+OHj3KgwcPlPWFAVq1aoWdnR09evQgPj6e7du3M2bMGHx9fdHW1gayloFJSUnB39+f06dPM3/+fH777Tf8/PyU4wwbNowlS5awfPlykpKS+Oqrr7h//z7e3t4AGBkZ0bdvX4YNG8bevXs5evQo3t7euLi48OmnnxYqlhIlSvDJJ5+o3SpUqECpUqX45JNPlMrh9PR0tW9DZF/ns5fMSE9P59tvv+XQoUNcvHiR3bt38/nnn2NpaYm7u7vymlq0aMG8efPy7M+CxtbGxgY3Nzf69+/PkSNHOH78OP3790dHRyffTQGFEEIIIYQQ4nVIkraQNm3aRP369dV2DNfS0mLHjh1UqFCBtm3b4uDgwLRp05Qqq44dOzJ79mxmzJiBvb09ixYtIjg4mKZNmxb6vJUqVWLChAl89913mJiYKAmjSZMmMXbsWKZOnYqtrS2tW7dm8+bNSjVqYXTu3JnWrVvTrFkzypcvz+rVqwu13mlBDA0N2b9/P23btsXa2poxY8YQGBiobKDTr18/li5dSnBwMA4ODjRp0oSQkBAl9oL6Nbe4c6Ovr8+mTZuUCtHRo0fz448/qrUZMGAAnTp1wtPTkwYNGnDjxo0cu9r7+PhQs2ZN6tatS/ny5YmMjKRDhw74+fkxePBgnJyciIqKYuzYscpzNDQ0uHHjBj179sTa2pquXbvSpk0bZWMZR0dH9u3bpyQpnZ2dCQgIUFvPcuLEiVy8eJEaNWpQvnx57t+/z+7du197fIyNjVmyZAkNGzbE0dGRXbt2sWnTJsqWLQtkLRfQs2dPhg8fTs2aNenYsSMxMTFUqVIFyKpE3bFjB/Hx8dSvXx8XFxfCwsKUzYBGjBiBhoYGdnZ2lC9fPs/1fevXr09sbCyWlpb4+Phga2tLhw4dOHXqFLNmzcr1OQWNl66uLqdPn6Zz585YW1vTv39/fH19GTBgwGuPibGxMaGhoTRv3hxbW1sWLlzI6tWrsbe3z/X68CoyMjLw9fVV3tPW1tZKRWvFihWJjIwkIyODVq1a4eDgwNChQzE2NlbWWh07dizDhw8nICAAW1tbPD09lepGTU1N5syZw6JFi6hYsWK+Vb8//vgjq1at4vDhw7i7u2Nvb8+wYcNwdHRUNiV72bJly7h16xa1a9emR48eDBkyhAoVKiiP5zfv8utbKPh6p6WlxahRo3B0dKRx48ZoaGiwZs0aIPc1nN3d3dm0aRMeHh5KYtXGxoYdO3aobWrVs2dPHj58SP369fH19eWbb76hf//+ub7+EiVKsH79eqV9v379mDx5slobXV1d9u/fT5UqVejUqRO2trb07duXR48e5fv1+LCwMNq2basWm4aGBuHh4WhoaODi4sJ///tfevbsycSJE5U21apVY/PmzezcuZNatWoRGBjI0qVL1RKanp6ezJgxg4CAAJycnIiLi2Pbtm1qG4HNnDmT9u3b07lzZxo3boypqSmhoaFFiqUwYmNjcXZ2VjaNGzZsmPI+zD5PQkICHTp0wNramr59+1KnTh0OHDigJKYha43ml6u4X1bQ2K5YsQITExMaN27Mf/7zH3x8fDAwMChwORMhhBBCCCGEeFWq56+zg8+/SIcOHWjUqBH+/v7FHcpb8+zZM0xMTNi6dauy67p4f4SGhjJmzBgSExOLOxTxkn/D9eFDdP36dczMzLh8+bJa0rEwmjZtipOTU55/MHiXHB0dGTNmDF27di3uUD5IXl5eaGho8OuvvwKvNraXL1/G3NycXbt2FWpzvrt372JkZMRmF1f0XkiuCyGEEEIIId6uJvv3FXcIarI/G9y5c6fAvSvkk0MhNWrUCC8vr+IO4626efMmfn5+1KtXr7hDEbnQ19fPUQks3g//huvDh+jmzZsEBQUVOUH7Pnny5AmdO3dWvokgCu/Zs2ecPXuW6OhoBgwYUKTn7tmzh/T0dBwcHEhLS8Pf3x8LCwsaN278lqIVQgghhBBC/NtJkraQ/g0VchUqVGDMmDHFHYbIQ6tWrYo7BJGHf8P14UNkbW2NtbV1cYfxWrS0tBg3blxxh/FBOnnyJK6urjRr1oyBAwcW6blPnz7l+++/JyUlBQMDA1xdXVm5ciUlS5Z8S9EKIYQQQggh/u1kuQMhhBBCiDeoKF9pEkIIIYQQQny8ivLZQDYOE0IIIYQQQgghhBBCiGIkSVohhBBCCCGEEEIIIYQoRpKkFUIIIYQQQgghhBBCiGIkSVohhBBCCCGEEEIIIYQoRprFHYAQQgghxMdo0fdb0dHWLe4whBBCCCGE+NcYHOhR3CG8MqmkFUIIIYQQQgghhBBCiGIkSVohhBBCCCGEEEIIIYQoRpKkFUIIIYQQQgghhBBCiGIkSdqPQEhICMbGxsUdxhtx8eJFVCoVcXFxxR2KKAQZr/fX+PHjcXJyKu4wBBAZGYmDgwMlS5akY8eOREREoFKpuH37dnGH9q9gYWHBrFmzijsMIYQQQgghhMjXR5mk9fb2ZsyYMe/kXG/zw3ZBSZZq1aqxa9cuPD09OXv27Bs//6t618mh3r1707Fjx3d2vmz5ffDft28f5ubmQPHFl5emTZsydOjQQrU9f/483t7eVK5cGW1tbapVq4aXlxexsbFvN8i36MXrg0qlYsOGDcUb0P8rasJ73bp1NG3aFCMjI/T19XF0dGTixIncvHnz7Qb6ljx8+BA9PT3Onz9PSEgIKpUKlUqFhoYGpUuXpkGDBkycOJE7d+4Ud6hFNmzYMJycnLhw4QIhISGvfJwX+wiyfv/Url0bbW1tLC0tcz32Tz/9hIWFBaVKlaJBgwYcOXJE7fFHjx7h6+tL2bJl0dfXp3Pnzly9elWtTWpqKu3atUNXV5cKFSrw7bff8uzZM7U2BcVy7949hg4dStWqVdHR0cHV1ZWYmBi1NuPHj8fGxgY9PT1Kly6Nm5sbhw8fVmtjYWGhzI3s27Rp0/Ltt5iYGPr3759vGyGEEEIIIYQobh9dkjYjI4Pw8HA6dOhQ3KG8VQkJCdy6dYsmTZqgo6NDhQoVijsk8YKwsDA8PD7cHQUBYmNjqVOnDmfPnmXRokUkJiayfv16bGxsGD58eHGH90o+luvD6NGj8fT0pF69emzdupWTJ08SGBhIfHw8v/zyS3GH90p27txJ1apVsbS0BMDQ0JC0tDQuX75MVFQU/fv3Z8WKFTg5OfHXX3/leZwnT568q5ALLTk5mebNm1O5cuXX+tbDi3104cIF2rVrR7NmzYiLi2Po0KH069eP7du3K+3Xrl3LsGHDGDduHMeOHaNWrVq4u7tz7do1pY2fnx+bNm3i999/Z9++ffz111906tRJeTwjI4N27drx5MkToqKiWL58OSEhIQQEBChtChNLv3792LlzJ7/88gsnTpygVatWuLm5ceXKFaWNtbU18+bN48SJExw8eBALCwtatWrFP//8o9YPEydOJC0tTbl9/fXX+fZb+fLl0dXVLXqHCyGEEEIIIcQ79NElaaOioihZsiT16tUD4PLly3h5eVGmTBn09PSoW7euWmXOggULqFGjBlpaWtSsWTNHgkOlUrF06VL+85//oKuri5WVFRs3bgSyKt+aNWsGQOnSpVGpVPTu3RuAzMxMpk6dSrVq1dDR0aFWrVr88ccfynGzK3B3795N3bp10dXVxdXVlTNnzgBZSxhMmDCB+Ph4pVroxcqksLAwWrduTcmSJXMsd5BdyfrLL79gYWGBkZERX375Jffu3VPa/PHHHzg4OKCjo0PZsmVxc3Pj/v37yuNLly7F1taWUqVKYWNjw/z589X6Ja9+LSjulx05cgRnZ2dKlSpF3bp1OX78uNrjGRkZ9O3bV+nHmjVrMnv2bLXXunz5csLCwpTzRUREADBy5Eisra3R1dWlevXqjB07lqdPnyrPjY+Pp1mzZhgYGGBoaEidOnXUKkQPHjzIZ599ho6ODubm5gwZMkTpo6ZNm3Lp0iX8/PyU875o48aNeSYCmzZtypAhQ/D396dMmTKYmpoyfvx45fHnz58zfvx4qlSpgra2NhUrVmTIkCHK448fP2bEiBFUqlQJPT09GjRooLzmbJGRkTRt2hRdXV1Kly6Nu7s7t27donfv3uzbt4/Zs2crcV+8eDFHjM+fP6d3795YWVlx4MAB2rVrR40aNXBycmLcuHGEhYXl+toKGi/Imvv169dHT08PY2NjGjZsyKVLl157TADmz5+PlZUVpUqVwsTEhC+++ELt3C9fH16UXckaGhpKs2bN0NXVpVatWkRHRyttLl26hIeHB6VLl0ZPTw97e3u2bNmiPH7y5EnatGmDvr4+JiYm9OjRg+vXryuPZ2ZmMn36dCwtLdHW1qZKlSpMnjwZyKqMB3B2dkalUtG0adNc+/jIkSNMmTKFwMBA/ve//+Hq6oqFhQUtW7Zk3bp19OrVK9fnxcTE0LJlS8qVK4eRkRFNmjTh2LFjyuMFzbv8+rag692tW7fo3r075cuXR0dHBysrK4KDg9XiCwsLU3vPqFQqTE1NMTMzw9bWlr59+xIVFUV6ejr+/v5Ku6ZNmzJ48GCGDh1KuXLlcHd3ByAoKAgHBwf09PQwNzdn0KBBpKenq51zyZIlmJubo6ury3/+8x+CgoJyJFFf93eESqXixo0b9OnTJ9fr4f379zE0NFTrL4ANGzagp6endt1+sY8WLlxItWrVCAwMxNbWlsGDB/PFF18wc+ZMpX1QUBA+Pj54e3tjZ2fHwoUL0dXV5eeffwbgzp07LFu2jKCgIJo3b06dOnUIDg4mKiqKQ4cOAbBjxw4SExP59ddfcXJyok2bNkyaNImffvpJSYgXFMvDhw9Zt24d06dPp3HjxlhaWjJ+/HgsLS1ZsGCBEm+3bt1wc3OjevXq2NvbExQUxN27d0lISFDrGwMDA0xNTZWbnp4e+Xn5Ww8qlYoFCxbQpk0bdHR0qF69eo7+j4qKwsnJSfndtGHDBlnaRQghhBBCCPFWfXRJ2o0bN+Lh4YFKpSI9PZ0mTZpw5coVNm7cSHx8PP7+/mRmZgKwfv16vvnmG4YPH87JkycZMGAA3t7e7N27V+2YEyZMoGvXriQkJNC2bVu6d+/OzZs3MTc3Z926dQCcOXOGtLQ0JSE1depUVqxYwcKFCzl16hR+fn7897//Zd++fWrHHj16NIGBgcTGxqKpqUmfPn0A8PT0ZPjw4djb2yvVQp6enmqv8/PPP8+zH5KTk9mwYQPh4eGEh4ezb98+5SuhaWlpeHl50adPH5KSkoiIiKBTp048f/4cgJUrVxIQEMDkyZNJSkpiypQpjB07luXLlwPk268Fxf2i9PR02rdvj52dHUePHmX8+PGMGDFCrU1mZiaVK1fm999/JzExkYCAAL7//nt+++03AEaMGEHXrl1p3bq1cj5XV1cg64N8SEgIiYmJzJ49myVLlqglMLp3707lypWJiYnh6NGjfPfdd5QsWVLpv9atW9O5c2cSEhJYu3YtBw8eZPDgwQCEhoZSuXJltYqubKdOneLatWs0b948z/FZvnw5enp6HD58mOnTpzNx4kR27twJZH2NfebMmSxatIhz586xYcMGHBwclOcOHjyY6Oho1qxZQ0JCAl26dKF169acO3cOgLi4OFq0aIGdnR3R0dEcPHgQDw8PMjIymD17Ni4uLvj4+ChxZy/L8KK4uDhOnTrF8OHDKVEi52Uir2rAgsbr2bNndOzYkSZNmpCQkEB0dDT9+/dXktyvMyaxsbEMGTKEiRMncubMGbZt20bjxo3V4nvx+pCX0aNHM2LECOLi4rC2tsbLy0v5arevry+PHz9m//79nDhxgh9//BF9fX0Abt++TfPmzXF2diY2NpZt27Zx9epVunbtqhx71KhRTJs2jbFjx5KYmMiqVaswMTEBUL6GvmvXLtLS0ggNDc01vpUrV6Kvr8+gQYNyfTyvsbl37x69evXi4MGDHDp0CCsrK9q2baskAfObdwX1bUHXu+zXu3XrVpKSkliwYAHlypVTnp+ZmUl4eHi+1zSAChUq0L17dzZu3EhGRoZy//Lly9HS0iIyMpKFCxcCUKJECebMmcOpU6dYvnw5e/bsUUvuRkZGMnDgQL755hvi4uJo2bKlkjDP9iZ+R6SlpWFoaMisWbNyvR7q6enx5Zdf5khaBwcH88UXX2BgYJBrH0VHR+Pm5qb2HHd3d+WPCk+ePOHo0aNqbUqUKIGbm5vS5ujRozx9+lStjY2NDVWqVFHaREdH4+DgoMzT7PPcvXuXU6dOFSqWZ8+ekZGRQalSpdTa6OjocPDgQXLz5MkTFi9ejJGREbVq1VJ7bNq0aZQtWxZnZ2f+97//5Vh6oTDGjh1L586diY+Pp3v37nz55ZckJSUBcPfuXTw8PHBwcODYsWNMmjSJkSNH5nu8x48fc/fuXbWbEEIIIYQQQhSFZnEH8KaFhYUpibhVq1bxzz//EBMTQ5kyZQCUr9ICzJgxg969eyvJjmHDhnHo0CFmzJihVMhC1pqiXl5eAEyZMoU5c+Zw5MgRWrdurRy3QoUKSnLk8ePHTJkyhV27duHi4gJA9erVOXjwIIsWLaJJkybKsSdPnqz8/N1339GuXTsePXqEjo4O+vr6aGpqYmpqqvYar1y5QkJCAm3atMmzHzIzMwkJCVE+4Pfo0YPdu3czefJk0tLSePbsGZ06daJq1aoAaknAcePGERgYqHzltVq1aiQmJrJo0SJ69epVYL/mFffLVq1aRWZmJsuWLaNUqVLY29tz+fJlvvrqK6VNyZIlmTBhgvJztWrViI6O5rfffqNr167o6+ujo6PD48ePc5zvxXWJLSwsGDFiBGvWrFESNampqXz77bfY2NgAYGVlpbSfOnUq3bt3V9ZutbKyYs6cOTRp0oQFCxZQpkwZNDQ0lIquF4WFheHu7o6Wllaer93R0ZFx48Ypx543bx67d++mZcuWpKamYmpqipubGyVLlqRKlSrUr19fiTk4OJjU1FQqVqwIZCWqt23bRnBwMFOmTGH69OnUrVtXrfrZ3t5e+beWlha6urr5jk92wje7bwqroPG6e/cud+7coX379tSoUQMAW1tbpf3rjElqaip6enq0b98eAwMDqlatirOzs1p8L14f8jJixAjatWsHZCXf7O3tOX/+PDY2NqSmptK5c2fl/VK9enXlefPmzcPZ2ZkpU6Yo9/3888+Ym5tz9uxZzMzMmD17NvPmzVOqXWvUqEGjRo2ArK9kA5QtW7bAsalevbqSvC6sl/9osHjxYoyNjdm3bx/t27cvcN7l1beFud6lpqbi7OxM3bp1gaz344uyqzYbNGhQ4OuwsbHh3r173LhxQ1nmxcrKiunTp6u1e3HdZQsLC3744QcGDhyovC/mzp1LmzZtlD8MWVtbExUVRXh4uPK8N/E7wtTUFJVKhZGRUZ7j2q9fP1xdXUlLS8PMzIxr166xZcsWdu3alWcf/f3332qJUwATExPu3r3Lw4cPuXXrFhkZGbm2OX36tHIMLS2tHIl9ExMT/v7773zPk/1YYWIxMDDAxcWFSZMmYWtri4mJCatXryY6OlrtdwdAeHg4X375JQ8ePMDMzIydO3eqJfSHDBlC7dq1KVOmDFFRUYwaNYq0tDSCgoJy7du8dOnShX79+gEwadIkdu7cydy5c5k/fz6rVq1CpVKxZMkSSpUqhZ2dHVeuXMHHxyfP402dOlXt2ieEEEIIIYQQRfVRVdImJSXx119/0aJFCyCrGtDZ2VlJJObWvmHDhmr3NWzYUKmmyebo6Kj8W09PD0NDQ7U1/V52/vx5Hjx4QMuWLdHX11duK1asIDk5Oc9jm5mZAeR7bMiqBmzUqFG+axtaWFgoCdrsY2cft1atWrRo0QIHBwe6dOnCkiVLuHXrFpD11dvk5GT69u2rFvsPP/ygxF5Qv+Zm4MCBaseDrP53dHRUq67KTvK86KeffqJOnTqUL18efX19Fi9eTGpqaoHnXLt2LQ0bNsTU1BR9fX3GjBmj9rxhw4bRr18/3NzcmDZtmtrYxMfHExISohazu7s7mZmZXLhwId/zvvy17dy8OO6gPj5dunTh4cOHVK9eHR8fH9avX69Uip04cYKMjAysra3VYtu3b5/a+GS/B15VdlX1q8hvvMqUKUPv3r1xd3fHw8OD2bNnq1Uhv86YtGzZkqpVq1K9enV69OjBypUrefDggfL8l68PecnvPTlkyBB++OEHGjZsyLhx49S+hh0fH8/evXvV4stONicnJ5OUlMTjx4+LbWyuXr2Kj48PVlZWGBkZYWhoSHp6ujI2+c27/Pq2MNe7r776ijVr1uDk5IS/vz9RUVFqsYWFhdG+fftcq7bzev0vVkPXqVMnR7tdu3bRokULKlWqhIGBAT169ODGjRtK3GfOnFGS0Nle/vlt/Y54Wf369bG3t1e+rfDrr79StWpVtWrlovTR++iXX37h+fPnVKpUCW1tbebMmYOXl1eO15O9rm1UVBStW7ema9euan05bNgwmjZtiqOjIwMHDiQwMJC5c+fy+PHjIsXz8u8aFxcXZVzPnDmT43fTy3PjZaNGjeLOnTvK7c8//yxSPEIIIYQQQgjxYX7ay8PGjRtp2bKl8sFKR0fnjRz35Yo1lUqlLJmQm+x1Dzdv3kxcXJxyS0xMzLHu3YvHzk465HdsyH+908LErKGhwc6dO9m6dSt2dnbMnTuXmjVrcuHCBSX2JUuWqMV+8uRJpZLrVfp14sSJascrrDVr1jBixAj69u3Ljh07iIuLw9vbu8DNgaKjo+nevTtt27YlPDyc48ePM3r0aLXnjR8/nlOnTtGuXTv27NmDnZ0d69evB7LGcMCAAWoxx8fHc+7cOaUCNDdpaWkcP35cqcTMS37jY25uzpkzZ5g/fz46OjoMGjSIxo0b8/TpU9LT09HQ0ODo0aNqsSUlJSlLbbyJeW9tbQ2gVNwVVmHGKzg4mOjoaFxdXVm7di3W1tbK3HqdMTEwMODYsWOsXr0aMzMzAgICqFWrFrdv3wZyXh/ykt97sl+/fqSkpNCjRw9OnDhB3bp1mTt3rhKfh4eHWnxxcXGcO3eOxo0bv7HrkbW1NSkpKWrrKxdGr169iIuLY/bs2URFRREXF0fZsmWVsclv3uXXt4W53rVp00ZZwzk7Uf7i0iaFuaZlS0pKwtDQkLJlyyr3vbwm6cWLF2nfvj2Ojo6sW7eOo0eP8tNPPwFvZ2Oxov6OyE2/fv2U9WqDg4Px9vZWS0S/3EempqZcvXpV7RhXr17F0NAQHR0dypUrh4aGRq5tsit6TU1NefLkifIeyatNbsfIfqwwsUBW1fi+fftIT0/nzz//5MiRIzx9+lStGh2yxtLS0pJPP/2UZcuWoampybJly/LstwYNGvDs2bNc19Z+l7S1tTE0NFS7CSGEEEIIIURRfFRJ2rCwMLU1DR0dHYmLi+PmzZu5tre1tSUyMlLtvsjISOzs7Ap9zuyvtL+4PqKdnR3a2tqkpqZiaWmpdstt/c/8jv3icSErEbR3794C124siEqlomHDhkyYMIHjx4+jpaXF+vXrMTExoWLFiqSkpOSIPXtjo4L6Nbe4K1SooHYsyOr/hIQEHj16pLTLTtZli4yMxNXVlUGDBuHs7IylpWWOauTczhcVFUXVqlUZPXo0devWxcrKStmc6kXW1tb4+fmxY8cOOnXqpKwLWbt2bRITE3P0gaWlpTLmuZ1306ZNuLq6FqnKODc6Ojp4eHgwZ84cIiIiiI6O5sSJEzg7O5ORkcG1a9dyxJWdMHF0dGT37t15Hju3uF/m5OSEnZ0dgYGBuSabXk7qZCvMeEHW5lijRo0iKiqKTz75hFWrVimPvc6YaGpq4ubmxvTp00lISODixYvs2bMHyHl9eFXm5uYMHDiQ0NBQhg8fzpIlS5T4Tp06hYWFRY749PT0sLKyQkdHJ8+xye1akptu3bqRnp6eYzO/bPmNzZAhQ2jbti329vZoa2urbWoGec87yLtvC3u9K1++PL169eLXX39l1qxZLF68GMhavuHSpUu0bNky39cNWRXNq1atomPHjvlWlB49epTMzEwCAwP59NNPsba25q+//lJrU7NmTWJiYtTue/nnN/E7orD++9//cunSJebMmUNiYqLaBnC59ZGLi0uOubRz506lQlRLS4s6deqotcnMzGT37t1Kmzp16lCyZEm1NmfOnCE1NVVp4+LiwokTJ9SqWXfu3ImhoaHSDwXF8iI9PT3MzMy4desW27dvL/A9mZmZmW+VbFxcHCVKlFCWviisl3/XHDp0SFl6pWbNmpw4cULtvC/PDSGEEEIIIYR40z6aJO21a9eIjY2lffv2yn1eXl6YmprSsWNHIiMjSUlJYd26dcpmJt9++y0hISEsWLCAc+fOERQURGhoaI7Nq/JTtWpVVCoV4eHh/PPPP6Snp2NgYMCIESPw8/Nj+fLlJCcnc+zYMebOnat8nbUwLCwsuHDhAnFxcVy/fp3Hjx+zbds2rK2tc6zpWBSHDx9mypQpxMbGkpqaSmhoKP/884/yAXXChAlMnTqVOXPmcPbsWU6cOEFwcLCy5l9B/Zpb3Lnp1q0bKpUKHx8fEhMT2bJlCzNmzFBrY2VlRWxsLNu3b+fs2bOMHTs2x4dlCwsLEhISOHPmDNevX+fp06dYWVmRmprKmjVrSE5OZs6cOUpFJmTtNj548GAiIiK4dOkSkZGRxMTEKH0wcuRIoqKiGDx4sFINGRYWpmxSlX3e/fv3c+XKFSXZVZSKwLyEhISwbNkyTp48SUpKCr/++is6OjpUrVoVa2trunfvTs+ePQkNDeXChQscOXKEqVOnsnnzZiDra7cxMTEMGjSIhIQETp8+zYIFC5QYLSwsOHz4MBcvXuT69eu5JmFVKhXBwcGcPXuWzz77jC1btpCSkkJCQgKTJ0/OM7FS0HhduHCBUaNGER0dzaVLl9ixYwfnzp3D1tb2tcckPDycOXPmEBcXx6VLl1ixYgWZmZnUrFkz1+vDqxg6dCjbt2/nwoULHDt2jL179yrx+fr6cvPmTby8vIiJiSE5OZnt27fj7e2tbJo0cuRI/P39laUADh06pFQJVqhQAR0dHWXDsTt37uQaQ4MGDfD392f48OH4+/srfbl79266dOmS5zXGysqKX375haSkJA4fPkz37t3Vqnvzm3f59W1hrncBAQGEhYVx/vx5Tp06RXh4uNJvYWFhuLm5oaurqxbv8+fP+fvvv0lLSyMpKYmff/4ZV1dXjIyMlE0Q82JpacnTp0+ZO3cuKSkp/PLLL8qGYtm+/vprtmzZQlBQEOfOnWPRokVs3bpVrXr1TfyOKKzSpUvTqVMnvv32W1q1akXlypWVx3Lro4EDB5KSkoK/vz+nT59m/vz5/Pbbb/j5+Slthg0bxpIlS1i+fDlJSUl89dVX3L9/H29vbwCMjIzo27cvw4YNY+/evRw9ehRvb29cXFz49NNPAWjVqhV2dnb06NGD+Ph4tm/fzpgxY/D19UVbW7vQsWzfvp1t27Zx4cIFdu7cSbNmzbCxsVFiuX//Pt9//z2HDh3i0qVLHD16lD59+nDlyhW6dOkCZH1DYtasWcTHx5OSksLKlSuVTepKly4NZK3ZbmNjo2zEl5fff/+dn3/+mbNnzzJu3DiOHDmiXEu6detGZmYm/fv3Jykpie3btyu/m/LbdFAIIYQQQgghXsdHk6TdtGkT9evXV9tgREtLix07dlChQgXatm2Lg4MD06ZNQ0NDA4COHTsye/ZsZsyYgb29PYsWLSI4OJimTZsW+ryVKlViwoQJfPfdd5iYmCgf8iZNmsTYsWOZOnUqtra2tG7dms2bNyvVqIXRuXNnWrduTbNmzShfvjyrV68u1HqnBTE0NGT//v20bdsWa2trxowZQ2BgoLIRWb9+/Vi6dCnBwcE4ODjQpEkTQkJClNgL6tfc4s6Nvr4+mzZtUipER48ezY8//qjWZsCAAXTq1AlPT08aNGjAjRs3cuxq7+PjQ82aNalbty7ly5cnMjKSDh064Ofnx+DBg3FyciIqKoqxY8cqz9HQ0ODGjRv07NkTa2trunbtSps2bZSNXxwdHdm3b5+SpHR2diYgIEDZrAuylnC4ePEiNWrUoHz58ty/f5/du3e/9vgYGxuzZMkSGjZsiKOjI7t27WLTpk3K17uDg4Pp2bMnw4cPp2bNmnTs2JGYmBiqVKkCZFWi7tixg/j4eOrXr4+LiwthYWFoambtEzhixAg0NDSws7OjfPnyea7vW79+fWJjY7G0tMTHxwdbW1s6dOjAqVOnmDVrVq7PKWi8dHV1OX36NJ07d8ba2pr+/fvj6+vLgAEDXntMjI2NCQ0NpXnz5tja2rJw4UJWr16Nvb19rteHV5GRkYGvr6/ynra2tlYqWitWrEhkZCQZGRm0atUKBwcHhg4dirGxsVL1OXbsWIYPH05AQAC2trZ4enoqFYqamprMmTOHRYsWUbFixXwrDH/88UdWrVrF4cOHcXd3x97enmHDhuHo6KhWgfmiZcuWcevWLWrXrk2PHj0YMmSIWvVhfvMuv76Fgq93WlpajBo1CkdHRxo3boyGhgZr1qwB8l7D+e7du5iZmVGpUiVcXFyUjQuPHz+urBWcl1q1ahEUFMSPP/7IJ598wsqVK5k6dapam4YNG7Jw4UKCgoKoVasW27Ztw8/PT205jDfxO6Io+vbty5MnT+jTp4/a/bn1UbVq1di8eTM7d+6kVq1aBAYGsnTpUtzd3ZU2np6ezJgxg4CAAJycnIiLi2Pbtm1qm3zNnDmT9u3b07lzZxo3boypqSmhoaHK4xoaGoSHh6OhoYGLiwv//e9/6dmzJxMnTixSLHfu3MHX1xcbGxt69uxJo0aN2L59u7JUhIaGhtq1wcPDgxs3bnDgwAFlnmlra7NmzRqaNGmCvb09kydPxs/PT6nKBnj69ClnzpxRW486NxMmTGDNmjU4OjqyYsUKVq9erVQGGxoasmnTJuLi4nBycmL06NEEBAQAFLhcihBCCCGEEEK8KtXz19kh6D3SoUMHGjVqhL+/f3GH8tY8e/YMExMTtm7dWuAmJuLdCw0NZcyYMSQmJhZ3KOIl/4brw4fo+vXrmJmZcfnyZbXEYXHx8fHh9OnTHDhwoFjO/8svvyjr9mYvf/G+9dGHyMzMjEmTJtGvXz8gqxp2/fr1dOzYsdDHWLlyJd7e3ty5c6dQ60vfvXsXIyMjpvuuQUdbt8D2QgghhBBCiDdjcKBHcYegJvuzwZ07dwrcu0LzHcX01jVq1AgvL6/iDuOtunnzJn5+ftSrV6+4QxG50NfXz1EJLN4P/4brw4fo5s2bBAUFFVvyccaMGbRs2RI9PT22bt3K8uXL81zr92168OABaWlpTJs2jQEDBigJWij+PvqQPXjwgMjISK5evapU4xbWihUrqF69OpUqVSI+Pp6RI0fStWvXN7YBoBBCCCGEEEK87KOppBVCCCGKomvXrkRERHDv3j2qV6/O119/zcCBA995HOPHj2fy5Mk0btyYsLAw9PX133kMH6NZs2YxadIkevXqpaypDoWrpJ0+fTrz58/n77//xszMjI4dOzJ58uQcayfnRSpphRBCCCGEKB4fciWtJGmFEEIIId6govxHTAghhBBCCPHxKspng49m4zAhhBBCCCGEEEIIIYT4EH00a9IKIYQQQrwPsr+kdPfu3WKORAghhBBCCFGcsj8TFGYhA0nSCiGEEEK8QTdu3ADA3Ny8mCMRQgghhBBCvA/u3buHkZFRvm0kSSuEEEII8QaVKVMGgNTU1AL/IyZEQe7evYu5uTl//vmnrHEsXovMJfEmyXwSb5LMJ/GmvI9z6fnz59y7d4+KFSsW2FaStEIIIYQQb1CJEllL/hsZGb03/zkUHz5DQ0OZT+KNkLkk3iSZT+JNkvkk3pT3bS4VtnBDNg4TQgghhBBCCCGEEEKIYiRJWiGEEEIIIYQQQgghhChGkqQVQgghhHiDtLW1GTduHNra2sUdivgIyHwSb4rMJfEmyXwSb5LMJ/GmfOhzSfX8+fPnxR2EEEIIIYQQQgghhBBC/FtJJa0QQgghhBBCCCGEEEIUI0nSCiGEEEIIIYQQQgghRDGSJK0QQgghhBBCCCGEEEIUI0nSCiGEEEIIIYQQQgghRDGSJK0QQgghRBH99NNPWFhYUKpUKRo0aMCRI0fybf/7779jY2NDqVKlcHBwYMuWLe8oUvEhKMp8WrJkCZ999hmlS5emdOnSuLm5FTj/xL9HUa9N2dasWYNKpaJjx45vN0DxQSnqfLp9+za+vr6YmZmhra2NtbW1/L4TQNHn0qxZs6hZsyY6OjqYm5vj5+fHo0eP3lG04n22f/9+PDw8qFixIiqVig0bNhT4nIiICGrXro22tjaWlpaEhIS89ThflSRphRBCCCGKYO3atQwbNoxx48Zx7NgxatWqhbu7O9euXcu1fVRUFF5eXvTt25fjx4/TsWNHOnbsyMmTJ99x5OJ9VNT5FBERgZeXF3v37iU6Ohpzc3NatWrFlStX3nHk4n1T1LmU7eLFi4wYMYLPPvvsHUUqPgRFnU9PnjyhZcuWXLx4kT/++IMzZ86wZMkSKlWq9I4jF++bos6lVatW8d133zFu3DiSkpJYtmwZa9eu5fvvv3/HkYv30f3796lVqxY//fRTodpfuHCBdu3a0axZM+Li4hg6dCj9+vVj+/btbznSV6N6/vz58+IOQgghhBDiQ9GgQQPq1avHvHnzAMjMzMTc3Jyvv/6a7777Lkd7T09P7t+/T3h4uHLfp59+ipOTEwsXLnxncYv3U1Hn08syMjIoXbo08+bNo2fPnm87XPEee5W5lJGRQePGjenTpw8HDhzg9u3bhapKEh+/os6nhQsX8r///Y/Tp09TsmTJdx2ueI8VdS4NHjyYpKQkdu/erdw3fPhwDh8+zMGDB99Z3OL9p1KpWL9+fb7fAhk5ciSbN29WK4748ssvuX37Ntu2bXsHURaNVNIKIYQQQhTSkydPOHr0KG5ubsp9JUqUwM3Njejo6FyfEx0drdYewN3dPc/24t/jVebTyx48eMDTp08pU6bM2wpTfABedS5NnDiRChUq0Ldv33cRpvhAvMp82rhxIy4uLvj6+mJiYsInn3zClClTyMjIeFdhi/fQq8wlV1dXjh49qiyJkJKSwpYtW2jbtu07iVl8XD60/4drFncAQgghhBAfiuvXr5ORkYGJiYna/SYmJpw+fTrX5/z999+5tv/777/fWpziw/Aq8+llI0eOpGLFijk+gIh/l1eZSwcPHmTZsmXExcW9gwjFh+RV5lNKSgp79uyhe/fubNmyhfPnzzNo0CCePn3KuHHj3kXY4j30KnOpW7duXL9+nUaNGvH8+XOePXvGwIEDZbkD8Ury+n/43bt3efjwITo6OsUUWe6kklYIIYQQQogP0LRp01izZg3r16+nVKlSxR2O+IDcu3ePHj16sGTJEsqVK1fc4YiPQGZmJhUqVGDx4sXUqVMHT09PRo8eLcv6iCKLiIhgypQpzJ8/n2PHjhEaGsrmzZuZNGlScYcmxFsnlbRCCCGEEIVUrlw5NDQ0uHr1qtr9V69exdTUNNfnmJqaFqm9+Pd4lfmUbcaMGUybNo1du3bh6Oj4NsMUH4CizqXk5GQuXryIh4eHcl9mZiYAmpqanDlzhho1arzdoMV761WuTWZmZpQsWRINDQ3lPltbW/7++2+ePHmClpbWW41ZvJ9eZS6NHTuWHj160K9fPwAcHBy4f/8+/fv3Z/To0ZQoIbWGovDy+n+4oaHhe1dFC1JJK4QQQghRaFpaWtSpU0dtM4vMzEx2796Ni4tLrs9xcXFRaw+wc+fOPNuLf49XmU8A06dPZ9KkSWzbto26deu+i1DFe66oc8nGxoYTJ04QFxen3Dp06KDsfm1ubv4uwxfvmVe5NjVs2JDz588ryX6As2fPYmZmJgnaf7FXmUsPHjzIkYjNTv7LvveiqD60/4dLJa0QQgghRBEMGzaMXr16UbduXerXr8+sWbO4f/8+3t7eAPTs2ZNKlSoxdepUAL755huaNGlCYGAg7dq1Y82aNcTGxrJ48eLifBniPVHU+fTjjz8SEBDAqlWrsLCwUNY21tfXR19fv9hehyh+RZlLpUqV4pNPPlF7vrGxMUCO+8W/U1GvTV999RXz5s3jm2++4euvv+bcuXNMmTKFIUOGFOfLEO+Bos4lDw8PgoKCcHZ2pkGDBpw/f56xY8fi4eGhVqkt/p3S09M5f/688vOFCxeIi4ujTJkyVKlShVGjRnHlyhVWrFgBwMCBA5k3bx7+/v706dOHPXv28Ntvv7F58+biegn5kiStEEIIIUQReHp68s8//xAQEMDff/+Nk5MT27ZtUzYlSE1NVasAcXV1ZdWqVYwZM4bvv/8eKysrNmzYIIkQARR9Pi1YsIAnT57wxRdfqB1n3LhxjB8//l2GLt4zRZ1LQuSnqPPJ3Nyc7du34+fnh6OjI5UqVeKbb75h5MiRxfUSxHuiqHNpzJgxqFQqxowZw5UrVyhfvjweHh5Mnjy5uF6CeI/ExsbSrFkz5edhw4YB0KtXL0JCQkhLSyM1NVV5vFq1amzevBk/Pz9mz55N5cqVWbp0Ke7u7u889sJQPZd6cSGEEEIIIYQQQgghhCg28qdUIYQQQgghhBBCCCGEKEaSpBVCCCGEEEIIIYQQQohiJElaIYQQQgghhBBCCCGEKEaSpBVCCCGEEEIIIYQQQohiJElaIYQQQgghhBBCCCGEKEaSpBVCCCGEEEIIIYQQQohiJElaIYQQQgghhBBCCCGEKEaSpBVCCCGEEEIIIYQQQohiJElaIYQQQgghhBBCCCGEKEaSpBVCCCGEEEII8dHo3bs3KpUqx+38+fPFHZoQQgiRJ83iDkAIIYQQQgghhHiTWrduTXBwsNp95cuXV/v5yZMnaGlpvcuwhBBCiDxJJa0QQgghhBBCiI+KtrY2pqamarcWLVowePBghg4dSrly5XB3dwfg5MmTtGnTBn19fUxMTOjRowfXr19XjnX//n169uyJvr4+ZmZmBAYG0rRpU4YOHaq0UalUbNiwQS0GY2NjQkJClJ///PNPunbtirGxMWXKlOHzzz/n4sWLyuO9e/emY8eOzJgxAzMzM8qWLYuvry9Pnz5V2jx+/JiRI0dibm6OtrY2lpaWLFu2jOfPn2NpacmMGTPUYoiLi5MqYiGE+EBIklYIIYQQQgghxL/C8uXL0dLSIjIykoULF3L79m2aN2+Os7MzsbGxbNu2jatXr9K1a1flOd9++y379u0jLCyMHTt2EBERwbFjx4p03qdPn+Lu7o6BgQEHDhwgMjISfX19WrduzZMnT5R2e/fuJTk5mb1797J8+XJCQkLUEr09e/Zk9erVzJkzh6SkJBYtWoS+vj4qlYo+ffrkqB4ODg6mcePGWFpavlqHCSGEeGdkuQMhhBBCCCGEEB+V8PBw9PX1lZ/btGkDgJWVFdOnT1fu/+GHH3B2dmbKlCnKfT///DPm5uacPXuWihUrsmzZMn799VdatGgBZCV6K1euXKR41q5dS2ZmJkuXLkWlUgFZCVRjY2MiIiJo1aoVAKVLl2bevHloaGhgY2NDu3bt2L17Nz4+Ppw9e5bffvuNnTt34ubmBkD16tWVc/Tu3ZuAgACOHDlC/fr1efr0KatWrcpRXSuEEOL9JElaIYQQQgghhBAflWbNmrFgwQLlZz09Pby8vKhTp45au/j4ePbu3auW0M2WnJzMw4cPefLkCQ0aNFDuL1OmDDVr1ixSPPHx8Zw/fx4DAwO1+x89ekRycrLys729PRoaGsrPZmZmnDhxAshaukBDQ4MmTZrkeo6KFSvSrl07fv75Z+rXr8+mTZt4/PgxXbp0KVKsQgghiockaYUQQgghhBBCfFT09PRy/Yq/np6e2s/p6el4eHjw448/5mhrZmZW6LVcVSoVz58/V7vvxbVk09PTqVOnDitXrszx3Bc3NCtZsmSO42ZmZgKgo6NTYBz9+vWjR48ezJw5k+DgYDw9PdHV1S3UaxBCCFG8JEkrhBBCCCGEEOJfqXbt2qxbtw4LCws0NXN+PK5RowYlS5bk8OHDVKlSBYBbt25x9uxZtYrW8uXLk5aWpvx87tw5Hjx4oHaetWvXUqFCBQwNDV8pVgcHBzIzM9m3b5+y3MHL2rZti56eHgsWLGDbtm3s37//lc4lhBDi3ZONw4QQQgghhBBC/Cv5+vpy8+ZNvLy8iImJITk5me3bt+Pt7U1GRgb6+vr07duXb7/9lj179nDy5El69+5NiRLqH6WbN2/OvHnzOH78OLGxsQwcOFCtKrZ79+6UK1eOzz//nAMHDnDhwgUiIiIYMmQIly9fLlSsFhYW9OrViz59+rBhwwblGL/99pvSRkNDg969ezNq1CisrKxwcXF5Mx0lhBDirZMkrRBCCCGEEEKIf6WKFSsSGRlJRkYGrVq1wsHBgaFDh2JsbKwkYv/3v//x2Wef4eHhgZubG40aNcqxtm1gYCDm5uZ89tlndOvWjREjRqgtM6Crq8v+/fupUqUKnTp1wtbWlr59+/Lo0aMiVdYuWLCAL774gkGDBmFjY4OPjw/3799Xa9O3b1+ePHmCt7f3a/SMEEKId031/OWFc4QQQgghhBBCCJGnpk2b4uTkxKxZs4o7lBwOHDhAixYt+PPPPzExMSnucIQQQhSSrEkrhBBCCCGEEEJ84B4/fsw///zD+PHj6dKliyRohRDiAyPLHQghhBBCCCGEEB+41atXU7VqVW7fvs306dOLOxwhhBBFJMsdCCGEEEIIIYQQQgghRDGSSlohhBBCCCGEEEIIIYQoRpKkFUIIIYQQQgghhBBCiGIkSVohhBBCCCGEEEIIIYQoRpKkFUIIIYQQQgghhBBCiGIkSVohhBBCCCGEEEIIIYQoRpKkFUIIIYQQQgghhBBCiGIkSVohhBBCCCGEEEIIIYQoRpKkFUIIIYQQQgghhBBCiGL0f+1v6KEGvvT0AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Column Image_Path has 9000 unique values.\n", + "Column Label has 10 unique values.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+MAAAKqCAYAAABRpI/AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADC9UlEQVR4nOzdeXzNZ/7//8dJIieJLIhEkiIiSmJfh4QqQoLUVqXUvla/sbdG081WjQpdxnQoVWKJfddaokgZSppKLS1qTUtCNSQEB8n5/dGfM3Mm0eYEkZnP8367vW8357pe7+v9ulK5zby8r3NdBrPZbEZEREREREREiozdk05ARERERERE5P8aFeMiIiIiIiIiRUzFuIiIiIiIiEgRUzEuIiIiIiIiUsRUjIuIiIiIiIgUMRXjIiIiIiIiIkVMxbiIiIiIiIhIEVMxLiIiIiIiIlLEVIyLiIiIiIiIFDEV4yIiIv9DYmNjqVy5Mvb29tStW/eRj797924MBgO7d+9+pOOeO3cOg8HAwoULH+m4T4rBYGDixIlPOg0RESnGVIyLiMhjs3DhQgwGA99++22+/S1atKBmzZqPNYcvv/zy/0xRtH37dv7617/StGlTFixYwHvvvffA2P79+2MwGHB3d+fWrVt5+n/66ScMBgMGg4EZM2Y8zrSfqJEjR2IwGDh16tQDY958800MBgOHDx8uwsxEROR/nYpxERH5n/bll18yadKkJ51Gkdi5cyd2dnbMnz+fvn370r59+z+Md3Bw4ObNm2zatClP39KlS3FycsrT3rx5c27dukXz5s0fWd4A/v7+3Lp1iz59+jzScf9Mr169AIiPj39gzLJly6hVqxa1a9cuqrREROT/ABXjIiIi/yMuX76Ms7Mzjo6OBYo3Go2EhYWxbNmyPH3x8fFERkbmabezs8PJyQk7u0f7fyEMBgNOTk7Y29s/0nH/TOPGjalSpUq+PwOA/fv3c/bsWUvRLiIi8qioGBcRkWJnyZIlNGjQAGdnZ8qUKUOPHj34+eefrWL27NlDt27dqFixIkajkQoVKjBmzBirJdf9+/fnk08+AbAsuTYYDMC/vqM8Y8YMPvnkEypXroyLiwvh4eH8/PPPmM1mpkyZQvny5XF2dqZTp05kZGRY5bBhwwYiIyPx8/PDaDQSGBjIlClTyMnJsYq7vxw/OTmZ0NBQnJ2dCQgIYM6cOQX6edy7d48pU6YQGBiI0WikUqVKvPHGG5hMJkuMwWBgwYIFZGdnW+ZZkO9fv/TSS2zZsoVr165Z2pKSkvjpp5946aWX8sTn953xn376ia5du+Lj44OTkxPly5enR48eZGZmWmISEhJo1qwZpUqVwtXVlWrVqvHGG29Y+vP7znj//v1xdXXlwoULdO7cGVdXV7y8vHjttdfy/Ix/++03+vTpg7u7O6VKlaJfv358//33Bfo59OrVi+PHj/Pdd9/l6YuPj8dgMNCzZ0/u3LnDO++8Q4MGDfDw8KBkyZI888wz7Nq16w/Hvz+XSpUq5WmfOHGi5e/kvyvI70BBfu4iIlJ8OTzpBERE5H9fZmYmV65cydN+9+7dPG1Tp07l7bffpnv37gwePJhff/2VWbNm0bx5cw4dOkSpUqUAWLVqFTdv3uSVV17B09OTgwcPMmvWLH755RdWrVoFwMsvv8zFixdJSEhg8eLF+ea2dOlS7ty5w4gRI8jIyGD69Ol0796dVq1asXv3bsaPH8+pU6eYNWsWr732Gp9//rnl3oULF+Lq6srYsWNxdXVl586dvPPOO2RlZREbG2v1nKtXr9K+fXu6d+9Oz549WblyJa+88gqOjo4MHDjwD39+gwcPJi4ujhdeeIFXX32VAwcOEBMTw48//si6desAWLx4MXPnzuXgwYN89tlnAISGhv7huADPP/88w4YNY+3atZY84uPjCQoKon79+n96/507d4iIiMBkMjFixAh8fHy4cOECmzdv5tq1a3h4eHDs2DGee+45ateuzeTJkzEajZw6dYp//vOffzp+Tk4OERERNG7cmBkzZrBjxw5mzpxJYGAgr7zyCgC5ubl06NCBgwcP8sorrxAUFMSGDRvo16/fn44PvxfjkyZNIj4+3mrOOTk5rFy5kmeeeYaKFSty5coVPvvsM3r27MmQIUO4fv068+fPJyIigoMHDz6yDfMK8jtQkJ+7iIgUc2YREZHHZMGCBWbgD68aNWpY4s+dO2e2t7c3T5061WqcI0eOmB0cHKzab968med5MTExZoPBYD5//rylLSoqypzf/9ydPXvWDJi9vLzM165ds7RHR0ebAXOdOnXMd+/etbT37NnT7OjoaL59+/Yf5vDyyy+bXVxcrOKeffZZM2CeOXOmpc1kMpnr1q1r9vb2Nt+5cyfvD+//l5KSYgbMgwcPtmp/7bXXzIB5586dlrZ+/fqZS5Ys+cCx/t2/x77wwgvmsLAws9lsNufk5Jh9fHzMkyZNsvyMYmNjLfft2rXLDJh37dplNpvN5kOHDpkB86pVqx74rA8//NAMmH/99dcHxtx/1oIFC6xyBMyTJ0+2iq1Xr565QYMGls9r1qwxA+aPPvrI0paTk2Nu1apVnjEfpFGjRuby5cubc3JyLG1bt241A+ZPP/3UbDabzffu3TObTCar+65evWouV66ceeDAgVbtgHnChAlWc/H398/z3AkTJlj9/Szo70BBfu4iIlK8aZm6iIg8dp988gkJCQl5rv/cEGvt2rXk5ubSvXt3rly5Yrl8fHx4+umnrZYDOzs7W/6cnZ3NlStXCA0NxWw2c+jQoQLn1q1bN6u3iI0bNwagd+/eODg4WLXfuXOHCxcu5JvD9evXuXLlCs888ww3b97k+PHjVs9xcHDg5Zdftnx2dHTk5Zdf5vLlyyQnJz8wvy+//BKAsWPHWrW/+uqrAHzxxRcFnuuDvPTSS+zevZv09HR27txJenp6vkvU83P/Z7dt2zZu3ryZb8z91QwbNmwgNzfX5vyGDRtm9fmZZ57hzJkzls9bt26lRIkSDBkyxNJmZ2dHVFRUgZ/Ru3dvfvnlF77++mtLW3x8PI6OjnTr1g0Ae3t7y/fxc3NzycjI4N69ezRs2DDfJe6FUdDfgYL83EVEpHhTMS4iIo/dX/7yF1q3bp3nKl26tFXcTz/9hNls5umnn8bLy8vq+vHHH7l8+bIlNjU1lf79+1OmTBnLd4mfffZZAJu+M1uxYkWrz/eLnAoVKuTbfvXqVUvbsWPH6NKlCx4eHri7u+Pl5UXv3r3zzcHPz4+SJUtatVWtWhX4/fvSD3L+/Hns7OyoUqWKVbuPjw+lSpXi/PnzfzbFP9W+fXvc3NxYsWIFS5cupVGjRnme9yABAQGMHTuWzz77jLJlyxIREcEnn3xiNf8XX3yRpk2bMnjwYMqVK0ePHj1YuXJlgQpzJycnvLy8rNpKly5t9d/h/Pnz+Pr64uLiYhVX0DkA9OjRA3t7e8uu6rdv32bdunW0a9fO6u9pXFwctWvXxsnJCU9PT7y8vPjiiy8e2fe0C/o7UJCfu4iIFG/6zriIiBQbubm5GAwGtmzZku+u2q6ursDv3+Vt06YNGRkZjB8/nqCgIEqWLMmFCxfo37+/TW9fH7R794PazWYzANeuXePZZ5/F3d2dyZMnExgYiJOTE9999x3jx48v1BvgP5LfJl+PitFo5PnnnycuLo4zZ87YfC77zJkz6d+/Pxs2bGD79u2MHDmSmJgYvvnmG8sGeF9//TW7du3iiy++YOvWraxYsYJWrVqxffv2P9xBvah2V/f29qZNmzasWbOGTz75hE2bNnH9+nWrXdSXLFlC//796dy5M+PGjcPb2xt7e3tiYmI4ffr0H47/oP9+/7kRXUF/B+DPf+4iIlK8qRgXEZFiIzAwELPZTEBAgOWtcX6OHDnCyZMniYuLo2/fvpb2hISEPLGPq4jdvXs3v/32G2vXrrU6c/vs2bP5xl+8eJHs7Gyrt+MnT54EyHeX7fv8/f3Jzc3lp59+Ijg42NJ+6dIlrl27hr+//0PO5HcvvfQSn3/+OXZ2dvTo0cPm+2vVqkWtWrV466232LdvH02bNmXOnDm8++67wO/LxsPCwggLC+ODDz7gvffe480332TXrl20bt36oXL39/dn165d3Lx50+rt+KlTp2wap1evXmzdupUtW7YQHx+Pu7s7HTp0sPSvXr2aypUrs3btWqu/VxMmTPjTsUuXLm21Y/19/7myoaC/A/f92c9dRESKLy1TFxGRYuP555/H3t6eSZMmWd5A32c2m/ntt9+Af70t/fcYs9nMxx9/nGfM+8VvfoXQw8gvhzt37vCPf/wj3/h79+7x6aefWsV++umneHl50aBBgwc+p3379gB89NFHVu0ffPABQL5ngRdGy5YtmTJlCn//+9/x8fEp8H1ZWVncu3fPqq1WrVrY2dlZjl77zyPhAMvO4/9+PFthRUREcPfuXebNm2dpy83NtRxrV1CdO3fGxcWFf/zjH2zZsoXnn38eJycnS39+/80PHDjA/v37/3TswMBAMjMzOXz4sKUtLS3Nshv+fQX9HSjIz11ERIo3vRkXEZFiIzAwkHfffZfo6GjOnTtH586dcXNz4+zZs6xbt46hQ4fy2muvERQURGBgIK+99hoXLlzA3d2dNWvWWH2P+L77he7IkSOJiIjA3t6+UG9+/1NoaCilS5emX79+jBw5EoPBwOLFi/MUUPf5+fnx/vvvc+7cOapWrcqKFStISUlh7ty5lChR4oHPqVOnDv369WPu3LmWpfEHDx4kLi6Ozp0707Jly4eeC/z+5vqtt96y+b6dO3cyfPhwunXrRtWqVbl37x6LFy/G3t6erl27AjB58mS+/vprIiMj8ff35/Lly/zjH/+gfPnyNGvW7KFz79y5M3/5y1949dVXOXXqFEFBQWzcuNHyjwAFXR3h6upK586dLd8b//cl6gDPPfcca9eupUuXLkRGRnL27FnmzJlD9erVuXHjxh+O3aNHD8aPH0+XLl0YOXIkN2/eZPbs2VStWtVq87eC/g4U5OcuIiLFm4pxEREpVl5//XWqVq3Khx9+yKRJk4DfN1MLDw+nY8eOAJQoUYJNmzZZviPr5OREly5dGD58OHXq1LEa7/nnn2fEiBEsX76cJUuWYDabH0kx7unpyebNm3n11Vd56623KF26NL179yYsLIyIiIg88aVLlyYuLo4RI0Ywb948ypUrx9///nerHcAf5LPPPqNy5cosXLiQdevW4ePjQ3R0dIGWRz9uderUISIigk2bNnHhwgVcXFyoU6cOW7ZsoUmTJgB07NiRc+fO8fnnn3PlyhXKli3Ls88+y6RJkx7Jedj29vZ88cUXjBo1iri4OOzs7OjSpQsTJkygadOmVm+3/0yvXr2Ij4/H19eXVq1aWfX179+f9PR0Pv30U7Zt20b16tVZsmQJq1atYvfu3X84rqenJ+vWrWPs2LH89a9/JSAggJiYGH766ac8O7EX5HegID93EREp3gzmB/0TvoiIiDwSLVq04MqVKxw9evRJp/J/yvr16+nSpQt79+6ladOmTzodERERK/rOuIiIiPzXu3XrltXnnJwcZs2ahbu7O/Xr139CWYmIiDyYzcX4hQsX6N27N56enjg7O1OrVi2+/fZbS7/BYMj3io2NBX4/S3XQoEEEBATg7OxMYGAgEyZM4M6dO1bPMZvNzJgxg6pVq2I0GnnqqaeYOnXqQ05XRERE/heNGDGCXr168fe//52ZM2fSvHlzdu7cyeuvv46zs/OTTk9ERCQPm74zfvXqVZo2bUrLli3ZsmULXl5e/PTTT5QuXdoSk5aWZnXPli1bGDRokGUzkePHj5Obm8unn35KlSpVOHr0KEOGDCE7O5sZM2ZY7hs1ahTbt29nxowZ1KpVi4yMjHx3YxURERFp1aoVM2fOZPPmzdy+fZsqVaowa9Yshg8f/qRTExERyZdN3xl//fXX+ec//8mePXsK/IDOnTtz/fp1vvrqqwfGxMbGMnv2bM6cOQPAjz/+SO3atTl69CjVqlUr8LNERERERERE/hvYtEx948aNNGzYkG7duuHt7U29evWszvT8T5cuXeKLL75g0KBBfzhuZmYmZcqUsXzetGkTlStXZvPmzQQEBFCpUiUGDx6sN+MiIiIiIiLyP8GmYvzMmTPMnj2bp59+mm3btvHKK68wcuRI4uLi8o2Pi4vDzc2N559//oFjnjp1ilmzZvHyyy9bPef8+fOsWrWKRYsWsXDhQpKTk3nhhRdsSVdERERERESkWLJpmbqjoyMNGzZk3759lraRI0eSlJTE/v3788QHBQXRpk0bZs2ale94Fy5c4Nlnn6VFixZ89tlnlvahQ4cyb948Tpw4QdWqVQH47rvvaNCgAcePH8936brJZMJkMlm1GY1GjEZjQacnIiIiIiIiUiRs2sDN19eX6tWrW7UFBwezZs2aPLF79uzhxIkTrFixIt+xLl68SMuWLQkNDWXu3Ll5nuPg4GApxO8/ByA1NTXfYjwmJoZJkyZZtQUQTKChRsEmJyIiIiIiIvKQEnJXFSjOpmXqTZs25cSJE1ZtJ0+exN/fP0/s/PnzadCgAXXq1MnTd+HCBVq0aEGDBg1YsGABdnbWaTRt2pR79+5x+vRpq+cA+T4LIDo6mszMTKsrgCBbpiciIiIiIiJSJGxapp6UlERoaCiTJk2ie/fuHDx4kCFDhjB37lx69eplicvKysLX15eZM2cybNgwqzHuF+L+/v7ExcVhb29v6fPx8QEgNzeXRo0a4erqykcffURubi5RUVG4u7uzffv2Ak+ujV23AseKiIiIiIiIPKzH8ma8UaNGrFu3jmXLllGzZk2mTJnCRx99ZFWIAyxfvhyz2UzPnj3zJpaQwKlTp/jqq68oX748vr6+lsuSlJ0dmzZtomzZsjRv3pzIyEiCg4NZvny5LemKiIiIiIiIFEs2vRn/b6M34yIiIiIiIlKUHsubcRERERERERF5eCrGRURERERERIqYinERERERERGRImZzMX79+nVGjx6Nv78/zs7OhIaGkpSUZOnv378/BoPB6mrbtm2+Y5lMJurWrYvBYCAlJcXSvnv3bjp16oSvry8lS5akbt26LF261PbZiYiIiIiIiBRDNhfjgwcPJiEhgcWLF3PkyBHCw8Np3bo1Fy5csMS0bduWtLQ0y7Vs2bJ8x/rrX/+Kn59fnvZ9+/ZRu3Zt1qxZw+HDhxkwYAB9+/Zl8+bNtqYrIiIiIiIiUuzYtJv6rVu3cHNzY8OGDURGRlraGzRoQLt27Xj33Xfp378/165dY/369X841pYtWxg7dixr1qyhRo0aHDp0iLp16z4wPjIyknLlyvH5558XNF3tpi4iIiIiIiJF6rHspn7v3j1ycnJwcnKyand2dmbv3r2Wz7t378bb25tq1arxyiuv8Ntvv1nFX7p0iSFDhrB48WJcXFwK9OzMzEzKlCljS7oiIiIiIiIixZJNxbibmxshISFMmTKFixcvkpOTw5IlS9i/fz9paWnA70vUFy1axFdffcX7779PYmIi7dq1IycnBwCz2Uz//v0ZNmwYDRs2LNBzV65cSVJSEgMGDLBxeiIiIiIiIiLFj4OtNyxevJiBAwfy1FNPYW9vT/369enZsyfJyckA9OjRwxJbq1YtateuTWBgILt37yYsLIxZs2Zx/fp1oqOjC/S8Xbt2MWDAAObNm0eNGjUeGGcymTCZTFZtueYc7Az2tk5RRERERERE5LGyeQO3wMBAEhMTuXHjBj///DMHDx7k7t27VK5cOd/4ypUrU7ZsWU6dOgXAzp072b9/P0ajEQcHB6pUqQJAw4YN6devn9W9iYmJdOjQgQ8//JC+ffv+YV4xMTF4eHhYXWc5buv0RERERERERB47mzZwy8/Vq1cJCAhg+vTpDB06NE//L7/8QsWKFVm/fj0dO3YkNTWVrKwsS//FixeJiIhg9erVNG7cmPLlywO/f+/8ueee4/333ycqKupP88jvzXgXj/56My4iIiIiIiJFpqAbuNm8TH3btm2YzWaqVavGqVOnGDduHEFBQQwYMIAbN24wadIkunbtio+PD6dPn+avf/0rVapUISIiAoCKFStajefq6gr8/sb9fiG+a9cunnvuOUaNGkXXrl1JT08HwNHR8YGbuBmNRoxGo1WbCnEREREREREpjmxepp6ZmUlUVBRBQUH07duXZs2asW3bNkqUKIG9vT2HDx+mY8eOVK1alUGDBtGgQQP27NmTp1D+I3Fxcdy8eZOYmBh8fX0t1/PPP29ruiIiIiIiIiLFzkMvUy/OdM64iIiIiIiIFKXHcs64iIiIiIiIiDw8FeMiIiIiIiIiRUzFuIiIiIiIiEgRe6hifNq0aRgMBkaPHm1pS09Pp0+fPvj4+FCyZEnq16/PmjVrLP3nzp1j0KBBBAQE4OzsTGBgIBMmTODOnTuWmIkTJ2IwGPJcJUuWfJh0RURERERERIoFm482uy8pKYlPP/2U2rVrW7X37duXa9eusXHjRsqWLUt8fDzdu3fn22+/pV69ehw/fpzc3Fw+/fRTqlSpwtGjRxkyZAjZ2dnMmDEDgNdee41hw4ZZjRsWFkajRo0Km66IiIiIiIhIsVGoN+M3btygV69ezJs3j9KlS1v17du3jxEjRvCXv/yFypUr89Zbb1GqVCmSk5MBaNu2LQsWLCA8PJzKlSvTsWNHXnvtNdauXWsZw9XVFR8fH8t16dIlfvjhBwYNGvQQUxUREREREREpHgpVjEdFRREZGUnr1q3z9IWGhrJixQoyMjLIzc1l+fLl3L59mxYtWjxwvMzMTMqUKfPA/s8++4yqVavyzDPPFCZdERERERERkWLF5mXqy5cv57vvviMpKSnf/pUrV/Liiy/i6emJg4MDLi4urFu3jipVquQbf+rUKWbNmmVZov6fbt++zdKlS3n99ddtTVVERERERESkWLKpGP/5558ZNWoUCQkJODk55Rvz9ttvc+3aNXbs2EHZsmVZv3493bt3Z8+ePdSqVcsq9sKFC7Rt25Zu3boxZMiQfMdbt24d169fp1+/fn+Ym8lkwmQyWbXlmnOwM9jbMEMRERERERGRx89gNpvNBQ1ev349Xbp0wd7+XwVuTk4OBoMBOzs7Tpw4YdmUrUaNGpaY1q1bU6VKFebMmWNpu3jxIi1atKBJkyYsXLgQO7v8V8yHhYXh7u7OunXr/jC3iRMnMmnSJKu2AIIJNNR4wB0iIiIiIiIij1ZC7qoCxdn0ZjwsLIwjR45YtQ0YMICgoCDGjx/PzZs3AfIU1vb29uTm5lo+X7hwgZYtW9KgQQMWLFjwwEL87Nmz7Nq1i40bN/5pbtHR0YwdO9aqrYtH/4JMS0RERERERKRI2VSMu7m5UbNmTau2kiVL4unpSc2aNbl79y5VqlTh5ZdfZsaMGXh6erJ+/XoSEhLYvHkz8Hsh3qJFC/z9/ZkxYwa//vqrZSwfHx+rsT///HN8fX1p167dn+ZmNBoxGo1WbVqiLiIiIiIiIsVRoc8Zz0+JEiX48ssvef311+nQoQM3btygSpUqxMXF0b59ewASEhI4deoUp06donz58lb3//uK+dzcXBYuXEj//v2tlsWLiIiIiIiI/Lez6Tvj/23a2HV70imIiIiIiIjI/yEF/c54oc4ZFxEREREREZHCUzEuIiIiIiIiUsRUjIuIiIiIiIgUMZuK8ZiYGBo1aoSbmxve3t507tyZEydO5Inbv38/rVq1omTJkri7u9O8eXNu3bpl6T958iSdOnWibNmyuLu706xZM3bt2mU1xldffUVoaChubm74+Pgwfvx47t27V8hpioiIiIiIiBQfNhXjiYmJREVF8c0335CQkMDdu3cJDw8nOzvbErN//37atm1LeHg4Bw8eJCkpieHDh1udJf7cc89x7949du7cSXJyMnXq1OG5554jPT0dgO+//5727dvTtm1bDh06xIoVK9i4cSOvv/76I5q2iIiIiIiIyJPzULup//rrr3h7e5OYmEjz5s0BaNKkCW3atGHKlCn53nPlyhW8vLz4+uuveeaZZwC4fv067u7uJCQk0Lp1a9544w0SEhJISkqy3Ldp0ya6d+/O5cuXcXNzK1B+2k1dREREREREilKR7KaemZkJQJkyZQC4fPkyBw4cwNvbm9DQUMqVK8ezzz7L3r17Lfd4enpSrVo1Fi1aRHZ2Nvfu3ePTTz/F29ubBg0aAGAymXBycrJ6lrOzM7dv3yY5OflhUhYRERERERF54gpdjOfm5jJ69GiaNm1KzZo1AThz5gwAEydOZMiQIWzdupX69esTFhbGTz/9BIDBYGDHjh0cOnQINzc3nJyc+OCDD9i6dSulS5cGICIign379rFs2TJycnK4cOECkydPBiAtLe2hJiwiIiIiIiLypBW6GI+KiuLo0aMsX77c0pabmwvAyy+/zIABA6hXrx4ffvgh1apV4/PPPwfAbDYTFRWFt7c3e/bs4eDBg3Tu3JkOHTpYCu3w8HBiY2MZNmwYRqORqlWr0r59+98Ttss/ZZPJRFZWltWVa84p7PREREREREREHptCFePDhw9n8+bN7Nq1i/Lly1vafX19AahevbpVfHBwMKmpqQDs3LmTzZs3s3z5cpo2bUr9+vX5xz/+gbOzM3FxcZZ7xo4dy7Vr10hNTeXKlSt06tQJgMqVK+ebU0xMDB4eHlbXWY4XZnoiIiIiIiIij5VNxbjZbGb48OGsW7eOnTt3EhAQYNVfqVIl/Pz88hx3dvLkSfz9/QG4efPm7w/+jzfcdnZ2ljfr9xkMBvz8/HB2dmbZsmVUqFCB+vXr55tbdHQ0mZmZVlcAQbZMT0RERERERKRIONgSHBUVRXx8PBs2bMDNzc1yFJmHhwfOzs4YDAbGjRvHhAkTqFOnDnXr1iUuLo7jx4+zevVqAEJCQihdujT9+vXjnXfewdnZmXnz5nH27FkiIyMtz4qNjaVt27bY2dmxdu1apk2bxsqVK7G3t883N6PRiNFotGqzM+QfKyIiIiIiIvIk2XS0mcFgyLd9wYIF9O/f3/J52rRpfPLJJ2RkZFCnTh2mT59Os2bNLP3ffvstb775Jt9++y13796lRo0avPPOO7Rr184S06pVK7777jtMJhN16tRhwoQJVv0FoaPNREREREREpCgV9GizhzpnvLhTMS4iIiIiIiJFqUjOGRcRERERERER26kYFxERERERESliKsZFREREREREiphNxXhMTAyNGjXCzc0Nb29vOnfubHWM2blz5zAYDPleq1ZZr5tfuHAhtWvXxsnJCW9vb6Kioqz6Dx8+zDPPPIOTkxMVKlRg+vTpDzFNERERERERkeLDpmI8MTGRqKgovvnmGxISErh79y7h4eFkZ2cDUKFCBdLS0qyuSZMm4erqarUT+gcffMCbb77J66+/zrFjx9ixYwcRERGW/qysLMLDw/H39yc5OZnY2FgmTpzI3LlzH9G0RURERERERJ6ch9pN/ddff8Xb25vExESaN2+eb0y9evWoX78+8+fPB+Dq1as89dRTbNq0ibCwsHzvmT17Nm+++Sbp6ek4OjoC8Prrr7N+/XqOHz9e4Py0m7qIiIiIiIgUpSLZTT0zMxOAMmXK5NufnJxMSkoKgwYN+ldiCQnk5uZy4cIFgoODKV++PN27d+fnn3+2xOzfv5/mzZtbCnGAiIgITpw4wdWrVx8mZREREREREZEnrtDFeG5uLqNHj6Zp06bUrFkz35j58+cTHBxMaGiope3MmTPk5uby3nvv8dFHH7F69WoyMjJo06YNd+7cASA9PZ1y5cpZjXX/c3p6emFTFhERERERESkWHAp7Y1RUFEePHmXv3r359t+6dYv4+Hjefvttq/bc3Fzu3r3L3/72N8LDwwFYtmwZPj4+7Nq1y+q747YwmUyYTCbrZ5lzsDPYF2o8ERERERERkcelUG/Ghw8fzubNm9m1axfly5fPN2b16tXcvHmTvn37WrX7+voCUL16dUubl5cXZcuWJTU1FQAfHx8uXbpkdd/9zz4+Pvk+LyYmBg8PD6vrLAX/frmIiIiIiIhIUbGpGDebzQwfPpx169axc+dOAgICHhg7f/58OnbsiJeXl1V706ZNAayORMvIyODKlSv4+/sDEBISwtdff83du3ctMQkJCVSrVo3SpUvn+7zo6GgyMzOtrgCCbJmeiIiIiIiISJGwqRiPiopiyZIlxMfH4+bmRnp6Ounp6dy6dcsq7tSpU3z99dcMHjw4zxhVq1alU6dOjBo1in379nH06FH69etHUFAQLVu2BOCll17C0dGRQYMGcezYMVasWMHHH3/M2LFjH5ib0WjE3d3d6tISdRERERERESmObDrazGAw5Nu+YMEC+vfvb/n8xhtvsGTJEs6dO4edXd56PysrizFjxrB27Vrs7Ox49tln+fjjj6lQoYIl5vDhw0RFRZGUlETZsmUZMWIE48ePt2FqOtpMREREREREilZBjzZ7qHPGizsV4yIiIiIiIlKUiuSccRERERERERGxnYpxERERERERkSKmYlxERERERESkiKkYFxERERERESliD1WMT5s2DYPBwOjRoy1tLVq0wGAwWF3Dhg2z9C9cuDBP//3r8uXLlrilS5dSp04dXFxc8PX1ZeDAgfz2228Pk66IiIiIiIhIsVDoYjwpKYlPP/2U2rVr5+kbMmQIaWlplmv69OmWvhdffNGqLy0tjYiICJ599lm8vb0B+Oc//0nfvn0t54yvWrWKgwcPMmTIkMKmKyIiIiIiIlJsFKoYv3HjBr169WLevHmULl06T7+Liws+Pj6Wy93d3dLn7Oxs1Wdvb8/OnTsZNGiQJWb//v1UqlSJkSNHEhAQQLNmzXj55Zc5ePBgYdIVERERERERKVYKVYxHRUURGRlJ69at8+1funQpZcuWpWbNmkRHR3Pz5s0HjrVo0SJcXFx44YUXLG0hISH8/PPPfPnll5jNZi5dusTq1atp3759YdIVERERERERKVYcbL1h+fLlfPfddyQlJeXb/9JLL+Hv74+fnx+HDx9m/PjxnDhxgrVr1+YbP3/+fF566SWcnZ0tbU2bNmXp0qW8+OKL3L59m3v37tGhQwc++eSTB+ZlMpkwmUxWbbnmHOwM9rZOUUREREREROSxsunN+M8//8yoUaNYunQpTk5O+cYMHTqUiIgIatWqRa9evVi0aBHr1q3j9OnTeWL379/Pjz/+aLVEHeCHH35g1KhRvPPOOyQnJ7N161bOnTtntRHcf4qJicHDw8PqOstxW6YnIiIiIiIiUiQMZrPZXNDg9evX06VLF+zt//W2OScnB4PBgJ2dHSaTyaoPIDs7G1dXV7Zu3UpERIRV36BBg/juu+84dOiQVXufPn24ffs2q1atsrTt3buXZ555hosXL+Lr65snt/zejHfx6K834yIiIiIiIlJkEnJX/XkQNi5TDwsL48iRI1ZtAwYMICgoiPHjx+cpxAFSUlIA8hTQN27cYOXKlcTExOS55+bNmzg4WKd2f+wH/duB0WjEaDRatakQFxERERERkeLIpmLczc2NmjVrWrWVLFkST09PatasyenTp4mPj6d9+/Z4enpy+PBhxowZQ/PmzfMcgbZixQru3btH79698zynQ4cODBkyhNmzZxMREUFaWhqjR4/mL3/5C35+foWYpoiIiIiIiEjxYfMGbn/E0dGRHTt28NFHH5GdnU2FChXo2rUrb731Vp7Y+fPn8/zzz1OqVKk8ff379+f69ev8/e9/59VXX6VUqVK0atWK999//1GmKyIiIiIiIvJE2PSd8f82bey6PekURERERERE5P+Qgn5nvFDnjIuIiIiIiIhI4akYFxERERERESliKsZFREREREREiphNxfjs2bOpXbs27u7uuLu7ExISwpYtWwA4d+4cBoMh3+vfzwv/6quvCA0Nxc3NDR8fH8aPH8+9e/cs/Q8a55tvvnlEUxYRERERERF5smzaTb18+fJMmzaNp59+GrPZTFxcHJ06deLQoUMEBQWRlpZmFT937lxiY2Np164dAN9//z3t27fnzTffZNGiRVy4cIFhw4aRk5PDjBkzrO7dsWMHNWrUsHz29PQs7BxFREREREREipWH3k29TJkyxMbGMmjQoDx99erVo379+syfPx+AN954g4SEBJKSkiwxmzZtonv37ly+fBk3NzfOnTtHQEAAhw4dom7dug+TmnZTFxERERERkSL12HdTz8nJYfny5WRnZxMSEpKnPzk5mZSUFKsi3WQy4eTkZBXn7OzM7du3SU5Otmrv2LEj3t7eNGvWjI0bNxY2TREREREREZFix+Zi/MiRI7i6umI0Ghk2bBjr1q2jevXqeeLmz59PcHAwoaGhlraIiAj27dvHsmXLyMnJ4cKFC0yePBnAssTd1dWVmTNnsmrVKr744guaNWtG586d/7QgN5lMZGVlWV255hxbpyciIiIiIiLy2NlcjFerVo2UlBQOHDjAK6+8Qr9+/fjhhx+sYm7dukV8fHyepevh4eHExsYybNgwjEYjVatWpX379r8nYvd7KmXLlmXs2LE0btyYRo0aMW3aNHr37k1sbOwf5hUTE4OHh4fVdZbjtk5PRERERERE5LF76O+Mt27dmsDAQD799FNL2+LFixk0aBAXLlzAy8srzz1ms5m0tDRKly7NuXPnqF69OgcPHqRRo0b5PuOTTz7h3XffzbNB3L8zmUyYTCarti4e/bEz2BdyZiIiIiIiIiK2Keh3xm3aTT0/ubm5eYrg+fPn07Fjx3wLcQCDwYCfnx8Ay5Yto0KFCtSvX/+Bz0hJScHX1/cP8zAajRiNRqs2FeIiIiIiIiJSHNlUjEdHR9OuXTsqVqzI9evXiY+PZ/fu3Wzbts0Sc+rUKb7++mu+/PLLfMeIjY2lbdu22NnZsXbtWqZNm8bKlSuxt/+9cI6Li8PR0ZF69eoBsHbtWj7//HM+++yzws5RREREREREpFixqRi/fPkyffv2JS0tDQ8PD2rXrs22bdto06aNJebzzz+nfPnyhIeH5zvGli1bmDp1KiaTiTp16rBhwwbLOeT3TZkyhfPnz+Pg4EBQUBArVqzghRdeKMT0RERERERERIqfh/7OeHGmc8ZFRERERESkKD32c8ZFREREREREpHBUjIuIiIiIiIgUMRXjIiIiIiIiIkXMpmJ89uzZ1K5dG3d3d9zd3QkJCWHLli2W/tOnT9OlSxe8vLxwd3ene/fuXLp0yWqMjh07UrFiRZycnPD19aVPnz5cvHjR0n/u3DkMBkOe65tvvnnIqYqIiIiIiIgUDzYV4+XLl2fatGkkJyfz7bff0qpVKzp16sSxY8fIzs4mPDwcg8HAzp07+ec//8mdO3fo0KEDubm5ljFatmzJypUrOXHiBGvWrOH06dP57pS+Y8cO0tLSLFeDBg0efrYiIiIiIiIixcBD76ZepkwZYmNjqVChAu3atePq1au4u7sDkJmZSenSpdm+fTutW7fO9/6NGzfSuXNnTCYTJUqU4Ny5cwQEBHDo0CHq1q37MKlpN3UREREREREpUo99N/WcnByWL19OdnY2ISEhmEwmDAYDRqPREuPk5ISdnR179+7Nd4yMjAyWLl1KaGgoJUqUsOrr2LEj3t7eNGvWjI0bNxY2TREREREREZFix+Zi/MiRI7i6umI0Ghk2bBjr1q2jevXqNGnShJIlSzJ+/Hhu3rxJdnY2r732Gjk5OaSlpVmNMX78eEqWLImnpyepqals2LDB0ufq6srMmTNZtWoVX3zxBc2aNaNz585/WpCbTCaysrKsrlxzjq3TExEREREREXnsbF6mfufOHVJTU8nMzGT16tV89tlnJCYmUr16dbZv384rr7zC2bNnsbOzo2fPnvzwww/85S9/Yfbs2ZYxrly5QkZGBufPn2fSpEl4eHiwefNmDAZDvs/s27cvZ8+eZc+ePQ/Ma+LEiUyaNMmqLYBgAg01bJmeiIiIiIiISKEVdJn6Q39nvHXr1gQGBvLpp59a2q5cuYKDgwOlSpXCx8eHV199lXHjxuV7/y+//EKFChXYt28fISEh+cZ88sknvPvuu3nesP87k8mEyWSyauvi0R87g30hZiUiIiIiIiJiu4IW4w4P+6Dc3Nw8RXDZsmUB2LlzJ5cvX6Zjx45/eD+QZ4x/l5KSgq+v7x/mYTQarb6vDqgQFxERERERkWLJpmI8Ojqadu3aUbFiRa5fv058fDy7d+9m27ZtACxYsIDg4GC8vLzYv38/o0aNYsyYMVSrVg2AAwcOkJSURLNmzShdujSnT5/m7bffJjAw0PJWPC4uDkdHR+rVqwfA2rVr+fzzz/nss88e5bxFREREREREnhibivHLly/Tt29f0tLS8PDwoHbt2mzbto02bdoAcOLECaKjo8nIyKBSpUq8+eabjBkzxnK/i4sLa9euZcKECWRnZ+Pr60vbtm156623rN5qT5kyhfPnz+Pg4EBQUBArVqzI9yxyERERERERkf9GD/2d8eJM54yLiIiIiIhIUXrs54yLiIiIiIiISOGoGBcREREREREpYirGRURERERERIqYzcX49evXGT16NP7+/jg7OxMaGkpSUpKlf+3atYSHh+Pp6YnBYCAlJSXPGLdv3yYqKgpPT09cXV3p2rUrly5dyvd5v/32G+XLl8dgMHDt2jVb0xUREREREREpdmwuxgcPHkxCQgKLFy/myJEjhIeH07p1ay5cuABAdnY2zZo14/3333/gGGPGjGHTpk2sWrWKxMRELl68yPPPP59v7KBBg6hdu7ataYqIiIiIiIgUWzbtpn7r1i3c3NzYsGEDkZGRlvYGDRrQrl073n33XUvbuXPnCAgI4NChQ9StW9fSnpmZiZeXF/Hx8Zbjyo4fP05wcDD79++nSZMmltjZs2ezYsUK3nnnHcLCwrh69SqlSpUq8OS0m7qIiIiIiIgUpceym/q9e/fIycnBycnJqt3Z2Zm9e/cWaIzk5GTu3r1L69atLW1BQUFUrFiR/fv3W9p++OEHJk+ezKJFi7Cz01fbRURERERE5H+HTVWum5sbISEhTJkyhYsXL5KTk8OSJUvYv38/aWlpBRojPT0dR0fHPG+4y5UrR3p6OgAmk4mePXsSGxtLxYoVCzSuyWQiKyvL6so159gyPREREREREZEiYfMr58WLF2M2m3nqqacwGo387W9/o2fPno/07XV0dDTBwcH07t27wPfExMTg4eFhdZ3l+CPLSURERERERORRsbmCDgwMJDExkRs3bvDzzz9z8OBB7t69S+XKlQt0v4+PD3fu3MmzM/qlS5fw8fEBYOfOnaxatQoHBwccHBwICwsDoGzZskyYMCHfcaOjo8nMzLS6AgiydXoiIiIiIiIij51DYW8sWbIkJUuW5OrVq2zbto3p06cX6L4GDRpQokQJvvrqK7p27QrAiRMnSE1NJSQkBIA1a9Zw69Ytyz1JSUkMHDiQPXv2EBgYmO+4RqMRo9Fo1WZnsC/M1EREREREREQeK5uL8W3btmE2m6lWrRqnTp1i3LhxBAUFMWDAAAAyMjJITU3l4sWLwO+FNvz+RtzHxwcPDw8GDRrE2LFjKVOmDO7u7owYMYKQkBDLTur/WXBfuXIFgODgYJt2UxcREREREREpjmxepp6ZmUlUVBRBQUH07duXZs2asW3bNkqUKAHAxo0bqVevnuXosx49elCvXj3mzJljGePDDz/kueeeo2vXrjRv3hwfHx/Wrl37iKYkIiIiIiIiUrzZdM74fxudMy4iIiIiIiJF6bGcMy4iIiIiIiIiD0/FuIiIiIiIiEgRUzEuIiIiIiIiUsQeqhifNm0aBoOB0aNHW9patGiBwWCwuoYNG2Z1X2pqKpGRkbi4uODt7c24ceO4d++epb9///55xjAYDNSoUeNh0hUREREREREpFgp9znhSUhKffvoptWvXztM3ZMgQJk+ebPns4uJi+XNOTg6RkZH4+Piwb98+0tLS6Nu3LyVKlOC9994D4OOPP2batGmWe+7du0edOnXo1k0bsomIiIiIiMh/v0K9Gb9x4wa9evVi3rx5lC5dOk+/i4uL5VxxHx8f3N3dLX3bt2/nhx9+YMmSJdStW5d27doxZcoUPvnkE+7cuQOAh4eH1f3ffvstV69etZxlLiIiIiIiIvLfrFDFeFRUFJGRkbRu3Trf/qVLl1K2bFlq1qxJdHQ0N2/etPTt37+fWrVqUa5cOUtbREQEWVlZHDt2LN/x5s+fT+vWrfH39y9MuiIiIiIiIiLFis3L1JcvX853331HUlJSvv0vvfQS/v7++Pn5cfjwYcaPH8+JEydYu3YtAOnp6VaFOGD5nJ6enme8ixcvsmXLFuLj4/8wL5PJhMlksmrLNedgZ7Av8NxEREREREREioJNxfjPP//MqFGjSEhIwMnJKd+YoUOHWv5cq1YtfH19CQsL4/Tp0wQGBtqcYFxcHKVKlaJz585/GBcTE8OkSZOs2gIIJhBt+iYiIiIiIiLFi03L1JOTk7l8+TL169fHwcEBBwcHEhMT+dvf/oaDgwM5OTl57mncuDEAp06dAsDHx4dLly5Zxdz/7OPjY9VuNpv5/PPP6dOnD46Ojn+YW3R0NJmZmVZXAEG2TE9ERERERESkSNj0ZjwsLIwjR45YtQ0YMICgoCDGjx+PvX3eJeEpKSkA+Pr6AhASEsLUqVO5fPky3t7eACQkJODu7k716tWt7k1MTOTUqVMMGjToT3MzGo0YjUarNi1RFxERERERkeLIpmLczc2NmjVrWrWVLFkST09PatasyenTp4mPj6d9+/Z4enpy+PBhxowZQ/PmzS1HoIWHh1O9enX69OnD9OnTSU9P56233iIqKipPMT1//nwaN26c55kiIiIiIiIi/80KtZv6gzg6OrJjxw7Cw8MJCgri1VdfpWvXrmzatMkSY29vz+bNm7G3tyckJITevXvTt29fq3PJATIzM1mzZk2B3oqLiIiIiIiI/DcxmM1m85NO4nFpY9ftSacgIiIiIiIi/4ck5K4qUNwjfTMuIiIiIiIiIn9OxbiIiIiIiIhIEVMxLiIiIiIiIlLEbCrGJ06ciMFgsLqCgv51lvfLL79MYGAgzs7OeHl50alTJ44fP55nnIULF1K7dm2cnJzw9vYmKirKqn/lypXUrVsXFxcX/P39iY2NLeT0RERERERERIofm442A6hRowY7duz41wAO/xqiQYMG9OrVi4oVK5KRkcHEiRMJDw/n7NmzljPIP/jgA2bOnElsbCyNGzcmOzubc+fOWcbYsmULvXr1YtasWYSHh/Pjjz8yZMgQnJ2dGT58+ENMVURERERERKR4sGk39YkTJ7J+/XpSUlIKFH/48GHq1KnDqVOnCAwM5OrVqzz11FNs2rSJsLCwfO956aWXuHv3LqtW/WsHulmzZjF9+nRSU1MxGAwFTVe7qYuIiIiIiEiRemy7qf/000/4+flRuXJlevXqRWpqar5x2dnZLFiwgICAACpUqPB7UgkJ5ObmcuHCBYKDgylfvjzdu3fn559/ttxnMplwcnKyGsvZ2ZlffvmF8+fP25quiIiIiIiISLFjUzHeuHFjFi5cyNatW5k9ezZnz57lmWee4fr165aYf/zjH7i6uuLq6sqWLVtISEjA0dERgDNnzpCbm8t7773HRx99xOrVq8nIyKBNmzbcuXMHgIiICNauXctXX31Fbm4uJ0+eZObMmQCkpaU9MDeTyURWVpbVlWvOsfkHIiIiIiIiIvK42VSMt2vXjm7dulG7dm0iIiL48ssvuXbtGitXrrTE9OrVi0OHDpGYmEjVqlXp3r07t2/fBiA3N5e7d+/yt7/9jYiICJo0acKyZcv46aef2LVrFwBDhgxh+PDhPPfcczg6OtKkSRN69Ojxe7J2D043JiYGDw8Pq+sseTePExEREREREXnSHupos1KlSlG1alVOnTplafPw8ODpp5+mefPmrF69muPHj7Nu3ToAfH19Aahevbol3svLi7Jly1qWuxsMBt5//31u3LjB+fPnSU9P5y9/+QsAlStXfmAu0dHRZGZmWl0BBD0wXkRERERERORJeahi/MaNG5w+fdpSZP8ns9mM2WzGZDIB0LRpUwBOnDhhicnIyODKlSv4+/tb3Wtvb89TTz2Fo6Mjy5YtIyQkBC8vrwfmYjQacXd3t7rsDPYPMz0RERERERGRx8Kmo81ee+01OnTogL+/PxcvXmTChAnY29vTs2dPzpw5w4oVKwgPD8fLy4tffvmFadOm4ezsTPv27QGoWrUqnTp1YtSoUcydOxd3d3eio6MJCgqiZcuWAFy5coXVq1fTokULbt++zYIFC1i1ahWJiYmPfvYiIiIiIiIiT4BNb8Z/+eUXevbsSbVq1ejevTuenp588803eHl54eTkxJ49e2jfvj1VqlThxRdfxM3NjX379uHt7W0ZY9GiRTRu3JjIyEieffZZSpQowdatWylRooQlJi4ujoYNG9K0aVOOHTvG7t27LUvVRURERERERP7b2XTO+H8bnTMuIiIiIiIiRemxnTMuIiIiIiIiIg9HxbiIiIiIiIhIEVMxLiIiIiIiIlLEbC7GK1WqhMFgyHNFRUUBcPv2baKiovD09MTV1ZWuXbty6dIlqzFSU1OJjIzExcUFb29vxo0bx7179yz9a9eupU2bNnh5eeHu7k5ISAjbtm17yKmKiIiIiIiIFA82F+NJSUmkpaVZroSEBAC6dft9s7QxY8awadMmy3FkFy9e5Pnnn7fcn5OTQ2RkJHfu3GHfvn3ExcWxcOFC3nnnHUvM119/TZs2bfjyyy9JTk6mZcuWdOjQgUOHDj3sfEVERERERESeuIfeTX306NFs3ryZn376iaysLLy8vIiPj+eFF14A4Pjx4wQHB7N//36aNGnCli1beO6557h48SLlypUDYM6cOYwfP55ff/0VR0fHfJ9To0YNXnzxRaui/c9oN3UREREREREpSkWym/qdO3dYsmQJAwcOxGAwkJyczN27d2ndurUlJigoiIoVK7J//34A9u/fT61atSyFOEBERARZWVkcO3Ys3+fk5uZy/fp1ypQp8zDpioiIiIiIiBQLD1WMr1+/nmvXrtG/f38A0tPTcXR0pFSpUlZx5cqVIz093RLz74X4/f77ffmZMWMGN27coHv37g+TroiIiIiIiEix4PAwN8+fP5927drh5+f3qPLJIz4+nkmTJrFhwwa8vb0fGGcymTCZTFZtueYc7Az2jy03ERERERERkcIo9Jvx8+fPs2PHDgYPHmxp8/Hx4c6dO1y7ds0q9tKlS/j4+Fhi/nN39fuf78fct3z5cgYPHszKlSutlr7nJyYmBg8PD6vrLMcLOz0RERERERGRx6bQxfiCBQvw9vYmMjLS0tagQQNKlCjBV199ZWk7ceIEqamphISEABASEsKRI0e4fPmyJSYhIQF3d3eqV69uaVu2bBkDBgxg2bJlVs94kOjoaDIzM62uAIIKOz0RERERERGRx6ZQy9Rzc3NZsGAB/fr1w8HhX0N4eHgwaNAgxo4dS5kyZXB3d2fEiBGEhITQpEkTAMLDw6levTp9+vRh+vTppKen89ZbbxEVFYXRaAR+X5rer18/Pv74Yxo3bmz5LrmzszMeHh755mQ0Gi3336cl6iIiIiIiIlIcFerN+I4dO0hNTWXgwIF5+j788EOee+45unbtSvPmzfHx8WHt2rWWfnt7ezZv3oy9vT0hISH07t2bvn37MnnyZEvM3LlzuXfvHlFRUfj6+lquUaNGFSZdERERERERkWLloc8ZL850zriIiIiIiIgUpSI5Z1xEREREREREbKdiXERERERERKSIqRgXERERERERKWI2FeMxMTE0atQINzc3vL296dy5MydOnLCKOX36NF26dMHLywt3d3e6d++e51zx+0wmE3Xr1sVgMJCSkmLVt23bNpo0aYKbmxteXl507dqVc+fO2TQ5ERERERERkeLIpmI8MTGRqKgovvnmGxISErh79y7h4eFkZ2cDkJ2dTXh4OAaDgZ07d/LPf/6TO3fu0KFDB3Jzc/OM99e//hU/P7887WfPnqVTp060atWKlJQUtm3bxpUrV3j++ecLOU0RERERERGR4uOhdlP/9ddf8fb2JjExkebNm7N9+3batWvH1atXcXd3ByAzM5PSpUuzfft2Wrdubbl3y5YtjB07ljVr1lCjRg0OHTpE3bp1AVi9ejU9e/bEZDJhZ/f7vxds2rSJTp06YTKZKFGiRIHy027qIiIiIiIiUpSKZDf1zMxMAMqUKQP8vuzcYDBgNBotMU5OTtjZ2bF3715L26VLlxgyZAiLFy/GxcUlz7gNGjTAzs6OBQsWkJOTQ2ZmJosXL6Z169YFLsRFREREREREiqtCF+O5ubmMHj2apk2bUrNmTQCaNGlCyZIlGT9+PDdv3iQ7O5vXXnuNnJwc0tLSADCbzfTv359hw4bRsGHDfMcOCAhg+/btvPHGGxiNRkqVKsUvv/zCypUrC5uuiIiIiIiISLFR6GI8KiqKo0ePsnz5ckubl5cXq1atYtOmTbi6uuLh4cG1a9eoX7++Zbn5rFmzuH79OtHR0Q8cOz09nSFDhtCvXz+SkpJITEzE0dGRF154gQetqjeZTGRlZVldueacwk5PRERERERE5LFxKMxNw4cPZ/PmzXz99deUL1/eqi88PJzTp09z5coVHBwcKFWqFD4+PlSuXBmAnTt3sn//fqul7AANGzakV69exMXF8cknn+Dh4cH06dMt/UuWLKFChQocOHCAJk2a5MkpJiaGSZMmWbUFEEwgNQozRREREREREZHHxqY342azmeHDh7Nu3Tp27txJQEDAA2PLli1LqVKl2LlzJ5cvX6Zjx44A/O1vf+P7778nJSWFlJQUvvzySwBWrFjB1KlTAbh586blTfp99vb2APnuyg4QHR1NZmam1RVAkC3TExERERERESkSNr0Zj4qKIj4+ng0bNuDm5kZ6ejoAHh4eODs7A7BgwQKCg4Px8vJi//79jBo1ijFjxlCtWjUAKlasaDWmq6srAIGBgZa37JGRkXz44YdMnjyZnj17cv36dd544w38/f2pV69evrkZjcY8b9vtDPa2TE9ERERERESkSNj0Znz27NlkZmbSokULfH19LdeKFSssMSdOnKBz584EBwczefJk3nzzTWbMmGFTUq1atSI+Pp7169dTr1492rZti9FoZOvWrZaiX0REREREROS/1UOdM17c6ZxxERERERERKUpFcs64iIiIiIiIiNhOxbiIiIiIiIhIEVMxLiIiIiIiIlLEbCrGc3JyePvttwkICMDZ2ZnAwECmTJnCg752PmzYMAwGAx999JFV+9SpUwkNDcXFxYVSpUrle29qaiqRkZG4uLjg7e3NuHHjuHfvni3pioiIiIiIiBRLNh1t9v777zN79mzi4uKoUaMG3377LQMGDMDDw4ORI0daxa5bt45vvvkGPz+/POPcuXOHbt26ERISwvz58/P05+TkEBkZiY+PD/v27SMtLY2+fftSokQJ3nvvPRunKCIiIiIiIlK82FSM79u3j06dOhEZGQlApUqVWLZsGQcPHrSKu3DhAiNGjGDbtm2W2H83adIkABYuXJjvc7Zv384PP/zAjh07KFeuHHXr1mXKlCmMHz+eiRMn4ujoaEvaIiIiIiIiIsWKTcvUQ0ND+eqrrzh58iQA33//PXv37qVdu3aWmNzcXPr06cO4ceOoUaNGoZLav38/tWrVoly5cpa2iIgIsrKyOHbsWKHGFBERERERESkubHoz/vrrr5OVlUVQUBD29vbk5OQwdepUevXqZYl5//33cXBwyLNs3Rbp6elWhThg+Zyenl7ocUVERERERESKA5uK8ZUrV7J06VLi4+OpUaMGKSkpjB49Gj8/P/r160dycjIff/wx3333HQaD4XHlnC+TyYTJZLJqyzXnYGewL9I8RERERERERP6MTcvUx40bx+uvv06PHj2oVasWffr0YcyYMcTExACwZ88eLl++TMWKFXFwcMDBwYHz58/z6quvUqlSpQI/x8fHh0uXLlm13f/s4+OT7z0xMTF4eHhYXWc5bsv0RERERERERIqETcX4zZs3sbOzvsXe3p7c3FwA+vTpw+HDh0lJSbFcfn5+jBs3jm3bthX4OSEhIRw5coTLly9b2hISEnB3d6d69er53hMdHU1mZqbVFUCQLdMTERERERERKRI2LVPv0KEDU6dOpWLFitSoUYNDhw7xwQcfMHDgQAA8PT3x9PS0uqdEiRL4+PhQrVo1S1tqaioZGRmkpqaSk5NDSkoKAFWqVMHV1ZXw8HCqV69Onz59mD59Ounp6bz11ltERUVhNBrzzc1oNObp0xJ1ERERERERKY5sKsZnzZrF22+/zf/7f/+Py5cv4+fnx8svv8w777xj00Pfeecd4uLiLJ/r1asHwK5du2jRogX29vZs3ryZV155hZCQEEqWLEm/fv2YPHmyTc8RERERERERKY4MZrPZ/KSTeFza2HV70imIiIiIiIjI/yEJuasKFGfTd8ZFRERERERE5OGpGBcREREREREpYirGRURERERERIqYTcV4TEwMjRo1ws3NDW9vbzp37syJEyesYl5++WUCAwNxdnbGy8uLTp06cfx4/ud9//bbb5QvXx6DwcC1a9es+nbv3k39+vUxGo1UqVKFhQsX2jQxERERERERkeLKpmI8MTGRqKgovvnmGxISErh79y7h4eFkZ2dbYho0aMCCBQv48ccf2bZtG2azmfDwcHJycvKMN2jQIGrXrp2n/ezZs0RGRtKyZUtSUlIYPXo0gwcPtumschEREREREZHi6qF2U//111/x9vYmMTGR5s2b5xtz+PBh6tSpw6lTpwgMDLS0z549mxUrVvDOO+8QFhbG1atXKVWqFADjx4/niy++4OjRo5b4Hj16cO3aNbZu3Vrg/LSbuoiIiIiIiBSlItlNPTMzE4AyZcrk25+dnc2CBQsICAigQoUKlvYffviByZMns2jRIuzs8qawf/9+WrdubdUWERHB/v37HyZdERERERERkWKh0MV4bm4uo0ePpmnTptSsWdOq7x//+Aeurq64urqyZcsWEhIScHR0BMBkMtGzZ09iY2OpWLFivmOnp6dTrlw5q7Zy5cqRlZXFrVu3CpuyiIiIiIiISLFQ6GI8KiqKo0ePsnz58jx9vXr14tChQyQmJlK1alW6d+/O7du3AYiOjiY4OJjevXsXPut8mEwmsrKyrK5cc97vqYuIiIiIiIg8aYUqxocPH87mzZvZtWsX5cuXz9Pv4eHB008/TfPmzVm9ejXHjx9n3bp1AOzcuZNVq1bh4OCAg4MDYWFhAJQtW5YJEyYA4OPjw6VLl6zGvHTpEu7u7jg7O+ebU0xMDB4eHlbXWfLfxV1ERERERETkSXKwJdhsNjNixAjWrVvH7t27CQgIKNA9ZrMZk8kEwJo1a6yWmiclJTFw4ED27Nlj2eAtJCSEL7/80mqchIQEQkJCHvic6Ohoxo4da9XWxaN/QacmIiIiIiIiUmRsKsajoqKIj49nw4YNuLm5kZ6eDvz+JtzZ2ZkzZ86wYsUKwsPD8fLy4pdffmHatGk4OzvTvn17AKsd1QGuXLkCQHBwsGU39WHDhvH3v/+dv/71rwwcOJCdO3eycuVKvvjiiwfmZjQaMRqNVm12BntbpiciIiIiIiJSJGxapj579mwyMzNp0aIFvr6+lmvFihUAODk5sWfPHtq3b0+VKlV48cUXcXNzY9++fXh7exf4OQEBAXzxxRckJCRQp04dZs6cyWeffUZERIRtsxMREREREREphh7qnPHiTueMi4iIiIiISFEqknPGRURERERERMR2KsZFREREREREipiKcREREREREZEiZnMxfuHCBXr37o2npyfOzs7UqlWLb7/9Nt/YYcOGYTAY+Oijj6zav/vuO9q0aUOpUqXw9PRk6NCh3LhxwyomNTWVyMhIXFxc8Pb2Zty4cdy7d8/WdEVERERERESKHZuK8atXr9K0aVNKlCjBli1b+OGHH5g5cyalS5fOE7tu3Tq++eYb/Pz8rNovXrxI69atqVKlCgcOHGDr1q0cO3aM/v37W2JycnKIjIzkzp077Nu3j7i4OBYuXMg777xTuFmKiIiIiIiIFCM2nTP+/vvvU6FCBRYsWGBpCwgIyBN34cIFRowYwbZt24iMjLTq27x5MyVKlOCTTz7Bzu73fwuYM2cOtWvX5tSpU1SpUoXt27fzww8/sGPHDsqVK0fdunWZMmUK48ePZ+LEiTg6OhZmriIiIiIiIiLFgk1vxjdu3EjDhg3p1q0b3t7e1KtXj3nz5lnF5Obm0qdPH8aNG0eNGjXyjGEymXB0dLQU4gDOzs4A7N27F4D9+/dTq1YtypUrZ4mJiIggKyuLY8eO2ZKyiIiIiIiISLFjUzF+5swZZs+ezdNPP822bdt45ZVXGDlyJHFxcZaY999/HwcHB0aOHJnvGK1atSI9PZ3Y2Fju3LnD1atXef311wFIS0sDID093aoQByyf09PTbUlZREREREREpNixqRjPzc2lfv36vPfee9SrV4+hQ4cyZMgQ5syZA0BycjIff/wxCxcuxGAw5DtGjRo1iIuLY+bMmbi4uODj40NAQADlypWzeltuK5PJRFZWltWVa84p9HgiIiIiIiIij4tN1a+vry/Vq1e3agsODiY1NRWAPXv2cPnyZSpWrIiDgwMODg6cP3+eV199lUqVKlnueemll0hPT+fChQv89ttvTJw4kV9//ZXKlSsD4OPjw6VLl6yec/+zj49PvrnFxMTg4eFhdZ3luC3TExERERERESkSNhXjTZs25cSJE1ZtJ0+exN/fH4A+ffpw+PBhUlJSLJefnx/jxo1j27ZtecYrV64crq6urFixAicnJ9q0aQNASEgIR44c4fLly5bYhIQE3N3d8/xjwH3R0dFkZmZaXQEE2TI9ERERERERkSJh027qY8aMITQ0lPfee4/u3btz8OBB5s6dy9y5cwHw9PTE09PT6p4SJUrg4+NDtWrVLG1///vfCQ0NxdXVlYSEBMaNG8e0adMoVaoUAOHh4VSvXp0+ffowffp00tPTeeutt4iKisJoNOabm9FozNNnZ7C3ZXoiIiIiIiIiRcKmYrxRo0asW7eO6OhoJk+eTEBAAB999BG9evWy6aEHDx5kwoQJ3Lhxg6CgID799FP69Olj6be3t2fz5s288sorhISEULJkSfr168fkyZNteo6IiIiIiIhIcWQwm83mJ53E49LGrtuTTkFERERERET+D0nIXVWguMJvXy4iIiIiIiIihaJiXERERERERKSIqRgXERERERERKWI2F+MXLlygd+/eeHp64uzsTK1atfj2228t/RMnTiQoKIiSJUtSunRpWrduzYEDB6zGyMjIoFevXri7u1OqVCkGDRrEjRs3rGLMZjMzZsygatWqGI1GnnrqKaZOnVrIaYqIiIiIiIgUHzbtpn716lWaNm1Ky5Yt2bJlC15eXvz000+ULl3aElO1alX+/ve/U7lyZW7dusWHH35IeHg4p06dwsvLC4BevXqRlpZGQkICd+/eZcCAAQwdOpT4+HjLOKNGjWL79u3MmDGDWrVqkZGRQUZGxiOatoiIiIiIiMiTY9Nu6q+//jr//Oc/2bNnT4EfkJWVhYeHBzt27CAsLIwff/yR6tWrk5SURMOGDQHYunUr7du355dffsHPz48ff/yR2rVrc/ToUavzyW2l3dRFRERERESkKD2W3dQ3btxIw4YN6datG97e3tSrV4958+Y9MP7OnTvMnTsXDw8P6tSpA8D+/fspVaqUpRAHaN26NXZ2dpbl7Js2baJy5cps3ryZgIAAKlWqxODBg/VmXERERERERP4n2FSMnzlzhtmzZ/P000+zbds2XnnlFUaOHElcXJxV3ObNm3F1dcXJyYkPP/yQhIQEypYtC0B6ejre3t5W8Q4ODpQpU4b09HTLc86fP8+qVatYtGgRCxcuJDk5mRdeeOFh5ioiIiIiIiJSLNj0nfHc3FwaNmzIe++9B0C9evU4evQoc+bMoV+/fpa4li1bkpKSwpUrV5g3bx7du3fnwIEDeYrwP3qOyWRi0aJFVK1aFYD58+fToEEDTpw4ke/SdZPJhMlksh7HnIOdwd6WKYqIiIiIiIg8dja9Gff19aV69epWbcHBwaSmplq1lSxZkipVqtCkSRPmz5+Pg4MD8+fPB8DHx4fLly9bxd+7d4+MjAx8fHwsz3FwcLAU4vefA+R51n0xMTF4eHhYXWc5bsv0RERERERERIqETcV406ZNOXHihFXbyZMn8ff3/8P77r/pBggJCeHatWskJydb+nfu3Elubi6NGze2POfevXucPn3a6jnAA58VHR1NZmam1RVAkC3TExERERERESkSNu2mnpSURGhoKJMmTaJ79+4cPHiQIUOGMHfuXHr16kV2djZTp06lY8eO+Pr6cuXKFT755BPi4+NJTk6mRo0aALRr145Lly4xZ84cy9FmDRs2tBxtlpubS6NGjXB1deWjjz4iNzeXqKgo3N3d2b59e4Enp93URUREREREpCg9lt3UGzVqxLp161i2bBk1a9ZkypQpfPTRR/Tq1QsAe3t7jh8/TteuXalatSodOnTgt99+Y8+ePZZCHGDp0qUEBQURFhZG+/btadasGXPnzv1XUnZ2bNq0ibJly9K8eXMiIyMJDg5m+fLltqQrIiIiIiIiUizZ9Gb8v43ejIuIiIiIiEhReixvxkVERERERETk4akYFxERERERESliKsZFREREREREithDFePTpk3DYDAwevRoS1uLFi0wGAxW17Bhw6zu++qrrwgNDcXNzQ0fHx/Gjx/PvXv3rGLMZjMzZsygatWqGI1GnnrqKaZOnfow6YqIiIiIiIgUCw6FvTEpKYlPP/2U2rVr5+kbMmQIkydPtnx2cXGx/Pn777+nffv2vPnmmyxatIgLFy4wbNgwcnJymDFjhiVu1KhRbN++nRkzZlCrVi0yMjLIyMgobLoiIiIiIiIixUahivEbN27Qq1cv5s2bx7vvvpun38XFBR8fn3zvXbFiBbVr1+add94BoEqVKkyfPp3u3bszYcIE3Nzc+PHHH5k9ezZHjx6lWrVqAAQEBBQmVREREREREZFip1DL1KOiooiMjKR169b59i9dupSyZctSs2ZNoqOjuXnzpqXPZDLh5ORkFe/s7Mzt27dJTk4GYNOmTVSuXJnNmzcTEBBApUqVGDx4sN6Mi4iIiIiIyP8Em9+ML1++nO+++46kpKR8+1966SX8/f3x8/Pj8OHDjB8/nhMnTrB27VoAIiIi+Oijj1i2bBndu3cnPT3dsqQ9LS0NgDNnznD+/HlWrVrFokWLyMnJYcyYMbzwwgvs3LmzsHMVERERERERKRZsKsZ//vlnRo0aRUJCQp632/cNHTrU8udatWrh6+tLWFgYp0+fJjAwkPDwcGJjYxk2bBh9+vTBaDTy9ttvs2fPHuzsfn9Rn5ubi8lkYtGiRVStWhWA+fPn06BBA06cOGFZuv7vTCYTJpPJqi3XnIOdwd6WKYqIiIiIiIg8djYtU09OTuby5cvUr18fBwcHHBwcSExM5G9/+xsODg7k5OTkuadx48YAnDp1ytI2duxYrl27RmpqKleuXKFTp04AVK5cGQBfX18cHBwshThAcHAwAKmpqfnmFhMTg4eHh9V1luO2TE9ERERERESkSNhUjIeFhXHkyBFSUlIsV8OGDenVqxcpKSnY2+d9C52SkgL8XmD/O4PBgJ+fH87OzixbtowKFSpQv359AJo2bcq9e/c4ffq0Jf7kyZMA+Pv755tbdHQ0mZmZVlcAQbZMT0RERERERKRI2LRM3c3NjZo1a1q1lSxZEk9PT2rWrMnp06eJj4+nffv2eHp6cvjwYcaMGUPz5s2tjkCLjY2lbdu22NnZsXbtWqZNm8bKlSstxXzr1q2pX78+AwcO5KOPPiI3N5eoqCjatGlj9bb83xmNRoxGo1WblqiLiIiIiIhIcVSo3dQfxNHRkR07dhAeHk5QUBCvvvoqXbt2ZdOmTVZxW7Zs4ZlnnqFhw4Z88cUXbNiwgc6dO/8rKTs7Nm3aRNmyZWnevDmRkZEEBwezfPnyR5muiIiIiIiIyBNhMJvN5iedxOPSxq7bk05BRERERERE/g9JyF1VoLhH+mZcRERERERERP6cinERERERERGRIqZiXERERERERKSI2VSMz549m9q1a+Pu7o67uzshISFs2bLF0j937lxatGiBu7s7BoOBa9eu5RmjY8eOVKxYEScnJ3x9fenTpw8XL1609J87dw6DwZDn+uabbwo/SxEREREREZFixKZivHz58kybNo3k5GS+/fZbWrVqRadOnTh27BgAN2/epG3btrzxxhsPHKNly5asXLmSEydOsGbNGk6fPs0LL7yQJ27Hjh2kpaVZrgYNGtg4NREREREREZHi6aF3Uy9TpgyxsbEMGjTI0rZ7925atmzJ1atXKVWq1B/ev3HjRjp37ozJZKJEiRKcO3eOgIAADh06RN26dR8mNe2mLiIiIiIiIkXqse+mnpOTw/Lly8nOziYkJKRQY2RkZLB06VJCQ0MpUaKEVV/Hjh3x9vamWbNmbNy4sbBpioiIiIiIiBQ7NhfjR44cwdXVFaPRyLBhw1i3bh3Vq1e3aYzx48dTsmRJPD09SU1NZcOGDZY+V1dXZs6cyapVq/jiiy9o1qwZnTt3VkEuIiIiIiIi/zNsXqZ+584dUlNTyczMZPXq1Xz22WckJiZaFeR/tkz9ypUrZGRkcP78eSZNmoSHhwebN2/GYDDk+8y+ffty9uxZ9uzZ88C8TCYTJpPJqq2LR3/sDPa2TE9ERERERESk0B7bMnVHR0eqVKlCgwYNiImJoU6dOnz88cc2jVG2bFmqVq1KmzZtWL58OV9++eUf7pbeuHFjTp069YdjxsTE4OHhYXWd5bhNeYmIiIiIiIgUhYc+Zzw3NzfPG2lb7wf+cIyUlBR8fX3/cJzo6GgyMzOtrgCCCp2XiIiIiIiIyOPiYEtwdHQ07dq1o2LFily/fp34+Hh2797Ntm3bAEhPTyc9Pd3yFvvIkSO4ublRsWJFypQpw4EDB0hKSqJZs2aULl2a06dP8/bbbxMYGGjZBC4uLg5HR0fq1asHwNq1a/n888/57LPP/jA3o9GI0Wi0atMSdRERERERESmObCrGL1++TN++fUlLS8PDw4PatWuzbds22rRpA8CcOXOYNGmSJb558+YALFiwgP79++Pi4sLatWuZMGEC2dnZ+Pr60rZtW9566y2rQnrKlCmcP38eBwcHgoKCWLFiRb5nkYuIiIiIiIj8N3roc8aLM50zLiIiIiIiIkXpsZ8zLiIiIiIiIiKFo2JcREREREREpIipGBcREREREREpYjYV4zExMTRq1Ag3Nze8vb3p3LkzJ06csPRnZGQwYsQIqlWrhrOzMxUrVmTkyJFkZmbmO95vv/1G+fLlMRgMXLt2zarvk08+ITg4GGdnZ6pVq8aiRYtsn52IiIiIiIhIMWRTMZ6YmEhUVBTffPMNCQkJ3L17l/DwcLKzswG4ePEiFy9eZMaMGRw9epSFCxeydetWBg0alO94gwYNonbt2nnaZ8+eTXR0NBMnTuTYsWNMmjSJqKgoNm3aVIgpioiIiIiIiBQvD7Wb+q+//oq3tzeJiYmWY8z+06pVq+jduzfZ2dk4OPzrJLXZs2ezYsUK3nnnHcLCwrh69SqlSpUCIDQ0lKZNmxIbG2uJf/XVVzlw4AB79+4tcH7aTV1ERERERESKUkF3U7fpnPH/dH/5eZkyZf4wxt3d3aoQ/+GHH5g8eTIHDhzgzJkzee4xmUw4OTlZtTk7O3Pw4EHu3r1LiRIlHiZtERERERERkSeq0Bu45ebmMnr0aJo2bUrNmjXzjbly5QpTpkxh6NChljaTyUTPnj2JjY2lYsWK+d4XERHBZ599RnJyMmazmW+//ZbPPvuMu3fvcuXKlcKmLCIiIiIiIlIsFPrNeFRUFEePHn3gsvGsrCwiIyOpXr06EydOtLRHR0cTHBxM7969Hzj222+/TXp6Ok2aNMFsNlOuXDn69evH9OnTsbPL/98PTCYTJpPJqi3XnIOdwd72yYmIiIiIiIg8RoV6Mz58+HA2b97Mrl27KF++fJ7+69ev07ZtW9zc3Fi3bp3VsvKdO3eyatUqHBwccHBwICwsDICyZcsyYcIE4Pcl6Z9//jk3b97k3LlzpKamUqlSJdzc3PDy8so3p5iYGDw8PKyusxwvzPREREREREREHiubNnAzm82MGDGCdevWsXv3bp5++uk8MVlZWURERGA0Gvnyyy9xcXGx6j99+jS3bt2yfE5KSmLgwIHs27ePwMBAvL298332s88+y1NPPUV8fHy+/fm9Ge/i0V9vxkVERERERKTIPJYN3KKiooiPj2fDhg24ubmRnp4OgIeHB87OzmRlZREeHs7NmzdZsmQJWVlZZGVlAeDl5YW9vT2BgYFWY97/DnhwcLBlN/WTJ09y8OBBGjduzNWrV/nggw84evQocXFxD8zNaDRiNBqt2lSIi4iIiIiISHFkUzE+e/ZsAFq0aGHVvmDBAvr37893333HgQMHAKhSpYpVzNmzZ6lUqVKBnpOTk8PMmTM5ceIEJUqUoGXLluzbt6/A94uIiIiIiIgUZw91znhxp3PGRUREREREpCgVdJl6oY82ExEREREREZHCUTEuIiIiIiIiUsRUjIuIiIiIiIgUMZuL8a+//poOHTrg5+eHwWBg/fr1Vv03btxg+PDhlC9fHmdnZ6pXr86cOXMs/efOncNgMOR7rVr1+9r677//np49e1KhQgWcnZ0JDg7m448/friZioiIiIiIiBQTNu2mDpCdnU2dOnUYOHAgzz//fJ7+sWPHsnPnTpYsWUKlSpXYvn07/+///T/8/Pzo2LEjFSpUIC0tzeqeuXPnEhsbS7t27QBITk7G29ubJUuWUKFCBfbt28fQoUOxt7dn+PDhhZyqiIiIiIiISPHwULupGwwG1q1bR+fOnS1tNWvW5MUXX+Ttt9+2tDVo0IB27drx7rvv5jtOvXr1qF+/PvPnz3/gs6Kiovjxxx/ZuXNngfPTbuoiIiIiIiJSlJ7YbuqhoaFs3LiRCxcuYDab2bVrFydPniQ8PDzf+OTkZFJSUhg0aNAfjpuZmUmZMmUedboiIiIiIiIiRc7mZep/ZtasWQwdOpTy5cvj4OCAnZ0d8+bNo3nz5vnGz58/n+DgYEJDQx845r59+1ixYgVffPHFo05XREREREREpMg9lmL8m2++YePGjfj7+/P1118TFRWFn58frVu3toq9desW8fHxVkva/9PRo0fp1KkTEyZMeODbdQCTyYTJZLJqyzXnYGewf7gJiYiIiIiIiDxij7QYv3XrFm+88Qbr1q0jMjISgNq1a5OSksKMGTPyFOOrV6/m5s2b9O3bN9/xfvjhB8LCwhg6dChvvfXWHz47JiaGSZMmWbUFEEwgNR5iRiIiIiIiIiKP3iP9zvjdu3e5e/cudnbWw9rb25Obm5snfv78+XTs2BEvL688fceOHaNly5b069ePqVOn/umzo6OjyczMtLoCCCr8ZEREREREREQeE5vfjN+4cYNTp05ZPp89e5aUlBTKlClDxYoVefbZZxk3bhzOzs74+/uTmJjIokWL+OCDD6zGOXXqFF9//TVffvllnmccPXqUVq1aERERwdixY0lPTwd+L+rzK9wBjEYjRqPRqk1L1EVERERERKQ4svlos927d9OyZcs87f369WPhwoWkp6cTHR3N9u3bycjIwN/fn6FDhzJmzBgMBoMl/o033mDJkiWcO3cuz5v0iRMn5llyDuDv78+5c+cKnKuONhMREREREZGiVNCjzR7qnPHiTsW4iIiIiIiIFKUnds64iIiIiIiIiPwxFeMiIiIiIiIiRUzFuIiIiIiIiEgRs7kYv379OqNHj8bf3x9nZ2dCQ0NJSkqyivnxxx/p2LEjHh4elCxZkkaNGpGamgpARkYGI0aMoFq1ajg7O1OxYkVGjhxJZmam5f7ffvuNtm3b4ufnh9FopEKFCgwfPpysrKyHnK6IiIiIiIjIk2dzMT548GASEhJYvHgxR44cITw8nNatW3PhwgUATp8+TbNmzQgKCmL37t0cPnyYt99+GycnJwAuXrzIxYsXmTFjBkePHmXhwoVs3bqVQYMG/SspOzs6derExo0bOXnyJAsXLmTHjh0MGzbsEU1bRERERERE5MmxaTf1W7du4ebmxoYNG4iMjLS0N2jQgHbt2vHuu+/So0cPSpQoweLFiwucxKpVq+jduzfZ2dk4OOR/9Pnf/vY3YmNj+fnnnws8rnZTFxERERERkaL0WHZTv3fvHjk5OZa33Pc5Ozuzd+9ecnNz+eKLL6hatSoRERF4e3vTuHFj1q9f/4fjZmZm4u7u/sBC/OLFi6xdu5Znn33WlnRFREREREREiiWbinE3NzdCQkKYMmUKFy9eJCcnhyVLlrB//37S0tK4fPkyN27cYNq0abRt25bt27fTpUsXnn/+eRITE/Md88qVK0yZMoWhQ4fm6evZsycuLi489dRTuLu789lnnxVuliIiIiIiIiLFiE3L1OH374QPHDiQr7/+Gnt7e+rXr0/VqlVJTk7mq6++4qmnnqJnz57Ex8db7unYsSMlS5Zk2bJlVmNlZWXRpk0bypQpw8aNGylRooRVf3p6OteuXePkyZNER0fz7LPP8o9//CPfvEwmEyaTyaqti0d/7Az2tkxPREREREREpNAeyzJ1gMDAQBITE7lx4wY///wzBw8e5O7du1SuXJmyZcvi4OBA9erVre4JDg627KZ+3/Xr12nbti1ubm6sW7cuTyEO4OPjQ1BQEB07duTTTz9l9uzZpKWl5ZtXTEwMHh4eVtdZjts6PREREREREZHHrtDnjJcsWRJfX1+uXr3Ktm3b6NSpE46OjjRq1IgTJ05YxZ48eRJ/f3/L56ysLMLDw3F0dGTjxo15voOen9zcXIA8b7/vi46OJjMz0+oKIKiw0xMRERERERF5bPLfMe0PbNu2DbPZTLVq1Th16hTjxo0jKCiIAQMGADBu3DhefPFFmjdvTsuWLdm6dSubNm1i9+7dwL8K8Zs3b7JkyRKysrIs54d7eXlhb2/Pl19+yaVLl2jUqBGurq4cO3aMcePG0bRpUypVqpRvXkajEaPRaNWmJeoiIiIiIiJSHNlcjGdmZhIdHc0vv/xCmTJl6Nq1K1OnTrUsM+/SpQtz5swhJiaGkSNHUq1aNdasWUOzZs0A+O677zhw4AAAVapUsRr77NmzVKpUCWdnZ+bNm8eYMWMwmUxUqFCB559/ntdff/1h5ysiIiIiIiLyxNm8gdt/E50zLiIiIiIiIkXpsW3gJiIiIiIiIiIPR8W4iIiIiIiISBFTMS4iIiIiIiJSxGwqxnNycnj77bcJCAjA2dmZwMBApkyZwr9/7bx///4YDAarq23btlbjdOzYkYoVK+Lk5ISvry99+vTh4sWLVjFms5kZM2ZQtWpVjEYjTz31FFOnTn2IqYqIiIiIiIgUDzbtpv7+++8ze/Zs4uLiqFGjBt9++y0DBgzAw8ODkSNHWuLatm3LggULLJ//88ixli1b8sYbb+Dr68uFCxd47bXXeOGFF9i3b58lZtSoUWzfvp0ZM2ZQq1YtMjIyyMjIKOw8RURERERERIoNm3ZTf+655yhXrhzz58+3tHXt2hVnZ2eWLFkC/P5m/Nq1a6xfv77ASWzcuJHOnTtjMpkoUaIEP/74I7Vr1+bo0aNUq1at4LP5D9pNXURERERERIrSY9lNPTQ0lK+++oqTJ08C8P3337N3717atWtnFbd79268vb2pVq0ar7zyCr/99tsDx8zIyGDp0qWEhoZazirftGkTlStXZvPmzQQEBFCpUiUGDx6sN+MiIiIiIiLyP8GmYvz111+nR48eBAUFUaJECerVq8fo0aPp1auXJaZt27YsWrSIr776ivfff5/ExETatWtHTk6O1Vjjx4+nZMmSeHp6kpqayoYNGyx9Z86c4fz586xatYpFixaxcOFCkpOTeeGFFx5yuiIiIiIiIiJPnk3L1JcvX864ceOIjY2lRo0apKSkMHr0aD744AP69euX7z1nzpwhMDCQHTt2EBYWZmm/cuUKGRkZnD9/nkmTJuHh4cHmzZsxGAwMHTqUefPmceLECapWrQrAd999R4MGDTh+/Hi+S9dNJhMmk8mqrYtHf+wM9gWdnoiIiIiIiMhDeSzL1MeNG2d5O16rVi369OnDmDFjiImJeeA9lStXpmzZspw6dcqqvWzZslStWpU2bdqwfPlyvvzyS7755hsAfH19cXBwsBTiAMHBwQCkpqbm+5yYmBg8PDysrrMct2V6IiIiIiIiIkXCpmL85s2b2NlZ32Jvb09ubu4D7/nll1/47bff8PX1fWDM/fvvv9lu2rQp9+7d4/Tp05aY+99T9/f3z3eM6OhoMjMzra4Aggo2MREREREREZEiZNPRZh06dGDq1KlUrFiRGjVqcOjQIT744AMGDhwIwI0bN5g0aRJdu3bFx8eH06dP89e//pUqVaoQEREBwIEDB0hKSqJZs2aULl2a06dP8/bbbxMYGEhISAgArVu3pn79+gwcOJCPPvqI3NxcoqKiaNOmjdXb8n9nNBrzHKGmJeoiIiIiIiJSHNn0ZnzWrFm88MIL/L//9/8IDg7mtdde4+WXX2bKlCnA72/JDx8+TMeOHalatSqDBg2iQYMG7Nmzx1Iou7i4sHbtWsLCwqhWrRqDBg2idu3aJCYmWmLs7OzYtGkTZcuWpXnz5kRGRhIcHMzy5csf8fRFREREREREip5NG7j9t9E54yIiIiIiIlKUHssGbiIiIiIiIiLy8FSMi4iIiIiIiBQxFeMiIiIiIiIiRcymYrxSpUoYDIY8V1RUlCVm//79tGrVipIlS+Lu7k7z5s25deuWpT8jI4NevXrh7u5OqVKlGDRoEDdu3LB6zsqVK6lbty4uLi74+/sTGxv7kNMUERERERERKT5sOtosKSmJnJwcy+ejR4/Spk0bunX7faO0/fv307ZtW6Kjo5k1axYODg58//33VmeT9+rVi7S0NBISErh79y4DBgxg6NChxMfHA7BlyxZ69erFrFmzCA8P58cff2TIkCE4OzszfPjwRzFnERERERERkSfqoXZTHz16NJs3b+ann37CYDDQpEkT2rRpYznq7D/9+OOPVK9enaSkJBo2bAjA1q1bad++Pb/88gt+fn689NJL3L17l1Wr/rUD3axZs5g+fTqpqakYDIYC56fd1EVERERERKQoPfbd1O/cucOSJUsYOHAgBoOBy5cvc+DAAby9vQkNDaVcuXI8++yz7N2713LP/v37KVWqlKUQB2jdujV2dnYcOHAAAJPJhJOTk9WznJ2d+eWXXzh//nxh0xUREREREREpNgpdjK9fv55r167Rv39/AM6cOQPAxIkTGTJkCFu3bqV+/fqEhYXx008/AZCeno63t7fVOA4ODpQpU4b09HQAIiIiWLt2LV999RW5ubmcPHmSmTNnApCWllbYdEVERERERESKjUIX4/Pnz6ddu3b4+fkBkJubC8DLL7/MgAEDqFevHh9++CHVqlXj888/L/C4Q4YMYfjw4Tz33HM4OjrSpEkTevTo8Xuydg9O12QykZWVZXXlmnMeGC8iIiIiIiLypBSqGD9//jw7duxg8ODBljZfX18AqlevbhUbHBxMamoqAD4+Ply+fNmq/969e2RkZODj4wOAwWDg/fff58aNG5w/f5709HT+8pe/AFC5cuUH5hQTE4OHh4fVdZbjhZmeiIiIiIiIyGNVqGJ8wYIFeHt7ExkZaWmrVKkSfn5+nDhxwir25MmT+Pv7AxASEsK1a9dITk629O/cuZPc3FwaN25sdZ+9vT1PPfUUjo6OLFu2jJCQELy8vB6YU3R0NJmZmVZXAEGFmZ6IiIiIiIjIY2XT0Wbw+3L0BQsW0K9fPxwc/nW7wWBg3LhxTJgwgTp16lC3bl3i4uI4fvw4q1evBn5/S962bVuGDBnCnDlzuHv3LsOHD6dHjx6W5e5Xrlxh9erVtGjRgtu3b7NgwQJWrVpFYmLiH+ZlNBoxGo1WbXYGe1unJyIiIiIiIvLY2VyM79ixg9TUVAYOHJinb/To0dy+fZsxY8aQkZFBnTp1SEhIIDAw0BKzdOlShg8fTlhYGHZ2dnTt2pW//e1vVuPExcXx2muvYTabCQkJYffu3Zal6iIiIiIiIiL/7R7qnPHiTueMi4iIiIiISFF67OeMi4iIiIiIiEjhqBgXERERERERKWIqxkVERERERESKmE3FeExMDI0aNcLNzQ1vb286d+6c5yizuXPn0qJFC9zd3TEYDFy7di3POFOnTiU0NBQXFxdKlSqV77O++uorQkNDcXNzw8fHh/Hjx3Pv3j1b0hUREREREREplmwqxhMTE4mKiuKbb74hISGBu3fvEh4eTnZ2tiXm5s2btG3bljfeeOOB49y5c4du3brxyiuv5Nv//fff0759e9q2bcuhQ4dYsWIFGzdu5PXXX7clXREREREREZFi6aF2U//111/x9vYmMTGR5s2bW/Xt3r2bli1bcvXq1Qe+/V64cCGjR4/O8/b8jTfeICEhgaSkJEvbpk2b6N69O5cvX8bNza1A+Wk3dRERERERESlKRbKbemZmJgBlypR5mGHyMJlMODk5WbU5Oztz+/ZtkpOTH+mzRERERERERIpaoYvx3NxcRo8eTdOmTalZs+ajzImIiAj27dvHsmXLyMnJ4cKFC0yePBmAtLS0R/osERERERERkaJW6GI8KiqKo0ePsnz58keZDwDh4eHExsYybNgwjEYjVatWpX379gDY2eWfsslkIisry+rKNec88txEREREREREHlahivHhw4ezefNmdu3aRfny5R91TgCMHTuWa9eukZqaypUrV+jUqRMAlStXzjc+JiYGDw8Pq+ssxx9LbiIiIiIiIiIPw6Zi3Gw2M3z4cNatW8fOnTsJCAh4XHkBYDAY8PPzw9nZmWXLllGhQgXq16+fb2x0dDSZmZlWVwBBjzU/ERERERERkcJwsCU4KiqK+Ph4NmzYgJubG+np6QB4eHjg7OwMQHp6Ounp6Zw6dQqAI0eO4ObmRsWKFS0bvaWmppKRkUFqaio5OTmkpKQAUKVKFVxdXQGIjY2lbdu22NnZsXbtWqZNm8bKlSuxt7fPNzej0YjRaLRqszPkHysiIiIiIiLyJNl0tJnBYMi3fcGCBfTv3x+AiRMnMmnSpD+M6d+/P3FxcXlidu3aRYsWLQBo1aoV3333HSaTiTp16jBhwgTatWtX0FQBHW0mIiIiIiIiRaugR5s91DnjxZ2KcRERERERESlKRXLOuIiIiIiIiIjYTsW4iIiIiIiISBFTMS4iIiIiIiJSxGwuxq9fv87o0aPx9/fH2dmZ0NBQkpKSLP1r164lPDwcT09PDAaDZaf0f9eiRQsMBoPVNWzYsHyf99tvv1G+fHkMBgPXrl2zNV0RERERERGRYsfmYnzw4MEkJCSwePFijhw5Qnh4OK1bt+bChQsAZGdn06xZM95///0/HGfIkCGkpaVZrunTp+cbN2jQIGrXrm1rmiIiIiIiIiLFlk3njN+6dYs1a9awYcMGmjdvDvx+lNmmTZuYPXs27777Ln369AHg3LlzfziWi4sLPj4+fxgze/Zsrl27xjvvvMOWLVtsSVVERERERESk2LLpzfi9e/fIycnBycnJqt3Z2Zm9e/fa9OClS5dStmxZatasSXR0NDdv3rTq/+GHH5g8eTKLFi3Czk5fbRcREREREZH/HTa9GXdzcyMkJIQpU6YQHBxMuXLlWLZsGfv376dKlSoFHuell17C398fPz8/Dh8+zPjx4zlx4gRr164FwGQy0bNnT2JjY6lYsSJnzpyxbVYiIiIiIiIixZhNxTjA4sWLGThwIE899RT29vbUr1+fnj17kpycXOAxhg4davlzrVq18PX1JSwsjNOnTxMYGEh0dDTBwcH07t27wGOaTCZMJpNVW645BzuDfYHHEBERERERESkKNq//DgwMJDExkRs3bvDzzz9z8OBB7t69S+XKlQudROPGjQE4deoUADt37mTVqlU4ODjg4OBAWFgYAGXLlmXChAn5jhETE4OHh4fVdZbjhc5JRERERERE5HGx+c34fSVLlqRkyZJcvXqVbdu2PXA39IK4f/yZr68vAGvWrOHWrVuW/qSkJAYOHMiePXsIDAzMd4zo6GjGjh1r1dbFo3+hcxIRERERERF5XGwuxrdt24bZbKZatWqcOnWKcePGERQUxIABAwDIyMggNTWVixcvAnDixAkAfHx88PHx4fTp08THx9O+fXs8PT05fPgwY8aMoXnz5pYjzP6z4L5y5QoAwcHBlCpVKt+8jEYjRqPRqk1L1EVERERERKQ4snmZemZmJlFRUQQFBdG3b1+aNWvGtm3bKFGiBAAbN26kXr16REZGAtCjRw/q1avHnDlzAHB0dGTHjh2Eh4cTFBTEq6++SteuXdm0adMjnJaIiIiIiIhI8WUwm83mJ53E49LGrtuTTkFERERERET+D0nIXVWgOB3gLSIiIiIiIlLEVIyLiIiIiIiIFDEV4yIiIiIiIiJFzKZifOLEiRgMBqsrKCgI+H0X9REjRlCtWjWcnZ2pWLEiI0eOJDMz02qM1NRUIiMjcXFxwdvbm3HjxnHv3j2rmE8++YTg4GCcnZ2pVq0aixYteshpioiIiIiIiBQfNh9tVqNGDXbs2PGvARx+H+LixYtcvHiRGTNmUL16dc6fP8+wYcO4ePEiq1evBiAnJ4fIyEh8fHzYt28faWlp9O3blxIlSvDee+8BMHv2bKKjo5k3bx6NGjXi4MGDDBkyhNKlS9OhQ4dHMWcRERERERGRJ8qm3dQnTpzI+vXrSUlJKVD8qlWr6N27N9nZ2Tg4OLBlyxaee+45Ll68SLly5QCYM2cO48eP59dff8XR0ZHQ0FCaNm1KbGysZZxXX32VAwcOsHfvXpsmp93URUREREREpCg9tt3Uf/rpJ/z8/KhcuTK9evUiNTX1gbGZmZm4u7tb3p7v37+fWrVqWQpxgIiICLKysjh27BgA/197dx5XdZn///95DsgRZVMUkXGBtEBMEc2PouYuS2jYrpW5ZdaApn1zkhpLM4fcqrEcbTHUzCwdtygxSMU0F9xKzT2UDMkUBVk6Kuf8/vDXmTkDloflSDOP++123W6da3u/rvnHeXG939dlNptVu3Ztu3nc3d21c+dOXblyxdFwAQAAAACocRxKxjt16qSFCxcqNTVV8+bNU1ZWlu68805dunSpTN9z585p6tSpeuKJJ2x1ubm5dom4JNvv3NxcSdeS8/fee0+7d++W1WrVrl279N577+nKlSs6d+6cwwsEAAAAAKCmceib8ZiYGNt/t23bVp06dVLz5s31ySefaOTIkba2goICxcbGKjQ0VJMnT3YooEmTJik3N1edO3eW1WpVo0aNNHToUM2YMUNG4/X/dmA2m2U2m+3qLNZSGQ0uDj0fAAAAAIDqVqmrzXx8fHTbbbfp+PHjtrpLly4pOjpanp6eWrVqlWrVqmVr8/f3108//WQ3x6+//f39JV17Jf39999XcXGxTp48qezsbAUGBsrT01MNGza8bixJSUny9va2K1k6XJnlAQAAAABQLSqVjBcWFurEiRNq3LixpGs74pGRkXJzc9PatWvLfPsdERGh/fv36+zZs7a6tLQ0eXl5KTQ01K5vrVq11KRJE7m4uGjZsmXq37//b+6MJyYmKj8/364EKaQyywMAAAAAoFo49Jr6s88+qwEDBqh58+bKycnRSy+9JBcXFw0ePNiWiBcXF2vJkiUqKChQQUGBJKlhw4ZycXFRZGSkQkNDNWTIEM2YMUO5ubn661//qvj4eJlMJknS0aNHtXPnTnXq1EkXLlzQa6+9pgMHDmjRokW/GZvJZLLN8SteUQcAAAAA1EQOJeOnT5/W4MGDdf78eTVs2FDdunXT9u3b1bBhQ23atEk7duyQJLVs2dJuXFZWlgIDA+Xi4qKUlBQ99dRTioiIUN26dTV06FC9/PLLtr6lpaWaPXu2jhw5olq1aqlXr176+uuvFRgYWPnVAgAAAABQAzh0z/gfDfeMAwAAAACcqdruGQcAAAAAAJVDMg4AAAAAgJORjAMAAAAA4GRVnowHBgbKYDCUKfHx8crLy9OYMWMUHBwsd3d3NWvWTGPHjlV+fr7dHJmZmerTp498fHxUr149RUVF6ZtvvqnqUAEAAAAAuCmqPBnPzMzUmTNnbCUtLU2S9MADDygnJ0c5OTmaNWuWDhw4oIULFyo1NVUjR460jS8sLFR0dLSaNWumHTt2aMuWLfL09FRUVJSuXLlS1eECAAAAAOB01X6a+rhx45SSkqJjx47JYDCUaV++fLkeffRRFRUVydXVVbt27VLHjh2VnZ2tpk2bSpL279+vtm3b6tixY2WuTfstnKYOAAAAAHCmGnGa+uXLl7VkyRKNGDGi3ERckvLz8+Xl5SVX12tXngcHB8vX11cLFizQ5cuXVVJSogULFqhVq1bcNQ4AAAAA+K9Qrcn46tWrdfHiRQ0bNqzc9nPnzmnq1Kl64oknbHWenp7atGmTlixZInd3d3l4eCg1NVXr1q2zJewAAAAAAPyRVetr6lFRUXJzc9Onn35apq2goED9+vVT/fr1tXbtWtWqVUuSVFJSop49eyokJEQJCQkqLS3VrFmzdPjwYWVmZsrd3b3cZ5nNZpnNZru6e7yHyWhwqfqFAQAAAABQjpv+mvqpU6eUnp6uxx9/vEzbpUuXFB0dLU9PT61atcqWiEvS0qVLdfLkSSUnJ6tjx47q3Lmzli5dqqysLK1Zs+a6z0tKSpK3t7ddydLhalkbAAAAAACVUW3JeHJysvz8/BQbG2tXX1BQoMjISLm5uWnt2rWqXbu2XXtxcbGMRqPdN+a//rZYLNd9XmJiovLz8+1KkEKqdlEAAAAAAFSBaknGLRaLkpOTNXToULvvvH9NxIuKirRgwQIVFBQoNzdXubm5Ki0tlST169dPFy5cUHx8vA4dOqSDBw9q+PDhcnV1Va9eva77TJPJJC8vL7vCK+oAAAAAgJqoWk5ES09PV3Z2tkaMGGFXv2fPHu3YsUOSylxRlpWVpcDAQIWEhOjTTz/VlClTFBERIaPRqPDwcKWmpqpx48bVES4AAAAAAE5V7feM30zcMw4AAAAAcKabfoAbAAAAAAAoH8k4AAAAAABORjIOAAAAAICTOZSMJyUlqWPHjvL09JSfn58GDhyoI0eOlOm3bds29e7dW3Xr1pWXl5e6d++ukpISW/u0adPUpUsX1alTRz4+PmXGnz9/XtHR0QoICJDJZFLTpk2VkJCggoICx1cIAAAAAEAN41AynpGRofj4eG3fvl1paWm6cuWK7aqyX23btk3R0dGKjIzUzp07lZmZqYSEBBmN/3rU5cuX9cADD+ipp54qPyijUXFxcVq7dq2OHj2qhQsXKj09XU8++WQFlwkAAAAAQM1RqdPUf/75Z/n5+SkjI0Pdu3eXJHXu3Fn9+vXT1KlTf3f8woULNW7cOF28ePF3+86ZM0czZ87UDz/8cMPxcZo6AAAAAMCZnHKaen5+viSpfv36kqSzZ89qx44d8vPzU5cuXdSoUSP16NFDW7ZsqcxjlJOTo5UrV6pHjx6VmgcAAAAAgJqgwsm4xWLRuHHj1LVrV91+++2SpO+//16SNHnyZI0aNUqpqalq3769+vTpo2PHjjn8jMGDB6tOnTr605/+JC8vL7333nsVDRcAAAAAgBqjwsl4fHy8Dhw4oGXLltnqLBaLJGn06NEaPny4wsPD9frrrys4OFjvv/++w894/fXXtWfPHq1Zs0YnTpzQM888c92+ZrNZBQUFdsViLXV8YQAAAAAAVLMKJeMJCQlKSUnRxo0b1aRJE1t948aNJUmhoaF2/Vu1aqXs7GyHn+Pv76+QkBDdfffdevvttzVv3jydOXOm3L5JSUny9va2K1k67PAzAQAAAACobg4l41arVQkJCVq1apU2bNigoKAgu/bAwEAFBASUue7s6NGjat68eaUC/XXX3Ww2l9uemJio/Px8uxKkkEo9EwAAAACA6uDqSOf4+HgtXbpUa9askaenp3JzcyVJ3t7ecnd3l8Fg0IQJE/TSSy8pLCxM7dq106JFi3T48GGtWLHCNk92drby8vKUnZ2t0tJS7du3T5LUsmVLeXh46PPPP9dPP/2kjh07ysPDQwcPHtSECRPUtWtXBQYGlhubyWSSyWSyqzMaXBxZHgAAAAAATuHQ1WYGg6Hc+uTkZA0bNsz2+9VXX9XcuXOVl5ensLAwzZgxQ926dbO1Dxs2TIsWLSozz8aNG9WzZ09t3LhRL7zwgr777juZzWY1bdpU9957ryZOnCgfH58bXhxXmwEAAAAAnOlGrzar1D3jNR3JOAAAAADAmZxyzzgAAAAAAHAcyTgAAAAAAE5GMg4AAAAAgJM5nIxv3rxZAwYMUEBAgAwGg1avXm3XXlhYqISEBDVp0kTu7u4KDQ3V/Pnzbe15eXkaM2aMgoOD5e7urmbNmmns2LHKz8+39Tl//ryio6MVEBAgk8mkpk2bKiEhQQUFBRVfKQAAAAAANYTDyXhRUZHCwsI0d+7cctufeeYZpaamasmSJTp06JDGjRunhIQErV27VpKUk5OjnJwczZo1SwcOHNDChQuVmpqqkSNH/isoo1FxcXFau3atjh49qoULFyo9PV1PPvlkBZcJAAAAAEDNUanT1A0Gg1atWqWBAwfa6m6//XY99NBDmjRpkq2uQ4cOiomJ0SuvvFLuPMuXL9ejjz6qoqIiubqWf/X5nDlzNHPmTP3www83HB+nqQMAAAAAnOmmnabepUsXrV27Vj/++KOsVqs2btyoo0ePKjIy8rpj8vPz5eXldd1EPCcnRytXrlSPHj2qOlwAAAAAAJyuypPxN998U6GhoWrSpInc3NwUHR2tuXPnqnv37uX2P3funKZOnaonnniiTNvgwYNVp04d/elPf5KXl5fee++9qg4XAAAAAACnq5ZkfPv27Vq7dq12796t2bNnKz4+Xunp6WX6FhQUKDY2VqGhoZo8eXKZ9tdff1179uzRmjVrdOLECT3zzDPXfa7ZbFZBQYFdsVhLq3JpAAAAAABUiSr9ZrykpETe3t5atWqVYmNjbf0ef/xxnT59Wqmpqba6S5cuKSoqSnXq1FFKSopq1679m8/asmWL7rzzTuXk5Khx48Zl2idPnqwpU6bY1QWplVoYWld0eQAAAAAAOOSmfDN+5coVXblyRUaj/bQuLi6yWCy23wUFBYqMjJSbm5vWrl37u4m4JNt4s9lcbntiYqLy8/PtSpBCKrEaAAAAAACqR/knpv2GwsJCHT9+3PY7KytL+/btU/369dWsWTP16NFDEyZMkLu7u5o3b66MjAwtXrxYr732mqR/JeLFxcVasmSJ7ZVySWrYsKFcXFz0+eef66efflLHjh3l4eGhgwcPasKECeratasCAwPLjctkMslkMtnVGQ0uji4PAAAAAIBq5/Br6ps2bVKvXr3K1A8dOlQLFy5Ubm6uEhMT9cUXXygvL0/NmzfXE088ofHjx8tgMFx3vHQtsQ8MDNTGjRv1wgsv6LvvvpPZbFbTpk117733auLEifLx8bnhWLnaDAAAAADgTDf6mnqlvhmv6UjGAQAAAADOdNPuGQcAAAAAAL+NZBwAAAAAACcjGQcAAAAAwMkcSsYDAwNlMBjKlPj4eEnSO++8o549e8rLy0sGg0EXL14sM8fRo0cVFxenBg0ayMvLS926ddPGjRvt+mRnZys2NlZ16tSRn5+fJkyYoKtXr1Z8lQAAAAAA1CAOJeOZmZk6c+aMraSlpUmSHnjg2kFpxcXFio6O1vPPP3/dOfr376+rV69qw4YN2r17t8LCwtS/f3/l5uZKkkpLSxUbG6vLly/r66+/1qJFi7Rw4UK9+OKLFV0jAAAAAAA1SqVOUx83bpxSUlJ07NgxGQwGW/2v15dduHDB7iqyc+fOqWHDhtq8ebPuvPNOSdKlS5fk5eWltLQ09e3bV+vWrVP//v2Vk5OjRo0aSZLmz5+v5557Tj///LPc3NxuOD5OUwcAAAAAOFO1n6Z++fJlLVmyRCNGjLBLxH+Lr6+vgoODtXjxYhUVFenq1at6++235efnpw4dOkiStm3bpjZt2tgScUmKiopSQUGBDh48WNFwAQAAAACoMVwrOnD16tW6ePGihg0bdsNjDAaD0tPTNXDgQHl6espoNMrPz0+pqamqV6+eJCk3N9cuEZdk+/3rq+wAAAAAAPyRVTgZX7BggWJiYhQQEHDDY6xWq+Lj4+Xn56evvvpK7u7ueu+99zRgwABlZmaqcePGFQ1HZrNZZrPZrs5iLZXR4FLhOQEAAAAAqA4Vek391KlTSk9P1+OPP+7QuA0bNiglJUXLli1T165d1b59e/3jH/+Qu7u7Fi1aJEny9/fXTz/9ZDfu19/+/v7XnTspKUne3t52JUuHHVwZAAAAAADVr0LJeHJysvz8/BQbG+vQuOLi4msPNdo/1mg0ymKxSJIiIiK0f/9+nT171taelpYmLy8vhYaGXnfuxMRE5efn25UghTgUHwAAAAAAzuDwa+oWi0XJyckaOnSoXF3th+fm5io3N1fHjx+XJO3fv1+enp5q1qyZ6tevr4iICNWrV09Dhw7Viy++KHd3d7377rvKysqyJfaRkZEKDQ3VkCFDNGPGDOXm5uqvf/2r4uPjZTKZrhuXyWQq084r6gAAAACAmsjhnfH09HRlZ2drxIgRZdrmz5+v8PBwjRo1SpLUvXt3hYeHa+3atZKkBg0aKDU1VYWFherdu7fuuOMObdmyRWvWrFFYWJgkycXFRSkpKXJxcVFERIQeffRRPfbYY3r55Zcrs04AAAAAAGqMSt0zXtNxzzgAAAAAwJmq/Z5xAAAAAABQMSTjAAAAAAA4Gck4AAAAAABO5nAy/uOPP+rRRx+Vr6+v3N3d1aZNG+3atcuuz6FDh3T33XfL29tbdevWVceOHZWdnW1rHz16tFq0aCF3d3c1bNhQcXFxOnzY/k7wsWPHqkOHDjKZTGrXrl3FVgcAAAAAQA3kUDJ+4cIFde3aVbVq1dK6dev03Xffafbs2apXr56tz4kTJ9StWzeFhIRo06ZN+vbbbzVp0iTVrl3b1qdDhw5KTk7WoUOHtH79elmtVkVGRqq0tNTueSNGjNBDDz1UySUCAAAAAFCzOHSa+sSJE7V161Z99dVX1+0zaNAg1apVSx988MENB/Htt98qLCxMx48fV4sWLezaJk+erNWrV2vfvn03PN+vOE0dAAAAAOBM1XKa+tq1a3XHHXfogQcekJ+fn8LDw/Xuu+/a2i0Wiz777DPddtttioqKkp+fnzp16qTVq1dfd86ioiIlJycrKChITZs2dSQcAAAAAAD+kBxKxr///nvNmzdPt956q9avX6+nnnpKY8eO1aJFiyRJZ8+eVWFhoV599VVFR0friy++0D333KN7771XGRkZdnP94x//kIeHhzw8PLRu3TqlpaXJzc2t6lYGAAAAAEAN5epIZ4vFojvuuEN/+9vfJEnh4eE6cOCA5s+fr6FDh8pisUiS4uLiNH78eElSu3bt9PXXX2v+/Pnq0aOHba5HHnlE/fr105kzZzRr1iw9+OCD2rp1q9235Y4wm80ym8328VpLZTS4VGg+AAAAAACqi0M7440bN1ZoaKhdXatWrWwnpTdo0ECurq6/2edX3t7euvXWW9W9e3etWLFChw8f1qpVqyqyBklSUlKSvL297UqWDv/+QAAAAAAAnMyhZLxr1646cuSIXd3Ro0fVvHlzSZKbm5s6duz4m33KY7VaZbVay+xsOyIxMVH5+fl2JUghFZ4PAAAAAIDq4tBr6uPHj1eXLl30t7/9TQ8++KB27typd955R++8846tz4QJE/TQQw+pe/fu6tWrl1JTU/Xpp59q06ZNkq59d/7xxx8rMjJSDRs21OnTp/Xqq6/K3d1dd911l22e48ePq7CwULm5uSopKbGdph4aGlrut+Umk0kmk8mujlfUAQAAAAA1kUNXm0lSSkqKEhMTdezYMQUFBemZZ57RqFGj7Pq8//77SkpK0unTpxUcHKwpU6YoLi5OkpSTk6PHH39cu3fv1oULF9SoUSN1795dL774ooKDg21z9OzZs8yhb5KUlZWlwMDAG4qVq80AAAAAAM50o1ebOZyM/5GQjAMAAAAAnKla7hkHAAAAAACVRzIOAAAAAICTkYwDAAAAAOBkDiXjgYGBMhgMZUp8fLwkKTc3V0OGDJG/v7/q1q2r9u3b65///GeZeT777DN16tRJ7u7uqlevngYOHGjXnpmZqT59+sjHx0f16tVTVFSUvvnmm4qvEgAAAACAGsShZDwzM1NnzpyxlbS0NEnSAw9cOyjtscce05EjR7R27Vrt379f9957rx588EHt3bvXNsc///lPDRkyRMOHD9c333yjrVu36uGHH7a1FxYWKjo6Ws2aNdOOHTu0ZcsWeXp6KioqSleuXKmKNQMAAAAAcFNV6jT1cePGKSUlRceOHZPBYJCHh4fmzZunIUOG2Pr4+vpq+vTpevzxx3X16lUFBgZqypQpGjlyZLlz7tq1Sx07dlR2draaNm0qSdq/f7/atm2rY8eOqWXLljccH6epAwAAAACcqdpPU798+bKWLFmiESNGyGAwSJK6dOmijz/+WHl5ebJYLFq2bJl++eUX9ezZU5K0Z88e/fjjjzIajQoPD1fjxo0VExOjAwcO2OYNDg6Wr6+vFixYoMuXL6ukpEQLFixQq1atbvh+cQAAAAAAarIKJ+OrV6/WxYsXNWzYMFvdJ598oitXrsjX11cmk0mjR4/WqlWrbLvZ33//vSRp8uTJ+utf/6qUlBTVq1dPPXv2VF5eniTJ09NTmzZt0pIlS+Tu7i4PDw+lpqZq3bp1cnV1rcRSAQAAAACoGSqcjC9YsEAxMTEKCAiw1U2aNEkXL15Uenq6du3apWeeeUYPPvig9u/fL0myWCySpBdeeEH33XefOnTooOTkZBkMBi1ffm0rv6SkRCNHjlTXrl21fft2bd26VbfffrtiY2NVUlJy3XjMZrMKCgrsisVaWtHlAQAAAABQbSq01Xzq1Cmlp6dr5cqVtroTJ07orbfe0oEDB9S6dWtJUlhYmL766ivNnTtX8+fPV+PGjSVJoaGhtnEmk0m33HKLsrOzJUlLly7VyZMntW3bNhmNRltdvXr1tGbNGg0aNKjcmJKSkjRlyhS7uiC1Ugu1rsgSAQAAAACoNhXaGU9OTpafn59iY2NtdcXFxdcmNNpP6eLiYtsR79Chg0wmk44cOWJrv3Llik6ePKnmzZvb5jEajbbv0H+d02Aw2OYpT2JiovLz8+1KkEIqsjwAAAAAAKqVw8m4xWJRcnKyhg4davcNd0hIiFq2bKnRo0dr586dOnHihGbPnq20tDTbPeJeXl568skn9dJLL+mLL77QkSNH9NRTT0n61/Vo/fr104ULFxQfH69Dhw7p4MGDGj58uFxdXdWrV6/rxmUymeTl5WVXjAYXR5cHAAAAAEC1c/g19fT0dGVnZ2vEiBF29bVq1dLnn3+uiRMnasCAASosLFTLli21aNEi3XXXXbZ+M2fOlKurq4YMGaKSkhJ16tRJGzZsUL169SRdS+o//fRTTZkyRREREbaT11NTU22vuQMAAAAA8EdWqXvGazruGQcAAAAAOFO13zMOAAAAAAAqhmQcAAAAAAAnIxkHAAAAAMDJHE7GN2/erAEDBiggIEAGg0GrV6+2a1+5cqUiIyPl6+srg8Ggffv2lTvPtm3b1Lt3b9WtW1deXl7q3r27SkpKJEmbNm2SwWAot2RmZjq8SAAAAAAAahKHk/GioiKFhYVp7ty5123v1q2bpk+fft05tm3bpujoaEVGRmrnzp3KzMxUQkKC7Y7yLl266MyZM3bl8ccfV1BQkO644w5HQwYAAAAAoEZx+GqzmJgYxcTEXLd9yJAhkqSTJ09et8/48eM1duxYTZw40VYXHBxs+283Nzf5+/vbfl+5ckVr1qzRmDFjZDAYHA0ZAAAAAIAaxenfjJ89e1Y7duyQn5+funTpokaNGqlHjx7asmXLdcesXbtW58+f1/Dhw50YKQAAAAAA1cPpyfj3338vSZo8ebJGjRql1NRUtW/fXn369NGxY8fKHbNgwQJFRUWpSZMmzgwVAAAAAIBq4fBr6pVlsVgkSaNHj7btdIeHh+vLL7/U+++/r6SkJLv+p0+f1vr16/XJJ5/85rxms1lms9n+WdZSGQ0uVRg9AAAAAACV5/Sd8caNG0uSQkND7epbtWql7OzsMv2Tk5Pl6+uru++++zfnTUpKkre3t13J0uGqCxwAAAAAgCri9GQ8MDBQAQEBOnLkiF390aNH1bx5c7s6q9Wq5ORkPfbYY6pVq9ZvzpuYmKj8/Hy7EqSQKo8fAAAAAIDKcvg19cLCQh0/ftz2OysrS/v27VP9+vXVrFkz5eXlKTs7Wzk5OZJkS7r9/f3l7+8vg8GgCRMm6KWXXlJYWJjatWunRYsW6fDhw1qxYoXdszZs2KCsrCw9/vjjvxuXyWSSyWSyq+MVdQAAAABATWSwWq1WRwZs2rRJvXr1KlM/dOhQLVy4UAsXLiz31POXXnpJkydPtv1+9dVXNXfuXOXl5SksLEwzZsxQt27d7MY8/PDDOnXqlLZu3epIiDb9jA9UaBwAAAAAABWRZll+Q/0cTsb/SEjGAQAAAADOdKPJuNO/GQcAAAAA4H8dyTgAAAAAAE5GMg4AAAAAgJNVKhl/9dVXZTAYNG7cuDJtVqtVMTExMhgMWr16dZn2hQsXqm3btqpdu7b8/PwUHx9va/vll180bNgwtWnTRq6urho4cGBlwgQAAAAAoEZx+GqzX2VmZurtt99W27Zty21/4403ZDAYym177bXXNHv2bM2cOVOdOnVSUVGRTp48aWsvLS2Vu7u7xo4dq3/+858VDREAAAAAgBqpQsl4YWGhHnnkEb377rt65ZVXyrTv27dPs2fP1q5du9S4cWO7tgsXLuivf/2rPv30U/Xp08dW/+9Jfd26dTVv3jxJ0tatW3Xx4sWKhAkAAAAAQI1UodfU4+PjFRsbq759+5ZpKy4u1sMPP6y5c+fK39+/THtaWposFot+/PFHtWrVSk2aNNGDDz6oH374oSKhAAAAAADwh+NwMr5s2TLt2bNHSUlJ5baPHz9eXbp0UVxcXLnt33//vSwWi/72t7/pjTfe0IoVK5SXl6d+/frp8uXLjoYDAAAAAMAfjkOvqf/www96+umnlZaWptq1a5dpX7t2rTZs2KC9e/dedw6LxaIrV65ozpw5ioyMlCR99NFH8vf318aNGxUVFeXgEq4xm80ym832z7KWymhwqdB8AAAAAABUF4d2xnfv3q2zZ8+qffv2cnV1laurqzIyMjRnzhy5uroqLS1NJ06ckI+Pj61dku677z717NlTkmzfkIeGhtrmbdiwoRo0aKDs7OwKLyQpKUne3t52JUuHKzwfAAAAAADVxaGd8T59+mj//v12dcOHD1dISIiee+45NWjQQKNHj7Zrb9OmjV5//XUNGDBAktS1a1dJ0pEjR9SkSRNJUl5ens6dO6fmzZtXeCGJiYl65pln7Oru8R5W4fkAAAAAAKguDiXjnp6euv322+3q6tatK19fX1t9eYe2NWvWTEFBQZKk2267TXFxcXr66af1zjvvyMvLS4mJiQoJCVGvXr1sY7777jtdvnxZeXl5unTpkvbt2ydJateuXbmxmUwmmUwmuzpeUQcAAAAA1EQVvme8MhYvXqzx48crNjZWRqNRPXr0UGpqqmrVqmXrc9ddd+nUqVO23+Hh4ZIkq9Xq9HgBAAAAAKhKBut/cXbbz/jAzQ4BAAAAAPA/JM2y/Ib6VeiecQAAAAAAUHEk4wAAAAAAOBnJOAAAAAAATuZQMp6UlKSOHTvK09NTfn5+GjhwoI4cOWJrz8vL05gxYxQcHCx3d3c1a9ZMY8eOVX5+vt08Y8eOVYcOHWQyma57OrrVatWsWbN02223yWQy6U9/+pOmTZvm+AoBAAAAAKhhHDpNPSMjQ/Hx8erYsaOuXr2q559/XpGRkfruu+9Ut25d5eTkKCcnR7NmzVJoaKhOnTqlJ598Ujk5OVqxYoXdXCNGjNCOHTv07bfflvusp59+Wl988YVmzZqlNm3aKC8vT3l5eRVfKQAAAAAANUSlTlP/+eef5efnp4yMDHXv3r3cPsuXL9ejjz6qoqIiubra5/6TJ0/W6tWrbXeI/+rQoUNq27atDhw4oODg4IqGx2nqAAAAAACncspp6r++fl6/fv3f7OPl5VUmEf8tn376qW655RalpKQoKChIgYGBevzxx9kZBwAAAAD8V6hwMm6xWDRu3Dh17dpVt99+e7l9zp07p6lTp+qJJ55waO7vv/9ep06d0vLly7V48WItXLhQu3fv1v3331/RcAEAAAAAqDEc+mb838XHx+vAgQPasmVLue0FBQWKjY1VaGioJk+e7NDcFotFZrNZixcv1m233SZJWrBggTp06KAjR46U++q62WyW2Wy2n8daKqPBxaFnAwAAAABQ3Sq0M56QkKCUlBRt3LhRTZo0KdN+6dIlRUdHy9PTU6tWrVKtWrUcmr9x48ZydXW1JeKS1KpVK0lSdnZ2uWOSkpLk7e1tV7J02KHnAgAAAADgDA4l41arVQkJCVq1apU2bNigoKCgMn0KCgoUGRkpNzc3rV27VrVr13Y4qK5du+rq1as6ceKEre7o0aOSpObNm5c7JjExUfn5+XYlSCEOPxsAAAAAgOrm0Gvq8fHxWrp0qdasWSNPT0/l5uZKkry9veXu7m5LxIuLi7VkyRIVFBSooKBAktSwYUO5uFx7Zfz48eMqLCxUbm6uSkpKbKeph4aGys3NTX379lX79u01YsQIvfHGG7JYLIqPj1e/fv3sdsv/nclkkslksqvjFXUAAAAAQE3k0NVmBoOh3Prk5GQNGzZMmzZtUq9evcrtk5WVpcDAQElSz549lZGR8Zt9cnJyNGbMGH3xxReqW7euYmJiNHv27N88uf0/cbUZAAAAAMCZbvRqs0rdM17TkYwDAAAAAJzJKfeMAwAAAAAAx5GMAwAAAADgZCTjAAAAAAA4mUPJeFJSkjp27ChPT0/5+flp4MCBOnLkiK09Ly9PY8aMUXBwsNzd3dWsWTONHTtW+fn5dvNkZmaqT58+8vHxUb169RQVFaVvvvnGrs/69evVuXNneXp6qmHDhrrvvvt08uTJiq8UAAAAAIAawqFkPCMjQ/Hx8dq+fbvS0tJ05coVRUZGqqioSNK1E9BzcnI0a9YsHThwQAsXLlRqaqpGjhxpm6OwsFDR0dFq1qyZduzYoS1btsjT01NRUVG6cuWKpGunqsfFxal3797at2+f1q9fr3Pnzunee++twqUDAAAAAHBzVOo09Z9//ll+fn7KyMhQ9+7dy+2zfPlyPfrooyoqKpKrq6t27dqljh07Kjs7W02bNpUk7d+/X23bttWxY8fUsmVLrVixQoMHD5bZbJbReO3vBZ9++qni4uJkNptVq1atG4qP09QBAAAAAM7klNPUf339/Lfu/s7Pz5eXl5dcXV0lScHBwfL19dWCBQt0+fJllZSUaMGCBWrVqpXtjvEOHTrIaDQqOTlZpaWlys/P1wcffKC+ffvecCIOAAAAAEBNVeGdcYvForvvvlsXL17Uli1byu1z7tw5dejQQY8++qimTZtmqz9w4IAGDhyorKwsSdKtt96q9evXq3nz5rY+GRkZevDBB3X+/HmVlpYqIiJCn3/+uXx8fG44RnbGAQAAAADOVO074/Hx8Tpw4ICWLVtWbntBQYFiY2MVGhqqyZMn2+pLSko0cuRIde3aVdu3b9fWrVt1++23KzY2ViUlJZKk3NxcjRo1SkOHDlVmZqYyMjLk5uam+++/X9f724HZbFZBQYFdsVhLK7o8AAAAAACqjWtFBiUkJCglJUWbN29WkyZNyrRfunRJ0dHR8vT01KpVq+xeLV+6dKlOnjypbdu22b4HX7p0qerVq6c1a9Zo0KBBmjt3rry9vTVjxgzbuCVLlqhp06basWOHOnfuXOaZSUlJmjJlil1dkFqphVpXZIkAAAAAAFQbh3bGrVarEhIStGrVKm3YsEFBQUFl+hQUFCgyMlJubm5au3atateubddeXFwso9Eog8HwryD+/98Wi8Wuz79zcXGRJFuf/5SYmKj8/Hy7EqQQR5YHAAAAAIBTOJSMx8fHa8mSJVq6dKk8PT2Vm5ur3Nxc2+vlvybiRUVFWrBggQoKCmx9SkuvvTLer18/XbhwQfHx8Tp06JAOHjyo4cOHy9XVVb169ZIkxcbGKjMzUy+//LKOHTumPXv2aPjw4WrevLnCw8PLjc1kMsnLy8uuGA0ulfnfBgAAAACAauHQAW7/vpv975KTkzVs2DBt2rTJllD/p6ysLNtp6WlpaZoyZYoOHDggo9Go8PBwTZs2ze7182XLlmnGjBk6evSo6tSpo4iICE2fPl0hITe+280BbgAAAAAAZ7rRA9wqdc94TUcyDgAAAABwJqfcMw4AAAAAABxHMg4AAAAAgJORjAMAAAAA4GQk4wAAAAAAOFmVJ+OlpaWaNGmSgoKC5O7urhYtWmjq1Km63jlxTz75pAwGg9544w27+qNHjyouLk4NGjSQl5eXunXrpo0bN1Z1uAAAAAAAOF2VJ+PTp0/XvHnz9NZbb+nQoUOaPn26ZsyYoTfffLNM31WrVmn79u0KCAgo09a/f39dvXpVGzZs0O7duxUWFqb+/fsrNze3qkMGAAAAAMCpqjwZ//rrrxUXF6fY2FgFBgbq/vvvV2RkpHbu3GnX78cff9SYMWP04YcfqlatWnZt586d07FjxzRx4kS1bdtWt956q1599VUVFxfrwIEDVR0yAAAAAABOVeXJeJcuXfTll1/q6NGjkqRvvvlGW7ZsUUxMjK2PxWLRkCFDNGHCBLVu3brMHL6+vgoODtbixYtVVFSkq1ev6u2335afn586dOhQ1SEDAAAAAOBUrlU94cSJE1VQUKCQkBC5uLiotLRU06ZN0yOPPGLrM336dLm6umrs2LHlzmEwGJSenq6BAwfK09NTRqNRfn5+Sk1NVb169codYzabZTab7eos1lIZDS5VtzgAAAAAAKpAle+Mf/LJJ/rwww+1dOlS7dmzR4sWLdKsWbO0aNEiSdLu3bv197//XQsXLpTBYCh3DqvVqvj4ePn5+emrr77Szp07NXDgQA0YMEBnzpwpd0xSUpK8vb3tSpYOV/XyAAAAAACoNIP1esecV1DTpk01ceJExcfH2+peeeUVLVmyRIcPH9Ybb7yhZ555Rkbjv/4OUFpaKqPRqKZNm+rkyZP68ssvFRkZqQsXLsjLy8vW79Zbb9XIkSM1ceLEMs8tb2f8Hu9h7IwDAAAAAJwmzbL8hvpV+WvqxcXFdom2JLm4uMhisUiShgwZor59+9q1R0VFaciQIRo+fLhtDkll5jEajbZ5/pPJZJLJZLLvTyIOAAAAAKiBqjwZHzBggKZNm6ZmzZqpdevW2rt3r1577TWNGDFC0rXD2Xx9fe3G1KpVS/7+/goODpYkRUREqF69eho6dKhefPFFubu7691331VWVpZiY2OrOmQAAAAAAJyqypPxN998U5MmTdKf//xnnT17VgEBARo9erRefPHFG56jQYMGSk1N1QsvvKDevXvrypUrat26tdasWaOwsLCqDhkAAAAAAKeq8m/Ga5J+xgdudggAAAAAgP8hN/rNeJWfpg4AAAAAAH4byTgAAAAAAE5GMg4AAAAAgJM5lIxPnjxZBoPBroSEhNja33nnHfXs2VNeXl4yGAy6ePFimTny8vL0yCOPyMvLSz4+Pho5cqQKCwvt+qxfv16dO3eWp6enGjZsqPvuu08nT56s0AIBAAAAAKhpHN4Zb926tc6cOWMrW7ZssbUVFxcrOjpazz///HXHP/LIIzp48KDS0tKUkpKizZs364knnrC1Z2VlKS4uTr1799a+ffu0fv16nTt3Tvfee6+joQIAAAAAUCM5fLWZq6ur/P39y20bN26cJGnTpk3lth86dEipqanKzMzUHXfcIenaVWh33XWXZs2apYCAAO3evVulpaV65ZVXZDRe+1vBs88+q7i4OF25ckW1atVyNGQAAAAAAGoUh3fGjx07poCAAN1yyy165JFHlJ2dfcNjt23bJh8fH1siLkl9+/aV0WjUjh07JEkdOnSQ0WhUcnKySktLlZ+frw8++EB9+/YlEQcAAAAA/FdwKBnv1KmTFi5cqNTUVM2bN09ZWVm68847denSpRsan5ubKz8/P7s6V1dX1a9fX7m5uZKkoKAgffHFF3r++edlMpnk4+Oj06dP65NPPvnNuc1mswoKCuyKxVrqyPIAAAAAAHAKh5LxmJgYPfDAA2rbtq2ioqL0+eef6+LFi7+bKDsiNzdXo0aN0tChQ5WZmamMjAy5ubnp/vvvl9Vqve64pKQkeXt725UsHa6yuAAAAAAAqCqVutrMx8dHt912m44fP35D/f39/XX27Fm7uqtXryovL8/2HfrcuXPl7e2tGTNmKDw8XN27d9eSJUv05Zdf2l5lL09iYqLy8/PtSpBCrtsfAAAAAICbpVLJeGFhoU6cOKHGjRvfUP+IiAhdvHhRu3fvttVt2LBBFotFnTp1knTtRPZfD277lYuLiyTJYrFcd26TySQvLy+7YjS4OLokAAAAAACqnUPJ+LPPPquMjAydPHlSX3/9te655x65uLho8ODBkq69Yr5v3z7bTvn+/fu1b98+5eXlSZJatWql6OhojRo1Sjt37tTWrVuVkJCgQYMGKSAgQJIUGxurzMxMvfzyyzp27Jj27Nmj4cOHq3nz5goPD6/KtQMAAAAAcFM4lIyfPn1agwcPVnBwsB588EH5+vpq+/btatiwoSRp/vz5Cg8P16hRoyRJ3bt3V3h4uNauXWub48MPP1RISIj69Omju+66S926ddM777xja+/du7eWLl2q1atXKzw8XNHR0TKZTEpNTZW7u3tVrBkAAAAAgJvKYP2tU9H+4PoZH7jZIQAAAAAA/oekWZbfUL9KfTMOAAAAAAAcRzIOAAAAAICTkYwDAAAAAOBkDiXjpaWlmjRpkoKCguTu7q4WLVpo6tSp+vfPzocNGyaDwWBXoqOj7ebZs2eP+vXrJx8fH/n6+uqJJ55QYWGhXZ+xY8eqQ4cOMplMateuXcVXCAAAAABADeNQMj59+nTNmzdPb731lg4dOqTp06drxowZevPNN+36RUdH68yZM7by0Ucf2dpycnLUt29ftWzZUjt27FBqaqoOHjyoYcOGlXneiBEj9NBDD1VsZQAAAAAA1FCujnT++uuvFRcXp9jYWElSYGCgPvroI+3cudOun8lkkr+/f7lzpKSkqFatWpo7d66Mxmt/C5g/f77atm2r48ePq2XLlpKkOXPmSJJ+/vlnffvtt46tCgAAAACAGsyhnfEuXbroyy+/1NGjRyVJ33zzjbZs2aKYmBi7fps2bZKfn5+Cg4P11FNP6fz587Y2s9ksNzc3WyIuyXZ/+JYtWyq8EAAAAAAA/igcSsYnTpyoQYMGKSQkRLVq1VJ4eLjGjRunRx55xNYnOjpaixcv1pdffqnp06crIyNDMTExKi0tlST17t1bubm5mjlzpi5fvqwLFy5o4sSJkqQzZ85UeCFms1kFBQV2xWItrfB8AAAAAABUF4eS8U8++UQffvihli5dqj179mjRokWaNWuWFi1aZOszaNAg3X333WrTpo0GDhyolJQUZWZmatOmTZKk1q1ba9GiRZo9e7bq1Kkjf39/BQUFqVGjRna75Y5KSkqSt7e3XcnS4QrPBwAAAABAdXEo+50wYYJtd7xNmzYaMmSIxo8fr6SkpOuOueWWW9SgQQMdP37cVvfwww8rNzdXP/74o86fP6/Jkyfr559/1i233FLhhSQmJio/P9+uBCmkwvMBAAAAAFBdHDrArbi4uMzutYuLiywWy3XHnD59WufPn1fjxo3LtDVq1EiS9P7776t27drq16+fI+HYMZlMMplMdnVGg0uF5wMAAAAAoLo4lIwPGDBA06ZNU7NmzdS6dWvt3btXr732mkaMGCFJKiws1JQpU3TffffJ399fJ06c0F/+8he1bNlSUVFRtnneeustdenSRR4eHkpLS9OECRP06quvysfHx9bn+PHjKiwsVG5urkpKSrRv3z5JUmhoqNzc3Cq/cgAAAAAAbhKD1Wq13mjnS5cuadKkSVq1apXOnj2rgIAADR48WC+++KLc3NxUUlKigQMHau/evbp48aICAgIUGRmpqVOn2nbBJemxxx7TZ599psLCQoWEhOjZZ5/VkCFD7J7Vs2dPZWRklIkhKytLgYGBNxRvP+MDN7o0AAAAAAAqLc2y/Ib6OZSM/9GQjAMAAAAAnOlGk/GKH18OAAAAAAAqhGQcAAAAAAAnIxkHAAAAAMDJqiUZ37x5swYMGKCAgAAZDAatXr3arn3YsGEyGAx2JTo6uty5zGaz2rVrJ4PBYDtRHQAAAACAP7JqScaLiooUFhamuXPnXrdPdHS0zpw5YysfffRRuf3+8pe/KCAgoDrCBAAAAADgpnDonvEbFRMTo5iYmN/sYzKZ5O/v/5t91q1bpy+++EL//Oc/tW7duqoMEQAAAACAm+amfTO+adMm+fn5KTg4WE899ZTOnz9v1/7TTz9p1KhR+uCDD1SnTp2bFCUAAAAAAFWvWnbGf090dLTuvfdeBQUF6cSJE3r++ecVExOjbdu2ycXFRVarVcOGDdOTTz6pO+64QydPnvzdOc1ms8xms12dxVoqo8GlmlYBAAAAAEDF3JRkfNCgQbb/btOmjdq2basWLVpo06ZN6tOnj958801dunRJiYmJNzxnUlKSpkyZYlcXpFZqodZVFjcAAAAAAFWhRlxtdsstt6hBgwY6fvy4JGnDhg3atm2bTCaTXF1d1bJlS0nSHXfcoaFDh5Y7R2JiovLz8+1KkEKctgYAAAAAAG7UTdkZ/0+nT5/W+fPn1bhxY0nSnDlz9Morr9jac3JyFBUVpY8//lidOnUqdw6TySSTyWRXxyvqAAAAAICaqFqS8cLCQtsutyRlZWVp3759ql+/vurXr68pU6bovvvuk7+/v06cOKG//OUvatmypaKioiRJzZo1s5vPw8NDktSiRQs1adKkOkIGAAAAAMBpqiUZ37Vrl3r16mX7/cwzz0iShg4dqnnz5unbb7/VokWLdPHiRQUEBCgyMlJTp04ts7MNAAAAAMB/I4PVarXe7CCqSz/jAzc7BAAAAADA/5A0y/Ib6lcjDnADAAAAAOB/Cck4AAAAAABORjIOAAAAAICTOZSMJyUlqWPHjvL09JSfn58GDhyoI0eOlOm3bds29e7dW3Xr1pWXl5e6d++ukpISW3teXp4eeeQReXl5ycfHRyNHjlRhYaGt/eTJkzIYDGXK9u3bK7FUAAAAAABqBoeS8YyMDMXHx2v79u1KS0vTlStXFBkZqaKiIlufbdu2KTo6WpGRkdq5c6cyMzOVkJAgo/Ffj3rkkUd08OBBpaWlKSUlRZs3b9YTTzxR5nnp6ek6c+aMrXTo0KESSwUAAAAAoGao1GnqP//8s/z8/JSRkaHu3btLkjp37qx+/fpp6tSp5Y45dOiQQkNDlZmZqTvuuEOSlJqaqrvuukunT59WQECATp48qaCgIO3du1ft2rWraHicpg4AAAAAcCqnnKaen58vSapfv74k6ezZs9qxY4f8/PzUpUsXNWrUSD169NCWLVtsY7Zt2yYfHx9bIi5Jffv2ldFo1I4dO+zmv/vuu+Xn56du3bpp7dq1lQkVAAAAAIAao8LJuMVi0bhx49S1a1fdfvvtkqTvv/9ekjR58mSNGjVKqampat++vfr06aNjx45JknJzc+Xn52c3l6urq+rXr6/c3FxJkoeHh2bPnq3ly5frs88+U7du3TRw4MDfTMjNZrMKCgrsisVaWtHlAQAAAABQbVwrOjA+Pl4HDhyw2/W2WCySpNGjR2v48OGSpPDwcH355Zd6//33lZSUdENzN2jQQM8884ztd8eOHZWTk6OZM2fq7rvvLndMUlKSpkyZYlcXpFZqodYOrQsAAAAAgOpWoZ3xhIQEpaSkaOPGjWrSpImtvnHjxpKk0NBQu/6tWrVSdna2JMnf319nz561a7969ary8vLk7+9/3Wd26tRJx48fv257YmKi8vPz7UqQQhxeGwAAAAAA1c2hZNxqtSohIUGrVq3Shg0bFBQUZNceGBiogICAMtedHT16VM2bN5ckRURE6OLFi9q9e7etfcOGDbJYLOrUqdN1n71v3z5bsl8ek8kkLy8vu2I0uDiyPAAAAAAAnMKh19Tj4+O1dOlSrVmzRp6enrZvvL29veXu7i6DwaAJEybopZdeUlhYmNq1a6dFixbp8OHDWrFihaRru+TR0dEaNWqU5s+frytXrighIUGDBg1SQECAJGnRokVyc3NTeHi4JGnlypV6//339d5771Xl2gEAAAAAuCkcSsbnzZsnSerZs6ddfXJysoYNGyZJGjdunH755ReNHz9eeXl5CgsLU1pamlq0aGHr/+GHHyohIUF9+vSR0WjUfffdpzlz5tjNOXXqVJ06dUqurq4KCQnRxx9/rPvvv78CSwQAAAAAoGap1D3jNR33jAMAAAAAnMkp94wDAAAAAADHkYwDAAAAAOBkJOMAAAAAADhZlSfj8+bNU9u2bW3Xi0VERGjdunV2fbZt26bevXurbt268vLyUvfu3VVSUmJrP3r0qOLi4tSgQQN5eXmpW7du2rhxY1WHCgAAAADATVHlyXiTJk306quvavfu3dq1a5d69+6tuLg4HTx4UNK1RDw6OlqRkZHauXOnMjMzlZCQIKPxX6H0799fV69e1YYNG7R7926FhYWpf//+tqvUAAAAAAD4I3PKaer169fXzJkzNXLkSHXu3Fn9+vXT1KlTy+177tw5NWzYUJs3b9add94pSbp06ZK8vLyUlpamvn373vBzOU0dAAAAAOBMNeI09dLSUi1btkxFRUWKiIjQ2bNntWPHDvn5+alLly5q1KiRevTooS1bttjG+Pr6Kjg4WIsXL1ZRUZGuXr2qt99+W35+furQoUN1hgsAAAAAgFO4Vsek+/fvV0REhH755Rd5eHho1apVCg0N1fbt2yVJkydP1qxZs9SuXTstXrxYffr00YEDB3TrrbfKYDAoPT1dAwcOlKenp4xGo/z8/JSamqp69epd95lms1lms9muzmItldHgUh1LBAAAAACgwqplZzw4OFj79u3Tjh079NRTT2no0KH67rvvZLFYJEmjR4/W8OHDFR4ertdff13BwcF6//33JUlWq1Xx8fHy8/PTV199pZ07d2rgwIEaMGCAzpw5c91nJiUlydvb265k6XB1LA8AAAAAgEpxyjfjffv2VYsWLTRx4kTdcsst+uCDD/Too4/a2h966CG5urrqww8/1JdffqnIyEhduHBBXl5etj633nqrRo4cqYkTJ5b7jPJ2xu/xHsbOOAAAAADAaW70m/FqeU39P1ksFpnNZgUGBiogIEBHjhyxaz969KhiYmIkScXFxZJkd7r6r79/3Vkvj8lkkslksh9DIg4AAAAAqIGqPBlPTExUTEyMmjVrpkuXLmnp0qXatGmT1q9fL4PBoAkTJuill15SWFiY2rVrp0WLFunw4cNasWKFJCkiIkL16tXT0KFD9eKLL8rd3V3vvvuusrKyFBsbW9XhAgAAAADgdFWejJ89e1aPPfaYzpw5I29vb7Vt21br169Xv379JEnjxo3TL7/8ovHjxysvL09hYWFKS0tTixYtJEkNGjRQamqqXnjhBfXu3VtXrlxR69attWbNGoWFhVV1uAAAAAAAOJ1Tvhm/WbhnHAAAAADgTDXinnEAAAAAAFAWyTgAAAAAAE5GMg4AAAAAgJM5lIzPmzdPbdu2lZeXl7y8vBQREaF169bZ2nv27CmDwWBXnnzySVv7+fPnFR0drYCAAJlMJjVt2lQJCQkqKCiw9Vm5cqX69eunhg0b2p6xfv36KlgqAAAAAAA1g0PJeJMmTfTqq69q9+7d2rVrl3r37q24uDgdPHjQ1mfUqFE6c+aMrcyYMeNfDzMaFRcXp7Vr1+ro0aNauHCh0tPT7RL2zZs3q1+/fvr888+1e/du9erVSwMGDNDevXurYLkAAAAAANx8lT5NvX79+po5c6ZGjhypnj17ql27dnrjjTduePycOXM0c+ZM/fDDD9ft07p1az300EN68cUXHYqN09QBAAAAAM5U7aepl5aWatmyZSoqKlJERISt/sMPP1SDBg10++23KzExUcXFxdedIycnRytXrlSPHj2u28disejSpUuqX79+RUMFAAAAAKBGcXV0wP79+xUREaFffvlFHh4eWrVqlUJDQyVJDz/8sJo3b66AgAB9++23eu6553TkyBGtXLnSbo7BgwdrzZo1Kikp0YABA/Tee+9d93mzZs1SYWGhHnzwQUdDBQAAAACgRnL4NfXLly8rOztb+fn5WrFihd577z1lZGTYEvJ/t2HDBvXp00fHjx9XixYtbPW5ubm6ePGijh49qsTERPXo0UP/+Mc/yoxfunSpRo0apTVr1qhv376/GZfZbJbZbLaru8d7mIwGF0eWBwAAAABAhd3oa+qV/ma8b9++atGihd5+++0ybUVFRfLw8FBqaqqioqLKHb9lyxbdeeedysnJUePGjW31y5Yt04gRI7R8+XLFxsb+bhyTJ0/WlClT7OqC1EotDK0dXBEAAAAAABVT7d+M/8pisZTZkf7Vvn37JMkuyS5vvCS7OT766CMNHz5cH3300Q0l4pKUmJio/Px8uxKkkBtcBQAAAAAAzuPQN+OJiYmKiYlRs2bNdOnSJS1dulSbNm3S+vXrdeLECS1dulR33XWXfH199e2332r8+PHq3r272rZtK0n6/PPP9dNPP6ljx47y8PDQwYMHNWHCBHXt2lWBgYGSrr2aPnToUP39739Xp06dlJubK0lyd3eXt7f3dWMzmUwymUx2dbyiDgAAAACoiRzaGT979qwee+wxBQcHq0+fPsrMzNT69evVr18/ubm5KT09XZGRkQoJCdH/+3//T/fdd58+/fRT23h3d3e9++676tatm1q1aqXx48fr7rvvVkpKiq3PO++8o6tXryo+Pl6NGze2laeffrrqVg0AAAAAwE1U6W/GazLuGQcAAAAAOJPTvhkHAAAAAACOIRkHAAAAAMDJSMYBAAAAAHAyknEAAAAAAJyMZBwAAAAAACcjGQcAAAAAwMlIxgEAAAAAcLL/6nvGAdRcZrNZSUlJSkxMlMlkutnhAADwh8G/ocB/B5JxADdFQUGBvL29lZ+fLy8vr5sdDgAAfxj8Gwr8d+A1dQAAAAAAnIxkHAAAAAAAJyMZBwAAAADAyUjGAdwUJpNJL730EgfPAADgIP4NBf47cIAbAAAAAABOxs44AAAAAABORjIOAAAAAICTkYwDAAAAAOBkJOMA/ictXLhQPj4+NzsMAABuWFX922UwGLR69epKzwOgckjGgf9iw4YN08CBA292GJVy8uRJGQwGW/H19VVkZKT27t17w3MEBgbqjTfeqL4gAQC4Qf8N/zYDqBok4wD+ENLT03XmzBmtX79ehYWFiomJ0cWLF292WAAAAECFkIwD/yN69uypMWPGaNy4capXr54aNWqkd999V0VFRRo+fLg8PT3VsmVLrVu3zjamtLRUI0eOVFBQkNzd3RUcHKy///3vdvNevXpVY8eOlY+Pj3x9ffXcc89p6NChdn/1t1gsSkpKss0TFhamFStWOBS/r6+v/P39dccdd2jWrFn66aeftGPHDp04cUJxcXFq1KiRPDw81LFjR6Wnp9ut+9SpUxo/frxtd/3frV+/Xq1atZKHh4eio6N15swZh+ICAKCqvPbaa2rTpo3q1q2rpk2b6s9//rMKCwvL9Fu9erVuvfVW1a5dW1FRUfrhhx/s2tesWaP27durdu3auuWWWzRlyhRdvXrVWcsAcINIxoH/IYsWLVKDBg20c+dOjRkzRk899ZQeeOABdenSRXv27FFkZKSGDBmi4uJiSdeS6CZNmmj58uX67rvv9OKLL+r555/XJ598Yptz+vTp+vDDD5WcnKytW7eqoKCgzHdoSUlJWrx4sebPn6+DBw9q/PjxevTRR5WRkVGhdbi7u0uSLl++rMLCQt1111368ssvtXfvXkVHR2vAgAHKzs6WJK1cuVJNmjTRyy+/rDNnztgl28XFxZo1a5Y++OADbd68WdnZ2Xr22WcrFBMAAJVlNBo1Z84cHTx4UIsWLdKGDRv0l7/8xa5PcXGxpk2bpsWLF2vr1q26ePGiBg0aZGv/6quv9Nhjj+npp5/Wd999p7ffflsLFy7UtGnTnL0cAL/HCuC/1tChQ61xcXFWq9Vq7dGjh7Vbt262tqtXr1rr1q1rHTJkiK3uzJkzVknWbdu2XXfO+Ph463333Wf73ahRI+vMmTPt5m3WrJntub/88ou1Tp061q+//tpunpEjR1oHDx78u2vIysqySrLu3bvXarVarRcuXLDec889Vg8PD2tubm65Y1q3bm198803bb+bN29uff311+36JCcnWyVZjx8/bqubO3eutVGjRr8bEwAAFfXv/zb/nuXLl1t9fX1tv3/9t2v79u22ukOHDlklWXfs2GG1Wq3WPn36WP/2t7/ZzfPBBx9YGzdubPstybpq1aqKLwJAlXC9mX8IAOBcbdu2tf23i4uLfH191aZNG1tdo0aNJElnz5611c2dO1fvv/++srOzVVJSosuXL6tdu3aSpPz8fP3000/6v//7P7t5O3ToIIvFIkk6fvy4iouL1a9fP7tYLl++rPDw8BuOvUuXLjIajSoqKtItt9yijz/+WI0aNVJhYaEmT56szz77TGfOnNHVq1dVUlJi2xn/LXXq1FGLFi1svxs3bmy3dgAAnCk9PV1JSUk6fPiwCgoKdPXqVf3yyy8qLi5WnTp1JEmurq7q2LGjbUxISIh8fHx06NAh/d///Z+++eYbbd261W4nvLS0tMw8AG4+knHgf0itWrXsfhsMBru6X7+n/jWRXrZsmZ599lnNnj1bERER8vT01MyZM7Vjx44bfuav37p99tln+tOf/mTXZjKZbniejz/+WKGhofL19bW71uXZZ59VWlqaZs2apZYtW8rd3V3333+/Ll++/Ltzlve/h9VqveGYAACoKidPnlT//v311FNPadq0aapfv762bNmikSNH6vLlyzecRBcWFmrKlCm69957y7TVrl27qsMGUAkk4wCua+vWrerSpYv+/Oc/2+pOnDhh+29vb281atRImZmZ6t69u6Rrf33fs2ePbfc8NDRUJpNJ2dnZ6tGjR4Vjadq0qd0u9r/HOGzYMN1zzz2Srv2fkJMnT9r1cXNzU2lpaYWfDQBAddu9e7csFotmz54to/HasU7/fkbLr65evapdu3bZ3ko7cuSILl68qFatWkmS2rdvryNHjqhly5bOCx5AhZCMA7iuW2+9VYsXL9b69esVFBSkDz74QJmZmQoKCrL1GTNmjJKSktSyZUuFhITozTff1IULF2y77J6ennr22Wc1fvx4WSwWdevWTfn5+dq6dau8vLw0dOjQSse4cuVKDRgwQAaDQZMmTbLt7P8qMDBQmzdv1qBBg2QymdSgQYNKPRMAgMrIz8/Xvn377OoaNGigK1eu6M0339SAAQO0detWzZ8/v8zYWrVqacyYMZozZ45cXV2VkJCgzp0725LzF198Uf3791ezZs10//33y2g06ptvvtGBAwf0yiuvOGN5AG4Qp6kDuK7Ro0fr3nvv1UMPPaROnTrp/PnzdrvkkvTcc89p8ODBeuyxxxQRESEPDw9FRUXZvQo3depUTZo0SUlJSWrVqpWio6P12Wef2SX1FfXaa6+pXr166tKliwYMGKCoqCi1b9/ers/LL7+skydPqkWLFmrYsGGlnwkAQGVs2rRJ4eHhduWDDz7Qa6+9punTp+v222/Xhx9+qKSkpDJj69Spo+eee04PP/ywunbtKg8PD3388ce29qioKKWkpOiLL75Qx44d1blzZ73++utq3ry5M5cI4AYYrHwgCaAKWSwWtWrVSg8++KCmTp16s8MBAAAAaiReUwdQKadOndIXX3yhHj16yGw266233lJWVpYefvjhmx0aAAAAUGPxmjqASjEajVq4cKE6duyorl27av/+/UpPT7cdJPN7nnzySXl4eJRbnnzyyWqOHgAAALg5eE0dwE119uxZFRQUlNvm5eUlPz8/J0cEAAAAVD+ScQAAAAAAnIzX1AEAAAAAcDKScQAAAAAAnIxkHAAAAAAAJyMZBwAAAADAyUjGAQAAAABwMpJxAAAAAACcjGQcAAAAAAAnIxkHAAAAAMDJ/j9vcUoJUd0vlwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Label\n", + "Snail 900\n", + "Butterfly 900\n", + "Scorpion 900\n", + "Spider 900\n", + "Dragonfly 900\n", + "Bees 900\n", + "Cicada 900\n", + "Moth 900\n", + "Beetles 900\n", + "Grasshopper 900\n", + "Name: count, dtype: int64\n" + ] + } + ], + "source": [ + "# Count unique image paths\n", + "unique_paths = train_df['Image_Path'].nunique()\n", + "print(f\"Number of unique image paths: {unique_paths}\")\n", + "\n", + "# Image paths distribution by label (top 20 paths for readability)\n", + "plt.figure(figsize=(10, 6))\n", + "sns.countplot(data=train_df, y='Image_Path', hue='Label', order=train_df['Image_Path'].value_counts().index[:20])\n", + "plt.title('Top 20 Image Paths Distribution by Label')\n", + "plt.xlabel('Frequency')\n", + "plt.ylabel('Image Path')\n", + "plt.show()\n", + "\n", + "# Unique values for each categorical column\n", + "for column in train_df.select_dtypes(include=['object']).columns:\n", + " unique_values = train_df[column].nunique()\n", + " print(f\"Column {column} has {unique_values} unique values.\")\n", + "\n", + "# Missing values heatmap\n", + "plt.figure(figsize=(12, 8))\n", + "sns.heatmap(train_df.isnull(), cbar=False, cmap='viridis')\n", + "plt.title('Heatmap of Missing Values')\n", + "plt.show()\n", + "\n", + "# Label counts summary\n", + "label_counts = train_df['Label'].value_counts()\n", + "print(label_counts)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IVxxrO5HHEkt", + "outputId": "826f7fa8-ad5f-42ec-c425-5adf1e9c5e08" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Image_Path 0\n", + "Label 0\n", + "dtype: int64\n", + "0\n" + ] + } + ], + "source": [ + "# Data Cleaning\n", + "print(train_df.isnull().sum())\n", + "train_df.fillna(method='ffill', inplace=True)\n", + "print(train_df.duplicated().sum())\n", + "train_df.drop_duplicates(inplace=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oQjzKhMJlKIL" + }, + "source": [ + "# Customizing model according to our usecase\n", + "This code snippet summarizes the process of creating a custom keras categorical classification model in Keras. It involves loading the pre-trained Xception , VGG16 and ResNet50 model, freezing its layers, adding custom layers for classification, compiling the model, shuffling the training data, and training the model. Finally, the trained model is saved as an HDF5 file ." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "-O7Tlhks4Wq9" + }, + "outputs": [], + "source": [ + "from keras import Sequential\n", + "from keras.layers import Dense\n", + "from keras import optimizers\n", + "from keras.layers import Dense, GlobalAveragePooling2D\n", + "\n", + "from keras.layers import Dropout\n", + "\n", + "def create_model(base_model, input_shape, num_classes):\n", + " base_model.trainable = True # Unfreeze the base model\n", + " model = Sequential([\n", + " base_model,\n", + " GlobalAveragePooling2D(),\n", + " Dense(512, activation='relu'),\n", + " Dropout(0.5),\n", + " Dense(256, activation='relu'),\n", + " Dropout(0.5),\n", + " Dense(num_classes, activation='softmax')\n", + " ])\n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "DExUmXHQsy4C" + }, + "outputs": [], + "source": [ + "from keras.callbacks import EarlyStopping\n", + "from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "def train_and_evaluate(model, train_data, val_data, model_name, epochs=10):\n", + " # Compile the model\n", + " model.compile(optimizer=optimizers.Adam(learning_rate=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])\n", + "\n", + " # Early stopping callback\n", + " early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)\n", + "\n", + " # Train the model with the specified number of epochs\n", + " history = model.fit(train_data,\n", + " validation_data=val_data,\n", + " steps_per_epoch=len(train_data),\n", + " epochs=epochs,\n", + " callbacks=[early_stopping])\n", + "\n", + " # Evaluate the model\n", + " val_loss, val_accuracy = model.evaluate(val_data)\n", + " print(f'{model_name} Validation Accuracy: {val_accuracy:.4f}')\n", + "\n", + " # Plot training history\n", + " plt.plot(history.history['accuracy'], label='accuracy')\n", + " plt.plot(history.history['val_accuracy'], label='val_accuracy')\n", + " plt.xlabel('Epoch')\n", + " plt.ylabel('Accuracy')\n", + " plt.ylim([0, 1])\n", + " plt.legend(loc='lower right')\n", + " plt.title(f'{model_name} Accuracy')\n", + " plt.show()\n", + "\n", + " # Get the true labels and predictions\n", + " val_data.reset() # Reset the generator\n", + " Y_pred = model.predict(val_data)\n", + " y_pred = np.argmax(Y_pred, axis=1)\n", + " y_true = val_data.classes\n", + "\n", + " plt.figure(figsize=(12, 7))\n", + "\n", + " # Generate the confusion matrix\n", + " cm = confusion_matrix(y_true, y_pred)\n", + " disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=val_data.class_indices.keys())\n", + " disp.plot(cmap=plt.cm.Blues)\n", + " plt.title(f'{model_name} Confusion Matrix')\n", + " plt.show()\n", + "\n", + " return history" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "18wq4-fQtA07" + }, + "outputs": [], + "source": [ + "def model_training (base_models):\n", + " # Directory to save the models\n", + " save_dir = 'saved_models'\n", + " if not os.path.exists(save_dir):\n", + " os.makedirs(save_dir)\n", + "\n", + " # Adjustments for ResNet50\n", + " # Train and evaluate each model\n", + " histories = {}\n", + " for base_model, input_shape, model_name in base_models:\n", + " # Resize data if necessary (dummy data, so not applicable here)\n", + " if input_shape != (224, 224, 3):\n", + " # Resize X_train and X_val to the required input_shape\n", + " # This is just a placeholder, implement actual resizing if needed\n", + " pass\n", + "\n", + " # Create the model\n", + " model = create_model(base_model, input_shape, num_classes)\n", + "\n", + " if model_name == 'ResNet50':\n", + " # Unfreeze more layers for ResNet50 and adjust learning rate\n", + " for layer in model.layers[-30:]:\n", + " layer.trainable = True\n", + " epochs = 10\n", + " optimizer = optimizers.Adam(learning_rate=0.0001)\n", + " else:\n", + " epochs = 10\n", + " optimizer = optimizers.Adam()\n", + "\n", + " # Compile the model\n", + " model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])\n", + "\n", + " print(f'Training {model_name}...')\n", + " history = train_and_evaluate(model, train_generator, validation_generator, model_name, epochs=epochs)\n", + " histories[model_name] = history\n", + "\n", + " # Saving the model after training\n", + " model.save(os.path.join(save_dir, f'{model_name}_saved.h5'))\n", + " print(f'Saved {model_name} model to {save_dir}/{model_name}_saved.h5')" + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Loading the Base-Model\n", + "This code snippet defines Xception , ResNet50 and VGG16 base model in Keras. The model is configured with an input shape of (224, 224, 3) for VGG16 & ResNet50 and input shape of (299 , 299 , 3) for Xception to match the size and channels of the images in the dataset. It includes all layers of the MobileNetV2 model up to the final fully connected layers but excludes the last fully connected layer, which is often customized for specific tasks." + ], + "metadata": { + "id": "XVan93SBxnp1" + } + }, + { + "cell_type": "code", + "source": [ + "# List of base models with their respective input shapes\n", + "base_models1 = [\n", + " (ResNet101V2(weights='imagenet', include_top=False, input_shape=(224, 224, 3)), (224, 224, 3),'ResNet101V2'),\n", + "]\n", + "model_training (base_models1)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "0MzS7OyUxaNE", + "outputId": "5d748a98-46b7-4a98-9bf4-d40e7e6e3b36" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet101v2_weights_tf_dim_ordering_tf_kernels_notop.h5\n", + "171317808/171317808 [==============================] - 3s 0us/step\n", + "Training ResNet101V2...\n", + "Epoch 1/10\n", + "282/282 [==============================] - 256s 674ms/step - loss: 1.3157 - accuracy: 0.5558 - val_loss: 0.7009 - val_accuracy: 0.7930\n", + "Epoch 2/10\n", + "282/282 [==============================] - 186s 657ms/step - loss: 0.4914 - accuracy: 0.8592 - val_loss: 0.3301 - val_accuracy: 0.9010\n", + "Epoch 3/10\n", + "282/282 [==============================] - 187s 663ms/step - loss: 0.3395 - accuracy: 0.9061 - val_loss: 0.3401 - val_accuracy: 0.9110\n", + "Epoch 4/10\n", + "282/282 [==============================] - 190s 672ms/step - loss: 0.2819 - accuracy: 0.9214 - val_loss: 0.6170 - val_accuracy: 0.8480\n", + "Epoch 5/10\n", + "282/282 [==============================] - 187s 662ms/step - loss: 0.2492 - accuracy: 0.9322 - val_loss: 0.3657 - val_accuracy: 0.8970\n", + "Epoch 6/10\n", + "282/282 [==============================] - 187s 664ms/step - loss: 0.2132 - accuracy: 0.9452 - val_loss: 0.3498 - val_accuracy: 0.9100\n", + "Epoch 7/10\n", + "282/282 [==============================] - 190s 673ms/step - loss: 0.1903 - accuracy: 0.9476 - val_loss: 0.5160 - val_accuracy: 0.8970\n", + "32/32 [==============================] - 5s 155ms/step - loss: 0.3301 - accuracy: 0.9010\n", + "ResNet101V2 Validation Accuracy: 0.9010\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABb/klEQVR4nO3deVhUdfsG8HuGZYZ9kU0QwQV3QAXBfTdyS82VfN3K0lKzeDW1VLRM1NLINP1paWW4vFqapWmKW+4r7rsiuIAgyirbzPn9MTAwDiDDdobx/lzXXA7fc86cZyZzbr7PWSSCIAggIiIiMhBSsQsgIiIiqkgMN0RERGRQGG6IiIjIoDDcEBERkUFhuCEiIiKDwnBDREREBoXhhoiIiAwKww0REREZFIYbIiIiMigMN0RERGRQGG6IKthPP/0EiUSifhgbG8PNzQ2jR4/GgwcPKm2/c+bMgUQigbOzMzIyMrSWe3p6ok+fPmV67e+//x4//fRTkcu+/PJLvPHGG3B2doZEIsGcOXOKfZ0HDx5gyJAhsLW1hbW1Nfr164c7d+5orbdixQoMHjwYtWvXhkQiwejRo7XW8fHxQe3atVHSHWTatWsHZ2dn5ObmIjY2FnPnzkVAQADs7Ozg4OCAzp07Y+/evS97+1p27twJiUQCV1dXKJVKnbcnosrFcENUST7//HOsW7cOK1euRM+ePfHrr7+iU6dOyMzMrNT9Pn78GCtWrKjQ1ywp3MycOROnTp1CixYtSnyNtLQ0dOnSBQcPHsSnn36KuXPn4ty5c+jUqROePHmise7ChQuxb98+NG3aFMbGxkW+3vDhwxEbG4t///23yOXR0dE4duwYhg4dCmNjY/zxxx9YuHAh6tevj3nz5mHWrFlITU1Fjx49sHbt2pd/CIVERETA09MTjx49wr59+3TaloiqgEBEFWrt2rUCAOHUqVMa49OmTRMACJs2baqU/YaGhgoAhObNmwvOzs5CRkaGxnIPDw+hd+/eZXrtpk2bCp06dSpy2d27dwVBEISEhAQBgBAaGlrkegsXLhQACCdPnlSPXb16VTAyMhJmzJihsW50dLSgVCoFQRAECwsLYdSoUVqvFxMTI0gkEmHcuHFF7m/+/PkCAOH48eOCIAjCpUuXhISEBI11MjMzhUaNGgm1atUq8jWKkpaWJlhYWAhLly4VWrRoIYwePbrU21a1tLQ0sUsgEgVnboiqSIcOHQAAt2/f1hi/du0aBg0aBHt7e8jlcvj7+2P79u0a6+Tk5GDu3Lnw8vKCXC5HjRo10L59e+zZs0drP7Nnz0Z8fHypZm+USiXCw8PRtGlTyOVyODs7Y9y4cXj69Kl6HU9PT1y+fBkHDx5Ut9o6d+6ssbw0tmzZglatWqFVq1bqsUaNGqFbt2743//+p7Guh4cHJBJJia/n7u6Ojh07YsuWLcjJydFavn79etSrVw+BgYEAgKZNm8LBwUFjHZlMhl69euH+/ftITU0t1fvYunUrnj9/jsGDB2PYsGH4/fffi5yNy8zMxJw5c9CgQQPI5XLUrFkTb775psZ/f6VSiW+//Rbe3t6Qy+VwdHTE66+/jtOnTwNQzT5JJJIiZ81ebAHmtyWvXLmCt956C3Z2dmjfvj0A4MKFCxg9ejTq1q0LuVwOFxcXvP3221ozZoCqdfjOO+/A1dUVMpkMderUwfvvv4/s7GzcuXMHEokE33zzjdZ2R48ehUQiwYYNG0r1ORJVJoYboioSHR0NALCzs1OPXb58Ga1bt8bVq1cxffp0LF68GBYWFujfvz+2bt2qXm/OnDmYO3cuunTpgmXLluGzzz5D7dq1cfbsWa39dOjQAV27dsWiRYvw/PnzEmsaN24cpk6dinbt2uHbb7/FmDFjEBERgaCgIHVgCA8PR61atdCoUSOsW7cO69atw2effabTe1cqlbhw4QL8/f21lgUEBOD27dulDheFDR8+HE+ePMHu3bs1xi9evIhLly5h+PDhL32NuLg4mJubw9zcvFT7jIiIQJcuXeDi4oJhw4YhNTUVf/75p8Y6CoUCffr0wdy5c+Hn54fFixdj8uTJSE5OxqVLl9TrvfPOO/joo4/g7u6OhQsXYvr06ZDL5Th+/HipainK4MGDkZGRgfnz5+Pdd98FAOzZswd37tzBmDFj8N1332HYsGHYuHEjevXqpXHM0sOHDxEQEICNGzdi6NChWLp0KUaMGIGDBw8iIyMDdevWRbt27RAREVHk52JlZYV+/fqVuXaiCiP21BGRoclvS+3du1dISEgQYmNjhS1btgiOjo6CTCYTYmNj1et269ZN8Pb2FjIzM9VjSqVSaNu2reDl5aUe8/X1fWlLKb8tlZCQIBw8eFAAICxZskS9/MW21L///isAECIiIjReZ9euXVrjJbWl8pXUlspf9vnnn2stW758uQBAuHbtWpGvW1xbShAEISkpSZDJZEJwcLDG+PTp0wUAwvXr10us+ebNm4JcLhdGjBhR4nr54uPjBWNjY2H16tXqsbZt2wr9+vXTWG/NmjVan3++/Hbbvn37BADChx9+WOw6d+/eFQAIa9eu1Vrnxc86/7//i5+FIAhaLUpBEIQNGzYIAIRDhw6px0aOHClIpVKtlmrhmv7v//5PACBcvXpVvSw7O1twcHAo9r8TUVXjzA1RJenevTscHR3h7u6OQYMGwcLCAtu3b0etWrUAAElJSdi3bx+GDBmC1NRUJCYmIjExEU+ePEFQUBBu3rypPrvK1tYWly9fxs2bN0u1744dO6JLly4lzt5s3rwZNjY26NGjh3rfiYmJ8PPzg6WlJfbv318xHwSgrkEmk2ktk8vlGuvows7ODr169cL27duRnp4OABAEARs3boS/vz8aNGhQ7LYZGRkYPHgwzMzMsGDBglLtb+PGjZBKpRg4cKB6LDg4GH///bdGK++3336Dg4MDJk2apPUa+e223377DRKJBKGhocWuUxbjx4/XGjMzM1M/z8zMRGJiIlq3bg0A6tk/pVKJbdu2oW/fvkXOsOXXNGTIEMjlco3Zm927dyMxMRH/+c9/ylw3UUViuCGqJMuXL8eePXuwZcsW9OrVC4mJiRpf7rdu3YIgCJg1axYcHR01HvlfeI8fPwagOvPq2bNnaNCgAby9vTF16lRcuHChxP3PmTMHcXFxWLlyZZHLb968ieTkZDg5OWntPy0tTb3vipD/5ZqVlaW1LP94lcJfwLoYPnw40tPT8ccffwBQHfsRHR1dYktKoVBg2LBhuHLlCrZs2QJXV9dS7evXX39FQEAAnjx5glu3buHWrVto0aIFsrOzsXnzZvV6t2/fRsOGDYs90yt/HVdXV9jb25fynZZOnTp1tMaSkpIwefJkODs7w8zMDI6Ojur1kpOTAQAJCQlISUlBs2bNSnx9W1tb9O3bF+vXr1ePRUREwM3NDV27dq3Ad0JUdsX/n0dE5RIQEKD+Dbh///5o37493nrrLVy/fh2Wlpbq66NMmTIFQUFBRb5G/fr1AahmYm7fvo0//vgD//zzD3744Qd88803WLlyJcaOHVvkth07dkTnzp2xaNGiIn+bVyqVcHJyKvL4CQBwdHTU+T0Xx97eHjKZDI8ePdJalj9W2oDxoj59+sDGxgbr16/HW2+9hfXr18PIyAjDhg0rdpt3330Xf/31FyIiIkr9hXzz5k2cOnUKAODl5aW1PCIiAu+9916Z3kNxipvBUSgUxW5TVEgcMmQIjh49iqlTp6J58+bqv3+vv/56ma7TM3LkSGzevBlHjx6Ft7c3tm/fjg8++ABSKX9fJv3AcENUBYyMjBAWFqY+IHj69OmoW7cuAMDExATdu3d/6WvY29tjzJgxGDNmDNLS0tCxY0fMmTOn2HADqGZvOnfujP/7v//TWlavXj3s3bsX7dq1e+msSXnaJAAglUrh7e2tPguosBMnTqBu3bqwsrIq02vLZDIMGjQIv/zyC+Lj47F582Z07doVLi4uRa4/depUrF27FuHh4QgODi71fiIiImBiYoJ169bByMhIY9nhw4exdOlSxMTEoHbt2qhXrx5OnDiBnJwcmJiYFPl69erVw+7du5GUlFTs7E3+wefPnj3TGL93716p63769CkiIyMxd+5czJ49Wz3+YovT0dER1tbWGgc8F+f111+Ho6MjIiIiEBgYiIyMDIwYMaLUNRFVNsZsoirSuXNnBAQEIDw8HJmZmXByclIHj6JmNBISEtTPXzxl19LSEvXr1y+yzVNYp06d0LlzZyxcuFDrdOUhQ4ZAoVDgiy++0NouNzdX4wvVwsJC6wtWV4MGDcKpU6c0As7169exb98+DB48uFyvPXz4cOTk5GDcuHFISEgotiX11Vdf4euvv8ann36KyZMn67SPiIgIdOjQAUOHDsWgQYM0HlOnTgUA9WnQAwcORGJiIpYtW6b1OkLe2UkDBw6EIAiYO3dusetYW1vDwcEBhw4d0lj+/fffl7ru/CAmvHAl5/DwcI2fpVIp+vfvjz///LPIEFp4e2NjYwQHB+N///sffvrpJ3h7e8PHx6fUNRFVNs7cEFWhqVOnYvDgwfjpp58wfvx4LF++HO3bt4e3tzfeffdd1K1bF/Hx8Th27Bju37+P8+fPAwCaNGmCzp07w8/PD/b29jh9+jS2bNmCiRMnvnSfoaGh6NKli9Z4p06dMG7cOISFhSEqKgqvvfYaTExMcPPmTWzevBnffvstBg0aBADw8/PDihUrMG/ePNSvXx9OTk7qds66detw79499S0fDh06hHnz5gEARowYAQ8PDwDABx98gNWrV6N3796YMmUKTExMsGTJEjg7O+O///2vRm1//vmn+r3n5OTgwoUL6td84403tL5IO3XqhFq1auGPP/6AmZkZ3nzzTa33u3XrVnzyySfw8vJC48aN8euvv2os79GjB5ydnYv8DE+cOIFbt24V+3m7ubmhZcuWiIiIwLRp0zBy5Ej88ssvCAkJwcmTJ9GhQwekp6dj7969+OCDD9CvXz906dIFI0aMwNKlS3Hz5k11i+jff/9Fly5d1PsaO3YsFixYgLFjx8Lf3x+HDh3CjRs3iqyjKNbW1ujYsSMWLVqEnJwcuLm54Z9//sHdu3e11p0/fz7++ecfdOrUCe+99x4aN26MR48eYfPmzTh8+DBsbW3V644cORJLly7F/v37sXDhwlLXQ1QlRDxTi8ggFXeFYkEQBIVCIdSrV0+oV6+ekJubKwiCINy+fVsYOXKk4OLiIpiYmAhubm5Cnz59hC1btqi3mzdvnhAQECDY2toKZmZmQqNGjYQvv/xSyM7OVq9T+FTwF3Xq1EkAUOTp5KtWrRL8/PwEMzMzwcrKSvD29hY++eQT4eHDh+p14uLihN69ewtWVlYCAI3TwvNfu6jH/v37NfYVGxsrDBo0SLC2thYsLS2FPn36CDdv3tSqadSoUcW+ZlGnRQuCIEydOlUAIAwZMqTI5fmfT2lrLWzSpEkCAOH27dvFrjNnzhwBgHD+/HlBEFSnX3/22WdCnTp1BBMTE8HFxUUYNGiQxmvk5uYKX331ldCoUSPB1NRUcHR0FHr27CmcOXNGvU5GRobwzjvvCDY2NoKVlZUwZMgQ4fHjx8WeCl7Uf//79+8LAwYMEGxtbQUbGxth8ODBwsOHD4s8df/evXvCyJEj1ZcuqFu3rjBhwgQhKytL63WbNm0qSKVS4f79+8V+LkRikAhCCXedIyIiKkaLFi1gb2+PyMhIsUsh0sBjboiISGenT59GVFQURo4cKXYpRFo4c0NERKV26dIlnDlzBosXL0ZiYiLu3LmjvhAjkb7gzA0REZXali1bMGbMGOTk5GDDhg0MNqSXRA03hw4dQt++feHq6gqJRIJt27a9dJsDBw6gZcuWkMlkqF+/fpF3yyUiosoxZ84cKJVKXL16FZ06dRK7HKIiiRpu0tPT4evri+XLl5dq/bt376J3797o0qULoqKi8NFHH2Hs2LFadwQmIiKiV5feHHMjkUiwdetW9O/fv9h1pk2bhh07dmhcQXPYsGF49uwZdu3aVQVVEhERkb6rVhfxO3bsmNZl6oOCgvDRRx8Vu01WVpbGVVyVSiWSkpJQo0aNcl9SnoiIiKqGIAhITU2Fq6vrS+9jVq3CTVxcnNYVRJ2dnZGSkoLnz58XeX+csLCwIi9vTkRERNVPbGwsatWqVeI61SrclMWMGTMQEhKi/jk5ORm1a9dGbGwsrK2tRayMiIiISislJQXu7u6luslutQo3Li4uiI+P1xiLj4+HtbV1sXc1lslkkMlkWuPW1tYMN0RERNVMaQ4pqVbXuWnTpo3WZb737NmDNm3aiFQRERER6RtRw01aWhqioqIQFRUFQHWqd1RUFGJiYgCoWkqFL+09fvx43LlzB5988gmuXbuG77//Hv/73//w8ccfi1E+ERER6SFRw83p06fRokULtGjRAgAQEhKCFi1aYPbs2QCAR48eqYMOANSpUwc7duzAnj174Ovri8WLF+OHH35AUFCQKPUTERGR/tGb69xUlZSUFNjY2CA5OZnH3BAREVUTunx/V6tjboiIiIhehuGGiIiIDArDDRERERkUhhsiIiIyKAw3REREZFAYboiIiMigMNwQERGRQWG4ISIiIoPCcENEREQGheGGiIiIDArDDRERERkUY7ELICIiIm1KpQCFIEChFKDM/1MJ7TGh6PEX11EooblcEKBUClAKKGLdF7bLW7eo7RVKqGooNO5ma4aRbTxF++wYboiI6JWVmaNAyvMcpGTmIPl5bqHnOXnPc5GckYPUrBzkKAStwKEs/MUvFF6OIsZeWC4UDi356xaElOqsZW1bhhsiIqKyyFUokZqZWyiQ5GqEk+S8sJLyPLfQ87wgk5mD7Fyl2G+hzKQSwEgqgVQigZFUAiOJBFKppNAYNMbUz9VjgFTy4vbFvGbez6rn0BiTvLgviQTu9uaifjYMN0REJBpBEJCerSiYKVEHktwSw0n+rEpaVm65a5BKAGszE1jLTWBtZgyb/OdyE9iYm8BabgwruQlMjKQwkkL1Za7xZV8QFDTHCoWEwsslxY8bSSVFhIuiAwcVj+GGiIjKJStXUeSsSUppQkpmboW0YCxMjWBtZlIQTMyMCwWW/HFjrXVszExgYWrMsGBgGG6IiF5xCqWA1CJbNznFtntSMnPVz7MqoLVjYiRRhY684FHw3LiIcWONdazkxjAx4sm/VIDhhoiomsrKVSAtrzWTlpWLtMxcpGfnIjUzF+lZCqRl5eQtVz1Pz1IgNSsX6XnrpmWpZlVSK6C1I5GgYMZErj07UtDieaH1kzeTIjOWQiLh7AlVDIYbIqIqlJ2rVIWLFx95YSM9Kz+cFL08f520rFzkKCr2jBpzU6NiZ0fyWzpFtXWszUxgydYO6RGGGyKil8hVKPNmPXLUMyIasyNZCo1Zk7QXZkfUoSUrt1LOzjE3NYKlzBiWcmPVnzJjWMiMYZX3Z+Fx9TK56s/Cx6KwtUOGguGGiAySQikgPTtXu22TFzJeDB8asyYvbJeZU/GBxMzEqFDIMNIIH5byF8JJofEX17EwNYYRZ0yINDDcEJFeUygFJD/PwdOMbDxNz8bTDM3nzzKykZSejWd548nPc5CWlYuMbEWF1yIzlhYEC1PtsPHirEl+ANFYx1QVZow5S0JUaRhuiKjKZOcq8SxDFUpUgUQ7rDzNyMbTDFVYSUrPRkpmDoRyHFpiYiTRCCRW8hdaM0WElKJmTSxkxjA1ZiAhqg4YbohIZ4Ig4HmOQhVG0rPzAon2LErh50/Ts5FejtkUK7kx7MxNYWdhCjtzE9Vzc9VzWwtT2Oc9zz9l2DKv3SMzNqrAd05E1QHDDZG+UypV59lW0mmygiAgJTNXK5gUDi75syjq5xnZZT4wVioBbM1NYWtuAntzU9jmhRJ7i4LnqgBT8NyGB7sSkQ4YbogqmiIXyE5TPbLSgOx0IDtV9WdW2gvPX1z24nZ5f8qsAa8eQKNeQP0egNy66F0rBa1Wj3oWJSMbz9IL2j75My1PM3LKfIVYUyOpKqRYqMKKXV5YsbfQfG6bN8tib24KKzlPGSY9osgBMlOAzGd5j2Tged6fmckFY1mpgIk5YGYLyG3yHrZ5D5tC47aAsalob4dUGG7o1SYIQG5W0WFEI2CkFQof6ap/6AqHj6zUgue5mRVfZ1YycGkLcGkLFBJj3LXyQ5R5Wxw1DsSdLGt1SEl+nlPmXZibGuW1fQoFE3OTImZTTNWBxtzUiBdeI3EJgur/v/wQohFOihp7YTw7reJrMjZ7IfDYFBGCCo0VHpdZA1K2UsuL4YaqF6USyMkoOlQUDhyFZ0FeNmOiLP/VWYskNQFkloCpFWBqkffcAjC1BGRWBc9NLdXLlCaWuJ9uhKtJCpx/nIvTD3NwJ0WC2pJ49DA6g9ekp1FP+gj1U06gfsoJDAIQpayLPQp/7FH6IRm1AEhgLTfWbO0UOlYlfxYlP8TkhxW5Cf9BJZHkZJYwa1LceN5YVgogVMCp+qZWJQcSU0vVvz35+y8qQGWmABCA3OdA2nMgLa4MhUhUAUduA5gVDkC22kGoqNBkYl5pLezqRCII5TkPofpJSUmBjY0NkpOTYW1d9NQ+VYG4i0D8laIDR0kzJtnpACrpr6yJeRGBw7JQMCn8s1XRywo/L8XUdHpWLqJin+F09FOcvpeEqJhnWpfCl0oAzxoWqGGpmk1pYPQQ/pnH0Dj5MJxTLkJS6PNQ2HpC0qg3pI16A7Vb8zdAqhqKXFXI0PjSL27mpIgxRVb5azAyVX3RF24PlSYMyG1VYcKoAn7XVyrzPofkkkNZceM5GeWvQWpS6L3alOLzsNNcX49barp8fzPcUNV6fBWI/AK4vqOcLyTRnP3QCh8vBg6LF2ZQXlxmWSVB4FHyc5yOfooz91Rh5uqjVK3jXSxMjdDSww5+Hnbw97BH89q2sJQV8w9vajxw42/g2k7gzgHNLwnzGkCD14GGvYB6XQFT88p7Y1S9CYLqF4iSZkhK+oLOTi1/DRKpKmSU+GVsW3x7x0Re/hrElpuVd/xPcbNWz0oORxUxC21i/vJgWFxoklkD0so78J/hpgQMNyJ5FgPsDwPObwAgqP4h82in+h/ixXBSbPum0IyJiZneT70qlAKuxaWogkxeoHnw7LnWeq42cvh72sPfUxVoGrlYl+2Ks1lpwO1IVdC5sUv1D14+Y7kq4DTsBTTsCVg4lP2NUfWlVAIJV4F7R4F7R4BHF4DnT1VfjEIFXPTQxKIMMyd5Y6aWlfrFaPAEQTXzo8vxRoXXzUqpgCIkqpMd5DaAmx8w+KcKeM0CDDclYLipYmkJwL+LgdM/Aops1VjjN4CuMwHHhuLWVsFebDGdi3mGtCJaTI1rWsPfww5+nvbw97CDq61ZxRejyAVijgHXdqhmyZ7FFCyTSAH3QFXQadQbqFGv4vdP+kGRowow946oAk3MMc3Q+yKpSdnaOnJb1ZeakUnlvyeqHEqFKuCUZeYuM1l1nFFhtdsCb/9doSUy3JSA4aaKZKYAx5YDx5YVnI1QpyPQbQ5Qy0/U0ipKaVpMljJjtKhtW7oWU2URBCD+ckHQeXRec7ljo7yg0wdwbcHfnquznOfA/dOqEHPvCBB7Uvs4DhMLwD0A8GgL1GoFWLkUBJZqMCNKeionUzMcGRmr/j2pQAw3JWC4qWQ5mcDpNcC/XwMZT1RjNZsD3ecA9bqIWVm5lLbF5GZrpgoy5W0xVaZnscD1v1VBJ/qwZp/e0kXVtmrUWxVGjWXi1Ukvl5msCjD3jgD3jgEPzgDKFy4HILdVBRmPtqrfpmv6cIaFqiWGmxIw3FQSpQI4vxE4EAYkx6rGatQHus4CmvSrdr8NpmXlIirmGU7fS8KZe0+LbTE1cbWGv4e9OtDUtKmEFlNlev4MuLlHFXRu7tU8MNTUEqjfXRV0vHoAZnailUl50hPzjpfJO2Ym/pL2adCWLgVhxqOdamaOs3FkABhuSsBwU8EEQdXu2PcFkHBNNWblCnSeDjQfXjGnV1aBh8+e4/S9pzgTnYTT957i6qMUvHjR3vwWk7+H6uDf5u62sKjqFlNlys0Cov/Na1/9DaQ+KlgmNVZ9UTbqrWph2bqLV+er5FlsQYvp3lEg8Yb2OnZ1VP9tPNqoAo1dnWr3ywRRaTDclIDhpgLd/RfYOwd4cFr1s9wW6PBfIOBdVe9eTymUAq4+ymsx5QWah8naVxV2szWDv6ed6uBfD3s0dLHSvxZTZVEqgUfnVEHn2k7VGTaFufiogk6j3oBzM36ZVgRBAJ7cKmgx3TsKJMdor+fURLPNZF2z6mslEgHDTQkYbirAwygg8nPVaceA6roIrT8A2k5SnUGhZ9KycnEupuBYmXMxT7XuTm0klaBJTWt1e8nfwx4uNgZw3YyK8uQ2cH2nKujEHtdshdjUVt3zqmEv1Rcuj+coHaVCdaB3fosp5hiQnqC5jsQIcG0O1G6jmp2p3RowtxelXCKxMdyUgOGmHJ7cBvbNAy7/rvpZagz4jQE6TgWsnMWtrZAHz57jdHSS+uDfa3FFt5haeqhmZfw97OBraC2mypSeqLqOzrWdwO19mqeAym2BBkGqoFO/u+qaRaSSmw08iip0WvYJ1T3DCjOSqc5gym8x1QrgZ0iUh+GmBAw3ZZDyCDi4EDj7S96FviSA92Cgy6eAfR1RS8tVKHEtLlXdYjodnYRHbDFVnewM4M7+vAsH/l1whhyg+qKu2ynvwoG99CoAV4nsdOD+qbwW0xHVKdovXgvE1AqoHVjQYnJryTPUiIrBcFMChhsdPH8KHA4HTqwsuNO1VxDQbRbg4i1KSWwx6TGlAog9kXeczg7g6d1CCyVALf+C6+k4NhCtzErz/KlqNia/xfTwnPbl8M1rFLSYPNqqjleqJgfdE4mN4aYEDDelkJ2uCjSHvy2YNndvDXQPVf2DXIVK02KykhmjBVtM+kUQVGfPXduhOlbnwRnN5TXqFwSdWv7V8wafqfFATP5p2cdUp2W/eFNXa7dCZzK1Axwa8OBrojJiuCkBw00JFDnA2Z+Bg4uAtHjVmFMToFuo6jiKSv5HOb/FdDrvdOwz954W2WKqZWemcfuCBs5sMem9lEeqkHN9J3D3UMGtOADAwlF1g89GfVRtLH08004QVLewyD/4995RIOm29no16hdcX6Z2G8C2NsMMUQVhuCkBw00RlErVQcL75hW0EmxrA11mAt6DKu236tTMHJyLeZYXZJIQFfOsyBZTU1dr9e0L/D3t4GzNFlO1lpkC3NqrCjo3/tE8qNbEXHWDz0Z9VIFarDODBAFIuF7QYrp3FEh58MJKElVbSX1adptX77gioirEcFMChptCBEH1JbN3LhB/UTVm4Qh0/ATwGw0Ym1bKbrNyFfhwwznsuRKv3WKSG6Nl7bwDf/MulGduyhaTwVLkqG4BkX+aecr9gmUSI1VgyD/NvDIPXlfkqv4fyL/6b8wxzYOjAdXZga4tC1pM7oF6eekDIkPFcFMChps8MSeAyLmq30wBQGYNtP0QaP1+pZ96+vXu61i2/xYAwN3eTOP2BQ2crCBli+nVJAiqm3rmB538wJ3Pqakq6DTqrbpfWXnaPblZwIOzBS2m2JOat54AAGMzwL1VQYupVivA1Lzs+ySicmG4KcErH27ir6hulXB9p+pnI5nqisLtQwCLGpW++wv3n2HA90ehUApY9lYL9PFxrfR9UjX1NFp1G4hrO1QBRCjUsrR2K7jBp0f7l88yZqWqAkx+i+n+aUCRpbmOzEZ1kbz8Y2Zq+lba7CUR6Y7hpgSvbLh5eg84sAA4vwGAAEikqns/dZ4O2NSqkhKychXo+91h3IhPQ19fV3wX3KJK9ksGICMJuPmPKujcigRy0guWyaxVN/Zs2Ev1p9xGtX5+kLl3VDUjJGgezwULp0I3mGyrOni+Op61RfSKYLgpwSsXbtISgH8XA6d/LDhDpfEbqrt1V/G1RhbtuobvD9yGg6Up/vm4E+wt+FsxlUFOJnD3YMENPtMfFyyTmqgOhi/qTCbb2gXXl6ndFqhRj2cyEVUjunx/80hNQ5WZAhxbBhxbDmSnqcbqdFJdq8bNr8rLiYp9hpUHVV848/p7M9hQ2ZnIVWdSNQhSnen34HTBhQOf3CwINg4NC1pMHm2qbIaSiMTHcGNocjJVszSHvgaeJ6nGXFuorlVTr4soJWXmKDBl83koBaBfc1e83sxFlDrIAEmlgHuA6tFjLpB4U9WCdW0OWDiIXR0RiYThxlAocoELG4H9YQWn09bwUt0qofEbok6/f7P3Bm49ToOjlQxz+jYVrQ56BTh4qR5E9EpjuKnuBAG49hcQ+QWQeF01ZuUKdJkB+L4l+n1rzsY8xepDdwAA8wd4w47tKCIiqmQMN9XZ3UPA3jkF9+0xswM6/BdoNVYvLmFfuB31Zgs39GjCq7cSEVHlY7ipjh6eAyI/B27vU/1sYg60mQC0naQ6DVZPLNlzA3cS0uFkJUMo21FERFRFGG6qk8RbwP55wOWtqp+lJoD/GKDDFL27p82Ze0lY/a+qHbVgoDdszE1EroiIiF4VDDfVQcpD4OBC4Oy6vAuRSQCfIUDnGZV7v50yep6twJTNFyAIwCC/WujaSL+CFxERGTaGG32WkQQcCQdO/B+Qm6kaa/C66gJ8Ls1ELa0kX/9zHXcT0+FiLcesPk3ELoeIiF4xDDf6KDsdOLESOPwtkJWsGnNvDXSfo7oYmR47eTcJa47cBQCEDfSGjRnbUUREVLUYbvSJIgc4+zNwcBGQFq8ac2qquqqw12t6f6n4jOxcfLLlPAQBGOJfC10aOoldEhERvYIYbvSBUglc/h3YNw94qpr1gK0H0HUm0GyQ6iqs1cCiXdcR/SQDNW3kmMl2FBERiYThRkyCANzaC+ydC8RfVI1ZOAGdPgFajgKMq88F747feYKfjkYDABYM9IG1nO0oIiISB8ONWGJOAJFzgXtHVD/LrIF2HwKB7wMyS3Fr05GqHXUBABAc4I5ODRxFroiIiF5lovc7li9fDk9PT8jlcgQGBuLkyZMlrh8eHo6GDRvCzMwM7u7u+Pjjj5GZmVlF1VaA+CvAhmBgzWuqYGMkU118b/J5oOPUahdsAGDh39cQk5QBN1szfNqrsdjlEBHRK07UmZtNmzYhJCQEK1euRGBgIMLDwxEUFITr16/DyUn7YNT169dj+vTpWLNmDdq2bYsbN25g9OjRkEgkWLJkiQjvQAdP7wEHwoDzGwEIgEQKtPgP0Gk6YOMmdnVldvR2In4+dg8AsHCgD6zYjiIiIpGJGm6WLFmCd999F2PGjAEArFy5Ejt27MCaNWswffp0rfWPHj2Kdu3a4a233gIAeHp6Ijg4GCdOnKjSunWS9hg49DVweg2gzFGNNekHdJkJODYQt7ZySs8qaEe9FVgb7b0cRK6IiIhIxLZUdnY2zpw5g+7duxcUI5Wie/fuOHbsWJHbtG3bFmfOnFG3ru7cuYOdO3eiV69exe4nKysLKSkpGo8qkZkC7PsS+LY5cPL/VMGmbhfg3f3AkF+qfbABgLC/r+L+0+dsRxERkV4RbeYmMTERCoUCzs6al+Z3dnbGtWvXitzmrbfeQmJiItq3bw9BEJCbm4vx48fj008/LXY/YWFhmDt3boXWXqKcTODUD8C/i4HnSaox15aqa9XU7Vx1dVSyI7cS8evxGADAV4N8YCnjselERKQfRD+gWBcHDhzA/Pnz8f333+Ps2bP4/fffsWPHDnzxxRfFbjNjxgwkJyerH7GxsZVTnCIXOPcr8J0f8M9nqmBTwwsYsg54d59BBZu0Qu2oEa090LY+21FERKQ/RPt128HBAUZGRoiPj9cYj4+Ph4uLS5HbzJo1CyNGjMDYsWMBAN7e3khPT8d7772Hzz77DNIiLnYnk8kgk8kq/g286PwGYPtE1XNrN9VNLX2DASPDm9GYv/MqHjx7Dnd7M0zv2UjscoiIiDSINnNjamoKPz8/REZGqseUSiUiIyPRpk3R90/KyMjQCjBGRkYAAEEQKq/Y0vAZAtRsDrz2JTDpLNByhEEGm39vJmD9CVU7atFAX1iwHUVERHpG1G+mkJAQjBo1Cv7+/ggICEB4eDjS09PVZ0+NHDkSbm5uCAsLAwD07dsXS5YsQYsWLRAYGIhbt25h1qxZ6Nu3rzrkiMZYBrx3QO/v/1QeqZk5mJbXjhrd1hNt6tUQuSIiIiJtooaboUOHIiEhAbNnz0ZcXByaN2+OXbt2qQ8yjomJ0ZipmTlzJiQSCWbOnIkHDx7A0dERffv2xZdffinWW9BkwMEGAL7ccRUPkzPhUcMcn7zeUOxyiIiIiiQRRO/nVK2UlBTY2NggOTkZ1tbWYpdTbRy4/hij156CRAJseq8NAurYi10SERG9QnT5/q5WZ0uROJKf52D6b6obe45u68lgQ0REeo3hhl5q3l9XEJeSCc8a5vgkiGdHERGRfmO4oRLtv/YYm8/ch0QCfD3YF2amIh+4TURE9BIMN1Ss5IwcTP9ddXbUO+3qwN+T7SgiItJ/DDdUrM//uoL4lCzUdbDAlCCeHUVERNUDww0Vae+VePx29j6kEuCrwb6Qm7AdRURE1QPDDWl5lpGNT7eqzo4a26Eu/DzsRK6IiIio9BhuSMvcP6/gcWoW6jlaIKRHA7HLISIi0gnDDWn453Ictp57AGne2VFsRxERUXXDcENqT9Oz8enWSwCA9zrWQ4vabEcREVH1w3BDanP+vIzEtCx4OVnio+5eYpdDRERUJgw3BADYdekR/oh6CCOphO0oIiKq1hhuCEnp2Zi5TdWOGt+pLnzdbcUtiIiIqBwYbgiz/7iExLRsNHS2wofd2I4iIqLqjeHmFbfz4iP8deGRuh0lM2Y7ioiIqjeGm1dYYlqWuh31Qed68K5lI3JFRERE5cdw8wqb/cclJKVno5GLFSZ1ZTuKiIgMA8PNK+qvCw+x82IcjPPaUabG/KtARESGgd9or6CE1CzMymtHTehSH83c2I4iIiLDwXDzihEEATO3XcTTjBw0rmmNCV3qi10SERFRhWK4ecVsP/8Quy/Hw1gqwWK2o4iIyADxm+0V8jg1E6HbLwMAJnX1QhNXa5ErIiIiqngMN68IQRDw2dZLeJaRg6au1vigSz2xSyIiIqoUDDeviD+iHmLPlXiYGEmweIgvTIz4n56IiAwTv+FeAfEpBe2oyd280MiF7SgiIjJcDDcGThAEfPr7RSQ/z4G3mw3Gd2I7ioiIDBvDjYH7/ewDRF57DFMjKb4e7AtjtqOIiMjA8ZvOgMUlZ2LOn3ntqO5eaOhiJXJFRERElY/hxkAJgoAZv19AamYufGvZYFzHumKXREREVCUYbgzU5jP3sf96AkyN2Y4iIqJXC7/xDNCj5Of44s8rAICQHg3g5cx2FBERvToYbgyMIAiY9ttFpGblokVtW7zbge0oIiJ6tTDcGJj/nY7FoRuqdtRXg3xhJJWIXRIREVGVYrgxIA+ePccXf10FAEx9rSHqO1mKXBEREVHVY7gxEIIgYPpvF5CWlQs/Dzu83b6O2CURERGJguHGQGw4GYt/byZCZizFV4N82I4iIqJXFsONAbj/NANf7lCdHTU1qCHqOrIdRUREry6Gm2pOdXbUBaRnK9DK0w5j2rEdRURErzaGm2ou4kQMjtx6ArkJz44iIiICGG6qtdikDMzfqTo7atrrjeDpYCFyRUREROJjuKmmlEoBU7ecR0a2AgF17DGqjafYJREREekFhptq6tcT93D8ThLMTIzw1SAfSNmOIiIiAsBwUy3de5KOsJ3XAADTezaCRw22o4iIiPIx3FQzqnbUBTzPUaB1XXuMaO0hdklERER6heGmmvn5WDRO3k2CuakRvhrky3YUERHRCxhuqpHoxHQs3KVqR83o1Rju9uYiV0RERKR/GG6qifyzozJzlGhXvwaGB9QWuyQiIiK9xHBTTaw9Go1T0U9hYWqEhQN5dhQREVFxGG6qgTsJaViU1476rHcT1LJjO4qIiKg4DDd6TpF3dlRWrhIdvBwQHOAudklERER6jeFGz605fBdn7j2FpcwYCwb6QCJhO4qIiKgkDDd67NbjNHz9z3UAwMzejeFmayZyRURERPqP4UZPKZQCpmw+j6xcJTo2cMTQVmxHERERlQbDjZ5a/e8dRMU+g5XMGAsHerMdRUREVEoMN3roZnwqluy5AQCY1bcJatqwHUVERFRaDDd6JlehxJTN55Gdq0SXho4Y7FdL7JKIiIiqFYYbPbPq3zs4fz8ZVnJjhL3Js6OIiIh0xXCjR67HpSJ8z00AQGjfpnCxkYtcERERUfXDcKMncvLbUQolujVywsCWbmKXREREVC0x3OiJ/zt4GxcfJMNaboz5b/LsKCIiorJiuNED1+JS8G2kqh01t19TOFuzHUVERFRWDDciy1Eo8d//nUeOQkCPJs7o35ztKCIiovJguBHZigO3cflhCmzNTfDlgGZsRxEREZWT6OFm+fLl8PT0hFwuR2BgIE6ePFni+s+ePcOECRNQs2ZNyGQyNGjQADt37qyiaivWlYcpWJrfjnqjKZys2I4iIiIqL2Mxd75p0yaEhIRg5cqVCAwMRHh4OIKCgnD9+nU4OTlprZ+dnY0ePXrAyckJW7ZsgZubG+7duwdbW9uqL76csnNVZ0flKgUENXXGG76uYpdERERkECSCIAhi7TwwMBCtWrXCsmXLAABKpRLu7u6YNGkSpk+frrX+ypUr8dVXX+HatWswMTEp0z5TUlJgY2OD5ORkWFtbl6v+8vhmzw18G3kTduYm+OfjTnC0kolWCxERkb7T5ftbtLZUdnY2zpw5g+7duxcUI5Wie/fuOHbsWJHbbN++HW3atMGECRPg7OyMZs2aYf78+VAoFMXuJysrCykpKRoPsV16kIzl+28BAD7v14zBhoiIqAKJFm4SExOhUCjg7OysMe7s7Iy4uLgit7lz5w62bNkChUKBnTt3YtasWVi8eDHmzZtX7H7CwsJgY2Ojfri7u1fo+9BV4XZUL28X9PGpKWo9REREhkb0A4p1oVQq4eTkhFWrVsHPzw9Dhw7FZ599hpUrVxa7zYwZM5CcnKx+xMbGVmHF2r7bdxPX4lJhb2GKz/vx7CgiIqKKJtoBxQ4ODjAyMkJ8fLzGeHx8PFxcXIrcpmbNmjAxMYGRkZF6rHHjxoiLi0N2djZMTU21tpHJZJDJ9KPtc/F+Mr4/cBsA8EW/ZnCw1I+6iIiIDIloMzempqbw8/NDZGSkekypVCIyMhJt2rQpcpt27drh1q1bUCqV6rEbN26gZs2aRQYbfZKVq8B/N0dBoRTQ26cmerMdRUREVClEbUuFhIRg9erV+Pnnn3H16lW8//77SE9Px5gxYwAAI0eOxIwZM9Trv//++0hKSsLkyZNx48YN7NixA/Pnz8eECRPEegultjTyJm7Ep8HB0hRf9GsmdjlEREQGS9Tr3AwdOhQJCQmYPXs24uLi0Lx5c+zatUt9kHFMTAyk0oL85e7ujt27d+Pjjz+Gj48P3NzcMHnyZEybNk2st1Aq52OfYUVeO2pe/2awt9DvWSYiIqLqTNTr3Iihqq9zk5mjQN/vDuPm4zS84euKpcEtKn2fREREhqZaXOfmVRG+9yZuPk6Dg6UMc99oKnY5REREBk/ncOPp6YnPP/8cMTExlVGPQTkX8xSrDqnaUfMHNIMd21FERESVTudw89FHH+H3339H3bp10aNHD2zcuBFZWVmVUVu1lpmjwJTN56EUgP7NXfFa06JPbyciIqKKVaZwExUVhZMnT6Jx48aYNGkSatasiYkTJ+Ls2bOVUWO19M2eG7idkA5HKxnmsB1FRERUZcp8zE3Lli2xdOlSPHz4EKGhofjhhx/QqlUrNG/eHGvWrMErdpyyhjP3krDq3zsAgLAB3rA1ZzuKiIioqpT5VPCcnBxs3boVa9euxZ49e9C6dWu88847uH//Pj799FPs3bsX69evr8haq4XMHAWmbr4AQQDebOmG7k2cX74RERERVRidw83Zs2exdu1abNiwAVKpFCNHjsQ333yDRo0aqdcZMGAAWrVqVaGFVhdf776OO4npcLaWIbQP21FERERVTedw06pVK/To0QMrVqxA//79YWJiorVOnTp1MGzYsAopsDo5FZ2EH4/cBQAseNMHNubanw0RERFVLp3DzZ07d+Dh4VHiOhYWFli7dm2Zi6qOnmcrMHXzeQgCMNivFro0chK7JCIioleSzgcUP378GCdOnNAaP3HiBE6fPl0hRVVHf55/iOgnGXCxlmNmnyZil0NERPTK0jncTJgwAbGxsVrjDx48qBY3sKwsg/1rYWlwC3w12Ac2ZmxHERERiUXnttSVK1fQsmVLrfEWLVrgypUrFVJUdSSRSPCGr6vYZRAREb3ydJ65kclkiI+P1xp/9OgRjI1Fvck4ERERke7h5rXXXsOMGTOQnJysHnv27Bk+/fRT9OjRo0KLIyIiItKVzlMtX3/9NTp27AgPDw+0aNECABAVFQVnZ2esW7euwgskIiIi0oXO4cbNzQ0XLlxAREQEzp8/DzMzM4wZMwbBwcFFXvOGiIiIqCqV6SAZCwsLvPfeexVdCxEREVG5lfkI4CtXriAmJgbZ2dka42+88Ua5iyIiIiIqqzJdoXjAgAG4ePEiJBKJ+u7fEokEAKBQKCq2QiIiIiId6Hy21OTJk1GnTh08fvwY5ubmuHz5Mg4dOgR/f38cOHCgEkokIiIiKj2dZ26OHTuGffv2wcHBAVKpFFKpFO3bt0dYWBg+/PBDnDt3rjLqJCIiIioVnWduFAoFrKysAAAODg54+PAhAMDDwwPXr1+v2OqIiIiIdKTzzE2zZs1w/vx51KlTB4GBgVi0aBFMTU2xatUq1K1btzJqJCIiIio1ncPNzJkzkZ6eDgD4/PPP0adPH3To0AE1atTApk2bKrxAIiIiIl1IhPzTncohKSkJdnZ26jOm9FlKSgpsbGyQnJwMa2trscshIiKiUtDl+1unY25ycnJgbGyMS5cuaYzb29tXi2BDREREhk+ncGNiYoLatWvzWjZERESkt3Q+W+qzzz7Dp59+iqSkpMqoh4iIiKhcdD6geNmyZbh16xZcXV3h4eEBCwsLjeVnz56tsOKIiIiIdKVzuOnfv38llEFERERUMSrkbKnqhGdLERERVT+VdrYUERERkb7TuS0llUpLPO2bZ1IRERGRmHQON1u3btX4OScnB+fOncPPP/+MuXPnVlhhRERERGVRYcfcrF+/Hps2bcIff/xRES9XaXjMDRERUfUjyjE3rVu3RmRkZEW9HBEREVGZVEi4ef78OZYuXQo3N7eKeDkiIiKiMtP5mJsXb5ApCAJSU1Nhbm6OX3/9tUKLIyIiItKVzuHmm2++0Qg3UqkUjo6OCAwMhJ2dXYUWR0RERKQrncPN6NGjK6EMIiIiooqh8zE3a9euxebNm7XGN2/ejJ9//rlCiiIiIiIqK53DTVhYGBwcHLTGnZycMH/+/AopioiIiKisdA43MTExqFOnjta4h4cHYmJiKqQoIiIiorLSOdw4OTnhwoULWuPnz59HjRo1KqQoIiIiorLSOdwEBwfjww8/xP79+6FQKKBQKLBv3z5MnjwZw4YNq4waiYiIiEpN57OlvvjiC0RHR6Nbt24wNlZtrlQqMXLkSB5zQ0RERKIr872lbt68iaioKJiZmcHb2xseHh4VXVul4L2liIiIqh9dvr91nrnJ5+XlBS8vr7JuTkRERFQpdD7mZuDAgVi4cKHW+KJFizB48OAKKYqIiIiorHQON4cOHUKvXr20xnv27IlDhw5VSFFEREREZaVzuElLS4OpqanWuImJCVJSUiqkKCIiIqKy0jnceHt7Y9OmTVrjGzduRJMmTSqkKCIiIqKy0vmA4lmzZuHNN9/E7du30bVrVwBAZGQk1q9fjy1btlR4gURERES60Dnc9O3bF9u2bcP8+fOxZcsWmJmZwdfXF/v27YO9vX1l1EhERERUamW+zk2+lJQUbNiwAT/++CPOnDkDhUJRUbVVCl7nhoiIqPrR5ftb52Nu8h06dAijRo2Cq6srFi9ejK5du+L48eNlfTkiIiKiCqFTWyouLg4//fQTfvzxR6SkpGDIkCHIysrCtm3beDAxERER6YVSz9z07dsXDRs2xIULFxAeHo6HDx/iu+++q8zaiIiIiHRW6pmbv//+Gx9++CHef/993naBiIiI9FapZ24OHz6M1NRU+Pn5ITAwEMuWLUNiYmJl1kZERESks1KHm9atW2P16tV49OgRxo0bh40bN8LV1RVKpRJ79uxBampqZdZJREREVCrlOhX8+vXr+PHHH7Fu3To8e/YMPXr0wPbt2yuyvgrHU8GJiIiqnyo5FRwAGjZsiEWLFuH+/fvYsGFDeV6KiIiIqEKUK9zkMzIyQv/+/cs8a7N8+XJ4enpCLpcjMDAQJ0+eLNV2GzduhEQiQf/+/cu0XyIiIjI8FRJuymPTpk0ICQlBaGgozp49C19fXwQFBeHx48clbhcdHY0pU6agQ4cOVVQpERERVQeih5slS5bg3XffxZgxY9CkSROsXLkS5ubmWLNmTbHbKBQKDB8+HHPnzkXdunWrsFoiIiLSd6KGm+zsbJw5cwbdu3dXj0mlUnTv3h3Hjh0rdrvPP/8cTk5OeOedd166j6ysLKSkpGg8iIiIyHCJGm4SExOhUCjg7OysMe7s7Iy4uLgitzl8+DB+/PFHrF69ulT7CAsLg42Njfrh7u5e7rqJiIhIf4neltJFamoqRowYgdWrV8PBwaFU28yYMQPJycnqR2xsbCVXSURERGLS6caZFc3BwQFGRkaIj4/XGI+Pj4eLi4vW+rdv30Z0dDT69u2rHlMqlQAAY2NjXL9+HfXq1dPYRiaTQSaTVUL1REREpI9EnbkxNTWFn58fIiMj1WNKpRKRkZFo06aN1vqNGjXCxYsXERUVpX688cYb6NKlC6KiothyIiIiInFnbgAgJCQEo0aNgr+/PwICAhAeHo709HSMGTMGADBy5Ei4ubkhLCwMcrkczZo109je1tYWALTGiYiI6NUkergZOnQoEhISMHv2bMTFxaF58+bYtWuX+iDjmJgYSKXV6tAgIiIiElG57i1VHfHeUkRERNVPld1bioiIiEjfMNwQERGRQWG4ISIiIoPCcENEREQGheGGiIiIDArDDRERERkUhhsiIiIyKAw3REREZFAYboiIiMigMNwQERGRQWG4ISIiIoPCcENEREQGheGGiIiIDArDDRERERkUhhsiIiIyKAw3REREZFAYboiIiMigMNwQERGRQWG4ISIiIoPCcENEREQGheGGiIiIDArDDRERERkUhhsiIiIyKAw3REREZFAYboiIiMigMNwQERGRQWG4ISIiIoPCcENEREQGheGGiIiIDArDDRERERkUhhsiIiIyKAw3REREZFAYboiIiMigMNwQERGRQWG4ISIiIoPCcENEREQGheGGiIiIDArDDRERERkUhhsiIiIyKAw3REREZFAYboiIiMigMNwQERGRQWG4ISIiIoPCcENEREQGheGGiIiIDArDDRERERkUhhsiIiIyKAw3REREZFAYboiIiMigMNwQERGRQWG4ISIiIoPCcENEREQGheGGiIiIDArDDRERERkUhhsiIiIyKAw3REREZFAYboiIiMigMNwQERGRQWG4ISIiIoPCcENEREQGheGGiIiIDArDDRERERkUhhsiIiIyKHoRbpYvXw5PT0/I5XIEBgbi5MmTxa67evVqdOjQAXZ2drCzs0P37t1LXJ+IiIheLaKHm02bNiEkJAShoaE4e/YsfH19ERQUhMePHxe5/oEDBxAcHIz9+/fj2LFjcHd3x2uvvYYHDx5UceVERESkjySCIAhiFhAYGIhWrVph2bJlAAClUgl3d3dMmjQJ06dPf+n2CoUCdnZ2WLZsGUaOHPnS9VNSUmBjY4Pk5GRYW1uXu34iIiKqfLp8f4s6c5OdnY0zZ86ge/fu6jGpVIru3bvj2LFjpXqNjIwM5OTkwN7evsjlWVlZSElJ0XgQERGR4RI13CQmJkKhUMDZ2Vlj3NnZGXFxcaV6jWnTpsHV1VUjIBUWFhYGGxsb9cPd3b3cdRMREZH+Ev2Ym/JYsGABNm7ciK1bt0Iulxe5zowZM5CcnKx+xMbGVnGVREREVJWMxdy5g4MDjIyMEB8frzEeHx8PFxeXErf9+uuvsWDBAuzduxc+Pj7FrieTySCTySqkXiIiItJ/os7cmJqaws/PD5GRkeoxpVKJyMhItGnTptjtFi1ahC+++AK7du2Cv79/VZRKRERE1YSoMzcAEBISglGjRsHf3x8BAQEIDw9Heno6xowZAwAYOXIk3NzcEBYWBgBYuHAhZs+ejfXr18PT01N9bI6lpSUsLS1Fex9ERESkH0QPN0OHDkVCQgJmz56NuLg4NG/eHLt27VIfZBwTEwOptGCCacWKFcjOzsagQYM0Xic0NBRz5sypytKJiIhID4l+nZuqxuvcEBERVT/V5jo3RERERBWN4YaIiIgMCsMNERERGRSGGyIiIjIoDDdERERkUBhuiIiIyKAw3BAREZFBYbghIiIig8JwQ0RERAaF4YaIiIgMCsMNERERGRSGGyIiIjIoDDdERERkUIzFLoCIiAyfQqFATk6O2GWQnjMxMYGRkVG5X4fhhoiIKlVaWhru378PQRDELoX0nEQiQa1atWBpaVmu12G4ISKiSqNQKHD//n2Ym5vD0dEREolE7JJITwmCgISEBNy/fx9eXl7lmsFhuCEiokqTk5MDQRDg6OgIMzMzscshPefo6Ijo6Gjk5OSUK9zwgGIiIqp0nLGh0qiovycMN0RERGRQGG6IiIjIoDDcEBERkUFhuCEiIqoGeJ2g0mO4ISIiKsKuXbvQvn172NraokaNGujTpw9u376tXn7//n0EBwfD3t4eFhYW8Pf3x4kTJ9TL//zzT7Rq1QpyuRwODg4YMGCAeplEIsG2bds09mdra4uffvoJABAdHQ2JRIJNmzahU6dOkMvliIiIwJMnTxAcHAw3NzeYm5vD29sbGzZs0HgdpVKJRYsWoX79+pDJZKhduza+/PJLAEDXrl0xceJEjfUTEhJgamqKyMjIivjY9AJPBScioiojCAKe5yhE2beZiZFOZ+Okp6cjJCQEPj4+SEtLw+zZszFgwABERUUhIyMDnTp1gpubG7Zv3w4XFxecPXsWSqUSALBjxw4MGDAAn332GX755RdkZ2dj586dOtc8ffp0LF68GC1atIBcLkdmZib8/Pwwbdo0WFtbY8eOHRgxYgTq1auHgIAAAMCMGTOwevVqfPPNN2jfvj0ePXqEa9euAQDGjh2LiRMnYvHixZDJZACAX3/9FW5ubujatavO9ekrifCKXTIyJSUFNjY2SE5OhrW1tdjlEBEZtMzMTNy9exd16tSBXC5HRnYumszeLUotVz4Pgrlp2X+nT0xMhKOjIy5evIijR49iypQpiI6Ohr29vda6bdu2Rd26dfHrr78W+VoSiQRbt25F//791WO2trYIDw/H6NGjER0djTp16iA8PByTJ08usa4+ffqgUaNG+Prrr5GamgpHR0csW7YMY8eO1Vo3MzMTrq6uWLlyJYYMGQIA8PX1xZtvvonQ0FAdPo3K8eLfl8J0+f5mW4qIiKgIN2/eRHBwMOrWrQtra2t4enoCAGJiYhAVFYUWLVoUGWwAICoqCt26dSt3Df7+/ho/KxQKfPHFF/D29oa9vT0sLS2xe/duxMTEAACuXr2KrKysYvctl8sxYsQIrFmzBgBw9uxZXLp0CaNHjy53rfqEbSkiIqoyZiZGuPJ5kGj71kXfvn3h4eGB1atXw9XVFUqlEs2aNUN2dvZLr7b8suUSiUTrXltFHTBsYWGh8fNXX32Fb7/9FuHh4fD29oaFhQU++ugjZGdnl2q/gKo11bx5c9y/fx9r165F165d4eHh8dLtqhPO3BARUZWRSCQwNzUW5aHL8TZPnjzB9evXMXPmTHTr1g2NGzfG06dP1ct9fHwQFRWFpKSkIrf38fEp8QBdR0dHPHr0SP3zzZs3kZGR8dK6jhw5gn79+uE///kPfH19UbduXdy4cUO93MvLC2ZmZiXu29vbG/7+/li9ejXWr1+Pt99++6X7rW4YboiIiF5gZ2eHGjVqYNWqVbh16xb27duHkJAQ9fLg4GC4uLigf//+OHLkCO7cuYPffvsNx44dAwCEhoZiw4YNCA0NxdWrV3Hx4kUsXLhQvX3Xrl2xbNkynDt3DqdPn8b48eNhYmLy0rq8vLywZ88eHD16FFevXsW4ceMQHx+vXi6XyzFt2jR88skn+OWXX3D79m0cP34cP/74o8brjB07FgsWLIAgCBpncRkKhhsiIqIXSKVSbNy4EWfOnEGzZs3w8ccf46uvvlIvNzU1xT///AMnJyf06tUL3t7eWLBggfpmj507d8bmzZuxfft2NG/eHF27dsXJkyfV2y9evBju7u7o0KED3nrrLUyZMgXm5uYvrWvmzJlo2bIlgoKC0LlzZ3XAKmzWrFn473//i9mzZ6Nx48YYOnQoHj9+rLFOcHAwjI2NERwcrHXgriHg2VJERFRpSjr7hcQTHR2NevXq4dSpU2jZsqXY5ahV1NlSPKCYiIjoFZGTk4MnT55g5syZaN26tV4Fm4rEthQREdEr4siRI6hZsyZOnTqFlStXil1OpeHMDRER0Suic+fOWqegGyLO3BAREZFBYbghIiIig8JwQ0RERAaF4YaIiIgMCsMNERERGRSGGyIiIjIoDDdERESVwNPTE+Hh4WKX8UpiuCEiIiKDwnBDREREGhQKBZRKpdhllBnDDRER0QtWrVoFV1dXrS/4fv364e2338bt27fRr18/ODs7w9LSEq1atcLevXvLvL8lS5bA29sbFhYWcHd3xwcffIC0tDSNdY4cOYLOnTvD3NwcdnZ2CAoKwtOnTwEASqUSixYtQv369SGTyVC7dm18+eWXAIADBw5AIpHg2bNn6teKioqCRCJBdHQ0AOCnn36Cra0ttm/fjiZNmkAmkyEmJganTp1Cjx494ODgABsbG3Tq1Alnz57VqOvZs2cYN24cnJ2dIZfL0axZM/z1119IT0+HtbU1tmzZorH+tm3bYGFhgdTU1DJ/Xi/DcENERFVHEIDsdHEeOtx2YPDgwXjy5An279+vHktKSsKuXbswfPhwpKWloVevXoiMjMS5c+fw+uuvo2/fvoiJiSnTxyKVSrF06VJcvnwZP//8M/bt24dPPvlEvTwqKgrdunVDkyZNcOzYMRw+fBh9+/aFQqEAAMyYMQMLFizArFmzcOXKFaxfvx7Ozs461ZCRkYGFCxfihx9+wOXLl+Hk5ITU1FSMGjUKhw8fxvHjx+Hl5YVevXqpg4lSqUTPnj1x5MgR/Prrr7hy5QoWLFgAIyMjWFhYYNiwYVi7dq3GftauXYtBgwbBysqqTJ9VafDeUkREVHVyMoD5ruLs+9OHgKlFqVa1s7NDz549sX79enTr1g0AsGXLFjg4OKBLly6QSqXw9fVVr//FF19g69at2L59OyZOnKhzaR999JH6uaenJ+bNm4fx48fj+++/BwAsWrQI/v7+6p8BoGnTpgCA1NRUfPvtt1i2bBlGjRoFAKhXrx7at2+vUw05OTn4/vvvNd5X165dNdZZtWoVbG1tcfDgQfTp0wd79+7FyZMncfXqVTRo0AAAULduXfX6Y8eORdu2bfHo0SPUrFkTjx8/xs6dO8s1y1UanLkhIiIqwvDhw/Hbb78hKysLABAREYFhw4ZBKpUiLS0NU6ZMQePGjWFrawtLS0tcvXq1zDM3e/fuRbdu3eDm5gYrKyuMGDECT548QUZGBoCCmZuiXL16FVlZWcUuLy1TU1P4+PhojMXHx+Pdd9+Fl5cXbGxsYG1tjbS0NPX7jIqKQq1atdTB5kUBAQFo2rQpfv75ZwDAr7/+Cg8PD3Ts2LFctb4MZ26IiKjqmJirZlDE2rcO+vbtC0EQsGPHDrRq1Qr//vsvvvnmGwDAlClTsGfPHnz99deoX78+zMzMMGjQIGRnZ+tcVnR0NPr06YP3338fX375Jezt7XH48GG88847yM7Ohrm5OczMzIrdvqRlgKrlBUDjbuA5OTlFvo5EItEYGzVqFJ48eYJvv/0WHh4ekMlkaNOmjfp9vmzfgGr2Zvny5Zg+fTrWrl2LMWPGaO2nonHmhoiIqo5EomoNifHQ8QtVLpfjzTffREREBDZs2ICGDRuiZcuWAFQH944ePRoDBgyAt7c3XFxc1Afn6urMmTNQKpVYvHgxWrdujQYNGuDhQ80A6OPjg8jIyCK39/LygpmZWbHLHR0dAQCPHj1Sj0VFRZWqtiNHjuDDDz9Er1690LRpU8hkMiQmJmrUdf/+fdy4caPY1/jPf/6De/fuYenSpbhy5Yq6dVaZGG6IiIiKMXz4cOzYsQNr1qzB8OHD1eNeXl74/fffERUVhfPnz+Ott94q86nT9evXR05ODr777jvcuXMH69atw8qVKzXWmTFjBk6dOoUPPvgAFy5cwLVr17BixQokJiZCLpdj2rRp+OSTT/DLL7/g9u3bOH78OH788Uf167u7u2POnDm4efMmduzYgcWLF5eqNi8vL6xbtw5Xr17FiRMnMHz4cI3Zmk6dOqFjx44YOHAg9uzZg7t37+Lvv//Grl271OvY2dnhzTffxNSpU/Haa6+hVq1aZfqcdMFwQ0REVIyuXbvC3t4e169fx1tvvaUeX7JkCezs7NC2bVv07dsXQUFB6lkdXfn6+mLJkiVYuHAhmjVrhoiICISFhWms06BBA/zzzz84f/48AgIC0KZNG/zxxx8wNlYdXTJr1iz897//xezZs9G4cWMMHToUjx8/BgCYmJhgw4YNuHbtGnx8fLBw4ULMmzevVLX9+OOPePr0KVq2bIkRI0bgww8/hJOTk8Y6v/32G1q1aoXg4GA0adIEn3zyifosrnz5Lba33367TJ+RriSCoMO5cQYgJSUFNjY2SE5OhrW1tdjlEBEZtMzMTNy9exd16tSBXC4XuxwSybp16/Dxxx/j4cOHMDU1LXa9kv6+6PL9zQOKiYiIqFJkZGTg0aNHWLBgAcaNG1disKlIbEsRERFVooiICFhaWhb5yL9WjaFatGgRGjVqBBcXF8yYMaPK9su2FBERVRq2pVQX2YuPjy9ymYmJCTw8PKq4Iv3FthQREVE1YGVlVam3GiBtbEsRERGRQWG4ISKiSveKHQFBZVRRf08YboiIqNIYGRkBQJluS0Cvnvy/J/l/b8qKx9wQEVGlMTY2hrm5ORISEmBiYqK+zxHRi5RKJRISEmBubq6+OGFZMdwQEVGlkUgkqFmzJu7evYt79+6JXQ7pOalUitq1a5f7xpoMN0REVKlMTU3h5eXF1hS9lKmpaYXM7ulFuFm+fDm++uorxMXFwdfXF9999x0CAgKKXX/z5s2YNWsWoqOj4eXlhYULF6JXr15VWDEREelCKpW+ste5oaonevNz06ZNCAkJQWhoKM6ePQtfX18EBQWpb/j1oqNHjyI4OBjvvPMOzp07h/79+6N///64dOlSFVdORERE+kj0KxQHBgaiVatWWLZsGQDVAUXu7u6YNGkSpk+frrX+0KFDkZ6ejr/++ks91rp1azRv3lzrFvFF4RWKiYiIqh9dvr9FnbnJzs7GmTNn0L17d/WYVCpF9+7dcezYsSK3OXbsmMb6ABAUFFTs+kRERPRqEfWYm8TERCgUCjg7O2uMOzs749q1a0VuExcXV+T6cXFxRa6flZWFrKws9c/JyckAVAmQiIiIqof87+3SNJz04oDiyhQWFoa5c+dqjbu7u4tQDREREZVHamoqbGxsSlxH1HDj4OAAIyMjrbulxsfHw8XFpchtXFxcdFp/xowZCAkJUf+sVCqRlJSEGjVqlPs8+helpKTA3d0dsbGxPJ7nJfhZlR4/q9LjZ1V6/Kx0w8+r9CrrsxIEAampqXB1dX3puqKGG1NTU/j5+SEyMhL9+/cHoAofkZGRmDhxYpHbtGnTBpGRkfjoo4/UY3v27EGbNm2KXF8mk0Emk2mM2draVkT5xbK2tuZf/lLiZ1V6/KxKj59V6fGz0g0/r9KrjM/qZTM2+URvS4WEhGDUqFHw9/dHQEAAwsPDkZ6ejjFjxgAARo4cCTc3N4SFhQEAJk+ejE6dOmHx4sXo3bs3Nm7ciNOnT2PVqlVivg0iIiLSE6KHm6FDhyIhIQGzZ89GXFwcmjdvjl27dqkPGo6JidG4WmHbtm2xfv16zJw5E59++im8vLywbds2NGvWTKy3QERERHpE9HADABMnTiy2DXXgwAGtscGDB2Pw4MGVXJXuZDIZQkNDtdpgpI2fVenxsyo9flalx89KN/y8Sk8fPivRL+JHREREVJFEv/0CERERUUViuCEiIiKDwnBDREREBoXhhoiIiAwKw00FWb58OTw9PSGXyxEYGIiTJ0+KXZJeOnToEPr27QtXV1dIJBJs27ZN7JL0VlhYGFq1agUrKys4OTmhf//+uH79uthl6aUVK1bAx8dHfdGwNm3a4O+//xa7rGphwYIFkEgkGhdGJZU5c+ZAIpFoPBo1aiR2WXrrwYMH+M9//oMaNWrAzMwM3t7eOH36tCi1MNxUgE2bNiEkJAShoaE4e/YsfH19ERQUhMePH4tdmt5JT0+Hr68vli9fLnYpeu/gwYOYMGECjh8/jj179iAnJwevvfYa0tPTxS5N79SqVQsLFizAmTNncPr0aXTt2hX9+vXD5cuXxS5Nr506dQr/93//Bx8fH7FL0VtNmzbFo0eP1I/Dhw+LXZJeevr0Kdq1awcTExP8/fffuHLlChYvXgw7OztxChKo3AICAoQJEyaof1YoFIKrq6sQFhYmYlX6D4CwdetWscuoNh4/fiwAEA4ePCh2KdWCnZ2d8MMPP4hdht5KTU0VvLy8hD179gidOnUSJk+eLHZJeic0NFTw9fUVu4xqYdq0aUL79u3FLkONMzfllJ2djTNnzqB79+7qMalUiu7du+PYsWMiVkaGJjk5GQBgb28vciX6TaFQYOPGjUhPTy/2nnMETJgwAb1799b4t4u03bx5E66urqhbty6GDx+OmJgYsUvSS9u3b4e/vz8GDx4MJycntGjRAqtXrxatHoabckpMTIRCoVDfLiKfs7Mz4uLiRKqKDI1SqcRHH32Edu3a8VYjxbh48SIsLS0hk8kwfvx4bN26FU2aNBG7LL20ceNGnD17Vn3PPipaYGAgfvrpJ+zatQsrVqzA3bt30aFDB6Smpopdmt65c+cOVqxYAS8vL+zevRvvv/8+PvzwQ/z888+i1KMXt18gopJNmDABly5dYr+/BA0bNkRUVBSSk5OxZcsWjBo1CgcPHmTAeUFsbCwmT56MPXv2QC6Xi12OXuvZs6f6uY+PDwIDA+Hh4YH//e9/eOedd0SsTP8olUr4+/tj/vz5AIAWLVrg0qVLWLlyJUaNGlXl9XDmppwcHBxgZGSE+Ph4jfH4+Hi4uLiIVBUZkokTJ+Kvv/7C/v37UatWLbHL0VumpqaoX78+/Pz8EBYWBl9fX3z77bdil6V3zpw5g8ePH6Nly5YwNjaGsbExDh48iKVLl8LY2BgKhULsEvWWra0tGjRogFu3boldit6pWbOm1i8SjRs3Fq2Nx3BTTqampvDz80NkZKR6TKlUIjIykv1+KhdBEDBx4kRs3boV+/btQ506dcQuqVpRKpXIysoSuwy9061bN1y8eBFRUVHqh7+/P4YPH46oqCgYGRmJXaLeSktLw+3bt1GzZk2xS9E77dq107pUxY0bN+Dh4SFKPWxLVYCQkBCMGjUK/v7+CAgIQHh4ONLT0zFmzBixS9M7aWlpGr/13L17F1FRUbC3t0ft2rVFrEz/TJgwAevXr8cff/wBKysr9TFcNjY2MDMzE7k6/TJjxgz07NkTtWvXRmpqKtavX48DBw5g9+7dYpemd6ysrLSO27KwsECNGjV4PNcLpkyZgr59+8LDwwMPHz5EaGgojIyMEBwcLHZpeufjjz9G27ZtMX/+fAwZMgQnT57EqlWrsGrVKnEKEvt0LUPx3XffCbVr1xZMTU2FgIAA4fjx42KXpJf2798vANB6jBo1SuzS9E5RnxMAYe3atWKXpnfefvttwcPDQzA1NRUcHR2Fbt26Cf/884/YZVUbPBW8aEOHDhVq1qwpmJqaCm5ubsLQoUOFW7duiV2W3vrzzz+FZs2aCTKZTGjUqJGwatUq0WqRCIIgiBOriIiIiCoej7khIiIig8JwQ0RERAaF4YaIiIgMCsMNERERGRSGGyIiIjIoDDdERERkUBhuiIiIyKAw3BDRK08ikWDbtm1il0FEFYThhohENXr0aEgkEq3H66+/LnZpRFRN8d5SRCS6119/HWvXrtUYk8lkIlVDRNUdZ26ISHQymQwuLi4aDzs7OwCqltGKFSvQs2dPmJmZoW7dutiyZYvG9hcvXkTXrl1hZmaGGjVq4L333kNaWprGOmvWrEHTpk0hk8lQs2ZNTJw4UWN5YmIiBgwYAHNzc3h5eWH79u2V+6aJqNIw3BCR3ps1axYGDhyI8+fPY/jw4Rg2bBiuXr0KAEhPT0dQUBDs7Oxw6tQpbN68GXv37tUILytWrMCECRPw3nvv4eLFi9i+fTvq16+vsY+5c+diyJAhuHDhAnr16oXhw4cjKSmpSt8nEVUQ0W7ZSUQkCMKoUaMEIyMjwcLCQuPx5ZdfCoKgujv6+PHjNbYJDAwU3n//fUEQBGHVqlWCnZ2dkJaWpl6+Y8cOQSqVCnFxcYIgCIKrq6vw2WefFVsDAGHmzJnqn9PS0gQAwt9//11h75OIqg6PuSEi0XXp0gUrVqzQGLO3t1c/b9OmjcayNm3aICoqCgBw9epV+Pr6wsLCQr28Xbt2UCqVuH79OiQSCR4+fIhu3bqVWIOPj4/6uYWFBaytrfH48eOyviUiEhHDDRGJzsLCQqtNVFHMzMxKtZ6JiYnGzxKJBEqlsjJKIqJKxmNuiEjvHT9+XOvnxo0bAwAaN26M8+fPIz09Xb38yJEjkEqlaNiwIaysrODp6YnIyMgqrZmIxMOZGyISXVZWFuLi4jTGjI2N4eDgAADYvHkz/P390b59e0RERODkyZP48ccfAQDDhw9HaGgoRo0ahTlz5iAhIQGTJk3CiBEj4OzsDACYM2cOxo8fDycnJ/Ts2ROpqak4cuQIJk2aVLVvlIiqBMMNEYlu165dqFmzpsZYw4YNce3aNQCqM5k2btyIDz74ADVr1sSGDRvQpEkTAIC5uTl2796NyZMno1WrVjA3N8fAgQOxZMkS9WuNGjUKmZmZ+OabbzBlyhQ4ODhg0KBBVfcGiahKSQRBEMQugoioOBKJBFu3bkX//v3FLoWIqgkec0NEREQGheGGiIiIDAqPuSEivcbOORHpijM3REREZFAYboiIiMigMNwQERGRQWG4ISIiIoPCcENEREQGheGGiIiIDArDDRERERkUhhsiIiIyKAw3REREZFD+H9cV1YctroerAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "32/32 [==============================] - 7s 158ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADLjklEQVR4nOzdd3hT5dvA8W+60r0XpZTSAWWXVYEyBSx7/0BBZYiiiIjKVJmCuEBUlqCyBFEBEVCmsvcqyKbQ0jJKC3TvNnn/6NtA6KClbRLo/fHKJTnPOc+5c3Ka3HnGOQq1Wq1GCCGEEKICMtJ3AEIIIYQQ+iKJkBBCCCEqLEmEhBBCCFFhSSIkhBBCiApLEiEhhBBCVFiSCAkhhBCiwpJESAghhBAVliRCQgghhKiwJBESQgghRIUliZAQQjyhO3fu0LdvX5ycnFAoFMydO7fM96FQKJg6dWqZ1/u0Gjx4MN7e3voOQzxDJBESz7xly5ahUCg0DxMTEypXrszgwYO5efNmue136tSpKBQK3NzcSE1NzVfu7e1N165dn6juBQsWsGzZsgLLZs6cSffu3XFzc3vsl+jNmzfp168f9vb22Nra0qNHD65du5ZvvYULF/K///0PLy8vFAoFgwcPzrdOvXr18PLyoqi79gQHB+Pm5kZ2djZRUVFMmzaNoKAgHBwccHZ2pk2bNuzcufNxL1/LnTt3GDNmDAEBAVhaWmJlZUWjRo2YMWMG8fHxJaqrpN577z22bdvGxIkTWblyJR07dizX/elS3vlrZGREVFRUvvLExEQsLCxQKBSMHDmyxPWnpqYydepUdu/eXQbRCvHkTPQdgBC6Mn36dKpVq0Z6ejqHDx9m2bJl7N+/n7Nnz2Jubl5u+42JiWHhwoV88MEHZVbnggULcHZ2LjAh+fjjj3F3d6dBgwZs27at0DqSk5Np27YtCQkJfPjhh5iamvL111/TunVrQkNDcXJy0qz7+eefk5SURFBQELdv3y6wvoEDBzJhwgT27dtHq1at8pVHRERw6NAhRo4ciYmJCX/++Seff/45PXv2ZNCgQWRnZ7NixQo6dOjATz/9xJAhQx57HI4dO0bnzp1JTk7m5ZdfplGjRgAcP36czz77jL1797J9+/bH1vOk/v33X3r06MGYMWPKbR9paWmYmOjvo1qpVPLLL78wbtw4reXr168vVb2pqalMmzYNgDZt2hR7uyVLlqBSqUq1byG0qIV4xi1dulQNqI8dO6a1fPz48WpA/euvv5bLfqdMmaIG1IGBgWo3Nzd1amqqVnnVqlXVXbp0eaK6a9eurW7dunWBZeHh4Wq1Wq2OjY1VA+opU6YUuN7nn3+uBtRHjx7VLLtw4YLa2NhYPXHiRK11IyIi1CqVSq1Wq9VWVlbqQYMG5asvMjJSrVAo1MOHDy9wf59++qkaUB8+fFitVqvVZ8+eVcfGxmqtk56erg4ICFB7enoWWMfD4uLi1JUrV1a7ubmpL1y4kK88Ojpa/cknnzy2ntJQKBTqt99+u1z3oS9552/v3r3VgYGB+co7dOig7tOnjxp4omPwuPPzUcnJySXehxDFIV1josJq2bIlAFevXtVafvHiRfr27YujoyPm5uY0btyYjRs3aq2TlZXFtGnT8Pf3x9zcHCcnJ1q0aMGOHTvy7Wfy5MncuXOHhQsXPjYmlUrF3LlzqV27Nubm5ri5uTF8+HDi4uI063h7e3Pu3Dn27Nmj6e57+Bd1ccdPrF27liZNmtCkSRPNsoCAANq1a8dvv/2mtW7VqlVRKBRF1lelShVatWrF2rVrycrKyle+evVqfH19ee655wCoXbs2zs7OWusolUo6d+7MjRs3SEpKKnJ/33//PTdv3mTOnDkEBATkK3dzc+Pjjz/WWrZgwQJq166NUqnEw8ODt99+O1/3WZs2bahTpw7nz5+nbdu2WFpaUrlyZb744gvNOnndrWq1mvnz52veB3jQpfSovG0iIiI0y44fP05ISAjOzs5YWFhQrVo1hg4dqrVdQd2bp06dolOnTtja2mJtbU27du04fPhwgfs7cOAA77//Pi4uLlhZWdGrVy9iY2MLPa6PGjBgAKGhoVy8eFGzLDo6mn///ZcBAwbkWz8zM5PJkyfTqFEj7OzssLKyomXLluzatUuzTkREBC4uLgBMmzZNc/zyXufgwYOxtrbm6tWrdO7cGRsbGwYOHKgpe/gcnzJlCkZGRvzzzz9acbzxxhuYmZlx+vTpYr9WUTFJIiQqrLwvJAcHB82yc+fO0bRpUy5cuMCECROYPXs2VlZW9OzZkz/++EOz3tSpU5k2bRpt27Zl3rx5fPTRR3h5eXHy5Ml8+2nZsiXPP/88X3zxBWlpaUXGNHz4cMaOHUtwcDDffPMNQ4YMYdWqVYSEhGiSi7lz5+Lp6UlAQAArV65k5cqVfPTRRyV67SqVijNnztC4ceN8ZUFBQVy9evWxiUhBBg4cyL179/J1yf3333+cPXtW82VWlOjoaCwtLbG0tCxyvY0bN2JhYUHfvn2LFdvUqVN5++238fDwYPbs2fTp04fvv/+eF154IV/iFhcXR8eOHalfvz6zZ88mICCA8ePHs2XLFgBatWrFypUrAejQoYPmfSiJmJgYXnjhBSIiIpgwYQLfffcdAwcOzJfQPOrcuXO0bNmS06dPM27cOCZNmkR4eDht2rThyJEj+dZ/5513OH36NFOmTOGtt95i06ZNJRrT06pVKzw9PVm9erVm2a+//oq1tTVdunTJt35iYiI//PADbdq04fPPP2fq1KnExsYSEhJCaGgoAC4uLpofBr169dIcv969e2vqyc7OJiQkBFdXV7766iv69OlTYHwff/wxgYGBvPbaa5pzdtu2bSxZsoTJkydTv379Yr9WUUHpu0lKiPKW1zW2c+dOdWxsrDoqKkq9du1atYuLi1qpVKqjoqI067Zr105dt25ddXp6umaZSqVSN2/eXO3v769ZVr9+/cd2a+V1LcTGxqr37NmjBtRz5szRlD/aNbZv3z41oF61apVWPVu3bs23vKiusTxFdT3klU2fPj1f2fz589WA+uLFiwXWW1jXmFqtVt+/f1+tVCrVL730ktbyCRMmqAH1pUuXioz5ypUranNzc/Urr7xS5HpqtVrt4OCgrl+//mPXU6vV6piYGLWZmZn6hRdeUOfk5GiWz5s3Tw2of/rpJ82y1q1bqwH1ihUrNMsyMjLU7u7u6j59+mjVSwHdQnnv+6PyzsO8rss//vijwC7bRz36Hvbs2VNtZmamvnr1qmbZrVu31DY2NupWrVrl21/79u013ZpqtVr93nvvqY2NjdXx8fFF7vfh83fMmDFqPz8/TVmTJk3UQ4YMKfAYZGdnqzMyMrTqiouLU7u5uamHDh2qWVbU+Tlo0CA1oJ4wYUKBZVWrVtVa9t9//6nNzMzUw4YN03SZNm7cWJ2VlVXkaxRCrZauMVGBtG/fHhcXF6pUqULfvn2xsrJi48aNeHp6AnD//n3+/fdf+vXrR1JSEnfv3uXu3bvcu3ePkJAQrly5opllZm9vz7lz57hy5Uqx9t2qVSvatm1bZKvQ77//jp2dHR06dNDs++7duzRq1Ahra2utroXSyotBqVTmK8sbOP641quCODg40LlzZzZu3EhKSgoAarWaNWvW0LhxY6pXr17otqmpqfzvf//DwsKCzz777LH7SkxMxMbGplhx7dy5k8zMTEaPHo2R0YOPvddffx1bW1v++usvrfWtra15+eWXNc/NzMwICgoqcEbdk7K3twdg8+bNBXYlFiQnJ4ft27fTs2dPfHx8NMsrVarEgAED2L9/P4mJiVrbvPHGG1pddS1btiQnJ4fr168XO9YBAwYQFhbGsWPHNP8vqFsMwNjYGDMzMyC35fH+/ftkZ2fTuHHjAltMi/LWW28Va706deowbdo0fvjhB0JCQrh79y7Lly/X6yBz8fSQREhUGPPnz2fHjh2sXbuWzp07c/fuXa1EICwsDLVazaRJk3BxcdF6TJkyBcjtzoDcGWjx8fFUr16dunXrMnbsWM6cOVPk/qdOnUp0dDSLFi0qsPzKlSskJCTg6uqab//JycmafZcFCwsLADIyMvKVpaena61TUgMHDiQlJYU///wTgIMHDxIREVFkt1hOTg4vvvgi58+fZ+3atXh4eDx2P7a2tsXuvsv70q9Ro4bWcjMzM3x8fPIlBZ6envnG+Tg4OGiN1Sqt1q1b06dPH6ZNm4azszM9evRg6dKlBb4neWJjY0lNTc33OgBq1qyJSqXKN9Xdy8tL63leV3BJXkuDBg0ICAhg9erVrFq1Cnd3d55//vlC11++fDn16tXTjJ9zcXHhr7/+IiEhodj7NDEx0fxIKY6xY8dSv359jh49ypQpU6hVq1axtxUVm6TLosIICgrSjInp2bMnLVq0YMCAAVy6dAlra2vNlNwxY8YQEhJSYB1+fn5AbgvP1atX+fPPP9m+fTs//PADX3/9NYsWLWLYsGEFbtuqVSvatGnDF198wZtvvpmvXKVS4erqyqpVqwrcPm9waVlwdHREqVQWOBU+b1lxkpGCdO3aFTs7O1avXs2AAQNYvXo1xsbGvPjii4Vu8/rrr7N582ZWrVpV5BfswwICAggNDSUzM1PTAlFWjI2NC1yuLuIaSXkKG1Sek5OTb721a9dy+PBhNm3axLZt2xg6dCizZ8/m8OHDWFtblzzwApTmtTxswIABLFy4EBsbG/r376/Vsvawn3/+mcGDB9OzZ0/Gjh2Lq6srxsbGzJo1K9/EhKIolcpC91GQa9euaVpo//vvv2JvJ4S0CIkKKe+D+datW8ybNw9A09VgampK+/btC3w83BXj6OjIkCFD+OWXX4iKiqJevXqPvQJwXqvQ999/n6/M19eXe/fuERwcXOC+Hx70+bgZXI9jZGRE3bp1OX78eL6yI0eO4OPjU+xup0cplUr69u3L9u3buXPnDr///jvPP/887u7uBa4/duxYli5dytdff81LL71U7P1069aNtLQ01q1b99h1q1atCsClS5e0lmdmZhIeHq4pLwt5LS6PzkYrrCuqadOmzJw5k+PHj7Nq1SrOnTvHmjVrClzXxcUFS0vLfK8Dcmc7GhkZUaVKldK9gEIMGDCA27dvc/ny5UK7xSB3NqKPjw/r16/nlVdeISQkhPbt22taGvOU9hx+mEqlYvDgwdja2vLhhx/yyy+/lPo6R6LikERIVFht2rQhKCiIuXPnkp6ejqurK23atOH7778vsKXk4SnH9+7d0yqztrbGz8+vyG4NyO0OyZtN8+gXQ79+/cjJyeGTTz7Jt112drbWF6uVlVWpr5rct29fjh07ppUMXbp0iX///Zf//e9/pap74MCBZGVlMXz4cGJjYwvtFvvyyy/56quv+PDDD3n33XdLtI8333yTSpUq8cEHH3D58uV85TExMcyYMQPIHR9mZmbGt99+q9US8uOPP5KQkFDg7Kcn5evrC8DevXs1y1JSUli+fLnWenFxcflaZQIDA4GCuywhN4F/4YUX+PPPP7Wm4d+5c4fVq1fTokULbG1ty+BV5Ofr68vcuXOZNWsWQUFBha6X1wL18Gs7cuQIhw4d0lovb1ZgWVz9e86cORw8eJDFixfzySef0Lx5c9566y3u3r1b6rrFs0+6xkSFNnbsWP73v/+xbNky3nzzTebPn0+LFi2oW7cur7/+Oj4+Pty5c4dDhw5x48YNzTVJatWqRZs2bWjUqBGOjo4cP36ctWvXFmta8pQpU2jbtm2+5a1bt2b48OHMmjWL0NBQXnjhBUxNTbly5Qq///4733zzjWaqeKNGjVi4cCEzZszAz88PV1dXTZfSypUruX79uua2Hnv37tUkBK+88oqm9WPEiBEsWbKELl26MGbMGExNTZkzZw5ubm75roK9adMmzWvPysrizJkzmjq7d+9OvXr18r0WT09P/vzzTywsLLSmRef5448/GDduHP7+/tSsWZOff/5Zq7xDhw64ubkVehwdHBz4448/6Ny5M4GBgVpXlj558iS//PILzZo1A3JbUiZOnMi0adPo2LEj3bt359KlSyxYsIAmTZpoDYwurRdeeAEvLy9ee+01xo4di7GxMT/99BMuLi5ERkZq1lu+fDkLFiygV69e+Pr6kpSUxJIlS7C1taVz586F1j9jxgx27NhBixYtGDFiBCYmJnz//fdkZGRoXeuoPBQnWe3atSvr16+nV69edOnShfDwcBYtWkStWrVITk7WrGdhYUGtWrX49ddfqV69Oo6OjtSpU4c6deqUKKYLFy4wadIkBg8eTLdu3YDcaygFBgYyYsSIfNfEEiIfPc5YE0InCruytFqtVufk5Kh9fX3Vvr6+6uzsbLVarVZfvXpV/eqrr6rd3d3Vpqam6sqVK6u7du2qXrt2rWa7GTNmqIOCgtT29vZqCwsLdUBAgHrmzJnqzMxMzToPTz9+VN4U7YKm4C9evFjdqFEjtYWFhdrGxkZdt25d9bhx49S3bt3SrBMdHa3u0qWL2sbGRg1oTaXPq7ugx65du7T2FRUVpe7bt6/a1tZWbW1tre7atav6ypUr+WLKm85c0GPp0qUFHvexY8eqAXW/fv0KLM87PsWNtTC3bt1Sv/fee+rq1aurzc3N1ZaWlupGjRqpZ86cqU5ISNBad968eeqAgAC1qamp2s3NTf3WW2+p4+LitNZp3bq1unbt2gUeg0enbVPIVZVPnDihfu6559RmZmZqLy8v9Zw5c/JNnz958qT6pZdeUnt5eamVSqXa1dVV3bVrV/Xx48fz7ePRKeYnT55Uh4SEqK2trdWWlpbqtm3bqg8ePKi1TmHn/a5du4p1fIs6f4s6BiqVSv3pp5+qq1atqlYqleoGDRqoN2/eXODxO3jwoLpRo0ZqMzMzrdc5aNAgtZWVVYH7e7ie7OxsdZMmTdSenp75LgfwzTfflOuV48WzQ6FWl3DEnBBCCCHEM0LGCAkhhBCiwpJESAghhBAVliRCQgghhKiwJBESQgghRIUliZAQQgghKixJhIQQQghRYckFFSswlUrFrVu3sLGxKdPL3QshhNANtVpNUlISHh4eJbo3W0mkp6eTmZlZJnWZmZlhbm5eJnWVFUmEKrBbt26V232JhBBC6E5UVBSenp5lXm96ejoWNk6QnVom9bm7uxMeHm5QyZAkQhVY3k01V/0biqX1k91gszy8ufCgvkPI57lGkjAWx86d5/UdQj5zR7fRdwj51HA0nL+3PLuuG959uW7El00rRFnytDfTdwha0lOT+ax/yye+SfLjZGZmQnYqylqDwLiUrz0nk+jzy8nMzJRESBiGvO4wS2sbrAwoETIys9R3CPmYWljrO4SngsLUQt8h5GNhQOd2Hmub8rkxammYWxV9w2B9MMs0vJjMrZT6DqFA5T68wcQcRSkTIbXCMIclSyIkhBBCiKIpgNImWwY6FFUSISGEEEIUTWGU+yhtHQbIMKMSQgghhNABaRESQgghRNEUijLoGjPMvjFJhIQQQghRNOkaE0IIIYR49kiLkBBCCCGKJl1jQgghhKi4yqBrzEA7oQwzKiGEEEIIHZAWISGEEEIUTbrGhMhv2Ki5xNxNyLe8c4fGvDmki05iaOLrxBvtq1PHyx43OwuGLz7EjjO3C1x3xouBDGjhwydrT7N099Vyi6mGqzVdartRzckSB0szvt4VxomoB8epsZc97aq74O1kiY3ShA83nScyLq3c4jHUmJoFuDGyax3qV3PC3cGSV+b8y5bjkZry74a34KXWflrb/HP6Jv0/31GucT1MpVKxceN+Dh8+R2JCCvb21jRvXpcuXZuX/y0NihB7L4EFK7Zx+OQl0jOz8HR34sN3+lDTr+xvullcGemZ/LvlIBfPhpGSlIq7pyuderahspe7Tvbv42hJGz8nPO3NsTM3ZenRKM5GJ2mtE1LDhaZV7bEwNSb8firrzkRzN0V39zPT9zEqlWd41pgkQuVk8ODBLF++XPPc0dGRJk2a8MUXX1CvXj09RlZ2Zs94HZVKrXl+PSqGybNWEvxcbZ3FYKk04cLNBH4/dJ1FbzQtdL0X6nkQ6O1IdHz5frkDKE2MiIxLY2/YPUa39S2w/FJMMkci7jOsuXe5x2OoMVkqTTh7/T6rdl9hxfvPF7jOztAbjPr+gOZ5RnaOTmLLs2XLYfbsPsWQoV3w8HDmekQ0S5f+jYWFknbtG+s0ljyJyWm8OfF7Gtb1YfakwdjbWRF1+x42Vvq9z9vG33YQc/suvQZ0xMbWmjMnLrBi0TreHjcIW/vyv1efmYkRtxLTORoZz5Cg/DdJbuvnREsfR345dZP7qVl0rOHKG029+GLXVbIf+hwrT/o+RqJgkgiVo44dO7J06VIAoqOj+fjjj+natSuRkZGP2fLpYGdrpfV87cb9uLs5UKdmVZ3FsOf8Hfacv1PkOm525kz5X30Gz9/Pj281L/eYztxK5MytxELLD1y7D4Czle7uYm2IMf1z+ib/nL5Z5DqZ2SpiEso/eS3M1as3qR/oT716uS1Tzs72HD16nvDwglsddWHV+j24Otvx0Tt9Ncs83Bz1Fg9AVmY2589c4aWh3fH2zW2VatuxGZfPX+PYwdO06xxc7jFcjEnmYkxyoeWtfBzZefku56Jz1/nl1E2mhlSnjrsNoUX8bZQVQzhGpfIMd40ZZjvVM0KpVOLu7o67uzuBgYFMmDCBqKgoYmNjAYiKiqJfv37Y29vj6OhIjx49iIiI0Krjhx9+oGbNmpibmxMQEMCCBQs0ZZmZmYwcOZJKlSphbm5O1apVmTVrli5fokZWdg6795+hfesGeu0yeJRCAbNfbcySfy5z5ZFmcmH4gmu6c2Fhfw5/1YsvhzbFwVq3d/729a3MxQsRREfnJopRUXe4cuUGder66DSOh+0/doEAP08+/mI1XQbNZPD737Fx+zG9xQO5XYhqlRoTE+3f1iamJkSG39JTVA84Wppia27K5dgHiVJ6torIuDSqOuqmJc3Qj9Fj5XWNlfZhgKRFSEeSk5P5+eef8fPzw8nJiaysLEJCQmjWrBn79u3DxMSEGTNm0LFjR86cOYOZmRmrVq1i8uTJzJs3jwYNGnDq1Clef/11rKysGDRoEN9++y0bN27kt99+w8vLi6ioKKKiovTy+o4cv0hKajrtWgfqZf+FebNDdXJUapaV45ggUT7+PXOTv45d53psEt5utnzcryG/jm9Px8l/o1LrpiujU6dmpKdlMnnSYoyMjFCpVPTs1ZqmTXXX/fuoW3fi2LD1CP27B/Nq3zZcCLvB1z9uwsTEmM7PN9RLTEpzMzy9K7FnxxGc3RyxtrHkv5OXuBFxG0dne73E9DBbZe5XXVKGdtdqUka2pqy8GfoxeqxnuEVIEqFytHnzZqytc/t9U1JSqFSpEps3b8bIyIjVq1ejUqn44YcfNC0oS5cuxd7ent27d/PCCy8wZcoUZs+eTe/evQGoVq0a58+f5/vvv2fQoEFERkbi7+9PixYtUCgUVK1adJdURkYGGRkZmueJiWXXHLxj1yka1ffHycGmzOosrTpV7Bncxo9un/+r71DEE/jjULjm3xei4jkfeZ8Tc/sSXMudfed00zV1/PgFjhw5x7DXu+Ph4UxUVAy/rtmJvZ01zYPr6iSGR6nUagJ8K/PmyyEAVPfx4FrkHTZsO6K3RAig94CO/LlmO3OmLUFhpKBSZVfqNKjB7RsxeovJ0MgxMkySCJWjtm3bsnDhQgDi4uJYsGABnTp14ujRo5w+fZqwsDBsbLQTh/T0dK5evUpKSgpXr17ltdde4/XXX9eUZ2dnY2dnB+QOyO7QoQM1atSgY8eOdO3alRdeeKHQeGbNmsW0adPK/HXGxMZz+uw1JrzXr8zrLo0mvk44WSvZP72jZpmJsREf9q7HkLZ+tJqyTY/RiZK6HpPM3cR0fNxsdJYIrf19F506NSUoqBYAnp6u3LuXwJYth/SWCDk52OBdxVVrmbenC7sPndNLPHkcne0ZMrIfmRlZZGRkYGNrze8r/sLByU6vcQEkZmQDYKM0Jun//5373ISbiek6i8OQj9Fjyawx8SSsrKzw83sw/feHH37Azs6OJUuWkJycTKNGjVi1alW+7VxcXEhOzu3LXrJkCc8995xWubGxMQANGzYkPDycLVu2sHPnTvr160f79u1Zu3ZtgfFMnDiR999/X/M8MTGRKlXyz64oqZ17QrGzs6JJg+qlrqss/XEsigOXYrWWLXs7mA1HI/n98HU9RSWeVCVHSxytldzRwcy/PJmZWfnGvBkZGemsa64g9QK8iLypfV5H3rqHu4u9fgJ6hJnSFDOlKWmp6YRdvE6Hbi30HRL3U7NITM/C38WKW4m5reJKEyO8HCw4GBGn83gM8Rg9lkJRBomQdI1VeAqFAiMjI9LS0mjYsCG//vorrq6u2Nra5lvXzs4ODw8Prl27xsCBAwut09bWlv79+9O/f3/69u1Lx44duX//Po6O+WeRKJVKlMqyHWyqUqn5Z28oz7esj7Gx7rN9SzNjqro8mHZaxcmKmpXtSEjN5FZcGvGPXCMkO0dFbGI64UXMLiktpYkRbjYPjrOLtRIvBwtSMrO5l5KFlZkxTlZmOFiaAlDJzhyAhLQsEtKzC6zzWYzJSmlCNfcH535VF2vqVHUkLjmD+OQMxvYJZNPR68TEp+HtZsPUAY0Iv5PIv2eKnmlWlurV9+Ovvw/h6GSLh4czkZF32LH9KMEt9HcJjP7dWjB84iKWr91Nu+C6nL8SxcbtRxn3Vi+9xQQQdjECtRqcXR24fzee7Zv24ezqQIMg3YynMjNWaM16dLQ0xcNWSWpWDvFp2ey9dp/2/i7cTc7kXmoWnQJcSEzPznetofKk72MkCiaJUDnKyMggOjoayO0amzdvHsnJyXTr1o2goCC+/PJLevTowfTp0/H09OT69eusX7+ecePG4enpybRp0xg1ahR2dnZ07NiRjIwMjh8/TlxcHO+//z5z5syhUqVKNGjQACMjI37//Xfc3d2xt7fX2Ws8ffYasXcTaN+mgc72+bC6VR345d1Wmucf98n9glp7+Drjfj6hl5h8nCz5KKSG5vnLTXJb3faG3WXxwes0rGLP8GBvTfk7rXJnIK0/fYv1p8uny8cQYwr0cebPSQ+6LWe8EgTAL3vCGPvTIWp5OdC/pS92VmZEx6Wx+7+bzPrtFJnZqnKJpyADBnRgw4Z9rPp5O0lJqdjbW9OqdQO6ddPfVOea/p7MGv8yi37exrLf/qWSqwPvDu1KiJ4nKqSnZ/DPXwdIjE/GwlJJzXr+tOscrGnBLm9V7C0Y8dA53KNO7kUKj0XGsyb0FrvC7mFmbETf+h5YmBoRfj+VxYcjdXYNIdD/MSoVI0Xuo7R1lMDevXv58ssvOXHiBLdv3+aPP/6gZ8+eWutcuHCB8ePHs2fPHrKzs6lVqxbr1q3Dy8ur2PtRqNV6bON9hj16QUUbGxsCAgIYP348ffr0AXKvLTR+/Hj+/vtvkpKSqFy5Mu3ateOrr77StBKtXr2aL7/8kvPnz2NlZUXdunUZPXo0vXr1YsmSJSxYsIArV65gbGxMkyZN+PLLL2nQoHhJSWJiInZ2dvxx9CpW1oYzyHnQN/v0HUI+zYN0d22kp9nWrf/pO4R8Fo1vr+8Q8qnllL8VWN92hMc+fiUdi4zLePxKOubloNtLODxOekoSU7s1ICEhocDehdLK+55QtvwYhYl5qepSZ6eTsW9GsWPdsmULBw4coFGjRvTu3TtfInT16lWCgoJ47bXXeOmll7C1teXcuXM0bdoUV1fXwit+hCRCFZgkQsUniVDxSCJUPJIIFY8kQo/3LCdCD1MoFPkSoRdffBFTU1NWrlxZqrgMcwi3EEIIIQxH3nWESvsoIyqVir/++ovq1asTEhKCq6srzz33HBs2bChxXZIICSGEEKJoZXhl6cTERK3Hw9e3K66YmBiSk5P57LPP6NixI9u3b6dXr1707t2bPXv2lKguSYSEEEIIoTNVqlTBzs5O83iSW0OpVLmTJnr06MF7772nuY1V165dWbRoUYnqklljQgghhChaGd5iIyoqSmuM0JNc1sXZ2RkTExNq1aqltbxmzZrs37+/RHVJIiSEEEKIopXhlaVtbW1LPbDbzMyMJk2acOnSJa3lly9ffuztph4liZAQQgghiqaHm64mJycTFhameR4eHk5oaCiOjo54eXkxduxY+vfvT6tWrWjbti1bt25l06ZN7N69u0T7kURICCGEEAbn+PHjtG3bVvM87xZRgwYNYtmyZfTq1YtFixYxa9YsRo0aRY0aNVi3bh0tWpTsliWSCAkhhBCiaHq46WqbNm143KUOhw4dytChQ0sTlSRCQgghhHgMPXSN6YpMnxdCCCFEhSUtQkIIIYR4jDLoGjPQthdJhIQQQghRtGe4a0wSIUFsagbJRmb6DkPji9eD9B1CPm6WhnWjRYDRP5/Sdwj57P2it75DyOeVJYf1HUI+E3vXevxKOjZ1xm/6DiGfLgNf0HcIBi8zNVPfITz1JBESQgghRNEUijKYNSYtQkIIIYR4Gulh+ryuGGZUQgghhBA6IC1CQgghhCiaDJYWQgghRIX1DHeNSSIkhBBCiKI9wy1ChpmeCSGEEELogLQICSGEEKJo0jUmhBBCiApLusaEEEIIIZ490iIkhBBCiCIpFAoUz2iLkCRCQgghhCiSJEJCJwYPHkx8fDwbNmzQdyjFolKp2LhxP4cPnyMxIQV7e2uaN69Ll67NS/8H8wzFNGzUXGLuJuRb3rlDY94c0kUnMTSo6sCrwd7UrGSDi605H/xyit0XYzXlb7TxJaSOO2525mTlqLhwK5EF/4Rx9mb+uMtT7L0EFqzYxuGTl0jPzMLT3YkP3+lDTT9Pnez/aThOhnCON69ThXf+9xz1/d2p5GTDwKlr+fvQFa11qldxYuprbQmuVwVjYyMuXb/HoE/WcyM2sVxiquFqTZfablRzssTB0oyvd4VxIurB+9LYy5521V3wdrLERmnCh5vOExmXVi6x5PFxtKSNnxOe9ubYmZuy9GgUZ6OTtNYJqeFC06r2WJgaE34/lXVnormbIjdS1SVJhB4xePBgli9frnnu6OhIkyZN+OKLL6hXr16Z7CMiIoJq1apx6tQpAgMDy6ROfdiy5TB7dp9iyNAueHg4cz0imqVL/8bCQkm79o0lpv83e8brqFRqzfPrUTFMnrWS4Odq6ywGC1NjLkcnsfHkTb56KTBfeeS9FD7/+wI349JQmhgxsFlV5r/akB7f7Cc+NUsnMSYmp/HmxO9pWNeH2ZMGY29nRdTte9hYWehk//B0HCdDOMctzU05ey2Gn7ed4ecpffKVe1eyZ8ucV/h562lmrdxHUmoGNas6k56ZXW4xKU2MiIxLY2/YPUa39S2w/FJMMkci7jOsuXe5xfEwMxMjbiWmczQyniFBVfKVt/VzoqWPI7+cusn91Cw61nDljaZefLHrKtkPfWYYBMX/P0pbhwGSRKgAHTt2ZOnSpQBER0fz8ccf07VrVyIjI/UcmWG5evUm9QP9qVfPDwBnZ3uOHj1PePhtiekhdrZWWs/XbtyPu5sDdWpW1VkMB8PucjDsbqHlW/+L1no+Z9slejbyxN/NhmPh98s7PABWrd+Dq7MdH73TV7PMw81RJ/vO8zQcJ0M4x3cev8bO49cKLZ80uDU7jl5lyo+7NMsibseXa0xnbiVy5lbhrU0HruW+P85WZuUax8MuxiRzMSa50PJWPo7svHyXc9G56/xy6iZTQ6pTx92G0CJeiz48y11jMmusAEqlEnd3d9zd3QkMDGTChAlERUURG5vbRB4VFUW/fv2wt7fH0dGRHj16EBERoVXHDz/8QM2aNTE3NycgIIAFCxZoyqpVqwZAgwYNUCgUtGnTpsA4VCoVs2bNolq1alhYWFC/fn3Wrl2rKY+Li2PgwIG4uLhgYWGBv7+/JoHTBV/fyly8EEF0dO4HTFTUHa5cuUGduj46i+FpiOlhWdk57N5/hvatG+itq+5xTIwV9G7kSVJaFlfuJD1+gzKy/9gFAvw8+fiL1XQZNJPB73/Hxu3HdLb/ktLXcTL0c1yhgA5BvoTdvM/amf25/OsodnwziM7N/PUdmkFxtDTF1tyUy7EPEqX0bBWRcWlUddRdK6iQFqHHSk5O5ueff8bPzw8nJyeysrIICQmhWbNm7Nu3DxMTE2bMmEHHjh05c+YMZmZmrFq1ismTJzNv3jwaNGjAqVOneP3117GysmLQoEEcPXqUoKAgdu7cSe3atTEzK/gXyqxZs/j5559ZtGgR/v7+7N27l5dffhkXFxdat27NpEmTOH/+PFu2bMHZ2ZmwsDDS0sq3z/thnTo1Iz0tk8mTFmNkZIRKpaJnr9Y0baq7Lp+nIaaHHTl+kZTUdNq1DtR3KPm0rO7Mp33rYW5qzN3kDEasOKGz7h6AW3fi2LD1CP27B/Nq3zZcCLvB1z9uwsTEmM7PN9RZHI+j7+Nk6Oe4i70VNpZKRvdvysxle5n64y7aN/Zh5eQ+dBu3ioP/Rek7RINgq8z9+k3KyNFanpSRrSkzJM9yi5DhHW0DsHnzZqytrQFISUmhUqVKbN68GSMjI1avXo1KpeKHH37QnBRLly7F3t6e3bt388ILLzBlyhRmz55N7969gdwWoPPnz/P9998zaNAgXFxcAHBycsLd3b3AGDIyMvj000/ZuXMnzZo1A8DHx4f9+/fz/fff07p1ayIjI2nQoAGNG+eOC/D29i7ydWVkZJCRkaF5nphYuqbX48cvcOTIOYa93h0PD2eiomL4dc1O7O2saR5ct1R1P0sxPWzHrlM0qu+Pk4ONvkPJ51h4HC8tOoS9pRm9GlXms371GbTkCHE6GripUqsJ8K3Mmy+HAFDdx4NrkXfYsO2IQSVC+j5Ohn6OG/3/5+KWQ1dY+Edui97ZazEE1fJkaJeGkgg9pZ7lREi6xgrQtm1bQkNDCQ0N5ejRo4SEhNCpUyeuX7/O6dOnCQsLw8bGBmtra6ytrXF0dCQ9PZ2rV6+SkpLC1atXee211zTl1tbWzJgxg6tXrxY7hrCwMFJTU+nQoYNWPStWrNDU89Zbb7FmzRoCAwMZN24cBw8eLLLOWbNmYWdnp3lUqZJ/8F5JrP19F506NSUoqBaenq40a1aH9h2asGXLoVLV+6zFlCcmNp7TZ6/RoW0DfYdSoPSsHG7cT+PsjQQ++fM8OSoVPRtW1tn+nRxs8K7iqrXM29OFOwXMuNMnfR8nQz7HAe4lppKVncPF69pjrS5H3cXT1VZPURmexIzcgeM2SmOt5TZKE02ZIclLhEr7METSIlQAKysr/Pz8NM9/+OEH7OzsWLJkCcnJyTRq1IhVq1bl287FxYXk5Nz+3iVLlvDcc89plRsbG+fbpjB59fz1119Urqz9IatUKgE0ydnff//Njh07aNeuHW+//TZfffVVgXVOnDiR999/X/M8MTGxVMlQZmZWvhPbyMgIlVp/sx0MMaY8O/eEYmdnRZMG1fUdSrEYKRSYGuvut1K9AC8ib8ZqLYu8dQ93F3udxfAkdH2cDPkcB8jKVnHq8m38PZ20lvtWdiQqxrCSWn26n5pFYnoW/i5W3ErMbalXmhjh5WDBwYg4PUdXsUgiVAwKhQIjIyPS0tJo2LAhv/76K66urtja5v91Y2dnh4eHB9euXWPgwIEF1pc3JignJ6fAcoBatWqhVCqJjIykdevWha7n4uLCoEGDGDRoEC1btmTs2LGFJkJKpVKTRJWFevX9+OvvQzg62eLh4Uxk5B12bD9KcIuyuczAsxITgEql5p+9oTzfsj7GOvzSzGNhZkwVR0vNcw8HC6q725CYlkV8ahavtarGnkux3E3KwN7SlH5BXrjYKNl5LrqIWstW/24tGD5xEcvX7qZdcF3OX4li4/ajjHurl85ieBqOkyGc41bmplTzcNA8r+puTx0fV+KT0rkRm8i3vx/hpw97cvBsJPtOR9K+sQ8dm/rTbWz+H5BlRWlihJvNg883F2slXg4WpGRmcy8lCyszY5yszHCwNAWgkp05AAlpWSSkl08LjJmxQmuWmqOlKR62SlKzcohPy2bvtfu093fhbnIm91Kz6BTgQmJ6dr5rDRkEmT5fsWRkZBAdnfvBFhcXx7x580hOTqZbt24EBQXx5Zdf0qNHD6ZPn46npyfXr19n/fr1jBs3Dk9PT6ZNm8aoUaOws7OjY8eOZGRkcPz4ceLi4nj//fdxdXXFwsKCrVu34unpibm5OXZ2dlox2NjYMGbMGN577z1UKhUtWrQgISGBAwcOYGtry6BBg5g8eTKNGjWidu3aZGRksHnzZmrWrKmz4zRgQAc2bNjHqp+3k5SUir29Na1aN6Bbt2CdxfA0xARw+uw1Yu8m0L6NfrrFannYsnhIE83zDzoGALDp1E0+3XwBb2crugZ6YG9pRkJqJuduJTLsp2Nci03RWYw1/T2ZNf5lFv28jWW//UslVwfeHdqVEB0OLH8ajpMhnOOB1Sux+csHP/Q+fbM9AKu3n+Ht2X/x18HLvP/tVt57sRmfvdWBsBv3efWT9Rw+d6PcYvJxsuSjkBqa5y83yW3t3ht2l8UHr9Owij3Dg7015e+0yp1lt/70LdafLp9LD1Sxt2DEQ/vsUSd3TOixyHjWhN5iV9g9zIyN6FvfAwtTI8Lvp7L4cKThXUOIZ3uMkEKtNpD2VAPx6AUVbWxsCAgIYPz48fTpk3vhsOjoaMaPH8/ff/9NUlISlStXpl27dnz11VeaVqLVq1fz5Zdfcv78eaysrKhbty6jR4+mV6/cX7c//PAD06dP5+bNm7Rs2ZLdu3fnu7K0Wq3m22+/ZeHChVy7dg17e3saNmzIhx9+SKtWrZgxYwarV68mIiICCwsLWrZsyddff62Znv84iYmJ2NnZsXj3eSysDW/wriFxsyy7lrSyMvrnU/oOIZ+VrzfVdwj5vLLksL5DyGdi71r6DiGf18et1HcI+XQZ+IK+Q8jHzd6wprZnpibzwyvPkZCQUGAvRWnlfU/Y/m8xCtPSvXZ1VhqJv79RbrE+KUmEKjBJhIpPEqHikUSoeCQRKh5JhB5PV4mQXb/FKEwtH79BEdRZqST8ZniJkHSNCSGEEKJICspi1pdhdo3J9HkhhBBCVFjSIiSEEEKIIj3Lg6UlERJCCCFE0Z7h6fPSNSaEEEKICktahIQQQghRtDLoGlNL15gQQgghnkZlMUZI7jUmhBBCiKfSs5wIyRghIYQQQlRY0iIkhBBCiKI9w7PGJBESQgghRJGka0wIIYQQ4hkkLUKCo1FJmFnKvXeL4uVgeDdddXIq3Q0Qy0MtT8O5kaIh23D6jr5DyMcQb3Das76bvkPIZ9b68/oOQUtORopO9iMtQkIIIYSosPISodI+SmLv3r1069YNDw8PFAoFGzZsKHTdN998E4VCwdy5c0v82iQREkIIIYTBSUlJoX79+syfP7/I9f744w8OHz6Mh4fHE+1HusaEEEIIUSR9dI116tSJTp06FbnOzZs3eeedd9i2bRtdunR5orgkERJCCCFE0cpw+nxiYqLWYqVSiVJZ8nGYKpWKV155hbFjx1K7du0nDku6xoQQQgihM1WqVMHOzk7zmDVr1hPV8/nnn2NiYsKoUaNKFY+0CAkhhBCiSGXZNRYVFYWt7YMZpk/SGnTixAm++eYbTp48Weq4pEVICCGEEEUqy1ljtra2Wo8nSYT27dtHTEwMXl5emJiYYGJiwvXr1/nggw/w9vYuUV3SIiSEEEKIIhnadYReeeUV2rdvr7UsJCSEV155hSFDhpSoLkmEhBBCCGFwkpOTCQsL0zwPDw8nNDQUR0dHvLy8cHJy0lrf1NQUd3d3atSoUaL9SCIkhBBCiKLp4aarx48fp23btprn77//PgCDBg1i2bJlpQzmAUmEhBBCCFEkfXSNtWnTBrW6+Ld/ioiIKGFEuWSwtBBCCCEqLGkRMlAXL15k8ODBhIaGEhAQwIYNG6hWrRqnTp0iMDBQLzH5OFrSxs8JT3tz7MxNWXo0irPRSVrrhNRwoWlVeyxMjQm/n8q6M9HcTcmsUDEVJCM9k3+3HOTi2TBSklJx93SlU882VPZy18n+63rY8r9Gnvi7WOFkrWTq5vMcvHYfAGMjBYObViXI24FKduakZGRzMiqBHw9GcF+Hx+nHtfv4ad0+om7nxhXg487Y1zrRIfjJL5RWUg2qOvBqsDc1K9ngYmvOB7+cYvfFWE35G218CanjjpudOVk5Ki7cSmTBP2GcvZlQbjHVcLWmS203qjlZ4mBpxte7wjgR9WB/jb3saVfdBW8nS2yUJny46TyRcWnlFo+hxvQolUrFxo37OXz4HIkJKdjbW9O8eV26dG2us5t/GuL59KQMbbB0WapQLUKDBw/Wmsbn5OREx44dOXPmTLHrWLZsGfb29vmWe3t7P9HN3gozZcoUrKysuHTpEv/880+Z1VsaZiZG3EpMZ/2Z6ALL2/o50dLHkbVnbvPNvnAys9W80dQLE6PyO/kNMaaCbPxtB9cuX6fXgI68NfZVfKtXZcWidSTGJ+tk/+amxlyLTWbe7mv5ypQmRvi7WrHqWBQjfgll2t8XqeJgwfSuNXUSWx4PV3umjOzBrhXj+Hf5WFo2rs7AMYu5cPW2zmKwMDXmcnQSn/91scDyyHspfP73BfovOMhrPx7ldnwa819tiL2labnFpDQxIjIujeVHogotvxSTzK8nbpRbDE9DTI/asuUwe3afYsCADkz/ZBh9+rRh69Yj/PvPCZ3FYIjn05NSUAbT50s9yKh8VLgWoY4dO7J06VIAoqOj+fjjj+natSuRkZF6jixXZmYmZmZmXL16lS5dulC1alUAkpKSHrNl+bsYk8zFmMK/uFv5OLLz8l3OReeu88upm0wNqU4ddxtCbyUWut2zFtOjsjKzOX/mCi8N7Y63rycAbTs24/L5axw7eJp2nYPLPYZj1+M4dj2uwLLUzBwmbDintWze7qvMezEQF2slsckZ5R4fQKdWdbWeTxrRnZ/W7ef42XBq+lbSSQwHw+5yMOxuoeVb/9NOuOdsu0TPRp74u9lwLPx+ucR05lYiZ4o4Vw/8f8ues5VZuey/IIYY06OuXr1J/UB/6tXzy43F2Z6jR88THq67xNoQzyeRX4VqEYLcK1i6u7vj7u5OYGAgEyZMICoqitjYWHbv3o1CoSA+Pl6zfmhoKAqFgoiICHbv3s2QIUNISEjQZLhTp06lTZs2XL9+nffeey9f8+H+/ftp2bIlFhYWVKlShVGjRpGSkqIp9/b25pNPPuHVV1/F1taWN954A4VCwYkTJ5g+fbpmHw9Tq9X4+fnx1VdfaS3Pi/Xh6Ya64mhpiq25KZdjHyQl6dkqIuPSqOpoofN4DCkmlUqFWqXGxET7d4eJqQmR4bd0FkdJWCmNUanVpGRm62X/OTkq1m0/TmpaJk3qVtNLDI9jYqygdyNPktKyuHJH/z9UhDZf38pcvBBBdHRuQhEVdYcrV25Qp66PniMrmKGfT2V5QUVDU+FahB6WnJzMzz//jJ+fX77rERSkefPmzJ07l8mTJ3Pp0iUArK2tGTVqFPXr1+eNN97g9ddf16x/9epVOnbsyIwZM/jpp5+IjY1l5MiRjBw5UtMqBfDVV18xefJkpkyZAsBnn31G+/bt6dixI2PGjMHa2pq7dx/8qlAoFAwdOpSlS5cyZswYzfKlS5fSqlUr/Pz8Sn1sSspWmXsqJWXkaC1PysjWlOmaocSkNDfD07sSe3YcwdnNEWsbS/47eYkbEbdxdLbXWRzFZWqsYFhwNXZfiiU1M+fxG5Shc2E3CRk6m/TMbKwslKz88nUCfHTTGlRcLas782nfepibGnM3OYMRK04Qn5ql77DEIzp1akZ6WiaTJy3GyMgIlUpFz16tadpUd2POiuOpOZ/0MH1eVypcIrR582asra0BSElJoVKlSmzevBkjo8c3jpmZmWFnZ4dCocDdXXuQq7GxMTY2NlrLZ82axcCBAxk9ejQA/v7+fPvtt7Ru3ZqFCxdibm4OwPPPP88HH3ygVZ+JiQnW1taa+h5OhCB3vNPkyZM5evQoQUFBZGVlsXr16nytRA/LyMggI+NBN8ejdwAW5af3gI78uWY7c6YtQWGkoFJlV+o0qMHtGzH6Dk2LsZGCjzsFAPDt7qs6379/VTf2rppIYnIaf/5zihFTV7L5+3cNKhk6Fh7HS4sOYW9pRq9GlfmsX30GLTlCnI4H4IuiHT9+gSNHzjHs9e54eDgTFRXDr2t2Ym9nTfPguo+vQEfkfNK/Ctc11rZtW0JDQwkNDeXo0aOEhITQqVMnrl+/Xub7On36NMuWLcPa2lrzCAkJQaVSER4erlmvcePGJa7bw8ODLl268NNPPwGwadMmMjIy+N///lfoNrNmzdK642+VKlVK/qIKkZiR24ViozTWWm6jNNGU6ZohxeTobM+Qkf34cNZI3p88jDfeG4BKpcLByU6ncRQlLwlytTFnwoazOm8NAjAzNcGniguBNb2YMrIHdfwrs2jNbp3HUZT0rBxu3E/j7I0EPvnzPDkqFT0bVtZ3WOIRa3/fRadOTQkKqoWnpyvNmtWhfYcmbNlySN+haXlazqdnuWuswiVCVlZW+Pn54efnR5MmTfjhhx9ISUlhyZIlmlahhy/glJX15E2UycnJDB8+XJN4hYaGcvr0aa5cuYKvr69WTE9i2LBhrFmzhrS0NJYuXUr//v2xtLQsdP2JEyeSkJCgeURFFTzj40ncT80iMT0Lf5cHr0VpYoSXgwXX7+t22qwhx2SmNMXG1pq01HTCLl6nRh3DGK+QlwRVtjdnwob/SErXT/L6KJVaTaaexikVl5FCgalxhfsoNXiZmVn5vniNjIxQleACffpgqOfTs5wIVbiusUcpFAqMjIxIS0vDxcUFgNu3b+Pg4ADkDkB+mJmZGTk5+X8pF7S8YcOGnD9/vtzG7HTu3BkrKysWLlzI1q1b2bt3b5HrK5XKJ7rLbx4zY4XWLBBHS1M8bJWkZuUQn5bN3mv3ae/vwt3kTO6lZtEpwIXE9Ox81/UpS4YYU0HCLkagVoOzqwP378azfdM+nF0daBCkm/EK5qZGeNg9GCDubmuOj7MVSenZ3E/NZFLnAPxdrJm06TxGCgUO/z99Nyk9m2yVbr44ps37k/bNa1PF3YGk1HTWbj3O/hNXWPfdCJ3sH8DCzJgqjg9+THg4WFDd3YbEtCziU7N4rVU19lyK5W5SBvaWpvQL8sLFRsnOcwVfvqEsKE2McLN58HfrYq3Ey8GClMxs7qVkYWVmjJOVmeY9q2SX2+WekJZFQjkltIYY06Pq1ffjr78P4ehki4eHM5GRd9ix/SjBLerpZP9gmOfTk1Ioch+lrcMQVbhEKCMjg+jo3JMsLi6OefPmkZycTLdu3fDz86NKlSpMnTqVmTNncvnyZWbPnq21vbe3N8nJyfzzzz/Ur18fS0tLLC0t8fb2Zu/evbz44osolUqcnZ0ZP348TZs2ZeTIkQwbNgwrKyvOnz/Pjh07mDdvXqlfi7GxMYMHD2bixIn4+/vTrFmzUtdZlCr2FowI9tY871End/zSsch41oTeYlfYPcyMjehb3wMLUyPC76ey+HBkuX6RGmJMBUlPz+Cfvw6QGJ+MhaWSmvX8adc5GGNj48dvXAaqu9rwVZ8H4yLebJXbErX9/B1WHomkuU/uZIFFAxpobTdm3X+c0dHF3e7GJfPW1BXcuZuIrbU5tf0qs+67EbR9TnfXM6rlYcviIU00zz/omDteatOpm3y6+QLezlZ0DfTA3tKMhNRMzt1KZNhPx7gWm1JYlaXm42TJRyEPbiL5cpPcLu29YXdZfPA6DavYM/yhv4F3/v+9XX/6FutPl89UcUOM6VEDBnRgw4Z9rPp5O0lJqdjbW9OqdQO6dSv/y1XkMcTzSeSnUJfkRh5PucGDB7N8+XLNcxsbGwICAhg/fjx9+vQB4MCBA7z11ltcuXKFJk2aMGrUKP73v/8RHh6Ot7c3AG+99Ra///479+7dY8qUKUydOpXDhw8zfPhwLl26REZGhqZ77dixY3z00UccOnQItVqNr68v/fv358MPPwRyE6vRo0drBlTnCQwMpGfPnpqp8xEREQVeWfratWv4+vryxRdfMHbs2BIdj8TEROzs7Bi28ghmltYl2rai8XJ48pa08vLXKd1dD6W4to9qoe8Q8mk0Zbu+Q8inpu/jZ6kK6FnfTd8h5DNr/Xl9h6AlJyOFS7N7k5CQgK2tbZnXn/c94fPOWoyUTzaMI48qI4Vr3/Utt1ifVIVqEVq2bNlj71gbHByc70rTj+aKCxcuZOHChVrLmjZtyunTp/PV16RJE7ZvL/yDuLCbxD3aJeft7V3gzedu3ryJqakpr776aqH7EEIIIUqlDLrGZPq8KFMZGRnExsYydepU/ve//+HmZni/nIQQQghDZ3hD00Wx/PLLL1StWpX4+Hi++OILfYcjhBDiGfYszxqTROgpNXjwYHJycjhx4gSVKxveNSeEEEI8O/JmjZX2YYgkERJCCCFEhSVjhIQQQghRJCMjBUZGpWvSUZdy+/IiiZAQQgghivQsX1BRusaEEEIIUWFJi5AQQgghilQWs74MddaYJEJCCCGEKNKz3DUmiZAQQgghivQstwjJGCEhhBBCVFjSIiSEEEKIIj3LLUKSCAnORcZhYp6p7zA0XO0t9B1CPsvXHNV3CPkMejFI3yHks/b0DX2HkM/E3rX0HUI+h64n6juEp8LNxAx9h5DP3Jcb6DsELSnJSfSaXf77eZbHCEnXmBBCCCEqLGkREkIIIUSRFJRB1xiG2SQkiZAQQgghiiRdY0IIIYQQzyBpERJCCCFEkWTWmBBCCCEqLOkaE0IIIYR4BkmLkBBCCCGKJF1jQgghhKiwnuWuMUmEhBBCCFGkZ7lFSMYICSGEEKLCkhYhIYQQQhStDLrGDPTC0pIIlRWFQsEff/xBz549y20f3t7ejB49mtGjR5fbPopS18OW/zXyxN/FCidrJVM3n+fgtfsAGBspGNy0KkHeDlSyMyclI5uTUQn8eDCC+ynld0PXGq7WdKntRjUnSxwszfh6VxgnohI05Y297GlX3QVvJ0tslCZ8uOk8kXFp5RYPQLMAN0Z2rUP9ak64O1jyypx/2XI8UlP+3fAWvNTaT2ubf07fpP/nO8otJh9HS9r4OeFpb46duSlLj0ZxNjpJa52QGi40rWqPhakx4fdTWXcmmrvl+N49SqVSsXHjfg4fPkdiQgr29tY0b16XLl2b661J3RBiMsT3zhBjKkhGeib/bjnIxbNhpCSl4u7pSqeebajs5a7TOPIMGzWXmLsJ+ZZ37tCYN4d00UNExfcsd41JIlRM0dHRzJw5k7/++oubN2/i6upKYGAgo0ePpl27dty+fRsHBwd9h1muzE2NuRabzLZzd5jStaZWmdLECH9XK1Ydi+JabArW5iaMaOXD9K41Gfnr6XKLSWliRGRcGnvD7jG6rW+B5ZdikjkScZ9hzb3LLY6HWSpNOHv9Pqt2X2HF+88XuM7O0BuM+v6A5nlGdk65xmRmYsStxHSORsYzJKhKvvK2fk609HHkl1M3uZ+aRccarrzR1Isvdl0lW6Uu19jybNlymD27TzFkaBc8PJy5HhHN0qV/Y2GhpF37xjqJwRBjMsT3zhBjKsjG33YQc/suvQZ0xMbWmjMnLrBi0TreHjcIW3trncWRZ/aM11E99PqvR8UwedZKgp+rrfNYxAOSCBVDREQEwcHB2Nvb8+WXX1K3bl2ysrLYtm0bb7/9NhcvXsTdXT+/MHTp2PU4jl2PK7AsNTOHCRvOaS2bt/sq814MxMVaSWxyRrnEdOZWImduJRZafuD/W6ycrczKZf8F+ef0Tf45fbPIdTKzVcQklG/L1MMuxiRzMSa50PJWPo7svHyXc9G56/xy6iZTQ6pTx92G0CKOb1m6evUm9QP9qVcvt7XM2dmeo0fPEx5+Wyf7N9SYDPG9M8SYHpWVmc35M1d4aWh3vH09AWjbsRmXz1/j2MHTtOscrJM4HmZna6X1fO3G/bi7OVCnZlWdx1JSz/KsMRksXQwjRoxAoVBw9OhR+vTpQ/Xq1alduzbvv/8+hw8fBnKb/DZs2KDZ5saNG7z00ks4OjpiZWVF48aNOXLkCABXr16lR48euLm5YW1tTZMmTdi5c6fWPmNiYujWrRsWFhZUq1aNVatW5Ytrzpw51K1bFysrK6pUqcKIESNITi78w0nXrJTGqNRqUjKz9R2KwQmu6c6Fhf05/FUvvhzaFAdrpd5icbQ0xdbclMuxD86d9GwVkXFpVHW00Fkcvr6VuXghgujo3OQ1KuoOV67coE5dH53F8DTE9DBDee8MMSaVSoVapcbERPv3vompCZHht3QWR2GysnPYvf8M7Vs3MNguo4fldY2V9mGIpEXoMe7fv8/WrVuZOXMmVlZW+crt7e3zLUtOTqZ169ZUrlyZjRs34u7uzsmTJ1GpVJryzp07M3PmTJRKJStWrKBbt25cunQJLy8vAAYPHsytW7fYtWsXpqamjBo1ipiYGK39GBkZ8e2331KtWjWuXbvGiBEjGDduHAsWLCjwtWRkZJCR8aBlJjGx/H6ZmRorGBZcjd2XYknNLN9un6fNv2du8tex61yPTcLbzZaP+zXk1/Ht6Tj5b1Rq3XUb5LFV5n4MJGVov09JGdmaMl3o1KkZ6WmZTJ60GCMjI1QqFT17taZpU/11GxhiTA8zlPfuYYYSk9LcDE/vSuzZcQRnN0esbSz57+QlbkTcxtHZXmdxFObI8YukpKbTrnWgvkMxWHv37uXLL7/kxIkT3L59W2scblZWFh9//DF///03165dw87Ojvbt2/PZZ5/h4eFRov1IIvQYYWFhqNVqAgICir3N6tWriY2N5dixYzg6OgLg5/dgcGz9+vWpX7++5vknn3zCH3/8wcaNGxk5ciSXL19my5YtHD16lCZNmgDw448/UrOm9richwdNe3t7M2PGDN58881CE6FZs2Yxbdq0Yr+OJ2VspODjTrnH69vdV8t9f0+bPw6Fa/59ISqe85H3OTG3L8G13Nl3Tn/dQPp2/PgFjhw5x7DXu+Ph4UxUVAy/rtmJvZ01zYPrSkyixHoP6Mifa7YzZ9oSFEYKKlV2pU6DGty+EfP4jcvZjl2naFTfHycHG32HUiz66BpLSUmhfv36DB06lN69e2uVpaamcvLkSSZNmkT9+vWJi4vj3XffpXv37hw/frxE+5FE6DHUT/ALPTQ0lAYNGmiSoEclJyczdepU/vrrL27fvk12djZpaWlERubOLLpw4QImJiY0atRIs01AQEC+1qedO3cya9YsLl68SGJiItnZ2aSnp5OamoqlpWW+/U6cOJH3339f8zwxMZEqVfIPdCyNvCTI1caccX/8J61BxXA9Jpm7ien4uNnoJRFKzMjturRRGpOU8aAb00Zpws3EdJ3Fsfb3XXTq1JSgoFoAeHq6cu9eAlu2HNJb0mGIMT3MUN47Q43J0dmeISP7kZmRRUZGBja21vy+4i8cnOx0GsejYmLjOX32GhPe66fXOEpCH7PGOnXqRKdOnQoss7OzY8cO7Zm28+bNIygoiMjISE3vSnHIGKHH8Pf3R6FQcPHixWJvY2FRdD/4mDFj+OOPP/j000/Zt28foaGh1K1bl8zM4k8tjYiIoGvXrtSrV49169Zx4sQJ5s+fD1BoPUqlEltbW61HWcpLgirbmzNhw38kpcvYoOKo5GiJo7WSO/G6Gzz9sPupWSSmZ+Hv8qDrV2lihJeDBdfv6y6mzMysfB+URkZGeukuzGOIMT3MUN47Q4/JTGmKja01aanphF28To06+h3jtXNPKHZ2VjRpUF2vcehLYmKi1uPhIRulkZCQgEKhKHDISlGkRegxHB0dCQkJYf78+YwaNSrfOKH4+Ph8B71evXr88MMP3L9/v8BWoQMHDjB48GB69eoF5LYQRUREaMoDAgLIzs7mxIkTmq6xS5cuER8fr1nnxIkTqFQqZs+ejZFRbj7722+/lcErLpy5qREedg+SPHdbc3ycrUhKz+Z+aiaTOgfg72LNpE3nMVIocLA0BSApPbvcpswqTYxws3kw0NjFWomXgwUpmdncS8nCyswYJyszTSyV7MwBSEjLIqGcEjUrpQnV3B8kmVVdrKlT1ZG45AzikzMY2yeQTUevExOfhrebDVMHNCL8TiL/nil6pllpmBkrtGbOOVqa4mGrJDUrh/i0bPZeu097fxfuJmdyLzWLTgEuJKZn57s2THmqV9+Pv/4+hKOTLR4ezkRG3mHH9qMEt6insxgMMSZDfO8MMaaChF2MQK0GZ1cH7t+NZ/umfTi7OtAgSH9jvFQqNf/sDeX5lvUxNn562iLKskXo0Z6IKVOmMHXq1FLVnZ6ezvjx43nppZdK/CNfEqFimD9/PsHBwQQFBTF9+nTq1atHdnY2O3bsYOHChVy4cEFr/ZdeeolPP/2Unj17MmvWLCpVqsSpU6fw8PCgWbNm+Pv7s379erp164ZCoWDSpEmagdQANWrUoGPHjgwfPpyFCxdiYmLC6NGjtVqa/Pz8yMrK4rvvvqNbt24cOHCARYsWletxqO5qw1d9HnQHvNkq91fV9vN3WHkkkuY+TgAsGtBAa7sx6/7jzM38FxErCz5OlnwUUkPz/OUmuX9ge8PusvjgdRpWsWd4sLem/J3/j3n96VusP10+3VCBPs78Oamj5vmMV4IA+GVPGGN/OkQtLwf6t/TFzsqM6Lg0dv93k1m/nSIzW1VYlaVWxd6CEQ8dhx51ci/3cCwynjWht9gVdg8zYyP61vfAwtSI8PupLD4cqdNrvgwY0IENG/ax6uftJCWlYm9vTavWDejWTffTnA0pJkN87wwxpoKkp2fwz18HSIxPxsJSSc16/rTrHIyxsbFO43jY6bPXiL2bQPs2DR6/sgEpyzFCUVFRWsmKUlm6WbNZWVn069cPtVrNwoULSx6X+kkGwVRAt2/fZubMmWzevJnbt2/j4uJCo0aNeO+992jTpk2+K0tfv36dDz74gB07dpCdnU2tWrWYP38+QUFBREREMHToUA4fPoyzszPjx4/n999/JzAwkLlz5wK5F3AcNmwYO3fuxM3NjRkzZjBp0iStK0t//fXXfPnll8THx9OqVSsGDhzIq6++SlxcXLGaBhMTE7Gzs6PZzK2YmOefEacvrvb6mfZblK1b/9N3CPkMejFI3yHk06xq2Xa3PqsOXdfNtXSedl4O+rusRGEauhvWOZ6SnESvIF8SEhLKfLgDPPieCJ61vdTfE9npKRyY+MITxVrY3RvykqBr167x77//4uTkVOK4JBGqwCQRKj5JhIpHEqHikUSoeCQReryKnAjlJUFXrlxh165duLi4PFFc0jUmhBBCiCLpY/p8cnIyYWFhmufh4eGEhobi6OhIpUqV6Nu3LydPnmTz5s3k5OQQHR0N5I7tNTMr/t0EJBESQgghRJH0MX3++PHjtG3bVvM87/IvgwYNYurUqWzcuBGAwMBAre127dpFmzZtir0fSYSEEEIIYXDatGlT5LX8ympkjyRCQgghhCiSgjLoGiuTSMqeJEJCCCGEKJKRQoFRKTOh0m5fXp6eqzkJIYQQQpQxaRESQgghRJH0MWtMVyQREkIIIUSR9DFrTFckERJCCCFEkYwUuY/S1mGIZIyQEEIIISosaRESQgghRNEUZdC1ZaAtQpIICSGEEKJIMlhaPNNqezlgZmmt7zA07sSn6TuEfAzxBqeGeENKN0vDi2n0z6f0HUI+bRp56juEfHafuKHvEPKp6VvyO4mXtw7VnuzGnuVFmZ2h7xCeepIICSGEEKJIiv//r7R1GCJJhIQQQghRJJk1JoQQQgjxDJIWISGEEEIUqcJfUHHjxo3FrrB79+5PHIwQQgghDE+FnzXWs2fPYlWmUCjIyckpTTxCCCGEEDpTrERIpVKVdxxCCCGEMFBGCgVGpWzSKe325aVUY4TS09MxNzcvq1iEEEIIYYCe5a6xEs8ay8nJ4ZNPPqFy5cpYW1tz7do1ACZNmsSPP/5Y5gEKIYQQQr/yBkuX9mGISpwIzZw5k2XLlvHFF19gZmamWV6nTh1++OGHMg1OCCGEEKI8lTgRWrFiBYsXL2bgwIEYGxtrltevX5+LFy+WaXBCCCGE0L+8rrHSPgxRiccI3bx5Ez8/v3zLVSoVWVlZZRKUEEIIIQyHDJZ+SK1atdi3bx9Vq1bVWr527VoaNGhQZoFVdIsXL+aTTz7h5s2bzJkzh/j4eDZs2EBoaKjeYvJxtKSNnxOe9ubYmZuy9GgUZ6OTtNYJqeFC06r2WJgaE34/lXVnormbklluMdVwtaZLbTeqOVniYGnG17vCOBGVoClv7GVPu+oueDtZYqM04cNN54mMK9+buhricSpIRnom/245yMWzYaQkpeLu6Uqnnm2o7OWu0zjyDBs1l5i7CfmWd+7QmDeHdNFJDA2qOvBqsDc1K9ngYmvOB7+cYvfFWE35G218CanjjpudOVk5Ki7cSmTBP2GcvZk/7rJiiOeTIR4nQ/wsKEjsvQQWrNjG4ZOXSM/MwtPdiQ/f6UNNP8O7EW9FUeKuscmTJzNy5Eg+//xzVCoV69ev5/XXX2fmzJlMnjy5PGIstsGDB2sGZJmamuLm5kaHDh346aefnqpLACQmJjJy5EjGjx/PzZs3eeONN/QdEgBmJkbcSkxn/ZnoAsvb+jnR0seRtWdu882+cDKz1bzR1AuTcrzBjNLEiMi4NJYfiSq0/FJMMr/q8M7ahnicCrLxtx1cu3ydXgM68tbYV/GtXpUVi9aRGJ+s0zjyzJ7xOssXfKB5TJ/4CgDBz9XWWQwWpsZcjk7i878K7uaPvJfC539foP+Cg7z241Fux6cx/9WG2FualltMhng+GeJxMsTPgkclJqfx5sTvMTExYvakwaz6djQjh3TGxspCbzEVl6KMHoaoxC1CPXr0YNOmTUyfPh0rKysmT55Mw4YN2bRpEx06dCiPGEukY8eOLF26lJycHO7cucPWrVt59913Wbt2LRs3bsTEJP9LzsrKwtS0/P5ASyoyMpKsrCy6dOlCpUqV9B2OxsWYZC7GFP4l2crHkZ2X73IuOnedX07dZGpIdeq42xB6K7FcYjpzK5EzRdR94Np9AJytzApdp6wZ4nF6VFZmNufPXOGlod3x9s39Jdq2YzMun7/GsYOnadc5WCdxPMzO1krr+dqN+3F3c6BOzaqFbFH2Dobd5WDY3ULLt/6nnYzM2XaJno088Xez4Vj4/XKJyRDPJ0M8Tob4WfCoVev34Opsx0fv9NUs83Bz1Fs8JfEs32LjiW662rJlS3bs2EFMTAypqans37+fF154oaxjeyJKpRJ3d3cqV65Mw4YN+fDDD/nzzz/ZsmULy5YtA3LfjIULF9K9e3esrKyYOXMmOTk5vPbaa1SrVg0LCwtq1KjBN998o1V3dnY2o0aNwt7eHicnJ8aPH8+gQYO0rrydkZHBqFGjcHV1xdzcnBYtWnDs2DFN+e7du1EoFPzzzz80btwYS0tLmjdvzqVLlwBYtmwZdevWBcDHxweFQkFERIRWHHv37sXU1JToaO0Pm9GjR9OyZcsyOpIl42hpiq25KZdjH3xgp2eriIxLo6qj4f/a0RVDOU4qlQq1Sp3vh4GJqQmR4bd0FkdhsrJz2L3/DO1bNzDYD08TYwW9G3mSlJbFlTtJj9+gHBjK+VQUQzhOhmL/sQsE+Hny8Rer6TJoJoPf/46N2489fkNRrp747vPHjx9n5cqVrFy5khMnTpRlTGXu+eefp379+qxfv16zbOrUqfTq1Yv//vuPoUOHolKp8PT05Pfff+f8+fNMnjyZDz/8kN9++02zzeeff86qVatYunQpBw4cIDExkQ0bNmjta9y4caxbt47ly5dz8uRJ/Pz8CAkJ4f597V9BH330EbNnz+b48eOYmJgwdOhQAPr378/OnTsBOHr0KLdv36ZKlSpa27Zq1QofHx9WrlypWZaVlcWqVas09RQkIyODxMRErUdZsVXmfqEmZWjfYiUpI1tTJgznOCnNzfD0rsSeHUdITEhGpVJx+vgFbkTcJjkxRWdxFObI8YukpKbTrnWgvkPJp2V1Z/Z9+DyHPm7PgGZVGbHiBPGp+pkoYijnU0EM6TgZilt34tiw9QieHk58PWUIvTo+x9c/buLvf0/qO7THMlKUzcMQlfgv5caNG7z00kscOHAAe3t7AOLj42nevDlr1qzB09MwB3wFBARw5swZzfMBAwYwZMgQrXWmTZum+Xe1atU4dOgQv/32G/369QPgu+++Y+LEifTq1QuAefPm8ffff2u2SUlJYeHChSxbtoxOnToBsGTJEnbs2MGPP/7I2LFjNevOnDmT1q1bAzBhwgS6dOlCeno6FhYWODk5AeDi4oK7e8EDV1977TWWLl2qqXPTpk2kp6drYi3IrFmztF6jqNh6D+jIn2u2M2faEhRGCipVdqVOgxrcvhGj79DYsesUjer74+Rgo+9Q8jkWHsdLiw5hb2lGr0aV+axffQYtOUKcjge7Gzo5Tvmp1GoCfCvz5sshAFT38eBa5B02bDtC5+cb6jm6oknX2EOGDRtGVlYWFy5c4P79+9y/f58LFy6gUqkYNmxYecRYJtRqtdab0Lhx43zrzJ8/n0aNGuHi4oK1tTWLFy8mMjISgISEBO7cuUNQUJBmfWNjYxo1aqR5fvXqVbKysggOfjC+wtTUlKCgIC5cuKC1r3r16mn+nTcOKCam+F9AgwcPJiwsjMOHDwO5XWr9+vXDysqq0G0mTpxIQkKC5hEVVfCgwieRmJENgI3SWGu5jdJEUyYM6zg5OtszZGQ/Ppw1kvcnD+ON9wagUqlwcLLTaRyPiomN5/TZa3Roa5izUNOzcrhxP42zNxL45M/z5KhU9GxYWS+xGNL59ChDOk6GwsnBBu8qrlrLvD1duFPAbEmhOyVOhPbs2cPChQupUaOGZlmNGjX47rvv2Lt3b5kGV5YuXLhAtWrVNM8fTRjWrFnDmDFjeO2119i+fTuhoaEMGTKEzMzy+fXy8ODsvAStJDPbXF1d6datG0uXLuXOnTts2bKlyG4xyB0/ZWtrq/UoK/dTs0hMz8Lf5cFxVZoY4eVgwfX7up+iaqgM8TiZKU2xsbUmLTWdsIvXqVHHRy9x5Nm5JxQ7OyuaNKiu1ziKy0ihwNT4iUcZlIohnk+F0edxMhT1AryIvBmrtSzy1j3cXez1E1AJPYsXU4Qn6BqrUqVKgRdOzMnJwcPDo0yCKmv//vsv//33H++9916h6xw4cIDmzZszYsQIzbKrV69q/m1nZ4ebmxvHjh2jVatWQO5rPnnyJIGBgQD4+vpiZmbGgQMHNNdZysrK4tixY4wePbrMX9ewYcN46aWX8PT0xNfXV6slqjyYGSu0Zlw4WpriYaskNSuH+LRs9l67T3t/F+4mZ3IvNYtOAS4kpmfnu+ZJWVKaGOFmo9Q8d7FW4uVgQUpmNvdSsrAyM8bJygyH/5+2W8ku9ybBCWlZJKSXzy9mQzxOBQm7GIFaDc6uDty/G8/2TftwdnWgQZDupqs/SqVS88/eUJ5vWR9jPXxpWpgZU8XRUvPcw8GC6u42JKZlEZ+axWutqrHnUix3kzKwtzSlX5AXLjZKdp4reGp7WTDE88kQj5MhfhY8qn+3FgyfuIjla3fTLrgu569EsXH7Uca91Usn+y+NZ7lrrMSJ0Jdffsk777zD/PnzNd1Lx48f59133+Wrr74q8wBLKiMjg+joaK3p87NmzaJr1668+uqrhW7n7+/PihUr2LZtG9WqVWPlypUcO3ZMqxXpnXfeYdasWfj5+REQEMB3331HXFyc5s21srLirbfeYuzYsTg6OuLl5cUXX3xBamoqr732Wpm/1pCQEGxtbZkxYwbTp08v8/ofVcXeghHB3prnPerkjl86FhnPmtBb7Aq7h5mxEX3re2BhakT4/VQWH44kW6Uut5h8nCz5KORB6+TLTXIHlu8Nu8vig9dpWMWe4Q/F/E6r3NaO9advsf707XKJyRCPU0HS0zP4568DJMYnY2GppGY9f9p1Dta6dY6unT57jdi7CbRvo59usVoetiwe0kTz/IOOAQBsOnWTTzdfwNvZiq6BHthbmpGQmsm5W4kM++kY12LLb4C5IZ5PhnicDPGz4FE1/T2ZNf5lFv28jWW//UslVwfeHdqVEAOcFPCoshjsbKiDpRVqtfqxfy0ODg5amVxKSgrZ2dmaqbd5/7aysso3O0qXBg8ezPLlywEwMTHBwcGB+vXrM2DAAAYNGoSRUe4vTIVCwR9//JFv2vubb77JH3/8gUKh4KWXXsLOzo4tW7ZoruacnZ3Ne++9x4oVKzA2NuaNN97g2rVrGBsb88svvwCQnp7OuHHj+OWXX0hKSqJx48Z8/fXXNGmS+6Gxe/du2rZtS1xcnGaweWhoKA0aNCA8PBxvb+98zyF3lltBV5aePHkyn376KVFRUSW+5lBiYiJ2dnYMW3kEM0vrEm1bnu7EG1aTPoCbvWFMRX6Yl4Py8SvpWEP3sutuLSujfz6l7xDyadPI8CaV7NbjhQYLU9PXSd8h5PPh8/76DkFLclIiretVISEhoUyHO+TJ+5546YcDpf6eyExN5pdhweUW65MqViKUl1wUx6BBg0oV0NNEpVJRs2ZN+vXrxyeffKKXGF577TViY2PZuHFjibeVRKj4JBEqHkmEikcSoeKRROjxdJUIDfjxYJkkQqtfa25wiVCxusYqUnJTlOvXr7N9+3Zat25NRkYG8+bNIzw8nAEDBug8loSEBP777z9Wr179REmQEEIIUVxlcYsMA+0ZK/kYoYelp6fnm1VlSFleWTMyMmLZsmWMGTMGtVpNnTp12LlzJzVr1tR5LD169ODo0aO8+eabBnFrEyGEEOJpVOJEKCUlhfHjx/Pbb79x7969fOU5OTkFbPVsqFKlCgcOHNB3GEDuWCMhhBBCF4wUCoxKOeurtNuXlxLPTx03bhz//vsvCxcuRKlU8sMPPzBt2jQ8PDxYsWJFecQohBBCCD0q7TWEDPlaQiVuEdq0aRMrVqygTZs2DBkyhJYtW+Ln50fVqlVZtWoVAwcOLI84hRBCCCHKXIlbhO7fv4+PT+71F2xtbTXT5Vu0aGHQV5YWQgghxJPJu6BiaR+GqMSJkI+PD+Hh4UDujUzz7s6+adMmzXVxhBBCCPHseJa7xkqcCA0ZMoTTp08DuXdNnz9/Pubm5rz33ntad1cXQgghhDB0JU6E3nvvPUaNGgVA+/btuXjxIqtXr+bUqVO8++67ZR6gEEIIIfQrb9ZYaR8lsXfvXrp164aHhwcKhYINGzZolavVaiZPnkylSpWwsLCgffv2XLlypeSvrcRbPKJq1ar07t2bevXqlbYqIYQQQhggfXSNpaSkUL9+febPn19g+RdffMG3337LokWLOHLkCFZWVoSEhJCenl6i/RRr1ti3335b7ArzWouEEEII8WzQx93nO3XqRKdOnQosU6vVzJ07l48//pgePXoAsGLFCtzc3NiwYQMvvvhisfdTrETo66+/LlZlCoVCEiEhhBBCFCoxMVHruVKpRKks2b0Tw8PDiY6Opn379ppldnZ2PPfccxw6dKjsE6G8WWJC6IKh3dQQYPT6M/oOIZ//IvQdQX4dervoO4R8DPHGnYZ4Y+F/x7fVdwj5eLd+T98hFGCIvgPQkpWWrJP9GFH6sTR521epUkVr+ZQpU5g6dWqJ6oqOjgbAzc1Na7mbm5umrLhKda8xIYQQQjz7yrJrLCoqSuu+pCVtDSprpR4sLYQQQghRXLa2tlqPJ0mE3N3dAbhz547W8jt37mjKiksSISGEEEIUSaEAo1I+yvKCitWqVcPd3Z1//vlHsywxMZEjR47QrFmzEtUlXWNCCCGEKFJeMlPaOkoiOTmZsLAwzfPw8HBCQ0NxdHTEy8uL0aNHM2PGDPz9/alWrRqTJk3Cw8ODnj17lmg/kggJIYQQwuAcP36ctm0fDOJ///33ARg0aBDLli1j3LhxpKSk8MYbbxAfH0+LFi3YunUr5ubmJdrPEyVC+/bt4/vvv+fq1ausXbuWypUrs3LlSqpVq0aLFi2epEohhBBCGCh9XEeoTZs2qNXqIuubPn0606dPL1VcJR4jtG7dOkJCQrCwsODUqVNkZGQAkJCQwKefflqqYIQQQghheEo7PqgsutbKS4kToRkzZrBo0SKWLFmCqampZnlwcDAnT54s0+CEEEIIIcpTibvGLl26RKtWrfItt7OzIz4+vixiEkIIIYQBeZJ7hRVUhyEqcYuQu7u71ijuPPv378fHx6dMghJCCCGE4dDH3ed1pcSJ0Ouvv867777LkSNHUCgU3Lp1i1WrVjFmzBjeeuut8ohRCCGEEHpkVEYPQ1TirrEJEyagUqlo164dqamptGrVCqVSyZgxY3jnnXfKI0YhhBBCiHJR4kRIoVDw0UcfMXbsWMLCwkhOTqZWrVpYW1uXR3x6sWzZMkaPHi1jnh7h42hJGz8nPO3NsTM3ZenRKM5GJ2mtE1LDhaZV7bEwNSb8firrzkRzNyVTp3HG3ktgwYptHD55ifTMLDzdnfjwnT7U9PPUyf7retjyv0ae+LtY4WStZOrm8xy8dh8AYyMFg5tWJcjbgUp25qRkZHMyKoEfD0ZwvxyPkyHGVBB9v3c1XK3pUtuNak6WOFia8fWuME5EJWjKG3vZ0666C95OltgoTfhw03ki48r3BqqGGFNRFqzayReL/2JI31ZMeaeXzvbbvIEv77zSnvoBXlRysWPgmMX8vefBzZLjjs0rcLvJ3/zBdz//U2BZaT1t711RZIxQAczMzKhVqxZBQUGlSoKio6N599138fPzw9zcHDc3N4KDg1m4cCGpqalPXK8oe2YmRtxKTGf9mYLv7NvWz4mWPo6sPXObb/aFk5mt5o2mXpjocM5kYnIab078HhMTI2ZPGsyqb0czckhnbKwsdBaDuakx12KTmbf7Wr4ypYkR/q5WrDoWxYhfQpn290WqOFgwvWvNChfTowzhvVOaGBEZl8byI1GFll+KSebXEzcqdEyFOX0hktUbDxHg66HzfVtaKDl7+SZjv/i1wPIaHSdqPd6e/jMqlYqNu0LLLaan6b17HCPKYIwQhpkJlbhFqG3btkVeFOnff/8tdl3Xrl0jODgYe3t7Pv30U+rWrYtSqeS///5j8eLFVK5cme7du+fbLisrS2vqvtCWmZmJmZlZmdd7MSaZizHJhZa38nFk5+W7nIvOXeeXUzeZGlKdOu42hN5KLPN4CrJq/R5cne346J2+mmUebo462XeeY9fjOHY9rsCy1MwcJmw4p7Vs3u6rzHsxEBdrJbHJGRUmpkcZwnt35lYiZ4o4Vw/8fyuas1XZ/30VxhBjKkhKagajZ/zMZ2P78d3KHTrf/86D59l58Hyh5TH3tFuvO7eqy74TV7h+8165xfS0vHcVXYlbhAIDA6lfv77mUatWLTIzMzl58iR169YtUV0jRozAxMSE48eP069fP2rWrImPjw89evTgr7/+olu3bkBud9zChQvp3r07VlZWzJw5k5ycHF577TWqVauGhYUFNWrU4JtvvtGqf/fu3QQFBWFlZYW9vT3BwcFcv34dgNOnT9O2bVtsbGywtbWlUaNGHD9+XGv7bdu2UbNmTaytrenYsSO3b9/WlKlUKqZPn46npydKpZLAwEC2bt2qKY+IiEChULBmzRqaN2+Oubk5derUYc+ePVrxKRQK/vrrL+rVq4e5uTlNmzbl7NmzWnHs37+fli1bYmFhQZUqVRg1ahQpKSmacm9vbz755BNeffVVbG1teeONN0r0PpQFR0tTbM1NuRz7IFFKz1YRGZdGVUfd/aLff+wCAX6efPzFaroMmsng979j4/ZjOtv/k7BSGqNSq0nJzNZ3KBr6iOlpfO/EA5PmrqVts5q0aFxD36E8loujDS+0qMPPfx7SdyhPjbyusdI+DFGJW4S+/vrrApdPnTqV5OTCWwsede/ePbZv386nn36KlZVVges83PI0depUPvvsM+bOnYuJiQkqlQpPT09+//13nJycOHjwIG+88QaVKlWiX79+ZGdn07NnT15//XV++eUXMjMzOXr0qKbOgQMH0qBBAxYuXIixsTGhoaFarUypqal89dVXrFy5EiMjI15++WXGjBnDqlWrAPjmm2+YPXs233//PQ0aNOCnn36ie/funDt3Dn9/f009Y8eOZe7cudSqVYs5c+bQrVs3wsPDcXJy0lrnm2++wd3dnQ8//JBu3bpx+fJlTE1NuXr1Kh07dmTGjBn89NNPxMbGMnLkSEaOHMnSpUs1dXz11VdMnjyZKVOmFHrMMzIyNFcCh9w79ZYVW2XuqZSUkaO1PCkjW1OmC7fuxLFh6xH6dw/m1b5tuBB2g69/3ISJiTGdn2+osziKy9RYwbDgauy+FEtqZs7jN9ABfcX0tL134oGN/5zk3OWb/Pn9e/oOpVhe6vIcySnpbCrHbrFnjT5uuqorZfYN9fLLLxMUFMRXX31VrPXDwsJQq9XUqKH968HZ2Zn09HQA3n77bT7//HMABgwYwJAhQ7TWnTZtmubf1apV49ChQ/z222/069ePxMREEhIS6Nq1K76+vgDUrPlgzENkZCRjx44lICAAQCt5gdzut0WLFmm2HTlypNb9TL766ivGjx/Piy++CMDnn3/Orl27mDt3LvPnz9esN3LkSPr06QPAwoUL2bp1Kz/++CPjxo3TrDNlyhQ6dOgAwPLly/H09OSPP/6gX79+zJo1i4EDBzJ69GhNnN9++y2tW7dm4cKFmpvLPf/883zwwQdFHvNZs2ZpHbNnkUqtJsC3Mm++HAJAdR8PrkXeYcO2Iwb3ZWpspODjTrnn37e7r+o5mlz6jOlpeu/EA7di4pj+3R+snP0W5sqnY8jCwO5N+X3rcTIMqBVW6E+ZTes/dOhQie/4WpCjR48SGhpK7dq1tVovGjdunG/d+fPn06hRI1xcXLC2tmbx4sVERkYC4OjoyODBgwkJCaFbt2588803Wl1b77//PsOGDaN9+/Z89tlnXL2q/aFvaWmpSYIAKlWqRExMDJDbknLr1i2Cg4O1tgkODubChQtay5o1a6b5t4mJCY0bNy5yHUdHR2rUqKFZ5/Tp0yxbtgxra2vNIyQkBJVKRXh4eJHH51ETJ04kISFB84iKKngA35NIzMj9QLFRGmstt1GaaMp0wcnBBu8qrlrLvD1duHM3oZAt9CMv4XC1MWfChrMG0Rqk75ielvdOaPvv0g3uxiXT9fXZ+D7/Ab7Pf8CR0KssW7cP3+c/ICdHpe8QtTQL9KW6tzsr/zyo71CeKgpF6S+q+Mx0jfXu3VvruVqt5vbt2xw/fpxJkyYVux4/Pz8UCgWXLl3SWp53dWoLC+1xJY92n61Zs4YxY8Ywe/ZsmjVrho2NDV9++SVHjhzRrLN06VJGjRrF1q1b+fXXX/n444/ZsWMHTZs2ZerUqQwYMIC//vqLLVu2MGXKFNasWUOvXrnTPR8djK1QKIq8C255SU5OZvjw4YwaNSpfmZeXl+bfhXUvPkypVKJUKss0vjz3U7NITM/C38WKW4m5CazSxAgvBwsORhQ8SLc81AvwIvJmrNayyFv3cHex11kMj5OXcFS2N2fs+v9IStf/r1JDiOlpeO9EfsGN/Nm2dJzWsrGf/YKvlytvDmiHsbFhXUbv5R7NOHU+krNXbuo7lKeKTJ9/iJ2dndbD0dGRNm3a8Pfffxc5PuVRTk5OdOjQgXnz5mkN/C2uAwcO0Lx5c0aMGEGDBg3w8/PL16oD0KBBAyZOnMjBgwepU6cOq1ev1pRVr16d9957j+3bt9O7d2+tMTdFsbW1xcPDgwMHDuSLqVatWlrLDh8+rPl3dnY2J06c0Oqie3SduLg4Ll++rFmnYcOGnD9/Hj8/v3yP8pgZVhQzYwUetko8bHOTKUdLUzxsldhb5ObTe6/dp72/C7XdrHG3UTKggQeJ6dn5rjVUnvp3a8G5y1EsX7ubG7fvsX1vKBu3H6V3p6Y6i8Hc1AgfZyt8nHOTU3dbc3ycrXCxVmJspGBS5wCqu1rz2bbLGCkUOFia4mBpWq6XGTDEmB5lCO9dXvLu5ZD7Q8zFWomXgwVOVrk/jKzMjPFysKCyfW7rdyU7c7wcLLAzL79xcIYY08OsLc2p4VNJ62FhYYa9nRU1fCrpJAYAKwsz6lSvTJ3qlQGo6uFEneqV8XRz0KxjY2VOj3YNdNYaZOjvnchVoqOdk5PDkCFDqFu3Lg4ODo/f4DEWLFhAcHAwjRs3ZurUqdSrVw8jIyOOHTvGxYsXadSoUaHb+vv7s2LFCrZt20a1atVYuXIlx44do1q1agCEh4ezePFiunfvjoeHB5cuXeLKlSu8+uqrpKWlMXbsWPr27Uu1atW4ceMGx44d04zlKY6xY8cyZcoUfH19CQwMZOnSpYSGhmoGU+eZP38+/v7+1KxZk6+//pq4uDiGDh2qtc706dNxcnLCzc2Njz76CGdnZ3r27AnA+PHjadq0KSNHjmTYsGFYWVlx/vx5duzYwbx5BV8grLxUsbdgRLC35nmPOu4AHIuMZ03oLXaF3cPM2Ii+9T2wMDUi/H4qiw9Hkq3SXUtaTX9PZo1/mUU/b2PZb/9SydWBd4d2JaR1oM5iqO5qw1d9HsygfLNVbivn9vN3WHkkkuY+uQPlFw1ooLXdmHX/ceZm+XQDGWJMjzKE987HyZKPQh6MW3y5SRUA9obdZfHB6zSsYs/wh/4G3vn/47j+9C3Wn75NeTDEmAxRYM2qbP7+Xc3zT9/P/Txfvfkwb0/7GYDeLzRCoVCwbtvxAusoa8/SeyeDpf+fsbExL7zwAhcuXCiTRMjX15dTp07x6aefMnHiRG7cuIFSqaRWrVqMGTOGESNGFLrt8OHDOXXqFP3790ehUPDSSy8xYsQItmzZAuSO8bl48SLLly/n3r17VKpUibfffpvhw4eTnZ3NvXv3ePXVV7lz5w7Ozs707t27RAOJR40aRUJCAh988AExMTHUqlWLjRs35ht0/dlnn/HZZ58RGhqKn58fGzduxNnZOd867777LleuXCEwMJBNmzZpWnvq1avHnj17+Oijj2jZsiVqtRpfX1/69+9f7FjLytV7qXywsfDrdABsuxTLtkuxRa5T3oKbBBDcJEBv+z9zM4EXvt1faHlRZeXFEGMqiL7fuwt3knl5xYlCy/ddvce+q+V33ZmCGGJMj/PrNyN1vs8DJ6/g0KTo/S7/4wDL/zhQ5Dpl6Wl87wqj+P//SluHIVKoSzjwpXHjxnz++ee0a9euvGJ6JkRERFCtWjVOnTpFYGBggevs3r2btm3bEhcXh729vU7jg9xB33Z2dgxbeQQzS8O5RcprDXVzO4WSGL3+zONXEsztXU/fIeTz6b9X9B3CU2F+X8N777xbG950/C7vDHn8SjqUlZbMxpFtSEhIwNbWtszrz/uemLLxFOZWNqWqKz0liWndG5RbrE+qxGOEZsyYwZgxY9i8eTO3b98mMTFR6yGEEEII8bQodtfY9OnT+eCDD+jcuTMA3bt317rgoVqtRqFQkJOj/2nAQgghhCg7MkaI3IsXvvnmm+zatas843lmeHt7P3a6fZs2bfQyJV8IIYQoCYVCUeR9RotbhyEqdiKU94XdunXrcgtGCCGEEEKXSjRrzFCzOSGEEEKUH+ka+3/Vq1d/bDJ0//79UgUkhBBCCMPyLF9ZukSJ0LRp07CzsyuvWIQQQgghdKpEidCLL76Iq6vr41cUQgghxDMj78appa3DEBU7EZLxQUIIIUTF9CyPESr2BRVlmrcQQgghnjXFbhFSqVTlGYcQQgghDFUZDJY20FuNlWyMkBBCCCEqHiMUGJUykynt9uVFEiGBp70Z5lZKfYdh0FztLfQdQj5/fbdU3yHkc761t75DyKdnfTd9h5CPm6Xh/b0tOxGp7xDyWfLDBH2HkM/rwz7Tdwha1DmZOtnPszx9vsQ3XRVCCCGEeFZIi5AQQgghivQszxqTREgIIYQQRXqWryMkXWNCCCGEqLCkRUgIIYQQRXqWB0tLIiSEEEKIIhlRBl1jBjp9XrrGhBBCCFFhSYuQEEIIIYokXWNCCCGEqLCMKH0XkqF2QRlqXEIIIYQQ5U4SISGEEEIUSaFQlMmjJHJycpg0aRLVqlXDwsICX19fPvnkE9RqdZm+NukaE0IIIUSRFJT+5vEl3f7zzz9n4cKFLF++nNq1a3P8+HGGDBmCnZ0do0aNKmU0D0gi9JRq06YNgYGBzJ07V69xZKRn8u+Wg1w8G0ZKUirunq506tmGyl7ueosp9l4CC1Zs4/DJS6RnZuHp7sSH7/Shpp+nTvZfw9WaLrXdqOZkiYOlGV/vCuNEVIKmvLGXPe2qu+DtZImN0oQPN50nMi6tXGNq3sCXd15pT/0ALyq52DFwzGL+3nNGUx53bF6B203+5g+++/mfco0tj0qlYuPG/Rw+fI7EhBTs7a1p3rwuXbo2L/EvyWc5pmGj5hJzNyHf8s4dGvPmkC56iCiXoX0WGMJ79zT83RWXPq4sffDgQXr06EGXLrnntbe3N7/88gtHjx4tVRyPkkSoHAwePJjly5czfPhwFi1apFX29ttvs2DBAgYNGsSyZcseW9fu3btp27YtcXFx2Nvbl0/ApbDxtx3E3L5LrwEdsbG15syJC6xYtI63xw3C1t5a5/EkJqfx5sTvaVjXh9mTBmNvZ0XU7XvYWOnu7vFKEyMi49LYG3aP0W19Cyy/FJPMkYj7DGvurZOYLC2UnL18k583HuLnL9/IV16j40St5+2b1+a7jwewcVeoTuID2LLlMHt2n2LI0C54eDhzPSKapUv/xsJCSbv2jXUWh6HHNHvG66hUD7oGrkfFMHnWSoKfq62XePIY2meBIbx3T8PfnSFr3rw5ixcv5vLly1SvXp3Tp0+zf/9+5syZU6b7kUSonFSpUoU1a9bw9ddfY2GR+yWcnp7O6tWr8fLy0nN0ZSMrM5vzZ67w0tDuePvmtra07diMy+evcezgadp1DtZ5TKvW78HV2Y6P3umrWebh5qjTGM7cSuTMrcRCyw9cuw+As5WZrkJi58Hz7Dx4vtDymHtJWs87t6rLvhNXuH7zXnmHpnH16k3qB/pTr54fAM7O9hw9ep7w8Ns6i+FpiMnO1krr+dqN+3F3c6BOzap6isgwPwsM4b17Gv7uSqKs2tESE7U/H5VKJUqlMt96EyZMIDExkYCAAIyNjcnJyWHmzJkMHDiwjCLJJYOly0nDhg2pUqUK69ev1yxbv349Xl5eNGjQQLMsIyODUaNG4erqirm5OS1atODYsWMARERE0LZtWwAcHBxQKBQMHjxYs61KpWLcuHE4Ojri7u7O1KlTdfLaHt6/WqXGxEQ7nzYxNSEy/JZOY8mz/9gFAvw8+fiL1XQZNJPB73/Hxu3H9BLL08rF0YYXWtTh5z8P6XS/vr6VuXghgujo3EQxKuoOV67coE5dH53GYegxPSwrO4fd+8/QvnUDvXXVgWF+Fhj6e/coff3dFVfedYRK+4DchgI7OzvNY9asWQXu87fffmPVqlWsXr2akydPsnz5cr766iuWL19epq9NWoTK0dChQ1m6dKkme/3pp58YMmQIu3fv1qwzbtw41q1bx/Lly6latSpffPEFISEhhIWFUaVKFdatW0efPn24dOkStra2mtYlgOXLl/P+++9z5MgRDh06xODBgwkODqZDhw4FxpORkUFGRobm+aNZeUkpzc3w9K7Enh1HcHZzxNrGkv9OXuJGxG0cne1LVfeTunUnjg1bj9C/ezCv9m3DhbAbfP3jJkxMjOn8fEO9xPS0eanLcySnpLNJx83znTo1Iz0tk8mTFmNkZIRKpaJnr9Y0baq/Lh9DjOlhR45fJCU1nXatA/UahyF+Fhj6e/coff3d6UNUVBS2traa5wW1BgGMHTuWCRMm8OKLLwJQt25drl+/zqxZsxg0aFCZxSOJUDl6+eWXmThxItevXwfgwIEDrFmzRpMIpaSksHDhQpYtW0anTp0AWLJkCTt27ODHH39k7NixODrmduu4urrmGyNUr149pkyZAoC/vz/z5s3jn3/+KTQRmjVrFtOmTSvT19h7QEf+XLOdOdOWoDBSUKmyK3Ua1OD2jZgy3U9xqdRqAnwr8+bLIQBU9/HgWuQdNmw7IolQMQ3s3pTftx4nIzNbp/s9fvwCR46cY9jr3fHwcCYqKoZf1+zE3s6a5sF1dRqLIcf0sB27TtGovj9ODjb6DsXgPgsM/b17lL7+7orrSaa/F1QHgK2trVYiVJjU1FSMjLQ7royNjVGpVKWK41GSCJUjFxcXunTpwrJly1Cr1XTp0gVnZ2dN+dWrV8nKyiI4+EH/uampKUFBQVy4cOGx9derV0/reaVKlYiJKfxDZ+LEibz//vua54mJiVSpUqUkLykfR2d7hozsR2ZGFhkZGdjYWvP7ir9wcLIrVb1PysnBBu8qrlrLvD1d2H3onF7iedo0C/Slurc7r324VOf7Xvv7Ljp1akpQUC0APD1duXcvgS1bDunti8sQY8oTExvP6bPXmPBeP73GkcfQPgsM+b17lD7/7opLH1eW7tatGzNnzsTLy4vatWtz6tQp5syZw9ChQ0sZiTZJhMrZ0KFDGTlyJADz588v07pNTU21nisUiiIz5cIGpJUFM6UpZkpT0lLTCbt4nQ7dWpTLfh6nXoAXkTdjtZZF3rqHu4u9XuJ52rzcoxmnzkdy9spNne87MzMr3y9OIyMjVGV88bSSMMSY8uzcE4qdnRVNGlTXdyhaDOWzwJDfu0fp8+/OkH333XdMmjSJESNGEBMTg4eHB8OHD2fy5Mlluh9JhMpZx44dyczMRKFQEBISolXm6+uLmZkZBw4coGrV3BkfWVlZHDt2jNGjRwNgZpY7sygnJ0encRdX2MUI1GpwdnXg/t14tm/ah7OrAw2C9NMP379bC4ZPXMTytbtpF1yX81ei2Lj9KOPe6qWzGJQmRrjZPEg4XayVeDlYkJKZzb2ULKzMjHGyMsPBMjeRrWRnDkBCWhYJ6eXTLG5lYUa1Ki6a51U9nKhTvTLxCancuBMHgI2VOT3aNWDS3D/KJYbHqVffj7/+PoSjky0eHs5ERt5hx/ajBLeo9/iNK1BMACqVmn/2hvJ8y/oYGxvGnBdD+ywwhPfuafi7K66y7BorLhsbG+bOnVvu18uTRKicGRsba7q5jI2NtcqsrKx46623NGOBvLy8+OKLL0hNTeW1114DoGrVqigUCjZv3kznzp2xsLDA2lr31+QoTHp6Bv/8dYDE+GQsLJXUrOdPu87B+V6rrtT092TW+JdZ9PM2lv32L5VcHXh3aFdCdDiY1MfJko9Camiev9wkt/txb9hdFh+8TsMq9gwP9taUv9MqdxbL+tO3WH+6fKb2Btasyubv39U8//T9PgCs3nyYt6f9DEDvFxqhUChYt+14ucTwOAMGdGDDhn2s+nk7SUmp2Ntb06p1A7p10/3Ua0OOCeD02WvE3k2gfZsGj19ZRwzts8AQ3run4e+uuPRxZWldkURIB4oaFPbZZ5+hUql45ZVXSEpKonHjxmzbtg0HBwcAKleuzLRp05gwYQJDhgzh1VdfLdaFGHWlTmAN6gTWePyKOhTcJIDgJgF62/+FO8m8vOJEoeX7rt5j31XdXifkwMkrODQZWeQ6y/84wPI/DugoovzMzZW8+GJ7Xnyxvd5ieJQhxgTQoJ4vG1dP0XcYWgzts8AQ3run4e9OSCJULh6XqGzYsEHzb3Nzc7799lu+/fbbQtefNGkSkyZN0lr28BT8guoVQgghyoo+usZ0RRIhIYQQQhRJH7PGdEUSISGEEEIU6VluETLUBE0IIYQQotxJi5AQQgghiiSzxoQQQghRYT1809TS1GGIpGtMCCGEEBWWtAgJIYQQokhGKDAqZedWabcvL5IICSGEEKJI0jUmhBBCCPEMkhYhIYQQQhRJ8f//lbYOQySJkBBCCCGKJF1jQgghhBDPIGkREgZn9Poz+g4hn3v3UvUdQj4+nbvrO4R8ajnZ6juEfHaEx+o7hHw2nL6j7xDymdWlpr5DyGfugQh9h5BPk1de1HcIWrLTUzj035Jy34+iDGaNSdeYEEIIIZ5Kz3LXmCRCQgghhCjSs5wIyRghIYQQQlRY0iIkhBBCiCLJ9HkhhBBCVFhGitxHaeswRNI1JoQQQogKS1qEhBBCCFEk6RoTQgghRIUls8aEEEIIIZ5B0iIkhBBCiCIpKH3XloE2CEkiJIQQQoiiyawxIYQQQohnkLQIGYDdu3fTtm1b4uLisLe313c4JZKRnsm/Ww5y8WwYKUmpuHu60qlnGyp7uetk/3U9bPlfI0/8XaxwslYydfN5Dl67D4CxkYLBTasS5O1AJTtzUjKyORmVwI8HI7ifklluMTWo6sCrwd7UrGSDi605H/xyit0XH9z48402voTUccfNzpysHBUXbiWy4J8wzt5MqFAxFST2XgILVmzj8MlLpGdm4enuxIfv9KGmn6dO43iYvs/xGq7WdKntRjUnSxwszfh6Vxgnoh68L4297GlX3QVvJ0tslCZ8uOk8kXFpOoktz4KV21m0aqfWMm9PFzb+MFZnMfg4WtLGzwlPe3PszE1ZejSKs9FJWuuE1HChaVV7LEyNCb+fyroz0dwtx88CQ/x8elLP8qyxCtUiFBsby1tvvYWXlxdKpRJ3d3dCQkI4cOCAXuNq3rw5t2/fxs7OTq9xPImNv+3g2uXr9BrQkbfGvopv9aqsWLSOxPhknezf3NSYa7HJzNt9LV+Z0sQIf1crVh2LYsQvoUz7+yJVHCyY3rV877JtYWrM5egkPv/rYoHlkfdS+PzvC/RfcJDXfjzK7fg05r/aEHtL0woV06MSk9N4c+L3mJgYMXvSYFZ9O5qRQzpjY2WhsxgKou9zXGliRGRcGsuPRBVafikmmV9P3NBJPIXxrerGv6snaR7LZ4/Q6f7NTIy4lZjO+jPRBZa39XOipY8ja8/c5pt94WRmq3mjqRcm5dhfY4ifT08qb9ZYaR+GqEK1CPXp04fMzEyWL1+Oj48Pd+7c4Z9//uHevXvlsr/MzEzMzMweu56ZmRnu7rr5dVmWsjKzOX/mCi8N7Y63b+4v9rYdm3H5/DWOHTxNu87B5R7DsetxHLseV2BZamYOEzac01o2b/dV5r0YiIu1ktjkjHKJ6WDYXQ6G3S20fOt/2h/Uc7ZdomcjT/zdbDgWfr/CxPSoVev34Opsx0fv9NUs83Bz1Mm+C2MI5/iZW4mcuZVYaPmB/29hcLZ6/GdNeTIxNsLZ0UZv+78Yk8zFmMKT01Y+juy8fJdz0bnr/HLqJlNDqlPH3YbQIo5vaRji59OTUlD6wc4GmgdVnBah+Ph49u3bx+eff07btm2pWrUqQUFBTJw4ke7du2vWGT58OG5ubpibm1OnTh02b96sqWPdunXUrl0bpVKJt7c3s2fP1tqHt7c3n3zyCa+++iq2tra88cYbREREoFAoWLNmDc2bN9fUu2fPHs12u3fvRqFQEB8fX6J9ffrppwwdOhQbGxu8vLxYvHhxORy5wqlUKtQqNSYm2vm0iakJkeG3dBpLcVkpjVGp1aRkZus7FABMjBX0buRJUloWV+4kPX4DHdBXTPuPXSDAz5OPv1hNl0EzGfz+d2zcfkxn+y/I03iO68v1m3dpN+ATOg3+jAmfr+Z2TMEJgD44Wppia27K5dgHiVJ6torIuDSqOuq3xfFhhvb5VFFUmBYha2trrK2t2bBhA02bNkWpVGqVq1QqOnXqRFJSEj///DO+vr6cP38eY2NjAE6cOEG/fv2YOnUq/fv35+DBg4wYMQInJycGDx6sqeerr75i8uTJTJkyRav+sWPHMnfuXGrVqsWcOXPo1q0b4eHhODk55Yu1uPuaPXs2n3zyCR9++CFr167lrbfeonXr1tSoUaPAY5CRkUFGxoNfGYmJpfsVpDQ3w9O7Ent2HMHZzRFrG0v+O3mJGxG3cXS2L1Xd5cHUWMGw4GrsvhRLamaOXmNpWd2ZT/vWw9zUmLvJGYxYcYL41KwKHdOtO3Fs2HqE/t2DebVvGy6E3eDrHzdhYmJM5+cb6iyOhz1t57i+1A3wYsYH/fH2dCH2fiKLVu1k8JiFrF/0PlaW5voOD1tl7lddUob2331SRramTN8M6fOpIEYoMCpl35aRgbYJGcYZoAMmJiYsW7aM119/nUWLFtGwYUNat27Niy++SL169di5cydHjx7lwoULVK9eHQAfHx/N9nPmzKFdu3ZMmjQJgOrVq3P+/Hm+/PJLreTk+eef54MPPtA8j4iIAGDkyJH06dMHgIULF7J161Z+/PFHxo0bly/W4u6rc+fOjBiR2w8/fvx4vv76a3bt2lVoIjRr1iymTZtWwiNXtN4DOvLnmu3MmbYEhZGCSpVdqdOgBrdvxJTpfkrL2EjBx50CAPh291U9RwPHwuN4adEh7C3N6NWoMp/1q8+gJUeI0+MgSX3HpFKrCfCtzJsvhwBQ3ceDa5F32LDtiN4SIXh6znF9atkkQPPv6j6VqBvgRcdXZ7Ft7xl6dwzSY2RPB0P7fCqIdI09I/r06cOtW7fYuHEjHTt2ZPfu3TRs2JBly5YRGhqKp6enJgl61IULFwgO1h4PEBwczJUrV8jJeZC9N27cuMDtmzVrpvm3iYkJjRs35sKFC6XaV7169TT/VigUuLu7ExNT+IfzxIkTSUhI0DyiogoefFkSjs72DBnZjw9njeT9ycN4470BqFQqHJwMZ+B33oeMq405EzacNYhfW+lZOdy4n8bZGwl88ud5clQqejasXKFjcnKwwbuKq9Yyb08X7tzV7cy1Rz0N57ihsbW2oGplZ6Julc/4y5JKzMjtarJRGmstt1GaaMr0xRA/nyqaCpUIAZib/197dx4XRf3/Afy1C+wuyy73LSugHIKKiOJFeaSEZ5qkllbifR99tTwS8SgxrTTTNC3B8iwP8kjxKIy8NRALBEEUFFREARG5378/+DG5cogKyybvpw8eD2fms/N5z+zM7ns/8/nMyODr64vAwECcPHkSAQEBCAoKgr5+7VwnNjAwqJX11ISenvqIHpFIhNLS0irLS6VSGBoaqv3VFolUD0pDBR7l5SPx8nW4tmjy9BdpQPmHTCNjGWaHXcKDfO289i4WiaCno12no6Zj8mjWGCk3M9TmpaRlwtrCWGMxVEdbj3FtlPeoAKnpmfXaefpx9/KKkJNfBGeLfz+fpbpiNDbRx/V7mr3VwOP+K59PAP5tEnrRPy3UYC6NVcXd3R1hYWHw8PDAjRs3kJCQUGmrkJubW4Vh9idOnICLi4vQj6g6p0+fRufOnQEAxcXFuHDhAiZPnlxp2RetS5MSL18DEWBuaYJ7d7NweF8kzC1N0Lpdc43UL9MTw9bo3yTW2lCGJuYGeJBfjHt5hQjs3QzOFgoE7ouFWCSCyf8PB3+QX4ziUqqTmPQlOlCZyoVpWxN9uFgrkfOoCFl5RRjV2RHH4zNw90EBjOV6GNyuMSyUUhz9p/Jhvy9rTE8a0u8VjJuzDpt2RqC7T0vEXknF3sNn8dGENzUWQ2Xq+xiX6ophpfy3T6OFQorGJvp4WFiMzIdFMJDowMxAIhzbNkZlfXKyHxUhW0NfrJ9v2I+u7d1gY2mCjHs5+ObHI9DREaNXV0+N1A8AEh2R2sg5U7kebA2lyCsqQdajYvxx9R56OFvgbm4hMvOK0KuZBXLyiyvca6g2aePn0/N6me8j1GASoczMTAwaNAgjR46Eh4cHlEolzp8/j2XLlqF///7o0qULOnfuDH9/f3z55ZdwcnLC5cuXIRKJ0LNnT8yYMQPe3t5YvHgxhgwZglOnTmH16tX45ptvalT/mjVr4OzsDDc3N6xYsQL379/HyJEjKy37onVpUn5+AY4dOIGcrFzoy6Vw83BG994+GkvYXCyV+Ny/pTA9vnPZr/TDsbfx45kUdGpS1hl93dDWaq+buesSYuroZoHutoZYP8JbmJ7Rs+za/76om1iyPw4O5gbo62kLY7kE2XmF+CctB6M3nsPVjId1Eo+2xvQkN2c7BM96F+s2hyP0p99gY2mCaSP7wq+Lp8ZiqEx9H+NNzOT42O/ffn/veqsAAH8k3sX6k9fhpTLGOB8HYfmU/z8Hdl9Mw+6L6RqJ8c7dbMxauhVZD/JgYqSAV3MHbF4xGabGCo3UDwAqY31MfGw/9G9RdkuScylZ2B6dht8TMyHREeOtVrbQ1xMj+V4e1p9OqdOEQxs/n1hFDSYRUigUaN++PVasWIGkpCQUFRVBpVJhzJgxmDt3LoCyIeszZ87EO++8g4cPH8LJyQlLly4FAHh5eeGnn37C/PnzsXjxYtjY2GDRokVqnZers3TpUixduhTR0dFwcnLC3r17YW5uXmnZF61Lk1p4uqKFZ+WdszUh5mY2Xl/1Z5XLq1tWVy5cu482QYerXP7hjosajKaMNsZUGR/vZvB5rOOtNqjvYzzudi7e/eFClcsjkzIRmVS/fXGWzRlWr/UDQFJmHmbsja22THh8BsLjM6otU5u08fPpudXGDRG1s0Go4SRCUqkUwcHBCA4OrrKMqakpNm7cWOVyf39/YeRXZcpHiFXGzc0NZ86cqXRZ165dQaT+q+R56oqOjq6yPGOMMfa8eNQYY4wxxthLqMG0CDHGGGPsOb3ETULcIlTHHBwcQETw9PSs71AYY4yx5yKqpX/P6ubNm3j33XdhZmYGfX19tGzZEufPn6/VbeMWIcYYY4xVqzaeHv+sr79//z58fHzQrVs3HDx4EBYWFrhy5QpMTExeLJAncCLEGGOMMa3z2WefQaVSISQkRJjn6OhY6/XwpTHGGGOMVas+biy9d+9etG3bFoMGDYKlpSVat26NDRs21MbmqOFEiDHGGGPVq8VMKCcnR+2voKCg0iqvXr2KtWvXwtnZGeHh4ZgwYQKmTp2KTZs21eqmcSLEGGOMMY1RqVQwMjIS/qq6v19paSm8vLywZMkStG7dGmPHjsWYMWOwbt26Wo2H+wgxxhhjrFq1+ayx1NRUtYd+S6XSSsvb2NjA3d1dbZ6bmxt27dr1QnE8iRMhxhhjjFWrNkeNGRoaqiVCVfHx8UF8fLzavISEBNjb279YIE/gS2OMMcYY0zoffPABTp8+jSVLliAxMRFbt27F+vXrMWnSpFqthxMhxhhjjFWrPkaNeXt7Y8+ePdi2bRtatGiBxYsXY+XKlRg2rHYf8suXxhjW7v4bYom8vsPQapumvVrfIVQwfXNUfYfwn3AgKr2+Q6hg5UCP+g6hgjkH4uo7hArGdWxc3yFovcI8CU5poqJ6esRG37590bdv3xesuHrcIsQYY4yxBotbhBhjjDFWrdocNaZtOBFijDHGWLXq41ljmsKJEGOMMcaqVU9dhDSC+wgxxhhjrMHiFiHGGGOMVe8lbhLiRIgxxhhj1XqZO0vzpTHGGGOMNVjcIsQYY4yxavGoMcYYY4w1WC9xFyG+NMYYY4yxhotbhFiNeTc1w9geLmjR2BhWRvoYt/4UjsRU/hynT972xNBXmmDxzosIiUhqUDE9afTUlbhzN7vC/N6+bTF+RB+NxNDa3gTv+zjAzUYJC0MZZmyLQsTlDGH52K5N4dfCGlZGMhSVlCIuLQffHEvE3zcrxl2XMjKz8c0P4Tj9VzzyC4tgZ22GuVP84eZkp5H6W9oaYlAbOzhbGMBMIcWC/bE4efUeAEBHLEJAB3u0czCBjZEMDwuK8VdqNr4/eQ33HhZqJL5y9b2fXC0V6NPcCo5mcpjIJVjxeyIupP57rLRtbIzuLhZwMJNDKdXF3H2xSLn/SCOxldOG866JqRxdncxgZyyDkUwPIWdT8fetB2pl/Fwt0MHeGPp6Oki+l4ddMbdwV8PHU428xE1CnAj9hwUEBCArKwthYWEAgK5du8LT0xMrV66sk/rkUl3E3czGz6euY93YDlWWe93DFp4OpriVVfcffNoY05O++GQMSktJmL6eegfzg3+ET/vmGotBX08HCbceYO9fN/H5O54VlqdkPsRnv8bh5v1HkOqKMayjPda874X+X/2JrLwijcSYk/sI4+d8C6+WTfBFYACMjQyQmp4JpYG+RuoHAJmeDq5m5CL8n9sI6uumtkyqK4azpQG2nEvF1YyHUMh0MbFzEyzq64bJOy5qLEZt2E9SXTFS7j/CH4mZmN6taaXL4+/k4sy1exjdyUFjcT1OG847ia4YaTn5OJuShRHtVBWWd3Myw6tNTLEt6ibu5RWhp6slxnZojGW/J6H4sdi1wcs8aowToTqSkZGB+fPn48CBA7h9+zZMTEzQqlUrzJ8/Hz4+PrVSx1dffQUizZ0sx2Nv43js7WrLWBnJEDSoFQLW/InvJ3RqkDE9ycjQQG16594/YW1lghZu9hqL4WTiXZxMvFvl8kOXbqlNfxkejwFt7OBspcS55Ht1HR4AYMvu47A0N8LHU94S5tlamWqk7nLnrt/Huev3K12WV1iC2WH/qM1bHZGE1W97wkIhRUZugSZC1Ir9FJOWg5i0nCqXn/j/VjRzA4mmQqpAG867y3dycflObpXLOzcxxdGEu/jnVlmZbVE3scDPBS2slYiuZv+y2sWJUB3x9/dHYWEhNm3ahCZNmuD27ds4duwYMjMza60OIyOjWltXbRCJgC/eb4sNxxJw5Ynm3/qibTEVFZcg4s8Y9O/dESItHUKhqyPCwDZ2ePCoCFdua26f/XkuDu1au2Desq2I+icZFmaGGNizA9543VtjMTwrA6kOSonwsLBYY3X+F/dTfdPG885UrgdDmR4SMv5NlPKLS5Fy/xHsTfW1LhHiUWPsmWRlZSEyMhIRERHo0qULAMDe3h7t2rUTyohEImzYsAEHDhxAeHg4GjVqhC+++AJvvPEGAKCkpARjx47Fb7/9hlu3bqFx48aYOHEipk2bJqzjyUtj9W28rwtKSgmhGux/8zTaFtOZ85fxMC8f3bt41ncoFbzqYo4lb3lApqeDu7kFmPjDBY1dFgOAtNv3EXboDIa84YP33+qKuMQbWPH9Pujq6qD3a14ai6Om9HREGO3jiIj4DOQVlmis3v/aftIG2njeGUrLvn4fFKgfOw8KioVl2uQl7iLEo8bqgkKhgEKhQFhYGAoKqm4uX7hwIQYPHoyYmBj07t0bw4YNw717ZU3KpaWlsLOzw88//4zY2FjMnz8fc+fOxU8//fTccRUUFCAnJ0ftr7a0UBkjoKsTPtx8odbW+aK0MaYjv0ehTStnmJko6zuUCs4l38c7605hxPdncTLxLpYObgUTDV7aKCWCSxNbjH/XDy5NbNH/9XZ4w9cbYeFnNBZDTemIRZjXqxkAYJWGk+z/0n7SFtp83v1niGrpTwtxIlQHdHV1ERoaik2bNsHY2Bg+Pj6YO3cuYmJi1MoFBATgnXfegZOTE5YsWYLc3FycPXsWAKCnp4eFCxeibdu2cHR0xLBhwzBixIgXSoSCg4NhZGQk/KlUFTvvPS/vpmYwU0jx56KeSPhqABK+GgA7MwPMHeiBPxb61Vo9/+WY7mRk4eLfV+HbrbXG666J/KIS3Lj3CH/fyMbiX2JRUlqKAV6NNFa/mYkSDipLtXkOdha4XcnIn/pUngRZKmWYHfa3RluDgP/OftIW2nre5RSUXU5VSnXU5iulusIyphna1/72kvD390efPn0QGRmJ06dP4+DBg1i2bBm+++47BAQEAAA8PDyE8gYGBjA0NMSdO3eEeWvWrMHGjRuRkpKCR48eobCwEJ6ens8d05w5c/C///1PmM7Jyam1ZGjPuVSciM9Qmxc6yQdhZ1Pw8+nrtVLHfz2mo8ejYWRkAO/WLhqv+3mIRSLo6Wjut5JHs8ZIuan+fqWkZcLawlhjMTxNeRLUyFiGD3dfwoN8zX9h/Rf2kzbR1vPuXl4RcvKL4GxhgLScsisHUl0xGpvo4+S1yjvs1yceNcaei0wmg6+vL3x9fREYGIjRo0cjKChISIT09PTUyotEIpSWlgIAtm/fjpkzZ+KLL75Ax44doVQqsXz5cpw58/zN31KpFFKp9LlfL5fowN5CIUyrzAzg1sgI2XmFSLv/CFlP3PuiuKQUGTn5SK5m1MSL0saYKlNaSjj2RzRee7UVdDSYXJTTl+hAZSoXpm1N9OFirUTOoyJk5RVhVGdHHI/PwN0HBTCW62Fwu8awUEpx9J9b1ay1dg3p9wrGzVmHTTsj0N2nJWKvpGLv4bP4aMKbGotBpieGrdG/w9CtDWVoYm6AB/nFuJdXiMDezeBsoUDgvliIRSKYyMvO4Qf5xRob7qwN+0mqK4aV8t/PEguFFI1N9PGwsBiZD4tgINGBmYFE2D82RjIAQPajImRrMHms7/NOoiNSGzlnKteDraEUeUUlyHpUjD+u3kMPZwvczS1EZl4RejWzQE5+cYV7DWmFWugsraV5ECdCmuTu7l7jjs0nTpxAp06dMHHiRGFeUlL9dvhtaW+CbdM6C9Pz/MtatHaevo6P6qkfjjbGVJmLf19Fxt1s9OhaP83z7raGWD/i31FFM3qW9W/ZF3UTS/bHwcHcAH09bWEslyA7rxD/pOVg9MZzuJrxUGMxujnbIXjWu1i3ORyhP/0GG0sTTBvZF34a7ODqYqnE5/4thenxnZsAAA7H3saPZ1LQqYkZAGDdUPX3ceauS4jR0M0ntWE/NTGT42M/V2H6Xe+yluU/Eu9i/cnr8FIZY5yPg7B8yv/vx90X07D7YuU3PK0L9X3eqYz1MfGx/dC/hTUA4FxKFrZHp+H3xExIdMR4q5Ut9PXESL6Xh/WnU7TuHkIvO06E6kBmZiYGDRqEkSNHwsPDA0qlEufPn8eyZcvQv3//Gq3D2dkZP/zwA8LDw+Ho6Igff/wR586dg6OjYx1HX7UzV+6iyeTdNS7fOSi8DqMpo40xVaa1R1Ps3RpUL3UDwIVr99Em6HCVyz/U4A0Bq+Pj3Qw+3s3qrf6Ym9l4fdWfVS6vbpkm1fd+irudi3d/qPqHRmRSJiKTau9WIc+rvs+7pMw8zNgbW22Z8PgMhD9xCV8bvcyjxjgRqgMKhQLt27fHihUrkJSUhKKiIqhUKowZMwZz586t0TrGjRuHqKgoDBkyBCKRCO+88w4mTpyIgwcP1nH0jDHG2BNe4kyIE6E6IJVKERwcjODg4CrLVHZH6KysLLV1hISEICQkRK3M4+sMDQ1VWxYREfFc8TLGGGMNFSdCjDHGGKsWjxpjjDHGWIP1Mj9ig2+oyBhjjLEGi1uEGGOMMVatl7ivNCdCjDHGGHuKlzgT4kSIMcYYY9V6mTtLcx8hxhhjjDVY3CLEGGOMsWqJUAujxmolktrHiRBjjDHGqvUSdxHiS2OMMcYYa7i4RYgxxhhj1XqZb6jIiRBjjDHGnuLlvTjGiRBDv9dcIJEr6jsMwabtZ+s7hArC4jLqO4QK3Jqa1XcIFUzfHVPfIVSwcqBHfYdQQWxmTn2HUMGAVlb1HUIF2njesZcPJ0KMMcYYqxZfGmOMMcZYg/XyXhjjUWOMMcYYa8C4RYgxxhhj1eJLY4wxxhhrsPhZY4wxxhhruES19Pecli5dCpFIhOnTpz//SqrAiRBjjDHGtNa5c+fw7bffwsOjbm6FwYkQY4wxxqpVXw1Cubm5GDZsGDZs2AATE5MX3YxKcSLEGGOMsWqVd5Z+0T8AyMnJUfsrKCiost5JkyahT58+6NGjR51tGydCjDHGGNMYlUoFIyMj4S84OLjSctu3b8dff/1V5fLawqPGGGOMMVat2hw1lpqaCkNDQ2G+VCqtUDY1NRXTpk3DkSNHIJPJXqjep+FEiNVYE1M5ujqZwc5YBiOZHkLOpuLvWw/Uyvi5WqCDvTH09XSQfC8Pu2Ju4e7DwjqLqWMzK0zu2wKtHM1gbSLHe1/+hoPnU4TlX497Be90cVJ7zbGLNzHksyN1FpM27idXSwX6NLeCo5kcJnIJVvyeiAup2cLyto2N0d3FAg5mciilupi7LxYp9x/VWTwA0NLWEIPa2MHZwgBmCikW7I/Fyav3AAA6YhECOtijnYMJbIxkeFhQjL9Ss/H9yWu4V4f7qTIZmdn45odwnP4rHvmFRbCzNsPcKf5wc7LTaBzlSktLsXfvnzh9+h/kZD+EsbECnTq1RJ++nSCqpxu1aENM2njeaWNMz60Wby1taGiolghV5sKFC7hz5w68vLyEeSUlJfjjjz+wevVqFBQUQEdH5wUDKsOXxjTo2rVrEIlEiI6OrrJMREQERCIRsrKyNBZXTUl0xUjLycfumFuVLu/mZIZXm5hiZ0w6vopMRmExYWyHxtAV190HoVyqi7+v38NHIaerLHM0+gbcJ+wQ/sauPl5n8QDauZ+kumKk3H+ETWdSq1wefycXOy7cqLMYniTT08HVjFysjrhaaTzOlgbYci4VE7dFY+Gvl6Ey0ceivm4aiw8AcnIfYfycb6GrK8YXgQHYsmo6Jo/oDaWBvkbjeNzBg6dxPCIKQ4f6YtHi0fD374pDh87gt2MXGnRM2njeaWNM/xXdu3fHpUuXEB0dLfy1bdsWw4YNQ3R0dK0lQQC3CD2TjIwMzJ8/HwcOHMDt27dhYmKCVq1aYf78+fDx8Xnq61UqFdLT02Fubq6BaGvf5Tu5uHwnt8rlnZuY4mjCXfxzq6zMtqibWODnghbWSkSn1c3Tto9dvIljF29WW6awuBR3suu2deNx2rifYtJyEFPNuk/8f0uMuYGkTuqvzLnr93Hu+v1Kl+UVlmB22D9q81ZHJGH1256wUEiRkVt158ratGX3cViaG+HjKW8J82ytTDVSd1WSkm6ilaczPDzKWjrNzY1x9mwskpPTG3RM2njeaWNMz0vTzxpTKpVo0aKF2jwDAwOYmZlVmP+iuEXoGfj7+yMqKgqbNm1CQkIC9u7di65duyIzM7NGr9fR0YG1tTV0des2/yws1HyzqqlcD4YyPSRk/HvS5xeXIuX+I9ib1t+vZwDwcbNG3NohOP35m1g+sgNMFBWvR2uKNu8nbWcg1UEpER4WFmuszj/PxaGZkx3mLduKPsM/RcD/vsbew+c0Vn9lmjZthMtx13DrVlnympp6G1eu3ECLlk04pipo43mnjTFVpzZHjWkbbhGqoaysLERGRiIiIgJdunQBANjb26Ndu3ZCGZFIhG+++QZ79+5FREQEbGxssGzZMrz1VtmvyWvXrsHR0RFRUVHw9PQEAPz666+YPn06UlNT0aFDBwwfPrxC3X/++SfmzJmD8+fPw9zcHG+++SaCg4NhYGAAAHBwcMCoUaNw5coVhIWFYeDAgQgNDa3bHfIEQ2nZofSgoERt/oOCYmFZffgt5iYOnLuO6xkP4GBliHmDvbBjVg/0nP8rSok0Ho+27idtp6cjwmgfR0TEZyCvsOTpL6glabfvI+zQGQx5wwfvv9UVcYk3sOL7fdDV1UHv17yevoI60KtXR+Q/KsT8wPUQi8UoLS3FgDe7oEOH5vUSj7bG9DhtPO+0MSZtFxERUSfr5RahGlIoFFAoFAgLC6v2ngeBgYHw9/fHxYsXMWzYMLz99tuIi4urtGxqaioGDhyIfv36ITo6GqNHj8bs2bPVyiQlJaFnz57w9/dHTEwMduzYgT///BOTJ09WK/f555+jVatWiIqKQmBgYKX1FRQUVLh/w8tuz6lkHPorFXGpWTh4PgVDPz8Kr6YW8HG3ru/QWA3piEWY16sZAGBVRJJG6y4lgksTW4x/1w8uTWzR//V2eMPXG2HhZzQax+POn4/DmTP/YPSYNzAvMAAjRvbF4fAzOHniEsfE6pDohf+9+MW1usGJUA3p6uoiNDQUmzZtgrGxMXx8fDB37lzExMSolRs0aBBGjx4NFxcXLF68GG3btsXXX39d6TrXrl2Lpk2b4osvvoCrqyuGDRuGgIAAtTLBwcEYNmwYpk+fDmdnZ3Tq1AmrVq3CDz/8gPz8fKHca6+9hhkzZqBp06Zo2rRppfUFBwer3btBpVK92E55TE5B2eUKpVS9A5tSqiss0wbX7+Tibk4+mlgp66X+/8p+0hblSZClUobZYX9rtDUIAMxMlHBQWarNc7CzwO272VW8ou7t/Pl39OrVAe3aucPOzhIdO7ZAD19vHDx4imOqgjaed9oYU3Ve5ktjnAg9A39/f6SlpWHv3r3o2bMnIiIi4OXlpXYZqmPHjmqv6dixY5UtQnFxcWjfvn2F8o+7ePEiQkNDhRYphUIBPz8/lJaWIjk5WSjXtm3bp8Y/Z84cZGdnC3+pqZWPIHoe9/KKkJNfBGcLA2GeVFeMxib6uH5Pcx2Vn8bGVA5ThRS3s+onpv/KftIG5UlQI2MZZoddwoN8zX85eDRrjJSbGWrzUtIyYW1hrPFYyhUWFlUYki4Wi+vlUm85bYzpcdp43mljTA0VX4h8RjKZDL6+vvD19UVgYCBGjx6NoKCgCi05tSU3Nxfjxo3D1KlTKyxr3Lix8P/y/kLVkUqlld64qqYkOiK1UUWmcj3YGkqRV1SCrEfF+OPqPfRwtsDd3EJk5hWhVzML5OQXV7hvRm0ykOrC0frf+1HYWyjQwt4U93MLkJVbgA/9PbHv7HXcyXoEByslFgxtg+TbOfgtpvqRZi9CG/eTVFcMK+W/772FQorGJvp4WFiMzIdFMJDowMxAAhO5HgDAxqjsBmbZj4qQXUcJiExPDFujfzuFWhvK0MTcAA/yi3EvrxCBvZvB2UKBwH2xEItEQmwP8otRXKqZL9gh/V7BuDnrsGlnBLr7tETslVTsPXwWH014UyP1V8ajlRMO/HoKpmaGsLU1R0rKbRw5fBY+r9TNAyn/KzFp43mnjTGxijgRekHu7u4ICwsTpk+fPo33339fbbp169aVvtbNzQ179+5Vm3f6tPr9cLy8vBAbGwsnJ/WbAtYHlbE+Jvo4CNP9W5T1szmXkoXt0Wn4PTETEh0x3mplC309MZLv5WH96ZQ6/dLybGKOXwJ7CtOfvFfWeX3b8UR8uPEU3BubYMirTWFkIMGt+48Qcekmgn+KQmFxaZ3FpI37qYmZHB/7uQrT73qXXRb9I/Eu1p+8Di+VMcY9FvOUzmWjfXZfTMPui3UzBNrFUonP/VsK0+P/v87Dsbfx45kUdGpiBgBYN1T9/Jm56xJibmrm0pSbsx2CZ72LdZvDEfrTb7CxNMG0kX3h18VTI/VXZuhQX4SFRWLL5sN48CAPxsYKdO7SGv36Pf0WHi9zTNp43mljTM+rNi5taeulMRGRlrRdarnMzEwMGjQII0eOhIeHB5RKJc6fP48pU6agT58++P777yESiWBubo7PPvsMr7zyCrZs2YJPPvkEly5dgru7e4VRYykpKXB2dsbUqVMxevRoXLhwATNmzMCtW7dw//59GBsbIyYmBh06dMDIkSMxevRoGBgYIDY2FkeOHMHq1asBlI0amz59OqZPn/5M25STkwMjIyOM/vEMJHJFHey157Np+9n6DqGC4W+3e3ohDauvy3vVuaOFMa0cWH8tJVWJzXz5ByrUhlPXeT89TWFeLr57rz2ys7Oferfm51H+PZFy6/4Lrz8nJweNrU3qLNbnxS1CNaRQKNC+fXusWLECSUlJKCoqgkqlwpgxYzB37lyh3MKFC7F9+3ZMnDgRNjY22LZtG9zd3StdZ+PGjbFr1y588MEH+Prrr9GuXTssWbIEI0eOFMp4eHjg+PHj+Pjjj/Hqq6+CiNC0aVMMGTKkzreZMcYYe9lxIlRDUqkUwcHBT30Krq2tLQ4fPlzpMgcHBzzZANe3b1/07dtXbd6IESPUpr29vatcJ1B2fyLGGGOsrrzMl8Y4EWKMMcZYtTT9iA1N4uHzjDHGGGuwuEWoFnG/c8YYYy+ll7hJiBMhxhhjjFXr38dkvNg6tBFfGmOMMcZYg8UtQowxxhirFo8aY4wxxliD9RJ3EeJEiDHGGGNP8RJnQtxHiDHGGGMNFrcIMcYYY6xaL/OoMU6EGGOMMVYt7izNXkrlN4AsfJRbz5GooyLte4J5YZ527SMAKHqkffupOD+/vkOoIPeB9j3B/FHug/oO4T9BG887bVP++V3XN/TNyXnx86g21lEXRMS3Q26wbty4AZVKVd9hMMYYe0Gpqamws7Or9fXm5+fD0dERt27dqpX1WVtbIzk5GTKZrFbWVxs4EWrASktLkZaWBqVSCdELtFnm5ORApVIhNTUVhoaGtRjh8+OYaoZjqhmOqWY4ppqpzZiICA8ePICtrS3E4roZ/5Sfn4/CwsJaWZdEItGqJAjgS2MNmlgsrtVfEIaGhlrzQVOOY6oZjqlmOKaa4ZhqprZiMjIyqoVoqiaTybQuealNPHyeMcYYYw0WJ0KMMcYYa7A4EWIvTCqVIigoCFKptL5DEXBMNcMx1QzHVDMcU81oY0wNGXeWZowxxliDxS1CjDHGGGuwOBFijDHGWIPFiRBjjDHGGixOhFiDFBAQgAEDBtR3GDV2+fJldOjQATKZDJ6enrh27RpEIhGio6PVyolEIoSFhdVpLA4ODli5cmWd1lFb1q9fD5VKBbFYjJUrV2LBggXw9PSs0WtDQ0NhbGxcp/FpQteuXTF9+vT6DqOCiIgIiEQiZGVl1Xcogic/F2pz31V1zj5OG/dJQ8CJEBMEBARAJBIJf2ZmZujZsydiYmL+s/VV9+Hz119/vXD9VX1Z1nayEBQUBAMDA0RGRsLb2xudO3cGAPTs2RP9+vXDsWPHAADp6eno1avXC9X1+Puip6cHKysr+Pr6YuPGjSgtLX3hbanMrVu3MG3aNDg5OUEmk8HKygo+Pj5Yu3Yt8vLynmudOTk5mDx5MmbNmoWbN29i7NixtRz1iyvf1+PHj6+wbNKkSRCJRAgICKjRuqr6Ei0sLMRvv/2Gxo0bQyqVwtraGn5+fjhx4kQtbMHz69SpE9LT02t8M8CMjAxMmDChTrfjq6++QmhoaJ3Ur1KpkJ6ejhYtWtRavKx2cCLE1PTs2RPp6elIT0/HsWPHoKuri759+7409Wlb/U9Tflv7pKQktGjRAgMGDMDJkycxZ84cAMCaNWvQrVs3TJo0CUDZc3xqY0hu+X65du0aDh48iG7dumHatGno27dvlQ93LCoqeq66rl69itatW+Pw4cNYsmQJoqKicOrUKXz00UfYv38/jh49+lz1paSkoKioCH369IGNjQ3kcvlzxVfXVCoVtm/fjkePPUQ3Pz8fW7duRePGjZ97veXHTmxsLDIyMrBp0yYkJCRg79696Nq1KzIzM1849urqfRqJRAJra+saP97H398fUVFRdbodRkZGVbYCvmj9Ojo6sLa2hq5u3T7QobYehdGgEGP/b/jw4dS/f3+1eZGRkQSA7ty5Q0REKSkpNGjQIDIyMiITExN64403KDk5We01GzZsoGbNmpFUKiVXV1das2aNsKygoIAmTZpE1tbWJBaLSV9fn5YsWVJn9QFQ++vSpYuwrSqVStjekpISWrJkCVlbWxMAcnd3pwULFhAAun//Pt27d4+GDh1KxsbGBIDs7e3po48+qrD+oKAg6tKlS4X5j2/fK6+8QjKZjOzs7GjKlCmUm5srLLe3t6dFixbRe++9R0qlkoYPH15hXXPmzKHk5GQCQFFRUVRaWkoODg60fPlyAkB79uwhIqKoqCgCQH369CETExOSy+XUpk0bOn36NBERJSYm0htvvEGWlpZkYGBAbdu2pSNHjqgdB7dv36a+ffuSTCYjKysrAkCmpqa0YsUKAkDffPMNubu7k0gkIl1dXWrUqBE1a9aM7O3tSSaTkYuLC61cuVLt/SoqKqIpU6aQkZERmZqakqOjI8nlcurTp49QJj8/n6ZMmUIWFhYkkUjIx8dHqK9fv34kk8kIAIWHh5OZmRmJRCISiUTk4OBAK1eupJCQkAr7TV9fn6RSKcnlcrp27RodP36cdHR0qFOnTqRQKEipVJKXlxe9/fbb9Morr1BISAgZGRnRoUOHqFmzZmRgYEB+fn6UlpYmxFlSUkILFy6kRo0akUQioVatWtHBgweF5eXv07Zt26hjx44klUqpefPmFBERIRyH5ds2Y8YMatmyJUmlUmratCm5uLhQ//79afjw4UREdOzYMbKxsRG2x8bGho4fP65Wz+N/TZs2pfv37xMAGjhwIH344YdkYmJCVlZWFBQUJMR4//59Gjt2LFlaWgrx7du3T1i+c+dOcnd3J4lEQvb29vT555+rvZ+VHbNP224iot9//104v55WV/l2WFlZ0aeffkojRowghUJBKpWKvv32W+Fc37BhAw0YMID09fXJycmJfvnlF2HdxcXFNHLkSHJwcKjy2HzyM7BLly40bdo0of7H439S+fHZs2dPkslk5OjoSD///HOFYyEqKkqYd+DAAXJ2diaZTEZdu3YVjtvH98nzfGawZ8OJEBM8+SHw4MEDGjduHDk5OVFJSQkVFhaSm5sbjRw5kmJiYig2NpaGDh1Krq6uVFBQQEREmzdvJhsbG9q1axddvXqVdu3aRaamphQaGkpERMuXLyeVSkV//PEH+fv70yuvvEJbt26ts/rOnj1LAOjo0aOUnp5OmZmZwrY+ngh98skn5OLiQr179yZ7e3v6/vvvSU9PT/hQmjRpEnl6etLmzZsJAP3444+0a9cuWrlyJRkaGlJ6ejqlp6fTgwcPKDMzk+zs7GjRokXCfKKyxMPAwIBWrFhBCQkJdOLECWrdujUFBAQI+9ze3p4MDQ3p888/p8TEREpMTKT09HRydXUVkqAHDx5U+FD99NNPyd3dXS0RGj9+PMlkMnr11VcpMjKSrly5Qjt27KCTJ08SEVF0dDStW7eOLl26RAkJCTRv3jySyWT01ltvCfulV69e1KpVKzp16hSdP3+e5HI5icViIRGytLSkt99+mzZv3kx//vmnkJj4+/vT1atXafPmzSSXy2nHjh3CNn7yySdkampKu3fvppMnTxIAkkqlasfe1KlTydbWln799Vf6559/hITQwsKCNm7cSFu2bCEA5O3tTcOHD6cdO3aQt7c3OTs7k1wupx9//JGOHj1KAEihUNCECRMoPj6eJk6cSCqViq5fv05ERBKJhLy8vCguLo4SEhJo69atZGxsTBs3bqSQkBDS09OjHj160Llz5+jChQvk5uZGQ4cOFeL88ssvydDQkLZt20aXL1+mjz76iPT09CghIYGI/v3ys7Ozo507d1JsbCyNHj2alEol3b17Vy0RksvldPjwYYqJiSFzc3MyMTGhfv360fDhwykxMZF0dXXJyMiINmzYQJs3byZTU1OSSCSUmZlJxcXFZGFhQQBo1qxZdOrUKYqKiqKioiLS0dEhiURC8+bNo4SEBNq0aROJRCI6fPgwlZSUUIcOHah58+Z0+PBhSkpKon379tGvv/5KRETnz58nsVhMixYtovj4eAoJCSF9fX0KCQmp9ph92nYTVUyEqqurqKhISFZNTExozZo1dOXKFQoODiaxWEyXL18W6tu6dStduXKFpk6dSgqFQjjnCwsLaf78+XTu3Lkqj82qEqHy+qdPn075+flUGQBkZmZGGzZsoPj4eJo3bx7p6OhQbGys2rFQfs6mpKSQVCql//3vf3T58mXavHmz8GOjfJ8872cGezacCDHB8OHDSUdHhwwMDMjAwED41XnhwgUiIvrxxx/J1dWVSktLhdcUFBSQvr4+hYeHExFR06ZNhcSm3OLFi6ljx45ERDRlyhR67bXXqLS0VCP1VfYrrHxbVSqVUP/jv7LL6+/du7fwodSvXz8aMWKE0MpS3ipV3mrwJHt7e1qxYoXavFGjRtHYsWPV5kVGRpJYLKZHjx4JrxswYECF9Tk7OxMA2r17d6XbdfPmTdLR0RESocLCQlIoFCSTyYQvgppo3rw5tWvXjvr370/x8fEEgM6ePSss79WrFwEQEqHp06dXWMfPP/9MZmZmwvSkSZPI399fmLaysqLly5cTEdHp06cJAJmbmwtfQLm5uUJyZGBgQB999BEVFhYSAHrllVeI6N8v0aNHjwrrPXDgAAGgcePGkb+/v/BePf5LPigoiFq1aiW8RiqVko2NjTC9a9cuUigUlJubK/w6f/yLZc2aNWRlZSVM29ra0qeffqq2/d7e3jRx4kQi+vd9Wrp0qbC8qKiI7Ozs6LPPPlNLhPT09OjatWt07do1kslkJJPJqG3btjR8+HB6//33SSwW05YtW4T1lO+D8vqf/BIt5+7uTrq6uiSTyahTp040Z84cat68Oc2aNYvCw8NJLBZTfHx8hfeRiGjo0KHk6+urNu/DDz8kd3d3YbqyY/Zp2/14/OXxPq2unTt3klgsFlrx5syZQ9HR0WRpaUlr164lADRv3jzhteXH0eMtdE968tisKhEqr9/ExERtP168eFEoC4DGjx+vtv727dvThAkT1PZJ+Tk7Z84ctf1IRDRr1iy1ffIinxms5riPEFPTrVs3REdHIzo6GmfPnoWfnx969eqF69ev4+LFi0hMTIRSqYRCoYBCoYCpqSny8/ORlJSEhw8fIikpCaNGjRKWKxQKfPLJJ0hKSgJQ1jk0Ojoarq6uOHPmDDw8POq0vpps788//wyg7AnLGRkZaNOmDeRyOcLDw4VyEyZMwPbt2zFkyBAAwIULF5553168eBGhoaFqsfr5+aG0tBTJyclCubZt21Z4LT3lBvC2trbo06ePML1v3z4UFBSgbdu2MDU1rfQ1ubm5mDlzJtzc3GBsbAyFQoG4uDg8fPgQABAXFwddXV20adNGeI1SqYRY/O/HRtu2bXH06FF0794djRo1glKpxDvvvIPMzExYWFhAoVBg/fr1SElJAQBkZ2fj9u3baNeunVosTZs2Ff5f/t6Fh4ejefPmKCgogJ6eHgCo1Q0AHh4eWLNmDdq0aYNhw4YBADZu3CjUBwBvvfUW/Pz80K9fP5w+fVqtb9GUKVOQnp4Ob29vLF26FGvWrMHgwYNhYGAAAJDL5Wqx2djY4M6dOwDKOmOnpaXBx8dHLSYfHx/ExcWpzevYsaPwf11dXbRt27ZCme7duyM0NBQhISHo06cPmjVrhgcPHgAAzp8/j9LSUowePVo4dsrf7/Pnz6M6FhYWGDlyJPbu3YuePXsiIiICsbGxOHHiBKKjo2FnZwcXF5dKXxsXF1fp9l25cgUlJSXCvMqO2Zpud03r8vf3h52dHUaMGCFsR5s2bSCRSIT3xMPDQ3itgYEBDA0NhWUAhGOlsmPzafz9/ZGWlqa2H728vNQ6Vz++veXT1W1v+/btK5R/3It8ZrCa40SIqTEwMICTkxOcnJzg7e2N7777Dg8fPsSGDRuQm5uLNm3aCIlL+V9CQgKGDh2K3NxcAMCGDRvUlv/99984ffo0AMDLywvJyclYvHgxSkpKcOnSJcyePbvO6qvJ9pYnCocOHcLff/8NuVyOgIAA/PDDDwDKkpDy5Oztt98GAAwdOhQzZ858pn2bm5uLcePGqcV68eJFXLlyRe3LtvxL+HHlHaAvX75c5fpHjx4NACgoKEBISAhcXV0rJA6PmzlzJvbs2YMlS5YgMjIS0dHRaNmyZbUjw+Li4tTW+fDhQ/Tt2xceHh7YtWsXFi1aJHR+3bVrF6KjozFixIgqO3A6OTlBJBIJX/iPc3BwgL6+vtq8Jzua7t27FzNnzsSoUaOwdu1aAGWJz+P1LV++HKdOnUKnTp3wzz//4PLly8LxsXz5cvj6+kJXVxeHDh3Cb7/9pvZelCdg5UQi0VOT0uc1ePBghIaGYtOmTRg5cqTasvKRcwcPHlQ7dnx9fWFoaPjUdevr68PX1xeBgYE4efIkVCoVoqKiKuzf51XZMVsXRCIRmjdvLmxHQEAAbt++LRyzlb1f5cu2b98uHCuHDx9+6rFZGZlMprYfAwICEBQUVHsb+IQX+cxgNceJEKuWSCSCWCzGo0eP4OXlhStXrsDS0lJIlsr/jIyMYGVlBVtbW1y9erXCckdHR2GdhoaGGDJkCDp16gRvb2/s2rUL9+7dq5P6JBIJAKj9en2Su7s7pFIpUlJS4OzsDB0dHejr66N169YAyoakA2W/rO3s7AAA8+fPx/r16yGRSCpdd2Xzvby8EBsbWyFWJycnIc6q6OrqwsnJCWvWrBFabB6XlZWF3r17AyhL6A4dOoQBAwYgOjpa2LdPOnHiBAICAvDmm2+iZcuWsLa2xrVr14TlzZo1Q3FxsdD69dtvv+HSpUsoLi4WyiQlJaG0tBRffPEFOnTogKtXr0KlUgEo+3Xu5OSk1jpX/r6dO3cOAGBmZoYePXogPj5eWG/Tpk0hkUjUhiWXt+KUr7vcmTNn0KlTJ0ycOBHNmjUDgEp/4bdu3Rpz5szBqFGjIJPJsHXrVmHZBx98gLi4OHTv3h1KpbLGSbShoSFsbW0rDJ8+ceIE3N3d1eY9vs7yferm5qZWRl9fH4WFhSgqKkK7du2QkJAApVIJAGjXrh1EIhFu3rwpHDP29vaIjY2tMBy7umO9nFKpRHFxMTw8PHDjxg0kJCRUWs7Nza3S7XNxcYGOjs5T66nJdr9IXe7u7jW+pcOJEyeEY6V169YVjs3n4e7urnY+PnnsnD59utrtPXv2bIXyj3uRzwxWc5wIMTUFBQW4desWbt26hbi4OEyZMgW5ubno168fhg0bBnNzc/Tv3x+RkZFITk5GREQEpk6dihs3bgAAFi5ciODgYKxatQoJCQm4dOkSQkJC8OWXXwIAvvzyS2zbtg2XL19GTk4OUlNTYWFhgfz8/Dqpz9LSEvr6+jh06BBu376N7OzsCtv78OFDjB8/HlOmTIGvry9yc3Ph6uqK8PBwmJqaYsGCBZg0aRICAwOxdOlSAGVJgZubGxwcHJCbm4tjx47h7t27wi93BwcH/PHHH7h58ybu3r0LAJg1axZOnjyJyZMnIzo6GleuXMEvv/yCyZMn1+i96d27N0pKStCuXTscPHgQQNnQ81WrVqFjx47Cl8XmzZvh7OyMwMBAWFtbY8CAAThx4gSuXr2KXbt24dSpUwAAZ2dn7N69W/iVOXToUOFLpaCgAEZGRujatSvee+89TJgwAf369YOJiQlkMpkQk7W1NYqKivD111/j6tWryMrKEprsExMTERgYKCQ95aZMmYLg4GD88ssviI+Ph5WVFUpLS3H8+HHs2LEDKSkpePvttzFp0iTExMQgKysLY8aMAQD06NFDbV1NmzbF+fPnER4ejuvXrwNAhftALVu2DKdOncL169eRlJSEgoICuLm54dGjR5g8eTKkUinkcjkWLVoEiURS5RdXZT788EN89tln2LFjB+Lj4zF79mxER0dj2rRpauXWrFmDPXv24PLly5g0aRLu379fodXnk08+wdq1a7Fz506MGjUK5ubmsLGxAQB8/PHHEIvFGDt2LNasWYODBw/Cz88Pd+/exahRowCUJcsikQj79+9HRkYGcnNzkZmZiYsXL+Ly5cuIiYlBcnIyfv75ZyQmJkKlUqFLly7o3Lkz/P39ceTIESQnJ+PgwYM4dOgQAGDGjBk4duwYFi9ejISEBGzatAmrV6+ucWtoTba7XHV1ZWZm4rXXXkNubi7S0tKE7Vi2bFmN70Pk7OwsHCsJCQmVHptVKa9/8+bNavtx2bJl6N+/v1Du559/xsaNG5GQkICgoCCcPXu2yvN7/PjxuHLlCj788EPEx8dj69atFe5h9KKfGayG6rmPEtMiTw7VViqV5O3tTTt37hTKpKen0/vvv0/m5uYklUqpSZMmNGbMGMrOzhbKbNmyhTw9PUkikZCJiQl17txZ6OS7fv168vT0JAMDA2FUVl3WR1Q2vF6lUpFYLK4wfP7x+qVSKclkMtLR0SELCwvy8/Oj1atXU8uWLUlXV5f09fVJIpEQAPL19aWrV68SUdnoLDMzM2H4PBHRqVOnyMPDg6RSqdrw+bNnz5Kvry8pFAoyMDAgDw8Ptc62lXWyJiJq1aoVBQUFUVpaGk2aNIkaNWokjNp644036Pfffyeif28XsGzZMiIiunbtGvn7+5OhoSHJ5XJq27YtnTlzhojKOm9269aN9PX1SaVS0erVq6lLly7k5uYmrEdXV5ckEgmJRCJhNF55jPj/jtlffvkl2djYkL6+Pvn6+tKrr75KAMjIyIgmTJhAs2fPVuugXFRURJMnTyZDQ0MyMTGhWbNmUd++fcnZ2ZkcHR1JT0+PFAoFWVlZkVwuVxs+Xz4irryj7a1btyggIICMjIxIqVQSAJowYQK1atVK6Cz9+uuvk42NDUkkEjIyMiIrKysqKSmhgoICevvtt4VO8wBoxIgRQifUyjrC79mzR+39LCkpoQULFlCjRo1IT0+vyuHzW7dupXbt2pFEIiF3d3f67bffhOOwfNv27dtHzZs3J4lEQu3ataOLFy+qDZ+PjIxUO2blcrnQEbf82OnVqxdZW1uTSCSi4cOHU35+PqlUKrK0tCQjIyOSy+Xk6upKLi4uNGzYMCIiyszMpBEjRpCZmRnJZDJq0aIF7d+/X1hv+ZB2PT09aty4sdDRvbpj9mnb/fh7WNnw+Sfrys/Pp9mzZ5NEIiGZTCZsx7x586hly5YUFBSkdnyUMzIyEka45efnC8eKsbFxpcdmVZ2ly+v38vJS24/z5s2jvLw8Iio799asWUO+vr4klUrJwcFBbURaZQM39u3bR05OTiSVSunVV1+ljRs3Vtgnz/uZwWpORFRHF7wZYxoXGRmJ7t27IzU1FVZWVvUdTo2UlpbCzc0NgwcPxuLFi+slhlGjRiEjIwN79+6t1fVeu3YNjo6OiIqKqvLRHhEREejWrRvu37//UjzSA6jZdr9sRCIR9uzZ8596dA8rU7e3uGSMaURBQQEyMjKwYMECDBo0SKuToOvXr+Pw4cPo0qULCgoKsHr1aiQnJ2Po0KEajyU7OxuXLl3C1q1baz0JYoz9N3AfIcZeAtu2bYO9vT2ysrKwbNmy+g6nWmKxGKGhofD29oaPjw8uXbqEo0ePPlPfnNrSv39/vP766xg/fjx8fX01Xj9jrP7xpTHGGGOMNVjcIsQYY4yxBosTIcYYY4w1WJwIMcYYY6zB4kSIMcYYYw0WJ0KMsXoVEBCgdu+Vrl27Yvr06RqPIyIiAiKRCFlZWVWWEYlECAsLq/E6FyxY8ML30bl27RpEIhGio6NfaD2MscpxIsQYqyAgIAAikQgikQgSiQROTk5YtGiR2nPG6sru3btrfGPFmiQvjDFWHb6hImOsUj179kRISAgKCgrw66+/YtKkSdDT08OcOXMqlC0sLKy1h0CamprWynoYY6wmuEWIMVYpqVQKa2tr2NvbY8KECejRo4dw9+Xyy1mffvopbG1t4erqCgBITU3F4MGDYWxsDFNTU/Tv31/tifYlJSX43//+B2NjY5iZmeGjjz7Ck7cye/LSWEFBAWbNmgWVSgWpVAonJyd8//33uHbtGrp16wYAMDExgUgkQkBAAICyx3YEBwfD0dER+vr6aNWqFXbu3KlWz6+//goXFxfo6+ujW7duanHW1KxZs+Di4gK5XI4mTZogMDAQRUVFFcp9++23UKlUkMvlGDx4cIWH/3733Xdwc3ODTCZDs2bN8M033zxzLIyx58OJEGOsRvT19VFYWChMHzt2DPHx8Thy5Aj279+PoqIi+Pn5QalUIjIyEidOnIBCoUDPnj2F133xxRcIDQ3Fxo0b8eeff+LevXvYs2dPtfW+//772LZtG1atWoW4uDh8++23UCgUUKlU2LVrFwAgPj4e6enp+OqrrwAAwcHB+OGHH7Bu3Tr8888/+OCDD/Duu+/i+PHjAMoStoEDB6Jfv36Ijo7G6NGjMXv27GfeJ0qlEqGhoYiNjcVXX32FDRs2YMWKFWplEhMT8dNPP2Hfvn04dOgQoqKiMHHiRGH5li1bMH/+fHz66aeIi4vDkiVLEBgYiE2bNj1zPIyx51Cvj3xljGmlx5/CXVpaSkeOHCGpVEozZ84UlltZWVFBQYHwmh9//JFcXV2ptLRUmFdQUED6+voUHh5OREQ2Nja0bNkyYXlRURHZ2dlV+sRvIqL4+HgCQEeOHKk0zsqeYJ6fn09yuZxOnjypVnbUqFH0zjvvEBHRnDlzyN3dXW35rFmzKqzrSajkCeePW758ObVp00aYDgoKIh0dHbpx44Yw7+DBgyQWiyk9PZ2IiJo2bUpbt25VW8/ixYupY8eORFT5U8sZY7WH+wgxxiq1f/9+KBQKFBUVobS0FEOHDsWCBQuE5S1btlTrF3Tx4kUkJiZCqVSqrSc/Px9JSUnIzs5Geno62rdvLyzT1dVF27ZtK1weKxcdHQ0dHR106dKlxnEnJiYiLy+vwrPDCgsL0bp1awBAXFycWhwA0LFjxxrXUW7Hjh1YtWoVkpKSkJubi+LiYhgaGqqVady4MRo1aqRWT2lpKeLj46FUKpGUlIRRo0ZhzJgxQpni4mIYGRk9czyMsWfHiRBjrFLdunXD2rVrIZFIYGtrC11d9Y8LAwMDtenc3Fy0adMGW7ZsqbAuCwuL54pBX1//mV+Tm5sLADhw4IBaAgKU9XuqLadOncKwYcOwcOFC+Pn5wcjICNu3b8cXX3zxzLFu2LChQmKmo6NTa7EyxqrGiRBjrFIGBgZwcnKqcXkvLy/s2LEDlpaWFVpFytnY2ODMmTPo3LkzgLKWjwsXLsDLy6vS8i1btkRpaSmOHz+OHj16VFhe3iJVUlIizHN3d4dUKkVKSkqVLUlubm5Cx+9yp0+ffvpGPubkyZOwt7fHxx9/LMy7fv16hXIpKSlIS0uDra2tUI9YLIarqyusrKxga2uLq1evYtiwYc9UP2OsdnBnacZYrRg2bBjMzc3Rv39/REZGIjk5GREREZg6dSpu3LgBAJg2bRqWLl2KsLAwXL58GRMnTqz2HkAODg4YPnw4Ro4cibCwMGGdP/30EwDA3t4eIpEI+/fvR0ZGBnJzc6FUKjFz5kx88MEH2LRpE5KSkvDXX3/h66+/Fjogjx8/HleuXMGHH36I+Ph4bN26FaGhoc+0vc7OzkhJScH27duRlJSEVatWVdrxWyaTYfjw4bh48SIiIyMxdepUDB48GNbW1gCAhQsXIjg4GKtWrUJCQgIuXbqEkJAQfPnll88UD2Ps+XAixBirFXK5HH/88QcaN26MgQMHws3NDaNGjUJ+fr7QQjRjxgy89957GD58ODp27AilUok333yz2vWuXbsWb731FiZOnIhmzZphzJgxePjwIQCgUaNGWLhwIWbPng0rKytMnjwZALB48WIEBgYiODgYbm5u6NmzJw4cOABHR0cAZf12du3ahbCwMLRq1Qrr1q3DkiVLnml733jjDXzwwQeYPHkyPD09cfLkSQQGBlYo5+TkhIEDB6J37954/fXX4eHhoTY8fvTo0fjuu+8QEhKCli1bokuXLggNDRViZYzVLRFV1UuRMcYYY+wlxy1CjDHGGGuwOBFijDHGWIPFiRBjjDHGGixOhBhjjDHWYHEixBhjjLEGixMhxhhjjDVYnAgxxhhjrMHiRIgxxhhjDRYnQowxxhhrsDgRYowxxliDxYkQY4wxxhosToQYY4wx1mD9H7K/HJhmoouvAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py:3103: UserWarning: You are saving your model as an HDF5 file via `model.save()`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')`.\n", + " saving_api.save_model(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saved ResNet101V2 model to saved_models/ResNet101V2_saved.h5\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "base_models2 = [\n", + " (InceptionV3(weights='imagenet', include_top=False, input_shape=(299, 299, 3)), (299, 299, 3), 'InceptionV3')\n", + "]\n", + "model_training (base_models2)" + ], + "metadata": { + "id": "JDmAa0JzwTup", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "243db80b-1ba7-43b4-f4e1-94ad08dbee8a" + }, + "execution_count": 15, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5\n", + "87910968/87910968 [==============================] - 0s 0us/step\n", + "Training InceptionV3...\n", + "Epoch 1/10\n", + "282/282 [==============================] - 199s 568ms/step - loss: 1.2180 - accuracy: 0.5928 - val_loss: 0.3627 - val_accuracy: 0.8990\n", + "Epoch 2/10\n", + "282/282 [==============================] - 152s 538ms/step - loss: 0.4067 - accuracy: 0.8798 - val_loss: 0.3910 - val_accuracy: 0.8900\n", + "Epoch 3/10\n", + "282/282 [==============================] - 147s 521ms/step - loss: 0.2484 - accuracy: 0.9299 - val_loss: 0.2422 - val_accuracy: 0.9360\n", + "Epoch 4/10\n", + "282/282 [==============================] - 148s 525ms/step - loss: 0.1966 - accuracy: 0.9467 - val_loss: 0.2363 - val_accuracy: 0.9410\n", + "Epoch 5/10\n", + "282/282 [==============================] - 151s 533ms/step - loss: 0.1755 - accuracy: 0.9520 - val_loss: 0.3186 - val_accuracy: 0.9130\n", + "Epoch 6/10\n", + "282/282 [==============================] - 149s 526ms/step - loss: 0.1644 - accuracy: 0.9556 - val_loss: 0.2167 - val_accuracy: 0.9450\n", + "Epoch 7/10\n", + "282/282 [==============================] - 149s 527ms/step - loss: 0.1450 - accuracy: 0.9574 - val_loss: 0.1251 - val_accuracy: 0.9650\n", + "Epoch 8/10\n", + "282/282 [==============================] - 148s 524ms/step - loss: 0.1258 - accuracy: 0.9649 - val_loss: 0.0895 - val_accuracy: 0.9730\n", + "Epoch 9/10\n", + "282/282 [==============================] - 147s 519ms/step - loss: 0.1223 - accuracy: 0.9643 - val_loss: 0.1054 - val_accuracy: 0.9680\n", + "Epoch 10/10\n", + "282/282 [==============================] - 150s 533ms/step - loss: 0.1060 - accuracy: 0.9731 - val_loss: 0.1334 - val_accuracy: 0.9650\n", + "32/32 [==============================] - 2s 74ms/step - loss: 0.1334 - accuracy: 0.9650\n", + "InceptionV3 Validation Accuracy: 0.9650\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWt0lEQVR4nO3deVhUZf8G8HtmmI1935FNXHBBBRfMXYu0LLdS81W0rNxSI9/ScsnKXEqzcktTWxT1zf2XpRlqpmKailruC+IGisi+DMyc3x8DgyOgDAIHhvtzXeca5jnPOfOdGbvm7jnPOUciCIIAIiIiIjMhFbsAIiIiosrEcENERERmheGGiIiIzArDDREREZkVhhsiIiIyKww3REREZFYYboiIiMisMNwQERGRWWG4ISIiIrPCcENEFTZ8+HD4+fmJXQYRkRGGG6Jq9N1330EikeDvv/8Wu5Ryu3XrFj788EPExcVV+2u/8MILsLS0REZGRpl9hgwZAoVCgXv37gEA3n77bbRq1QqOjo6wtLRE48aN8eGHHyIzM9Ok1z579iwkEglUKhVSU1Of5G0QUTVjuCGiR7p16xZmzpxZarhZsWIFzp8/X2WvPWTIEOTk5GDLli2lrs/Ozsa2bdvw7LPPwsnJCQBw9OhRdOzYETNnzsSXX36Jrl27Ys6cOXj22Weh0+nK/dpr1qyBu7s7AGDjxo1P/maIqNpYiF0AEdVecrm8Svf/wgsvwMbGBtHR0Rg2bFiJ9du2bUNWVhaGDBliaDtw4ECJfoGBgZg0aRKOHDmCdu3aPfZ1BUFAdHQ0XnnlFVy9ehVr167FyJEjn+zNVJGsrCxYWVmJXQZRjcKRGyKRDR8+HNbW1rh58yb69OkDa2truLi4YNKkSdBqtUZ9dTodvvzySzRr1gwqlQouLi549tlnSxzmWrNmDUJDQ6FWq+Ho6IhBgwbh+vXrRn26dOmCpk2b4tixY2jfvj3UajX8/f2xbNkyQ599+/ahdevWAIARI0ZAIpFAIpHgu+++M9T+8JybrKwsvPPOO/Dx8YFSqUTDhg3x+eefQxAEo34SiQTjxo3D1q1b0bRpUyiVSjRp0gQ7d+409FGr1ejXrx9iYmJw586dEp9ddHQ0bGxs8MILLzzyMy6qsbyHlw4ePIj4+HgMGjQIgwYNwv79+3Hjxo0S/Uz5Ptq0aQNLS0s4ODigU6dO+O2334w+iw8//LDUuocPH254XnRY848//sCYMWPg6uoKb29vAMC1a9cwZswYNGzYEGq1Gk5OTnjppZcQHx9fYr+pqal4++234efnB6VSCW9vbwwbNgzJycnIzMyElZUVJkyYUGK7GzduQCaTYfbs2eX6HInEwnBDVANotVpERETAyckJn3/+OTp37oz58+dj+fLlRv1ee+01TJw4ET4+Ppg7dy4mT54MlUqFw4cPG/rMmjULw4YNQ1BQEBYsWICJEyciJiYGnTp1KvHjfv/+ffTq1QuhoaGYN28evL29MXr0aKxatQoA0LhxY3z00UcAgDfeeAM//vgjfvzxR3Tq1KnU9yEIAl544QV88cUXePbZZ7FgwQI0bNgQ//3vfxEVFVWi/4EDBzBmzBgMGjQI8+bNQ25uLvr372+YPwPoD00VFBTgf//7n9G2KSkp2LVrF/r27Qu1Wm20rqCgAMnJybh16xZ+++03TJ06FTY2NmjTps1jvgm9tWvXIjAwEK1bt0bv3r1haWmJdevWlehXnu9j5syZGDp0KORyOT766CPMnDkTPj4+2LNnT7lqKc2YMWNw5swZTJ8+HZMnTwagPxx36NAhDBo0CF999RVGjRqFmJgYdOnSBdnZ2YZtMzMz0bFjR3z99dd45pln8OWXX2LUqFE4d+4cbty4AWtra/Tt2xcbNmwoEa7XrVsHQRCMRsqIaiSBiKrN6tWrBQDC0aNHDW2RkZECAOGjjz4y6tuyZUshNDTU8HzPnj0CAGH8+PEl9qvT6QRBEIT4+HhBJpMJs2bNMlp/+vRpwcLCwqi9c+fOAgBh/vz5hra8vDyhRYsWgqurq6DRaARBEISjR48KAITVq1eXeN3IyEjB19fX8Hzr1q0CAOGTTz4x6jdgwABBIpEIly5dMrQBEBQKhVHbyZMnBQDC119/bWgrKCgQPDw8hPDwcKN9Llu2TAAg7Nq1q0RdsbGxAgDD0rBhQ2Hv3r0l+pVGo9EITk5OwgcffGBoe+WVV4SQkBCjfuX5Pi5evChIpVKhb9++glarLbWPIOg/ixkzZpTYj6+vrxAZGWl4XvTvp0OHDkJBQYFR3+zs7BLbF30OP/zwg6Ft+vTpAgBh8+bNZda9a9cuAYDw66+/Gq1v3ry50Llz5xLbEdU0HLkhqiFGjRpl9Lxjx464cuWK4fmmTZsgkUgwY8aMEttKJBIAwObNm6HT6fDyyy8jOTnZsLi7uyMoKAh79+412s7CwgJvvvmm4blCocCbb76JO3fu4NixYya/h19++QUymQzjx483an/nnXcgCAJ+/fVXo/YePXogMDDQ8Lx58+awtbU1et8ymQyDBg1CbGys0SGW6OhouLm5oXv37iXqCA4Oxu7du7F161a8++67sLKyKvfZUr/++ivu3buHwYMHG9oGDx6MkydP4t9//zW0lef72Lp1K3Q6HaZPnw6pVFpqn4p4/fXXIZPJjNoeHL3Kz8/HvXv3UL9+fdjb2+P48eNGdYeEhKBv375l1t2jRw94enpi7dq1hnX//PMPTp06hf/85z8VrpuoujDcENUARfM1HuTg4ID79+8bnl++fBmenp5wdHQscz8XL16EIAgICgqCi4uL0XL27NkS81Y8PT1LTEZt0KABAJQ6V+Nxrl27Bk9PT9jY2Bi1N27c2LD+QfXq1Suxj4ffNwDDYZDo6GgA+rkff/75JwYNGlTiRx4AbG1t0aNHD7z44ouYO3cu3nnnHbz44os4efLkY9/DmjVr4O/vD6VSiUuXLuHSpUsIDAyEpaWl0Y99eb6Py5cvQyqVIjg4+LGvawp/f/8SbTk5OZg+fbphrpOzszNcXFyQmpqKtLQ0o5qaNm36yP1LpVIMGTIEW7duNRzSWrt2LVQqFV566aVKfS9EVYFnSxHVAKX9QFeETqeDRCLBr7/+Wuo+ra2tK+V1KktZ71t4aPJxaGgoGjVqhHXr1uH99983ee5Hv379MHToUKxfvx4hISFl9ktPT8f//d//ITc3F0FBQSXWR0dHY9asWU806mKKh+e8FHl4jhEAvPXWW1i9ejUmTpyI8PBw2NnZQSKRYNCgQSadAl9k2LBh+Oyzz7B161YMHjwY0dHReP7552FnZ2fyvoiqG8MNUS0RGBiIXbt2ISUlpczRgsDAQAiCAH9/f8MIzKPcunWrxKnEFy5cAFB8hpEpP+S+vr74/fffkZGRYTR6c+7cOcP6ihoyZAimTZuGU6dOITo6GkFBQYYzuR4nLy8POp3OaASjNJs3b0Zubi6WLl0KZ2dno3Xnz5/H1KlTcfDgQXTo0KHc34dOp8OZM2fQokWLMl/XwcGhxGRvjUaD27dvl+v9Afpr8URGRmL+/PmGttzc3BL7DQwMxD///PPY/TVt2hQtW7bE2rVr4e3tjYSEBHz99dflrodITDwsRVRL9O/fH4IgYObMmSXWFY109OvXDzKZDDNnziwx+iEIgtFZSID+rKJvvvnG8Fyj0eCbb76Bi4sLQkNDAcAQfMpzGnWvXr2g1WqxaNEio/YvvvgCEokEPXv2fPwbLUPRKM306dMRFxdX6qhNamoq8vPzS7R/++23AICwsLBHvsaaNWsQEBCAUaNGYcCAAUbLpEmTYG1tbTg0VZ7vo0+fPpBKpfjoo49KjJ48+P0EBgZi//79RuuXL19e5shNaWQyWYnv/Ouvvy6xj/79++PkyZOlXhjx4e2HDh2K3377DQsXLoSTk9MTfX9E1YkjN0S1RNeuXTF06FB89dVXuHjxouGKu3/++Se6du2KcePGITAwEJ988gmmTJmC+Ph49OnTBzY2Nrh69Sq2bNmCN954A5MmTTLs09PTE3PnzkV8fDwaNGiADRs2IC4uDsuXLzdcoC8wMBD29vZYtmwZbGxsYGVlhbZt25Y676N3797o2rUrPvjgA8THxyMkJAS//fYbtm3bhokTJxpNHjaVv78/2rdvj23btgFAqeFm3759GD9+PAYMGICgoCBoNBr8+eef2Lx5M8LCwh45GfbWrVvYu3dvicnQRZRKJSIiIvDTTz/hq6++Ktf3Ub9+fXzwwQf4+OOP0bFjR/Tr1w9KpRJHjx6Fp6en4XoxI0eOxKhRo9C/f388/fTTOHnyJHbt2lVi9OhRnn/+efz444+ws7NDcHAwYmNj8fvvvxuu3Fzkv//9LzZu3IiXXnoJr776KkJDQ5GSkoLt27dj2bJlRoftXnnlFbz77rvYsmULRo8eXeUXbSSqNGKcokVUV5V1KriVlVWJvjNmzBAe/k+0oKBA+Oyzz4RGjRoJCoVCcHFxEXr27CkcO3bMqN+mTZuEDh06CFZWVoKVlZXQqFEjYezYscL58+cNfTp37iw0adJE+Pvvv4Xw8HBBpVIJvr6+wqJFi0rUsm3bNiE4OFiwsLAwOi384VPBBUEQMjIyhLffflvw9PQU5HK5EBQUJHz22WdGpz4Lgv7057Fjx5Z4rYdPf37Q4sWLBQBCmzZtSl1/6dIlYdiwYUJAQICgVqsFlUolNGnSRJgxY4aQmZlZ6jZF5s+fLwAQYmJiyuzz3XffCQCEbdu2CYJQ/u9j1apVQsuWLQWlUik4ODgInTt3Fnbv3m1Yr9Vqhffee09wdnYWLC0thYiICOHSpUtlngr+4L+fIvfv3xdGjBghODs7C9bW1kJERIRw7ty5Uj/Pe/fuCePGjRO8vLwEhUIheHt7C5GRkUJycnKJ/fbq1UsAIBw6dOiRnx9RTSIRhIfGIYmoTujSpQuSk5PLNf+C6q6+ffvi9OnTuHTpktilEJUb59wQEVGpbt++jR07dmDo0KFil0JkEs65ISIiI1evXsXBgwfx7bffQi6XG13okag24MgNEREZ+eOPPzB06FBcvXoV33//Pdzd3cUuicgkooab/fv3o3fv3vD09IREIsHWrVsfu82+ffvQqlUrKJVK1K9f33B3YiIyzb59+zjfhko1fPhwCIKAa9euYcCAAWKXQ2QyUcNNVlYWQkJCsHjx4nL1v3r1Kp577jl07doVcXFxmDhxIkaOHIldu3ZVcaVERERUW9SYs6UkEgm2bNmCPn36lNnnvffew44dO4z+b3PQoEFITU3Fzp07q6FKIiIiqulq1YTi2NhY9OjRw6gtIiICEydOLHObvLw85OXlGZ7rdDqkpKTAycmp2u4PQ0RERE9GEARkZGTA09MTUumjDzzVqnCTmJgINzc3ozY3Nzekp6cjJyen1JvJzZ49u9TLoxMREVHtc/36dXh7ez+yT60KNxUxZcoUREVFGZ6npaWhXr16uH79OmxtbUWsjIiIiMorPT0dPj4+RjflLUutCjfu7u5ISkoyaktKSoKtrW2pozaA/n4wSqWyRLutrS3DDRERUS1Tniklteo6N+Hh4YiJiTFq2717N8LDw0WqiIiIiGoaUcNNZmYm4uLiEBcXB0B/qndcXBwSEhIA6A8pDRs2zNB/1KhRuHLlCt59912cO3cOS5Yswf/+9z+8/fbbYpRPRERENZCo4ebvv/9Gy5Yt0bJlSwBAVFQUWrZsienTpwPQ39ekKOgAgL+/P3bs2IHdu3cjJCQE8+fPx7fffouIiAhR6iciIqKap8Zc56a6pKenw87ODmlpaZxzQ0REVEuY8vtdq+bcEBERET0Oww0RERFVGkEQkK/ViVpDrToVnIiIzJBOB2gygNx0IC/d+DE3tWTbw4+aTEAmByzUgFwNyFWA3BKwKHyUq/TtFmWte+h5WfuRyYE6cmV7nU5ARm4B0nPzkZajX9KLHnOLnhcUr3ugLT0nH2F+Doh+vZ1o9TPcEBFRxel0+nCRlw7kpj0UPh5+XhRY0ozb8jIA1ILpnxLpA2GnMAA9MiSVJ0A9uB81IFPqQ5RMDsgUgFRW4XJz87VIzy0KJQXG4ST70SElM68ATzIjNy0nv+IbVwKGGyKiusoomDwcQtLKCCylPFZWMJEpAKUtoLItflTZAUo747aHHxXWgDYfKMgF8rOB/MLHB58X5AD5Dyyl9i1jXdH7Ewo/L01m5bzfchAkUkAqh65w0UosoJVYoAD6RQMZNIIF8gQZNDoZcnUy5OikyNFK9W2wQIFggXzIkA+LwkUGLSygECxgDxmsYAHnonWCTL9fiQXyJTJIZHIolCooFCqoVUqolCqo1GpYqlRQq1SwtFTDSq2GtZUlrC0tYWOphp2VCnaWimr7jErDcENEZM50WiDtBpByGbh3Gbh3qXhJvQ4I2sp5HalcH0RKhA+7MkKJvm+B3AbZEiukQ41MrQUycwuQkVeAzNwCZBY+Gp5n6kcUMh5Yl5mXisy8ZH3+kAAS6K9gK5FYQgJLSCROhW0AIIGksI9UUvx30RVvJZLCpaifQr8oUAClJA8qIQ8qiQZKQQMV9IsSeVAKeVAiHyrkQYk8/aOggQIaqIQ8KKDR9xH0/RWCfhuFoIECxX8rhTxIYTxXRSLoAG0eZNo8yADIy/19VM7XCgAoKFyyy7uBBPBpC7y2qxKLMA3DDRFRbScIQNZd4+ByrzDMpFwBtHmP3l4qf3QoKSWg5FvYIEtqhUzBEulQIyNfhkyNtpTwUYCMjAJkJucXhxVDYLmLnPzE6vmMnpgEgKpwqTpS6CBHgWGxgBZWFjo4qgB7BWCvBOyUgJ0CsFMIsJELsJEDVhY6WMt1sLIQYCnVQW2hg1qqg1KihVTI149saTWFj4V/60xo1z3c74G+uoKH3oUg+twkhhsiotoiN60wuFwxCjJCyhVI8tLL3EyQKVBg64t8+wDk2Qcgz9YfuTZ+yLGphzTYIP1RwSS9ABm5hcHEMJKSB01BTqW+NaWFFDYqC1grLWBd9KiUl2gzPFdawEalX2+pkEEikUAQBAhA4VwRAYIAw3Oh8LlOEAxzSR5s1/d7xPYPrDP6u5Tt8WB7GfvWCSW3BwBrpQx2ajlsVXL9o1oOlbzi826qhU5XMhBJxD0Zm+GGiOoEQRCg0eqgKShctDrkFwjQaLXIK9AhXys8sE4LTUFx//yHt9PqoNUJKNAJ0BU+aosWQYBWW7hOeLCPDlodoNXpitdpH+4jQKbNhVvBbXhqb+oX3S346G7BR7gFJ6SV+t4kAHSCBDcEZ1wVPHBVcDc8XhE8cEtwhi5LCtx+cKsCAFee+HO1VMgM4cOmHMFE3yY3CipWSgsoLHhlklpLKgWkSsCi5E2qxcJwQ0RVQhAE5BXokKPRIidfi2yNFrn52sJQoTMKDnlGgaN4neaBwGEIGA8/Fq17KIA8vL98bc05G0cGLbwld+EvuQ1/SWLhchv+0kR44h6kkrJrvSPY60OLzjjEXBdckYeSkzilEsBCJoVMKimxWEglZYyKyI3Cio3Rermhv5VCBgsZQwnVPAw3RHWQVicgJ1+LnMLAUfR39kPPc/ILnxf+/eDz7AfXG/alM9q2JpPLJJDLpFBYSKGQSSGXSaG0KHxuoX+ukBX/rTS067ezkEogk0phIZNAKtEHBWlhYJBJJZBJANv8ZNjnJMAh9xrsshNgl50Am6xrsM6+Dqnw8DyFYgVyG+TaBSDPLgAaO38U2Acg3z4AWocASFU2cJNI4CmVoLO0lNc1vL7+UVJHrstC9CCGG6IaLK9Ai9upubiXpTEOGQ+EjYcDysOB4+HAkpuvH8moTgoLKdRymVF4UBQGBkPAeOBvpcz4uVHAkOkDhsJC9sC+JIWPssJ1hft5cB8yKeSFjwqZFFJpJf3oZ6c8MIH3gcm8KZcLTyMug4UacAwAnAIBp/oPLIGwsHSCtUQC68qpkKjOYbghElFuvha3UnNw475+uZmaXfz3/RwkZeQ+0YW0ykMtl8FSIYNKLoNaIYNarl9UChnUcn0oURetf2RfmaGvWq7vU9RXVllBQkw6LZD0D5BwGLh1ojjI5NwvexuJDHDweyC4BBT/beOpn6tARJWO4YaoCuVotLiZmo3rhWFFH1yycbMw0NzNKPsUXQsUwBoa2MkLYGVtAyhsiwPFAwFCrZA+MmQY9zVer7SQ8rBFWfJzgJvHgGuxQEIscP2I/hYBpbH1Ng4uTvUBx0DAwVd/pVkiqlYMN0TlJQj6UxwfuPJpdnYWklPuIzk1DSmpaUhLT0dGRgYyszKQk5UJnSYHKokGKuRBBQ0CoEGwpPgCYCqFBlYSDaxlBbCSaKCSaKAQ8mChy4P0wYur5QBQBwLurQDPloBnK8AjGFBYifZxmJ3sFP2oTEJhmLkVpz+99UFKW8Cnjf4CZc4NCkNMAKCwFKVkIiodww2Zr6KLmBXklH459sddcr0gFzpNNnSaHKAgB9KC3BJXD7UEUK9wKVV5/6f9kVNgJAAE/RyOlMvA6Z8Km6WAS2PAqzDseLUCXJsAFuJe9rxWEAQg7XrxqExCLHD3XMl+Nh5AvXD94hsOuAY/0b1+iKh6MNyQeUm5Cvy7GfhnC5B0+ol3J0XpVzHXChLkQoEcKKGRKFAgLb5JnkyphlxlBaXKCmpLa8hVVpDIH3EDvcfdiE+m0M/ruHUCuHUcuFn4mHEbuPOvfjmxRl+YTAG4NdUHnaLA49yAP8g6HXDnTHGQSTgMpN8s2c+5IVCvXXGYsfcV/UqrRGQ6iSBU9XTFmiU9PR12dnZIS0uDra2t2OVQZUi9Dvy7RR9qbp0wNAtSC2idGyFPokKOoECmTo4MrRxp+TKkaCxwL0+KdK0cuYICuZAjB0rkCgrkQIE8KJAjKJELOeQqKzjY2cHBzg4uDnZwc7KHp6MdvBwt4eWghq1KpDkV6bcLw87x4uBT2uRWhTXgEaI/nOVVeFjLwd+8f7Tzc/WfiSHM/KW/Q/WDpBaARwt9mPFtrz/UZOUsSrlE9Him/H4z3FDtlH4LOLMN+GczcONIcbtEimyv9vhT0QkLbzbE2bTHBw9nawW87NXwdrCEt4MaXg5qeDvon3vZq2GlrCUDnIIA3I9/KPDEAflZJfuqHYrn7hSN8th6VHfFlScnVT/hN+GQflTm5vGS91NSWAPerYtHZbxCOWeJqBZhuHkEhptaLPNOcaBJiEXx3VgkKPAJxzGbrlh2Jxh7bxiPSLjYKI3CirdD8eJlbwm1wowP2ei0QPKFwrBTGHgST+vv//IwGw99yPFsWTyPx9Kx+msuj7SbxoeYkv5F8b+HQlYuhUGmvX50xq0ZIKslQZWISmC4eQSGm1om6x5wdrv+kFP8AUAonnmr826Diy7P4LvU5th0ofjCdFIJ0KmBC/q38kb3xq6wVPAHzUiBRj9Ppyjw3DwB3D1r9NkaOPgZj+54hADKar60nE6nD2hFozLXYoG0hJL9HAOLR2XqhevPYjLnQ29EdQzDzSMw3NQCOfeBczv0IzRX9gEPnhLt2QqJ9XphfVYo1pzVIjmzeASikbsN+rfyxostPeFqo6r+umszTRZw+9QDk5aP68/MKkECuDQ0DjzuTSv3hnkFGuB2nH5U5loscP1wyblEEing3rw4zPi0A2zcKq8GIqpxGG4egeGmhspNB87/og80l/cYX1/EvTkyg17AzwXt8N1ZAecSiy+k5mSlwIstvNA/1AtNPO1EKNyM5dzXz9l5cA5PaWcYSeWAW5PiycqerQCXRuU/BJSbrp83VTQqc/Nv/Wn5D7JQA95hxYeYvFsDSpsnfotEVHsw3DwCw00NkpcJXNipP9Pp4m7jCaCuwchv3Ad/yjvgh4ty7L9wF7rCf6kKmRRPB7uhXysvdGrgAjnvSlx9MpKMR3duHQey75XsJ7fUj6w8eEp60WGijMTiUZmEWP0tDR4+JGbpVHh9mcLTsj1CeKVfojqO4eYRGG5Elp8DXPxNP0JzYZf+AntFnBtAaNIX/zp0x9oravx86jYycovvnNyynj36t/JG7+aesLPkD12NIAhAakLJM7RKu02Byk6/pJYyX8bet3hUpl57wDmI82WIyIgpv9+caUlVryAPuPS7PtCc/9X41GQHf6BpPyT69MKGa7bY/PdNXLuXbFjtZa9G35Ze6NfKCwEuvEdyjSOR6O+f5OALNOmrb9Pp9DeUfHB05/YpIDdNv0Civ9Cg7wMjM7aeor4NIjIvDDdUNQo0+snA/27WTw7OSy9eZ1cPaNIHWQ1ewI47bth44iaO7E4CkAQAsFTI0LOpB/qHeqGdvxOk5nBH6bpEKgVcGuiXkEH6Nm2+/grBOff183JUnB9FRFWH4YYqj7YAuPqHfg7N2f8DclOL19l4Ak36QhvcBwdz/LDpxE3sWpmI3Pw7APQDAE8FOqNfKy8829Sdp2+bG5lcP2+GiKga8BeEnoxOC1w7qD/kdHa78eRSK1egSR+gST9cVAZj44lb2LrmJpLSjxq6BLhYoX8rb/Rt6QVPe3X1109ERGaH4aaypN0A9s4G1PaAyv7Rj7X9rA+dDrj+l/6Q05ltQGZS8TpLJ6DxC0DTfkhxbo3tpxKxaftNnL55wNDFTi3HCyGe6B/qjRBvO0g4cZSIiCoRw01lSbsJxK0pX1+5VflCUGmPForKrrx8BAG48bc+0Py7Fci4VbxOZQ807g007QeNTwfsuZCCTX/ewN5ze1FQeP62hVSCLg1dMSDUC10buUJpYca3PCAiIlEx3FQWW0+g+3T9DfxyU0t5TCu+K3F+ln4p7YJojyO3rFgoUtubfhVZQdBfKfafwkDz4CXvlbZAo+eAJv0gBHTGqds52HT8Brav3YfU7OIL8DXzskO/Vl54IcQTTtaVeBVbIiKiMjDcVBZ7H6DjO4/uo9MWng6b+ogQVMZjbjoAAcjP1i8PjpyUl4W6fCFIaau/Suy/W4CUK8XbK6yBhj31p/wGdsftbAFbTtzE5p8P49KdTEM3Vxtl4enb3mjozqvIEhFR9WK4qU5Smf4uyxW507JOqz+d2tRQlJNaeG0RQX/BvIwcION2+V/XQg00iACa9gOCnkG2IMeufxOx6fuTOHg5GUWXgFRaSBHRxB39Q73xVKATLHjVYCIiEgnDTW0hlQFqB/1iKp1OH4xMCUV23kBwH6DBs9DJrfDX1RRs2noBv56+jSxN8Y0s2/g5on+oF3o184CNqpZPlCYiIrPAcFMXSKX6w01qe8CEbHQ1OQub/7iBzcdv4mZq8W0S6jlaol8rL/Rr6Y16TpaVXi4REdGTYLihEnb+cxvL91/B8YRUQ5uN0gLPNfdA/1BvhPk68PRtIiKqsRhuyMjJ66kYteY4AEAqAToGuaB/qDeeCXaDSs7Tt4mIqOZjuCEjS/ZdAgB0b+SK2f2awdVWJXJFREREpuEpLWRw6U4Gdv2rv9rw5J6NGGyIiKhWYrghg2V/6K9p80ywG4LceH0aIiKqnRhuCABwMzUHW0/or5g8ukugyNUQERFVHMMNAQBW7L+CAp2A8AAntKxXgWvpEBER1RAMN4R7mXlYf1R/36gxXTlqQ0REtRvDDeG7Q/HIzdehmZcdOtR3FrscIiKiJ8JwU8dl5Obj+0PxAIAxXQJ5cT4iIqr1GG7quOi/EpCeW4AAFytENHEXuxwiIqInxnBTh+Xma/HtgasAgFGdAyGVctSGiIhqP4abOmzT8Ru4m5EHDzsV+rTwErscIiKiSsFwU0cVaHX4pvCifa93DIDCgv8UiIjIPPAXrY7acfo2ElKy4WApx6A2PmKXQ0REVGkYbuogQRCwdN9lAMCIp/xhqeD9U4mIyHww3NRB+87fxbnEDFgpZBgW7it2OURERJWK4aYOWrLvEgDglbb1YG+pELkaIiKiysVwU8ccjU/B0fj7UMikGNkxQOxyiIiIKh3DTR2zZK9+1KZ/qBfcbFUiV0NERFT5GG7qkDO30rH3/F1IJcCbnXiDTCIiMk8MN3XI0j/0Z0j1auYBP2crkashIiKqGgw3dUR8chZ2nLoFABjdhaM2RERkvhhu6ohv9l+BTgC6NHRBE087scshIiKqMgw3dUBSei42HbsBABjTpb7I1RAREVUthps6YNWBq9BodQjzdUAbf0exyyEiIqpSDDdmLi07H2sOXwMAjOnKuTZERGT+RA83ixcvhp+fH1QqFdq2bYsjR448sv/ChQvRsGFDqNVq+Pj44O2330Zubm41VVv7/BAbjyyNFo3cbdC1oavY5RAREVU5UcPNhg0bEBUVhRkzZuD48eMICQlBREQE7ty5U2r/6OhoTJ48GTNmzMDZs2excuVKbNiwAe+//341V1475Gi0WH0oHoD+DCmJRCJuQURERNVA1HCzYMECvP766xgxYgSCg4OxbNkyWFpaYtWqVaX2P3ToEJ566im88sor8PPzwzPPPIPBgwc/drSnrlp/NAEpWRrUc7TEc808xC6HiIioWogWbjQaDY4dO4YePXoUFyOVokePHoiNjS11m/bt2+PYsWOGMHPlyhX88ssv6NWrV5mvk5eXh/T0dKOlLtAU6LBi/xUAwBudAmAhE/0IJBERUbWwEOuFk5OTodVq4ebmZtTu5uaGc+fOlbrNK6+8guTkZHTo0AGCIKCgoACjRo165GGp2bNnY+bMmZVae22wLe4mbqXlwsVGiQGh3mKXQ0REVG1q1f/O79u3D59++imWLFmC48ePY/PmzdixYwc+/vjjMreZMmUK0tLSDMv169ersWJx6HQClhXeauG1Dv5QyWUiV0RERFR9RBu5cXZ2hkwmQ1JSklF7UlIS3N3dS91m2rRpGDp0KEaOHAkAaNasGbKysvDGG2/ggw8+gFRaMqsplUoolcrKfwM12G9nEnH5bhZsVRYY0rae2OUQERFVK9FGbhQKBUJDQxETE2No0+l0iImJQXh4eKnbZGdnlwgwMpl+VEIQhKorthYRBAFL9ulHbYaF+8FGJRe5IiIiouol2sgNAERFRSEyMhJhYWFo06YNFi5ciKysLIwYMQIAMGzYMHh5eWH27NkAgN69e2PBggVo2bIl2rZti0uXLmHatGno3bu3IeTUdQcv3cOpG2lQyaUY8ZSf2OUQERFVO1HDzcCBA3H37l1Mnz4diYmJaNGiBXbu3GmYZJyQkGA0UjN16lRIJBJMnToVN2/ehIuLC3r37o1Zs2aJ9RZqnKV/XAIADGpdD07WdetwHBEREQBIhDp2PCc9PR12dnZIS0uDra2t2OVUqpPXU/Hi4oOwkErwx7td4WWvFrskIiKiSmHK73etOluKHm3JPv2ozYstvBhsiIiozmK4MROX7mRg17/6M89GdQ4QuRoiIiLxMNyYiaX79FcjfibYDUFuNiJXQ0REJB6GGzNwMzUH2+JuAgDGdK0vcjVERETiYrgxAyv2X0GBTkD7QCe08LEXuxwiIiJRMdzUcvcy87D+aAIAYEwXjtoQEREx3NRyqw/GIzdfh+bedniqvpPY5RAREYmO4aYWy8jNx/ex8QCAMV0CIZFIxC2IiIioBmC4qcXW/pWAjNwCBLpY4Zng0m82SkREVNcw3NRSuflarDxwFQAwqnMgpFKO2hAREQEMN7XWpuM3cDcjD552KrzYwkvscoiIiGoMhptaqECrwzd/6C/a93qnACgs+DUSEREV4a9iLbTj9G0kpGTDwVKOga19xC6HiIioRmG4qWUEQcDSfZcBACOe8oelwkLkioiIiGoWhptaZu/5OziXmAErhQyR4X5il0NERFTjMNzUMkv26kdthrTzhZ2lXORqiIiIah6Gm1rkyNUU/H3tPhQyKV7r4C92OURERDUSw00tsmTfJQBA/1BvuNmqRK6GiIioZmK4qSX+vZWGfefvQioBRnUOELscIiKiGovhppYoOkPqueae8HWyErkaIiKimovhphaIT87CL6dvAwBGdw4UuRoiIqKajeGmFvhm/xXoBKBrQxcEe9qKXQ4REVGNxnBTwyWl52LTsRsAgDFd64tcDRERUc3HcFPDrTxwFRqtDmG+Dmjt5yh2OURERDUew00Nlpadj7WHrwEAxnTlXBsiIqLyYLipwb6PjUeWRotG7jbo2tBV7HKIiIhqBYabGipbU4DVB68CAEZ3CYREIhG5IiIiotqB4aaGWn/kOu5n56OeoyWea+YhdjlERES1BsNNDaQp0GHFn1cAAG92DoCFjF8TERFRefFXswbaGncTt9Ny4WKjRP9W3mKXQ0REVKsw3NQwWp2AZX/ob7UwsoM/VHKZyBURERHVLgw3NczuM4m4cjcLtioLDGnnK3Y5REREtQ7DTQ0iCAKWFN4gM7K9H6yVFiJXREREVPsw3NQgBy/dw6kbaVDJpRje3k/scoiIiGolhpsaZMm+SwCAQa3rwclaKXI1REREtRPDTQ0Rdz0Vhy7fg4VUgtc7BYhdDhERUa3FcFNDLNmrH7V5sYUXvOzVIldDRERUezHc1AAXkzLw25kkSCTA6C4ctSEiInoSDDc1wNLC69o8E+yG+q42IldDRERUuzHciOzG/Wxsj7sFABjTpb7I1RAREdV+DDciW7H/Cgp0Ap6q74QQH3uxyyEiIqr1GG5ElJyZh/VHrwPgqA0REVFlYbgR0XcH45FXoEOItx3aBzqJXQ4REZFZYLgRSUZuPr6PjQcAjO5SHxKJRNyCiIiIzATDjUjW/pWAjNwCBLpY4ZlgN7HLISIiMhsMNyLIzddi5YGrAIBRnQMhlXLUhoiIqLIw3Ihg47EbuJuRB087FV5s4SV2OURERGaF4aaaFWh1+Ga//qJ9r3cKgMKCXwEREVFl4i9rNdtx+jaup+TA0UqBQa3riV0OERGR2WG4qUaCIGDpPv2ozYj2flArZCJXREREZH4YbqrRnnN3cC4xA1YKGYaF+4ldDhERkVliuKkmgiBgSeGozX/a+cLOUi5yRUREROaJ4aaaHI2/j2PX7kNhIcVrHfzFLoeIiMhsMdxUkyX7LgEABoR6w9VWJXI1RERE5ovhphr8eysN+87fhVQCvNkpQOxyiIiIzBrDTTUoOkPq+eae8HWyErkaIiIi88ZwU8Xik7Pwy+nbAPS3WiAiIqKqxXBTxb7Zfxk6Aeja0AXBnrZil0NERGT2GG6qUFJ6LjYduwkAGNO1vsjVEBER1Q0MN1Xo2z+vQKPVobWfA1r7OYpdDhERUZ3AcFNFUrM1WPtXAgBgTBeO2hAREVUXhpsq8v2ha8jWaNHYwxZdGrqIXQ4REVGdwXBTBbI1Bfju0FUAwOgugZBIJCJXREREVHeIHm4WL14MPz8/qFQqtG3bFkeOHHlk/9TUVIwdOxYeHh5QKpVo0KABfvnll2qqtnzWH7mO+9n58HWyRK+m7mKXQ0REVKdYiPniGzZsQFRUFJYtW4a2bdti4cKFiIiIwPnz5+Hq6lqiv0ajwdNPPw1XV1ds3LgRXl5euHbtGuzt7au/+DJoCnRY8ecVAMCbnQJhIRM9PxIREdUpooabBQsW4PXXX8eIESMAAMuWLcOOHTuwatUqTJ48uUT/VatWISUlBYcOHYJcrr+rtp+fX3WW/Fhb427idlouXG2U6B/qJXY5REREdY5owwoajQbHjh1Djx49iouRStGjRw/ExsaWus327dsRHh6OsWPHws3NDU2bNsWnn34KrVZb5uvk5eUhPT3daKkqWp2AZX/ob7UwsqM/lBayKnstIiIiKp1o4SY5ORlarRZubm5G7W5ubkhMTCx1mytXrmDjxo3QarX45ZdfMG3aNMyfPx+ffPJJma8ze/Zs2NnZGRYfH59KfR8P+u3fRFy5mwVblQVeaetbZa9DREREZatVE0J0Oh1cXV2xfPlyhIaGYuDAgfjggw+wbNmyMreZMmUK0tLSDMv169erpDZBELCk8AaZke39YK0U9YgfERFRnSXaL7CzszNkMhmSkpKM2pOSkuDuXvoZRh4eHpDL5ZDJig/3NG7cGImJidBoNFAoFCW2USqVUCqVlVt8KQ5cSsbpm2lQyaUY3t6vyl+PiIiISifayI1CoUBoaChiYmIMbTqdDjExMQgPDy91m6eeegqXLl2CTqcztF24cAEeHh6lBpvq5O1giX4tvTC0nS+crKs+TBEREVHpRD0sFRUVhRUrVuD777/H2bNnMXr0aGRlZRnOnho2bBimTJli6D969GikpKRgwoQJuHDhAnbs2IFPP/0UY8eOFestGPg7W2HBwBZ4v1djsUshIiKq00SdGDJw4EDcvXsX06dPR2JiIlq0aIGdO3caJhknJCRAKi3OXz4+Pti1axfefvttNG/eHF5eXpgwYQLee+89sd5CCbwaMRERkbgkgiAIYhdRndLT02FnZ4e0tDTY2tqKXQ4RERGVgym/37XqbCkiIiKixzE53Pj5+eGjjz5CQkJCVdRDRERE9ERMDjcTJ07E5s2bERAQgKeffhrr169HXl5eVdRGREREZLIKhZu4uDgcOXIEjRs3xltvvQUPDw+MGzcOx48fr4oaiYiIiMrtiScU5+fnY8mSJXjvvfeQn5+PZs2aYfz48RgxYkSNPHOIE4qJiIhqH1N+vyt8Knh+fj62bNmC1atXY/fu3WjXrh1ee+013LhxA++//z5+//13REdHV3T3RERERBVicrg5fvw4Vq9ejXXr1kEqlWLYsGH44osv0KhRI0Ofvn37onXr1pVaKBEREVF5mBxuWrdujaeffhpLly5Fnz59IJfLS/Tx9/fHoEGDKqVAIiIiIlOYHG6uXLkCX1/fR/axsrLC6tWrK1wUERERUUWZfLbUnTt38Ndff5Vo/+uvv/D3339XSlFEREREFWVyuBk7diyuX79eov3mzZs14gaWREREVLeZHG7OnDmDVq1alWhv2bIlzpw5UylFEREREVWUyeFGqVQiKSmpRPvt27dhYSHqTcaJiIiITA83zzzzDKZMmYK0tDRDW2pqKt5//308/fTTlVocERERkalMHmr5/PPP0alTJ/j6+qJly5YAgLi4OLi5ueHHH3+s9AKJiIiITGFyuPHy8sKpU6ewdu1anDx5Emq1GiNGjMDgwYNLveYNERERUXWq0CQZKysrvPHGG5VdCxEREdETq/AM4DNnziAhIQEajcao/YUXXnjiooiIiIgqqkJXKO7bty9Onz4NiUSCopuKF90BXKvVVm6FRERERCYw+WypCRMmwN/fH3fu3IGlpSX+/fdf7N+/H2FhYdi3b18VlEhERERUfiaP3MTGxmLPnj1wdnaGVCqFVCpFhw4dMHv2bIwfPx4nTpyoijqJiIiIysXkkRutVgsbGxsAgLOzM27dugUA8PX1xfnz5yu3OiIiIiITmTxy07RpU5w8eRL+/v5o27Yt5s2bB4VCgeXLlyMgIKAqaiQiIiIqN5PDzdSpU5GVlQUA+Oijj/D888+jY8eOcHJywoYNGyq9QCIiIiJTSISi052eQEpKChwcHAxnTNVk6enpsLOzQ1paGmxtbcUuh4iIiMrBlN9vk+bc5Ofnw8LCAv/8849Ru6OjY60INkRERGT+TAo3crkc9erV47VsiIiIqMYy+WypDz74AO+//z5SUlKqoh4iIiKiJ2LyhOJFixbh0qVL8PT0hK+vL6ysrIzWHz9+vNKKIyIiIjKVyeGmT58+VVAGERERUeWolLOlahOeLUVERFT7VNnZUkREREQ1ncmHpaRS6SNP++aZVERERCQmk8PNli1bjJ7n5+fjxIkT+P777zFz5sxKK4yIiIioIiptzk10dDQ2bNiAbdu2Vcbuqgzn3BAREdU+osy5adeuHWJiYiprd0REREQVUinhJicnB1999RW8vLwqY3dEREREFWbynJuHb5ApCAIyMjJgaWmJNWvWVGpxRERERKYyOdx88cUXRuFGKpXCxcUFbdu2hYODQ6UWR0RERGQqk8PN8OHDq6AMIiIiosph8pyb1atX46effirR/tNPP+H777+vlKKIiIiIKsrkcDN79mw4OzuXaHd1dcWnn35aKUURERERVZTJ4SYhIQH+/v4l2n19fZGQkFApRRERERFVlMnhxtXVFadOnSrRfvLkSTg5OVVKUUREREQVZXK4GTx4MMaPH4+9e/dCq9VCq9Viz549mDBhAgYNGlQVNRIRERGVm8lnS3388ceIj49H9+7dYWGh31yn02HYsGGcc0NERESiq/C9pS5evIi4uDio1Wo0a9YMvr6+lV1bleC9pYiIiGofU36/TR65KRIUFISgoKCKbk5ERERUJUyec9O/f3/MnTu3RPu8efPw0ksvVUpRRERERBVlcrjZv38/evXqVaK9Z8+e2L9/f6UURURERFRRJoebzMxMKBSKEu1yuRzp6emVUhQRERFRRZkcbpo1a4YNGzaUaF+/fj2Cg4MrpSgiIiKiijJ5QvG0adPQr18/XL58Gd26dQMAxMTEIDo6Ghs3bqz0AomIiIhMYXK46d27N7Zu3YpPP/0UGzduhFqtRkhICPbs2QNHR8eqqJGIiIio3Cp8nZsi6enpWLduHVauXIljx45Bq9VWVm1Vgte5ISIiqn1M+f02ec5Nkf379yMyMhKenp6YP38+unXrhsOHD1d0d0RERESVwqTDUomJifjuu++wcuVKpKen4+WXX0ZeXh62bt3KycRERERUI5R75KZ3795o2LAhTp06hYULF+LWrVv4+uuvq7I2IiIiIpOVe+Tm119/xfjx4zF69GjedoGIiIhqrHKP3Bw4cAAZGRkIDQ1F27ZtsWjRIiQnJ1dlbUREREQmK3e4adeuHVasWIHbt2/jzTffxPr16+Hp6QmdTofdu3cjIyOjKuskIiIiKpcnOhX8/PnzWLlyJX788Uekpqbi6aefxvbt2yuzvkrHU8GJiIhqn2o5FRwAGjZsiHnz5uHGjRtYt27dk+yKiIiIqFI8UbgpIpPJ0KdPnwqP2ixevBh+fn5QqVRo27Ytjhw5Uq7t1q9fD4lEgj59+lTodYmIiMj8VEq4eRIbNmxAVFQUZsyYgePHjyMkJAQRERG4c+fOI7eLj4/HpEmT0LFjx2qqlIiIiGoD0cPNggUL8Prrr2PEiBEIDg7GsmXLYGlpiVWrVpW5jVarxZAhQzBz5kwEBARUY7VERERU04kabjQaDY4dO4YePXoY2qRSKXr06IHY2Ngyt/voo4/g6uqK11577bGvkZeXh/T0dKOFiIiIzJeo4SY5ORlarRZubm5G7W5ubkhMTCx1mwMHDmDlypVYsWJFuV5j9uzZsLOzMyw+Pj5PXDcRERHVXKIfljJFRkYGhg4dihUrVsDZ2blc20yZMgVpaWmG5fr161VcJREREYnJpBtnVjZnZ2fIZDIkJSUZtSclJcHd3b1E/8uXLyM+Ph69e/c2tOl0OgCAhYUFzp8/j8DAQKNtlEollEplFVRPRERENZGoIzcKhQKhoaGIiYkxtOl0OsTExCA8PLxE/0aNGuH06dOIi4szLC+88AK6du2KuLg4HnIiIiIicUduACAqKgqRkZEICwtDmzZtsHDhQmRlZWHEiBEAgGHDhsHLywuzZ8+GSqVC06ZNjba3t7cHgBLtREREVDeJHm4GDhyIu3fvYvr06UhMTESLFi2wc+dOwyTjhIQESKW1amoQERERieiJ7i1VG/HeUkRERLVPtd1bioiIiKimYbghIiIis8JwQ0RERGaF4YaIiIjMCsMNERERmRWGGyIiIjIrDDdERERkVhhuiIiIyKww3BAREZFZYbghIiIis8JwQ0RERGaF4YaIiIjMCsMNERERmRWGGyIiIjIrDDdERERkVhhuiIiIyKww3BAREZFZYbghIiIis8JwQ0RERGaF4YaIiIjMCsMNERERmRWGGyIiIjIrDDdERERkVhhuiIiIyKww3BAREZFZYbghIiIis8JwQ0RERGaF4YaIiIjMCsMNERERmRWGGyIiIjIrDDdERERkVhhuiIiIyKww3BAREZFZYbghIiIis8JwQ0RERGaF4YaIiIjMCsMNERERmRWGGyIiIjIrDDdERERkVhhuiIiIyKww3BAREZFZYbghIiIis8JwQ0RERGaF4YaIiIjMCsMNERERmRWGGyIiIjIrDDdERERkVhhuiIiIyKww3BAREZFZYbghIiIis8JwQ0RERGaF4YaIiIjMCsMNERERmRWGGyIiIjIrDDdERERkVhhuiIiIyKww3BAREZFZYbghIiIis8JwQ0RERGaF4YaIiIjMCsMNERERmRWGGyIiIjIrDDdERERkVmpEuFm8eDH8/PygUqnQtm1bHDlypMy+K1asQMeOHeHg4AAHBwf06NHjkf2JiIiobhE93GzYsAFRUVGYMWMGjh8/jpCQEERERODOnTul9t+3bx8GDx6MvXv3IjY2Fj4+PnjmmWdw8+bNaq6ciIiIaiKJIAiCmAW0bdsWrVu3xqJFiwAAOp0OPj4+eOuttzB58uTHbq/VauHg4IBFixZh2LBhj+2fnp4OOzs7pKWlwdbW9onrJyIioqpnyu+3qCM3Go0Gx44dQ48ePQxtUqkUPXr0QGxsbLn2kZ2djfz8fDg6Opa6Pi8vD+np6UYLERERmS9Rw01ycjK0Wi3c3NyM2t3c3JCYmFiufbz33nvw9PQ0CkgPmj17Nuzs7AyLj4/PE9dNRERENZfoc26exJw5c7B+/Xps2bIFKpWq1D5TpkxBWlqaYbl+/Xo1V0lERETVyULMF3d2doZMJkNSUpJRe1JSEtzd3R+57eeff445c+bg999/R/Pmzcvsp1QqoVQqK6VeIiIiqvlEHblRKBQIDQ1FTEyMoU2n0yEmJgbh4eFlbjdv3jx8/PHH2LlzJ8LCwqqjVCIiIqolRB25AYCoqChERkYiLCwMbdq0wcKFC5GVlYURI0YAAIYNGwYvLy/Mnj0bADB37lxMnz4d0dHR8PPzM8zNsba2hrW1tWjvg4iIiGoG0cPNwIEDcffuXUyfPh2JiYlo0aIFdu7caZhknJCQAKm0eIBp6dKl0Gg0GDBggNF+ZsyYgQ8//LA6SyciIqIaSPTr3FQ3XueGiIio9qk117khIiIiqmwMN0RERGRWGG6IiIjIrDDcEBERkVlhuCEiIiKzwnBDREREZoXhhoiIiMwKww0RERGZFYYbIiIiMisMN0RERGRWGG6IiIjIrDDcEBERkVlhuCEiIiKzYiF2AUREZP60Wi3y8/PFLoNqOLlcDplM9sT7YbghIqIqlZmZiRs3bkAQBLFLoRpOIpHA29sb1tbWT7QfhhsiIqoyWq0WN27cgKWlJVxcXCCRSMQuiWooQRBw9+5d3LhxA0FBQU80gsNwQ0REVSY/Px+CIMDFxQVqtVrscqiGc3FxQXx8PPLz858o3HBCMRERVTmO2FB5VNa/E4YbIiIiMisMN0RERGRWGG6IiIjIrDDcEBER1QK8TlD5MdwQERGVYufOnejQoQPs7e3h5OSE559/HpcvXzasv3HjBgYPHgxHR0dYWVkhLCwMf/31l2H9//3f/6F169ZQqVRwdnZG3759DeskEgm2bt1q9Hr29vb47rvvAADx8fGQSCTYsGEDOnfuDJVKhbVr1+LevXsYPHgwvLy8YGlpiWbNmmHdunVG+9HpdJg3bx7q168PpVKJevXqYdasWQCAbt26Ydy4cUb97969C4VCgZiYmMr42GoEngpORETVRhAE5ORrRXlttVxm0tk4WVlZiIqKQvPmzZGZmYnp06ejb9++iIuLQ3Z2Njp37gwvLy9s374d7u7uOH78OHQ6HQBgx44d6Nu3Lz744AP88MMP0Gg0+OWXX0yuefLkyZg/fz5atmwJlUqF3NxchIaG4r333oOtrS127NiBoUOHIjAwEG3atAEATJkyBStWrMAXX3yBDh064Pbt2zh37hwAYOTIkRg3bhzmz58PpVIJAFizZg28vLzQrVs3k+urqSRCHbtkZHp6Ouzs7JCWlgZbW1uxyyEiMmu5ubm4evUq/P39oVKpkK0pQPD0XaLUcuajCFgqKv7/9MnJyXBxccHp06dx6NAhTJo0CfHx8XB0dCzRt3379ggICMCaNWtK3ZdEIsGWLVvQp08fQ5u9vT0WLlyI4cOHIz4+Hv7+/li4cCEmTJjwyLqef/55NGrUCJ9//jkyMjLg4uKCRYsWYeTIkSX65ubmwtPTE8uWLcPLL78MAAgJCUG/fv0wY8YMEz6NqvHwv5cHmfL7zcNSREREpbh48SIGDx6MgIAA2Nraws/PDwCQkJCAuLg4tGzZstRgAwBxcXHo3r37E9cQFhZm9Fyr1eLjjz9Gs2bN4OjoCGtra+zatQsJCQkAgLNnzyIvL6/M11apVBg6dChWrVoFADh+/Dj++ecfDB8+/IlrrUl4WIqIiKqNWi7DmY8iRHttU/Tu3Ru+vr5YsWIFPD09odPp0LRpU2g0msdebflx6yUSSYl7bZU2YdjKysro+WeffYYvv/wSCxcuRLNmzWBlZYWJEydCo9GU63UB/aGpFi1a4MaNG1i9ejW6desGX1/fx25Xm3DkhoiIqo1EIoGlwkKUxZT5Nvfu3cP58+cxdepUdO/eHY0bN8b9+/cN65s3b464uDikpKSUun3z5s0fOUHXxcUFt2/fNjy/ePEisrOzH1vXwYMH8eKLL+I///kPQkJCEBAQgAsXLhjWBwUFQa1WP/K1mzVrhrCwMKxYsQLR0dF49dVXH/u6tQ3DDRER0UMcHBzg5OSE5cuX49KlS9izZw+ioqIM6wcPHgx3d3f06dMHBw8exJUrV7Bp0ybExsYCAGbMmIF169ZhxowZOHv2LE6fPo25c+catu/WrRsWLVqEEydO4O+//8aoUaMgl8sfW1dQUBB2796NQ4cO4ezZs3jzzTeRlJRkWK9SqfDee+/h3XffxQ8//IDLly/j8OHDWLlypdF+Ro4ciTlz5kAQBKOzuMwFww0REdFDpFIp1q9fj2PHjqFp06Z4++238dlnnxnWKxQK/Pbbb3B1dUWvXr3QrFkzzJkzx3Czxy5duuCnn37C9u3b0aJFC3Tr1g1HjhwxbD9//nz4+PigY8eOeOWVVzBp0iRYWlo+tq6pU6eiVatWiIiIQJcuXQwB60HTpk3DO++8g+nTp6Nx48YYOHAg7ty5Y9Rn8ODBsLCwwODBg0tM3DUHPFuKiIiqzKPOfiHxxMfHIzAwEEePHkWrVq3ELsegss6W4oRiIiKiOiI/Px/37t3D1KlT0a5duxoVbCoTD0sRERHVEQcPHoSHhweOHj2KZcuWiV1OleHIDRERUR3RpUuXEqegmyOO3BAREZFZYbghIiIis8JwQ0RERGaF4YaIiIjMCsMNERERmRWGGyIiIjIrDDdERERVwM/PDwsXLhS7jDqJ4YaIiIjMCsMNERERGdFqtdDpdGKXUWEMN0RERA9Zvnw5PD09S/zAv/jii3j11Vdx+fJlvPjii3Bzc4O1tTVat26N33//vcKvt2DBAjRr1gxWVlbw8fHBmDFjkJmZadTn4MGD6NKlCywtLeHg4ICIiAjcv38fAKDT6TBv3jzUr18fSqUS9erVw6xZswAA+/btg0QiQWpqqmFfcXFxkEgkiI+PBwB89913sLe3x/bt2xEcHAylUomEhAQcPXoUTz/9NJydnWFnZ4fOnTvj+PHjRnWlpqbizTffhJubG1QqFZo2bYqff/4ZWVlZsLW1xcaNG436b926FVZWVsjIyKjw5/U4DDdERFR9BAHQZImzmHDbgZdeegn37t3D3r17DW0pKSnYuXMnhgwZgszMTPTq1QsxMTE4ceIEnn32WfTu3RsJCQkV+likUim++uor/Pvvv/j++++xZ88evPvuu4b1cXFx6N69O4KDgxEbG4sDBw6gd+/e0Gq1AIApU6Zgzpw5mDZtGs6cOYPo6Gi4ubmZVEN2djbmzp2Lb7/9Fv/++y9cXV2RkZGByMhIHDhwAIcPH0ZQUBB69eplCCY6nQ49e/bEwYMHsWbNGpw5cwZz5syBTCaDlZUVBg0ahNWrVxu9zurVqzFgwADY2NhU6LMqD95bioiIqk9+NvCppziv/f4tQGFVrq4ODg7o2bMnoqOj0b17dwDAxo0b4ezsjK5du0IqlSIkJMTQ/+OPP8aWLVuwfft2jBs3zuTSJk6caPjbz88Pn3zyCUaNGoUlS5YAAObNm4ewsDDDcwBo0qQJACAjIwNffvklFi1ahMjISABAYGAgOnToYFIN+fn5WLJkidH76tatm1Gf5cuXw97eHn/88Qeef/55/P777zhy5AjOnj2LBg0aAAACAgIM/UeOHIn27dvj9u3b8PDwwJ07d/DLL7880ShXeXDkhoiIqBRDhgzBpk2bkJeXBwBYu3YtBg0aBKlUiszMTEyaNAmNGzeGvb09rK2tcfbs2QqP3Pz+++/o3r07vLy8YGNjg6FDh+LevXvIzs4GUDxyU5qzZ88iLy+vzPXlpVAo0Lx5c6O2pKQkvP766wgKCoKdnR1sbW2RmZlpeJ9xcXHw9vY2BJuHtWnTBk2aNMH3338PAFizZg18fX3RqVOnJ6r1cThyQ0RE1UduqR9BEeu1TdC7d28IgoAdO3agdevW+PPPP/HFF18AACZNmoTdu3fj888/R/369aFWqzFgwABoNBqTy4qPj8fzzz+P0aNHY9asWXB0dMSBAwfw2muvQaPRwNLSEmq1usztH7UO0B/yAmB0N/D8/PxS9yORSIzaIiMjce/ePXz55Zfw9fWFUqlEeHi44X0+7rUB/ejN4sWLMXnyZKxevRojRowo8TqVjSM3RERUfSQS/aEhMRYTf1BVKhX69euHtWvXYt26dWjYsCFatWoFQD+5d/jw4ejbty+aNWsGd3d3w+RcUx07dgw6nQ7z589Hu3bt0KBBA9y6ZRwAmzdvjpiYmFK3DwoKglqtLnO9i4sLAOD27duGtri4uHLVdvDgQYwfPx69evVCkyZNoFQqkZycbFTXjRs3cOHChTL38Z///AfXrl3DV199hTNnzhgOnVUlhhsiIqIyDBkyBDt27MCqVaswZMgQQ3tQUBA2b96MuLg4nDx5Eq+88kqFT52uX78+8vPz8fXXX+PKlSv48ccfsWzZMqM+U6ZMwdGjRzFmzBicOnUK586dw9KlS5GcnAyVSoX33nsP7777Ln744QdcvnwZhw8fxsqVKw379/HxwYcffoiLFy9ix44dmD9/frlqCwoKwo8//oizZ8/ir7/+wpAhQ4xGazp37oxOnTqhf//+2L17N65evYpff/0VO3fuNPRxcHBAv3798N///hfPPPMMvL29K/Q5mYLhhoiIqAzdunWDo6Mjzp8/j1deecXQvmDBAjg4OKB9+/bo3bs3IiIiDKM6pgoJCcGCBQswd+5cNG3aFGvXrsXs2bON+jRo0AC//fYbTp48iTZt2iA8PBzbtm2DhYV+dsm0adPwzjvvYPr06WjcuDEGDhyIO3fuAADkcjnWrVuHc+fOoXnz5pg7dy4++eSTctW2cuVK3L9/H61atcLQoUMxfvx4uLq6GvXZtGkTWrdujcGDByM4OBjvvvuu4SyuIkWH2F599dUKfUamkgiCCefGmYH09HTY2dkhLS0Ntra2YpdDRGTWcnNzcfXqVfj7+0OlUoldDonkxx9/xNtvv41bt25BoVCU2e9R/15M+f3mhGIiIiKqEtnZ2bh9+zbmzJmDN99885HBpjLxsBQREVEVWrt2LaytrUtdiq5VY67mzZuHRo0awd3dHVOmTKm21+VhKSIiqjI8LKW/yF5SUlKp6+RyOXx9fau5opqLh6WIiIhqARsbmyq91QCVxMNSREREZFYYboiIqMrVsRkQVEGV9e+E4YaIiKqMTCYDgArdloDqnqJ/J0X/biqKc26IiKjKWFhYwNLSEnfv3oVcLjfc54joYTqdDnfv3oWlpaXh4oQVxXBDRERVRiKRwMPDA1evXsW1a9fELodqOKlUinr16j3xjTUZboiIqEopFAoEBQXx0BQ9lkKhqJTRvRoRbhYvXozPPvsMiYmJCAkJwddff402bdqU2f+nn37CtGnTEB8fj6CgIMydOxe9evWqxoqJiMgUUqm0zl7nhqqf6Ac/N2zYgKioKMyYMQPHjx9HSEgIIiIiDDf8etihQ4cwePBgvPbaazhx4gT69OmDPn364J9//qnmyomIiKgmEv0KxW3btkXr1q2xaNEiAPoJRT4+PnjrrbcwefLkEv0HDhyIrKws/Pzzz4a2du3aoUWLFiVuEV8aXqGYiIio9jHl91vUkRuNRoNjx46hR48ehjapVIoePXogNja21G1iY2ON+gNAREREmf2JiIiobhF1zk1ycjK0Wi3c3NyM2t3c3HDu3LlSt0lMTCy1f2JiYqn98/LykJeXZ3ielpYGQJ8AiYiIqHYo+t0uzwGnGjGhuCrNnj0bM2fOLNHu4+MjQjVERET0JDIyMmBnZ/fIPqKGG2dnZ8hkshJ3S01KSoK7u3up27i7u5vUf8qUKYiKijI81+l0SElJgZOT0xOfR/+w9PR0+Pj44Pr165zPUwPw+6hZ+H3ULPw+ah5+J48mCAIyMjLg6en52L6ihhuFQoHQ0FDExMSgT58+APThIyYmBuPGjSt1m/DwcMTExGDixImGtt27dyM8PLzU/kqlEkql0qjN3t6+Msovk62tLf9h1iD8PmoWfh81C7+PmoffSdkeN2JTRPTDUlFRUYiMjERYWBjatGmDhQsXIisrCyNGjAAADBs2DF5eXpg9ezYAYMKECejcuTPmz5+P5557DuvXr8fff/+N5cuXi/k2iIiIqIYQPdwMHDgQd+/exfTp05GYmIgWLVpg586dhknDCQkJRlcrbN++PaKjozF16lS8//77CAoKwtatW9G0aVOx3gIRERHVIKKHGwAYN25cmYeh9u3bV6LtpZdewksvvVTFVZlOqVRixowZJQ6DkTj4fdQs/D5qFn4fNQ+/k8oj+kX8iIiIiCqT6LdfICIiIqpMDDdERERkVhhuiIiIyKww3BAREZFZYbipJIsXL4afnx9UKhXatm2LI0eOiF1SnTV79my0bt0aNjY2cHV1RZ8+fXD+/Hmxy6JCc+bMgUQiMboQJ1Wvmzdv4j//+Q+cnJygVqvRrFkz/P3332KXVSdptVpMmzYN/v7+UKvVCAwMxMcff1yu+ydR2RhuKsGGDRsQFRWFGTNm4Pjx4wgJCUFERATu3Lkjdml10h9//IGxY8fi8OHD2L17N/Lz8/HMM88gKytL7NLqvKNHj+Kbb75B8+bNxS6lzrp//z6eeuopyOVy/Prrrzhz5gzmz58PBwcHsUurk+bOnYulS5di0aJFOHv2LObOnYt58+bh66+/Fru0Wo2ngleCtm3bonXr1li0aBEA/S0kfHx88NZbb2Hy5MkiV0d3796Fq6sr/vjjD3Tq1EnscuqszMxMtGrVCkuWLMEnn3yCFi1aYOHChWKXVedMnjwZBw8exJ9//il2KQTg+eefh5ubG1auXGlo69+/P9RqNdasWSNiZbUbR26ekEajwbFjx9CjRw9Dm1QqRY8ePRAbGytiZVQkLS0NAODo6ChyJXXb2LFj8dxzzxn9t0LVb/v27QgLC8NLL70EV1dXtGzZEitWrBC7rDqrffv2iImJwYULFwAAJ0+exIEDB9CzZ0+RK6vdasQVimuz5ORkaLVaw+0iiri5ueHcuXMiVUVFdDodJk6ciKeeeoq36BDR+vXrcfz4cRw9elTsUuq8K1euYOnSpYiKisL777+Po0ePYvz48VAoFIiMjBS7vDpn8uTJSE9PR6NGjSCTyaDVajFr1iwMGTJE7NJqNYYbMmtjx47FP//8gwMHDohdSp11/fp1TJgwAbt374ZKpRK7nDpPp9MhLCwMn376KQCgZcuW+Oeff7Bs2TKGGxH873//w9q1axEdHY0mTZogLi4OEydOhKenJ7+PJ8Bw84ScnZ0hk8mQlJRk1J6UlAR3d3eRqiJAf8+yn3/+Gfv374e3t7fY5dRZx44dw507d9CqVStDm1arxf79+7Fo0SLk5eVBJpOJWGHd4uHhgeDgYKO2xo0bY9OmTSJVVLf997//xeTJkzFo0CAAQLNmzXDt2jXMnj2b4eYJcM7NE1IoFAgNDUVMTIyhTafTISYmBuHh4SJWVncJgoBx48Zhy5Yt2LNnD/z9/cUuqU7r3r07Tp8+jbi4OMMSFhaGIUOGIC4ujsGmmj311FMlLo1w4cIF+Pr6ilRR3ZadnQ2p1PinWCaTQafTiVSReeDITSWIiopCZGQkwsLC0KZNGyxcuBBZWVkYMWKE2KXVSWPHjkV0dDS2bdsGGxsbJCYmAgDs7OygVqtFrq7usbGxKTHfycrKCk5OTpwHJYK3334b7du3x6effoqXX34ZR44cwfLly7F8+XKxS6uTevfujVmzZqFevXpo0qQJTpw4gQULFuDVV18Vu7RajaeCV5JFixbhs88+Q2JiIlq0aIGvvvoKbdu2FbusOkkikZTavnr1agwfPrx6i6FSdenShaeCi+jnn3/GlClTcPHiRfj7+yMqKgqvv/662GXVSRkZGZg2bRq2bNmCO3fuwNPTE4MHD8b06dOhUCjELq/WYrghIiIis8I5N0RERGRWGG6IiIjIrDDcEBERkVlhuCEiIiKzwnBDREREZoXhhoiIiMwKww0RERGZFYYbIqrzJBIJtm7dKnYZRFRJGG6ISFTDhw+HRCIpsTz77LNil0ZEtRTvLUVEonv22WexevVqozalUilSNURU23HkhohEp1Qq4e7ubrQ4ODgA0B8yWrp0KXr27Am1Wo2AgABs3LjRaPvTp0+jW7duUKvVcHJywhtvvIHMzEyjPqtWrUKTJk2gVCrh4eGBcePGGa1PTk5G3759YWlpiaCgIGzfvr1q3zQRVRmGGyKq8aZNm4b+/fvj5MmTGDJkCAYNGoSzZ88CALKyshAREQEHBwccPXoUP/30E37//Xej8LJ06VKMHTsWb7zxBk6fPo3t27ejfv36Rq8xc+ZMvPzyyzh16hR69eqFIUOGICUlpVrfJxFVEoGISESRkZGCTCYTrKysjJZZs2YJgiAIAIRRo0YZbdO2bVth9OjRgiAIwvLlywUHBwchMzPTsH7Hjh2CVCoVEhMTBUEQBE9PT+GDDz4oswYAwtSpUw3PMzMzBQDCr7/+Wmnvk4iqD+fcEJHounbtiqVLlxq1OTo6Gv4ODw83WhceHo64uDgAwNmzZxESEgIrKyvD+qeeego6nQ7nz5+HRCLBrVu30L1790fW0Lx5c8PfVlZWsLW1xZ07dyr6lohIRAw3RCQ6KyurEoeJKotarS5XP7lcbvRcIpFAp9NVRUlEVMU454aIarzDhw+XeN64cWMAQOPGjXHy5ElkZWUZ1h88eBBSqRQNGzaEjY0N/Pz8EBMTU601E5F4OHJDRKLLy8tDYmKiUZuFhQWcnZ0BAD/99BPCwsLQoUMHrF27FkeOHMHKlSsBAEOGDMGMGTMQGRmJDz/8EHfv3sVbb72FoUOHws3NDQDw4YcfYtSoUXB1dUXPnj2RkZGBgwcP4q233qreN0pE1YLhhohEt3PnTnh4eBi1NWzYEOfOnQOgP5Np/fr1GDNmDDw8PLBu3ToEBwcDACwtLbFr1y5MmDABrVu3hqWlJfr3748FCxYY9hUZGYnc3Fx88cUXmDRpEpydnTFgwIDqe4NEVK0kgiAIYhdBRFQWiUSCLVu2oE+fPmKXQkS1BOfcEBERkVlhuCEiIiKzwjk3RFSj8cg5EZmKIzdERERkVhhuiIiIyKww3BAREZFZYbghIiIis8JwQ0RERGaF4YaIiIjMCsMNERERmRWGGyIiIjIrDDdERERkVv4fjpUoWf0rYq4AAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "32/32 [==============================] - 5s 87ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADSO0lEQVR4nOzdd1xV9f/A8ddlXeCyl4AgIKiAiuDeozQn2lDT7CdoZVlm5szKmSNHZqVpZokzG6a5Z5p7i3sriCDiYAjIvr8/+Hr1CiIo3HvV99PHfTw8+33POdz7vp91FGq1Wo0QQgghxAvISN8BCCGEEELoiyRCQgghhHhhSSIkhBBCiBeWJEJCCCGEeGFJIiSEEEKIF5YkQkIIIYR4YUkiJIQQQogXliRCQgghhHhhSSIkhBBCiBeWJEJCPEfCw8Px9vbWdxjPldTUVN59911cXV1RKBQMGDCg1I/h7e1NeHh4qe/3WTV69GgUCoW+wxAvCEmExAstIiIChULBwYMH9R1KscXFxTF69GgiIyN1fuyOHTtiaWnJnTt3HrlOjx49MDMz49atWwB8+umn1KxZEwcHBywtLQkICGD06NGkpqYW+7gpKSmMGTOGGjVqYGVlhYWFBdWqVWPYsGHExcU99fsqyoQJE4iIiKBv374sXLiQ//u//yvT4+nSvftfoVCwc+fOAsvVajWenp4oFAo6dOjwRMeYMGECK1aseMpIhShDaiFeYPPmzVMD6gMHDug7lGI7cOCAGlDPmzevwLKsrCx1RkZGmR176dKlakA9f/78QpenpaWpVSqVOjQ0VDOvUaNG6v79+6u///579Zw5c9R9+/ZVK5VKdaNGjdS5ubmPPebFixfVPj4+amNjY3W3bt3UM2bMUM+ZM0fdr18/taOjo7pSpUql9v4KU69ePXWjRo3K9BgZGRnqrKysMj1GYe7d/+bm5uq+ffsWWL5161Y1oFYqler27ds/0TFUKpU6LCysRNtkZ2er7969+0THE6KkTPSahQkhSpWpqWmZ7r9jx45YW1uzZMkSevbsWWD5P//8Q1paGj169NDMK6ykwdfXl8GDB7N//37q16//yOPl5OTw+uuvc/36dbZt20bjxo21lo8fP55JkyY9xTt6vISEBAIDA8v0GEqlskz3/zjt2rXjzz//5Pvvv8fE5P7XwpIlS6hVqxY3b97USRxpaWmoVCpMTEy04hCiLEnVmBAPCQ8Px8rKitjYWF599VWsrKxwdnZm8ODB5Obmaq2bl5fHd999R/Xq1TE3N8fZ2Zk2bdoUqGpbtGgRtWrVwsLCAgcHB7p160ZMTIzWOs2bN6datWocOnSIhg0bYmFhgY+PD7Nnz9ass23bNurUqQNAr169NNUaERERmtgfbiOUlpbGoEGD8PT0RKlUUqVKFaZOnYpardZaT6FQ0K9fP1asWEG1atVQKpVUrVqV9evXa9axsLDg9ddfZ8uWLSQkJBQ4d0uWLMHa2pqOHTsWeY7vxZiUlFTkesuWLePo0aN88cUXBZIgABsbG8aPH681788//9ScaycnJ95++21iY2O11inONd62bRsKhYLLly+zZs0azbmOiorSVClFRUVp7ffeNtu2bdPMO3/+PG+88Qaurq6Ym5vj4eFBt27dSE5O1jofD7cRunTpEl26dNFUKdavX581a9YUerw//viD8ePH4+Hhgbm5OS+//DIXLlwo8tw+qHv37ty6dYtNmzZp5mVlZfHXX3/x1ltvFbrN1KlTadiwIY6OjlhYWFCrVi3++usvrXUUCgVpaWnMnz9fc/7uvc977YBOnTrFW2+9hb29veYaP9xGaN68eSgUCn799Vet/U+YMAGFQsHatWuL/V6FeJgkQkIUIjc3l9atW+Po6MjUqVNp1qwZ33zzDXPmzNFa75133mHAgAF4enoyadIkPvvsM8zNzdm7d69mnfHjx9OzZ08qVarEtGnTGDBgAFu2bKFp06YFEoHExETatWtHrVq1mDx5Mh4eHvTt21fzBRAQEMDYsWMB6NOnDwsXLmThwoU0bdq00PehVqvp2LEj3377LW3atGHatGlUqVKFIUOGMHDgwALr79y5kw8//JBu3boxefJkMjIyeOONNzTtfSC/DVBOTg5//PGH1ra3b99mw4YNvPbaa1hYWGgty8nJ4ebNm8TFxbFx40a+/PJLrK2tqVu3bpHXYeXKlQDFbpcTERFB165dMTY2ZuLEibz33nv8/fffNG7cuMC5ftw1DggIYOHChTg5OREcHKw5187OzsWKBfKTidatW7N3714+/vhjZs6cSZ8+fbh06VKRSeD169dp2LAhGzZs4MMPP2T8+PFkZGTQsWNHli9fXmD9r7/+muXLlzN48GCGDx/O3r17tUrlHsfb25sGDRrw22+/aeatW7eO5ORkunXrVug23333HSEhIYwdO5YJEyZgYmJCly5dtJK1hQsXolQqadKkieb8vf/++1r76dKlC+np6UyYMIH33nuv0GP16tWLDh06MHDgQM0PiOPHjzNmzBjeeecd2rVrV+z3KkQB+q6bE0KfCmsjFBYWpgbUY8eO1Vo3JCREXatWLc30v//+qwbU/fv3L7DfvLw8tVqtVkdFRamNjY3V48eP11p+/PhxtYmJidb8Zs2aqQH1N998o5mXmZmpDg4OVru4uGjakBTVRigsLEzt5eWlmV6xYoUaUI8bN05rvc6dO6sVCoX6woULmnmA2szMTGve0aNH1YD6hx9+0MzLyclRu7m5qRs0aKC1z9mzZ6sB9YYNGwrEtWfPHjWgeVWpUkW9devWAus9LCQkRG1ra/vY9dTq/PZRLi4u6mrVqmm1L1m9erUaUI8cOVIzr7jXWK1Wq728vAq0j7l331y+fFlr/r02Nffe25EjR9SA+s8//ywydi8vL612NAMGDFAD6h07dmjm3blzR+3j46P29vbWtK26d7yAgAB1ZmamZt3vvvtODaiPHz9e5HEfvP9nzJihtra2Vqenp6vVarW6S5cu6hYtWjzyHNxb756srCx1tWrV1C+99JLW/Ee1ERo1apQaUHfv3v2Ryx507do1tYODg7pVq1bqzMxMdUhIiLpChQrq5OTkIt+jEI8jJUJCPMIHH3ygNd2kSRMuXbqkmV62bBkKhYJRo0YV2PZesf7ff/9NXl4eXbt25ebNm5qXq6srlSpVYuvWrVrbmZiYaP1iNjMz4/333ychIYFDhw6V+D2sXbsWY2Nj+vfvrzV/0KBBqNVq1q1bpzW/ZcuW+Pr6aqaDgoKwsbHRet/GxsZ069aNPXv2aFUNLVmyhHLlyvHyyy8XiCMwMJBNmzaxYsUKhg4dikqlKlavsZSUFKytrYv1Xg8ePEhCQgIffvgh5ubmmvnt27fH39+/QLUSPP4aPy1bW1sANmzYQHp6erG3W7t2LXXr1tWqDrSysqJPnz5ERUVx6tQprfV79eqFmZmZZrpJkyYAJXovXbt25e7du6xevZo7d+6wevXqR1aLAVqlfomJiSQnJ9OkSRMOHz5c7GNCwWvwKK6ursycOZNNmzbRpEkTIiMj+fXXX7GxsSnR8YR4mCRCQhTiXnufB9nb25OYmKiZvnjxIu7u7jg4ODxyP+fPn0etVlOpUiWcnZ21XqdPny7Qzsbd3R2VSqU1r3LlygAF2qMUR3R0NO7u7gWSiYCAAM3yB1WoUKHAPh5+34Cm2mXJkiUAXL16lR07dtCtWzeMjY0L7MPGxoaWLVvSqVMnJk2axKBBg+jUqRNHjx4tMn4bG5siu+o/6N57qVKlSoFl/v7+Bd5rca7x0/Lx8WHgwIHMnTsXJycnWrduzcyZM7XaBxUmOjq60PdR3Otmb28PUKL34uzsTMuWLVmyZAl///03ubm5dO7c+ZHrr169mvr162Nubo6DgwPOzs7MmjXrse/tYT4+PsVet1u3brRv3579+/fz3nvvFZp0C1FSkggJUYjCvsyfRF5eHgqFgvXr17Np06YCr59++qlUjlNaHvW+1Q81rK5Vqxb+/v6aNiW//fYbarW62O1SXn/9dQCWLl1a5Hr+/v4kJycXaFheGp7mGj9qsL+HG9MDfPPNNxw7dozPP/+cu3fv0r9/f6pWrcrVq1ef+PgPK+51e5y33nqLdevWMXv2bNq2bYudnV2h6+3YsYOOHTtibm7Ojz/+yNq1a9m0aRNvvfVWiY/5cHuyoty6dUvTEeHUqVPk5eWV6FhCFEYSISGekK+vL3Fxcdy+fbvIddRqNT4+PrRs2bLA6+Gu43FxcaSlpWnNO3fuHHC/p1VJRtz18vIiLi6uQKnKmTNnNMufVI8ePThx4gTHjh1jyZIlVKpUSdOj7XEyMzPJy8t7bOlBaGgokN/r7nHuvZezZ88WWHb27Nmneq8Pu1fi8nCD54dLau6pXr06X375Jdu3b2fHjh3ExsZq9QZ8mJeXV6HvozSuW1Fee+01jIyM2Lt3b5HVYsuWLcPc3JwNGzbQu3dv2rZtS8uWLQtdtzRHiP7oo4+4c+cOEydOZOfOnUyfPr3U9i1eXJIICfGE3njjDdRqNWPGjCmw7N6v4tdffx1jY2PGjBlT4JeyWq3W6o0F+b2rHiwlysrK4qeffsLZ2ZlatWoBaKrOHtf1HPLHh8nNzWXGjBla87/99lsUCgVt27Z9/Bt9hHulPyNHjiQyMrLQ0qCkpCSys7MLzJ87dy4AtWvXLvIYnTt3pnr16owfP549e/YUWH7nzh2++OILzb5cXFyYPXs2mZmZmnXWrVvH6dOnad++ffHf3GPca0e1fft2zbzc3NwCvQpTUlLIycnRmle9enWMjIy0YnxYu3bt2L9/v9Z7TktLY86cOXh7e5fZuEZWVlbMmjWL0aNHa5LQwhgbG6NQKLRKwKKiogodQVqlUhXrXn2cv/76i99//52vv/6azz77jG7duvHll19qfigI8aRkxCohnlCLFi34v//7P77//nvOnz9PmzZtyMvLY8eOHbRo0YJ+/frh6+vLuHHjGD58OFFRUbz66qtYW1tz+fJlli9fTp8+fRg8eLBmn+7u7kyaNImoqCgqV67M77//TmRkJHPmzNEMlujr64udnR2zZ8/G2toalUpFvXr1Cm1rERoaSosWLfjiiy+IioqiRo0abNy4kX/++YcBAwZoNYwuKR8fHxo2bMg///wDUGgitG3bNvr370/nzp2pVKkSWVlZ7Nixg7///pvatWvz9ttvF3kMU1NT/v77b1q2bEnTpk3p2rUrjRo1wtTUlJMnT7JkyRLs7e0ZP348pqamTJo0iV69etGsWTO6d+/O9evX+e677/D29ubTTz994vf6sKpVq1K/fn2GDx/O7du3cXBwYOnSpQWSnn///Zd+/frRpUsXKleuTE5ODgsXLsTY2Jg33njjkfv/7LPP+O2332jbti39+/fHwcGB+fPnc/nyZZYtW4aRUdn9hg0LC3vsOu3bt2fatGm0adOGt956i4SEBGbOnImfnx/Hjh3TWrdWrVps3ryZadOm4e7ujo+PD/Xq1StRTAkJCfTt21fzdwUwY8YMtm7dSnh4ODt37izTcyKec3rqrSaEQXhU93mVSlVg3cK69Obk5KinTJmi9vf3V5uZmamdnZ3Vbdu2VR86dEhrvWXLlqkbN26sVqlUapVKpfb391d/9NFH6rNnz2rWadasmbpq1arqgwcPqhs0aKA2NzdXe3l5qWfMmFEgln/++UcdGBioNjEx0epK/3D3ebU6v9v1p59+qnZ3d1ebmpqqK1WqpJ4yZYqmi/89gPqjjz4qcKyHu3Y/aObMmWpAXbdu3UKXX7hwQd2zZ091xYoV1RYWFmpzc3N11apV1aNGjVKnpqYWuk1hEhMT1SNHjlRXr15dbWlpqTY3N1dXq1ZNPXz4cPW1a9e01v3999/VISEhaqVSqXZwcFD36NFDffXqVa11SnKNC+s6rlbnP/qjZcuWaqVSqS5Xrpz6888/V2/atEmr+/ylS5fUvXv3Vvv6+qrNzc3VDg4O6hYtWqg3b95c4BgPn+OLFy+qO3furLazs1Obm5ur69atq169erXWOve6zz/cPf/y5cuPHGLhQcV9xExh5+CXX35RV6pUSa1UKtX+/v7qefPmFXr+zpw5o27atKnawsJCDWje5711b9y4UeB4D+/n9ddfV1tbW6ujoqK01vvnn3/UgHrSpElFxi9EURRqdQlbtgkhykTz5s25efMmJ06c0HcoQgjxwpCyRCGEEEK8sCQREkIIIcQLSxIhIYQQQrywJBESwkBs27ZN2gcJIcT/bN++ndDQUNzd3VEoFAWGZ0hNTaVfv354eHhgYWFBYGBgkeNzPYokQkIIIYQwOGlpadSoUYOZM2cWunzgwIGsX7+eRYsWcfr0aQYMGEC/fv1YuXJliY4jvcaEEEIIYdAUCgXLly/n1Vdf1cyrVq0ab775JiNGjNDMq1WrFm3btmXcuHHF3rcMqPgCy8vLIy4uDmtr61IdBl8IIYRuqNVq7ty5g7u7e5kNKpmRkUFWVlap7EutVhf4vlEqlSiVyhLvq2HDhqxcuZLevXvj7u7Otm3bOHfuHN9++22J9iOJ0AssLi4OT09PfYchhBDiKcXExODh4VHq+83IyMDC2hFy0ktlf1ZWVqSmpmrNGzVqFKNHjy7xvn744Qf69OmDh4cHJiYmGBkZ8fPPP9O0adMS7UcSoReYtbU1AH9uO4allbWeo7lv5KpT+g6hgCqedvoOoYCzMUn6DqGAxMS7+g6hAF9ve32HUICzjbm+Qyjg29eq6TuEAtp9v1PfIRSwtn9jfYeg5U5KCn4+nprP89KWlZUFOekoA8PA2OzpdpabReqp+cTExGBjY6OZ/SSlQZCfCO3du5eVK1fi5eXF9u3b+eijj3B3d3/kQ4ALI4nQC+xe8aSllTUqK5vHrK07JuYqfYdQgJmllb5DKMDEvODDTPXNWGl4/S9MLQzv2plZGl4i9OAXk6EwxM8CQzxPQNk3bzAxR/GUiZBakf/5YGNj89Tn8e7du3z++ecsX75c80DloKAgIiMjmTp1qiRCQgghhChFCuBpk61SzNWys7PJzs4u0C7K2NiYvLy8Eu1LEiEhhBBCFE1hlP962n2UQGpqKhcuXNBMX758mcjISBwcHKhQoQLNmjVjyJAhWFhY4OXlxX///ceCBQuYNm1aiY4jiZAQQgghDM7Bgwdp0aKFZnrgwIEAhIWFERERwdKlSxk+fDg9evTg9u3beHl5MX78eD744IMSHUcSISGEEEIUTaEohaqxkm3fvHlzihrq0NXVlXnz5j1dTEgiJIQQQojH0UPVmK4YZlRCCCGEEDogJUJCCCGEKJoeqsZ0RRIhIYQQQjxGKVSNGWgllGFGJYQQQgihA1IiJIQQQoiiSdWYEAX17DeNhJtJBeZ3eKUu/Xp30EkMQR62dKvjSeVyVjhZKflyxQl2XrilWR7e0IuXqrjgbKMkJzePc9dTmbvjMqfj75RZTH5OKlpVcaaCvQV2FqbM3hXF0bgUzfLg8jY0qehIBXsLrJQmjN94jqvJGWUWDxjmearlbU94Ex8CytvgYmPOJwsPs/V0QqHrftkpkK71KjB59WkW7Y4us5gCXa3pFORKRUcVDiozJm06x/7oJACMFQq61y5PTU87ylkrSc/K5VhcCosOxJCYXnaPOzHE++lhv/y1g1+X7SDm2m0A/Cu6MuSdtrRqVFVnMRjiPf4wQzhPT0x6jYmSCg8PR6FQaF6Ojo60adOGY8eO6Tu0UvP9hPdZMnuI5jXhizAAmtTT3R+1uakxFxNSmb75fKHLY27f5bst5+kdcZCPf4skPjmDKV2CsLUwLbOYlCZGxCbdZenh2EKXmxkbcfFmGiuOx5dZDA8zxPNkYWbM2fg7TFhZ9EN2Xwp0IcjTjus6+HJXmhgRdSudnwtJtpQmRlR0UvHXkTiGrDjJ5M3ncbc157NWlcs8JkO7nx7m7mLHqH6d2LpgKP/OH0KT2pXpMXgOpy9e01kMhniPP8wQzpMoSEqEylCbNm00gz3Fx8fz5Zdf0qFDB65cuaLnyEqHnY32AxH/+GcHbuUcCAr01lkM+y/fZv/l249cvuWMdgnDzG0XaR/khq+zisNXksokppPxdzhZxK/M/f87roOl7j6ADfE87Tx3k53nbha5jouNkuGhgXww7yAzwmqVSRwPOnI1mSNXkwtdlp6dy9h1Z7Xmzd0dzeRXq+KkMuNmWlaZxGSI99PD2jatrjU94sOO/LpsJwdPXCbA100nMRjiPf4wQzhPT+w5rhqTEqEypFQqcXV1xdXVleDgYD777DNiYmK4ceMGADExMXTt2hU7OzscHBzo1KkTUVFRWvuYO3cuAQEBmJub4+/vz48//qhZlpWVRb9+/XBzc8Pc3BwvLy8mTpyoy7eokZ2Tw787j9G6eUjZPwX5CZkYKQgNciM1I4eLN1L1HY7BMpTzpFDAhC5BROy4zMUEw7xeKjNj8tRq0rJy9B2KwcjNzWPZxoOk382iTnUffYdTKEO4x5+F86TlXtXY074MkJQI6UhqaiqLFi3Cz88PR0dHsrOzad26NQ0aNGDHjh2YmJgwbtw4TfWZmZkZixcvZuTIkcyYMYOQkBCOHDnCe++9h0qlIiwsjO+//56VK1fyxx9/UKFCBWJiYoiJidHL+9tz4AypaRm0ahail+MXpUFFB0Z2CERpasSt1CwG/XWM5LvyxfUwQztPvZtWJCdPzeIybBP0NEyNFbxd15OdF29xN7tkT7t+Hp28EEvr3t+QkZWDykLJwinv4V/RsEo5DOEefxbOU6Ge4xIhSYTK0OrVq7GysgIgLS0NNzc3Vq9ejZGREUuWLCEvL4+5c+dqSlDmzZuHnZ0d27Zt45VXXmHUqFF88803vP766wD4+Phw6tQpfvrpJ8LCwrhy5QqVKlWicePGKBQKvLy8iownMzOTzMxMzXRKSkoRa5fM+q2HqBPsh6ODTants7QciUni3QUHsbUwpX2QG6NDA+i7+AhJZdjA9VlkSOcpwN2GHg29eHPGbp0fuziMFQoGveSHApizK0rf4RiESl7l2L54OCmpd/lnyxE+HL2Q1T99YlBf8oZwjz8L5+lFY5jlVM+JFi1aEBkZSWRkJPv376d169a0bduW6Ohojh49yoULF7C2tsbKygorKyscHBzIyMjg4sWLpKWlcfHiRd555x3NcisrK8aNG8fFixeB/AbZkZGRVKlShf79+7Nx48Yi45k4cSK2traal6enZ6m8z+s3kog8fok2L5V9G44nkZGdR2xSBqeu3WHKhnPk5qlpV81V32EZHEM6T7W87XFQmbFhaDMOf/UKh796hfL2Fgxq58+6Ic30EtM9xgoFg172xdlKyZh1Z6U06H/MTE2o6OlMcEAFRvXrRLVK5Zm9dJu+w9JiCPf4s3CeCiVVY+JJqFQq/Pz8NNNz587F1taWn3/+mdTUVGrVqsXixYsLbOfs7Exqan699c8//0y9evW0lhsbGwNQs2ZNLl++zLp169i8eTNdu3alZcuW/PXXX4XGM3z4cAYOHKiZTklJKZVkaOO2w9jaqqgbUra9Z0qLQqHAzMQw/yANiT7P06ojcey9eEtr3qzw2qyOjOOfQ4X3ntKFe0mQm405o9aeITVTqlgfJU+tJsvA204ZwmfBs3CegP9VjT1t93mpGnvhKRQKjIyMuHv3LjVr1uT333/HxcUFG5uC1Um2tra4u7tz6dIlevTo8ch92tjY8Oabb/Lmm2/SuXNn2rRpw+3bt3FwcCiwrlKpRKlUlup7ysvLY9N/R2jVNFiToOmShakR5e0sNNOutub4OatIycghJSObt+t5sfviTW6lZWFrYcqrwe44WynZdvZGmcWkNDbC2cpMM+2oMsPD1py0rFwS72ZjaWqMg6WppttuOev8a5KSkUNKGX2xGuJ5sjAzpoKjpWa6vIMFVdysSU7PJj45g+S72tUVOXlqbt3JJOpmWpnFZG5ihKuNuWbaxVqJt4MlqZk5JKZnM7ilHxUdLZmw8RxGCgV2/7uGqZk55OSpyyQmQ7yfHjZmxj+0bFgVT1d77qRn8Nf6g+w8dJ5lP3yok+ODYd7jDzOE8yQKkkSoDGVmZhIfnz+2R2JiIjNmzCA1NZXQ0FDq1q3LlClT6NSpE2PHjsXDw4Po6Gj+/vtvhg4dioeHB2PGjKF///7Y2trSpk0bMjMzOXjwIImJiQwcOJBp06bh5uZGSEgIRkZG/Pnnn7i6umJnZ6ez93jk+CUSbibzSvOaOjvmg6q4WjP9zWDNdL8W+SVw60/EM23TOSo4WNC6alVsLUxJycjmTPwdPl4aSdSt9DKLqYKDBQOb+2qmuwS7A7An6jYLDlwlyN2GsLr3S+LebZDftmv1yeusOXW9TGIyxPNUtbwtv75XVzM9tH0AAP8cimXEsuNldtyi+DqrGPu/OAB61c+/NlvP3eD3w7HU9bIHYNrr2t2gR645zclrZTMwnyHeTw+7mZhK39ELuH4zBRsrc6r6lWfZDx/Sol7A4zcuJYZ4jz/MEM7TEzNS5L+edh8GSKFWq8vmZ8wLLjw8nPnz52umra2t8ff3Z9iwYbzxxhtA/thCw4YNY+3atdy5c4fy5cvz8ssvM3XqVE0p0ZIlS5gyZQqnTp1CpVJRvXp1BgwYwGuvvcbPP//Mjz/+yPnz5zE2NqZOnTpMmTKFkJDi9dxKSUnB1taWNQcvo7IynEbOw5br50uwKAH/+wI0JKejE/UdQgG3b9/VdwgFVKpYsHRU31xszR+/ko7N6hKk7xAKaD71P32HUMC2wfpto/awlJQUyjnakpycXGjtQmns39bWFmWTL1GYPN19q87JIHPHuDKL9UlJiVAZiYiIICIiosh1XF1dtZKlwrz11lu89dZbhS577733eO+99540RCGEEOKFJ4mQEEIIIYom4wgJIYQQ4oUlD10VQgghhHj+SImQEEIIIYomVWNCCCGEeGE9x1VjkggJIYQQomjPcYmQYaZnQgghhBA6ICVCQgghhCiaVI0JIYQQ4oUlVWNCCCGEEM8fKRESQgghxGOUQtWYgZa9SCIkhBBCiKI9x1VjkggJwr/fjpGZpb7D0Ng1vr2+Qyhg7sEr+g6hgPZtKuk7hAKmrj+v7xAKCKpgq+8Qnglz913WdwgFDDbAe/yNufv1HYKW7Lup+g7hmSeJkBBCCCGKplCUQq8xKRESQgghxLPoOe4+b5hRCSGEEELogJQICSGEEKJo0lhaCCGEEC+s57hqTBIhIYQQQhTtOS4RMsz0TAghhBBCByQREkIIIUTR7lWNPe2rBLZv305oaCju7u4oFApWrFhRYJ3Tp0/TsWNHbG1tUalU1KlThytXSjbumyRCQgghhCjavaqxp32VQFpaGjVq1GDmzJmFLr948SKNGzfG39+fbdu2cezYMUaMGIG5uXmJjiNthIQQQghhcNq2bUvbtm0fufyLL76gXbt2TJ48WTPP19e3xMeREiEhhBBCFEmhUJTKCyAlJUXrlZmZWeJ48vLyWLNmDZUrV6Z169a4uLhQr169QqvPHkcSISGEEEIUqTQTIU9PT2xtbTWviRMnljiehIQEUlNT+frrr2nTpg0bN27ktdde4/XXX+e///4r0b6kasyAhIeHk5SU9EQZrS7U9XOiT6vKVK9gTzk7C/rM3s3Go3Ga5VN71qZzA2+tbf47GU/YjJ06i3Hmwo3MWrRJa56PhzOrfhmqsxiuXo7l0I7DJMTdIO1OGh16tMMv8H5xrVqtZu+WfRw/cJLMjEzcvdx4qWML7J3sdBZjXl4ef6/Ywa49J0hOTsPezoomjYPoFNpI82FV1oI8bOlWx5PK5axwslLy5YoT7LxwS7M8vKEXL1VxwdlGSU5uHueupzJ3x2VOx98ps5gM8doZYkyFycjIYsPqXZw4ep7U1LuU93CmU+eX8PRy1Wkc9xjCPR7oak2nIFcqOqpwUJkxadM59kcnAWCsUNC9dnlqetpRzlpJelYux+JSWHQghsT0bJ3Epy8xMTHY2NhoppVKZYn3kZeXB0CnTp349NNPAQgODmb37t3Mnj2bZs2aFXtfUiL0kPDwcK3s1dHRkTZt2nDs2LFSO0ZUVBQKhYLIyMhS26cuWCpNOB2bzMilRx65zraT8dQZtkrz+vjXfTqMMJ+fVzm2/TZC81ow7SOdHj87KxtnNydahBb+h3hwx2GO7DnKy51a0K1vV0xNTVke8Q852Tk6i3H12j1s2XqYsLdbM2lCH97s0oI16/aycfNBncVgbmrMxYRUpm8u/In1Mbfv8t2W8/SOOMjHv0USn5zBlC5B2FqYlllMhnjtDDGmwvy1ZAPnz0TTPawdgz7vSWV/b+b88CfJSWWXuBbFEO5xpYkRUbfS+Xl3dKHLKjqp+OtIHENWnGTy5vO425rzWavKOouvRBSl9AJsbGy0Xk+SCDk5OWFiYkJgYKDW/ICAAOk1VhratGnDtWvXuHbtGlu2bMHExIQOHTroOyy923Yynm9WnmTDA6VAD8vKzuVGSqbmlaKHXzbGxkY4OdhoXva2Kp0e36eKNw1bNcCvasFGe2q1miO7IqnXvA6+gRVxdnWidZdWpN1J4+LpSzqL8fyFWGqGVCa4hh/OTnbUrRNAtao+XLr06Gtb2vZfvs0vu6K0SoEetOVMAoeuJHEtOYOoW+nM3HYRK6UJvs5ldz0N8doZYkwPy87K5njkedq/2pSKfh44OdvzSvuGODrbsWfHUZ3F8SBDuMePXE3mt0Ox7I9OLLAsPTuXsevOsvvybeKSMzh/I425u6Pxc1bhpDLTWYzFVZpVY6XBzMyMOnXqcPbsWa35586dw8vLq0T7kkSoEEqlEldXV1xdXQkODuazzz4jJiaGGzduAPnFel27dsXOzg4HBwc6depEVFSU1j7mzp1LQEAA5ubm+Pv78+OPP2qW+fj4ABASEoJCoaB58+aFxpGXl8fEiRPx8fHBwsKCGjVq8Ndff2mWJyYm0qNHD5ydnbGwsKBSpUrMmzevdE9GCdWv7MzByR3YMro147qHYKeHP+grsTdp0f0r2oRNZNjXS7iWUPBDSF9SElNIT03H09dTM09prsTVoxzXrsTrLI5KfuU5dSqKa/H5SUj0leucOx9DUFDJe1zogomRgtAgN1Izcrh4I1UvMRjKtTPEmHLz1OTlqTExNdaab2pqwuWLsTqL40HP2j0OoDIzJk+tJi1Lt6V5hio1NZXIyEhN7cnly5eJjIzUlPgMGTKE33//nZ9//pkLFy4wY8YMVq1axYcfflii40gbocdITU1l0aJF+Pn54ejoSHZ2Nq1bt6ZBgwbs2LEDExMTxo0bp6k+MzMzY/HixYwcOZIZM2YQEhLCkSNHeO+991CpVISFhbF//37q1q3L5s2bqVq1KmZmhScLEydOZNGiRcyePZtKlSqxfft23n77bZydnWnWrBkjRozg1KlTrFu3DicnJy5cuMDdu3d1fIbu++9UPOsjY4m5mYaXsxVDOlUjol9jXp/8L3lq3cQQ5F+BcYPfxNvDmZu37/Djok30HPQjK34ahMqyZGNLlIW0O+kAqKwsteZbWlmSlpqmszg6tGvI3btZDPv8J4yMjMjLy6Pz681p1KCazmIojgYVHRjZIRClqRG3UrMY9Ncxku/q50vCUK7dgwwlJnNzM7x83Ni8bi8u5RyxtrHkyMEzRF++hpOznc7ieNCzco/fY2qs4O26nuy8eIu72Xn6DqeAUinRKeH2Bw8epEWLFprpgQMHAhAWFkZERASvvfYas2fPZuLEifTv358qVaqwbNkyGjduXKLjSCJUiNWrV2NlZQXkD+jk5ubG6tWrMTIyYsmSJeTl5TF37lzNTTFv3jzs7OzYtm0br7zyCqNGjeKbb77h9ddfB/JLgE6dOsVPP/1EWFgYzs7OADg6OuLqWnhDwszMTCZMmMDmzZtp0KABABUrVmTnzp389NNPNGvWjCtXrhASEkLt2rUB8Pb2LvJ9ZWZmanVTTElJefKTVIhVB69q/n82LoXTscns+Kot9Su7sPtsQqke61Ga1PHX/L9KRajuX4FX/m8C67cf4402dXUSw7Ng34FT7N5zgr7vd8LD3ZnomOssXrJZ06DUUByJSeLdBQextTClfZAbo0MD6Lv4CEnPeWPSZ1G3nu34c/EGxn35E0ZGCsp7liO4tj+xV67rJZ5n5R6H/IbTg17yQwHM2RWl73AKpY9EqHnz5qjVRf+K7t27N717936aqCQRKkyLFi2YNWsWkF/99OOPP9K2bVv279/P0aNHuXDhAtbW1lrbZGRkcPHiRdLS0rh48SLvvPMO7733nmZ5Tk4Otra2xY7hwoULpKen06pVK635WVlZhISEANC3b1/eeOMNDh8+zCuvvMKrr75Kw4YNH7nPiRMnMmbMmGLH8LRibqZx604m3s4qdp99/PplwcbKAi8PJ67E3dRPAA9RWef/ck9LTUdlc7+tS3pqOs5uzjqLY+nv/9KhfQMa1KsKgKenCzdvJrNqzW6D+pLIyM4jNimD2KQMTl27w6J36tCumitL9sfoPBZDuXaGGpOTsx19B7xJVmY2GRmZ2NhasejXVTg4Ff9zrzQ9K/e4sULBoJd9cbZSMmrtGYMsDQL9JEK6IolQIVQqFX5+fprpuXPnYmtry88//0xqaiq1atVi8eLFBbZzdnYmNTW//cLPP/9MvXr1tJYbGxsX2OZR7u1nzZo1lC9fXmvZvRb2bdu2JTo6mrVr17Jp0yZefvllPvroI6ZOnVroPocPH64pWoT8EiFPT89C1y0NrnYW2KvMSEjJKLNjPE763Uxi4m4R+nItvcXwIBt7GyytLIm5FIOLe/4XVWZGFvFXrxNUr7rO4sjKyinwoWZkZMRjfnzpnUKhwMxEP00bDeXaGXpMZkpTzJSmpKdncPZ0NO07NdVLHM/CPX4vCXKzMWfU2jOkZkrbIH2QRKgYFAoFRkZG3L17l5o1a/L777/j4uKiNQ7CPba2tri7u3Pp0iV69OhR6P7utQnKzc195DEDAwNRKpVcuXKlyPEQnJ2dCQsLIywsjCZNmjBkyJBHJkJKpfKJuineY6k0xtvZSjPt6agi0MOWpLQsktKz+KR9IOuPxHIjOYMKzlYMf706UTdS2X5Kd0XjU+asonn9QNxd7Em4lcLMhRsxNjaiXfNgncWQlZlF0q1kzXRKYgoJcTcwtzTHxs6akEbB7N96EDtHO2ztbdi9eS8qaxW+ARV1FmNwsB8rV+/GydGW8uWdiI6+zvoN+2japIbOYrAwNaK8nYVm2tXWHD9nFSkZOaRkZPN2PS92X7zJrbQsbC1MeTXYHWcrJdvO3iizmAzx2hliTIU5eyoKNWpcXBy4eSOR1Su241LOgToNquo0jnsM4R43NzHC1eZ+20QXayXeDpakZuaQmJ7N4JZ+VHS0ZMLGcxgpFNj9b2iI1MwccnTVsLK4Huj+/lT7MECSCBUiMzOT+Pj8HheJiYnMmDGD1NRUQkNDqVu3LlOmTKFTp06MHTsWDw8PoqOj+fvvvxk6dCgeHh6MGTOG/v37Y2trS5s2bcjMzOTgwYMkJiYycOBAXFxcsLCwYP369Xh4eGBubl6g2sza2prBgwfz6aefkpeXR+PGjUlOTmbXrl3Y2NgQFhbGyJEjqVWrFlWrViUzM5PVq1cTEBBQZuclqIIDSwfeT8pGdMn/QPlrTxRf/HaYgPK2vFHfCxsLMxKS77L91HWmrTpJVo7uinqv30xm6MQlJN1Jw8HWipCq3iye3g8HO6vHb1xaMcQmsOyX5Zrp7WvzB5QMCPGndedW1G5Sk5ysbLas2KoZAO+18I6YmOruz7Fnj1dYtnw7EQvXk5KSjr2dFS2ah/BapyY6i6GKqzXT3wzWTPdrkV8Ku/5EPNM2naOCgwWtq1bF1sKUlIxszsTf4eOlkUTdSi+zmAzx2hliTIXJyMhk7codJCelYmlpTvXgSrQJbVyikvDSZAj3uK+zirHt738m96qf361767kb/H44lrpe9gBMe1279G7kmtOcvKaf8Zce5XmuGlOoH9cS6QUTHh7O/PnzNdPW1tb4+/szbNgw3njjDQDi4+MZNmwYa9eu5c6dO5QvX56XX36ZqVOnakqJlixZwpQpUzh16hQqlYrq1aszYMAAXnvtNSC/um3s2LHExsbSpEkTtm3bVmBkabVazffff8+sWbO4dOkSdnZ21KxZk88//5ymTZsybtw4lixZQlRUFBYWFjRp0oRvv/1W0z3/cVJSUrC1tcW553yMzCwfv4GO7BrfXt8hFDD3YMkG6NKFWu7Wj19Jx6auL3xwRH1qEaSfkY2fNeVtDW/sGlfVk5dgl5V5e68+fiUdyr6byqaBL5OcnFxoLcXTuvc9YdNlDgpTi8dvUAR19l1S/uxTZrE+KUmEXmCSCBWfJELFI4nQs0sSoeJ5URMh265zUJg+3feEOjud5D8MLxGSqjEhhBBCFElBaYwMbZhVYzKytBBCCCFeWFIiJIQQQogiPc+NpSUREkIIIUTRnuPu81I1JoQQQogXlpQICSGEEKJopVA1ppaqMSGEEEI8i0qjjdDT9zorG5IICSGEEKJIz3MiJG2EhBBCCPHCkhIhIYQQQhTtOe41JomQEEIIIYokVWNCCCGEEM8hKRESWNupMFaq9B2GRv+/j+s7hAKCKtjqO4QCmvo66zuEApxfM9d3CAW0/WKFvkMoYPKnLfQdQgGG+IDTQ3F39B1CAYb2WZCZbswmHRzneS4RkkRICCGEEEV6nhMhqRoTQgghxAtLSoSEEEIIUaTnuURIEiEhhBBCFO057j4vVWNCCCGEeGFJiZAQQgghiiRVY0IIIYR4YUkiJIQQQogX1vOcCEkbISGEEEK8sKRESAghhBBFe457jUkiJIQQQogiSdWYEEIIIcRzSEqEDNSZM2cIDw8nMjISf39/VqxYgY+PD0eOHCE4OFgvMdXytie8iQ8B5W1wsTHnk4WH2Xo6odB1v+wUSNd6FZi8+jSLdkeXWUyBrtZ0CnKloqMKB5UZkzadY390EgDGCgXda5enpqcd5ayVpGflciwuhUUHYkhMzy6zmK5ejuXQjsMkxN0g7U4aHXq0wy/QV7NcrVazd8s+jh84SWZGJu5ebrzUsQX2TnZlFtPj/LhoM5PmrKF356aM6v+aXmLo2W8aCTeTCszv8Epd+vXuoJMYGviX4+PQ6tTwccLNwZK3p25m7cErWutUdrdl1Ft1aBToirGRgrOxSYRN+5fYW2k6iREgIyOLDat3ceLoeVJT71Lew5lOnV/C08tVZzE8KC8vj79X7GDXnhMkJ6dhb2dFk8ZBdAptpLNSAEP8uzPEmJ6UlAg9J8LDwzUXU6FQ4OjoSJs2bTh27Fix9xEREYGdnV2B+d7e3kyfPr3UYh01ahQqlYqzZ8+yZcuWUtvv07AwM+Zs/B0mrDxV5HovBboQ5GnH9eSMMo9JaWJE1K10fi4k2VKaGFHRScVfR+IYsuIkkzefx93WnM9aVS7TmLKzsnF2c6JFaLNClx/ccZgje47ycqcWdOvbFVNTU5ZH/ENOdk6ZxvUoR09fYfHKPQT4uuvl+Pd8P+F9lsweonlN+CIMgCb1quosBpW5KSeibzN03p5Cl3uXs2btmPacj0sidOxamgxbwdS/I8nMztVZjAB/LdnA+TPRdA9rx6DPe1LZ35s5P/xJcpJ+nta+eu0etmw9TNjbrZk0oQ9vdmnBmnV72bj5oM5iMMS/O0OM6UkpUGh9fz7Ry0AbCb1QiRBAmzZtuHbtGteuXWPLli2YmJjQoYNufm0WR1ZWFgAXL16kcePGeHl54ejoqOeo8u08d5MZm87z76nCS4EAXGyUDA8NZPgfx8jJU5d5TEeuJvPboVj2RycWWJaencvYdWfZffk2cckZnL+Rxtzd0fg5q3BSmZVZTD5VvGnYqgF+VX0LLFOr1RzZFUm95nXwDayIs6sTrbu0Iu1OGhdPXyqzmB4lLT2TT75axKShXbG1ttD58R9kZ6PCwc5a89p/+Cxu5RwICvTWWQybI68y4Y/DrDlQeCnml2/WYlPkVUYvOcjxqNtEXb/D+kMx3Ewp+6T/nuysbI5Hnqf9q02p6OeBk7M9r7RviKOzHXt2HNVZHA86fyGWmiGVCa7hh7OTHXXrBFCtqg+XLsXpLAZD/LszxJhEQS9cIqRUKnF1dcXV1ZXg4GA+++wzYmJiuHHjBtu2bUOhUJCUlKRZPzIyEoVCQVRUFNu2baNXr14kJydrMtzRo0fTvHlzoqOj+fTTTwsUH+7cuZMmTZpgYWGBp6cn/fv3Jy3tfhG6t7c3X331FT179sTGxoY+ffqgUCg4dOgQY8eO1RzjQWq1Gj8/P6ZOnao1/16sFy5cKJNz9zgKBUzoEkTEjstcTEjVSwyPozIzJk+tJi1LP7+4UhJTSE9Nx9PXUzNPaa7E1aMc167E6zyeEd/+xUsNAmhcu4rOj12U7Jwc/t15jNbNQwymOF2hgFYhnly8lsxfw1/h7E/d2TQulHa1K+g0jtw8NXl5akxMjbXmm5qacPlirE5juaeSX3lOnYriWvwtAKKvXOfc+RiCggomAPpgaH93hhpTUZ66NKgUqtbKyguXCD0oNTWVRYsW4efnV6xSl4YNGzJ9+nRsbGw0pUqDBw/m77//xsPDg7Fjx2rmQ36pTps2bXjjjTc4duwYv//+Ozt37qRfv35a+506dSo1atTgyJEjjBgxgmvXrlG1alUGDRqkOcaDFAoFvXv3Zt68eVrz582bR9OmTfHz83vKM/NkejetSE6emsVl2CboaZgaK3i7ric7L97ibnaeXmJIu5MOgMrKUmu+pZUlaam6a2MCsHLLYU6ci2VoH8MpEb1nz4EzpKZl0KpZiL5D0XC2scDawpRPOgax5Wgsb0zYwOr90SwY+DINA3TXNsfc3AwvHzc2r9tLclIqeXl5HNp/iujL17iTott76J4O7RpSv14gwz7/ifB3v2bE6F9o3aoujRpU00s8DzOkv7t7DDGmIilK6WWAXrjG0qtXr8bKygqAtLQ03NzcWL16NUZGj88JzczMsLW1RaFQ4Oqq/cFnbGyMtbW11vyJEyfSo0cPBgwYAEClSpX4/vvvadasGbNmzcLc3ByAl156iUGDBmntz8TEBCsrK83+bt68qbU8PDyckSNHsn//furWrUt2djZLliwpUEr0oMzMTDIzMzXTKSkpj33PxRXgbkOPhl68OWN3qe2zNBkrFAx6yQ8FMGdXlL7D0bu464mM+X45i6b1xVxpqu9wCli/9RB1gv1wdLDRdyga9z4i1h26wqy1JwE4EX2bupVd6NXSn92ndfcrvlvPdvy5eAPjvvwJIyMF5T3LEVzbn9gr13UWw4P2HTjF7j0n6Pt+JzzcnYmOuc7iJZs1jaaFMGQvXCLUokULZs2aBUBiYiI//vgjbdu2Zf/+/aV+rKNHj3Ls2DEWL16smadWq8nLy+Py5csEBAQAULt27RLv293dnfbt2/Prr79St25dVq1aRWZmJl26dHnkNhMnTmTMmDElfyPFUMvbHgeVGRuG3m8UaGJsxKB2/vRo5E3bKf+VyXGLw1ihYNDLvjhbKRm19ozeSoMAVNb5v/7SUtNR2ag089NT03F2c9ZZHMfPXeVmYirt3/1GMy83N499Ry8xf/lOzm+egrGxfgqMr99IIvL4JUYM6qaX4z/KrZRMsnPyOHs1SWv+ubgk6lcpp9NYnJzt6DvgTbIys8nIyMTG1opFv67CwclWp3Hcs/T3f+nQvgEN/tew3dPThZs3k1m1ZrdBJEKG8ndn6DEVRXqNPUdUKhV+fn74+flRp04d5s6dS1paGj///LOmVEitvt/INzv7ybtZp6am8v777xMZGal5HT16lPPnz+Pre7/uXKVSFbGXR3v33XdZunQpd+/eZd68ebz55ptYWlo+cv3hw4eTnJysecXExDzRcQuz6kgcnX/YRdcZuzWv68kZROy4TN95uus58rB7SZCbjTlj1p0hNVO/vTFs7G2wtLIk5tL9c5+ZkUX81eu4VdBd9UqjWpXYGDGUdb8M1ryC/D15tVVN1v0yWG9JEMDGbYextVVRN6Rse/eVVHZuHkcu3cDPXTvZ8HW1JeamftrEmSlNsbG1Ij09g7Ono6laXT/V4llZOQW+5IyMjFCXfX+JYjGUvztDj6ko+mgjtH37dkJDQ3F3d0ehULBixYpHrvvBBx+gUCieqPf2C1ci9DCFQoGRkRF3797F2Tk/C7927Rr29vZAfgPkB5mZmZGbW7CrbGHza9asyalTp8qszU67du1QqVTMmjWL9evXs3379iLXVyqVKJXKJz6ehZkxFRzvJ1rlHSyo4mZNcno28ckZJN/VThpz8tTcupNJ1M2yq+82NzHC1cZcM+1ircTbwZLUzBwS07MZ3NKPio6WTNh4DiOFAjuL/Gqg1MycMuvVlpWZRdKtZM10SmIKCXE3MLc0x8bOmpBGwezfehA7Rzts7W3YvXkvKmsVvgEVyySewlhZmlOlopvWPEtzM+xtVAXm61JeXh6b/jtCq6bBGBsbP36DUqZSmuDjer86zsvFmmpeDiSmZhJ7K40fVp3gl0+as+d0PDtOXuPlYA/a1PIkdOw6ncZ59lQUatS4uDhw80Yiq1dsx6WcA3Ua6G6ogQcFB/uxcvVunBxtKV/eiejo66zfsI+mTWroLAZD/LszxJielEKR/3rafZREWloaNWrUoHfv3rz++uuPXG/58uXs3bsXd/cnGwLkhUuEMjMziY/Pr8tPTExkxowZpKamEhoaip+fH56enowePZrx48dz7tw5vvnmG63tvb29SU1NZcuWLdSoUQNLS0ssLS3x9vZm+/btdOvWDaVSiZOTE8OGDaN+/fr069ePd999F5VKxalTp9i0aRMzZsx46vdibGxMeHg4w4cPp1KlSjRo0OCp91mUquVt+fW9uprpoe3zq/b+ORTLiGXHy/TYj+LrrGLs/+IA6FXfC4Ct527w++FY6nrlJ7TTXq+utd3INac5ea1sxly5HpvAsl+Wa6a3r90JQECIP607t6J2k5rkZGWzZcVWzSBqr4V3xMT0hftzLODI8Usk3EzmleY19XL8YF8nVo1sp5ke37MeAEv+O0+/WTtYcyCaQXN3M6BTEBPD63MhLpmwaf+y76xu2+ZkZGSyduUOkpNSsbQ0p3pwJdqENtZL8gjQs8crLFu+nYiF60lJScfezooWzUN4rVMTncVgiH93hhjTs6Rt27a0bdu2yHViY2P5+OOP2bBhA+3bt3+i47xwZ3v9+vW4ueX/4rW2tsbf358///yT5s2bA/Dbb7/Rt29fgoKCqFOnDuPGjdNqd9OwYUM++OAD3nzzTW7dusWoUaMYPXo0Y8eO5f3338fX15fMzEzUajVBQUH8999/fPHFFzRp0gS1Wo2vry9vvvlmqb2fd955hwkTJtCrV69S2+ejHLx8m6DP1xd7fV20Czp57Q5vzH10+66ilpUVz4oeDBj/8SOXKxQKGrSsT4OW9XUY1eP9/n2/x69UxmrV8GP90rF6O/6uU/E4dPu1yHUWbzvP4m3ndRRR4WrUrEKNmoYz5IGFhZK332rF22+10lsMhvh3Z4gxPan8EqGnbSNUSsH8T15eHv/3f//HkCFDqFr1yUtDX6hEKCIigoiIiCLXadSoUYGRptUPVXTPmjVL0+D6nvr163P0aMHBzOrUqcPGjRsfebyoqKhC5z9cJeft7V0gDsjPhk1NTenZs+cjjyGEEEI8lVKoGrvXff7hHstP2mxj0qRJmJiY0L9//6cK64VrLP28yMzM5OrVq4wePZouXbpQrpxue60IIYQQT8LT0xNbW1vNa+LEiSXex6FDh/juu++IiIh46pKqF6pE6Hny22+/8c477xAcHMyCBQv0HY4QQojnWGl2n4+JicHG5n6nhCcpDdqxYwcJCQlUqHB/ZPfc3FwGDRrE9OnTH1nbUhhJhJ5R4eHhhIeH6zsMIYQQL4DS7DVmY2OjlQg9if/7v/+jZcuWWvNat27N//3f/5W4zawkQkIIIYQwOKmpqVrPzrx8+TKRkZE4ODhQoUKFAo/GMjU1xdXVlSpVStaRQBIhIYQQQhTJyEiBkdHTFQmpS7j9wYMHadGihWZ64MCBAISFhT2241NJSCIkhBBCiCLpY0DF5s2bF9pb+lFK0i7oQdJrTAghhBAvLCkREkIIIUSRnueHrkoiJIQQQogi6aNqTFckERJCCCFEkZ7nEiFpIySEEEKIF5aUCAkhhBCiSM9ziZAkQoKNQ5tj/ZSjfJamb3dc0ncIBZS3NdN3CAV4Nf1U3yEU0G1oH32HUMDuaV30HUIBXWfs0ncIBVSq6KDvEAoY3y5A3yEU8PuJOH2HoBfPcxshqRoTQgghxAtLSoSEEEIIUSQFpVA1hmEWCUkiJIQQQogiSdWYEEIIIcRzSEqEhBBCCFEk6TUmhBBCiBeWVI0JIYQQQjyHpERICCGEEEWSqjEhhBBCvLCe56oxSYSEEEIIUaTnuURI2ggJIYQQ4oUlJUJCCCGEKFopVI0Z6MDSkgiVFoVCwfLly3n11VfL7Bje3t4MGDCAAQMGlNkxnsaPizYzac4aenduyqj+r+nkmFcvx3Jox2ES4m6QdieNDj3a4Rfoq1muVqvZu2Ufxw+cJDMjE3cvN17q2AJ7JzudxHdPRkYWG1bv4sTR86Sm3qW8hzOdOr+Ep5erTo7fMMSXj/+vJTX8K+DmbEuPwXNY+98xzXKVhRmj+nWiXbMgHGxVRMfdYs7v/zHv751lFpOfk4pWVZypYG+BnYUps3dFcTQuRbM8uLwNTSo6UsHeAiulCeM3nuNqckaZxfMoCbeS+XH+evYcPktGZjYebo58+XFnAip56OT4tbztCW/iQ0B5G1xszPlk4WG2nk4odN0vOwXStV4FJq8+zaLd0WUWU6CrNZ2CXKnoqMJBZcakTefYH50EgLFCQffa5anpaUc5ayXpWbkci0th0YEYEtOzyyymwuj72j0rn0/FIVVjgvj4eD7++GMqVqyIUqnE09OT0NBQtmzZAsC1a9do27atnqPUn6Onr7B45R4CfN11etzsrGyc3ZxoEdqs0OUHdxzmyJ6jvNypBd36dsXU1JTlEf+Qk52j0zj/WrKB82ei6R7WjkGf96SyvzdzfviT5KQ7Ojm+pYWSE+diGTL590KXj/v0DV5uEMj7IxdQr+s4Zi/dxuQhXWjbtHqZxaQ0MSI26S5LD8cWutzM2IiLN9NYcTy+zGJ4nJTUu7z/2WxMjI2ZNrIXv834lP692mFtZaGzGCzMjDkbf4cJK08Vud5LgS4EedpxXQfJotLEiKhb6fxcSLKlNDGiopOKv47EMWTFSSZvPo+7rTmftapc5nE9yBCu3bPy+fSikxKhYoiKiqJRo0bY2dkxZcoUqlevTnZ2Nhs2bOCjjz7izJkzuLrq5pe9IUpLz+STrxYxaWhXfliwSafH9qnijU8V70KXqdVqjuyKpF7zOvgGVgSgdZdWzJn4CxdPX6JKkG4+mLOzsjkeeZ7wPq9S0S//l+gr7Rty6sRF9uw4SpvQxmUew+bdp9i8+9FfpPWCfPhtzT52HT4PwPzluwh/rRE1A71Yt/14mcR0Mv4OJ+MfnQjuv5IEgIOlaZkcvzgWLfuPck52fPlJZ80893IOOo1h57mb7Dx3s8h1XGyUDA8N5IN5B5kRVqvMYzpyNZkjV5MLXZaencvYdWe15s3dHc3kV6vipDLjZlpWmccHhnHtnoXPp+J6nnuNSYlQMXz44YcoFAr279/PG2+8QeXKlalatSoDBw5k7969QH6R34oVKzTbXL16le7du+Pg4IBKpaJ27drs27cPgIsXL9KpUyfKlSuHlZUVderUYfPmzVrHTEhIIDQ0FAsLC3x8fFi8eHGBuKZNm0b16tVRqVR4enry4YcfkpqaWnYn4hFGfPsXLzUIoHHtKjo/dlFSElNIT03H09dTM09prsTVoxzXruiulCE3T01enhoTU2Ot+aamJly+WHhpiK7tO3aZtk2r4+ZsC0DjWpXwreDC1n2n9RyZfu3Yfxp/3/J8Pmkx7XqOo+eA7/ln4359h6VFoYAJXYKI2HGZiwm6//svDpWZMXlqNWlZuivpMPRrZyifT8V1r2rsaV+GSEqEHuP27dusX7+e8ePHo1KpCiy3s7MrMC81NZVmzZpRvnx5Vq5ciaurK4cPHyYvL0+zvF27dowfPx6lUsmCBQsIDQ3l7NmzVKhQAYDw8HDi4uLYunUrpqam9O/fn4QE7XYBRkZGfP/99/j4+HDp0iU+/PBDhg4dyo8//ljoe8nMzCQzM1MznZKSUuh6JbFyy2FOnItl5ZxPn3pfpS3tTjoAKitLrfmWVpakpabpLA5zczO8fNzYvG4vLuUcsbax5MjBM0RfvoaTs53O4ijKsCl/Mv3z7pxaO57snFzy8vL4ZPxv7D5yUd+h6VXc9dssX7+Pbp0aE9alBafPX2Xaz6swMTGm/UtlX/JSHL2bViQnT83iMmwT9DRMjRW8XdeTnRdvcTc7T2fHNfRrZyifT0ISoce6cOECarUaf3//Ym+zZMkSbty4wYEDB3BwyC+K9fPz0yyvUaMGNWrU0Ex/9dVXLF++nJUrV9KvXz/OnTvHunXr2L9/P3Xq1AHgl19+ISAgQOs4Dzaa9vb2Zty4cXzwwQePTIQmTpzImDFjiv0+HifueiJjvl/Ooml9MVfqr/riWdCtZzv+XLyBcV/+hJGRgvKe5Qiu7U/slev6Dg2APm82o3Z1b7oPnE3Mtds0DPFjytCuxN9M5r/9Zx+/g+dUnlqNv295+v5fawCqVHTnUnQ8K9bvM4gv0wB3G3o09OLNGbv1HUqhjBUKBr3khwKYsytKp8c29Gv3rHmeq8YkEXoMtVpd4m0iIyMJCQnRJEEPS01NZfTo0axZs4Zr166Rk5PD3bt3uXLlCgCnT5/GxMSEWrXu/7H6+/sXKH3avHkzEydO5MyZM6SkpJCTk0NGRgbp6elYWmr/ygAYPnw4AwcO1EynpKTg6elZYL3iOn7uKjcTU2n/7jeaebm5eew7eon5y3dyfvMUjI31V/uqss4/B2mp6ahs7pfmpaem4+zmrNNYnJzt6DvgTbIys8nIyMTG1opFv67CwclWp3EUxlxpyogPQ/m/IT+zcddJAE5eiKNaZQ/6vf3yC50IOdlb4+PpojXP29OFrXtO6ikibbW87XFQmbFh6P3GuCbGRgxq50+PRt60nfKf3mIzVigY9LIvzlZKRq09o9PSIDD8a2dIn0/F8Tz3GpNE6DEqVaqEQqHgzJkzxd7GwqLoXgmDBw9m06ZNTJ06FT8/PywsLOjcuTNZWcVvRBgVFUWHDh3o27cv48ePx8HBgZ07d/LOO++QlZVVaCKkVCpRKpXFPsbjNKpViY0RQ7XmDf76N3wruND3rZf1mgQB2NjbYGllScylGFzc8z9YMjOyiL96naB6ZdcbqihmSlPMlKakp2dw9nQ07Ts11UscDzI1McbM1IS8h5L+vLw8jAz0g0tXqgd4cSVOu6HyldibuBpIleaqI3HsvXhLa96s8Nqsjozjn0P6a392LwlyszFn1NozpGbqvheUoV87Q/x8elFJIvQYDg4OtG7dmpkzZ9K/f/8C7YSSkpIKlNQEBQUxd+5cbt++XWip0K5duwgPD+e11/LH2klNTSUqKkqz3N/fn5ycHA4dOqSpGjt79ixJSUmadQ4dOkReXh7ffPMNRkb5Cccff/xRCu+4+KwszalS0U1rnqW5GfY2qgLzy0pWZhZJt+73XklJTCEh7gbmlubY2FkT0iiY/VsPYudoh629Dbs370VlrcI3oKJO4rvn7Kko1KhxcXHg5o1EVq/Yjks5B+o0qKqT46sszPDxvP8r08vdkWqVy5OUnM7V64nsPHSesf1f5W5GNjHxt2lU048329Xly+l/l1lMSmMjnK3MNNOOKjM8bM1Jy8ol8W42lqbGOFiaYmuRX+1azjo/iU/JyCFFR1+s3To2os+w2UT8uZWXG1fn1Lmr/LNxP599qJtxsiC/+3wFx/s/bMo7WFDFzZrk9GzikzNIvqs9Nk9OnppbdzKJull27UzMTYxwtTHXTLtYK/F2sCQ1M4fE9GwGt/SjoqMlEzaew0ihwO5/1zA1M4ecvJKXsj8JQ7h2z8rnU3FIidALbubMmTRq1Ii6desyduxYgoKCyMnJYdOmTcyaNYvTp7V71nTv3p0JEybw6quvMnHiRNzc3Dhy5Aju7u40aNCASpUq8ffffxMaGopCoWDEiBGahtQAVapUoU2bNrz//vvMmjULExMTBgwYoFXS5OfnR3Z2Nj/88AOhoaHs2rWL2bNn6+ycGIrrsQks+2W5Znr72vwBAANC/GnduRW1m9QkJyubLSu2agYsey28Iyamur31MzIyWbtyB8lJqVhamlM9uBJtQhtjbGz8+I1LQXCAF6t/+kQzPWHgGwAsWb2Xj8Ys4p0vfmXkR52Y81UY9jaWxMTfZtys1fy6rOwGVKzgYMHA5vcHl+sSnD8G1Z6o2yw4cJUgdxvC6t6vun23gRcAq09eZ80p3bStCqzkydfD32bWwg3M+/1f3MrZM+DdDrRuHqKT4wNULW/Lr+/V1UwPbZ/fVvCfQ7GMWFY2Qxs8jq+zirHt77dZ7FU//9psPXeD3w/HUtfLHoBpr2uXbIxcc5qT13QzdpYhXLtn5fOpOJ7nNkIK9ZM0gnkBXbt2jfHjx7N69WquXbuGs7MztWrV4tNPP6V58+YFRpaOjo5m0KBBbNq0iZycHAIDA5k5cyZ169YlKiqK3r17s3fvXpycnBg2bBh//vknwcHBTJ8+HcgfwPHdd99l8+bNlCtXjnHjxjFixAitkaW//fZbpkyZQlJSEk2bNqVHjx707NmTxMTEQnuzPSwlJQVbW1suXL2JtY1N2Zy4J/Dtjkv6DqGA8rZmj19Jx4b0++bxK+lYt6F99B1CAZ808tF3CAV0nbFL3yEUUKmibsfYKY7x7QIev5KO/X4iTt8haMlMT+XbLrVJTk7Gpgw+x+99TzSauBET84I9p0siJyONXcNfKbNYn5QkQi8wSYSKTxKh4pFEqHgkESoeSYQeTxKhp2d45W9CCCGEMCjPc9WYJEJCCCGEKNLz3FhaHrEhhBBCiBeWlAgJIYQQokgKSqFqrFQiKX2SCAkhhBCiSEYKxVMPsGqoA7RK1ZgQQgghXlhSIiSEEEKIIkmvMSGEEEK8sKTXmBBCCCFeWEaK0nmVxPbt2wkNDcXd3R2FQsGKFSs0y7Kzsxk2bBjVq1dHpVLh7u5Oz549iYsr+YCXkggJIYQQwuCkpaVRo0YNZs6cWWBZeno6hw8fZsSIERw+fJi///6bs2fP0rFjxxIfR6rGhBBCCFE0RSlUbZVw87Zt29K2bdtCl9na2rJp0yateTNmzKBu3bpcuXKFChUqFPs4kggJIYQQokil2Vg6JSVFa75SqUSpVD7dzoHk5GQUCkWxHjr+IEmEBNU+XIrC1ELfYWi0aFlN3yEUMO/QFX2HUMCA8R/rO4QCarlb6zuEZ8LOES/rO4QCTsfd0XcIBRjiw2knvBWk7xC0pKfqO4KS8/T01JoeNWoUo0ePfqp9ZmRkMGzYMLp3717iB7pKIiSEEEKIIin+9+9p9wEQExOjlaw8bWlQdnY2Xbt2Ra1WM2vWrBJvL4mQEEIIIYr0JL2+CtsHgI2NTYlLbR7lXhIUHR3Nv//++0T7lURICCGEEM+ce0nQ+fPn2bp1K46Ojk+0H0mEhBBCCFEkfQyomJqayoULFzTTly9fJjIyEgcHB9zc3OjcuTOHDx9m9erV5ObmEh8fD4CDgwNmZmbFPk6xEqGVK1cWe4dP0odfCCGEEIZLH4/YOHjwIC1atNBMDxw4EICwsDBGjx6tyU2Cg4O1ttu6dSvNmzcv9nGKlQi9+uqrxdqZQqEgNze32AcXQgghhChM8+bNUavVj1xe1LKSKFYilJeXVyoHE0IIIcSzx0ihwOgpi4Sedvuy8lRthDIyMjA3Ny+tWIQQQghhgJ7np8+X+Fljubm5fPXVV5QvXx4rKysuXboEwIgRI/jll19KPUAhhBBC6Ne9xtJP+zJEJU6Exo8fT0REBJMnT9ZqlV2tWjXmzp1bqsEJIYQQQpSlEidCCxYsYM6cOfTo0QNjY2PN/Bo1anDmzJlSDU4IIYQQ+nevauxpX4aoxG2EYmNj8fPzKzA/Ly+P7OzsUglKCCGEEIZDGks/IDAwkB07duDl5aU1/6+//iIkJKTUAnvRzZkzh6+++orY2FimTZtGUlISK1asIDIyUm8xNfAvx8eh1anh44SbgyVvT93M2oPaDyOt7G7LqLfq0CjQFWMjBWdjkwib9i+xt9LKJKZAV2s6BblS0VGFg8qMSZvOsT86CQBjhYLutctT09OOctZK0rNyORaXwqIDMSSml13SXtfPiT6tKlO9gj3l7CzoM3s3G4/GaZZP7Vmbzg28tbb572Q8YTN2lllMVy/HcmjHYRLibpB2J40OPdrhF+irWa5Wq9m7ZR/HD5wkMyMTdy83XurYAnsnuzKL6WF5eXn8vWIHu/acIDk5DXs7K5o0DqJTaCO9ti1IuJXMj/PXs+fwWTIys/Fwc+TLjzsTUMlDbzHd8+OizUyas4benZsyqv9reoujZ79pJNxMKjC/wyt16de7g05iqOVtT3gTHwLK2+BiY84nCw+z9XRCoet+2SmQrvUqMHn1aRbtjtZJfGC49/iLrsSJ0MiRIwkLCyM2Njb/ov79N2fPnmXBggWsXr26LGIstvDwcObPnw+AiYkJDg4OBAUF0b17d8LDwzEyKnFNoF6kpKTQr18/pk2bxhtvvIGtrS2TJ0/Wd1iozE05EX2bxdvOs3BQwadne5ezZu2Y9izaeo6v/zrMnbvZ+HvYkZlddmNLKU2MiLqVzpazNxnWqlKBZRWdVPx1JI6o2+mozIzp3cCLz1pVZtg/J8ssJkulCadjk/lzdxQ/fdCw0HW2nYxnyIIDmunMnLIdoiI7KxtnNyeq1gpk9ZK1BZYf3HGYI3uO0vqNVtg42LBn016WR/xDz096YGKqmwHoV6/dw5ath3n/3VDKl3fi8uVr/PzrGiwslLRuVUcnMTwsJfUu7382m1rVfJk2shf2tipi4m5ibWWhl3gedPT0FRav3EOAr7u+Q+H7Ce9rDbMSFZPA5+Pn06ReVZ3FYGFmzNn4Oyw/dJXpb9d85HovBboQ5GnH9eQMncV2jyHe48Wl+N/rafdhiEr8CdepUydWrVrF2LFjUalUjBw5kpo1a7Jq1SpatWpVFjGWSJs2bZg3bx65ublcv36d9evX88knn/DXX3+xcuVKTEwKvuXs7GxMTU31EG3hrly5QnZ2Nu3bt8fNzU3f4WhsjrzK5sirj1z+5Zu12BR5ldFLDmrmRV2/U6YxHbmazJGryYUuS8/OZey6s1rz5u6OZvKrVXFSmXEzLatMYtp2Mp5tJ+OLXCcrO5cbKZllcvzC+FTxxqeKd6HL1Go1R3ZFUq95HXwDKwLQuksr5kz8hYunL1ElqLJOYjx/IZaaIZUJrpFf9e7sZMeefae4dCnuMVuWnUXL/qOckx1fftJZM8+9nIPe4rknLT2TT75axKShXflhwSZ9h4OdjUpr+o9/duBWzoGgQG+dxbDz3E12nrtZ5DouNkqGhwbywbyDzAirpaPI7jPEe7y49PGIDV15oiKSJk2asGnTJhISEkhPT2fnzp288sorpR3bE1Eqlbi6ulK+fHlq1qzJ559/zj///MO6deuIiIgA8i/GrFmz6NixIyqVivHjx5Obm8s777yDj48PFhYWVKlShe+++05r3zk5OfTv3x87OzscHR0ZNmwYYWFhWiNvZ2Zm0r9/f1xcXDA3N6dx48YcOHD/l/+2bdtQKBRs2bKF2rVrY2lpScOGDTl7Nv8LOyIigurVqwNQsWJFFAoFUVFRWnFs374dU1NTzXNV7hkwYABNmjQppTNZMgoFtArx5OK1ZP4a/gpnf+rOpnGhtKtdQS/xPIrKzJg8tZq0rBy9xlG/sjMHJ3dgy+jWjOsegp2q+M/FKW0piSmkp6bj6eupmac0V+LqUY5rV4pO6EpTJb/ynDoVxbX4WwBEX7nOufMxBAX5PmbLsrNj/2n8fcvz+aTFtOs5jp4Dvuefjfv1Fs89I779i5caBNC4dhV9h1JAdk4O/+48RuvmIQb1xadQwIQuQUTsuMzFhFS9xGCI97h4igEVDx48yOnTp4H8dkO1auk+uy6ul156iRo1avD333/z7rvvAjB69Gi+/vprpk+fjomJCXl5eXh4ePDnn3/i6OjI7t276dOnD25ubnTt2hWASZMmsXjxYubNm0dAQADfffcdK1as0HoWytChQ1m2bBnz58/Hy8uLyZMn07p1ay5cuICDw/1fkl988QXffPMNzs7OfPDBB/Tu3Ztdu3bx5ptv4unpScuWLdm/fz+enp44OztrvZ+mTZtSsWJFFi5cyJAhQ4D8Uq3FixcXWYWWmZlJZub9UoiUlJSnP7n/42xjgbWFKZ90DGLCH4cZveQgL9fwYMHAl+n41Tp2n9bdF+qjmBoreLuuJzsv3uJutv5GS//vVDzrI2OJuZmGl7MVQzpVI6JfY16f/C95pTNifImk3UkHQGVlqTXf0sqStNSyadtVmA7tGnL3bhbDPv8JIyMj8vLy6Px6cxo1qKazGB4Wd/02y9fvo1unxoR1acHp81eZ9vMqTEyMaf+Sfj7zVm45zIlzsayc86lejv84ew6cITUtg1bNDKvNaO+mFcnJU7NYh22CHmaI93hxGSnyX0+7D0NU4kTo6tWrdO/enV27dmFnZwdAUlISDRs2ZOnSpXh46L8BYWH8/f05duyYZvqtt96iV69eWuuMGTNG838fHx/27NnDH3/8oUmEfvjhB4YPH85rr+U3SpwxYwZr195vb5GWlsasWbOIiIigbdu2APz8889s2rSJX375RZO0QP54TM2aNQPgs88+o3379mRkZGBhYYGjoyMAzs7OuLq6Fvp+3nnnHebNm6fZ56pVq8jIyNDEWpiJEydqvcfSdK/51bpDV5i1Nr/9zYno29St7EKvlv56T4SMFQoGveSHApizK0qvsaw6eL968WxcCqdjk9nxVVvqV3Zh99nCG3e+CPYdOMXuPSfo+34nPNydiY65zuIlmzUNSvUhT63G37c8ff+vNQBVKrpzKTqeFev36SURirueyJjvl7NoWl/MlYZTnf+g9VsPUSfYD0cHG32HohHgbkOPhl68OWO3XuMwxHu8uKRq7AHvvvsu2dnZnD59mtu3b3P79m1Onz5NXl6eprTFEKnVaq2LULt27QLrzJw5k1q1auHs7IyVlRVz5szhypX8XlHJyclcv36dunXratY3NjbWKgm7ePEi2dnZNGrUSDPP1NSUunXrakrP7gkKun/T32sHlJBQ/C/B8PBwLly4wN69e4H8KrWuXbuiUqkeuc3w4cNJTk7WvGJiYop9vMe5lZJJdk4eZ68mac0/F5eEh9OjY9IFY4WCQS/74mylZMy6s3otDSpMzM00bt3JxNtZP+dJZZ1fEpSWmq41Pz01HZWV7mJa+vu/dGjfgAb1quLp6ULjhtVp/UodVq3R35eXk701Pp4uWvO8PV2Iv1F4u7SydvzcVW4mptL+3W+o2GIQFVsMYm/kReYt20HFFoPIzdXvvX39RhKRxy/RRk+lZY9Sy9seB5UZG4Y24/BXr3D4q1cob2/BoHb+rBvSTGdxGOI9Lp6gROi///5j9+7dVKlyv266SpUq/PDDD3prn1Icp0+fxsfHRzP9cMKwdOlSBg8ezDfffEODBg2wtrZmypQp7Nu3r0ziebBx9r0ErSQPt3VxcSE0NJR58+bh4+PDunXr2LZtW5HbKJVKlErlE8X7ONm5eRy5dAM/d1ut+b6utsTc1E99PNxPgtxszBm19gypmfptG1QYVzsL7FVmJKTovhcLgI29DZZWlsRcisHFPb8aNjMji/ir1wmqV11ncWRl5RT4xWhkZEQpPWD6iVQP8OJKnHYD3CuxN3F1ttNLPI1qVWJjxFCteYO//g3fCi70fetljI312zN247bD2NqqqBuimwb2xbXqSBx7L97SmjcrvDarI+P451CszuIwxHu8JAy0QOeplTgR8vT0LHTgxNzcXNzd9d+NszD//vsvx48f59NPH12nvmvXLho2bMiHH36omXfx4kXN/21tbSlXrhwHDhygadOmQP57Pnz4MMHBwQD4+vpiZmbGrl27NOMsZWdnc+DAAQYMGFDq7+vdd9+le/fueHh44Ovrq1USVRZUShN8XO8Xd3u5WFPNy4HE1Exib6Xxw6oT/PJJc/acjmfHyWu8HOxBm1qehI5dV2YxmZsY4Wpz/8G/LtZKvB0sSc3MITE9m8Et/ajoaMmEjecwUiiws8hPQFMzc8gpowY5lkpjvJ2tNNOejioCPWxJSssiKT2LT9oHsv5ILDeSM6jgbMXw16sTdSOV7aeul0k8AFmZWSTdul+KkZKYQkLcDcwtzbGxsyakUTD7tx7EztEOW3sbdm/ei8pahW9AxTKL6WHBwX6sXL0bJ0dbypd3Ijr6Ous37KNpkxo6i+Fh3To2os+w2UT8uZWXG1fn1Lmr/LNxP599qJ8xe6wszalSUbsnqaW5GfY2qgLzdS0vL49N/x2hVdNgracO6IqFmTEVHO+3cyvvYEEVN2uS07OJT84g+a7291ZOnppbdzKJuqm7dnCGeI8X1/NcNVbiRGjKlCl8/PHHzJw5U1O9dPDgQT755BOmTp1a6gGWVGZmJvHx8Vrd5ydOnEiHDh3o2bPnI7erVKkSCxYsYMOGDfj4+LBw4UIOHDigVYr08ccfM3HiRPz8/PD39+eHH34gMTFRc3FVKhV9+/ZlyJAhODg4UKFCBSZPnkx6ejrvvPNOqb/X1q1bY2Njw7hx4xg7dmyp7/9hwb5OrBrZTjM9vmc9AJb8d55+s3aw5kA0g+buZkCnICaG1+dCXDJh0/5l39my+4L3dVYxtn2AZrpX/fwEdOu5G/x+OJa6XvYATHtdu2Rj5JrTnLxWNl37gyo4sHTg/eL2EV3yP+T+2hPFF78dJqC8LW/U98LGwoyE5LtsP3WdaatOklWGYwldj01g2S/LNdPb1+YP3hgQ4k/rzq2o3aQmOVnZbFmxVTOg4mvhHXU2hhBAzx6vsGz5diIWriclJR17OytaNA/htU76K2kOrOTJ18PfZtbCDcz7/V/cytkz4N0OtG5uWA2BDcGR45dIuJnMK80fPYZPWapa3pZf37vfdGHo/z4X/jkUy4hlx/US08MM8R4vrue5sbRCrX58oZy9vb1WJpeWlkZOTo5mTJ57/1epVNy+fbvson2MhwdUtLe3p0aNGrz11luEhYVpBlRUKBQsX768QLf3Dz74gOXLl6NQKOjevTu2trasW7dOM5pzTk4On376KQsWLMDY2Jg+ffpw6dIljI2N+e233wDIyMhg6NCh/Pbbb9y5c4fatWvz7bffUqdO/mBZ27Zto0WLFiQmJmoam0dGRhISEsLly5fx9vYuMA35vdwKG1l65MiRTJgwgZiYmBKPOZSSkoKtrS3mHWegMNX/AHH3tGhpeD0oDh268viVdKzXa7qrtiquWu7W+g6hAD8Hw4vJ3d788Svp2Om4sh3z60m894v+hyp42IS3DKtRc3rqHcKa+JOcnIyNTek3UL/3PdF97i7MLK0ev0ERstJT+e3dRmUW65MqViJ0L7kojrCwsKcK6FmSl5dHQEAAXbt25auvvtJLDO+88w43btxg5cqVJd5WEqHik0SoeCQRKh5JhIpHEqHH01Ui9NYvu0slEVryTkODS4SKVe79IiU3RYmOjmbjxo00a9aMzMxMZsyYweXLl3nrrbd0HktycjLHjx9nyZIlT5QECSGEEMUlj9h4hIyMDLKytB9TYEhZXmkzMjIiIiKCwYMHo1arqVatGps3byYgIODxG5eyTp06sX//fj744AODeLSJEEII8SwqcSKUlpbGsGHD+OOPP7h161aB5bm5ZfeATX3z9PRk165d+g4D4LFd5YUQQojSYqRQYPSUvb6edvuyUuJBJ4YOHcq///7LrFmzUCqVzJ07lzFjxuDu7s6CBQvKIkYhhBBC6JFCUTovQ1TiEqFVq1axYMECmjdvTq9evWjSpAl+fn54eXmxePFievToURZxCiGEEEKUuhKXCN2+fZuKFfMHWbOxsdF0l2/cuDHbt28v3eiEEEIIoXf3BlR82pchKnEiVLFiRS5fvgzkP8j0jz/+APJLiu6NiyOEEEKI58fzXDVW4kSoV69eHD16FMh/avrMmTMxNzfn008/1Xq6uhBCCCGEoStxG6EHn9fVsmVLzpw5w6FDh/Dz89N6oroQQgghng/Pc6+xp36QkJeXl+YBo0IIIYR4/pRG1ZaB5kHFS4S+//77Yu+wf//+TxyMEEIIIQzPC//0+W+//bZYO1MoFJIICSGEEOKZUaxE6F4vMfF86vt/9VE+5cP0StO7tSvoO4QC7rTT/WNUHuf3E3H6DuGZ8N0uw/v8crVV6juEArYei9d3CM+EqevP6zsELTkZaTo5jhFP0LuqkH0YoqduIySEEEKI59vzXDVmqAmaEEIIIUSZkxIhIYQQQhRJoQCjF7nXmBBCCCFeXEalkAg97fZlRarGhBBCCPHCeqJEaMeOHbz99ts0aNCA2NhYABYuXMjOnTtLNTghhBBC6J88dPUBy5Yto3Xr1lhYWHDkyBEyMzMBSE5OZsKECaUeoBBCCCH0617V2NO+DFGJE6Fx48Yxe/Zsfv75Z0xNTTXzGzVqxOHDh0s1OCGEEEK8mLZv305oaCju7u4oFApWrFihtVytVjNy5Ejc3NywsLCgZcuWnD9f8nGeSpwInT17lqZNmxaYb2trS1JSUokDEEIIIYRhu/essad9lURaWho1atRg5syZhS6fPHky33//PbNnz2bfvn2oVCpat25NRkZGiY5T4l5jrq6uXLhwAW9vb635O3fupGLFiiXdnRBCCCEMnD6ePt+2bVvatm1b6DK1Ws306dP58ssv6dSpEwALFiygXLlyrFixgm7duhU/rhJFBbz33nt88skn7Nu3D4VCQVxcHIsXL2bw4MH07du3pLsTQgghhIEzKqUXQEpKitbrXlvjkrh8+TLx8fG0bNlSM8/W1pZ69eqxZ8+eEu2rxCVCn332GXl5ebz88sukp6fTtGlTlEolgwcP5uOPPy7p7oQQQgjxAvH09NSaHjVqFKNHjy7RPuLj85+NV65cOa355cqV0ywrrhInQgqFgi+++IIhQ4Zw4cIFUlNTCQwMxMrKcB7a+bQiIiIYMGCAtHl6yNXLsRzacZiEuBuk3UmjQ492+AX6apar1Wr2btnH8QMnyczIxN3LjZc6tsDeyU5nMc5cuJFZizZpzfPxcGbVL0N1FkNhEm4l8+P89ew5fJaMzGw83Bz58uPOBFTy0Mnxn4Vrl5eXx98rdrBrzwmSk9Owt7OiSeMgOoU20lm3Wz8nFa2qOFPB3gI7C1Nm74riaFyKZnlweRuaVHSkgr0FVkoTxm88x9XkkrVHKClDvHZBHrZ0q+NJ5XJWOFkp+XLFCXZeuKVZHt7Qi5equOBsoyQnN49z11OZu+Myp+PvlFlMtbztCW/iQ0B5G1xszPlk4WG2nk4odN0vOwXStV4FJq8+zaLd0WUWkyGepyf1JG18CtsHQExMDDY2Npr5SqV+H0L8xAMqmpmZERgYSN26dZ8qCYqPj+eTTz7Bz88Pc3NzypUrR6NGjZg1axbp6elPvF9R+rKzsnF2c6JFaLNClx/ccZgje47ycqcWdOvbFVNTU5ZH/ENOdo5O4/TzKse230ZoXgumfaTT4z8sJfUu7382GxNjY6aN7MVvMz6lf692WFtZ6CyGZ+HarV67hy1bDxP2dmsmTejDm11asGbdXjZuPqizGJQmRsQm3WXp4dhCl5sZG3HxZhorjuvuSe2GeO3MTY25mJDK9M2F99CJuX2X77acp3fEQT7+LZL45AymdAnC1sK00PVLg4WZMWfj7zBh5aki13sp0IUgTzuul3ECC4Z5np6UEQpNO6EnfpGfCdnY2Gi9niQRcnV1BeD69eta869fv65ZVlwlLhFq0aJFkb/O/v3332Lv69KlSzRq1Ag7OzsmTJhA9erVUSqVHD9+nDlz5lC+fHk6duxYYLvs7GytrvtCW1ZWFmZmZqW+X58q3vhU8S50mVqt5siuSOo1r4NvYH6j+dZdWjFn4i9cPH2JKkGVSz2eRzE2NsLJwebxK+rIomX/Uc7Jji8/6ayZ517OQacxPAvX7vyFWGqGVCa4hh8Azk527Nl3ikuX4nRyfICT8Xc4WcSv8f1XkgBwsNTd548hXrv9l2+z//LtRy7fcka7JGbmtou0D3LD11nF4f+dw9K289xNdp67WeQ6LjZKhocG8sG8g8wIq1UmcTzIEM/T88LHxwdXV1e2bNlCcHAwkN/2aN++fSVur1ziEqHg4GBq1KiheQUGBpKVlcXhw4epXr16ifb14YcfYmJiwsGDB+natSsBAQFUrFiRTp06sWbNGkJDQ4H86rhZs2bRsWNHVCoV48ePJzc3l3feeQcfHx8sLCyoUqUK3333ndb+t23bRt26dVGpVNjZ2dGoUSOio/OLQY8ePUqLFi2wtrbGxsaGWrVqcfCg9i/PDRs2EBAQgJWVFW3atOHatWuaZXl5eYwdOxYPDw+USiXBwcGsX79eszwqKgqFQsHSpUtp2LAh5ubmVKtWjf/++08rPoVCwZo1awgKCsLc3Jz69etz4sQJrTh27txJkyZNsLCwwNPTk/79+5OWlqZZ7u3tzVdffUXPnj2xsbGhT58+JboOpSElMYX01HQ8fe/X/SrNlbh6lOPaFd39ega4EnuTFt2/ok3YRIZ9vYRrCYk6Pf7Dduw/jb9veT6ftJh2PcfRc8D3/LNxv15jepChXLtKfuU5dSqKa/H5VQfRV65z7nwMQUG+j9nyxWUo164oJkYKQoPcSM3I4eKNVL3FoVDAhC5BROy4zMUE/cXxKIZynh5FH93nU1NTiYyMJDIyEshvIB0ZGcmVK1dQKBQMGDCAcePGsXLlSo4fP07Pnj1xd3fn1VdfLdFxSlwi9O233xY6f/To0aSmFv/i3bp1i40bNzJhwgRUKlWh6zxY8jR69Gi+/vprpk+fjomJCXl5eXh4ePDnn3/i6OjI7t276dOnD25ubnTt2pWcnBxeffVV3nvvPX777TeysrLYv3+/Zp89evQgJCSEWbNmYWxsTGRkpFYpU3p6OlOnTmXhwoUYGRnx9ttvM3jwYBYvXgzAd999xzfffMNPP/1ESEgIv/76Kx07duTkyZNUqlRJs58hQ4Ywffp0AgMDmTZtGqGhoVy+fBlHR0etdb777jtcXV35/PPPCQ0N5dy5c5iamnLx4kXatGnDuHHj+PXXX7lx4wb9+vWjX79+zJs3T7OPqVOnMnLkSEaNGvXIc56ZmanVOj8lJeWR65ZU2p38akyVlaXWfEsrS9JS0wrbpEwE+Vdg3OA38fZw5ubtO/y4aBM9B/3Iip8GobI011kcD4q7fpvl6/fRrVNjwrq04PT5q0z7eRUmJsa0f6nsf5U+jqFcuw7tGnL3bhbDPv8JIyMj8vLy6Px6cxo1qKazGJ41hnLtCtOgogMjOwSiNDXiVmoWg/46RvJd3VaTP6h304rk5KlZXIZtgp6EoZ2nR9HHQ1cPHjxIixYtNNMDBw4EICwsjIiICIYOHUpaWhp9+vQhKSmJxo0bs379eszNS/ZZX2pPn3/77bepW7cuU6dOLdb6Fy5cQK1WU6VKFa35Tk5OmsGQPvroIyZNmgTAW2+9Ra9evbTWHTNmjOb/Pj4+7Nmzhz/++IOuXbuSkpJCcnIyHTp0wNc3/xdlQECAZv0rV64wZMgQ/P39AbSSF8ivfps9e7Zm2379+jF27FjN8qlTpzJs2DDNWAWTJk1i69atTJ8+XWvwp379+vHGG28AMGvWLNavX88vv/zC0KH3G++OGjWKVq1aATB//nw8PDxYvnw5Xbt2ZeLEifTo0YMBAwZo4vz+++9p1qwZs2bN0lzwl156iUGDBhV5zidOnKh1zp5HTer4a/5fpSJU96/AK/83gfXbj/FGm7p6iSlPrcbftzx9/6/1/+Jy51J0PCvW7zOIRMhQ7Dtwit17TtD3/U54uDsTHXOdxUs2axpNi2fLkZgk3l1wEFsLU9oHuTE6NIC+i4+QlJ6t81gC3G3o0dCLN2fs1vmxH8eQzpOhad68OWq1+pHLFQoFY8eO1fpufhKl9vT5PXv2lDgLK8z+/fuJjIykatWqWqUXtWvXLrDuzJkzqVWrFs7OzlhZWTFnzhyuXLkCgIODA+Hh4bRu3ZrQ0FC+++47raqtgQMH8u6779KyZUu+/vprLl68qLVvS0tLTRIE4ObmRkJCfn1uSkoKcXFxNGrUSGubRo0acfr0aa15DRo00PzfxMSE2rVrF7mOg4MDVapU0axz9OhRIiIisLKy0rxat25NXl4ely9fLvL8PGz48OEkJydrXjExMY/dprhU1vm/SNNStRu4p6emo7IqvMRPF2ysLPDycOJKXNFtB8qSk701Pp4uWvO8PV2Iv5Gsp4i0Gcq1W/r7v3Ro34AG9ari6elC44bVaf1KHVatMbwvL0NhKNeuMBnZecQmZXDq2h2mbDhHbp6adtVK1oi1tNTytsdBZcaGoc04/NUrHP7qFcrbWzConT/rhhTeCF1XDOk8FUWh4KkbSxvoM1dLXiL0+uuva02r1WquXbvGwYMHGTFiRLH34+fnh0Kh4OzZs1rz741ObWGh3aPm4eqzpUuXMnjwYL755hsaNGiAtbU1U6ZMYd++fZp15s2bR//+/Vm/fj2///47X375JZs2baJ+/fqMHj2at956izVr1rBu3TpGjRrF0qVLee211wAKNMZWKBRFZqZlJTU1lffff5/+/fsXWFahQgXN/x9VvfggpVJZZt0UbextsLSyJOZSDC7uzgBkZmQRf/U6QfVK1nasNKXfzSQm7hahL+uv5KV6gFeBROxK7E1cne30E9BDDOXaZWXlFOiIYWRkhB7+7J4ZhnLtikOhUGBmUmq/vUtk1ZE49l68pTVvVnhtVkfG8c+hwnsI6os+z1NRSrP7vKEpcSJka2urNW1kZESVKlUYO3Ysr7zySrH34+joSKtWrZgxYwYff/xxsb7IH7Rr1y4aNmzIhx9+qJn3cKkOQEhICCEhIQwfPpwGDRqwZMkS6tevD0DlypWpXLkyn376Kd27d2fevHmaRKgoNjY2uLu7s2vXLpo1u/9rYteuXdStq139snfvXs2z2XJycjh06BD9+vUrsM69pCYxMZFz585pqvFq1qzJqVOn8PPzK85pKVNZmVkk3bpfipGSmEJC3A3MLc2xsbMmpFEw+7cexM7RDlt7G3Zv3ovKWoVvgO4evTJlziqa1w/E3cWehFspzFy4EWNjI9o1D9ZZDA/r1rERfYbNJuLPrbzcuDqnzl3ln437+ezDx99rpeVZuHbBwX6sXL0bJ0dbypd3Ijr6Ous37KNpkxo6i0FpbISz1f0el44qMzxszUnLyiXxbjaWpsY4WJpqujeXs87/YZGSkUNKZtm06zDEa2dhakR5u/s/Vl1tzfFzVuWfh4xs3q7nxe6LN7mVloWthSmvBrvjbKVk29kbZReTmTEVHO+3lSrvYEEVN2uS07OJT84g+a52VVNOnppbdzKJull2bakM8TyJgkqUCOXm5tKrVy+qV6+Ovb39Ux/8xx9/pFGjRtSuXZvRo0cTFBSEkZERBw4c4MyZM9Sq9ehf8ZUqVWLBggVs2LABHx8fFi5cyIEDB/Dx8QHyW5fPmTOHjh074u7uztmzZzl//jw9e/bk7t27DBkyhM6dO+Pj48PVq1c5cOCApi1PcQwZMoRRo0bh6+tLcHAw8+bNIzIyUtOY+p6ZM2dSqVIlAgIC+Pbbb0lMTKR3795a64wdOxZHR0fKlSvHF198gZOTk6bV+7Bhw6hfvz79+vXj3XffRaVScerUKTZt2sSMGTOKHW9puB6bwLJflmumt6/dCUBAiD+tO7eidpOa5GRls2XFVs3Abq+Fd8TEtNSaoj0+xpvJDJ24hKQ7aTjYWhFS1ZvF0/vhYKe/AT8DK3ny9fC3mbVwA/N+/xe3cvYMeLcDrZuH6CyGZ+Ha9ezxCsuWbydi4XpSUtKxt7OiRfMQXuvURGcxVHCwYGDz+1XiXYLdAdgTdZsFB64S5G5DWN37PbTebeAFwOqT11lzSns8k9JiiNeuiqs1098M1kz3a5H/Q239iXimbTpHBQcLWletiq2FKSkZ2ZyJv8PHSyOJulV2Y8NVLW/Lr+/d/yE6tH3+j8l/DsUyYtnxMjtuUQzxPD0pfTSW1hWFuoT1Pebm5pw+fVqTcDyta9euMWHCBNasWcPVq1dRKpUEBgbSpUsXPvzwQywtLVEoFCxfvlyrS1xmZiYffPABy5cvR6FQ0L17d2xtbVm3bh2RkZFcv36dDz74gH379nHr1i3c3NwICwtj1KhR5OTkEBYWxq5du7h+/TpOTk68/vrrTJkyBXNz80JHll6xYgWvvfaapnosLy+Pr776ip9//pmEhAQCAwP5+uuvadOmDZDffd7Hx4clS5Ywffp0IiMj8fPzY8aMGZpW8Nu2baNFixasWrWKzz77jPPnzxMcHMzPP/9MUND9xqEHDhzgiy++YM+ePajVanx9fXnzzTf5/PPPgfzu8wMGDNA0qC6ulJQUbG1t+fTPgygtDWdk8HdrV3j8Sjp2J8PwenH8fkJ34+sUVy13a32HUMCa0/prH/Yorrb6HUm3MFuPGUZ3+wfdvn1X3yEU4OCgu4FQiyMnI41DY9qTnJysNVpzabn3PTHinyOYq57u7zsj7Q5fdQops1ifVIkTodq1azNp0iRefvnlsorpuXAvETpy5IhmsKeH3UuEEhMTsbOz02l8IIlQSUgiVDySCBWPJELFI4nQ4+kqERq1snQSoTEdDS8RKnGLrHHjxjF48GBWr17NtWvXCjxFVgghhBDiWVHsSuSxY8cyaNAg2rVrB0DHjh21enio1WoUCgW5ubmlH6UQQggh9OZ5biNU7ERozJgxfPDBB2zdurUs43lueHt7P7a7/eMGixJCCCEMgUKhKPI5o8XdhyEqdiJ07wv7we7iQgghhBDPshL1rzTUbE4IIYQQZUeqxv6ncuXKj02Gbt++/VQBCSGEEMKwyMjS/zNmzJgCI0sLIYQQQjyrSpQIdevWDRcXl8evKIQQQojnxr0Hpz7tPgxRsRMhaR8khBBCvJie5zZCxR5QUbp5CyGEEOJ5U+wSoby8vLKMQwghhBCGqhQaS2OgJUK6e7S0EEIIIZ5JRigwespM5mm3LyuSCAla+jiisjKcB+DNPXhF3yEUUN7WTN8hFNDG11nfIRTw5tR/9R1CAb1eq67vEAqIT87UdwgFHDt4Ud8hFLBu/Kv6DqGAG3cz9B2ClvTUO4SNKfvjPM/d50v80FUhhBBCiOeFlAgJIYQQokjPc68xSYSEEEIIUaTneRwhqRoTQgghxAtLSoSEEEIIUaTnubG0JEJCCCGEKJIRpVA1ZqDd56VqTAghhBAvLCkREkIIIUSRpGpMCCGEEC8sI56+CslQq6AMNS4hhBBCiDInJUJCCCGEKJJCoUDxlHVbT7t9WZFESAghhBBFUvD0D483zDRIEqFnVvPmzQkODmb69Ol6i6Fnv2kk3EwqML/DK3Xp17uDTmK4ejmWQzsOkxB3g7Q7aXTo0Q6/QF/NcrVazd4t+zh+4CSZGZm4e7nxUscW2DvZ6SS+ezIystiwehcnjp4nNfUu5T2c6dT5JTy9XHUaxz2GcO3q+jnRp1Vlqlewp5ydBX1m72bj0TjN8qk9a9O5gbfWNv+djCdsxs4yi8kQ7yc/JxWtqjhTwd4COwtTZu+K4mhcimZ5cHkbmlR0pIK9BVZKE8ZvPMfV5LJ9MGgD/3J8HFqdGj5OuDlY8vbUzax96GHJld1tGfVWHRoFumJspOBsbBJh0/4l9lZamcZ2jyHc4w/Ly8vj7xU72LXnBMnJadjbWdGkcRCdQhsZbGnJPc/zyNKSCJWB8PBw5s+fz/vvv8/s2bO1ln300Uf8+OOPhIWFERER8dh9bdu2jRYtWpCYmIidnV3ZBPyEvp/wPnl5eZrpqJgEPh8/nyb1quoshuysbJzdnKhaK5DVS9YWWH5wx2GO7DlK6zdaYeNgw55Ne1ke8Q89P+mBianubv+/lmwgPu4W3cPaYWOr4vD+08z54U8GfxmOrZ21zuK4xxCunaXShNOxyfy5O4qfPmhY6DrbTsYzZMEBzXRmTl6h65UWQ7yflCZGxCbdZffl23zQyLvAcjNjIy7eTOPw1WTeru1RJjE8TGVuyono2yzedp6Fg14usNy7nDVrx7Rn0dZzfP3XYe7czcbfw47M7FydxAeGcY8/bPXaPWzZepj33w2lfHknLl++xs+/rsHCQknrVnX0FteLThKhMuLp6cnSpUv59ttvsbCwACAjI4MlS5ZQoUIFPUdXOuxsVFrTf/yzA7dyDgQFeussBp8q3vhUKfx4arWaI7siqde8Dr6BFQFo3aUVcyb+wsXTl6gSVFknMWZnZXM88jzhfV6lol/+F9Ur7Rty6sRF9uw4SpvQxjqJ40GGcO22nYxn28n4ItfJys7lRkqmjiIyzPvpZPwdTsbfeeTy/VeSAHCwNC2T4xdmc+RVNkdefeTyL9+sxabIq4xeclAzL+r6o99DWTCEe/xh5y/EUjOkMsE1/ABwdrJjz75TXLoU95gtDYNhluc8Pek1VkZq1qyJp6cnf//9t2be33//TYUKFQgJCdHMy8zMpH///ri4uGBubk7jxo05cCD/F3BUVBQtWrQAwN7eHoVCQXh4uGbbvLw8hg4dioODA66urowePVon760w2Tk5/LvzGK2bhxhMEW9KYgrpqel4+npq5inNlbh6lOPalaK/gEtTbp6avDw1JqbGWvNNTU24fDFWZ3E8iiFeu3vqV3bm4OQObBndmnHdQ7BTmektFkO5nwydQgGtQjy5eC2Zv4a/wtmfurNpXCjtauvvB6Ch3OOV/Mpz6lQU1+JvARB95TrnzscQFOT7mC317944Qk/7MkSSCJWh3r17M2/ePM30r7/+Sq9evbTWGTp0KMuWLWP+/PkcPnwYPz8/Wrduze3bt/H09GTZsmUAnD17lmvXrvHdd99ptp0/fz4qlYp9+/YxefJkxo4dy6ZNmx4ZT2ZmJikpKVqv0rLnwBlS0zJo1Szk8SvrSNqddABUVpZa8y2tLElL1U07BQBzczO8fNzYvG4vyUmp5OXlcWj/KaIvX+NOiu7ieBRDvHYA/52KZ+D8A/SYvp1Jy49Tr5IzEf0aY6SnD1NDuZ8MnbONBdYWpnzSMYgtR2N5Y8IGVu+PZsHAl2kYoJ82cYZyj3do15D69QIZ9vlPhL/7NSNG/0LrVnVp1KCaXuN60UnVWBl6++23GT58ONHR0QDs2rWLpUuXsm3bNgDS0tKYNWsWERERtG3bFoCff/6ZTZs28csvvzBkyBAcHBwAcHFxKdBGKCgoiFGjRgFQqVIlZsyYwZYtW2jVqlWh8UycOJExY8aUwTuF9VsPUSfYD0cHmzLZ/7OuW892/Ll4A+O+/AkjIwXlPcsRXNuf2CvX9R2awV67VQfvV72cjUvhdGwyO75qS/3KLuw+m6DHyERRjP7383rdoSvMWnsSgBPRt6lb2YVeLf3ZfVr3pWeGco/vO3CK3XtO0Pf9Tni4OxMdc53FSzZrGk0bMuk+L56Is7Mz7du3JyIiArVaTfv27XFyctIsv3jxItnZ2TRq1Egzz9TUlLp163L69OnH7j8oSPsPx83NjYSER39BDB8+nIEDB2qmU1JS8PT0fOT6xXX9RhKRxy8xYlC3p95XaVJZ5/9yT0tNR/VAe4H01HSc3Zx1GouTsx19B7xJVmY2GRmZ2NhasejXVTg42eo0jocZ6rUrTMzNNG7dycTbWcXus7o/viHdT4bsVkom2Tl5nL2apDX/XFwS9auU03k8hnSPL/39Xzq0b0CD/zXY9vR04ebNZFat2W3wiZCMLC2eWO/evYmIiGD+/Pn07t27VPdtaqrdOFKhUGj1kniYUqnExsZG61UaNm47jK2tirohuml8XFw29jZYWlkScylGMy8zI4v4q9dxq6CfInozpSk2tlakp2dw9nQ0Vav76SWOewz12hXG1c4Ce5UZCSll2zX8UQzxfjJE2bl5HLl0Az937STf19WWmJupOo/HkO7xrKycAqUiRkZGqNV6CsjA5ebmMmLECHx8fLCwsMDX15evvvoKdSmfMCkRKmNt2rQhKysLhUJB69attZb5+vpiZmbGrl278PLyAiA7O5sDBw4wYMAAAMzM8huH5ubqrttpSeTl5bHpvyO0ahqMsbHx4zcoZVmZWSTdStZMpySmkBB3A3NLc2zsrAlpFMz+rQexc7TD1t6G3Zv3orJW4RtQUadxnj0VhRo1Li4O3LyRyOoV23Ep50CdBvrryqvva2epNMbb2Uoz7emoItDDlqS0LJLSs/ikfSDrj8RyIzmDCs5WDH+9OlE3Utl+quyqEw3xflIaG+Fsdb+RuKPKDA9bc9Kyckm8m42lqTEOlqbYWuT/MCpnrcyPPSOHlMycMolJpTTBx/X+DykvF2uqeTmQmJpJ7K00flh1gl8+ac6e0/HsOHmNl4M9aFPLk9Cx68oknkfR9z3+sOBgP1au3o2Toy3lyzsRHX2d9Rv20bRJDX2H9lj6qBqbNGkSs2bNYv78+VStWpWDBw/Sq1cvbG1t6d+//1PF8iBJhMqYsbGxpprr4T9ElUpF3759NW2BKlSowOTJk0lPT+edd94BwMvLC4VCwerVq2nXrh0WFhZYWVkVOI6+HDl+iYSbybzSvKZejn89NoFlvyzXTG9fmz/YXkCIP607t6J2k5rkZGWzZcVWzQB4r4V31OkYQgAZGZmsXbmD5KRULC3NqR5ciTahjfX64azvaxdUwYGlA5tppkd0yf8y+GtPFF/8dpiA8ra8Ud8LGwszEpLvsv3UdaatOklWGY4lZIj3UwUHCwY2v9+rqEuwOwB7om6z4MBVgtxtCKt7v4r73Qb5P6pWn7zOmjJKGoN9nVg1sp1menzPegAs+e88/WbtYM2BaAbN3c2ATkFMDK/Phbhkwqb9y76zum0Tp+97/GE9e7zCsuXbiVi4npSUdOztrGjRPITXOjXRd2iPpY+RpXfv3k2nTp1o3749AN7e3vz222/s37//KSN5KC51aZcxCcLDw0lKSmLFihWFLn/11Vexs7MjIiKCjIwMhg4dym+//cadO3eoXbs23377LXXq3B9c66uvvuLHH3/k+vXr9OzZk4iIiEJHln5wv8WRkpKCra0taw5eRmVlOA1l11+8oe8QCihvq79u249SXc/tiwrz5tR/9R1CAb1eq67vEAqIT9bd2EjF9fuyg49fScfWjX9V3yEUcOOufqpmHyU99Q5hTfxJTk4uteYOD7r3PRGx4wyWVk83+Gt66h3CSxDrhAkTmDNnDhs3bqRy5cocPXqUV155hWnTptGjR4+niuVBUiJUBh6XiDyYIJmbm/P999/z/fffP3L9ESNGMGLECK1593qePWq/QgghRGkpzaqxh4duUSqVKJXKAut/9tlnpKSk4O/vj7GxMbm5uYwfP75UkyCQxtJCCCGEeAyjUnpB/pMXbG1tNa+JEycWesw//viDxYsXs2TJEg4fPsz8+fOZOnUq8+fPL9X3JiVCQgghhChSaZYIxcTEaFWNFVYaBDBkyBA+++wzunXLH/qgevXqREdHM3HiRMLCwp4qlgdJIiSEEEIInSnu8C3p6ekYGWlXXBkbGxc5TMyTkERICCGEEEXSR6+x0NBQxo8fT4UKFahatSpHjhxh2rRppT4mnyRCQgghhChSaTw0taTb//DDD4wYMYIPP/yQhIQE3N3def/99xk5cuTTBfIQSYSEEEIIYXCsra2ZPn261jAxZUESISGEEEIUyQgFRk9ZOfa025cVSYSEEEIIUSR9VI3piowjJIQQQogXlpQICSGEEKJIiv/9e9p9GCJJhIQQQghRJKkaE0IIIYR4DkmJkODkrRQsMtT6DkPj2JVkfYdQwNaku/oOoYAWQa76DqEAG3srfYdQQC33p3tidlmItzXTdwgFuPZupO8QhAFTlEKvMakaE0IIIcQz6XmuGpNESAghhBBFep4TIWkjJIQQQogXlpQICSGEEKJI0n1eCCGEEC8sI0X+62n3YYikakwIIYQQLywpERJCCCFEkaRqTAghhBAvLOk1JoQQQgjxHJISISGEEEIUScHTV20ZaIGQJEJCCCGEKJr0GhNCCCGEeA5JiZAB2LZtGy1atCAxMRE7Ozt9h1MiGRlZbFi9ixNHz5OaepfyHs506vwSnl66eSBooKs1nYJcqeiowkFlxqRN59gfnQSAsUJB99rlqelpRzlrJelZuRyLS2HRgRgS07PLLKYgD1u61fGkcjkrnKyUfLniBDsv3NIsD2/oxUtVXHC2UZKTm8e566nM3XGZ0/F3yiymq5djObTjMAlxN0i7k0aHHu3wC/TVLFer1ezdso/jB06SmZGJu5cbL3Vsgb2TXZnFVMvbnvAmPgSUt8HFxpxPFh5m6+mEQtf9slMgXetVYPLq0//f3p3Hx3S9fwD/TJZZklmybzKSSCISRIQglEg1jS1oU0vpl1hbu5ZS/SJUS1FLlVJaoiXli1L7LhoStSWWJpKIRILEEpKYMJNlzu+P/HJrTBJBJjPkeXvl9XKXuee5d87ceebcc+7FxrgbOovpWWq1Gn/sjMWp+CsoKCiCpYUYHd/yRe+wDuDpseenvj93hlifnjV43BLcvZ+vNb/nu20wbljPOovjaYZan2riTR41Vq9ahO7du4fRo0ejYcOGEAgEcHBwQGhoKE6dOqXXuNq3b4+cnBzIZDK9xvEytkUfRNrVG/hwSHdM/nIwGjdxxZoftqIgX3df6k8TmBghM+8x1lby5SgwMUIjG3NsS7iNz3f+g4VH0uAkE+KLkMY6jUloaoz0uwosO5JW6fLsB0/w/dE0DIs6h/G/JyK3QIlFfX0hE5nqLKaS4hLYOtogOCyo0uXnYi8gIf4iuvQOxoDR/WBqaoodUX+itKRUZzGJ+MZIyX2EebuSql3vbR87+MotcKdAqbNYqrJnXzyOHr+AIR+FYsG8UejfNxh795/GoSPn6jyWp+n7c2eI9elZy+d9jOjVn3N/8/47BADQsW3TOovhWYZan2qiYtTYq/4ZonrVIhQeHo7i4mJs2LABjRo1wp07d3D06FHk5eU9/8Uvobi4GHw+/7nr8fl8ODjUzS+52lRSXILLiWmIGNUHjTycAQDv9miPpCvpiI+9iK5hb+k8hoSbBUi4WVDpssclZfhqf4rGvJ/jbmBhn6awMefjflGxTmI6k/EAZzIeVLn86FXNVo+VMeno4esId1tzXMjK10lMbl6ucPNyrXQZYwwJpxLRtnMA3H0aAQBC+4ZgzfxfkJ58HV6+ukkcT6bex8nU+9WuYycVYHqYDz5Zfw4rhrTSSRzVSbt2C/4tG8OvhQcAwNbGAvF/J+H69dt1HksFQ/jcGWJ9epaF1Fxj+n9/xsLR3gq+Pq51Un5lDLE+1RQPr97Z2UDzoPrTIpSfn4/Y2FgsWLAAwcHBcHFxQZs2bTB9+nT06tWLW+fjjz+Gvb09hEIhmjVrhj179nDb2L59O5o2bQqBQABXV1csXrxYowxXV1fMnTsXgwcPhlQqxahRo5CZmQkej4fNmzejffv23HZPnDjBvS4mJgY8Hg/5+fkvVNa8efMwbNgwSCQSNGzYEGvWrNHBkatamZpBrWYwMTXWmG9qaoKM9Ft1GktNmfONoWYMRcV198u0OiZGPIT5OkKhLEX6PYVeYih8WIjHiseQu8u5eQKhAA7O9sjJytVLTED5r8d5fX0RFZuB9Lv6OTaeHg2QlJSJnNzyH0s3su4gNS0bvr7uz3ml7hj6584Q61NJaSmOnbyE0M4t9XoJyhDrE6lHLUJisRhisRg7d+5Eu3btIBAINJar1Wp069YNjx49wsaNG+Hu7o6kpCQYG5efbM6fP49+/fph9uzZ6N+/P+Li4jBmzBhYW1sjIiKC2853332HWbNmITIyUmP7n3/+OZYtWwYfHx8sWbIEYWFhyMjIgLW1tVasNS1r8eLFmDt3Lr788kts27YNo0ePRlBQELy8vCo9BiqVCiqVipsuLCx80cOoQSjkw8XNEUf2n4advTUkUjMknLuKGxk5sLG1eKVt64KpMQ8ftZHjZHoenpSo9RpLYCMrzOrpA4GpEfIUxZi87RIKnugnOSt69BgAYC4205hvJjZDkaJIHyEBAIZ1aoRSNcOmOuwT9Kye3dvjyZNiTPvyJxgZGUGtVuOD9zujQ2AzvcVk6J87Q6xP8WevQlGkREhQS72UX8EQ61NNGYEHo1dMIo0MtE2o3iRCJiYmiIqKwsiRI7F69Wr4+/sjKCgIAwYMgK+vL44cOYIzZ84gOTkZjRuXN902atSIe/2SJUvQpUsXzJw5EwDQuHFjJCUlYdGiRRrJydtvv43Jkydz05mZmQCAcePGITw8HACwatUqHDhwAL/88gumTp2qFWtNy+revTvGjBkDAJg2bRqWLl2K48ePV5kIzZ8/H3PmzHnBI1e9AYO7Y+umg/h6xk8wMuKhgdwefq2b4FbWnVot51UZ83iY/LYHeADWnMrUdzhIyM7HiF/PQSYyRQ9fR8wO88boTQnI12En7teJt5MUg9q7oP+KOL3G8ffZJMTFX8Hoj3vD2ckWN7LvYFP0Ea6Tq768Lp87Q3Hg+HkE+HnA2kqq1zgMtT7VxJt8aazeJEJAeR+hHj16IDY2FqdPn8b+/fuxcOFC/Pzzz7h79y6cnZ25JOhZycnJ6N27t8a8Dh06YNmyZSgrK+Najlq3bl3p6wMDA7n/m5iYoHXr1khOTn6lsnx9//3g8Hg8ODg44O7dykfdAMD06dPx2WefcdOFhYWQy+VVrl8TNrYWGD2pP4pVJVAqVZDKxNi4bjesbAyn47cxj4fJXdxhKxYgct9VvbcGAYCyRI1b+UrcylciKecRNg4PQPdmDog+k13nsZhLyn+5Fykew/ypfhWPFY9h62hb5/EA5SPKrMz5ODj13864JsZGmNy9CQZ1cEW3RSeqeXXt2bzlGHr2CETg/3ewlcvtcP9+AXbvjdPrF5chf+4MrT7duZePxMvXMXPygDov+1mGWp/qu3qVCAGAUChESEgIQkJCMHPmTIwYMQKRkZGYMmVKrWzf3Nz8+SvVElNTzVFGPB4PanXVX/ICgUDrkmBt4QtMwReY4vFjJVKSb6BH7046KedFVSRBjlIhIvddhUJlGH2DnsXj8cA30U+XPamlFGZiM2Rfz4adU/kXlUpZjNybd+DbtrleYtqdcBun0zUHMayKaI09ibfx5/m66wdTXFyq1afEyMgIjNVZCNUyxM+dodWnQzEXIJOZo03LuumkXR1Dr0/VeoObhOpdIvQsHx8f7Ny5E76+vrh58yZSU1MrbRXy9vbWGmZ/6tQpNG7cmGuhqc7p06fRqVP5Saq0tBTnz5/HuHHjKl33VcuqSylJmWBgsLOzwv17D7Fn51+ws7dCQGDdDFEVmhjBQSrkpu0kArhamUGhKsXDxyWY8o4HGlmbYd6hVBjxeLD4/yHqClUpStW6OfuITI3QwELETTvIhPCwNUehshSFyhJ81NYFcen3kVdUDJnIFH38nGArFiAm5Z5O4gGAYlUx8vP+HV1X+LAQd2/fg9BMCKmFBC07+OHM8XOwsLaAzFKKuCOnYS4xh7t3o2q2+mpEfGM0tP63H0kDKxG8HCUoeFyC3AIlCp5oXiYsVTPkPVIh837d9TPx8/PArj1xsLGWoUEDG9y4cQcHDv6NTh1b1FkMldH3584Q61Nl1Go1Dp9IQEgnP4M4dxpqfaqJN/k+QvUmEcrLy0Pfvn0xbNgw+Pr6QiKR4Ny5c1i4cCF69+6NoKAgdOrUCeHh4ViyZAk8PDxw9epV8Hg8dO3aFZMnT0ZAQADmzp2L/v37Iz4+HitWrMCPP/5Yo/JXrlwJT09PeHt7Y+nSpXj48CGGDRtW6bqvWlZdUipV2LcrFgX5CpiZCdHczxNdw96qs5OOu605vurhzU0PbecCADieeg9bLtxCGxdLAMCS9zV/ic7am4x/cnRzzxUvBwmW9ffjpscFlw+VPXAlF0sOp6KhlQihTZtCJjJFobIEV3MfYfzmRGTmPdZJPABw59ZdbP9lBzf9176TAADvlk0Q+kEIWnf0R2lxCY7uPM7dAO+9iF4wMdXdKaJpAxnWjWzDTU/9//fxz/O3MHP7ZZ2V+yIGD3oX23f8hajfDqCw8DEsLcQI7twS7/XuqNe49P25M8T6VJmEy9dx934B3u3sX6flVsVQ61N9x2PstWiUe2UqlQqzZ8/GoUOHkJ6ejpKSEsjlcvTt2xdffvklRCIRHjx4gClTpmDXrl0oKiqCh4cHvv32W/To0QNA+ZD2WbNmIS0tDY6Ojhg/frzGJTVXV1dMmjQJkyZN4uZlZmbCzc0N0dHRWLZsGRITE+Hh4YEVK1YgODgYQOV3ln6Zsvz8/NCnTx/Mnj27RseksLAQMpkMCw9ehMhc8nIHVgf2X9Zdy8jLyst/ou8QtAT7Gt69p7bHZOg7BC3zBhpe34vcItXzV6pjtwp0c1+tV9HVXT991Kpz70nd39izOo8VjzCkYxMUFBRAKq39zuAV3xNHE7Mglrza9hWPCtHFr6HOYn1Z9SYR0peKRCghIQF+fn76DkcDJUI1R4lQzVAiVDOUCNUMJULPV1eJ0LFaSoTeNsBEqN7cUJEQQggh5Fn1po8QIYQQQl4SjRojL8vV1RV09ZEQQsjrjEaNEUIIIaTeqo2nxxvq0+epjxAhhBBC6i1qESKEEEJItd7gLkKUCBFCCCHkOd7gTIgujRFCCCGk3qJEiBBCCCHV4tXSvxd169YtfPTRR7C2toZIJELz5s1x7ty5Wt03ujRGCCGEkGrpY9TYw4cP0aFDBwQHB2P//v2wtbVFWloaLC0tXy2QZ1AiRAghhBCDs2DBAsjlcqxfv56b5+bmVuvl0KUxQgghhFSLV0t/QPnzy57+U6kqf/berl270Lp1a/Tt2xd2dnZo2bIl1q5dW+v7Ri1CBKv3psFYYK7vMDhWViJ9h6DFEB9w2kDG13cIWtYOb6PvELQcSDe8h/i2cjKchxwbsmk7Lus7BC0L3muu7xA0FJXV0cNya3HUmFwu15gdGRmJ2bNna61+/fp1rFq1Cp999hm+/PJLnD17FhMmTACfz8eQIUNeMZh/USJECCGEkDqTnZ2t8fR5gUBQ6XpqtRqtW7fGvHnzAAAtW7bElStXsHr16lpNhOjSGCGEEEKqVZujxqRSqcZfVYmQo6MjfHx8NOZ5e3sjKyurVveNWoQIIYQQUi19jBrr0KEDUlJSNOalpqbCxcXl1QJ5BrUIEUIIIaRatdlZuqY+/fRTnD59GvPmzcO1a9cQHR2NNWvWYOzYsbWxSxxKhAghhBBicAICArBjxw78/vvvaNasGebOnYtly5Zh0KBBtVoOXRojhBBCSPX09Kyxnj17omfPnq9YcPUoESKEEEJItV72ERnPbsMQ0aUxQgghhNRb1CJECCGEkGrpY9RYXaFEiBBCCCHV0lMXoTpBl8YIIYQQUm9RixCpsVaulojo6AbvBlLYSYWY+NsFHE++W+m6M3r7oF/bhli4Jxkb427oLCZfZxkGBMjR2F4MG7EAM3ZewclredzyiPYueNvLDrZSAUrL1Ei9o8DPsRlIzn2ks5huZtzC+dgLuHv7HooeFaHnoO7w8HHnljPGcPro37h89h+olCo4uTji7V7BsLSx0FlMlVEqi3FwzylcuZgGheIJGjjbovcHb0Puop/nqg0etwR37+drze/5bhuMG6bbUSMVXof3Tq1W44+dsTgVfwUFBUWwtBCj41u+6B3WATw9XnvQd30yxHPBswyhjr+0N7hJiBKh11hERATy8/Oxc+dOAEDnzp3h5+eHZcuW6aQ8Ed8YKbmPsOP8TSz7yL/K9d72sYOv3AJ3CpQ6ieNpQlNjpN9VYN/lHHzdp5nW8uwHT/D90TTcLlBCYGKEvq2csaivLwb9fAYFT0p0ElNJcQlsHW3QtJUP9kTv01p+LvYCEuIvIjQ8BFIrKeIPn8aOqD8xeOIgmJjW3UdyW/RB5N7Ow4dDukMqM8eFM8lY88NWTJkRAZlF3T8UdPm8j6FWq7npzOy7+PKbDejYtmmdxfA6vHd79sXj6PEL+HhEGBo0sEFGRg7WrtsLkUiA0JCAOomhMvquT4Z4LniWIdTxl0WjxsgLu3fvHkaPHo2GDRtCIBDAwcEBoaGhOHXqVK2V8f333yMqKqrWtvc8J1PvY8XhNBxLqrwVCADspAJMD/PB9P9dQqma6TymMxkP8MupTI1ffk87evUuzmflI6dAicy8x1gZkw6xwATutuY6i8nNyxXtQwLh0dRdaxljDAmnEtG2cwDcfRrB1sEGoX1DUPSoCOnJ13UW07NKiktwOTENPfp0QiMPZ9jYWuLdHu1hbWuB+NiLdRbH0yyk5rCykHB/Zy6kwNHeCr4+rnUWw+vw3qVduwX/lo3h18IDtjYWaBPgjWZN3XD9+u06i+FZhlCfDPFc8CxDqONEGyVCOhIeHo6EhARs2LABqamp2LVrFzp37oy8vMo/pC9DJpPBwsKi1rb3qng8YF5fX0TFZiD9rkLf4WgxMeIhzNcRCmUp0u/pJ77Ch4V4rHgMubucmycQCuDgbI+crNw6i6NMzaBWM5iYGmvMNzU1QUb6rTqLoyolpaU4dvISQju31OvlnqcZynvn6dEASUmZyMktP5fcyLqD1LRs+PpqJ291xdDr07MM4VxgiHW8OhWjxl71zxDRpTEdyM/PR2xsLGJiYhAUFAQAcHFxQZs2bbh1eDwe1q5di7179+LgwYNo0KABFi9ejF69egEAysrKMGrUKBw7dgy5ublo2LAhxowZg4kTJ3LbePbSmL4N69QIpWqGTTrsE/QyAhtZYVZPHwhMjZCnKMbkbZdQ8KRUL7EUPXoMADAXm2nMNxOboUhRVGdxCIV8uLg54sj+07Czt4ZEaoaEc1dxIyMHNrYWdRZHVeLPXoWiSImQoJb6DoVjKO9dz+7t8eRJMaZ9+ROMjIygVqvxwfud0SFQ+3JQXTH0+lTBkM4FhljHq/MGdxGiREgXxGIxxGIxdu7ciXbt2kEgEFS63pw5c7Bw4UIsWrQIP/zwAwYNGoQbN27AysoKarUazs7O2Lp1K6ytrREXF4dRo0bB0dER/fr1e6m4VCoVVCoVN11YWPhS26mMt5MUg9q7oP+KuFrbZm1JyM7HiF/PQSYyRQ9fR8wO88boTQnIf1w3/QIM1YDB3bF100F8PeMnGBnx0EBuD7/WTXAr646+Q8OB4+cR4OcBayupvkMxOH+fTUJc/BWM/rg3nJ1scSP7DjZFH+E6TeuLIdenCoZ0Lnjt6vgbnAlRIqQDJiYmiIqKwsiRI7F69Wr4+/sjKCgIAwYMgK/vvyeqiIgIfPjhhwCAefPmYfny5Thz5gy6du0KU1NTzJkzh1vXzc0N8fHx+N///vfSidD8+fM1tlmbWrlawsqcj4NTg7h5JsZGmNy9CQZ1cEW3RSd0Um5NKEvUuJWvxK18JZJyHmHj8AB0b+aA6DPZdR6LuaS8NaFI8Rjm0n/7JjxWPIato22dxmJja4HRk/qjWFUCpVIFqUyMjet2w8pGVqdxPOvOvXwkXr6OmZMH6DWOZxnKe7d5yzH07BGIwP/vYCuX2+H+/QLs3hun10TIUOvT0wzlXGCodby+oj5COhIeHo7bt29j165d6Nq1K2JiYuDv76/RufnppMjc3BxSqRR37/7bEXnlypVo1aoVbG1tIRaLsWbNGmRlZb10TNOnT0dBQQH3l51dex/+3Qm38cEPp9BvRRz3d6dAiajYDIxef67WyqkNPB4PfBP9VH2ppRRmYjNkX//32KuUxci9eQeODfUzbJ0vMIVUJsbjx0qkJN9A0+YeeomjwqGYC5DJzNGmZWO9xvEsQ3nviotLtfqUGBkZgel+bEKNGFp9qo6+zgWGWserw6ulf4aIWoR0SCgUIiQkBCEhIZg5cyZGjBiByMhIREREAABMTU011ufxeNzQys2bN2PKlClYvHgxAgMDIZFIsGjRIvz9998vHY9AIKjyMl1NiPjGaGj9b/+IBlYieDlKUPC4BLkFSq0hqKVqhrxHKmTe113/CZGpERpYiLhpB5kQHrbmKFSWolBZgo/auiAu/T7yioohE5mij58TbMUCxKTc01lMxapi5OcVcNOFDwtx9/Y9CM2EkFpI0LKDH84cPwcLawvILKWIO3Ia5hJzuHs30llMlUlJygQDg52dFe7fe4g9O/+Cnb0VAgL1N5RXrVbj8IkEhHTyg7Gx8fNfUMteh/fOz88Du/bEwcZahgYNbHDjxh0cOPg3OnVsUWcxVEbf9ckQzwWV0Xcdf2m10dnZMPMgSoTqko+PT407Np86dQrt27fHmDFjuHnp6ek6iqxmmjaQYd3Ifzt8T+3hDQD48/wtzNx+WS8xeTlIsKy/Hzc9Lrj81+eBK7lYcjgVDa1ECG3aFDKRKQqVJbia+wjjNyciM++xzmK6c+sutv+yg5v+a99JAIB3yyYI/SAErTv6o7S4BEd3HuduyvdeRK86vYcQACiVKuzbFYuCfAXMzIRo7ueJrmFv6fXknHD5Ou7eL8C7nau+T5UuvQ7v3eBB72L7jr8Q9dsBFBY+hqWFGMGdW+K93h3rLIbK6Ls+GeK5oDL6ruNEGyVCOpCXl4e+ffti2LBh8PX1hUQiwblz57Bw4UL07t27Rtvw9PTEr7/+ioMHD8LNzQ2//fYbzp49Czc3Nx1HX7VzGQ/g++WBGq9fF/2CErML0Pm7qsuZtStJ5zE8S97IGZO+GV/lch6Ph8B32iHwnXZ1GJW2Fv5eaOHvpdcYntWqhQcObP5Kb+W/Du+dSCTARwND8NHAEL3FUBl91ydDPBdURt91/GW9wX2lKRHSBbFYjLZt22Lp0qVIT09HSUkJ5HI5Ro4ciS+//LJG2/j444+RkJCA/v37g8fj4cMPP8SYMWOwf/9+HUdPCCGEPOMNzoR4jBlKFztS1woLCyGTydBowjYYC+ru7qrPY2Ulev5KdSzYVz8dmavTQMbXdwhamhvQCKEKB9Lrtg9ITbRyqvtHmDxPbpHq+SvVsY2xLz84RFcWvNdc3yFoKFIUokdrNxQUFEAqrf2h+BXfEwnpuZBIXm37jx4VoqW7g85ifVnUIkQIIYSQar3JzxqjRIgQQggh1aqNR2QY6iM26D5ChBBCCKm3qEWIEEIIIdV6g/tKUyJECCGEkOd4gzMhSoQIIYQQUq03ubM09REihBBCSL1FLUKEEEIIqRYPtTBqrFYiqX2UCBFCCCGkWm9wFyG6NEYIIYSQ+otahAghhBBSrTf5hoqUCBFCCCHkOd7ci2OUCBG083UE30ys7zA4Ezu46TsELSez7+s7BC2G+EBKbxdLfYegZUYXT32HoGV/Wq6+Q9AydelxfYegZeGnwfoOQUvUhZv6DkFD8WOFvkN47VEiRAghhJBq0aUxQgghhNRbb+6FMRo1RgghhJB6jFqECCGEEFItujRGCCGEkHrrTX7WGCVChBBCCKneG9xJiPoIEUIIIaTeokSIEEIIIdXi1dLfy/r222/B4/EwadKkV9hK5ejSGCGEEEKqpc/O0mfPnsVPP/0EX1/fVwugCtQiRAghhBCDpFAoMGjQIKxduxaWlrq5cz0lQoQQQgipFq+W/gFAYWGhxp9Kpaqy3LFjx6JHjx545513dLZvdGmM1JiHjTlCvGzR0FIEC5EpVp/KxMXbhdxyvwZSdGxkjYaWIogFJvjmUCpuFijrPM67eQX4ccMBxF9IgVJVAmdHa8wY/wG8PZ3rPJYKSmUxDu45hSsX06BQPEEDZ1v0/uBtyF0c6qR8X2cZBgTI0dheDBuxADN2XsHJa3nc8oj2Lnjbyw62UgFKy9RIvaPAz7EZSM59pLOYXof6tPK3Q1i18bDGPDdnW+z+ZWqdxvEsfdenwCb2GB/WHC3cbOBoZYaPvjuCfec0n33X2EmGyIEB6ODjAGMjHlJu5WPIkmO4lVdUJzEC+j9Or0Mdr7FaHDUml8s1ZkdGRmL27Nlaq2/evBkXLlzA2bNnX7Hg6lEiVIcyMzPh5uaGhIQE+Pn5VbpOTEwMgoOD8fDhQ1hYWNRpfM8jMDHCrfwniMt4gE86uGot5xsbIf1+ES7cLMBHrfWTdBQqnuDjL1ajVTN3LJk1FJYyc2Tfvg+JWKSXeCpsiz6I3Nt5+HBId0hl5rhwJhlrftiKKTMiILOQ6Lx8oakx0u8qsO9yDr7u00xrefaDJ/j+aBpuFyghMDFC31bOWNTXF4N+PoOCJyU6iel1qE8A4OFij5+/HcVNGxsb6y2WCvquT+ZCU1y58QCbYtLw2+QuWstd7SXYN6cHNh5PxbfbLuDRkxI0cbaAqqRM57E9Td/H6XWp43UtOzsbUqmUmxYIBJWuM3HiRBw+fBhCoVCn8VAi9ALu3buHWbNmYe/evbhz5w4sLS3RokULzJo1Cx06dHju6+VyOXJycmBjY1MH0da+f3If4Z9qWgjOZOUDAKzMTOsoIm0bt5+AvY0FZkz8gJvnZG+lt3gAoKS4BJcT0xAxqg8aeZSf7N7t0R5JV9IRH3sRXcPe0nkMZzIe4EzGgyqXH716V2N6ZUw6evg6wt3WHBf+/32tba9DfQIAY2Mj2FhJn79iHTGE+nQk8SaOJFb9FPYZ/VvhcOJNzI4+x83LvKO71sXKGMJxel3qeE3U5m2EpFKpRiJUmfPnz+Pu3bvw9/fn5pWVleGvv/7CihUroFKpau1HCSVCLyA8PBzFxcXYsGEDGjVqhDt37uDo0aPIy8t7/otR/kvSwUH3TbLFxcXg8/k6L8cQxZ5JRtuWnvhywSYk/pMBGyspwru3Q+932+gtpjI1g1rNYGKq+aE1NTVBRvotPUVVNRMjHsJ8HaFQliL9nkLf4ehd1q37CP5wLgR8E7TwdsGkYd3gaKebTps1Yej1iccDQlrK8cPuS9g2/V00d7VG1j0Flu68qHX5TJcM/Ti9bup61FiXLl1w+fJljXlDhw5FkyZNMG3atFptmaXO0jWUn5+P2NhYLFiwAMHBwXBxcUGbNm0wffp09OrVCwDA4/GwatUqdOvWDSKRCI0aNcK2bdu4bWRmZoLH4yExMZGbt2/fPjRu3BgikQjBwcHIzMzUKvvkyZPo2LEjRCIR5HI5JkyYgKKif6+zu7q6Yu7cuRg8eDCkUilGjRqltY364vadB9hx4G/InWywdPYwvN+tHZas3Y29x87rLSahkA8XN0cc2X8aBfkKqNVqnD+ThBsZOXhUWHf9JZ4nsJEV9k94C4c+7YgPWjlj8rZLKHhSqu+w9Mq3SUN8PaU/Vn8zHDPHv4+buQ8wePKPKHqsv34chl6fbKUiSESmmNjLF0cv3kL4vIPYc+YGfv2sC9p7103fHMDwjxOpnkQiQbNmzTT+zM3NYW1tjWbNtC/vvwpKhGpILBZDLBZj586d1fZwnzlzJsLDw3Hx4kUMGjQIAwYMQHJycqXrZmdn4/3330dYWBgSExMxYsQIfPHFFxrrpKeno2vXrggPD8elS5ewZcsWnDx5EuPGjdNY77vvvkOLFi2QkJCAmTNnVlqeSqXS6q3/plEzhsaNnDD6P6HwauSEPqFt0DskADsP/K3XuAYM7g4A+HrGT5g+aRlOnUiAX+sm4BnQUwgTsvMx4tdzGBedgDOZDzA7zBsWr0GTvS51DGiC0E4t4NXICR1ae2HV18PxSKHEgb8u6TUuQ65PRv//rbL/fBZW7fsHV248wPe7LuHghWwMfadJncZiyMfp9VMbI8YM87jTpbEaMjExQVRUFEaOHInVq1fD398fQUFBGDBggMZNnvr27YsRI0YAAObOnYvDhw/jhx9+wI8//qi1zVWrVsHd3R2LFy8GAHh5eeHy5ctYsGABt878+fMxaNAg7m6anp6eWL58OYKCgrBq1SquE9nbb7+NyZMnV7sP8+fPx5w5c17pOBg6G0sJ3OR2GvNc5XY4Hv+PniIqZ2NrgdGT+qNYVQKlUgWpTIyN63bDykam17iepixR41a+ErfylUjKeYSNwwPQvZkDos9k6zs0gyEVi+DibIOs2/f1Goch16e8QhVKStVIuZmvMT/1dj7aednXaSyGfJxeN4bw9PmYmJhX20AVqEXoBYSHh+P27dvYtWsXunbtipiYGPj7+yMqKopbJzAwUOM1gYGBVbYIJScno23btlrrP+3ixYuIioriWqTEYjFCQ0OhVquRkZHBrde6devnxj99+nQUFBRwf9nZb94XXHNvF60vqaxb9+Fga6GfgJ7BF5hCKhPj8WMlUpJvoGlzD32HVCUejwe+CZ0invb4iQrZt/NgayCdpw2xPpWUqZFw/R48nDSTDXcHGbLv66fPmSEeJ2I4qEXoBQmFQoSEhCAkJAQzZ87EiBEjEBkZiYiICJ2Up1Ao8PHHH2PChAlayxo2bMj939zc/LnbEggElQ5TrCmBsRFsxf92wrY258NZJkRRcRkePimBmakxrMxMIROVX06xl5SXVagsRaGqbvqaDOjVAaOmrUbU1uPo8lZzJKXexJ+HzuCLMe/VSflVSUnKBAODnZ0V7t97iD07/4KdvRUCApvWSfkiUyM0sPj3FgIOMiE8bM3L3xtlCT5q64K49PvIKyqGTGSKPn5OsBULEJNyT2cxvQ71adGa3ejczgdOdpa4m1eIlb8dgrGxEbp39quT8qui7/pkLjCBm8O/yaCLnQTNXKzwUKHCrbwi/LD7Cn6Z2BnxybmI/ScHXfyc0bWVHGFf7a+T+Cro+zi9DnWcUCL0ynx8fLBz505u+vTp0xg8eLDGdMuWLSt9rbe3N3bt2qUx7/Tp0xrT/v7+SEpKgoeH/n/BNLQS4bPO7tx0Xz8nAEB85gP8evYmfJ2kGNLm3xtljQh0AQDs+ecO9ibdqZMYfTzl+Hb6R1j120Gs33IMjvaWmDSiJ0I7V/4e1BWlUoV9u2JRkK+AmZkQzf080TXsrTq7J42XgwTL+vtx0+OCy+vTgSu5WHI4FQ2tRAht2hQykSkKlSW4mvsI4zcnIjPvsc5ieh3q0537BZg6Pxr5j4pgJROjZVNXbFo2DlYW4jopvyr6rk9+7jbYPas7N/3N4PKW7egTaRi3KhZ7z97A5J/jMKm3L+ZHtMO12wUYsuQY/k6pm/etgr6P0+tQx2vKEC6N6QqPMcb0HcTrIC8vD3379sWwYcPg6+sLiUSCc+fOYfz48ejRowd++eUX8Hg82NjYYMGCBXjrrbewadMmfP3117h8+TJ8fHy0bqiYlZUFT09PTJgwASNGjMD58+cxefJk5ObmcjdUvHTpEtq1a4dhw4ZhxIgRMDc3R1JSEg4fPowVK1YAKB81NmnSpBd+Km9hYSFkMhkG/nwKfDP9ntifNrGDm75D0HIyW799QiqzMbbuhiLXlLeL/oaVV2VGF099h6Blf1quvkPQMnXpcX2HoGXhp8H6DkHL+ay6vR/S8xQ/ViB6RAcUFBQ89948L6PieyIr9+Erb7+wsBANHSx1FuvLohahGhKLxWjbti2WLl2K9PR0lJSUQC6XY+TIkfjyyy+59ebMmYPNmzdjzJgxcHR0xO+//w4fH59Kt9mwYUNs374dn376KX744Qe0adMG8+bNw7Bhw7h1fH19ceLECfz3v/9Fx44dwRiDu7s7+vfvr/N9JoQQQt50lAjVkEAgwPz58zF//vxq13NycsKhQ4cqXebq6opnG+B69uyJnj17aswbOnSoxnRAQECV2wRQ6b2HCCGEkNryJl8ao0SIEEIIIdWqzUdsGBoaG0sIIYSQeotahGoR9TsnhBDyRnqDm4QoESKEEEJItf59TMarbcMQ0aUxQgghhNRb1CJECCGEkGrRqDFCCCGE1FtvcBchSoQIIYQQ8hxvcCZEfYQIIYQQUm9RixAhhBBCqvUmjxqjRIgQQggh1aLO0uSNVHEDyJInRXqORJPiUaG+Q9DypMiwnjgNAKVKw3rfAKD4sam+Q9DyiOpTjbCSJ/oOQYshHqfixwp9h6Ch4vyt6xv6Fha++ueoNrahCzxGt0Out27evAm5XK7vMAghhLyi7OxsODs71/p2lUol3NzckJubWyvbc3BwQEZGBoRCYa1srzZQIlSPqdVq3L59GxKJBLxXaLMsLCyEXC5HdnY2pFJpLUb48iimmqGYaoZiqhmKqWZqMybGGB49egQnJycYGelm/JNSqURxcXGtbIvP5xtUEgTQpbF6zcjIqFZ/QUilUoM50VSgmGqGYqoZiqlmKKaaqa2YZDJZLURTNaFQaHDJS22i4fOEEEIIqbcoESKEEEJIvUWJEHllAoEAkZGREAgE+g6FQzHVDMVUMxRTzVBMNWOIMdVn1FmaEEIIIfUWtQgRQgghpN6iRIgQQggh9RYlQoQQQgiptygRIvVSREQE+vTpo+8wauzq1ato164dhEIh/Pz8kJmZCR6Ph8TERI31eDwedu7cqdNYXF1dsWzZMp2WUVvWrFkDuVwOIyMjLFu2DLNnz4afn1+NXhsVFQULCwudxlcXOnfujEmTJuk7DC0xMTHg8XjIz8/XdyicZ88LtXnsqvrMPs0Qj0l9QIkQ4URERIDH43F/1tbW6Nq1Ky5duvTallfdyefChQuvXH5VX5a1nSxERkbC3NwcsbGxCAgIQKdOnQAAXbt2RVhYGI4ePQoAyMnJQbdu3V6prKffF1NTU9jb2yMkJATr1q2DWq1+5X2pTG5uLiZOnAgPDw8IhULY29ujQ4cOWLVqFR4/fvxS2ywsLMS4ceMwbdo03Lp1C6NGjarlqF9dxbH+5JNPtJaNHTsWPB4PERERNdpWVV+ixcXFOHbsGBo2bAiBQAAHBweEhobi1KlTtbAHL699+/bIycmp8c0A7927h9GjR+t0P77//ntERUXppHy5XI6cnBw0a9as1uIltYMSIaKha9euyMnJQU5ODo4ePQoTExP07NnzjSnP0Mp/norb2qenp6NZs2bo06cP4uLiMH36dADAypUrERwcjLFjxwIof45PbQzJrTgumZmZ2L9/P4KDgzFx4kT07Nmzyoc7lpSUvFRZ169fR8uWLXHo0CHMmzcPCQkJiI+Px9SpU7Fnzx4cOXLkpcrLyspCSUkJevToAUdHR5iZmb1UfLoml8uxefNmPHny70NPlUoloqOj0bBhw5febkXdSUpKwr1797BhwwakpqZi165d6Ny5M/Ly8l459urKfR4+nw8HB4caP94nPDwcCQkJOt0PmUxWZSvgq5ZvbGwMBwcHmJjo9oEOtfUojHqFEfL/hgwZwnr37q0xLzY2lgFgd+/eZYwxlpWVxfr27ctkMhmztLRkvXr1YhkZGRqvWbt2LWvSpAkTCATMy8uLrVy5klumUqnY2LFjmYODAzMyMmIikYjNmzdPZ+UB0PgLCgri9lUul3P7W1ZWxubNm8ccHBwYAObj48Nmz57NALCHDx+yBw8esIEDBzILCwsGgLm4uLCpU6dqbT8yMpIFBQVpzX96/9566y0mFAqZs7MzGz9+PFMoFNxyFxcX9tVXX7H//Oc/TCKRsCFDhmhta/r06SwjI4MBYAkJCUytVjNXV1e2aNEiBoDt2LGDMcZYQkICA8B69OjBLC0tmZmZGWvVqhU7ffo0Y4yxa9eusV69ejE7Oztmbm7OWrduzQ4fPqxRD+7cucN69uzJhEIhs7e3ZwCYlZUVW7p0KQPAfvzxR+bj48N4PB4zMTFhDRo0YE2aNGEuLi5MKBSyxo0bs2XLlmm8XyUlJWz8+PFMJpMxKysr5ubmxszMzFiPHj24dZRKJRs/fjyztbVlfD6fdejQgSsvLCyMCYVCBoAdPHiQWVtbMx6Px3g8HnN1dWXLli1j69ev1zpuIpGICQQCZmZmxjIzM9mJEyeYsbExa9++PROLxUwikTB/f382YMAA9tZbb7H169czmUzGDhw4wJo0acLMzc1ZaGgou337NhdnWVkZmzNnDmvQoAHj8/msRYsWbP/+/dzyivfp999/Z4GBgUwgELCmTZuymJgYrh5W7NvkyZNZ8+bNmUAgYO7u7qxx48asd+/ebMiQIYwxxo4ePcocHR25/XF0dGQnTpzQKOfpP3d3d/bw4UMGgL3//vvs888/Z5aWlsze3p5FRkZyMT58+JCNGjWK2dnZcfHt3r2bW75t2zbm4+PD+Hw+c3FxYd99953G+1lZnX3efjPG2PHjx7nP1/PKqtgPe3t79s0337ChQ4cysVjM5HI5++mnn7jP+tq1a1mfPn2YSCRiHh4e7M8//+S2XVpayoYNG8ZcXV2rrJvPngODgoLYxIkTufKfjv9ZFfWza9euTCgUMjc3N7Z161atupCQkMDN27t3L/P09GRCoZB17tyZq7dPH5OXOWeQF0OJEOE8exJ49OgR+/jjj5mHhwcrKytjxcXFzNvbmw0bNoxdunSJJSUlsYEDBzIvLy+mUqkYY4xt3LiROTo6su3bt7Pr16+z7du3MysrKxYVFcUYY2zRokVMLpezv/76i4WHh7O33nqLRUdH66y8M2fOMADsyJEjLCcnh+Xl5XH7+nQi9PXXX7PGjRuz7t27MxcXF/bLL78wU1NT7qQ0duxY5ufnxzZu3MgAsN9++41t376dLVu2jEmlUpaTk8NycnLYo0ePWF5eHnN2dmZfffUVN5+x8sTD3NycLV26lKWmprJTp06xli1bsoiICO6Yu7i4MKlUyr777jt27do1du3aNZaTk8O8vLy4JOjRo0daJ9VvvvmG+fj4aCRCn3zyCRMKhaxjx44sNjaWpaWlsS1btrC4uDjGGGOJiYls9erV7PLlyyw1NZXNmDGDCYVC9sEHH3DHpVu3bqxFixYsPj6enTt3jpmZmTEjIyMuEbKzs2MDBgxgGzduZCdPnuQSk/DwcHb9+nW2ceNGZmZmxrZs2cLt49dff82srKzYH3/8weLi4hgAJhAINOrehAkTmJOTE9u3bx/7559/uITQ1taWrVu3jm3atIkBYAEBAWzIkCFsy5YtLCAggHl6ejIzMzP222+/sSNHjjAATCwWs9GjR7OUlBQ2ZswYJpfL2Y0bNxhjjPH5fObv78+Sk5NZamoqi46OZhYWFmzdunVs/fr1zNTUlL3zzjvs7Nmz7Pz588zb25sNHDiQi3PJkiVMKpWy33//nV29epVNnTqVmZqastTUVMbYv19+zs7ObNu2bSwpKYmNGDGCSSQSdv/+fY1EyMzMjB06dIhdunSJ2djYMEtLSxYWFsaGDBnCrl27xkxMTJhMJmNr165lGzduZFZWVozP57O8vDxWWlrKbG1tGQA2bdo0Fh8fzxISElhJSQkzNjZmfD6fzZgxg6WmprINGzYwHo/HDh06xMrKyli7du1Y06ZN2aFDh1h6ejrbvXs327dvH2OMsXPnzjEjIyP21VdfsZSUFLZ+/XomEonY+vXrq62zz9tvxrQToerKKikp4ZJVS0tLtnLlSpaWlsbmz5/PjIyM2NWrV7nyoqOjWVpaGpswYQITi8XcZ764uJjNmjWLnT17tsq6WVUiVFH+pEmTmFKpZJUBwKytrdnatWtZSkoKmzFjBjM2NmZJSUkadaHiM5uVlcUEAgH77LPP2NWrV9nGjRu5HxsVx+RlzxnkxVAiRDhDhgxhxsbGzNzcnJmbm3O/Os+fP88YY+y3335jXl5eTK1Wc69RqVRMJBKxgwcPMsYYc3d35xKbCnPnzmWBgYGMMcbGjx/P3n77baZWq+ukvMp+hVXsq1wu58p/+ld2Rfndu3fnTkphYWFs6NChXCtLRatURavBs1xcXNjSpUs15g0fPpyNGjVKY15sbCwzMjJiT5484V7Xp08fre15enoyAOyPP/6odL9u3brFjI2NuUSouLiYicViJhQKuS+CmmjatClr06YN6927N0tJSWEA2JkzZ7jl3bp1YwC4RGjSpEla29i6dSuztrbmpseOHcvCw8O5aXt7e7Zo0SLGGGOnT59mAJiNjQ33BaRQKLjkyNzcnE2dOpUVFxczAOytt95ijP37JXrkyBFuu3v37mUA2Mcff8zCw8O59+rpX/KRkZGsRYsW3GsEAgFzdHTkprdv387EYjFTKBTcr/Onv1hWrlzJ7O3tuWknJyf2zTffaOx/QEAAGzNmDGPs3/fp22+/5ZaXlJQwZ2dntmDBAo1EyNTUlGVmZrLMzEwmFAqZUChkrVu3ZkOGDGGDBw9mRkZGbNOmTdx2Ko5BRfnPfolW8PHxYSYmJkwoFLL27duz6dOns6ZNm7Jp06axgwcPMiMjI5aSkqL1PjLG2MCBA1lISIjGvM8//5z5+Phw05XV2eft99PxV8T7vLK2bdvGjIyMuFa86dOns8TERGZnZ8dWrVrFALAZM2Zwr62oR0+30D3r2bpZVSJUUb6lpaXGcbx48SK3LgD2ySefaGy/bdu2bPTo0RrHpOIzO336dI3jyBhj06ZN0zgmr3LOIDVHfYSIhuDgYCQmJiIxMRFnzpxBaGgounXrhhs3buDixYu4du0aJBIJxGIxxGIxrKysoFQqkZ6ejqKiIqSnp2P48OHccrFYjK+//hrp6ekAyjuHJiYmwsvLC3///Td8fX11Wl5N9nfr1q0Ayp+wfO/ePbRq1QpmZmY4ePAgt97o0aOxefNm9O/fHwBw/vz5Fz62Fy9eRFRUlEasoaGhUKvVyMjI4NZr3bq11mvZc24A7+TkhB49enDTu3fvhkqlQuvWrWFlZVXpaxQKBaZMmQJvb29YWFhALBYjOTkZRUVFAIDk5GSYmJigVatW3GskEgmMjP49bbRu3RpHjhxBly5d0KBBA0gkEnz44YfIy8uDra0txGIx1qxZg6ysLABAQUEB7ty5gzZt2mjE4u7uzv2/4r07ePAgmjZtCpVKBVNTUwDQKBsAfH19sXLlSrRq1QqDBg0CAKxbt44rDwA++OADhIaGIiwsDKdPn9boWzR+/Hjk5OQgICAA3377LVauXIl+/frB3NwcAGBmZqYRm6OjI+7evQugvDP27du30aFDB42YOnTogOTkZI15gYGB3P9NTEzQunVrrXW6dOmCqKgorF+/Hj169ECTJk3w6NEjAMC5c+egVqsxYsQIru5UvN/nzp1DdWxtbTFs2DDs2rULXbt2RUxMDJKSknDq1CkkJibC2dkZjRs3rvS1ycnJle5fWloaysrKuHmV1dma7ndNywoPD4ezszOGDh3K7UerVq3A5/O598TX15d7rbm5OaRSKbcMAFdXKqubzxMeHo7bt29rHEd/f3+NztVP72/FdHX727ZtW631n/Yq5wxSc5QIEQ3m5ubw8PCAh4cHAgIC8PPPP6OoqAhr166FQqFAq1atuMSl4i81NRUDBw6EQqEAAKxdu1Zj+ZUrV3D69GkAgL+/PzIyMjB37lyUlZXh8uXL+OKLL3RWXk32tyJROHDgAK5cuQIzMzNERETg119/BVCehFQkZwMGDAAADBw4EFOmTHmhY6tQKPDxxx9rxHrx4kWkpaVpfNlWfAk/raID9NWrV6vc/ogRIwAAKpUK69evh5eXl1bi8LQpU6Zgx44dmDdvHmJjY5GYmIjmzZtXOzIsOTlZY5tFRUXo2bMnfH19sX37dnz11Vdc59ft27cjMTERQ4cOrbIDp4eHB3g8HveF/zRXV1eIRCKNec92NN21axemTJmC4cOHY9WqVQDKE5+ny1u0aBHi4+PRvn17/PPPP7h69SpXPxYtWoSQkBCYmJjgwIEDOHbsmMZ7UZGAVeDxeM9NSl9Wv379EBUVhQ0bNmDYsGEayypGzu3fv1+j7oSEhEAqlT532yKRCCEhIZg5cybi4uIgl8uRkJCgdXxfVmV1Vhd4PB6aNm3K7UdERATu3LnD1dnK3q+KZZs3b+bqyqFDh55bNysjFAo1jmNERAQiIyNrbwef8SrnDFJzlAiRavF4PBgZGeHJkyfw9/dHWloa7OzsuGSp4k8mk8He3h5OTk64fv261nI3Nzdum1KpFP3790f79u0REBCA7du348GDBzopj8/nA4DGr9dn+fj4QCAQICsrC56enjA2NoZIJELLli0BlA9JB8p/WTs7OwMAZs2ahTVr1oDP51e67crm+/v7IykpSStWDw8PLs6qmJiYwMPDAytXruRabJ6Wn5+P7t27AyhP6A4cOIA+ffogMTGRO7bPOnXqFCIiIvDee++hefPmcHBwQGZmJre8SZMmKC0t5Vq/jh07hsuXL6O0tJRbJz09HWq1GosXL0a7du1w/fp1yOVyAOW/zj08PDRa5yret7NnzwIArK2t8c477yAlJYXbrru7O/h8vsaw5IpWnIptV/j777/Rvn17jBkzBk2aNAGASn/ht2zZEtOnT8fw4cMhFAoRHR3NLfv000+RnJyMLl26QCKR1DiJlkqlcHJy0ho+ferUKfj4+GjMe3qbFcfU29tbYx2RSITi4mKUlJSgTZs2SE1NhUQiAQC0adMGPB4Pt27d4uqMi4sLkpKStIZjV1fXK0gkEpSWlsLX1xc3b95Eampqpet5e3tXun+NGzeGsbHxc8upyX6/Slk+Pj41vqXDqVOnuLrSsmVLrbr5Mnx8fDQ+j8/WndOnT1e7v2fOnNFa/2mvcs4gNUeJENGgUqmQm5uL3NxcJCcnY/z48VAoFAgLC8OgQYNgY2OD3r17IzY2FhkZGYiJicGECRNw8+ZNAMCcOXMwf/58LF++HKmpqbh8+TLWr1+PJUuWAACWLFmC33//HVevXkVhYSGys7Nha2sLpVKpk/Ls7OwgEolw4MAB3LlzBwUFBVr7W1RUhE8++QTjx49HSEgIFAoFvLy8cPDgQVhZWWH27NkYO3YsZs6ciW+//RZAeVLg7e0NV1dXKBQKHD16FPfv3+d+ubu6uuKvv/7CrVu3cP/+fQDAtGnTEBcXh3HjxiExMRFpaWn4888/MW7cuBq9N927d0dZWRnatGmD/fv3Aygfer58+XIEBgZyXxYbN26Ep6cnZs6cCQcHB/Tp0wenTp3C9evXsX37dsTHxwMAPD098ccff3C/MgcOHMh9qahUKshkMnTu3Bn/+c9/MHr0aISFhcHS0hJCoZCLycHBASUlJfjhhx9w/fp15Ofnc032165dw8yZM7mkp8L48eMxf/58/Pnnn0hJSYG9vT3UajVOnDiBLVu2ICsrCwMGDMDYsWNx6dIl5OfnY+TIkQCAd955R2Nb7u7uOHfuHA4ePIgbN24AgNZ9oBYuXIj4+HjcuHED6enpUKlU8Pb2xpMnTzBu3DgIBAKYmZnhq6++Ap/Pr/KLqzKff/45FixYgC1btiAlJQVffPEFEhMTMXHiRI31Vq5ciR07duDq1asYO3YsHj58qNXq8/XXX2PVqlXYtm0bhg8fDhsbGzg6OgIA/vvf/8LIyAijRo3CypUrsX//foSGhuL+/fsYPnw4gPJkmcfjYc+ePbh37x4UCgXy8vJw8eJFXL16FZcuXUJGRga2bt2Ka9euQS6XIygoCJ06dUJ4eDgOHz6MjIwM7N+/HwcOHAAATJ48GUePHsXcuXORmpqKDRs2YMWKFTVuDa3Jfleorqy8vDy8/fbbUCgUuH37NrcfCxcurPF9iDw9Pbm6kpqaWmndrEpF+Rs3btQ4jgsXLkTv3r259bZu3Yp169YhNTUVkZGROHPmTJWf708++QRpaWn4/PPPkZKSgujoaK17GL3qOYPUkJ77KBED8uxQbYlEwgICAti2bdu4dXJyctjgwYOZjY0NEwgErFGjRmzkyJGsoKCAW2fTpk3Mz8+P8fl8ZmlpyTp16sR18l2zZg3z8/Nj5ubm3KgsXZbHWPnwerlczoyMjLSGzz9dvkAgYEKhkBkbGzNbW1sWGhrKVqxYwZo3b85MTEyYSCRifD6fAWAhISHs+vXrjLHy0VnW1tbc8HnGGIuPj2e+vr5MIBBoDJ8/c+YMCwkJYWKxmJmbmzNfX1+NzraVdbJmjLEWLVqwyMhIdvv2bTZ27FjWoEEDbtRWr1692PHjxxlj/94uYOHChYwxxjIzM1l4eDiTSqXMzMyMtW7dmv3999+MsfLOm8HBwUwkEjG5XM5WrFjBgoKCmLe3N7cdExMTxufzGY/H40bjVcSI/++YvWTJEubo6MhEIhELCQlhHTt2ZACYTCZjo0ePZl988YVGB+WSkhI2btw4JpVKmaWlJZs2bRrr2bMn8/T0ZG5ubszU1JSJxWJmb2/PzMzMNIbPV4yIq+hom5ubyyIiIphMJmMSiYQBYKNHj2YtWrTgOku/++67zNHRkfH5fCaTyZi9vT0rKytjKpWKDRgwgOs0D4ANHTqU64RaWUf4HTt2aLyfZWVlbPbs2axBgwbM1NS0yuHz0dHRrE2bNozP5zMfHx927Ngxrh5W7Nvu3btZ06ZNGZ/PZ23atGEXL17UGD4fGxurUWfNzMy4jrgVdadbt27MwcGB8Xg8NmTIEKZUKplcLmd2dnZMJpMxMzMz5uXlxRo3bswGDRrEGGMsLy+PDR06lFlbWzOhUMiaNWvG9uzZw223Yki7qakpa9iwIdfRvbo6+7z9fvo9rGz4/LNlKZVK9sUXXzA+n8+EQiG3HzNmzGDNmzdnkZGRGvWjgkwm40a4KZVKrq5YWFhUWjer6ixdUb6/v7/GcZwxYwZ7/PgxY6z8s7dy5UoWEhLCBAIBc3V11RiRVtnAjd27dzMPDw8mEAhYx44d2bp167SOycueM0jN8RjT0QVvQkidi42NRZcuXZCdnQ17e3t9h1MjarUa3t7e6NevH+bOnauXGIYPH4579+5h165dtbrdzMxMuLm5ISEhocpHe8TExCA4OBgPHz58Ix7pAdRsv980PB4PO3bseK0e3UPK6fYWl4SQOqFSqXDv3j3Mnj0bffv2Negk6MaNGzh06BCCgoKgUqmwYsUKZGRkYODAgXUeS0FBAS5fvozo6OhaT4IIIa8H6iNEyBvg999/h4uLC/Lz87Fw4UJ9h1MtIyMjREVFISAgAB06dMDly5dx5MiRF+qbU1t69+6Nd999F5988glCQkLqvHxCiP7RpTFCCCGE1FvUIkQIIYSQeosSIUIIIYTUW5QIEUIIIaTeokSIEEIIIfUWJUKEEL2KiIjQuPdK586dMWnSpDqPIyYmBjweD/n5+VWuw+PxsHPnzhpvc/bs2a98H53MzEzweDwkJia+0nYIIZWjRIgQoiUiIgI8Hg88Hg98Ph8eHh746quvNJ4zpit//PFHjW+sWJPkhRBCqkM3VCSEVKpr165Yv349VCoV9u3bh7Fjx8LU1BTTp0/XWre4uLjWHgJpZWVVK9shhJCaoBYhQkilBAIBHBwc4OLigtGjR+Odd97h7r5ccTnrm2++gZOTE7y8vAAA2dnZ6NevHywsLGBlZYXevXtrPNG+rKwMn332GSwsLGBtbY2pU6fi2VuZPXtpTKVSYdq0aZDL5RAIBPDw8MAvv/yCzMxMBAcHAwAsLS3B4/EQEREBoPyxHfPnz4ebmxtEIhFatGiBbdu2aZSzb98+NG7cGCKRCMHBwRpx1tS0adPQuHFjmJmZoVGjRpg5cyZKSkq01vvpp58gl8thZmaGfv36aT389+eff4a3tzeEQiGaNGmCH3/88YVjIYS8HEqECCE1IhKJUFxczE0fPXoUKSkpOHz4MPbs2YOSkhKEhoZCIpEgNjYWp06dglgsRteuXbnXLV68GFFRUVi3bh1OnjyJBw8eYMeOHdWWO3jwYPz+++9Yvnw5kpOT8dNPP0EsFkMul2P79u0AgJSUFOTk5OD7778HAMyfPx+//vorVq9ejX/++QeffvopPvroI5w4cQJAecL2/vvvIywsDImJiRgxYgS++OKLFz4mEokEUVFRSEpKwvfff4+1a9di6dKlGutcu3YN//vf/7B7924cOHAACQkJGDNmDLd806ZNmDVrFr755hskJydj3rx5mDlzJjZs2PDC8RBCXoJeH/lKCDFITz+FW61Ws8OHDzOBQMCmTJnCLbe3t2cqlYp7zW+//ca8vLyYWq3m5qlUKiYSidjBgwcZY4w5OjqyhQsXcstLSkqYs7NzpU/8ZoyxlJQUBoAdPny40jgre4K5UqlkZmZmLC4uTmPd4cOHsw8//JAxxtj06dOZj4+PxvJp06ZpbetZqOQJ509btGgRa9WqFTcdGRnJjI2N2c2bN7l5+/fvZ0ZGRiwnJ4cxxpi7uzuLjo7W2M7cuXNZYGAgY6zyp5YTQmoP9REihFRqz549EIvFKCkpgVqtxsCBAzF79mxuefPmzTX6BV28eBHXrl2DRCLR2I5SqUR6ejoKCgqQk5ODtm3bcstMTEzQunVrrctjFRITE2FsbIygoKAax33t2jU8fvxY69lhxcXFaNmyJQAgOTlZIw4ACAwMrHEZFbZs2YLly5cjPT0dCoUCpaWlkEqlGus0bNgQDRo00ChHrVYjJSUFEokE6enpGD58OEaOHMmtU1paCplM9sLxEEJeHCVChJBKBQcHY9WqVeDz+XBycoKJiebpwtzcXGNaoVCgVatW2LRpk9a2bG1tXyoGkUj0wq9RKBQAgL1792okIEB5v6faEh8fj0GDBmHOnDkIDQ2FTCbD5s2bsXjx4heOde3atVqJmbGxca3FSgipGiVChJBKmZubw8PDo8br+/v7Y8uWLbCzs9NqFang6OiIv//+G506dQJQ3vJx/vx5+Pv7V7p+8+bNoVarceLECbzzzjtayytapMrKyrh5Pj4+EAgEyMrKqrIlydvbm+v4XeH06dPP38mnxMXFwcXFBf/973+5eTdu3NBaLysrC7dv34aTkxNXjpGREby8vGBvbw8nJydcv34dgwYNeqHyCSG1gzpLE0JqxaBBg2BjY4PevXsjNjYWGRkZiImJwYQJE3Dz5k0AwMSJE/Htt99i586duHr1KsaMGVPtPYBcXV0xZMgQDBs2DDt37uS2+b///Q8A4OLiAh6Phz179uDevXtQKBSQSCSYMmUKPv30U2zYsAHp6em4cOECfvjhB64D8ieffIK0tDR8/vnnSElJQXR0NKKiol5ofz09PZGVlYXNmzcjPT0dy5cvr7Tjt1AoxJAhQ3Dx4kXExsZiwoQJ6NevHxwcHAAAc+bMwfz587F8+XKkpqbi8uXLWL9+PZYsWfJC8RBCXg4lQoSQWmFmZoa//voLDRs2xPvvvw9vb28MHz4cSqWSayGaPHky/vOf/2DIkCEIDAyERCLBe++9V+12V61ahQ8++ABjxoxBkyZNMHLkSBQVFQEAGjRogDlz5uCLL76Avb09xo0bBwCYO3cuZs6cifnz58Pb2xtdu3bF3r174ebmBqC838727duxc+dOtGjRAqtXr8a8efNeaH979eqFTz/9FOPGjYOfnx/i4uIwc+ZMrfU8PDzw/vvvo3v37nj33Xfh6+urMTx+xIgR+Pnnn7F+/Xo0b94cQUFBiIqK4mIlhOgWj1XVS5EQQggh5A1HLUKEEEIIqbcoESKEEEJIvUWJECGEEELqLUqECCGEEFJvUSJECCGEkHqLEiFCCCGE1FuUCBFCCCGk3qJEiBBCCCH1FiVChBBCCKm3KBEihBBCSL1FiRAhhBBC6i1KhAghhBBSb/0fmMsHqj42FVQAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py:3103: UserWarning: You are saving your model as an HDF5 file via `model.save()`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')`.\n", + " saving_api.save_model(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saved InceptionV3 model to saved_models/InceptionV3_saved.h5\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "base_models3 = [\n", + " (Xception(weights='imagenet', include_top=False, input_shape=(299, 299, 3)), (299, 299, 3), 'Xception')\n", + "]\n", + "model_training (base_models3)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "duxRpCo3pRQF", + "outputId": "4391bc82-3e25-4299-c1d9-e42992ed215d" + }, + "execution_count": 16, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/xception/xception_weights_tf_dim_ordering_tf_kernels_notop.h5\n", + "83683744/83683744 [==============================] - 1s 0us/step\n", + "Training Xception...\n", + "Epoch 1/10\n", + "282/282 [==============================] - 217s 655ms/step - loss: 1.2000 - accuracy: 0.5960 - val_loss: 0.2672 - val_accuracy: 0.9120\n", + "Epoch 2/10\n", + "282/282 [==============================] - 180s 637ms/step - loss: 0.3153 - accuracy: 0.9074 - val_loss: 0.1906 - val_accuracy: 0.9410\n", + "Epoch 3/10\n", + "282/282 [==============================] - 179s 633ms/step - loss: 0.1900 - accuracy: 0.9471 - val_loss: 0.1582 - val_accuracy: 0.9500\n", + "Epoch 4/10\n", + "282/282 [==============================] - 180s 636ms/step - loss: 0.1403 - accuracy: 0.9614 - val_loss: 0.1318 - val_accuracy: 0.9610\n", + "Epoch 5/10\n", + "282/282 [==============================] - 181s 641ms/step - loss: 0.1200 - accuracy: 0.9671 - val_loss: 0.1331 - val_accuracy: 0.9600\n", + "Epoch 6/10\n", + "282/282 [==============================] - 182s 644ms/step - loss: 0.0872 - accuracy: 0.9744 - val_loss: 0.1433 - val_accuracy: 0.9560\n", + "Epoch 7/10\n", + "282/282 [==============================] - 180s 636ms/step - loss: 0.0802 - accuracy: 0.9783 - val_loss: 0.1251 - val_accuracy: 0.9650\n", + "Epoch 8/10\n", + "282/282 [==============================] - 178s 630ms/step - loss: 0.0781 - accuracy: 0.9782 - val_loss: 0.1410 - val_accuracy: 0.9570\n", + "Epoch 9/10\n", + "282/282 [==============================] - 178s 632ms/step - loss: 0.0732 - accuracy: 0.9808 - val_loss: 0.1732 - val_accuracy: 0.9510\n", + "Epoch 10/10\n", + "282/282 [==============================] - 179s 632ms/step - loss: 0.0639 - accuracy: 0.9820 - val_loss: 0.1384 - val_accuracy: 0.9680\n", + "32/32 [==============================] - 4s 133ms/step - loss: 0.1384 - accuracy: 0.9680\n", + "Xception Validation Accuracy: 0.9680\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRtklEQVR4nO3deXwTZf4H8E+S5uh9H/SgLVC5KUehFlBOrbCwCyJyCQVFRUCOLqugHKIih4KoKCwsl9wLAvITAaGALFAEWoso91HK1ZvetGmT+f2RNjSkhabXpOnn/XrNK8kzz0y+SdnNx2eemZEIgiCAiIiIyEJIxS6AiIiIqDox3BAREZFFYbghIiIii8JwQ0RERBaF4YaIiIgsCsMNERERWRSGGyIiIrIoDDdERERkURhuiIiIyKIw3BBRjRo9ejQCAgLELoOI6hGGGyIz99prr0GlUuHKlStG6xYsWACJRIKffvpJhMoeuXfvHj766CPExcWJWkd5Ll68CIlEApVKhYyMDLHLIaIaxnBDZOaWLFkCGxsbjBs3zqD95s2b+PjjjzFo0CD069dPpOp07t27h7lz55YZblatWoXLly/XflGlbNy4EV5eXgCAHTt2iFoLEdU8hhsiM+fh4YGFCxfiyJEjWL9+vb59/PjxkMvl+Oqrr0Ss7unkcjmUSqVo7y8IAjZv3ozhw4ejb9++2LRpk2i1PE1ubq7YJRBZBIYbojpg7Nix6NKlC6ZNm4a0tDRs3boV+/fvx6effgofHx+DvlqtFl999RVat24NlUoFd3d3vPTSSzh79qxBv40bN6JDhw6wtraGi4sLhg4ditu3bxv06d69O1q1aoWYmBh07twZ1tbWCAwMxIoVK/R9jh49io4dOwIAxowZA4lEAolEgnXr1gEoe85Nbm4u/vnPf8LPzw9KpRJNmzbFF198AUEQDPpJJBJMnDgRu3fvRqtWraBUKtGyZUvs37+/wt/diRMnEB8fj6FDh2Lo0KE4duwY7ty5Y9TPlO+tU6dOsLGxgbOzM55//nn88ssvBjV/9NFHRvsPCAjA6NGj9a/XrVsHiUSCX3/9FePHj4eHhwd8fX0BALdu3cL48ePRtGlTWFtbw9XVFYMHD0Z8fLzRfjMyMjB16lQEBARAqVTC19cXo0aNQmpqKnJycmBra4vJkycbbXfnzh3IZDLMnz+/gt8kUd3BcENUB0gkEvz73/9GZmYm3nnnHUydOhUhISGYMGGCUd833ngDU6ZMgZ+fHxYuXIjp06dDpVLh1KlT+j7z5s3DqFGjEBQUhCVLlmDKlCmIiorC888/bzQn5cGDB+jbty86dOiARYsWwdfXF++88w7WrFkDAGjevDk+/vhjAMBbb72FDRs2YMOGDXj++efL/CyCIODvf/87vvzyS7z00ktYsmQJmjZtin/961+IjIw06n/8+HGMHz8eQ4cOxaJFi5Cfn49BgwYhLS2tQt/dpk2b0LhxY3Ts2BH9+/eHjY0NtmzZUqnvbe7cuRg5ciTkcjk+/vhjzJ07F35+fjh8+HCFainL+PHjceHCBcyePRvTp08HAJw5cwYnT57E0KFD8fXXX2PcuHGIiopC9+7dkZeXp982JycHzz33HL755hu8+OKL+OqrrzBu3DhcunQJd+7cgZ2dHQYOHIht27ZBo9EYvO+WLVsgCAJGjBhR6dqJzJZARHXGjBkzBACCTCYTYmJijNYfPnxYACBMmjTJaJ1WqxUEQRDi4+MFmUwmzJs3z2D9+fPnBSsrK4P2bt26CQCExYsX69sKCgqEtm3bCh4eHoJarRYEQRDOnDkjABDWrl1r9L4RERGCv7+//vXu3bsFAMKnn35q0O+VV14RJBKJcO3aNX0bAEGhUBi0nTt3TgAgfPPNN2V9RQbUarXg6uoqfPjhh/q24cOHC8HBwQb9KvK9Xb16VZBKpcLAgQMFjUZTZp+SmufMmWO0H39/fyEiIkL/eu3atQIAoWvXrkJRUZFB37y8PKPto6OjBQDC999/r2+bPXu2AEDYuXNnuXUfOHBAACDs27fPYH2bNm2Ebt26GW1HZAk4ckNUh7i5uQEAvL290apVK6P1P/zwAyQSCebMmWO0TiKRAAB27twJrVaLV199FampqfrFy8sLQUFBOHLkiMF2VlZWePvtt/WvFQoF3n77bSQnJyMmJsbkz/Dzzz9DJpNh0qRJBu3//Oc/IQgC9u3bZ9Deu3dvNG7cWP+6TZs2cHBwwI0bN576Xvv27UNaWhqGDRumbxs2bBjOnTuHv/76S99Wke9t9+7d0Gq1mD17NqRSaZl9KuPNN9+ETCYzaLO2ttY/LywsRFpaGpo0aQInJyfExsYa1B0cHIyBAweWW3fv3r3h7e1tMNfozz//xB9//IHXXnut0nUTmTOGG6I64vbt25gzZw5atWqF27dvY9GiRUZ9rl+/Dm9vb7i4uJS7n6tXr0IQBAQFBcHd3d1guXjxIpKTkw36e3t7w9bW1qDtmWeeAYAy54A8za1bt+Dt7Q17e3uD9ubNm+vXl9awYUOjfTg7O+PBgwdPfa+NGzciMDAQSqUS165dw7Vr19C4cWPY2NgY/NhX5Hu7fv06pFIpWrRo8dT3NUVgYKBR28OHDzF79mz9nCQ3Nze4u7sjIyMDmZmZBjWVFXJLk0qlGDFiBHbv3q0/pLVp0yaoVCoMHjy4Wj8LkbmwErsAIqqYiRMnAtCNRkRGRmLevHkYPnw4GjVqZNJ+tFotJBIJ9u3bZzRiAAB2dnbVUm91KatGAEaTjx+XlZWF//u//0N+fj6CgoKM1m/evBnz5s2r0qiLKR6f81Ki9ChNiXfffRdr167FlClTEBYWBkdHR0gkEgwdOhRardbk9x41ahQ+//xz7N69G8OGDcPmzZvRr18/ODo6mrwvorqA4YaoDti1axf27NmDL7/8Er6+vli6dCkOHDiACRMmGBzGady4MQ4cOID09PRyRyEaN24MQRAQGBioH4F5knv37iE3N9dg9KbkgoIlZ0GZEhD8/f1x6NAhZGdnG4zeXLp0Sb++OuzcuRP5+flYvny5/nBeicuXL2PmzJk4ceIEunbtWuHvTavV4sKFC2jbtm257+vs7Gw0KVutVuP+/fsVrn3Hjh2IiIjA4sWL9W35+flG+23cuDH+/PPPp+6vVatWaNeuHTZt2gRfX18kJCTgm2++qXA9RHUND0sRmbns7GxMmjQJ7dq1w7vvvgtAd6jok08+wf79+7F9+3Z930GDBkEQBMydO9doPyUjHS+//DJkMhnmzp1rNPohCILRWUhFRUX497//rX+tVqvx73//G+7u7ujQoQMA6INPRa7+27dvX2g0Gixbtsyg/csvv4REIkGfPn2euo+K2LhxIxo1aoRx48bhlVdeMVimTZsGOzs7/aGpinxvAwYMgFQqxccff2w0elL6e2zcuDGOHTtmsH7lypXljtyURSaTGf1tvvnmG6N9DBo0COfOncOuXbvKrbvEyJEj8csvv2Dp0qVwdXWttu+ZyBxx5IbIzM2cORP37t3Dzp07DQ7RTJgwAevXr8eUKVPw0ksvwd7eHj169MDIkSPx9ddf4+rVq3jppZeg1Wrxv//9Dz169MDEiRPRuHFjfPrpp5gxYwbi4+MxYMAA2Nvb4+bNm9i1axfeeustTJs2Tf8+3t7eWLhwIeLj4/HMM89g27ZtiIuLw8qVKyGXywHoftCdnJywYsUK2Nvbw9bWFqGhoWXOJ+nfvz969OiBDz/8EPHx8QgODsYvv/yCH3/8EVOmTDGYPFxZ9+7dw5EjR4wmLZdQKpUIDw/H9u3b8fXXX1foe2vSpAk+/PBDfPLJJ3juuefw8ssvQ6lU4syZM/D29tZfL2bs2LEYN24cBg0ahBdeeAHnzp3DgQMHjEaPnqRfv37YsGEDHB0d0aJFC0RHR+PQoUNwdXU16Pevf/0LO3bswODBg/H666+jQ4cOSE9Px549e7BixQoEBwfr+w4fPhzvvfcedu3ahXfeeUf/tyOySKKco0VEFXL27FlBJpMJEydOLHP96dOnBalUanAKc1FRkfD5558LzZo1ExQKheDu7i706dPH6NTxH374Qejatatga2sr2NraCs2aNRMmTJggXL58Wd+nW7duQsuWLYWzZ88KYWFhgkqlEvz9/YVly5YZ1fLjjz8KLVq0EKysrAxOC3/8VHBBEITs7Gxh6tSpgre3tyCXy4WgoCDh888/NzilWhB0p1VPmDDB6L0eP636cYsXLxYACFFRUeX2WbdunQBA+PHHH0363tasWSO0a9dOUCqVgrOzs9CtWzfh4MGD+vUajUZ4//33BTc3N8HGxkYIDw8Xrl27Vu6p4GfOnDGq7cGDB8KYMWMENzc3wc7OTggPDxcuXbpU5udOS0sTJk6cKPj4+AgKhULw9fUVIiIihNTUVKP99u3bVwAgnDx5stzvhcgSSAThKbPyiKje6t69O1JTUys0r4PM38CBA3H+/Hlcu3ZN7FKIahTn3BAR1QP379/H3r17MXLkSLFLIapxnHNDRGTBbt68iRMnTuA///kP5HK5wQUZiSwVR26IiCzYr7/+ipEjR+LmzZtYv349vLy8xC6JqMaJGm6OHTuG/v37w9vbGxKJBLt3737qNkePHkX79u2hVCrRpEkT/Z2Hiaj6HT16lPNt6rjRo0dDEATcunULr7zyitjlENUKUcNNbm4ugoOD8e2331ao/82bN/G3v/0NPXr0QFxcHKZMmYKxY8fiwIEDNVwpERER1RVmc7aURCLBrl27MGDAgHL7vP/++9i7d6/Bf0kOHToUGRkZ2L9/fy1USUREROauTk0ojo6ORu/evQ3awsPDMWXKlHK3KSgoQEFBgf61VqtFeno6XF1da+2eMkRERFQ1giAgOzsb3t7ekEqffOCpToWbxMREeHp6GrR5enoiKysLDx8+LPMGdPPnzy/zkupERERU99y+fRu+vr5P7FOnwk1lzJgxA5GRkfrXmZmZaNiwIW7fvg0HBwcRKyMiIqKKysrKgp+fn8ENd8tTp8KNl5cXkpKSDNqSkpLg4OBQ5qgNoLuHjFKpNGp3cHBguCEiIqpjKjKlpE5d5yYsLAxRUVEGbQcPHkRYWJhIFREREZG5ETXc5OTkIC4uDnFxcQB0p3rHxcUhISEBgO6Q0qhRo/T9x40bhxs3buC9997DpUuX8N133+G///0vpk6dKkb5REREZIZEPSx19uxZ9OjRQ/+6ZG5MREQE1q1bh/v37+uDDgAEBgZi7969mDp1Kr766iv4+vriP//5D8LDw2u9diIiInMmCAIEAdAKArT6R91zjVaAUNZzQYBW+2g7jWDYT1u8z5Ln+v1qdc+F4m3sVXK09XMS7bObzXVuaktWVhYcHR2RmZnJOTdERBZOqxVQpBVQpNWiUCOgSKNFkVZAoUYLjVbQtWm1KNLo2oq0AorKaCvpX6QRUPjYOk3x+tLrikrtS99WXEPp/vq6ivuUFRiMnpcOKtrHXxuGGLG0b+iEneO7VOs+Tfn9rlMTiomILIkgCFBrtFAXaVFQpHs0eK7RoKBQi4Iy+2gM+2setRc8vp+S/o/tp1CjLacy4wmbZc3hLGtaZ9n9qrK/il2PrEhbKqxotCjU6h7F/IGvS6QSQCqRQCqRQCIBZFLj56X7SCWA9PF26aPn/q62on4ehhsiolK0WgG56iLkFBQht6AI2fm65zn5RcgufsxTFxkEiEdhRIuCQuMQYRREih4FFqp9UglgJZNCLpVAJpVALpPCSiaBlVQKuazsNitpyWuJbtuy2oofrWQSyKXS4v0Utxns89G28lLrZMX1lBseJBJIpY+ey6S68CeVSCArDiJSqe65VFKyThdOSj/Xh5ZSYcbSLmrLcENEFqGgSIPcAk1xCClETkkoKQ4ouaWel4SVnAJdYMkt9TqnoEi0z6CQSaGwkkJppXs0eC6TQmklM2pXWpVqlz2+bXn9pVDIZJBbSQxGVQQYD3OUNXHh8baKblcd+ylrt4IgPDE4WOkfdaFDKrWsH3IyxnBDRKLRagXkFWqKg0WhUfB4PISU1V7yXF3uIZbKsZJKYKeygp1St9gXP7dVWsFWYQWlvHRgKBUu5NJSIUVmECqMQkfp/jL+6JIFEATg4QNAnQs4+YlWBsMNET1RybyQh2oNHhZqkKfWPPa8yLBdrUFeYfGjuggPC7V4qC5CnlrXp3QwyVUXVei/8E1ho5DpAkmpYFLy2l7fLoedUlbq+aPwUrKd0kpqcUP1RFVWEl4yEoqXW6WeFy/qHKBxT2DkLtHKZLghquMEQTeJUhcqiopDhS58PHpehIdqrS5slAofBs8Li4yCS37xek0Nz8qUSSWwV+lGRB4PGSXtpV/bKeWG4aVkVEUhg5WsTl2btOq0WqAgC8jPAB5mmPaozgUUtoDSAVA56halA6ByKOexjD5y67JnB1PdJAi6fxsZCcCDMoJLRgKgzn76ftR5NV7qkzDcEJkJrUaLBxnpSEu+i8y0JOQ+SERBRjKKclKgKchFoRZQawQUaAC1ftG9LhIAAVJoISlepBAggaB/XfxckJZ6LYUAQAsp5JBABglsi7ct6YOS7aW6NqlUCrmVFRRWMijkcsitZFBYyaCUW0Eut4KyeJFbWUGlsIKquF0l171WyhVQ2djA1toWNra2sLWxgb2NiqMkWi1QkGl6OHmYAeRnouyZKBX0UK37L/HKklo9PQAZPToZtlmpGJBq08OMskdcSpaCrKfvw84TcGpYxhIAOPoCclVNf4onYrghqilaje5HIzcVBdkpyEq9j5wHSSjITEJRdiqQlwrZw3SoCh/AtigTTkImXCVFcDXlPSQQ53/FRcVLdZDIdD9uVgrdo0xh+LqsNv1r5aNFpnxsu5K2kuVJ2ykBqaxqn0Or0QWNyoyg5GehSgEFAKysAWsnXXCo6KPCVjd6U5Clq6EgU/eYn1mq7fHHzEevBS2gLQIepuuWypLKKzZKZPBYvL6kzUrJgFTiYUb5wSUjQfc3fBpbD+Pg4uwPOPkXh5ey7+doLhhuiCqqqADITQXy0oC8VCA3DUJuCvKzUvAwIxlF2clAbipk+Q+gVKfDRpNVPDYCKAG4Fy/lKv7/5YdQIkvqiDwrJ6iVLhCsXSBV2etOF5UKsJIAVgaPEsikAqwkxWMxgrbUIpTzvLw+WsBoH+VtW5F9l96foPshLMovbi8maIDCXN0iJqlVOaGo9GvVox/R/NIjLZkV+8F4GrmNaeGk9KOV8Q2Ca5Qg6OZWGAWgUsHoaSGpILs4IBUW/+8qrfL1SGS6sCa3ARQ2xc9tK/nc7tF+5LaAzMx+KvMzyw4tJYeRKhRe3B8LL8XBxamhLrwobGr+c9QgM/uLEdUSQdD9H2vJ/6Hm6kZSHj1PgzYnBYXZKRDy0iB7mAZ5kfGPrwSAdfFSngzBFmmCAzIkDsizcoRa4QKNtSskdm5Q2LvD2tET9q5ecHZvAFePBrBW2T1xfxZBUxxyNGrdY1GBbtEUPHquf51fRlvJUsY+nrif0n3zYTBaoi3S/Virc6r22eS2lQsnKifdqFNdIZEASnvdAp/K7UOr1X3fZQagx4NRZjkhqXjUS9DonlfkkIqpZMqyQ4/CtmrPy5uvlJ9VRni59ehQUn4FwouN22MjLg1LhRe/Oh9enobhhuo+TdFjhwMePPov6rwHxaMsj8KLkKsbeZFo1E/crRS6EZfSCgUZHsAe6ULxAgekCfZ4KHeGRuUCqZ0brOw9YO3oAXsXTzi5ecLT2R5eDio0spbX73klpcmsAJmduDXoR5LKCUBGoalUm1ZTdjhROdatgCI2qVR3WEnlADhWch8lAakwT3eITZ1b/DxHN6m1Us+L9yNodO+hKQAeFlRtblKZJMVhqTj0WKmA7ETd/3c9jY3ro7BiMPrSUHcKtkLcKwSLjeGGzIOm8LFh/pLHB2VPoCz9uiIz90spHS/yBCXS9WHFAWnQPT4Q7JEGB2RJHAFbV8jt3aB09ISjkxu8nKzh6aCCl6MKwQ4qeDgoobSq4nwNqn0SCSCT6xalyEGLKq90QKpOgqALs08LTOriQ6qmPC96WPImjw7JPj4wbO1SasSloWGQcfTjv9mnYLih6qMprOTZHhlVPxQAQKuww0OZPdI1NrhfoES61hYZgq1+dCVdcEA6HPSjLhprVzg5OeqCioMKno66x8aOSng5WMPLUQVnG462ENVLEsmjOVc2LtW7b6320QjR46HH1kM38qK0r973rGcYbshYQTaQdd/0kFIdE0JLThO1dnzqHAWt0gmXMqQ4mlCI/dcf4o97hu/vbq9EiL8zGjhaw8tRiTbFIcbLUQVPBxVUco62EJEIpFLdyAtHX2oMw019pykEkv4C7sboljtngdQrqNJpqfqA4mTChEpn3XZPOSsh82Eh/nc1BYdjk/Hr5RSk5T6aNyORAG18ndCzqQd6NvNAS28HXs6eiKgeYripTwRBN9P+7lngbqwuyNw/V+r4bylKxwqNnhgFFJVj1a8XYlCygKvJOTh8KRmHLyUj5tYDg6vl2iut8Pwz7ujRzAPdm7rDza6WT4clIiKzw3BjyR5mAPdii0dkYnShJjfFuJ/SEfBpD/iGAD4ddIudR62XWyK/UIPo62n6QHM3wzB8NfGwQ89mHujR1AMhAc6Q17fL7RMR0RMx3FgKTSGQ9KduNOZurC7IpF4x7ie1AjxblQoyIYBrE90xYBHdzXiIw5eSceRSMk5eT0V+4aOLvCmspOjc2FUfaPxcLPv6DEREVDUMN3WRIOgu5lQ6yNw/V3xRssc4+RcHmeIw06CNWVw2u0ijRcytBzh8WRdoriQZni3l7ahCj2a6uTOdG7vBWsHJv0REVDEMN3XBw4xHE35LJv3mpRr3Uzk+Go3xDQG82wN2T7zgf61KyynAr1dScPhSMo5dSUFW/qObE0klQAd/Z32gaeppz1OwiYioUhhuzE2RWnd4qXSQSbtq3E8qB7xaPQoyPiGASyPRDy+VJggC/rqXhSOXknH4cjLibmdAKHUSlrONHN2b6iYCd3vGHU42vLIrERFVHcONmAQBeBD/KMTcjdEdXtIUGPd1DtSNypQEGa/Wot9Sviw5BUU4fjUVRy4l48jlZCRnG36WFg0cdHNnmnmgrZ8TZDxVm4iIqhnDTW16+MDwzKW7MWXfBVflZDjh16cDYOta6+VW1M3UXP1k4NM306HWPJoMbKOQoUsTN/1kYC9H8wtkRERkWRhuakqRGkg6/yjI3DkLpF837idT6EZhSkKMb/HhJTOeb6Iu0uL0zXRdoLmcjJuphlcG9ne1QY/iC+mFNnLhfZeIiKhWMdxUl9xU4PqRR0Em8Q/dTdce59Ko1DyZDrpgY2X+F55LysrXH2o6fjUVuWqNfp1cJkGnQBf0aKo73NTIzZaTgYmISDQMN9Xlfhywc6xhm7WL4TwZn/bVfwO2GqLRCjh3J0M3GfhSMv66l2Ww3t1eiR5N3dGzmQe6NHGDvUouUqVERESGGG6qS+lTsH1CAN8OuknAdWwEQ6sVsOTgFWw+nYB03reJiIjqIIab6mLtDLwZJXYVVfbrlRQsO3INAO/bREREdRPDDRlYc+ImAGBEaEN89PeWvG8TERHVOfzlIr2rSdn439VUSCXAuG6NGWyIiKhO4q8X6a09GQ8AeKGFJ29OSUREdRbDDQEAMvLU2Bl7BwAwpkugyNUQERFVHsMNAQC2nL6N/EItWjRwQGhg3ThdnYiIqCwMN4RCjRbfR8cDAMZ0CeAF+IiIqE5juCEc+CsR9zPz4WanQP9gb7HLISIiqhKGG8LaE/EAgOGh/lDJeR8oIiKq2xhu6rlztzMQc+sB5DIJXnu2odjlEBERVRnDTT23tviiff3beMPDXiVyNURERFXHcFOPJWXl46c/7gPg6d9ERGQ5GG7qsY2nbqFIK6BjgDNa+zqKXQ4REVG1YLipp/ILNdj0WwIAjtoQEZFlYbipp/bE3UN6rho+TtZ4sYWn2OUQERFVG4abekgQBP3dv0eF+cOKN8gkIiILwl+1eij6RhouJWbDWi7D0I48/ZuIiCwLw009VHLRvkEdfOBoIxe3GCIiomrGcFPP3ErLxaGLSQCA0Z05kZiIiCwPw009s/7kLQgC0O0ZdzTxsBO7HCIiomrHcFOPZOcX4r9nbwPQ3f2biIjIEjHc1CM7Yu4gp6AIjd1t8XyQu9jlEBER1QiGm3pCqxWw7mQ8AGB0l0BIpRJxCyIiIqohDDf1xOFLybiVlgcHlRUGtfcRuxwiIqIaw3BTT6w9qbto37BODWGjsBK5GiIioprDcFMPXErMwolraZBKgJFh/mKXQ0REVKMYbuqBdcUX7XuplRd8nW3ELYaIiKiGMdxYuPRcNXb9fhcA7/5NRET1A8ONhdtyOgEFRVq08nFAiL+z2OUQERHVOIYbC1ao0eL76HgAwOtdAiGR8PRvIiKyfAw3Fuzn8/eRlFUANzsl/tamgdjlEBER1QqGGwtWcvfvkc/6Q2klE7cYIiKiWsJwY6FiEx4g7nYGFDIphoc2FLscIiKiWsNwY6FKRm3+3tYb7vZKcYshIiKqRQw3Fuh+5kPsO38fAO/+TURE9Q/DjQXaEH0LRVoBnQJd0NLbUexyiIiIapXo4ebbb79FQEAAVCoVQkNDcfr06Sf2X7p0KZo2bQpra2v4+flh6tSpyM/Pr6Vqzd9DtQZbTicA0J3+TUREVN+IGm62bduGyMhIzJkzB7GxsQgODkZ4eDiSk5PL7L9582ZMnz4dc+bMwcWLF7F69Wps27YNH3zwQS1Xbr52x93Fg7xC+Dpb44UWnmKXQ0REVOtEDTdLlizBm2++iTFjxqBFixZYsWIFbGxssGbNmjL7nzx5El26dMHw4cMREBCAF198EcOGDXvqaE99IQgC1p7Q3f17dOcAyKS8aB8REdU/ooUbtVqNmJgY9O7d+1ExUil69+6N6OjoMrfp3LkzYmJi9GHmxo0b+Pnnn9G3b99y36egoABZWVkGi6U6eT0NV5JyYKOQYXCIn9jlEBERicJKrDdOTU2FRqOBp6fhoRNPT09cunSpzG2GDx+O1NRUdO3aFYIgoKioCOPGjXviYan58+dj7ty51Vq7uVpzXDdqM7iDLxyt5SJXQ0REJA7RJxSb4ujRo/jss8/w3XffITY2Fjt37sTevXvxySeflLvNjBkzkJmZqV9u375dixXXnpupuTh8WTdXKaJzgLjFEBERiUi0kRs3NzfIZDIkJSUZtCclJcHLy6vMbWbNmoWRI0di7NixAIDWrVsjNzcXb731Fj788ENIpcZZTalUQqm0/IvYrT8ZD0EAejR1RyN3O7HLISIiEo1oIzcKhQIdOnRAVFSUvk2r1SIqKgphYWFlbpOXl2cUYGQy3T2TBEGouWLNXFZ+Ibaf1Y1Ivd6Vp38TEVH9JtrIDQBERkYiIiICISEh6NSpE5YuXYrc3FyMGTMGADBq1Cj4+Phg/vz5AID+/ftjyZIlaNeuHUJDQ3Ht2jXMmjUL/fv314ec+ui/Z24jV61BkIcdujZxE7scIiIiUYkaboYMGYKUlBTMnj0biYmJaNu2Lfbv36+fZJyQkGAwUjNz5kxIJBLMnDkTd+/ehbu7O/r374958+aJ9RFEp9EKWB8dDwAY0yUQEglP/yYiovpNItSz4zlZWVlwdHREZmYmHBwcxC6nyn75KxFvbYiBk40c0dN7wVpRf0ewiIjIcpny+12nzpYiY2uKL9o3tGNDBhsiIiIw3NRpF+5l4dSNdMikEowK8xe7HCIiIrPAcFOHldxq4aVWXvB2sha5GiIiIvPAcFNHpeUU4Mdz9wDw7t9ERESlMdzUUZt/S4C6SItgX0e0b+gkdjlERERmg+GmDlIXafH9qVsAdBft4+nfREREjzDc1EE/n7+PlOwCeNgr0adVA7HLISIiMisMN3WMIAj6079HPusPhRX/hERERKXxl7GOiU14gD/uZEJhJcXw0IZil0NERGR2GG7qmDXH4wEAA9p6w9XO8u92TkREZCqGmzrkXsZD7P8rEYDuPlJERERkjOGmDvk++hY0WgFhjVzRvEHdvy8WERFRTWC4qSPy1EXYcjoBADCmS4C4xRAREZkxhps6Ytfvd5H5sBANXWzQq7mn2OUQERGZLYabOkAQBKw9EQ8AiOgcAJmUF+0jIiIqD8NNHfC/q6m4lpwDO6UVXg3xFbscIiIis8ZwUweU3P37lQ6+sFfJRa6GiIjIvDHcmLnrKTk4cjkFEgkwunOA2OUQERGZPYYbM7f+ZDwAoFczDwS42YpbDBERUR3AcGPGMh8WYkfMHQC8aB8REVFFMdyYsf+euY08tQZNPe3RubGr2OUQERHVCQw3ZqpIo8W64kNSY7oEQCLh6d9EREQVwXBjpg5dTMLdjIdwtpFjQDsfscshIiKqMxhuzNSa4ov2DQ9tCJVcJm4xREREdQjDjRn6824mTt9Mh5VUgpHPBohdDhERUZ3CcGOGSm610Ld1A3g5qsQthoiIqI5huDEzKdkF+L9z9wDw7t9ERESVwXBjZjb9dgtqjRbtGjqhXUNnscshIiKqcxhuzEhBkQYbTyUA4EX7iIiIKovhxoz8dO4+UnMK4OWgQp9WXmKXQ0REVCcx3JgJQRCwpvju3yPD/CGX8U9DRERUGfwFNRNn4h/gr3tZUFpJMbxTQ7HLISIiqrMYbszE2uJRm5fb+8DZViFyNURERHUXw40ZuJ2ehwN/JQIARnfmRGIiIqKqYLgxAxtO3YJWALo2cUNTL3uxyyEiIqrTGG5ElltQhK2nS07/DhC3GCIiIgvAcCOynbF3kJVfhABXG/Ro6iF2OURERHUew42ItFoBa0/GAwBGdw6AVCoRtyAiIiILwHAjol+vpuBGSi7slVZ4JcRP7HKIiIgsAsONiEru/v1qRz/YKa3ELYaIiMhCMNyI5FpyNo5dSYFEAkSEBYhdDhERkcVguBFJyajNC8090dDVRtxiiIiILAjDjQgy8tTYGXsXAO/+TUREVN0YbkSw9cxtPCzUoJmXPZ5t5CJ2OURERBaF4aaWFWm0+L749O/XuwZCIuHp30RERNWJ4aaWHfgrCfcy8+Fqq8Dfg73FLoeIiMjiMNzUspK7f48IbQiVXCZyNURERJaH4aYW/XEnA2dvPYBcJsFrz/qLXQ4REZFFYripRSWnf/dr4w0PB5W4xRAREVkohptakpyVj5/+uAeAd/8mIiKqSQw3tWTjqVso1Ajo4O+MNr5OYpdDRERksRhuakF+oQabfksAALzOi/YRERHVKIabWrDn3D2k5arh7ahCeEtPscshIiKyaAw3NUwQBP1E4lGdA2Al41dORERUk/hLW8N+u5mOi/ezoJJLMbSjn9jlEBERWTyGmxq25rjuon2D2vvCyUYhcjVERESWj+GmBiWk5eHgxSQAPP2biIiotjDc1KD10fEQBOC5IDc08bAXuxwiIqJ6geGmhuQUFOG/Z24D0N39m4iIiGoHw00N+SHmDrILitDIzRbdgtzFLoeIiKjeYLipAVqtgHUn4wHo5tpIpRJxCyIiIqpHGG5qwNErybiZmgt7lRVebu8rdjlERET1CsNNDVhzPB4AMLSjH2yVVuIWQ0REVM+IHm6+/fZbBAQEQKVSITQ0FKdPn35i/4yMDEyYMAENGjSAUqnEM888g59//rmWqn26K0nZOH4tFVIJMCosQOxyiIiI6h1RhxW2bduGyMhIrFixAqGhoVi6dCnCw8Nx+fJleHh4GPVXq9V44YUX4OHhgR07dsDHxwe3bt2Ck5NT7RdfjrUndBfte7GFF/xcbESuhoiIqP4RNdwsWbIEb775JsaMGQMAWLFiBfbu3Ys1a9Zg+vTpRv3XrFmD9PR0nDx5EnK5HAAQEBBQmyU/0YNcNXbG3gXA07+JiIjEItphKbVajZiYGPTu3ftRMVIpevfujejo6DK32bNnD8LCwjBhwgR4enqiVatW+Oyzz6DRaMp9n4KCAmRlZRksNWXLmQQUFGnR0tsBHQOca+x9iIiIqHyihZvU1FRoNBp4enoatHt6eiIxMbHMbW7cuIEdO3ZAo9Hg559/xqxZs7B48WJ8+umn5b7P/Pnz4ejoqF/8/Grm5pWFGi2+P3kLAPB6l0BIJDz9m4iISAyiTyg2hVarhYeHB1auXIkOHTpgyJAh+PDDD7FixYpyt5kxYwYyMzP1y+3bt2uktv1/JiIxKx9udkr0C25QI+9BRERETyfanBs3NzfIZDIkJSUZtCclJcHLy6vMbRo0aAC5XA6ZTKZva968ORITE6FWq6FQGN91W6lUQqlUVm/xZejW1B2z+rWAwkoKpZXs6RsQERFRjRBt5EahUKBDhw6IiorSt2m1WkRFRSEsLKzMbbp06YJr165Bq9Xq265cuYIGDRqUGWxqk4NKjje6BmLks/6i1kFERFTfiXpYKjIyEqtWrcL69etx8eJFvPPOO8jNzdWfPTVq1CjMmDFD3/+dd95Beno6Jk+ejCtXrmDv3r347LPPMGHCBLE+AhEREZkZUU8FHzJkCFJSUjB79mwkJiaibdu22L9/v36ScUJCAqTSR/nLz88PBw4cwNSpU9GmTRv4+Phg8uTJeP/998X6CERERGRmJIIgCGIXUZuysrLg6OiIzMxMODg4iF0OERERVYApv9916mwpIiIioqcxOdwEBATg448/RkJCQk3UQ0RERFQlJoebKVOmYOfOnWjUqBFeeOEFbN26FQUFBTVRGxEREZHJKhVu4uLicPr0aTRv3hzvvvsuGjRogIkTJyI2NrYmaiQiIiKqsCpPKC4sLMR3332H999/H4WFhWjdujUmTZqEMWPGmOUtCDihmIiIqO4x5fe70qeCFxYWYteuXVi7di0OHjyIZ599Fm+88Qbu3LmDDz74AIcOHcLmzZsru3siIiKiSjE53MTGxmLt2rXYsmULpFIpRo0ahS+//BLNmjXT9xk4cCA6duxYrYUSERERVYTJ4aZjx4544YUXsHz5cgwYMAByudyoT2BgIIYOHVotBRIRERGZwuRwc+PGDfj7P/n+Sba2tli7dm2liyIiIiKqLJPPlkpOTsZvv/1m1P7bb7/h7Nmz1VIUERERUWWZHG4mTJiA27dvG7XfvXuXN7AkIiIi0Zkcbi5cuID27dsbtbdr1w4XLlyolqKIiIiIKsvkcKNUKpGUlGTUfv/+fVhZiXqTcSIiIiLTw82LL76IGTNmIDMzU9+WkZGBDz74AC+88EK1FkdERERkKpOHWr744gs8//zz8Pf3R7t27QAAcXFx8PT0xIYNG6q9QCIiIiJTmBxufHx88Mcff2DTpk04d+4crK2tMWbMGAwbNqzMa94QERER1aZKTZKxtbXFW2+9Vd21EBEREVVZpWcAX7hwAQkJCVCr1Qbtf//736tcFBEREVFlVeoKxQMHDsT58+chkUhQclPxkjuAazSa6q2QiIiIyAQmny01efJkBAYGIjk5GTY2Nvjrr79w7NgxhISE4OjRozVQIhEREVHFmTxyEx0djcOHD8PNzQ1SqRRSqRRdu3bF/PnzMWnSJPz+++81UScRERFRhZg8cqPRaGBvbw8AcHNzw7179wAA/v7+uHz5cvVWR0RERGQik0duWrVqhXPnziEwMBChoaFYtGgRFAoFVq5ciUaNGtVEjUREREQVZnK4mTlzJnJzcwEAH3/8Mfr164fnnnsOrq6u2LZtW7UXSERERGQKiVByulMVpKenw9nZWX/GlDnLysqCo6MjMjMz4eDgIHY5REREVAGm/H6bNOemsLAQVlZW+PPPPw3aXVxc6kSwISIiIstnUriRy+Vo2LAhr2VDREREZsvks6U+/PBDfPDBB0hPT6+JeoiIiIiqxOQJxcuWLcO1a9fg7e0Nf39/2NraGqyPjY2ttuKIiIiITGVyuBkwYEANlEFERERUParlbKm6hGdLERER1T01drYUERERkbkz+bCUVCp94mnfPJOKiIiIxGRyuNm1a5fB68LCQvz+++9Yv3495s6dW22FEREREVVGtc252bx5M7Zt24Yff/yxOnZXYzjnhoiIqO4RZc7Ns88+i6ioqOraHREREVGlVEu4efjwIb7++mv4+PhUx+6IiIiIKs3kOTeP3yBTEARkZ2fDxsYGGzdurNbiiIiIiExlcrj58ssvDcKNVCqFu7s7QkND4ezsXK3FEREREZnK5HAzevToGiiDiIiIqHqYPOdm7dq12L59u1H79u3bsX79+mopioiIiKiyTA438+fPh5ubm1G7h4cHPvvss2opioiIiKiyTA43CQkJCAwMNGr39/dHQkJCtRRFREREVFkmhxsPDw/88ccfRu3nzp2Dq6trtRRFREREVFkmh5thw4Zh0qRJOHLkCDQaDTQaDQ4fPozJkydj6NChNVEjERERUYWZfLbUJ598gvj4ePTq1QtWVrrNtVotRo0axTk3REREJLpK31vq6tWriIuLg7W1NVq3bg1/f//qrq1G8N5SREREdY8pv98mj9yUCAoKQlBQUGU3JyIiIqoRJs+5GTRoEBYuXGjUvmjRIgwePLhaiiIiIiKqLJPDzbFjx9C3b1+j9j59+uDYsWPVUhQRERFRZZkcbnJycqBQKIza5XI5srKyqqUoIiIiosoyOdy0bt0a27ZtM2rfunUrWrRoUS1FEREREVWWyROKZ82ahZdffhnXr19Hz549AQBRUVHYvHkzduzYUe0FEhEREZnC5HDTv39/7N69G5999hl27NgBa2trBAcH4/Dhw3BxcamJGomIiIgqrNLXuSmRlZWFLVu2YPXq1YiJiYFGo6mu2moEr3NDRERU95jy+23ynJsSx44dQ0REBLy9vbF48WL07NkTp06dquzuiIiIiKqFSYelEhMTsW7dOqxevRpZWVl49dVXUVBQgN27d3MyMREREZmFCo/c9O/fH02bNsUff/yBpUuX4t69e/jmm29qsjYiIiIik1V45Gbfvn2YNGkS3nnnHd52gYiIiMxWhUdujh8/juzsbHTo0AGhoaFYtmwZUlNTa7I2IiIiIpNVONw8++yzWLVqFe7fv4+3334bW7duhbe3N7RaLQ4ePIjs7OyarJOIiIioQqp0Kvjly5exevVqbNiwARkZGXjhhRewZ8+e6qyv2vFUcCIiorqnVk4FB4CmTZti0aJFuHPnDrZs2VKVXRERERFViyqFmxIymQwDBgyo9KjNt99+i4CAAKhUKoSGhuL06dMV2m7r1q2QSCQYMGBApd6XiIiILE+1hJuq2LZtGyIjIzFnzhzExsYiODgY4eHhSE5OfuJ28fHxmDZtGp577rlaqpSIiIjqAtHDzZIlS/Dmm29izJgxaNGiBVasWAEbGxusWbOm3G00Gg1GjBiBuXPnolGjRrVYLREREZk7UcONWq1GTEwMevfurW+TSqXo3bs3oqOjy93u448/hoeHB954442nvkdBQQGysrIMFiIiIrJcooab1NRUaDQaeHp6GrR7enoiMTGxzG2OHz+O1atXY9WqVRV6j/nz58PR0VG/+Pn5VbluIiIiMl+iH5YyRXZ2NkaOHIlVq1bBzc2tQtvMmDEDmZmZ+uX27ds1XCURERGJyaQbZ1Y3Nzc3yGQyJCUlGbQnJSXBy8vLqP/169cRHx+P/v3769u0Wi0AwMrKCpcvX0bjxo0NtlEqlVAqlTVQPREREZkjUUduFAoFOnTogKioKH2bVqtFVFQUwsLCjPo3a9YM58+fR1xcnH75+9//jh49eiAuLo6HnIiIiEjckRsAiIyMREREBEJCQtCpUycsXboUubm5GDNmDABg1KhR8PHxwfz586FSqdCqVSuD7Z2cnADAqJ2IiIjqJ9HDzZAhQ5CSkoLZs2cjMTERbdu2xf79+/WTjBMSEiCV1qmpQURERCSiKt1bqi7ivaWIiIjqnlq7txQRERGRuWG4ISIiIovCcENEREQWheGGiIiILArDDREREVkUhhsiIiKyKAw3REREZFEYboiIiMiiMNwQERGRRWG4ISIiIovCcENEREQWheGGiIiILArDDREREVkUhhsiIiKyKAw3REREZFEYboiIiMiiMNwQERGRRWG4ISIiIovCcENEREQWheGGiIiILArDDREREVkUhhsiIiKyKAw3REREZFEYboiIiMiiMNwQERGRRWG4ISIiIovCcENEREQWheGGiIiILArDDREREVkUhhsiIiKyKAw3REREZFEYboiIiMiiMNwQERGRRWG4ISIiIovCcENEREQWheGGiIiILArDDREREVkUhhsiIiKyKAw3REREZFEYboiIiMiiMNwQERGRRWG4ISIiIovCcENEREQWheGGiIiILArDDREREVkUhhsiIiKyKAw3REREZFEYboiIiMiiMNwQERGRRWG4ISIiIovCcENEREQWheGGiIiILArDDREREVkUhhsiIiKyKAw3REREZFEYboiIiMiiMNwQERGRRWG4ISIiIovCcENEREQWheGGiIiILArDDREREVkUhhsiIiKyKAw3REREZFHMItx8++23CAgIgEqlQmhoKE6fPl1u31WrVuG5556Ds7MznJ2d0bt37yf2JyIiovpF9HCzbds2REZGYs6cOYiNjUVwcDDCw8ORnJxcZv+jR49i2LBhOHLkCKKjo+Hn54cXX3wRd+/ereXKiYiIyBxJBEEQxCwgNDQUHTt2xLJlywAAWq0Wfn5+ePfddzF9+vSnbq/RaODs7Ixly5Zh1KhRT+2flZUFR0dHZGZmwsHBocr1ExERUc0z5fdb1JEbtVqNmJgY9O7dW98mlUrRu3dvREdHV2gfeXl5KCwshIuLS5nrCwoKkJWVZbAQERGR5RI13KSmpkKj0cDT09Og3dPTE4mJiRXax/vvvw9vb2+DgFTa/Pnz4ejoqF/8/PyqXDcRERGZL9Hn3FTFggULsHXrVuzatQsqlarMPjNmzEBmZqZ+uX37di1XSURERLXJSsw3d3Nzg0wmQ1JSkkF7UlISvLy8nrjtF198gQULFuDQoUNo06ZNuf2USiWUSmW11EtERETmT9SRG4VCgQ4dOiAqKkrfptVqERUVhbCwsHK3W7RoET755BPs378fISEhtVEqERER1RGijtwAQGRkJCIiIhASEoJOnTph6dKlyM3NxZgxYwAAo0aNgo+PD+bPnw8AWLhwIWbPno3NmzcjICBAPzfHzs4OdnZ2on0OIiIiMg+ih5shQ4YgJSUFs2fPRmJiItq2bYv9+/frJxknJCRAKn00wLR8+XKo1Wq88sorBvuZM2cOPvroo9osnYiIiMyQ6Ne5qW28zg0REVHdU2euc0NERERU3RhuiIiIyKIw3BAREZFFYbghIiIii8JwQ0RERBaF4YaIiIgsCsMNERERWRSGGyIiIrIoDDdERERkURhuiIiIyKIw3BAREZFFYbghIiIii8JwQ0RERBbFSuwCiIjI8mk0GhQWFopdBpk5uVwOmUxW5f0w3BARUY3KycnBnTt3IAiC2KWQmZNIJPD19YWdnV2V9sNwQ0RENUaj0eDOnTuwsbGBu7s7JBKJ2CWRmRIEASkpKbhz5w6CgoKqNILDcENERDWmsLAQgiDA3d0d1tbWYpdDZs7d3R3x8fEoLCysUrjhhGIiIqpxHLGhiqiufycMN0RERGRRGG6IiIjIojDcEBERkUVhuCEiIqoDeJ2gimO4ISIiKsP+/fvRtWtXODk5wdXVFf369cP169f16+/cuYNhw4bBxcUFtra2CAkJwW+//aZf/3//93/o2LEjVCoV3NzcMHDgQP06iUSC3bt3G7yfk5MT1q1bBwCIj4+HRCLBtm3b0K1bN6hUKmzatAlpaWkYNmwYfHx8YGNjg9atW2PLli0G+9FqtVi0aBGaNGkCpVKJhg0bYt68eQCAnj17YuLEiQb9U1JSoFAoEBUVVR1fm1ngqeBERFRrBEHAw0KNKO9tLZeZdDZObm4uIiMj0aZNG+Tk5GD27NkYOHAg4uLikJeXh27dusHHxwd79uyBl5cXYmNjodVqAQB79+7FwIED8eGHH+L777+HWq3Gzz//bHLN06dPx+LFi9GuXTuoVCrk5+ejQ4cOeP/99+Hg4IC9e/di5MiRaNy4MTp16gQAmDFjBlatWoUvv/wSXbt2xf3793Hp0iUAwNixYzFx4kQsXrwYSqUSALBx40b4+PigZ8+eJtdnriRCPbtkZFZWFhwdHZGZmQkHBwexyyEismj5+fm4efMmAgMDoVKpkKcuQovZB0Sp5cLH4bBRVP6/6VNTU+Hu7o7z58/j5MmTmDZtGuLj4+Hi4mLUt3PnzmjUqBE2btxY5r4kEgl27dqFAQMG6NucnJywdOlSjB49GvHx8QgMDMTSpUsxefLkJ9bVr18/NGvWDF988QWys7Ph7u6OZcuWYezYsUZ98/Pz4e3tjRUrVuDVV18FAAQHB+Pll1/GnDlzTPg2asbj/15KM+X3m4eliIiIynD16lUMGzYMjRo1goODAwICAgAACQkJiIuLQ7t27coMNgAQFxeHXr16VbmGkJAQg9cajQaffPIJWrduDRcXF9jZ2eHAgQNISEgAAFy8eBEFBQXlvrdKpcLIkSOxZs0aAEBsbCz+/PNPjB49usq1mhMeliIiolpjLZfhwsfhor23Kfr37w9/f3+sWrUK3t7e0Gq1aNWqFdRq9VOvtvy09RKJxOheW2VNGLa1tTV4/fnnn+Orr77C0qVL0bp1a9ja2mLKlClQq9UVel9Ad2iqbdu2uHPnDtauXYuePXvC39//qdvVJRy5ISKiWiORSGCjsBJlMWW+TVpaGi5fvoyZM2eiV69eaN68OR48eKBf36ZNG8TFxSE9Pb3M7du0afPECbru7u64f/++/vXVq1eRl5f31LpOnDiBf/zjH3jttdcQHByMRo0a4cqVK/r1QUFBsLa2fuJ7t27dGiEhIVi1ahU2b96M119//anvW9cw3BARET3G2dkZrq6uWLlyJa5du4bDhw8jMjJSv37YsGHw8vLCgAEDcOLECdy4cQM//PADoqOjAQBz5szBli1bMGfOHFy8eBHnz5/HwoUL9dv37NkTy5Ytw++//46zZ89i3LhxkMvlT60rKCgIBw8exMmTJ3Hx4kW8/fbbSEpK0q9XqVR4//338d577+H777/H9evXcerUKaxevdpgP2PHjsWCBQsgCILBWVyWguGGiIjoMVKpFFu3bkVMTAxatWqFqVOn4vPPP9evVygU+OWXX+Dh4YG+ffuidevWWLBggf5mj927d8f27duxZ88etG3bFj179sTp06f12y9evBh+fn547rnnMHz4cEybNg02NjZPrWvmzJlo3749wsPD0b17d33AKm3WrFn45z//idmzZ6N58+YYMmQIkpOTDfoMGzYMVlZWGDZsmNHEXUvAs6WIiKjGPOnsFxJPfHw8GjdujDNnzqB9+/Zil6NXXWdLcUIxERFRPVFYWIi0tDTMnDkTzz77rFkFm+rEw1JERET1xIkTJ9CgQQOcOXMGK1asELucGsORGyIionqie/fuRqegWyKO3BAREZFFYbghIiIii8JwQ0RERBaF4YaIiIgsCsMNERERWRSGGyIiIrIoDDdEREQ1ICAgAEuXLhW7jHqJ4YaIiIgsCsMNERERGdBoNNBqtWKXUWkMN0RERI9ZuXIlvL29jX7g//GPf+D111/H9evX8Y9//AOenp6ws7NDx44dcejQoUq/35IlS9C6dWvY2trCz88P48ePR05OjkGfEydOoHv37rCxsYGzszPCw8Px4MEDAIBWq8WiRYvQpEkTKJVKNGzYEPPmzQMAHD16FBKJBBkZGfp9xcXFQSKRID4+HgCwbt06ODk5Yc+ePWjRogWUSiUSEhJw5swZvPDCC3Bzc4OjoyO6deuG2NhYg7oyMjLw9ttvw9PTEyqVCq1atcJPP/2E3NxcODg4YMeOHQb9d+/eDVtbW2RnZ1f6+3oahhsiIqo9ggCoc8VZTLjtwODBg5GWloYjR47o29LT07F//36MGDECOTk56Nu3L6KiovD777/jpZdeQv/+/ZGQkFCpr0UqleLrr7/GX3/9hfXr1+Pw4cN477339Ovj4uLQq1cvtGjRAtHR0Th+/Dj69+8PjUYDAJgxYwYWLFiAWbNm4cKFC9i8eTM8PT1NqiEvLw8LFy7Ef/7zH/z111/w8PBAdnY2IiIicPz4cZw6dQpBQUHo27evPphotVr06dMHJ06cwMaNG3HhwgUsWLAAMpkMtra2GDp0KNauXWvwPmvXrsUrr7wCe3v7Sn1XFcF7SxERUe0pzAM+8xbnvT+4ByhsK9TV2dkZffr0webNm9GrVy8AwI4dO+Dm5oYePXpAKpUiODhY3/+TTz7Brl27sGfPHkycONHk0qZMmaJ/HhAQgE8//RTjxo3Dd999BwBYtGgRQkJC9K8BoGXLlgCA7OxsfPXVV1i2bBkiIiIAAI0bN0bXrl1NqqGwsBDfffedwefq2bOnQZ+VK1fCyckJv/76K/r164dDhw7h9OnTuHjxIp555hkAQKNGjfT9x44di86dO+P+/fto0KABkpOT8fPPP1dplKsiOHJDRERUhhEjRuCHH35AQUEBAGDTpk0YOnQopFIpcnJyMG3aNDRv3hxOTk6ws7PDxYsXKz1yc+jQIfTq1Qs+Pj6wt7fHyJEjkZaWhry8PACPRm7KcvHiRRQUFJS7vqIUCgXatGlj0JaUlIQ333wTQUFBcHR0hIODA3JycvSfMy4uDr6+vvpg87hOnTqhZcuWWL9+PQBg48aN8Pf3x/PPP1+lWp+GIzdERFR75Da6ERSx3tsE/fv3hyAI2Lt3Lzp27Ij//e9/+PLLLwEA06ZNw8GDB/HFF1+gSZMmsLa2xiuvvAK1Wm1yWfHx8ejXrx/eeecdzJs3Dy4uLjh+/DjeeOMNqNVq2NjYwNrautztn7QO0B3yAmBwN/DCwsIy9yORSAzaIiIikJaWhq+++gr+/v5QKpUICwvTf86nvTegG7359ttvMX36dKxduxZjxowxep/qxpEbIiKqPRKJ7tCQGIuJP6gqlQovv/wyNm3ahC1btqBp06Zo3749AN3k3tGjR2PgwIFo3bo1vLy89JNzTRUTEwOtVovFixfj2WefxTPPPIN79wwDYJs2bRAVFVXm9kFBQbC2ti53vbu7OwDg/v37+ra4uLgK1XbixAlMmjQJffv2RcuWLaFUKpGammpQ1507d3DlypVy9/Haa6/h1q1b+Prrr3HhwgX9obOaxHBDRERUjhEjRmDv3r1Ys2YNRowYoW8PCgrCzp07ERcXh3PnzmH48OGVPnW6SZMmKCwsxDfffIMbN25gw4YNWLFihUGfGTNm4MyZMxg/fjz++OMPXLp0CcuXL0dqaipUKhXef/99vPfee/j+++9x/fp1nDp1CqtXr9bv38/PDx999BGuXr2KvXv3YvHixRWqLSgoCBs2bMDFixfx22+/YcSIEQajNd26dcPzzz+PQYMG4eDBg7h58yb27duH/fv36/s4Ozvj5Zdfxr/+9S+8+OKL8PX1rdT3ZAqGGyIionL07NkTLi4uuHz5MoYPH65vX7JkCZydndG5c2f0798f4eHh+lEdUwUHB2PJkiVYuHAhWrVqhU2bNmH+/PkGfZ555hn88ssvOHfuHDp16oSwsDD8+OOPsLLSzS6ZNWsW/vnPf2L27Nlo3rw5hgwZguTkZACAXC7Hli1bcOnSJbRp0wYLFy7Ep59+WqHaVq9ejQcPHqB9+/YYOXIkJk2aBA8PD4M+P/zwAzp27Ihhw4ahRYsWeO+99/RncZUoOcT2+uuvV+o7MpVEEEw4N84CZGVlwdHREZmZmXBwcBC7HCIii5afn4+bN28iMDAQKpVK7HJIJBs2bMDUqVNx7949KBSKcvs96d+LKb/fnFBMRERENSIvLw/379/HggUL8Pbbbz8x2FQnHpYiIiKqQZs2bYKdnV2ZS8m1aizVokWL0KxZM3h5eWHGjBm19r48LEVERDWGh6V0F9lLSkoqc51cLoe/v38tV2S+eFiKiIioDrC3t6/RWw2QMR6WIiIiIovCcENERDWuns2AoEqqrn8nDDdERFRjZDIZAFTqtgRU/5T8Oyn5d1NZnHNDREQ1xsrKCjY2NkhJSYFcLtff54jocVqtFikpKbCxsdFfnLCyGG6IiKjGSCQSNGjQADdv3sStW7fELofMnFQqRcOGDat8Y02GGyIiqlEKhQJBQUE8NEVPpVAoqmV0zyzCzbfffovPP/8ciYmJCA4OxjfffINOnTqV23/79u2YNWsW4uPjERQUhIULF6Jv3761WDEREZlCKpXW2+vcUO0T/eDntm3bEBkZiTlz5iA2NhbBwcEIDw/X3/DrcSdPnsSwYcPwxhtv4Pfff8eAAQMwYMAA/Pnnn7VcOREREZkj0a9QHBoaio4dO2LZsmUAdBOK/Pz88O6772L69OlG/YcMGYLc3Fz89NNP+rZnn30Wbdu2NbpFfFl4hWIiIqK6x5Tfb1FHbtRqNWJiYtC7d299m1QqRe/evREdHV3mNtHR0Qb9ASA8PLzc/kRERFS/iDrnJjU1FRqNBp6engbtnp6euHTpUpnbJCYmltk/MTGxzP4FBQUoKCjQv87MzASgS4BERERUN5T8blfkgJNZTCiuSfPnz8fcuXON2v38/ESohoiIiKoiOzsbjo6OT+wjarhxc3ODTCYzultqUlISvLy8ytzGy8vLpP4zZsxAZGSk/rVWq0V6ejpcXV2rfB7947KysuDn54fbt29zPo8Z4N/DvPDvYV749zA//Js8mSAIyM7Ohre391P7ihpuFAoFOnTogKioKAwYMACALnxERUVh4sSJZW4TFhaGqKgoTJkyRd928OBBhIWFldlfqVRCqVQatDk5OVVH+eVycHDgP0wzwr+HeeHfw7zw72F++Dcp39NGbEqIflgqMjISERERCAkJQadOnbB06VLk5uZizJgxAIBRo0bBx8cH8+fPBwBMnjwZ3bp1w+LFi/G3v/0NW7duxdmzZ7Fy5UoxPwYRERGZCdHDzZAhQ5CSkoLZs2cjMTERbdu2xf79+/WThhMSEgyuVti5c2ds3rwZM2fOxAcffICgoCDs3r0brVq1EusjEBERkRkRPdwAwMSJE8s9DHX06FGjtsGDB2Pw4ME1XJXplEol5syZY3QYjMTBv4d54d/DvPDvYX74N6k+ol/Ej4iIiKg6iX77BSIiIqLqxHBDREREFoXhhoiIiCwKww0RERFZFIabavLtt98iICAAKpUKoaGhOH36tNgl1Vvz589Hx44dYW9vDw8PDwwYMACXL18WuywqtmDBAkgkEoMLcVLtunv3Ll577TW4urrC2toarVu3xtmzZ8Uuq17SaDSYNWsWAgMDYW1tjcaNG+OTTz6p0P2TqHwMN9Vg27ZtiIyMxJw5cxAbG4vg4GCEh4cjOTlZ7NLqpV9//RUTJkzAqVOncPDgQRQWFuLFF19Ebm6u2KXVe2fOnMG///1vtGnTRuxS6q0HDx6gS5cukMvl2LdvHy5cuIDFixfD2dlZ7NLqpYULF2L58uVYtmwZLl68iIULF2LRokX45ptvxC6tTuOp4NUgNDQUHTt2xLJlywDobiHh5+eHd999F9OnTxe5OkpJSYGHhwd+/fVXPP/882KXU2/l5OSgffv2+O677/Dpp5+ibdu2WLp0qdhl1TvTp0/HiRMn8L///U/sUghAv3794OnpidWrV+vbBg0aBGtra2zcuFHEyuo2jtxUkVqtRkxMDHr37q1vk0ql6N27N6Kjo0WsjEpkZmYCAFxcXESupH6bMGEC/va3vxn8b4Vq3549exASEoLBgwfDw8MD7dq1w6pVq8Quq97q3LkzoqKicOXKFQDAuXPncPz4cfTp00fkyuo2s7hCcV2WmpoKjUajv11ECU9PT1y6dEmkqqiEVqvFlClT0KVLF96iQ0Rbt25FbGwszpw5I3Yp9d6NGzewfPlyREZG4oMPPsCZM2cwadIkKBQKREREiF1evTN9+nRkZWWhWbNmkMlk0Gg0mDdvHkaMGCF2aXUaww1ZtAkTJuDPP//E8ePHxS6l3rp9+zYmT56MgwcPQqVSiV1OvafVahESEoLPPvsMANCuXTv8+eefWLFiBcONCP773/9i06ZN2Lx5M1q2bIm4uDhMmTIF3t7e/HtUAcNNFbm5uUEmkyEpKcmgPSkpCV5eXiJVRYDunmU//fQTjh07Bl9fX7HLqbdiYmKQnJyM9u3b69s0Gg2OHTuGZcuWoaCgADKZTMQK65cGDRqgRYsWBm3NmzfHDz/8IFJF9du//vUvTJ8+HUOHDgUAtG7dGrdu3cL8+fMZbqqAc26qSKFQoEOHDoiKitK3abVaREVFISwsTMTK6i9BEDBx4kTs2rULhw8fRmBgoNgl1Wu9evXC+fPnERcXp19CQkIwYsQIxMXFMdjUsi5duhhdGuHKlSvw9/cXqaL6LS8vD1Kp4U+xTCaDVqsVqSLLwJGbahAZGYmIiAiEhISgU6dOWLp0KXJzczFmzBixS6uXJkyYgM2bN+PHH3+Evb09EhMTAQCOjo6wtrYWubr6x97e3mi+k62tLVxdXTkPSgRTp05F586d8dlnn+HVV1/F6dOnsXLlSqxcuVLs0uql/v37Y968eWjYsCFatmyJ33//HUuWLMHrr78udml1Gk8FrybLli3D559/jsTERLRt2xZff/01QkNDxS6rXpJIJGW2r127FqNHj67dYqhM3bt356ngIvrpp58wY8YMXL16FYGBgYiMjMSbb74pdln1UnZ2NmbNmoVdu3YhOTkZ3t7eGDZsGGbPng2FQiF2eXUWww0RERFZFM65ISIiIovCcENEREQWheGGiIiILArDDREREVkUhhsiIiKyKAw3REREZFEYboiIiMiiMNwQUb0nkUiwe/duscsgomrCcENEoho9ejQkEonR8tJLL4ldGhHVUby3FBGJ7qWXXsLatWsN2pRKpUjVEFFdx5EbIhKdUqmEl5eXweLs7AxAd8ho+fLl6NOnD6ytrdGoUSPs2LHDYPvz58+jZ8+esLa2hqurK9566y3k5OQY9FmzZg1atmwJpVKJBg0aYOLEiQbrU1NTMXDgQNjY2CAoKAh79uyp2Q9NRDWG4YaIzN6sWbMwaNAgnDt3DiNGjMDQoUNx8eJFAEBubi7Cw8Ph7OyMM2fOYPv27Th06JBBeFm+fDkmTJiAt956C+fPn8eePXvQpEkTg/eYO3cuXn31Vfzxxx/o27cvRowYgfT09Fr9nERUTQQiIhFFREQIMplMsLW1NVjmzZsnCIIgABDGjRtnsE1oaKjwzjvvCIIgCCtXrhScnZ2FnJwc/fq9e/cKUqlUSExMFARBELy9vYUPP/yw3BoACDNnztS/zsnJEQAI+/btq7bPSUS1h3NuiEh0PXr0wPLlyw3aXFxc9M/DwsIM1oWFhSEuLg4AcPHiRQQHB8PW1la/vkuXLtBqtbh8+TIkEgnu3buHXr16PbGGNm3a6J/b2trCwcEBycnJlf1IRCQihhsiEp2tra3RYaLqYm1tXaF+crnc4LVEIoFWq62JkoiohnHODRGZvVOnThm9bt68OQCgefPmOHfuHHJzc/XrT5w4AalUiqZNm8Le3h4BAQGIioqq1ZqJSDwcuSEi0RUUFCAxMdGgzcrKCm5ubgCA7du3IyQkBF27dsWmTZtw+vRprF69GgAwYsQIzJkzBxEREfjoo4+QkpKCd999FyNHjoSnpycA4KOPPsK4cePg4eGBPn36IDs7GydOnMC7775bux+UiGoFww0RiW7//v1o0KCBQVvTpk1x6dIlALozmbZu3Yrx48ejQYMG2LJlC1q0aAEAsLGxwYEDBzB58mR07NgRNjY2GDRoEJYsWaLfV0REBPLz8/Hll19i2rRpcHNzwyuvvFJ7H5CIapVEEARB7CKIiMojkUiwa9cuDBgwQOxSiKiO4JwbIiIisigMN0RERGRROOeGiMwaj5wTkak4ckNEREQWheGGiIiILArDDREREVkUhhsiIiKyKAw3REREZFEYboiIiMiiMNwQERGRRWG4ISIiIovCcENEREQW5f8BSGpYdeO2BeAAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "32/32 [==============================] - 5s 137ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGTElEQVR4nOzdd1hTdxcH8G8SIECAhD1kDwVFhoOquKhawb2q1baK26q11m1b96Bu26pYbYujjtZZ9xa3AioucCBTkKGMMMPIff/gJRoDyMhSzscnz+PdJzeXm5PfuiyGYRgQQgghhDRAbFUHQAghhBCiKpQIEUIIIaTBokSIEEIIIQ0WJUKEEEIIabAoESKEEEJIg0WJECGEEEIaLEqECCGEENJgUSJECCGEkAaLEiFCCCGENFiUCBHSwAQGBsLe3l7VYahEXl4exowZAwsLC7BYLEydOlXux7C3t0dgYKDc9/uhWrhwIVgslqrDIKRKlAgRUktfffUVtLW18fTpU5llP//8M1gsFo4dO6aCyN5ISUnBwoULERkZqdI4KiMUCrFo0SJ4enpCT08POjo6cHd3x+zZs5GSkqLQYy9fvhzbtm3DN998g507d+Lrr79W6PGUadu2bWCxWGCxWLh69arMcoZhYGNjAxaLhV69etXpGMuXL8fhw4frGSkh6oVFzxojpHbS09Ph6uoKLy8vXLhwQTI/Li4OzZo1Q48ePbB//34VRghERESgdevWCAkJkSmdKCkpgVgsBpfLVXpcsbGx6Nq1KxITE/H555+jffv20NLSwv3797Fnzx4YGRlVmmDKS5s2baChoVFpoiAvIpEIbDYbmpqaCjtGZbZt24aRI0dCW1sbI0eOxKZNm6SWh4aGws/PD1wuF127dq1Tsq6np4dBgwZh27ZtNd6mtLQUpaWl0NbWrvXxCFEGKhEipJbMzMywYsUKXLx4Edu3b5fMnzhxIjQ1NfHLL7+oMLr309TUVEkSVFpaigEDBiAtLQ2hoaHYs2cPJk2ahLFjx+K3335DbGwsPv/8c4XGkJ6eDoFAoNBjcLlcpSdBb+vRowf27duH0tJSqfm7d+9Gy5YtYWFhoZQ48vPzAQAaGhqUBBH1xhBCak0sFjO+vr6MiYkJ8+rVK2bPnj0MAObXX3+VWbesrIxZv3494+7uznC5XMbExITp3r07Ex4eLrXezp07mRYtWjDa2tqMoaEhM2TIECYxMVFqnU6dOjHNmjVjIiIimLZt2zLa2tqMvb09ExwcLFnn4sWLDACZV0hICMMwDDNixAjGzs5Oar95eXnMtGnTGGtra0ZLS4tp3Lgxs2rVKkYsFkutB4CZNGkSc+jQIaZZs2aMlpYW07RpU+bkyZPvPWd79+5lADDLli1777oV/v33X8k5MTY2Zr788kvmxYsXUuuMGDGC4fF4zIsXL5i+ffsyPB6PMTExYaZPn86UlpZWe07i4uKYkJAQyf/fVrHNxYsXJfOePn3KDBgwgDE3N2e4XC7TqFEjZsiQIUx2drZkHTs7O2bEiBFS+3r+/DkzaNAgxtDQkNHR0WE++eQT5tixY5Ue759//mGWLl3KNGrUiOFyucynn37KPHv27L3nquJ97Nu3j2GxWMyJEycky0QiEWNoaMisWbOGsbOzY3r27Cm17apVq5i2bdsyRkZGjLa2NtOiRQtm3759UutUdv4q3ueCBQsYAMyjR4+YoUOHMgKBgPHy8pJaVuGvv/5iADB//vmn1P6XLVvGAGCOHz/+3vdKiDxRIkRIHT18+JDR1NRkPv/8c8bCwoJp1aoVU1ZWJrNeYGAgA4AJCAhg1q9fz6xevZrp27cv89tvv0nWWbp0KcNisZghQ4YwmzZtYhYtWsSYmJgw9vb2TFZWlmS9Tp06MVZWVoyZmRkzefJk5tdff2Xat28v9cWSmprKLF68mAHAjBs3jtm5cyezc+dO5vnz5wzDyCZCYrGY+fTTTxkWi8WMGTOG2bBhA9O7d28GADN16lSp9wKA8fT0ZCwtLZklS5Yw69evZxwdHRldXV3m1atX1Z6vYcOGMQBkkruqVHyxt27dmlm3bh0zZ84cRkdHR+acjBgxgtHW1maaNWvGjBo1igkODmYGDhzIAGA2bdokOSc7d+5kTExMGC8vL8k5ycvLq3EiJBKJGAcHB8bKyopZunQp88cffzCLFi1iWrduzcTHx0u2ezcRSk1NZczNzRl9fX3mxx9/ZNauXct4enoybDabOXjwoMzxvL29mZYtWzLr1q1jFi5cyOjq6jI+Pj41Pl/h4eFMu3btmK+//lqy7PDhwwybzWaSk5MrTYSsra2ZiRMnMhs2bGDWrl3L+Pj4MACkkrWdO3cyXC6X6dChg+T8Xb9+nWGYN8lO06ZNmb59+zKbNm1iNm7cKLXsbb169WL4fL7kWrh//z6jpaXFjB49+r3vkxB5o0SIkHqYO3cuA4DhcDjM7du3ZZZfuHCBAcBMmTJFZllFaUt8fDzD4XBkSkoePHjAaGhoSM3v1KkTA4BZs2aNZJ5IJGK8vLwYMzMzpri4mGEYhgkPD5cqBXrbu4nQ4cOHGQDM0qVLpdYbNGgQw2KxmJiYGMk8AIyWlpbUvHv37jEApBK7ynh7ezN8Pr/adSoUFxczZmZmjLu7O1NYWCiZf+zYMQYAM3/+fKn3A4BZvHixzPFatmwpNa+yJKCmidDdu3clJS7VeTcRmjp1KgOAuXLlimRebm4u4+DgwNjb20uS54rjubm5MSKRSLLuL7/8wgBgHjx4UO1x306ENmzYwOjr6zMFBQUMwzDM559/zvj5+VV5DirWq1BcXMy4u7szn376qdR8Ho8nU9rFMG+SnaFDh1a57G0vX75kjIyMmG7dujEikYjx9vZmbG1tmZycnGrfIyGKQG2ECKkHExMTAICVlRXc3d1llh84cAAsFgsLFiyQWVbRpfjgwYMQi8UYPHgwXr16JXlZWFjAxcUFFy9elNpOQ0MD48ePl0xraWlh/PjxSE9Px+3bt2v9Hk6cOAEOh4MpU6ZIzZ8+fToYhsHJkyel5nft2hVOTk6SaQ8PDxgYGCA2Nrba4wiFQujr69copoiICKSnp2PixIlS7Ut69uwJV1dXHD9+XGabCRMmSE136NDhvTHVBp/PBwCcPn0aBQUFNd7uxIkT8PHxQfv27SXz9PT0MG7cOMTHxyMqKkpq/ZEjR0JLS0sy3aFDBwCo1XsZPHgwCgsLcezYMeTm5uLYsWMYNmxYlevr6OhI/p+VlYWcnBx06NABd+7cqfExAdnPoCoWFhbYuHEjzp49iw4dOiAyMhJ//fUXDAwManU8QuSBEiFC6igpKQkLFiyAu7s7kpKSsHLlSpl1nj9/DisrKxgZGVW5n2fPnoFhGLi4uMDU1FTqFR0djfT0dKn1rayswOPxpOY1btwYABAfH1/r95GQkAArKyuZJMXNzU2y/G22trYy+zA0NERWVla1xzEwMEBubm6NYwKAJk2ayCxzdXWViUlbWxumpqa1jqk2HBwcMG3aNPzxxx8wMTFB9+7dsXHjRuTk5FS7XUJCQqXvo6bn19DQEABq9V5MTU3RtWtX7N69GwcPHkRZWRkGDRpU5frHjh1DmzZtoK2tDSMjI5iamiI4OPi97+1dDg4ONV73iy++QM+ePREWFoaxY8eiS5cutToWIfKioeoACPlQTZ48GQBw8uRJTJs2DcuWLcOwYcPg6OhYq/2IxWKwWCycPHkSHA5HZrmenp5c4pWXymIEysepqY6rqyvu3r2LpKQk2NjYKCWmmqhqsL+ysjKZeWvWrEFgYCD+++8/nDlzBlOmTEFQUBBu3rwJa2vrOsfwtrqe33cNGzYMY8eORWpqKgICAqrsLXflyhX06dMHHTt2xKZNm2BpaQlNTU2EhIRg9+7dtTrm2yVL7/P69WtEREQAAKKioiAWi8Fm029zonx01RFSB4cOHcKRI0ewZMkSWFtbY/369dDS0sKkSZOk1nNyckJKSgoyMzOr3JeTkxMYhoGDgwO6du0q82rTpo3U+ikpKZKuyRUqxt6pGDG6NiP52tnZISUlRaa05vHjx5Ll8tC7d28AwN9//12jmADgyZMnMsuePHkit5iANyUu2dnZUvPfLamp0Lx5c/z000+4fPkyrly5guTkZGzevLnK/dvZ2VX6PuR9ft/Vv39/sNls3Lx5s9pqsQMHDkBbWxunT5/GqFGjEBAQgK5du1a6rjxHiJ40aRJyc3MRFBSEq1evYv369XLbNyG1QYkQIbWUm5uLKVOmwNvbG99++y2A8uqqJUuW4NSpU9i3b59k3YEDB4JhGCxatEhmPxW/8AcMGAAOh4NFixbJ/OpnGAavX7+WmldaWorff/9dMl1cXIzff/8dpqamaNmyJQBIqs7e/XKvTI8ePVBWVoYNGzZIzV+3bh1YLBYCAgLeu4+aGDRoEJo3b45ly5bhxo0bMstzc3Px448/AgBatWoFMzMzbN68GSKRSLLOyZMnER0djZ49e8olJgCS9k6XL1+WzCsrK8OWLVuk1hMKhTJj8zRv3hxsNlsqxnf16NEDYWFhUu85Pz8fW7Zsgb29PZo2bSqPtyFDT08PwcHBWLhwoSQJrQyHwwGLxZIqAYuPj690BGkej1eja+p99u/fj3/++Qc///wz5syZgy+++AI//fSTQgfTJKQqVDVGSC399NNPSElJwcGDB6WqMSZNmoTt27dj6tSp8Pf3h76+Pvz8/PD111/j119/xbNnz+Dv7w+xWIwrV67Az88PkydPhpOTE5YuXYq5c+ciPj4e/fr1g76+PuLi4nDo0CGMGzcOM2bMkBzHysoKK1asQHx8PBo3box//vkHkZGR2LJli2QgPycnJwgEAmzevBn6+vrg8Xj45JNPKm3D0bt3b/j5+eHHH39EfHw8PD09cebMGfz333+YOnWqVMPo+tDU1MTBgwfRtWtXdOzYEYMHD4avry80NTXx6NEj7N69G4aGhli2bBk0NTWxYsUKjBw5Ep06dcLQoUORlpaGX375Bfb29vj+++/lEhMANGvWDG3atMHcuXORmZkJIyMj7N27VybpuXDhAiZPnozPP/8cjRs3RmlpKXbu3AkOh4OBAwdWuf85c+Zgz549CAgIwJQpU2BkZITt27cjLi4OBw4cUGh10IgRI967Ts+ePbF27Vr4+/tj2LBhSE9Px8aNG+Hs7Iz79+9LrduyZUucO3cOa9euhZWVFRwcHPDJJ5/UKqb09HR88803kusfADZs2ICLFy8iMDAQV69epSoyolwq669GyAcoIiKC4XA4zOTJkytdHhYWxrDZbKnu8qWlpcyqVasYV1dXRktLizE1NWUCAgJkutsfOHCAad++PcPj8Rgej8e4uroykyZNYp48eSJZp7IBFe3s7JgNGzbIxPLff/8xTZs2ZTQ0NN47oGJubi7z/fffM1ZWVoympibj4uJS7YCK76psEMGqZGVlMfPnz2eaN2/O6OrqMtra2oy7uzszd+5c5uXLl1Lr/vPPP4y3tzfD5XIZIyOjagdUfFdl3bYr6zrOMOUDHnbt2pXhcrmMubk588MPPzBnz56V6j4fGxvLjBo1inFycmK0tbUZIyMjxs/Pjzl37tx7z0XFgIoCgYDR1tZmfHx8qhxQ8d3u+XFxcVUOhfC2t7vPV6eyc/Dnn38yLi4uDJfLZVxdXZmQkJBKz9/jx4+Zjh07Mjo6OpUOqJiRkSFzvHf3M2DAAEZfX19q7CWGKb9eATArVqyoNn5C5I2eNUbIB6Rz58549eoVHj58qOpQCCHko0Dlj4QQQghpsCgRIoQQQkiDRYkQIYQQQhosaiNECCGEkAaLSoQIIYQQ0mBRIkQIIYSQBosGVGzAxGIxUlJSoK+vL9eh8wkhhCgHwzDIzc2FlZWVwgaiLCoqQnFxsVz2paWlBW1tbbnsS14oEWrAUlJS5P7wS0IIIcqXlJQktwf/vq2oqAg6+sZAaYFc9mdhYYG4uDi1SoYoEWrA9PX1AQCt5x2AhjZPxdGot+4e5qoOQYaVPlfVIcgIS8p9/0pELaXnFKo6BBlP4qp+WLGq7JnQVtUhSMnLzUXHFo0l93N5Ky4uBkoLwG06AuBo1W9nZcVIjdqO4uJiSoSIeqioDtPQ5lEi9B7aPMXcZOpDR0/9EiEtXeqE+qHSLOa8fyUl43CrfpitqujpG6g6hEopvHmDhjZY9UyEGJZ6NkumRIgQQggh1WMBqG+ypaZNUSkRIoQQQkj1WOzyV333oYbUMypCCCGEECWgEiFCCCGEVI/FkkPVmHrWjVEiRAghhJDqUdUYIYQQQsjHh0qECCGEEFI9qhojhBBCSMMlh6oxNa2EUs+oCCGEEEKUgEqECCGEEFI9qhojBGhuZYDPW1rDxZQHYz0uFh6LwvXY8mcBcdgsBLaxg4+9ISz52sgXleJOUg7+vB6PzHz5PLX4Q4mpMqKiYlw4eR2PH8YgP7cAFtZmCOjXGY1sLZQaRwWxWIwjR67i5s1HEObkQyDQQ7t2zdGzVzvFD9X/f45GuujsbAxrgTb42poICUvCw1TpZ5V1b2KKNnYC6GhyEJdZgAP3U/FKgZ8dxVQzTcz00LOZORyMdWGoq4V1F2NwOylHsryVrQBdGpvC3lgX+lwN/HA0ColZin2WmbedIYb72sPNUh+mBtqYvucuQh9nSJaP6+yE7u4WMOdro6RMjOgUITadj8HD5Jxq9ipfm3aeweZd56Tm2Vub4sgfM5UWQ51RrzFSW4GBgWCxWJKXsbEx/P39cf/+fVWHVmfamhzEZuRhQ2iszDKuBhsuZjzsCk/CxD2RWHTiMWwMdbC4l1uDi6kyR/49i9inCeg/zB/fzBwOp8Z22LH5AITZeUqPBQBOnryJS6F3MWxYNyxeMgYDB3bGqVO3cOH8baXFoKXBRoqwCAfvp1a63M/ZGB0cjbD//kv8ciUOxaUMxrWxhQZbcYkaxVQzXA02ErMKsf1WUpXLn6Tn4Z/bLxQWw7t0NDl4mpqLFccfV7o88XU+VpyIxpBN1zH6zzC8zC7ExuEtINDVVFqMAOBkZ44Lu+dJXtvXTFTq8YksKhFSIH9/f4SEhAAAUlNT8dNPP6FXr15ITExUcWR1E56QhfCErEqXFRSXYc7hR1LzNoQ+x4YvvGCqx0VGnmIenqiOMb2rpLgUUfefYeioPrB3sgYA+Pm3xdOoWIRfv4cuPXyVEsfbnj9PhqeXCzw8nAEAJiYChIVFIS7updJieJyeh8fpVSeCHR2NcO7pKzxKLV9nz91kLOzeGO4W+ohMEVJMKozpfooQ96vZ97X/l8qa8Or5tPJauB7zCtdjXlW5/NQD6URy7ekn6NfSGi7m+ghX4lPuNThsmBip30Oc3+sjrhqjEiEF4nK5sLCwgIWFBby8vDBnzhwkJSUhI6O8uDYpKQmDBw+GQCCAkZER+vbti/j4eKl9/PHHH3Bzc4O2tjZcXV2xadMmybLi4mJMnjwZlpaW0NbWhp2dHYKCgpT5FqvF43IgZhjkF5eqOhQJVcQkFovBiBloaEj/7tDQ1EBiXIrS4nibk1MjPI6OR2pq+RdAUlIanj17AffmjiqJ511Gupow0NbE04w3CUBRqRiJWYWwM9KhmNQ4pg+BBoeFAS2tkVtYgmdpue/fQI4Skl+hy7AlCAj8GXNW7MbL9Mp/yKmdiqqx+r7UEJUIKUleXh7+/vtvODs7w9jYGCUlJejevTvatm2LK1euQENDA0uXLpVUn2lpaWHXrl2YP38+NmzYAG9vb9y9exdjx44Fj8fDiBEj8Ouvv+LIkSP4999/YWtri6SkJCQlVV5UrWyaHBbG+Dog9EkGCorLVB0OANXFxNXWgrW9JS6dvQUTcyPo6eviwZ0neBH/EkYmAqXF8baAgLYoKizG/HlbwGazIRaL0a9/J7Rp00wl8bzLgFt+a8oVSX9OuaJSyTJlo5g+fB0am2D5IA9oa3LwKk+EiTtuI7ugRGnHb+5qi6XTh8De2hQZmUJs3nUOgTOCcXDzNPB0tZUWR518xCVC9JeiQMeOHYOenh4AID8/H5aWljh27BjYbDZ2794NsViMP/74Q9I4NSQkBAKBAKGhofjss8+wYMECrFmzBgMGDAAAODg4ICoqCr///jtGjBiBxMREuLi4oH379mCxWLCzs6s2HpFIBJHoTXWQUKiYYnMOm4WfAlwBAL+GPlfIMWpL1TENGOaP//aewdpFW8Fis2DZyAzu3k3w8kW60mMBgIiIaNy69QhjxvaBlZUJkpLS8c/ecxDw9dDOt7lKYiJE0cLjsjB08w0IdLXQv2Uj/DzYEyO23kKWkjpPdGjtKvl/Y0dLNHe1hf/wIJy+fB8D/H2UEgORRYmQAvn5+SE4OBgAkJWVhU2bNiEgIABhYWG4d+8eYmJioK8vXVdcVFSE58+fIz8/H8+fP8fo0aMxduxYyfLS0lLw+XwA5Q2yu3XrhiZNmsDf3x+9evXCZ599VmU8QUFBWLRokQLe6RsVCYeZvjZmHXqgFqVB6hCTkYkAIycPRrGoBCKRCPoGeti34zgMjflKjwUA9u+7iICANvDxaQoAsLY2w+vXOTh58oZaJEJCUXnVpT6Xg1zRm2pMfa4GkoVFFJMax6TOikrK8CKzEC8yC/HwRQ4OTfFFvxaNEHIlTiXxGOjpwK6RCZJSXqvk+LXyEfcao0RIgXg8HpydnSXTf/zxB/h8PrZu3Yq8vDy0bNkSu3btktnO1NQUeXnldf5bt27FJ598IrWcw+EAAFq0aIG4uDicPHkS586dw+DBg9G1a1fs37+/0njmzp2LadOmSaaFQiFsbGzq/T4lcf0/4Wgk0MbMgw+QW6T6tkHqFpMWVxNaXE0UFhQh5nECuvVur5I4iotLZLrJs9lsiBlGJfG8K7OgBMKiEriY8pAiLC/F5GqwYWuog+vxqmlTQTF9fNgsFjQ5qvtyLigUIenla/Tq0kJlMdQYiyWHRIiqxho8FosFNpuNwsJCtGjRAv/88w/MzMxgYGAgsy6fz4eVlRViY2Px5ZdfVrlPAwMDDBkyBEOGDMGgQYPg7++PzMxMGBkZyazL5XLB5XLrHL+2JhtW/DcNMC0MtOFowkNuUSkyC4oxr4crXEz1MO9oFNgsFgz/3y01t6gUpWLFfMGqY0yViXkcD4YBTMwMkfkqG2eOXoGJmSG8fVTTJsfD0xnHT9yAkbEBrKxMkJiYhrNnwuDb3kNpMWhxWFK9iox0NWFlwEVBSRmyC0txOTYTXV1M8SqvGK8LShDgagphUanMGDoUk/Jj4mqwYa7/5l5iqseFraEO8otL8Tq/BDwtDox5WpK/N0t+efuXnMIS5Cjox4iOFgc2RrqSaStDHTS20IewsATZBSUY3dEBl55k4FWuCAJdTQz2sYWpPhfnHlU+LIEirN56DJ0/cYOlmSEyMoXYtPMsOBw2Ajp7KS0GIosSIQUSiURITS3/I8vKysKGDRuQl5eH3r17w8fHB6tWrULfvn2xePFiWFtbIyEhAQcPHsSsWbNgbW2NRYsWYcqUKeDz+fD394dIJEJERASysrIwbdo0rF27FpaWlvD29gabzca+fftgYWEBgUCgkPfT2Ewfqwe+qTaZ0LG8h9GZqDTsvJWIdo7GAIDNw7yltptx4AHuK2jQMnWMqTJFRSKcP34Nwuw86Ohy4ebhgi49fCWle8o2bFg3HD58Bbv+PoPc3AIIBHro2MkbvXsrryu/jUAHE33tJdN93csHlwxPzMbeyBRcjHkNLQ4bgzytoKPJRlxmAbbcTFRoAksx1YyjsS5+7N5EMv1V6/KS5csxr7DlegJa2Agw/q2Yv/3/3+XBeyk4eE8xQzQ0tTLAlpGtJdPT/cvb4xy9m4zlx6Jhb8JDLy8rCHS1kFNQjEcpQoz5KxyxGfkKiacy6a9yMPvn3cjOLYAhXw8tmtnj73WTYSTQU1oMdcZmlb/qu49auHz5MlatWoXbt2/j5cuXOHToEPr16ye1TnR0NGbPno1Lly6htLQUTZs2xYEDB2Bra1vj47AYRk3Kwj8ygYGB2L59u2RaX18frq6umD17NgYOHAigfGyh2bNn48SJE8jNzUWjRo3QpUsXrF69WlJKtHv3bqxatQpRUVHg8Xho3rw5pk6div79+2Pr1q3YtGkTnj17Bg6Hg9atW2PVqlXw9vauNKZ3CYVC8Pl8tF12ChraPPmfhI9IT29LVYcgo5FB3Uv3FOVGgmIa4BPFS8tW7MjPdRH9XP3azhyeoprq7Krk5QrRwsUSOTk5ldYu1FfF9wS3w09gadSvZxtTWgTRlaU1jvXkyZO4du0aWrZsiQEDBsgkQs+fP4ePjw9Gjx6NoUOHwsDAAI8ePUKbNm1gZmZW47goEWrAKBGqOUqEaoYSoQ8XJUI1Q4lQ3dU2EXobi8WSSYS++OILaGpqYufOnfWKSz2bcBNCCCFEfVSMI1Tfl5yIxWIcP34cjRs3Rvfu3WFmZoZPPvkEhw8frvW+KBEihBBCSPXkOLK0UCiUer09vl1NpaenIy8vDz///DP8/f1x5swZ9O/fHwMGDMClS5dqtS9KhAghhBCiNDY2NuDz+ZJXXR4NJRaLAQB9+/bF999/L3mMVa9evbB58+Za7Yt6jRFCCCGkenJ8xEZSUpJUG6G6DOtiYmICDQ0NNG3aVGq+m5sbrl69Wqt9USJECCGEkOrJcWRpAwODejfs1tLSQuvWrfHkyROp+U+fPn3v46beRYkQIYQQQqqngoeu5uXlISYmRjIdFxeHyMhIGBkZwdbWFjNnzsSQIUPQsWNH+Pn54dSpUzh69ChCQ0NrdRxKhAghhBCidiIiIuDn5yeZrnhE1IgRI7Bt2zb0798fmzdvRlBQEKZMmYImTZrgwIEDaN++dkMcUCJECCGEkOqp4KGrnTt3xvuGOhw1ahRGjRpVn6goESKEEELIe6igakxZqPs8IYQQQhosKhEihBBCyHvIoWpMTcteKBEihBBCSPU+4qoxSoQIRvraQkdPX9VhSCQLaz/cuqKFx2WrOgQZjTzNVR2CjLZ28n/o48do7JifVR2CjIVrv1d1CB+EucejVR2ClJLCPFWH8MGjRIgQQggh1WOx5NBrjEqECCGEEPIhUkH3eWVRz6gIIYQQQpSASoQIIYQQUj1qLE0IIYSQBusjrhqjRIgQQggh1fuIS4TUMz0jhBBCCFECKhEihBBCSPWoaowQQgghDRZVjRFCCCGEfHyoRIgQQggh1WKxWGB9pCVClAgRQgghpFqUCBGlCAwMRHZ2Ng4fPqzqUGpELBbjyJGruHnzEYQ5+RAI9NCuXXP07NWu/n8w9SAqKsaFk9fx+GEM8nMLYGFthoB+ndHI1kIpx29ipoeezczhYKwLQ10trLsYg9tJOZLlrWwF6NLYFPbGutDnauCHo1FIzCpUSmwV1PGzo5gq187bCd9+3RWerrawNOXjyxlbcOLSfcnyrPANlW43/5dD+O3v80qJEaC/uw8lJiKL2gi9IzAwUJL5slgsGBsbw9/fH/fv33//xjUUHx8PFouFyMhIue1TFU6evIlLoXcxbFg3LF4yBgMHdsapU7dw4fxtlcZ15N+ziH2agP7D/PHNzOFwamyHHZsPQJitnKc0czXYSMwqxPZbSVUuf5Keh39uv1BKPJVRx8+OYqqcrg4XD58mY+bKfypd3sR/rtRr0uK/yxO4i5FKixGgv7sPJaY6Y8nppYaoRKgS/v7+CAkJAQCkpqbip59+Qq9evZCYmKjiyNTL8+fJ8PRygYeHMwDAxESAsLAoxMW9VFlMJcWliLr/DENH9YG9kzUAwM+/LZ5GxSL8+j106eGr8BjupwhxP0VY5fJrsZkAABOelsJjqYo6fnYUU+XOXY/CuetRVS5Pf50rNd2jY3Ncuf0MCcmvFR2aBP3dVU4dY6qrj7lqjEqEKsHlcmFhYQELCwt4eXlhzpw5SEpKQkZGBgAgKSkJgwcPhkAggJGREfr27Yv4+Hipffzxxx9wc3ODtrY2XF1dsWnTJskyBwcHAIC3tzdYLBY6d+5caRxisRhBQUFwcHCAjo4OPD09sX//fsnyrKwsfPnllzA1NYWOjg5cXFwkCZwyODk1wuPoeKSmlv8xJyWl4dmzF3Bv7qi0GN4lFovBiBloaEjn+BqaGkiMS1FRVOpHHT87iqn+TI308Vl7d/z93w2lHpf+7siHjEqE3iMvLw9///03nJ2dYWxsjJKSEnTv3h1t27bFlStXoKGhgaVLl0qqz7S0tLBr1y7Mnz8fGzZsgLe3N+7evYuxY8eCx+NhxIgRCAsLg4+PD86dO4dmzZpBS6vyXwNBQUH4+++/sXnzZri4uODy5cv46quvYGpqik6dOmHevHmIiorCyZMnYWJigpiYGBQWKq9+OSCgLYoKizF/3haw2WyIxWL0698Jbdo0U1oM7+Jqa8Ha3hKXzt6CibkR9PR18eDOE7yIfwkjE4HK4lI36vjZUUz1N7TnJ8jLL8JRJVeL0d/dx+9jLhGiRKgSx44dg56eHgAgPz8flpaWOHbsGNhsNnbv3g2xWIw//vhDclGEhIRAIBAgNDQUn332GRYsWIA1a9ZgwIABAMpLgKKiovD7779jxIgRMDU1BQAYGxvDwqLyhoQikQjLly/HuXPn0LZtWwCAo6Mjrl69it9//x2dOnVCYmIivL290apVKwCAvb19te9LJBJBJBJJpoXCqotsayIiIhq3bj3CmLF9YGVlgqSkdPyz9xwEfD20821er33Xx4Bh/vhv7xmsXbQVLDYLlo3M4O7dBC9fpKssJnWjjp8dxVR/X/Zpg32nIiAqLlX6senv7uNGiVAD4+fnh+DgYADl1U+bNm1CQEAAwsLCcO/ePcTExEBfX19qm6KiIjx//hz5+fl4/vw5Ro8ejbFjx0qWl5aWgs/n1ziGmJgYFBQUoFu3blLzi4uL4e3tDQD45ptvMHDgQNy5cwefffYZ+vXrh3bt2lW5z6CgICxatKjGMbzP/n0XERDQBj4+TQEA1tZmeP06BydP3lDpl4SRiQAjJw9GsagEIpEI+gZ62LfjOAyNa37+P3bq+NlRTPXT1ssJje0tMPoH5VWPv43+7j5ulAg1MDweD87OzpLpP/74A3w+H1u3bkVeXh5atmyJXbt2yWxnamqKvLzyHhJbt27FJ598IrWcw+HUOIaK/Rw/fhyNGjWSWsblcgEAAQEBSEhIwIkTJ3D27Fl06dIFkyZNwurVqyvd59y5czFt2jTJtFAohI2NTY1jeldxcYnMHwabzYaYYeq8T3nS4mpCi6uJwoIixDxOQLfe7VUdktpQx8+OYqqfr/q2xd2oRDx8lqzSOOjvjnxoKBGqARaLBTabjcLCQrRo0QL//PMPzMzMYGBgILMun8+HlZUVYmNj8eWXX1a6v4o2QWVlZVUes2nTpuByuUhMTESnTp2qXM/U1BQjRozAiBEj0KFDB8ycObPKRIjL5UqSKHnw8HTG8RM3YGRsACsrEyQmpuHsmTD4tveQ2zHqIuZxPBgGMDEzROarbJw5egUmZobw9lFOuw6uBhvm+m/Os6keF7aGOsgvLsXr/BLwtDgw5mnBUFcTAGDJ1wYA5BSWIKdIOVUa6vjZUUyV4+lowcHGVDJtZ2UM98aNkJ1TgBdpWQAAfZ42+nbxxrz1h5QW17vo7+7DiKnO5NH9XT0LhCgRqoxIJEJqaiqA8qqxDRs2IC8vD71794aPjw9WrVqFvn37YvHixbC2tkZCQgIOHjyIWbNmwdraGosWLcKUKVPA5/Ph7+8PkUiEiIgIZGVlYdq0aTAzM4OOjg5OnToFa2traGtry1Sb6evrY8aMGfj+++8hFovRvn175OTk4Nq1azAwMMCIESMwf/58tGzZEs2aNYNIJMKxY8fg5uamtPM0bFg3HD58Bbv+PoPc3AIIBHro2MkbvXsrvqtsdYqKRDh//BqE2XnQ0eXCzcMFXXr41qpErj4cjXXxY/cmkumvWpeXul2OeYUt1xPQwkaA8b72kuXfdizvgXTwXgoO3lNOt2x1/Owopsp5udnh2O/fSaaXTxsIANh97CYmLfobADDgs5ZgsVg4cDpCaXG9i/7uPoyY6upjrhpjMYwalvGqUGBgILZv3y6Z1tfXh6urK2bPno2BA8tvQKmpqZg9ezZOnDiB3NxcNGrUCF26dMHq1aslpUS7d+/GqlWrEBUVBR6Ph+bNm2Pq1Kno378/gPLqtsWLFyM5ORkdOnRAaGiozMjSDMPg119/RXBwMGJjYyEQCNCiRQv88MMP6NixI5YuXYrdu3cjPj4eOjo66NChA9atWyfpnv8+QqEQfD4fW0KjoKOn//4NlCRZKHr/SkoWHpet6hBk9PM0V3UIpI7GjvlZ1SHIWLj2e1WHIEMd/+7UTUlhHo5M7oycnJxKaynqq+J7wuDzLWBp6tRrX0xJIYT7xiks1rqiRKgBo0So5tTxhkyJ0IeLEqGaUce/O3WjrESIP3gLWJq69doXU1KAnH/VLxGiqjFCCCGEVIsFOVSNqWkjIRpZmhBCCCENFpUIEUIIIaRaH3NjaUqECCGEEFK9j7j7PFWNEUIIIaTBohIhQgghhFRPDlVjDFWNEUIIIeRDJI82QvXvdaYYlAgRQgghpFofcyJEbYQIIYQQ0mBRiRAhhBBCqvcR9xqjRIgQQggh1aKqMUIIIYSQjxCVCBG108JCfR7GV2FJ8BVVh/BBGN/WVtUhyLiTKlR1CDKO7F6g6hBkpBWo38OOdzx/reoQZCQ8S1F1CFKYkkKlHIdKhAghhBDSYFUkQvV91cbly5fRu3dvWFlZgcVi4fDhw1WuO2HCBLBYLKxfv77W740SIUIIIYSonfz8fHh6emLjxo3Vrnfo0CHcvHkTVlZWdToOVY0RQgghpFqqqBoLCAhAQEBAteskJyfj22+/xenTp9GzZ886xUWJECGEEEKqJ8fu80KhdLs9LpcLLpdb692JxWJ8/fXXmDlzJpo1a1bnsKhqjBBCCCFKY2NjAz6fL3kFBQXVaT8rVqyAhoYGpkyZUq94qESIEEIIIdWSZ9VYUlISDAze9A6uS2nQ7du38csvv+DOnTv1jotKhAghhBBSLXn2GjMwMJB61SURunLlCtLT02FrawsNDQ1oaGggISEB06dPh729fa32RSVChBBCCKmWuo0j9PXXX6Nr165S87p3746vv/4aI0eOrNW+KBEihBBCiNrJy8tDTEyMZDouLg6RkZEwMjKCra0tjI2NpdbX1NSEhYUFmjRpUqvjUCJECCGEkOqp4KGrERER8PPzk0xPmzYNADBixAhs27atnsG8QYkQIYQQQqqliqqxzp07g2GYGq8fHx9fy4jKUWNpQgghhDRYVCKkph4/fozAwEBERkbC1dUVhw8fhoODA+7evQsvLy9VhwegfDCrI0eu4ubNRxDm5EMg0EO7ds3Rs1c7lT1cb8yU9Uh/lSMzv0e3Vpgwsm6jjtZWW1dzTO7lDk8HY1gY6uLrtRdwMiJRsvy38e0xtJOz1Dbn7yVjyIqzCoupiZkeejYzh4OxLgx1tbDuYgxuJ705T61sBejS2BT2xrrQ52rgh6NRSMxSzsMcK6jDZ1cZUVExLpy8jscPY5CfWwALazME9OuMRrYWKolHHc+TOtwLvO0MMdzXHm6W+jA10Mb0PXcR+jhDsnxcZyd0d7eAOV8bJWViRKcIsel8DB4my55LeVHHe0FdqVtjaXlqUIlQYGAgtm/fLpk2MjJC69atsXLlSnh4eNRoH9u2bcPUqVORnZ0tNd/e3h5Tp07F1KlT5RLrggULwOPx8OTJE+jp6SE3N1cu+5Wnkydv4lLoXYwc1RNWViZIiE9FSMgJ6Ohw0aVrK5XEtGbpWIjFb4pSE5LSMT9oJ3w/qfuoo7Wly9XAw4RM7Ap9hh3TPq10nXORLzDl92uSaVFpmUJj4mqwkZhViMsxrzHVz6nS5U/S83ArPhNj2tkrNJaqqMNnV5kj/55F+stX6D/MH/oGerh/Oxo7Nh/ApFkjYCDQU3o86nie1OFeoKPJwdPUXBy5k4zVQ71klie+zseKE9FIzioEV4ONL9vaYePwFuj7y1VkF5QoJCZ1vBfUFQtySITq3chIMRpUIgQA/v7+CAkJAQCkpqbip59+Qq9evZCYmPieLZWjuLgYWlpaeP78OXr27Ak7OzsAUMtE6PnzZHh6ucDDo/wXjYmJAGFhUYiLe6mymPgGPKnp/UeuwsLcEO5udkqL4fy9ZJy/l1ztOsWlYqTnKK/E5X6KEPdThFUuvxabCQAw4WkpKyQZ6vDZvaukuBRR959h6Kg+sHeyBgD4+bfF06hYhF+/hy49fJUekzqeJ3W4F1yPeYXrMa+qXH7qQarU9NrTT9CvpTVczPURHpepkJjU8V5AZDW4NkJcLhcWFhawsLCAl5cX5syZg6SkJGRkZCA0NBQsFkuqtCcyMhIsFgvx8fEIDQ3FyJEjkZOTIykmXLhwITp37oyEhAR8//33MsWHV69eRYcOHaCjowMbGxtMmTIF+fn5kuX29vZYsmQJhg8fDgMDA4wbNw4sFgu3b9/G4sWLJcd4G8MwcHZ2xurVq6XmV8T6dndDRXJyaoTH0fFITS2/iSQlpeHZsxdwb+6olOO/T0lpGUKv3kfXTt5qVyTr62aB6OAhuLm6P1aNagNDvdoPKPYxU5fPTiwWgxEz0NCQ/s2ooamBxLgUFUX1hrqcJ3W/F7xLg8PCgJbWyC0swbM01f7I/FDuBfIcUFHdNLgSobfl5eXh77//hrOzs8x4BJVp164d1q9fj/nz5+PJkycAAD09PUyZMgWenp4YN24cxo4dK1n/+fPn8Pf3x9KlS/HXX38hIyMDkydPxuTJkyWlUgCwevVqzJ8/HwsWLAAA/Pzzz+jatSv8/f0xY8YM6Onp4dWrN790WCwWRo0ahZCQEMyYMUMyPyQkBB07doSzs3Sds6IEBLRFUWEx5s/bAjabDbFYjH79O6FNG9VWZVS4FfEY+QVF6NLJS9WhSLlwPxnHwxOQkJELe3MD/DS4Bf6Z3RX+809AXIseEh8zdfnsuNpasLa3xKWzt2BibgQ9fV08uPMEL+JfwshEoNLYAPU5T+p+L6jQobEJlg/ygLYmB6/yRJi447bCqsVq4oO6F6ig+7yyNLhE6NixY9DTK6/Xz8/Ph6WlJY4dOwY2+/2FY1paWuDz+WCxWLCwkG4oyeFwoK+vLzU/KCgIX375paTdkIuLC3799Vd06tQJwcHB0NbWBgB8+umnmD59utT+NDQ0oKenJ9nf24kQUN7eaf78+QgLC4OPjw9KSkqwe/dumVKit4lEIohEIsn0u08Arq2IiGjcuvUIY8b2gZWVCZKS0vHP3nMQ8PXQzrd5vfYtD2cv3kVLTxcYG+qrOhQph27ESf4fnZSNqMRM3F4/CL5NLXDlkeqqFdWJOn12A4b547+9Z7B20Vaw2CxYNjKDu3cTvHyRrurQ1OY8qfu9oEJ4XBaGbr4Bga4W+rdshJ8He2LE1lvIyi9WSTx0L1APDa5qzM/PD5GRkYiMjERYWBi6d++OgIAAJCQkyP1Y9+7dw7Zt26Cnpyd5de/eHWKxGHFxb/4AWrWqfWNCKysr9OzZE3/99RcA4OjRoxCJRPj888+r3CYoKEjqib82Nja1f1Nv2b/vIgIC2sDHpymsrc3Qtq07unZrjZMnb9Rrv/KQnpGNew9j0c3PW9WhvFdCeh5eCYvgaK76L311oG6fnZGJACMnD8YPQZMxbf4YjPt+GMRiMQyN+SqNS53OkzrfC95WVFKGF5mFePgiB0v+i0KZWIx+LRqpOiwJdb4XfMxVYw0uEeLxeHB2doazszNat26NP/74A/n5+di6daukVOjtAZxKSupebJqXl4fx48dLEq/IyEjcu3cPz549g5PTm547PB6vmr1UbcyYMdi7dy8KCwsREhKCIUOGQFdXt8r1586di5ycHMkrKSmpTsetUFxcInNhs9lstSjSPXcpEnw+D629G6s6lPeyNNKFkR4XadnUYBJQ389Oi6sJfQM9FBYUIeZxApq4q7b9izqdJ3W+F1SHzWJBk6M+X4PqfC/4mBOhBlc19i4WiwU2m43CwkKYmpoCAF6+fAlDQ0MA5Q2Q36alpYWyMtnujZXNb9GiBaKiohTWZqdHjx7g8XgIDg7GqVOncPny5WrX53K5dXrKb1U8PJ1x/MQNGBkbwMrKBImJaTh7Jgy+7Ws2FIGiiMUMzl+OxKcdPMFRwU2Ox9WAg4WBZNrOVA/udkbIyhMhO0+EmQO9cDQsAenZhbA318fCYS0RlybEhfvV9y6pD64GG+b6bz57Uz0ubA11kF9citf5JeBpcWDM04KhriYAwJJfXm2bU1iCnKJShcX1LlV/dpWJeRwPhgFMzAyR+SobZ45egYmZIbx9VNf+Rd3OkzrcC3S0OLAxevND0MpQB40t9CEsLEF2QQlGd3TApScZeJUrgkBXE4N9bGGqz8W5R6nV7LV+1PFeUFcsVvmrvvtQRw0uERKJREhNLb/ws7KysGHDBuTl5aF3795wdnaGjY0NFi5ciGXLluHp06dYs2aN1Pb29vbIy8vD+fPn4enpCV1dXejq6sLe3h6XL1/GF198AS6XCxMTE8yePRtt2rTB5MmTMWbMGPB4PERFReHs2bPYsGFDvd8Lh8NBYGAg5s6dCxcXF7Rt27be+6yNYcO64fDhK9j19xnk5hZAINBDx07e6N1b+V2K33bvYSwyXuWga2fVVBl4OZrgv3n+kumlX/sAAPZcisHMv26gqa0hhnRwAp+nhdSsQoQ+SEbQv3dRXCpWWEyOxrr4sfubBxF+1bq8WvRyzCtsuZ6AFjYCjPe1lyz/tmN5acfBeyk4eE95bRVU/dlVpqhIhPPHr0GYnQcdXS7cPFzQpYcvOByOymJSt/OkDveCplYG2DKytWR6ur8rAODo3WQsPxYNexMeenlZQaCrhZyCYjxKEWLMX+GIzcivapf1po73AiKLxdTmQR4fuHcHVNTX14erqytmz56NgQMHAgCuXbuGb775Bs+ePUPr1q0xZcoUfP7554iLi4O9vT0A4JtvvsG+ffvw+vVrLFiwAAsXLsTNmzcxfvx4PHnyBCKRSFK9Fh4ejh9//BE3btwAwzBwcnLCkCFD8MMPPwCoeiBGLy8v9OvXT9J1Pj4+vtKRpWNjY+Hk5ISVK1di5syZtTofQqEQfD4fW0KjoKOnPnXS5rrq1320/4Ljqg5Bhr+/+jRCrTC+ra2qQ5BxJ7V+nQIUocVbpQTqIq1A9P6VlCzoYJSqQ5CR8Ez1wya8jSkpRMHhicjJyYGBgfyvq4rvCcdv94PNrVszjgpiUT5ifxuksFjrqkGVCG3btu29T6z19fXF/fv3pea9mysGBwcjODhYal6bNm1w7949mf21bt0aZ86cqfJ4VT0k7t0qOXt7+0ofPpecnAxNTU0MHz68ymMQQggh9SKHqjHqPk/kSiQSISMjAwsXLsTnn38Oc3NzVYdECCGEfHBU38qO1MmePXtgZ2eH7OxsrFy5UtXhEEII+Yh9zL3GKBH6QAUGBqKsrAy3b99Go0bqMw4GIYSQj09Fr7H6vtQRJUKEEEIIabCojRAhhBBCqsVms8Bm169Ih6nn9opCiRAhhBBCqvUxD6hIVWOEEEIIabCoRIgQQggh1ZJHry917TVGiRAhhBBCqvUxV41RIkQIIYSQan3MJULURogQQgghDRaVCBFCCCGkWh9ziRAlQgQh1xKhoV2/pwrL052bMaoOQYaBkfo8KbkCPem9ZsLjslUdwgehm4OpqkOQYWysq+oQZByeMljVIUjJyxWixeGJCj/Ox9xGiKrGCCGEENJgUYkQIYQQQqrFghyqxqCeRUKUCBFCCCGkWlQ1RgghhBDyEaISIUIIIYRUi3qNEUIIIaTBoqoxQgghhJCPEJUIEUIIIaRaVDVGCCGEkAbrY64ao0SIEEIIIdX6mEuEqI0QIYQQQhosKhEihBBCSPXkUDWmpgNLUyIkLywWC4cOHUK/fv0Udgx7e3tMnToVU6dOVdgxqtPcygCft7SGiykPxnpcLDwWheuxmQAADpuFwDZ28LE3hCVfG/miUtxJysGf1+ORmV+ssJjauppjci93eDoYw8JQF1+vvYCTEYmS5b+Nb4+hnZyltjl/LxlDVpxVWEytnYwxrmtjuNsKYM7XwfgtN3D2/stK1136hReGtXfEkv33EBL6XGExvWvMlPVIf5UjM79Ht1aYMLKn0uJ4l6ioGBdOXsfjhzHIzy2AhbUZAvp1RiNbC6Ucv4mZHno2M4eDsS4MdbWw7mIMbie9OU+tbAXo0tgU9sa60Odq4IejUUjMKlRKbG9T9XmqTMbrHGzacRo37zxBUXEJrC2M8cO3A+HmbK2U46vj/eldm3aeweZd56Tm2Vub4sgfM5UWQ119zFVjlAjVUGpqKpYtW4bjx48jOTkZZmZm8PLywtSpU9GlSxe8fPkShoaGqg5TobQ1OYjNyMPpR2lY0MtNahlXgw0XMx52hSchNiMfetoamNjREYt7uWHyP/cUFpMuVwMPEzKxK/QZdkz7tNJ1zkW+wJTfr0mmRaVlCounIqbo5Bzsu5GAzePaVLneZx5W8LI3Qmq28r9I1ywdC7GYkUwnJKVjftBO+H7STOmxvO3Iv2eR/vIV+g/zh76BHu7fjsaOzQcwadYIGAj0FH58rgYbiVmFuBzzGlP9nCpd/iQ9D7fiMzGmnb3C46mKqs/Tu4R5hZgw93e0aO6INfMCIeDzkPTyNfR5OkqLQR3vT5VxsjPH1qBxkmkOh1qoqBolQjUQHx8PX19fCAQCrFq1Cs2bN0dJSQlOnz6NSZMm4fHjx7CwUN0vMWUJT8hCeEJWpcsKissw5/AjqXkbQp9jwxdeMNXjIiNPpJCYzt9Lxvl7ydWuU1wqRnqO8pKNS1FpuBSVVu065nxtLPjcE4Ebr+LPb9opKbI3+AY8qen9R67CwtwQ7m52So+lQklxKaLuP8PQUX1g71ReiuDn3xZPo2IRfv0euvTwVXgM91OEuJ8irHL5tf+XMJjwtBQeS1XU4Ty9a9fBSzAz4ePHbwdJ5lmZGyk1BnW8P1VGg8OGiZG+0o4nLx9zrzFKRWtg4sSJYLFYCAsLw8CBA9G4cWM0a9YM06ZNw82bNwGUF/kdPnxYss2LFy8wdOhQGBkZgcfjoVWrVrh16xYA4Pnz5+jbty/Mzc2hp6eH1q1b49w56eLS9PR09O7dGzo6OnBwcMCuXbtk4lq7di2aN28OHo8HGxsbTJw4EXl5eYo7EbXE43IgZhjkF5eqNA5fNwtEBw/BzdX9sWpUGxjqcVUaD4sFrBneClvPP8Wz1FyVxgIAJaVlCL16H107eau06FosFoMRM9DQkP59pqGpgcS4FBVFpX7U8TxdDY+Gq7M1flq5Gz1HLEPgtN9w5Ey4SmKpKVXdnxKSX6HLsCUICPwZc1bsxsv0ypM3dVNRNVbflzqiROg9MjMzcerUKUyaNAk8Hk9muUAgkJmXl5eHTp06ITk5GUeOHMG9e/cwa9YsiMViyfIePXrg/PnzuHv3Lvz9/dG7d28kJr5p2xIYGIikpCRcvHgR+/fvx6ZNm5Ceni51HDabjV9//RWPHj3C9u3bceHCBcyaNavK9yISiSAUCqVeiqLJYWGMrwNCn2SgoFixVVHVuXA/GZOCr2DA8tNYtPc22rla4J/ZXcFW4R/khG6NUSZmsE2JbYKqcyviMfILitClk5dK4+Bqa8Ha3hKXzt6CMCcPYrEY9yKi8SL+JfKE+SqNTZ2o43lKScvC4VO3YG1ljHULRqK//ydY9+dRnLhwRyXxvI+q7k/NXW2xdPoQBC8dg58m90dyahYCZwQjv6BIaTF8SC5fvozevXvDyspKprChpKQEs2fPlhQGWFlZYfjw4UhJqf2PAaoae4+YmBgwDANXV9cab7N7925kZGQgPDwcRkblxcPOzm8a7Hp6esLT01MyvWTJEhw6dAhHjhzB5MmT8fTpU5w8eRJhYWFo3bo1AODPP/+Em5t0vffbjabt7e2xdOlSTJgwAZs2bao0rqCgICxatKjG76OuOGwWfgooP1+/qvjL/tCNOMn/o5OyEZWYidvrB8G3qQWuPKq8AbMiudsIENjZGb1XXFD6saty9uJdtPR0gbGh6ovrBwzzx397z2Dtoq1gsVmwbGQGd+8mePki/f0bNyDqdp7EDANXp0aY8FV3AEBjRyvEJqbh8Olb6PFpC5XEVBVV3p86tH7zPdLY0RLNXW3hPzwIpy/fxwB/H6XGUluqqBrLz8+Hp6cnRo0ahQEDBkgtKygowJ07dzBv3jx4enoiKysL3333Hfr06YOIiIhaHYcSofdgGOb9K70jMjIS3t7ekiToXXl5eVi4cCGOHz+Oly9forS0FIWFhZISoejoaGhoaKBly5aSbVxdXWVKn86dO4egoCA8fvwYQqEQpaWlKCoqQkFBAXR1dWWOO3fuXEybNk0yLRQKYWNjU+v3V52Km4yZvjZmHXqg0tKgyiSk5+GVsAiO5voqSYRaOxnDWI+Lq4v9JfM0OGz8MMADI/2c0XHBaaXGk56RjXsPYzHn+8FKPW5VjEwEGDl5MIpFJRCJRNA30MO+HcdhaMxXdWhqRd3Ok7GhPuxtzKTm2VubIvTGoyq2UA11uz8Z6OnArpEJklJeqzSOmlBFr7GAgAAEBARUuozP5+PsWenevxs2bICPjw8SExNha2tb4+NQIvQeLi4uYLFYePz4cY230dGpvqfEjBkzcPbsWaxevRrOzs7Q0dHBoEGDUFxc826c8fHx6NWrF7755hssW7YMRkZGuHr1KkaPHo3i4uJKEyEulwsuV3HtYypuMo0E2ph58AFyi1TbNqgylka6MNLjIk0FPbUA4FB4Eq49yZCat22SLw6HJWLfzQSlx3PuUiT4fB5aezdW+rGro8XVhBZXE4UFRYh5nIBuvdurOiS1pC7nycPVFonJ0td1YsprWJgKVBJPZdTx/lRQKELSy9fo1UW9Ss0U7d1mGfL6bsrJyQGLxaq0yUp1KBF6DyMjI3Tv3h0bN27ElClTZNoJZWdny5x0Dw8P/PHHH8jMzKy0VOjatWsIDAxE//79AZSXEMXHx0uWu7q6orS0FLdv35ZUjT158gTZ2dmSdW7fvg2xWIw1a9aAzS5v6vXvv//K4R1XTVuTDSv+myTPwkAbjiY85BaVIrOgGPN6uMLFVA/zjkaBzWLBUFcTAJBbVIpSce1L1mqCx9WAg4WBZNrOVA/udkbIyhMhO0+EmQO9cDQsAenZhbA318fCYS0RlybEhfvV9zSrD10tDuxM33RhtjHmwa0RHzkFxUjJKkT2O+OWlJaJkSEsQly6chu6i8UMzl+OxKcdPNWmC2/M43gwDGBiZojMV9k4c/QKTMwM4e2jnG79XA02zPXf3JBN9biwNdRBfnEpXueXgKfFgTFPS3JtW/K1AQA5hSXIUeIXq6rP07uG9G6P8XM3Y/v+UHTxbY6oZ0k4ciYMs77pr7QY1PH+9K7VW4+h8ydusDQzREamEJt2ngWHw0ZAZy+lHL8+5Fki9G5NxIIFC7Bw4cJ67buoqAizZ8/G0KFDYWBg8P4N3kKJUA1s3LgRvr6+8PHxweLFi+Hh4YHS0lKcPXsWwcHBiI6Ollp/6NChWL58Ofr164egoCBYWlri7t27sLKyQtu2beHi4oKDBw+id+/eYLFYmDdvnqQhNQA0adIE/v7+GD9+PIKDg6GhoYGpU6dKlTQ5OzujpKQEv/32G3r37o1r165h8+bNCj0Pjc30sXpgc8n0hI6OAIAzUWnYeSsR7RyNAQCbh3lLbTfjwAPcT5YdvE8evBxN8N+8N9VMS78ur2ffcykGM/+6gaa2hhjSwQl8nhZSswoR+iAZQf/eRXGpuKpd1ltzO0Ps+a6jZPqngR4AgP03EzDr79sKO25t3XsYi4xXOeja2fv9KytJUZEI549fgzA7Dzq6XLh5uKBLD19wOBylHN/RWBc/dm8imf6qdfkN+3LMK2y5noAWNgKM97WXLP/2/38DB++l4OA95VW1qvo8vcvNxRpBs7/C5r9PY9u/F2BpZojvRvVCdyU2wFfH+9O70l/lYPbPu5GdWwBDvh5aNLPH3+smw0gFYz/VljzbCCUlJUklK/UtDSopKcHgwYPBMAyCg4NrHxdTl0YwDdDLly+xbNkyHDt2DC9fvoSpqSlatmyJ77//Hp07d5YZWTohIQHTp0/H2bNnUVpaiqZNm2Ljxo3w8fFBfHw8Ro0ahZs3b8LExASzZ8/Gvn374OXlhfXr1wMoH8BxzJgxOHfuHMzNzbF06VLMmzdPamTpdevWYdWqVcjOzkbHjh3x5ZdfYvjw4cjKyqpR0aBQKASfz0fbZaegoS3bI05V7tyMUXUIMgyMavcLQxm2f9dB1SHIuJOquJ6IdRUel63qEGS0dhCoOgQZ3RxMVR2CjKkH76s6BBl/fqle1Vh5uUK0cLFETk5OrUtCaqLie8I36Ey9vydKi/Jxbe5ndYq1qqc3VCRBsbGxuHDhAoyNjWsdFyVCDRglQjVHiVDNUCJUM5QI1QwlQu/XkBOhiiTo2bNnuHjxIkxN63YNU9UYIYQQQqqliu7zeXl5iIl588M4Li4OkZGRMDIygqWlJQYNGoQ7d+7g2LFjKCsrQ2pqKoDytr1aWjUf/Z0SIUIIIYRUSxXd5yMiIuDn5yeZrhj+ZcSIEVi4cCGOHDkCAPDy8pLa7uLFi+jcuXONj0OJECGEEELUTufOnasdy09eLXsoESKEEEJItViQQ9WYXCKRP0qECCGEEFItNotV72c0qvIZj9VRj1HUCCGEEEJUgEqECCGEEFItVfQaUxZKhAghhBBSLVX0GlMWSoQIIYQQUi02q/xV332oI2ojRAghhJAGi0qECCGEEFI9lhyqttS0RIgSIUIIIYRUixpLk4/aSF9b6OjpqzoMiaYDPFQdggx1fPjj7zcSVR2CjFOnHqg6BBn+/s1VHYKMxCyRqkOQ8WfWC1WHIGNeQBNVhyBj/bV4VYcgpbggT9UhfPAoESKEEEJItVj//1fffagjSoQIIYQQUi3qNUYIIYQQ8hGiEiFCCCGEVKvBD6h45MiRGu+wT58+dQ6GEEIIIeqnwfca69evX412xmKxUFZWVp94CCGEEEKUpkaJkFgsVnQchBBCCFFTbBYL7HoW6dR3e0WpVxuhoqIiaGtryysWQgghhKihj7lqrNa9xsrKyrBkyRI0atQIenp6iI2NBQDMmzcPf/75p9wDJIQQQohqVTSWru9LHdU6EVq2bBm2bduGlStXQktLSzLf3d0df/zxh1yDI4QQQghRpFonQjt27MCWLVvw5ZdfgsPhSOZ7enri8ePHcg2OEEIIIapXUTVW35c6qnUboeTkZDg7O8vMF4vFKCkpkUtQhBBCCFEf1Fj6LU2bNsWVK1dgZ2cnNX///v3w9vaWW2AN3ZYtW7BkyRIkJydj7dq1yM7OxuHDhxEZGanq0CTEYjGOHLmKmzcfQZiTD4FAD+3aNUfPXu1UWhec8ToHm3acxs07T1BUXAJrC2P88O1AuDlbK+X4za0M8HlLa7iY8mCsx8XCY1G4HpsJAOCwWQhsYwcfe0NY8rWRLyrFnaQc/Hk9Hpn5xQqLqYmZHno2M4eDsS4MdbWw7mIMbiflSJa3shWgS2NT2BvrQp+rgR+ORiExq1Bh8QBAW1dzTO7lDk8HY1gY6uLrtRdwMuLNg2R/G98eQztJ/+g6fy8ZQ1acVVhM6nieHI100dnZGNYCbfC1NRESloSHqblS63RvYoo2dgLoaHIQl1mAA/dT8UqB15M6xvSuMVPWI/1Vjsz8Ht1aYcLInkqJ4UM4T6QOidD8+fMxYsQIJCcnQywW4+DBg3jy5Al27NiBY8eOKSLGGgsMDMT27dsBABoaGjAyMoKHhweGDh2KwMBAsNkfxhNFhEIhJk+ejLVr12LgwIHg8/lYuXKlqsOScfLkTVwKvYuRo3rCysoECfGpCAk5AR0dLrp0baWSmIR5hZgw93e0aO6INfMCIeDzkPTyNfR5OkqLQVuTg9iMPJx+lIYFvdyklnE12HAx42FXeBJiM/Khp62BiR0dsbiXGyb/c09hMXE12EjMKsTlmNeY6udU6fIn6Xm4FZ+JMe3sFRbH23S5GniYkIldoc+wY9qnla5zLvIFpvx+TTItKlXsOGXqeJ60NNhIERYhLDEbI31sZJb7ORujg6MR9txNRmZBCfybmGFcG1usvPgcpWKmwcT0rjVLx0L81rESktIxP2gnfD9pppTjAx/Geaop1v9f9d2HOqp1ItS3b18cPXoUixcvBo/Hw/z589GiRQscPXoU3bp1U0SMteLv74+QkBCUlZUhLS0Np06dwnfffYf9+/fjyJEj0NCQfcslJSXQ1NRUQbSVS0xMRElJCXr27AlLS0tVh1Ol58+T4enlAg+P8l/tJiYChIVFIS7upcpi2nXwEsxM+Pjx20GSeVbmRkqNITwhC+EJWZUuKyguw5zDj6TmbQh9jg1feMFUj4uMPJFCYrqfIsT9FGGVy6/9v8TKhKdV5Trydv5eMs7fS652neJSMdJzFFvi8jZ1PE+P0/PwOD2vyuUdHY1w7ukrPEotX2fP3WQs7N4Y7hb6iKzmvXxsMb2Lb8CTmt5/5CoszA3h7mZXxRby9yGcp5r6mB+xUacikg4dOuDs2bNIT09HQUEBrl69is8++0zesdUJl8uFhYUFGjVqhBYtWuCHH37Af//9h5MnT2Lbtm0Ayj+M4OBg9OnTBzweD8uWLUNZWRlGjx4NBwcH6OjooEmTJvjll1+k9l1aWoopU6ZAIBDA2NgYs2fPxogRI6RG3haJRJgyZQrMzMygra2N9u3bIzw8XLI8NDQULBYL58+fR6tWraCrq4t27drhyZMnAIBt27ahefPmAABHR0ewWCzEx8dLxXH58mVoamoiNTVVav7UqVPRoUMHOZ3J93NyaoTH0fFITS3/ckhKSsOzZy/g3txRaTG862p4NFydrfHTyt3oOWIZAqf9hiNnwt+/oQrxuByIGQb5xaWqDkXt+LpZIDp4CG6u7o9Vo9rAUI+r6pDUipGuJgy0NfE0482XbVGpGIlZhbAzUl4pqLrHVFJahtCr99G1k7fafBmr43lqqOpcVxQREYGdO3di586duH37tjxjkrtPP/0Unp6eOHjwoGTewoUL0b9/fzx48ACjRo2CWCyGtbU19u3bh6ioKMyfPx8//PAD/v33X8k2K1aswK5duxASEoJr165BKBTi8OHDUseaNWsWDhw4gO3bt+POnTtwdnZG9+7dkZmZKbXejz/+iDVr1iAiIgIaGhoYNWoUAGDIkCE4d+4cACAsLAwvX76EjY10kWrHjh3h6OiInTt3SuaVlJRg165dkv1URiQSQSgUSr3qIyCgLVq3bor587ZgwviVWLI4BF27tUabNsoren5XSloWDp+6BWsrY6xbMBL9/T/Buj+P4sSFOyqLqTqaHBbG+Dog9EkGCorp8TRvu3A/GZOCr2DA8tNYtPc22rla4J/ZXdW2waUqGHDLS7hzRdLXTq6oVLJM2dQxplsRj5FfUIQunbxUcvzKqON5qg6bJZ+XOqr12X7x4gWGDh2Ka9euQSAQAACys7PRrl077N27F9bWymmQWluurq64f/++ZHrYsGEYOXKk1DqLFi2S/N/BwQE3btzAv//+i8GDBwMAfvvtN8ydOxf9+/cHAGzYsAEnTpyQbJOfn4/g4GBs27YNAQEBAICtW7fi7Nmz+PPPPzFz5kzJusuWLUOnTp0AAHPmzEHPnj1RVFQEHR0dGBsbAwBMTU1hYWFR6fsZPXo0QkJCJPs8evQoioqKJLFWJigoSOo91ldERDRu3XqEMWP7wMrKBElJ6fhn7zkI+Hpo59tcbsepDTHDwNWpESZ81R0A0NjRCrGJaTh8+hZ6fNpCJTFVhcNm4acAVwDAr6HPVRyN+jl0I07y/+ikbEQlZuL2+kHwbWqBK49UV/1KPjxnL95FS08XGBvqqzqUDxZVjb1lzJgxKCkpQXR0NDIzM5GZmYno6GiIxWKMGTNGETHKBcMwUh9Cq1ayjXk3btyIli1bwtTUFHp6etiyZQsSE8t7seTk5CAtLQ0+Pj6S9TkcDlq2bCmZfv78OUpKSuDr6yuZp6mpCR8fH0RHR0sdy8PDQ/L/inZA6enpNX4/gYGBiImJwc2bNwGUV6kNHjwYPB6vym3mzp2LnJwcySspKanGx6vM/n0XERDQBj4+TWFtbYa2bd3RtVtrnDx5o177rQ9jQ33Y25hJzbO3NkVaJb1HVKkiCTLT18acww+pNKgGEtLz8EpYBEdz+jKrIBSVV6fqczlS8/W5GpJlyqZuMaVnZOPew1h081OvXs3qdp4aslonQpcuXUJwcDCaNGkimdekSRP89ttvuHz5slyDk6fo6Gg4ODhIpt9NGPbu3YsZM2Zg9OjROHPmDCIjIzFy5EgUFyumG+PbjbMrErTaPNzWzMwMvXv3RkhICNLS0nDy5Mlqq8WA8vZTBgYGUq/6KC4ukcnw2Ww2xIzqejt4uNoiMTlDal5iymtYmApUE1AlKpKgRgJtzDn8ALlFdNOrCUsjXRjpcZGWrbzG0+ous6AEwqISuJi+uZ9xNdiwNdRBQqZqzpO6xXTuUiT4fB5aezdW+rGro27nqSY+xsEUgTpUjdnY2FQ6cGJZWRmsrKzkEpS8XbhwAQ8ePMD3339f5TrXrl1Du3btMHHiRMm858/fVFfw+XyYm5sjPDwcHTt2BFD+nu/cuQMvLy8AgJOTE7S0tHDt2jXJOEslJSUIDw/H1KlT5f6+xowZg6FDh8La2hpOTk5SJVHK4OHpjOMnbsDI2ABWViZITEzD2TNh8G3v8f6NFWRI7/YYP3cztu8PRRff5oh6loQjZ8Iw65v+SotBW5MNK/6bxo4WBtpwNOEht6gUmQXFmNfDFS6meph3NApsFguGuuVJcW5RqcK6zHI12DDXf9PQ2FSPC1tDHeQXl+J1fgl4WhwY87QksVjyyx+mnFNYghwFJWo8rgYcLN4k43amenC3M0JWngjZeSLMHOiFo2EJSM8uhL25PhYOa4m4NCEu3K++p1l9qON50uKwpHqpGelqwsqAi4KSMmQXluJybCa6upjiVV4xXheUIMDVFMKiUpnxaj72mCojFjM4fzkSn3bwBIej/OFTPpTzVBMfc9VYrROhVatW4dtvv8XGjRsl1UsRERH47rvvsHr1arkHWFsikQipqalS3eeDgoLQq1cvDB8+vMrtXFxcsGPHDpw+fRoODg7YuXMnwsPDpUqRvv32WwQFBcHZ2Rmurq747bffkJWVJflweTwevvnmG8ycORNGRkawtbXFypUrUVBQgNGjR8v9vXbv3h0GBgZYunQpFi9eLPf9v8+wYd1w+PAV7Pr7DHJzCyAQ6KFjJ2/07q3chOxtbi7WCJr9FTb/fRrb/r0ASzNDfDeqF7orsZFkYzN9rB74po3UhI7lvejORKVh561EtHMsbwO2eZh0Uf2MAw9wP1kxVXiOxrr4sfubUtyvWpc3wL8c8wpbrieghY0A433tJcu//X/MB++l4OA9xbTH8XI0wX/z/CXTS78ur3becykGM/+6gaa2hhjSwQl8nhZSswoR+iAZQf/eRXFpzUtOa0sdz5ONQAcT3zpmX/fydoPhidnYG5mCizGvocVhY5CnFXQ02YjLLMCWm4kKHYdGHWOqzL2Hsch4lYOunVVTLfahnKeakEdjZ3VtLM1imPfXYxgaGkplcvn5+SgtLZWMyVPxfx6PJ9M7SpneHVDR0NAQnp6eGDZsGEaMGCEZUJHFYuHQoUMy3d4nTJiAQ4cOgcViYejQoeDz+Th58qRkNOfS0lJ8//332LFjBzgcDsaNG4fY2FhwOBzs2bMHAFBUVIRZs2Zhz549yM3NRatWrbBu3Tq0bt0aQHn3eT8/P2RlZUkam0dGRsLb2xtxcXGwt7eXmQbKe7lVNrL0/PnzsXz5ciQlJdV6zCGhUAg+n48toVHQ0VOfdhdNjetXZacIUw/ef/9KSmYmUL8utqdOPVB1CDL8/VXTcL865mr42amjfm6mqg5BxuHojPevpETFBXn44+tPkJOTU+/mDpWp+J4Y+sc1aOnq1WtfxQV52DPGV2Gx1lWNEqGK5KImRowYUa+APiRisRhubm4YPHgwlixZopIYRo8ejYyMDBw5cqTW21IiVHOUCNUMJUI1Q4lQzVAi9H7KSoSG/XldLonQ7tHt1C4RqlHVWENKbqqTkJCAM2fOoFOnThCJRNiwYQPi4uIwbNgwpceSk5ODBw8eYPfu3XVKggghhJCaokdsVKGoqEimV5U6ZXnyxmazsW3bNsyYMQMMw8Dd3R3nzp2Dm5vb+zeWs759+yIsLAwTJkxQi0ebEEIIIR+iWidC+fn5mD17Nv7991+8fv1aZnlZ2cc7HoqNjQ2uXbv2/hWVIDQ0VNUhEEIIaSDYLFa9R3VX11Hha92fcNasWbhw4QKCg4PB5XLxxx9/YNGiRbCyssKOHTsUESMhhBBCVKi+Ywip81hCtS4ROnr0KHbs2IHOnTtj5MiR6NChA5ydnWFnZ4ddu3bhyy+/VESchBBCCCFyV+sSoczMTDg6lo+dYWBgIOku3759e7UeWZoQQgghdVMxoGJ9X+qo1omQo6Mj4uLKH4bo6uoqeTr70aNHJePiEEIIIeTj8TFXjdU6ERo5ciTu3bsHoPyp6Rs3boS2tja+//57qaerE0IIIYSou1onQt9//z2mTJkCAOjatSseP36M3bt34+7du/juu+/kHiAhhBBCVKui11h9X7Vx+fJl9O7dG1ZWVmCxWDh8+LDUcoZhMH/+fFhaWkJHRwddu3bFs2fPav/ear3FO+zs7DBgwAB4eKjuQZuEEEIIURxVVI3l5+fD09MTGzdurHT5ypUr8euvv2Lz5s24desWeDweunfvjqKiolodp0a9xn799dca77CitIgQQgghHwdVPH0+ICAAAQEBlS5jGAbr16/HTz/9hL59+wIAduzYAXNzcxw+fBhffPFFjY9To0Ro3bp1NdoZi8WiRIgQQgghVRIKhVLTXC4XXC63VvuIi4tDamoqunbtKpnH5/PxySef4MaNG/JPhCp6iRGiDH/eeaHqEGTMC2ii6hBk9F9wXNUhyNg8u+v7V1KyCSvOqToEGSO+8FF1CDIexGeqOgQZo1tYqzoEGbaGtfvCVrQireL3ryQHbNS/LU3F9jY2NlLzFyxYgIULF9ZqX6mpqQAAc3Nzqfnm5uaSZTVVr2eNEUIIIeTjJ8+qsaSkJKnnkta2NEje6t1YmhBCCCGkpgwMDKRedUmELCwsAABpaWlS89PS0iTLaooSIUIIIYRUi8UC2PV8yXNARQcHB1hYWOD8+fOSeUKhELdu3ULbtm1rtS+qGiOEEEJItSqSmfruozby8vIQExMjmY6Li0NkZCSMjIxga2uLqVOnYunSpXBxcYGDgwPmzZsHKysr9OvXr1bHoUSIEEIIIWonIiICfn5+kulp06YBAEaMGIFt27Zh1qxZyM/Px7hx45CdnY327dvj1KlT0NbWrtVx6pQIXblyBb///jueP3+O/fv3o1GjRti5cyccHBzQvn37uuySEEIIIWpKFeMIde7cGQzDVLu/xYsXY/HixfWKq9ZthA4cOIDu3btDR0cHd+/ehUgkAgDk5ORg+fLl9QqGEEIIIeqnvu2D5FG1pii1ToSWLl2KzZs3Y+vWrdDU1JTM9/X1xZ07d+QaHCGEEEKIItW6auzJkyfo2LGjzHw+n4/s7Gx5xEQIIYQQNVKXZ4VVtg91VOsSIQsLC6lW3BWuXr0KR0dHuQRFCCGEEPWhiqfPK0utE6GxY8fiu+++w61bt8BisZCSkoJdu3ZhxowZ+OabbxQRIyGEEEJUiC2nlzqqddXYnDlzIBaL0aVLFxQUFKBjx47gcrmYMWMGvv32W0XESAghhBCiELVOhFgsFn788UfMnDkTMTExyMvLQ9OmTaGnp6eI+FRi27ZtmDp1KrV5eg+xWIwjR67i5s1HEObkQyDQQ7t2zdGzV7t6d7OsKUcjXXR2Noa1QBt8bU2EhCXhYWqu1Drdm5iijZ0AOpocxGUW4MD9VLzKV86DCgFgzJT1SH+VIzO/R7dWmDCyp1JiaOtqjsm93OHpYAwLQ118vfYCTkYkSpb/Nr49hnZyltrm/L1kDFlxVinxAepxPanjeVLHa7y5lQE+b2kNF1MejPW4WHgsCtdjyx/aymGzENjGDj72hrDkayNfVIo7STn483o8MpX4dwcAGa9zsGnHady88wRFxSWwtjDGD98OhJuzah7mKioqxoWT1/H4YQzycwtgYW2GgH6d0ci2do+EUIWPuY1QnQdU1NLSQtOmTesdQGpqKoKCgnD8+HG8ePECfD4fzs7O+OqrrzBixAjo6urW+xhEMU6evIlLoXcxclRPWFmZICE+FSEhJ6Cjw0WXrq2UEoOWBhspwiKEJWZjpI+NzHI/Z2N0cDTCnrvJyCwogX8TM4xrY4uVF5+jVFz1+BTytGbpWIjfOlZCUjrmB+2E7yfNlHJ8ANDlauBhQiZ2hT7DjmmfVrrOucgXmPL7Ncm0qLRMWeEBUI/rSR3Pkzpe49qaHMRm5OH0ozQs6OUmtYyrwYaLGQ+7wpMQm5EPPW0NTOzoiMW93DD5n3sKiacywrxCTJj7O1o0d8SaeYEQ8HlIevka+jwdpcXwriP/nkX6y1foP8wf+gZ6uH87Gjs2H8CkWSNgIFDvwgQ26t/Ghw31zIRqnQj5+flV++vswoULNd5XbGwsfH19IRAIsHz5cjRv3hxcLhcPHjzAli1b0KhRI/Tp00dmu5KSEqmu+0RacXExtLS0FH6c58+T4enlAg+P8l/IJiYChIVFIS7upcKPXeFxeh4ep+dVubyjoxHOPX2FR6nl6+y5m4yF3RvD3UIfkSlCpcTIN+BJTe8/chUW5oZwd7NTyvGB8lKL8/eSq12nuFSM9JxCJUUkSx2uJ3U8T+p4jYcnZCE8IavSZQXFZZhz+JHUvA2hz7HhCy+Y6nGRkSdSSEzv2nXwEsxM+Pjx20GSeVbmRko5dmVKiksRdf8Zho7qA3un8hIpP/+2eBoVi/Dr99Clh6/KYmvoat12ycvLC56enpJX06ZNUVxcjDt37qB58+a12tfEiROhoaGBiIgIDB48GG5ubnB0dETfvn1x/Phx9O7dG0B5dVxwcDD69OkDHo+HZcuWoaysDKNHj4aDgwN0dHTQpEkT/PLLL1L7Dw0NhY+PD3g8HgQCAXx9fZGQkAAAuHfvHvz8/KCvrw8DAwO0bNkSERERUtufPn0abm5u0NPTg7+/P16+fHNDFovFWLx4MaytrcHlcuHl5YVTp05JlsfHx4PFYmHv3r1o164dtLW14e7ujkuXLknFx2KxcPz4cXh4eEBbWxtt2rTBw4cPpeK4evUqOnToAB0dHdjY2GDKlCnIz8+XLLe3t8eSJUswfPhwGBgYYNy4cbX6HOrKyakRHkfHIzW1vEg8KSkNz569gHtz9eg9aKSrCQNtTTzNePMlUlQqRmJWIeyMVPOrsKS0DKFX76NrJ2+lVffUlK+bBaKDh+Dm6v5YNaoNDPVq/0To+lD366mCqs/T29TxGq8Mj8uBmGGQX1yqtGNeDY+Gq7M1flq5Gz1HLEPgtN9w5Ey40o7/LrFYDEbMQENDuvxBQ1MDiXEpKoqq5iqqxur7Uke1LhFat25dpfMXLlyIvLyqf7W86/Xr1zhz5gyWL18OHo9X6Tpvf1EsXLgQP//8M9avXw8NDQ2IxWJYW1tj3759MDY2xvXr1zFu3DhYWlpi8ODBKC0tRb9+/TB27Fjs2bMHxcXFCAsLk+zzyy+/hLe3N4KDg8HhcBAZGSlVylRQUIDVq1dj586dYLPZ+OqrrzBjxgzs2rULAPDLL79gzZo1+P333+Ht7Y2//voLffr0waNHj+Di4iLZz8yZM7F+/Xo0bdoUa9euRe/evREXFwdjY2OpdX755RdYWFjghx9+QO/evfH06VNoamri+fPn8Pf3x9KlS/HXX38hIyMDkydPxuTJkxESEiLZx+rVqzF//nwsWLCgynMuEokkI4ED5U/qrY+AgLYoKizG/HlbwGazIRaL0a9/J7Rpo7wqn+oYcMsv71yRdNVFrqhUskzZbkU8Rn5BEbp08lLJ8aty4X4yjocnICEjF/bmBvhpcAv8M7sr/OefgLiaIe7lSd2vJ0A9ztPb1PEaf5cmh4Uxvg4IfZKBgmLlVbempGXh8KlbGNLHF8MHdUZ0zAus+/MoNDQ46PFpC6XFUYGrrQVre0tcOnsLJuZG0NPXxYM7T/Ai/iWMTARKj6e2VPHQVWWR21/KV199BR8fH6xevbpG68fExIBhGDRp0kRqvomJCYqKigAAkyZNwooVKwAAw4YNw8iRI6XWXbRokeT/Dg4OuHHjBv79918MHjwYQqEQOTk56NWrF5ycnAAAbm5v6rITExMxc+ZMuLq6AoBU8gKUV79t3rxZsu3kyZOlnmeyevVqzJ49G1988QUAYMWKFbh48SLWr1+PjRs3StabPHkyBg4cCAAIDg7GqVOn8Oeff2LWrFmSdRYsWIBu3boBALZv3w5ra2scOnQIgwcPRlBQEL788ktMnTpVEuevv/6KTp06ITg4WPJwuU8//RTTp0+v9pwHBQVJnbP6ioiIxq1bjzBmbB9YWZkgKSkd/+w9BwFfD+18a1c62FCcvXgXLT1dYGyor+pQpBy6ESf5f3RSNqISM3F7/SD4NrXAlUfKqZr6EK4ndThPHxIOm4WfAsrvsb+GPlfqscUMA1enRpjwVXcAQGNHK8QmpuHw6VsqSYQAYMAwf/y39wzWLtoKFpsFy0ZmcPdugpcv0lUSDyknt279N27cqPUTXysTFhaGyMhINGvWTKr0olUr2caSGzduRMuWLWFqago9PT1s2bIFiYnlPTyMjIwQGBiI7t27o3fv3vjll1+kqramTZuGMWPGoGvXrvj555/x/Ln0H6murq4kCQIAS0tLpKeXX6xCoRApKSnw9ZWu0/X19UV0dLTUvLZt20r+r6GhgVatWlW7jpGREZo0aSJZ5969e9i2bRv09PQkr+7du0MsFiMu7s1NubLz8665c+ciJydH8kpKSnrvNtXZv+8iAgLawMenKaytzdC2rTu6dmuNkydv1Gu/8iIUlRfD63M5UvP1uRqSZcqUnpGNew9j0c3PW+nHrq2E9Dy8EhbB0Vx5CZu6X0+VUcV5epu6XeNvq0iCzPS1MefwQ6WWBgGAsaE+7G3MpObZW5sirZIenMpiZCLAyMmD8UPQZEybPwbjvh8GsVgMQ2O+ymKqKRar/oMqfjRVYwMGDJCaZhgGL1++REREBObNm1fj/Tg7O4PFYuHJkydS8ytGp9bRka7ffrf6bO/evZgxYwbWrFmDtm3bQl9fH6tWrcKtW7ck64SEhGDKlCk4deoU/vnnH/z00084e/Ys2rRpg4ULF2LYsGE4fvw4Tp48iQULFmDv3r3o378/AMg0xmaxWNU+BVdR8vLyMH78eEyZMkVmma2treT/VVUvvo3L5YLLlV97huLiEpl2Lmw2WyVVBJXJLCiBsKgELqY8pAjLk2quBhu2hjq4Hl95Q09FOncpEnw+D629Gyv92LVlaaQLIz0u0rKV1yhY3a+nyqjiPL1N3a7xChVJUCOBNmYefIDcIuUnZR6utkhMzpCal5jyGhamAqXH8i4tria0uJooLChCzOMEdOvdXtUhvRd1n38Lny+dubLZbDRp0gSLFy/GZ599VuP9GBsbo1u3btiwYQO+/fbbGn2Rv+3atWto164dJk6cKJn3bqkOAHh7e8Pb2xtz585F27ZtsXv3brRp0wYA0LhxYzRu3Bjff/89hg4dipCQEEkiVB0DAwNYWVnh2rVr6NSpk1RMPj4+UuvevHlT8my20tJS3L59G5MnT5ZZpyKpycrKwtOnTyXVeC1atEBUVBScnaXHLlEHHp7OOH7iBoyMDWBlZYLExDScPRMG3/YeSotBi8OCCe9NDzkjXU1YGXBRUFKG7MJSXI7NRFcXU7zKK8brghIEuJpCWFQqMw6LoonFDM5fjsSnHTzB4Sh/fFUeVwMOFgaSaTtTPbjbGSErT4TsPBFmDvTC0bAEpGcXwt5cHwuHtURcmhAX7lffg0qe1OF6UsfzpI7XuLYmG1b8Nz9WLQy04WjCQ25RKTILijGvhytcTPUw72gU2CwWDHXLf1jmFpUqbdiKIb3bY/zczdi+PxRdfJsj6lkSjpwJw6xv3n+PV5SYx/FgGMDEzBCZr7Jx5ugVmJgZwttHfdrBNUS1SoTKysowcuRING/eHIaGhvU++KZNm+Dr64tWrVph4cKF8PDwAJvNRnh4OB4/foyWLVtWua2Liwt27NiB06dPw8HBATt37kR4eDgcHBwAAHFxcdiyZQv69OkDKysrPHnyBM+ePcPw4cNRWFiImTNnYtCgQXBwcMCLFy8QHh4uactTEzNnzsSCBQvg5OQELy8vhISEIDIyUtKYusLGjRvh4uICNzc3rFu3DllZWRg1apTUOosXL4axsTHMzc3x448/wsTEBP369QMAzJ49G23atMHkyZMxZswY8Hg8REVF4ezZs9iwYUON41WEYcO64fDhK9j19xnk5hZAINBDx07e6N1bed1AbQQ6mOhrL5nu614+MFl4Yjb2RqbgYsxraHHYGORpBR1NNuIyC7DlZqLSbsYV7j2MRcarHHTtrJpqMS9HE/w3z18yvfTr8oR9z6UYzPzrBpraGmJIByfweVpIzSpE6INkBP17F8WlYqXFqA7XkzqeJ3W8xhub6WP1wDfttiZ0LC/JPxOVhp23EtHOsbwzyOZh0tf7jAMPcD9ZOVVTbi7WCJr9FTb/fRrb/r0ASzNDfDeqF7qrsKNCUZEI549fgzA7Dzq6XLh5uKBLD19wOJz3b6xi1Fj6/zgcDj777DNER0fLJRFycnLC3bt3sXz5csydOxcvXrwAl8tF06ZNMWPGDKnSnneNHz8ed+/exZAhQ8BisTB06FBMnDgRJ0+eBFDexufx48fYvn07Xr9+DUtLS0yaNAnjx49HaWkpXr9+jeHDhyMtLQ0mJiYYMGBArRoST5kyBTk5OZg+fTrS09PRtGlTHDlyRKbR9c8//4yff/4ZkZGRcHZ2xpEjR2BiYiKzznfffYdnz57By8sLR48elYwD5OHhgUuXLuHHH39Ehw4dwDAMnJycMGTIkBrHqija2lx88UVXfPFFV5XF8Px1AaYfiap2ndNPMnD6SUa16yiat4cTjuyuukefol2LToXJsG1VLh/8s/JGkK6KOlxP6nie1PEav5+cg89+vVrl8uqWKZNva1f4tnZVdRgS7l5N4O7V5P0rqiHW///Vdx/qiMXUsuFLq1atsGLFCnTp0kVRMX0U4uPj4eDggLt378LLy6vSdUJDQ+Hn54esrCwIBAKlxgeUN/rm8/nYEhoFHT316cV0I0E5Ax3WRj83U1WHIKP/guOqDkHG5tmqS2KqMmHFOVWHIGPEFz7vX0nJHsRnqjoEGesHKK9atKbOxqn2R9W7ivJzsbC3N3JycmBgYPD+DWqp4ntiwZG70ObV73uiKD8Xi/ooLta6qnVjhaVLl2LGjBk4duwYXr58CaFQKPUihBBCCPlQ1LhqbPHixZg+fTp69OgBAOjTp49UDw+GYcBisVBWptwukoQQQghRLGojhPLBCydMmICLFy8qMp6Phr29/Xu723fu3FklXfIJIYSQ2mCxWPV+LJC6PVaoQo0ToYov7Le7ixNCCCGEfMhq1WtMXbM5QgghhCgOVY39X+PGjd+bDGVmql/PA0IIIYTUHY0s/X+LFi2SGVmaEEIIIeRDVatE6IsvvoCZmdn7VySEEELIR6Piwan13Yc6qnEiRO2DCCGEkIbpY24jVOMBFambNyGEEEI+NjUuERKLlffwRUIIIYSoETk0llbTR43Vro0QIYQQQhoeNlhg1zOTqe/2ikKJEEFYUi60dNWn6lMdH/6Yll2o6hBkqOMDTtXxgbn+/s1VHcIHYVwne1WHION1oUjVIcjYce65qkOQUibKV8pxPubu87V+6CohhBBCyMeCSoQIIYQQUq2PudcYJUKEEEIIqdbHPI4QVY0RQgghpMGiEiFCCCGEVOtjbixNiRAhhBBCqsWGHKrG1LT7PFWNEUIIIaTBohIhQgghhFSLqsYIIYQQ0mCxUf8qJHWtglLXuAghhBBCFI4SIUIIIYRUi8ViyeVVG2VlZZg3bx4cHBygo6MDJycnLFmyBAwj30dCUdUYIYQQQqrFQv0fHl/b7VesWIHg4GBs374dzZo1Q0REBEaOHAk+n48pU6bUM5o3KBH6QHXu3BleXl5Yv3690o7paKSLzs7GsBZog6+tiZCwJDxMzZVap3sTU7SxE0BHk4O4zAIcuJ+KV/nFCoupuZUBPm9pDRdTHoz1uFh4LArXY8sf2sphsxDYxg4+9oaw5GsjX1SKO0k5+PN6PDIVGFMTMz30bGYOB2NdGOpqYd3FGNxOypEsb2UrQJfGprA31oU+VwM/HI1CYpZyH+oqFotx5MhV3Lz5CMKcfAgEemjXrjl69mpX619tdaWO15M6fnbqeJ7epQ7X07vGTFmP9Fc5MvN7dGuFCSN7KiUGbztDDPe1h5ulPkwNtDF9z12EPs6QLB/X2Qnd3S1gztdGSZkY0SlCbDofg4fJsnGrmipGlr5+/Tr69u2Lnj3LPy97e3vs2bMHYWFh9YpDJi657o0AAAIDA8FisTBhwgSZZZMmTQKLxUJgYGCN9hUaGgoWi4Xs7Gz5BlkHWhpspAiLcPB+aqXL/ZyN0cHRCPvvv8QvV+JQXMpgXBtbaCjwATPamhzEZuRhQ2iszDKuBhsuZjzsCk/CxD2RWHTiMWwMdbC4l5vC4qk4bmJWIbbfSqpy+ZP0PPxz+4VC46jOyZM3cSn0LoYN64bFS8Zg4MDOOHXqFi6cv620GNTxelLHz04dz9O71OF6eteapWOxfdN0yWvx3K8BAL6fNFNaDDqaHDxNzcWK448rXZ74Oh8rTkRjyKbrGP1nGF5mF2Lj8BYQ6GoqLUZ11q5dO5w/fx5Pnz4FANy7dw9Xr15FQECAXI9DJUIKYmNjg71792LdunXQ0dEBABQVFWH37t2wtbVVcXR18zg9D4/T86pc3tHRCOeevsKj1PJ19txNxsLujeFuoY/IFKFCYgpPyEJ4QlalywqKyzDn8COpeRtCn2PDF14w1eMiI0+kkJjupwhxv5r3e+3/JVYmPC2FHL8mnj9PhqeXCzw8nMtjMREgLCwKcXEvlRaDOl5P6vjZqeN5epc6XE/v4hvwpKb3H7kKC3NDuLvZKS2G6zGvcD3mVZXLTz2QTm7Xnn6Cfi2t4WKuj/C4TEWHV2vySq2FQunrksvlgsvlyqw3Z84cCIVCuLq6gsPhoKysDMuWLcOXX34pp0jKUYmQgrRo0QI2NjY4ePCgZN7Bgwdha2sLb29vyTyRSIQpU6bAzMwM2traaN++PcLDwwEA8fHx8PPzAwAYGhrKlCSJxWLMmjULRkZGsLCwwMKFC5Xy3ipjpKsJA21NPM14c8MuKhUjMasQdkY6KovrXTwuB2KGQX5xqapDUSknp0Z4HB2P1NTym21SUhqePXsB9+aOKo6s3IdyPamaupwndb+eSkrLEHr1Prp28lZZVd37aHBYGNDSGrmFJXiWlvv+DZSsYhyh+r6A8oICPp8veQUFBVV6zH///Re7du3C7t27cefOHWzfvh2rV6/G9u3b5freqERIgUaNGoWQkBBJ9vrXX39h5MiRCA0Nlawza9YsHDhwANu3b4ednR1WrlyJ7t27IyYmBjY2Njhw4AAGDhyIJ0+ewMDAQFK6BADbt2/HtGnTcOvWLdy4cQOBgYHw9fVFt27dKo1HJBJBJHpTCvJuVl4fBtzySylXVCY1P1dUKlmmapocFsb4OiD0SQYKisvev8FHLCCgLYoKizF/3haw2WyIxWL0698Jbdoor9qgOh/C9aQO1OU8qfv1dCviMfILitClk5eqQ5HRobEJlg/ygLYmB6/yRJi44zayC0pUHZZCJSUlwcDAQDJdWWkQAMycORNz5szBF198AQBo3rw5EhISEBQUhBEjRsgtHrqjKNBXX32FuXPnIiEhAQBw7do17N27V5II5efnIzg4GNu2bZPUeW7duhVnz57Fn3/+iZkzZ8LIyAgAYGZmBoFAILV/Dw8PLFiwAADg4uKCDRs24Pz581UmQkFBQVi0aJEC3qn647BZ+CnAFQDwa+hzFUejehER0bh16xHGjO0DKysTJCWl45+95yDg66Gdb3NVh0c+MOp+PZ29eBctPV1gbKiv6lBkhMdlYejmGxDoaqF/y0b4ebAnRmy9hSwlNnavibp0f69sHwBgYGAglQhVpaCgAGy2dMUVh8OBWCyuVxzvoqoxBTI1NUXPnj2xbds2hISEoGfPnjAxMZEsf/78OUpKSuDr6yuZp6mpCR8fH0RHR793/x4eHlLTlpaWSE9Pr3L9uXPnIicnR/JKSqq8QWhdCEXlVU36XI7UfH2uhmSZqlQkQWb62phz+GGDLw0CgP37LiIgoA18fJrC2toMbdu6o2u31jh58oaqQwOg3teTOlGX86TO11N6RjbuPYxFNz/v96+sAkUlZXiRWYiHL3Kw5L8olInF6NeikarDksGW06s2evfujWXLluH48eOIj4/HoUOHsHbtWvTv318eb0mCSoQUbNSoUZg8eTIAYOPGjXLdt6amdM8CFotVbaZcVYM0ecgsKIGwqAQupjykCMur37gabNga6uB6fOWNmZWhIglqJNDGzIMPkFtEX6IAUFxcIvPrjs1mQyzngcrqSl2vJ3WjLudJna+nc5ciwefz0Nq7sapDqRE2iwVNDpVRAMBvv/2GefPmYeLEiUhPT4eVlRXGjx+P+fPny/U4lAgpmL+/P4qLi8FisdC9e3epZU5OTtDS0sK1a9dgZ1fek6GkpATh4eGYOnUqAEBLq7x3SlmZ6ksxtDgsqd4yRrqasDLgoqCkDNmFpbgcm4muLqZ4lVeM1wUlCHA1hbCoVGbME3nS1mTDiv+m3ZSFgTYcTXjILSpFZkEx5vVwhYupHuYdjQKbxYLh/7ul5haVolSsmJs0V4MNc/03CaepHhe2hjrILy7F6/wS8LQ4MOZpSWKx5GsDAHIKS5CjpETNw9MZx0/cgJGxAaysTJCYmIazZ8Lg297j/RvLiTpeT+r42anjeXqXOlxPlRGLGZy/HIlPO3iCo4LkQkeLAxsjXcm0laEOGlvoQ1hYguyCEozu6IBLTzLwKlcEga4mBvvYwlSfi3OPKh8qQZXkWTVWU/r6+li/fr3Cx8ujREjBOByOpJqLw5EuvubxePjmm28kbYFsbW2xcuVKFBQUYPTo0QAAOzs7sFgsHDt2DD169ICOjg709PSU/j4AwEagg4m+9pLpvu4WAIDwxGzsjUzBxZjX0OKwMcjTCjqabMRlFmDLzUSFJRwA0NhMH6sHvmmDMKFjeS+VM1Fp2HkrEe0cjQEAm4dJF4vPOPAA9xU0aJmjsS5+7N5EMv1VaxsAwOWYV9hyPQEtbAQY/9Z5/Pb/MR+8l4KD95TT3XjYsG44fPgKdv19Brm5BRAI9NCxkzd69/Z9/8Zyoo7Xkzp+dup4nt6lDtdTZe49jEXGqxx07ayaarGmVgbYMrK1ZHq6f3k7xaN3k7H8WDTsTXjo5WUFga4WcgqK8ShFiDF/hSM2I18l8VZHFSNLKwuLkfdDOwgCAwORnZ2Nw4cPV7q8X79+EAgE2LZtG4qKijBr1izs2bMHubm5aNWqFdatW4fWrd/88SxZsgSbNm1CWloahg8fjm3btlU6svTb+60JoVAIPp+PMTtvQUtXNclVZR7Eq9/4GWYC9euy3c/TXNUhyLiRoJxxa2ojLVu5o3bXhLkaXk9t7d7feFXZzHUVU5VfH1P/vqvqEKSUifLxZM0A5OTk1KgBcm1VfE9su/IYunr1a2xekJeLwA6uCou1rigRasAoEao5SoRqhhKhmqFEqGYoEXo/ZSVC268+kUsiNKJ9E7VLhKhqjBBCCCHVqkuvr8r2oY4oESKEEEJItVTRWFpZ1DVBI4QQQghROCoRIoQQQki1PuZeY5QIEUIIIaRabz80tT77UEdUNUYIIYSQBotKhAghhBBSLTZYYNezcqu+2ysKJUKEEEIIqRZVjRFCCCGEfISoRIgQQggh1WL9/19996GOKBEihBBCSLWoaowQQggh5CNEJUIEuw/cBktTfR4CeXnlAFWHIGP5hWeqDkHG4Xtpqg5BRvTz16oOQcbcAU1VHQKpI2Md9XvoatbrPFWHIEVcXKCU47Dk0GuMqsYIIYQQ8kH6mKvGKBEihBBCSLU+5kSI2ggRQgghpMGiEiFCCCGEVIu6zxNCCCGkwWKzyl/13Yc6oqoxQgghhDRYVCJECCGEkGpR1RghhBBCGizqNUYIIYQQ8hGiEiFCCCGEVIuF+ldtqWmBECVChBBCCKke9RojhBBCCPkIUYmQGggNDYWfnx+ysrIgEAhUHU6V2rqaY3Ivd3g6GMPCUBdfr72AkxGJkuW/jW+PoZ2cpbY5fy8ZQ1acVWqcGa9zsGnHady88wRFxSWwtjDGD98OhJuztVKO38RMDz2bmcPBWBeGulpYdzEGt5NyJMtb2QrQpbEp7I11oc/VwA9Ho5CYVdjgYvK2M8RwX3u4WerD1EAb0/fcRejjDMnycZ2d0N3dAuZ8bZSUiRGdIsSm8zF4mJxTzV7lSywW48iRq7h58xGEOfkQCPTQrl1z9OzVDiwVtfykmGpO1feC1k7GGNe1MdxtBTDn62D8lhs4e/9lpesu/cILw9o7Ysn+ewgJfa6U+GqDeo19JDIyMjB//nwcP34caWlpMDQ0hKenJ+bPnw9fX1+VxdWuXTu8fPkSfD5fZTHUhC5XAw8TMrEr9Bl2TPu00nXORb7AlN+vSaZFpWXKCg8AIMwrxIS5v6NFc0esmRcIAZ+HpJevoc/TUVoMXA02ErMKcTnmNab6OVW6/El6Hm7FZ2JMO/sGG5OOJgdPU3Nx5E4yVg/1klme+DofK05EIzmrEFwNNr5sa4eNw1ug7y9XkV1QopQYT568iUuhdzFyVE9YWZkgIT4VISEnoKPDRZeurZQSA8VUN+pwL9DlaiA6OQf7biRg87g2Va73mYcVvOyNkJqt2B8f9fEx9xprUInQwIEDUVxcjO3bt8PR0RFpaWk4f/48Xr9+rZDjFRcXQ0tL673raWlpwcLCQiExyNP5e8k4fy+52nWKS8VIz1HdH/Oug5dgZsLHj98OksyzMjdSagz3U4S4nyKscvm12EwAgAnv/deGvKhjTNdjXuF6zKsql596kCo1vfb0E/RraQ0Xc32Ex2UqOjwAwPPnyfD0coGHR3lJp4mJAGFhUYiLq/xXPcWkPjGpw73gUlQaLkWlVbuOOV8bCz73RODGq/jzm3ZKiqz2WKh/Y2c1zYMaThuh7OxsXLlyBStWrICfnx/s7Ozg4+ODuXPnok+fPpJ1xo8fD3Nzc2hra8Pd3R3Hjh2T7OPAgQNo1qwZuFwu7O3tsWbNGqlj2NvbY8mSJRg+fDgMDAwwbtw4xMfHg8ViYe/evWjXrp1kv5cuXZJsFxoaChaLhezs7Foda/ny5Rg1ahT09fVha2uLLVu2KODM1Y6vmwWig4fg5ur+WDWqDQz1uEo9/tXwaLg6W+OnlbvRc8QyBE77DUfOhCs1BiJ/GhwWBrS0Rm5hCZ6l5SrtuE5OjfA4Oh6pqeWJV1JSGp49ewH35o5Ki4FiqpsP4V7AYgFrhrfC1vNP8SxVedc1kdZgSoT09PSgp6eHw4cPo02bNuBypb+gxWIxAgICkJubi7///htOTk6IiooCh8MBANy+fRuDBw/GwoULMWTIEFy/fh0TJ06EsbExAgMDJftZvXo15s+fjwULFkjtf+bMmVi/fj2aNm2KtWvXonfv3oiLi4OxsbFMrDU91po1a7BkyRL88MMP2L9/P7755ht06tQJTZo0qfQciEQiiEQiybRQWHUJQV1cuJ+M4+EJSMjIhb25AX4a3AL/zO4K//knIGYYuR6rKilpWTh86haG9PHF8EGdER3zAuv+PAoNDQ56fNpCKTEQ+enQ2ATLB3lAW5ODV3kiTNxxW2nVYgAQENAWRYXFmD9vC9hsNsRiMfr174Q2bZopLQaKqW4+hHvBhG6NUSZmsE0N2wS9iw0W2PWs22KraZlQg0mENDQ0sG3bNowdOxabN29GixYt0KlTJ3zxxRfw8PDAuXPnEBYWhujoaDRu3BgA4Oj45tfM2rVr0aVLF8ybNw8A0LhxY0RFRWHVqlVSycmnn36K6dOnS6bj4+MBAJMnT8bAgQMBAMHBwTh16hT+/PNPzJo1SybWmh6rR48emDhxIgBg9uzZWLduHS5evFhlIhQUFIRFixbV8szV3KEbcZL/RydlIyoxE7fXD4JvUwtceaScInIxw8DVqREmfNUdANDY0QqxiWk4fPqW2tz8SM2Fx2Vh6OYbEOhqoX/LRvh5sCdGbL2FrPxipRw/IiIat249wpixfWBlZYKkpHT8s/ccBHw9tPNtrpQYKKa6Ufd7gbuNAIGdndF7xQVVh1IjVDX2kRg4cCBSUlJw5MgR+Pv7IzQ0FC1atMC2bdsQGRkJa2trSRL0rujoaJkG1b6+vnj27BnKyt40CG7VqvKGgW3btpX8X0NDA61atUJ0dHS9juXh4SH5P4vFgoWFBdLT06t498DcuXORk5MjeSUlJVW5rjwkpOfhlbAIjub6Cj3O24wN9WFvYyY1z97aFGmvlNfTiMhPUUkZXmQW4uGLHCz5LwplYjH6tWiktOPv33cRAQFt4OPTFNbWZmjb1h1du7XGyZM3lBYDxVQ36n4vaO1kDGM9Lq4u9sfTX/rh6S/9YG3Mww8DPHB5UXdVh9egNJgSoQra2tro1q0bunXrhnnz5mHMmDFYsGABZsyYIZf983g8ueynJjQ1NaWmWSwWxGJxletzuVyZKkFFsjTShZEeF2lK7Anh4WqLxOQMqXmJKa9hYSpQWgxEcdgsFjQ5yvv9VlxcItP9m81mK62qtzIUU82o+73gUHgSrj2Rjm/bJF8cDkvEvpsJKoqqGh9xkVCDKhGqTNOmTZGfnw8PDw+8ePECT58+rXQ9Nzc3XLt2TWretWvX0LhxY0k7ourcvHlT8v/S0lLcvn0bbm5uCjmWovC4GnC3M4K7XXnPCztTPbjbGaGRMQ88rgYWDmuFls6msDHRQ4dmlvh7+qeISxPiwv3qe5rJ05De7fHoaRK27w/Fi5evceZyJI6cCcOAgKq7rsobV4MNW0Md2BqWd9M11ePC1lAHxrzyxJWnxYGtoQ4aCbQBAJZ8bdga6oCvrbjfJeoYk44WB40t9NHYorzE0MpQB40t9GHB14a2JgeTujjD3ZoPC742XC31Mb9vM5jqc3HuUep79iw/Hp7OOH7iBu7fj8GrV9m4c+cJzp4Jg7d35SXHFJP6xKQO9wJdLQ7cGvHh1qh8aBQbYx7cGvFhZaiD7PxiPH0plHqVlomRISxCXHqe0mKsKZac/qmjBlMi9Pr1a3z++ecYNWoUPDw8oK+vj4iICKxcuRJ9+/ZFp06d0LFjRwwcOBBr166Fs7MzHj9+DBaLBX9/f0yfPh2tW7fGkiVLMGTIENy4cQMbNmzApk2banT8jRs3wsXFBW5ubli3bh2ysrIwatSoStet77EUxcvRBP/N85dML/3aBwCw51IMZv51A01tDTGkgxP4PC2kZhUi9EEygv69i+LSqkup5M3NxRpBs7/C5r9PY9u/F2BpZojvRvVC905eSovB0VgXP3Z/007rq9Y2AIDLMa+w5XoCWtgIMN7XXrL8247lbdEO3kvBwXuKaUuljjE1tTLAlpGtJdPT/V0BAEfvJmP5sWjYm/DQy8sKAl0t5BQU41GKEGP+CkdsRr5C4qnMsGHdcPjwFez6+wxycwsgEOihYydv9O6tunHHKKaaUYd7QXM7Q+z5rqNk+qeB5c0Z9t9MwKy/bystDlI9FsOosOxSiUQiERYuXIgzZ87g+fPnKCkpgY2NDT7//HP88MMP0NHRQWZmJmbMmIEjR44gPz8fzs7O+Pnnn9GzZ08A5V3a58+fj2fPnsHS0hLffvutVJWavb09pk6diqlTp0rmxcfHw8HBAbt378b69esRGRkJZ2dnbNiwAX5+fgAqH1m6Lsfy8vJCv379sHDhwhqdE6FQCD6fD91+m8DSVN4gY+9zeeUAVYcgY/mFZ6oO4YMQ/VwxY3LVx9wBTVUdAqmjpsYGqg5BRq+fz6k6BCni4gKkhXyNnJwcGBjI/3xVfE+cj0yEnn799p+XK0QXL1uFxVpXDSYRUpWKROju3bvw8vJSdThSKBGqOUqEaoYSISJPlAi9n7ISoQtySoQ+VcNEqMG3ESKEEEJIw9Vg2ggRQgghpI6o1xipK3t7ezAMo3bVYoQQQkhNqarXWHJyMr766isYGxtDR0cHzZs3R0REhFzfG5UIEUIIIaRaqnj6fFZWFnx9feHn54eTJ0/C1NQUz549g6GhYf0CeQclQoQQQghROytWrICNjQ1CQkIk8xwcHOR+HKoaI4QQQki1WHJ61caRI0fQqlUrfP755zAzM4O3tze2bt0qj7cjhRIhQgghhFRPjpmQUCiUeolEokoPGRsbi+DgYLi4uOD06dP45ptvMGXKFGzfvl2ub40SIUIIIYQojY2NDfh8vuQVFBRU6XpisRgtWrTA8uXL4e3tjXHjxmHs2LHYvHmzXOOhNkKEEEIIqZY8nhVWsX1SUpLUgIpVPQzc0tISTZtKD4jq5uaGAwcO1CuOd1EiRAghhJBqybPXmIGBQY1Glvb19cWTJ0+k5j19+hR2dnb1C+QdVDVGCCGEELXz/fff4+bNm1i+fDliYmKwe/dubNmyBZMmTZLrcSgRIoQQQv7X3p3HRVH/fwB/LcfusuxyI4esgFyCioqCB16k5H0UZaaVeN9HpaklollammmmX0tLMe/UNM28DcX7iMPiEuRSUREFXJVz378/+DG5LiIqLCjvZw8ej2bms/N5z2fG2fd+5jMzrEI1cdeYr68vdu7cic2bN6NJkyaYN28eli5disGDB1fFJgn40hjDxk+7wViuqOkwBB0/+a2mQ9Di08a1pkPQ0quFXU2HoMXGrPa8vLc2O52WV9MhaGnrWHteglnm57+v1nQIWtr5Ve1lmRdV9FCF3WufXu6F1dArNnr37o3evXu/YMUV4x4hxhhjjNVZ3CPEGGOMsQpV5V1jtQ0nQowxxhirUE28a0xXOBFijDHGWIVqaIiQTvAYIcYYY4zVWdwjxBhjjLGKvcJdQpwIMcYYY6xCr/Jgab40xhhjjLE6i3uEGGOMMVYhvmuMMcYYY3XWKzxEiC+NMcYYY6zu4h4h9txGTFqKW7dzteb3DGyFMUN76SSGto1sMKF3EzRztoStuQzvf3sU+y6kC8u/H90e73bSfE/YkehreOfrQ9UWU1N7E7zd0gFu1sawlEsw549YnLpyBwCgrydCcBtH+DmZw85UivsFxfg7Ixc/n0rFnfuF1RZTeQryC3F03ynE/5OE+/cewNahHnr074z6DWx1Un9DCxk6u1rCwUwKU6kh1p7LwD837mmU6eZhjTaOZjAy1EfKnQfYEXMDt3XYTmq1Grt3n8CZM/8iL/c+zMzkaNeuKXr1bgeRjvr5uZ0qpza2k0c9OXo1toGzpQzmMjGW/JWEixn/nTNbNTBDF3drOFnKoJAY4NM9sUi/+7Da4nkhr3CXECdCL7Hg4GDk5ORg165dAIDOnTujefPmWLp0qU7qX/zFSKjVJEynZdzC7AXr4d+6sU7qBwCZxAD/pN3BxvDL+OWj18otczjqKib9eFKYLiguqdaYpIb6uJKlwoF/byK0t6fGMomBHtzqGWPj+QxcyboPudQA4zo2xOe9PTFha3S1xvW43b8ewq3M23hjUHcoTOSIuRiHX37YgfGfDIGJmbza6xcb6OF6Xj7OpedgqJ9Sa3mAqyU6NLTA5shruPOgCN096mFUmwZY+Fcyih857qrTvn1ncCw8EkOH9YK9vRXSUm9g7do/YWQkQZeurXQSA7dT5dTGdpIY6CH97kMcT8rGlACXcpcn3FLhbOodjGjnVC0xVJVX+a4xToSqSVZWFmbPno29e/fi5s2bMDc3R7NmzTB79mz4+/tXSR3fffcdiHRzoiuPqYmxxvT23Sdga2OOJp66ezvzkehrOBJ9rcIyhcVq3MrV3a+s82l3cT7tbrnLHhSWYMaufzXmLQ9PxvKBzWEtlyBLVaCLEFFUWIzYmMt4d1hfOLk4AAACurdFYuwVnD8VjS49q+YYrUj8LRXib6meuLxjQwscTryNf2+UltkceQ1zurmjia0CUdd18/b25ORraNbcDd7epb2KVlZmOHcuFikpmTqpH+B2qqza2E4x1/MQU8G6T/5/T7GVsbha6meVw2OEqklQUBAiIyOxbt06JCYmYvfu3ejcuTOys7OrrA5TU1OYmZlV2fpeRFFxCcJPxKBrpxY66wqvLH9PW8StfAdnvnkDi4a1gblcUtMhaTCW6ENNhPuFxTqrU61Wg9QEAwPN30IGhgZIT7musziexEJmCBOpIRKz/vtiyy9WI/3uQzhaGOksDheX+oiPS8WNG6VfWBkZN3H58lU0adpQZzFUhNupcmpLO73Myu4ae9G/2oh7hKpBTk4OIiIiEB4ejk6dOgEAHB0d4efnJ5QRiURYvXo19u7diwMHDqB+/fpYvHgx+vbtCwAoKSnBqFGjcPToUdy4cQMNGjTAuHHjMHnyZGEdj18aq0lnL8Tj/oN8dOnUvKZD0XA05hr2nk9DWtY9ONmYYNYAH2yd3hXdZ/8JdQ32ppUx1BdhhL8zwhOy8KCwei/ZPUoiFcPByQ7HDp2FlY0F5AoZLv2dgKupmbCwMtNZHE9iIik9Nd0r0GyTewXFwjJd6NGjLfIfFmJ2yCro6elBrVaj/xud0KaN7i7/VoTbqXJqSzu9zF7hIUKcCFUHuVwOuVyOXbt2oU2bNpBIyu+BmDt3LhYuXIhFixbh+++/x+DBg5GWlgYLCwuo1Wo4ODhg27ZtsLS0xKlTpzBq1CjY2dlhwIABzxVXQUEBCgr+u/SSl1d13cGH/opEy2ZusDRXVNk6q8LO0ynC/8dl5CA2/Q4uLn0L/l62iPhXd9325dHXE2FWj0YAgGXhyTqv/81B3fH7loP4du5qiPREsKtfD01aeCDz6i2dx1JbXbgQh7Nn/8WIkX1hb2+FjIxb2LrlMMxM5Wjn37Smw6s1uJ3qgFc4E+JLY9XAwMAAYWFhWLduHczMzODv749PP/0UMTExGuWCg4Px7rvvwtXVFfPnz4dKpcK5c+cAAIaGhpg7dy5atWoFZ2dnDB48GEOHDsWvv/763HEtWLAApqamwp9SqT2g8HncyspB9D9XEBjQokrWV53SbqlwOy8fDW1qNmErS4LqKaSYsesfnfYGlbGwMsPQCQPw6YIJ+Gj2CIz6cBDUajXMLU11Hsvj8gpKLxMqJPoa8xUSA2GZLmzf9hd69GgDPz8vODjUQ9u2TdA10Bf79p3WWQwV4XaqnNrSTqx24kSomgQFBeH69evYvXs3unfvjvDwcPj4+CAsLEwo4+3tLfy/sbExTExMcOvWf7/GV6xYgZYtW8La2hpyuRyrVq1Ceno6ntfMmTORm5sr/GVkZDz3uh51+FgUTE2N4dvCvUrWV53sLGSwkEtwM6fmblEtS4Lqm0kxY9cl3Muv2ROxWGIIhYkcDx/kIyk+DR5Nan5cx50HRcjLL4Kb9X8D8iUGemhgboS0O7rbd4WFRVpj3vT09GrFZVWA26myaks7vcxEVfRfbcSXxqqRVCpFYGAgAgMDERISghEjRiA0NBTBwcEASnt9HiUSiaBWqwEAW7ZswdSpU7F48WK0bdsWCoUCixYtwtmzZ587HolE8sTLdM9LrSYcOR6F1zo0g76+7vNqY4kBnG1NhGlHazmaOFrgrqoAOaoCTAtqjj3n0nAr5yGcbBSYM6glUm7m4WhMxXeavQipoR7sTf8bgGlrIkVDK2Pcyy/GnQeFCOnZCG7WcoTsiYWeSARzWelxcC+/WGe3OwNAUnwqiACreua4czsHB/dEwKqeOVr46WZch1hfpHG3jIXMEPYmEjwoKkHOw2Icv3IHXd2scVtViOwHRejRyBp5+cVaz4apTt7NXLH3z9OwsDSBvb0V0tNv4tDBc/Bv7/30D1cRbqfKqY3tJDHQg43iv3OutVyCBuZGuF9YjOz7RTAW68PSWCycA+xMpQCA3IdFyK3hH0haqmKwc+3MgzgR0iUvL69KD2w+efIk2rVrh3HjxgnzkpN1P47kaaL/uYKs27no2rlmLos1b2iF30O6C9NfvF86IH3zsSRMW3MaXg3M8U4HF5gai3Hj7kOEX7qGBb9GorBYXW0xuddT4Jug/8ZFjOlY2sNyMPYm1p9NR7uGlgCAHwZpttnUHZcQc037AZXVJT+/AEf2nkRejgpGMgk8vd3Qpac/9PX1n/7hKqA0M8I4fydhul+T0gc5nk/PwZao6/grKRtifT281cweRoZ6SLnzAKvOpOs0WRw0KBC7dkVg44aDuHfvAczM5OjYqQX69Kn+xwuU4XaqnNrYTg0tZfism4cw/Z5v6XCE40m3sepUGnyUZhj9SMwT//9c8Vv0dfwWXbNjGOsSToSqQXZ2Nt5++20MGzYM3t7eUCgUuHDhAhYuXIh+/fpVah1ubm745ZdfcODAATg7O2P9+vU4f/48nJ2dqzn6Z9PC2wW7N4XWWP0n427AalDYE5cP+Kr6niD9JDHXcvH6shNPXF7RMl1q0twDTZp7PL1gNUnOfoCPd8dWWOZAQhYOJGTpKCJtUqkEAwd2xcCBXWssBm6nyqmN7RR3U4X3frn4xOURydmISK66R6pUp1d4rDQnQtVBLpejdevWWLJkCZKTk1FUVASlUomRI0fi008/rdQ6Ro8ejcjISLzzzjsQiUR49913MW7cOOzbt6+ao2eMMcYe8wpnQiKqyUcTsxqVl5cHU1NT7DyXDGN57bnt/Y3QvTUdghafNq5PL6RjvVrY1XQIWtLv6ubJ2M+iraPJ0wvp2Ok03Tzx+VlwO1VOTd5oUZ6ihyrsntAZubm5MDGp+n1Y9j0RmXwDCsWLrf/evTy0cLGttlifF/cIMcYYY6xC/K4xxhhjjNVZVfGKjNr6ig1+jhBjjDHG6izuEWKMMcZYhV7hsdKcCDHGGGPsKV7hTIgTIcYYY4xV6FUeLM1jhBhjjDFWZ3GPEGOMMcYqJEIV3DVWJZFUPU6EGGOMMVahV3iIEF8aY4wxxljdxT1CjDHGGKvQq/xARU6EGGOMMfYUr+7FMU6EGPYm3IZYll/TYQhubwqu6RC0vPfLxZoOQUttfMHpcB+Hmg5BS++vDtd0CFreeL1RTYeg5ZPV52o6BC15d2rfS1d3zu1V0yFouK+6h901HcRLjhMhxhhjjFWIL40xxhhjrM56dS+M8V1jjDHGGKvDuEeIMcYYYxXiS2OMMcYYq7P4XWOMMcYYq7tEVfT3nL766iuIRCJMmTLl+VfyBJwIMcYYY6zWOn/+PH788Ud4e3tXy/o5EWKMMcZYhWqqQ0ilUmHw4MFYvXo1zM3NX3QzysWJEGOMMcYqVDZY+kX/ACAvL0/jr6DgyQ+HHT9+PHr16oWuXbtW27ZxIsQYY4wxnVEqlTA1NRX+FixYUG65LVu24O+//37i8qrCd40xxhhjrEJVeddYRkYGTExMhPkSiUSrbEZGBiZPnoxDhw5BKpW+UL1Pw4kQq7SGFjJ0drWEg5kUplJDrD2XgX9u3NMo083DGm0czWBkqI+UOw+wI+YGbt8v1FmMP2+PwJodEcjIvAMAaNTQFtOG90Cgf2OdxeBRT45ejW3gbCmDuUyMJX8l4WJGrrC8VQMzdHG3hpOlDAqJAT7dE4v0uw+rNaaXYd8BQFZ2Lv73ywGc+TsB+YVFcLC1xKcTg+Dpqpt3mPm6WGJUV3c0aWAGG1MjjF51GodiMsst+8XA5hjUviHmbY/G2vDkaoupNu672thObRvZYELvJmjmbAlbcxne//Yo9l1IF5Z/P7o93u3kqvGZI9HX8M7Xh6otpseNmLQUt27nas3vGdgKY4bWrneYaanCR0ubmJhoJELluXjxIm7dugUfHx9hXklJCY4fP47ly5ejoKAA+vr6LxhQKU6EdCg1NRXOzs6IjIxE8+bNyy0THh6OgIAA3L17F2ZmZjqN72nEBnq4npePc+k5GOqn1Foe4GqJDg0tsDnyGu48KEJ3j3oY1aYBFv6VjGI16SRG+3pmCJ3QDy5KaxARNu89i8FTV+HYhhnwdLHTSQwSAz2k332I40nZmBLgUu7yhFsqnE29gxHtnHQS08uw7/JUDzFm5o/wadoQi0OCYWZqjIzMbCiMjXRSPwDIJAaIu5aLbafT8MOoNk8s97q3PZo7WeBGTvUmsEDt3He1sZ1kEgP8k3YHG8Mv45ePXiu3zOGoq5j040lhuqC4pNrjetTiL0ZC/cg+Scu4hdkL1sO/te5+qL0sunTpgkuXLmnMGzp0KBo1aoTp06dXWRIEcCL0TLKysjB79mzs3bsXN2/ehLm5OZo1a4bZs2fD39//qZ9XKpXIzMyElZWVDqKtevG3VIi/pXri8o4NLXA48Tb+vVFaZnPkNczp5o4mtgpEXdfNW6R7dGyqMR0yri/W7DiBC/+k6CwRirmeh5gKtvfkldLeKitjsU7iAV6Ofbfxt2OoZ2WKzya+Jcyzt7HQSd1ljsXexLHYmxWWsTGVIvTtZghecQI/j21X7THVxn1XG9vpSPQ1HIm+VmGZwmI1buVWf1L2JKYmxhrT23efgK2NOZp4OtZQRJWn63eNKRQKNGnSRGOesbExLC0ttea/KE6EnkFQUBAKCwuxbt06NGzYEDdv3sSRI0eQnZ1dqc/r6+vD1ta2mqMECgsLIRbr7ksWACxkhjCRGiIx678Tdn6xGul3H8LRwkhnX6aPKilRY9eRv/HgYSF8mzrrvP6XRW3ZdyfOx8GvhTtmLdyEyH9TYG1pgje7t0Hf1311Un9liETA4g9aYfWRRFx+7PJUTagt++5xta2dyvh72iJu5TvIvV+IiNhMzP81EndVT75jqToVFZcg/EQM+vVsC1FtfffEI17lV2zwXWOVlJOTg4iICHz99dcICAiAo6Mj/Pz8MHPmTPTt2xcAIBKJsHLlSvTo0QNGRkZo2LAhtm/fLqwjNTUVIpEIUVFRwrw///wT7u7uMDIyQkBAAFJTU7XqPnHiBDp06AAjIyMolUpMmjQJ9+/fF5Y7OTlh3rx5+OCDD2BiYoJRo0ZVWzs8iYmkNKe+V6DZ1XyvoFhYpiv/Jl2DQ8ePYOM/BR8t2Ir1i0aiUUPd9Aa9jGrLvrt+8y527T8LB3tLLAkdije6t8aSn/fgz6N/6yyGpxkT6I4SNSGsGse6PIvasu8eV9vaCQCOxlzD+JUReHP+AczdchHtGtli6/Su0Kuhb+ezF+Jx/0E+unRqXiP1v4zCw8OxdOnSKl8vJ0KVJJfLIZfLsWvXrgqfeRASEoKgoCBER0dj8ODBGDhwIOLi4sotm5GRgTfffBN9+vRBVFQURowYgRkzZmiUSU5ORvfu3REUFISYmBhs3boVJ06cwIQJEzTKffPNN2jWrBkiIyMREhJSbn0FBQVaz294Fbk52uD4xpk4vHYqhgW1x7g56xF/pfyBnKz2UBPBvaE9xrzXDe4N7dHvdT/0DfTFrgNnazo0AEATpRmCO7ti2oaLNR1KrVZb22nn6RTs/zsDcRk52HchHYO+OQwfF2v4e1V/L315Dv0ViZbN3GBprqiR+p+d6IX/e/GLa9WDE6FKMjAwQFhYGNatWwczMzP4+/vj008/RUxMjEa5t99+GyNGjIC7uzvmzZuHVq1a4fvvvy93nStXroSLiwsWL14MDw8PDB48GMHBwRplFixYgMGDB2PKlClwc3NDu3btsGzZMvzyyy/Iz88Xyr322mv4+OOP4eLiAhcX7QG6Zet69NkNSqX2wMvnlVdQDABQSDQHsCkkBsIyXREbGqCh0hrNPRsgdEI/NHGrjx+2hOs0hpdJbdl3luYKOCnracxzcrDGzXLusqkJvi6WsJRLcOLz7kj8rj8Sv+sPB0tjfPqmN47P7VYjMdWWffeo2thO5Um7pcLtvHw0tNF9InIrKwfR/1xBYEALndf9vKrygYq1DY8RegZBQUHo1asXIiIicObMGezbtw8LFy7ETz/9JCQwbdu21fhM27ZtNS6FPSouLg6tW7fWKv+o6OhoxMTEYOPGjcI8IoJarUZKSgo8PT0BAK1atXpq/DNnzsRHH30kTOfl5VVZMnTnQRHy8ovgZm2M63mlPWYSAz00MDfCqdS7VVLH81ITobCwZr4UXga1Zd95N2qA9GtZGvPSr2fD1tpMZzFUZOf5DJxM0IwvbLw/dp1Lx7YzaTUSU23Zd4+qje1UHjsLGSzkEtzUwR1tjzt8LAqmpsbwbeGu87qZNk6EnpFUKkVgYCACAwMREhKCESNGIDQ0VKsnp6qoVCqMHj0akyZN0lrWoEED4f+NjY21lj9OIpGU++CqyhLrizTudLKQGcLeRIIHRSXIeViM41fuoKubNW6rCpH9oAg9GlkjL79Y65kn1Wnu8t/RtV1jKG3Nce9BPrbvv4ATFy9jx/fjdBaDxEAPNor/2tlaLkEDcyPcLyxG9v0iGIv1YWkshrnMEABgZ1r6sLDch0XIza+ehO1l2Hfv9GmP0TN/wLrt4eji3xSxlzOw++A5fDL2DZ3FIBPrw9FaLkwrLY3hWd8UuQ8Kcf3uQ+Q89mye4hI1svLykVLBXV0vqjbuu9rYTsYSAzjb/vdsGkdrOZo4WuCuqgA5qgJMC2qOPefScCvnIZxsFJgzqCVSbubhaEzFd5pVNbWacOR4FF7r0Az6+nxRpjbgROgFeXl5YdeuXcL0mTNn8MEHH2hMt2hRfvenp6cndu/erTHvzJkzGtM+Pj6IjY2Fq6vmg8BqgtLMCOP8nYTpfk1Kr62fT8/Blqjr+CspG2J9PbzVzB5GhnpIufMAq86k6+w5NABw+64KY+f8gpu382Ail6Kxa33s+H4cAlp76iyGhpYyfNbNQ5h+z7e01+140m2sOpUGH6UZRj/SjhM7NgQA/BZ9Hb9FV89Yppdh33m6OWDB9Pfww4YDCPv1KOzqmWPysN7opsPBpE0dzbF5ckdhelZQ6duut59Jwyc1NOalNu672thOzRta4feQ7sL0F+/7AQA2H0vCtDWn4dXAHO90cIGpsRg37j5E+KVrWPBrJAqL1TqNM/qfK8i6nYuunV+ey2LAq33XmIiIdHeme4llZ2fj7bffxrBhw+Dt7Q2FQoELFy5g4sSJ6NWrF37++WeIRCJYWVnh66+/Rvv27bFx40Z88cUXuHTpEry8vLQeqJieng43NzdMmjQJI0aMwMWLF/Hxxx/jxo0bwgMVY2Ji0KZNGwwbNgwjRoyAsbExYmNjcejQISxfvhxA6V1jU6ZMwZQpU55pm/Ly8mBqaooR689CLJM//QM6srivV02HoOW9X2rXwE8AsDHT3YMGK2u4j26eAP0sen91uKZD0PLG641qOgQtOw/G13QIWvLu1L4bOnbOrV1PgL6vuoc3/FyQm5v71Kc1P4+y74n0G3dfeP15eXloYGtebbE+L+4RqiS5XI7WrVtjyZIlSE5ORlFREZRKJUaOHIlPP/1UKDd37lxs2bIF48aNg52dHTZv3gwvr/K/2Bs0aIAdO3bgww8/xPfffw8/Pz/Mnz8fw4YNE8p4e3vj2LFj+Oyzz9ChQwcQEVxcXPDOO+9U+zYzxhhjrzpOhCpJIpFgwYIFT30Lrr29PQ4ePFjuMicnJzzeAde7d2/07t1bY97QoUM1pn19fZ+4TgDlPnuIMcYYqyqv8qUxToQYY4wxViFdv2JDl3jIOmOMMcbqLO4RqkI87pwxxtgr6RXuEuJEiDHGGGMV+u81GS+2jtqIL40xxhhjrM7iHiHGGGOMVYjvGmOMMcZYnfUKDxHiRIgxxhhjT/EKZ0I8RogxxhhjdRb3CDHGGGOsQq/yXWOcCDHGGGOsQjxYmr2Syh4AWfhQVcORaMrLq31vnC6qZW0EAIXikpoOQYvqXu3bd+rCBzUdgpbCB7XveKqN7URFD2s6BC33VfdqOgQND/4/nup+oG9VnJdr47kdAETEj0Ous65evQqlUlnTYTDGGHtBGRkZcHBwqPL15ufnw9nZGTdu3KiS9dna2iIlJQVSqbRK1lcVOBGqw9RqNa5fvw6FQgHRC/RZ5uXlQalUIiMjAyYmJlUY4fPjmCqHY6ocjqlyOKbKqcqYiAj37t2Dvb099PSq5/6n/Px8FBYWVsm6xGJxrUqCAL40Vqfp6elV6S8IExOTWnOiKcMxVQ7HVDkcU+VwTJVTVTGZmppWQTRPJpVKa13yUpX49nnGGGOM1VmcCDHGGGOszuJEiL0wiUSC0NBQSCSSmg5FwDFVDsdUORxT5XBMlVMbY6rLeLA0Y4wxxuos7hFijDHGWJ3FiRBjjDHG6ixOhBhjjDFWZ3EixOqk4OBg9O/fv6bDqLT4+Hi0adMGUqkUzZs3R2pqKkQiEaKiojTKiUQi7Nq1q1pjcXJywtKlS6u1jqqyatUqKJVK6OnpYenSpZgzZw6aN29eqc+GhYXBzMysWuPThc6dO2PKlCk1HYaW8PBwiEQi5OTk1HQogsfPC1XZdk/6N/uo2tgmdQEnQkwQHBwMkUgk/FlaWqJ79+6IiYl5aeur6OTz999/v3D9T/qyrOpkITQ0FMbGxoiIiICvry86duwIAOjevTv69OmDI0eOAAAyMzPRo0ePF6rr0f1iaGgIGxsbBAYGYs2aNVCr1S+8LeW5ceMGJk+eDFdXV0ilUtjY2MDf3x8rV67EgwfP9w6svLw8TJgwAdOnT8e1a9cwatSoKo76xZW19ZgxY7SWjR8/HiKRCMHBwZVa15O+RAsLC3H06FE0aNAAEokEtra26NatG06ePFkFW/D82rVrh8zMzEo/DDArKwtjx46t1u347rvvEBYWVi31K5VKZGZmokmTJlUWL6sanAgxDd27d0dmZiYyMzNx5MgRGBgYoHfv3q9MfbWt/qcpe6x9cnIymjRpgv79++PUqVOYOXMmAGDFihUICAjA+PHjAZS+x6cqbskta5fU1FTs27cPAQEBmDx5Mnr37v3ElzsWFRU9V11XrlxBixYtcPDgQcyfPx+RkZE4ffo0PvnkE/zxxx84fPjwc9WXnp6OoqIi9OrVC3Z2dpDJZM8VX3VTKpXYsmULHj787wWj+fn52LRpExo0aPDc6y07dmJjY5GVlYV169YhMTERu3fvRufOnZGdnf3CsVdU79OIxWLY2tpW+vU+QUFBiIyMrNbtMDU1fWIv4IvWr6+vD1tbWxgYVO8LHarqVRh1CjH2/4YMGUL9+vXTmBcREUEA6NatW0RElJ6eTm+//TaZmpqSubk59e3bl1JSUjQ+s3r1amrUqBFJJBLy8PCgFStWCMsKCgpo/PjxZGtrS3p6emRkZETz58+vtvoAaPx16tRJ2FalUilsb0lJCc2fP59sbW0JAHl5edGcOXMIAN29e5fu3LlDgwYNIjMzMwJAjo6O9Mknn2itPzQ0lDp16qQ1/9Hta9++PUmlUnJwcKCJEyeSSqUSljs6OtLnn39O77//PikUChoyZIjWumbOnEkpKSkEgCIjI0mtVpOTkxMtWrSIANDOnTuJiCgyMpIAUK9evcjc3JxkMhm1bNmSzpw5Q0RESUlJ1LdvX6pXrx4ZGxtTq1at6NChQxrHwc2bN6l3794klUrJxsaGAJCFhQUtWbKEAND//vc/8vLyIpFIRAYGBlS/fn1q1KgROTo6klQqJXd3d1q6dKnG/ioqKqKJEyeSqakpWVhYkLOzM8lkMurVq5dQJj8/nyZOnEjW1tYkFovJ399fqK9Pnz4klUoJAB04cIAsLS1JJBKRSCQiJycnWrp0Ka1du1ar3YyMjEgikZBMJqPU1FQ6duwY6evrU7t27Ugul5NCoSAfHx8aOHAgtW/fntauXUumpqa0f/9+atSoERkbG1O3bt3o+vXrQpwlJSU0d+5cql+/PonFYmrWrBnt27dPWF62nzZv3kxt27YliURCjRs3pvDwcOE4LNu2jz/+mJo2bUoSiYRcXFzI3d2d+vXrR0OGDCEioiNHjpCdnZ2wPXZ2dnTs2DGNeh79c3Fxobt37xIAevPNN2natGlkbm5ONjY2FBoaKsR49+5dGjVqFNWrV0+Ib8+ePcLy7du3k5eXF4nFYnJ0dKRvvvlGY3+Wd8w+bbuJiP766y/h39fT6irbDhsbG/ryyy9p6NChJJfLSalU0o8//ij8W1+9ejX179+fjIyMyNXVlX7//Xdh3cXFxTRs2DBycnJ64rH5+DmwU6dONHnyZKH+R+N/XNnx2b17d5JKpeTs7Ezbtm3TOhYiIyOFeXv37iU3NzeSSqXUuXNn4bh9tE2e55zBng0nQkzw+Eng3r17NHr0aHJ1daWSkhIqLCwkT09PGjZsGMXExFBsbCwNGjSIPDw8qKCggIiINmzYQHZ2drRjxw66cuUK7dixgywsLCgsLIyIiBYtWkRKpZKOHz9OQUFB1L59e9q0aVO11Xfu3DkCQIcPH6bMzEzKzs4WtvXRROiLL74gd3d36tmzJzk6OtLPP/9MhoaGwklp/Pjx1Lx5c9qwYQMBoPXr19OOHTto6dKlZGJiQpmZmZSZmUn37t2j7OxscnBwoM8//1yYT1SaeBgbG9OSJUsoMTGRTp48SS1atKDg4GChzR0dHcnExIS++eYbSkpKoqSkJMrMzCQPDw8hCbp3757WSfXLL78kLy8vjURozJgxJJVKqUOHDhQREUGXL1+mrVu30qlTp4iIKCoqin744Qe6dOkSJSYm0qxZs0gqldJbb70ltEuPHj2oWbNmdPr0abpw4QLJZDLS09MTEqF69erRwIEDacOGDXTixAkhMQkKCqIrV67Qhg0bSCaT0datW4Vt/OKLL8jCwoJ+++03OnXqFAEgiUSicexNmjSJ7O3t6c8//6R///1XSAitra1pzZo1tHHjRgJAvr6+NGTIENq6dSv5+vqSm5sbyWQyWr9+PR0+fJgAkFwup7Fjx1JCQgKNGzeOlEolpaWlERGRWCwmHx8fiouLo8TERNq0aROZmZnRmjVraO3atWRoaEhdu3al8+fP08WLF8nT05MGDRokxPntt9+SiYkJbd68meLj4+mTTz4hQ0NDSkxMJKL/vvwcHBxo+/btFBsbSyNGjCCFQkG3b9/WSIRkMhkdPHiQYmJiyMrKiszNzalPnz40ZMgQSkpKIgMDAzI1NaXVq1fThg0byMLCgsRiMWVnZ1NxcTFZW1sTAJo+fTqdPn2aIiMjqaioiPT19UksFtOsWbMoMTGR1q1bRyKRiA4ePEglJSXUpk0baty4MR08eJCSk5Npz5499OeffxIR0YULF0hPT48+//xzSkhIoLVr15KRkRGtXbu2wmP2adtNpJ0IVVRXUVGRkKyam5vTihUr6PLly7RgwQLS09Oj+Ph4ob5NmzbR5cuXadKkSSSXy4V/84WFhTR79mw6f/78E4/NJyVCZfVPmTKF8vPzqTwAyNLSklavXk0JCQk0a9Ys0tfXp9jYWI1joezfbHp6OkkkEvroo48oPj6eNmzYIPzYKGuT5z1nsGfDiRATDBkyhPT19cnY2JiMjY2FX50XL14kIqL169eTh4cHqdVq4TMFBQVkZGREBw4cICIiFxcXIbEpM2/ePGrbti0REU2cOJFee+01UqvVOqmvvF9hZduqVCqF+h/9lV1Wf8+ePYWTUp8+fWjo0KFCL0tZr1RZr8HjHB0dacmSJRrzhg8fTqNGjdKYFxERQXp6evTw4UPhc/3799dan5ubGwGg3377rdztunbtGunr6wuJUGFhIcnlcpJKpcIXQWU0btyY/Pz8qF+/fpSQkEAA6Ny5c8LyHj16EAAhEZoyZYrWOrZt20aWlpbC9Pjx4ykoKEiYtrGxoUWLFhER0ZkzZwgAWVlZCV9AKpVKSI6MjY3pk08+ocLCQgJA7du3J6L/vkQPHz4srHfv3r0EgEaPHk1BQUHCvnr0l3xoaCg1a9ZM+IxEIiE7OztheseOHSSXy0mlUgm/zh/9YlmxYgXZ2NgI0/b29vTll19qbL+vry+NGzeOiP7bT1999ZWwvKioiBwcHOjrr7/WSIQMDQ0pNTWVUlNTSSqVklQqpVatWtGQIUPogw8+ID09Pdq4caOwnrI2KKv/8S/RMl5eXmRgYEBSqZTatWtHM2fOpMaNG9P06dPpwIEDpKenRwkJCVr7kYho0KBBFBgYqDFv2rRp5OXlJUyXd8w+bbsfjb8s3qfVtX37dtLT0xN68WbOnElRUVFUr149WrlyJQGgWbNmCZ8tO44e7aF73OPH5pMSobL6zc3NNdoxOjpaKAuAxowZo7H+1q1b09ixYzXapOzf7MyZMzXakYho+vTpGm3yIucMVnk8RohpCAgIQFRUFKKionDu3Dl069YNPXr0QFpaGqKjo5GUlASFQgG5XA65XA4LCwvk5+cjOTkZ9+/fR3JyMoYPHy4sl8vl+OKLL5CcnAygdHBoVFQUPDw8cPbsWXh7e1drfZXZ3m3btgEofcNyVlYWWrZsCZlMhgMHDgjlxo4diy1btuCdd94BAFy8ePGZ2zY6OhphYWEasXbr1g1qtRopKSlCuVatWml9lp7yAHh7e3v06tVLmN6zZw8KCgrQqlUrWFhYlPsZlUqFqVOnwtPTE2ZmZpDL5YiLi8P9+/cBAHFxcTAwMEDLli2FzygUCujp/XfaaNWqFQ4fPowuXbqgfv36UCgUePfdd5GdnQ1ra2vI5XKsWrUK6enpAIDc3FzcvHkTfn5+GrG4uLgI/1+27w4cOIDGjRujoKAAhoaGAKBRNwB4e3tjxYoVaNmyJQYPHgwAWLNmjVAfALz11lvo1q0b+vTpgzNnzmiMLZo4cSIyMzPh6+uLr776CitWrMCAAQNgbGwMAJDJZBqx2dnZ4datWwBKB2Nfv34d/v7+GjH5+/sjLi5OY17btm2F/zcwMECrVq20ynTp0gVhYWFYu3YtevXqhUaNGuHevXsAgAsXLkCtVmPEiBHCsVO2vy9cuICKWFtbY9iwYdi9eze6d++O8PBwxMbG4uTJk4iKioKDgwPc3d3L/WxcXFy523f58mWUlJQI88o7Ziu73ZWtKygoCA4ODhg6dKiwHS1btoRYLBb2ibe3t/BZY2NjmJiYCMsACMdKecfm0wQFBeH69esa7ejj46MxuPrR7S2brmh7W7durVX+US9yzmCVx4kQ02BsbAxXV1e4urrC19cXP/30E+7fv4/Vq1dDpVKhZcuWQuJS9peYmIhBgwZBpVIBAFavXq2x/J9//sGZM2cAAD4+PkhJScG8efNQUlKCS5cuYcaMGdVWX2W2tyxR2L9/P/755x/IZDIEBwfjl19+AVCahJQlZwMHDgQADBo0CFOnTn2mtlWpVBg9erRGrNHR0bh8+bLGl23Zl/CjygZAx8fHP3H9I0aMAAAUFBRg7dq18PDw0EocHjV16lTs3LkT8+fPR0REBKKiotC0adMK7wyLi4vTWOf9+/fRu3dveHt7Y8eOHfj888+Fwa87duxAVFQUhg4d+sQBnK6urhCJRMIX/qOcnJxgZGSkMe/xgaa7d+/G1KlTMXz4cKxcuRJAaeLzaH2LFi3C6dOn0a5dO/z777+Ij48Xjo9FixYhMDAQBgYG2L9/P44ePaqxL8oSsDIikeipSenzGjBgAMLCwrBu3ToMGzZMY1nZnXP79u3TOHYCAwNhYmLy1HUbGRkhMDAQISEhOHXqFJRKJSIjI7Xa93mVd8xWB5FIhMaNGwvbERwcjJs3bwrHbHn7q2zZli1bhGPl4MGDTz02yyOVSjXaMTg4GKGhoVW3gY95kXMGqzxOhFiFRCIR9PT08PDhQ/j4+ODy5cuoV6+ekCyV/ZmamsLGxgb29va4cuWK1nJnZ2dhnSYmJnjnnXfQrl07+Pr6YseOHbhz50611CcWiwFA49fr47y8vCCRSJCeng43Nzfo6+vDyMgILVq0AFB6SzpQ+svawcEBADB79mysWrUKYrG43HWXN9/HxwexsbFasbq6ugpxPomBgQFcXV2xYsUKocfmUTk5OejZsyeA0oRu//796N+/P6KiooS2fdzJkycRHByMN954A02bNoWtrS1SU1OF5Y0aNUJxcbHQ+3X06FFcunQJxcXFQpnk5GSo1WosXrwYbdq0wZUrV6BUKgGU/jp3dXXV6J0r22/nz58HAFhaWqJr165ISEgQ1uvi4gKxWKxxW3JZL07ZusucPXsW7dq1w7hx49CoUSMAKPcXfosWLTBz5kwMHz4cUqkUmzZtEpZ9+OGHiIuLQ5cuXaBQKCqdRJuYmMDe3l7r9umTJ0/Cy8tLY96j6yxrU09PT40yRkZGKCwsRFFREfz8/JCYmAiFQgEA8PPzg0gkwrVr14RjxtHREbGxsVq3Y1d0rJdRKBQoLi6Gt7c3rl69isTExHLLeXp6lrt97u7u0NfXf2o9ldnuF6nLy8ur0o90OHnypHCstGjRQuvYfB5eXl4a/x4fP3bOnDlT4faeO3dOq/yjXuScwSqPEyGmoaCgADdu3MCNGzcQFxeHiRMnQqVSoU+fPhg8eDCsrKzQr18/REREICUlBeHh4Zg0aRKuXr0KAJg7dy4WLFiAZcuWITExEZcuXcLatWvx7bffAgC+/fZbbN68GfHx8cjLy0NGRgasra2Rn59fLfXVq1cPRkZG2L9/P27evInc3Fyt7b1//z7GjBmDiRMnIjAwECqVCh4eHjhw4AAsLCwwZ84cjB8/HiEhIfjqq68AlCYFnp6ecHJygkqlwpEjR3D79m3hl7uTkxOOHz+Oa9eu4fbt2wCA6dOn49SpU5gwYQKioqJw+fJl/P7775gwYUKl9k3Pnj1RUlICPz8/7Nu3D0DprefLli1D27ZthS+LDRs2wM3NDSEhIbC1tUX//v1x8uRJXLlyBTt27MDp06cBAG5ubvjtt9+EX5mDBg0SvlQKCgpgamqKzp074/3338fYsWPRp08fmJubQyqVCjHZ2tqiqKgI33//Pa5cuYKcnByhyz4pKQkhISFC0lNm4sSJWLBgAX7//XckJCTAxsYGarUax44dw9atW5Geno6BAwdi/PjxiImJQU5ODkaOHAkA6Nq1q8a6XFxccOHCBRw4cABpaWkAoPUcqIULF+L06dNIS0tDcnIyCgoK4OnpiYcPH2LChAmQSCSQyWT4/PPPIRaLn/jFVZ5p06bh66+/xtatW5GQkIAZM2YgKioKkydP1ii3YsUK7Ny5E/Hx8Rg/fjzu3r2r1evzxRdfYOXKldi+fTuGDx8OKysr2NnZAQA+++wz6OnpYdSoUVixYgX27duHbt264fbt2xg+fDiA0mRZJBLhjz/+QFZWFlQqFbKzsxEdHY34+HjExMQgJSUF27ZtQ1JSEpRKJTp16oSOHTsiKCgIhw4dQkpKCvbt24f9+/cDAD7++GMcOXIE8+bNQ2JiItatW4fly5dXuje0MttdpqK6srOz8dprr0GlUuH69evCdixcuLDSzyFyc3MTjpXExMRyj80nKat/w4YNGu24cOFC9OvXTyi3bds2rFmzBomJiQgNDcW5c+ee+O97zJgxuHz5MqZNm4aEhARs2rRJ6xlGL3rOYJVUw2OUWC3y+K3aCoWCfH19afv27UKZzMxM+uCDD8jKyookEgk1bNiQRo4cSbm5uUKZjRs3UvPmzUksFpO5uTl17NhRGOS7atUqat68ORkbGwt3ZVVnfUSlt9crlUrS09PTun3+0folEglJpVLS19cna2tr6tatGy1fvpyaNm1KBgYGZGRkRGKxmABQYGAgXblyhYhK786ytLQUbp8nIjp9+jR5e3uTRCLRuH3+3LlzFBgYSHK5nIyNjcnb21tjsG15g6yJiJo1a0ahoaF0/fp1Gj9+PNWvX1+4a6tv3770119/EdF/jwtYuHAhERGlpqZSUFAQmZiYkEwmo1atWtHZs2eJqHTwZkBAABkZGZFSqaTly5dTp06dyNPTU1iPgYEBicViEolEwt14ZTHi/wdmf/vtt2RnZ0dGRkYUGBhIHTp0IABkampKY8eOpRkzZmgMUC4qKqIJEyaQiYkJmZub0/Tp06l3797k5uZGzs7OZGhoSHK5nGxsbEgmk2ncPl92R1zZQNsbN25QcHAwmZqakkKhIAA0duxYatasmTBY+vXXXyc7OzsSi8VkampKNjY2VFJSQgUFBTRw4EBh0DwAGjp0qDAItbyB8Dt37tTYnyUlJTRnzhyqX78+GRoaPvH2+U2bNpGfnx+JxWLy8vKio0ePCsdh2bbt2bOHGjduTGKxmPz8/Cg6Olrj9vmIiAiNY1YmkwkDccuOnR49epCtrS2JRCIaMmQI5efnk1KppHr16pGpqSnJZDLy8PAgd3d3Gjx4MBERZWdn09ChQ8nS0pKkUik1adKE/vjjD2G9Zbe0GxoaUoMGDYSB7hUds0/b7kf3YXm3zz9eV35+Ps2YMYPEYjFJpVJhO2bNmkVNmzal0NBQjeOjjKmpqXCHW35+vnCsmJmZlXtsPmmwdFn9Pj4+Gu04a9YsevDgARGV/ttbsWIFBQYGkkQiIScnJ4070sq7cWPPnj3k6upKEomEOnToQGvWrNFqk+c9Z7DKExFV0wVvxpjORUREoEuXLsjIyICNjU1Nh1MparUanp6eGDBgAObNm1cjMQwfPhxZWVnYvXt3la43NTUVzs7OiIyMfOKrPcLDwxEQEIC7d+++Eq/0ACq33a8akUiEnTt3vlSv7mGlqvcRl4wxnSgoKEBWVhbmzJmDt99+u1YnQWlpaTh48CA6deqEgoICLF++HCkpKRg0aJDOY8nNzcWlS5ewadOmKk+CGGMvBx4jxNgrYPPmzXB0dEROTg4WLlxY0+FUSE9PD2FhYfD19YW/vz8uXbqEw4cPP9PYnKrSr18/vP766xgzZgwCAwN1Xj9jrObxpTHGGGOM1VncI8QYY4yxOosTIcYYY4zVWZwIMcYYY6zO4kSIMcYYY3UWJ0KMsRoVHBys8eyVzp07Y8qUKTqPIzw8HCKRCDk5OU8sIxKJsGvXrkqvc86cOS/8HJ3U1FSIRCJERUW90HoYY+XjRIgxpiU4OBgikQgikQhisRiurq74/PPPNd4zVl1+++23Sj9YsTLJC2OMVYQfqMgYK1f37t2xdu1aFBQU4M8//8T48eNhaGiImTNnapUtLCysspdAWlhYVMl6GGOsMrhHiDFWLolEAltbWzg6OmLs2LHo2rWr8PTlsstZX375Jezt7eHh4QEAyMjIwIABA2BmZgYLCwv069dP4432JSUl+Oijj2BmZgZLS0t88sknePxRZo9fGisoKMD06dOhVCohkUjg6uqKn3/+GampqQgICAAAmJubQyQSITg4GEDpazsWLFgAZ2dnGBkZoVmzZti+fbtGPX/++Sfc3d1hZGSEgIAAjTgra/r06XB3d4dMJkPDhg0REhKCoqIirXI//vgjlEolZDIZBgwYoPXy359++gmenp6QSqVo1KgR/ve//z1zLIyx58OJEGOsUoyMjFBYWChMHzlyBAkJCTh06BD++OMPFBUVoVu3blAoFIiIiMDJkychl8vRvXt34XOLFy9GWFgY1qxZgxMnTuDOnTvYuXNnhfV+8MEH2Lx5M5YtW4a4uDj8+OOPkMvlUCqV2LFjBwAgISEBmZmZ+O677wAACxYswC+//IIffvgB//77Lz788EO89957OHbsGIDShO3NN99Enz59EBUVhREjRmDGjBnP3CYKhQJhYWGIjY3Fd999h9WrV2PJkiUaZZKSkvDrr79iz5492L9/PyIjIzFu3Dhh+caNGzF79mx8+eWXiIuLw/z58xESEoJ169Y9czyMsedQo698ZYzVSo++hVutVtOhQ4dIIpHQ1KlTheU2NjZUUFAgfGb9+vXk4eFBarVamFdQUEBGRkZ04MABIiKys7OjhQsXCsuLiorIwcGh3Dd+ExElJCQQADp06FC5cZb3BvP8/HySyWR06tQpjbLDhw+nd999l4iIZs6cSV5eXhrLp0+frrWux6GcN5w/atGiRdSyZUthOjQ0lPT19enq1avCvH379pGenh5lZmYSEZGLiwtt2rRJYz3z5s2jtm3bElH5by1njFUdHiPEGCvXH3/8AblcjqKiIqjVagwaNAhz5swRljdt2lRjXFB0dDSSkpKgUCg01pOfn4/k5GTk5uYiMzMTrVu3FpYZGBigVatWWpfHykRFRUFfXx+dOnWqdNxJSUl48OCB1rvDCgsL0aJFCwBAXFycRhwA0LZt20rXUWbr1q1YtmwZkpOToVKpUFxcDBMTE40yDRo0QP369TXqUavVSEhIgEKhQHJyMoYPH46RI0cKZYqLi2FqavrM8TDGnh0nQoyxcgUEBGDlypUQi8Wwt7eHgYHm6cLY2FhjWqVSoWXLlti4caPWuqytrZ8rBiMjo2f+jEqlAgDs3btXIwEBSsc9VZXTp09j8ODBmDt3Lrp16wZTU1Ns2bIFixcvfuZYV69erZWY6evrV1msjLEn40SIMVYuY2NjuLq6Vrq8j48Ptm7dinr16mn1ipSxs7PD2bNn0bFjRwClPR8XL16Ej49PueWbNm0KtVqNY8eOoWvXrlrLy3qkSkpKhHleXl6QSCRIT09/Yk+Sp6enMPC7zJkzZ56+kY84deoUHB0d8dlnnwnz0tLStMqlp6fj+vXrsLe3F+rR09ODh4cHbGxsYG9vjytXrmDw4MHPVD9jrGrwYGnGWJUYPHgwrKys0K9fP0RERCAlJQXh4eGYNGkSrl69CgCYPHkyvvrqK+zatQvx8fEYN25chc8AcnJywpAhQzBs2DDs2rVLWOevv/4KAHB0dIRIJMIff/yBrKwsqFQqKBQKTJ06FR9++CHWrVuH5ORk/P333/j++++FAchjxozB5cuXMW3aNCQkJGDTpk0ICwt7pu11c3NDeno6tmzZguTkZCxbtqzcgd9SqRRDhgxBdHQ0IiIiMGnSJAwYMAC2trYAgLlz52LBggVYtmwZEhMTcenSJaxduxbffvvtM8XDGHs+nAgxxqqETCbD8ePH0aBBA7z55pvw9PTE8OHDkZ+fL/QQffzxx3j//fcxZMgQtG3bFgqFAm+88UaF6125ciXeeustjBs3Do0aNcLIkSNx//59AED9+vUxd+5czJgxAzY2NpgwYQIAYN68eQgJCcGCBQvg6emJ7t27Y+/evXB2dgZQOm5nx44d2LVrF5o1a4YffvgB8+fPf6bt7du3Lz788ENMmDABzZs3x6lTpxASEqJVztXVFW+++SZ69uyJ119/Hd7e3hq3x48YMQI//fQT1q5di6ZNm6JTp04ICwsTYmWMVS8RPWmUImOMMcbYK457hBhjjDFWZ3EixBhjjLE6ixMhxhhjjNVZnAgxxhhjrM7iRIgxxhhjdRYnQowxxhirszgRYowxxlidxYkQY4wxxuosToQYY4wxVmdxIsQYY4yxOosTIcYYY4zVWZwIMcYYY6zO+j8vSkGddN42ggAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py:3103: UserWarning: You are saving your model as an HDF5 file via `model.save()`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')`.\n", + " saving_api.save_model(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saved Xception model to saved_models/Xception_saved.h5\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "base_models4 = [\n", + " (ResNet50V2(weights='imagenet', include_top=False, input_shape=(224, 224, 3)), (224, 224, 3), 'ResNet50V2')\n", + "]\n", + "model_training (base_models4)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "LxE8dXW9pSJ_", + "outputId": "828a8512-6495-4f6e-c221-83a6340f8ae1" + }, + "execution_count": 17, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet50v2_weights_tf_dim_ordering_tf_kernels_notop.h5\n", + "94668760/94668760 [==============================] - 1s 0us/step\n", + "Training ResNet50V2...\n", + "Epoch 1/10\n", + "282/282 [==============================] - 186s 561ms/step - loss: 1.3280 - accuracy: 0.5607 - val_loss: 0.8096 - val_accuracy: 0.7730\n", + "Epoch 2/10\n", + "282/282 [==============================] - 153s 541ms/step - loss: 0.5113 - accuracy: 0.8516 - val_loss: 0.4548 - val_accuracy: 0.8790\n", + "Epoch 3/10\n", + "282/282 [==============================] - 156s 553ms/step - loss: 0.3632 - accuracy: 0.8939 - val_loss: 0.3387 - val_accuracy: 0.8980\n", + "Epoch 4/10\n", + "282/282 [==============================] - 154s 547ms/step - loss: 0.2995 - accuracy: 0.9149 - val_loss: 0.2438 - val_accuracy: 0.9230\n", + "Epoch 5/10\n", + "282/282 [==============================] - 159s 563ms/step - loss: 0.2490 - accuracy: 0.9289 - val_loss: 0.2466 - val_accuracy: 0.9370\n", + "Epoch 6/10\n", + "282/282 [==============================] - 155s 549ms/step - loss: 0.2197 - accuracy: 0.9356 - val_loss: 0.3572 - val_accuracy: 0.8830\n", + "Epoch 7/10\n", + "282/282 [==============================] - 156s 553ms/step - loss: 0.1892 - accuracy: 0.9446 - val_loss: 0.2373 - val_accuracy: 0.9290\n", + "Epoch 8/10\n", + "282/282 [==============================] - 155s 550ms/step - loss: 0.2017 - accuracy: 0.9457 - val_loss: 0.1951 - val_accuracy: 0.9450\n", + "Epoch 9/10\n", + "282/282 [==============================] - 166s 587ms/step - loss: 0.1462 - accuracy: 0.9594 - val_loss: 0.2329 - val_accuracy: 0.9390\n", + "Epoch 10/10\n", + "282/282 [==============================] - 158s 558ms/step - loss: 0.1592 - accuracy: 0.9557 - val_loss: 0.2604 - val_accuracy: 0.9220\n", + "32/32 [==============================] - 3s 92ms/step - loss: 0.2604 - accuracy: 0.9220\n", + "ResNet50V2 Validation Accuracy: 0.9220\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABc/0lEQVR4nO3deVwU9f8H8NfuArvcN8shp+KNFwje95FXPzVNjbzK0tLSyMr7yPIqzfpqmuZReaamWaapmJpHaSqeeKGIqFyinLLA7vz+WFhdOQQEZllez8djH+x+5jMz712offmZz8xIBEEQQERERGQkpGIXQERERFSeGG6IiIjIqDDcEBERkVFhuCEiIiKjwnBDRERERoXhhoiIiIwKww0REREZFYYbIiIiMioMN0RERGRUGG6IiIjIqDDcEFWSdevWQSKR6B4mJibw8PDAiBEjcPfu3Qrb76xZsyCRSKBUKpGZmVlguY+PD3r37l2mbX/77bdYt25dgfbo6Gi99/r0Y/PmzQX6R0ZG4qWXXoKVlRUcHBwwdOhQJCYm6pa///77kEgkuHHjRpG1TJ06FRKJBOfPn0dmZiaWLVuGbt26wc3NDdbW1mjatCmWL18OtVpdqvf46NEjKBQKSCQSREZGlmpdIhIHww1RJfv000/x008/YcWKFejRowfWr1+P9u3bIysrq0L3m5CQgOXLl5frNosKN/mGDBmCn376Se/RsmVLvT6xsbFo164dbty4gblz52LixInYvXs3unbtiuzsbABAaGgoAGDjxo1F7mvTpk0ICAhAo0aNcPPmTbz33nsQBAFhYWH48ssv4evri3fffRdvvPFGqd7j1q1bIZFI4Orqig0bNpRqXSISiUBElWLt2rUCAOHUqVN67Z988okAQNiyZUuF7HfmzJkCAKFJkyaCUqkUMjMz9ZZ7e3sLvXr1KtO2GzRoILRv375A+61btwQAwhdffPHcbbzzzjuCubm5cPv2bV3b/v37BQDCd999p2urVauWULdu3UK3cfz4cQGAMH/+fEEQBCExMVG4ePFigX4jR44UAAjXr19/bl352rVrJ/Tv31/44IMPBF9f3xKvV9keP34sqNVqscsgMggcuSESWdu2bQEAUVFReu1XrlzBgAED4ODgAIVCgaCgIOzatUuvT05ODmbPng1/f38oFAo4OjqiTZs22L9/f4H9zJgxA/Hx8SUavdFoNFiyZAkaNGgAhUIBpVKJ0aNH4+HDh7o+Pj4+uHTpEg4fPqw75NShQ4cC28rIyNCNwBRm+/bt6N27N7y8vHRtXbp0Qe3atfHzzz/r2kJDQ3HlyhWcOXOmwDY2btwIiUSCIUOGAACcnJzQoEGDAv369esHACU+vBQTE4O///4bgwcPxuDBg3Hr1i0cP3680L7r169HcHAwLCwsYG9vj3bt2mHfvn16ffbs2YP27dvD2toaNjY2aN68ud5olI+PD0aMGFFg2x06dND7bA8dOqQ7xDdt2jR4eHjAwsICqampSE5OxsSJExEQEAArKyvY2NigR48eOHfuXIHtZmVlYdasWahduzYUCgXc3NzQv39/REVFQRAE+Pj44P/+7/8KXc/W1hajR48u0edIVNkYbohEFh0dDQCwt7fXtV26dAktWrRAZGQkJk2ahEWLFsHS0hJ9+/bFjh07dP1mzZqF2bNno2PHjli6dCmmTp0KLy+vQgNA27Zt0alTJyxcuBCPHz8utqbRo0fjo48+QuvWrfH1119j5MiR2LBhA7p3746cnBwAwJIlS1CjRg3UrVtXd8hp6tSpetuZPXs2rKysoFAo0Lx58wJf9nfv3kVCQgKCgoIK1BAcHIyzZ8/qXhd1aEqtVuPnn39G27Zt9QJSYeLi4gBow09JbNq0CZaWlujduzeCg4NRs2bNQg9NzZ49G0OHDoWpqSk+/fRTzJ49G56enjh48KCuz7p169CrVy8kJydj8uTJmD9/Ppo0aYK9e/eWqJbCzJkzB7t378bEiRMxd+5cmJmZ4ebNm9i5cyd69+6NxYsX46OPPsKFCxfQvn173Lt3T7euWq1G7969MXv2bAQGBmLRokUYP348UlJScPHiRUgkErz++uvYs2cPkpOT9fb722+/ITU1Fa+//nqZayeqUGIPHRFVF/mHpQ4cOCAkJiYKd+7cEbZt2yY4OzsLcrlcuHPnjq5v586dhYCAACErK0vXptFohFatWgn+/v66tsaNGz/3kFL+YanExETh8OHDAgBh8eLFuuXPHpb6+++/BQDChg0b9Lazd+/eAu1FHZa6ffu20K1bN2H58uXCrl27hCVLlgheXl6CVCoVfv/9d12/U6dOCQCEH3/8scA2PvroIwGA3mfQvHlzoUaNGnqHX/LrevoQVmFUKpVQv359wdfXV8jJySm2b76AgAAhNDRU93rKlCmCk5OT3vrXr18XpFKp0K9fvwKHhTQajSAIgvDo0SPB2tpaCAkJER4/flxoH0HQ/i6GDx9eoI727dvrfc5//fWXAEDw8/MrcJgxKyurQB23bt0S5HK58Omnn+ra1qxZU+Bv4dmarl69KgAQli9frrf85ZdfFnx8fPRqJzIkHLkhqmRdunSBs7MzPD09MWDAAFhaWmLXrl2oUaMGACA5ORkHDx7Eq6++irS0NCQlJSEpKQkPHjxA9+7dcf36dd3ZVXZ2drh06RKuX79eon23a9cOHTt2LHb0ZuvWrbC1tUXXrl11+05KSkJgYCCsrKzw119/PXc/Xl5e+PPPPzFmzBj06dMH48ePx9mzZ+Hs7IwPP/xQ1y+/BrlcXmAbCoVCrw8AvP7664iNjcWRI0d0bRs3boSZmRkGDhxYbE3jxo3D5cuXsXTpUpiYmDz3PZw/fx4XLlzQHeoCtBOkk5KS8Oeff+radu7cCY1GgxkzZkAq1f9fqkQiAQDs378faWlpmDRpku59PdunLIYPHw5zc3O9NrlcrqtDrVbjwYMHsLKyQp06dfRG9LZv3w4nJye89957BbabX1Pt2rUREhKiN1qVnJyMPXv2IDQ09IVqJ6pIDDdElWzZsmXYv38/tm3bhp49eyIpKUnvy/3GjRsQBAHTp0+Hs7Oz3mPmzJkAtGc+Adozrx49eoTatWsjICAAH330Ec6fP1/s/mfNmoW4uDisWLGi0OXXr19HSkoKXFxcCuw/PT1dt+/ScnBwwMiRI3H16lXExsYCgO6LWaVSFeiff/bY01/egwcPhkwm0x2aysrKwo4dO9CjRw+9w3rP+uKLL7Bq1SrMmTMHPXv2LFG969evh6WlJfz8/HDjxg3cuHEDCoUCPj4+el/2UVFRkEqlqF+/fpHbyp9P1bBhwxLtu6R8fX0LtGk0Gnz11Vfw9/eHXC6Hk5MTnJ2dcf78eaSkpOjVVKdOnecGvWHDhuHYsWO4ffs2AG34zcnJwdChQ8v1vRCVp+f/84WIylVwcLBujknfvn3Rpk0bvPbaa7h69SqsrKyg0WgAABMnTkT37t0L3UatWrUAaEdioqKi8Ouvv2Lfvn34/vvv8dVXX2HFihUYNWpUoeu2a9cOHTp0wMKFCzFmzJgCyzUaDVxcXIo87dnZ2bnU7zmfp6cnAO2//mvUqAE3NzcAwP379wv0vX//PhwcHPSCn4uLC7p27Yrt27dj2bJl+O2335CWlqabj1OYdevW4ZNPPsGYMWMwbdq0EtUpCAI2bdqEjIyMQkNLQkIC0tPTYWVlVaLtlVRRIyFqtRoymaxA+7OjNgAwd+5cTJ8+HW+88QbmzJkDBwcHSKVSTJgwQfe3VRqDBw/GBx98gA0bNmDKlClYv349goKCUKdOnVJvi6iyMNwQiUgmk2HevHm6CcGTJk2Cn58fAMDU1BRdunR57jbyR0RGjhyJ9PR0tGvXDrNmzSoy3ADa0ZsOHTrgu+++K7CsZs2aOHDgAFq3bl3ol+fTSntY4ubNmwCeBCQPDw84Ozvjv//+K9D35MmTaNKkSYH20NBQ7N27F3v27MHGjRthY2ODPn36FLq/X3/9FaNGjUL//v2xbNmyEtd5+PBhxMbG4tNPP0W9evX0lj18+BBvv/02du7ciddffx01a9aERqPB5cuXC60X0H6mAHDx4kVdMC2Mvb09Hj16VKD99u3bur+L59m2bRs6duyI1atX67U/evRIbyJ1zZo18e+//yInJwempqZFbs/BwQG9evXChg0bEBoaimPHjmHJkiUlqoVINGJP+iGqLoq6zo0gCEJwcLCgVCp1k007dOggODg4CPfu3SvQNyEhQfc8KSmpwPKBAwcKTk5OutdPTyh+WocOHQRXV1dBqVTqTSg+dOiQAECYPHlygW3n5OQIDx8+1L0OCQkRGjduXGyN+WJjYwV7e3uhUaNGeu1jxowRzM3NhZiYGF3bgQMHCp3IKgiCkJaWJlhYWAjdu3cX5HK5MGLEiAJ9BEEQDh8+LCgUCqFjx456k5JL4s033xQsLS0LTP7N5+/vL7z00kuCIJRsQnFKSopgbW0tBAcHFzuheMCAAYJSqRRUKpWu7bfffhMAFDqheOvWrQVqa9asmdChQwe9tp9//rnANkoyoTjfL7/8IgAQBg4cKJiYmAjx8fGFfSxEBoMjN0QG4KOPPsLAgQOxbt06jBkzBsuWLUObNm0QEBCAt956C35+foiPj8eJEycQGxuru2ZJ/fr10aFDBwQGBsLBwQH//fcftm3bhnHjxj13nzNnzkTHjh0LtLdv3x6jR4/GvHnzEBERgW7dusHU1BTXr1/H1q1b8fXXX2PAgAEAgMDAQCxfvhyfffYZatWqBRcXF3Tq1Akff/wxoqKi0LlzZ7i7uyM6OhrfffcdMjIy8PXXX+vtb8qUKdi6dSs6duyI8ePHIz09HV988QUCAgIwcuTIAvVZWVmhb9++unk3hR2Sun37Nl5++WVIJBIMGDAAW7du1VveqFEjNGrUqNDPRaVSYfv27ejatWuByb/5Xn75ZXz99ddISEhArVq1MHXqVMyZMwdt27ZF//79IZfLcerUKbi7u2PevHmwsbHBV199hVGjRqF58+Z47bXXYG9vj3PnziEzMxM//PADAGDUqFHYtm0bXnrpJbz66quIiorC+vXrdSM/JdG7d298+umnGDlyJFq1aoULFy5gw4YNBUZ+hg0bhh9//BFhYWE4efIk2rZti4yMDBw4cADvvvuu3vVtevXqBUdHR2zduhU9evSAi4tLieshEoXY6Yqouihu5EatVgs1a9YUatasKeTm5gqCIAhRUVHCsGHDBFdXV8HU1FTw8PAQevfuLWzbtk233meffSYEBwcLdnZ2grm5uVC3bl3h888/F7Kzs3V9ihq5EQTtKcYACj2dfOXKlUJgYKBgbm4uWFtbCwEBAcLHH3+sN5oUFxcn9OrVS7C2ttYbGdi4caPQrl07wdnZWTAxMRGcnJyEfv36CadPny70s7l48aLQrVs3wcLCQrCzsxNCQ0OFuLi4Ij/L3bt3CwAENze3Qq/Kmz+yUdRj5syZRW57+/btAgBh9erVRfbJH936+uuvdW1r1qwRmjZtKsjlcsHe3l5o3769sH//fr31du3aJbRq1UowNzcXbGxshODgYGHTpk16fRYtWiR4eHgIcrlcaN26tfDff/8VeSp4YSM3WVlZwocffii4ubkJ5ubmQuvWrYUTJ04U2IYgCEJmZqYwdepUwdfXVzA1NRVcXV2FAQMGCFFRUQW2++677woAhI0bNxb5uRAZCokgCELlRyoiIqpKPvjgA6xevRpxcXGwsLAQuxyiYvFUcCIiKlZWVhbWr1+PV155hcGGqgTOuSEiokIlJCTgwIED2LZtGx48eIDx48eLXRJRiTDcEBFRoS5fvozQ0FC4uLjgm2++KfJUdyJDI+phqSNHjqBPnz5wd3eHRCLBzp07n7vOoUOH0KxZM8jlctSqVQvr1q2r8DqJiKqjDh06QBAExMfHl+gMPCJDIWq4ycjIQOPGjUt8ca1bt26hV69e6NixIyIiIjBhwgSMGjVK7z4vREREVL0ZzNlSEokEO3bsQN++fYvs88knn2D37t24ePGirm3w4MF49OgR9u7dWwlVEhERkaGrUnNuTpw4UeBy9N27d8eECROKXEelUundlE+j0SA5ORmOjo68oy0REVEVIQgC0tLS4O7uDqm0+ANPVSrcxMXFQalU6rUplUqkpqbi8ePHhd4HZ968eZg9e3ZllUhEREQV6M6dO6hRo0axfapUuCmLyZMnIywsTPc6JSUFXl5euHPnDmxsbESsjIiIiEoqNTUVnp6esLa2fm7fKhVuXF1dER8fr9cWHx8PGxubIu9eLJfLIZfLC7Tb2Ngw3BAREVUxJZlSUqWuUNyyZUuEh4frte3fvx8tW7YUqSIiIiIyNKKGm/T0dERERCAiIgKA9lTviIgIxMTEANAeUho2bJiu/5gxY3Dz5k18/PHHuHLlCr799lv8/PPP+OCDD8Qon4iIiAyQqOHmv//+Q9OmTdG0aVMAQFhYGJo2bYoZM2YAAO7fv68LOgDg6+uL3bt3Y//+/WjcuDEWLVqE77//Ht27dxelfiIiIjI8BnOdm8qSmpoKW1tbpKSkcM4NERFRFVGa7+8qNeeGiIiI6HkYboiIiMioMNwQERGRUWG4ISIiIqPCcENERERGheGGiIiIjArDDRERERmVKnVvKSIioqooR61BYpoK8alZiE9VISEtS/c8PjULCakqJKWrIJEAZjIpzEy0D7mJTPv8qTYzEynkMinkps+0y2RPrffUT70+UshNZbo2+VPt+X1MpJIS3b/JkDHcEBERlZFaI+BBhgoJqSr9sJL25Hl8ahYeZGSjqlwyVyrBU4FHpheACgYq/SCW39fTwQJDW3iL9h4YboiIiJ4hCAIeZubowokuvOSFloS8IJOYroJaU7LUYiKVwMVaDhcbBZQ2cihtFFDaKOBirX3uZCWHRAJk52qQrdZof+ZqoMrVQJWrLtCe/1r1VL8nfZ70V+UU3J7+azWefgsaAcjK0SArRwMgt0yfXzMvO4YbIiKiyiAIAlKzcnXhJD+wJDw1yhKfqkJimgrZak2JtimVAE5W+WElL7xYPwkwLnk/HSzMIJUa5uGeXHXRAUilF6bUBYLUs+EpW62Bm61C1PfDcENEREYhMztX71BQfmCJy3+eN89FOyJRMo6WZk9GWqyfCi9Pjb44WprBRFa1z88xkUlhIpPCwkzsSsoHww0RkRETBAFZORqkPM4p8EjPyoFa0PbRCAI0AqARBAgCoNEIUOe1FbU8/7XmqeWCIECjgf5r4Zm+xSwX8n6qNU+eP91XosmFgzoRTupEOGsS4KROhJ0mGanZUjxSm+KxIEcGFHgMOTIFOTKhyPsphwwK2OU9N1VYw9HWMu+w0NOHiZ6EF2crOcxMqnZoqa4YboiIDJwgCHico34STDL1Q0pqIcFF+8hF6uOcEh9eEZ8AG2TAQ/IA7pIkuEsewEOSBI+85+6SB1DiIaSSQua4SFD6b7Q0U0BlAaRYAaYWgJkFYFaC56aWgJll0c9NLQApQ5GYGG6IiCqBIAjIzFYXGkKKDidPluWoX+xUG5lUAltzU9iam8Im76e13AQmMgmkEgkkEkAqkUCa91Py1HOpBJBKJcUu176WQCZ98vxJX+1PmZALq5xEWGXFwTorDlZZ92GZdR8Wj+NgkXUfFo/vwzQ347nvRSM1hcrSHSpLd2RbuiPXQgkLE8BCkgUzdRaQkwFkZwDZmYU/1+RNktXkAFkp2kd5MzEvPgAV9lxuBVi7AXbegG0NwFTceStVGcMNEZU/VRqQeh9Iuw+kxQFp97Q/JVKg4QDAoxlQBa+jkavWICNbjXRVrt7oSUnCScrjHOSW8KyaopgUElAKe+gts9D+tDSTVfy1S7JSgJRY7eNRzJPn+Y+0e4BQglEkC0ftl7utZ6E/pZbOMJdKYV7WOnOznx+Ayvpct4/H2kdmWYsEYOUK2HkVfNj7aD8PE/kLbNy4SQShqpx5Xz5SU1Nha2uLlJQU2NjYiF0OUdWSmw2kxxUeXFLzfqbdB7LTi9+OMgAIHA40ehVQ2FZIqYIgQJWrQWa2GhmqXKSrcpGZnYt0lRqZutfaoJLx1PP8Phl57RnZuchUaZepcl/88I6pTFK6cPLUw6IyAkpR1Lna331KLPDoDpBy55nwcgdQpT5/O1JTwNYjL6jkh5Ya+iHGzKLi309FEAQg57E27OTkBZ7SPFelaf87enhbPygVxdqt8PCTP/JjZOGnNN/fDDdEBGg0QGaSNpgUGlzy2jKTSr5NuY32f77WroCNu/Znyl3g8q+AWqXtY2IONHwFCBwBwSMQmTmavEChHy4yVE8HFLVe+7Oh5el+LzpSUhQzmTQvgJiULJxYPHlubipiQCmOKq344JJ6DxDUz9+OuX1eUPEqGFzsPAFLF85HeR5BAB4/BB5Ga0fACjxuAznPGxKSFBN+vLS/D5OqdWoUw00xGG6oWhEE7ZdW2v3ig0t63JN5CM8jM9MGFWt3/eBi7aZ7pMudEPfYBAl5p+Hmn577ICMbyExGYMo+dMz4A97qGN1mr2g8sVHdCTvVbZAKy3L9GMxNZbCUy2ApN4GFmQms8p5bmpnAUi7LazPRtsllunbL/Dazp9tNqv4ZNGnx2pB586+8w0d3SjbvRGqi/X0/G1zs8kZhbDy080aoYgkCkJmsDTmPbhcegEoafuy9Cw8/NjUMLvww3BSD4YaMRq7qyWGgAsHlqbaSDG8DACSAlUuxwSXbQomEXAvEp6kQn6pCXEreFVtT9C81n5Fdgn/hQ0Cg5BpeMzmIXtJ/oJDkAAAeC2bYh5b4zbQbbioawFJuCku5DFZ5wUQbNrTBw0puAgu9ZU+e5y+zNDOBzEAvnFapMpK0gebSDiD6KIBC/tevsCt4qMjuqcNHVkpAKqvsyqm0BAHIfFAw+Dx86nXu4+dsRKL97//pQ116Iz81AJlppbydfAw3xWC4oSojNxtIugbEXwQeRBUMLpkPSr4tuS1g41ZEcHGHxkqJB7BDfIZad4VW7YXP9EdekjOyS7xLa7kJlLb6l5l3tDSDteLp0RBtILHWpMM+aicsL/4EaWLkk4041wMCRwCNB2kPd1DpZCYDV34HLv4C3Dqif1jJIwio/3+ASz3tF5WNB6Dg/xOrBUHQht38Q1yFjfw8L/xIpNr/lxSY7JwXgmw8yj38MNwUg+GGDFJmMhB3QRtk4i4AcReBxCvaU1WLI5MXCCpPvxas3ZBm6oiELBniUp6+Wqt+gElIU5V4foqZTAoXGzlcdVdp1QYYV1v9i6FZystwMqYgALGngNPrtF/I+f+DNVEA9ftqg45Xiyp5plWlyUoBruzWfn43/9I/3OjWBGjYX/tZ2ot33x8ycIIAZCQ+J/xkFb8N53rA2H/KtSyGm2Iw3JCoNGog+WbBIJN2r/D+clvAtSHgVFv7LyFr17wRGDeoLJRIyDZHfJpKb3Tl6fvjxKdmIbNEh4i0ecHJKj+0aK/S6vrMDf5cbRSwszCtnAmxjx8BF7Zqg078xSftTnXyRnMGAxYOFV9HVaBKA67uBS79Atw4AKifGmFTNgQa9NM+HGuKVyMZj/zw87CYOT++7YDXt5XrbhluisFwQ5VGlQbEX9IPMgmRRU/0s/cBXAO0p0m7NkSqbR1cV9kjKikTscmZBQLMw8znjOo8xUZhog0nT42u5D93zTt05GwlN8z74wgCcPcMcHotcHH7k89PJtceVgkcAXi3qn6jOdkZwLU/tXNoru/T/5e0c12gQX9toHGuLV6NVD1pNNr/Tst5cjnDTTEYbqjcCYL2XyrxF7WjMPEXtEHmYXTh/U3MAWV9QNkQamVDJFj446rgheuPJIhKTEdUYjpuJmZozyx6DjMTaaGjK/l3Ic5/bmFmJNfrzErNG81Zq/2M8zn6543mDAEsHUUrr8LlZAE39msPOV3bqx+UHWpqDzk16K/9+yIyMgw3xWC4oReS81g7+qILMnk/VUWcRmvtDrg2hMqpPu4r/HEV3rjw2AE3ErMQlZiO2w8yi73vj7utAn7OVvB2tNCGGNun5rjYKGBrXkmHiAyNIAD3zmoPWV3Y9uSMMJkZUO9lbdDxaWMcozm5KiDqoHaE5sofQHbak2V2Xtow07A/4NrION4vUREYborBcEMllhafd0jpwpMgk3S98AuZSU0hONdBpn093DevhWsSH5xVeeDCQxNEJWYgMU1V5G7kJlL4OVvBz9kSNZ2tUDPvp6+TZdkm5VY3qjRtwDm9Drgf8aTdoaY25DR5DbB0Eqm4MlLnADcPa+fQRP6uH55tagAN+moDjXvVvI0FUVkw3BSD4YYKUOdoQ8uzQSYjsdDugrkDMuzrIc68Fq5LfHA2pwaOP3LE9QfZxV6e38VajppPhxgXK/g5WcLDzhxSXoelfNw7C5z+QXvoKv8WEFJToF6fvNGctoZ7dVx1LhD9t3aEJvI34HHyk2VWrtpA06A/UKO54b4HogrEcFMMhptq7vFDbXh5epJv4hX9s0vyCJDgsY0v4i38cUPig4hsT/ydpsT5VAsAhYcRM5kUPk4W+iHG2Qq+zpawUVTuBa+qNVW6dvLx6XXAvTNP2h38gGbDgSahgJWzaOXpaNRAzAntHJrIXfqB2tJZO2G6QT/AqyUvnkfVHsNNMRhuqomcLO0pirr5MXkjMqmxhXc3sUSiRS1ESX0RkVMDR9PccC7bHVko/MZzjpZmeaMvlvBz0v6s6WyFGvYWvBquobl/Tjuac/7nJ/NVpKZA3V7a0Rzf9pU7EqLRaK/lc+kX4NJO7a0v8pnba+cMNewPeLcBZDwsSZSP4aYYDDdGJDsDSL4FPLylvXaM7nFLe7O/wi4vD+ChmRtuynxxLrsG/s3ywGWNF2IFZwjQ/4IzkUrg5WihG315ek6MnYVh3XOFSiA7QztCcnodcPe/J+32Pk9Gc6yVFbPv/NPZ8wPN0yFbbgvU66095OTXvtIvaU9UVTDcFIPhporJStGGlaeDS/7zp//FWwiV1Bwx0ho4n+OJ87meiNR44YrgVeCmjLbmprpJvPnzYGq6WMHLwQKmhnjdF3pxcRfyRnO2AKpUbZvUBKjTQzua49fpxUdzBAGIO68NVJd2aEcS85lZA3V7agNNzY6ASeEjhET0BMNNMRhuDIwgaOfB6I28PPV43v2TzO0BBz/k2HrjllqJf1Ps8Od9C0SqnPAANsifGyOVAF4O+nNh/PJGYRwszarn6dSkHc25tFM7mhN78km7nRfQbBjQdKj2qtAlJQhAwmVtmLn4C5Ac9WSZqQVQ+yXtIadaXQBT8/J6F0TVAsNNMRhuRCAIQHpC4eHl4S3t6ExxLF0AB1/tZFDdwxeJJu7YF52NfZficTwqCTnqJ3/KztZydK2vRJtaTvB3sYKXowXkJpyQScWIv6QdzTm3+cmp1xLZk9Gcmp2KntSbeE17yOniL0DS1SftJgrAv5t2UnDt7oCZZeHrE9FzMdwUg+Gmgmg02vsjPTv3Jf8wUv5F1opi7a4LLc+GGMitdd2iEtOx71I89l2Ow9mYR3qb8HOyRLcGrujWQIkmNex4ejWVTXYmcPlX7WjOnadu/GfrmTea87r2xqQPorQjNJd26N/7SmamHZlp0B+o85Le3y8RlR3DTTEYbl6AOhdIufPUqEu0fpBRF32hOkikgG2NZ4JL3sPep8gheo1GwLnYR9h3OR77LsUhKlE/JDXxtEO3Bkp0q++KWi7lex8TIiRE5o3mbAKyHmnbJFLtBQIfXH/ST2oC+HXUHnKq0xMwtxOjWiKjxnBTDIabEkhPAO5FFDyE9Og2oMktej2pCWDnXXiAsfMCTEp2hpEqV40TUQ+w73I8DlyOR8JTV/c1lUnQsqYTutVXomt9JZQ2ihd8s0QlkPMYuLxLO5oTc1zbJpFp73zcsD9QtzfvUE5UwUrz/c2LKJC+iE3A7xP07zD8NJn8mUNHTz23qVHm63KkZuXg0NVE7LsUh0NXE5GuehKirOQm6FDHGd0auKJDHWdeDI8qn6k50HiQ9pF4VTui49Om6t3WgaiaYLghrVwVsHcy8N9q7WvHWoBL/YLzX6zdy+2CZ/GpWdh/OR77LsfjxDMTgl3yJgR3a+CKFn4OnAxMhsO5jvZBRAaL4YaAlLvAz8PyLmwmATpMBtp9VCFXbb2RkI59l+Ow71I8Iu480ltW0zlvQnB9JRpzQjAREZURw011d/MwsO0NIDMJUNgBr3wP+Hctt81rNAIiYh/pznC6+cyE4KZeduhW3xVd6ys5IZiIiMoFw011JQjAsa+B8NmAoAFcA4BXf9IeenpBqlw1jkc9wL5L8TgQGY/EZyYEt6rphG4NlOhaTwkXTggmIqJyxnBTHWWlAr++C0T+pn3d+DWg9+IXumJqalYO/rqSgH2X43H4mQnB1nITdKjrgm71lehQxxnWnBBMREQViOGmukm4Amx5XXuNDqkp0HMhEDgSKMPtB+JSsrA/Unv9mX9uPigwITj/+jMt/BxhZsJ7NBERUeVguKlOLv4C/DpOe7VgGw/g1R+BGkElXl0QBEQlpuPPS9oznM49MyG4losVuuWd4dTIw5YTgomISBQMN9WBOhc4MBM4sVT72rcd8MoawMr5uatqNALO3nmEfZfjsP9SPG4m6U8IbuZlh24NtBOCazpzQjAREYmP4cbYpcVrz4a6fVT7uvUEoNP0Yi+29/SE4P2X45GU/mRCsJlMila1HNGtviu61HPhhGAiIjI4DDfGLOZfYOtwIO0+YGYN9P0WqP9ysaukZuWg77JjeqdsW8tN0LGuC7o1UKJ9bU4IJiIiw8ZwY4wEATi5CvhzsvZeUM51gUHrASf/5666/p/buJmYAVtzU/Rp7MYJwUREVOUw3Bib7AzgtwnAhZ+1rxv0A15eCsifPx8mK0eNNUejAQDTe9fHgMAaFVcnERFRBWG4MSYPooAtQ4GES9o7FnebA7R4t8Snef9y5i6S0lVwt1Xg5cbuFVwsERFRxWC4MRZX9wC/jAZUKYClCzBwHeDTusSrqzUCVh6JAgC82daPh6GIiKjKYrip6jRq4NA84MgX2teeIcDAHwAbt1JtZu/FOEQ/yIStuSkGN/esgEKJiIgqB8NNVZaZDGx/E4g6qH0dPBro9hlgYlaqzQiCgBWHtaM2w1v5wFLOPwsiIqq6+C1WVd07C2wZBqTEACbmwMvfAI1eLdOmjkc9wIW7KVCYSjGilU/51klERFTJGG6qojM/Abs/BNQqwN5Xe5q3a8Myb275Ie2ozaAgTzhYlm7Uh4iIyNAw3FQlOVnAno+BMz9oX9fuAfRbAZjblXmTF2JTcPRGEmRSCUa19SufOomIiETEcFNVPIoBfh6mPRwFCdBpKtDmQ0D6Ymc1rcg7Q6pPIzd4OliUQ6FERETiYripCqIOAtveBB4nA+b2wCurgVqdX3iz0UkZ2HPhPgBgdPuaL7w9IiIiQ8BwY8g0GuDYV8DBzwBBA7g1AV79EbD3LpfNr/z7JjQC0KGOM+q52ZTLNomIiMTGcGOoslKAHe8AV3drXzcdCvT8EjAtn7twJ6RlYdvpWADAOxy1ISIiI8JwY4jiLwNbQoHkm4DMTBtqAoeX6y7WHYtGdq4GTb3sEOzrUK7bJiIiEhPDjaG5sA3Y9R6QkwnYegKv/gB4BJbrLtKycvDTP7cBAGPa14SkhPeeIiIiqgpEv4HQsmXL4OPjA4VCgZCQEJw8ebLY/kuWLEGdOnVgbm4OT09PfPDBB8jKyqqkaiuQOgfYM0l7xeGcTMCvI/D24XIPNgCw8d8YpGXloqazJbrWU5b79omIiMQk6sjNli1bEBYWhhUrViAkJARLlixB9+7dcfXqVbi4uBTov3HjRkyaNAlr1qxBq1atcO3aNYwYMQISiQSLFy8W4R2Uk7Q44OfhwJ1/tK/bfgh0nApIZeW+K1WuGquP3gKgPUNKKuWoDRERGRdRR24WL16Mt956CyNHjkT9+vWxYsUKWFhYYM2aNYX2P378OFq3bo3XXnsNPj4+6NatG4YMGfLc0R6Ddvs48F07bbCR2wCDNwKdZ1RIsAGAHWfuIiFNBVcbBfo28aiQfRAREYlJtHCTnZ2N06dPo0uXLk+KkUrRpUsXnDhxotB1WrVqhdOnT+vCzM2bN/HHH3+gZ8+eRe5HpVIhNTVV72EQBAE48S2wrjeQHg+41AfePgTU7VVhu1RrBKw8chMAMKqtL8xMRD8qSUREVO5EOyyVlJQEtVoNpVJ/zodSqcSVK1cKXee1115DUlIS2rRpA0EQkJubizFjxmDKlClF7mfevHmYPXt2udb+wlTpwG/vAxe3a183HKC98aWZZYXudv/lONxMyoCNwgSDg70qdF9ERERiqVL/dD906BDmzp2Lb7/9FmfOnMEvv/yC3bt3Y86cOUWuM3nyZKSkpOged+7cqcSKC5F0A/i+izbYSE2AlxYAr3xf4cFGEATdDTKHtfSBlZwnyhERkXES7RvOyckJMpkM8fHxeu3x8fFwdXUtdJ3p06dj6NChGDVqFAAgICAAGRkZePvttzF16lRIC7nPklwuh1wuL/83UBaRvwM7xgDZaYCVEhj4A+DdslJ2feLmA5yLTYHcRIoRrX0qZZ9ERERiEG3kxszMDIGBgQgPD9e1aTQahIeHo2XLwr/wMzMzCwQYmUw78VYQhIor9kVp1MCBWdoL82WnAV6tgNFHKi3YAMCKw9q5Nq8GecLJykDCHhERUQUQ9dhEWFgYhg8fjqCgIAQHB2PJkiXIyMjAyJEjAQDDhg2Dh4cH5s2bBwDo06cPFi9ejKZNmyIkJAQ3btzA9OnT0adPH13IMTgZSdpr19w8pH3dYizQdTYgM620Ei7dS8GRa4mQSoC32vpV2n6JiIjEIGq4GTRoEBITEzFjxgzExcWhSZMm2Lt3r26ScUxMjN5IzbRp0yCRSDBt2jTcvXsXzs7O6NOnDz7//HOx3kLxYk8DPw8DUmMBUwvg5f8BAQMqvYz8UZtejdzh5WhR6fsnIiKqTBLBoI/nlL/U1FTY2toiJSUFNjYVdCdsQQBOrwP2fAyoswHHWsCg9YBLvYrZXzFiHmSiw5d/QSMAu99vgwbutpVeAxER0Ysqzfc3T5kpbzmPgd0TgYj12td1ewN9vwUU4oSKVX/fhEYA2tV2ZrAhIqJqgeGmPD28Dfw8FLh/DpBItVcabj0BEOnGlEnpKvz8n/bU9zHtOdeGiIiqB4ab8nLriHZ+zeOHgIUjMGAN4NdB1JLWHYuGKleDxp52aOnnKGotRERElYXhprxYOAK5KsC9GfDqj4Cdp6jlpKty8eOJaADAO+39IBFp9IiIiKiyMdyUF2UDYNguwK0RYCL+dWQ2/RuD1Kxc+DlZomv9wi+KSEREZIwYbsqTZ3OxKwAAZOdqsProLQDA2+38IJNy1IaIiKqPKnVvKSqZnRF3EZeaBRdrOfo18xC7HCIiokrFcGNkNBoB3x3W3iDzzTa+kJsY6JWbiYiIKgjDjZHZHxmPqMQMWCtM8FqIl9jlEBERVTqGGyMiCAJW5I3aDG3hDWtF5d2/ioiIyFAw3BiRk7eScTbmEcxMpBjZ2lfscoiIiETBcGNElueN2gwIrAFna/FPRyciIhIDw42RiLyfikNXEyGVAG+35a0WiIio+mK4MRL5Z0j1CHCDj5OlyNUQERGJh+HGCNxJzsRv5+8DAN5pX1PkaoiIiMTFcGMEvv/7JtQaAW1qOaGhh63Y5RAREYmK4aaKe5Cuwpb/7gAA3unAURsiIiKGmyruhxO3kZWjQYCHLVrVdBS7HCIiItEx3FRhGapc/HA8GgAwpn1NSCS8QSYRERHDTRW2+dQdpDzOgY+jBV5q6Cp2OURERAaB4aaKys7VYPXfNwEAb7erCZmUozZEREQAw02VtevcPdxLyYKTlRz9m3mIXQ4REZHBYLipgjQaQXfRvjfb+EJhKhO5IiIiIsPBcFMFHbySgOsJ6bCWmyC0hZfY5RARERkUhpsqKP8Gma+18IKNwlTkaoiIiAwLw00Vcyo6GadvP4SZTIo3W/uKXQ4REZHBYbipYlYc0o7avBLoARcbhcjVEBERGR6Gmyrkalwawq8kQCIB3mrrJ3Y5REREBonhpgrJP0PqpQau8HO2ErkaIiIiw8RwU0XcffQYu87dA6C91QIREREVjuGmivj+75vI1QhoVdMRjT3txC6HiIjIYDHcVAEPM7Kx+eQdABy1ISIieh6GmyrghxPReJyjRgN3G7T1dxK7HCIiIoPGcGPgMrNz8cPxaADaURuJhDfIJCIiKg7DjYHbcuoOHmbmwMvBAj0auopdDhERkcFjuDFgOWoNvv/7FgDgrXZ+MJHx10VERPQ8/LY0YL+fv4e7jx7DycoMAwNriF0OERFRlcBwY6AEQcCKQzcBACNb+0JhKhO5IiIioqqB4cZA/XU1AVfj02BpJsPrId5il0NERFRlMNwYqPxRm9AW3rC1MBW5GiIioqqD4cYAnb6djJPRyTCVSfBGa1+xyyEiIqpSGG4M0PK8UZt+TT3gaqsQuRoiIqKqheHGwFyPT8OByHhIJMDb7XirBSIiotJiuDEw3x3Rjtp0q69ELRcrkashIiKqehhuDMi9R4+x8+xdALxBJhERUVkx3BiQ1UdvIVcjIMTXAU297MUuh4iIqEpiuDEQjzKzselkDADgnQ4ctSEiIiorhhsD8eOJ28jMVqOemw3a13YWuxwiIqIqi+HGADzOVmPd8WgAwJj2fpBIJOIWREREVIUx3BiArafvIDkjGzXszdErwE3scoiIiKo0hhuR5ao1WJl3+vfb7fxgIuOvhIiI6EXwm1Rkuy/cR+zDx3CwNMPAQE+xyyEiIqryGG5EJAgCVhzWjtqMaOUDczOZyBURERFVfQw3Ijp8LRGR91NhYSbDsJbeYpdDRERkFBhuRLT8UBQAYEiwF+wszESuhoiIyDgw3IjkbMxD/HsrGSZSCd5s4yt2OUREREaD4UYkKw5rR236NvWAu525yNUQEREZD4YbEdxISMe+y/EAtBftIyIiovLDcCOClUeiIAhAl3pK1HKxFrscIiIio8JwU8niUrKw4+xdALxBJhERUUVguKlka47dQo5aQLCPAwK97cUuh4iIyOgw3FSilMwcbPjnNgBgTAfOtSEiIqoIDDeVaP2/t5GRrUYdpTU61nERuxwiIiKjJHq4WbZsGXx8fKBQKBASEoKTJ08W2//Ro0cYO3Ys3NzcIJfLUbt2bfzxxx+VVG3ZZeWosfbYLQDaURuJRCJyRURERMbJRMydb9myBWFhYVixYgVCQkKwZMkSdO/eHVevXoWLS8GRjezsbHTt2hUuLi7Ytm0bPDw8cPv2bdjZ2VV+8aW09XQsktKz4WFnjt6N3MUuh4iIyGiJGm4WL16Mt956CyNHjgQArFixArt378aaNWswadKkAv3XrFmD5ORkHD9+HKampgAAHx+fyiy5THLVGqw6or1B5qi2vjCViT5gRkREZLRE+5bNzs7G6dOn0aVLlyfFSKXo0qULTpw4Ueg6u3btQsuWLTF27FgolUo0bNgQc+fOhVqtLnI/KpUKqampeo/KtudiHGKSM2FvYYpBzT0rff9ERETViWjhJikpCWq1GkqlUq9dqVQiLi6u0HVu3ryJbdu2Qa1W448//sD06dOxaNEifPbZZ0XuZ968ebC1tdU9PD0rN1wIgqC7QebwVj6wMBN1sIyIiMjoVanjIxqNBi4uLli5ciUCAwMxaNAgTJ06FStWrChyncmTJyMlJUX3uHPnTiVWDPx9PQmX76fC3FSG4S19KnXfRERE1ZFowwhOTk6QyWSIj4/Xa4+Pj4erq2uh67i5ucHU1BQymUzXVq9ePcTFxSE7OxtmZmYF1pHL5ZDL5eVbfCnk3yBzcLAn7C0L1kdERETlS7SRGzMzMwQGBiI8PFzXptFoEB4ejpYtWxa6TuvWrXHjxg1oNBpd27Vr1+Dm5lZosBHbuTuPcDzqAUykEoxqy4v2ERERVQZRD0uFhYVh1apV+OGHHxAZGYl33nkHGRkZurOnhg0bhsmTJ+v6v/POO0hOTsb48eNx7do17N69G3PnzsXYsWPFegvFyh+1ebmxOzzszEWuhoiIqHoQdXbroEGDkJiYiBkzZiAuLg5NmjTB3r17dZOMY2JiIJU+yV+enp74888/8cEHH6BRo0bw8PDA+PHj8cknn4j1Fop0MzEdey9pJ0aPbs8bZBIREVUWiSAIgthFVKbU1FTY2toiJSUFNjY2Fbafyb+cx6aTd9C5rgtWj2heYfshIiKqDkrz/V2lzpaqKhJSs7D99F0AwJgOHLUhIiKqTKUONz4+Pvj0008RExNTEfUYhdXHbiFbrUGgtz2a+ziIXQ4REVG1UupwM2HCBPzyyy/w8/ND165dsXnzZqhUqoqorUpKzcrBxn+0we8dzrUhIiKqdGUKNxERETh58iTq1auH9957D25ubhg3bhzOnDlTETVWKev/uY00VS78XazQqW7Bm38SERFRxSrznJtmzZrhm2++wb179zBz5kx8//33aN68OZo0aYI1a9agms1TBgBk5aix5mg0AO0ZUlKpRNyCiIiIqqEynwqek5ODHTt2YO3atdi/fz9atGiBN998E7GxsZgyZQoOHDiAjRs3lmetBu+XM3eRlK6Cu60CLzd2F7scIiKiaqnU4ebMmTNYu3YtNm3aBKlUimHDhuGrr75C3bp1dX369euH5s2r1+nPao2AlUe0F+17s60fzEx4IhoREZEYSh1umjdvjq5du2L58uXo27cvTE1NC/Tx9fXF4MGDy6XAqmLvxThEP8iErbkpBjev3DuPExER0ROlDjc3b96Et7d3sX0sLS2xdu3aMhdVFbWs6YgJXfxhJTeBpVzUCz8TERFVa6X+Fk5ISEBcXBxCQkL02v/991/IZDIEBQWVW3FViYOlGSZ0qS12GURERNVeqSeGjB07Fnfu3CnQfvfuXYO9gSURERFVH6UON5cvX0azZs0KtDdt2hSXL18ul6KIiIiIyqrU4UYulyM+Pr5A+/3792FiwrkmREREJK5Sh5tu3bph8uTJSElJ0bU9evQIU6ZMQdeuXcu1OCIiIqLSKvVQy5dffol27drB29sbTZs2BQBERERAqVTip59+KvcCiYiIiEqj1OHGw8MD58+fx4YNG3Du3DmYm5tj5MiRGDJkSKHXvCEiIiKqTGWaJGNpaYm33367vGshIiIiemFlngF8+fJlxMTEIDs7W6/95ZdffuGiiIiIiMqqTFco7tevHy5cuACJRKK7+7dEor0DtlqtLt8KiYiIiEqh1GdLjR8/Hr6+vkhISICFhQUuXbqEI0eOICgoCIcOHaqAEomIiIhKrtQjNydOnMDBgwfh5OQEqVQKqVSKNm3aYN68eXj//fdx9uzZiqiTiIiIqERKPXKjVqthbW0NAHBycsK9e/cAAN7e3rh69Wr5VkdERERUSqUeuWnYsCHOnTsHX19fhISEYOHChTAzM8PKlSvh5+dXETUSERERlVipw820adOQkZEBAPj000/Ru3dvtG3bFo6OjtiyZUu5F0hERERUGhIh/3SnF5CcnAx7e3vdGVOGLDU1Fba2tkhJSYGNjY3Y5RAREVEJlOb7u1RzbnJycmBiYoKLFy/qtTs4OFSJYENERETGr1ThxtTUFF5eXryWDRERERmsUp8tNXXqVEyZMgXJyckVUQ8RERHRCyn1hOKlS5fixo0bcHd3h7e3NywtLfWWnzlzptyKIyIiIiqtUoebvn37VkAZREREROWjXM6Wqkp4thQREVHVU2FnSxEREREZulIflpJKpcWe9s0zqYiIiEhMpQ43O3bs0Hudk5ODs2fP4ocffsDs2bPLrTAiIiKisii3OTcbN27Eli1b8Ouvv5bH5ioM59wQERFVPaLMuWnRogXCw8PLa3NEREREZVIu4ebx48f45ptv4OHhUR6bIyIiIiqzUs+5efYGmYIgIC0tDRYWFli/fn25FkdERERUWqUON1999ZVeuJFKpXB2dkZISAjs7e3LtTgiIiKi0ip1uBkxYkQFlEFERERUPko952bt2rXYunVrgfatW7fihx9+KJeiiIiIiMqq1OFm3rx5cHJyKtDu4uKCuXPnlktRRERERGVV6nATExMDX1/fAu3e3t6IiYkpl6KIiIiIyqrU4cbFxQXnz58v0H7u3Dk4OjqWS1FEREREZVXqcDNkyBC8//77+Ouvv6BWq6FWq3Hw4EGMHz8egwcProgaiYiIiEqs1GdLzZkzB9HR0ejcuTNMTLSrazQaDBs2jHNuiIiISHRlvrfU9evXERERAXNzcwQEBMDb27u8a6sQvLcUERFR1VOa7+9Sj9zk8/f3h7+/f1lXJyIiIqoQpZ5z88orr2DBggUF2hcuXIiBAweWS1FEREREZVXqcHPkyBH07NmzQHuPHj1w5MiRcimKiIiIqKxKHW7S09NhZmZWoN3U1BSpqanlUhQRERFRWZU63AQEBGDLli0F2jdv3oz69euXS1FEREREZVXqCcXTp09H//79ERUVhU6dOgEAwsPDsXHjRmzbtq3cCyQiIiIqjVKHmz59+mDnzp2YO3cutm3bBnNzczRu3BgHDx6Eg4NDRdRIREREVGJlvs5NvtTUVGzatAmrV6/G6dOnoVary6u2CsHr3BAREVU9pfn+LvWcm3xHjhzB8OHD4e7ujkWLFqFTp074559/yro5IiIionJRqsNScXFxWLduHVavXo3U1FS8+uqrUKlU2LlzJycTExERkUEo8chNnz59UKdOHZw/fx5LlizBvXv38L///a8iayMiIiIqtRKP3OzZswfvv/8+3nnnHd52gYiIiAxWiUdujh49irS0NAQGBiIkJARLly5FUlJSRdZGREREVGolDjctWrTAqlWrcP/+fYwePRqbN2+Gu7s7NBoN9u/fj7S0tIqsk4iIiKhEXuhU8KtXr2L16tX46aef8OjRI3Tt2hW7du0qz/rKHU8FJyIiqnoq5VRwAKhTpw4WLlyI2NhYbNq06UU2RURERFQuXijc5JPJZOjbt2+ZR22WLVsGHx8fKBQKhISE4OTJkyVab/PmzZBIJOjbt2+Z9ktERETGp1zCzYvYsmULwsLCMHPmTJw5cwaNGzdG9+7dkZCQUOx60dHRmDhxItq2bVtJlRIREVFVIHq4Wbx4Md566y2MHDkS9evXx4oVK2BhYYE1a9YUuY5arUZoaChmz54NPz+/SqyWiIiIDJ2o4SY7OxunT59Gly5ddG1SqRRdunTBiRMnilzv008/hYuLC958883n7kOlUiE1NVXvQURERMZL1HCTlJQEtVoNpVKp165UKhEXF1foOkePHsXq1auxatWqEu1j3rx5sLW11T08PT1fuG4iIiIyXKIfliqNtLQ0DB06FKtWrYKTk1OJ1pk8eTJSUlJ0jzt37lRwlURERCSmUt04s7w5OTlBJpMhPj5erz0+Ph6urq4F+kdFRSE6Ohp9+vTRtWk0GgCAiYkJrl69ipo1a+qtI5fLIZfLK6B6IiIiMkSijtyYmZkhMDAQ4eHhujaNRoPw8HC0bNmyQP+6deviwoULiIiI0D1efvlldOzYERERETzkREREROKO3ABAWFgYhg8fjqCgIAQHB2PJkiXIyMjAyJEjAQDDhg2Dh4cH5s2bB4VCgYYNG+qtb2dnBwAF2omIiKh6Ej3cDBo0CImJiZgxYwbi4uLQpEkT7N27VzfJOCYmBlJplZoaRERERCJ6oXtLVUW8txQREVHVU2n3liIiIiIyNAw3REREZFQYboiIiMioMNwQERGRUWG4ISIiIqPCcENERERGheGGiIiIjArDDRERERkVhhsiIiIyKgw3REREZFQYboiIiMioMNwQERGRUWG4ISIiIqPCcENERERGheGGiIiIjArDDRERERkVhhsiIiIyKgw3REREZFQYboiIiMioMNwQERGRUWG4ISIiIqPCcENERERGheGGiIiIjArDDRERERkVhhsiIiIyKgw3REREZFQYboiIiMioMNwQERGRUWG4ISIiIqPCcENERERGheGGiIiIjArDDRERERkVhhsiIiIyKgw3REREZFQYboiIiMioMNwQERGRUWG4ISIiIqPCcENERERGheGGiIiIjArDDRERERkVhhsiIiIyKgw3REREZFQYboiIiMioMNwQERGRUWG4ISIiIqPCcENERERGheGGiIiIjArDDRERERkVhhsiIiIyKgw3REREZFQYboiIiMioMNwQERGRUWG4ISIiIqPCcENERERGheGGiIiIjArDDRERERkVhhsiIiIyKgw3REREZFQYboiIiMioMNwQERGRUWG4ISIiIqPCcENERERGheGGiIiIjIpBhJtly5bBx8cHCoUCISEhOHnyZJF9V61ahbZt28Le3h729vbo0qVLsf2JiIioehE93GzZsgVhYWGYOXMmzpw5g8aNG6N79+5ISEgotP+hQ4cwZMgQ/PXXXzhx4gQ8PT3RrVs33L17t5IrJyIiIkMkEQRBELOAkJAQNG/eHEuXLgUAaDQaeHp64r333sOkSZOeu75arYa9vT2WLl2KYcOGPbd/amoqbG1tkZKSAhsbmxeun4iIiCpeab6/RR25yc7OxunTp9GlSxddm1QqRZcuXXDixIkSbSMzMxM5OTlwcHAodLlKpUJqaqreg4iIiIyXqOEmKSkJarUaSqVSr12pVCIuLq5E2/jkk0/g7u6uF5CeNm/ePNja2uoenp6eL1w3ERERGS7R59y8iPnz52Pz5s3YsWMHFApFoX0mT56MlJQU3ePOnTuVXCURERFVJhMxd+7k5ASZTIb4+Hi99vj4eLi6uha77pdffon58+fjwIEDaNSoUZH95HI55HJ5udRLREREhk/UkRszMzMEBgYiPDxc16bRaBAeHo6WLVsWud7ChQsxZ84c7N27F0FBQZVRKhEREVURoo7cAEBYWBiGDx+OoKAgBAcHY8mSJcjIyMDIkSMBAMOGDYOHhwfmzZsHAFiwYAFmzJiBjRs3wsfHRzc3x8rKClZWVqK9DyIiIjIMooebQYMGITExETNmzEBcXByaNGmCvXv36iYZx8TEQCp9MsC0fPlyZGdnY8CAAXrbmTlzJmbNmlWZpRMREZEBEv06N5WN17khIiKqeqrMdW6IiIiIyhvDDRERERkVhhsiIiIyKgw3REREZFQYboiIiMioMNwQERGRUWG4ISIiIqPCcENERERGheGGiIiIjArDDRERERkVhhsiIiIyKgw3REREZFQYboiIiMiomIhdABERGT+1Wo2cnByxyyADZ2pqCplM9sLbYbghIqIKlZ6ejtjYWAiCIHYpZOAkEglq1KgBKyurF9oOww0REVUYtVqN2NhYWFhYwNnZGRKJROySyEAJgoDExETExsbC39//hUZwGG6IiKjC5OTkQBAEODs7w9zcXOxyyMA5OzsjOjoaOTk5LxRuOKGYiIgqHEdsqCTK6++E4YaIiIiMCsMNERERGRWGGyIiIjIqDDdERERVAK8TVHIMN0RERIXYu3cv2rRpAzs7Ozg6OqJ3796IiorSLY+NjcWQIUPg4OAAS0tLBAUF4d9//9Ut/+2339C8eXMoFAo4OTmhX79+umUSiQQ7d+7U25+dnR3WrVsHAIiOjoZEIsGWLVvQvn17KBQKbNiwAQ8ePMCQIUPg4eEBCwsLBAQEYNOmTXrb0Wg0WLhwIWrVqgW5XA4vLy98/vnnAIBOnTph3Lhxev0TExNhZmaG8PDw8vjYDAJPBSciokojCAIe56hF2be5qaxUZ+NkZGQgLCwMjRo1Qnp6OmbMmIF+/fohIiICmZmZaN++PTw8PLBr1y64urrizJkz0Gg0AIDdu3ejX79+mDp1Kn788UdkZ2fjjz/+KHXNkyZNwqJFi9C0aVMoFApkZWUhMDAQn3zyCWxsbLB7924MHToUNWvWRHBwMABg8uTJWLVqFb766iu0adMG9+/fx5UrVwAAo0aNwrhx47Bo0SLI5XIAwPr16+Hh4YFOnTqVuj5DJRGq2SUjU1NTYWtri5SUFNjY2IhdDhGRUcvKysKtW7fg6+sLhUKBzOxc1J/xpyi1XP60OyzMyv5v+qSkJDg7O+PChQs4fvw4Jk6ciOjoaDg4OBTo26pVK/j5+WH9+vWFbksikWDHjh3o27evrs3Ozg5LlizBiBEjEB0dDV9fXyxZsgTjx48vtq7evXujbt26+PLLL5GWlgZnZ2csXboUo0aNKtA3KysL7u7uWLFiBV599VUAQOPGjdG/f3/MnDmzFJ9GxXj27+Vppfn+5mEpIiKiQly/fh1DhgyBn58fbGxs4OPjAwCIiYlBREQEmjZtWmiwAYCIiAh07tz5hWsICgrSe61WqzFnzhwEBATAwcEBVlZW+PPPPxETEwMAiIyMhEqlKnLfCoUCQ4cOxZo1awAAZ86cwcWLFzFixIgXrtWQ8LAUERFVGnNTGS5/2l20fZdGnz594O3tjVWrVsHd3R0ajQYNGzZEdnb2c6+2/LzlEomkwL22CpswbGlpqff6iy++wNdff40lS5YgICAAlpaWmDBhArKzs0u0X0B7aKpJkyaIjY3F2rVr0alTJ3h7ez93vaqEIzdERFRpJBIJLMxMRHmUZr7NgwcPcPXqVUybNg2dO3dGvXr18PDhQ93yRo0aISIiAsnJyYWu36hRo2In6Do7O+P+/fu619evX0dmZuZz6zp27Bj+7//+D6+//joaN24MPz8/XLt2Tbfc398f5ubmxe47ICAAQUFBWLVqFTZu3Ig33njjufutahhuiIiInmFvbw9HR0esXLkSN27cwMGDBxEWFqZbPmTIELi6uqJv3744duwYbt68ie3bt+PEiRMAgJkzZ2LTpk2YOXMmIiMjceHCBSxYsEC3fqdOnbB06VKcPXsW//33H8aMGQNTU9Pn1uXv74/9+/fj+PHjiIyMxOjRoxEfH69brlAo8Mknn+Djjz/Gjz/+iKioKPzzzz9YvXq13nZGjRqF+fPnQxAEvbO4jAXDDRER0TOkUik2b96M06dPo2HDhvjggw/wxRdf6JabmZlh3759cHFxQc+ePREQEID58+frbvbYoUMHbN26Fbt27UKTJk3QqVMnnDx5Urf+okWL4OnpibZt2+K1117DxIkTYWFh8dy6pk2bhmbNmqF79+7o0KGDLmA9bfr06fjwww8xY8YM1KtXD4MGDUJCQoJenyFDhsDExARDhgwpMHHXGPBsKSIiqjDFnf1C4omOjkbNmjVx6tQpNGvWTOxydMrrbClOKCYiIqomcnJy8ODBA0ybNg0tWrQwqGBTnnhYioiIqJo4duwY3NzccOrUKaxYsULscioMR26IiIiqiQ4dOhQ4Bd0YceSGiIiIjArDDRERERkVhhsiIiIyKgw3REREZFQYboiIiMioMNwQERGRUWG4ISIiqgA+Pj5YsmSJ2GVUSww3REREZFQYboiIiEiPWq2GRqMRu4wyY7ghIiJ6xsqVK+Hu7l7gC/7//u//8MYbbyAqKgr/93//B6VSCSsrKzRv3hwHDhwo8/4WL16MgIAAWFpawtPTE++++y7S09P1+hw7dgwdOnSAhYUF7O3t0b17dzx8+BAAoNFosHDhQtSqVQtyuRxeXl74/PPPAQCHDh2CRCLBo0ePdNuKiIiARCJBdHQ0AGDdunWws7PDrl27UL9+fcjlcsTExODUqVPo2rUrnJycYGtri/bt2+PMmTN6dT169AijR4+GUqmEQqFAw4YN8fvvvyMjIwM2NjbYtm2bXv+dO3fC0tISaWlpZf68nofhhoiIKo8gANkZ4jxKcduBgQMH4sGDB/jrr790bcnJydi7dy9CQ0ORnp6Onj17Ijw8HGfPnsVLL72EPn36ICYmpkwfi1QqxTfffINLly7hhx9+wMGDB/Hxxx/rlkdERKBz586oX78+Tpw4gaNHj6JPnz5Qq9UAgMmTJ2P+/PmYPn06Ll++jI0bN0KpVJaqhszMTCxYsADff/89Ll26BBcXF6SlpWH48OE4evQo/vnnH/j7+6Nnz566YKLRaNCjRw8cO3YM69evx+XLlzF//nzIZDJYWlpi8ODBWLt2rd5+1q5diwEDBsDa2rpMn1VJ8N5SRERUeXIygbnu4ux7yj3AzLJEXe3t7dGjRw9s3LgRnTt3BgBs27YNTk5O6NixI6RSKRo3bqzrP2fOHOzYsQO7du3CuHHjSl3ahAkTdM99fHzw2WefYcyYMfj2228BAAsXLkRQUJDuNQA0aNAAAJCWloavv/4aS5cuxfDhwwEANWvWRJs2bUpVQ05ODr799lu999WpUye9PitXroSdnR0OHz6M3r1748CBAzh58iQiIyNRu3ZtAICfn5+u/6hRo9CqVSvcv38fbm5uSEhIwB9//PFCo1wlwZEbIiKiQoSGhmL79u1QqVQAgA0bNmDw4MGQSqVIT0/HxIkTUa9ePdjZ2cHKygqRkZFlHrk5cOAAOnfuDA8PD1hbW2Po0KF48OABMjMzATwZuSlMZGQkVCpVkctLyszMDI0aNdJri4+Px1tvvQV/f3/Y2trCxsYG6enpuvcZERGBGjVq6ILNs4KDg9GgQQP88MMPAID169fD29sb7dq1e6Fan4cjN0REVHlMLbQjKGLtuxT69OkDQRCwe/duNG/eHH///Te++uorAMDEiROxf/9+fPnll6hVqxbMzc0xYMAAZGdnl7qs6Oho9O7dG++88w4+//xzODg44OjRo3jzzTeRnZ0NCwsLmJubF7l+ccsA7SEvAHp3A8/JySl0OxKJRK9t+PDhePDgAb7++mt4e3tDLpejZcuWuvf5vH0D2tGbZcuWYdKkSVi7di1GjhxZYD/ljSM3RERUeSQS7aEhMR6l/EJVKBTo378/NmzYgE2bNqFOnTpo1qwZAO3k3hEjRqBfv34ICAiAq6urbnJuaZ0+fRoajQaLFi1CixYtULt2bdy7px8AGzVqhPDw8ELX9/f3h7m5eZHLnZ2dAQD379/XtUVERJSotmPHjuH9999Hz5490aBBA8jlciQlJenVFRsbi2vXrhW5jddffx23b9/GN998g8uXL+sOnVUkhhsiIqIihIaGYvfu3VizZg1CQ0N17f7+/vjll18QERGBc+fO4bXXXivzqdO1atVCTk4O/ve//+HmzZv46aefsGLFCr0+kydPxqlTp/Duu+/i/PnzuHLlCpYvX46kpCQoFAp88skn+Pjjj/Hjjz8iKioK//zzD1avXq3bvqenJ2bNmoXr169j9+7dWLRoUYlq8/f3x08//YTIyEj8+++/CA0N1Rutad++Pdq1a4dXXnkF+/fvx61bt7Bnzx7s3btX18fe3h79+/fHRx99hG7duqFGjRpl+pxKg+GGiIioCJ06dYKDgwOuXr2K1157Tde+ePFi2Nvbo1WrVujTpw+6d++uG9UprcaNG2Px4sVYsGABGjZsiA0bNmDevHl6fWrXro19+/bh3LlzCA4ORsuWLfHrr7/CxEQ7u2T69On48MMPMWPGDNSrVw+DBg1CQkICAMDU1BSbNm3ClStX0KhRIyxYsACfffZZiWpbvXo1Hj58iGbNmmHo0KF4//334eLiotdn+/btaN68OYYMGYL69evj448/1p3FlS//ENsbb7xRps+otCSCUIpz44xAamoqbG1tkZKSAhsbG7HLISIyallZWbh16xZ8fX2hUCjELodE8tNPP+GDDz7AvXv3YGZmVmS/4v5eSvP9zQnFREREVCEyMzNx//59zJ8/H6NHjy422JQnHpYiIiKqQBs2bICVlVWhj/xr1RirhQsXom7dunB1dcXkyZMrbb88LEVERBWGh6W0F9mLj48vdJmpqSm8vb0ruSLDxcNSREREVYC1tXWF3mqACuJhKSIiIjIqDDdERFThqtkMCCqj8vo7YbghIqIKI5PJAKBMtyWg6if/7yT/76asOOeGiIgqjImJCSwsLJCYmAhTU1PdfY6InqXRaJCYmAgLCwvdxQnLiuGGiIgqjEQigZubG27duoXbt2+LXQ4ZOKlUCi8vrxe+sSbDDRERVSgzMzP4+/vz0BQ9l5mZWbmM7hlEuFm2bBm++OILxMXFoXHjxvjf//6H4ODgIvtv3boV06dPR3R0NPz9/bFgwQL07NmzEismIqLSkEql1fY6N1T5RD/4uWXLFoSFhWHmzJk4c+YMGjdujO7du+tu+PWs48ePY8iQIXjzzTdx9uxZ9O3bF3379sXFixcruXIiIiIyRKJfoTgkJATNmzfH0qVLAWgnFHl6euK9997DpEmTCvQfNGgQMjIy8Pvvv+vaWrRogSZNmhS4RXxheIViIiKiqqc039+ijtxkZ2fj9OnT6NKli65NKpWiS5cuOHHiRKHrnDhxQq8/AHTv3r3I/kRERFS9iDrnJikpCWq1GkqlUq9dqVTiypUrha4TFxdXaP+4uLhC+6tUKqhUKt3rlJQUANoESERERFVD/vd2SQ44GcSE4oo0b948zJ49u0C7p6enCNUQERHRi0hLS4OtrW2xfUQNN05OTpDJZAXulhofHw9XV9dC13F1dS1V/8mTJyMsLEz3WqPRIDk5GY6Oji98Hv2zUlNT4enpiTt37nA+jwHg78Ow8PdhWPj7MDz8nRRPEASkpaXB3d39uX1FDTdmZmYIDAxEeHg4+vbtC0AbPsLDwzFu3LhC12nZsiXCw8MxYcIEXdv+/fvRsmXLQvvL5XLI5XK9Njs7u/Iov0g2Njb8wzQg/H0YFv4+DAt/H4aHv5OiPW/EJp/oh6XCwsIwfPhwBAUFITg4GEuWLEFGRgZGjhwJABg2bBg8PDwwb948AMD48ePRvn17LFq0CL169cLmzZvx33//YeXKlWK+DSIiIjIQooebQYMGITExETNmzEBcXByaNGmCvXv36iYNx8TE6F2tsFWrVti4cSOmTZuGKVOmwN/fHzt37kTDhg3FegtERERkQEQPNwAwbty4Ig9DHTp0qEDbwIEDMXDgwAquqvTkcjlmzpxZ4DAYiYO/D8PC34dh4e/D8PB3Un5Ev4gfERERUXkS/fYLREREROWJ4YaIiIiMCsMNERERGRWGGyIiIjIqDDflZNmyZfDx8YFCoUBISAhOnjwpdknV1rx589C8eXNYW1vDxcUFffv2xdWrV8Uui/LMnz8fEolE70KcVLnu3r2L119/HY6OjjA3N0dAQAD+++8/scuqltRqNaZPnw5fX1+Ym5ujZs2amDNnTonun0RFY7gpB1u2bEFYWBhmzpyJM2fOoHHjxujevTsSEhLELq1aOnz4MMaOHYt//vkH+/fvR05ODrp164aMjAyxS6v2Tp06he+++w6NGjUSu5Rq6+HDh2jdujVMTU2xZ88eXL58GYsWLYK9vb3YpVVLCxYswPLly7F06VJERkZiwYIFWLhwIf73v/+JXVqVxlPBy0FISAiaN2+OpUuXAtDeQsLT0xPvvfceJk2aJHJ1lJiYCBcXFxw+fBjt2rUTu5xqKz09Hc2aNcO3336Lzz77DE2aNMGSJUvELqvamTRpEo4dO4a///5b7FIIQO/evaFUKrF69Wpd2yuvvAJzc3OsX79exMqqNo7cvKDs7GycPn0aXbp00bVJpVJ06dIFJ06cELEyypeSkgIAcHBwELmS6m3s2LHo1auX3n8rVPl27dqFoKAgDBw4EC4uLmjatClWrVoldlnVVqtWrRAeHo5r164BAM6dO4ejR4+iR48eIldWtRnEFYqrsqSkJKjVat3tIvIplUpcuXJFpKoon0ajwYQJE9C6dWveokNEmzdvxpkzZ3Dq1CmxS6n2bt68ieXLlyMsLAxTpkzBqVOn8P7778PMzAzDhw8Xu7xqZ9KkSUhNTUXdunUhk8mgVqvx+eefIzQ0VOzSqjSGGzJqY8eOxcWLF3H06FGxS6m27ty5g/Hjx2P//v1QKBRil1PtaTQaBAUFYe7cuQCApk2b4uLFi1ixYgXDjQh+/vlnbNiwARs3bkSDBg0QERGBCRMmwN3dnb+PF8Bw84KcnJwgk8kQHx+v1x4fHw9XV1eRqiJAe8+y33//HUeOHEGNGjXELqfaOn36NBISEtCsWTNdm1qtxpEjR7B06VKoVCrIZDIRK6xe3NzcUL9+fb22evXqYfv27SJVVL199NFHmDRpEgYPHgwACAgIwO3btzFv3jyGmxfAOTcvyMzMDIGBgQgPD9e1aTQahIeHo2XLliJWVn0JgoBx48Zhx44dOHjwIHx9fcUuqVrr3LkzLly4gIiICN0jKCgIoaGhiIiIYLCpZK1bty5waYRr167B29tbpIqqt8zMTEil+l/FMpkMGo1GpIqMA0duykFYWBiGDx+OoKAgBAcHY8mSJcjIyMDIkSPFLq1aGjt2LDZu3Ihff/0V1tbWiIuLAwDY2trC3Nxc5OqqH2tr6wLznSwtLeHo6Mh5UCL44IMP0KpVK8ydOxevvvoqTp48iZUrV2LlypVil1Yt9enTB59//jm8vLzQoEEDnD17FosXL8Ybb7whdmlVGk8FLydLly7FF198gbi4ODRp0gTffPMNQkJCxC6rWpJIJIW2r127FiNGjKjcYqhQHTp04KngIvr9998xefJkXL9+Hb6+vggLC8Nbb70ldlnVUlpaGqZPn44dO3YgISEB7u7uGDJkCGbMmAEzMzOxy6uyGG6IiIjIqHDODRERERkVhhsiIiIyKgw3REREZFQYboiIiMioMNwQERGRUWG4ISIiIqPCcENERERGheGGiKo9iUSCnTt3il0GEZUThhsiEtWIESMgkUgKPF566SWxSyOiKor3liIi0b300ktYu3atXptcLhepGiKq6jhyQ0Sik8vlcHV11XvY29sD0B4yWr58OXr06AFzc3P4+flh27ZteutfuHABnTp1grm5ORwdHfH2228jPT1dr8+aNWvQoEEDyOVyuLm5Ydy4cXrLk5KS0K9fP1hYWMDf3x+7du2q2DdNRBWG4YaIDN706dPxyiuv4Ny5cwgNDcXgwYMRGRkJAMjIyED37t1hb2+PU6dOYevWrThw4IBeeFm+fDnGjh2Lt99+GxcuXMCuXbtQq1YtvX3Mnj0br776Ks6fP4+ePXsiNDQUycnJlfo+iaicCEREIho+fLggk8kES0tLvcfnn38uCIIgABDGjBmjt05ISIjwzjvvCIIgCCtXrhTs7e2F9PR03fLdu3cLUqlUiIuLEwRBENzd3YWpU6cWWQMAYdq0abrX6enpAgBhz5495fY+iajycM4NEYmuY8eOWL58uV6bg4OD7nnLli31lrVs2RIREREAgMjISDRu3BiWlpa65a1bt4ZGo8HVq1chkUhw7949dO7cudgaGjVqpHtuaWkJGxsbJCQklPUtEZGIGG6ISHSWlpYFDhOVF3Nz8xL1MzU11XstkUig0WgqoiQiqmCcc0NEBu+ff/4p8LpevXoAgHr16uHcuXPIyMjQLT927BikUinq1KkDa2tr+Pj4IDw8vFJrJiLxcOSGiESnUqkQFxen12ZiYgInJycAwNatWxEUFIQ2bdpgw4YNOHnyJFavXg0ACA0NxcyZMzF8+HDMmjULiYmJeO+99zB06FAolUoAwKxZszBmzBi4uLigR48eSEtLw7Fjx/Dee+9V7hslokrBcENEotu7dy/c3Nz02urUqYMrV64A0J7JtHnzZrz77rtwc3PDpk2bUL9+fQCAhYUF/vzzT4wfPx7NmzeHhYUFXnnlFSxevFi3reHDhyMrKwtfffUVJk6cCCcnJwwYMKDy3iARVSqJIAiC2EUQERVFIpFgx44d6Nu3r9ilEFEVwTk3REREZFQYboiIiMiocM4NERk0HjknotLiyA0REREZFYYbIiIiMioMN0RERGRUGG6IiIjIqDDcEBERkVFhuCEiIiKjwnBDRERERoXhhoiIiIwKww0REREZlf8Hxpw1PeMjG2AAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "32/32 [==============================] - 4s 88ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADRF0lEQVR4nOzdd1xV9f/A8ddlXeCyZIMsBRcmgiu3Yiou1Mps2NddZpmZMytnmplmVppWllhqlprmnrn3APdEQURxMgRk398f/Lh6ZQgC9171/fRxHw/P/LzvOYd73/czzlGo1Wo1QgghhBDPISN9ByCEEEIIoS+SCAkhhBDiuSWJkBBCCCGeW5IICSGEEOK5JYmQEEIIIZ5bkggJIYQQ4rkliZAQQgghnluSCAkhhBDiuSWJkBBCCCGeW5IICSHEY2RlZTFy5Eg8PT0xMjKia9euZV5Gy5YtadmyZZnv92kVFhaGQqEgKipK36GIZ5wkQuK5lPchm/cyMTGhYsWK9O7dm9jY2HIrd/z48SgUClxcXEhNTc233MfHh06dOj3Rvn/88UfCwsLyzY+KitJ6rw+/lixZkm/9M2fO0K5dO6ysrLC3t+d///sft27d0iwfPHgwCoWCixcvFhrLZ599hkKh4Pjx46SmpjJ79mzatm2Lm5sb1tbWBAUFMWfOHLKzs4v9/tLS0vj222958cUXsbW1xdzcnKpVqzJo0CDOnz9f7P08id9++41p06bRrVs3FixYwMcff1yu5enS9u3bNdfDwoULC1ynSZMmKBQKXnjhhScqo7BrUwhDoJBnjYnnUVhYGH369GHixIlUqlSJtLQ09u/fT1hYGD4+Ppw8eRJzc/MyL3f8+PFMmDABgOnTpzNs2DCt5T4+PrzwwgusWbOmxPt+4YUXcHR0ZPv27Vrzo6KiqFSpEm+++SYdOnTQWtasWTO8vb0101evXiUoKAhbW1sGDx5McnIy06dPx8vLi4MHD2JmZsaBAwdo2LAhEyZMYOzYsQXGUrlyZaysrDh+/DgnT54kICCAl156ibZt22JjY8PGjRtZsWIFPXv2ZMGCBY99b7dv36Zdu3YcOXKETp060bp1a6ysrDh37hxLliwhLi6OjIyMEh+z4nrjjTfYvXs3V69eLbcy8uI3MzMrtzIKsn37doKDgzE3Nyc4OJh169ZpLc+7fszNzfH19eXkyZMlLqOwa7Mo2dnZZGZmolQqUSgUJS5TiGJTC/Ecmj9/vhpQHzp0SGv+qFGj1ID6r7/+Kpdyx40bpwbUgYGBahcXF3VqaqrWcm9vb3XHjh2faN81a9ZUt2jRIt/8y5cvqwH1tGnTHruPgQMHqi0sLNTR0dGaeZs3b1YD6p9++kkzz8/PT129evUC97F37141oP7qq6/UarVafevWLfXJkyfzrdenTx81oL5w4cJj4+rYsaPayMhIvWzZsnzL0tLS1MOGDXvsPkojODhYXbNmzXItQ1+2bdumBtSvvPKK2sTERH3r1i2t5ZMnT1a7uLiomzZt+sTHoLBrsyDJyclPVIYQT0qaxoR4SLNmzQCIjIzUmn/27Fm6deuGvb095ubm1KtXj1WrVmmtk5mZyYQJE6hSpQrm5uY4ODjQtGlTNm/enK+csWPHcuPGDebMmfPYmHJycpg5cyY1a9bE3NwcFxcXBgwYQHx8vGYdHx8fTp06xY4dOzTNHAX1N0lJSSmy5mT58uV06tQJLy8vzbzWrVtTtWpV/v77b828Hj16cPbsWY4ePZpvH4sXL0ahUPDmm28C4OjoSM2aNfOt9/LLLwO5TXFFOXDgAGvXrqVfv368+uqr+ZYrlUqmT5+uNe+///6jWbNmqFQq7Ozs6NKlS75y8popL168SO/evbGzs8PW1pY+ffpomi3zmhW3bdvGqVOnNMd2+/btmialgmrgFAqFVlNQXFwcffr0wcPDA6VSiZubG126dNHq/1JQH6GbN2/Sr18/XFxcMDc3p3bt2vlq0PLKmz59Oj///DO+vr4olUrq16/PoUOHijy2D+vSpQtKpZKlS5dqzV+8eDHdu3fH2Ng43zbz58+nVatWODs7o1Qq8ff3z3dNF3Vt5jVR79ixg/fffx9nZ2c8PDy0luUdo//++w8jI6N8tZB511tx/paEKIgkQkI8JO9Dt0KFCpp5p06domHDhpw5c4ZPPvmEb775BpVKRdeuXVmxYoVmvbxmr+DgYGbNmsVnn32Gl5dXgclCs2bNaNWqFV9//TX3798vMqYBAwYwYsQImjRpwnfffUefPn1YtGgRISEhZGZmAjBz5kw8PDyoXr06f/zxB3/88QefffaZ1n4mTJiAlZUV5ubm1K9fn02bNmktj42N5ebNm9SrVy9fDA0aNCA8PFwz3aNHDyD3S+hh2dnZ/P333zRr1kwrmSpIXFwckJsoFSUv4fzf//5X5Hp5tmzZQkhICDdv3mT8+PEMHTqUvXv30qRJkwI73nbv3p179+4xZcoUunfvTlhYmKb50snJiT/++IPq1avj4eGhObY1atQoVix5Xn31VVasWEGfPn348ccfGTx4MPfu3ePKlSuFbnP//n1atmzJH3/8QY8ePZg2bRq2trb07t2b7777Lt/6ixcvZtq0aQwYMIBJkyYRFRXFK6+8orlGHsfS0pIuXbrw559/auYdO3aMU6dO8dZbbxW4zZw5c/D29ubTTz/lm2++wdPTk/fff5/Zs2dr1inOtfn+++9z+vRpxo4dyyeffFJgWa1ateL9999nypQpmr+p69ev8+GHH9K6dWvee++9Yr1PIfLRd5WUEPqQ1zS2ZcsW9a1bt9QxMTHqZcuWqZ2cnNRKpVIdExOjWfell15S16pVS52WlqaZl5OTo27cuLG6SpUqmnm1a9d+bLNWXtPYrVu31Dt27FAD6hkzZmiWP9o0tmvXLjWgXrRokdZ+NmzYkG9+Yc0P0dHR6rZt26rnzJmjXrVqlXrmzJlqLy8vtZGRkXrNmjWa9Q4dOqQG1L///nu+fYwYMUINaB2D+vXrqz08PNTZ2dn54nq4Ga0g6enpan9/f3WlSpXUmZmZRa778ssvqwF1fHx8kevlCQwMVDs7O6vv3LmjmXfs2DG1kZGRumfPnpp5eeeib9+++cpzcHDQmteiRYt8zUJ5TUrbtm3Tmp/XFDl//ny1Wq1Wx8fHF6tpskWLFlrnb+bMmWpAvXDhQs28jIwMdaNGjdRWVlbqpKQkrfIcHBzUd+/e1az777//qgH16tWriyw3730sXbpUvWbNGrVCoVBfuXJFrVbnnvfKlSsXegwebdpVq9XqkJAQzTZ5Crs28/4OmzZtqs7Kyipw2eXLlzXzUlJS1H5+fuqaNWuq09LS1B07dlTb2NhoNeUKUVJSIySea61bt8bJyQlPT0+6deuGSqVi1apVmur5u3fv8t9//2lqDW7fvs3t27e5c+cOISEhXLhwQTPKzM7OjlOnTnHhwoVild28eXOCg4OLrBVaunQptra2tGnTRlP27du3qVu3LlZWVmzbtu2x5Xh5ebFx40bee+89QkND+eijjwgPD8fJyUmrs3ZeDEqlMt8+8jqOPxzn22+/zdWrV9m5c6dm3uLFizEzM+O1114rMqZBgwZx+vRpZs2ahYmJSZHrJiUlAWBtbf2Yd5pbQxAREUHv3r2xt7fXzA8ICKBNmzb5OgID+WoSmjVrxp07dzTllpaFhQVmZmZs375dqznzcdatW4erq6umiRHA1NRU04l9x44dWuu//vrrWjWZec28ly5dKnaZbdu2xd7eniVLlqBWq1myZIlW+Y+ysLDQ/D8xMZHbt2/TokULLl26RGJiYrHLfeeddwpsenuUpaUlYWFhnDlzhubNm7N27Vq+/fbbx9Y+ClEUSYTEc2327Nls3ryZZcuW0aFDB27fvq2VCFy8eBG1Ws2YMWNwcnLSeo0bNw7I7ccBMHHiRBISEqhatSq1atVixIgRHD9+vMjyx48fT1xcHHPnzi1w+YULF0hMTMTZ2Tlf+cnJyZqyS8re3p4+ffpw7tw5zUiovC+19PT0fOunpaVprQO5I6mMjY01zWNpaWmsWLGC9u3ba30hP2ratGn88ssvfPHFF/lGsRXExsYGgHv37j123ejoaACqVauWb1mNGjW4ffs2KSkpWvMf/RLNi70kSUtRlEolU6dOZf369bi4uNC8eXO+/vprTdNgYaKjo6lSpQpGRtof03nNcnnvNU9ZvA9TU1Nee+01Fi9ezM6dO4mJiSm0WQxgz549tG7dWtMXy8nJiU8//RSgRIlQpUqVir1ukyZNGDhwIAcPHiQkJIS+ffsWe1shClL0TzEhnnENGjTQ9Inp2rUrTZs25a233uLcuXNYWVmRk5MDwPDhwwkJCSlwH35+fkBuDU9kZCT//vsvmzZtYt68eXz77bfMnTuX/v37F7ht8+bNadmyJV9//XWBfRxycnJwdnZm0aJFBW7v5ORU4vecx9PTE8it9fLw8MDNzQ3IrVV51PXr17G3t9dKEp2dnWnTpg3Lly9n9uzZrF69mnv37mn6DxUkLCyMUaNG8d577/H5558XK87q1asDcOLECU0tR1kqrCZC/Zg7ixQ2pLugeyMNGTKE0NBQVq5cycaNGxkzZgxTpkzhv//+IygoqORBF+BJ38ej3nrrLebOncv48eOpXbs2/v7+Ba4XGRnJSy+9RPXq1ZkxYwaenp6YmZmxbt06vv32W83fTnE8nGA/Tnp6uqaDemRkJKmpqVhaWhZ7eyEeJTVCQvw/Y2NjpkyZwrVr15g1axaQez8cyP2l3Lp16wJfDzfZ5NW0/Pnnn8TExBAQEMD48eOLLDevVuinn37Kt8zX15c7d+7QpEmTAsuuXbu2Zt2S3mslr8kkL5mqWLEiTk5OHD58ON+6Bw8eJDAwMN/8Hj16cPfuXdavX8/ixYuxsbEhNDS0wPL+/fdf+vfvzyuvvKLVmfZx8vZX2M3+HpZ3T6Rz587lW3b27FkcHR1RqVTFLrsoeTUuCQkJWvMfranJ4+vry7Bhw9i0aRMnT54kIyODb775ptD9e3t7c+HChXwJxdmzZzXLy0PTpk3x8vJi+/btRdYGrV69mvT0dFatWsWAAQPo0KEDrVu3LjCpKcv7AI0bN44zZ84wffp0Ll++XGjnaiGKSxIhIR7SsmVLGjRowMyZM0lLS8PZ2ZmWLVvy008/FVhT8vAdl+/cuaO1zMrKCj8/vwKbmh7WokULWrZsydSpUzVNUHm6d+9OdnY2X3zxRb7tsrKytL6EVSpVvi/lR2PMExsby2+//UZAQICmJghyRzetWbOGmJgYzbytW7dy/vz5Avv9dO3aFUtLS3788UfWr1/PK6+8UuCNKHfu3Mkbb7xB8+bNWbRoUb7mnqI0atSIdu3aMW/ePFauXJlveUZGBsOHDwfAzc2NwMBAFixYoHUsTp48yaZNm4rVFFdc3t7eGBsba/WRgty7KD8sNTU133n19fXF2tq6yGujQ4cOxMXF8ddff2nmZWVl8cMPP2BlZUWLFi3K4F3kp1Ao+P777xk3blyRI/XyaqAernFKTExk/vz5+dYt7NosqQMHDjB9+nSGDBnCsGHDGDFiBLNmzcrXX0qIkpCmMSEeMWLECF577TXCwsJ47733mD17Nk2bNqVWrVq88847VK5cmRs3brBv3z6uXr3KsWPHAPD396dly5bUrVsXe3t7Dh8+zLJlyxg0aNBjyxw3bhzBwcH55rdo0YIBAwYwZcoUIiIiaNu2Laamply4cIGlS5fy3Xff0a1bNwDq1q3LnDlzmDRpEn5+fjg7O9OqVStGjhypacZwd3cnKiqKn376iZSUlHzDsD/99FOWLl1KcHAwH330EcnJyUybNo1atWrRp0+ffPFZWVnRtWtXTT+hgprFoqOj6dy5MwqFgm7duuW7T01AQAABAQFFHp/ff/+dtm3b8sorrxAaGspLL72ESqXiwoULLFmyhOvXr2vuJTRt2jTat29Po0aN6NevH/fv3+eHH37A1tb2sbVzJWFra8trr73GDz/8gEKhwNfXlzVr1uTrt3X+/Hleeuklunfvjr+/PyYmJqxYsYIbN27wxhtvFLr/d999l59++onevXtz5MgRfHx8WLZsGXv27GHmzJnF6jz+pLp06UKXLl2KXKdt27aYmZkRGhrKgAEDSE5O5pdffsHZ2Tnfj4bCrs2SSEtLo1evXlSpUoXJkycDubeEWL16NX369OHEiRNlVtsnnjN6HbMmhJ4UdmdptVqtzs7OVvv6+qp9fX01Q3ojIyPVPXv2VLu6uqpNTU3VFStWVHfq1EnrTseTJk1SN2jQQG1nZ6e2sLBQV69eXT158mR1RkaGZp2Hh88/qkWLFmqgwCH4P//8s7pu3bpqCwsLtbW1tbpWrVrqkSNHqq9du6ZZJy4uTt2xY0e1tbW1GtAMV168eLG6efPmaicnJ7WJiYna0dFR/fLLL6uPHDlS4LE5efKkum3btmpLS0u1nZ2dukePHuq4uLhCj+XatWvVgNrNzU1rKH2evOHZhb3GjRtX6L4flpqaqp4+fbq6fv36aisrK7WZmZm6SpUq6g8//FB98eJFrXW3bNmibtKkidrCwkJtY2OjDg0NVZ8+fVprncLORUHDtgsaOq5W5941+9VXX1VbWlqqK1SooB4wYID65MmTWsPnb9++rf7ggw/U1atXV6tUKrWtra36xRdfVP/9999a+3p0+LxarVbfuHFD3adPH7Wjo6PazMxMXatWLc1+8xR15/DiHN+Hh88XpaBjsGrVKnVAQIDa3Nxc7ePjo546dar6t99+y3f8Crs2i/o7fPQ8fPzxx2pjY2P1gQMHtNY7fPiw2sTERD1w4MAi4xeiMPKsMSGEEEI8t6SPkBBCCCGeW5IICSGEEOK5JYmQEEIIIZ5bkggJIYQQwuDs3LmT0NBQ3N3dUSgU+W6fkZyczKBBg/Dw8MDCwgJ/f/9C79JfFEmEhBBCCGFwUlJSqF27dqE3YB06dCgbNmxg4cKFnDlzhiFDhjBo0CBWrVpVonJk1JgQQgghDJpCoWDFihV07dpVM++FF17g9ddfZ8yYMZp5devWpX379kyaNKnY+5YbKj7HcnJyuHbtGtbW1mV6C3whhBC6oVaruXfvHu7u7iW6Y3tJpKWlkZGRUSb7UqvV+b5vlEql1nMMi6tx48asWrWKvn374u7uzvbt2zl//jzffvttifYjidBz7Nq1a5oHbwohhHh6xcTE4OHhUeb7TUtLw8LaAbJSy2R/VlZWJCcna80bN27cE931/YcffuDdd9/Fw8MDExMTjIyM+OWXX2jevHmJ9iOJ0HMs7xb94Wcul+vt+ktq9r4ofYeQz86TN/QdQj7VPO30HUI+gZ5W+g4hn+tJmfoOIR83G1N9h5DPtEUR+g4hn7DBJftC04WZOy/pOwQtWWkpbPu0c7l9hmdkZEBWKkr/XmBsVrqdZWeQfHoBMTEx2NjYaGY/SW0Q5CZC+/fvZ9WqVXh7e7Nz504++OAD3N3dad26dbH3I4nQcyyvetLa2hrrhy5KfVNaGt6XqYl58uNX0jEzAzxOFirDSajzKLPKpkq/LFmoSvmFUg6MzCz1HUI+KivD+VzKY2pheH93QPl3bzAxR1HKREityG26s7Gx0UqEnsT9+/f59NNPWbFiBR07dgRyn1sYERHB9OnTJRESQgghRBlSAKVNtsowV8vMzCQzMzNfvyhjY2NycnJKtC9JhIQQQghRNIVR7qu0+yiB5ORkLl68qJm+fPkyERER2Nvb4+XlRYsWLRgxYgQWFhZ4e3uzY8cOfv/9d2bMmFGiciQREkIIIYTBOXz4MMHBwZrpoUOHAtCrVy/CwsJYsmQJo0ePpkePHty9exdvb28mT57Me++9V6JyJBESQgghRNEUijJoGivZ9i1btqSoWx26uroyf/780sWEJEJCCCGEeBw9NI3pimFGJYQQQgihA1IjJIQQQoii6aFpTFckERJCCCHEY5RB05iBNkIZZlRCCCGEEDogNUJCCCGEKJo0jQnxeD8u3MLUn9fSt1tzxg1+WSdlXr0cy5FdR7l57RYp91Lo1KMDfv6+muVqtZr9Ww9w4tAp0tPScfd2o1XnYCo42pVbTAEetrxR35OqLlY4Win5fOVJdl+8o1neu7E3rao542SjJCs7h/M3kpm36zJn4u6VW0x+jiraVHPCq4IFdhamzN0TxbFrSZrlgRVtaFbZAa8KFlgpTZi86TxXE9PKLZ7CpKVlsHHNHk4eu0By8n0qejjRpVsrPL1ddVK+IV5PBdH3cWrg58i7bapSy6sCLnYWvDt3L5uOXdMsn96zHt0a+Whts+NUHL1m7dZJfAA9B83g5u2EfPM7tW3AoL6ddBKDv6s1XQJcqeygwl5lxtTN5zkYnRuTsULBm/UqUsfTDhdrJakZ2Ry/lsTCQzHEpxre8/Fk1Jgosd69e6NQKDQvBwcH2rVrx/Hjx/UdWrk4duYKi1bto4avu07LzczIxMnNkeDQFgUuP7zrKOH7jvFSl2DeGNgdU1NTVoT9S1ZmVrnFZG5qTOTNZGZuuVDg8pi79/lu6wX6hh3mwz8jiEtMY9prAdhalN+DOJUmRsQm3GfJ0dgCl5sZGxF5O4WVJ+LKLYbiWLZ4IxfORvNmrw4M+7QnVav78PMPS0lMKL8k8WGGeD0VRN/HyVJpwpnYRMYuCS90ne2n4qg/arXm9eFvB3QSW57vvxzA4rkjNK8vP+sFQLMXa+osBqWJEVF3Uvllb3SByyo7qlgWfo0RK0/x9ZYLuNua80mbqjqLT+SSRKgctWvXjuvXr3P9+nW2bt2KiYkJnTrp5peILqWkpvPRFwuZOrI7ttYWOi27UjUfGrdphF9N33zL1Go14XsieLFlfXz9K+Pk6kjIa21IuZdC5Jnye4L0wct3+XVPlFYt0MO2nr3JkSsJXE9MI+pOKrO3R2KlNMHXSVVuMZ2Ku8eqUze0aoG0Yr6SwLozNzlzQzdfpAXJzMjkRMQFOnZtTmU/DxydKtC2Y2McnOzYt+uYTmIwxOvpUYZwnLafiuObVafY+FAt0KMyMrO5lZSueSXpuJbDzkaFvZ215nXw6DncXOwJ8PfRWQzhVxP580gsB6Pj8y1Lzcxm4vpz7L18l2uJaVy4lcK8vdH4OalwNMCH8mqaxkr7MkCSCJUjpVKJq6srrq6uBAYG8sknnxATE8OtW7cAiImJoXv37tjZ2WFvb0+XLl2IiorS2se8efOoUaMG5ubmVK9enR9//FGzLCMjg0GDBuHm5oa5uTne3t5MmTJFl28RgDHfLqNVoxo0rVdN52UXJSk+idTkVDx9PTXzlOZKXD1cuH5FvzUfeUyMFIQGuJGclkXkLcN7wr0uZeeoyclRY2JqrDXf1NSEy5EF12TpkqFcT4Z+nPI0rOrE4a87sXV8CJPeDMJOj1/umVlZ/Lf7OCEtg8r/Ke2loDIzJketJiVDtzWMxZLXNFbalwGSPkI6kpyczMKFC/Hz88PBwYHMzExCQkJo1KgRu3btwsTEhEmTJmmaz8zMzFi0aBFjx45l1qxZBAUFER4ezjvvvINKpaJXr158//33rFq1ir///hsvLy9iYmKIiYnR6ftatfUoJ8/Hsurnj3VabnGk3EsFQGVlqTXf0sqSlOQUfYSk0aiyPWM7+aM0NeJOcgbDlh0n8b4BfvjpkLm5Gd6V3Niyfj/OLg5Y21gSfvgs0Zev4+hkp+/wDOZ6MvTjBLDjdBwbImKJuZ2Ct5MVI7q8QNigprzy9X/kFP7EhHKz79BZklPSaNMiSPeFF5OpsYK3G3iyO/IO9zNL9vR0nZDO0uJJrFmzBisrKwBSUlJwc3NjzZo1GBkZsXjxYnJycpg3b57mF8r8+fOxs7Nj+/bttG3blnHjxvHNN9/wyiuvAFCpUiVOnz7NTz/9RK9evbhy5QpVqlShadOmKBQKvL29i4wnPT2d9PR0zXRSUsHNJMV17UY8E75fwcIZAzFXll//lmdReEwC/X8/jK2FKR0D3BgfWoOBi8JJMMROkjr0Rs8OLF20kUmf/4SRkYKKni4E1qtO7JUb+g7NoBj6cVp9+Krm/+euJXEmNpFdX7SnYVVn9p67qfN4Nmw7Qv1APxzsbXRednEYKxQMa+WHAvh5T5S+w3nuSCJUjoKDg5kzZw4A8fHx/Pjjj7Rv356DBw9y7NgxLl68iLW1tdY2aWlpREZGkpKSQmRkJP369eOdd97RLM/KysLW1hbI7ZDdpk0bqlWrRrt27ejUqRNt27YtNJ4pU6YwYcKEMnt/J85f5XZ8Mh37f6OZl52dw4Fjl1iwYjcXtkzD2Fh/VaEq69xf7inJqahsHvS/SU1OxcnNSV9hAZCWmUNsQhqxCWmcvn6Phf3q0+EFVxYf1G2NnqFxdLJj4JDXyUjPJC0tHRtbKxb+thp7R1t9h2ZQ15MhH6eCxNxO4c69dHycVOw9p9uyb9xKIOLEJcYMe0O3BReTsULBsJd8cbJSMm7dWcOsDYJnetSYJELlSKVS4efnp5meN28etra2/PLLLyQnJ1O3bl0WLVqUbzsnJyeSk3P7i/zyyy+8+OKLWsuNjXP7BtSpU4fLly+zfv16tmzZQvfu3WndujXLli0rMJ7Ro0czdOhQzXRSUhKenp4FrlscTepWYVPYSK15w7/6E18vZwa+9ZJekyAAmwo2WFpZEnMpBmf33C+q9LQM4q7eIODFWnqN7VEKhQIzE8P8kNAHM6UpZkpTUlPTOHcmmo5dmus7JIO8ngzxOBXE1c6CCiozbibp/pYMm7YfxdZWRYMgwxuNlZcEudmYM27dWZLTDbh5XKEog0RImsaeewqFAiMjI+7fv0+dOnX466+/cHZ2xsYmf3Wtra0t7u7uXLp0iR49ehS6TxsbG15//XVef/11unXrRrt27bh79y729vb51lUqlSiVyjJ7P1aW5lSr7KY1z9LcjAo2qnzzy0tGegYJdxI100nxSdy8dgtzS3Ns7KwJahLIwW2HsXOww7aCDXu37EdlrcK3RuVyi8nC1IiKdg9Gz7namuPnpCIpLYuktEzeftGbvZG3uZOSga2FKV0D3XGyUrL93K1yi0lpbIST1YPOqg4qMzxszUnJyCb+fiaWpsbYW5pqhvC7WOdeJ0lpWSTp8MP53Oko1Khxdrbn9q141qzcibOLPfUb6WbIsyFeTwXR93GyVBrj42SlmfZ0UOHvYUtCSgYJqRl81NGfDeGx3EpMw8vJitGv1CLqVjI7T+u26S4nJ4fNO8Jp0zxQ8wNSl8xNjHC1MddMO1sr8bG3JDk9i/jUTIa39qOygyVfbjqPkUKB3f///SWnZ5Glj85UzylJhMpReno6cXG5o0ni4+OZNWsWycnJhIaG0qBBA6ZNm0aXLl2YOHEiHh4eREdH888//zBy5Eg8PDyYMGECgwcPxtbWlnbt2pGens7hw4eJj49n6NChzJgxAzc3N4KCgjAyMmLp0qW4urpiZ2en3zeuQzdib7L81xWa6Z3rcm/YViOoOiHd2lCvWR2yMjLZunKb5gZ4L/fujIlp+V361Vytmfl6oGZ6UHBureCGk3HM2HweL3sLQmrWxNbClKS0TM7G3ePDJRFE3Uktt5i87C0Y2vLBkPDXAnPv97Qv6i6/H7pKgLsNvRo8qB3s3yi3v9maUzdYq8Mvr7S0dNat2kViQjKWlubUCqxCu9CmOvsSM8TrqSD6Pk4BXvYsGfrgXktjXqsNwLJ9UXz251FqVLTl1Ybe2FiYcTPxPjtP32DG6lNkZOm22Sf8xCVu3k6kbcs6Oi03j6+Tiokda2im+zTM/bvadv4Wfx2NpYF3BQBmvKJdozh27RlOXdffrSwKZKTIfZV2HwZIoVarJe0sB71792bBggWaaWtra6pXr86oUaN49dVXAYiLi2PUqFGsW7eOe/fuUbFiRV566SWmT5+uqSVavHgx06ZN4/Tp06hUKmrVqsWQIUN4+eWX+eWXX/jxxx+5cOECxsbG1K9fn2nTphEUVLyREUlJSdja2nLx6m2sC6iV0pdvd+nunizFte24YQy3f1iN//8QNSR1vawfv5KOxSZm6DuEfCraGt59YiaFHdF3CPn8NbyVvkPI5+ttF/UdgpbM+8lsHvoSiYmJBbYulFbe94Sy2ecoTMwfv0ER1FlppO+aVG6xPimpESonYWFhhIWFFbmOq6urVrJUkLfeeou33nqrwGXvvPOOVkdqIYQQQpSMJEJCCCGEKJrcR0gIIYQQz61nePi8YUYlhBBCCKEDUiMkhBBCiKJJ05gQQgghnlvPcNOYJEJCCCGEKNozXCNkmOmZEEIIIYQOSI2QEEIIIYomTWNCCCGEeG5J05gQQgghxLNHaoSEEEII8Rhl0DRmoHUvkggJIYQQomjPcNOYJEKC2fuiUFpa6TsMjbruhvcEc0N8WrghPlV94a4r+g4hn7lv1dF3CPm0+2KjvkPIZ8OYEH2HkM9fJ6/pO4R87iTc13cIWrLS0vQdwlNPEiEhhBBCFE2hKINRY1IjJIQQQoin0TM8fN4woxJCCCGE0AGpERJCCCFE0aSztBBCCCGeW89w05gkQkIIIYQo2jNcI2SY6ZkQQgghhA5IIiSEEEKIouU1jZX2VQI7d+4kNDQUd3d3FAoFK1euzLfOmTNn6Ny5M7a2tqhUKurXr8+VKyW7n5kkQkIIIYQoWl7TWGlfJZCSkkLt2rWZPXt2gcsjIyNp2rQp1atXZ/v27Rw/fpwxY8Zgbm5eonKkj5AQQgghDE779u1p3759ocs/++wzOnTowNdff62Z5+vrW+JypEZICCGEEEVSKBRl8gJISkrSeqWnp5c4npycHNauXUvVqlUJCQnB2dmZF198scDms8eRREgIIYQQRSrLRMjT0xNbW1vNa8qUKSWO5+bNmyQnJ/PVV1/Rrl07Nm3axMsvv8wrr7zCjh07SrQvaRozIL179yYhIeGJMlpduHo5liO7jnLz2i1S7qXQqUcH/PwfVEOq1Wr2bz3AiUOnSE9Lx93bjVadg6ngaKezGHNycvhn5S727DtJYmIKFeysaNY0gC6hTTR/hPqQlpbBxjV7OHnsAsnJ96no4USXbq3w9HbVSfmGeO4CPGx5o74nVV2scLRS8vnKk+y+eEezvHdjb1pVc8bJRklWdg7nbyQzb9dlzsTdK7eYCnLzTiI/LtjAvqPnSEvPxMPNgc8/7EaNKh46Kb+BnyPvtqlKLa8KuNhZ8O7cvWw69uBhpNN71qNbIx+tbXaciqPXrN06iS+Pvo+TXONPj5iYGGxsbDTTSqWyxPvIyckBoEuXLnz88ccABAYGsnfvXubOnUuLFi2KvS+pEXpE7969tbJXBwcH2rVrx/Hjx8usjKioKBQKBREREWW2T13IzMjEyc2R4NCCL7DDu44Svu8YL3UJ5o2B3TE1NWVF2L9kZWbpLMY16/axddtRer0dwtQv3+X114JZu34/m7Yc1lkMBVm2eCMXzkbzZq8ODPu0J1Wr+/DzD0tJTNDNB54hnjtzU2MibyYzc8uFApfH3L3Pd1sv0DfsMB/+GUFcYhrTXgvA1sK03GJ6VFLyfQZ8MhcTY2NmjO3Dn7M+ZnCfDlhbWegsBkulCWdiExm7JLzQdbafiqP+qNWa14e/HdBZfGAYx0mu8XKmKKMXYGNjo/V6kkTI0dERExMT/P39tebXqFGjxKPGpEaoAO3atWP+/PkAxMXF8fnnn9OpU6cSH9xnTaVqPlSq5lPgMrVaTfieCF5sWR9f/8oAhLzWhp+n/ErkmUtUC6iqkxgvXIylTlBVAmv7AeDkaMe+A6e5dOnaY7YsP5kZmZyIuEDvd7tS2S/313Hbjo05fTKSfbuO0S60abnHYIjn7uDluxy8fLfQ5VvP3tSanr09ko4Bbvg6qTh6JaFcYnrUwuU7cHG04/OPumnmubvY66TsPNtPxbH9VFyR62RkZnMrqeT9LMqKIRwnucbL18NNW6XYSdkEA5iZmVG/fn3OnTunNf/8+fN4e3uXaF9SI1QApVKJq6srrq6uBAYG8sknnxATE8OtW7eA3Gq97t27Y2dnh729PV26dCEqKkprH/PmzaNGjRqYm5tTvXp1fvzxR82ySpUqARAUFIRCoaBly5YFxpGTk8OUKVOoVKkSFhYW1K5dm2XLlmmWx8fH06NHD5ycnLCwsKBKlSqaBE7XkuKTSE1OxdPXUzNPaa7E1cOF61eK/hAvS1X8KnL6dBTX43Krn6Ov3OD8hRgCAko+kqCsZOeoyclRY2JqrDXf1NSEy5GxeorqAUM5d0UxMVIQGuBGcloWkbeSdVburoNnqO5bkU+nLqJDz0n0HPI9/246qLPyi6thVScOf92JreNDmPRmEHYqM52Wb+jHSa7xp1NycjIRERGa1pPLly8TERGhqZQYMWIEf/31F7/88gsXL15k1qxZrF69mvfff79E5UiN0GMkJyezcOFC/Pz8cHBwIDMzk5CQEBo1asSuXbswMTFh0qRJmuYzMzMzFi1axNixY5k1axZBQUGEh4fzzjvvoFKp6NWrFwcPHqRBgwZs2bKFmjVrYmZW8IfWlClTWLhwIXPnzqVKlSrs3LmTt99+GycnJ1q0aMGYMWM4ffo069evx9HRkYsXL3L//n0dH6FcKfdSAVBZWWrNt7SyJCU5RWdxdOrQmPv3Mxj16U8YGRmRk5NDt1da0qTRCzqL4VHm5mZ4V3Jjy/r9OLs4YG1jSfjhs0Rfvo6jk53e4spjKOeuII0q2zO2kz9KUyPuJGcwbNlxEu/rrqn12o27rNhwgDe6NKXXa8GcuXCVGb+sxsTEmI6t6uosjqLsOB3HhohYYm6n4O1kxYguLxA2qCmvfP0fOWrdxGDox0mu8dLTR43Q4cOHCQ4O1kwPHToUgF69ehEWFsbLL7/M3LlzmTJlCoMHD6ZatWosX76cpk1LVssuiVAB1qxZg5WVFZB7Qyc3NzfWrFmDkZERixcvJicnh3nz5mkuivnz52NnZ8f27dtp27Yt48aN45tvvuGVV14BcmuATp8+zU8//USvXr1wcnICwMHBAVfXgjvLpqen8+WXX7JlyxYaNWoEQOXKldm9ezc//fQTLVq04MqVKwQFBVGvXj0AfHx8inxf6enpWsMUk5KSnvwgGagDh06zd99JBg7ogoe7E9ExN1i0eIum07S+vNGzA0sXbWTS5z9hZKSgoqcLgfWqE3vlht5iehqExyTQ//fD2FqY0jHAjfGhNRi4KJyE1EydlJ+jVlPdtyID/xcCQLXK7lyKjmPlhgMG8QUPsPrwVc3/z11L4kxsIru+aE/Dqs7sPXeziC3LztNwnAyVvq/x4tJHItSyZUvU6qKz+b59+9K3b9/SRCWJUEGCg4OZM2cOkNv89OOPP9K+fXsOHjzIsWPHuHjxItbW1lrbpKWlERkZSUpKCpGRkfTr14933nlHszwrKwtbW9tix3Dx4kVSU1Np06aN1vyMjAyCgoIAGDhwIK+++ipHjx6lbdu2dO3alcaNGxe6zylTpjBhwoRix1ASKuvcX1opyamobFSa+anJqTi5OZVLmQVZ8td/dOrYiEYv1gTA09OZ27cTWb12r14TIUcnOwYOeZ2M9EzS0tKxsbVi4W+rsXcs/jVRXgzl3BUkLTOH2IQ0YhPSOH39Hgv71afDC64sPhijk/IdK1hTydNZa56PpzPb9p3SSflPIuZ2CnfupePjpGLvucevXxYM/TjJNV56htZHqCxJIlQAlUqFn5+fZnrevHnY2tryyy+/kJycTN26dVm0aFG+7ZycnEhOzm3b/eWXX3jxxRe1lhsbG+fbpjB5+1m7di0VK1bUWpbXw759+/ZER0ezbt06Nm/ezEsvvcQHH3zA9OnTC9zn6NGjNVWLkFsj5OnpWeC6JWVTwQZLK0tiLsXg7J77wZKelkHc1RsEvFirTMoojoyMrHx/rEZGRjzmR4XOmClNMVOakpqaxrkz0XTs0lzfIRnMuSsOhUKBmYnuujbWquHNlWu3teZdib2NqwE0aRbG1c6CCiozbial6axMQz9Oco2LokgiVAwKhQIjIyPu379PnTp1+Ouvv3B2dta6D0IeW1tb3N3duXTpEj169Chwf3l9grKzswst09/fH6VSyZUrV4q8H4KTkxO9evWiV69eNGvWjBEjRhSaCCmVyicappgnIz2DhDuJmumk+CRuXruFuaU5NnbWBDUJ5OC2w9g52GFbwYa9W/ajslbhW6PyE5dZUoGBfqxasxdHB1sqVnQkOvoGGzYeoHmz2jqLoSDnTkehRo2zsz23b8WzZuVOnF3sqd+opk7KN8RzZ2FqREW7B8OrXW3N8XNSkZSWRVJaJm+/6M3eyNvcScnA1sKUroHuOFkp2X7uVrnF9Kg3Ojfh3VFzCVu6jZea1uL0+av8u+kgn7z/ss5isFQa4+NkpZn2dFDh72FLQkoGCakZfNTRnw3hsdxKTMPLyYrRr9Qi6lYyO0/rrtnVEI6TXOPl7KHh76XahwGSRKgA6enpxMXljiSIj49n1qxZJCcnExoaSoMGDZg2bRpdunRh4sSJeHh4EB0dzT///MPIkSPx8PBgwoQJDB48GFtbW9q1a0d6ejqHDx8mPj6eoUOH4uzsjIWFBRs2bMDDwwNzc/N8zWbW1tYMHz6cjz/+mJycHJo2bUpiYiJ79uzBxsaGXr16MXbsWOrWrUvNmjVJT09nzZo11KhRo9yOy43Ymyz/dYVmeue63Bu21QiqTki3NtRrVoesjEy2rtymuWHZy707Y2Kqu8usZ4+2LF+xk7A/NpCUlEoFOyuCWwbxcpdmOouhIGlp6axbtYvEhGQsLc2pFViFdqFNS1RLWBqGeO6quVoz8/VAzfSg4Nxa2A0n45ix+Txe9haE1KyJrYUpSWmZnI27x4dLIoi6k1puMT3Kv4onX41+mzl/bGT+X//h5lKBIf07EdIySGcxBHjZs2Togx9DY17LTeqX7Yvisz+PUqOiLa829MbGwoybiffZefoGM1afIiMrR2cxGsJxkmu8fD3LTWMK9eN6Ij1nevfuzYIFCzTT1tbWVK9enVGjRvHqq68CufcWGjVqFOvWrePevXtUrFiRl156ienTp2tqiRYvXsy0adM4ffo0KpWKWrVqMWTIEF5+OfcX0rx585g4cSKxsbE0a9aM7du357uztFqt5vvvv2fOnDlcunQJOzs76tSpw6effkrz5s2ZNGkSixcvJioqCgsLC5o1a8a3336rGZ7/OElJSdja2vLx0sMoLa0ev4GO1HW3fvxKOhaXor97tBQmNjFD3yHks+24YQxFftjct+roO4R82n2xUd8h5LNhTIi+Q8jnr5P6u/9XYQztGs9KS+HIhI4kJiYW2EpRWnnfEzav/YzCtHQ3yFRn3idp6bvlFuuTkkToOSaJUPFJIlQ8hvYlAZIIFZckQsVjaNe4rhIh2+4/ozC1fPwGRVBnppL4t+ElQtI0JoQQQogiKSiDpjED7SQkXdOFEEII8dySGiEhhBBCFOlZ7iwtiZAQQgghivYMD5+XpjEhhBBCPLekRkgIIYQQRSuDpjG1NI0JIYQQ4mlUFn2ESj/qrHxIIiSEEEKIIj3LiZD0ERJCCCHEc0tqhIQQQghRtGd41JgkQkIIIYQokjSNCSGEEEI8g6RGSOBmY4qFykzfYWisPXNb3yHk07uOh75DyGdS2H/6DiGf9q2q6juEfD5bd0bfIeTT5+Va+g4hn8T7mfoOIR9DfACzoUlPTeaIDsp5lmuEJBESQgghRJGe5URImsaEEEII8dySGiEhhBBCFOlZrhGSREgIIYQQRXuGh89L05gQQgghnltSIySEEEKIIknTmBBCCCGeW5IICSGEEOK59SwnQtJHSAghhBDPLakREkIIIUTRnuFRY5IICSGEEKJI0jQmhBBCCPEMkhohA3X27Fl69+5NREQE1atXZ+XKlVSqVInw8HACAwP1HZ5GWloGG9fs4eSxCyQn36eihxNdurXC09tVJ+X7OapoU80JrwoW2FmYMndPFMeuJWmWB1a0oVllB7wqWGClNGHypvNcTUzTSWx5eg6awc3bCfnmd2rbgEF9O+kkhgZ+jrzbpiq1vCrgYmfBu3P3sunYNc3y6T3r0a2Rj9Y2O07F0WvW7nKLyRDPnb+rNV0CXKnsoMJeZcbUzec5GJ0AgLFCwZv1KlLH0w4XayWpGdkcv5bEwkMxxKeW3wNLr16O5ciuo9y8douUeyl06tEBP39fzXK1Ws3+rQc4cegU6WnpuHu70apzMBUc7cotpkcZwjX+qJycHP5ZuYs9+06SmJhCBTsrmjUNoEtoE53VTDwN5664pEboGdG7d2/NyVQoFDg4ONCuXTuOHz9e7H2EhYVhZ2eXb76Pjw8zZ84ss1jHjRuHSqXi3LlzbN26tcz2W9aWLd7IhbPRvNmrA8M+7UnV6j78/MNSEhPu6aR8pYkRsQn3WXI0tsDlZsZGRN5OYeWJOJ3EU5DvvxzA4rkjNK8vP+sFQLMXa+osBkulCWdiExm7JLzQdbafiqP+qNWa14e/HSjXmAzx3ClNjIi6k8ove6MLXFbZUcWy8GuMWHmKr7dcwN3WnE/aVC3XmDIzMnFycyQ4tEWByw/vOkr4vmO81CWYNwZ2x9TUlBVh/5KVmVWucT3MEK7xR61Zt4+t247S6+0Qpn75Lq+/Fsza9fvZtOWwzmJ4Gs5dcSlQaH1/PtHLQDsJPXc1Qu3atWP+/PkAxMXF8fnnn9OpUyeuXLmi58hyZWRkYGZmRmRkJB07dsTb2xuAe/d0k1iURGZGJiciLtD73a5U9vMAoG3Hxpw+Gcm+XcdoF9q03GM4FXePU3GFH5uDVxIAsLc0LfdYCmNno9Ka/vvfXbi52BPg76OzGLafimP7qaITiozMbG4lpesoIsM8d+FXEwm/mljgstTMbCauP6c1b97eaL7uWhNHlRm3UzLKJaZK1XyoVM2nwGVqtZrwPRG82LI+vv6VAQh5rQ0/T/mVyDOXqBZQvklaHkO4xh914WIsdYKqEljbDwAnRzv2HTjNpUvXHrNl2Xkazp14zmqEAJRKJa6urri6uhIYGMgnn3xCTEwMt27dYvv27SgUChISEjTrR0REoFAoiIqKYvv27fTp04fExERNhjt+/HhatmxJdHQ0H3/8cb7qw927d9OsWTMsLCzw9PRk8ODBpKSkaJb7+PjwxRdf0LNnT2xsbHj33XdRKBQcOXKEiRMnasp4mFqtxs/Pj+nTp2vNz4v14sWL5XLsHpWdoyYnR42JqbHWfFNTEy5HFvwr/3mXmZXFf7uPE9IyyOCqiRtWdeLw153YOj6ESW8GYacy03dIBk9lZkyOWk1Khn5+wSfFJ5GanIqnr6dmntJciauHC9ev6KcW1FCu8Sp+FTl9OorrcXcAiL5yg/MXYggI8H3MlrphiOeuKKWuDSqDprXy8twlQg9LTk5m4cKF+Pn54eDg8Nj1GzduzMyZM7GxseH69etcv36d4cOH888//+Dh4cHEiRM18wEiIyNp164dr776KsePH+evv/5i9+7dDBo0SGu/06dPp3bt2oSHhzNmzBiuX79OzZo1GTZsmKaMhykUCvr27aup2cozf/58mjdvjp+fXymPTPGYm5vhXcmNLev3k5iQTE5ODkcOnib68nXuJaU8fgfPoX2HzpKckkabFkH6DkXLjtNxDF1wiB4zdzJ1xQlerOJE2KCmGBnm55ZBMDVW8HYDT3ZH3uF+Zo5eYki5lwqAyspSa76llSUpyfr5GzSUa7xTh8Y0fNGfUZ/+RO/+XzFm/K+EtGlAk0Yv6DWuPIZ47oqkKKOXAXrumsbWrFmDlZUVACkpKbi5ubFmzRqMjB6fE5qZmWFra4tCocDVVbszsLGxMdbW1lrzp0yZQo8ePRgyZAgAVapU4fvvv6dFixbMmTMHc3NzAFq1asWwYcO09mdiYoKVlZVmf7dv39Za3rt3b8aOHcvBgwdp0KABmZmZLF68OF8t0cPS09NJT3/Q9JGUlFTousX1Rs8OLF20kUmf/4SRkYKKni4E1qtO7JUbpd73s2jDtiPUD/TDwd5G36FoWX34qub/564lcSY2kV1ftKdhVWf2nrupx8gMk7FCwbBWfiiAn/dE6Tscg2Io1/iBQ6fZu+8kAwd0wcPdieiYGyxavEXTaVqIPM9dIhQcHMycOXMAiI+P58cff6R9+/YcPHiwzMs6duwYx48fZ9GiRZp5arWanJwcLl++TI0aNQCoV69eifft7u5Ox44d+e2332jQoAGrV68mPT2d1157rdBtpkyZwoQJE0r+Rorg6GTHwCGvk5GeSVpaOja2Viz8bTX2jrZlWs6z4MatBCJOXGLMsDf0HcpjxdxO4c69dHycVOw99/j1nyfGCgXDXvLFyUrJuHVn9VYbBKCyzq1NSElORfVQP53U5FSc3Jx0Ho8hXeNL/vqPTh0b0ej/O2x7ejpz+3Yiq9fuNYhEyNDO3ePIqLFniEqlws/PDz8/P+rXr8+8efNISUnhl19+0dQKqdVqzfqZmU8+LDY5OZkBAwYQERGheR07dowLFy7g6/ugnVqlUhWxl8L179+fJUuWcP/+febPn8/rr7+OpaVloeuPHj2axMREzSsmJuaJyi2ImdIUG1srUlPTOHcmmpq1dNM89zTZtP0otrYqGgQZfidIVzsLKqjMuJmk21sNGLq8JMjNxpwJ68+SnK7f0T02FWywtLIk5tKDv+X0tAzirt7AzUs3t7B4mCFd4xkZWfm+eI2MjHjo412vDO3cPY4++gjt3LmT0NBQ3N3dUSgUrFy5stB133vvPRQKxRON3n7uaoQepVAoMDIy4v79+zg55Wbh169fp0KFCkBuB+SHmZmZkZ2dnW8/Bc2vU6cOp0+fLrc+Ox06dEClUjFnzhw2bNjAzp07i1xfqVSiVCrLNIZzp6NQo8bZ2Z7bt+JZs3Inzi721G+km2GzSmMjnKwedOp1UJnhYWtOSkY28fczsTQ1xt7SFFuL3JFHLta57z8pLYskHX6J5eTksHlHOG2aB2JsbPz4DcqYpdIYHycrzbSngwp/D1sSUjJISM3go47+bAiP5VZiGl5OVox+pRZRt5LZebr8mjgN8dyZmxjhamOumXa2VuJjb0lyehbxqZkMb+1HZQdLvtx0HiOFArv/jy05PYusnPL5hs1IzyDhzoORbEnxSdy8dgtzS3Ns7KwJahLIwW2HsXOww7aCDXu37EdlrcK3RuVyiacw+r7GHxUY6MeqNXtxdLClYkVHoqNvsGHjAZo3q62zGJ6Wc1ccCkXuq7T7KImUlBRq165N3759eeWVVwpdb8WKFezfvx93d/cniuu5S4TS09OJi8vtkR8fH8+sWbNITk4mNDQUPz8/PD09GT9+PJMnT+b8+fN88803Wtv7+PiQnJzM1q1bqV27NpaWllhaWuLj48POnTt54403UCqVODo6MmrUKBo2bMigQYPo378/KpWK06dPs3nzZmbNmlXq92JsbEzv3r0ZPXo0VapUoVGjRqXeZ0mlpaWzbtUuEhOSsbQ0p1ZgFdqFNtXZB6GXvQVDWz6oXXstMPcPYV/UXX4/dJUAdxt6NXgwKqN/o9zbEaw5dYO15fgl/6jwE5e4eTuRti3r6KzMhwV42bNk6IN7mYx5LffLYNm+KD778yg1KtryakNvbCzMuJl4n52nbzBj9Skyssqv2ccQz52vk4qJHWtopvs0zC1z2/lb/HU0lgbeuT+QZrxSS2u7sWvPcOp6+dzi4kbsTZb/ukIzvXNd7k0uawRVJ6RbG+o1q0NWRiZbV27T3JTv5d6dMTHV7ce7vq/xR/Xs0ZblK3YS9scGkpJSqWBnRXDLIF7u0kxnMTwt585QtW/fnvbt2xe5TmxsLB9++CEbN26kY8eOT1TOc3e0N2zYgJubGwDW1tZUr16dpUuX0rJlSwD+/PNPBg4cSEBAAPXr12fSpEla/W4aN27Me++9x+uvv86dO3cYN24c48ePZ+LEiQwYMABfX1/S09NRq9UEBASwY8cOPvvsM5o1a4ZarcbX15fXX3+9zN5Pv379+PLLL+nTp0+Z7bMkatepRu061fRSNsCFWykMXFr4DTH3R8ezPzpehxEVrG5tPzYsmai38vdfuIXPwGWFLu/5Q/ndQbowhnjuTl2/x6vzCu8vWNSy8uJZ2YMhkz8sdLlCoaBR64Y0at1Qh1Hlp+9r/FEWFkrefqsNb7/VRm8xPC3nrjhya4RK20eojIL5fzk5Ofzvf/9jxIgR1Kz55K0Qz1UiFBYWRlhYWJHrNGnSJN+dptWPNCrPmTNH0+E6T8OGDTl27Fi+/dWvX59NmzYVWl5UVFSB8x9tkvPx8ckXB+Rmw6ampvTs2bPQMoQQQohSKYOmsbzh84+OWH7SbhtTp07FxMSEwYMHlyqs566z9LMiPT2dq1evMn78eF577TVcXFz0HZIQQgjxWJ6entja2mpeU6ZMKfE+jhw5wnfffUdYWFipa6qeqxqhZ8mff/5Jv379CAwM5Pfff9d3OEIIIZ5hZTl8PiYmBhubB/eZepLaoF27dnHz5k28vLw087Kzsxk2bBgzZ84stLWlIJIIPaV69+5N79699R2GEEKI50BZjhqzsbHRSoSexP/+9z9at26tNS8kJIT//e9/Je4zK4mQEEIIIQxOcnKy1rMzL1++TEREBPb29nh5eeV7NJapqSmurq5Uq1ayATySCAkhhBCiSEZGCoxK+fBBdQm3P3z4MMHBwZrpoUOHAtCrV6/HDnwqCUmEhBBCCFEkfdxQsWXLlgWOli5MSfoFPUxGjQkhhBDiuSU1QkIIIYQo0rP80FVJhIQQQghRJH00jemKJEJCCCGEKNKzXCMkfYSEEEII8dySGiEhhBBCFOlZrhGSREjgYqnEUlXyW5yXl/X/HdF3CPnsCb+m7xDymfVBY32HkI+Thbm+Q8hnQ+QtfYeQz/ErifoOIZ/XX3DXdwj5vPPrQX2HkM/fg5roOwQtyfeS+FYH5TzLfYSkaUwIIYQQzy2pERJCCCFEkRSUQdMYhlklJImQEEIIIYokTWNCCCGEEM8gqRESQgghRJFk1JgQQgghnlvSNCaEEEII8QySGiEhhBBCFEmaxoQQQgjx3HqWm8YkERJCCCFEkZ7lGiHpIySEEEKI55bUCAkhhBCiaGXQNGagN5aWRKisKBQKVqxYQdeuXcutDB8fH4YMGcKQIUPKrYySyMnJ4Z+Vu9iz7ySJiSlUsLOiWdMAuoQ20VkVaAM/R95tU5VaXhVwsbPg3bl72XTswQNSp/esR7dGPlrb7DgVR69Zu8stpro+FejdrBI1KtrgbGPOR38cZduZmwWu+3kXf7q/6MXXa86wcG90ucX0KEM4d4/qOWgGN28n5JvfqW0DBvXtpJMYrl6O5ciuo9y8douUeyl06tEBP39fzXK1Ws3+rQc4cegU6WnpuHu70apzMBUc7cotJn9Xa7oEuFLZQYW9yoypm89zMDoBAGOFgjfrVaSOpx0u1kpSM7I5fi2JhYdiiE/NLLeYCnLzTiI/LtjAvqPnSEvPxMPNgc8/7EaNKh46Kf9p+LsD/R+nJ/UsN41JIlRMcXFxTJ48mbVr1xIbG4uzszOBgYEMGTKEl156ievXr1OhQgV9h6lTa9btY+u2owzoH0rFio5cvnydX35bi4WFkpA29XUSg6XShDOxiSzdG8VP7xX8NPbtp+IY8fshzXR6Vk65xmRhZsy5uHusOHKVmW/XKXS9Vv7OBHjacSMxrVzjKYghnLtHff/lAHJyHpybqJibfDp5Ac1erKmzGDIzMnFyc6RmXX/WLF6Xb/nhXUcJ33eMkFfbYGNvw77N+1kR9i89P+qBiWn5fJwqTYyIupPK1nO3GdWmSr5llR1VLAu/RtTdVFRmxvRt5M0nbaoy6t9T5RJPQZKS7zPgk7nUfcGXGWP7UMFWRcy121hbWegshqfh784QjpPITxKhYoiKiqJJkybY2dkxbdo0atWqRWZmJhs3buSDDz7g7NmzuLq66jtMnbtwMZY6QVUJrO0HgJOjHfsOnObSpWuP2bLsbD8Vx/ZTcUWuk5GZza2kdB1FBLvP32b3+dtFruNso2R0qD/vzT/MrF51dRTZA4Zw7h5lZ6PSmv773124udgT4O+jsxgqVfOhUrWCy1Or1YTvieDFlvXx9a8MQMhrbfh5yq9EnrlEtYCq5RJT+NVEwq8mFrgsNTObievPac2btzear7vWxFFlxu2UjHKJ6VELl+/AxdGOzz/qppnn7mKvk7LzPA1/d4ZwnJ7UszxqTDpLF8P777+PQqHg4MGDvPrqq1StWpWaNWsydOhQ9u/fD+RW+a1cuVKzzdWrV3nzzText7dHpVJRr149Dhw4AEBkZCRdunTBxcUFKysr6tevz5YtW7TKvHnzJqGhoVhYWFCpUiUWLVqUL64ZM2ZQq1YtVCoVnp6evP/++yQnJ5ffgXhEFb+KnD4dxfW4OwBEX7nB+QsxBAT4PmZL3WpY1YnDX3di6/gQJr0ZhJ3KTK/xKBTw5WsBhO26TORN3Z2vhxn6ucvMyuK/3ccJaRlkMNXpSfFJpCan4unrqZmnNFfi6uHC9StFJ+O6pDIzJketJiUjS2dl7jp4huq+Ffl06iI69JxEzyHf8++mgzorvzgM4e/uaThOhclrGivtyxBJjdBj3L17lw0bNjB58mRUKlW+5XZ2dvnmJScn06JFCypWrMiqVatwdXXl6NGjmmr/5ORkOnTowOTJk1Eqlfz++++EhoZy7tw5vLy8AOjduzfXrl1j27ZtmJqaMnjwYG7e1G7vNjIy4vvvv6dSpUpcunSJ999/n5EjR/Ljjz8W+F7S09NJT39QM5KUlPSkhwWATh0ac/9+BqM+/QkjIyNycnLo9kpLmjR6oVT7LUs7TsexISKWmNspeDtZMaLLC4QNasorX/9Hjlo/MfVtXpmsHDWLdNw34WGGfu72HTpLckoabVoE6TsUjZR7qQCorCy15ltaWZKSnKKPkPIxNVbwdgNPdkfe4X5m+TYBP+zajbus2HCAN7o0pddrwZy5cJUZv6zGxMSYjq10X/NSEEP4u3sajtPzSBKhx7h48SJqtZrq1asXe5vFixdz69YtDh06hL19brWnn5+fZnnt2rWpXbu2ZvqLL75gxYoVrFq1ikGDBnH+/HnWr1/PwYMHqV8/t7/Gr7/+So0aNbTKebjTtI+PD5MmTeK9994rNBGaMmUKEyZMKPb7eJwDh06zd99JBg7ogoe7E9ExN1i0eIum460hWH34qub/564lcSY2kV1ftKdhVWf2niu4I2V5quFuQ4/G3rw+a6/Oy36YoZ+7DduOUD/QDwd7G32H8tQwVigY1soPBfDzniidlp2jVlPdtyID/xcCQLXK7lyKjmPlhgMG8QVvKH93hn6civIsN41JIvQYanXJqw0iIiIICgrSJEGPSk5OZvz48axdu5br16+TlZXF/fv3uXLlCgBnzpzBxMSEunUf/GFUr149X+3Tli1bmDJlCmfPniUpKYmsrCzS0tJITU3F0lL7VyvA6NGjGTp0qGY6KSkJT0/PfOsV15K//qNTx0Y0+v/OrJ6ezty+ncjqtXsN4su0IDG3U7hzLx0fJxV7zz1+/bJW16cC9iozNo5soZlnYmzEsA7V6dHEh/bTdugkDkM+dzduJRBx4hJjhr2h1zgepbLO/ZtKSU5F9VB/ptTkVJzcnPQVFvD/SdBLvjhZKRm37qxOa4MAHCtYU8nTWWuej6cz2/bprsN2UQzl787Qj1NRZNTYc6xKlSooFArOnj1b7G0sLIoeATB8+HA2b97M9OnT8fPzw8LCgm7dupGRUfyOjVFRUXTq1ImBAwcyefJk7O3t2b17N/369SMjI6PAREipVKJUKotdxuNkZGTlu7CNjIx4gtxRZ1ztLKigMuNmku5HjACsDr/G/sg7WvPm9K7Hmohr/HskVmdxGPK527T9KLa2KhoElU/n4ydlU8EGSytLYi7F4Oyem/ikp2UQd/UGAS/W0ltceUmQm40549adJTldd32D8tSq4c2Va9odla/E3sbVyU7nsRTEUP7uDP04Pa8kEXoMe3t7QkJCmD17NoMHD87XTyghISFfTU1AQADz5s3j7t27BdYK7dmzh969e/Pyyy8DuTVEUVFRmuXVq1cnKyuLI0eOaJrGzp07R0JCgmadI0eOkJOTwzfffIORUW6f97///rsM3nHxBQb6sWrNXhwdbKlY0ZHo6Bts2HiA5s1qP37jMmKpNMbHyUoz7emgwt/DloSUDBJSM/iooz8bwmO5lZiGl5MVo1+pRdStZHaevlFuMVmYGePl8CARrWhvQTU3axJTM4lLTCPxvvb9XbJy1Ny5l07Ubd31MzGEc1eQnJwcNu8Ip03zQIyNjXVefkZ6Bgl3HozQSopP4ua1W5hbmmNjZ01Qk0AObjuMnYMdthVs2LtlPyprFb41KpdbTOYmRrjamGumna2V+NhbkpyeRXxqJsNb+1HZwZIvN53HSKHAzsIUgOT0LLJ01BHujc5NeHfUXMKWbuOlprU4ff4q/246yCfvv6yT8uHp+LszhOP0pKRG6Dk3e/ZsmjRpQoMGDZg4cSIBAQFkZWWxefNm5syZw5kzZ7TWf/PNN/nyyy/p2rUrU6ZMwc3NjfDwcNzd3WnUqBFVqlThn3/+ITQ0FIVCwZgxY7Tun1KtWjXatWvHgAEDmDNnDiYmJgwZMkSrpsnPz4/MzEx++OEHQkND2bNnD3PnztXZMQHo2aMty1fsJOyPDSQlpVLBzorglkG83KWZzmII8LJnydAH1d1jXsv9Il+2L4rP/jxKjYq2vNrQGxsLM24m3mfn6RvMWH2KjHK8l1DNirb89k4DzfTIjrl9u/49EsuY5SfKrdySMIRzV5DwE5e4eTuRti0Lvw9MeboRe5Plv67QTO9cl3vjzRpB1Qnp1oZ6zeqQlZHJ1pXbNDdUfLl353K7hxCAr5OKiR0f9A/s09AbgG3nb/HX0VgaeOfev2zGK9q1UmPXnuHU9XvlFtfD/Kt48tXot5nzx0bm//Ufbi4VGNK/EyEtddfZ/Wn4uzOE4/SknuU+Qgr1k3SCeQ5dv36dyZMns2bNGq5fv46TkxN169bl448/pmXLlvnuLB0dHc2wYcPYvHkzWVlZ+Pv7M3v2bBo0aEBUVBR9+/Zl//79ODo6MmrUKJYuXUpgYCAzZ84Ecm/g2L9/f7Zs2YKLiwuTJk1izJgxWneW/vbbb5k2bRoJCQk0b96cHj160LNnT+Lj4wsczfaopKQkbG1tWbDrLJZW1uVz4J7AoNn67dBYEJsKVo9fSce+fMvw+mE5WZg/fiUd2xB5S98h5HP8SsH3BdKnyR1qPH4lHes+a4++Q8jn70FN9B2CluR7STR7wYPExERsbMp+cEHe90STKZswMc8/crokstJS2DO6bbnF+qQkEXqOSSJUfJIIFY8kQsUjiVDxSCL0eJIIlZ40jQkhhBCiSM9y05gkQkIIIYQo0rPcWVoesSGEEEKI55bUCAkhhBCiSArKoGmsTCIpe5IICSGEEKJIRgoFRqXMhEq7fXmRpjEhhBBCPLekRkgIIYQQRZJRY0IIIYR4bsmoMSGEEEI8t4wUZfMqiZ07dxIaGoq7uzsKhYKVK1dqlmVmZjJq1Chq1aqFSqXC3d2dnj17cu3atZK/txJvIYQQQghRzlJSUqhduzazZ8/Otyw1NZWjR48yZswYjh49yj///MO5c+fo3LlzicuRpjEhhBBCFE1RBk1bJdy8ffv2tG/fvsBltra2bN68WWverFmzaNCgAVeuXMHLy6vY5UgiJIQQQogilWVn6aSkJK35SqUSpVJZup0DiYmJKBSKYj10/GGSCAki4pJRWuo7igdmfdBY3yHkc+TaPX2HkM/8/Vf1HUI+Fy7d1XcI+awf3kLfIeQz+MoJfYeQz+6Y2/oOIZ8mQe76DiEfQztO91MM77PpcTw9PbWmx40bx/jx40u1z7S0NEaNGsWbb75Z4ge6SiIkhBBCiCIp/v9fafcBEBMTo5WslLY2KDMzk+7du6NWq5kzZ06Jt5dESAghhBBFepJRXwXtA8DGxqbEtTaFyUuCoqOj+e+//55ov5IICSGEEOKpk5cEXbhwgW3btuHg4PBE+5FESAghhBBF0scNFZOTk7l48aJm+vLly0RERGBvb4+bmxvdunXj6NGjrFmzhuzsbOLi4gCwt7fHzMys2OUUKxFatWpVsXf4JGP4hRBCCGG49PGIjcOHDxMcHKyZHjp0KAC9evVi/PjxmtwkMDBQa7tt27bRsmXLYpdTrESoa9euxdqZQqEgOzu72IULIYQQQhSkZcuWqNXqQpcXtawkipUI5eTklElhQgghhHj6GCkUGJWySqi025eXUvURSktLw9zcvKxiEUIIIYQBepafPl/iZ41lZ2fzxRdfULFiRaysrLh06RIAY8aM4ddffy3zAIUQQgihX3mdpUv7MkQlToQmT55MWFgYX3/9tVav7BdeeIF58+aVaXBCCCGEEOWpxInQ77//zs8//0yPHj0wNjbWzK9duzZnz54t0+CEEEIIoX95TWOlfRmiEvcRio2Nxc/PL9/8nJwcMjMzyyQoIYQQQhgO6Sz9EH9/f3bt2oW3t7fW/GXLlhEUFFRmgT3vfv75Z7744gtiY2OZMWMGCQkJrFy5koiICL3FdPVyLEd2HeXmtVuk3EuhU48O+Pn7apar1Wr2bz3AiUOnSE9Lx93bjVadg6ngaKezGHNycvhn5S727DtJYmIKFeysaNY0gC6hTXTWPm2Ix8nf1ZouAa5UdlBhrzJj6ubzHIxOAMBYoeDNehWp42mHi7WS1Ixsjl9LYuGhGOJTy+/HTV2fCvRuVokaFW1wtjHnoz+Osu3MzQLX/byLP91f9OLrNWdYuDe63GJ61Ow/NjFn4WateZU8nFj960idxWCI564gaWkZbFyzh5PHLpCcfJ+KHk506dYKT29XnZTv56iiTTUnvCpYYGdhytw9URy79uAp54EVbWhW2QGvChZYKU2YvOk8VxPTdBJbHn0fI1GwEjeNjR07lkGDBjF16tTcL51//uGdd95h8uTJjB07tjxiLLbevXtrOmSZmpri4uJCmzZt+O23356qWwAkJSUxaNAgRo0aRWxsLO+++66+QwIgMyMTJzdHgkMLfpr34V1HCd93jJe6BPPGwO6YmpqyIuxfsjKzdBbjmnX72LrtKL3eDmHql+/y+mvBrF2/n01bDussBkM8TkoTI6LupPJLAUmE0sSIyo4qloVfY8TKU3y95QLutuZ80qZqucUDYGFmzLm4e3y56nSR67XydybA044bOv7SyuPn7cL2P8doXr/P+ECn5RviuSvIssUbuXA2mjd7dWDYpz2pWt2Hn39YSmKCbp6OrjQxIjbhPkuOxha43MzYiMjbKaw8EaeTeAqi72NUGooyehmiEidCXbp0YfXq1WzZsgWVSsXYsWM5c+YMq1evpk2bNuURY4m0a9eO69evExUVxfr16wkODuajjz6iU6dOZGUV/EVjaE16V65cITMzk44dO+Lm5oalpaW+QwKgUjUfGrdphF9N33zL1Go14XsieLFlfXz9K+Pk6kjIa21IuZdC5JlLOovxwsVY6gRVJbC2H06OdjSoX4MXalbi0qVrOovBEI9T+NVE/jwSy8Ho+HzLUjOzmbj+HHsv3+VaYhoXbqUwb280fk4qHFXFv019Se0+f5tZmy/w3+mCa4EAnG2UjA71Z/Tfx8nKKZubp5WUsbERjvY2mlcFW5VOyzfEc/eozIxMTkRcoGPX5lT288DRqQJtOzbGwcmOfbuO6SSGU3H3WHXqhlYt0MMOXklg3ZmbnLmhn6TDEI5RaciosUc0a9aMzZs3c/PmTVJTU9m9ezdt27Yt69ieiFKpxNXVlYoVK1KnTh0+/fRT/v33X9avX09YWBiQe0LnzJlD586dUalUTJ48mezsbPr160elSpWwsLCgWrVqfPfdd1r7zsrKYvDgwdjZ2eHg4MCoUaPo1auX1p2309PTGTx4MM7Ozpibm9O0aVMOHTqkWb59+3YUCgVbt26lXr16WFpa0rhxY86dOwdAWFgYtWrVAqBy5cooFAqioqK04ti5cyempqaa56rkGTJkCM2aNSujI1kySfFJpCan4unrqZmnNFfi6uHC9Su6+wVWxa8ip09HcT3uDgDRV25w/kIMAQH5kxJ9MJTj9DgqM2Ny1GpSMnRXm/cohQK+fC2AsF2XibyZrLc4rsTeJvjNL2jXawqjvlrM9Zv5ExJDoo9zl52jJidHjYmpsdZ8U1MTLkcWXEPzvJFjZLieKBGC3GeA/PHHH/zxxx8cOXKkLGMqc61ataJ27dr8888/mnnjx4/n5Zdf5sSJE/Tt25ecnBw8PDxYunQpp0+fZuzYsXz66af8/fffmm2mTp3KokWLmD9/Pnv27CEpKYmVK1dqlTVy5EiWL1/OggULOHr0KH5+foSEhHD37l2t9T777DO++eYbDh8+jImJCX379gXg9ddfZ8uWLQAcPHiQ69ev4+npqbVt8+bNqVy5Mn/88YdmXmZmJosWLdLspyDp6ekkJSVpvcpKyr1UAFRW2rVXllaWpCSnlFk5j9OpQ2MavujPqE9/onf/rxgz/ldC2jSgSaMXdBZDUQzlOBXF1FjB2w082R15h/uZ+mtS7tu8Mlk5ahbpsE/QowKqezFp+OvMndyPMR++wtW4u/Qc9iMpqfpppnscfZ07c3MzvCu5sWX9fhITksnJyeHIwdNEX77OvSTDuK717Wk/RkaKsnkZohJ3lr569Spvvvkme/bswc7ODoCEhAQaN27MkiVL8PDwKOsYy0T16tU5fvy4Zvqtt96iT58+WutMmDBB8/9KlSqxb98+/v77b7p37w7ADz/8wOjRo3n55ZcBmDVrFuvWrdNsk5KSwpw5cwgLC6N9+/YA/PLLL2zevJlff/2VESNGaNadPHkyLVrk9iH55JNP6NixI2lpaVhYWODg4ACAk5MTrq4Fd6Lr168f8+fP1+xz9erVpKWlaWItyJQpU7Te47PowKHT7N13koEDuuDh7kR0zA0WLd6i6TQtimasUDCslR8K4Oc9UXqLo4a7DT0ae/P6rL16iwGgWf3qmv9Xqwy1qnvR9n9fsmHncV5t10CPkeWn73P3Rs8OLF20kUmf/4SRkYKKni4E1qtO7JUbOo/FUD3Nx0gfT5/XlRInQv379yczM5MzZ85QrVo1AM6dO0efPn3o378/GzZsKPMgy4JardY6CfXq1cu3zuzZs/ntt9+4cuUK9+/fJyMjQ/NU28TERG7cuEGDBg8+/IyNjalbt66mI3ZkZCSZmZk0adJEs46pqSkNGjTgzJkzWmUFBDz4UnZzcwPg5s2beHl5Fev99O7dm88//5z9+/fTsGFDwsLC6N69OypV4f0XRo8erXl6L+R2yn60tulJqaxzazhSklNR2TyIITU5FSc3pzIpoziW/PUfnTo2otGLNQHw9HTm9u1EVq/daxCJkKEcp4IYKxQMe8kXJysl49ad1WttUF2fCtirzNg48kGHcxNjI4Z1qE6PJj60n7ZDL3HZWFng7eHIlWu39VJ+YQzh3Dk62TFwyOtkpGeSlpaOja0VC39bjb2jrc5jMVRyjAxTiROhHTt2sHfvXk0SBFCtWjV++OEHvfVPKY4zZ85QqVIlzfSjCcOSJUsYPnw433zzDY0aNcLa2ppp06Zx4MCBconH1NRU8/+8BK0kI9ucnZ0JDQ1l/vz5VKpUifXr17N9+/Yit1EqlSiVyieK93FsKthgaWVJzKUYnN1zv9DT0zKIu3qDgBdrlUuZBcnIyMr3q8PIyIgyekhxqRnKcXpU3hepm40549adJTldf32DAFaHX2N/5B2teXN612NNxDX+PaK//hSp99OJuXaH0Jfq6i2GRxnauTNTmmKmNCU1NY1zZ6Lp2KW5XuMxRE/rMTLQCp1SK3Ei5OnpWeAoq+zsbNzd3cskqLL233//ceLECT7++ONC19mzZw+NGzfm/fff18yLjIzU/N/W1hYXFxcOHTpE8+a5F212djZHjx7V1Br5+vpiZmbGnj17NPdZyszM5NChQwwZMqTM31f//v1588038fDwwNfXV6smqjxkpGeQcCdRM50Un8TNa7cwtzTHxs6aoCaBHNx2GDsHO2wr2LB3y35U1ip8a1Qu17geFhjox6o1e3F0sKViRUeio2+wYeMBmjerrbMYDPE4mZsY4Wrz4AHJztZKfOwtSU7PIj41k+Gt/ajsYMmXm85jpFBgZ5GbqCenZ5XbaC0LM2O8HB70lapob0E1N2sSUzOJS0wj8b7250xWjpo799KJuq27/hTTfl5Ny4b+uDtX4OadJGb/sQljYyM6tAzUWQyGeO4Kcu50FGrUODvbc/tWPGtW7sTZxZ76jWrqpHylsRFOVg9GyjmozPCwNSclI5v4+5lYmhpjb2mK7f8fHxfr3B+FSWlZJOkoedT3MSoNaRp7yLRp0/jwww+ZPXu2pnnp8OHDfPTRR0yfPr3MAyyp9PR04uLiyM7O5saNG2zYsIEpU6bQqVMnevbsWeh2VapU4ffff2fjxo1UqlSJP/74g0OHDmnVIn344YdMmTIFPz8/qlevzg8//EB8fLzm5KpUKgYOHMiIESOwt7fHy8uLr7/+mtTUVPr161fm7zUkJAQbGxsmTZrExIkTy3z/j7oRe5Plv67QTO9ctxuAGkHVCenWhnrN6pCVkcnWlds0Nwp8uXdnTExLfJk9sZ492rJ8xU7C/thAUlIqFeysCG4ZxMtddFdbaYjHyddJxcSONTTTfRrmJurbzt/ir6OxNPCuAMCMV7RrpcauPcOp6+Uz3LhmRVt+e+dBU/PI/4/v3yOxjFl+olzKLKkbtxMZOWUxCfdSsLe1IqimD4tmDsLezkpnMRjiuStIWlo661btIjEhGUtLc2oFVqFdaFOtRzGVJy97C4a2fDA69LXA3B/m+6Lu8vuhqwS429CrwYOuAP0b5R7HNadusPa0bvro6PsYlUZZdHY21M7SCrX68Y0GFSpU0MrkUlJSyMrKwsQk94M77/8qlSrf6Chd6t27NwsWLADAxMSEChUqULt2bd566y169eqFkVHuIDmFQsGKFSvyDXt/7733WLFiBQqFgjfffBNbW1vWr1+vuZtzVlYWH3/8Mb///jvGxsa8++67XLp0CWNjY/78808A0tLSGDlyJH/++Sf37t2jXr16fPvtt9SvXx/IHT4fHBxMfHy8prN5REQEQUFBXL58GR8fn3zTkDvKraA7S48dO5Yvv/ySmJgYTV+j4kpKSsLW1paPlx5Gaam7D/bHqeture8Q8jlyzfBueHb8SuLjV9KxC5f09/dfmPXDC76xpT4N/scwEr2Hta+l3z5qBTlyxfD+7up6Gdbn0/2Ue4wMqU1iYiI2NjZlvv+874k35+3BrJTfExmpyfzZv0m5xfqkipUI5SUXxdGrV69SBfQ0ycnJoUaNGnTv3p0vvvhCLzH069ePW7dusWrVqhJvK4lQ8UkiVDySCBWPJELFI4nQ4+kqEXrr171lkggt7tfY4BKhYtXFP0/JTVGio6PZtGkTLVq0ID09nVmzZnH58mXeeustnceSmJjIiRMnWLx48RMlQUIIIURxlcUjMgy0ZazkfYQelpaWRkZGhtY8Q8ryypqRkRFhYWEMHz4ctVrNCy+8wJYtW6hRo8bjNy5jXbp04eDBg7z33nsG8WgTIYQQ4mlU4kQoJSWFUaNG8ffff3Pnzp18y7Ozs8skMEPk6enJnj179B0GwGOHygshhBBlxUihwKiUo75Ku315KfEjNkaOHMl///3HnDlzUCqVzJs3jwkTJuDu7s7vv/9eHjEKIYQQQo8UirJ5GaIS1witXr2a33//nZYtW9KnTx+aNWuGn58f3t7eLFq0iB49epRHnEIIIYQQZa7ENUJ3796lcuXcG7/Z2Nhohss3bdqUnTt3lm10QgghhNC7vBsqlvZliEqcCFWuXJnLly8DuQ8yzXs6++rVqzX3xRFCCCHEs+NZbhorcSLUp08fjh07BuQ+NX327NmYm5vz8ccfaz1dXQghhBDC0JW4j9DDz+tq3bo1Z8+e5ciRI/j5+Wk9UV0IIYQQz4ZnedRYqR9u5O3trXnAqBBCCCGePWXRtGWgeVDxEqHvv/++2DscPHjwEwcjhBBCCMPz3D99/ttvvy3WzhQKhSRCQgghhHhqFCsRyhslJp5NJ2MSMbUwnDuCj2tbTd8h5DN9ww59h5CPg52FvkPI55d+DfQdQj6G+IDTOwn39R1CPrUcbfUdQj6xiRmPX0nHDO1BsBmpyTopx4gnGF1VwD4MUan7CAkhhBDi2fYsN40ZaoImhBBCCFHupEZICCGEEEVSKMDoeR41JoQQQojnl1EZJEKl3b68SNOYEEIIIZ5bT5QI7dq1i7fffptGjRoRGxsLwB9//MHu3bvLNDghhBBC6J88dPUhy5cvJyQkBAsLC8LDw0lPTwcgMTGRL7/8sswDFEIIIYR+5TWNlfZliEqcCE2aNIm5c+fyyy+/YGpqqpnfpEkTjh49WqbBCSGEEOL5tHPnTkJDQ3F3d0ehULBy5Uqt5Wq1mrFjx+Lm5oaFhQWtW7fmwoULJS6nxInQuXPnaN68eb75tra2JCQklDgAIYQQQhi2vGeNlfZVEikpKdSuXZvZs2cXuPzrr7/m+++/Z+7cuRw4cACVSkVISAhpaWklKqfEo8ZcXV25ePEiPj4+WvN3795N5cqVS7o7IYQQQhg4fTx9vn379rRv377AZWq1mpkzZ/L555/TpUsXAH7//XdcXFxYuXIlb7zxRvHjKlFUwDvvvMNHH33EgQMHUCgUXLt2jUWLFjF8+HAGDhxY0t0JIYQQwsAZldELICkpSeuV19e4JC5fvkxcXBytW7fWzLO1teXFF19k3759JdpXiWuEPvnkE3JycnjppZdITU2lefPmKJVKhg8fzocffljS3QkhhBDiOeLp6ak1PW7cOMaPH1+ifcTFxQHg4uKiNd/FxUWzrLhKnAgpFAo+++wzRowYwcWLF0lOTsbf3x8rK6uS7spghYWFMWTIEOnz9Ah/V2u6BLhS2UGFvcqMqZvPczA6AQBjhYI361WkjqcdLtZKUjOyOX4tiYWHYohPzdRZjL8u28Vvy3cRc/0uANUruzKiX3vaNKmpsxgCPGx5o74nVV2scLRS8vnKk+y+eEezvHdjb1pVc8bJRklWdg7nbyQzb9dlzsSV38Mcn4Zz13PQDG7eTsg3v1PbBgzq20knMRjicTLE6+lRhnDurl6O5ciuo9y8douUeyl06tEBP39fzXK1Ws3+rQc4cegU6WnpuHu70apzMBUc7cotJj9HFW2qOeFVwQI7C1Pm7oni2LUkzfLAijY0q+yAVwULrJQmTN50nquJJevfoitP0senoH0AxMTEYGNjo5mvVCpLt+NSeuI7S5uZmeHv71/qAOLi4pgyZQpr167l6tWr2Nra4ufnx9tvv02vXr2wtLQsdRmibChNjIi6k8rWc7cZ1aZKvmWVHVUsC79G1N1UVGbG9G3kzSdtqjLq31M6i9Hd2Y5xg7rg6+mEWq3mz7UH6DH8Z3Ys/IQavm46icHc1JjIm8msO3GdSV1fyLc85u59vtt6gWuJaShNjHitrgfTXgugx7yDJN4vny/Up+Hcff/lAHJycjTTUTE3+XTyApq9qLsk1hCPkyFeT48yhHOXmZGJk5sjNev6s2bxunzLD+86Svi+Y4S82gYbexv2bd7PirB/6flRD0xMy+chC0oTI2IT7rP38l3ea+KTb7mZsRGRt1M4ejWRt+t5lEsMZcWIMugjRO72NjY2WonQk3B1dQXgxo0buLk9+Gy/ceMGgYGBJdpXic9+cHBwkTdF+u+//4q9r0uXLtGkSRPs7Oz48ssvqVWrFkqlkhMnTvDzzz9TsWJFOnfunG+7zMxMraH7QltGRgZmZmZlvt/wq4mEX00scFlqZjYT15/TmjdvbzRfd62Jo8qM2ykZZR5PQdo3r6U1Peb9zvy2fDeHT17WWSJ08PJdDl6+W+jyrWdvak3P3h5JxwA3fJ1UHL2SUC4xPQ3nzs5GpTX997+7cHOxJ8DfRyflg2EeJ0O8nh5lCOeuUjUfKlUruDy1Wk34nghebFkfX//cQT0hr7Xh5ym/EnnmEtUCqpZLTKfi7nGqiJq5g/9/fuwt5fuspCpVqoSrqytbt27VJD5JSUkcOHCgxP2VS9xZOjAwkNq1a2te/v7+ZGRkcPToUWrVqvX4HTzk/fffx8TEhMOHD9O9e3dq1KhB5cqV6dKlC2vXriU0NBTIbY6bM2cOnTt3RqVSMXnyZLKzs+nXrx+VKlXCwsKCatWq8d1332ntf/v27TRo0ACVSoWdnR1NmjQhOjoagGPHjhEcHIy1tTU2NjbUrVuXw4cPa22/ceNGatSogZWVFe3ateP69euaZTk5OUycOBEPDw+USiWBgYFs2LBBszwqKgqFQsGSJUto3Lgx5ubmvPDCC+zYsUMrPoVCwdq1awkICMDc3JyGDRty8uRJrTh2795Ns2bNsLCwwNPTk8GDB5OSkqJZ7uPjwxdffEHPnj2xsbHh3XffLdF5KC8qM2Ny1GpSMrL0Un52dg7LNx0m9X4G9WtV0ksMj2NipCA0wI3ktCwibyXrOxwNfZ+7zKws/tt9nJCWQQZ7N1rQ/3F6lCFcT4Z47pLik0hNTsXT90HfFKW5ElcPF65fKVl/kueVPobPJycnExERQUREBJDbQToiIoIrV66gUCgYMmQIkyZNYtWqVZw4cYKePXvi7u5O165dS1ROiWuEvv322wLnjx8/nuTk4v/h3blzh02bNvHll1+iUqkKXOfhP6Lx48fz1VdfMXPmTExMTMjJycHDw4OlS5fi4ODA3r17effdd3Fzc6N79+5kZWXRtWtX3nnnHf78808yMjI4ePCgZp89evQgKCiIOXPmYGxsTEREhFYtU2pqKtOnT+ePP/7AyMiIt99+m+HDh7No0SIAvvvuO7755ht++ukngoKC+O233+jcuTOnTp2iSpUHVeojRoxg5syZ+Pv7M2PGDEJDQ7l8+TIODg5a63z33Xe4urry6aefEhoayvnz5zE1NSUyMpJ27doxadIkfvvtN27dusWgQYMYNGgQ8+fP1+xj+vTpjB07lnHjxhV6zNPT07V65yclJRW6bmmZGit4u4EnuyPvcD8z5/EblKFTF2MJ6fsNaRlZqCyU/DHtHapX1k1tUHE1qmzP2E7+KE2NuJOcwbBlx0m8bxhfpvo8d3n2HTpLckoabVoE6aX84jCE45THkK4nQzx3KfdSAVBZaXe1sLSyJCU5paBNxCP08dDVw4cPExwcrJkeOnQoAL169SIsLIyRI0eSkpLCu+++S0JCAk2bNmXDhg2Ym5uXqJwyaxh9++23adCgAdOnTy/W+hcvXkStVlOtWjWt+Y6OjpqbIX3wwQdMnToVgLfeeos+ffporTthwgTN/ytVqsS+ffv4+++/6d69O0lJSSQmJtKpUyd8fXM7zNWoUUOz/pUrVxgxYgTVq1cH0EpeILf5be7cuZptBw0axMSJEzXLp0+fzqhRozT3Kpg6dSrbtm1j5syZWjd/GjRoEK+++ioAc+bMYcOGDfz666+MHDlSs864ceNo06YNAAsWLMDDw4MVK1bQvXt3pkyZQo8ePRgyZIgmzu+//54WLVowZ84czQlv1aoVw4YNK/KYT5kyReuYlRdjhYJhrfxQAD/viSr38h5VxduFnYtGk5R8n3+3hvP++D9Y89NHBpUMhcck0P/3w9hamNIxwI3xoTUYuCicBB12Ti6Ivs9dng3bjlA/0A8H+9L1IygvhnKc8hjS9WTo5048PVq2bIlarS50uUKhYOLEiVrfzU+izJ4+v2/fvhJnYQU5ePAgERER1KxZU6v2ol69evnWnT17NnXr1sXJyQkrKyt+/vlnrly5AoC9vT29e/cmJCSE0NBQvvvuO62mraFDh9K/f39at27NV199RWRkpNa+LS0tNUkQgJubGzdv5rbFJyUlce3aNZo0aaK1TZMmTThz5ozWvEaNGmn+b2JiQr169Ypcx97enmrVqmnWOXbsGGFhYVhZWWleISEh5OTkcPny5SKPz6NGjx5NYmKi5hUTE/PYbUrKWKFg2Eu+OFkpmbD+nF5+KZuZmlDZ04nAGl6MG9SFF6pUZO6S7TqPoyhpmTnEJqRx+vo9pm08T3aOmg4vuOo1JkM4dwA3biUQceIS7VrV1Uv5j2Mox+lhhnI9Geq5U1nn1gSlJKdqzU9NTkVlVXCLhNCmUDy4qeKTvgykpTSfEtcIvfLKK1rTarWa69evc/jwYcaMGVPs/fj5+aFQKDh3TrvzYd7dqS0sLLTmP9p8tmTJEoYPH84333xDo0aNsLa2Ztq0aRw4cECzzvz58xk8eDAbNmzgr7/+4vPPP2fz5s00bNiQ8ePH89Zbb7F27VrWr1/PuHHjWLJkCS+//DJAvs7YCoWiyMy0vCQnJzNgwAAGDx6cb5mXl5fm/4U1Lz5MqVSW6zDFvC8INxtzxq07S3K6YTT15KjVZBhIH47CKBQKzEzK7HdJiRnSudu0/Si2tioaBJVPB9bSMKTjVBR9XU+Geu5sKthgaWVJzKUYnN2dAEhPyyDu6g0CXixZ39bnVVkOnzc0JU6EbG1ttaaNjIyoVq0aEydOpG3btsXej4ODA23atGHWrFl8+OGHxfoif9iePXto3Lgx77//vmbeo7U6AEFBQQQFBTF69GgaNWrE4sWLadiwIQBVq1alatWqfPzxx7z55pvMnz9fkwgVxcbGBnd3d/bs2UOLFi20YmrQoIHWuvv379c8my0rK4sjR44waNCgfOvkJTXx8fGcP39e04xXp04dTp8+jZ+fX3EOS7kyNzHC1eZBrZ+ztRIfe0uS07OIT81keGs/KjtY8uWm8xgpFNhZ5CaTyelZZOXoJomcMOtfWjeuiadrBe6lprFsw2F2H7nA8h/ef/zGZcTC1IiKdg8SeVdbc/ycVCSlZZGUlsnbL3qzN/I2d1IysLUwpWugO05WSrafu1VuMT0N5w5yByFs3hFOm+aBGBsb66zcPIZ4nAzxeiqIvs9dRnoGCXcejPhLik/i5rVbmFuaY2NnTVCTQA5uO4ydgx22FWzYu2U/KmsVvjXK79FQSmMjnKwejOB1UJnhYWtOSkY28fczsTQ1xt7SFNv/v45crHN/qCalZZFkoEn2s6hEiVB2djZ9+vShVq1aVKhQodSF//jjjzRp0oR69eoxfvx4AgICMDIy4tChQ5w9e5a6dQuvXq1SpQq///47GzdupFKlSvzxxx8cOnSISpVyRwddvnyZn3/+mc6dO+Pu7s65c+e4cOECPXv25P79+4wYMYJu3bpRqVIlrl69yqFDhzR9eYpjxIgRjBs3Dl9fXwIDA5k/fz4RERGaztR5Zs+eTZUqVahRowbffvst8fHx9O3bV2udiRMn4uDggIuLC5999hmOjo6aXu+jRo2iYcOGDBo0iP79+6NSqTh9+jSbN29m1qxZxY63LPg6qZjY8UE/qz4NvQHYdv4Wfx2NpYF37jUx4xXtX1hj157h1HXd3NztdnwyA8f/zo3bSdhYmVPTryLLf3if4BdrPH7jMlLN1ZqZrwdqpgcF5yaxG07GMWPzebzsLQipWRNbC1OS0jI5G3ePD5dEEHUntZA9lt7TcO4Awk9c4ubtRNq2rKOzMh9miMfJEK+nguj73N2IvcnyX1dopneu2w1AjaDqhHRrQ71mdcjKyGTrym2aGyq+3Ltzud1DCMDL3oKhLR90sXgt0B2AfVF3+f3QVQLcbejV4MFItv6Ncq+3NadusPb0jXKL60noo7O0rpToCjA2NqZt27acOXOmTBIhX19fwsPD+fLLLxk9ejRXr15FqVTi7+/P8OHDtWp7HjVgwADCw8N5/fXXUSgUvPnmm7z//vusX78eyO3jc/bsWRYsWMCdO3dwc3Pjgw8+YMCAAWRlZXHnzh169uzJjRs3cHR05JVXXilRR+LBgweTmJjIsGHDuHnzJv7+/qxatSpfp+uvvvqKr776ioiICPz8/Fi1ahWOjo751vnoo4+4cOECgYGBrF69WnMfoICAAHbs2MFnn31Gs2bNUKvV+Pr68vrrrxc71rJy6vo9Xp13sNDlRS3TlR/G9NB3CETEJNJy+o5Cl49ddVqH0eR6Gs4dQN3afmxYUrqOj6VhiMfJEK+nguj73HlW9mDI5MIf86RQKGjUuiGNWjfUWUwXbqUwcOnxQpfvj45nf3S8zuIpDcX//yvtPgyRQl3Cji/16tVj6tSpvPTSS+UV0zMhKiqKSpUqER4eXuhdLrdv305wcDDx8fHY2dnpND7I7fRta2tLmxlbMbUwnEekLO/f4PEr6VhRX0T64mBn8fiVdGxksP6bcB/19baL+g4hnzsJ9/UdQj5TXza8vjIbInXbvFcccYklf0BoecpITWZx/yYkJiaW+m7NBcn7nhi3KhxzlXWp9pWWco8JnYPKLdYnVeLedJMmTWL48OGsWbOG69ev53uKrBBCCCHE06LYTWMTJ05k2LBhdOjQAYDOnTtr3fBQrVajUCjIzs4u+yiFEEIIoTfSR4jcmxe+9957bNu2rTzjeWb4+Pg8drj9424WJYQQQhgChUJR6kemGMojVx5V7EQo7wv74eHiQgghhBBPsxKNGjPUbE4IIYQQ5Ueaxv5f1apVH5sM3b17t1QBCSGEEMKwyJ2l/9+ECRPy3VlaCCGEEOJpVaJE6I033sDZ2bm8YhFCCCGEAcp7cGpp92GIip0ISf8gIYQQ4vn0LPcRKvYNFWWYtxBCCCGeNcWuEcrJySnPOIQQQghhqMqgs7SBPmqsZH2EhBBCCPH8MUKBUSkzmdJuX14kERK84GmL0tJwHro678BlfYfwVDDEB5yeuJ2o7xDycbY113cI+UzuUEPfIeTz18lr+g4hn+XbDe+zoEmQu75D0Itnefh8iR+6KoQQQgjxrJAaISGEEEIU6VkeNSaJkBBCCCGK9CzfR0iaxoQQQgjx3JIaISGEEEIU6VnuLC2JkBBCCCGKZEQZNI0Z6PB5aRoTQgghxHNLaoSEEEIIUSRpGhNCCCHEc8uI0jchGWoTlKHGJYQQQghR7qRGSAghhBBFUigUKErZtlXa7cuLJEJCCCGEKJKC0j883jDTIEmEnlotW7YkMDCQmTNn6qzMq5djObLrKDev3SLlXgqdenTAz99Xs1ytVrN/6wFOHDpFelo67t5utOocTAVHO53FCJCWlsHGNXs4eewCycn3qejhRJdurfD0dtVJ+QEetrxR35OqLlY4Win5fOVJdl+8o1neu7E3rao542SjJCs7h/M3kpm36zJn4u7pJD6AnoNmcPN2Qr75ndo2YFDfTjqL41H6Pnd+jiraVHPCq4IFdhamzN0TxbFrSZrlgRVtaFbZAa8KFlgpTZi86TxXE9N0EtvDbt5J5McFG9h39Bxp6Zl4uDnw+YfdqFHFQyflG+JnQV2fCvRuVokaFW1wtjHnoz+Osu3MzQLX/byLP91f9OLrNWdYuDe63GJ6Wq6n4pA7S4sS6d27NwqFgvfeey/fsg8++ACFQkHv3r2Lta/t27ejUChISEgo2yCfQGZGJk5ujgSHtihw+eFdRwnfd4yXugTzxsDumJqasiLsX7Iys3Qa57LFG7lwNpo3e3Vg2Kc9qVrdh59/WEpigm4SDXNTYyJvJjNzy4UCl8fcvc93Wy/QN+wwH/4ZQVxiGtNeC8DWwlQn8QF8/+UAFs8doXl9+VkvAJq9WFNnMRRE3+dOaWJEbMJ9lhyNLXC5mbERkbdTWHkiTifxFCQp+T4DPpmLibExM8b24c9ZHzO4TwesrSx0FoMhfhZYmBlzLu4eX646XeR6rfydCfC044YOEo6n4XoSUiNUbjw9PVmyZAnffvstFha5H1BpaWksXrwYLy8vPUf3ZCpV86FSNZ8Cl6nVasL3RPBiy/r4+lcGIOS1Nvw85Vciz1yiWkBVncSYmZHJiYgL9H63K5X9cn8dt+3YmNMnI9m36xjtQpuWewwHL9/l4OW7hS7felb7V+rs7ZF0DHDD10nF0SsJ5RxdLjsbldb03//uws3FngB/H52UXxBDOHen4u5xqoiauYP/f37sLXWXtD5q4fIduDja8flH3TTz3F3sdRqDIX4W7D5/m93nbxe5jrONktGh/rw3/zCzetUtlzge9jRcTyVhmPU5pSc1QuWkTp06eHp68s8//2jm/fPPP3h5eREUFKSZl56ezuDBg3F2dsbc3JymTZty6NAhAKKioggODgagQoUK+WqScnJyGDlyJPb29ri6ujJ+/HidvLeCJMUnkZqciqevp2ae0lyJq4cL16/o7tdOdo6anBw1JqbGWvNNTU24HFnwrzJ9MjFSEBrgRnJaFpG3kvUSQ2ZWFv/tPk5IyyC9dmZ82s6dvuw6eIbqvhX5dOoiOvScRM8h3/PvpoP6DkvDUD4LHqVQwJevBRC26zKRN/Xzt/Y0y7uPUGlfhkgSoXLUt29f5s+fr5n+7bff6NOnj9Y6I0eOZPny5SxYsICjR4/i5+dHSEgId+/exdPTk+XLlwNw7tw5rl+/znfffafZdsGCBahUKg4cOMDXX3/NxIkT2bx5c6HxpKenk5SUpPUqKyn3UgFQWVlqzbe0siQlOaXMynkcc3MzvCu5sWX9fhITksnJyeHIwdNEX77OvSTdxfE4jSrbs35wUzZ93IxudT0Ytuw4ifd124SYZ9+hsySnpNGmRdDjVy5HT8u507drN+6yYsMBPN0d+XZ8X15p35AZv6xm7X9H9B0aYDifBY/q27wyWTlqFpVjnyDxdJJEqBy9/fbb7N69m+joaKKjo9mzZw9vv/22ZnlKSgpz5sxh2rRptG/fHn9/f3755RcsLCz49ddfMTY2xt4+t8rb2dkZV1dXbG1tNdsHBAQwbtw4qlSpQs+ePalXrx5bt24tNJ4pU6Zga2ureXl6eha67tPsjZ4dAJj0+U+MHjKTPTvCCaxX3aCGbobHJND/98MMWhzOwai7jA+tgZ2eqsc3bDtC/UA/HOxt9FL+w56Gc6dvOWo1VSu7M/B/IVSr7E7XkAZ0aVOflRsO6Ds0g1XD3YYejb0Zs+yEvkN5auUNny/tyxBJH6Fy5OTkRMeOHQkLC0OtVtOxY0ccHR01yyMjI8nMzKRJkyaaeaampjRo0IAzZ848dv8BAQFa025ubty8WfAoCYDRo0czdOhQzXRSUlKZJUMq69xffynJqage6n+SmpyKk5tTmZRRXI5Odgwc8joZ6ZmkpaVjY2vFwt9WY+9o+/iNdSQtM4fYhDRiE9I4ff0eC/vVp8MLriw+GKPTOG7cSiDixCXGDHtDp+UW5mk4d/rmWMGaSp7OWvN8PJ3Ztu+UniLSZkifBXnq+lTAXmXGxpEPOnebGBsxrEN1ejTxof20HXqJ62nyLN9ZWhKhcta3b18GDRoEwOzZs8t036am2jUICoWCnJycQtdXKpUolcoyjSGPTQUbLK0sibkUg7N77oddeloGcVdvEPBirXIp83HMlKaYKU1JTU3j3JloOnZprpc4ikOhUGBmovuPiU3bj2Jrq6JBkG46sxfX03TudK1WDW+uXNPuFHwl9jauTnb6CegRhvhZsDr8Gvsj72jNm9O7HmsirvHvEel/Zqiys7MZP348CxcuJC4uDnd3d3r37s3nn39eprVLkgiVs3bt2pGRkYFCoSAkJERrma+vL2ZmZuzZswdvb28AMjMzOXToEEOGDAHAzMwMyL0g9C0jPYOEO4ma6aT4JG5eu4W5pTk2dtYENQnk4LbD2DnYYVvBhr1b9qOyVuFbo7JO4zx3Ogo1apyd7bl9K541K3fi7GJP/Ua6GRpuYWpERbsHQ5ldbc3xc1KRlJZFUlomb7/ozd7I29xJycDWwpSuge44WSnZfu6WTuLLk5OTw+Yd4bRpHoixsfHjN9ABfZ87pbERTlZmmmkHlRketuakZGQTfz8TS1Nj7C1NNbc6cLHO/WGRlJZFUrpu+ni90bkJ746aS9jSbbzUtBanz1/l300H+eT9l3VSPhjmZ4GFmTFeDg/6JVW0t6CamzWJqZnEJaaReD9Ta/2sHDV37qUTdbv8+i09DddTcenjztJTp05lzpw5LFiwgJo1a3L48GH69OmDra0tgwcPLlUsD5NEqJwZGxtrmrke/bJRqVQMHDiQESNGYG9vj5eXF19//TWpqan069cPAG9vbxQKBWvWrKFDhw5YWFhgZWWl8/cBcCP2Jst/XaGZ3rluNwA1gqoT0q0N9ZrVISsjk60rt2luovZy786YmOr2MktLS2fdql0kJiRjaWlOrcAqtAttqrMv+2qu1sx8PVAzPSjYD4ANJ+OYsfk8XvYWhNSsia2FKUlpmZyNu8eHSyKIupOqk/jyhJ+4xM3bibRtWUen5RZF3+fOy96CoS0f3BjwtUB3APZF3eX3Q1cJcLehV4MHzcn9G+X+gFlz6gZrT9/QSYz+VTz5avTbzPljI/P/+g83lwoM6d+JkJa66+xuiJ8FNSva8ts7DTTTIzvWAODfI7GMWa6fvkFPw/VUXPq4s/TevXvp0qULHTt2BMDHx4c///yTgwfLdpSkJEI6YGNTeCfUr776ipycHP73v/9x79496tWrx8aNG6lQoQIAFStWZMKECXzyySf06dOHnj17EhYWpqPItXlW9mDI5A8LXa5QKGjUuiGNWjfUYVT51a5Tjdp1qumt/IiYRFpOL7zPwdjH3PBNV+rW9mPDkon6DkOLvs/dhVspDFx6vNDl+6Pj2R8dr8OICta0fg2a1q+ht/IN8bPg8OW7BHy6odjr66Jf0NNyPRmqxo0b8/PPP3P+/HmqVq3KsWPH2L17NzNmzCjTciQRKgePS1RWrlyp+b+5uTnff/8933//faHrjxkzhjFjxmjN2759e5H7FUIIIcpKWTaNPXrrlsL6r37yySckJSVRvXp1jI2Nyc7OZvLkyfTo0aNUcTzKUDtxCyGEEMJAGJXRC3KfvPDwrVymTJlSYJl///03ixYtYvHixRw9epQFCxYwffp0FixYUKbvTWqEhBBCCFGksqwRiomJ0eoyUtho5hEjRvDJJ5/wxhu5t/eoVasW0dHRTJkyhV69epUqlodJIiSEEEIInbGxsSmy72ye1NRUjIy0G66MjY2LvE3Mk5BESAghhBBF0seosdDQUCZPnoyXlxc1a9YkPDycGTNm0Ldv31JGok0SISGEEEIUqSwemlrS7X/44QfGjBnD+++/z82bN3F3d2fAgAGMHTu2dIE8QhIhIYQQQhgca2trZs6cycyZM8u1HEmEhBBCCFEkIxQYlbJxrLTblxdJhIQQQghRJH00jemK3EdICCGEEM8tqRESQgghRJEU//+vtPswRJIICSGEEKJI0jQmhBBCCPEMkhohwcmYREwtsvUdhsa4/g30HUI+I7/dpu8Q8rnVroq+Q8hn/Ylb+g4hn/a1nPQdQj7f7bms7xDy6VjDUd8h5FOxSzV9h5CPoV3jmffTdFKOogxGjUnTmBBCCCGeSs9y05gkQkIIIYQo0rOcCEkfISGEEEI8t6RGSAghhBBFkuHzQgghhHhuGSlyX6XdhyGSpjEhhBBCPLekRkgIIYQQRZKmMSGEEEI8t2TUmBBCCCHEM0hqhIQQQghRJAWlb9oy0AohSYSEEEIIUTQZNSaEEEII8QySGiEDsH37doKDg4mPj8fOzk7f4RTK39WaLgGuVHZQYa8yY+rm8xyMTgDAWKHgzXoVqeNph4u1ktSMbI5fS2LhoRjiUzN1FuOvy3bx2/JdxFy/C0D1yq6M6NeeNk1q6iyGRtVd+DC0FrUrOeJmb8nb07ew7vAVrXWqutsy7q36NPF3xdhIwbnYBHrN+I/YOyk6iTEnJ4d/Vu5iz76TJCamUMHOimZNA+gS2gSFjno0Pg3XE0BaWgYb1+zh5LELJCffp6KHE126tcLT21Un5fs5qmhTzQmvChbYWZgyd08Ux64laZYHVrShWWUHvCpYYKU0YfKm81xN1M2DOPMYwvVUEH2fu6flGi+OZ3nU2HNVI3Tr1i0GDhyIl5cXSqUSV1dXQkJC2LNnj17jaty4MdevX8fW1lavcTyO0sSIqDup/LI3usBllR1VLAu/xoiVp/h6ywXcbc35pE1Vncbo7mzHuEFd2Pb7SP5bMIJm9arSY/jPnIm8rrMYVOamnIy+y8j5+wpc7uNizboJHblwLYHQietoNmol0/+JID0zW2cxrlm3j63bjtLr7RCmfvkur78WzNr1+9m05bDOYngarieAZYs3cuFsNG/26sCwT3tStboPP/+wlMSEezopX2liRGzCfZYcjS1wuZmxEZG3U1h5Ik4n8RTEEK6nghjCuXsarvHiyBs1VtqXIXquaoReffVVMjIyWLBgAZUrV+bGjRts3bqVO3fulEt5GRkZmJmZPXY9MzMzXF118wulNMKvJhJ+NbHAZamZ2Uxcf05r3ry90XzdtSaOKjNup2ToIkTaN6+lNT3m/c78tnw3h09epoavm05i2BJxlS0RVwtd/vnrddkccZXxix98SUTd0M0Hc54LF2OpE1SVwNp+ADg52rHvwGkuXbqmsxiehuspMyOTExEX6P1uVyr7eQDQtmNjTp+MZN+uY7QLbVruMZyKu8epuMKvj4NXEgCwtzQt91gKYwjX06MM4dw9Ddd4cSkofWdnA82Dnp8aoYSEBHbt2sXUqVMJDg7G29ubBg0aMHr0aDp37qxZZ8CAAbi4uGBubs4LL7zAmjVrNPtYvnw5NWvWRKlU4uPjwzfffKNVho+PD1988QU9e/bExsaGd999l6ioKBQKBUuWLKFx48aa/e7YsUOz3fbt21EoFCQkJJSorC//r737Dovi+voA/l3a7sIuvcsKCIigoiKo2I0Su5gQSzRRrIndRKMxPxVbxJKoMTEaTRQTa9Ro7DXREAEr2EBApFiwoYCgLGXP+wcvoytFVGA3cj4+PI9Tdu6Z2buzZ+/cOzN/PoYOHQq5XI7atWtj9erVVXDkXp+RgS5URMjJK9BI+YWFKuw4fBZPnubBt6GzRmJ4kUgE+DdRIDEtE9unvYu4nz7EkXk90c2ndrXG4eZaCzExyUi7U/QjICX1LuITbsDLy6Va43gVmqhPhSqCSkXQ09dVm6+vr4ekxNJbaGoibaxP/8X3TtPnzJqqxrQIyWQyyGQy7Nq1Cy1atIBYLFZbrlKp0LVrVzx+/BgbNmyAi4sLYmJioKtb9CE6d+4c+vbti1mzZqFfv34IDw/H6NGjYWFhgaCgIGE733zzDWbOnIng4GC17X/xxRdYtmwZPD09sWTJEvTs2RNJSUmwsLAoEWtFy/r2228xd+5cfPXVV9i+fTtGjRqFdu3awd3dvdRjoFQqoVQqhemsrKxS16sM+roifNRMgX8T0/E0X1Vl5ZTmyrVb6Dz0W+TmFcBIKsZvi0egXp3qaQ16GStjKeRSfUzo5YX5v5/HrE1n0bGRA379vCN6zT2A8NjqubzRo1tLPH2ah6lf/QQdHR2oVCp88H57tPJrUC3lvypN1SeJxACOznY4eiAS1jYWkBsbIursVaQkpcHSyrTa4tB22lif/mvvnSbPmRWhAxF03vDalo6WtgnVmERIT08PoaGhGDFiBFatWgVvb2+0a9cO/fv3h5eXF44ePYrTp08jNjYWdesWXaOtU6eO8PolS5agY8eOmDFjBgCgbt26iImJweLFi9WSk3feeQeTJk0SppOTkwEAY8eORWBgIABg5cqVOHjwIH755RdMmTKlRKwVLatbt24YPXo0AGDq1KlYunQp/v777zIToZCQEMyePfsVj9yr0xWJMOkdV4gArD6ZXOXlvcjN0Qb/bJyGrOyn+PNYFEbP+g17f5qgFcmQzv+3wR44l4qV+68AAC6nPESzutYY0qletSVCp87EIDziMkZ9EgAHeyuk3LiLjZuOCp1ctYmm61P/Qd2wbeMhzJv+E3R0RKilsEFjn3q4lXq32mPRVtpan/4r752m63hFvM2XxmpMIgQU9RHq3r07wsLCEBkZiQMHDmDRokX4+eefce/ePTg4OAhJ0ItiY2MREBCgNq9Vq1ZYtmwZCgsLhZYjHx+fUl/v5+cn/F9PTw8+Pj6IjY19o7K8vJ6dYEQiEWxtbXHv3r0y93/atGn4/PPPhemsrCwoFIoy138duiIRJnV0gZVMjOD9VzXyy8ZAXw91FFYAgMYetREVk4pVW45j2VcfVnssL0rPUiK/QIW4mxlq8+NvZ6CFu021xbFl61/o0d0Pfs2LRtMpFNZ48CATe/aFa1UipA31ydLKFKMm9kOeMh+5uUoYm8iwYe0emFtq9+CG6qSt9em/8N5pQx2v6WpMH6FiEokE/v7+mDFjBsLDwxEUFITg4GBIpdJK2b6RkVGlbKci9PXVO0eKRCKoVGV/iMRiMYyNjdX+KlPxB9rOWILZB64iW6kd17lVRMjTkmvu+YUqRF2/D1d79ROxi60JbjzIrrY48vIKSgxr1tHRAVG1hfBS2lafDMT6MDaR4cmTXMTFpqB+Q1eNxqNNtL0+aet7p211vFyiSvrTQjWqRag0np6e2LVrF7y8vHDz5k3Ex8eX2irk4eFRYpj9yZMnUbduXaGFpjyRkZFo27YtAKCgoADnzp3D2LFjS133TcuqKhI9HdgaS4Rpa7kYTuaGyFYW4NGTfEzu5Io6FoaYfzgeOiIRTKVFiVq2sgAFquo5I87+4U90alkfClszPH6Si+0Hz+LfcwnY8f3oaikfAIzEenC2fZZkOlrL0cDRHI+ylbiVnoPv91zGLxPaIyL2DsKupKFjYwd0aapAzzkHqi3Gxo1dsXtvOCwtTFCrliVSUu7i4KFTaNumUbXF8F+oTwAQF5MMAsHa2hwP7j/C3l3/wNrGHL5+1XNvKrGuDqxkz0afWhgZwMFEgpy8Qjx6mg9DfV2YG+rD5P+Pj428qP9jVm4Bsqrpi1Ub6lNpNP3e/VfqeEW8zfcRqjGJUHp6Ovr06YOhQ4fCy8sLcrkcZ8+exaJFixAQEIB27dqhbdu2CAwMxJIlS+Dq6oqrV69CJBKhS5cumDRpEnx9fTF37lz069cPERER+OGHH/Djjz9WqPwVK1bAzc0NHh4eWLp0KR49eoShQ4eWuu6bllVVXKyMMKe7hzA9pIUjAODv+PvYev4WmjmaAQCWvK8+hH3mvlhcSaue4eEPHmVj1KxfcfdBFoxlEtR3rYUd349Gh+YeL39xJWnsYok9M7sJ018Pag4A2HQiAWNXhmHfmRRM+jkcEwO8EBLUAtduZ2Lwkr9wKq76+i0MGvguduz8B6G/HURW1hOYmcrQoX0TvBfQptpi+C/UJwDIzVVi/+4wZGZkw9BQgoaN3dClZ+tq+1FS21yKz9s/G33Vp7E9ACAi+SF+PXMTXvbGGNzs2SXu4X5Fx3HvlbvYF1M9dUob6lNpNP3e/VfqeE1XYxIhmUyG5s2bY+nSpUhMTER+fj4UCgVGjBiBr776CkDRkPXJkyfjww8/RE5ODlxdXbFgwQIAgLe3N37//XfMnDkTc+fOhZ2dHebMmaPWebk8CxYswIIFCxAdHQ1XV1fs3r0blpaWpa77pmVVlStpjxH48+kyl5e3rLp8P2OgpkPAyZg7MO+/ttx1Nh5PwMbjCdUUUUlSqRgfDfDHRwP8NRbDf6E+AUAjb3c08i59AEJ1SLifg1HbLpa5PDLlESJTHlVjRCVpQ30qjabfu/9KHa+QyrghonY2CNWcREgsFiMkJAQhISFlrmNubo61a8v+AgsMDBRGfpWmeIRYaTw8PHDq1KlSl7Vv3x70wsX01ykrOjq6zPUZY4yx1/U2jxqrcZ2lGWOMMcaK1ZgWIcYYY4y9pre4SYgToSrm5ORU4rIXY4wx9l/Co8YYY4wxVmNVxtPjtfXp89xHiDHGGGM1FrcIMcYYY6xcb3EXIU6EGGOMMfYSb3EmxJfGGGOMMVZjcSLEGGOMsXKJKunfq7p16xY++ugjWFhYQCqVomHDhjh79myl7htfGmOMMcZYuTQxauzRo0do1aoVOnTogAMHDsDKygoJCQkwMzN7s0BewIkQY4wxxrTOwoULoVAosG7dOmGes7NzpZfDl8YYY4wxVi5RJf0BQFZWltqfUqkstczdu3fDx8cHffr0gbW1NZo0aYI1a9ZU+r5xixDDR761YCiTazoMQftvTmg6hBImDG2l6RBKcDXXnvesWNeGVpoOgb0mbaxP524/1nQIJfz106+aDkENFeZVT0GVOGpMoVCozQ4ODsasWbNKrH79+nWsXLkSn3/+Ob766iucOXMG48ePh4GBAQYPHvyGwTzDiRBjjDHGqs2NGzdgbGwsTIvF4lLXU6lU8PHxwfz58wEATZo0weXLl7Fq1apKTYT40hhjjDHGylWZo8aMjY3V/spKhOzs7ODp6ak2z8PDA6mpqZW6b9wixBhjjLFyaWLUWKtWrRAXF6c2Lz4+Ho6Ojm8WyAu4RYgxxhhj5arMztIV9dlnnyEyMhLz58/HtWvXsGnTJqxevRpjxoypjF0ScCLEGGOMMa3j6+uLnTt3YvPmzWjQoAHmzp2LZcuWYeDAgZVaDl8aY4wxxlj5NPSssR49eqBHjx5vWHD5OBFijDHGWLle9xEZL25DG/GlMcYYY4zVWNwixBhjjLFyaWLUWHXhRIgxxhhj5dJQF6FqwZfGGGOMMVZjcYsQe20qlQp/7ArDyYjLyMzMgZmpDG1aeyGgZyuIqqkN1MvBBP19FahrI4OlTIzpuy7j32vpwvKglo54x90aVsZiFBSqEH83Gz+HJSH2TtU9w+hm0i2cCzuPe7fvI+dxDnoM7AZXTxdhOREh8tgpXDpzBcpcJewd7fBOrw4wszStsphKcy89Ez+uP4iI83HIVebDwc4C08d9AA83h2qN43m5uXk4tPckLl9IQHb2U9RysELAB+9A4WhbY2NytTSCv7sVaptJYSrVx6qTybhwO0tY3riWMdrUsUBtMylkYj18fTgeNzNzqyW252m6Pmnj565lExeM+7gTGtWrDTsrEwycvBr7T1wUlhtJDRA8NgDd2nnB3MQIKbfTsXrrCaz7498qi+m1vcVNQtwi9B8WFBSE3r17C9Pt27fHxIkTq638vfsjcOzv8xj8UWcsnD8S/fp0wL4DkTh89Gy1xSDR10XivWwsO5pQ6vIbD5/iu2MJGBp6FuM2R+NOZi4W9/GCiVS/ymLKz8uHlZ0lOvRsV+rys2HnERVxAR0DOqD/qL7Q19fHztA/UZBfUGUxvSgr+yk++XIV9HR1sWTmEGz+4TOMH9INcpm02mIozfZNh5BwNQUfDu6GSV8NQt16Tlj9/TZkZmju4Zuajkmsp4NbGU+x5fytUpcb6Oog8UEOdl26Uy3xlEYb6pM2fu4MpWJcjr+FLxZtLXX5vM8C0dHPE5/M/BXN+87Dqi3HseiLPujatmGVxfS6KvMRG9qGW4SqyP379zFz5kzs27cPd+/ehZmZGRo1aoSZM2eiVavKeZL5d999ByKqlG29joRrt+DdpC4aN3IFAFhZmiLiVAyuX79dbTGcTnqI00kPy1x+7Oo9tekVxxPR3csOLlZGOJ+aUSUxObs7wdndqdRlRISok9Fo3t4XLp51AACd+/hjdcgvSIy9DnevulUS04s27DgBG0tTTJ/wgTDP3sa8WsouS35ePi5FJyBoZG/UcS1qRXi3e0vEXE5ERNgFdOnZukbGdOXOY1wppwXz9P/XY3PDqkvuX0Yb6pM2fu6OhsfgaHhMmcubezlj875TOHm+6Ifc+p0nEfReK3h7OuLAP5eqJCZWErcIVZHAwEBERUVh/fr1iI+Px+7du9G+fXukp6e//MUVZGJiAlNT00rb3qtyc62FmJhkpN0p2qeU1LuIT7gBLy+Xl7xSM/R0ROjpZYfs3AIk3s/WSAxZj7LwJPsJFC4KYZ5YIoatgw3SUqvvF33Y6VjUc6mFrxZuRLdB8zBo4nL8efh0tZVfmkIVQaUi6Onrqs3X19dDUmLprSE1MSZtpI316Xna8rl70amLSejatiHsrEwAAK2busGltjX+PhWrsZjKUjxq7E3/tBG3CFWBjIwMhIWF4fjx42jXrqiZ1tHREc2aNRPWEYlEWLNmDfbt24dDhw6hVq1a+Pbbb9GrVy8AQGFhIUaOHIm//voLd+7cQe3atTF69GhMmDBB2EZQUBAyMjKwa9euat2/Yj26tcTTp3mY+tVP0NHRgUqlwgfvt0crvwYaiacsfnXMMbOHJ8T6OkjPzsOk7ReR+bT6LkM9L+fxEwCAkcxQbb6hzBA52TnVFsftuw+x8+Ap9A9ojcF9OiA24SaWrNkDPT1ddH+nabXF8TyJxACOznY4eiAS1jYWkBsbIursVaQkpcHSypRj0mLaWJ+epy2fuxdNXbwNy776EDH7v0Z+QSFUKhUmfL0Z4VGJGoupLG9xFyFOhKqCTCaDTCbDrl270KJFC4jF4lLXmz17NhYtWoTFixfj+++/x8CBA5GSkgJzc3OoVCo4ODhg27ZtsLCwQHh4OEaOHAk7Ozv07dv3teJSKpVQKpXCdFZWVjlrv9ypMzEIj7iMUZ8EwMHeCik37mLjpqNCp2ltEXUjA8N/PQsTqT66e9lhVk8PjNoYhYwn+ZoOTWNURKjnUgujPu4MAHCvY4/rKXew6+ApjX5x9R/UDds2HsK86T9BR0eEWgobNPaph1updzkmLaat9UnbjezXDj4NnfDh56twI+0hWjZxxeIpfXHnQSZOnI57+Qaq01ucCXEiVAX09PQQGhqKESNGYNWqVfD29ka7du3Qv39/eHk9SxCCgoLw4YcfAgDmz5+P5cuX4/Tp0+jSpQv09fUxe/ZsYV1nZ2dERETg999/f+1EKCQkRG2bb2rL1r/Qo7sf/JrXBwAoFNZ48CATe/aFa1UilJuvwq2MXNzKyEVM2mNsGOaLbg1ssen0jWqPxUhe9Is0J/sJjIyNhPlPsp/Ays6q2uKwNJPDWWGtNs9JYY2/I65UWwylsbQyxaiJ/ZCnzEdurhLGJjJsWLsH5pYmHJMW09b6VExbPnfPk4j1MWN0T3z8xRocPll0nK5cu40GdR0w9qOO2pcIvcW4j1AVCQwMxO3bt7F792506dIFx48fh7e3N0JDQ4V1nk+KjIyMYGxsjHv3nnXuXbFiBZo2bQorKyvIZDKsXr0aqamprx3TtGnTkJmZKfzduPFmiUBeXkGJYfI6OjrQYP/tChGJRDDQ00zVNzYzhqHMEDeuPzv2ytw83Ll5F3a1q2+IeEMPR6TefqA2L/XWA9hqyeUeA7E+jE1kePIkF3GxKajf0FXTIWllTNpC2+uTtnzunqevpwsDfT2oXjhhqlQq6GhhZxoeNcZei0Qigb+/P/z9/TFjxgwMHz4cwcHBCAoKAgDo66uP8hCJRFCpVACALVu2YPLkyfj222/h5+cHuVyOxYsX49SpU68dj1gsLvMy3eto3NgVu/eGw9LCBLVqWSIl5S4OHjqFtm0aVVoZLyPV10Et02dDdG1NJHC1MkJWbgGycvPxUXNHhCc+QHpOHkyk+ujd2B5WMjGOx92vspjylHnISM8UprMeZeHe7fuQGEpgbCpHk1aNcfrvszC1MIWJmTHCj0bCSG4EF486VRbTi/r3aoWRU1chdNvf6Ni6IWLib+LPw6fx5ej3qi2G0sTFJINAsLY2x4P7j7B31z+wtjGHr1/9GhuTWFcHVjIDYdrCyAAOJhLk5BXi0dN8GOrrwtxQX7glhI286DOelVuALGX19IXThvqkjZ87I6kBnBXPWpwc7S3QoG4tZGQ+wc27j/DvuQTMGd8bT3PzcePOQ7TydkW/bs0wfdkfVRbTa6uMzs7amQdxIlSdPD09K9yx+eTJk2jZsiVGjx4tzEtM1K4OdIMGvosdO/9B6G8HkZX1BGamMnRo3wTvBbSpthjcbeVY1q+xMD22Q9Gv9IOX72DJkXjUNpeic/36MJHqIys3H1fvPMa4LdFITn9SZTHdvXUPO37ZKUz/s7/o5mgeTeqh8wf+8GnjjYK8fBzb9bdwY7f3gnpBT7/6Po6ebgosmPYRVv52COu2/gU7GzNMHN4Dnds3qbYYSpObq8T+3WHIzMiGoaEEDRu7oUvP1tDV1X35i9/SmGqbS/F5+2cjMfs0tgcARCQ/xK9nbsLL3hiDmz0bDTXczxEAsPfKXeyLqZ5+TNpQn7Txc9fYwxF7f3o2wGX+54EAgE17IzFm9gYM+99azBwTgNVzB8PM2BA37jzEvJV7sXaHFt5Q8S3GiVAVSE9PR58+fTB06FB4eXlBLpfj7NmzWLRoEQICAiq0DTc3N/z66684dOgQnJ2d8dtvv+HMmTNwdnau4ugrTioV46MB/vhogL/GYoi+kYn235woc/nM3WXfw6OqKOo4YOLX48pcLhKJ4NepBfw6tajGqEpq7euB1r4eGo3hRY283dHI213TYajRdEwJ93MwatvFMpdHpjxCZMqjaoyodJquT9r4uTt5PgFmvmPLXH4v/THGztlQbfG8ibe4rzQnQlVBJpOhefPmWLp0KRITE5Gfnw+FQoERI0bgq6++qtA2PvnkE0RFRaFfv34QiUT48MMPMXr0aBw4cKCKo2eMMcZe8BZnQpwIVQGxWIyQkBCEhISUuU5pd4TOyMhQ28a6deuwbt06tXWe3+bzHa8B4Pjx468VL2OMMVZTcSLEGGOMsXJVxqgvHjXGGGOMsf+kynhEhhbeFQAA30eIMcYYYzUYtwgxxhhjrFxvcV9pToQYY4wx9hJvcSbEiRBjjDHGyvU2d5bmPkKMMcYYq7G4RYgxxhhj5RKhEkaNVUoklY8TIcYYY4yV6y3uIsSXxhhjjDFWc3GLEGOMMcbK9TbfUJETIcYYY4y9xNt7cYwTIYa7T5SQigw0HYbgoza1NR3Cf4K9mUTTIZR0Q9MBlHTg0n1Nh1BCwvWHmg6hBFsTsaZDKKGpvVzTIZQgcvHWdAjq8p8ClzQdxH8bJ0KMMcYYKxdfGmOMMcZYjfX2XhjjUWOMMcYYq8G4RYgxxhhj5eJLY4wxxhirsd7mZ41xIsQYY4yx8r3FnYS4jxBjjDHGaixOhBhjjDFWLlEl/b2uBQsWQCQSYeLEiW+wldLxpTHGGGOMlUuTnaXPnDmDn376CV5eXm8WQBm4RYgxxhhjWik7OxsDBw7EmjVrYGZmViVlcCLEGGOMsXKJKukfAGRlZan9KZXKMssdM2YMunfvjk6dOlXZvvGlMfZGcnPzcGjvSVy+kIDs7Keo5WCFgA/egcLRlmPS8pie9+OGo1i4eh+GftAWwePf01gcmj5OnrZyBHjZoo6FEcyNDLDwSDxOp2QAAHRFInzoUwveClPYyMV4kleIi7ezsOHMDTx6kl9lMTV1MkNQG2d41DKGtbEEE347j79j75W67vQAT/RtXhuL9sZiQ3hKlcV0M+kWzoWdx73b95HzOAc9BnaDq6eLsJyIEHnsFC6duQJlrhL2jnZ4p1cHmFmaVllML1KpVPhjVxhORlxGZmYOzExlaNPaCwE9W0FUTTe08atng3E9G6KRsyXszA3x0TdHsf9sqto6de1NEDzAF608baGrI0LcrQwMXvIXbqXnVEuMFVaJo8YUCoXa7ODgYMyaNavE6lu2bMH58+dx5syZNyy4fNwiVI2Sk5MhEokQHR1d5jrHjx+HSCRCRkZGtcX1JrZvOoSEqyn4cHA3TPpqEOrWc8Lq77chM+Mxx6TlMRW7EJuKjbsj4OFir+lQNH6cxHo6SE5/gjWlJBFiPR3UsTTC9qjb+GLXFSw6mgB7Ewm+9K9bpTFJDXQRd+cx5u+OKXe9dzyt4aUwxd3M3CqNBwDy8/JhZWeJDj3blbr8bNh5REVcQMeADug/qi/09fWxM/RPFOQXVHlsxfbuj8Cxv89j8EedsXD+SPTr0wH7DkTi8NGz1RaDkUQfl1MeYsq6iFKXO9nIsX92dyTczkDPOfvRZuoufPNHNJT5hdUWoybcuHEDmZmZwt+0adNKXWfChAnYuHEjJJKqfcA0J0Kv4P79+xg1ahRq164NsVgMW1tbdO7cGSdPnqzQ6xUKBdLS0tCgQYMqjrR65Ofl41J0Arr3bos6rg6wtDLDu91bwsLKFBFhFzgmLY6pWM4TJSbM3YCFU/rCRC7VaCzacJyibmZi87lbOJ3yqMSyJ/mFmHMgDuFJD3E7MxcJ93Pwc3gKXK2MYGlkUGUx/Rv/AD8cScBfMaW3AgGAtbEY03p6YtrvF1GgoiqLpZizuxNa+vvBtb5LiWVEhKiT0Wje3hcunnVgZWuJzn38kfM4B4mx16s8tmIJ127Bu0ldNG7kCitLUzTz9UCD+s64fv12tcVwNPom5v9+HvvOlN46N71fUxyJvolZm87iUvJDJN99jIPnbuBBVtUns6+qMkeNGRsbq/2JxeIS5Z07dw737t2Dt7c39PT0oKenhxMnTmD58uXQ09NDYWHlJYucCL2CwMBAREVFYf369YiPj8fu3bvRvn17pKenV+j1urq6sLW1hZ5e1V6RzMvLq9LtFytUEVQqgp6+rtp8fX09JCXeqpYYOKY3M2Ppdrzj54HWPu4ajQPQ7uNUFiMDXaiIkJNXfS0dLxKJgPl9vBAaloTEe9kai6NY1qMsPMl+AoXLs8sfYokYtg42SEu9U21xuLnWQkxMMtLuFJ2fU1LvIj7hBry8SiZvmiASAf5NFEhMy8T2ae8i7qcPcWReT3Tzqa3p0EpVPGrsTf8qqmPHjrh06RKio6OFPx8fHwwcOBDR0dHQ1dV9+UYqiBOhCsrIyEBYWBgWLlyIDh06wNHREc2aNcO0adPQq1cvAIBIJMLKlSvRtWtXSKVS1KlTB9u3bxe2Udqlsf3796Nu3bqQSqXo0KEDkpOTS5T977//ok2bNpBKpVAoFBg/fjxycp5dP3ZycsLcuXMxaNAgGBsbY+TIkVV2HJ4nkRjA0dkORw9EIjMjGyqVCudOxyAlKQ2PszRzfZtjqrjdx87jcvwtTBnZQ2MxPE9bj1NZ9HVF+KiZAv8mpuNpvkpjcQxtWwcFKsLGKuwT9CpyHj8BABjJDNXmG8oMkZNdfe9jj24t0aK5J6Z+9ROChi/AjFm/oLN/M7Ty044WeStjKeRSfUzo5YVjF24hcP4h7D2dgl8/74iWHtrRd1CT5HI5GjRooPZnZGQECwuLSr+qwolQBclkMshkMuzatavcHu4zZsxAYGAgLly4gIEDB6J///6IjY0tdd0bN27g/fffR8+ePREdHY3hw4fjyy+/VFsnMTERXbp0QWBgIC5evIitW7fi33//xdixY9XW++abb9CoUSNERUVhxowZpZanVCpL9NZ/U/0HdQMAzJv+E6ZNXIaTJ6LQ2KdetXVG5Jhez+27jzB7+U58N/MjSMT6GomhNNp2nMqiKxJh0juuEAFYfTJZY3F42BtjYEtHzNh+SWMxaKtTZ2IQHnEZoz4JwNzgoRg5vCcOHDyFsH8vajo0AIDO/3/7HjiXipX7r+ByykN8t/siDp2/gSGd6mk2uFJVxogx7focF+NRYxWkp6eH0NBQjBgxAqtWrYK3tzfatWuH/v37q93kqU+fPhg+fDgAYO7cuThy5Ai+//57/PjjjyW2uXLlSri4uODbb78FALi7u+PSpUtYuHChsE5ISAgGDhwo3E3Tzc0Ny5cvR7t27bBy5UqhE9k777yDSZMmlbsPISEhmD179hsdhxdZWpli1MR+yFPmIzdXCWMTGTas3QNzS5NKLYdjqlyX4m/iwaNsdB/+rTCvsFCFUxeuY/3Of5FwdDF0dav/d5K2HafS6IpEmNTRBVYyMYL3X9Voa1BTJzOYGxng0JRnnZb1dHUwqVs9DGzlhK6LT1R7TEbyopagnOwnMDI2EuY/yX4CKzuraotjy9a/0KO7H/ya1wcAKBTWePAgE3v2haNN66q5Md+rSM9SIr9AhbibGWrz429noIW7jWaCKoc2PH3++PHjb7aBMnAi9AoCAwPRvXt3hIWFITIyEgcOHMCiRYvw888/IygoCADg5+en9ho/P78yR4nFxsaiefPmJdZ/3oULF3Dx4kVs3LhRmEdEUKlUSEpKgoeHBwDAx8fnpfFPmzYNn3/+uTCdlZVVYhjj6zIQ68NArI8nT3IRF5uC7gFtK2W7HFPVaNXUDYdDp6jNm7xgM1xqW2PUgI4aSYKepy3H6UXFSZCdsQTB+68iW6m5vkEAsCfqNiIT1fsorgzywd7o2/jznGb6VRmbGcNQZogb12/A2r4o8VHm5uHOzbvwat6w2uLIyyso0ZKoo6MDqvq+5BWSX6hC1PX7cLVXT/JdbE1w44Hm+3rVJJwIvSKJRAJ/f3/4+/tjxowZGD58OIKDg4VEqLJlZ2fjk08+wfjx40ssq137Wac6IyOjEstfJBaLS+2d/ybiYpJBIFhbm+PB/UfYu+sfWNuYw9evfqWWwzFVLpmhBO517NTmGUoMYGZsVGJ+ddL0cZLo6cDW+NlQXWu5GE7mhshWFuDRk3xM7uSKOhaGmH84HjoiEUylRZcVs5UFVTZaS2qgi9oWz/rb1DKXwt1Ojswn+biTmYvMp+r3MCpQEdIfK5H8oOr64+Qp85CRnilMZz3Kwr3b9yExlMDYVI4mrRrj9N9nYWphChMzY4QfjYSR3AguHnWqLKYXNW7sit17w2FpYYJatSyRknIXBw+dQts2jaotBiOxHpxtjYVpR2s5Gjia41G2ErfSc/D9nsv4ZUJ7RMTeQdiVNHRs7IAuTRXoOedAtcXIOBF6Y56enti1a5cwHRkZiUGDBqlNN2nSpNTXenh4YPfu3WrzIiMj1aa9vb0RExMDV1fXygu6EuXmKrF/dxgyM7JhaChBw8Zu6NKzdaX26OeYag5NHycXKyPM6e4hTA9p4QgA+Dv+Praev4VmjkW3+F/yvnrLxsx9sbiSVjX3OqpfywRrRzQTpqf8f3x/nruFGTs00zfo7q172PHLTmH6n/3/AgA8mtRD5w/84dPGGwV5+Ti262/hhorvBfWCnn71feUMGvguduz8B6G/HURW1hOYmcrQoX0TvBfQptpiaOxiiT0zuwnTXw8qugKw6UQCxq4Mw74zKZj0czgmBnghJKgFrt3OxOAlf+FU3N1qi7GitOHSWFUREWlLQ6F2S09PR58+fTB06FB4eXlBLpfj7NmzGDduHLp3745ffvkFIpEIlpaWWLhwIVq3bo2NGzdi3rx5uHTpEjw9PZGcnAxnZ2dERUWhcePGSE1NhZubG8aPH4/hw4fj3LlzmDRpEu7cuYNHjx7B1NQUFy9eRIsWLTB06FAMHz4cRkZGiImJwZEjR/DDDz8AKBo1NnHixFd+Km9WVhZMTEyw6NAFSI3kVXDUWFXq6+Wg6RBK+P3iTU2HUMKBS/c1HUIJCdcfajqEEgLbO2s6hBKa2mvfeWnQvIOaDkEN5T9F7u6xyMzMhLGx8ctf8IqKvydS7zx64+1nZWWhtq1ZlcX6urhFqIJkMhmaN2+OpUuXIjExEfn5+VAoFBgxYgS++uorYb3Zs2djy5YtGD16NOzs7LB582Z4enqWus3atWtjx44d+Oyzz/D999+jWbNmmD9/PoYOHSqs4+XlhRMnTuB///sf2rRpAyKCi4sL+vXrV+X7zBhjjL3tOBGqILFYjJCQEISEhJS7nr29PQ4fPlzqMicnJ7zYANejRw/06KF+H5chQ4aoTfv6+pa5TQCl3nuIMcYYqyxv86UxToQYY4wxVq5KfOaq1uEbKjLGGGOsxuIWoUrE/c4ZY4y9ld7iJiFOhBhjjDFWrmePyXizbWgjvjTGGGOMsRqLW4QYY4wxVi4eNcYYY4yxGust7iLEiRBjjDHGXuItzoS4jxBjjDHGaixuEWKMMcZYud7mUWOcCDHGGGOsXNxZmr2Vim8AmZuTreFI2Ot4nJWl6RBKeJrzWNMhlJD/VPvqd6EyR9MhlKB8on3HSQtDAuU/1XQIaorjqeob+mZVwvmmMrZRFUTEt0OusW7evAmFQqHpMBhjjL2hGzduwMHBodK3m5ubC2dnZ9y5c6dStmdra4ukpCRIJJJK2V5l4ESoBlOpVLh9+zbkcjlEb9BmmZWVBYVCgRs3bsDY2LgSI3x9HFPFcEwVwzFVDMdUMZUZExHh8ePHsLe3h45O1Yx/ys3NRV5eXqVsy8DAQKuSIIAvjdVoOjo6lfoLwtjYWGtONMU4porhmCqGY6oYjqliKismExOTSoimbBKJROuSl8rEw+cZY4wxVmNxIsQYY4yxGosTIfbGxGIxgoODIRaLNR2KgGOqGI6pYjimiuGYKkYbY6rJuLM0Y4wxxmosbhFijDHGWI3FiRBjjDHGaixOhBhjjDFWY3EixGqkoKAg9O7dW9NhVNjVq1fRokULSCQSNG7cGMnJyRCJRIiOjlZbTyQSYdeuXVUai5OTE5YtW1alZVSW1atXQ6FQQEdHB8uWLcOsWbPQuHHjCr02NDQUpqamVRpfdWjfvj0mTpyo6TBKOH78OEQiETIyMjQdiuDF80JlHruyPrPP08ZjUhNwIsQEQUFBEIlEwp+FhQW6dOmCixcv/mfLK+/kc/78+Tcuv6wvy8pOFoKDg2FkZISwsDD4+vqibdu2AIAuXbqgZ8+eOHbsGAAgLS0NXbt2faOynn9f9PX1YWNjA39/f6xduxYqleqN96U0d+7cwYQJE+Dq6gqJRAIbGxu0atUKK1euxJMnT15rm1lZWRg7diymTp2KW7duYeTIkZUc9ZsrPtaffvppiWVjxoyBSCRCUFBQhbZV1pdoXl4e/vrrL9SuXRtisRi2trbo3LkzTp48WQl78PpatmyJtLS0Ct8M8P79+xg1alSV7sd3332H0NDQKilfoVAgLS0NDRo0qLR4WeXgRIip6dKlC9LS0pCWloZjx45BT08PPXr0eGvK07byX6b4tvaJiYlo0KABevfujfDwcEybNg0AsGLFCnTo0AFjxowBUPQcn8oYklt8XJKTk3HgwAF06NABEyZMQI8ePcp8uGN+fv5rlXX9+nU0adIEhw8fxvz58xEVFYWIiAhMmTIFe/fuxdGjR1+rvNTUVOTn56N79+6ws7ODoaHha8VX1RQKBbZs2YKnT589zDM3NxebNm1C7dq1X3u7xXUnJiYG9+/fx/r16xEfH4/du3ejffv2SE9Pf+PYyyv3ZQwMDGBra1vhx/sEBgYiKiqqSvfDxMSkzFbANy1fV1cXtra20NOr2gc6VNajMGoUYuz/DR48mAICAtTmhYWFEQC6d+8eERGlpqZSnz59yMTEhMzMzKhXr16UlJSk9po1a9ZQvXr1SCwWk7u7O61YsUJYplQqacyYMWRra0s6OjoklUpp/vz5VVYeALW/du3aCfuqUCiE/S0sLKT58+eTra0tASBPT0+aNWsWAaBHjx7Rw4cPacCAAWRqakoAyNHRkaZMmVJi+8HBwdSuXbsS85/fv9atW5NEIiEHBwcaN24cZWdnC8sdHR1pzpw59PHHH5NcLqfBgweX2Na0adMoKSmJAFBUVBSpVCpycnKixYsXEwDauXMnERFFRUURAOrevTuZmZmRoaEhNW3alCIjI4mI6Nq1a9SrVy+ytrYmIyMj8vHxoSNHjqjVg7t371KPHj1IIpGQjY0NASBzc3NaunQpAaAff/yRPD09SSQSkZ6eHtWqVYvq1atHjo6OJJFIqG7durRs2TK19ys/P5/GjRtHJiYmZG5uTs7OzmRoaEjdu3cX1snNzaVx48aRlZUVGRgYUKtWrYTyevbsSRKJhADQoUOHyMLCgkQiEYlEInJycqJly5bRunXrShw3qVRKYrGYDA0NKTk5mU6cOEG6urrUsmVLkslkJJfLydvbm/r370+tW7emdevWkYmJCR08eJDq1atHRkZG1LlzZ7p9+7YQZ2FhIc2ePZtq1apFBgYG1KhRIzpw4ICwvPh92rx5M/n5+ZFYLKb69evT8ePHhXpYvG+TJk2ihg0bklgsJhcXF6pbty4FBATQ4MGDiYjo2LFjZGdnJ+yPnZ0dnThxQq2c5/9cXFzo0aNHBIDef/99+uKLL8jMzIxsbGwoODhYiPHRo0c0cuRIsra2FuLbs2ePsHz79u3k6elJBgYG5OjoSN98843a+1lanX3ZfhMR/f3338Ln62VlFe+HjY0Nff311zRkyBCSyWSkUCjop59+Ej7ra9asod69e5NUKiVXV1f6888/hW0XFBTQ0KFDycnJqcy6+eI5sF27djRhwgSh/Ofjf1Fx/ezSpQtJJBJydnambdu2lagLUVFRwrx9+/aRm5sbSSQSat++vVBvnz8mr3POYK+GEyEmePEk8PjxY/rkk0/I1dWVCgsLKS8vjzw8PGjo0KF08eJFiomJoQEDBpC7uzsplUoiItqwYQPZ2dnRjh076Pr167Rjxw4yNzen0NBQIiJavHgxKRQK+ueffygwMJBat25NmzZtqrLyTp8+TQDo6NGjlJaWRunp6cK+Pp8IzZs3j+rWrUvdunUjR0dH+uWXX0hfX184KY0ZM4YaN25MGzZsIAD022+/0Y4dO2jZsmVkbGxMaWlplJaWRo8fP6b09HRycHCgOXPmCPOJihIPIyMjWrp0KcXHx9PJkyepSZMmFBQUJBxzR0dHMjY2pm+++YauXbtG165do7S0NHJ3dxeSoMePH5c4qX799dfk6emplgh9+umnJJFIqE2bNhQWFkYJCQm0detWCg8PJyKi6OhoWrVqFV26dIni4+Np+vTpJJFI6IMPPhCOS9euXalRo0YUERFBZ8+eJUNDQ9LR0RESIWtra+rfvz9t2LCB/v33XyExCQwMpOvXr9OGDRvI0NCQtm7dKuzjvHnzyNzcnP744w8KDw8nACQWi9Xq3vjx48ne3p72799PV65cERJCKysrWrt2LW3cuJEAkK+vLw0ePJi2bt1Kvr6+5ObmRoaGhvTbb7/R0aNHCQDJZDIaNWoUxcXF0ejRo0mhUFBKSgoRERkYGJC3tzfFxsZSfHw8bdq0iUxNTWnt2rW0bt060tfXp06dOtGZM2fo3Llz5OHhQQMGDBDiXLJkCRkbG9PmzZvp6tWrNGXKFNLX16f4+Hgievbl5+DgQNu3b6eYmBgaPnw4yeVyevDggVoiZGhoSIcPH6aLFy+SpaUlmZmZUc+ePWnw4MF07do10tPTIxMTE1qzZg1t2LCBzM3NycDAgNLT06mgoICsrKwIAE2dOpUiIiIoKiqK8vPzSVdXlwwMDGj69OkUHx9P69evJ5FIRIcPH6bCwkJq0aIF1a9fnw4fPkyJiYm0Z88e2r9/PxERnT17lnR0dGjOnDkUFxdH69atI6lUSuvWrSu3zr5sv4lKJkLllZWfny8kq2ZmZrRixQpKSEigkJAQ0tHRoatXrwrlbdq0iRISEmj8+PEkk8mEz3xeXh7NnDmTzpw5U2bdLCsRKi5/4sSJlJubS6UBQBYWFrRmzRqKi4uj6dOnk66uLsXExKjVheLPbGpqKonFYvr888/p6tWrtGHDBuHHRvExed1zBns1nAgxweDBg0lXV5eMjIzIyMhI+NV57tw5IiL67bffyN3dnVQqlfAapVJJUqmUDh06RERELi4uQmJTbO7cueTn50dEROPGjaN33nmHVCpVtZRX2q+w4n1VKBRC+c//yi4uv1u3bsJJqWfPnjRkyBChlaW4Vaq41eBFjo6OtHTpUrV5w4YNo5EjR6rNCwsLIx0dHXr69Knwut69e5fYnpubGwGgP/74o9T9unXrFunq6gqJUF5eHslkMpJIJMIXQUXUr1+fmjVrRgEBARQXF0cA6PTp08Lyrl27EgAhEZo4cWKJbWzbto0sLCyE6TFjxlBgYKAwbWNjQ4sXLyYiosjISAJAlpaWwhdQdna2kBwZGRnRlClTKC8vjwBQ69atiejZl+jRo0eF7e7bt48A0CeffEKBgYHCe/X8L/ng4GBq1KiR8BqxWEx2dnbC9I4dO0gmk1F2drbw6/z5L5YVK1aQjY2NMG1vb09ff/212v77+vrS6NGjiejZ+7RgwQJheX5+Pjk4ONDChQvVEiF9fX1KTk6m5ORkkkgkJJFIyMfHhwYPHkyDBg0iHR0d2rhxo7Cd4mNQXP6LX6LFPD09SU9PjyQSCbVs2ZKmTZtG9evXp6lTp9KhQ4dIR0eH4uLiSryPREQDBgwgf39/tXlffPEFeXp6CtOl1dmX7ffz8RfH+7Kytm/fTjo6OkIr3rRp0yg6Opqsra1p5cqVBICmT58uvLa4Hj3fQveiF+tmWYlQcflmZmZqx/HChQvCugDo008/Vdt+8+bNadSoUWrHpPgzO23aNLXjSEQ0depUtWPyJucMVnHcR4ip6dChA6KjoxEdHY3Tp0+jc+fO6Nq1K1JSUnDhwgVcu3YNcrkcMpkMMpkM5ubmyM3NRWJiInJycpCYmIhhw4YJy2UyGebNm4fExEQARZ1Do6Oj4e7ujlOnTsHLy6tKy6vI/m7btg1A0ROW79+/j6ZNm8LQ0BCHDh0S1hs1ahS2bNmCfv36AQDOnTv3ysf2woULCA0NVYu1c+fOUKlUSEpKEtbz8fEp8Vp6yQ3g7e3t0b17d2F6z549UCqV8PHxgbm5eamvyc7OxuTJk+Hh4QFTU1PIZDLExsYiJycHABAbGws9PT00bdpUeI1cLoeOzrPTho+PD44ePYqOHTuiVq1akMvl+PDDD5Geng4rKyvIZDKsXr0aqampAIDMzEzcvXsXzZo1U4vFxcVF+H/xe3fo0CHUr18fSqUS+vr6AKBWNgB4eXlhxYoVaNq0KQYOHAgAWLt2rVAeAHzwwQfo3LkzevbsicjISLW+RePGjUNaWhp8fX2xYMECrFixAn379oWRkREAwNDQUC02Ozs73Lt3D0BRZ+zbt2+jVatWajG1atUKsbGxavP8/PyE/+vp6cHHx6fEOh07dkRoaCjWrVuH7t27o169enj8+DEA4OzZs1CpVBg+fLhQd4rf77Nnz6I8VlZWGDp0KHbv3o0uXbrg+PHjiImJwcmTJxEdHQ0HBwfUrVu31NfGxsaWun8JCQkoLCwU5pVWZyu63xUtKzAwEA4ODhgyZIiwH02bNoWBgYHwnnh5eQmvNTIygrGxsbAMgFBXSqubLxMYGIjbt2+rHUdvb2+1ztXP72/xdHn727x58xLrP+9Nzhms4jgRYmqMjIzg6uoKV1dX+Pr64ueff0ZOTg7WrFmD7OxsNG3aVEhciv/i4+MxYMAAZGdnAwDWrFmjtvzy5cuIjIwEAHh7eyMpKQlz585FYWEhLl26hC+//LLKyqvI/hYnCgcPHsTly5dhaGiIoKAg/PrrrwCKkpDi5Kx///4AgAEDBmDy5MmvdGyzs7PxySefqMV64cIFJCQkqH3ZFn8JP6+4A/TVq1fL3P7w4cMBAEqlEuvWrYO7u3uJxOF5kydPxs6dOzF//nyEhYUhOjoaDRs2LHdkWGxsrNo2c3Jy0KNHD3h5eWHHjh2YM2eO0Pl1x44diI6OxpAhQ8rswOnq6gqRSCR84T/PyckJUqlUbd6LHU13796NyZMnY9iwYVi5ciWAosTn+fIWL16MiIgItGzZEleuXMHVq1eF+rF48WL4+/tDT08PBw8exF9//aX2XhQnYMVEItFLk9LX1bdvX4SGhmL9+vUYOnSo2rLikXMHDhxQqzv+/v4wNjZ+6balUin8/f0xY8YMhIeHQ6FQICoqqsTxfV2l1dmqIBKJUL9+fWE/goKCcPfuXaHOlvZ+FS/bsmWLUFcOHz780rpZGolEonYcg4KCEBwcXHk7+II3OWewiuNEiJVLJBJBR0cHT58+hbe3NxISEmBtbS0kS8V/JiYmsLGxgb29Pa5fv15iubOzs7BNY2Nj9OvXDy1btoSvry927NiBhw8fVkl5BgYGAKD26/VFnp6eEIvFSE1NhZubG3R1dSGVStGkSRMARUPSgaJf1g4ODgCAmTNnYvXq1TAwMCh126XN9/b2RkxMTIlYXV1dhTjLoqenB1dXV6xYsUJosXleRkYGunXrBqAooTt48CB69+6N6Oho4di+6OTJkwgKCsJ7772Hhg0bwtbWFsnJycLyevXqoaCgQGj9+uuvv3Dp0iUUFBQI6yQmJkKlUuHbb79FixYtcP36dSgUCgBFv85dXV3VWueK37czZ84AACwsLNCpUyfExcUJ23VxcYGBgYHasOTiVpzibRc7deoUWrZsidGjR6NevXoAUOov/CZNmmDatGkYNmwYJBIJNm3aJCz77LPPEBsbi44dO0Iul1c4iTY2Noa9vX2J4dMnT56Ep6en2rznt1l8TD08PNTWkUqlyMvLQ35+Ppo1a4b4+HjI5XIAQLNmzSASiXDr1i2hzjg6OiImJqbEcOzy6noxuVyOgoICeHl54ebNm4iPjy91PQ8Pj1L3r27dutDV1X1pORXZ7zcpy9PTs8K3dDh58qRQV5o0aVKibr4OT09Ptc/ji3UnMjKy3P09ffp0ifWf9ybnDFZxnAgxNUqlEnfu3MGdO3cQGxuLcePGITs7Gz179sTAgQNhaWmJgIAAhIWFISkpCcePH8f48eNx8+ZNAMDs2bMREhKC5cuXIz4+HpcuXcK6deuwZMkSAMCSJUuwefNmXL16FVlZWbhx4wasrKyQm5tbJeVZW1tDKpXi4MGDuHv3LjIzM0vsb05ODj799FOMGzcO/v7+yM7Ohru7Ow4dOgRzc3PMmjULY8aMwYwZM7BgwQIARUmBh4cHnJyckJ2djWPHjuHBgwfCL3cnJyf8888/uHXrFh48eAAAmDp1KsLDwzF27FhER0cjISEBf/75J8aOHVuh96Zbt24oLCxEs2bNcODAAQBFQ8+XL18OPz8/4ctiw4YNcHNzw4wZM2Bra4vevXvj5MmTuH79Onbs2IGIiAgAgJubG/744w/hV+aAAQOELxWlUgkTExO0b98eH3/8MUaNGoWePXvCzMwMEolEiMnW1hb5+fn4/vvvcf36dWRkZAhN9teuXcOMGTOEpKfYuHHjEBISgj///BNxcXGwsbGBSqXCiRMnsHXrVqSmpqJ///4YM2YMLl68iIyMDIwYMQIA0KlTJ7Vtubi44OzZszh06BBSUlIAoMR9oBYtWoSIiAikpKQgMTERSqUSHh4eePr0KcaOHQuxWAxDQ0PMmTMHBgYGZX5xleaLL77AwoULsXXrVsTFxeHLL79EdHQ0JkyYoLbeihUrsHPnTly9ehVjxozBo0ePSrT6zJs3DytXrsT27dsxbNgwWFpaws7ODgDwv//9Dzo6Ohg5ciRWrFiBAwcOoHPnznjw4AGGDRsGoChZFolE2Lt3L+7fv4/s7Gykp6fjwoULuHr1Ki5evIikpCRs27YN165dg0KhQLt27dC2bVsEBgbiyJEjSEpKwoEDB3Dw4EEAwKRJk3Ds2DHMnTsX8fHxWL9+PX744YcKt4ZWZL+LlVdWeno63nnnHWRnZ+P27dvCfixatKjC9yFyc3MT6kp8fHypdbMsxeVv2LBB7TguWrQIAQEBwnrbtm3D2rVrER8fj+DgYJw+fbrMz/enn36KhIQEfPHFF4iLi8OmTZtK3MPoTc8ZrII03EeJaZEXh2rL5XLy9fWl7du3C+ukpaXRoEGDyNLSksRiMdWpU4dGjBhBmZmZwjobN26kxo0bk4GBAZmZmVHbtm2FTr6rV6+mxo0bk5GRkTAqqyrLIyoaXq9QKEhHR6fE8PnnyxeLxSSRSEhXV5esrKyoc+fO9MMPP1DDhg1JT0+PpFIpGRgYEADy9/en69evE1HR6CwLCwth+DwRUUREBHl5eZFYLFYbPn/69Gny9/cnmUxGRkZG5OXlpdbZtrRO1kREjRo1ouDgYLp9+zaNGTOGatWqJYza6tWrF/39999E9Ox2AYsWLSIiouTkZAoMDCRjY2MyNDQkHx8fOnXqFBEVdd7s0KEDSaVSUigU9MMPP1C7du3Iw8ND2I6enh4ZGBiQSCQSRuMVx4j/75i9ZMkSsrOzI6lUSv7+/tSmTRsCQCYmJjRq1Cj68ssv1Too5+fn09ixY8nY2JjMzMxo6tSp1KNHD3JzcyNnZ2fS19cnmUxGNjY2ZGhoqDZ8vnhEXHFH2zt37lBQUBCZmJiQXC4nADRq1Chq1KiR0Fn63XffJTs7OzIwMCATExOysbGhwsJCUiqV1L9/f6HTPAAaMmSI0Am1tI7wO3fuVHs/CwsLadasWVSrVi3S19cvc/j8pk2bqFmzZmRgYECenp70119/CfWweN/27NlD9evXJwMDA2rWrBlduHBBbfh8WFiYWp01NDQUOuIW152uXbuSra0tiUQiGjx4MOXm5pJCoSBra2syMTEhQ0NDcnd3p7p169LAgQOJiCg9PZ2GDBlCFhYWJJFIqEGDBrR3715hu8VD2vX19al27dpCR/fy6uzL9vv597C04fMvlpWbm0tffvklGRgYkEQiEfZj+vTp1LBhQwoODlarH8VMTEyEEW65ublCXTE1NS21bpbVWbq4fG9vb7XjOH36dHry5AkRFX32VqxYQf7+/iQWi8nJyUltRFppAzf27NlDrq6uJBaLqU2bNrR27doSx+R1zxms4kREVXTBmzFW7cLCwtCxY0fcuHEDNjY2mg6nQlQqFTw8PNC3b1/MnTtXIzEMGzYM9+/fx+7duyt1u8nJyXB2dkZUVFSZj/Y4fvw4OnTogEePHr0Vj/QAKrbfbxuRSISdO3f+px7dw4pU7S0uGWPVQqlU4v79+5g1axb69Omj1UlQSkoKDh8+jHbt2kGpVOKHH35AUlISBgwYUO2xZGZm4tKlS9i0aVOlJ0GMsf8G7iPE2Ftg8+bNcHR0REZGBhYtWqTpcMqlo6OD0NBQ+Pr6olWrVrh06RKOHj36Sn1zKktAQADeffddfPrpp/D396/28hljmseXxhhjjDFWY3GLEGOMMcZqLE6EGGOMMVZjcSLEGGOMsRqLEyHGGGOM1VicCDHGNCooKEjt3ivt27fHxIkTqz2O48ePQyQSISMjo8x1RCIRdu3aVeFtzpo1643vo5OcnAyRSITo6Og32g5jrHScCDHGSggKCoJIJIJIJIKBgQFcXV0xZ84cteeMVZU//vijwjdWrEjywhhj5eEbKjLGStWlSxesW7cOSqUS+/fvx5gxY6Cvr49p06aVWDcvL6/SHgJpbm5eKdthjLGK4BYhxlipxGIxbG1t4ejoiFGjRqFTp07C3ZeLL2d9/fXXsLe3h7u7OwDgxo0b6Nu3L0xNTWFubo6AgAC1J9oXFhbi888/h6mpKSwsLDBlyhS8eCuzFy+NKZVKTJ06FQqFAmKxGK6urvjll1+QnJyMDh06AADMzMwgEokQFBQEoOixHSEhIXB2doZUKkWjRo2wfft2tXL279+PunXrQiqVokOHDmpxVtTUqVNRt25dGBoaok6dOpgxYwby8/NLrPfTTz9BoVDA0NAQffv2LfHw359//hkeHh6QSCSoV68efvzxx1eOhTH2ejgRYoxViFQqRV5enjB97NgxxMXF4ciRI9i7dy/y8/PRuXNnyOVyhIWF4eTJk5DJZOjSpYvwum+//RahoaFYu3Yt/v33Xzx8+BA7d+4st9xBgwZh8+bNWL58OWJjY/HTTz9BJpNBoVBgx44dAIC4uDikpaXhu+++AwCEhITg119/xapVq3DlyhV89tln+Oijj3DixAkARQnb+++/j549eyI6OhrDhw/Hl19++crHRC6XIzQ0FDExMfjuu++wZs0aLF26VG2da9eu4ffff8eePXtw8OBBREVFYfTo0cLyjRs3YubMmfj6668RGxuL+fPnY8aMGVi/fv0rx8MYew0afeQrY0wrPf8UbpVKRUeOHCGxWEyTJ08WltvY2JBSqRRe89tvv5G7uzupVCphnlKpJKlUSocOHSIiIjs7O1q0aJGwPD8/nxwcHEp94jcRUVxcHAGgI0eOlBpnaU8wz83NJUNDQwoPD1dbd9iwYfThhx8SEdG0adPI09NTbfnUqVNLbOtFKOUJ589bvHgxNW3aVJgODg4mXV1dunnzpjDvwIEDpKOjQ2lpaURE5OLiQps2bVLbzty5c8nPz4+ISn9qOWOs8nAfIcZYqfbu3QuZTIb8/HyoVCoMGDAAs2bNEpY3bNhQrV/QhQsXcO3aNcjlcrXt5ObmIjExEZmZmUhLS0Pz5s2FZXp6evDx8SlxeaxYdHQ0dHV10a5duwrHfe3aNTx58qTEs8Py8vLQpEkTAEBsbKxaHADg5+dX4TKKbd26FcuXL0diYiKys7NRUFAAY2NjtXVq166NWrVqqZWjUqkQFxcHuVyOxMREDBs2DCNGjBDWKSgogImJySvHwxh7dZwIMcZK1aFDB6xcuRIGBgawt7eHnp766cLIyEhtOjs7G02bNsXGjRtLbMvKyuq1YpBKpa/8muzsbADAvn371BIQoKjfU2WJiIjAwIEDMXv2bHTu3BkmJibYsmULvv3221eOdc2aNSUSM11d3UqLlTFWNk6EGGOlMjIygqura4XX9/b2xtatW2FtbV2iVaSYnZ0dTp06hbZt2wIoavk4d+4cvL29S12/YcOGUKlUOHHiBDp16lRieXGLVGFhoTDP09MTYrEYqampZbYkeXh4CB2/i0VGRr58J58THh4OR0dH/O9//xPmpaSklFgvNTUVt2/fhr29vVCOjo4O3N3dYWNjA3t7e1y/fh0DBw58pfIZY5WDO0szxirFwIEDYWlpiYCAAISFhSEpKQnHjx/H+PHjcfPmTQDAhAkTsGDBAuzatQtXr17F6NGjy70HkJOTEwYPHoyhQ4di165dwjZ///13AICjoyNEIhH27t2L+/fvIzs7G3K5HJMnT8Znn32G9evXIzExEefPn8f3338vdED+9NNPkZCQgC+++AJxcXHYtGkTQkNDX2l/3dzckJqaii1btiAxMRHLly8vteO3RCLB4MGDceHCBYSFhWH8+PHo27cvbG1tAQCzZ89GSEgIli9fjvj4eFy6dAnr1q3DkiVLXikextjr4USIMVYpDA0N8c8//6B27dp4//334eHhgWHDhiE3N1doIZo0aRI+/vhjDB48GH5+fpDL5XjvvffK3e7KlSvxwQcfYPTo0ahXrx5GjBiBnJwcAECtWrUwe/ZsfPnll7CxscHYsWMBAHPnzsWMGTMQEhICDw8PdOnSBfv27YOzszOAon47O3bswK5du9CoUSOsWrUK8+fPf6X97dWrFz777DOMHTsWjRs3Rnh4OGbMmFFiPVdXV7z//vvo1q0b3n33XXh5eakNjx8+fDh+/vlnrFu3Dg0bNkS7du0QGhoqxMoYq1oiKquXImOMMcbYW45bhBhjjDFWY3EixBhjjLEaixMhxhhjjNVYnAgxxhhjrMbiRIgxxhhjNRYnQowxxhirsTgRYowxxliNxYkQY4wxxmosToQYY4wxVmNxIsQYY4yxGosTIcYYY4zVWJwIMcYYY6zG+j+sX4PiPOrXYQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py:3103: UserWarning: You are saving your model as an HDF5 file via `model.save()`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')`.\n", + " saving_api.save_model(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saved ResNet50V2 model to saved_models/ResNet50V2_saved.h5\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# List of base models with their respective input shapes\n", + "base_models5 = [\n", + " (DenseNet121(weights='imagenet', include_top=False, input_shape=(224, 224, 3)), (224, 224, 3), 'DenseNet121')\n", + "]\n", + "model_training (base_models5)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "s7RbgUGhbYH9", + "outputId": "ec0d5aa7-2f8d-4c3b-da4f-ebf9a06c67be" + }, + "execution_count": 18, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/densenet/densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5\n", + "29084464/29084464 [==============================] - 0s 0us/step\n", + "Training DenseNet121...\n", + "Epoch 1/10\n", + "282/282 [==============================] - 247s 606ms/step - loss: 1.1023 - accuracy: 0.6429 - val_loss: 0.2471 - val_accuracy: 0.9180\n", + "Epoch 2/10\n", + "282/282 [==============================] - 163s 577ms/step - loss: 0.2658 - accuracy: 0.9237 - val_loss: 0.3270 - val_accuracy: 0.9000\n", + "Epoch 3/10\n", + "282/282 [==============================] - 162s 574ms/step - loss: 0.1599 - accuracy: 0.9541 - val_loss: 0.2151 - val_accuracy: 0.9420\n", + "Epoch 4/10\n", + "282/282 [==============================] - 162s 572ms/step - loss: 0.1249 - accuracy: 0.9640 - val_loss: 0.6724 - val_accuracy: 0.8590\n", + "Epoch 5/10\n", + "282/282 [==============================] - 165s 582ms/step - loss: 0.0972 - accuracy: 0.9722 - val_loss: 0.2721 - val_accuracy: 0.9210\n", + "Epoch 6/10\n", + "282/282 [==============================] - 162s 575ms/step - loss: 0.0894 - accuracy: 0.9741 - val_loss: 0.2725 - val_accuracy: 0.9360\n", + "Epoch 7/10\n", + "282/282 [==============================] - 165s 584ms/step - loss: 0.0799 - accuracy: 0.9771 - val_loss: 0.1126 - val_accuracy: 0.9680\n", + "Epoch 8/10\n", + "282/282 [==============================] - 163s 577ms/step - loss: 0.0860 - accuracy: 0.9747 - val_loss: 0.2102 - val_accuracy: 0.9420\n", + "Epoch 9/10\n", + "282/282 [==============================] - 165s 583ms/step - loss: 0.0631 - accuracy: 0.9828 - val_loss: 0.1421 - val_accuracy: 0.9570\n", + "Epoch 10/10\n", + "282/282 [==============================] - 162s 575ms/step - loss: 0.0812 - accuracy: 0.9769 - val_loss: 0.1985 - val_accuracy: 0.9520\n", + "32/32 [==============================] - 3s 95ms/step - loss: 0.1985 - accuracy: 0.9520\n", + "DenseNet121 Validation Accuracy: 0.9520\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABa+UlEQVR4nO3deXhMZ/8G8HtmMpnsm+yRDak1tiBiX0JKaSmKqrULiiJvW7SWqrZKS6n15VVtifKjpVqtlqBK7cRS+xKxZUN2SSYz5/fHSSYZmZCJSU4yuT/XNVcmz3nOme8kaef2nOc8RyYIggAiIiIiMyGXugAiIiIiU2K4ISIiIrPCcENERERmheGGiIiIzArDDREREZkVhhsiIiIyKww3REREZFYYboiIiMisMNwQERGRWWG4ISIiIrPCcENkYt9++y1kMpnuYWVlBW9vb0RERODrr79Genq61CUarVOnTpDJZOjdu3exbbGxsZDJZPjyyy+NPm5WVhY++ugj7Nu3r9i2e/fuYerUqejcuTPs7e0hk8kM9svKysKyZcvQvXt3eHl5wd7eHs2aNcOKFSug0WiK9f/000/x4osvwsPDAzKZDB999JHRdQPA8uXLIZPJEBoaWqb9iaj8MNwQlZOPP/4Y69atw4oVKzBhwgQAwKRJkxAcHIwzZ85IXF3Z/Prrrzhx4oTJjpeVlYXZs2cbDC2XLl3CvHnzcOfOHQQHB5d4jOvXr2PChAkQBAGRkZH48ssvERgYiLfffhujRo0q1n/69Ok4duwYmjVr9ky1R0VFISAgAEePHsXVq1ef6VhEZFoMN0TlpEePHnjttdcwcuRITJs2DX/88Qd2796NxMREvPjii3j06JHUJRrFz88Pzs7OmD17doW8XkhICO7fv4/Lly8jMjKyxH6enp44e/Ysdu3ahffeew+jR4/GTz/9hJEjR+L7778vFjxu3LiBe/fuYf369WWu7caNG/jnn3+wcOFCuLm5ISoqqszHKm+ZmZlSl0BU4RhuiCpQly5dMGPGDNy8ebPYh+vFixfRv39/uLi4wMrKCi1atMD27dv1+hSc8jp48CAiIyPh5uYGW1tb9O3bF0lJSXp9jx8/joiICLi6usLa2hqBgYHFRjK0Wi0WLVqEhg0bwsrKCh4eHhg9ejQePnxYrHZ7e3tMnjwZv/zyC06ePPnU95qSkoJJkybB19cXKpUKderUwbx586DVagGIp7Pc3NwAALNnz9adxis4TWRvbw8XF5envo6rqysaNmxYrL1v374AgAsXLui1BwQEPPWYTxMVFQVnZ2e88MIL6N+/f4nhJiUlBZMnT0ZAQABUKhVq1qyJYcOGITk5WdcnOzsbH330EZ577jlYWVnBy8sLL7/8Mq5duwYA2Ldvn8FTcgWnA7/99ltd24gRI2BnZ4dr166hZ8+esLe3x5AhQwAAf//9NwYMGAA/Pz+oVCr4+vpi8uTJBkP2xYsX8corr8DNzQ3W1taoW7cuPvzwQwDA3r17IZPJsHXr1mL7bdiwATKZDIcOHTLq50lkagw3RBVs6NChAIA///xT1/bvv/+idevWuHDhAqZOnYoFCxbA1tYWffr0MfghMmHCBJw+fRqzZs3C2LFj8csvv2D8+PG67YmJiejevTtiY2MxdepULFmyBEOGDMHhw4f1jjN69Gi89957aNu2LRYvXoyRI0ciKioKERERUKvVxV534sSJcHZ2fuo8laysLHTs2BHr16/HsGHD8PXXX6Nt27aYNm2abhTGzc0NK1asACAGkXXr1mHdunV4+eWXS/eDfIr4+HgAYvgxtaioKLz88suwtLTE4MGDceXKFRw7dkyvT0ZGBtq3b48lS5age/fuWLx4McaMGYOLFy/i9u3bAACNRoNevXph9uzZCAkJwYIFCzBx4kSkpqbi3LlzZaotLy8PERERcHd3x5dffol+/foBADZv3oysrCyMHTsWS5YsQUREBJYsWYJhw4bp7X/mzBmEhoZiz549ePPNN7F48WL06dMHv/zyCwBx/pWvr6/BQBcVFYXatWsjLCysTLUTmYxARCa1du1aAYBw7NixEvs4OjoKzZo1033ftWtXITg4WMjOzta1abVaoU2bNkJQUFCxY4eHhwtarVbXPnnyZEGhUAgpKSmCIAjC1q1bn1rD33//LQAQoqKi9Np37txZrL1jx45Cw4YNBUEQhNmzZwsAhBMnTgiCIAg3btwQAAhffPGFrv+cOXMEW1tb4fLly3rHnjp1qqBQKIS4uDhBEAQhKSlJACDMmjWrxDoFQRA2b94sABD27t37xH4FcnJyhAYNGgiBgYGCWq022Ke0r/2448ePCwCEXbt2CYIg/p5q1qwpTJw4Ua/fzJkzBQDCTz/9VOwYBb+7b775RgAgLFy4sMQ+e/fuNfjeC37ua9eu1bUNHz5cACBMnTq12PGysrKKtc2dO1eQyWTCzZs3dW0dOnQQ7O3t9dqK1iMIgjBt2jRBpVLp/t4EQRASExMFCwsLo3+eROWBIzdEErCzs9NdNfXgwQPs2bMHr7zyCtLT05GcnIzk5GTcv38fERERuHLlCu7cuaO3/1tvvQWZTKb7vn379tBoNLh58yYAwMnJCYA4AdjQCAwg/kve0dER3bp1071mcnIyQkJCYGdnh7179xrcr2D05klzbzZv3oz27dvD2dlZ79jh4eHQaDTYv39/qX9WZTF+/HicP38eS5cuhYWFhUmPHRUVBQ8PD3Tu3BkAIJPJMHDgQGzcuFHv6qwff/wRTZo00Z0eK6rgd/fjjz/C1dVVN+HcUJ+yGDt2bLE2a2tr3fPMzEwkJyejTZs2EAQBp06dAgAkJSVh//79GDVqFPz8/EqsZ9iwYcjJycGWLVt0bZs2bUJeXh5ee+21MtdNZCoMN0QSyMjIgL29PQDg6tWrEAQBM2bMgJubm95j1qxZAMTTTEU9/sHj7OwMALq5Mh07dkS/fv0we/ZsuLq64qWXXsLatWuRk5Oj2+fKlStITU2Fu7t7sdfNyMgo9poFHB0dMWnSJGzfvl33ofi4K1euYOfOncWOGx4ebvD9mNIXX3yB1atXY86cOejZs6dJj63RaLBx40Z07twZN27cwNWrV3H16lWEhoYiISEB0dHRur7Xrl1Do0aNnni8a9euoW7duiYNYBYWFqhZs2ax9ri4OIwYMQIuLi6ws7ODm5sbOnbsCABITU0FIF55BuCpdderVw8tW7bUOzUVFRWF1q1bo06dOqZ6K0RlZtp/0hDRU92+fRupqam6D4GCCbbvvvsuIiIiDO7z+AeGQqEw2E8QBADiv7K3bNmCw4cP45dffsEff/yBUaNGYcGCBTh8+DDs7Oyg1Wrh7u5e4mTYgsm+hkycOBFfffUVZs+ejUWLFhXbrtVq0a1bN7z//vsG93/uuedKPPaz+PbbbzFlyhSMGTMG06dPN/nx9+zZg3v37mHjxo3YuHFjse1RUVHo3r27SV+zpBEcQ2v4AIBKpYJcLi/Wt1u3bnjw4AGmTJmCevXqwdbWFnfu3MGIESN0f4PGGDZsGCZOnIjbt28jJycHhw8fxtKlS40+DlF5YLghqmDr1q0DAF2QqVWrFgBAqVTqRjZMpXXr1mjdujU+/fRTbNiwAUOGDMHGjRvxxhtvoHbt2ti9ezfatm2rd8qiNApGbz766CMMHz682PbatWsjIyPjqe/nWU69PO7nn3/GG2+8gZdffhnLli0z2XGLioqKgru7u8Hj//TTT9i6dStWrlwJa2tr1K5d+6mTgmvXro0jR45ArVZDqVQa7FMwKpeSkqLXXnAKsjTOnj2Ly5cv47vvvtObQLxr1y69fgV/i6WZzDxo0CBERkbihx9+wKNHj6BUKjFw4MBS10RUnnhaiqgC7dmzB3PmzEFgYKDuEl13d3d06tQJ//3vf3Hv3r1i+zx+iXdpPHz4UDeKU6Bp06YAoDs19corr0Cj0WDOnDnF9s/Lyyv2Yfq4SZMmwcnJCR9//HGxba+88goOHTqEP/74o9i2lJQU5OXlAQBsbGx0bc9i//79GDRoEDp06ICoqKhiIxem8OjRI/z000/o1asX+vfvX+wxfvx4pKen6y7f79evH06fPm3wareC302/fv2QnJxscMSjoI+/vz8UCkWxeUrLly8vde0FI31F/yYEQcDixYv1+rm5uaFDhw745ptvEBcXZ7CeAq6urujRowfWr1+PqKgoPP/88+VyZRpRWXDkhqic/P7777h48SLy8vKQkJCAPXv2YNeuXfD398f27dthZWWl67ts2TK0a9cOwcHBePPNN1GrVi0kJCTg0KFDuH37Nk6fPm3Ua3/33XdYvnw5+vbti9q1ayM9PR2rV6+Gg4ODbh5Kx44dMXr0aMydOxcxMTHo3r07lEolrly5gs2bN2Px4sXo379/ia/h6OiIiRMnGpxY/N5772H79u3o1asXRowYgZCQEGRmZuLs2bPYsmULYmNjdevvNGjQAJs2bcJzzz0HFxcXNGrUSDfn45NPPgEgXioPiKNeBw4cAADdaaebN2/ixRdfhEwmQ//+/bF582a9Who3bozGjRvrvl+3bh1u3ryJrKwsAGIwKnidoUOHwt/f3+D73b59O9LT0/Hiiy8a3N66dWvdgn4DBw7Ee++9hy1btmDAgAEYNWoUQkJC8ODBA2zfvh0rV65EkyZNMGzYMHz//feIjIzE0aNH0b59e2RmZmL37t14++238dJLL8HR0REDBgzAkiVLIJPJULt2bfz6669GzVuqV68eateujXfffRd37tyBg4MDfvzxR4PrGX399ddo164dmjdvjrfeeguBgYGIjY3Fjh07EBMTo9d32LBhur8RQyGZSDKSXadFZKYKLtcueFhaWgqenp5Ct27dhMWLFwtpaWkG97t27ZowbNgwwdPTU1AqlYKPj4/Qq1cvYcuWLcWO/fgl3o9fLnzy5Elh8ODBgp+fn6BSqQR3d3ehV69ewvHjx4u97qpVq4SQkBDB2tpasLe3F4KDg4X3339fuHv3rq5P0UvBi3r48KHg6OhY7FJwQRCE9PR0Ydq0aUKdOnUES0tLwdXVVWjTpo3w5ZdfCrm5ubp+//zzjxASEiJYWloWuzS76M/x8cfj772kx+OXJnfs2LHEvk+61Lx3796ClZWVkJmZWWKfESNGCEqlUkhOThYEQRDu378vjB8/XvDx8REsLS2FmjVrCsOHD9dtFwTxEu0PP/xQCAwMFJRKpeDp6Sn0799fuHbtmq5PUlKS0K9fP8HGxkZwdnYWRo8eLZw7d87gpeC2trYGazt//rwQHh4u2NnZCa6ursKbb74pnD59utgxBEEQzp07J/Tt21dwcnISrKyshLp16wozZswodsycnBzB2dlZcHR0FB49elTiz4WooskE4bGxRiIiolLIy8uDt7c3evfujTVr1khdDpEO59wQEVGZbNu2DUlJScVWOSaSGkduiIjIKEeOHMGZM2cwZ84cuLq6lupeY0QViSM3RERklBUrVmDs2LFwd3fH999/L3U5RMVIGm7279+P3r17w9vbGzKZDNu2bXvqPvv27UPz5s11dxkuekdcIiIqf99++y3y8vJw/Pjxp65mTCQFScNNZmYmmjRpUuoFt27cuIEXXngBnTt3RkxMDCZNmoQ33njD4FoaREREVD1Vmjk3MpkMW7duRZ8+fUrsM2XKFOzYsUNv9cxBgwYhJSUFO3furIAqiYiIqLKrUov4HTp0qNhy7hEREZg0aVKJ++Tk5OjdLFCr1eLBgweoUaOGSZd+JyIiovIjCALS09Ph7e391FXIq1S4iY+Ph4eHh16bh4cH0tLS8OjRI4P3x5k7d67BFVSJiIio6rl165bBO98XVaXCTVlMmzYNkZGRuu9TU1Ph5+eHW7duwcHBQcLKiIiIqLTS0tLg6+sLe3v7p/atUuHG09MTCQkJem0JCQlwcHAo8a7GKpUKKpWqWLuDgwPDDRERURVTmiklVWqdm7CwMERHR+u17dq1C2FhYRJVRERERJWNpOEmIyMDMTExujvN3rhxAzExMYiLiwMgnlIquqz3mDFjcP36dbz//vu4ePEili9fjv/7v//D5MmTpSifiIiIKiFJT0sdP34cnTt31n1fMDdm+PDh+Pbbb3Hv3j1d0AGAwMBA7NixA5MnT8bixYtRs2ZN/O9//0NERESF105ERFRaeRotMnLykPYoD2nZaqRnF35Nz/+akZMHC7kMNpYKWFtawNZSAWtLBWwsLfLbFLCxVMBGaQEblfjcykIBuZxX/j6u0qxzU1HS0tLg6OiI1NRUzrkhIqKn0moFZObmIa1IEEl7VBhM0vSCSsE2/QCTlaspt/qslQq98FMQjAqe2yiLBKNSBCdrSwVsVZUvOBnz+V2lJhQTEVVXgiBArRGQp9VCnScgV6Mt+blGC7VGgFqjzX8Yfq7RClDIZbCQy6BQyKGUy2ChkMNCLoOFQmy3kMvzn4tflQoZFPKifeT5bTIoFXLxa37fgja5rHSTQMvr55at1uaHEHV+QHk8nBQGk/RsdbHRlYycPJhqGMBaqYC9lQXsrSzgYK2EvZVSfG6lhJ1KAbVGQFauGIYe5WqQlatBllqDR0XaMnPzkK3W6o75SK3BI7UGyDRNjY/X+3hwslGK4aek4GRjqYCnoxU613U3fUGlxHBDRGZFqxWQpxWgFcSvmvxHnlYLrRb6X/P75GkK++v21z6+f9FjFgkJeVrkacVQoc4TX6foc7VGi9wSnqvzBKhLeJ6n1SI3T1sYaDRVe5BdWRCQCkKRQj8gWTwxWBXdJoYwRcFzhQxymQwZOYXBJD1Hf3QlT2uan51SIYNDfhixt1LCwdoC9iplkaCS317ka9F2eysLKBWmmeqq1Qp4pNYUhiB1kfCTk6fbJrblFXkuhqWsnDyDwSkrNz8o5StrcGrq68RwQ0RVl0YrICP/X7hpBR8uBUP1j4oOzauRmaspFhr0HkXCg0aL/K+F2zQaw8GlaACpTpQKcWREmf8hX/DcQiGDZZHnj28veK6Qy3Q/tzyNFnn5P988bZHnGq0uAOZpH3tepI+6yO/BEDEMlt+pmaeRy6ALGEVHSxz0RlEKQonysdEVsa/KQl5pVraXy2WwVVnAVmX6j/EnBScxJOXljyAZDk6PcvMQ6Gpr8rqMwXBDVI0ZGrLXDyRP/z4jJ0/qt1FqBf/Kt5DLIC84HVMwCiCXQy6H+FWW//WxPgq5DAqZTBcYLOQyKC3ksCzhuTJ/lEH3vJRhxLJIKLHUCyiF+1nIZc/2QSsIQE46oLIHTPiBXTS8qrVaaDTi1zxNflv+6TB1iWGpaMgqHrrUmsKRM03+do0gwFZVZLTk8dEVKyVsLRWVJphUduUZnCpK1a2ciJ44apKu931hIHm8j6lOd1gp5boPlYK5BA5FPmAcrJSwsVTAQiEXA4KBgFEQHhQKma6PooSHuE2u17/49sJjVqaJkZLQaoD4s0DcYSDuH/FrRgJg6wZ4Nga8Gud/bQI4BwJPuXdPSeRyGSzzf9bWUJjyHRCVGsMNkcS0WgHp2XlIeZSLh1lqPMzKRWr+14dZaqRm5SLlUfmOmhQdstcPKIVD90W/L/ov4oIAY2lRpdYENX+5WcCdE4Vh5tYxIDe9eL/MJOBatPgoYGkPeAYXCTyNAbd6gEJZcfUTPQOGGyITEQTxPPXDLDUeZuYi9ZF+QHk8uKRkqZHySI2UrFw861QRlYX8sfAhhhHDwaT497aWFhzZqOqyHuiPytyNAbRq/T4qB8A3FPBrDfi3EQPLg+vAvdPiI/4MkHBeDEFx/4iPAgpLwL1+4eiOVxPAoyFgKe3cCiJDuM4NkQG5eVqkPBIDyMPMXF0IeZilFkNJVm5hQCkIK4/UyM3TPv3gJbBWKuBso4STjSWcbJRwzv/qZKOEo7X4KDrZsXACpAVUFhz+r1YEAUiJA+IOiY+bh4DkS8X72XsBfmFikPFrDbg3AORP+VvRqIHky8C9M2LYKfiak2agswxwDSp+WsvGxSRvs9rR5Im/H84NMsiYz2+GGzJrGq2AtEeF4SMlKxcPM9VFwspjASU/uGQ+w4JbFnIZnGws4ZwfUBxtlI89F7c5WlvC2Ta/3VoJKyUDCpVAqwESL+iHmfS7xfu51gX8w8RA4xcGOPmZ5oNSEICHsYWjOwWBJyPBcH9H38cCT2PAwad6f2jn5QBpd4C0u+Ij9Xbh87T855lJYl8La0Bplf+1yMPCClDaiNuUNvnfF2wr6Fd0m00JxylyvDLOrZICw80TMNyYrzyNFhfj03Hi5kOcjBMftx8+KvPiWzIZ4GhdGD4MBpSiIcZaCWdbS16VQc9OnQ3cPZkfZg4DcUeAnFT9PnILwKtpYZjxbQ3Y1qjYOtMT8sNOkdDz8IbhvtYu+qM7Xk0Al9pV6sO1ROps/eCSdrt4iMlKlrpKwyysSghJBgKVMdusHAHnAJOWynDzBAw35uNBZi5OxT3UhZnTt1L1Fp8qyk5lkR8+ioYVAwGlSHCxt1JCwXkoVBEepQC3jhSOytw9CWhy9ftY2gG+rQpHZXxCAEsbScp9ouxUIP6cfuBJuggIBv7bVNoCno30R3nc6wMWqoqvuyTqR/lB5U7JIy5Z90t3LAtrwMEbcPQRR7IcvPO/5j+39wIgiK+pfgTkPRKDkzoLyMsubDe4LctwX71t+fs9/rdVHrybA2/tNekhefsFMjsarYAriek4eTMFJ24+xKm4h7ieXHzJTHsrCzTzc0aInzOa+zuhroc9nGwseSUPVS6pt8URmZv5k38TzwN47N+Ztu75ozL582U8GgGKKvC/bCtHIKCt+CigzhbfY9FTWvHnAHWmGOpuHSnsK1eKE5298kd4PBuLAUhlb/pac7P0g4veiMsdsf3Rg9Idy8K6SGjxMRxirJ0rx6k5rcZA8DEmJD3W19A2O+lWJwY4ciN1OVSC1EdqxNxKwcn8UZmYuBSkG7jsubabLZr7OSPE3xnN/Z1Rx82OV/1Q5aLVipN9C0Zl4g4DqXHF+9WoUzgq49cacKlVOT4Iy4tWA9y/KoadezGFwSc7xUBnmfjzKDqHx7MJYOdW8vFzMx8bcblTJMQUBJeHpatVaSOGk5JGXBx9ACsn8/59VQI8LfUEDDeVjyAIuJ6cqRuROXHzIa4kZhSbK2NjqUBTXyddmGnm5wQnG0vDB828L67boXIAnovg/3So4uTlih/WBaMytw4X/xCVKcQP6IJRGb+wJ39QVxeCAKTeKn6lVtodw/3tvcTRHbe64umwoiHGYEgywNJOP7A4GggvVo78f0glwHDzBAw30svMycPp2wWjMik4GfcQKVnqYv38XGzEERk/JzT3d0ZdD3tYPOmmcw+uAxd/Ay79Jv4rWci/LNuvDdBroXgun8jUstOAW0cLJ//eOS4OyxeltAFqtsy/LDsM8GkBqOykqbcqykwuDDsFc3nuX0OxU3mPs7QvEla8AYeaxUOMyoHBpYpguHkChpuKJQgCbj14hJNFJv5euJdWbNE6lYUcjWs6orm/M5r7iQ83+6dMKhQE4O4p4OIOMdAkntff7t5QvHJDnSVeWRI2Dug4hYuOUdkIgjgCk3ZXXAemYMG8hH8Lg3QBG9fChfL8WounUri6r2nlZAAJ58TAc/+quLbO4yHGiv+PNycMN0/AcFO+stUanL2TipM3C8JMCpIzcor183a0QjP/gom/zmjg5VC6Sb95uUDs3/mB5nf9tT5kCvHDpN4LQN2egLO/uNDZ71OBSzvEPg41gR7zxD781xoV0AWXO4bnZhRMMlVnGd7fObAwyPiFifNn+PdFZFIMN0/AcGNa91IfiSHmZgpOxD3E+bupxW7EqFTI0NDbscjEXyd4OVqX/kWyU4Eru8RAc3W3/kqpSlugTlcxrAR1L3ll1Eu/A7+9XziR87nngR7zxQBE5k0QxFsT6K6EMTTB9K54iWxp2LiKi+P5tioMM/ae5fseiIjh5kkYbsouN0+L8/fSChfJu/kQ91Kzi/VztVMhxL9w4m8jH0fjV99NvSOearq4A4g9oH+PHFt3oG4PMdAEdhQXkCrVG8gC9n8B/LNEPJ6FNdDhXaDNO4BFCROTqXITBHGNkdTbhkdaCto1xUcPDbJ1e2xuxmPzM+y9S//3RkQmxXDzBAw3pZeUnqMLMSfjHuLM7VTkPHbvJIVchvpe9oWjMn7OqOlsbfwKvYIgzpm5+Btw8VfxapOiXJ8TTzXVe0GcjPksq5omXQJ2/Ec8vVVw7BcWAIEdyn5MMj2tVgwuhlZ71a1Jcs+I4OKef9luTQMTTPMflWnxOCLSw3DzBAw3T6bVClgUfQXbTt1B3IPi8wucbJS6eTLN/ZzRxNcRNpZlXFhMkydeJlsQaFJuFtkoE4f9CwKNa1DZXqMkggCc+T/gzw8L7+fSeCDQ/RPJF5+qFrRa8eduaG5Lwemi9HulXElVJv7Oiq09UiS42HtzdI6oimO4eQKGmyfbeS4eY9afACDOh3zO3T4/yDghxN8Zga62z3bfpNxM4NoeMdBc3qm/+qdCBdTuLAaauj0qJmQ8egjs+QQ4tgaAAKgcga4zgBajnn73ZCq9zPvAsf8B1/fmh5h7+qcaSyQD7DwMrz1SdMl6Bhcis8dw8wTlFm4yEoHf3hVvFFb04ehbZS4BFQQBvZcewLk7aRgW5o93I+rCwcoEtWckAZd/FwPN9b36a4BYO4uTe+v2BGp3kW7tjzsngF8jC0+HeTcDXlgI+DSXph5z8eA6cGgZcCrKwIRdmTgR90kLqNl7Vpn/foiofPHeUlK4fxU4/3PxdplcHB5/PPQ4B4iXj1aWe40A+OtyEs7dSYO1UoGJXYOeLdgkXxUvv764Q1zgrOhiW07+hZdr+4VVjvvl+IQAb+4RR3D2zBHXz1ndBWj5BtBlOmDtJHWFVcvtE8A/i4ELvxSuAePVVPx5uj4nhhg7DwYXIioXHLkxldTb4v/IH8bqPx5fqfRxKgfxcmRDwcfRt8KG2wVBwICVh3D85kO83i4QM3o1MO4AWq04+lEQaJIv62/3aloYaDwaVppAZ1B6gjgX5+xm8XtbdyDiMyC4f+WuW2paLXB1F3Dwa+DmgcL2Ot2Atu8AAe358yOiMuNpqSeo0Dk3Wi2QmVg88BQ80u895QCyIqM+/oWhpyAA2dQw2YfF4ev3MWjVYVgq5Ph7Smd4OJTicld1NnBjvxhoLv0OZCQUbpNbiB9m9V4Q58841jRJnRXq+j7xqqr7V8XvAzsAPRcAbs9JWlalk5cjBsF/lgBJF8U2uRIIHgC0mQB4GBmUiYgMYLh5gko1oVj9SFxBt6TwU9JqqAUs7Uo43RUgLjJmxGWtr/3vCA5cTcZrrf3wSZ/gkjs+eghc/lMMNFejgdyMIvXYA0HdxEBTJ9w8TuXk5YgjEX9/KY7CyZVA24ni+jhKIxYiNEePUoATa4HDK4GMeLHN0h5oMQIIHSueeiIiMhGGmyeoVOHmSQRBvFS2pOCTdhdPvmmcTJyYWVL4sXXTjfqcinuIvsv/gUIuw753O8HXxUb/UClx+Tek3AHEHgQETeE2e6/8y7V7iiM15rpOyIMbwO/vA1f+FL938gd6fgk8113auqSQehs4vAI48R2Qmy622XsDrccAISPEOygTEZkYw80TVJlw8zTqbCD1Vsnhp+iIiiFKG13Q2XXPCgfu28OvdgO83ruzOOqTfLkw0MSf1d/Xrb44OlOvJ+DV7NkW1KtKBEGcV7Vzqng5MwDU6yXeq6oqnnYzVvw54J+vgXM/Ato8sc29gXjqqVF/Xo5NROWK4eYJzCbcPEnBkvS6sHMj/+tN8WvqbTx51OcxMrl4VVPBCI1LrXIpu8rIyQD2zRVHLwSNeH+rTlOB1mPN7+ofQQBu/CWemrsWXdge0F48PVcnnJOEiahCMNw8QbUIN0+Tl5s/6nMDG//8G6l3ryDUKQ1N7VKAB7HiqQYLa/GGlHV7iuvQ2NaQuurKJ+FfcW2cW4fF790biGvj+IdJW5cpaPKA89uAg4uB+DNim0wONOgjjtRw/R8iqmAMN0/AcFPoamIGun31FwQB+H1ie9T3chD/pf7ooXjaijcIfDqtFji9AfhzRuFqy01fA7rNBmxdpa2tLHIygFPrgEPLC++grrQBmg0Fwt4WT2USEUmAi/hRqazYdw2CAITX9xCDDSCeYrBxkbawqkQuB5q9Jo5w7Z4FnPweiFkvzlUK/whoNqxqzElKTwCO/ldcxDA7RWyzcQVCR4sL7/FvgoiqEIabaurWgyxsixEnxY7vUkfiasyAjQvw4hJx1GZHJJBwDvhlonjbgV4LAc8nXF4vpeQr4iTh05sK767tUhtoMx5oMpiXuxNRlcRwU02t+OsaNFoB7YNc0dTXSepyzIdfKPDWX+IoyN7PgNtHgf92BELHAJ2nASp7qSsUxR0WJwlf2lHYVrOVuJJw3Z68aSgRVWkMN9VQfGo2thy/DQAY35mjNiansADCxomTb/+YJt5z7PAy4N+fgOfniu1SXGGk1QCXfhNDze2jhe11XxBDjV/riq+JiKgcMNxUQ6v2X0euRotWAS4IrcWroMqNow/wyvfAld3Ab/8RL8PfPAKo3RXo+QVQo3bF1KF+BJz+AfhnKfDgmtimsASaDALCJvB2EkRkdhhuqpn7GTnYcPQmAGAc59pUjKBw4O3DwIGvxMe1aGB5GND+P+JaMeV1VVrWA+DY/4Aj/wWyksU2K0dxgnCr0YC9R/m8LhGRxBhuqpk1B24gW61F45qO6BBUBS9VrqqU1kDnD4DgV8RRnOv7gH2fAWc2AS98CdTuYrrXehgLHFoGnFpfeH8yRz/xUu5mQwGVnelei4ioEmK4qUZSs9T4/lD+qE3nOpBxZdmK51oHGLpNnH+z8wPxNNG6vkDDl4GIzwAHr7If++4pcT7N+W2AoBXbPBuLo0MN+ohzgYiIqgH+364a+e5QLDJy8lDXwx7d6vOUhGRkMqBRP6BON/GKqqP/FcPOlV1Alw+Blm+WPogIAnB1t7iScOzfhe21u4qThAM78vYIRFTtMNxUE5k5efjm4A0A4lwbuZwfeJKzcgB6fA40HSzexuHOcfGmnDFRwAtfAb4tS943Lxc4twX4ZwmQeF5sk1uIoanNhMq7rg4RUQVguKkmoo7cREqWGoGutngh+BlOfZDpeTUBXt8FnPwW2P2ReBf2Nd2AkOFA11n6qwNnpwInvgUOrwTS74ptlnZAyAjxxp3V4e7kRERPwXBTDWSrNVi1Xxy1GdupNhQctal85HKgxSigXm9g10zxflUnvgUu/Ap0nyOeXjqyAjjxHZCTJu5j5wm0HgOEjASsnaSsnoioUmG4qQY2HbuF5Iwc+DhZo28zH6nLoSexcwP6rhDvV7UjEki6CGwbq9/HrZ546il4AGChkqZOIqJKjOHGzOXmafHfv8SF28Z0rAWlogrcxJGAgLbA6L/FlY3/mi9e0u3fTpwkXKdb1bgZJxGRRBhuzNzWU7dxNzUbbvYqDGjhK3U5ZAwLS6DdZKDJq8CjB4B7fakrIiKqEhhuzFieRosV+8RRm7fa14KVkjdDrJLsPbiaMBGRETi2bcZ2nL2H2PtZcLZR4tVQP6nLISIiqhAMN2ZKqxWwbO9VAMCotoGwVXGQjoiIqgeGGzP15/kEXE7IgL3KAsPaBEhdDhERUYVhuDFDgiBg6d4rAIBhbfzhaK2UuCIiIqKKw3Bjhv66nIRzd9JgrVRgVNtAqcshIiKqUAw3ZkYQBCzdI861GRLqhxp2XOSNiIiqF4YbM3PkxgMcv/kQlgo53uxQS+pyiIiIKhzDjZkpGLV5pWVNeDhYSVwNERFRxWO4MSOn4h7iwNVkKOQyjO5QW+pyiIiIJMFwY0YK1rXp28wHvi42EldDREQkDYYbM3H+bhp2X0iETAa83YmjNkREVH0x3JiJZfvEUZsXgr1Qy81O4mqIiIikw3BjBq4mZuC3s/cAAOM615G4GiIiImkx3JiBFfuuQRCA8PoeqO/lIHU5REREkmK4qeJuPcjCtpg7AIDxXThqQ0REJHm4WbZsGQICAmBlZYXQ0FAcPXr0if0XLVqEunXrwtraGr6+vpg8eTKys7MrqNrKZ8Vf16DRCmgf5Iqmvk5Sl0NERCQ5ScPNpk2bEBkZiVmzZuHkyZNo0qQJIiIikJiYaLD/hg0bMHXqVMyaNQsXLlzAmjVrsGnTJnzwwQcVXHnlEJ+ajS3HbwMAxnOuDREREQCJw83ChQvx5ptvYuTIkWjQoAFWrlwJGxsbfPPNNwb7//PPP2jbti1effVVBAQEoHv37hg8ePBTR3vM1ar915Gr0aJVgAtCa9WQuhwiIqJKQbJwk5ubixMnTiA8PLywGLkc4eHhOHTokMF92rRpgxMnTujCzPXr1/Hbb7+hZ8+eJb5OTk4O0tLS9B7m4H5GDjYcvQkAGMe5NkRERDoWUr1wcnIyNBoNPDw89No9PDxw8eJFg/u8+uqrSE5ORrt27SAIAvLy8jBmzJgnnpaaO3cuZs+ebdLaK4M1B24gW61F45qO6BDkKnU5RERElYbkE4qNsW/fPnz22WdYvnw5Tp48iZ9++gk7duzAnDlzStxn2rRpSE1N1T1u3bpVgRWXj9QsNb4/JI7ajO9cBzKZTOKKiIiIKg/JRm5cXV2hUCiQkJCg156QkABPT0+D+8yYMQNDhw7FG2+8AQAIDg5GZmYm3nrrLXz44YeQy4tnNZVKBZVKZfo3IKHvDsUiIycPdT3sEV7f4+k7EBERVSOSjdxYWloiJCQE0dHRujatVovo6GiEhYUZ3CcrK6tYgFEoFAAAQRDKr9hKJDMnD98cvAFAnGsjl3PUhoiIqCjJRm4AIDIyEsOHD0eLFi3QqlUrLFq0CJmZmRg5ciQAYNiwYfDx8cHcuXMBAL1798bChQvRrFkzhIaG4urVq5gxYwZ69+6tCznmLurITaRkqRHoaosXgr2kLoeIiKjSkTTcDBw4EElJSZg5cybi4+PRtGlT7Ny5UzfJOC4uTm+kZvr06ZDJZJg+fTru3LkDNzc39O7dG59++qlUb6FCZas1WLVfHLUZ26k2FBy1ISIiKkYmVJfzOfnS0tLg6OiI1NRUODhUrfswffdPLGZt/xc+TtbY914nKBVVaj44ERFRmRnz+c1PxyoiN0+L//51DQAwpmMtBhsiIqIS8BOyith66jbupmbDzV6FAS18pS6HiIio0mK4qQLyNFqs2CeO2rzVvhaslNVj8jQREVFZMNxUATvO3kPs/Sw42yjxaqif1OUQERFVagw3lZxWK2DZ3qsAgNfbBcJWJekFbkRERJUew00l9+f5BFxOyIC9ygJDwwKkLoeIiKjSY7ipxARBwNK9VwAAw9sEwNFaKXFFRERElR/DTSX21+UknLuTBmulAqPaBUpdDhERUZXAcFNJCYKApXvEuTZDQv3gYmspcUVERERVA8NNJXXkxgMcv/kQlhZyvNmhltTlEBERVRkMN5VUwajNKy1qwsPBSuJqiIiIqg6Gm0roVNxDHLiaDAu5DKM71Ja6HCIioiqF4aYSKljXpk8zH/i62EhcDRERUdXCcFPJnL+bht0XEiGTAW934qgNERGRsRhuKpll+8RRm16NvVHLzU7iaoiIiKoehptK5GpiBn47ew8AMK4zR22IiIjKguGmElm+7yoEAejWwAP1PB2kLoeIiKhKYripJG49yMLPMXcBAOM715G4GiIioqqL4aaSWPHXNWi0AtoHuaKJr5PU5RAREVVZDDeVQHxqNrYcvw0AmNAlSOJqiIiIqjaGm0pg1f7ryNVo0SrABa0CXaQuh4iIqEpjuJHY/YwcbDh6EwAwvgvn2hARET0rhhuJrTlwA9lqLRrXdET7IFepyyEiIqryGG4klJqlxveH8kdtOteBTCaTuCIiIqKqj+FGQt8dikVGTh7qedojvL6H1OUQERGZBYYbiWTm5OGbgzcAAG93rgO5nKM2REREpsBwI5GoIzeRkqVGoKstXgj2krocIiIis8FwI4FstQar9oujNmM71YaCozZEREQmw3AjgU3HbiE5Iwc+Ttbo28xH6nKIiIjMCsNNBcvN0+K/f10DAIzpVBtKBX8FREREpsRP1gq29dRt3E3Nhru9CgNCakpdDhERkdlhuKlAeRotVuwTR23e6lALVkqFxBURERGZH4abCrTj7D3E3s+Cs40Sr4b6SV0OERGRWWK4qSBarYCle64CAF5vFwgbSwuJKyIiIjJPDDcV5M/zCbiSmAF7KwsMaxMgdTlERERmi+GmAgiCgKV7rwAAhocFwMFKKXFFRERE5ovhpgL8dTkJ5+6kwVqpwKh2gVKXQ0REZNYYbsqZIBTOtRkS6gcXW0uJKyIiIjJvDDfl7MiNBzh+8yEsLeR4s0MtqcshIiIyeww35axg1GZgC194OFhJXA0REZH5Y7gpR6fiHuLA1WRYyGUY3ZGjNkRERBWB4aYcLdsrjtr0beaDms42EldDRERUPTDclJPzd9Ow+0Ii5DJgbKfaUpdDRERUbTDclJNl+8RRmxcae6OWm53E1RAREVUfDDfl4GpiBn47ew8AMK4zR22IiIgqEsNNOVi+7yoEAejWwAP1PB2kLoeIiKhaYbgxsVsPsvBzzF0AwPjOdSSuhoiIqPphuDGxFX9dg0YroH2QK5r4OkldDhERUbXDcGNC8anZ2HL8NgBgQpcgiashIiKqnhhuTGjV/uvI1WjRKtAFrQJdpC6HiIioWmK4MZHkjBxsOHoTAOfaEBERSYnhxkSOXH8AtUZAk5qOaB/kKnU5RERE1ZaF1AWYixcae6FxTUekPlJDJpNJXQ4REVG1xXBjQr4uNvCVuggiIqJqjqeliIiIyKww3BAREZFZYbghIiIis8JwQ0RERGaF4YaIiIjMCsMNERERmRWGGyIiIjIrDDdERERkVhhuiIiIyKxIHm6WLVuGgIAAWFlZITQ0FEePHn1i/5SUFIwbNw5eXl5QqVR47rnn8Ntvv1VQtURERFTZSXr7hU2bNiEyMhIrV65EaGgoFi1ahIiICFy6dAnu7u7F+ufm5qJbt25wd3fHli1b4OPjg5s3b8LJyaniiyciIqJKSSYIgiDVi4eGhqJly5ZYunQpAECr1cLX1xcTJkzA1KlTi/VfuXIlvvjiC1y8eBFKpbJMr5mWlgZHR0ekpqbCwcHhmeonIiKiimHM57dkp6Vyc3Nx4sQJhIeHFxYjlyM8PByHDh0yuM/27dsRFhaGcePGwcPDA40aNcJnn30GjUZT4uvk5OQgLS1N70FERETmS7Jwk5ycDI1GAw8PD712Dw8PxMfHG9zn+vXr2LJlCzQaDX777TfMmDEDCxYswCeffFLi68ydOxeOjo66h68v79tNRERkziSfUGwMrVYLd3d3rFq1CiEhIRg4cCA+/PBDrFy5ssR9pk2bhtTUVN3j1q1bFVgxERERVTTJJhS7urpCoVAgISFBrz0hIQGenp4G9/Hy8oJSqYRCodC11a9fH/Hx8cjNzYWlpWWxfVQqFVQqlWmLJyIiokpLspEbS0tLhISEIDo6Wtem1WoRHR2NsLAwg/u0bdsWV69ehVar1bVdvnwZXl5eBoMNERERVT+SnpaKjIzE6tWr8d133+HChQsYO3YsMjMzMXLkSADAsGHDMG3aNF3/sWPH4sGDB5g4cSIuX76MHTt24LPPPsO4ceOkegtERERUyUi6zs3AgQORlJSEmTNnIj4+Hk2bNsXOnTt1k4zj4uIglxfmL19fX/zxxx+YPHkyGjduDB8fH0ycOBFTpkyR6i0QERFRJSPpOjdS4Do3REREVU+VWOeGiIiIqDwYHW4CAgLw8ccfIy4urjzqISIiInomRoebSZMm4aeffkKtWrXQrVs3bNy4ETk5OeVRGxEREZHRyhRuYmJicPToUdSvXx8TJkyAl5cXxo8fj5MnT5ZHjURERESl9swTitVqNZYvX44pU6ZArVYjODgY77zzDkaOHAmZTGaqOk2GE4qJiIiqHmM+v8t8KbharcbWrVuxdu1a7Nq1C61bt8brr7+O27dv44MPPsDu3buxYcOGsh6eiIiIqEyMDjcnT57E2rVr8cMPP0Aul2PYsGH46quvUK9ePV2fvn37omXLliYtlIiIiKg0jA43LVu2RLdu3bBixQr06dMHSqWyWJ/AwEAMGjTIJAUSERERGcPocHP9+nX4+/s/sY+trS3Wrl1b5qKIiIiIysroq6USExNx5MiRYu1HjhzB8ePHTVIUERERUVkZHW7GjRuHW7duFWu/c+cOb2BJREREkjM63Jw/fx7Nmzcv1t6sWTOcP3/eJEURERERlZXR4UalUiEhIaFY+71792BhIelNxomIiIiMDzfdu3fHtGnTkJqaqmtLSUnBBx98gG7dupm0OCIiIiJjGT3U8uWXX6JDhw7w9/dHs2bNAAAxMTHw8PDAunXrTF4gERERkTGMDjc+Pj44c+YMoqKicPr0aVhbW2PkyJEYPHiwwTVviIiIiCpSmSbJ2Nra4q233jJ1LURERETPrMwzgM+fP4+4uDjk5ubqtb/44ovPXBQRERFRWZVpheK+ffvi7NmzkMlkKLipeMEdwDUajWkrJCIiIjKC0VdLTZw4EYGBgUhMTISNjQ3+/fdf7N+/Hy1atMC+ffvKoUQiIiKi0jN65ObQoUPYs2cPXF1dIZfLIZfL0a5dO8ydOxfvvPMOTp06VR51EhEREZWK0SM3Go0G9vb2AABXV1fcvXsXAODv749Lly6ZtjoiIiIiIxk9ctOoUSOcPn0agYGBCA0Nxfz582FpaYlVq1ahVq1a5VEjERERUakZHW6mT5+OzMxMAMDHH3+MXr16oX379qhRowY2bdpk8gKJiIiIjCETCi53egYPHjyAs7Oz7oqpyiwtLQ2Ojo5ITU2Fg4OD1OUQERFRKRjz+W3UnBu1Wg0LCwucO3dOr93FxaVKBBsiIiIyf0aFG6VSCT8/P65lQ0RERJWW0VdLffjhh/jggw/w4MGD8qiHiIiI6JkYPaF46dKluHr1Kry9veHv7w9bW1u97SdPnjRZcURERETGMjrc9OnTpxzKICIiIjINk1wtVZXwaikiIqKqp9yuliIiIiKq7Iw+LSWXy5942TevpCIiIiIpGR1utm7dqve9Wq3GqVOn8N1332H27NkmK4yIiIioLEw252bDhg3YtGkTfv75Z1Mcrtxwzg0REVHVI8mcm9atWyM6OtpUhyMiIiIqE5OEm0ePHuHrr7+Gj4+PKQ5HREREVGZGz7l5/AaZgiAgPT0dNjY2WL9+vUmLIyIiIjKW0eHmq6++0gs3crkcbm5uCA0NhbOzs0mLIyIiIjKW0eFmxIgR5VAGERERkWkYPedm7dq12Lx5c7H2zZs347vvvjNJUURERERlZXS4mTt3LlxdXYu1u7u747PPPjNJUURERERlZXS4iYuLQ2BgYLF2f39/xMXFmaQoIiIiorIyOty4u7vjzJkzxdpPnz6NGjVqmKQoIiIiorIyOtwMHjwY77zzDvbu3QuNRgONRoM9e/Zg4sSJGDRoUHnUSERERFRqRl8tNWfOHMTGxqJr166wsBB312q1GDZsGOfcEBERkeTKfG+pK1euICYmBtbW1ggODoa/v7+paysXvLcUERFR1WPM57fRIzcFgoKCEBQUVNbdiYiIiMqF0XNu+vXrh3nz5hVrnz9/PgYMGGCSooiIiIjKyuhws3//fvTs2bNYe48ePbB//36TFEVERERUVkaHm4yMDFhaWhZrVyqVSEtLM0lRRERERGVldLgJDg7Gpk2birVv3LgRDRo0MElRRERERGVl9ITiGTNm4OWXX8a1a9fQpUsXAEB0dDQ2bNiALVu2mLxAIiIiImMYHW569+6Nbdu24bPPPsOWLVtgbW2NJk2aYM+ePXBxcSmPGomIiIhKrczr3BRIS0vDDz/8gDVr1uDEiRPQaDSmqq1ccJ0bIiKiqseYz2+j59wU2L9/P4YPHw5vb28sWLAAXbp0weHDh8t6OCIiIiKTMOq0VHx8PL799lusWbMGaWlpeOWVV5CTk4Nt27ZxMjERERFVCqUeuenduzfq1q2LM2fOYNGiRbh79y6WLFlSnrURERERGa3UIze///473nnnHYwdO5a3XSAiIqJKq9QjNwcOHEB6ejpCQkIQGhqKpUuXIjk5uTxrIyIiIjJaqcNN69atsXr1aty7dw+jR4/Gxo0b4e3tDa1Wi127diE9Pb086yQiIiIqlWe6FPzSpUtYs2YN1q1bh5SUFHTr1g3bt283ZX0mx0vBiYiIqp4KuRQcAOrWrYv58+fj9u3b+OGHH57lUEREREQm8UzhpoBCoUCfPn3KPGqzbNkyBAQEwMrKCqGhoTh69Gip9tu4cSNkMhn69OlTptclIiIi82OScPMsNm3ahMjISMyaNQsnT55EkyZNEBERgcTExCfuFxsbi3fffRft27evoEqJiIioKpA83CxcuBBvvvkmRo4ciQYNGmDlypWwsbHBN998U+I+Go0GQ4YMwezZs1GrVq0KrJaIiIgqO0nDTW5uLk6cOIHw8HBdm1wuR3h4OA4dOlTifh9//DHc3d3x+uuvP/U1cnJykJaWpvcgIiIi8yVpuElOToZGo4GHh4deu4eHB+Lj4w3uc+DAAaxZswarV68u1WvMnTsXjo6Ouoevr+8z101ERESVl+SnpYyRnp6OoUOHYvXq1XB1dS3VPtOmTUNqaqrucevWrXKukoiIiKRk1I0zTc3V1RUKhQIJCQl67QkJCfD09CzW/9q1a4iNjUXv3r11bVqtFgBgYWGBS5cuoXbt2nr7qFQqqFSqcqieiIiIKiNJR24sLS0REhKC6OhoXZtWq0V0dDTCwsKK9a9Xrx7Onj2LmJgY3ePFF19E586dERMTw1NOREREJO3IDQBERkZi+PDhaNGiBVq1aoVFixYhMzMTI0eOBAAMGzYMPj4+mDt3LqysrNCoUSO9/Z2cnACgWDsRERFVT5KHm4EDByIpKQkzZ85EfHw8mjZtip07d+omGcfFxUEur1JTg4iIiEhCz3RvqaqI95YiIiKqeirs3lJERERElQ3DDREREZkVhhsiIiIyKww3REREZFYYboiIiMisMNwQERGRWWG4ISIiIrPCcENERERmheGGiIiIzArDDREREZkVhhsiIiIyKww3REREZFYYboiIiMisMNwQERGRWWG4ISIiIrPCcENERERmheGGiIiIzArDDREREZkVhhsiIiIyKww3REREZFYYboiIiMisMNwQERGRWWG4ISIiIrPCcENERERmheGGiIiIzArDDREREZkVhhsiIiIyKww3REREZFYYboiIiMisMNwQERGRWWG4ISIiIrPCcENERERmheGGiIiIzArDDREREZkVhhsiIiIyKww3REREZFYYboiIiMisMNwQERGRWWG4ISIiIrPCcENERERmheGGiIiIzArDDREREZkVhhsiIiIyKww3REREZFYYboiIiMisMNwQERGRWWG4ISIiIrPCcENERERmheGGiIiIzArDDREREZkVhhsiIiIyKww3REREZFYYboiIiMisMNwQERGRWWG4ISIiIrPCcENERERmheGGiIiIzArDDREREZkVhhsiIiIyKww3REREZFYYboiIiMisMNwQERGRWWG4ISIiIrNSKcLNsmXLEBAQACsrK4SGhuLo0aMl9l29ejXat28PZ2dnODs7Izw8/In9iYiIqHqRPNxs2rQJkZGRmDVrFk6ePIkmTZogIiICiYmJBvvv27cPgwcPxt69e3Ho0CH4+vqie/fuuHPnTgVXTkRERJWRTBAEQcoCQkND0bJlSyxduhQAoNVq4evriwkTJmDq1KlP3V+j0cDZ2RlLly7FsGHDnto/LS0Njo6OSE1NhYODwzPXT0REROXPmM9vSUducnNzceLECYSHh+va5HI5wsPDcejQoVIdIysrC2q1Gi4uLga35+TkIC0tTe9BRERE5kvScJOcnAyNRgMPDw+9dg8PD8THx5fqGFOmTIG3t7deQCpq7ty5cHR01D18fX2fuW4iIiKqvCSfc/MsPv/8c2zcuBFbt26FlZWVwT7Tpk1Damqq7nHr1q0KrpKIiIgqkoWUL+7q6gqFQoGEhAS99oSEBHh6ej5x3y+//BKff/45du/ejcaNG5fYT6VSQaVSmaReIiIiqvwkHbmxtLRESEgIoqOjdW1arRbR0dEICwsrcb/58+djzpw52LlzJ1q0aFERpRIREVEVIenIDQBERkZi+PDhaNGiBVq1aoVFixYhMzMTI0eOBAAMGzYMPj4+mDt3LgBg3rx5mDlzJjZs2ICAgADd3Bw7OzvY2dlJ9j6IiIiocpA83AwcOBBJSUmYOXMm4uPj0bRpU+zcuVM3yTguLg5yeeEA04oVK5Cbm4v+/fvrHWfWrFn46KOPKrJ0IiIiqoQkX+emonGdGyIioqqnyqxzQ0RERGRqDDdERERkVhhuiIiIyKww3BAREZFZYbghIiIis8JwQ0RERGaF4YaIiIjMCsMNERERmRWGGyIiIjIrDDdERERkVhhuiIiIyKww3BAREZFZYbghIiIis2IhdQFERGT+NBoN1Gq11GVQJadUKqFQKJ75OAw3RERUrjIyMnD79m0IgiB1KVTJyWQy1KxZE3Z2ds90HIYbIiIqNxqNBrdv34aNjQ3c3Nwgk8mkLokqKUEQkJSUhNu3byMoKOiZRnAYboiIqNyo1WoIggA3NzdYW1tLXQ5Vcm5uboiNjYVarX6mcMMJxUREVO44YkOlYaq/E4YbIiIiMisMN0RERGRWGG6IiIjIrDDcEBERVQFcJ6j0GG6IiIgM2LlzJ9q1awcnJyfUqFEDvXr1wrVr13Tbb9++jcGDB8PFxQW2trZo0aIFjhw5otv+yy+/oGXLlrCysoKrqyv69u2r2yaTybBt2za913NycsK3334LAIiNjYVMJsOmTZvQsWNHWFlZISoqCvfv38fgwYPh4+MDGxsbBAcH44cfftA7jlarxfz581GnTh2oVCr4+fnh008/BQB06dIF48eP1+uflJQES0tLREdHm+LHVinwUnAiIqowgiDgkVojyWtbKxVGXY2TmZmJyMhING7cGBkZGZg5cyb69u2LmJgYZGVloWPHjvDx8cH27dvh6emJkydPQqvVAgB27NiBvn374sMPP8T333+P3Nxc/Pbbb0bXPHXqVCxYsADNmjWDlZUVsrOzERISgilTpsDBwQE7duzA0KFDUbt2bbRq1QoAMG3aNKxevRpfffUV2rVrh3v37uHixYsAgDfeeAPjx4/HggULoFKpAADr16+Hj48PunTpYnR9lZVMqGZLRqalpcHR0RGpqalwcHCQuhwiIrOWnZ2NGzduIDAwEFZWVsjKzUODmX9IUsv5jyNgY1n2f9MnJyfDzc0NZ8+exT///IN3330XsbGxcHFxKda3TZs2qFWrFtavX2/wWDKZDFu3bkWfPn10bU5OTli0aBFGjBiB2NhYBAYGYtGiRZg4ceIT6+rVqxfq1auHL7/8Eunp6XBzc8PSpUvxxhtvFOubnZ0Nb29vrFy5Eq+88goAoEmTJnj55Zcxa9YsI34a5ePxv5eijPn85mkpIiIiA65cuYLBgwejVq1acHBwQEBAAAAgLi4OMTExaNasmcFgAwAxMTHo2rXrM9fQokULve81Gg3mzJmD4OBguLi4wM7ODn/88Qfi4uIAABcuXEBOTk6Jr21lZYWhQ4fim2++AQCcPHkS586dw4gRI5651sqEp6WIiKjCWCsVOP9xhGSvbYzevXvD398fq1evhre3N7RaLRo1aoTc3Nynrrb8tO0ymazYvbYMTRi2tbXV+/6LL77A4sWLsWjRIgQHB8PW1haTJk1Cbm5uqV4XEE9NNW3aFLdv38batWvRpUsX+Pv7P3W/qoQjN0REVGFkMhlsLC0keRgz3+b+/fu4dOkSpk+fjq5du6J+/fp4+PChbnvjxo0RExODBw8eGNy/cePGT5yg6+bmhnv37um+v3LlCrKysp5a18GDB/HSSy/htddeQ5MmTVCrVi1cvnxZtz0oKAjW1tZPfO3g4GC0aNECq1evxoYNGzBq1Kinvm5Vw3BDRET0GGdnZ9SoUQOrVq3C1atXsWfPHkRGRuq2Dx48GJ6enujTpw8OHjyI69ev48cff8ShQ4cAALNmzcIPP/yAWbNm4cKFCzh79izmzZun279Lly5YunQpTp06hePHj2PMmDFQKpVPrSsoKAi7du3CP//8gwsXLmD06NFISEjQbbeyssKUKVPw/vvv4/vvv8e1a9dw+PBhrFmzRu84b7zxBj7//HMIgqB3FZe5YLghIiJ6jFwux8aNG3HixAk0atQIkydPxhdffKHbbmlpiT///BPu7u7o2bMngoOD8fnnn+tu9tipUyds3rwZ27dvR9OmTdGlSxccPXpUt/+CBQvg6+uL9u3b49VXX8W7774LGxubp9Y1ffp0NG/eHBEREejUqZMuYBU1Y8YM/Oc//8HMmTNRv359DBw4EImJiXp9Bg8eDAsLCwwePLjYxF1zwKuliIio3Dzp6heSTmxsLGrXro1jx46hefPmUpejY6qrpTihmIiIqJpQq9W4f/8+pk+fjtatW1eqYGNKPC1FRERUTRw8eBBeXl44duwYVq5cKXU55YYjN0RERNVEp06dil2Cbo44ckNERERmheGGiIiIzArDDREREZkVhhsiIiIyKww3REREZFYYboiIiMisMNwQERGVg4CAACxatEjqMqolhhsiIiIyKww3REREpEej0UCr1UpdRpkx3BARET1m1apV8Pb2LvYB/9JLL2HUqFG4du0aXnrpJXh4eMDOzg4tW7bE7t27y/x6CxcuRHBwMGxtbeHr64u3334bGRkZen0OHjyITp06wcbGBs7OzoiIiMDDhw8BAFqtFvPnz0edOnWgUqng5+eHTz/9FACwb98+yGQypKSk6I4VExMDmUyG2NhYAMC3334LJycnbN++HQ0aNIBKpUJcXByOHTuGbt26wdXVFY6OjujYsSNOnjypV1dKSgpGjx4NDw8PWFlZoVGjRvj111+RmZkJBwcHbNmyRa//tm3bYGtri/T09DL/vJ6G4YaIiCqOIAC5mdI8jLjtwIABA3D//n3s3btX1/bgwQPs3LkTQ4YMQUZGBnr27Ino6GicOnUKzz//PHr37o24uLgy/Vjkcjm+/vpr/Pvvv/juu++wZ88evP/++7rtMTEx6Nq1Kxo0aIBDhw7hwIED6N27NzQaDQBg2rRp+PzzzzFjxgycP38eGzZsgIeHh1E1ZGVlYd68efjf//6Hf//9F+7u7khPT8fw4cNx4MABHD58GEFBQejZs6cumGi1WvTo0QMHDx7E+vXrcf78eXz++edQKBSwtbXFoEGDsHbtWr3XWbt2Lfr37w97e/sy/axKg/eWIiKiiqPOAj7zlua1P7gLWNqWqquzszN69OiBDRs2oGvXrgCALVu2wNXVFZ07d4ZcLkeTJk10/efMmYOtW7di+/btGD9+vNGlTZo0Sfc8ICAAn3zyCcaMGYPly5cDAObPn48WLVrovgeAhg0bAgDS09OxePFiLF26FMOHDwcA1K5dG+3atTOqBrVajeXLl+u9ry5duuj1WbVqFZycnPDXX3+hV69e2L17N44ePYoLFy7gueeeAwDUqlVL1/+NN95AmzZtcO/ePXh5eSExMRG//fbbM41ylQZHboiIiAwYMmQIfvzxR+Tk5AAAoqKiMGjQIMjlcmRkZODdd99F/fr14eTkBDs7O1y4cKHMIze7d+9G165d4ePjA3t7ewwdOhT3799HVlYWgMKRG0MuXLiAnJycEreXlqWlJRo3bqzXlpCQgDfffBNBQUFwdHSEg4MDMjIydO8zJiYGNWvW1AWbx7Vq1QoNGzbEd999BwBYv349/P390aFDh2eq9Wk4ckNERBVHaSOOoEj12kbo3bs3BEHAjh070LJlS/z999/46quvAADvvvsudu3ahS+//BJ16tSBtbU1+vfvj9zcXKPLio2NRa9evTB27Fh8+umncHFxwYEDB/D6668jNzcXNjY2sLa2LnH/J20DxFNeAPTuBq5Wqw0eRyaT6bUNHz4c9+/fx+LFi+Hv7w+VSoWwsDDd+3zaawPi6M2yZcswdepUrF27FiNHjiz2OqbGkRsiIqo4Mpl4akiKh5EfqFZWVnj55ZcRFRWFH374AXXr1kXz5s0BiJN7R4wYgb59+yI4OBienp66ybnGOnHiBLRaLRYsWIDWrVvjueeew927+gGwcePGiI6ONrh/UFAQrK2tS9zu5uYGALh3756uLSYmplS1HTx4EO+88w569uyJhg0bQqVSITk5Wa+u27dv4/LlyyUe47XXXsPNmzfx9ddf4/z587pTZ+WJ4YaIiKgEQ4YMwY4dO/DNN99gyJAhuvagoCD89NNPiImJwenTp/Hqq6+W+dLpOnXqQK1WY8mSJbh+/TrWrVuHlStX6vWZNm0ajh07hrfffhtnzpzBxYsXsWLFCiQnJ8PKygpTpkzB+++/j++//x7Xrl3D4cOHsWbNGt3xfX198dFHH+HKlSvYsWMHFixYUKragoKCsG7dOly4cAFHjhzBkCFD9EZrOnbsiA4dOqBfv37YtWsXbty4gd9//x07d+7U9XF2dsbLL7+M9957D927d0fNmjXL9HMyBsMNERFRCbp06QIXFxdcunQJr776qq594cKFcHZ2Rps2bdC7d29EREToRnWM1aRJEyxcuBDz5s1Do0aNEBUVhblz5+r1ee655/Dnn3/i9OnTaNWqFcLCwvDzzz/DwkKcXTJjxgz85z//wcyZM1G/fn0MHDgQiYmJAAClUokffvgBFy9eROPGjTFv3jx88sknpaptzZo1ePjwIZo3b46hQ4finXfegbu7u16fH3/8ES1btsTgwYPRoEEDvP/++7qruAoUnGIbNWpUmX5GxpIJghHXxpmBtLQ0ODo6IjU1FQ4ODlKXQ0Rk1rKzs3Hjxg0EBgbCyspK6nJIIuvWrcPkyZNx9+5dWFpaltjvSX8vxnx+c0IxERERlYusrCzcu3cPn3/+OUaPHv3EYGNKPC1FRERUjqKiomBnZ2fwUbBWjbmaP38+6tWrB09PT0ybNq3CXpenpYiIqNzwtJS4yF5CQoLBbUqlEv7+/hVcUeXF01JERERVgL29fbneaoCK42kpIiIiMisMN0REVO6q2QwIKiNT/Z0w3BARUblRKBQAUKbbElD1U/B3UvB3U1acc0NEROXGwsICNjY2SEpKglKp1N3niOhxWq0WSUlJsLGx0S1OWFYMN0REVG5kMhm8vLxw48YN3Lx5U+pyqJKTy+Xw8/N75htrMtwQEVG5srS0RFBQEE9N0VNZWlqaZHSvUoSbZcuW4YsvvkB8fDyaNGmCJUuWoFWrViX237x5M2bMmIHY2FgEBQVh3rx56NmzZwVWTERExpDL5dV2nRuqeJKf/Ny0aRMiIyMxa9YsnDx5Ek2aNEFERITuhl+P++effzB48GC8/vrrOHXqFPr06YM+ffrg3LlzFVw5ERERVUaSr1AcGhqKli1bYunSpQDECUW+vr6YMGECpk6dWqz/wIEDkZmZiV9//VXX1rp1azRt2rTYLeIN4QrFREREVY8xn9+Sjtzk5ubixIkTCA8P17XJ5XKEh4fj0KFDBvc5dOiQXn8AiIiIKLE/ERERVS+SzrlJTk6GRqOBh4eHXruHhwcuXrxocJ/4+HiD/ePj4w32z8nJQU5Oju771NRUAGICJCIioqqh4HO7NCecKsWE4vI0d+5czJ49u1i7r6+vBNUQERHRs0hPT4ejo+MT+0gablxdXaFQKIrdLTUhIQGenp4G9/H09DSq/7Rp0xAZGan7XqvV4sGDB6hRo8YzX0f/uLS0NPj6+uLWrVucz1MJ8PdRufD3Ubnw91H58HfyZIIgID09Hd7e3k/tK2m4sbS0REhICKKjo9GnTx8AYviIjo7G+PHjDe4TFhaG6OhoTJo0Sde2a9cuhIWFGeyvUqmgUqn02pycnExRfokcHBz4h1mJ8PdRufD3Ubnw91H58HdSsqeN2BSQ/LRUZGQkhg8fjhYtWqBVq1ZYtGgRMjMzMXLkSADAsGHD4OPjg7lz5wIAJk6ciI4dO2LBggV44YUXsHHjRhw/fhyrVq2S8m0QERFRJSF5uBk4cCCSkpIwc+ZMxMfHo2nTpti5c6du0nBcXJzeaoVt2rTBhg0bMH36dHzwwQcICgrCtm3b0KhRI6neAhEREVUikocbABg/fnyJp6H27dtXrG3AgAEYMGBAOVdlPJVKhVmzZhU7DUbS4O+jcuHvo3Lh76Py4e/EdCRfxI+IiIjIlCS//QIRERGRKTHcEBERkVlhuCEiIiKzwnBDREREZoXhxkSWLVuGgIAAWFlZITQ0FEePHpW6pGpr7ty5aNmyJezt7eHu7o4+ffrg0qVLUpdF+T7//HPIZDK9hTipYt25cwevvfYaatSoAWtrawQHB+P48eNSl1UtaTQazJgxA4GBgbC2tkbt2rUxZ86cUt0/iUrGcGMCmzZtQmRkJGbNmoWTJ0+iSZMmiIiIQGJiotSlVUt//fUXxo0bh8OHD2PXrl1Qq9Xo3r07MjMzpS6t2jt27Bj++9//onHjxlKXUm09fPgQbdu2hVKpxO+//47z589jwYIFcHZ2lrq0amnevHlYsWIFli5digsXLmDevHmYP38+lixZInVpVRovBTeB0NBQtGzZEkuXLgUg3kLC19cXEyZMwNSpUyWujpKSkuDu7o6//voLHTp0kLqcaisjIwPNmzfH8uXL8cknn6Bp06ZYtGiR1GVVO1OnTsXBgwfx999/S10KAejVqxc8PDywZs0aXVu/fv1gbW2N9evXS1hZ1caRm2eUm5uLEydOIDw8XNcml8sRHh6OQ4cOSVgZFUhNTQUAuLi4SFxJ9TZu3Di88MILev+tUMXbvn07WrRogQEDBsDd3R3NmjXD6tWrpS6r2mrTpg2io6Nx+fJlAMDp06dx4MAB9OjRQ+LKqrZKsUJxVZacnAyNRqO7XUQBDw8PXLx4UaKqqIBWq8WkSZPQtm1b3qJDQhs3bsTJkydx7NgxqUup9q5fv44VK1YgMjISH3zwAY4dO4Z33nkHlpaWGD58uNTlVTtTp05FWloa6tWrB4VCAY1Gg08//RRDhgyRurQqjeGGzNq4ceNw7tw5HDhwQOpSqq1bt25h4sSJ2LVrF6ysrKQup9rTarVo0aIFPvvsMwBAs2bNcO7cOaxcuZLhRgL/93//h6ioKGzYsAENGzZETEwMJk2aBG9vb/4+ngHDzTNydXWFQqFAQkKCXntCQgI8PT0lqooA8Z5lv/76K/bv34+aNWtKXU61deLECSQmJqJ58+a6No1Gg/3792Pp0qXIycmBQqGQsMLqxcvLCw0aNNBrq1+/Pn788UeJKqre3nvvPUydOhWDBg0CAAQHB+PmzZuYO3cuw80z4JybZ2RpaYmQkBBER0fr2rRaLaKjoxEWFiZhZdWXIAgYP348tm7dij179iAwMFDqkqq1rl274uzZs4iJidE9WrRogSFDhiAmJobBpoK1bdu22NIIly9fhr+/v0QVVW9ZWVmQy/U/ihUKBbRarUQVmQeO3JhAZGQkhg8fjhYtWqBVq1ZYtGgRMjMzMXLkSKlLq5bGjRuHDRs24Oeff4a9vT3i4+MBAI6OjrC2tpa4uurH3t6+2HwnW1tb1KhRg/OgJDB58mS0adMGn332GV555RUcPXoUq1atwqpVq6QurVrq3bs3Pv30U/j5+aFhw4Y4deoUFi5ciFGjRkldWpXGS8FNZOnSpfjiiy8QHx+Ppk2b4uuvv0ZoaKjUZVVLMpnMYPvatWsxYsSIii2GDOrUqRMvBZfQr7/+imnTpuHKlSsIDAxEZGQk3nzzTanLqpbS09MxY8YMbN26FYmJifD29sbgwYMxc+ZMWFpaSl1elcVwQ0RERGaFc26IiIjIrDDcEBERkVlhuCEiIiKzwnBDREREZoXhhoiIiMwKww0RERGZFYYbIiIiMisMN0RU7clkMmzbtk3qMojIRBhuiEhSI0aMgEwmK/Z4/vnnpS6NiKoo3luKiCT3/PPPY+3atXptKpVKomqIqKrjyA0RSU6lUsHT01Pv4ezsDEA8ZbRixQr06NED1tbWqFWrFrZs2aK3/9mzZ9GlSxdYW1ujRo0aeOutt5CRkaHX55tvvkHDhg2hUqng5eWF8ePH621PTk5G3759YWNjg6CgIGzfvr183zQRlRuGGyKq9GbMmIF+/frh9OnTGDJkCAYNGoQLFy4AADIzMxEREQFnZ2ccO3YMmzdvxu7du/XCy4oVKzBu3Di89dZbOHv2LLZv3446derovcbs2bPxyiuv4MyZM+jZsyeGDBmCBw8eVOj7JCITEYiIJDR8+HBBoVAItra2eo9PP/1UEARBACCMGTNGb5/Q0FBh7NixgiAIwqpVqwRnZ2chIyNDt33Hjh2CXC4X4uPjBUEQBG9vb+HDDz8ssQYAwvTp03XfZ2RkCACE33//3WTvk4gqDufcEJHkOnfujBUrVui1ubi46J6HhYXpbQsLC0NMTAwA4MKFC2jSpAlsbW1129u2bQutVotLly5BJpPh7t276Nq16xNraNy4se65ra0tHBwckJiYWNa3REQSYrghIsnZ2toWO01kKtbW1qXqp1Qq9b6XyWTQarXlURIRlTPOuSGiSu/w4cPFvq9fvz4AoH79+jh9+jQyMzN12w8ePAi5XI66devC3t4eAQEBiI6OrtCaiUg6HLkhIsnl5OQgPj5er83CwgKurq4AgM2bN6NFixZo164doqKicPToUaxZswYAMGTIEMyaNQvDhw/HRx99hKSkJEyYMAFDhw6Fh4cHAOCjjz7CmDFj4O7ujh49eiA9PR0HDx7EhAkTKvaNElGFYLghIsnt3LkTXl5eem1169bFxYsXAYhXMm3cuBFvv/02vLy88MMPP6BBgwYAABsbG/zxxx+YOHEiWrZsCRsbG/Tr1w8LFy7UHWv48OHIzs7GV199hXfffReurq7o379/xb1BIqpQMkEQBKmLICIqiUwmw9atW9GnTx+pSyGiKoJzboiIiMisMNwQERGRWeGcGyKq1HjmnIiMxZEbIiIiMisMN0RERGRWGG6IiIjIrDDcEBERkVlhuCEiIiKzwnBDREREZoXhhoiIiMwKww0RERGZFYYbIiIiMiv/D3vtPj6oai0ZAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "32/32 [==============================] - 6s 105ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADOxElEQVR4nOzdd3iN9//H8efJOtk7kURkxx4xi5hFUVv7tdoSqtWhqkrR1tZq1eigVAeqdNBWjdqE2jP2ipFEiITsnTjn90d+ORwZEknOOeT9cJ3rcu/XOefOOZ/zGfetUKvVaoQQQgghKiEjfQcQQgghhNAXKQgJIYQQotKSgpAQQgghKi0pCAkhhBCi0pKCkBBCCCEqLSkICSGEEKLSkoKQEEIIISotKQgJIYQQotKSgpAQQgghKi0pCAkhxGO6fPkyzz33HHZ2digUCtauXVuu+79+/ToKhYJly5aV636fZO3ataNdu3b6jiGeIlIQEk+1ZcuWoVAoNA9zc3M8PDzo3LkzX3/9NSkpKfqOWGrt2rVDoVDQo0ePAsvyvzjnzJlT6v2mp6czdepUQkNDCyy7desWEyZMoH379tjY2KBQKApdLz09nYULF/Lcc8/h7u6OjY0NDRs2ZNGiRdy7d6/A+p988gk9e/akSpUqKBQKpk6dWurcV65cYcSIEfj5+WFubo6trS3BwcF89dVXZGRklHp/pTFkyBBOnz7NJ598wooVK2jSpEmFHk+XQkJCUCgU2NraFvo6Xr58WfN39Tjn282bN5k6dSphYWHlkFaIx2ei7wBC6ML06dPx9fUlJyeHmJgYQkNDGT16NPPmzWPdunXUr19f3xFLbcOGDRw7dozGjRuXy/7S09OZNm0aQIFf3BcvXuTzzz8nMDCQevXqceDAgUL3cfXqVd555x06dOjAmDFjsLW1ZcuWLbz11lscPHiQ5cuXa63/8ccf4+bmRsOGDdmyZUupM2/cuJH//e9/KJVKBg8eTN26dcnOzmbv3r2MGzeOs2fPsmTJklLvtyQyMjI4cOAAH330ESNHjqyQY3h7e5ORkYGpqWmF7P9RTExMSE9PZ/369fTr109r2cqVKzE3NyczM/Ox9n3z5k2mTZuGj48PQUFBJd5u69atj3U8IYoiBSFRKXTt2lXr1/rEiRPZuXMn3bt3p2fPnpw/fx4LCws9JiwdLy8vUlJSmDZtGuvWravw4zVu3Ji7d+/i6OjImjVr+N///lfoem5ubpw+fZo6depo5o0YMYJhw4axdOlSJk2aREBAgGbZtWvX8PHx4c6dO7i4uJQq07Vr1xgwYADe3t7s3LkTd3d3zbK3336b8PBwNm7cWMpnWnJxcXEA2NvbV9gx8msx9UWpVBIcHMyvv/5aoCC0atUqunXrxp9//qmTLOnp6VhaWmJmZqaT44nKQ5rGRKX17LPPMmnSJCIiIvjll1+0ll24cIEXX3wRR0dHzM3NadKkSYECR36z2759+xgzZgwuLi5YWVnRp08fzZdkvqNHj9K5c2ecnZ2xsLDA19eXYcOGaa2jUqn48ssvqVOnDubm5lSpUoURI0aQkJBQILuNjQ3vvfce69ev5/jx4498romJiYwePZpq1aqhVCoJCAjg888/R6VSAXlNavkFkWnTpmmaPPKbqmxsbHB0dHzkcZydnbUKQfn69OkDwPnz57Xm+/j4PHKfRZk9ezapqan8+OOPWoWgfAEBAbz77rua6dzcXGbMmIG/vz9KpRIfHx8+/PBDsrKyCmTq3r07e/fupVmzZpibm+Pn58fPP/+sWWfq1Kl4e3sDMG7cOBQKhea5hISEFPq8pk6dikKh0Jq3bds2WrVqhb29PdbW1tSoUYMPP/xQs7yoPkI7d+6kdevWWFlZYW9vT69evQq8tvnHCw8PJyQkBHt7e+zs7Bg6dCjp6elFv7APGTRoEJs2bSIxMVEz78iRI1y+fJlBgwYVWD8+Pp6xY8dSr149rK2tsbW1pWvXrpw8eVKzTmhoKE2bNgVg6NChmvMt/3m2a9eOunXrcuzYMdq0aYOlpaXmdXm4j9CQIUMwNzcv8Pw7d+6Mg4MDN2/eLPFzFZWTFIREpfbKK68A2tXtZ8+epXnz5pw/f54JEyYwd+5crKys6N27N3///XeBfbzzzjucPHmSKVOm8Oabb7J+/XqtppLY2Fiee+45rl+/zoQJE/jmm2946aWXOHjwoNZ+RowYwbhx4zT9W4YOHcrKlSvp3LkzOTk5BY777rvv4uDg8Mh+Nenp6bRt25ZffvmFwYMH8/XXXxMcHMzEiRMZM2YMAC4uLixatAjIK7SsWLGCFStW0Ldv35K9kI8QExMD5BWUysv69evx8/OjZcuWJVp/+PDhTJ48mUaNGjF//nzatm3LrFmzGDBgQIF1w8PDefHFF+nUqRNz587FwcGBkJAQzp49C0Dfvn2ZP38+AAMHDmTFihV8+eWXpcp/9uxZunfvTlZWFtOnT2fu3Ln07NmTffv2Fbvd9u3b6dy5M7GxsUydOpUxY8awf/9+goODuX79eoH1+/XrR0pKCrNmzaJfv34sW7ZM0wRaEn379kWhUPDXX39p5q1atYqaNWvSqFGjAutfvXqVtWvX0r17d+bNm8e4ceM4ffo0bdu21RRKatWqxfTp0wF4/fXXNedbmzZtNPu5e/cuXbt2JSgoiC+//JL27dsXmu+rr77CxcWFIUOGaPqhfffdd2zdupVvvvkGDw+PEj9XUUmphXiKLV26VA2ojxw5UuQ6dnZ26oYNG2qmO3TooK5Xr546MzNTM0+lUqlbtmypDgwMLLDvjh07qlUqlWb+e++9pzY2NlYnJiaq1Wq1+u+//35khv/++08NqFeuXKk1f/PmzQXmt23bVl2nTh21Wq1WT5s2TQ2ojx07plar1epr166pAfUXX3yhWX/GjBlqKysr9aVLl7T2PWHCBLWxsbE6MjJSrVar1XFxcWpAPWXKlCJzqtVq9erVq9WAeteuXcWuly8rK0tdu3Ztta+vrzonJ6fQdUp67HxJSUlqQN2rV68SrR8WFqYG1MOHD9eaP3bsWDWg3rlzp2aet7e3GlDv2bNHMy82NlatVCrV77//vmZeYa+1Wq1WDxkyRO3t7V0gw5QpU9QPfuTOnz9fDajj4uKKzJ1/jKVLl2rmBQUFqV1dXdV3797VzDt58qTayMhIPXjw4ALHGzZsmNY++/Tpo3ZycirymA8+DysrK7VarVa/+OKL6g4dOqjVarX63r17ajc3N/W0adMKfQ0yMzPV9+7dK/A8lEqlevr06Zp5R44cKfDc8rVt21YNqBcvXlzosrZt22rN27JlixpQz5w5U3316lW1tbW1unfv3o98jkKo1Wq11AiJSs/a2lozeiw+Pp6dO3dqfkXfuXOHO3fucPfuXTp37szly5eJjo7W2v7111/XavJo3bo19+7dIyIiArjfh2TDhg2F1uwArF69Gjs7Ozp16qQ55p07d2jcuDHW1tbs2rWr0O3ya4WK+4W/evVqWrdujYODg9a+O3bsyL1799izZ0+JX6vHMXLkSM6dO8eCBQswMSmfbonJyclAXpNdSfz7778AmhqwfO+//z5Agb5EtWvXpnXr1pppFxcXatSowdWrVx8788Pyz4t//vlH00T5KLdu3SIsLIyQkBCtpsr69evTqVMnzfN80BtvvKE13bp1a+7evat5DUti0KBBhIaGEhMTw86dO4mJiSm0WQzy+hUZGeV9tdy7d4+7d+9qmv1K0oz74H6GDh1aonWfe+45RowYwfTp0+nbty/m5uZ89913JT6WqNykICQqvdTUVM0Xanh4OGq1mkmTJuHi4qL1mDJlCpDX1PUgLy8vrWkHBwcATd+etm3b8sILLzBt2jScnZ3p1asXS5cu1eqbcvnyZZKSknB1dS1w3NTU1ALHzGdnZ8fo0aNZt24dJ06cKHSdy5cvs3nz5gL77dixY6HPpzx98cUXfP/998yYMYPnn3++3PZra2sLUOLLH0RERGBkZKTVURvyOnfb29trCq35Hn5PIe99Lay/1uPq378/wcHBDB8+nCpVqjBgwAD++OOPYgtF+Tlr1KhRYFmtWrW4c+cOaWlpWvMfdX6WxPPPP4+NjQ2///47K1eupGnTpgVey3wqlYr58+cTGBiIUqnE2dkZFxcXTp06RVJSUomPWbVq1VJ1jJ4zZw6Ojo6EhYXx9ddf4+rqWuJtReUmo8ZEpXbjxg2SkpI0H+r5X0Jjx46lc+fOhW7z8BeAsbFxoeup1Wogb+TPmjVrOHjwIOvXr2fLli0MGzaMuXPncvDgQaytrVGpVLi6urJy5cpC91XciKp3332X+fPnM23atEL7qahUKjp16sQHH3xQ6PbVq1cvct9lsWzZMsaPH88bb7zBxx9/XK77trW1xcPDgzNnzpRqu4c7KxflUe/p4xzj4esoWVhYsGfPHnbt2sXGjRvZvHkzv//+O88++yxbt24tMkNpleW55FMqlfTt25fly5dz9erVYvulffrpp0yaNIlhw4YxY8YMHB0dMTIyYvTo0SWu+QJKPYrzxIkTmkL96dOnGThwYKm2F5WXFIREpbZixQoATaHHz88PAFNTU02NSXlp3rw5zZs355NPPmHVqlW89NJL/PbbbwwfPhx/f3+2b99OcHBwqb8A8muFpk6dypAhQwos9/f3JzU19ZHPp6SFhJL4559/GD58OH379mXhwoXltt8Hde/enSVLlnDgwAFatGhR7Lre3t6oVCouX75MrVq1NPNv375NYmKiZgRYeXBwcNAaYZXv4VonACMjIzp06ECHDh2YN28en376KR999BG7du0q9P3Kz3nx4sUCyy5cuICzszNWVlZlfxKFGDRoED/99BNGRkaFdjDPt2bNGtq3b8+PP/6oNT8xMVGrs3x5nm9paWkMHTqU2rVr07JlS2bPnk2fPn00I9OEKI40jYlKa+fOncyYMQNfX19eeuklAFxdXWnXrh3fffcdt27dKrDNw8PiSyIhIaHAr+/8C8jlN4/169ePe/fuMWPGjALb5+bmFvrF+qDRo0djb2+vGYnzoH79+nHgwIFCL1iYmJhIbm4uAJaWlpp5ZbFnzx4GDBhAmzZtWLlypaa/SHn74IMPsLKyYvjw4dy+fbvA8itXrvDVV18BaJrlHq4xmzdvHgDdunUrt1z+/v4kJSVx6tQpzbxbt24VGHEYHx9fYNuHz4uHubu7ExQUxPLly7XepzNnzrB169ZybX58WPv27ZkxYwYLFizAzc2tyPWMjY0LnO+rV68u0Lcuv8BW1vMNYPz48URGRrJ8+XLmzZuHj48PQ4YMKfJ1FOJBUiMkKoVNmzZx4cIFcnNzuX37Njt37mTbtm14e3uzbt06rYvWLVy4kFatWlGvXj1ee+01/Pz8uH37NgcOHODGjRta10MpieXLl/Ptt9/Sp08f/P39SUlJ4fvvv8fW1lbzxdW2bVtGjBjBrFmzCAsL47nnnsPU1JTLly+zevVqvvrqK1588cUij2FnZ8e7775baKfpcePGsW7dOrp3705ISAiNGzcmLS2N06dPs2bNGq5fv665vlHt2rX5/fffqV69Oo6OjtStW5e6desCMHPmTADNEPIVK1awd+9eAE3TV0REBD179kShUPDiiy+yevVqrSz169fXuor3ihUriIiI0FzXZs+ePZrjvPLKK8XW1Pj7+7Nq1Sr69+9PrVq1tK4svX//flavXk1ISAgADRo0YMiQISxZsoTExETatm3L4cOHWb58Ob179y5yaPbjGDBgAOPHj6dPnz6MGjWK9PR0Fi1aRPXq1bU6C0+fPp09e/bQrVs3vL29iY2N5dtvv8XT05NWrVoVuf8vvviCrl270qJFC1599VUyMjL45ptvsLOze6xblJSUkZFRiZo4u3fvzvTp0xk6dCgtW7bk9OnTrFy5UlPbms/f3x97e3sWL16MjY0NVlZWPPPMM/j6+pYq186dO/n222+ZMmWKZjj/0qVLadeuHZMmTWL27Nml2p+ohPQ5ZE2IipY/xD3/YWZmpnZzc1N36tRJ/dVXX6mTk5ML3e7KlSvqwYMHq93c3NSmpqbqqlWrqrt3765es2ZNgX0/PCx+165dWsPLjx8/rh44cKDay8tLrVQq1a6ururu3burjx49WuC4S5YsUTdu3FhtYWGhtrGxUderV0/9wQcfqG/evKlZ58Hh8w9KSEhQ29nZFTqkOyUlRT1x4kR1QECA2szMTO3s7Kxu2bKles6cOers7GzNevv371c3btxYbWZmVmA4+4Ov48OPh597UY+Hh8fnD5Mu7FHS4fmXLl1Sv/baa2ofHx+1mZmZ2sbGRh0cHKz+5ptvtC6BkJOTo542bZra19dXbWpqqq5WrZp64sSJWuuo1XnD57t161bgOA8P2y5q+LxarVZv3bpVXbduXbWZmZm6Ro0a6l9++aXA8PkdO3aoe/Xqpfbw8FCbmZmpPTw81AMHDtS6zEFhw+fVarV6+/bt6uDgYLWFhYXa1tZW3aNHD/W5c+e01sk/3sPD8/PP22vXrhX5mqrV2sPni1LU8Pn3339f7e7urrawsFAHBwerDxw4UOiw93/++Uddu3ZttYmJidbzLOocz1+Wv5/k5GS1t7e3ulGjRgUuzfDee++pjYyM1AcOHCj2OQihUKtL0WNOCCGEEOIpIn2EhBBCCFFpSUFICCGEEJWWFISEEEIIUWlJQUgIIYQQlZYUhIQQQghRaUlBSAghhBCVllxQsRJTqVTcvHkTGxubcr3cvRBCCN1Qq9WkpKTg4eFRYVdxz8zMJDs7u1z2ZWZmpnUBW0MgBaFK7ObNm1SrVk3fMYQQQpRRVFQUnp6e5b7fzMxMLGycIDe9XPbn5ubGtWvXDKowJAWhSszGxgaArzYexsLKWs9p7ttwJlbfEZ4IW/7Yqe8IBTTq3FLfEQpY2K+BviOIx9Ti1UX6jlBA537P6juClpyMNDaN66b5PC9v2dnZkJuOsvYQMDYr287uZRNzbjnZ2dlSEBKGIb85zMLKGgvrivkjehymFuXzy+NppzAxnA+SfCbmFXPn87KwtrHVdwTxmAzxHDe1MJwfjQ+q8O4NJuYoylgQUisMs1uyFISEEEIIUTwFUNbCloF2RZWCkBBCCCGKpzDKe5R1HwbIMFMJIYQQQuiA1AgJIYQQongKRTk0jRlm25gUhIQQQghRPGkaE0IIIYR4+kiNkBBCCCGKJ01jQgghhKi8yqFpzEAboQwzlRBCCCGEDkiNkBBCCCGKJ01jQhSkUqlYt24vBw+eJTkpDXt7a1q2rEe37i11djf7Gq7WdKtTBV8nSxwszZi/K5xjUUma5U287OlQ3QUfJ0tslCZ8uP4ckQkZlS5Ty7rVeOd/z9Ag0A13JxtemrqGfw9c1lqnejUnpr7anuD61TA2NuJixF2GzPiLG3HJFZKpnoct/2vsSaCLFU7WSqZuOMf+q/EAGBspCGnuTTMfB9ztzEnLyuV4VBI/7r9OfFr53AW7JL5dsZXFK7drzfPxdGHdD+N0luFhkqlwhniOG+JnwWN7ikeNSUGogoSEhLB8+XLNtKOjI02bNmX27NnUr19fj8nKz6ZNB9kdeoKhw7rh4eFMxPUYli79FwsLJR06NtFJBqWJEZEJGewJv8vo9v6FLr8Ym8qh6/EMb+lTaTNZmpty5mosv2w5xS9TXiiw3Mfdnk3zXuGXzSeZteI/UtKzqOXtTGZ2boVlMjc15mpcKlvO3mZK91pay5QmRgS6WrHySBRX49KwNjfhrTZ+TO9ei5G/n6ywTIXx967C97Ne10wbG+v/w1wyFWSI57ghfhaIgqQgVIG6dOnC0qVLAYiJieHjjz+me/fuREZG6jlZ+bhyJZoGQYHUrx8AgLOzPYcPn+PatVs6y3DqZjKnbhb9a27f/9cwOFuV8a7JpWCImbYfvcr2o1eLXD4ppC3bDl9hyo+7NPOu30qs0ExHIhI4EpFQ6LL07HtMWHtWa96C0CssGBCEi7WSuNSsCs32IBNjI5wdDeemxCCZCmOI57ghfhY8tqe4aUz/PyOeYkqlEjc3N9zc3AgKCmLChAlERUURFxcHQFRUFP369cPe3h5HR0d69erF9evXtfbxww8/UKtWLczNzalZsybffvutZll2djYjR47E3d0dc3NzvL29mTVrls6en79/VS6cv05MTPz/P5/bXL58g7r1/HSWQZSdQgGdmvkTHh3Pmk/6c+n3UWz7agjPtwjUdzQtVkpjVGo1aRX4C74wEdF36DBoBl1DPmPC56u4FVt44U0yGV6mfE/KOW7Q8pvGyvowQFIjpCOpqan88ssvBAQE4OTkRE5ODp07d6ZFixb8999/mJiYMHPmTLp06cKpU6cwMzNj5cqVTJ48mQULFtCwYUNOnDjBa6+9hpWVFUOGDOHrr79m3bp1/PHHH3h5eREVFUVUVJTOnlPXri3IzMhm8qQlGBkZoVKp6N2nLc2b19FZBlF2LvZW2FgqGd2/OZ8s28PUH3fRsYkfKya/QI8PVrL/tO7OqaKYGisYHuxL6MU40rPv6ey49Wp6MfP9/vh4uhAXn8zildsJGbuIvxaPwcrSXGc5JFPZPAnnuMF7imuEpCBUgTZs2IC1tTUAaWlpuLu7s2HDBoyMjFi1ahUqlYoffvhB07F46dKl2NvbExoaynPPPceUKVOYO3cuffv2BcDX15dz587x3XffMWTIECIjIwkMDKRVq1YoFAq8vb2LzZOVlUVW1v0mheTksnUQPHr0PIcOnWX4az3x8HAmKiqW33/bjr2dNS2D65Vp30J3jP7//Nt04DKL/j4CwJmrsTSr7cmwbo30/iVhbKTg4641Afg69IpOj926aU3N/6v7uVOvphddBs9iy55T9O3STKdZJNPjM/RzXOiXYdZTPSXat29PWFgYYWFhHD58mM6dO9O1a1ciIiI4efIk4eHh2NjYYG1tjbW1NY6OjmRmZnLlyhXS0tK4cuUKr776qma5tbU1M2fO5MqVvC+DkJAQwsLCqFGjBqNGjWLr1q3F5pk1axZ2dnaaR7Vq1cr0/Nas3kXXrs1p1qw2np6utGhRl46dmrJp04Ey7Vfo1t3kdHJy73Eh4o7W/EtRd/B0tdVTqjz5hSBXG3MmrD2j09qgwthaW+Bd1Zmom3f1muNBkunRDPkcf2JI05h4HFZWVgQEBGimf/jhB+zs7Pj+++9JTU2lcePGrFy5ssB2Li4upKamAvD999/zzDPPaC03NjYGoFGjRly7do1Nmzaxfft2+vXrR8eOHVmzZk2heSZOnMiYMWM008nJyWUqDGVn5xQYJm9kZIRKrX7sfQrdy8lVceLSLQI9nbTm+1d1JCo2qYitKl5+IaiqvTnj/jpNSqZu+wYVJj0ji6hbd+neoZG+o2hIpkcz1HP8iaJQlMPweWkaq/QUCgVGRkZkZGTQqFEjfv/9d1xdXbG1LfiLxM7ODg8PD65evcpLL71U5D5tbW3p378//fv358UXX6RLly7Ex8fj6OhYYF2lUolSqSy351O/QQAb/z2Ao5MtHh7OREbeZtvWwwS30t3lAZQmRlSxuf+cXKyVeDlYkJady920HKzMjHGyMsPB0hQAd7u8/gpJGTkkVdAXqyFmsjI3xdfDQTPt7WZPXT9XElMyuRGXzNerD/HTh73ZfyaS/05G0rGJH12aB9JjXMGCenkxNzXCw85CM+1ma46fsxUpmbnEp2cz6fmaBLpYM2n9OYwUCs3rlZKZS65KN4XtOd9voN0ztXB3dSAuPplvV2zD2NiIru2CdHJ8yVRyhniOG+JngShICkIVKCsri5iYGAASEhJYsGABqamp9OjRg2bNmvHFF1/Qq1cvpk+fjqenJxEREfz111988MEHeHp6Mm3aNEaNGoWdnR1dunQhKyuLo0ePkpCQwJgxY5g3bx7u7u40bNgQIyMjVq9ejZubG/b29jp5foMGdWLt2v9Y+ctWUlLSsbe3pk3bhvToEayT4wP4OVnyUecamumXm+bVcO0Jv8OS/RE0qmbPiGAfzfJ32uSNaPvr5E3+Olkxw/wNMVNQdXc2fHG/QP3pGx0BWLX1FG/P3cjG/ZcY8/Vm3hvQgs/e7ET4jXgGz/iLg2dvVEgegOquNsx54X5fsjf+/3XYeu42Kw5F0tIv79f74kENtbYb++dpTkXr5ld87J0kxn+2isSUdBzsrGlUx4df5o/E0d5aJ8eXTCVniOe4IX4WPDYjRd6jrPsohT179vDFF19w7Ngxbt26xd9//03v3r211jl//jzjx49n9+7d5ObmUrt2bf7880+8vLxKfByFWi3tGBXh4Qsq2tjYULNmTcaPH88LL+Rd7CsmJobx48fz77//kpKSQtWqVenQoQNz5szR1BKtWrWKL774gnPnzmFlZUW9evUYPXo0ffr04fvvv+fbb7/l8uXLGBsb07RpU7744gsaNmxYaKaHJScnY2dnx5LQc1hYG841SdaevK3vCE+EjSuL7xOmD027tdZ3hAJ+fMkwmmdE6dUf9JW+IxTQ7aXn9B1BS05GKutGtiMpKanQ1oWyyv+eULb+GIVJ2UYAqnMzyfpvZomzbtq0iX379tG4cWP69u1boCB05coVmjVrxquvvsrAgQOxtbXl7NmzNG/eHFdX1xLnkhqhCrJs2TKWLVtW7Dpubm5ahaXCDBo0iEGDBhW67LXXXuO111573IhCCCGEweratStdu3YtcvlHH33E888/z+zZszXz/P0LXsH7UQyzC7cQQgghDEf+dYTK+ignKpWKjRs3Ur16dTp37oyrqyvPPPMMa9euLfW+pCAkhBBCiOKV4/D55ORkrceD17crqdjYWFJTU/nss8/o0qULW7dupU+fPvTt25fdu3eXal9SEBJCCCGEzlSrVk3rmnaPc2solUoFQK9evXjvvfc0t7Hq3r07ixcvLtW+pI+QEEIIIYpXjrfYiIqK0uos/TiXdXF2dsbExITatWtrza9VqxZ79+4t1b6kICSEEEKI4pXHlaH/f3tbW9syj3AzMzOjadOmXLx4UWv+pUuXHnm7qYdJQUgIIYQQxdPDTVdTU1MJDw/XTF+7do2wsDAcHR3x8vJi3Lhx9O/fnzZt2tC+fXs2b97M+vXrCQ0NLdVxpCAkhBBCCINz9OhR2rdvr5nOv0XUkCFDWLZsGX369GHx4sXMmjWLUaNGUaNGDf78809atWpVquNIQUgIIYQQxSvHprGSateuHY+65vOwYcMYNmxYWVJJQUgIIYQQj6CHpjFdkeHzQgghhKi0pEZICCGEEI9QDk1jBlr3IgUhIYQQQhTvKW4ak4KQoIajDdY25X/X4se1FsO7+3xsYoa+IxSwbsFwfUco4HhMsr4jFPDXuVv6jvBEiEwo/W0OKlx8tL4TFFDF3kLfEbRkm93Td4QnnhSEhBBCCFE8haIcRo1JjZAQQgghnkR6GD6vK4aZSgghhBBCB6RGSAghhBDFk87SQgghhKi0nuKmMSkICSGEEKJ4T3GNkGEWz4QQQgghdEBqhIQQQghRPGkaE0IIIUSlJU1jQgghhBBPH6kREkIIIUSxFAoFiqe0RkgKQkIIIYQolhSEhE6EhISQmJjI2rVr9R2lxOLuJvHtz1s4ePwimdk5eLo58eE7L1ArwFMnx6/hak23OlXwdbLEwdKM+bvCORaVpFnexMueDtVd8HGyxEZpwofrzxGZULE3UK3nYcv/GnsS6GKFk7WSqRvOsf9qPADGRgpCmnvTzMcBdztz0rJyOR6VxI/7rxOfll2huR40fNSXxN5JKjD/+U5NeGNoN53leFhWZjY7N+3nwplw0lLScfN0pWvvdlT1cpNMBpTJz9GSdgFOeNqbY2duytLDUZyJSdFap3MNF5p722Nhasy1+HT+PBXDnQo8x1s29OedVzrSoKYX7i52vDR2Cf/uPqVZnnBkQaHbTf7qb775ZUeFZDLE10kUJH2EHhISEqIp+SoUCpycnOjSpQunTp169MYldP36dRQKBWFhYeW2T31ITs3gjYnfYWJixNxJIaz8ejQjhz6PjZXu7s6sNDEiMiGD5Yeiilx+MTaV34/d0Fkmc1NjrsalsiD0aqF5Al2tWHkkird+DWPavxeo5mDB9O61dJYPYO7M11j+7fuax/SJrwAQ/EwdneZ42Lo/tnH1UgR9BnXhzXGD8a/uzc+L/yQ5MVUyGVAmMxMjbiZn8tepmEKXtw9worWfI2tO3eKr/66Rnavm9eZemBhVXI2ApYWSM5eiGTf790KX1+gyUevx9vRfUKlUrNsVVmGZDPF1emyKcnoYIKkRKkSXLl1YunQpADExMXz88cd0796dyMhIPSczLCv/2o2rsx0fvfOiZp5HFUedZjh1M5lTN5OLXL7v/2tinK3MdBWJIxEJHIlIKHRZevY9Jqw9qzVvQegVFgwIwsVaSVxqli4iYmdrpTW9Zt1e3Ko4ULeWt06OX5ic7FzOnbrMwGE98fHPq1Fs36UFl85d5cj+k3R4PlgyGUimC7GpXIgtutDVxs+R7ZfucDYmb51fT0QztXN16rrZEFbM32tZbN9/ju37zxW5PPaudk3M823q8d+xy0RE362QPGCYr9PjepqbxqRGqBBKpRI3Nzfc3NwICgpiwoQJREVFERcXB0BUVBT9+vXD3t4eR0dHevXqxfXr17X28cMPP1CrVi3Mzc2pWbMm3377rWaZr68vAA0bNkShUNCuXbtCc6hUKmbNmoWvry8WFhY0aNCANWvWaJYnJCTw0ksv4eLigoWFBYGBgZoCnC7sPXKemgGefDx7Fd2GfELImG9Yt/WIzo7/tLBSGqNSq0nLztXL8XNy7xG69xQd2zYs+wddGahUKtQqNSYm2r/PTExNiLx2UzIZcKYHOVqaYmtuyqW4+wWAzFwVkQkZeDvqrra4OC6ONjzXqi6//HNAbxmehNepspAaoUdITU3ll19+ISAgACcnJ3JycujcuTMtWrTgv//+w8TEhJkzZ2qaz8zMzFi5ciWTJ09mwYIFNGzYkBMnTvDaa69hZWXFkCFDOHz4MM2aNWP79u3UqVMHM7PCaytmzZrFL7/8wuLFiwkMDGTPnj28/PLLuLi40LZtWyZNmsS5c+fYtGkTzs7OhIeHk5FRsf1fHnTzdgJrNx+if89gBr/YjvPhN5j/43pMTIx5/tlGOsvxJDM1VjA82JfQi3GkZ9/TS4ZDRy+Qlp5Jh7ZBejl+PqW5GZ4+7uzedgjnKo5Y21hy+vhFbly/haOzvWQy4EwPslXmfa2kZGmfzylZuZpl+jaw2zOkpmWyvgKbxR7lSXidHvQ01wgZ3qttADZs2IC1tTUAaWlpuLu7s2HDBoyMjFi1ahUqlYoffvhBc1IsXboUe3t7QkNDee6555gyZQpz586lb9++QF4N0Llz5/juu+8YMmQILi4uADg5OeHmVnjnxqysLD799FO2b99OixYtAPDz82Pv3r189913tG3blsjISBo2bEiTJk0A8PHxKfZ5ZWVlkZV1v+klOblsVa8qtZqa/lV54+XOAFT38+Bq5G3WbjkkBaESMDZS8HHXmgB8HXpFbzm27TpB4waBODnY6C1Dvr6DuvDPb1uZN+17FEYK3Ku6UrdhDW7diJVMBp7pSfJSz+as3nyULD3Vwj6JpCBUybRv355FixYBec1P3377LV27duXw4cOcPHmS8PBwbGy0vzQyMzO5cuUKaWlpXLlyhVdffZXXXntNszw3Nxc7O7sSZwgPDyc9PZ1OnTppzc/OzqZhw4YAvPnmm7zwwgscP36c5557jt69e9OyZcsi9zlr1iymTZtW4gyP4uRgg081V615Pp4uhB44W8QWIl9+IcjVxpwP/j6tt9qg2LhETp65yoT3+unl+A9zdLZn6Mh+ZGflkJWVhY2tNat/3oiDU8n/diSTfiVn5RUubJTGpGTdL2jYKE2ITs7UVyyNFkH+VPdx49UPddeNoDCG/jo9TApClYyVlRUBAQGa6R9++AE7Ozu+//57UlNTady4MStXriywnYuLC6mpee2933//Pc8884zWcmNj4xJnyN/Pxo0bqVq1qtYypVIJQNeuXYmIiODff/9l27ZtdOjQgbfffps5c+YUus+JEycyZswYzXRycjLVqlUrcaaH1a/pRWR0nNa8yJt3cXOxf+x9Vgb5haCq9uaM++s0KZn6+1W6fXcYdnZWNG1YXW8ZCmOmNMVMaUpGeibhFyLo1KOVviNJphKKT88hOTOHQBcrbibn1UArTYzwcrBg//XCBxHo0su9WnDiXCRnLkfrNYehv06ViRSESkChUGBkZERGRgaNGjXi999/x9XVFVtb2wLr2tnZ4eHhwdWrV3nppZcK3V9+n6B794quBahduzZKpZLIyEjatm1b5HouLi4MGTKEIUOG0Lp1a8aNG1dkQUipVGoKUeWhf49WjJi4mOVrQukQXI9zl6NYt/UwH7zZp9yO8ShKEyOq2Nx/Ti7WSrwcLEjLzuVuWg5WZsY4WZnhYGkKgLudOQBJGTkkVVABxNzUCA+7+50d3WzN8XO2IiUzl/j0bCY9X5NAF2smrT+HkUKhyZaSmUuuSl0hmQqjUqnZsSeMZ1s3wNjYMMZNhF+4jloNzq4OxN9JZOv6/3B2daBhM/0N65dMBZkZK7RGYjpamuJhqyQ95x6JGbnsuRpPx0AX7qRmczc9h641XUjOzC1wDZ3yZGVhhm81F820t4cTdatXJTEpnRu38woWNlbm9OrQkElf/l1hOR5kiK/TYyuP4e+GWSEkBaHCZGVlEROTd92HhIQEFixYQGpqKj169KBZs2Z88cUX9OrVi+nTp+Pp6UlERAR//fUXH3zwAZ6enkybNo1Ro0ZhZ2dHly5dyMrK4ujRoyQkJDBmzBhcXV2xsLBg8+bNeHp6Ym5uXqDZzMbGhrFjx/Lee++hUqlo1aoVSUlJ7Nu3D1tbW4YMGcLkyZNp3LgxderUISsriw0bNlCrlu6uR1Mr0JNZ419m8S9bWPbHTtxdHXh3WHc667DTrZ+TJR91rqGZfrlpXg3XnvA7LNkfQaNq9owI9tEsf6eNHwB/nbzJXydvVUim6q42zHmhnmb6jf8/5tZzt1lxKJKWfk4ALB7UUGu7sX+e5lR0wYscVpSTZ64SdyeJju0aPnplHcnMzGLHxn0kJ6ZiYamkVv1AOjwfXKraVMlU8arZW/DWA39Xverm9XU8EpnIb2E32RV+FzNjI15s4IGFqRHX4tNZcjCyQgv6QbW82fDdu5rpT8e8AMCqDQd5e9ovAPR9rjEKhYI/txytsBwPMsTX6XE9zU1jCrVabXivuB6FhISwfPlyzbSNjQ01a9Zk/PjxvPBC3h9WTEwM48eP599//yUlJYWqVavSoUMH5syZo6klWrVqFV988QXnzp3DysqKevXqMXr0aPr0yast+eGHH5g+fTrR0dG0bt2a0NDQAleWVqvVfP311yxatIirV69ib29Po0aN+PDDD2nTpg0zZ85k1apVXL9+HQsLC1q3bs38+fM1w/MfJTk5GTs7O3afisLapmDtlr58uvOyviMUEJuou9F4JTWpa41Hr6Rjx2MM69onouQiE3RzDavS+GnGt49eSceGTXpL3xG0ZKen8sMrz5CUlFRoK0VZ5X9P2P5vCQrTsg3rV+dkkLz69QrL+rikIFSJSUGo5KQgVDJSEHpySUGoZCprQciu3xIUppZl2pc6J52kPwyvICRNY0IIIYQoloJyaBoz0E5ChtFDUgghhBBCD6RGSAghhBDFepo7S0tBSAghhBDFe4qHz0vTmBBCCCEqLakREkIIIUTxyqFpTC1NY0IIIYR4EpVHH6GyjzqrGFIQEkIIIUSxnuaCkPQREkIIIUSlJTVCQgghhCjeUzxqTApCQgghhCiWNI0JIYQQQjyFpEZIsCviDuZWhnPDxaa+9vqOUMDP2+/qO0IBt9MN5z3LV9VWqe8IBRyIMLwbwS7/7bC+IxQw6c3W+o5QwKnNs/UdoYC2UzbrO4IWVXa6To4jNUJCCCGEqLTyC0JlfZTGnj176NGjBx4eHigUCtauXVvkum+88QYKhYIvv/yy1M9NCkJCCCGEMDhpaWk0aNCAhQsXFrve33//zcGDB/Hw8His40jTmBBCCCGKpY+msa5du9K1a9di14mOjuadd95hy5YtdOvW7bFySUFICCGEEMUrx+Hzycna/faUSiVKZen7F6pUKl555RXGjRtHnTp1HjuWNI0JIYQQQmeqVauGnZ2d5jFr1qzH2s/nn3+OiYkJo0aNKlMeqRESQgghRLHKs2ksKioKW1tbzfzHqQ06duwYX331FcePHy9zLqkREkIIIUSxynPUmK2trdbjcQpC//33H7GxsXh5eWFiYoKJiQkRERG8//77+Pj4lGpfUiMkhBBCiGIZ2nWEXnnlFTp27Kg1r3PnzrzyyisMHTq0VPuSgpAQQgghDE5qairh4eGa6WvXrhEWFoajoyNeXl44OTlprW9qaoqbmxs1atQo1XGkICSEEEKI4unhpqtHjx6lffv2mukxY8YAMGTIEJYtW1bGMPdJQUgIIYQQxdJH01i7du1Qq9UlXv/69eulTJRHOksLIYQQotKSGiEDdeHCBUJCQggLC6NmzZqsXbsWX19fTpw4QVBQkL7jaWRlZrNz034unAknLSUdN09XuvZuR1Uvt0qbqaG3A4ODfajlboOLrTnv/3qC0AtxmuWvt/Onc103qtiZk3NPxfmbyXy7I5wz0Uk6yQd5FyJbt24vBw+eJTkpDXt7a1q2rEe37i31dmNEQ8jk52hJuwAnPO3NsTM3ZenhKM7EpGit07mGC8297bEwNeZafDp/norhTlp2hWVqUbMKI7vXpYGvE24OlrwybyebjkZqln8zohUD2wZobbPjZDT9P99WYZkKo++/u4d9u2Iri1du15rn4+nCuh/G6SxDU38nXu9Ynbpe9lSxs2DEkgNsO3Wr0HVnDghiUCs/Zqw5ydLQKzrLWFKG1lm6PFWqglBISAjLly/XTDs6OtK0aVNmz55N/fr1S7SPZcuWMXr0aBITE7Xm+/j4MHr0aEaPHl0uWadMmYKVlRUXL17E2tqalJSUR2+kB+v+2EbsrTv0GdQFG1trTh07z8+L/+TtD4Zga29dKTNZmBpzKSaFdcejmTMwqMDyyLtpfP7veaITMlCaGPFSC28WDm5Er6/2kpieU+H5ADZtOsju0BMMHdYNDw9nIq7HsHTpv1hYKOnQsYlOMhhiJjMTI24mZ3I4MpGhzaoVWN4+wInWfo78eiKa+PQcutRw5fXmXszedYVcVcmr8EvDUmnCmYh4VoZe5ucxzxa6zvawG4z6bp9mOiv3XoVkKY6+/+4K4+9dhe9nva6ZNjbWbSOIpdKE89FJrD4QweLXmxe53nP1PQjycSQmMUOH6UpHQTkUhMrcyahiVLqmsS5dunDr1i1u3brFjh07MDExoXv37vqOpZGdnffL8sqVK7Rq1Qpvb+8CPeMNRU52LudOXaZTj9b4+Hvi5GJP+y4tcHS258j+k5U20/7wOyzaGc6uC7GFLt98OobDV+OJTsjgalwa87ZcxNrclMAqNjrJB3DlSjQNggKpXz8AZ2d7GjepSZ06Ply7Vviv1cqS6UJsKpsvxBWoBcrXxs+R7ZfucDYmlVvJWfx6IhpbcxPqulXce7fjZDSzVp/g3wdqgR6WnasiNilD80iqwBqqwhjC311hTIyNcHa00Twc7Kx0evzd524zb8M5tp66WeQ6VezMmfK/Bry37Ai591Q6TCfyVbqCkFKpxM3NDTc3N4KCgpgwYQJRUVHExcURGhqKQqHQqu0JCwtDoVBw/fp1QkNDGTp0KElJSZpqwqlTp9KuXTsiIiJ47733ClQf7t27l9atW2NhYUG1atUYNWoUaWlpmuU+Pj7MmDGDwYMHY2try+uvv45CoeDYsWNMnz5dc4wHqdVqAgICmDNnjtb8/KwPDjesSCqVCrVKjYmJdsWiiakJkdeK/sOvbJmKY2KsoG9jT1Iycrh8W3e1fv7+Vblw/joxMfEAREXd5vLlG9St56ezDE9Cpgc5Wppia27KpbhUzbzMXBWRCRl4O1roMRkE13Lj/KL+HJzThy+GNcfBuvQXqCsLQ/27i4i+Q4dBM+ga8hkTPl/FrdgEvWUpjEIBcwc34fsdl7hcROHbUJTnBRUNTaVqGntYamoqv/zyCwEBASWqdWnZsiVffvklkydP5uLFiwBYW1szatQoGjRowOuvv85rr72mWf/KlSt06dKFmTNn8tNPPxEXF8fIkSMZOXIkS5cu1aw3Z84cJk+ezJQpUwD47LPP6NixI126dGHs2LFYW1tz584dzfoKhYJhw4axdOlSxo4dq5m/dOlS2rRpQ0CAdn+BiqI0N8PTx53d2w7hXMURaxtLTh+/yI3rt3B0ttdJhichU2FaV3fm0xfrY25qzJ3ULN76+ZjOmsUAunZtQWZGNpMnLcHIyAiVSkXvPm1p3vzxb1z4NGZ6kK0y7+MyJUu72SklK1ezTB92nopm45EIIuJS8Kliy8f9GvH7+I50mfwvqlKMuCkLQ/y7q1fTi5nv98fH04W4+GQWr9xOyNhF/LV4DFaW5nrJ9LA3OlXnnkrNMgPsE1SAHobP60qlKwht2LABa+u89uq0tDTc3d3ZsGEDRkaPrhwzMzPDzs4OhUKBm5t2B0BjY2NsbGy05s+aNYuXXnpJ028oMDCQr7/+mrZt27Jo0SLMzfP+GJ999lnef/99rf2ZmJhgbW2t2d+DBSHI6+80efJkDh8+TLNmzcjJyWHVqlUFaokelJWVRVZWlmb64TsAP46+g7rwz29bmTftexRGCtyrulK3YQ1u3Si8WUgXDDHTw45cS2Dg4gPYW5rRp3FVPuvXgCHfHyJBR00aR4+e59Chswx/rSceHs5ERcXy+2/bsbezpmVwPZ1keBIyPQn+PnBN8//zUYmci4zn2JcvElzbjf/O6q5Z0dD+7lo3ran5f3U/d+rV9KLL4Fls2XOKvl2a6SXTg+pWsyekXQA9Pt+p7yiVXqUrCLVv355FixYBkJCQwLfffkvXrl05fPhwuR/r5MmTnDp1ipUrV2rmqdVqVCoV165do1atWgA0aVL6jqAeHh5069aNn376iWbNmrF+/XqysrL43//+V+Q2s2bNYtq0aaV/IsVwdLZn6Mh+ZGflkJWVhY2tNat/3oiDk125HudJz/SwzJx73IjP4EZ8BmduJPH3qGB6N6rK0v+uPXrjcrBm9S66dm1Os2a1AfD0dOXu3SQ2bTqgt0KHIWZ6UHJWLgA2SmNS/v//edMmRCdn6itWARGxqdxJzsSvio1OC0KG/ndna22Bd1Vnom7e1XcUIG9EmZO1kr3Tu2jmmRgb8WHf+gxtH0CbKVv0mK4gGTX2FLGystJqOvrhhx+ws7Pj+++/57nnngPQuoBTTs7jN1ekpqYyYsQIRo0aVWCZl5eXVqbHMXz4cF555RXmz5/P0qVL6d+/P5aWlkWuP3HiRM2VOSGvRqhatYIjYx6HmdIUM6UpGemZhF+IoFOPVuWy36ctU1GMFApMdTiiJTs7p8CHkpGRkc6aUgpjiJkeFJ+eQ3JmDoEuVtxMzqtZVZoY4eVgwf7rhtP3xN3REkdrJbf1NALJUP/u0jOyiLp1l+4dGuk7CgB/H4li38U4rXnL3g5m7eFIVh+M0FOqoklB6CmmUCgwMjIiIyMDFxcXAG7duoWDgwOQ1wH5QWZmZty7V3BoamHzGzVqxLlz5yqsz87zzz+PlZUVixYtYvPmzezZs6fY9ZVK5WPd5bc44Reuo1aDs6sD8XcS2br+P5xdHWjYTH/9OvSdycLMmGqO9wukHg4WVHezITkjh8T0HF5t48vui3HcScnC3tKUfs28cLFRsv1sjE7yAdRvEMDGfw/g6GSLh4czkZG32bb1MMGtSnYZiac1k5mxAmcrM820o6UpHrZK0nPukZiRy56r8XQMdOFOajZ303PoWtOF5MzcIkeZlQcrpQm+braaaW8Xa+p6O5KQmkViahbjXghi/eEIYhMz8Kliw9RBjbl2O5mdp6IrLFNh9P1397A532+g3TO1cHd1IC4+mW9XbMPY2Iiu7YJ0lsHSzBhvl/uXDqjmZEWtqnYkpWdzMyGDxIeawnPvqYhLzuRabOrDu9I7hSLvUdZ9GKJKVxDKysoiJibvCychIYEFCxaQmppKjx49CAgIoFq1akydOpVPPvmES5cuMXfuXK3tfXx8SE1NZceOHTRo0ABLS0ssLS3x8fFhz549DBgwAKVSibOzM+PHj6d58+aMHDmS4cOHY2Vlxblz59i2bRsLFiwo83MxNjYmJCSEiRMnEhgYSIsWLcq8z9LKzMxix8Z9JCemYmGppFb9QDo8H4yxsbHOsxhKptoetiwZ2lQz/X6XvL4K609E8+mG8/g4W9E9yAN7SzOS0rM5ezOZ4T8d4WpcWlG7LHeDBnVi7dr/WPnLVlJS0rG3t6ZN24b06BGsswyGmKmavQVvBftopnvVzeujdyQykd/CbrIr/C5mxka82MADC1MjrsWns+RgZIVdQwggyM+Zfybdbz6Z+Upe/5Zfd4cz7qcD1PZyoH9rf+yszIhJyCD0dDSz/jhBdq5uh2Lr++/uYbF3khj/2SoSU9JxsLOmUR0ffpk/EkcdXtOonrcDv77bRjP98Qt5hfo1ByP44JdjOsshilfpCkKbN2/G3d0dABsbG2rWrMnq1atp164dAL/++itvvvkm9evXp2nTpsycOVOr303Lli1544036N+/P3fv3mXKlClMnTqV6dOnM2LECPz9/cnKykKtVlO/fn12797NRx99ROvWrVGr1fj7+9O/f/9yez6vvvoqn376KUOHDi23fZZG3aAa1A0q3Z1+K5q+Mx27nkDjKVuLXD7ud/1dVyWfubmSAQM6MmBAR31H0TCETFfupvP+unPFrrPlYhxbHmrSqEj7zsfgPGhZkcv7fabbK0gXRd9/dw+bPfElfUfg0OU7+I38q8TrG1q/oAfl1QiVtWmsnMKUs0pVEFq2bNkj71gbHBzMqVOntOY9fNO3RYsWaTpc52vevDknTxb8gmvatClbtxb9pVjUTeIebpLz8fEp9OZz0dHRmJqaMnjw4CKPIYQQQpRJOTSNyfB5Ua6ysrKIi4tj6tSp/O9//6NKlSr6jiSEEEI8cSrdlaWfFr/++ive3t4kJiYye/ZsfccRQgjxFHuarywtBaEnVEhICPfu3ePYsWNUrVpV33GEEEI8xfJHjZX1YYikICSEEEKISkv6CAkhhBCiWEZGCoyMylaloy7j9hVFCkJCCCGEKNbTfEFFaRoTQgghRKUlNUJCCCGEKJbca0wIIYQQldbT3DQmBSEhhBBCFOtprhGSPkJCCCGEqLSkRkgIIYQQxXqaa4SkICRoUMUWK2sbfccwaH1HtdJ3hAImbjyv7whPhM2bT+s7QgFdutTTd4QCpo6Zr+8IBUROekvfEQrYMKGjviNoSU1Jpu3Sij/O09xHSJrGhBBCCFFpSY2QEEIIIYqloByaxjDMKiEpCAkhhBCiWNI0JoQQQgjxFJIaISGEEEIUS0aNCSGEEKLSkqYxIYQQQoinkNQICSGEEKJY0jQmhBBCiErraW4ak4KQEEIIIYr1NNcISR8hIYQQQlRaUiMkhBBCiOKVQ9OYgV5YWgpC5UWhUPD333/Tu3fvCjuGj48Po0ePZvTo0RV2jNIYPupLYu8kFZj/fKcmvDG0mx4SGWamb1dsZfHK7VrzfDxdWPfDOJ1lqOFqTbc6VfB1ssTB0oz5u8I5FnX/dWriZU+H6i74OFliozThw/XniEzIqHSZWtSswsjudWng64SbgyWvzNvJpqORmuXfjGjFwLYBWtvsOBlN/8+3VVgmQ3ydWjb0551XOtKgphfuLna8NHYJ/+4+pVmecGRBodtN/upvvvllR4Vk8nO0pF2AE5725tiZm7L0cBRnYlK01ulcw4Xm3vZYmBpzLT6dP0/FcCctu0LyFCXubhLf/ryFg8cvkpmdg6ebEx++8wK1Ajx1mqO0nuamMSkIlVBMTAyffPIJGzduJDo6GldXV4KCghg9ejQdOnTg1q1bODg46DumTs2d+RoqlVozHREVy+RZKwh+po5keoi/dxW+n/W6ZtrYWLet0koTIyITMtgTfpfR7f0LXX4xNpVD1+MZ3tKn0mayVJpwJiKelaGX+XnMs4Wusz3sBqO+26eZzsq9V6GZDPJ1slBy5lI0v6w7wC9fvF5geY0uE7WmO7aswzcfD2LdrrAKy2RmYsTN5EwORyYytFm1AsvbBzjR2s+RX09EE5+eQ5carrze3IvZu66Q+8BnRkVKTs3gjYnf0aieH3MnhWBvZ0XUrbvYWFno5PiicFIQKoHr168THByMvb09X3zxBfXq1SMnJ4ctW7bw9ttvc+HCBdzc3PQdU+fsbK20ptes24tbFQfq1vLWUyLDzARgYmyEs6ON3o5/6mYyp24mF7l839V4AJytzHQVySAz7TgZzY6T0cWuk52rIjapYmtcHmSIr9P2/efYvv9ckctj72rXxDzfph7/HbtMRPTdCst0ITaVC7GpRS5v4+fI9kt3OBuTt86vJ6KZ2rk6dd1sCCvm9S1PK//ajauzHR+986JmnkcVR50cu6ye5lFj0lm6BN566y0UCgWHDx/mhRdeoHr16tSpU4cxY8Zw8OBBIK/Kb+3atZptbty4wcCBA3F0dMTKyoomTZpw6NAhAK5cuUKvXr2oUqUK1tbWNG3alO3btZtOYmNj6dGjBxYWFvj6+rJy5coCuebNm0e9evWwsrKiWrVqvPXWW6SmFv1BUJFycu8RuvcUHds2NJjqT0PKFBF9hw6DZtA15DMmfL6KW7EJes0jHl9wLTfOL+rPwTl9+GJYcxyslfqOZNBcHG14rlVdfvnngN4yOFqaYmtuyqW4+5+PmbkqIhMy8HbUXW3M3iPnqRngycezV9FtyCeEjPmGdVuP6Oz4ZZHfNFbWhyGSgtAjxMfHs3nzZt5++22srKwKLLe3ty8wLzU1lbZt2xIdHc26des4efIkH3zwASqVSrP8+eefZ8eOHZw4cYIuXbrQo0cPIiPv90UICQkhKiqKXbt2sWbNGr799ltiY2O1jmNkZMTXX3/N2bNnWb58OTt37uSDDz4o8rlkZWWRnJys9Sgvh45eIC09kw5tg8ptn2VlKJnq1fRi5vv9WTRzOB+P7EN0TAIhYxeRlp6p11yi9HaeiubtRf/R99MtTPvtGC1ruvH7+I4YGegHvCEY2O0ZUtMyWV+BzWKPYqvMa/xIydJuxkzJytUs04WbtxNYu/kQnh5OzJ8ylD5dnmH+j+v5d+dxnWV4kuzZs4cePXrg4eFRoLIhJyeH8ePHayoDPDw8GDx4MDdv3iz1caRp7BHCw8NRq9XUrFmzxNusWrWKuLg4jhw5gqNjXrVnQMD9DpYNGjSgQYMGmukZM2bw999/s27dOkaOHMmlS5fYtGkThw8fpmnTpgD8+OOP1KpVS+s4D3aa9vHxYebMmbzxxht8++23heaaNWsW06ZNK/HzKI1tu07QuEEgTg76a/55mKFkat30/rlT3c+dejW96DJ4Flv2nKJvl2Z6TCZK6+8D1zT/Px+VyLnIeI59+SLBtd347+wtPSYzXC/1bM7qzUfJys7VdxS9U6nV1PSvyhsvdwagup8HVyNvs3bLIZ5/tpGe0xVPH01jaWlpNGjQgGHDhtG3b1+tZenp6Rw/fpxJkybRoEEDEhISePfdd+nZsydHjx4t1XGkIPQIanXpO9GFhYXRsGFDTSHoYampqUydOpWNGzdy69YtcnNzycjI0NQInT9/HhMTExo3bqzZpmbNmgVqn7Zv386sWbO4cOECycnJ5ObmkpmZSXp6OpaWlgWOO3HiRMaMGaOZTk5Oplq1gp0KSys2LpGTZ64y4b1+Zd5XeTHETPlsrS3wrupM1M2K6y8hdCMiNpU7yZn4VbGRglAhWgT5U93HjVc/XKrXHMlZeYUwG6UxKVn3C2Q2ShOik3VXM+vkYINPNVeteT6eLoQeOKuzDI9LH6PGunbtSteuXQtdZmdnx7Zt2qM1FyxYQLNmzYiMjMTLy6vEx5GmsUcIDAxEoVBw4cKFEm9jYVF8m/PYsWP5+++/+fTTT/nvv/8ICwujXr16ZGeXfBjn9evX6d69O/Xr1+fPP//k2LFjLFy4EKDI/SiVSmxtbbUe5WH77jDs7Kxo2rB6ueyvPBhipnzpGVlE3bqr187Tony4O1riaK3kdqLuOk8/SV7u1YIT5yI5c7n4DugVLT49h+TMHAJd7ndvUJoY4eVgQUS87t67+jW9iIyO05oXefMubi72OstgCB7uopGVlVUu+01KSkKhUBTaZaU4UhB6BEdHRzp37szChQtJS0srsDwxMbHAvPr16xMWFkZ8fHyh+9y3bx8hISH06dOHevXq4ebmxvXr1zXLa9asSW5uLseOHdPMu3jxotaxjh07hkqlYu7cuTRv3pzq1as/VttoWalUanbsCePZ1g10PiS8KIaWac73Gzh66grRMfGEnbvO6Ok/Y2xsRNd2QTrLkP+h7+WQV0h3sVbi5WCBk5UpAFZmxng5WFDV3hwAdztzvBwssDOvuEpjQ8xkpTShrrcjdb3zanO9Xayp6+1IVScrrJQmTB3UhMYBLlRztqZ1HXd+ef9Zrt1OZuepivuiN8jXycKMutWrUrd6VQC8PZyoW70qnlXuX0LExsqcXh0asuKf/RWW40Fmxgo8bJV42OZ1Xne0NMXDVom9Rd7rsOdqPB0DXahTxRo3GyWDGnqQnJlb4FpDFal/j1acvRTF8jWh3Lh1l617wli39TB9uzbXWYbHVZ6dpatVq4adnZ3mMWvWrDLny8zMZPz48QwcOLDUP/KlaawEFi5cSHBwMM2aNWP69OnUr1+f3Nxctm3bxqJFizh//rzW+gMHDuTTTz+ld+/ezJo1C3d3d06cOIGHhwctWrQgMDCQv/76ix49eqBQKJg0aZKmIzVAjRo16NKlCyNGjGDRokWYmJgwevRorZqmgIAAcnJy+Oabb+jRowf79u1j8eLFOntN8p08c5W4O0l0bNdQ58cuiqFlir2TxPjPVpGYko6DnTWN6vjwy/yRONpb6yyDn5MlH3WuoZl+uWlek+ie8Dss2R9Bo2r2jAj20Sx/p40fAH+dvMlfJyumyccQMwX5OfPPpC6a6Zmv5PXh+nV3OON+OkBtLwf6t/bHzsqMmIQMQk9HM+uPE2TnqoraZZkZ5OtUy5sN372rmf50zAsArNpwkLen/QJA3+cao1Ao+HNL6fprPK5q9ha89cDr0Ktu3iVNjkQm8lvYTXaF38XM2IgXG3hgYWrEtfh0lhyM1Nk1hABqBXoya/zLLP5lC8v+2Im7qwPvDutOZwMaZFKU8uwjFBUVpVVYUSrLNvIyJyeHfv36oVarWbRoUelzqR+nE0wldOvWLT755BM2bNjArVu3cHFxoXHjxrz33nu0a9euwJWlIyIieP/999m2bRu5ubnUrl2bhQsX0qxZM65fv86wYcM4ePAgzs7OjB8/ntWrVxMUFMSXX34J5F3Acfjw4Wzfvp0qVaowc+ZMJk2apHVl6fnz5/PFF1+QmJhImzZteOmllxg8eDAJCQklqhpMTk7Gzs6Ovw9fwcpammmK4+NYcMSgvk3ceP7RKwk2bz6t7wgFdOlST98RCtj4jX778RRm2KS39B2hgFcbGdYVoFNTkmlbvxpJSUnl1t3hQfnfE8GztmJiXrbPwdzMNPZNfO6xshZ194b8QtDVq1fZuXMnTk5Opc4lNUIl5O7uzoIFC1iwoPBLxz9cnvT29mbNmjWFruvj48POnTu15r399tta025ubmzYsEFr3iuvvKI1/d577/Hee+8Vu44QQgjxNMovBF2+fJldu3Y9ViEIpCAkhBBCiEfQx/D51NRUwsPDNdPXrl0jLCwMR0dH3N3defHFFzl+/DgbNmzg3r17xMTEAHl9e83MSn6ldSkICSGEEKJY+hg+f/ToUdq3b6+Zzr/8y5AhQ5g6dSrr1q0DICgoSGu7Xbt20a5duxIfRwpCQgghhDA47dq1K/ZafuXVxVkKQkIIIYQoloJyaBorlyTlTwpCQgghhCiWkUJR5nvqGeo9+fR/tTkhhBBCCD2RGiEhhBBCFEsfo8Z0RQpCQgghhCiWPkaN6YoUhIQQQghRLCNF3qOs+zBE0kdICCGEEJWW1AgJIYQQoniKcmjaMtAaISkICSGEEKJY0llaPNUczc2wtlDqO4bGj8dv6DtCAb1r6TtBQVXsLfQdoYDlvx3Wd4QCFo/vqO8IBaw9eVvfEQpo+soAfUco4O+tF/QdoYDetVz0HUFLWma2viM88aQgJIQQQohiKf7/X1n3YYikICSEEEKIYsmoMSGEEEKIp5DUCAkhhBCiWJX+gorr1q0r8Q579uz52GGEEEIIYXgq/aix3r17l2hnCoWCe/fulSWPEEIIIYTOlKggpFKpKjqHEEIIIQyUkUKBURmrdMq6fUUpUx+hzMxMzM3NyyuLEEIIIQzQ09w0VupRY/fu3WPGjBlUrVoVa2trrl69CsCkSZP48ccfyz2gEEIIIfQrv7N0WR+GqNQFoU8++YRly5Yxe/ZszMzMNPPr1q3LDz/8UK7hhBBCCCEqUqkLQj///DNLlizhpZdewtjYWDO/QYMGXLhgeJdDF0IIIUTZ5DeNlfVhiErdRyg6OpqAgIAC81UqFTk5OeUSSgghhBCGQzpLP6B27dr8999/eHt7a81fs2YNDRs2LLdgld2SJUuYMWMG0dHRzJs3j8TERNauXUtYWJi+o2mJu5vEtz9v4eDxi2Rm5+Dp5sSH77xArQBPnRzfz9GSdgFOeNqbY2duytLDUZyJSdFap3MNF5p722Nhasy1+HT+PBXDnTTd3ahw+Kgvib2TVGD+852a8MbQbjrJYIivU4uaVRjZvS4NfJ1wc7DklXk72XQ0UrP8mxGtGNhW+0fXjpPR9P98W4VlephKpWLdur0cPHiW5KQ07O2tadmyHt26t9RZf4cartZ0q1MFXydLHCzNmL8rnGNR98+nJl72dKjugo+TJTZKEz5cf47IhIwKzVTPw5b/NfYk0MUKJ2slUzecY//VeACMjRSENPemmY8D7nbmpGXlcjwqiR/3Xye+As+npv5OvN6xOnW97KliZ8GIJQfYdupWoevOHBDEoFZ+zFhzkqWhVyos08MM4bNAFFTqgtDkyZMZMmQI0dHRqFQq/vrrLy5evMjPP//Mhg0bKiJjiYWEhLB8+XIATExMcHR0pH79+gwcOJCQkBCMjJ6MO4okJyczcuRI5s2bxwsvvICdnR2zZ8/Wd6wCklMzeGPidzSq58fcSSHY21kRdesuNla6uyu6mYkRN5MzORyZyNBm1Qosbx/gRGs/R349EU18eg5darjyenMvZu+6Qq5KrZOMc2e+huqBY0VExTJ51gqCn6mjk+ODYb5OlkoTzkTEszL0Mj+PebbQdbaH3WDUd/s001m5ur1O2aZNB9kdeoKhw7rh4eFMxPUYli79FwsLJR06NtFJBqWJEZEJGewJv8vo9v6FLr8Ym8qh6/EMb+mjk0zmpsZcjUtly9nbTOleq0CeQFcrVh6J4mpcGtbmJrzVxo/p3Wsx8veTFZbJUmnC+egkVh+IYPHrzYtc77n6HgT5OBKTWLGFxcIYwmfB41L8/6Os+zBEpS4I9erVi/Xr1zN9+nSsrKyYPHkyjRo1Yv369XTq1KkiMpZKly5dWLp0Kffu3eP27dts3ryZd999lzVr1rBu3TpMTAo+5ZycHExNTfWQtnCRkZHk5OTQrVs33N3d9R2nSCv/2o2rsx0fvfOiZp5HFUedZrgQm8qF2NQil7fxc2T7pTucjclb59cT0UztXJ26bjaE3UzWSUY7Wyut6TXr9uJWxYG6tbyL2KL8GeLrtONkNDtORhe7Tnauitgk3X9h5btyJZoGQYHUr59XM+XsbM/hw+e4dq3wmoaKcOpmMqeKeQ/2/X9NjLOVWZHrlLcjEQkciUgodFl69j0mrD2rNW9B6BUWDAjCxVpJXGpWhWTafe42u8/dLnadKnbmTPlfA0IW7uXHN1tWSI7iGMJnweN6mm+x8VhVJK1bt2bbtm3ExsaSnp7O3r17ee6558o722NRKpW4ublRtWpVGjVqxIcffsg///zDpk2bWLZsGZD3ZixatIiePXtiZWXFJ598wr1793j11Vfx9fXFwsKCGjVq8NVXX2ntOzc3l1GjRmFvb4+TkxPjx49nyJAhWlfezsrKYtSoUbi6umJubk6rVq04cuSIZnloaCgKhYIdO3bQpEkTLC0tadmyJRcvXgRg2bJl1KtXDwA/Pz8UCgXXr1/XyrFnzx5MTU2JiYnRmj969Ghat25dTq/ko+09cp6aAZ58PHsV3YZ8QsiYb1i39cijN9QRR0tTbM1NuRR3vwCQmasiMiEDb0fd1Vo9KCf3HqF7T9GxbUOD+VAwxNcpX3AtN84v6s/BOX34YlhzHKyVOj2+v39VLpy/TkxMXmEjKuo2ly/foG49P53meNJZKY1RqdWkZefqLYNCAXMHN+H7HZe4/FCzsD4Y4mdBZfXYbUVHjx5lxYoVrFixgmPHjpVnpnL37LPP0qBBA/766y/NvKlTp9KnTx9Onz7NsGHDUKlUeHp6snr1as6dO8fkyZP58MMP+eOPPzTbfP7556xcuZKlS5eyb98+kpOTWbt2rdaxPvjgA/7880+WL1/O8ePHCQgIoHPnzsTHx2ut99FHHzF37lyOHj2KiYkJw4YNA6B///5s374dgMOHD3Pr1i2qVdNuymjTpg1+fn6sWLFCMy8nJ4eVK1dq9lOYrKwskpOTtR5lcfN2Ams3H8LTw4n5U4bSp8szzP9xPf/uPF6m/ZYXW2Ve7V9KlnZzSkpWrmaZrh06eoG09Ew6tA3Sy/ELY4ivE8DOU9G8veg/+n66hWm/HaNlTTd+H99Rpx0uu3ZtQdOmtZk8aQlvjJjNjOlL6dipKc2bG35ThqEwNVYwPNiX0ItxpGfr7xZMb3Sqzj2VmmU67BNUHEP8LCiOkaJ8Hoao1J9yN27cYODAgezbtw97e3sAEhMTadmyJb/99huenrrpJFtaNWvW5NSpU5rpQYMGMXToUK11pk2bpvm/r68vBw4c4I8//qBfv34AfPPNN0ycOJE+ffoAsGDBAv7991/NNmlpaSxatIhly5bRtWtXAL7//nu2bdvGjz/+yLhx4zTrfvLJJ7Rt2xaACRMm0K1bNzIzM7GwsMDJyQkAFxcX3NzcCn0+r776KkuXLtXsc/369WRmZmqyFmbWrFlaz7GsVGo1Nf2r8sbLnQGo7ufB1cjbrN1yiOefbVRux3mabNt1gsYNAnFysNF3FIP394Frmv+fj0rkXGQ8x758keDabvx3VjdNU0ePnufQobMMf60nHh7OREXF8vtv27G3s6ZlcD2dZHiSGRsp+LhrTQC+1mMBpG41e0LaBdDj8516y/CwJ+2zQJrGHjB8+HBycnI4f/488fHxxMfHc/78eVQqFcOHD6+IjOVCrVZrvQlNmhTs6Lhw4UIaN26Mi4sL1tbWLFmyhMjIvFEsSUlJ3L59m2bNmmnWNzY2pnHjxprpK1eukJOTQ3BwsGaeqakpzZo14/z581rHql+/vub/+f2AYmNjS/x8QkJCCA8P5+DBg0Bek1q/fv2wsrIqcpuJEyeSlJSkeURFRZX4eIVxcrDBp5qr1jwfTxduFzIqQh+Ss/Kq4W2UxlrzbZQmmmW6FBuXyMkzV+nU3rBGVxra61SUiNhU7iRn4ldFd18ca1bvomvX5jRrVhtPT1datKhLx05N2bTpgM4yPKnyC0GuNuZMWHtGr7VBTf2dcLJWsnd6Fy591ZtLX/XG08mKD/vWZ8+0zjrPY6ifBZVVqWuEdu/ezf79+6lRo4ZmXo0aNfjmm2902j+ltM6fP4+vr69m+uECw2+//cbYsWOZO3cuLVq0wMbGhi+++IJDhw5VSJ4HO2fnF9BKc3NbV1dXevTowdKlS/H19WXTpk2EhoYWu41SqUSpLL8+FvVrehEZHac1L/LmXdxc7MvtGGURn55DcmYOgS5W3EzO66CpNDHCy8GC/dcL7+hZkbbvDsPOzoqmDavr/NjFMbTXqSjujpY4Wiu5rcPRPtnZOQV+xRoZGaFS62bE4ZMqvxBU1d6ccX+dJiVTvwXqv49Ese+i9mfVsreDWXs4ktUHI3Sex1A/Cx7FQCt0yqzUBaFq1aoVeuHEe/fu4eHhUS6hytvOnTs5ffo07733XpHr7Nu3j5YtW/LWW29p5l25cr8q187OjipVqnDkyBHatGkD5D3n48ePExQUBIC/vz9mZmbs27dPc52lnJwcjhw5wujRo8v9eQ0fPpyBAwfi6emJv7+/Vk2ULvTv0YoRExezfE0oHYLrce5yFOu2HuaDN/voLIOZsUJrtIyjpSketkrSc+6RmJHLnqvxdAx04U5qNnfTc+ha04XkzNwC19CpaCqVmh17wni2dQOMjXV/GQdDfJ2slCb4utlqpr1drKnr7UhCahaJqVmMeyGI9YcjiE3MwKeKDVMHNeba7WR2nip+pFl5qt8ggI3/HsDRyRYPD2ciI2+zbethglvVf/TG5URpYkQVm/s/YFyslXg5WJCWncvdtByszIxxsjLDwTLvx5W7Xd6NsJMyckiqoAKIuakRHnb3O9K72Zrj52xFSmYu8enZTHq+JoEu1kxafw4jhUKTLSUzt+Iux2BmjLeLtWa6mpMVtarakZSezc2EDBIfuoZR7j0VccmZXCtmNGVF0PdnweN6mpvGSl0Q+uKLL3jnnXdYuHChpnnp6NGjvPvuu8yZM6fcA5ZWVlYWMTExWsPnZ82aRffu3Rk8eHCR2wUGBvLzzz+zZcsWfH19WbFiBUeOHNGqRXrnnXeYNWsWAQEB1KxZk2+++YaEhATNm2tlZcWbb77JuHHjcHR0xMvLi9mzZ5Oens6rr75a7s+1c+fO2NraMnPmTKZPn17u+3+UWoGezBr/Mot/2cKyP3bi7urAu8O601mHnf+q2VvwVrCPZrpX3bw+VUciE/kt7Ca7wu9iZmzEiw08sDA14lp8OksORursGkL5Tp65StydJDq2009VuCG+TkF+zvwzqYtmeuYrec3Ov+4OZ9xPB6jt5UD/1v7YWZkRk5BB6OloZv1xguzcktecltWgQZ1Yu/Y/Vv6ylZSUdOztrWnTtiE9eujuR4efkyUfdb5fA/9y07zBE3vC77BkfwSNqtkz4oH39p02eSPa/jp5k79OVkxfququNsx54X4fqTf+/5hbz91mxaFIWvrl9XNcPEj7fB/752lORVdM03k9bwd+fbeNZvrjF/IKq2sORvDBL4YzoEffnwWPqzw6Oz/RnaUdHBy0SnJpaWk888wzmmvy5ObmakY+PTiUXB82b96Mu7s7JiYmODg40KBBA77++muGDBlS7AUVR4wYwYkTJ+jfvz8KhYKBAwfy1ltvsWnTJs0648ePJyYmhsGDB2NsbMzrr79O586dte659tlnn6FSqXjllVdISUmhSZMmbNmyBQcHh3J/rkZGRoSEhPDpp58WW8irSMFNaxLctKZejg1w5W467687V+w6Wy7GseWhanFda1jfn3Wrpujt+Ib4Ou07H4PzoGVFLu/3me6uIF0Uc3MlAwZ0ZMCAjnrLcP52Ki//XPQX+X9X7vLflbs6TASnopN47uu9RS4vbllFOXT5Dn4j/3r0iv+vzZQtFZimaPr+LBAFKdTqRzd251+tuSSGDBlSpkBPEpVKRa1atejXrx8zZszQS4ZXX32VuLg41q1bV+ptk5OTsbOzY/epKKxtbB+9gY78ePyGviMU0LuWi74jFLD2vH4Ld4VZ/tthfUcoYPF4/RViirL2ZPEX/tOHWD1caflRwi+VfACJrix/17D6wqalptCnmT9JSUnY2pb/53j+98SgH/djZmn96A2KkZ2eyqpXW1ZY1sdVohqhylS4KU5ERARbt26lbdu2ZGVlsWDBAq5du8agQYN0niUpKYnTp0+zatWqxyoECSGEECUlt9goQmZmJtnZ2h3QDKmUV96MjIxYtmwZY8eORa1WU7duXbZv306tWrUevXE569WrF4cPH+aNN94wiFubCCGEEE+iUheE0tLSGD9+PH/88Qd37xZsl753T3/Xiqho1apVY9++fY9eUQceNVReCCGEKC9GCkWZr+quy6vCl0apx+598MEH7Ny5k0WLFqFUKvnhhx+YNm0aHh4e/PzzzxWRUQghhBB6pFCUz8MQlbpGaP369fz888+0a9eOoUOH0rp1awICAvD29mblypW89NJLFZFTCCGEEKLclbpGKD4+Hj+/vGtG2Nraam4m2qpVK/bs2VO+6YQQQgihd/kXVCzrwxCVuiDk5+fHtWt5N0OsWbOm5u7s69ev19yEVQghhBBPj6e5aazUBaGhQ4dy8uRJIO+u6QsXLsTc3Jz33ntP6+7qQgghhBCGrtQFoffee49Ro0YB0LFjRy5cuMCqVas4ceIE7777brkHFEIIIYR+5Y8aK+ujNPbs2UOPHj3w8PBAoVCwdu1areVqtZrJkyfj7u6OhYUFHTt25PLly6V/bqXe4iHe3t707duX+vV1dxNCIYQQQuiOPprG0tLSaNCgAQsXLix0+ezZs/n6669ZvHgxhw4dwsrKis6dO5OZmVmq45Ro1NjXX39d4h3m1xYJIYQQ4umgj7vPd+3ala5duxa6TK1W8+WXX/Lxxx/Tq1cvAH7++WeqVKnC2rVrGTBgQImPU6KC0Pz580u0M4VCIQUhIYQQQhQpOTlZa1qpVKJUKku1j2vXrhETE0PHjvfvJWhnZ8czzzzDgQMHyr8glD9KTDydVpy8iZll8qNX1JFXG3nqO0IBr3x/UN8RCmjX2PBeJ1EyhniD03o+jvqOUMCkrjX0HaGA4zGG81kJkJmWopPjGFH2vjT521erVk1r/pQpU5g6dWqp9hUTEwNAlSpVtOZXqVJFs6ykynSvMSGEEEI8/cqzaSwqKkrrvqSlrQ0qb2XuLC2EEEIIUVK2trZaj8cpCLm5uQFw+/Ztrfm3b9/WLCspKQgJIYQQolgKBRiV8VGeF1T09fXFzc2NHTt2aOYlJydz6NAhWrRoUap9SdOYEEIIIYqVX5gp6z5KIzU1lfDwcM30tWvXCAsLw9HRES8vL0aPHs3MmTMJDAzE19eXSZMm4eHhQe/evUt1HCkICSGEEMLgHD16lPbt22umx4wZA8CQIUNYtmwZH3zwAWlpabz++uskJibSqlUrNm/ejLm5eamO81gFof/++4/vvvuOK1eusGbNGqpWrcqKFSvw9fWlVatWj7NLIYQQQhgofVxHqF27dqjV6mL3N336dKZPn16mXKXuI/Tnn3/SuXNnLCwsOHHiBFlZWQAkJSXx6aeflimMEEIIIQxPWfsHlUfTWkUpdUFo5syZLF68mO+//x5TU1PN/ODgYI4fP16u4YQQQgghKlKpm8YuXrxImzZtCsy3s7MjMTGxPDIJIYQQwoA8zr3CCtuHISp1jZCbm5tWL+58e/fuxc/Pr1xCCSGEEMJw6OPu87pS6oLQa6+9xrvvvsuhQ4dQKBTcvHmTlStXMnbsWN58882KyCiEEEIIPTIqp4chKnXT2IQJE1CpVHTo0IH09HTatGmDUqlk7NixvPPOOxWRUQghhBCiQpS6IKRQKPjoo48YN24c4eHhpKamUrt2baytrSsin14sW7aM0aNHS5+nh/g5WtIuwAlPe3PszE1ZejiKMzHaN/zrXMOF5t72WJgacy0+nT9PxXAnLVunOePuJvHtz1s4ePwimdk5eLo58eE7L1ArQDc3KW3o7cDgYB9qudvgYmvO+7+eIPRCnGb56+386VzXjSp25uTcU3H+ZjLf7gjnTHRShWUyxPeuRc0qjOxelwa+Trg5WPLKvJ1sOhqpWf7NiFYMbBugtc2Ok9H0/3xbhWV6mEqlYt26vRw8eJbkpDTs7a1p2bIe3bq3LPNQ4pKq52HL/xp7EuhihZO1kqkbzrH/ajwAxkYKQpp708zHAXc7c9KycjkelcSP+68TX4HvnSGeTw8bPupLYu8U/Jt6vlMT3hjaTWc5HpSVmc3OTfu5cCactJR03Dxd6dq7HVW9SndLCH14mvsIPfYFFc3MzKhdu3aZA8TExDBr1iw2btzIjRs3sLOzIyAggJdffpkhQ4ZgaWlZ5mOI8mFmYsTN5EwORyYytFm1AsvbBzjR2s+RX09EE5+eQ5carrze3IvZu66Qqyr6WhDlKTk1gzcmfkejen7MnRSCvZ0VUbfuYmNloZPjA1iYGnMpJoV1x6OZMzCowPLIu2l8/u95ohMyUJoY8VILbxYObkSvr/aSmJ5TIZkM8b2zVJpwJiKelaGX+XnMs4Wusz3sBqO+26eZzsq9VyFZirJp00F2h55g6LBueHg4E3E9hqVL/8XCQkmHjk10ksHc1JircalsOXubKd1raS1TmhgR6GrFyiNRXI1Lw9rchLfa+DG9ey1G/n6ywjIZ4vn0sLkzX0P1wLEiomKZPGsFwc/U0cnxC7Puj23E3rpDn0FdsLG15tSx8/y8+E/e/mAItvaGXZlgRNn7+BhhmCWhUheE2rdvX+wvoZ07d5Z4X1evXiU4OBh7e3s+/fRT6tWrh1Kp5PTp0yxZsoSqVavSs2fPAtvl5ORoDd0X2rKzszEzMyv3/V6ITeVCbGqRy9v4ObL90h3OxuSt8+uJaKZ2rk5dNxvCbiaXe57CrPxrN67Odnz0zouaeR5VHHVy7Hz7w++wP/xOkcs3n47Rmp635SK9G3sSWMWGI9fiKySTIb53O05Gs+NkdLHrZOeqiE3KqJDjl8SVK9E0CAqkfv28milnZ3sOHz7HtWu3dJbhSEQCRyISCl2Wnn2PCWvPas1bEHqFBQOCcLFWEpeaVSGZDPF8epidrZXW9Jp1e3Gr4kDdWt46Of7DcrJzOXfqMgOH9cTHP692un2XFlw6d5Uj+0/S4flgveQSj9F3KSgoiAYNGmgetWvXJjs7m+PHj1OvXr1S7eutt97CxMSEo0eP0q9fP2rVqoWfnx+9evVi48aN9OjRA8hrjlu0aBE9e/bEysqKTz75hHv37vHqq6/i6+uLhYUFNWrU4KuvvtLaf2hoKM2aNcPKygp7e3uCg4OJiIgA4OTJk7Rv3x4bGxtsbW1p3LgxR48e1dp+y5Yt1KpVC2tra7p06cKtW/c//FQqFdOnT8fT0xOlUklQUBCbN2/WLL9+/ToKhYLffvuNli1bYm5uTt26ddm9e7dWPoVCwcaNG6lfvz7m5uY0b96cM2fOaOXYu3cvrVu3xsLCgmrVqjFq1CjS0tI0y318fJgxYwaDBw/G1taW119/vVTvQ3lwtDTF1tyUS3H3Pxwzc1VEJmTg7ai72pi9R85TM8CTj2evotuQTwgZ8w3rth7R2fFLy8RYQd/GnqRk5HD5dsqjN6gAhvLeFSa4lhvnF/Xn4Jw+fDGsOQ7Wpb9LdVn4+1flwvnrxMTkFVCjom5z+fIN6tYz3BGyVkpjVGo1adm5ejm+IZ5PObn3CN17io5tG+qsSfNhKpUKtUqNiYl2/YOJqQmR127qJVNp5DeNlfVhiEpdIzR//vxC50+dOpXU1KJ/ITzs7t27bN26lU8//RQrK6tC13nwhJ06dSqfffYZX375JSYmJqhUKjw9PVm9ejVOTk7s37+f119/HXd3d/r160dubi69e/fmtdde49dffyU7O5vDhw9r9vnSSy/RsGFDFi1ahLGxMWFhYVq1TOnp6cyZM4cVK1ZgZGTEyy+/zNixY1m5ciUAX331FXPnzuW7776jYcOG/PTTT/Ts2ZOzZ88SGBio2c+4ceP48ssvqV27NvPmzaNHjx5cu3YNJycnrXW++uor3Nzc+PDDD+nRoweXLl3C1NSUK1eu0KVLF2bOnMlPP/1EXFwcI0eOZOTIkSxdulSzjzlz5jB58mSmTJlS5GuelZWluRI45N2pt7zYKvNOpZQs7aaLlKxczTJduHk7gbWbD9G/ZzCDX2zH+fAbzP9xPSYmxjz/bCOd5XiU1tWd+fTF+pibGnMnNYu3fj5WYc1ij2Io793Ddp6KZuORCCLiUvCpYsvH/Rrx+/iOdJn8L6piLrtfnrp2bUFmRjaTJy3ByMgIlUpF7z5tad5cf80rxTE1VjA82JfQi3GkZ+u2GTGfIZ5Ph45eIC09kw5tg/RyfACluRmePu7s3nYI5yqOWNtYcvr4RW5cv4Wjs73ecpWUPm66qivldla+/PLLNGvWjDlz5pRo/fDwcNRqNTVq1NCa7+zsTGZmJgBvv/02n3/+OQCDBg1i6NChWutOmzZN839fX18OHDjAH3/8Qb9+/UhOTiYpKYnu3bvj7+8PQK1a99vXIyMjGTduHDVr1gTQKrxAXvPb4sWLNduOHDlS634mc+bMYfz48QwYMACAzz//nF27dvHll1+ycOFCzXojR47khRdeAGDRokVs3ryZH3/8kQ8++ECzzpQpU+jUqRMAy5cvx9PTk7///pt+/foxa9YsXnrpJUaPHq3J+fXXX9O2bVsWLVqkubncs88+y/vvv1/saz5r1iyt1+xppFKrqelflTde7gxAdT8PrkbeZu2WQwZVEDpyLYGBiw9gb2lGn8ZV+axfA4Z8f4gEHXcsN2R/H7im+f/5qETORcZz7MsXCa7txn9nddM0dfToeQ4dOsvw13ri4eFMVFQsv/+2HXs7a1oGl64GvKIZGyn4uGve59nXoVf0nMawbNt1gsYNAnFysNFrjr6DuvDPb1uZN+17FEYK3Ku6UrdhDW7diNVrrsqu3Ib1HzhwoNR3fC3M4cOHCQsLo06dOlq1F02aFOyYuHDhQho3boyLiwvW1tYsWbKEyMi8USeOjo6EhITQuXNnevTowVdffaXVtDVmzBiGDx9Ox44d+eyzz7hyRfuDw9LSUlMIAnB3dyc2Nu9kTU5O5ubNmwQHa7fpBgcHc/78ea15LVq00PzfxMSEJk2aFLuOo6MjNWrU0Kxz8uRJli1bhrW1tebRuXNnVCoV167d/6Io7PV52MSJE0lKStI8oqKiHrlNSSVn5VXD2yiNtebbKE00y3TBycEGn2quWvN8PF24XcjoEX3KzLnHjfgMztxIYsY/57inUtG7UVW9ZDGU9+5RImJTuZOciV8V3X2ZrVm9i65dm9OsWW08PV1p0aIuHTs1ZdOmAzrLUBL5hSBXG3MmrD2jt9ogMLzzKTYukZNnrtKpfUOdH/thjs72DB3Zjw9njWTM5OG8/t4gVCoVDk52+o72SApF2S+qaKhNY6UuCPXt21fr0adPH5o3b87QoUMZMWJEifcTEBCAQqHg4sWLWvP9/PwICAjAwkK7Lfnh5rPffvuNsWPH8uqrr7J161bCwsIYOnQo2dn3f1EvXbqUAwcO0LJlS37//XeqV6/OwYMHgbymtrNnz9KtWzd27txJ7dq1+fvvvzXbPtwZW6FQFHsX3IqSmprKiBEjCAsL0zxOnjzJ5cuXtQpqRTUvPkipVGJra6v1KC/x6TkkZ+YQ6HI/h9LECC8HCyLiddfZtX5NLyKj47TmRd68i5uLvc4yPA4jhQJTY/1cbsxQ3rtHcXe0xNFaye1E3WXKzs4p0KfEyMhIZ01zJZFfCKpqb86EtadJydRv4dXQzqftu8Ows7OiacPqOj92UcyUptjYWpORnkn4hQhq1DXcPmf5pI/QA+zstEuuRkZG1KhRg+nTp/Pcc8+VeD9OTk506tSJBQsW8M4775Toi/xB+/bto2XLlrz11luaeQ/X6gA0bNiQhg0bMnHiRFq0aMGqVato3rw5ANWrV6d69eq89957DBw4kKVLl9KnT59HHtvW1hYPDw/27dtH27ZttTI1a9ZMa92DBw9q7s2Wm5vLsWPHGDlyZIF1vLy8AEhISODSpUuaZrxGjRpx7tw5AgK0r6eiD2bGCpyt7o9Gc7Q0xcNWSXrOPRIzctlzNZ6OgS7cSc3mbnoOXWu6kJyZW+D6IhWpf49WjJi4mOVrQukQXI9zl6NYt/UwH7z56Pe1vFiYGVPN8f5lHzwcLKjuZkNyRg6J6Tm82saX3RfjuJOShb2lKf2aeeFio2T72Zhi9lo2hvjeWSlN8HW7Xxj3drGmrrcjCalZJKZmMe6FINYfjiA2MQOfKjZMHdSYa7eT2Xmq+JFm5al+gwA2/nsARydbPDyciYy8zbathwluVV9nGcxNjfCwu//D0M3WHD9nK1Iyc4lPz2bS8zUJdLFm0vpzGCkUOFjm/YhLycytsKHqhng+FUalUrNjTxjPtm6AsZ5+aDwo/MJ11GpwdnUg/k4iW9f/h7OrAw2bGWafs8qiVAWhe/fuMXToUOrVq4eDg0OZD/7tt98SHBxMkyZNmDp1KvXr18fIyIgjR45w4cIFGjduXOS2gYGB/Pzzz2zZsgVfX19WrFjBkSNH8PX1BeDatWssWbKEnj174uHhwcWLF7l8+TKDBw8mIyODcePG8eKLL+Lr68uNGzc4cuSIpi9PSYwbN44pU6bg7+9PUFAQS5cuJSwsTNOZOt/ChQsJDAykVq1azJ8/n4SEBIYNG6a1zvTp03FycqJKlSp89NFHODs707t3bwDGjx9P8+bNGTlyJMOHD8fKyopz586xbds2FixYUOK85aGavQVvBftopnvVzbsI2JHIRH4Lu8mu8LuYGRvxYgMPLEyNuBafzpKDkTq7bghArUBPZo1/mcW/bGHZHztxd3Xg3WHd6azDTpK1PWxZMrSpZvr9Lnn9NtafiObTDefxcbaie5AH9pZmJKVnc/ZmMsN/OsLVuLSidllmhvjeBfk588+kLprpma/k/Yj4dXc44346QG0vB/q39sfOyoyYhAxCT0cz648TZOeqKizTwwYN6sTatf+x8petpKSkY29vTZu2DenRQ3dDnau72jDnhfv9kd5ok1d7sPXcbVYciqSlX97Ai8WDtJt+xv55mlMVdJFOQzyfCnPyzFXi7iTRsZ3+m8UAMjOz2LFxH8mJqVhYKqlVP5AOzwdjbGz86I31TDpL/z9jY2Oee+45zp8/Xy4FIX9/f06cOMGnn37KxIkTuXHjBkqlktq1azN27Fit2p6HjRgxghMnTtC/f38UCgUDBw7krbfeYtOmTUBeH58LFy6wfPly7t69i7u7O2+//TYjRowgNzeXu3fvMnjwYG7fvo2zszN9+/YtVUfiUaNGkZSUxPvvv09sbCy1a9dm3bp1BTpdf/bZZ3z22WeEhYUREBDAunXrcHZ2LrDOu+++y+XLlwkKCmL9+vWa6wDVr1+f3bt389FHH9G6dWvUajX+/v7079+/xFnLy5W76by/7lyx62y5GMeWi3HFrlPRgpvWJLhpTb0d/9j1BBpP2Vrk8nEVeKG7ohjie7fvfAzOg5YVubzfZ7q7gnRRzM2VDBjQkQEDOuotw6noJJ77em+Ry4tbVlEM8XwqTMP6/qxbVfRIWl2rG1SDukE1Hr2iAVL8/7+y7sMQKdSl7PjSpEkTPv/8czp06FBRmZ4K169fx9fXlxMnThAUFFToOqGhobRv356EhATs7e11mg/yOn3b2dkxfMUhzCwN56qmrzbSza0wSuOV7w/qO0IB7Rob3uu0/LfD+o5QwOLx+ivEFGXJ7uv6jlBAPR/dXni0JHrXctF3hAKOx+jmgpAllZmWwtQeDUlKSirXfp/58r8npqw7gblV2QYqZKalMK1nxWV9XKVuNJ05cyZjx45lw4YN3Lp1i+TkZK2HEEIIIcSTosRNY9OnT+f999/n+eefB6Bnz55aoynUajUKhYJ79/Q3bFMIIYQQ5U/6CJF38cI33niDXbt2VWSep4aPj88jh9u3a9dOL0PyhRBCiNJQKBRlvj2Jvm5v8iglLgjlf2E/OFxcCCGEEOJJVqpRY4ZamhNCCCFExZGmsf9XvXr1RxaG4uPjyxRICCGEEIalPK4Mbah1KaUqCE2bNq3AlaWFEEIIIZ5UpSoIDRgwAFdX10evKIQQQoinRv6NU8u6D0NU4oKQ9A8SQgghKqenuY9QiS+oKMO8hRBCCPG0KXGNkEqluxsdCiGEEMKAlENnaQO91Vjp+ggJIYQQovIxQoFRGUsyZd2+okhBSOBpb4a5lVLfMTS2XdPvHasLE3H5pr4jFGSAN10dMqCZviMUEJ2cpe8IT4TQYzf0HaEAQ7wBcyM3w7lZKEBaqm4KF0/z8PlS33RVCCGEEOJpITVCQgghhCjW0zxqTApCQgghhCjW03wdIWkaE0IIIUSlJTVCQgghhCjW09xZWgpCQgghhCiWEeXQNGagw+elaUwIIYQQlZbUCAkhhBCiWNI0JoQQQohKy4iyNyEZahOUoeYSQgghhKhwUhASQgghRLEUCkW5PErj3r17TJo0CV9fXywsLPD392fGjBmo1epyfW7SNCaEEEKIYiko+83jS7v9559/zqJFi1i+fDl16tTh6NGjDB06FDs7O0aNGlXGNPdJQegJ1a5dO4KCgvjyyy/1miMrM5udm/Zz4Uw4aSnpuHm60rV3O6p6uVXaTC1qVmFk97o08HXCzcGSV+btZNPRSM3yb0a0YmDbAK1tdpyMpv/n2yosk5+jJe0CnPC0N8fO3JSlh6M4E5OitU7nGi4097bHwtSYa/Hp/Hkqhjtp2ZUqU2H0fT7V87Dlf409CXSxwslaydQN59h/NR4AYyMFIc29aebjgLudOWlZuRyPSuLH/deJr8DXqaG3A4ODfajlboOLrTnv/3qC0Av3b5b8ejt/Otd1o4qdOTn3VJy/mcy3O8I5E51UYZkKE3c3iW9/3sLB4xfJzM7B082JD995gVoB+rmZ6/BRXxJ7p+Br8HynJrwxtJseEpWcPq4svX//fnr16kW3bnmvjY+PD7/++iuHDx8uU44Cucp1bwKAkJAQFAoFb7zxRoFlb7/9NgqFgpCQkBLtKzQ0FIVCQWJiYvmGLCfr/tjG1UsR9BnUhTfHDca/ujc/L/6T5MTUSpvJUmnCmYh4Plh6sMh1tofdoPabv2sery/YXaGZzEyMuJmcyV+nYgpd3j7AidZ+jqw5dYuv/rtGdq6a15t7YVKBNwcyxEyF0ff5ZG5qzNW4VBaEXi2wTGliRKCrFSuPRPHWr2FM+/cC1RwsmN69VoVmsjA15lJMCp9vvFDo8si7aXz+73n6f7ufV388zK3EDBYOboS9pWmF5npQcmoGb0z8DhMTI+ZOCmHl16MZOfR5bKwsdJbhYXNnvsbyb9/XPKZPfAWA4Gfq6C2TIWvZsiU7duzg0qVLAJw8eZK9e/fStWvXcj2O1AhVkGrVqvHbb78xf/58LCzy/vAyMzNZtWoVXl5eek5XPnKyczl36jIDh/XExz/vF1b7Li24dO4qR/afpMPzwZUy046T0ew4GV3sOtm5KmKTMio8S74LsalciC36i7uNnyPbL93hbEzeOr+eiGZq5+rUdbMh7GZypcn0MEM4n45EJHAkIqHQZenZ95iw9qzWvAWhV1gwIAgXayVxqVkVkml/+B32h98pcvnm09qF23lbLtK7sSeBVWw4ci2+QjI9bOVfu3F1tuOjd17UzPOo4qiTYxfFztZKa3rNur24VXGgbi1vPSUqnfL6CZKcrP33q1QqUSqVBdabMGECycnJ1KxZE2NjY+7du8cnn3zCSy+9VE5J8kiNUAVp1KgR1apV46+//tLM++uvv/Dy8qJhw4aaeVlZWYwaNQpXV1fMzc1p1aoVR44cAeD69eu0b98eAAcHhwI1SSqVig8++ABHR0fc3NyYOnWqTp7bg8dXq9SYmGiXp01MTYi8dlOnWQw5U2GCa7lxflF/Ds7pwxfDmuNgXfBDQFccLU2xNTflUtz9QklmrorIhAy8HfXz69lQMj0p59ODrJTGqNRq0rJz9R0FABNjBX0be5KSkcPl2ymP3qCc7D1ynpoBnnw8exXdhnxCyJhvWLf1iM6O/yg5ufcI3XuKjm0blroTsT7kX0eorA/Iqyiws7PTPGbNmlXoMf/44w9WrlzJqlWrOH78OMuXL2fOnDksX768XJ+b1AhVoGHDhrF06VJN6fWnn35i6NChhIaGatb54IMP+PPPP1m+fDne3t7Mnj2bzp07Ex4eTrVq1fjzzz954YUXuHjxIra2tpraJYDly5czZswYDh06xIEDBwgJCSE4OJhOnToVmicrK4usrPu/EB8ulZeW0twMTx93dm87hHMVR6xtLDl9/CI3rt/C0dm+TPt+mjI9bOepaDYeiSAiLgWfKrZ83K8Rv4/vSJfJ/6Iq59EQJWGrzPsYSMm6pzU/JStXs0zXDCXTk3A+PcjUWMHwYF9CL8aRnn3v0RtUoNbVnfn0xfqYmxpzJzWLt34+RmJ6js6Of/N2Ams3H6J/z2AGv9iO8+E3mP/jekxMjHn+2UY6y1GUQ0cvkJaeSYe2QfqOonNRUVHY2tpqpgurDQIYN24cEyZMYMCAAQDUq1ePiIgIZs2axZAhQ8otjxSEKtDLL7/MxIkTiYiIAGDfvn389ttvmoJQWloaixYtYtmyZZo2z++//55t27bx448/Mm7cOBwd86pyXV1dsbe319p//fr1mTJlCgCBgYEsWLCAHTt2FFkQmjVrFtOmTSvX59h3UBf++W0r86Z9j8JIgXtVV+o2rMGtG7HlepwnPdOD/j5wTfP/81GJnIuM59iXLxJc243/zt7SYzJRGEM/n/IZGyn4uGtNAL4OvaLnNHDkWgIDFx/A3tKMPo2r8lm/Bgz5/hAJOursrlKrqelflTde7gxAdT8PrkbeZu2WQwZRENq26wSNGwTi5GCj7ygl8jjD3wvbB4Ctra1WQago6enpGBlpN1wZGxujUqnKlONhUhCqQC4uLnTr1o1ly5ahVqvp1q0bzs7OmuVXrlwhJyeH4OD7/QxMTU1p1qwZ58+ff+T+69evrzXt7u5ObGzRH84TJ05kzJgxmunk5GSqVatWmqdUgKOzPUNH9iM7K4esrCxsbK1Z/fNGHJzsyrTfpy1TcSJiU7mTnIlfFRu9FISSs/KaUGyUxqRk3W9OsVGaEJ2cqfM8hpbpSTif8gtBrjbmfPD3ab3XBgFk5tzjRnwGN+IzOHMjib9HBdO7UVWW/nft0RuXAycHG3yquWrN8/F0IfTA2SK20J3YuEROnrnKhPf66TtKienjytI9evTgk08+wcvLizp16nDixAnmzZvHsGHDyphEmxSEKtiwYcMYOXIkAAsXLizXfZuaao/AUCgUxZaUi+qQVh7MlKaYKU3JSM8k/EIEnXq0qpDjPOmZCuPuaImjtZLbibrrPP2g+PQckjNzCHSx4mZyXtOp0sQILwcL9l8vvJNuZcxkqOdTfiGoqr054/46TUqmYfQNepiRQoGpse66pdav6UVkdJzWvMibd3FzsddZhqJs3x2GnZ0VTRtW13cUg/bNN98wadIk3nrrLWJjY/Hw8GDEiBFMnjy5XI8jBaEK1qVLF7Kzs1EoFHTu3Flrmb+/P2ZmZuzbtw9v77xRAzk5ORw5coTRo0cDYGZmBuRdYdMQhV+4jloNzq4OxN9JZOv6/3B2daBhM/0NB9V3JiulCb5u96t9vV2sqevtSEJqFompWYx7IYj1hyOITczAp4oNUwc15trtZHaeKn6kWVmYGStwtjLTTDtamuJhqyQ95x6JGbnsuRpPx0AX7qRmczc9h641XUjOzC1wXZ+nPVNh9H0+mZsa4WF3v2+gm605fs5WpGTmEp+ezaTnaxLoYs2k9ecwUihw+P8h6imZueSqKqbPmYWZMdUcLTXTHg4WVHezITkjh8T0HF5t48vui3HcScnC3tKUfs28cLFRsv1s4ZdKqAj9e7RixMTFLF8TSofgepy7HMW6rYf54M0+OstQGJVKzY49YTzbugHGOiwYllV5No2VlI2NDV9++WWFXy9PCkIVzNjYWNPMZWxsrLXMysqKN998U9MXyMvLi9mzZ5Oens6rr74KgLe3NwqFgg0bNvD8889jYWGBtbW1zp9HUTIzs9ixcR/JialYWCqpVT+QDs8HF3iulSlTkJ8z/0zqopme+UozAH7dHc64nw5Q28uB/q39sbMyIyYhg9DT0cz64wTZueXb7v2gavYWvBXso5nuVTfvYoBHIhP5Lewmu8LvYmZsxIsNPLAwNeJafDpLDkZW2BepoWYqjL7Pp+quNsx5oZ5m+o02fgBsPXebFYciaennBMDiQQ21thv752lOVdAFDGt72LJkaFPN9Ptd8vomrT8RzacbzuPjbEX3IA/sLc1ISs/m7M1khv90hKtxaRWSpzC1Aj2ZNf5lFv+yhWV/7MTd1YF3h3Wns547J588c5W4O0l0bNfw0SsbEH1cWVpXpCCkA8V1Cvvss89QqVS88sorpKSk0KRJE7Zs2YKDgwMAVatWZdq0aUyYMIGhQ4cyePBgli1bpqPkj1Y3qAZ1g2roO4YWfWfadz4G50HLilze77OKu4J0Ua7cTef9deeKXWfLxTi2XIwrdp3yZIiZCqPv8+lUdBLPfb23yOXFLasox64n0HjK1iKXj/v9pA7TFC24aU2Cm9bUdwwtDev7s27VFH3HEA9QqMv77mXiiZGcnIydnR1T15/A3OrJGLmgLzMW/afvCAUMGdBM3xGeCF4O+rtGU1E2njC80YF376brO0IBK15rru8IBdzNqJiLVD6utNQU+jTzJykpqUQjsUor/3ti+d6LWFqX7XsiPTWFIa1qVFjWxyU1QkIIIYQolj5GjemKFISEEEIIUSx9dJbWFUMtoAkhhBBCVDipERJCCCFEsWTUmBBCCCEqrQdvmlqWfRgiaRoTQgghRKUlNUJCCCGEKJYRCozK2LhV1u0rihSEhBBCCFEsaRoTQgghhHgKSY2QEEIIIYql+P9/Zd2HIZKCkBBCCCGKJU1jQgghhBBPIakREjSoYotVGW+mV55mbLqo7wgFdOlST98RCridmKHvCAXEGmCm0GOGdzPRiX1r6ztCAVUsDe/mtJ/uvKzvCAX0blBF3xG0ZKTr5iawinIYNSZNY0IIIYR4Ij3NTWNSEBJCCCFEsZ7mgpD0ERJCCCFEpSU1QkIIIYQolgyfF0IIIUSlZaTIe5R1H4ZImsaEEEIIUWlJjZAQQgghiiVNY0IIIYSotGTUmBBCCCHEU0hqhIQQQghRLAVlb9oy0AohKQgJIYQQongyakwIIYQQ4ikkNUIGIDQ0lPbt25OQkIC9vb2+45TY8FFfEnsnqcD85zs14Y2h3XSSoZ6HLf9r7EmgixVO1kqmbjjH/qvxABgbKQhp7k0zHwfc7cxJy8rleFQSP+6/TnxadoVlquFqTbc6VfB1ssTB0oz5u8I5FnX/dWriZU+H6i74OFliozThw/XniEyo2JuVGmImQ3zvGno7MDjYh1ruNrjYmvP+rycIvRCnWf56O38613Wjip05OfdUnL+ZzLc7wjkTXfDvoKKoVCrWrdvLwYNnSU5Kw97empYt69Gte0sUeuqNagifBYZ4jj/MEN+7kpJRY0+JuLg4Jk+ezMaNG7l9+zYODg40aNCAyZMnExwcrLdcLVu25NatW9jZ2ektw+OYO/M1VCq1ZjoiKpbJs1YQ/EwdnWUwNzXmalwqW87eZkr3WlrLlCZGBLpasfJIFFfj0rA2N+GtNn5M716Lkb+frLBMShMjIhMy2BN+l9Ht/QtdfjE2lUPX4xne0qfCchh6JkN87yxMjbkUk8K649HMGRhUYHnk3TQ+//c80QkZKE2MeKmFNwsHN6LXV3tJTM+psFwP2rTpILtDTzB0WDc8PJyJuB7D0qX/YmGhpEPHJjrJ8DBD+CwwxHP8YYb43pXU0zxqrFIVhF544QWys7NZvnw5fn5+3L59mx07dnD37t0KOV52djZmZmaPXM/MzAw3N7cKyVCR7GyttKbXrNuLWxUH6tby1lmGIxEJHIlIKHRZevY9Jqw9qzVvQegVFgwIwsVaSVxqVoVkOnUzmVM3k4tcvu//az2crR59bpQXQ8xkiO/d/vA77A+/U+TyzadjtKbnbblI78aeBFax4ci1+ArJ9LArV6JpEBRI/foBADg723P48DmuXbulk+MXxhA+CwzxHH+YIb53JaWg7J2dDbQcVHn6CCUmJvLff//x+eef0759e7y9vWnWrBkTJ06kZ8+emnVGjBhBlSpVMDc3p27dumzYsEGzjz///JM6deqgVCrx8fFh7ty5Wsfw8fFhxowZDB48GFtbW15//XWuX7+OQqHgt99+o2XLlpr97t69W7NdaGgoCoWCxMTEUh3r008/ZdiwYdjY2ODl5cWSJUsq4JUrmZzce4TuPUXHtg0NuorXSmmMSq0mLTtX31FEKRnae2dirKBvY09SMnK4fDtFZ8f196/KhfPXiYnJ+2KPirrN5cs3qFvPT2cZivOkfBbog6G/d5VVpakRsra2xtramrVr19K8eXOUSqXWcpVKRdeuXUlJSeGXX37B39+fc+fOYWxsDMCxY8fo168fU6dOpX///uzfv5+33noLJycnQkJCNPuZM2cOkydPZsqUKVr7HzduHF9++SW1a9dm3rx59OjRg2vXruHk5FQga0mPNXfuXGbMmMGHH37ImjVrePPNN2nbti01atQo9DXIysoiK+v+L+nk5KJ/PZXWoaMXSEvPpEPboHLbZ3kzNVYwPNiX0ItxpGff03ccUQqG9N61ru7Mpy/Wx9zUmDupWbz18zGdNYsBdO3agsyMbCZPWoKRkREqlYrefdrSvLnumqGK8yR8FuiLob93xTFCgVEZC7ZGBlonVGkKQiYmJixbtozXXnuNxYsX06hRI9q2bcuAAQOoX78+27dv5/Dhw5w/f57q1asD4Od3v5Q+b948OnTowKT/a+++46qq/z+Avy7jDuAyZcoVUIagoiKYiDlSco8izaQSZ24td4WzxDTTTLO0BMuZoubIXRoOXDE09hJUXCggKvO+f3/w4+SVIcq49yvvp4/7eHjP+dzzeZ/Bue/7OZ/POYGBAABnZ2fExMRg+fLlKsnJG2+8genTpwvv09LSAACTJk2Cn58fAGDdunU4fPgwfv75Z8yaNatcrNWtq0+fPpgwYQIAYPbs2Vi5ciX++uuvShOhoKAgLFy48AW3XPUc+ysC7Vo7wcxEXifLryltLRE+790cALD6ZLKao2EvQtP23cXUB3jvh3Mw1hPjrXaNsXRIawzfcB4P6rAT99MuXYrF+fP/YvSYAbCxaYSMjDvYsf04jI0M0NGnVb3EUBVNPxeok6bvu6rwpbFXhJ+fH27evIl9+/ahV69eOHnyJDw8PBASEoLIyEjY2toKSdCzYmNjy3Wo9vHxQWJiIkpK/vuF6ulZcYc3b29v4f86Ojrw9PREbGxsjepyd3cX/i8SiWBlZYU7d+5UsvbA3LlzkZOTI7wyMjIqLfsi7tzNRtTVFPh2a1sry6ttZV+kFnIp5uy9qvYWBVZ9mrjv8otKcP3+E1y9noPFv8egRKnEII/G9Vb/rp1/oXfvDmjf3g22thbw9m6JHr5eOHToXL3FUBlNPxeomybvu4asQSVCACCVSuHr64vAwECcPXsWAQEBmD9/PmQyWa0sX19f//mFaomurq7Ke5FIBKVSWWl5iUQCQ0NDlVdtOH4qEkZG+vBqW3ESqU5lX6SNjaWYs/cKHuZrRv8S9nz/K/tOSySCrnb9nUoLC4vK9b3R0tKCkqiST9QfTT4XaAJN3nfPJaqllwZqMJfGKuPm5oa9e/fC3d0d169fR0JCQoWtQq6urjhz5ozKtDNnzsDZ2VnoR1SV8PBwdO7cGQBQXFyMy5cvY9KkSRWWrWld9UmpJJz4OxJvvN4a2vX4ZVBGqqsFG6P/klgrQymaNtLHw/xi3H9ciMA+zeFkboDA/THQEolgoleaPD7ML0axsm5OPhIdLVjK/+uDZm4gQRMTGR4VFiPrURH0xdow0xcLsVgbSQEAOU+KkFNHX/aaGJMm7juZWBsKUz3hvY2JDM5WcuQ+KUL24yKM6uyAU/F3ce9hAYz1dDGkfROYyyU4/u+tKpZau9xbO+LgH+dgamYIG5tGSE+/jWNHL8Cnk/vzP1yH1H0u0MRj/Fmauu+qg+8j9ArIysrC4MGDMXLkSLi7u0Mul+PSpUtYtmwZBg4ciC5duqBz587w8/PDN998A0dHR8TFxUEkEqFXr16YPn06vLy8sHjxYrz77rs4d+4c1qxZg++//75a9a9duxZOTk5wdXXFypUr8eDBA4wcObLCsjWtqz5FXU3B3Xs56NFVPU3hzhZyfO3337X1cZ1L+3UdjbmNX8+no2PT0s7oPwxTjW9G6BVE19FN8Jqa6eGznv/103rfSwEA+DvpHtafvQYPhTE+8rEX5k/+/5h3R93E7qi6GUariTFp4r5zszHE+hFewvvpvUr7Ju2PuIElB2Jh30gf/drYwFhPjJzHhfj3Zi5Gb7yIlLuP6iSeigwb5ou9e8OwZfNRPHz4GMbGBujcpS3691ffvdAA9Z8LNPEYf5am7ruGTkT0v9AmV3MFBQVYsGABjh49iuTkZBQVFUGhUGDw4MH49NNPIZPJcP/+fcyYMQP79u3Do0eP4OjoiKVLl6Jv39I7o4aGhmLevHlITEyEtbU1Jk+ejBkzZgh12NvbY9q0aZg2bZowLS0tDQ4ODti6dStWrVqFyMhIODo6Ys2aNejWrRuAiu8s/TJ1tWnTBoMGDcKCBQuqtU1yc3NhZGSEPReSoW+gOR0bFx+KV3cI5VgY186l01fdnez6vVNvdWRlPVZ3COXMfdtN3SGUY6kneX6hevbjuXR1h1DOoNaW6g5BxZO8hxjb1Q05OTm11t3haWXfEyci02Egr9ny8x7monubJnUW68tqMImQupQlQhEREWjTpo26w1HBiVD1cSJUPZwIVQ8nQtXDidDz1Vci9GctJUJvaGAi1OA6SzPGGGOMlWkwfYQYY4wx9pJe4RsJcYtQHbO3twcRadxlMcYYY6y6RLX070XduHED77//PszMzCCTydCqVStcunSpVteNW4QYY4wxViV1PH3+wYMH8PHxQbdu3XDo0CGYm5sjMTERJiYmNQvkGZwIMcYYY0zjfPXVV1AoFAgODhamOTg41Ho9fGmMMcYYY1VSx42l9+3bB09PTwwePBgWFhZo27YtNmzYUBuro4ITIcYYY4xVrRYzodzcXJVXQUFBhVWmpKRg3bp1cHJywpEjRzB+/HhMmTIFmzZtqtVV40SIMcYYY/VGoVDAyMhIeAUFBVVYTqlUwsPDA0uWLEHbtm0xduxYjBkzBj/88EOtxsN9hBhjjDFWpdp81lhGRobKDRUlkopv5mltbQ03N9Wbj7q6uiI0NLRGcTyLEyHGGGOMVak2R40ZGhpW687SPj4+iI9XfdJAQkIC7OzsahbIM/jSGGOMMcY0zscff4zw8HAsWbIESUlJ2Lp1K9avX4+JEyfWaj2cCDHGGGOsSuoYNebl5YU9e/Zg27ZtaNmyJRYvXoxVq1bB39+/NlZJwJfGGEylYhjINOeBixcPhqk7hHL6+r+p7hDKsdTAB8Fu/rCdukMoZ/q+GHWHUM6Y0UvVHUI5C775WN0hlKOJx3iDpaZHbPTr1w/9+vWrYcVV4xYhxhhjjDVY3CLEGGOMsSrV5qgxTcOJEGOMMcaqpI5njdUXToQYY4wxViU1dRGqF9xHiDHGGGMNFrcIMcYYY6xqr3CTECdCjDHGGKvSq9xZmi+NMcYYY6zB4hYhxhhjjFWJR40xxhhjrMF6hbsI8aUxxhhjjDVc3CLEauRuVg6+/+UIwv+JR35hEWytzPDpZD+4OtrWS/0dWyowefBraO1kBWszOfwX7MIf5xJVyjgrzLBgVDf4uCugra2F+GtZGL54N67fza2TmFwsDNC3hSUczPRgoifGyr+ScDkjR5jv2cQY3Z3NYW+mB7lEB5/uj0H6gyd1EkuZpqZ66OpoBltjKYykugi+kIGrtx6qlOnpYo4OdsaQ6Woj9f5jhEbfwr1HhXUa19N+3hWGjaFhyMi8DwBo3tQKM0f1hq9Pi3qLQRO3U8e2zTD5gx5o3bwJrM2N4D9jPf44FS3Mf3BxTYWfm/ftHny3+USdxfWsgvxC/HnoLOKuJuHRw8ewsrVA70Fd0biJVb3Ur4n77llKpRL79p1GePi/yM15BGNjA3Ts2Ap9+3WESFOvG5V5hZuEuEXof1hAQAAGDRokvO/atSumTZtWb/Xn5j3BuLk/QkdHCysCA7Bl9TRMGtEHcv36e1CinlQXV1PuYOaaoxXOt7c2xqFvPkBiRhb6zdyKTuN+xtdbTyO/sLjOYpLoaCH9wRNsOp9R6fz4O3nYcfl6ncXwLLGOFm7m5mN39K0K53dzNMPrTU2xKzoT34alorCYMLZDE+ho1d+Zy8bCGPMnDcRfv8zCn5tm4nVPZ/jPWI/Y5Mx6i0ETt5OeTIKrCTcwc9mOCue79Jqr8pq4aHPpF+5fkXUWU0X2/XYMKQnX8NawXhg/80M0c7bDLz+EIjc7r17q18R996xDh8Jx6mQEhg3zxaLFo+Hn1xWHD5/Hnycu11sML0tUS/80EbcI1ZG7d+9i3rx5OHjwIG7fvg0TExO0bt0a8+bNg4+PT63U8e2334KIamVZL2PL7lOwaGSEzya/I0yzsTSt1xiOX0rB8Usplc4PDOiCYxeSMf/nv4RpaZnZdRpT9M1cRN+svLXpTEppi0cjfXGdxvG0uDt5iLtT+RdS56amOJ5wD//eKi2zLeIGFvR0RksrOSKrWJfa1LtzK5X3gRMGYGPoaVy6mgrXZtb1EoMmbqfjZ2Nw/GxMpfPvZKm2evTp3AphlxNx7UZWncRTkaLCYsREJ+K9kQNg36y0NbhbL28kxKTg4tkodO9TO+e8qmjivntWcvINtG7jBHd3RwBAo0bGuHAhBqmp9Zfss/K4RaiO+Pn5ISIiAps2bUJCQgL27duHrl27Iiur9k5ORkZGMDY2rrXlvajTF2PR3NEWny/bir7Dv0TAJ99h39GLaovnWSIR4Nu+GZJu3MeuL99Fwo4pOPbtcPTxdlJ3aBrFVE8XhlJdJNz970skv1iJ9AdPYGdaf617TyspUSL06CU8flIIr1YOaonhWZq4nZ5lbirHm51aYvPv5+q1XqVSCVISdHRUf1vr6OogPfVmvcZSEU3Zd82aNUZcbBpu3Sr9MZSRcRuJidfRslXTeovhZZWNGqvpSxNxi1AdyM7ORlhYGE6ePIkuXboAAOzs7NC+fXuhjEgkwoYNG3Dw4EEcOXIEjRs3xooVKzBgwAAAQElJCcaOHYs///wTt27dQpMmTTBhwgRMnTpVWEZAQACys7Oxd+/eel2/MjdvP8Dew+fx7gAffPhOV8QmXcfKn/dDR0cbfd7wUEtMTzM31odcT4Jp73bAlyF/Y8HPf6GHZ1P8Os8P/WdtwdkrFV+6amgMJaWngYcFJSrTHxYUC/Pqy79JN9Bz5ArkFxZDXybBr8vHoHnT+mkNeh5N2k6Vea/va8h7lI/99XxZTCIVw9beGqeOnUcjS1MYyPVw5Z94XE/LhGkj43qNpSKasu969/ZG/pNCzAtcDy0tLSiVSgx6qws6dKi/fnAv6xXuIsSJUF0wMDCAgYEB9u7diw4dOkAikVRYbuHChVi2bBmWL1+O7777Dv7+/rh27RpMTU2hVCpha2uLnTt3wszMDGfPnsXYsWNhbW2NIUOGvFRcBQUFKCgoEN7n5tasOVhJhObNGmPc+z0BAM5NbZCSfht7j5zXiERI6/9/fhw6l4h1e0pbqq6m3EF7N1uM7OvBiZAGcrKzxN9b5iI37wl+PxGBCQt+xYEfp2pMMqTp/Ad0wM7Dl1BQh33gKvP2sF74fftRfLNwA0RaIlg3tkDLti7IvH6n3mPRVJcuxeL8+X8xeswA2Ng0QkbGHezYfhzGRgbo6NPq+QtQp1c4E+JLY3VAR0cHISEh2LRpE4yNjeHj44NPP/0U0dHRKuUCAgLw3nvvwdHREUuWLEFeXh4uXLgAANDV1cXChQvh6ekJBwcH+Pv7Y8SIEfjtt99eOq6goCAYGRkJL4VCUaP1NDORw15hoTLN3tYct+/lVPKJ+pWV+xhFxSWIu3ZPZXpCxj3YWhiqKSrNk1tQ+qUpl2irTJdLdIR59UWsq4OmCnO0cW2C+ZMGoqVTY/yw/WS9xlAZTdpOFfFu0wzO9lb49fezaqnftJExRkwagk+DJuGTeaMx9uNhUCqVMDEzUks8T9OUfbdr51/o3bsD2rd3g62tBby9W6KHrxcOHarfS5lMFSdCdcTPzw83b97Evn370KtXL5w8eRIeHh4ICQkRyri7uwv/19fXh6GhIe7c+e/X09q1a9GuXTuYm5vDwMAA69evR3p6+kvHNHfuXOTk5AivjIyatYi4N2+C9Bt3Vaal38yClblxjZZbW4qKlYhIyISTrZnK9GaNTZFxRzOSNU1w/3ERcvOL4GSuL0yT6GihiYkM1+7X7bD+51ESoVANrRsV0eTtBADvD/RGREw6ribeUGscYoku5IYGePI4H0lx1+DSUv39XzRl3xUWFpUbJq+lpQWlGge9VBePGmMvRSqVwtfXF76+vggMDMTo0aMxf/58BAQEACht9XmaSCSCUqkEAGzfvh0zZszAihUr4O3tDblcjuXLl+P8+fMvHY9EIqn0Mt3LeLd/J3w09wds2nUS3X1aISYxA/uOXsCs8W/VWh3Poy/VhYONifDezsoYLZtaIPthPq7fzcXqneex8dNBOHs1HWFR6ejh2RS9Ojih/8wtdRaTREcLlvL/trO5gQRNTGR4VFiMrEdF0Bdrw0xfDBO90v1vbSQFAOQ8KUJOft186Yu1RSqj1Ez1dGFjKMHjohJkPynG3yn30cPJHPfyCpH1uAi9m5sjN7+43H1Y6tLCNb+jR8cWUFiZ4OHjfOw6fAmnLyci9LsJ9RaDJm4nfZkYDgpz4b2djRlaOjdGds5jXL/9AAAg15diYPe2CFy1p87ieJ6kuDQQAY0sTHD/XjaO7g9DIwsTtG1fP/1fNHHfPcu9tSMO/nEOpmaGsLFphPT02zh29AJ8Ork//8PqVhudnTUzD+JEqD65ublVu2PzmTNn0LFjR0yY8N+XQHJych1F9nJcnWwRNPt9/LD5CEJ++xPWFiaYOrIfenZpU28xtHG2xoHl/sL7JeN6AAC2Ho3GxBUHcfBsAj5ZfRgfD/XG0vG+SLp+Hx8u3o3wf+vuHj5NzfTwWU8X4f37XqWXIP9Ouof1Z6/BQ2GMj3zshfmTO5f+Yt4ddRO7o+pmGK3CWIYJT9U5sGXpTe4upmdje+RN/JWUBbG2Ft5pbQOZrhZS7z/G+vB0FCvr75fqvQd5GL/gF9y+lwtDAylaODZG6HcT0O0113qLQRO3UxtXOxz48b9BEks+8QMAbD0QjokLNwMA3n6zHUQiEUKPXKqzOJ4nP78AJw6eQW52HmR6Eri6O6F7Hx9oa2s//8O1QBP33bOGDfPF3r1h2LL5KB4+fAxjYwN07tIW/fvX/e0FWOU4EaoDWVlZGDx4MEaOHAl3d3fI5XJcunQJy5Ytw8CBA6u1DCcnJ/zyyy84cuQIHBwc8Ouvv+LixYtwcNCMocRlfLyaw8erudrqPxOdDpOeQVWW2XI0GluORldZpjbF3s7D+79UfoO0sOQshCXX3z1eACA56zGm76v8XjQAcCT+Lo7E362yTF36LtD/+YXqmCZupzP/JMLEa1KVZTbtOYNNe87UU0QVa9nGBS3buDy/YB3RxH33LKlUgqFDe2Do0B5qi+FlvcJ9pTkRqgsGBgZ47bXXsHLlSiQnJ6OoqAgKhQJjxozBp59+Wq1lfPTRR4iIiMC7774LkUiE9957DxMmTMChQ4fqOHrGGGPsGa9wJsSJUB2QSCQICgpCUFDlLRUV3RE6OztbZRnBwcEIDg5WKfP0Mp/ueA0AJ0+efKl4GWOMsYaKEyHGGGOMVak2Rn3xqDHGGGOM/U+qjUdkaOojNvg+QowxxhhrsLhFiDHGGGNVeoX7SnMixBhjjLHneIUzIU6EGGOMMValV7mzNPcRYowxxliDxS1CjDHGGKuSCLUwaqxWIql9nAgxxhhjrEqvcBchvjTGGGOMsYaLW4QYY4wxVqVX+YaKnAgxxhhj7Dle3YtjnAgxxN9/CFmhuqP4T1//N9Udwv+EJiYSdYdQTljiXXWH8L/BtLG6Iygn/UGBukMoZ14PJ3WHUE7bWfvVHYIKZeFjdYfwP48TIcYYY4xViS+NMcYYY6zBenUvjPGoMcYYY4w1YNwixBhjjLEq8aUxxhhjjDVY/KwxxhhjjDVcolp6vaSlS5dCJBJh2rRpL7+QSnAixBhjjDGNdfHiRfz4449wd3evk+VzIsQYY4yxKqmrQSgvLw/+/v7YsGEDTExMaroaFeJEiDHGGGNVKussXdMXAOTm5qq8Cgoqv5nnxIkT0bdvX/To0aPO1o0TIcYYY4zVG4VCASMjI+EVFBRUYbnt27fjn3/+qXR+beFRY4wxxhirUm2OGsvIyIChoaEwXSIp/7igjIwMTJ06FceOHYNUKq1Rvc/DiRB7aUqlEvv2nUZ4+L/IzXkEY2MDdOzYCn37dYSonm4Y4WJhgL4tLOFgpgcTPTFW/pWEyxk5wnzPJsbo7mwOezM9yCU6+HR/DNIfPGlwMVWkIL8Qfx46i7irSXj08DGsbC3Qe1BXNG5iVe+xAMDoKatw515Ouel9fD0xbkTfeomhqakeujqawdZYCiOpLoIvZODqrYcqZXq6mKODnTFkutpIvf8YodG3cO9R3T2sr2NLBSYPfg2tnaxgbSaH/4Jd+ONcokoZZ4UZFozqBh93BbS1tRB/LQvDF+/G9bu5dRKTJm6nqny/5TiWrT+IEe90xvzJb9VbvV7NzDC2hzNaNjGGpZEMH60/h2PRmRWW/WJoGwzr1BSLd0Uh+GRyvcVYbbV4a2lDQ0OVRKgily9fxp07d+Dh4SFMKykpwd9//401a9agoKAA2traNQyoFF8aq0dpaWkQiUSIjIystMzJkychEomQnZ1db3G9rEOHwnHqZASGDfPFosWj4efXFYcPn8efJy7XWwwSHS2kP3iCTeczKp0ffycPOy5fb9AxVWTfb8eQknANbw3rhfEzP0QzZzv88kMocrPz1BLPii/GYNP304XXorkfAAB8XmtRbzGIdbRwMzcfu6NvVTi/m6MZXm9qil3Rmfg2LBWFxYSxHZpAR6vuEn89qS6uptzBzDVHK5xvb22MQ998gMSMLPSbuRWdxv2Mr7eeRn5hcZ3FpInbqTJRsenYuu8cmjezqfe69SQ6iL2Rg/k7oqos96a7DdrYm+JWdv3/INJU3bt3x5UrVxAZGSm8PD094e/vj8jIyFpLggBuEXohd+/exbx583Dw4EHcvn0bJiYmaN26NebNmwcfH5/nfl6hUCAzMxONGjWqh2jrXnLyDbRu4wR3d0cAQKNGxrhwIQapqRX/4qkL0TdzEX2z8l+9Z1LuAwAa6YvrKySNjOlZRYXFiIlOxHsjB8C+mS0AoFsvbyTEpODi2Sh07/P847m2GRnqq7zfte80rCxN0NLVrt5iiLuTh7g7lSeCnZua4njCPfx7q7TMtogbWNDTGS2t5IisYp/XxPFLKTh+KaXS+YEBXXDsQjLm//yXMC0tM7tOYimjidupIo8eF2DaF5uxdOYQfPfrsXqrt8ypmNs4FXO7yjKWRlLMH9waAWtP4+fxHespshdX388ak8vlaNmypco0fX19mJmZlZteU9wi9AL8/PwQERGBTZs2ISEhAfv27UPXrl2RlZVVrc9ra2vDysoKOjp1m38WFtZP83OzZo0RF5uGW7dKv9gzMm4jMfE6WrZqWi/1s5enVCpBSip3LOro6iA99aaaovpPUXEJTp6ORo8ubevtMuvzmOrpwlCqi4S7/yUA+cVKpD94AjtTmVpiEokA3/bNkHTjPnZ9+S4SdkzBsW+Ho4+3k1riATRrOwWu2oVu3q7o5OlSr/VWl0gErPjQExtOJCDxmUuLmqY2R41pGk6Eqik7OxthYWH46quv0K1bN9jZ2aF9+/aYO3cuBgwYAAAQiURYt24devfuDZlMhqZNm2LXrl3CMiq6NPbHH3/A2dkZMpkM3bp1Q1paWrm6T58+jddffx0ymQwKhQJTpkzBo0ePhPn29vZYvHgxPvzwQxgaGmLs2LF1th2e1ru3N7y83DAvcD3GfbQMixcFo4evFzp0qL9LGezlSKRi2Npb49Sx88jNyYNSqUTUpVhcT8tEXu6j5y+gjp2/FIdHj/PRvUsbdYciMJSUJo0PC0pUpj8sKBbm1TdzY33I9SSY9m4HnLiUgrfnbsfBM/H4dZ4fOrZSqCUmTdlO+078g38TbmDWmH71VueLGufrjBIlIUQT+wRpoJMnT2LVqlW1vlxOhKrJwMAABgYG2Lt3b5X3PAgMDISfnx+ioqLg7++PoUOHIjY2tsKyGRkZePvtt9G/f39ERkZi9OjRmDNnjkqZ5ORk9OrVC35+foiOjsaOHTtw+vRpTJo0SaXc119/jdatWyMiIgKBgYEV1ldQUFDu/g01celSLM6f/xejxwzA54EBGDGyH44eOY+zZ67UaLmsfrw9rBdAhG8WbsDiWatxPiwCLdu6aEQLzLG/ItCutRPMTOTqDkWjaf3/vjp0LhHr9lzE1ZQ7WPVbOI6cT8LIvh7P+fSr6+adB1j03R6sCnwfUomuusOpUEuFMQK6OmLm5vrrU1kzohr/q/nFtbrBfYSqSUdHByEhIRgzZgx++OEHeHh4oEuXLhg6dKjKbb8HDx6M0aNHAwAWL16MY8eO4bvvvsP3339fbpnr1q1Ds2bNsGLFCgCAi4sLrly5gq+++kooExQUBH9/f+H5Kk5OTli9ejW6dOmCdevWCcMK33jjDUyfPr3KdQgKCsLChQtrtB2etmvnX+jduwPat3cDANjaWiArKweHDp1DR59WtVYPqxumjYwxYtIQFBYUoaCgAHJDA+z85SBMzIzUGtedu9mIupqCOR8PUWscz8otKO18LJdo42HBfx2R5RId3MjNV0tMWbmPUVRcgrhr91SmJ2TcQ4cW6mkR0oTtdCX+Ou49yEO/MSuEaSUlSlyISsEve04j4dhyaGurtx3Aq5kZzAwkOL2olzBNR1sLn77tjhHdHNF5/hE1RlceP32eASjtI9S3b1+EhYUhPDwchw4dwrJly/DTTz8hICAAAODt7a3yGW9v70pHicXGxuK1114rV/5pUVFRiI6OxpYtW4RpRASlUonU1FS4uroCADw9PZ8b/9y5c/HJJ58I73Nzc6FQvPzJsrCwqFzrgZaWFpREL71MVv/EEl2IJbp48jgfSXHX4Nu/k1rjOX4qEkZG+vBq66zWOJ51/3ERcvOL4GSuj5u5pa3CEh0tNDGR4WzaA7XEVFSsRERCJpxszVSmN2tsiow75W9FUB80YTv5tHPCkeBZKtNmLt2GZk0sMG5Yd7UnQQCw52IGzsTfVZkWMtEHey+kY2f4NTVF1TBxIvSCpFIpfH194evri8DAQIwePRrz588XEqHalpeXh48++ghTpkwpN69JkybC//X19cvNf5ZEIqnwxlUvy721Iw7+cQ6mZoawsWmE9PTbOHb0Anw61c2D8Soi0dGCpfy/dTI3kKCJiQyPCouR9agI+mJtmOmLYaJX2jxubVTagpbzpAg5+XUzvFgTY6pIUlwaiIBGFia4fy8bR/eHoZGFCdq2V18fL6WScOLvSLzxemu1fFmJtUUqo/lM9XRhYyjB46ISZD8pxt8p99HDyRz38gqR9bgIvZubIze/uNw9dGqTvlQXDjb/PWPJzsoYLZtaIPthPq7fzcXqneex8dNBOHs1HWFR6ejh2RS9Ojih/8wtVSy1ZjRxOz3NQE8Kl6bWKtNkMjGMjfTLTa9LemJt2JkbCO8VZvpwbWyEnMeFuPngCbKfua9ScYkSd3PzkVrFiDxW+zgRqiE3Nzfs3btXeB8eHo4PP/xQ5X3btm0r/Kyrqyv27dunMi08PFzlvYeHB2JiYuDo6Fh7QdeSYcN8sXdvGLZsPoqHDx/D2NgAnbu0Rf/+9Tf0uqmZHj7r+d+IkPe9Slu4/k66h/Vnr8FDYYyPfOyF+ZM7l45o2x11E7uj6maYvybGVJH8/AKcOHgGudl5kOlJ4OruhO59fGr1/hwvKupqCu7ey0GPrhX/zdQ1hbEME57aNwNblt5c8mJ6NrZH3sRfSVkQa2vhndY2kOlqIfX+Y6wPT0exsu5aQds4W+PAcn/h/ZJxpc9c2no0GhNXHMTBswn4ZPVhfDzUG0vH+yLp+n18uHg3wv+tu/tUaeJ20kSt7EywbWpn4f3nfqU/EneFX8Os/5m+QaVe5UtjIiK+jlEdWVlZGDx4MEaOHAl3d3fI5XJcunQJkydPRt++ffHzzz9DJBKhUaNG+Oqrr9CpUyds2bIFX3zxBa5cuQI3NzekpaXBwcEBERERaNOmDdLT0+Hk5IQpU6Zg9OjRuHz5MqZPn45bt27hwYMHMDY2RnR0NDp06ICRI0di9OjR0NfXR0xMDI4dO4Y1a9YAKB01Nm3aNKEfUXXl5ubCyMgI60/GQGagOZ1S90ZVfd8NVsrLwVjdIZTjYVX13WLVYW/s3ecXqmcb1/6u7hDKGTlxoLpDKGdeD/XdBqAybWftV3cIKpSFj3E7+APk5OQ8927NL6PseyL91oMaLz83NxdNrEzqLNaXxS1C1WRgYIDXXnsNK1euRHJyMoqKiqBQKDBmzBh8+umnQrmFCxdi+/btmDBhAqytrbFt2za4ublVuMwmTZogNDQUH3/8Mb777ju0b98eS5YswciRI4Uy7u7uOHXqFD777DO8/vrrICI0a9YM7777bp2vM2OMMfaq40SomiQSCYKCgp77FFwbGxscPVrJrfDt7fFsA1y/fv3Qr5/qfS5GjBih8t7Ly6vSZQKo8N5DjDHGWG15lS+NcSLEGGOMsSrV9yM26pP6xxAyxhhjjKkJtwjVIu53zhhj7JX0CjcJcSLEGGOMsSr995iMmi1DE/GlMcYYY4w1WNwixBhjjLEq8agxxhhjjDVYr3AXIU6EGGOMMfYcr3AmxH2EGGOMMdZgcYsQY4wxxqr0Ko8a40SIMcYYY1XiztLslVR2A8gnj/LUHImqoieaFY+myn+kre4QynmUp3lnusLHmnc8UXG+ukMoRxO308PcXHWHUI6y8LG6Q1ChLHwCoO5v6JtbC/uiNpZRF0TEt0NusK5fvw6FQqHuMBhjjNVQRkYGbG1ta325+fn5cHBwwK1bt2pleVZWVkhNTYVUKq2V5dUGToQaMKVSiZs3b0Iul0NUgzbL3NxcKBQKZGRkwNDQsBYjfHkcU/VwTNXDMVUPx1Q9tRkTEeHhw4ewsbGBllbdjH/Kz89HYWFhrSxLLBZrVBIE8KWxBk1LS6tWf0EYGhpqzImmDMdUPRxT9XBM1cMxVU9txWRkZFQL0VROKpVqXPJSm3j4PGOMMcYaLE6EGGOMMdZgcSLEakwikWD+/PmQSCTqDkXAMVUPx1Q9HFP1cEzVo4kxNWTcWZoxxhhjDRa3CDHGGGOsweJEiDHGGGMNFidCjDHGGGuwOBFiDVJAQAAGDRqk7jCqLS4uDh06dIBUKkWbNm2QlpYGkUiEyMhIlXIikQh79+6t01js7e2xatWqOq2jtqxfvx4KhQJaWlpYtWoVFixYgDZt2lTrsyEhITA2Nq7T+OpD165dMW3aNHWHUc7JkychEomQnZ2t7lAEz54XanPbVfY3+zRN3CYNASdCTBAQEACRSCS8zMzM0KtXL0RHR//P1lfVyeeff/6pcf2VfVnWdrIwf/586OvrIywsDF5eXujcuTMAoFevXujfvz9OnDgBAMjMzETv3r1rVNfT+0VXVxeWlpbw9fXFxo0boVQqa7wuFbl16xamTp0KR0dHSKVSWFpawsfHB+vWrcPjxy/3bKfc3FxMmjQJs2fPxo0bNzB27Nhajrrmyrb1uHHjys2bOHEiRCIRAgICqrWsyr5ECwsL8eeff6JJkyaQSCSwsrJCz549cebMmVpYg5fXsWNHZGZmVvtmgHfv3sX48ePrdD2+/fZbhISE1En9CoUCmZmZaNmyZa3Fy2oHJ0JMRa9evZCZmYnMzEycOHECOjo66Nev3ytTn6bV/zxlt7VPTk5Gy5YtMWjQIJw9exZz584FAKxduxbdunXDxIkTAZQ+x6c2huSWbZe0tDQcOnQI3bp1w9SpU9GvX79KH+5YVFT0UnWlpKSgbdu2OHr0KJYsWYKIiAicO3cOs2bNwoEDB3D8+PGXqi89PR1FRUXo27cvrK2toaen91Lx1TWFQoHt27fjyZMnwrT8/Hxs3boVTZo0eenllh07MTExuHv3LjZt2oSEhATs27cPXbt2RVZWVo1jr6re5xGLxbCysqr24338/PwQERFRp+thZGRUaStgTevX1taGlZUVdHTq9oEOtfUojAaFGPt/w4cPp4EDB6pMCwsLIwB0584dIiJKT0+nwYMHk5GREZmYmNCAAQMoNTVV5TMbNmyg5s2bk0QiIRcXF1q7dq0wr6CggCZOnEhWVlakpaVFMpmMlixZUmf1AVB5denSRVhXhUIhrG9JSQktWbKErKysCAC5ubnRggULCAA9ePCA7t+/T8OGDSNjY2MCQHZ2djRr1qxyy58/fz516dKl3PSn169Tp04klUrJ1taWJk+eTHl5ecJ8Ozs7WrRoEX3wwQckl8tp+PDh5ZY1d+5cSk1NJQAUERFBSqWS7O3tafny5QSA9uzZQ0REERERBID69u1LJiYmpKenR+3ataPw8HAiIkpKSqIBAwaQhYUF6evrk6enJx07dkzlOLh9+zb169ePpFIpWVpaEgAyNTWllStXEgD6/vvvyc3NjUQiEeno6FDjxo2pefPmZGdnR1KplJydnWnVqlUq+6uoqIgmT55MRkZGZGpqSg4ODqSnp0d9+/YVyuTn59PkyZPJ3NycxGIx+fj4CPX179+fpFIpAaAjR46QmZkZiUQiEolEZG9vT6tWraLg4OBy200mk5FEIiE9PT1KS0ujU6dOkba2NnXs2JEMDAxILpeTh4cHDR06lDp16kTBwcFkZGREhw8fpubNm5O+vj717NmTbt68KcRZUlJCCxcupMaNG5NYLKbWrVvToUOHhPll+2nbtm3k7e1NEomEWrRoQSdPnhSOw7J1mz59OrVq1YokEgk1a9aMnJ2daeDAgTR8+HAiIjpx4gRZW1sL62NtbU2nTp1SqefpV7NmzejBgwcEgN5++22aOXMmmZiYkKWlJc2fP1+I8cGDBzR27FiysLAQ4tu/f78wf9euXeTm5kZisZjs7Ozo66+/VtmfFR2zz1tvIqK//vpL+Pt6Xl1l62FpaUlffvkljRgxggwMDEihUNCPP/4o/K1v2LCBBg0aRDKZjBwdHen3338Xll1cXEwjR44ke3v7So/NZ8+BXbp0oalTpwr1Px3/s8qOz169epFUKiUHBwfauXNnuWMhIiJCmHbw4EFycnIiqVRKXbt2FY7bp7fJy5wz2IvhRIgJnj0JPHz4kD766CNydHSkkpISKiwsJFdXVxo5ciRFR0dTTEwMDRs2jFxcXKigoICIiDZv3kzW1tYUGhpKKSkpFBoaSqamphQSEkJERMuXLyeFQkF///03+fn5UadOnWjr1q11Vt+FCxcIAB0/fpwyMzMpKytLWNenE6EvvviCnJ2dqU+fPmRnZ0c///wz6erqCieliRMnUps2bWjz5s0EgH799VcKDQ2lVatWkaGhIWVmZlJmZiY9fPiQsrKyyNbWlhYtWiRMJypNPPT19WnlypWUkJBAZ86cobZt21JAQICwze3s7MjQ0JC+/vprSkpKoqSkJMrMzCQXFxchCXr48GG5k+qXX35Jbm5uKonQuHHjSCqV0uuvv05hYWGUmJhIO3bsoLNnzxIRUWRkJP3www905coVSkhIoM8//5ykUim98847wnbp3bs3tW7dms6dO0eXLl0iPT090tLSEhIhCwsLGjp0KG3evJlOnz4tJCZ+fn6UkpJCmzdvJj09PdqxY4ewjl988QWZmprS7t276ezZswSAJBKJyrE3ZcoUsrGxoT/++IP+/fdfISE0NzenjRs30pYtWwgAeXl50fDhw2nHjh3k5eVFTk5OpKenR7/++isdP36cAJCBgQGNHz+e4uPjacKECaRQKOjatWtERCQWi8nDw4NiY2MpISGBtm7dSsbGxrRx40YKDg4mXV1d6tGjB128eJEuX75Mrq6uNGzYMCHOb775hgwNDWnbtm0UFxdHs2bNIl1dXUpISCCi/778bG1tadeuXRQTE0OjR48muVxO9+7dU0mE9PT06OjRoxQdHU2NGjUiExMT6t+/Pw0fPpySkpJIR0eHjIyMaMOGDbR582YyNTUlsVhMWVlZVFxcTObm5gSAZs+eTefOnaOIiAgqKioibW1tEovF9Pnnn1NCQgJt2rSJRCIRHT16lEpKSqhDhw7UokULOnr0KCUnJ9P+/fvpjz/+ICKiS5cukZaWFi1atIji4+MpODiYZDIZBQcHV3nMPm+9iconQlXVVVRUJCSrJiYmtHbtWkpMTKSgoCDS0tKiuLg4ob6tW7dSYmIiTZkyhQwMDIS/+cLCQpo3bx5dvHix0mOzskSorP5p06ZRfn4+VQQAmZmZ0YYNGyg+Pp4+//xz0tbWppiYGJVjoexvNj09nSQSCX3yyScUFxdHmzdvFn5slG2Tlz1nsBfDiRATDB8+nLS1tUlfX5/09fWFX52XL18mIqJff/2VXFxcSKlUCp8pKCggmUxGR44cISKiZs2aCYlNmcWLF5O3tzcREU2ePJneeOMNUiqV9VJfRb/CytZVoVAI9T/9K7us/j59+ggnpf79+9OIESOEVpayVqmyVoNn2dnZ0cqVK1WmjRo1isaOHasyLSwsjLS0tOjJkyfC5wYNGlRueU5OTgSAdu/eXeF63bhxg7S1tYVEqLCwkAwMDEgqlQpfBNXRokULat++PQ0cOJDi4+MJAF24cEGY37t3bwIgJELTpk0rt4ydO3eSmZmZ8H7ixInk5+cnvLe0tKTly5cTEVF4eDgBoEaNGglfQHl5eUJypK+vT7NmzaLCwkICQJ06dSKi/75Ejx8/Liz34MGDBIA++ugj8vPzE/bV07/k58+fT61btxY+I5FIyNraWngfGhpKBgYGlJeXJ/w6f/qLZe3atWRpaSm8t7GxoS+//FJl/b28vGjChAlE9N9+Wrp0qTC/qKiIbG1t6auvvlJJhHR1dSktLY3S0tJIKpWSVColT09PGj58OH344YekpaVFW7ZsEZZTtg3K6n/2S7SMm5sb6ejokFQqpY4dO9LcuXOpRYsWNHv2bDpy5AhpaWlRfHx8uf1IRDRs2DDy9fVVmTZz5kxyc3MT3ld0zD5vvZ+Ovyze59W1a9cu0tLSElrx5s6dS5GRkWRhYUHr1q0jAPT5558Lny07jp5uoXvWs8dmZYlQWf0mJiYq2zEqKkooC4DGjRunsvzXXnuNxo8fr7JNyv5m586dq7IdiYhmz56tsk1qcs5g1cd9hJiKbt26ITIyEpGRkbhw4QJ69uyJ3r1749q1a4iKikJSUhLkcjkMDAxgYGAAU1NT5OfnIzk5GY8ePUJycjJGjRolzDcwMMAXX3yB5ORkAKWdQyMjI+Hi4oLz58/D3d29Tuurzvru3LkTQOkTlu/evYt27dpBT08PR44cEcqNHz8e27dvx7vvvgsAuHz58gtv26ioKISEhKjE2rNnTyiVSqSmpgrlPD09y32WnnMDeBsbG/Tt21d4v3//fhQUFMDT0xOmpqYVfiYvLw8zZsyAq6srjI2NYWBggNjYWDx69AgAEBsbCx0dHbRr1074jFwuh5bWf6cNT09PHD9+HN27d0fjxo0hl8vx3nvvISsrC+bm5jAwMMD69euRnp4OAMjJycHt27fRvn17lViaNWsm/L9s3x05cgQtWrRAQUEBdHV1AUClbgBwd3fH2rVr0a5dO/j7+wMANm7cKNQHAO+88w569uyJ/v37Izw8XKVv0eTJk5GZmQkvLy8sXboUa9euxZAhQ6Cvrw8A0NPTU4nN2toad+7cAVDaGfvmzZvw8fFRicnHxwexsbEq07y9vYX/6+jowNPTs1yZ7t27IyQkBMHBwejbty+aN2+Ohw8fAgAuXboEpVKJ0aNHC8dO2f6+dOkSqmJubo6RI0di37596NWrF06ePImYmBicOXMGkZGRsLW1hbOzc4WfjY2NrXD9EhMTUVJSIkyr6Jit7npXty4/Pz/Y2tpixIgRwnq0a9cOYrFY2Cfu7u7CZ/X19WFoaCjMAyAcKxUdm8/j5+eHmzdvqmxHDw8Plc7VT69v2fuq1ve1114rV/5pNTlnsOrjRIip0NfXh6OjIxwdHeHl5YWffvoJjx49woYNG5CXl4d27doJiUvZKyEhAcOGDUNeXh4AYMOGDSrzr169ivDwcACAh4cHUlNTsXjxYpSUlODKlSuYM2dOndVXnfUtSxQOHz6Mq1evQk9PDwEBAfjll18AlCYhZcnZ0KFDAQDDhg3DjBkzXmjb5uXl4aOPPlKJNSoqComJiSpftmVfwk8r6wAdFxdX6fJHjx4NACgoKEBwcDBcXFzKJQ5PmzFjBvbs2YMlS5YgLCwMkZGRaNWqVZUjw2JjY1WW+ejRI/Tr1w/u7u4IDQ3FokWLhM6voaGhiIyMxIgRIyrtwOno6AiRSCR84T/N3t4eMplMZdqzHU337duHGTNmYNSoUVi3bh2A0sTn6fqWL1+Oc+fOoWPHjvj3338RFxcnHB/Lly+Hr68vdHR0cPjwYfz5558q+6IsASsjEomem5S+rCFDhiAkJASbNm3CyJEjVeaVjZw7dOiQyrHj6+sLQ0PD5y5bJpPB19cXgYGBOHv2LBQKBSIiIspt35dV0TFbF0QiEVq0aCGsR0BAAG7fvi0csxXtr7J527dvF46Vo0ePPvfYrIhUKlXZjgEBAZg/f37treAzanLOYNXHiRCrkkgkgpaWFp48eQIPDw8kJibCwsJCSJbKXkZGRrC0tISNjQ1SUlLKzXdwcBCWaWhoiHfffRcdO3aEl5cXQkNDcf/+/TqpTywWA4DKr9dnubm5QSKRID09HU5OTtDW1oZMJkPbtm0BlA5JB0p/Wdva2gIA5s2bh/Xr10MsFle47Iqme3h4ICYmplysjo6OQpyV0dHRgaOjI9auXSu02DwtOzsbffr0AVCa0B0+fBiDBg1CZGSksG2fdebMGQQEBOCtt95Cq1atYGVlhbS0NGF+8+bNUVxcLLR+/fnnn7hy5QqKi4uFMsnJyVAqlVixYgU6dOiAlJQUKBQKAKW/zh0dHVVa58r228WLFwEAZmZm6NGjB+Lj44XlNmvWDGKxWGVYclkrTtmyy5w/fx4dO3bEhAkT0Lx5cwCo8Bd+27ZtMXfuXIwaNQpSqRRbt24V5n388ceIjY1F9+7dIZfLq51EGxoawsbGptzw6TNnzsDNzU1l2tPLLNumrq6uKmVkMhkKCwtRVFSE9u3bIyEhAXK5HADQvn17iEQi3LhxQzhm7OzsEBMTU244dlXHehm5XI7i4mK4u7vj+vXrSEhIqLCcq6trhevn7OwMbW3t59ZTnfWuSV1ubm7VvqXDmTNnhGOlbdu25Y7Nl+Hm5qby9/jssRMeHl7l+l64cKFc+afV5JzBqo8TIaaioKAAt27dwq1btxAbG4vJkycjLy8P/fv3h7+/Pxo1aoSBAwciLCwMqampOHnyJKZMmYLr168DABYuXIigoCCsXr0aCQkJuHLlCoKDg/HNN98AAL755hts27YNcXFxyM3NRUZGBszNzZGfn18n9VlYWEAmk+Hw4cO4ffs2cnJyyq3vo0ePMG7cOEyePBm+vr7Iy8uDi4sLjhw5AlNTUyxYsAATJ05EYGAgli5dCqA0KXB1dYW9vT3y8vJw4sQJ3Lt3T/jlbm9vj7///hs3btzAvXv3AACzZ8/G2bNnMWnSJERGRiIxMRG///47Jk2aVK1906dPH5SUlKB9+/Y4dOgQgNKh56tXr4a3t7fwZbF582Y4OTkhMDAQVlZWGDRoEM6cOYOUlBSEhobi3LlzAAAnJyfs3r1b+JU5bNgw4UuloKAARkZG6Nq1Kz744AOMHz8e/fv3h4mJCaRSqRCTlZUVioqK8N133yElJQXZ2dlCk31SUhICAwOFpKfM5MmTERQUhN9//x3x8fGwtLSEUqnEqVOnsGPHDqSnp2Po0KGYOHEioqOjkZ2djTFjxgAAevToobKsZs2a4dKlSzhy5AiuXbsGAOXuA7Vs2TKcO3cO165dQ3JyMgoKCuDq6oonT55g0qRJkEgk0NPTw6JFiyAWiyv94qrIzJkz8dVXX2HHjh2Ij4/HnDlzEBkZialTp6qUW7t2Lfbs2YO4uDhMnDgRDx48KNfq88UXX2DdunXYtWsXRo0ahUaNGsHa2hoA8Nlnn0FLSwtjx47F2rVrcejQIfTs2RP37t3DqFGjAJQmyyKRCAcOHMDdu3eRl5eHrKwsREVFIS4uDtHR0UhNTcXOnTuRlJQEhUKBLl26oHPnzvDz88OxY8eQmpqKQ4cO4fDhwwCA6dOn48SJE1i8eDESEhKwadMmrFmzptqtodVZ7zJV1ZWVlYU33ngDeXl5uHnzprAey5Ytq/Z9iJycnIRjJSEhocJjszJl9W/evFllOy5btgwDBw4Uyu3cuRMbN25EQkIC5s+fjwsXLlT69z1u3DgkJiZi5syZiI+Px9atW8vdw6im5wxWTWruo8Q0yLNDteVyOXl5edGuXbuEMpmZmfThhx9So0aNSCKRUNOmTWnMmDGUk5MjlNmyZQu1adOGxGIxmZiYUOfOnYVOvuvXr6c2bdqQvr6+MCqrLusjKh1er1AoSEtLq9zw+afrl0gkJJVKSVtbm8zNzalnz560Zs0aatWqFeno6JBMJiOxWEwAyNfXl1JSUoiodHSWmZmZMHyeiOjcuXPk7u5OEolEZfj8hQsXyNfXlwwMDEhfX5/c3d1VOttW1MmaiKh169Y0f/58unnzJk2cOJEaN24sjNoaMGAA/fXXX0T03+0Cli1bRkREaWlp5OfnR4aGhqSnp0eenp50/vx5IirtvNmtWzeSyWSkUChozZo11KVLF3J1dRWWo6OjQ2KxmEQikTAaryxG/H/H7G+++Yasra1JJpORr68vvf766wSAjIyMaPz48TRnzhyVDspFRUU0adIkMjQ0JBMTE5o9ezb169ePnJycyMHBgXR1dcnAwIAsLS1JT09PZfh82Yi4so62t27dooCAADIyMiK5XE4AaPz48dS6dWuhs/Sbb75J1tbWJBaLycjIiCwtLamkpIQKCgpo6NChQqd5ADRixAihE2pFHeH37Nmjsj9LSkpowYIF1LhxY9LV1a10+PzWrVupffv2JBaLyc3Njf7880/hOCxbt/3791OLFi1ILBZT+/btKSoqSmX4fFhYmMoxq6enJ3TELTt2evfuTVZWViQSiWj48OGUn59PCoWCLCwsyMjIiPT09MjFxYWcnZ3J39+fiIiysrJoxIgRZGZmRlKplFq2bEkHDhwQlls2pF1XV5eaNGkidHSv6ph93no/vQ8rGj7/bF35+fk0Z84cEovFJJVKhfX4/PPPqVWrVjR//nyV46OMkZGRMMItPz9fOFaMjY0rPDYr6yxdVr+Hh4fKdvz888/p8ePHRFT6t7d27Vry9fUliURC9vb2KiPSKhq4sX//fnJ0dCSJREKvv/46bdy4sdw2edlzBqs+EVEdXfBmjNW7sLAwdO/eHRkZGbC0tFR3ONWiVCrh6uqKIUOGYPHixWqJYdSoUbh79y727dtXq8tNS0uDg4MDIiIiKn20x8mTJ9GtWzc8ePDglXikB1C99X7ViEQi7Nmz53/q0T2sVN3e4pIxVi8KCgpw9+5dLFiwAIMHD9boJOjatWs4evQounTpgoKCAqxZswapqakYNmxYvceSk5ODK1euYOvWrbWeBDHG/jdwHyHGXgHbtm2DnZ0dsrOzsWzZMnWHUyUtLS2EhITAy8sLPj4+uHLlCo4fP/5CfXNqy8CBA/Hmm29i3Lhx8PX1rff6GWPqx5fGGGOMMdZgcYsQY4wxxhosToQYY4wx1mBxIsQYY4yxBosTIcYYY4w1WJwIMcbUKiAgQOXeK127dsW0adPqPY6TJ09CJBIhOzu70jIikQh79+6t9jIXLFhQ4/vopKWlQSQSITIyskbLYYxVjBMhxlg5AQEBEIlEEIlEEIvFcHR0xKJFi1SeM1ZXdu/eXe0bK1YneWGMsarwDRUZYxXq1asXgoODUVBQgD/++AMTJ06Erq4u5s6dW65sYWFhrT0E0tTUtFaWwxhj1cEtQoyxCkkkElhZWcHOzg7jx49Hjx49hLsvl13O+vLLL2FjYwMXFxcAQEZGBoYMGQJjY2OYmppi4MCBKk+0LykpwSeffAJjY2OYmZlh1qxZePZWZs9eGisoKMDs2bOhUCggkUjg6OiIn3/+GWlpaejWrRsAwMTEBCKRCAEBAQBKH9sRFBQEBwcHyGQytG7dGrt27VKp548//oCzszNkMhm6deumEmd1zZ49G87OztDT00PTpk0RGBiIoqKicuV+/PFHKBQK6OnpYciQIeUe/vvTTz/B1dUVUqkUzZs3x/fff//CsTDGXg4nQoyxapHJZCgsLBTenzhxAvHx8Th27BgOHDiAoqIi9OzZE3K5HGFhYThz5gwMDAzQq1cv4XMrVqxASEgINm7ciNOnT+P+/fvYs2dPlfV++OGH2LZtG1avXo3Y2Fj8+OOPMDAwgEKhQGhoKAAgPj4emZmZ+PbbbwEAQUFB+OWXX/DDDz/g33//xccff4z3338fp06dAlCasL399tvo378/IiMjMXr0aMyZM+eFt4lcLkdISAhiYmLw7bffYsOGDVi5cqVKmaSkJPz222/Yv38/Dh8+jIiICEyYMEGYv2XLFsybNw9ffvklYmNjsWTJEgQGBmLTpk0vHA9j7CWo9ZGvjDGN9PRTuJVKJR07dowkEgnNmDFDmG9paUkFBQXCZ3799VdycXEhpVIpTCsoKCCZTEZHjhwhIiJra2tatmyZML+oqIhsbW0rfOI3EVF8fDwBoGPHjlUYZ0VPMM/Pzyc9PT06e/asStlRo0bRe++9R0REc+fOJTc3N5X5s2fPLresZ6GCJ5w/bfny5dSuXTvh/fz580lbW5uuX78uTDt06BBpaWlRZmYmERE1a9aMtm7dqrKcxYsXk7e3NxFV/NRyxljt4T5CjLEKHThwAAYGBigqKoJSqcSwYcOwYMECYX6rVq1U+gVFRUUhKSkJcrlcZTn5+flITk5GTk4OMjMz8dprrwnzdHR04OnpWe7yWJnIyEhoa2ujS5cu1Y47KSkJjx8/LvfssMLCQrRt2xYAEBsbqxIHAHh7e1e7jjI7duzA6tWrkZycjLy8PBQXF8PQ0FClTJMmTdC4cWOVepRKJeLj4yGXy5GcnIxRo0ZhzJgxQpni4mIYGRm9cDyMsRfHiRBjrELdunXDunXrIBaLYWNjAx0d1dOFvr6+yvu8vDy0a9cOW7ZsKbcsc3Pzl4pBJpO98Gfy8vIAAAcPHlRJQIDSfk+15dy5c/D398fChQvRs2dPGBkZYfv27VixYsULx7phw4ZyiZm2tnatxcoYqxwnQoyxCunr68PR0bHa5T08PLBjxw5YWFiUaxUpY21tjfPnz6Nz584ASls+Ll++DA8PjwrLt2rVCkqlEqdOnUKPHj3KzS9rkSopKRGmubm5QSKRID09vdKWJFdXV6Hjd5nw8PDnr+RTzp49Czs7O3z22WfCtGvXrpUrl56ejps3b8LGxkaoR0tLCy4uLrC0tISNjQ1SUlLg7+//QvUzxmoHd5ZmjNUKf39/NGrUCAMHDkRYWBhSU1Nx8uRJTJkyBdevXwcATJ06FUuXLsXevXsRFxeHCRMmVHkPIHt7ewwfPhwjR47E3r17hWX+9ttvAAA7OzuIRCIcOHAAd+/eRV5eHuRyOWbMmIGPP/4YmzZtQnJyMv755x989913QgfkcePGITExETNnzkR8fDy2bt2KkJCQF1pfJycnpKenY/v27UhOTsbq1asr7PgtlUoxfPhwREVFISwsDFOmTMGQIUNgZWUFAFi4cCGCgoKwevVqJCQk4MqVKwgODsY333zzQvEwxl4OJ0KMsVqhp6eHv//+G02aNMHbb78NV1dXjBo1Cvn5+UIL0fTp0/HBBx9g+PDh8Pb2hlwux1tvvVXlctetW4d33nkHEyZMQPPmzTFmzBg8evQIANC4cWMsXLgQc+bMgaWlJSZNmgQAWLx4MQIDAxEUFARXV1f06tULBw8ehIODA4DSfjuhoaHYu3cvWrdujR9++AFLlix5ofUdMGAAPv74Y0yaNAlt2rTB2bNnERgYWK6co6Mj3n77bfTp0wdvvvkm3N3dVYbHjx49Gj/99BOCg4PRqlUrdOnSBSEhIUKsjLG6JaLKeikyxhhjjL3iuEWIMcYYYw0WJ0KMMcYYa7A4EWKMMcZYg8WJEGOMMcYaLE6EGGOMMdZgcSLEGGOMsQaLEyHGGGOMNVicCDHGGGOsweJEiDHGGGMNFidCjDHGGGuwOBFijDHGWIPFiRBjjDHGGqz/A26MupDoEPxiAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py:3103: UserWarning: You are saving your model as an HDF5 file via `model.save()`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')`.\n", + " saving_api.save_model(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saved DenseNet121 model to saved_models/DenseNet121_saved.h5\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "W3i-Yr-isQFg" + }, + "source": [ + "# Testing and labeling unseen data" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dTpxTpNHsU4f", + "outputId": "6e9d9587-d659-479d-aaf6-4a11a1a97b41" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "1/1 [==============================] - 2s 2s/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 71ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 75ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 74ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 70ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 4s 4s/step\n", + "Predictions saved to /content/saved_models/predicted_ResNet101V2_saved.csv\n", + "1/1 [==============================] - 6s 6s/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 84ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 96ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 92ms/step\n", + "1/1 [==============================] - 0s 84ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 68ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 110ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 76ms/step\n", + "1/1 [==============================] - 0s 83ms/step\n", + "1/1 [==============================] - 0s 86ms/step\n", + "1/1 [==============================] - 0s 93ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 84ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 78ms/step\n", + "1/1 [==============================] - 0s 79ms/step\n", + "1/1 [==============================] - 0s 73ms/step\n", + "1/1 [==============================] - 0s 83ms/step\n", + "1/1 [==============================] - 0s 71ms/step\n", + "1/1 [==============================] - 0s 87ms/step\n", + "1/1 [==============================] - 0s 81ms/step\n", + "1/1 [==============================] - 0s 79ms/step\n", + "1/1 [==============================] - 0s 77ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 81ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 70ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 66ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 68ms/step\n", + "1/1 [==============================] - 0s 81ms/step\n", + "1/1 [==============================] - 0s 85ms/step\n", + "1/1 [==============================] - 0s 66ms/step\n", + "1/1 [==============================] - 0s 85ms/step\n", + "1/1 [==============================] - 0s 99ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 80ms/step\n", + "1/1 [==============================] - 0s 83ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 83ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 70ms/step\n", + "1/1 [==============================] - 0s 66ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 71ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 84ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 82ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 86ms/step\n", + "1/1 [==============================] - 0s 99ms/step\n", + "1/1 [==============================] - 0s 73ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 70ms/step\n", + "1/1 [==============================] - 0s 66ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 79ms/step\n", + "1/1 [==============================] - 0s 87ms/step\n", + "1/1 [==============================] - 0s 88ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 82ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 79ms/step\n", + "1/1 [==============================] - 0s 83ms/step\n", + "1/1 [==============================] - 0s 77ms/step\n", + "1/1 [==============================] - 0s 76ms/step\n", + "1/1 [==============================] - 0s 92ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 71ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 82ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 81ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 85ms/step\n", + "1/1 [==============================] - 0s 100ms/step\n", + "1/1 [==============================] - 0s 71ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 77ms/step\n", + "1/1 [==============================] - 0s 87ms/step\n", + "1/1 [==============================] - 0s 96ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 83ms/step\n", + "1/1 [==============================] - 0s 97ms/step\n", + "1/1 [==============================] - 0s 79ms/step\n", + "1/1 [==============================] - 0s 68ms/step\n", + "1/1 [==============================] - 0s 78ms/step\n", + "1/1 [==============================] - 0s 82ms/step\n", + "1/1 [==============================] - 0s 81ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 96ms/step\n", + "1/1 [==============================] - 0s 82ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 107ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 86ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 68ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 6s 6s/step\n", + "Predictions saved to /content/saved_models/predicted_InceptionV3_saved.csv\n", + "1/1 [==============================] - 6s 6s/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 71ms/step\n", + "1/1 [==============================] - 0s 66ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 70ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 68ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 83ms/step\n", + "1/1 [==============================] - 0s 68ms/step\n", + "1/1 [==============================] - 0s 80ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 79ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 71ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 70ms/step\n", + "1/1 [==============================] - 0s 85ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 116ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 70ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 80ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 88ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 74ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 74ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 97ms/step\n", + "1/1 [==============================] - 0s 76ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 79ms/step\n", + "1/1 [==============================] - 0s 82ms/step\n", + "1/1 [==============================] - 0s 73ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 71ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 83ms/step\n", + "1/1 [==============================] - 0s 188ms/step\n", + "1/1 [==============================] - 0s 73ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 75ms/step\n", + "1/1 [==============================] - 0s 100ms/step\n", + "1/1 [==============================] - 0s 76ms/step\n", + "1/1 [==============================] - 0s 81ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 68ms/step\n", + "1/1 [==============================] - 0s 81ms/step\n", + "1/1 [==============================] - 0s 98ms/step\n", + "1/1 [==============================] - 0s 128ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 73ms/step\n", + "1/1 [==============================] - 0s 85ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 93ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 80ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 75ms/step\n", + "1/1 [==============================] - 0s 71ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 78ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 70ms/step\n", + "1/1 [==============================] - 0s 80ms/step\n", + "1/1 [==============================] - 0s 90ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 83ms/step\n", + "1/1 [==============================] - 0s 76ms/step\n", + "1/1 [==============================] - 0s 85ms/step\n", + "1/1 [==============================] - 0s 113ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 69ms/step\n", + "1/1 [==============================] - 0s 117ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 90ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 71ms/step\n", + "1/1 [==============================] - 0s 74ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 92ms/step\n", + "1/1 [==============================] - 0s 88ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 70ms/step\n", + "1/1 [==============================] - 0s 88ms/step\n", + "1/1 [==============================] - 0s 76ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 81ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 70ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 75ms/step\n", + "1/1 [==============================] - 0s 81ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 5s 5s/step\n", + "Predictions saved to /content/saved_models/predicted_Xception_saved.csv\n", + "1/1 [==============================] - 1s 887ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 66ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 29ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 33ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 30ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 31ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 0s 32ms/step\n", + "1/1 [==============================] - 1s 835ms/step\n", + "Predictions saved to /content/saved_models/predicted_ResNet50V2_saved.csv\n", + "1/1 [==============================] - 2s 2s/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 81ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 70ms/step\n", + "1/1 [==============================] - 0s 54ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 35ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 34ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 72ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 66ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 109ms/step\n", + "1/1 [==============================] - 0s 121ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 44ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 52ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 65ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 80ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 47ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 50ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 51ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 66ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 61ms/step\n", + "1/1 [==============================] - 0s 57ms/step\n", + "1/1 [==============================] - 0s 64ms/step\n", + "1/1 [==============================] - 0s 66ms/step\n", + "1/1 [==============================] - 0s 76ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 43ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 74ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 56ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 53ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 45ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 36ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 41ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 48ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 39ms/step\n", + "1/1 [==============================] - 0s 59ms/step\n", + "1/1 [==============================] - 0s 60ms/step\n", + "1/1 [==============================] - 0s 55ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 49ms/step\n", + "1/1 [==============================] - 0s 58ms/step\n", + "1/1 [==============================] - 0s 63ms/step\n", + "1/1 [==============================] - 0s 67ms/step\n", + "1/1 [==============================] - 0s 62ms/step\n", + "1/1 [==============================] - 0s 68ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 42ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 0s 46ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 37ms/step\n", + "1/1 [==============================] - 0s 40ms/step\n", + "1/1 [==============================] - 0s 38ms/step\n", + "1/1 [==============================] - 6s 6s/step\n", + "Predictions saved to /content/saved_models/predicted_DenseNet121_saved.csv\n" + ] + } + ], + "source": [ + "import os\n", + "from tqdm import tqdm\n", + "import numpy as np\n", + "import pandas as pd\n", + "from keras.models import load_model\n", + "from keras.preprocessing import image\n", + "\n", + "# Load test dataset\n", + "test_df = pd.read_csv('/content/insect-dataset/test_data.csv')\n", + "\n", + "# Load class indices (assuming you have train_generator with class indices saved)\n", + "class_indices_inverse = {v: k for k, v in train_generator.class_indices.items()}\n", + "\n", + "# Directory containing the saved models\n", + "model_dir = '/content/saved_models'\n", + "\n", + "# Define batch size\n", + "batch_size = 32\n", + "\n", + "# Function to process images in batches\n", + "def process_images_in_batches(image_paths, model, target_size, batch_size):\n", + " num_images = len(image_paths)\n", + " num_batches = (num_images + batch_size - 1) // batch_size # Calculate number of batches\n", + "\n", + " all_predictions = []\n", + "\n", + " for batch_idx in range(num_batches):\n", + " start_idx = batch_idx * batch_size\n", + " end_idx = min((batch_idx + 1) * batch_size, num_images)\n", + " batch_paths = image_paths[start_idx:end_idx]\n", + "\n", + " batch_images = []\n", + " for img_path in batch_paths:\n", + " img = image.load_img(img_path, target_size=target_size)\n", + " img = image.img_to_array(img)\n", + " img = img / 255.0\n", + " batch_images.append(img)\n", + "\n", + " batch_images = np.array(batch_images)\n", + " batch_predictions_probs = model.predict(batch_images)\n", + " batch_predictions = np.argmax(batch_predictions_probs, axis=1)\n", + "\n", + " all_predictions.extend(batch_predictions)\n", + "\n", + " return all_predictions\n", + "\n", + "# Iterate over each model file in the directory\n", + "for model_file in os.listdir(model_dir):\n", + " if model_file.endswith('.h5'):\n", + " # Load the model\n", + " model_path = os.path.join(model_dir, model_file)\n", + " model = load_model(model_path)\n", + "\n", + " # Determine target size based on model\n", + " if \"Xception_saved\" in model_file or \"InceptionV3_saved\" in model_file:\n", + " target_size = (299, 299)\n", + " else:\n", + " target_size = (224, 224)\n", + "\n", + " # Process images in batches and make predictions\n", + " image_paths = test_df['Image_Path'].tolist()\n", + " prediction = process_images_in_batches(image_paths, model, target_size, batch_size)\n", + "\n", + " # Map predictions to class labels\n", + " prediction_labels = [class_indices_inverse[label] for label in prediction]\n", + "\n", + " # Create a DataFrame with predictions\n", + " predicted_df = pd.DataFrame({\n", + " 'Image_Path': test_df['Image_Path'],\n", + " 'Label': prediction_labels,\n", + " })\n", + "\n", + " # Save predictions to CSV\n", + " csv_path = f'/content/saved_models/predicted_{model_file.split(\".\")[0]}.csv'\n", + " predicted_df.to_csv(csv_path, header=True, index=False)\n", + "\n", + " print(f\"Predictions saved to {csv_path}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5CDgY9K0ogRX" + }, + "source": [ + "# image label and prediction and visualization" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "vGaNEEm9Ykml", + "outputId": "1925cfe4-3225-49d0-9221-930150e40b6f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Predictions using: predicted_DenseNet121_saved\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAL8AAADECAYAAADOD/AEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAn6UlEQVR4nO2de5hkRXn/P3VO99yvOzu7M8veuSxyV0CIcpUFFEjUGFSSCCZqiCYQzS8/Y/IkGhOjT3zyJBBCjPEPeSKSKKIx5hGDKKBcFH6CCCsLy7IL7IXd2Z2ZnVvPdJ9z3t8fdU736e7Tt5nTM90z9X12dqZPv6eqTp1vvfXWW29VKRERDAxWIKylLoCBwVLBkN9gxcKQ32DFwpDfYMXCkN9gxcKQ32DFwpDfYMXCkN9gxcKQ32DFovnIv3kzvP/9uc8PPghK6d9xQSn4q7+KLz2D6vDEE/CmN0Fnp34HP/+5fg9K1SW72sh/xx26IMFPWxucdBL84R/CoUN1KWDd8N3vNjfBC9+FUrBmDVx6Kdx77/zTLVUvMzP6epxKJoxMBq69FkZH4R//Eb7yFdi0qT55+UjM666//mvYsgVmZ+Hhh+ELX9CV9uyz0NERcxEr4KKLIJWClpba7vvud+H226NfdCoFiflVzaIjeBciWgHdcQdcdRV85ztwzTW1p1eqXmZm4NOf1n9fcskCCx2B3bvh5ZfhS1+CD34w/vQjML83/La3wTnn6L8/+EEYGIB/+Af49rfhuuui75me1t1Z3LAs3QPFibjTqyfC7wLgAx+AtWvhP/5jfuRfbAS8OHxYf+7rW7Ss47H53/IW/XvPHv37/e+Hri7dmq+6Crq74bd+S3/neXDLLXDqqZpka9fCjTfC2Fh+miLwmc/A+vW6N7n0UtixozjvUjb/T3+q8+7v15V7xhlw66258t1+u/47bDYEiLL5n3pKE62nRz/bZZfBT36SLxOYIo88An/8xzA4qPN+5zthZKRCJcaEvj5ob8/vuUrV0d69+vodd+jPpepl7179LKC1f3A9XEc7d8Jv/AasWqXf6znnwH//d35+Qf089BB85CPaTFu/Xud78cVa5tprtUyp3uXii+HMM6O/27YNrryyRMUUI56+ffdu/XtgIHfNcXRBLrgA/v7vc+bQjTfqSvid34Gbb9YN5p//WZPrkUcgmdRyn/ykJv9VV+mfJ5+EK66AdLpyeb7/fa31hofhj/4Ihobguefgf/5Hf77xRjhwQMt95SuV09uxAy68UBP/4x/XZfziF/ULeughOO+8fPmbbtKN7lOf0sS55RY9Lvra1yrnVSuOHYMjR7SyOHwYbrsNpqbgt3+79rRK1cvgoDZtP/xh3ZB//df19TPO0L937IA3vxmOOw4+8Qnd4L/+dXjHO+Cee/Q9YXzkIzrNT35Sa/6LLtL3fvazmhPnnquVYhTe9z740Ie0iX3aabnrTzwBL7wAf/EX1T+v1IIvf1kERO6/X2RkROTVV0X+8z9FBgZE2ttF9u3TcjfcoOU+8Yn8+3/8Y339q1/Nv/697+VfP3xYpKVF5OqrRTwvJ/fnf67lbrghd+2BB/S1Bx7Qnx1HZMsWkU2bRMbG8vMJp/UHf6DviwKIfOpTuc/veIcuz+7duWsHDoh0d4tcdFFx/Wzfnp/Xxz4mYtsi4+PR+c0HQV6FP62tInfckS9bWEcB9uzR17/85dy1UvUyMlJcLwEuu0zk9NNFZmdz1zxP5E1vEjnxxOIyX3CBfk9RZbz77vzrn/pUfnnGx0Xa2kT+9E/z5W6+WaSzU2Rqqrh8JTA/s2f7dt1yN2yA975XmwHf+pZuvWF8+MP5n+++G3p74fLLtbYKfs4+W6fxwANa7v77tYa/6aZ8c+SjH61ctqee0r3JRz9abD/Ox2XmunDffVqLbd2auz48DL/5m3rAPzGRf8/v/V5+XhdeqNN5+eXa86+E22/Xmvr734c779Tm4Qc/CN/8Zvx5RWF0FH74Q3j3u2FyMvdOjx7VPf+uXbB/f/49H/oQ2Pb88uvthbe/XY9pgnVYrqt71Xe8o6Zx5fzMnttv1y7OREJ3T9u26YFnXsoJbc+FsWuX7qbXrIlONxj0BCQ58cT87wcHtTlRDoEJFu4SF4KREe3p2Lat+LvXvU6PYV59VY9hAmzcmC8XlLlwXBNGKqXrJoyhocrle+Mb8we8110Hr3+9NrOuuaZ2L1itePFFTcK//Ev9E4XDh/MV45YtC8vz+us12X/8Y20y3X+/9nS97301JTM/8hdWeBRaW4sbhOdp4n/1q9H3BIOqZkcprVZuxejXvqbHQdXKl4Jlae1/661a2Zx6aukez3VrT78Qnqd//8mflB5snnBC/uf29oXleeWVWuneeacm/513akWxfXtNySyuM/v443UrffOby1dAMLmxa1e+qTEyUl57BnmAHhCVq4xqTaDBQT1Yf/754u927tRk27ChurTK4cortekSBxxH/56a0r+Dnmd8PF8uygwrVS+lrgfvJ5msmXzzhm1rk/OOO+Dv/g7+67/mZUotbnjDu9+ttc3f/E3xd46Teznbt+vKvO22fO13yy2V83jDG3S3esstxS87nFZgGxbKFMK2tZfp29/WnpsAhw7BXXdpb1ZPT+VyVcLwsH7u8M98kMnoMUpLizbLQCsT24Yf/Shf9l/+pfj+UvUSeOsKr69Zo71eX/wiHDxYnF69XLzve59WhDfeOG/v1uJq/osv1oX93Od03MYVV2iS79qlB8O33qp9xYODuhv93Oe03XrVVXoge++9sHp1+TwsS7vlfvVX4ayztCkxPKy19I4d8L//q+XOPlv/vvlmrXVtWw/eo/CZz2itfMEF2k2XSOiXPTcHn/98XLUzP9x7r3420Lb1XXfp+vzEJ3KNsrdX+89vu01r8OOP127fYIwVRql6aW+HU07R5tlJJ2l//mmn6Z/bb9d1c/rpWgNv3aqVw2OPwb598PTT8T/361+v8777bt3I3/CG2tOo2i8kknNVPfFEebkbbtBup1L4t38TOfts7R7t7tZuso9/XLsPA7iuyKc/LTI8rOUuuUTk2We1C7OcqzPAww+LXH65Tr+zU+SMM0Ruuy33veOI3HSTyOCgiFL57rQol96TT4pceaVIV5dIR4fIpZeKPPpodfVTqowLQZSrs61N5KyzRL7whXxXq4h2Vb7rXbrs/f0iN96o67PQ1VmuXh59VL+3lpbiOtq9W+T660WGhkSSSZHjjhO55hqRb3yjuMxR/KnW1RnG5z+vv/vsZyvVViSUiNm3x6BJceut8LGPaXO00MNWBQz5DZoTIjrMYWAgNz9UI5okdNHAwMf0tI4ZeuABeOYZ7YiYJ4zmN2gu7N2rvXl9fdr58Ld/O++kDPkNViyabxmjgUFMMOQ3WLEw5DdYsYjX2zO6L9bkDJY5BCBBJuOyb/9rjB4dY3Jmis6udo4/YTOWeKRSKRzHITw03XjmeSWTrAVG8xs0BgQ8z0PEQ0QQ8eqepSG/QYOiPnv1hGHIb9AYUGBZlv+jUHXaqCoMQ36DpYHk/lBKf1ZK4boerqtNnnrPQNWf/LU8gJFdsbKCICL+riiqvHBMqD/5a+m9jOzKldVxyzUmtjDUgfwNrF6MbAPKiv+/4HkeSimUWhxrvA5RnY2sXoxsY8gKuUahiW5ZFrZt47ou4oHCRimhnqFnJqTZYIkQbgCQayS5xqIUdSW/8fYYNAg0ybXZo+ru6QFDfoNGgT/gDRw9ixFpb8hvsETImTnia33XdfE8yX4tQl0nuwz5DZYGBSa+ZVu0tLRkB766PUge+QOTKC4Y8hs0BvzAtizhF8Hdb7w9KxFRTpaoa1WllW+bS1hTV7w5J+F5Hp4riCjS6TSWsuo9wbsI5K9l0s7ILoqsoPybBCWByzHENPG/L5FuKCwHhQBB+LGFvmKhRPzsBFSQvvLT9ontCSQ8lHjgWojbSkKBEgWejuEXz8s2MBGJtT2Y8IaVKBsmY5GAqipdwfIbEeQaj4AoRHQDKF3QIG8FOAgZPFFAAs8Fy1JYtgPiIZ7ktc0GJ38zTKkbWfBQeCFJTebgp3qEGkz2SqgxqDDRQ72JAmzllwREOWA5uCqNSnoI9V/MYsIbVqCsEg9NOQtRlia+BBo/MIqqaWS6oSgscg3N9T/rtLImVBa6QegVWwqlWgCFshWemsNxplEkWISFXGbAu1whYTtZBCuR0Pa9bYMreK6Lsi0EcDzBcRzS6TmSCZu2liSeZemZVv8ACxHBKjhsRERQdgIRF2UpxHV8+9zNji3ESmChNJl10I4/kaXwXAtLJUEUNoqJsaPMpafA7cIigSidp1IK1/OI1+I35F+WEB0Uo4PEfPKLUtiJhG4UIowfO8ajP3mCx3/2NG2dnSTsBKMjr5GemaSro403XXgpF1x0Ee0dHTqtdBosC8u29RkLySTp6WlaW1pB2XhoGW8uhbK1Jrdb2kApRCxoaUUycziZFHZCUALKtVBWKwmxsJwU7fYsqBTMTTAzPkZbZxciOtrTTtg4waEbMSHeHdvM7g0NgYzjYCcSqJCmdjMZMpkM42NjHHztIN/93r388KFH8Kwkg2vXsHZggJ3P/JyR/XtY1dPFxCx86d//nTNOPQVEsGxbe14A8XyTJalNlldeeYUHf3A/czOT7Nv7It0dbbzzve/h+G2nIK4FqgVchdiKRJvCycyQmZnEmU7R0zsMc3Mc2P88x44d5NFHHqS/fzXJltVsO/ONdPX1A+D5i108YHNMuzcY8i8r6FfpeaJtC9tGgF88+SSPPvIIh0ZGmBgf58Brr3Hk2AR9g2toaetiamqKnc/uoNP2OPfUTbQmbB7+2U4uu/wKPvPZv6XFP9RuLpXiyJEjjI2Ps2fPy+z45XNMpWbZf+Aghw/uR9IpOloUuBl6Vw+wYeuJjI+luOzyt3H+OeeTcub413+5lanpKU7d2oeXmuSG63+f2ZkZ7vvfr9HZJVik6e5cxaat59GxZhuSaNXP5Mf7x0l+Y/Y0GYo1lSCeoGzLd7d7iNJmjjguP7j/B3zjG/fwwgsv0N3dw+TEJDPpOdq6ujgycgRhlMOHDjM6cohEfz9Dw8fR19fDUzv3YVu693j55T08+MP7OXrkMC+9tJu5uTle2nuQ1JxDIpEkk07jZlJsGB6kLSGMTkywd99+nt25m2Pjs3z7v7/H2tUD9Pf184sdz2CJ8LMBm6G+JKMHXqZ/1SAzmUnWrV9Dd283A+u3ctxJJzPndTOdmgvN/sYLQ/6mhL/iGwDBdTMosVCWwrItntuxg8eeeJyjI0f5+VM/5/Dho/T09ZNKzfLinlfxBLae2MGvXXMFawYH+dGDD7LvlV62bNrC+OQMT+94jrnZCUYOvcKX//Wf2L//FXY+90tW9XdjK6HNTtDT1cnU1AjKSTPY183M9Cw9bYpVfd10t9v09fczPZuizUozOjpDe3ISy0lz/pkbcWZTJN0pTtm6lqmJCU4+9UyGjz8VRyUg2YnbNUhKrQLl+XNhOeLH6Zs35F8GSLS26mWAToYdTz/DV++6i8f+3+M4GRfbTrJ27TDr129gz0t7cV0HQXH5ZZfz4d+7kWRHG2+7+q2kJ8YgofjKl/6NPXuex0tPcWjfDu47vIuz33AOx63uwUmn6ensxkq00La+H0nPMTZ6hM5WC8tNMDV+lO5WGFrdy7ohF6GHiWPtTE5NMjg4AAKTk5NMTmRISjdtXUN86Pc/yvCmEzg0MsnI2CTjU2kcpwNoQ0jVt97qmjo01LT+spUFEOG+e+/le/fey/ixCY4b3sC+V/cxcniM9es2MD56lF27dpOec7nowvN577vepbXobIq+jha8ZA9PP/MUhw7updWGDRt6GV4zyOx0irFD+5kaHcfLCPacw+TMLKOTM6RSKWw3jcrM0NfRyuTEGC8+v5sD7d309Ci6OttJJpN0t3azYd3x2HYCy04wsG4dPV2DbN5yCptPewOuJJg7mMaVDJaysEiCp/T8WB1Rf/I37lxP08oGmxxod7lCHIeDrx3kW9/6FhPHjrFu3Xr2HTzE4UOHGT82za+8+U2ccdppdHfdg20nefd7ruWkk0/wowtm+dlPH+M7//V1jowcZPcLz9HR1U1H12qmUtDT1c/09AxOZhY8EKuVtjaL5LRLanKKnt42JsdHsS3Fhg3H0dPTy/79r/H8CweYc8Y56/RtvPH8c3nne66je/UgZDzaOzuxkq1g2YirY31USyvYKZTyY4XEDT1vfVpBHcjfKOpwucr6gQPK0vOrSjE+Nsr/fOc7HD16FAW8sOtFjk3M4DiK4bVrOXHrVi648ELO/5XzsZQCz8Uiw96dz/HM00/y1JOPMzt5jN6ONgb6umjr6ObRX+znrZdvZ6CnDdLHeG3/Hqanj5FyJunvH8ClEzvZxtjoGJOTU3rg6x2kfwB6+9fya9eey9D6jZz7xvPo7Ollzeateo5ALD3pKz7JEzaOkwbLRVkunqQQz0aRwRXX378zt8QxTpjwhmaTFUBEb+/heYjn8c177uHxxx9nZmYGSym6u/qZmclw2qmn8N7r3sP555+PEsG2FJ7jYCUUqYkjPPrjH3D/fd8jNX2M3u4OTnndSbhzUxweGWd0Ypb1G7dy6tbj+OXTD4OXobuzlenZaY5NjvPa4VGG1x7HeeddwsxshmMTMzz2xDMcfPEAv339hdz4sQ/T1d2GZSXIOA4kPDzPQfkrt5Rngdj62ZUHysWyBGV5WLaHskB5KrSmN/4GYAa8zQYFCgWeB0rhOi6PPvoohw69xuTkJE4mw1lnnsPvfmA7p595BsObNuG5GRCXzNwco0ePsO+V3RzYvYNfPPlTpieOIp7D0OAG5mam6Wnv4AjjDPS1MTd5gGNH00yMvEp6/CjJllZsL8nh10bB7uDgyARr1s1w3kWX0N+/hivenqF/YC3Hb9tGe0cP4ro4rmDRomdzxQ+jRoFnARYKpT1VonsFJAFeAsRGqZzpU4/ljIb8zYZgiatSeK6D54cwDK1di20pJsbHefiRh/k///fPWDWwCuZmQRxIWLzw3HPc+ZU72P/yC2wa6sZzMszNpVi1apCtJ7yOTGqGfRN7mZt2SHoZpsf3Md46zdT4QTJzU4yPTgFJVvUPkGlr5/htJ3PTn/4ZqweHEVchYqOsBK6AuDaWZWfjeXC8/GhP330pWFiiewJxFeLaeJ4faKdU3tLFIFQjLhjyNyOUhee5KNtG5oS2ZAvtba0c2r8fJbCqv5+29hbAAVzS6VmOHTrC048/wp7nn6VVpSEF6TRYiV62nnw+ye6NYE0wPrmb7q5+hvoVPR19TM86TLoerQMD9K7rpb21n85Vwwxs2Mpbtm+nf/WG3ADc33HWVoCt89YWnRRYdhL8C3mrXBQeyvbA9iDhYUnupnoMeg35mw6CuA5Wwgb0Vh8J22ZkZATXdZmamuaCi99CS3sH4rm4nsMP77+PX/78SVKpSVYPrKK3q5UWlWZ8dob1W45nYHiIaWeW1jZh64lrcDNzjE1NsvulvXR0tTKTtkgkWuntWc3b33kdZ77xzbR09WPZCZQoPBGsrIaWvLJWeBQ/zF8P3BXgeQ52wsL1XBLxWzp5MORvOigsK7cMMdHSQndPD3v37sF1XJxMmp6eXn76k8fYvGUz+w7u4xt3381caoptJ25l9Zo1dLRYtCqHjGrjpNNfT1tXF6nZY8xNH0ElpnHT05xz3hk89ONnWauSrN94Gpu2nsBbr76aDSedhLJsbNXmL0WMKezAbzxh7069YcjfZFAKPLSnBws8pVi3bh27Xnie3p5upqan+PrdX+fLd97Feeeew9GRg7QkLE553Yl09XSixOXVPc+zrq8FL51i/0s7OfF1pzBxaD+HDrxET4fQ2d7KgdFRPnLzBzjzrF9hcGgziY5uLFvwVAZXHCzPAXIx/8paYOBBEHrth2IX9yLxw5C/2ZBdNA6IkAB+9ZprGD16hBd27qS9vR3L8ZiZnePZZ59moL+bvt4Benq68dw0Pd2ddLUnmRrdT3trJy/+8ilSU1O88sp+Bvp7GVp1HP2rernyN65k44ln0JLsBdpBbERc31ej7RHla+jCRS7zgtJ2vW0nsCwLz/OwfBdnsHtz3DDhDU0om/OaaAyvX8/69ev50UMPMT42yYYt6/Fw2LxxI05mloP7X2awt4Pe3i4yM8eYm5nAnp2gK9lKf3c3B/YdZNPGk9j+1qu54PIrsJQgLYAktAvSshDPPzwCC5Stm0CWkGrhzyY5b06O582u+RtgXmhZywJ2eztXv/3tbNmyhW/ecw/P7XyW9MwUtmQYGlrN0EAXvV2tOHNTZJw06bkMltfN1g2ncN2vvZvWnkFau1fR09OHY1tYSmGLv4TRApgD5e/HULQmN55nyy279FDKalazpwlUZ1PLFkOl06weXMPFF1/C2eeczd3/eRcPPPBD2lptujo7OTaWYnxsjL7eLgaGhjj5pJPZvPkEjj/1LAaH1kOyDS/RwqybQSWgJdkKM/h2fIbAq6RE6YmoYMF6VUWu7tmC9bnhtccLqJKqYMIbmk4W8jWiQtkJrSkTiu6+VVx3/e/ytl+/lqmJCWwFs6kUba2tdHZ10tnZQUuyhZbWdpRtZ/O2sOhQCcQBy3P9ySU9CZV15GeLWotGLme/Kd2GlMKybJRSJBIJ/7OVXTZZL5gBb7OhkEtK5S75A8/Wjk6GO7uQNUOIUjqYLew+FCkaQCoR7OA4IA8CgqvcdgsxIzyBpc0dx3HyZnMV9T2ZxWxUuwyhlMJ19HZ/uG5Wgyr/uwW7JeOALoz/QfLMnbjDGEqhAWrBIHYohZ1MogArmdTatIBcDYGC7cdt2/Z7geKeqR4w5F+OcF3wPL3hEzmNn0WjkD/YCsXfECuY3Q02qgo3AhPbY1AV8iadCgaNweqvhoBItiy2bZNMJslkMn75699DGc1vsITINULX9fwd2cT/bcweg2UNyRuMa2+PpuTysPkbfaduI7sEsuKbPLkwDWUpHZek9CRalIs/7sG6OZzCyC6RrJeL41dkN6FVSukd6HxqNpmfv2HUi5FtYFmR4L/gsw5lzu4kHdGgmuA0xoZSL0a2kWVFfP7rMOnsWQJlJuEanPwGBtUiFLlZqNVDC/WloIeIC4b8BksC5c++5UKXJTsp5/mnsBSSPm7735DfoEGg1+86wWkydY7oBEN+gwaBFYQxZ0MaloOf38AgEsHCGP234J+84rn6pMZFOIrUkN9gCaAAC5Tl/53bmU0psGzFYkRdG/IbNAayC9j1RxPeYGRXjGzYuxP3ZFYpmPAGI7tEssXbGmryl29JDe7nb2D1YmQbSzZvXTGhndr8te3+18HilrhhwhuMbEPIBluXBPt1BoNgqN+6XjPgNWgIBNuVBH/rzavCOzzEH91pyG/QEMgdP4S/njdSKtY8DfkNlhxKKSxlkfR3msi38VXoJ14Y8hssHUJmjevpmB7HyeQtZ4y4KbbsDfkNlgg5bR7s1eOJl93CpN6b1IIhv8FSIqTEbcvGtmxaWlqz+3XWG4b8BkuHcLy+v2VJJpPGcRxc16vb+bsBTHiDkW0IWUUw0LWwbRvbrj81TXiDkW0IWc/fpdl1XVzXxfOa0uZvYPViZBtQVsfzBMcc2ZaFbdn+iZP1hQlvMLJLJOvH9OOASiPiYttJRBI4jt8gFH4jCIc2xNcjmI1qDZYW2V3bBMuyAcs/gdHNLm3UYQ/xr+wy3h6DBoEObfA8bfMHR5CGD6U2gW0GyxMKQHBdz9+53IokfoPH8xsYzA+a+J4f9VBqm0NDfoNlBn0skaajtwh79oAhv0GDQKHP5Ao2qm1SP7+BQTUIyK03qQWt8RO2fx6XlwtvaN4BbzPMsxjZJZAVlLgokkALKItMZhYhg2VL9rjUeh5NasIbjOwSy/qhzaIPpctk0s0c0txQ6sXINpGsjuVv6gPpGlK9GNmGlFV5O7SJiH8QtTmE2mBZQ4Htn7cLWLblL2N0FoX4YMhvsITILlSBrHWUH8df320LDfkNlgiSt5JLWXoRS7Bzg+e5oZ2b69MIDPkNlgSFpzHaPvk9z/MPqcjb3KEuMOQ3WAKIZp6dO5Au8OW3tLRiqQTiac9PENxmNL/BsoEq2JFZwA9hlmxIs9H8BssUOZtfqfwzuVzXzW5fEt6sNm6Y8AYju4Syufge0AR3Hcef5BLCcwTNSf5Gn2cxsg0hqyw/qtP/KRRsEpu/4dSLkW0SWRHBcXPbl9Q7vseENxjZBpHVNr/juGYxi8FKg3ZnOk7G9/aYc3gNlilEFKBte+XvzWMnbJSySCRaENF+/ub29hgYFEHhiSCehyfatrdt3+Xpn8qilMqa/PWK7zGbVhksCSz/8AkBEMluTJVMJHDdDMpS2UPq6rWM0ZDfYMmg43gS2QUs6XQawcN1M7iOg2V7RRtXxYllT/6aKy2iiw1fiUpNKngnCqMS88qkVE2+kygE2rNSGcL558XLFJShYnpK5deTT87CvfTzzJXgntzqFSxlk05nSKVmmEvPYtlCZ1c7bW3tgEsmo48oCrw/RvOHEPmSQi9yPlUlUhBqW/iiKSC7UqhEhWosaBzhcis/jYVAPK/ss1qWVZRH9pP/fBXrKu/AaMFzXZQffiyAsm1U0AD8VVme3n/Q99+7upx+Op4riMDs7CzpdBrbtmlvb2PjxvW0trbieg6eT/6gocZt+9ef/Pmz1AuXDVdAVNyryIKmRmomowi4bnkRyjfEBfUEQvb82nAaNaGgwReVqVSaPsFFBCedzoYmRO2xGU5PfwYliozv17dtfRqjlUxgWQrPc+q6TycsBvljnA8p1R3nafo4tEOhps/7UBxe61V4MVZB7xHuOQSy23TksqhAxMLvK2zwVMpmlkBRRJCz0kRTQGjP8/zDJLzs57B7MhySnHeiugdKLH/xCrlITtvSm9V6HpZS2TW9QYOKE7GSP53OBOPz4F8eCrWqVDOQqUDmwm8LiTifppDXd1RSOKGTw3P3RJEzdy2vjIXdeQTxvIIJH22a5T4HpkG5MhY22GwkvQiCZBuQZL8rrMeIBh/aU0ebh0HKyu/BBMvKbTyli53jhhSs5gJ896cmuiJ3Ins9ECv5Z1KzRd1UuSPkK2o4ih+8UkXMJ81aEU6zyBYVimz8QngF1Cosz/y6+DLPJBRp9iKRovZevncLxkIB58OmjedJxAxtoPWDPAS9N3/+AFxEwANLlN+G9LXcEaXxIVby61DU3MMUacQCFL6EKFIu9IGj8qhErkpkrFjuCmaIFOnVgu/rYN9Wk0dYYdX6zF6Bx6eWvAvJX6hcAlTiU62IlfyFA5xC4i62Vo76HEcXWphm4UsRt4Lml5x3RhWYTfPZmq/Qpp/vM9Zy7Gepd1up/OH7CscGhaj3Fiaxkj+TyQDFZkFwbT5kr4cWLJfnfDRXrSgkQFHjqTH9ctoyClHfF/rpa+0dC33xpcpUyvwq1xOVk1kI6mL2hGEVbDgaRniipZoKrxYLJfeC5KtLFMiVM9wY8ghBzvKu9Exh2VJljsqvVHpRZSjXyCrVU5THJ4xgCWNUPvVCrOQvrFSlVLY3CPZjCaNQ2wTXwvcXopIZU6kR1ati84hQjXyNMhU1cZnvyimdWspQKxZr57X5oq5+/vl4d2r5vlqZWuXj8L5Imfeuakiu2ryrJdpiaNRmQd3JH+5qS2npODVEOL35vuh5kT1sKmSd6NXdV+vzl/NgVetajqMR1JpeLcovTjO4FOri7YlCORMmDk9FteVYaJqVXLhCZc1eyTbPk62iFypsQGGXYVRMTLVet6gGFeWOrBW1DKZrGYTXirqSvxr7O27E7doMV37wU9ZrVY0GLJFHUVrzQKVxVK1pLaQcjY5F0/zVyNejdcfdvUd9XugYIZ4Z3trqM46Z8lrL0mhYUvJH3b/YlVTNxE5hV1+NF6qaPGtJq5wWD5M8ytyJqtdqyF3Jpo+zV10K1HUNbzN0fQtBNfZ0JcQxkRMQfr7mTrneIS5izue5aplHmA8abjFLvRtMqZdZq+auJWCvmvTKfZ6vOVitN2a+Wr0ebubFREORfykrp5a8C8k4H/IvtPHEOYtd6z1xpV+ph2qq2J4oLMxjAIW+kbgD36KuVzMYLKWN49CG4StBuHB4qlVHyhfeV2YBTuVCFOdZlJIqEqhUhmreVPjxw38vxjCgbuSfD+dVdjFENpWidMKxQDqfIsdhYaoVvs9PN/h7IesQFjIOEMgrskSUOIoXebVWwyRbVIKiVLYBBEVXKlznxQtsCpNZCPHzP+fzIU7E7O2J4/7qiRTtKcn/XChSjbYuR/6oRhcV01QOFc2mSo2ngNxK5fcECzYfRfIqLqqxR45LyqyAm48pWJxvxSRqwqLG9lSDasyaSm7J8rLFxCp1T6nwi1o/V0KloLha04/DVq4UelKxDqhG+5dOI8qsbOgZ3oWutKlWAxdWUiHKvRgpF3EWkXelCheJDneoxWzKJ78QFXBc/pni98EXzm2EG0I1A1SVP0wpcU/5Zyhc5BM3YiV/NUQME7iwa4t6wVHaoNyLrzxppCIHU7V6e8rltzBEl69U/qUQx4RjqTxL1XHeuwz9X5hO1JxEFE/qPUu86N6ewD4OL16o9t5K1yt9B9qUjRIpbITV+sihdpt/oViKmfCFolSZq32Whtf8lQaT4QUt1U7c1DJQirOCojRPkFc13p/FsMsNFoa6av5yy+WWakKrwJGRRZQpFTXGiDK7DJGbE3X08xeTu17HzZTSxJHdrO+Qyycw+DtO+teV78f2e5TiREIosb1gcDFiMkhRxd6YDY9CH3L2P4CIQbsqECnwcEnxlFkh4q6zumr+agbAi428oW8w+PIn01TWf64bQPA6Ku2eWdiY8r8TomZfS6dZ3Ste0jiZklmXqae8+lHRbWc+WS4ADRXb0wjIaqGYyBV3Y1+qOJi8MgT/N3n3ZY4likDY5m+0SMSGwTKolrpvXdJwCMfN+MQO3K5KqcCGyX5eVI2aHassWpaxoJTnLs6w73p49Opu9ixFAygb/lBgb0ZNsoRJvxhmRi3x+o2mUKoNf6gVpWZ8G5b8jfZiqoFxVdYOlf9fJOpRr3GboWbAS0T4Q9nvfakqeofljfxnr0cdLLvwhkqof2hARJ75EgW7rRXb4SL5z1U4r1BroFmR/GK0pXLVXEVxFOXfbdiUi+uduhWOf6oVK1PzF76zvJcj+QJKf50X5emP6+PWdotnflVT7oLWXpRCfbVyOM3A3Im7vo2rM2asTBOofqinu3llav6YsbJt//qhcD1B3Gh68sdtV1bKZznyO5JYMT5ntcStFMJei0u4Giw5+RvBzZhXocVhJ1mZ7Eug+CSVxZ4QqyvqRPxa4vaj5l/iPpRuycm/EMShBYrcaVBhinWZELzBUGlQG7Xyb6FoKvIvhU0daVYtQ9NnsVHLQqZ69ahNRf5qUC0vS3WvUjFasUTockwTMosW5lCYTeix55PyfBRTVLzPQpao1oqmIn+lF17goY+8r3ByRkSyyytFpGh+N/t5WWn74mfMOw29xK4ZlRClqattpOEgw+BzpZ07FoqmIr/B4iFuLbvQqM56wJDfoAiNsGBmMRA7+RfL714LqokwjGMAtlTPvhjxUwuN1am8n9LiY9lp/mpnWxupcdYb1fjaKzXoSoiy8ytNToWvh2P1q90tb6FY1AXsi9XSS209ErXjW7WoplHF8cIaoVEuJFyjmgjX4Pta0q9L4Jwsdd9jYLBEMFGdBisWhvwGKxaG/AYrFob8BisWhvwGKxaG/AYrFob8BisWhvwGKxaG/AYrFv8f+DiU53zAD1gAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK4AAADECAYAAAAGYxrSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7QsWVqfCT/h03t7vLvnXO9v+aquqq7qag8NjRUIkIGRgWFG5tMarSWYEZ/MiBFIgmGkAQkJ23QD3Q1Um6ru8uZ6f4/3J/Ok9yZ8fH+c6dVd2AsqPqln1bNWrsjcsWPvHTt++93vfjMjUvA8z+M93uObDPG/dQPe4z3+Irwn3Pf4puQ94b7HNyXvCfc9vil5T7jv8U3Je8J9j29K3hPue3xT8p5w3+ObkveE+x7flPy/S7hTU/CDP/j1zy+/DIJwsH23EAT4yZ9898r7fxs/+ZMHfVSr/aVW8+4J95d/+aDBX3v5fDA/D3/370K5/K5V8/8Xnn/+m1uc33gtXn/9j+73PBgfP9j/0Y/+xer4Z/8MPvvZ/5pW/lchv+sl/m//G0xPg64fdNov/MKBEO7cgUDgXa/uT+WJJ2A4BFX98x33/PPw8z//x4t3OAT53e+2vxR8Pvj1X4fHHntn+iuvwN4eaNpfvOx/9s/gk5+Eb/3W/6om/kV5912FD30Ivu/74G/8jYOR/+M/Dpub8LnP/cnH9PvvejMAEMWDiye+i6fp833zCPfDH4ZPfxps+53pv/7rcO4c5HL/bdr1LvCX7+M+/fTBdnPzYPuDPwihEKyvH3RsOAx/5a8c7HNd+NmfhWPHDgSSzcKP/Ag0m+8s0/Pgp34KxsYOrPhTT8Hdu3+07j/Jx7148aDueByCQTh5Ev7Nv/l6+37+5w/ef6Pr8zX+OB/3+vWDARuJHJzb+98Pb7/9zjxfm77feAP+5/8Z0umDuj/xCahW/4xO/AvyPd8D9Tq88MLX00wTPvMZ+N7v/eOP6ffh7/29A1dC02BhAX76pw/6/GsIwkG+//yfv94/37i2AGi1DtJiMYhG4Yd+CAaDd+3U/vJNx/r6wTaZ/HqabcNzzx1MYT/90193IX7kRw4u8A/9EPzYjx2I/ed+7kAYb7wBinKQ75/8kwPhfvjDB69r1+ADHzi4KH8WL7xw4Nfl8/A//o8HVmdxEX7/9w8+/8iPQLF4kO9XfuXPLu/uXXj88QPR/sN/eNDGf//v4cknD6bkBx98Z/4f/dGDAfMTPwFbWwcD9e/+XfjUp/7suv68TE3Bww/Db/zGwcAC+MIXoN2G7/5u+Lf/9p35PQ8+/nF46SX4638dTp+GL30J/sE/gEIBfuZnDvL9yq8czKgPPAA//MMHabOz7yzrO7/zwGX85//84Pr84i9CJgP/8l++O+fmvVv8p//keeB5L77oedWq5+3uet5v/qbnJZOe5/d73t7eQb4f+IGDfP/oH73z+NdeO0j/tV97Z/oXv/jO9ErF81TV8z7yEc9z3a/n+1/+l4N8P/ADX0976aWDtJdeOvhs2543Pe15k5Oe12y+s55vLOvv/J2D4/44wPN+4ie+/vlbv/WgPevrX08rFj0vHPa8J574o/3zzDPvrOt/+p88T5I8r9X64+v7i/C1ui5f9ryf+7mDtgwGB/u+4zs876mnDt5PTh7049f47GcPjvupn3pneZ/8pOcJguetrX09LRh8Z19/jZ/4iYMy/tpfe2f6Jz5xoIV3iXffVXjmmYNpcHz8YFSHQvC7vwujo+/M97f+1js/f/rTB1PKs88ehFK+9jp37qCMl146yPfiiweW9Ud/9J1T+I//+J/dtuvXD6z4j//4wRT2jXxjWfeL48CXv3ywQJmZ+Xp6Pn8wFb/+OnQ67zzmh3/4nXU9/vhBOdvbf/7674fv/M6DBeXv/z50uwfbP8lNeP55kKSD2e4b+Xt/78Aaf+EL91/v//A/vPPz448fuC1/uD/+grz7rsLP//xBGEyWD3zUhYU/ujiS5QP/9BtZXT2YwjKZP77cSuVg+7ULfOjQO/en0wdT8J/G19yW48f/7PO4H6rVA79tYeGP7jty5MBn39098Nm/xsTEO/N9rc1/2I//RobDg775Ru53YZVOHxiTX//1g7Y6zkE04I9jextGRg7WHX/4XL62/375084zErn/cv4E3n3hPvAAnD//p+fRtD8qZtc9EO2v/doff0w6/e607781kvTHp/9pd1B96lMHfv/95v/DfO/3wt/8m1AqHfi6f3i2+cvgL3Kefw7++4nrzM4euAGPPgp+/5+cb3LyYLu6+s7puVr9063W1+qAg5jyM8/8yfnu121Ipw8WlsvLf3Tf0tLB4Bwfv7+y/jSee+6dkYE/L5/4xMGi8+23//RF4OTkwTXodt9pdZeWvr7/a/xFXKt3kf9+vvL9zu88mMb+6T/9o/ts+yC8AgeCUxT4d//unaP3Z3/2z67j7NmDle7P/uzXy/sa31hWMHiw/cN5/jCSdBDN+NznDiIEX6Nc/nrg/12YFsnnD877G19/HkKhgy+CfvIn4WMf+5PzffjDB9fg537unek/8zMHQv1aZAIO+ujP6p+/RP77sbjve9+BVfjn/xxu3DgQhKIcWNZPf/ogzvrJTx5Yub//9w/yffSjB519/frBwiGV+tPrEMWDC/ixjx2Een7ohw5EsbR0ENb60pcO8p07d7D9sR87sHaSdLDQ/OP4qZ86sIaPPQZ/+28f+O///t+DYcD//r+/W73zX88P/MCfnedjHzuIif/jf3wwEE+dOlh8fu5zBwvabwx5nTt3YJ3/9b8+8Iunp/9o6O8vk3ctPvGNIZg/jR/4gYNQyp/Ef/gPnnfu3EEILRz2vBMnPO8f/sODENPXcBzP+1//V8/L5w/yPfmk5925cxDe+dPCYV/j9dc979lnD8oPBj3v5EnP+3f/7uv7bdvzfvRHPS+dPggDfWM3/eFwmOd53rVrnvfcc54XCnleIHAQbnrzzfvrnz+pjf813O+1+MPhMM/zvG73IEQ3MuJ5iuJ5hw553r/6V+8M4Xme5y0tHYT7/P53hiG/Fg6rVv/4Nm1u/kXP6h0InvfecxXe45uP/3583Pd4jz8H7wn3Pb4peU+47/FNyXvCfY9vSt4T7nt8U/KecN/jm5L3hPse35Tc9zdn7z+Ro9WoMzebJRL1s1cs0bMEZg7Nsr5dwrEh5A/RqNZIxWRkWSAS8lMo1JmeGkNwHSqlKrrtMXf4MJlsDNwhO1vLzEyOYAz7CJ6EY2jcubHH9nadeFpD8IssnJxmaFjUa0082cf7n36YK69+hZFQiNraHmZfQiLG6fR5hu0BA8nmdmGFtmyTXxhjIBksba7x0IkJTi1MYrkCe9UGomAzGh4h2pZRt2BvbZsxeYTjmWOMBEex/Q6VRA0h4fDZlz5NJBEgkVPQBJfVOzsk4lM88PTfYfbQQ+Qn5nEbLa7/1L8k52i4TYeIliGcSFIorOJKBpbRRtZUKkKTe9IWa/0ik4+fY2J+nn/67/8dol8gq4aYGJ8mEFI4ffI4haVNYr4wd+5usLSxjedJSIKAoHmceOgIrW6DzY1N8rEJzI5BtV4m5NNwBJkz02dxNjqcT83idyU297fxhcIk9TTj+VEOnT7CpcWrOKLN8bNncTd36W+VCJoS3XSS0Q88S6lWZu3qJZzBDuut67RTXWaeOEYwGiUSiOEIGm+/8jbrWztokTCq30d9ZZ2pUJTjD7wfXRcRezoh2UOKunRUh7uVIpVChWAqghRR0VWHOyurBEMBvnjj/u4GuW/hfvcnP8bnPve7CDjk8znmFg5RaXe4s1zgocfOUyvXaVYb7O52EdsiZ0/PEg5oqLJMu1GkNzCYnpul2miys79HsV7kwoUTTMzPY9o6lZZDzOcQ8cVIxIMMhz0eeeI0/pgPRxLo9AZU9hvsre/xe/uf5ch4lFNzEyybOi0rwNJyhR998glKN1co1/bpBIKsCG3EsENEE0kUPCobu9xtNZFVHz3TZjQXY/HuJZ6cO82pQ/OcjU9SvdfCb0mUdnc5+bH3ER/J8ebSK1SGLcyhw6HsUaZH8ty+XqDb63DqzGFiI6MMdndYfvMt1vaXkPwjBF0/nl7BHpp4IY/x2Un2t9fwR0JEF+b4wuffxAh7zJ85zf/5i79EW7dRHIHxkSAf+/jH+a3P/CaDgcH167eYyY4zMTrG+vYeLhpDy0RCZrfSBkXgmY9/C08/9jSf+83fofLyPjgWU/lRpM6Qw6NTzIdG6RYqZF0VejZJUUeoFmguO2j9OuFcnO2brxMSFQZmlXZnQCgwZO/1L9LCZPJ0nsLQYPHLVaS2Re+1RUwb9MYAxVWZnJjlSPAQuWwe27KIzs8wFciweKeHLSo8/sFvRfZ03nrtS5iGxV/9wPdxT7nN9a273Ly1iO4XQFUo1P6MH0n9RYTbrlcxBzqW4tLt9hibnuSNGzeoNnrsFDZJRhNsrO4zOh5m2DEIhjRwLC6cO4RfOc5rF6+j+lX8IT+j6TSd7pDV9U1yuRgba/tsLxeYiGtk4ybhQIDJsRSH5sa58L6HuHr1Cr2ewXhmlLdfe52Q7CEbXRavXcMXTCCgIfr9dI0m0bhGrdIjHpDJhf14qo3omoxFo8wvjNNqW/R7OrOzKfqdBvl8AttzqHYaJPQ4USeC2/PwkChvb1HuV3FEj/hIlu7Qwp/K0DBcJg6N4Nk+lm6+TrbRwNiu0y6u0x022LVsJqJjqAEfTsKhVq6yt7SMPRwQJk6g2SU1P8LkbJ5/9X/9PEPDxSfKBHx+ys0OP/Ev/hUfevb9rG8UGPZ01vtbjOou0UiQ9tDBExTatsHO0hKjEyPMAZuVXU49eoxKr8ig1SOeSVNdrpGRwuy1S8iijRYOYrkWiZEI+4VtaoVdKlYTwxDoWianz5xhp15i7uQElUYZqVGnojhUjR5GQsY/msOt1VDKMlFfjOnEKIINmhUkEA4h9TwUBFKun+wwjSbLkM4wM/44VqfEo8dkBjv7xJcUjtuHOHbhDLN33+bVzSuUBx0Gf/imzndDuBdffYkHzy7Q6vaplGvESiViiTAjU3lu37uHZxq4noWqBcnNxcjlx9hcXsQ2HQIhPw+eO80bl69SrQw4PDtHQIalxR0iqki/2WE842c2m6FZ7QEGut5jc/Uuy0s3WVnb4PFHnyQRz+DzHPLZDL3aEM+0KCwXOfPQR/mOj/9t7PIu/+U3/jOnj59gfGKc88fn+IM3XmVtZYfRVIbc2DQf+Z7H2FnZ4ea1m2zvDqjvNdjRhswHLU5JIY5FDpMam0CI+6npBV6/dIVbhRuc++AFzjx0hjevfJVbV1dJ+Dxi4RS/8B9/hsnsBFFDRS+1GI+nGc2MYw0cjJjJ+Ik0u8Imly5fYnZ0HCGk0vXg2//e3+Sf/It/QW3QRZT8iMhYuo0luIRjMS7fvkdrd5+UpDE0DXYK23z4Yx/jSxffYr9QpO9ZDFwHIeDjxr07/Ppv/Bbf/pGH+I4f+jh7jTZ0PTIjLbS2xMVraxydPsTE7BFsfcB2vUBbc/D7JMbGDuFGNV66fpmffu3XCYbCPJFN4g+51JdW0E2Brddu0TIsclKE48HDjJpJTk2fxG50GRh9HFchO3aIws4qkq7T2asgyTLp4BTRRI7GV+7SsdukZmbZu3sHo1PGC0jMPzfPaXEaw9ej5LZZ6m+9+8JNxjQ0TcFp2fgCPvYKJaZnptkrF5kczyG6MgIKrVafQqFFtdpjIp3hyy/e4MT8JJPTE0yPjKF5DZp7RcqlfZxmDzmuE7Qc/KqHZ+gYgz61qoOo2myt7RAKKxyfmWL99l1Kyg6TIxOIsoSsRNBsi4mgxFMjJ0kaUX750m/ywR/8BOube7x5bZnvmzzMMW+CQbeF6Pm5/KUb3LuyjthTycczJLoJ8pEc04kZ+sU+kfw0kyceRwn4KHRL7JVbvO/JZzDe0Dl/7EGuvHUJAxtBsqm0XUanYpxMZ0n6ExQurxCKBnj8oSdJ+mMs3b5LzWpy/YXP0OhVGUoWdafFw48/g5IJsl3ZJhL34a67eLaO43qIksDc/Bwf/vBH+b9+8T+heiKa5MMzQXBduoMOYwtTmDERR5TYKpaZnBwlFpA5Pp7h0TPHGE2kWV7d5u0X3+TUyFHWF/fodzucmX2UQ9/2NGajyp2LrzBzLM3t6xeZO3MOXzKMsHaN2SMT9LoOo4lRdLMN6XEkQcbbK/FAfownLjzNcLNK4/Y63c0CUkdHVkS0sA85nyIl9ancu4sXAF8+Rm1pB7PTpS07mEFIpkPkxnKUVjZQdAGzsI9VaxEdOtiOx0nlT7j75b9GuPFEmMWlezS7NpakUWn0sC/fRVZlHnlsjkHXZjgcYnvQN1xKdYPtrU0c3aXdWuTi5ZucODrLUw9fwOi2UIddhGYHp94kp2lkMgl8qkxho87URJxAWMa2h8yMj2DrHtv7BRpmE90VaNRtJpNhLkzO4zQa+Nd0vvAf/yOhExqPP/wci6ufIkIUaUfj2cAjjGRGWO822VlfZrBc4tn5Z4nVYjw39QCaojEzskDkVIJascHe8jKz73+MQNRk99oOzeUhE8kUX/7U72JIFocfmmYQbbFY2eXGrUW+83s+yad/5bcYteOM5Y8STuTRdYdYPk+hXsBQPcygSL3TI6xE2OuWKe7t04+B6uikNQlJCTDAAdniyacf5NbiTfROl2QwhTV08ckatqCzsbfF3/1n/4jRhXF++f/+JS5fvsp3f/RZpIHLsNjgym+9yu+Xfoem3kHqe1g7YWaUKD2fyo0vfJXByiahsI8vvfkiY+kEnWYJvdcinkuRMhSo2Ux5MbSXS4xF8yhqHp8vwkdPR9nY3KFxs8z0g+ewu0PiiNRbG1ieR79vsvLq59nYXyUhKZyYOYVvOkl1t0xYUElLCrVGle7iTWYfOMterYjebFGp7iIJFqqlE7ANIqrv3RduuVpBVjS6PZ2BY5JOpag1uySjEvX9CkPdZGFhnHbf4O5KCcNzCSXDKECn3iaoyuxX6nzlpZd55OxJxvJ5/IKI58DWxh6pSIBu36TTgmDQIzeTplbdZ+nWNn45zKGpSQzbYdgVCLTrnNAWeCB2mouVl9leKzExuUC532bl91Y4Ix0m5klMGTkaS0UO+abIJSeZ9CWQRJcpcRKhZzGVznHz+mWCVQcnlKNTqjHQB2xetBl78hiKPKBd3eGh913gyp03yE7kSDoyCU8jpYRpDBxe+uJXOHf8BFk7RfHOPsXdCkemDhGIJwlbo6ilCHv1LVzFIBIJcunyWwRSIWbmjqJKCvXdJlowxJFHTtFniOV0uH3zKrGghiwLuJ6Li8zQsdnY2+HSm28wWpmgWalS3trm5c9/kREti9qSORW7gK+4iG+4T1oJMmVl0SyNaCpJLBOl0yozGkiTPPlBNrbuoWYO4QkCM7k5bhRvQ01nNJEgJ6ZIC2n6HRuv6eBNRPEEP9nTx4l95DHMlMDt//xrRPxgeS7DqMrYySmuFW8R8iRUTWFjaRlfOk6n7eDvdfEJMkLfwOnp+JJR6maL1fImqgy6a+ELBOhYw3dfuPFMhiPHzxK8uczVWzvs77f53r/yATLpMK+//iXkoMTYeAJKDVLpECtrbTyrz9x0mvFDU9QrFfZbPcxIgKu37qC6NvlEhIDip6z5aLfahMN+zpzJkh0dQ1Fl+u0OnuYwEs8QDSeJ5FLQlPFEm+NMUX59i9nAAjPnHiM0OUHhK7fJd8fZuHGDYDmN4xM4OnYeq9lmf3cbX2oaXZTIJuaYzOXY3b6DXxDodQtE4iKjkxFqt4v4DT+Fa18hEzbJTE6wu36dYadOZa1LdGqSWS1FYibFyKEJXrr4Clu3t6mYFYK9MKqWYPn2Krv7m4THE5x4/wWOqid55dUvs7F8h+//G99P3+xhMsRsdXn/uTN88Y0rbG3e5fz7H2ZtbZennjjLW1+5QUD28eQjzzJot9hqbBEZi/HCCy+w+8v7iK7A3/qhH6KyUqF7r8kHn/h+nLU+E3PzOFGwdhu0NgtkAwmmMjMU99eJdBUSKDSKDTJykL29IpYfLhbeYjh0iXkZMAMkz53CJ4SJ+VOsXr3F629cYvqZ84x/2zO0afCbL34au7HD8eQ48XyGJ//q99LuVphfX8beq+EMBXqNPhd++EewdsoUn38ZZTBkWO6xfW2ZCx98ltW1qyxfv0TL6NHBJR6NU6vf/x3A9y3cWqfD7aWb1NpdZhayXLy0wa17Nzl18jADw6NUHeIIFQp7ZUZTWcyESatpMplNMxgMGQwG2EMbS3fRXBhPxJBROXZ4gWKxhOm6NHQXS9AJiQ6i7VCpdAmbPjLxUWZiszz/4vPoNYuHkw9hCx6HDp2mavXwHz5KYWWF4kaB9tIaTrdO0JUZiUToNjv0h3W8WB8l7JFI5ek3tuiFFDAdFDmMIzpcuXuRvJoiYEoIrgERjcryLk3JoV6tkRB8+A0/jeKQcDjM7dsX6ZSLHIlPsN+ukk6O0jTaeAwpV3fAGiDaUSxdpKeLCHaIkC/D73zpBQTRwdS7GMM+1XabQFjm2InTnDnzEFdub+EXgD7MzY6RS4TpBmz2TFjd3SY9HmAhnOb85FkuzD/ElVuv89yTzxGyAuwU10moPoI9haEQQQ2YDIYDins7GMaQaDiO60FQhXW9hRXViEt+Ti+c4fa9bUxb4uTEwyTTx7CHBnq/R7tbJxrVkIc6jZevs1pYJdcUMfDRbNbQbZ36jbsERkcYTy2wWLDYcV2C00kG9UVq1QKt4Q7+oY3ki9IzGhhOh263xfSRBe6u3sWwFEbm59G37/9ZZvf9Q/If+lCCQDCM7gjcWdyn0zcJR2TOnT3Bzs4OrfaAs6fPsbezhTXsMj83iufC25fWGR/PUaub5LJ5dtZ2kAyTbFglphlIokMgHED3oDcw8AyVhZE0erXPmUNnkZ0AW2slQsEoW+vLSF2Fw7EjnBk7juxXKDY2WO8WyE2MY2+2iDsig0YNPJn5M0+ihLNcu/IaHl2mTs6wtrtHca/JfPI4R2ePIPlEwiMhatu36OyXoG9h+1wGSZ3icJeGW+eRC4+w+MXbiLZEN2iQyETZrxfo9AaYQxFrCM9ceJZ8fgItHuKt11/h+PFjzJ15AC+Wod3t4Q2a9Jp7/PbFX2GruMuhiSzZ3ChXF5cZnxvn9OOP8LP/4T8yOpXn6sW7jNtRMv4I73v/Q8ydnqOLzuzJE0RSYSTd4qWf+332X9nhoanHGIlP4JomkUyKxVe+gmLYSFKYgSWRGcvSGlQw7A69fodoIESzu85Ve5euanA2PcNcdIxioYtKjKgTQRiGIBSEhMbRcydYvXuLiM+PZThIksTOvVukQ0F0zaHWa9A3h6RzWebOnyd+9ChCSGPxjRf56ptf5vjsPCN9iYSj0OwO0cbz3O7XuLl8m8xEjrXdDQamjiBI+GU//7J36b6Ee98Wd2FmmpHxSdZ3yjTbBrGhTavTxnYsfH6VfqHLzvYelUoHTexTLm1z9vQxzp5IY1sO73vkYS69tYjq2TTbQ+ThgNh4GFXVkIUAeqdNUPUT9fk4kzjC7JE59MaQN6/eIJhO89QHn+MLvz6gO+ghqhorexuceegUM6NjlO7ukBvxcXdxB4UYPSw8RaBhNrHqLWL5KNubdTa2CviCEeIRlUNPPUUqmMDptti69jaN6jZ6v4bjDsmMjnDm6Ck2XlolnU5jNWxUWyMdTxMMdGh3Ohi6SyY9SkiJs764hWxJtHdrlHc20aIh0rNTCLEYluFy7fdf4OzjF0imMkxNj+IqJq4KTb3Nh7/l/dxaXORTv/ZpJEMkHwxzanIcrzzg3Olj2J7OG2++ws3lDRZm3yaXSCG0TXzrIgtMoGyb9Av7aHEFS3Wp9fcIoKB5HoIYQNfbdHt1IqkgsbFJCrs72H4JTJGJ0Qlsx2GlsMLk6GEiUgK5KWG5EtGxHNp0mvqgRalVpWm4xJUgPhTG/Bli4TjFbpGoEiPoCzKXn2SwtUd9a4fE1CjawKLSqvDK7TpPTB7HlDRWKmvUyldZttooiTBbO3vU+w0kWcV1PXzm/S/O7tvi/vX3ZXHFPrcXhziKh6jKTM5mcQWbdnvI6mKbVDzC93//hxGdItXyJopjo8kaZ089yK0ra+wstYjICXLJUVaXFukPWpRKFb71uY8hOB4bS0s8depxMl6c8kaJerfJRnuTY888wAe/79vZeWuZV377yzzx4DOoispbb32R3fo9pKCAoevMKGMEnSx+bZzZc2fY2LmEIbUIRfOE9Tggsbm1R6djMzd9moQvysaNG0Qli7hsMxRrjF+YoLhdZP78QxSKW/SMDkZniFk28UsyUsLGVVX2Oj0E1YfqKqT9CVJOjFgkQ1cZcnntOk23z+zULE51iOfaHH74CA25SSu2QygT5trSEnv7FZCDnDtzmt/+1d9mfGSCE4dzuIZJeauOJCvcWV9j9tA4S0sFwrbEaHAEuQbnxcMcNqeIqhk0Rabjq7BhrrLTXCMRjiE7IfSBRzqXYeLIGF27zWp5l+3CNr1ugdTsKHu1EpogIfbgiQsfwCmZ+E0/E3NnECMhSs0y29tbDKpNAp5IRPIRDUeI++P09AFVs8PUwjQ72+tEFA3FcjBMk57ex5eOspWw2bNbrCzdJCqJBAWPttlj02tRY4ALuJ6A6IEPhZg/xn/sFe5LuPdtcednU2zuWhw/GqTWtWn2dBRZJpFMkYw7yN6A7Y0C926v8H3f8yStWpbXX/wSlXYbp32RwnqDBw89RWuvS9IKUTZCeLrNowvznEieYuXGXT52/jsYj+Zp7DZRFJdYMoTY2eXW66/SKK0StAPMLkxya/Eq6VSSycMTdNf3OXn+GLdu3qKx1QUpw/j0NBMXHqTBGs1BDSGg46kmshdlr7xNJJAnnY5iNPt43hBcG9e2sNUBV++8gT0QcS5J2CIkR9Lo9hDTMvHLMlbHZGjbWLbE+NQEC3OHSMZzVN5axq0ZFPc3iPsCHDl/iljIz8XFlxi6HXrXK0jjKmpU4taVRW6t79I1LT7w3HM8/5UXSWTT3Fhe5ezJCfx+jZrWRNYkJM3DH/IRFA6iM0JdYEoaIxyMkPQlUUwFC5NSr0TZ3cfwDDzJRdZEBnqHWreC1lEITiVZvbGCiYkp9AmKHk+eu0B/4LKxuEs8N4fomdB1qXYqyG4bBQF1qKN4EBJVdEPHiocYBlx8mTgToTwuAslYFrE7xGp2ECwHTZAxmiYXPv4hjvstltbXKPfqZP1+Dh09TkI1eOXu2/SHQ/yiSsIfIRvLYHTv/2mO9y1cw4CNjTaKX+PRJx8jFI/y+sU36Ldr9PsDmrUhc7N5Ll++hyYaFHeLxDSJiE/BrwSJKg6FGxuEjCDFe2ucXzhN1+hjVPrUv7JDoqEStl2i58bQUmPMHAqDojM5NcLt61/h5MhRdncrtLebRHwRrlx5C79PQooK1Nt9IqkcG5tbnDw0j+1aOLUShVoRV26hC32WC/fo7Nho/jAf+v6Pkxif4+1f/VV0qYQVECkOKvjTCk27QVTL4IowNztPMBfDF9YoqlsU93bJBpIko3nGE7OMnjhGa3uRF178LYZtgygJPG+AORhgl0pcbeyyN9hFyciIUZFmt0jx7SamJxDwJ3nmA4/wC//ptzkyl+eJpx7l6adFbr79Bp16C9n2aDaaWK6LqNs8fPQcd5vLxIgRRMMRbRpeE78WYOAMcPwCITFOOhSn0aii5TXS0SkqnTJ1qcelq9cx/DqiJPLIiQsIzSFaz+TOXoGPfMf30V1q4xRN4mMTBDIuPcFGqfQZ1fwIAxHV52df7jPwi7SVPnvbK4znxpkfmWU4dJGGAolohqE+pNZpEPD8OLstwjNZPEMkSAxV1LB0laWNZRRLJimECaAypmZISTGKevcvQbimRSKhsl/V+f0/eAN/EEJRhXQiw8zkCOZwA5/fRdNcRsemSMVz6K0Wk/kwk7k0DxyLU7vSoLXcwBzCeCbP4sYydC0UwSbiaujFOuudN/FnR5h54jEsRyajjnFh7n1Q6ZHX5ig1OmTDWYZKn1BSYfx8nrfuvs35Rx4iaMaIRAIUF7dZvmzhNz18qTw79QLX1+4SI0U25KdaWiYeUah0tohOaDhej47Q4cRzz7D9aoF6pYVit5H9Pq5dv0SjW8bnFzn/5Fnaex1y6Qm6XYXVy5fY279Lz2zhKgqJtIbfr9Hcb9C0qnToET88xqMffAItLXHx+utUV3ROnzzFyMQk4ViMh+cnUDSJ1Xt3aDZquLrN9OQs967cg6HHWDpC1FMZltoEbY18LIHfkWjbNaoc+Kq24OD6bLBAb5qEhDA+S2OzU6ZqtVhb3KbrNBg6ffLJJKV6jYylEskEmZqYxtU8SvU9Qo5KTkphmSZ7K6sIXYfgQCSphTEkh3g8RfroLHXHotroMjN+CAyBfrlOQtEQAgq2a+CoJuFAhPb+Ps3aHn7HJSPHyIQS7Jfq4EpYjoOMjF/1oYoilj4kICn3Ldz79nF/+Ok845NT7BbLVJsdDFvHxUPA49SpERS/yq07m1imyP/3f/1XJHOj/NN/8P+hUigynhGhD2dT57ALJs31Fn5fiOc+9m2w16F9ZRvaAxzRRlaC5PKH8IfS7NeqDPpDQuEAgizjhrPMPvUczs4Oe1e/Sp999EiNxMksI4enGdomL/7WF1DbEnOj82TPHSWS8/PW0iX6nk6z0eP21Vv4ZYWRaArRMQlFZXKTMW4uXkYIC9i6wfH0WWq3BoxmRmjRwNNMLLmH59ikQxMMmgqzI+dptxvslK8zOptFDiU5duFxmk4R2dVZuXuPO7sFWpqfvUaNanmXkAjZQIijc4exLJPJqSk80WR1a4X14gr+kIprBpgfn2fr6m0kY8jpo4eIBiI0twZoRoxWvYJfEpjMTmIPPFxbYnZ6nkapSiYcpby9RUtv4cuOEjkyR+xonhfe/l2W16+STgWpl2sk5Aipnsvk+CSHv+05glOTvPZrv0fx4i1SwSRJf4xyo4FfS5CNjDGSGkP2+XEsi/VSkcz4YTJjh5F0k/3LlxFqFRTJgISNHfYoN1pMZGcJzU7R1IfcvHiVsKRSt7o0NJPQg+PcLNxib2ODfCgJPR0sg5Fchh/funFfwr1vixtLxzlz/hjm5R6O0GB0aoJ4Osniyjrb1TaSBqZpM5kd4cXnP4svGGZpe5tcSqXc7GO3Xbr7N/H1PcKChNAtYAoVNJ9DS27hVyGkicg+D19KpVGpYXVNIkoEwXKYnJikVu6gmUP0kMbQBs0JMSLFkQYhtq5USR4a4fy5R3j1i19ku7KBrxin3FK4c3OV9coafWuIpqjEtCjzx8ZR/PDKxZdZvjXEFS1CYpCOOWS7uotf8DM5mSdq+4hPxVmsrfDW1bc5kxlhaXmVumlQKheYPJLEzkFd38fYeZ1hp0e7WsMwLHbLNYq6hSlLGJ6PoBbg8Ycfpd9us7G2SdAXYnVzib39bcZn8mxt7CAaGguBWU7OnaJV2Wf53gbHFw5z+tRZ2vsm/V4NUTHZbmxTbbVI+/PEuymSI0lUCZw9G58UQFN9jJ8+SceoYjT7BFCp7pcZH80jEmDotlirbTOt16ne2MXU9+nKLaJaiCNHDxNbqxBW4lien0qjz/jCKO12g1gyh+OKSBY09yq4jookhEBV2GuvMmDI+Y8+xaBmsbGziCr7CMsiht5DklweOn4SMxWAlEChXGStUSIu+ZFxEbr37yrct8X9zgcjnDo9j2EM6PQbPPORp3nwqfdz+foG//if/DyTE2HUfo+j41PsbO0SzaTwJxJ0ajUG2zUm42MMagMm83n2N1dZmBzlwSOnefvLV+js2fidIGP5FJnsKKsbBaJuhmOZ0zRW9vH5IKj5aTpD0udOEUrnaO/VCYgalVu3GSYkcmfmWVy5TH1/BUkaYFg6k0dPEpuY5PkbX2apeI+BpxMLBciFQpiDFrFslI7VITeSo9fukMjE6fb7ZMUM3rZFWA7xgW//OE27QS/QZeDp7G0U2Fsq0thu8+TT72entoPhDDn28Pso3V6jcrtKKpqi0qzTdobcK2xi+GCzXyKo+cj5FTRR5rv+6vdz+c03uXX1bTRNZmwsx/LaBsfik0xmJtACfhzPYGd3ibnpSbpVHbMv0W+UWDg0RqNlkI5NcObog4j1IYs3b9Ie1rF0E1UMYPp9aGMj5EZT+ILwxptfomuVmZgdp1ztMRqNYfZb9I0OcsBHwBdhemSO9k6LRDeK1lIQTY1wfo7IsaOQieN6DptXbzCRnyWSGcdxPAY379IvFNCyAVY619h2NynZDUJ2iKjpw4+Ga0m0bR1HkYkkooyfm2VVKPHlK29QqFUQRAiJGn5Z49fe7aiCT5Mp7tXY2i4zMZtDVmK89eZtnn/hKpLoI6DF0WyBWDTJ5OOTXLl1G7NaJemPYnYrlAprXDhxFsmDZDTK3MI4htynapeYf+AszkBjZbvA5RurBL0gWsjPfnUd2ZPJpecg7EOMq6jxBBurO4ympwikx9CKHRzVpbrZQ2xIaIMgkiAQ0sIoug+9azHomFS7fUy/w9z4HEFVxm3aNIwhnqrgyhqlWov9ehvDNOj4LJJCGi3sZ3F7HTEbYvnmLdqDJnqzS223zaOn3o9fi/L4ox/B6A/53Keep7rVYC42gyto2E2PSr1INhxi7OgUhbc20e0hTcuH369h60NK5QK25yA6HsPhkGQkyMhIBssccO/uHU6fPoESEKgPatiiQ8Xokc5EuFtYQxB8WIpCorxGXktiiS7xxCgDa0ggEWR9v0SrWWL68BRBn4TkKoSVCIPmkMlEjngoyNjhBa7du0mxViafm2V0ZJKIE8fbAaUHWDKiL4SUycJkDsVzsS/dRLPBqtVo1Ru4nQaG1aO2ucO+W2UQFul3bDTVxfMEBFFi6Dm4gszAc+m2GpSvdPHPhPF0C0EWcSWRiqMTlu//CZD3bXH/1rN5REVGVCKMz41TqBZZ2ylTqdvYjooqmaRVEb8Ip04d4viZM3z6Nz9N3hfl/VOn6SyXeeLhp9naXEYdC3Jv6SIdo4niD6OIcVplm9J6FSwDvyUypoxycuxhMsE5bNHPyNnTKJMp3O0azeubaF4YNZmh3KiRHM0iRII49HAqOxTvXKXTLHP0I09CDH7n6vOs9rcodHaRFZe4phD2a5QbDRqdNslYjEapzmgqRTaTQxA0ZCHIzOQ0e9sbiILF4YURXn/1KyT8YTQxzKkjT1Cst9BicWr1NjevLBOUwnzrEx9CUUTu3rpIsb6N67ORUhqXN+/QMLqYQCIaYW5ygsX1Ndxej2hAZXI0R71aYyqUJRlO0B70MR0DUdORFIdAMETAFyERz9Dr99na2UNyRNS+yERojPNHHmJ3p0YoE2F/UOTGrUWGpsdcfpoHZk+wt73CauEm6XSCkVSMXqeF7TkMJZfU2BhzMwsEXJWwF6K23cMrGATdCF1Bw3diAWUqj9lpYqxuY3VMOv0B1a1tQp5LSDARRIfkmXnciEZD7rG4fINeoYpp6EhCAN3z0EWwPYfkSIyyXWEQk1is7rHfayAqEoPBgBv3+WPy+7a4+qBHPJ3EcE1e+OpbjE5l0bQAzVqZWESjUm3R8wTmJyI0W122dnbY2mjTocdfe+QTbCx2sIoDVF2lcHeLm7dXmD4zyXazjifqbG1WoS+AqTPqj1E0q2QY4I+ouMEI0vwo9774PO5alcjAhyvFsVxIHpokMjEGikJ9f4NWtUdPl0GJU97a49W1t1k1d9k2SvSFNoY9IDY9yYljp5HXlvH7Qpw7eYaXn3+BiBLj/Y8+R6XV4fUr13AqJXRDJ+5TmMnOUEpssLaySjgo4iGwtrfJ8tXXERUN15Op9Vr8ziufIhEMUWrucPzEYSaOTPNfPvspep6Foyo4jo0oS6B4jOZi7K53QYZUNg0eGAOPe6sbnLvwEJZrsFNexvF0DGmIpch0myU8QUbXBBxjiCoJ9FUDMeknpY2Tmh3l6hdvYUkeiqvSb/ZJylkyR/M4bRPb0tlZ3QLXxRcKoUWjKEIUyQnSLrcQYkHsuAq6i9ewUAYmSr2Op1gkMlGGqSCb5SKepOKLBrC7HUzXxDAHtNfWmLnwILu1ErudNqbdR3A9NM0ESUY3TVLpFPPHF5hJLrDcKXK1vEEsHmNqdJzy3u79yvHP8ZXv4TFqrQHNVhNJkWk220xNzLDwkVP82q98nnA8iGhaTGWnCAkSzb0KH/vA+9i9t8nrb15mXIhw4/Itumaf7PEROl2PlY0qR88fp2dKXFupUjL7jEaC6J0B465Gt92hS41YPkT76j3WL14lY6pkwuM4Vge7JxEPzbB65RUkx0aSRUKpJMHJSTyzw5U7L7LV3KEhNBnaQyzRwO+J1HZqvFB9EVcWCYRCXL14HXvo0q50+O1P/S4912G324D9DcT+kDOTh7jy8hW8nohiBonEU6zt7aArNi25QzDqp9hpInkuYk+mYweQYiqXqnd4ubVMkT4DwDI9RNeh2moRb/k4fnSecnGfVDpCf9gnmUsRE6IcPhLlwSeeo7C5zlZph1a7Q1gRaJRrTE7PoNs2PdchlUmh6QK1VofPvvZ5QGOsO8XAbhMKakTlOEcSCyhtB8PuMT1+mNdXXiGbSGL2dHKxUSLJEdLxCdo7bdyOzd7uBoGFLKGRAN1+k6Cnsn/zItnhFPs7QzY2V9BbBjPjJ5meO8zayiLBaIRWt8jUU+fRDh+j9maB3WEHx26jCSLZiB9Xstmr7eJaNk8deZJPX3mB2qBFMhxiNj+J2LPBuP8/Urzv29MDfh+FvSqVypBMOkUuM8awpRNVRCKCSEYLMhNLkFcTDLdq7F1bJaFofPTZZ1heXsURBJrtJhvFLeKj4zz15NPEowlK+zXm547w/vc/w/hYlqeefZZUNo+LDx9BAn0BfXGHlRdfIRmMcuahR4hNTRDMpQhHAgiNKsO1JXqrd0lGg/gQyKUzZGcmcGMaNbdJ3xlgexZ4ApKnIHkqvZ6BqgUIheO0Gn1CgRitbo9Ko0nP1MEnU2vWsWWRTH6U5dUdWi2D3Mgs88fOsLK3y+3COrmZFA89dpZsUCanyIxGokTDPvAL3Cttcm1jmYoxYGAa4AkEZBVch0atxksvvcL4eJxkOo4/5MMVRa7fuUW1U0e3DErlKkPTYXRknHa7zeT0BKFIiEazwerGHtdvL1Pr9ojm0yQnk2gpgetLr7LfWMd2OkQDMumAn3pxj+p+AVETicdTREZzTM4eIqBEGUvPEnQiRIQEszOniGox9m7do1TaIXvhCNFTM4SiGk69RCqgks9GkGST/eImO4UCajJD/tRJjj7zPqY/+RGUuVEOP3AeU3AxsDAxWa6vcL1yi+BYlPMff4gvXH+Bt2++QateYi6Tw96r0l/c4ZR8/09vv2+LW6/1qFYtho5EpdRFEvvIhseYP8t3PfMcr751iZhPY/faEsfG0kxlY7TX99i7vs7RI8c5cewEm7LMqfwFapU9BoM28UiIWq/LzuoGj594GK2oQ2HArDbByOQY58Yfwdkb4ng6yWQGcXQEN5HBr4XxKm3Wr15lrNvGq5cRdYvaKy8jBdNIHgxyPlZ2lhkKFoZoIogyYTGI5gnYnoPpiTT6A1qmhaTKDA2bgejiYKD5FEzXZYBDwHO4sbpMXBSxdYMj02ka1pBIJknIbZDwRTFKPeIDlZQQ4XjqEKVBg5V+BVnSkDFwHZegpxAUNWTBwhNlAqpENJ4lEJCpNRokYlAo1BgMWyyt30b5ip+NjS32awWGph9R81BUEdc2iIUjxKIhBn2TtY09+rUOZ04f5tDpEYylCt3mELNSp96R2LFE0kqKxMIUda/GwuNHuHTldVJ2GF9XJmjtkozkCAXDNLaqCC2TKV2jWmnDh0bo1ToMclGE/oD69iYFq4F2PM/s0UfYXuoT8UWp9gZsri+xJRmcfuh95BQfJ/LTlF2bntGmLVkcOnuE+QeO8+bqImhD/sYPfx9WucvqxXtcGDuMLDnM5ufffeGubtYI+lXMjkm72SIYDBCQQpjVPj/w/u9kPjDOzVdfJetXeerIBQrtEl+5c41ys833/8DfZP2tqxx++AT7rRZf/uzr+KMujt9lr9hk60YZ6a5FsOtR2O8wEjvC+x//NtJaFtssUCntUisUcYdD1swVZqcPIdseJkPiC6cp17bp6w18jT6CLuFaOma5wUAfksiM0BvsYOsDkGREQUVwTWQJXE+i19NRPfD0PpIoogQDDEXYrjewPBdp2GXX3SaUGaVY2Kd2p4niC7A3KBMOBNi8XqGp+UiKQcKOzLDbZzDQ8RSRUCACggWui9nqko4nqNa7yCpoPo9A0CYc99EZWARjEc6PT3Hn4iXMgUFzUGa/uYMn2nT6XdLhAOlEjM3NPZZX9ghH4zQ6VXq2SbdRw1ldZq2ySrfTIICHDz99hhghl/hsBikpkQxm0AMCVzbv8d1PfgvD9TqCp2O0GwieQ2F7A71TQ6VH7PghnEGbdr9Fci6PWaywe3eN8QeOMv2J55DUCC3uQdNg5dYtNrZv4d9bJemqpBdm+eQnvpUXXvp9Lt27yHOf/BgPf/JZfubn/iWHjx3ju779+3B36nzm//glFlJTTIenqdWbJGdOvPvC7Vp+crkMU9MabXtI19BpbbVp91W2X77K4WSGyPRRHjx/kp7XZOntRRrtBqJP5rU3v4LT7rN2tUqtoyP6/Zh6i/mjc0T8Y8i7KsqmR1JNcuz4Bxk99jhC22TlyptkFDB7LYx2g36rTC47gb9eZ3NjFU9xKDd2scN+Bv0gzrCL3+0jDPeJnjnBM5lP8ou/90tUBwZ9t4clKii2QVgScQwLxZWQHZlYSEXVANkjMTHBV+7eouM4RIN+JmIRTkyP0m/sY4f7DBEx6TOa8pFNxbG6PjKhOAHHR3Frj61uD10Q6fX7DLwBumeDLBJQZSLJILs1h1wkhOwXsUWbeDpGV9dZ39knnRKYmT9Mr92ko7cZm89Rr1exDJ1INEqr1sBzBSTVR990UYJ+sqkUhf0SdwtVDhHmxOw8w0IZ01CQI0kmL5zGDQYod+o4LZfFq2vE8yluN1YQzR4hy4WuhDdIkJwbJRsYY71wk93WGr72PNfefAPFlThx/DilgEG/X6K3dpebt24gVJrohSpCpwuyTUcf8tWXfofJ9mFqVpOl2ibj546QnBjh9a+8SFbwkzH9vPoz/wV/1WbETnDuxCP02gKj52YJz0+/+8KNp/McPjzH4YVp7q7fYWe/xMPzDzAyDGFvGVx5/TXCIYl+P0/NqdAT+miZKDuVNlv1NpmQn06jy/pWkedOPkA2IKGlAnzk8TNc+uwtJGdI3IuSkuJEtSiir02hX6IfdHHlIa7cJSBpZGIh+o0aCc1Pp9+ieOka8x/8VsYSFRyjQdNtEHtigeCxEeTL29iGTcQXpesO2e5XCYoKipZCN4ckBJWkL0xEg8nxFLqgszOo0HVMHNdjqBvoloUreKTyIbL5QyhOFEEQsfUeqVgEK6hh9o2DnwhGVZyWRUhTmfFnEFs1anoX03UZeg7dYQ8kkWA4RrvTYKA7uFSIRlMsbdzmznqFZx86zukHziPicfvGdVQlzdraLkNriKcJNPo9Eukkt7f2kUWH40ePMzuVZenmXZKxJNn4GLu7fRqNLjNHRlGUIPcWl1FUkcGwx/r6KkoU1nZWCeoCfkdAMPz4w1FOfuAZBKfPkX6UV9/+CrvtHdoBnYW5eZyciljxUZcbdHeu8OmXP8PjC0dITmocHj/KpYtXaA8HTM3mGL0wSn21QaAb4NbdWyxu3ObUySOMuBn2X1zFKfSZS0+yMH+EVq2LHAzjqRYWTe53eXbfwr12a4let8Nbly9TadWIxiIce/g4qqTRk7rMLMyhBgTKzRJL7Xt0pB4NV6Vm22zVmvQcE8k2kJAJNHzkrCSVch1D0jmSnWd7eZFkKI3bt2jubCEFHIxAm05wiByX6Jo1/FIMwz+gXqmheQqyTwJRpLGxTiIcY625xY5dIXDHQlh+k+XLt5myNSb8OZx2mcRIjna3A5rIiDyKqguEJQXP6jH0eoSzQco3lgn7HHo9sByXQrWBYA45ezRJNBzAF/Rz/cYKdq/LeD6J7Hn0+kNcGQKKSDgoI3segudyNJMjkDnCVr3EXreOPxRA02R2i2V8fhXFUWht1Dl9ZpSx0RyOq/PmzbvslCp863NPMDGep7C7DbgkcxmGokXfOfjCIuyXETyHtXu3OH/6BKMPn2ckkUcaeMi9CFOBPIOyy+d/8wtgm8RyQc6cPEnoVJTbxZtU+x38goQhi+Tz4xz/lm9BnciycfVNdrZvEJ/PcXXnNoulNfQ0BMxtUseSBBJBKsMBJx85woe+5SNYgw79TofTM4+i+CLopsNbS2/RrbXY3dzCag146uz7wbCZ9KXpKxFSkwk6jQGZ/AKx0/N86flPIWkCW7fW+AAfeXeFm8okSOfzbKyvIMgK7VaPz3z6d4hYGh+YPsX46BSKbVDv1NmtVEiMJWiYBnOZPMXCPqvFJmORJHk5S9ZL4d/RkFoSQ9pogo+YEERRIkSzo7T1DpeufJWOs4xst3E8i3KvST40xVhsFqttUtmvMDk+ztrmJvGSh5I6wVvtu2zU1vDvXSUmBZlURnlw+gH2+gUcvY5yeIQ7hU3chgGWjeb6cAc2VtSgadroPZ3RfIRgREQu6rTbA2QRuj2d/f02yWSKq/fW2C9XCUmwvVsinU0zffQI++0m91a3mR64JAQ/0XCMQyNTNCwdpzdARKQ31BkdTWFbNqAwPTPLV19+lYuXrjM7m6c70HEkl7X9CrnRLOeOz7OzlqXdbiD7JEqNGp2BgT10Ea0hk+NJsHVWrl/mkbNPoNpw8bUbjLkTzOSPEvNnudu+hSV2yIlJJqKTrLY2SKijPHhimqSi0ry9i4BHZCZPt1vi6sUXubf1Gg9/5Akqeo2pU7NUrSa9Qg17W2d8bpKZI8f5tu/4CFJAQYhG2OmXsB2HoKixurHGq7/3Kjk5QciJMJ7M8+z5Z3jhhT9gY2Mdt2NgY+O4AfCHsMwBtt+m2CoytzB3v3K8f+GO52OsrS3iuBa93hCr75BW/Wh+8NJ+Js+d4cofvEij3efppz/MWnmFUnOPgM+Hm/EQsQlrUR5YeIDerT6hhkdMydDb0dHtLs1GjdyRh4nNL1BbukHHqrM72MUwagTCAbreAMEpcXf/NtVaB1FU6HT7VIU6m50mX335MkvOJjFRYUGNMiGlCESinHnmKSq3X6FcuYK8WiCieMTSGZqbDRzLwIeCMgxRLzXQ99tMj+RIhWLEcrBhF9EiGvGYhtUtY5oiW4UmWDKaLRJTY3T6CpeuLdFydMYmRvCV2ww6A+IBiZ7Ro9SsEU0kWN3dQrdMzi6M0m62aHd1KqVdpsdTdPsdPGfAzGSe+aNTVPYrDPUOW7sNVtdXOLQww8peiZ4xZNgziPvCBEMqAQfyqRxNR6a7X8bWTOYmD3EsfJ6p9AJRX4aIF6De2MMXFNhe2kJSNQ7PPYI6FaK6eA190MXTdZZf/z1kVSAsdzh+fIFUNk3ppSJ3lxaJhEOM5ONkR0bpdYdU9vf5/OdfoNxsMTYW5YHzFxANgZglEuv6OSFNk5TiBIU4PsHH7Ut3aFQadDtVomoQjyazczPc2lsi0BW4eO0i+40il+5c44n/8/94d4Xrl3T0fgNBCZJJHph7n+NQLexzZekyETnLxz/xrWzcuMhIKsLE1Dz6pS+zUS0yl80z4k8zHppmNjXNtJWkd6vGfqMDisp4IkFfN+mUiqiWiF7bIx4NsG06KGENQZHBFTCNIasbi6Sjk9TaLYqVIkJAoaZX6Lk2rmARUoNgm+j2AAQPL5dgZ91lVzAJ13RkR6cl1IkIQQKijyxxJFGiUqvjoZLJ53ji5GM0hyaf73wZN6Wh+mUEv0K3Y+PZMj5BIuQpZNQMh+bneP3m2zSbdQR/h/mpMZZv3SXul7DNHmMLhwjk8jA6RrndYCITZanawup2qXSajI2l0ESJfqNBzbGYOTzL/Mwkb198g4AsoQ+GzM0uUL2yQjgWQfM8SqV9ZpIxXAOGRpdBpYcW83P2sfOYHRnZEIhmoohDD82vIEnQ6tWJjyep1Ko89uBjbDdW0DSN7HiCzb1VCuuXsRQbvVPn/INPst9oMZUdQcMjHUsQDYTBshAlh1KxjGfZPPTAA3z7d30Ctz3kN/7tf+Lq7ZfIinGOaOM8ceqDlHbK9BydL774JUIJPxWzQdNp4ThF+nWFnZu7WBgYzhDbcdH7fwnPVRhJqmQeP87AdGk1Bgimh97roQVkDMni+UvPo1omYcPj93/rVxmZGmX24RMUOz3K5ToBW4WYzm5tg3QogjI3ykT+LGosSntjiURQQrVE1m9exxENHrhwAmOjQEeo0Wn0ScgyeS9ONJBBIYo/EmSvvUfL6NF3e2iBIFkriOh4tEQPzScxNppn49W3ke7uMGkHCISitMw6flXgoWPnmZbyTJBDtgVGd3M0WjWy/RDl6wWG7pCIDdVel1KpzekTx9nb2iPkSvgcgZwcImJAqO8w6YsxDHRp11tIxxYIZZIMVWgYffb3tti5dZPVap1TR0+RDOaYyvQIKT6arRZHpicp7hcQZYVGo8/+2haaXyU3kiaZjNHr9lne2GBmYpJWfUBMcQmoHo+ePI/mOJj9PqPhEVS/n2GnS29oU2rXad9rc/7s0/jGVUKaiiKECM5niG4bLN5+A21M5eb6JUI45I9Osy8M2aztM5vLUeq2GOomD517kLvXb+IMDRq7DdRsCDcWRvEHefDRBwjlRrjy9hUu/f5XsQt9zgenies+TmSOEDZdtHSenWqRkdgoS80lHv7A4yyvLbK9vcPrqy+RUKJEtAiaFcCnBvCk+39c830Lt1ErMz47hdnsY+pdyrt9Ti6MU6noGEafRCrA557/DE/MniPtzzGfXsComDw4e4a2bWCWuiSUJI88+ix33txA8kTmHzpGLJ7A9hssv7hFrG3hWB16epOd1Q6qpBHREiAr2I5JWAygdMEXkIknMqiSyq36IkE1QDqbw650aOk9vESEUneIcfUiCcfHsXyK+fHzvFq6TdWy8DyPxcU7xNICp3OTpEMZcrN5Lt25RHlni9rmHtPzo0QEidpAp9/qcufeMslQhJiqoJmQDoUICCLNYpFsKIQSm6Rh97m7uES91WIuEWGnUcNCoVjvMDAtlu8tEm92yKfijGVGSCfi3Lh+j0QiRCaWo9vSMYcm5XIZSQZPcNneqPHhZ54lLme4+so1RL9N6miE1aVVRkdGeOChx1Edl2qtSrFUIj8xRkFtUKpv4416DBSJty+9SSCu0Xr1bU6eOkOr3yIXHSd7KM9XXnqJUUZ54GMfINCsMKjWmTx6lFs3bvPiF7+M5LjUKhWUcIB0Lkmj2+Xk3DTVSp3PfObzRGQFtesy7sbxeR5pwY9Tb7HVaCNJPuKJBCfyhxiYA2xdplBu4LoQD/lRHYeRQBTHERAFH/af4x/37lu4O/sdfNEGYxNTlIo1EkmJuUN5cqkAle0CCU8jdOgYCTWFFTRYXllm4K8w9HRMW+bs1FkOTxwmlJnl/EfPsXLtHk6vw9a9JVLjeRJTY2y//grSsE0o5EMXhxAMU231ySXHaDeLmIDtGViezvFT55gKyjTedKnV77K2t0VUVAmGQzz68KO8+MWv0nBa9H1RPDxGg3EyIYVaDzxJIS4o7G+usVJT6IYnCMeyCEOLgKDi92fZKZQYm5zAMAU0TURJ+8llc1yvNOiYBhWxB7YLfQerrRPOhJmeHmWtUKLZ7RJPR9mpNMBWGc/HCdQqBGWYz6dAhPqww+WVFYIRP7uNLgO3gCfY6ILDyMwYtXoTWQoykspS266yt7lO2vIxEcrQKNWRLLi5tsZicRvJc4hJYWTPj+hFWTh2iGqkxVZzDXodsqenGTo9ZrOjbDf2aQttXCHIpt4kPjvF+Ycfway12b1+i3gkzBc/8zmq5TLRWJj0WIa8OcnQc2kPHTp7Zf7g1h8wkYhyPppHk/0oYYV+oUXXG1CTRRRTJKJEEdpt7GadaDjI953/BL/w1qdJO3nyMxmSahCh0UcaWAxli1K3g/6XYXENy6Xd0Yn3hsQTQRrWgOGwTTwRICjlkYciucQYM6E5lLaNEjC5XnyDUt9lJDPLRGaGXnuA1Tawex3mY2M0v3qX8sYKiQ+9H9kRaQ/7KJ7OsNfDtAT26VMzuthxm2wgSsiUUdUAluBDiMXxUiGWi7v4M1EarQ4Ne4AiBHj1lZfIJhK4Yhx7aGDKNm8vvs30oQkM0gQyMfyOj05nn0Q8xEg+iRKO461ZTEyM03X6xONJDl1YYPH5X0b0XEYzGYKREKceOYdt2uyubVEqlrFci7CmUi61Gco2SAoLCxMEggpT03m++vINJEkl7NPQTZNb2yv0B32iqRipaIjx2Ql29woYlsn0zCRvX79DeiQNKtzbrDA7NcbW7evMhLJML4zj9CSstspcdpZpRWC3vEO312Rg9DgxO89o6jBhKUO52mV/5zYLC3N88NGnscIO670dyjerLMTzNLtlOu0yxUqJve0Mu/fWEQwHuydx4vyDfMsP/k3iQZFyq0o4EmZYH7JzY52CEWeothEkh1qtRn48zfLWJoqk8OBjT7B25Tb9nkVKlfH5/ejDIUFXROvaLJAjGg7x8Jn3UTcsNm/cRnJNNuob+LwA+VT+3Reu3x9kOHRZWd6k2+8gedDqdthYW2UkE8ezVV575XkuTB7jo488jeuY+MUYF2ZO8qnPv8nmnQo/+JEfo97qULixSrIDaqFGuG/h1rrEk2l88RjDUh/JU/BsB03RUGWTRrePH5UoASRfEDUaZ2XxDlZEQghqmMIANaAx7A9wHXANk/mZcUZGRrh89TK9bpNYPIFfUAl5CnqzT89oklD8DKwum7UNEkk/Sl4jd/oQO9feJDc6yvXVewwtm4Ftsrq0ii3CUNSYP3SYs088zPbGOooosLu7zdAcUB6YCHYPNRCmUDDxR1NMzU7Sb7aRRUBQiByaYFgsYQgeTd3mmD/ExMgo1WYFRAnHVgkFM+iOgB+NQrOFCKQWJliuF6gvNYg7MfJqjJl8niPnphFiGvVCnWHZJDRQaF2tEHYiLMwc5s6tayyvrWAHLCaPjjIpxijeWOb8x5/hzOmTvPLqS/SqVR49fYbpkXmMgUNycpLuboWXdlZoDrokI3G2Ly/CVpfT48eIx8d55dpLYPUJpOF9Zx6iWe4Q1eLESTIRy+D0htSHPVzJIxzRUFWRSTXGSDBN9/IqybFxyh0HyzKIin4C4SCicv8/JL//J5K3LRxXJBbzMT05xqDbYH1zk2w2TmPYxrQkjLhNM9rns4tfRLd7rFQa+NdXeObDH0TcFNAmJ0hPnGJQuknx1mUOayGcSAghEyI+O4FyLUSnLqEJEpMTo5yeyLO4vcnm9g624qPtKIQyWY5/4Bkq3TrXNm8yUAxmpkaRSjYDx0c6lCTaEQj0HDrrBc7OHWZ5e5FDC1M0avtUmnUGooeiasiyiJWQuLZ5i/rWJbIzEyzffoE7e4sciQ1Rwxq+XAq/FCc9mmB9e4OtvX1W1r+KIoAswmguiTEcMjqS5dzZ09iDJrNz07zwyptkMnE++OGP8NUvfZWV5XXWimW+cPU6guPykUcfZFbWaJarDG0bVfNRqTewTJ2vvPgCJx48zcnTJ+iUq9x8+wrjuWm0vMggaTARnqN9Z4P9vV1ioSyjc4dYrVQwrSHrb11iVhyDkMTWYJVgKklsJIrTbbL1q2+huh6O6bH18jpuWqJX7dAsVdismJSubdLtmowePkoon+Ly5StE43HS4zHieoh4MI6+3WR7ZZ9JX56hFKK3Vmbv3gZPPfYc+nqDPEmUoczAFOkIFlW7yUJikobTJeGLIgxMrFaTwU6D6ZDMeq+BJ/ZoCyZbexW+/90WrouCLxBkf7+GIrv4fSKO4DI0jYNbUUybmeNzVFs97ux3QRHoOhZqs8vq0jLxfhohFKTX7pDKphj98NMMVlfoei2iC3ECY3Emj8xR397AxmO3UmC3U8WSZFwXuo6FI1k4TpfDySAz8zl6gSFfvPw7VAs2kmGi6i7dToWx0Chud0ipXqW+1qLrDJBDIoVaAcOn0vEsemaXfbGD1AyzqxdpOEPW9tuUei2ymRzbVosjucP0G5u4tsPmlZuYjkNUE/HHVfL5JOVSh5PH5vEsh1ajzbW3rjI1maJabvDE44/T6nW5de1tzpw5TDikYQsCFUmiVa5SKBY48vCjXNvaJJ6MEkwn6OgGuUyHUr3D5tYapWIRX89mNpLntc98hWwmSyaYxco0CY5mCU9ncKb8uIcSnJn6IFd+9cvcW72M4rMIKRly8wskFmZZeeN1SrdXSPQC+ESNgd/PmYc/wfL+LVxjB1kKYdou2XSC2SOjBGcO0XUdov4wTz3yLFPpMX77rV/Cw4dhD4mqGlgWfjlAMBBEQaW+XOSBmUfoVxrIgoyQ8FOnT6fb5HZ3i7HUFF2zidSzmdCSBJUgwZksO7sm3d4OPWxMUbpfOd6/cEU1QDQewq/B0SOTXL9xFUVVkX0RRiYm2C/UeO3VFWRPIJvL4Qoi46NhYj4Nvdlg4PgYVpuERifo94oMOw3EUYnA5CQtrY7Q61KvbjFw2piyiGO7WE1wEAkEQziKyHa7zOpWifZv6Xz4Ix/j+quv8tjUKRY3r5KPp9AFB9n1MHoDLMXElQWqvS5t+pRWb1KxOiiJBHXHoS96BGSRiGpwUy/Tlx2SAZGeYLNXWUFp+nh16SrZcIReq8F4LEQ+ESY/NYquDxEkiUGnTXlvC9dwKO41sG2XTr3KfrGD4cLMwiSPPnke0xpw4dxxPvqxjxCZnuX3Pvs5hHafbrvFBz/0DJ1um+df+iqNvkk2EeTI4RQzp88RD6VYe+kGz555DKM94O3LVyj19tkNbXLo7GkOv+9hUo/NYgctZN1joXeBtdIGpbDCZD6AMuPn7Rc+Q8zzEwkGkQSJIRJHnn6WxPRJTk6O8vKliywcfQhv2OPCY49xb3WdLz//OxxZOMYP//DfoVOucePSm6w3d7A9DwGRKV+OqCci2B5SxyUfHMPvBKk1OoTDfvp9i/CRSd547UUacpOnzp9F8ydZXNkmGgxz7Pw5fFoCaSaDsyyz8kYBvz9JyAjet3Dv+56z9x0Ls3Aoy8RoGhmTjY0NBoaFrPkxbZFmp8+4bwy54THrn6ZRbeNqLjptQjGTMxOPkessENKjhLsenqNzo3iZNX2DgWZydGyGpKfhaTLLe5scP32GRqVNIpykVKxxZ3MRwxwSUUIorkQukmZ2boZrdy+j20McycG2PLA9YkKIZCLDvt1mo7tPW+pRdRqYQF+SaXgWuucSEiSikozt6LhBhXMXjnJqfppqtcOXvvAqki2Q9ocYC0U5NppneeUOTnJIKBIkGAtTLJZIRjJgikS0GDeu3sETJBLJERqDIUOhy8J8mmjMR7s1IOCPMLtwlEg4jNkbUCrskk0nGfS6dLttzp0/x8T0PAM8Vlp1rl69SfH6Oh++8DDHThxBTYbRBxYhLYqcihIYj2MHdDxhgGSD2XXwCGDbAgFFwycqVHcrtG+sUFvfJynH8GyRlVaLD3zfd6PKLr/+6/+F8YkRFu9eZ2VvHRSRkK0giSKxTIbx6QmikTDlnR30epPC6ibKANS+QFZKMB4bw9Qhnsmiuxazh+YIx9L0JPgnn/kJKk6JkD9ASgjz4bnnuHDyKap7VXZa+5SDJm9t32ZxbxnPG5ITgnzK3rov4d63xY3GJBzXoVDcZ9hp0usPMUwIhH2sb9XQEhqNXgt/wWVm6iHO5Y/RlDvc2LtGNp/h3LmzsBKn/voarf0OhtcnoNoovS6+bpfu0MJRQ+gBmb1WkVRnFFlRyOQOvtsPropkfHFUT0BwPUKmxWQ8Qzc1zkZ1j7bZR/h/xmAPm0Q0gGBZ6AYYkohlSSRyWSq1ErrpgiDiAB3TQJRFBkOde8urlHe2ScWzHJqaZmNlk0wwimS7HF84ytbmKn3JRFAl2v0efcNkKhamWWpTq9UQBRFZCTAxPstgd4N6vUGj0UGWXAZdgxOHp5hOZdlY22B9fR1/0E9wdgbPEQ7ch/UCk9MnWF7bIH/2GD/23Eeh2sSo1wkk/LhhGd8QPEtiILg0WkUilkAiJIEgIsQ1XMGH6MrIQR+WZxPPZMlfmMLab9NY2UeTNLK2iRwd0Gn2+a4f+gE29nZ54c2Xubi6CJJE2PNwXQ97XcG9KhFPJ1lIp3nfwgmiikSr3Kaz30bv22iRKJFMnP1ehzPPvY/0aAbBFREkESkZpF+1sXotZMlia3Odo1On2d2+x63dq6zKDZaNEnVnSECCttS6Xznev3BVLcL6ehMskV5ngKpAbiSFZ8mYvQatpslcws+YlORC9lEi6Qm+8vbnSLpp0oE0tiBwr3oJN9TlxOkZAsM0Wxs2M+oke8YGY3OTyKqP0GgaXz1BuVFkUB8wHcszSoSRE89COMHVy69h0mdoDblz7SL+YBjJUtCcELGAj1Auze3SOuvVfQKKRMyAoWCDInH8/BlOqgKvvPgyqqiy32zSET16joMlgFE3KToWsWKBsVAQwXFZL+8S9Gn8/sZt3m41iQ49pHqbZz70GMlck0wkxWhygqPTJymv7tHu62Sncpx+aIZWq04yFGHQ6XD79g027mwxF8oz4cUZ6lkW17aIOkXsepvnzn+AV1+7yG9UfpvJB0+QTKUYDPsIPgtlNEDftBAtCTEYQtdNrKHBsDekWGqhBjXiiQTJWAjF0fFJFoohIqoeWEOcoY4c0EicCWCLMqbjIPRNVl+/ztVXr1MoF7m6t0LHc7FckcihMY5lJli+ssjOoM3q5g4b2zus3NwirEVQZIGQ4zCbjlCPmZx78DBxQWXsxDmM/TrDWp220yJk2yQQiIeTqK7G/OmjvHblS9QqBcBE1XVGZIWZsB9n2Ed0/hL+LsowDcrVNqoAtgGJaBANj1a5zonRLP3tHsfcCR498ii5+CxmKI1q+ggONI7H5rl9d5G75SV8psRcfhrVElBMmZQUYSgEefyhJ9jo1ljbW8ewLRS/iuv0aDdahMUc6WQeNTtJY6/EvZ0bDC0T07Fw+j0CgRCdThPL9mi0OgiugmlZ+G0I4ufU1BR5zaJb7/DgI+ewTnYY9g3qnWsYloGOhysI9EwH0QUFkUarRSgQANOgZxq8cesWQ9dGGghoQoBiqY8sB7i9tI/Z7lHe6hNWw4RCfsLREHeXb1Hfr/H2vS3S8RRB2Uc0G0XzB8hOZ3n9q5eRDZk5/xHGZ2K0l+rMT5wm8eExph8/RccFwzLxHBM1qBEMhNB1jzeu3OLO8gr1/TLVSoVqt4WlQCQUYmZ0go89+zQPnD+Kpzi4soXomjg46GYXV9JxZRXJHwJXYuGpC7z+1dfYLxbRkPBLMqlcjO/6xIf56ue+TMccYKoyfddG9DwUdIyhydA1SHgi+4ZJU1Jo3HqTQ4eOMWq02Fu9S14LsnT5NZ45cY7PX6oQURUEV6TW3qPU3SU5GqXe7DESyOO0i+TDURRfjHqrdt/CvW8f99nzfnpdC7964DsFJZOErBFTY6g9mXQjw4J4gpiWIxGdI5HPYidsbL3Aleu/x6v7V/FGQ2iGyrSe54mRhxD2dTxrAFGD8ccOUaTOXqfKlTu3aLX6eAMLrStyQp1nKjJBNDVJMBXi9Zuv0Brsg2AjywoDV6Tn2ogImICDAI6L5nmoqo+jzzzEC8uX2eys8fgjD3Lz+g3qnS7bnSZVTIa4mK6HI4AoCsRcmPUFmAjHkAWPpUoRQxJwXY9cMI2mKXSMFqlMmnq1QbfXYyyUwSdrxAMi/pifsCRxND2D1hSg5zLotVGiKurhNIWtdR6YOUN9q89ofxavauCMSqjn08x+7xhmyKNieODzEdAkZMFje2OP3/n8F3j58i3aukVI1fD7NDxFxBYdZE9AcyCbjHHugeN86LmnyGcj2HoXAQvXcRBFCc+TwQohYuJXffzc3//X3HzxNtFwGjsEu/oOqUyW3bUtLNNHW5awPI+JZIJer8HaoE1DEfG7IjlbIS/4yAthJuMZDicy+JomC8kxKrU62rRKQ2iRnc7xxhsXabZ69Kwh+bFJNncqaCGViKASFTwU08A0dP6RWbkv4d63xR32DaLRKH5VBaOH1TVJxKIcimexuh6HU6cY0Y5T26tzrXiLSQ5x9Phxyttb7DfrCJ7J4bFRatsNpscnCIYTDLt9HENhKPT46uuXGH9whngyy365il8KExB8pNUwsidi9HSEiEA0miYUjNIyagzsAa6u0xM8BNmHJKvYpovsSQREH0FRxREFQmqMdr2L5kkM99uIA49up4/p2QjiwQ+yZVxcz8NxHVRJ48TMPGPhOKW9bS7MHGatUaE1GOC6IvvNJrIMu4Uyk5OTDHYLlE2DXCyGGvVh6X16A53N3U3SdpyFxCyNrkuhto9rOrgDj7ZQRaqqTCojWLaBPepHPJ2h5dSw+x7+xAiuqmGYOobtcmtpldcvXqGjO2jBCOAhqSqKX0WQQLJdAo6H0+2xePUaC/kc2QfPYjrgj8VwHQ/DtJFcGdESGfpNPJ/J3PE5Fr+0zLOzT2NIBi+t9Gmu7zEiRUkkp8GQiHgKcc3HncYylmDTEwxM0cXGQkLF74LT7mANBCK2hN4vM52d4NK9a1ghl/d/9MPkRif4l7/wbyiafTb2dVKZLNVKhZOJMZJKEFmQKNu9+5XjnyMc5vqxDZGBbaM4EJY0FvKHiPRD2F0IhhNkI1niE3HCyg6S3Wfv5pvc27nJxNFp9peKbC+vMzdyGFUK4HkK6fQEWjDI4tZVjLqNT4wRVHw8OPcw2xt7+B2ZMAFCQpBkME4sk8GXTeOPhWhXB0iyjGHpWNgong/HBddzED0ZVTqIOx8+cwJPVbGNAaJj0d6rguXiuh6CICNIgGUjAT7AL/tJawESwSgBxUcyHEcNh9ivN7EFBdfWCYgiLg5d06BYr9G2hgiSSlAwKLQHjIUjxNA4mj/O8cBh/H2JjJpnxJmlo9qEIyKVvQ0G/QF6ZshA6pE6M4ZwPERNqOJ6Iltb29y4u0y33eTo/BzTc4f4ju/6Tq7fvctwOCSkaSRiEUqVffq9NhOpFEHDJa5FSEY1Es0m4u4+vnAQMRhF0gJYjovnunjyACEElmhz+vw5igtVpuQpzP6QunyUVU8iJMaZV+fxDRw0x6TdNmgnppg89gg/8tgRlq9fZ/uLFzmfPkRM17DbfdKmn3FflIw/haDEefIDf5VCc5Pf/dQXECISlt9PfmKE+NQYs9OTvPU7f4DjDml1e4QEhUQ08e4L1xoI9HoHd6iGVAnFFPF6Cmo3xIXp82hGgr2r9whJEinZPBj5t9bw+U0GTYNed0hkJE00luXu9TWOPfQo/WKHgBckaKmcGzmKVPVYvb1ETs7iqh5Gv4vfUlAEEWugY9s6jjtk4AwRAiqOYOJ4AiEpApKGYZhILiiyiOHoOKaLFJRJZ+PEFZWW4dKpNrAkB0EUsCQH1e/HcEz8goKAQDIUQTQs1rY26YYjRH0BllZWcYY2WC6WN8DybCL+IKqiogrghEOUmk2WtzdICAIkU/jlLKFYgOmFc7QbJptffZHMZI5GcQMxGiAayiIHXcxDIuW9OqMnfFS9XRxZQFEi/MYv/t9cunYLGQf5Yx/i2z9xnKmZSR57/AK4FrLt4DkmvV4Hc9BF6g0o3V6ivLKK3JNpdfusV2qkThzH5/chp3yoiobgWKBa6MYAWZZJ5rMcP3eC2fBpOjd22O6m6Vk9klKMREViVIlgSQO6cYVv/Vvfx/hjZ4nIDsX8Yb5yo0O0oyD0PXCDpIQI8kCkr/fxpCCHjz3E4I7AyuvP05N6pBYm2O41uXPtBitri2RFiancBKNamFJhj75tvPvCTcUT7FWLWLaHGBCx+y69xpA8fqS+H5UgAX8Ua9BiKHRZ31mjHzI5eeIU25VtNFvFrbnc2r/N6cyDdApNlIFLqbKOKpj0Oh26pSp9vUM6G2E6NEG1UcAvHPw/gGuZtBtFIkYYU7Xoi0Py2QzlnSI9a4hg2qiuiF/xI4oCumBjSB41u8HGzQ38joODiunYWDgEoxGSWpDNVg3wUEVQRQnbNLEsg/XGgGK7iuyCoipIgozp2oR8/oOBbBlE/SGOHznF9ZUlfBmFdr9HTBIIBwP4PB9+WePea2+ien6Sk+MMfRYNocb2doPASJIL3/EhEmemkCp+Ouo+hmtimH5ef+sSd+9t4jgy0XCAbDqNjIVgO/gVl4DmRxMFHGNAMiyjEWPjynU0s0dE8Fi7s0VJ3mdkvM5s0M/kXJ5Bx0aVVEKChOn10AwQTAFBcxGnBPb1bfb1VTLZFL6miM8VSakqojugKtc58tEnOfrRJ6DcYvvLV9C3yzx2+gOYSxVCcohuuYSgD/DZDqIk4IgOw5UNtm8tEcKPKDvsF0sUmlVank1kGCQWHKG32yN8ZJbMiWnubq+++8IVsMhm46hhicmRJHtXNtjb3WM6PUexUMVxDc4++jDWsMZK6QbB/BzV1hZr1Sqyq5LzkpycPM3K8hYRJ4jRs0mPjKH4ZArFu4g9i5QRJCiFCLgRRs+epu5borq1Q8AF0zLoml28kIQUVNAiflp6FwMHxxVQAVkAVRTxVJFmr0XD7REsRqgWd5kYy7Bfdin1WriChyN6OIKLaRngeDiui4FJH8Dz6IoeiicQ9QUJSBIhSUV2NLKxFINuj75uY3V1msU6g3oXNR4k5AsS1ODEyRN07u2zubtNvNtjeuoI2fkpekoPQYf6sM3j3/M9TH/sAv1onbCXpbGzg2VJ3Li3zKd/9wt0eyaqGmBmapzpiXE8U8dwTfyBAD5NQcUDSUNwZURTZzyfp7+ywb1Kh0JdZzIu0Gy2aDVrTFgdzH4TWRQQJBXLtvBcH4qi4CgORz5+Am9zCNIYLA4J3ZEwKk08q0fXayCMekyfHmf1C79H57V1xjNHSMUWcGo1Sr0qPr+AEo2TPTGHWdxhd2eLUCBOr15CtG2isoLn2gwbNSTPJk2A+DBASo1zevIImUCeL736MlWr/ZcgXGGApsr4VRXBsdF8EvrQQcrEyMyeRw7mccI+6hs7BIJJjpx6ku6X/oDtO+skIxoX5p9j4dAFxnxFwnKMUquLdXoCMZ8iuRSgf+MuVrHMoNvFdXv0l7cJBmL4TqQwekPckA8x72ffHLJT2qbjdVlvlrFcgTgqI2IM0/WhCDJNp0XZq9Jw2kzJY8TTMYZtnaFu4goCumjTMvq0BzqZoIqq+Bi0uniOgwxI0sFK2vI82paJaTkItk1c9TMSTiDHUhSKBbrWgHa/y0CwcU2TcCyKoLjcKe0itxv4HIHE/CzZx88S8UdQJYPeFY/YqSNkv+MBrLCB0q8iujY6Cn1D4UuvXqVjOCQifkIBlWefOM/cRBZJsJAkP5LnYLWreJoPzecHSUaQVeJzPsYdF8vnI3PzDp1mF1sREWUXr1snEFJRNY2BbuLoA1whwEBxEAICWiiKNK2SmcghPzTE2s7R2q1BvYmvF2TuocPUhy1e+aXfYbqfxT8Z5U7tMsPtdRKOiOv4iAXDCDmTobeCnKvQkQYced9TPHZIwXvhHvWOgGeqTAoJQoExTmem6Tc6JNwoQktixjdF2my9+8KdmUyys9+kWqygOgaqIjE2fYhjjz1JPvwEzm6D0q3L7N69yWgySf/mLg+OnOP8zAME/AZaKIXoz9FxdQKpEZIpA2kkRqFRZHRyCnlpF90uE9HC+P1BOoUShIKMXbiApPoQxnM4cY9P/9ZPUx/WGTk6RmXbpFCok5FUJBFc18O1BGzPQ1F8yHaHu7dv8oHTTzFoDXBtB9uzsUQbV/AQPIdMNE4inuRuaxlBEhAdD00AwQXjYMRiWDamK2DZMoNuF9OxabtDtGSIjXqRujkEbFrGAMm2KCgCHzl8hqngHKeefYJAOIW+2aTWrjI0JZ7+nk9iZ0RcvUlYb2NZDiYyuidQbTZBcElEFMZzceancmiKhywpDIcDQj4Z1bIQPAFZ9jMYmiAKeIJA/NAMx4IamYjMvXtrBGJJxg5N4bkHA88UFSzLwx4MQQbPFUmkcgTiSbqtLkO9hzghIs9mSLl5NIv/H23/9Wtrnt93fu8nh5XjzuHsvc8OJ59Tqau6Und1N9lskaLEISUKGo1hj6wLw+HKvjBswMYAHtuwxwNhNMLMKA1FURSDyCY7FLs6VXflOjntfXbOK8cnR18c+74GqMb6E9YLz1q/7/P9fT6kzhgxZxDc3+e3/8E/wPm4weOP76OVJVxlSDMJkJQKspCw+2wLtTJi9kqOTqNNfPYh+7/8mKx3yOykycXyRQzzIp1eHlnQ8VOZziDl8to8eWVEOVP88uEWsxLJdBZtIBFFCaZisjS3SjRw8E936D7YZnyyTVUzGDe7WD2H0vQcszOr9E938AZ9zKxMp9WjdOUSM9fWiAZt/Me7WMsC2mSB/lZIuZAjN1knGbQZhh7nnTPawx5qt4owKWEWMrhtOOmek/FgnRozRhk1gilzCkXNslHe4HH3Gdfr13G9Pt2TBlUK3Li4wc93bqOoEoIkI6YyfhhyfN5E1TVUTcUZDhFEETkBQQDH90lIUSUJXRN42jolkhLSjEzBFBl0Q2RTwQ9CJnMGip1giDJ+z2avcUS9tkk5OMXo+Ixjm1u/+w3m3rxKP+2gph5B4uJGPrJZwh4PyQk+pg66GLGyMEW5lEWSII4jhsMh4+aAceeM5dXLaIaOLAlEyfNRvCyDmlOpr82RFnOEqYpSKeJJkMvkkLUccipjxdDr91F1iUIc4XsOim6g5av4KbhCghPHSF5IPltEIyFNfNp7j0laXdYWsogFk8bJPcZRwMzEAplCHp0hYs6m09hFlEzOPvv3qFLA1LJEaTKDGc1jD4vEYQFX1SlIGoogkZ+osLQ8j99sfvlwh+M+7cGAVNHJ5gooI4VHTx6y9sIGW/fPmBaKZBWJRBCITJnS1AyCmQVFp3XUw/JC1l6aYWZugfGwR8ZzSfbOKRy0UXMFfL+Pnzqcd4dY8ZCeNaCVWHi9PebWV9nd3MHaH1G+PMF+95TgbMwSE1xXVsiQRdBEXrz0AoqgI+SK1Crz+FmPfE3hr/7jHxDJIoXZHPmSSXVlGcPp8fRwnyBI6I1tyrk8mmnQG43JmSbx0CJOE0IhxU8hJiDCQ0o8wiREcxX6py6GKvL211/n4b2HlMws3kmPS9NL1KIMQQc+/It3WZOmmZMyFF5a5NrvfR23mCKIIRIhigxuECIJAePOGQt5lWKuxNKlFdaurJHLGaRCiqFrzE5NMm75jNs+njdEciQE5fn8WpEV0jgiUlICJWKcOJyen6HX8mSVPMgGullGNQqIcobO2GdkuUQHe5j5IdX5dUTJwE8EZF1GUmWkBIwgoPfhRzz8wz8meLALoxhTrBIrOou1SaanFqkbNfzuGY2TPYT+OdKFHDO36qROHzEKyC9USMOU+DQi6Dk0jnuEkoRAQr1eQRjsIQ92cYfnXz7c1MyTOA66qSMIIvMLc+SNDMPgiHzd5PS4j6zmUIwsU5evUqxWcZOENJMns7yCZrsQBRTqFVo47P/kp4iP99AHAzpWh346RlEcRkGffreFn8bEmoBoqORndATXwe11+OzzHaIooG7WeGv2VTL7MVKkEiMQhzA6O0PIR6zdukpcjdk8vkPGzDNyLezOKQ4BQeDz7OCIztjGkGVKhoGawqjbI5/NUcwXadseYegTq8+faD4xXmShySJaInJ9bh45Chn22hSDmIWJCkGUookZkm7A1fkb2D0fQc5ybfISqdfHvLZAWBTw4hF4FmYUI6cxshBTkgSqccSSplDMaEwYKllZAlIUVSGJIgRSclmTi6urBFFCs3GGmc2jGSaRJJFEIXFg4dlDQtcmDj3EJEYVZQhTAjsgiXyMYo3ZpZR+p8VwMCRxPApRTBqECKqJnAjosYKaarTu3uOv/ot/xoI1ZDWbozU8x8kE5Nc2uPnVXyds2PQ/38IadahcXKCTBsz/zouI9TxGOObsg/fJeD3cQcL9D06oqjfIxjlc30IVUrp7DbThKbbVI4i8Lx/uTmOEIuvMVKZp7J5yf3uH37jyFbrWMXNrl9l1hsxM3mDx+qvsP36GVDLIlzK4I4swqzIxN0U6tpByCvOTy5zfu0cQB8hSjDfoME4GhIGFl7qU81XEFMb+gNNum633nhGmMVIMUSYllyrMm9NcrK+gDBw67S5W4LJ391MyUhUhMcjMzDGWmjzcfoqnSzh+SKd5SFeNOXm2ydB3UAQBMYwQU5FqNY8hSNTqU5yfnJAmKZIkUqmWGXoOY9shSkAUIScp/C9+9/dhMOS7f/pHGKOA6XyZp3sHqOOUrKIRbI5Yy69TLsyRyRc5pEthtUKS2iSRSzZJ0cIQIfKRSMiLIpMRfLa1zeKNy7S2tylU8hSmni/bmIqCmMZEUUR/MEQ3soRhRJrExL6L69r4roUc+7j9LlqaMF+tkVVUDFEiCUIEKcLxRriez/T0HJXpeQ53dxlbLp7nk8sKiKpITIwUpsiJzuaP7jF81iPOAqZIqomo81UufusdNLXOwY9+TH/nBDOXUJxfIdZMGsOE/tkO1yYrtPdjpqQiwiAmbLTITxvUarN0rQDDkDk43eKk3UfKqkxd3fjy4Z52LIq6ylC2Ge/ZLBcnefvmr3P4+DGNVhspr+AlfUaNHQ4e32H/2W2u3bpM7+ScklymczYgsC2K8jRSJ0DTJaKlKl6kc753hhdEmIUyUndMKKroOZOwa+EGCUNvTN7MMZEvIIUWliDBIGB/95A3l1/HcR7ijwIyZpFUlFlcX6IzbnL/5AP2nBN6Xhs/GjGKHE59m6GQoGQzJK6LEIcsT00xkc9zfHzKgpxjor7AMPTY6ZwgSCoJHkIICCJhkuALIR/du4PkOMSKiuMGiInMleoi6giuKEsUewamVsdPNaJmE7csoG5M4eMgpQlynEAUk6oyii4QdG1623uYdsDWR58jLs2w9sJNXNdFNjVSEoLQI4xTYkFDzxSYzBZI45gk8FCIkWTwLAtn0EeWcug5A0USiEKfWIxIJI0o0XDikMHIIpvLU59dxhhbyLKMFLkktkcsi0R2irBvY24PWcosUqtJdMdHxNkc12++jjIW2b93B6fjY0oZBHfM2YMGA23MxspLmHKZw7/+lGw3w507x0xOzjEz9QIZIUcaR2hGHrOaIzvucD7yUPUM1be/9eXDHQ4jFooVqmKR0LV49fLr5J1pJo2Y3d27TNQyDI8fU3RD4tM9CuUMH/7phxDH5KMiUqxQvXiRs8dnVMp1CsUCtXduYiyUOf7LgCk7RQ0Mtsb3qEwtsvG111Fuv894+w6j4THViRlk10MaBrw4uUG/5TLsjbBnQ1TTJBu6RET4iY9oCNz++G/4i80fshMeEIg+uqQSyxAgM4o8KoZBRhBIBgO8bhdIuV6c5nde+AbjwOVvnnyE446xEwEhUaiIGqqs0vQ9/CTkLz74CXMzk1y4MMv+aQuha6E78D+7+PtcqV6iJ1m4RoHy4gVSp0upoqAtVgmVE+REQBQglURSTSUIPUTPxWl3STo2siGTUzOIsUAcJeiKgiSkJPHz3Yp8aQJBUcmaOs5wgB8GiHGIEPqMe22s8ZBiKUtKTCJGeLFDLCjE/ghRzlEoTBIl0B06z9vkJ2YRQ4fEtSAM0bQS4nkf/3tb1PcDJssb1K9MECWnPLrzCVKg4506yHqJ+RcXsXZ38UbnnBxuEWkJrXsO9YVpjh7GGE6GKCjiZBdZff0dnNMW5w+2MItT5CcmmB6bjN0I3xsS8ytYayRNOD3t4+47rOdnWZ6ZZ+vebUzd5Ktv/C0aB8+Yq+s4Zz5fuXyDVAlw+ns4YUhuaprZiQUURefi3Dxu6CNPlpAuzBKZAq4T4++dkQklJE3CTUK6wwFKMY+a1wl7YwZnx+SzNfRURfATCrkq5coSysIc9tkBkZ6QZHWuvPYGueUlFiohRvcjNLvAyO5gRz6BEOElETlFwWl3UICSpEEQMjpu8uqlJU4+ucPE2hLueZuCorC+vshwOODg0Q5SImOYZZpOH98OiVyfH919QFU3eWt2jXwzpJ6tEzsChSvXSYMQo15kcNLBWFtETFzkNCQUfBTRQZZ8El0lDXzEGHITJUqLdfw0xvYsfGdMxh2DKxIlIZEzIk1SEkEiQAcxJQISUUaIwR1ZjDpdkjghFSAVISVBEgTiVCRGJhBkjGyJOBQJwgTRCtAjkVB9frBTRx79B485/Ve/IH3vhIXMFJGcoJcXSVyNlY0l8hfnCMUpjHGMNjGDslIiHg2IHmfxhwMO7zWQ4jzV9bfJKzqHTw44alrEP79NNVuASMBtNvEIkPwBRmQROT72z/+aGr//5cLVNdD0IuXqJKfbZ/SdIyZMnWbznIuZNyioAe7JGdP5eR7e/SWjdMD1KzfxE5WJN34TWRIZ3X6I2nbZGZxz8eXL9JtdqhGURhpOx8P1B7STAUfePrePfkEr7nPmdyjIEjN6nbJSQDNlLDtiaX2dV7/226hmnc7HP2YcdDkd2NitKq/fXOTCS5e54r1M44nHyWGfgW+RLxSIHQshSSgoKnlVQw1Dalqe1WwFp9sjJ8e44wGnrQNCQyLTkpBlGYEUSZAwYhlNKyKIIdH5mCjwOXED7vZ2eUWd4/TsjNA0mb5SI2wdc3r4jGKtQLoygSB5aElIIjnIUR+cIRg5DFFj1DqitFxkIl7DGjskeZMk9QgHbWLRp9M5RxVTVFVBlDWi0CSIQyRJI05FxARa5w3Ojo7JF7IIYgppiDPsUxSrCKpGqhrkK7OkegXPt0CGUq6AGgb0Aw+tYvLovZ/yw3/1B1w/EblgiXTGB1DNUxoqJH4PUQ0JogGuaMBEmdzVadT1SaJOj+LFOYJWn0/+7HuUJ2+R+81LJLHL8f/wB8j2AXGzTyYqIiQFSBOcM4swcZHiECke0njwIYtf0OMXhislChsbs6iexMMHTX5x96f8L3/9P0UIffyTLr2dY1Kvzwf7dyiVDdKRT6KZFDN14tMW6toyISlnB/sYU0VixyFranj2iEomQ6ZSp9f1EaIuw/AU0YwZByMSJErZC1xeeZ2jrR1CT6CcqTJtVOkfd3j28EMCQeI4HOMWJN6/+z5xUeDE6/CzZ5/w6eFd/CRBkBU8P8QKQgQBEhImMjnmjSJXV1b5jW//Bv/m//3/QTZMVCkhnynRD8ZsPtkjEkXEWEEVEiZqVUbumMAbkVE0puMUD7hSniffgdFwiDBuUj46IltQ8ZMYsZQnlSIiSSJOIsQYSFRSQcceudj9IUHUw8jC0vWLuD4oWZMgTbCHIzrNc0bjLrmMTimXQ1Y0BC1AMmMkw4TAw3dsLMsmFSXCKCTyHRRFJh4H+GkEZpmULGqSPu/B0BQSVaIjeKhyghbLDD65z8N3/4YyAVcuzBGPTwjDmESGs5NdzDQikVWS8z5hqUR1fYJUgrjvIAsKZPIwIRHP1/ALGrmiAVaAI0CqaiRuTKvXQVdMNEVDTkSkNMHws7jJmMD5FYTerczO83u/+20++/AjrEaZKAz4wbvvcXXqFTrjc873W8zfrFBdm+Li1XXuvfcJB4rM5Y3L7H33F9SOzynOVFDyJjs7zxj++BfUX7uEaEp4RZlG/5xiLoMSCNj9LnlTQ0Mil1Z487XfYX3iJkc7f4QkaiiBwf7Hm9TLNoaicO2Nr1M+qJO/McE//Rf/N/7tD/4FPXHMfjgiFCJSWUaXdKI4JEVAUWSkVEByA9ZW18ibBu/98iccOV3CNGHQUmhFNqIsIfspGUFFFfMkEdhtm1QGNdEoa3lAo+/aiKOAxdoSU+YUcUdC8EPc0w6V+Tm2P/wFk7deJgCQQtIoxo8VJLlEnARIqsgg9lASF7VaQpayuJbLsNcnCQKSNGJ3axvNkLkwPYcUg6CqFCpl4tzzw86w2yVJRbRMDiewcf2QTCZBSWNCe4RtR5CWMSsxZUHD0iViXeUXdz7h0Z1PuXDaJnNwyLi5x5pnI41GqHqEkVfI1sukIjhbLaZffZPhKEGpqCi1MlHoE/RHyOMYQZLRFhbZ+Lu/hqyoJLpAgsGtd75OM/uQ/i/vY8c+ERDHGnoCpqxTkYsQWoyT/pcPt5LX+dGPfszjh09Zn5rgUukS78x8G7Fpog4K5F9foB0/4MKVi3jjLt3A4StvvoUpl9FUlcNHj3CqN1n42usogzbWoEd+aQbzQpnTz2+jSAJJGuDbIWJqUJSnyRaz5MoXeeHyaxgDhRsvvEHkOlgnbaLGkJqkEyBgn7QoZMocbe5xfeMKHz37KYoWYsoCA0tATGOSyEGRZEqqQcE0WMgUMfyAs34HOaOwd3hAwciiqTI7R3v0A4dcLke1UEcYhUynReIkZZxA1/cwFBV37OMlPsQisSoxvb7G0uSLWJ+fYR8ckcQjgsEAUwqwjk6oSJex0xBIiFUTUTZJ3AhJLKLWlrE6R0SCiGHIJN7zDrY0CAkCl8tXrnDaPCNFxNR1/MCje3ZMI45wXBdV0ZBFhVjQceKAcSCihTJhIqKpKlKuilqaIhQNTho9nrRbnDSa3Nt5yuHhLtko5drKGiO65LoepuMS+jFZ08CQUs4ePiINs8R+glrMomULJKlAEvhEnSFhx0PWNARDoTo5CcREJMQC5JeX0QKJxmf3cB2bkiY8nxnHEhoyqqhQULKk0a/giXvvzhG1uSyGVmBj403eWv0a+dY0Ylrg4ccfkVciyss6n/zJLyhmdMKGj+qJnG4/IXQjhgWF9W+/SqAITF9ZRlM3GO+d8uCP/4TB3ccYwz5jNWW6ssaUeoPQivjmt/8TPFFEPPUZtVrMr12j12hx/qxBJolxmmdIqkRUzpCbn2a9lqfd2yYOPWLBRUYgK4jIiUBZ1dELeUgg7Q9Zn64zTn1+8vQumcMt5rNFrtdm+J///X/Ij5/c5+O//ENcZ0TBLLNYrvGyvEhip3wyaBLHKWEMoiAxV6yx0z0hlQ0+vnuf0qVJCkYe2eqTl2SSZod8QWd03CbuOkTlgDT0sUIVQVRR9SkCP0BdlCgWl6hUUixrQM4soAoygeNDmhDGPtMXlghGDsFojKSIZFMZ33NIfYfBcISsF/AxQNOwhRJxWCSvF9D0DLJeJY1MHn/8gL/+/nskicbq/CqpIGImZU6Hp/ygcZtcBSZfWEa9vUstlhlJEk/DNr35DMVogkIk4PRdCmOX8OiUOIoxByPszWMkL0I8r5F54wqJ+vzwp2oG4XjI6ckhTWFIqFi04hZlRaYaZ4hjjVwqoGsmevrFcxW++HaYorK6foPDnWccbZ/y57d/wD/5+v8Wf+yQSAle6HL/Z08Qkoj8UoVbl65hP35G77BJmEZQLRIOHbyTc+xul+NWg+7mFsZgxIQfEUkanTRmZfEK87NXGD1rMNwbY0xUODs6YHh8xqwoPF8cVzNI6QhJCCEOkTIq1bWL/PjHf8LO1i4kKaQymqKSuBZFI4ORhlR0lTBIGBFz1mlyFlrYQkqUJrR8j63WKX/13g/Z6bXJywpuHOINB8RZjd64wURummzGpOeExHGMgoIeKExJNWIvJFITRl5A3tAozM8gu10cx2bQbtDc7DPTv4KUFYnd5522qAmmriFIKlphAcHU0YIznEhAVBUULUOYSIRRgCAJqIKAhIYsa3jDFonnoaoS5VIRNxoTSSqypKBJMhgl3DSD7Yj0z9ts7t9mvzkikAxiUaYgGXi2T75cxBYUxqHH6GSX1+QSfuzguQmhEjOen+L2eEiqlJhryuS7IwIzw+TkBBg60XCMKgnEvod9cI44HmLM1hEmS6iaghCEnBwcMLAGaHWTRuMM2QgRVAlJioltlSTVkZMUK/7iOaNfGO7ZwOY//NkPMFOBsTzmjek3UdQCYjWktlqiPruO+csc/b0OtlVmam2N084OpYUK9W99k2jzgK1/+ocIls3E1AwTSoo5ilDtGElRiaamufDKmxQXL7D9Vz9GaTuYhRL5uVkmly8Rtx3CwzbF6gRptozvDikXFfbOt5mbzeMpIZKWQVPyyFEWNxwxCgUETARSpiomG3NTPH52iLw4w1kacnA2QDB1+m5AJ3bpRCGDZ3cwNYOpTJ7AGSEFMVFoE0/N8Mvt+/RSBSGTIxsblGKd15df4vyshWSFfPXqV5j/xrcRxAqtn7+P32yiEVDIFjGqRZRARRgZNHfOyS9PMfBchtYJZiGHXJAI+y6mE5EXDDpjFzVXQdR0QssidlyiKEJQZJSyAWKI27MRwhhDNVBN8AKNgpnBSEKOhzafHZ3x+KjByPVxPAfVNEhECbNcYDTyaAgiruiSJg5GWWLKz/P2EKqnfUQzxxYhTxp9GpHMRq3Gq5ev0+v5JPU55Asz5EsG+WoJRiFSUUNyXcKtDuftDtmblym8dJNUj8kIEsXLK9zb+RGb4SGvvH2J6YUK5plE59MW3ZaL5Kc4eFz7suGWqwWa5y5JDK7vIekqoRhyfPAENauQWbtA/iRk3I7JTC2gz86RNWzyq8uIRCh+xEKaRZY1hntNYiFCihNEWUNQU1QjC4UKoRvgeB5lRcDUJFrbT5FrMySGTpJGePaIfreFLkDXGRNlFIzpCpnFGSIxppDJcal+Gftkk17oogoqQWDTbA0I+/dpeB59S2FAhBdEyIJELIBDQiMMSIOAnDCmpmm8/MINVmanaR0ccbh/RGmqjNX2sEMPMZbRZJ1bN9/gXN3k5MEmWiTg94ZoWY3j7injzimTCcwvXsHTRJLGELmapdsaUFtdRk6en/69cUgUOQh2FwZtPMdhGMakuk51ahpNiwnDGGQfWZKIkgBBlTHMDMH4eRaCIKmISYoRxNBoM24OSWyB2AkI4+fFhGIqECUJIqCrIr5vEaV5SBMUWWR5qob59IDU8QjNPD0nIBj6VAMN0+qSGAHCRJmpr75InDcIkhBDkUARSdMYbzzACFKC3ojwpEGy0kesFFANFd/pctA+QiwqWJmAk7BJXcrRFwaosoKcqqRq9oty/J9wWTLskVdljERBjEUeHn7M/+X/8U+YkOr8o9/735EEOqNOgwtXFijMzuO7DsbsAmkhz+F3/5rgySGFsYAQpFSNGmahwKB9jJ86iEpKkErEB8fc32+wOnuFpNNHiQPOn21jijGrv/MmIUNIBea3FPY/u8NOo8FAjEjv3OHFWg23f0jYbXOluIpkSGQ5p6XYBKmCKgsUqkWcbgtZEpFtmzj1ycgS2bxOkpE4bQ7RZRXXdTgJHQ7v3SH77DHlGP7zl7/KS5eu8e4v7nL/wTbfuPV3uLzyEspARmjHzComufGQsx+8R+XKZdZeXsMqewyf3qU/esDB5y7TlYSpW7dY/9broOQophK21CcJRyTnZyiihxX2CNMQUplBq8PkxBwlI8/m7hGeNaRaqSDJEAsKfqziJlm8BBQFMuMjSv0Q6ekx10SflavLOJLBpx2FxAJ36JJmM6SeRhj6mKqONbZxw4iaLDFXM9EvG8j6AuedAP08ZU0VqS9NMnv1FfTFG+QuvIA4NUMiJ9DvM9g7wH74hMk0JVvIkrZ75N0AZ2eb4Xqd4vKL5CeniByNVIvI1nUa4YBhO+X84IzEHlFQStx6+S2m1y5/+XAvTUxRWKszGnoc7xzRsZtk3ISVhXmss3OEsYvVbFOtagwPDhipCbpQwT0+ont4xmSmgOwGBI5NYNkYiYghqIS+jRf5lJbq7J+2KJoF8rkcdqdH+/QYU0nIixHRsMFx/ymVcoFnOx8hl2W6zR7DMOR4e4t8KqFZUNTrhAJMzk2we3iGHLk4kUXTdek6bTYuX+LmSzf44Xf/EmUUoicJGzMzeBkVBg955fICa2vr/Pl//CH7Q5e+74GichrFLIvw5NkzJmszvP7W18ikJY5+9ClRb4AZRFjNJpGaIZvXiHWJXuuUca/BoBczVGWS7R0mo8vEhkqqxSSCiCipCL4JI50oSIlFE9mUUFMVN5EYBSmVSh29Mk3fCUkLM+iaTnSyTYhFoCZEnkXYb1LLCKxOT2FZTQTFx6oFGEaRwXiAGkZkBAExgXTo4EYekiyBbuBGz1sqB40W5HNElTxOv4PkJ1QzJXBBNEto80uQLYKoIAkxpqyTRjBIYtrWgMizyMki2TBBD2L6nR4lVYGiyqC5R2R7eOcWiWTSaFhIgwQjBONChnha45PtD/mtLxvujFGkUKnQ6m3RCYdMmlneuvUSq+k0nc8ekk5MceXCEgI6zU6HmVtXsISQ5nmPmlGmnp3AHreoFnOoXog76pGKAmEqYaGQdCyWlzfQS3Wae/uMWidEdgvdTChqMzz98Ae8v/kjxvEIJZehH/hYqUccxfzG5Tfpb27xwuIVkqrBn3z85zzsP8SJR6SJ83zRRJNRRZHTZ1tIpwe8IHi89uoqUZQySCU+OTjirbkZys0GE2qWf7jyAh9sHXHHdxkFPn/0y0/4yd1HLKYFxj2Hez/4G9SxzEZuhiSMSAIXP3ZRaxrxuMPnH35G72yLXOKTpjGBG3H6+ADpz97nxq+9Rjwj48sJkQaimGLmKkTDMZHo45KQqc0gpTJdXyUJZKorNygtbBCIecREIes9j1KShB7++Zj2zhZh5JBdLDG/qrAyMYGZMdjZDrg9bqGqObzEJ0TA8aFWMHCdEUpWx40Cdh0RHYFWa0DW65JzZMJOj5nqAmquRvOoy5nzKZJxTKoZZHWdeq5MRsiy8PbbBAcHnHseg8MWSttBTEXiTp+k1wdZ4/bPfkJZ1Bj0hlQyGSbzF9jsb+HlUiZev4hd9Wk3T74oxy8O99H2NuNnTxHzBhvXF1AHIcNOGzEzSyHNUy9XaW1uoUkmxbV1Rv0OlgkXbtyg/aP32b5zn7XZdSKvh+9bIAl4qkCgGWQn59DKVXq2jU4Ps1LAasmEfRfPG+HvPeTI6eA5LmMhoNMf0ks8vCSgjsnW1m0myWMUFKSaiae6DOMRUeogkaIKKp4gQxJTCkNWNZHXl6bIGSI/fviELhlK2TJ1NcNbK1dxziwGz3q8OfUiGTfi0+PHuEmX0EuJ4xQllTnc3qEmlhilBkpGwUsVIillbI+ZAsaBhWjoiCq4toMg6QR2xL0//iUL+Rkqb62SrSj4evp8MUhKkEUQEHAsByUX4aUpiRTR6w+ZmpgkJkSQdYJYRtQ1FFVi0iyx/egB4dhDEVM6TZvq3AU8xyXOFslKMmbSQ1EKeJFNNlthemmF0dkRGVQESSSIUga+yz23T1/w+c/WLtO+c4ClJXiSw+bWQ85vP2F65WXmF68jChrdsU0SihTqVbIvbmBM11n82qs4D3cIP9ki8Xz6rRb5e/cRJgzGx8+Xi0zVwDTyaNkqZvaU0lSGTEbDHnbxRoMvH25LCBA0GV1U2H16zgImZk1HFRSinke4f0zU72L5LbzUwcopXP7Nd0jTmF7vnJWlJcK+RZA6+LpDIMcMNJHStctkL65RmFpg/6cfIxRUKhfmGA12sUciju0xHDd56Vu/wZLybf7wL/41DWeHsZIiJAmVeoW98Q5HTsicuUhn6HESHTGUXKIwYqE0C5LOoNvAJkDR4GLeRO10SHIpV165juMV0fsF1GFK77ZH2EpZiJcQuhP4msS3f+vX+GzrxwyaZ+hjkBORS8vrzJSmMCcmefLhzwmNBN3UmZ5cQl1aYTkc4w/P8UZtnG6Ha298E7M6zd1/+T/if79BZE4gzMmEUz6pHBI6Q1Q5RUgDpCRGISERRPw4IHZiVKGCYUiEhFixA7rFQs1k94/+A4Vuj0tTM5x1m8jSAknxVfa9Z9x7cMb9fYHQqBGaJsWJOVIPjg4PMCWQZJmipmGKAs7BOS/U6kx5GtHdI/K6z/iKwmOhyVAZU8nNcr1UQuj2qdWW8S2fxHVRciHjxjnm2jzSyhSZYo6kXsM6bjAXjDFclzs/+Dn94326oUc/idja3yOWz4hjD7/p8OwX96goOuKJ8+XDffMbX6F9PuL2h48pBCqXly4hjTVcNyYj6bROz0gTG1XPEBkigRTy8599n/b+HhdckdNRSpYMQTRCn9Aw5itIWYOJV24h5iu0j9tEcsLUxjJR4nHWOUUWBUw9R6BoGLMXmDE1Xnz1DZ5+0MANhuhCyji0KOfLnNtNng6eYMsCPX+AmMvgDMYM4hATES0NSaSYlh8zJOWFi/N0xYTH9w8w0ym+NnON3qjH+alFiQKGmEMINd569XWqGxfQ/RE/P3iXqlJgojpJuVTHjSL2733K8ajJ69/5DoVshvF+i5NHDzk/2cPD4vD4KWkKM86A2fIVLuQXaDw84Yl3irJR5IV/9AqpmmDbY2RNJk1ShFRAAjRJRpFVJEVBiDxkWSAOLeQoQBc80uYJ2bMz5LFHN0roWTZGPsaVLSx/yFcvzZN1RuSDiE4m4MDexR5GmEKWSNUYJyk5QaJimNyaXOB6IBDvn9Ixu2RuZPFyKefdHqKecrVWxx+PMCQdNYjod7tolSJDIebR44csFRUWL14klVViyyVTMEhbTaLxgJ39TbpBjwYWfSKsFMIkfL7R1gkx7YhUzSDZX9jtF4dbF2WyYo5BkmPDXGHFWeDt6++QFauoYoXhnZ+gJpAaJtPf+TozdZOm2+DZP/scYdRn6coqbttFVGWK6xWO3RZepJN1OxQrdUZnp6RCiOCP6B0fMhoNUB0bUxBRMGl//pCONiZTlkB0SYQQL044H3RpCzZBEmE//BA9k+HctuikCVYa47k9arLMvAbr68uIYsBx55wHlKkUplHCmNde+x1m5r6OYW6R157BYExsBSimRmViCs9OeHJ7j0l5gVuL6yTA6UmTxeUlxvs2GTlL2uhz0HlG7/iIVFboMGbfOaAftxEEkfHP/4zHT+8h2jahJPCNb/xD1I06iiwQSg6B4iBrEigCoqbiRSKaaaJqBoapE4UBsR+BJFDN5bDuHdL54buIB23KIojlHCeiwFCw2D78KTOzCiuigGh1KEc5tiSFE6eDmqpkpAyxoJDKJl4oEKcJvjei2xui4NLN59FVlcnFAuX5lN6xT2nyAvXwEppXZNB1GVQ0KtfmKF5e5sWchpYxCaMYJ/IxJ8sgTLD35Db724+4H57QFgIaYkKQQJwI2GlKLMIgBjNSKKt5qnLy5cPd+fl9ckGB37rwFq/NfhVGAtXiIqKSp7t/TqTKeF0b4gj3yX2UQYGRMKI7alFXNTKlDIQCtmuxf7SLa8ToxiT9wwNk36RqZtCyGVqn+xzvPsOxx6gJhEmEIYkMu03uDu9yd7iJWYRXqhd58ugZcZowCF0sYsYdh3pcJkUmCD1QZaw44KKu8J2bN3j50hVOew0+fGTT1jSebR9zftrnStdmeUXFl2Vsa4Rv9VBiCTGxCUIXu9fl5RtvUc/mSHo9do72sCwbqVigWixjtVoc33uI54yRCIgEkdJklkYgM0giJElk6Jxj745QMCnXJshOVjEn57HlEUEckcQyAgqSlsdURBJJIxVUJNUgTkEUZQRBRDN0pNGA7id36Hy6ybSXoJZ0ooHN/GSBzMYUe082SaaqPNg+4/GzDsNogfNIJqsskLghEQmpHBOFIWKawXYdWolDx2sQpy6iMYPYGbGR86gUFLS8zlj2GQkJ/e0jbCtg4fWbVL/5VShlkMIAKYyJhw7Zag3J8nD2j3DEgNvnTzlIPfoiuAqIkUgaCfhpip2kxKToYUTZ99El7QvD/cIxo3+8/r/i4vQyo90WZmQiCBpT62uUFhcQy0Xizhl77/0VzriLLYYs3byKayjcvfMZs5rB+sqL5IrzWJs7RO0WyUyBwhs3ECQF1w7IahoPb/+MR08+RlNE4r7PpclVdEVhs/EQvxbQr0b8/MltEkmnqGfxLI9yucKB1eXcGqKkCbGusDA9R29gczoeooQeLxdMbsxUSbQCR6Mxm50mGUPBbg65Wl7gpZmXUL0KNSHD4NkOQRJRnZxl+cp1tKlFBC9k+94Tpicm2Ny8S2vYRhMkpipV9NEYfAc/GqOKCoakkmYrlL75VT47/IAff/KnILjMy7OkcZYxEZOGxuTMCt7iErf+179JpjZG87bQEgVHmUA0s4RCgqA+hzu2LAxdI5fJIhx+wvj97xJ99BBOO5QKOdxOB7Wo4kwKdEsm22djDoMMXaVE08rTGqn0bYtMUSfwPaQ0h1hJ8ISYAmVyYYKcHNMenePEOYqFeXJVlUg8YW7CYr0Ei+IUF9RXCUZLVDZeILc6g1KukgopiRxDGCDZEbEVcf799zh/8Am3Ow+xCyl9U2XvuMnx3ilyKjAKQixBZphEBCSUEJkWFOZllT8MRl8I7hcfh2UW2Zi/jqOP2XywRX3hAjOvvEKqivgZlSDski7UsRo2X3n163Q7ffafHVHLzzFVKXPoO6xPlwn2VEQ0ooHP1qe3Ka0uIJPSPTri0dbPaAxP8YQALVahE1PWcjiSw8bGZQY5l5OTE7xRiDCWmKsucDJqk4YBmigQptB2AmZkicULi3hnJ9jtFokgYKchO0c7dLyU+ZVF3MDF7dt4vs/W7hNeu/W3KOen2dy+RyKKGIbIQfOYWpKyv7/P6cE5I7uPHUbEQUokBIxabQr5AqauEVoiJCE2CZVKnbjtII8FtFRBk2VmaxcJAgO7e8I4CXCcY2p6jXwuxVRTwlAnTE3UQhU5k0cVUmIhYDzyiRyV2lwdOdli9+x77D/+EauaTn0uS2B5CFpKJqcSiyA7DqIXM+qOaWkiabmCYej44wDVBDGQSIYSpqahiTFapBAnNnJGRpENcmKJkpYDIcKJBURZR8+JTE3NMlNbJZFfQpm9xPOEbxFEicS3CRwfU1CIkhgvsLl4c53q9DrVK4v81//8v4UwQAgjUkFAIkVJQEUhJMImpZmGhOGv4K/CxpUXaXb6SGqGjXe+gSSKWK6NkS9jd86JtJBxWeCs5dHPKZydeWzcepVMroQZRSzM1Eg7FrIkE2Q1RDHCOzlm29qlPzrDHp+yenWdWlDn2cExZ+cnlDJjBNHDswI+/OBzfCFgSaiipzKzS0t01Zi91jliHFNApEEKcsLOwSGlTIdOEFDIqBjFHLlamUIU0z7t0Wq2qFXyXFu9SHv3jCsvXGdifpb729t0JmUKapb7Z08p6UW0owNc38chxO5ESIKCTMr89CSra6s83LyL1e8wlcqYccpIlpmqV9nfO8E67bOqrCMbOgtzLzNx4Sq1xiMKL5SZfHsWPRV48sM/R8+LbPz2t3AzJURRJRZjJEmA0KBgKNRyFuL4uwzPfkC13KLwjWmUbQuxETPuj8llFAaOi1LOoqgaqTCkVhBJYpd+4wkluciqrBN0PAQtw6aSg1B6nmaZE/AjF1OPWSqWGJ6PkVrb2IFFpQ4vz1xiYzbPuBPTLctU5ydJNRUhjUkFgcT1cRs9BN8h1STSwCfKpyhrF/j0o7/m/l/+OZsPHpEGEblUICaBNEVDIEUgEEVCIWGUQvLFfvz/p8EN2hb1yjSCpKGXa1jjIfc//IgrL98gFV2Oju/z/i9+wIuvvsRo3GJ2ZZ72yZippXWO7z9mMhRh/4xcqYTx4jpBv8Xgk1O2t+7RiE7JZw1SweSrr7/D2g2XP/nL/xGxELE4P8vDj57iDWNiIWBCrVGXcsStiBF9yqUaciDSH3QQEVAkAS2Jcbo9RFkARSIrl1ElnZXpObJqns3TBlqUoJugyXA8avLx9/4IVxI47B6SRWZGyJFRVMQkJgwjYhEswcERYxTBp2iYCNI5f9r/FN+zuSHXmRdzVM05hmFMrjLB5XwZVw6whZjZuetUJi5QeG0SaVXnsw//gt7TXT790c9YfvkGV3/394gtB7mSIZUMxFBBQSD1tznffo+s/SMkf4d216WQmSYSFdLUI1fIoqQygS4h10z2to9oeAmVmWmmNZPDuwcU+h6ruQryKKYTejwoCaT6NKpaJEoCZNlDtvosSHnGwwGhFeClCUIrxLl/xMGWiG0ZLFZ18CSE2CMNR0TemMT1UEYu0WjM+ajFuHeKUNL42dNP+e//7b9nplbgYqHCsDnASwMSCTwxRk4UZCEkFWJGSYKYQk784v9xvzDc/u4RZiAyGDmUZgPUYpZSGBLu7lC9sojle3zlwgyv3roMgomqVakIAQoJtXKW0w8+JXIDFv/+txC+eYXw6TbuZxEZQUaTNXp2TKchk8bTzE2Y/K1v/S537v+Ag/MzUklERaCUrTNVmCafatTXLrCz/Qkv3nyZT+6+T+S51EUQghFlERIB1DilbGiYYcrhw2fMLixR1fMo3jGdwzPSYhEv9vjxvQ8IKREKIkLiY6BhqhqaKqHFIopqELkeg6jPYdxBS2Oe7DxhuBtyJNrEpAzDMVfESV4clPC297jwyuvMLywhVgvYacjJnS2COw+olGI2//QJf/Lf/3NKcobX3/ktXvr7f5uzjx5w/8d/zrf/r/9nyE6iyzJK0uKX3/9v2L/7Y67O6izOGcRNjwfH+yzX16lnU4hjXMvCVwK0vMIwSbBSgbKuMh7bXJzLcsFTuaBWkeIhW+dtbNElyVUpZGqogotkDZkRUq6oEplsmUAPifMathjR3x/x+KDHrSuvUx7kEHZ7+PYhqEMidYgoxjjNPjv3nvDsyQPm12dQjAX+6b/5NyhSTEUzmYsLZOOQIFXxwoBADJFEgSSJUMQUOwFTkJlRc18+XENRcDodRDci4IyMtsBkHDN6+oju4w/oWWckusO7//IP2Lj2IsXSPId3Tpha3qCcyVBfnOOUgMxb63h5aAUD+mFI4CW8eOmrZGrzrFz/FjmlRGtnl5nJebwLN+l3T1jIK2w/eIaXRPT0mNLKItZkibCr0Rq06DtjUFOWJ2cwRhLi2OLq0gJPzhrIYUrQHUAc8Nndh4SySrVSRZZTht0OCAqKLhJ6CTICRckgj0YSx9iOjaiIiLKIG7m4kUOMhUXEQLAZpD6CKDFRrGIMJXQ5z3LxAsNYoDQxhSipxEhk6gVWX81y/v136bx3G9eMmf3aN5icnuaN3/xPUbIZPvyDf40d7CMr28jKHlJwzPDgAHf/E+qRw2yhipp6LC4scHxwQDiyOW15ZAY+6kSF/FwFIyeyvjBN516Xs702PcdmvmRiOw79kcuFvIkbSSybKlalhCOqGILIjKnzilJkdhig2TF+miKVVZxiDiHVyVGmlpkm2GzQae7R6pyRFMdsfGcFqQSh1OXR7vvMXJjj8htX+e/+9C/pdfqUge5+g2vVMhO5eTzbZhyNsROXNAUpickmIYqoUBQMSoHx5cOdXprFPW3h+x4cn+I2z7C6e1hek0TyUCSBWnmSyG5zvLnPyfCAfFBESs5oxj7Vi5eoX1hAiERa736C1G6TVfIY2VVWKq/QdyIanz1hqMcc7D+k6w6Z2dggKyxSyMq88GKZ7330N2wd3WZ8/Bn5mQl6fp/TJ4cEsYcgwqWZ68Syh5h4zJYNwqRIaCckrQFCEuOIz5tiBr0+BVFgrlji0tISYxc+eXhIEkE2kVBJcVIXXIGhG5AgEiKgCRr5VMIRYlRFRQ8jbhZX+Htv/zaD2ydUAxNhAIV8Bu+TO6SRTDevkXv7GpmMTGWpyub3D5AvX+D/+Kd/SOr0OPjX79F593OublSY/Ye/g6x/iCw1iUe7bP/lfa6V1nBEFVVUiWON4dBm/bV5olbAg/ebrISgtQeoySSxK1B2BJakLMdhSCcVSYplzsIxB+djhqUANS/yrYUpfu6kJLqGEiTcmJhGu72Nfd5nHLqkUUI46rKlxZSv3SJEIpJM2vsnHD89JpPEGAsxqtBnELTwCwkv/Z0XuP7SN+mFLk/39zFiyAOFVKDoaWxUlpB16I/b9OMhkQQndhs38anqJfRQIif+CuBu3fuc2Yl58rkMI6eHPbARw4C8rjMWQsJEpDcYY9bqbD/bYik3z8ryJTRBo3F0wPDZEY41piTL2L/8lNbxHppqsrH0IrKX5axzzsLFHNsPPsAeNhi4NrnSPC+89TVcr0sunzLb2cYdnfPo+Ali08F2hxiySLZgICkCreYJzbMz3r6+iqFqGJrFsNVhulSiN+gziCJ6AmQ0nVSC9nBMYPu4fQczCpFiAw0NAQkEmQAQ0hhVUshoJgIJqWcgpTKqkqcqxyx7FcR7HS6FdYxAYeT75I0cwsBCHIeIrokwHrM36FGzO/iBCs8GBP/0u4yGxxz88bsUfR2tkEEZV4kGT0llh+EdD6WnIIYhGWmC080Qc6qAMm9Tnk4QzZDMm0NyBx6JD71+F0XL0D2x6R7GpGWDrKGhiRqSGZHoAWouw0QxR+C5RL0Oglxm0O6yd3hOfRwgOCGikJBVwVEUVFPms4cPEJUJVt/+BlO5VRLRwNraR/ZGdLcPKH2lilZQKdSzYIrYDYfYspkQBQoJ5FFYmllkqrjIePOIipijms1RmZjm8e4Wtm+jpjJTk5OUS7UvH26YwrDZITs9R+naKk6vg9SR6VgtDhKH2BR41j/C7rkUUpWW02Dv6adoQpb81DyyqTOzMEskCkSiyczUGrXpKVJFY7B/ynQuw7jVxBBzaIUCtck89dVrZEqTmFqBT+6+x1Gnxd75Fjk1QcGhpBnIqo5Rz2L5QxgOmdZUtvbO+aw/QhJEJowiVirRCRKSJCKPyMAZ044jsomEf3+PYqxSwiAnlFClEi4CoSwhiTGx00NPAsxAR5IkKsUFHNtnKjPD6uwqyiBFtVPSgcPQH+AnCUUnQQ58dHmMmYwRug1u/O2vMD68i/JhnrpW5OS/+e7zy5tjBU+x6Lhj7HdbeEePkLI+7p6OHiyQ2ot0tlucyA2W5rNoeplnD/YoSDYrX5nGNc/xDx000UQvF8kpWXKeRS8MqBSzpOM2s7MzdMoF3n24Q9YasHplg6qdkE0s/GwJQfAIhueEgs/0TAmzlODVs3QT6PYiEnOCC2+/gVxYZuGFF4m3nnHnX/1zzv/NDnOPptjLnDP/1nVyuUk2v/cjrtsaZUMhcgMUQWJ/+yF96YQFo4YcB7jNPqEvsR4XyOYXaDhjbE/GmJr/8uGuvflVtJ5P+/AMs5DhOHJYfekqh5/+jPXLL2HmMpz+9Z8hIBAKHiNcBkZCRleJpAhJCMgVMiiVEkvrG+ihSOw6xLqCWSiiCbC/tY3kxSwuriIXKth+QqvRpOUdc3frAU9azwhSj0KsUtEK+G7McOzTiM4ZJw5JDBdmpjjt9SmUy4wHFm4YIonJ80G3bDJfnqLrObSsHgUlT1EsYyQCNfV5o/fIdYlI0RSdWm2C9rFPEkbExKRhQsE3kZKUimISDkZUspNk8hkkM8Yejuj1G/R7h9SyCQ1nl4EKBhoZX4ZMh7EwpKJkkY0sQgBBImELAaYREiQOvcMOU3NZbtz6CspgkfSsiBd8zI1LBYzrM3z04Ufcv33MK9cLLEyZCGaIWkooV4qkpoSiywxOI+5s24wTl/XFDJ3WKR07RVRUNm7dIlfOcWvUJXYOCEoqu8Mm/QmDQiFPnC9wnPZ51h7RlUUcS+DSXB1chyTvI+RMRCPLbHWJs8aQ1r0uw8oQrgr09zuc399lxixihjDyAogjgsTClWTSQpXA9/CSMe3hMYU0j5SISLpBplQk+lW0pweeh1kpk3oOn53tce36Bns7D3ELArf+7teI2z6v7zcY9jsUCjm8JOLqW++gF+t452OcVGIw6qH6FtHQxT3v02t3iRWRYrnC2dEJxaiGSkw5N8vJyRn1ly+TFDX+h3/9Zxw4W4RyiCTLZEOVa7mLRFLMQAywJmJ+sXMbKZXYPjgl0mTkRCCQFQ66HQp6BkkzWSwscGn9BrefPkaxBBa0GebVCXzfYdqYZ/3SMj/96IfkFRHPHXGy3yMVBARRIoh9cqJOITLw0oReb5eJtVUwxgSCjOxqxIKBIIcM2GOkdNCuypReXWLyDRBndpF6Irde32Dr412uXft1Ok+P0AmZ3pjmrP4B6pJDOciyUp1H6YtYuxZ2lFL9tVlawXv88nu/BMHkd353DaIug3EHWUoQxBiv3yfsCTR2bc43U8DgLPKpzWRYnipzstthorSEdyIh7j9FbR6ztmIy/eJVNqcv8NH7x5ykGq12g/xshWYIB3snXMoVOH5yn933/4bLXwVCA6nvEzRDNDtHTsxw9KzNz//bHzF7cQHnSR9tlOCmCYYgokgiehKhiwH1+RKd4wGe08eLW2jyLIqsUr16E3lpmUdP7nP1y4ZrHR6jzcsUb14muy08T0sZjDB1OD9+gpLWiNyYXKojuynTM5M8e/iIYXuA1A8p1iapXlwhdAIqtWmaT0/AjhBkAZsRaSQiBBK6oGAfnEPk09jfoz65RCZvUsuUWZ+ewbdtutvniJJO7LlIicCZtcekoiPHIomi4sQ+3bGFEoNp5qnUalhjm2avjf35p4wch2KisVGb5+W5m2x9tkk2zpBLdcq6iRWNMXWdju0hyFmc0EdMYyRVAkPBs31CbcDj1m3efvlbVEpVvKcB484YQY0R8j7RUsyFN9fRr0ygrWtAhL0z5slnH+KNFU4Pdqkvr3N255Rmp42y4VGf1xm2NI6eHpO1QmJvjtKVZcJZB8mWKUxozM3MUJuTSKM8Rr6Cc/+UsNFn2EzptxwkMYteEMk6MZkwolaqM7VxheDhz59/3d0GSyUZeSlP7XINTwZN1OieD8jNVLDyCn4mS5RCpmyQn8gjuAnx6JR45xHWICbcc4l9n4liHVGLqFhFrN4p9l6Xapp5fpRNQ8Q0QRZASSOk0ON46z6OM0RJAxQhIoktXG9ExnOQzQzLl698UY5fHG6nsc9xq8n16Qk21i8zfvaMxYkpOmmDH7/7Xc52uvzj138P3Q7pn7fo7pxy3u0zVZogY0O2JBOd9XHHLl1xTK08xaB3gNMbUdlYZ+V6jfadJ4xOjojtEEwdzZDRizpv/frX2Dv8lNbhJuNOn5uvvsa3vvn3+dF/+D5nD+9zpT6LnIl4NO7RHHZRSwX8JMayLdQExM4AIRXIF3P03QFh4rOsTzMrm9TFLPPXX2Pv0R6tx4cUQ4VZrYoduhSMGvr8Ekftc/qjcxzB5q43xKhG/PY/fodR75i9/Xu0948YbYrMqIvoJYlr33kB4x8sI0yZUMww3N6k+xf3OP+zHerU6clwPmySmZxBL6rMrcwhTjXJFCOm62scf3LEo0+2MCcGZCaaCBUdOTtBY9RmHJwQmUWm6tPc/vku4ydDZlONslShWlTZOjqgjUciKNQ1ndGpx0fOLmqmQru5z5WFIvMvruEPJthtJvy7P/uE1jBhQlSoxQ7RdpNOt0leTHl14wITF2u0D/fYevhjsk83CWWTR8+avDTxEhIZgpFHhTxSktA+6yAIUCKLKWYJGaPrCq4bIqQBzqCLSEBWiDEEENMAiYhxt4n99AFDCZa+oEfxi8JdevMlcpKI9fSArFrAyOTRrq4j50xMx6OeM9g+ecpZ/wRJSjBSqKIRnvdILQfJj6kWq0huhDUaEYo8zwogxd3fYXi2R5A4jNIRTJiEWYnIgDB22Xl4n/uffUbnrEkURrz1a98kKWssv7RBea5OmsZICCytrZAt5ZBMlVRVCBHQZRPX8XFcl5Nei9NxB0WWyWo6o3aHxx99QO/slHK1gu8GlOUSsp+SSyTminVWltf42q99B0GVCIUQxwzYsU9577Mf8Isn73P/+B6Pjh4gyCHZkkGuXiTOlUj1IpGQIR7KYNU5+XiMdGbgDv3nDY9FGaGu4Ssesi5gagWc/R5x16ZaypOpKFx6o0K2HGFqMB4nSGaB1lAiW1zh88/O+PyTDkcHAaXaFMXLS2Tni+jlhOK0TGJmMUsztE96CL0OVSXAsscMk4Dj7oDxWOTd728RikXEUh7REOkfHrKYRtSdMQuaguY6nB8fUp+qs7K2iKLEhGGfbAkOx9soUwbZWoFCtkROLQAiDgGKqJGTs8ipSpgIz9PSZQVZ0TAkk5JWJC/m0FEhSen0m4RSxMz6hS/K8Ys/cZ/Zu4SDJtm7Is2OS+bqPPv7T7n94S+pVRO+8Z03OdjZ5/MHd5kKy+QjkwvZBUa+xcSFi9giBN0R1XINaX2F3Xt3qMwUccdnjBoNxs0H5LQMSkVBndSYXFumn5X4xaOP2DvaotdrIgkyjhDyX/6//gs8P0ZNVV5cv0GzndDsnhLRpu8P6DspXphwaWoedRgixjG6qDBMXRRJpWAUqBdq9E5HKKKOVciy8erbCE9n8Pd3kMMuze4hqaIT50r88Jfvse+eI6Y2op8iFSJa7oDqRI4XXnyBqWSBs79sM0psuq0B2d0MZ//PnzG2jsnn6kzn1qmPb+I72wSpTX51ltI3XsAsZriQvcCjez8jPXtElBug5SS8JGL+Zg0vDenccxjHTR6ejxgRs3LlJp8+brJ1u8V3Xv8mtchntHWfwGqRK+SQ53KomSoZUoatkGLkkrdspEyNfVI+e9zG6LkszFW4fjPL7//d3+HooMGDf/cfubpW4Oarq3x694DjvsfDT4+5en2Z3s4p5/0eS3MzTKzPUnbGLFdXcY8iVMGkZq4Sdc+pqRqhlKDGArgBYrHEwfiMMQl5TUWJVQxRRklEdBQiWcIFlEmD+tcuY8URX/Sl7xeG2xg2ma/mUV2VUqWCUJmg9/ineL6HEwt88PmPubR0iRdeuwUnEd1HZ8+j6kURqVZGiyPUQoHOyTm6M+LCqzfpfX6PWEsZeRaBGKMI0LZsIjvL3taQz3efstV+QgaPgpxjkCSEQoI/GpBEEYEg8vnTT1m6uoKaCfHjEbIhUssUGI49ojBCS0ATFeqFGrJvMbBHEEHkpehqjum5iyy99ipJ1mDq6hWiVKR3/AAvCRHTlGGnxVG3iZ+mZHSZDKAICqtL6/S9FuXJWazjlPZ4hEAGuZhjtGfjDLuEdpNj+wxpIUfOzRMJKrIs4aRw9SuXEcQI1zrAxWciU8WXJbrdAdkJhZFn8+DzHmqqceXmAjev5Ni2OpjVlEdP90jlhExWJ+tLlC6u0ms3OGh0GJtVPt13cDoBC5pEvagwkhxORhaeL5CNU/JCFqvdw4sH3PvRn3K8PyYdBhQvllA1l4s1nUCSuLM7puRFFKQSd9MxxvVLiIUszTsfM2vE5Gt5QlskGAv4iUa2OMPU8ixxu03SatGOPdqJxyhNQRYQs0XCkUcUyaSCiZ9EuEJApKYIRoLvBl+U4xeH+87/6XdRP7Px7zs0z8fYtz8m44rMpzWc4zZyQ2SUONw/2yLq2BQikQlbQ9B0Bv1tNLNGfJZg7e5x3mkx/9UXiU2RhtThmC3OvQ5hoBInEfmn21TydSqxwsviBFWthCbriLMVfvDwb/DUgCPxmECOmFufJpRTFE1FUFSurF3m7LjB+swS4+M+7sBCIoMzsokDl4pkovkykZywXruI0A1ovf8BSk5BjhLkUKE5tjBf+QqX/s5vEAkpw+ERf/X5LoJeIDtyCMSAKze/zj/9r/4rZnKnXJm9gj0l8eGzh2QVk1svvcwn39vB7rVYE5YYPepgKimCoNFRDuh2d2j+233e+Hu/wb/43v+d1dkSL37tMqk+w0T9jFi26e52EPWAF9+6SH11hg/v3ON43wa1xeJGnpbscufpHZYtk8rIxyhrrH/tTZ7efsCvX5jCmuszGB9R1QxenbjC488PWdAELixkWd5Q6I017DOTaS3DKy9WUC9ZiKHF+PwcOU4oDR3+9qxIzeiRW5hFur7K+/c/onMeIAxdSuVbvPnCV0jevsD+/U36gy6XrqyTLVbY/KM/xijI7H/yGCdVmX/5Td75e3+PamUGTtvs/cs/phcK1F5/ifpslSQn4ssxxelfQQm1HwbopkGjc0jGnGZyeoHjT87JSTp1aRJRkpFchbevf5Wf/OwvEQSBQHaYWLhAqhXRJRP7uENeN4kNjcrsNEImwt6X6EcBcV7GcQJiL8AMZcJ+l6JaQ0oVyolBXq9i5udYK69yIrR51j0hSgSeHR+wOjtPs9WFSYnd3QZy7KPkQBcVapOz+G0XwRPQBRVN0tAFGUPSKZkFprJlfHfMwe4jZAl8NyLQNAZdkVVZJCfJLJcrFAQZxwvRZYMkTXj43se0z4fMzq7gJrDZOsDDw0pc7h8/4nTcpC4UKIoFcjEYgg85iWO/QSfu8Q9eWUMV9pldCpld1vn04AFWYHHp9+uIisSCsYgsN5m+WOG4ccTTrRZ7+yk3Xlhg9cYUH49v07jdZSIBsWMRpxpl22LlQo1Bz+b8pM38xQL94wHtxi4rkwZFQUNQYwaeh1gp4/ZsjlsH5HIrDM7OmczqlEp10lkNzRyz9/SE6vwkVknj3oNnHB/ZjHspJV2mNXKJCjmU2Rqz0xWmVcgUCgRHLaScCWMfL3TICxraKMI56iKu3CRtDZE3Fpi8dhXjjZehWiJun2Lt72M6v4LWnd6dHWKnSprRKWeLIMRUluoMzx+RswPSQEUKRbqH23zrG1c43d3l/KTBZO0tbKvG2VELXRGoXF2nuLZImNM4/OkTKmmGQa7GyeAJYRwzlakwHZWZigsUozxxFJLGYwaBi1Gr8Xe//bsc0uDzf/eYMLYZjizuPXmCpkhMTEwTj0eU8yUOd8+IewERPpnIQEsVdDTEREBLJJyRxalzRCSMSUWPnGRQmJ+EWpWD4wPO93b46//yv+b61BzW2RHlJGZSKKAKCSQy937yjGJQ5s4Hz/j04R16zR5RHKE6Epv9A5RIYnV6mdcWX+bw4WPUOWhJXbzqmK+9fZH8chNn8JiFhZTStMOHj5pk5w3ExSyxN6Iz8igsTvLo6R6Hpx2uX71MuWyTCSWERkJNzzNxI8d6eZHxx3dp7Tcxn0H1+jxaxUX3Q4hNXnj9ErSPiX2fcL7Ch3canD4RCPIDXnx7mlsb01iPz5BPcqRDg63Hx8y9s8GDjsCnJwGL9ZTHT044Gdj4UYqqSQjI5PJlhFyGRElJShkkQ4JEJG63qIkZNM/hsjSJKqSw06B39hccffdn2GLMq//o76BduUCoR0hKQlwpEfsOCL+CFxATeVCyEtXXLtJ4f5f+5jFLlyfJT+eJnuwDAoVshUjQuHf7IwxFQZYn6B83KFQvUFpeQxYD5GsbCBMFOkcnxCOXfCQj9XzSwEMxM+SNImWvQp0yRqggyeCKHoM4JEwSitVJdk5P0QUDL/WJiEmFGD+M2Xu6jyiICKOYiUKNVFUxo+f9vhkxQxQlpFGMIsjogkZGMyhrRXK6SoyNUZtAvrxG8dI6g//w70nHHsPRAeWcwUVthl7oAQmSIOPaAkaU55Of3CVSUkbJ88xcWZKZnp+ncdLgNLZ4Yp3S1Xp4eR9h1uM//99/A989oXd8yL37B1xdriFlBDZezLL0lSWitEWn1aEu1UmEiFZ/wEnT46D1GNdNMSWRzfsPMQoarZMxUcXm8oJArlTCcyM2N3cQ5yUurs8QdGy6z3bJaBaZyQnyWo3kyKFzlCJlI5beWEAgpuF5nO/3MU47aELMRV3FFyL6wJXFRXT1FAkf3Q4wFJGCI6N5InIAcZAgJJC6IQwtlK5LMTYYd32qZFFJSBKwRhZBmlJbWyTq9bA3A4T6DNpUilSvkOYL+KqI+mXD3Tz6cy5e+wabn3zI6uISfafN07NTMGxcoY8iutgtl0gF28pz49pXkcc5DKXOeG8TP5ZIfR936ym9mRKXvvN1Vv/et2g9vUP40VPEjontRoyDkEjUMbUpcpKKH9mkaYoXe7QGXUaff8qD5hMKmTIjy0KTEmRRJA589EhCFES0VCboeSi+CKlARs2gpRp5Xcd1HaQ4Jk0jPN/BiSz8cYgsRVihR3/3gLm1FS5VJhkcn1LPmKiFHMZIR00CgiSkkq0wV55iELo8au/iiB6yoGDHLiKwfX5I33do2wP2Go9YyhnMVleYWzdJvXuIYQO9HHHjm2VmJuYIUxHncMhiIeL4pE+uF3PwoIUYioRhiq7J5GqztFoW5+0BYTAiySi8+hvLTGYl9MDHFKfpNyI+fPdz8rEKlZClkoYduMSpyuOtIZ004PW/c4vhu8cYC2PKU2X8js2DQ5vATfnNr81TkB2ae48oKwUyWYX3P/ucE89BVgQUMWFtdR5hx8EMZIRAQlIMdMUgdSysp0ec/+I+8z2IRwkFIY8gRuwLNuFkmfzGMtff+RpbH/4NUtOjUF0m17bIX71GabKOl3zx++lfPGa095De5zZ1+SJWmmf2YoWW45CZLPHZg3sogkPUHyMoBdYW3iFXu07iDmnvHoFtYUgZIk1Dr0+hLFXR1iYxpBnkTIjz7D1iO0s5lJEimdLMFPNXXqd95xHtThePCDtNUFSf115/iYI1wU//1ccEaUjq+ZSzGsgaGipBGEAcE4chcqoQpCG5fAklkrFGFlEUkRATEOJFHkHqoaYpspjij2z0TJbzrR1mygWi9HlydrZcQm3pEIwwFYOsmkfTMmy8+CJ777WxooA4eZ6zO4xcHG9IIiRkkZnWMqxocPbeB2hNiamLM2g1nXHawaiJSMUBopinfJwgNFw4EtiYXaMyYXN02OesY1OqTnJwNGJ3r0fGEMnkEmarVQp1BclMaTcsRE8g9D0KEzr9ps9IGJMWI9ScxHk3oWtD9YKG6HX4td+4Rjc6oXM+xIhMKuUiV397CTPoIyU+s2mRaKiQySQ0rDFpEpPTM6hSgNPvM10uMXJ7RMEQRi1CPSaJAhRFRFVVRE1AliSCWGAUu5jXlrjwt99BnM7jjTrEQgc5m3C0e4fsaY/ViVn0Qg7CX8FUoTCxjN9SOWu0KFVnMTI1Rrt7PD47ZM+3kPCRyZEVq7z54q9xut9CiTWSXInQGZGmNuFUgaW//1VKr8zTbo7J3T7Gf/KMpDNmbXaZqi+jJAZL11fYHj6jq3UYaGMUIUHPFVj92ovIF4qURg4X11dp32sSJz6R7aOLEhU9h5pVGY8t4ijm//856zeeXxWJZGRBQBQBAURNRFYVgpFFFAWIksxsfQqmi7jHBygCuK7N6fEheBG5VMNTJM6dHh2vyefDXXbtU3wxxEkSwlREkiXEVKIcx7ykq3xFV5kjQdBFVCvhkz9ucvM3F8itRcTakDho4HXPMX2F5sfH6GWT/lkf2wrZuLpM7+EmXa/HoBcxaIJYS6lNlQg9iUHLYbfXoV7NMVGoYpom6Z7NzSuXyOpDlGqKI1osfHON8sCj93SPcNzhszvnbDeHlGoab16/xZs3LhMc7iMpEUKq4gQaaVYlNWQSP0D1U8yxSz4RWZkoYQ8GRFqbJzs/Zbn2JpKUoOgiYiGhUJOJ2y0Cr4mPjUOIUjQw5sp42R7HzbsEEw3kgkR2oHJ85yPkXIWNqd9FLf4Kru585bXf5+zjU+7cfkBaqdLb7xMcjfDaNo6sEIUBk/kq1ekljIUFKpgofkpekene/ozx6TGSmCJrEs2jFlP1Wdpnn3Hn+z8gHzvMVqbIZBSO2h1+cuc9TgYDhERgJlsjl8r43piD7hFTmauM+ja+FBIQoCAgJimaJKMhIUUCQpKgSQoCMoqokgopQRySIiKKMomQEgoRlm/TD/vIcYSSxJSMPJEgMuq2GXRbpKGFmCSYSYqWQkHWuf6N1/j+L37M5vCItm0RCQoI4AMRAqogYaYCdWA69CjGIcV8nsq1JbpGxPaTfSaOQpaWCrihQ0SA1/SIRyKWnTCxXiBby1KZSRCLMhtGjs/uNfjGNze4ODdk/3iIoSs43ZjO/ohCpUBer5ItzfLJT+4QxAqO66DqAr1YQqxl0SYjHMmj0e9QFLNsPbOwI9BT2L+7xQiHqgRmKcfQ0bh9e4ekOkEvkShUSkiNITVJYrlcJ++nxJHN3KRELetjxF2IdMbnHYafPqMSCNhnz0i8Jl5qkcoC4/Y54dkRwWSXg/bnTF2UkXMqZmAw2LY439lifTxEqP4K9nEpzmBMeay8ukp9poylKYwemeSKC0wOdeY31lD0GtlsBdGJyacyiQynW1tUVxaxwxF284TH/+xfYdd0kquXOd87QCuX+XrtEt1BB2m+RC1TZLe1R8c9AkkitC2EJMQKRsi/PGa7s8nR+QnHxzvMJgaKoD6P+1EEItsn8GxMQUJIZVJRw48TIgIEUQBRJIp9tASENEIXFCbMOqpq4jk+zVRArGZRzQre2TlipkycxLT9gMU3XuPD25/S2tzCk2Vu3HiF2wcP2eseE0eQCBFxGpHGCRoJ5UyGmp5B8D2OIp9H7TbMZfj6f/ZbnB5u8ujftrj5ao7ilEt2Kk9cCxBnA3IXEwL7nNg2yKAxu54lNzuHoUxxdtAicFz8oYhSlhnHeaxTiU9/eUipOODJ1gliGPFR/5xf//YcUjxEDwT0aRFd1Fi+voQ/lNE3D5kr1ZmrVdl7/ASlXsT2Em7f6TPox1Rn59GrWeqeRzYjotSzhIOYSFa5cPNNrusSR7ufcHT8MaejB6y//jZxy8KUHOSCwiC7iaRYJI5KvlDjTG3iBZs83LqNUnKZu3qNo6MTigtZWBhQyaqk7jHOsz3yLy58uXDjdo/j5hZyVeT28QfU8+u8/U/+MW7P4yf/zX/HYvESUm6C3sk5zXc/wjlvUSkVOD3ZJXf1O3htjdOdY5J+RHFU5dHhDs+aJ1yevspoHCPJM5QX1piqJEQPYfP08fM6+5JCKslYzTai3WR3K2IwHFOJZDTBRBVTvFRgYmGOcaON3RogBiIJAn6aICja/y8JBuzIRkIgTQV0MYNo6vhZmcgTKJXm0KcqOFWTqdIEV7JlguGAncYhsimgbVzAPd/m8eEmgixi2BakIoqkEKUuXuIRkBIlMTIJri1ixyJ+Ns9AdhimInavz+VFkRfWb3K285TIHnF6OuDiK7O4o2M8PyT1PPxRRGvHojYpYkwEZLIaD+/v8PhZF8cR+FuvXcIm5b0f3yYdJ9iNlMtXy2hakceHZ9QNiUDLIQoOqRsTD1WaXYuRleAFECsJV64tQJAQiCEPTgZ0uxB5OldWLnDuuYT7DTIKCO6QxeUy7UxIo2XTECFJNFpWQhCeMD01RZIccf+zu0zpU+j1GXIvZQhHLqWgzHlnzLlzit6B7IrIxOIyRAKd0w7V6gRJJULQbHqnd/npL37K7/2D3/ty4YpPm1ydXiHJS5xNOlQqF1Byy0S7FhmtTiYxmaovMBeZDG8/QXEDtAJMzk4RByNiwcbQMoiJzmR1kZG1TT865STKsXBxneX1twgSB1m08PsOaqIhyAZjL2Qk2HiihB7GuMMRQvI8OELXDMyMQiavsjx3gQenXZRYRRMURAyyU3UOe22GwZiYiHxqIAkSgiyTGApuXuBhfEjox9xaLaHoA372V3/OtYVLrE4tMTc7x6gfMn/tEvO3rjDV3uUPNn9InMSIVowopAhS+nwZOhUR05gUgVltgpuZRdYKdVqDHYQphd/9P9ziLNwhLX2KL2eprJTonMP73zvE6h4zOy+T0XNIwTTyuMu40WDc7XDRKOM7MlsPWmRNndWVSYoTJlJbwBgILBQLLK5mwLS5PrWKH7v47hgrjhA9hVq+BOIMRydPaHZHFCsmqRoxdzHP8e4ZkimysT5L6Gs0D4eMB10e3DunWi8w0sYsruRRy2WqGYGD1hF//b0/pqRmkBhy/eUKGxsXON3dQVBlfFWgG47ZH3fxnDGKKHDoNJlcr1JZylNbm8As5rl37zH9Voce54yCLmPPxzY9PP1XMFV48miPa7/5GkkpRpRc9toPWbd1xvsOuiCTjFxan95FcgJCZ0xG0uj126gLZfLryyjSmOjpCfFYJi/n8Mc2fuqy3dvlgtRnIu7Re7JNu7PP6LTNzdnrjMUEzxT5cPtjotjDkHXc0AdRIkxjTD3Dza+8QtceMGgPSawEMzYwBQNRVHnnq9/g7u4mnz26wygYoiCjCgqxmNIOhhx3uvRDizSV2drsoSUCcThG7ass37zIIS3+8t73uWDv8b/55nXcnMC+2CNOAkqpSk5U0ZAwRAWJFCnyKUg5rhVWWZWX2ZhdR82YyCs9lJrIbN3AlxS0TBXRW0JfyFL5pMv2vRZuL6FQgjV9klxtAcvuoukR9qhOYxATuUNmp0ze/PUr1Msm739+h1nga9dmKFXg8+1DLl25RJTb4Pi0y/r16/zkRz/BDT1mFyVypQKhMmZxOc9Xvz1LYPV5tr/J9EqBr//WG+xvtTjd/RliarJYzOK5PkahRKFWo+346LrO9FKNwfCU9tBiabnMxs3LGLksuWxAS4846DZpP3vCyckxExM5ZDViVPJ55eV58lMZ8tUSopbl7LSD2ws4D085PGtQqlUwVZVe8isIds4sXyPJT2JHJ/Qah1RLdbYev8vJh8d85ZVXMaM8R8/OkdIUc7rEmevQDwbMamXGD5/QvPOUbKAgiTGMOuQSjaw8wZk74oOnPyVnqFjNHv3WGSvzi6y8eJNOo0nTG3B+vEfDPsdLIlxCvDgkQcByI777i59iyDIqMmU/T1nLUtTylCpVGk+OEIKIyUwZIxURoxQFGT/yGEsunXhMP3EIZEi9AYqXUEImiCS0s9sctxo8ipo8O7RYfvA+7z78JUMhRJVTRFVGRETyEzRBIpdqxMgspVXmgiL10gruwEC389ibWzTuH1H4hoHtGki5HKPuIVmhwuUXJjnZsplaqpGvq3T8gEajzeLNSbaenPKn//GARDIYDhPKBYvtu3cYVRQmTZ/pmzUquTFGNmX9pTxitUlZFBn6Bj/6+ec8fNRmaiLD4uo5A7vB5IKAnO+SqSs4VofVlxeYqBiYUw7zAaytlzm+O2b+4irF+jSLL14kzPs82HyfvjUimzcpFHUGgxFdZ8R5t4VW0Pmr731Mq2mTK5bpDAZoOQ0tX6DjNVl6YZqxOMZIDJLEJE5yGPocxYkZ9DQgf7lI12tx1npGvvYriGDqH9uUC22yczoL+QpGXiao+6x+fZF6cRn32KC7fcD661+htLbEg/feBSvh2ckW1YNt1AHUlTySOsB3+0wX6ryzcYk/u/09dhoP+OhJSsmf5J3f+iZ2r4/X6hIPHML+gAW9gmt1OUtdbCI8AhJBwksFhqMmVQxKmFzUZlnKz7I4MUP9wgI//ORdGu0jVE1i0ihiOTZCKmMoAklOZafXwBMjAlHACl10QBJUBvYxn//yEJuIEAklsPh3P/2P3N66S5jESBK4oQeJgBiLmOhkUchi8M7kVd5YeYNycY3RUQO/HcPQZ3DnmPKbVyjVykRY2OIO+dI8w/FjVFNi/vJN9k72KM0ukVXhwacfYMtZXClkd7dFRhWoFHV2t9vM1GosXFRQrBEIMEhDiitTRCWHjKRiHEqcn+yhKALVukZ3eISghVx/fY047uG5fWqzdQzDR8uL7G2/izQyuHJ5gu4jDyEKufLCLYqXLxJKY0Z2m/sPPyIIB9RqJp2uRRj7HJ2coSgKJ2cD0lTEavTwopiZlQnSOCGSJK6+ep3e6Sm6mEOSZvB6Ca/d/NsYtszZ1l3ipEfGVLHEEU5ifflwC09H3Hn/NpfeXqHyQpbN/cfMr67T9kPCjILjjChN1jBKeXw5gYzCsD9GdD0kL2FCmQTfI4hchlGElc2SLU2SNQtYfZnH+3eYq61xr1nDPTjDsDVKxSnCJKFnDfAICdMEBAEhFRAkiNMQkRgDgXm1wq35G8wU5hBGFunhkNmkDHoIBQkv9nDTPGlWxVcS7p1vMm3UObEbCHGKkEoo4v+3vf+K1TXLz/yw31pvfr8c9t7fjmfvfXKu2FXVXd3sQLJ7SA5HskSKEEeWxjBg+Fp3vvCNYUMDA7qyjZHDyJYtDqWhhqHZ3UxdHaorx5PP2efsHL8c3xyWL04b8GUJqAZEoB/gu/8ufljvWv/wPAqlwYyYLgkRkJDhSMlh7xA/mWHkkOcwVikhYGBQEAqhUiqySFOUyGc5vdkRxbk6sl3CyZoYXozuLSJXTVBdavMmUgZUdagttIhOApaWbmHaNT5673Ncs8raC0Xc+Qn9ZBdXt/CUyaWLZTZevkDSOcUXE7wsxVpsERVsyGB40iWfGdy45OIWNa5dX2IWtjFrBrpRxpt4ZIlFFOV020M2KoLmnE6qMkb7fSwVEcYzPvvw56Sfvc8k9RhHY7woABVRtAsszVWZziacHndJwpRCyWTcz0hmKY1KgdxPiKyUF944T6dzxovXvobRkQx+1iEOdebP34DERA9a5NMcMwk5t7jKQI2+fHCL+0PKM0Ww4zGY0/FTh95xzOjJhGguprawgd6WeE92MA4Pyc8GTE/O+OY3vk386T0YBqRxQobFLHk+m7m7/5Qw9KnaVbrhjIPZHp2f7lNTJb7zwvfIDZt3P/kALwsIDR2VRb/sZQvS/LkVvC1M1mSDK6UlWmaTWurgTSYM9o8paZKmcOgPh/jZgPVzL/DqN77FUdCh/eMB/nCXkjIRCIQhyfKEWOSILCMDYiAlxxIJ08kAkhRLGSRkBCInVuAKQUlCnoEUEn8actp5gD23TPP2Jk3tMqaXQXUelV7i+VrHIWoWoYwy0c5TuqMhqXmXuGIzyzK2nuxz+yvzVJaWqddSLt2q8uzZhHZP8OrFZQamz6k3ozOIGMUxv/m1RfIsJegE7H3UpWC6vHSrxXhyRtHxiNKIammZw52Ij94+ZqFeYjzwEbpg/bZNtVBk0J0QjFIc3eZwesrp4x5RYjIJAmZRgFNSoMHUjWmUyijNIPICplYE0sKfznAyQU0a9I+HNK/UcCoFjk9OeWOjxmxvwpN/e5co1BHfrKFqNaraKrpRpTcpUvFKlEviywfXNXNkErNzb5d46vDi73yD/8//8f/C1dI1FlcPKdZSCsJBCsXp1i5OlnF1bg0O2iSeIA8TytLGKJaZWyrgrbn87PGPyXWPqnRRWYMRHqkAs1zg04P7DP2EQR7gyZCQFEmOJCcX6vlpqwQOkqpmYuWCbrdPGE2wkoRauUypUCHthYwDRdmpMotinh4dcDY+JphO0JVEFzoaz33GslwCOQUkNSHRVU5q6Kgsp93pE6UZuumS5glGnuAKiaObZEoQZ4ooS9FsF4MCi/UmqIRDr00w7lDZDrD+7JD173yHILQJfYG0DayTQ/ydDrE440REqDnBt19cpzOY8uj9I4YOXLt4lXb7Hl//+hVuvNxiEu7SjhLun4UU5016ScJmY4Xu/afMF6qsb9SY+hPSNMDzx0wmCYNBh7PeEcNxSK20xNajAVIlXH9xwtpFHdOwaMw3cG9doLkp2H22y3jgQSYomhpKi/HiiDBOGIZjmnMWuusikcgwppQI5lSFclBg9cIlAlsxPkhhbHP28yOmHw+Qp1AtVak3z6PPVWi/+yHmcIqrl9HNOoXF9S8f3MyN8VQfPJerxg2KZ3OsTtapGXW6z3bwC0Mu3H6TUHM4909vkA+PefyTH3F41kfFDlW3SSJzsFL2Z4d89PEjPhs8QMiMslNDqBwvzrAwyFyLrKjTidp0shHwyxxbkZGLFFROmqdoaORK4SUes9SnNWfTrK8ju12G/VO0SENGCa6wmGnwqHfABz95SJbOEAKEphHpGpIYM80wEcRKUJSCXNMx84xJLplmGYHQydGQKiUjp4XOgjApazZeHBGhEFIyX2xiJzpqEuE9fMKjZx9z7O1ROzK52iuwPEmIB4JuR+Fnh1ydX8NpuDztPGBoCJyqhWsralqTgApHj55ycjokmWXcuLxCvWyhItBJyQVYbok4ddnfG/ODH25zYa7E+fMRQdTHcjXGM8lk7LCz3SdJYHmtwfxaC+fOKbpvM340Qy03idOQxLRp3HyV9dqLXNjbY9Q+4c5Hv+Bo9zFxmCFjsGwN34ux6g4X5+YZjGeMBlPWYovz+hJxYPPSxd+kvFhl92iLzvEe7V/skh7H6HIed6WJ1pjD3zui9949mmGGkjrZZoa5cY0veuZ+YXDf3/4MzXXQSpKB6mL1d/nmN7/J+KBPQ6tSrc1xcviEwoUN5LIBtRLhboX5pTUMyuQhjLt9lPI5vHeX8bSPDoyzgG0/JRWKrooQeUTYP6YSTpmmIegaeZbj5zGaTJECUvG8vfq8S2UyNRQ0iqy+cAE3NDna7TBKRhhKkJIQ5xEJcOull9g6eUo8HDMLPZLUZ5rFKJEihIahFCkpmRRohsR4folAUxBFEQiBTHM0TWLrFjLJyOIQkWcUpcvL56/T0h1cSxL2+0zjDKllZGnOcDDlNBvgLyXkpzH6Mw8tmdJeOWVhDZKLBTZvVlleW+PxnUN6I8Gz4zuoWkruw+pmA5yEk9MBJlWKWkDLyWkVlqiKCp/ff0h3FnDr2hIJgih18IOYMAk4OoyYTMDQoHPqce8XO1ixTjrz6B1HPPsgpNxYQS+vYM4tolVXqJbnKc+m1Ncu0dl5Rm9ri2c/fwdtEpDLCOln2JqkqoponSHNvMbFyjp6uUq+FzCd6JyrbFKU0D17QiGyEKZBw6gwePsu7c/uUJvENIAkDFE7J4T/8B7u//Y3v1xw25bHOD3D66dU1AEbWYd/740/gL7P4NEJYvuQgZ5zFnUg2mV6csCNhTVKhTJ3t3apXrnM5d//PbROh0G4Q3LqkfsZxz7EpMQqxVImQhOkWUaSJDhSR2QpSujPjZXzDIlA6AZRnpMpRUZKV2QMHMWzky30ownhsEuYx4hEYWoamdAIRcrFW1dZ2lzj2aP73Nm6RxglxGTk5MyExCJHCkUmFInKSAVUahVElDDNvOeJOOQITZDlzx+LMhOAQAemkxEHs23KkUOpOodVL/Lm+e+i7rzDbDxiYeMGlasvcbb7NnXfoaYXORkOaGsT3vjPriFWFNsPfPa7OZ2zMRkJt28tczDusnp5jo+efMzl9fPM24ucPnxMNTZZyuHu33/Cx/fOCFEc9DKKbsBJx0PaOtNpxGSWgtBJYkXoR/T2jlgqW7gyZjaUfPaBz/rlNa5e3cQuFslNh1yVSWcSu6hz8fZFVsxLlB5kJHtHCOXje33O3tpFuTbN2GW5sMCCaBCPBZ/+8AMyTdBYnCePYtzYgijFFGB4KSefPCY57qFUwCib4KARt0fEnUPcL8jjF/cOm7OwHJ29zjGNZY36RoXMTJCWTlG3cTNB2U1Q8xXa0Yyy6dL7+T1EuU2tWGS1Po9mmcy6pwyHAxYbC9hlHf0gJEoDojxjgiKVAtDQghQte74NKjQDyzRIhcHQH6EpQSw1JmnEjJwgOuPk8ZDYnPFKeQPdMvH8ANMtUmktcO3CMrl3wl988DckUcDg8JixP0LTUsq5IBcSU4LIFUJIDCnJ45BYgRpPaC0u4AUhXpCQCMjzDC97ngquS4lumGRZznZ7jxvnrlGpnKOyukFclFRfucAr9SInW/u88MZ3iKwCqW2hzAS9kGFfqVPeLBCmGtGTEQ/upWwdTplvLtA7GZGkLucvLFJtGajIQEskB/fb0AmxMsV8ZqKXaszWDJ6eTAmSMbMkpdBwUULSH00xbQMpdJRUrC4voGUuXueIKImwzQpxGHL8bEg+vsu16/OUS8uIdk7WmyFzCcUyZuyyOHeRbGgipyOS3KaTJHTHMwqmTu5HDMKT5++AaIYhDPLu5PmXKn3+PlHZkNgfsNiY5+DsBE/PmCYRJgmOMjAwviiOXxzc7bhLq9VkubbIG996nULg8rO3/oYldQ5HamiVJu1wm0pF56t/8PtIX2P7X/4JtaXzJHEIYUp2dMLu06dQK9O6uMiqjNjbfYIZ59SkjU7KROX4eU6cRhQ1l0RlKE0jtXSmYURAhkzBIwepEwhFnmcYGtRrRTxvxIVLLyK9CQs3blBZbpG3yrzoxvwP/+V/zt7+fRqaiys1tDymKSW5FEhdMAkjEiFxNJ2StKgVCziNKlduXedw/4dITTBKFSmQ5pAIRbHocvv2bRYSE+/uIZuvv8rayjVG0xmJnqFXqhSdCvuPDihHH7N+/jblaoUDfYJR9LjwT98kXczYO93j7NGIP/2rfX7jt25z84VLPPk3+/zs50/5zX+/RcXJqc0vc/dv93n4N4e8sOqwUteZ7h0xVhm/9fqbfLta47PP3iZXZxQKBl4QI02JWzQYehEaJpcvn+f61TfYe/AxW3c/xdAd1lsrdE4n3P3JLzCOEm5WMvwnPiK3MeYWURvrJLlOYNhUWkvPO5hnAYgykYoIsoRQzeilx6QqIyNEKoM4ACUE03xKToSezFB9yarropNyHLQZizYlPaehLOqZ/eWD2w/GPPnklI2VOr/46TuMd0a0/EUmymMlWUULNFI9JU08TgcdtIMRvoBZFFGol3n8zvssXVhC5PD6H/4hwuuyded9lGaipEmsC0YqY2goIiFI/Iww81FkZHmOHyjSOMSWOo4ycOVzo4lQy0jTGNuSxJpHatj0p0esvfwV9POrfPSznxFVDLSLC+ye7BETEiMpSQdLSXKlE6uMWRwTqZxM6WRxhjAlL9y8zrkL5/nzH/yIObfALIpRWUqcK1wyHDTqbpmC7XKys09DavT3D2iYNT55eAffzHihFLPz0dvowYCoc0gqCnQ6R1RW1qhducrJ8SnLt14m8Or0canP+Tx62mEajvFywaXNeaqFOoXMhJFAdEJub5rcvraGLgUn05SjwxP2fvxTNq9fwZI6YZaRKUEYR4BE4/mKjWVA9/SEs9IRly/dZqU2z9HuFtVymapZxfIzOg8f0M9ton2FUCXC2ilWGLP66m3qr94kfvSUMPJhYFOIXQqpga4CUnwmJKSk+PgY2OTYpErgqQkZPgUSdM9mtLeHnQQkmoe7XKRaNkgP+8STX8Eg+TgIkEqxvrTGWn2Z4XjIb//W7/Hs0226e1MCpXjcfsjwh+/i/MOfc2vzJW7VXyQ566J1eyyJnOpEcbR1THzpEoNHWzx+7zOczEK6DaZWxtGwy3ESoqRGTdrUNZemUSBUMEg9HGlTMm1UnKPQCAWMUo9QCF6/fY3RSQeZ6Vy6fB17Hh4/fJtne3c4mHTZfXeEkUVIJA4GZmagZTm6ZpDkEX6eMyLBz2MczaTsODw5POTtTz7iwoULlDyf2dDH72ekhiANBiyYVdLejDs//4BSovjaxlcZnR7w+WzC+9sfMcoHfH7vz7mwskhQnBA4RX7x6Q5Lq+fZuPwah/c/J/PnkF+/yeWrt7j7/phXXnfQXcHP330LP9OQtkE0zQn2cjR/xuWqjazZFJtVrJU1fvGTu9w5DVhasXn88AmTyZDzt0oopaEycEyNYT8hDQX1WpFZb8KHz96i8sb3qNfW2FgoECYdDHvK5uYqJ9MTBrtnWJlDNInI3QphFNA0Be7NS1i1Mgk6cbuHFRaoyQqdNCJRMT4RsUxIRAK5QhGS5hqBCEmVj4WOliVoXohBRnW1yvofvIiGR/+DB8T3O18+uCk651cbvPmVr9N+ckAwDog8n4svv8wn3XdhvYq3A81ikzeuvYQdOdjCIJuOsVMgifFmPtca80z/7mOYtml6Olps4ucRscxAk+RZhoXJgl1mVVVYtat4cUQJwUvf/ibHe0ec7B3hByFGnCKkgVsrslSrsL23g1us8dGz91g2Q3Ld5bS/R0pMMY85J2sUzEU0lZPHMVJIkCZCaAipMIVEWRLP9wgnUw6HY9aWmzSXV/jsxz/FSQVXnXNYlSLtk4RmZuIYFpmmURUGs8GMg2RKv+NzGrSRFY3icpOVG+cYnfXpex4s2MiFKt3TMX7PII58up9OGNZOGZy1efvjt2i2FljduEa7v8V4OuSdn59wznFZLUrW1hcZhR6P99rIWcqdpztMcxOMIqWy4OKleZTlE8Y+lu6SIpgMpxRth3qlSveojewIknbCuDtmPG0ji1O0UopuOpTqC0TdGKkcli5dpfTim8TLK0SmyXA8ou7aWPV5lFOCkYmtuTi5RZSFJColk4pck2RAlsWkSiMHchQCiaZ0MpGROoq4CMZKhWkQEi1YxKe/gjuum1n02h5//hc/4Luvvclo2Oevv//vWJw/z8LGBeqXG3zVuUmrWGXv8ITJaMYw6uCEBuE0oo5G4ZeJ4vXWIlkkWJwTaN4Ze+EJWXmCbZjofTDzHDs10FIDKU3OL7Vo777Po7t3mY496qUGWjzDIUdTM1y3wJOnT/FEwmE2Zre9z0+e/IKJtMhkEVNK6oHJ6+4VNqorHIx3OIk7uJVFhhkkcZucGVaeMAvBxiDTbIzMZ9Qd8fd/9xbDOEUqhxt6lUpWYaRiVkSV1xZv4QcxHVvQlgEfHf+cCSPiQsiy2+J3X/xtokHEk/1DJnnIv/jW/5p8FDF7soWRDzk9a/Phv/zf83d8ztiN0N0i33z5Nu/95GOUCJirKCZninbbw7q6TsFe5M7JI0aij9UcMuknNCydbDDCaiywsrrJwclj8jjA1nTizCIaT9i46HLj+hzbKiBoR8xO+4gkJrq3TRR3sC7XWbp+hbLTJJybEswXmK0sUPrKOoXqMoVEQX9M8mybbGcfFecE0iJUBrFSTFXMTEswpI6udGIpEfkAnjfcMHAxZQ2sAodpn25yzPRgwq3J62imoBMO0cSvYKwxS0K0TFC3i1xa3mS/9pjJcUwQSl781u/y9o//kk8+fQ/XNahmNvN2i8VvvEH95qtEHz+l/dN3mElBO4sIZ0MCK+Pyb/02FzbrBD/4f7N99+9o1RpUazUGJ0OyKObS1WtcXbvAh48+JC7ZnPWPcJTJrBvgyAKlUoU0Fxx2T4lICbKMQZ6wRs75aplhJBB6kTmjScspsSo2sD2HJJnnysUbXPzN32Xm+7z37H3+8hd/QlHPsQyJnQvGaYptWlSbLmfTKV6WkScJRAn2LOEVd4NVdw6tn7Gxeh5HU1zbaKGXM9ZfWOFn7/wD5aHJ8J02dmRyS2wgiwa9d+4Qj8bkwZQ0zyi4LgvFBcozF5FJLqwu8vC9TymqlN/57le5//BD3rgxR/lqmYMHp1RGp9hOzu0rVzkadri0UWTUnpHPBOFIkfgalcI8UTgiSxTTWcLy+gK1pRp6ucriJYcg8cl9DZGaJHkZI5PwLGVwuE9BFHD1GuW5OdTAZPyDjzlpv0WzUKSmMuLOGZODNobKCUxFe+ZznHrMSLCUgZlKTKWjhIZQCg0NSzhUChUunrtGFMR8enCHHmeYSrH/8YdUN5qM90+wO78CcFeMOrZtUMxMZmdjbl95kR11RmhWKF25jP/9kGu3XmJhbp7jd+9CrJi7tInUUia9U/TFOsXWInJtibkrG2wdPMG5sUHBTbnx0nXubr+LVpRIW2dy2MPUBUutFt3hAOUYVEoLqIlkOhyRioRmtUSlVufsYIhQJpPYJwXWXId1U1LNMsrYqMjgYnGZJdnC9Jo4TonMD3D9AoVOQnl5jWsbEW9/+jN64REqj5FIdAlhElIoNflnX3uF//ovfoRhPP/kGSmUIw0zzYmyjJPDLhe++11ikXLeXWa8NeK1hTco6YL5UREjkDQWmkgz5/T0GcrzUNrzEOZac4FMhPzhrT/iL37xF6xYNeJyyu/8z3+PZj1Aje7ze99+jfd+fI/V9SbFukYmTdAyFpeX8Wcw7mxzdjpAtxRCXcc2iwhlgIQgDtEti+7E5/OnuySBhpZCbWKShhYzs8rozKce5Gi5z0yFdFTAwsU69VSRtA9ZrzUpipTZyTbdo10SobNy8QIq0Th+uMtxkpICi8LCFAZFZZDnGkKaWKZNq7bE3Nw8Uijax8eE2YRYS5AJbN99xnVLI2v7uMGvwBDkQrJKnMbEeyHvDt9Dt0z2hwNip8T3f/j/4P7JHf7on/w+/dMuv/m/+GO0YoVxZ4/dj/ZYX5hncXOdndMOG+eukZUNZlmCo7ucPnnAwYNTxETjpHeErzy0NEPLEj57+12qboXVq8tcvXSZnz99n9hS1IwC24enxJNj0hxSQxJEOfMILjgOr8/V4KyH4SyS52s02aCeLhOEKSJJqaQGcWfK9jufMHfzJk5NULbLRIU53LrGMIw4OtkllynnL69x65Vb5H/xA1IlKc83KadFsjAljBNqrQ0Ky+cQ45zRwRH2OCFLMur1OmvlFdLBhDwMyE98MCH1xmR5QKgppkqRez7FpRYVx+YPv/qHnH9pEV3AQrVJp/sZN8+dJzhNeXh/SLWiKFNhYXUOVSvTCWI++eQOi+cKfPW3XwUZ0lw2mY0NpEzp92a4pTKr6xuU6jama0JWwAgN5rvzFMIllHOOcKwY/uU/IJ7sMHduFX3jMqP2gFFnzNz8AtKWHB8/4d7TdxkEPWLNQn92gtuqs1WG/VRHJArXdbA1l7JZRqQajfoic/OLICTHoz5Hx0+Y+D2GzMhzDSPUUZ0UfyemPKlTjX8Fd9zzYp0pPoEeMfHG9IcdQlsyCKZ8/xf/Pem0x3s/+xFGDM21FtKcp/3sc7bvPyK9dp25vE779JTwnRmbr3+DkpLERz22P9oi66bIqWRhboGd4Q6O7jJn1ykJCyvMePr+J2T7Bo2XV/h4+xFpeEYuJKPQRymFXaiAplPMEtzpGMfWWKo3yPIaurVBb0eQSBNdCdJ8hiUyyobF0PM529uh2lzl8pVNjNRinwmP958xSUNMTfHZnbvsnxwj1HPnyVwKgiyjUJyjos2T6C7VjcuEvRHJ0GfDXcFPhmihw3hwgoxjhA7CNJCuiwxMfH/MTGWkpksuBeOJx+XL53n46V2MJMJtVBlOPNYuLWO5GvEkxh9DtewSxYKz7piTo1PGIqYbzPjet2/x8uuXGR49RbdC5gsV+rMiYTqlNb9JpdkiI6RUr2LqdZSv09s6olCdQ86Vqa0s4Q4yDsYJrF/AmVuiv3OKtC2USBl2jnlyeJ9d/5ixmjLLFePOKZ1Oim9KMkPiCokIJpxmM6pihCUd3CzGnfZJ0oQwmuGHHVI1Q5BRUC6uVmXeWaAqzlFoNbFP/S8f3NXqKgPNw69lLK6YfPzkE8JsRq97RBYLCpmi3dnl6tIm7731fYahj8gihoMe/s6Y1E9YyBZIJz4VrcTK5RvoQ4/bl25x/+wtWmaN7WCHJM3JSFm+tkkjKtJ7ckjTrRGrjLufPiCdBCR5jDIly+fmCcIETbqYCr62vspGMENTKbJY4bSfsdAs0Dy/gjkqMh138YPpc1ugOMQwobY4x8Abc3/7Lk+CI/bTGVmaUrVsKpaBNYnR8xnX7QbKh2lnwPL8edZe/Cq9x8dYmsnWR5+ysrhKySogghky1CguuPTUKWOjQ5AqFCVuXvkq5vYc6ckMX82oNipohTI7R0dUHjhcri3RWlmldPM65mYV3Rwh0zH60Yhvf1Vglj364X1qepXFm2vc3/+M2qKgMT+jc/oxU2+MmIRcWLzEQquKW9TIYtjdugciI4pTvvLqtzh4dMrHP/+EFzdHXG2uY2YlgqpNuNQgHA9Jtg4oeSHFksPw9Bm9yTFG1qcqclKVIjWJlyXEKKZZTpiCh0CRMZOSTh4hUw9zPEJOBBKFEAqdhFxllDGY01tc2HyBxc0LVBaWkJEgeXL85YOrlQXNhQUu/fu/wcwJ+OhfPWK5WKfd7aBJ0GTMxuULTAce/d6QjUsXmYZTjkcHdAaHaIHD6ze+xkplBdsqEp10GOUBmp4jkglWnmDNBFqqMdFiRkZOwdHpioBly+XSpUscPBtTyiTCcmhttrDLJfww5enWEaaSdEc+Igyo1CsEQcijfodFuUMxnLHIIsW5Ck6+RDI6RcURju1QW1jkYPaU016PQPloJJTQKAuDQpCwABTCjFpSxNQcyolOHMQ82H+KkZtUpx5WphFkJ4yGAypFB09A/+wpA32bykWTTqfLyurLiEslOk8CBklMLHNOz05ADCliYfRH1CtFGpUqxaVF1OXz5PkAORqixT7rm4KTzvvkk5y8k3I0vYdR8Vlc1rFkgIHGbDijUW2R5xmOY9Ocq9M5VHiDQ6TI8aYhUWfM4Nk+jjbhdO8uF4630C4uUr+0SjH7Gt0//wH58REGilnPJwqHFLUUZIqpO9QyRVoysGOPiR+S5IACgSIRkNk6QhfEXoDKEhpFiyRMMPKceskl8CIcSsw1z2HXWqhSA2vjIrmfoNJfReesOGDz9grahkseBKxcWOU3Xnid8GTEy9dukNohXjhm6s8oS5PV8gKf9sakuUnDrAIulQs30JMCXndGrGYcTnbJrZC9wwdkiYfFc2OPiJC/e/gh377+Ohtfv832x3dJDgVuprFqVfEJGO6eUp1LCFOFm4IfhWydDpkYgiQZ408HaGYDS/OZhHuUigLTLRB3A1SekiUzohCO338Pf9nld3/r38NaNLGX5jnb3uadH/6AMhkvNZYoa0WSiUWxUEWLJZWFZZ4eDnjl9d+i6lmYfk50dECtWSFwDQI7Ypyf4hUDqI/JbJ+t6X2ibQ2zpJGbCnJBHAfUrQKayqiZBiUpOd5+xtJmCydZwksTinoJWS1SXlnn6OQj8lHOQmuB4fiIcqVGRcuJhx7DiU88MagurpHEJoIyvbMpT+6fks9y/FlAEiW8/7fvELVHVCzBnNRQTx8R9i0yd5VCqFNBJyQljgPSeIYmUlSWUFAKQ+oUpEsmNcyyCYWY3SBkEMQI9TybV8UxwjAolk2qjsWrL1zjYOspg7MBNcelokzsrMS58xdZuXIdvbVAulBBpgJD+xU8zrSv6PQqR7jBPUbelII1ZaEKVzZbvHjzMvrlImk+5PCjh/ifDKhFNlf1yxTNElaQkNuS+eVFqlmTs9MtvO4Jzzofs5cdkmc5F+fX0L0IK9HRpODY79M1RyzUywy1IYPdQwqOjquZFItz7JydMPA8MiSmMjGUgS41RklKEEVoFKhlJn4UslCpsXT1HPFOnyQOSfMQyRBUQHP+KtaNG2wuJ5z0t1g6d4218gqf/Pc/ZN4s8a2FryEGGVmmofkOxbU1vCSni8QfB1h5Qjqe4TQd7AsrxGbO+ctfJxw/4N0He0wWBoTxhJ1P9xj0+8wFDTwCauUFooFHO+lSMlwKNZeidHn44C61i2u4k4tIlZBHCmkYGHMllpavM3i0hRbMsz53kYe9HdSKifD6jPcfUDTLuEGd7e0+u/tttraeMj4LcRKBjcK2ICGgJAR1p4rm5fgnbab33yUaODT0JqVQp+K2CJIBudDIVIAkwlIJeuZjaTCJJWmSUCrqNERGScuxhYEwivQjn7Yf4TQKvHT7EkkwoVyr4ocZp+0Rbgqt6gK12gJOa56oZKG05PniacX4wqEkXxjc5ZfP8/HP/oFxckyjNcfyRpEPnvyU+kWXH33y13hbMb/7nTdxTYnj1gmOPWpehbK7SdffJwpjHv7djylVNtmoLiBxSHozOv4ZBbPMOJySiAjb0bixeQnVPuTpzhPyfp+l5SbKtam4LhmS3aNjCqJEnAkSBCkKAYhckuSCWEgMITBz6PbGXL5wmWSU4PtgL5wjwGOy1yeTOc2NBn1ryk9+8KcsnCuycavFZPceC7bDprlEeBKijyVmYCMtg9kgwAsjrp6/ittaJu8O8Ho97IJJ/84A8/Ym4/YBuddhaW2BJzwhK8VojYzRQRstyLDtErPQR9MNyuUiRdMmyWK6fY9GfZ6C4SJ7PnI8QikBVRvyiKo9z2rzKiZ1HH2F1+Y3mKsabD/9G7xdG1V2GNVhcBIyPoNwamHpirmKy1zVIc/GrJ5rkiYRk/sT1EAxOD1A7zi4SQNlJYiFZXS9gKElKE1HN6rggkimpGGfMJuR+EMQPsQ5xSwhkAqlSQJdw8tMgjilIHKay032dna4t39GnGSYClAQ+DHt7UNqqxvomsSsW0TjEd5pjy/qSf6Fwd3//FPaJ/tIK+bWG1coL9g8frzFYDigcLlA77RDECfMRhH+UURLrGHrFWbhEKEV6YcD0qlHa7NA4B3z0dOf0U3OiETMSqNO2Slx0h0wDAf89o2vU12u8O7P32OWCPrKpyZc9GKBK5cucdLrk2fP7Y4yQMmcTAhUZpKpHLQETYNpEhMLwbjtE8SQpiXmb71B3NljePyM1IpYnbcYJzt42Q4Xbn2Dv/ur/4rxdp9FzaEmC4TjjJoso9DJlaBar6B5IcVLF2kfHZCfdBCzGWqaIWRKYb3FaHeXmXNK5RUTkgxpSpbWF+iMPOQY5htNZFzEdUrcfOUl7Eadwbv36Pp91l9+CcepwKNTaHehZMNCmZwYY5yzVr+IMC1Onk6J85BCWODs7oQkr1O8eZ2yfZ0Xr57nwvoJj559xM7OA1aW6myszdE+e8LKhRqHZ2MMN8dUEm2Qsyzq6MpGxTGEU5ReRLoV0ijB1EwsyybLBRBT0A3cZEYhi2lmOQUdDnXBpOSwlypOkwSVgx1naFWHrGSwMwzQUMyr50nJaSIYH3egPcEq1mCcQXeKf9z/8sH9+N4DXn7jK4yDHn/99z9CmpLW4iLzlTnq1Qa3v3KR9p1Tbtz6Cu+/9TGJZiPjhLlSk0EwI8oirr70EhMz4fj0EU+Dp5zSZ2zkTMjY7h6QxFOaxSKt5jxbu8+YcxvUdBO/7TGLJgxEjFGrUptbwDJ9ut0hQuUoocjF89aiFJJU5YRZStEoUDLLhGHC+GwCymV4cECQB2S1JYx5Qe3KCu2dZ1zdmKOgawyfHFGLKzT1BSppnYX5CxTNEv3dI4TIyWYzRJyio0iykPHgjErmEWsJpm0RTAb4/pBBcIYzySgUSiRxRNNpYlWLWGcWTiSIZgFJLMilwGjN41kQlg1EswaZJPv4KbPdA8rn5tGnC2BAMpjijTwiIyBSGvZ8C81w2Lz0HXJHYDbqaHIJy5xgqIwXr94mDjqsXFpifnWONG+Dymlvj5i315m/vA5ejhwWSEYJUegz6XawSwpdtwl0kzQTVBJBkugkykVIA+w6VprQUDE9EWKWDOKKwXF3Ri9LKAJYEMicaZYgJGgpFDKHKjZL5SXWGsvos5T8dEhv7wjdNijUfxUZEMUCb33yKYatODzdRgrJyy/e4PKFy+w+3WN1cYGjkxFXzjUoNDeoFTfo33uA53VorJfJSia/eOctxJyFXk8oXawzPT7DSxOe9A9ZTAuUDZ1qqc7xw21GBx2+/eprpH7CIYfs7R/QH3YZfPYRaZJSExWEZaCTE0be80FpQmzDJswUSRpRdReoWxXqWQUz03BrFTThU2gWKcoVpvaEOA9YWWow2crZ+/7HXLZv8OK115jdmeB3Y8zCPJrrIKxjyBKido9EwdnWfcxmgfnLLSYPRwRGhizEnO18ilZxKG7WMQsJxayORk5DzLHcMJnKAWFvhpG4JN6M0+1t3EYJa7WBU7DIHJN4NEHfO8PeOyP2pphJgiwWSL2YNM3QWkXOvXgDY3MRaecsa9cQCFQmUComGQW020OMgse1y1eJzCknh0eQGHSfjVlKL3D+4rcpGOeJrJDoKMQYhujjMVqeoLtlplOPKA4wbAfz/HnS00OisxylZ1C2IXFIvR6ZNqWyUuYoD5kcRUgJIodiyaY7GLK3f4aeKMpKsiqbbBYXeP3W1zDzAsFwSq/b58AfsfbaC7Sunv/ywb393d/i0Scfcna0QxAITCnZeXRG1Zjj0uZVZKR4+eXv4Y91br76VfQxTLYfMxh7RFHK/IVNep/ucLx3ir8/RFQl4zhhlEA1ExRLc9hpTvd0xmnvIy7fuEwaKLafHeD7MR7PB8ynszHzlXkGQczGxgan7WNcaRP5IVWrQp5lFGSRot1iSZtnzpzHjQrMvBmluMxseEzx3BXWL96mPd3jv/t//Z8o2iMuWy5qXKMsr1Lu1NEpYFQViZRoeUokcmQaUyyW8bwp7lKN8tdu0H/8KZGnMZyckdo5rVdugiGoLZkY9QhtGjE6brO2cB5noYR/cYjfi4hCk9w0qLRa6BIaa4uUlyRurQ5Rh3TUw0g80p5PKlLM+jxmqUx1cQ55eRntxjlYrpDq2XMvNT8hHnqkwzFJkBF5cLS3x+LVCpZT52TvKVof8lNYNs4zPbRInBRZmcOdq6F1p0x3DvH6XaQtKZYazEIPUSwR2waR1MgLRUrLC7Q25qn4xzzaeo+ZnzLNUpKpTyUCI9eomCbnKi1KmUMh0WkonQVR5bWLX2Gl3iI2LHzTZH5xFa0/4py5zNyLNxGrzS8f3OW5KvLqJlo2JY8mWJrDyzdfYn1tg97pjEsL52lVrzGNNRAg9Ai7CMnUZ+HCBepX18ke/JTBsIdmZOixi0UJkQSkShBGCiOzkWhosc/OvX1CnjGJIzI0ctMhxccpF8kKDhQkR/6QcTjjq7df5OMP38fUIY0Ec1qTb13/TeqqiunrzLtVOk/38IYThmGAW7jOwguX8J/1iR6MaJoRSSdGP25SMCyG+22SXNC4dgXr2jppv0vwSCEzhbW2jD3qULm+in5lgfn5i5RWUgbdMqNszNqrm7hFh5/9/ffxd05YrVQopmUKqo5KNQrzTcpNB3wbNA0qJiiB67hgFcFxUQWLWHkoPPREwalP4kWo1RWMm2uI1QVE3UW5glxJkiAjGI3JJmPKJZdi8wIiPWX/WYg/LrK4sIqdeDi+jpVJzh7GLJ9XTEWX1Y06Mo1BJUSjAdN2mziZYVy9zPxqi3DsMd7ZRpcCu1BE5JLRQYe8kHMwHfNo2EHkBpYQXDeqVJw5VhZbXDrXYjocU/IMlDJYdlq8+NrXKcy1CE2w15YQvmJ65zG1pTmMpRaJo/FFC2Jf/I771g+4du0Ki80qNecyKoeLly+ycu4KH7Y/48O37vH6tXUayzcZj57Re3APlwC7rDGedjl+74j+tINhSoQmqZg11qwGST5ADyOs3MKUZZSKiZMUP57hEeHLFN22SMTziU4/i9k72uHSpasITeNsr8+j+4/YnFujIiokccbt9Te4uf4m8VlIb3eXSSGk2lyCKCKRI4QQTGcD9voH9GZHbC7O0zLm8A+gmEp0qTErmEyiEZbf5/T0AM0pkcQ5T46fYc9XaZxfII/6fPbgA5qOZPnWOnN2zDA8YdAPMKsJ/iTi5PiQRXfpuSuEaSBqFiJziCZTVCxg4EMww5oGwIjYMon2DoAAZSZYcYyWS5KZjte3qOgSXTNQfkimQnw/JPZjNE2nvryMYQgIPfJUo+TMo1NCZA1MFbLgzmFrFRqaTRBE5OMRWF1GnR5pf4KldKqOS6jFTI72qVXmcHUNUSyg6wahN+No5xlRNCWtQqHk0jAbTJMZBcr81qvfZm3zBcoVF/I2H9x5B20iaIg6i5UlzOUV4moJbbmCmq+R7pzRVwGWYyAsEyXVF8Xxi4PbbGnMtWyOjyNeevEGf/3vfsidvMjcxissnX+FYpKz8/Y2/kLCUrGO1lrgyed3OfYPGd15QuAohmrMIJ5iGAVsTLQwY9NooGUpRa2AyjTSXENIiyDzmQpFKHIMLaJcKTIYjwjjiFGa8tOHdzGBDbNM2Svxcv0FrKRATsLLV7+DUV9jvPMUY5IhohlG2UFJxfriOnlicfr5XT7/xY+Y9gd4tktnqiAsMMn7VPQCtWadoa7x3tYdNq9cBl0y3fWJnZhCTXG4+wBNT/n4T79PIQ352m+9wfytDTKZMOqdQOqjlzUsq4DvRVC10K0KcTcBP8fLZ2ReTDZKyPKcglXAFCZgoyURVrlM6PfI4gkKkzyRaAMd2Ruijk7I0il+yQDLpj6/iFEukesZaTRDjoeQlVlcfhPZKFJobLK8McS/06V+5TZqpOh8/gmyUEDTdErS5HDvlIEXotsOgQqJVEK5vkKmaTgpZGnGdDwmTiMSkRCJlK//1je4boX8/O13SUY6r77+PdzGKrqrM+09o1TpsjQv0b0JG9o8qt2nO+5RWrlBWQcVeGSz8XMbIJU//wJ92eAur8wxGA+wSjXQKrx842uEWZliZZ3ipRKzfodiyyLTbUSeM263CURG6pi01Rltf/zci0sTIEx6owmOdDETMHKJkeYIkWNIQaQEmRBEKiMSGWnsUxYuSwsNRn7IIBgjlCLOn29L3Fy8xo3mTeJ2hDQT8kFA3vBRWoRT1WE6Ipt5xEZE3JngmBnzSzavLGzwWf8ZjbSFkdgUmw3SQUKuIvzeGTNRoPXaBda+9zVG791hNDvi6PQhvY8/x//4hyyUSswNJBVq7L91igzmGJRCgmGMphtUa010E8xc4A3HuFUbIxRIP6VsOUhlEkUJeZYjE5BJiJXpEGek4xAtVuhCI1cZmgArjUnvPSIJR/DCeWR5heLiArJSIssz8iwhT1LS4YRwqFi88FWyuTJxrmPYVfKiYJblUHRYunUdOZ7Qf7hDMRaYtXkoZZTXV5HTIWYYUrh6ncHuAWI4I51MmAzHpHlKJ5kwCyK6n33AV/7pt/mDf/4vGByFmMUiicjRK0U04xyX3yhx6eJX6PzVuxSnKdrIp94qoaUKMQnJ233M4RRt6sMsRBm/ggyIZJjyyaf3aR97/GDvHb775u/x3f/wP8E0Vui323SyiNt/8Lswi+n/N/+W4d4ukRrRU30e5mf085Q5s4Jl2BApLN3AyjVIFZoQFKSFqSSzJMQkxZJQEDp5lmAZFtfWL+B7HdrphJE2Q2UxuhSULZM3vvoK6/YG++MtMHM6n3/KeNSmdfs6WkVy9NNnaNJCyZDTvac0Uh8naeJOMpqizsnTEZXmdSy7TqLGBGlC6PuY7ga3v3KTNI9pf/4RehYwmZxyefk8pjJpmGXC4QhDWcikTNVrUdi4xcx7xv4nP+b8G+dorNfpjw8Yfr5LUhgjxjYlaWNJB1IN13FAZc9/SQLjhNybkI8j7MxFKklGQiIFMRHJzi45KcWXLmLP1ZGmTuxPiEWGJQRmGLPz+An7H2+xcvmrJDPJ2c4pFctl7dotth/ep9vt8dLlWxiTkJO9Nr3jHk6tzuKbr+Pevkqj18c7PkaurhEfdsi8PunYR0UJipREZPTDCZ0He1Cz+O53/2esNueZHJ7QuFRFFGzc6iJuvQGVCdXrEwYPd/A6A8rLTUSuI/yMsDMh7YyhH0LHQ/viLqNfHNyf/vgXVEqLrDY2uVE/RyVdRBxLvO4B0+4xbgK9e+8ijofMDncoZjGTXFEQJnWjiuUYGLqDmRisz6+STxLSWYwmNPI8x9AMbMskl5JhGKCjUcTEzAUqhkfvf07JhXKjhqMpTCGex6v6Ae++/zan8hl6WmFubp56AL12h7R0G40C0hREsU8w66JLQZYl6JaJWSpiTipMJiOOzgbEMmYtd9AECDLCyZDZ3gGBbRLsHiODmI3qbV44dwM5DBkdnmClNqZlkOUJehRQbp5HbyeMkhZu2MSWC+jSZ9DpUW8K4nFCbzCkmmloUpBXbIStI2oOqZ5jaSnKSMmQGDigBBoGMRlKpJAnGJaOPVdDGibZ2YBMxaiyiTAMjh/c45Of/i1GXxE+2SUrlWhWKjiOjbAFS+cXMQxFNO5hqBibjCSL8IMJk+mQ3qMHNAslJl6APXles54Op+hBgv7cpAqBiS5cVDgi6gRsv30HlyqzmU6p2UKfr6MpkyxI0ISGNVfHXfaYqZSCZWAIHSYhcXuA6M8QpyNUvYeMky8f3EKtzqWL19j7vMfv/5P/iGQrYPz2M5KSzs/+4r8iFAFVu8BqYYEWLtICzTeYZ55rssRxHrDVP8ZRJudvbNLeOcb3ppj6LyeChGTp2nnKG01O3v1b0vEMZiklJbFNh4pVIpce65cuMnMFcjrkay++wtMf3aVQKOI4FZZvfoOFxjl2//It5mor1OoNxr0+pWIdf9AlzxwyTcMvVGncuMLTz7Z4u/2URa1AOYtwZQMnsTA0DcN1GOUCf/+U7fc+YG6YstjaYDi3gltsER9tYYYOWe7jCIhlwGx8QDI7ZeQPmV9Yolo/B06F+oqN6kgss4ytC/qTfabDESpLmU0SCufmKNSqKFsDOyCREUFPoxIbuJiQhViuQi9JZrqJXK2DY5DunyJ2uzglh2zZpds+4If/93/F0wfvc7t8me0f/5DC1RusfPVVhBYyGZxw2t7n4ccfkxx2OV+Zw/NOmSZ91NRi+6envPzb34PS8+TPSqYRn7QpCJ0UQSgEiZK4skol0ymUKryy+Brz5gK6csnWm+QxBKc9rGIJzdDJchCLTSxyhFSIlSYUC9DvkB51cMYe6d1HkErkxdUvH9z9sxmGsYdj1UgnU3Yf7mC2YywrppxMCfMeJ3FOkk05C4uYyqRglpA5VNICgeHTkB5JFnLn88/RI4EjLAxdp1qok2qKJ6d79Hr3GekhoXjuhljDoSzLVJwa++Mx/dGQV15/geLpAbEXYaYGq/U1GvY8c5evcfbRQ+IoYW6hxOD+Nr2n+9ge6KKCUargKUX90k2sjXWW8hsYZ++yVlulOXYI9j1mUmJrDoGISB2L6e4ztDyjoGnMum0qr7yALFiERxLqZaL2mCzImYmMRrGEVU5I9CFGCVTJRkkLoRdorl1CTwVq4tFcXWY09lEJ1BoVKpsX0C8uIVwdEkXeG5NG4J0MEX6KphvoNQdjqYzp6iTLVRQp/d1j/E+2qTcqzE5h6+QJx4fbIDMyLcSsgFFKeXZ4h72dxzy8+wGn/ROC8RTlhXwsdPQMRC6wlU3LbTHOBrATUCoYGGUXR5eUKiXGacggmZAIDaUEc1aLtYvrrDQv4T87BcumuDiHMgQxGgQJKs2RCkTJwdXmUHEABhAF5N0+cjTAVSnaeIj35Al2wfzCQH5xf9zSAoNJyrmyw2HvlBu/8SY8HXLy+EPKpQJH3gn7cZ+ulzDvnONcbZ40sJkNPCytiDb1mMMlFBpRECJMh0nkkyUKWzjopsZhZ4eDvE9oZzgCFp0yzbxAFsKkO0HqFo8ePyEd7DCJI+LDlNfUTdy+ydLGMsH2EZOn+5BnSF0n3utS9wy04jxTf8rKjcskmiQpNpBulaJZZLnaIpYx9473OKdaFEp1jvMZYzul0Crx87f/hrLQkHKJqlnk9Mlb2GurbP7eV+jd3Yb3AiIvYFQqcO5rX6O85HD/7/eoCZPl+QZZEJFMEtIE3FIRUGhTD5kpXGGgaTa0RwyUR/nyJuaNi8hWTHbQoVivkZ92ECohrAgKS3V6mYfQc9w4plKtMvfGK/jHB/z9X/4bHrUfPy85CsjLNvpqmR998gP++oO3EZFHGUFCzvPpWcUIwUQoQgmWZlCZDnn8w0NWzTlevfEaTa2JM28xfHbKNJ3ii4jENDFEkbnGAvNui867W/hHQ0yzgKYM7CuLWI0lUBJ/NEYKsKVEuhZaNCXr95HdPpP3PkAOOxRUghYlBN2Y4E5O6csG9+L5V3i8dZ+dkw4rZp/FaoyQGUmjTO8gw8t1DEqITMdUgnQyJY9Sarb9vKQS5VQ0kzyLScmZxh66MjB5nqnb0Eq8MHeBsqqwNTtg6vcwimWKlkOOjtBtUh0WapKd2Sn93oyWKnOlvI7sJHR7W/TMRxSClHpznrPDbaxZTiE2iaQA20Y5BrJUYnJ4yta/vsN2cI/DRw8orZ9nbe0iQTuAi1UePP6UZ91TBoN3SfOYeVFgs1BDGhbrl25SfPEy+sY68XCAeVCkv9/DXKuTL8A73/8Bu/cfc231Iqo9ROYCfZqQRDGyZZNnKdFkip3kOGiIROKf9Dk9mRBPQ1orywhNUlqcpyAtMkcS+2OCokA1i1TtOr6ALFc4a8vk05Cn999l++yAvjfEI8MWJk+Pjzn5sz/h3vSMSRJSEYKCZlC0i1g4ZGFErCJEHpDkKQEpqcrIUQR+SP+zCVN/yPXyGqN4TJj45AJyCVa1SH2lRb/XY3hyRiXSMdKQ5LSD0TTRlyvgFjB1nWg2JU4zDE1gzEKS3hAZRkSnpxhZiMxTpMrQM8Gke/blg/ubf/yf8geNBnpu49095d2/fpdvvv4Nqp7JdOf7GCyxMospKZ3/6Lt/zMn9Z5xu7RArj6FI0fUcFxvDdAh0RShiPG9KIjSmaciSscSLN16hc+dvEVGMRNEPxmy2Nnjx1qss1FfY2/6M4/IZ045HOAz57XNf55vuazSTKtFoyHzFYTLcZXx6SHlxDVBoZoFCzWLQ3uZsb5s4jHDLRS6XTI63B5Qzm3FvTOCOEQWT3fKET5I9ckcgNe25YZtt8J1//r/kyfuPKZx/GeviBmpeUru5yL/5s/+Sw/Ejvrr4Hf43/7s/ojy0uVU+x4JWgP0+vu8TTD3qi/Nkxycc/vgniMGMFYqoLCI7HoEuqNkSfW8A0wwsRaFWJe738B2ICiUaX30R/VyLfDJF7/XJTJvcNZlMuny4c4f2rI2vQqSU2LlOkuX0+310EuoSXENDL5YpN1us0KTopxSE5Nn4jIdem2MVEImccR4SaRF+GvEP93/CjjbHeXuRglugNrdE6+o1mjdeJD0d0P75OzgRmEphpjmTp7vMusfU/SnOravoS3NIAYPdXXQvppLk5P0hWpoyr9l4cUqe+kg0ZBZT/8LTuP9jrgqrTbTMwO9MOPO7zN1uYV12ePbjLX7je7+NHjrsvfUJ6XCMnhuECTjFJuFswEjMCMnQsDGlSxgHxHmAkjFhrnD0MlqlQv3aLZbHO3zWe4CjOSS5olyb5/qtNzBmkkg75NZXbrD/izOSMfzGG9+h8qzO7HBIkvhYZxMm0YzEdRhNZuSqTPHcOSwRMDezmHV7qDBEhn1UWqRou7iixSgZMOnvkqbwqN3G1ApcWT6PP+kxHMecN5boPJxQNlZob2+xdK7C6PSAk63PeJI+IV1XxPM5g2mHZukcmq0IB33CzCHMczrDPlnkU9Z1zOEYO9fIZQoiIyMAITATAzGZMX33Y1TFQdo6cZZgtuapN2vo6+uoqksuJXrBRZVr4LrYpkHTMikI8JTCyQVrwqBh1dCUwVoyo6/GdJOQg36PvcmYXXnGZbPGglXET2OSLCMnQ5I/d1nPFQ4pRaGwVEYQTrFLDsV6mXKlyPjJY/KDPrIXUMg1JM+XSE1pYExz8sdnBIaJVXaRjolRLqNlHmI6Ro8UajJDjH10JREYQIpBjgp+Bb4KqZeilRTFxoz12ynxTANngt1qsH7hDT7/qx/RnXRYaDbZ2nrM2qXL7KhDwizFSTLCZECipbz40gvc3blPt3NMJEKwJLGd09GGPD74jGk0omq62JqNGxvEZzM++LufceX8CxjNJZ7cfYQ6OuMP3nyFBw9+xqWv/+eMtt8n7QWMjT6qAq2r65Qvv8jwcZto1CWedvDah5h6ThaPiPqC8VTn3PXL3P7qf8C//Nf/Bf3YpiItbhWvcmnzGmtzy9z/9ENyvcCN+WvIwxPm5lZpj8ccfvgBn599yJOtdxlbPpVWhfcPHiOX5jntDKinBdyvXMB2Wli5onH9GmiQ9IfoysQUGobSkXmOLp6b09mGRAUh+f4ZWb2Ifn6B8voi2kKFzDHIHEVmC4RWxkIHaT+3jBx72HGCKyVOLlkwXL7mrLBZWMLyJYkeMhQzjs2IX0xO2U88TujhRUMKU52AlJAcm5w5NBaUxoJm07IbzBtNSnEBLdJJxhFnH3/K4aefkWo2S/UV1psNRlGIlmlIXaILkFlKeNxhMO6yNF/BvXSOyrllqHqoSUAWJ0z2Tihk8XNodUhTgYYO8lfQOdu794D11RJ6IWDcf0SqNNzWMmZZ4+Bgn6fbDxiICWtrm2ysXKVUWqTkZeSTAVbs0dBqTESIYetkekJCTKISckIcO8U5V+YXWx9wfLKLpgm0RFE1ikzGa8ZtrgAAE7VJREFUQ0rmlJNhn+ZSjesXv8JW9z02l6scTSeE413iPEJqBpmWMwrGFFWIE3mctvdpWXU0MgwM8nSIRYImNaJUIZIMVxpcWr1EuDVis9Di5bUXyEKDc62bDIwThOsSnkywRMYsyWl+81VYr/B55x3O+ke8/OZ1jtIBZrnIH/7RH/DBn/4N6TAnyX3ykglhQm5JZKMKWYKSOiLXkOgoUjKVoQMqy8hUSmGhiXF5HdabUNBI0oDIjzD9IkbJBcsEDEQEygs5fPCYvadbhKlPRo4EnEzg+CmlqUQqQUmzcS0XFhtUJl3enTwlJiMmJhI5SkITnSXhso7JWrmGlZnofoZMc0yhk6kUSYJSMXmakkY+Rm2BQtHBH87QflmX1vIcqRSlSGArHeG4qLKJ0iSyWUXrT54n26fqOazwfA4SHfWFR2z+x6yn11z2799h9/Aeq1fm6fR7SGWT6jmP9h4iWiHf++P/kMdbz7DXStx751PWX3qT1kvXePDf/AnD2YTFzQ0+fvAh24MtAuGj6ZJIxWz1nvDWWx8SKmhqRdb0MiVsZKwhpOTqm29w/s1vEvfO+K//6v/ANJ1QXi1wuVDkwx/8Becvf4e6sUR0f8K55irzF1+i82SP2WyKai5Smt/ELhfo7nwGcYSpbAypyEKPeG+Xr5Tmma9exM3LLIsFmqvr9N/dojRxyHwHqXyEMcGbxUwHi8y9ssTLb7zCh5/9kNX1Dd7+y8+ZRtu8/9fvcqlUo7q2wY8//CEt51NKhTrlRp3FtRXMVKFKLpGvcKRJpiJULklUTqwSMgT6+hzGxWXwhuSdPtP2KVgWju4gqjVyXQNdh6FPvHfMwZ37TAY9csAHOmnIlj7B1iqcsx3cWKckNbREI0ssTMfBDyccpWO6KmSmx6RATYKJwMkk/rBPioOpqjilBlahgjfJSIIZqIiaWUB4U452t6iZJWwJIkvQM4WJhkCih5Lh/W2cRgX3Wy8gyGHioyGxHu1itEfoOQgkKIEQAqV+BXdcx1bMNRpUWt+gXHeoN8f0O13S4ZTB+AnLmxusvvEivSTk2f4+x91TWuMRFaeAoTIu3XqRwvl57v7dQ6LURzckWZyimxaWbqJiDZ+YURZSUxZLZhnXKJFEObYDedBjMO4Q5An9PGNmCu7e/ZCi1aL+vVexBjrGXhFvFDF9cozXnXFuZZ3q8iLKC8jLVWYYOFqRNDPQZY4c++x98j6d3hl2HFIwHCZnA6paCS1OcKWOUW3huDDtPyEmYuHyOqZjceetu6hQ8g9/8lfILCL3fCw0+tEZ9/pDLlc22DkaUzLKaIc6O7tFVlvLvHDtEtHOGZmXEEeQqZwUyA0No1BESg1GE5KTE7JBn7zfRZZdRBhAlpDlKQYWKorwBgO82eSXkQKSBBiolCdqhqmmeEnIotJomS5eHjPqzyjXG/zHr/8T/vzOT4kmp3SThFQqZllKTwTUhEBXAg1FKnJmsUeuawgtR5cZZDlmlmNrgjAKGCeKiij88qzMyQQIlYPS2NvaQSsIzl1bpNKoIi2DPE9J8wyRCbRf5igJqZPkCUj55ddx86SPIRLcwjx3P9viymuvsXquTPejjxgVDnHTAod/8zmbziLSNpi/ucrg/iFPjw7I4wzaXQ6iLsrJyaYxlm6gxxIt0jALJquFBSbTM+IkRwgTlAlSEiUT/uYf/jv8v/9vcVyDV169xuOp5F/9yfeZMxxOHj7iVLmoicU3117D6eYwA2OWkfgnHHf2qbaWODrrEpsm61dfIp6EePtP6U9OOY73yPOYlqxRlSZyOmOw+4iFxRZJb0Rt6Tx6waB9epdxFJDdv8OKK7k4f5XTylOUNs9IDTmJD/naS69SX67y6N4D/MMxdaOAkUbk0ZT2bJ+4f8TVzRq2aTDujsizBCkksYIkFyilU94bkRyPiMdt8nBCbbkBSw367WOKazWkDrmfIMMQf9hn7I+Z6opxLhllgpCcSTjgaTRjQWmsS4eLWYWVWovbb3wPKDD97D7/8cv/lJ8c3iXd+5STZMSUjC1iIk3jpiwybzgEKqGfHCNHRzS1AhVpoWMhcwjzmNSwSCXkKsPVdAp2kVgoIktSXJ7n+uVVxNo8UumosU8+DRgdnmJKA7NSIZ2NiPMELI2QjISM1pcNrmZpKBKCyfNFxXd/+PdcWb2KOzH55kv/Ab29LlZf4/TgECOpMOmGxGczjEynp3KmozFr167g+I8wNI3Q96hRpeo0GGQBMowpYAIZhmaSJSleOiHLQybDM3AlK0ubRN0O2/cfc5AMGNdttJrFw+1P2Cyfxzi/iKmFjHf6RJMxKh2QiYCCLQmnQxzXIPXGDI87eJHPVIRE4nlumuaWcMwC0kvI4inDsEsew+RYx6oUfpkfnHH86DGBpnHu9gtc3XiFjfMFtnuP+Zv2X/DZpx/Sai+zf3LIsjGPlTvMFypkoY8d58gwY3hwQN2qYwpQQiPNQRcGUSbwZgH2fhurYpOICGUKRN0lUjGdwx7lKxcQRoC0NBCCaqMGpo6nUjwJcS6JVc4MhVIRGTq5yojiEG+WU3h6Fye00Xoxc9ev8Prll7nTPWQy8vEI8VCcqoxV18G0LSazIXHuYf5yniGXVWp6CROTXBiUWvNUGwvYWhE58og8D1+l5MtV8qvncC+sI2pV0CxUloOXULfLYBfIpgNiTRFrAqtWwHE1VPYrcCT/m3/3JywtL7F57RYvvn6LYGJRKd4i+/SAO//m7/HbHS42lwm3e1TXWyycu8xu+y5r125x4+VV4kGPz5+8zfHRAWkSUdHKbNYucfPyK3z+9DHK76I0i0nS49ULV3l96TpnD7bJCZg4A7JqzL3d95GZzrm5ORaX1vjg4CFO00D3hzSXHKazE4gUtbKDnVTxBzMmyYzMhWu/+So7e0/46NFHVGWJEI+xljJBQ2gaoV2iO5qxmNloBJhSYrklgjwlmE4oVCtk6QjfG3Bw5xMWzl9iszHPB++8xeF4j5iMlcYS446PEdqIzKBk1yARVMwKJTRMFHackGRTpGES5ZLMcsktjUqxgqYMiq155GIVs+SRmQGzdMaDe/epzS1jnY1QsULpA2I/5bh7zN6sR1cl+BooqaNlOZCQI0l1jYHISFTE1EsYPvg556xFrstNCBUbF6/zv/qjJv/n/+H/xpPRPpM05DRPeM/vYUc9oizEEoqKBqdCMZ/Bcqqx7NY5f+MWlfUNZjtHHO/t4eoWrcsXKC43STcrMF9CCQcEcNYj7rQJ7j0jOxqSDScEIkLULTLDorE29/wBa/4K7rioAIyAv/vxX/DKa/+Mc+e+hdmGhz+7i9YesVAoU/3aK/SzGOWAUZS4VYvElrgJ+GGCGeWcM5s4aYQmTb75rX9Gq7hO0HG4umrw/uk7bJ1MCHtnnPouaibpTsaMFo4RCzGD4oygn/Ly0gU8mWAUHRJNcRaO+enHP6F93+P3rv42uZIEpSKpvoa0W8iXzhNXDT78+D5+2mHDWECXOYFIqDUXKOou58prxLmP6YGdCpJcMckMZGOOxvoSTz/5t4zzIaGQgMkP/vV/QSagHXeZX56nFJRJpU7ZKKJIaBXmsHWX0A9IIx8nCShrNnkWM9IVUyuj1KrTvHaRWRxQLLikx33kUgOxWCElRJmSSXvAJOgQHAc0DpYItnwM2+TJcMK/fesfeNbfIxMputTQVUZKRgy4gK0EmhAECLoqRuU9sihmwS6woGK03CQa+iRRgG4pyCHNFOPcZyIEwhJYCcSZYqBCZhhUHY2ly1epzbU4+ewB4XGfaqZjuJJZ7FFqbWKuzaEM8M98tCBBHWwT907JZjMiHazr5ylWdIyag1ktYlYLBOPhc8fzLxvcxuoqg8mI61evo6U5D955h/nZKv1+l6KhcTDoo548YZQm6P4MZ9DBkAl2MmXnw3cIohA58LhhteiFEbM0YfTpE0zdZ+E0QB8mXMpsNLPKrH/EMC1y88prXF+8wTvDv+W9s4+Ym1/kza+9zuMHT7mz/5TAzomNlHrFZbV1kVeXXwQvYrdzxo2v/w7BaQ8159D4xovEUQ+1YLG/f0yjUOLc4hKel7A7OCJXCfE0pJFXyDKDutDIDAOn2cBZX2E6bKNkztAfMwszFJIYgdB1RJ5xcnSAn86IPY+ydCnpRbzpjEQkGPJ5flqmcvQ0RiMg0DRaX32B5rWrWJsruAWL7OiU497PsJ9toXdNrFWJrObceXqPntdnr/2En27fI8kVqa5xnMOeN2Wce+giw04lCkhRSJ4fdKnKUTlkCsIccnLIPE6SDkvdHRo6aJMT1kKJlps0cw2fHI+YVAnmzDIVJKQxudBZdFtcXb7KkizT/+QJ8WhE3S1RcouMSNBaZbKyjiRDjEPS/gSVpAgtICtGlM4tUC02kbIBhg0lB2HrULBxVIaV/grGGtuTGautRQpOhVl3gPDKLG0ssVxZYv9Hv6C3t0+xtYRZX8D79BHkOc3NFUbDLpWCRqbpuKKBG+ow66NlMcFgSj8/Yyl1SUZTynpEGSiVGqxdXKdycYmto3u0Lq4zp++wsnyV8twSk/c+J/cSbMug2Wxw8LSLUXVYf3mDhz/8BLNRxprTePTwgHCa82JwHlktYUgDKQVTMWOcTxlnU/phH/Kc/fSYQEQoVcF1q0zDACPyObv3GQULoiB47o8FpGRkCEhzHNtExSmONNCFhsoUWZoSEhGTIwAbaBg2qTBIsiJybp7F77yBPH8O0aygFS2UBjQqTO9sUaMICwXaZ13a4yGeSGknHu14QAAITWegmbRVRMzzgSTFc0glzwewkIJI5ZBnpP9/FVKdjHba5+D0GVkUYgq4UZxHG8VMhWIqcg7z4XPzk9DgnCwhZU6p3uL2lRe4Yi4Sfn5MNZGU7CqF+Xmol5irWGg3LpLXXIIoxEoS3IKDTBOEaRPLnLPZDnU3wbJtEDpIBZpAKxUQpSIy/+KT5F8Y3Nd/4zuMTzt0jrpoocnq8iZv/fDPeOWN32OYRCxvXmK+uYpWrrH36VPOth7Ri3t44YjKZotX/pN/QfeDz9j76Y8ZJRmnxJSvrrF5600KxyGz7QcE+4/JdKCo8aPPf4yzd4e21+Was06xNs9Hn97hk/F9VquLrM6vcOadYmZQKEm0OYeDYJuHwztsrr3ATucux4cP0IRN99MHlOerpO0eJSnpDU6ZDLrEMibBwzZs2skZiUjQJBiZwermZbRqlbhzyLDXRuRgSYuKW2Tsz0jzGIEgjZPnOcO5hshB/DJONU6zX4IuSYRA5BnoNsWFeZbefBV56zzMVclcHanraG6BklUgzgRNy+XgrMMn+5/xqL3HKE/oZQlTE/wU4jzFnquj+YJ04uGWdGqmzWToITJwDR1d04mTFJUCz6uo+IBE0MXj6eARs0kXU3NRec5ScxXPtZlKhe53CYYDFiOTC1qNhco8SzdfYn5lnelHj9GGPra0SOOM3tkZQTSmMXeRgm0ilcCyTKRtIvMIZj5J1Cf0jzk93iIaH3JuXaEV1whmHrkqUDDrSFsjS9SX7x1muXUuXFjgcfcT3MUl1GRKGg3Q4ymFcplxN+DZTz5gY20dJ1N4cchg0uYkblPzExYO7vHkwScof0wkczwBcy9cpfrN1xl/usXB0cfsZQP2wy4Sm4nIaU9OKTVLfHL/Po21EingFlx64yHhbEQwmxGdxCRSEcmMoRiiL2q8u/ULPvrsDi/IDcpK5+6f/TVKgpX7FHOJhoFpWUzTFDd//ikEg1CF9LIRK+4StVsvkq4sMfl//l/JgwDLMKjqVWoXVtnZ3+VkfIaSQPa8WyWVJM9zYpmgAB35y2kqSZjlkKVIkdNq1mjcugpLdTJLIiwNFabQGWMNIrRUoKVw0j7m9PSMOFNM85iZAE9AokGSgUhD0iTCNWGpWaHpVNga7qPrGrZpkmYpUfa8K2cikSgyFCE5Y5FRyqaoNMQVNeY2r/L1f/7H2OfPEeQJ0/Yx7/7pn+F/tsuarLPsLFKSJXRfMTntU1MgpIFtGSTk6LpEMzSIUyBDJM9jZpOTPsyGDAdbeOkxUdpmOJqykp3HoEYy7JHHRUSyCNH/72H5JYOb+QqjVKLs1jh9ssWddz7i4sINZqf7OKZN8eZVog8fsP/+p0hvgNRSLty+yMNPt9nb/5yTP+mxMDVoKnCFZMVpooY+D/7+H9C6Uz7afUA+VyLpOyQqQSvZeLMp00lArodM92dIaREkISXlgJYjdclcvcjxdMa7H91nfLJLHYdhMiQfjamdv8ZFbYHddpdiscTRuI8SBbSCSyYhzmbkPC8tpUoSE+MTEiM4e/SM6cPHZHGMpWlIbKIk4GB7jyyNMYX+/H+K56eEJnQUCl8FpCrHBDSpkwkFUkNgYher1Dc30FtzKEMSyxwLgYgiOnce4D/dpxwrpNBpVuf5nZu/z0+ffcRk5x4qDlCAFODaOsVCgVkYUrAtLqytgpcglCJPEyZZikKBUBhILCRF00LTNOLIx8sSQplgk5MSkIUz1shZqNVIoimzxzPKkUXLWWROVdBjDZkIBJKS6WLqMamUiCzHsDSEbhCPpkRb22QqxS6YmK6NfjIkGp0Sqx4zrc/MmhFqKQ+efYjuP+Ppfpvaynleq9Uwi1UGgzGLv735hXgUSqkvvsz+a/1a/xPRFy+c/Vq/1v+E9Gtwf61/lPo1uL/WP0r9Gtxf6x+lfg3ur/WPUr8G99f6R6lfg/tr/aPUr8H9tf5R6tfg/lr/KPX/BZdPpJapKHmCAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADECAYAAADZLWDNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADRfUlEQVR4nOz9Z7BkWXqehz7pvfcnM08eb8q2ne4xaJgBMBQxvIQkSgApKgCJpHAlgUYKiiL1QxQlyoZCAV4CYoCKkKALkRKDIYqkRAwINzMY043u6u6q6qo63uTJk957n/v+2Pmt7hoMZqZrgCY5t1dERXVXZWXm2Xvttb71fq8xaJqm8fH4eHwPDeM/6y/w8fh4/H6Pjyf1x+N7bnw8qT8e33Pj40n98fieGx9P6o/H99z4eFJ/PL7nxseT+uPxPTc+ntQfj++58fGk/nh8z41/8Sb12hr89E+///9f+hIYDPrvv1/DYID/7D/7/Xu//38b/4yv34eb1L/0S/oXll92O+zswM/+LJTLfzDf8A9q/Mqv/Is9cb/xXhgMEI3CD/4gfOELf/Cf/8/x9TM/07/6z/9zWF+H0Qi++lX4W39L/yEfPQKn8/f5K36b8dprMByC1frh/t2v/Ar8wi988xszHIL52S7NRz7kXmiavrD80i/BH/7D8H//3/D5z//Bfe63un7/jMez3bl/6V+Cl17S//tP/2kIheB/+B/gH/0j+ON//Jv/m34fXK5n/JrfYhiN+o7x+zl+v9/vD3J88F4A/Kk/BbEY/O//+x/spP7nePz+1NQ/9EP67xcX+u8//dPgdsPZmb5qeDzwb/wb+t8tFvBzPwc3b+qTJxaDn/kZaDaffk9Ng7/+1yGV0lf/H/xBePz4d3/271VT/87v6J8dCOgP05078Df+xvvf7xd+Qf/vD27fMr5ZTfjuu/oE8nr1n+2zn4U33nj6NVISfO1r8B/+hxCJ6J/9L//LUK1+m4v4+zT8fnA4fvdO851ed9DLl+/7Pv27ezzwYz/29LX/dtfvm418Hv7tf1v/XJtN/x7/8//8u1/3N/+m/ndOp37vXnoJ/u7f/RAX4FlX6m8cZ2f676HQ+382m8HnPgef+Qz89//9+2XJz/yMfvP/rX8L/tyf0x+En/95fdJ87Wtgseiv+0//U31S/+E/rP965x340R+FyeTbf59f/3V9lUok4M//eYjH4eAA/p//R///n/kZKBT01/3yL3/793v8WL/JXi/8pb+kf8df/EX4gR+AL38ZXnnl6df/2T+r35C/+lfh8lKfTD/7s/D3/t63/6wPO9ptqNX0RaBS0SdFrwd/8k8+/brv9Lr/8i/DT/2Ufu/+2/8WBgO9vPzMZ/TXrq19+OtXLsOrr+oT/2d/Vn/Yv/AFfVfpdOAv/AX9df/T/6R/tz/2x/T7NBrBw4f6AvUn/sR3fk20DzP+l/9F00DTfuM3NK1a1bRcTtP+j/9D00IhTXM4NO36Wn/dT/2U/rq//Jef/vdf+Yr+53/n7zz957/6q0//eaWiaVarpv3Yj2naYvH+6/6T/0R/3U/91Pt/9sUv6n/2xS/q/z+badr6uqZlMprWbD79OR98r3//39f/3TcboGl/9a++//8//uP69zk7e//PCgVN83g07bXXfvf1+eEffvqz/oP/QNNMJk1rtb755z3LkM/6xl82m6b90i89/drv9Lp3u5rm92van/kzT7+uVNI0n+/pP/8w1+9P/SlNSyQ0rVZ7+nU/+ZP6+w4G+v//0T+qaTdvftsf/duNZys/fviH9actnYaf/El9O/6//i9IJp9+3b/77z79/3//74PPBz/yI/rqIr9efFF/jy9+UX/db/yGviL/2T/79LYmT/S3Gu++q69Cf+Ev6FvxB8e32yK/2ZjP4dd+DX78x2Fj4/0/TyT01eOrX9VXmw+Of+ffefqzvu/79PfJZj/853+78Qu/oK+Yv/7r8L/9b3qZ9qf/NPyDf/D+a77T6/7rvw6tln4u+uDrTCZ9N5LXfZihafB//p/wR/6I/t8ffN/PfU7fad55R3+t3w/X1/DWW9/VJXm28uMXfkGH8sxmvUba3dUPbE+9s1mvhz84Tk70HyIa/ebvW6nov8vN395++u8jEX1b/1ZDSqFbt779z/GdjGpV34J3d3/33+3v67VqLqfXgTJWV59+nXznb1a/yhgO9WvzwRGPf/vv94lPPH1Q/ON/HJ5/Xt/mP/95HRX6Tq/7yYn+u5yRvnF4vd/++3zjqFb1B+Vv/23917f6/P/4P9YXtE98Ara29HLzT/wJ+PSnP9RHPtuk/sYL+c2Gzfa7J/pioV/Yv/N3vvm/iUSe6ev8czdMpm/+599KOff3/p5e736nr/+9htGor9Z/42/ok/Tmze/8ui8W+u+//Mvf/IF6FphT3vNP/km9Vv9m484d/ff9fTg60s8+v/qr+gr/P/6P+vnqr/217/gjP1owdnNTfxI//Wn9hP57jUxG//3k5Oktv1r91qudfAbomPkP//Dv/brvtBSJRPRD7tHR7/67w0N9EqXT39l7favxuc/p2//vx5jN9N97Pf337/S6y7WLRr/1tYMPd/08Hr38+nbvCTri8hM/of+aTOBf+Vfgv/wv4a/8le8Yav1o2+T/+r+u/3D/xX/xu/9uNtO3KdB/eItFP8l/cLX6uZ/79p/xwgt6M+Lnfu7995PxwfcSzPwbX/ONw2TSt8F/9I90JENGuaxDTZ/5zLNty984Egn95/7gr2cZ06l+BrBa9ZUPvvPr/rnP6T/Lf/Vf6e/zjeODsOSHuX7/6r+qr7qPHn3r96zXn/47qxVu3NDv2zf7Pr/H+GhX6u//fh0O+q//a7h/X58sFou+Iv/9v69vmX/sj+lP91/8i/rrPv95HdJ7910dBgqHv/VnGI06BPVH/gg895y+pScS+qr6+DH803+qv+7FF/Xf/9yf02+myaQfer/Z+Ot/XV9FP/MZ+Pf+PX0b/sVfhPEY/rv/7vfr6jzb+MIX9J8N9Nr07/5d/Xr+5b/8/sP2nV53r1e/dv/mv6kvDj/5k/q9uLqCf/JP9JX+539ef88Pc/3+m/9GP2S+8gr8mT+jT9RGQz8g/sZv6P8N+veKx/XPicV0GPbnf17HyT2e7/yafCisRGCkt9761q/7qZ/SNJfr9/77v/23Ne3FF3UY0OPRtNu3Ne0v/SUdJpMxn2vaX/trOhTkcGjaD/yApj16pEN13wrSk/HVr2raj/yI/v4ul6bduaNpf/Nvvv/3s5mm/dk/q2mRiKYZDE/DU98ISWmapr3zjqZ97nOa5nZrmtOpaT/4g5r29a9/Z9fn9/qO3834ZpCe3a5pzz2naX/rbz0NKcr4Tq67fN/PfU6H2+x2Tdvc1LSf/mlNu3fv/dd82OtXLuswYDqtaRaLpsXjmvbZz+rfScYv/qIOkYZCOjS5ualp/9F/pGnt9oe6NAb9O3w8Ph7fO+NfPOrpx+Pj8W3Gx5P64/E9Nz6e1B+P77nx8aT+eHzPjY8n9cfje258PKk/Ht9z4+NJ/fH4nhvP3FH8S3/x/43X68VkMhEIBJjP51xfX1MsFkmn00yHY9qtFtvb2/T7fYxGI7lcDrvdzubWFt1+D7fHjc1uZzAYUCwWARiPx8TjCdAMDIcTZrM5JpOJdDpNoVAgm82yublJoXCNxWIkGApgtVqZTCbM53Om0ylra2skk0m+9KUvYbfbmc/nrKysYDQaOT4+xm63k0gkACMet49arcZ4PCYYDGIymZhMJlxdXZHJrHFxcYnVamVnZ4dSqcR0OmWxWBCLxUilUjx+/B6TyYTV1VXsdju1Wo1yucze3h5Go5HHjx/j8Xiw2Ww4nU4mkwnT6ZRarcZwOGA2GuHz+djZ2eHk5ASz2YzZbGY0GlEul9nYWMNgMFCv12k2m9hsNsLhMDabDbPZTLlaZ3v3BhaLBbvdTrfb5fj4GJfLhc/nw2Kx4HK5aLVamEwmGo0Gi8UCs9lMt9slFoupe3fjxg3y+Tw2mw2v16uum9vtpl6vc3p6isvlYmNjg3a7zXw+Zz6fMRwOGI0GmEwm4vE4Jycn+P1+kskkJycngIHBYMinP/1p8vk8FouFQqGAz+fDZDLhcjoxLOYcHh4yGo2IRqNYLBaKxSL/n1/8Xz/03HzmlToYDBIMBmm329TrdVqtFs1mE6vVisvlIhKNMJ3O0DQNo9HIYrFgb2+PSCRCt9PBZDZjMBoZDAbM53NsNhubm5usrKyQy11RLBYJh8M4nU5SqRQ2m41AIMBsNsNoNOL1erHb7ZRKJRaLBaPRiPl8znA4pNPpUK/XMS9ZZW63m3A4TLfbZTweo2kaLpcLs0n/+2KxiNlspt/vA+B0OrFYLIxGIxKJBFtbWwyHQ3Z3d4lEIsRiMcbjMePxGIDhcEi/31ffwWq1UiqVuH//PqPRiFqtxmKxwGg0Mp1OGQwGmM1mfD4/bo+HVCqF3+8nFArh9XqxWq3M53MSiQTdbg+z2YzJZGJ3dxev18f6+joejwe3281kMuXk+JjJZMJkMmGxWGCxWNSDWalUWCwWaJrG1tYWDoeDRqOByWRSi0Gz2cTv9+PxePB4PGiaxmQyYTAYcHp6SqVSoVar4XQ6CQaD1Ot1er0eV1dXeL0+VlaShEJhMpkMuVyOF198kRs3bmAwGHA4HDgcDkwmE6enp9RqNY6Pj5nP5ywWC1KplH5flt99Pp+zu7uL3+9nLgy/DzmeeaUeDSfYrFNsVgd+X5DBYMDW5g5Wq5XhaIjJbCUYiTAcT5hrcH2d1yeL1YrT6SDiD2A0mBiPh7icToyGHl6PH7PJSrvVxW63MxqNGY1GNBoNnE4ngUCA1157jVKphMPhwONxUyyWmE0XOB1uGo0GRoMJq8WO2+UlncoQDAY5Pz+n1ezgcfsIBsKMx2MG/RGgr4A+n4+1tTV++7d/m2QyicvlwuVyMZmM0TQDdrsdh8OhHlC58fIAF4tFms0mTqeTdrtNtVplY2MDn89HoVBgNBrhcDjUg1Kr1ej1evh8PuLRGN3+kGa7S6PVwe120e70cHl8dLtdDAYDk/mC3nCEczJlARRKZVxut/5QeL04HC6GwyGnp6dqstrtdvx+P06nE6PRqK/q5TK9Xo/ZbMZ8Pmdvb49ut0ur1SIcDjOdTtnd3aXT6XB6ekq/38dsNtNutzGZTLTbbSqVCi6XC4/Hg8lkotvt4nI5mM3mzGYLwuEIZ2cXWK1W+v0+3W6XdDpNo9GkXC6zvr5OtVolGo3SarX4nd/5HaxWK067g3AkRqvVIpvLk0olicYSH+2klqffuFxt5Sk2GAxcX18znU5xu9243G663S6z+ZxKtUo6nWZ1NUOz2cTucDCfzZnN5kynM66urvB4PASDQVwuD263F7/fz4MHD/B4PCSTSdxu93JyDIEFDoeDwWCAw+HA6XSytraGx+PhyZMnlMtlXn75ZUKhEL1eD5fLxe3bt9X3nc8XNJstHA4HnU6HVquF3W7HZrOpiXx+fqnKgUwmw/n5Ofv7+4xGIzweDw6HA5fLxWg0YrFY0G63GY1GxGIxNXlnsxnD4ZDpdKquk6ZpGAwG5vM52WyWyWSC1WplPJ7QbrdJJBJ0Oh16/R537t6h3+/z6NEj1tfXyRcKhMP6w+n1+pjN5pTLZfr9Ptvb20ynU8LhMCaTCafTicFgwGg0sr6+jsvl4v79+6yvr9Nut4lEIjQajeXPes7Nmze5vLykVCqxsrJCo9EgFArpE8/ppFKpoGkaZrNZ7YqXl+dYrVZMJhOJxAq/9Vu/RSAQwOVy8cILL+D1elksFrzxxhtqtyoWi+zv7/Puu+9iNpuxhMzE43G8Ph/9fp9isYT3GdmPzzypbTYH/f6QRqOFwWAkGAyhaWCxWKlUavj9fjY2t+n2ukznC5574UWusldEonECwTDT2YKzszMSiQTNZhuXy4PRaKbV6jCfz3G7vbTbbTKZDNVqdblyjxgMBtRqNYLBINVqjdu37zKdTshmr7BarRgMRnq9Ad1un2g0xng8BYwEg2G63Q6dThen00Wr1cG69AqZzfQy6c6dO8znc7UqtVototEow+FQ34GGQ2w2G5qmMRgMyOVyrK9n6Pf71Go1RqORKnk6nQ6pVEpNRI/Hw2KxIBwOk0qleOutt3A6nZitNlKrGaxWGxaLmclkQiKZxuX14XA10QyA0cRoPMXrD5BeXQNgvphTr9WxWm3LMmRCKpVSD/l8PsdisXBwcIDP58PtdjOfzzGbzVitVlXPtlotfD4fk8mEF198kWazqR76tbU1vF4vDodjOdGKRKNRVQY2Gg0GgwHr65skEglqtRrT6ZzXXvsBHj9+jMPholZrYLPZVRm5s7NDv9+nXC6rsnA0GhGKRKk2muzu7KhFwGazPdPcfOaa2uPxMJ1O2d/fJxqNUS5XKBb1+jYej5NaTdMfDak3m5gsFsbTKem1DLGVBOfZS2KJOIFAALvdjs/nY39/n729veUKOqdWq1OtVnn99deJxWJ4vV5sNhtHR0dqaw+Hw8uazYnX6+X27duEwxGsViubm5vs7OwymUwoFovkcjmGwxHD4Yhut8vl5SXZbFatZtFoFLfbzXQ6RdM01tfX8fsD2Gw2ptMpo9GI6XTK3bt3AWg2m3Q6HarVKovFgpdeeknVrcFgkPF4TL1eZ39/nxs3bnDr1i3G4zFHR0e0223W1taYzeZ0en2G4wkOl4tkepV2t4c/GCSeWGE0mWK22Wh1OiRSSV58+WW6gz4PHr2Hx+cjvZah1+9jMpkIhUJcXV0xHo/Z3Nyk3+8zn8+x2+1kMhkcDgfdbpdiscjOzg6NRgO32w3AxsYGmqZxcHBAq9UiGAyyubmJ2+1WE9hsNuN26yXe1dUVo9GIu3fv8uKLL9JudajXGlzn8gz6Q1xON5nVNbqdHn5fgFpNP+TW63VqtRobGxssFguur6/xer14fT4arTYaBgwmM75AkKOTU7r9wUc7qY1GMwaDCafTRa83YD7XcLk8aJqB+VxjOplzcX7JYq4xn2nUqg1SyVVMRjMup5v8dRGDwYim6at+uVylVKoQCATZ3Nzmxo2bdDodTk5O6HQ6GI1GqtWqOo3b7Xaur/OcnZ3jcrmxWGwMBiNarQ5gAIyMRmMWC0gkkuo1k8kUg8GEz+dX238kEsFoNOLz+dA0jXg8Tr/fZzgcKOQmFApRr9fRNA2Px0MmkyEUCi1XpymzpdokmUwSCoXodrtUKhVMJhOLxYJWq4XNZmMymdDpdDAYDKRSKdLpNG63m+FwiNvtVrvEdDrFYDBgtzmYzzQMGJflWBCX043FbGM+1/C4PcxmMywWC1arVZ1BzGazOohpmsZoNKLVajEYDDg+PqbVanFycsJwOGQymZBMJpfljBe32008HqdQKDyFmCQSCaLRKPV6XZUhpVKJWCwGQKVSUQ+7oEHDob7qr65m8Hq9XF5eYrFYSKVSmM36zrSaXmU0GpFMJun1emSzWVZXVymVSh/tpB6PxwQCAS4uLtna2mJlZQWz2cx0OtWRkFYTr8/LxsYGfr+ftbU1Hj16RKvVxmKx4nA48PsDrK5maLVaVJbiS5/Pz3Q65fT0lLW1NSKRiCo7Go0GVqtVwV77+zdIpdKUyxXC4TC9Xm95AGlzfn5OtVpT7xuPJzAajUSjsWXNGcFms6sbNJlM8Hq9ZDIZDAYD5+fnaBoYjUa1ld+5c4fhcMh4PCYSiagtVdM08vk85XJZnSc6nQ4Wi4VwOEyr1eLevXtcXl6STqdxOByMx2POz8947733ALBarVxfX5NOp4nFYlQqFe7evYvFYlkiGBp2mx2zycznP/9H0DSN+UxfiZ1OJ2azmeeff556vU65XKZQKPDkyROGw6F6wPr9/hJdytHtdrl58yYvv/zy8lA80Q+u8TjhpRDDYrEwHo+JRqMKVRGozmazcXZ2RiQSwWK1MJ/P+eQnP4nJZOLi4oJGo8GNGzdwuz1qwRiPJxgMBp48ecL6+jqHh4f4/X5WMxlu3rzJ6urqEgDwEIvF2P5G4fUf9KSOxSJo2oJ2u0mzWUfTFsznM2azKXa7lcl4QDjgo9tpUirmGQ36GFjgsNuYz2ZoiwU2m43BYECv16PRaDCfzzk7O2M4HBJPJAiFwxjNZmx2O26vl8TKCoVikd5ggMPlolQq0el0yGazVKtV6vW6Om03m01cLhdra2t0u12GwyGj0YjxeEylUsHpdC5XYRPNZpter4/RaMZqtS1rQBcWq5XJbMZ0Pqc/HGJzOKjWapQqFSbTKf3hkMFgRDKZIp3OoGkGwEAwGMLr9TEaTRgOxzidbhwOF06nm15vwOXlFd1uD5vNgc1qYTjo0+926He72K0WXE4HRsCARiIeV4dWm82mUA550ExLVEMOujabTdXvrVaL7NUVvX6fQDBIo9Wi0+uxvrnJXNNodzocHh/T6XYJBIMYTCZG4zHjyYTheMxgNMLhdOL1+ZhrGodHR/SHQ0xmMxgMaAYDtUaDSDSC3enA6XExHI8IhIKEYxHm2gKz1UK70+Hs4oJYPMHzL7xEfCXFZDonEo1TLFcZDHUo9OTk5CkEKfDtnAN+j/HMB8VOp4PX68Fut3Pv3j0ikQg7OzvY7XbW19d479FDTCaoVev4/QGKxTzp9Crz2YzBEtN1u91EIhHu3r3LW2+9hcvlUpOu1++TTKV4Zel+JIezYCiEpmk8eu89YrEYnU6HZDLJW2+9RTqdXq6w2nLr07dWl8vFxcUFHo9HoRbFYpH5fIHX62M+n1OpVFksNPx+P5VKlY2NTTTgKpcjGo3i9/s5PT1lNZNhPp/T7fWolMtMJxP8fj/N5jHNZhOLRV+1HA4Hi8WU+/fvq7o0nU5jNptxOp0cHx/rTRmrFbfLhcFg4Ooqy3isoywej5vRaER/eeiTppCspNlsVh36hsMhrVYLj8eD1+ulVqvhcDhYW1ujPxgwHI0wmUyqX/DKK6+Qz+e5yuXQNI1Op8NisSCfz2MwGEin0wpBcrlc2Ox2vbGSSGCz2ej3+8zmc3w+HwDZqys2NjZ4+PAh88Uco8moY93TCRoa2zu7SziwhtFkpt3u0Gq1iURjOJ1OqtUadrudjY0Nrq+vOTo6QtM02u02P/b5H//Qc/OZV+pAIKC27FAoxGAwoNVqUSwWsdvtqjng8/vV/0tTIxqNsrq6SqPRIJfLLR8QLwaDQW3vg8GAi4sL+v2+Qj5MJhO9Xo+joyPiiYT6fL2U8dNsNlUjx2w2qwPbcDhkZWWFQCCgttBer4fH48FgMFCtVrFYLAwGA5rNJs1mk0AggMftJp1Oq67cbDbD7/fTarXodDo4XS6cTieFQkHV3cVikWq1ymw2UzW1QJ/j8ZiNjQ1sNhutVoter4fX68VisWCxWDCbdVirXC6r7mCv12MwGJDNZlX59c4773B1dUWz2WQ2m6lDbCaTIRqNkkgkVFPMarHQ6/WwWCzEYjHC4TD5fF6992KxwOfzYbVa6XQ6uFwutcqnUikWiwWdTkcdKuWBlR3WarUSjUa5urpSDZxqtcp8Pqff73Pv3j1Go6FqSi0WC4bDIV6vl5OTE8bjsWoGNRoNZrMZ4XCYZDKJ58PoEj8wnnmllnZ0LpdTdS7oh4X799/FarVQq1WYjKf8yI/8KEajiXv33iYUCjOdztThxO/3c3Jygt1u5/LykvX1dZxOHc144803KZVKrK+vc+PGDbLZLMPhkJ2dHebzOX6/n3q9jsvl4rnnnlONh0KhwPr6OmdnZ1gsFlZXV3G5XORyOcLhMIPBgHA4TCwWUzdzfX2dZrOp6uvFQsfAi+UyHo+HXC6H0Wjk0VIRvbe3R6PR4NHDh9y9exez2ay6nbVaTdWlDoeD2WyGyWQiGAzy3nvvYTKZ+KEf+iEikQjT6ZTr62vMZrNqvZdKJSwWC5lMhtd/53dUI8VsNvPOO+9w9+5dBoMBbrebq8tLfuiHfoiDgwP1HnLYG4/HnJ6dkVxCfQ6HgzfffJNkMonD4WB7e5tCoUCn01GrdCAQ4N1338Xv9/Pyyy/z4MED+v0+DoeDq6sr4vG4wr673a7qwkrHs9Fo0Gg0+NVf/VW2t7fZ3d2l29Uf3k6ng9/vR9M0qtUqr776KpqmcXl5qWp2k8nE/v4+19fXaif4sOOZV+rZbMbFxYVqUQ8GA87OzjCZTGqlFJ6E3GyZRAaDgXa7zcnJCWdnZ2xvb7OxsYHVaiUUCuFwOLi+vsZkMuHz+SiVSnzxi19kMBhw69YtLBYLtVpN4cjdbhev18twOGR9fZ3pdEq321UcCeEyOBwOLi8vVX0K8OjRI2azGT6fT0FgTqcTt9vNZTarGjM2m01NmMViQS6Xw+FwqNJCdoRkMkk8HlcIh+xQwo/Z3NzEbrczm82oVqsMh0Oi0SjxeJxYLMZkMmFzc5PBYIDBYGBrc5Po0lkplUphsVh44403iEajjMdjnC4X+Xye6XSK3+/n0aNHFAoFVlZW1OQW3DmZTKpdM7Qs41wuFzabDZ/PpxpnXq8Xp9NJeWmkL80nl8ulMG7B+BOJBLFYjP39fSKRCP1+H4PBwNramo4/h0JYrRa143S7Xba3t1VXVnYzmS+CiWuahuNbeZT8QUxqQEFEoHcYV1dXWSwWmEwm1tbW8Pv9GIxGstksBweHDIdDhkP94rz66qsMh0Oq1SoHBwe0221efPFF1cKt1+u88MIL/KE/9IdIp9OqnZtOp1XHz2w2c3R0RDAYxGKxYDAYeOONN9QFzWQyJBIJhdF6vV40TcNiseDxeNQ232q1yOfzeL1ehad+5Stf4fT0lMFgQDKZpFAoKDJUOBxmOByyWCyw2+1qey8UCtTrdWw2m958WtaIk2XdrdfZ+kNutVpJp9OcnJxw7949xUk5Pz/n8PCQfD6v//lkolrtDx48IJVKcefOHUwmEwaDgYuLC87Pz7m8vOTLX/4yw+GQSqWyRH+q3Lp1i0wmw2g0otPp8Morr2A0Gmm326rjORqN2NjYYHNzE03TzxWRSITHjx/T7/dZW1uj1+uxsrKCpmlcXV2pVfX8/FxBoaBDmru7uzidTr761a9y7949SqUS7Xabn/iJnyCTyTAcDjk4OMDr9fL8888zmUz4whe+QKFQwOv18vjxYy4uLmh/ow3bH/SklgOJ1WolHo/rBJT5nGAwyOrqKtOl+YgBA263G4/HTa1Wo1IpPwX637p1i263y8XFBQ8ePFAt3enyxptMJgUrOZ1Orq6u6Pf7NBoN2u328qBRVWQZadLI5JGaLbk0rwyFQqp2l4dS2tt2ux1N01QZ0O/3GY/HHBwcYLVaVbOoVCqpVcdutyuGoNlsJhAI0G63abfbOj1gNqPdbtPr9ZhOp5yfn1MoFKjValSrVe7cuUMymeThw4fqYRsMBmxvbxMMBpnNZhgMBpxOJ3a7nbOlV6DUtCsrK5hMpiWuPsTpdBKJRGi32xSLRUajkcLHc7kctVqNWCymFgXQD+Gz2Qyv18vu7i7T6VTtINlslpOTE3zL9vX19TW9Xg+Hw6Fa9b1ej+FwyMOHDwkGg2QyGbXaa5qmJvJ8Plc7nfzbwWDA/v4+n/70p1lbW1M7eiaTUTvFRzap8/k8L730ElarldXVVdbW1lQ5sVgsGAwHlMsVolG9w/fSSy8pYowcIoSNJew3h8NBqVTCbrfj9XiIx+Pcv38fm83G1tYWFotF1ajX19csFguCwSDz+XyJZswZjUaq0fDuu+9SrVYxGo30ej1OT09VebG7u8vKygrNZpN4PE6tVsNgMGC1WpnNZng8HgKBACaTCa/XqzpqRqORYDDI7u4u8Xgcg8HA5eUlhUKBwWCAx+NRu0kwGCSVSrG5LCFsNhtra2uYTCYODg4YDAb6bmbQH/x79+5RLpe5efMmX//618lkdAzfarWiaZo63F5eXnJ4eMhkMmFjfV2VRUISMplMbG9vk0gkKBQKCv5rt9vMZjNyuZx6nXBVpEQpFotMJhN6vR6VSoV0Os1gMKBer7O2tsaNGzfw+XwkEgksFgtra2u0Wi3G4zFnZ2ecn5+rBkw8HieRSNDvD9A0Te1Kh0vznfl8TigU4t69e7z99tvqwP3pT3+a3d3dj36lDgZD9PsDWq02Z2fndLs9QqEwNpudYrGMzxdgNtfo9gZYrA6Ojk9xOF08/8KLLDSNcDjM4eEhr7/+OolEApfLxeHhIY8ePaJarWIwGimXStisVpwOByuJBPnra8qlEv1eDzRNlQCrq6vcvXtXHTLdbjdms5lQKKS6fefn55yentJut2k0GhgMBpqtFuPJhPligcFoZDafE4vHmc5mOF0uAgGdq+31emm1Wmqlcjqd1Ot13G43VpuNH/6RH6Hd6bC1vc3jJ0949PgxyVSK4WhEuVIhEomwWCzweDxsbGywsbFBtVql1WpxdXWlYEeAbrer2t2TZekhO8HZ2ZlCTvL5PLlcjkq1SigcZntnh+FoRK/fx2gy4XA68SxXy8vLS3Z3d3n11Vfx+wP0ej16PX1ld7ncbG/vqIZVv98nmUzh8/kxm3WOtlyzQqGwfLj61OsNdnd32dvbx+Px0O8P2N7eAVANn0Qiwfb2tmr2SMNue3ub/f19/R4sYdDLy0u8Xi/Z7CXn5+e4XE42NtafaW4+s5nNX/tP/wo3b96k3+9zdnbG+vo6wWCQX/u1X8NqtbK1s43d4cDtcuN0OtVK6XA4yGQy2KxWfu2f/lMMBgMvv/wyfr9fdeGq1ao6TLZaLTKZDD6fj1wuh8/no9FokEqlyOVyip8gF2c8HjOdThmPx+zt7VGtVrm+vqZUKrGxscHa2hqLxUKnfvr9lMplvF6vItk4HI4lb9mrOnyC8AiUF4vFaLfbOBwOCoUCfr+fWCyGy+XiS1/6Eo1Gg7t37+q1tM+ncHmXy6Vq8sPDQ5LJJJNlMsKNGzc4Ojri8PCQaDTKYKCT7t1eL+VyGZfLRbfbJZlMomkaXq8Xl8ul2vCXl5dMJhN1nuj3+1SrVf0w6XTx4osvKq6LzWbDYDCQzWbJZDK02200TcPn82G32xUqY7FYyOfzCu83Go3qXhqNRra3t9X1FsRmOp0SCoXw+Xy4XC7K5TKlUolIJEK5XGY0GpFOpwkGg+o8c3FxwWDQV0xAOWBOJhP+3J//ix96bj7zSh2JRDCZTDpe63QyGAzUYaRarTKfzZmMJ4pTbLVa+dSnPoXL5eL6+pqzszNVPzUaDdUUAVSjQOikw+GQy8tL7Ha74gwLTNdoNNREqdVqqoVusVhwOp2sr68rHvN0OsVoNKpTervdVrTU/f19er0e3W5XqUui0SgHBwe43fqDGQqFeO6557DZbMTjcSwWC4vFglKpxOrqKo8ePeLFF19kc3OTu3fv6qjHEsIaDAZUKhUGg4EiXBUKBWazmVKipFIpVUYIRcDhcKjyZ319XXVHnU4nZ2dnNBoNer0eBoMBn89HJBJRyEK321W00tFopFQ3JpNJUWVHoxHtdhu/38/h4SFOp5Nut0s2m6Xb7RKNRkmn02oXlNJDWv1y7UOhEKurq2iapkQEx8fHnJ6eUi6XyWazpNNpdnZ2qFQqzGYz3G73UlwxXLI1m+RyOcXjXltbe6a5+V3xqTudDisrK7z++uuqyfDyyy9zdXVFYmWFJ0+eqFrXbDbT6/XY3Nwkn88TDoXwLWE2aV93u13q9ToOh4NyuYzFYuHTn/40x8fHHBwcsLGxoQ5F0hru9XqUSiWl1NjZ2WE8HlMoFCiXy2xvb7O3t6dgstPTU27evMn6+jqj8RijycRwOOTi4oJ4PK7q8evrayXBurq6wuFw4Ha7WSwWeL1exUVutVqUy2WKxSJ3795lvuy01et1MpkMJ8fHXJyfE4/HMZlMlEolBSfKoVRIPLlcTpF8DAaDXld2Oqrrl0gkGI1GBINBLi4umE6nCh/v9XrEYjHOz8+ZTqe4XC5+5Ed+hFzuWn3HN998k09+8pNYrVaazaZq1sh7zudzGo0GzWZT4eyTyQSz2ay4Iw6HQ/391dUVkUiE9fV1dfj3eDxKPHF9fY3b7VbQYqlUwmw2s7W1pRbB8XjM2toa+XyeSCRCsVjEaDQymUw++ppa0zTm87kC7Hu9Hpqm4XQ6dbL7aMTamq6vi8Vi6mDSW3omD4dDDAYDmUxmuf0M1IUR/Hl16cgv8i3ZlgQKDAaDOJ1OtfpIO9zlchEOh6lUKqpcEImUEM+lTg6FQmxsbLCysgJAr9dTncnz83NFSvL7/bjdbt5++20WiwX9fh+Xy7WsS3X1Szwe5+HDh9RqNTqdjvq+sVhMTQhpKAgZ6vBQoM4hs9mMZrPJe++9h8FgYLFYcHR8jNlsVt/XZDJht9txuVzU63VmsxmZTEa9Vz6fV93KR48ekUyu6MKCfJ7d3V2KxSKdjs4lPzo6Uh3FbrdLPB7HZrOpg7LBYKBYLDIcDgmFQlSrVXWgdLlc7O3tUSgUlIijXC4/hSIZDAbMZjObm5uYTCa1O/X7fbVLJBIJPB4vRqNRdWXD4fAzN17gu1ip8/k84XBY4ZTRaFTxGuLxOPPFglqtxmAwYG9vj06nowS2Xq+Xs9NTbuzv0+/3CQaD1Go1hZ/KRW42m9jtdtxuN5qmKagpkUionULgqkgkojpc1WpVwXvZbJZAIMD5+TnRaJRbt25RKpU4OzsjEAioxkK73VY6SmnizOdzpappNBqq7Oh2u4BeJvn9ftbX1ymXy3S7XUwmk/oZR6MR/V6PT3/601QqFS4vL1VpIy1mwfPz+Twej4doNKqUIa1Wi/ayjr9x4waLxYLNzU0sFguRSASbzUa9Xmc4HKr3OT09VbWp3W5nPB6TyWTUTloul4lGo5RKJW7evKlKBanPh8MhFouFbrdLKBRSdAhBODRNY21tjXa7rdAii8XC4eEhpVJJ3SuBFAXjlp04HA5zcHBAKpVSu+udO3dUh/bevXtsbGwQCoV48ODBM83N70p4K00G6aYBGAwGLEu+Qb/fV3Ihj8dDt9tVh7TxeIzJZCKXy7FYLJSCOB6P4/V6efnll+n3+wr+EaK70WjE7/cTDoeVsDMUCilobrFYKCRhOp3Sbre5vr5WXGPBXOUcoFMix+TzeVXXi6pcmjqz2YybN28q/oZ0T9966y0MBgPj8Riz2Uw+n1c1cy6X0xXZsxlfWmY8vvLKK+p6FAoFzs/PcTqdeDwe5vM5a2trXFxcKHxWEJZWq8V8PleH3uFwqA7GwWAQn8+ndkCDwUClUlErpPw7h8NBu93GZrPRbDYZjUa6mCOVUg2jnZ0d8vm8IjRJfS73Vg7UuVyO6+trRSl1uVzM53MCgQArKyuKRlur1dSKvbu7S7/fVx3lyWRCuVzG5/Op+yG8+fPzc8rlMoZnCZ7iu1ipRT1tNpuJRCL4/X510jWZTHh8PtVxs9vtlMtlVZ4EAgGikQjValWtEvV6nVQqpba3y8tLIpGIwo1tNl22JNuytLbNZrMiM5WXPI1Go6FWI9muZQeo1+uqDCmWSjx69AiDwUCj0WB9fZ3FYoHBYOD09BSDwYDNZsO1bEULGapUKnH37l1arZb6Tr1eTx2arVar4oCkV1f5R//wH5JMJqnX6+pQZTKZODo6ol6vEwgE1I5y9+5d/sk/+SdL+M3PAvB4vYqPcnFxQbfbZX19nUAgoAhfArs5HA42NzeVysThcCj7CZGtbS5jMKQEMBqNVCoV/H4/fr9fQZd2u10tOul0mmg0qlb70WhEtVql0+kovFvOCtfX14o8JeCa1OK1Wo1oNKp47oeHhywWC1ZWdNz79u3btFotRfJ6lvHMK7V05qLRKK4ldXJra0vVzfJDptNpOp2O+gGFAmq1Wmm32zobbnlalwk7Ho9ZaBoms5lSuUx/MMBmt2MwGmk2W9jtDvrLg0a9XlfwUiwWU3yTVqvF9s4Oa2trhCMR1ZgxGnVFzIMHD1gsFeGTyUQ9NM1mk8jy9YPBQDWDLi4uOD4+ZnV1VTWcAoGAarDIDiX14AsvvIDBYKBWqykN4FUuR6FY1JX329s89/zztNpthqMRt+/cIRQKYbFY2N7Z4ezsjLfffpvZbE44HKbdbhMOh9nY2Fgq4P2MRjpNVxYMn8+nkBFhw5nNFvVz1et1xuMx2WxW8UCGwyGRSEQ1euSMIk2lWq2myGOhUEg1clZWVvB4dAHAzvI6y+QWbF+6uI1GQ+HWKysr+P1+tSvK4XAwGLC2tkan01li9Tl0BdNHOKlXVlZUu1o6XrKllUoliss+fr1eVwer6XRKMBjEaDQSCARUXSgtXpng4vERicawO5xc5a6pN5qEI1E8Ph/ZXA63R6eqrqysYLfrChbBdq1W6xKe62Gx2bHZHezu38DmcBKKRElnMsw1FGkoFospOApQRi0GgwGv16u6crFYjAcPHjCbzXj8+DG5XI7T01Ourq7QNA33kqoaj8dpNBrs7Oxgs9u5ffcugVCIUDiMzW6n0WoxmU6JxmKk0mmKpRKT6RS700mz3cbpcmE0m7EuiU/9/gCTyczZ2TkGg5HtbR3hKRaLH1Dfu5RCRXaQ6XSKzWZTFFez2Uw0GiUcDtNoNOj3+4oQJpNR9J+i2RTlUalUUg+22WxWnxuLxdSCIPh9Op1WpVqr1VJ8Hmnfm81mdbh1uVxsb29TrdZ49937gIHZbK7oqx/ppO50OvT7fQaDgTqoSbctmUyq1rXgs5VKhdFopIxeGo0GGxsbahvLZDJMp1NWVlZ0SC5feKpeDgQCqtlxscxA9wcCCscej8e0220lOpXaTXcRmqutcT6f0+12eemll9ThyOVyKV6z8B2azSZbW1skEgnVpZSVJJVKUavV6Ha7OJ1OxSrs9/s0m03Oz895+PChguiSyaTikWiahslkolqtqoOiOC8Vi0VcLhdXV1dLYXGEbPZSTYTFYqELJYJBOp0OmUxGtcjH4zGPHz9W98VoNCqLA6EKAGpLF13meDwmnU6rg6AgMfalMEAm68nJCScnJ4qdV6lUFP344uJC8YAEopVmS7PZxOv1Kgbe1taWavaIkl08USaTidJAdjod7N9hGtc3jmeuqev1upo0MqFEnpVOpwmEQlwu06yEryFcZ5moVouFbDaroLzpdKpEnjs7G4wmU6xWq9p+HQ6H4mHXajXCwYDqdn2w3jYajaopkL26wm63K5X72dkZXq+XYDBIOr2KZfkdRFgqIgFBYgQbns/nHBwccHMZArqyskKr1cJoNCoWncCMmUxGNXJSqZTqIAKKTnt5ecn19TU7OzusrKwQDAYpl8vqrBAKhZRNwenpKQA7Ozucnp6qkk8/EJqUrYHwTaRJUqvV1IIjKJMgG/KAiWWa7Lj37t1ja2tL+ZYIMW02mxGJRBRy02q1iMViFAoFYrEYxWJR2Y3lcjkFjRoMBmWhJoCBXGvxWBFBhxz819bWnrnxAt+l8gV0rsIH4RyXy6Xss6bTKdPpVLXQhQrq9XoVr1j89/L5vOLQrq+v43A4ee+99xRLTQSywWCQmzdvqlXo/Pxc+fS1Wi0ePnxIv9/XedWzqUIPNE1TyIW0c3UjlksFQ7VaLcWR7vf7HB8fU6/XFTe51WqpRoRs98JPTqfTCooslUq89NJLxONxdb6QA5VMEmluXFxcsL6+rvjEQsEdj8f4/X4l4xJNpcFg4OTkhF6vp6436KjH5uYmoVCIfr9PvV4nn89TXUa6zWYzBoMB0+lUwYnSPJLubSAQIBqNEo1GabfbirMRi8WUcY88CP1+n/v375PNZlUJI3SC4XDI48ePuby8VNRWr9fLvXv3lIwtFotxenpKPp/H4XCwsbGhONehUIh0Ov3Rm9mINlBKDOkEdrtdzGYzRoNBeWR0u12leAAd4+73egQDAW7evEmhUMBsNqvJt1gsGC25G+PxmJs3b3JycqK2bkE8JqP3OQnS0rVYLKr1PRiOsDscrKysqImxtbWF0Wjk8vJySbmcKrhLSEQfJCCB3gwClOGjyWTCZDIRjUY5PT3F6XSSSCQUlDccDslms6RSKcW/iMfjiko7m82w2+3cuXOHd999l8PDQ9VgOTg4UJ50brcbm82uqLR2u13BbYL5ZzI6XcBoNHJycqKYc1IeAQQCQbUT2Gw2rFYr+Xweu91OMpmkXC4roUEgEMBoNGKxWHSEqFhUKhrhfehWYy6leBJ3qEwmozqE4XCYt956i83NTVwulzpzrKysUCwWiUQiyutvPB4r+oEYXT5+/FiVTB92PPNKPRqNCAQChMNh4vG48rMQnrN/uZKLl4R0/QQb7fV6ynRQnDdrtRr1ep0nT55QWZKLhLCTXqbKyvbZqNeXIt91pdoAVCes0Wgwnen85cViwdXVlbJvkG5fIhFXCID4z9VqNaWXk3pdShe73c7JyYniMp+enrJYLCiXyywWC6rVKslkknA4rAhIYh4pJB9Z8arVKoVCQeHl4/GYZDLJYrFQJdfx8TGDwYDbt28rvnoymVQ7nU708mOz2TAajZRKJarVKvl8HpPJRDabVSIGr9er3mM4HKoDu9VqpVqtqho4l8spjF7cYY1Go/ISEfQDWNqk6YdBAQiE2irvLWKIbDZLOBxW9f/R0RG7u7vU63Xq9TrHx8dMp1M8S8PMer2uytePbFJrmkaxWGRlZYWtra2nevUiwRLZlMFg4Pj4WEmNZGWfzWYEg0FCoRCJRELV6OFwmMTywCjEmZWVFdWtdLlcdJcedXJAkyd8sViQzWaXqu4FyWSSVqulWuuDwUCRiPL5gsKlZUIFAgEGgwEul0t1LBeLBQcHB3S7XZ577jmef/55BWPKd5byJxwO6yrupXZPSgaRn4m3HqC6mEKYF+em8XisHs7RaEShUKBSqRAIBMjn87z77ruUSiXlZiUeg16vl1gshtvtVniwSNlarRbtdpujoyPVcRW5mRCIPvnJTzKfzykUChSLRbrdruru+f1+tePKZ4RCIUKhEMfHx9hsNvb391ksFuzu7tJqtdjb21O2DiJ2Fqtgu91OMBh8SmwsrXuj0cgrr7yiTHI+skldq9WUaFO+2Pb2Nj6fj2q1Sn9ZSwnZPLQ0RZS6cTQaoWkap6enivsspKdwOMxwMOD6OkejUV9O7JGC+ubzOeWyvipMJhOOjo7U6V0md6VSoVjQJ61uIabXp9K90znKum2ByWRSN0Zgp7W1NRwOB9FoVKmnhcQk7LmtrS21EgkLrt/vqxXTbDYrVhroGkNRygiPQ9rX0WiU+/fvL4XL91ksFkQiER4+fMi7777LbDYjHo8znU6VZYPZbKZer3FxcaF87lwuF5lMhnQ6zWc+8xlF0Hr55ZeVBlI8Vh4+fECtVuPVV19VCniXy8WjR4+UuLbT6ShOh8Cz9Xodj8ejGlnSg9jb21POVXfu3GFtbY3JZMLXvvY1gsEgn/nMZxTjcjweK09EIWCJhcPJyQmTyUSVTx92PHNNLUR5QB083EuHU4/Hg8/no1Kp0Go09LoqHMa+NFoxGAzEY7GlY1KUyWRCpVLBaDRy+/ZtyuXyUiXuZOGwYTbCxfkpbpebbruhb7kWs96xW6pMms0mgNripT5v1GuYTUZW4jFVo/W7XVjM8brddFotvTzJZvG4XBgBl9PJZDTC5XTS7+q19npmlVgkTLtZ53FHX/l9HhelQkEXxC797C7Oztjd3QVN42pJfE+trOjeHQYDVouFUrHI7va28qWrlsv86I/+KJ1Wi3vLkiFy86baiYbDIT6fl9lsis/nXZ4rTDQaPcUKFKeo4+Njjo+PFea/srJCr9fj/PyMfr9HIhHH7XZhNBoYj2dcXl4QCPhZXU3TaNRZW8vgcNjRtAV+vw+j0aDe++TkRC1kGxsbJJNJGo0GLpdLgQKapvHuu++SSqV0EcXyHPHgwQM++9nP4vf71WIwnU5JJpNYrVZlvJlIJBTU96wHxWdeqQW9SCQSnJ+fc35+ztnZmYKjRkuHfCHX1Go1arUap6eniocsnANBDKTrJz4eTqeDfD5PNnuJtlhgtVoYDofK9EWErDJZBVvtdrvKXfPy8pLy0pZWeB66+2mHyWTCbDbTjdD7fXX6Di51htPphIcPH1IoFCiVioTDukeeuIpeXl6ysbGh5P9C6ex2u4SX/OJGo0EsFsNsNqNpGsPBgPlsppykotGoQji2t7eJx+Osra0pAlUikVA7g2gyRQQhpCGhoEYiETY2NhRSIu1mo9FIv99XCnFptIhu8vT0VLEa+/0+hUJBaQ+FC+12u1VjRhYvYUSazWYajQZPnjxR6vVqtarupRhkHh8fK864y+VSeHo4HMZoNHLv3j1MJpM62D/reOZJvVjo9erh4aE6KL1fq+ZVBIT8AIIuyKoqCIaQYex2u7I+0HFL/RQuzDG5UcLnECckqae3t7eV0FXa21KzaZrG48ePVfNnNBpht9sVeUZ4zaPRiGKxyNHR0fIz9AObxWJB0zTVMpYySjyl3W43e3t7qnaXw+nm5qZSc4utghyW3W43DoeDWCzGysoKg8GAJ0+esLKyoiDEwnIXuHPnjuLayAMlvtEul4v33ntPKbBFQCv4uzQ/xFtE/D/sdjsvvvgit27dUjvj7u4uhUJBQZw2m41Go6EaI4J0TSYTxSkpl8tEIhFWVla4ceOG0nAOBgNOTk4U/9zv9yvDoOl0qkhborQR8tvV1RWgQ5QCf35kk1rTNLa3twmHw6r9OhqNuLq6IhAIKC5HIBDg+vr6KRWFHBZMJpOqy2bL1Uu4HAINis1WPB5XN3M4HKJpKCxZYKdMJgOgcNNOp8NsNlMT/eDggIcPHzKbzdjc3FSlSjabVexAYQICXF5eMhgMFPLR6/XY3d3VaQDFor7yDofUajUymQy3bt0iHA5zdnbG1dUV3W6X+XyuOBWic5SfQZTZuVyOer2uSEBXV1dqZ9EWC0KhkOIrS25MqVSiVCqp7z2ZTNTDK+JZcc4S2+NKpYLX61X2ZBaLRVFNRSHvdDoBPTJEDqrn52eKY22321ldXcXpdLK/v68MKZ1OJzabjfl8rnwMHQ4Hh4eHSrwcCoUwGo3K2iwQCChllOTJhEIhMpmMOgM9y3jmmlombrPZVK1tsR6QxkYikVB8ZZvNpg5eFxcXNJtNEokEZ2dnBINBta3Lyt3r9dnf31UTebFYsFiaSuodxx2urq65urriE5/4hMJSpdslvAHfki0ofA5ZreQcIFu/kPxXV1fVdjocDpThYjwe5/LyUun0xF5hONQdUEV9YzAYnprsi8VC8SzEK0O45WJnUCgUVMtekCDplDZaLYpLlyox0pQdT6I9nnvuOWWoKG3+SCTC6qpukev3+5U9meyKYmUmq//29raCOqU+ljJwOp0p2G86nbKzs6Oke62l1ZyY+rhcLqVAb7VaCvmRA6tg0oFAgGKxqAhue3t7eDweJpMJ9Xodp9PJrVu3PtpJfX19zWg0YjgccufOHcUN2NraUiv37u4u9+7do91us7u7y/HxMVarlVgsplzshX9gMBj4xCc+gcfjUWpiUTc7HA6y2Swej0d5wXk8HsVc8/v9ijshkinZ3jc3N1XWyMnJidIlgs4Dkcl+fHxMu91WIgRdhRGm1WpwcXGhav+vfvWr+P1+rFbrcoXS1S83btygUqmwsrJCJpPh+PiY6+trVXr1+33i8TjRaBSfz4ff7+f8/Jxut8vq6qqSpcXjca6vrxXnubvEuMUJdDabKdZjNptdLgC6J969e/eU0aIgF0L0F8RByinx/Tg4OFAWEaLYuX37NpVKZWlpYWYy0UsOPVFsqHZOq9XKnTt3VJmwWCwUf6fRaCj6qjhRSU6MvtO+3+GVlvjbb7/N3bt3MRqNyifkI53UGxsbPH78WDUdbDabajwI8ejJkydqpT46OlK17NramsKx5QcTDWCj0VjW4U56va5Sz0i4kDjlr62tY7XqIgVR11itVo6PjxVfudlssr29rZyjZHLKBRuPx6RSKebzOT/2Yz+m8HO5wTabFYMBhcwIrVYutv5zVLi+viYYDKqYjFAopKRRBwcH9Pt99vf3VccyFovxhS98gVQqpX5e8d8T0lKv19P9mZdxePJ50qre3t5W7qnNZpO7d++ysbFBs9lUMKFYL5yenqrzheD24gBw69YtRVONRqN4PB7MZjM3btxgPp/z+PFjIpEIp6en+Hw+NjY2VCaMpEnMZjNFiZWyUlyaqtUq9+/fZz6fs7W1pTSQrVZL2cOZzWaq1aryQJHu70fOp+50OmqLk87Y+vq6mlidTkeRZoTEPplMyOfzyuBbAn/sdrtivolDaLvdeUreJVu31GZnZ6eYTLriWCwS5GAqN8/n8/HOO+9gMBhYX19XsiaDwaDKjn6/r3YHcVYSNYrFYlXke3El8vv9ilSVyWTQtIXiX4s9mnA8FosFTqdTtcXT6bTiZdjtdqxWqyonzGaz+hlWVlbodrscHR0pJbvb7Va7jxCThOQvsXEPHz6k3W4v2+s2RqMRzWZTqfWz2axypJJWuugxBQkSLDqfz6vmk6jAJbZP3GPls6+vr+l0OjSbTWUXJtrLRCKBpmn0+328Xq+iCouC6dVXX+X8/JxSqUS32+Xk5ERJ8s7Pz59pbj7zSi1bmKy40mIOhUJsbm4qv7XZbKa0gMLI0ldfveNms1mx2SxcX+eWqhELnU53SRe14/F48Xi8bGxsLSd5i+FwhNGo18Yizzo/P2cymSjb31arpRhoYsgukq9CoUAkEuH27duALlMaDAZKTCtkeqvVyng6w+Fy43a5VXxFf6CXEtPZgmg0RigUUjTJyWTCwcEByWSSbDZLIpFQaplqtYqmaQQCATY3NzEuFUKz+ZxYIkG/16PebGJbmr3HlzKtRqOxdDrqq3Z+u90mGAzicbuZTiaMRyOm4zHNRoMzTSMYDNLrdqlVq6RSKWbTKZ/+5CepVKs06nUWS3RjY2ODSqWC3WbT4cbplIMnT2DJj08mkyzmM5IrCd0U6OycVrOhOCxGo5H1tQy9TpvpRK/1W406bo8Ho9HAvTffZDQc4HI6ODx4grZYcHB4yGK+wOfzEvB5mY5HdJbNKKxWTAaYTKdo89kzzc1nXqllQpfLZYLB4FIV7KFSqSgvZHlCxahGp3ummU6ny5Z1X9V2nU4bj8e9NHLpqxVMj7XQIbxyuczx8YnK+/P7/WorlIen0+moySVYrth6aZqmakyxO5AWcTgcVrIxSa7S2Xer2Gx23B4P48mETreL2+3h/PyC1pJ91+122dzcVPRMs9msbG8FN5/P56rZ5Pf7qVardJf1q3fppeFfkolG4zGxWIyXX35Z2YvF43Hi8bja4kXjJ7QBAzrzL51KMZ/NmE4m7O3u4vf5aLdaVCsVPcS12dTpn/M52tJvpFarwZIsZrPZmCzLHdlJet0unXYbj9uNz+clHArhcjpp1Os4HQ4WSx2kx+0mGAhQr9fx+3xYLRacTgdrmQzhUIh+r6fnOhoM+P06o1Ew8UQijtlswm7XmzDTZQnyLOOZV+rz83P1JEttp2kaqVRKNQWE/yz1tFhm6YfMIX6/T4lEpX4SG9dAIEAqlSKbzeJyuTg4OFAZfEKGikaj7O/v02g0FMohyIZwM2KxmFqpA4GA4jj3l80WMRoXcakcRAVlcS3txwAlVCiVSsoOTFJ5Hzx4oFyFAoEAZ2dnqpkkTkXSZZWtPl8osLKMYZPaVacAlHnuuecwGAw899xzT1FshaUoRHyzycR42ehyu920220KhYIiU4m/hpCPRDImJjz3799X3Gav18vV1ZXiN4sRvuyEDx8+VPa6QjySQ3wymcRgMChey5MnT7Db7U9ZMwsDMBgMArpQYTweqzLK7/djXLrkfvAA+WHHM6/Ukmgq7c1er8dkMlHog5CRhJooDC2pwyTv+vz8XJ2qJcY3HA5jt9s5OjpSPhbC1pNJ4nA4ePLkCbVaTYl7Jb7O6XSSy+VUU0G6W1JmSFtWXJgEYpQoumazqYefArFYTHUEhZsi8qVMJqMiliWgSGpQcUgV6ZrYfAmE5na79RV16Rp1eXnJ8fGxKnGk8xcKhTg/P1cHcCEcSd0pBjESndfr9ZTYWNiBFouFREIvH2q1mgr+XFlZUWbrh4eHKnPxtddeUykM0hV+32vaqiyA5dwghCyhJ9RqNXX9zWaz8vOQMFEp8YQbIwdHQYGEgvqRq8lFk9hbbiniIp/NZhUiIem0wWBQURPlBui0UiMvvPAC19fXKjlWOL8Gg/Epkot4PQvXV8IpBZIrlUpKfyf5M2dnZ7jdbnUDCoWCYqUJZRR0xc3q6iqnp6fqcLu7u4ttyfqTTqPwoieTiQos9SwbBoDifMvqLri4oBciW3ry5Ak3btxgf5nfLdCkSNDkRou9QzQaZTabkUqlAF1bKeeU61xuSSnQHUtns5mC2YRSKzTSSqWifEWkBBRrXWmUibedcMpby8x5oRWEQiFeeeWVpS1zRdkiFAoFtcBJFo2kBIhKR9h4t2/fVqY3QkkV1y2hOoC+2j/LeOaVWlhogjvKCT8SibC2tqaom+INATo01u12lSupqC1Go9EyyOdKtdt7va4SDPiXMWdil3B2dsZoNFJ52nLIE+hPZEE7OzuK5hiPx9XWJ3Kver2uBAqymgiHu9PpsL21RavV4sGDBxweHtLtdp9yty+VSmqFl5VGHjTZdWSl7PV6yv7WaDQqXaKQ9Le3t5U1mlgWSDkQCoVU46Lf75NKpZQnx6Df5/z8XAVAGQwGJXKWVVUerEqlwtnZ2fIM01FxIyKnkwO/4N7isS26SFH5CNIhKIzP51O2yPJzSWNLFhSHw8HDhw/p9XqqsxgMBimVSrzwwguYzWZOTk5UG18Wko90UkciEQJL4avZbOb8/JzZbKYOiL1eT23Z0mmyWCxKwSxYqtiPCcwmCbN+v1/VyJ1OhwcPHqgwow+GFQn5XkI2y+Uyk8lE+SRLA0BqPTkANhoN/H4/e3t7yg5APt/r9dJoNFRtHQwG2draUrIy8dqQJNyDgwPFSdna2tLTxXo97Ha7slp48cUXVdxyJpPB5XLx8MEDTk5OFPVVJqyIGXK5HMlkUvnviRBAMiWz2SyZtTVsNtvvyk0RG+J+v6/qeOE/95cpuRsbGwpbFx66wHvyAGcyGTY3NxU+Lu8pIaiAogy8/fbb6l6KrlQoD4KWiD+MtPZFyS70YFEZFYtF7ty589FOauENdDod9bQ3m00lrBWnnmAwSKFQUAaGsvqKbe98PldtdVnBxU9kf29PCVAnk4lCT1KplMpFFCJULBYjGAzy3HPPqXawtLJFsSFEJ6E9yve22WyKMyFdL4vFwvnFhXLrl59HwuzFXkEeYE3T1IMiNg/CqJOtWTgook8sFoucn58r8o+obdbW1hTas76+jsvlUq5U4XCYJ0+ekMvlFFkpk8lgt9u5efOmKkUmk4k6f8g1FyMdUWoLD0QWHZGMCT9DErykAyp+hPKQiaBaSE6yM32QiuB2u5VRjixY/X7/qa5wNpslGAwqJ12p/Z91PHNNXa1WCYfDuN1uCoWCinAQib48nTLpRMUdjUYpl8uKeyv2B7KSSlv1/OyMSCjEcNDDZrVgMhrQAKvNpnMnlvWi0BxNJhPhcFi5IB0cHChrNFFKX19fq2i3RCKBxWzi7PgIp9vN/t6ejtDY7YwnU5wuE1arjdFwSKvZ1Gmu8zntVguT0Uh6SaF87+FDRXIXNb1IlvL5PF6fn0xmnflCw2A0MZvPmc5mzOYz9m7s4XHrOsBbN2+yvrbGyfExLpeLjaVMbTQckojHiUYiGA0GNjc26HW7OB0OgskknSWNVOioYjJUKpWUEMPucGCxWvEuVezRWAx/IMDp2ZmyNBZBtDRvQqGQQn/Ozs4wGAwqyk78RcQEyGw2Y7fbeemll1SSg7T8xVhSvEkqlQrPPfecUuV4PB6azSbvvPOO8hPp9XrcuHFDRYF82PHMK7VIgXw+n+r9S0lydHSkyE3vvfcem5ubBINBLi8vFavshRdeUE++RM99EIY6OTnmKnuJeUmsF4suj9eHPxDE4/WpTqTo50wmE2+//bbCpgV9kTLB5XIp/vN4PCIWjVCrlqlVyqymUwQDASqVKh6vF7PFytb2NsmVFVrNJqPhEKPBAJrGew8fEo/FGA2HpFIphQ643W5msxlXV1dKAODx+ojE4rjcerB8Kp2m2+uSL+bZ3tkmnUrhdrmIRaME/H7cLhdX2Sx2mw2T0cjJ8THdTgeH3U69VuMqm8Xn9RLw++l1u2oSSQklbXzB6QfDIRarFavNpmdaOhz4AwEMRiMLTYNlfS9mNXa7nd3dXWVlIKu6dF8BtXuK7fDFxYVi4wk5THYZkX8JpOfz+XjvvffULioQsHhkn56e0ul09IP60qvlI5vUItQU2wKxIhgMBgomWiwWFItFisWieqLF2FBqajnYSVdO0AexHyuXyzpsZ7Mxm+n2ulJOCDyVWCaxiv6wUqngcDjUwUxav+LNobdoA4zHI0X+0aMmKso2OJ1OP4Wf1ut1/H4/KysrT3HGjUajUs2fnp4qDoPwxg0YlD6w0agvGYc6deD+u/dVaSLWXNVqVZn/5HI5IpEIBoOBQqGgEBexbBMJl1gVm81mstmsspWQXHgx2jw4OFC8ZtlpJVZEaKanp6eMRiOePHmi+BmCKskD5PV61WF2PB7jWkZqS9SH0FoF4hXagMPhUFwTIbSJ358c5J1O51NZlx/ppBZikJzgpbEhimBxNRWCjXBDnE6nOuTIBWg0GmqCxGKx5YofXHJzG0odYTIZ1QMhu4NoJOVAuLKyonBZl8vFzs6O8uqQ+j2fzy8fwvZTjZt0epUXX3pRcZ4PDg7UwVNIRpPJRKW6ijpDPOU+eCgSJMjr9RKJRJbYt95UajR0yqgsAIKYCNKwv78PoLSR4sUnW7oklomBpuDm4gMilF9xXRXvDSkNRYm0ubmpUJ/19XW9nT6b8eDBA+W4JMjQeDxWURjS/CmXy8oEX4KfxLVK1E/NZpNsNqtgVIHyBOPv9/vqvCMNHZfLpaDYZxnPXFML90C2JjH/FqNto9FIvV5nZ2dHPckbGxvKM0JXqUx58803MRgM5PN5FVkXDAaJRiI8fvgAg8G4ZPNNYMmnNhqN5PN5FrMpzz//PO+++64iHQk+LPWh5ACKCEGwY4ms0CeNrnSORKM4HU7FKx6PRizmM+WHIRwO8Tj5YOpBvV5XCplcLqeaMRaLhfnSQ0TT5kQiKdqdNpPJiFg8xngwJhgMks1mOTs7Y22JZgg1s9VqKd9Co9GoOpMiH3v06BGRSIRgMKh451IKLRYLhksjRvG+E4Gx0WhUrXvpKna7XQUJCkW1VqupA7Tcx3w+TygUUmjTYDBQft6iK5R8TTl053I5pZQX54FUKvVUqq64Ogmy8qzC2++qphYZV7PZVNL/ZrOpwH1x6RSWnbj23Lp1Sx3i5GEQuGixWCyzUHRzQ7PFrFZJu92hMruvrrLqBgrHVyCkQCCgsGWhfgr5XQx1stlLhbh0up2lINioqK3pdBrH0j1UFCs+n49Wq4XNZiOXyynapdx0gNXVVSKRiMJ0W+2W6nomk0nlqXHjxg0FT2qaxiuvvKKyCmu1GhaLhZ2dHba3t5nNZiq38PLyUj1AEqIqGeVyHhG+sphlfpAjLtmGfr9fMRLFKky6fCKNE9GCdHuFQSneKAKjSlqCIC3Cp1ksFpyenrK6uqr4LlK6STbl1taWUuYcHR1xeXmpdi7xevmw45lXajkBiyOofFmj0ai6i16vV0U5xONxJdQUNl2p9H4qgODH7Xab0jJWLuT3MVo60A8GA7yBoCK/+7w+plM9Sno4HKpOo5i1NBoNtra2iEQiqimhlzCmJefXiMNhxxUMUK3Vsdl1/nalUoElZ8QAVMwmZY3bbDaxWq3KzFLKJ4ErhTYqybn5fJ5iqcKNm7eWZ4s8kUhYYb7hcBi75f12drerf75YHVerVZxOp3LhlyaHtP4TiQTBYPB9lGNZfgmxLJfLqexJi8Wisljy+bzqjDocDiKRCPV6nc3NzaX9r1k1osQqQRQpkUgE0F22er0ed+7coVQqqfLOYrHQarUYjUYq+1JMh1rLTEghZImxp9TQ4q9dLBYVPeFZxjOv1NPpVGHDYvgnGkVJjcrn80pKlMvliMVi6ktfXl5SLpeZz+eKvC9sPmGHaZrGjRs31EOQTK6QTqdZXV3FaDJhs+lQlhgXxuNxisUi9+/fV3IgSYKSrHBBX6RzJkGaOzs7rGXW0NAx+KurKyxLvzlZ5US6FovF2NnZYXV1VT3IQjDSNE2tkvoBsaPyvN96602y2SzlUkk3k8GgnEKFmiqIgfAyOp2Osv+6urpSE9Ptdiuhw/n5OdfX17z00ktEo1EajQbxeJzhcKgCN0UKFwwG2d/fp9lsKidW6fLeuHEDTdP4nd/5HaUqPz4+Vl1Wr9erXEolmbjX66m4jA8iWdVqlWKxSLVaVZNTIkLu3r2rWuPdbpe1tTXcbjc+n49AIPDUQfMjndTj8VghCYIvilhUin8h0VwsmxiifpDVbDab0uksecEeDw6HE4fDxWymYTAY6fRHaAYTVpuN1UyGxXxOr91iMuxjMmiYjDpH4INoiTQYPB6POskHg0HVUi+Xy/j9fsBAtzdgPJ1RKJZpdzp4/T5WVhJ4PG5MRiOT8Uhh7JIrKCyyWq2malkx6JEGhLgb3bhxA5fLxetff5233nyTbqfL/t6eHr28tC0Qspaw40QFIp1YWTwCS0qndAOTyaTSc0ojxGg0MpvNlExOVD0mkwmX00lnCXW6XC6eu3sXj8dDIh7HvTSm+dKXv6yjGz4fnW4Xq9VKKBym1WrhcrlIpVIYjUa1K8iBWix/B8MhzVZLF1hYrRSW9g3tpe+iCIsvLi+JJxJEYzFa7TaVSoVUKkUqnabZatFf6idnH7U/dSaTURcwHo/j8Xi4ceMGN2/e5KWXXlKxEkI8Ei9m3YLsiGKxwNbWFg6HY1mn2jGbrUTCUdwuNy++9ApWh5PpAtKZddbWN8henHN9leXq4gyXw6YgOsktl7Lj+eef5/r6WnGRhUH2QW2kz+cjnljBbLUzmkx4+N4j3n77HXqdDr1Oh82NdSLhMMFgUCm/BX5zOByqVV6v19Wh9OGyESMRGeFwmFdfeYV0MkmpUGQ8HDGdTGg3m+zv7lGrVJ9CE6Sz5/f7ubi4UPX2xcUFd+7cUQ2kfr+vlCQ3b97ktddeI5VKcXV1RT6fp1QqqcOt2WSi1+lgs1qJhMNkLy746m//NoN+n93tbZ0ePJ0ynk4xGI14fD5cbjfnFxf0h0OGoxG5XE7V4cLJqNVqisrw+OCARDK5bFxNWAB3n3uOl15+mcz6OgeHh9x/+JC7zz/P1s4OG5ubeH0+fvO3fotCsYjBZKLRamEwGkmmUjSaTZrtNt5nTOh65kn9+uuvK3Yd6ELcq6srgsEgDodDqcodDocS1Ap7Sw5bbreLmzdvYrFYODk5YTrROR/6iqCfwnW8tEkoFCKZTDJb+tZNJhNMS2NxCdiRoKT33ntPpXqtr6+rFVSMyKXkEYtdUb5bLBa+/vWv8+TJE0VCEs86cZYaDAZcX1+rJovb7VYokNBufT6fUkqPhkPS6bSOzAR1yOv09JQnT56oyX94eKjYbdfX16qkEPhSiEKpVEqJBUajEaBTY0X2Nh6PVZqD5NUkk0l1/hEP61AoRD6fp9lsMl5iz4vFQtFN5/O5iokDnWMudmHz+Zy7d++qQKbpdMpoOFSWCuJ76PP5lPupQL1HR0cqvk4OyUI7Hg6HCjkRyPKD5LEPM74r0/VIJKKI6TabTeUhrq6usre3RzweVwcAkVaNRiMajSbFYn6p74vy/d///bz99jvYHbppoDDfXnvtNcbjMacnJzx58hgjqANTu91ma2uPlVRSRQ0bjUYymYyKk3M6ncrxXjgMpVJJSfcHgwEbGxuqMwYoTPqD6mqpQSVxS/xGxFCy2WyyubnJdDpVjp9ifC7v6fP5uHPn1pLROOfw8JDPfe5zGI1mdahWtbzFwsbGhuIjVyoVZe8FqBrd6/XqTaOlX7YEcgoS9ejRIzKZDEajkWKxyOrqqgoR+qC1rzDj8vk8gMoQ/yDWLHW5CA5MJhP7+/s8efKEar1OfNlClyjteDxOv99XyI3H4+Hq6ord3V0VCnXr1i3lbjocDvmBH/gB5XsCPHOW4jNPar/frwwLZdUQ/w9plgg/VohDEkwpyvHNzU3efPNNtrd3sNvtPHn8mFJRJxyNlhpBHZR3oy0WNNs6t9egzUmmkgxHQyXk7Xa7KqbM6XQquElWPKExSgdL6k85/PV6PVX7RyIRnjx5wnw+V4KDRqNBOBxWVNa7d+/SaDQURTQajRIMBhUHWGrXcrnM1VWOZHKFV199lV5fpwL0ep2lF4hNJb5+UGUjB2zRJwrxSHaPRCJBNpvFbDYrF1LhhYuDlOyK4gIrOLrX62V9fZ3r62uqtRp3n3uO6+trcrkcu7u7quyx2WxqwQDUNSuVSmiaxsbGBuFwmHfv36dcLhOLxdTBU9LOJHFCDs8CDQp56oOWFk+ePFHJC8Ph8KM3iJS6Ttx+XC6XsjMQcP/k5IRQKMRsNlO2YcKxFlsyOVjt7e3z7rsPVAeyWq3S7esOqJYlrPbVr/y2Hlnn85BIJDg8OmOhaSooZ3V1VbHPNE1T+re7d+/icrkUs022bAm2vL6+VlCVxBI7nU6lRAdUVN79+/dVLuDGxgZf/OIXFZ9BOmOgdzoLhQJej5/f/u3f5rOf/Sw2m43rfA6Px025XFzaOURUHW0ymUgkEvrqV60qKFScqy4vLxWn5fT0VKlrGo2GcraS5pLIsSqViprIEj/idDpViSUIRiAQ4IUXXqBUKikehvDTM+m08pqWg6GgIy6Xi1c/+Ul6vZ4qMeV88+abb6rPEN8QOX+IpEvTNCUa8Pv9ChYV8OFZxncVOScm5CLREqGAuMxLHJvAO+KPZjbryhe54O12W88Gj8VIJBK43W5e+/7vV3ZYOm4aXLbAzUtTm4gC+j/IKJNDjGxdUp9K/Sft/Xq9rnwxRBwrhHahrQqFdH9/n1qtxptvvqm2SgkXEv9maZ0DanIPBgO+/vWvqwZFs9VcNmX02lGMEJ88eYLf78fn8ymPbTHWkeRfQHE6AFX2SCKCqPUljkPCiORhTKfTihXp9XqV/nA8HnN1daVsDmSSC49EiEuCLV9dXelnhSWJSq6lPDBGo1HxfOR9xehS7CxkksuKLYdaof3K4nP//v1nmpvPvFILK046dffv31eHqS9/+cs0m03Fu9je3mY4HHJ6eqpsCvr9norGGAyGrK6ukrvKE4/rMRNPnjxma2dn6Vkx5vXX31jSSyPKytbtcpNM65ax/X5fEeEjkQiPHz8GUI0A4V+AfhCRHBrx5hBDR4HAqtUqL7/8MmdnZ+TzeVZXVzk8PMTlcrG6uqq8AWWVFHK8ELnkQbBYLHzuc5/DbDZxlc1Sb9RJpZIKl69UdI7Fw4cPMZvNvPbaa9y+fVvh/NVqlYODA37qp36KRCKhpHAiOLBYLMovZGNjQ7W2hTshxjehUIh79+4pPvpiseDy8hKz2Uw6nVYqFFEqTSYTRQu46Pe5s8x53Nra4urqCoPBQCQSodPp8OlPfYpoLKau7/HxMc8//zzr6+vMZjNlxi4lkDxM8/mcR48e8fnPf149kOIlYzKZPnrfD+EZ7O/vKz80IfSIQFPopKIydrvdit1mMpkYDPSYhvm8trTFmir8V1znF4sFsWiEVrOJzapflG5vwPn5JaFIiEqlwsHBAWazCZfLrW6Ow+FQPiTiT+Hz+dSKoydPTRSWK8p4r8erhyH1BhwfnWAwohQ4Lpd++DMZjZRLJW7fvk00FqVWfb/s8nq9hIJBctfXPH78hIA/qFTgJpNh+V7OZcu9TSyRwNFp43K7mIzHaJpO96xV61ycXfLgvQesrWXUQVAU2lKqZLNZpZQBln0DE/1+7ymhwr179xgOh6r+llo7Foup++P1egkvcenxeMz6+rr+kFQqajFaXV2l3W5Tq9We6viJyWa9Xl/e24Ga+GIwdHx8rM4pRqORjY0NWsucxVqtphCsF154gdFoxMrKykc7qcUWazLRJ4YEuAtPoNtt8+TJI5V+Kniyy+VgsZjR7fbI5fJ4vV7W1jZYWVkhl7umVqvyzrtvMxwOGPZ7bG5u6tDcxoZ+kNnXyeNPDo+JxSJsbW0RDgf58pe/jMlk4s6dO5jNRsZjHfeVsCWRjYn3nk6dLPLmm6/jdnu4e/d5hsMR17kC6+tb9PsTWu0ONruFF198kffee0i71cIADAd9DIYF9956g83dXQwmA48fPiaZWGE2nDDqjjh6cozP7cXhsDEc9Uim4pyfn+tck06HTqfHVS6Pw+PG6bQRCQfptKY8efKI6XjOl37jaxQLZb7vBz/Jrbs3lOQqFospxEOn3FpZLGaYTAYqldLyAL6B1+vj8eNH9Ps9TCYDBoPGaDTgvfcecH6u+1EHAj6cLoc6WA6HQ9544w2sViuJRIJUKsVoNOT48IB2u8V4PMTpdLGyEsdohHxetyY+PDzEtjQzkoejXq+zsbFBIBAgl8up0uzOnTuqCwuwvb3Nb/7mb7Kzs6O0riaTSZ0PnmU8c00thwWJUpMmxXw+XwZKxmk2mypTW8KKpOYSWE4Es8Vikf7yYCiQ1QdXEeE9DAYDLi4uCIfDbG1tUa/XFVwnkXWSnCW4qyimq9WqIiY5nU6i0Sivvvoq7Xabg4NDcrkrZvMpbreLdDqJ2+2iWCpRKJUIR6K0O10MRgMGo5FYPIGGgU6nxWQ8pttp02q1SKaSrCQTTEZDMukM6XRKcT1EJiW17mw6ZTGbY9Cg02zjcbkJBUL0Ol2q1Qqj4ZC7d++q3EnhZUiHUXBkMd0UxqTOlDQtrSR0u7OVlRW2t7dV5HS1WtWV7K22WknFU6TRaKgk31arrcwqdVsG3ThS6MW5XA6LVfdske8oKImQpLrdrqKfCrlMfLzn87kqWz8YoS3Q4LOMZ16pJdVWOnXX19dcXFwQCASW4lDdmuvmzZvq8HV+fs7+/j65XA6fz0evp9fBEjcncWZSixYKBfb395VZynw+54033lCNgHw+p6wCxHhRYLR6XY96ODo6VtwE4TZL88brdeNyOdnd3aHZbNPrdQkELFSqZVLpFdxeJyaLSRlHvvDSSzqZfzhiNJsTDobwOJz43R7W0mlOT84YjYZcnJ9jwoDdbMZitrBYGrZLbmGlUtEdjTweLAZwma30+z1mZiv94YBBd4jf42M1mWEy1bNRpIl0enpKJBJR2TqdTptEIq7QCYl2K5fLKkHgV37lV1hfX1fEJ4PBoDqe5XKZR48eEVrSfZ1OJ/Wl+KJcLhMMBPj+7/9+isUC0WiU6+trJeUSdKJQKBCPJ1RgkXBMstmsWmy2trYUlHh1dcXt27c5Pj5W/PdC4f0Os/j/CZT4kU1ql8ulTtqgs7YkDqFarTKd6k+Z2OvKlx2Px8sDmp7vIXiq5FVLE0Q4F48ePVJOTyLoFHFpqVSgXC6rsKFgMMijR4/Y2dlZCglmCgUxGAzs7+9js9k4Ozvj4OCAO3duc3p6jtPpJJVKU6mU6XY7pNNpJpMxNpuVaDRCsajDXMFQCF8gwLBcJhSOLD1EBlgsZmazBdV6jfPzS5r1BrFIlMl4TDSdYCWV5L333lNwViAQYH19HaMBWvUq2csLkispauU6mmagVCwSCPjZ2tym2+0wmoyUjnOxWKimisViWdJHHeo+2Gw2tWqLy5Se/V1Vk3o0GqmcRIvFwqOHD9W1kVTaYCBAdBlbMRj0le+3oFrz+Zx4PK47bFltOJ0uNjc39ZyfVot6vc5wOFQ1szxIh4eHSkAiAVCBQIByuUw6ndah3CXn/iO3HZtOp8o/7h//43+s6jAB2F0ul3o6T09PVb3UbreXeLIDu12f6OJMJPYJPp9PpaeKs9N0OuXk5ERh4J1OB03TVLxDLBaj1+spM3X9O86U74ZkkgtvW2/Jmrh96wXeeustjEYbK4m0OuQM+gO8Xg/DXpdqqcjG5jZGsxmP14fL7WV7exez0cDJ4WNanTbVRoPtG7f4X3/p/8t0OObG3i1icR1vFfW1WAsvFgulLHHa7SxmM1xOF4P+mPfee0ytVucTn3iVZHKFCRNW11YZDAb4/X7Ozs4U7VRvQbcVy04mm/yMjx8/Znd3VzHrhJgkUKo4oPq8XtLJFMVikXRSPzhXSmVmE53ElSvmSSaTVKtVGo0GjUZDJRhrmkY0luBkmbIWDAaVKY6cryQWROBbQKU8iFm9mOZLUm8oFFKR2R92PHNNLYLJWq3Gzs6OMiCRTA9NQ7WnM5kM9XpdNSYEoHe5XEqVsbq6qrBJIfqLNYHgtW63W2VjixFkPp9XhCCJBJZsEvHnkwdA6JMAV1dX3HvrHV7/+ltoCyPj4QyXy8fa2ibRSJxIJMZ0POGNr3yNUa+PSYNhr4/FaMFlc8HCiMlkI3uVp9XpgcXKdbmK0+OnWm8xmxsYDCfMF5o6a0hnVR58XQbn49btWxhNJowmM/limf5ohMPjArMBp9PB6uoqoVBIRWI7nU6FKolblExm4dEI/isTSZIYxAJNP/fo5ZrL6XpqogEqtFTum4Q8Se0rPtR64NNUtfCFCpFKpbh586ZqZgl82ul0lPLd4/GoiI1oNKrotIASczzLeOaVWtQf4uYj3TkhxmxtbajDhXhtRCIRRQRaW1tnMpmqOOH5fE4kElHiWaE3itH66uoq19fXlEolvF4vw+GAQCDCYjFXcJ2oJwTcPzu7UEJT6Xhms1nd/TQYolbt8dabDxgM9KaL1+cmGo3g9jjxej0YZxNsRhPNcpX7b73NaDLl8PEJw/EEq8OJz+vj7fvv0B706E+nzDSNXquDtjDw5dffJBEKs7WXxmLVmzter5fz83NFvJ/P50znUxrNOi5PkP5oRHc4xGa3M9XmzE3Q63R455139Fi7ZbkhBjw2m01hwZubm6rEECmd7E7xeFxxR2TSiouT3+fn+iKHNl9gs1g5Pzlla3ubgM+Hz+2hPxzQH5hUkoHFYlGC2MPDw2V3eMLOzg6LxYI333yTyWRCr9fj1q1blEol7ty5o2zKZMeRxk6xWFTkqZOTE4bDIfF4XM2Fj3RSv/HGG8orT5TJnU5HmRSOx3pt7HK5OD8/V8m3Epyjq8rfjxCW9AGJnahWq8p8XDSNYuQuoZM+n1dFP2uapvSQ35gqJW6s5XJ5aXQzIxAMEPAn8PujnJwcUyhco2lzmk3dZd/n9xLyOHGZDcrhyWgwcH19TTgaJ3uRpdlqkauVwGSm0e0wmU1wOWx4nW5GsynFWp1Aw8tLLz3H5aVO9qpWKuzt7eNy6t/TG/BxfpnFaHFRq9cYDIcYzCYm8ynNVpOA10On3eb8/JxEIqHQJHFrMhoNCl2R7yn6QfHYFrs2sfuSySS6RLNVV6usZTIMBgOajQbdXo9YNIbFbmM8HWM0GRWKJN57slvS6WIw6jWyz+fj0aNHKl1gMpnw4MED5bolTRdN08jn88sFbk2xJWu1Gp/4xCewWCwqVPUjm9SBgI9Op7ucXB4Wizk+nwefz0OlUma8FK5OZ1OCft0vr1KtYLXasJotDAdDEpsrXF9fUywW2d/fx2g0Klm+w+HA7nTS7fVIpdOYjEZ6gwHxRIJur4fFZlXswK2tLSUpSqVSKo/G7fYodft0OmEyGbO1tcF8PmM0HlOttXAHTLz8qdvY7S+TvbwknU7TbrUo5vNsb2xw9OQxkViE9a0NHE4XX339LSxWO1elIifXWaYuJy6HD/vCAOMKZkeDUNqC02WhcNUjUO1QrXZYSaxQKV0TW13BMJ8xx0ipWKVcvyIYCxEJJ+kOJsznMJ8tWE0l2dhch8WMSrmyPJf0cbvdeDwuldvt9+v2YjIBRO0ikjCJr9Y0jWw2y8bGBmtra/h8Pq6vr7FabcRWYniDXnwBP8nVpK551GZcl/TmV6PZUDn0V1dXSqgg5KnDoxOGw5EiJu3s7ChxSCwWoz/ok06nOD4+YjWT4uDJAVvbWzx8eJ/t7W1arQaDfp+NjQ3mswnddguX24Xp2UxPvzsrX4vFrLb/+Xym8lL8frEcSOP1eJVLk91mx2qxLIn0DhVM5Pf7ub6+VnwJ4S+73W6sywPWeOlBN53Nlt3HiXJlMhqNKp9bEBJJoRLLgEqlitVqWWokp5hNZixWE6FwgFRqheGgh8fjIhIJ8eqrn+C55+/iC/hxetwYjEYcLieT6Zhg0I/FYqJSLmFAY9Br0O+1sJg0Ah4Ha+kwLz53i/liTrfXYzCs4/VbsDuNjKcD+sM+ZquRaCSI0ajhcDqxWm2USnrXzmqzKi6LbWn2s1jMsVot7O/vk0qllCUCgNFoUAdjqbElPElqbenuikWYCI71FX6hKKbdXpfxZEwoHGI1s8pgOFguRFZlnyxEMKvVqvLiXW6Xipvzer288sor3LhxQ0XPWcxmrq9zGAwG1tbWyKzpKJfFaiGxkmA0GtLrdnE5ncRjMex2G2aTid3dnWeam8+8UotoU5hgYn3VbDbJZDLs7eyq1q3T6VTk9V6vh9FoxOPxcHh4qDL1ptMp8XhcHSQMy61ebBOk1JH3GQ2HDPpdleMnXm8bGxtYrdalE2mbZDKpmgJ7e3u43R7KZR3f3VzfxO/1kc1d0W631WpWLpexmM3U2w2msxmD0UjnoAxHdFtt2p0+Js1ALBhk1MhinPUIeMJYLSbu7Gyzs7pP7eqM2aBIuZxlOGnj8sZIpPXgo85gSCRmwGzS6PdGLDQDNqsPr9fP7u4OkUgIo9FAPn9Nf5nO+8ILL6jySWRVq6urtFotNdnkICo5M3LeGY1GinQvyQfiDTKdTjk/Pye4zI6Xbf+DjR05cIp2EnRPEvHFSyaT2Gx25SQgIoxGo4Hb7SaRiNPrd1XMXDwep1qtkk6nOTw8xOf1kkysqCaaWAR/5B1FEQdI50dUy263m0AgQDabVQdIIcGL26nZbGY4HKnVpNvtKk2dmLVYrVaG/T7MF/g9XjqtFvPJFJfdjs/jIRqJYLFYiUaj6mEQXFSaMR6PC01b8PjxYz3zr9nm9OScyXjGaDhlMVtwcXpG6TrPdDRGm82JLyVf5WoFm8OOxW7D5rARCgaxO/T8wel4wnw2YzGd47bacRgM+OwuYv44uZMar3/xIe3aAI/DR7HQ4vikxKPDIkfZBkZ7EIc3RDZ3zWA0ZDY1YDTYaTZazOcLVlfTbG1tsFjMGU90rH+xWADv823EwEcIVFI7C6dGdiipf4WkJXEgdrtdnX9isZjKkrFYLOzt7SletOx6kh0vAabpdFqZyE8mEwygbBFsNptKgxCIrtlqKuZjpVJRnovyZ16vV0G60m3WNO39mv1DjmdeqcXkUczIk8mkcup89913sVn0hor4VAtfWEgzlWpNrdqTyYRoNKoSmgRDjYR0snhumaLr9Xpx2B3K7D0a1eEiMZ8xm808efIEn8/HbDZT7vv9fo9+b8ij9x4zHI747Gd/mJ2dPcb9LqXrAk6Xk1giznQ+R0MPNioUiwSDQVqNOpq24Oj0BI/HSyy5QrvV5fTyAg2YLaa4nB5q5QbDrp12t4XZWqE7mDCdGplNrTQ7Jk4LFxyeHpPJJHnh9i63t9YJBwM02lOODk84PDwkmUyytbWOw2nD7XZis1txf8BBNplMKpK9WCXUajW1EFSrVcW3EJRBRAeiJxUa6NHRkYqhlswan8/HcDhUjlrj8Ri/3080GuX+/fsMh0NefvllZccrFAR5sKRX0O12lTBbvBZns6mCgSV0SjrHvV4Pg4Yyhvf7/WqB+kgndalUIrJsq4pL0Xg8VuLR6JIiKuiGKI/FddSyrK3FxFsMWtrttu7ZNhxiD0UU/u10ONAWC0bLJNjpdIo2W3B8fMxkMqHT6Sg+hBiui9nL5uYWpWKJbrdPo1Hmq195nfOzKzwOKy6HFbPJhM1ixem2cHpyQjAU0r2zR8NlWWOh3e/Q6fd4dHRAqVzD4nGiaQYYDpkt5gynfRbDKZppjsE6I+AzM51NMePh4PJtplYDvoydq/YFzddLGBYLbm3tc3R4yde/9iYutwOTyYzbo+90k+mATCbD1UVWeQPabDaVOiCpueIc9UEbXeE1y4IipYRce7HYlTgLSVYTboksLB+EYt1utzp0drtdisUiW1tbALQ6uppHLC9ELCAc8UK+QCqdpN1uK9MdoSTrO4ZLZVrmcjmlC31W0/VnntRSpwaDQT71qU+pbpeUAbPZjEKhoExbTk5OFKnp8vISj1fHlSWy+PT0FKPRqOiLG+vrDDo6WX0+mVKr6O4+ot5OptMYLQalngkEAoq8//LLL6vy4/DwmGg0yvraBs8//zLNRodms0WhUOLhgwdYDAsCoRD9QZ8bt29x+9YtTs7P2djcYNQf8OTxY8LxKMFokDffeIff/MrXmS40TD4XZpMVx8iO22Vj2G+yME8Jx3ysb6dIbvnp9mucHJ1R6+bYfvE2I20BVzNaV1V+4ytf4/C9LI/eeYd4LMorn3gRr8/NYjHDZrMQCsfRNL18+9SnPsXh4aHCbQOBgJrc4uEndl6lUolQKITL5VrqQRuK8ba+vk57aUmQyWQ4OjpS/z0a6eWg1WpV4VHCyXE6ncpmQtM0FcMhxp7VWoPBYEC322Vvb0/V7Ds7O7jdbn7jN35d0UrFo+Xq6kqZ1vgDfixGk0qSGH0gmOkjndR7e3vLk7WNg4ND/H7fkr+xpocF2XSm3XCkdwOtViupdJrrXE7nECx5CZqmMZ/PVb62+IMMh0MFHWmaRq/f06MY/D78Pj+atqDXHWA2mzAY9PCgq6sr7HY7rVYbu922TH6a62Sh6QyfL0gqnSKVSrO6ukYi7IPFlJPTM1rtPo1GB5cvgMups9um4xGJlQTD6YTf+tKXefPdd+hPRtgcLkwWC8NBn3m3DkY34agHjTH+iJEXXl1jZmzi12x4QyGqTQ1bqMPU4qY/XtCqDCllyzjwsr21xe7u1tIRyUp6NYbZYmIyHtOoN7DZbAQCwaXgVRcWXF5mMZnMyutESP3CaGy1WiphQRYYUW7b7XaFkkg7W5T0gGpZJxIJksmkUp2DTlxKp9OEw2GVaDAej3VnJadT57wvE9jarRaJeBxtsSAajWJ36IhNv6dLAGPRGBjAYXfQ6/Zwu1w4HE7m8zn9wYBCsciz9hSf+aA4mczweHx4vT7K5QrFYplGo8Xa2jqpVJrReMxF9pJGs0mj1cTlcetE+NkUm8Oue0Qs48bE0lfChVwuF/PFHLffw/rOBiurSSKJKFf5HAazAcwGWt0m9WaNxEqMRCJGLpfFYDAsbbe8bGxsUq/WCPv9dFotWs06l5dneAMu7G4zk0WP5z/1Aj/643+UWGaP3sjB2WWH4dDC8y+8zFwbsLoWZWMjQ73R4Cybp97qM59qWDSYtioE7VO8gQkm0wSjyUS9VcflbBDzt7i89zv0Tq/ZDZv4f31im1cTATacRtZWHHgCC4bzFq1+nVc/eYtPfGKfgN9KJOLBZjUT9Pv56m9/nYPHRzgcLh4+fI92u0ssFqffH+LxeNnb22dv78ZTjqsS3Txbwp5PnjxRNrnS1BJbB+GWS0SGJA9YrVZVxoiblWgOO52OSg0Tpt5kMmF9LcOdW7fY2d7WFf/tNkeHhxwdHtJsNPC6PdzYvYHf46dWqZHL5vC4PNy9dZd6tc5sMqNWb7LAwMbWNja7k0KxjNP1bBrF70pNPp1OSSQSyi85lUopSwIhtsihzuv1Kq61+KhJXW232zk8PFRUxVgshs/npdXSVwgMuiZybV33kTAYDNQbNRxOBxaLGbPJsCQy2Wm1Wrzwwot6q7bbw+mwEwoGMJrMVOt1zGYTvd4YgwFa7RZGk41QOMzR0X18viBgpFyuEAj4mYwnlEtldUMXmoamLeh3u0xHPWbTHhaHkdFoiMHUZ7EwYHfqSQg2i5Hnbz3HeHpFrzTEYLLixEzCbyfs65A31bGaNba21oA5Pr9+4BJ3pbW1NTY3NxVKIfk40iUVMtJoNMZm05RJp3QaJY9FDOglQqRYLKq6V9yd/MtMcLPZrFIFTCaTEumKZ3ggEMBms9HtdtU9DAaD6t9LSFQsFlOeeo1Gg5WVlaeU/mJ0JFYMrVYL69IGTnIfPR6PShH+sOOZV2qHQ6c7npycsLKyohw533nnHZVlPR6Pef7555X9wPn5ubIj8Hq97OzssLGxoTDP+XyOz+cjEomoevDw8JDZbKba43JYisViBJcJt5IYoGkad+/e5eoqx9tvv4PJZFQC0V6vx2o6jcfjWdoROJcWYhcUS3kazQqNZoWvfe3LvPPOO+SuirTbXQZDHRc2W0wkUwnm0zGDfg+Tycx0BqHoGmarj15/hN/vY9Sf88bXHrK2lsLttDFsmvFaVzHP3fRrPdajcYJWC+b5mGGvrVK9QDcEkgOZtKGPj48ZDodsb28rqKxer3N6esq9e/eYzfR0svl8zt7eHnt7eyqHcjabEQwGVR9B2uSSf3h5ecnZ2RlvvfUWq6ur3Lx5U9nsSo58tVolHo8rs5x4PK5EDiJ8GA51MtnXv/51hXisrKywu7vLrVu3aDQaHB8fK6FAqVSi0WgoYlS9XldJD9lsFkDBkB/ppNY0bel/52CxjANOp9MK1rm+ziuDm+3tbeUob7fbiUajatIKM8vhcCghgK7qnql4BLETE0W42WxWdrmSkiXxaWJU3ut16fX0AM1KtUqr1cLt9mCApUTMg8VsxevxkEomYDFjOOxhtZjwejzMpwvajR5ejx+z2UapXCafu8bucmJzOBj2RxgNRvrtAbPRBON8hjYawXjMqNNFG4+ZjTvEEwlMDjueUACH28l4MGQ6nOCwObDaHCwWmsKA5SbLaixEfInbkA6dkH3G4zFut0eteoPBQLXLxaRGDopms5mLiwtWVlZIpVIqPSyTySgdp/htB4NBlXS7srKi0owlXS0Wi7GxsUE8HiebzZLNXir/a9lFYrEYrWUGo8fjUSafW1tbytxIrIRF0f9BiweRvT3LeOby4+rqiuFwqALb5UvabDaKxSKLxeypLO0PSnx0CdeQZDLF4eEhnU5HxyqXK6rEsl1e6tujRF+Mx2MymYzyVm40agRDAer1phIKVKtV9vb2yOWumE9GHB40qNbqLDT94agtozKy2Sxer3eJz4YZjcYcHR1znc+STEeYjE2M+hOGgykOjweT0YrRBGaTmZlpgdFkwmqyMesOsEwnWLQ5XqOdeWtI0Gsmd3pMv1nEn1ljbrXR7Pc5u8zhcXeZDMBu92GzeWl32ty6uUelUlGxxiJjEni00+lwcXGhfL0lUViscg0G3W5hY2ODarWqsl+kPyAcanGX0jRNOYxK6JGgViLGOD09VbF0kjhgNBpVZrykkEWjUcxmi9Kqijd2sVjE7XbTaOiH3bW1NdVke/XVV9Wh1Wq1Ek8kMJpMFAoF3G43JycnKobuI53UYhMwHo9xOp1KLiVRdNvbmyou+PLyErfbTTKZVNwDo9GoUpukZSvdJvFWdjhsqltoMpmWbqVipNNTKo7hcLQ0drcphc1sNsNqsegc7GgMq1U3eD89PcVuty9xX71rOZ+O6fda+DxOmq0mjVqd9dXnOKtlOT/NMTdroJmZjAdY7XaMRjNoRrS5AbvDgmE+xWXVmAwn9LsTXHY7dqePwXjK4cOHGN1eeiPQZlbGvQnTvgGzwYzJaGS+mHN0dKTYiPP5XFn0StKYNDCkIysrXz6fx2Qysljo7WTxG4nH40oBL+bpMpEltEjKvkajoZJvpZxQZvTL/oHT6cRutytDdzEcMi0n4mAwUrF3Qm3N5/OEw2Fl4yAt70KhQDAYZHd3V9nLWcxmOss8+WQyyWw2w+PxPLNI4JkntdRn0WiU8/Nz9WUGg8Fy29FzTeQgeX19zfX1NTs7O0tDQo1kMqWcflZXV8lkMsoo/PT0hNFooCKbxeagVCrh9/sxmy30elWqtQoBf4hAIMB4PF2GTk51WCoaZtDvU6s3GQyGGIwmxtOZMqFpt1oUCrqiPZmMMo+FGQziXF5e0Wl1uTgrEAmluH9wn35nRHp9g9liyqDbw+NeZgrWO7icVubjGTODGW3gYtIyU7/oE0n4WZhDOBwpas0h/fIAz9REJhDhE6+tk1jdoN+uKzOgD9r47u/v02q1VDtZks5WVlYYjUZEo9HlZJnx4MF9lWIrv1ZXV0mn0+RyOeXWCqjwITmQCc97PB6TzWaVvnFnZ4eDgwOKxaJ+Hlld1e0hTCa1IguHZz5fcHFxoawxpMkjaQq6llIvJYRvLzpN8fGTRp3NZmN3d5ednR2Ojo4+2knd7XbUdikrn/A6stksRqNBeb05HA62t7epVCqMRiP29/fpdLoqUEfawL1eTz3dermiKTxVVi8JHbq6yuJyOTAZTcrWzOk0KlhwMBhQKxeX5okeDEYTJrOJ1ZUkk8mERqPBbDJlNplSLBTo9zpEIzE+8dLLPPQ/5v79R5SLFQrXLartJiaLjel0xmgyxmAwYTBozOYzZgYrw7mBkC+AyWJiqGm47F5sPisTk4lqeUTrrECjCSuOKHtb24TcdubanFm/g2lJ6Op0OiwWCx4+fKh4ydKV83q9PHjwQKEVQi3QD2sLBecZDAaVl9Lr9ej3+2xtbSlITshnEr8MqJpWMhGvr69JJBKqwycPgZRCUkICKrqjVKqodLG9vT3W1tbUAzqbzRQPKJlMKkHIxcWFih5Jp9Mq9kQeiN3dXYXgfGSTWne510/JunumnWBQ73TV63UCgRC7u/u02y2cTr0ufOmlT9Dr6X4fNpuVarWM3W6l0ajR7VoU4UaXc/mVVZkc/iqVCicnJ0vc1cZoMGE+g/FwwsnRCWDA6/XqZHSDgQUGmu0e0fgqmmbAiInxYApoVGoVzCYLHo+XbjuPw2LF63bw+PF9xtMxn/r+l1nb2uDddx9xw5Pkt77y61gY0mg0mYx02itGA0ZNYzIe0h+bWWhePI40066PQrvFdNImHb3JtDVg2K5Sb+a48o1wB1J4XS7S8QSXpTEnFyc4nG4yqxkMFiOTxQiTaUKvU8JgdFAoXLO7u43FYqHTaVGplOh2exgMsLa2xo0bN9RZRAzcNU1jc3NTCWCDwaAuCFjycWQifzAXxuFwKAVRpVJRpU8mk1HUYKfTqSZns9nEbDbz/PN31QSezSbkctllDqKFwWBKKBSk1+syn08xm530eh3CYT1UqVwuk0wm8Lj9GNGIRUKUymX+8T/8B7z40ksf7aTu9bqUSkXlpGk2z1R8st1uZzQaLv03YlxdXSldmqzWLpeTcFgH+SUxV0hJotSIRqMqyuL09FT5OYvFltX8foSC5CVKylMiEWeuzXA4rUxnYyxmG4Nhn9F4wPbOFhoz2p0OBuMcu9PCYgrj0Zh+f0Cl3sZocbGSSnKeu6DRKhJN+Oh3R6ytr9LpDpjNx8wXcwYzvWwwGmC2mKHNzRhmNmZjM25ngMGgicNpwqMZCEfX6C/anBavCAVMnBcfUW/asVrd7O49xzv3H+DxBrHZ3FxeXDPotfD6w8r/LhqNKp8Uq9WiurESoywHLTlQyw4m+Yvlclkp2QWq6/V6FJfkLRHnSkSdpNxGIhFKpRIAo9GI5557TknuAGXbKz7XwswcDAYYjUbcbr1DK56F8/lc6SQFizabTFitOiEuGomQn0zIX19/tJPaaDTy0ksvkUqlODg4AFA4pC4oDdLv9xVxxu/3KxsFvYGCiumV7VEEpYvFQqnApaYsFouk02leeumlpc2YGZfbjWVJu5TVXB4Ci8XEZNZjdTVGo1HDZLQuoawu1UqOyWRMu10hd3VEwBdgOp7zW7/1VS6zJWwOPwbzEWOtT62bxWybk0hGsHldNBoDDPY5VpMRs8XMvNvHYJySXkkyGRjJnRxT0Rx4PAbm5hnByIzV7TiDixyX9Sw2S5iewYo37Wc+7+AwTSlcX1N5o47Pk8KCn+y0jsdhwmJckF4NYrU5VBqax+NRHHE5MIp5j/Cgt7a2lEmmTGzxAWk0GsosX4JEV1ZWFFIhzbJQKKREvSJcFui1UCiQz+eVeZC01h88eIDL5VKm7hLtMZ1O8fl8ivS2trYG6Ibx+Xxe5TeKVYYQo4Ry+6Hn5rNOakAdDMVBVH7IVCqFpumK8+l0SrfbpVAoqCxz8Z2uVCocHx+rbUwSbiUUUji9ooKW+nJra4tyucz52ZlK2R0OhySTSUqlEvP5nEKxSDQaI5lMoS00vB4PBgygGei09Yg5s8mM1WqnVmvyla98ncFwxK3bd/D4/Jxns1TqNRqdOt1Rn1AsTL3ToDNsU64Vwbqg2ihhsc1wuDScHtjcXcFoGRKO2VhJuQlFrWzsRvGFYXXLSTQNFneXfOWCR0fX1Dvgj5lY3fBSaxV48N67fPFLv82bb77L+XmOwXDCo8dPlLFMJBJRD7oQiMSbzuVyqfgPQHl7yN/3ej1lpWs2m/UgpSUWLRNd6lyBZzudjvKZjkajTwWSVqtVrFarahbJ4VbYdQLBSujr5eWlOhSKvCwUCqmkAdkhLBYLkUiEVCr1zB3FZ16px+MxZ2dnSp0tYe87Ozs0m006nQ47OzsUCgWm0ykrKyuKSCOrSyAQUCoXvZGgw36RSEQlO0kY0M7ODtVqVXWjrq6uSCZWaDQa6sYJi00OLf3OhKODYwbDMRbDBLfDQiSYQtPmJJMruBwxCoUyv/nr/5RCoca/9hP/Gq986lO8ce8djG44vjhkOphhx8TDx4/o90a06wMcLju9QZNY0ofHaWIwbNLrljBrGvGElZWYk82tMJ1eDru5QTK8zmY6QW+zw8Jo4uy0zpd/8xLTPMjW9hjzbMDmjQQP3y6QzKwRC8bYziTwuCxcXV+ymrmrzGQ+6Nlss9nY29vTdYKHh+TzeRVJYbValZ2BqOmFnioNL6fTyfd93/dRr9cpFAoqxiIQCKiur/itSFpwsVjEbrerWGc5YDabTcrlMhsbG5yenhKLxVQqsIgOxMa3UChQr9d14cb/r7336pXsStMzn+3D+4jjvU2fJDPJZpHqriq1kQS1WgN0382FruaPCbrXANNQT1uqesrRJtMf7yPihPcRO7abix1rNTl3nQVwhAIXUCgUi+Q5GbH22t/6vvd93plzJ5fL8fDhQ7755huZevuu63du6QnyjuhPCma073s8e/aMVqtFsVhkaWlJCtPF/y8ITZqmyWDKMBk2kBEWoo4WP2s0GhGNRpmbm5MOF+HmUBRF9srX19f55stnvH71llgsTeN2wP/8p18zNzfH48cPmU58xhOf68sGJ8dXxGIJYvEY9XaVxdUCi/Usb04mmJpONp2j3WkydXwUXcPxPAxfwXWmxCIZVCzwbTR1ysJ8ivW1HMmEx3DcZWctQyZi4rsZotEUetxG3zD4NlmlWe9ycl4nlUgST8cwogofvP+Qj97/kE6tjOJPWF77mMIsC1KI/7PZLIZhyM+q3+/z6NEjST7q9XqyS7K+vs7Z2ZlkqaTTaebn5zk8PJQJs+IyLtLGxAEhpBDNZpP79+/z/vvvS0HU2dkZKysrrKysMD8/Lx3jQuPxXa+oiL179eqV7G4IEZXg/IlEt0wm8723/g+6qePx+PdCKkX4ZK/XY2dnh2+++VbqDJLJJG/evJGCnO3tbV68eC5Zadls6IgWmlsR1iMGNOJVaNu2BNb4vk+v38P3fBYXF6lWq5RKJZaXl2Ukhq6HHOvA93CmNs1Gg3azyW31hmgsSoBGo9HEc8c8/uAxhqXT6XZI5rMcnZ7QbnawjCid2z6epxC4KqqvogYK4/aYmKbR8JrousPaWg5dNai3mvTaBqsrCwwHUyxcvNEYQ1WIJlJU68dUb65JpFzq52VOjh021uc4OTqmetPlG+1LkvEoHz58QL/dYDKx5dtNZIsLucHZ2Zn0ipbLZZmGIIZawpkiprKCb+d5nswx/MUvfsGjR49kVs10OuXo6EjGl4gJpIBriinie++9J8f3gPSaikGcyN8R/WeBcBDlyOLi4izZ2JUt3MPDQxkjLcRw77LeuaYWT1cikWAymUhRSqVSoVgsEo/HiMVi7O/vS1ezuBkDMuBIqLvW19flrVsATZ48eUKxWJSXx1KpNFPwpcNTOZmSdKd+vy+fdnH7dtwxS4tz3LmzRaGYJpuNs7G5xM7OGkvLRRaXs+zfXeHnf/wTfvbzf8PW9gaFQomr6yoXlzV8z8Ad+gybQ2J6HM3VSUUy4CgkI1EUB8Y9G0s1MRSDwPFwp2Omox6V6yPiUR1nHGM4cNCMPr5SYzi5pT9qE89EwXSxx2nqNZ12y8NVdVqtkBtdr9ep3Ta4uLiUgakC6pNOp+UGFHR/QJowhH4mnPaNKJVKDAYDms2mJM3G43HZNfkuxUnoLgzDkBdvMaF89eqVpPyLny+moZFIhEwmI/vl9Xqd/MxBJJzmIlVMZAJtbGxICazI6BH4NGEmfpf1O2W+iJgF4foWPdLLy8uZCTcpSUCx2EwAPhzy7bffks1micfDp/ry8hLbtun1erJtpes6r169kkMXYSsSSVO7u7uhrT4eRzcNEskkAQGxRJwAmDpT8sUia2sJtrZ3aTSaWDGD1dVVCsUiL148Z219jXgswmQ0ottqMrbHjLyAk7MLkpkc7XYf35kSiaaY2OEkcjoZoKseBGBqFmYQkIokcMdTBoM+qXQExXQYux79Rh9nbKBpKrXuLZql4qo6vpJgNJpg6nG8sUWjPMLUUhAE2K5Ho9VG03UyuQydbicEzczC6k9PTyWiQLDstre3v4coEEpG0bIT4UsC/iiMA4qiSDrSgwcPGA6HjMdjiVmuVCqUSiUcxwUUYrE4ruvR6w2o12tUKlVc1+WmHFr7EskEKBqKqqMZZhi+OnWo1xt4nitTBY6Pj6VBOpFIcHh4SDKVQdUNri6vWFhcoJjOYFj/P0hP8/k85XJZ1mXCSyfkh2JkK27BoqZrtVoy5xDC0a1AUolAIqEh6Xa70swpnB2inz0YDtH08LmMRCN4vh8mQ7Vb1BsNEqksnqIytifcVMtki3k8JaA/GqAaOuOJzeHBCc7UIxaNEZ+9Oi+vL6l36riBjRozwNAIFJjYQ2x7gKq6aBrohk7ge4wGIyrlJt3uiNFkTHfQw4jEQNNodRt0Bm2mvsfUN+gNNSrlIZMhDHtTmHrY/THjwZjAV4jHEySSCVx3SixmsbS8QD6fl/IB4dwXXsxutytTrt6+fSsBi4VCQTrFxYQ1FovJsCfR+RCliyA/Cf1HPp+XQUm3tzXy+QJ3795jYWFxJm2NzgJdjVBB2W7TaDTpdLukMxkMw+Ts/JwXL1/hzRw6Nzc3tFotKpUKwSyAajAYMBqPmdg2lhXBtCwikSjTachjfJf1zie1qHVFkz5E61a5e/cu/X4fy4pKy/vt7a2sA0W0w+vXr9ja2pQxaYCUNQo2hQgpErX27e0t+Xye1dXV74l1RMkh2G7igRGeu/bMXFoul2eDmYVwNGtFwPMZjyf0BzbaeEi9UafdbuH5PhgGiqoxHg4xUHAcF1XxcR2FQq5AsZin16jiBh5TJ/xCut0xUU+lXO1gRX0Y+ei2A7rG1B/R6nn0uj6OE0dFZ+o4gM5wOMLzFVzHo9kMDcqGaRIEiuR2pNNp2dZMJpOUy2VisRhnZ2dsbGxI06yIshCB9sIkIC5vi4uL1Ot1bm5uJA9REGmz2SytVovHjx+j6zrn5+eyEyFAkCI6MJ/Ps76+ztuDAwm8WVtbw3Ec2d0QJgVxAZ1MJuzu7mJZltS51BsNUDTW1sIYEMEZEU74f+1655P65OREAlIEe8M0Tela8H1PEjEty6JUKnFyckK/3+f+/fusrKwwHo/l3y9ekWJIUCwWZ3yQMdlsdhbVEMY2X19f02w2JUlTSDE1TePJkycMBgMpoxS6FNd1pdtcAAjFxSWdSZNIJnE9l/6gT7ffQzcMVEPHJ8B3nVkb0kDXTUzDRFV0JqMJvhIQaDpoUSZTg6lrMZnq1NtDJo6P7fl4CngB9AeT0HWDQac9QNcMuu0+49EYZ+qgqjqO41KvNXBdj1Ip7PCIi51IbEgkElJMv7a2JglMIhVtZWWFcrnMycmJBFGKz1FIEUQyr0CWCX2H6GdfXl7KE16EDwm3TCKRkBPOdDrNYJYQ4LqujJgTQE4xgFlYWGAwU+KJLoc4FNdm4ivLsuTlVLRlf9BNPRgMiMViZDIZEomEzPsQI1nTtGQrbmNjg9XV1e8FhAq1nrg4OI4DILnNc3NzM810S46GhXiqUqlwMhu8iETW4XBIsViUHL56vS75FQIwbpqmTOA6OzujUq3iqxCJx0ikktQbDWLxsCb3CTBNHS/w0C0Tw7RQFJWIGSHwwLN9JmObqT/GiupMnAn90YhA1XC8gMJckWyhQCafptl2sacak4nPcOgytQN8V8GeuGRzOZLJNOl0Rka1+UFAp9Pj5rpMuxVS9efn5+VET1VV2u22xBOLfnS9Xpcdpnw+T6lUIjtzB4kgKXG57HZDrrV42JeXlyVbxHVdDg8Pubq6kp+5KBXr9bokqopsF/FdTSYTzs/P+eabb2i320SjUVnCjEYjzs/POTs7k6GtYp7Rnf1+QpUYiUS4ubnh+Pj4h93UAmewvb0tx7aiyS/6k7u7u9y/f5/9/X15Wgull2jsJ5NJ2RrsdDoyO1Go/lKplMSb7e/vs7GxMcseqcuot7t377KxsSEvqqEM1ZbaA5E7Eo/H5Rc9HA7xgxAOny8UWFxaAkXhtl5H1UORT6CA57t4vouiqqCoGIZJ4MFkZNPvDnA9J9RUaz72dIgfuPiBh2lEsCc+fqBRKGbp9kf4gUU6XcQPVAr5Iul0hkgkimGY4QULlUgkiuf6xGNxNC2Ub4ZOonC0LQA2ghEoaEvtdpv19XXq9Tqnp6eoqir10mKDCc+gAP1sbGzIVDGhYR4Oh1xdXUknk/hORX74cDjkq6++4vT0VHI50qkU9+7dk3X91dUVo9GI/f19crkcmqbJEb7okIiTXehHRPflxYsXBEHA+vr6D58kICDZYqwqLiv/QpEPJ4wC23p0dCQ10Z1OB01TJZpWWLRECSGE6EIiKUIkBYf6Jz/5SRgLN9vcpVJJBsCLIU8olYzJKGThYby+viaZDC1QAVAoFjFMk06nQaFU5KrZJAjAikVodVsQ+BimieZrOO4Ed+qhKhr4Cn4Aumcw6I1IJ2LEohF6fZt+d8TlaZNEUiFqBmQyabSpRqc75LbWxR6brG6UaLd6dDoDEslw4OB7YYchqht0Ol10JWBxaYnBaEi32+X169fy8/q+ojHs8wtwpIDdi/vF/fv3Q3rpDFsmdM66rlMoFLi5uWE0GjEcDgHY3d1ldXVVvmlt25amWDHKFgkP+XwedZZgKwJJhXZHAO6DAPk2Fm/S79bf6XQGzTCllU38fj+49FSowS4vL6XeQEgaxV8XQJRIJCI5EWJaJZwroQ46bPe9ePFCOpnr9Tpzc3OMx2MZlzAejxmNRjx69IjRaCSDcEQW9mAwYHt7W9ZskUhUngCFQuF7PrxSqUSgKERjMQ4OD5jaoWPEeR7GMatBAEFAoILnK3iTCb7j4Gg6QeDjuRCNxbFHAWMVokmFiGHSmY5wbR/PjjJwHYKEh+sOcdyAiR3MOg86t7cVBoMRqmrg2FOmYxszGp7O/XGPZrNFKhZSqXK5nMxBX14OjRXdbpfz83M2NjZYXFyU+eNCc+26royl29vbk+WauLeILEPR0hPhT9vb23LULtIbhJv8u1mU33XfDGfGkHg8LqUOKysrsmPl+6F7fX19Xab/CnVlEAR4voc+k0qI+OhUKvXOF8V33tSRSITDw0OazSbz8/PSqiVkkoah8/r1K/IzFtzcXEna/8NBzZhsNiPrrna7jWmaMo328vKKiR1iaSf2lMWlMNm2Ur3F8wNisTipVJpEIjkT/ddmpNQbtrd3Zoq0NtlsViZ+CTWbEFS5voeu52Y19xx6xKLb6WOPp4xHTXRVwx47KCp4kymmFUHRNJzpFBSFTDZLqzVBCRQGnRGqpjPoOkwmYJDAd8fY4z5T28GIGEQsi9HQRkEjly2C36XbGjJ1XCzTwrIitLodPG/KaDpma2eL2m2VeDzOcDgkk8nIIZewrVUqFRYXFyUIUrQ9RSKDaZpS1C9iAoX7XqjzRHLx5uamHK/XajV5v3GcsB5vNpuzt7NHNBphOrVnp3aebrdH7TZMedA1lcODtxyfnJDL5ZiMRyTiMQmxPDg4QNd1VldXURSFL774gkQyJSeWc3NzvHn7ls139Ci+c03d7XY5Pj6m2Wziuq4cfyaTSVzX5ZNPfsJ0anN6ekK73cJ1HZaWFkmlkui6RiQSknyEhHFlZUVm+bmuSy6fYzSeMLGnLCwuEU8kmTouK6trOK5HNl9gZ2d3Zvp0UBQVUJifXyASiQKKfBOIfu7JyYlEnDmOQzaTIZWIs7mxgaLqlMs1eu0+iqsQ0ywKyRyaYhAxoui6RTQaR9V1jIhJNJ3ACWwM08Y0fSJmFHsInm2gEWM0sJnaDhEjSjoRx5lMsSdDFBQ0xaTTGjMZhfB3fAVT0TFQCQyNieJDRKM76tHrh6ZbcQoKmr8wuAoOHiDLibW1NXRdD99GM6SC6G33ej1SqZSkNn13spvP52eBo5Y8AMIS0sXzXPL5HJZlkk6nWFxcIJGIY5oGiXiMTDpJPBalWMiTz2VJxGMEnsvayjKuM5UlZbvd5vLykqOjI6rVqswjn4xHqArUa7dkM2l816HZqL/T3nznk7pSqUjYeRAE3N7esry8TDKZ5OjoSEohFUWRm13UZEKtJdzFR0dHPHz4UEIQO50Ok1mLyTAM6cs7PDzEsiwZW6x8R89bq9XY3NyUoUepVIp0Oi1zB3d3d6lWqyiKIgOUup0OmqrMyJ0qrucyv7CAHUB3MmbqTNA1DQi1xPZkEkYxB6ENqdudUsrrGKbOeOyjGyauO8YwI7ieh+dOmYw1VA08z0HTIkztgIhloiomCjau56FFNMaDMZphAQHxWa742dkZ2URK9u+HwzCbUmTbiP7x4eGhjEsWI/RWq0WpVJLsD0A+GEKgf3p6yvLyMnNzcxL722g0JAP8u8laxWKRfD7PxcWFbK32+32pvxZzCNFREW1IUb589/6zv78vvzPheSyXyzIEdTAYsLy8/MNzPwTARqjkBoMBmUxG9hjfvHmDaZpsb29L9ZxIMhWXDM/zuLq6otvtMhqNuH//Ptvb2zI3W4zHhRtGxEELmeNwOJStLDEm/u1vf0u5XMa2bUkHFakG+/v78jJkmiZnZ2ccHh5ydHTMs2ff8Pr1a/qDAdFEnF67zWRq4ysKnusRzKSXruMgUhtUVWM4GtLr9+j1uriei6JqeF6APXUxdBNn6jEeOSiBge/qdDs2/f6EbreHoqoy/ElsBFXVSKdSVG9vpfa8WCxKcFAQBJRKJSlS0nVd+hlFT7ndbsskM5GYZlkW+XyeWCwmTb5BEMhhl1BMXlxcyPLE931OTk6kQeDzzz+XuSzi9BfZ52/fvuXly5dSvHR9fU0ul2M0Gn0P+xuyAbOy5y6wGuHAzpqhMc4lKvpd1u+k/QCkFlpM+GzblqGUAk1m2zb9fl86ZJ4+fYrruhSLRbk5xXRJWPj1GcS93+/L2/38/DyANOhqiiIFNPPz8/KSmkwm6Xa7lEql77myRc9aRBgLiWQsFmNlZYXBdMrp+TlqLIqVTNDrtfFdF8OwMCMRNBQC32XqTGdBm1PyuQg+AdG4yXjsY1omqmZgGBqaDp47xXUUxlMPRfVIJpK4rkIqlcUPXAbDUKxlztzew9EQx51gpaKhhnrclIZU8UYUPWYhDhNvPlELj8djLMuSURmAbKGKoYhAWlxdXcl6XEzyWq2WjKMD6HQ6FItFNjc3OTo6khIG4U5yXVcOxyCUPYiHSxg8UqmU1GsLcLzoaB0eHso/32g0kie+orxb6Ms7b2qRnppIJGYeRZ2joyMAWXqIyIaPPvpI2rJExIUxY3KIaZVwZ1xdXXFzcwMofPzJiixThsMhiqLIUerV1RXtblcOBQTFPpFIsLm5SavVotFoyP65qqpkMhmePn1KrVYLx7+xGB89/RAfiKfS9CYT3MBnOh7RsyeYpoHu+vjeLPNcURkN+xhGSPFXNQVV98lmUtTqQwxTx8eBAHxFYTAak45rqIqKqgQEgY7rBEynDh23jRfMNOi+D4Svb9v38f2QvXFyckrCishyKZ/Pz9KEHekSEn3k0LcYbvLz83O63a5MsRWjakFtEp+36JBYlsXNzQ2Li4tsbGzIN6SA6gg4++rqqjRvCIe/uEwuLCzIye3XX3/N1tYWjuNQrVZZXV2VJ/hoNJK1f3fWChT2rW63K/Xe4me+y3rn8kM8pWITh2bbyffC0kUpIkI/19bWuHfvnlRn9ft91tfXiUQi8gYvJIyCNP/w4UMAiRy7urqSdZ8Ihq/VavLmL2IgxN8r1GDD4ZDz83N5ihSLYQxzq9Xi6OiI16/fcHV9haqpoCkUSkU8Pyw7otGohEOGdV6opYjFI1hxDcefoJsB6VyCVCaGr3goaoAR0UmnUySTKRLxGIqiYehhd0FRA1zXRtd0lJkBwvM8prZN4Ic/J51Jk0wm5Rsmn8/LN0yxWJRBQiLQ/ujoiNFoJAcrS0tLEj3R7YbcPnE6CmGYAN0YhiHtYQJ+b5qmDPY0DINXr17h+740J4gxeb/f5/r6WgrXLMuSh56YXgrylO/7UlufyWRkho2YaUQiEV6+fCmbEO+yfqc+tSDRiwuMYLCJOk6kqp6enlIul4lEIiwtLcmx7Xf507FYjHa7LZOpmBFA37x5I8PpE4kEr1694tGjRxQKBd6+fo3ruiwsLDA3Nycnh+I0AaSzwrZtDg8PefLkCbe3t2FftlHntlolnckScT00w0AzDaKWSSSZpHlbwZ/aTDUDezTCmzoYuopuCuabRjJl4PsuuhFnMnIZ230MUydXSBOPGyjTCdGoie1OcV2bSCSOHzi4gYdhqLieTxAojEcjvEBBS4dTNJFDLrQr4oEFpEJP9IoFi29xcVESkURZIGpp0UorFApyNlAoFOS9ZnNzk4uLEIcspnyDQThLEN0S27bD0nCWNyP0J6Zp0mw2WV9fZzKZkMlkqNVq8sInzNnFYlEqN0VUd7/fJ5fLyaGNyMTM5XKUy+V32pvvfFKHNVWBRCI5+4NZstNhWRarq6t4bhhHN7WnRCNRFBRcx2VjY3MWthODGZ/i4OAAZiPv5eVl4rE4pdmHYFkWu7u7rKyuhKE3yQTD0Yjt7W3ef/992VtdXFoiXyjgzep5FEgmk/T7Paly63Q6dDpt+SDouoZhGrOJ2Ti8/A0GVMo34QekarPyIBS7R6JRdN0AFFzXY+qMmdhDjIiCE0xA9TAjBrqhgeITT8YxIxaapszgMx4oPorihyP1mV5c07WwnJnV+aqqY+qmhMiIlul3s99FT1eQTsXFLRw8RaSGWiQOCF+i0NwIrEG/35dKvTB/MiEPJ5EnI6TD4rsXl9RYLCYhkyIXXuQoivImkUhQLBZpt9tMJhM6nY4UK4kL6suXL6UeRIAxhUXwB9vUoHJ8fEKtVkdVdbrdHpYVZWlpBdOMMByMaLc69Dp9FFSikRi5bJ5Ou0ssEsNQVS5OjolGTCxTZzgcsH9nn3gqRbc/JJ3OoCsqih/Qa3cY9HqAwr/9kz9GMw1iqQSP3n+fSCzG2La5urlhMByiGwbLKysUSiXm5kqAz+npCTc3V8TjUX7zm19RrVY4PHxLLG6RL+UJFIWFxWWGIxvP9/F9DytqoBkGqUx2xvUIiCWi6IaB6wWoepThyMMy4vh42EEHPeaQKqRwgoBsvkg0nsAxQItHcVFRFZ/JtI1uOGiWgmIaRKMxDEMDPBTFw3NtxsMRGhGmY4VUMiO7EeVyWZYRzWaTSqUi062ePn3K6uoq0+lU8glbrTDUUxgDPvjgA5LJJIoSpviKzsknn3wi9TXz8/NcX19zcHAgrVzi7SkoTyEUUpenuqIo39ORWJYlXTr5fF5GOwts2aNHj0ilUrK//t577/HkyRP6/T5XV1fyLb63t/fDbmoh+FZVVbKmRVJTr9ejPxjgE8ZafP7lF9xUyswvzLO2sU6z3eLlq1ehNsGyuLy8ZDSTLwqDbWf25em6jqIqVG9vKZfL1Bt1Wq0WgeejzU6uzc1NOeq9f/++1A5rqsabN29kRNvZ2RnJZJKVlRU8z2UwHEAAnV6P8/MLzs/PZVen32yhENDtdBiOhviEHZ9uJzRE+AEYRpRarQ9EyBdK5ItFXM8nkUrg+S6WpaMaPmNnwHDSpzPoYpgGQ3uEbprohsFoNGY6dXA9Bz/w0XQV0wz/+vVNWWKPhelY9O1F58Z1XW5ubmT2twDGdLtdKVsVNrkvv/xS2qqE2fnZs2dcXl7Ki/zh4aHMW+n1elxdXcmxujBHC6OBwC10Oh1ub2+5uLiQnaY7d+7Ik9ZxHJ4/f46u69y7d4+3b9/y6tUrUqmUpKj2ej22t7claFLoTn7QTb24uIhhGJJE32q15OhWOMTH4zHD2cXFtm0iM7fMcDjk/OIcw9BJpZKSTTwYDLi5vp71JxWsiMVoPMIwTTzfp91uYegGsUiU3OwV67ouc3NzMimqWAxTwa6vr+UpI/4+wzAk3NA0LQqFIq4baiWuZx2XUC8dQZ0FZ/ozQVbgeWFKrmESmfXEVVXDNNOoagzf0+kPbNKZ8GTF91BVn2hURzcB1UczNQJNQdF1bNdhbNtMHQ9dN8KfAyiqQbffxw/A9wKSMx+mqoacwOXlZZaWltBnjh+x8VqtlvQPVioVWXcLiL0o0RzHIZ/Ps7W1Jf89IsRoOBxK/cX6+jr5fJ5arcbFRZgQdnZ2xmAwkK6nfr/P6uoqpVJJPjwiJm48HlOtVmk0GszNzZFKpaQVb21tTQKKBD+k0+mwtrbGxsaGVPK9azb57yQ9XVpaIplMcnFxwcHBgXw1ffrpp2RzOTTDYDINvYKluTmyuRytTodqLcx1EYOHyWTC7e0t06nD2awdpekae/v7sq1Uq9VwHZdOq41lmBwcHEh1ma7rs2i5LY6OjmQ6VKvdkgAVQcEXuTDb29tUK7dcX9/Q7fQ5eHtIvR6K8wMgUHUCH3BdAj8ARUGZRSaPx2OUIEBRVMYTlU53SrM9RFVMND1EF8QTESIRE8cdoRtgux5j16XZ7+OpGkY0gmFZaLqOqhtYkTimGZ5QkWiUjY0NlldWsKc2k8mE09NTyUgRpCuRaCYug0+ePEHTNAmYESm2g8GAxcVFisUi/qyz4rqu5G3c3NzIsfrm5qaES8bjcTkVHAwGUot+fHz8vdlDp9Mhm83y4Ycfomkav/jFLyQPRCR7ffLJJ2QyGV6+fEmxWOTP//zPwyjBWIzPP/+cJ0+eSKhOLpeTk+N3We/c/RBtM9/3ef36tfQrJhIJVlZWqDebRCIRafK0LAtm9vfJZEJpbg7Fd5k6Togci4dZ2SgKOzs7jEYjqrUatuMwv7go+Ra6rqMCGoqUvAqbktDp9vt9lpaWQhf1TGnmeZ588nVdR9f1mdbX4PTimnqtgaYaGHrAZOrgOW644eJxvOkUb+rgqFrYxlQUDNNkYk+xXRUjYuC4Ab7uzfQrKt1um2g0iWkaOK6LYigEukE0Fcf1FJwgYOpOcadTVCNKLJ7AjEbpz6IxFE1nMnUo35QxrVCzITJVEokEb9++ldHTIjG23+/LrJQgCHAcR3aBCoUCn376qaTIHhwcMBqN5Bt1aWlJat2/ywNZXl6m1WrNQI5LslUrLpMCFi86NIZhkMvlZCdMMGHu3bvHf/2v/5Vut0u322VnZ4e9vT2azaZ0xAg8sdChiC7MD7apFUVhdXWV09NTnjx5QqFQAOD58+d0ul1cz2NxeYl+r49pmVSrVVzPIxqLsbSyTNTQubk44/Likv5gwIcffsRto4k9nTIZhxhZwzS5c/cOvhdqEJzplMX5eb788suQVjRLjhKWfEBu9GazSTqVlmZaQfWUOY6z/m9pbh7NjPPbz59Rr1ZQYlESyQTTfrix3ZkhVZmNlVVVQ1PDSZdhGHiArinki/lQXtrXMVSNuWKJVEpHdwKqtSaoFqqlMx57aKaBHjEwYhHGODiuF+aUj8YoMSv8815f07ttkowG7O9vMzc3J/Fsom338OFDiWgbDofyVX95eSktXhCWZPV6XXZRREyGbduyjSo+v06nw+vXr2XLViQ0eJ4nVX+KotBsNqWzSPxe4nD56KOPpBxYSBhevHiBqqpsbm7Sbrc5OztjaWlJmheazSaHh4dsbW3JQ1Dcb36wTV0qleh2u0SjUe7fv4/rumiaxunpKc1Gg0gsRjoWxZ7avP/B++FEiQDd0Ol0uqSWFpg6DpGIRWSmp56bn6PValO+CTP0coV8iD2wotRrNQgCPvvsM0aDISurK9RrdTRDl+2tZ8+ekcvl/sUaVr8lNhM8iZpawFKGw+GsrbeIolksLi5yVqmA69PrD/EcN1T+KQqggKIQBOFGDghQNQ3dUonEVPqjFqiFWRsvYDjsYyykSCYSDBoD/EAnlSkRjKEzaqKoGkN7jOO7oXXMD9B0Hdf3MA0LV3Ho9vpMvAGKsiMtXCIXRgw1AJmhIyJKRqMRlUpFDq1EvXx+fi4fBmGXEzWugAM5Tgir39/fl0GdAhUndPCJREImdolJ4OXlJaNRmNArUrnEaVupVKQPUgzogiDg5OSE+fn5GYLBkbMKYfQV4/p3We9cUwshvzB1np+f0263uf/gwb9Y34cj7uzvMx6P+elPf8rz5y/kbD8IoN5o0usPsMwIjWZTUjgXFhZotlvclG+4ub6Rr0nLstjc3JRTrFo91Dk0m02SyaS8FD169EgGKkUiUVl+iHG7iK1rNBrc3Fxjj8esra1hmQbpVBJD09HMCIEfoMw6LLqmzQYaDj4BU9djMBpixVXMmMrcUo65+Rw725t88P57xOMxIrEIhmWSymZRDIOxM0UxDBRdR1HCS5ui6Wi6TqBpoOp4fhBGbwTgei7dXleKe8RrXlD5p9OpvGxZliXxbj//+c9JJBK4rsvS0hLOrMQTVi4RLWfbNpVKRZpyFxYWWFhYIJ1Ofy+rXKj6hBZE/Hxhjo5EInS7XW5ubqRFS8iRxdRWhBWJMCOR6ygeJHEBFdNLkcD2g25q3TRxXJfeYIAPTKZTOr0enW6X3mBAr9ul1WiQSaYYD8c8+/oZyWSKjfVt0qkcvcEIN1AxIjEi8QTJdI7abYOpHdrrG7c1JqMx+UwW13Gwp1PMSIS5hQWmriNLmYWFBRkpnc1mOTo6wnEcPvzwQ5YWl8nl8hQKRaZTl+FwzGAwJBqNo+smtdotBwevqFav8D2biKHiOVMMRcPAxHd9PM8lCHx8Z4pjjwlQmDgefWeKayhgjrDSAamChut1KWWSPNjfZ2m1RLwQIVmKECsYdNwGtjbEShsouoJrgzvwUHwT9CijQEGJxXC8AE0z8HwYTR1sx6FcLuN5njQpi3aa7/uMRiPK5bJ0nqiqysrKitxUqVSKbrcrU73gX5K7giCQIinP86S/VJgBLMuaJaWF5FqhFxFan0KhQKPRkKWC0JwIcZWo8UU2j2D2+b4vp5SXl5csLS1JZmKhUKBSqcgh0jvtzXfd1NPplO1ZYPqrV6/Y2tqSr8Ziscj66gpffvkV/dmtOZfLgaLR7fYwTJP5uRLjmUO83eliWhE5sRJRZ91ul2v3Wo52e71e2AKa+SG3dnY4OzsjEolIJ/n+/j4XFxfhiHXWKfhu6qsg3udyWRwnDJB3p1Pu7u3y1bNvGDkBg+kU23GJWjHswMcb26Hp1rRAAVUB09BJJmPYzoBIMsZgNAXVxHXBDxQmQYCuBdhmQLXfYOzbBJqBPZrCWMHp2wSuhqIbeEoYbxE4LqauEzFMRtM+03Go576+vpY96QcPHkhus6ZpsrVmGIacHQg7l8CB7e/vS8d9rVbD932pzxCpWb1ej+fPn2MYhlRXxuNxUqkUX3zxBYqiyLJODHCEICmbzRKLxeSbVgSXirDTTCZDtVqVl1LhnxRpbIeHh5I6NR6PJdHrXVV673xSl8tlNjfDcff19bWURAqWRD6Xw7IM+jPGceg+afN//+3/IJfL0mo35QcgOiQAzWZThosWi0VpYRqNRmxsbEiqqUAeCAqo0CFks1l5MRrPPtxyuSwF9GLoEIlEWZxfREdlMhoTsyKUMnn6rQ6T/hB/YmNoBqoeQTEsjEgcL1BxXQ9D14mZOtPhmHbDxbXjTEZRuj2VRn/KVDWJ5Eq0Jz61/oDu2MZFwfdVcFXcsY8zdMHVMGJRookYuqYSeC5a4BM3TTTPw1IDVpaWyGQy8lW8vr4epijMlHGZWV9cOFUUReHo6EgOU8QGE1RTVVX59ttvOT8//x4oMpFIkMlk5Ob3PI/pdEomk5Eb7bujb5GRKLC7m5ubPH78WGpSBC5DtP5c1yWdTks1psCbiRpdqDcvLy9R1TDU9Qf3KN7c3PA3f/M3MpKiXq/LYBvTCk/EMLD9mna3QzabkwONeDzGzfWIZDLJ4uKijKATzotKpSINsltbWxIILlC24osSRgLRyBcCH3mCZDIcHR7KfO1arSYtULVajeloRCadY9QfYagaK4tLXF5X6I7HqJrOxA/QzSiBq+C5Nr4/xTRM7MkURfXx8PB0g0FX5/igw6g/oRur4asHqNmASreMq/mMXfA8HdUz0BwV1wZdjeCrhBdFBeYW5um326iOgxn4RHWVqJVgfm6OaNSUWSzValUCGh3HodVqkU6nSafT5PN5CQwCpNbl9PRURrjNz8/LqAshSEun00QiESzLkhNhIaAaDoeSrSdi616+fEkmE3JKTk5OSCQSzM/Pc+fOHb788kt6vR7xeJzt7W1ev35NpVJhYWGBnZ0dWq2W1H7cuXOH8/Nz0um0xDO8evWKpaUlUqmUpOL+a9c7n9Rzc3Pf4zb0+315sRgOh0ydKXNzRTzfQTe02WkR4d69u3Q6bUnvSSQSkjIk0Fcix09MK4UuejQacT3LAdnZ2SGVSsnTW4ioxCb3PI/LGRBe1G61Wo1ut0uhUGAwGFBvNFmYW0TXDN68ecvJ8TH7u7ssFAvoBOiKQiKWJJZIYcSSpApzBKpJPJEEzyNmRND9EPLYa6o0qlMqlS7fPHvNN8/e8vr1OfXagMbtkHHHYdp1GVw3mfanqIGJbliohg4KjAcDAsfBG40YdtpENIVMIsZ4NJK1ciaT4fT0VNaxgimoKIqMHzk/P2c0GklRk8hjFIIokR0u2pyivhW681KpxNXVFZ7nSc20QFuI+GYRuz2dTul0OlK6KrQpYp5QKBRmqRKB7K8Ll9RgMODVq1d0u12q1Sr1el16MIWgSbQZ/7XrnU9qQTzd2tqS6ahig3fabSKmhu87qKpCqxVqBqJujNvbKslkaCzIZDLyFRiLxaSARljDhBRR3OBvb29lgOjh4WEY1G6adLvd2dg6bFE9ePAgVIPNgO+j0Ui6Y25vb6ULfmVpmXa3S6fb5ezZt1ixOAvzcyQyKWr/zy/RPB/XttEUBd2KEo3HqZw3megBlhaA7aCoJs4Ier0+vqugOzbD3gB9aqBELfo1G2WkY0wUxq0pwTSM5TMsi0BRiScTDPo9EqYVtjiTSebzOSzfJ5/NoCiBrI2FkF/ESQgKvxiNj8dj9vb2pOhJTPNEzJxpmvLzFZngmqZJPJzgD4raWdCvRE+/Wq1y584d5ubmaLVaaJrG0tKSxFoIl5Jt29IrahgGe3t78sER9wHBpBYbWVxa79+/L7XyYuT+r13vfFIfHh7K6N4wuCgrpY+pdOglPL84A3zi8RjX11dcXJxLF4Z4Wm3b5quvvsL3fdbX11ldXaXb7VKv1zk+PqZcLsssk1KpJI2+wgEtOgKxWIzT01M52dJ1HXN2YRJC9Lm5OenyADAsi0yhQKvTpdXpks1lsaIWhqkzN1dECTx8exLqPkyLkeOixZJgRBlPPFw3YDLoETgewVjBH/j0am0G9TZxNYbdmnB7WKd72cNtuQR9Hw2DWDyBp0IkHWd3extLVcmn06SiMe7t7VLMZ/npT/8Nf/mX/5uEBgldRrfblam3QhAkbFSxWEwaXUUZIVqYAO12m7m5OXK5nEwR7vf70vd5dXUlp4iihhaoBdECFcFHzWaTt2/fSi23sHgJaamYJjqOIzsfIkrl/6sSFMSo6+trOp2OjDEUvfgfbFMLh7LjOKysrMiTdTQakUykMA2TydgGFHnRMQyd+/fvMjdXYmFhXvoRRZ3rui4ff/wxH3zwAfv7+1KMdHh4KH2F4gFKJBKsr69Lf564NO7t7VEqlWTA0c3NjbQmVatVGYdcyBfI5QpcXF5xcX1FNB7DjFg0202y2QwfffwhuUwSUwM1CNBUFdOKEEmkQDGwYmn8QGU6HTPodYnoBolIFHc4Qpk6jFtdvKGLOlZhqDHtuSiOQtSKkc5kCVRwA49uu4Ua+NTKZeJRi831VbKpJHMLJaLJKFbEkv5LkX3Y6/Wo1WpSliBEQIVCQbIM79y5I2lHi4uLuK7Lt99+C8Af/MEfcOfOHeky0nVdBr0WCgUWFxflJVMQAb47PRSCJvHPXF5eSgVfsVhke3s7hG+6LrqhS/12t9uVyLl8Ps/du3elZ3QymWCapsQL/y7Q9Xfe1KurazMkbAPLirC6uoam6czPL5DL5fECBccLMMwovd6A8dhmZXmV9bUNBv0BiqKiqhrX1zfEYnF8P6DZbKEoKsPhiHq9EeKoNI12u0M8nmA0Gs841mPW1tZZX98AFHq9PuPxhO3tHSwrguf5YUz0ygrpTIbiTP+bSqZIJ1MkIjEihsn15QX/9I//wHg0IJ1JEI9bGBqMBx02l+d47+G9UOmWSqD4Ds5ojKFbWLE0U2KMXQs/UBkN+nR7Ffq9G3B6BPaA6vkZ/VabYAzuGBxfx7ViGJkcVioFKDiTMeeXJ0zdCalYhD/7+c9o1WpsrK1hT6e8OjjgcmZfE69ukYQlEBWDwUC2+wShKZvNyoMiZEsXiceTLC4uo6o6tj0lm81RqzWIRuNkszny+aL87KPROA8ePCQeT1IoFBmNxgwGI4bDMTc3ZdrtLltb2zx8+JidnT3m5+Z58+YtNzdlxuMJi0srFOfmMUyLZDqLqumSmCqotSJR7F9oUnVisThbWzusrKyRTmeIRn9gll4QBJyenqFpGoVCQZpAFxYWZprdBRYWFlldXeXs7AzTsHjx/AWT8WRG7ZnIpCjB35ufn5eoA6EoE5MyEUkmSE4ifDKdTkvrknBEi05A5bZCLJlAM/RQwXdwSK1SDU+NTpdas0E+lyGXy1EqFSkW8gS+h+d7xAyNxbk5Hty7w9HJGX3HJmrGUI0IvhVD1WLY9gTPsfB9l6k/xVQNFD0ATUM1I/iqjq5oaJqCoxsEpsEg8PE7HTRFQfE8HGdEIZXk5z/9lHwqydFwSDwaZTAeMXUdxrMJrHBbFwoFdF1nd3eXubk5Xr16JbHGoh0nnDGCglqrhfSq8XjM7e0t6+vrqKomW63xeGLWG45zdXVNtVrlZz/72SxT/gbHcUmlYjOpcUSaYlut0IC7tLjE7W095Hz3B6GEVlEZ2zYT20ad3beEHU30r4V2WlU1hsMRW1vbqKrK9fU1R0dH30si+9esdz6pBfg7Go2yvb3NwcEBJycnEsUqhjC2bfPee++xt7dPo9Hg+PhYGmdd15VZfYL/cHl5SbVapdvtAqHWQoDCNzc3efDggSw1hORxaWmJWq3G8fExuq7LS0yz2cSxp/R74cWqXKkwHI8xLAtVU1ldXeU//cVfsLq2xt6dfbK5HKquMXWmdLpdPGfMh4/ucn93ExMXAxdLC9ACj0Q8SiaXJ1rcxyzsoqY3URPrmOld4vl7JIv3iKZ3WVi9y/zyDqn0HIl4BkNRcSZDIpqChU/Wsvj3P/s5nzx5yj9/9k8YMzSvgCWqmsr+/j6O43ByciIZKeLPXiqVJDek2+3KEqHRaMhULGGIFXkqlUpF6jWCIJBBUMLoGo1GOT8/lywR0Z8WvBbRexbBVdFolPWZy1/83s5MCyTyfIQLR1VV/viP/5hMJkOv15sdhPPyoigUfJ9++uk7h4P+TkkCYhASZpNbM99hXMIhRTyw6JTcvXtXGjjn5uZkTHO/35cCl1qtJtGxhmHIeIednZ1QgzGjozqOw927d1FVlWq1ymAwkI6OSCTC3Nwc9/37jGedj2+fP6fZahIQkC8WSKaTLC+vkslm6HS7qJpGLB5D1ZjBaXqsry7zzVffkIvHeHx3l4tylVqniapHwPBQNRMzYqFjMtU8VNdFRcWImLiaiqGpTB0V39dRVQNFmaLq4QBGcW0yiRibS3NszC8w7HQYDwasbu9gWRYjd4L/HeGS+HxjsRiNRoOTk5Nwqru9/T3W9OJMpjsej9na2uLsLGzxCVmpOEw2NjZkPJzYtI7jsLGxQTKZlH1/QVX9roZEjMnDOcSN1Ko3Wk3i8Xj4UJomjhcCOfMzRvXi4qL0Sq6vr1MulyV6YWEhNCxcXFzIeLt3Xb9T+TEYDHj06BG//OUvWVhYkJeT6XQqEQTValUGhH744Yd0Oh2++uorptOpVGyl02n+83/+zziOw/z8vPTLjUYjer2ezN0WbSABpZyfn6fVanFwcECr1SKTyXBycsKnn34aZplHo8SiUT7//HOOj49ZX1vDikXJFvOkkin56lO0UI13en4WZmgbOpqhY5o6jcoNu/t3+OSj99moNfk//8ff47hDVMXH92yCwMaKRjAsj4ilMR73CaY2phklGomBY2BoFqrm4zpTfM/F1BV2tne5u7tFr1qhXr7G8j3y2QxW1KQ/HJBIJxmOxywvrzCdTllbWyOXy0n5p9AlO47D0tISw+GQ4+NjiR5oNBoz6UAoEKtWq7x584a5uTmSySTZbJZoNATmPH78mGfPnsmhiWVZnJ2dcXl5KWWp29vbFItFDg4OZO5MCOZssbG+gTHLSk/MujKKovCbz38bgkPHI8knWVhY4Le//a1kj4cUKVvSV9++fSvbtWtraz/sphYtOXFLdV2XSqVCtVplbW2NyWQs6zjBxxOpW+EHn5UbWxhLb2eorclkQq1WI51Os76+Lt3Ml5eXMvbCMAyazSYvXryQXrzz83MZw6Fpmvz9RLKVbhh4gU8imUTVNXTTwDJCV3R/MKBYLDGZhObRXr/P1fk5lhVhbW2dy/ItCj7/9o8+pdZs8+rtIbY7RbHBmXik0mmc4ZhIoJI0LcaTMQo+fuAxdqZYJkTUKZFEhHv7W/z7P/4Zo36Pw2GfdCLO1dUl6xtrFEol/ABuyuFUNbZlSQi9ANMIUb9ofabTaZmPI+4hiqLwzTffkEymZJrw9va2fEBEKoEA4wjFnWjJCVaKwMOJeDqRCiD+d6lUojf7narVauguX1+nVq9RrYYUVMe2GfS6EvkQj8e5uLiQY3gIMWXigbRtWwKP3mW9c00t+pzVapW9vT3ZSy2VSvzd3/2dFKOMx2PK5TIHBwe0222eP3/OT37yEz755Ceydu71enz22WdS7CIkk4LAqes6e3t7bG5usrS0xH/5L/+Fx48fS6zW/Pw8c3NzkqEnHqLKTZnPf/Mb5kol3v/gA7KFHKPJmGq9xvLaKt1ejxevXqJoKp1uh4vLSxLJJFs7OyyvrrC4skYsnafS6NAbDjEMDUML+NOff8K93VWWC2livkrE15h0hgQTh1wizkI2RTSYEgybeONbNLeF4Xf4w6d3+T/+979ke3keZzRiMhqB4qNHNIyYQSQRRTdN1jbWWV9bI5cJHSpXV1eyHSnaeUKm2e/3qVarkh0tYks8z5NvOUVRpMQgHo/TarV4/fo1CwsLAJLnLdws8/PzUtQ0nU7Z3NwkCAK+/vprJpMJP/3pTyVQMpsN3fbV2/B3YBbVMZ06cuBTrVblf0Tb9S//8i/xfV/KZsVEtFgsSuXg119//U5783eaKJbLZZaXl1lYWODw8FDWfML5PD8/L8Pd5+fnefv2LXt7e6iqKvMW8/k8Dx8+lFpnkcIlxtnRaJTj42M5dAAkBEU09cUJI276g8GAk5MTVIUZU0On1W7R7fXY3Noin8+TzmSwZzoRkYKQyaRnqrMMk8mIeDJFbm6JZCbH4uoK0WiUN2/fYE9GbG2ssDhf4nbR5rJSRo9a6IFPp3xJreWRn4+jW1EGAxXPCViYz/PwzhbbG8t44yGK7zPqD5n6Dv3REDQVzTL58tnX/NlMcbiwsMhwNJAYMGGVSqVSTGyb+GwCKE7U8/Nzcrkc9+7dk3asSCRKoVCQ6QI7OzsyGUukp9m2LUfSYnCzu7srpZ8CVi/StoQSUDwQqm7Q7YYa69RMwWeZJsvLy3JAJnJ7AGkcEA2FwWBILJZgb2+P0WjEysqKpDn9oJtagBgty+Kzzz7jT//0T3Fm2l8x66/Vauh66EzZ3d3l7du3lMtlHj9+LG/iH330ERsbGxwcHPC3f/u3MmyoXC4Tj8fZ2dnh22+/5dWrV/KkPj8/5w//8A95+fIlqVSK+/fvk8lkKJfLfPLJJzJuw3WmrKyuhu7yq2sWlhb52U9/xsXFBb/+1a9oN8OuS7FY5P79e+zt7dHpdDg7O+Xmuoptu5ydnaOoCu8/eR/f90gk4miaSr1W48/+7I9xAoeXr1/z5ddfsbK0zHA7Qa1yw87+BkvLy8TNRUZDm9PjIzrNBkeeT/nmhk73bWiw3dojn8/z8sULhsMRCuHkL5FMUSgU+fLL3xDgE42EzOh4IgTYvHj5CjMSY3F5hf/52T9Rua0SiURIZzP8X3/912RzWaKxGJ7nU6lWMU2Tn3zyiQRDLi4thQZcz+PXv/611FqLejkIApaWlri+vpZwyHK5TK/X4+uvv5ZckUgkwvLyMnfv3wvLyZn2ZmJPWFhYYDye8OjhI6qV8ix6MOypv3r1mkKhyPn5OeVyhYuLC9niq9frEvn8Luudyw8x1habtlwuy4FAaIfXZIxFq9X6HmC72+0ynYb9ZMdxJJpXjLzDSAVfCs9FW0mMgE3T5ObmhmQyKb8MIaoZj8cSr/Xo8XtYkSi9Xh97YrO3vUvUitKoNTh6c4ipG98BxVQ4P7/g+PiE4XDM/fsPmZsrEY2Z2PaYqT1h0O9j21OCQEFVdV69eIs38lgtLbOSX2RzcYuVhW0e3PuYRGSJYJoEX2N3Z494Ig2KSac3QLcijG0b04owV1olncxjaRFGvSGT4YjbSjXEkanhGDlqmTSbDSIRC03Tua3V0UyLVDbHwtIy7z/5gPmFBaq3t/T6fTq9LigKtjPF9T2mjkOtXuf07IwA8IKA21qN0WyQI1BiAjQJoTl5Y2NDWuBGoxEPHz6U4n7BFnddl9t6nV6/j+f7dHu9kP3R7eE6Lq7jcH1zQ7Ua0gIGgyGqGvIIBelK1w3i8RhB4JNIxMM8+cDHst4NEPnOJ/X9+/f5p3/6J+LxOD/72c9IJBL89//+33EcR/Y/IeyQCNNnr9eTF8ybm7JMborFYmFLqNEgl8vx4MED3r59SywW46//+q+Jx+Ps7+8D8Hd/93eUSiUZXvTs2TNOTk4A+JM/+RPZmrq+vmZxcRFd1zk4OKBSqfD27VvG4zEvZmCVdDrD+saGxGV1Oh0ODg7QNI1Go8Hy8jJ/9Vd/yeeffy7rdZGWFYb7DPnNr39Lt9flL/7iL+h2urRbHXTdZHdnl+fPX3AzrZHJhC2x7e1trq+vZxekLJ1Od4atHTAcDEinkyQTSRRVYTAYojXqmJaJ77v4AXi+j6GquI7D6soKnu8zmsVkP3nyRJornj59yueffz6zRM1L+anwJwp8gSCOionko0ePGA6H/OY3v5H6GmHOLRQKZDIZ/vAP/5DhcEilUpFakTt373L//n3+23/7b3IYJ77X8XhMPpdjOpnIZAPh6r979y6DwYDnz58DYbbN/Pw8L1++ZGdn54c/qYWgRtxm4/E4H374IfPz87NWmcIvf/lLzs7O8DyP29tbotGoTEbd2tqiVCqxsLAgSZ6maUqqZiqV4vj4GNd1ef/997m5uSESifDpp5+ysbEhN+F4PKZSqUjyZjqdZm5uDtM0Ze0WjUbJZDIyIkJ0SxqNOqqqygvU/Pw8q6urtNtt2Wf/8ssv6ff7vHjxQl7QHMfBMAy2trYwDJNet8/V5TWFQpGV5VV8L6B2W2fQH0jZaBAElMtlmV67s7PD8vIyNzdlLs7P2d7eZnUWkHn37r0ZUeqcdrtDvlDg3r37eJ5PMpUkm81Qq91Sv63SaNRnvMA+a2trbG5uSqB6LpfDmtWu+/v7LC8v0+/3JR213W4zniGAQ8DPv5yMYt4AIQxUGHovLy85OTmRSr5cLkdxNgBKpVI8fvyYXq/HZDKRhNXl5WUKhYIcvsRiMcmgXl1dxfPCzlm73ebo6Ah9prt/V+3H79TSm0zCuikIAp4/fy5jMEQA5dbWFs+fP2djY0P2R/v9Pjs7O1xf3/DVV1+xvLyMOiPqi5aTYC2vra1x//59KYQpl8s8ffqUo6MjOSq3LIvl5eUQoeA4/P3f/z0PHz7k448/5ttvv6VUKgGhqaHdbuO6Lh988EEYRddu89lnn8nXbLPZpFqt8sknn3xPABWJRHjy5AlBENDpdFhYWODk5ISTkxNKpXBUfXh4SCKRnDGcw2HQ/v4+q6trlEolms0mv/71r6Vjp9vtsr6xger4rD96xK9+8RnjcRhwen19TSYXUpVQdSaTkOZ0c1PGtKL4vofvOGGHo9/FskIt+rNnz7i4uGB/P5zehg7tOE+f3pfA85cvX8oIv1Qqxd7eHqZhMBqNWFhY4M2bN/i+TywW4/b2VhpmDcPgzp07fPPNNxwcHHDnzh0ePXpErVbj8uKC21qNvb09xuOxRDGMRqPQhVSrycnm2dkZH374Ifl8Xia7ra6ukkolOTk5kUO9s7OzH55PLVp58/PzUg03HA7Z398nk8nIDSriMwSvQnAlrq6uJONYkEtFrssvfvELGo0Gm5ubJJNJGV0s+B4C4L2wsCA52Ts7Ozx69EiqxkSAvOu6TKdTCoWCDJQXIJuFhXl2dnZkfIeIcDDNkAD1XbKRsDiJoYMY2Yd54VnW1zcBePny1WzTBNRqdcrlMpZl8d5770nt89raGnt7eyRnxFjh8s7nwj7z7axFZ9s2//HP/xzNMDk/v2R9fYNCocCbt2/QdZVY1MIyDRmTLHIJRUb7aDSiXClzfn7O0dER7XabZrMpNR8bGxuUy2WSySRLS0u8fPlSyhzE6a1pmrwXtdvt8LI6y44Rn2+tXqfRaEiB1cXFhRzDC6ueEGMNh0MODw8lLTV8OweSSiC4h0I6+4NuapF4KxwMwn7jeR5/9Vd/JV3J6+vr/NEf/RFzc3O8fftWxmksLy9x79495ubmuLi4kIR8YVtaXV2VQMSrqys5Lr+4uEBVVX7zm9/w2Wef8fr1axqNBouLi5JLsbKywtdff02j0ZBZ2j//+c/Z2Njg6dOn+L7P6ekplhWRPOTr62uy2Sz1ep2vv/6aJ0+esLGxQTweZ29vjxcvXkjrvvhSYrEY9XqTnZ09isUSb98eUiiUyOeLPHnylHa7S6VS5ejoiK+//lqyB8UpKWJF4vE4mWyWqTMNQemWSSqdJhKNsLgUElx39/exp1MuL8/Z2dri5uoSx7FZX13D0HXW19f5+OOPaTQasle9uLhIrVaT2e1LS0u89957PH36lPX1dam9EJfBSqUiPZ6JRII/+ZM/kYm66XSazc1NJpMJZ2dnfP7553zxxRfhpp+BPd++fSu5IdlsVjqNLi8vefXqFdFolNXVVal9FyNzkVO/sLCAaZoMh0MePXr0zm7yd97UQkA+HA7pdDryNZ3NZmX9K7oY0+lUKsa2trYkMFJs8MlkIv8Qy8vLEuQotACRSIRcLofv+7KWTafTcmI5GAw4OjpiMplw9+5d2u221BQHQYBt27x9+5ZGo0G9Xsf3fTY2NqSGW5QaYtQ+HA65vLyk3+8TBIG0iokUKuEIEYFB77//PouLi5imKQN5bHvK06dP2doKozrOz89JpVKsrKwQi8WoVCqSauS6LuZMuCUz3ms1dE3ntlZDN0KlYiQSYTIa40xtMtkMsWiEdrvJ9ewtOZ1OWVlZAZBhRWFbbSydJAJdJoY2wsUtgDK+78sLsbjYiY7H9fW1TNASP09RFB7Myj3XdTk9PQWQv69pmmSzWXnRNE2TyWSC4zgUCgWZTZPJZHjvvfd48OABxWKRs7Ozd3a+vHNNvbi4KJkSAhZZqVRmGg2bQi7L5sYqBPCrX/6SVDrN3t4eu7u7VG5v+fy3n7O1GUYvXF5eymizMF+vwuHhIaVSkfn5BRYXFxnbNooyc0KfnfH+B+8Tj8e5vb3F930WFhY4ODiQ7GShPQG4uLjg6uqKe/fuSWnsixcvKBRDD534Z8bjseyh1+t1zs/OWJy9jZKJJKZhksvlaTZbLC4usru7y9/+zd+xtLTEm7dv2Nra4vDwEMd1yOWyLC0tMp6EAqD33n+fTqfD5cUl3W6Xi4vL8L7Q67O2tsr65ibPvvmGpcUF3h4ds7C0QrGQ5/ToiEjUwrFtCrkcC3NFfvXLX5LP50BRqdcb6KbJ8dER1dtb2u02mUyGfC5PvpBnMBjSbnXCYNUZcVQMusQp3Wo2Zf0sWqO6YZDJZsnmclxdXclL283NDWtra3z8k58wGAw4PTujPxyytLQEQMSyWFxYCAkA4zG2bYegnPk5yuUK3W6HIIBWq8kXX3wBhKrASqVFt9uTRuxqtcrl5dUPu6nb7RZLS2GSbbl8Q6NRZ2srfD21W03ajVt836VUmsNZWSKbK3DbaFC5raHqBvce3KfTbHJ+fkYsFpUIgE6nTb1e4+TkmKgZvq5X1za4rZ/TaLVRVJXRcMjnv/k1G5vbbG5ucn19jeu6rK2tyQ6LGMsKR4WAqIjxazQaJZ3JsLW1hT3LbPR9X3Y4VlZWOD89xp4MePvqJXt7d0mvhsJ1y4zMuigaqAFvDl6HVqrUPIVSmF2SyqSoVqtk0jkKxTnm5+ep1+vc3tYJULEiUaxIFLt2y/HRYQhvdBwm4zF3791nZWWFXrfL5ckx8VgMw9TJZLOh6VfRcH0FD514IommqnTbHXzHxVA18Hx6nQ4rS0sszi8Q+CGxX6jxzs/PsW2bUqlEvV5neXmZ63KZ8syDOBwO6fZ6TB2H0twcmVlrzbZtkuk0+3fvUigW2dndxf/qK06Oj/Fdl9TMLL2/t8c///M/c3l+TjwaxdVUWs36LIL7IdPpdHaQXUgylKquzO5cvZkPNcHy8uoPu6lFlotwBzcaDa6urjBNkwcP7mPqCp//9reomo6qqXS7IUHIikQwDBNdgd6sG+H7PpVKRWoASqUSD+7fx3ddbm9rvH79hmw+z8rqKqVSgfl8jmq1jOu4MpD0H/7hH6Qp9e7duywsLHBzcyOlkCINLJVKsbOzI9lxQsI5Go0k+y2Xy7G0tMTHf/Ax1fIVmmaSz+d58+YtqVRauqxHoxFbW1u8ePGC09NTut2ubFEeHR2FYEXf4/Wr19ze3kq/odBSdNptNjc3icViXF9fk0qleP36Ndvb2ziOw/HJCXf297m8OKdeq3F7e4uqG8wvLlKcKzGaeQLjs/p+MpmwtrYmh1me57Gzs8vi0rJ02eu6zvz8PFdXV+TzefZnuOTBYMDq6irJZBLbtmm1WvzjP/4jq6ur0n+6urrKyckJvu+TSCRQVZUPPviAxw8f8s///M+ySyKwB5qm8ezZM/b391DVcFw+nU4l9Gh3d3eGYw5P9FwuRywW+14o6busd66pLy4u6Pf7TKfh5UZAuj3PI53JEASQzeWYTp0Q6xuLkkjEOZ1FYszPz0vppOAlx+NxcrmcdK4EISla/kEJwtdbJp3hvfffZzq1JYt6MplwcXFBpVLBdV06nQ537tyROuKVlRV835cm3nQ6LU8vIXMVabJCDJTL5+j1+2iqiqqoJBIhS+7hw4eYpiFv8+vr61JQpaqqRDBks1mymSyZTIZisSg3lQC1vHr9WrrjBRhdpFhVKhVubm7wfJ+7d++TzRVB0WaWN4V+r0+72SKbzcmHQEz5RIrAaDTi+YsXEiuRTCbp9Xrs7+/LeYJgbliWxdbWlkxaEBocsRqNhky7FXHQYvo4dRw2Nzcl91u4lO7fv08ulyOTycoZhNDKdzodIpEI+Xyem5tr2Tu/ubmhVCrxB3/wBz88oen6+ppyuczNzQ2apoVQ9BnImwA8L2BxcZlsPk88luDq8hpd0xgNB1ycnXF6eiIxVOKi9l3z5XQahh/Nzy/IqIRoNEIqnSaVTnNyfBz2bWcXD5G/t7OzQ6PR4Le//W04wp3ZzHZ3d4nH45ycnHB9fS2jjjOZjDT1CuiK2Oz1Wj10ZI9GZLIZHjx4SLPZ5OgoFG8lEgn5xQj8rABcigulbYeX16urK+r1Oo8fP2ZjY2NG+U/JyDiRaiWmoI8fP+bf/bt/x+X1DZPplGKpyMLiIq7nUK/dUr6+pFq+5uDtGy4uLiSpSsSFCJ/ibbUqzQEiDkNRFEqlEuVymVqtJtO5BATHm4UrCUqpSBwW+umzszN5Ia5Wq4yGQ6LRqJxYClFZpVJBURRyueys47Us5ca6rvPFF19we3tLpVKRnJKdnR36/b5sv/6gm1pQ4r8bjLO1tSUpmZ1en8XlVfb37xEEMBqPsO0xmgL2eEhlxrAQta4YpUMYYfbs2TMazQa9XpdOtyORr93ZKfDq1WvK5ZCTt7CwIMsLRVE4PDyUqKx79+5JKufS0hKtVksiY8XgRhCJhEUpCAIqlQoBgXTXBEFANpvBtiek06EIX/RgE4kECwsLrK6uSv237/vous75xYW0WAn+nNC0bG5uyUuqbdvc3NzQ7XYlc3pjY4P/8B/+I7bjks3l2dzaYm9vD8syyGZSaCpMbZuDgwMJuxElliDPptJplpaWuLi44OLiQkIfI5EIKysrEt6YSCQ4OjoKSxxVlUOXTqcjw1VN05Sj71arxenpqTT8DgaD7/23QJwJ651gjYhOyNbWlpSZilLQ8zzZXfnVr34lUyT+teuda+rNzU05FHnz5g2tVkumN6mqytMPP+Ti8pKvvv6ap0+f8urVS44PjyiVirTbTXK5cGwqkGXfjWwQdqxep41qWGzv3pnd1k1cN9QixGIx3nvvffmhvvfee1LfMJmE5t7j42MKhQKu6/LixQsWFhZIJBJyY+fzea6urhiNRrz33nukUikpkWy321xfnBExdRw3kKdQoVDk+PiYvf1t6QUULo54PC7ZI/l8PnR4qAbZTFiTnpyc8Pz5c548ecL+/j6DQV+2Q1VVpd1u89FHH2HbNl9++SX3798nYsXZv3sPw9T4h7//e6KRCPFYBF1TSMSiWKaFblqyDhYjaAipWffur0u4ZrPZJJPJcH19zfLyMisrKxKsfnp6ymg04sWLFzLEVQCEDg8PUVVVZsV4nke5XKZcLvPw4UP5GSSTSWq1GsNhOBldWVmRmZpijlEul2XQ6507d3Ach5ubsmztvX79Gt/36Xa779ynVoJ3PeN/XD+u/0XX75Cj+OP6cf2vuX7c1D+u37v146b+cf3erR839Y/r9279uKl/XL9368dN/eP6vVs/buof1+/d+nFT/7h+79aPm/rH9Xu3/l8Z5PhLXspBmgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOEAAADECAYAAABp0kb/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADS0UlEQVR4nOz9ebhuaVrXh3+eaU3vsKdzTg3dVdVdPUJjAzajgKJgd0BQcEBBfyKoIYggRi5iciXilAujicEg5gfJFYMRfxqihkiIKEJACDMNTTf2VF3dXXXOqTPt4X3fNT7T74977X2quqqrm7alTpJzX9e+9jnvXvt9117redZzP/f9HVTOOXM/7sf9eMlCv9QncD/ux//b4/4kvB/34yWO+5PwftyPlzjuT8L7cT9e4rg/Ce/H/XiJ4/4kvB/34yWO+5PwftyPlzjuT8L7cT9e4rg/Ce/H/XiJ4/9+k/AVr4A/9sfu/v///D9BKfn+8Qql4C/+xY/f+92P58b73y/X+L/8L1/qM7kn4tc3Cf/H/1Eu3vlXVcFrXwt/+k/DjRv/bs7w31X80A/9P2OiPfmkXP/XvhaaRr4+8RPhG74B3va2l/rs7sdHEfZj+q2//Jfhla+EYYCf/En4b/9bGdRvf7sMgt/I+K2/FfoeiuLX93s/9EPwXd/1whOx78F+bJfmNzR+8AfhD/5BOdc//Ifhkz8ZtIZ3vhP+yT+R+/Lkk/DYYy/1md6PF4mPbaR90RfBp32a/PtP/Ak4OoK/+TfhB34AvvIrX/h32hYWi4/xNF8ktJYV+eMZH+/3+3cRTzwBf+gPyQT7V/8KHnrouT//L/4L+Dt/R67Pi8W/q/vy//YYBlkYPtL15+O1J/wdv0O+P/mkfP9jfwyWSxkoX/zFsFrJkxogJfiO74A3vEEG+wMPwNd9HZycPPc9c4a/+lfh5S+X1fW3/3Z4xzue/9kfbk/4sz8rn31wIIPsjW+Ev/W37p7fd32X/PvZ6fV5vNCe8K1vlYfPei1/2xd8AfzMzzz3mPN0/ad+Cv7D/xAuX5bP/vIvh1u3PsJF/HXGX//rMoH+7t99/gQEWR2/6ZvgkUfuvvZi9+Vf/2v4A38AHn0UylJ+78/+WckKnh3PPANf8zVyX8pSPvv3/B7Z553HL/wCvOUtcOkS1LVkTV/7tS/8d3zP98CrXiXv9emfDj//888/5kd/FD7v8+Ra7u/L5/2bf/PcY/7iX5Rr/853wld8hdynoyP4M39GJsSzQylJ4b/v++B1r5Nx+KY3wU/8xPM/++pVOfcHHpBzfMMb4H/4H557zPkY/If/EP7T/xRe9jIZs5vNC//NHxIfn5zriSfk+9HR3ddCkBvxuZ8rG/DzNPXrvk4G69d8jQySJ5+Ev/23ZZD/1E+Bc3LcX/gLMgm/+Ivl65d+Cd78Zpimj3w+//Jfwpd8iQyQP/Nn4MEH5ab94A/K/7/u6+DaNTnuf/qfPvL7veMdMgjWa/jWb5Vz/O7vhs//fPjxH4fP/MznHv+N3yiT/9u+TQbnd3yH3PR/9I8+8md9tPGDPwivfvXzP/sjxYe7L9///dB18PVfL/fx534OvvM74emn5Wfn8ft+n1yPb/xGKZLdvCnX8YMfvPv/N79ZHkB//s/LpHn/+yU9/tD4B/8Atlu5H0rJg+X3/l543/vujoMf+RF5+D3+uEy0vpfz+pzPkTHxilc89z2/4ivktW//dnlI/jf/jTzg/97fe+5xP/7jcj++6Ztkcv2dvwP/3r8nf/cnfZIcc+MGfNZn3Z20ly/D//F/wB//4zLBvvmbn/uef+WvyOr3Ld8C4/jRb5Hyryf+7t/NGXL+kR/J+datnJ96Kud/+A9zPjrKua5zfvppOe6rv1qO+/N//rm//6//tbz+fd/33Nf/+T9/7us3b+ZcFDn/rt+Vc0p3j/tP/hM57qu/+u5rP/Zj8tqP/Zj8P4ScX/nKnB97LOeTk+d+zrPf6xu+QX7vhQJy/rZvu/v/L/syOZ8nnrj72rVrOa9WOf/W3/r86/OFX/jcz/qzfzZnY3I+PX3hz/v1xtmZfM6Xfdnzf3ZyIvfm/Kvr7v7sw92XnJ973Hl8+7fnrFTOH/jA3feGnP/G3/jw5/ZP/6kc8/M//+GPefJJOeboKOfj47uv/8APyOv/7J/dfe1TPiXnK1dyvnPn7mu/8is5a53zH/2jd1/7tm+T3/3dv/u5n/Wn/pS8/iu/cvc1ybNy/oVfuPvaBz6Qc1Xl/OVffve1P/7Hc37ooZxv337ue/6hP5Tz3t7da3Y+Bh9//IWv40eIjy0d/cIvlKfCI4/IvmS5hH/6T2UZfnZ8/dc/9//f//2wtwe/83fC7dt3v970JnmPH/sxOe5HfkRWvG/8xuemiR/65HmheOtbZXX95m+Wp/Cz49nv9dFGjPAv/gV82ZfJ0/g8HnoIvuqrpDD1oWnHv//vP/ezPu/z5H0+8IFf/+e/UJx/3nL5/J99/ufLvTn/Ok+7nx0fel9A0sbzaFu5L7/lt8hwfetb7x5TFJJ+fej24TzOr/kP/iB4/+J/xx/8g5IxnMfnfZ58f9/75Pv16/DLvyxp9OHh3ePe+EYZQz/0Q89/z2/4huf+/xu/Ub5/6LGf/dky7s7j0Uclzf3hH5Z7lTP8438MX/ql8u9nj9e3vAXOzmQlfnZ89Vc/9zp+lPGxpaPf9V1SErdWcuXXve75G1BrZd/w7HjPe+Tkr1x54fe9eVO+nw/W17zmuT+/fPm5N+2F4jw1Pk8p/m3j1i1J0173uuf/7BM+Qfa4Tz0le4XzePTR5x53fs4fbuCCpFlnZ8997cEHX/jY1Uq+73bP/9l3f7ekeDduwB/5I8//+QvdF5B08i/8Bfjf/rfnn+f5eZWlFHz+3J+T+/5ZnyVp/x/9o3fP9bf9NklZ/9Jfgv/6v5aHwpd9mTywyvK57/uRrtP5OPhw1/6Hf/j5haUPHTOvepWMzWfvWV/oOJAx3XVyz7WG01PZs37P9zz/WLg7Xs/jla984eM+Qnxsk/AzPuNudfTDRVk+f2KmJBPw+77vhX/n8uWP6XTuuTDmhV9/MSWRf/SPZJ/80Ry/tycr8dvf/vyfne8RP3TQnccL3ZcYZWU5Pob/6D+C179eBvbVq7IKpXT32G/+Zlkd/tf/VSbBf/afyf7rR38UPvVTJQP4X/4X2Y/9s38mx3zt18J/9V/Ja89evT+W6/TrjY8l+4G7f/Mf+SOywr1QvPGNz/3/x7AKwserMPPRxqteJanm53zOi5/weV/rPe95bgp469aLrybnnwEyQL/wCz/8cR/tzbl8WYoX73rX83/2znfKgH52BfJjjbe8RQocH238rt8F//1/L4WEz/iMf7vP/tVfhXe/G773e2VVO48Pdz6vepWshn/uz8k9+pRPkUn29//+3WM+67Pk6z//z6UA84f/sFQP/8Sf+OjP63wcfLhrf+nS89sr73nPc1ek975XJtSHFnDe857nv+e73y33+nwxWK3kAfVi4+jjEL+xsLWv+Ar5o/7KX3n+z0KQ5R/kj3ZOqmDPfip+x3d85M/4zb9ZbsJ3fMfd9zuPZ7/X+c370GM+NIyRat8P/MBzV5cbN2Rwfe7nStX03zYeekj+7md/vVh867fKgPnar31htNKvZzU5X5Ge/Ts5323pnEfXPb/c/6pXyWAdR/n/ycnzP/tTPkW+nx/z0cZDD8nvfu/3Pvc+vf3tsk//4i9+/u986B74O79Tvn/RFz339Z/+6efu6Z56Su7xm98s18MYSav/8T9+4Yzj49hy+o1dCX/bb5Ny9Ld/u2y43/xmmWzveY8Ubf7W34Lf//vlSfQt3yLHfcmXyMV+61ulPHzp0ot/htaCFPnSL5Ub+DVfIzfzne+U0voP/7Acd74p/6ZvklXIGCkyvVD81b8qq8Lnfi78qT8l+6rv/m4ZVH/9r3+8rs6vL17zGnkIfOVXyp7pHDGTsxSm/sE/kGvxQvu/D43Xv14m07d8i6Sg67UMvg/NOt79bumPfsVXCDTOWinI3bhx99p97/dKuf/Lv1zec7uF/+6/k/d8oUnzkeJv/A2ZQJ/92dIaOG9R7O29MNrpySfhd/9uaTf89E/L6vxVXyXX5tnxSZ8k9/3ZLQqQvex5/LW/JsXCz/xM+JN/Uv7m42OZvD/yI/Lvj0f8umqp5yX4Fys/5yyl8MXiw//8e74n5ze9Sdoaq1XOv+k35fyt3ypl//OIMee/9JekRFzXOX/+5+f89rdL6+HFWhTn8ZM/mfPv/J3y/otFzm98Y87f+Z13fx5Czt/4jTlfvixl+Gdfig9tUeSc8y/9Us5veUvOy2XOTZPzb//tOf9f/9dHd30+3Dl+POK97835678+51e/WkrsdZ3z61+f83/wH+T8y7/83GNf7L782q9Ja2W5zPnSpZz/5J+Usj7I35WzlOq/4Rvk/RcLKdN/5mfm/D//z3ff55d+Keev/MqcH30057KU9sKXfMlz2wHnLYoXanW80LX/kR/J+XM+R/629TrnL/1SOd9nx3mL4td+Leff//vlvh8c5Pyn/3TOff/8z/iGb8j57//9nF/zGjnPT/3UF74/N27IsY88krNzOT/4YM5f8AUyhs/j/P5+//e/8LX9CKHknO7H/fi/efzFvyir2K1bHzlbUkpaGX/7b/+GnNpHiv/7UZnux/34f1jcn4T34368xHF/Et6P+/ESx/094f24Hy9x3F8J78f9eInj/iS8H/fjJY77k/B+3I+XOO45IZW/8NWPkFJAaYjRs2iWuKJh6EY22w60wseEtYaqqsk5EUIk54xSGVKkqUsEGZpompqqLvB+QikBkZTO4H2g6ydCTIAlxESKmaIoyASMhpwTzjmsUvjgWSwapmkihEiMgZQSxmiUysToUVqjFISsQVuccyilmCah9EzThPceMPigyGTICRQUhcUYBSqjjWHKFu89wXt5fz+RY6QsHcYYtNYYYxgGj58C1mmKwlFVFm0UqIJ+GMg5YZzBR49zDu003ns2xy1V1ZBVwlgDOqONwhaGtmtRuSAEAeCklEgp4b3HGINzjpwgBY0ClIaUIq6wQEKpjLUaH6b5umTKssSaAj8F+j4SkyIk+XtDGNE2Ya0iZ0VOGmMsOXnW6wXOOabJMwwDOYMxlr7vUSTqumJ/f5+2bTHGoJS6uO7GGMI4Mk0TOWeK0pJzxHvP3/z/fpzQLh+HuOcmYYyBuikIIdC2PWVZkqeOmBLLRY0ylgygFH6amMaRnEFrRcpZJk/KGGuYJs/J6Sn7rOeJEsg5E6xFKU2MCaUUfd/jvQzSlBUpTigrAz3nBNpQFI5h6IkxEUKCDNoYUjqXuVlgrSWlRB8Ck49onS5eAxkc1lpCyPRDh9KKqipJKZJzIGfDOA74EEmmkkGvFMZqnHO4qsJajVKKnCHGjLMlChn8zhYyQUi03cg0BTl/H0BnmThTJqWIUpqcYAqR0PdUdcn+4T5t31G4Cj9luVYhEGMEZDLmLK9PU4CsMUauUVEUuNKScyLnSFaZrMA4Kw+mGNnbXzIOnmHaEkPE2hJUxhUFq3WDMZqUMkM/EkLEuZpmZv6HELHWEmOkKCxlucJow3q9oixLvPccHh4SQqDve8ZxRCnIwRPCSMqZcn5oLxblhxt+L0ncc5OwKgzOaIw2HOwtcU6TYsYZRbNYsGs7cs4YbdHOkJOZB0kiJlnNhiFSliXOOUzS84BNxJjRSjH05wMrY4zBqIwyisIqCgtjzjOGV5FSIOSMNZYQEllByhqtLSlHQow4bZgCTGHCGIvRBTkN9N1IVSkURgYwMnGGccCHgcOjQ4wx7LY91lpQshJrE+kD6JlyNE0Trq4uVr+cM95HxjGQkvxt5CQrq07kDLtdR0pS+M5klAFXAFqhlMEaQ4wJHyKg8T5xerol5UzKEbJGKYMxRs4NcM5dTMiikAeZUvJ+VVVQVg4FhODxwZNSxhiFKxxaKTIw+YlMpqoLlqsVmUiIE2XpqJuKafLkHNFekUKgbVvKskQpeS9jLEpDVZaUZUlKgWvXbjGOI8tlg/cTu92WlBJVVeAKRTGPhbIqmaYR5z4MheolintuEsbkiVHSmb1LB7S7HmMMfTdx+9YNhnGkWaxw1pBUwhpQc/JZuAJjZFLKUzwSgp9TVYXWmikExtFjtMYZRVlalssacsT7EaUjhVU4q7HWMgwDKWW8z/PAAnJB9JG+76mqkilFJt8RQqCsKqq6RmtL2/aMo6SiwzCgtUYbTYgeZaBuKnJO2MLKCgNY50hKo+ZVerVYonRGkymspaoKttsdPiQymhAjSlm0yUw+EXYdSoH3CaM11lliiiitcLYiKeHJxRwktdOGmBLjGJiCHCcp3/lEk+vmvb9YCZVSLBaSysrKJClyiH5eKSXFLaiw1uAKwzh2dL18WVfQ1A3aRLq+ZRh6MhWT70kpzemkpp08vvf4IFsJ55y8t8kUpcaHnqHvsVbhXE3f78jAatXQdh1lZXEGlMocHBzgnGHXwvjrZXP8O457bhLurdZYq0k5MvY95Iw1hv31HidpgzGapnY0Tck0TRRWXaSjMWayUuRs8V5WO+ccoPA+YIxCazdPMEVhZaVJIVA4g3YWWR01RVHAvBLErIhJWFjGFsSkiCmhtKYbBlIKjONIUVjyMND1g6woSdI0YzR1XRNjJKUICqyz7HY76qahWSwZ+gFrraw8WQPjnAoGNIoQPBrwXuFDIMRIjBmlNSjIgLEG5yQlLItzIZWMUhqtlaSRYUKh5HqlBPN+Fi0ZRwpZHhYqM44jxsgqPk3TnJ7L32WdRht5/2HoUdpgtKZtWzJQ1zVV1VAUlmHsGEcv++kYMVmxbbcoLfv4uq6wxjH0HcZqVqslkEkxkKIiRPls5yQLUDrj/UDb7iCDtY4MVHUzP0AMKRcYo5imnrbbgkocHOyTUqTrXkCR4CWMe24SjuOE9zJIFosFIx7vI9rBcrHE2ExZOtlou4qqKum6jr7vCcmT5glzvgdTSgYOyCDLgNIKpRTr1ZqmKdFElgtZDbe7jQwoa+fiSo22jlt3jslkJg9+mgg+UFYOnSWVa1w979UyKiWICWu1pFl1TVEUTNPEMAz0fiQbQBuG0RNCJCVFP06kJKtLNw6EEHDGYKxGk9mOI5tNRGmDj5EUwRhJ9UBWoBDl98myumqlKUqHdYaYzh9EGp1BRYghgZLMwboC68p5ogWUVjRNw97eHnfu3KHrOgB5QKHIKmOc7NPGweO9rK7OFXifmaYWbTJdt+XgYI/13pLN2Zac9fxAChhjKcsa7z1ZLso8+RWusASfMbbEGHlwKu24ffum7JOtQyuDtef3eF6FjWV/f821a1cJ00BRGJSCvu/Ybrfz+d87cc9Nwts3jilLS1E6xn6ALMToXChCzBQFLJuSEAIpTvStF0X+wpJjIGFIIZNTRhJVRUaRU5ZKX06kHAgBxnHAWnAKul2L1Zo0JZKSPVdMI7t+IgGnpzvJ0ZRUBF1hiFFWKkg4V8yrSkRpjSss1spKmonE5NEGmkVFHhSn2y277UBRFFhbMA6yUkyTJ6aELfVFlS+EgMoJlTNaQwhS1VXKoAxkEilFYkzonEg5omJCaxl8MXqUScQYCDmikiIHj1IKayyUDh8iZeVoFgumaaLrAgBVVbFYLDg7O5uLSuHiXqUokzwnKVbJNsJhTTE/TALaaJpGCNR935NJ8+rKxarlfWSaIlpZhn5AKVgsKqqyZuelBmCtZtduWK0WHF06wBhF1/ayFVEJyIxTLw+wvqUoHEoLYaIsa4y2xCiffX4+90rcc5PwypUrXLp0gPfTXGlT9P2EVoY43yCrFdoavJf9jVIKT8YZDbagGzumyVMUENFYU1LXFcMwMk4dxmbQirPthnEcqAuHVlA5h9aGbhzY7HbEDGhLSMjTO0BMkapU80BZSJpHoiwLtNYy0M8HqlKkKAUT76VYcZ7eFeUC6+SpDYqitFhXUtWQUiApP09gqWYeHuxTlyXD0DGOE6XOWFdirSMESYdj9FhnKMuK0i7IKTP5kZgitjBUtqAf57ZFKddktd4nZbh69RmGsaftOpRSgDwEju+ccPv27eeU/621+OCZfCSnQMqZnDVGa8iWGKVYUzcF49jOD45AWRYUrpwrn/M+MkTGoZeHXgxonajrAsigMicnJ6QUuXx5n6oquXLlEjdvXsfaggeuXKLvR3lwzXUA586r0ZmmruhTYn//gLou6QeZtOfFpXsl7rlJWFeKnEdynlitluzt7eEnL/ugsCSEzOQDzlXEPO9BUsKHgNaaNEqaprWFrOd2glQAJU07r5ZmYkik7FHGkWLEZw1ENruemPS82iSZTPINgyJOGYwmTOcFjkTG4pwhRFHqkHQrSZlcQQqRTJRVGUXpjKTFKKZpYvT9xaRVStZwrQAide3QNhHxZJ0xzlAU0kIZxk4mXwGWPKfABqud9BgjWKMpS8t6vebmzcAwjCSbsDGCNpAAZUhJE0OSFNcopimQYpbVpNLIgTBNETLEKUGUFHQaJ2LMGJPohgmtoPQapaSnq7VD64KylDaMXBs19yEjmUBZGSBjbGLyHUpV1AtLVS6omwpn5X4P3UiOmaPDA8apwxWgQ8b7kYy0aMiK6APWQN9uSKFEadAqEnz/4YbfSxL33CTMyRC9RuWCrp3YnF2fUz6om4ZxDNw+PkUpNT85DSEErLUUZYkPHpRU/UL0xJhIOTFNo6RIKeG0k8a6hphh0/YYoznebKRCaYu58CFPTGPMXGCRz8pB+l6bccsUPMZoxmm6KMZkMj5M8nulA6RHWZYFtnD4fiT6IK0ABBRQlZqyLJimER8zIWm0lnZBypFhTCikj6aUJscMEXL2WKfIOVCUVsr0U2QcOrpuoCgFFHDn+JRde4afMiEktNZs+5bj9z1BUVRMPtH3AzFCXVsUGjWv0EZDTPKwqeuKlCIpZRaLipwUbbtjvVoAirYb0DmjrUVraZForfDec3p6CvODoigLlM5YKz3d1XpNCB5rS9Z7DZvtCSH2LBaOnANdd0bwgZQihbHkFNmenaJ1YrlqyDnTtQM5K2nZoOj9RJg8ZtGgSKwWC4xZsGs/Onn636i45ybhdjPhJ1lJpkkqhnFGY7S7M2KOdHPKJH2zfNFAzvPKY4y6SKlyTsS5Z5WzuqgY6jwPM6VQKqOAsijJKpOyxir5mZ8FbGOMFz2zmAIohUFhnJaKpFa03Y7gPdrqeaCJlHsIfn7yS/EgxmkuoAQ5X2uo6prFoqFtM2kY0dZIEcUYtJGUNMVImPt6Fikwaa2pygJjK5RKsleeM4PJ9xRVhVbMKVvA2RpjIBNJIUGSNN4UmlAZwpQxWjZsRoOeHxTljIapSof3mb4fKAvN+mBNxjP5ibKqODxa4yfPFDyKRIgBY520h6YJY5Sgl3Siqi2uNFhbUJaSpgq6pqDyFTlFpjiRU5yvvyKGSCDjsma3OcOWmr6TtozRDm0MzliMsXhrGfOAVgZjHMPg0RrSvZWN3nuTUBtH13v6vgXAWMn1x9FLszX4i0Y8MMPCJmkBpEhOSaqB1mK0HJOS9Ia6rpNVYJY7zDmjpH4zw5xkoCiTCd6DUjiryCmiNJADMSacsxhrCTGANpRVgbEGpdPcI9NUdQVkuq6VPh0ZpSNKR7QBqzLWGbRWWGuIsWe7HZj8CEpTN4IgMTYDiWnK5LmgEWMmBDm/nIMgdkzBMA648z1hWWGtQlt5KD362IN4H/FTYhwnsoaUM5dfdgWtDWdnZ7hiyTT3NVPKxJjkfGIGrHwmI0XhaBpNxpNSx966wBRLFosl/TDSdZkyQgyKBx54mP39fZ5++inOzkaqqiBnSyZweNiQkmcapRebYmIaRoZB9sVNXcg+E4sis2wWDMPA4f7BXGnuME7gfdPkBVgRAkUhmVBOicI6tFYEH0DBNI3zA/reiXtuEiojTgHNqibGwHK5YLlcst2eMY4DmcxysURrLSV85yiKgrquGeafS0UwSvVOS9kbZKKllDBOU7iCaRpIOaHmVTGjcNaRckRrNa+q9gIG54whxTBPDk3KkEgoEuPkiVFS0xAnQtRARltY2GpuARjGqUepiNZgrKJwDm30XGTKLMuGKcjPlRZcZUppXgHVXE2cyIq5EJTo+57JjxgrDfbVakXfBaq6ZBh7tJbmvXMFZVFgzMh4XrAxmpQTxkCKkdWq5PDwkM1my2azY7FYkkkUzglYIQZy9lRVNbcF5CHgbGYcW6ZplMmvNVErmsYRwkiIUjia5ixnsagZx56YJmI47+M6lBJUk9wyuSaFM7S7HappaOqKuipYLxe0fUHbtfgsmQIZmrqRyTwNTNPIclHjw0RKmbIoL8bAvRT33CS88uAht27fYLlckpLgBfvxjNG3FLUDPfel5kbyeSp648YNac6XJSokyrIiRNkLxphmtAf4KVKaSDZpLrn7eWBqSflyIiRAxRkupS5SqWFssVae4jlDVVn6cWAYOxIyqazRhOTxfsA5TVUZgbilTM4RYxwhyPKrjaIqC0KcsM7MFUNNP3j8/DdmIqvVUsr4YyArzf7+Ptpodm2L1pn1esnh0T5l5bhx4zqbzYbdZiLGiHUQssIVBUM/0fc7gk9EJXvUvm9pux1l4VgsLZcuHXJwsE+ILXV9QFWXtO0Wow0+mjkl9iwXNRpD1lLoGqeJtt1KMWe+JyF6jo9vysqTAgf7S4ZhhAyHh3sUZWLyhuw03kf6rieliLFzgz5bmqbBKEVdVfNDMHJyfEwMgV3XorSibmoKZ2aYHeeFVdarhsuXjthut7zs4ZfTdi1Xn77+0g7wF4h7bhJefuBB3vu+JzDW4v3IcrFkGEdCjNjkcK4gRS6a2ueT8LzaBpKu5Syg374fZDXLoNAUriQnaRkoBcEHCudmgPM8URSsDvbJSdLJqlpK+2NGwGSlpNJmBNmj1PzvFIgXmEXZy6Z0vo+TSbparZim89QuzyldmGFiFUJLSKQsED6l0gX4PASPc4IhnWYYmaz0zGiUic1mw3q9jzGOGM+RRBEm2VflJO2Dwiq0UhTOMqiMIpJT5uT4JrvdMdMUqcoFmoifBqYs4IO99YqUAs6WM5olkRRodb6/VhfggWEaMUZA+UVp0dowjAMpRYZhYLPZEaK/qFjL7ZN7kHOkrlbUlQDZy0LSbQFBWMhQOkfIgRQEVTQOA6ZpSDFSOEeYJtp2w3q9pG4Krl57Cq0zi3vMFPWem4Rv+5V3UJVLujaw23VstyNVVWJMRVktyTHhs79A1EsjV1KwTCbEzDhF+t4TfCB42WtobWYajsVkKcQoMs5aFGCNneFOhqp2NIuaaRyJwaOQz2jqSoo1KeKDlwINeUamSPqac2Ly0wykTnP5XdKqytUygJ2+oObs7++Rs+LgcI++H+a+20RKeqYEGdn7GEdROEKI+GlHmgtMaT6XrusYpx5QbLc7UiiZxomchcXgrAWtCSrK5LMJpTPr1YJFUzBOPZcvH9APO9pui9FwdnoHaw1N07BeLxmngXHspLBSK7yHafSMkyCVSEj2oDXGKB5++IDlYsFms2O72zH2I0bJ5NmebQh+ZLFcSEFGZfbWS9nj2ozWcs37rifFiNaawjqmEC8oZ3VTUS8qttst282Oo8MDyrJGBFsyVVWwfyBAg6vXPsDke1brhdyfeyjuuUmIzsTg0drgSjeDnh0heGKEOAWmyROC7EW0VhibL1gRKUW00cQoDVxJJxVFaTBG46cJHwJmRrMorUk5E2ZgclYaHzInpzu0AuMqxmkipnjBcjBakWdz31ILHC35QMwJTUbN1VHvpaATZxB5SsLE8D6w3bU0i4ZmuWK73dJ2E103CODZ1oJRjWFe9SbKoqYsNLtdR86R6CemaZpXBUXXjZA1KTpyypSFnjOGiNFzmpxlVU0EvM+M08Bm07JeLymKhA+JlKRFE+cqq1ICm4spXCCElJIJPAY5Z7Sb023hamYCZWkonGYcWpRKpJlSdJ6RpJTYWy85ODgApQjeUzcVKQemqQcSKiUUEZUjOSZsVZKTrIJyrxPTOEEWrKpWGmuFITKMI6v1inrRcOv4mLHvSAr6aRC87T0U99wkNC7MCBZDUQndZhx6oQHlQMqJTEKbjPcTxiq0FuiTsZqi1BTVkpw1fTfRdR2r1XLmlE0sV5Z1c8QwjLRdR4iB3W6H6S1lJSY1YxiQjYVQZvTcfmAurtRNhdKKED3eS+k/RCl/u7LEOU0mUpSaplmy2+0Yx0FYBgh9yLoSrR1nZ9sLTGlKMrBQipgEH7ter5imxNnpnYs9qtLSYjBWYZ1iHAfGyeOnSFXVwsHME/v7S0IIhBjout0FKbeuCoqypPTCyDg+vsN6vWC73ZKzsCLGMcyAbYG2jeM0P/gUWhf0Q8+VBx4kHCk++IHrKGVmoHRgsXKAJ3jhXFaV5ZWPP8LmbEPfC7HZe4/WEdTEOI7y8BwD0zTS9wPNomJZF9SF9EbHceLwYI8YEk2z5M6dO3MGYom+p65qjLFszzaCKy5KYkyc7XZ4DyEJiF7YKveWttk9NwmDnwTzaGR7VJXyVI4xsqgrJj3gvfSFmqamaWoWiwVt29L3Az4EiiqTksc5xeHRHo8//gpOTm+z3Z6iMFRlKfsLJfw2HwMZ0GFiGEcyCVdYUkyMKuOcw/vpomc5jJ3w8ZI03LWBuiiwTvqIU+wZu8Byubzo21lrcVbgWM4aUr5Lt7LWobWfOXOGmDKTjwKzG8cLXuA5K6SqKlarlVSLs1T6lssaZ91cjDGUxZKmWbDZnJFGCEl6cNYZisKiraKyjq5rpU0wjVSVpNtFURFCFtSRXBmmUe6BNhpQFEVBUTg2Z2cYLVVlY1YsVxVKTzincVbNDw5N327JObBoCvohY0ym7wZu375NXc1E5HZiGEaCD1iTGVViuWwoS4tzBbvdjmnyogiQ4datOyyXzYyvFaJyXTfzXlnT9h39OKKlMQoZFs2Svu9ekrH94eKem4QgPL3CFTTNkpQCdVWw3W7Z7TbsrRuMqRnHiaZpUMrMT2gjLYMoOMUQAtZZxmnD1WtPUJSG1bogJ8Pu9IzR9xinsFFTmUJWnxxE7sEY6kWNUjAMPcPUE5ESeGULsgromWysc6Yo7ExDEr6gTpasNCEM7HbbeY8isg0hRKyzz+HoFUVB0zQXRabRB1xp2T9Yk1Li5s1jmrpgb39PKsIpo7QS6lROF+yIspwxl2QKWzD5DldoiqIiRsHFyjEw+BGtNK7QoASY7b3n0qXLVFWFnxJ9384KBYGUFNZWghhKAhF7/5NP4n0WY9sUqOoKZxXdMEixJUJdOXa77dwekD25s5Cyo3TS+qmqis1mQ4qJaAU8UBQKa4XCVRQFN2/e5IEHLvPwwy9jt205PT29UF9omloIyl64p8L2h74b6IZJthwp4ackxaRngdDvhbjnJmFVFgx9JymEH1HaoLWhcI6u2+FsoKwKXNZz5c/Tjz0pcUHgJUsFbLEsGQaN0rKfiwkBGGdB9yutqZQgNXyQ1XBR1iQyw9ixXC5ZLBvpV64bwgxRiylinaKoirnvJPskQb4UpKzwYWIc/cyrq9jtunnfqlBKM4w9IYQLKNw5LM5aS9hsUHPLpK4rylKz3l9Rlo7tbsc0jtIfLQus1Vit6IcWHzqpBNY1KhsmP5BzmFkdsy6N1XNlVvarzhmUKkhJpCy6rrto/1hrUVrdXcmdYximOf0O5BxwRYk1ZuarRDabY5RKLPYOOTxY03XtRRq/WAplyWjD5CNFaeY2lOLS0T6T91SDoF2WyyV+lNpA1/XEKA+JzeaM3bab74WlKARtE2NkNzsXn58rGcqiIuWMdlKwMtqQ4v0+4YtG37fsrZcUZTmDh4U6VKwX9EOHNooQJpTSpORnXGgnnEOtAc2u3RGzJ9OTCRSFE9GkEMjJMkwTYCT9swplDNpp8tzkDz5IQ79ypBSoXCPNdb1A6cyuTYQ0UdtqHtQzHC1Lb09baQMoJRjGlPKFDkoMAq07X62LosB7T9+Lns40TezaHcv1Ch8mpu3AclWT0kTXe5SKLJb1/LTP5BxmISZJa8fRz22YOAtRmbufHRPWymQT3p+kitZKC8QYjQ8jk880TUWzKNnt2lnMSs9pnOy3dFAoZamq8kL+Ypq3EgJwSLTbdp6EsDvb0BlNisJTJIPRSpA9WqOVwpYlpXPklNAIb1GuXcH+vnhAnkMW9/b2WC5XM1um5Nq1a6SUZwBDJiUhENe18CGPj0/YWy0pCkffDy849l6quOcm4d56Je2GDOMwst21KKUoi4qmbmgWBdvdGaIpI3ukKw8czRShzDAEjk+3aAPGKVJSjJMAk6UfJXhNlLC6XeEISdgRKFlNu6GFpBinftYjSUyTF/ByTnM/TBNTwnD+NL5L2s1e0kohqjKTduPFnq5uBH6nlJr3diPb7ZYYRQnMWivyETM1xxjLNI2AkpXPGoHMzRNimibKshINmBA52+yw2mKtk0b/5GmnTrh35Xw+CBfQaItSIs4k0D0hxk5TR1WXpDwRQqaqarSWlNc5h580qMh6vaJuKnbbLSEMYITBGcKELmvOTjfCii/MXKkGqwSYEIKHnBmHgRgjy+USozUxI2wSLavxOE4XCnPWimLbeXvK+8DBwSFN03Dr1rGAynPGGEtTlKQcsVazv79it9vS98I6uZfinpuETV1QWEPKmdXRIYVz7HY7UvSkmNmlwDRFWQkMs+RBkIqXyhfFB6MF1qW1Q2EElpZFf2YKW7mpyhBTJKYsKYsRTGjViCqXthplNKMfGfqOMQxoJYzvpq7wfmKYpI84BWmRKGMIU2AaZbKfs+3PMaXO6Rk5IwUOWZXyTO6VCR1TxFpDWbqLlfK8AANKqEQkmkXDarmaBZ8yu92WcZSm+6IxaGe4feuYYRgxRviBQ++Zxgha2hrj2M97WcGYGquIUWQMUYnFoiIEadRLWwByjrK3cwXBTwxdBOIsWajxfkSrkrpecHBwmWkS6Y+u25GVmqvAIktxngZLD1f2/uc6M2UxbxXmB1Pbdih6QLNcLlkuV5ycbHjve54gA3vrfeq6oKprckqcbU4pCsM09TMTRjR66qp6Scb2h4t7bhL2fUdROHlKG6gqR0wN4zAyThMBT1LnONDI6D2udFjnGKeRfpxkhbIWraxIMFjR1Aw+Yo2hCALsjimx63ZoM/e5VLjoK1Z1M6NdAienJ+QUMZOQbKUQkOfVLVyAqOumJBPxQSqsai7xngs4aQ3aKGL2oGV/mHLAFhqlBZu5t7cixMh2u0EpRdt6yqLEGsc065AKBy+gtaOuhM3edT1dN1CWJVVVYXVmsazZtqf4OLC3f5mcM9utpO7WiUbqZrudV4r1/GACN7dqUkosl6sLXdccZmlDK5KBRWFkVVFpfmAYJj8yji05CwqoaSpQieWiucCL+jBRFELxatsWVxQ0tbQYQjjnhjqmKXJ2tmEaPQeHh9y+dUw3K9httz273cg4iMJdXdes12uROkSQPO2uozzaw9kS7yeCj6xWzX3EzEeK0llyCkwx0nYbQlQYW9GNEz6Jcpa2Gj+DcP04UdQ1hXGcbk9oO4/C4QOMXprKxojcREhzSldovJfq6RQDu3aLUoaYRfqwKS0aS1Fa2ralsIbdbsA1TgiqaKZhIIaIKxxFUWJsQimPImJdJBrpX+Yk0hoJSSPrRc0wdqADhStZLpdobbh9+yZTGEBXLJt67qUFurYnlpGiqChdyTQEtLJSFfaamzdOiCngnBXmemEwViBvw9Sy3q9plg5jMiFk8sUetWBvf8XkhznVM4AhJcWwk7aNKxzOKeq6YRoH+hDQpmR/vc8wDPg4cO4npLUGlaltQVkeEbxn8i279hjvPVWlKIoSmzTaFDPZWRQSlNaElLl954RpBnJbV3Ljxoa+a6mqkrpaslpVaK1kW5EMXdtxLkoMzG2Tgs1mMwP7K4qioa6WDMMJRVGhlOH4+OwlGt0vHPfcJBSY1iBf44C2jv39ei7ABJEKdNUFmqQoam7dPuH0dMs4TqSsZhHfzHbXEmPg0tEhShl27cA4DDhrcUUh6aZOAoLeXxBipO1ahnGirCyr9VL2jU64dClF9vYOKMuSzWZz0ai3WapxxkpzOwNOuVmUVxNDxoeAUAMMWsllz1kxDCN937PdthijODvboJXooJyenjFNkcVSgMneT4CfpTAaUk5stzvZpxXSMpn8yDhJkUdWRoOzhdDAxkBdO8ZxwFgRVDoX+D2vjOYs6KOY84wwGlgta+Y+i/ROh4GTkxOmIAiforCQHT4IlcoVIiN56egyx8fHF/u6c7wvMCu2OVFKS9DuWkKIs/BTNaepPRnNy172IF3XslhIQaquGsqyFPbI5GnbVtQJZinDcRwvUtzTkw1Dfw40gHHYzvvreyfuuUk4TVJwKMtC6EJKM44D5ERdO+Lc4FbKYK1DKVltpikBws9LKQi2MgEYjo83M8s+inyDnuUIrWa1WlA3JWXl8FFRL/fIPs76oCPaZJpFSVHu03cdfb9jGLqZRnU+mYQEKw+FhuXKgXKcnW7ZboaL9sk0qhloLXIdg+pxVoi4Vbkg58Q4TJycblk2axaLhrJ0ApnTAesyDzx0iKiGR+LkObq0jzVmxqdapklA7EZbUk5sNj11XfHww5c5PT0jZzXD9WSw9n3PuZZoXdcYYzg4OEBbw63btxj6DlJkuVhw5coD7DYtTz75PobRC6HZWtZ7S4qixHshVk/TQG4UN2/epizrix7kMEyMk+A2jdEYM86N9jRXbh1V1QhYAzg8XIs8iUq07QalNJMfaZqKmLyIOSk975nzDGxIF836afKMQ2AcvBSz5hZWWd1XW3vREASJxhUOkzUhyWvNsmSaEjqDj6JeZrOdfQZmJn2GlOMFQNfZAmMsbTuw2+1Yr/coyxqlZuaDVlhrsVkR04TWGWU0rjh/ykpvryxL9vaWaJ3YbESyzxUWa0SunxwYxpGYwDmL1pIuSmU0XPx7moJMFpWxxtF1I9txALSosOVIWRaMQ8CageVyiVKJyjoRJnaKo0trnC14/weuU5RS2Qwxsbe3pqpKbt68JdozvQABunZgGgNdN9D3PZCpG2k9nLMezqu254rfR0dHJBLb3RlnJ6fUVUVRVPTdKNdxb0U5yoNOuISVtIwi+CQIo76PbLenwi6JkYTCWMfCFWQQBQL9rKKVMSglHNGhn6hqQQWFMNH3HdZJ68HNnhvDMKAQBbVz9sz5qg6Smvopkgsza9B6lsslzhl8uA/gftFomkbK23PvSKVMUThcUXLr1onsJbTCGAc5MYwDIURpUKPx0VPqc8VtafJLgaWiKC3OCR0n5iSrYxb0iTFimpJCZPIj3oeLSSpSG9N8w2VfulrNaB1v6YeWdtdTN5Y9rdnttrTdQE5aoGzmXAQq8+CDh3jvuX3njvTUrMaa+Zii5PBwT3phWtjzSktPbLM5xftp1mlROGfY2ztgt2slpe0G2rYXSX0n/btxmFBKVOn+za+9F2sVTVNhnb1oxl+6dElk9mcVtbZtefrpp7GFgODrumC1WqO1ZbPZEnxgvV6h9YgrSna7Hdvthl0rxTLnRHk85YR1hjTORjTaCB3NCvWqWVRzqpKxNjCOE9Y4ClfS7gQN4+weVV0TghCSFRGjRRo/xkRdFaxWC85lIc+xoVqfiy1nlAqzmLOjaRrqpuL09OSlHOLPi3tuEpZlRd93Ak4uLCEF6spRVTXbescYPDbLiuMnKYuPg4COrXUwZKq6EVk+L5O5KC1Hl9Yopdi1W9mzVCWnZ6cMM6reKQdZyuTt9jbnHgszAIcQhANnrSNlSUXHccTPaemlyweUpUjn2xhpFhUqGyn3K816tSaTOTzc5/TsjJOzE5QP1FWJNoaycITo2e425JxYL1bsdjvs7KIkONIJ76UJn7JmtUpzmX/g5s3beB9pW89yWXDlyiHDDKe7deuEs7OWxaIgRpFnXO+tsFaqiud78PNVZBxHRh+pm5Khkz26s6VgWJViGHrxtNDSFhrGjsPDowu1g3O2f1aJuqkJQfZgmYy1EaOFgGuNMFG8Dxerct8PdF0vPc+U54dIIEVYLNYYU7DdiNy90hqtxQ+jLEuappFrNuujpjhnVU4MfUQxXNo791Lcc5Nwt9vN6moFdV2Rh55h6NHWUjclRTbsuhatk6iMIax1IY96UrrrESGIGGZNGFlZtanxXtjwfT8QYkJbIaFaV2K0o6oWsmd0jmEY8dMgQrNaLLushpgm+l5cms4l2o0xgAzOVVMzDIH2dIdWmt4ZUg7E2z1nm+0MF6tIUfaUSouGbc6y2vbDjpQ9UFIWNcFnghficd9PWGe5c+dUGCRTnB8gjkVjWS4WFKUBLDlpLl06QnEqAO8wkayaJQpFvOocZHCXFB2Z4gizq1TbdkQvm+zlYok2mUwihJGyNECF1nlmYBjqeo+ydOz6HmMLQjhnmyRMiALRcxZr7AUpWWvDOEqaWJYldV2zt95nt9uy2XRYY1FqwBpHzkZQRt1I8FLo8d5zfHx8UZQRyJ2opTvnSET6YaRtg9Du76G45ybhYtHMN1dcd0JKbLctpycnLJcrtMoYlUXHROkZOZE4OT0hhiwoCyevG6uoKIhxulBpFinETEiJjMLM+8bTkw3GFmg7uzMV8roxibbthKemLSlp6qoSvqNzKBUZJxE3coWhKAtRGIuSahaFYQqRs80JKNjuBBgwDJ6cFXW1YJwmpmlAG4XSc+8tKpqm5uxsx9lmQ7NYURSeszMBhCdEFHkYJ6IXrVCVoa4XLJd7ojw+p2aLxYLtpkMpjTYlxhScOyqFuVrZNA0xJaZZECvmwGJZyZ7PWfqhFzRLrC5A1z6E2fdRkXNkGCaKomAYRk5PW5RRDMMWEO8NZjV1hUYrQ9t2OCepY0qZaepIMV2oAly79ozA0EJmu9mw3XSUZTXr0Zi5jTNduEUNwzBLniTGqefWzQ1KJR5++EGWyyXjOEgmZO67Mr1oKJOIBHbdBm1FAEhnRd/19LueyERZFSLznjV10TBZiEETcoCYUVYRQ8DZgmnwovdpC0L0TCERsuiPhpQpK0dOaha/hRwyQSecMsQMrqyoEgznaHyvoE8zvy6R8izXphUhwjhl2tZzctayWCxJSouKNhqttLQBAJQlz8LARV3Qth2FMww+AQmyYfCBXT/C6W2MdZAzrtYoa0jI5J5CQCE+gTFm+mkknZ1x+1RAD6I0Jw3tTJxV2CxZi3mOGInKylAUBXEYKKoKZyGHhEIJtC1P+DHSm566OCQMikTByZ0Nxib292ZKkU9sznbEoDBZkaO0ne6+l4IUiX6kKC0hekIMqFmzXmlNVmJWk5NkN0M/YY0AtS/OM8pE1Aa0Eh2fohCXK1cojClIRwGNQ2XN9mzL3t4eOclYupfinpuExiYeeugSbdvTde0M1I7UVcU4jWIQoiXts9agtGG9tyTlDev1ipQiTVOxXC25fv06XdfOEDBB2qc896qU0F2C98QgMhfeBxSilj0OkRhbUhQcYgyiKi1thHEucwvwOaVI4TQpesJ0rlcaZq89xXbbYo28fwhR5BGNVCKzEtepKw8ccXp6IiuOUewfXBYRqtpSNaVUDwEfxJU3JggRxBVVoVRAW2Goh1lFLec5zbbCVnDOwYwTPRdNvtBszSI5L0poC0onK7JWhjD/Ledc2JOTY0LMpKxou5b9gwXBB/LsP7Fc1ChliUn0SZXKFyY8OYc5BTfiEKxmS7UkKCBrzz0QNdYVs9GpfO65ut5isZh7fdKOMFb27ZJe6wuN14PDA8IY2Wy2ojqehfKWuU9letFwhUywuikF/GtEz9MYC8rhSndRLIkxkGMkZ7A2U1aKlAzGKpzTNE2FmH0KnjHnROEsCTHsFOvk856jTEpUpigNhbNstzu6fqSpK6pKiL1Ga7RThDCyv7+mKBxnmzOsU2idgCCyg3ol6dIUIRmKSpgF65UwRCY/iWhtSlRFhdMKpzWuEYXrsjDUpaWpRM5xu90K8qQQ74qYxclppgdSzIyIYRhxrsDg5n6qPBCCF2EplcSvorCWQL4rbjw7QB3s7VFVFcEHmvW+SHFsNiybmqNLR2ig7zpJ3Y3lMC1BpdnKOs1psKSDo59Yr+Ua5SxGOSI7EkhJbMNj9HSdgAuM5QJMXpTn1ttp9rLwNItKIHxOk5KQn5OPF5NUzQJTwv4/l12LaJOpGzdjW2XS3ktxj52OOCWdN3df9vKHmSbPUx98Sm6SKSALi7p0Innvw0TIkWbpUGpCAV3f0w8blDKUlRim9MOIVoZFVWKi+PuZuU+VUmBvf5+cYRhaVuuaqipYrxecnJzgXMH+/h5939N1PSEkhmFkf180UY1Js22Y9L5qV3G0XN9tHsdEXS+4efPm/H/P/npFORdzDg/3OT65w6KpZnFaw257RjGbzExeCZt/NgmVQkOmHwb0pC72d1VVCrJoGAk5zswHTVUVaK1EYj9MpDTSdR7ninmVzDBnC9ZaIVBvdly+dFmKYkqxWi3nvbih3F8KbC2M1HUtwPF+mAtUgsOtCsdyXc/ABNEZreuG3W5L102zVo2aV65AjAKdc4Wmqh1lUdHuRpTOHB7tkXNmb29vRsYMIvExS1mmJFKSQpSeyEh1dm9viXWaZlEiwPdRCjb5fnX0RUMqY83sypRnWs9itg3rUcaxXO6xXC64fuM6MQVsYdAqz0RddVE9E+aBwvtIUy8EO6gVigE9i8vGGKirmoODFQrNdjv7OxihzaxWC1KMdN12HmQAitVqIdZnWnF4uM9iWZFioO06bly/gY832N/f4/Bgn7NtO1uvZdKc0na7DeM4slg27LZn0qLwE9WymfeXgRgC2SiGbsBqi1EajSb6QEywqvfZxZ24I+WMrQri1BKmRF2Kp6EmUVjL/sE+p6fHHJ9sUUBOCj8GjLUYLYrhUk0ciGGgLCynJ8fCUzQaTYlRmRwEZZScxRYK8nnvVCwGyEKqFeSSZ5oEWlaWBu8t526/2lhyVjNCSrIQM4uGaq1mNynPaiVSFtKm6S5W7jzD6mKM6NJwLnsZY8QV5kKRvZzdm8+ZGeccznsp7rlJmJJIlZMVN565eSENURQ1RaHoB892sxNpg11H1dQw9+Ock5WjcGJPPY5eFMci9L2naz2JgCs0ZeFwWrNcLXDO0W7PhK9mMtOURJ7PGJwWB980a4gW1rC/PhLjz9LJ6uJHckoyIff3mSbN1avHbPKOZV0T/cTZ5kzUo5ta7NJS5uhgj/VqxTBKG6Z0hnEYQCkOji5xdibWbXp2TgoxkopZY9U6qrLhA+9/hpOTMw4O9jg6fICqmLh9c0NxYPEkUR7oFXVtKZxmf6/BOUMM0pNLKaJ1Zhw3pJR46KGHOD2NWFPip0i7E9W5vb0VpXPcunGDs9NTDg73qZclWhk2Zx5nLNMUaKeO5bKZWy1KGB1zm8O5khASfT9htKEsoXA11tQXrA6lmP9mzXq1IIQ8S5WIsrnY0M37+6go5wllraXve4ZhYJoie/t7OC1k7qIoLlLeZyNs7pW45ybhOIj0hBQD0ozkKPCTZ7vdMc3CSGUlfLXJe8ZuwjonlbShw/uBsqwwRhrMWmnGwaOUoapKiuK8YKGZppFh6EAltLbEmCEr8ZrPE3VTc3iwT9fvuHnzBkpBVVacnZ4R4qxe1lQYY2eOnePo0FBVC4ahZ5qkiHO5PKKqhDOYUyZMUt4XFbSJui4k7VsecvXadU5PNnRzFS8jGqrGaHbblrquOTu5w+nJbZyFV7/qYYZh4Oz0Fn3fc+loSbvbUdclZVUQwsTJ6S2ctZiLfZFlsXQXPMZpEpPSxdKh9AKiwWjHalnTtS05RoaYyEmhsYzDSNYTh4eXWC4XdN3IwtVAmrmJMOZzuzQ3g69L/NSRk8KVNUMvAswpJ9QIVVWiDfhpNtzRImcYgp8B2XJ9nTPztiVfIH1EKcBh7Wreish4ykmJcnlSDP0EWd03hPlIYbSbq3Ua8XpUFzqVUr20jKOnG3rZmCOrox4T0TOzCEasrXDOMsWJFKWn5mxBUViiD4j+puA4m4X4XgQvVTOtHOMkRZjN6QZSollUHO4fYGZoV4pxNiHpyTmxv7dHirDtdgxBHKCsNeR8LlB8rnUporRRa9SQRNo9gBbfUrrtFlJm6EdCiBweCmD7+PiYGMWp14dIjJNMsrKknMWaUvSUlSVHkacwVgSElcqzCLGmqmoyid2uoywqkffQUqwolZ2ZImvCmAg+cnS4x8Heihwz0zgRRk9dN1gLPrfstsKcN8awaBZ4P858Smkl6CheIOv1AdPo0cpSuJqc9FwgE+yoNrJt0ElMgXJOImM5AyTOiy92figbO2GNmQWpRspCKsh1vWC5EvSM1tC34wwW9xeIoPsr4UeIfpLUo2gKXOyYfE+YpCFcWEcMC7bDKd7s6KInpgJCjQH82GKLTEgKnxT4QFIKVzoO7HqWSw/kEKkX5Vw08MQQGcdI243kBP10itaCsywKRztMDCFw7vqTcqSqHIu9BePY0w0d2jrAMI1xNoaBsiyEoU6mKmt8iIQh0ThLVRdoJXbWdrFCGyEZ20Kxf2DxIROjY1HLSuWnhpTOlcOhdiWreokrCnEgCpEpRpqqlkpiraSNkjPDIAUMa8AZI+0DB6BRGaIPkBIpZvrdxPZ0ZFE3LBrBZfrkyTqy2m8wpRSagg+4XM525IG6MsTY4eeUMSuNMiI6nJPQprpWSNc5CV528gFmBQTnCiKJEDPOOqryrl3B5mzDMHqqsppNf0ZhjiTotxNt21HVBXt7C1STL2zg+m5ic9pRz/vdqhILgWG8rzHzotEPPXvVelYuqxj1yNnJGYvFinopzdptCJxuJvYOX8WlK49z7YPX6HbPcLgn0hNVEmY4IdA0NaUrKcuCs9MN09DhrBbVLRIWB0qhtUXryDCJoBJklIZm0YiWjRFspyukorhcVfgwok1DRsmAIpPSuR8DVFVBVTl2u40ow4VA8JGzs1MO9lcoxH4spkjK55xDxTiO1M2SwlXkmUUiELphxkvCpaNLKCXK00op/DSxXCxnr4uRbjijnLGjVVVccAfPoWrndJ5pHDn3TUwx0faB3bbng7uJw4M1e3srck7UTSmVy6qUVTkknC4FEJAVfhyJKdE0Da4oGKeRmyfPcHh0hC1KNmcb/CQivoVrRJTKjwIl1BpjRb4xpYjShowClUk5MYwTfS9sFOscISQ22x1hDJS2ZBhHlqsKbRT90M2W4gJxC1H0aIq5/5hSEkuAeyjurbNBqEjeT3T9SOEMq9WKsmgIITF6zzCe8dBjD/JY9SCPPPr5XL70OLdefZX3vOdnmaZ3odJAGPLsX6BQaSLFTNePoAPKiYS9thaTICP7v6EPeC9M+QdXR+x2W1YrgTqlnGYNTEFpxOgZRz0XD1aMQ5hNMxuMNVijaWpL04ga93YbadsN2207gwAypIGyrkVyPmW6rqMfJlISXKcPlqosQU2EMBGjJ5NZLER2o6oKtNH0Xct2t8Vahw8Tu3Yj/homCRB7JrpK6yDNGE4BvKMyaZrQs3rZOEychZbF0s1ivmoW3J2YfM00efb2lriiJEWxE+hnEHvOkk/nETAGbQ1lVTGOE9MYadsWaypijJzszjjQiPegEoJv8EEsA2YYYte1lM5RFJZHXv4g3ntRh0OIz1YXFPsLCuvYPxS/yrouZxVxEYDyk2wFtrsNVahmBFGkWdQv7SD/kLjnJqFxThD4KRAmKZKU9YIpTmAAu2S59yDGHdDsVUTds9xb8gmf9Cbe+ounWL0lhhtMQ3fxtLeVFSVmK9VON2NOQ4zifhQzRVWRlbjsrlYNIY64wtJ1Hc7ZWXtTelpdv6MfRBtTVOE8wSeczVSVxWhhjeecmfyE0oo4eZqmRuuI0YnV3gJrC/p+onAFVdkwjLOcRcwoNc7+E6KmllJm/2Atnn7RM4w9y+WSoixIGzGfCbNSOWTczGg4t3aDu3shYwyYLIY2RlA49WJBWTdEREqRYBgHQcpIT1JWuq7vZzEqAEXXj/RDL/biQFE49sRRFWMcfTfgfULMWcWxKqUJaw1T8GQRgyUEdWHJLddJz4Y8Iw8++ADWimocKNbrh1FK8KQxeoqqmOX/G46Pb3N0dAnvvfh26Ez0gZA8JosXY3sftvbiIf0lgIwfR86myEoXJG14xSs/gdXqlex6z83jq2ynJ4i2oR0tpblESq9h270Pre6QFFinZR9kFXdOtjzw0MuomwXddkvbtrRtj3WloGYMwtqfJpRqODo8pO12WGtYLJrZTTfMvavlBbUo+IS1JVW1vHADLpxiGjuKUlogSmlcUeBsRVMbwF+sSnruda3W69lxaCa2juL3p3QDiFLbhZa7yjMjXnp0IpokamnnvVDvB9FqsXZeve/afRdFQeTc6VekGzfbDqUM4yRSjMt6SeEUXSc6LsKEkHS5LBuUjsJ6sBpblhhg72B/bgMEkXDMgbKcHzwmohD2ftMssUVBTU03dIKgyXI9FouG9XrNndu3yTlhtaMqq/l6TThnsRYxvakc3idiiJSlIyWRpayqSiz0kjxoXGGFKjVP7PNe470S99wknPxIXRbESXZsWWnULEL08KOPc+XypzMGzd7Nd/LBGz/DhOX6MxOVeYx2rGgWD6DVLbQDpSMxTVKxmzzL1Yph1vgcx4ld21M4qJaNoHSCWDBbl7l8+ZIwBfw0w6wmXOFQ2lLXFTEmht5T1+VcMDGkKDfdaEtOkbISGpKfAuQoAPEkEhB5NsNU2hBSoCody+UCP8kqh0p03QZtAtqIj2AIHoHNCsxOPAvDheJ0CIFxHLHKXnhFwLkVuFicjeN4AbRGW1FSS45xkCLKdiM6M0ZVHB0csetaIVG7UhgXGcZz+lAUcxuMJqdEWVWUVcXJ6Sk+JZpqMa/CIlo8TRNDNwibY3IslutZ4FeYDzmnC4Z/SpllvWTZVOis6dqOMHri5ElzlTOEwP7BAbdv3yFn2G53F9/rusEVjqmTvmuIgcKUM5jjpRnbHy7uuUnoY2C/WmPKGm8H+smz2bbUewfowpKLjqI45PKV1/CeJz/IyckxH3j6afbXis9985s5OvpENieHvP2Xfobh9OZs9NnjnGW72TGFibbr8D6RsxbfhygpWcyZojp/kp/NwO8CpTLDOGGzFA+GoZ8rd5Fp2pKiSAGKpCFC5M2G7aZjHCfZo2ktNs6jJ6WR1apEYZnGwOQnur4npcBqvUCbNNthiyCx0HukmX2OLIlpZlvMBqVlKfzLpqlnsLQ09QVOJ0Tdc+JuURRMEXwc2W56FJa+22GsoW2F9JrTCcvFkhDDXBgqsXNtdprEIm0KE8aKaczoZ3fh3Y6zzRkhRvR87gItE5C4XE8jx3tRyR6GXrRiZ27jyckJKYmw12gi4xiYpiCslVmGUjIDTddNDEMgJwFpK6U4OzubLfUURTn7jERBTx0cHnJyfPpSDe8XjHtuEo6juM3WtkDPT6y2a1keXaZoLGfDk0zDjt1pTRpfzY0PvovXvObTqFeBN372SoDM/jOp6oK3/tS/oju7jc4Jv+s5Pj7hwYceYuh62t1AN/QotGR4SqFgFugVmNM0zpovkxhVnnPnptkUc29vTdtOtGOLUoGytDMzQ0xTMlEqq+tSNFBn/0TvE+MottMpp9nGa2K7O2W9XrPeW6CtPOlFFwZRhTMap+tZgXtkms5lCS1uXvWKsqBtdxd7QxBmf9u2ov3SDRRlweBhGCPBC71oNIOsplHEsobRc/P2LabRM3kPSqO1KMVtNqJw3ixk5dtsNrR9z41bN8nAME3klBi7Aa24gImdMyCstWx3LcZaJu9pmmbOOAQDaozwMpPPTKPYhAcfmSZxwHLaSLaBoe9GyqJhsznDGMP+/j45b1EKhnEkEURDNgtTwzhHvt8nfPEoC8s0DtgEJFG0Xiwq9o+WbHZ3cMWCDz75Dk6PPZ/wiW/ikcdew8sfX2OqiTu3PsjLHn4FrrzEGz75zbzjV66y659gvRzRNhLHnv7sJotFgXMiEhRiwhrBV8YsvofOgLNQVTXWKuIkkLFCl4JXtNIw1zrhXKIsxURTm2ImoTLLKWZW6/pCvzSmRFKJrDJZweilQLFYLhjGca4keozVM7wtC1fOzJo5swlmWRYwiXVZDJF2NxKmTFZiINO2O6yVSqIQbUuWiz1AsdsGhi5jq5KqCODmdkBOKEasFnUzZy0xSHHFWZGgSDmgVMCngNEaTwA/MkwTxojjlXAyxc4uJw9WVNL391egFF0rgr3r5T7aWmIIaKUwZYnKzNVli8HO1fBEPhMOZgiKFAQfWtUW73sRXa5rjIPlohFitDL0feBs2xNyoqwzwU8slg3btkMLAPieiXtuEq5WS1RWmJjp245xGlF1xZ1bz2CbmqZ6DQ9cejl7eydk9z4++dNey3J1CDrx9PWBGzdOsWpFDitOd1c4bXfs70cW60wa7pBCD9piTWa1EFqQMXn2n7cXSBTxgNCEMGGtpqwKykJkGMc4EFJinEQ9uqyWsxe8iBxp5SjKmmHc0fU9IRpGP15UJclgnCXh0Vaa1uIYJPqcLjmcKRmYUGgppMw20b3vCT6gjaGuV9y+fcx2u6UoDPuHKykexYQ1ipgi7a4j1WKsKaihSniGOUsrpVnMK5Hn1q1bHB0dzGaidha5EjObPE2ESbRDtdUkRBBLa8VitaSKMPTCzcxRkZNo01y+LG5Seva4UEpEiO/cPmGcRvnsuZ2ktSHFyNhPjOPEdtsRPKzXgnc1VjR/uj7QD56cPau9mpgD1hkeeOgK1hRcu36LFOV+ZuxcedW03cBioS7MYO+VuOcmYe8nKleSVaZZLihTIjtLGAa2t0/Ze3QfpY5YLCoW+z1D2FLnFTkadmcNv/TLH2D/sMGZCczLUGi6dqByBlMF4nDM1LZYZ9jfc8QsXDsfMjEoQoCqrEU6cfIXxiOgaLuOsirRTs9uRwZnS/Hvy4ndbsfNm6dUVcVy5Zmmjs12YLmsWa6WksqOA5nMMAwXvoTnFchzsPM0TbOY8UjTLNFas9ueXDSbtZ4wVtP3E3dun7LbjSyWTtxqtWbRrOa0OV3YkYUwYgys1+IRH2eyr0jqJ1arFcCFx8Q0TbP9mEgRFljGaSTGONvVKYxRs6FqQR4jmXNL8Vn3xpkLZ6W+F/Vz4fnNUv4xzb3TYVYyLy6YFCFErBFW/3otsvVt186EXYExrvf2ZiqUxtqKq1dvCgE7KhSi7oY21LV4Wt6+c4vttmO5vD8JXzTaYWIYPI110ndyDp0zkLh97SmK+t3sxQWXLz9MVQQyJ+zGayzKl/MLP33M294ZcaurvOUtv4MHXq7Jqebo0FGYy2y7nmnYAuIYawspigSbscEwDBqjHbu2ncv853Zqc5M7SQ9rfdBQFI6yrGZPisRyWdH1Ur00NpGSqHijKsrKzcTUcOHqlFJisVhcuON672edUUHM3Lp9TNuOPPpozdnZHYC5f6jFJDQLPMtYLbKEyxVKWdbrQ/q+4+TkNtYa1usVbbtjsz2jqhrKwpGysEqk0CHKANM0orVmHIVnKCrms9+jErzr5Eesm4tMRJSKM7tEVqKytLRBlNJyFqB3CAFpKhqsNRfKasZq9vb2uXHjmL4Xl11nFbYoWCwaUSVPJ6z3aspqVrbzXhT1spohf46UFMbaucAzSAFGaTKKmDI5hZnzKUp7RZGo6/uT8EVjmjzZR1SZCOPIwXqNUhPaaGyOPPG+n8Bdv83rX/3bSOlBVOHJ7pQYMtevTlx72vPY62t++md/gt/9uz6PT/qkByi1ozSv4wNPl1z7wJLh9lO4MjCGY8bkxYN+mmFjCkLM6KxnE01ZmVzpaKylbhpyDhes9RDSPBFKDg5LFstLKOVo256iFPCxpFFSJClnou7+ek3TNEzTdFG4KIriooWwXu+R84aTkxNCCDMgWSqNKGZfethb75GSsELG0bPb9ty5c0ea49qDyhcOvecyF0qBVpahm0AniiLT993c5lCEKaOtsNKNtoQYSF6cn84JxM44lJGVVClxWLJG9EXJ0u6gyHMbZcJ7SCmzaJYopVkuG8bRs7e3YLk853kq0QddLIgx4AqxFQ9hmkHYQgIOXjiJm80WpUWD9bz1oLXFFQqVLTFp0Iq27ShLwytf+Qq8lxX5Xop7bhLabPCz7ISzDlc4mqqQhnF7Sml39N07+Pmfu8Yb3vBmXvv6T+DmHcVP/MTP8dCVT6Wq71DYkd/5BZ/GYnnCwd6S2q24fcOzvvRGYmz4YP8TbMeboqJtK6pFQTjbUNRRtEKBYZxwRUFVlkzTObMjYwqxJhuGHufEFzDnyMnpbYwxPPjgESGIdEbVuNkvLwkj3wvh2M4k01u3bklatV5T1zVt29L3Pd576tWao/JIYHOzALI1siIorYhxZLfb0tR7LBZLTk/PCDFw7do16rrk4Ycf4vj4DuMwcXR0wKVLl+j7kXbXoRQ0zZL12qF0ZJp6YvIcHBzyvieuMQ5nIpZk4eGHH2bsOnyIrNf7bLY7NpsdRVmw2mtwVrzkN+MJIcjfMo1Ci6qLiu22FZhcKc65w+AvVv4Q4owbVbNkpKVZlJSFYaosi7zg8uUj9vcOuP7MM8SYZkuBVrwqJlEBT53QvMQXw2FNCTOIYfSett0xeYOdbfTOpRXvlbjnJuGibNhNgUXdYDS4omDvYJ+ubXGjGKxkeooy8ou/+AO8571v49M++/fxxjd+Lj/1Mz/D0WXFww8O6HibdX2Aih2n3cQYC0I6ILlX8MhrHaenT3Fy+/2M/Q3622fkUGJNxFmIcaKqLdZq+nEn3TGtySnOTHCRRHRO7L28n+aJ0mCtYhhH0BHnyrmpnlGKmQmuSM8yYZEUcLzokRVFQVVXhDhR1/WspyLpsDJQ1oVM6naiKA2LRTnrtnjKwjFO0h7ZbnpS1Bhb0veexWJJUzuMLml3Hbfv7EgJrjy4NwvjNsToWa8bjr0YsywWFdMY6duRKUb29hx1vWTXjmw2AlVbNMIlbHfDjCkVGlfOQs49b0vIKisK3Of7YO/FOkCpeY9dOUIYuHV7N+uHRrpuYLu5yjTvR40x7B+sBLHkhfI2hYEUBRljnfRyY4x03cjkxcMkZ7GbK4p7bsjfe5OQKbIoa6qiZJxaUNANPbaYe0PeYuNAYGR/DZv+Xfz4T/4Tji6/hle/9nW87W3/O5/42kd5/OE1NpYsmiXORGJ0/P3/3z8nxIL/zx/+PXz6yw554l1v5Z2/+lOc3Pg3eH8VayfqKrIqI8MgRYC9SnRmoo8XE8/aCoUwPgTPKEWOmDxdv5snamLXbtnuTgUq5ipQwmLQSrFYr56lWB0vdDSV1uTgCSoyTp2Qlocwi+pKX04chjW1aShKQ9uOIitPRhtpTUxTxE+iO3p854w4r1LL5ZrtpieGxMnpGc3SUBTSYtkFkWnMSRgHTd0QvCdFTd/1XL92E7RQkw4PjmgWogFaVwajKw4PD2Yh4RZrHcu6mkHvjnEUgu/BwR7j2Au4XsvDSes8m5NKH9aHgRAD4+jZbrpZT1SxWNRoo+aiUEmZDTEZNruIdRWHh6KyPvRiWTDNMiBlVc62AnHmd760Q/xD456bhI+87DJd35NJFK4i+pHoFWFunCulpM+FpnAKg+ep2+/g5PQ6b/mir+aRR7+IO8fX2GxvcLR3xO6kJZt9UqxZLA943wdu8M/+95/gUz/5k/jE134Cr/69r2d3+gRPP/mrHD9znd32GF2c0fnr9OMZhcpcemDN6cktSBGtLcZKg11bsTYb+3Fmbo9CGNYWlaWgUzf1rJkTGf1EyAmNxUdNUS7wfscw9NLA9wJGjvmuB72zBcEkYhLa0zSOOGcviM7WGoxSaCcmNXVVc3rS4r0Yki6XC4rCkIm07VZWl7ZFkalKEeT1kxRYQFEVmQcfPOLq1etM40izWND1Ig2h1GxOqhSF1RTOEv1E4TRNtSTFSN92MyhbUvKUpLosOz5RgxuGUaTxc5p9RsRXMYSIQvqKq9WCYZhEUqS0eB+p6zWTH0QicSYCa2uIYcTZUiQXUyIlP1evFWHwRC/aqspoXNMI+OAeintuEqbUslzYOaURupDohCp04bClYvARTUaFQOUK1JFjM+74p//4b/DyRz6dz/ktn8O73vtuarfhjW/8FHyEzZmkka9+5SeiYuZH/+WPU5jP4JM/9VVgDnj89V/AY69UlFXDZvcM737nL7LbPsNuexWjB3qfUSmIS3DZMQ47NJasRTu0qSumaSCmyMIeokNi8FtUUhitmZIgNjQFXT/xrnf9GutVySMPP0DXTnTDjmpRY5qSkDLLWnCVbdvSVBYfPOMQGQnEuBMsq15QGsXY7aiaTFMe4LRjb9nQ+4hSBU3juHx5j6oqePrpq/RtK4307FmvajESV4phGIDM8XCLXXHKMHSs9h4SGUKd0SpgtZJmurWo7Bn7M5mQRclqtWK72WG1YprlKHLu2N8/oGs9221PimleARFFg7rCaCicoSlLzsYNSmsKq9EkDg5r2mFgt50gKm7cOqFwDlcoUk6UhSLEDq0iOQX8KHoyVmuK0qCyZb85IsTEruvJSR7m3t9bS+E9Nwm997O8oVQUz4sVTdOgtMYWlqNLB/S7HSqL2+tBWVA1hrYfGTfP8MQ7n+DwqGbnAk889RTrg4hyD9KUiXe87d38pjf8Jl7/+ldRlorbN6/hxwGrFDl59vUBR0eP8lmf/TJS2oHuuHXjA9Srn+POrRtMU0dRdoTQolVgtW84OblBOw4kLCiLTwZtCkoycRrZnQ7EEKhcidKWHBNlralqS1laDo/2KXtHSFH87n2gzyPWFMQgfvbbXQucI2cshYVCLdF5gS1qYt4y+JExSKXUWDtjR1v0jP/b7fq5iS6q10Uh/cDHH38lT199mnMx45wFjB28SEg+9tgj7La7eaJKX1GsyUeKokShuXXzphRLZu6j7JUjXTugtePS0QEhBMqqmFNCjcqisxNURC+0aLpqTVVVs7yFp65KutYT/EDwI0pJzzXmRE6iSLdcNoRwV0PVOQ1ZOKVpBo6H4MU1WYlE5L0U99wkTEnIqNYKYuO8b5ZzJqZIsaiZfE9dFpRGVKRXK8Pgwe8rkt3w1BM/xTvfUfK5v+Mt/OAP/SpR/Tx/4A98FZ/yxn1Obz3F00/9AsvTFZ/3OW9ktRY5w9OTG0y9sMsX9QHbdosxiWbpWF96mM/6/C+ebb0y7e07XL/2QbSZ6Lozpvh+ut3IdjNCMETXoe0pygqXT+kRn3qUESnFw9WSWFwmh0jWkaFvKWtHqUpuHx8TYiJ7TQy7WS1tpHClFHGGiYyiNA1K9wz+DiEuCMHiGSjKDmJFMbcYBAc68OSTT5GzZtHsU1VrQhxomoamaTg7O5sNQvUsPtVRlTNrQynMjKvNWRyVrBNYWAoRTGSKPfv7+6Qskol1aS8UvolZ1MuZvUCUollU7B9eZnu6oe97rl69RZqJxiqLAroPE7YyaDJXLh1yojfcvn2CygprKnROKGNBwThEmtqJgFNK1NWCnCPRWVJIlJWjampOTjZ0XUvm/iR80RBW9PkT7a5x5XlaGmOgLJxooqhMWTp8v8Nax95Cke1ACIkQe/7NO36Vxx5/A8/cvsG/+uGf5LM/81P5Lb/lMd717ttYE/H+KmVxhDP7lNZxfOeYt7/9Zzm58wTWaS5fvoRWa9q+xxYOXddopVgeWV536RUoHckx8vJXPM7uNHDzess73/EBbt15huXqkMUiMMVnSP6YZDxl6Rj8BD6xXO8x9i3aaRbLWrQ1U5opg5qmXmKM5ni3IZO4dHSZlCJdO4qxiskY7Qlqh3ZHFDxE124Yxy2Fm7Cztk3KieBhb39fwNCz4rjWmr7v7xJ9rZ4RNFIsWS4aUd/ebrl+bRSxpSgGrEVRUDqLswIzu/zAZS4dHrHd7Ri7VhqHGbRa0A8Tm7MzqmrN/t4adCQnT7c9I4VAXVaobBl7T47Se+27DmUUhbJY53jooSso1AynUyiVsEbTDz3DGHC24uTklKqcvSicIhMJccLqAmsdRVWz2Wxlj1ndW9hRlfO9VSv6618nzO7Vaily7CFcKENfeeCK+PepRIpx5uglQogslwsC0I2eTb/DEylXr+TaM4aUXsZydcDo7/Ca1z3Op336p3G2ez9td8qrH38TtX2MvfWDDNNV+uH9vO9XfwGrHY88+hpu3+mo631Gb3jk8ddR1DXXb72bemFQuifnHmMjKssDIsXMtes77tzquHz0ENefvsX7nniSpmx46qkPUhSW28fv5fHX1Czrgm5zB01CK0VKmWdu3CH4zOH+Jeq65Oatp8lIj26xWHHn1hlDN9I4iykyqZwomweo7SdyegvG8f245ioqe1bLNSFOlGXJotnj2tVn2G5HUoKyEBHith3ousirX/MQTVNR1xUnJyes1wvxLuyHuVcp5jfjMMy90YxGz+JJkgILVE6EnrTWaF1ROMswtjhnWK/XtO2WrutpFktOz7bUVU1RFNy+fRvrnOi/KEVOiePNKdoaXv6yl5Nz5vT0lLJ0rNZL2m4nluPDSNPscXznZC7e1CKlT0SphPcJpSxXHnyIECI3b91hGD1/+a/dO0ah99xKuFgsREq+ri+whCJ9PqJQLJsl3SCwspTUTBcKhAjDNDL0sz+B6tD+Kg/sH/DBp99Hz6NMOXP16nVe+7prvOo1L6PvDjE60g03iHFLs8oY63n4kTVOOYLfUBc1i2rFsJs4vbbl8IGaMBjGmRibcqKqM84lQhSrr5c94njFK69wdrZl73DF6z/xMzi5E9nsem7f6FivH6GqPMcnt+k2GzSB1aIBxNBFm4JpGnGFoqoLFosKmFcAq9HGkJD+oB9KxlCyiVtUzFgXSN6w6zYoXTAMLVU1oXRBVtAsajabHVoLZWi36ykKKczUdUlRFCglfhNaQdPUpBSkh2kNzi4uuJlKGRQihZhzRBspQqm59ZKzpJSF04xjR99xsVcbup4U4kXmY4y4Kptz2zJrIUJRlbS7Vib9LNVx6eiIvutROVKVFdMolmha29kkSOFcwTj2OKdFgqPvaNteDGuWzUs4wp8f99wkFHiVnYV7ZCKenZ3hvefatWtcOjzEZENGM0yRhKabYDecEYJn2w48cOkQqxpyO7G36HnsTVeIZcOP/tR7uf3uBOmYdvuJfPKnvpGqKuj7kZx2nGyvsdm9l8Ke4SlIec3i8HFOT59iTDVtX/LMr17nxtnTXLlyxHKxAFVQEGddmUBId2DQeJaE05aqWtOsDE058lV/5DWYMnH12ob3v+eYw/3L/PIv3GC9EAEkpTRlUXK22eG0o+sCVWNBBbwPNItmJg1HOq/Q9mESV/A548o7NPUxJnToWHC49wCQGMctPgwcHikuX7lESopmUdPtNtRVxYMPFrjCsd1uuHPneF71IuMwolTi8HCftt1SXCi3VXRdx9npFoNmb7WiKh1d1zKOA9kayspiVKIsFZvNLaq6YLUUxbvgM9vYc+fkRExtsohcNU1DjBHvPeOs3BYDxKjZbnu8H2ZxYM3p6Yann77Byx95gNV6xVMfvMY4dBjjaKeB5bKhsBZFQcqw2Wx55sY1nC3p+5HR30fMvGhYazHWiiT9/F1MJNOsli0wrjEEhmlCW0sGqkUj7rAffJqqdFRmRb8bUUkmWT/eol5pxgA3nznh53/uZwnphDf95s+icEfcOT7mrH0S7DVcBTkNIurkC5JeUi4vY8zIY5ePsLef4vAosl5VxClRFJGi0nSjYuoDoYUHHr6M9Q7rHGcntyhqO7MkHA9eepCHLr2eovB84ic8xDPXPsh73/UepmHi5Y/sw9NXiT6TkqYwBW17Km5UCcZRk2lIaUmhHqEbLdFco6lvY8sJowqUrpmSIoQB5xqUDux2nSi7BZGQWK+XrNdrurZjvbei73cXRjx6BokPw0QI8a7Hg3N0XcfkJ8rSiuGtEv/Bc2fklER5TWnJUna7FqXSTAsLjKNgV6uqxkc/i3qli9bCGAOFtQzTKPSyIP3AaQoURQlZU5YVe3vLi3qBjAk4O9vSNAXGKLpemDJlVbFc1ey6nqIwDCO0u3tL6Ome2xP+vb/0cqqqmmkyGeeEl9a2u1naIFKVojXpY8A6R9lUFxP1+NYxD195gClqTtqEqQ4Ycs0Hrp+w2r/CerXm7b/yq5yeXOfyAwWf+qbH+bRPfz22HHEusqgVKgx4P9B1I9XiCK0PID+MVS9jsbhEdjuMauh3hmmcqBc9Pl0DcwcfTsl9waWDV3Lj6lWaxZpmsSDrSN1YumGLq/bYO3iIlFqm5CFU+NbxSz/70/ziz/4gOXcsVldYrxf0ux3eR45PE21f0nb7OHfAwaoCtSHqpykXO46ODui2JU++a+D2zZHtdsPRkeUNbzwihC19v6XbRY4OVtS1w1QiUpwzFLbAKMs0TIyDZ7lYcvvOKctVwcHhPtM0zu5Umr39ldCHYsQg4PZxGFgul3Nbw5OB09MTjM0zc0L8EBf1kqpuODvb0LU9VdVc6OIYK74V8qDtRZ+nWogZqhd2/clmBwo+/TM/mf2DFSfHd9huWobeM02BJ598mmZR8NBDh4Q4zCakkdVqSdMsadue27fuUFUNf/pbr7/UQ/0i7rmVEJXZtpsZoZEZxkxRSLN6sRQV6mkUGcFFs3yWGlhAGUNZF7R9xxgVm82AC5mTNlLZikUZUYy86tWPgHqAd7/717j6zG1ecXzMck/hXMC4Eh0jbd8TomdVQgg9k7/Npu2Z4ilT3lBVB0xtSWlLun5DiGcs9mAYRioWnJ12KBxGi4RjvSxn09DEcmXw/g5arSjVw4xec+eZ6yybB3DmCGsqpvFp0A1jzox5n+14hZMzQ9YlqegoD57CGY/3Cj8c8sH3ON733tuc3hlYr/d55eOXceVA159iXWJvf48HH6g5uX2Ttt9xsNgjRqk4rhZrwhQpqpo46+2Ii1HBdrsFMoeH+yJFaJRYe2tDDBEUXH7gyswbTGL8CZidIcSJ9d7ejBONxCwVyxAnEqIzap0VZy1nWO+tGMeCohTJDltUKOMYek9ZZDZdyzhO3LjxDDGNtK2o5llbUTclTSOeJdPksfP+sqxEfa2qhHYmdLF7q0Vxz62Ef+c/3sc62WAbIwWajMCgnJsxiCHIRSWLuK2SgTN50bFUWTPFhLEly9U+u2GiG0SC4crLXs2YlwzTSModlx9ccba5zlvf9mu87OGSlz96hYcu77FYWLRO1HVJ0yyJwTIOVgxrbEldX+bywStJPjNOt2n769SLzJ3bz7CyL6c0h5yenfDQww+wWFWcbu8wTFseePiKyGKUe5j4GHeuPsi1pzrCMPCLv/gvePDhLZvNBzB6QLkDnjpecbItuH6zI8aehx/WLOuJzTNPcvuZE4Zec7h/mUceu0K1GDDVsfQlh5phGFg0lhQzYy/N7/W+oWkMMYrXx3azwxrLerlitVjRdz1nZxtS8ly6fMBms6GqKmHHazVnI56yKFHAOE0smoYQI8fHdzDasFytcM6iFRxdOmScBm7dvElROkIQiXrQlG5J3w8wW6s5Z2fLuowrHGXd0HYDt2/doaxqEoqT0xOyUly5coTSMA0joAUNE+Ds9AwfAotFhdYZV2nW6xXTFGa3Y3Gj+jP/8e2XbpB/SNxzK6FxlpgiOWbGKTAFz2KxEF9zLf6D2orCc4yRsq5o25bJByGcFoYwRbQKaJPZbG7RjwPNconKgb57hgdf+UYG7/DRgc588OljtHacbTUnb7vO1f0TXv2aK2gVWC5LqqrjyuUrNAvDOLR4b1mvShSJq09/gHoZ6fpTXFlQ1Y5FVZGnBHqiHU/BFSgzYIvAtr1JWdRodUS/03zwiR1XP7Dj6tX3cv3mLT79c17Lu95zk9NTw9ltuH6muHl6RtfusGSeeKtiOutpmsyVBx7gk96wx95hxpUbxrGbPf8s1iVsFIfj6BPeK4bBs8wOY4tZiTvz6KOvQCES/doaMufuRsWFMpuQbEW1zTlHVTUYY+n7jiQkPjTgilLaFF5WoqppyEoxTgEfI4UucJUDn9BKxKmGyZOyWIgbJ9KH0zRhnJ01UxVF6VAqs7e3Bi1M/gcffJA7d26jq4z3CZ+ELLy3vyb4SEbYMApD34vMpVKKpmlo2+4lHOHPj3tuEk6BC8Z3iJ6iSMQscn/94C/Y7nVdYwqpoA4+su362fX2CEWgoBB1NJ1p6gLSiLOWHI+5+cxbiUlT1ks225G9xZpFeUBK4oi7O7nJO992HWPhwQcPKMoeqxa87OUrLl+5Qg4P0+00t7sN1lrqCowrUWqicHD7+Gn8ZNjbX5DUCbdOdnTDlqop2C/WVLrk9Djyvref8M5f2LJrn+HW7kd49RtWfODq+/j5X7rGafs4d043XD99G2UZeNVjJa94YMlDteZouWKyNVdvfpDF+gQfJ2IPMWhp0SRFVhM5K7Y7z9BltmeZccyEPHD7zhZjIn07sVoe8vKXP8zP/+wvoFRmtWjIKgudKkgh7Lz/J/Sgnt024pzm0ccuk7OSoo+zLJcrtDbcvHXzgvQ8jAOLZUNV1YzjNIPAM9PUMVpF34m/hjGWzUZkF2PwLBYrmmZBP0iBTBtFWRZcunSJEGAcEkMfKMuClDoE5ZAYhonFYk1OsGvFLMYYTQyJqi7Zbnfs7e291MP8OXHPTcKun5imSfQ0daZQlmEU0mbOs1aJUtgCwhjJyuOjwlppIDeLFW3bic2ztYyzPIXWkNDoHGnPbqBNSZgGwqBoij2SKdi1EzpmCLAs98gkbl3fUjWWoX8/y+Uei8WC/fU+JkeqquH69WPGaUCpyKJusNqSp4HCabSJ9MMZtjRc3jtk8iNT8JxtNlx73we4c/MVnBxPDOG9PPDoKQ89VrDb1rzqVZ/KT/zMLUK6wes+4YSXPbxkqTv2XWZdaKzt0dU+e+sG43qUFlnClAzBG1QWXVHjNK4sCS4yTDtSVpxuBowNrJaWlOGJ972f3a5l142kGNnf3yMEzzAOrFciFnzz5v+/vf9qlizJsjSxT9lhRi5zEpG8uwqNnukRYID5Efi/wAPwBIhM94jgCQMMqyZVlZUkiLtfZuQwpXjYahbVQ6LnqfOKjKtISmVlRHjca3b06Na91/rWIyWLSbZkVe/oXnDyqsjJZcTHt9vtZOOUwhpWhk3Pw/t3+Pj5SgCYpoUQItZIVqCxMvMNUcJfQvDYpmV/G+i6gWHYVHZpxvvE8/MRpS2vL6/c3g50XQPFczy+Mo6Sv6GVlbuf0TUj0eCsqz7H9S/9mP97681twlwMBSvxxzGzrJlhaMlFEWNA6QZQhKiY5ol2TXTDwO5m4MvjI5++PNP3HdMahMWiHKVYyIrpGICVvrXYtnA6P+JzYX8TiUUxNI67rUOlO/y64kNkGReM6vl33z/RNC3//D/9a86n/4bTcUVlg1KZ03Tm179+z3zOvL68kLOAbEPONN2A0oUQFIoNyxT58fsX/p//9/83Q3PPuJ749hcDv/r1ni9fnvn9H/+EURv+xf/uQMkrlIKbR262N3y4u2XxX/jjy59RqsGYFqu3DM174jSBD5jiOZ5OxKLZ3Q7c3e/I+YWiZ25uH5gWWP2Ete2V1fLl8ZndbsuXL4/8+ONntIbf/vqbitnYo5Th9fVA13VQ7Ui9cpzOI9YY7h/uKbnw9PzEMBT2+1vOpxNeJZZ1oet6Pn74FpTmxx8+8Ztf/4I//uHPHI9nQHF/fwfI9+RXT9tt8D7x+OUFa42kacXAeVpBWZ6ezngv+Pt18Xz4eCdxbEUgU13vrsL3oorkVTQNWhv2+45pGv+iz/j/eL25TTjs9pzPZzm9jKJpWyGDGUv0oTJdHMa2DDVp1rUNMULbbDgeX1HKEEJmGmfabkDVABi/Rm73O0wqrEeJeG47Q2MiJXga4zBY+r7l+HIEZXn/cE/W8P6+8Pvf/xlrNQ/vd/TdlqfnE7vdDS/Pn/nxhx/41S9/wzcff0PTduTiOZ7EeqN0IZWE94WnLzP/5f/rb9hub/jlbxO7TcHqwr/5mx/Zbt/RuDN9f0LxSgkN+D2Na7A6EdPMl0PkcOrZ2h1D26Aai7OKzcYwj2fm0UNyaKNwtmGaTkzLiX4w9BuNMg39xrAZWkpukZhVaFrHZiMkAK0lg6Jptrx//56UxBGx39/grBNny7KQQ2LYbWk6ERvYxuFrZ7XfDqQskjm05uHDR9YlMP3+T6jXM8dx5jx5bm/3dMOW1S9kFK7r6YaBdZ15PZxEGxwSpSiGzYb7+w8o9YUffviMtdLoOZ9GUJFhaNntZBSRHZLKW8AYR9f1KCUE8HX5mk/4s8u0hX0rZZCQe7Ig6nNENYr9ds8wbEUkjKZpO1YvQZLjNBM8lKjZ9bdkr9BFMhv6pmHbd5QEc0CwB0MjXb4Mu27H+TwRVORlnVk99H1LWJJs+tCg557f/7eP/KGdMO5Fyis1sfpAzAurOmJuXnn9dGIcT3RWs+82OJ3Y7Cx/+P0j/93/78w//au/4uNvIIUVnTd8/uGZ/a6nb4vcZdeJqDvsxhJcYCkrQzuQjeHdw0e220hYFmIMjD6RR8vxMHMaC1+eJowx3N0LBnI+Ql5bdBJQ7/1Ni7MNrhE1yjIHyWpMK0PvuL3bopV0ndcYGNeJYgo39xtyCaxpRTWRoWnossNYy7ouKA37my3WWKZ5kqZKFgDUPM/87d/+LX4V5c/nz1/QWsJy0FLRTPMo0rmhZZzPaKVZvOfx+UzbShxAjEIbuL1taLt3nE8j290DKQnOcdh0NRxGeKnrmklZo5RmngLTNDIMHSm/qYHA29uEm+0Way2Hw6EmAYU6B8zsdvuaJXBgWVaMcSg1obUlxExKoDGcjudrtNYliSjFjPczGkHlXYIonWtqAEmW8ErX8Pr6A9O8ssyxpggpgo9Y5M85zytaR2bv0UZmWVmD95kffvie06QI60CjwdxBzk+clshxHvmn//wdbV9qlJni+HRmmQopBNac+fhwy48/ToRYA0rLWdzwy8o4B+7uP9D1HeN4lDTaJTGOK4+PByiim1y8Rxvoh555WjHaYo2BknEGSg588+0vmZeF+TwTfGToe0JY2AwNh6OAee0iVqFClm5jdcnryiJNPhCjSMDOh5Gu7XDbhrbpmedZkpb8wrKuaH3m/u6+iipGjGlY1nD1JoYQ0UYLsUAruq7F+sD5/EguFoWQ1sbxhLUG5zTaFN69uyeEhbZzLMuM94Fh2HA+z1UBlCuWUf7vugasM3/Zh/x/tN7cJvzxh0farsHZpuY/gF9FMtU0A68vZz5/epHhcKlqC21xTct4mmgby+3NDSGIJMq5hl//+tes68Lj41PF5cXa+DG0bc+XL194fT3Sdz3DdodzHS4KTkKSfqSh4FzDbrdnm7REfxmAzLrMJBVplGXX7WgHy9Oz5fh84vn1O4ZhZtNvSWqHdivjsnL+QTiihIxRDZmIsYrn10fO05lCy7JE1qVQsGStSAX+9b/+PatP/O63v6QZNH/8w/e4xnJzdydpRM6w0R2/+6vfcjgcOZ4P0thQHYXEGgJ93/D8fEBrhXUt799/S+saHh8/s/oZv8pooq1D82VZyTlXcrciZqAkrNViwQqRFDO0lvNprVQ06Xh671HFURJo7Whbw8vLC1pH2mYgF0HtD4PGWsdm2+NqAtXz8wvD0GGt+BxfD6+V9yqojc1mxzSv5CSyPFSm6zc42/F6mIgpS9xclhSpYejYbre8f//wF3zC/6frzW3Cw2miHM8SgNk0pKx5Pc70vWIf4OV1QpkGZRrivOLXzM2+o6SCVZrGWh4e7mmalj/+8Y/Vpe8YxwPLIqUXiD8xhsjpOEKRYe/5LMj6ftjw7t03zPPCDz98h/ep8kKl4dLYhriuNM6iTcuX5xNDvyEuiem0om/OvP/Flq5X/OHvE/OypeRbToeFogLn1yNpygxdy8cP93StuDK0zhwPB5TWhACfv7xIJl/bstvfiFvAOnojEdVKt6SsSWtiu+14/6HHGMV+v8W1hi9PX0glYxtLqztxXcSIWr3wbNqWTe/4/PmF0+nAMo84pxiGjqFvOZ0OtO0g8W4hsSyeeZ4lY74xdH3DsnhKkbIzpUxOwv5c1xW/LpXkJqm/CkM/9LRtV2lzGW0sxlgUEo9ujUOhmMZTnUnKqKnv90zTDMVwPIwUMl274TwGYvJM00jjDL/45cD5dGKaAssilALnhJ06bLYUFKEycN7KenObsOt3LPPC62Fi6AtN26J0w+EwUsoFc56kY9rAOM50TUvwKxqF1qK+uLu75fPnzyil+fOfv+d4OFYgbmKz2UAptG0neAZlxRWvNVq35KyZ50iMBefEKGqN0KSPxyMqGYyzbIcNMUlIyevziX/7r/+e4/mGd791vPvlwu6m45/+07/ib//1C0+fzyzzjM4taW256TUqw6cfHtkMFk3g+fmJ273QvU9nQRKiHbkYfCi8vp55//59Zc9MnE4j/bBhXT3TvPDNN+9Z1hFtNcfTKHdZo5kXX7MKFfPiCVGCY/waKWnhy5cn5mlmM7SkWBj6DbvdHcfDiWn0bDYbjImczy8cj2fu729IKfP8fABgu9lXqZ086G3bE8MTfs2UYjDakWLk06dH3r9/4OH+A4fDgXmRSmY8zzhnOJ7OctWnEGPgF7/8hhDkvte2A9MUyEnhXE/wgRBh9YF5mdFGswb4459+xJoG7yFlg7EWZTT77R7rOtZ15XA4/wWf8P/penObsCRDKZocNUo5gi8M/Y6u3UhsNCLdj1kQhMOm5+7uhmk8k/zCZiNMy0+fPuG9GFvNtsVoR86lOvQvbgFDDJll9igleQZ9v2dZFg7LqYaDgnMNoKtky0N2uCIclxA1xjSYbMjZ8vq8cjyN+DHxi99suNnc8ttf7fmv/tW/wq9Hbjb3mGIpwTAvCylNWLWhbbSQq+2AUtB2nlYZYoSYM/OyknNhnCeJDdeC4shFyrxliTw+PqONCLPXNWK0I8aC0oZ5Fuiu1nLnysi/zymL94nNsAOkbEsZnr68sM4Jvx4kR9EvhBBoGiNdxkYedEksTpQMznWVSh7ZbHpSzKQU2e/3PD4+cjqdMNpxf3fPNHq0seQE5/PC3d2eEES8LVkeErKTE+SkpIGkGpxrmacF7yH7yLysjNPKL37xnphWKIoQiiRjKYdtG4zWdN2GGMH7UjElb2e9uU04Lh7vE+/ff0RrzcvLC8syc3NziykKYxV3d3sa6xiPB7rG0fcNJTnaDw+8//ieP373J15eXri9faBtO/7dv/t7jHHc7O/45S9/wZ///EceD4/E6Nlut3ifaNxAzppllk2UijBRCvEfNW4E867omZeJcJ5Yo6Ld7Oh1R9NpjE2EeeJP/8OJPLf81T97x7cfbvir3/yWP/z935GXE1op2s0DJimM7bBGHuamGfjxhxd+/ZtfsdkGlDL8+PmFXDQxJobdhlwS43SsYaCO1XtihuAz45dnvvn2ntuHd/zxD9/x+PhI3+2umYnWWW5udlhnyVkSc41ta56Dw7meTS8SsZfXkfEoUOFp9Nzebdlut7hG0zSaphlQNBxfFw4vX9judmwGS7Gw3/eM40lYojUc9GZ/KxKyKfKUj/gVvvnFO7RWnM9n7u/v+PHTDzRNW/mqDc71NK7n8emJnKq38LDy8nLEGEOuOYrWNdzcPvBv/+2/E7hwP1DQHI4jiz/QtA3Ny5lh0xNj4HD8Klv72aWwhHVhGlfBxSdoXEffDfR9h9KZm5u9zHpUoeta/Cq4vr5vWf1aQ1YMuWQen55Y1pWu1RyOB0IMHA4HrGvIWZESIvMqovzIRQjZkv4Dxjq6rmO3G4jRM05H2rbDtYJaVzkzT8ICHXZ7tPVMLyPj6RXwOJf57W/+Ob/68Cv+4X/4jnEZ2e8tTQud6SklsMwz07yQkyJnzevhTDGBptFsNluRgj0+Unym6Sxd37Hf7wk+sy5R4FQ3e1BbjDb4NaN1Q9du0FoSkqZpRSlPzoquc6zxhNGKnCSOPMSMUomm25GSgHpd06GjBiTPQmsIPrCugc1gUHQo1QAikZsmSdzVRkJJvRcd6N3dPQUYhg0hJqZx5uH+A99+8wv+/P13jOPMfr+nbcTKVIpCYSlZk4vEkjsnEOPLX+u6DS/HA9oY/pN//r8Xo/KU2e4cKYMxDblMxKQwCVTrKkS5JZf0l3zE/yfr7W3CZDg8jyxTYBi62opOWB359hcfMNryb//tv5NM+Maxu93Sti1t65iXmc/f/0DT97iu4+X1xLys+JwxKtNvOsY5EEsLGWzT0gz3nJ4epZHgPbkU2r7DmRajFYpC0/aUrDmfFyiGOa4SVJJB03E6zrx7t8eqzPHwhRA99/fviGHlv////B3zQfG73/01m5uVze2ODx/v+e5Pv+fu7p67uweeDiemNUIp/Pa3fwVASkLB/s//8/+Md+/e8S//5X/J0/MjTive3z3gXItXgV982/D6esRow7IUjs8L59fEmiLWDjIS6Aooyb/47rsvdL1jf9PR9pab2/ekbFiXhcdncbs3ToPOfPjmRj7broEC5/HEPBeOx5HT8UhYT+SS2Gxv2O22PD4+0SuHtTtQnpJDlYx1rP4MKoMSOZu2mn/z7/6Ox8dnpmlG14F6Ac7nldUrmlk6sA8P33A4ngiRayZHCLKRfvdPfsG/+E//E15fX+n7lt3ujqfnA+8ebmj6gBuEWZsKaNtwGMV18ZbWm9uErtH0g6u4Q2my9P3A4Xjk4zcPWC3BIt5HtsMWpR3Pryfu7+44Hp4E3zDs5QQIr8SQq2Km4FNmTYkQU41bVkzTQkwZrQ3DZkNMSaxUjaOkRExiGJUTJmGclqyDIjRujYjLX1+f6YdbSpKmR0qJZV0pRTSvxio+fvvAeZwZp5E1JRIKnxIJ6smqmdZZYp0pnMeRu7sHdrs9XT/w8PCO0+nI8fXMuDzRdZIC7GOEkohJEXIiV9q3dVbKtlwk1cnoqvM0/PJX72VAvi48Pz3z8cNHzqcjispqMYZ3796z3e5QCj59+lxDQBUUGQl1bcs8TyitOR4lM965nnkSdH/XDwybXlKkuoaXlyeW2fPwcE/KwgPdbrdSPhZNCOmnU3teRWQx9Hx4/5HxPFWolJzMKUe++eYdm2HLH//0J15eXmnblnleaJxjnEZCDHRDyzjJqCrU7/4y23wr681tws3W8ctfvYeiefdOOoHaaJ6ePvP50ytQeH45AJqhL3z5cmQcRz79eBTgkCo03SrjjSTdTm0KPhTycWEcJ4Z+h23lS/Gn+jbfbOj7jvP5zLyuxJxZloWudiLHcUQBKRaSVkzzirWJxlnevRMHxvF4oN8outZKoCWR7X7D/naHaxuG7YbnlwMxRrabG2KUkMymaclZwMeHw0mE6mdx9v9f/2//D379q1/x8nLi4eGe83nhy+OBVDTjGLG2+vCMxvsV6zRRJRot+tt5ma6JUqUUNlu5F737cMvf/M330mxKkafnF7RpiMlw09+yTgf+4Q8/8ItfCBLxy5dXTufxSlFDGZrOcnv/gf1+z/fff88aMs/PJ7777sDQ96ScCHFmjSO73Yama3h5PfHgNNYZun5gWT0+LpwOB/p+YF0XjscTxhiGYYN1A3/40/fiL7WOmDwpRZQqGOso2fL73/+Zl5dXVh9JObPZDsTkCXFlPXqcq6leQTJClPqqmPnZNWxaNpsOaztubx54fn7hy/efJWpZw+vxQMySbND1O1JKzPNJUmWVwdjCOHmWNREjzLMnKw0KUilsdzusrpkWq2eeJnb7DatfyTkxzzPneQY0fddJrnqQ/IVhI+bVtboGuq4jpwIqY12Ddo5+0LUMkwQi66QM7IdeGC3zUvEdcnfabHesqyfUmK8UEymKHen+7o51Wfjuu094P2N0I6og7Wr8msa6FmONsF0odH3D6gOuCFv08fFJ7tLqJ26rcw0//PCDjFl2O6ZJLEvCIl358ccvdE7xcLvH+8w8zxwOkzgfrBhv28YwTmeUymx3W4yR6PG269ltN7Rtz7y+XLMZQ/C0XcP9wy3ONcIAxeF9qKoWBLhVZCxkjGa3E1ZqSgXnVDX+NpXspskUljXwd3/3PcYpXCOexI/ffuRwPDAuM1071M80V5iWKG/e0npzm/Dp6ZGSlVhSln/DMOxkwK5gXidcu8HHmc1mizIt5MR59FDEha9K5uX5TKFUw6lDAcYour7l3cM7fvjhM8/PT9zd3WDdntP5IL7AvmMN4tRY15X7+y0pBEIqNM7S9ltOn7/w9PrCGhbev7/j3buPTGPk+fkTv/7NR4z1fPn0yv3dHZttx/F84sfPT9zeP/Hhwy/5h3/4xLp6xnEGCq8vZ8ZxYrvdknMiBE8ICUPH8+GMUoUQR8mHt6P89RixtmddE/3gmMaVaT5hrQa1cH9/R9/t+fLlC33f8utf/6pakj4jMzjPaVzR1vDp82digpQyjTKknPFzYB4j6+L57odHttsNa4Dd7v6aW+GTIC9ubm85jSNZaYpELGGblvv3H3h68qxe/jdlHf1mSzfs+PTjF2LIrN6zrqGe0tIgun94j9aa4/HIy+uRaZq5udkxbPfk7NntNoQoRLgffvhETJ/Z7OSl1m86Qoz86c9/Zpo9XT9gTYuu1LhpmiTX5I2tN7cJKbqGWS74NeNsZnO7Z5onVDFsd3csPqNtS0JkV9Z18s9qhXGOrrU0jSOJVorTeERpRdd3hCQDdxDeyPPz8zUXUO6hnmHYUqgDb63IMWG05nA4sXqJ+tp3Db/61S9p257T6TPb3UAh1QZBz8eP3zCvE8fjSD/APEdeXl8kGKUUmU+ui0Ro5wRqFGT9Il47lRMhRHa7DakUCoqYEiEKzSwjib2n88zLyzNaF+7u9zRti2vaOtpZeP/+PW3b8qc//bGqWuQuRjTksFLqIxBTEqgvmZQTKiXGcUJrTdu2dWOc6Pqe/f6GlD1KGZZFXhrWSJBqDAE6+PzpR8Z5JMYVY4SUvtncYLTly+cX5mUEXA1i7WRuq0UGN46TUNq0ou8F4hVD4PXwwjieuLu/IyURctgCw0a4MdM0oozBuoa7fsO6eEDVENYNp9OZeZ758OH9X+rp/p9db24TxuAgQ9+1/PN/9k/48uULx8OZmAJd3zNNnnlJ5LLw+vpHtFKEtDIMA8ZKzt7NzQNt3/L49IjW4FpHTJGiCtMy020Gmqbl8+MXXl4P3N/f0A8D2mraoefp6ZXzecQay2boMVpTSrje33a7W/Y3HT9++oGcC22z4f3Hb3h5+SwtdtfxN//m7zBGkZLc3aY5sRlumGaBUpUcWZbIsi5stx1N0/HNN9/whz/8Xjqfs5S4gqeXslMbxc3tjWACUcSYeH15pXEdXS+puMLgKRxeD2itubnZ8/T0iLWWYeglQbfvcJuO58NBJHgq42yLVlByYti26Nzg57U6F8SSZCuo9+X1lVwSj09fuL29QRuFtZa264lp4YdP35NSxrkWpaG3LZ8+vzKOgbbrCFExDDfEVDiPMz5MrOvKNM3c3t6Qc0Ybx8dv31NKElXNspIKZCwvhzPee0JY2d/uxFgcFlKBbTfgY+b5+YUQI5oF7yPPz880TUPf99zcfnXW/+xa5irGxfL4+Mq6RpbFA4VjOOLRFGWIKWOMYV1mhqGjG1rmacJZw3maeDm+4uNC0wpPZVknchHAkHMtd3d3DEPHvAi9uQBd34MSAbI2tl7oi6QBtS1t19F3Pdo1lALL4quCBE7HQ83ik8G4UnLfKUh++/FwRtFRiuTGOyui5ZQE8//Xf/3XKKXkAVSmkuUyw9Bd7zHOOc7jCaMNTdtRylqF1oOU3MqhlcL7gHOuNnpkMw7DcE26MsbQdQPl9cS6Boy2NZOihrYYmQkOwwYfRLaWc77+WUopYhK0RNv2NbNQo3WpdIOOEDJ+zby7u2N/s+X5+QuH44idVrq2F8iz0sAso6HKNpW7tK2pxpGcA8sijghQrKuAotZ15eH9Lbe3e3KGZbXksjJOE0/PB9GMWoc24qR3ztL3PfM88sMPbwd3CG9xE/qZpusp2fByfCHhabYGRcM4ilZQGiGK3c2Ou3c77m5u8T5wPJ9JPpFeXwgh0rY9netolaXbDLjGoLTm89Mryw+fSCkSk+LldcaaQAgaYzQfPzwQwso8j2gDJWuc1bRdT4iF5fgk/rV+Vxkn4iqX3PSeGGX47VqDNolM5M9//oGwbvkv/rP/C5+fn/nx+c/4cKLdJm7fDbwe/57TceKX3/yK42FkWc+UUqCI5nO7EdmeRgDJORfu7+9qlPaKNRZTv81pWgQjaCxKO0IF+GqdWdZAzAmzOHQRVU7XOpZFxNbzvBDmmZIK97d7tDI0G1fp1iP39/fc3t7y/Q/fQ4n4tLCGBWs02lia3pKzwiX4+IsbjscDP3yS3MGu7+l6CZrJirox2tqtbNhu5UXRNA3GWj59PrCsvgYDmeq4UBjXsula+m3LGkdKMaAUIYsofNj2bLXh5u6WeR7F5ZESU1hRxnEav44ofnbd3N5wOq6ElClEXGf4+O0Hhv6W/+9//TeEkGo0NIQYmOYR5xqU0oSYIEdc7QYGn4htZrPZCu8ySBjnT/l5oqfMqZDIjOcJ6wx3t1tWP5FKlLmZNRRV5L4WC9YqrJO7R4yZZV1Z69u8cQ1Kt/LFF49rC861aF04HJ5IXv76MNwzqIEQCsMAJb+I5y0V+mbAuiT+PbK07r0Al7q+BeTePM9i7DVGk3OEqqstBUGBKMEaxlhQ1Wle+YJM05m+a1kXQRg65zgej2y2Pbe3O/7w++9xraPpGtbgcRRsYxnnkf3tHqUg5UzRRRKC+1aaKyqSk6JkhY8LVKpAYyy7mxv6fuDz5y+cx5GcBOicsgTiKCX0daUVuo4oznPAoGkahw+FogohR7qm4cvTF4yO9P0eq1umUcJqttuB/X5PKonTOV45qjYJ5S2lryOKn13TtDKOSzXeStv6xx++0DQTznYy/M6KUmo2eY786U/fYbRlGLZolUl+wVjD7e09w7Dhhx++Z/UzfddgnJRN/eDYbDteXw9VlxjFbZAdn76MxOj5zW9+xf/5v/g/8a//5t/yt3/79/TdDq0LbddUt4ZmXmeUkpmm9wKpCnGh6HgNSNEarPN0/ZnX83/HNDtc+w1QeH//O9ou0rfvaMwjh+eZaVrotwZndTUVD7y8vBBC4OHhgXX1HE9y11FKVXyh5Ps1TUfX9cTU0DQN8yT3usPhFa01yxr53e8+yIaaJt69e8cf//gnnOu4ubmR1KjHZ1wj5aExhnmeOZ1ONX/e8Pj4SC6SvCSm6whIrN00+ur/bOn7nhAirmkx1jJOM95Hci7iuA+LwBO04A1lrrlKaawWlLJ0nWPYCJriNM50XcMwdLU839G1woJ9fHrFuA0KVx0dicP5RMmWnDIhJHJc0TpVf+jbWW9uE87TXN9UkvITU8L7yDy9UoqkEwn2ENRGOpohR9DQdQPT+CrcTCPu/M+fv3A8HumHhq5zFJVROhOjp+t6nDNkkyle2Jfb7YacE49PwjLdbves3jNNM02zASV6xsa1DBsxpa7rwrIuGGN5ePcgQ2K/0DYyw6Mk2s6hTWZef6TbfKQUj7Mt2+0Np9NnGid31cIJdCRlUfv74FlfV+Zlpm0bUIV5mYn1/nTJbYwxXh9krQ1908q5qCGmQAji+/s//B//OQ8Pd/zX/81/y2YzcDqNPD6e+PbbTrD0aRVMoC4cDoeakqWv91Vrazc1iLi7bRuZl+bE6TTifSL4TEoKpQ3LKjPVGFPVjoqDXilNQckd0JnqL4zE+jtRCglqwtNKCCtKUZsrAyF4Pn74BdN05vD6wjQHtlaTs8Kv6aqEAg1FqALeJ3Llk76l9eY2ofdBbEuhUHKiG0RVfziMhHUlpkTTysC47zuJwlKKEGItT2f++q9+R4qZH374wnE80296yUnXun6Rjq5vxbw6dHz69IW2dbRtz2bT8/J6pmlaVu/5l//qv+J8PnN3/0CuIoHD4UQIkZubO5RaUNoSQ2SaRuZ5JWVpAMXGMmx6xvGI0hPvP+y5u79h8TPz/D3L7PDLCyGOPD6PaBM5nV9xTUO/eUcMwl5davOo7VrmZWZ/s0OplpfnV0H5OYNSXd2QgZwDeI+x5upC3+0kcm6z6ZkXGYe0bcfjlxcJ0jlNTNOEdZIJcREchPAT61XoBg23t7d0Xcd4ltmkMYZpmslZmjnNTY/WlpQFPnw+i8exoESYUP+8nFVN39pwPp9JWaoLARgHUT+1TXXGK7SSUJkvX56qx9Phl5XgYb+9x4fC+XQGfabvG1IpVaSfSbmQUxHxQP5q6v3Zdf9wy83+PePkeX19ouk0TesY+o5zjISUJafAKla/kLKWN2sspORxja0RzD/yzcdf0Pc9zy9PdK6V+VzO1SbjOByOPD+98utf/xqtDefzWaKqa+Z7KYqn52diTOx3d8yzkL3O4yxYhVKqwXhAaU3KGXIiR9G8znMgRtFnoiLDxmOdY5lfqwJmIBcozMQ8oYi0g2G32+FXL4hBBa5xgn8/SedyDZ55jnS9tNyXZaldRYFfQabtetFL+oR8zcILfXr+glKFu9tbjHWAputaQeUvnmHYs99vKdkTw1JHGwLeGoaB29tbUSlNkyATtWa32/Pb3/6WP/zhT6xrQGHIdUNZZ2g6UawcjtLZDSnjvXQ7ldKsPlQnx1pfKg6dRE4now51DSYNPpFSrh3pUe6SGLR2lCylrLGiRrpUTDn/FKNQSqZ8la39/Lq52aCIKJW4ud1gmkLRmbazgOWhu2NdZ7QVTN88j3x4/5FPP35G6cS7d/ccjke00cR66e/6Hms1/abn9nbLOB5ZlyAJRNsdoPn06bPM2FImpMKwHVhDwFqxRD09vzDPgZJBGYO2mmlZMUZzGieUgtv7B/GrvR6wqlBUJJVI0yrAMk9SvvlZUchYq1DKo00gZk9OmaG7JSbL/TuZZXnvabsWVWdx67oSQqDrDKWA0kHCRI2MTXJO1aCsaVvLMi8VP2EFkqsEeDQtnjCudG1H1woavmkbuq6HosSVUe+AF0nbuko60/l8Zl3EambsDu8Df/u3f4/WuoaHOiiakJM0WpRmWSUhGGdQ2oA2aCUb8vz4dM2ktM7Rdh0oxXI4EIInRcmt9F5ekCEkKAVFwOiC0Q7IKK2wVoJlmtbw5emp0hQE46g0ONtg3pan9+1twnk9o2lZVg9kPr5/Bybx8nwSHWH2xLyybQa0zuz3W8bxxHk8cmPuGMczpWS6rr2m+5Z6Yk3jiPeCTBctZcZawzwvONcynmdCShRlMdaRcsRQyWJZmCx9N6BNYlmmqmV0dUwQeHx6qmmyBesKxoJSvmLkE36FeYosS+bmbo/RQrJuO8vQ3pAykDfkBMvq+Zu/+RMfPvR0XcswDAybAZRszJQ9bSNWr5wTWkvpJ6h5Ta4ZgagCqmCdQWnZpNN8ZpkzpVhKNoQgIKefsBmB25uBYZDoMu89WkvZeSlPjTEY41jmhePxQIzwzTfvaJqWcRRPYFKFxcvPE0LgcvKFmIT2/XB3nQ0CUqnUYB/rGqxroArP11VORYAcEXtSzKATygqEWSl1fdG0bc8w9KyrKG+MlbJ9GKQP8JbWm9uEp9kTwsK6BrRW6GfD3cMt2jhsiyQvKQgpUqIETmptaZoNp3Fht92SM6x+ZTNYlDa1rU91DAjiolBAaXwMlAVQmrYfaFAordFo0KLLvMSAucZiDFinMaYnJ7FUpVxIMaNNwTqHUpbtfos2SU5to3Ftj8Lx9HhEu4YlJAbX0ndbcvLc3d4xjQuvL8INfTmM7PYD9/cPkoK7yKmllcZZQ06ZfmgpGVJaWdfI3V2HdRumcSJ6KB2kKovLSRoWOYFfEiUKaW4aV6bzjDWGUFaUilinUAVa13M+PaO1OO+N1gTv8atnM2wwxpByQivLw8OOlKj3RrGPTWGm1BSnftiInUpbnh5f0MYAEk+wu9lSciGmSAyR1c9QJAbBWitSOJWw9UXQ90JkC2FBGUNMkltpnMMnz/HxII6SpgEyysgzsNvvSDGRy9c74c8v2xLDTKSgUcSsOZ898yKD2OPpJExK13A+i+3n9maP0oEwe/wa0VruTvubfQ0aOcjbVqlKxxYUfMypXvwLyzLXxoupr1q5SwQfMeaSZSD3lpgjbSN5g/O8Yq2VMqo1DENLSoVSTEX8WVKKlCJNpxBXbNPic8SmiNOOGBU/fPdUTxlpqGhr2G46xvPC8XDi9naP0455nRh6qQKUUuRisKYheAlDGYZGyjLdEkOpM9HE+bxwe3snhtlFSOaagCoKqyxZbBk0raJxGl/lb+scuLu/pW1bcg50u45hGADBUshwvROp3Pn1+rlZ50Q2tx9wriUGcagoNM7pOsOMWCv+RYBwFmWUNU7Az2SMgf3+TlwXWdCXzonXdJo9zjiMszVvRBGjnOhKabqu5+4epnkCVXh5eWGeJ5xzf4kn+39xvb1NqBKuMWjTCP5OKZZlrbkFMouSAEsroZRGopov5ZRSmpwCSquKqEhM01QhR1pa3tXSY2q73TpHi2IaVwr52nbfbre8vr5yOp1qloEmpgA5cZiP1ewrl31nOyDzejiQIigM252Eak7juQ7QCyFAzAGVJEq6OzRYa4irmFFzKThkvhi9ZyUTYyKGxOFw4OnpmYeHO5GUeY9fgyDih54YPdMcyVkcEE3T8s0331RQcKLve07HmV/9+lu+/+4TIZ4wpmG7a1iWUpOPpLEj9qKMtQLJalxLzhL6AgW/rtfotP1+z48//kiMkYeHB969e8fLyyv5NKKVoyTpXsca9NM0DdZI/mOhkrVXX+d38iJUWqMS5FQqA6gjlyjVkZbrRUF0uF3XUYMNaZoGgBgj0zQxzyOrX1nXme1uy/3DbZXAvZ315jZh01iGoSNX0KxYfnQd8FoRWmtVu2aOzXaLD4F19XTtIPevFGltS0pJ7hkp4ay0zPEBtDQ5lC5M08g333zLsohIoGtbrJWS55LTbupN/nJ3UUqjtag4StHVgrSikpx2KRkoYGyQ/PRJHAcUjVbykOg6/1pLAMDapoagrrW0spUyrljXSD9s2O+3/PDDF0JIPH4RCjlA13V8+PjA6ifG8VCH3ZkQF5TaobXmfD4TQuQ8Ttzde5pOGhzOwu3tDYfXU5W2Vd9hiVA0fbeBoiXfIcvLS9dOsLUO7z1//vN35Jy4u7vj5uamOjhWnGlpXMM8z4TVywxTgVaFppXZo2TUKrTuUErK/xASJedKy9YYUxgGGa0oRf3vE0rLHfKiN73OMC8zxyyOkKZx9QVxz2az4Xw+/cd9qP8D681twjUF2mGgMRatLdPqWWZPyBlKYdN2Am8KC33fkSmcTycyhVgypFKR7RlfB9jGCgJCa2kKSBfOAom2ba/ytb7riTExz+Kkzzmz3W7puu769jTaYp0GfO1EQghZXB6uw7mOECLGNqRi5A7XbYhBzKmldupyTljT0DaNxL4laac3zcAalquqJOdYobqZ19cju92G/f6W7//8yPEw8e79PdZaXl5e6HvH0IvYOgUZeo/jKDPGtquYC5kb/u53v+Z0lmZX00DT6jpSSTKjyxprDSlJmbuuMylHuq6V5KOuJ2ehnDdNw83Nnq7rOB6PHI/HOqCXsUcIHm0UJUnntnEWVTK5FEKMNK5jv7sh+MzpOBF8oRRFKZrTcWSeF8bRMmw6cs7My8w4jpWeIKfipRJaVxlTtG1LKpm+bVnWld1uW0/GSaxcb2i9uU2otSPlQoiBlBameSangnVa3orWirWmM4QYeXp+xvtEzPk6W9IloY3Be38dMqeUUFrTNpbNsMFaGKfTVQmyLCvjNNaZk5Q21lratr06D4y5KDtEofK73/2GEALn80kG0trIsByFUQZtnDR5dKn5gQVdXf4kMEaE2HmNDF1XS+yEQqNQ1ePYM/QDbddxeH6hHwaca4ixiG51WQVLOJ8Yhp7tdkOMgWmaubu7xRhHyaBVQ8qh/vXIvEioqlKREBesgzJFStHIyXTpukpnV6jbHSFUjWy7wzmH9+u1Q3yR7bWt3Isv6b6XbEAQAUZKEmOmrMZWR773nvN5kVBSLKWI86MUad7IbLIGxpwnfAi0bY/WXCuVi/fx4shQRdXNjFD16tyxfG3M/PwKAVY/IkLkxOoXSeWtdz9Koetb+to+TzlXVUjCGAEUOStlzryK6LlpGpquvXbWGuvwYbnOj5wT94CEjhigXO+e8zxXWFKukjCNXzzDIDjBnGc5kXOpZmSP63pCDJRZ7relCGWsFBEg5yzteKUKMSeUKmy6gZIVzrb0/YaIxxmD9ytGGw6HE+MoaUfHg5SOu92ubhIhCwSfCR6WJdE0HVpZ5tEzLyslF1a/cn8vzgijHG3fsi6Bm5s9z8+voCRvwlahQikJ0IQ4s9vtuLu74cdPn0SRQ/npnl2TfNd1vX5OoGgbW8NbnFDCzwt/9df/lBhWXg6vWKXpe/F2pgTn8yPGaMkZyQXrYLvraJuWED2lyHd9PK5Y3WJNA1p+DrF7mauFK8YoEsOkcLZjXSQstu26+nu9nfXmNuHhMFdgkaHtLNvdlra1+LCCjvi1sNkOuKapCIssnFGdMNphDSjStXy8gHvbrsPZirJ/PdJ2tiYjBW5ubiv3cqhOcV83fUfTNLy+ih41Vld7jAlrLE9Pj4zTCa0Vts7MQgi0w4aiIOWARWGsqHrWdSH5WO+UAAWrteT6+Vj/t0YYNg1oJCfQKF29ex3LsnI6nfGhsBkG+Wx8ZrO5FYlW0AQPulWUrGspK5+BNfKwx1hY1kyMgv/zXoby282GeYp4X5svfuHjxw/sykBKEes0m03HsswIrdtUN3y53iUvDvmmkTtuDKnemWtHVmlJ51UNVjf84Q+fGUfPZqNRytA0Lc4JZiNncYigcrWJtazLQorgugZnW3xarl3Tvu8FyFU3JEWhtNi0SlEY01CyIr2tvszb24Q5FQmWpGCU5v27D0DE+4VcMiVlGtuSsyAnstaEdRUkfAhkI2WUjChuCSEwjaOcmE2DQjHPCzk7col1jhXp+455fkWpTNvaOojXKJV5eHfLPM1sdwPHw5EUA/MkJuFSEhjByvd9IwPuokDbCmMS4FPbWigty+LrbFMMtpe3eK6n72kciSnQdI7gIvubO3bbgekstDcZdZyunUXvA23Tsd/f8uc/fS/A3JxonEFpyzSdibXTKSe2CAuWxVf5n+b15chms+XubofWI2pcpPHiNgLIyjJbk4QqMFY600orCkVmg66paI6A0RoFhEVQHsY6Pnx4YLtZ+e677xj6oZbimZvbDZtNT0zS6UylEEmgqBDmQmMajHNM48RU6XEhJYou6CqRKyipRpYVqkBjnhdSXmrsmqlKLPn73tJ6c5tQkWmclAxt07LMC1rDukaenh652d+ikflXihFnhQMqwZYzMVga20FWqKxIPpBjEk4Mkn9H0XL5R9rjT0+vbDYtyzKijRHuqDFomzFGsd32nM6vDLbFNYpbt6PvBpZlpG33WCdl7bouoBQ+g9KGdRUFi9EaZy3tvqk/r65wpYhSkMksNT0II53SlGFeI8MmoYxmDZ7oI4qGXCzaFdAKHyIUxdPjC+NpYrvdAJkYYRpn1lVK1bbtUFrx+vpyDdEUuFVPzqW6OsTPaK0lrgvWWc7jWG1SDXHxdSxkK+VNy1230svXdcUoDQWWUcYD2/0OrcGHFWM10zKB0iitUEa8jW3XkRcv2RMUfC4Yo+X+XKBoTcqJyU+E5Lm5uSEET8yRGENFRhaMa1HacTyeaoCPRKOlWNCpiK3KSdz6W1pvbhMaq69Iemk4jJSSa+s+s98WYvFQCrlEGtPx7t07UgU4RZ/ZbveM55Hz+VW+nGqdUerSdDDV6SBjjtvbW+b5jFK6IvYDxjjWRSBFjYuUDIfXIwB3N3ucc2x3MgY5n8/VzaGZ5pmEkVmgUljTXLuExlgpiUo9Xeq8E1XQVXScZMiIUoDKTPMo0jMK3q/EKMoZ4wwlR1IOhJjZbja8/3An2s+cycT6uxtUFXWvPnB3dwck5nm5fs7eB5bZ18BUaXIUYJ4lXsBasSKlFOuGbCsBWxoc8zxDzZxoXINWiu12y+3tjqIkViCETNf1fPvNt0zTQtv3nMYTKSewtnY5uYKmrDOQSiXlaXJJlJLY77fc3d9wPh0Zho7zWcBVSgmhzXvR4Gr3E+LROum0X0Ys8hy8nfXmNqF0JnO9R0hSruSOW7bbrlKYZT5UlsTt7b7S08S5cP+wZzNs8P4MCqztiKHQNC0xSqMFitDYUkApaiKwPLTOtox10Lssi9C+1wxFOqxt2xDCwjwf+fDhIyFI7Nh2u+Pl5YXxPJO1IUtQW+2sWtY1Aom+l4bSPM9ix7EGXali1oqTo5SMdaCN/POrX1BZNKDOaZSurvvqKLm7veHbb77lx+9/IMZI2zQUZZnn5ZpUbK3ldHrl3btf1g6nBK0uNb89hCCuizquAa4eRWNsvdOl619b15WYLpkdCrRClSKlaL2TGaPY3kiu4OpHPnz4wO/+yT/heBx5Obzy3/33/z0xZFL0kr6URUpYirgsjCoYrYipKmms5CKu64Sxis12wFrL589fAAkPatvu2kiTGWJkt9vWVOdSma5fu6M/u7qurV1L8Y5tt1ti9OIX9ImSJbxZOmqRdfX8+ONnNpsNHz++45tvPxC8p5Cq0LgREnQI13uYaEBls8foeXp6oe9bnGt5enwlhMK6etY10rUt59NcQ0KFnzItI/M8YltHjJnbm3vO08rxvGBcJ+VvhotQPEZ5y1tjMNric7iOPQSMK2iKrmulTFOKzbZHKTgeDjTNRuK8moxShu12K0iNRUpGheL5+ZnzeK7586mmLDmMWSklYYwE25QCoLi7u6NtW7777jsZcpf875G6L+6HEESiZ4ylZCnhqWbclMrVbW/qWCdniUZbxoWb2+HqwliWhe+//x4fIsOw5fPnz+Tq7vA+4X2hKF2/30zTGrrGYrQ0fYw1uEYzTWeUFm/kPE8oxE1ijFQxKWXZ9OsqrhDb0nbi6uj7Fq3F+/iW1pvbhJcN+I9nPpvNHu9DfdBmqC4J7zMxTDjbyN0qg18D43iuWEDNMPSkNNeh8sUEzPUUilFVjIOtRtWpEtMyXdvTdV11ETi22y3zPOJjJBfNNK6sq8evmcfHZ7p2YH+z5zSOGCX3zaYRDWWK+dqIGXpxQxijKWRJlPWCd4eCsRrnRHPadT13dw/kGDkfT0Kf1mIu1kqUOeM4C+Kvit7bpmWajuxvdsKtyZnX1ydQ8OOPP7KuK7/85beAVA8XkfQ8z9cZ6M3tHY1rOZ/P1+4paErOlIxY9sl1BpdxF+5olDmgranGMcTrjPX777/n9XCg6zdM88yyLqIkQmOspnHyYg3V3SL3wiq4z5lpmthsxNO4rjNPT89oZbi7uyMl6XQvi8fWF0Y/9Bgnn6XWhq67wa/S/X5L681tQsEYmHpyWcG+q2rkxNSk1lYG9LHU9nRHyTCeV9blR06nI8sc2O12lKKq+0DUH3IayoN8mYl5n5nGheATWssmlTLMME3T9VSeZ2l0KNsIT2UOrD6wrIXNdg8ojqczqaQKrm3rpjconVmXlXGCzWZbk3OhFHUVE5Qifrm2hlhuNjtKGhnHGZVK9d8lxnFEm5Z1TWK81ZacIkZbKEocE14G9tYq2rZhsxVl0Lp4tLa8vh7YbjcVeKyh6GqWlbuV0UY8mP1Q534XuZ68XLRRV0uQZNTLf8iFtmvZbQacg9fDK9Y6+q5nbqSxo5Vmu92CysRcSFGhrQFd56lKXSVpMrtVIoJI0LgWhSYG+Zmslc8x58y6XhpHpqpmHEVnUpKXqLWqwpe/zgn/g+syTDXG4NfIcT3VGVRCo4k+1CyHah71kWWdyVmTgqfrW25utvjV8/T4ClAfNin1tLnMD6W9Lgj6XPPYDdYYmt3uei/c7XYAHI9HOc20JtbZWy7QOEXTdNWJITM25xy//vUvSEnU+yGuQGZdp/pnCH9UHohSlTmJEAPee8ZxIiWYRs88Hdn0A1plmkbMsOsSWZdYTzHJctBO0XUbtFJsNjsg4/1C00oJG0JkREy+ovBRVVWUrim7wyD6WyG8BS7x5M6JcugyhmiUq53GgPczKchLajtseP/uA0YVzuNzJXbv+fzlmf1+j4+R8/mMrve7jw8PnE4zr4cz5+nMZjOwGTrpdCeFLiJ2SKnQ91tCKDx+eaGQKVlVmZqEqAp0ChSyyZ0zLEEaeykrjicJ4/kaCPMfWPWlexVJC0IiV7e4FdmRAq00xjWkkEmxUJJinlYaZ7G6wWpHtlJ2rstKVvkqO+u6Bm2kuwiy2Teb4VqajeNCyol+aEnJs7/ZsswzShf8spKVrXI0g0bj2oam7ZiWGds4nDO8e3/Pui48Pj5W/kqSIXRK5BIxSJuepLhwh6SbKpyY8TyRQpEQT5S8IIDN5lZsPONZyHNFc/0DMJQMWRVRAlVtpTGGp8dHchFWakriTBe4roi2+66r0ddrvafKy6DUzydECcW5nDzjuDAtE7utKId8kA4lSnE6nYCMtfIZnU5j/TnrZ2Zkvhiix1dSHGTaxtI2rv7ckRBFamiNJVX472XOGmOo7BkwJlS3hUgD26a7codSjGLtMvaqUvraHf0PrII0K6yTWZTSkdN4xFqHKmBVomsMVitU0RjA2EZi3LWiaxq6pmW73XI6nSRnojoU2irmDR6aVrLXL9I414j16Pb2ls+fnq6u+f1+w8vLCzGKT9E1hlglF/v9jpwL79+/5/7+jhRX5nmmayUp+HB4vrb8nTOVAD2DKiSCzMUkUoIYPMYoNIGmkzvktu+lTCaKmqSV+eHnz0/ErDHaksPF2KyIJRFzrOW2GF1zhuAVKcmDrTeCMNztNxijKoWgJ+fEOJ3RSoboIWYyGq2tOOFDrPc0hU+e7U1H2/Ysi2dZM0o5jDPoxrFkT04JWzqmg+f56ZXd7S3TLNVMQVVyQuT1+CPOSvxd41qCz2JFK0KpuwSLKq2ud0trLfM8EUKpzFlLQRixioxoUSOFhLaublbZyPP8dUTxH1xSEkp5sVSNZgxbYswSr9X2fPvxHX0/8Pj4CK6IORTo+hZrDN4vzIvcI0JccVZy7cXqkplWXxs50sZe10iKmd1+z/k0EaoBNUZRu4A46EX4Kwp9Yy3ei2Xm8+fPnI5npmkm+MiTf+b59YWURG7Vtj1KqYq870nk6ocrOCueSWcUMa3c3uzZbHrIiZgSd3dbbm+3vLwcUBRSjPRtR7oSAMQe5KylpARKThVxd3ica3HW0TadbKDq0JC5qahHzucJrax4FFePMQ5tFUZfPJhIRNoyAQnnBL5ljKJtLVoPdbRBPeUSmcTxdMT7RN9tJOSlEtliunRhFx4e7thut5zPZ5ZlZBgGuk7sTylJ0IxfpbN9jWZTBmdbBJdR6Pseay1Pj8/1+5QgGNcY5nmtLxmplFKUz+strTe3CXMSOZqEk0BJhZLl4bPaULLieBh5fT0IMzSHarOR8rGQmOaJZZ2uYuxcIkqLE8PHIieaM4RQ6t1QUmIPryee4is5STlWCjSNWIoU4j+kKKyVDb1UHeMUV9YlVS1qIiSPMohYvGooZS5YxHSavMSYFZklahQprRiV6ygEconEuLLbdmw2O9ZlZV2FlP3x4w0hxUpZC/Rdx263ZZlGxvNZ0H5GE6OqhLFC13WEsKK1FmJaFvCSrpAkU93tlzEOJdf7c0YJ/IamcdzdvWOz7fB+YRxHUr74aWWGGFKkhFI9jYqucyzryOthxDiHtQ0qF8Zp5vamZb/fVv1pYl0Xbm/3GFOtXtZctb9aa3LKrHHFr5KiVYqYvIdhwDnH89NLFZBfCGsOhfQVYpgl06RoEl/nhD+7nJOToeRCKfyjTDl5e1sjmD6tLauf0brw/sNd1SImxmmi33TXBz/FiDEanzxhCqwhiKcwOU7jiFZyUuVUiBHadiu2meUggKglopTYX7bbLW3b4hpbRcxVBge1PQ+gsdZhrK4PtiJ4OWnlJFbc7PdoKxtWFWjbltdnz83+ntY5tpsBsOy3G5YlsM4jJQcUme0wME0T6MKwcfg1UYpHq4iz0LYGpYQ6bczAdrvjdBw5HA7SzCjyecRQ5WemIeRwfdAvL5cP33wgEplnT0rQ960I5VXmy5cv9b4nJ+Xry4Gmaen6hhg9xkjsnFY9ry8H5nnGOU3RkiUxbPdsdwO3N53cC/1K0zru7m/o+5ZcMn0viP5lCVcXRkqxeggTSkllkstP5ISLuEDXlOLgI9a112fLmoaYIn5d/2M/1j+73t4m1OZajlJKZaDoa1koX0BT1S4ZpQv3D7csy8rjlxPaGvpB5nvGGl5fBZB7yeULMbHZ3bCGSK7JsiFCjJkYM0UHjsfjlW5NvcynlDDegzEUCs/PL2w2m9oskgaBOAmk1rkEm1ww9RfhtNDBDTGtaCUD/NZp9rsN281AjjJzC1HQhn5dCWGicQ27egL5dSGrRKc6TqcjjdacVWG7GbCbnhgjL68nmqaTDu+6sC7SnXWNwTkrWtIa+HkZMZhqnRK6W8d5OdeNpigZUdcoGR1oZauVK+MaV08m6arJ75toWoV1mmHoKAp8zHW0IeEwOYvkzznLdru5NsZyzigUwa/XzSXlK7VJV3ml60JMvo6O1msC8jwveB+w1gmxDRjHkWmaiCmx2/X/8R/sn1lvbxNa8YMp6hghUcNCNEab+t8zxipsY+m6VhQas2eePZvtlqbp2e1vKEVj7MTN7QPPz0+grBC3smwMaxu0sYSK9MvZczoJbl1pVdU7QhQLPtTOYcbuBoZB5HPU00XVaDBtQGlbJWCplkdy6hljJJn2mCiscp9yIjzvu44cM8fXkfNxIueJphWxOVk2dU6Su66VqIZSiLSuYbcZBOFQJWdT5aqIfSdfZ5zGKvphV6V/jk+fvtC1gvN/eXmun4lQu5+en4glonDVuRErbsNU87HifJ6w1rEZhD1KVdRYIylO3i/SJDKw329ZfCAluTPGGBnnmZgiORXmZqXUWaN4FDWuaTmf15+kcdewm1jRjhJDfnHKXzq6Spn64hXejnWOfmhBSxCqQJLfznpzm1Ah90LBTqQa2dXQOHnTGg2FKPFoVhHCwjhqxnEhRo0PBR8Sr69igs1ZHqAQpFvoQ0bplrW2s7XJpFKRF40hIfAmUwrb/fbarrfOEHzAOMP79/dM4/ma14eSDmVB3Byif+T6Fg/VVZ9zxPtAjAZnkyAeQoACk1pYp5XxHNFout5gbOabbz4I8Nd7QOaj1hlKDWEy2pBCQjkn9PCccMbRNrmKEwol59q8kGbMPM/4deJ8miiZGj0mHUOpQgLrmrGtY509y5IwuiFFCD5IU6QouV/FwlJCdcCLyqXrLM62hLhSiFfb2c3tnnFcWL2/Gn9zEizj+fQTjEt8hLbazBKXBF9r3fVELOWnGARxRzjG81R9nzL2MNbQ9Q2rX1GqcHe34/7+9trdfivrzW3CS9pPzvl6yhkjHTqKjMRSCqAiOYvaw5iGZTlCMUzTSsgvVXEjJ+jj82vFwYtRdl1+0g4Kg0XVNrg0bEoudbhdFR5aVBtByckXY5CThkJM4SeEXiooJ4GjKCrqMFd1jvwtfS8U8BQnLtzNvutIEZIvGANaiR4yJzgdJ5pWHr6UIsOmJ8aAD0mi36Inx0TXSRrTPI1Y13B/P3A4nK6BLqL7lLz6ZUkY08u9TUNMF2ralmEzcDodQYtC53w+kRLc3uyw1nE4nDifz+z2W7R2gs8PkiEYU2SeVwoyoklpJaVC2/bXZOFh6IhxZF2DhOoMG9bV1/ltL+QCH64KGK319fO9KIuaRhKnut7x8vLIdruTplfr6otAUYrDWBGxh+iJMRCTq6KJr8P6n125JEROWDBW0Q0N67KyeLEvOe2ujRJlZP728noG3ZBVYlk9S9UryryMWsrIXQMFSpfrZo8xkZMmFWjbDlKgaxusNqQQsUZffy5jIKfA4/OLNABsQ4oJatKtqtpKRSbnSIhe5l+tY57lpWCbjDYXR4XMDYsq2MZx9/6WYSenwLrMBO9RrtD0Dm0L53Gk6TrCKCduzHXuViArKEqTVVXy5Jmms+xuNvRDx3kc6fue8/lccwgdbedqerE4C9rBom3GNtB1GygGDexvNnS9ONNjUKSsiH4mldpJVYLtSDliG8c0r6jalEpJXCLLsjBNM9988y1D2+KXlWk6cnPzLaWIi2VZJtq25eZmLw25mJj9gq32tnWN1znhbrdBG812d8PzyxPWCv5ks9nQdxu8D7y+nJnngtZOMJezoD70G5tRvLlNWHKqUZcS3zz0LV0raAnvPY1x1SQKKEVMuQaKKjCapoKZQMoXOVUhhFTzGDqyisQUWealYhOa2mApGOMIXgzDtoKXQDZyWxst4n2T+1eIiVwuXd3LXcRXhYdwMI1RdN09Xdfw9PzI+TwyDJYQEilBihBLQJtMJknpqQoYWMNKOkvoTNO1pCL3Lm0spQhz9OLEKBXvGGOQ4E2tORwPzNPCzc2eprE0jaVtHdpe7l62Nj7kd42xXJmu6+LZbDoeKq5+XVd2O7EPLWvgPEpFIA2on6xXUjZS3SESUqOUEN+mSWR7WsF2t2FehGx3IaaJhlbKTW0E66FU+UfpW6FWPhO5wDSLFSvGyGZzizGKw/GVnMRuBTUSoO47GV/8R3yg/1esN7cJpSFZ6glWqkhYhuzGtLRO2uDWtShbGSpFzJ+N0hUpUa6dNqVUbaiInScXuayTRemvlKZvW/lyor9e/C8ibgE+yYjkYj8SQ+u/v6RrK9+0QGytRHkFQeT/6lffsr/Z8enTI/M4UtIGiITgWdxPsWMXo60zYlFKUfx2zjaUDDEISVxVaZoIquP1jnUp5XKGWBLLfMR7KcFySTStoU8NMQoJrWkEYTgMO7z3HA6H2ggxovZRuXJ0NHf3d5xOJxkJaFOlY8L4SUkAxevi+fDhAyklDuNRyGu6YE1Dipll9tUh07G/2UkWorFc2LIXY7Gv90bJPqyM2c2Gx8fHa7dbqNyFtm0oZOZxqt+dQSvH+SxKq2HToZPQDqSj+7Uc/dllTR3OKqBkrBFL07pMaAW5CFDXGINtG3KGdJ5IqWZXmExKVJmTAJZEbB2rO/sitSyouuFTReHJgL7Uu6f41VwjZdVlJibDb3/tyF3ur1fCF6CUaDgL0tVrGsvxOHI6nbGmQbcWskMb6fimlMhJWDExyf2qda24xKtD/3g8XhsX67qiEWGzcw6UuxpZpRurcKajVAxIs2mRLm6p9DMDSuDFxtgrO0YpabQUxP7TtK6e/IlplmBSkKi2eQnkkhg2Pf3QcTqeKPkiI9NM80gu4INAeJ115AK7/Z5lXSjA8TiSUqgVS64OFmm0qEohvzBEL9S8C9ntAg7uuhYfFtrWXU9rrR1Gyws95xXnhNZ3d3fLOC74NfwFnuz/5fUGNyHkmmykVcbogjVKuqJFAMDaarxf693PkqJYkxYvcqVc6dDGgrWKzeaW81nemgo52UqO5JiklEMewJKToBG0NAJSSpisr3K3C4FNPHPmWvYCXNB/IUgpm1IFIDWGGDLPz68oBcbIA3LJ7zPagZJmQtP0QpHLWU72pq0UNnPVh6YkhuZlmurMra1SLjm1rRHLUkyZnBJN6whhxTWW0/GEUhv5nK0wT2318R2P5ypta+T3K9B2PVTDMChOZ0EuPjw84MOJeVnY32yJcSUm6dwKnl+6wbatL5KUiJUwEErBpwwlk2KkbZufGDHGCsG8jnNkLpi4cEUfHx+vFYcxhr7r0Gj63U7qTJWI9QQ1StE5iw8LD3d7TscD+03P46fPgkp8Q+vNbcKcIk3bopVEZacYCF5hjSJnTcwRnTXiGFD4GKmJWVxSgmLy2KzI+RLEMhPCCkrkUI1zNG1H0AHvQ5XIZaxWpKJIOaK1vUq4SsnM81S9h/56D7s8DD/h3OUEDWREY2krGPfiVlDXdr1oVyMXpH/OME0L3q+kFNnvNteSTN7ucncVW1FXTzE5/YL3xCCNnhglkz2EtepTU5X3UbuZimGz5eVFJF5hraZc113zJ5qmxTjH8TiBUkzTirHCEC0YzueZZfU4Jy1rKRcbYkiVXC6I/WIUBYWuM75L5oRWmpRL/dwAVA3DScQQq0E31SuFVAoX5ZRzgjAchoEcE6ko4bRGX90h0FgHKG5vbqWSyIXWOo6vr/SNvW7qt7Le3CZUlStijBhIQ1ivps4YE2glQKCiKVkTfKiC4Ih2l/JFSilUJiYvHkFXIU/KXO+AqSYRVY+4/Hu1ZQ35J26pMfWhiFcrlDwglxOS6zC5aSRIJsVcA04KIcqmkiQhXaneDRrZXMZoks9X97qckJZ1DVd/IwiBDRSHw5F5Xmgs12DNEDLzNInL3we6rieEsf6zmabpry+AlBQKR46OlDLzKMEuF5dCybIh59nz8nrAGMM4zux2W9pGEn3HccVYR9c3NfMwX0tBQXmU+j10EkmQkvx+1uArl9Svvn7PYlXzPgi2Mpd6Jwy1i1mupup/PK5o25bTciKsnr5zhOiBJJQ8LTkmqkCJmZfHZ5QudF1D29h/r4J5C+vNbcJ3Dw8oraoLfK2hm5qu665duWWOhFjqXQ9iiCgNjbGgDTlLw8I5Wy/9tQS93KGQrEK5oMsD07S2lqJGOpT1YREtophdL3euS+lZiqQXXeaRICfh5T4aU6DkhNaFppGfwzlL1ztKDKxrYl3ry6VyWy5/xiVF6TIXk1OuhrGkRDN017/XWUtuW4wRcrUMqjXWaFxjr5pKqpj50+dnzscFirrSrpMPGFvYbASzv4YFlCHEjDaOgmFdBTDlnKOpWt1SKWulYvAv8XIXZqjSSnD0uVxfbCklQgrkJM2zEIKclrVCuOhDQebGVwlhDUhtGocPHmsNfsk1gFRwFlqLLjYXaWqJ80IRQ2C4v5E0qfTVWf+z6+OHO06nM7tNz/PzEyUrfv3ttxTgu+9+QKMlRTcJc9IYR0ye1jnaXhAGfpWTyVZ1/7IsrPOMa5w0RpSiJAkCzUFRLGz6HmM1q/eEIs0E4zRKy0ig7TrWda1ZC4KRuHRxq84HEPsQ1YVgtZLyqGlpm+pQt1osR0YJpbsUUm2hhxSEEGc02+2Gvut4fX2l7ZrqgDDyJs8FXd3vCsWUFqyx0rgoCh+8WKS0xF6nAjFDiheHiUfrlhwTIWVSjkzTzLDpaFLmcDqhjauu+kDjenJSzHFFaSFjK2MZdr0Yk7MilURGWKjCBhKHu1ZCStBK1Xz5TIqJkiIJRY4BXUHPF9+gs4btpud8OlEomMbRNoacijS7xHVK23dEvxKjp5DZml5K5pIpIZBLEHG7bmga8T+eTxOXxN+3st7cJpQ8g8S6xivd61CxEsu6EhNQ5B6Wqru661pco1EU+q7DKkUu+VomtU1D14r6JnhP2+iqQtEss3Aqp2mkH6SEtU46hIVMzEk0q9ZhkoaAOPNrmRh8rJ3Sy0lYMxTr29YaQ9e2ovpBNkLKHtfIbHJd5c/PJVeDrViLmq6h6Vt4LazrIieGX2icvY4xSqbiLWIVvEtIptEGH4NAF+vd9nyeWCvKolT4btO1LIs0eLqhFe5pyQJzitLYIXOVeYmpWWEMmFoqxhTIWZCHrrEo5Wja5gp8ykWYMkbJ99G1HbpVxOgoSf5d1uircFtO+3yVvzVNg7GWZa5ulpwpOaJsg3WKthPRuVKC3g8hiGaUzG6/QZXuSmbwPsh3vn4FPf3s8qHgfeF0PssXGROlSNKuD/LFyhcv0dmiXJH5j6n4vMPr6To0jjHw8PCOtm14fn7hgtS3tjZS9GW4XeiHW3bbgXQ+1XtoIoQsDYgSAUnt1VrKOKMNKY5X0fA/Tm9S5TI7lP97Op2qqdfRtFagtlqTo1ChrdI4Z+rJkQnryjyOgMjftpuB07LQVlao9ysLa2XTSLc1ZE9K4q8rqq0jDYexjtPpkfoLgxafn1YarVvariHlKN3UxlUCnKdU/o3ScooZa1A1BZnajCpFiWqolArHciglxO1UY+hS3VzWmjoisez3W1TJHA6vNK2t3VDJnZhnCYTd3+zRWrMsM9YptJbfffWzBPqoDW1n2Ww7lmXh5eWZdQ3XDXl788A0HjBGuuUX3WyKX8vRn13TuDBOE36VLpnk6inmJcisSUOsbz7XOChwOJzZxA6Mkuz1ILClnOVe9/p6IATJ1rPGkrMnZSllb2434oivd4ymbdixYZxGrHM0TsJFjYZiJeWnlJ/oYm3bMgwDIUgr/RKQApXYZvXVI3l520uDBEpWV/ivqpRtazTGSPpUipHNZmCeJm5ubpjPZ1JOdG1L2/zjNru+wnmNrSd4jOQs/w5lgtz9inQtFQLUvb+75cuXM+PzkYd3DySVQcl4xBpNf7un1HwHrXT18wmz9eIO0VpsUUEnVM1EnOeZGER+1/ddPUlLneVFUgoyQC8ibtCaWkYWtG4r2l6i1CSUVJGz6Hf3+y0StZ3o+65KBOVF9fJ8lNGQbUkaId9FsYM1ddaotJLn5g2tN7cJjWtQemVZA/O80PrEdrsDND4kXGvo+wZjHEVJGVhUqfchjV/jlYuZE9JsUXKHM6YhppV1mXHOUpzg43f7Da8vL3ICeU8IC8sycnd7h1aGeVklE8MYbm+2hCjUMZlVDfU0WkkpXyFK1GRhozXGGLbbTaVdy9/TtZLDeLMXG9A8TwSfuL//SNNIYu8yi0ChaxpOr/LzqaJQVsvpaS26AqceH78gaL+GdR0pxYjL3wd0VQ456zBG8hm0gpQ9VAnffr9lHEdilEH2vCw0rThLllXGRusqnkvvM9pKSZ9yRjuR7Rlt6+mfaTtp+IQYaBqL9zU/JEu8tdGap8cvGKOvDSgZ91hy7q8NKLjIz6g+x4HdbsfpdCJnX4fyms1m4Hyaq2hcuqyvL0dSXllXiddr2xYfw9Wb+lbWm9uE4zgKsbnOxtSF0KWLiKEbjVKCSZjXJAGYtaUtx1WunUqRcTWN4/7+XhJ6UiL4iFJWVP5RQkXb7h8zYyaUzbTO4SpWsWRq1gKUlNHKyOwvZdbl9apSueLVs3QLU0qsXrIV2rZhs9mI+398JdeZ123FxJcsYCIohOAlXKaIGFzVmDLnrEhKjRDYpmmm7/tKRSvc3OwxRrP6QEq6lsKSc1EbwWQySknardKC0e+7pt7HEsssrJiuE+M0JIZNS9u0KFVYFonzTiGwel+NtPYqilZKsd1uKEVxPJ4RSnqqpahGZ+GV+iBD/Aw8P79cURZSNVxyJC6MnvZ6Dw4hXschOUdsJRgIQ9ZUCZ26dlOV0ljXUBBSXNe1NO3XYf3PrpCCwGNLZhi28oCpDJqf2v6lEKvDulTsRc5CfzYajL10LqW76cOKNgUfPCiIoVTtpfwzh8ORGDKliDG3NQqrHeN5Ybd1dG1HWCOFwuoDqqr6Y4zEcAlecVftKEhzZlkWtJGZ1vUeacQ064wmeM+PP3xPTjLDQimc1oQYMBr2uw2aQkiBvuvRSrEuC1rXPHtrOR4PeL/SDx2ukYe4GwQMbBeR7aVc5WMxUVJCm4JWjmVeubm5ReF4/PKC94F1DQLn3TUkFWjajqGOQ3IxDMMtMUqpJ84SK5hFcm0wldoxzaQkYmuQcZE2ClNL53l+IgeBLYfgidHUxspyvVfvdnuWZWEc5Y4v46XE6TTWxlwkJ6HmXZipMqO8ZHj46wYsFBbvcW2D0l9paz+7nJMmS6GjbZvrPE9ralqP/kd3slTvCnKxj0VkaE0dB/w0zPbXf8ZoQzGOFCPFwLr4CmSyNeuCKpcSAYAwQwvTNNcvF0qWP0+G25CSJxf5sxUKbbU0XaoDQ7LyZmKMNI27NiesdQQvuRExeDabAWM0IUqWouDzxeDsrOGiYQ3eS55fdR5ATUYi8+HDey5MHmngyvhDqYI2IlPLdQC+LGudlV50sZoUEf6oh23b0FbRg2RzrDinsKaj6wbmRUzBsSR0zYWUqkD/e4qippFZYKje0EvKExXaK2Wo/EeUL5mus4xVkC161EsjqCrUlOAihZou1Y+Ai+P1zmiNsE5REhtwiTPQXzfhz69pXq6NjFQStpGcueAT8zzSdQ37mz0lKwqeaVrpmo55nsk+0vTyzxptsMZhratKjoBzht32huNByiQo1fkuRDfvJX4LBU0jZdHr6xFrHNrIn6NVDfRUsN1uawfVVKeGgIUap2mblnUVRY+vNqPtpqPrHbI3VSWrXYTglhA8x+OBYehoW0eoUdnDpmeazvIycopCpq+G2OAj67pezbfTtFbTsbx0vF/R1tJ2LTHJRkxFDLt393v6vkEvomkNIaGrqqdpC5dMEIVmmRdizFgrIxNpZGkad7FABXISlETJMiRvrMPU78J0ihBgs+mqX3BmOgtBLufMfre/VheqbpplnqpyShpBFLGTLesqM8kiJ6+4R9Z6WlqmWcTufT9wPI8UlFD8jOZ0nmoI7dtZb24Tppxp6l0wpiwaxKzqm7+wrBF1ErDPPK/1vqiIwct9SQvtTE4oRV5ETC0Z6JZ+aIkh4f16vV+kmKv0rFSVjLn6CyURyLEZtvUuKISvkFYaZ4gqo9BY01BKpmkbGqfE8ZELRosfrhTpDl4Myd6Lo0GioBW6iOdRa0OMma6VmafWWiRZSk62nCOJhFXiW5zmmRgK1kocuML8lLCUxaV/sWQVMtrIadI1ltvbG2IsdJ0TL6WvFimTUSpV3aqEcLbtBmNkLlsotI3BWnEuWGfRSjEHT0mJ/c0Nh8MRHyONczhjSTkwdC2Ns2iVyUnuveri5rC6eg1FuypueE8pBmfFFtZ2rTRdUqric/mei7r4BC/qGep4RtG1jYygkJeL1VbAwm9ovblN2HVdxRhICed9hKKvg1ylJXRSgK7yFjyfz1XaZFhXTz/0tH3H8ThKUq7RdJ3Ivo7HF2K8UJ0T1ilSFtkTqpByIiWHtR0xCu3rIqValkVOlxAQPkrhIkMUvqh8nJttS/SeGBxJKTYbcS6kygp1VtT945hwTUUu5kLjOh7ut0Dh5fkL3ieUEoH0ZtMzDD0owb1f3Bry0hBa3IWoXUi0rQgBtHF0Q09OmbBEbm7uSUUo16+vB/b7W9qh5fn5FYCYPKuXpodLuoZ+Gow2nCYJQ22atuLrLwCmSwdT8f69lMPLsoo3M3l8EBnh8TTxL37zz5jnsW4wKUU3mx7vF5ZlYrfbobXm6elQZ4/i+bycXtM0IdBfhV9XjLEVja9q2Vro6x1WvhcnjSwlTZt5Wv9n/aB/yfXmNuFP7uqfmisp/mSolZgruR9K+RKueMELagGoZQp1Zidf5ul8ZlkSXdNdN/VFEypOBemg3d3d1TI11ow/Ce8UDkpX03MV5/NYXQpCH5PGgfgRQ4j1AZWO4gVwG3ygcY6PHz5wPB0xWjp4wrbh+u9ZFn/Vy4L8/zFlhqHDaANOUBsxehSOrpOXQAiBmIWS3bYCyHXOMYeFeV7Ybm8o6Kuusmt71nVlHKXZcTE0ay1i96bpqtFZoLrWilrI6EsXWk6hYRiq19FfP8sYhZjunCGXRM6R7777s1QSIdT7sauwpsusUO6fzllK1eleStJ19df7pNaaYgTonLI07S6zxYuz41LGiun5Aowq19HHW1lvbhP+xPGU+ZpWihTFRNt1Hd98/Mi8TDw/v1y7YG3FX0zTiDaafugJ4RKjrK4XefmS9NX2st/veXh44OXlhXWdq8u8uXIs5QQSBP/xcJI5k/f0g/BGx/EsliRd0I2tzZyMqb6/XBRKSUhmyZI72LadBJbUsMrNpuX5+YXtdodWRqhxIdF3g+hTs8JoSWxal8h4fqFtWzbbS+iJOAemaa6fhXQhYwySrLQGzsczj08vnM4r85TQxtD3hpQCf/d3f3dtVJQCgrbvkFFJuJ48lxeivCRz/RxF8L7bbbnkGr6+HIkpsd3uca5mTRqqsRbxCyYZ5DedqH2WZSKmSNe3KAXWGZp2y/uH9zVcRtF3fd2cDbvdni9fHlkWmWt2/U4yCbnErMefNprS9bus9LuQWZav8N+fXT+dhNJ9XGO4esj6vhPaWPJ0Xcs0zXS9zLC8r458o9ntdpxPIvm6ZECsq8iorL04B/J1w1/w9AK/9VdIr6p3wEuX9dI4EIrXTEq5KkiqxtFYlJKRSCmSHJUQ1s26eEx1Sjw+PqGVFrOtk6gzRdU2ZsFjpIoCbFpLjIK7FyuURitX8wSLIPtTqk4MOf2HTc/+ZkvOhdNp4vV4rOZgzX6/J6aEtdTmlDhW9vs9wzBwPp95eHhgWRbO57E2nsTt7yp2Ule3Q8mKGGS2KGzVeBVux5BoGsPpdMQ6w/v37+ugX0rpm5sNkqWYayPNiUZXy7y16zr6+vNM01zhxYp5XjgcjpVfkyqxWyBTsuQzMNoKA9XZKqK4EMY1b6wv8zY34eXL9N7TOMHnXchkv//939M0rnYWJc75V7/6JTkXjscjzy8vHA6vrGsUcHD1oj0/n7FW8fDujsY2dbMlDocT6ypBLZcH2TmH9zUYRUvre13C1d6Ua/ev6zrJlqCwzJ6YJAuvbapCZg7c7G8BzT/8wz+gjb6ezH3fc39/RwgLl1CTnOerETknacEb3RIpFWuvf8I61jxAhUPrhpxF+G6twZmeaYw8Pn6pLX3F/f09hYK1Cm0tXStkMqXA+7VK7zxKFU6n1+pBlBPygiIcx3PdlMJxCT4zDAPeB8ZxrBu1FX3nGqQTnIV29vT4StsOUAwf3t8CCAi5BMmtT4Gzv4C3HN6PzNOCUlJOU2Acp1qSimm3FM/t3QDA6+vh+n2VXNBGOqeXK4xSFUES8vUe/1bWm9uEF3xB28oHrTBVTCwSKMGal0rdklCX0/lI8JHX1wPjNGGdE91kUVzAsUB1LshsbpqEJi0mUFvvPKqWWD/lRly6bZfT86ILFQNvX+8zcjeLUZzsXeeIVWzetC2H1wPWWvquB5WvsqrL7yvwXVPvti3ztLLMkhy1LIJ377ue19dXJCnKsq4Ty7zSdztyUayL/JxGJ47HER89OUunt+kGrDMoI4iItuvoW7lbihlWGDbzMkkilCr1HmYrKa6rzvaCAJmSmKxDqS8uaokqM71LmpUxsilzEthV2xgUltfXs2wUbeoLV4zAKZYaCNRgXYPRhZjE5SLNLVVVNFKxPDzcsttveX5+JsZQlVOxbrzqG+Vyckupesm4f0vrzW3CS2kEmpeXF6bJc3tzK0qQXhDmSsnwfLvdk/PCly9PpFI4n05ycU+RtumkpMsiau77Lb/6zbe0bcPf/e0fBB2YREfprLsaSUMUzKKiME5nGQ1oYbm4xgkxbPHEKF1K6bzJ27rrmhpIqWtTp+H5+ZllXhg2PSlJOtTN/gayCAVOp4mh7xnHz4Im3N8LWdsqQvDMc7yWesuyst1uAH2N9m67hpJLfWlJnLRWFmcUJUsjw1rN/cMtIQa+fP5cjcaanBWn44y1QiDza8EaodKdzxJ4kxM8P73UUUKLVob7+zs+f37kGM6sa6BtHF3bE6JnXXzVzJoqgXNM48huf0PbDZyqn0/mqiIcMEqjjKmzX3BZMc4rwc80VsQYzl2USZK0tRl61nXhdLxEzsnvP/Qd3osjJOWIsQpXDc6UIjPPr1amn1+udWirOZ1GfBSTa78ZqgxsvZ4cOcH5vFIQuVdKnvsP71AKzucTa/RQDBRwWohnrbOE6DGtxip7RSrEksWDqAwxUyPTSu0sGoyFtrX4VRo60o1z16YLFDHENlb0mlHkXDEK1NY6uetc5oBy15lIRZGzJSfDZtgxndYqg0t0naHtWvwaQf10R5bgT2lu3N7s+PjxhteXZ7bbLcsayVHXrHrL0Hcs6xmlDfN4JCvF0Pco7TidZkIQ58Hd3R2laJzZSOUxRdpOrFrnWcY8fT/QtZtr00zuWdJd3myHWqYKg0cVTcqR8ywdYp8iISWmZSErRSqFmAVRoo0lJEFQ5pSxzhJSFVH4jHMDKM00e7SSxldJgVLx/uNpFDapVVjb0jYdz8/PdXyTUXll6DeEUMhO1XzCr6ben12bzfYq8QJou5ZxHOsb3VyhQfMiOMCmE0d8ru3zgqANtFGSbuRDbXsvfP/9D6Ar9q9p5Qof5CR0jSNOC0Jru9wlWnIKLLMnRcXqI/O04GuuYdttatmbaqNoZJ5HrG5QWFIWCVWKGSpkWCsj7NCKGASY54W+6xmGjVDWrMM6VXHvcsfKRR4ckakV9rs99/d3zJW6hpI2/TKtV/UIl1NXizh7XlaMkQjtNQhjdbe7QWtRvczzhA8FYyTm7ZLapKsTJMbI7e1t7ZjKKGCz7RmGjsPhUBEeVVLoE6u/4AyNfC5WY4w0wba7npeXEyHKS8zoGjSTuIq3cymEmChZSvCQJM04hHDNpD+PJ7FLxcjQ90zTUuV1DcbAu4d7YRBlz2boUcpx+xX09PPr0khwriXFn7ieF+ZmSpFlXsXB4FONN+uIKXE4HECJ290ah3aGtlWUJHOiUhA/YSrkmMgxk2Ni8TMppOv9L+eMX1PdiJJNIdI2qkJHSp2cU220qKuXUII1LVa35LUIADhG5nlCkIdWciSCp3GNiMO9v5LV4PI7pyrDaupDCUbL/KvvB4a+4Xw+Y51lu73h5fkFpWwVPm8JIda/t+d4PghxfA1oJc2SpmmvDRYhA5Sr3lPKXxkjXEUSVQcqo6BJpGops64T1ioBWmUZD5VS0Fbhj/mq91zXhZwjw6aj7SQee59bXl9PUq048SkuMZCiCES1kvu2doK4P7yOpKTqdYUrENgYqUi0Ol87p9KptjRNR28djYv8+OMjD+9uCPFrIMzPrmn0pFyqyqWrg1kZFYzjSAy+DngduZia/0AdKF8EzWKF8X6l7zqZ5WWZ2ZE1KYpbQBo/ioyIwZWGXIXFl86avJkzxkBK0LY9PhwlY69rK5JPHsxpEtxfTgXjHFqnOtpYCUEE4DGK+TaXLLBcI14/HwLzNDEMQ+XT/CQ2kAZSJivJCNxsBtrG8OOPT2x325od/1lMzMrKA20VKV+EzTuJFs8anyLKSFqvPLC5it3F3XEpfUWhotjtdtfNB3A6nao7RbPZiMBbhOq5RqfVl2WMNK6lFMn/aFuL0uIzNFbkdw/vbvjm2/dM55nD4UzTdChEhpeydIO9X2idYbPZUHJks+kZT0ckoVkisbUWT+LT0xOlSDUld8fM6Xjm9u6e5+dXvI88PT1i35ip923JyRH25jwtzJPkCMQoLMuLbEkeSHtNIVLa1s6cqhuA+iYVOVWu2RbGiEtinjzzuGAw9E3H0PX0TYsm0znLzX5Loab7el91p4oYSjUGCwbfOcMvfvENm83ARaFx6RRSlSfAP7rLCulNkIftdT7ZDz03NzdQ5M9Yl4XGCV3tcrrKy+jCshFVjVKw2WzY7245vJ44n5crYl5OtMKlNJR5nEIpW0XatpLRLi5/Kf8uxteLlQi44vlFqfLT7yTpUrc1F3JBKUHZe5+ESzr7Opu7YD8s1tirCAIKx9cXnNZE7wX4VGC/3WA1qJxYl0UcJK7h8HoQPMU013xF0ZqGENnv92y3O5qm5d27dxgjL+GSBaf46dNn5nnBVDOv3OPfznpzJ+GyyMMxDKbKqKTkG0fhvijjxIwbEzlLcCYKihKB8mXYHVOirIIbtEpXFKKUmtZYoo9opdnvd5JZYBqsNSII6BvatmM8LyxL5Hg4MQwbEUBrxf3DRrATy8Tz86Ng3Uthu91IQ+YiziZXJISr8z950Hf7Xf1ZReLWdd1VNvbu3XuGvmP2R+Z5pusGERqkRN8PzPMsfrxlRiklY5lxlZdOPSmt1bhG9JWn04nV5+pYF2f8uqxwc+GBSpbf3d0dzhlWX10MSlVwcb5u/n/M60xRKG0hZMEaolHI7FAAxECV5HVtx7yMgIjf+64X8byPfP/nH1DKShxcRhwgq7y0rDE0rpEXYggVYqVonCh6LnPMp6cnQgh8/PhB7r6zaHwTFyaslrLVNhyPJ2HSvqGlylsjoX5dX9f/xtabK0e/rq/rf2vr6yb8ur6uv/D6ugm/rq/rL7y+bsKv6+v6C6+vm/Dr+rr+wuvrJvy6vq6/8Pq6Cb+ur+svvL5uwq/r6/oLr6+b8Ov6uv7C6/8PQGToEh/W4bQAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Predictions using: predicted_InceptionV3_saved\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAL8AAADECAYAAADOD/AEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAoPUlEQVR4nO2de5QkRZ3vP5FZ1dXvnp6enhfzHl4OCChPV2BAB1BxVURRju4i6l7WB+x17+qu7llRVy9n191VV2XVPascFY6I6OXqAUEUXAEFriAyAzMMw/CYBzM9j35Xd1Vm/u4fkVmVlfXuzuqu7o7vmZ7uzPxlZGTkN37xi1/8IkKJiGBgsABhzXYGDAxmC4b8BgsWhvwGCxaG/AYLFob8BgsWhvwGCxaG/AYLFob8BgsWhvwGCxZzj/zr1sH73pc/vv9+UEr/jgtKwWc+E196BoVoxDebAuoj/0036UwHP62tcPzx8NGPwoEDjclho3DnnXOf4E8+Ce94B6xdq7/FMcfARRfBV7862zmbE1B1xfbcdBNcfTV87nOwfj1MTMADD8D3vqc/wNat0N7euNyC1vwXXKDzAuB5kMlASwtYddTlj34Uvv51KPX6ExOQSOifZsVDD8GFF8KaNXDVVbB8Obz0Evzud7BrFzz77GznsDym+s1ixtS+7hvfCGecof/+4Aehrw/+7d/gjjvgyitL3zM2Bh0dU8xmBViW1npxIu70GoEvfAF6euDRR2HRosJrBw/ObF7Gx+tTeo34ZlNAPNXuda/Tv3fv1r/f9z7o7NQa6E1vgq4ueM979DXPgy9/GU46SRfAsmVwzTVw9GhhmiLw+c/DqlW6YC+8ELZtK352Ofvx4Yf1s3t7daU75RT4ylfy+fv61/XfYTMuQCmb//HHdaXv7tbv9vrXay0bRmAWPvgg/PVfQ3+/fvZll8HAQJVCrBO7dukyjBIfYOnS4nPf/z6cdZYuy95eOP98uOeeQpkbb9RpplKwciV85CMwOFgoc8EFcPLJ8Pvf6zTa2+FTn9LX1q2DN79Zp3vaafr7btoEP/5xYRrlvtltt8Hpp0NbGyxZAu99L+zdWygTcGvvXnjb2/Tf/f3wN38Drlu2uEohHvLv2qV/9/XlzzkOXHKJ/hD/8i9w+eX6/DXXwMc/Dq99rSbj1VfDzTdr2Ww2f/+nPw3/8A9w6qnwxS/Chg1w8cW6BamGX/xCf5innoK/+iv413/VlednP8vn4aKL9N/f+17+pxy2bYPzzoMnnoBPfELna/duTYSHHy6Wv/ZaLXv99fChD8FPf6rNrDixdq0m4Nat1WU/+1n4sz+DZFKbrJ/9LKxeDb/6VV7mM5/RZF+5UpfX5ZfDN7+pyzz8XQAOH9aK4LTTtCK78ML8tZ074V3v0tdvuEGbju98p/4mlXDTTXDFFWDb+r6/+Atdac49t7gCuq7mS1+f5tbmzTrP3/pW9bIIQ+rBd74jAiL33isyMCDy0ksiP/iBSF+fSFubyJ49Wu6qq7Tc3/1d4f2/+Y0+f/PNhed//vPC8wcPirS0iFx6qYjn5eU+9Sktd9VV+XP33afP3XefPnYckfXrRdauFTl6tPA54bQ+8hF9XymAyPXX54/f9jadn1278uf27RPp6hI5//zi8tmypfBZH/uYiG2LDA6Wft5UcM89Ok3bFnnNa0Q+8QmRu+8WyWQK5XbuFLEskcsuE3HdwmtBHoPyvvjiQpmvfU2/z7e/nT+3ebM+941vFOdp7Vp97fbb8+eGhkRWrBB51avy56LfLJMRWbpU5OSTRdLpvNzPfqblPv3p/LmAW5/7XOGzX/UqkdNPL85TBUyN/NGftWs1gaMZfOGFwvuvu06kp0cX9sBA4U9np8gHP6jlbrlF3x9OU0TfV438jz6qj7/0pcrvUiv5HUekvV3kiiuK5a65RhNraEgfB+Xzwx8Wyv34x/r8E09UzlO9eOQRTer29vy36O8XueOOvMwXv6jPP/54+XSC8r7zzsLzk5Mi3d0il1+eP7d5s0gqpa9FsXatyMqVhRVfRORv/1anv3+/Po5+s4ce0sc33lic5oknFpI64NbBg4Vy110n0ttb/h1LYGod3q9/Xbs4Ewlts59wQnGvPZHQ9noYO3fC0FBpmxTyHbUXXtC/jzuu8Hp/v7ZXKyEwwU4+ufp71IKBAd2hO+GE4muveIXuw7z0kraVA6xZUygX5DnarwkjndZlE8by5ZXzduaZ2jTIZLSZ9ZOfwJe+pN2ff/iDtrd37dLfZtOm8ukE5R19x5YWbW4G1wMcc4y+VgrHHlvYfwLNFYDnny/9TuWeD3DiidqjGEZrq+ZCGL29lcu3BKZG/rPOynt7yiGVKq4QnqeJf/PNpe+JvtBchW2XPl/Jq3zrrbr/U6t8GC0tuiKceaYm2tVX687j9dfXdn+9aGtrTLq1olz51omZdWRv3Aj33qs7u5UKcO1a/XvnTq15AgwMVK/dGzfq31u3wpYt5eWi2qkc+vu1R2PHjuJr27frCr56dW1pVcIll1TvFNaCQCnt369/b9yolc5TT+kOaikE5b1jR2F5ZzK6Y1+pHKN49lldacPl+8wz+ve6ddWfH3gOA+zYkb8eM2Z2hOGKK3RP/R//sfia4+R79Vu2aM/EV79aqP2+/OXqz3j1q/UA3Je/XOwlCKcVjDlEZaKwbe3xuOMO3WwHOHAAbrlFeyO6u6vnqxpWrNDvHf6phPvuK90y3Hmn/h2YEG97m66gn/ucrgRhBPdv2aJbj3//98I0/+u/tCl26aW1v8e+fdr8CjA8DN/9rq545cy4M87QFsE3vgGTk/nzd90FTz9d3/PrwMxq/s2btZvxhhu0TXrxxZrkO3fqZvorX9H2auC3veEG7Td+05u0n/2uu7T/txIsC/7jP+BP/1QX+NVXa2Jt365dlnffreVOP13/vu46rXVtG9797tJpfv7zWiufey58+MO6P/PNb+oP9c//HFfp1Idrr9V9kcsu03ZxJqNHfW+9VWvYwIQ69lj4+7/XCue88+Dtb9cm6aOParfmDTfo8v7kJ7UL9A1vgLe8RWvcG2/UptR731t7vo4/Hj7wAZ3+smXw7W9rRfGd75S/J5mEf/onnefNm/VA6YEDmg/r1sHHPjadkiqPurrHgTfj0Ucry111lUhHR/nr3/qW7sG3tWl34StfqV11+/blZVxX5LOf1W6ytjaRCy4Q2bpVexQqeXsCPPCAyEUX6fQ7OkROOUXkq1/NX3cckWuv1d4RpQo9P1FXp4jIY4+JXHKJ9kq1t4tceKH2UtRSPuXyOB3cdZfI+9+vvSGdndpVeeyx+p0OHCiW//a3tTswldJekc2bRX7xi0KZr31Np5dMiixbJvKhDxW7izdvFjnppNJ5WrtWu6fvvluXdyql07vttkK5cuVx6635PC5eLPKe9+Td5wHKcev668t778qgvtgeA4NKWLdOe9mCwcQmx9wLaTYwiAmG/AYLFob8BgsWxuY3WLAwmt9gwcKQ32DBwpDfYMEi3hHeI3tiTc5gnkMAEmSzLnv2vsyRw0cZGR+lo7ONjceuwxKPdDqN4ziEu6ZrTj07lscbzW/QHBDwPA8RDxFBxKt+zzRhyG/QpKgx6nYaMOQ3aA4osCzL/1GoWkPOpwFDfoPZgeT/UEofK6VwXQ/X1SZPo0egGk/+el7AyC5YWUEQEX8VGVVZOCY0nvz1tF5GduHK6njkOhObHhpA/iZWL0a2CWXF/1/wPA+lFErNjDXegJlczaxejGxzyAr5SqGJblkWtm3jui7igcJGKaGRoWdNvBKrwfxGuAJAvpLkK4tSNJT8xttj0CTQJNdmj2q4pwcM+Q2aBX6HN3D0zESkvSG/wSwhb+aIr/Vd18XzJHdZhIYOdhnyG8wOIia+ZVu0tLTkOr66PkgB+QOTKC4Y8hs0B/zAthzhZ8Ddb7w9CxGlnCylztWUVqFtLmFNXfXmvITneXiuIKLIZDJYymr0AO8MkL+eQTsjOyOygvJvEpQELscQ08S/XibdUFgOCgGC8GMLfcZCifiPE1BB+spP2ye2J5DwUOKBayFuioQCJQo8HcMvnperYCISa30w4Q0LUTZMxiIBVVO6guVXIshXHgFRiOgKUD6jwbMV4CBk8UQBCTwXLEth2Q6Ih3hSUDebnPxzYUjdyIKHwgtJajIHP7UjVGFyZ0KVQYWJHmpNFGArPycgygHLwVUZVNJDaPxkFhPesABllXhoylmIsjTxJdD4gVFUSyXTFUVhka9orn+s08qZUDnoCqFnbCmUagEUylZ4ahLHGUORYAYmcpkO73yFhO1kEaxEQtv3tg2u4LkuyrYQwPEEx3HIZCZJJmxaW5J4lqVHWv0dDkUEK7LZiIig7AQiLspSiOv49rmb61uIlcBCaTLroB1/IEvhuRaWSoIobBTDRw8zmRkFtxOLBKL0M5VSuJ5HvBa/If+8hOigGB0k5pNflMJOJHSlEGFwaIiHfvcoj/z+CVo7OkjYCY4MvExmfITO9lb+5LwLOff882lrb9dpZTJgWVi2rfdYSCbJjI2RakmBsvHQMt5kGmVrTW63tIJSiFjQkkKykzjZNHZCUALKtVBWioRYWE6aNnsCVBomhxkfPEprRyciOtrTTtg4jhNrOcW7YptZvaEpkHUc7EQCFdLUbjZLNptl8OhR9r+8nzt/fhe/+vWDeFaS/mVLWdbXx/Yn/8DA3t0s7u5keAL+87vf5ZSTNoEIlm1rzwsgnm+yJLXJ8uKLL3L/L+9lcnyEPc8/S1d7K5e9+11sPGET4lqgWsBViK1ItCqc7DjZ8RGcsTTdPStgcpJ9e3cwNLSfhx68n97eJSRblnDCqWfRuagXAM+f7OIB62JavcGQf15Bf0rPE21b2DYC/PGxx3jowQc5MDDA8OAg+15+mUNDwyzqX0pLayejo6Ns37qNDtvjzJPWkkrYPPD77bz+oov5/P/+Ai3+5nOT6TSHDh3i6OAgu3e/wLannmY0PcHeffs5uH8vkknT3qLAzdKzpI/VG45j8Gia11/0Rs454xzSziTfuPErjI6NctKGRXjpEa76879kYnyce+6+lY5OwSJDV8di1m44m/alJyCJlH4nP94/TvIbs2eOoVhTCeIJyrZ8d7uHKG3miOPyy3t/yY9+dDvPPPMMXV3djAyPMJ6ZpLWzk0MDhxCOcPDAQY4MHCDR28vyFcewaFE3j2/fg23p1uOFF3Zz/6/u5fChgzz33C4mJyd57vn9pCcdEokk2UwGN5tm9Yp+WhPCkeFhnt+zl63bdzE0OMEd//fnLFvSR++iXv647UksEX7fZ7N8UZIj+16gd3E/49kRVq5aSldPF32rNnDM8Scy6XUxlp4Mjf7GC0P+OQl/xjcAgutmUWKhLIVlWzy9bRu/ffQRDg8c5g+P/4GDBw/TvaiXdHqCZ3e/hCew4bh23vLmi1na389/338/e17sYf3a9QyOjPPEtqeZnBhm4MCLfOcb/87evS+y/emnWNzbha2EVjtBd2cHo6MDKCdD/6Iuxscm6G5VLF7URVebzaLeXsYm0rRaGY4cGactOYLlZDjn1DU4E2mS7iibNixjdHiYE086lRUbT8JRCUh24Hb2k1aLQXn+WFie+HH65g355wESqZSeBuhk2fbEk9x8yy389v89gpN1se0ky5atYNWq1ex+7nlc10FQXPT6i/jQ/7iGZHsrb7z0DWSGj0JC8b3//Ba7d+/Ay4xyYM827jm4k9NffQbHLOnGyWTo7ujCSrTQuqoXyUxy9MghOlIWlptgdPAwXSlYvqSHlctdhG6Gh9oYGR2hv78PBEZGRhgZzpKULlo7l/MXf/k/WbH2WA4MjDBwdITB0QyO0w60IqQbW24NTR2aalh/3soCiHDPXXfx87vuYnBomGNWrGbPS3sYOHiUVStXM3jkMDt37iIz6XL+eefw7ssv11p0Is2i9ha8ZDdPPPk4B/Y/T8qG1at7WLG0n4mxNEcP7GX0yCBeVrAnHUbGJzgyMk46ncZ2M6jsOIvaU4wMH+XZHbvY19ZFd7eis6ONZDJJV6qL1Ss3YtsJLDtB38qVdHf2s279Jtad/GpcSTC5P4MrWSxlYZEET+nxsQai8eRv3rGeOSsbLHKg3eUKcRz2v7yfn/zkJwwPDbFy5Sr27D/AwQMHGRwa4zWv/RNOOflkujpvx7aTXPGud3L8icf60QUT/P7h3/LT//NDDg3sZ9czT9Pe2UV75xJG09Dd2cvY2DhOdgI8ECtFa6tFcswlPTJKd08rI4NHsC3F6tXH0N3dw969L7PjmX1MOoOc9soTOOucM7nsXVfStaQfsh5tHR1YyRRYNuLqWB/VkgI7jVJ+rJC4ofdtTC1oAPmbRR3OV1k/cEBZenxVKQaPHuFnP/0phw8fRgHP7HyWoeFxHEexYtkyjtuwgXPPO49zXnMOllLguVhkeX770zz5xGM8/tgjTIwM0dPeSt+iTlrbu3joj3t5w0Vb6OtuhcwQL+/dzdjYEGlnhN7ePlw6sJOtHD1ylJGRUd3x9fbT2wc9vct4yzvPZPmqNZx51tl0dPewdN0GPUYglh70FZ/kCRvHyYDloiwXT9KIZ6PI4orrr9+Zn+IYJ0x4w1yTFUBEL+/heYjn8ePbb+eRRx5hfHwcSym6OnsZH89y8kmbePeV7+Kcc85BiWBbCs9xsBKK9PAhHvrNL7n3np+THhuip6udTa84HndylIMDgxwZnmDVmg2ctOEYnnriAfCydHWkGJsYY2hkkJcPHmHFsmM4++wLGJ/IMjQ8zm8ffZL9z+7jvX9+Htd87EN0drViWQmyjgMJD89zUP7MLeVZILZ+d+WBcrEsQVkelu2hLFCeCs3pjb8CmA7vXIMChdK7qSuF67g89NBDHDjwMiMjIzjZLKedegbv/8AWXnnqKaxYuxbPzYK4ZCcnOXL4EHte3MW+Xdv442MPMzZ8GPEclvevZnJ8jO62dg4xSN+iViZH9jF0OMPwwEtkBg+TbElhe0kOvnwE7Hb2DwyzdOU4Z59/Ab29S7n4rVl6+5ax8YQTaGvvRlwXxxUsWvRorvhh1CjwLMBCobSnSnSrgCTAS4DYKJU3fRoxndGQf64hmOKqFJ7r4PkhDMuXLcO2FMODgzzw4AP8r49/ksV9i2FyAsSBhMUzTz/N9793E3tfeIa1y7vwnCyTk2kWL+5nw7GvIJseZ8/w80yOOSS9LGODexhMjTE6uJ/s5CiDR0aBJIt7+8i2trHxhBO59m8/yZL+FYirELFRVgJXQFwby7Jz8Tw4XmG0p+++FCws0S2BuApxbTzPD7RTqmDqYhCqERcM+ecilIXnuSjbRiaF1mQLba0pDuzdixJY3NtLa1sL4AAumcwEQwcO8cQjD7J7x1ZSKgNpyGTASvSw4cRzSHatAWuYwZFddHX2srxX0d2+iLEJhxHXI9XXR8/KHtpSvXQsXkHf6g28bssWepesznfA/RVnbQXY+tnaopOIZSfBv5C3ykXhoWwPbA8SHpbkb2pEp9eQf85BENfBStiAXuojYdsMDAzgui6jo2Ocu/l1tLS1I56L6zn86t57eOoPj5FOj7CkbzE9nSlaVIbBiXFWrd9I34rljDkTpFqFDcctxc1OcnR0hF3PPU97Z4rxjEUikaKnewlvvexKTj3rtbR09mLZCZQoPBGsnIaWgrxWeRU/zF933BXgeQ52wsL1XBLxWzoFMOSfc1BYVn4aYqKlha7ubp5/fjeu4+JkM3R39/Dw737LuvXr2LN/Dz+67TYm06OccNwGlixdSnuLRUo5ZFUrx7/yVbR2dpKeGGJy7BAqMYabGeOMs0/h17/ZyjKVZNWak1m74VjecOmlrD7+eJRlY6tWfypiTGEHfuUJe3caDUP+OQalwEN7erDAU4qVK1ey85kd9HR3MTo2yg9v+yHf+f4tnH3mGRwe2E9LwmLTK46js7sDJS4v7d7BykUteJk0e5/bznGv2MTwgb0c2Pcc3e1CR1uKfUeO8OHrPsCpp72G/uXrSLR3YdmCp7K44mB5DpCP+VfWNAMPgtBrPxS7uBWJH4b8cw25SeOACAngT9/8Zo4cPsQz27fT1taG5XiMT0yydesT9PV2sainj+7uLjw3Q3dXB51tSUaP7KUt1cGzTz1OenSUF1/cS19vD8sXH0Pv4h4uecclrDnuFFqSPUAbiI2I6/tqtD2ifA0dneQyJSht19t2Asuy8DwPy3dxBqs3xw0T3jAHZfNeE40Vq1axatUq/vvXv2bw6Air16/Cw2HdmjU42Qn2732B/p52eno6yY4PMTk+jD0xTGcyRW9XF/v27GftmuPZ8oZLOfeii7GUIC2AJLQL0rIQz988AguUratAjpBq+u8meW9OnudzXfM3wbjQvJYF7LY2Ln3rW1m/fj0/vv12nt6+lcz4KLZkWb58Ccv7OunpTOFMjpJ1MmQms1heFxtWb+LKt1xBqrufVNdiursX4dgWllLY4k9htAAmQfnrMRTNyY3n3fLTLj2Usuaq2TMHVOecli2GymRY0r+UzZsv4PQzTue2H9zCfff9itaUTWdHB0NH0wwePcqink76li/nxONPZN26Y9l40mn0L18FyVa8RAsTbhaVgJZkCsbx7fgsgVdJidIDUcGE9ZqyXNu7BfNzw3OPp1EkNcGEN8w5WSjUiAplJ7SmTCi6Fi3myj9/P298+zsZHR7GVjCRTtOaStHR2UFHRzstyRZaUm0o284928KiXSUQByzP9QeX9CBUzpGfy2o9GrmS/aZ0HVIKy7JRSpFIJPxjKzdtslEwHd65hiiXlMqf8jueqfYOVnR0IkuXI0rpYLaw+1CkqAOpRLCD7YA8CAiu8sstxIzwAJY2dxzHKRjNVTR2ZxazUO08hFIK19HL/eG6OQ2q/GvTdkvGAZ0Z/0AKzJ24wxjKoQlKwSB2KIWdTKIAK5nU2jRCrqZAZPlx27b9VqC4ZWoEDPnnI1wXPE8v+ERe4+fQLOQPlkLxF8QKRneDharClcDE9hjUhIJBp0inMZj91RQQyeXFtm2SySTZbNbPf+NbKKP5DWYR+Uroup6/Ipv4v43ZYzCvIQWdce3t0ZScHzZ/s6/UbWRnQVZ8kycfpqEspeOSlB5EK+Xij7uzbjanMLKzJOvl4/gVuUVolVJ6BTqfmnPMz9806sXINrGsSPBfcKxDmXMrSZeoUHNgN8amUi9GtpllRXz+6zDp3F4CFQbhmpz8Bga1IhS5GdXqoYn6Emkh4oIhv8GsQPmjb/nQZckNynn+LixR0sdt/xvyGzQJ9PxdJ9hNpsERnWDIb9AksIIw5lxIw3zw8xsYlEQwMUb/Lfg7r3iu3qlxBrYiNeQ3mAUowAJl+X/nV2ZTCixbMRNR14b8Bs2B3AR2fWjCG4zsgpENe3fiHswqBxPeYGRnSbZ4WUNN/so1qcn9/E2sXoxsc8kWzCsmtFKbP7fdvxxMbokbJrzByDaFbLB0SbBeZ9AJhsbN6zUdXoOmQLBcSfC3XrwqvMJD/NGdhvwGTYH89kP483lLSsX6TEN+g1mHUgpLWST9lSYKbXwV+okXhvwGs4eQWeN6OqbHcbIF0xlL3BTb4w35DWYJeW0erNXjiZdbwqTRi9SCIb/BbCKkxG3LxrZsWlpSufU6Gw1DfoPZQzhe31+yJJvN4DgOrus1bP/dACa8wcg2hawi6Oha2LaNbTeemia8wcg2haznr9Lsui6u6+J5c9Lmb2L1YmSbUFbH8wTbHNmWhW3Z/o6TjYUJbzCysyTrx/TjgMog4mLbSUQSOI5fIRR+JQiHNsTXIpiFag1mF7lV2wTLsgHL34HRzU1t1GEP8c/sMt4egyaBDm3wPG3zB1uQhjelNoFtBvMTCkBwXc9fudwqSfwmj+c3MJgaNPE9P+qh3DKHhvwG8wx6WyJNR28G1uwBQ36DJoFC78kVLFQ7R/38Bga1ICC3XqQWtMZP2P5+XF4+vGHudnjnwjiLkZ0FWUGJiyIJtICyyGYnELJYtuS2S23k1qQmvMHIzrKsH9oselO6bDYzl0Oam0q9GNk5JKtj+ef0hnRNqV6MbFPKqoIV2kTE34jabEJtMK+hwPb32wUs2/KnMTozQnww5DeYReQmqkDOOiqM42/ssoWG/AazBCmYyaUsPYklWLnB89zQys2NqQSG/AazguhujLZPfs/z/E0qChZ3aAgM+Q1mAaKZZ+c3pAt8+S0tKSyVQDzt+QmC24zmN5g3UJEVmQX8EGbJhTQbzW8wT5G3+ZUq3JPLdd3c8iXhxWrjhglvMLKzKJuP7wFNcNdx/EEuITxGMDfJ3+zjLEa2KWSV5Ud1+j9RwTli8zedejGyc0RWRHDc/PIljY7vMeENRrZJZLXN7ziumcxisNCg3ZmOk/W9PWYfXoN5ChEFaNte+Wvz2AkbpSwSiRZEtJ9/bnt7DAyKoPBEEM/DE23b27bv8vR3ZVFK5Uz+RsX3mEWrDGYFlr/5hACI5BamSiYSuG4WZancJnWNmsZoyG8wa9BxPIncBJZMJoPg4bpZXMfBsr2ihavixLwnf92FVqKJDZ8plZpU8U5EoxIL8qRUXb6TUgi0Z7U8hJ9fEC8TyUPV9JQqLCefnNG19AvMleCe/OwVLGWTyWRJp8eZzExg2UJHZxutrW2ASzartygKvD9G84dQ8iOFPuRUikokEmob/dBEyK4UKlGlGCOVI5xv5acxHYjnVXxXy7KKnpE78t+valkVbBgteK6L8sOPBVC2jQoqgD8ry9PrD/r+e1fn00/HcwURmJiYIJPJYNs2bW2trFmzilQqhes5eD75g4oat+3fePIXjlJPXzZcAKXiXkWmNTRSNxlFwHUri1C5Ik6rJRBy+9eG06gLkQpflKdyafoEFxGcTCYXmlBqjc1wevoYlCiyvl/ftvVujFYygWUpPM9p6DqdMBPkj3E8pFxzXKDp49AOUU1fcFAcXutV+TBWpPUItxwCuWU68o+oQsTo9SoLPJWzmSVQFCXIWW2gKSC053n+ZhJe7jjsngyHJBfsqO6BEsufvEI+ktO29GK1noelVG5Ob1Ch4kSs5M9kskH/PPhXgKhWlVo6MlXIHL0aJeJUqkJB21FN4YR2Ds/fU4qc+XMFeYw25yWI50UGfLRplj8OTINKeYxW2FwkvQiC5CqQ5K5Fy7FEhQ+tqaPNwyBl5bdggmXlF57S2c5zQyKzuQDf/amJrsjvyN4IxEr+8fREUTNVaQv5qhqO4hevVhBTSbNehNMsskWFIhs/Ci9CrWh+ptbEV3gnoUizF4kU1ffKrVvQFwo4HzZtPE9KjNAGWj94hqDX5i/sgIsIeGCJ8uuQPpffojQ+xEp+HYqaf5kijRhB9COUIuV0X7jUM6qRqxoZq+a7ihkiRXo1cr0B9m0tzwgrrHrf2Yt4fOp5dpT8UeUSoBqf6kWs5I92cKLEnWmtXOo4jiY0mmb0o4hbRfNL3jujImbTVJbmi9r0U33Herb9LPdtq+U/fF+0bxBFo5cwiZX82WwWKDYLgnNTIXsjtGClZ05Fc9WLKAGKKk+d6VfSlqVQ6nrUT19v6xj1xZfLUznzq1JLVElmOmiI2ROGFVlwNIzwQEstBV4rpkvuacnXliiQz2e4MhQQgrzlXe2dwrLl8lzqeeXSK5WHSpWsWjmV8viEEUxhLPWcRiFW8kcLVSmVaw2C9VjCiGqb4Fz4/iiqmTHVKlGjCraACLXI1ylTVRNXuFZJ6dSTh3oxUyuvTRUN9fNPxbtTz/VaZeqVj8P7IhW+u6ojuVqfXSvRZkKjzhU0nPzhpraclo5TQ4TTm+qHnhLZw6ZCzole2331vn8lD1atruU4KkG96dWj/OI0g8uhId6eUqhkwsThqag1H9NNs5oLV6iu2avZ5gWyNbRC0QoUdhmWiomp1etWqkKVckfWi3o60/V0wutFQ8lfi/0dN+J2bYYLP/ip6LWqRQOWeUZRWlNAtX5UvWlNJx/NjhnT/LXIN6J2x928lzqebh8hnhHe+sozjpHyevPSbJhV8pe6f6YLqZaBnWhTX4sXqpZn1pNWJS0eJnkpc6dUudZC7mo2fZyt6mygoXN450LTNx3UYk9XQxwDOQHhp2ruVGod4iLmVN6rnnGEqaDpJrM0usKU+5j1au56AvZqSa/S8VTNwVq9MVPV6o1wM88kmor8s1k49Tw7SsapkH+6lSfOUex674kr/Wot1JyK7SmF6XkMIOobiTvwrdT5WjqD5bRxHNowfCYIFw4PtepI+eh9FSbgVM9E8TOLUlJFAtXyUMuXCr9++O+Z6AY0jPxT4bzKTYbIpVKUTjgWSD+nyHEYTbXK9cJ0g7+nMw9hOv0AgYIsS4kcl+JFQanVMchWKkFRKlcBgqwrFS7z4gk20WSmQ/zC40I+xImYvT1x3F87kUp7SgqPoyK1aOtK5C9V6UrFNFVCVbOpWuWJkFupwpZg2uajSEHBlarsJfslFWbATcUULH5u1STqwozG9tSCWsyaam7JyrLFxCp3T7nwi3qPq6FaUFy96cdhK1cLPalaBtSi/cunUcqsbOoR3unOtKlVA0cLKYpKH0YqRZyVeHa1AhcpHe5Qj9lUSH6hVMBx5XeK3wcfHdsIV4RaOqiqsJtS5p7K7xCd5BM3YiV/LUQMEzjatJX6wKW0QaUPX33QSJXsTNXr7an0vOmhdP7KPb8c4hhwLPfMcmVc8C1D/0fTKTUmUYonjR4lnnFvT2Afhycv1HpvtfPVroE2ZUuJRCthrT5yqN/mny5mYyR8uiiX51rfpek1f7XOZHhCS60DN/V0lOIsoFKaJ3hWLd6fmbDLDaaHhmr+StPlZmtAK+LIyKGUKVWqj1HK7DJEnptooJ+/mNyN2m6mnCYu2cz6DrlCAoO/4qR/Xvl+bL9FKU4khDLLCwYnSwwGKWpYG7PpEfUh5/4DKNFpVxGRiIdLiofMooi7zBqq+WvpAM80Crq+QefLH0xTOf+5rgDB56i2ema0MhVeE0qNvpZPs7ZPPKtxMmUfXaGcCspHla47U3nkNNBUsT3NgJwWiolccVf22YqDKchD8P8cb77MtkQlELb5my0SsWkwD4ql4UuXNB3CcTM+sQO3q1IqsGFyxzOqUXN9lRl7ZCwo57mLM+y7ER69hps9s1EBKoY/ROzNUoMsYdLPhJlRT7x+symUWsMf6kW5Ed+mJX+zfZhaYFyV9UMV/lcSjSjXuM1Q0+GlRPhDxeu+VA2tw/xG4bs3ogzmXXhDNTQ+NKDEMwslIqutFdvhIoXvFR1XqDfQrEh+JupSpWKuITuKyt82bMrF9U3dKts/1YuFqfmj36zg40ihgNKXC6I8/X593Npu5syvWvIdqe1FKTRWK4fTDMyduMvbuDpjxsI0gRqHRrqbF6bmjxkL2/ZvHKLzCeLGnCd/3HZltefMR36XJFaM71krcauFsNfjEq4Fs07+ZnAzFhRocdhJTib3ESjeSWWmB8QaigYRv564/VLjL3FvSjfr5J8O4tACRe40qDLEOk8I3mSo1qktNfNvuphT5J8Nm7qkWTUPTZ+ZRj0TmRrVos4p8teCWnlZrnmVqtGKZUKXYxqQmbEwh+hjQq89lZSnophKxftMZ4pqvZhT5K/2wSMe+pL3RQdnRCQ3vVJEisZ3c8fzStsXv2PBbuhlVs2ohlKautZKGg4yDI6rrdwxXcwp8hvMHOLWstON6mwEDPkNitAME2ZmArGTf6b87vWglgjDODpgs/XuMxE/Nd1YnerrKc085p3mr3W0tZkqZ6NRi6+9WoWuhlJ2frXBqfD5cKx+ravlTRczOoF9pmp6uaVHSq34VitqqVRxfLBmqJTTCdeoJcI1uF5P+g0JnJPZbnsMDGYJJqrTYMHCkN9gwcKQ32DBwpDfYMHCkN9gwcKQ32DBwpDfYMHCkN9gwcKQ32DB4v8Dysvaujtxw+AAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAADECAYAAADpoXHsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7QsyX3fCX7Sl/f2evfufd6/9t1oi4YnQBI0Eq2WZiSKlDQ74urMnkMOR1oZylErcUhpSJGS6ECAIAGCDdPe9/P+Xe9v1S3vXfr9o6ZPowEQ6MYQ1GC2P+fUycrMyMjIiG/84he/zMoSXNd1eY/3+C5E/O9dgPd4j2+X98T7Ht+1vCfe9/iu5T3xvsd3Le+J9z2+a3lPvO/xXct74n2P71reE+97fNfynnjf47uW7z7xTk3BT/zEW+svvACCMFz+VSEI8L/8L391+f1fga+tt78OtraGdfm7v/sdyf7difd3f3dYmDc/Hg/Mz8Pf/btQLH5HCvgd46mn/u8h0PV1+NmfhZmZYXuEQnD//fDv/h30+/+9S/cdRf62jvpf/1eYnobBAF55BX7jN4ZiuHULfL6/4iJ+Cx56aNhIqvrujnvqKfj1X//GAu73Qf72quavlb/4C/jkJ0HT4Md+DI4eBcMYtsk//Idw+zb8p/80TLu8DOJ330D7zfj2WuiDH4SzZ4fff+qnIB6Hf/Nv4HOfgx/+4W98TLcLfv+3WcxvgigOLc5fJX/V+X0n2NyEH/ohmJyE556DbPatfT/3c7C2NhT3m2jaX38Zv8P81XTFRx8dLjc3h8uf+AkIBIZD2oc+BMEg/M2/OdznOPBrvwZHjgxFkk4Ph716/e15ui78k38CY2NDa/7II0NL8rX8ZT7v+fPDc0ejw05z/PhwKH2zfL/+68PvX+0Gvck38nmvXh122lBoeG2PPQZvvPH2NG+6Va++Cv/j/wjJ5PDcn/gElMvfohLfJb/6q9DpwG//9tuF+yZzc/D3/t5b69/I52004B/8g+E+TRvW9Y/9GFQqw/2GAb/0S3DmDITDw2t58EF4/vmvP1+jMcw/HIZIBH78x4fbvpYbN4bp3nRzMhn4W38LqtV3XQV/NWPj+vpwGY+/tc2y4Mkn4YEH4F/9q7fciZ/92WEj/+RPwi/8wlDw/+E/DMXx6qugKMN0v/RLQ/F+6EPDz5Ur8P73Dyv0W/H00/CRjwwb9e/9vWEFLS7CF74wXP/Zn4V8fpjuv/23b53f7dvDRguF4Bd/cVjG//gf4eGH4cUX4e67357+539+2Gl++ZeHk5Zf+7XhvOBTn/rW53qn/PmfDwVw333f3vGdzvCaFheH4jl9eijaz38e9vYgkYBWC37rt4aj6U//NLTbw87y5JNw4QKcPDnMy3Xhe75n6K78D/8DHDoEf/qnQwF/LU8/DRsbw/bPZN5ybW7fHhqDrzYi3wr33fA7v+O64LrPPOO65bLr7u667h/9kevG467r9bru3t4w3Y//+DDdP/pHbz/+5ZeH23//99++/Utfevv2Usl1VdV1P/xh13Wct9L9z//zMN2P//hb255/frjt+eeH65blutPTrjs56br1+tvP89V5/dzPDY/7RoDr/vIvv7X+8Y8Py7O+/ta2fN51g0HXfeihr6+fxx9/+7n+wT9wXUly3UbjG5/v3dJsDs/zPd/zzo+ZnHx7vf3SLw3z+Oxnvz7tm2W3LNfV9bfvq9ddN5123b/1t97a9md/NszrV3/1rW2W5boPPjjc/ju/89b2Xu/rz/eHfzhM99JL7/x6XNf99tyGxx8fDonj40O/KxAY9rTR0ben+9t/++3rn/70cFh54olhL3/zc+bMMI83h6Nnnhla2J//+bf3xL//97912a5eHVrzv//3h8PXV/NuevWb2DZ85Svw8Y8PLd2bZLPwN/7G0Nq0Wm8/5md+5u3nevDBYT7b2+/+/N+IN88XDH77efzJn8CJE0OX5mt5s+yS9NZE2HGgVhuOqGfPDkfCN3nqqeEE96vbW5KG7fe1eL1vfR8Mhu1/zz3D9a/O8x3w7bkNv/7rwxCZLA991oWFr5/JyvLQh/pqVleh2YRU6hvnWyoNl2828oEDb9+fTA6H42/Gmy7M0aPf+jreCeUy9HrDa/xaDh0aNuru7tCHf5OJibene7PMX+vXfzX9/rBuvppM5hunDYWGy3b7m5f9m7G+Dt/3fd863X/5L/Cv/zUsLYFpvrV9evqt79vbw84cCLz92G9UZ7Ua/MqvwB/90Vvt/SZfe/3fgm9PvHfd9Va04S9D075e0I4zFO7v//43PiaZ/LaK8385JOkbb/9mv7j61KeGfuA7SR8KwcjIMDT5neT3fm84ufr4x4eht1RqeG3/7J+9ZSTeLT/wA/Daa8P8Tp4cCt5x4AMfGC7fBX+9wczZ2aFLcP/9bx8+vpbJyeFydfXtQ3W5/M2t15vngGHDPv74X57unboQyeRwsrm8/PX7lpaGHXR8/J3l9c148snhZOad8pGPDCc6r78O99777s83O/utxf+Zzwzr/7OffXt9/fIvvz3d5CQ8++xwEvjV1vdr66xeH6b7lV8ZTsjfZHX13Zefv+7bwz/wA0Pf7x//46/fZ1lvhVYef3w4o//3//7t1ufXfu1bn+P06eGQ9mu/9vWhmq/O682Y8zcK53w1kjSMcnzuc8PIwZsUi/AHfzCMprw5jP+fIZsdXvdXf74Zv/iLw2v4qZ/6xnc319ffCg1+I77v++D69eFc5Wt5s57eHEG+ut7Onx92mK/mQx8att9v/MZb22x72H5fzTfKD95Zu34D/not7/veNwxT/bN/BteuDUWhKMOe9+lPDyv7+79/aO3+p/9pmO4jHxlWztWr8MUvDkM43wxRHFbiRz86HJZ+8ieHwlhaGoZjvvzlYbozZ4bLX/iFodWTpOHk8xvxT/7J0Co+8AD8nb8z9Of/438EXR/GW/97MDs77Dw/+IND3/ur77C99tqwPr/Zswz/8B8OLesnPzkMlZ05M/RHP/95+M3fHE7mPvKRodX9xCfgwx8eToR/8zfh8OGhlX2Tj350OJr+o3807OCHDw+P+1ofNhQa3hH91V8d+s+jo8PJ8Jv3B94t7yo28WYo6OLFb57ux3/cdf3+v3z/f/pPrnvmzDC8Fgy67rFjrvuLvzgMP72Jbbvur/yK62azw3QPP+y6t259fcjna0Nlb/LKK677xBPD/P1+1z1+3HX//b9/a79lue7P/7zrJpOuKwhvD5t9bajMdV33yhXXffJJ1w0EXNfnc91HHnHd1157Z/Xzl5Xxr4KVFdf96Z923ampYTgvGHTd++8fXutg8Fa6r60313XdatV1/+7fdd3R0eGxY2PDNJXKcL/juO4//afDYzXNdU+dct0vfGGYZnLy6/P60R913VDIdcPh4ferV78+VLa357qf+ITrRiLDdJ/85LDdv1GdfwsE133vvQ3v8d3J/72e1HiP/7/iPfG+x3ct74n3Pb5reU+87/Fdy3vifY/vWt4T73t81/KeeN/ju5Z3dYftsWMZGrUqc7NpQmEve/kCHVNg5sAs69sFbAsC3gC1coVEREaWBUIBL7lclempMQTHplQoM7Bc5g4eJJWOgNNnZ2uZmckR9H4XwZWwdY1b1/bY3q4STWoIXpGF49P0dZNqpY4re3js0Xu59NKzjAQCVNb2MLoSEhFOJs/Sb/boSRY3cys0ZYvswhg9SWdpc417jk1wYmES0xHYK9cQBYvR4Ajhpoy6BXtr24zJIxxNHWHEP4rltSnFKggxmz97/tOEYj5iGQVNcFi9tUMsOsVdj/4cswfuITsxj1NrcPWf/AsytoZTtwlpKYKxOLncKo6kY+pNZE2lJNS5I22x1s0z+eAZJubn+cf/8d8jegXSaoCJ8Wl8AYWTx4+SW9ok4gly6/YGSxvbuK6EJAgImsuxew7RaNfY3NgkG5nAaOmUq0UCHg1bkDk1fRp7o8XZxCxeR2JzfxtPIEh8kGQ8O8qBk4e4sHgZW7Q4evo0zuYu3a0CfkOinYwz+v4nKFSKrF2+gN3bYb1xlWaizcxDR/CHw4R8EWxB440X32B9awctFET1eqiurDMVCHP0rscYDETEzoCA7CKFHVqqze1SnlKuhD8RQgqpDFSbWyur+AM+vnTtnf3q5F2J94e+/6N87nN/ioBNNpthbuEApWaLW8s57nngLJVilXq5xu5uG7EpcvrkLEGfhirLNGt5Oj2d6blZyrU6O/t75Kt5zp07xsT8PIY1oNSwiXhsQp4Isaiffr/DfQ+dxBvxYEsCrU6P0n6NvfU9/nz/zzg0HubE3ATLxoCG6WNpucTPP/wQhesrFCv7tHx+VoQmYtAmpInEci6ljV1uN+rIqoeOYTGaibB4+wIPz53kxIF5TkcnKd9p4DUlCru7HP/o+4iOZHht6UVK/QZG3+ZA+jDTI1luXs3R7rQ4ceogkZFRers7LL/2Omv7S0jeEfyOF3dQwuobuAGX8dlJ9rfX8IYChBfm+OLnX0MPusyfOsn/9lu/TXNgodgC4yN+Pvqxj/HHn/kjej2dq1dvMJMeZ2J0jPXtPRw0+qaBhMxuqQmKwOMf+x4efeBRPvdHn6X0wj7YJlPZUaRWn4OjU8wHRmnnSqQdFToWcXGAUM5RX7bRulWCmSjb118hICr0jDLNVo+Ar8/eK1+igcHkySy5vs7iV8pITZPOy4sYFgxqPRRHZXJilkP+A2TSWSzTJDw/w5QvxeKtDpao8OAHPo7sDnj95S9j6CY/9v4f4Y5yk6tbt7l+Y5GBVwBVIVf5Fg9efbvibVbLGL0BpuLQbncYm57k1WvXKNc67OQ2iYdjbKzuMzoepN/S8Qc0sE3OnTmAVznKy+evonpVvAEvo8kkrXaf1fVNMpkIG2v7bC/nmIhqpKMGQZ+PybEEB+bGOfe+e7h8+RKdjs54apQ3Xn6FgOwi620Wr1zB448hoCF6vbT1OuGoRqXUIeqTyQS9uKqF6BiMhcPML4zTaJp0OwNmZxN0WzWy2RiWa1Nu1YgNooTtEE7HxUWiuL1FsVvGFl2iI2nafRNvIkVNd5g4MIJreVi6/grpWg19u0ozv067X2PXtJgIj6H6PNgxm0qxzN7SMla/R5AovnqbxPwIk7NZ/uVv/jp93cEjyvg8Xor1Fr/8z/8lH3ziMdY3cvQ7A9a7W4wOHMIhP82+jSsoNC2dnaUlRidGmAM2S7ucuP8IpU6eXqNDNJWkvFwhJQXZaxaQRQst6Md0TGIjIfZz21Ryu5TMOrou0DYNTp46xU61wNzxCUq1IlKtSkmxKesd9JiMdzSDU6mgFGXCngjTsVEECzTTjy8YQOq4KAgkHC/pfhJNliGZYmb8QcxWgfuPyPR29okuKRy1DnDk3Clmb7/BS5uXKPZa9CzrOyPe8y89z92nF2i0u5SKFSKFApFYkJGpLDfv3ME1dBzXRNX8ZOYiZLJjbC4vYhk2voCXu8+c5NWLlymXehycncMnw9LiDiFVpFtvMZ7yMptOUS93AJ3BoMPm6m2Wl66zsrbBg/c/TCyawuPaZNMpOpU+rmGSW85z6p6P8MmP/R2s4i7/9Q//CyePHmN8YpyzR+f4i1dfYm1lh9FEiszYNB/+4QfYWdnh+pXrbO/2qO7V2NH6zPtNTkgBjoQOkhibQIh6qQxyvHLhEjdy1zjzgXOcuucUr116jhuXV4l5XCLBBL/xn/8tk+kJwrrKoNBgPJpkNDWO2bPRIwbjx5LsCptcuHiB2dFxhIBK24Xv+3/+NL/0z/85lV4bUfIiImMOLEzBIRiJcPHmHRq7+yQkjb6hs5Pb5kMf/ShfPv86+7k8Xdek59gIPg/X7tziD/7wj/m+D9/DJ3/yY+zVmtB2SY000JoS56+scXj6ABOzh7AGPbarOZqajdcjMTZ2ACes8fzVi/yrl/8AfyDIQ+k43oBDdWmFgSGw9fINGrpJRgpx1H+QUSPOienjWLU2Pb2L7Sikxw6Q21lFGgxo7ZWQZJmkf4pwLEPt2du0rCaJmVn2bt9CbxVxfRLzT85zUpxG93QoOE2WulvfGfHGIxqapmA3LDw+D3u5AtMz0+wV80yOZxAdGQGFRqNLLtegXO4wkUzxlWeucWx+ksnpCaZHxtDcGvW9PMXCPna9gxwd4DdtvKqLqw/Qe10qZRtRtdha2yEQVDg6M8X6zdsUlB0mRyYQZQlZCaFZJhN+iUdGjhPXw/zuhT/iAz/xCdY393jtyjI/MnmQI+4EvXYD0fVy8cvXuHNpHbGjko2miLVjZEMZpmMzdPNdQtlpJo89iOLzkGsX2Cs2eN/Dj6O/OuDskbu59PoFdCwEyaLUdBidinA8mSbujZG7uEIg7OPBex4m7o2wdPM2FbPO1ac/Q61Tpi+ZVO0G9z74OErKz3Zpm1DUg7Pu4FoDbMdFlATm5uf40Ic+wm/+1u+guiKa5ME1QHAc2r0WYwtTGBERW5TYyheZnBwl4pM5Op7i/lNHGI0lWV7d5o1nXuPEyGHWF/fotlucmr2fA9/7KEatzK3zLzJzJMnNq+eZO3UGTzyIsHaF2UMTdNo2o7FRBkYTkuNIgoy7V+Cu7BgPnXuU/maZ2s112ps5pNYAWRHRgh7kbIKE1KV05zauDzzZCJWlHYxWm6ZsY/ghngyQGctQWNlAGQgYuX3MSoNw38ayXY4rf8mvbP7PijcaC7K4dId628KUNEq1DtbF28iqzH0PzNFrW/T7fSwXurpDoaqzvbWJPXBoNhY5f/E6xw7P8si959DbDdR+G6Hewq7WyWgaqVQMjyqT26gyNRHFF5SxrD4z4yNYA5ft/Rw1o87AEahVLSbjQc5NzmPXanjXBnzxP/9nAsc0Hrz3SRZXP0WIMNKOxhO++xhJjbDerrOzvkxvucAT808QqUR4cuouNEVjZmSB0IkYlXyNveVlZh97AF/YYPfKDvXlPhPxBF/51J+iSyYH75mmF26wWNrl2o1FfuCHv59P/7c/ZtSKMpY9TDCWZTCwiWSz5Ko5dNXF8ItUWx2CSoi9dpH83j7dCKj2gKQmISk+etggmzz86N3cWLzOoNUm7k9g9h08soYlDNjY2+Lv/tN/xOjCOL/7v/82Fy9e5oc+8gRSz6Gfr3Hpj1/iC4XPUh+0kLou5k6QGSVMx6Ny7YvP0VvZJBD08OXXnmEsGaNVLzDoNIhmEiR0BSoWU24E7YUCY+EsiprF4wnxkZNhNjZ3qF0vMn33Gax2nygi1cYGpuvS7RqsvPR5NvZXiUkKx2ZO4JmOU94tEhRUkpJCpVamvXid2btOs1fJM6g3KJV3kQQT1Rzgs3RC6jt/Z8a7Em+xXEJWNNqdAT3bIJlIUKm3iYclqvsl+gODhYVxml2d2ysFdNchEA+iAK1qE78qs1+q8uzzL3Df6eOMZbN4BRHXhq2NPRIhH+2uQasBfr9LZiZJpbzP0o1tvHKQA1OT6JZNvy3ga1Y5pi1wV+Qk50svsL1WYGJygWK3ycqfr3BKOkjElZjSM9SW8hzwTJGJTzLpiSGJDlPiJELHZCqZ4frVi/jLNnYgQ6tQoTfosXneYuzhIyhyj2Z5h3ved45Lt14lPZEhbsvEXI2EEqTWs3n+S89y5ugx0laC/K198rslDk0dwBeNEzRHUQsh9qpbOIpOKOTnwsXX8SUCzMwdRpUUqrt1NH+AQ/edoEsf025x8/plIn4NWRZwXAcHmb5tsbG3w4XXXmW0NEG9VKa4tc0Ln/8SI1oatSFzInIOT34RT3+fpOJnykyjmRrhRJxIKkyrUWTUlyR+/ANsbN1BTR3AFQRmMnNcy9+EyoDRWIyMmCApJOm2LNy6jTsRxhW8pE8eJfLhBzASAjf/y+8T8oLpOvTDKmPHp7iSv0HAlVA1hY2lZTzJKK2mjbfTxiPICF0duzPAEw9TNRqsFjdRZRg4Jh6fj5b5zl9R9e4sbyrFoaOn8V9f5vKNHfb3m/yNv/l+Uskgr7zyZWS/xNh4DAo1EskAK2tNXLPL3HSS8QNTVEsl9hsdjJCPyzduoToW2VgIn+KlqHloNpoEg15OnUqTHh1DUWW6zRauZjMSTREOxgllElCXcUWLo0xRfGWLWd8CM2ceIDA5Qe7Zm2Tb42xcu4a/mMT2CBweO4tZb7K/u40nMc1AlEjH5pjMZNjdvoVXEOi0c4SiIqOTISo383h1L7krz5IKGqQmJ9hdv0q/VaW01iY8NcmsliA2k2DkwATPn3+RrZvblIwS/k4QVYuxfHOV3f1NguMxjj12jsPqcV586StsLN/iR3/qR+kaHQz6GI02j505xZdevcTW5m3OPnYva2u7PPLQaV5/9ho+2cPD9z1Br9lgq7ZFaCzC008/ze7v7iM6An/7J3+S0kqJ9p06H3joR7HXukzMzWOHwdyt0djMkfbFmErNkN9fJ9RWiKFQy9dIyX729vKYXjife51+3yHipsDwET9zAo8QJOJNsHr5Bq+8eoHpx88y/r2P06TGHz3zaazaDkfj40SzKR7+sb9Bs11ifn0Za6+C3Rfo1Lqc+5mfxdwpkn/qBZRen36xw/aVZc594AlW1y6zfPUCDb1DC4doOEql2vrWQvx2xFtptbi5dJ1Ks83MQprzFza4cec6J44fpKe7FMp9bKFEbq/IaCKNETNo1A0m00l6vT69Xg+rb2EOHDQHxmMRZFSOHFwgny9gOA61gYMpDAiINqJlUyq1CRoeUtFRZiKzPPXMUwwqJvfG78ESXA4cOEnZ7OA9eJjcygr5jRzNpTXsdhW/IzMSCtGut+j2q7iRLkrQJZbI0q1t0QkoYNgochBbtLl0+zxZNYHPkBAcHUIapeVd6pJNtVwhJnjw6l5q+T7BYJCbN8/TKuY5FJ1gv1kmGR+lrjdx6VMs74DZQ7TCmAORzkBEsAIEPCk+++WnEUQbY9BG73cpN5v4gjJHjp3k1Kl7uHRzC68AdGFudoxMLEjbZ7FnwOruNslxHwvBJGcnT3Nu/h4u3XiFJx9+koDpYye/Tkz14O8o9IUQqs+g1++R39tB1/uEg1EcF/wqrA8amGGNqOTl5MIpbt7ZxrAkjk/cSzx5BKuvM+h2aLarhMMacn9A7YWrrOZWydRFdDzU6xUG1oDqtdv4RkcYTyywmDPZcRz803F61UUq5RyN/g7evoXkCdPRa+h2i3a7wfShBW6v3kY3FUbm5xlsv/PXUr2rh9F/8oMxfP4gA1vg1uI+ra5BMCRz5vQxdnZ2aDR7nD55hr2dLcx+m/m5UVwH3riwzvh4hkrVIJPOsrO2g6QbpIMqEU1HEm18QR8DFzo9HVdXWRhJMih3OXXgNLLtY2utQMAfZmt9GamtcDByiFNjR5G9CvnaBuvtHJmJcazNBlFbpFergCszf+phlGCaK5dexqXN1PEZ1nb3yO/VmY8f5fDsISSPSHAkQGX7Bq39AnRNLI9DLz4g39+l5lS579x9LH7pJqIl0fbrxFJh9qs5Wp0eRl/E7MPj554gm51AiwZ4/ZUXOXr0CHOn7sKNpGi2O7i9Op36Hn9y/r+xld/lwESadGaUy4vLjM+Nc/LB+/i1//SfGZ3Kcvn8bcatMClviPc9dg9zJ+doM2D2+DFCiSDSwOT5//AF9l/c4Z6pBxiJTuAYBqFUgsUXn0XRLSQpSM+USI2lafRK6FaLTrdF2Beg3l7nsrVLW9U5nZxhLjxGPtdGJULYDiH0AxDwQ0zj8JljrN6+QcjjxdRtJEli584NkgE/A82m0qnRNfokM2nmzp4levgwQkBj8dVneO61r3B0dp6RrkTMVqi3+2jjWW52K1xfvklqIsPa7gY9Y4AgSHhlL/+ic+Ed6fFdWd6FmWlGxidZ3ylSb+pE+haNVhPLNvF4Vbq5Njvbe5RKLTSxS7GwzemTRzh9LIll2rzvvnu58PoiqmtRb/aR+z0i40FUVUMWfAxaTfyql7DHw6nYIWYPzTGo9Xnt8jX8ySSPfOBJvvgHPdq9DqKqsbK3wal7TjAzOkbh9g6ZEQ+3F3dQiNDBxFUEakYds9ogkg2zvVllYyuHxx8iGlI58MgjJPwx7HaDrStvUCtvM+hWsJ0+qdERTh0+wcbzqySTScyahWppJKNJ/L4WzVYLfeCQSo4SUKKsL24hmxLN3QrFnU20cIDk7BRCJIKpO1z5wtOcfvAc8USKqelRHMXAUaE+aPKh73mMG4uLfOr3P42ki2T9QU5MjuMWe5w5eQTLHfDqay9yfXmDhdk3yMQSCE0Dz7rIAhMo2wbd3D5aVMFUHSrdPXwoaK6LIPoYDJq0O1VCCT+RsUlyuztYXgkMkYnRCSzbZiW3wuToQUJSDLkuYToS4bEM2nSSaq9BoVGmrjtEFT8eFMa8KSLBKPl2nrASwe/xM5edpLe1R3Vrh9jUKFrPpNQo8eLNKg9NHsWQNFZKa1SKl1k2myixIFs7e1S7NSRZxXFcPMY7n7C9K8v7/3hfGkfscnOxj624iKrM5GwaR7BoNvusLjZJREP86I9+CNHOUy5uotgWmqxx+sTd3Li0xs5Sg5AcIxMfZXVpkW6vQaFQ4uNPfhTBdtlYWuKREw+ScqMUNwpU23U2mpscefwuPvAj38fO68u8+Cdf4aG7H0dVVF5//UvsVu8g+QX0wYAZZQy/ncarjTN75hQbOxfQpQaBcJbgIApIbG7t0WpZzE2fJOYJs3HtGmHJJCpb9MUK4+cmyG/nmT97D7n8Fh29hd7qYxQNvJKMFLNwVJW9VgdB9aA6CklvjIQdIRJK0Vb6XFy7St3pMjs1i13u4zoWB+89RE2u04jsEEgFubK0xN5+CWQ/Z06d5E9+708YH5ng2MEMjm5Q3KoiyQq31teYPTDO0lKOoCUx6h9BrsBZ8SAHjSnCagpNkWl5SmwYq+zU14gFI8h2gEHPJZlJMXFojLbVZLW4y3Zum047R2J2lL1KAU2QEDvw0Ln3YxcMvIaXiblTiKEAhXqR7e0teuU6PlckJHkIB0NEvVE6gx5lo8XUwjQ72+uEFA3FtNENg86giycZZitmsWc1WFm6TlgS8QsuTaPDptugQg8HcFwB0QUPChFvhP/cyb0jPb4ryzs/m2Bz1+ToYT+VtkW9M0CRZWLxBPGojez22N7IcefmCj/yww/TqKR55ZkvU2o2sZvnya3XuPvAIzT22sTNAEU9gDuwuH9hnmPxE6xcu81Hz36S8XCW2m4dRXGIxAOIrV1uvPIStcIqfsvH7MIkNxYvk0zEmTw4QXt9n+Nnj3Dj+g1qW22QUoxPTzNx7m5qrFHvVRB8A1zVQHbD7BW3CfmyJJNh9HoX1+2DY+FYJpba4/KtV7F6IvYFCUuE+EiSgdXHMA28sozZMuhbFqYlMT41wcLcAeLRDKXXl3EqOvn9DaIeH4fOniAS8HJ+8Xn6TovO1RLSuIoalrhxaZEb67u0DZP3P/kkTz37DLF0kmvLq5w+PoHXq1HR6siahKS5eAMe/MIwaiNUBaakMYL+EHFPHMVQMDEodAoUnX10V8eVHGRNpDdoUWmX0FoK/qk4q9dWMDAwhC5+0eXhM+fo9hw2FneJZuYQXQPaDuVWCdlpoiCg9gcoLgRElYE+wIwG6PscPKkoE4EsDgLxSBqx3cestxBMG02Q0esG5z72QY56TZbW1yh2qqS9Xg4cPkpM1Xnx9ht0+328okrMGyIdSaG3e+9Yj+9KvLoOGxtNFK/G/Q8/QCAa5pXzr9JtVuh2e9QrfeZms1y8eAdN1Mnv5oloEiGPglfxE1Zsctc2COh+8nfWOLtwkrbeRS91qT67Q6ymErQcwmfG0BJjzBwIgjJgcmqEm1ef5fjIYXZ3SzS364Q8IS5deh2vR0IKC1SbXUKJDBubWxw/MI/lmNiVArlKHkduMBC6LOfu0Nqx0LxBPvijHyM2Pscbv/d7DKQCpk8k3yvhTSrUrRphLYUjwtzsPP5MBE9QI69ukd/bJe2LEw9nGY/NMnrsCI3tRZ5+5o/pN3XCxHDdHkavh1UocLm2y15vFyUlI4ZF6u08+TfqGK6Azxvn8fffx2/8zp9waC7LQ4/cz6OPilx/41Va1Qay5VKv1TEdB3Fgce/hM9yuLxMhgh8NW7SouXW8mo+e3cP2CgTEKMlAlFqtjJbVSIanKLWKVKUOFy5fRfcOECWR+46dQ6j30ToGt/ZyfPiTP0J7qYmdN4iOTeBLOXQEC6XUZVTzIvREVI+XfblLzyvSVLrsba8wnhlnfmSWft9B6gvEwin6gz6VVg2f68XebRCcSePqIn4iqKKGOVBZ2lhGMWXiQhAfKmNqioQUIT9456+wenfiNUxiMZX98oAv/MWreP0QCCskYylmJkcw+ht4vA6a5jA6NkUimmHQaDCZDTKZSXLXkSiVSzUayzWMPoynsixuLEPbRBEsQo7GIF9lvfUa3vQIMw89gGnLpNQxzs29D0odstochVqLdDBNX+kSiCuMn83y+u03OHvfPfiNCKGQj/ziNssXTbyGiyeRZaea4+rabSIkSAe8lAvLREMKpdYW4QkN2+3QEloce/Jxtl/KUS01UKwmstfDlasXqLWLeLwiZx8+TXOvRSY5QbutsHrxAnv7t+kYDRxFIZbU8Ho16vs16maZFh2iB8e4/wMPoSUlzl99hfLKgJPHTzAyMUkwEuHe+QkUTWL1zi3qtQrOwGJ6cpY7l+5A32UsGSLsqvQLTfyWRjYSw2tLNK0KZYa+qyXYOB4LTBjUDQJCEI+psdkqUjYbrC1u07Zr9O0u2XicQrVCylQJpfxMTUzjaC6F6h4BWyUjJTANg72VVYS2jb8nEteC6JJNNJogeXiWqm1SrrWZGT8AukC3WCWmaAg+BcvRsVWDoC9Ec3+femUPr+2QkiOkAjH2C1VwJEzbRkbGq3pQRRFz0McnKe9Yj+/K5/2ZR7OMT06xmy9SrrfQrQEOLgIuJ06MoHhVbtzaxDRE/j+/8i+JZ0b5x//w/0Upl2c8JUIXTifOYOUM6usNvJ4AT370e2GvRfPSNjR72KKFrPjJZA/gDSTZr5TpdfsEgj4EWcYJppl95EnsnR32Lj9Hl30GoQqx42lGDk7Ttwye+eMvojYl5kbnSZ85TCjj5fWlC3TdAfVah5uXb+CVFUbCCUTbIBCWyUxGuL54ESEoYA10jiZPU7nRYzQ1QoMarmZgyh1c2yIZmKBXV5gdOUuzWWOneJXR2TRyIM6Rcw9St/PIzoCV23e4tZujoXnZq1UoF3cJiJD2BTg8dxDTNJicmsIVDVa3VljPr+ANqDiGj/nxebYu30TS+5w8fICwL0R9q4emR2hUS3glgcn0JFbPxbEkZqfnqRXKpIJhittbNAYNPOlRQofmiBzO8vQbf8ry+mWSCT/VYoWYHCLRcZgcn+Tg9z6Jf2qSl3//z8mfv0HCHyfujVCs1fBqMdKhMUYSY8geL7Zpsl7Ikxo/SGrsINLAYP/iRYRKCUXSIWZhBV2KtQYT6VkCs1PUB32un79MUFKpmm1qmkHg7nGu526wt7FBNhCHzgBMnZFMir+/de0d6fFdWd5IMsqps0cwLnawhRqjUxNEk3EWV9bZLjeRNDAMi8n0CM889Wd4/EGWtrfJJFSK9S5W06G9fx1P1yUoSAjtHIZQQvPYNOQGXhUCmojscfEkVGqlCmbbIKSEEEybyYlJKsUWmtFnENDoW6DZAUakKFIvwNalMvEDI5w9cx8vfelLbJc28OSjFBsKt66vsl5ao2v20RSViBZm/sg4ihdePP8Cyzf6OKJJQPTTMvpsl3fxCl4mJ7OELQ/RqSiLlRVev/wGp1IjLC2vUjV0CsUck4fiWBmoDvbRd16h3+rQLFfQdZPdYoX8wMSQJXTXg1/z8eC999NtNtlY28TvCbC6ucTe/jbjM1m2NnYQdY0F3yzH507QKO2zfGeDowsHOXniNM19g26ngqgYbNe2KTcaJL1Zou0E8ZE4qgT2noVH8qGpHsZPHqell9HrXXyolPeLjI9mEfHRdxqsVbaZHlQpX9vFGOzTlhuEtQCHDh8kslYiqEQxXS+lWpfxhVGazRqReAbbEZFMqO+VcGwVSQiAqrDXXKVHn7MfeYRexWRjZxFV9hCURfRBB0lyuOfocYyEDxICuWKetVqBqORFxkF4F2++fFeW9wfuDnHi5Dy63qPVrfH4hx/l7kce4+LVDf7fv/TrTE4EUbsdDo9PsbO1SziVwBuL0apU6G1XmIyO0av0mMxm2d9cZWFylLsPneSNr1yitWfhtf2MZROk0qOsbuQIOymOpE5SW9nH4wG/5qVu90meOUEgmaG5V8UnapRu3KQfk8icmmdx5SLV/RUkqYduDpg8fJzIxCRPXfsKS/k79NwBkYCPTCCA0WsQSYdpmS0yIxk6zRaxVJR2t0taTOFumwTlAO//vo9Rt2p0fG167oC9jRx7S3lq200efvQxdio76HafI/e+j8LNNUo3yyTCCUr1Kk27z53cJroHNrsF/JqHjFdBE2V+8Md+lIuvvcaNy2+gaTJjYxmW1zY4Ep1kMjWB5vNiuzo7u0vMTU/SLg8wuhLdWoGFA2PUGjrJyASnDt+NWO2zeP06zX4Vc2Cgij4MrwdtbITMaAKPH1597cu0zSITs+MUyx1GwxGMboOu3kL2efB5QkyPzNHcaRBrh9EaCqKhEczOETpyGFJRHNdm8/I1JrKzhFLj2LZL7/pturkcWtrHSusK284mBatGwAoQNjx40XBMiaY1wFZkQrEw42dmWRUKfOXSq+QqJQQRAqKGV9b4/e9EtMGjyeT3KmxtF5mYzSArEV5/7SZPPX0ZSfTg06JolkAkHGfywUku3biJUS4T94Yx2iUKuTXOHTuN5EI8HGZuYRxd7lK2CszfdRq7p7GynePitVX8rh8t4GW/vI7symSScxD0IEZV1GiMjdUdRpNT+JJjaPkWtupQ3uwg1iS0nh9JEAhoQZSBh0HbpNcyKLe7GF6bufE5/KqMU7eo6X1cVcGRNQqVBvvVJrqh0/KYxIUkWtDL4vY6YjrA8vUbNHt1BvU2ld0m9594DK8W5sH7P4ze7fO5Tz1FeavGXGQGR9Cw6i6lap50MMDY4Slyr28ysPrUTQ9er4Y16FMo5rBcG9F26ff7xEN+RkZSmEaPO7dvcfLkMRSfQLVXwRJtSnqHZCrE7dwaguDBVBRixTWyWhxTdIjGRumZfXwxP+v7BRr1AtMHp/B7JCRHIaiE6NX7TMYyRAN+xg4ucOXOdfKVItnMLKMjk4TsKO4OKB3AlBE9AaRUGiYzKK6DdeE6mgVmpUKjWsNp1dDNDpXNHfadMr2gSLdloakOrisgiBJ918YRZHquQ7tRo3ipjXcmiDswEWQRRxIp2QOC8jt/Afi7srx/+4ksoiIjKiHG58bJlfOs7RQpVS0sW0WVDJKqiFeEEycOcPTUKT79R58m6wnz2NRJWstFHrr3UbY2l1HH/NxZOk9Lr6N4gyhilEbRorBeBlPHa4qMKaMcH7uXlH8OS/QycvokymQCZ7tC/eommhtEjaco1irER9MIIT82HezSDvlbl2nVixz+8MMQgc9eforV7ha51i6y4hDVFIJejWKtRq3VJB6JUCtUGU0kSKcyCIKGLPiZmZxmb3sDUTA5uDDCKy89S8wbRBODnDj0EPlqAy0SpVJtcv3SMn4pyMcf+iCKInL7xnny1W0cj4WU0Li4eYua3sYAYuEQc5MTLK6v4XQ6hH0qk6MZquUKU4E08WCMZq+LYeuI2gBJsfH5A/g8IWLRFJ1ul62dPSRbRO2KTATGOHvoHnZ3KgRSIfZ7ea7dWKRvuMxlp7lr9hh72yus5q6TTMYYSUTotBpYrk1fckiMjTE3s4DPUQm6ASrbHdycjt8J0RY0PMcWUKayGK06+uo2Zsug1e1R3tom4DoEBANBtImfmscJadTkDovL1+jkyhj6AEnwMXBdBiJYrk18JELRKtGLSCyW99jv1BAViV6vx7V3+ED6u7K8g16HaDKO7hg8/dzrjE6l0TQf9UqRSEijVG7QcQXmJ0LUG222dnbY2mjSosPfuu8TbCy2MPM91IFK7vYW12+uMH1qku16FVccsLVZhq4AxoBRb4S8USZFD29IxfGHkOZHufOlp3DWyoR6HhwpiulA/MAkoYkxUBSq+xs0yh06AxmUKMWtPV5ae4NVY5dtvUBXaKJbPSLTkxw7chJ5bRmvJ8CZ46d44amnCSkRHrv/SUqNFq9cuoJdKjDQB0Q9CjPpGQqxDdZWVgn6RVwE1vY2Wb78CqKi4bgylU6Dz774KWL+AIX6DkePHWTi0DT/9c8+Rcc1sVUF27YQZQkUl9FMhN31NsiQSCfBBb3ncmd1gzPn7sF0dHaKy9juAF3qYyoy7XoBV5AZaAK23keVBLqqjhj3ktDGScyOcvlLNzAlF8VR6da7xOU0qcNZ7KaBZQ7YWd0Cx8ETCKCFwyhCGMn20yw2ECJ+rKgKAwe3ZqL0DJRqFVcxiaXC9BN+Not5XEnFE/ZhtVsYjoFu9GiurTFz7m52KwV2W00Mq4vguGiaAZLMwDBIJBPMH11gJr7AcivP5eIGkWiEqdFxinu771iP7+728MExKo0e9UYdSZGp15tMTcyw8OET/P5/+zzBqB/RMJlKTxEQJOp7JT76/vexe2eTV167yLgQ4trFG7SNLumjI7TaLisbZQ6fPUrHkLiyUqZgdBkN+Rm0eow7Gu1mizYVItkAzct3WD9/mZShkgqOY5strI5ENDDD6qUXkWwLSRYJJOL4JydxjRaXbj3DVn2HmlCnb/UxRR2vK1LZqfB0+RkcWcQXCHD5/FWsvkOz1OJPPvWndByb3XYN9jcQu31OTR7g0guXcDsiiuEnFE2wtrfDQLFoyC38YS/5Vh3JdRA7Mi3LhxRRuVC+xQuNZfJ06QGm4SI6NuVGg2jDw9HD8xTz+ySSIbr9LvFMgogQ5uChMHc/9CS5zXW2Cjs0mi2CikCtWGFyeoaBZdFxbBKpBNpAoNJo8Wcvfx7QGGtP0bOaBPwaYTnKodgCStNGtzpMjx/klZUXScfiGJ0BmcgoofgIyegEzZ0mTstib3cD30KawIiPdreO31XZv36edH+K/Z0+G5srDBo6M+PHmZ47yNrKIv5wiEY7z9QjZ9EOHqHyWo7dfgvbaqIJIumQF0ey2Kvs4pgWjxx6mE9feppKr0E8GGA2O4nYsUB/538G+a5++u7zesjtlSmV+qSSCTKpMfqNAWFFJCSIpDQ/M5EYWTVGf6vC3pVVYorGR554nOXlVWxBoN6ss5HfIjo6ziMPP0o0HKOwX2F+7hCPPfY442NpHnniCRLpLA4ePPjxdQUGizusPPMicX+YU/fcR2RqAn8mQTDkQ6iV6a8t0Vm9TTzsx4NAJpkiPTOBE9GoOHW6dg/LNcEVkFwFyVXpdHRUzUcgGKVR6xLwRWi0O5RqdTrGADwylXoVSxZJZUdZXt2h0dDJjMwyf+QUK3u73Mytk5lJcM8Dp0n7ZTKKzGgoTDjoAa/AncImVzaWKek9eoYOroBPVsGxqVUqPP/8i4yPR4kno3gDHhxR5OqtG5RbVQamTqFYpm/YjI6M02w2mZyeIBAKUKvXWN3Y4+rNZSrtDuFskvhkHC0hcHXpJfZr61h2i7BPJunzUs3vUd7PIWoi0WiC0GiGydkD+JQwY8lZ/HaIkBBjduYEYS3C3o07FAo7pM8dInxihkBYw64WSPhUsukQkmywn99kJ5dDjafInjjO4cffx/T3fxhlbpSDd53FEBx0TAwMlqsrXC3dwD8W5uzH7uGLV5/mjeuv0qgWmEtlsPbKdBd3OCG/87fMvyvLW610KJdN+rZEqdBGErvIusuYN80PPv4kL71+gYhHY/fKEkfGkkylIzTX99i7us7hQ0c5duQYm7LMiew5KqU9er0m0VCASqfNzuoGDx67Fy0/gFyPWW2Ckckxzozfh73Xx3YHxOMpxNERnFgKrxbELTVZv3yZsXYTt1pEHJhUXnwByZ9EcqGX8bCys0xfMNFFA0GUCYp+NFfAcm0MV6TW7dEwTCRVpq9b9EQHGx3No2A4Dj1sfK7NtdVloqKINdA5NJ2kZvYJpeIEnBoxTxi90CHaU0kIIY4mDlDo1VjplpAlDRkdx3bwuwp+UUMWTFxRxqdKhKNpfD6ZSq1GLAK5XIVev8HS+k2UZ71sbGyxX8nRN7yImouiijiWTiQYIhIO0OsarG3s0a20OHXyIAdOjqAvlWjX+xilKtWWxI4pklQSxBamqLoVFh48xIVLr5CwgnjaMn5zl3goQ8AfpLZVRmgYTA00yqUmfHCETqVFLxNG6Paobm+SM2toR7PMHr6P7aUuIU+YcqfH5voSW5LOyXveR0bxcCw7TdGx6OhNmpLJgdOHmL/rKK+tLoLW56d+5kcwi21Wz9/h3NhBZMlmNjv/nRHv6mYFv1fFaBk06w38fh8+KYBR7vLjj/0A875xrr/0EmmvyiOHzpFrFnj21hWK9SY/+uM/zfrrlzl47zH2Gw2+8mev4A072F6HvXydrWtFpNsm/rZLbr/FSOQQjz34vSS1NJaRo1TYpZLL4/T7rBkrzE4fQLZcDPpEF05SrGzTHdTw1LoIAwnHHGAUa/QGfWKpETq9HaxBDyQZUVARHANZAseV6HQGqC64gy6SKKL4ffRF2K7WMF0Hqd9m19kmkBoln9uncquO4vGx1ysS9PnYvFqirnmIi36Ctky/3aXXG+AqIgFfCAQTHAej0SYZjVGutpFV0DwuPr9FMOqh1TPxR0KcHZ/i1vkLGD2deq/Ifn0HV7Roddskgz6SsQibm3ssr+wRDEeptcp0LIN2rYK9usxaaZV2q4YPFw9euvTRAw7R2RRSXCLuTzHwCVzavMMPPfw99NerCO4AvVlDcG1y2xsMWhVUOkSOHsDuNWl2G8Tnshj5Eru31xi/6zDTn3gSSQ3R4A7UdVZu3GBj+wbevVXijkpyYZbv/8THefr5L3Dhznme/P6Pcu/3P8G//Q//goNHjvCD3/cjODtVPvOvf5uFxBTTwWkq1TrxmWPfGfG2TS+ZTIqpaY2m1aetD2hsNWl2VbZfuMzBeIrQ9GHuPnucjltn6Y1Fas0aokfm5deexW52WbtcptIaIHq9GIMG84fnCHnHkHdVlE2XuBrnyNEPMHrkQYSmwcql10gpYHQa6M0a3UaRTHoCb7XK5sYqrmJTrO1iBb30un7sfhuv00Xo7xM+dYzHU9/Pb/35b1Pu6XSdDqaooFg6QUnE1k0UR0K2ZSIBFVUDZJfYxATP3r5By7YJ+71MREIcmx6lW9vHCnbpI2LQZTThIZ2IYrY9pAJRfLaH/NYeW+0OA0Gk0+3Sc3sMXAtkEZ8qE4r72a3YZEIBZK+IJVpEkxHagwHrO/skEwIz8wfpNOu0Bk3G5jNUq2VMfUAoHKZRqeE6ApLqoWs4KH4v6USC3H6B27kyBwhybHaefq6IoSvIoTiT507i+H0UW1XshsPi5TWi2QQ3ayuIRoeA6UBbwu3FiM+NkvaNsZ67zm5jDU9zniuvvYriSBw7epSCT6fbLdBZu831G9cQSnUGuTJCqw2yRWvQ57nnP8tk8yAVs85SZZPxM4eIT4zwyrPPkBa8pAwvL/3b/4q3bDFixThz7D46TYHRM7ME56e/pQ6/LfFGk1kOHpzj4MI0t9dvsbNf4N75uxjpB7C2dC698jLBgES3m6Vil+gIXbRUmJ1Sk61qk1TAS6vWZn0rz5PH7yLtk9ASPj784Cku/NkNJLtP1A2TkKKEtTCip0muW6Drd3DkPo7cxidppCIBurUKMc1Lq9sgf+EK8x/4OGOxErZeo+7UiDy0gP/ICPLFbSzdIuQJ03b6bHfL+EUFRUswMPrEBJW4J0hIg8nxBANhwE6vRNs2sB2X/kBnYJo4gksiGyCdPYBihxEEEWvQIREJYfo1jK4+fLwwrGI3TAKayow3hdioUBm0MRyHvmvT7ndAEvEHIzRbNXoDG4cS4XCCpY2b3Fov8cQ9Rzl511lEXG5eu4qqJFlb26Vv9nE1gVq3QywZ5+bWPrJoc/TwUWan0ixdv008EicdHWN3t0ut1mbm0CiK4ufO4jKKKtLrd1hfX0UJw9rOKv6BgNcWEHQv3mCY4+9/HMHucqgb5qU3nmW3uUPTN2Bhbh47oyKWPFTlGu2dS3z6hc/w4MIh4pMaB8cPc+H8JZr9HlOzGUbPjVJdreFr+7hx+waLGzc5cfwQI06K/WdWsXNd5pKTLMwfolFpI/uDuKqJSZ13OmV7V+K9cmOJTrvF6xcvUmpUCEdCHLn3KKqk0ZHazCzMofoEivUCS807tKQONUelYllsVep0bAPJ0pGQ8dU8ZMw4pWIVXRpwKD3P9vIi8UASp2tS39lC8tnoviYtfx85KtE2KnilCLq3R7VUQXMVZI8EokhtY51YMMJafYsdq4Tvlomw/BrLF28yZWlMeDPYzSKxkQzNdgs0kRF5FHUgEJQUXLND3+0QTPspXlsm6LHpdMC0HXLlGoLR5/ThOOGgD4/fy9VrK1idNuPZOLLr0un2cWTwKSJBv4zsugiuw+FUBl/qEFvVAnvtKt6AD02T2c0X8XhVFFuhsVHl5KlRxkYz2M6A167fZqdQ4uNPPsTEeJbc7jbgEM+k6IsmXXt4UyPolRFcm7U7Nzh78hij955lJJZF6rnInRBTviy9osPn/+iLYBlEMn5OHT9O4ESYm/nrlLstvIKELotks+Mc/Z7vQZ1Is3H5NXa2rxGdz3B55yaLhTUGSfAZ2ySOxPHF/JT6PY7fd4gPfs+HMXstuq0WJ2fuR/GEGBg2ry+9TrvSYHdzC7PR45HTj4FuMelJ0lVCJCZjtGo9UtkFIifn+fJTn0LSBLZurPF+PvxXL95EKkYym2VjfQVBVmg2Onzm058lZGq8f/oE46NTKJZOtVVlt1QiNhajZujMpbLkc/us5uuMheJk5TRpN4F3R0NqSPRpogkeIoIfRQkRTo/SHLS4cOk5WvYystXEdk2KnTrZwBRjkVnMpkFpv8Tk+Dhrm5tECy5K4hivN2+zUVnDu3eZiORnUhnl7um72OvmsAdVlIMj3Mpt4tR0MC00x4PTszDDOnXDYtAZMJoN4Q+JyPkBzWYPWYR2Z8D+fpN4PMHlO2vsF8sEJNjeLZBMJ5k+fIj9Zp07q9tM9xxigpdwMMKBkSlq5gC700NEpNMfMDqawDItQGF6ZpbnXniJ8xeuMjubpd0bYEsOa/slMqNpzhydZ2ctTbNZQ/ZIFGoVWj0dq+8gmn0mx+NgDVi5epH7Tj+EasH5l68x5kwwkz1MxJvmdvMGptgiI8aZCE+y2tggpo5y97Fp4opK/eYuAi6hmSztdoHL55/hztbL3PvhhygNKkydmKVs1unkKljbA8bnJpk5dJTv/eSHkXwKQjjETreAZdv4RY3VjTVe+vOXyMgxAnaI8XiWJ84+ztNP/wUbG+s4LR0LC9vxgTeAafSwvBb5Rp65hbl3rMd3Jd7xbIS1tUVsx6TT6WN2bZKqF80LbtLL5JlTXPqLZ6g1uzz66IdYK65QqO/h83hwUi4iFkEtzF0Ld9G50SVQc4koKTo7AwZWm3qtQubQvUTmF6gsXaNlVtnt7aLrFXxBH223h2AXuL1/k3KlhSgqtNpdykKVzVad5164yJK9SURUWFDDTEgJfKEwpx5/hNLNFymWLiGv5ggpLpFkivpmDdvU8aCg9ANUCzUG+02mRzIkAhEiGdiw8mghjWhEw2wXMQyRrVwdTBnNEomoEVpdhQtXlmjYA8YmRvAUm/RaPaI+iY7eoVCvEI7FWN3dYmAanF4YpVlv0GwPKBV2mR5P0O62cO0eM5NZ5g9PUdov0R+02Nqtsbq+woGFGVb2CnT0Pv2OTtQTxB9Q8dmQTWSo2zLt/SKWZjA3eYAjwbNMJRcIe1KEXB/V2h4ev8D20haSqnFw7j7UqQDlxSsMem3cwYDlV/4cWRUIyi2OHl0gkU5SeD7P7aVFQsEAI9ko6ZFROu0+pf19Pv/5pynWG4yNhbnr7DlEXSBiikTaXo5J08SlKH4hikfwcPPCLWqlGu1WmbDqx6XO7NwMN/aW8LUFzl85z34tz4VbV3jof/vXf/Xi9UoDBt0aguInFR+afo9tU87tc2npIiE5zcc+8XE2rp1nJBFiYmqewYWvsFHOM5fOMuJNMh6YZjYxzbQZp3Ojwn6tBYrKeCxGd2DQKuRRTZFBZY9o2Me2YaMENQRFBkfA0PusbiySDE9SaTbIl/IIPoXKoETHsXAEk4DqB8tgYPVAcHEzMXbWHXYFg2BlgGwPaAhVQoIfn+ghTRRJlChVqriopLIZHjr+APW+wedbX8FJaKheGcGr0G5ZuJaMR5AIuAopNcWB+Tleuf4G9XoVwdtifmqM5Ru3iXolLKPD2MIBfJksjI5RbNaYSIVZKjcw221KrTpjYwk0UaJbq1GxTWYOzjI/M8kb51/FJ0sMen3mZhcoX1ohGAmhuS6Fwj4z8QiODn29Ta/UQYt4Of3AWYyWjKwLhFNhxL6L5lWQJGh0qkTH45QqZR64+wG2aytomkZ6PMbm3iq59YuYisWgVeXs3Q+zX2swlR5BwyUZiRH2BcE0ESWbQr6Ia1rcc9ddfN8PfgKn2ecP/7+/w+Wbz5MWoxzSxnnoxAco7BTp2AO+9MyXCcS8lIwadbuBbefpVhV2ru9ioqPbfSzbYdD9Dr23YSSuknrwKD3DoVHrIRgug04HzSejSyZPXXgK1TQI6i5f+OPfY2RqlNl7j5FvdSgWq/gsFSIDdisbJAMhlLlRJrKnUSNhmhtLxPwSqimyfv0qtqhz17lj6Bs5WkKFVq1LTJbJulHCvhQKYbwhP3vNPRp6h67TQfP5SZt+RNulIbpoHomx0SwbL72BdHuHScuHLxCmYVTxqgL3HDnLtJRlggyyJTC6m6HWqJDuBihezdF3+oQsKHfaFApNTh47yt7WHgFHwmMLZOQAIR0CXZtJT4S+r02z2kA6skAgFaevQk3vsr+3xc6N66yWq5w4fIK4P8NUqkNA8VBvNDg0PUl+P4coK9RqXfbXttC8KpmRJPF4hE67y/LGBjMTkzSqPSKKg091uf/4WTTbxuh2GQ2OoHq99FttOn2LQrNK806Ts6cfxTOuEtBUFCGAfz5FeFtn8earaGMq19cvEMAme3iafaHPZmWf2UyGQrtBf2Bwz5m7uX31OnZfp7ZbQ00HcCJBFK+fu++/i0BmhEtvXOLCF57DynU5658mOvBwLHWIoOGgJbPslPOMREZZqi9x7/sfZHltke3tHV5ZfZ6YEiakhdBMHx7Vhyu98/tm70q8tUqR8dkpjHoXY9CmuNvl+MI4pdIAXe8SS/j43FOf4aHZMyS9GeaTC+glg7tnT9G0dIxCm5gS5777n+DWaxtIrsj8PUeIRGNYXp3lZ7aINE1ss0VnUGdntYUqaYS0GMgKlm0QFH0obfD4ZKKxFKqkcqO6iF/1kUxnsEotGoMObixEod1Hv3yemO3hSDbB/PhZXircpGyauK7L4uItIkmBk5lJkoEUmdksF25doLizRWVzj+n5UUKCRKU3oNtoc+vOMvFAiIiqoBmQDATwCSL1fJ50IIASmaRmdbm9uES10WAuFmKnVsFEIV9t0TNMlu8sEq23yCaijKVGSMaiXLt6h1gsQCqSod0YYPQNisUikgyu4LC9UeFDjz9BVE5x+cUriF6LxOEQq0urjI6McNc9D6LaDuVKmXyhQHZijJxao1Ddxh116SkSb1x4DV9Uo/HSGxw/cYpGt0EmPE76QJZnn3+eUUa566Pvx1cv0StXmTx8mBvXbvLMl76CZDtUSiWUoI9kJk6t3eb43DTlUpXPfObzhGQFte0w7kTxuC5JwYtdbbBVayJJHqKxGMeyB+gZPayBTK5Yw3EgGvCi2jYjvjC2LSAKHqx38a+A70q8O/stPOEaYxNTFPIVYnGJuQNZMgkfpe0cMVcjcOAIMTWB6ddZXlmm5y3RdwcYlszpqdMcnDhIIDXL2Y+cYeXKHexOi607SyTGs8Smxth+5UWkfpNAwMNA7IM/SLnRJRMfo1nPYwCWq2O6A46eOMOUX6b2mkOlepu1vS3Cooo/GOD+e+/nmS89R81u0PWEcXEZ9UdJBRQqHXAlhaigsL+5xkpFoR2cIBhJI/RNfIKK15tmJ1dgbHIC3RDQNBEl6SWTznC1VKNl6JTEDlgOdG3M5oBgKsj09ChruQL1dptoMsxOqQaWyng2iq9Swi/DfDYBIlT7LS6urOAPedmttek5OVzBYiDYjMyMUanWkSU/I4k0le0ye5vrJE0PE4EUtUIVyYTra2ss5reRXJuIFER2vYhumIUjByiHGmzV16DTIn1ymr7dYTY9ynZtn6bQxBH8bA7qRGenOHvvfRiVJrtXbxANBfnSZz5HuVgkHAmSHEuRNSbpuw7Nvk1rr8hf3PgLJmJhzoazaLIXJajQzTVouz0qsohiiISUMEKziVWvEg76+ZGzn+A3Xv80STtLdiZFXPUj1LpIPZO+bFJotxh8pyyvbjo0WwOinT7RmJ+a2aPfbxKN+fBLWeS+SCY2xkxgDqVpofgMruZfpdB1GEnNMpGaodPsYTZ1rE6L+cgY9eduU9xYIfbBx5BtkWa/i+IO6Hc6GKbAPl0qehsrapH2hQkYMqrqwxQ8CJEobiLAcn4XbypMrdGiZvVQBB8vvfg86VgMR4xi9XUM2eKNxTeYPjCBThJfKoLX9tBq7ROLBhjJxlGCUdw1k4mJcdp2l2g0zoFzCyw+9buIrsNoKoU/FODEfWewDIvdtS0K+SKmYxLUVIqFJn3ZAklhYWECn19hajrLcy9cQ5JUgh6NgWFwY3uFbq9LOBEhEQ4wPjvB7l4O3TSYnpnkjau3SI4kQYU7myVmp8bYunmVmUCa6YVx7I6E2VSZS88yrQjsFndod+r09A7HZucZTRwkKKUoltvs79xkYWGOD9z/KGbQZr2zQ/F6mYVolnq7SKtZJF8qsLedYvfOOoJuY3Ukjp29m+/5iZ8m6hcpNsoEQ0H61T4719bJ6VH6ahNBsqlUKmTHkyxvbaJICnc/8BBrl27S7ZgkVBmP18ug38fviGhtiwUyhIMB7j31Pqq6yea1m0iOwUZ1A4/rI5vIfmfE6/X66fcdVpY3aXdbSC402i021lYZSUVxLZWXX3yKc5NH+Mh9j+LYBl4xwrmZ43zq86+xeavET3z4F6g2WuSurRJvgZqrEOyaOJU20XgSTzRCv9BFchVcy0ZTNFTZoNbu4kUljA/J40cNR1lZvIUZkhD8GobQQ/Vp9Ls9HBsc3WB+ZpyRkREuXr5Ip10nEo3hFVQCrsKg3qWj14kpXnpmm83KBrG4FyWrkTl5gJ0rr5EZHeXq6h36pkXPMlhdWsUSoS9qzB84yOmH7mV7Yx1FFNjd3aZv9Cj2DASrg+oLkssZeMMJpmYn6dabyCIgKIQOTNDPF9AFl/rA4og3wMTIKOV6CUQJ21IJ+FMMbAEvGrl6AxFILEywXM1RXaoRtSNk1Qgz2SyHzkwjRDSquSr9okGgp9C4XCJoh1iYOcitG1dYXlvB8plMHh5lUoyQv7bM2Y89zqmTx3nxpefplMvcf/IU0yPz6D2b+OQk7d0Sz++sUO+1iYeibF9chK02J8ePEI2O8+KV58Hs4kvC+07dQ73YIqxFiRJnIpLC7vSp9js4kkswpKGqIpNqhBF/kvbFVeJj4xRbNqapExa9+IJ+ROWdP4z+7t6M3jSxHZFIxMP05Bi9do31zU3S6Si1fhPDlNCjFvVwlz9b/BIDq8NKqYZ3fYXHP/QBxE0BbXKC5MQJeoXr5G9c5KAWwA4FEFIBorMTKFcCtKoSmiAxOTHKyYksi9ubbG7vYCkemrZCIJXm6Psfp9SucmXzOj1FZ2ZqFKlg0bM9JANxwi0BX8emtZ7j9NxBlrcXObAwRa2yT6lepSe6KKqGLIuYMYkrmzeobl0gPTPB8s2nubW3yKFIHzWo4ckk8EpRkqMx1rc32NrbZ2X9ORQBZBFGM3H0fp/RkTRnTp/E6tWZnZvm6RdfI5WK8oEPfZjnvvwcK8vrrOWLfPHyVQTb4cP3382srFEvlulbFqrmoVStYRoDnn3maY7dfZLjJ4/RKpa5/sYlxjPTaFmRXlxnIjhH89YG+3u7RAJpRucOsFoqYZh91l+/wKw4BgGJrd4q/kScyEgYu11n6/deR3VcbMNl64V1nKREp9yiXiixWTIoXNmk3TYYPXiYQDbBxYuXCEejJMcjRAcBov4og+062yv7THqy9KUAnbUie3c2eOSBJxms18gSR+nL9AyRlmBStuosxCap2W1injBCz8Bs1Ont1JgOyKx3arhih6ZgsLVX4ke/E+J1UPD4/OzvV1BkB69HxBYc+oY+/FmLYTFzdI5yo8Ot/TYoAm3bRK23WV1aJtpNIgT8dJotEukEox96lN7qCm23QXghim8syuShOarbG1i47JZy7LbKmJKM40DbNrElE9tuczDuZ2Y+Q8fX50sXP0s5ZyHpBurAod0qMRYYxWn3KVTLVNcatO0eckAkV8mhe1RarknHaLMvtpDqQXYHeWp2n7X9JoVOg3Qqw7bZ4FDmIN3aJo5ls3npOoZtE9ZEvFGVbDZOsdDi+JF5XNOmUWty5fXLTE0mKBdrPPTggzQ6bW5ceYNTpw4SDGhYgkBJkmgUy+TyOQ7dez9XtjaJxsP4kzFaA51MqkWh2mJza41CPo+nYzEbyvLyZ54lnUqT8qcxU3X8o2mC0ynsKS/OgRinpj7Apd/7CndWL6J4TAJKisz8ArGFWVZefYXCzRViHR8eUaPn9XLq3k+wvH8DR99BlgIYlkM6GWP20Cj+mQO0HZuwN8gj9z3BVHKMP3n9t3HxoFt9wqoGpolX9uH3+VFQqS7nuWvmPrqlGrIgI8S8VOnSate52d5iLDFF26gjdSwmtDh+xY9/Js3OrkG7s0MHC0OU3rEe35V4RdVHOBrAq8HhQ5NcvXYZRVWRPSFGJibYz1V4+aUVZFcgncngCCLjo0EiHo1BvUbP9tAv1wmMTtDt5Om3aoijEr7JSRpaFaHTplreomc3MWQR23Iw62Aj4vMHsBWR7WaR1a0CzT8e8KEPf5SrL73EA1MnWNy8TDaaYCDYyI6L3ulhKgaOLFDutGnSpbB6nZLZQonFqNo2XdHFJ4uEVJ3rgyJd2SbuE+kIFnulFZS6h5eWLpMOhug0aoxHAmRjQbJTowwGfQRJotdqUtzbwtFt8ns1LMuhVS2zn2+hOzCzMMn9D5/FMHucO3OUj3z0w4SmZ/nzP/scQrNLu9ngAx98nFa7yVPPP0eta5CO+Tl0MMHMyTNEAwnWnr/GE6ceQG/2eOPiJQqdfXYDmxw4fZKD77uXxAOzWH4TeeCy0DnHWmGDQlBhMutDmfHyxtOfIeJ6Cfn9SIJEH4lDjz5BbPo4xydHeeHCeRYO34Pb73DugQe4s7rOV576LIcWjvAzP/NztIoVrl14jfX6DpbrIiAy5ckQdkUEy0VqOWT9Y3htP5Vai2DQS7drEjw0yasvP0NNrvPI2dNo3jiLK9uE/UGOnD2DR4shzaSwl2VWXs3h9cYJ6P53rMd39Ru29x0JsnAgzcRoEhmDjY0NerqJrHkxLJF6q8u4Zwy55jLrnaZWbuJoDgOaBCIGpyYeINNaIDAIE2y7uPaAa/mLrA026GkGh8dmiLsariazvLfJ0ZOnqJWaxIJxCvkKtzYX0Y0+ISWA4khkQklm52a4cvsiA6uPLdlYpguWS0QIEI+l2LeabLT3aUodynYNA+hKMjXXZOA6BASJsCRj2QMcv8KZc4c5MT9Nudziy198CckSSHoDjAXCHBnNsrxyCzveJxDy448EyecLxEMpMERCWoRrl2/hChKx+Ai1Xp++0GZhPkk44qHZ6OHzhphdOEwoGMTo9Cjkdkkn4/Q6bdrtJmfOnmFiep4eLiuNKpcvXyd/dZ0PnbuXI8cOocaDDHomAS2MnAjjG49i+Qa4Qg/JAqNt4+LDsgR8ioZHVCjvlmheW6Gyvk9cjuBaIiuNBu//kR9ClR3+4A/+K+MTIyzevsrK3jooIgFLQRJFIqkU49MThENBijs7DKp1cqubKD1QuwJpKcZ4ZAxjANFUmoFjMntgjmAkSUeCX/rML1OyCwS8PhJCkA/NPcm5449Q3iuz09in6Dd4ffsmi3vLuG6fjODnU9bWO9Lju7K84YiE7djk8vv0W3U63T66Ab6gh/WtClpMo9Zp4M05zEzdw5nsEepyi2t7V0hnU5w5cxpWolRfWaOx30J3u/hUC6XTxtNu0+6b2GqAgU9mr5En0RpFVhRSmeGzAP5VkZQniuoKCI5LwDCZjKZoJ8bZKO/RNLoI/0df7GARC/sQTJOBDrokYpoSsUyaUqXAwHBAELGBlqEjyiK9/oA7y6sUd7ZJRNMcmJpmY2WTlD+MZDkcXTjM1uYqXclAUCWa3Q5d3WAqEqReaFKpVBAFEVnxMTE+S293g2q1Rq3WQpYcem2dYwenmE6k2VjbYH19Ha/fi392BtcWhq7Eeo7J6WMsr22QPX2EX3jyI1Cuo1er+GJenKCMpw+uKdETHGqNPCFTIBaQQBARohqO4EF0ZGS/B9O1iKbSZM9NYe43qa3so0kaactADvdo1bv84E/+OBt7uzz92gucX10ESSLoujiOi7Wu4FyWiCbjLCSTvG/hGGFFolFs0tpvMuhaaKEwoVSU/U6LU0++j+RoCsERESQRKe6nW7YwOw1kyWRrc53DUyfZ3b7Djd3LrMo1lvUCVbuPT4Km1HjHenxX4lW1EOvrdTBFOq0eqgKZkQSuKWN0ajTqBnMxL2NSnHPp+wklJ3j2jc8Rd5IkfUksQeBO+QJOoM2xkzP4+km2Nixm1En29A3G5iaRVQ+B0SSeaoxiLU+v2mM6kmWUECPHnoBgjMsXX8agS9/sc+vKebz+IJKpoNkBIj4PgUySm4V11sv7+BSJiA59wQJF4ujZUxxXBV585gVUUWW/XqclunRsG1MAvWqQt00i+RxjAT+C7bBe3MXv0fjCxk3eaNQJ912kapPHP/gA8UydVCjBaHyCw9PHKa7u0ewOSE9lOHnPDI1GlXggRK/V4ubNa2zc2mIukGXCjdIfpFlc2yJs57GqTZ48+35eevk8f1j6EybvPkY8kaDX7yJ4TJRRH13DRDQlRH+AwcDA7Ov0O33yhQaqXyMaixGPBFDsAR7JRNFFRNUFs4/dHyD7NGKnfFiijGHbCF2D1Veucvmlq+SKeS7vrdByHUxHJHRgjCOpCZYvLbLTa7K6ucPG9g4r17cIaiEUWSBg28wmQ1QjBmfuPkhUUBk7dgZ9v0q/UqVpNwhYFjEEosE4qqMxf/IwL1/6MpVSDjBQBwNGZIWZoBe730W0v0N/ZaUbOsVyE1UAS4dY2I+GS6NY5dhomu52hyPOBPcfup9MdBYjkEQ1PPh7Gkcj89y8vcjt4hIeQ2IuO41qCiiGTEIK0Rf8PHjPQ2y0K6ztraNbJopXxbE7NGsNgmKGZDyLmp6ktlfgzs41+qaBYZvY3Q4+X4BWq45pudQaLQRHwTBNvBb48XJiaoqsZtKutrj7vjOYx1v0uzrV1hV0U2eAiyMIdAwb0QEFkVqjQcDnA0OnY+i8euMGfcdC6glogo98oYss+7i5tI/R7FDc6hJUgwQCXoLhALeXb1Ddr/DGnS2S0QR+2UM4HUbz+khPp3nluYvIusyc9xDjMxGaS1XmJ04S+9AY0w+eoOWAbhq4toHq1/D7AgwGLq9eusGt5RWq+0XKpRLldgNTgVAgwMzoBB994lHuOnsYV7FxZBPRMbCxGRhtHGmAI6tI3gA4EguPnOOV515mP59HQ8IrySQyEX7wEx/iuc99hZbRw1Bluo6F6LooDND7Bn1HJ+aK7OsGdUmhduM1Dhw4wqjeYG/1NlnNz9LFl3n82Bk+f6FESFUQHJFKc49Ce5f4aJhqvcOIL4vdzJMNhlE8EaqNyjvW47vyeZ8466XTNvGqQ1/KLxnEZI2IGkHtyCRrKRbEY0S0DLHwHLFsGitmYQ1yXLr657y0fxl3NICmq0wPsjw0cg/C/gDX7EFYZ/yBA+Spstcqc+nWDRqNLm7PRGuLHFPnmQpNEE5M4k8EeOX6izR6+yBYyLJCzxHpOBYiAgZgI4DtoLkuqurh8OP38PTyRTZbazx4391cv3qNaqvNdqtOGYM+DobjYgsgigIRB2Y9PiaCEWTBZamUR5cEHMcl40+iaQotvUEilaRartHudBgLpPDIGlGfiDfiJShJHE7OoNUF6Dj0Ok2UsIp6MElua527Zk5R3eoy2p3FLevYoxLq2SSzf2MMI+BS0l3wePBpErLgsr2xx2c//0VeuHiD5sAkoGp4PRquImKJNrIroNmQjkc4c9dRPvjkI2TTIaxBGwETx7YRRQnXlcEMIGLgVT38h//p33D9mZuEg0msAOwOdkik0uyubWEaHpqyhOm6TMRjdDo11npNaoqI1xHJWApZwUNWCDIZTXEwlsJTN1iIj1GqVNGmVWpCg/R0hldfPU+90aFj9smOTbK5U0ILqIQElbDgohg6hj7gHxmld6THd2V5+12dcDiMV1VB72C2DWKRMAeiacy2y8HECUa0o1T2qlzJ32CSAxw+epTi9hb79SqCa3BwbJTKdo3p8Qn8wRj9dhdbV+gLHZ575QLjd88QjafZL5bxSkF8goekGkR2RfTOACEkEA4nCfjDNPQKPauHMxjQEVwE2YMkq1iGg+xK+EQPflHFFgUCaoRmtY3mSvT3m4g9l3ari+FaCOLwoW4ZB8d1sR0bVdI4NjPPWDBKYW+bczMHWauVaPR6OI7Ifr2OLMNursjk5CS93RxFQycTiaCGPZiDLp3egM3dTZJWlIXYLLW2Q66yj2PYOD2XplBGKqtMKiOYlo416kU8maJhV7C6Lt7YCI6qoRsDdMvhxtIqr5y/RGtgo/lDgIukqiheFUECyXLw2S52u8Pi5SssZDOk7z6NYYM3EsGxXXTDQnJkRFOk7zVwPQZzR+dY/PIyT8w+ii7pPL/Spb6+x4gUJhafBl0i5CpENQ+3asuYgkVH0DFEBwsTCRWvA3azhdkTCFkSg26R6fQEF+5cwQw4PPaRD5EZneBf/Ma/I2902dgfkEilKZdKHI+NEVf8yIJE0eq8Yz2+u1CZ48XSRXqWhWJDUNJYyB4g1A1gtcEfjJEOpYlORAkqO0hWl73rr3Fn5zoTh6fZX8qzvbzO3MhBVMmH6yokkxNofj+LW5fRqxYeMYJf8XD33L1sb+zhtWWC+AgIfuL+KJFUCk86iTcSoFnuIckyujnAxEJxPdgOOK6N6Mqo0jAuffDUMVxVxdJ7iLZJc68MpoPjuAiCjCABpoUEeACv7CWp+Yj5w/gUD/FgFDUYYL9axxIUHGuATxRxsGkbOvlqhabZR5BU/IJOrtljLBgigsbh7FGO+g7i7Uqk1Cwj9iwt1SIYEintbdDr9hik+vSkDolTYwhHA1SEMo4rsrW1zbXby7SbdQ7PzzE9d4BP/uAPcPX2bfr9PgFNIxYJUSjt0+00mUgk8OsOUS1EPKwRq9cRd/fxBP2I/jCS5sO0HVzHwZV7CAEwRYuTZ8+QXygzJU9hdPtU5cOsuhIBMcq8Oo+nZ6PZBs2mTjM2xeSR+/jZBw6xfPUq2186z9nkASIDDavZJWl4GfeESXkTCEqUh9//Y+Tqm/zpp76IEJIwvV6yEyNEp8aYnZ7k9c/+BbbTp9HuEBAUYuHYd0a8Zk+g0xn+8jWgSiiGiNtRUNsBzk2fRdNj7F2+Q0CSSMjG0ALcWMPjNejVdTrtPqGRJOFImttX1zhyz/108y18rh+/qXJm5DBS2WX15hIZOY2juujdNl5TQRFEzN4AyxpgO316dh/Bp2ILBrYrEJBCIGnouoHkgCKL6PYA23CQ/DLJdJSootLQHVrlGqZkI4gCpmSjer3otoFXUBAQiAdCiLrJ2tYm7WCIsMfH0soqdt8C08F0e5iuRcjrR1VUVAHsYIBCvc7y9gYxQYB4Aq+cJhDxMb1whmbNYPO5Z0hNZqjlNxDDPsKBNLLfwTggUtyrMnrMQ9ndxZYFFCXEH/7W/86FKzeQsZE/+kG+7xNHmZqZ5IEHz4FjIls2rm3Q6bQwem2kTo/CzSWKK6vIHZlGu8t6qULi2FE8Xg9ywoOqaAi2CarJQO8hyzLxbJqjZ44xGzxJ69oO2+0kHbNDXIoQK0mMKiFMqUc7qvDxv/0jjD9wmpBsk88e5NlrLcItBaHrguMnIYSQeyLdQRdX8nPwyD30bgmsvPIUHalDYmGC7U6dW1eusbK2SFqUmMpMMKoFKeT26Fr6d0a8iWiMvXIe03IRfSJW16FT65PFi9T1ouLH5w1j9hr0hTbrO2t0AwbHj51gu7SNZqk4FYcb+zc5mbqbVq6O0nMolNZRBYNOq0W7UKY7aJFMh5gOTFCu5fAKw/8rcEyDZi1PSA9iqCZdsU82naK4k6dj9hEMC9UR8SpeRFFgIFjokkvFqrFxfQOvbWOjYtgWJjb+cIi45mezUQFcVBFUUcIyDExTZ73WI98sIzugqAqSIGM4FgGPd9iZTZ2wN8DRQye4urKEJ6XQ7HaISAJBvw+P68Era9x5+TVU10t8cpy+x6QmVNjeruEbiXPukx8kdmoKqeSlpe6jOwa64eWV1y9w+84mti0TDvpIJ5PImAiWjVdx8GleNFHA1nvEgzIaETYuXUUzOoQEl7VbWxTkfUbGq8z6vUzOZem1LFRJJSBIGG4HTQfBEBA0B3FKYH+wzf5glVQ6gacu4nFEEqqK6PQoy1UOfeRhDn/kISg22P7KJQbbRR44+X6MpRIBOUC7WEAY9PBYNqIkYIs2/ZUNtm8sEcCLKNvs5wvk6mUarkWo7yfiH6Gz2yF4aJbUsWlub69+Z8QrYJJOR1GDEpMjcfYubbC3u8d0co58rozt6Jy+/17MfoWVwjX82TnKjS3WymVkRyXjxjk+eZKV5S1Cth+9Y5EcGUPxyOTytxE7Jgndj18K4HNCjJ4+SdWzRHlrB58DhqnTNtq4AQnJr6CFvDQGbXRsbEdABWQBVFHEVUXqnQY1p4M/H6Kc32ViLMV+0aHQaeAILrboYgsOhqmD7WI7DjoGXQDXpS26KK5A2OPHJ0kEJBXZ1khHEvTaHboDC7M9oJ6v0qu2UaN+Ah4/fg2OHT9G684+m7vbRNsdpqcOkZ6foqN0EAZQ7Td58Id/mOmPnqMbrhJ009R2djBNiWt3lvn0n36RdsdAVX3MTI0zPTGOawzQHQOvz4dHU1BxQdIQHBnRGDCezdJd2eBOqUWuOmAyKlCvN2jUK0yYLYxuHVkUECQV0zJxHQ+KomArNoc+dgx3sw/SGCz2CdyS0Et1XLND260hjLpMnxxn9Yt/TuvldcZTh0hEFrArFQqdMh6vgBKOkj42h5HfYXdni4AvSqdaQLQswrKC61j0axUk1yKJj2jfR0KNcnLyEClfli+/9AJls/kdEq/QQ1NlvKqKYFtoHolB30ZKRUjNnkX2Z7GDHqobO/j8cQ6deJj2l/+C7VvrxEMa5+afZOHAOcY8eYJyhEKjjXlyAjGbIL7ko3vtNma+SK/dxnE6dJe38fsieI4l0Dt9nIAHMetl3+izU9im5bZZrxcxHYEoKiNiBMPxoAgydbtB0S1Ts5tMyWNEkxH6zQH9gYEjCAxEi4bepdkbkPKrqIqHXqONa9vIgCQNZ9im69I0DQzTRrAsoqqXkWAMOZIgl8/RNns0u216goVjGAQjYQTF4VZhF7lZw2MLxOZnST94mpA3hCrpdC65RE4cIv3JuzCDOkq3jOhYDFDo6gpffukyLd0mFvIS8Kk88dBZ5ibSSIKJJHmRXBuzWcbVPGgeL0gygqwSnfMwbjuYHg+p67do1dtYiogoO7jtKr6Aiqpp9AYG9qCHI/joKTaCT0ALhJGmVVITGeR7+pjbGRq7FajW8XT8zN1zkGq/wYu//Vmmu2m8k2FuVS7S314nZos4toeIP4iQMei7K8iZEi2px6H3PcIDBxTcp+9QbQm4hsqkECPgG+NkappurUXMCSM0JGY8UySNxndGvDOTcXb265TzJVRbR1UkxqYPcOSBh8kGH8LerVG4cZHd29cZjcfpXt/l7pEznJ25C59XRwskEL0ZWs4AX2KEeEJHGomQq+UZnZxCXtplYBUJaUG8Xj+tXAECfsbOnUNSPQjjGeyoy6f/+F9R7VcZOTxGadsgl6uSklQkERzHxTEFLNdFUTzIVovbN6/z/pOP0Gv0cCwby7UwRQtHcBFcm1Q4Siwa53ZjGUESEG0XTQDBAX3Ya9FNC8MRMC2Z/x9t//Vsa37fd37vJ4eV487h7L3PDif26YhudAIaAAlCpEhxSIoqjcZlj6wLl8OVfeGyq+yaKo/tssdTKmlUMyNRGoqiKAaRIBGaaKQGOvfJcZ+d8145PDn74tj3QJW61p+wXuup5/dd39/n41oWYRIzSj20Wp7d3im90ANihoGLFEecKALfWr/BYm6F619/E7NQx98b0B118EKJr/7+f0bcFEn9AQV/RBQlhMj4mUBnMAAhpVpUmJussLo4iaZkyJKC57nkdRk1ihAyAVk2cL0QRIFMEKhcXOJyTqNZlHn0aBuzXGP24iJZ+uzHF4oKUZQRux7IkKUi1fokZqWGNbTwfBtxXkReblJPp9AiyFwLsWAQ3t3jN//BP8D9+JyHH99Fq0p4yohWGiIpNWQhZefpJmptzOyVAt3zDsnph+z9/GPy/gGzkyYXqxcxzIt0+0VkQSfIZLrDjMtr8xSVMdVc+YvBW85LpNN5tKFEHKeYisnS3Crx0CU42aZ3bwvreIu6ZmC1eth9l8r0HLMzqwxOtvGHA8y8TLfdp3LlEjPX1oiHHYKHO9jLAtpkicFmRLVUoDDZJB12GEU+Z91TOqM+aq+OMClhlnJ4HTjunZHzYZ0GM0YVNYYpcwpFzbNR3eBh7ynXm9fx/AG943PqlHju4gY/3b6JokoIkoyYyQRRxNFZC1XXUDUVdzRCEEXkFAQB3CAgJUOVJHRN4HH7hFhKyXIyJVNk2IuQTYUgjJgsGChOiiHKBH2H3fNDmo0nVMMTjG6AlTg8/ztfY+7NqwyyLmrmE6YeXhwgmxUca0RBCDB10MWYlYUpqpU8kgRJEjMajbBaQ6zuKcurl9EMHVkSiNNn43pZBrWg0lybIysXiDIVpVbGl6CQKyBrBeRMxk6gPxig6hKlJCbwXRTdQCvWCTLwhBQ3SZD8iGK+jEZKlgZ0dh+StnusLeQRSybnx3ew4pCZiQVypSI6I8SCQ/d8B1EyOf3s36NKIVPLEpXJHGY8jzMqk0QlPFWnJGkogkRxosbS8jxBq/XF4B1ZAzrDIZmiky+UUMYKDx7dZ+2FDTbvnjItlMkrEqkgEJsylakZBDMPik77sI/tR6y9NMPM3ALWqE/O90h3zyjtd1ALJYJgQJC5nPVG2MmIvj2kndr4/V3m1lfZebKNvTemenmCvd4J4anFEhNcV1bIkUfQRF689AKKoCMUyjRq8wR5n2JD4a//4x8SyyKl2QLFikl9ZRnD7fP4YI8wTOlbDtVCEc006I8tCqZJMrJJspRIyAgySAiJ8ZFSnyiN0DyFwYmHoYq8/dXXuX/nPhUzj3/c59L0Eo04R9iFD//yXdakaeakHKWXFrn2u1/FK2cIYoREhCKDF0ZIQojVPWWhqFIuVFi6tMLalTUKBYNMyDB0jdmpSax2gNUJ8P0RkishKM/m24qskCUxsZIRKjFW6nJydoreKJJXiiAb6GYV1Sghyjm6VsDY9oj3dzGLI+rz64iSQZAKyLqMpMpIKRhhSP/Dj7j/R39CeG8HxgmmWCdRdBYbk0xPLdI0GgS9U86PdxEGZ0gXCsw83yRzB4hxSHGhRhZlJCcxYd/l/KhPJEkIpDSbNYThLvJwB2909sXgzcwiqeuimzqCIDK/MEfRyDEKDyk2TU6OBshqAcXIM3X5KuV6HS9NyXJFcssraI4HcUipWaONy96Pfoz4cBd9OKRrdxlkForiMg4HDHptgiwh0QREQ6U4oyN4Ll6/y2efbxPHIU2zwVuzr5LbS5BilQSBJILx6SlCMWbt+ask9YQnR7fImUXGno3TPcElJAwDnu4f0rUcDFmmYhioGYx7fYr5AuVimY7jE0UBifrsyRaQ4Mc2miyipSLX5+aR44hRv0M5TFiYqBHGGZqYI+2FXJ1/DqcfIMh5rk1eIvMHmNcWiMoCfjIG38aME+QsQRYSKpJAPYlZ0hTKOY0JQyUvS0CGoiqkcYxARiFvcnF1lTBOaZ2fYuaLaIZJLEmkcUQS2vjOiMhzSCIfMU1QRRmijNAJSeMAo9xgdilj0G0zGo5IXZ9SnJCFEYJqIqcCeqKgZhrt23f46//qn7Ngj1jNF2iPznBzIcW1DW58+VeJzh0Gn29ij7vULi7QzULmf/tFxGYRI7I4/eB9cn4fb5hy94Nj6upz5JMCXmCjChm93XO00QmO3SeM/S8G7/b5GEXWmalNc75zwt2tbX7typfo2UfMrV1mxx0xM/kci9dfZe/hU6SKQbGSwxvbRHmVibkpMstGKijMTy5zducOYRIiSwn+sIuVDolCGz/zqBbriBlYwZCTXofN954SZQlSAnEuo5ApzJvTXGyuoAxdup0eduixe/tTclIdITXIzcxhSS3ubz3G1yXcIKLbOqCnJhw/fcIocFEEATGKETORer2IIUg0mlOcHR+TpRmSJFKrVxn5LpbjEqcgilCQFP4Xv/P7MBzx7T/7Y4xxyHSxyuPdfVQrI69ohE/GrBXXqZbmyBXLHNCjtFojzRzS2COfZmhRhBAHSKQURZHJGD7b3GLxucu0t7Yo1YqUpp4t6JiKgpglxHHMYDhCN/JEUUyWJiSBh+c5BJ6NnAR4gx5aljJfb5BXVAxRIg0jBCnG9cd4fsD09By16XkOdnawbA/fDyjkBURVJCFBijLkVOfJD+4wetonyQOmSKaJqPN1Ln7jHTS1yf4Pfshg+xizkFKeXyHRTM5HKYPTba5N1ujsJUxJZYRhQnTepjht0GjM0rNDDENm/2ST484AKa8ydXXji8F70rUp6yoj2cHadVguT/L2jV/l4OFDztsdpKKCnw4Yn2+z//AWe09vcu35y/SPz6jIVbqnQ0LHpixPI3VDNF0iXqrjxzpnu6f4YYxZqiL1LCJRRS+YRD0bL0wZ+RZFs8BEsYQU2diCBMOQvZ0D3lx+Hde9TzAOyZllMlFmcX2JrtXi7vEH7LrH9P0OQTxmHLucBA4jIUXJ50g9DyGJWJ6aYqJY5OjohAW5wERzgVHks909RpBUUnyECBBEojQlECI+unMLyXVJFBXXCxFTmSv1RdQxXFGWKPcNTK1JkGnErRZeVUDdmCLARcpS5CSFOCFTZRRdIOw59Ld2MZ2QzY8+R1yaYe2FG3ieh2xqZKSEkU+UZCSChp4rMZkvkSUJaeijkCDJ4Ns27nCALBXQCwaKJBBHAYkYk0oacarhJhHDsU2+UKQ5u4xh2ciyjBR7pI5PIovEToaw52BujVjKLdJoSPSsQ5J8ges3XkexRPbu3MLtBphSDsGzOL13zlCz2Fh5CVOucvA3n5Lv5bh164jJyTlmpl4gJxTIkhjNKGLWC+StLmdjH1XPUX/7G18M3tEoZqFcoy6WiTybVy+/TtGdZtJI2Nm5zUQjx+joIWUvIjnZpVTN8eGffQhJQjEuIyUK9YsXOX14Sq3apFQu0XjnBsZClaO/CplyMtTQYNO6Q21qkY2vvI5y832srVuMR0fUJ2aQPR9pFPLi5AaDtseoP8aZjVBNk3zkERMTpAGiIXDz47/lL598n+1on1AM0CWVRIYQmXHsUzMMcoJAOhzi93pAxvXyNL/9wtewQo+/ffQRrmfhpAJCqlATNVRZpRX4BGnEX37wI+ZmJrlwYZa9kzZCz0Z34X928fe5Ur9EX7LxjBLVxQtkbo9KTUFbrBMpx8ipgChAJolkmkoY+Yi+h9vpkXYdZEOmoOYQE4EkTtEVBUnISJNnuxjFygSCopI3ddzRkCAKEZMIIQqw+h1sa0S5kicjIRVj/MQlERSSYIwoFyiVJolT6I1c9FyRysQsYuSSejZEEZpWQTwbEHxnk+ZeyGR1g+aVCeL0hAe3PkEKdfwTF1mvMP/iIvbODv74jOODTWItpX3HpbkwzeH9BMPNEYdl3Pwiq6+/g3vS5uzeJmZ5iuLEBNOWieXFBP6IhC9oJZIs5eRkgLfnsl6cZXlmns07NzF1ky+/8Xc433/KXFPHPQ340uXnyJQQd7CLG0UUpqaZnVhAUXQuzs3jRQHyZAXpwiyxKeC5CcHuKblIQtIkvDSiNxqilIuoRZ2obzE8PaKYb6BnKkKQUirUqdaWUBbmcE73ifWUNK9z5bU3KCwvsVCLMHofoTklxk4XJw4IhRg/jSkoCm6niwJUJA3CiPFRi1cvLXH8yS0m1pbwzjqUFIX19UVGoyH7D7aRUhnDrNJyBwROROwF/OD2Peq6yVuzaxRbEc18k8QVKF25ThZGGM0yw+MuxtoiYuohZxGREKCILrIUkOoqWRggJlCYqFBZbBJkCY5vE7gWOc8CTyROI2J3TJZmpIJEiA5iRgykooyQgDe2GXd7pElKJkAmQkaKJAgkmUiCTCjIGPkKSSQSRimiHaLHIpH67LCnjn0G9x5y8gc/I3vvmIXcFLGcolcXST2NlY0lihfniMQpDCtBm5hBWamQjIfED/MEoyEHd86RkiL19bcpKjoHj/Y5bNkkP71JPV+CWMBrtfAJkYIhRmwTuwHOT/+GBr//nx6vroGml6nWJznZOmXgHjJh6rRaZ1zMvUFJDfGOT5kuznP/9s8ZZ0OuX7lBkKpMvPHryJLI+OZ91I7H9vCMiy9fZtDqUY+hMtZwuz5eMKSTDjn097h5+DPayYDToEtJlpjRm1SVEpopYzsxS+vrvPqV30Q1m3Q//iFW2ONk6OC067x+Y5ELL13miv8y5498jg8GDAObYqlE4toIaUpJUSmqGmoU0dCKrOZruL0+BTnBs4actPeJDIlcW0KWZQQyJEHCSGQ0rYwgRsRnFnEYcOyF3O7v8Io6x8npKZFpMn2lQdQ+4uTgKeVGiWxlAkHy0dKIVHKR4wG4IzAKGKLGuH1IZbnMRLKGbbmkRZM084mGHRIxoNs9QxUzVFVBlDXiyCRMIiRJI8lExBTaZ+ecHh5RLOURxAyyCHc0oCzWEVSNTDUo1mbJ9Bp+YIMMlUIJNQoZhD5azeTBez/m+3/wh1w/Frlgi3StfagXqYwU0qCPqEaE8RBPNGCiSuHqNOr6JHG3T/niHGF7wCd//h2qk89T+PVLpInH0f/4h8jOPklrQC4uI6QlyFLcU5so9ZCSCCkZcX7vQxZ/QY+/FF4pVdjYmEX1Je7fa/Gz2z/mf/mr/zlCFBAc9+hvH5H5Az7Yu0WlapCNA1LNpJxrkpy0UdeWicg43d/DmCqTuC55U8N3xtRyOXK1Jv1egBD3GEUniGaCFY5JkajkL3B55XUON7eJfIFqrs60UWdw1OXp/Q8JBYmjyMIrSbx/+32SssCx3+UnTz/h04PbBGmKICv4QYQdRggCpKRM5ArMG2Wurqzya9/8Nf7N//v/g2yYqFJKMVdhEFo8ebRLLIqIiYIqpEw06ow9i9Afk1M0ppMMH7hSnafYhfFohGC1qB4eki+pBGmCWCmSSTGxJJGkMWICpCqZoOOMPZzBiDDuY+Rh6fpFvACUvEmYpTijMd3WGWOrRyGnUykUkBUNQQuRzATJMCH0CVwH23bIRIkojogDF0WRSayQIIvBrJKRR02zZ70cmkKqSnQFH1VO0RKZ4Sd3uf/u31Il5MqFORLrmChKSGU4Pd7BzGJSWSU9GxBVKtTXJ8gkSAYusqBArggTEsl8g6CkUSgbYIe4AmSqRuoltPtddMVEUzTkVETKUowgj5dahO4XFLS3MjvP7/7ON/nsw4+wz6vEUcj33n2Pq1Ov0LXOONtrM3+jRn1tiotX17nz3ifsKzKXNy6z++2f0Tg6ozxTQymabG8/ZfTDn9F87RKiKeGXZc4HZ5QLOZRQwBn0KJoaGhKFrMabr/026xM3ONz+YyRRQwkN9j5+QrPqYCgK1974KtX9JsXnJvin//L/xr/93r+kL1rsRWMiISaTZXRJJ04iMgQURUbKBCQvZG11jaJp8N7Pf8Sh2yPKUoZthXbsIMoScpCRE1RUsUgag9NxyGRQU42qVgQ0Bp6DOA5ZbCwxZU6RdCWEIMI76VKbn2Prw58x+fzLhABSRBYnBImCJFdI0hBJFRkmPkrqodYryFIez/YY9QekYUiaxexsbqEZMhem55ASEFSVUq1KUnh2ABr1eqSZiJYr4IYOXhCRy6UoWULkjHGcGLIqZi2hKmjYukSiq/zs1ic8uPUpF0465PYPsFq7rPkO0niMqscYRYV8s0omgrvZZvrVNxmNU5SaitKoEkcB4WCMbCUIkoy2sMjG3/sVZEUl1QVSDJ5/56u08vcZ/PwuThIQA0mioadgyjo1uQyRjZUOvhi8taLOD37wQx7ef8z61ASXKpd4Z+abiC0TdVii+PoCneQeF65cxLd69EKXL735FqZcRVNVDh48wK3fYOErr6MMO9jDPsWlGcwLVU4+v4kiCaRZSOBEiJlBWZ4mX85TqF7khcuvYQwVnnvhDWLPxT7uEJ+PaEg6IQLOcZtSrsrhk12ub1zho6c/RtEiTFlgaAuIWUIauyiSTEU1KJkGC7kyRhByOugi5xR2D/YpGXk0VWb7cJdB6FIoFKiXmgjjiOmsTJJmWCn0Ah9DUfGsAD8NIBFJVInp9TWWJl/E/vwUZ/+QNBkTDoeYUoh9eExNuoyTRUBKopqIsknqxUhiGbWxjN09JBZEDEMm9Z91xGVhRBh6XL5yhZPWKRkipq4ThD690yPOkxjX81AVDVlUSAQdNwmxQhEtkolSEU1VkQp11MoUkWhwfN7nUafN8XmLO9uPOTjYIR9nXFtZY0yPQs/HdD2iICFvGhhSxun9B2RRniRIUct5tHyJNBNIw4C4OyLq+siahmAo1CcngYSYlESA4vIyWihx/tkdPNehognPZsqJhIaMKiqUlDxZ/AU9ee/cOqQxl8fQSmxsvMlbq1+h2J5GzErc//gjikpMdVnnkz/9GeWcTnQeoPoiJ1uPiLyYUUlh/ZuvEioC01eW0dQNrN0T7v3JnzK8/RBjNMBSM6Zra0ypzxHZMV//5n+GL4qIJwHjdpv5tWv0z9ucPT0nlya4rVMkVSKu5ijMT7PeKNLpb5FEPongISOQF0TkVKCq6uilIqSQDUasTzexsoAfPb5N7mCT+XyZ640Z/ud//x/yw0d3+fiv/gjPHVMyqyxWG7wsL5I6GZ8MWyRJRpSAKEjMlRts947JZIOPb9+lcmmSklFEtgcUJZm01aVY0hkfdUh6LnE1JIsC7EhFEFVUfYowCFEXJcrlJWq1DNseUjBLqIJM6AaQpURJwPSFJcKxSzi2kBSRfCYT+C5Z4DIcjZH1EgEGaBqOUCGJyhT1EpqeQ9brZLHJw4/v8TfffY801VidXyUTRMy0ysnohO+d36RQg8kXllFv7tBIZMaSxOOoQ38+RzmeoBQLuAOPkuURHZ6QxAnmcIzz5AjJjxHPGuTeuEKqPjsQqppBZI04OT6gJYyIFJt20qaqyNSTHEmiUcgEdM1Ez37x3IZfbqtMUVldf46D7accbp3wFze/xz/56v+WwHJJpRQ/8rj7k0cIaUxxqcbzl67hPHxK/6BFlMVQLxONXPzjM5xej6P2Ob0nmxjDMRNBTCxpdLOElcUrzM9eYfz0nNGuhTFR4/Rwn9HRKbOi8Gz5XM0hZWMkIYIkQsqp1Ncu8sMf/inbmzuQZpDJaIpK6tmUjRxGFlHTVaIwZUzCabfFaWTjCBlxltIOfDbbJ/z1e99nu9+hKCt4SYQ/GpLkNfrWOROFafI5k74bkSQJCgp6qDAlNUj8iFhNGfshRUOjND+D7PVwXYdh55zWkwEzgytIeZHEe9bBi5pi6hqCpKKVFhBMHS08xY0FRFVB0XJEqUQUhwiSgCoISGjIsoY/apP6PqoqUa2U8WKLWFKRJQVNksGo4GU5HFdkcNbhyd5N9lpjQskgEWVKkoHvBBSrZRxBwYp8xsc7vCZXCBIX30uJlARrfoqb1ohMqTDXkin2xoRmjsnJCTB04pGFKgkkgY+zf4ZojTBmmwiTFVRNQQgjjvf3GdpDtKbJ+fkpshEhqBKSlJA4KmmmI6cZdvKLZ5z+UnhPhw7/4c+/h5kJWLLFG9NvoqglxHpEY7VCc3Yd8+cFBrtdHLvK1NoaJ91tKgs1mt/4OvGTfTb/6R8h2A4TUzNMKBnmOEZ1EiRFJZ6a5sIrb1JevMDWX/8QpeNilioU52aZXL5E0nGJDjqU6xNk+SqBN6JaVtg922JutoivREhaDk0pIsd5vGjMOBIQMBHImKqZbMxN8fDpAfLiDKdZxP7pEMHUGXgh3cSjG0cMn97C1AymckVCd4wUJsSRQzI1w8+37tLPFIRcgXxiUEl0Xl9+ibPTNpId8eWrX2L+a99EEGu0f/o+QauFRkgpX8aol1FCFWFs0No+o7g8xdD3GNnHmKUCckkiGniYbkxRMOhaHmqhhqjpRLZN4nrEcYygyChVA8QIr+8gRAmGaqCa4IcaJTOHkUYcjRw+Ozzl4eE5Yy/A9V1U0yAVJcxqifHY51wQ8USPLHUxqhJTQZG3R1A/GSCaBTaJeHQ+4DyW2Wg0ePXydfr9gLQ5h3xhhmLFoFivwDhCKmtInke02eWs0yV/4zKll26Q6Qk5QaJ8eYU72z/gSXTAK29fYnqhhnkq0f20Ta/tIQUZLj7Xvgi81XqJ1plHmoAX+Ei6SiRGHO0/Qs0r5NYuUDyOsDoJuakF9Nk58oZDcXUZkRgliFnI8siyxmi3RSLESEmKKGsIaoZq5KFUI/JCXN+nqgiYmkR76zFyY4bU0EmzGN8ZM+i10QXouRZxTsGYrpFbnCEWE0q5Apeal3GOn9CPPFRBJQwdWu0h0eAu577PwFYYEuOHMbIgkQjgknIehWRhSEGwaGgaL7/wHCuz07T3DznYO6QyVcXu+DiRj5jIaLLO8zfe4Ex9wvG9J2ixQNAfoeU1jnonWN0TJlOYX7yCr4mk5yPkep5ee0hjdRk5fTYV8K2IOHYRnB4MO/iuyyhKyHSd+tQ0mpYQRQnIAbIkEachgipjmDlC61nWgiCpiGmGESZw3sFqjUgdgcQNiZJn5YliJhCnKSKgqyJBYBNnRchSFFlkeaqB+XifzPWJzCJ9NyQcBdRDDdPukRohwkSVqS+/SFI0CNMIQ5FAEcmyBN8aYoQZYX9MdHxOujJArJVQDZXA7bHfOUQsK9i5kOOoRVMqMBCGqLKCnKlkav4X9vjLXcCM+hRVGSNVEBOR+wcf83/5f/wTJqQm/+h3/3ekoc64e86FKwuUZucJPBdjdoGsVOTg239D+OiAkiUghBl1o4FZKjHsHBFkLqKSEWYSyf4Rd/fOWZ29QtodoCQhZ0+3MMWE1d9+k4gRZALzmwp7n91i+/ycoRiT3brFi40G3uCAqNfhSnkVyZDIc0ZbcQgzBVUWKNXLuL02siQiOw5JFpCTJfJFnTQncdIaocsqnudyHLkc3LlF/ulDqgn8ly9/mZcuXePdn93m7r0tvvb8b3F55SWUoYzQSZhVTArWiNPvvUftymXWXl7DrvqMHt9mML7H/uce07WUqeefZ/0br4NSoJxJONKANBqTnp2iiD521CfKIshkhu0ukxNzVIwiT3YO8e0R9VoNSYZEUAgSFS/N46egKJCzDqkMIqTHR1wTA1auLuNKBp92FVIbvJFHls+R+RpRFGCqOrbl4EUxDVlirmGiXzaQ9QXOuiH6WcaaKtJcmmT26ivoi89RuPAC4tQMqZzCYMBwdx/n/iMms4x8KU/W6VP0QtztLUbrTcrLL1KcnCJ2NTItJt/UOY+GjDoZZ/unpM6YklLh+ZffYnrt8heD99LEFKW1JuORz9H2IV2nRc5LWVmYxz49Q7A87FaHel1jtL/PWE3RhRre0SG9g1MmcyVkLyR0HULbwUhFDEElChz8OKCy1GTvpE3ZLFEsFHC6fTonR5hKSlGMiUfnHA0eU6uWeLr9EXJVptfqM4oijrY2KWYSmg1lvUkkwOTcBDsHp8ixhxvbtDyPntth4/Ilbrz0HN//9l+hjCP0NGVjZgY/p8LwPq9cXmBtbZ2/+I/fZ2/kMQh8UFRO4oRlER49fcpkY4bX3/oKuazC4Q8+Je4PMcMYu9UiVnPkixqJLtFvn2D1zxn2E0aqTLq1zWR8mcRQybSEVBARJRUhMGGsE4cZiWgimxJqpuKlEuMwo1ZrotemGbgRWWkGXdOJj7eIsAnVlNi3iQYtGjmB1ekpbLuFoATYjRDDKDO0hqhRTE4QEFPIRi5e7CPJEugGXvysTXN43oZigbhWxB10kYKUeq4CHohmBW1+CfJlEBUkIcGUdbIYhmlCxx4S+zYFWSQfpehhwqDbp6IqUFYZtnaJHR//zCaVTM7PbaRhihGBcSFHMq3xydaH/MYXgXfGKFOq1Wj3N+lGIybNPG89/xKr2TTdz+6TTUxx5cISAjqtbpeZ569gCxGtsz4No0ozP4FjtamXC6h+hDfuk4kCUSZho5B2bZaXN9ArTVq7e4zbx8ROG91MKWszPP7we7z/5AdYyRilkGMQBtiZTxIn/NrlNxk82eSFxSukdYM//fgvuD+4j5uMyVL32XKKJqOKIidPN5FO9nlB8Hnt1VXiOGOYSXyyf8hbczNUW+dMqHn+4coLfLB5yK3AYxwG/PHPP+FHtx+wmJWw+i53vve3qJbMRmGGNIpJQ48g8VAbGonV5fMPP6N/ukkhDciyhNCLOXm4j/Tn7/Pcr7xGMiMTyCmxBqKYYRZqxCOLWAzwSMk1ZpAymV6gkoYy9ZXnqCxsEIpFxFQh7z+LbZKEPsGZRWd7kyh2yS9WmF9VWJmYwMwZbG+F3LTaqGoBPw2IEHADaJQMPHeMktfx4pAdV0RHoN0ekvd7FFyZqNtnpr6AWmjQOuxx6n6KZByRaQZ5XadZqJIT8iy8/Tbh/j5nvs/woI3ScREzkaQ7IO0PQNa4+ZMfURU1hv0RtVyOyeIFngw28QsZE69fxKkHdFrHv7DHXwrvg60trKePEYsGG9cXUIcRo24HMTdLKSvSrNZpP9lEk0zKa+uMB11sEy489xydH7zP1q27rM2uE/t9gsAGScBXBULNID85h1at03ccdPqYtRJ2WyYaePj+mGD3PoduF9/1sISQ7mBEP/Xx05AmJpubN5mkiFFSkBomvuoxSsbEmYtEhiqo+IIMaUIliljVRF5fmqJgiPzw/iN65KjkqzTVHG+tXMU9tRk+7fPm1IvkvJhPjx7ipT0iPyNJMpRM5mBrm4ZYYZwZKDkFP1OIpQzLsZgCrNBGNHREFTzHRZB0Qifmzp/8nIXiDLW3VsnXFAI9e7ZMJKXIIggIuLaLUojxs4xUiukPRkxNTJIQIcg6YSIj6hqKKjFpVth6cI/I8lHEjG7LoT53Ad/1SPJl8pKMmfZRlBJ+7JDP15heWmF8ekgOFUESCeOMYeBxxxswEAL+i7XLdG7tY2spvuTyZPM+ZzcfMb3yMvOL1xEFjZ7lkEYipWad/IsbGNNNFr/yKu79baJPNkn9gEG7TfHOXYQJA+vo2UKSqRqYRhEtX8fMn1CZypHLaTijHv54+MXgbQshgiajiwo7j89YwMRs6KiCQtz3ifaOiAc97KCNn7nYBYXLv/4OWZbQ75+xsrRENLAJM5dAdwnlhKEmUrl2mfzFNUpTC+z9+GOEkkrtwhzj4Q7OWMR1fEZWi5e+8WssKd/kj/7yX3PubmMpGUKaUmvW2LW2OXQj5sxFuiOf4/iQkeQRRzELlVmQdIa9cxxCFA0uFk3Ubpe0kHHlleu4fhl9UEIdZfRv+kTtjIVkCaE3QaBJfPM3foXPNn/IsHWKboGcilxaXmemMoU5McmjD39KZKTops705BLq0grLkUUwOsMfd3B7Xa698XXM+jS3/9X/RPDdc2JzAmFOJpoKyOSIyB2hyhlCFiKlCQopqSASJCGJm6AKNQxDIiLCTlzQbRYaJjt//B8o9fpcmprhtNdClhZIy6+y5z/lzr1T7u4JREaDyDQpT8yR+XB4sI8pgSTLlDUNUxRw9894odFkyteIbx9S1AOsKwoPhRYjxaJWmOV6pYLQG9BoLBPYAannoRQirPMzzLV5pJUpcuUCabOBfXTOXGhheB63vvdTBkd79CKfQRqzubdLIp+SJD5By+Xpz+5QU3TEY/eLwfvm175E52zMzQ8fUgpVLi9dQrI0PC8hJ+m0T07JUgdVzxEbIqEU8dOffJfO3i4XPJGTcUaeHGE8Rp/QMOZrSHmDiVeeRyzW6Bx1iOWUqY1l4tTntHuCLAqYeoFQ0TBmLzBjarz46hs8/uAcLxyhCxlWZFMtVjlzWjwePsKRBfrBELGQwx1aDJMIExEti0ilhHaQMCLjhYvz9MSUh3f3MbMpvjJzjf64z9mJTYUShlhAiDTeevV16hsX0IMxP91/l7pSYqI+SbXSxItj9u58ytG4xevf+halfA5rr83xg/ucHe/iY3Nw9Jgsgxl3yGz1CheKC5zfP+aRf4KyUeaFf/QKmZriOBayJpOlGUImIAGaJKPIKpKiIMQ+siyQRDZyHKILPlnrmPzpKbLl04tT+raDUUzwZBs7GPHlS/Pk3THFMKabC9l3dnBGMaaQJ1Y1rDSjIEjUDJPnJxe4Hgokeyd0zR655/L4hYyzXh9Rz7jaaBJYYwxJRw1jBr0eWq3MSEh48PA+S2WFxYsXyWSVxPbIlQyydovYGrK994Re2OccmwExdgZRGj3bhOtGmE5MpuaQnF/c4y+FtynK5MUCw7TAhrnCirvA29ffIS/WUcUao1s/Qk0hM0ymv/VVZpomLe+cp//8c4TxgKUrq3gdD1GVKa/XOPLa+LFO3utSrjUZn56QCRFCMKZ/dMB4PER1HUxBRMGk8/l9uppFriqB6JEKEX6Scjbs0REcwjTGuf8hei7HmWPTzVLsLMH3+jRkmXkN1teXEcWQo+4Z96hSK02jRAmvvfbbzMx9FcPcpKg9haFFYocopkZtYgrfSXl0c5dJeYHnF9dJgZPjFovLS1h7Djk5T3Y+YL/7lP7RIZms0MViz91nkHQQBBHrp3/Ow8d3EB2HSBL42tf+IepGE0UWiCSXUHGRNQkUAVFT8WMRzTRRNQPD1ImjkCSIQRKoFwrYdw7ofv9dxP0OVRHEaoFjUWAk2Gwd/JiZWYUVUUC0u1TjApuSwrHbRc1UclKORFDIZBM/EkiylMAf0+uPUPDoFYvoqsrkYonqfEb/KKAyeYFmdAnNLzPseQxrGrVrc5QvL/NiQUPLmURxghsHmJNVECbYfXSTva0H3I2O6Qgh52JKmEKSCjhZRiLCMAEzVqiqRepy+sXg3f7pXQphid+48BavzX4ZxgL18iKiUqS3d0asyvg9B5IY79FdlGGJsTCmN27TVDVylRxEAo5ns3e4g2ck6MYkg4N95MCkbubQ8jnaJ3sc7TzFdSzUFKI0xpBERr0Wt0e3uT16glmGV+oXefTgKUmWMow8bBKsrkszqZIhE0Y+qDJ2EnJRV/jWjed4+dIVTvrnfPjAoaNpPN064uxkwJWew/KKSiDLOPaYwO6jJBJi6hBGHk6/x8vPvUUzXyDt99k+3MW2HaRyiXq5it1uc3TnPr5rIRESCyKVyTznocwwjZEkkZF7hrMzRsGk2pggP1nHnJzHkceESUyayAgoSFoRUxFJJY1MUJFUgyQDUZQRBBHN0JHGQ3qf3KL76ROm/RS1ohMPHeYnS+Q2pth99IR0qs69rVMePu0yihc4i2XyygKpFxGTkskJcRQhZjkcz6WdunT9c5LMQzRmELtjNgo+tZKCVtSx5ICxkDLYOsSxQxZev0H961+GSg4pCpGihGTkkq83kGwfd+8QVwy5efaY/cxnIIKngBiLZLFAkGU4aUZChh7FVIMAXdJ+YY+/VMTpn6z/r7g4vcx4p40ZmwiCxtT6GpXFBcRqmaR7yu57f41r9XDEiKUbV/EMhdu3PmNWM1hfeZFCeR77yTZxp006U6L0xnMIkoLnhOQ1jfs3f8KDRx+jKSLJIODS5Cq6ovDk/D5BI2RQj/npo5ukkk5Zz+PbPtVqjX27x5k9QslSEl1hYXqO/tDhxBqhRD4vl0yem6mTaiUOxxZPui1yhoLTGnG1usBLMy+h+jUaQo7h023CNKY+OcvyletoU4sIfsTWnUdMT0zw5Mlt2qMOmiAxVaujjy0IXILYQhUVDEkly9eofP3LfHbwAT/85M9A8JiXZ8mSPBYxk4bG5MwK/uISz/+vf51cw0LzN9FSBVeZQDTzREKKoD7Da9k2hq5RyOURDj7Bev/bxB/dh5MulVIBr9tFLau4kwK9isnWqcVBmKOnVGjZRdpjlYFjkyvrhIGPlBUQaym+kFCiSiFKkdMjOuMz3KRAuTRPoa4Si8fMTdisV2BRnOKC+irheInaxgsUVmdQqnUyISOVE4hCJCcmsWPOvvseZ/c+4Wb3Pk4pY2Cq7B61ONo9Qc4ExmGELciM0piQlAoi04LCvKzyR+H4F/L4y43KcotszF/H1S2e3NukuXCBmVdeIVNFgpxKGPXIFprY5w5fevWr9LoD9p4e0ijOMVWrchC4rE9XCXdVRDTiYcDmpzeprC4gk9E7POTB5k84H53gCyFaokI3oaoVcCWXjY3LDAsex8fH+OMIwZKYqy9wPO6QRSGaKBBl0HFDZmSJxQuL+KfHOJ02qSDgZBHbh9t0/Yz5lUW80MMbOPhBwObOI157/u9QLU7zZOsOqShiGCL7rSMaacbe3h4n+2eMnQFOFJOEGbEQMm53KBVLmLpGZIuQRjik1GpNko6LbAlomYImy8w2LhKGBk7vGCsNcd0jGnqDYiHDVDOiSCfKTNRSHTlXRBUyEiHEGgfErkpjromcbrJz+h32Hv6AVU2nOZcntH0ELSNXUElEkF0X0U8Y9yzamkhWrWEYOoEVopoghhLpSMLUNDQxQYsVktRBzskoskFBrFDRCiDEuImAKOvoBZGpqVlmGquk8ksos5d4ljIugiiRBg6hG2AKCnGa4IcOF2+sU59ep35lkf/2X/x3EIUIUUwmCEhkKCmoKETEOGS0sogo+oJeGzauvEirO0BSc2y88zUkUcT2HIxiFad7RqxFWFWB07bPoKBweuqz8fyr5AoVzDhmYaZB1rWRJZkwryGKMf7xEVv2DoPxKY51wurVdRphk6f7R5yeHVPJWQiij2+HfPjB5wRCyJJQR89kZpeW6KkJu+0zxCShhMg5Gcgp2/sHVHJdumFIKadilAsUGlVKcULnpE+71aZRK3Jt9SKdnVOuvHCdiflZ7m5t0Z2UKal57p4+pqKX0Q738YIAlwinGyMJCjIZ89OTrK6tcv/JbexBl6lMxkwyxrLMVLPO3u4x9smAVWUd2dBZmHuZiQtXaZw/oPRClcm3Z9EzgUff/wv0osjGb34DL1dBFFUSMUGSBIgMSoZCo2AjWt9mdPo96tU2pa9No2zZiOcJ1sCikFMYuh5KNY+iamTCiEZJJE08BuePqMhlVmWdsOsjaDmeKAWIpGcpmgWBIPYw9YSlcoXRmYXU3sIJbWpNeHnmEhuzRaxuQq8qU5+fJNNUhCwhEwRSL8A77yMELpkmkYUBcTFDWbvApx/9DXf/6i94cu8BWRhTyAQSUsgyNAQyBEJRJBJSxhmkv/iLwC+HN+zYNGvTCJKGXm1gWyPufvgRV15+jkz0ODy6y/s/+x4vvvoSY6vN7Mo8nWOLqaV1ju4+ZDISYe+UQqWC8eI64aDN8JMTtjbvcB6fUMwbZILJl19/h7XnPP70r/4nxFLM4vws9z96jD9KSISQCbVBUyqQtGPGDKhWGsihyGDYRURAkQS0NMHt9RFlARSJvFxFlXRWpufIq0WenJyjxSm6CZoMR+MWH3/nj/EkgYPeAXlkZoQCOUVFTBOiKCYRwRZcXDFBEQLKhokgnfFng08JfIfn5CbzYoG6OccoSijUJrhcrOLJIY6QMDt3ndrEBUqvTSKt6nz24V/Sf7zDpz/4CcsvP8fV3/ldEttFruXIJAMxUlAQyIItzrbeI+/8ACnYptPzKOWmiUWFLPMplPIomUyoS8gNk92tQ879lNrMNNOaycHtfUoDn9VCDXmc0I187lUEMn0aVS0TpyGy7CPbAxakItZoSGSH+FmK0I5w7x6yvyni2AaLdR18CSHxyaIxsW+Rej7K2CMeW5yN21j9E4SKxk8ef8r/8G//PTONEhdLNUatIX4WkkrgiwlyqiALEZmQME5TxAwK4i/+zvtL4R3sHGKGIsOxS2U2RC3nqUQR0c429SuL2IHPly7M8Orzl0EwUbU6NSFEIaVRzXPywafEXsji3/8GwtevED3ewvssJifIaLJG30nonstkyTRzEyZ/5xu/w62732P/7JRMElERqOSbTJWmKWYazbULbG99wos3XuaT2+8T+x5NEYRwTFWEVAA1yagaGmaUcXD/KbMLS9T1Iop/RPfglKxcxk98fnjnAyIqRIKIkAYYaJiqhqZKaImIohrEns8wHnCQdNGyhEfbjxjtRByKDgkZo8jiijjJi8MK/tYuF155nfmFJcR6CSeLOL61SXjrHrVKwpM/e8Sf/g//goqc4/V3foOX/v7f5fSje9z94V/wzf/r/xnyk+iyjJK2+fl3/xl7t3/I1VmdxTmDpOVz72iP5eY6zXwGSYJn2wRKiFZUGKUpdiZQ1VUsy+HiXJ4LvsoFtY6UjNg86+CIHmmhTinXQBU8JHvEjJBxRZXI5auEekRS1HDEmMHemIf7fZ6/8jrVYQFhp0/gHIA6IlZHiGKC2xqwfecRTx/dY359BsVY4J/+m3+DIiXUNJO5pEQ+iQgzFT8KCcUISRRI0xhFzHBSMAWZGbXwxeA1FAW320X0YkJOyWkLTCYJ48cP6D38gL59Sqq7vPuv/pCNay9SrsxzcOuYqeUNqrkczcU5TgjJvbWOX4R2OGQQRYR+youXvkyuMc/K9W9QUCq0t3eYmZzHv3CDQe+YhaLC1r2n+GlMX0+orCxiT1aIehrtYZuBa4GasTw5gzGWEC2bq0sLPDo9R44ywt4QkpDPbt8nklXqtTqynDHqdUFQUHSRyE+REShLBkU00iTBcR1ERUSURbzYw4tdEmxsYoaCwzALEESJiXIdYyShy0WWyxcYJQKViSlESSVBItcssfpqnrPvvkv3vZt4ZsLsV77G5PQ0b/z6f46Sz/HhH/5rnHAPWdlCVnaRwiNG+/t4e5/QjF1mS3XUzGdxYYGj/X2iscNJ2yc3DFAnahTnahgFkfWFabp3epzudui7DvMVE8d1GYw9LhRNvFhi2VSxaxVcUcUQRGZMnVeUMrOjEM1JCLIMqarilgsImU6BKo3cNOGTc7qtXdrdU9Kyxca3VpAqEEk9Huy8z8yFOS6/cZX//s/+in53QBXo7Z1zrV5lojCP7zhYsYWTemQZSGlCPo1QRIWyYFAJjS8G7/TSLN5JmyDw4egEr3WK3dvF9lukko8iCTSqk8ROh6MnexyP9imGZaT0lFYSUL94ieaFBYRYpP3uJ0idDnmliJFfZaX2CgM35vyzR4z0hP29+/S8ETMbG+SFRUp5mRderPKdj/6WzcObWEefUZyZoB8MOHl0QJj4CCJcmrlOIvuIqc9s1SBKy0ROStoeIqQJrviswWbYH1ASBebKFS4tLWF58Mn9A9IY8qmESoabeeAJjLyQFJEIAU3QKGYSrpCgKip6FHOjvMLvvf2bDG8eUw9NhCGUijn8T26RxTK9okbh7WvkcjK1pTpPvruPfPkC/8c/+yMyt8/+v36P7rufc3Wjxuw//G1k/UNkqUUy3mHrr+5yrbKGK6qookqSaIxGDuuvzRO3Q+6932IlAq0zRE0nSTyBqiuwJOU5iiK6mUharnIaWeyfWYwqIWpR5BsLU/zUzUh1DSVMeW5iGu3mFs7ZACvyyOKUaNxjU0uoXnueCIlYMunsHXP0+IhcmmAsJKjCgGHYJiilvPRbL3D9pa/Tjzwe7+1hJFAESplA2dfYqC0h6zCwOgySEbEEx04HLw2o6xX0SKIgfkF4N+98zuzEPMVCjrHbxxk6iFFIUdexhIgoFekPLcxGk62nmywV5llZvoQmaJwf7jN6eohrW1RkGefnn9I+2kVTTTaWXkT285x2z1i4WGDr3gc4o3OGnkOhMs8Lb30Fz+9RKGbMdrfwxmc8OHqE2HJxvBGGLJIvGUiKQLt1TOv0lLevr2KoGoZmM2p3ma5U6A8HDOOYvgA5TSeToDOyCJ0Ab+BixhFSYqChISCBIBMCQpagSgo5zUQgJfMNpExGVYrU5YRlv4Z4p8ulqIkRKoyDgKJRQBjaiFaE6JkIlsXusE/D6RKEKjwdEv7TbzMeHbH/J+9SDnS0Ug7FqhMPH5PJLqNbPkpfQYwictIEJ08izKkSyrxDdTpFNCNyb44o7PukAfQHPRQtR+/YoXeQkFUN8oaGJmpIZkyqh6iFHBPlAqHvEfe7CHKVYafH7sEZTStEcCNEISWvgqsoqKbMZ/fvISoTrL79NaYKq6Sigb25h+yP6W3tU/lSHa2kUmrmwRRxzl0S22FCFCilUERhaWaRqfIi1pNDamKBer5AbWKahzubOIGDmslMTU5SrTS+GLxRBqNWl/z0HJVrq7j9LlJXpmu32U9dElPg6eAQp+9RylTa7jm7jz9FE/IUp+aRTZ2ZhVliUSAWTWam1mhMT5EpGsO9E6YLOax2C0MsoJVKNCaLNFevkatMYmolPrn9HofdNrtnmxTUFAWXimYgqzpGM48djGA0YlpT2dw947PBGEkQmTDK2JlEN0xJ05giIkPXopPE5FOJ4O4u5USlgkFBqKBKFTwEIllCEhMSt4+ehpihjiRJ1MoLuE7AVG6G1dlVlGGG6mRkQ5dRMCRIU8puihwG6LKFmVoIvXOe+7tfwjq4jfJhkaZW5vifffvZhVBLwVdsup6F824b//ABUj7A29XRwwUyZ5HuVptj+Zyl+TyaXuXpvV1KksPKl6bxzDOCAxdNNNGrZQpKnoJv049CauU8mdVhdnaGbrXEu/e3ydtDVq9sUHdS8qlNkK8gCD7h6IxICJieqWBWUvxmnl4KvX5Mak5w4e03kEvLLLzwIsnmU279wb/g7N9sM/dgit3cGfNvXadQmOTJd37AdUejaijEXogiSOxt3WcgHbNgNJCTEK81IAok1pMS+eIC566F48sYU/NfDN61N7+M1g/oHJxilnIcxS6rL13l4NOfsH75JcxCjpO/+XMEBCLBZ4zH0EjJ6SqxFCMJIYVSDqVWYWl9Az0SSTyXRFcwS2U0AfY2t5D8hMXFVeRSDSdIaZ+3aPtH3N68x6P2U8LMp5So1LQSgZcwsgLO4zOs1CVN4MLMFCf9AaVqFWto40URkpg+G4bLJvPVKXq+S9vuU1KKlMUqRirQUJ81kY89j5gMTdFpNCboHAWkUUxCQhallAITKc2oKSbRcEwtP0mumEMyE5zRmP7gnEH/gEY+5dzdYaiCgUYukCHXxRJG1JQ8spFHCCFMJRwhxDQiwtSlf9Blai7Pc89/CWW4SHZaxg8/5rlLJYzrM3z04UfcvXnEK9dLLEyZCGaEWkmp1spkpoSiywxPYm5tOVipx/pijm77hK6TISoqG88/T6Fa4Plxj8TdJ6yo7IxaDCYMSqUiSbHEUTbgaWdMTxZxbYFLc03wXNJigFAwEY08s/UlTs9HtO/0GNVGcFVgsNfl7O4OM2YZM4KxH0ISE6Y2niSTleqEgY+fWnRGR5SyIlIqIukGuUqZ+ItqfQ99H7NWJfNdPjvd5dr1DXa37+OVBJ7/e18h6QS8vnfOaNClVCrgpzFX33oHvdzEP7NwM4nhuI8a2MQjD+9sQL/TI1FEytUap4fHlOMGKgnVwizHx6c0X75MWtb4H//1n7PvbhLJEZIsk49UrhUuEksJQzHEnkj42fZNpExia/+EWJORU4FQVtjvdSnpOSTNZLG0wKX157j5+CGKLbCgzTCvThAELtPGPOuXlvnxR9+nqIj43pjjvT6ZICCIEmESUBB1SrGBn6X0+ztMrK2CYREKMrKnkQgGghwxZJex0kW7KlN5dYnJN0Cc2UHqizz/+gabH+9w7dqv0n18iE7E9MY0p80PUJdcqmGelfo8ykDE3rFx4oz6r8zSDt/j59/5OQgmv/07axD3GFpdZClFEBP8wYCoL3C+43D2JAMMTuOAxkyO5akqxztdJipL+McS4t5j1NYRaysm0y9e5cn0BT56/4jjTKPdOac4W6MVwf7uMZcKJY4e3WXn/b/l8peByEAaBIStCM0pUBBzHD7t8NP/7gfMXlzAfTRAG6d4WYohiCiSiJ7G6GJIc75C92iI7w7wkzaaPIsiq9Sv3kBeWubBo7tc/SLw2gdHaPMy5RuXyW8Jz1JZhmNMHc6OHqFkDWIvoZDpyF7G9MwkT+8/YNQZIg0iyo1J6hdXiNyQWmOa1uNjcGIEWcBhTBaLCKGELig4+2cQB5zv7dKcXCJXNGnkqqxPzxA4Dr2tM0RJJ/E9pFTg1N5lUtGRE5FUUXGTgJ5loyRgmkVqjQa25dDqd3A+/5Sx61JONTYa87w8d4PNz56QT3IUMp2qbmLHFqau03V8BDmPGwWIWYKkSmAo+E5ApA152L7J2y9/g1qljv84xOpaCGqCUAyIlxIuvLmOfmUCbV0DYpxti0effYhvKZzs79BcXuf01gmtbgdlw6c5rzNqaxw+PiJvRyT+HJUry0SzLpIjU5rQmJuZoTEnkcVFjGIN9+4J0fmAUStj0HaRxDx6SSTvJuSimEalydTGFcL7P332lffOWarIyEtFGpcb+DJookbvbEhhpoZdVAhyeeIMclWD4kQRwUtJxick2w+whwnRrkcSBEyUm4haTM0uY/dPcHZ71LPcs+NtFiFmKbIAShYjRT5Hm3dx3RFKFqIIMWli4/ljcr6LbOZYvnzlF/b4S+Htnu9x1G5xfXqCjfXLWE+fsjgxRTc754fvfpvT7R7/+PXfRXciBmdtetsnnPUGTFUmyDmQr8jEpwM8y6MnWjSqUwz7+7j9MbWNdVauN+jcesT4+JDEicDU0QwZvazz1q9+hd2DT2kfPMHqDrjx6mt84+t/nx/8h+9yev8uV5qzyLmYB1af1qiHWikRpAm2Y6OmIHaHCJlAsVxg4A2J0oBlfZpZ2aQp5pm//hq7D3ZpPzygHCnManWcyKNkNNDnlzjsnDEYn+EKDrf9EUY95jf/8TuM+0fs7t2hs3fI+InIjLqIXpG49q0XMP7BMsKUCeUco60n9P7yDmd/vk2TJn0ZzkYtcpMz6GWVuZU5xKkWuXLMdHONo08OefDJJubEkNxEC6GmI+cnOB93sMJjYrPMVHOamz/dwXo0YjbTqEo16mWVzcN9OvikgkJT0xmf+Hzk7qDmanRae1xZKDP/4hrBcIKdVsq/+/NPaI9SJkSFRuISb7Xo9loUxYxXNy4wcbFB52CXzfs/JP/4CZFs8uBpi5cmXkIiRzj2qVFESlM6p10EASrkMcU8ERa6ruB5EUIW4g57iITkhQRDADELkYixei2cx/cYSbD0C3oUfxm8S2++REESsR/vk1dLGLki2tV15IKJ6fo0CwZbx485HRwjSSlGBnU0orM+me0iBQn1ch3Ji7HHYyKRZ1kEZHh724xOdwlTl3E2hgmTKC8RGxAlHtv373L3s8/onraIo5i3fuXrpFWN5Zc2qM41ybIECYGltRXylQKSqZKpChECumziuQGu53Hcb3NidVFkmbymM+50efjRB/RPT6jWawReSFWuIAcZhVRirtxkZXmNr/zKtxBUiUiIcM2QbeeE9z77Hj979D53j+7w4PAeghyRrxgUmmWSQoVMLxMLOZKRDHaT448tpFMDbxQ8a6IsywhNjUDxkXUBUyvh7vVJeg71SpFcTeHSGzXy1RhTA8tKkcwS7ZFEvrzC55+d8vknXQ73QyqNKcqXl8jPl9GrKeVpmdTMY1Zm6Bz3Efpd6kqI7ViM0pCj3hDLEnn3u5tEYhmxUkQ0RAYHByxmMU3XYkFT0DyXs6MDmlNNVtYWUZSEKBqQr8CBtYUyZZBvlCjlKxTUEiDiEqKIGgU5j5ypRKnwLLVdVpAVDUMyqWhlimIBHRXSjO6gRSTFzKxf+IU9/lJP3qfODtGwRf62SKvrkbs6z97eY25++HMa9ZSvfetN9rf3+PzebaaiKsXY5EJ+gXFgM3HhIo4IYW9MvdpAWl9h584tajNlPOuU8fk5VuseBS2HUlNQJzUm15YZ5CV+9uAjdg836fdbSIKMK0T81/+v/wo/SFAzlRfXn6PVSWn1TojpMAiGDNwMP0q5NDWPOooQkwRdVBhlHoqkUjJKNEsN+idjFFHHLuXZePVthMczBHvbyFGPVu+ATNFJChW+//P32PPOEDMHMciQSjFtb0h9osALL77AVLrA6V91GKcOvfaQ/E6O0//nT7DsI4qFJtOFdZrWDQJ3izBzKK7OUvnaC5jlHBfyF3hw5ydkpw+IC0O0goSfxszfaOBnEd07LlbS4v7ZmDEJK1du8OnDFps323zr9a/TiAPGm3cJ7TaFUgF5roCaq5MjY9SOKMceRdtByjXYI+Ozhx2MvsfCXI3rN/L8/t/7bQ73z7n37/4jV9dK3Hh1lU9v73M08Ln/6RFXry/T3z7hbNBnaW6GifVZqq7Fcn0V7zBGFUwa5ipx74yGqhFJKWoigBcilivsW6dYpBQ1FSVRMUQZJRXRUYhlCQ9QJg2aX7mMncT8on8Q/1J4z0ct5utFVE+lUqsh1CboP/wxfuDjJgIffP5DLi1d4oXXnofjmN6D02ex+aKI1KiiJTFqqUT3+AzdHXPh1Rv0P79DomWMfZtQTFAE6NgOsZNnd3PE5zuP2ew8IodPSS4wTFMiISUYD0njmFAQ+fzxpyxdXUHNRQTJGNkQaeRKjCyfOIrRUtBEhWapgRzYDJ0xxBD7GbpaYHruIkuvvUqaN5i6eoU4E+kf3cNPI8QsY9Rtc9hrEWQZOV0mByiCwurSOgO/TXVyFvsoo2ONEcghlwuMdx3cUY/IaXHknCItFCh4RWJBRZYl3Ayufukyghjj2ft4BEzk6gSyRK83JD+hMPYd7n3eR800rtxY4MaVAlt2F7Oe8eDxLpmcksvr5AOJysVV+p1z9s+7WGadT/dc3G7IgibRLCuMJZfjsY0fCOSTjKKQx+708ZMhd37wZxztWWSjkPLFCqrmcbGhE0oSt3YsKn5MSapwO7Mwrl9CLOVp3fqYWSOh2CgSOSKhJRCkGvnyDFPLsySdDmm7TSfx6aQ+4ywDWUDMl4nGPnEskwkmQRrjCSGxmiEYKYEX/sIefym87/yffgf1M4fgrkvrzMK5+TE5T2Q+a+AedZDPRcapy93TTeKuQykWmXA0BE1nONhCMxskpyn2zi5n3TbzX36RxBQ5l7ocscmZ3yUKVZI0pvh4i1qxSS1ReFmcoK5V0GQdcbbG9+7/Lb4acigeEcoxc+vTRHKGoqkIisqVtcucHp2zPrOEdTTAG9pI5HDHDknoUZNMtEAmllPWGxcReiHt9z9AKSjIcYocKbQsG/OVL3Hpt36NWMgYjQ756893EPQS+bFLKIZcufFV/ul/898wUzjhyuwVnCmJD5/eJ6+YPP/Sy3zynW2cfps1YYnxgy6mkiEIGl1ln15vm9a/3eON3/s1/uV3/u+szlZ48SuXyfQZJpqnJLJDb6eLqIe8+NZFmqszfHjrDkd7DqhtFjeKtGWPW49vsWyb1MYBRlVj/Stv8vjmPX71whT23IChdUhdM3h14goPPz9gQRO4sJBneUOhb2k4pybTWo5XXqyhXrIRIxvr7Aw5SamMXP7urEjD6FNYmEW6vsr7dz+iexYijDwq1ed584Uvkb59gb27TxgMe1y6sk6+XOPJH/8JRklm75OHuJnK/Mtv8s7v/R712gycdNj9V39CPxJovP4Szdk6aUEkkBPK019QcXYQheimwXn3gJw5zeT0AkefnFGQdJrSJKIkI3kKb1//Mj/6yV8hCAKh7DKxcIFMK6NLJs5Rl6JukhgatdlphFyMsycxiEOSoozrhiR+iBnJRIMeZbWBlClUU4OiXscszrFWXeVY6PC0d0ycCjw92md1dp5WuweTEjs758hJgFIAXVRoTM4SdDwEX0AXVDRJQxdkDEmnYpaYylcJPIv9nQfIEgReTKhpDHsiq7JIQZJZrtYoCTKuH6HLBmmWcv+9j+mcjZidXcFL4Ul7Hx8fO/W4e/SAE6tFUyhRFksUEjCEAAoSR8E53aTPP3hlDVXYY3YpYnZZ59P9e9ihzaXfbyIqEgvGIrLcYvpijaPzQx5vttndy3juhQVWn5viY+sm5zd7TKQgdm2STKPq2KxcaDDsO5wdd5i/WGJwNKRzvsPKpEFZ0BDUhKHvI9aqeH2Ho/Y+hcIKw9MzJvM6lUqTbFZDMy12Hx9Tn5/ErmjcufeUo0MHq59R0WXaY4+4VECZbTA7XWNahVypRHjYRiqYYAX4kUtR0NDGMe5hD3HlBll7hLyxwOS1qxhvvAz1CknnBHtvD9P9gtqA+re2Sdw6WU6nmi+DkFBbajI6e0DBCclCFSkS6R1s8Y2vXeFkZ4ez43MmG2/h2A1OD9voikDt6jrltUWigsbBjx9Ry3IMCw2Oh4+IkoSpXI3puMpUUqIcF0niiCyxGIYeRqPB3/vm73DAOZ//u4dEicNobHPn0SM0RWJiYprEGlMtVjjYOSXph8QE5GIDLVPQ0RBTAS2VcMc2J+4hsWCRiT4FyaA0PwmNOvtH+5ztbvM3//V/y/WpOezTQ6ppwqRQQhVSSGXu/Ogp5bDKrQ+e8un9W/RbfeIkRnUlngz2UWKJ1ellXlt8mYP7D1HnoC318OsWX3n7IsXlFu7wIQsLGZVplw8ftMjPG4iLeRJ/THfsU1qc5MHjXQ5Ouly/eplq1SEXSQjnKQ29yMRzBdari1gf36a918J8CvXr82g1Dz2IIDF54fVL0DkiCQKi+Rof3jrn5JFAWBzy4tvTPL8xjf3wFPm4QDYy2Hx4xNw7G9zrCnx6HLLYzHj46JjjoUMQZ6iahIBMoVhFKORIlYy0kkMyJEhFkk6bhphD810uS5OoQgbb5/RP/5LDb/8ER0x49R/9FtqVC0R6jKSkJLUKSeCC8AX9STFRBCUvUX/tIufv7zB4csTS5UmK00XiR3uAQClfIxY07tz8CENRkOUJBkfnlOoXqCyvIYsh8rUNhIkS3cNjkrFHMZaR+gFZ6KOYOYpGmapfo0kVI1KQZPBEn2ESEaUp5fok2ycn6IKBnwXEJGRCQhAl7D7eQxREhHHCRKlBpqqY8bM+4pyYI45TsjhBEWR0QSOnGVS1MgVdJcHBaEwgX16jfGmd4X/492SWz2i8T7VgcFGboR/5QIokyHiOgBEX+eRHt4mVjHH6LLNXlmSm5+c5Pz7nJLF5ZJ/Q0/r4xQBh1ue//N9/jcA7pn90wJ27+1xdbiDlBDZezLP0pSXirE233aUpNUmFmPZgyHHLZ7/9EM/LMCWRJ3fvY5Q02scWcc3h8oJAoVLB92KePNlGnJe4uD5D2HXoPd0hp9nkJicoag3SQ5fuYYaUj1l6YwGBhHPf52xvgHHSRRMSLuoqgRAzAK4sLqKrJ0gE6E6IoYiUXBnNF5FDSMIUIYXMi2Bko/Q8yomB1Quok0clJU3BHtuEWUZjbZG438d5EiI0Z9CmMqRmjaxYIlBF1C8C75PDv+Dita/x5JMPWV1cYuB2eHx6AoaDJwxQRA+n7RGr4NhFnrv2ZWSrgKE0sXafECQSWRDgbT6mP1Ph0re+yurvfYP241tEHz1G7Jo4XowVRsSijqlNUZBUgtghyzL8xKc97DH+/FPutR5RylUZ2zaalCKLIkkYoMcSoiCiZTJh30cJRMgEcmoOLdMo6jqe5yIlCVkW4wcubmwTWBGyFGNHPoOdfebWVrhUm2R4dEIzZ6KWChhjHTUNCdOIWr7GXHWKYeTxoLODK/rIgoKTeIjA1tkBg8Cl4wzZPX/AUsFgtr7C3LpJ5t9BjM7RqzHPfb3KzMQcUSbiHoxYLMUcHQ8o9BP277URI5EoytA1mUJjlnbb5qwzJArHpDmFV39tmcm8hB4GmOI0g/OYD9/9nGKiQi1iqaLhhB5JpvJwc0Q3C3n9t55n9O4RxoJFdapK0HW4d+AQehm//pV5SrJLa/cBVaVELq/w/mefc+y7yIqAIqasrc4jbLuYoYwQSkiKga4YZK6N/fiQs5/dZb4PyTilJBQRxJg9wSGarFLcWOb6O19h88O/RWr5lOrLFDo2xavXqEw28dNf/O77Lxdx2r9P/3OHpnwROysye7FG23XJTVb47N4dFMElHlgISom1hXcoNK6TeiM6O4fg2BhSjljT0JtTKEt1tLVJDGkGORfhPn2PxMlTjWSkWKYyM8X8ldfp3HpAp9vDJ8bJUhQ14LXXX6JkT/DjP/iYMIvI/IBqXgNZQ0MljEJIEpIoQs4UwiyiUKygxDL22CaOY1ISQiL82CfMfNQsQxYzgrGDnstztrnNTLVEnD1L8M5XK6htHcIxpmKQV4toWo6NF19k970OdhySpM9yfkexh+uPSIWUPDLTWo4VDU7f+wCtJTF1cQatoWNlXYyGiFQeIopFqkcpwrkHhwIbs2vUJhwODwacdh0q9Un2D8fs7PbJGSK5QspsvU6pqSCZGZ1zG9EXiAKf0oTOoBUwFiyycoxakDjrpfQcqF/QEP0uv/Jr1+jFx3TPRhixSa1a5upvLmGGA6Q0YDYrE48UcrmUc9siSxMKeg5VCnEHA6arFcZenzgcwbhNpCekcYiiiKiqiqgJyJJEmAiMEw/z2hIX/u47iNNF/HGXROgi51MOd26RP+mzOjGLXipA9AVNG0oTywRtldPzNpX6LEauwXhnl4enB+wGNhIBMgXyYp03X/wVTvbaKIlGWqgQuWOyzCGaKrH0979M5ZV5Oi2Lws0jgkdPSbsWa7PL1AMZJTVYur7C1ugpPa3LULNQhBS9UGL1Ky8iXyhTGbtcXF+lc6dFkgbEToAuStT0AmpexbJskjjh//85HZw/u3YSy8iCgCgCAoiaiKwqhGObOA4RJZnZ5hRMl/GO9lEE8DyHk6MD8GMKmYavSJy5fbp+i89HO+w4JwRihJumRJmIJEuImUQ1SXhJV/mSrjJHiqCLqHbKJ3/S4savL1BYi0m0EUl4jt87wwwUWh8foVdNBqcDHDti4+oy/ftP6Pl9hv2YYQvERkZjqkLkSwzbLjv9Ls16gYlSHdM0yXYdbly5RF4fodQzXNFm4etrVIc+/ce7RFaXz26dsdUaUWlovHn9ed587jLhwR6SEiNkKm6okeVVMkMmDULUIMO0PIqpyMpEBWc4JNY6PNr+McuNN5GkFEUXEUsppYZM0mkT+i0CHFwilLKBMVfFz/c5at0mnDhHLknkhypHtz5CLtTYmPod1PIXdA3oS6/9Pqcfn3Dr5j2yWp3+3oDwcIzfcXBlhTgKmSzWqU8vYSwsUMNECTKKikzv5mdYJ0dIYoasSbQO20w1Z+mcfsat736PYuIyW5sil1M47HT50a33OB4OEVKBmXyDQiYT+Bb7vUOmclcZDxwCKSIkREFATDM0SUZDQooFhDRFkxQEZBRRJRMywiQiQ0QUZVIhIxJi7MBhEA2QkxglTagYRWJBZNzrMOy1ySIbMU0x0wwtg5Ksc/1rr/Hdn/2QJ6NDOo5NLCggQADECKiChJkJNIHpyKecRJSLRWrXlugZMVuP9pg4jFhaKuFFLjEhfssnGYvYTsrEeol8I09tJkUsy2wYBT67c87Xvr7BxbkRe0cjDF3B7SV098aUaiWKep18ZZZPfnSLMFFwPRdVF+gnEmIjjzYZ40o+54MuZTHP5lMbJwY9g73bm4xxqUtgVgqMXI2bN7dJ6xP0U4lSrYJ0PqIhSSxXmxSDjCR2mJuUaOQDjKQHsY511mX06VNqoYBz+pTUb+FnNpksYHXOiE4PCSd77Hc+Z+qijFxQMUOD4ZbN2fYm69YIof4F7fNSnsGY8ll5dZXmTBVbUxg/MCmUF5gc6cxvrKHoDfL5GqKbUMxkUhlONjepryziRGOc1jEP//kf4DR00quXOdvdR6tW+WrjEr1hF2m+QiNXZqe9S9c7BEkicmyENMIOx8g/P2Kr+4TDs2OOjraZTQ0UQX0WLaQIxE5A6DuYgoSQyWSiRpCkxIQIogCiSJwEaCkIWYwuKEyYTVTVxHcDWpmAWM+jmjX80zPEXJUkTegEIYtvvMaHNz+l/WQTX5Z57rlXuLl/n93eEUkMqRCTZDFZkqKRUs3laOg5hMDnMA540OnAXI6v/he/wcnBEx782zY3Xi1QnvLITxVJGiHibEjhYkronJE4Bjk0ZtfzFGbnMJQpTvfbhK5HMBJRqjJWUsQ+kfj05wdUykMebR4jRjEfDc741W/OISUj9FBAnxbRRY3l60sEIxn9yQFzlSZzjTq7Dx+hNMs4fsrNWwOGg4T67Dx6PU/T98nnRJRmnmiYEMsqF268yXVd4nDnEw6PPuZkfI/1198maduYkotcUhjmnyApNqmrUiw1OFVb+OET7m/eRKl4zF29xuHhMeWFPCwMqeVVMu8I9+kuxRcX/tPjTTp9jlqbyHWRm0cf0Cyu8/Y/+cd4fZ8f/bP/nsXyJaTCBP3jM1rvfoR71qZWKXFyvEPh6rfwOxon20ekg5jyuM6Dg22eto65PH2VsZUgyTNUF9aYqqXE9+HJyUMkWUWpKGSSjN3qIDotdjZjhiOLWiyjCSaqmOFnAhMLc1jnHZz2EDEUSREIshRB0f5/iTPgxA4SAlkmoIs5RFMnyMvEvkClMoc+VcOtm0xVJriSrxKOhmyfHyCbAtrGBbyzLR4ePEGQRQzHhkxEkRTizMNPfUIy4jRBJsVzRJxEJMgXGcouo0zE6Q+4vCjywvoNTrcfEztjTk6GXHxlFm98hB9EZL5PMI5pb9s0JkWMiZBcXuP+3W0ePu3hugJ/57VLOGS898ObZFaKc55x+WoVTSvz8OCUpiERagVEwSXzEpKRSqtnM7ZT/BASJeXKtQUIU0Ix4t7xkF4PYl/nysoFznyPaO+cnAKCN2JxuUonF3HedjgXIU012nZKGB0zPTVFmh5y97PbTOlT6M0ZCi/liMYelbDKWdfizD1B70J+RWRicRlige5Jl3p9grQWI2gO/ZPb/PhnP+Z3/8Hv/qfHKz5ucXV6hbQocTrpUqtdQCksE+/Y5LQmudRkqrnAXGwyuvkIxQvRSjA5O0USjkkEB0PLIaY6k/VFxvYWg/iE47jAwsV1ltffIkxdZNEmGLioqYYgG1h+xFhw8EUJPUrwRmOE9Fk4ha4ZmDmFXFFlee4C9056KImKJiiIGOSnmhz0O4xCi4SYYmYgCRKCLJMaCl5R4H5yQBQkPL9aQdGH/OSv/4JrC5dYnVpibnaO8SBi/tol5p+/wlRnhz988n2SNEG0E0QhQ5CyZwvVmYiYJWQIzGoT3MgtslZq0h5uI0wp/M7/4XlOo22yyqcEcp7aSoXuGbz/nQPs3hGz8zI5vYAUTiNbPazzc6xel4tGlcCV2bzXJm/qrK5MUp4wkToCxlBgoVxicTUHpsP1qVWCxCPwLOwkRvQVGsUKiDMcHj+i1RtTrplkaszcxSJHO6dIpsjG+ixRoNE6GGENe9y7c0a9WWKsWSyuFFGrVeo5gf32IX/znT+houaQGHH95RobGxc42dlGUGUCVaAXWexZPXzXQhEFDtwWk+t1aktFGmsTmOUid+48ZNDu0ueMcdjD8gMc08fXv6Bpw6MHu1z79ddIKwmi5LHbuc+6o2PtueiCTDr2aH96G8kNiVyLnKTRH3RQF6oU15dRJIv48TGJJVOUCwSWQ5B5bPV3uCANmEj69B9t0enuMT7pcGP2OpaY4psiH259TJz4GLKOFwUgSkRZgqnnuPGlV+g5Q4adEamdYiYGpmAgiirvfPlr3N55wmcPbjEORyjIqIJCImZ0whFH3R6DyCbLZDaf9NFSgSSyUAcqyzcuckCbv7rzXS44u/xvvn4dryCwJ/ZJ0pBKplIQVTQkDFFBIkOKA0pSgWulVVblZTZm11FzJvJKH6UhMts0CCQFLVdH9JfQF/LUPumxdaeN108pVWBNn6TQWMB2emh6jDNucj5MiL0Rs1Mmb/7qFZpVk/c/v8Us8JVrM1Rq8PnWAZeuXCIubHB00mP9+nV+9IMf4UU+s4sShUqJSLFYXC7y5W/OEtoDnu49YXqlxFd/4w32Ntuc7PwEMTNZLOfxvQCjVKHUaNBxA3RdZ3qpwXB0Qmdks7RcZePGZYxCnkI+pK3H7PdadJ4+4vj4iImJArIaM64EvPLyPMWpHMV6BVHLc3rSxeuHnEUnHJyeU2nUMFWVfvoFhUvnlq+RFidx4mP65wfUK002H77L8YdHfOmVVzHjIodPz5CyDHO6wqnnMgiHzGpVrPuPaN16TD5UkMQExl0KqUZenuDUG/PB4x9TMFTsVp9B+5SV+UVWXrxB97xFyx9ydrTLuXOGn8Z4RPhJRIqA7cV8+2c/xpBlVGSqQZGqlqesFanU6pw/OkQIYyZzVYxMRIwzFGSC2MeSPLqJxSB1CWXI/CGKn1JBJowltNObHLXPeRC3eHpgs3zvfd69/3NGQoQqZ4iqjIiIFKRogkQh00iQWcrqzIVlmpUVvKGB7hRxnmxyfveQ0tcMHM9AKhQY9w7ICzUuvzDJ8abD1FKDYlOlG4Scn3dYvDHJ5qMT/uw/7pNKBqNRSrVks3X7FuOawqQZMH2jQa1gYeQz1l8qItZbVEWRUWDwg59+zv0HHaYmciyunjF0zplcEJCLPXJNBdfusvryAhM1A3PKZT6EtfUqR7ct5i+uUm5Os/jiRaJiwL0n7zOwx+SLJqWyznA4pueOOeu10Uo6f/2dj2m3HArlKt3hEK2goRVLdP0WSy9MY4kWRmqQpiZJWsDQ5yhPzKBnIcXLZXp+m9P2U4qNLyjuaXDkUC11yM/pLBRrGEWZsBmw+tVFmuVlvCOD3tY+669/icraEvfeexfslKfHm9T3t1CH0FSKSOqQwBswXWryzsYl/vzmd9g+v8dHjzIqwSTv/MbXcfoD/HaPZOgSDYYs6DU8u8dp5uEQ4xOSChJ+JjAat6hjUMHkojbLUnGWxYkZmhcW+P4n73LeOUTVJCaNMrbrIGQyhiKQFlS2++f4YkwoCtiRhw5IgsrQOeLznx/gEBMhoYQ2/+7H/5Gbm7eJ0gRJAi/yIRUQExETnTwKeQzembzKGytvUC2vMT48J+gkMAoY3jqi+uYVKo0qMTaOuE2xMs/IeohqSsxfvsHu8S6V2SXyKtz79AMcOY8nRezstMmpArWyzs5Wh5lGg4WLCoo9BgGGWUR5ZYq44pKTVIwDibPjXRRFoN7U6I0OEbSI66+vkSR9fG9AY7aJYQRoRZHdrXeRxgZXLk/Qe+AjxBFXXnie8uWLRJLF2Olw9/5HhNGQRsOk27OJkoDD41MUReH4dEiWidjnffw4YWZlgixJiSWJq69ep39ygi4WkKQZ/H7Kazf+LoYjc7p5myT9/7b3X7G6ZveZJ/Zb683vl8Pe+9vx7L1PzhVZVWSRokhJZEtq9YxnpBGme2y3YcDw9dz5wjeGjWkYmCvb6HHosce2WjOtaQWKpBKLoVi56lSdfM4+Z+f45fjmsHxxaMCXJOACRgAf4Lv/Ln5Y71r/8DwDCq7JTE7w89mXA2/l8YQ7P/uMa9+8QOPVIk92H7J26QrdKCEpGPj+hFprDqdWJtJzKBiMh1NkEKKFOQtGC6KQOA0YpymzYpFirUXRrTAb6jzcvcPq3GW+aM8R7J3geBa16iJJnjOYjQhJSFQOQiCUQGiQqQRJhoNgzWzwytpLLFdWEZMZan/MSl4HO4GKRpiFBKqMKppERs4Xp09YcuY58s4QmUIoDUMqlAYzYrokREBChiMlh71D/GSGkUOew1ilhICBQUEohEqpyCJNUSKf5fRmRxTn6sh2CSdrYngxureIXDVBdanNm0gZUNWhttAiOglYWrqFadf45IMvcM0qay8Vcecn9JNdXN3CUyaXLpbZePUCSecUX0zwshRrsUVUsCGD4UmXfGZw45KLW9S4dn2JWdjGrBnoRhlv4pElFlGU020P2agImnM6qcoY7fexVEQYz/j845+Rfv4hk9RjHI3xogBURNEusDRXZTqbcHrcJQlTCiWTcT8jmaU0KgVyPyGyUl566zydzhkvX/saRkcy+GmHONSZP38DEhM9aJFPc8wk5NziKgM1+nLgLe4PKc8UwY7HYE7HTx16xzGjpxOiuZjawgZ6W+I93cE4PCQ/GzA9OeOb3/gW8Z37MAxI44QMi1nyYrZzd/8ZYehTtat0wxkHsz06P9mnpkp8+6Xvkhs273/2EV4WEBo6Kot+0fsWpPkLW3pbmKzJBldKS7TMJrXUwZtMGOwfU9IkTeHQHw7xswHr517i9W/8JkdBh/aPBvjDXUrKRCAQhiTLE2KRI7KMDIiBlBxLJEwnA0hSLGWQkBGInFiBKwQlCXkGUkj8achp5yH23DLN25s0tcuYXgbVeVR6iRfrIYeoWYQyykQ7z+iOhqTmPeKKzSzL2Hq6z+2vzFNZWqZeS7l0q8rz5xPaPcHrF5cZmD6n3ozOIGIUx/zW1xbJs5SgE7D3SZeC6fLKrRbjyRlFxyNKI6qlZQ53Ij5595iFeonxwEfogvXbNtVCkUF3QjBKcXSbw+kpp096RInJJAiYRQFOSYEGUzemUSqjNIPIC5haEUgLfzrDyQQ1adA/HtK8UsOpFDg+OeWtjRqzvQlP/909olBHfLOGqtWoaqvoRpXepEjFK1EuiS8HXtfMkUnMzv1d4qnDy7/7Df5f//v/E1dL11hcPaRYSykIBykUp1u7OFnG1bk1OGiTeII8TChLG6NYZm6pgLfm8tMnPyLXParSRWUNRnikAsxygTsHDxj6CYM8wJMhISmSHElOLtSLU1cJHCRVzcTKBd1unzCaYCUJtXKZUqFC2gsZB4qyU2UWxTw7OuBsfEwwnaAriS50NF74mmW5BHIKSGpCoquc1NBRWU670ydKM3TTJc0TjDzBFRJHN8mUIM4UUZai2S4GBRbrTVAJh16bYNyhsh1g/dkh69/+NkFoE/oCaRtYJ4f4Ox1iccaJiFBzgm+9vE5nMOXxh0cMHbh28Srt9n2+/vUr3Hi1xSTcpR0lPDgLKc6b9JKEzcYK3QfPmC9UWd+oMfUnpGmA54+ZTBIGgw5nvSOG45BaaYmtxwOkSrj+8oS1izqmYdGYb+DeukBzU7D7fJfxwINMUDQ1lBbjxRFhnDAMxzTnLHTXRSKRYUwpEcypCuWgwOqFSwS2YnyQwtjm7GdHTD8dIE+hWqpSb55Hn6vQfv9jzOEUVy+jm3UKi+tfDryZG+OpPnguV40bFM/mWJ2sUzPqdJ/v4BeGXLj9NqHmcO6f3iAfHvPkxz/k8KyPih2qbpNE5mCl7M8O+eTTx3w+eIiQGWWnhlA5XpxhYZC5FllRpxO16WQj4Be5uyIjFymonDRP0dDIlcJLPGapT2vOpllfR3a7DPunaJGGjBJcYTHT4HHvgI9+/IgsnSEECE0j0jUkMWaaYSKIlaAoBbmmY+YZk1wyzTICoZOjIVVKRk4LnQVhUtZsvDgiQiGkZL7YxE501CTCe/SUx88/5djbo3ZkcrVXYHmSEA8E3Y7Czw65Or+G03B51nnI0BA4VQvXVtS0JgEVjh4/4+R0SDLLuHF5hXrZQkWgk5ILsNwSceqyvzfm+z/Y5sJcifPnI4Koj+VqjGeSydhhZ7tPksDyWoP5tRbO3VN032b8eIZabhKnIYlp07j5Ouu1l7mwt8eofcLdT37O0e4T4jBDxmDZGr4XY9UdLs7NMxjPGA2mrMUW5/Ul4sDmlYu/RXmxyu7RFp3jPdo/3yU9jtHlPO5KE60xh793RO+D+zTDDCV1ss0Mc+Mav+zZ+yvB++H252iug1aSDFQXq7/LN7/5TcYHfRpalWptjpPDpxQubCCXDaiVCHcrzC+tYVAmD2Hc7aOUz+H9e4ynfXRgnAVs+ympUHRVhMgjwv4xlXDKNA1B18izHD+P0WSKFJCKF63YF90sk6mhoFFk9aULuKHJ0W6HUTLCUIKUhDiPSIBbr7zC1skz4uGYWeiRpD7TLEaJFCE0DKVIScmkQDMkxosLBZqCKIpACGSao2kSW7eQSUYWh4g8oyhdXj1/nZbu4FqSsN9nGmdILSNLc4aDKafZAH8pIT+N0Z97aMmU9sopC2uQXCywebPK8toaT+4e0hsJnh/fRdVSch9WNxvgJJycDjCpUtQCWk5Oq7BEVVT44sEjurOAW9eWSBBEqYMfxIRJwNFhxGQChgadU4/7P9/BinXSmUfvOOL5RyHlxgp6eQVzbhGtukK1PE95NqW+donOznN6W1s8/9l7aJOAXEZIP8PWJFVVROsMaeY1LlbW0ctV8r2A6UTnXGWTooTu2VMKkYUwDRpGhcG792h/fpfaJKYBJGGI2jkh/IcPcP/Xv/X/f3jblsc4PcPrp1TUARtZh//grT+Evs/g8Qli+5CBnnMWdSDaZXpywI2FNUqFMve2dqleuczlP/h9tE6HQbhDcuqR+xnHPsSkxCrFUiZCE6RZRpIkOFJHZClK6C/MnfMMiUDoBlGekylFRkpXZAwcxfOTLfSjCeGwS5jHiERhahqZ0AhFysVbV1naXOP54wfc3bpPGCXEZOTkzITEIkcKRSYUicpIBVRqFUSUMM28F0k95AhNkOUvHpAyE4BAB6aTEQezbcqRQ6k6h1Uv8vb576DuvsdsPGJh4waVq69wtvsudd+hphc5GQ5oaxPe+p9eQ6woth/67HdzOmdjMhJu31rmYNxl9fIcnzz9lMvr55m3Fzl99IRqbLKUw72//4xP758RojjoZRTdgJOOh7R1ptOIySwFoZPEitCP6O0dsVS2cGXMbCj5/COf9ctrXL26iV0skpsOuSqTziR2Uefi7YusmJcoPcxI9o4Qysf3+py9s4tybZqxy3JhgQXRIB4L7vzgIzJN0FicJ49i3NiCKMUUYHgpJ589ITnuoVTAKJvgoBG3R8SdQ9xfksdfzatszsJydPY6xzSWNeobFTIzQVo6Rd3GzQRlN0HNV2hHM8qmS+9n9xHlNrVikdX6PJplMuueMhwOWGwsYJd19IOQKA2I8owJilQKQEMLUrTsxZap0Aws0yAVBkN/hKYEsdSYpBEzcoLojJMnQ2JzxmvlDXTLxPMDTLdIpbXAtQvL5N4Jf/HR35BEAYPDY8b+CE1LKeeCXEhMCSJXCCExpCSPQ2IFajyhtbiAF4R4QUIiIM8zvOxFmrkuJbphkmU52+09bpy7RqVyjsrqBnFRUn3tAq/Vi5xs7fPSW98msgqktoUyE/RChn2lTnmzQJhqRE9HPLyfsnU4Zb65QO9kRJK6nL+wSLVloCIDLZEcPGhDJ8TKFPOZiV6qMVszeHYyJUjGzJKUQsNFCUl/NMW0DaTQUVKxuryAlrl4nSOiJMI2K8RhyPHzIfn4Hteuz1MuLSPaOVlvhswlFMuYscvi3EWyoYmcjkhym06S0B3PKJg6uR8xCE9evAuiGYYwyLuTF1+s9MV7RWVDYn/AYmOeg7MTPD1jmkSYJDjKwMD4pXn8leDdjru0Wk2Wa4u89ZtvUghcfvrO37CkzuFIDa3SpB1uU6nofPUP/wDpa2z/qz+htnSeJA4hTMmOTth99gxqZVoXF1mVEXu7TzHjnJq00UmZqBw/z4nTiKLmkqgMpWmkls40jAjIkCl45CB1AqHI8wxDg3qtiOeNuHDpZaQ3YeHGDSrLLfJWmZfdmP/+v/zP2dt/QENzcaWGlsc0pSSXAqkLJmFEIiSOplOSFrViAadR5cqt6xzu/wCpCUapIgXSHBKhKBZdbt++zUJi4t07ZPPN11lbucZoOiPRM/RKlaJTYf/xAeXoU9bP36ZcrXCgTzCKHhf+6dukixl7p3ucPR7xp3+1z2/89m1uvnSJp/92n5/+7Bm/9R+2qDg5tfll7v3tPo/+5pCXVh1W6jrTvSPGKuO333ybb1VrfP75u+TqjELBwAtipClxiwZDL0LD5PLl81y/+hZ7Dz9l694dDN1hvbVC53TCvR//HOMo4WYlw3/qI3IbY24RtbFOkusEhk2ltfSi03kWgCgTqYggSwjVjF56TKoyMkKkMogDUEIwzafkROjJDNWXrLouOinHQZuxaFPScxrKop7ZXw68/WDM089O2Vip8/OfvMd4Z0TLX2SiPFaSVbRAI9VT0sTjdNBBOxjhC5hFEYV6mSfvfcjShSVEDm/+0R8hvC5bdz9EaSZKmsS6YKQyhoYiEoLEzwgzH0VGluf4gSKNQ2yp4ygDV74wswi1jDSNsS1JrHmkhk1/esTaq19BP7/KJz/9KVHFQLu4wO7JHjEhMZKSdLCUJFc6scqYxTGRysmUThZnCFPy0s3rnLtwnj///g+ZcwvMohiVpcS5wiXDQaPulinYLic7+zSkRn//gIZZ47NHd/HNjJdKMTufvIseDIg6h6SiQKdzRGVljdqVq5wcn7J861UCr04fl/qcz+NnHabhGC8XXNqcp1qoU8hMGAlEJ+T2psnta2voUnAyTTk6PGHvRz9h8/oVLKkTZhmZEoRxBEg0XqzrWAZ0T084Kx1x+dJtVmrzHO1uUS2XqZpVLD+j8+gh/dwm2lcIVSKsnWKFMauv36b++k3ix88IIx8GNoXYpZAa6CogxWdCQkqKj4+BTY5NqgSempDhUyBB92xGe3vYSUCiebjLRaplg/SwTzz5kobRx0GAVIr1pTXW6ssMx0N+57d/n+d3tunuTQmU4kn7EcMfvI/zD3/Orc1XuFV/meSsi9btsSRyqhPF0dYx8aVLDB5v8eSDz3EyC+k2mFoZR8Mux0mIkho1aVPXXJpGgVDBIPVwpE3JtFFxjkIjFDBKPUIhePP2NUYnHWSmc+nydex5ePLoXZ7v3eVg0mX3/RFGFiGROBiYmYGW5eiaQZJH+HnOiAQ/j3E0k7Lj8PTwkHc/+4QLFy5Q8nxmQx+/n5EagjQYsGBWSXsz7v7sI0qJ4msbX2V0esAXswkfbn/CKB/wxf0/58LKIkFxQuAU+fmdHZZWz7Nx+Q0OH3xB5s8hv36Ty1dvce/DMa+96aC7gp+9/w5+piFtg2iaE+zlaP6My1UbWbMpNqtYK2v8/Mf3uHsasLRi8+TRUyaTIedvlVBKQ2XgmBrDfkIaCuq1IrPehI+fv0Plre9Sr62xsVAgTDoY9pTNzVVOpicMds+wModoEpG7FcIooGkK3JuXsGplEnTidg8rLFCTFTppRKJifCJimZCIBHKFIiTNNQIRkiofCx0tS9C8EIOM6mqV9T98GQ2P/kcPiR90vhx4U3TOrzZ4+ytfp/30gGAcEHk+F199lc+678N6FW8HmsUmb117BTtysIVBNh1jp0AS4818rjXmmf7dpzBt0/R0tNjEzyNimYEmybMMC5MFu8yqqrBqV/HiiBKCV771TY73jjjZO8IPQow4RUgDt1ZkqVZhe28Ht1jjk+cfsGyG5LrLaX+PlJhiHnNO1iiYi2gqJ49jpJAgTYTQEFJhComyJJ7vEU6mHA7HrC03aS6v8PmPfoKTCq4657AqRdonCc3MxDEsMk2jKgxmgxkHyZR+x+c0aCMrGsXlJis3zjE669P3PFiwkQtVuqdj/J5BHPl070wY1k4ZnLV599N3aLYWWN24Rru/xXg65L2fnXDOcVktStbWFxmFHk/22shZyt1nO0xzE4wipbLg4qV5lOUTxj6W7pIimAynFG2HeqVK96iN7AiSdsK4O2Y8bSOLU7RSim46lOoLRN0YqRyWLl2l9PLbxMsrRKbJcDyi7tpY9XmUU4KRia25OLlFlIUkKiWTilyTZECWxaRKIwdyFAKJpnQykZE6irgIxkqFaRASLVjEp1/SndfNLHptjz//i+/znTfeZjTs89ff+/cszp9nYeMC9csNvurcpFWssnd4wmQ0Yxh1cEKDcBpRR6PwiyT0emuRLBIszgk074y98ISsPME2TPQ+mHmOnRpoqYGUJueXWrR3P+TxvXtMxx71UgMtnuGQo6kZrlvg6bNneCLhMBuz297nx09/zkRaZLKIKSX1wORN9wob1RUOxjucxB3cyiLDDJK4Tc4MK0+YhWBjkGk2RuYz6o74+797h2GcIpXDDb1KJaswUjErosobi7fwg5iOLWjLgE+Of8aEEXEhZNlt8Xsv/w7RIOLp/iGTPORf/ub/knwUMXu6hZEPOT1r8/G/+t/yd3zB2I3Q3SLffPU2H/z4U5QImKsoJmeKdtvDurpOwV7k7sljRqKP1Rwy6Sc0LJ1sMMJqLLCyusnByRPyOMDWdOLMIhpP2LjocuP6HNsqIGhHzE77iCQmur9NFHewLtdZun6FstMknJsSzBeYrSxQ+so6heoyhURBf0zyfJtsZx8V5wTSIlQGsVJMVcxMSzCkjq50YikR+QBeNOYwcDFlDawCh2mfbnLM9GDCrcmbaKagEw7RxJc0EpklIVomqNtFLi1vsl97wuQ4JgglL//m7/Huj/6Sz+58gOsaVDObebvF4jfeon7zdaJPn9H+yXvMpKCdRYSzIYGVcfm3f4cLm3WC7/8/2b73d7RqDaq1GoOTIVkUc+nqNa6uXeDjxx8Tl2zO+kc4ymTWDXBkgVKpQpoLDrunRKQEWcYgT1gj53y1zDASCL3InNGk5ZRYFRvYnkOSzHPl4g0u/tbvMfN9Pnj+IX/58z+hqOdYhsTOBeM0xTYtqk2Xs+kUL8vIkwSiBHuW8Jq7wao7h9bP2Fg9j6Mprm200MsZ6y+t8NP3/oHy0GT4Xhs7MrklNpBFg957d4lHY/JgSppnFFyXheIC5ZmLyCQXVhd59MEdiirld7/zVR48+pi3bsxRvlrm4OEpldEptpNz+8pVjoYdLm0UGbVn5DNBOFIkvkalME8UjsgSxXSWsLy+QG2phl6usnjJIUh8cl9DpCZJXsbIJDxPGRzuUxAFXL1GeW4ONTAZf/9TTtrv0CwUqamMuHPG5KCNoXICU9Ge+RynHjMSLGVgphJT6SihIZRCQ8MSDpVChYvnrhEFMXcO7tLjDFMp9j/9mOpGk/H+CXbnS4J3xahj2wbFzGR2Nub2lZfZUWeEZoXSlcv43wu5dusVFubmOX7/HsSKuUubSC1l0jtFX6xTbC0i15aYu7LB1sFTnBsbFNyUG69c5972+2hFibR1Joc9TF2w1GrRHQ5QjkGltICaSKbDEalIaFZLVGp1zg6GCGUyiX1SYM11WDcl1SyjjI2KDC4Wl1mSLUyvieOUyPwA1y9Q6CSUl9e4thHx7p2f0guPUHmMRKJLCJOQQqnJP/vaa/zXf/FDDOPF589IoRxpmGlOlGWcHHa58J3vEIuU8+4y460Rbyy8RUkXzI+KGIGksdBEmjmnp89RnofSXgRH15oLZCLkj279MX/x879gxaoRl1N+93/8+zTrAWr0gN//1ht88KP7rK43KdY1MmmClrG4vIw/g3Fnm7PTAbqlEOo6tllEKAMkBHGIbll0Jz5fPNslCTS0FGoTkzS0mJlVRmc+9SBHy31mKqSjAhYu1qmniqR9yHqtSVGkzE626R7tkgidlYsXUInG8aNdjpOUFFgUFqYwKCqDPNcQ0sQybVq1Jebm5pFC0T4+JswmxFqCTGD73nOuWxpZ28cNviTTkQvJKnEaE++FvD/8AN0y2R8OiJ0S3/vB/40HJ3f543/yB/RPu/zW/+yfoxUrjDt77H6yx/rCPIub6+ycdtg4d42sbDDLEhzd5fTpQw4eniImGie9I3zloaUZWpbw+bvvU3UrrF5d5uqly/zs2YfElqJmFNg+PCWeHJPmkBqSIMqZR3DBcXhzrgZnPQxnkTxfo8kG9XSZIEwRSUolNYg7U7bf+4y5mzdxaoKyXSYqzOHWNYZhxNHJLrlMOX95jVuv3SL/i++TKkl5vkk5LZKFKWGcUGttUFg+hxjnjA6OsMcJWZJRr9dZK6+QDibkYUB+4oMJqTcmywNCTTFVitzzKS61qDg2f/TVP+L8K4voAhaqTTrdz7l57jzBacqjB0OqFUWZCgurc6hamU4Q89lnd1k8V+Crv/M6yJDmsslsbCBlSr83wy2VWV3foFS3MV0TsgJGaDDfnacQLqGcc4RjxfAv/wHxdIe5c6voG5cZtQeMOmPm5heQtuT4+Cn3n73PIOgRaxb68xPcVp2tMuynOiJRuK6DrbmUzTIi1WjUF5mbXwQhOR71OTp+ysTvMWRGnmsYoY7qpPg7MeVJnWr8Jd15z4t1pvgEesTEG9MfdghtySCY8r2f/3ek0x4f/PSHGDE011pIc5728y/YfvCY9Np15vI67dNTwvdmbL75DUpKEh/12P5ki6ybIqeShbkFdoY7OLrLnF2nJCysMOPZh5+R7Rs0Xl3h0+3HpOEZuZCMQh+lFHahAppOMUtwp2McW2Op3iDLa+jWBr0dQSJNdCVI8xmWyCgbFkPP52xvh2pzlctXNjFSi30mPNl/ziQNMTXF53fvsX9yjFAvHC9zKQiyjEJxjoo2T6K7VDcuE/ZGJEOfDXcFPxmihQ7jwQkyjhE6CNNAui4yMPH9MTOVkZouuRSMJx6XL5/n0Z17GEmE26gynHisXVrGcjXiSYw/hmrZJYoFZ90xJ0enjEVMN5jx3W/d4tU3LzM8eoZuhcwXKvRnRcJ0Smt+k0qzRUZIqV7F1OsoX6e3dUShOoecK1NbWcIdZByME1i/gDO3RH/nFGlbKJEy7Bzz9PABu/4xYzVllivGnVM6nRTflGSGxBUSEUw4zWZUxQhLOrhZjDvtk6QJYTTDDzukaoYgo6BcXK3KvLNAVZyj0Gpin/pfDryr1VUGmodfy1hcMfn06WeE2Yxe94gsFhQyRbuzy9WlTT5453sMQx+RRQwHPfydMamfsJAtkE58KlqJlcs30Icety/d4sHZO7TMGtvBDkmak5GyfG2TRlSk9/SQplsjVhn37jwknQQkeYwyJcvn5gnCBE26mAq+tr7KRjBDUymyWOG0n7HQLNA8v4I5KjIdd/GD6QsLojjEMKG2OMfAG/Ng+x5PgyP20xlZmlK1bCqWgTWJ0fMZ1+0GyodpZ8Dy/HnWXv4qvSfHWJrJ1id3WFlcpWQVEMEMGWoUF1x66pSx0SFIFYoSN698FXN7jvRkhq9mVBsVtEKZnaMjKg8dLteWaK2sUrp5HXOzim6OkOkY/WjEt74qMMse/fABNb3K4s01Hux/Tm1R0Jif0Tn9lKk3RkxCLixeYqFVxS1qZDHsbt0HkRHFKV95/Tc5eHzKpz/7jJc3R1xtrmNmJYKqTbjUIBwPSbYOKHkhxZLD8PQ5vckxRtanKnJSlSI1iZclxCimWU6YgodAkTGTkk4eIVMPczxCTgQShRAKnYRcZZQxmNNbXNh8icXNC1QWlpCRIHl6/OXAq5UFzYUFLv2Hv8HMCfjkXz9muVin3e2gSdBkzMblC0wHHv3ekI1LF5mGU45HB3QGh2iBw5s3vsZKZQXbKhKddBjlAZqeI5IJVp5gzQRaqjHRYkZGTsHR6YqAZcvl0qVLHDwfU8okwnJobbawyyX8MOXZ1hGmknRHPiIMqNQrBEHI436HRblDMZyxyCLFuQpOvkQyOkXFEY7tUFtY5GD2jNNej0D5aCSU0CgLg0KQsAAUwoxaUsTUHMqJThzEPNx/hpGbVKceVqYRZCeMhgMqRQdPQP/sGQN9m8pFk06ny8rqq4hLJTpPAwZJTCxzTs9OQAwpYmH0R9QrRRqVKsWlRdTl8+T5ADkaosU+65uCk86H5JOcvJNyNL2PUfFZXNaxZICBxmw4o1FtkecZjmPTnKvTOVR4g0OkyPGmIVFnzOD5Po424XTvHheOt9AuLlK/tEox+xrdP/8++fERBopZzycKhxS1FGSKqTvUMkVaMrBjj4kfkuSAAoEiEZDZOkIXxF6AyhIaRYskTDDynHrJJfAiHErMNc9h11qoUgNr4yK5n6DSL6vDVhyweXsFbcMlDwJWLqzyGy+9SXgy4tVrN0jtEC8cM/VnlKXJanmBO70xaW7SMKuAS+XCDfSkgNedEasZh5Ndcitk7/AhWeJh8cI8JCLk7x59zLeuv8nG12+z/ek9kkOBm2msWlV8Aoa7p1TnEsJU4abgRyFbp0MmhiBJxvjTAZrZwNJ8JuEepaLAdAvE3QCVp2TJjCiE4w8/wF92+b3f/g+wFk3spXnOtrd57wffp0zGK40lylqRZGJRLFTRYkllYZlnhwNee/O3qXoWpp8THR1Qa1YIXIPAjhjnp3jFAOpjMttna/qAaFvDLGnkpoJcEMcBdauApjJqpkFJSo63n7O02cJJlvDShKJeQlaLlFfWOTr5hHyUs9BaYDg+olypUdFy4qHHcOITTwyqi2sksYmgTO9sytMHp+SzHH8WkEQJH/7te0TtERVLMCc11LPHhH2LzF2lEOpU0AlJieOANJ6hiRSVJRSUwpA6BemSSQ2zbEIhZjcIGQQxQr3IElZxjDAMimWTqmPx+kvXONh6xuBsQM1xqSgTOytx7vxFVq5cR28tkC5UkKnA0L6kB5v2FZ1e5Qg3uM/Im1KwpixU4cpmi5dvXka/XCTNhxx+8gj/swG1yOaqfpmiWcIKEnJbMr+8SDVrcna6hdc94XnnU/ayQ/Is5+L8GroXYSU6mhQc+3265oiFepmhNmSwe0jB0XE1k2Jxjp2zEwaeR4bEVCaGMtClxihJCaIIjQK1zMSPQhYqNZauniPe6ZPEIWkeIhmCCmjOX8W6cYPN5YST/hZL566xVl7hs//uB8ybJX5z4WuIQUaWaWi+Q3FtDS/J6SLxxwFWnpCOZzhNB/vCCrGZc/7y1wnHD3n/4R6ThQFhPGHnzh6Dfp+5oIFHQK28QDTwaCddSoZLoeZSlC6PHt6jdnENd3IRqRLySCENA2OuxNLydQaPt9CCedbnLvKot4NaMRFen/H+Q4pmGTeos73dZ3e/zdbWM8ZnIU4isFHYFiQElISg7lTRvBz/pM30wftEA4eG3qQU6lTcFkEyIBcamQqQRFgqQc98LA0msSRNEkpFnYbIKGk5tjAQRpF+5NP2I5xGgVduXyIJJpRrVfww47Q9wk2hVV2gVlvAac0TlSyUlrxYZq0Yv3RQyq8E7/Kr5/n0p//AODmm0ZpjeaPIR09/Qv2iyw8/+2u8rZjf+/bbuKbEcesExx41r0LZ3aTr7xOFMY/+7keUKptsVBeQOCS9GR3/jIJZZhxOSUSE7Wjc2LyEah/ybOcpeb/P0nIT5dpUXJcMye7RMQVRIs4ECYIUhQBELklyQSwkhhCYOXR7Yy5fuEwySvB9sBfOEeAx2euTyZzmRoO+NeXH3/9TFs4V2bjVYrJ7nwXbYdNcIjwJ0ccSM7CRlsFsEOCFEVfPX8VtLZN3B3i9HnbBpH93gHl7k3H7gNzrsLS2wFOekpVitEbG6KCNFmTYdolZ6KPpBuVykaJpk2Qx3b5Hoz5PwXCRPR85HqGUgKoNeUTVnme1eRWTOo6+whvzG8xVDbaf/Q3ero0qO4zqMDgJGZ9BOLWwdMVcxWWu6pBnY1bPNUmTiMmDCWqgGJweoHcc3KSBshLEwjK6XsDQEpSmoxtVcEEkU9KwT5jNSPwhCB/inGKWEEiF0iSBruFlJkGcUhA5zeUmezs73N8/I04yTAUoCPyY9vYhtdUNdE1i1i2i8QjvtMcv643+K8G7/8Ud2if7SCvm1ltXKC/YPHmyxWA4oHC5QO+0QxAnzEYR/lFES6xh6xVm4RChFemHA9KpR2uzQOAd88mzn9JNzohEzEqjTtkpcdIdMAwH/M6Nr1NdrvD+zz5glgj6yqcmXPRigSuXLnHS65NnL6yVMkDJnEwIVGaSqRy0BE2DaRITC8G47RPEkKYl5m+9RdzZY3j8nNSKWJ23GCc7eNkOF259g7/7q/+K8XafRc2hJguE44yaLKPQyZWgWq+geSHFSxdpHx2Qn3QQsxlqmiFkSmG9xWh3l5lzSuU1E5IMaUqW1hfojDzkGOYbTWRcxHVK3HztFexGncH79+n6fdZffQXHqcDjU2h3oWTDQpmcGGOcs1a/iDAtTp5NifOQQljg7N6EJK9TvHmdsn2dl6+e58L6CY+ff8LOzkNWlupsrM3RPnvKyoUah2djDDfHVBJtkLMs6ujKRsUxhFOUXkS6FdIowdRMLMsmywUQU9AN3GRGIYtpZjkFHQ51waTksJcqTpMElYMdZ2hVh6xksDMM0FDMqxfJzmkiGB93oD3BKtZgnEF3in/c/3Lg/fT+Q1596yuMgx5//fc/RJqS1uIi85U56tUGt79ykfbdU27c+gofvvMpiWYj44S5UpNBMCPKIq6+8goTM+H49DHPgmec0mds5EzI2O4ekMRTmsUireY8W7vPmXMb1HQTv+0xiyYMRIxRq1KbW8AyfbrdIULlKKHIxYs2pBSSVOWEWUrRKFAyy4RhwvhsAspleHBAkAdktSWMeUHtygrtnedc3ZijoGsMnx5Riys09QUqaZ2F+QsUzRL93SOEyMlmM0ScoqNIspDx4IxK5hFrCaZtEUwG+P6QQXCGM8koFEokcUTTaWJVi1hnFk4kiGYBSSzIpcBozeNZEJYNRLMGmST79Bmz3QPK5+bRpwtgQDKY4o08IiMgUhr2fAvNcNi89G1yR2A26mhyCcucYKiMl6/eJg46rFxaYn51jjRvg8ppb4+Yt9eZv7wOXo4cFkhGCVHoM+l2sEsKXbcJdJM0E1QSQZLoJMpFSAPsOlaa0FAxPRFilgziisFxd0YvSygCWBDInGmWICRoKRQyhyo2S+Ul1hrL6LOU/HRIb+8I3TYo1L+sTIpigXc+u4NhKw5Pt5FC8urLN7h84TK7z/ZYXVzg6GTElXMNCs0NasUN+vcf4nkdGutlspLJz997BzFnodcTShfrTI/P8NKEp/1DFtMCZUOnWqpz/Gib0UGHb73+BqmfcMghe/sH9IddBp9/Qpqk1EQFYRno5ISR92LYmhDbsAkzRZJGVN0F6laFelbBzDTcWgVN+BSaRYpyhak9Ic4DVpYaTLZy9r73KZftG7x87Q1mdyf43RizMI/mOgjrGLKEqN0jUXC29QCzWWD+covJoxGBkSELMWc7d9AqDsXNOmYhoZjV0chpiDmWGyZTOSDszTASl8Sbcbq9jdsoYa02cAoWmWMSjyboe2fYe2fE3hQzSZDFAqkXk6YZWqvIuZdvYGwuIu2cZe0aAoHKBErFJKOAdnuIUfC4dvkqkTnl5PAIEoPu8zFL6QXOX/wWBeM8kRUSHYUYwxB9PEbLE3S3zHTqEcUBhu1gnj9PenpIdJaj9AzKNiQOqdcj06ZUVsoc5SGTowgpQeRQLNl0B0P29s/QE0VZSVZlk83iAm/e+hpmXiAYTul1+xz4I9beeInW1fNfDry3v/PbPP7sY86OdggCgSklO4/PqBpzXNq8iowUr776Xfyxzs3Xv4o+hsn2EwZjjyhKmb+wSe/ODsd7p/j7Q0RVMo4TRglUM0GxNIed5nRPZ5z2PuHyjcukgWL7+QG+H+PxYkh9OhszX5lnEMRsbGxw2j7GlTaRH1K1KuRZRkEWKdotlrR55sx53KjAzJtRisvMhscUz11h/eJt2tM9/tv/x/+Boj3isuWixjXK8irlTh2dAkZVkUiJlqdEIkemMcViGc+b4i7VKH/tBv0nd4g8jeHkjNTOab12EwxBbcnEqEdo04jRcZu1hfM4CyX8i0P8XkQUmuSmQaXVQpfQWFukvCRxa3WIOqSjHkbikfZ8UpFi1ucxS2Wqi3PIy8toN87BcoVUz154t/kJ8dAjHY5JgozIg6O9PRavVrCcOid7z9D6kJ/CsnGe6aFF4qTIyhzuXA2tO2W6c4jX7yJtSbHUYBZ6iGKJ2DaIpEZeKFJaXqC1MU/FP+bx1gfM/JRplpJMfSoRGLlGxTQ5V2lRyhwKiU5D6SyIKm9c/Aor9RaxYeGbJvOLq2j9EefMZeZevolYbX458C7PVZFXN9GyKXk0wdIcXr35CutrG/ROZ1xaOE+reo1prIEAoUfYRUimPgsXLlC/uk728CcMhj00I0OPXSxKiCQgVYIwUhiZjURDi3127u8T8pxJHJGhkZsOKT5OuUhWcKAgOfKHjMMZX739Mp9+/CGmDmkkmNOa/Ob136Kuqpi+zrxbpfNsD284YRgGuIXrLLx0Cf95n+jhiKYZkXRi9OMmBcNiuN8myQWNa1ewrq2T9rsEjxUyU1hry9ijDpXrq+hXFpifv0hpJWXQLTPKxqy9volbdPjp338Pf+eE1UqFYlqmoOqoVKMw36TcdMC3QdOgYoISuI4LVhEcF1WwiJWHwkNPFJz6JF6EWl3BuLmGWF1A1F2UK8iVJAkygtGYbDKmXHIpNi8g0lP2n4f44yKLC6vYiYfj61iZ5OxRzPJ5xVR0Wd2oI9MYVEI0GjBtt4mTGcbVy8yvtgjHHuOdbXQpsAtFRC4ZHXTICzkH0zGPhx1EbmAJwXWjSsWZY2WxxaVzLabDMSXPQCmDZafFy298ncJci9AEe20J4Sumd59QW5rDWGqROBq/bLHsV7vzvvN9rl27wmKzSs25jMrh4uWLrJy7wsftz/n4nfu8eW2dxvJNxqPn9B7exyXALmuMp12OPziiP+1gmBKhSSpmjTWrQZIP0MMIK7cwZRmlYuIkxY9neET4MkW3LRLxYiLUz2L2jna4dOkqQtM42+vz+MFjNufWqIgKSZxxe/0tbq6/TXwW0tvdZVIIqTaXIIpI5AghBNPZgL3+Ab3ZEZuL87SMOfwDKKYSXWrMCiaTaITl9zk9PUBzSiRxztPj59jzVRrnF8ijPp8//IimI1m+tc6cHTMMTxj0A8xqgj+JODk+ZNFdeuE6YRqImoXIHKLJFBULGPgQzLCmATAitkyivQMgQJkJVhyj5ZJkpuP1LSq6RNcMlB+SqRDfD4n9GE3TqS8vYxgCQo881Sg58+iUEFkDU4UsuHPYWoWGZhMEEfl4BFaXUadH2p9gKZ2q4xJqMZOjfWqVOVxdQxQL6LpB6M042nlOFE1Jq1AouTTMBtNkRoEyv/36t1jbfIlyxYW8zUd330ObCBqizmJlCXN5hbhaQluuoOZrpDtn9FWA5RgIy0RJ9Uvz+CvB22xpzLVsjo8jXnn5Bn/973/A3bzI3MZrLJ1/jWKSs/PuNv5CwlKxjtZa4OkX9zj2DxndfUrgKIZqzCCeYhgFbEy0MGPTaKBlKUWtgMo00lxDSIsg85kKRShyDC2iXCkyGI8I44hRmvKTR/cwgQ2zTNkr8Wr9JaykQE7Cq1e/jVFfY7zzDGOSIaIZRtlBScX64jp5YnH6xT2++PkPmfYHeLZLZ6ogLDDJ+1T0ArVmnaGu8cHWXTavXAZdMt31iZ2YQk1xuPsQTU/59E+/RyEN+dpvv8X8rQ0ymTDqnUDqo5c1LKuA70VQtdCtCnE3AT/Hy2dkXkw2SsjynIJVwBQmYKMlEVa5TOj3yOIJCpM8kWgDHdkboo5OyNIpfskAy6Y+v4hRLpHrGWk0Q46HkJVZXH4b2ShSaGyyvDHEv9ulfuU2aqTofPEZslBA03RK0uRw75SBF6LbDoEKiVRCub5Cpmk4KWRpxnQ8Jk4jEpEQiZSv//Y3uG6F/Ozd90lGOq+/+V3cxiq6qzPtPadU6bI0L9G9CRvaPKrdpzvuUVq5QVkHFXhks/ELuyGVv/gSfRnwLq/MMRgPsEo10Cq8euNrhFmZYmWd4qUSs36HYssi021EnjNutwlERuqYtNUZbX/8wvtLEyBMeqMJjnQxEzByiZHmCJFjSEGkBJkQRCojEhlp7FMWLksLDUZ+yCAYI5Qizl9sXdxcvMaN5k3idoQ0E/JBQN7wUVqEU9VhOiKbecRGRNyZ4JgZ80s2ry1s8Hn/OY20hZHYFJsN0kFCriL83hkzUaD1xgXWvvs1Rh/cZTQ74uj0Eb1Pv8D/9AcslErMDSQVauy/c4oM5hiUQoJhjKYbVGtNdBPMXOANx7hVGyMUSD+lbDlIZRJFCXmWIxOQSYiV6RBnpOMQLVboQiNXGZoAK41J7z8mCUfw0nlkeYXi4gKyUiLLM/IsIU9S0uGEcKhYvPBVsrkyca5j2FXyomCW5VB0WLp1HTme0H+0QzEWmLV5KGWU11eR0yFmGFK4ep3B7gFiOCOdTJgMx6R5SieZMAsiup9/xFf+6bf4w3/xLxkchZjFIonI0StFNOMcl98qceniV+j81fsUpynayKfeKqGlCjEJydt9zOEUberDLEQZX1ImRTJM+ezOA9rHHt/fe4/vvP37fOc//s8wjRX67TadLOL2H/4ezGL6/82/Y7i3S6RG9FSfR/kZ/TxlzqxgGTZECks3sHINUoUmBAVpYSrJLAkxSbEkFIROniVYhsW19Qv4Xod2OmGkzVBZjC4FZcvkra++xrq9wf54C8yczhd3GI/atG5fR6tIjn7yHE1aKBlyuveMRurjJE3cSUZT1Dl5NqLSvI5l10nUmCBNCH0f093g9ldukuYx7S8+Qc8CJpNTLi+fx1QmDbNMOBxhKAuZlKl6LQobt5h5z9n/7Eecf+scjfU6/fEBwy92SQpjxNimJG0s6UCq4ToOqOzFL0lgnJB7E/JxhJ25SCXJSEikICYi2dklJ6X4ykXsuTrS1In9CbHIsITADGN2njxl/9MtVi5/lWQmOds5pWK5rF27xfajB3S7PV65fAtjEnKy16Z33MOp1Vl8+03c21dp9Pp4x8fI1TXiww6Z1ycd+6goQZGSiIx+OKHzcA9qFt/5zv+I1eY8k8MTGpeqiIKNW13ErTegMqF6fcLg0Q5eZ0B5uYnIdYSfEXYmpJ0x9EPoeGi/vMPprwbvT370cyqlRVYbm9yon6OSLiKOJV73gGn3GDeB3v33EcdDZoc7FLOYSa4oCJO6UcVyDAzdwUwM1udXyScJ6SxGExp5nmNoBrZlkkvJMAzQ0ShiYuYCFcPjD7+g5EK5UcPRFKYQL6Jg/YD3P3yXU/kcPa0wNzdPPYBeu0Nauo1GAWkKotgnmHXRpSDLEnTLxCwVMScVJpMRR2cDYhmzljtoAgQZ4WTIbO+AwDYJdo+RQcxG9TYvnbuBHIaMDk+wUhvTMsjyBD0KKDfPo7cTRkkLN2xiywV06TPo9Kg3BfE4oTcYUs00NCnIKzbC1hE1h1TPsbQUZaRkSAwcUAINg5gMJVLIEwxLx56rIQ2T7GxApmJU2UQYBscP7/PZT/4Wo68In+6SlUo0KxUcx0bYgqXzixiGIhr3MFSMTUaSRfjBhMl0SO/xQ5qFEhMvwJ68qGlPh1P0IEF/YYiFwEQXLiocEXUCtt+9i0uV2Uyn1Gyhz9fRlEkWJGhCw5qr4y57zFRKwTIwhA6TkLg9QPRniNMRqt5DxsmXA2+hVufSxWvsfdHjD/7Jf0KyFTB+9zlJSeenf/FfEYqAql1gtbBACxdpgeYbzDPPNVniOA/Y6h/jKJPzNzZp7xzje1NM/ReTREKydO085Y0mJ+//Lel4BrOUkpLYpkPFKpFLj/VLF5m5Ajkd8rWXX+PZD+9RKBRxnArLN7/BQuMcu3/5DnO1FWr1BuNen1Kxjj/okmcOmabhF6o0blzh2edbvNt+xqJWoJxFuLKBk1gYmobhOoxygb9/yvYHHzE3TFlsbTCcW8EttoiPtjBDhyz3cQTEMmA2PiCZnTLyh8wvLFGtnwOnQn3FRnUkllnG1gX9yT7T4QiVpcwmCYVzcxRqVZStgR2QyIigp1GJDVxMyEIsV6GXJDPdRK7WwTFI908Ru12ckkO27NJtH/CD/+u/5tnDD7ldvsz2j35A4eoNVr76OkILmQxOOG3v8+jTT0kOu5yvzOF5p0yTPmpqsf2TU179ne9C6UVCaSXTiE/aFIROiiAUgkRJXFmlkukUShVeW3yDeXMBXblk603yGILTHlaxhGboZDmIxSYWOUIqxEoTigXod0iPOjhjj/TeY0gl8uLqlwPv/tkMw9jDsWqkkym7j3Yw2zGWFVNOpoR5j5M4J8mmnIVFTGVSMEvIHCppgcDwaUiPJAu5+8UX6JHAERaGrlMt1Ek1xdPTPXq9B4z0kFC8cGGs4VCWZSpOjf3xmP5oyGtvvkTx9IDYizBTg9X6Gg17nrnL1zj75BFxlDC3UGLwYJves31sD3RRwShV8JSifukm1sY6S/kNjLP3Waut0hw7BPseMymxNYdARKSOxXT3OVqeUdA0Zt02lddeQhYswiMJ9TJRe0wW5MxERqNYwionJPoQowSqZKOkhdALNNcuoacCNfFori4zGvuoBGqNCpXNC+gXlxCuDoki741JI/BOhgg/RdMN9JqDsVTGdHWS5SqKlP7uMf5n29QbFWansHXylOPDbZAZmRZiVsAopTw/vMvezhMe3fuI0/4JwXiK8kI+FTp6BiIX2Mqm5bYYZwPYCSgVDIyyi6NLSpUS4zRkkExIhIZSgjmrxdrFdVaal/Cfn4JlU1ycQxmCGA2CBJXmSAWi5OBqc6g4AAOIAvJuHzka4KoUbTzEe/oUu2D+0lD+av68pQUGk5RzZYfD3ik3fuNteDbk5MnHlEsFjrwT9uM+XS9h3jnHudo8aWAzG3hYWhFt6jGHSyg0oiBEmA6TyCdLFLZw0E2Nw84OB3mf0M5wBCw6ZZp5gSyESXeC1C0eP3lKOthhEkfEhylvqJu4fZOljWWC7SMmz/Yhz5C6TrzXpe4ZaMV5pv6UlRuXSTRJUmwg3SpFs8hytUUsY+4f73FOtSiU6hznM8Z2SqFV4mfv/g1loSHlElWzyOnTd7DXVtn8/a/Qu7cNHwREXsCoVODc175Gecnhwd/vURMmy/MNsiAimSSkCbilIqDQph4yU7jCQNNsaI8YKI/y5U3MGxeRrZjsoEOxXiM/7SBUQlgRFJbq9DIPoee4cUylWmXurdfwjw/4+7/8tzxuP3lRjhSQl2301TI//Oz7/PVH7yIijzKChJwX07eKEYKJUIQSLM2gMh3y5AeHrJpzvH7jDZpaE2feYvj8lGk6xRcRiWliiCJzjQXm3Rad97fwj4aYZgFNGdhXFrEaS6Ak/miMFGBLiXQttGhK1u8ju30mH3yEHHYoqAQtSgi6McHdnNKXAe/F86/xZOsBOycdVsw+i9UYITOSRpneQYaX6xiUEJmOqQTpZEoepdRs+0W5JcqpaCZ5FpOSM409dGVg8iIDuKGVeGnuAmVVYWt2wNTvYRTLFC2HHB2h26Q6LNQkO7NT+r0ZLVXmSnkd2Uno9rbomY8pBCn15jxnh9tYs5xCbBJJAbaNcgxkqcTk8JStf3OX7eA+h48fUlo/z9raRYJ2ABerPHxyh+fdUwaD90nzmHlRYLNQQxoW65duUnz5MvrGOvFwgHlQpL/fw1yrky/Ae9/7PrsPnnBt9SKqPUTmAn2akEQxsmWTZynRZIqd5DhoiETin/Q5PZkQT0NaK8sITVJanKcgLTJHEvtjgqJANYtU7Tq+gCxXOGvL5NOQZw/eZ/vsgL43xCPDFibPjo85+bM/4f70jEkSUhGCgmZQtItYOGRhRKwiRB6Q5CkBKanKyFEEfkj/8wlTf8j18hqjeEyY+OQCcglWtUh9pUW/12N4ckYl0jHSkOS0g9E00Zcr4BYwdZ1oNiVOMwxNYMxCkt4QGUZEp6cYWYjMU6TK0DPBpHv25cD7W//8f8IfNhrouY1375T3//p9vvnmN6h6JtOd72GwxMospqR0/pPv/HNOHjzndGuHWHkMRYqu57jYGKZDoCtCEeN5UxKhMU1DlowlXr7xGp27f4uIYiSKfjBms7XBy7deZ6G+wt725xyXz5h2PMJhyO+c+zrfdN+gmVSJRkPmKw6T4S7j00PKi2uAQjMLFGoWg/Y2Z3vbxGGEWy5yuWRyvD2gnNmMe2MCd4womOyWJ3yW7JE7AqlpL0zibINv/4v/OU8/fELh/KtYFzdQ85LazUX+7Z/9lxyOH/PVxW/zv/rf/DHloc2t8jkWtALs9/F9n2DqUV+cJzs+4fBHP0YMZqxQRGUR2fEIdEHNluh7A5hmYCkKtSpxv4fvQFQo0fjqy+jnWuSTKXqvT2ba5K7JZNLl4527tGdtfBUipcTOdZIsp9/vo5NQl+AaGnqxTLnZYoUmRT+lICTPx2c88tocq4BI5IzzkEiL8NOIf3jwY3a0Oc7bixTcArW5JVpXr9G88TLp6YD2z97DicBUCjPNmTzbZdY9pu5PcW5dRV+aQwoY7O6iezGVJCfvD9HSlHnNxotT8tRHoiGzmPovPc37q14bVptomYHfmXDmd5m73cK67PD8R1v8xnd/Bz102HvnM9LhGD03CBNwik3C2YCRmBGSoWFjSpcwDojzACVjwlzh6GW0SoX6tVssj3f4vPcQR3NIckW5Ns/1W29hzCSRdsitr9xg/+dnJGP4jbe+TeV5ndnhkCTxsc4mTKIZieswmszIVZniuXNYImBuZjHr9lBhiAz7qLRI0XZxRYtRMmDS3yVN4XG7jakVuLJ8Hn/SYziOOW8s0Xk0oWys0N7eYulchdHpASdbn/M0fUq6rojncwbTDs3SOTRbEQ76hJlDmOd0hn2yyKes65jDMXaukcsUREZGAEJgJgZiMmP6/qeoioO0deIswWzNU2/W0NfXUVWXXEr0gosq18B1sU2DpmVSEOAphZML1oRBw6qhKYO1ZEZfjekmIQf9HnuTMbvyjMtmjQWriJ/GJFlGToYkf+H2niscUopCYamMIJxilxyK9TLlSpHx0yfkB31kL6CQa0heLKaa0sCY5uRPzggME6vsIh0To1xGyzzEdIweKdRkhhj76EoiMIAUgxwVfEm+DamXopUUxcaM9dsp8UwDZ4LdarB+4S2++Ksf0p10WGg22dp6wtqly+yoQ8IsxUkywmRAoqW8/MpL3Nt5QLdzTCRCsCSxndPRhjw5+JxpNKJqutiajRsbxGczPvq7n3Ll/EsYzSWe3nuMOjrjD99+jYcPf8qlr//njLY/JO0FjI0+qgKtq+uUL7/M8EmbaNQlnnbw2oeYek4Wj4j6gvFU59z1y9z+6n/Ev/o3/wX92KYiLW4Vr3Jp8xprc8s8uPMxuV7gxvw1HJPBFQAAFPxJREFU5OEJc3OrtMdjDj/+iC/OPubp1vuMLZ9Kq8KHB0+QS/OcdgbU0wLuVy5gOy2sXNG4fg00SPpDdGViCg1D6cg8RxcvDPFsQ6KCkHz/jKxeRD+/QHl9EW2hQuYYZI4iswVCK2Ohg7RfWFWOPew4wZUSJ5csGC5fc1bYLCxh+ZJEDxmKGcdmxM8np+wnHif08KIhhalOQEpIjk3OHBoLSmNBs2nZDeaNJqW4gBbpJOOIs0/vcHjnc1LNZqm+wnqzwSgK0TINqUt0ATJLCY87DMZdluYruJfOUTm3DFUPNQnI4oTJ3gmFLH4Brg5pKtDQQX5JHba9+w9ZXy2hFwLG/cekSsNtLWOWNQ4O9nm2/ZCBmLC2tsnGylVKpUVKXkY+GWDFHg2txkSEGLZOpickxCQqISfEsVOcc2V+vvURxye7aJpASxRVo8hkPKRkTjkZ9mku1bh+8StsdT9gc7nK0XRCON4lziOkZpBpOaNgTFGFOJHHaXufllVHI8PAIE+HWCRoUiNKFSLJcKXBpdVLhFsjNgstXl17iSw0ONe6ycA4Qbgu4ckES2TMkpzmN1+H9QpfdN7jrH/Eq29f5ygdYJaL/NEf/yEf/enfkA5zktwnL5kQJuSWRDaqkCUoqSNyDYmOIiVTGTqgsoxMpRQWmhiX12G9CQWNJA2I/AjTL2KUXLBMwEBEoLyQw4dP2Hu2RZj6ZORIwMkEjp9SmkqkEpQ0G9dyYbFBZdLl/ckzYjJiYiKRoyQ00VkSLuuYrJVrWJmJ7mfINMcUOplKkSQoFZOnKWnkY9QWKBQd/OEM7Rd1ay3PkUpRigS20hGOiyqbKE0im1W0/oQszchS9QJYeDFDiY76pcdyftXV95rL/oO77B7eZ/XKPJ1+D6lsUj3n8d4jRCvku//8P+bJ1nPstRL337vD+itv03rlGg//mz9hOJuwuLnBpw8/ZnuwRSB8NF0SqZit3lPeeedjQgVNrciaXqaEjYw1hJRcffstzr/9TeLeGf/1X/3vmKYTyqsFLheKfPz9v+D85W9TN5aIHkw411xl/uIrdJ7uMZtNUc1FSvOb2OUC3Z3PIY4wlY0hFVnoEe/t8pXSPPPVi7h5mWWxQHN1nf77W5QmDpnvIJWPMCZ4s5jpYJG515Z49a3X+PjzH7C6vsG7f/kF02ibD//6fS6ValTXNvjRxz+g5dyhVKhTbtRZXFvBTBWq5BL5CkeaZCpC5ZJE5cQqIUOgr89hXFwGb0je6TNtn4Jl4egOoloj1zXQdRj6xHvHHNx9wGTQIwd8oJOGbOkTbK3COdvBjXVKUkNLNLLEwnQc/HDCUTqmq0JmekwK1CSYCJxM4g/7pDiYqopTamAVKniTjCSYgYqomQWEN+Vod4uaWcKWILIEPVOYaAgkeigZPtjGaVRwf/MlBDlMfDQk1uNdjPYIPQeBBCUQQqDUl3TndWzFXKNBpfUNynWHenNMv9MlHU4ZjJ+yvLnB6lsv00tCnu/vc9w9pTUeUXEKGCrj0q2XKZyf597fPSJKfXRDksUpumlh6SYq1vCJGWUhNWWxZJZxjRJJlGM7kAc9BuMOQZ7QzzNmpuDevY8pWi3q330da6Bj7BXxRhHTp8d43RnnVtapLi+ivIC8XGWGgaMVSTMDXebIsc/eZx/S6Z1hxyEFw2FyNqCqldDiBFfqGNUWjgvT/lNiIhYur2M6FnffuYcKJf/wJ3+FzCJyz8dCox+dcb8/5HJlg52jMSWjjHaos7NbZLW1zEvXLhHtnJF5CXEEmcpJgdzQMApFpNRgNCE5OSEb9Mn7XWTZRYQBZAlZnmJgoaIIbzDAm01+EW8gSYCBSnmqZphqipeELCqNluni5TGj/oxyvcF/+uY/4c/v/oRocko3SUilYpal9ERATQh0JdBQpCJnFnvkuobQcnSZQZZjZjm2JgijgHGiqIjCL87MnEyAUDkojb2tHbSC4Ny1RSqNKtIyyPOUNM8QmUD7Rb6TkDpJnoCUX06dN0/6GCLBLcxz7/MtrrzxBqvnynQ/+YRR4RA3LXD4N1+w6SwibYP5m6sMHhzy7OiAPM6g3eUg6qKcnGwaY+kGeizRIg2zYLJaWGAyPSNOcoQwQZkgJVEy4W/+4b/F//v/N45r8Nrr13gylfzrP/kec4bDyaPHnCoXNbH45tobON0cZmDMMhL/hOPOPtXWEkdnXWLTZP3qK8STEG//Gf3JKcfxHnke05I1qtJETmcMdh+zsNgi6Y2oLZ1HLxi0T+8xjgKyB3dZcSUX569yWnmG0uYZqSEn8SFfe+V16stVHt9/iH84pm4UMNKIPJrSnu0T94+4ulnDNg3G3RF5liCFJFaQ5AKldMp7I5LjEfG4TR5OqC03YKlBv31Mca2G1CH3E2QY4g/7jP0xU10xziWjTBCSMwkHPItmLCiNdelwMauwUmtx+63vAgWmnz/gP331n/Ljw3uke3c4SUZMydgiJtI0bsoi84ZDoBL6yTFydERTK1CRFjoWMocwj0kNi1RCrjJcTadgF4mFIrIkxeV5rl9eRazNI5WOGvvk04DR4SmmNDArFdLZiDhPwNIIyUjIaH0Z8GqWhiIhmLxYfnz/B3/PldWruBOTb77yH9Hb62L1NU4PDjGSCpNuSHw2w8h0eipnOhqzdu0Kjv8YQ9MIfY8aVapOg0EWIMOYAiaQYWgmWZLipROyPGQyPANXsrK0SdTtsP3gCQfJgHHdRqtZPNr+jM3yeYzzi5hayHinTzQZo9IBmQgo2JJwOsRxDVJvzPC4gxf5TEVIJF7kumluCccsIL2ELJ4yDLvkMUyOdaxK4Rd5xxnHj58QaBrnbr/E1Y3X2DhfYLv3hL9p/wWf3/mYVnuZ/ZNDlo15rNxhvlAhC33sOEeGGcODA+pWHVOAEhppDrowiDKBNwuw99tYFZtERChTIOoukYrpHPYoX7mAMAKkpYEQVBs1MHU8leJJiHNJrHJmKJSKyNDJVUYUh3iznMKzezihjdaLmbt+hTcvv8rd7iGTkY9HiIfiVGWsug6mbTGZDYlzD/MX8w+5rFLTS5iY5MKg1Jqn2ljA1orIkUfkefgqJV+ukl89h3thHVGrgmahshy8hLpdBrtANh0Qa4pYE1i1Ao6robIvyRn9b/79n7C0vMTmtVu8/OYtgolFpXiL7M4Bd//t3+O3O1xsLhNu96iut1g4d5nd9j3Wrt3ixqurxIMeXzx9l+OjA9IkoqKV2axd4ubl1/ji2ROU30VpFpOkx+sXrvLm0nXOHm6TEzBxBmTVmPu7HyIznXNzcywurfHRwSOcpoHuD2kuOUxnJxApamUHO6niD2ZMkhmZC9d+63V29p7yyeNPqMoSIR5jLWWChtA0QrtEdzRjMbPRCDClxHJLBHlKMJ1QqFbI0hG+N+Dg7mcsnL/EZmOej957h8PxHjEZK40lxh0fI7QRmUHJrkEiqJgVSmiYKOw4IcmmSMMkyiWZ5ZJbGpViBU0ZFFvzyMUqZskjMwNm6YyH9x9Qm1vGOhuhYoXSB8R+ynH3mL1Zj65K8DVQUkfLciAhR5LqGgORkaiIqZcwfPgzzlmLXJebECo2Ll7nf/HHTf6P//3/haejfSZpyGme8IHfw456RFmIJRQVDU6FYj6D5VRj2a1z/sYtKusbzHaOON7bw9UtWpcvUFxukm5WYL6EEg4I4KxH3GkT3H9OdjQkG04IRISoW2SGRWNt7sWj1vyS7ryoAIyAv/vRX/DaG/+Mc+d+E7MNj356D609YqFQpvq11+hnMcoBoyhxqxaJLXET8MMEM8o5ZzZx0ghNmnzzN/8ZreI6Qcfh6qrBh6fvsXUyIeydceq7qJmkOxkzWjhGLMQMijOCfsqrSxfwZIJRdEg0xVk45ief/pj2A4/fv/o75EoSlIqk+hrSbiFfOU9cNfj40wf4aYcNYwFd5gQiodZcoKi7nCuvEec+pgd2KkhyxSQzkI05GutLPPvs3zHOh4RCAibf/zf/BZmAdtxlfnmeUlAmlTplo4gioVWYw9ZdQj8gjXycJKCs2eRZzEhXTK2MUqtO89pFZnFAseCSHveRSw3EYoWUEGVKJu0Bk6BDcBzQOFgi2PIxbJOnwwn/7p1/4Hl/j0yk6FJDVxkpGTHgArYSaEIQIOiqGJX3yKKYBbvAgorRcpNo6JNEAbqlIIc0U4xzn4kQCEtgJRBnioEKmWFQdTSWLl+lNtfi5POHhMd9qpmO4UpmsUeptYm5NocywD/z0YIEdbBN3Dslm82IdLCun6dY0TFqDma1iFktEIyHL5zXvwx4G6urDCYjrl+9jpbmPHzvPeZnq/T7XYqGxsGgj3r6lFGaoPsznEEHQybYyZSdj98jiELkwOOG1aIXRszShNGdp5i6z8JpgD5MuJTZaGaVWf+IYVrk5pU3uL54g/eGf8sHZ58wN7/I2197kycPn3F3/xmBnRMbKfWKy2rrIq8vvwxexG7njBtf/12C0x5qzqHxjZeJox5qwWJ//5hGocS5xSU8L2F3cESuEuJpSCOvkGUGdaGRGQZOs4GzvsJ02EbJnKE/ZhZmKCQxAqHriDzj5OgAP50Rex5l6VLSi3jTGYlIMOSLfLdM5ehpjEZAoGm0vvoSzWtXsTZXcAsW2dEpx72fYj/fQu+aWKsSWc25++w+Pa/PXvspP9m+T5IrUl3jOIc9b8o499BFhp1KFJCikLw48FKVo3LIFIQ55OSQeZwkHZa6OzR00CYnrIUSLTdp5ho+OR4xqRLMmWUqSEhjcqGz6La4unyVJVmm/9lT4tGIului5BYZkaC1ymRlHUmGGIek/QkqSRFaQFaMKJ1boFpsImUDDBtKDsLWoWDjqAwr/ZJGItuTGautRQpOhVl3gPDKLG0ssVxZYv+HP6e3t0+xtYRZX8C78xjynObmCqNhl0pBI9N0XNHADXWY9dGymGAwpZ+fsZS6JKMpZT2iDJRKDdYurlO5uMTW0X1aF9eZ03dYWb5KeW6JyQdfkHsJtmXQbDY4eNbFqDqsv7rBox98htkoY81pPH50QDjNeTk4j6yWMKSBlIKpmDHOp4yzKf2wD3nOfnpMICKUquC6VaZhgBH5nN3/nIIFURC88OMCUjIyBKQ5jm2i4hRHGuhCQ2WKLE0JiYjJEYANNAybVBgkWRE5N8/it99Cnj+HaFbQihZKAxoVpne3qFGEhQLtsy7t8RBPpLQTj3Y8IACEpjPQTNoqIubFEJPiBaiSF4NbSEGkcsgz0v+fCqpORjvtc3D6nCwKMQXcKM6jjWKmQjEVOYf58IXBSmhwTpaQMqdUb3H7yktcMRcJvzimmkhKdpXC/DzUS8xVLLQbF8lrLkEUYiUJbsFBpgnCtIllztlsh7qbYNk2CB2kAk2glQqIUhGZ//LT6L8SvG/+xrcZn3boHHXRQpPV5U3e+cGf8dpbv88wiVjevMR8cxWtXGPvzjPOth7Ti3t44YjKZovX/rN/Sfejz9n7yY8YJRmnxJSvrrF5620KxyGz7YcE+0/IdKCo8cMvfoSzd5e21+Was06xNs8nd+7y2fgBq9VFVudXOPNOMTMolCTanMNBsM2j4V02115ip3OP48OHaMKme+ch5fkqabtHSUp6g1Mmgy6xjEnwsA2bdnJGIhI0CUZmsLp5Ga1aJe4cMuy1ETlY0qLiFhn7M9I8RiBI4+RFLnKuIXIQv4h+jdPsF7BLEiEQeQa6TXFhnqW3X0feOg9zVTJXR+o6mlugZBWIM0HTcjk46/DZ/uc8bu8xyhN6WcLUBD+FOE+x5+poviCdeLglnZppMxl6iAxcQ0fXdOIkRaXAiyorPiARdPF4NnjMbNLF1FxUnrPUXMVzbaZSoftdguGAxcjkglZjoTLP0s1XmF9ZZ/rJE7Shjy0t0jijd3ZGEI1pzF2kYJtIJbAsE2mbyDyCmU8S9Qn9Y06Pt4jGh5xbV2jFNYKZR64KFMw60tbIEvXleJVZbp0LFxZ40v0Md3EJNZmSRgP0eEqhXGbcDXj+44/YWFvHyRReHDKYtDmJ29T8hIWD+zx9+BnKHxPJHE/A3EtXqX7zTcZ3tjg4+pS9bMB+2EViMxE57ckppWaJzx48oLFWIgXcgktvPCScjQhmM6KTmEQqIpkxFEP0RY33t37OJ5/f5SW5QVnp3Puzv0ZJsHKfYi7RMDAti2ma4uYvPotgEKqQXjZixV2idutl0pUlJv/3/zN5EGAZBlW9Su3CKjv7u5yMz1ASyF50taSS5HlOLBMUoCN/MYUlCbMcshQpclrNGo1bV2GpTmZJhKWhwhQ6Y6xBhJYKtBRO2secnp4RZ4ppHjMT4AlINEgyEGlImkS4Jiw1KzSdClvDfXRdwzZN0iwlyl5070wkEkWGIiRnLDJK2RSVhriixtzmVb7+L/459vlzBHnCtH3M+3/6Z/if77Im6yw7i5RkCd1XTE771BQIaWBbBgk5ui7RDA3iFMgQyYtI3OSkD7Mhw8EWXnpMlLYZjqasZOcxqJEMe+RxEZEsQvT/fWx+CfBmvsIolSi7NU6fbnH3vU+4uHCD2ek+jmlTvHmV6OOH7H94B+kNkFrKhdsXeXRnm739Lzj5kx4LU4OmAldIVpwmaujz8O//Aa075ZPdh+RzJZK+Q6IStJKNN5synQTkesh0f4aUFkESUlIOaDlSl8zVixxPZ7z/yQPGJ7vUcRgmQ/LRmNr5a1zUFthtdykWSxyN+yhRQCu4ZBLibEbOi7JTqiQxMT4hMYKzx8+ZPnpCFsdYmobEJkoCDrb3yNIYU+gv/qd4cVpoQkeh8FVAqnJMQJM6mVAgNQQmdrFKfXMDvTWHMiSxzLEQiCiic/ch/rN9yrFCCp1mdZ7fvfkH/OT5J0x27qPiAAVIAa6tUywUmIUhBdviwtoqeAlCKfI0YZKlKBQIhYHEQlI0LTRNI458vCwhlAk2OSkBWThjjZyFWo0kmjJ7MqMcWbScReZUBT3WkIlAICmZLqYek0qJyHIMS0PoBvFoSrS1TaZS7IKJ6droJ0Oi0Smx6jHT+sysGaGW8vD5x+j+c57tt6mtnOeNWg2zWGUwGLP4O5u/FI9CKfXLL8r/Wr/W/4D0yxfVfq1f639g+jW8v9Y/Wv0a3l/rH61+De+v9Y9Wv4b31/pHq1/D+2v9o9Wv4f21/tHq1/D+Wv9o9Wt4f61/tPr/AJXV/niB/aSwAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADECAYAAADZLWDNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADRfUlEQVR4nOz9Z7BkWXqehz7pvfcnM08eb8q2ne4xaJgBMBQxvIQkSgApKgCJpHAlgUYKiiL1QxQlyoZCAV4CYoCKkKALkRKDIYqkRAwINzMY043u6u6q6qo63uTJk957n/v+2Pmt7hoMZqZrgCY5t1dERXVXZWXm2Xvttb71fq8xaJqm8fH4eHwPDeM/6y/w8fh4/H6Pjyf1x+N7bnw8qT8e33Pj40n98fieGx9P6o/H99z4eFJ/PL7nxseT+uPxPTc+ntQfj++58fGk/nh8z41/8Sb12hr89E+///9f+hIYDPrvv1/DYID/7D/7/Xu//38b/4yv34eb1L/0S/oXll92O+zswM/+LJTLfzDf8A9q/Mqv/Is9cb/xXhgMEI3CD/4gfOELf/Cf/8/x9TM/07/6z/9zWF+H0Qi++lX4W39L/yEfPQKn8/f5K36b8dprMByC1frh/t2v/Ar8wi988xszHIL52S7NRz7kXmiavrD80i/BH/7D8H//3/D5z//Bfe63un7/jMez3bl/6V+Cl17S//tP/2kIheB/+B/gH/0j+ON//Jv/m34fXK5n/JrfYhiN+o7x+zl+v9/vD3J88F4A/Kk/BbEY/O//+x/spP7nePz+1NQ/9EP67xcX+u8//dPgdsPZmb5qeDzwb/wb+t8tFvBzPwc3b+qTJxaDn/kZaDaffk9Ng7/+1yGV0lf/H/xBePz4d3/271VT/87v6J8dCOgP05078Df+xvvf7xd+Qf/vD27fMr5ZTfjuu/oE8nr1n+2zn4U33nj6NVISfO1r8B/+hxCJ6J/9L//LUK1+m4v4+zT8fnA4fvdO851ed9DLl+/7Pv27ezzwYz/29LX/dtfvm418Hv7tf1v/XJtN/x7/8//8u1/3N/+m/ndOp37vXnoJ/u7f/RAX4FlX6m8cZ2f676HQ+382m8HnPgef+Qz89//9+2XJz/yMfvP/rX8L/tyf0x+En/95fdJ87Wtgseiv+0//U31S/+E/rP965x340R+FyeTbf59f/3V9lUok4M//eYjH4eAA/p//R///n/kZKBT01/3yL3/793v8WL/JXi/8pb+kf8df/EX4gR+AL38ZXnnl6df/2T+r35C/+lfh8lKfTD/7s/D3/t63/6wPO9ptqNX0RaBS0SdFrwd/8k8+/brv9Lr/8i/DT/2Ufu/+2/8WBgO9vPzMZ/TXrq19+OtXLsOrr+oT/2d/Vn/Yv/AFfVfpdOAv/AX9df/T/6R/tz/2x/T7NBrBw4f6AvUn/sR3fk20DzP+l/9F00DTfuM3NK1a1bRcTtP+j/9D00IhTXM4NO36Wn/dT/2U/rq//Jef/vdf+Yr+53/n7zz957/6q0//eaWiaVarpv3Yj2naYvH+6/6T/0R/3U/91Pt/9sUv6n/2xS/q/z+badr6uqZlMprWbD79OR98r3//39f/3TcboGl/9a++//8//uP69zk7e//PCgVN83g07bXXfvf1+eEffvqz/oP/QNNMJk1rtb755z3LkM/6xl82m6b90i89/drv9Lp3u5rm92van/kzT7+uVNI0n+/pP/8w1+9P/SlNSyQ0rVZ7+nU/+ZP6+w4G+v//0T+qaTdvftsf/duNZys/fviH9actnYaf/El9O/6//i9IJp9+3b/77z79/3//74PPBz/yI/rqIr9efFF/jy9+UX/db/yGviL/2T/79LYmT/S3Gu++q69Cf+Ev6FvxB8e32yK/2ZjP4dd+DX78x2Fj4/0/TyT01eOrX9VXmw+Of+ffefqzvu/79PfJZj/853+78Qu/oK+Yv/7r8L/9b3qZ9qf/NPyDf/D+a77T6/7rvw6tln4u+uDrTCZ9N5LXfZihafB//p/wR/6I/t8ffN/PfU7fad55R3+t3w/X1/DWW9/VJXm28uMXfkGH8sxmvUba3dUPbE+9s1mvhz84Tk70HyIa/ebvW6nov8vN395++u8jEX1b/1ZDSqFbt779z/GdjGpV34J3d3/33+3v67VqLqfXgTJWV59+nXznb1a/yhgO9WvzwRGPf/vv94lPPH1Q/ON/HJ5/Xt/mP/95HRX6Tq/7yYn+u5yRvnF4vd/++3zjqFb1B+Vv/23917f6/P/4P9YXtE98Ara29HLzT/wJ+PSnP9RHPtuk/sYL+c2Gzfa7J/pioV/Yv/N3vvm/iUSe6ev8czdMpm/+599KOff3/p5e736nr/+9htGor9Z/42/ok/Tmze/8ui8W+u+//Mvf/IF6FphT3vNP/km9Vv9m484d/ff9fTg60s8+v/qr+gr/P/6P+vnqr/217/gjP1owdnNTfxI//Wn9hP57jUxG//3k5Oktv1r91qudfAbomPkP//Dv/brvtBSJRPRD7tHR7/67w0N9EqXT39l7favxuc/p2//vx5jN9N97Pf337/S6y7WLRr/1tYMPd/08Hr38+nbvCTri8hM/of+aTOBf+Vfgv/wv4a/8le8Yav1o2+T/+r+u/3D/xX/xu/9uNtO3KdB/eItFP8l/cLX6uZ/79p/xwgt6M+Lnfu7995PxwfcSzPwbX/ONw2TSt8F/9I90JENGuaxDTZ/5zLNty984Egn95/7gr2cZ06l+BrBa9ZUPvvPr/rnP6T/Lf/Vf6e/zjeODsOSHuX7/6r+qr7qPHn3r96zXn/47qxVu3NDv2zf7Pr/H+GhX6u//fh0O+q//a7h/X58sFou+Iv/9v69vmX/sj+lP91/8i/rrPv95HdJ7910dBgqHv/VnGI06BPVH/gg895y+pScS+qr6+DH803+qv+7FF/Xf/9yf02+myaQfer/Z+Ot/XV9FP/MZ+Pf+PX0b/sVfhPEY/rv/7vfr6jzb+MIX9J8N9Nr07/5d/Xr+5b/8/sP2nV53r1e/dv/mv6kvDj/5k/q9uLqCf/JP9JX+539ef88Pc/3+m/9GP2S+8gr8mT+jT9RGQz8g/sZv6P8N+veKx/XPicV0GPbnf17HyT2e7/yafCisRGCkt9761q/7qZ/SNJfr9/77v/23Ne3FF3UY0OPRtNu3Ne0v/SUdJpMxn2vaX/trOhTkcGjaD/yApj16pEN13wrSk/HVr2raj/yI/v4ul6bduaNpf/Nvvv/3s5mm/dk/q2mRiKYZDE/DU98ISWmapr3zjqZ97nOa5nZrmtOpaT/4g5r29a9/Z9fn9/qO3834ZpCe3a5pzz2naX/rbz0NKcr4Tq67fN/PfU6H2+x2Tdvc1LSf/mlNu3fv/dd82OtXLuswYDqtaRaLpsXjmvbZz+rfScYv/qIOkYZCOjS5ualp/9F/pGnt9oe6NAb9O3w8Ph7fO+NfPOrpx+Pj8W3Gx5P64/E9Nz6e1B+P77nx8aT+eHzPjY8n9cfje258PKk/Ht9z4+NJ/fH4nhvP3FH8S3/x/43X68VkMhEIBJjP51xfX1MsFkmn00yHY9qtFtvb2/T7fYxGI7lcDrvdzubWFt1+D7fHjc1uZzAYUCwWARiPx8TjCdAMDIcTZrM5JpOJdDpNoVAgm82yublJoXCNxWIkGApgtVqZTCbM53Om0ylra2skk0m+9KUvYbfbmc/nrKysYDQaOT4+xm63k0gkACMet49arcZ4PCYYDGIymZhMJlxdXZHJrHFxcYnVamVnZ4dSqcR0OmWxWBCLxUilUjx+/B6TyYTV1VXsdju1Wo1yucze3h5Go5HHjx/j8Xiw2Ww4nU4mkwnT6ZRarcZwOGA2GuHz+djZ2eHk5ASz2YzZbGY0GlEul9nYWMNgMFCv12k2m9hsNsLhMDabDbPZTLlaZ3v3BhaLBbvdTrfb5fj4GJfLhc/nw2Kx4HK5aLVamEwmGo0Gi8UCs9lMt9slFoupe3fjxg3y+Tw2mw2v16uum9vtpl6vc3p6isvlYmNjg3a7zXw+Zz6fMRwOGI0GmEwm4vE4Jycn+P1+kskkJycngIHBYMinP/1p8vk8FouFQqGAz+fDZDLhcjoxLOYcHh4yGo2IRqNYLBaKxSL/n1/8Xz/03HzmlToYDBIMBmm329TrdVqtFs1mE6vVisvlIhKNMJ3O0DQNo9HIYrFgb2+PSCRCt9PBZDZjMBoZDAbM53NsNhubm5usrKyQy11RLBYJh8M4nU5SqRQ2m41AIMBsNsNoNOL1erHb7ZRKJRaLBaPRiPl8znA4pNPpUK/XMS9ZZW63m3A4TLfbZTweo2kaLpcLs0n/+2KxiNlspt/vA+B0OrFYLIxGIxKJBFtbWwyHQ3Z3d4lEIsRiMcbjMePxGIDhcEi/31ffwWq1UiqVuH//PqPRiFqtxmKxwGg0Mp1OGQwGmM1mfD4/bo+HVCqF3+8nFArh9XqxWq3M53MSiQTdbg+z2YzJZGJ3dxev18f6+joejwe3281kMuXk+JjJZMJkMmGxWGCxWNSDWalUWCwWaJrG1tYWDoeDRqOByWRSi0Gz2cTv9+PxePB4PGiaxmQyYTAYcHp6SqVSoVar4XQ6CQaD1Ot1er0eV1dXeL0+VlaShEJhMpkMuVyOF198kRs3bmAwGHA4HDgcDkwmE6enp9RqNY6Pj5nP5ywWC1KplH5flt99Pp+zu7uL3+9nLgy/DzmeeaUeDSfYrFNsVgd+X5DBYMDW5g5Wq5XhaIjJbCUYiTAcT5hrcH2d1yeL1YrT6SDiD2A0mBiPh7icToyGHl6PH7PJSrvVxW63MxqNGY1GNBoNnE4ngUCA1157jVKphMPhwONxUyyWmE0XOB1uGo0GRoMJq8WO2+UlncoQDAY5Pz+n1ezgcfsIBsKMx2MG/RGgr4A+n4+1tTV++7d/m2QyicvlwuVyMZmM0TQDdrsdh8OhHlC58fIAF4tFms0mTqeTdrtNtVplY2MDn89HoVBgNBrhcDjUg1Kr1ej1evh8PuLRGN3+kGa7S6PVwe120e70cHl8dLtdDAYDk/mC3nCEczJlARRKZVxut/5QeL04HC6GwyGnp6dqstrtdvx+P06nE6PRqK/q5TK9Xo/ZbMZ8Pmdvb49ut0ur1SIcDjOdTtnd3aXT6XB6ekq/38dsNtNutzGZTLTbbSqVCi6XC4/Hg8lkotvt4nI5mM3mzGYLwuEIZ2cXWK1W+v0+3W6XdDpNo9GkXC6zvr5OtVolGo3SarX4nd/5HaxWK067g3AkRqvVIpvLk0olicYSH+2klqffuFxt5Sk2GAxcX18znU5xu9243G663S6z+ZxKtUo6nWZ1NUOz2cTucDCfzZnN5kynM66urvB4PASDQVwuD263F7/fz4MHD/B4PCSTSdxu93JyDIEFDoeDwWCAw+HA6XSytraGx+PhyZMnlMtlXn75ZUKhEL1eD5fLxe3bt9X3nc8XNJstHA4HnU6HVquF3W7HZrOpiXx+fqnKgUwmw/n5Ofv7+4xGIzweDw6HA5fLxWg0YrFY0G63GY1GxGIxNXlnsxnD4ZDpdKquk6ZpGAwG5vM52WyWyWSC1WplPJ7QbrdJJBJ0Oh16/R537t6h3+/z6NEj1tfXyRcKhMP6w+n1+pjN5pTLZfr9Ptvb20ynU8LhMCaTCafTicFgwGg0sr6+jsvl4v79+6yvr9Nut4lEIjQajeXPes7Nmze5vLykVCqxsrJCo9EgFArpE8/ppFKpoGkaZrNZ7YqXl+dYrVZMJhOJxAq/9Vu/RSAQwOVy8cILL+D1elksFrzxxhtqtyoWi+zv7/Puu+9iNpuxhMzE43G8Ph/9fp9isYT3GdmPzzypbTYH/f6QRqOFwWAkGAyhaWCxWKlUavj9fjY2t+n2ukznC5574UWusldEonECwTDT2YKzszMSiQTNZhuXy4PRaKbV6jCfz3G7vbTbbTKZDNVqdblyjxgMBtRqNYLBINVqjdu37zKdTshmr7BarRgMRnq9Ad1un2g0xng8BYwEg2G63Q6dThen00Wr1cG69AqZzfQy6c6dO8znc7UqtVototEow+FQ34GGQ2w2G5qmMRgMyOVyrK9n6Pf71Go1RqORKnk6nQ6pVEpNRI/Hw2KxIBwOk0qleOutt3A6nZitNlKrGaxWGxaLmclkQiKZxuX14XA10QyA0cRoPMXrD5BeXQNgvphTr9WxWm3LMmRCKpVSD/l8PsdisXBwcIDP58PtdjOfzzGbzVitVlXPtlotfD4fk8mEF198kWazqR76tbU1vF4vDodjOdGKRKNRVQY2Gg0GgwHr65skEglqtRrT6ZzXXvsBHj9+jMPholZrYLPZVRm5s7NDv9+nXC6rsnA0GhGKRKk2muzu7KhFwGazPdPcfOaa2uPxMJ1O2d/fJxqNUS5XKBb1+jYej5NaTdMfDak3m5gsFsbTKem1DLGVBOfZS2KJOIFAALvdjs/nY39/n729veUKOqdWq1OtVnn99deJxWJ4vV5sNhtHR0dqaw+Hw8uazYnX6+X27duEwxGsViubm5vs7OwymUwoFovkcjmGwxHD4Yhut8vl5SXZbFatZtFoFLfbzXQ6RdM01tfX8fsD2Gw2ptMpo9GI6XTK3bt3AWg2m3Q6HarVKovFgpdeeknVrcFgkPF4TL1eZ39/nxs3bnDr1i3G4zFHR0e0223W1taYzeZ0en2G4wkOl4tkepV2t4c/GCSeWGE0mWK22Wh1OiRSSV58+WW6gz4PHr2Hx+cjvZah1+9jMpkIhUJcXV0xHo/Z3Nyk3+8zn8+x2+1kMhkcDgfdbpdiscjOzg6NRgO32w3AxsYGmqZxcHBAq9UiGAyyubmJ2+1WE9hsNuN26yXe1dUVo9GIu3fv8uKLL9JudajXGlzn8gz6Q1xON5nVNbqdHn5fgFpNP+TW63VqtRobGxssFguur6/xer14fT4arTYaBgwmM75AkKOTU7r9wUc7qY1GMwaDCafTRa83YD7XcLk8aJqB+VxjOplzcX7JYq4xn2nUqg1SyVVMRjMup5v8dRGDwYim6at+uVylVKoQCATZ3Nzmxo2bdDodTk5O6HQ6GI1GqtWqOo3b7Xaur/OcnZ3jcrmxWGwMBiNarQ5gAIyMRmMWC0gkkuo1k8kUg8GEz+dX238kEsFoNOLz+dA0jXg8Tr/fZzgcKOQmFApRr9fRNA2Px0MmkyEUCi1XpymzpdokmUwSCoXodrtUKhVMJhOLxYJWq4XNZmMymdDpdDAYDKRSKdLpNG63m+FwiNvtVrvEdDrFYDBgtzmYzzQMGJflWBCX043FbGM+1/C4PcxmMywWC1arVZ1BzGazOohpmsZoNKLVajEYDDg+PqbVanFycsJwOGQymZBMJpfljBe32008HqdQKDyFmCQSCaLRKPV6XZUhpVKJWCwGQKVSUQ+7oEHDob7qr65m8Hq9XF5eYrFYSKVSmM36zrSaXmU0GpFMJun1emSzWVZXVymVSh/tpB6PxwQCAS4uLtna2mJlZQWz2cx0OtWRkFYTr8/LxsYGfr+ftbU1Hj16RKvVxmKx4nA48PsDrK5maLVaVJbiS5/Pz3Q65fT0lLW1NSKRiCo7Go0GVqtVwV77+zdIpdKUyxXC4TC9Xm95AGlzfn5OtVpT7xuPJzAajUSjsWXNGcFms6sbNJlM8Hq9ZDIZDAYD5+fnaBoYjUa1ld+5c4fhcMh4PCYSiagtVdM08vk85XJZnSc6nQ4Wi4VwOEyr1eLevXtcXl6STqdxOByMx2POz8947733ALBarVxfX5NOp4nFYlQqFe7evYvFYlkiGBp2mx2zycznP/9H0DSN+UxfiZ1OJ2azmeeff556vU65XKZQKPDkyROGw6F6wPr9/hJdytHtdrl58yYvv/zy8lA80Q+u8TjhpRDDYrEwHo+JRqMKVRGozmazcXZ2RiQSwWK1MJ/P+eQnP4nJZOLi4oJGo8GNGzdwuz1qwRiPJxgMBp48ecL6+jqHh4f4/X5WMxlu3rzJ6urqEgDwEIvF2P5G4fUf9KSOxSJo2oJ2u0mzWUfTFsznM2azKXa7lcl4QDjgo9tpUirmGQ36GFjgsNuYz2ZoiwU2m43BYECv16PRaDCfzzk7O2M4HBJPJAiFwxjNZmx2O26vl8TKCoVikd5ggMPlolQq0el0yGazVKtV6vW6Om03m01cLhdra2t0u12GwyGj0YjxeEylUsHpdC5XYRPNZpter4/RaMZqtS1rQBcWq5XJbMZ0Pqc/HGJzOKjWapQqFSbTKf3hkMFgRDKZIp3OoGkGwEAwGMLr9TEaTRgOxzidbhwOF06nm15vwOXlFd1uD5vNgc1qYTjo0+926He72K0WXE4HRsCARiIeV4dWm82mUA550ExLVEMOujabTdXvrVaL7NUVvX6fQDBIo9Wi0+uxvrnJXNNodzocHh/T6XYJBIMYTCZG4zHjyYTheMxgNMLhdOL1+ZhrGodHR/SHQ0xmMxgMaAYDtUaDSDSC3enA6XExHI8IhIKEYxHm2gKz1UK70+Hs4oJYPMHzL7xEfCXFZDonEo1TLFcZDHUo9OTk5CkEKfDtnAN+j/HMB8VOp4PX68Fut3Pv3j0ikQg7OzvY7XbW19d479FDTCaoVev4/QGKxTzp9Crz2YzBEtN1u91EIhHu3r3LW2+9hcvlUpOu1++TTKV4Zel+JIezYCiEpmk8eu89YrEYnU6HZDLJW2+9RTqdXq6w2nLr07dWl8vFxcUFHo9HoRbFYpH5fIHX62M+n1OpVFksNPx+P5VKlY2NTTTgKpcjGo3i9/s5PT1lNZNhPp/T7fWolMtMJxP8fj/N5jHNZhOLRV+1HA4Hi8WU+/fvq7o0nU5jNptxOp0cHx/rTRmrFbfLhcFg4Ooqy3isoywej5vRaER/eeiTppCspNlsVh36hsMhrVYLj8eD1+ulVqvhcDhYW1ujPxgwHI0wmUyqX/DKK6+Qz+e5yuXQNI1Op8NisSCfz2MwGEin0wpBcrlc2Ox2vbGSSGCz2ej3+8zmc3w+HwDZqys2NjZ4+PAh88Uco8moY93TCRoa2zu7SziwhtFkpt3u0Gq1iURjOJ1OqtUadrudjY0Nrq+vOTo6QtM02u02P/b5H//Qc/OZV+pAIKC27FAoxGAwoNVqUSwWsdvtqjng8/vV/0tTIxqNsrq6SqPRIJfLLR8QLwaDQW3vg8GAi4sL+v2+Qj5MJhO9Xo+joyPiiYT6fL2U8dNsNlUjx2w2qwPbcDhkZWWFQCCgttBer4fH48FgMFCtVrFYLAwGA5rNJs1mk0AggMftJp1Oq67cbDbD7/fTarXodDo4XS6cTieFQkHV3cVikWq1ymw2UzW1QJ/j8ZiNjQ1sNhutVoter4fX68VisWCxWDCbdVirXC6r7mCv12MwGJDNZlX59c4773B1dUWz2WQ2m6lDbCaTIRqNkkgkVFPMarHQ6/WwWCzEYjHC4TD5fF6992KxwOfzYbVa6XQ6uFwutcqnUikWiwWdTkcdKuWBlR3WarUSjUa5urpSDZxqtcp8Pqff73Pv3j1Go6FqSi0WC4bDIV6vl5OTE8bjsWoGNRoNZrMZ4XCYZDKJ58PoEj8wnnmllnZ0LpdTdS7oh4X799/FarVQq1WYjKf8yI/8KEajiXv33iYUCjOdztThxO/3c3Jygt1u5/LykvX1dZxOHc144803KZVKrK+vc+PGDbLZLMPhkJ2dHebzOX6/n3q9jsvl4rnnnlONh0KhwPr6OmdnZ1gsFlZXV3G5XORyOcLhMIPBgHA4TCwWUzdzfX2dZrOp6uvFQsfAi+UyHo+HXC6H0Wjk0VIRvbe3R6PR4NHDh9y9exez2ay6nbVaTdWlDoeD2WyGyWQiGAzy3nvvYTKZ+KEf+iEikQjT6ZTr62vMZrNqvZdKJSwWC5lMhtd/53dUI8VsNvPOO+9w9+5dBoMBbrebq8tLfuiHfoiDgwP1HnLYG4/HnJ6dkVxCfQ6HgzfffJNkMonD4WB7e5tCoUCn01GrdCAQ4N1338Xv9/Pyyy/z4MED+v0+DoeDq6sr4vG4wr673a7qwkrHs9Fo0Gg0+NVf/VW2t7fZ3d2l29Uf3k6ng9/vR9M0qtUqr776KpqmcXl5qWp2k8nE/v4+19fXaif4sOOZV+rZbMbFxYVqUQ8GA87OzjCZTGqlFJ6E3GyZRAaDgXa7zcnJCWdnZ2xvb7OxsYHVaiUUCuFwOLi+vsZkMuHz+SiVSnzxi19kMBhw69YtLBYLtVpN4cjdbhev18twOGR9fZ3pdEq321UcCeEyOBwOLi8vVX0K8OjRI2azGT6fT0FgTqcTt9vNZTarGjM2m01NmMViQS6Xw+FwqNJCdoRkMkk8HlcIh+xQwo/Z3NzEbrczm82oVqsMh0Oi0SjxeJxYLMZkMmFzc5PBYIDBYGBrc5Po0lkplUphsVh44403iEajjMdjnC4X+Xye6XSK3+/n0aNHFAoFVlZW1OQW3DmZTKpdM7Qs41wuFzabDZ/PpxpnXq8Xp9NJeWmkL80nl8ulMG7B+BOJBLFYjP39fSKRCP1+H4PBwNramo4/h0JYrRa143S7Xba3t1VXVnYzmS+CiWuahuNbeZT8QUxqQEFEoHcYV1dXWSwWmEwm1tbW8Pv9GIxGstksBweHDIdDhkP94rz66qsMh0Oq1SoHBwe0221efPFF1cKt1+u88MIL/KE/9IdIp9OqnZtOp1XHz2w2c3R0RDAYxGKxYDAYeOONN9QFzWQyJBIJhdF6vV40TcNiseDxeNQ232q1yOfzeL1ehad+5Stf4fT0lMFgQDKZpFAoKDJUOBxmOByyWCyw2+1qey8UCtTrdWw2m958WtaIk2XdrdfZ+kNutVpJp9OcnJxw7949xUk5Pz/n8PCQfD6v//lkolrtDx48IJVKcefOHUwmEwaDgYuLC87Pz7m8vOTLX/4yw+GQSqWyRH+q3Lp1i0wmw2g0otPp8Morr2A0Gmm326rjORqN2NjYYHNzE03TzxWRSITHjx/T7/dZW1uj1+uxsrKCpmlcXV2pVfX8/FxBoaBDmru7uzidTr761a9y7949SqUS7Xabn/iJnyCTyTAcDjk4OMDr9fL8888zmUz4whe+QKFQwOv18vjxYy4uLmh/ow3bH/SklgOJ1WolHo/rBJT5nGAwyOrqKtOl+YgBA263G4/HTa1Wo1IpPwX637p1i263y8XFBQ8ePFAt3enyxptMJgUrOZ1Orq6u6Pf7NBoN2u328qBRVWQZadLI5JGaLbk0rwyFQqp2l4dS2tt2ux1N01QZ0O/3GY/HHBwcYLVaVbOoVCqpVcdutyuGoNlsJhAI0G63abfbOj1gNqPdbtPr9ZhOp5yfn1MoFKjValSrVe7cuUMymeThw4fqYRsMBmxvbxMMBpnNZhgMBpxOJ3a7nbOlV6DUtCsrK5hMpiWuPsTpdBKJRGi32xSLRUajkcLHc7kctVqNWCymFgXQD+Gz2Qyv18vu7i7T6VTtINlslpOTE3zL9vX19TW9Xg+Hw6Fa9b1ej+FwyMOHDwkGg2QyGbXaa5qmJvJ8Plc7nfzbwWDA/v4+n/70p1lbW1M7eiaTUTvFRzap8/k8L730ElarldXVVdbW1lQ5sVgsGAwHlMsVolG9w/fSSy8pYowcIoSNJew3h8NBqVTCbrfj9XiIx+Pcv38fm83G1tYWFotF1ajX19csFguCwSDz+XyJZswZjUaq0fDuu+9SrVYxGo30ej1OT09VebG7u8vKygrNZpN4PE6tVsNgMGC1WpnNZng8HgKBACaTCa/XqzpqRqORYDDI7u4u8Xgcg8HA5eUlhUKBwWCAx+NRu0kwGCSVSrG5LCFsNhtra2uYTCYODg4YDAb6bmbQH/x79+5RLpe5efMmX//618lkdAzfarWiaZo63F5eXnJ4eMhkMmFjfV2VRUISMplMbG9vk0gkKBQKCv5rt9vMZjNyuZx6nXBVpEQpFotMJhN6vR6VSoV0Os1gMKBer7O2tsaNGzfw+XwkEgksFgtra2u0Wi3G4zFnZ2ecn5+rBkw8HieRSNDvD9A0Te1Kh0vznfl8TigU4t69e7z99tvqwP3pT3+a3d3dj36lDgZD9PsDWq02Z2fndLs9QqEwNpudYrGMzxdgNtfo9gZYrA6Ojk9xOF08/8KLLDSNcDjM4eEhr7/+OolEApfLxeHhIY8ePaJarWIwGimXStisVpwOByuJBPnra8qlEv1eDzRNlQCrq6vcvXtXHTLdbjdms5lQKKS6fefn55yentJut2k0GhgMBpqtFuPJhPligcFoZDafE4vHmc5mOF0uAgGdq+31emm1Wmqlcjqd1Ot13G43VpuNH/6RH6Hd6bC1vc3jJ0949PgxyVSK4WhEuVIhEomwWCzweDxsbGywsbFBtVql1WpxdXWlYEeAbrer2t2TZekhO8HZ2ZlCTvL5PLlcjkq1SigcZntnh+FoRK/fx2gy4XA68SxXy8vLS3Z3d3n11Vfx+wP0ej16PX1ld7ncbG/vqIZVv98nmUzh8/kxm3WOtlyzQqGwfLj61OsNdnd32dvbx+Px0O8P2N7eAVANn0Qiwfb2tmr2SMNue3ub/f19/R4sYdDLy0u8Xi/Z7CXn5+e4XE42NtafaW4+s5nNX/tP/wo3b96k3+9zdnbG+vo6wWCQX/u1X8NqtbK1s43d4cDtcuN0OtVK6XA4yGQy2KxWfu2f/lMMBgMvv/wyfr9fdeGq1ao6TLZaLTKZDD6fj1wuh8/no9FokEqlyOVyip8gF2c8HjOdThmPx+zt7VGtVrm+vqZUKrGxscHa2hqLxUKnfvr9lMplvF6vItk4HI4lb9mrOnyC8AiUF4vFaLfbOBwOCoUCfr+fWCyGy+XiS1/6Eo1Gg7t37+q1tM+ncHmXy6Vq8sPDQ5LJJJNlMsKNGzc4Ojri8PCQaDTKYKCT7t1eL+VyGZfLRbfbJZlMomkaXq8Xl8ul2vCXl5dMJhN1nuj3+1SrVf0w6XTx4osvKq6LzWbDYDCQzWbJZDK02200TcPn82G32xUqY7FYyOfzCu83Go3qXhqNRra3t9X1FsRmOp0SCoXw+Xy4XC7K5TKlUolIJEK5XGY0GpFOpwkGg+o8c3FxwWDQV0xAOWBOJhP+3J//ix96bj7zSh2JRDCZTDpe63QyGAzUYaRarTKfzZmMJ4pTbLVa+dSnPoXL5eL6+pqzszNVPzUaDdUUAVSjQOikw+GQy8tL7Ha74gwLTNdoNNREqdVqqoVusVhwOp2sr68rHvN0OsVoNKpTervdVrTU/f19er0e3W5XqUui0SgHBwe43fqDGQqFeO6557DZbMTjcSwWC4vFglKpxOrqKo8ePeLFF19kc3OTu3fv6qjHEsIaDAZUKhUGg4EiXBUKBWazmVKipFIpVUYIRcDhcKjyZ319XXVHnU4nZ2dnNBoNer0eBoMBn89HJBJRyEK321W00tFopFQ3JpNJUWVHoxHtdhu/38/h4SFOp5Nut0s2m6Xb7RKNRkmn02oXlNJDWv1y7UOhEKurq2iapkQEx8fHnJ6eUi6XyWazpNNpdnZ2qFQqzGYz3G73UlwxXLI1m+RyOcXjXltbe6a5+V3xqTudDisrK7z++uuqyfDyyy9zdXVFYmWFJ0+eqFrXbDbT6/XY3Nwkn88TDoXwLWE2aV93u13q9ToOh4NyuYzFYuHTn/40x8fHHBwcsLGxoQ5F0hru9XqUSiWl1NjZ2WE8HlMoFCiXy2xvb7O3t6dgstPTU27evMn6+jqj8RijycRwOOTi4oJ4PK7q8evrayXBurq6wuFw4Ha7WSwWeL1exUVutVqUy2WKxSJ3795lvuy01et1MpkMJ8fHXJyfE4/HMZlMlEolBSfKoVRIPLlcTpF8DAaDXld2Oqrrl0gkGI1GBINBLi4umE6nCh/v9XrEYjHOz8+ZTqe4XC5+5Ed+hFzuWn3HN998k09+8pNYrVaazaZq1sh7zudzGo0GzWZT4eyTyQSz2ay4Iw6HQ/391dUVkUiE9fV1dfj3eDxKPHF9fY3b7VbQYqlUwmw2s7W1pRbB8XjM2toa+XyeSCRCsVjEaDQymUw++ppa0zTm87kC7Hu9Hpqm4XQ6dbL7aMTamq6vi8Vi6mDSW3omD4dDDAYDmUxmuf0M1IUR/Hl16cgv8i3ZlgQKDAaDOJ1OtfpIO9zlchEOh6lUKqpcEImUEM+lTg6FQmxsbLCysgJAr9dTncnz83NFSvL7/bjdbt5++20WiwX9fh+Xy7WsS3X1Szwe5+HDh9RqNTqdjvq+sVhMTQhpKAgZ6vBQoM4hs9mMZrPJe++9h8FgYLFYcHR8jNlsVt/XZDJht9txuVzU63VmsxmZTEa9Vz6fV93KR48ekUyu6MKCfJ7d3V2KxSKdjs4lPzo6Uh3FbrdLPB7HZrOpg7LBYKBYLDIcDgmFQlSrVXWgdLlc7O3tUSgUlIijXC4/hSIZDAbMZjObm5uYTCa1O/X7fbVLJBIJPB4vRqNRdWXD4fAzN17gu1ip8/k84XBY4ZTRaFTxGuLxOPPFglqtxmAwYG9vj06nowS2Xq+Xs9NTbuzv0+/3CQaD1Go1hZ/KRW42m9jtdtxuN5qmKagpkUionULgqkgkojpc1WpVwXvZbJZAIMD5+TnRaJRbt25RKpU4OzsjEAioxkK73VY6SmnizOdzpappNBqq7Oh2u4BeJvn9ftbX1ymXy3S7XUwmk/oZR6MR/V6PT3/601QqFS4vL1VpIy1mwfPz+Twej4doNKqUIa1Wi/ayjr9x4waLxYLNzU0sFguRSASbzUa9Xmc4HKr3OT09VbWp3W5nPB6TyWTUTloul4lGo5RKJW7evKlKBanPh8MhFouFbrdLKBRSdAhBODRNY21tjXa7rdAii8XC4eEhpVJJ3SuBFAXjlp04HA5zcHBAKpVSu+udO3dUh/bevXtsbGwQCoV48ODBM83N70p4K00G6aYBGAwGLEu+Qb/fV3Ihj8dDt9tVh7TxeIzJZCKXy7FYLJSCOB6P4/V6efnll+n3+wr+EaK70WjE7/cTDoeVsDMUCilobrFYKCRhOp3Sbre5vr5WXGPBXOUcoFMix+TzeVXXi6pcmjqz2YybN28q/oZ0T9966y0MBgPj8Riz2Uw+n1c1cy6X0xXZsxlfWmY8vvLKK+p6FAoFzs/PcTqdeDwe5vM5a2trXFxcKHxWEJZWq8V8PleH3uFwqA7GwWAQn8+ndkCDwUClUlErpPw7h8NBu93GZrPRbDYZjUa6mCOVUg2jnZ0d8vm8IjRJfS73Vg7UuVyO6+trRSl1uVzM53MCgQArKyuKRlur1dSKvbu7S7/fVx3lyWRCuVzG5/Op+yG8+fPzc8rlMoZnCZ7iu1ipRT1tNpuJRCL4/X510jWZTHh8PtVxs9vtlMtlVZ4EAgGikQjValWtEvV6nVQqpba3y8tLIpGIwo1tNl22JNuytLbNZrMiM5WXPI1Go6FWI9muZQeo1+uqDCmWSjx69AiDwUCj0WB9fZ3FYoHBYOD09BSDwYDNZsO1bEULGapUKnH37l1arZb6Tr1eTx2arVar4oCkV1f5R//wH5JMJqnX6+pQZTKZODo6ol6vEwgE1I5y9+5d/sk/+SdL+M3PAvB4vYqPcnFxQbfbZX19nUAgoAhfArs5HA42NzeVysThcCj7CZGtbS5jMKQEMBqNVCoV/H4/fr9fQZd2u10tOul0mmg0qlb70WhEtVql0+kovFvOCtfX14o8JeCa1OK1Wo1oNKp47oeHhywWC1ZWdNz79u3btFotRfJ6lvHMK7V05qLRKK4ldXJra0vVzfJDptNpOp2O+gGFAmq1Wmm32zobbnlalwk7Ho9ZaBoms5lSuUx/MMBmt2MwGmk2W9jtDvrLg0a9XlfwUiwWU3yTVqvF9s4Oa2trhCMR1ZgxGnVFzIMHD1gsFeGTyUQ9NM1mk8jy9YPBQDWDLi4uOD4+ZnV1VTWcAoGAarDIDiX14AsvvIDBYKBWqykN4FUuR6FY1JX329s89/zztNpthqMRt+/cIRQKYbFY2N7Z4ezsjLfffpvZbE44HKbdbhMOh9nY2Fgq4P2MRjpNVxYMn8+nkBFhw5nNFvVz1et1xuMx2WxW8UCGwyGRSEQ1euSMIk2lWq2myGOhUEg1clZWVvB4dAHAzvI6y+QWbF+6uI1GQ+HWKysr+P1+tSvK4XAwGLC2tkan01li9Tl0BdNHOKlXVlZUu1o6XrKllUoliss+fr1eVwer6XRKMBjEaDQSCARUXSgtXpng4vERicawO5xc5a6pN5qEI1E8Ph/ZXA63R6eqrqysYLfrChbBdq1W6xKe62Gx2bHZHezu38DmcBKKRElnMsw1FGkoFospOApQRi0GgwGv16u6crFYjAcPHjCbzXj8+DG5XI7T01Ourq7QNA33kqoaj8dpNBrs7Oxgs9u5ffcugVCIUDiMzW6n0WoxmU6JxmKk0mmKpRKT6RS700mz3cbpcmE0m7EuiU/9/gCTyczZ2TkGg5HtbR3hKRaLH1Dfu5RCRXaQ6XSKzWZTFFez2Uw0GiUcDtNoNOj3+4oQJpNR9J+i2RTlUalUUg+22WxWnxuLxdSCIPh9Op1WpVqr1VJ8Hmnfm81mdbh1uVxsb29TrdZ49937gIHZbK7oqx/ppO50OvT7fQaDgTqoSbctmUyq1rXgs5VKhdFopIxeGo0GGxsbahvLZDJMp1NWVlZ0SC5feKpeDgQCqtlxscxA9wcCCscej8e0220lOpXaTXcRmqutcT6f0+12eemll9ThyOVyKV6z8B2azSZbW1skEgnVpZSVJJVKUavV6Ha7OJ1OxSrs9/s0m03Oz895+PChguiSyaTikWiahslkolqtqoOiOC8Vi0VcLhdXV1dLYXGEbPZSTYTFYqELJYJBOp0OmUxGtcjH4zGPHz9W98VoNCqLA6EKAGpLF13meDwmnU6rg6AgMfalMEAm68nJCScnJ4qdV6lUFP344uJC8YAEopVmS7PZxOv1Kgbe1taWavaIkl08USaTidJAdjod7N9hGtc3jmeuqev1upo0MqFEnpVOpwmEQlwu06yEryFcZ5moVouFbDaroLzpdKpEnjs7G4wmU6xWq9p+HQ6H4mHXajXCwYDqdn2w3jYajaopkL26wm63K5X72dkZXq+XYDBIOr2KZfkdRFgqIgFBYgQbns/nHBwccHMZArqyskKr1cJoNCoWncCMmUxGNXJSqZTqIAKKTnt5ecn19TU7OzusrKwQDAYpl8vqrBAKhZRNwenpKQA7Ozucnp6qkk8/EJqUrYHwTaRJUqvV1IIjKJMgG/KAiWWa7Lj37t1ja2tL+ZYIMW02mxGJRBRy02q1iMViFAoFYrEYxWJR2Y3lcjkFjRoMBmWhJoCBXGvxWBFBhxz819bWnrnxAt+l8gV0rsIH4RyXy6Xss6bTKdPpVLXQhQrq9XoVr1j89/L5vOLQrq+v43A4ee+99xRLTQSywWCQmzdvqlXo/Pxc+fS1Wi0ePnxIv9/XedWzqUIPNE1TyIW0c3UjlksFQ7VaLcWR7vf7HB8fU6/XFTe51WqpRoRs98JPTqfTCooslUq89NJLxONxdb6QA5VMEmluXFxcsL6+rvjEQsEdj8f4/X4l4xJNpcFg4OTkhF6vp6436KjH5uYmoVCIfr9PvV4nn89TXUa6zWYzBoMB0+lUwYnSPJLubSAQIBqNEo1GabfbirMRi8WUcY88CP1+n/v375PNZlUJI3SC4XDI48ePuby8VNRWr9fLvXv3lIwtFotxenpKPp/H4XCwsbGhONehUIh0Ov3Rm9mINlBKDOkEdrtdzGYzRoNBeWR0u12leAAd4+73egQDAW7evEmhUMBsNqvJt1gsGC25G+PxmJs3b3JycqK2bkE8JqP3OQnS0rVYLKr1PRiOsDscrKysqImxtbWF0Wjk8vJySbmcKrhLSEQfJCCB3gwClOGjyWTCZDIRjUY5PT3F6XSSSCQUlDccDslms6RSKcW/iMfjiko7m82w2+3cuXOHd999l8PDQ9VgOTg4UJ50brcbm82uqLR2u13BbYL5ZzI6XcBoNHJycqKYc1IeAQQCQbUT2Gw2rFYr+Xweu91OMpmkXC4roUEgEMBoNGKxWHSEqFhUKhrhfehWYy6leBJ3qEwmozqE4XCYt956i83NTVwulzpzrKysUCwWiUQiyutvPB4r+oEYXT5+/FiVTB92PPNKPRqNCAQChMNh4vG48rMQnrN/uZKLl4R0/QQb7fV6ynRQnDdrtRr1ep0nT55QWZKLhLCTXqbKyvbZqNeXIt91pdoAVCes0Wgwnen85cViwdXVlbJvkG5fIhFXCID4z9VqNaWXk3pdShe73c7JyYniMp+enrJYLCiXyywWC6rVKslkknA4rAhIYh4pJB9Z8arVKoVCQeHl4/GYZDLJYrFQJdfx8TGDwYDbt28rvnoymVQ7nU708mOz2TAajZRKJarVKvl8HpPJRDabVSIGr9er3mM4HKoDu9VqpVqtqho4l8spjF7cYY1Go/ISEfQDWNqk6YdBAQiE2irvLWKIbDZLOBxW9f/R0RG7u7vU63Xq9TrHx8dMp1M8S8PMer2uytePbFJrmkaxWGRlZYWtra2nevUiwRLZlMFg4Pj4WEmNZGWfzWYEg0FCoRCJRELV6OFwmMTywCjEmZWVFdWtdLlcdJcedXJAkyd8sViQzWaXqu4FyWSSVqulWuuDwUCRiPL5gsKlZUIFAgEGgwEul0t1LBeLBQcHB3S7XZ577jmef/55BWPKd5byJxwO6yrupXZPSgaRn4m3HqC6mEKYF+em8XisHs7RaEShUKBSqRAIBMjn87z77ruUSiXlZiUeg16vl1gshtvtVniwSNlarRbtdpujoyPVcRW5mRCIPvnJTzKfzykUChSLRbrdruru+f1+tePKZ4RCIUKhEMfHx9hsNvb391ksFuzu7tJqtdjb21O2DiJ2Fqtgu91OMBh8SmwsrXuj0cgrr7yiTHI+skldq9WUaFO+2Pb2Nj6fj2q1Sn9ZSwnZPLQ0RZS6cTQaoWkap6enivsspKdwOMxwMOD6OkejUV9O7JGC+ubzOeWyvipMJhOOjo7U6V0md6VSoVjQJ61uIabXp9K90znKum2ByWRSN0Zgp7W1NRwOB9FoVKmnhcQk7LmtrS21EgkLrt/vqxXTbDYrVhroGkNRygiPQ9rX0WiU+/fvL4XL91ksFkQiER4+fMi7777LbDYjHo8znU6VZYPZbKZer3FxcaF87lwuF5lMhnQ6zWc+8xlF0Hr55ZeVBlI8Vh4+fECtVuPVV19VCniXy8WjR4+UuLbT6ShOh8Cz9Xodj8ejGlnSg9jb21POVXfu3GFtbY3JZMLXvvY1gsEgn/nMZxTjcjweK09EIWCJhcPJyQmTyUSVTx92PHNNLUR5QB083EuHU4/Hg8/no1Kp0Go09LoqHMa+NFoxGAzEY7GlY1KUyWRCpVLBaDRy+/ZtyuXyUiXuZOGwYTbCxfkpbpebbruhb7kWs96xW6pMms0mgNripT5v1GuYTUZW4jFVo/W7XVjM8brddFotvTzJZvG4XBgBl9PJZDTC5XTS7+q19npmlVgkTLtZ53FHX/l9HhelQkEXxC797C7Oztjd3QVN42pJfE+trOjeHQYDVouFUrHI7va28qWrlsv86I/+KJ1Wi3vLkiFy86baiYbDIT6fl9lsis/nXZ4rTDQaPcUKFKeo4+Njjo+PFea/srJCr9fj/PyMfr9HIhHH7XZhNBoYj2dcXl4QCPhZXU3TaNRZW8vgcNjRtAV+vw+j0aDe++TkRC1kGxsbJJNJGo0GLpdLgQKapvHuu++SSqV0EcXyHPHgwQM++9nP4vf71WIwnU5JJpNYrVZlvJlIJBTU96wHxWdeqQW9SCQSnJ+fc35+ztnZmYKjRkuHfCHX1Go1arUap6eniocsnANBDKTrJz4eTqeDfD5PNnuJtlhgtVoYDofK9EWErDJZBVvtdrvKXfPy8pLy0pZWeB66+2mHyWTCbDbTjdD7fXX6Di51htPphIcPH1IoFCiVioTDukeeuIpeXl6ysbGh5P9C6ex2u4SX/OJGo0EsFsNsNqNpGsPBgPlsppykotGoQji2t7eJx+Osra0pAlUikVA7g2gyRQQhpCGhoEYiETY2NhRSIu1mo9FIv99XCnFptIhu8vT0VLEa+/0+hUJBaQ+FC+12u1VjRhYvYUSazWYajQZPnjxR6vVqtarupRhkHh8fK864y+VSeHo4HMZoNHLv3j1MJpM62D/reOZJvVjo9erh4aE6KL1fq+ZVBIT8AIIuyKoqCIaQYex2u7I+0HFL/RQuzDG5UcLnECckqae3t7eV0FXa21KzaZrG48ePVfNnNBpht9sVeUZ4zaPRiGKxyNHR0fIz9AObxWJB0zTVMpYySjyl3W43e3t7qnaXw+nm5qZSc4utghyW3W43DoeDWCzGysoKg8GAJ0+esLKyoiDEwnIXuHPnjuLayAMlvtEul4v33ntPKbBFQCv4uzQ/xFtE/D/sdjsvvvgit27dUjvj7u4uhUJBQZw2m41Go6EaI4J0TSYTxSkpl8tEIhFWVla4ceOG0nAOBgNOTk4U/9zv9yvDoOl0qkhborQR8tvV1RWgQ5QCf35kk1rTNLa3twmHw6r9OhqNuLq6IhAIKC5HIBDg+vr6KRWFHBZMJpOqy2bL1Uu4HAINis1WPB5XN3M4HKJpKCxZYKdMJgOgcNNOp8NsNlMT/eDggIcPHzKbzdjc3FSlSjabVexAYQICXF5eMhgMFPLR6/XY3d3VaQDFor7yDofUajUymQy3bt0iHA5zdnbG1dUV3W6X+XyuOBWic5SfQZTZuVyOer2uSEBXV1dqZ9EWC0KhkOIrS25MqVSiVCqp7z2ZTNTDK+JZcc4S2+NKpYLX61X2ZBaLRVFNRSHvdDoBPTJEDqrn52eKY22321ldXcXpdLK/v68MKZ1OJzabjfl8rnwMHQ4Hh4eHSrwcCoUwGo3K2iwQCChllOTJhEIhMpmMOgM9y3jmmlombrPZVK1tsR6QxkYikVB8ZZvNpg5eFxcXNJtNEokEZ2dnBINBta3Lyt3r9dnf31UTebFYsFiaSuodxx2urq65urriE5/4hMJSpdslvAHfki0ofA5ZreQcIFu/kPxXV1fVdjocDpThYjwe5/LyUun0xF5hONQdUEV9YzAYnprsi8VC8SzEK0O45WJnUCgUVMtekCDplDZaLYpLlyox0pQdT6I9nnvuOWWoKG3+SCTC6qpukev3+5U9meyKYmUmq//29raCOqU+ljJwOp0p2G86nbKzs6Oke62l1ZyY+rhcLqVAb7VaCvmRA6tg0oFAgGKxqAhue3t7eDweJpMJ9Xodp9PJrVu3PtpJfX19zWg0YjgccufOHcUN2NraUiv37u4u9+7do91us7u7y/HxMVarlVgsplzshX9gMBj4xCc+gcfjUWpiUTc7HA6y2Swej0d5wXk8HsVc8/v9ijshkinZ3jc3N1XWyMnJidIlgs4Dkcl+fHxMu91WIgRdhRGm1WpwcXGhav+vfvWr+P1+rFbrcoXS1S83btygUqmwsrJCJpPh+PiY6+trVXr1+33i8TjRaBSfz4ff7+f8/Jxut8vq6qqSpcXjca6vrxXnubvEuMUJdDabKdZjNptdLgC6J969e/eU0aIgF0L0F8RByinx/Tg4OFAWEaLYuX37NpVKZWlpYWYy0UsOPVFsqHZOq9XKnTt3VJmwWCwUf6fRaCj6qjhRSU6MvtO+3+GVlvjbb7/N3bt3MRqNyifkI53UGxsbPH78WDUdbDabajwI8ejJkydqpT46OlK17NramsKx5QcTDWCj0VjW4U56va5Sz0i4kDjlr62tY7XqIgVR11itVo6PjxVfudlssr29rZyjZHLKBRuPx6RSKebzOT/2Yz+m8HO5wTabFYMBhcwIrVYutv5zVLi+viYYDKqYjFAopKRRBwcH9Pt99vf3VccyFovxhS98gVQqpX5e8d8T0lKv19P9mZdxePJ50qre3t5W7qnNZpO7d++ysbFBs9lUMKFYL5yenqrzheD24gBw69YtRVONRqN4PB7MZjM3btxgPp/z+PFjIpEIp6en+Hw+NjY2VCaMpEnMZjNFiZWyUlyaqtUq9+/fZz6fs7W1pTSQrVZL2cOZzWaq1aryQJHu70fOp+50OmqLk87Y+vq6mlidTkeRZoTEPplMyOfzyuBbAn/sdrtivolDaLvdeUreJVu31GZnZ6eYTLriWCwS5GAqN8/n8/HOO+9gMBhYX19XsiaDwaDKjn6/r3YHcVYSNYrFYlXke3El8vv9ilSVyWTQtIXiX4s9mnA8FosFTqdTtcXT6bTiZdjtdqxWqyonzGaz+hlWVlbodrscHR0pJbvb7Va7jxCThOQvsXEPHz6k3W4v2+s2RqMRzWZTqfWz2axypJJWuugxBQkSLDqfz6vmk6jAJbZP3GPls6+vr+l0OjSbTWUXJtrLRCKBpmn0+328Xq+iCouC6dVXX+X8/JxSqUS32+Xk5ERJ8s7Pz59pbj7zSi1bmKy40mIOhUJsbm4qv7XZbKa0gMLI0ldfveNms1mx2SxcX+eWqhELnU53SRe14/F48Xi8bGxsLSd5i+FwhNGo18Yizzo/P2cymSjb31arpRhoYsgukq9CoUAkEuH27duALlMaDAZKTCtkeqvVyng6w+Fy43a5VXxFf6CXEtPZgmg0RigUUjTJyWTCwcEByWSSbDZLIpFQaplqtYqmaQQCATY3NzEuFUKz+ZxYIkG/16PebGJbmr3HlzKtRqOxdDrqq3Z+u90mGAzicbuZTiaMRyOm4zHNRoMzTSMYDNLrdqlVq6RSKWbTKZ/+5CepVKs06nUWS3RjY2ODSqWC3WbT4cbplIMnT2DJj08mkyzmM5IrCd0U6OycVrOhOCxGo5H1tQy9TpvpRK/1W406bo8Ho9HAvTffZDQc4HI6ODx4grZYcHB4yGK+wOfzEvB5mY5HdJbNKKxWTAaYTKdo89kzzc1nXqllQpfLZYLB4FIV7KFSqSgvZHlCxahGp3ummU6ny5Z1X9V2nU4bj8e9NHLpqxVMj7XQIbxyuczx8YnK+/P7/WorlIen0+moySVYrth6aZqmakyxO5AWcTgcVrIxSa7S2Xer2Gx23B4P48mETreL2+3h/PyC1pJ91+122dzcVPRMs9msbG8FN5/P56rZ5Pf7qVardJf1q3fppeFfkolG4zGxWIyXX35Z2YvF43Hi8bja4kXjJ7QBAzrzL51KMZ/NmE4m7O3u4vf5aLdaVCsVPcS12dTpn/M52tJvpFarwZIsZrPZmCzLHdlJet0unXYbj9uNz+clHArhcjpp1Os4HQ4WSx2kx+0mGAhQr9fx+3xYLRacTgdrmQzhUIh+r6fnOhoM+P06o1Ew8UQijtlswm7XmzDTZQnyLOOZV+rz83P1JEttp2kaqVRKNQWE/yz1tFhm6YfMIX6/T4lEpX4SG9dAIEAqlSKbzeJyuTg4OFAZfEKGikaj7O/v02g0FMohyIZwM2KxmFqpA4GA4jj3l80WMRoXcakcRAVlcS3txwAlVCiVSsoOTFJ5Hzx4oFyFAoEAZ2dnqpkkTkXSZZWtPl8osLKMYZPaVacAlHnuuecwGAw899xzT1FshaUoRHyzycR42ehyu920220KhYIiU4m/hpCPRDImJjz3799X3Gav18vV1ZXiN4sRvuyEDx8+VPa6QjySQ3wymcRgMChey5MnT7Db7U9ZMwsDMBgMArpQYTweqzLK7/djXLrkfvAA+WHHM6/Ukmgq7c1er8dkMlHog5CRhJooDC2pwyTv+vz8XJ2qJcY3HA5jt9s5OjpSPhbC1pNJ4nA4ePLkCbVaTYl7Jb7O6XSSy+VUU0G6W1JmSFtWXJgEYpQoumazqYefArFYTHUEhZsi8qVMJqMiliWgSGpQcUgV6ZrYfAmE5na79RV16Rp1eXnJ8fGxKnGk8xcKhTg/P1cHcCEcSd0pBjESndfr9ZTYWNiBFouFREIvH2q1mgr+XFlZUWbrh4eHKnPxtddeUykM0hV+32vaqiyA5dwghCyhJ9RqNXX9zWaz8vOQMFEp8YQbIwdHQYGEgvqRq8lFk9hbbiniIp/NZhUiIem0wWBQURPlBui0UiMvvPAC19fXKjlWOL8Gg/Epkot4PQvXV8IpBZIrlUpKfyf5M2dnZ7jdbnUDCoWCYqUJZRR0xc3q6iqnp6fqcLu7u4ttyfqTTqPwoieTiQos9SwbBoDifMvqLri4oBciW3ry5Ak3btxgf5nfLdCkSNDkRou9QzQaZTabkUqlAF1bKeeU61xuSSnQHUtns5mC2YRSKzTSSqWifEWkBBRrXWmUibedcMpby8x5oRWEQiFeeeWVpS1zRdkiFAoFtcBJFo2kBIhKR9h4t2/fVqY3QkkV1y2hOoC+2j/LeOaVWlhogjvKCT8SibC2tqaom+INATo01u12lSupqC1Go9EyyOdKtdt7va4SDPiXMWdil3B2dsZoNFJ52nLIE+hPZEE7OzuK5hiPx9XWJ3Kver2uBAqymgiHu9PpsL21RavV4sGDBxweHtLtdp9yty+VSmqFl5VGHjTZdWSl7PV6yv7WaDQqXaKQ9Le3t5U1mlgWSDkQCoVU46Lf75NKpZQnx6Df5/z8XAVAGQwGJXKWVVUerEqlwtnZ2fIM01FxIyKnkwO/4N7isS26SFH5CNIhKIzP51O2yPJzSWNLFhSHw8HDhw/p9XqqsxgMBimVSrzwwguYzWZOTk5UG18Wko90UkciEQJL4avZbOb8/JzZbKYOiL1eT23Z0mmyWCxKwSxYqtiPCcwmCbN+v1/VyJ1OhwcPHqgwow+GFQn5XkI2y+Uyk8lE+SRLA0BqPTkANhoN/H4/e3t7yg5APt/r9dJoNFRtHQwG2draUrIy8dqQJNyDgwPFSdna2tLTxXo97Ha7slp48cUXVdxyJpPB5XLx8MEDTk5OFPVVJqyIGXK5HMlkUvnviRBAMiWz2SyZtTVsNtvvyk0RG+J+v6/qeOE/95cpuRsbGwpbFx66wHvyAGcyGTY3NxU+Lu8pIaiAogy8/fbb6l6KrlQoD4KWiD+MtPZFyS70YFEZFYtF7ty589FOauENdDod9bQ3m00lrBWnnmAwSKFQUAaGsvqKbe98PldtdVnBxU9kf29PCVAnk4lCT1KplMpFFCJULBYjGAzy3HPPqXawtLJFsSFEJ6E9yve22WyKMyFdL4vFwvnFhXLrl59HwuzFXkEeYE3T1IMiNg/CqJOtWTgook8sFoucn58r8o+obdbW1hTas76+jsvlUq5U4XCYJ0+ekMvlFFkpk8lgt9u5efOmKkUmk4k6f8g1FyMdUWoLD0QWHZGMCT9DErykAyp+hPKQiaBaSE6yM32QiuB2u5VRjixY/X7/qa5wNpslGAwqJ12p/Z91PHNNXa1WCYfDuN1uCoWCinAQib48nTLpRMUdjUYpl8uKeyv2B7KSSlv1/OyMSCjEcNDDZrVgMhrQAKvNpnMnlvWi0BxNJhPhcFi5IB0cHChrNFFKX19fq2i3RCKBxWzi7PgIp9vN/t6ejtDY7YwnU5wuE1arjdFwSKvZ1Gmu8zntVguT0Uh6SaF87+FDRXIXNb1IlvL5PF6fn0xmnflCw2A0MZvPmc5mzOYz9m7s4XHrOsBbN2+yvrbGyfExLpeLjaVMbTQckojHiUYiGA0GNjc26HW7OB0OgskknSWNVOioYjJUKpWUEMPucGCxWvEuVezRWAx/IMDp2ZmyNBZBtDRvQqGQQn/Ozs4wGAwqyk78RcQEyGw2Y7fbeemll1SSg7T8xVhSvEkqlQrPPfecUuV4PB6azSbvvPOO8hPp9XrcuHFDRYF82PHMK7VIgXw+n+r9S0lydHSkyE3vvfcem5ubBINBLi8vFavshRdeUE++RM99EIY6OTnmKnuJeUmsF4suj9eHPxDE4/WpTqTo50wmE2+//bbCpgV9kTLB5XIp/vN4PCIWjVCrlqlVyqymUwQDASqVKh6vF7PFytb2NsmVFVrNJqPhEKPBAJrGew8fEo/FGA2HpFIphQ643W5msxlXV1dKAODx+ojE4rjcerB8Kp2m2+uSL+bZ3tkmnUrhdrmIRaME/H7cLhdX2Sx2mw2T0cjJ8THdTgeH3U69VuMqm8Xn9RLw++l1u2oSSQklbXzB6QfDIRarFavNpmdaOhz4AwEMRiMLTYNlfS9mNXa7nd3dXWVlIKu6dF8BtXuK7fDFxYVi4wk5THYZkX8JpOfz+XjvvffULioQsHhkn56e0ul09IP60qvlI5vUItQU2wKxIhgMBgomWiwWFItFisWieqLF2FBqajnYSVdO0AexHyuXyzpsZ7Mxm+n2ulJOCDyVWCaxiv6wUqngcDjUwUxav+LNobdoA4zHI0X+0aMmKso2OJ1OP4Wf1ut1/H4/KysrT3HGjUajUs2fnp4qDoPwxg0YlD6w0agvGYc6deD+u/dVaSLWXNVqVZn/5HI5IpEIBoOBQqGgEBexbBMJl1gVm81mstmsspWQXHgx2jw4OFC8ZtlpJVZEaKanp6eMRiOePHmi+BmCKskD5PV61WF2PB7jWkZqS9SH0FoF4hXagMPhUFwTIbSJ358c5J1O51NZlx/ppBZikJzgpbEhimBxNRWCjXBDnE6nOuTIBWg0GmqCxGKx5YofXHJzG0odYTIZ1QMhu4NoJOVAuLKyonBZl8vFzs6O8uqQ+j2fzy8fwvZTjZt0epUXX3pRcZ4PDg7UwVNIRpPJRKW6ijpDPOU+eCgSJMjr9RKJRJbYt95UajR0yqgsAIKYCNKwv78PoLSR4sUnW7oklomBpuDm4gMilF9xXRXvDSkNRYm0ubmpUJ/19XW9nT6b8eDBA+W4JMjQeDxWURjS/CmXy8oEX4KfxLVK1E/NZpNsNqtgVIHyBOPv9/vqvCMNHZfLpaDYZxnPXFML90C2JjH/FqNto9FIvV5nZ2dHPckbGxvKM0JXqUx58803MRgM5PN5FVkXDAaJRiI8fvgAg8G4ZPNNYMmnNhqN5PN5FrMpzz//PO+++64iHQk+LPWh5ACKCEGwY4ms0CeNrnSORKM4HU7FKx6PRizmM+WHIRwO8Tj5YOpBvV5XCplcLqeaMRaLhfnSQ0TT5kQiKdqdNpPJiFg8xngwJhgMks1mOTs7Y22JZgg1s9VqKd9Co9GoOpMiH3v06BGRSIRgMKh451IKLRYLhksjRvG+E4Gx0WhUrXvpKna7XQUJCkW1VqupA7Tcx3w+TygUUmjTYDBQft6iK5R8TTl053I5pZQX54FUKvVUqq64Ogmy8qzC2++qphYZV7PZVNL/ZrOpwH1x6RSWnbj23Lp1Sx3i5GEQuGixWCyzUHRzQ7PFrFZJu92hMruvrrLqBgrHVyCkQCCgsGWhfgr5XQx1stlLhbh0up2lINioqK3pdBrH0j1UFCs+n49Wq4XNZiOXyynapdx0gNXVVSKRiMJ0W+2W6nomk0nlqXHjxg0FT2qaxiuvvKKyCmu1GhaLhZ2dHba3t5nNZiq38PLyUj1AEqIqGeVyHhG+sphlfpAjLtmGfr9fMRLFKky6fCKNE9GCdHuFQSneKAKjSlqCIC3Cp1ksFpyenrK6uqr4LlK6STbl1taWUuYcHR1xeXmpdi7xevmw45lXajkBiyOofFmj0ai6i16vV0U5xONxJdQUNl2p9H4qgODH7Xab0jJWLuT3MVo60A8GA7yBoCK/+7w+plM9Sno4HKpOo5i1NBoNtra2iEQiqimhlzCmJefXiMNhxxUMUK3Vsdl1/nalUoElZ8QAVMwmZY3bbDaxWq3KzFLKJ4ErhTYqybn5fJ5iqcKNm7eWZ4s8kUhYYb7hcBi75f12drerf75YHVerVZxOp3LhlyaHtP4TiQTBYPB9lGNZfgmxLJfLqexJi8Wisljy+bzqjDocDiKRCPV6nc3NzaX9r1k1osQqQRQpkUgE0F22er0ed+7coVQqqfLOYrHQarUYjUYq+1JMh1rLTEghZImxp9TQ4q9dLBYVPeFZxjOv1NPpVGHDYvgnGkVJjcrn80pKlMvliMVi6ktfXl5SLpeZz+eKvC9sPmGHaZrGjRs31EOQTK6QTqdZXV3FaDJhs+lQlhgXxuNxisUi9+/fV3IgSYKSrHBBX6RzJkGaOzs7rGXW0NAx+KurKyxLvzlZ5US6FovF2NnZYXV1VT3IQjDSNE2tkvoBsaPyvN96602y2SzlUkk3k8GgnEKFmiqIgfAyOp2Osv+6urpSE9Ptdiuhw/n5OdfX17z00ktEo1EajQbxeJzhcKgCN0UKFwwG2d/fp9lsKidW6fLeuHEDTdP4nd/5HaUqPz4+Vl1Wr9erXEolmbjX66m4jA8iWdVqlWKxSLVaVZNTIkLu3r2rWuPdbpe1tTXcbjc+n49AIPDUQfMjndTj8VghCYIvilhUin8h0VwsmxiifpDVbDab0uksecEeDw6HE4fDxWymYTAY6fRHaAYTVpuN1UyGxXxOr91iMuxjMmiYjDpH4INoiTQYPB6POskHg0HVUi+Xy/j9fsBAtzdgPJ1RKJZpdzp4/T5WVhJ4PG5MRiOT8Uhh7JIrKCyyWq2malkx6JEGhLgb3bhxA5fLxetff5233nyTbqfL/t6eHr28tC0Qspaw40QFIp1YWTwCS0qndAOTyaTSc0ojxGg0MpvNlExOVD0mkwmX00lnCXW6XC6eu3sXj8dDIh7HvTSm+dKXv6yjGz4fnW4Xq9VKKBym1WrhcrlIpVIYjUa1K8iBWix/B8MhzVZLF1hYrRSW9g3tpe+iCIsvLi+JJxJEYzFa7TaVSoVUKkUqnabZatFf6idnH7U/dSaTURcwHo/j8Xi4ceMGN2/e5KWXXlKxEkI8Ei9m3YLsiGKxwNbWFg6HY1mn2jGbrUTCUdwuNy++9ApWh5PpAtKZddbWN8henHN9leXq4gyXw6YgOsktl7Lj+eef5/r6WnGRhUH2QW2kz+cjnljBbLUzmkx4+N4j3n77HXqdDr1Oh82NdSLhMMFgUCm/BX5zOByqVV6v19Wh9OGyESMRGeFwmFdfeYV0MkmpUGQ8HDGdTGg3m+zv7lGrVJ9CE6Sz5/f7ubi4UPX2xcUFd+7cUQ2kfr+vlCQ3b97ktddeI5VKcXV1RT6fp1QqqcOt2WSi1+lgs1qJhMNkLy746m//NoN+n93tbZ0ePJ0ynk4xGI14fD5cbjfnFxf0h0OGoxG5XE7V4cLJqNVqisrw+OCARDK5bFxNWAB3n3uOl15+mcz6OgeHh9x/+JC7zz/P1s4OG5ubeH0+fvO3fotCsYjBZKLRamEwGkmmUjSaTZrtNt5nTOh65kn9+uuvK3Yd6ELcq6srgsEgDodDqcodDocS1Ap7Sw5bbreLmzdvYrFYODk5YTrROR/6iqCfwnW8tEkoFCKZTDJb+tZNJhNMS2NxCdiRoKT33ntPpXqtr6+rFVSMyKXkEYtdUb5bLBa+/vWv8+TJE0VCEs86cZYaDAZcX1+rJovb7VYokNBufT6fUkqPhkPS6bSOzAR1yOv09JQnT56oyX94eKjYbdfX16qkEPhSiEKpVEqJBUajEaBTY0X2Nh6PVZqD5NUkk0l1/hEP61AoRD6fp9lsMl5iz4vFQtFN5/O5iokDnWMudmHz+Zy7d++qQKbpdMpoOFSWCuJ76PP5lPupQL1HR0cqvk4OyUI7Hg6HCjkRyPKD5LEPM74r0/VIJKKI6TabTeUhrq6usre3RzweVwcAkVaNRiMajSbFYn6p74vy/d///bz99jvYHbppoDDfXnvtNcbjMacnJzx58hgjqANTu91ma2uPlVRSRQ0bjUYymYyKk3M6ncrxXjgMpVJJSfcHgwEbGxuqMwYoTPqD6mqpQSVxS/xGxFCy2WyyubnJdDpVjp9ifC7v6fP5uHPn1pLROOfw8JDPfe5zGI1mdahWtbzFwsbGhuIjVyoVZe8FqBrd6/XqTaOlX7YEcgoS9ejRIzKZDEajkWKxyOrqqgoR+qC1rzDj8vk8gMoQ/yDWLHW5CA5MJhP7+/s8efKEar1OfNlClyjteDxOv99XyI3H4+Hq6ord3V0VCnXr1i3lbjocDvmBH/gB5XsCPHOW4jNPar/frwwLZdUQ/w9plgg/VohDEkwpyvHNzU3efPNNtrd3sNvtPHn8mFJRJxyNlhpBHZR3oy0WNNs6t9egzUmmkgxHQyXk7Xa7KqbM6XQquElWPKExSgdL6k85/PV6PVX7RyIRnjx5wnw+V4KDRqNBOBxWVNa7d+/SaDQURTQajRIMBhUHWGrXcrnM1VWOZHKFV199lV5fpwL0ep2lF4hNJb5+UGUjB2zRJwrxSHaPRCJBNpvFbDYrF1LhhYuDlOyK4gIrOLrX62V9fZ3r62uqtRp3n3uO6+trcrkcu7u7quyx2WxqwQDUNSuVSmiaxsbGBuFwmHfv36dcLhOLxdTBU9LOJHFCDs8CDQp56oOWFk+ePFHJC8Ph8KM3iJS6Ttx+XC6XsjMQcP/k5IRQKMRsNlO2YcKxFlsyOVjt7e3z7rsPVAeyWq3S7esOqJYlrPbVr/y2Hlnn85BIJDg8OmOhaSooZ3V1VbHPNE1T+re7d+/icrkUs022bAm2vL6+VlCVxBI7nU6lRAdUVN79+/dVLuDGxgZf/OIXFZ9BOmOgdzoLhQJej5/f/u3f5rOf/Sw2m43rfA6Px025XFzaOURUHW0ymUgkEvrqV60qKFScqy4vLxWn5fT0VKlrGo2GcraS5pLIsSqViprIEj/idDpViSUIRiAQ4IUXXqBUKikehvDTM+m08pqWg6GgIy6Xi1c/+Ul6vZ4qMeV88+abb6rPEN8QOX+IpEvTNCUa8Pv9ChYV8OFZxncVOScm5CLREqGAuMxLHJvAO+KPZjbryhe54O12W88Gj8VIJBK43W5e+/7vV3ZYOm4aXLbAzUtTm4gC+j/IKJNDjGxdUp9K/Sft/Xq9rnwxRBwrhHahrQqFdH9/n1qtxptvvqm2SgkXEv9maZ0DanIPBgO+/vWvqwZFs9VcNmX02lGMEJ88eYLf78fn8ymPbTHWkeRfQHE6AFX2SCKCqPUljkPCiORhTKfTihXp9XqV/nA8HnN1daVsDmSSC49EiEuCLV9dXelnhSWJSq6lPDBGo1HxfOR9xehS7CxkksuKLYdaof3K4nP//v1nmpvPvFILK046dffv31eHqS9/+cs0m03Fu9je3mY4HHJ6eqpsCvr9norGGAyGrK6ukrvKE4/rMRNPnjxma2dn6Vkx5vXX31jSSyPKytbtcpNM65ax/X5fEeEjkQiPHz8GUI0A4V+AfhCRHBrx5hBDR4HAqtUqL7/8MmdnZ+TzeVZXVzk8PMTlcrG6uqq8AWWVFHK8ELnkQbBYLHzuc5/DbDZxlc1Sb9RJpZIKl69UdI7Fw4cPMZvNvPbaa9y+fVvh/NVqlYODA37qp36KRCKhpHAiOLBYLMovZGNjQ7W2hTshxjehUIh79+4pPvpiseDy8hKz2Uw6nVYqFFEqTSYTRQu46Pe5s8x53Nra4urqCoPBQCQSodPp8OlPfYpoLKau7/HxMc8//zzr6+vMZjNlxi4lkDxM8/mcR48e8fnPf149kOIlYzKZPnrfD+EZ7O/vKz80IfSIQFPopKIydrvdit1mMpkYDPSYhvm8trTFmir8V1znF4sFsWiEVrOJzapflG5vwPn5JaFIiEqlwsHBAWazCZfLrW6Ow+FQPiTiT+Hz+dSKoydPTRSWK8p4r8erhyH1BhwfnWAwohQ4Lpd++DMZjZRLJW7fvk00FqVWfb/s8nq9hIJBctfXPH78hIA/qFTgJpNh+V7OZcu9TSyRwNFp43K7mIzHaJpO96xV61ycXfLgvQesrWXUQVAU2lKqZLNZpZQBln0DE/1+7ymhwr179xgOh6r+llo7Foup++P1egkvcenxeMz6+rr+kFQqajFaXV2l3W5Tq9We6viJyWa9Xl/e24Ga+GIwdHx8rM4pRqORjY0NWsucxVqtphCsF154gdFoxMrKykc7qcUWazLRJ4YEuAtPoNtt8+TJI5V+Kniyy+VgsZjR7fbI5fJ4vV7W1jZYWVkhl7umVqvyzrtvMxwOGPZ7bG5u6tDcxoZ+kNnXyeNPDo+JxSJsbW0RDgf58pe/jMlk4s6dO5jNRsZjHfeVsCWRjYn3nk6dLPLmm6/jdnu4e/d5hsMR17kC6+tb9PsTWu0ONruFF198kffee0i71cIADAd9DIYF9956g83dXQwmA48fPiaZWGE2nDDqjjh6cozP7cXhsDEc9Uim4pyfn+tck06HTqfHVS6Pw+PG6bQRCQfptKY8efKI6XjOl37jaxQLZb7vBz/Jrbs3lOQqFospxEOn3FpZLGaYTAYqldLyAL6B1+vj8eNH9Ps9TCYDBoPGaDTgvfcecH6u+1EHAj6cLoc6WA6HQ9544w2sViuJRIJUKsVoNOT48IB2u8V4PMTpdLGyEsdohHxetyY+PDzEtjQzkoejXq+zsbFBIBAgl8up0uzOnTuqCwuwvb3Nb/7mb7Kzs6O0riaTSZ0PnmU8c00thwWJUpMmxXw+XwZKxmk2mypTW8KKpOYSWE4Es8Vikf7yYCiQ1QdXEeE9DAYDLi4uCIfDbG1tUa/XFVwnkXWSnCW4qyimq9WqIiY5nU6i0Sivvvoq7Xabg4NDcrkrZvMpbreLdDqJ2+2iWCpRKJUIR6K0O10MRgMGo5FYPIGGgU6nxWQ8pttp02q1SKaSrCQTTEZDMukM6XRKcT1EJiW17mw6ZTGbY9Cg02zjcbkJBUL0Ol2q1Qqj4ZC7d++q3EnhZUiHUXBkMd0UxqTOlDQtrSR0u7OVlRW2t7dV5HS1WtWV7K22WknFU6TRaKgk31arrcwqdVsG3ThS6MW5XA6LVfdske8oKImQpLrdrqKfCrlMfLzn87kqWz8YoS3Q4LOMZ16pJdVWOnXX19dcXFwQCASW4lDdmuvmzZvq8HV+fs7+/j65XA6fz0evp9fBEjcncWZSixYKBfb395VZynw+54033lCNgHw+p6wCxHhRYLR6XY96ODo6VtwE4TZL88brdeNyOdnd3aHZbNPrdQkELFSqZVLpFdxeJyaLSRlHvvDSSzqZfzhiNJsTDobwOJz43R7W0mlOT84YjYZcnJ9jwoDdbMZitrBYGrZLbmGlUtEdjTweLAZwma30+z1mZiv94YBBd4jf42M1mWEy1bNRpIl0enpKJBJR2TqdTptEIq7QCYl2K5fLKkHgV37lV1hfX1fEJ4PBoDqe5XKZR48eEVrSfZ1OJ/Wl+KJcLhMMBPj+7/9+isUC0WiU6+trJeUSdKJQKBCPJ1RgkXBMstmsWmy2trYUlHh1dcXt27c5Pj5W/PdC4f0Os/j/CZT4kU1ql8ulTtqgs7YkDqFarTKd6k+Z2OvKlx2Px8sDmp7vIXiq5FVLE0Q4F48ePVJOTyLoFHFpqVSgXC6rsKFgMMijR4/Y2dlZCglmCgUxGAzs7+9js9k4Ozvj4OCAO3duc3p6jtPpJJVKU6mU6XY7pNNpJpMxNpuVaDRCsajDXMFQCF8gwLBcJhSOLD1EBlgsZmazBdV6jfPzS5r1BrFIlMl4TDSdYCWV5L333lNwViAQYH19HaMBWvUq2csLkispauU6mmagVCwSCPjZ2tym2+0wmoyUjnOxWKimisViWdJHHeo+2Gw2tWqLy5Se/V1Vk3o0GqmcRIvFwqOHD9W1kVTaYCBAdBlbMRj0le+3oFrz+Zx4PK47bFltOJ0uNjc39ZyfVot6vc5wOFQ1szxIh4eHSkAiAVCBQIByuUw6ndah3CXn/iO3HZtOp8o/7h//43+s6jAB2F0ul3o6T09PVb3UbreXeLIDu12f6OJMJPYJPp9PpaeKs9N0OuXk5ERh4J1OB03TVLxDLBaj1+spM3X9O86U74ZkkgtvW2/Jmrh96wXeeustjEYbK4m0OuQM+gO8Xg/DXpdqqcjG5jZGsxmP14fL7WV7exez0cDJ4WNanTbVRoPtG7f4X3/p/8t0OObG3i1icR1vFfW1WAsvFgulLHHa7SxmM1xOF4P+mPfee0ytVucTn3iVZHKFCRNW11YZDAb4/X7Ozs4U7VRvQbcVy04mm/yMjx8/Znd3VzHrhJgkUKo4oPq8XtLJFMVikXRSPzhXSmVmE53ElSvmSSaTVKtVGo0GjUZDJRhrmkY0luBkmbIWDAaVKY6cryQWROBbQKU8iFm9mOZLUm8oFFKR2R92PHNNLYLJWq3Gzs6OMiCRTA9NQ7WnM5kM9XpdNSYEoHe5XEqVsbq6qrBJIfqLNYHgtW63W2VjixFkPp9XhCCJBJZsEvHnkwdA6JMAV1dX3HvrHV7/+ltoCyPj4QyXy8fa2ibRSJxIJMZ0POGNr3yNUa+PSYNhr4/FaMFlc8HCiMlkI3uVp9XpgcXKdbmK0+OnWm8xmxsYDCfMF5o6a0hnVR58XQbn49btWxhNJowmM/limf5ohMPjArMBp9PB6uoqoVBIRWI7nU6FKolblExm4dEI/isTSZIYxAJNP/fo5ZrL6XpqogEqtFTum4Q8Se0rPtR64NNUtfCFCpFKpbh586ZqZgl82ul0lPLd4/GoiI1oNKrotIASczzLeOaVWtQf4uYj3TkhxmxtbajDhXhtRCIRRQRaW1tnMpmqOOH5fE4kElHiWaE3itH66uoq19fXlEolvF4vw+GAQCDCYjFXcJ2oJwTcPzu7UEJT6Xhms1nd/TQYolbt8dabDxgM9KaL1+cmGo3g9jjxej0YZxNsRhPNcpX7b73NaDLl8PEJw/EEq8OJz+vj7fvv0B706E+nzDSNXquDtjDw5dffJBEKs7WXxmLVmzter5fz83NFvJ/P50znUxrNOi5PkP5oRHc4xGa3M9XmzE3Q63R455139Fi7ZbkhBjw2m01hwZubm6rEECmd7E7xeFxxR2TSiouT3+fn+iKHNl9gs1g5Pzlla3ubgM+Hz+2hPxzQH5hUkoHFYlGC2MPDw2V3eMLOzg6LxYI333yTyWRCr9fj1q1blEol7ty5o2zKZMeRxk6xWFTkqZOTE4bDIfF4XM2Fj3RSv/HGG8orT5TJnU5HmRSOx3pt7HK5OD8/V8m3Epyjq8rfjxCW9AGJnahWq8p8XDSNYuQuoZM+n1dFP2uapvSQ35gqJW6s5XJ5aXQzIxAMEPAn8PujnJwcUyhco2lzmk3dZd/n9xLyOHGZDcrhyWgwcH19TTgaJ3uRpdlqkauVwGSm0e0wmU1wOWx4nW5GsynFWp1Aw8tLLz3H5aVO9qpWKuzt7eNy6t/TG/BxfpnFaHFRq9cYDIcYzCYm8ynNVpOA10On3eb8/JxEIqHQJHFrMhoNCl2R7yn6QfHYFrs2sfuSySS6RLNVV6usZTIMBgOajQbdXo9YNIbFbmM8HWM0GRWKJN57slvS6WIw6jWyz+fj0aNHKl1gMpnw4MED5bolTRdN08jn88sFbk2xJWu1Gp/4xCewWCwqVPUjm9SBgI9Op7ucXB4Wizk+nwefz0OlUma8FK5OZ1OCft0vr1KtYLXasJotDAdDEpsrXF9fUywW2d/fx2g0Klm+w+HA7nTS7fVIpdOYjEZ6gwHxRIJur4fFZlXswK2tLSUpSqVSKo/G7fYodft0OmEyGbO1tcF8PmM0HlOttXAHTLz8qdvY7S+TvbwknU7TbrUo5vNsb2xw9OQxkViE9a0NHE4XX339LSxWO1elIifXWaYuJy6HD/vCAOMKZkeDUNqC02WhcNUjUO1QrXZYSaxQKV0TW13BMJ8xx0ipWKVcvyIYCxEJJ+kOJsznMJ8tWE0l2dhch8WMSrmyPJf0cbvdeDwuldvt9+v2YjIBRO0ikjCJr9Y0jWw2y8bGBmtra/h8Pq6vr7FabcRWYniDXnwBP8nVpK551GZcl/TmV6PZUDn0V1dXSqgg5KnDoxOGw5EiJu3s7ChxSCwWoz/ok06nOD4+YjWT4uDJAVvbWzx8eJ/t7W1arQaDfp+NjQ3mswnddguX24Xp2UxPvzsrX4vFrLb/+Xym8lL8frEcSOP1eJVLk91mx2qxLIn0DhVM5Pf7ub6+VnwJ4S+73W6sywPWeOlBN53Nlt3HiXJlMhqNKp9bEBJJoRLLgEqlitVqWWokp5hNZixWE6FwgFRqheGgh8fjIhIJ8eqrn+C55+/iC/hxetwYjEYcLieT6Zhg0I/FYqJSLmFAY9Br0O+1sJg0Ah4Ha+kwLz53i/liTrfXYzCs4/VbsDuNjKcD+sM+ZquRaCSI0ajhcDqxWm2USnrXzmqzKi6LbWn2s1jMsVot7O/vk0qllCUCgNFoUAdjqbElPElqbenuikWYCI71FX6hKKbdXpfxZEwoHGI1s8pgOFguRFZlnyxEMKvVqvLiXW6Xipvzer288sor3LhxQ0XPWcxmrq9zGAwG1tbWyKzpKJfFaiGxkmA0GtLrdnE5ncRjMex2G2aTid3dnWeam8+8UotoU5hgYn3VbDbJZDLs7eyq1q3T6VTk9V6vh9FoxOPxcHh4qDL1ptMp8XhcHSQMy61ebBOk1JH3GQ2HDPpdleMnXm8bGxtYrdalE2mbZDKpmgJ7e3u43R7KZR3f3VzfxO/1kc1d0W631WpWLpexmM3U2w2msxmD0UjnoAxHdFtt2p0+Js1ALBhk1MhinPUIeMJYLSbu7Gyzs7pP7eqM2aBIuZxlOGnj8sZIpPXgo85gSCRmwGzS6PdGLDQDNqsPr9fP7u4OkUgIo9FAPn9Nf5nO+8ILL6jySWRVq6urtFotNdnkICo5M3LeGY1GinQvyQfiDTKdTjk/Pye4zI6Xbf+DjR05cIp2EnRPEvHFSyaT2Gx25SQgIoxGo4Hb7SaRiNPrd1XMXDwep1qtkk6nOTw8xOf1kkysqCaaWAR/5B1FEQdI50dUy263m0AgQDabVQdIIcGL26nZbGY4HKnVpNvtKk2dmLVYrVaG/T7MF/g9XjqtFvPJFJfdjs/jIRqJYLFYiUaj6mEQXFSaMR6PC01b8PjxYz3zr9nm9OScyXjGaDhlMVtwcXpG6TrPdDRGm82JLyVf5WoFm8OOxW7D5rARCgaxO/T8wel4wnw2YzGd47bacRgM+OwuYv44uZMar3/xIe3aAI/DR7HQ4vikxKPDIkfZBkZ7EIc3RDZ3zWA0ZDY1YDTYaTZazOcLVlfTbG1tsFjMGU90rH+xWADv823EwEcIVFI7C6dGdiipf4WkJXEgdrtdnX9isZjKkrFYLOzt7SletOx6kh0vAabpdFqZyE8mEwygbBFsNptKgxCIrtlqKuZjpVJRnovyZ16vV0G60m3WNO39mv1DjmdeqcXkUczIk8mkcup89913sVn0hor4VAtfWEgzlWpNrdqTyYRoNKoSmgRDjYR0snhumaLr9Xpx2B3K7D0a1eEiMZ8xm808efIEn8/HbDZT7vv9fo9+b8ij9x4zHI747Gd/mJ2dPcb9LqXrAk6Xk1giznQ+R0MPNioUiwSDQVqNOpq24Oj0BI/HSyy5QrvV5fTyAg2YLaa4nB5q5QbDrp12t4XZWqE7mDCdGplNrTQ7Jk4LFxyeHpPJJHnh9i63t9YJBwM02lOODk84PDwkmUyytbWOw2nD7XZis1txf8BBNplMKpK9WCXUajW1EFSrVcW3EJRBRAeiJxUa6NHRkYqhlswan8/HcDhUjlrj8Ri/3080GuX+/fsMh0NefvllZccrFAR5sKRX0O12lTBbvBZns6mCgSV0SjrHvV4Pg4Yyhvf7/WqB+kgndalUIrJsq4pL0Xg8VuLR6JIiKuiGKI/FddSyrK3FxFsMWtrttu7ZNhxiD0UU/u10ONAWC0bLJNjpdIo2W3B8fMxkMqHT6Sg+hBiui9nL5uYWpWKJbrdPo1Hmq195nfOzKzwOKy6HFbPJhM1ixem2cHpyQjAU0r2zR8NlWWOh3e/Q6fd4dHRAqVzD4nGiaQYYDpkt5gynfRbDKZppjsE6I+AzM51NMePh4PJtplYDvoydq/YFzddLGBYLbm3tc3R4yde/9iYutwOTyYzbo+90k+mATCbD1UVWeQPabDaVOiCpueIc9UEbXeE1y4IipYRce7HYlTgLSVYTboksLB+EYt1utzp0drtdisUiW1tbALQ6uppHLC9ELCAc8UK+QCqdpN1uK9MdoSTrO4ZLZVrmcjmlC31W0/VnntRSpwaDQT71qU+pbpeUAbPZjEKhoExbTk5OFKnp8vISj1fHlSWy+PT0FKPRqOiLG+vrDDo6WX0+mVKr6O4+ot5OptMYLQalngkEAoq8//LLL6vy4/DwmGg0yvraBs8//zLNRodms0WhUOLhgwdYDAsCoRD9QZ8bt29x+9YtTs7P2djcYNQf8OTxY8LxKMFokDffeIff/MrXmS40TD4XZpMVx8iO22Vj2G+yME8Jx3ysb6dIbvnp9mucHJ1R6+bYfvE2I20BVzNaV1V+4ytf4/C9LI/eeYd4LMorn3gRr8/NYjHDZrMQCsfRNL18+9SnPsXh4aHCbQOBgJrc4uEndl6lUolQKITL5VrqQRuK8ba+vk57aUmQyWQ4OjpS/z0a6eWg1WpV4VHCyXE6ncpmQtM0FcMhxp7VWoPBYEC322Vvb0/V7Ds7O7jdbn7jN35d0UrFo+Xq6kqZ1vgDfixGk0qSGH0gmOkjndR7e3vLk7WNg4ND/H7fkr+xpocF2XSm3XCkdwOtViupdJrrXE7nECx5CZqmMZ/PVb62+IMMh0MFHWmaRq/f06MY/D78Pj+atqDXHWA2mzAY9PCgq6sr7HY7rVYbu922TH6a62Sh6QyfL0gqnSKVSrO6ukYi7IPFlJPTM1rtPo1GB5cvgMups9um4xGJlQTD6YTf+tKXefPdd+hPRtgcLkwWC8NBn3m3DkY34agHjTH+iJEXXl1jZmzi12x4QyGqTQ1bqMPU4qY/XtCqDCllyzjwsr21xe7u1tIRyUp6NYbZYmIyHtOoN7DZbAQCwaXgVRcWXF5mMZnMyutESP3CaGy1WiphQRYYUW7b7XaFkkg7W5T0gGpZJxIJksmkUp2DTlxKp9OEw2GVaDAej3VnJadT57wvE9jarRaJeBxtsSAajWJ36IhNv6dLAGPRGBjAYXfQ6/Zwu1w4HE7m8zn9wYBCsciz9hSf+aA4mczweHx4vT7K5QrFYplGo8Xa2jqpVJrReMxF9pJGs0mj1cTlcetE+NkUm8Oue0Qs48bE0lfChVwuF/PFHLffw/rOBiurSSKJKFf5HAazAcwGWt0m9WaNxEqMRCJGLpfFYDAsbbe8bGxsUq/WCPv9dFotWs06l5dneAMu7G4zk0WP5z/1Aj/643+UWGaP3sjB2WWH4dDC8y+8zFwbsLoWZWMjQ73R4Cybp97qM59qWDSYtioE7VO8gQkm0wSjyUS9VcflbBDzt7i89zv0Tq/ZDZv4f31im1cTATacRtZWHHgCC4bzFq1+nVc/eYtPfGKfgN9KJOLBZjUT9Pv56m9/nYPHRzgcLh4+fI92u0ssFqffH+LxeNnb22dv78ZTjqsS3Txbwp5PnjxRNrnS1BJbB+GWS0SGJA9YrVZVxoiblWgOO52OSg0Tpt5kMmF9LcOdW7fY2d7WFf/tNkeHhxwdHtJsNPC6PdzYvYHf46dWqZHL5vC4PNy9dZd6tc5sMqNWb7LAwMbWNja7k0KxjNP1bBrF70pNPp1OSSQSyi85lUopSwIhtsihzuv1Kq61+KhJXW232zk8PFRUxVgshs/npdXSVwgMuiZybV33kTAYDNQbNRxOBxaLGbPJsCQy2Wm1Wrzwwot6q7bbw+mwEwoGMJrMVOt1zGYTvd4YgwFa7RZGk41QOMzR0X18viBgpFyuEAj4mYwnlEtldUMXmoamLeh3u0xHPWbTHhaHkdFoiMHUZ7EwYHfqSQg2i5Hnbz3HeHpFrzTEYLLixEzCbyfs65A31bGaNba21oA5Pr9+4BJ3pbW1NTY3NxVKIfk40iUVMtJoNMZm05RJp3QaJY9FDOglQqRYLKq6V9yd/MtMcLPZrFIFTCaTEumKZ3ggEMBms9HtdtU9DAaD6t9LSFQsFlOeeo1Gg5WVlaeU/mJ0JFYMrVYL69IGTnIfPR6PShH+sOOZV2qHQ6c7npycsLKyohw533nnHZVlPR6Pef7555X9wPn5ubIj8Hq97OzssLGxoTDP+XyOz+cjEomoevDw8JDZbKba43JYisViBJcJt5IYoGkad+/e5eoqx9tvv4PJZFQC0V6vx2o6jcfjWdoROJcWYhcUS3kazQqNZoWvfe3LvPPOO+SuirTbXQZDHRc2W0wkUwnm0zGDfg+Tycx0BqHoGmarj15/hN/vY9Sf88bXHrK2lsLttDFsmvFaVzHP3fRrPdajcYJWC+b5mGGvrVK9QDcEkgOZtKGPj48ZDodsb28rqKxer3N6esq9e/eYzfR0svl8zt7eHnt7eyqHcjabEQwGVR9B2uSSf3h5ecnZ2RlvvfUWq6ur3Lx5U9nsSo58tVolHo8rs5x4PK5EDiJ8GA51MtnXv/51hXisrKywu7vLrVu3aDQaHB8fK6FAqVSi0WgoYlS9XldJD9lsFkDBkB/ppNY0bel/52CxjANOp9MK1rm+ziuDm+3tbeUob7fbiUajatIKM8vhcCghgK7qnql4BLETE0W42WxWdrmSkiXxaWJU3ut16fX0AM1KtUqr1cLt9mCApUTMg8VsxevxkEomYDFjOOxhtZjwejzMpwvajR5ejx+z2UapXCafu8bucmJzOBj2RxgNRvrtAbPRBON8hjYawXjMqNNFG4+ZjTvEEwlMDjueUACH28l4MGQ6nOCwObDaHCwWmsKA5SbLaixEfInbkA6dkH3G4zFut0eteoPBQLXLxaRGDopms5mLiwtWVlZIpVIqPSyTySgdp/htB4NBlXS7srKi0owlXS0Wi7GxsUE8HiebzZLNXir/a9lFYrEYrWUGo8fjUSafW1tbytxIrIRF0f9BiweRvT3LeOby4+rqiuFwqALb5UvabDaKxSKLxeypLO0PSnx0CdeQZDLF4eEhnU5HxyqXK6rEsl1e6tujRF+Mx2MymYzyVm40agRDAer1phIKVKtV9vb2yOWumE9GHB40qNbqLDT94agtozKy2Sxer3eJz4YZjcYcHR1znc+STEeYjE2M+hOGgykOjweT0YrRBGaTmZlpgdFkwmqyMesOsEwnWLQ5XqOdeWtI0Gsmd3pMv1nEn1ljbrXR7Pc5u8zhcXeZDMBu92GzeWl32ty6uUelUlGxxiJjEni00+lwcXGhfL0lUViscg0G3W5hY2ODarWqsl+kPyAcanGX0jRNOYxK6JGgViLGOD09VbF0kjhgNBpVZrykkEWjUcxmi9Kqijd2sVjE7XbTaOiH3bW1NdVke/XVV9Wh1Wq1Ek8kMJpMFAoF3G43JycnKobuI53UYhMwHo9xOp1KLiVRdNvbmyou+PLyErfbTTKZVNwDo9GoUpukZSvdJvFWdjhsqltoMpmWbqVipNNTKo7hcLQ0drcphc1sNsNqsegc7GgMq1U3eD89PcVuty9xX71rOZ+O6fda+DxOmq0mjVqd9dXnOKtlOT/NMTdroJmZjAdY7XaMRjNoRrS5AbvDgmE+xWXVmAwn9LsTXHY7dqePwXjK4cOHGN1eeiPQZlbGvQnTvgGzwYzJaGS+mHN0dKTYiPP5XFn0StKYNDCkIysrXz6fx2Qysljo7WTxG4nH40oBL+bpMpEltEjKvkajoZJvpZxQZvTL/oHT6cRutytDdzEcMi0n4mAwUrF3Qm3N5/OEw2Fl4yAt70KhQDAYZHd3V9nLWcxmOss8+WQyyWw2w+PxPLNI4JkntdRn0WiU8/Nz9WUGg8Fy29FzTeQgeX19zfX1NTs7O0tDQo1kMqWcflZXV8lkMsoo/PT0hNFooCKbxeagVCrh9/sxmy30elWqtQoBf4hAIMB4PF2GTk51WCoaZtDvU6s3GQyGGIwmxtOZMqFpt1oUCrqiPZmMMo+FGQziXF5e0Wl1uTgrEAmluH9wn35nRHp9g9liyqDbw+NeZgrWO7icVubjGTODGW3gYtIyU7/oE0n4WZhDOBwpas0h/fIAz9REJhDhE6+tk1jdoN+uKzOgD9r47u/v02q1VDtZks5WVlYYjUZEo9HlZJnx4MF9lWIrv1ZXV0mn0+RyOeXWCqjwITmQCc97PB6TzWaVvnFnZ4eDgwOKxaJ+Hlld1e0hTCa1IguHZz5fcHFxoawxpMkjaQq6llIvJYRvLzpN8fGTRp3NZmN3d5ednR2Ojo4+2knd7XbUdikrn/A6stksRqNBeb05HA62t7epVCqMRiP29/fpdLoqUEfawL1eTz3dermiKTxVVi8JHbq6yuJyOTAZTcrWzOk0KlhwMBhQKxeX5okeDEYTJrOJ1ZUkk8mERqPBbDJlNplSLBTo9zpEIzE+8dLLPPQ/5v79R5SLFQrXLartJiaLjel0xmgyxmAwYTBozOYzZgYrw7mBkC+AyWJiqGm47F5sPisTk4lqeUTrrECjCSuOKHtb24TcdubanFm/g2lJ6Op0OiwWCx4+fKh4ydKV83q9PHjwQKEVQi3QD2sLBecZDAaVl9Lr9ej3+2xtbSlITshnEr8MqJpWMhGvr69JJBKqwycPgZRCUkICKrqjVKqodLG9vT3W1tbUAzqbzRQPKJlMKkHIxcWFih5Jp9Mq9kQeiN3dXYXgfGSTWne510/JunumnWBQ73TV63UCgRC7u/u02y2cTr0ufOmlT9Dr6X4fNpuVarWM3W6l0ajR7VoU4UaXc/mVVZkc/iqVCicnJ0vc1cZoMGE+g/FwwsnRCWDA6/XqZHSDgQUGmu0e0fgqmmbAiInxYApoVGoVzCYLHo+XbjuPw2LF63bw+PF9xtMxn/r+l1nb2uDddx9xw5Pkt77y61gY0mg0mYx02itGA0ZNYzIe0h+bWWhePI40066PQrvFdNImHb3JtDVg2K5Sb+a48o1wB1J4XS7S8QSXpTEnFyc4nG4yqxkMFiOTxQiTaUKvU8JgdFAoXLO7u43FYqHTaVGplOh2exgMsLa2xo0bN9RZRAzcNU1jc3NTCWCDwaAuCFjycWQifzAXxuFwKAVRpVJRpU8mk1HUYKfTqSZns9nEbDbz/PN31QSezSbkctllDqKFwWBKKBSk1+syn08xm530eh3CYT1UqVwuk0wm8Lj9GNGIRUKUymX+8T/8B7z40ksf7aTu9bqUSkXlpGk2z1R8st1uZzQaLv03YlxdXSldmqzWLpeTcFgH+SUxV0hJotSIRqMqyuL09FT5OYvFltX8foSC5CVKylMiEWeuzXA4rUxnYyxmG4Nhn9F4wPbOFhoz2p0OBuMcu9PCYgrj0Zh+f0Cl3sZocbGSSnKeu6DRKhJN+Oh3R6ytr9LpDpjNx8wXcwYzvWwwGmC2mKHNzRhmNmZjM25ngMGgicNpwqMZCEfX6C/anBavCAVMnBcfUW/asVrd7O49xzv3H+DxBrHZ3FxeXDPotfD6w8r/LhqNKp8Uq9WiurESoywHLTlQyw4m+Yvlclkp2QWq6/V6FJfkLRHnSkSdpNxGIhFKpRIAo9GI5557TknuAGXbKz7XwswcDAYYjUbcbr1DK56F8/lc6SQFizabTFitOiEuGomQn0zIX19/tJPaaDTy0ksvkUqlODg4AFA4pC4oDdLv9xVxxu/3KxsFvYGCiumV7VEEpYvFQqnApaYsFouk02leeumlpc2YGZfbjWVJu5TVXB4Ci8XEZNZjdTVGo1HDZLQuoawu1UqOyWRMu10hd3VEwBdgOp7zW7/1VS6zJWwOPwbzEWOtT62bxWybk0hGsHldNBoDDPY5VpMRs8XMvNvHYJySXkkyGRjJnRxT0Rx4PAbm5hnByIzV7TiDixyX9Sw2S5iewYo37Wc+7+AwTSlcX1N5o47Pk8KCn+y0jsdhwmJckF4NYrU5VBqax+NRHHE5MIp5j/Cgt7a2lEmmTGzxAWk0GsosX4JEV1ZWFFIhzbJQKKREvSJcFui1UCiQz+eVeZC01h88eIDL5VKm7hLtMZ1O8fl8ivS2trYG6Ibx+Xxe5TeKVYYQo4Ry+6Hn5rNOakAdDMVBVH7IVCqFpumK8+l0SrfbpVAoqCxz8Z2uVCocHx+rbUwSbiUUUji9ooKW+nJra4tyucz52ZlK2R0OhySTSUqlEvP5nEKxSDQaI5lMoS00vB4PBgygGei09Yg5s8mM1WqnVmvyla98ncFwxK3bd/D4/Jxns1TqNRqdOt1Rn1AsTL3ToDNsU64Vwbqg2ihhsc1wuDScHtjcXcFoGRKO2VhJuQlFrWzsRvGFYXXLSTQNFneXfOWCR0fX1Dvgj5lY3fBSaxV48N67fPFLv82bb77L+XmOwXDCo8dPlLFMJBJRD7oQiMSbzuVyqfgPQHl7yN/3ej1lpWs2m/UgpSUWLRNd6lyBZzudjvKZjkajTwWSVqtVrFarahbJ4VbYdQLBSujr5eWlOhSKvCwUCqmkAdkhLBYLkUiEVCr1zB3FZ16px+MxZ2dnSp0tYe87Ozs0m006nQ47OzsUCgWm0ykrKyuKSCOrSyAQUCoXvZGgw36RSEQlO0kY0M7ODtVqVXWjrq6uSCZWaDQa6sYJi00OLf3OhKODYwbDMRbDBLfDQiSYQtPmJJMruBwxCoUyv/nr/5RCoca/9hP/Gq986lO8ce8djG44vjhkOphhx8TDx4/o90a06wMcLju9QZNY0ofHaWIwbNLrljBrGvGElZWYk82tMJ1eDru5QTK8zmY6QW+zw8Jo4uy0zpd/8xLTPMjW9hjzbMDmjQQP3y6QzKwRC8bYziTwuCxcXV+ymrmrzGQ+6Nlss9nY29vTdYKHh+TzeRVJYbValZ2BqOmFnioNL6fTyfd93/dRr9cpFAoqxiIQCKiur/itSFpwsVjEbrerWGc5YDabTcrlMhsbG5yenhKLxVQqsIgOxMa3UChQr9d14cb/r7336pXsStMzn+3D+4jjvU2fJDPJZpHqriq1kQS1WgN0382FruaPCbrXANNQT1uqesrRJtMf7yPihPcRO7abix1rNTl3nQVwhAIXUCgUi+Q5GbH22t/6vvd93plzJ5fL8fDhQ7755huZevuu63du6QnyjuhPCma073s8e/aMVqtFsVhkaWlJCtPF/y8ITZqmyWDKMBk2kBEWoo4WP2s0GhGNRpmbm5MOF+HmUBRF9srX19f55stnvH71llgsTeN2wP/8p18zNzfH48cPmU58xhOf68sGJ8dXxGIJYvEY9XaVxdUCi/Usb04mmJpONp2j3WkydXwUXcPxPAxfwXWmxCIZVCzwbTR1ysJ8ivW1HMmEx3DcZWctQyZi4rsZotEUetxG3zD4NlmlWe9ycl4nlUgST8cwogofvP+Qj97/kE6tjOJPWF77mMIsC1KI/7PZLIZhyM+q3+/z6NEjST7q9XqyS7K+vs7Z2ZlkqaTTaebn5zk8PJQJs+IyLtLGxAEhpBDNZpP79+/z/vvvS0HU2dkZKysrrKysMD8/Lx3jQuPxXa+oiL179eqV7G4IEZXg/IlEt0wm8723/g+6qePx+PdCKkX4ZK/XY2dnh2+++VbqDJLJJG/evJGCnO3tbV68eC5Zadls6IgWmlsR1iMGNOJVaNu2BNb4vk+v38P3fBYXF6lWq5RKJZaXl2Ukhq6HHOvA93CmNs1Gg3azyW31hmgsSoBGo9HEc8c8/uAxhqXT6XZI5rMcnZ7QbnawjCid2z6epxC4KqqvogYK4/aYmKbR8JrousPaWg5dNai3mvTaBqsrCwwHUyxcvNEYQ1WIJlJU68dUb65JpFzq52VOjh021uc4OTqmetPlG+1LkvEoHz58QL/dYDKx5dtNZIsLucHZ2Zn0ipbLZZmGIIZawpkiprKCb+d5nswx/MUvfsGjR49kVs10OuXo6EjGl4gJpIBriinie++9J8f3gPSaikGcyN8R/WeBcBDlyOLi4izZ2JUt3MPDQxkjLcRw77LeuaYWT1cikWAymUhRSqVSoVgsEo/HiMVi7O/vS1ezuBkDMuBIqLvW19flrVsATZ48eUKxWJSXx1KpNFPwpcNTOZmSdKd+vy+fdnH7dtwxS4tz3LmzRaGYJpuNs7G5xM7OGkvLRRaXs+zfXeHnf/wTfvbzf8PW9gaFQomr6yoXlzV8z8Ad+gybQ2J6HM3VSUUy4CgkI1EUB8Y9G0s1MRSDwPFwp2Omox6V6yPiUR1nHGM4cNCMPr5SYzi5pT9qE89EwXSxx2nqNZ12y8NVdVqtkBtdr9ep3Ta4uLiUgakC6pNOp+UGFHR/QJowhH4mnPaNKJVKDAYDms2mJM3G43HZNfkuxUnoLgzDkBdvMaF89eqVpPyLny+moZFIhEwmI/vl9Xqd/MxBJJzmIlVMZAJtbGxICazI6BH4NGEmfpf1O2W+iJgF4foWPdLLy8uZCTcpSUCx2EwAPhzy7bffks1micfDp/ry8hLbtun1erJtpes6r169kkMXYSsSSVO7u7uhrT4eRzcNEskkAQGxRJwAmDpT8sUia2sJtrZ3aTSaWDGD1dVVCsUiL148Z219jXgswmQ0ottqMrbHjLyAk7MLkpkc7XYf35kSiaaY2OEkcjoZoKseBGBqFmYQkIokcMdTBoM+qXQExXQYux79Rh9nbKBpKrXuLZql4qo6vpJgNJpg6nG8sUWjPMLUUhAE2K5Ho9VG03UyuQydbicEzczC6k9PTyWiQLDstre3v4coEEpG0bIT4UsC/iiMA4qiSDrSgwcPGA6HjMdjiVmuVCqUSiUcxwUUYrE4ruvR6w2o12tUKlVc1+WmHFr7EskEKBqKqqMZZhi+OnWo1xt4nitTBY6Pj6VBOpFIcHh4SDKVQdUNri6vWFhcoJjOYFj/P0hP8/k85XJZ1mXCSyfkh2JkK27BoqZrtVoy5xDC0a1AUolAIqEh6Xa70swpnB2inz0YDtH08LmMRCN4vh8mQ7Vb1BsNEqksnqIytifcVMtki3k8JaA/GqAaOuOJzeHBCc7UIxaNEZ+9Oi+vL6l36riBjRozwNAIFJjYQ2x7gKq6aBrohk7ge4wGIyrlJt3uiNFkTHfQw4jEQNNodRt0Bm2mvsfUN+gNNSrlIZMhDHtTmHrY/THjwZjAV4jHEySSCVx3SixmsbS8QD6fl/IB4dwXXsxutytTrt6+fSsBi4VCQTrFxYQ1FovJsCfR+RCliyA/Cf1HPp+XQUm3tzXy+QJ3795jYWFxJm2NzgJdjVBB2W7TaDTpdLukMxkMw+Ts/JwXL1/hzRw6Nzc3tFotKpUKwSyAajAYMBqPmdg2lhXBtCwikSjTachjfJf1zie1qHVFkz5E61a5e/cu/X4fy4pKy/vt7a2sA0W0w+vXr9ja2pQxaYCUNQo2hQgpErX27e0t+Xye1dXV74l1RMkh2G7igRGeu/bMXFoul2eDmYVwNGtFwPMZjyf0BzbaeEi9UafdbuH5PhgGiqoxHg4xUHAcF1XxcR2FQq5AsZin16jiBh5TJ/xCut0xUU+lXO1gRX0Y+ei2A7rG1B/R6nn0uj6OE0dFZ+o4gM5wOMLzFVzHo9kMDcqGaRIEiuR2pNNp2dZMJpOUy2VisRhnZ2dsbGxI06yIshCB9sIkIC5vi4uL1Ot1bm5uJA9REGmz2SytVovHjx+j6zrn5+eyEyFAkCI6MJ/Ps76+ztuDAwm8WVtbw3Ec2d0QJgVxAZ1MJuzu7mJZltS51BsNUDTW1sIYEMEZEU74f+1655P65OREAlIEe8M0Tela8H1PEjEty6JUKnFyckK/3+f+/fusrKwwHo/l3y9ekWJIUCwWZ3yQMdlsdhbVEMY2X19f02w2JUlTSDE1TePJkycMBgMpoxS6FNd1pdtcAAjFxSWdSZNIJnE9l/6gT7ffQzcMVEPHJ8B3nVkb0kDXTUzDRFV0JqMJvhIQaDpoUSZTg6lrMZnq1NtDJo6P7fl4CngB9AeT0HWDQac9QNcMuu0+49EYZ+qgqjqO41KvNXBdj1Ip7PCIi51IbEgkElJMv7a2JglMIhVtZWWFcrnMycmJBFGKz1FIEUQyr0CWCX2H6GdfXl7KE16EDwm3TCKRkBPOdDrNYJYQ4LqujJgTQE4xgFlYWGAwU+KJLoc4FNdm4ivLsuTlVLRlf9BNPRgMiMViZDIZEomEzPsQI1nTtGQrbmNjg9XV1e8FhAq1nrg4OI4DILnNc3NzM810S46GhXiqUqlwMhu8iETW4XBIsViUHL56vS75FQIwbpqmTOA6OzujUq3iqxCJx0ikktQbDWLxsCb3CTBNHS/w0C0Tw7RQFJWIGSHwwLN9JmObqT/GiupMnAn90YhA1XC8gMJckWyhQCafptl2sacak4nPcOgytQN8V8GeuGRzOZLJNOl0Rka1+UFAp9Pj5rpMuxVS9efn5+VET1VV2u22xBOLfnS9Xpcdpnw+T6lUIjtzB4kgKXG57HZDrrV42JeXlyVbxHVdDg8Pubq6kp+5KBXr9bokqopsF/FdTSYTzs/P+eabb2i320SjUVnCjEYjzs/POTs7k6GtYp7Rnf1+QpUYiUS4ubnh+Pj4h93UAmewvb0tx7aiyS/6k7u7u9y/f5/9/X15Wgull2jsJ5NJ2RrsdDoyO1Go/lKplMSb7e/vs7GxMcseqcuot7t377KxsSEvqqEM1ZbaA5E7Eo/H5Rc9HA7xgxAOny8UWFxaAkXhtl5H1UORT6CA57t4vouiqqCoGIZJ4MFkZNPvDnA9J9RUaz72dIgfuPiBh2lEsCc+fqBRKGbp9kf4gUU6XcQPVAr5Iul0hkgkimGY4QULlUgkiuf6xGNxNC2Ub4ZOonC0LQA2ghEoaEvtdpv19XXq9Tqnp6eoqir10mKDCc+gAP1sbGzIVDGhYR4Oh1xdXUknk/hORX74cDjkq6++4vT0VHI50qkU9+7dk3X91dUVo9GI/f19crkcmqbJEb7okIiTXehHRPflxYsXBEHA+vr6D58kICDZYqwqLiv/QpEPJ4wC23p0dCQ10Z1OB01TJZpWWLRECSGE6EIiKUIkBYf6Jz/5SRgLN9vcpVJJBsCLIU8olYzJKGThYby+viaZDC1QAVAoFjFMk06nQaFU5KrZJAjAikVodVsQ+BimieZrOO4Ed+qhKhr4Cn4Aumcw6I1IJ2LEohF6fZt+d8TlaZNEUiFqBmQyabSpRqc75LbWxR6brG6UaLd6dDoDEslw4OB7YYchqht0Ol10JWBxaYnBaEi32+X169fy8/q+ojHs8wtwpIDdi/vF/fv3Q3rpDFsmdM66rlMoFLi5uWE0GjEcDgHY3d1ldXVVvmlt25amWDHKFgkP+XwedZZgKwJJhXZHAO6DAPk2Fm/S79bf6XQGzTCllU38fj+49FSowS4vL6XeQEgaxV8XQJRIJCI5EWJaJZwroQ46bPe9ePFCOpnr9Tpzc3OMx2MZlzAejxmNRjx69IjRaCSDcEQW9mAwYHt7W9ZskUhUngCFQuF7PrxSqUSgKERjMQ4OD5jaoWPEeR7GMatBAEFAoILnK3iTCb7j4Gg6QeDjuRCNxbFHAWMVokmFiGHSmY5wbR/PjjJwHYKEh+sOcdyAiR3MOg86t7cVBoMRqmrg2FOmYxszGp7O/XGPZrNFKhZSqXK5nMxBX14OjRXdbpfz83M2NjZYXFyU+eNCc+26royl29vbk+WauLeILEPR0hPhT9vb23LULtIbhJv8u1mU33XfDGfGkHg8LqUOKysrsmPl+6F7fX19Xab/CnVlEAR4voc+k0qI+OhUKvXOF8V33tSRSITDw0OazSbz8/PSqiVkkoah8/r1K/IzFtzcXEna/8NBzZhsNiPrrna7jWmaMo328vKKiR1iaSf2lMWlMNm2Ur3F8wNisTipVJpEIjkT/ddmpNQbtrd3Zoq0NtlsViZ+CTWbEFS5voeu52Y19xx6xKLb6WOPp4xHTXRVwx47KCp4kymmFUHRNJzpFBSFTDZLqzVBCRQGnRGqpjPoOkwmYJDAd8fY4z5T28GIGEQsi9HQRkEjly2C36XbGjJ1XCzTwrIitLodPG/KaDpma2eL2m2VeDzOcDgkk8nIIZewrVUqFRYXFyUIUrQ9RSKDaZpS1C9iAoX7XqjzRHLx5uamHK/XajV5v3GcsB5vNpuzt7NHNBphOrVnp3aebrdH7TZMedA1lcODtxyfnJDL5ZiMRyTiMQmxPDg4QNd1VldXURSFL774gkQyJSeWc3NzvHn7ls139Ci+c03d7XY5Pj6m2Wziuq4cfyaTSVzX5ZNPfsJ0anN6ekK73cJ1HZaWFkmlkui6RiQSknyEhHFlZUVm+bmuSy6fYzSeMLGnLCwuEU8kmTouK6trOK5HNl9gZ2d3Zvp0UBQVUJifXyASiQKKfBOIfu7JyYlEnDmOQzaTIZWIs7mxgaLqlMs1eu0+iqsQ0ywKyRyaYhAxoui6RTQaR9V1jIhJNJ3ACWwM08Y0fSJmFHsInm2gEWM0sJnaDhEjSjoRx5lMsSdDFBQ0xaTTGjMZhfB3fAVT0TFQCQyNieJDRKM76tHrh6ZbcQoKmr8wuAoOHiDLibW1NXRdD99GM6SC6G33ej1SqZSkNn13spvP52eBo5Y8AMIS0sXzXPL5HJZlkk6nWFxcIJGIY5oGiXiMTDpJPBalWMiTz2VJxGMEnsvayjKuM5UlZbvd5vLykqOjI6rVqswjn4xHqArUa7dkM2l816HZqL/T3nznk7pSqUjYeRAE3N7esry8TDKZ5OjoSEohFUWRm13UZEKtJdzFR0dHPHz4UEIQO50Ok1mLyTAM6cs7PDzEsiwZW6x8R89bq9XY3NyUoUepVIp0Oi1zB3d3d6lWqyiKIgOUup0OmqrMyJ0qrucyv7CAHUB3MmbqTNA1DQi1xPZkEkYxB6ENqdudUsrrGKbOeOyjGyauO8YwI7ieh+dOmYw1VA08z0HTIkztgIhloiomCjau56FFNMaDMZphAQHxWa742dkZ2URK9u+HwzCbUmTbiP7x4eGhjEsWI/RWq0WpVJLsD0A+GEKgf3p6yvLyMnNzcxL722g0JAP8u8laxWKRfD7PxcWFbK32+32pvxZzCNFREW1IUb589/6zv78vvzPheSyXyzIEdTAYsLy8/MNzPwTARqjkBoMBmUxG9hjfvHmDaZpsb29L9ZxIMhWXDM/zuLq6otvtMhqNuH//Ptvb2zI3W4zHhRtGxEELmeNwOJStLDEm/u1vf0u5XMa2bUkHFakG+/v78jJkmiZnZ2ccHh5ydHTMs2ff8Pr1a/qDAdFEnF67zWRq4ysKnusRzKSXruMgUhtUVWM4GtLr9+j1uriei6JqeF6APXUxdBNn6jEeOSiBge/qdDs2/f6EbreHoqoy/ElsBFXVSKdSVG9vpfa8WCxKcFAQBJRKJSlS0nVd+hlFT7ndbsskM5GYZlkW+XyeWCwmTb5BEMhhl1BMXlxcyPLE931OTk6kQeDzzz+XuSzi9BfZ52/fvuXly5dSvHR9fU0ul2M0Gn0P+xuyAbOy5y6wGuHAzpqhMc4lKvpd1u+k/QCkFlpM+GzblqGUAk1m2zb9fl86ZJ4+fYrruhSLRbk5xXRJWPj1GcS93+/L2/38/DyANOhqiiIFNPPz8/KSmkwm6Xa7lEql77myRc9aRBgLiWQsFmNlZYXBdMrp+TlqLIqVTNDrtfFdF8OwMCMRNBQC32XqTGdBm1PyuQg+AdG4yXjsY1omqmZgGBqaDp47xXUUxlMPRfVIJpK4rkIqlcUPXAbDUKxlztzew9EQx51gpaKhhnrclIZU8UYUPWYhDhNvPlELj8djLMuSURmAbKGKoYhAWlxdXcl6XEzyWq2WjKMD6HQ6FItFNjc3OTo6khIG4U5yXVcOxyCUPYiHSxg8UqmU1GsLcLzoaB0eHso/32g0kie+orxb6Ms7b2qRnppIJGYeRZ2joyMAWXqIyIaPPvpI2rJExIUxY3KIaZVwZ1xdXXFzcwMofPzJiixThsMhiqLIUerV1RXtblcOBQTFPpFIsLm5SavVotFoyP65qqpkMhmePn1KrVYLx7+xGB89/RAfiKfS9CYT3MBnOh7RsyeYpoHu+vjeLPNcURkN+xhGSPFXNQVV98lmUtTqQwxTx8eBAHxFYTAak45rqIqKqgQEgY7rBEynDh23jRfMNOi+D4Svb9v38f2QvXFyckrCishyKZ/Pz9KEHekSEn3k0LcYbvLz83O63a5MsRWjakFtEp+36JBYlsXNzQ2Li4tsbGzIN6SA6gg4++rqqjRvCIe/uEwuLCzIye3XX3/N1tYWjuNQrVZZXV2VJ/hoNJK1f3fWChT2rW63K/Xe4me+y3rn8kM8pWITh2bbyffC0kUpIkI/19bWuHfvnlRn9ft91tfXiUQi8gYvJIyCNP/w4UMAiRy7urqSdZ8Ihq/VavLmL2IgxN8r1GDD4ZDz83N5ihSLYQxzq9Xi6OiI16/fcHV9haqpoCkUSkU8Pyw7otGohEOGdV6opYjFI1hxDcefoJsB6VyCVCaGr3goaoAR0UmnUySTKRLxGIqiYehhd0FRA1zXRtd0lJkBwvM8prZN4Ic/J51Jk0wm5Rsmn8/LN0yxWJRBQiLQ/ujoiNFoJAcrS0tLEj3R7YbcPnE6CmGYAN0YhiHtYQJ+b5qmDPY0DINXr17h+740J4gxeb/f5/r6WgrXLMuSh56YXgrylO/7UlufyWRkho2YaUQiEV6+fCmbEO+yfqc+tSDRiwuMYLCJOk6kqp6enlIul4lEIiwtLcmx7Xf507FYjHa7LZOpmBFA37x5I8PpE4kEr1694tGjRxQKBd6+fo3ruiwsLDA3Nycnh+I0AaSzwrZtDg8PefLkCbe3t2FftlHntlolnckScT00w0AzDaKWSSSZpHlbwZ/aTDUDezTCmzoYuopuCuabRjJl4PsuuhFnMnIZ230MUydXSBOPGyjTCdGoie1OcV2bSCSOHzi4gYdhqLieTxAojEcjvEBBS4dTNJFDLrQr4oEFpEJP9IoFi29xcVESkURZIGpp0UorFApyNlAoFOS9ZnNzk4uLEIcspnyDQThLEN0S27bD0nCWNyP0J6Zp0mw2WV9fZzKZkMlkqNVq8sInzNnFYlEqN0VUd7/fJ5fLyaGNyMTM5XKUy+V32pvvfFKHNVWBRCI5+4NZstNhWRarq6t4bhhHN7WnRCNRFBRcx2VjY3MWthODGZ/i4OAAZiPv5eVl4rE4pdmHYFkWu7u7rKyuhKE3yQTD0Yjt7W3ef/992VtdXFoiXyjgzep5FEgmk/T7Paly63Q6dDpt+SDouoZhGrOJ2Ti8/A0GVMo34QekarPyIBS7R6JRdN0AFFzXY+qMmdhDjIiCE0xA9TAjBrqhgeITT8YxIxaapszgMx4oPorihyP1mV5c07WwnJnV+aqqY+qmhMiIlul3s99FT1eQTsXFLRw8RaSGWiQOCF+i0NwIrEG/35dKvTB/MiEPJ5EnI6TD4rsXl9RYLCYhkyIXXuQoivImkUhQLBZpt9tMJhM6nY4UK4kL6suXL6UeRIAxhUXwB9vUoHJ8fEKtVkdVdbrdHpYVZWlpBdOMMByMaLc69Dp9FFSikRi5bJ5Ou0ssEsNQVS5OjolGTCxTZzgcsH9nn3gqRbc/JJ3OoCsqih/Qa3cY9HqAwr/9kz9GMw1iqQSP3n+fSCzG2La5urlhMByiGwbLKysUSiXm5kqAz+npCTc3V8TjUX7zm19RrVY4PHxLLG6RL+UJFIWFxWWGIxvP9/F9DytqoBkGqUx2xvUIiCWi6IaB6wWoepThyMMy4vh42EEHPeaQKqRwgoBsvkg0nsAxQItHcVFRFZ/JtI1uOGiWgmIaRKMxDEMDPBTFw3NtxsMRGhGmY4VUMiO7EeVyWZYRzWaTSqUi062ePn3K6uoq0+lU8glbrTDUUxgDPvjgA5LJJIoSpviKzsknn3wi9TXz8/NcX19zcHAgrVzi7SkoTyEUUpenuqIo39ORWJYlXTr5fF5GOwts2aNHj0ilUrK//t577/HkyRP6/T5XV1fyLb63t/fDbmoh+FZVVbKmRVJTr9ejPxjgE8ZafP7lF9xUyswvzLO2sU6z3eLlq1ehNsGyuLy8ZDSTLwqDbWf25em6jqIqVG9vKZfL1Bt1Wq0WgeejzU6uzc1NOeq9f/++1A5rqsabN29kRNvZ2RnJZJKVlRU8z2UwHEAAnV6P8/MLzs/PZVen32yhENDtdBiOhviEHZ9uJzRE+AEYRpRarQ9EyBdK5ItFXM8nkUrg+S6WpaMaPmNnwHDSpzPoYpgGQ3uEbprohsFoNGY6dXA9Bz/w0XQV0wz/+vVNWWKPhelY9O1F58Z1XW5ubmT2twDGdLtdKVsVNrkvv/xS2qqE2fnZs2dcXl7Ki/zh4aHMW+n1elxdXcmxujBHC6OBwC10Oh1ub2+5uLiQnaY7d+7Ik9ZxHJ4/f46u69y7d4+3b9/y6tUrUqmUpKj2ej22t7claFLoTn7QTb24uIhhGJJE32q15OhWOMTH4zHD2cXFtm0iM7fMcDjk/OIcw9BJpZKSTTwYDLi5vp71JxWsiMVoPMIwTTzfp91uYegGsUiU3OwV67ouc3NzMimqWAxTwa6vr+UpI/4+wzAk3NA0LQqFIq4baiWuZx2XUC8dQZ0FZ/ozQVbgeWFKrmESmfXEVVXDNNOoagzf0+kPbNKZ8GTF91BVn2hURzcB1UczNQJNQdF1bNdhbNtMHQ9dN8KfAyiqQbffxw/A9wKSMx+mqoacwOXlZZaWltBnjh+x8VqtlvQPVioVWXcLiL0o0RzHIZ/Ps7W1Jf89IsRoOBxK/cX6+jr5fJ5arcbFRZgQdnZ2xmAwkK6nfr/P6uoqpVJJPjwiJm48HlOtVmk0GszNzZFKpaQVb21tTQKKBD+k0+mwtrbGxsaGVPK9azb57yQ9XVpaIplMcnFxwcHBgXw1ffrpp2RzOTTDYDINvYKluTmyuRytTodqLcx1EYOHyWTC7e0t06nD2awdpekae/v7sq1Uq9VwHZdOq41lmBwcHEh1ma7rs2i5LY6OjmQ6VKvdkgAVQcEXuTDb29tUK7dcX9/Q7fQ5eHtIvR6K8wMgUHUCH3BdAj8ARUGZRSaPx2OUIEBRVMYTlU53SrM9RFVMND1EF8QTESIRE8cdoRtgux5j16XZ7+OpGkY0gmFZaLqOqhtYkTimGZ5QkWiUjY0NlldWsKc2k8mE09NTyUgRpCuRaCYug0+ePEHTNAmYESm2g8GAxcVFisUi/qyz4rqu5G3c3NzIsfrm5qaES8bjcTkVHAwGUot+fHz8vdlDp9Mhm83y4Ycfomkav/jFLyQPRCR7ffLJJ2QyGV6+fEmxWOTP//zPwyjBWIzPP/+cJ0+eSKhOLpeTk+N3We/c/RBtM9/3ef36tfQrJhIJVlZWqDebRCIRafK0LAtm9vfJZEJpbg7Fd5k6Togci4dZ2SgKOzs7jEYjqrUatuMwv7go+Ra6rqMCGoqUvAqbktDp9vt9lpaWQhf1TGnmeZ588nVdR9f1mdbX4PTimnqtgaYaGHrAZOrgOW644eJxvOkUb+rgqFrYxlQUDNNkYk+xXRUjYuC4Ab7uzfQrKt1um2g0iWkaOK6LYigEukE0Fcf1FJwgYOpOcadTVCNKLJ7AjEbpz6IxFE1nMnUo35QxrVCzITJVEokEb9++ldHTIjG23+/LrJQgCHAcR3aBCoUCn376qaTIHhwcMBqN5Bt1aWlJat2/ywNZXl6m1WrNQI5LslUrLpMCFi86NIZhkMvlZCdMMGHu3bvHf/2v/5Vut0u322VnZ4e9vT2azaZ0xAg8sdChiC7MD7apFUVhdXWV09NTnjx5QqFQAOD58+d0ul1cz2NxeYl+r49pmVSrVVzPIxqLsbSyTNTQubk44/Likv5gwIcffsRto4k9nTIZhxhZwzS5c/cOvhdqEJzplMX5eb788suQVjRLjhKWfEBu9GazSTqVlmZaQfWUOY6z/m9pbh7NjPPbz59Rr1ZQYlESyQTTfrix3ZkhVZmNlVVVQ1PDSZdhGHiArinki/lQXtrXMVSNuWKJVEpHdwKqtSaoFqqlMx57aKaBHjEwYhHGODiuF+aUj8YoMSv8815f07ttkowG7O9vMzc3J/Fsom338OFDiWgbDofyVX95eSktXhCWZPV6XXZRREyGbduyjSo+v06nw+vXr2XLViQ0eJ4nVX+KotBsNqWzSPxe4nD56KOPpBxYSBhevHiBqqpsbm7Sbrc5OztjaWlJmheazSaHh4dsbW3JQ1Dcb36wTV0qleh2u0SjUe7fv4/rumiaxunpKc1Gg0gsRjoWxZ7avP/B++FEiQDd0Ol0uqSWFpg6DpGIRWSmp56bn6PValO+CTP0coV8iD2wotRrNQgCPvvsM0aDISurK9RrdTRDl+2tZ8+ekcvl/sUaVr8lNhM8iZpawFKGw+GsrbeIolksLi5yVqmA69PrD/EcN1T+KQqggKIQBOFGDghQNQ3dUonEVPqjFqiFWRsvYDjsYyykSCYSDBoD/EAnlSkRjKEzaqKoGkN7jOO7oXXMD9B0Hdf3MA0LV3Ho9vpMvAGKsiMtXCIXRgw1AJmhIyJKRqMRlUpFDq1EvXx+fi4fBmGXEzWugAM5Tgir39/fl0GdAhUndPCJREImdolJ4OXlJaNRmNArUrnEaVupVKQPUgzogiDg5OSE+fn5GYLBkbMKYfQV4/p3We9cUwshvzB1np+f0263uf/gwb9Y34cj7uzvMx6P+elPf8rz5y/kbD8IoN5o0usPsMwIjWZTUjgXFhZotlvclG+4ub6Rr0nLstjc3JRTrFo91Dk0m02SyaS8FD169EgGKkUiUVl+iHG7iK1rNBrc3Fxjj8esra1hmQbpVBJD09HMCIEfoMw6LLqmzQYaDj4BU9djMBpixVXMmMrcUo65+Rw725t88P57xOMxIrEIhmWSymZRDIOxM0UxDBRdR1HCS5ui6Wi6TqBpoOp4fhBGbwTgei7dXleKe8RrXlD5p9OpvGxZliXxbj//+c9JJBK4rsvS0hLOrMQTVi4RLWfbNpVKRZpyFxYWWFhYIJ1Ofy+rXKj6hBZE/Hxhjo5EInS7XW5ubqRFS8iRxdRWhBWJMCOR6ygeJHEBFdNLkcD2g25q3TRxXJfeYIAPTKZTOr0enW6X3mBAr9ul1WiQSaYYD8c8+/oZyWSKjfVt0qkcvcEIN1AxIjEi8QTJdI7abYOpHdrrG7c1JqMx+UwW13Gwp1PMSIS5hQWmriNLmYWFBRkpnc1mOTo6wnEcPvzwQ5YWl8nl8hQKRaZTl+FwzGAwJBqNo+smtdotBwevqFav8D2biKHiOVMMRcPAxHd9PM8lCHx8Z4pjjwlQmDgefWeKayhgjrDSAamChut1KWWSPNjfZ2m1RLwQIVmKECsYdNwGtjbEShsouoJrgzvwUHwT9CijQEGJxXC8AE0z8HwYTR1sx6FcLuN5njQpi3aa7/uMRiPK5bJ0nqiqysrKitxUqVSKbrcrU73gX5K7giCQIinP86S/VJgBLMuaJaWF5FqhFxFan0KhQKPRkKWC0JwIcZWo8UU2j2D2+b4vp5SXl5csLS1JZmKhUKBSqcgh0jvtzXfd1NPplO1ZYPqrV6/Y2tqSr8Ziscj66gpffvkV/dmtOZfLgaLR7fYwTJP5uRLjmUO83eliWhE5sRJRZ91ul2v3Wo52e71e2AKa+SG3dnY4OzsjEolIJ/n+/j4XFxfhiHXWKfhu6qsg3udyWRwnDJB3p1Pu7u3y1bNvGDkBg+kU23GJWjHswMcb26Hp1rRAAVUB09BJJmPYzoBIMsZgNAXVxHXBDxQmQYCuBdhmQLXfYOzbBJqBPZrCWMHp2wSuhqIbeEoYbxE4LqauEzFMRtM+03Go576+vpY96QcPHkhus6ZpsrVmGIacHQg7l8CB7e/vS8d9rVbD932pzxCpWb1ej+fPn2MYhlRXxuNxUqkUX3zxBYqiyLJODHCEICmbzRKLxeSbVgSXirDTTCZDtVqVl1LhnxRpbIeHh5I6NR6PJdHrXVV673xSl8tlNjfDcff19bWURAqWRD6Xw7IM+jPGceg+afN//+3/IJfL0mo35QcgOiQAzWZThosWi0VpYRqNRmxsbEiqqUAeCAqo0CFks1l5MRrPPtxyuSwF9GLoEIlEWZxfREdlMhoTsyKUMnn6rQ6T/hB/YmNoBqoeQTEsjEgcL1BxXQ9D14mZOtPhmHbDxbXjTEZRuj2VRn/KVDWJ5Eq0Jz61/oDu2MZFwfdVcFXcsY8zdMHVMGJRookYuqYSeC5a4BM3TTTPw1IDVpaWyGQy8lW8vr4epijMlHGZWV9cOFUUReHo6EgOU8QGE1RTVVX59ttvOT8//x4oMpFIkMlk5Ob3PI/pdEomk5Eb7bujb5GRKLC7m5ubPH78WGpSBC5DtP5c1yWdTks1psCbiRpdqDcvLy9R1TDU9Qf3KN7c3PA3f/M3MpKiXq/LYBvTCk/EMLD9mna3QzabkwONeDzGzfWIZDLJ4uKijKATzotKpSINsltbWxIILlC24osSRgLRyBcCH3mCZDIcHR7KfO1arSYtULVajeloRCadY9QfYagaK4tLXF5X6I7HqJrOxA/QzSiBq+C5Nr4/xTRM7MkURfXx8PB0g0FX5/igw6g/oRur4asHqNmASreMq/mMXfA8HdUz0BwV1wZdjeCrhBdFBeYW5um326iOgxn4RHWVqJVgfm6OaNSUWSzValUCGh3HodVqkU6nSafT5PN5CQwCpNbl9PRURrjNz8/LqAshSEun00QiESzLkhNhIaAaDoeSrSdi616+fEkmE3JKTk5OSCQSzM/Pc+fOHb788kt6vR7xeJzt7W1ev35NpVJhYWGBnZ0dWq2W1H7cuXOH8/Nz0um0xDO8evWKpaUlUqmUpOL+a9c7n9Rzc3Pf4zb0+315sRgOh0ydKXNzRTzfQTe02WkR4d69u3Q6bUnvSSQSkjIk0Fcix09MK4UuejQacT3LAdnZ2SGVSsnTW4ioxCb3PI/LGRBe1G61Wo1ut0uhUGAwGFBvNFmYW0TXDN68ecvJ8TH7u7ssFAvoBOiKQiKWJJZIYcSSpApzBKpJPJEEzyNmRND9EPLYa6o0qlMqlS7fPHvNN8/e8vr1OfXagMbtkHHHYdp1GVw3mfanqIGJbliohg4KjAcDAsfBG40YdtpENIVMIsZ4NJK1ciaT4fT0VNaxgimoKIqMHzk/P2c0GklRk8hjFIIokR0u2pyivhW681KpxNXVFZ7nSc20QFuI+GYRuz2dTul0OlK6KrQpYp5QKBRmqRKB7K8Ll9RgMODVq1d0u12q1Sr1el16MIWgSbQZ/7XrnU9qQTzd2tqS6ahig3fabSKmhu87qKpCqxVqBqJujNvbKslkaCzIZDLyFRiLxaSARljDhBRR3OBvb29lgOjh4WEY1G6adLvd2dg6bFE9ePAgVIPNgO+j0Ui6Y25vb6ULfmVpmXa3S6fb5ezZt1ixOAvzcyQyKWr/zy/RPB/XttEUBd2KEo3HqZw3megBlhaA7aCoJs4Ier0+vqugOzbD3gB9aqBELfo1G2WkY0wUxq0pwTSM5TMsi0BRiScTDPo9EqYVtjiTSebzOSzfJ5/NoCiBrI2FkF/ESQgKvxiNj8dj9vb2pOhJTPNEzJxpmvLzFZngmqZJPJzgD4raWdCvRE+/Wq1y584d5ubmaLVaaJrG0tKSxFoIl5Jt29IrahgGe3t78sER9wHBpBYbWVxa79+/L7XyYuT+r13vfFIfHh7K6N4wuCgrpY+pdOglPL84A3zi8RjX11dcXJxLF4Z4Wm3b5quvvsL3fdbX11ldXaXb7VKv1zk+PqZcLsssk1KpJI2+wgEtOgKxWIzT01M52dJ1HXN2YRJC9Lm5OenyADAsi0yhQKvTpdXpks1lsaIWhqkzN1dECTx8exLqPkyLkeOixZJgRBlPPFw3YDLoETgewVjBH/j0am0G9TZxNYbdmnB7WKd72cNtuQR9Hw2DWDyBp0IkHWd3extLVcmn06SiMe7t7VLMZ/npT/8Nf/mX/5uEBgldRrfblam3QhAkbFSxWEwaXUUZIVqYAO12m7m5OXK5nEwR7vf70vd5dXUlp4iihhaoBdECFcFHzWaTt2/fSi23sHgJaamYJjqOIzsfIkrl/6sSFMSo6+trOp2OjDEUvfgfbFMLh7LjOKysrMiTdTQakUykMA2TydgGFHnRMQyd+/fvMjdXYmFhXvoRRZ3rui4ff/wxH3zwAfv7+1KMdHh4KH2F4gFKJBKsr69Lf564NO7t7VEqlWTA0c3NjbQmVatVGYdcyBfI5QpcXF5xcX1FNB7DjFg0202y2QwfffwhuUwSUwM1CNBUFdOKEEmkQDGwYmn8QGU6HTPodYnoBolIFHc4Qpk6jFtdvKGLOlZhqDHtuSiOQtSKkc5kCVRwA49uu4Ua+NTKZeJRi831VbKpJHMLJaLJKFbEkv5LkX3Y6/Wo1WpSliBEQIVCQbIM79y5I2lHi4uLuK7Lt99+C8Af/MEfcOfOHeky0nVdBr0WCgUWFxflJVMQAb47PRSCJvHPXF5eSgVfsVhke3s7hG+6LrqhS/12t9uVyLl8Ps/du3elZ3QymWCapsQL/y7Q9Xfe1KurazMkbAPLirC6uoam6czPL5DL5fECBccLMMwovd6A8dhmZXmV9bUNBv0BiqKiqhrX1zfEYnF8P6DZbKEoKsPhiHq9EeKoNI12u0M8nmA0Gs841mPW1tZZX98AFHq9PuPxhO3tHSwrguf5YUz0ygrpTIbiTP+bSqZIJ1MkIjEihsn15QX/9I//wHg0IJ1JEI9bGBqMBx02l+d47+G9UOmWSqD4Ds5ojKFbWLE0U2KMXQs/UBkN+nR7Ffq9G3B6BPaA6vkZ/VabYAzuGBxfx7ViGJkcVioFKDiTMeeXJ0zdCalYhD/7+c9o1WpsrK1hT6e8OjjgcmZfE69ukYQlEBWDwUC2+wShKZvNyoMiZEsXiceTLC4uo6o6tj0lm81RqzWIRuNkszny+aL87KPROA8ePCQeT1IoFBmNxgwGI4bDMTc3ZdrtLltb2zx8+JidnT3m5+Z58+YtNzdlxuMJi0srFOfmMUyLZDqLqumSmCqotSJR7F9oUnVisThbWzusrKyRTmeIRn9gll4QBJyenqFpGoVCQZpAFxYWZprdBRYWFlldXeXs7AzTsHjx/AWT8WRG7ZnIpCjB35ufn5eoA6EoE5MyEUkmSE4ifDKdTkvrknBEi05A5bZCLJlAM/RQwXdwSK1SDU+NTpdas0E+lyGXy1EqFSkW8gS+h+d7xAyNxbk5Hty7w9HJGX3HJmrGUI0IvhVD1WLY9gTPsfB9l6k/xVQNFD0ATUM1I/iqjq5oaJqCoxsEpsEg8PE7HTRFQfE8HGdEIZXk5z/9lHwqydFwSDwaZTAeMXUdxrMJrHBbFwoFdF1nd3eXubk5Xr16JbHGoh0nnDGCglqrhfSq8XjM7e0t6+vrqKomW63xeGLWG45zdXVNtVrlZz/72SxT/gbHcUmlYjOpcUSaYlut0IC7tLjE7W095Hz3B6GEVlEZ2zYT20ad3beEHU30r4V2WlU1hsMRW1vbqKrK9fU1R0dH30si+9esdz6pBfg7Go2yvb3NwcEBJycnEsUqhjC2bfPee++xt7dPo9Hg+PhYGmdd15VZfYL/cHl5SbVapdvtAqHWQoDCNzc3efDggSw1hORxaWmJWq3G8fExuq7LS0yz2cSxp/R74cWqXKkwHI8xLAtVU1ldXeU//cVfsLq2xt6dfbK5HKquMXWmdLpdPGfMh4/ucn93ExMXAxdLC9ACj0Q8SiaXJ1rcxyzsoqY3URPrmOld4vl7JIv3iKZ3WVi9y/zyDqn0HIl4BkNRcSZDIpqChU/Wsvj3P/s5nzx5yj9/9k8YMzSvgCWqmsr+/j6O43ByciIZKeLPXiqVJDek2+3KEqHRaMhULGGIFXkqlUpF6jWCIJBBUMLoGo1GOT8/lywR0Z8WvBbRexbBVdFolPWZy1/83s5MCyTyfIQLR1VV/viP/5hMJkOv15sdhPPyoigUfJ9++uk7h4P+TkkCYhASZpNbM99hXMIhRTyw6JTcvXtXGjjn5uZkTHO/35cCl1qtJtGxhmHIeIednZ1QgzGjozqOw927d1FVlWq1ymAwkI6OSCTC3Nwc9/37jGedj2+fP6fZahIQkC8WSKaTLC+vkslm6HS7qJpGLB5D1ZjBaXqsry7zzVffkIvHeHx3l4tylVqniapHwPBQNRMzYqFjMtU8VNdFRcWImLiaiqGpTB0V39dRVQNFmaLq4QBGcW0yiRibS3NszC8w7HQYDwasbu9gWRYjd4L/HeGS+HxjsRiNRoOTk5Nwqru9/T3W9OJMpjsej9na2uLsLGzxCVmpOEw2NjZkPJzYtI7jsLGxQTKZlH1/QVX9roZEjMnDOcSN1Ko3Wk3i8Xj4UJomjhcCOfMzRvXi4qL0Sq6vr1MulyV6YWEhNCxcXFzIeLt3Xb9T+TEYDHj06BG//OUvWVhYkJeT6XQqEQTValUGhH744Yd0Oh2++uorptOpVGyl02n+83/+zziOw/z8vPTLjUYjer2ezN0WbSABpZyfn6fVanFwcECr1SKTyXBycsKnn34aZplHo8SiUT7//HOOj49ZX1vDikXJFvOkkin56lO0UI13en4WZmgbOpqhY5o6jcoNu/t3+OSj99moNfk//8ff47hDVMXH92yCwMaKRjAsj4ilMR73CaY2phklGomBY2BoFqrm4zpTfM/F1BV2tne5u7tFr1qhXr7G8j3y2QxW1KQ/HJBIJxmOxywvrzCdTllbWyOXy0n5p9AlO47D0tISw+GQ4+NjiR5oNBoz6UAoEKtWq7x584a5uTmSySTZbJZoNATmPH78mGfPnsmhiWVZnJ2dcXl5KWWp29vbFItFDg4OZO5MCOZssbG+gTHLSk/MujKKovCbz38bgkPHI8knWVhY4Le//a1kj4cUKVvSV9++fSvbtWtraz/sphYtOXFLdV2XSqVCtVplbW2NyWQs6zjBxxOpW+EHn5UbWxhLb2eorclkQq1WI51Os76+Lt3Ml5eXMvbCMAyazSYvXryQXrzz83MZw6Fpmvz9RLKVbhh4gU8imUTVNXTTwDJCV3R/MKBYLDGZhObRXr/P1fk5lhVhbW2dy/ItCj7/9o8+pdZs8+rtIbY7RbHBmXik0mmc4ZhIoJI0LcaTMQo+fuAxdqZYJkTUKZFEhHv7W/z7P/4Zo36Pw2GfdCLO1dUl6xtrFEol/ABuyuFUNbZlSQi9ANMIUb9ofabTaZmPI+4hiqLwzTffkEymZJrw9va2fEBEKoEA4wjFnWjJCVaKwMOJeDqRCiD+d6lUojf7narVauguX1+nVq9RrYYUVMe2GfS6EvkQj8e5uLiQY3gIMWXigbRtWwKP3mW9c00t+pzVapW9vT3ZSy2VSvzd3/2dFKOMx2PK5TIHBwe0222eP3/OT37yEz755Ceydu71enz22WdS7CIkk4LAqes6e3t7bG5usrS0xH/5L/+Fx48fS6zW/Pw8c3NzkqEnHqLKTZnPf/Mb5kol3v/gA7KFHKPJmGq9xvLaKt1ejxevXqJoKp1uh4vLSxLJJFs7OyyvrrC4skYsnafS6NAbDjEMDUML+NOff8K93VWWC2livkrE15h0hgQTh1wizkI2RTSYEgybeONbNLeF4Xf4w6d3+T/+979ke3keZzRiMhqB4qNHNIyYQSQRRTdN1jbWWV9bI5cJHSpXV1eyHSnaeUKm2e/3qVarkh0tYks8z5NvOUVRpMQgHo/TarV4/fo1CwsLAJLnLdws8/PzUtQ0nU7Z3NwkCAK+/vprJpMJP/3pTyVQMpsN3fbV2/B3YBbVMZ06cuBTrVblf0Tb9S//8i/xfV/KZsVEtFgsSuXg119//U5783eaKJbLZZaXl1lYWODw8FDWfML5PD8/L8Pd5+fnefv2LXt7e6iqKvMW8/k8Dx8+lFpnkcIlxtnRaJTj42M5dAAkBEU09cUJI276g8GAk5MTVIUZU0On1W7R7fXY3Noin8+TzmSwZzoRkYKQyaRnqrMMk8mIeDJFbm6JZCbH4uoK0WiUN2/fYE9GbG2ssDhf4nbR5rJSRo9a6IFPp3xJreWRn4+jW1EGAxXPCViYz/PwzhbbG8t44yGK7zPqD5n6Dv3REDQVzTL58tnX/NlMcbiwsMhwNJAYMGGVSqVSTGyb+GwCKE7U8/Nzcrkc9+7dk3asSCRKoVCQ6QI7OzsyGUukp9m2LUfSYnCzu7srpZ8CVi/StoQSUDwQqm7Q7YYa69RMwWeZJsvLy3JAJnJ7AGkcEA2FwWBILJZgb2+P0WjEysqKpDn9oJtagBgty+Kzzz7jT//0T3Fm2l8x66/Vauh66EzZ3d3l7du3lMtlHj9+LG/iH330ERsbGxwcHPC3f/u3MmyoXC4Tj8fZ2dnh22+/5dWrV/KkPj8/5w//8A95+fIlqVSK+/fvk8lkKJfLfPLJJzJuw3WmrKyuhu7yq2sWlhb52U9/xsXFBb/+1a9oN8OuS7FY5P79e+zt7dHpdDg7O+Xmuoptu5ydnaOoCu8/eR/f90gk4miaSr1W48/+7I9xAoeXr1/z5ddfsbK0zHA7Qa1yw87+BkvLy8TNRUZDm9PjIzrNBkeeT/nmhk73bWiw3dojn8/z8sULhsMRCuHkL5FMUSgU+fLL3xDgE42EzOh4IgTYvHj5CjMSY3F5hf/52T9Rua0SiURIZzP8X3/912RzWaKxGJ7nU6lWMU2Tn3zyiQRDLi4thQZcz+PXv/611FqLejkIApaWlri+vpZwyHK5TK/X4+uvv5ZckUgkwvLyMnfv3wvLyZn2ZmJPWFhYYDye8OjhI6qV8ix6MOypv3r1mkKhyPn5OeVyhYuLC9niq9frEvn8Luudyw8x1habtlwuy4FAaIfXZIxFq9X6HmC72+0ynYb9ZMdxJJpXjLzDSAVfCs9FW0mMgE3T5ObmhmQyKb8MIaoZj8cSr/Xo8XtYkSi9Xh97YrO3vUvUitKoNTh6c4ipG98BxVQ4P7/g+PiE4XDM/fsPmZsrEY2Z2PaYqT1h0O9j21OCQEFVdV69eIs38lgtLbOSX2RzcYuVhW0e3PuYRGSJYJoEX2N3Z494Ig2KSac3QLcijG0b04owV1olncxjaRFGvSGT4YjbSjXEkanhGDlqmTSbDSIRC03Tua3V0UyLVDbHwtIy7z/5gPmFBaq3t/T6fTq9LigKtjPF9T2mjkOtXuf07IwA8IKA21qN0WyQI1BiAjQJoTl5Y2NDWuBGoxEPHz6U4n7BFnddl9t6nV6/j+f7dHu9kP3R7eE6Lq7jcH1zQ7Ua0gIGgyGqGvIIBelK1w3i8RhB4JNIxMM8+cDHst4NEPnOJ/X9+/f5p3/6J+LxOD/72c9IJBL89//+33EcR/Y/IeyQCNNnr9eTF8ybm7JMborFYmFLqNEgl8vx4MED3r59SywW46//+q+Jx+Ps7+8D8Hd/93eUSiUZXvTs2TNOTk4A+JM/+RPZmrq+vmZxcRFd1zk4OKBSqfD27VvG4zEvZmCVdDrD+saGxGV1Oh0ODg7QNI1Go8Hy8jJ/9Vd/yeeffy7rdZGWFYb7DPnNr39Lt9flL/7iL+h2urRbHXTdZHdnl+fPX3AzrZHJhC2x7e1trq+vZxekLJ1Od4atHTAcDEinkyQTSRRVYTAYojXqmJaJ77v4AXi+j6GquI7D6soKnu8zmsVkP3nyRJornj59yueffz6zRM1L+anwJwp8gSCOionko0ePGA6H/OY3v5H6GmHOLRQKZDIZ/vAP/5DhcEilUpFakTt373L//n3+23/7b3IYJ77X8XhMPpdjOpnIZAPh6r979y6DwYDnz58DYbbN/Pw8L1++ZGdn54c/qYWgRtxm4/E4H374IfPz87NWmcIvf/lLzs7O8DyP29tbotGoTEbd2tqiVCqxsLAgSZ6maUqqZiqV4vj4GNd1ef/997m5uSESifDpp5+ysbEhN+F4PKZSqUjyZjqdZm5uDtM0Ze0WjUbJZDIyIkJ0SxqNOqqqygvU/Pw8q6urtNtt2Wf/8ssv6ff7vHjxQl7QHMfBMAy2trYwDJNet8/V5TWFQpGV5VV8L6B2W2fQH0jZaBAElMtlmV67s7PD8vIyNzdlLs7P2d7eZnUWkHn37r0ZUeqcdrtDvlDg3r37eJ5PMpUkm81Qq91Sv63SaNRnvMA+a2trbG5uSqB6LpfDmtWu+/v7LC8v0+/3JR213W4zniGAQ8DPv5yMYt4AIQxUGHovLy85OTmRSr5cLkdxNgBKpVI8fvyYXq/HZDKRhNXl5WUKhYIcvsRiMcmgXl1dxfPCzlm73ebo6Ah9prt/V+3H79TSm0zCuikIAp4/fy5jMEQA5dbWFs+fP2djY0P2R/v9Pjs7O1xf3/DVV1+xvLyMOiPqi5aTYC2vra1x//59KYQpl8s8ffqUo6MjOSq3LIvl5eUQoeA4/P3f/z0PHz7k448/5ttvv6VUKgGhqaHdbuO6Lh988EEYRddu89lnn8nXbLPZpFqt8sknn3xPABWJRHjy5AlBENDpdFhYWODk5ISTkxNKpXBUfXh4SCKRnDGcw2HQ/v4+q6trlEolms0mv/71r6Vjp9vtsr6xger4rD96xK9+8RnjcRhwen19TSYXUpVQdSaTkOZ0c1PGtKL4vofvOGGHo9/FskIt+rNnz7i4uGB/P5zehg7tOE+f3pfA85cvX8oIv1Qqxd7eHqZhMBqNWFhY4M2bN/i+TywW4/b2VhpmDcPgzp07fPPNNxwcHHDnzh0ePXpErVbj8uKC21qNvb09xuOxRDGMRqPQhVSrycnm2dkZH374Ifl8Xia7ra6ukkolOTk5kUO9s7OzH55PLVp58/PzUg03HA7Z398nk8nIDSriMwSvQnAlrq6uJONYkEtFrssvfvELGo0Gm5ubJJNJGV0s+B4C4L2wsCA52Ts7Ozx69EiqxkSAvOu6TKdTCoWCDJQXIJuFhXl2dnZkfIeIcDDNkAD1XbKRsDiJoYMY2Yd54VnW1zcBePny1WzTBNRqdcrlMpZl8d5770nt89raGnt7eyRnxFjh8s7nwj7z7axFZ9s2//HP/xzNMDk/v2R9fYNCocCbt2/QdZVY1MIyDRmTLHIJRUb7aDSiXClzfn7O0dER7XabZrMpNR8bGxuUy2WSySRLS0u8fPlSyhzE6a1pmrwXtdvt8LI6y44Rn2+tXqfRaEiB1cXFhRzDC6ueEGMNh0MODw8lLTV8OweSSiC4h0I6+4NuapF4KxwMwn7jeR5/9Vd/JV3J6+vr/NEf/RFzc3O8fftWxmksLy9x79495ubmuLi4kIR8YVtaXV2VQMSrqys5Lr+4uEBVVX7zm9/w2Wef8fr1axqNBouLi5JLsbKywtdff02j0ZBZ2j//+c/Z2Njg6dOn+L7P6ekplhWRPOTr62uy2Sz1ep2vv/6aJ0+esLGxQTweZ29vjxcvXkjrvvhSYrEY9XqTnZ09isUSb98eUiiUyOeLPHnylHa7S6VS5ejoiK+//lqyB8UpKWJF4vE4mWyWqTMNQemWSSqdJhKNsLgUElx39/exp1MuL8/Z2dri5uoSx7FZX13D0HXW19f5+OOPaTQasle9uLhIrVaT2e1LS0u89957PH36lPX1dam9EJfBSqUiPZ6JRII/+ZM/kYm66XSazc1NJpMJZ2dnfP7553zxxRfhpp+BPd++fSu5IdlsVjqNLi8vefXqFdFolNXVVal9FyNzkVO/sLCAaZoMh0MePXr0zm7yd97UQkA+HA7pdDryNZ3NZmX9K7oY0+lUKsa2trYkMFJs8MlkIv8Qy8vLEuQotACRSIRcLofv+7KWTafTcmI5GAw4OjpiMplw9+5d2u221BQHQYBt27x9+5ZGo0G9Xsf3fTY2NqSGW5QaYtQ+HA65vLyk3+8TBIG0iokUKuEIEYFB77//PouLi5imKQN5bHvK06dP2doKozrOz89JpVKsrKwQi8WoVCqSauS6LuZMuCUz3ms1dE3ntlZDN0KlYiQSYTIa40xtMtkMsWiEdrvJ9ewtOZ1OWVlZAZBhRWFbbSydJAJdJoY2wsUtgDK+78sLsbjYiY7H9fW1TNASP09RFB7Myj3XdTk9PQWQv69pmmSzWXnRNE2TyWSC4zgUCgWZTZPJZHjvvfd48OABxWKRs7Ozd3a+vHNNvbi4KJkSAhZZqVRmGg2bQi7L5sYqBPCrX/6SVDrN3t4eu7u7VG5v+fy3n7O1GUYvXF5eymizMF+vwuHhIaVSkfn5BRYXFxnbNooyc0KfnfH+B+8Tj8e5vb3F930WFhY4ODiQ7GShPQG4uLjg6uqKe/fuSWnsixcvKBRDD534Z8bjseyh1+t1zs/OWJy9jZKJJKZhksvlaTZbLC4usru7y9/+zd+xtLTEm7dv2Nra4vDwEMd1yOWyLC0tMp6EAqD33n+fTqfD5cUl3W6Xi4vL8L7Q67O2tsr65ibPvvmGpcUF3h4ds7C0QrGQ5/ToiEjUwrFtCrkcC3NFfvXLX5LP50BRqdcb6KbJ8dER1dtb2u02mUyGfC5PvpBnMBjSbnXCYNUZcVQMusQp3Wo2Zf0sWqO6YZDJZsnmclxdXclL283NDWtra3z8k58wGAw4PTujPxyytLQEQMSyWFxYCAkA4zG2bYegnPk5yuUK3W6HIIBWq8kXX3wBhKrASqVFt9uTRuxqtcrl5dUPu6nb7RZLS2GSbbl8Q6NRZ2srfD21W03ajVt836VUmsNZWSKbK3DbaFC5raHqBvce3KfTbHJ+fkYsFpUIgE6nTb1e4+TkmKgZvq5X1za4rZ/TaLVRVJXRcMjnv/k1G5vbbG5ucn19jeu6rK2tyQ6LGMsKR4WAqIjxazQaJZ3JsLW1hT3LbPR9X3Y4VlZWOD89xp4MePvqJXt7d0mvhsJ1y4zMuigaqAFvDl6HVqrUPIVSmF2SyqSoVqtk0jkKxTnm5+ep1+vc3tYJULEiUaxIFLt2y/HRYQhvdBwm4zF3791nZWWFXrfL5ckx8VgMw9TJZLOh6VfRcH0FD514IommqnTbHXzHxVA18Hx6nQ4rS0sszi8Q+CGxX6jxzs/PsW2bUqlEvV5neXmZ63KZ8syDOBwO6fZ6TB2H0twcmVlrzbZtkuk0+3fvUigW2dndxf/qK06Oj/Fdl9TMLL2/t8c///M/c3l+TjwaxdVUWs36LIL7IdPpdHaQXUgylKquzO5cvZkPNcHy8uoPu6lFlotwBzcaDa6urjBNkwcP7mPqCp//9reomo6qqXS7IUHIikQwDBNdgd6sG+H7PpVKRWoASqUSD+7fx3ddbm9rvH79hmw+z8rqKqVSgfl8jmq1jOu4MpD0H/7hH6Qp9e7duywsLHBzcyOlkCINLJVKsbOzI9lxQsI5Go0k+y2Xy7G0tMTHf/Ax1fIVmmaSz+d58+YtqVRauqxHoxFbW1u8ePGC09NTut2ubFEeHR2FYEXf4/Wr19ze3kq/odBSdNptNjc3icViXF9fk0qleP36Ndvb2ziOw/HJCXf297m8OKdeq3F7e4uqG8wvLlKcKzGaeQLjs/p+MpmwtrYmh1me57Gzs8vi0rJ02eu6zvz8PFdXV+TzefZnuOTBYMDq6irJZBLbtmm1WvzjP/4jq6ur0n+6urrKyckJvu+TSCRQVZUPPviAxw8f8s///M+ySyKwB5qm8ezZM/b391DVcFw+nU4l9Gh3d3eGYw5P9FwuRywW+14o6busd66pLy4u6Pf7TKfh5UZAuj3PI53JEASQzeWYTp0Q6xuLkkjEOZ1FYszPz0vppOAlx+NxcrmcdK4EISla/kEJwtdbJp3hvfffZzq1JYt6MplwcXFBpVLBdV06nQ537tyROuKVlRV835cm3nQ6LU8vIXMVabJCDJTL5+j1+2iqiqqoJBIhS+7hw4eYpiFv8+vr61JQpaqqRDBks1mymSyZTIZisSg3lQC1vHr9WrrjBRhdpFhVKhVubm7wfJ+7d++TzRVB0WaWN4V+r0+72SKbzcmHQEz5RIrAaDTi+YsXEiuRTCbp9Xrs7+/LeYJgbliWxdbWlkxaEBocsRqNhky7FXHQYvo4dRw2Nzcl91u4lO7fv08ulyOTycoZhNDKdzodIpEI+Xyem5tr2Tu/ubmhVCrxB3/wBz88oen6+ppyuczNzQ2apoVQ9BnImwA8L2BxcZlsPk88luDq8hpd0xgNB1ycnXF6eiIxVOKi9l3z5XQahh/Nzy/IqIRoNEIqnSaVTnNyfBz2bWcXD5G/t7OzQ6PR4Le//W04wp3ZzHZ3d4nH45ycnHB9fS2jjjOZjDT1CuiK2Oz1Wj10ZI9GZLIZHjx4SLPZ5OgoFG8lEgn5xQj8rABcigulbYeX16urK+r1Oo8fP2ZjY2NG+U/JyDiRaiWmoI8fP+bf/bt/x+X1DZPplGKpyMLiIq7nUK/dUr6+pFq+5uDtGy4uLiSpSsSFCJ/ibbUqzQEiDkNRFEqlEuVymVqtJtO5BATHm4UrCUqpSBwW+umzszN5Ia5Wq4yGQ6LRqJxYClFZpVJBURRyueys47Us5ca6rvPFF19we3tLpVKRnJKdnR36/b5sv/6gm1pQ4r8bjLO1tSUpmZ1en8XlVfb37xEEMBqPsO0xmgL2eEhlxrAQta4YpUMYYfbs2TMazQa9XpdOtyORr93ZKfDq1WvK5ZCTt7CwIMsLRVE4PDyUqKx79+5JKufS0hKtVksiY8XgRhCJhEUpCAIqlQoBgXTXBEFANpvBtiek06EIX/RgE4kECwsLrK6uSv237/vous75xYW0WAn+nNC0bG5uyUuqbdvc3NzQ7XYlc3pjY4P/8B/+I7bjks3l2dzaYm9vD8syyGZSaCpMbZuDgwMJuxElliDPptJplpaWuLi44OLiQkIfI5EIKysrEt6YSCQ4OjoKSxxVlUOXTqcjw1VN05Sj71arxenpqTT8DgaD7/23QJwJ651gjYhOyNbWlpSZilLQ8zzZXfnVr34lUyT+teuda+rNzU05FHnz5g2tVkumN6mqytMPP+Ti8pKvvv6ap0+f8urVS44PjyiVirTbTXK5cGwqkGXfjWwQdqxep41qWGzv3pnd1k1cN9QixGIx3nvvffmhvvfee1LfMJmE5t7j42MKhQKu6/LixQsWFhZIJBJyY+fzea6urhiNRrz33nukUikpkWy321xfnBExdRw3kKdQoVDk+PiYvf1t6QUULo54PC7ZI/l8PnR4qAbZTFiTnpyc8Pz5c548ecL+/j6DQV+2Q1VVpd1u89FHH2HbNl9++SX3798nYsXZv3sPw9T4h7//e6KRCPFYBF1TSMSiWKaFblqyDhYjaAipWffur0u4ZrPZJJPJcH19zfLyMisrKxKsfnp6ymg04sWLFzLEVQCEDg8PUVVVZsV4nke5XKZcLvPw4UP5GSSTSWq1GsNhOBldWVmRmZpijlEul2XQ6507d3Ach5ubsmztvX79Gt/36Xa779ynVoJ3PeN/XD+u/0XX75Cj+OP6cf2vuX7c1D+u37v146b+cf3erR839Y/r9279uKl/XL9368dN/eP6vVs/buof1+/d+nFT/7h+79aPm/rH9Xu3/l8Z5PhLXspBmgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOEAAADECAYAAABp0kb/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADS0UlEQVR4nOz9ebhuaVrXh3+eaU3vsKdzTg3dVdVdPUJjAzajgKJgd0BQcEBBfyKoIYggRi5iciXilAujicEg5gfJFYMRfxqihkiIKEJACDMNTTf2VF3dXXXOqTPt4X3fNT7T74977X2quqqrm7alTpJzX9e+9jnvXvt9117redZzP/f9HVTOOXM/7sf9eMlCv9QncD/ux//b4/4kvB/34yWO+5PwftyPlzjuT8L7cT9e4rg/Ce/H/XiJ4/4kvB/34yWO+5PwftyPlzjuT8L7cT9e4rg/Ce/H/XiJ4/9+k/AVr4A/9sfu/v///D9BKfn+8Qql4C/+xY/f+92P58b73y/X+L/8L1/qM7kn4tc3Cf/H/1Eu3vlXVcFrXwt/+k/DjRv/bs7w31X80A/9P2OiPfmkXP/XvhaaRr4+8RPhG74B3va2l/rs7sdHEfZj+q2//Jfhla+EYYCf/En4b/9bGdRvf7sMgt/I+K2/FfoeiuLX93s/9EPwXd/1whOx78F+bJfmNzR+8AfhD/5BOdc//Ifhkz8ZtIZ3vhP+yT+R+/Lkk/DYYy/1md6PF4mPbaR90RfBp32a/PtP/Ak4OoK/+TfhB34AvvIrX/h32hYWi4/xNF8ktJYV+eMZH+/3+3cRTzwBf+gPyQT7V/8KHnrouT//L/4L+Dt/R67Pi8W/q/vy//YYBlkYPtL15+O1J/wdv0O+P/mkfP9jfwyWSxkoX/zFsFrJkxogJfiO74A3vEEG+wMPwNd9HZycPPc9c4a/+lfh5S+X1fW3/3Z4xzue/9kfbk/4sz8rn31wIIPsjW+Ev/W37p7fd32X/PvZ6fV5vNCe8K1vlYfPei1/2xd8AfzMzzz3mPN0/ad+Cv7D/xAuX5bP/vIvh1u3PsJF/HXGX//rMoH+7t99/gQEWR2/6ZvgkUfuvvZi9+Vf/2v4A38AHn0UylJ+78/+WckKnh3PPANf8zVyX8pSPvv3/B7Z553HL/wCvOUtcOkS1LVkTV/7tS/8d3zP98CrXiXv9emfDj//888/5kd/FD7v8+Ra7u/L5/2bf/PcY/7iX5Rr/853wld8hdynoyP4M39GJsSzQylJ4b/v++B1r5Nx+KY3wU/8xPM/++pVOfcHHpBzfMMb4H/4H557zPkY/If/EP7T/xRe9jIZs5vNC//NHxIfn5zriSfk+9HR3ddCkBvxuZ8rG/DzNPXrvk4G69d8jQySJ5+Ev/23ZZD/1E+Bc3LcX/gLMgm/+Ivl65d+Cd78Zpimj3w+//Jfwpd8iQyQP/Nn4MEH5ab94A/K/7/u6+DaNTnuf/qfPvL7veMdMgjWa/jWb5Vz/O7vhs//fPjxH4fP/MznHv+N3yiT/9u+TQbnd3yH3PR/9I8+8md9tPGDPwivfvXzP/sjxYe7L9///dB18PVfL/fx534OvvM74emn5Wfn8ft+n1yPb/xGKZLdvCnX8YMfvPv/N79ZHkB//s/LpHn/+yU9/tD4B/8Atlu5H0rJg+X3/l543/vujoMf+RF5+D3+uEy0vpfz+pzPkTHxilc89z2/4ivktW//dnlI/jf/jTzg/97fe+5xP/7jcj++6Ztkcv2dvwP/3r8nf/cnfZIcc+MGfNZn3Z20ly/D//F/wB//4zLBvvmbn/uef+WvyOr3Ld8C4/jRb5Hyryf+7t/NGXL+kR/J+datnJ96Kud/+A9zPjrKua5zfvppOe6rv1qO+/N//rm//6//tbz+fd/33Nf/+T9/7us3b+ZcFDn/rt+Vc0p3j/tP/hM57qu/+u5rP/Zj8tqP/Zj8P4ScX/nKnB97LOeTk+d+zrPf6xu+QX7vhQJy/rZvu/v/L/syOZ8nnrj72rVrOa9WOf/W3/r86/OFX/jcz/qzfzZnY3I+PX3hz/v1xtmZfM6Xfdnzf3ZyIvfm/Kvr7v7sw92XnJ973Hl8+7fnrFTOH/jA3feGnP/G3/jw5/ZP/6kc8/M//+GPefJJOeboKOfj47uv/8APyOv/7J/dfe1TPiXnK1dyvnPn7mu/8is5a53zH/2jd1/7tm+T3/3dv/u5n/Wn/pS8/iu/cvc1ybNy/oVfuPvaBz6Qc1Xl/OVffve1P/7Hc37ooZxv337ue/6hP5Tz3t7da3Y+Bh9//IWv40eIjy0d/cIvlKfCI4/IvmS5hH/6T2UZfnZ8/dc/9//f//2wtwe/83fC7dt3v970JnmPH/sxOe5HfkRWvG/8xuemiR/65HmheOtbZXX95m+Wp/Cz49nv9dFGjPAv/gV82ZfJ0/g8HnoIvuqrpDD1oWnHv//vP/ezPu/z5H0+8IFf/+e/UJx/3nL5/J99/ufLvTn/Ok+7nx0fel9A0sbzaFu5L7/lt8hwfetb7x5TFJJ+fej24TzOr/kP/iB4/+J/xx/8g5IxnMfnfZ58f9/75Pv16/DLvyxp9OHh3ePe+EYZQz/0Q89/z2/4huf+/xu/Ub5/6LGf/dky7s7j0Uclzf3hH5Z7lTP8438MX/ql8u9nj9e3vAXOzmQlfnZ89Vc/9zp+lPGxpaPf9V1SErdWcuXXve75G1BrZd/w7HjPe+Tkr1x54fe9eVO+nw/W17zmuT+/fPm5N+2F4jw1Pk8p/m3j1i1J0173uuf/7BM+Qfa4Tz0le4XzePTR5x53fs4fbuCCpFlnZ8997cEHX/jY1Uq+73bP/9l3f7ekeDduwB/5I8//+QvdF5B08i/8Bfjf/rfnn+f5eZWlFHz+3J+T+/5ZnyVp/x/9o3fP9bf9NklZ/9Jfgv/6v5aHwpd9mTywyvK57/uRrtP5OPhw1/6Hf/j5haUPHTOvepWMzWfvWV/oOJAx3XVyz7WG01PZs37P9zz/WLg7Xs/jla984eM+Qnxsk/AzPuNudfTDRVk+f2KmJBPw+77vhX/n8uWP6XTuuTDmhV9/MSWRf/SPZJ/80Ry/tycr8dvf/vyfne8RP3TQnccL3ZcYZWU5Pob/6D+C179eBvbVq7IKpXT32G/+Zlkd/tf/VSbBf/afyf7rR38UPvVTJQP4X/4X2Y/9s38mx3zt18J/9V/Ja89evT+W6/TrjY8l+4G7f/Mf+SOywr1QvPGNz/3/x7AKwserMPPRxqteJanm53zOi5/weV/rPe95bgp469aLrybnnwEyQL/wCz/8cR/tzbl8WYoX73rX83/2znfKgH52BfJjjbe8RQocH238rt8F//1/L4WEz/iMf7vP/tVfhXe/G773e2VVO48Pdz6vepWshn/uz8k9+pRPkUn29//+3WM+67Pk6z//z6UA84f/sFQP/8Sf+OjP63wcfLhrf+nS89sr73nPc1ek975XJtSHFnDe857nv+e73y33+nwxWK3kAfVi4+jjEL+xsLWv+Ar5o/7KX3n+z0KQ5R/kj3ZOqmDPfip+x3d85M/4zb9ZbsJ3fMfd9zuPZ7/X+c370GM+NIyRat8P/MBzV5cbN2Rwfe7nStX03zYeekj+7md/vVh867fKgPnar31htNKvZzU5X5Ge/Ts5323pnEfXPb/c/6pXyWAdR/n/ycnzP/tTPkW+nx/z0cZDD8nvfu/3Pvc+vf3tsk//4i9+/u986B74O79Tvn/RFz339Z/+6efu6Z56Su7xm98s18MYSav/8T9+4Yzj49hy+o1dCX/bb5Ny9Ld/u2y43/xmmWzveY8Ubf7W34Lf//vlSfQt3yLHfcmXyMV+61ulPHzp0ot/htaCFPnSL5Ub+DVfIzfzne+U0voP/7Acd74p/6ZvklXIGCkyvVD81b8qq8Lnfi78qT8l+6rv/m4ZVH/9r3+8rs6vL17zGnkIfOVXyp7pHDGTsxSm/sE/kGvxQvu/D43Xv14m07d8i6Sg67UMvg/NOt79bumPfsVXCDTOWinI3bhx99p97/dKuf/Lv1zec7uF/+6/k/d8oUnzkeJv/A2ZQJ/92dIaOG9R7O29MNrpySfhd/9uaTf89E/L6vxVXyXX5tnxSZ8k9/3ZLQqQvex5/LW/JsXCz/xM+JN/Uv7m42OZvD/yI/Lvj0f8umqp5yX4Fys/5yyl8MXiw//8e74n5ze9Sdoaq1XOv+k35fyt3ypl//OIMee/9JekRFzXOX/+5+f89rdL6+HFWhTn8ZM/mfPv/J3y/otFzm98Y87f+Z13fx5Czt/4jTlfvixl+Gdfig9tUeSc8y/9Us5veUvOy2XOTZPzb//tOf9f/9dHd30+3Dl+POK97835678+51e/WkrsdZ3z61+f83/wH+T8y7/83GNf7L782q9Ja2W5zPnSpZz/5J+Usj7I35WzlOq/4Rvk/RcLKdN/5mfm/D//z3ff55d+Keev/MqcH30057KU9sKXfMlz2wHnLYoXanW80LX/kR/J+XM+R/629TrnL/1SOd9nx3mL4td+Leff//vlvh8c5Pyn/3TOff/8z/iGb8j57//9nF/zGjnPT/3UF74/N27IsY88krNzOT/4YM5f8AUyhs/j/P5+//e/8LX9CKHknO7H/fi/efzFvyir2K1bHzlbUkpaGX/7b/+GnNpHiv/7UZnux/34f1jcn4T34368xHF/Et6P+/ESx/094f24Hy9x3F8J78f9eInj/iS8H/fjJY77k/B+3I+XOO45IZW/8NWPkFJAaYjRs2iWuKJh6EY22w60wseEtYaqqsk5EUIk54xSGVKkqUsEGZpompqqLvB+QikBkZTO4H2g6ydCTIAlxESKmaIoyASMhpwTzjmsUvjgWSwapmkihEiMgZQSxmiUysToUVqjFISsQVuccyilmCah9EzThPceMPigyGTICRQUhcUYBSqjjWHKFu89wXt5fz+RY6QsHcYYtNYYYxgGj58C1mmKwlFVFm0UqIJ+GMg5YZzBR49zDu003ns2xy1V1ZBVwlgDOqONwhaGtmtRuSAEAeCklEgp4b3HGINzjpwgBY0ClIaUIq6wQEKpjLUaH6b5umTKssSaAj8F+j4SkyIk+XtDGNE2Ya0iZ0VOGmMsOXnW6wXOOabJMwwDOYMxlr7vUSTqumJ/f5+2bTHGoJS6uO7GGMI4Mk0TOWeK0pJzxHvP3/z/fpzQLh+HuOcmYYyBuikIIdC2PWVZkqeOmBLLRY0ylgygFH6amMaRnEFrRcpZJk/KGGuYJs/J6Sn7rOeJEsg5E6xFKU2MCaUUfd/jvQzSlBUpTigrAz3nBNpQFI5h6IkxEUKCDNoYUjqXuVlgrSWlRB8Ck49onS5eAxkc1lpCyPRDh9KKqipJKZJzIGfDOA74EEmmkkGvFMZqnHO4qsJajVKKnCHGjLMlChn8zhYyQUi03cg0BTl/H0BnmThTJqWIUpqcYAqR0PdUdcn+4T5t31G4Cj9luVYhEGMEZDLmLK9PU4CsMUauUVEUuNKScyLnSFaZrMA4Kw+mGNnbXzIOnmHaEkPE2hJUxhUFq3WDMZqUMkM/EkLEuZpmZv6HELHWEmOkKCxlucJow3q9oixLvPccHh4SQqDve8ZxRCnIwRPCSMqZcn5oLxblhxt+L0ncc5OwKgzOaIw2HOwtcU6TYsYZRbNYsGs7cs4YbdHOkJOZB0kiJlnNhiFSliXOOUzS84BNxJjRSjH05wMrY4zBqIwyisIqCgtjzjOGV5FSIOSMNZYQEllByhqtLSlHQow4bZgCTGHCGIvRBTkN9N1IVSkURgYwMnGGccCHgcOjQ4wx7LY91lpQshJrE+kD6JlyNE0Trq4uVr+cM95HxjGQkvxt5CQrq07kDLtdR0pS+M5klAFXAFqhlMEaQ4wJHyKg8T5xerol5UzKEbJGKYMxRs4NcM5dTMiikAeZUvJ+VVVQVg4FhODxwZNSxhiFKxxaKTIw+YlMpqoLlqsVmUiIE2XpqJuKafLkHNFekUKgbVvKskQpeS9jLEpDVZaUZUlKgWvXbjGOI8tlg/cTu92WlBJVVeAKRTGPhbIqmaYR5z4MheolintuEsbkiVHSmb1LB7S7HmMMfTdx+9YNhnGkWaxw1pBUwhpQc/JZuAJjZFLKUzwSgp9TVYXWmikExtFjtMYZRVlalssacsT7EaUjhVU4q7HWMgwDKWW8z/PAAnJB9JG+76mqkilFJt8RQqCsKqq6RmtL2/aMo6SiwzCgtUYbTYgeZaBuKnJO2MLKCgNY50hKo+ZVerVYonRGkymspaoKttsdPiQymhAjSlm0yUw+EXYdSoH3CaM11lliiiitcLYiKeHJxRwktdOGmBLjGJiCHCcp3/lEk+vmvb9YCZVSLBaSysrKJClyiH5eKSXFLaiw1uAKwzh2dL18WVfQ1A3aRLq+ZRh6MhWT70kpzemkpp08vvf4IFsJ55y8t8kUpcaHnqHvsVbhXE3f78jAatXQdh1lZXEGlMocHBzgnGHXwvjrZXP8O457bhLurdZYq0k5MvY95Iw1hv31HidpgzGapnY0Tck0TRRWXaSjMWayUuRs8V5WO+ccoPA+YIxCazdPMEVhZaVJIVA4g3YWWR01RVHAvBLErIhJWFjGFsSkiCmhtKYbBlIKjONIUVjyMND1g6woSdI0YzR1XRNjJKUICqyz7HY76qahWSwZ+gFrraw8WQPjnAoGNIoQPBrwXuFDIMRIjBmlNSjIgLEG5yQlLItzIZWMUhqtlaSRYUKh5HqlBPN+Fi0ZRwpZHhYqM44jxsgqPk3TnJ7L32WdRht5/2HoUdpgtKZtWzJQ1zVV1VAUlmHsGEcv++kYMVmxbbcoLfv4uq6wxjH0HcZqVqslkEkxkKIiRPls5yQLUDrj/UDb7iCDtY4MVHUzP0AMKRcYo5imnrbbgkocHOyTUqTrXkCR4CWMe24SjuOE9zJIFosFIx7vI9rBcrHE2ExZOtlou4qqKum6jr7vCcmT5glzvgdTSgYOyCDLgNIKpRTr1ZqmKdFElgtZDbe7jQwoa+fiSo22jlt3jslkJg9+mgg+UFYOnSWVa1w979UyKiWICWu1pFl1TVEUTNPEMAz0fiQbQBuG0RNCJCVFP06kJKtLNw6EEHDGYKxGk9mOI5tNRGmDj5EUwRhJ9UBWoBDl98myumqlKUqHdYaYzh9EGp1BRYghgZLMwboC68p5ogWUVjRNw97eHnfu3KHrOgB5QKHIKmOc7NPGweO9rK7OFXifmaYWbTJdt+XgYI/13pLN2Zac9fxAChhjKcsa7z1ZLso8+RWusASfMbbEGHlwKu24ffum7JOtQyuDtef3eF6FjWV/f821a1cJ00BRGJSCvu/Ybrfz+d87cc9Nwts3jilLS1E6xn6ALMToXChCzBQFLJuSEAIpTvStF0X+wpJjIGFIIZNTRhJVRUaRU5ZKX06kHAgBxnHAWnAKul2L1Zo0JZKSPVdMI7t+IgGnpzvJ0ZRUBF1hiFFWKkg4V8yrSkRpjSss1spKmonE5NEGmkVFHhSn2y277UBRFFhbMA6yUkyTJ6aELfVFlS+EgMoJlTNaQwhS1VXKoAxkEilFYkzonEg5omJCaxl8MXqUScQYCDmikiIHj1IKayyUDh8iZeVoFgumaaLrAgBVVbFYLDg7O5uLSuHiXqUokzwnKVbJNsJhTTE/TALaaJpGCNR935NJ8+rKxarlfWSaIlpZhn5AKVgsKqqyZuelBmCtZtduWK0WHF06wBhF1/ayFVEJyIxTLw+wvqUoHEoLYaIsa4y2xCiffX4+90rcc5PwypUrXLp0gPfTXGlT9P2EVoY43yCrFdoavJf9jVIKT8YZDbagGzumyVMUENFYU1LXFcMwMk4dxmbQirPthnEcqAuHVlA5h9aGbhzY7HbEDGhLSMjTO0BMkapU80BZSJpHoiwLtNYy0M8HqlKkKAUT76VYcZ7eFeUC6+SpDYqitFhXUtWQUiApP09gqWYeHuxTlyXD0DGOE6XOWFdirSMESYdj9FhnKMuK0i7IKTP5kZgitjBUtqAf57ZFKddktd4nZbh69RmGsaftOpRSgDwEju+ccPv27eeU/621+OCZfCSnQMqZnDVGa8iWGKVYUzcF49jOD45AWRYUrpwrn/M+MkTGoZeHXgxonajrAsigMicnJ6QUuXx5n6oquXLlEjdvXsfaggeuXKLvR3lwzXUA586r0ZmmruhTYn//gLou6QeZtOfFpXsl7rlJWFeKnEdynlitluzt7eEnL/ugsCSEzOQDzlXEPO9BUsKHgNaaNEqaprWFrOd2glQAJU07r5ZmYkik7FHGkWLEZw1ENruemPS82iSZTPINgyJOGYwmTOcFjkTG4pwhRFHqkHQrSZlcQQqRTJRVGUXpjKTFKKZpYvT9xaRVStZwrQAide3QNhHxZJ0xzlAU0kIZxk4mXwGWPKfABqud9BgjWKMpS8t6vebmzcAwjCSbsDGCNpAAZUhJE0OSFNcopimQYpbVpNLIgTBNETLEKUGUFHQaJ2LMGJPohgmtoPQapaSnq7VD64KylDaMXBs19yEjmUBZGSBjbGLyHUpV1AtLVS6omwpn5X4P3UiOmaPDA8apwxWgQ8b7kYy0aMiK6APWQN9uSKFEadAqEnz/4YbfSxL33CTMyRC9RuWCrp3YnF2fUz6om4ZxDNw+PkUpNT85DSEErLUUZYkPHpRU/UL0xJhIOTFNo6RIKeG0k8a6hphh0/YYoznebKRCaYu58CFPTGPMXGCRz8pB+l6bccsUPMZoxmm6KMZkMj5M8nulA6RHWZYFtnD4fiT6IK0ABBRQlZqyLJimER8zIWm0lnZBypFhTCikj6aUJscMEXL2WKfIOVCUVsr0U2QcOrpuoCgFFHDn+JRde4afMiEktNZs+5bj9z1BUVRMPtH3AzFCXVsUGjWv0EZDTPKwqeuKlCIpZRaLipwUbbtjvVoAirYb0DmjrUVraZForfDec3p6CvODoigLlM5YKz3d1XpNCB5rS9Z7DZvtCSH2LBaOnANdd0bwgZQihbHkFNmenaJ1YrlqyDnTtQM5K2nZoOj9RJg8ZtGgSKwWC4xZsGs/Onn636i45ybhdjPhJ1lJpkkqhnFGY7S7M2KOdHPKJH2zfNFAzvPKY4y6SKlyTsS5Z5WzuqgY6jwPM6VQKqOAsijJKpOyxir5mZ8FbGOMFz2zmAIohUFhnJaKpFa03Y7gPdrqeaCJlHsIfn7yS/EgxmkuoAQ5X2uo6prFoqFtM2kY0dZIEcUYtJGUNMVImPt6Fikwaa2pygJjK5RKsleeM4PJ9xRVhVbMKVvA2RpjIBNJIUGSNN4UmlAZwpQxWjZsRoOeHxTljIapSof3mb4fKAvN+mBNxjP5ibKqODxa4yfPFDyKRIgBY520h6YJY5Sgl3Siqi2uNFhbUJaSpgq6pqDyFTlFpjiRU5yvvyKGSCDjsma3OcOWmr6TtozRDm0MzliMsXhrGfOAVgZjHMPg0RrSvZWN3nuTUBtH13v6vgXAWMn1x9FLszX4i0Y8MMPCJmkBpEhOSaqB1mK0HJOS9Ia6rpNVYJY7zDmjpH4zw5xkoCiTCd6DUjiryCmiNJADMSacsxhrCTGANpRVgbEGpdPcI9NUdQVkuq6VPh0ZpSNKR7QBqzLWGbRWWGuIsWe7HZj8CEpTN4IgMTYDiWnK5LmgEWMmBDm/nIMgdkzBMA648z1hWWGtQlt5KD362IN4H/FTYhwnsoaUM5dfdgWtDWdnZ7hiyTT3NVPKxJjkfGIGrHwmI0XhaBpNxpNSx966wBRLFosl/TDSdZkyQgyKBx54mP39fZ5++inOzkaqqiBnSyZweNiQkmcapRebYmIaRoZB9sVNXcg+E4sis2wWDMPA4f7BXGnuME7gfdPkBVgRAkUhmVBOicI6tFYEH0DBNI3zA/reiXtuEiojTgHNqibGwHK5YLlcst2eMY4DmcxysURrLSV85yiKgrquGeafS0UwSvVOS9kbZKKllDBOU7iCaRpIOaHmVTGjcNaRckRrNa+q9gIG54whxTBPDk3KkEgoEuPkiVFS0xAnQtRARltY2GpuARjGqUepiNZgrKJwDm30XGTKLMuGKcjPlRZcZUppXgHVXE2cyIq5EJTo+57JjxgrDfbVakXfBaq6ZBh7tJbmvXMFZVFgzMh4XrAxmpQTxkCKkdWq5PDwkM1my2azY7FYkkkUzglYIQZy9lRVNbcF5CHgbGYcW6ZplMmvNVErmsYRwkiIUjia5ixnsagZx56YJmI47+M6lBJUk9wyuSaFM7S7HappaOqKuipYLxe0fUHbtfgsmQIZmrqRyTwNTNPIclHjw0RKmbIoL8bAvRT33CS88uAht27fYLlckpLgBfvxjNG3FLUDPfel5kbyeSp648YNac6XJSokyrIiRNkLxphmtAf4KVKaSDZpLrn7eWBqSflyIiRAxRkupS5SqWFssVae4jlDVVn6cWAYOxIyqazRhOTxfsA5TVUZgbilTM4RYxwhyPKrjaIqC0KcsM7MFUNNP3j8/DdmIqvVUsr4YyArzf7+Ptpodm2L1pn1esnh0T5l5bhx4zqbzYbdZiLGiHUQssIVBUM/0fc7gk9EJXvUvm9pux1l4VgsLZcuHXJwsE+ILXV9QFWXtO0Wow0+mjkl9iwXNRpD1lLoGqeJtt1KMWe+JyF6jo9vysqTAgf7S4ZhhAyHh3sUZWLyhuw03kf6rieliLFzgz5bmqbBKEVdVfNDMHJyfEwMgV3XorSibmoKZ2aYHeeFVdarhsuXjthut7zs4ZfTdi1Xn77+0g7wF4h7bhJefuBB3vu+JzDW4v3IcrFkGEdCjNjkcK4gRS6a2ueT8LzaBpKu5Syg374fZDXLoNAUriQnaRkoBcEHCudmgPM8URSsDvbJSdLJqlpK+2NGwGSlpNJmBNmj1PzvFIgXmEXZy6Z0vo+TSbparZim89QuzyldmGFiFUJLSKQsED6l0gX4PASPc4IhnWYYmaz0zGiUic1mw3q9jzGOGM+RRBEm2VflJO2Dwiq0UhTOMqiMIpJT5uT4JrvdMdMUqcoFmoifBqYs4IO99YqUAs6WM5olkRRodb6/VhfggWEaMUZA+UVp0dowjAMpRYZhYLPZEaK/qFjL7ZN7kHOkrlbUlQDZy0LSbQFBWMhQOkfIgRQEVTQOA6ZpSDFSOEeYJtp2w3q9pG4Krl57Cq0zi3vMFPWem4Rv+5V3UJVLujaw23VstyNVVWJMRVktyTHhs79A1EsjV1KwTCbEzDhF+t4TfCB42WtobWYajsVkKcQoMs5aFGCNneFOhqp2NIuaaRyJwaOQz2jqSoo1KeKDlwINeUamSPqac2Ly0wykTnP5XdKqytUygJ2+oObs7++Rs+LgcI++H+a+20RKeqYEGdn7GEdROEKI+GlHmgtMaT6XrusYpx5QbLc7UiiZxomchcXgrAWtCSrK5LMJpTPr1YJFUzBOPZcvH9APO9pui9FwdnoHaw1N07BeLxmngXHspLBSK7yHafSMkyCVSEj2oDXGKB5++IDlYsFms2O72zH2I0bJ5NmebQh+ZLFcSEFGZfbWS9nj2ozWcs37rifFiNaawjqmEC8oZ3VTUS8qttst282Oo8MDyrJGBFsyVVWwfyBAg6vXPsDke1brhdyfeyjuuUmIzsTg0drgSjeDnh0heGKEOAWmyROC7EW0VhibL1gRKUW00cQoDVxJJxVFaTBG46cJHwJmRrMorUk5E2ZgclYaHzInpzu0AuMqxmkipnjBcjBakWdz31ILHC35QMwJTUbN1VHvpaATZxB5SsLE8D6w3bU0i4ZmuWK73dJ2E103CODZ1oJRjWFe9SbKoqYsNLtdR86R6CemaZpXBUXXjZA1KTpyypSFnjOGiNFzmpxlVU0EvM+M08Bm07JeLymKhA+JlKRFE+cqq1ICm4spXCCElJIJPAY5Z7Sb023hamYCZWkonGYcWpRKpJlSdJ6RpJTYWy85ODgApQjeUzcVKQemqQcSKiUUEZUjOSZsVZKTrIJyrxPTOEEWrKpWGmuFITKMI6v1inrRcOv4mLHvSAr6aRC87T0U99wkNC7MCBZDUQndZhx6oQHlQMqJTEKbjPcTxiq0FuiTsZqi1BTVkpw1fTfRdR2r1XLmlE0sV5Z1c8QwjLRdR4iB3W6H6S1lJSY1YxiQjYVQZvTcfmAurtRNhdKKED3eS+k/RCl/u7LEOU0mUpSaplmy2+0Yx0FYBgh9yLoSrR1nZ9sLTGlKMrBQipgEH7ter5imxNnpnYs9qtLSYjBWYZ1iHAfGyeOnSFXVwsHME/v7S0IIhBjout0FKbeuCoqypPTCyDg+vsN6vWC73ZKzsCLGMcyAbYG2jeM0P/gUWhf0Q8+VBx4kHCk++IHrKGVmoHRgsXKAJ3jhXFaV5ZWPP8LmbEPfC7HZe4/WEdTEOI7y8BwD0zTS9wPNomJZF9SF9EbHceLwYI8YEk2z5M6dO3MGYom+p65qjLFszzaCKy5KYkyc7XZ4DyEJiF7YKveWttk9NwmDnwTzaGR7VJXyVI4xsqgrJj3gvfSFmqamaWoWiwVt29L3Az4EiiqTksc5xeHRHo8//gpOTm+z3Z6iMFRlKfsLJfw2HwMZ0GFiGEcyCVdYUkyMKuOcw/vpomc5jJ3w8ZI03LWBuiiwTvqIU+wZu8Byubzo21lrcVbgWM4aUr5Lt7LWobWfOXOGmDKTjwKzG8cLXuA5K6SqKlarlVSLs1T6lssaZ91cjDGUxZKmWbDZnJFGCEl6cNYZisKiraKyjq5rpU0wjVSVpNtFURFCFtSRXBmmUe6BNhpQFEVBUTg2Z2cYLVVlY1YsVxVKTzincVbNDw5N327JObBoCvohY0ym7wZu375NXc1E5HZiGEaCD1iTGVViuWwoS4tzBbvdjmnyogiQ4datOyyXzYyvFaJyXTfzXlnT9h39OKKlMQoZFs2Svu9ekrH94eKem4QgPL3CFTTNkpQCdVWw3W7Z7TbsrRuMqRnHiaZpUMrMT2gjLYMoOMUQAtZZxmnD1WtPUJSG1bogJ8Pu9IzR9xinsFFTmUJWnxxE7sEY6kWNUjAMPcPUE5ESeGULsgromWysc6Yo7ExDEr6gTpasNCEM7HbbeY8isg0hRKyzz+HoFUVB0zQXRabRB1xp2T9Yk1Li5s1jmrpgb39PKsIpo7QS6lROF+yIspwxl2QKWzD5DldoiqIiRsHFyjEw+BGtNK7QoASY7b3n0qXLVFWFnxJ9384KBYGUFNZWghhKAhF7/5NP4n0WY9sUqOoKZxXdMEixJUJdOXa77dwekD25s5Cyo3TS+qmqis1mQ4qJaAU8UBQKa4XCVRQFN2/e5IEHLvPwwy9jt205PT29UF9omloIyl64p8L2h74b6IZJthwp4ackxaRngdDvhbjnJmFVFgx9JymEH1HaoLWhcI6u2+FsoKwKXNZz5c/Tjz0pcUHgJUsFbLEsGQaN0rKfiwkBGGdB9yutqZQgNXyQ1XBR1iQyw9ixXC5ZLBvpV64bwgxRiylinaKoirnvJPskQb4UpKzwYWIc/cyrq9jtunnfqlBKM4w9IYQLKNw5LM5aS9hsUHPLpK4rylKz3l9Rlo7tbsc0jtIfLQus1Vit6IcWHzqpBNY1KhsmP5BzmFkdsy6N1XNlVvarzhmUKkhJpCy6rrto/1hrUVrdXcmdYximOf0O5BxwRYk1ZuarRDabY5RKLPYOOTxY03XtRRq/WAplyWjD5CNFaeY2lOLS0T6T91SDoF2WyyV+lNpA1/XEKA+JzeaM3bab74WlKARtE2NkNzsXn58rGcqiIuWMdlKwMtqQ4v0+4YtG37fsrZcUZTmDh4U6VKwX9EOHNooQJpTSpORnXGgnnEOtAc2u3RGzJ9OTCRSFE9GkEMjJMkwTYCT9swplDNpp8tzkDz5IQ79ypBSoXCPNdb1A6cyuTYQ0UdtqHtQzHC1Lb09baQMoJRjGlPKFDkoMAq07X62LosB7T9+Lns40TezaHcv1Ch8mpu3AclWT0kTXe5SKLJb1/LTP5BxmISZJa8fRz22YOAtRmbufHRPWymQT3p+kitZKC8QYjQ8jk880TUWzKNnt2lnMSs9pnOy3dFAoZamq8kL+Ypq3EgJwSLTbdp6EsDvb0BlNisJTJIPRSpA9WqOVwpYlpXPklNAIb1GuXcH+vnhAnkMW9/b2WC5XM1um5Nq1a6SUZwBDJiUhENe18CGPj0/YWy0pCkffDy849l6quOcm4d56Je2GDOMwst21KKUoi4qmbmgWBdvdGaIpI3ukKw8czRShzDAEjk+3aAPGKVJSjJMAk6UfJXhNlLC6XeEISdgRKFlNu6GFpBinftYjSUyTF/ByTnM/TBNTwnD+NL5L2s1e0kohqjKTduPFnq5uBH6nlJr3diPb7ZYYRQnMWivyETM1xxjLNI2AkpXPGoHMzRNimibKshINmBA52+yw2mKtk0b/5GmnTrh35Xw+CBfQaItSIs4k0D0hxk5TR1WXpDwRQqaqarSWlNc5h580qMh6vaJuKnbbLSEMYITBGcKELmvOTjfCii/MXKkGqwSYEIKHnBmHgRgjy+USozUxI2wSLavxOE4XCnPWimLbeXvK+8DBwSFN03Dr1rGAynPGGEtTlKQcsVazv79it9vS98I6uZfinpuETV1QWEPKmdXRIYVz7HY7UvSkmNmlwDRFWQkMs+RBkIqXyhfFB6MF1qW1Q2EElpZFf2YKW7mpyhBTJKYsKYsRTGjViCqXthplNKMfGfqOMQxoJYzvpq7wfmKYpI84BWmRKGMIU2AaZbKfs+3PMaXO6Rk5IwUOWZXyTO6VCR1TxFpDWbqLlfK8AANKqEQkmkXDarmaBZ8yu92WcZSm+6IxaGe4feuYYRgxRviBQ++Zxgha2hrj2M97WcGYGquIUWQMUYnFoiIEadRLWwByjrK3cwXBTwxdBOIsWajxfkSrkrpecHBwmWkS6Y+u25GVmqvAIktxngZLD1f2/uc6M2UxbxXmB1Pbdih6QLNcLlkuV5ycbHjve54gA3vrfeq6oKprckqcbU4pCsM09TMTRjR66qp6Scb2h4t7bhL2fUdROHlKG6gqR0wN4zAyThMBT1LnONDI6D2udFjnGKeRfpxkhbIWraxIMFjR1Aw+Yo2hCALsjimx63ZoM/e5VLjoK1Z1M6NdAienJ+QUMZOQbKUQkOfVLVyAqOumJBPxQSqsai7xngs4aQ3aKGL2oGV/mHLAFhqlBZu5t7cixMh2u0EpRdt6yqLEGsc065AKBy+gtaOuhM3edT1dN1CWJVVVYXVmsazZtqf4OLC3f5mcM9utpO7WiUbqZrudV4r1/GACN7dqUkosl6sLXdccZmlDK5KBRWFkVVFpfmAYJj8yji05CwqoaSpQieWiucCL+jBRFELxatsWVxQ0tbQYQjjnhjqmKXJ2tmEaPQeHh9y+dUw3K9httz273cg4iMJdXdes12uROkSQPO2uozzaw9kS7yeCj6xWzX3EzEeK0llyCkwx0nYbQlQYW9GNEz6Jcpa2Gj+DcP04UdQ1hXGcbk9oO4/C4QOMXprKxojcREhzSldovJfq6RQDu3aLUoaYRfqwKS0aS1Fa2ralsIbdbsA1TgiqaKZhIIaIKxxFUWJsQimPImJdJBrpX+Yk0hoJSSPrRc0wdqADhStZLpdobbh9+yZTGEBXLJt67qUFurYnlpGiqChdyTQEtLJSFfaamzdOiCngnBXmemEwViBvw9Sy3q9plg5jMiFk8sUetWBvf8XkhznVM4AhJcWwk7aNKxzOKeq6YRoH+hDQpmR/vc8wDPg4cO4npLUGlaltQVkeEbxn8i279hjvPVWlKIoSmzTaFDPZWRQSlNaElLl954RpBnJbV3Ljxoa+a6mqkrpaslpVaK1kW5EMXdtxLkoMzG2Tgs1mMwP7K4qioa6WDMMJRVGhlOH4+OwlGt0vHPfcJBSY1iBf44C2jv39ei7ABJEKdNUFmqQoam7dPuH0dMs4TqSsZhHfzHbXEmPg0tEhShl27cA4DDhrcUUh6aZOAoLeXxBipO1ahnGirCyr9VL2jU64dClF9vYOKMuSzWZz0ai3WapxxkpzOwNOuVmUVxNDxoeAUAMMWsllz1kxDCN937PdthijODvboJXooJyenjFNkcVSgMneT4CfpTAaUk5stzvZpxXSMpn8yDhJkUdWRoOzhdDAxkBdO8ZxwFgRVDoX+D2vjOYs6KOY84wwGlgta+Y+i/ROh4GTkxOmIAiforCQHT4IlcoVIiN56egyx8fHF/u6c7wvMCu2OVFKS9DuWkKIs/BTNaepPRnNy172IF3XslhIQaquGsqyFPbI5GnbVtQJZinDcRwvUtzTkw1Dfw40gHHYzvvreyfuuUk4TVJwKMtC6EJKM44D5ERdO+Lc4FbKYK1DKVltpikBws9LKQi2MgEYjo83M8s+inyDnuUIrWa1WlA3JWXl8FFRL/fIPs76oCPaZJpFSVHu03cdfb9jGLqZRnU+mYQEKw+FhuXKgXKcnW7ZboaL9sk0qhloLXIdg+pxVoi4Vbkg58Q4TJycblk2axaLhrJ0ApnTAesyDzx0iKiGR+LkObq0jzVmxqdapklA7EZbUk5sNj11XfHww5c5PT0jZzXD9WSw9n3PuZZoXdcYYzg4OEBbw63btxj6DlJkuVhw5coD7DYtTz75PobRC6HZWtZ7S4qixHshVk/TQG4UN2/epizrix7kMEyMk+A2jdEYM86N9jRXbh1V1QhYAzg8XIs8iUq07QalNJMfaZqKmLyIOSk975nzDGxIF836afKMQ2AcvBSz5hZWWd1XW3vREASJxhUOkzUhyWvNsmSaEjqDj6JeZrOdfQZmJn2GlOMFQNfZAmMsbTuw2+1Yr/coyxqlZuaDVlhrsVkR04TWGWU0rjh/ykpvryxL9vaWaJ3YbESyzxUWa0SunxwYxpGYwDmL1pIuSmU0XPx7moJMFpWxxtF1I9txALSosOVIWRaMQ8CageVyiVKJyjoRJnaKo0trnC14/weuU5RS2Qwxsbe3pqpKbt68JdozvQABunZgGgNdN9D3PZCpG2k9nLMezqu254rfR0dHJBLb3RlnJ6fUVUVRVPTdKNdxb0U5yoNOuISVtIwi+CQIo76PbLenwi6JkYTCWMfCFWQQBQL9rKKVMSglHNGhn6hqQQWFMNH3HdZJ68HNnhvDMKAQBbVz9sz5qg6Smvopkgsza9B6lsslzhl8uA/gftFomkbK23PvSKVMUThcUXLr1onsJbTCGAc5MYwDIURpUKPx0VPqc8VtafJLgaWiKC3OCR0n5iSrYxb0iTFimpJCZPIj3oeLSSpSG9N8w2VfulrNaB1v6YeWdtdTN5Y9rdnttrTdQE5aoGzmXAQq8+CDh3jvuX3njvTUrMaa+Zii5PBwT3phWtjzSktPbLM5xftp1mlROGfY2ztgt2slpe0G2rYXSX0n/btxmFBKVOn+za+9F2sVTVNhnb1oxl+6dElk9mcVtbZtefrpp7GFgODrumC1WqO1ZbPZEnxgvV6h9YgrSna7Hdvthl0rxTLnRHk85YR1hjTORjTaCB3NCvWqWVRzqpKxNjCOE9Y4ClfS7gQN4+weVV0TghCSFRGjRRo/xkRdFaxWC85lIc+xoVqfiy1nlAqzmLOjaRrqpuL09OSlHOLPi3tuEpZlRd93Ak4uLCEF6spRVTXbescYPDbLiuMnKYuPg4COrXUwZKq6EVk+L5O5KC1Hl9Yopdi1W9mzVCWnZ6cMM6reKQdZyuTt9jbnHgszAIcQhANnrSNlSUXHccTPaemlyweUpUjn2xhpFhUqGyn3K816tSaTOTzc5/TsjJOzE5QP1FWJNoaycITo2e425JxYL1bsdjvs7KIkONIJ76UJn7JmtUpzmX/g5s3beB9pW89yWXDlyiHDDKe7deuEs7OWxaIgRpFnXO+tsFaqiud78PNVZBxHRh+pm5Khkz26s6VgWJViGHrxtNDSFhrGjsPDowu1g3O2f1aJuqkJQfZgmYy1EaOFgGuNMFG8Dxerct8PdF0vPc+U54dIIEVYLNYYU7DdiNy90hqtxQ+jLEuappFrNuujpjhnVU4MfUQxXNo791Lcc5Nwt9vN6moFdV2Rh55h6NHWUjclRTbsuhatk6iMIax1IY96UrrrESGIGGZNGFlZtanxXtjwfT8QYkJbIaFaV2K0o6oWsmd0jmEY8dMgQrNaLLushpgm+l5cms4l2o0xgAzOVVMzDIH2dIdWmt4ZUg7E2z1nm+0MF6tIUfaUSouGbc6y2vbDjpQ9UFIWNcFnghficd9PWGe5c+dUGCRTnB8gjkVjWS4WFKUBLDlpLl06QnEqAO8wkayaJQpFvOocZHCXFB2Z4gizq1TbdkQvm+zlYok2mUwihJGyNECF1nlmYBjqeo+ydOz6HmMLQjhnmyRMiALRcxZr7AUpWWvDOEqaWJYldV2zt95nt9uy2XRYY1FqwBpHzkZQRt1I8FLo8d5zfHx8UZQRyJ2opTvnSET6YaRtg9Du76G45ybhYtHMN1dcd0JKbLctpycnLJcrtMoYlUXHROkZOZE4OT0hhiwoCyevG6uoKIhxulBpFinETEiJjMLM+8bTkw3GFmg7uzMV8roxibbthKemLSlp6qoSvqNzKBUZJxE3coWhKAtRGIuSahaFYQqRs80JKNjuBBgwDJ6cFXW1YJwmpmlAG4XSc+8tKpqm5uxsx9lmQ7NYURSeszMBhCdEFHkYJ6IXrVCVoa4XLJd7ojw+p2aLxYLtpkMpjTYlxhScOyqFuVrZNA0xJaZZECvmwGJZyZ7PWfqhFzRLrC5A1z6E2fdRkXNkGCaKomAYRk5PW5RRDMMWEO8NZjV1hUYrQ9t2OCepY0qZaepIMV2oAly79ozA0EJmu9mw3XSUZTXr0Zi5jTNduEUNwzBLniTGqefWzQ1KJR5++EGWyyXjOEgmZO67Mr1oKJOIBHbdBm1FAEhnRd/19LueyERZFSLznjV10TBZiEETcoCYUVYRQ8DZgmnwovdpC0L0TCERsuiPhpQpK0dOaha/hRwyQSecMsQMrqyoEgznaHyvoE8zvy6R8izXphUhwjhl2tZzctayWCxJSouKNhqttLQBAJQlz8LARV3Qth2FMww+AQmyYfCBXT/C6W2MdZAzrtYoa0jI5J5CQCE+gTFm+mkknZ1x+1RAD6I0Jw3tTJxV2CxZi3mOGInKylAUBXEYKKoKZyGHhEIJtC1P+DHSm566OCQMikTByZ0Nxib292ZKkU9sznbEoDBZkaO0ne6+l4IUiX6kKC0hekIMqFmzXmlNVmJWk5NkN0M/YY0AtS/OM8pE1Aa0Eh2fohCXK1cojClIRwGNQ2XN9mzL3t4eOclYupfinpuExiYeeugSbdvTde0M1I7UVcU4jWIQoiXts9agtGG9tyTlDev1ipQiTVOxXC25fv06XdfOEDBB2qc896qU0F2C98QgMhfeBxSilj0OkRhbUhQcYgyiKi1thHEucwvwOaVI4TQpesJ0rlcaZq89xXbbYo28fwhR5BGNVCKzEtepKw8ccXp6IiuOUewfXBYRqtpSNaVUDwEfxJU3JggRxBVVoVRAW2Goh1lFLec5zbbCVnDOwYwTPRdNvtBszSI5L0poC0onK7JWhjD/Ledc2JOTY0LMpKxou5b9gwXBB/LsP7Fc1ChliUn0SZXKFyY8OYc5BTfiEKxmS7UkKCBrzz0QNdYVs9GpfO65ut5isZh7fdKOMFb27ZJe6wuN14PDA8IY2Wy2ojqehfKWuU9letFwhUywuikF/GtEz9MYC8rhSndRLIkxkGMkZ7A2U1aKlAzGKpzTNE2FmH0KnjHnROEsCTHsFOvk856jTEpUpigNhbNstzu6fqSpK6pKiL1Ga7RThDCyv7+mKBxnmzOsU2idgCCyg3ol6dIUIRmKSpgF65UwRCY/iWhtSlRFhdMKpzWuEYXrsjDUpaWpRM5xu90K8qQQ74qYxclppgdSzIyIYRhxrsDg5n6qPBCCF2EplcSvorCWQL4rbjw7QB3s7VFVFcEHmvW+SHFsNiybmqNLR2ig7zpJ3Y3lMC1BpdnKOs1psKSDo59Yr+Ua5SxGOSI7EkhJbMNj9HSdgAuM5QJMXpTn1ttp9rLwNItKIHxOk5KQn5OPF5NUzQJTwv4/l12LaJOpGzdjW2XS3ktxj52OOCWdN3df9vKHmSbPUx98Sm6SKSALi7p0Innvw0TIkWbpUGpCAV3f0w8blDKUlRim9MOIVoZFVWKi+PuZuU+VUmBvf5+cYRhaVuuaqipYrxecnJzgXMH+/h5939N1PSEkhmFkf180UY1Js22Y9L5qV3G0XN9tHsdEXS+4efPm/H/P/npFORdzDg/3OT65w6KpZnFaw257RjGbzExeCZt/NgmVQkOmHwb0pC72d1VVCrJoGAk5zswHTVUVaK1EYj9MpDTSdR7ninmVzDBnC9ZaIVBvdly+dFmKYkqxWi3nvbih3F8KbC2M1HUtwPF+mAtUgsOtCsdyXc/ABNEZreuG3W5L102zVo2aV65AjAKdc4Wmqh1lUdHuRpTOHB7tkXNmb29vRsYMIvExS1mmJFKSQpSeyEh1dm9viXWaZlEiwPdRCjb5fnX0RUMqY83sypRnWs9itg3rUcaxXO6xXC64fuM6MQVsYdAqz0RddVE9E+aBwvtIUy8EO6gVigE9i8vGGKirmoODFQrNdjv7OxihzaxWC1KMdN12HmQAitVqIdZnWnF4uM9iWZFioO06bly/gY832N/f4/Bgn7NtO1uvZdKc0na7DeM4slg27LZn0qLwE9WymfeXgRgC2SiGbsBqi1EajSb6QEywqvfZxZ24I+WMrQri1BKmRF2Kp6EmUVjL/sE+p6fHHJ9sUUBOCj8GjLUYLYrhUk0ciGGgLCynJ8fCUzQaTYlRmRwEZZScxRYK8nnvVCwGyEKqFeSSZ5oEWlaWBu8t526/2lhyVjNCSrIQM4uGaq1mNynPaiVSFtKm6S5W7jzD6mKM6NJwLnsZY8QV5kKRvZzdm8+ZGeccznsp7rlJmJJIlZMVN565eSENURQ1RaHoB892sxNpg11H1dQw9+Ock5WjcGJPPY5eFMci9L2naz2JgCs0ZeFwWrNcLXDO0W7PhK9mMtOURJ7PGJwWB980a4gW1rC/PhLjz9LJ6uJHckoyIff3mSbN1avHbPKOZV0T/cTZ5kzUo5ta7NJS5uhgj/VqxTBKG6Z0hnEYQCkOji5xdibWbXp2TgoxkopZY9U6qrLhA+9/hpOTMw4O9jg6fICqmLh9c0NxYPEkUR7oFXVtKZxmf6/BOUMM0pNLKaJ1Zhw3pJR46KGHOD2NWFPip0i7E9W5vb0VpXPcunGDs9NTDg73qZclWhk2Zx5nLNMUaKeO5bKZWy1KGB1zm8O5khASfT9htKEsoXA11tQXrA6lmP9mzXq1IIQ8S5WIsrnY0M37+6go5wllraXve4ZhYJoie/t7OC1k7qIoLlLeZyNs7pW45ybhOIj0hBQD0ozkKPCTZ7vdMc3CSGUlfLXJe8ZuwjonlbShw/uBsqwwRhrMWmnGwaOUoapKiuK8YKGZppFh6EAltLbEmCEr8ZrPE3VTc3iwT9fvuHnzBkpBVVacnZ4R4qxe1lQYY2eOnePo0FBVC4ahZ5qkiHO5PKKqhDOYUyZMUt4XFbSJui4k7VsecvXadU5PNnRzFS8jGqrGaHbblrquOTu5w+nJbZyFV7/qYYZh4Oz0Fn3fc+loSbvbUdclZVUQwsTJ6S2ctZiLfZFlsXQXPMZpEpPSxdKh9AKiwWjHalnTtS05RoaYyEmhsYzDSNYTh4eXWC4XdN3IwtVAmrmJMOZzuzQ3g69L/NSRk8KVNUMvAswpJ9QIVVWiDfhpNtzRImcYgp8B2XJ9nTPztiVfIH1EKcBh7Wreish4ykmJcnlSDP0EWd03hPlIYbSbq3Ua8XpUFzqVUr20jKOnG3rZmCOrox4T0TOzCEasrXDOMsWJFKWn5mxBUViiD4j+puA4m4X4XgQvVTOtHOMkRZjN6QZSollUHO4fYGZoV4pxNiHpyTmxv7dHirDtdgxBHKCsNeR8LlB8rnUporRRa9SQRNo9gBbfUrrtFlJm6EdCiBweCmD7+PiYGMWp14dIjJNMsrKknMWaUvSUlSVHkacwVgSElcqzCLGmqmoyid2uoywqkffQUqwolZ2ZImvCmAg+cnS4x8Heihwz0zgRRk9dN1gLPrfstsKcN8awaBZ4P858Smkl6CheIOv1AdPo0cpSuJqc9FwgE+yoNrJt0ElMgXJOImM5AyTOiy92figbO2GNmQWpRspCKsh1vWC5EvSM1tC34wwW9xeIoPsr4UeIfpLUo2gKXOyYfE+YpCFcWEcMC7bDKd7s6KInpgJCjQH82GKLTEgKnxT4QFIKVzoO7HqWSw/kEKkX5Vw08MQQGcdI243kBP10itaCsywKRztMDCFw7vqTcqSqHIu9BePY0w0d2jrAMI1xNoaBsiyEoU6mKmt8iIQh0ThLVRdoJXbWdrFCGyEZ20Kxf2DxIROjY1HLSuWnhpTOlcOhdiWreokrCnEgCpEpRpqqlkpiraSNkjPDIAUMa8AZI+0DB6BRGaIPkBIpZvrdxPZ0ZFE3LBrBZfrkyTqy2m8wpRSagg+4XM525IG6MsTY4eeUMSuNMiI6nJPQprpWSNc5CV528gFmBQTnCiKJEDPOOqryrl3B5mzDMHqqsppNf0ZhjiTotxNt21HVBXt7C1STL2zg+m5ic9pRz/vdqhILgWG8rzHzotEPPXvVelYuqxj1yNnJGYvFinopzdptCJxuJvYOX8WlK49z7YPX6HbPcLgn0hNVEmY4IdA0NaUrKcuCs9MN09DhrBbVLRIWB0qhtUXryDCJoBJklIZm0YiWjRFspyukorhcVfgwok1DRsmAIpPSuR8DVFVBVTl2u40ow4VA8JGzs1MO9lcoxH4spkjK55xDxTiO1M2SwlXkmUUiELphxkvCpaNLKCXK00op/DSxXCxnr4uRbjijnLGjVVVccAfPoWrndJ5pHDn3TUwx0faB3bbng7uJw4M1e3srck7UTSmVy6qUVTkknC4FEJAVfhyJKdE0Da4oGKeRmyfPcHh0hC1KNmcb/CQivoVrRJTKjwIl1BpjRb4xpYjShowClUk5MYwTfS9sFOscISQ22x1hDJS2ZBhHlqsKbRT90M2W4gJxC1H0aIq5/5hSEkuAeyjurbNBqEjeT3T9SOEMq9WKsmgIITF6zzCe8dBjD/JY9SCPPPr5XL70OLdefZX3vOdnmaZ3odJAGPLsX6BQaSLFTNePoAPKiYS9thaTICP7v6EPeC9M+QdXR+x2W1YrgTqlnGYNTEFpxOgZRz0XD1aMQ5hNMxuMNVijaWpL04ga93YbadsN2207gwAypIGyrkVyPmW6rqMfJlISXKcPlqosQU2EMBGjJ5NZLER2o6oKtNH0Xct2t8Vahw8Tu3Yj/homCRB7JrpK6yDNGE4BvKMyaZrQs3rZOEychZbF0s1ivmoW3J2YfM00efb2lriiJEWxE+hnEHvOkk/nETAGbQ1lVTGOE9MYadsWaypijJzszjjQiPegEoJv8EEsA2YYYte1lM5RFJZHXv4g3ntRh0OIz1YXFPsLCuvYPxS/yrouZxVxEYDyk2wFtrsNVahmBFGkWdQv7SD/kLjnJqFxThD4KRAmKZKU9YIpTmAAu2S59yDGHdDsVUTds9xb8gmf9Cbe+ounWL0lhhtMQ3fxtLeVFSVmK9VON2NOQ4zifhQzRVWRlbjsrlYNIY64wtJ1Hc7ZWXtTelpdv6MfRBtTVOE8wSeczVSVxWhhjeecmfyE0oo4eZqmRuuI0YnV3gJrC/p+onAFVdkwjLOcRcwoNc7+E6KmllJm/2Atnn7RM4w9y+WSoixIGzGfCbNSOWTczGg4t3aDu3shYwyYLIY2RlA49WJBWTdEREqRYBgHQcpIT1JWuq7vZzEqAEXXj/RDL/biQFE49sRRFWMcfTfgfULMWcWxKqUJaw1T8GQRgyUEdWHJLddJz4Y8Iw8++ADWimocKNbrh1FK8KQxeoqqmOX/G46Pb3N0dAnvvfh26Ez0gZA8JosXY3sftvbiIf0lgIwfR86myEoXJG14xSs/gdXqlex6z83jq2ynJ4i2oR0tpblESq9h270Pre6QFFinZR9kFXdOtjzw0MuomwXddkvbtrRtj3WloGYMwtqfJpRqODo8pO12WGtYLJrZTTfMvavlBbUo+IS1JVW1vHADLpxiGjuKUlogSmlcUeBsRVMbwF+sSnruda3W69lxaCa2juL3p3QDiFLbhZa7yjMjXnp0IpokamnnvVDvB9FqsXZeve/afRdFQeTc6VekGzfbDqUM4yRSjMt6SeEUXSc6LsKEkHS5LBuUjsJ6sBpblhhg72B/bgMEkXDMgbKcHzwmohD2ftMssUVBTU03dIKgyXI9FouG9XrNndu3yTlhtaMqq/l6TThnsRYxvakc3idiiJSlIyWRpayqSiz0kjxoXGGFKjVP7PNe470S99wknPxIXRbESXZsWWnULEL08KOPc+XypzMGzd7Nd/LBGz/DhOX6MxOVeYx2rGgWD6DVLbQDpSMxTVKxmzzL1Yph1vgcx4ld21M4qJaNoHSCWDBbl7l8+ZIwBfw0w6wmXOFQ2lLXFTEmht5T1+VcMDGkKDfdaEtOkbISGpKfAuQoAPEkEhB5NsNU2hBSoCody+UCP8kqh0p03QZtAtqIj2AIHoHNCsxOPAvDheJ0CIFxHLHKXnhFwLkVuFicjeN4AbRGW1FSS45xkCLKdiM6M0ZVHB0csetaIVG7UhgXGcZz+lAUcxuMJqdEWVWUVcXJ6Sk+JZpqMa/CIlo8TRNDNwibY3IslutZ4FeYDzmnC4Z/SpllvWTZVOis6dqOMHri5ElzlTOEwP7BAbdv3yFn2G53F9/rusEVjqmTvmuIgcKUM5jjpRnbHy7uuUnoY2C/WmPKGm8H+smz2bbUewfowpKLjqI45PKV1/CeJz/IyckxH3j6afbXis9985s5OvpENieHvP2Xfobh9OZs9NnjnGW72TGFibbr8D6RsxbfhygpWcyZojp/kp/NwO8CpTLDOGGzFA+GoZ8rd5Fp2pKiSAGKpCFC5M2G7aZjHCfZo2ktNs6jJ6WR1apEYZnGwOQnur4npcBqvUCbNNthiyCx0HukmX2OLIlpZlvMBqVlKfzLpqlnsLQ09QVOJ0Tdc+JuURRMEXwc2W56FJa+22GsoW2F9JrTCcvFkhDDXBgqsXNtdprEIm0KE8aKaczoZ3fh3Y6zzRkhRvR87gItE5C4XE8jx3tRyR6GXrRiZ27jyckJKYmw12gi4xiYpiCslVmGUjIDTddNDEMgJwFpK6U4OzubLfUURTn7jERBTx0cHnJyfPpSDe8XjHtuEo6juM3WtkDPT6y2a1keXaZoLGfDk0zDjt1pTRpfzY0PvovXvObTqFeBN372SoDM/jOp6oK3/tS/oju7jc4Jv+s5Pj7hwYceYuh62t1AN/QotGR4SqFgFugVmNM0zpovkxhVnnPnptkUc29vTdtOtGOLUoGytDMzQ0xTMlEqq+tSNFBn/0TvE+MottMpp9nGa2K7O2W9XrPeW6CtPOlFFwZRhTMap+tZgXtkms5lCS1uXvWKsqBtdxd7QxBmf9u2ov3SDRRlweBhGCPBC71oNIOsplHEsobRc/P2LabRM3kPSqO1KMVtNqJw3ixk5dtsNrR9z41bN8nAME3klBi7Aa24gImdMyCstWx3LcZaJu9pmmbOOAQDaozwMpPPTKPYhAcfmSZxwHLaSLaBoe9GyqJhsznDGMP+/j45b1EKhnEkEURDNgtTwzhHvt8nfPEoC8s0DtgEJFG0Xiwq9o+WbHZ3cMWCDz75Dk6PPZ/wiW/ikcdew8sfX2OqiTu3PsjLHn4FrrzEGz75zbzjV66y659gvRzRNhLHnv7sJotFgXMiEhRiwhrBV8YsvofOgLNQVTXWKuIkkLFCl4JXtNIw1zrhXKIsxURTm2ImoTLLKWZW6/pCvzSmRFKJrDJZweilQLFYLhjGca4keozVM7wtC1fOzJo5swlmWRYwiXVZDJF2NxKmTFZiINO2O6yVSqIQbUuWiz1AsdsGhi5jq5KqCODmdkBOKEasFnUzZy0xSHHFWZGgSDmgVMCngNEaTwA/MkwTxojjlXAyxc4uJw9WVNL391egFF0rgr3r5T7aWmIIaKUwZYnKzNVli8HO1fBEPhMOZgiKFAQfWtUW73sRXa5rjIPlohFitDL0feBs2xNyoqwzwU8slg3btkMLAPieiXtuEq5WS1RWmJjp245xGlF1xZ1bz2CbmqZ6DQ9cejl7eydk9z4++dNey3J1CDrx9PWBGzdOsWpFDitOd1c4bXfs70cW60wa7pBCD9piTWa1EFqQMXn2n7cXSBTxgNCEMGGtpqwKykJkGMc4EFJinEQ9uqyWsxe8iBxp5SjKmmHc0fU9IRpGP15UJclgnCXh0Vaa1uIYJPqcLjmcKRmYUGgppMw20b3vCT6gjaGuV9y+fcx2u6UoDPuHKykexYQ1ipgi7a4j1WKsKaihSniGOUsrpVnMK5Hn1q1bHB0dzGaidha5EjObPE2ESbRDtdUkRBBLa8VitaSKMPTCzcxRkZNo01y+LG5Seva4UEpEiO/cPmGcRvnsuZ2ktSHFyNhPjOPEdtsRPKzXgnc1VjR/uj7QD56cPau9mpgD1hkeeOgK1hRcu36LFOV+ZuxcedW03cBioS7MYO+VuOcmYe8nKleSVaZZLihTIjtLGAa2t0/Ze3QfpY5YLCoW+z1D2FLnFTkadmcNv/TLH2D/sMGZCczLUGi6dqByBlMF4nDM1LZYZ9jfc8QsXDsfMjEoQoCqrEU6cfIXxiOgaLuOsirRTs9uRwZnS/Hvy4ndbsfNm6dUVcVy5Zmmjs12YLmsWa6WksqOA5nMMAwXvoTnFchzsPM0TbOY8UjTLNFas9ueXDSbtZ4wVtP3E3dun7LbjSyWTtxqtWbRrOa0OV3YkYUwYgys1+IRH2eyr0jqJ1arFcCFx8Q0TbP9mEgRFljGaSTGONvVKYxRs6FqQR4jmXNL8Vn3xpkLZ6W+F/Vz4fnNUv4xzb3TYVYyLy6YFCFErBFW/3otsvVt186EXYExrvf2ZiqUxtqKq1dvCgE7KhSi7oY21LV4Wt6+c4vttmO5vD8JXzTaYWIYPI110ndyDp0zkLh97SmK+t3sxQWXLz9MVQQyJ+zGayzKl/MLP33M294ZcaurvOUtv4MHXq7Jqebo0FGYy2y7nmnYAuIYawspigSbscEwDBqjHbu2ncv853Zqc5M7SQ9rfdBQFI6yrGZPisRyWdH1Ur00NpGSqHijKsrKzcTUcOHqlFJisVhcuON672edUUHM3Lp9TNuOPPpozdnZHYC5f6jFJDQLPMtYLbKEyxVKWdbrQ/q+4+TkNtYa1usVbbtjsz2jqhrKwpGysEqk0CHKANM0orVmHIVnKCrms9+jErzr5Eesm4tMRJSKM7tEVqKytLRBlNJyFqB3CAFpKhqsNRfKasZq9vb2uXHjmL4Xl11nFbYoWCwaUSVPJ6z3aspqVrbzXhT1spohf46UFMbaucAzSAFGaTKKmDI5hZnzKUp7RZGo6/uT8EVjmjzZR1SZCOPIwXqNUhPaaGyOPPG+n8Bdv83rX/3bSOlBVOHJ7pQYMtevTlx72vPY62t++md/gt/9uz6PT/qkByi1ozSv4wNPl1z7wJLh9lO4MjCGY8bkxYN+mmFjCkLM6KxnE01ZmVzpaKylbhpyDhes9RDSPBFKDg5LFstLKOVo256iFPCxpFFSJClnou7+ek3TNEzTdFG4KIriooWwXu+R84aTkxNCCDMgWSqNKGZfethb75GSsELG0bPb9ty5c0ea49qDyhcOvecyF0qBVpahm0AniiLT993c5lCEKaOtsNKNtoQYSF6cn84JxM44lJGVVClxWLJG9EXJ0u6gyHMbZcJ7SCmzaJYopVkuG8bRs7e3YLk853kq0QddLIgx4AqxFQ9hmkHYQgIOXjiJm80WpUWD9bz1oLXFFQqVLTFp0Iq27ShLwytf+Qq8lxX5Xop7bhLabPCz7ISzDlc4mqqQhnF7Sml39N07+Pmfu8Yb3vBmXvv6T+DmHcVP/MTP8dCVT6Wq71DYkd/5BZ/GYnnCwd6S2q24fcOzvvRGYmz4YP8TbMeboqJtK6pFQTjbUNRRtEKBYZxwRUFVlkzTObMjYwqxJhuGHufEFzDnyMnpbYwxPPjgESGIdEbVuNkvLwkj3wvh2M4k01u3bklatV5T1zVt29L3Pd576tWao/JIYHOzALI1siIorYhxZLfb0tR7LBZLTk/PCDFw7do16rrk4Ycf4vj4DuMwcXR0wKVLl+j7kXbXoRQ0zZL12qF0ZJp6YvIcHBzyvieuMQ5nIpZk4eGHH2bsOnyIrNf7bLY7NpsdRVmw2mtwVrzkN+MJIcjfMo1Ci6qLiu22FZhcKc65w+AvVv4Q4owbVbNkpKVZlJSFYaosi7zg8uUj9vcOuP7MM8SYZkuBVrwqJlEBT53QvMQXw2FNCTOIYfSett0xeYOdbfTOpRXvlbjnJuGibNhNgUXdYDS4omDvYJ+ubXGjGKxkeooy8ou/+AO8571v49M++/fxxjd+Lj/1Mz/D0WXFww8O6HibdX2Aih2n3cQYC0I6ILlX8MhrHaenT3Fy+/2M/Q3622fkUGJNxFmIcaKqLdZq+nEn3TGtySnOTHCRRHRO7L28n+aJ0mCtYhhH0BHnyrmpnlGKmQmuSM8yYZEUcLzokRVFQVVXhDhR1/WspyLpsDJQ1oVM6naiKA2LRTnrtnjKwjFO0h7ZbnpS1Bhb0veexWJJUzuMLml3Hbfv7EgJrjy4NwvjNsToWa8bjr0YsywWFdMY6duRKUb29hx1vWTXjmw2AlVbNMIlbHfDjCkVGlfOQs49b0vIKisK3Of7YO/FOkCpeY9dOUIYuHV7N+uHRrpuYLu5yjTvR40x7B+sBLHkhfI2hYEUBRljnfRyY4x03cjkxcMkZ7GbK4p7bsjfe5OQKbIoa6qiZJxaUNANPbaYe0PeYuNAYGR/DZv+Xfz4T/4Tji6/hle/9nW87W3/O5/42kd5/OE1NpYsmiXORGJ0/P3/3z8nxIL/zx/+PXz6yw554l1v5Z2/+lOc3Pg3eH8VayfqKrIqI8MgRYC9SnRmoo8XE8/aCoUwPgTPKEWOmDxdv5snamLXbtnuTgUq5ipQwmLQSrFYr56lWB0vdDSV1uTgCSoyTp2Qlocwi+pKX04chjW1aShKQ9uOIitPRhtpTUxTxE+iO3p854w4r1LL5ZrtpieGxMnpGc3SUBTSYtkFkWnMSRgHTd0QvCdFTd/1XL92E7RQkw4PjmgWogFaVwajKw4PD2Yh4RZrHcu6mkHvjnEUgu/BwR7j2Au4XsvDSes8m5NKH9aHgRAD4+jZbrpZT1SxWNRoo+aiUEmZDTEZNruIdRWHh6KyPvRiWTDNMiBlVc62AnHmd760Q/xD456bhI+87DJd35NJFK4i+pHoFWFunCulpM+FpnAKg+ep2+/g5PQ6b/mir+aRR7+IO8fX2GxvcLR3xO6kJZt9UqxZLA943wdu8M/+95/gUz/5k/jE134Cr/69r2d3+gRPP/mrHD9znd32GF2c0fnr9OMZhcpcemDN6cktSBGtLcZKg11bsTYb+3Fmbo9CGNYWlaWgUzf1rJkTGf1EyAmNxUdNUS7wfscw9NLA9wJGjvmuB72zBcEkYhLa0zSOOGcviM7WGoxSaCcmNXVVc3rS4r0Yki6XC4rCkIm07VZWl7ZFkalKEeT1kxRYQFEVmQcfPOLq1etM40izWND1Ig2h1GxOqhSF1RTOEv1E4TRNtSTFSN92MyhbUvKUpLosOz5RgxuGUaTxc5p9RsRXMYSIQvqKq9WCYZhEUqS0eB+p6zWTH0QicSYCa2uIYcTZUiQXUyIlP1evFWHwRC/aqspoXNMI+OAeintuEqbUslzYOaURupDohCp04bClYvARTUaFQOUK1JFjM+74p//4b/DyRz6dz/ktn8O73vtuarfhjW/8FHyEzZmkka9+5SeiYuZH/+WPU5jP4JM/9VVgDnj89V/AY69UlFXDZvcM737nL7LbPsNuexWjB3qfUSmIS3DZMQ47NJasRTu0qSumaSCmyMIeokNi8FtUUhitmZIgNjQFXT/xrnf9GutVySMPP0DXTnTDjmpRY5qSkDLLWnCVbdvSVBYfPOMQGQnEuBMsq15QGsXY7aiaTFMe4LRjb9nQ+4hSBU3juHx5j6oqePrpq/RtK4307FmvajESV4phGIDM8XCLXXHKMHSs9h4SGUKd0SpgtZJmurWo7Bn7M5mQRclqtWK72WG1YprlKHLu2N8/oGs9221PimleARFFg7rCaCicoSlLzsYNSmsKq9EkDg5r2mFgt50gKm7cOqFwDlcoUk6UhSLEDq0iOQX8KHoyVmuK0qCyZb85IsTEruvJSR7m3t9bS+E9Nwm997O8oVQUz4sVTdOgtMYWlqNLB/S7HSqL2+tBWVA1hrYfGTfP8MQ7n+DwqGbnAk889RTrg4hyD9KUiXe87d38pjf8Jl7/+ldRlorbN6/hxwGrFDl59vUBR0eP8lmf/TJS2oHuuHXjA9Srn+POrRtMU0dRdoTQolVgtW84OblBOw4kLCiLTwZtCkoycRrZnQ7EEKhcidKWHBNlralqS1laDo/2KXtHSFH87n2gzyPWFMQgfvbbXQucI2cshYVCLdF5gS1qYt4y+JExSKXUWDtjR1v0jP/b7fq5iS6q10Uh/cDHH38lT199mnMx45wFjB28SEg+9tgj7La7eaJKX1GsyUeKokShuXXzphRLZu6j7JUjXTugtePS0QEhBMqqmFNCjcqisxNURC+0aLpqTVVVs7yFp65KutYT/EDwI0pJzzXmRE6iSLdcNoRwV0PVOQ1ZOKVpBo6H4MU1WYlE5L0U99wkTEnIqNYKYuO8b5ZzJqZIsaiZfE9dFpRGVKRXK8Pgwe8rkt3w1BM/xTvfUfK5v+Mt/OAP/SpR/Tx/4A98FZ/yxn1Obz3F00/9AsvTFZ/3OW9ktRY5w9OTG0y9sMsX9QHbdosxiWbpWF96mM/6/C+ebb0y7e07XL/2QbSZ6Lozpvh+ut3IdjNCMETXoe0pygqXT+kRn3qUESnFw9WSWFwmh0jWkaFvKWtHqUpuHx8TYiJ7TQy7WS1tpHClFHGGiYyiNA1K9wz+DiEuCMHiGSjKDmJFMbcYBAc68OSTT5GzZtHsU1VrQhxomoamaTg7O5sNQvUsPtVRlTNrQynMjKvNWRyVrBNYWAoRTGSKPfv7+6Qskol1aS8UvolZ1MuZvUCUollU7B9eZnu6oe97rl69RZqJxiqLAroPE7YyaDJXLh1yojfcvn2CygprKnROKGNBwThEmtqJgFNK1NWCnCPRWVJIlJWjampOTjZ0XUvm/iR80RBW9PkT7a5x5XlaGmOgLJxooqhMWTp8v8Nax95Cke1ACIkQe/7NO36Vxx5/A8/cvsG/+uGf5LM/81P5Lb/lMd717ttYE/H+KmVxhDP7lNZxfOeYt7/9Zzm58wTWaS5fvoRWa9q+xxYOXddopVgeWV536RUoHckx8vJXPM7uNHDzess73/EBbt15huXqkMUiMMVnSP6YZDxl6Rj8BD6xXO8x9i3aaRbLWrQ1U5opg5qmXmKM5ni3IZO4dHSZlCJdO4qxiskY7Qlqh3ZHFDxE124Yxy2Fm7Cztk3KieBhb39fwNCz4rjWmr7v7xJ9rZ4RNFIsWS4aUd/ebrl+bRSxpSgGrEVRUDqLswIzu/zAZS4dHrHd7Ri7VhqHGbRa0A8Tm7MzqmrN/t4adCQnT7c9I4VAXVaobBl7T47Se+27DmUUhbJY53jooSso1AynUyiVsEbTDz3DGHC24uTklKqcvSicIhMJccLqAmsdRVWz2Wxlj1ndW9hRlfO9VSv6618nzO7Vaily7CFcKENfeeCK+PepRIpx5uglQogslwsC0I2eTb/DEylXr+TaM4aUXsZydcDo7/Ca1z3Op336p3G2ez9td8qrH38TtX2MvfWDDNNV+uH9vO9XfwGrHY88+hpu3+mo631Gb3jk8ddR1DXXb72bemFQuifnHmMjKssDIsXMtes77tzquHz0ENefvsX7nniSpmx46qkPUhSW28fv5fHX1Czrgm5zB01CK0VKmWdu3CH4zOH+Jeq65Oatp8lIj26xWHHn1hlDN9I4iykyqZwomweo7SdyegvG8f245ioqe1bLNSFOlGXJotnj2tVn2G5HUoKyEBHith3ousirX/MQTVNR1xUnJyes1wvxLuyHuVcp5jfjMMy90YxGz+JJkgILVE6EnrTWaF1ROMswtjhnWK/XtO2WrutpFktOz7bUVU1RFNy+fRvrnOi/KEVOiePNKdoaXv6yl5Nz5vT0lLJ0rNZL2m4nluPDSNPscXznZC7e1CKlT0SphPcJpSxXHnyIECI3b91hGD1/+a/dO0ah99xKuFgsREq+ri+whCJ9PqJQLJsl3SCwspTUTBcKhAjDNDL0sz+B6tD+Kg/sH/DBp99Hz6NMOXP16nVe+7prvOo1L6PvDjE60g03iHFLs8oY63n4kTVOOYLfUBc1i2rFsJs4vbbl8IGaMBjGmRibcqKqM84lQhSrr5c94njFK69wdrZl73DF6z/xMzi5E9nsem7f6FivH6GqPMcnt+k2GzSB1aIBxNBFm4JpGnGFoqoLFosKmFcAq9HGkJD+oB9KxlCyiVtUzFgXSN6w6zYoXTAMLVU1oXRBVtAsajabHVoLZWi36ykKKczUdUlRFCglfhNaQdPUpBSkh2kNzi4uuJlKGRQihZhzRBspQqm59ZKzpJSF04xjR99xsVcbup4U4kXmY4y4Kptz2zJrIUJRlbS7Vib9LNVx6eiIvutROVKVFdMolmha29kkSOFcwTj2OKdFgqPvaNteDGuWzUs4wp8f99wkFHiVnYV7ZCKenZ3hvefatWtcOjzEZENGM0yRhKabYDecEYJn2w48cOkQqxpyO7G36HnsTVeIZcOP/tR7uf3uBOmYdvuJfPKnvpGqKuj7kZx2nGyvsdm9l8Ke4SlIec3i8HFOT59iTDVtX/LMr17nxtnTXLlyxHKxAFVQEGddmUBId2DQeJaE05aqWtOsDE058lV/5DWYMnH12ob3v+eYw/3L/PIv3GC9EAEkpTRlUXK22eG0o+sCVWNBBbwPNItmJg1HOq/Q9mESV/A548o7NPUxJnToWHC49wCQGMctPgwcHikuX7lESopmUdPtNtRVxYMPFrjCsd1uuHPneF71IuMwolTi8HCftt1SXCi3VXRdx9npFoNmb7WiKh1d1zKOA9kayspiVKIsFZvNLaq6YLUUxbvgM9vYc+fkRExtsohcNU1DjBHvPeOs3BYDxKjZbnu8H2ZxYM3p6Yann77Byx95gNV6xVMfvMY4dBjjaKeB5bKhsBZFQcqw2Wx55sY1nC3p+5HR30fMvGhYazHWiiT9/F1MJNOsli0wrjEEhmlCW0sGqkUj7rAffJqqdFRmRb8bUUkmWT/eol5pxgA3nznh53/uZwnphDf95s+icEfcOT7mrH0S7DVcBTkNIurkC5JeUi4vY8zIY5ePsLef4vAosl5VxClRFJGi0nSjYuoDoYUHHr6M9Q7rHGcntyhqO7MkHA9eepCHLr2eovB84ic8xDPXPsh73/UepmHi5Y/sw9NXiT6TkqYwBW17Km5UCcZRk2lIaUmhHqEbLdFco6lvY8sJowqUrpmSIoQB5xqUDux2nSi7BZGQWK+XrNdrurZjvbei73cXRjx6BokPw0QI8a7Hg3N0XcfkJ8rSiuGtEv/Bc2fklER5TWnJUna7FqXSTAsLjKNgV6uqxkc/i3qli9bCGAOFtQzTKPSyIP3AaQoURQlZU5YVe3vLi3qBjAk4O9vSNAXGKLpemDJlVbFc1ey6nqIwDCO0u3tL6Ome2xP+vb/0cqqqmmkyGeeEl9a2u1naIFKVojXpY8A6R9lUFxP1+NYxD195gClqTtqEqQ4Ycs0Hrp+w2r/CerXm7b/yq5yeXOfyAwWf+qbH+bRPfz22HHEusqgVKgx4P9B1I9XiCK0PID+MVS9jsbhEdjuMauh3hmmcqBc9Pl0DcwcfTsl9waWDV3Lj6lWaxZpmsSDrSN1YumGLq/bYO3iIlFqm5CFU+NbxSz/70/ziz/4gOXcsVldYrxf0ux3eR45PE21f0nb7OHfAwaoCtSHqpykXO46ODui2JU++a+D2zZHtdsPRkeUNbzwihC19v6XbRY4OVtS1w1QiUpwzFLbAKMs0TIyDZ7lYcvvOKctVwcHhPtM0zu5Umr39ldCHYsQg4PZxGFgul3Nbw5OB09MTjM0zc0L8EBf1kqpuODvb0LU9VdVc6OIYK74V8qDtRZ+nWogZqhd2/clmBwo+/TM/mf2DFSfHd9huWobeM02BJ598mmZR8NBDh4Q4zCakkdVqSdMsadue27fuUFUNf/pbr7/UQ/0i7rmVEJXZtpsZoZEZxkxRSLN6sRQV6mkUGcFFs3yWGlhAGUNZF7R9xxgVm82AC5mTNlLZikUZUYy86tWPgHqAd7/717j6zG1ecXzMck/hXMC4Eh0jbd8TomdVQgg9k7/Npu2Z4ilT3lBVB0xtSWlLun5DiGcs9mAYRioWnJ12KBxGi4RjvSxn09DEcmXw/g5arSjVw4xec+eZ6yybB3DmCGsqpvFp0A1jzox5n+14hZMzQ9YlqegoD57CGY/3Cj8c8sH3ON733tuc3hlYr/d55eOXceVA159iXWJvf48HH6g5uX2Ttt9xsNgjRqk4rhZrwhQpqpo46+2Ii1HBdrsFMoeH+yJFaJRYe2tDDBEUXH7gyswbTGL8CZidIcSJ9d7ejBONxCwVyxAnEqIzap0VZy1nWO+tGMeCohTJDltUKOMYek9ZZDZdyzhO3LjxDDGNtK2o5llbUTclTSOeJdPksfP+sqxEfa2qhHYmdLF7q0Vxz62Ef+c/3sc62WAbIwWajMCgnJsxiCHIRSWLuK2SgTN50bFUWTPFhLEly9U+u2GiG0SC4crLXs2YlwzTSModlx9ccba5zlvf9mu87OGSlz96hYcu77FYWLRO1HVJ0yyJwTIOVgxrbEldX+bywStJPjNOt2n769SLzJ3bz7CyL6c0h5yenfDQww+wWFWcbu8wTFseePiKyGKUe5j4GHeuPsi1pzrCMPCLv/gvePDhLZvNBzB6QLkDnjpecbItuH6zI8aehx/WLOuJzTNPcvuZE4Zec7h/mUceu0K1GDDVsfQlh5phGFg0lhQzYy/N7/W+oWkMMYrXx3azwxrLerlitVjRdz1nZxtS8ly6fMBms6GqKmHHazVnI56yKFHAOE0smoYQI8fHdzDasFytcM6iFRxdOmScBm7dvElROkIQiXrQlG5J3w8wW6s5Z2fLuowrHGXd0HYDt2/doaxqEoqT0xOyUly5coTSMA0joAUNE+Ds9AwfAotFhdYZV2nW6xXTFGa3Y3Gj+jP/8e2XbpB/SNxzK6FxlpgiOWbGKTAFz2KxEF9zLf6D2orCc4yRsq5o25bJByGcFoYwRbQKaJPZbG7RjwPNconKgb57hgdf+UYG7/DRgc588OljtHacbTUnb7vO1f0TXv2aK2gVWC5LqqrjyuUrNAvDOLR4b1mvShSJq09/gHoZ6fpTXFlQ1Y5FVZGnBHqiHU/BFSgzYIvAtr1JWdRodUS/03zwiR1XP7Dj6tX3cv3mLT79c17Lu95zk9NTw9ltuH6muHl6RtfusGSeeKtiOutpmsyVBx7gk96wx95hxpUbxrGbPf8s1iVsFIfj6BPeK4bBs8wOY4tZiTvz6KOvQCES/doaMufuRsWFMpuQbEW1zTlHVTUYY+n7jiQkPjTgilLaFF5WoqppyEoxTgEfI4UucJUDn9BKxKmGyZOyWIgbJ9KH0zRhnJ01UxVF6VAqs7e3Bi1M/gcffJA7d26jq4z3CZ+ELLy3vyb4SEbYMApD34vMpVKKpmlo2+4lHOHPj3tuEk6BC8Z3iJ6iSMQscn/94C/Y7nVdYwqpoA4+su362fX2CEWgoBB1NJ1p6gLSiLOWHI+5+cxbiUlT1ks225G9xZpFeUBK4oi7O7nJO992HWPhwQcPKMoeqxa87OUrLl+5Qg4P0+00t7sN1lrqCowrUWqicHD7+Gn8ZNjbX5DUCbdOdnTDlqop2C/WVLrk9Djyvref8M5f2LJrn+HW7kd49RtWfODq+/j5X7rGafs4d043XD99G2UZeNVjJa94YMlDteZouWKyNVdvfpDF+gQfJ2IPMWhp0SRFVhM5K7Y7z9BltmeZccyEPHD7zhZjIn07sVoe8vKXP8zP/+wvoFRmtWjIKgudKkgh7Lz/J/Sgnt024pzm0ccuk7OSoo+zLJcrtDbcvHXzgvQ8jAOLZUNV1YzjNIPAM9PUMVpF34m/hjGWzUZkF2PwLBYrmmZBP0iBTBtFWRZcunSJEGAcEkMfKMuClDoE5ZAYhonFYk1OsGvFLMYYTQyJqi7Zbnfs7e291MP8OXHPTcKun5imSfQ0daZQlmEU0mbOs1aJUtgCwhjJyuOjwlppIDeLFW3bic2ztYyzPIXWkNDoHGnPbqBNSZgGwqBoij2SKdi1EzpmCLAs98gkbl3fUjWWoX8/y+Uei8WC/fU+JkeqquH69WPGaUCpyKJusNqSp4HCabSJ9MMZtjRc3jtk8iNT8JxtNlx73we4c/MVnBxPDOG9PPDoKQ89VrDb1rzqVZ/KT/zMLUK6wes+4YSXPbxkqTv2XWZdaKzt0dU+e+sG43qUFlnClAzBG1QWXVHjNK4sCS4yTDtSVpxuBowNrJaWlOGJ972f3a5l142kGNnf3yMEzzAOrFciFnzz5v+/vf9qlizJsjSxT9lhRi5zEpG8uwqNnukRYID5Efi/wAPwBIhM94jgCQMMqyZVlZUkiLtfZuQwpXjYahbVQ6LnqfOKjKtISmVlRHjca3b06Na91/rWIyWLSbZkVe/oXnDyqsjJZcTHt9vtZOOUwhpWhk3Pw/t3+Pj5SgCYpoUQItZIVqCxMvMNUcJfQvDYpmV/G+i6gWHYVHZpxvvE8/MRpS2vL6/c3g50XQPFczy+Mo6Sv6GVlbuf0TUj0eCsqz7H9S/9mP97681twlwMBSvxxzGzrJlhaMlFEWNA6QZQhKiY5ol2TXTDwO5m4MvjI5++PNP3HdMahMWiHKVYyIrpGICVvrXYtnA6P+JzYX8TiUUxNI67rUOlO/y64kNkGReM6vl33z/RNC3//D/9a86n/4bTcUVlg1KZ03Tm179+z3zOvL68kLOAbEPONN2A0oUQFIoNyxT58fsX/p//9/83Q3PPuJ749hcDv/r1ni9fnvn9H/+EURv+xf/uQMkrlIKbR262N3y4u2XxX/jjy59RqsGYFqu3DM174jSBD5jiOZ5OxKLZ3Q7c3e/I+YWiZ25uH5gWWP2Ete2V1fLl8ZndbsuXL4/8+ONntIbf/vqbitnYo5Th9fVA13VQ7Ui9cpzOI9YY7h/uKbnw9PzEMBT2+1vOpxNeJZZ1oet6Pn74FpTmxx8+8Ztf/4I//uHPHI9nQHF/fwfI9+RXT9tt8D7x+OUFa42kacXAeVpBWZ6ezngv+Pt18Xz4eCdxbEUgU13vrsL3oorkVTQNWhv2+45pGv+iz/j/eL25TTjs9pzPZzm9jKJpWyGDGUv0oTJdHMa2DDVp1rUNMULbbDgeX1HKEEJmGmfabkDVABi/Rm73O0wqrEeJeG47Q2MiJXga4zBY+r7l+HIEZXn/cE/W8P6+8Pvf/xlrNQ/vd/TdlqfnE7vdDS/Pn/nxhx/41S9/wzcff0PTduTiOZ7EeqN0IZWE94WnLzP/5f/rb9hub/jlbxO7TcHqwr/5mx/Zbt/RuDN9f0LxSgkN+D2Na7A6EdPMl0PkcOrZ2h1D26Aai7OKzcYwj2fm0UNyaKNwtmGaTkzLiX4w9BuNMg39xrAZWkpukZhVaFrHZiMkAK0lg6Jptrx//56UxBGx39/grBNny7KQQ2LYbWk6ERvYxuFrZ7XfDqQskjm05uHDR9YlMP3+T6jXM8dx5jx5bm/3dMOW1S9kFK7r6YaBdZ15PZxEGxwSpSiGzYb7+w8o9YUffviMtdLoOZ9GUJFhaNntZBSRHZLKW8AYR9f1KCUE8HX5mk/4s8u0hX0rZZCQe7Ig6nNENYr9ds8wbEUkjKZpO1YvQZLjNBM8lKjZ9bdkr9BFMhv6pmHbd5QEc0CwB0MjXb4Mu27H+TwRVORlnVk99H1LWJJs+tCg557f/7eP/KGdMO5Fyis1sfpAzAurOmJuXnn9dGIcT3RWs+82OJ3Y7Cx/+P0j/93/78w//au/4uNvIIUVnTd8/uGZ/a6nb4vcZdeJqDvsxhJcYCkrQzuQjeHdw0e220hYFmIMjD6RR8vxMHMaC1+eJowx3N0LBnI+Ql5bdBJQ7/1Ni7MNrhE1yjIHyWpMK0PvuL3bopV0ndcYGNeJYgo39xtyCaxpRTWRoWnossNYy7ouKA37my3WWKZ5kqZKFgDUPM/87d/+LX4V5c/nz1/QWsJy0FLRTPMo0rmhZZzPaKVZvOfx+UzbShxAjEIbuL1taLt3nE8j290DKQnOcdh0NRxGeKnrmklZo5RmngLTNDIMHSm/qYHA29uEm+0Way2Hw6EmAYU6B8zsdvuaJXBgWVaMcSg1obUlxExKoDGcjudrtNYliSjFjPczGkHlXYIonWtqAEmW8ErX8Pr6A9O8ssyxpggpgo9Y5M85zytaR2bv0UZmWVmD95kffvie06QI60CjwdxBzk+clshxHvmn//wdbV9qlJni+HRmmQopBNac+fhwy48/ToRYA0rLWdzwy8o4B+7uP9D1HeN4lDTaJTGOK4+PByiim1y8Rxvoh555WjHaYo2BknEGSg588+0vmZeF+TwTfGToe0JY2AwNh6OAee0iVqFClm5jdcnryiJNPhCjSMDOh5Gu7XDbhrbpmedZkpb8wrKuaH3m/u6+iipGjGlY1nD1JoYQ0UYLsUAruq7F+sD5/EguFoWQ1sbxhLUG5zTaFN69uyeEhbZzLMuM94Fh2HA+z1UBlCuWUf7vugasM3/Zh/x/tN7cJvzxh0farsHZpuY/gF9FMtU0A68vZz5/epHhcKlqC21xTct4mmgby+3NDSGIJMq5hl//+tes68Lj41PF5cXa+DG0bc+XL194fT3Sdz3DdodzHS4KTkKSfqSh4FzDbrdnm7REfxmAzLrMJBVplGXX7WgHy9Oz5fh84vn1O4ZhZtNvSWqHdivjsnL+QTiihIxRDZmIsYrn10fO05lCy7JE1qVQsGStSAX+9b/+PatP/O63v6QZNH/8w/e4xnJzdydpRM6w0R2/+6vfcjgcOZ4P0thQHYXEGgJ93/D8fEBrhXUt799/S+saHh8/s/oZv8pooq1D82VZyTlXcrciZqAkrNViwQqRFDO0lvNprVQ06Xh671HFURJo7Whbw8vLC1pH2mYgF0HtD4PGWsdm2+NqAtXz8wvD0GGt+BxfD6+V9yqojc1mxzSv5CSyPFSm6zc42/F6mIgpS9xclhSpYejYbre8f//wF3zC/6frzW3Cw2miHM8SgNk0pKx5Pc70vWIf4OV1QpkGZRrivOLXzM2+o6SCVZrGWh4e7mmalj/+8Y/Vpe8YxwPLIqUXiD8xhsjpOEKRYe/5LMj6ftjw7t03zPPCDz98h/ep8kKl4dLYhriuNM6iTcuX5xNDvyEuiem0om/OvP/Flq5X/OHvE/OypeRbToeFogLn1yNpygxdy8cP93StuDK0zhwPB5TWhACfv7xIJl/bstvfiFvAOnojEdVKt6SsSWtiu+14/6HHGMV+v8W1hi9PX0glYxtLqztxXcSIWr3wbNqWTe/4/PmF0+nAMo84pxiGjqFvOZ0OtO0g8W4hsSyeeZ4lY74xdH3DsnhKkbIzpUxOwv5c1xW/LpXkJqm/CkM/9LRtV2lzGW0sxlgUEo9ujUOhmMZTnUnKqKnv90zTDMVwPIwUMl274TwGYvJM00jjDL/45cD5dGKaAssilALnhJ06bLYUFKEycN7KenObsOt3LPPC62Fi6AtN26J0w+EwUsoFc56kY9rAOM50TUvwKxqF1qK+uLu75fPnzyil+fOfv+d4OFYgbmKz2UAptG0neAZlxRWvNVq35KyZ50iMBefEKGqN0KSPxyMqGYyzbIcNMUlIyevziX/7r/+e4/mGd791vPvlwu6m45/+07/ib//1C0+fzyzzjM4taW256TUqw6cfHtkMFk3g+fmJ273QvU9nQRKiHbkYfCi8vp55//59Zc9MnE4j/bBhXT3TvPDNN+9Z1hFtNcfTKHdZo5kXX7MKFfPiCVGCY/waKWnhy5cn5mlmM7SkWBj6DbvdHcfDiWn0bDYbjImczy8cj2fu729IKfP8fABgu9lXqZ086G3bE8MTfs2UYjDakWLk06dH3r9/4OH+A4fDgXmRSmY8zzhnOJ7OctWnEGPgF7/8hhDkvte2A9MUyEnhXE/wgRBh9YF5mdFGswb4459+xJoG7yFlg7EWZTT77R7rOtZ15XA4/wWf8P/penObsCRDKZocNUo5gi8M/Y6u3UhsNCLdj1kQhMOm5+7uhmk8k/zCZiNMy0+fPuG9GFvNtsVoR86lOvQvbgFDDJll9igleQZ9v2dZFg7LqYaDgnMNoKtky0N2uCIclxA1xjSYbMjZ8vq8cjyN+DHxi99suNnc8ttf7fmv/tW/wq9Hbjb3mGIpwTAvCylNWLWhbbSQq+2AUtB2nlYZYoSYM/OyknNhnCeJDdeC4shFyrxliTw+PqONCLPXNWK0I8aC0oZ5Fuiu1nLnysi/zymL94nNsAOkbEsZnr68sM4Jvx4kR9EvhBBoGiNdxkYedEksTpQMznWVSh7ZbHpSzKQU2e/3PD4+cjqdMNpxf3fPNHq0seQE5/PC3d2eEES8LVkeErKTE+SkpIGkGpxrmacF7yH7yLysjNPKL37xnphWKIoQiiRjKYdtG4zWdN2GGMH7UjElb2e9uU04Lh7vE+/ff0RrzcvLC8syc3NziykKYxV3d3sa6xiPB7rG0fcNJTnaDw+8//ieP373J15eXri9faBtO/7dv/t7jHHc7O/45S9/wZ///EceD4/E6Nlut3ifaNxAzppllk2UijBRCvEfNW4E867omZeJcJ5Yo6Ld7Oh1R9NpjE2EeeJP/8OJPLf81T97x7cfbvir3/yWP/z935GXE1op2s0DJimM7bBGHuamGfjxhxd+/ZtfsdkGlDL8+PmFXDQxJobdhlwS43SsYaCO1XtihuAz45dnvvn2ntuHd/zxD9/x+PhI3+2umYnWWW5udlhnyVkSc41ta56Dw7meTS8SsZfXkfEoUOFp9Nzebdlut7hG0zSaphlQNBxfFw4vX9judmwGS7Gw3/eM40lYojUc9GZ/KxKyKfKUj/gVvvnFO7RWnM9n7u/v+PHTDzRNW/mqDc71NK7n8emJnKq38LDy8nLEGEOuOYrWNdzcPvBv/+2/E7hwP1DQHI4jiz/QtA3Ny5lh0xNj4HD8Klv72aWwhHVhGlfBxSdoXEffDfR9h9KZm5u9zHpUoeta/Cq4vr5vWf1aQ1YMuWQen55Y1pWu1RyOB0IMHA4HrGvIWZESIvMqovzIRQjZkv4Dxjq6rmO3G4jRM05H2rbDtYJaVzkzT8ICHXZ7tPVMLyPj6RXwOJf57W/+Ob/68Cv+4X/4jnEZ2e8tTQud6SklsMwz07yQkyJnzevhTDGBptFsNluRgj0+Unym6Sxd37Hf7wk+sy5R4FQ3e1BbjDb4NaN1Q9du0FoSkqZpRSlPzoquc6zxhNGKnCSOPMSMUomm25GSgHpd06GjBiTPQmsIPrCugc1gUHQo1QAikZsmSdzVRkJJvRcd6N3dPQUYhg0hJqZx5uH+A99+8wv+/P13jOPMfr+nbcTKVIpCYSlZk4vEkjsnEOPLX+u6DS/HA9oY/pN//r8Xo/KU2e4cKYMxDblMxKQwCVTrKkS5JZf0l3zE/yfr7W3CZDg8jyxTYBi62opOWB359hcfMNryb//tv5NM+Maxu93Sti1t65iXmc/f/0DT97iu4+X1xLys+JwxKtNvOsY5EEsLGWzT0gz3nJ4epZHgPbkU2r7DmRajFYpC0/aUrDmfFyiGOa4SVJJB03E6zrx7t8eqzPHwhRA99/fviGHlv////B3zQfG73/01m5uVze2ODx/v+e5Pv+fu7p67uweeDiemNUIp/Pa3fwVASkLB/s//8/+Md+/e8S//5X/J0/MjTive3z3gXItXgV982/D6esRow7IUjs8L59fEmiLWDjIS6Aooyb/47rsvdL1jf9PR9pab2/ekbFiXhcdncbs3ToPOfPjmRj7broEC5/HEPBeOx5HT8UhYT+SS2Gxv2O22PD4+0SuHtTtQnpJDlYx1rP4MKoMSOZu2mn/z7/6Ox8dnpmlG14F6Ac7nldUrmlk6sA8P33A4ngiRayZHCLKRfvdPfsG/+E//E15fX+n7lt3ujqfnA+8ebmj6gBuEWZsKaNtwGMV18ZbWm9uErtH0g6u4Q2my9P3A4Xjk4zcPWC3BIt5HtsMWpR3Pryfu7+44Hp4E3zDs5QQIr8SQq2Km4FNmTYkQU41bVkzTQkwZrQ3DZkNMSaxUjaOkRExiGJUTJmGclqyDIjRujYjLX1+f6YdbSpKmR0qJZV0pRTSvxio+fvvAeZwZp5E1JRIKnxIJ6smqmdZZYp0pnMeRu7sHdrs9XT/w8PCO0+nI8fXMuDzRdZIC7GOEkohJEXIiV9q3dVbKtlwk1cnoqvM0/PJX72VAvi48Pz3z8cNHzqcjispqMYZ3796z3e5QCj59+lxDQBUUGQl1bcs8TyitOR4lM965nnkSdH/XDwybXlKkuoaXlyeW2fPwcE/KwgPdbrdSPhZNCOmnU3teRWQx9Hx4/5HxPFWolJzMKUe++eYdm2HLH//0J15eXmnblnleaJxjnEZCDHRDyzjJqCrU7/4y23wr681tws3W8ctfvYeiefdOOoHaaJ6ePvP50ytQeH45AJqhL3z5cmQcRz79eBTgkCo03SrjjSTdTm0KPhTycWEcJ4Z+h23lS/Gn+jbfbOj7jvP5zLyuxJxZloWudiLHcUQBKRaSVkzzirWJxlnevRMHxvF4oN8outZKoCWR7X7D/naHaxuG7YbnlwMxRrabG2KUkMymaclZwMeHw0mE6mdx9v9f/2//D379q1/x8nLi4eGe83nhy+OBVDTjGLG2+vCMxvsV6zRRJRot+tt5ma6JUqUUNlu5F737cMvf/M330mxKkafnF7RpiMlw09+yTgf+4Q8/8ItfCBLxy5dXTufxSlFDGZrOcnv/gf1+z/fff88aMs/PJ7777sDQ96ScCHFmjSO73Yama3h5PfHgNNYZun5gWT0+LpwOB/p+YF0XjscTxhiGYYN1A3/40/fiL7WOmDwpRZQqGOso2fL73/+Zl5dXVh9JObPZDsTkCXFlPXqcq6leQTJClPqqmPnZNWxaNpsOaztubx54fn7hy/efJWpZw+vxQMySbND1O1JKzPNJUmWVwdjCOHmWNREjzLMnKw0KUilsdzusrpkWq2eeJnb7DatfyTkxzzPneQY0fddJrnqQ/IVhI+bVtboGuq4jpwIqY12Ddo5+0LUMkwQi66QM7IdeGC3zUvEdcnfabHesqyfUmK8UEymKHen+7o51Wfjuu094P2N0I6og7Wr8msa6FmONsF0odH3D6gOuCFv08fFJ7tLqJ26rcw0//PCDjFl2O6ZJLEvCIl358ccvdE7xcLvH+8w8zxwOkzgfrBhv28YwTmeUymx3W4yR6PG269ltN7Rtz7y+XLMZQ/C0XcP9wy3ONcIAxeF9qKoWBLhVZCxkjGa3E1ZqSgXnVDX+NpXspskUljXwd3/3PcYpXCOexI/ffuRwPDAuM1071M80V5iWKG/e0npzm/Dp6ZGSlVhSln/DMOxkwK5gXidcu8HHmc1mizIt5MR59FDEha9K5uX5TKFUw6lDAcYour7l3cM7fvjhM8/PT9zd3WDdntP5IL7AvmMN4tRY15X7+y0pBEIqNM7S9ltOn7/w9PrCGhbev7/j3buPTGPk+fkTv/7NR4z1fPn0yv3dHZttx/F84sfPT9zeP/Hhwy/5h3/4xLp6xnEGCq8vZ8ZxYrvdknMiBE8ICUPH8+GMUoUQR8mHt6P89RixtmddE/3gmMaVaT5hrQa1cH9/R9/t+fLlC33f8utf/6pakj4jMzjPaVzR1vDp82digpQyjTKknPFzYB4j6+L57odHttsNa4Dd7v6aW+GTIC9ubm85jSNZaYpELGGblvv3H3h68qxe/jdlHf1mSzfs+PTjF2LIrN6zrqGe0tIgun94j9aa4/HIy+uRaZq5udkxbPfk7NntNoQoRLgffvhETJ/Z7OSl1m86Qoz86c9/Zpo9XT9gTYuu1LhpmiTX5I2tN7cJKbqGWS74NeNsZnO7Z5onVDFsd3csPqNtS0JkV9Z18s9qhXGOrrU0jSOJVorTeERpRdd3hCQDdxDeyPPz8zUXUO6hnmHYUqgDb63IMWG05nA4sXqJ+tp3Db/61S9p257T6TPb3UAh1QZBz8eP3zCvE8fjSD/APEdeXl8kGKUUmU+ui0Ro5wRqFGT9Il47lRMhRHa7DakUCoqYEiEKzSwjib2n88zLyzNaF+7u9zRti2vaOtpZeP/+PW3b8qc//bGqWuQuRjTksFLqIxBTEqgvmZQTKiXGcUJrTdu2dWOc6Pqe/f6GlD1KGZZFXhrWSJBqDAE6+PzpR8Z5JMYVY4SUvtncYLTly+cX5mUEXA1i7WRuq0UGN46TUNq0ou8F4hVD4PXwwjieuLu/IyURctgCw0a4MdM0oozBuoa7fsO6eEDVENYNp9OZeZ758OH9X+rp/p9db24TxuAgQ9+1/PN/9k/48uULx8OZmAJd3zNNnnlJ5LLw+vpHtFKEtDIMA8ZKzt7NzQNt3/L49IjW4FpHTJGiCtMy020Gmqbl8+MXXl4P3N/f0A8D2mraoefp6ZXzecQay2boMVpTSrje33a7W/Y3HT9++oGcC22z4f3Hb3h5+SwtdtfxN//m7zBGkZLc3aY5sRlumGaBUpUcWZbIsi5stx1N0/HNN9/whz/8Xjqfs5S4gqeXslMbxc3tjWACUcSYeH15pXEdXS+puMLgKRxeD2itubnZ8/T0iLWWYeglQbfvcJuO58NBJHgq42yLVlByYti26Nzg57U6F8SSZCuo9+X1lVwSj09fuL29QRuFtZa264lp4YdP35NSxrkWpaG3LZ8+vzKOgbbrCFExDDfEVDiPMz5MrOvKNM3c3t6Qc0Ybx8dv31NKElXNspIKZCwvhzPee0JY2d/uxFgcFlKBbTfgY+b5+YUQI5oF7yPPz880TUPf99zcfnXW/+xa5irGxfL4+Mq6RpbFA4VjOOLRFGWIKWOMYV1mhqGjG1rmacJZw3maeDm+4uNC0wpPZVknchHAkHMtd3d3DEPHvAi9uQBd34MSAbI2tl7oi6QBtS1t19F3Pdo1lALL4quCBE7HQ83ik8G4UnLfKUh++/FwRtFRiuTGOyui5ZQE8//Xf/3XKKXkAVSmkuUyw9Bd7zHOOc7jCaMNTdtRylqF1oOU3MqhlcL7gHOuNnpkMw7DcE26MsbQdQPl9cS6Boy2NZOihrYYmQkOwwYfRLaWc77+WUopYhK0RNv2NbNQo3WpdIOOEDJ+zby7u2N/s+X5+QuH44idVrq2F8iz0sAso6HKNpW7tK2pxpGcA8sijghQrKuAotZ15eH9Lbe3e3KGZbXksjJOE0/PB9GMWoc24qR3ztL3PfM88sMPbwd3CG9xE/qZpusp2fByfCHhabYGRcM4ilZQGiGK3c2Ou3c77m5u8T5wPJ9JPpFeXwgh0rY9netolaXbDLjGoLTm89Mryw+fSCkSk+LldcaaQAgaYzQfPzwQwso8j2gDJWuc1bRdT4iF5fgk/rV+Vxkn4iqX3PSeGGX47VqDNolM5M9//oGwbvkv/rP/C5+fn/nx+c/4cKLdJm7fDbwe/57TceKX3/yK42FkWc+UUqCI5nO7EdmeRgDJORfu7+9qlPaKNRZTv81pWgQjaCxKO0IF+GqdWdZAzAmzOHQRVU7XOpZFxNbzvBDmmZIK97d7tDI0G1fp1iP39/fc3t7y/Q/fQ4n4tLCGBWs02lia3pKzwiX4+IsbjscDP3yS3MGu7+l6CZrJirox2tqtbNhu5UXRNA3GWj59PrCsvgYDmeq4UBjXsula+m3LGkdKMaAUIYsofNj2bLXh5u6WeR7F5ZESU1hRxnEav44ofnbd3N5wOq6ElClEXGf4+O0Hhv6W/+9//TeEkGo0NIQYmOYR5xqU0oSYIEdc7QYGn4htZrPZCu8ySBjnT/l5oqfMqZDIjOcJ6wx3t1tWP5FKlLmZNRRV5L4WC9YqrJO7R4yZZV1Z69u8cQ1Kt/LFF49rC861aF04HJ5IXv76MNwzqIEQCsMAJb+I5y0V+mbAuiT+PbK07r0Al7q+BeTePM9i7DVGk3OEqqstBUGBKMEaxlhQ1Wle+YJM05m+a1kXQRg65zgej2y2Pbe3O/7w++9xraPpGtbgcRRsYxnnkf3tHqUg5UzRRRKC+1aaKyqSk6JkhY8LVKpAYyy7mxv6fuDz5y+cx5GcBOicsgTiKCX0daUVuo4oznPAoGkahw+FogohR7qm4cvTF4yO9P0eq1umUcJqttuB/X5PKonTOV45qjYJ5S2lryOKn13TtDKOSzXeStv6xx++0DQTznYy/M6KUmo2eY786U/fYbRlGLZolUl+wVjD7e09w7Dhhx++Z/UzfddgnJRN/eDYbDteXw9VlxjFbZAdn76MxOj5zW9+xf/5v/g/8a//5t/yt3/79/TdDq0LbddUt4ZmXmeUkpmm9wKpCnGh6HgNSNEarPN0/ZnX83/HNDtc+w1QeH//O9ou0rfvaMwjh+eZaVrotwZndTUVD7y8vBBC4OHhgXX1HE9y11FKVXyh5Ps1TUfX9cTU0DQN8yT3usPhFa01yxr53e8+yIaaJt69e8cf//gnnOu4ubmR1KjHZ1wj5aExhnmeOZ1ONX/e8Pj4SC6SvCSm6whIrN00+ur/bOn7nhAirmkx1jJOM95Hci7iuA+LwBO04A1lrrlKaawWlLJ0nWPYCJriNM50XcMwdLU839G1woJ9fHrFuA0KVx0dicP5RMmWnDIhJHJc0TpVf+jbWW9uE87TXN9UkvITU8L7yDy9UoqkEwn2ENRGOpohR9DQdQPT+CrcTCPu/M+fv3A8HumHhq5zFJVROhOjp+t6nDNkkyle2Jfb7YacE49PwjLdbves3jNNM02zASV6xsa1DBsxpa7rwrIuGGN5ePcgQ2K/0DYyw6Mk2s6hTWZef6TbfKQUj7Mt2+0Np9NnGid31cIJdCRlUfv74FlfV+Zlpm0bUIV5mYn1/nTJbYwxXh9krQ1908q5qCGmQAji+/s//B//OQ8Pd/zX/81/y2YzcDqNPD6e+PbbTrD0aRVMoC4cDoeakqWv91Vrazc1iLi7bRuZl+bE6TTifSL4TEoKpQ3LKjPVGFPVjoqDXilNQckd0JnqL4zE+jtRCglqwtNKCCtKUZsrAyF4Pn74BdN05vD6wjQHtlaTs8Kv6aqEAg1FqALeJ3Llk76l9eY2ofdBbEuhUHKiG0RVfziMhHUlpkTTysC47zuJwlKKEGItT2f++q9+R4qZH374wnE80296yUnXun6Rjq5vxbw6dHz69IW2dbRtz2bT8/J6pmlaVu/5l//qv+J8PnN3/0CuIoHD4UQIkZubO5RaUNoSQ2SaRuZ5JWVpAMXGMmx6xvGI0hPvP+y5u79h8TPz/D3L7PDLCyGOPD6PaBM5nV9xTUO/eUcMwl5davOo7VrmZWZ/s0OplpfnV0H5OYNSXd2QgZwDeI+x5upC3+0kcm6z6ZkXGYe0bcfjlxcJ0jlNTNOEdZIJcREchPAT61XoBg23t7d0Xcd4ltmkMYZpmslZmjnNTY/WlpQFPnw+i8exoESYUP+8nFVN39pwPp9JWaoLARgHUT+1TXXGK7SSUJkvX56qx9Phl5XgYb+9x4fC+XQGfabvG1IpVaSfSbmQUxHxQP5q6v3Zdf9wy83+PePkeX19ouk0TesY+o5zjISUJafAKla/kLKWN2sspORxja0RzD/yzcdf0Pc9zy9PdK6V+VzO1SbjOByOPD+98utf/xqtDefzWaKqa+Z7KYqn52diTOx3d8yzkL3O4yxYhVKqwXhAaU3KGXIiR9G8znMgRtFnoiLDxmOdY5lfqwJmIBcozMQ8oYi0g2G32+FXL4hBBa5xgn8/SedyDZ55jnS9tNyXZaldRYFfQabtetFL+oR8zcILfXr+glKFu9tbjHWAputaQeUvnmHYs99vKdkTw1JHGwLeGoaB29tbUSlNkyATtWa32/Pb3/6WP/zhT6xrQGHIdUNZZ2g6UawcjtLZDSnjvXQ7ldKsPlQnx1pfKg6dRE4now51DSYNPpFSrh3pUe6SGLR2lCylrLGiRrpUTDn/FKNQSqZ8la39/Lq52aCIKJW4ud1gmkLRmbazgOWhu2NdZ7QVTN88j3x4/5FPP35G6cS7d/ccjke00cR66e/6Hms1/abn9nbLOB5ZlyAJRNsdoPn06bPM2FImpMKwHVhDwFqxRD09vzDPgZJBGYO2mmlZMUZzGieUgtv7B/GrvR6wqlBUJJVI0yrAMk9SvvlZUchYq1DKo00gZk9OmaG7JSbL/TuZZXnvabsWVWdx67oSQqDrDKWA0kHCRI2MTXJO1aCsaVvLMi8VP2EFkqsEeDQtnjCudG1H1woavmkbuq6HosSVUe+AF0nbuko60/l8Zl3EambsDu8Df/u3f4/WuoaHOiiakJM0WpRmWSUhGGdQ2oA2aCUb8vz4dM2ktM7Rdh0oxXI4EIInRcmt9F5ekCEkKAVFwOiC0Q7IKK2wVoJlmtbw5emp0hQE46g0ONtg3pan9+1twnk9o2lZVg9kPr5/Bybx8nwSHWH2xLyybQa0zuz3W8bxxHk8cmPuGMczpWS6rr2m+5Z6Yk3jiPeCTBctZcZawzwvONcynmdCShRlMdaRcsRQyWJZmCx9N6BNYlmmqmV0dUwQeHx6qmmyBesKxoJSvmLkE36FeYosS+bmbo/RQrJuO8vQ3pAykDfkBMvq+Zu/+RMfPvR0XcswDAybAZRszJQ9bSNWr5wTWkvpJ6h5Ta4ZgagCqmCdQWnZpNN8ZpkzpVhKNoQgIKefsBmB25uBYZDoMu89WkvZeSlPjTEY41jmhePxQIzwzTfvaJqWcRRPYFKFxcvPE0LgcvKFmIT2/XB3nQ0CUqnUYB/rGqxroArP11VORYAcEXtSzKATygqEWSl1fdG0bc8w9KyrKG+MlbJ9GKQP8JbWm9uEp9kTwsK6BrRW6GfD3cMt2jhsiyQvKQgpUqIETmptaZoNp3Fht92SM6x+ZTNYlDa1rU91DAjiolBAaXwMlAVQmrYfaFAordFo0KLLvMSAucZiDFinMaYnJ7FUpVxIMaNNwTqHUpbtfos2SU5to3Ftj8Lx9HhEu4YlJAbX0ndbcvLc3d4xjQuvL8INfTmM7PYD9/cPkoK7yKmllcZZQ06ZfmgpGVJaWdfI3V2HdRumcSJ6KB2kKovLSRoWOYFfEiUKaW4aV6bzjDWGUFaUilinUAVa13M+PaO1OO+N1gTv8atnM2wwxpByQivLw8OOlKj3RrGPTWGm1BSnftiInUpbnh5f0MYAEk+wu9lSciGmSAyR1c9QJAbBWitSOJWw9UXQ90JkC2FBGUNMkltpnMMnz/HxII6SpgEyysgzsNvvSDGRy9c74c8v2xLDTKSgUcSsOZ898yKD2OPpJExK13A+i+3n9maP0oEwe/wa0VruTvubfQ0aOcjbVqlKxxYUfMypXvwLyzLXxoupr1q5SwQfMeaSZSD3lpgjbSN5g/O8Yq2VMqo1DENLSoVSTEX8WVKKlCJNpxBXbNPic8SmiNOOGBU/fPdUTxlpqGhr2G46xvPC8XDi9naP0455nRh6qQKUUuRisKYheAlDGYZGyjLdEkOpM9HE+bxwe3snhtlFSOaagCoKqyxZbBk0raJxGl/lb+scuLu/pW1bcg50u45hGADBUshwvROp3Pn1+rlZ50Q2tx9wriUGcagoNM7pOsOMWCv+RYBwFmWUNU7Az2SMgf3+TlwXWdCXzonXdJo9zjiMszVvRBGjnOhKabqu5+4epnkCVXh5eWGeJ5xzf4kn+39xvb1NqBKuMWjTCP5OKZZlrbkFMouSAEsroZRGopov5ZRSmpwCSquKqEhM01QhR1pa3tXSY2q73TpHi2IaVwr52nbfbre8vr5yOp1qloEmpgA5cZiP1ewrl31nOyDzejiQIigM252Eak7juQ7QCyFAzAGVJEq6OzRYa4irmFFzKThkvhi9ZyUTYyKGxOFw4OnpmYeHO5GUeY9fgyDih54YPdMcyVkcEE3T8s0331RQcKLve07HmV/9+lu+/+4TIZ4wpmG7a1iWUpOPpLEj9qKMtQLJalxLzhL6AgW/rtfotP1+z48//kiMkYeHB969e8fLyyv5NKKVoyTpXsca9NM0DdZI/mOhkrVXX+d38iJUWqMS5FQqA6gjlyjVkZbrRUF0uF3XUYMNaZoGgBgj0zQxzyOrX1nXme1uy/3DbZXAvZ315jZh01iGoSNX0KxYfnQd8FoRWmtVu2aOzXaLD4F19XTtIPevFGltS0pJ7hkp4ay0zPEBtDQ5lC5M08g333zLsohIoGtbrJWS55LTbupN/nJ3UUqjtag4StHVgrSikpx2KRkoYGyQ/PRJHAcUjVbykOg6/1pLAMDapoagrrW0spUyrljXSD9s2O+3/PDDF0JIPH4RCjlA13V8+PjA6ifG8VCH3ZkQF5TaobXmfD4TQuQ8Ttzde5pOGhzOwu3tDYfXU5W2Vd9hiVA0fbeBoiXfIcvLS9dOsLUO7z1//vN35Jy4u7vj5uamOjhWnGlpXMM8z4TVywxTgVaFppXZo2TUKrTuUErK/xASJedKy9YYUxgGGa0oRf3vE0rLHfKiN73OMC8zxyyOkKZx9QVxz2az4Xw+/cd9qP8D681twjUF2mGgMRatLdPqWWZPyBlKYdN2Am8KC33fkSmcTycyhVgypFKR7RlfB9jGCgJCa2kKSBfOAom2ba/ytb7riTExz+Kkzzmz3W7puu769jTaYp0GfO1EQghZXB6uw7mOECLGNqRi5A7XbYhBzKmldupyTljT0DaNxL4laac3zcAalquqJOdYobqZ19cju92G/f6W7//8yPEw8e79PdZaXl5e6HvH0IvYOgUZeo/jKDPGtquYC5kb/u53v+Z0lmZX00DT6jpSSTKjyxprDSlJmbuuMylHuq6V5KOuJ2ehnDdNw83Nnq7rOB6PHI/HOqCXsUcIHm0UJUnntnEWVTK5FEKMNK5jv7sh+MzpOBF8oRRFKZrTcWSeF8bRMmw6cs7My8w4jpWeIKfipRJaVxlTtG1LKpm+bVnWld1uW0/GSaxcb2i9uU2otSPlQoiBlBameSangnVa3orWirWmM4QYeXp+xvtEzPk6W9IloY3Be38dMqeUUFrTNpbNsMFaGKfTVQmyLCvjNNaZk5Q21lratr06D4y5KDtEofK73/2GEALn80kG0trIsByFUQZtnDR5dKn5gQVdXf4kMEaE2HmNDF1XS+yEQqNQ1ePYM/QDbddxeH6hHwaca4ixiG51WQVLOJ8Yhp7tdkOMgWmaubu7xRhHyaBVQ8qh/vXIvEioqlKREBesgzJFStHIyXTpukpnV6jbHSFUjWy7wzmH9+u1Q3yR7bWt3Isv6b6XbEAQAUZKEmOmrMZWR773nvN5kVBSLKWI86MUad7IbLIGxpwnfAi0bY/WXCuVi/fx4shQRdXNjFD16tyxfG3M/PwKAVY/IkLkxOoXSeWtdz9Koetb+to+TzlXVUjCGAEUOStlzryK6LlpGpquvXbWGuvwYbnOj5wT94CEjhigXO+e8zxXWFKukjCNXzzDIDjBnGc5kXOpZmSP63pCDJRZ7relCGWsFBEg5yzteKUKMSeUKmy6gZIVzrb0/YaIxxmD9ytGGw6HE+MoaUfHg5SOu92ubhIhCwSfCR6WJdE0HVpZ5tEzLyslF1a/cn8vzgijHG3fsi6Bm5s9z8+voCRvwlahQikJ0IQ4s9vtuLu74cdPn0SRQ/npnl2TfNd1vX5OoGgbW8NbnFDCzwt/9df/lBhWXg6vWKXpe/F2pgTn8yPGaMkZyQXrYLvraJuWED2lyHd9PK5Y3WJNA1p+DrF7mauFK8YoEsOkcLZjXSQstu26+nu9nfXmNuHhMFdgkaHtLNvdlra1+LCCjvi1sNkOuKapCIssnFGdMNphDSjStXy8gHvbrsPZirJ/PdJ2tiYjBW5ubiv3cqhOcV83fUfTNLy+ih41Vld7jAlrLE9Pj4zTCa0Vts7MQgi0w4aiIOWARWGsqHrWdSH5WO+UAAWrteT6+Vj/t0YYNg1oJCfQKF29ex3LsnI6nfGhsBkG+Wx8ZrO5FYlW0AQPulWUrGspK5+BNfKwx1hY1kyMgv/zXoby282GeYp4X5svfuHjxw/sykBKEes0m03HsswIrdtUN3y53iUvDvmmkTtuDKnemWtHVmlJ51UNVjf84Q+fGUfPZqNRytA0Lc4JZiNncYigcrWJtazLQorgugZnW3xarl3Tvu8FyFU3JEWhtNi0SlEY01CyIr2tvszb24Q5FQmWpGCU5v27D0DE+4VcMiVlGtuSsyAnstaEdRUkfAhkI2WUjChuCSEwjaOcmE2DQjHPCzk7col1jhXp+455fkWpTNvaOojXKJV5eHfLPM1sdwPHw5EUA/MkJuFSEhjByvd9IwPuokDbCmMS4FPbWigty+LrbFMMtpe3eK6n72kciSnQdI7gIvubO3bbgekstDcZdZyunUXvA23Tsd/f8uc/fS/A3JxonEFpyzSdibXTKSe2CAuWxVf5n+b15chms+XubofWI2pcpPHiNgLIyjJbk4QqMFY600orCkVmg66paI6A0RoFhEVQHsY6Pnx4YLtZ+e677xj6oZbimZvbDZtNT0zS6UylEEmgqBDmQmMajHNM48RU6XEhJYou6CqRKyipRpYVqkBjnhdSXmrsmqlKLPn73tJ6c5tQkWmclAxt07LMC1rDukaenh652d+ikflXihFnhQMqwZYzMVga20FWqKxIPpBjEk4Mkn9H0XL5R9rjT0+vbDYtyzKijRHuqDFomzFGsd32nM6vDLbFNYpbt6PvBpZlpG33WCdl7bouoBQ+g9KGdRUFi9EaZy3tvqk/r65wpYhSkMksNT0II53SlGFeI8MmoYxmDZ7oI4qGXCzaFdAKHyIUxdPjC+NpYrvdAJkYYRpn1lVK1bbtUFrx+vpyDdEUuFVPzqW6OsTPaK0lrgvWWc7jWG1SDXHxdSxkK+VNy1230svXdcUoDQWWUcYD2/0OrcGHFWM10zKB0iitUEa8jW3XkRcv2RMUfC4Yo+X+XKBoTcqJyU+E5Lm5uSEET8yRGENFRhaMa1HacTyeaoCPRKOlWNCpiK3KSdz6W1pvbhMaq69Iemk4jJSSa+s+s98WYvFQCrlEGtPx7t07UgU4RZ/ZbveM55Hz+VW+nGqdUerSdDDV6SBjjtvbW+b5jFK6IvYDxjjWRSBFjYuUDIfXIwB3N3ucc2x3MgY5n8/VzaGZ5pmEkVmgUljTXLuExlgpiUo9Xeq8E1XQVXScZMiIUoDKTPMo0jMK3q/EKMoZ4wwlR1IOhJjZbja8/3An2s+cycT6uxtUFXWvPnB3dwck5nm5fs7eB5bZ18BUaXIUYJ4lXsBasSKlFOuGbCsBWxoc8zxDzZxoXINWiu12y+3tjqIkViCETNf1fPvNt0zTQtv3nMYTKSewtnY5uYKmrDOQSiXlaXJJlJLY77fc3d9wPh0Zho7zWcBVSgmhzXvR4Gr3E+LROum0X0Ys8hy8nfXmNqF0JnO9R0hSruSOW7bbrlKYZT5UlsTt7b7S08S5cP+wZzNs8P4MCqztiKHQNC0xSqMFitDYUkApaiKwPLTOtox10Lssi9C+1wxFOqxt2xDCwjwf+fDhIyFI7Nh2u+Pl5YXxPJO1IUtQW+2sWtY1Aom+l4bSPM9ix7EGXali1oqTo5SMdaCN/POrX1BZNKDOaZSurvvqKLm7veHbb77lx+9/IMZI2zQUZZnn5ZpUbK3ldHrl3btf1g6nBK0uNb89hCCuizquAa4eRWNsvdOl619b15WYLpkdCrRClSKlaL2TGaPY3kiu4OpHPnz4wO/+yT/heBx5Obzy3/33/z0xZFL0kr6URUpYirgsjCoYrYipKmms5CKu64Sxis12wFrL589fAAkPatvu2kiTGWJkt9vWVOdSma5fu6M/u7qurV1L8Y5tt1ti9OIX9ImSJbxZOmqRdfX8+ONnNpsNHz++45tvPxC8p5Cq0LgREnQI13uYaEBls8foeXp6oe9bnGt5enwlhMK6etY10rUt59NcQ0KFnzItI/M8YltHjJnbm3vO08rxvGBcJ+VvhotQPEZ5y1tjMNric7iOPQSMK2iKrmulTFOKzbZHKTgeDjTNRuK8moxShu12K0iNRUpGheL5+ZnzeK7586mmLDmMWSklYYwE25QCoLi7u6NtW7777jsZcpf875G6L+6HEESiZ4ylZCnhqWbclMrVbW/qWCdniUZbxoWb2+HqwliWhe+//x4fIsOw5fPnz+Tq7vA+4X2hKF2/30zTGrrGYrQ0fYw1uEYzTWeUFm/kPE8oxE1ijFQxKWXZ9OsqrhDb0nbi6uj7Fq3F+/iW1pvbhJcN+I9nPpvNHu9DfdBmqC4J7zMxTDjbyN0qg18D43iuWEDNMPSkNNeh8sUEzPUUilFVjIOtRtWpEtMyXdvTdV11ETi22y3zPOJjJBfNNK6sq8evmcfHZ7p2YH+z5zSOGCX3zaYRDWWK+dqIGXpxQxijKWRJlPWCd4eCsRrnRHPadT13dw/kGDkfT0Kf1mIu1kqUOeM4C+Kvit7bpmWajuxvdsKtyZnX1ydQ8OOPP7KuK7/85beAVA8XkfQ8z9cZ6M3tHY1rOZ/P1+4paErOlIxY9sl1BpdxF+5olDmgranGMcTrjPX777/n9XCg6zdM88yyLqIkQmOspnHyYg3V3SL3wiq4z5lpmthsxNO4rjNPT89oZbi7uyMl6XQvi8fWF0Y/9Bgnn6XWhq67wa/S/X5L681tQsEYmHpyWcG+q2rkxNSk1lYG9LHU9nRHyTCeV9blR06nI8sc2O12lKKq+0DUH3IayoN8mYl5n5nGheATWssmlTLMME3T9VSeZ2l0KNsIT2UOrD6wrIXNdg8ojqczqaQKrm3rpjconVmXlXGCzWZbk3OhFHUVE5Qifrm2hlhuNjtKGhnHGZVK9d8lxnFEm5Z1TWK81ZacIkZbKEocE14G9tYq2rZhsxVl0Lp4tLa8vh7YbjcVeKyh6GqWlbuV0UY8mP1Q534XuZ68XLRRV0uQZNTLf8iFtmvZbQacg9fDK9Y6+q5nbqSxo5Vmu92CysRcSFGhrQFd56lKXSVpMrtVIoJI0LgWhSYG+Zmslc8x58y6XhpHpqpmHEVnUpKXqLWqwpe/zgn/g+syTDXG4NfIcT3VGVRCo4k+1CyHah71kWWdyVmTgqfrW25utvjV8/T4ClAfNin1tLnMD6W9Lgj6XPPYDdYYmt3uei/c7XYAHI9HOc20JtbZWy7QOEXTdNWJITM25xy//vUvSEnU+yGuQGZdp/pnCH9UHohSlTmJEAPee8ZxIiWYRs88Hdn0A1plmkbMsOsSWZdYTzHJctBO0XUbtFJsNjsg4/1C00oJG0JkREy+ovBRVVWUrim7wyD6WyG8BS7x5M6JcugyhmiUq53GgPczKchLajtseP/uA0YVzuNzJXbv+fzlmf1+j4+R8/mMrve7jw8PnE4zr4cz5+nMZjOwGTrpdCeFLiJ2SKnQ91tCKDx+eaGQKVlVmZqEqAp0ChSyyZ0zLEEaeykrjicJ4/kaCPMfWPWlexVJC0IiV7e4FdmRAq00xjWkkEmxUJJinlYaZ7G6wWpHtlJ2rstKVvkqO+u6Bm2kuwiy2Teb4VqajeNCyol+aEnJs7/ZsswzShf8spKVrXI0g0bj2oam7ZiWGds4nDO8e3/Pui48Pj5W/kqSIXRK5BIxSJuepLhwh6SbKpyY8TyRQpEQT5S8IIDN5lZsPONZyHNFc/0DMJQMWRVRAlVtpTGGp8dHchFWakriTBe4roi2+66r0ddrvafKy6DUzydECcW5nDzjuDAtE7utKId8kA4lSnE6nYCMtfIZnU5j/TnrZ2Zkvhiix1dSHGTaxtI2rv7ckRBFamiNJVX472XOGmOo7BkwJlS3hUgD26a7codSjGLtMvaqUvraHf0PrII0K6yTWZTSkdN4xFqHKmBVomsMVitU0RjA2EZi3LWiaxq6pmW73XI6nSRnojoU2irmDR6aVrLXL9I414j16Pb2ls+fnq6u+f1+w8vLCzGKT9E1hlglF/v9jpwL79+/5/7+jhRX5nmmayUp+HB4vrb8nTOVAD2DKiSCzMUkUoIYPMYoNIGmkzvktu+lTCaKmqSV+eHnz0/ErDHaksPF2KyIJRFzrOW2GF1zhuAVKcmDrTeCMNztNxijKoWgJ+fEOJ3RSoboIWYyGq2tOOFDrPc0hU+e7U1H2/Ysi2dZM0o5jDPoxrFkT04JWzqmg+f56ZXd7S3TLNVMQVVyQuT1+CPOSvxd41qCz2JFK0KpuwSLKq2ud0trLfM8EUKpzFlLQRixioxoUSOFhLaublbZyPP8dUTxH1xSEkp5sVSNZgxbYswSr9X2fPvxHX0/8Pj4CK6IORTo+hZrDN4vzIvcI0JccVZy7cXqkplWXxs50sZe10iKmd1+z/k0EaoBNUZRu4A46EX4Kwp9Yy3ei2Xm8+fPnI5npmkm+MiTf+b59YWURG7Vtj1KqYq870nk6ocrOCueSWcUMa3c3uzZbHrIiZgSd3dbbm+3vLwcUBRSjPRtR7oSAMQe5KylpARKThVxd3ica3HW0TadbKDq0JC5qahHzucJrax4FFePMQ5tFUZfPJhIRNoyAQnnBL5ljKJtLVoPdbRBPeUSmcTxdMT7RN9tJOSlEtliunRhFx4e7thut5zPZ5ZlZBgGuk7sTylJ0IxfpbN9jWZTBmdbBJdR6Pseay1Pj8/1+5QgGNcY5nmtLxmplFKUz+strTe3CXMSOZqEk0BJhZLl4bPaULLieBh5fT0IMzSHarOR8rGQmOaJZZ2uYuxcIkqLE8PHIieaM4RQ6t1QUmIPryee4is5STlWCjSNWIoU4j+kKKyVDb1UHeMUV9YlVS1qIiSPMohYvGooZS5YxHSavMSYFZklahQprRiV6ygEconEuLLbdmw2O9ZlZV2FlP3x4w0hxUpZC/Rdx263ZZlGxvNZ0H5GE6OqhLFC13WEsKK1FmJaFvCSrpAkU93tlzEOJdf7c0YJ/IamcdzdvWOz7fB+YRxHUr74aWWGGFKkhFI9jYqucyzryOthxDiHtQ0qF8Zp5vamZb/fVv1pYl0Xbm/3GFOtXtZctb9aa3LKrHHFr5KiVYqYvIdhwDnH89NLFZBfCGsOhfQVYpgl06RoEl/nhD+7nJOToeRCKfyjTDl5e1sjmD6tLauf0brw/sNd1SImxmmi33TXBz/FiDEanzxhCqwhiKcwOU7jiFZyUuVUiBHadiu2meUggKglopTYX7bbLW3b4hpbRcxVBge1PQ+gsdZhrK4PtiJ4OWnlJFbc7PdoKxtWFWjbltdnz83+ntY5tpsBsOy3G5YlsM4jJQcUme0wME0T6MKwcfg1UYpHq4iz0LYGpYQ6bczAdrvjdBw5HA7SzCjyecRQ5WemIeRwfdAvL5cP33wgEplnT0rQ960I5VXmy5cv9b4nJ+Xry4Gmaen6hhg9xkjsnFY9ry8H5nnGOU3RkiUxbPdsdwO3N53cC/1K0zru7m/o+5ZcMn0viP5lCVcXRkqxeggTSkllkstP5ISLuEDXlOLgI9a112fLmoaYIn5d/2M/1j+73t4m1OZajlJKZaDoa1koX0BT1S4ZpQv3D7csy8rjlxPaGvpB5nvGGl5fBZB7yeULMbHZ3bCGSK7JsiFCjJkYM0UHjsfjlW5NvcynlDDegzEUCs/PL2w2m9oskgaBOAmk1rkEm1ww9RfhtNDBDTGtaCUD/NZp9rsN281AjjJzC1HQhn5dCWGicQ27egL5dSGrRKc6TqcjjdacVWG7GbCbnhgjL68nmqaTDu+6sC7SnXWNwTkrWtIa+HkZMZhqnRK6W8d5OdeNpigZUdcoGR1oZauVK+MaV08m6arJ75toWoV1mmHoKAp8zHW0IeEwOYvkzznLdru5NsZyzigUwa/XzSXlK7VJV3ml60JMvo6O1msC8jwveB+w1gmxDRjHkWmaiCmx2/X/8R/sn1lvbxNa8YMp6hghUcNCNEab+t8zxipsY+m6VhQas2eePZvtlqbp2e1vKEVj7MTN7QPPz0+grBC3smwMaxu0sYSK9MvZczoJbl1pVdU7QhQLPtTOYcbuBoZB5HPU00XVaDBtQGlbJWCplkdy6hljJJn2mCiscp9yIjzvu44cM8fXkfNxIueJphWxOVk2dU6Su66VqIZSiLSuYbcZBOFQJWdT5aqIfSdfZ5zGKvphV6V/jk+fvtC1gvN/eXmun4lQu5+en4glonDVuRErbsNU87HifJ6w1rEZhD1KVdRYIylO3i/SJDKw329ZfCAluTPGGBnnmZgiORXmZqXUWaN4FDWuaTmf15+kcdewm1jRjhJDfnHKXzq6Spn64hXejnWOfmhBSxCqQJLfznpzm1Ah90LBTqQa2dXQOHnTGg2FKPFoVhHCwjhqxnEhRo0PBR8Sr69igs1ZHqAQpFvoQ0bplrW2s7XJpFKRF40hIfAmUwrb/fbarrfOEHzAOMP79/dM4/ma14eSDmVB3Byif+T6Fg/VVZ9zxPtAjAZnkyAeQoACk1pYp5XxHNFout5gbOabbz4I8Nd7QOaj1hlKDWEy2pBCQjkn9PCccMbRNrmKEwol59q8kGbMPM/4deJ8miiZGj0mHUOpQgLrmrGtY509y5IwuiFFCD5IU6QouV/FwlJCdcCLyqXrLM62hLhSiFfb2c3tnnFcWL2/Gn9zEizj+fQTjEt8hLbazBKXBF9r3fVELOWnGARxRzjG81R9nzL2MNbQ9Q2rX1GqcHe34/7+9trdfivrzW3CS9pPzvl6yhkjHTqKjMRSCqAiOYvaw5iGZTlCMUzTSsgvVXEjJ+jj82vFwYtRdl1+0g4Kg0XVNrg0bEoudbhdFR5aVBtByckXY5CThkJM4SeEXiooJ4GjKCrqMFd1jvwtfS8U8BQnLtzNvutIEZIvGANaiR4yJzgdJ5pWHr6UIsOmJ8aAD0mi36Inx0TXSRrTPI1Y13B/P3A4nK6BLqL7lLz6ZUkY08u9TUNMF2ralmEzcDodQYtC53w+kRLc3uyw1nE4nDifz+z2W7R2gs8PkiEYU2SeVwoyoklpJaVC2/bXZOFh6IhxZF2DhOoMG9bV1/ltL+QCH64KGK319fO9KIuaRhKnut7x8vLIdruTplfr6otAUYrDWBGxh+iJMRCTq6KJr8P6n125JEROWDBW0Q0N67KyeLEvOe2ujRJlZP728noG3ZBVYlk9S9UryryMWsrIXQMFSpfrZo8xkZMmFWjbDlKgaxusNqQQsUZffy5jIKfA4/OLNABsQ4oJatKtqtpKRSbnSIhe5l+tY57lpWCbjDYXR4XMDYsq2MZx9/6WYSenwLrMBO9RrtD0Dm0L53Gk6TrCKCduzHXuViArKEqTVVXy5Jmms+xuNvRDx3kc6fue8/lccwgdbedqerE4C9rBom3GNtB1GygGDexvNnS9ONNjUKSsiH4mldpJVYLtSDliG8c0r6jalEpJXCLLsjBNM9988y1D2+KXlWk6cnPzLaWIi2VZJtq25eZmLw25mJj9gq32tnWN1znhbrdBG812d8PzyxPWCv5ks9nQdxu8D7y+nJnngtZOMJezoD70G5tRvLlNWHKqUZcS3zz0LV0raAnvPY1x1SQKKEVMuQaKKjCapoKZQMoXOVUhhFTzGDqyisQUWealYhOa2mApGOMIXgzDtoKXQDZyWxst4n2T+1eIiVwuXd3LXcRXhYdwMI1RdN09Xdfw9PzI+TwyDJYQEilBihBLQJtMJknpqQoYWMNKOkvoTNO1pCL3Lm0spQhz9OLEKBXvGGOQ4E2tORwPzNPCzc2eprE0jaVtHdpe7l62Nj7kd42xXJmu6+LZbDoeKq5+XVd2O7EPLWvgPEpFIA2on6xXUjZS3SESUqOUEN+mSWR7WsF2t2FehGx3IaaJhlbKTW0E66FU+UfpW6FWPhO5wDSLFSvGyGZzizGKw/GVnMRuBTUSoO47GV/8R3yg/1esN7cJpSFZ6glWqkhYhuzGtLRO2uDWtShbGSpFzJ+N0hUpUa6dNqVUbaiInScXuayTRemvlKZvW/lyor9e/C8ibgE+yYjkYj8SQ+u/v6RrK9+0QGytRHkFQeT/6lffsr/Z8enTI/M4UtIGiITgWdxPsWMXo60zYlFKUfx2zjaUDDEISVxVaZoIquP1jnUp5XKGWBLLfMR7KcFySTStoU8NMQoJrWkEYTgMO7z3HA6H2ggxovZRuXJ0NHf3d5xOJxkJaFOlY8L4SUkAxevi+fDhAyklDuNRyGu6YE1Dipll9tUh07G/2UkWorFc2LIXY7Gv90bJPqyM2c2Gx8fHa7dbqNyFtm0oZOZxqt+dQSvH+SxKq2HToZPQDqSj+7Uc/dllTR3OKqBkrBFL07pMaAW5CFDXGINtG3KGdJ5IqWZXmExKVJmTAJZEbB2rO/sitSyouuFTReHJgL7Uu6f41VwjZdVlJibDb3/tyF3ur1fCF6CUaDgL0tVrGsvxOHI6nbGmQbcWskMb6fimlMhJWDExyf2qda24xKtD/3g8XhsX67qiEWGzcw6UuxpZpRurcKajVAxIs2mRLm6p9DMDSuDFxtgrO0YpabQUxP7TtK6e/IlplmBSkKi2eQnkkhg2Pf3QcTqeKPkiI9NM80gu4INAeJ115AK7/Z5lXSjA8TiSUqgVS64OFmm0qEohvzBEL9S8C9ntAg7uuhYfFtrWXU9rrR1Gyws95xXnhNZ3d3fLOC74NfwFnuz/5fUGNyHkmmykVcbogjVKuqJFAMDaarxf693PkqJYkxYvcqVc6dDGgrWKzeaW81nemgo52UqO5JiklEMewJKToBG0NAJSSpisr3K3C4FNPHPmWvYCXNB/IUgpm1IFIDWGGDLPz68oBcbIA3LJ7zPagZJmQtP0QpHLWU72pq0UNnPVh6YkhuZlmurMra1SLjm1rRHLUkyZnBJN6whhxTWW0/GEUhv5nK0wT2318R2P5ypta+T3K9B2PVTDMChOZ0EuPjw84MOJeVnY32yJcSUm6dwKnl+6wbatL5KUiJUwEErBpwwlk2KkbZufGDHGCsG8jnNkLpi4cEUfHx+vFYcxhr7r0Gj63U7qTJWI9QQ1StE5iw8LD3d7TscD+03P46fPgkp8Q+vNbcKcIk3bopVEZacYCF5hjSJnTcwRnTXiGFD4GKmJWVxSgmLy2KzI+RLEMhPCCkrkUI1zNG1H0AHvQ5XIZaxWpKJIOaK1vUq4SsnM81S9h/56D7s8DD/h3OUEDWREY2krGPfiVlDXdr1oVyMXpH/OME0L3q+kFNnvNteSTN7ucncVW1FXTzE5/YL3xCCNnhglkz2EtepTU5X3UbuZimGz5eVFJF5hraZc113zJ5qmxTjH8TiBUkzTirHCEC0YzueZZfU4Jy1rKRcbYkiVXC6I/WIUBYWuM75L5oRWmpRL/dwAVA3DScQQq0E31SuFVAoX5ZRzgjAchoEcE6ko4bRGX90h0FgHKG5vbqWSyIXWOo6vr/SNvW7qt7Le3CZUlStijBhIQ1ivps4YE2glQKCiKVkTfKiC4Ih2l/JFSilUJiYvHkFXIU/KXO+AqSYRVY+4/Hu1ZQ35J26pMfWhiFcrlDwglxOS6zC5aSRIJsVcA04KIcqmkiQhXaneDRrZXMZoks9X97qckJZ1DVd/IwiBDRSHw5F5Xmgs12DNEDLzNInL3we6rieEsf6zmabpry+AlBQKR46OlDLzKMEuF5dCybIh59nz8nrAGMM4zux2W9pGEn3HccVYR9c3NfMwX0tBQXmU+j10EkmQkvx+1uArl9Svvn7PYlXzPgi2Mpd6Jwy1i1mupup/PK5o25bTciKsnr5zhOiBJJQ8LTkmqkCJmZfHZ5QudF1D29h/r4J5C+vNbcJ3Dw8oraoLfK2hm5qu665duWWOhFjqXQ9iiCgNjbGgDTlLw8I5Wy/9tQS93KGQrEK5oMsD07S2lqJGOpT1YREtophdL3euS+lZiqQXXeaRICfh5T4aU6DkhNaFppGfwzlL1ztKDKxrYl3ry6VyWy5/xiVF6TIXk1OuhrGkRDN017/XWUtuW4wRcrUMqjXWaFxjr5pKqpj50+dnzscFirrSrpMPGFvYbASzv4YFlCHEjDaOgmFdBTDlnKOpWt1SKWulYvAv8XIXZqjSSnD0uVxfbCklQgrkJM2zEIKclrVCuOhDQebGVwlhDUhtGocPHmsNfsk1gFRwFlqLLjYXaWqJ80IRQ2C4v5E0qfTVWf+z6+OHO06nM7tNz/PzEyUrfv3ttxTgu+9+QKMlRTcJc9IYR0ye1jnaXhAGfpWTyVZ1/7IsrPOMa5w0RpSiJAkCzUFRLGz6HmM1q/eEIs0E4zRKy0ig7TrWda1ZC4KRuHRxq84HEPsQ1YVgtZLyqGlpm+pQt1osR0YJpbsUUm2hhxSEEGc02+2Gvut4fX2l7ZrqgDDyJs8FXd3vCsWUFqyx0rgoCh+8WKS0xF6nAjFDiheHiUfrlhwTIWVSjkzTzLDpaFLmcDqhjauu+kDjenJSzHFFaSFjK2MZdr0Yk7MilURGWKjCBhKHu1ZCStBK1Xz5TIqJkiIJRY4BXUHPF9+gs4btpud8OlEomMbRNoacijS7xHVK23dEvxKjp5DZml5K5pIpIZBLEHG7bmga8T+eTxOXxN+3st7cJpQ8g8S6xivd61CxEsu6EhNQ5B6Wqru661pco1EU+q7DKkUu+VomtU1D14r6JnhP2+iqQtEss3Aqp2mkH6SEtU46hIVMzEk0q9ZhkoaAOPNrmRh8rJ3Sy0lYMxTr29YaQ9e2ovpBNkLKHtfIbHJd5c/PJVeDrViLmq6h6Vt4LazrIieGX2icvY4xSqbiLWIVvEtIptEGH4NAF+vd9nyeWCvKolT4btO1LIs0eLqhFe5pyQJzitLYIXOVeYmpWWEMmFoqxhTIWZCHrrEo5Wja5gp8ykWYMkbJ99G1HbpVxOgoSf5d1uircFtO+3yVvzVNg7GWZa5ulpwpOaJsg3WKthPRuVKC3g8hiGaUzG6/QZXuSmbwPsh3vn4FPf3s8qHgfeF0PssXGROlSNKuD/LFyhcv0dmiXJH5j6n4vMPr6To0jjHw8PCOtm14fn7hgtS3tjZS9GW4XeiHW3bbgXQ+1XtoIoQsDYgSAUnt1VrKOKMNKY5X0fA/Tm9S5TI7lP97Op2qqdfRtFagtlqTo1ChrdI4Z+rJkQnryjyOgMjftpuB07LQVlao9ysLa2XTSLc1ZE9K4q8rqq0jDYexjtPpkfoLgxafn1YarVvariHlKN3UxlUCnKdU/o3ScooZa1A1BZnajCpFiWqolArHciglxO1UY+hS3VzWmjoisez3W1TJHA6vNK2t3VDJnZhnCYTd3+zRWrMsM9YptJbfffWzBPqoDW1n2Ww7lmXh5eWZdQ3XDXl788A0HjBGuuUX3WyKX8vRn13TuDBOE36VLpnk6inmJcisSUOsbz7XOChwOJzZxA6Mkuz1ILClnOVe9/p6IATJ1rPGkrMnZSllb2434oivd4ymbdixYZxGrHM0TsJFjYZiJeWnlJ/oYm3bMgwDIUgr/RKQApXYZvXVI3l520uDBEpWV/ivqpRtazTGSPpUipHNZmCeJm5ubpjPZ1JOdG1L2/zjNru+wnmNrSd4jOQs/w5lgtz9inQtFQLUvb+75cuXM+PzkYd3DySVQcl4xBpNf7un1HwHrXT18wmz9eIO0VpsUUEnVM1EnOeZGER+1/ddPUlLneVFUgoyQC8ibtCaWkYWtG4r2l6i1CSUVJGz6Hf3+y0StZ3o+65KBOVF9fJ8lNGQbUkaId9FsYM1ddaotJLn5g2tN7cJjWtQemVZA/O80PrEdrsDND4kXGvo+wZjHEVJGVhUqfchjV/jlYuZE9JsUXKHM6YhppV1mXHOUpzg43f7Da8vL3ICeU8IC8sycnd7h1aGeVklE8MYbm+2hCjUMZlVDfU0WkkpXyFK1GRhozXGGLbbTaVdy9/TtZLDeLMXG9A8TwSfuL//SNNIYu8yi0ChaxpOr/LzqaJQVsvpaS26AqceH78gaL+GdR0pxYjL3wd0VQ456zBG8hm0gpQ9VAnffr9lHEdilEH2vCw0rThLllXGRusqnkvvM9pKSZ9yRjuR7Rlt6+mfaTtp+IQYaBqL9zU/JEu8tdGap8cvGKOvDSgZ91hy7q8NKLjIz6g+x4HdbsfpdCJnX4fyms1m4Hyaq2hcuqyvL0dSXllXiddr2xYfw9Wb+lbWm9uE4zgKsbnOxtSF0KWLiKEbjVKCSZjXJAGYtaUtx1WunUqRcTWN4/7+XhJ6UiL4iFJWVP5RQkXb7h8zYyaUzbTO4SpWsWRq1gKUlNHKyOwvZdbl9apSueLVs3QLU0qsXrIV2rZhs9mI+398JdeZ123FxJcsYCIohOAlXKaIGFzVmDLnrEhKjRDYpmmm7/tKRSvc3OwxRrP6QEq6lsKSc1EbwWQySknardKC0e+7pt7HEsssrJiuE+M0JIZNS9u0KFVYFonzTiGwel+NtPYqilZKsd1uKEVxPJ4RSnqqpahGZ+GV+iBD/Aw8P79cURZSNVxyJC6MnvZ6Dw4hXschOUdsJRgIQ9ZUCZ26dlOV0ljXUBBSXNe1NO3XYf3PrpCCwGNLZhi28oCpDJqf2v6lEKvDulTsRc5CfzYajL10LqW76cOKNgUfPCiIoVTtpfwzh8ORGDKliDG3NQqrHeN5Ybd1dG1HWCOFwuoDqqr6Y4zEcAlecVftKEhzZlkWtJGZ1vUeacQ064wmeM+PP3xPTjLDQimc1oQYMBr2uw2aQkiBvuvRSrEuC1rXPHtrOR4PeL/SDx2ukYe4GwQMbBeR7aVc5WMxUVJCm4JWjmVeubm5ReF4/PKC94F1DQLn3TUkFWjajqGOQ3IxDMMtMUqpJ84SK5hFcm0wldoxzaQkYmuQcZE2ClNL53l+IgeBLYfgidHUxspyvVfvdnuWZWEc5Y4v46XE6TTWxlwkJ6HmXZipMqO8ZHj46wYsFBbvcW2D0l9paz+7nJMmS6GjbZvrPE9ralqP/kd3slTvCnKxj0VkaE0dB/w0zPbXf8ZoQzGOFCPFwLr4CmSyNeuCKpcSAYAwQwvTNNcvF0qWP0+G25CSJxf5sxUKbbU0XaoDQ7LyZmKMNI27NiesdQQvuRExeDabAWM0IUqWouDzxeDsrOGiYQ3eS55fdR5ATUYi8+HDey5MHmngyvhDqYI2IlPLdQC+LGudlV50sZoUEf6oh23b0FbRg2RzrDinsKaj6wbmRUzBsSR0zYWUqkD/e4qippFZYKje0EvKExXaK2Wo/EeUL5mus4xVkC161EsjqCrUlOAihZou1Y+Ai+P1zmiNsE5REhtwiTPQXzfhz69pXq6NjFQStpGcueAT8zzSdQ37mz0lKwqeaVrpmo55nsk+0vTyzxptsMZhratKjoBzht32huNByiQo1fkuRDfvJX4LBU0jZdHr6xFrHNrIn6NVDfRUsN1uawfVVKeGgIUap2mblnUVRY+vNqPtpqPrHbI3VSWrXYTglhA8x+OBYehoW0eoUdnDpmeazvIycopCpq+G2OAj67pezbfTtFbTsbx0vF/R1tJ2LTHJRkxFDLt393v6vkEvomkNIaGrqqdpC5dMEIVmmRdizFgrIxNpZGkad7FABXISlETJMiRvrMPU78J0ihBgs+mqX3BmOgtBLufMfre/VheqbpplnqpyShpBFLGTLesqM8kiJ6+4R9Z6WlqmWcTufT9wPI8UlFD8jOZ0nmoI7dtZb24Tppxp6l0wpiwaxKzqm7+wrBF1ErDPPK/1vqiIwct9SQvtTE4oRV5ETC0Z6JZ+aIkh4f16vV+kmKv0rFSVjLn6CyURyLEZtvUuKISvkFYaZ4gqo9BY01BKpmkbGqfE8ZELRosfrhTpDl4Myd6Lo0GioBW6iOdRa0OMma6VmafWWiRZSk62nCOJhFXiW5zmmRgK1kocuML8lLCUxaV/sWQVMtrIadI1ltvbG2IsdJ0TL6WvFimTUSpV3aqEcLbtBmNkLlsotI3BWnEuWGfRSjEHT0mJ/c0Nh8MRHyONczhjSTkwdC2Ns2iVyUnuveri5rC6eg1FuypueE8pBmfFFtZ2rTRdUqric/mei7r4BC/qGep4RtG1jYygkJeL1VbAwm9ovblN2HVdxRhICed9hKKvg1ylJXRSgK7yFjyfz1XaZFhXTz/0tH3H8ThKUq7RdJ3Ivo7HF2K8UJ0T1ilSFtkTqpByIiWHtR0xCu3rIqValkVOlxAQPkrhIkMUvqh8nJttS/SeGBxJKTYbcS6kygp1VtT945hwTUUu5kLjOh7ut0Dh5fkL3ieUEoH0ZtMzDD0owb1f3Bry0hBa3IWoXUi0rQgBtHF0Q09OmbBEbm7uSUUo16+vB/b7W9qh5fn5FYCYPKuXpodLuoZ+Gow2nCYJQ22atuLrLwCmSwdT8f69lMPLsoo3M3l8EBnh8TTxL37zz5jnsW4wKUU3mx7vF5ZlYrfbobXm6elQZ4/i+bycXtM0IdBfhV9XjLEVja9q2Vro6x1WvhcnjSwlTZt5Wv9n/aB/yfXmNuFP7uqfmisp/mSolZgruR9K+RKueMELagGoZQp1Zidf5ul8ZlkSXdNdN/VFEypOBemg3d3d1TI11ow/Ce8UDkpX03MV5/NYXQpCH5PGgfgRQ4j1AZWO4gVwG3ygcY6PHz5wPB0xWjp4wrbh+u9ZFn/Vy4L8/zFlhqHDaANOUBsxehSOrpOXQAiBmIWS3bYCyHXOMYeFeV7Ybm8o6Kuusmt71nVlHKXZcTE0ay1i96bpqtFZoLrWilrI6EsXWk6hYRiq19FfP8sYhZjunCGXRM6R7777s1QSIdT7sauwpsusUO6fzllK1eleStJ19df7pNaaYgTonLI07S6zxYuz41LGiun5Aowq19HHW1lvbhP+xPGU+ZpWihTFRNt1Hd98/Mi8TDw/v1y7YG3FX0zTiDaafugJ4RKjrK4XefmS9NX2st/veXh44OXlhXWdq8u8uXIs5QQSBP/xcJI5k/f0g/BGx/EsliRd0I2tzZyMqb6/XBRKSUhmyZI72LadBJbUsMrNpuX5+YXtdodWRqhxIdF3g+hTs8JoSWxal8h4fqFtWzbbS+iJOAemaa6fhXQhYwySrLQGzsczj08vnM4r85TQxtD3hpQCf/d3f3dtVJQCgrbvkFFJuJ48lxeivCRz/RxF8L7bbbnkGr6+HIkpsd3uca5mTRqqsRbxCyYZ5DedqH2WZSKmSNe3KAXWGZp2y/uH9zVcRtF3fd2cDbvdni9fHlkWmWt2/U4yCbnErMefNprS9bus9LuQWZav8N+fXT+dhNJ9XGO4esj6vhPaWPJ0Xcs0zXS9zLC8r458o9ntdpxPIvm6ZECsq8iorL04B/J1w1/w9AK/9VdIr6p3wEuX9dI4EIrXTEq5KkiqxtFYlJKRSCmSHJUQ1s26eEx1Sjw+PqGVFrOtk6gzRdU2ZsFjpIoCbFpLjIK7FyuURitX8wSLIPtTqk4MOf2HTc/+ZkvOhdNp4vV4rOZgzX6/J6aEtdTmlDhW9vs9wzBwPp95eHhgWRbO57E2nsTt7yp2Ule3Q8mKGGS2KGzVeBVux5BoGsPpdMQ6w/v37+ugX0rpm5sNkqWYayPNiUZXy7y16zr6+vNM01zhxYp5XjgcjpVfkyqxWyBTsuQzMNoKA9XZKqK4EMY1b6wv8zY34eXL9N7TOMHnXchkv//939M0rnYWJc75V7/6JTkXjscjzy8vHA6vrGsUcHD1oj0/n7FW8fDujsY2dbMlDocT6ypBLZcH2TmH9zUYRUvre13C1d6Ua/ev6zrJlqCwzJ6YJAuvbapCZg7c7G8BzT/8wz+gjb6ezH3fc39/RwgLl1CTnOerETknacEb3RIpFWuvf8I61jxAhUPrhpxF+G6twZmeaYw8Pn6pLX3F/f09hYK1Cm0tXStkMqXA+7VK7zxKFU6n1+pBlBPygiIcx3PdlMJxCT4zDAPeB8ZxrBu1FX3nGqQTnIV29vT4StsOUAwf3t8CCAi5BMmtT4Gzv4C3HN6PzNOCUlJOU2Acp1qSimm3FM/t3QDA6+vh+n2VXNBGOqeXK4xSFUES8vUe/1bWm9uEF3xB28oHrTBVTCwSKMGal0rdklCX0/lI8JHX1wPjNGGdE91kUVzAsUB1LshsbpqEJi0mUFvvPKqWWD/lRly6bZfT86ILFQNvX+8zcjeLUZzsXeeIVWzetC2H1wPWWvquB5WvsqrL7yvwXVPvti3ztLLMkhy1LIJ377ue19dXJCnKsq4Ty7zSdztyUayL/JxGJ47HER89OUunt+kGrDMoI4iItuvoW7lbihlWGDbzMkkilCr1HmYrKa6rzvaCAJmSmKxDqS8uaokqM71LmpUxsilzEthV2xgUltfXs2wUbeoLV4zAKZYaCNRgXYPRhZjE5SLNLVVVNFKxPDzcsttveX5+JsZQlVOxbrzqG+Vyckupesm4f0vrzW3CS2kEmpeXF6bJc3tzK0qQXhDmSsnwfLvdk/PCly9PpFI4n05ycU+RtumkpMsiau77Lb/6zbe0bcPf/e0fBB2YREfprLsaSUMUzKKiME5nGQ1oYbm4xgkxbPHEKF1K6bzJ27rrmhpIqWtTp+H5+ZllXhg2PSlJOtTN/gayCAVOp4mh7xnHz4Im3N8LWdsqQvDMc7yWesuyst1uAH2N9m67hpJLfWlJnLRWFmcUJUsjw1rN/cMtIQa+fP5cjcaanBWn44y1QiDza8EaodKdzxJ4kxM8P73UUUKLVob7+zs+f37kGM6sa6BtHF3bE6JnXXzVzJoqgXNM48huf0PbDZyqn0/mqiIcMEqjjKmzX3BZMc4rwc80VsQYzl2USZK0tRl61nXhdLxEzsnvP/Qd3osjJOWIsQpXDc6UIjPPr1amn1+udWirOZ1GfBSTa78ZqgxsvZ4cOcH5vFIQuVdKnvsP71AKzucTa/RQDBRwWohnrbOE6DGtxip7RSrEksWDqAwxUyPTSu0sGoyFtrX4VRo60o1z16YLFDHENlb0mlHkXDEK1NY6uetc5oBy15lIRZGzJSfDZtgxndYqg0t0naHtWvwaQf10R5bgT2lu3N7s+PjxhteXZ7bbLcsayVHXrHrL0Hcs6xmlDfN4JCvF0Pco7TidZkIQ58Hd3R2laJzZSOUxRdpOrFrnWcY8fT/QtZtr00zuWdJd3myHWqYKg0cVTcqR8ywdYp8iISWmZSErRSqFmAVRoo0lJEFQ5pSxzhJSFVH4jHMDKM00e7SSxldJgVLx/uNpFDapVVjb0jYdz8/PdXyTUXll6DeEUMhO1XzCr6ben12bzfYq8QJou5ZxHOsb3VyhQfMiOMCmE0d8ru3zgqANtFGSbuRDbXsvfP/9D6Ar9q9p5Qof5CR0jSNOC0Jru9wlWnIKLLMnRcXqI/O04GuuYdttatmbaqNoZJ5HrG5QWFIWCVWKGSpkWCsj7NCKGASY54W+6xmGjVDWrMM6VXHvcsfKRR4ckakV9rs99/d3zJW6hpI2/TKtV/UIl1NXizh7XlaMkQjtNQhjdbe7QWtRvczzhA8FYyTm7ZLapKsTJMbI7e1t7ZjKKGCz7RmGjsPhUBEeVVLoE6u/4AyNfC5WY4w0wba7npeXEyHKS8zoGjSTuIq3cymEmChZSvCQJM04hHDNpD+PJ7FLxcjQ90zTUuV1DcbAu4d7YRBlz2boUcpx+xX09PPr0khwriXFn7ieF+ZmSpFlXsXB4FONN+uIKXE4HECJ290ah3aGtlWUJHOiUhA/YSrkmMgxk2Ni8TMppOv9L+eMX1PdiJJNIdI2qkJHSp2cU220qKuXUII1LVa35LUIADhG5nlCkIdWciSCp3GNiMO9v5LV4PI7pyrDaupDCUbL/KvvB4a+4Xw+Y51lu73h5fkFpWwVPm8JIda/t+d4PghxfA1oJc2SpmmvDRYhA5Sr3lPKXxkjXEUSVQcqo6BJpGops64T1ioBWmUZD5VS0Fbhj/mq91zXhZwjw6aj7SQee59bXl9PUq048SkuMZCiCES1kvu2doK4P7yOpKTqdYUrENgYqUi0Ol87p9KptjRNR28djYv8+OMjD+9uCPFrIMzPrmn0pFyqyqWrg1kZFYzjSAy+DngduZia/0AdKF8EzWKF8X6l7zqZ5WWZ2ZE1KYpbQBo/ioyIwZWGXIXFl86avJkzxkBK0LY9PhwlY69rK5JPHsxpEtxfTgXjHFqnOtpYCUEE4DGK+TaXLLBcI14/HwLzNDEMQ+XT/CQ2kAZSJivJCNxsBtrG8OOPT2x325od/1lMzMrKA20VKV+EzTuJFs8anyLKSFqvPLC5it3F3XEpfUWhotjtdtfNB3A6nao7RbPZiMBbhOq5RqfVl2WMNK6lFMn/aFuL0uIzNFbkdw/vbvjm2/dM55nD4UzTdChEhpeydIO9X2idYbPZUHJks+kZT0ckoVkisbUWT+LT0xOlSDUld8fM6Xjm9u6e5+dXvI88PT1i35ip923JyRH25jwtzJPkCMQoLMuLbEkeSHtNIVLa1s6cqhuA+iYVOVWu2RbGiEtinjzzuGAw9E3H0PX0TYsm0znLzX5Loab7el91p4oYSjUGCwbfOcMvfvENm83ARaFx6RRSlSfAP7rLCulNkIftdT7ZDz03NzdQ5M9Yl4XGCV3tcrrKy+jCshFVjVKw2WzY7245vJ44n5crYl5OtMKlNJR5nEIpW0XatpLRLi5/Kf8uxteLlQi44vlFqfLT7yTpUrc1F3JBKUHZe5+ESzr7Opu7YD8s1tirCAIKx9cXnNZE7wX4VGC/3WA1qJxYl0UcJK7h8HoQPMU013xF0ZqGENnv92y3O5qm5d27dxgjL+GSBaf46dNn5nnBVDOv3OPfznpzJ+GyyMMxDKbKqKTkG0fhvijjxIwbEzlLcCYKihKB8mXYHVOirIIbtEpXFKKUmtZYoo9opdnvd5JZYBqsNSII6BvatmM8LyxL5Hg4MQwbEUBrxf3DRrATy8Tz86Ng3Uthu91IQ+YiziZXJISr8z950Hf7Xf1ZReLWdd1VNvbu3XuGvmP2R+Z5pusGERqkRN8PzPMsfrxlRiklY5lxlZdOPSmt1bhG9JWn04nV5+pYF2f8uqxwc+GBSpbf3d0dzhlWX10MSlVwcb5u/n/M60xRKG0hZMEaolHI7FAAxECV5HVtx7yMgIjf+64X8byPfP/nH1DKShxcRhwgq7y0rDE0rpEXYggVYqVonCh6LnPMp6cnQgh8/PhB7r6zaHwTFyaslrLVNhyPJ2HSvqGlylsjoX5dX9f/xtabK0e/rq/rf2vr6yb8ur6uv/D6ugm/rq/rL7y+bsKv6+v6C6+vm/Dr+rr+wuvrJvy6vq6/8Pq6Cb+ur+svvL5uwq/r6/oLr6+b8Ov6uv7C6/8PQGToEh/W4bQAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Predictions using: predicted_ResNet101V2_saved\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAL8AAADECAYAAADOD/AEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAoPUlEQVR4nO2de5QkRZ3vP5FZ1dXvnp6enhfzHl4OCChPV2BAB1BxVURRju4i6l7WB+x17+qu7llRVy9n191VV2XVPascFY6I6OXqAUEUXAEFriAyAzMMw/CYBzM9j35Xd1Vm/u4fkVmVlfXuzuqu7o7vmZ7uzPxlZGTkN37xi1/8IkKJiGBgsABhzXYGDAxmC4b8BgsWhvwGCxaG/AYLFob8BgsWhvwGCxaG/AYLFob8BgsWhvwGCxZzj/zr1sH73pc/vv9+UEr/jgtKwWc+E196BoVoxDebAuoj/0036UwHP62tcPzx8NGPwoEDjclho3DnnXOf4E8+Ce94B6xdq7/FMcfARRfBV7862zmbE1B1xfbcdBNcfTV87nOwfj1MTMADD8D3vqc/wNat0N7euNyC1vwXXKDzAuB5kMlASwtYddTlj34Uvv51KPX6ExOQSOifZsVDD8GFF8KaNXDVVbB8Obz0Evzud7BrFzz77GznsDym+s1ixtS+7hvfCGecof/+4Aehrw/+7d/gjjvgyitL3zM2Bh0dU8xmBViW1npxIu70GoEvfAF6euDRR2HRosJrBw/ObF7Gx+tTeo34ZlNAPNXuda/Tv3fv1r/f9z7o7NQa6E1vgq4ueM979DXPgy9/GU46SRfAsmVwzTVw9GhhmiLw+c/DqlW6YC+8ELZtK352Ofvx4Yf1s3t7daU75RT4ylfy+fv61/XfYTMuQCmb//HHdaXv7tbv9vrXay0bRmAWPvgg/PVfQ3+/fvZll8HAQJVCrBO7dukyjBIfYOnS4nPf/z6cdZYuy95eOP98uOeeQpkbb9RpplKwciV85CMwOFgoc8EFcPLJ8Pvf6zTa2+FTn9LX1q2DN79Zp3vaafr7btoEP/5xYRrlvtltt8Hpp0NbGyxZAu99L+zdWygTcGvvXnjb2/Tf/f3wN38Drlu2uEohHvLv2qV/9/XlzzkOXHKJ/hD/8i9w+eX6/DXXwMc/Dq99rSbj1VfDzTdr2Ww2f/+nPw3/8A9w6qnwxS/Chg1w8cW6BamGX/xCf5innoK/+iv413/VlednP8vn4aKL9N/f+17+pxy2bYPzzoMnnoBPfELna/duTYSHHy6Wv/ZaLXv99fChD8FPf6rNrDixdq0m4Nat1WU/+1n4sz+DZFKbrJ/9LKxeDb/6VV7mM5/RZF+5UpfX5ZfDN7+pyzz8XQAOH9aK4LTTtCK78ML8tZ074V3v0tdvuEGbju98p/4mlXDTTXDFFWDb+r6/+Atdac49t7gCuq7mS1+f5tbmzTrP3/pW9bIIQ+rBd74jAiL33isyMCDy0ksiP/iBSF+fSFubyJ49Wu6qq7Tc3/1d4f2/+Y0+f/PNhed//vPC8wcPirS0iFx6qYjn5eU+9Sktd9VV+XP33afP3XefPnYckfXrRdauFTl6tPA54bQ+8hF9XymAyPXX54/f9jadn1278uf27RPp6hI5//zi8tmypfBZH/uYiG2LDA6Wft5UcM89Ok3bFnnNa0Q+8QmRu+8WyWQK5XbuFLEskcsuE3HdwmtBHoPyvvjiQpmvfU2/z7e/nT+3ebM+941vFOdp7Vp97fbb8+eGhkRWrBB51avy56LfLJMRWbpU5OSTRdLpvNzPfqblPv3p/LmAW5/7XOGzX/UqkdNPL85TBUyN/NGftWs1gaMZfOGFwvuvu06kp0cX9sBA4U9np8gHP6jlbrlF3x9OU0TfV438jz6qj7/0pcrvUiv5HUekvV3kiiuK5a65RhNraEgfB+Xzwx8Wyv34x/r8E09UzlO9eOQRTer29vy36O8XueOOvMwXv6jPP/54+XSC8r7zzsLzk5Mi3d0il1+eP7d5s0gqpa9FsXatyMqVhRVfRORv/1anv3+/Po5+s4ce0sc33lic5oknFpI64NbBg4Vy110n0ttb/h1LYGod3q9/Xbs4Ewlts59wQnGvPZHQ9noYO3fC0FBpmxTyHbUXXtC/jzuu8Hp/v7ZXKyEwwU4+ufp71IKBAd2hO+GE4muveIXuw7z0kraVA6xZUygX5DnarwkjndZlE8by5ZXzduaZ2jTIZLSZ9ZOfwJe+pN2ff/iDtrd37dLfZtOm8ukE5R19x5YWbW4G1wMcc4y+VgrHHlvYfwLNFYDnny/9TuWeD3DiidqjGEZrq+ZCGL29lcu3BKZG/rPOynt7yiGVKq4QnqeJf/PNpe+JvtBchW2XPl/Jq3zrrbr/U6t8GC0tuiKceaYm2tVX687j9dfXdn+9aGtrTLq1olz51omZdWRv3Aj33qs7u5UKcO1a/XvnTq15AgwMVK/dGzfq31u3wpYt5eWi2qkc+vu1R2PHjuJr27frCr56dW1pVcIll1TvFNaCQCnt369/b9yolc5TT+kOaikE5b1jR2F5ZzK6Y1+pHKN49lldacPl+8wz+ve6ddWfH3gOA+zYkb8eM2Z2hOGKK3RP/R//sfia4+R79Vu2aM/EV79aqP2+/OXqz3j1q/UA3Je/XOwlCKcVjDlEZaKwbe3xuOMO3WwHOHAAbrlFeyO6u6vnqxpWrNDvHf6phPvuK90y3Hmn/h2YEG97m66gn/ucrgRhBPdv2aJbj3//98I0/+u/tCl26aW1v8e+fdr8CjA8DN/9rq545cy4M87QFsE3vgGTk/nzd90FTz9d3/PrwMxq/s2btZvxhhu0TXrxxZrkO3fqZvorX9H2auC3veEG7Td+05u0n/2uu7T/txIsC/7jP+BP/1QX+NVXa2Jt365dlnffreVOP13/vu46rXVtG9797tJpfv7zWiufey58+MO6P/PNb+oP9c//HFfp1Idrr9V9kcsu03ZxJqNHfW+9VWvYwIQ69lj4+7/XCue88+Dtb9cm6aOParfmDTfo8v7kJ7UL9A1vgLe8RWvcG2/UptR731t7vo4/Hj7wAZ3+smXw7W9rRfGd75S/J5mEf/onnefNm/VA6YEDmg/r1sHHPjadkiqPurrHgTfj0Ucry111lUhHR/nr3/qW7sG3tWl34StfqV11+/blZVxX5LOf1W6ytjaRCy4Q2bpVexQqeXsCPPCAyEUX6fQ7OkROOUXkq1/NX3cckWuv1d4RpQo9P1FXp4jIY4+JXHKJ9kq1t4tceKH2UtRSPuXyOB3cdZfI+9+vvSGdndpVeeyx+p0OHCiW//a3tTswldJekc2bRX7xi0KZr31Np5dMiixbJvKhDxW7izdvFjnppNJ5WrtWu6fvvluXdyql07vttkK5cuVx6635PC5eLPKe9+Td5wHKcev668t778qgvtgeA4NKWLdOe9mCwcQmx9wLaTYwiAmG/AYLFob8BgsWxuY3WLAwmt9gwcKQ32DBwpDfYMEi3hHeI3tiTc5gnkMAEmSzLnv2vsyRw0cZGR+lo7ONjceuwxKPdDqN4ziEu6ZrTj07lscbzW/QHBDwPA8RDxFBxKt+zzRhyG/QpKgx6nYaMOQ3aA4osCzL/1GoWkPOpwFDfoPZgeT/UEofK6VwXQ/X1SZPo0egGk/+el7AyC5YWUEQEX8VGVVZOCY0nvz1tF5GduHK6njkOhObHhpA/iZWL0a2CWXF/1/wPA+lFErNjDXegJlczaxejGxzyAr5SqGJblkWtm3jui7igcJGKaGRoWdNvBKrwfxGuAJAvpLkK4tSNJT8xttj0CTQJNdmj2q4pwcM+Q2aBX6HN3D0zESkvSG/wSwhb+aIr/Vd18XzJHdZhIYOdhnyG8wOIia+ZVu0tLTkOr66PkgB+QOTKC4Y8hs0B/zAthzhZ8Ddb7w9CxGlnCylztWUVqFtLmFNXfXmvITneXiuIKLIZDJYymr0AO8MkL+eQTsjOyOygvJvEpQELscQ08S/XibdUFgOCgGC8GMLfcZCifiPE1BB+spP2ye2J5DwUOKBayFuioQCJQo8HcMvnperYCISa30w4Q0LUTZMxiIBVVO6guVXIshXHgFRiOgKUD6jwbMV4CBk8UQBCTwXLEth2Q6Ih3hSUDebnPxzYUjdyIKHwgtJajIHP7UjVGFyZ0KVQYWJHmpNFGArPycgygHLwVUZVNJDaPxkFhPesABllXhoylmIsjTxJdD4gVFUSyXTFUVhka9orn+s08qZUDnoCqFnbCmUagEUylZ4ahLHGUORYAYmcpkO73yFhO1kEaxEQtv3tg2u4LkuyrYQwPEEx3HIZCZJJmxaW5J4lqVHWv0dDkUEK7LZiIig7AQiLspSiOv49rmb61uIlcBCaTLroB1/IEvhuRaWSoIobBTDRw8zmRkFtxOLBKL0M5VSuJ5HvBa/If+8hOigGB0k5pNflMJOJHSlEGFwaIiHfvcoj/z+CVo7OkjYCY4MvExmfITO9lb+5LwLOff882lrb9dpZTJgWVi2rfdYSCbJjI2RakmBsvHQMt5kGmVrTW63tIJSiFjQkkKykzjZNHZCUALKtVBWioRYWE6aNnsCVBomhxkfPEprRyciOtrTTtg4jhNrOcW7YptZvaEpkHUc7EQCFdLUbjZLNptl8OhR9r+8nzt/fhe/+vWDeFaS/mVLWdbXx/Yn/8DA3t0s7u5keAL+87vf5ZSTNoEIlm1rzwsgnm+yJLXJ8uKLL3L/L+9lcnyEPc8/S1d7K5e9+11sPGET4lqgWsBViK1ItCqc7DjZ8RGcsTTdPStgcpJ9e3cwNLSfhx68n97eJSRblnDCqWfRuagXAM+f7OIB62JavcGQf15Bf0rPE21b2DYC/PGxx3jowQc5MDDA8OAg+15+mUNDwyzqX0pLayejo6Ns37qNDtvjzJPWkkrYPPD77bz+oov5/P/+Ai3+5nOT6TSHDh3i6OAgu3e/wLannmY0PcHeffs5uH8vkknT3qLAzdKzpI/VG45j8Gia11/0Rs454xzSziTfuPErjI6NctKGRXjpEa76879kYnyce+6+lY5OwSJDV8di1m44m/alJyCJlH4nP94/TvIbs2eOoVhTCeIJyrZ8d7uHKG3miOPyy3t/yY9+dDvPPPMMXV3djAyPMJ6ZpLWzk0MDhxCOcPDAQY4MHCDR28vyFcewaFE3j2/fg23p1uOFF3Zz/6/u5fChgzz33C4mJyd57vn9pCcdEokk2UwGN5tm9Yp+WhPCkeFhnt+zl63bdzE0OMEd//fnLFvSR++iXv647UksEX7fZ7N8UZIj+16gd3E/49kRVq5aSldPF32rNnDM8Scy6XUxlp4Mjf7GC0P+OQl/xjcAgutmUWKhLIVlWzy9bRu/ffQRDg8c5g+P/4GDBw/TvaiXdHqCZ3e/hCew4bh23vLmi1na389/338/e17sYf3a9QyOjPPEtqeZnBhm4MCLfOcb/87evS+y/emnWNzbha2EVjtBd2cHo6MDKCdD/6Iuxscm6G5VLF7URVebzaLeXsYm0rRaGY4cGactOYLlZDjn1DU4E2mS7iibNixjdHiYE086lRUbT8JRCUh24Hb2k1aLQXn+WFie+HH65g355wESqZSeBuhk2fbEk9x8yy389v89gpN1se0ky5atYNWq1ex+7nlc10FQXPT6i/jQ/7iGZHsrb7z0DWSGj0JC8b3//Ba7d+/Ay4xyYM827jm4k9NffQbHLOnGyWTo7ujCSrTQuqoXyUxy9MghOlIWlptgdPAwXSlYvqSHlctdhG6Gh9oYGR2hv78PBEZGRhgZzpKULlo7l/MXf/k/WbH2WA4MjDBwdITB0QyO0w60IqQbW24NTR2aalh/3soCiHDPXXfx87vuYnBomGNWrGbPS3sYOHiUVStXM3jkMDt37iIz6XL+eefw7ssv11p0Is2i9ha8ZDdPPPk4B/Y/T8qG1at7WLG0n4mxNEcP7GX0yCBeVrAnHUbGJzgyMk46ncZ2M6jsOIvaU4wMH+XZHbvY19ZFd7eis6ONZDJJV6qL1Ss3YtsJLDtB38qVdHf2s279Jtad/GpcSTC5P4MrWSxlYZEET+nxsQai8eRv3rGeOSsbLHKg3eUKcRz2v7yfn/zkJwwPDbFy5Sr27D/AwQMHGRwa4zWv/RNOOflkujpvx7aTXPGud3L8icf60QUT/P7h3/LT//NDDg3sZ9czT9Pe2UV75xJG09Dd2cvY2DhOdgI8ECtFa6tFcswlPTJKd08rI4NHsC3F6tXH0N3dw969L7PjmX1MOoOc9soTOOucM7nsXVfStaQfsh5tHR1YyRRYNuLqWB/VkgI7jVJ+rJC4ofdtTC1oAPmbRR3OV1k/cEBZenxVKQaPHuFnP/0phw8fRgHP7HyWoeFxHEexYtkyjtuwgXPPO49zXnMOllLguVhkeX770zz5xGM8/tgjTIwM0dPeSt+iTlrbu3joj3t5w0Vb6OtuhcwQL+/dzdjYEGlnhN7ePlw6sJOtHD1ylJGRUd3x9fbT2wc9vct4yzvPZPmqNZx51tl0dPewdN0GPUYglh70FZ/kCRvHyYDloiwXT9KIZ6PI4orrr9+Zn+IYJ0x4w1yTFUBEL+/heYjn8ePbb+eRRx5hfHwcSym6OnsZH89y8kmbePeV7+Kcc85BiWBbCs9xsBKK9PAhHvrNL7n3np+THhuip6udTa84HndylIMDgxwZnmDVmg2ctOEYnnriAfCydHWkGJsYY2hkkJcPHmHFsmM4++wLGJ/IMjQ8zm8ffZL9z+7jvX9+Htd87EN0drViWQmyjgMJD89zUP7MLeVZILZ+d+WBcrEsQVkelu2hLFCeCs3pjb8CmA7vXIMChdK7qSuF67g89NBDHDjwMiMjIzjZLKedegbv/8AWXnnqKaxYuxbPzYK4ZCcnOXL4EHte3MW+Xdv442MPMzZ8GPEclvevZnJ8jO62dg4xSN+iViZH9jF0OMPwwEtkBg+TbElhe0kOvnwE7Hb2DwyzdOU4Z59/Ab29S7n4rVl6+5ax8YQTaGvvRlwXxxUsWvRorvhh1CjwLMBCobSnSnSrgCTAS4DYKJU3fRoxndGQf64hmOKqFJ7r4PkhDMuXLcO2FMODgzzw4AP8r49/ksV9i2FyAsSBhMUzTz/N9793E3tfeIa1y7vwnCyTk2kWL+5nw7GvIJseZ8/w80yOOSS9LGODexhMjTE6uJ/s5CiDR0aBJIt7+8i2trHxhBO59m8/yZL+FYirELFRVgJXQFwby7Jz8Tw4XmG0p+++FCws0S2BuApxbTzPD7RTqmDqYhCqERcM+ecilIXnuSjbRiaF1mQLba0pDuzdixJY3NtLa1sL4AAumcwEQwcO8cQjD7J7x1ZSKgNpyGTASvSw4cRzSHatAWuYwZFddHX2srxX0d2+iLEJhxHXI9XXR8/KHtpSvXQsXkHf6g28bssWepesznfA/RVnbQXY+tnaopOIZSfBv5C3ykXhoWwPbA8SHpbkb2pEp9eQf85BENfBStiAXuojYdsMDAzgui6jo2Ocu/l1tLS1I56L6zn86t57eOoPj5FOj7CkbzE9nSlaVIbBiXFWrd9I34rljDkTpFqFDcctxc1OcnR0hF3PPU97Z4rxjEUikaKnewlvvexKTj3rtbR09mLZCZQoPBGsnIaWgrxWeRU/zF933BXgeQ52wsL1XBLxWzoFMOSfc1BYVn4aYqKlha7ubp5/fjeu4+JkM3R39/Dw737LuvXr2LN/Dz+67TYm06OccNwGlixdSnuLRUo5ZFUrx7/yVbR2dpKeGGJy7BAqMYabGeOMs0/h17/ZyjKVZNWak1m74VjecOmlrD7+eJRlY6tWfypiTGEHfuUJe3caDUP+OQalwEN7erDAU4qVK1ey85kd9HR3MTo2yg9v+yHf+f4tnH3mGRwe2E9LwmLTK46js7sDJS4v7d7BykUteJk0e5/bznGv2MTwgb0c2Pcc3e1CR1uKfUeO8OHrPsCpp72G/uXrSLR3YdmCp7K44mB5DpCP+VfWNAMPgtBrPxS7uBWJH4b8cw25SeOACAngT9/8Zo4cPsQz27fT1taG5XiMT0yydesT9PV2sainj+7uLjw3Q3dXB51tSUaP7KUt1cGzTz1OenSUF1/cS19vD8sXH0Pv4h4uecclrDnuFFqSPUAbiI2I6/tqtD2ifA0dneQyJSht19t2Asuy8DwPy3dxBqs3xw0T3jAHZfNeE40Vq1axatUq/vvXv2bw6Air16/Cw2HdmjU42Qn2732B/p52eno6yY4PMTk+jD0xTGcyRW9XF/v27GftmuPZ8oZLOfeii7GUIC2AJLQL0rIQz988AguUratAjpBq+u8meW9OnudzXfM3wbjQvJYF7LY2Ln3rW1m/fj0/vv12nt6+lcz4KLZkWb58Ccv7OunpTOFMjpJ1MmQms1heFxtWb+LKt1xBqrufVNdiursX4dgWllLY4k9htAAmQfnrMRTNyY3n3fLTLj2Usuaq2TMHVOecli2GymRY0r+UzZsv4PQzTue2H9zCfff9itaUTWdHB0NH0wwePcqink76li/nxONPZN26Y9l40mn0L18FyVa8RAsTbhaVgJZkCsbx7fgsgVdJidIDUcGE9ZqyXNu7BfNzw3OPp1EkNcGEN8w5WSjUiAplJ7SmTCi6Fi3myj9/P298+zsZHR7GVjCRTtOaStHR2UFHRzstyRZaUm0o284928KiXSUQByzP9QeX9CBUzpGfy2o9GrmS/aZ0HVIKy7JRSpFIJPxjKzdtslEwHd65hiiXlMqf8jueqfYOVnR0IkuXI0rpYLaw+1CkqAOpRLCD7YA8CAiu8sstxIzwAJY2dxzHKRjNVTR2ZxazUO08hFIK19HL/eG6OQ2q/GvTdkvGAZ0Z/0AKzJ24wxjKoQlKwSB2KIWdTKIAK5nU2jRCrqZAZPlx27b9VqC4ZWoEDPnnI1wXPE8v+ERe4+fQLOQPlkLxF8QKRneDharClcDE9hjUhIJBp0inMZj91RQQyeXFtm2SySTZbNbPf+NbKKP5DWYR+Uroup6/Ipv4v43ZYzCvIQWdce3t0ZScHzZ/s6/UbWRnQVZ8kycfpqEspeOSlB5EK+Xij7uzbjanMLKzJOvl4/gVuUVolVJ6BTqfmnPMz9806sXINrGsSPBfcKxDmXMrSZeoUHNgN8amUi9GtpllRXz+6zDp3F4CFQbhmpz8Bga1IhS5GdXqoYn6Emkh4oIhv8GsQPmjb/nQZckNynn+LixR0sdt/xvyGzQJ9PxdJ9hNpsERnWDIb9AksIIw5lxIw3zw8xsYlEQwMUb/Lfg7r3iu3qlxBrYiNeQ3mAUowAJl+X/nV2ZTCixbMRNR14b8Bs2B3AR2fWjCG4zsgpENe3fiHswqBxPeYGRnSbZ4WUNN/so1qcn9/E2sXoxsc8kWzCsmtFKbP7fdvxxMbokbJrzByDaFbLB0SbBeZ9AJhsbN6zUdXoOmQLBcSfC3XrwqvMJD/NGdhvwGTYH89kP483lLSsX6TEN+g1mHUgpLWST9lSYKbXwV+okXhvwGs4eQWeN6OqbHcbIF0xlL3BTb4w35DWYJeW0erNXjiZdbwqTRi9SCIb/BbCKkxG3LxrZsWlpSufU6Gw1DfoPZQzhe31+yJJvN4DgOrus1bP/dACa8wcg2hawi6Oha2LaNbTeemia8wcg2haznr9Lsui6u6+J5c9Lmb2L1YmSbUFbH8wTbHNmWhW3Z/o6TjYUJbzCysyTrx/TjgMog4mLbSUQSOI5fIRR+JQiHNsTXIpiFag1mF7lV2wTLsgHL34HRzU1t1GEP8c/sMt4egyaBDm3wPG3zB1uQhjelNoFtBvMTCkBwXc9fudwqSfwmj+c3MJgaNPE9P+qh3DKHhvwG8wx6WyJNR28G1uwBQ36DJoFC78kVLFQ7R/38Bga1ICC3XqQWtMZP2P5+XF4+vGHudnjnwjiLkZ0FWUGJiyIJtICyyGYnELJYtuS2S23k1qQmvMHIzrKsH9oselO6bDYzl0Oam0q9GNk5JKtj+ef0hnRNqV6MbFPKqoIV2kTE34jabEJtMK+hwPb32wUs2/KnMTozQnww5DeYReQmqkDOOiqM42/ssoWG/AazBCmYyaUsPYklWLnB89zQys2NqQSG/AazguhujLZPfs/z/E0qChZ3aAgM+Q1mAaKZZ+c3pAt8+S0tKSyVQDzt+QmC24zmN5g3UJEVmQX8EGbJhTQbzW8wT5G3+ZUq3JPLdd3c8iXhxWrjhglvMLKzKJuP7wFNcNdx/EEuITxGMDfJ3+zjLEa2KWSV5Ud1+j9RwTli8zedejGyc0RWRHDc/PIljY7vMeENRrZJZLXN7ziumcxisNCg3ZmOk/W9PWYfXoN5ChEFaNte+Wvz2AkbpSwSiRZEtJ9/bnt7DAyKoPBEEM/DE23b27bv8vR3ZVFK5Uz+RsX3mEWrDGYFlr/5hACI5BamSiYSuG4WZancJnWNmsZoyG8wa9BxPIncBJZMJoPg4bpZXMfBsr2ihavixLwnf92FVqKJDZ8plZpU8U5EoxIL8qRUXb6TUgi0Z7U8hJ9fEC8TyUPV9JQqLCefnNG19AvMleCe/OwVLGWTyWRJp8eZzExg2UJHZxutrW2ASzartygKvD9G84dQ8iOFPuRUikokEmob/dBEyK4UKlGlGCOVI5xv5acxHYjnVXxXy7KKnpE78t+valkVbBgteK6L8sOPBVC2jQoqgD8ry9PrD/r+e1fn00/HcwURmJiYIJPJYNs2bW2trFmzilQqhes5eD75g4oat+3fePIXjlJPXzZcAKXiXkWmNTRSNxlFwHUri1C5Ik6rJRBy+9eG06gLkQpflKdyafoEFxGcTCYXmlBqjc1wevoYlCiyvl/ftvVujFYygWUpPM9p6DqdMBPkj3E8pFxzXKDp49AOUU1fcFAcXutV+TBWpPUItxwCuWU68o+oQsTo9SoLPJWzmSVQFCXIWW2gKSC053n+ZhJe7jjsngyHJBfsqO6BEsufvEI+ktO29GK1noelVG5Ob1Ch4kSs5M9kskH/PPhXgKhWlVo6MlXIHL0aJeJUqkJB21FN4YR2Ds/fU4qc+XMFeYw25yWI50UGfLRplj8OTINKeYxW2FwkvQiC5CqQ5K5Fy7FEhQ+tqaPNwyBl5bdggmXlF57S2c5zQyKzuQDf/amJrsjvyN4IxEr+8fREUTNVaQv5qhqO4hevVhBTSbNehNMsskWFIhs/Ci9CrWh+ptbEV3gnoUizF4kU1ffKrVvQFwo4HzZtPE9KjNAGWj94hqDX5i/sgIsIeGCJ8uuQPpffojQ+xEp+HYqaf5kijRhB9COUIuV0X7jUM6qRqxoZq+a7ihkiRXo1cr0B9m0tzwgrrHrf2Yt4fOp5dpT8UeUSoBqf6kWs5I92cKLEnWmtXOo4jiY0mmb0o4hbRfNL3jujImbTVJbmi9r0U33Herb9LPdtq+U/fF+0bxBFo5cwiZX82WwWKDYLgnNTIXsjtGClZ05Fc9WLKAGKKk+d6VfSlqVQ6nrUT19v6xj1xZfLUznzq1JLVElmOmiI2ROGFVlwNIzwQEstBV4rpkvuacnXliiQz2e4MhQQgrzlXe2dwrLl8lzqeeXSK5WHSpWsWjmV8viEEUxhLPWcRiFW8kcLVSmVaw2C9VjCiGqb4Fz4/iiqmTHVKlGjCraACLXI1ylTVRNXuFZJ6dSTh3oxUyuvTRUN9fNPxbtTz/VaZeqVj8P7IhW+u6ojuVqfXSvRZkKjzhU0nPzhpraclo5TQ4TTm+qHnhLZw6ZCzole2331vn8lD1atruU4KkG96dWj/OI0g8uhId6eUqhkwsThqag1H9NNs5oLV6iu2avZ5gWyNbRC0QoUdhmWiomp1etWqkKVckfWi3o60/V0wutFQ8lfi/0dN+J2bYYLP/ip6LWqRQOWeUZRWlNAtX5UvWlNJx/NjhnT/LXIN6J2x928lzqebh8hnhHe+sozjpHyevPSbJhV8pe6f6YLqZaBnWhTX4sXqpZn1pNWJS0eJnkpc6dUudZC7mo2fZyt6mygoXN450LTNx3UYk9XQxwDOQHhp2ruVGod4iLmVN6rnnGEqaDpJrM0usKU+5j1au56AvZqSa/S8VTNwVq9MVPV6o1wM88kmor8s1k49Tw7SsapkH+6lSfOUex674kr/Wot1JyK7SmF6XkMIOobiTvwrdT5WjqD5bRxHNowfCYIFw4PtepI+eh9FSbgVM9E8TOLUlJFAtXyUMuXCr9++O+Z6AY0jPxT4bzKTYbIpVKUTjgWSD+nyHEYTbXK9cJ0g7+nMw9hOv0AgYIsS4kcl+JFQanVMchWKkFRKlcBgqwrFS7z4gk20WSmQ/zC40I+xImYvT1x3F87kUp7SgqPoyK1aOtK5C9V6UrFNFVCVbOpWuWJkFupwpZg2uajSEHBlarsJfslFWbATcUULH5u1STqwozG9tSCWsyaam7JyrLFxCp3T7nwi3qPq6FaUFy96cdhK1cLPalaBtSi/cunUcqsbOoR3unOtKlVA0cLKYpKH0YqRZyVeHa1AhcpHe5Qj9lUSH6hVMBx5XeK3wcfHdsIV4RaOqiqsJtS5p7K7xCd5BM3YiV/LUQMEzjatJX6wKW0QaUPX33QSJXsTNXr7an0vOmhdP7KPb8c4hhwLPfMcmVc8C1D/0fTKTUmUYonjR4lnnFvT2Afhycv1HpvtfPVroE2ZUuJRCthrT5yqN/mny5mYyR8uiiX51rfpek1f7XOZHhCS60DN/V0lOIsoFKaJ3hWLd6fmbDLDaaHhmr+StPlZmtAK+LIyKGUKVWqj1HK7DJEnptooJ+/mNyN2m6mnCYu2cz6DrlCAoO/4qR/Xvl+bL9FKU4khDLLCwYnSwwGKWpYG7PpEfUh5/4DKNFpVxGRiIdLiofMooi7zBqq+WvpAM80Crq+QefLH0xTOf+5rgDB56i2ema0MhVeE0qNvpZPs7ZPPKtxMmUfXaGcCspHla47U3nkNNBUsT3NgJwWiolccVf22YqDKchD8P8cb77MtkQlELb5my0SsWkwD4ql4UuXNB3CcTM+sQO3q1IqsGFyxzOqUXN9lRl7ZCwo57mLM+y7ER69hps9s1EBKoY/ROzNUoMsYdLPhJlRT7x+symUWsMf6kW5Ed+mJX+zfZhaYFyV9UMV/lcSjSjXuM1Q0+GlRPhDxeu+VA2tw/xG4bs3ogzmXXhDNTQ+NKDEMwslIqutFdvhIoXvFR1XqDfQrEh+JupSpWKuITuKyt82bMrF9U3dKts/1YuFqfmj36zg40ihgNKXC6I8/X593Npu5syvWvIdqe1FKTRWK4fTDMyduMvbuDpjxsI0gRqHRrqbF6bmjxkL2/ZvHKLzCeLGnCd/3HZltefMR36XJFaM71krcauFsNfjEq4Fs07+ZnAzFhRocdhJTib3ESjeSWWmB8QaigYRv564/VLjL3FvSjfr5J8O4tACRe40qDLEOk8I3mSo1qktNfNvuphT5J8Nm7qkWTUPTZ+ZRj0TmRrVos4p8teCWnlZrnmVqtGKZUKXYxqQmbEwh+hjQq89lZSnophKxftMZ4pqvZhT5K/2wSMe+pL3RQdnRCQ3vVJEisZ3c8fzStsXv2PBbuhlVs2ohlKautZKGg4yDI6rrdwxXcwp8hvMHOLWstON6mwEDPkNitAME2ZmArGTf6b87vWglgjDODpgs/XuMxE/Nd1YnerrKc085p3mr3W0tZkqZ6NRi6+9WoWuhlJ2frXBqfD5cKx+ravlTRczOoF9pmp6uaVHSq34VitqqVRxfLBmqJTTCdeoJcI1uF5P+g0JnJPZbnsMDGYJJqrTYMHCkN9gwcKQ32DBwpDfYMHCkN9gwcKQ32DBwpDfYMHCkN9gwcKQ32DB4v8Dysvaujtxw+AAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAADECAYAAADpoXHsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7QsyX3fCX7Sl/f2evfufd6/9t1oi4YnQBI0Eq2WZiSKlDQ74urMnkMOR1oZylErcUhpSJGS6ECAIAGCDdPe9/P+Xe9v1S3vXfr9o6ZPowEQ6MYQ1GC2P+fUycrMyMjIiG/84he/zMoSXNd1eY/3+C5E/O9dgPd4j2+X98T7Ht+1vCfe9/iu5T3xvsd3Le+J9z2+a3lPvO/xXct74n2P71reE+97fNfynnjf47uW7z7xTk3BT/zEW+svvACCMFz+VSEI8L/8L391+f1fga+tt78OtraGdfm7v/sdyf7difd3f3dYmDc/Hg/Mz8Pf/btQLH5HCvgd46mn/u8h0PV1+NmfhZmZYXuEQnD//fDv/h30+/+9S/cdRf62jvpf/1eYnobBAF55BX7jN4ZiuHULfL6/4iJ+Cx56aNhIqvrujnvqKfj1X//GAu73Qf72quavlb/4C/jkJ0HT4Md+DI4eBcMYtsk//Idw+zb8p/80TLu8DOJ330D7zfj2WuiDH4SzZ4fff+qnIB6Hf/Nv4HOfgx/+4W98TLcLfv+3WcxvgigOLc5fJX/V+X0n2NyEH/ohmJyE556DbPatfT/3c7C2NhT3m2jaX38Zv8P81XTFRx8dLjc3h8uf+AkIBIZD2oc+BMEg/M2/OdznOPBrvwZHjgxFkk4Ph716/e15ui78k38CY2NDa/7II0NL8rX8ZT7v+fPDc0ejw05z/PhwKH2zfL/+68PvX+0Gvck38nmvXh122lBoeG2PPQZvvPH2NG+6Va++Cv/j/wjJ5PDcn/gElMvfohLfJb/6q9DpwG//9tuF+yZzc/D3/t5b69/I52004B/8g+E+TRvW9Y/9GFQqw/2GAb/0S3DmDITDw2t58EF4/vmvP1+jMcw/HIZIBH78x4fbvpYbN4bp3nRzMhn4W38LqtV3XQV/NWPj+vpwGY+/tc2y4Mkn4YEH4F/9q7fciZ/92WEj/+RPwi/8wlDw/+E/DMXx6qugKMN0v/RLQ/F+6EPDz5Ur8P73Dyv0W/H00/CRjwwb9e/9vWEFLS7CF74wXP/Zn4V8fpjuv/23b53f7dvDRguF4Bd/cVjG//gf4eGH4cUX4e67357+539+2Gl++ZeHk5Zf+7XhvOBTn/rW53qn/PmfDwVw333f3vGdzvCaFheH4jl9eijaz38e9vYgkYBWC37rt4aj6U//NLTbw87y5JNw4QKcPDnMy3Xhe75n6K78D/8DHDoEf/qnQwF/LU8/DRsbw/bPZN5ybW7fHhqDrzYi3wr33fA7v+O64LrPPOO65bLr7u667h/9kevG467r9bru3t4w3Y//+DDdP/pHbz/+5ZeH23//99++/Utfevv2Usl1VdV1P/xh13Wct9L9z//zMN2P//hb255/frjt+eeH65blutPTrjs56br1+tvP89V5/dzPDY/7RoDr/vIvv7X+8Y8Py7O+/ta2fN51g0HXfeihr6+fxx9/+7n+wT9wXUly3UbjG5/v3dJsDs/zPd/zzo+ZnHx7vf3SLw3z+Oxnvz7tm2W3LNfV9bfvq9ddN5123b/1t97a9md/NszrV3/1rW2W5boPPjjc/ju/89b2Xu/rz/eHfzhM99JL7/x6XNf99tyGxx8fDonj40O/KxAY9rTR0ben+9t/++3rn/70cFh54olhL3/zc+bMMI83h6Nnnhla2J//+bf3xL//97912a5eHVrzv//3h8PXV/NuevWb2DZ85Svw8Y8PLd2bZLPwN/7G0Nq0Wm8/5md+5u3nevDBYT7b2+/+/N+IN88XDH77efzJn8CJE0OX5mt5s+yS9NZE2HGgVhuOqGfPDkfCN3nqqeEE96vbW5KG7fe1eL1vfR8Mhu1/zz3D9a/O8x3w7bkNv/7rwxCZLA991oWFr5/JyvLQh/pqVleh2YRU6hvnWyoNl2828oEDb9+fTA6H42/Gmy7M0aPf+jreCeUy9HrDa/xaDh0aNuru7tCHf5OJibene7PMX+vXfzX9/rBuvppM5hunDYWGy3b7m5f9m7G+Dt/3fd863X/5L/Cv/zUsLYFpvrV9evqt79vbw84cCLz92G9UZ7Ua/MqvwB/90Vvt/SZfe/3fgm9PvHfd9Va04S9D075e0I4zFO7v//43PiaZ/LaK8385JOkbb/9mv7j61KeGfuA7SR8KwcjIMDT5neT3fm84ufr4x4eht1RqeG3/7J+9ZSTeLT/wA/Daa8P8Tp4cCt5x4AMfGC7fBX+9wczZ2aFLcP/9bx8+vpbJyeFydfXtQ3W5/M2t15vngGHDPv74X57unboQyeRwsrm8/PX7lpaGHXR8/J3l9c148snhZOad8pGPDCc6r78O99777s83O/utxf+Zzwzr/7OffXt9/fIvvz3d5CQ8++xwEvjV1vdr66xeH6b7lV8ZTsjfZHX13Zefv+7bwz/wA0Pf7x//46/fZ1lvhVYef3w4o//3//7t1ufXfu1bn+P06eGQ9mu/9vWhmq/O682Y8zcK53w1kjSMcnzuc8PIwZsUi/AHfzCMprw5jP+fIZsdXvdXf74Zv/iLw2v4qZ/6xnc319ffCg1+I77v++D69eFc5Wt5s57eHEG+ut7Onx92mK/mQx8att9v/MZb22x72H5fzTfKD95Zu34D/not7/veNwxT/bN/BteuDUWhKMOe9+lPDyv7+79/aO3+p/9pmO4jHxlWztWr8MUvDkM43wxRHFbiRz86HJZ+8ieHwlhaGoZjvvzlYbozZ4bLX/iFodWTpOHk8xvxT/7J0Co+8AD8nb8z9Of/438EXR/GW/97MDs77Dw/+IND3/ur77C99tqwPr/Zswz/8B8OLesnPzkMlZ05M/RHP/95+M3fHE7mPvKRodX9xCfgwx8eToR/8zfh8OGhlX2Tj350OJr+o3807OCHDw+P+1ofNhQa3hH91V8d+s+jo8PJ8Jv3B94t7yo28WYo6OLFb57ux3/cdf3+v3z/f/pPrnvmzDC8Fgy67rFjrvuLvzgMP72Jbbvur/yK62azw3QPP+y6t259fcjna0Nlb/LKK677xBPD/P1+1z1+3HX//b9/a79lue7P/7zrJpOuKwhvD5t9bajMdV33yhXXffJJ1w0EXNfnc91HHnHd1157Z/Xzl5Xxr4KVFdf96Z923ampYTgvGHTd++8fXutg8Fa6r60313XdatV1/+7fdd3R0eGxY2PDNJXKcL/juO4//afDYzXNdU+dct0vfGGYZnLy6/P60R913VDIdcPh4ferV78+VLa357qf+ITrRiLDdJ/85LDdv1GdfwsE133vvQ3v8d3J/72e1HiP/7/iPfG+x3ct74n3Pb5reU+87/Fdy3vifY/vWt4T73t81/KeeN/ju5Z3dYftsWMZGrUqc7NpQmEve/kCHVNg5sAs69sFbAsC3gC1coVEREaWBUIBL7lclempMQTHplQoM7Bc5g4eJJWOgNNnZ2uZmckR9H4XwZWwdY1b1/bY3q4STWoIXpGF49P0dZNqpY4re3js0Xu59NKzjAQCVNb2MLoSEhFOJs/Sb/boSRY3cys0ZYvswhg9SWdpc417jk1wYmES0xHYK9cQBYvR4Ajhpoy6BXtr24zJIxxNHWHEP4rltSnFKggxmz97/tOEYj5iGQVNcFi9tUMsOsVdj/4cswfuITsxj1NrcPWf/AsytoZTtwlpKYKxOLncKo6kY+pNZE2lJNS5I22x1s0z+eAZJubn+cf/8d8jegXSaoCJ8Wl8AYWTx4+SW9ok4gly6/YGSxvbuK6EJAgImsuxew7RaNfY3NgkG5nAaOmUq0UCHg1bkDk1fRp7o8XZxCxeR2JzfxtPIEh8kGQ8O8qBk4e4sHgZW7Q4evo0zuYu3a0CfkOinYwz+v4nKFSKrF2+gN3bYb1xlWaizcxDR/CHw4R8EWxB440X32B9awctFET1eqiurDMVCHP0rscYDETEzoCA7CKFHVqqze1SnlKuhD8RQgqpDFSbWyur+AM+vnTtnf3q5F2J94e+/6N87nN/ioBNNpthbuEApWaLW8s57nngLJVilXq5xu5uG7EpcvrkLEGfhirLNGt5Oj2d6blZyrU6O/t75Kt5zp07xsT8PIY1oNSwiXhsQp4Isaiffr/DfQ+dxBvxYEsCrU6P0n6NvfU9/nz/zzg0HubE3ATLxoCG6WNpucTPP/wQhesrFCv7tHx+VoQmYtAmpInEci6ljV1uN+rIqoeOYTGaibB4+wIPz53kxIF5TkcnKd9p4DUlCru7HP/o+4iOZHht6UVK/QZG3+ZA+jDTI1luXs3R7rQ4ceogkZFRers7LL/2Omv7S0jeEfyOF3dQwuobuAGX8dlJ9rfX8IYChBfm+OLnX0MPusyfOsn/9lu/TXNgodgC4yN+Pvqxj/HHn/kjej2dq1dvMJMeZ2J0jPXtPRw0+qaBhMxuqQmKwOMf+x4efeBRPvdHn6X0wj7YJlPZUaRWn4OjU8wHRmnnSqQdFToWcXGAUM5RX7bRulWCmSjb118hICr0jDLNVo+Ar8/eK1+igcHkySy5vs7iV8pITZPOy4sYFgxqPRRHZXJilkP+A2TSWSzTJDw/w5QvxeKtDpao8OAHPo7sDnj95S9j6CY/9v4f4Y5yk6tbt7l+Y5GBVwBVIVf5Fg9efbvibVbLGL0BpuLQbncYm57k1WvXKNc67OQ2iYdjbKzuMzoepN/S8Qc0sE3OnTmAVznKy+evonpVvAEvo8kkrXaf1fVNMpkIG2v7bC/nmIhqpKMGQZ+PybEEB+bGOfe+e7h8+RKdjs54apQ3Xn6FgOwi620Wr1zB448hoCF6vbT1OuGoRqXUIeqTyQS9uKqF6BiMhcPML4zTaJp0OwNmZxN0WzWy2RiWa1Nu1YgNooTtEE7HxUWiuL1FsVvGFl2iI2nafRNvIkVNd5g4MIJreVi6/grpWg19u0ozv067X2PXtJgIj6H6PNgxm0qxzN7SMla/R5AovnqbxPwIk7NZ/uVv/jp93cEjyvg8Xor1Fr/8z/8lH3ziMdY3cvQ7A9a7W4wOHMIhP82+jSsoNC2dnaUlRidGmAM2S7ucuP8IpU6eXqNDNJWkvFwhJQXZaxaQRQst6Md0TGIjIfZz21Ryu5TMOrou0DYNTp46xU61wNzxCUq1IlKtSkmxKesd9JiMdzSDU6mgFGXCngjTsVEECzTTjy8YQOq4KAgkHC/pfhJNliGZYmb8QcxWgfuPyPR29okuKRy1DnDk3Clmb7/BS5uXKPZa9CzrOyPe8y89z92nF2i0u5SKFSKFApFYkJGpLDfv3ME1dBzXRNX8ZOYiZLJjbC4vYhk2voCXu8+c5NWLlymXehycncMnw9LiDiFVpFtvMZ7yMptOUS93AJ3BoMPm6m2Wl66zsrbBg/c/TCyawuPaZNMpOpU+rmGSW85z6p6P8MmP/R2s4i7/9Q//CyePHmN8YpyzR+f4i1dfYm1lh9FEiszYNB/+4QfYWdnh+pXrbO/2qO7V2NH6zPtNTkgBjoQOkhibQIh6qQxyvHLhEjdy1zjzgXOcuucUr116jhuXV4l5XCLBBL/xn/8tk+kJwrrKoNBgPJpkNDWO2bPRIwbjx5LsCptcuHiB2dFxhIBK24Xv+3/+NL/0z/85lV4bUfIiImMOLEzBIRiJcPHmHRq7+yQkjb6hs5Pb5kMf/ShfPv86+7k8Xdek59gIPg/X7tziD/7wj/m+D9/DJ3/yY+zVmtB2SY000JoS56+scXj6ABOzh7AGPbarOZqajdcjMTZ2ACes8fzVi/yrl/8AfyDIQ+k43oBDdWmFgSGw9fINGrpJRgpx1H+QUSPOienjWLU2Pb2L7Sikxw6Q21lFGgxo7ZWQZJmkf4pwLEPt2du0rCaJmVn2bt9CbxVxfRLzT85zUpxG93QoOE2WulvfGfHGIxqapmA3LDw+D3u5AtMz0+wV80yOZxAdGQGFRqNLLtegXO4wkUzxlWeucWx+ksnpCaZHxtDcGvW9PMXCPna9gxwd4DdtvKqLqw/Qe10qZRtRtdha2yEQVDg6M8X6zdsUlB0mRyYQZQlZCaFZJhN+iUdGjhPXw/zuhT/iAz/xCdY393jtyjI/MnmQI+4EvXYD0fVy8cvXuHNpHbGjko2miLVjZEMZpmMzdPNdQtlpJo89iOLzkGsX2Cs2eN/Dj6O/OuDskbu59PoFdCwEyaLUdBidinA8mSbujZG7uEIg7OPBex4m7o2wdPM2FbPO1ac/Q61Tpi+ZVO0G9z74OErKz3Zpm1DUg7Pu4FoDbMdFlATm5uf40Ic+wm/+1u+guiKa5ME1QHAc2r0WYwtTGBERW5TYyheZnBwl4pM5Op7i/lNHGI0lWV7d5o1nXuPEyGHWF/fotlucmr2fA9/7KEatzK3zLzJzJMnNq+eZO3UGTzyIsHaF2UMTdNo2o7FRBkYTkuNIgoy7V+Cu7BgPnXuU/maZ2s112ps5pNYAWRHRgh7kbIKE1KV05zauDzzZCJWlHYxWm6ZsY/ghngyQGctQWNlAGQgYuX3MSoNw38ayXY4rf8mvbP7PijcaC7K4dId628KUNEq1DtbF28iqzH0PzNFrW/T7fSwXurpDoaqzvbWJPXBoNhY5f/E6xw7P8si959DbDdR+G6Hewq7WyWgaqVQMjyqT26gyNRHFF5SxrD4z4yNYA5ft/Rw1o87AEahVLSbjQc5NzmPXanjXBnzxP/9nAsc0Hrz3SRZXP0WIMNKOxhO++xhJjbDerrOzvkxvucAT808QqUR4cuouNEVjZmSB0IkYlXyNveVlZh97AF/YYPfKDvXlPhPxBF/51J+iSyYH75mmF26wWNrl2o1FfuCHv59P/7c/ZtSKMpY9TDCWZTCwiWSz5Ko5dNXF8ItUWx2CSoi9dpH83j7dCKj2gKQmISk+etggmzz86N3cWLzOoNUm7k9g9h08soYlDNjY2+Lv/tN/xOjCOL/7v/82Fy9e5oc+8gRSz6Gfr3Hpj1/iC4XPUh+0kLou5k6QGSVMx6Ny7YvP0VvZJBD08OXXnmEsGaNVLzDoNIhmEiR0BSoWU24E7YUCY+EsiprF4wnxkZNhNjZ3qF0vMn33Gax2nygi1cYGpuvS7RqsvPR5NvZXiUkKx2ZO4JmOU94tEhRUkpJCpVamvXid2btOs1fJM6g3KJV3kQQT1Rzgs3RC6jt/Z8a7Em+xXEJWNNqdAT3bIJlIUKm3iYclqvsl+gODhYVxml2d2ysFdNchEA+iAK1qE78qs1+q8uzzL3Df6eOMZbN4BRHXhq2NPRIhH+2uQasBfr9LZiZJpbzP0o1tvHKQA1OT6JZNvy3ga1Y5pi1wV+Qk50svsL1WYGJygWK3ycqfr3BKOkjElZjSM9SW8hzwTJGJTzLpiSGJDlPiJELHZCqZ4frVi/jLNnYgQ6tQoTfosXneYuzhIyhyj2Z5h3ved45Lt14lPZEhbsvEXI2EEqTWs3n+S89y5ugx0laC/K198rslDk0dwBeNEzRHUQsh9qpbOIpOKOTnwsXX8SUCzMwdRpUUqrt1NH+AQ/edoEsf025x8/plIn4NWRZwXAcHmb5tsbG3w4XXXmW0NEG9VKa4tc0Ln/8SI1oatSFzInIOT34RT3+fpOJnykyjmRrhRJxIKkyrUWTUlyR+/ANsbN1BTR3AFQRmMnNcy9+EyoDRWIyMmCApJOm2LNy6jTsRxhW8pE8eJfLhBzASAjf/y+8T8oLpOvTDKmPHp7iSv0HAlVA1hY2lZTzJKK2mjbfTxiPICF0duzPAEw9TNRqsFjdRZRg4Jh6fj5b5zl9R9e4sbyrFoaOn8V9f5vKNHfb3m/yNv/l+Uskgr7zyZWS/xNh4DAo1EskAK2tNXLPL3HSS8QNTVEsl9hsdjJCPyzduoToW2VgIn+KlqHloNpoEg15OnUqTHh1DUWW6zRauZjMSTREOxgllElCXcUWLo0xRfGWLWd8CM2ceIDA5Qe7Zm2Tb42xcu4a/mMT2CBweO4tZb7K/u40nMc1AlEjH5pjMZNjdvoVXEOi0c4SiIqOTISo383h1L7krz5IKGqQmJ9hdv0q/VaW01iY8NcmsliA2k2DkwATPn3+RrZvblIwS/k4QVYuxfHOV3f1NguMxjj12jsPqcV586StsLN/iR3/qR+kaHQz6GI02j505xZdevcTW5m3OPnYva2u7PPLQaV5/9ho+2cPD9z1Br9lgq7ZFaCzC008/ze7v7iM6An/7J3+S0kqJ9p06H3joR7HXukzMzWOHwdyt0djMkfbFmErNkN9fJ9RWiKFQy9dIyX729vKYXjife51+3yHipsDwET9zAo8QJOJNsHr5Bq+8eoHpx88y/r2P06TGHz3zaazaDkfj40SzKR7+sb9Bs11ifn0Za6+C3Rfo1Lqc+5mfxdwpkn/qBZRen36xw/aVZc594AlW1y6zfPUCDb1DC4doOEql2vrWQvx2xFtptbi5dJ1Ks83MQprzFza4cec6J44fpKe7FMp9bKFEbq/IaCKNETNo1A0m00l6vT69Xg+rb2EOHDQHxmMRZFSOHFwgny9gOA61gYMpDAiINqJlUyq1CRoeUtFRZiKzPPXMUwwqJvfG78ESXA4cOEnZ7OA9eJjcygr5jRzNpTXsdhW/IzMSCtGut+j2q7iRLkrQJZbI0q1t0QkoYNgochBbtLl0+zxZNYHPkBAcHUIapeVd6pJNtVwhJnjw6l5q+T7BYJCbN8/TKuY5FJ1gv1kmGR+lrjdx6VMs74DZQ7TCmAORzkBEsAIEPCk+++WnEUQbY9BG73cpN5v4gjJHjp3k1Kl7uHRzC68AdGFudoxMLEjbZ7FnwOruNslxHwvBJGcnT3Nu/h4u3XiFJx9+koDpYye/Tkz14O8o9IUQqs+g1++R39tB1/uEg1EcF/wqrA8amGGNqOTl5MIpbt7ZxrAkjk/cSzx5BKuvM+h2aLarhMMacn9A7YWrrOZWydRFdDzU6xUG1oDqtdv4RkcYTyywmDPZcRz803F61UUq5RyN/g7evoXkCdPRa+h2i3a7wfShBW6v3kY3FUbm5xlsv/PXUr2rh9F/8oMxfP4gA1vg1uI+ra5BMCRz5vQxdnZ2aDR7nD55hr2dLcx+m/m5UVwH3riwzvh4hkrVIJPOsrO2g6QbpIMqEU1HEm18QR8DFzo9HVdXWRhJMih3OXXgNLLtY2utQMAfZmt9GamtcDByiFNjR5G9CvnaBuvtHJmJcazNBlFbpFergCszf+phlGCaK5dexqXN1PEZ1nb3yO/VmY8f5fDsISSPSHAkQGX7Bq39AnRNLI9DLz4g39+l5lS579x9LH7pJqIl0fbrxFJh9qs5Wp0eRl/E7MPj554gm51AiwZ4/ZUXOXr0CHOn7sKNpGi2O7i9Op36Hn9y/r+xld/lwESadGaUy4vLjM+Nc/LB+/i1//SfGZ3Kcvn8bcatMClviPc9dg9zJ+doM2D2+DFCiSDSwOT5//AF9l/c4Z6pBxiJTuAYBqFUgsUXn0XRLSQpSM+USI2lafRK6FaLTrdF2Beg3l7nsrVLW9U5nZxhLjxGPtdGJULYDiH0AxDwQ0zj8JljrN6+QcjjxdRtJEli584NkgE/A82m0qnRNfokM2nmzp4levgwQkBj8dVneO61r3B0dp6RrkTMVqi3+2jjWW52K1xfvklqIsPa7gY9Y4AgSHhlL/+ic+Ed6fFdWd6FmWlGxidZ3ylSb+pE+haNVhPLNvF4Vbq5Njvbe5RKLTSxS7GwzemTRzh9LIll2rzvvnu58PoiqmtRb/aR+z0i40FUVUMWfAxaTfyql7DHw6nYIWYPzTGo9Xnt8jX8ySSPfOBJvvgHPdq9DqKqsbK3wal7TjAzOkbh9g6ZEQ+3F3dQiNDBxFUEakYds9ogkg2zvVllYyuHxx8iGlI58MgjJPwx7HaDrStvUCtvM+hWsJ0+qdERTh0+wcbzqySTScyahWppJKNJ/L4WzVYLfeCQSo4SUKKsL24hmxLN3QrFnU20cIDk7BRCJIKpO1z5wtOcfvAc8USKqelRHMXAUaE+aPKh73mMG4uLfOr3P42ki2T9QU5MjuMWe5w5eQTLHfDqay9yfXmDhdk3yMQSCE0Dz7rIAhMo2wbd3D5aVMFUHSrdPXwoaK6LIPoYDJq0O1VCCT+RsUlyuztYXgkMkYnRCSzbZiW3wuToQUJSDLkuYToS4bEM2nSSaq9BoVGmrjtEFT8eFMa8KSLBKPl2nrASwe/xM5edpLe1R3Vrh9jUKFrPpNQo8eLNKg9NHsWQNFZKa1SKl1k2myixIFs7e1S7NSRZxXFcPMY7n7C9K8v7/3hfGkfscnOxj624iKrM5GwaR7BoNvusLjZJREP86I9+CNHOUy5uotgWmqxx+sTd3Li0xs5Sg5AcIxMfZXVpkW6vQaFQ4uNPfhTBdtlYWuKREw+ScqMUNwpU23U2mpscefwuPvAj38fO68u8+Cdf4aG7H0dVVF5//UvsVu8g+QX0wYAZZQy/ncarjTN75hQbOxfQpQaBcJbgIApIbG7t0WpZzE2fJOYJs3HtGmHJJCpb9MUK4+cmyG/nmT97D7n8Fh29hd7qYxQNvJKMFLNwVJW9VgdB9aA6CklvjIQdIRJK0Vb6XFy7St3pMjs1i13u4zoWB+89RE2u04jsEEgFubK0xN5+CWQ/Z06d5E9+708YH5ng2MEMjm5Q3KoiyQq31teYPTDO0lKOoCUx6h9BrsBZ8SAHjSnCagpNkWl5SmwYq+zU14gFI8h2gEHPJZlJMXFojLbVZLW4y3Zum047R2J2lL1KAU2QEDvw0Ln3YxcMvIaXiblTiKEAhXqR7e0teuU6PlckJHkIB0NEvVE6gx5lo8XUwjQ72+uEFA3FtNENg86giycZZitmsWc1WFm6TlgS8QsuTaPDptugQg8HcFwB0QUPChFvhP/cyb0jPb4ryzs/m2Bz1+ToYT+VtkW9M0CRZWLxBPGojez22N7IcefmCj/yww/TqKR55ZkvU2o2sZvnya3XuPvAIzT22sTNAEU9gDuwuH9hnmPxE6xcu81Hz36S8XCW2m4dRXGIxAOIrV1uvPIStcIqfsvH7MIkNxYvk0zEmTw4QXt9n+Nnj3Dj+g1qW22QUoxPTzNx7m5qrFHvVRB8A1zVQHbD7BW3CfmyJJNh9HoX1+2DY+FYJpba4/KtV7F6IvYFCUuE+EiSgdXHMA28sozZMuhbFqYlMT41wcLcAeLRDKXXl3EqOvn9DaIeH4fOniAS8HJ+8Xn6TovO1RLSuIoalrhxaZEb67u0DZP3P/kkTz37DLF0kmvLq5w+PoHXq1HR6siahKS5eAMe/MIwaiNUBaakMYL+EHFPHMVQMDEodAoUnX10V8eVHGRNpDdoUWmX0FoK/qk4q9dWMDAwhC5+0eXhM+fo9hw2FneJZuYQXQPaDuVWCdlpoiCg9gcoLgRElYE+wIwG6PscPKkoE4EsDgLxSBqx3cestxBMG02Q0esG5z72QY56TZbW1yh2qqS9Xg4cPkpM1Xnx9ht0+328okrMGyIdSaG3e+9Yj+9KvLoOGxtNFK/G/Q8/QCAa5pXzr9JtVuh2e9QrfeZms1y8eAdN1Mnv5oloEiGPglfxE1Zsctc2COh+8nfWOLtwkrbeRS91qT67Q6ymErQcwmfG0BJjzBwIgjJgcmqEm1ef5fjIYXZ3SzS364Q8IS5deh2vR0IKC1SbXUKJDBubWxw/MI/lmNiVArlKHkduMBC6LOfu0Nqx0LxBPvijHyM2Pscbv/d7DKQCpk8k3yvhTSrUrRphLYUjwtzsPP5MBE9QI69ukd/bJe2LEw9nGY/NMnrsCI3tRZ5+5o/pN3XCxHDdHkavh1UocLm2y15vFyUlI4ZF6u08+TfqGK6Azxvn8fffx2/8zp9waC7LQ4/cz6OPilx/41Va1Qay5VKv1TEdB3Fgce/hM9yuLxMhgh8NW7SouXW8mo+e3cP2CgTEKMlAlFqtjJbVSIanKLWKVKUOFy5fRfcOECWR+46dQ6j30ToGt/ZyfPiTP0J7qYmdN4iOTeBLOXQEC6XUZVTzIvREVI+XfblLzyvSVLrsba8wnhlnfmSWft9B6gvEwin6gz6VVg2f68XebRCcSePqIn4iqKKGOVBZ2lhGMWXiQhAfKmNqioQUIT9456+wenfiNUxiMZX98oAv/MWreP0QCCskYylmJkcw+ht4vA6a5jA6NkUimmHQaDCZDTKZSXLXkSiVSzUayzWMPoynsixuLEPbRBEsQo7GIF9lvfUa3vQIMw89gGnLpNQxzs29D0odstochVqLdDBNX+kSiCuMn83y+u03OHvfPfiNCKGQj/ziNssXTbyGiyeRZaea4+rabSIkSAe8lAvLREMKpdYW4QkN2+3QEloce/Jxtl/KUS01UKwmstfDlasXqLWLeLwiZx8+TXOvRSY5QbutsHrxAnv7t+kYDRxFIZbU8Ho16vs16maZFh2iB8e4/wMPoSUlzl99hfLKgJPHTzAyMUkwEuHe+QkUTWL1zi3qtQrOwGJ6cpY7l+5A32UsGSLsqvQLTfyWRjYSw2tLNK0KZYa+qyXYOB4LTBjUDQJCEI+psdkqUjYbrC1u07Zr9O0u2XicQrVCylQJpfxMTUzjaC6F6h4BWyUjJTANg72VVYS2jb8nEteC6JJNNJogeXiWqm1SrrWZGT8AukC3WCWmaAg+BcvRsVWDoC9Ec3+femUPr+2QkiOkAjH2C1VwJEzbRkbGq3pQRRFz0McnKe9Yj+/K5/2ZR7OMT06xmy9SrrfQrQEOLgIuJ06MoHhVbtzaxDRE/j+/8i+JZ0b5x//w/0Upl2c8JUIXTifOYOUM6usNvJ4AT370e2GvRfPSNjR72KKFrPjJZA/gDSTZr5TpdfsEgj4EWcYJppl95EnsnR32Lj9Hl30GoQqx42lGDk7Ttwye+eMvojYl5kbnSZ85TCjj5fWlC3TdAfVah5uXb+CVFUbCCUTbIBCWyUxGuL54ESEoYA10jiZPU7nRYzQ1QoMarmZgyh1c2yIZmKBXV5gdOUuzWWOneJXR2TRyIM6Rcw9St/PIzoCV23e4tZujoXnZq1UoF3cJiJD2BTg8dxDTNJicmsIVDVa3VljPr+ANqDiGj/nxebYu30TS+5w8fICwL0R9q4emR2hUS3glgcn0JFbPxbEkZqfnqRXKpIJhittbNAYNPOlRQofmiBzO8vQbf8ry+mWSCT/VYoWYHCLRcZgcn+Tg9z6Jf2qSl3//z8mfv0HCHyfujVCs1fBqMdKhMUYSY8geL7Zpsl7Ikxo/SGrsINLAYP/iRYRKCUXSIWZhBV2KtQYT6VkCs1PUB32un79MUFKpmm1qmkHg7nGu526wt7FBNhCHzgBMnZFMir+/de0d6fFdWd5IMsqps0cwLnawhRqjUxNEk3EWV9bZLjeRNDAMi8n0CM889Wd4/EGWtrfJJFSK9S5W06G9fx1P1yUoSAjtHIZQQvPYNOQGXhUCmojscfEkVGqlCmbbIKSEEEybyYlJKsUWmtFnENDoW6DZAUakKFIvwNalMvEDI5w9cx8vfelLbJc28OSjFBsKt66vsl5ao2v20RSViBZm/sg4ihdePP8Cyzf6OKJJQPTTMvpsl3fxCl4mJ7OELQ/RqSiLlRVev/wGp1IjLC2vUjV0CsUck4fiWBmoDvbRd16h3+rQLFfQdZPdYoX8wMSQJXTXg1/z8eC999NtNtlY28TvCbC6ucTe/jbjM1m2NnYQdY0F3yzH507QKO2zfGeDowsHOXniNM19g26ngqgYbNe2KTcaJL1Zou0E8ZE4qgT2noVH8qGpHsZPHqell9HrXXyolPeLjI9mEfHRdxqsVbaZHlQpX9vFGOzTlhuEtQCHDh8kslYiqEQxXS+lWpfxhVGazRqReAbbEZFMqO+VcGwVSQiAqrDXXKVHn7MfeYRexWRjZxFV9hCURfRBB0lyuOfocYyEDxICuWKetVqBqORFxkF4F2++fFeW9wfuDnHi5Dy63qPVrfH4hx/l7kce4+LVDf7fv/TrTE4EUbsdDo9PsbO1SziVwBuL0apU6G1XmIyO0av0mMxm2d9cZWFylLsPneSNr1yitWfhtf2MZROk0qOsbuQIOymOpE5SW9nH4wG/5qVu90meOUEgmaG5V8UnapRu3KQfk8icmmdx5SLV/RUkqYduDpg8fJzIxCRPXfsKS/k79NwBkYCPTCCA0WsQSYdpmS0yIxk6zRaxVJR2t0taTOFumwTlAO//vo9Rt2p0fG167oC9jRx7S3lq200efvQxdio76HafI/e+j8LNNUo3yyTCCUr1Kk27z53cJroHNrsF/JqHjFdBE2V+8Md+lIuvvcaNy2+gaTJjYxmW1zY4Ep1kMjWB5vNiuzo7u0vMTU/SLg8wuhLdWoGFA2PUGjrJyASnDt+NWO2zeP06zX4Vc2Cgij4MrwdtbITMaAKPH1597cu0zSITs+MUyx1GwxGMboOu3kL2efB5QkyPzNHcaRBrh9EaCqKhEczOETpyGFJRHNdm8/I1JrKzhFLj2LZL7/pturkcWtrHSusK284mBatGwAoQNjx40XBMiaY1wFZkQrEw42dmWRUKfOXSq+QqJQQRAqKGV9b4/e9EtMGjyeT3KmxtF5mYzSArEV5/7SZPPX0ZSfTg06JolkAkHGfywUku3biJUS4T94Yx2iUKuTXOHTuN5EI8HGZuYRxd7lK2CszfdRq7p7GynePitVX8rh8t4GW/vI7symSScxD0IEZV1GiMjdUdRpNT+JJjaPkWtupQ3uwg1iS0nh9JEAhoQZSBh0HbpNcyKLe7GF6bufE5/KqMU7eo6X1cVcGRNQqVBvvVJrqh0/KYxIUkWtDL4vY6YjrA8vUbNHt1BvU2ld0m9594DK8W5sH7P4ze7fO5Tz1FeavGXGQGR9Cw6i6lap50MMDY4Slyr28ysPrUTQ9er4Y16FMo5rBcG9F26ff7xEN+RkZSmEaPO7dvcfLkMRSfQLVXwRJtSnqHZCrE7dwaguDBVBRixTWyWhxTdIjGRumZfXwxP+v7BRr1AtMHp/B7JCRHIaiE6NX7TMYyRAN+xg4ucOXOdfKVItnMLKMjk4TsKO4OKB3AlBE9AaRUGiYzKK6DdeE6mgVmpUKjWsNp1dDNDpXNHfadMr2gSLdloakOrisgiBJ918YRZHquQ7tRo3ipjXcmiDswEWQRRxIp2QOC8jt/Afi7srx/+4ksoiIjKiHG58bJlfOs7RQpVS0sW0WVDJKqiFeEEycOcPTUKT79R58m6wnz2NRJWstFHrr3UbY2l1HH/NxZOk9Lr6N4gyhilEbRorBeBlPHa4qMKaMcH7uXlH8OS/QycvokymQCZ7tC/eommhtEjaco1irER9MIIT82HezSDvlbl2nVixz+8MMQgc9eforV7ha51i6y4hDVFIJejWKtRq3VJB6JUCtUGU0kSKcyCIKGLPiZmZxmb3sDUTA5uDDCKy89S8wbRBODnDj0EPlqAy0SpVJtcv3SMn4pyMcf+iCKInL7xnny1W0cj4WU0Li4eYua3sYAYuEQc5MTLK6v4XQ6hH0qk6MZquUKU4E08WCMZq+LYeuI2gBJsfH5A/g8IWLRFJ1ul62dPSRbRO2KTATGOHvoHnZ3KgRSIfZ7ea7dWKRvuMxlp7lr9hh72yus5q6TTMYYSUTotBpYrk1fckiMjTE3s4DPUQm6ASrbHdycjt8J0RY0PMcWUKayGK06+uo2Zsug1e1R3tom4DoEBANBtImfmscJadTkDovL1+jkyhj6AEnwMXBdBiJYrk18JELRKtGLSCyW99jv1BAViV6vx7V3+ED6u7K8g16HaDKO7hg8/dzrjE6l0TQf9UqRSEijVG7QcQXmJ0LUG222dnbY2mjSosPfuu8TbCy2MPM91IFK7vYW12+uMH1qku16FVccsLVZhq4AxoBRb4S8USZFD29IxfGHkOZHufOlp3DWyoR6HhwpiulA/MAkoYkxUBSq+xs0yh06AxmUKMWtPV5ae4NVY5dtvUBXaKJbPSLTkxw7chJ5bRmvJ8CZ46d44amnCSkRHrv/SUqNFq9cuoJdKjDQB0Q9CjPpGQqxDdZWVgn6RVwE1vY2Wb78CqKi4bgylU6Dz774KWL+AIX6DkePHWTi0DT/9c8+Rcc1sVUF27YQZQkUl9FMhN31NsiQSCfBBb3ncmd1gzPn7sF0dHaKy9juAF3qYyoy7XoBV5AZaAK23keVBLqqjhj3ktDGScyOcvlLNzAlF8VR6da7xOU0qcNZ7KaBZQ7YWd0Cx8ETCKCFwyhCGMn20yw2ECJ+rKgKAwe3ZqL0DJRqFVcxiaXC9BN+Not5XEnFE/ZhtVsYjoFu9GiurTFz7m52KwV2W00Mq4vguGiaAZLMwDBIJBPMH11gJr7AcivP5eIGkWiEqdFxinu771iP7+728MExKo0e9UYdSZGp15tMTcyw8OET/P5/+zzBqB/RMJlKTxEQJOp7JT76/vexe2eTV167yLgQ4trFG7SNLumjI7TaLisbZQ6fPUrHkLiyUqZgdBkN+Rm0eow7Gu1mizYVItkAzct3WD9/mZShkgqOY5strI5ENDDD6qUXkWwLSRYJJOL4JydxjRaXbj3DVn2HmlCnb/UxRR2vK1LZqfB0+RkcWcQXCHD5/FWsvkOz1OJPPvWndByb3XYN9jcQu31OTR7g0guXcDsiiuEnFE2wtrfDQLFoyC38YS/5Vh3JdRA7Mi3LhxRRuVC+xQuNZfJ06QGm4SI6NuVGg2jDw9HD8xTz+ySSIbr9LvFMgogQ5uChMHc/9CS5zXW2Cjs0mi2CikCtWGFyeoaBZdFxbBKpBNpAoNJo8Wcvfx7QGGtP0bOaBPwaYTnKodgCStNGtzpMjx/klZUXScfiGJ0BmcgoofgIyegEzZ0mTstib3cD30KawIiPdreO31XZv36edH+K/Z0+G5srDBo6M+PHmZ47yNrKIv5wiEY7z9QjZ9EOHqHyWo7dfgvbaqIJIumQF0ey2Kvs4pgWjxx6mE9feppKr0E8GGA2O4nYsUB/538G+a5++u7zesjtlSmV+qSSCTKpMfqNAWFFJCSIpDQ/M5EYWTVGf6vC3pVVYorGR554nOXlVWxBoN6ss5HfIjo6ziMPP0o0HKOwX2F+7hCPPfY442NpHnniCRLpLA4ePPjxdQUGizusPPMicX+YU/fcR2RqAn8mQTDkQ6iV6a8t0Vm9TTzsx4NAJpkiPTOBE9GoOHW6dg/LNcEVkFwFyVXpdHRUzUcgGKVR6xLwRWi0O5RqdTrGADwylXoVSxZJZUdZXt2h0dDJjMwyf+QUK3u73Mytk5lJcM8Dp0n7ZTKKzGgoTDjoAa/AncImVzaWKek9eoYOroBPVsGxqVUqPP/8i4yPR4kno3gDHhxR5OqtG5RbVQamTqFYpm/YjI6M02w2mZyeIBAKUKvXWN3Y4+rNZSrtDuFskvhkHC0hcHXpJfZr61h2i7BPJunzUs3vUd7PIWoi0WiC0GiGydkD+JQwY8lZ/HaIkBBjduYEYS3C3o07FAo7pM8dInxihkBYw64WSPhUsukQkmywn99kJ5dDjafInjjO4cffx/T3fxhlbpSDd53FEBx0TAwMlqsrXC3dwD8W5uzH7uGLV5/mjeuv0qgWmEtlsPbKdBd3OCG/87fMvyvLW610KJdN+rZEqdBGErvIusuYN80PPv4kL71+gYhHY/fKEkfGkkylIzTX99i7us7hQ0c5duQYm7LMiew5KqU9er0m0VCASqfNzuoGDx67Fy0/gFyPWW2Ckckxzozfh73Xx3YHxOMpxNERnFgKrxbELTVZv3yZsXYTt1pEHJhUXnwByZ9EcqGX8bCys0xfMNFFA0GUCYp+NFfAcm0MV6TW7dEwTCRVpq9b9EQHGx3No2A4Dj1sfK7NtdVloqKINdA5NJ2kZvYJpeIEnBoxTxi90CHaU0kIIY4mDlDo1VjplpAlDRkdx3bwuwp+UUMWTFxRxqdKhKNpfD6ZSq1GLAK5XIVev8HS+k2UZ71sbGyxX8nRN7yImouiijiWTiQYIhIO0OsarG3s0a20OHXyIAdOjqAvlWjX+xilKtWWxI4pklQSxBamqLoVFh48xIVLr5CwgnjaMn5zl3goQ8AfpLZVRmgYTA00yqUmfHCETqVFLxNG6Paobm+SM2toR7PMHr6P7aUuIU+YcqfH5voSW5LOyXveR0bxcCw7TdGx6OhNmpLJgdOHmL/rKK+tLoLW56d+5kcwi21Wz9/h3NhBZMlmNjv/nRHv6mYFv1fFaBk06w38fh8+KYBR7vLjj/0A875xrr/0EmmvyiOHzpFrFnj21hWK9SY/+uM/zfrrlzl47zH2Gw2+8mev4A072F6HvXydrWtFpNsm/rZLbr/FSOQQjz34vSS1NJaRo1TYpZLL4/T7rBkrzE4fQLZcDPpEF05SrGzTHdTw1LoIAwnHHGAUa/QGfWKpETq9HaxBDyQZUVARHANZAseV6HQGqC64gy6SKKL4ffRF2K7WMF0Hqd9m19kmkBoln9uncquO4vGx1ysS9PnYvFqirnmIi36Ctky/3aXXG+AqIgFfCAQTHAej0SYZjVGutpFV0DwuPr9FMOqh1TPxR0KcHZ/i1vkLGD2deq/Ifn0HV7Roddskgz6SsQibm3ssr+wRDEeptcp0LIN2rYK9usxaaZV2q4YPFw9euvTRAw7R2RRSXCLuTzHwCVzavMMPPfw99NerCO4AvVlDcG1y2xsMWhVUOkSOHsDuNWl2G8Tnshj5Eru31xi/6zDTn3gSSQ3R4A7UdVZu3GBj+wbevVXijkpyYZbv/8THefr5L3Dhznme/P6Pcu/3P8G//Q//goNHjvCD3/cjODtVPvOvf5uFxBTTwWkq1TrxmWPfGfG2TS+ZTIqpaY2m1aetD2hsNWl2VbZfuMzBeIrQ9GHuPnucjltn6Y1Fas0aokfm5deexW52WbtcptIaIHq9GIMG84fnCHnHkHdVlE2XuBrnyNEPMHrkQYSmwcql10gpYHQa6M0a3UaRTHoCb7XK5sYqrmJTrO1iBb30un7sfhuv00Xo7xM+dYzHU9/Pb/35b1Pu6XSdDqaooFg6QUnE1k0UR0K2ZSIBFVUDZJfYxATP3r5By7YJ+71MREIcmx6lW9vHCnbpI2LQZTThIZ2IYrY9pAJRfLaH/NYeW+0OA0Gk0+3Sc3sMXAtkEZ8qE4r72a3YZEIBZK+IJVpEkxHagwHrO/skEwIz8wfpNOu0Bk3G5jNUq2VMfUAoHKZRqeE6ApLqoWs4KH4v6USC3H6B27kyBwhybHaefq6IoSvIoTiT507i+H0UW1XshsPi5TWi2QQ3ayuIRoeA6UBbwu3FiM+NkvaNsZ67zm5jDU9zniuvvYriSBw7epSCT6fbLdBZu831G9cQSnUGuTJCqw2yRWvQ57nnP8tk8yAVs85SZZPxM4eIT4zwyrPPkBa8pAwvL/3b/4q3bDFixThz7D46TYHRM7ME56e/pQ6/LfFGk1kOHpzj4MI0t9dvsbNf4N75uxjpB7C2dC698jLBgES3m6Vil+gIXbRUmJ1Sk61qk1TAS6vWZn0rz5PH7yLtk9ASPj784Cku/NkNJLtP1A2TkKKEtTCip0muW6Drd3DkPo7cxidppCIBurUKMc1Lq9sgf+EK8x/4OGOxErZeo+7UiDy0gP/ICPLFbSzdIuQJ03b6bHfL+EUFRUswMPrEBJW4J0hIg8nxBANhwE6vRNs2sB2X/kBnYJo4gksiGyCdPYBihxEEEWvQIREJYfo1jK4+fLwwrGI3TAKayow3hdioUBm0MRyHvmvT7ndAEvEHIzRbNXoDG4cS4XCCpY2b3Fov8cQ9Rzl511lEXG5eu4qqJFlb26Vv9nE1gVq3QywZ5+bWPrJoc/TwUWan0ixdv008EicdHWN3t0ut1mbm0CiK4ufO4jKKKtLrd1hfX0UJw9rOKv6BgNcWEHQv3mCY4+9/HMHucqgb5qU3nmW3uUPTN2Bhbh47oyKWPFTlGu2dS3z6hc/w4MIh4pMaB8cPc+H8JZr9HlOzGUbPjVJdreFr+7hx+waLGzc5cfwQI06K/WdWsXNd5pKTLMwfolFpI/uDuKqJSZ13OmV7V+K9cmOJTrvF6xcvUmpUCEdCHLn3KKqk0ZHazCzMofoEivUCS807tKQONUelYllsVep0bAPJ0pGQ8dU8ZMw4pWIVXRpwKD3P9vIi8UASp2tS39lC8tnoviYtfx85KtE2KnilCLq3R7VUQXMVZI8EokhtY51YMMJafYsdq4Tvlomw/BrLF28yZWlMeDPYzSKxkQzNdgs0kRF5FHUgEJQUXLND3+0QTPspXlsm6LHpdMC0HXLlGoLR5/ThOOGgD4/fy9VrK1idNuPZOLLr0un2cWTwKSJBv4zsugiuw+FUBl/qEFvVAnvtKt6AD02T2c0X8XhVFFuhsVHl5KlRxkYz2M6A167fZqdQ4uNPPsTEeJbc7jbgEM+k6IsmXXt4UyPolRFcm7U7Nzh78hij955lJJZF6rnInRBTviy9osPn/+iLYBlEMn5OHT9O4ESYm/nrlLstvIKELotks+Mc/Z7vQZ1Is3H5NXa2rxGdz3B55yaLhTUGSfAZ2ySOxPHF/JT6PY7fd4gPfs+HMXstuq0WJ2fuR/GEGBg2ry+9TrvSYHdzC7PR45HTj4FuMelJ0lVCJCZjtGo9UtkFIifn+fJTn0LSBLZurPF+PvxXL95EKkYym2VjfQVBVmg2Onzm058lZGq8f/oE46NTKJZOtVVlt1QiNhajZujMpbLkc/us5uuMheJk5TRpN4F3R0NqSPRpogkeIoIfRQkRTo/SHLS4cOk5WvYystXEdk2KnTrZwBRjkVnMpkFpv8Tk+Dhrm5tECy5K4hivN2+zUVnDu3eZiORnUhnl7um72OvmsAdVlIMj3Mpt4tR0MC00x4PTszDDOnXDYtAZMJoN4Q+JyPkBzWYPWYR2Z8D+fpN4PMHlO2vsF8sEJNjeLZBMJ5k+fIj9Zp07q9tM9xxigpdwMMKBkSlq5gC700NEpNMfMDqawDItQGF6ZpbnXniJ8xeuMjubpd0bYEsOa/slMqNpzhydZ2ctTbNZQ/ZIFGoVWj0dq+8gmn0mx+NgDVi5epH7Tj+EasH5l68x5kwwkz1MxJvmdvMGptgiI8aZCE+y2tggpo5y97Fp4opK/eYuAi6hmSztdoHL55/hztbL3PvhhygNKkydmKVs1unkKljbA8bnJpk5dJTv/eSHkXwKQjjETreAZdv4RY3VjTVe+vOXyMgxAnaI8XiWJ84+ztNP/wUbG+s4LR0LC9vxgTeAafSwvBb5Rp65hbl3rMd3Jd7xbIS1tUVsx6TT6WN2bZKqF80LbtLL5JlTXPqLZ6g1uzz66IdYK65QqO/h83hwUi4iFkEtzF0Ld9G50SVQc4koKTo7AwZWm3qtQubQvUTmF6gsXaNlVtnt7aLrFXxBH223h2AXuL1/k3KlhSgqtNpdykKVzVad5164yJK9SURUWFDDTEgJfKEwpx5/hNLNFymWLiGv5ggpLpFkivpmDdvU8aCg9ANUCzUG+02mRzIkAhEiGdiw8mghjWhEw2wXMQyRrVwdTBnNEomoEVpdhQtXlmjYA8YmRvAUm/RaPaI+iY7eoVCvEI7FWN3dYmAanF4YpVlv0GwPKBV2mR5P0O62cO0eM5NZ5g9PUdov0R+02Nqtsbq+woGFGVb2CnT0Pv2OTtQTxB9Q8dmQTWSo2zLt/SKWZjA3eYAjwbNMJRcIe1KEXB/V2h4ev8D20haSqnFw7j7UqQDlxSsMem3cwYDlV/4cWRUIyi2OHl0gkU5SeD7P7aVFQsEAI9ko6ZFROu0+pf19Pv/5pynWG4yNhbnr7DlEXSBiikTaXo5J08SlKH4hikfwcPPCLWqlGu1WmbDqx6XO7NwMN/aW8LUFzl85z34tz4VbV3jof/vXf/Xi9UoDBt0aguInFR+afo9tU87tc2npIiE5zcc+8XE2rp1nJBFiYmqewYWvsFHOM5fOMuJNMh6YZjYxzbQZp3Ojwn6tBYrKeCxGd2DQKuRRTZFBZY9o2Me2YaMENQRFBkfA0PusbiySDE9SaTbIl/IIPoXKoETHsXAEk4DqB8tgYPVAcHEzMXbWHXYFg2BlgGwPaAhVQoIfn+ghTRRJlChVqriopLIZHjr+APW+wedbX8FJaKheGcGr0G5ZuJaMR5AIuAopNcWB+Tleuf4G9XoVwdtifmqM5Ru3iXolLKPD2MIBfJksjI5RbNaYSIVZKjcw221KrTpjYwk0UaJbq1GxTWYOzjI/M8kb51/FJ0sMen3mZhcoX1ohGAmhuS6Fwj4z8QiODn29Ta/UQYt4Of3AWYyWjKwLhFNhxL6L5lWQJGh0qkTH45QqZR64+wG2aytomkZ6PMbm3iq59YuYisWgVeXs3Q+zX2swlR5BwyUZiRH2BcE0ESWbQr6Ia1rcc9ddfN8PfgKn2ecP/7+/w+Wbz5MWoxzSxnnoxAco7BTp2AO+9MyXCcS8lIwadbuBbefpVhV2ru9ioqPbfSzbYdD9Dr23YSSuknrwKD3DoVHrIRgug04HzSejSyZPXXgK1TQI6i5f+OPfY2RqlNl7j5FvdSgWq/gsFSIDdisbJAMhlLlRJrKnUSNhmhtLxPwSqimyfv0qtqhz17lj6Bs5WkKFVq1LTJbJulHCvhQKYbwhP3vNPRp6h67TQfP5SZt+RNulIbpoHomx0SwbL72BdHuHScuHLxCmYVTxqgL3HDnLtJRlggyyJTC6m6HWqJDuBihezdF3+oQsKHfaFApNTh47yt7WHgFHwmMLZOQAIR0CXZtJT4S+r02z2kA6skAgFaevQk3vsr+3xc6N66yWq5w4fIK4P8NUqkNA8VBvNDg0PUl+P4coK9RqXfbXttC8KpmRJPF4hE67y/LGBjMTkzSqPSKKg091uf/4WTTbxuh2GQ2OoHq99FttOn2LQrNK806Ts6cfxTOuEtBUFCGAfz5FeFtn8earaGMq19cvEMAme3iafaHPZmWf2UyGQrtBf2Bwz5m7uX31OnZfp7ZbQ00HcCJBFK+fu++/i0BmhEtvXOLCF57DynU5658mOvBwLHWIoOGgJbPslPOMREZZqi9x7/sfZHltke3tHV5ZfZ6YEiakhdBMHx7Vhyu98/tm70q8tUqR8dkpjHoXY9CmuNvl+MI4pdIAXe8SS/j43FOf4aHZMyS9GeaTC+glg7tnT9G0dIxCm5gS5777n+DWaxtIrsj8PUeIRGNYXp3lZ7aINE1ss0VnUGdntYUqaYS0GMgKlm0QFH0obfD4ZKKxFKqkcqO6iF/1kUxnsEotGoMObixEod1Hv3yemO3hSDbB/PhZXircpGyauK7L4uItIkmBk5lJkoEUmdksF25doLizRWVzj+n5UUKCRKU3oNtoc+vOMvFAiIiqoBmQDATwCSL1fJ50IIASmaRmdbm9uES10WAuFmKnVsFEIV9t0TNMlu8sEq23yCaijKVGSMaiXLt6h1gsQCqSod0YYPQNisUikgyu4LC9UeFDjz9BVE5x+cUriF6LxOEQq0urjI6McNc9D6LaDuVKmXyhQHZijJxao1Ddxh116SkSb1x4DV9Uo/HSGxw/cYpGt0EmPE76QJZnn3+eUUa566Pvx1cv0StXmTx8mBvXbvLMl76CZDtUSiWUoI9kJk6t3eb43DTlUpXPfObzhGQFte0w7kTxuC5JwYtdbbBVayJJHqKxGMeyB+gZPayBTK5Yw3EgGvCi2jYjvjC2LSAKHqx38a+A70q8O/stPOEaYxNTFPIVYnGJuQNZMgkfpe0cMVcjcOAIMTWB6ddZXlmm5y3RdwcYlszpqdMcnDhIIDXL2Y+cYeXKHexOi607SyTGs8Smxth+5UWkfpNAwMNA7IM/SLnRJRMfo1nPYwCWq2O6A46eOMOUX6b2mkOlepu1vS3Cooo/GOD+e+/nmS89R81u0PWEcXEZ9UdJBRQqHXAlhaigsL+5xkpFoR2cIBhJI/RNfIKK15tmJ1dgbHIC3RDQNBEl6SWTznC1VKNl6JTEDlgOdG3M5oBgKsj09ChruQL1dptoMsxOqQaWyng2iq9Swi/DfDYBIlT7LS6urOAPedmttek5OVzBYiDYjMyMUanWkSU/I4k0le0ye5vrJE0PE4EUtUIVyYTra2ss5reRXJuIFER2vYhumIUjByiHGmzV16DTIn1ymr7dYTY9ynZtn6bQxBH8bA7qRGenOHvvfRiVJrtXbxANBfnSZz5HuVgkHAmSHEuRNSbpuw7Nvk1rr8hf3PgLJmJhzoazaLIXJajQzTVouz0qsohiiISUMEKziVWvEg76+ZGzn+A3Xv80STtLdiZFXPUj1LpIPZO+bFJotxh8pyyvbjo0WwOinT7RmJ+a2aPfbxKN+fBLWeS+SCY2xkxgDqVpofgMruZfpdB1GEnNMpGaodPsYTZ1rE6L+cgY9eduU9xYIfbBx5BtkWa/i+IO6Hc6GKbAPl0qehsrapH2hQkYMqrqwxQ8CJEobiLAcn4XbypMrdGiZvVQBB8vvfg86VgMR4xi9XUM2eKNxTeYPjCBThJfKoLX9tBq7ROLBhjJxlGCUdw1k4mJcdp2l2g0zoFzCyw+9buIrsNoKoU/FODEfWewDIvdtS0K+SKmYxLUVIqFJn3ZAklhYWECn19hajrLcy9cQ5JUgh6NgWFwY3uFbq9LOBEhEQ4wPjvB7l4O3TSYnpnkjau3SI4kQYU7myVmp8bYunmVmUCa6YVx7I6E2VSZS88yrQjsFndod+r09A7HZucZTRwkKKUoltvs79xkYWGOD9z/KGbQZr2zQ/F6mYVolnq7SKtZJF8qsLedYvfOOoJuY3Ukjp29m+/5iZ8m6hcpNsoEQ0H61T4719bJ6VH6ahNBsqlUKmTHkyxvbaJICnc/8BBrl27S7ZgkVBmP18ug38fviGhtiwUyhIMB7j31Pqq6yea1m0iOwUZ1A4/rI5vIfmfE6/X66fcdVpY3aXdbSC402i021lYZSUVxLZWXX3yKc5NH+Mh9j+LYBl4xwrmZ43zq86+xeavET3z4F6g2WuSurRJvgZqrEOyaOJU20XgSTzRCv9BFchVcy0ZTNFTZoNbu4kUljA/J40cNR1lZvIUZkhD8GobQQ/Vp9Ls9HBsc3WB+ZpyRkREuXr5Ip10nEo3hFVQCrsKg3qWj14kpXnpmm83KBrG4FyWrkTl5gJ0rr5EZHeXq6h36pkXPMlhdWsUSoS9qzB84yOmH7mV7Yx1FFNjd3aZv9Cj2DASrg+oLkssZeMMJpmYn6dabyCIgKIQOTNDPF9AFl/rA4og3wMTIKOV6CUQJ21IJ+FMMbAEvGrl6AxFILEywXM1RXaoRtSNk1Qgz2SyHzkwjRDSquSr9okGgp9C4XCJoh1iYOcitG1dYXlvB8plMHh5lUoyQv7bM2Y89zqmTx3nxpefplMvcf/IU0yPz6D2b+OQk7d0Sz++sUO+1iYeibF9chK02J8ePEI2O8+KV58Hs4kvC+07dQ73YIqxFiRJnIpLC7vSp9js4kkswpKGqIpNqhBF/kvbFVeJj4xRbNqapExa9+IJ+ROWdP4z+7t6M3jSxHZFIxMP05Bi9do31zU3S6Si1fhPDlNCjFvVwlz9b/BIDq8NKqYZ3fYXHP/QBxE0BbXKC5MQJeoXr5G9c5KAWwA4FEFIBorMTKFcCtKoSmiAxOTHKyYksi9ubbG7vYCkemrZCIJXm6Psfp9SucmXzOj1FZ2ZqFKlg0bM9JANxwi0BX8emtZ7j9NxBlrcXObAwRa2yT6lepSe6KKqGLIuYMYkrmzeobl0gPTPB8s2nubW3yKFIHzWo4ckk8EpRkqMx1rc32NrbZ2X9ORQBZBFGM3H0fp/RkTRnTp/E6tWZnZvm6RdfI5WK8oEPfZjnvvwcK8vrrOWLfPHyVQTb4cP3382srFEvlulbFqrmoVStYRoDnn3maY7dfZLjJ4/RKpa5/sYlxjPTaFmRXlxnIjhH89YG+3u7RAJpRucOsFoqYZh91l+/wKw4BgGJrd4q/kScyEgYu11n6/deR3VcbMNl64V1nKREp9yiXiixWTIoXNmk3TYYPXiYQDbBxYuXCEejJMcjRAcBov4og+062yv7THqy9KUAnbUie3c2eOSBJxms18gSR+nL9AyRlmBStuosxCap2W1injBCz8Bs1Ont1JgOyKx3arhih6ZgsLVX4ke/E+J1UPD4/OzvV1BkB69HxBYc+oY+/FmLYTFzdI5yo8Ot/TYoAm3bRK23WV1aJtpNIgT8dJotEukEox96lN7qCm23QXghim8syuShOarbG1i47JZy7LbKmJKM40DbNrElE9tuczDuZ2Y+Q8fX50sXP0s5ZyHpBurAod0qMRYYxWn3KVTLVNcatO0eckAkV8mhe1RarknHaLMvtpDqQXYHeWp2n7X9JoVOg3Qqw7bZ4FDmIN3aJo5ls3npOoZtE9ZEvFGVbDZOsdDi+JF5XNOmUWty5fXLTE0mKBdrPPTggzQ6bW5ceYNTpw4SDGhYgkBJkmgUy+TyOQ7dez9XtjaJxsP4kzFaA51MqkWh2mJza41CPo+nYzEbyvLyZ54lnUqT8qcxU3X8o2mC0ynsKS/OgRinpj7Apd/7CndWL6J4TAJKisz8ArGFWVZefYXCzRViHR8eUaPn9XLq3k+wvH8DR99BlgIYlkM6GWP20Cj+mQO0HZuwN8gj9z3BVHKMP3n9t3HxoFt9wqoGpolX9uH3+VFQqS7nuWvmPrqlGrIgI8S8VOnSate52d5iLDFF26gjdSwmtDh+xY9/Js3OrkG7s0MHC0OU3rEe35V4RdVHOBrAq8HhQ5NcvXYZRVWRPSFGJibYz1V4+aUVZFcgncngCCLjo0EiHo1BvUbP9tAv1wmMTtDt5Om3aoijEr7JSRpaFaHTplreomc3MWQR23Iw62Aj4vMHsBWR7WaR1a0CzT8e8KEPf5SrL73EA1MnWNy8TDaaYCDYyI6L3ulhKgaOLFDutGnSpbB6nZLZQonFqNo2XdHFJ4uEVJ3rgyJd2SbuE+kIFnulFZS6h5eWLpMOhug0aoxHAmRjQbJTowwGfQRJotdqUtzbwtFt8ns1LMuhVS2zn2+hOzCzMMn9D5/FMHucO3OUj3z0w4SmZ/nzP/scQrNLu9ngAx98nFa7yVPPP0eta5CO+Tl0MMHMyTNEAwnWnr/GE6ceQG/2eOPiJQqdfXYDmxw4fZKD77uXxAOzWH4TeeCy0DnHWmGDQlBhMutDmfHyxtOfIeJ6Cfn9SIJEH4lDjz5BbPo4xydHeeHCeRYO34Pb73DugQe4s7rOV576LIcWjvAzP/NztIoVrl14jfX6DpbrIiAy5ckQdkUEy0VqOWT9Y3htP5Vai2DQS7drEjw0yasvP0NNrvPI2dNo3jiLK9uE/UGOnD2DR4shzaSwl2VWXs3h9cYJ6P53rMd39Ru29x0JsnAgzcRoEhmDjY0NerqJrHkxLJF6q8u4Zwy55jLrnaZWbuJoDgOaBCIGpyYeINNaIDAIE2y7uPaAa/mLrA026GkGh8dmiLsariazvLfJ0ZOnqJWaxIJxCvkKtzYX0Y0+ISWA4khkQklm52a4cvsiA6uPLdlYpguWS0QIEI+l2LeabLT3aUodynYNA+hKMjXXZOA6BASJsCRj2QMcv8KZc4c5MT9Nudziy198CckSSHoDjAXCHBnNsrxyCzveJxDy448EyecLxEMpMERCWoRrl2/hChKx+Ai1Xp++0GZhPkk44qHZ6OHzhphdOEwoGMTo9Cjkdkkn4/Q6bdrtJmfOnmFiep4eLiuNKpcvXyd/dZ0PnbuXI8cOocaDDHomAS2MnAjjG49i+Qa4Qg/JAqNt4+LDsgR8ioZHVCjvlmheW6Gyvk9cjuBaIiuNBu//kR9ClR3+4A/+K+MTIyzevsrK3jooIgFLQRJFIqkU49MThENBijs7DKp1cqubKD1QuwJpKcZ4ZAxjANFUmoFjMntgjmAkSUeCX/rML1OyCwS8PhJCkA/NPcm5449Q3iuz09in6Dd4ffsmi3vLuG6fjODnU9bWO9Lju7K84YiE7djk8vv0W3U63T66Ab6gh/WtClpMo9Zp4M05zEzdw5nsEepyi2t7V0hnU5w5cxpWolRfWaOx30J3u/hUC6XTxtNu0+6b2GqAgU9mr5En0RpFVhRSmeGzAP5VkZQniuoKCI5LwDCZjKZoJ8bZKO/RNLoI/0df7GARC/sQTJOBDrokYpoSsUyaUqXAwHBAELGBlqEjyiK9/oA7y6sUd7ZJRNMcmJpmY2WTlD+MZDkcXTjM1uYqXclAUCWa3Q5d3WAqEqReaFKpVBAFEVnxMTE+S293g2q1Rq3WQpYcem2dYwenmE6k2VjbYH19Ha/fi392BtcWhq7Eeo7J6WMsr22QPX2EX3jyI1Cuo1er+GJenKCMpw+uKdETHGqNPCFTIBaQQBARohqO4EF0ZGS/B9O1iKbSZM9NYe43qa3so0kaactADvdo1bv84E/+OBt7uzz92gucX10ESSLoujiOi7Wu4FyWiCbjLCSTvG/hGGFFolFs0tpvMuhaaKEwoVSU/U6LU0++j+RoCsERESQRKe6nW7YwOw1kyWRrc53DUyfZ3b7Djd3LrMo1lvUCVbuPT4Km1HjHenxX4lW1EOvrdTBFOq0eqgKZkQSuKWN0ajTqBnMxL2NSnHPp+wklJ3j2jc8Rd5IkfUksQeBO+QJOoM2xkzP4+km2Nixm1En29A3G5iaRVQ+B0SSeaoxiLU+v2mM6kmWUECPHnoBgjMsXX8agS9/sc+vKebz+IJKpoNkBIj4PgUySm4V11sv7+BSJiA59wQJF4ujZUxxXBV585gVUUWW/XqclunRsG1MAvWqQt00i+RxjAT+C7bBe3MXv0fjCxk3eaNQJ912kapPHP/gA8UydVCjBaHyCw9PHKa7u0ewOSE9lOHnPDI1GlXggRK/V4ubNa2zc2mIukGXCjdIfpFlc2yJs57GqTZ48+35eevk8f1j6EybvPkY8kaDX7yJ4TJRRH13DRDQlRH+AwcDA7Ov0O33yhQaqXyMaixGPBFDsAR7JRNFFRNUFs4/dHyD7NGKnfFiijGHbCF2D1Veucvmlq+SKeS7vrdByHUxHJHRgjCOpCZYvLbLTa7K6ucPG9g4r17cIaiEUWSBg28wmQ1QjBmfuPkhUUBk7dgZ9v0q/UqVpNwhYFjEEosE4qqMxf/IwL1/6MpVSDjBQBwNGZIWZoBe730W0v0N/ZaUbOsVyE1UAS4dY2I+GS6NY5dhomu52hyPOBPcfup9MdBYjkEQ1PPh7Gkcj89y8vcjt4hIeQ2IuO41qCiiGTEIK0Rf8PHjPQ2y0K6ztraNbJopXxbE7NGsNgmKGZDyLmp6ktlfgzs41+qaBYZvY3Q4+X4BWq45pudQaLQRHwTBNvBb48XJiaoqsZtKutrj7vjOYx1v0uzrV1hV0U2eAiyMIdAwb0QEFkVqjQcDnA0OnY+i8euMGfcdC6glogo98oYss+7i5tI/R7FDc6hJUgwQCXoLhALeXb1Ddr/DGnS2S0QR+2UM4HUbz+khPp3nluYvIusyc9xDjMxGaS1XmJ04S+9AY0w+eoOWAbhq4toHq1/D7AgwGLq9eusGt5RWq+0XKpRLldgNTgVAgwMzoBB994lHuOnsYV7FxZBPRMbCxGRhtHGmAI6tI3gA4EguPnOOV515mP59HQ8IrySQyEX7wEx/iuc99hZbRw1Bluo6F6LooDND7Bn1HJ+aK7OsGdUmhduM1Dhw4wqjeYG/1NlnNz9LFl3n82Bk+f6FESFUQHJFKc49Ce5f4aJhqvcOIL4vdzJMNhlE8EaqNyjvW47vyeZ8466XTNvGqQ1/KLxnEZI2IGkHtyCRrKRbEY0S0DLHwHLFsGitmYQ1yXLr657y0fxl3NICmq0wPsjw0cg/C/gDX7EFYZ/yBA+Spstcqc+nWDRqNLm7PRGuLHFPnmQpNEE5M4k8EeOX6izR6+yBYyLJCzxHpOBYiAgZgI4DtoLkuqurh8OP38PTyRTZbazx4391cv3qNaqvNdqtOGYM+DobjYgsgigIRB2Y9PiaCEWTBZamUR5cEHMcl40+iaQotvUEilaRartHudBgLpPDIGlGfiDfiJShJHE7OoNUF6Dj0Ok2UsIp6MElua527Zk5R3eoy2p3FLevYoxLq2SSzf2MMI+BS0l3wePBpErLgsr2xx2c//0VeuHiD5sAkoGp4PRquImKJNrIroNmQjkc4c9dRPvjkI2TTIaxBGwETx7YRRQnXlcEMIGLgVT38h//p33D9mZuEg0msAOwOdkik0uyubWEaHpqyhOm6TMRjdDo11npNaoqI1xHJWApZwUNWCDIZTXEwlsJTN1iIj1GqVNGmVWpCg/R0hldfPU+90aFj9smOTbK5U0ILqIQElbDgohg6hj7gHxmld6THd2V5+12dcDiMV1VB72C2DWKRMAeiacy2y8HECUa0o1T2qlzJ32CSAxw+epTi9hb79SqCa3BwbJTKdo3p8Qn8wRj9dhdbV+gLHZ575QLjd88QjafZL5bxSkF8goekGkR2RfTOACEkEA4nCfjDNPQKPauHMxjQEVwE2YMkq1iGg+xK+EQPflHFFgUCaoRmtY3mSvT3m4g9l3ari+FaCOLwoW4ZB8d1sR0bVdI4NjPPWDBKYW+bczMHWauVaPR6OI7Ifr2OLMNursjk5CS93RxFQycTiaCGPZiDLp3egM3dTZJWlIXYLLW2Q66yj2PYOD2XplBGKqtMKiOYlo416kU8maJhV7C6Lt7YCI6qoRsDdMvhxtIqr5y/RGtgo/lDgIukqiheFUECyXLw2S52u8Pi5SssZDOk7z6NYYM3EsGxXXTDQnJkRFOk7zVwPQZzR+dY/PIyT8w+ii7pPL/Spb6+x4gUJhafBl0i5CpENQ+3asuYgkVH0DFEBwsTCRWvA3azhdkTCFkSg26R6fQEF+5cwQw4PPaRD5EZneBf/Ma/I2902dgfkEilKZdKHI+NEVf8yIJE0eq8Yz2+u1CZ48XSRXqWhWJDUNJYyB4g1A1gtcEfjJEOpYlORAkqO0hWl73rr3Fn5zoTh6fZX8qzvbzO3MhBVMmH6yokkxNofj+LW5fRqxYeMYJf8XD33L1sb+zhtWWC+AgIfuL+KJFUCk86iTcSoFnuIckyujnAxEJxPdgOOK6N6Mqo0jAuffDUMVxVxdJ7iLZJc68MpoPjuAiCjCABpoUEeACv7CWp+Yj5w/gUD/FgFDUYYL9axxIUHGuATxRxsGkbOvlqhabZR5BU/IJOrtljLBgigsbh7FGO+g7i7Uqk1Cwj9iwt1SIYEintbdDr9hik+vSkDolTYwhHA1SEMo4rsrW1zbXby7SbdQ7PzzE9d4BP/uAPcPX2bfr9PgFNIxYJUSjt0+00mUgk8OsOUS1EPKwRq9cRd/fxBP2I/jCS5sO0HVzHwZV7CAEwRYuTZ8+QXygzJU9hdPtU5cOsuhIBMcq8Oo+nZ6PZBs2mTjM2xeSR+/jZBw6xfPUq2186z9nkASIDDavZJWl4GfeESXkTCEqUh9//Y+Tqm/zpp76IEJIwvV6yEyNEp8aYnZ7k9c/+BbbTp9HuEBAUYuHYd0a8Zk+g0xn+8jWgSiiGiNtRUNsBzk2fRdNj7F2+Q0CSSMjG0ALcWMPjNejVdTrtPqGRJOFImttX1zhyz/108y18rh+/qXJm5DBS2WX15hIZOY2juujdNl5TQRFEzN4AyxpgO316dh/Bp2ILBrYrEJBCIGnouoHkgCKL6PYA23CQ/DLJdJSootLQHVrlGqZkI4gCpmSjer3otoFXUBAQiAdCiLrJ2tYm7WCIsMfH0soqdt8C08F0e5iuRcjrR1VUVAHsYIBCvc7y9gYxQYB4Aq+cJhDxMb1whmbNYPO5Z0hNZqjlNxDDPsKBNLLfwTggUtyrMnrMQ9ndxZYFFCXEH/7W/86FKzeQsZE/+kG+7xNHmZqZ5IEHz4FjIls2rm3Q6bQwem2kTo/CzSWKK6vIHZlGu8t6qULi2FE8Xg9ywoOqaAi2CarJQO8hyzLxbJqjZ44xGzxJ69oO2+0kHbNDXIoQK0mMKiFMqUc7qvDxv/0jjD9wmpBsk88e5NlrLcItBaHrguMnIYSQeyLdQRdX8nPwyD30bgmsvPIUHalDYmGC7U6dW1eusbK2SFqUmMpMMKoFKeT26Fr6d0a8iWiMvXIe03IRfSJW16FT65PFi9T1ouLH5w1j9hr0hTbrO2t0AwbHj51gu7SNZqk4FYcb+zc5mbqbVq6O0nMolNZRBYNOq0W7UKY7aJFMh5gOTFCu5fAKw/8rcEyDZi1PSA9iqCZdsU82naK4k6dj9hEMC9UR8SpeRFFgIFjokkvFqrFxfQOvbWOjYtgWJjb+cIi45mezUQFcVBFUUcIyDExTZ73WI98sIzugqAqSIGM4FgGPd9iZTZ2wN8DRQye4urKEJ6XQ7HaISAJBvw+P68Era9x5+TVU10t8cpy+x6QmVNjeruEbiXPukx8kdmoKqeSlpe6jOwa64eWV1y9w+84mti0TDvpIJ5PImAiWjVdx8GleNFHA1nvEgzIaETYuXUUzOoQEl7VbWxTkfUbGq8z6vUzOZem1LFRJJSBIGG4HTQfBEBA0B3FKYH+wzf5glVQ6gacu4nFEEqqK6PQoy1UOfeRhDn/kISg22P7KJQbbRR44+X6MpRIBOUC7WEAY9PBYNqIkYIs2/ZUNtm8sEcCLKNvs5wvk6mUarkWo7yfiH6Gz2yF4aJbUsWlub69+Z8QrYJJOR1GDEpMjcfYubbC3u8d0co58rozt6Jy+/17MfoWVwjX82TnKjS3WymVkRyXjxjk+eZKV5S1Cth+9Y5EcGUPxyOTytxE7Jgndj18K4HNCjJ4+SdWzRHlrB58DhqnTNtq4AQnJr6CFvDQGbXRsbEdABWQBVFHEVUXqnQY1p4M/H6Kc32ViLMV+0aHQaeAILrboYgsOhqmD7WI7DjoGXQDXpS26KK5A2OPHJ0kEJBXZ1khHEvTaHboDC7M9oJ6v0qu2UaN+Ah4/fg2OHT9G684+m7vbRNsdpqcOkZ6foqN0EAZQ7Td58Id/mOmPnqMbrhJ009R2djBNiWt3lvn0n36RdsdAVX3MTI0zPTGOawzQHQOvz4dHU1BxQdIQHBnRGDCezdJd2eBOqUWuOmAyKlCvN2jUK0yYLYxuHVkUECQV0zJxHQ+KomArNoc+dgx3sw/SGCz2CdyS0Et1XLND260hjLpMnxxn9Yt/TuvldcZTh0hEFrArFQqdMh6vgBKOkj42h5HfYXdni4AvSqdaQLQswrKC61j0axUk1yKJj2jfR0KNcnLyEClfli+/9AJls/kdEq/QQ1NlvKqKYFtoHolB30ZKRUjNnkX2Z7GDHqobO/j8cQ6deJj2l/+C7VvrxEMa5+afZOHAOcY8eYJyhEKjjXlyAjGbIL7ko3vtNma+SK/dxnE6dJe38fsieI4l0Dt9nIAHMetl3+izU9im5bZZrxcxHYEoKiNiBMPxoAgydbtB0S1Ts5tMyWNEkxH6zQH9gYEjCAxEi4bepdkbkPKrqIqHXqONa9vIgCQNZ9im69I0DQzTRrAsoqqXkWAMOZIgl8/RNns0u216goVjGAQjYQTF4VZhF7lZw2MLxOZnST94mpA3hCrpdC65RE4cIv3JuzCDOkq3jOhYDFDo6gpffukyLd0mFvIS8Kk88dBZ5ibSSIKJJHmRXBuzWcbVPGgeL0gygqwSnfMwbjuYHg+p67do1dtYiogoO7jtKr6Aiqpp9AYG9qCHI/joKTaCT0ALhJGmVVITGeR7+pjbGRq7FajW8XT8zN1zkGq/wYu//Vmmu2m8k2FuVS7S314nZos4toeIP4iQMei7K8iZEi2px6H3PcIDBxTcp+9QbQm4hsqkECPgG+NkappurUXMCSM0JGY8UySNxndGvDOTcXb265TzJVRbR1UkxqYPcOSBh8kGH8LerVG4cZHd29cZjcfpXt/l7pEznJ25C59XRwskEL0ZWs4AX2KEeEJHGomQq+UZnZxCXtplYBUJaUG8Xj+tXAECfsbOnUNSPQjjGeyoy6f/+F9R7VcZOTxGadsgl6uSklQkERzHxTEFLNdFUTzIVovbN6/z/pOP0Gv0cCwby7UwRQtHcBFcm1Q4Siwa53ZjGUESEG0XTQDBAX3Ya9FNC8MRMC2Z/x9t//Vsa37fd37vJ4eV487h7L3PDif26YhudAIaAAlCpEhxSIoqjcZlj6wLl8OVfeGyq+yaKo/tssdTKmlUMyNRGoqiKAaRIBGaaKQGOvfJcZ+d8145PDn74tj3QJW61p+wXuup5/dd39/n41oWYRIzSj20Wp7d3im90ANihoGLFEecKALfWr/BYm6F619/E7NQx98b0B118EKJr/7+f0bcFEn9AQV/RBQlhMj4mUBnMAAhpVpUmJussLo4iaZkyJKC57nkdRk1ihAyAVk2cL0QRIFMEKhcXOJyTqNZlHn0aBuzXGP24iJZ+uzHF4oKUZQRux7IkKUi1fokZqWGNbTwfBtxXkReblJPp9AiyFwLsWAQ3t3jN//BP8D9+JyHH99Fq0p4yohWGiIpNWQhZefpJmptzOyVAt3zDsnph+z9/GPy/gGzkyYXqxcxzIt0+0VkQSfIZLrDjMtr8xSVMdVc+YvBW85LpNN5tKFEHKeYisnS3Crx0CU42aZ3bwvreIu6ZmC1eth9l8r0HLMzqwxOtvGHA8y8TLfdp3LlEjPX1oiHHYKHO9jLAtpkicFmRLVUoDDZJB12GEU+Z91TOqM+aq+OMClhlnJ4HTjunZHzYZ0GM0YVNYYpcwpFzbNR3eBh7ynXm9fx/AG943PqlHju4gY/3b6JokoIkoyYyQRRxNFZC1XXUDUVdzRCEEXkFAQB3CAgJUOVJHRN4HH7hFhKyXIyJVNk2IuQTYUgjJgsGChOiiHKBH2H3fNDmo0nVMMTjG6AlTg8/ztfY+7NqwyyLmrmE6YeXhwgmxUca0RBCDB10MWYlYUpqpU8kgRJEjMajbBaQ6zuKcurl9EMHVkSiNNn43pZBrWg0lybIysXiDIVpVbGl6CQKyBrBeRMxk6gPxig6hKlJCbwXRTdQCvWCTLwhBQ3SZD8iGK+jEZKlgZ0dh+StnusLeQRSybnx3ew4pCZiQVypSI6I8SCQ/d8B1EyOf3s36NKIVPLEpXJHGY8jzMqk0QlPFWnJGkogkRxosbS8jxBq/XF4B1ZAzrDIZmiky+UUMYKDx7dZ+2FDTbvnjItlMkrEqkgEJsylakZBDMPik77sI/tR6y9NMPM3ALWqE/O90h3zyjtd1ALJYJgQJC5nPVG2MmIvj2kndr4/V3m1lfZebKNvTemenmCvd4J4anFEhNcV1bIkUfQRF689AKKoCMUyjRq8wR5n2JD4a//4x8SyyKl2QLFikl9ZRnD7fP4YI8wTOlbDtVCEc006I8tCqZJMrJJspRIyAgySAiJ8ZFSnyiN0DyFwYmHoYq8/dXXuX/nPhUzj3/c59L0Eo04R9iFD//yXdakaeakHKWXFrn2u1/FK2cIYoREhCKDF0ZIQojVPWWhqFIuVFi6tMLalTUKBYNMyDB0jdmpSax2gNUJ8P0RkishKM/m24qskCUxsZIRKjFW6nJydoreKJJXiiAb6GYV1Sghyjm6VsDY9oj3dzGLI+rz64iSQZAKyLqMpMpIKRhhSP/Dj7j/R39CeG8HxgmmWCdRdBYbk0xPLdI0GgS9U86PdxEGZ0gXCsw83yRzB4hxSHGhRhZlJCcxYd/l/KhPJEkIpDSbNYThLvJwB2909sXgzcwiqeuimzqCIDK/MEfRyDEKDyk2TU6OBshqAcXIM3X5KuV6HS9NyXJFcssraI4HcUipWaONy96Pfoz4cBd9OKRrdxlkForiMg4HDHptgiwh0QREQ6U4oyN4Ll6/y2efbxPHIU2zwVuzr5LbS5BilQSBJILx6SlCMWbt+ask9YQnR7fImUXGno3TPcElJAwDnu4f0rUcDFmmYhioGYx7fYr5AuVimY7jE0UBifrsyRaQ4Mc2miyipSLX5+aR44hRv0M5TFiYqBHGGZqYI+2FXJ1/DqcfIMh5rk1eIvMHmNcWiMoCfjIG38aME+QsQRYSKpJAPYlZ0hTKOY0JQyUvS0CGoiqkcYxARiFvcnF1lTBOaZ2fYuaLaIZJLEmkcUQS2vjOiMhzSCIfMU1QRRmijNAJSeMAo9xgdilj0G0zGo5IXZ9SnJCFEYJqIqcCeqKgZhrt23f46//qn7Ngj1jNF2iPznBzIcW1DW58+VeJzh0Gn29ij7vULi7QzULmf/tFxGYRI7I4/eB9cn4fb5hy94Nj6upz5JMCXmCjChm93XO00QmO3SeM/S8G7/b5GEXWmalNc75zwt2tbX7typfo2UfMrV1mxx0xM/kci9dfZe/hU6SKQbGSwxvbRHmVibkpMstGKijMTy5zducOYRIiSwn+sIuVDolCGz/zqBbriBlYwZCTXofN954SZQlSAnEuo5ApzJvTXGyuoAxdup0eduixe/tTclIdITXIzcxhSS3ubz3G1yXcIKLbOqCnJhw/fcIocFEEATGKETORer2IIUg0mlOcHR+TpRmSJFKrVxn5LpbjEqcgilCQFP4Xv/P7MBzx7T/7Y4xxyHSxyuPdfVQrI69ohE/GrBXXqZbmyBXLHNCjtFojzRzS2COfZmhRhBAHSKQURZHJGD7b3GLxucu0t7Yo1YqUpp4t6JiKgpglxHHMYDhCN/JEUUyWJiSBh+c5BJ6NnAR4gx5aljJfb5BXVAxRIg0jBCnG9cd4fsD09By16XkOdnawbA/fDyjkBURVJCFBijLkVOfJD+4wetonyQOmSKaJqPN1Ln7jHTS1yf4Pfshg+xizkFKeXyHRTM5HKYPTba5N1ujsJUxJZYRhQnTepjht0GjM0rNDDENm/2ST484AKa8ydXXji8F70rUp6yoj2cHadVguT/L2jV/l4OFDztsdpKKCnw4Yn2+z//AWe09vcu35y/SPz6jIVbqnQ0LHpixPI3VDNF0iXqrjxzpnu6f4YYxZqiL1LCJRRS+YRD0bL0wZ+RZFs8BEsYQU2diCBMOQvZ0D3lx+Hde9TzAOyZllMlFmcX2JrtXi7vEH7LrH9P0OQTxmHLucBA4jIUXJ50g9DyGJWJ6aYqJY5OjohAW5wERzgVHks909RpBUUnyECBBEojQlECI+unMLyXVJFBXXCxFTmSv1RdQxXFGWKPcNTK1JkGnErRZeVUDdmCLARcpS5CSFOCFTZRRdIOw59Ld2MZ2QzY8+R1yaYe2FG3ieh2xqZKSEkU+UZCSChp4rMZkvkSUJaeijkCDJ4Ns27nCALBXQCwaKJBBHAYkYk0oacarhJhHDsU2+UKQ5u4xh2ciyjBR7pI5PIovEToaw52BujVjKLdJoSPSsQ5J8ges3XkexRPbu3MLtBphSDsGzOL13zlCz2Fh5CVOucvA3n5Lv5bh164jJyTlmpl4gJxTIkhjNKGLWC+StLmdjH1XPUX/7G18M3tEoZqFcoy6WiTybVy+/TtGdZtJI2Nm5zUQjx+joIWUvIjnZpVTN8eGffQhJQjEuIyUK9YsXOX14Sq3apFQu0XjnBsZClaO/CplyMtTQYNO6Q21qkY2vvI5y832srVuMR0fUJ2aQPR9pFPLi5AaDtseoP8aZjVBNk3zkERMTpAGiIXDz47/lL598n+1on1AM0CWVRIYQmXHsUzMMcoJAOhzi93pAxvXyNL/9wtewQo+/ffQRrmfhpAJCqlATNVRZpRX4BGnEX37wI+ZmJrlwYZa9kzZCz0Z34X928fe5Ur9EX7LxjBLVxQtkbo9KTUFbrBMpx8ipgChAJolkmkoY+Yi+h9vpkXYdZEOmoOYQE4EkTtEVBUnISJNnuxjFygSCopI3ddzRkCAKEZMIIQqw+h1sa0S5kicjIRVj/MQlERSSYIwoFyiVJolT6I1c9FyRysQsYuSSejZEEZpWQTwbEHxnk+ZeyGR1g+aVCeL0hAe3PkEKdfwTF1mvMP/iIvbODv74jOODTWItpX3HpbkwzeH9BMPNEYdl3Pwiq6+/g3vS5uzeJmZ5iuLEBNOWieXFBP6IhC9oJZIs5eRkgLfnsl6cZXlmns07NzF1ky+/8Xc433/KXFPHPQ340uXnyJQQd7CLG0UUpqaZnVhAUXQuzs3jRQHyZAXpwiyxKeC5CcHuKblIQtIkvDSiNxqilIuoRZ2obzE8PaKYb6BnKkKQUirUqdaWUBbmcE73ifWUNK9z5bU3KCwvsVCLMHofoTklxk4XJw4IhRg/jSkoCm6niwJUJA3CiPFRi1cvLXH8yS0m1pbwzjqUFIX19UVGoyH7D7aRUhnDrNJyBwROROwF/OD2Peq6yVuzaxRbEc18k8QVKF25ThZGGM0yw+MuxtoiYuohZxGREKCILrIUkOoqWRggJlCYqFBZbBJkCY5vE7gWOc8CTyROI2J3TJZmpIJEiA5iRgykooyQgDe2GXd7pElKJkAmQkaKJAgkmUiCTCjIGPkKSSQSRimiHaLHIpH67LCnjn0G9x5y8gc/I3vvmIXcFLGcolcXST2NlY0lihfniMQpDCtBm5hBWamQjIfED/MEoyEHd86RkiL19bcpKjoHj/Y5bNkkP71JPV+CWMBrtfAJkYIhRmwTuwHOT/+GBr//nx6vroGml6nWJznZOmXgHjJh6rRaZ1zMvUFJDfGOT5kuznP/9s8ZZ0OuX7lBkKpMvPHryJLI+OZ91I7H9vCMiy9fZtDqUY+hMtZwuz5eMKSTDjn097h5+DPayYDToEtJlpjRm1SVEpopYzsxS+vrvPqV30Q1m3Q//iFW2ONk6OC067x+Y5ELL13miv8y5498jg8GDAObYqlE4toIaUpJUSmqGmoU0dCKrOZruL0+BTnBs4actPeJDIlcW0KWZQQyJEHCSGQ0rYwgRsRnFnEYcOyF3O7v8Io6x8npKZFpMn2lQdQ+4uTgKeVGiWxlAkHy0dKIVHKR4wG4IzAKGKLGuH1IZbnMRLKGbbmkRZM084mGHRIxoNs9QxUzVFVBlDXiyCRMIiRJI8lExBTaZ+ecHh5RLOURxAyyCHc0oCzWEVSNTDUo1mbJ9Bp+YIMMlUIJNQoZhD5azeTBez/m+3/wh1w/Frlgi3StfagXqYwU0qCPqEaE8RBPNGCiSuHqNOr6JHG3T/niHGF7wCd//h2qk89T+PVLpInH0f/4h8jOPklrQC4uI6QlyFLcU5so9ZCSCCkZcX7vQxZ/QY+/FF4pVdjYmEX1Je7fa/Gz2z/mf/mr/zlCFBAc9+hvH5H5Az7Yu0WlapCNA1LNpJxrkpy0UdeWicg43d/DmCqTuC55U8N3xtRyOXK1Jv1egBD3GEUniGaCFY5JkajkL3B55XUON7eJfIFqrs60UWdw1OXp/Q8JBYmjyMIrSbx/+32SssCx3+UnTz/h04PbBGmKICv4QYQdRggCpKRM5ArMG2Wurqzya9/8Nf7N//v/g2yYqFJKMVdhEFo8ebRLLIqIiYIqpEw06ow9i9Afk1M0ppMMH7hSnafYhfFohGC1qB4eki+pBGmCWCmSSTGxJJGkMWICpCqZoOOMPZzBiDDuY+Rh6fpFvACUvEmYpTijMd3WGWOrRyGnUykUkBUNQQuRzATJMCH0CVwH23bIRIkojogDF0WRSayQIIvBrJKRR02zZ70cmkKqSnQFH1VO0RKZ4Sd3uf/u31Il5MqFORLrmChKSGU4Pd7BzGJSWSU9GxBVKtTXJ8gkSAYusqBArggTEsl8g6CkUSgbYIe4AmSqRuoltPtddMVEUzTkVETKUowgj5dahO4XFLS3MjvP7/7ON/nsw4+wz6vEUcj33n2Pq1Ov0LXOONtrM3+jRn1tiotX17nz3ifsKzKXNy6z++2f0Tg6ozxTQymabG8/ZfTDn9F87RKiKeGXZc4HZ5QLOZRQwBn0KJoaGhKFrMabr/026xM3ONz+YyRRQwkN9j5+QrPqYCgK1974KtX9JsXnJvin//L/xr/93r+kL1rsRWMiISaTZXRJJ04iMgQURUbKBCQvZG11jaJp8N7Pf8Sh2yPKUoZthXbsIMoScpCRE1RUsUgag9NxyGRQU42qVgQ0Bp6DOA5ZbCwxZU6RdCWEIMI76VKbn2Prw58x+fzLhABSRBYnBImCJFdI0hBJFRkmPkrqodYryFIez/YY9QekYUiaxexsbqEZMhem55ASEFSVUq1KUnh2ABr1eqSZiJYr4IYOXhCRy6UoWULkjHGcGLIqZi2hKmjYukSiq/zs1ic8uPUpF0465PYPsFq7rPkO0niMqscYRYV8s0omgrvZZvrVNxmNU5SaitKoEkcB4WCMbCUIkoy2sMjG3/sVZEUl1QVSDJ5/56u08vcZ/PwuThIQA0mioadgyjo1uQyRjZUOvhi8taLOD37wQx7ef8z61ASXKpd4Z+abiC0TdVii+PoCneQeF65cxLd69EKXL735FqZcRVNVDh48wK3fYOErr6MMO9jDPsWlGcwLVU4+v4kiCaRZSOBEiJlBWZ4mX85TqF7khcuvYQwVnnvhDWLPxT7uEJ+PaEg6IQLOcZtSrsrhk12ub1zho6c/RtEiTFlgaAuIWUIauyiSTEU1KJkGC7kyRhByOugi5xR2D/YpGXk0VWb7cJdB6FIoFKiXmgjjiOmsTJJmWCn0Ah9DUfGsAD8NIBFJVInp9TWWJl/E/vwUZ/+QNBkTDoeYUoh9eExNuoyTRUBKopqIsknqxUhiGbWxjN09JBZEDEMm9Z91xGVhRBh6XL5yhZPWKRkipq4ThD690yPOkxjX81AVDVlUSAQdNwmxQhEtkolSEU1VkQp11MoUkWhwfN7nUafN8XmLO9uPOTjYIR9nXFtZY0yPQs/HdD2iICFvGhhSxun9B2RRniRIUct5tHyJNBNIw4C4OyLq+siahmAo1CcngYSYlESA4vIyWihx/tkdPNehognPZsqJhIaMKiqUlDxZ/AU9ee/cOqQxl8fQSmxsvMlbq1+h2J5GzErc//gjikpMdVnnkz/9GeWcTnQeoPoiJ1uPiLyYUUlh/ZuvEioC01eW0dQNrN0T7v3JnzK8/RBjNMBSM6Zra0ypzxHZMV//5n+GL4qIJwHjdpv5tWv0z9ucPT0nlya4rVMkVSKu5ijMT7PeKNLpb5FEPongISOQF0TkVKCq6uilIqSQDUasTzexsoAfPb5N7mCT+XyZ640Z/ud//x/yw0d3+fiv/gjPHVMyqyxWG7wsL5I6GZ8MWyRJRpSAKEjMlRts947JZIOPb9+lcmmSklFEtgcUJZm01aVY0hkfdUh6LnE1JIsC7EhFEFVUfYowCFEXJcrlJWq1DNseUjBLqIJM6AaQpURJwPSFJcKxSzi2kBSRfCYT+C5Z4DIcjZH1EgEGaBqOUCGJyhT1EpqeQ9brZLHJw4/v8TfffY801VidXyUTRMy0ysnohO+d36RQg8kXllFv7tBIZMaSxOOoQ38+RzmeoBQLuAOPkuURHZ6QxAnmcIzz5AjJjxHPGuTeuEKqPjsQqppBZI04OT6gJYyIFJt20qaqyNSTHEmiUcgEdM1Ez37x3IZfbqtMUVldf46D7accbp3wFze/xz/56v+WwHJJpRQ/8rj7k0cIaUxxqcbzl67hPHxK/6BFlMVQLxONXPzjM5xej6P2Ob0nmxjDMRNBTCxpdLOElcUrzM9eYfz0nNGuhTFR4/Rwn9HRKbOi8Gz5XM0hZWMkIYIkQsqp1Ncu8sMf/inbmzuQZpDJaIpK6tmUjRxGFlHTVaIwZUzCabfFaWTjCBlxltIOfDbbJ/z1e99nu9+hKCt4SYQ/GpLkNfrWOROFafI5k74bkSQJCgp6qDAlNUj8iFhNGfshRUOjND+D7PVwXYdh55zWkwEzgytIeZHEe9bBi5pi6hqCpKKVFhBMHS08xY0FRFVB0XJEqUQUhwiSgCoISGjIsoY/apP6PqoqUa2U8WKLWFKRJQVNksGo4GU5HFdkcNbhyd5N9lpjQskgEWVKkoHvBBSrZRxBwYp8xsc7vCZXCBIX30uJlARrfoqb1ohMqTDXkin2xoRmjsnJCTB04pGFKgkkgY+zf4ZojTBmmwiTFVRNQQgjjvf3GdpDtKbJ+fkpshEhqBKSlJA4KmmmI6cZdvKLZ5z+UnhPhw7/4c+/h5kJWLLFG9NvoqglxHpEY7VCc3Yd8+cFBrtdHLvK1NoaJ91tKgs1mt/4OvGTfTb/6R8h2A4TUzNMKBnmOEZ1EiRFJZ6a5sIrb1JevMDWX/8QpeNilioU52aZXL5E0nGJDjqU6xNk+SqBN6JaVtg922JutoivREhaDk0pIsd5vGjMOBIQMBHImKqZbMxN8fDpAfLiDKdZxP7pEMHUGXgh3cSjG0cMn97C1AymckVCd4wUJsSRQzI1w8+37tLPFIRcgXxiUEl0Xl9+ibPTNpId8eWrX2L+a99EEGu0f/o+QauFRkgpX8aol1FCFWFs0No+o7g8xdD3GNnHmKUCckkiGniYbkxRMOhaHmqhhqjpRLZN4nrEcYygyChVA8QIr+8gRAmGaqCa4IcaJTOHkUYcjRw+Ozzl4eE5Yy/A9V1U0yAVJcxqifHY51wQ8USPLHUxqhJTQZG3R1A/GSCaBTaJeHQ+4DyW2Wg0ePXydfr9gLQ5h3xhhmLFoFivwDhCKmtInke02eWs0yV/4zKll26Q6Qk5QaJ8eYU72z/gSXTAK29fYnqhhnkq0f20Ta/tIQUZLj7Xvgi81XqJ1plHmoAX+Ei6SiRGHO0/Qs0r5NYuUDyOsDoJuakF9Nk58oZDcXUZkRgliFnI8siyxmi3RSLESEmKKGsIaoZq5KFUI/JCXN+nqgiYmkR76zFyY4bU0EmzGN8ZM+i10QXouRZxTsGYrpFbnCEWE0q5Apeal3GOn9CPPFRBJQwdWu0h0eAu577PwFYYEuOHMbIgkQjgknIehWRhSEGwaGgaL7/wHCuz07T3DznYO6QyVcXu+DiRj5jIaLLO8zfe4Ex9wvG9J2ixQNAfoeU1jnonWN0TJlOYX7yCr4mk5yPkep5ee0hjdRk5fTYV8K2IOHYRnB4MO/iuyyhKyHSd+tQ0mpYQRQnIAbIkEachgipjmDlC61nWgiCpiGmGESZw3sFqjUgdgcQNiZJn5YliJhCnKSKgqyJBYBNnRchSFFlkeaqB+XifzPWJzCJ9NyQcBdRDDdPukRohwkSVqS+/SFI0CNMIQ5FAEcmyBN8aYoQZYX9MdHxOujJArJVQDZXA7bHfOUQsK9i5kOOoRVMqMBCGqLKCnKlkav4X9vjLXcCM+hRVGSNVEBOR+wcf83/5f/wTJqQm/+h3/3ekoc64e86FKwuUZucJPBdjdoGsVOTg239D+OiAkiUghBl1o4FZKjHsHBFkLqKSEWYSyf4Rd/fOWZ29QtodoCQhZ0+3MMWE1d9+k4gRZALzmwp7n91i+/ycoRiT3brFi40G3uCAqNfhSnkVyZDIc0ZbcQgzBVUWKNXLuL02siQiOw5JFpCTJfJFnTQncdIaocsqnudyHLkc3LlF/ulDqgn8ly9/mZcuXePdn93m7r0tvvb8b3F55SWUoYzQSZhVTArWiNPvvUftymXWXl7DrvqMHt9mML7H/uce07WUqeefZ/0br4NSoJxJONKANBqTnp2iiD521CfKIshkhu0ukxNzVIwiT3YO8e0R9VoNSYZEUAgSFS/N46egKJCzDqkMIqTHR1wTA1auLuNKBp92FVIbvJFHls+R+RpRFGCqOrbl4EUxDVlirmGiXzaQ9QXOuiH6WcaaKtJcmmT26ivoi89RuPAC4tQMqZzCYMBwdx/n/iMms4x8KU/W6VP0QtztLUbrTcrLL1KcnCJ2NTItJt/UOY+GjDoZZ/unpM6YklLh+ZffYnrt8heD99LEFKW1JuORz9H2IV2nRc5LWVmYxz49Q7A87FaHel1jtL/PWE3RhRre0SG9g1MmcyVkLyR0HULbwUhFDEElChz8OKCy1GTvpE3ZLFEsFHC6fTonR5hKSlGMiUfnHA0eU6uWeLr9EXJVptfqM4oijrY2KWYSmg1lvUkkwOTcBDsHp8ixhxvbtDyPntth4/Ilbrz0HN//9l+hjCP0NGVjZgY/p8LwPq9cXmBtbZ2/+I/fZ2/kMQh8UFRO4oRlER49fcpkY4bX3/oKuazC4Q8+Je4PMcMYu9UiVnPkixqJLtFvn2D1zxn2E0aqTLq1zWR8mcRQybSEVBARJRUhMGGsE4cZiWgimxJqpuKlEuMwo1ZrotemGbgRWWkGXdOJj7eIsAnVlNi3iQYtGjmB1ekpbLuFoATYjRDDKDO0hqhRTE4QEFPIRi5e7CPJEugGXvysTXN43oZigbhWxB10kYKUeq4CHohmBW1+CfJlEBUkIcGUdbIYhmlCxx4S+zYFWSQfpehhwqDbp6IqUFYZtnaJHR//zCaVTM7PbaRhihGBcSFHMq3xydaH/MYXgXfGKFOq1Wj3N+lGIybNPG89/xKr2TTdz+6TTUxx5cISAjqtbpeZ569gCxGtsz4No0ozP4FjtamXC6h+hDfuk4kCUSZho5B2bZaXN9ArTVq7e4zbx8ROG91MKWszPP7we7z/5AdYyRilkGMQBtiZTxIn/NrlNxk82eSFxSukdYM//fgvuD+4j5uMyVL32XKKJqOKIidPN5FO9nlB8Hnt1VXiOGOYSXyyf8hbczNUW+dMqHn+4coLfLB5yK3AYxwG/PHPP+FHtx+wmJWw+i53vve3qJbMRmGGNIpJQ48g8VAbGonV5fMPP6N/ukkhDciyhNCLOXm4j/Tn7/Pcr7xGMiMTyCmxBqKYYRZqxCOLWAzwSMk1ZpAymV6gkoYy9ZXnqCxsEIpFxFQh7z+LbZKEPsGZRWd7kyh2yS9WmF9VWJmYwMwZbG+F3LTaqGoBPw2IEHADaJQMPHeMktfx4pAdV0RHoN0ekvd7FFyZqNtnpr6AWmjQOuxx6n6KZByRaQZ5XadZqJIT8iy8/Tbh/j5nvs/woI3ScREzkaQ7IO0PQNa4+ZMfURU1hv0RtVyOyeIFngw28QsZE69fxKkHdFrHv7DHXwrvg60trKePEYsGG9cXUIcRo24HMTdLKSvSrNZpP9lEk0zKa+uMB11sEy489xydH7zP1q27rM2uE/t9gsAGScBXBULNID85h1at03ccdPqYtRJ2WyYaePj+mGD3PoduF9/1sISQ7mBEP/Xx05AmJpubN5mkiFFSkBomvuoxSsbEmYtEhiqo+IIMaUIliljVRF5fmqJgiPzw/iN65KjkqzTVHG+tXMU9tRk+7fPm1IvkvJhPjx7ipT0iPyNJMpRM5mBrm4ZYYZwZKDkFP1OIpQzLsZgCrNBGNHREFTzHRZB0Qifmzp/8nIXiDLW3VsnXFAI9e7ZMJKXIIggIuLaLUojxs4xUiukPRkxNTJIQIcg6YSIj6hqKKjFpVth6cI/I8lHEjG7LoT53Ad/1SPJl8pKMmfZRlBJ+7JDP15heWmF8ekgOFUESCeOMYeBxxxswEAL+i7XLdG7tY2spvuTyZPM+ZzcfMb3yMvOL1xEFjZ7lkEYipWad/IsbGNNNFr/yKu79baJPNkn9gEG7TfHOXYQJA+vo2UKSqRqYRhEtX8fMn1CZypHLaTijHv54+MXgbQshgiajiwo7j89YwMRs6KiCQtz3ifaOiAc97KCNn7nYBYXLv/4OWZbQ75+xsrRENLAJM5dAdwnlhKEmUrl2mfzFNUpTC+z9+GOEkkrtwhzj4Q7OWMR1fEZWi5e+8WssKd/kj/7yX3PubmMpGUKaUmvW2LW2OXQj5sxFuiOf4/iQkeQRRzELlVmQdIa9cxxCFA0uFk3Ubpe0kHHlleu4fhl9UEIdZfRv+kTtjIVkCaE3QaBJfPM3foXPNn/IsHWKboGcilxaXmemMoU5McmjD39KZKTops705BLq0grLkUUwOsMfd3B7Xa698XXM+jS3/9X/RPDdc2JzAmFOJpoKyOSIyB2hyhlCFiKlCQopqSASJCGJm6AKNQxDIiLCTlzQbRYaJjt//B8o9fpcmprhtNdClhZIy6+y5z/lzr1T7u4JREaDyDQpT8yR+XB4sI8pgSTLlDUNUxRw9894odFkyteIbx9S1AOsKwoPhRYjxaJWmOV6pYLQG9BoLBPYAannoRQirPMzzLV5pJUpcuUCabOBfXTOXGhheB63vvdTBkd79CKfQRqzubdLIp+SJD5By+Xpz+5QU3TEY/eLwfvm175E52zMzQ8fUgpVLi9dQrI0PC8hJ+m0T07JUgdVzxEbIqEU8dOffJfO3i4XPJGTcUaeHGE8Rp/QMOZrSHmDiVeeRyzW6Bx1iOWUqY1l4tTntHuCLAqYeoFQ0TBmLzBjarz46hs8/uAcLxyhCxlWZFMtVjlzWjwePsKRBfrBELGQwx1aDJMIExEti0ilhHaQMCLjhYvz9MSUh3f3MbMpvjJzjf64z9mJTYUShlhAiDTeevV16hsX0IMxP91/l7pSYqI+SbXSxItj9u58ytG4xevf+halfA5rr83xg/ucHe/iY3Nw9Jgsgxl3yGz1CheKC5zfP+aRf4KyUeaFf/QKmZriOBayJpOlGUImIAGaJKPIKpKiIMQ+siyQRDZyHKILPlnrmPzpKbLl04tT+raDUUzwZBs7GPHlS/Pk3THFMKabC9l3dnBGMaaQJ1Y1rDSjIEjUDJPnJxe4Hgokeyd0zR655/L4hYyzXh9Rz7jaaBJYYwxJRw1jBr0eWq3MSEh48PA+S2WFxYsXyWSVxPbIlQyydovYGrK994Re2OccmwExdgZRGj3bhOtGmE5MpuaQnF/c4y+FtynK5MUCw7TAhrnCirvA29ffIS/WUcUao1s/Qk0hM0ymv/VVZpomLe+cp//8c4TxgKUrq3gdD1GVKa/XOPLa+LFO3utSrjUZn56QCRFCMKZ/dMB4PER1HUxBRMGk8/l9uppFriqB6JEKEX6Scjbs0REcwjTGuf8hei7HmWPTzVLsLMH3+jRkmXkN1teXEcWQo+4Z96hSK02jRAmvvfbbzMx9FcPcpKg9haFFYocopkZtYgrfSXl0c5dJeYHnF9dJgZPjFovLS1h7Djk5T3Y+YL/7lP7RIZms0MViz91nkHQQBBHrp3/Ow8d3EB2HSBL42tf+IepGE0UWiCSXUHGRNQkUAVFT8WMRzTRRNQPD1ImjkCSIQRKoFwrYdw7ofv9dxP0OVRHEaoFjUWAk2Gwd/JiZWYUVUUC0u1TjApuSwrHbRc1UclKORFDIZBM/EkiylMAf0+uPUPDoFYvoqsrkYonqfEb/KKAyeYFmdAnNLzPseQxrGrVrc5QvL/NiQUPLmURxghsHmJNVECbYfXSTva0H3I2O6Qgh52JKmEKSCjhZRiLCMAEzVqiqRepy+sXg3f7pXQphid+48BavzX4ZxgL18iKiUqS3d0asyvg9B5IY79FdlGGJsTCmN27TVDVylRxEAo5ns3e4g2ck6MYkg4N95MCkbubQ8jnaJ3sc7TzFdSzUFKI0xpBERr0Wt0e3uT16glmGV+oXefTgKUmWMow8bBKsrkszqZIhE0Y+qDJ2EnJRV/jWjed4+dIVTvrnfPjAoaNpPN064uxkwJWew/KKSiDLOPaYwO6jJBJi6hBGHk6/x8vPvUUzXyDt99k+3MW2HaRyiXq5it1uc3TnPr5rIRESCyKVyTznocwwjZEkkZF7hrMzRsGk2pggP1nHnJzHkceESUyayAgoSFoRUxFJJY1MUJFUgyQDUZQRBBHN0JHGQ3qf3KL76ROm/RS1ohMPHeYnS+Q2pth99IR0qs69rVMePu0yihc4i2XyygKpFxGTkskJcRQhZjkcz6WdunT9c5LMQzRmELtjNgo+tZKCVtSx5ICxkDLYOsSxQxZev0H961+GSg4pCpGihGTkkq83kGwfd+8QVwy5efaY/cxnIIKngBiLZLFAkGU4aUZChh7FVIMAXdJ+YY+/VMTpn6z/r7g4vcx4p40ZmwiCxtT6GpXFBcRqmaR7yu57f41r9XDEiKUbV/EMhdu3PmNWM1hfeZFCeR77yTZxp006U6L0xnMIkoLnhOQ1jfs3f8KDRx+jKSLJIODS5Cq6ovDk/D5BI2RQj/npo5ukkk5Zz+PbPtVqjX27x5k9QslSEl1hYXqO/tDhxBqhRD4vl0yem6mTaiUOxxZPui1yhoLTGnG1usBLMy+h+jUaQo7h023CNKY+OcvyletoU4sIfsTWnUdMT0zw5Mlt2qMOmiAxVaujjy0IXILYQhUVDEkly9eofP3LfHbwAT/85M9A8JiXZ8mSPBYxk4bG5MwK/uISz/+vf51cw0LzN9FSBVeZQDTzREKKoD7Da9k2hq5RyOURDj7Bev/bxB/dh5MulVIBr9tFLau4kwK9isnWqcVBmKOnVGjZRdpjlYFjkyvrhIGPlBUQaym+kFCiSiFKkdMjOuMz3KRAuTRPoa4Si8fMTdisV2BRnOKC+irheInaxgsUVmdQqnUyISOVE4hCJCcmsWPOvvseZ/c+4Wb3Pk4pY2Cq7B61ONo9Qc4ExmGELciM0piQlAoi04LCvKzyR+H4F/L4y43KcotszF/H1S2e3NukuXCBmVdeIVNFgpxKGPXIFprY5w5fevWr9LoD9p4e0ijOMVWrchC4rE9XCXdVRDTiYcDmpzeprC4gk9E7POTB5k84H53gCyFaokI3oaoVcCWXjY3LDAsex8fH+OMIwZKYqy9wPO6QRSGaKBBl0HFDZmSJxQuL+KfHOJ02qSDgZBHbh9t0/Yz5lUW80MMbOPhBwObOI157/u9QLU7zZOsOqShiGCL7rSMaacbe3h4n+2eMnQFOFJOEGbEQMm53KBVLmLpGZIuQRjik1GpNko6LbAlomYImy8w2LhKGBk7vGCsNcd0jGnqDYiHDVDOiSCfKTNRSHTlXRBUyEiHEGgfErkpjromcbrJz+h32Hv6AVU2nOZcntH0ELSNXUElEkF0X0U8Y9yzamkhWrWEYOoEVopoghhLpSMLUNDQxQYsVktRBzskoskFBrFDRCiDEuImAKOvoBZGpqVlmGquk8ksos5d4ljIugiiRBg6hG2AKCnGa4IcOF2+sU59ep35lkf/2X/x3EIUIUUwmCEhkKCmoKETEOGS0sogo+oJeGzauvEirO0BSc2y88zUkUcT2HIxiFad7RqxFWFWB07bPoKBweuqz8fyr5AoVzDhmYaZB1rWRJZkwryGKMf7xEVv2DoPxKY51wurVdRphk6f7R5yeHVPJWQiij2+HfPjB5wRCyJJQR89kZpeW6KkJu+0zxCShhMg5Gcgp2/sHVHJdumFIKadilAsUGlVKcULnpE+71aZRK3Jt9SKdnVOuvHCdiflZ7m5t0Z2UKal57p4+pqKX0Q738YIAlwinGyMJCjIZ89OTrK6tcv/JbexBl6lMxkwyxrLMVLPO3u4x9smAVWUd2dBZmHuZiQtXaZw/oPRClcm3Z9EzgUff/wv0osjGb34DL1dBFFUSMUGSBIgMSoZCo2AjWt9mdPo96tU2pa9No2zZiOcJ1sCikFMYuh5KNY+iamTCiEZJJE08BuePqMhlVmWdsOsjaDmeKAWIpGcpmgWBIPYw9YSlcoXRmYXU3sIJbWpNeHnmEhuzRaxuQq8qU5+fJNNUhCwhEwRSL8A77yMELpkmkYUBcTFDWbvApx/9DXf/6i94cu8BWRhTyAQSUsgyNAQyBEJRJBJSxhmkv/iLwC+HN+zYNGvTCJKGXm1gWyPufvgRV15+jkz0ODy6y/s/+x4vvvoSY6vN7Mo8nWOLqaV1ju4+ZDISYe+UQqWC8eI64aDN8JMTtjbvcB6fUMwbZILJl19/h7XnPP70r/4nxFLM4vws9z96jD9KSISQCbVBUyqQtGPGDKhWGsihyGDYRURAkQS0NMHt9RFlARSJvFxFlXRWpufIq0WenJyjxSm6CZoMR+MWH3/nj/EkgYPeAXlkZoQCOUVFTBOiKCYRwRZcXDFBEQLKhokgnfFng08JfIfn5CbzYoG6OccoSijUJrhcrOLJIY6QMDt3ndrEBUqvTSKt6nz24V/Sf7zDpz/4CcsvP8fV3/ldEttFruXIJAMxUlAQyIItzrbeI+/8ACnYptPzKOWmiUWFLPMplPIomUyoS8gNk92tQ879lNrMNNOaycHtfUoDn9VCDXmc0I187lUEMn0aVS0TpyGy7CPbAxakItZoSGSH+FmK0I5w7x6yvyni2AaLdR18CSHxyaIxsW+Rej7K2CMeW5yN21j9E4SKxk8ef8r/8G//PTONEhdLNUatIX4WkkrgiwlyqiALEZmQME5TxAwK4i/+zvtL4R3sHGKGIsOxS2U2RC3nqUQR0c429SuL2IHPly7M8Orzl0EwUbU6NSFEIaVRzXPywafEXsji3/8GwtevED3ewvssJifIaLJG30nonstkyTRzEyZ/5xu/w62732P/7JRMElERqOSbTJWmKWYazbULbG99wos3XuaT2+8T+x5NEYRwTFWEVAA1yagaGmaUcXD/KbMLS9T1Iop/RPfglKxcxk98fnjnAyIqRIKIkAYYaJiqhqZKaImIohrEns8wHnCQdNGyhEfbjxjtRByKDgkZo8jiijjJi8MK/tYuF155nfmFJcR6CSeLOL61SXjrHrVKwpM/e8Sf/g//goqc4/V3foOX/v7f5fSje9z94V/wzf/r/xnyk+iyjJK2+fl3/xl7t3/I1VmdxTmDpOVz72iP5eY6zXwGSYJn2wRKiFZUGKUpdiZQ1VUsy+HiXJ4LvsoFtY6UjNg86+CIHmmhTinXQBU8JHvEjJBxRZXI5auEekRS1HDEmMHemIf7fZ6/8jrVYQFhp0/gHIA6IlZHiGKC2xqwfecRTx/dY359BsVY4J/+m3+DIiXUNJO5pEQ+iQgzFT8KCcUISRRI0xhFzHBSMAWZGbXwxeA1FAW320X0YkJOyWkLTCYJ48cP6D38gL59Sqq7vPuv/pCNay9SrsxzcOuYqeUNqrkczcU5TgjJvbWOX4R2OGQQRYR+youXvkyuMc/K9W9QUCq0t3eYmZzHv3CDQe+YhaLC1r2n+GlMX0+orCxiT1aIehrtYZuBa4GasTw5gzGWEC2bq0sLPDo9R44ywt4QkpDPbt8nklXqtTqynDHqdUFQUHSRyE+REShLBkU00iTBcR1ERUSURbzYw4tdEmxsYoaCwzALEESJiXIdYyShy0WWyxcYJQKViSlESSVBItcssfpqnrPvvkv3vZt4ZsLsV77G5PQ0b/z6f46Sz/HhH/5rnHAPWdlCVnaRwiNG+/t4e5/QjF1mS3XUzGdxYYGj/X2iscNJ2yc3DFAnahTnahgFkfWFabp3epzudui7DvMVE8d1GYw9LhRNvFhi2VSxaxVcUcUQRGZMnVeUMrOjEM1JCLIMqarilgsImU6BKo3cNOGTc7qtXdrdU9Kyxca3VpAqEEk9Huy8z8yFOS6/cZX//s/+in53QBXo7Z1zrV5lojCP7zhYsYWTemQZSGlCPo1QRIWyYFAJjS8G7/TSLN5JmyDw4egEr3WK3dvF9lukko8iCTSqk8ROh6MnexyP9imGZaT0lFYSUL94ieaFBYRYpP3uJ0idDnmliJFfZaX2CgM35vyzR4z0hP29+/S8ETMbG+SFRUp5mRderPKdj/6WzcObWEefUZyZoB8MOHl0QJj4CCJcmrlOIvuIqc9s1SBKy0ROStoeIqQJrviswWbYH1ASBebKFS4tLWF58Mn9A9IY8qmESoabeeAJjLyQFJEIAU3QKGYSrpCgKip6FHOjvMLvvf2bDG8eUw9NhCGUijn8T26RxTK9okbh7WvkcjK1pTpPvruPfPkC/8c/+yMyt8/+v36P7rufc3Wjxuw//G1k/UNkqUUy3mHrr+5yrbKGK6qookqSaIxGDuuvzRO3Q+6932IlAq0zRE0nSTyBqiuwJOU5iiK6mUharnIaWeyfWYwqIWpR5BsLU/zUzUh1DSVMeW5iGu3mFs7ZACvyyOKUaNxjU0uoXnueCIlYMunsHXP0+IhcmmAsJKjCgGHYJiilvPRbL3D9pa/Tjzwe7+1hJFAESplA2dfYqC0h6zCwOgySEbEEx04HLw2o6xX0SKIgfkF4N+98zuzEPMVCjrHbxxk6iFFIUdexhIgoFekPLcxGk62nmywV5llZvoQmaJwf7jN6eohrW1RkGefnn9I+2kVTTTaWXkT285x2z1i4WGDr3gc4o3OGnkOhMs8Lb30Fz+9RKGbMdrfwxmc8OHqE2HJxvBGGLJIvGUiKQLt1TOv0lLevr2KoGoZmM2p3ma5U6A8HDOOYvgA5TSeToDOyCJ0Ab+BixhFSYqChISCBIBMCQpagSgo5zUQgJfMNpExGVYrU5YRlv4Z4p8ulqIkRKoyDgKJRQBjaiFaE6JkIlsXusE/D6RKEKjwdEv7TbzMeHbH/J+9SDnS0Ug7FqhMPH5PJLqNbPkpfQYwictIEJ08izKkSyrxDdTpFNCNyb44o7PukAfQHPRQtR+/YoXeQkFUN8oaGJmpIZkyqh6iFHBPlAqHvEfe7CHKVYafH7sEZTStEcCNEISWvgqsoqKbMZ/fvISoTrL79NaYKq6Sigb25h+yP6W3tU/lSHa2kUmrmwRRxzl0S22FCFCilUERhaWaRqfIi1pNDamKBer5AbWKahzubOIGDmslMTU5SrTS+GLxRBqNWl/z0HJVrq7j9LlJXpmu32U9dElPg6eAQp+9RylTa7jm7jz9FE/IUp+aRTZ2ZhVliUSAWTWam1mhMT5EpGsO9E6YLOax2C0MsoJVKNCaLNFevkatMYmolPrn9HofdNrtnmxTUFAWXimYgqzpGM48djGA0YlpT2dw947PBGEkQmTDK2JlEN0xJ05giIkPXopPE5FOJ4O4u5USlgkFBqKBKFTwEIllCEhMSt4+ehpihjiRJ1MoLuE7AVG6G1dlVlGGG6mRkQ5dRMCRIU8puihwG6LKFmVoIvXOe+7tfwjq4jfJhkaZW5vifffvZhVBLwVdsup6F824b//ABUj7A29XRwwUyZ5HuVptj+Zyl+TyaXuXpvV1KksPKl6bxzDOCAxdNNNGrZQpKnoJv049CauU8mdVhdnaGbrXEu/e3ydtDVq9sUHdS8qlNkK8gCD7h6IxICJieqWBWUvxmnl4KvX5Mak5w4e03kEvLLLzwIsnmU279wb/g7N9sM/dgit3cGfNvXadQmOTJd37AdUejaijEXogiSOxt3WcgHbNgNJCTEK81IAok1pMS+eIC566F48sYU/NfDN61N7+M1g/oHJxilnIcxS6rL13l4NOfsH75JcxCjpO/+XMEBCLBZ4zH0EjJ6SqxFCMJIYVSDqVWYWl9Az0SSTyXRFcwS2U0AfY2t5D8hMXFVeRSDSdIaZ+3aPtH3N68x6P2U8LMp5So1LQSgZcwsgLO4zOs1CVN4MLMFCf9AaVqFWto40URkpg+G4bLJvPVKXq+S9vuU1KKlMUqRirQUJ81kY89j5gMTdFpNCboHAWkUUxCQhallAITKc2oKSbRcEwtP0mumEMyE5zRmP7gnEH/gEY+5dzdYaiCgUYukCHXxRJG1JQ8spFHCCFMJRwhxDQiwtSlf9Blai7Pc89/CWW4SHZaxg8/5rlLJYzrM3z04UfcvXnEK9dLLEyZCGaEWkmp1spkpoSiywxPYm5tOVipx/pijm77hK6TISoqG88/T6Fa4Plxj8TdJ6yo7IxaDCYMSqUiSbHEUTbgaWdMTxZxbYFLc03wXNJigFAwEY08s/UlTs9HtO/0GNVGcFVgsNfl7O4OM2YZM4KxH0ISE6Y2niSTleqEgY+fWnRGR5SyIlIqIukGuUqZ+ItqfQ99H7NWJfNdPjvd5dr1DXa37+OVBJ7/e18h6QS8vnfOaNClVCrgpzFX33oHvdzEP7NwM4nhuI8a2MQjD+9sQL/TI1FEytUap4fHlOMGKgnVwizHx6c0X75MWtb4H//1n7PvbhLJEZIsk49UrhUuEksJQzHEnkj42fZNpExia/+EWJORU4FQVtjvdSnpOSTNZLG0wKX157j5+CGKLbCgzTCvThAELtPGPOuXlvnxR9+nqIj43pjjvT6ZICCIEmESUBB1SrGBn6X0+ztMrK2CYREKMrKnkQgGghwxZJex0kW7KlN5dYnJN0Cc2UHqizz/+gabH+9w7dqv0n18iE7E9MY0p80PUJdcqmGelfo8ykDE3rFx4oz6r8zSDt/j59/5OQgmv/07axD3GFpdZClFEBP8wYCoL3C+43D2JAMMTuOAxkyO5akqxztdJipL+McS4t5j1NYRaysm0y9e5cn0BT56/4jjTKPdOac4W6MVwf7uMZcKJY4e3WXn/b/l8peByEAaBIStCM0pUBBzHD7t8NP/7gfMXlzAfTRAG6d4WYohiCiSiJ7G6GJIc75C92iI7w7wkzaaPIsiq9Sv3kBeWubBo7tc/SLw2gdHaPMy5RuXyW8Jz1JZhmNMHc6OHqFkDWIvoZDpyF7G9MwkT+8/YNQZIg0iyo1J6hdXiNyQWmOa1uNjcGIEWcBhTBaLCKGELig4+2cQB5zv7dKcXCJXNGnkqqxPzxA4Dr2tM0RJJ/E9pFTg1N5lUtGRE5FUUXGTgJ5loyRgmkVqjQa25dDqd3A+/5Sx61JONTYa87w8d4PNz56QT3IUMp2qbmLHFqau03V8BDmPGwWIWYKkSmAo+E5ApA152L7J2y9/g1qljv84xOpaCGqCUAyIlxIuvLmOfmUCbV0DYpxti0effYhvKZzs79BcXuf01gmtbgdlw6c5rzNqaxw+PiJvRyT+HJUry0SzLpIjU5rQmJuZoTEnkcVFjGIN9+4J0fmAUStj0HaRxDx6SSTvJuSimEalydTGFcL7P332lffOWarIyEtFGpcb+DJookbvbEhhpoZdVAhyeeIMclWD4kQRwUtJxick2w+whwnRrkcSBEyUm4haTM0uY/dPcHZ71LPcs+NtFiFmKbIAShYjRT5Hm3dx3RFKFqIIMWli4/ljcr6LbOZYvnzlF/b4S+Htnu9x1G5xfXqCjfXLWE+fsjgxRTc754fvfpvT7R7/+PXfRXciBmdtetsnnPUGTFUmyDmQr8jEpwM8y6MnWjSqUwz7+7j9MbWNdVauN+jcesT4+JDEicDU0QwZvazz1q9+hd2DT2kfPMHqDrjx6mt84+t/nx/8h+9yev8uV5qzyLmYB1af1qiHWikRpAm2Y6OmIHaHCJlAsVxg4A2J0oBlfZpZ2aQp5pm//hq7D3ZpPzygHCnManWcyKNkNNDnlzjsnDEYn+EKDrf9EUY95jf/8TuM+0fs7t2hs3fI+InIjLqIXpG49q0XMP7BMsKUCeUco60n9P7yDmd/vk2TJn0ZzkYtcpMz6GWVuZU5xKkWuXLMdHONo08OefDJJubEkNxEC6GmI+cnOB93sMJjYrPMVHOamz/dwXo0YjbTqEo16mWVzcN9OvikgkJT0xmf+Hzk7qDmanRae1xZKDP/4hrBcIKdVsq/+/NPaI9SJkSFRuISb7Xo9loUxYxXNy4wcbFB52CXzfs/JP/4CZFs8uBpi5cmXkIiRzj2qVFESlM6p10EASrkMcU8ERa6ruB5EUIW4g57iITkhQRDADELkYixei2cx/cYSbD0C3oUfxm8S2++REESsR/vk1dLGLki2tV15IKJ6fo0CwZbx485HRwjSSlGBnU0orM+me0iBQn1ch3Ji7HHYyKRZ1kEZHh724xOdwlTl3E2hgmTKC8RGxAlHtv373L3s8/onraIo5i3fuXrpFWN5Zc2qM41ybIECYGltRXylQKSqZKpChECumziuQGu53Hcb3NidVFkmbymM+50efjRB/RPT6jWawReSFWuIAcZhVRirtxkZXmNr/zKtxBUiUiIcM2QbeeE9z77Hj979D53j+7w4PAeghyRrxgUmmWSQoVMLxMLOZKRDHaT448tpFMDbxQ8a6IsywhNjUDxkXUBUyvh7vVJeg71SpFcTeHSGzXy1RhTA8tKkcwS7ZFEvrzC55+d8vknXQ73QyqNKcqXl8jPl9GrKeVpmdTMY1Zm6Bz3Efpd6kqI7ViM0pCj3hDLEnn3u5tEYhmxUkQ0RAYHByxmMU3XYkFT0DyXs6MDmlNNVtYWUZSEKBqQr8CBtYUyZZBvlCjlKxTUEiDiEqKIGgU5j5ypRKnwLLVdVpAVDUMyqWhlimIBHRXSjO6gRSTFzKxf+IU9/lJP3qfODtGwRf62SKvrkbs6z97eY25++HMa9ZSvfetN9rf3+PzebaaiKsXY5EJ+gXFgM3HhIo4IYW9MvdpAWl9h584tajNlPOuU8fk5VuseBS2HUlNQJzUm15YZ5CV+9uAjdg836fdbSIKMK0T81/+v/wo/SFAzlRfXn6PVSWn1TojpMAiGDNwMP0q5NDWPOooQkwRdVBhlHoqkUjJKNEsN+idjFFHHLuXZePVthMczBHvbyFGPVu+ATNFJChW+//P32PPOEDMHMciQSjFtb0h9osALL77AVLrA6V91GKcOvfaQ/E6O0//nT7DsI4qFJtOFdZrWDQJ3izBzKK7OUvnaC5jlHBfyF3hw5ydkpw+IC0O0goSfxszfaOBnEd07LlbS4v7ZmDEJK1du8OnDFps323zr9a/TiAPGm3cJ7TaFUgF5roCaq5MjY9SOKMceRdtByjXYI+Ozhx2MvsfCXI3rN/L8/t/7bQ73z7n37/4jV9dK3Hh1lU9v73M08Ln/6RFXry/T3z7hbNBnaW6GifVZqq7Fcn0V7zBGFUwa5ipx74yGqhFJKWoigBcilivsW6dYpBQ1FSVRMUQZJRXRUYhlCQ9QJg2aX7mMncT8on8Q/1J4z0ct5utFVE+lUqsh1CboP/wxfuDjJgIffP5DLi1d4oXXnofjmN6D02ex+aKI1KiiJTFqqUT3+AzdHXPh1Rv0P79DomWMfZtQTFAE6NgOsZNnd3PE5zuP2ew8IodPSS4wTFMiISUYD0njmFAQ+fzxpyxdXUHNRQTJGNkQaeRKjCyfOIrRUtBEhWapgRzYDJ0xxBD7GbpaYHruIkuvvUqaN5i6eoU4E+kf3cNPI8QsY9Rtc9hrEWQZOV0mByiCwurSOgO/TXVyFvsoo2ONEcghlwuMdx3cUY/IaXHknCItFCh4RWJBRZYl3Ayufukyghjj2ft4BEzk6gSyRK83JD+hMPYd7n3eR800rtxY4MaVAlt2F7Oe8eDxLpmcksvr5AOJysVV+p1z9s+7WGadT/dc3G7IgibRLCuMJZfjsY0fCOSTjKKQx+708ZMhd37wZxztWWSjkPLFCqrmcbGhE0oSt3YsKn5MSapwO7Mwrl9CLOVp3fqYWSOh2CgSOSKhJRCkGvnyDFPLsySdDmm7TSfx6aQ+4ywDWUDMl4nGPnEskwkmQRrjCSGxmiEYKYEX/sIefym87/yffgf1M4fgrkvrzMK5+TE5T2Q+a+AedZDPRcapy93TTeKuQykWmXA0BE1nONhCMxskpyn2zi5n3TbzX36RxBQ5l7ocscmZ3yUKVZI0pvh4i1qxSS1ReFmcoK5V0GQdcbbG9+7/Lb4acigeEcoxc+vTRHKGoqkIisqVtcucHp2zPrOEdTTAG9pI5HDHDknoUZNMtEAmllPWGxcReiHt9z9AKSjIcYocKbQsG/OVL3Hpt36NWMgYjQ756893EPQS+bFLKIZcufFV/ul/898wUzjhyuwVnCmJD5/eJ6+YPP/Sy3zynW2cfps1YYnxgy6mkiEIGl1ln15vm9a/3eON3/s1/uV3/u+szlZ48SuXyfQZJpqnJLJDb6eLqIe8+NZFmqszfHjrDkd7DqhtFjeKtGWPW49vsWyb1MYBRlVj/Stv8vjmPX71whT23IChdUhdM3h14goPPz9gQRO4sJBneUOhb2k4pybTWo5XXqyhXrIRIxvr7Aw5SamMXP7urEjD6FNYmEW6vsr7dz+iexYijDwq1ed584Uvkb59gb27TxgMe1y6sk6+XOPJH/8JRklm75OHuJnK/Mtv8s7v/R712gycdNj9V39CPxJovP4Szdk6aUEkkBPK019QcXYQheimwXn3gJw5zeT0AkefnFGQdJrSJKIkI3kKb1//Mj/6yV8hCAKh7DKxcIFMK6NLJs5Rl6JukhgatdlphFyMsycxiEOSoozrhiR+iBnJRIMeZbWBlClUU4OiXscszrFWXeVY6PC0d0ycCjw92md1dp5WuweTEjs758hJgFIAXVRoTM4SdDwEX0AXVDRJQxdkDEmnYpaYylcJPIv9nQfIEgReTKhpDHsiq7JIQZJZrtYoCTKuH6HLBmmWcv+9j+mcjZidXcFL4Ul7Hx8fO/W4e/SAE6tFUyhRFksUEjCEAAoSR8E53aTPP3hlDVXYY3YpYnZZ59P9e9ihzaXfbyIqEgvGIrLcYvpijaPzQx5vttndy3juhQVWn5viY+sm5zd7TKQgdm2STKPq2KxcaDDsO5wdd5i/WGJwNKRzvsPKpEFZ0BDUhKHvI9aqeH2Ho/Y+hcIKw9MzJvM6lUqTbFZDMy12Hx9Tn5/ErmjcufeUo0MHq59R0WXaY4+4VECZbTA7XWNahVypRHjYRiqYYAX4kUtR0NDGMe5hD3HlBll7hLyxwOS1qxhvvAz1CknnBHtvD9P9gtqA+re2Sdw6WU6nmi+DkFBbajI6e0DBCclCFSkS6R1s8Y2vXeFkZ4ez43MmG2/h2A1OD9voikDt6jrltUWigsbBjx9Ry3IMCw2Oh4+IkoSpXI3puMpUUqIcF0niiCyxGIYeRqPB3/vm73DAOZ//u4dEicNobHPn0SM0RWJiYprEGlMtVjjYOSXph8QE5GIDLVPQ0RBTAS2VcMc2J+4hsWCRiT4FyaA0PwmNOvtH+5ztbvM3//V/y/WpOezTQ6ppwqRQQhVSSGXu/Ogp5bDKrQ+e8un9W/RbfeIkRnUlngz2UWKJ1ellXlt8mYP7D1HnoC318OsWX3n7IsXlFu7wIQsLGZVplw8ftMjPG4iLeRJ/THfsU1qc5MHjXQ5Ouly/eplq1SEXSQjnKQ29yMRzBdari1gf36a918J8CvXr82g1Dz2IIDF54fVL0DkiCQKi+Rof3jrn5JFAWBzy4tvTPL8xjf3wFPm4QDYy2Hx4xNw7G9zrCnx6HLLYzHj46JjjoUMQZ6iahIBMoVhFKORIlYy0kkMyJEhFkk6bhphD810uS5OoQgbb5/RP/5LDb/8ER0x49R/9FtqVC0R6jKSkJLUKSeCC8AX9STFRBCUvUX/tIufv7zB4csTS5UmK00XiR3uAQClfIxY07tz8CENRkOUJBkfnlOoXqCyvIYsh8rUNhIkS3cNjkrFHMZaR+gFZ6KOYOYpGmapfo0kVI1KQZPBEn2ESEaUp5fok2ycn6IKBnwXEJGRCQhAl7D7eQxREhHHCRKlBpqqY8bM+4pyYI45TsjhBEWR0QSOnGVS1MgVdJcHBaEwgX16jfGmd4X/492SWz2i8T7VgcFGboR/5QIokyHiOgBEX+eRHt4mVjHH6LLNXlmSm5+c5Pz7nJLF5ZJ/Q0/r4xQBh1ue//N9/jcA7pn90wJ27+1xdbiDlBDZezLP0pSXirE233aUpNUmFmPZgyHHLZ7/9EM/LMCWRJ3fvY5Q02scWcc3h8oJAoVLB92KePNlGnJe4uD5D2HXoPd0hp9nkJicoag3SQ5fuYYaUj1l6YwGBhHPf52xvgHHSRRMSLuoqgRAzAK4sLqKrJ0gE6E6IoYiUXBnNF5FDSMIUIYXMi2Bko/Q8yomB1Quok0clJU3BHtuEWUZjbZG438d5EiI0Z9CmMqRmjaxYIlBF1C8C75PDv+Dita/x5JMPWV1cYuB2eHx6AoaDJwxQRA+n7RGr4NhFnrv2ZWSrgKE0sXafECQSWRDgbT6mP1Ph0re+yurvfYP241tEHz1G7Jo4XowVRsSijqlNUZBUgtghyzL8xKc97DH+/FPutR5RylUZ2zaalCKLIkkYoMcSoiCiZTJh30cJRMgEcmoOLdMo6jqe5yIlCVkW4wcubmwTWBGyFGNHPoOdfebWVrhUm2R4dEIzZ6KWChhjHTUNCdOIWr7GXHWKYeTxoLODK/rIgoKTeIjA1tkBg8Cl4wzZPX/AUsFgtr7C3LpJ5t9BjM7RqzHPfb3KzMQcUSbiHoxYLMUcHQ8o9BP277URI5EoytA1mUJjlnbb5qwzJArHpDmFV39tmcm8hB4GmOI0g/OYD9/9nGKiQi1iqaLhhB5JpvJwc0Q3C3n9t55n9O4RxoJFdapK0HW4d+AQehm//pV5SrJLa/cBVaVELq/w/mefc+y7yIqAIqasrc4jbLuYoYwQSkiKga4YZK6N/fiQs5/dZb4PyTilJBQRxJg9wSGarFLcWOb6O19h88O/RWr5lOrLFDo2xavXqEw28dNf/O77Lxdx2r9P/3OHpnwROysye7FG23XJTVb47N4dFMElHlgISom1hXcoNK6TeiM6O4fg2BhSjljT0JtTKEt1tLVJDGkGORfhPn2PxMlTjWSkWKYyM8X8ldfp3HpAp9vDJ8bJUhQ14LXXX6JkT/DjP/iYMIvI/IBqXgNZQ0MljEJIEpIoQs4UwiyiUKygxDL22CaOY1ISQiL82CfMfNQsQxYzgrGDnstztrnNTLVEnD1L8M5XK6htHcIxpmKQV4toWo6NF19k970OdhySpM9yfkexh+uPSIWUPDLTWo4VDU7f+wCtJTF1cQatoWNlXYyGiFQeIopFqkcpwrkHhwIbs2vUJhwODwacdh0q9Un2D8fs7PbJGSK5QspsvU6pqSCZGZ1zG9EXiAKf0oTOoBUwFiyycoxakDjrpfQcqF/QEP0uv/Jr1+jFx3TPRhixSa1a5upvLmGGA6Q0YDYrE48UcrmUc9siSxMKeg5VCnEHA6arFcZenzgcwbhNpCekcYiiiKiqiqgJyJJEmAiMEw/z2hIX/u47iNNF/HGXROgi51MOd26RP+mzOjGLXipA9AVNG0oTywRtldPzNpX6LEauwXhnl4enB+wGNhIBMgXyYp03X/wVTvbaKIlGWqgQuWOyzCGaKrH0979M5ZV5Oi2Lws0jgkdPSbsWa7PL1AMZJTVYur7C1ugpPa3LULNQhBS9UGL1Ky8iXyhTGbtcXF+lc6dFkgbEToAuStT0AmpexbJskjjh//85HZw/u3YSy8iCgCgCAoiaiKwqhGObOA4RJZnZ5hRMl/GO9lEE8DyHk6MD8GMKmYavSJy5fbp+i89HO+w4JwRihJumRJmIJEuImUQ1SXhJV/mSrjJHiqCLqHbKJ3/S4savL1BYi0m0EUl4jt87wwwUWh8foVdNBqcDHDti4+oy/ftP6Pl9hv2YYQvERkZjqkLkSwzbLjv9Ls16gYlSHdM0yXYdbly5RF4fodQzXNFm4etrVIc+/ce7RFaXz26dsdUaUWlovHn9ed587jLhwR6SEiNkKm6okeVVMkMmDULUIMO0PIqpyMpEBWc4JNY6PNr+McuNN5GkFEUXEUsppYZM0mkT+i0CHFwilLKBMVfFz/c5at0mnDhHLknkhypHtz5CLtTYmPod1PIXdA3oS6/9Pqcfn3Dr5j2yWp3+3oDwcIzfcXBlhTgKmSzWqU8vYSwsUMNECTKKikzv5mdYJ0dIYoasSbQO20w1Z+mcfsat736PYuIyW5sil1M47HT50a33OB4OEVKBmXyDQiYT+Bb7vUOmclcZDxwCKSIkREFATDM0SUZDQooFhDRFkxQEZBRRJRMywiQiQ0QUZVIhIxJi7MBhEA2QkxglTagYRWJBZNzrMOy1ySIbMU0x0wwtg5Ksc/1rr/Hdn/2QJ6NDOo5NLCggQADECKiChJkJNIHpyKecRJSLRWrXlugZMVuP9pg4jFhaKuFFLjEhfssnGYvYTsrEeol8I09tJkUsy2wYBT67c87Xvr7BxbkRe0cjDF3B7SV098aUaiWKep18ZZZPfnSLMFFwPRdVF+gnEmIjjzYZ40o+54MuZTHP5lMbJwY9g73bm4xxqUtgVgqMXI2bN7dJ6xP0U4lSrYJ0PqIhSSxXmxSDjCR2mJuUaOQDjKQHsY511mX06VNqoYBz+pTUb+FnNpksYHXOiE4PCSd77Hc+Z+qijFxQMUOD4ZbN2fYm69YIof4F7fNSnsGY8ll5dZXmTBVbUxg/MCmUF5gc6cxvrKHoDfL5GqKbUMxkUhlONjepryziRGOc1jEP//kf4DR00quXOdvdR6tW+WrjEr1hF2m+QiNXZqe9S9c7BEkicmyENMIOx8g/P2Kr+4TDs2OOjraZTQ0UQX0WLaQIxE5A6DuYgoSQyWSiRpCkxIQIogCiSJwEaCkIWYwuKEyYTVTVxHcDWpmAWM+jmjX80zPEXJUkTegEIYtvvMaHNz+l/WQTX5Z57rlXuLl/n93eEUkMqRCTZDFZkqKRUs3laOg5hMDnMA540OnAXI6v/he/wcnBEx782zY3Xi1QnvLITxVJGiHibEjhYkronJE4Bjk0ZtfzFGbnMJQpTvfbhK5HMBJRqjJWUsQ+kfj05wdUykMebR4jRjEfDc741W/OISUj9FBAnxbRRY3l60sEIxn9yQFzlSZzjTq7Dx+hNMs4fsrNWwOGg4T67Dx6PU/T98nnRJRmnmiYEMsqF268yXVd4nDnEw6PPuZkfI/1198maduYkotcUhjmnyApNqmrUiw1OFVb+OET7m/eRKl4zF29xuHhMeWFPCwMqeVVMu8I9+kuxRcX/tPjTTp9jlqbyHWRm0cf0Cyu8/Y/+cd4fZ8f/bP/nsXyJaTCBP3jM1rvfoR71qZWKXFyvEPh6rfwOxon20ekg5jyuM6Dg22eto65PH2VsZUgyTNUF9aYqqXE9+HJyUMkWUWpKGSSjN3qIDotdjZjhiOLWiyjCSaqmOFnAhMLc1jnHZz2EDEUSREIshRB0f5/iTPgxA4SAlkmoIs5RFMnyMvEvkClMoc+VcOtm0xVJriSrxKOhmyfHyCbAtrGBbyzLR4ePEGQRQzHhkxEkRTizMNPfUIy4jRBJsVzRJxEJMgXGcouo0zE6Q+4vCjywvoNTrcfEztjTk6GXHxlFm98hB9EZL5PMI5pb9s0JkWMiZBcXuP+3W0ePu3hugJ/57VLOGS898ObZFaKc55x+WoVTSvz8OCUpiERagVEwSXzEpKRSqtnM7ZT/BASJeXKtQUIU0Ix4t7xkF4PYl/nysoFznyPaO+cnAKCN2JxuUonF3HedjgXIU012nZKGB0zPTVFmh5y97PbTOlT6M0ZCi/liMYelbDKWdfizD1B70J+RWRicRlige5Jl3p9grQWI2gO/ZPb/PhnP+Z3/8Hv/qfHKz5ucXV6hbQocTrpUqtdQCksE+/Y5LQmudRkqrnAXGwyuvkIxQvRSjA5O0USjkkEB0PLIaY6k/VFxvYWg/iE47jAwsV1ltffIkxdZNEmGLioqYYgG1h+xFhw8EUJPUrwRmOE9Fk4ha4ZmDmFXFFlee4C9056KImKJiiIGOSnmhz0O4xCi4SYYmYgCRKCLJMaCl5R4H5yQBQkPL9aQdGH/OSv/4JrC5dYnVpibnaO8SBi/tol5p+/wlRnhz988n2SNEG0E0QhQ5CyZwvVmYiYJWQIzGoT3MgtslZq0h5uI0wp/M7/4XlOo22yyqcEcp7aSoXuGbz/nQPs3hGz8zI5vYAUTiNbPazzc6xel4tGlcCV2bzXJm/qrK5MUp4wkToCxlBgoVxicTUHpsP1qVWCxCPwLOwkRvQVGsUKiDMcHj+i1RtTrplkaszcxSJHO6dIpsjG+ixRoNE6GGENe9y7c0a9WWKsWSyuFFGrVeo5gf32IX/znT+houaQGHH95RobGxc42dlGUGUCVaAXWexZPXzXQhEFDtwWk+t1aktFGmsTmOUid+48ZNDu0ueMcdjD8gMc08fXv6Bpw6MHu1z79ddIKwmi5LHbuc+6o2PtueiCTDr2aH96G8kNiVyLnKTRH3RQF6oU15dRJIv48TGJJVOUCwSWQ5B5bPV3uCANmEj69B9t0enuMT7pcGP2OpaY4psiH259TJz4GLKOFwUgSkRZgqnnuPGlV+g5Q4adEamdYiYGpmAgiirvfPlr3N55wmcPbjEORyjIqIJCImZ0whFH3R6DyCbLZDaf9NFSgSSyUAcqyzcuckCbv7rzXS44u/xvvn4dryCwJ/ZJ0pBKplIQVTQkDFFBIkOKA0pSgWulVVblZTZm11FzJvJKH6UhMts0CCQFLVdH9JfQF/LUPumxdaeN108pVWBNn6TQWMB2emh6jDNucj5MiL0Rs1Mmb/7qFZpVk/c/v8Us8JVrM1Rq8PnWAZeuXCIubHB00mP9+nV+9IMf4UU+s4sShUqJSLFYXC7y5W/OEtoDnu49YXqlxFd/4w32Ntuc7PwEMTNZLOfxvQCjVKHUaNBxA3RdZ3qpwXB0Qmdks7RcZePGZYxCnkI+pK3H7PdadJ4+4vj4iImJArIaM64EvPLyPMWpHMV6BVHLc3rSxeuHnEUnHJyeU2nUMFWVfvoFhUvnlq+RFidx4mP65wfUK002H77L8YdHfOmVVzHjIodPz5CyDHO6wqnnMgiHzGpVrPuPaN16TD5UkMQExl0KqUZenuDUG/PB4x9TMFTsVp9B+5SV+UVWXrxB97xFyx9ydrTLuXOGn8Z4RPhJRIqA7cV8+2c/xpBlVGSqQZGqlqesFanU6pw/OkQIYyZzVYxMRIwzFGSC2MeSPLqJxSB1CWXI/CGKn1JBJowltNObHLXPeRC3eHpgs3zvfd69/3NGQoQqZ4iqjIiIFKRogkQh00iQWcrqzIVlmpUVvKGB7hRxnmxyfveQ0tcMHM9AKhQY9w7ICzUuvzDJ8abD1FKDYlOlG4Scn3dYvDHJ5qMT/uw/7pNKBqNRSrVks3X7FuOawqQZMH2jQa1gYeQz1l8qItZbVEWRUWDwg59+zv0HHaYmciyunjF0zplcEJCLPXJNBdfusvryAhM1A3PKZT6EtfUqR7ct5i+uUm5Os/jiRaJiwL0n7zOwx+SLJqWyznA4pueOOeu10Uo6f/2dj2m3HArlKt3hEK2goRVLdP0WSy9MY4kWRmqQpiZJWsDQ5yhPzKBnIcXLZXp+m9P2U4qNLyjuaXDkUC11yM/pLBRrGEWZsBmw+tVFmuVlvCOD3tY+669/icraEvfeexfslKfHm9T3t1CH0FSKSOqQwBswXWryzsYl/vzmd9g+v8dHjzIqwSTv/MbXcfoD/HaPZOgSDYYs6DU8u8dp5uEQ4xOSChJ+JjAat6hjUMHkojbLUnGWxYkZmhcW+P4n73LeOUTVJCaNMrbrIGQyhiKQFlS2++f4YkwoCtiRhw5IgsrQOeLznx/gEBMhoYQ2/+7H/5Gbm7eJ0gRJAi/yIRUQExETnTwKeQzembzKGytvUC2vMT48J+gkMAoY3jqi+uYVKo0qMTaOuE2xMs/IeohqSsxfvsHu8S6V2SXyKtz79AMcOY8nRezstMmpArWyzs5Wh5lGg4WLCoo9BgGGWUR5ZYq44pKTVIwDibPjXRRFoN7U6I0OEbSI66+vkSR9fG9AY7aJYQRoRZHdrXeRxgZXLk/Qe+AjxBFXXnie8uWLRJLF2Olw9/5HhNGQRsOk27OJkoDD41MUReH4dEiWidjnffw4YWZlgixJiSWJq69ep39ygi4WkKQZ/H7Kazf+LoYjc7p5myT9/7b3X7G6ZveZJ/Zb683vl8Pe+9vx7L1PzhVZVWSRokhJZEtq9YxnpBGme2y3YcDw9dz5wjeGjWkYmCvb6HHosce2WjOtaQWKpBKLoVi56lSdfM4+Z+f45fjmsHxxaMCXJOACRgAf4Lv/Ln5Y71r/8DwDCq7JTE7w89mXA2/l8YQ7P/uMa9+8QOPVIk92H7J26QrdKCEpGPj+hFprDqdWJtJzKBiMh1NkEKKFOQtGC6KQOA0YpymzYpFirUXRrTAb6jzcvcPq3GW+aM8R7J3geBa16iJJnjOYjQhJSFQOQiCUQGiQqQRJhoNgzWzwytpLLFdWEZMZan/MSl4HO4GKRpiFBKqMKppERs4Xp09YcuY58s4QmUIoDUMqlAYzYrokREBChiMlh71D/GSGkUOew1ilhICBQUEohEqpyCJNUSKf5fRmRxTn6sh2CSdrYngxureIXDVBdanNm0gZUNWhttAiOglYWrqFadf45IMvcM0qay8Vcecn9JNdXN3CUyaXLpbZePUCSecUX0zwshRrsUVUsCGD4UmXfGZw45KLW9S4dn2JWdjGrBnoRhlv4pElFlGU020P2agImnM6qcoY7fexVEQYz/j845+Rfv4hk9RjHI3xogBURNEusDRXZTqbcHrcJQlTCiWTcT8jmaU0KgVyPyGyUl566zydzhkvX/saRkcy+GmHONSZP38DEhM9aJFPc8wk5NziKgM1+nLgLe4PKc8UwY7HYE7HTx16xzGjpxOiuZjawgZ6W+I93cE4PCQ/GzA9OeOb3/gW8Z37MAxI44QMi1nyYrZzd/8ZYehTtat0wxkHsz06P9mnpkp8+6Xvkhs273/2EV4WEBo6Kot+0fsWpPkLW3pbmKzJBldKS7TMJrXUwZtMGOwfU9IkTeHQHw7xswHr517i9W/8JkdBh/aPBvjDXUrKRCAQhiTLE2KRI7KMDIiBlBxLJEwnA0hSLGWQkBGInFiBKwQlCXkGUkj8achp5yH23DLN25s0tcuYXgbVeVR6iRfrIYeoWYQyykQ7z+iOhqTmPeKKzSzL2Hq6z+2vzFNZWqZeS7l0q8rz5xPaPcHrF5cZmD6n3ozOIGIUx/zW1xbJs5SgE7D3SZeC6fLKrRbjyRlFxyNKI6qlZQ53Ij5595iFeonxwEfogvXbNtVCkUF3QjBKcXSbw+kpp096RInJJAiYRQFOSYEGUzemUSqjNIPIC5haEUgLfzrDyQQ1adA/HtK8UsOpFDg+OeWtjRqzvQlP/909olBHfLOGqtWoaqvoRpXepEjFK1EuiS8HXtfMkUnMzv1d4qnDy7/7Df5f//v/E1dL11hcPaRYSykIBykUp1u7OFnG1bk1OGiTeII8TChLG6NYZm6pgLfm8tMnPyLXParSRWUNRnikAsxygTsHDxj6CYM8wJMhISmSHElOLtSLU1cJHCRVzcTKBd1unzCaYCUJtXKZUqFC2gsZB4qyU2UWxTw7OuBsfEwwnaAriS50NF74mmW5BHIKSGpCoquc1NBRWU670ydKM3TTJc0TjDzBFRJHN8mUIM4UUZai2S4GBRbrTVAJh16bYNyhsh1g/dkh69/+NkFoE/oCaRtYJ4f4Ox1iccaJiFBzgm+9vE5nMOXxh0cMHbh28Srt9n2+/vUr3Hi1xSTcpR0lPDgLKc6b9JKEzcYK3QfPmC9UWd+oMfUnpGmA54+ZTBIGgw5nvSOG45BaaYmtxwOkSrj+8oS1izqmYdGYb+DeukBzU7D7fJfxwINMUDQ1lBbjxRFhnDAMxzTnLHTXRSKRYUwpEcypCuWgwOqFSwS2YnyQwtjm7GdHTD8dIE+hWqpSb55Hn6vQfv9jzOEUVy+jm3UKi+tfDryZG+OpPnguV40bFM/mWJ2sUzPqdJ/v4BeGXLj9NqHmcO6f3iAfHvPkxz/k8KyPih2qbpNE5mCl7M8O+eTTx3w+eIiQGWWnhlA5XpxhYZC5FllRpxO16WQj4Be5uyIjFymonDRP0dDIlcJLPGapT2vOpllfR3a7DPunaJGGjBJcYTHT4HHvgI9+/IgsnSEECE0j0jUkMWaaYSKIlaAoBbmmY+YZk1wyzTICoZOjIVVKRk4LnQVhUtZsvDgiQiGkZL7YxE501CTCe/SUx88/5djbo3ZkcrVXYHmSEA8E3Y7Czw65Or+G03B51nnI0BA4VQvXVtS0JgEVjh4/4+R0SDLLuHF5hXrZQkWgk5ILsNwSceqyvzfm+z/Y5sJcifPnI4Koj+VqjGeSydhhZ7tPksDyWoP5tRbO3VN032b8eIZabhKnIYlp07j5Ouu1l7mwt8eofcLdT37O0e4T4jBDxmDZGr4XY9UdLs7NMxjPGA2mrMUW5/Ul4sDmlYu/RXmxyu7RFp3jPdo/3yU9jtHlPO5KE60xh793RO+D+zTDDCV1ss0Mc+Mav+zZ+yvB++H252iug1aSDFQXq7/LN7/5TcYHfRpalWptjpPDpxQubCCXDaiVCHcrzC+tYVAmD2Hc7aOUz+H9e4ynfXRgnAVs+ympUHRVhMgjwv4xlXDKNA1B18izHD+P0WSKFJCKF63YF90sk6mhoFFk9aULuKHJ0W6HUTLCUIKUhDiPSIBbr7zC1skz4uGYWeiRpD7TLEaJFCE0DKVIScmkQDMkxosLBZqCKIpACGSao2kSW7eQSUYWh4g8oyhdXj1/nZbu4FqSsN9nGmdILSNLc4aDKafZAH8pIT+N0Z97aMmU9sopC2uQXCywebPK8toaT+4e0hsJnh/fRdVSch9WNxvgJJycDjCpUtQCWk5Oq7BEVVT44sEjurOAW9eWSBBEqYMfxIRJwNFhxGQChgadU4/7P9/BinXSmUfvOOL5RyHlxgp6eQVzbhGtukK1PE95NqW+donOznN6W1s8/9l7aJOAXEZIP8PWJFVVROsMaeY1LlbW0ctV8r2A6UTnXGWTooTu2VMKkYUwDRpGhcG792h/fpfaJKYBJGGI2jkh/IcPcP/Xv/X/f3jblsc4PcPrp1TUARtZh//grT+Evs/g8Qli+5CBnnMWdSDaZXpywI2FNUqFMve2dqleuczlP/h9tE6HQbhDcuqR+xnHPsSkxCrFUiZCE6RZRpIkOFJHZClK6C/MnfMMiUDoBlGekylFRkpXZAwcxfOTLfSjCeGwS5jHiERhahqZ0AhFysVbV1naXOP54wfc3bpPGCXEZOTkzITEIkcKRSYUicpIBVRqFUSUMM28F0k95AhNkOUvHpAyE4BAB6aTEQezbcqRQ6k6h1Uv8vb576DuvsdsPGJh4waVq69wtvsudd+hphc5GQ5oaxPe+p9eQ6woth/67HdzOmdjMhJu31rmYNxl9fIcnzz9lMvr55m3Fzl99IRqbLKUw72//4xP758RojjoZRTdgJOOh7R1ptOIySwFoZPEitCP6O0dsVS2cGXMbCj5/COf9ctrXL26iV0skpsOuSqTziR2Uefi7YusmJcoPcxI9o4Qysf3+py9s4tybZqxy3JhgQXRIB4L7vzgIzJN0FicJ49i3NiCKMUUYHgpJ589ITnuoVTAKJvgoBG3R8SdQ9xfksdfzatszsJydPY6xzSWNeobFTIzQVo6Rd3GzQRlN0HNV2hHM8qmS+9n9xHlNrVikdX6PJplMuueMhwOWGwsYJd19IOQKA2I8owJilQKQEMLUrTsxZap0Aws0yAVBkN/hKYEsdSYpBEzcoLojJMnQ2JzxmvlDXTLxPMDTLdIpbXAtQvL5N4Jf/HR35BEAYPDY8b+CE1LKeeCXEhMCSJXCCExpCSPQ2IFajyhtbiAF4R4QUIiIM8zvOxFmrkuJbphkmU52+09bpy7RqVyjsrqBnFRUn3tAq/Vi5xs7fPSW98msgqktoUyE/RChn2lTnmzQJhqRE9HPLyfsnU4Zb65QO9kRJK6nL+wSLVloCIDLZEcPGhDJ8TKFPOZiV6qMVszeHYyJUjGzJKUQsNFCUl/NMW0DaTQUVKxuryAlrl4nSOiJMI2K8RhyPHzIfn4Hteuz1MuLSPaOVlvhswlFMuYscvi3EWyoYmcjkhym06S0B3PKJg6uR8xCE9evAuiGYYwyLuTF1+s9MV7RWVDYn/AYmOeg7MTPD1jmkSYJDjKwMD4pXn8leDdjru0Wk2Wa4u89ZtvUghcfvrO37CkzuFIDa3SpB1uU6nofPUP/wDpa2z/qz+htnSeJA4hTMmOTth99gxqZVoXF1mVEXu7TzHjnJq00UmZqBw/z4nTiKLmkqgMpWmkls40jAjIkCl45CB1AqHI8wxDg3qtiOeNuHDpZaQ3YeHGDSrLLfJWmZfdmP/+v/zP2dt/QENzcaWGlsc0pSSXAqkLJmFEIiSOplOSFrViAadR5cqt6xzu/wCpCUapIgXSHBKhKBZdbt++zUJi4t07ZPPN11lbucZoOiPRM/RKlaJTYf/xAeXoU9bP36ZcrXCgTzCKHhf+6dukixl7p3ucPR7xp3+1z2/89m1uvnSJp/92n5/+7Bm/9R+2qDg5tfll7v3tPo/+5pCXVh1W6jrTvSPGKuO333ybb1VrfP75u+TqjELBwAtipClxiwZDL0LD5PLl81y/+hZ7Dz9l694dDN1hvbVC53TCvR//HOMo4WYlw3/qI3IbY24RtbFOkusEhk2ltfSi03kWgCgTqYggSwjVjF56TKoyMkKkMogDUEIwzafkROjJDNWXrLouOinHQZuxaFPScxrKop7ZXw68/WDM089O2Vip8/OfvMd4Z0TLX2SiPFaSVbRAI9VT0sTjdNBBOxjhC5hFEYV6mSfvfcjShSVEDm/+0R8hvC5bdz9EaSZKmsS6YKQyhoYiEoLEzwgzH0VGluf4gSKNQ2yp4ygDV74wswi1jDSNsS1JrHmkhk1/esTaq19BP7/KJz/9KVHFQLu4wO7JHjEhMZKSdLCUJFc6scqYxTGRysmUThZnCFPy0s3rnLtwnj///g+ZcwvMohiVpcS5wiXDQaPulinYLic7+zSkRn//gIZZ47NHd/HNjJdKMTufvIseDIg6h6SiQKdzRGVljdqVq5wcn7J861UCr04fl/qcz+NnHabhGC8XXNqcp1qoU8hMGAlEJ+T2psnta2voUnAyTTk6PGHvRz9h8/oVLKkTZhmZEoRxBEg0XqzrWAZ0T084Kx1x+dJtVmrzHO1uUS2XqZpVLD+j8+gh/dwm2lcIVSKsnWKFMauv36b++k3ix88IIx8GNoXYpZAa6CogxWdCQkqKj4+BTY5NqgSempDhUyBB92xGe3vYSUCiebjLRaplg/SwTzz5kobRx0GAVIr1pTXW6ssMx0N+57d/n+d3tunuTQmU4kn7EcMfvI/zD3/Orc1XuFV/meSsi9btsSRyqhPF0dYx8aVLDB5v8eSDz3EyC+k2mFoZR8Mux0mIkho1aVPXXJpGgVDBIPVwpE3JtFFxjkIjFDBKPUIhePP2NUYnHWSmc+nydex5ePLoXZ7v3eVg0mX3/RFGFiGROBiYmYGW5eiaQZJH+HnOiAQ/j3E0k7Lj8PTwkHc/+4QLFy5Q8nxmQx+/n5EagjQYsGBWSXsz7v7sI0qJ4msbX2V0esAXswkfbn/CKB/wxf0/58LKIkFxQuAU+fmdHZZWz7Nx+Q0OH3xB5s8hv36Ty1dvce/DMa+96aC7gp+9/w5+piFtg2iaE+zlaP6My1UbWbMpNqtYK2v8/Mf3uHsasLRi8+TRUyaTIedvlVBKQ2XgmBrDfkIaCuq1IrPehI+fv0Plre9Sr62xsVAgTDoY9pTNzVVOpicMds+wModoEpG7FcIooGkK3JuXsGplEnTidg8rLFCTFTppRKJifCJimZCIBHKFIiTNNQIRkiofCx0tS9C8EIOM6mqV9T98GQ2P/kcPiR90vhx4U3TOrzZ4+ytfp/30gGAcEHk+F199lc+678N6FW8HmsUmb117BTtysIVBNh1jp0AS4818rjXmmf7dpzBt0/R0tNjEzyNimYEmybMMC5MFu8yqqrBqV/HiiBKCV771TY73jjjZO8IPQow4RUgDt1ZkqVZhe28Ht1jjk+cfsGyG5LrLaX+PlJhiHnNO1iiYi2gqJ49jpJAgTYTQEFJhComyJJ7vEU6mHA7HrC03aS6v8PmPfoKTCq4657AqRdonCc3MxDEsMk2jKgxmgxkHyZR+x+c0aCMrGsXlJis3zjE669P3PFiwkQtVuqdj/J5BHPl070wY1k4ZnLV599N3aLYWWN24Rru/xXg65L2fnXDOcVktStbWFxmFHk/22shZyt1nO0xzE4wipbLg4qV5lOUTxj6W7pIimAynFG2HeqVK96iN7AiSdsK4O2Y8bSOLU7RSim46lOoLRN0YqRyWLl2l9PLbxMsrRKbJcDyi7tpY9XmUU4KRia25OLlFlIUkKiWTilyTZECWxaRKIwdyFAKJpnQykZE6irgIxkqFaRASLVjEp1/SndfNLHptjz//i+/znTfeZjTs89ff+/cszp9nYeMC9csNvurcpFWssnd4wmQ0Yxh1cEKDcBpRR6PwiyT0emuRLBIszgk074y98ISsPME2TPQ+mHmOnRpoqYGUJueXWrR3P+TxvXtMxx71UgMtnuGQo6kZrlvg6bNneCLhMBuz297nx09/zkRaZLKIKSX1wORN9wob1RUOxjucxB3cyiLDDJK4Tc4MK0+YhWBjkGk2RuYz6o74+797h2GcIpXDDb1KJaswUjErosobi7fwg5iOLWjLgE+Of8aEEXEhZNlt8Xsv/w7RIOLp/iGTPORf/ub/knwUMXu6hZEPOT1r8/G/+t/yd3zB2I3Q3SLffPU2H/z4U5QImKsoJmeKdtvDurpOwV7k7sljRqKP1Rwy6Sc0LJ1sMMJqLLCyusnByRPyOMDWdOLMIhpP2LjocuP6HNsqIGhHzE77iCQmur9NFHewLtdZun6FstMknJsSzBeYrSxQ+so6heoyhURBf0zyfJtsZx8V5wTSIlQGsVJMVcxMSzCkjq50YikR+QBeNOYwcDFlDawCh2mfbnLM9GDCrcmbaKagEw7RxJc0EpklIVomqNtFLi1vsl97wuQ4JgglL//m7/Huj/6Sz+58gOsaVDObebvF4jfeon7zdaJPn9H+yXvMpKCdRYSzIYGVcfm3f4cLm3WC7/8/2b73d7RqDaq1GoOTIVkUc+nqNa6uXeDjxx8Tl2zO+kc4ymTWDXBkgVKpQpoLDrunRKQEWcYgT1gj53y1zDASCL3InNGk5ZRYFRvYnkOSzHPl4g0u/tbvMfN9Pnj+IX/58z+hqOdYhsTOBeM0xTYtqk2Xs+kUL8vIkwSiBHuW8Jq7wao7h9bP2Fg9j6Mprm200MsZ6y+t8NP3/oHy0GT4Xhs7MrklNpBFg957d4lHY/JgSppnFFyXheIC5ZmLyCQXVhd59MEdiirld7/zVR48+pi3bsxRvlrm4OEpldEptpNz+8pVjoYdLm0UGbVn5DNBOFIkvkalME8UjsgSxXSWsLy+QG2phl6usnjJIUh8cl9DpCZJXsbIJDxPGRzuUxAFXL1GeW4ONTAZf/9TTtrv0CwUqamMuHPG5KCNoXICU9Ge+RynHjMSLGVgphJT6SihIZRCQ8MSDpVChYvnrhEFMXcO7tLjDFMp9j/9mOpGk/H+CXbnS4J3xahj2wbFzGR2Nub2lZfZUWeEZoXSlcv43wu5dusVFubmOX7/HsSKuUubSC1l0jtFX6xTbC0i15aYu7LB1sFTnBsbFNyUG69c5972+2hFibR1Joc9TF2w1GrRHQ5QjkGltICaSKbDEalIaFZLVGp1zg6GCGUyiX1SYM11WDcl1SyjjI2KDC4Wl1mSLUyvieOUyPwA1y9Q6CSUl9e4thHx7p2f0guPUHmMRKJLCJOQQqnJP/vaa/zXf/FDDOPF589IoRxpmGlOlGWcHHa58J3vEIuU8+4y460Rbyy8RUkXzI+KGIGksdBEmjmnp89RnofSXgRH15oLZCLkj279MX/x879gxaoRl1N+93/8+zTrAWr0gN//1ht88KP7rK43KdY1MmmClrG4vIw/g3Fnm7PTAbqlEOo6tllEKAMkBHGIbll0Jz5fPNslCTS0FGoTkzS0mJlVRmc+9SBHy31mKqSjAhYu1qmniqR9yHqtSVGkzE626R7tkgidlYsXUInG8aNdjpOUFFgUFqYwKCqDPNcQ0sQybVq1Jebm5pFC0T4+JswmxFqCTGD73nOuWxpZ28cNviTTkQvJKnEaE++FvD/8AN0y2R8OiJ0S3/vB/40HJ3f543/yB/RPu/zW/+yfoxUrjDt77H6yx/rCPIub6+ycdtg4d42sbDDLEhzd5fTpQw4eniImGie9I3zloaUZWpbw+bvvU3UrrF5d5uqly/zs2YfElqJmFNg+PCWeHJPmkBqSIMqZR3DBcXhzrgZnPQxnkTxfo8kG9XSZIEwRSUolNYg7U7bf+4y5mzdxaoKyXSYqzOHWNYZhxNHJLrlMOX95jVuv3SL/i++TKkl5vkk5LZKFKWGcUGttUFg+hxjnjA6OsMcJWZJRr9dZK6+QDibkYUB+4oMJqTcmywNCTTFVitzzKS61qDg2f/TVP+L8K4voAhaqTTrdz7l57jzBacqjB0OqFUWZCgurc6hamU4Q89lnd1k8V+Crv/M6yJDmsslsbCBlSr83wy2VWV3foFS3MV0TsgJGaDDfnacQLqGcc4RjxfAv/wHxdIe5c6voG5cZtQeMOmPm5heQtuT4+Cn3n73PIOgRaxb68xPcVp2tMuynOiJRuK6DrbmUzTIi1WjUF5mbXwQhOR71OTp+ysTvMWRGnmsYoY7qpPg7MeVJnWr8Jd15z4t1pvgEesTEG9MfdghtySCY8r2f/3ek0x4f/PSHGDE011pIc5728y/YfvCY9Np15vI67dNTwvdmbL75DUpKEh/12P5ki6ybIqeShbkFdoY7OLrLnF2nJCysMOPZh5+R7Rs0Xl3h0+3HpOEZuZCMQh+lFHahAppOMUtwp2McW2Op3iDLa+jWBr0dQSJNdCVI8xmWyCgbFkPP52xvh2pzlctXNjFSi30mPNl/ziQNMTXF53fvsX9yjFAvHC9zKQiyjEJxjoo2T6K7VDcuE/ZGJEOfDXcFPxmihQ7jwQkyjhE6CNNAui4yMPH9MTOVkZouuRSMJx6XL5/n0Z17GEmE26gynHisXVrGcjXiSYw/hmrZJYoFZ90xJ0enjEVMN5jx3W/d4tU3LzM8eoZuhcwXKvRnRcJ0Smt+k0qzRUZIqV7F1OsoX6e3dUShOoecK1NbWcIdZByME1i/gDO3RH/nFGlbKJEy7Bzz9PABu/4xYzVllivGnVM6nRTflGSGxBUSEUw4zWZUxQhLOrhZjDvtk6QJYTTDDzukaoYgo6BcXK3KvLNAVZyj0Gpin/pfDryr1VUGmodfy1hcMfn06WeE2Yxe94gsFhQyRbuzy9WlTT5453sMQx+RRQwHPfydMamfsJAtkE58KlqJlcs30Icety/d4sHZO7TMGtvBDkmak5GyfG2TRlSk9/SQplsjVhn37jwknQQkeYwyJcvn5gnCBE26mAq+tr7KRjBDUymyWOG0n7HQLNA8v4I5KjIdd/GD6QsLojjEMKG2OMfAG/Ng+x5PgyP20xlZmlK1bCqWgTWJ0fMZ1+0GyodpZ8Dy/HnWXv4qvSfHWJrJ1id3WFlcpWQVEMEMGWoUF1x66pSx0SFIFYoSN698FXN7jvRkhq9mVBsVtEKZnaMjKg8dLteWaK2sUrp5HXOzim6OkOkY/WjEt74qMMse/fABNb3K4s01Hux/Tm1R0Jif0Tn9lKk3RkxCLixeYqFVxS1qZDHsbt0HkRHFKV95/Tc5eHzKpz/7jJc3R1xtrmNmJYKqTbjUIBwPSbYOKHkhxZLD8PQ5vckxRtanKnJSlSI1iZclxCimWU6YgodAkTGTkk4eIVMPczxCTgQShRAKnYRcZZQxmNNbXNh8icXNC1QWlpCRIHl6/OXAq5UFzYUFLv2Hv8HMCfjkXz9muVin3e2gSdBkzMblC0wHHv3ekI1LF5mGU45HB3QGh2iBw5s3vsZKZQXbKhKddBjlAZqeI5IJVp5gzQRaqjHRYkZGTsHR6YqAZcvl0qVLHDwfU8okwnJobbawyyX8MOXZ1hGmknRHPiIMqNQrBEHI436HRblDMZyxyCLFuQpOvkQyOkXFEY7tUFtY5GD2jNNej0D5aCSU0CgLg0KQsAAUwoxaUsTUHMqJThzEPNx/hpGbVKceVqYRZCeMhgMqRQdPQP/sGQN9m8pFk06ny8rqq4hLJTpPAwZJTCxzTs9OQAwpYmH0R9QrRRqVKsWlRdTl8+T5ADkaosU+65uCk86H5JOcvJNyNL2PUfFZXNaxZICBxmw4o1FtkecZjmPTnKvTOVR4g0OkyPGmIVFnzOD5Po424XTvHheOt9AuLlK/tEox+xrdP/8++fERBopZzycKhxS1FGSKqTvUMkVaMrBjj4kfkuSAAoEiEZDZOkIXxF6AyhIaRYskTDDynHrJJfAiHErMNc9h11qoUgNr4yK5n6DSL6vDVhyweXsFbcMlDwJWLqzyGy+9SXgy4tVrN0jtEC8cM/VnlKXJanmBO70xaW7SMKuAS+XCDfSkgNedEasZh5Ndcitk7/AhWeJh8cI8JCLk7x59zLeuv8nG12+z/ek9kkOBm2msWlV8Aoa7p1TnEsJU4abgRyFbp0MmhiBJxvjTAZrZwNJ8JuEepaLAdAvE3QCVp2TJjCiE4w8/wF92+b3f/g+wFk3spXnOtrd57wffp0zGK40lylqRZGJRLFTRYkllYZlnhwNee/O3qXoWpp8THR1Qa1YIXIPAjhjnp3jFAOpjMttna/qAaFvDLGnkpoJcEMcBdauApjJqpkFJSo63n7O02cJJlvDShKJeQlaLlFfWOTr5hHyUs9BaYDg+olypUdFy4qHHcOITTwyqi2sksYmgTO9sytMHp+SzHH8WkEQJH/7te0TtERVLMCc11LPHhH2LzF2lEOpU0AlJieOANJ6hiRSVJRSUwpA6BemSSQ2zbEIhZjcIGQQxQr3IElZxjDAMimWTqmPx+kvXONh6xuBsQM1xqSgTOytx7vxFVq5cR28tkC5UkKnA0L6kB5v2FZ1e5Qg3uM/Im1KwpixU4cpmi5dvXka/XCTNhxx+8gj/swG1yOaqfpmiWcIKEnJbMr+8SDVrcna6hdc94XnnU/ayQ/Is5+L8GroXYSU6mhQc+3265oiFepmhNmSwe0jB0XE1k2Jxjp2zEwaeR4bEVCaGMtClxihJCaIIjQK1zMSPQhYqNZauniPe6ZPEIWkeIhmCCmjOX8W6cYPN5YST/hZL566xVl7hs//uB8ybJX5z4WuIQUaWaWi+Q3FtDS/J6SLxxwFWnpCOZzhNB/vCCrGZc/7y1wnHD3n/4R6ThQFhPGHnzh6Dfp+5oIFHQK28QDTwaCddSoZLoeZSlC6PHt6jdnENd3IRqRLySCENA2OuxNLydQaPt9CCedbnLvKot4NaMRFen/H+Q4pmGTeos73dZ3e/zdbWM8ZnIU4isFHYFiQElISg7lTRvBz/pM30wftEA4eG3qQU6lTcFkEyIBcamQqQRFgqQc98LA0msSRNEkpFnYbIKGk5tjAQRpF+5NP2I5xGgVduXyIJJpRrVfww47Q9wk2hVV2gVlvAac0TlSyUlrxYZq0Yv3RQyq8E7/Kr5/n0p//AODmm0ZpjeaPIR09/Qv2iyw8/+2u8rZjf+/bbuKbEcesExx41r0LZ3aTr7xOFMY/+7keUKptsVBeQOCS9GR3/jIJZZhxOSUSE7Wjc2LyEah/ybOcpeb/P0nIT5dpUXJcMye7RMQVRIs4ECYIUhQBELklyQSwkhhCYOXR7Yy5fuEwySvB9sBfOEeAx2euTyZzmRoO+NeXH3/9TFs4V2bjVYrJ7nwXbYdNcIjwJ0ccSM7CRlsFsEOCFEVfPX8VtLZN3B3i9HnbBpH93gHl7k3H7gNzrsLS2wFOekpVitEbG6KCNFmTYdolZ6KPpBuVykaJpk2Qx3b5Hoz5PwXCRPR85HqGUgKoNeUTVnme1eRWTOo6+whvzG8xVDbaf/Q3ero0qO4zqMDgJGZ9BOLWwdMVcxWWu6pBnY1bPNUmTiMmDCWqgGJweoHcc3KSBshLEwjK6XsDQEpSmoxtVcEEkU9KwT5jNSPwhCB/inGKWEEiF0iSBruFlJkGcUhA5zeUmezs73N8/I04yTAUoCPyY9vYhtdUNdE1i1i2i8QjvtMcv643+K8G7/8Ud2if7SCvm1ltXKC/YPHmyxWA4oHC5QO+0QxAnzEYR/lFES6xh6xVm4RChFemHA9KpR2uzQOAd88mzn9JNzohEzEqjTtkpcdIdMAwH/M6Nr1NdrvD+zz5glgj6yqcmXPRigSuXLnHS65NnL6yVMkDJnEwIVGaSqRy0BE2DaRITC8G47RPEkKYl5m+9RdzZY3j8nNSKWJ23GCc7eNkOF259g7/7q/+K8XafRc2hJguE44yaLKPQyZWgWq+geSHFSxdpHx2Qn3QQsxlqmiFkSmG9xWh3l5lzSuU1E5IMaUqW1hfojDzkGOYbTWRcxHVK3HztFexGncH79+n6fdZffQXHqcDjU2h3oWTDQpmcGGOcs1a/iDAtTp5NifOQQljg7N6EJK9TvHmdsn2dl6+e58L6CY+ff8LOzkNWlupsrM3RPnvKyoUah2djDDfHVBJtkLMs6ujKRsUxhFOUXkS6FdIowdRMLMsmywUQU9AN3GRGIYtpZjkFHQ51waTksJcqTpMElYMdZ2hVh6xksDMM0FDMqxfJzmkiGB93oD3BKtZgnEF3in/c/3Lg/fT+Q1596yuMgx5//fc/RJqS1uIi85U56tUGt79ykfbdU27c+gofvvMpiWYj44S5UpNBMCPKIq6+8goTM+H49DHPgmec0mds5EzI2O4ekMRTmsUireY8W7vPmXMb1HQTv+0xiyYMRIxRq1KbW8AyfbrdIULlKKHIxYs2pBSSVOWEWUrRKFAyy4RhwvhsAspleHBAkAdktSWMeUHtygrtnedc3ZijoGsMnx5Riys09QUqaZ2F+QsUzRL93SOEyMlmM0ScoqNIspDx4IxK5hFrCaZtEUwG+P6QQXCGM8koFEokcUTTaWJVi1hnFk4kiGYBSSzIpcBozeNZEJYNRLMGmST79Bmz3QPK5+bRpwtgQDKY4o08IiMgUhr2fAvNcNi89G1yR2A26mhyCcucYKiMl6/eJg46rFxaYn51jjRvg8ppb4+Yt9eZv7wOXo4cFkhGCVHoM+l2sEsKXbcJdJM0E1QSQZLoJMpFSAPsOlaa0FAxPRFilgziisFxd0YvSygCWBDInGmWICRoKRQyhyo2S+Ul1hrL6LOU/HRIb+8I3TYo1L+sTIpigXc+u4NhKw5Pt5FC8urLN7h84TK7z/ZYXVzg6GTElXMNCs0NasUN+vcf4nkdGutlspLJz997BzFnodcTShfrTI/P8NKEp/1DFtMCZUOnWqpz/Gib0UGHb73+BqmfcMghe/sH9IddBp9/Qpqk1EQFYRno5ISR92LYmhDbsAkzRZJGVN0F6laFelbBzDTcWgVN+BSaRYpyhak9Ic4DVpYaTLZy9r73KZftG7x87Q1mdyf43RizMI/mOgjrGLKEqN0jUXC29QCzWWD+covJoxGBkSELMWc7d9AqDsXNOmYhoZjV0chpiDmWGyZTOSDszTASl8Sbcbq9jdsoYa02cAoWmWMSjyboe2fYe2fE3hQzSZDFAqkXk6YZWqvIuZdvYGwuIu2cZe0aAoHKBErFJKOAdnuIUfC4dvkqkTnl5PAIEoPu8zFL6QXOX/wWBeM8kRUSHYUYwxB9PEbLE3S3zHTqEcUBhu1gnj9PenpIdJaj9AzKNiQOqdcj06ZUVsoc5SGTowgpQeRQLNl0B0P29s/QE0VZSVZlk83iAm/e+hpmXiAYTul1+xz4I9beeInW1fNfDry3v/PbPP7sY86OdggCgSklO4/PqBpzXNq8iowUr776Xfyxzs3Xv4o+hsn2EwZjjyhKmb+wSe/ODsd7p/j7Q0RVMo4TRglUM0GxNIed5nRPZ5z2PuHyjcukgWL7+QG+H+PxYkh9OhszX5lnEMRsbGxw2j7GlTaRH1K1KuRZRkEWKdotlrR55sx53KjAzJtRisvMhscUz11h/eJt2tM9/tv/x/+Boj3isuWixjXK8irlTh2dAkZVkUiJlqdEIkemMcViGc+b4i7VKH/tBv0nd4g8jeHkjNTOab12EwxBbcnEqEdo04jRcZu1hfM4CyX8i0P8XkQUmuSmQaXVQpfQWFukvCRxa3WIOqSjHkbikfZ8UpFi1ucxS2Wqi3PIy8toN87BcoVUz154t/kJ8dAjHY5JgozIg6O9PRavVrCcOid7z9D6kJ/CsnGe6aFF4qTIyhzuXA2tO2W6c4jX7yJtSbHUYBZ6iGKJ2DaIpEZeKFJaXqC1MU/FP+bx1gfM/JRplpJMfSoRGLlGxTQ5V2lRyhwKiU5D6SyIKm9c/Aor9RaxYeGbJvOLq2j9EefMZeZevolYbX458C7PVZFXN9GyKXk0wdIcXr35CutrG/ROZ1xaOE+reo1prIEAoUfYRUimPgsXLlC/uk728CcMhj00I0OPXSxKiCQgVYIwUhiZjURDi3127u8T8pxJHJGhkZsOKT5OuUhWcKAgOfKHjMMZX739Mp9+/CGmDmkkmNOa/Ob136Kuqpi+zrxbpfNsD284YRgGuIXrLLx0Cf95n+jhiKYZkXRi9OMmBcNiuN8myQWNa1ewrq2T9rsEjxUyU1hry9ijDpXrq+hXFpifv0hpJWXQLTPKxqy9volbdPjp338Pf+eE1UqFYlqmoOqoVKMw36TcdMC3QdOgYoISuI4LVhEcF1WwiJWHwkNPFJz6JF6EWl3BuLmGWF1A1F2UK8iVJAkygtGYbDKmXHIpNi8g0lP2n4f44yKLC6vYiYfj61iZ5OxRzPJ5xVR0Wd2oI9MYVEI0GjBtt4mTGcbVy8yvtgjHHuOdbXQpsAtFRC4ZHXTICzkH0zGPhx1EbmAJwXWjSsWZY2WxxaVzLabDMSXPQCmDZafFy298ncJci9AEe20J4Sumd59QW5rDWGqROBq/bLHsV7vzvvN9rl27wmKzSs25jMrh4uWLrJy7wsftz/n4nfu8eW2dxvJNxqPn9B7exyXALmuMp12OPziiP+1gmBKhSSpmjTWrQZIP0MMIK7cwZRmlYuIkxY9neET4MkW3LRLxYiLUz2L2jna4dOkqQtM42+vz+MFjNufWqIgKSZxxe/0tbq6/TXwW0tvdZVIIqTaXIIpI5AghBNPZgL3+Ab3ZEZuL87SMOfwDKKYSXWrMCiaTaITl9zk9PUBzSiRxztPj59jzVRrnF8ijPp8//IimI1m+tc6cHTMMTxj0A8xqgj+JODk+ZNFdeuE6YRqImoXIHKLJFBULGPgQzLCmATAitkyivQMgQJkJVhyj5ZJkpuP1LSq6RNcMlB+SqRDfD4n9GE3TqS8vYxgCQo881Sg58+iUEFkDU4UsuHPYWoWGZhMEEfl4BFaXUadH2p9gKZ2q4xJqMZOjfWqVOVxdQxQL6LpB6M042nlOFE1Jq1AouTTMBtNkRoEyv/36t1jbfIlyxYW8zUd330ObCBqizmJlCXN5hbhaQluuoOZrpDtn9FWA5RgIy0RJ9Uvz+CvB22xpzLVsjo8jXnn5Bn/973/A3bzI3MZrLJ1/jWKSs/PuNv5CwlKxjtZa4OkX9zj2DxndfUrgKIZqzCCeYhgFbEy0MGPTaKBlKUWtgMo00lxDSIsg85kKRShyDC2iXCkyGI8I44hRmvKTR/cwgQ2zTNkr8Wr9JaykQE7Cq1e/jVFfY7zzDGOSIaIZRtlBScX64jp5YnH6xT2++PkPmfYHeLZLZ6ogLDDJ+1T0ArVmnaGu8cHWXTavXAZdMt31iZ2YQk1xuPsQTU/59E+/RyEN+dpvv8X8rQ0ymTDqnUDqo5c1LKuA70VQtdCtCnE3AT/Hy2dkXkw2SsjynIJVwBQmYKMlEVa5TOj3yOIJCpM8kWgDHdkboo5OyNIpfskAy6Y+v4hRLpHrGWk0Q46HkJVZXH4b2ShSaGyyvDHEv9ulfuU2aqTofPEZslBA03RK0uRw75SBF6LbDoEKiVRCub5Cpmk4KWRpxnQ8Jk4jEpEQiZSv//Y3uG6F/Ozd90lGOq+/+V3cxiq6qzPtPadU6bI0L9G9CRvaPKrdpzvuUVq5QVkHFXhks/ELuyGVv/gSfRnwLq/MMRgPsEo10Cq8euNrhFmZYmWd4qUSs36HYssi021EnjNutwlERuqYtNUZbX/8wvtLEyBMeqMJjnQxEzByiZHmCJFjSEGkBJkQRCojEhlp7FMWLksLDUZ+yCAYI5Qizl9sXdxcvMaN5k3idoQ0E/JBQN7wUVqEU9VhOiKbecRGRNyZ4JgZ80s2ry1s8Hn/OY20hZHYFJsN0kFCriL83hkzUaD1xgXWvvs1Rh/cZTQ74uj0Eb1Pv8D/9AcslErMDSQVauy/c4oM5hiUQoJhjKYbVGtNdBPMXOANx7hVGyMUSD+lbDlIZRJFCXmWIxOQSYiV6RBnpOMQLVboQiNXGZoAK41J7z8mCUfw0nlkeYXi4gKyUiLLM/IsIU9S0uGEcKhYvPBVsrkyca5j2FXyomCW5VB0WLp1HTme0H+0QzEWmLV5KGWU11eR0yFmGFK4ep3B7gFiOCOdTJgMx6R5SieZMAsiup9/xFf+6bf4w3/xLxkchZjFIonI0StFNOMcl98qceniV+j81fsUpynayKfeKqGlCjEJydt9zOEUberDLEQZX1ImRTJM+ezOA9rHHt/fe4/vvP37fOc//s8wjRX67TadLOL2H/4ezGL6/82/Y7i3S6RG9FSfR/kZ/TxlzqxgGTZECks3sHINUoUmBAVpYSrJLAkxSbEkFIROniVYhsW19Qv4Xod2OmGkzVBZjC4FZcvkra++xrq9wf54C8yczhd3GI/atG5fR6tIjn7yHE1aKBlyuveMRurjJE3cSUZT1Dl5NqLSvI5l10nUmCBNCH0f093g9ldukuYx7S8+Qc8CJpNTLi+fx1QmDbNMOBxhKAuZlKl6LQobt5h5z9n/7Eecf+scjfU6/fEBwy92SQpjxNimJG0s6UCq4ToOqOzFL0lgnJB7E/JxhJ25SCXJSEikICYi2dklJ6X4ykXsuTrS1In9CbHIsITADGN2njxl/9MtVi5/lWQmOds5pWK5rF27xfajB3S7PV65fAtjEnKy16Z33MOp1Vl8+03c21dp9Pp4x8fI1TXiww6Z1ycd+6goQZGSiIx+OKHzcA9qFt/5zv+I1eY8k8MTGpeqiIKNW13ErTegMqF6fcLg0Q5eZ0B5uYnIdYSfEXYmpJ0x9EPoeGi/vMPprwbvT370cyqlRVYbm9yon6OSLiKOJV73gGn3GDeB3v33EcdDZoc7FLOYSa4oCJO6UcVyDAzdwUwM1udXyScJ6SxGExp5nmNoBrZlkkvJMAzQ0ShiYuYCFcPjD7+g5EK5UcPRFKYQL6Jg/YD3P3yXU/kcPa0wNzdPPYBeu0Nauo1GAWkKotgnmHXRpSDLEnTLxCwVMScVJpMRR2cDYhmzljtoAgQZ4WTIbO+AwDYJdo+RQcxG9TYvnbuBHIaMDk+wUhvTMsjyBD0KKDfPo7cTRkkLN2xiywV06TPo9Kg3BfE4oTcYUs00NCnIKzbC1hE1h1TPsbQUZaRkSAwcUAINg5gMJVLIEwxLx56rIQ2T7GxApmJU2UQYBscP7/PZT/4Wo68In+6SlUo0KxUcx0bYgqXzixiGIhr3MFSMTUaSRfjBhMl0SO/xQ5qFEhMvwJ68qGlPh1P0IEF/YYiFwEQXLiocEXUCtt+9i0uV2Uyn1Gyhz9fRlEkWJGhCw5qr4y57zFRKwTIwhA6TkLg9QPRniNMRqt5DxsmXA2+hVufSxWvsfdHjD/7Jf0KyFTB+9zlJSeenf/FfEYqAql1gtbBACxdpgeYbzDPPNVniOA/Y6h/jKJPzNzZp7xzje1NM/ReTREKydO085Y0mJ+//Lel4BrOUkpLYpkPFKpFLj/VLF5m5Ajkd8rWXX+PZD+9RKBRxnArLN7/BQuMcu3/5DnO1FWr1BuNen1Kxjj/okmcOmabhF6o0blzh2edbvNt+xqJWoJxFuLKBk1gYmobhOoxygb9/yvYHHzE3TFlsbTCcW8EttoiPtjBDhyz3cQTEMmA2PiCZnTLyh8wvLFGtnwOnQn3FRnUkllnG1gX9yT7T4QiVpcwmCYVzcxRqVZStgR2QyIigp1GJDVxMyEIsV6GXJDPdRK7WwTFI908Ru12ckkO27NJtH/CD/+u/5tnDD7ldvsz2j35A4eoNVr76OkILmQxOOG3v8+jTT0kOu5yvzOF5p0yTPmpqsf2TU179ne9C6UVCaSXTiE/aFIROiiAUgkRJXFmlkukUShVeW3yDeXMBXblk603yGILTHlaxhGboZDmIxSYWOUIqxEoTigXod0iPOjhjj/TeY0gl8uLqlwPv/tkMw9jDsWqkkym7j3Yw2zGWFVNOpoR5j5M4J8mmnIVFTGVSMEvIHCppgcDwaUiPJAu5+8UX6JHAERaGrlMt1Ek1xdPTPXq9B4z0kFC8cGGs4VCWZSpOjf3xmP5oyGtvvkTx9IDYizBTg9X6Gg17nrnL1zj75BFxlDC3UGLwYJves31sD3RRwShV8JSifukm1sY6S/kNjLP3Waut0hw7BPseMymxNYdARKSOxXT3OVqeUdA0Zt02lddeQhYswiMJ9TJRe0wW5MxERqNYwionJPoQowSqZKOkhdALNNcuoacCNfFori4zGvuoBGqNCpXNC+gXlxCuDoki741JI/BOhgg/RdMN9JqDsVTGdHWS5SqKlP7uMf5n29QbFWansHXylOPDbZAZmRZiVsAopTw/vMvezhMe3fuI0/4JwXiK8kI+FTp6BiIX2Mqm5bYYZwPYCSgVDIyyi6NLSpUS4zRkkExIhIZSgjmrxdrFdVaal/Cfn4JlU1ycQxmCGA2CBJXmSAWi5OBqc6g4AAOIAvJuHzka4KoUbTzEe/oUu2D+0lD+av68pQUGk5RzZYfD3ik3fuNteDbk5MnHlEsFjrwT9uM+XS9h3jnHudo8aWAzG3hYWhFt6jGHSyg0oiBEmA6TyCdLFLZw0E2Nw84OB3mf0M5wBCw6ZZp5gSyESXeC1C0eP3lKOthhEkfEhylvqJu4fZOljWWC7SMmz/Yhz5C6TrzXpe4ZaMV5pv6UlRuXSTRJUmwg3SpFs8hytUUsY+4f73FOtSiU6hznM8Z2SqFV4mfv/g1loSHlElWzyOnTd7DXVtn8/a/Qu7cNHwREXsCoVODc175Gecnhwd/vURMmy/MNsiAimSSkCbilIqDQph4yU7jCQNNsaI8YKI/y5U3MGxeRrZjsoEOxXiM/7SBUQlgRFJbq9DIPoee4cUylWmXurdfwjw/4+7/8tzxuP3lRjhSQl2301TI//Oz7/PVH7yIijzKChJwX07eKEYKJUIQSLM2gMh3y5AeHrJpzvH7jDZpaE2feYvj8lGk6xRcRiWliiCJzjQXm3Rad97fwj4aYZgFNGdhXFrEaS6Ak/miMFGBLiXQttGhK1u8ju30mH3yEHHYoqAQtSgi6McHdnNKXAe/F86/xZOsBOycdVsw+i9UYITOSRpneQYaX6xiUEJmOqQTpZEoepdRs+0W5JcqpaCZ5FpOSM409dGVg8iIDuKGVeGnuAmVVYWt2wNTvYRTLFC2HHB2h26Q6LNQkO7NT+r0ZLVXmSnkd2Uno9rbomY8pBCn15jxnh9tYs5xCbBJJAbaNcgxkqcTk8JStf3OX7eA+h48fUlo/z9raRYJ2ABerPHxyh+fdUwaD90nzmHlRYLNQQxoW65duUnz5MvrGOvFwgHlQpL/fw1yrky/Ae9/7PrsPnnBt9SKqPUTmAn2akEQxsmWTZynRZIqd5DhoiETin/Q5PZkQT0NaK8sITVJanKcgLTJHEvtjgqJANYtU7Tq+gCxXOGvL5NOQZw/eZ/vsgL43xCPDFibPjo85+bM/4f70jEkSUhGCgmZQtItYOGRhRKwiRB6Q5CkBKanKyFEEfkj/8wlTf8j18hqjeEyY+OQCcglWtUh9pUW/12N4ckYl0jHSkOS0g9E00Zcr4BYwdZ1oNiVOMwxNYMxCkt4QGUZEp6cYWYjMU6TK0DPBpHv25cD7W//8f8IfNhrouY1375T3//p9vvnmN6h6JtOd72GwxMospqR0/pPv/HNOHjzndGuHWHkMRYqu57jYGKZDoCtCEeN5UxKhMU1DlowlXr7xGp27f4uIYiSKfjBms7XBy7deZ6G+wt725xyXz5h2PMJhyO+c+zrfdN+gmVSJRkPmKw6T4S7j00PKi2uAQjMLFGoWg/Y2Z3vbxGGEWy5yuWRyvD2gnNmMe2MCd4womOyWJ3yW7JE7AqlpL0zibINv/4v/OU8/fELh/KtYFzdQ85LazUX+7Z/9lxyOH/PVxW/zv/rf/DHloc2t8jkWtALs9/F9n2DqUV+cJzs+4fBHP0YMZqxQRGUR2fEIdEHNluh7A5hmYCkKtSpxv4fvQFQo0fjqy+jnWuSTKXqvT2ba5K7JZNLl4527tGdtfBUipcTOdZIsp9/vo5NQl+AaGnqxTLnZYoUmRT+lICTPx2c88tocq4BI5IzzkEiL8NOIf3jwY3a0Oc7bixTcArW5JVpXr9G88TLp6YD2z97DicBUCjPNmTzbZdY9pu5PcW5dRV+aQwoY7O6iezGVJCfvD9HSlHnNxotT8tRHoiGzmPovPc37q14bVptomYHfmXDmd5m73cK67PD8R1v8xnd/Bz102HvnM9LhGD03CBNwik3C2YCRmBGSoWFjSpcwDojzACVjwlzh6GW0SoX6tVssj3f4vPcQR3NIckW5Ns/1W29hzCSRdsitr9xg/+dnJGP4jbe+TeV5ndnhkCTxsc4mTKIZieswmszIVZniuXNYImBuZjHr9lBhiAz7qLRI0XZxRYtRMmDS3yVN4XG7jakVuLJ8Hn/SYziOOW8s0Xk0oWys0N7eYulchdHpASdbn/M0fUq6rojncwbTDs3SOTRbEQ76hJlDmOd0hn2yyKes65jDMXaukcsUREZGAEJgJgZiMmP6/qeoioO0deIswWzNU2/W0NfXUVWXXEr0gosq18B1sU2DpmVSEOAphZML1oRBw6qhKYO1ZEZfjekmIQf9HnuTMbvyjMtmjQWriJ/GJFlGToYkf+H2niscUopCYamMIJxilxyK9TLlSpHx0yfkB31kL6CQa0heLKaa0sCY5uRPzggME6vsIh0To1xGyzzEdIweKdRkhhj76EoiMIAUgxwVfEm+DamXopUUxcaM9dsp8UwDZ4LdarB+4S2++Ksf0p10WGg22dp6wtqly+yoQ8IsxUkywmRAoqW8/MpL3Nt5QLdzTCRCsCSxndPRhjw5+JxpNKJqutiajRsbxGczPvq7n3Ll/EsYzSWe3nuMOjrjD99+jYcPf8qlr//njLY/JO0FjI0+qgKtq+uUL7/M8EmbaNQlnnbw2oeYek4Wj4j6gvFU59z1y9z+6n/Ev/o3/wX92KYiLW4Vr3Jp8xprc8s8uPMxuV7gxvw1HJPBFQAAFPxJREFU5OEJc3OrtMdjDj/+iC/OPubp1vuMLZ9Kq8KHB0+QS/OcdgbU0wLuVy5gOy2sXNG4fg00SPpDdGViCg1D6cg8RxcvDPFsQ6KCkHz/jKxeRD+/QHl9EW2hQuYYZI4iswVCK2Ohg7RfWFWOPew4wZUSJ5csGC5fc1bYLCxh+ZJEDxmKGcdmxM8np+wnHif08KIhhalOQEpIjk3OHBoLSmNBs2nZDeaNJqW4gBbpJOOIs0/vcHjnc1LNZqm+wnqzwSgK0TINqUt0ATJLCY87DMZdluYruJfOUTm3DFUPNQnI4oTJ3gmFLH4Brg5pKtDQQX5JHba9+w9ZXy2hFwLG/cekSsNtLWOWNQ4O9nm2/ZCBmLC2tsnGylVKpUVKXkY+GWDFHg2txkSEGLZOpickxCQqISfEsVOcc2V+vvURxye7aJpASxRVo8hkPKRkTjkZ9mku1bh+8StsdT9gc7nK0XRCON4lziOkZpBpOaNgTFGFOJHHaXufllVHI8PAIE+HWCRoUiNKFSLJcKXBpdVLhFsjNgstXl17iSw0ONe6ycA4Qbgu4ckES2TMkpzmN1+H9QpfdN7jrH/Eq29f5ygdYJaL/NEf/yEf/enfkA5zktwnL5kQJuSWRDaqkCUoqSNyDYmOIiVTGTqgsoxMpRQWmhiX12G9CQWNJA2I/AjTL2KUXLBMwEBEoLyQw4dP2Hu2RZj6ZORIwMkEjp9SmkqkEpQ0G9dyYbFBZdLl/ckzYjJiYiKRoyQ00VkSLuuYrJVrWJmJ7mfINMcUOplKkSQoFZOnKWnkY9QWKBQd/OEM7Rd1ay3PkUpRigS20hGOiyqbKE0im1W0/oQszchS9QJYeDFDiY76pcdyftXV95rL/oO77B7eZ/XKPJ1+D6lsUj3n8d4jRCvku//8P+bJ1nPstRL337vD+itv03rlGg//mz9hOJuwuLnBpw8/ZnuwRSB8NF0SqZit3lPeeedjQgVNrciaXqaEjYw1hJRcffstzr/9TeLeGf/1X/3vmKYTyqsFLheKfPz9v+D85W9TN5aIHkw411xl/uIrdJ7uMZtNUc1FSvOb2OUC3Z3PIY4wlY0hFVnoEe/t8pXSPPPVi7h5mWWxQHN1nf77W5QmDpnvIJWPMCZ4s5jpYJG515Z49a3X+PjzH7C6vsG7f/kF02ibD//6fS6ValTXNvjRxz+g5dyhVKhTbtRZXFvBTBWq5BL5CkeaZCpC5ZJE5cQqIUOgr89hXFwGb0je6TNtn4Jl4egOoloj1zXQdRj6xHvHHNx9wGTQIwd8oJOGbOkTbK3COdvBjXVKUkNLNLLEwnQc/HDCUTqmq0JmekwK1CSYCJxM4g/7pDiYqopTamAVKniTjCSYgYqomQWEN+Vod4uaWcKWILIEPVOYaAgkeigZPtjGaVRwf/MlBDlMfDQk1uNdjPYIPQeBBCUQQqDUl3TndWzFXKNBpfUNynWHenNMv9MlHU4ZjJ+yvLnB6lsv00tCnu/vc9w9pTUeUXEKGCrj0q2XKZyf597fPSJKfXRDksUpumlh6SYq1vCJGWUhNWWxZJZxjRJJlGM7kAc9BuMOQZ7QzzNmpuDevY8pWi3q330da6Bj7BXxRhHTp8d43RnnVtapLi+ivIC8XGWGgaMVSTMDXebIsc/eZx/S6Z1hxyEFw2FyNqCqldDiBFfqGNUWjgvT/lNiIhYur2M6FnffuYcKJf/wJ3+FzCJyz8dCox+dcb8/5HJlg52jMSWjjHaos7NbZLW1zEvXLhHtnJF5CXEEmcpJgdzQMApFpNRgNCE5OSEb9Mn7XWTZRYQBZAlZnmJgoaIIbzDAm01+EW8gSYCBSnmqZphqipeELCqNluni5TGj/oxyvcF/+uY/4c/v/oRocko3SUilYpal9ERATQh0JdBQpCJnFnvkuobQcnSZQZZjZjm2JgijgHGiqIjCL87MnEyAUDkojb2tHbSC4Ny1RSqNKtIyyPOUNM8QmUD7Rb6TkDpJnoCUX06dN0/6GCLBLcxz7/MtrrzxBqvnynQ/+YRR4RA3LXD4N1+w6SwibYP5m6sMHhzy7OiAPM6g3eUg6qKcnGwaY+kGeizRIg2zYLJaWGAyPSNOcoQwQZkgJVEy4W/+4b/F//v/N45r8Nrr13gylfzrP/kec4bDyaPHnCoXNbH45tobON0cZmDMMhL/hOPOPtXWEkdnXWLTZP3qK8STEG//Gf3JKcfxHnke05I1qtJETmcMdh+zsNgi6Y2oLZ1HLxi0T+8xjgKyB3dZcSUX569yWnmG0uYZqSEn8SFfe+V16stVHt9/iH84pm4UMNKIPJrSnu0T94+4ulnDNg3G3RF5liCFJFaQ5AKldMp7I5LjEfG4TR5OqC03YKlBv31Mca2G1CH3E2QY4g/7jP0xU10xziWjTBCSMwkHPItmLCiNdelwMauwUmtx+63vAgWmnz/gP331n/Ljw3uke3c4SUZMydgiJtI0bsoi84ZDoBL6yTFydERTK1CRFjoWMocwj0kNi1RCrjJcTadgF4mFIrIkxeV5rl9eRazNI5WOGvvk04DR4SmmNDArFdLZiDhPwNIIyUjIaH0Z8GqWhiIhmLxYfnz/B3/PldWruBOTb77yH9Hb62L1NU4PDjGSCpNuSHw2w8h0eipnOhqzdu0Kjv8YQ9MIfY8aVapOg0EWIMOYAiaQYWgmWZLipROyPGQyPANXsrK0SdTtsP3gCQfJgHHdRqtZPNr+jM3yeYzzi5hayHinTzQZo9IBmQgo2JJwOsRxDVJvzPC4gxf5TEVIJF7kumluCccsIL2ELJ4yDLvkMUyOdaxK4Rd5xxnHj58QaBrnbr/E1Y3X2DhfYLv3hL9p/wWf3/mYVnuZ/ZNDlo15rNxhvlAhC33sOEeGGcODA+pWHVOAEhppDrowiDKBNwuw99tYFZtERChTIOoukYrpHPYoX7mAMAKkpYEQVBs1MHU8leJJiHNJrHJmKJSKyNDJVUYUh3iznMKzezihjdaLmbt+hTcvv8rd7iGTkY9HiIfiVGWsug6mbTGZDYlzD/MX8w+5rFLTS5iY5MKg1Jqn2ljA1orIkUfkefgqJV+ukl89h3thHVGrgmahshy8hLpdBrtANh0Qa4pYE1i1Ao6robIvyRn9b/79n7C0vMTmtVu8/OYtgolFpXiL7M4Bd//t3+O3O1xsLhNu96iut1g4d5nd9j3Wrt3ixqurxIMeXzx9l+OjA9IkoqKV2axd4ubl1/ji2ROU30VpFpOkx+sXrvLm0nXOHm6TEzBxBmTVmPu7HyIznXNzcywurfHRwSOcpoHuD2kuOUxnJxApamUHO6niD2ZMkhmZC9d+63V29p7yyeNPqMoSIR5jLWWChtA0QrtEdzRjMbPRCDClxHJLBHlKMJ1QqFbI0hG+N+Dg7mcsnL/EZmOej957h8PxHjEZK40lxh0fI7QRmUHJrkEiqJgVSmiYKOw4IcmmSMMkyiWZ5ZJbGpViBU0ZFFvzyMUqZskjMwNm6YyH9x9Qm1vGOhuhYoXSB8R+ynH3mL1Zj65K8DVQUkfLciAhR5LqGgORkaiIqZcwfPgzzlmLXJebECo2Ll7nf/HHTf6P//3/haejfSZpyGme8IHfw456RFmIJRQVDU6FYj6D5VRj2a1z/sYtKusbzHaOON7bw9UtWpcvUFxukm5WYL6EEg4I4KxH3GkT3H9OdjQkG04IRISoW2SGRWNt7sWj1vyS7ryoAIyAv/vRX/DaG/+Mc+d+E7MNj356D609YqFQpvq11+hnMcoBoyhxqxaJLXET8MMEM8o5ZzZx0ghNmnzzN/8ZreI6Qcfh6qrBh6fvsXUyIeydceq7qJmkOxkzWjhGLMQMijOCfsqrSxfwZIJRdEg0xVk45ief/pj2A4/fv/o75EoSlIqk+hrSbiFfOU9cNfj40wf4aYcNYwFd5gQiodZcoKi7nCuvEec+pgd2KkhyxSQzkI05GutLPPvs3zHOh4RCAibf/zf/BZmAdtxlfnmeUlAmlTplo4gioVWYw9ZdQj8gjXycJKCs2eRZzEhXTK2MUqtO89pFZnFAseCSHveRSw3EYoWUEGVKJu0Bk6BDcBzQOFgi2PIxbJOnwwn/7p1/4Hl/j0yk6FJDVxkpGTHgArYSaEIQIOiqGJX3yKKYBbvAgorRcpNo6JNEAbqlIIc0U4xzn4kQCEtgJRBnioEKmWFQdTSWLl+lNtfi5POHhMd9qpmO4UpmsUeptYm5NocywD/z0YIEdbBN3Dslm82IdLCun6dY0TFqDma1iFktEIyHL5zXvwx4G6urDCYjrl+9jpbmPHzvPeZnq/T7XYqGxsGgj3r6lFGaoPsznEEHQybYyZSdj98jiELkwOOG1aIXRszShNGdp5i6z8JpgD5MuJTZaGaVWf+IYVrk5pU3uL54g/eGf8sHZ58wN7/I2197kycPn3F3/xmBnRMbKfWKy2rrIq8vvwxexG7njBtf/12C0x5qzqHxjZeJox5qwWJ//5hGocS5xSU8L2F3cESuEuJpSCOvkGUGdaGRGQZOs4GzvsJ02EbJnKE/ZhZmKCQxAqHriDzj5OgAP50Rex5l6VLSi3jTGYlIMOSLfLdM5ehpjEZAoGm0vvoSzWtXsTZXcAsW2dEpx72fYj/fQu+aWKsSWc25++w+Pa/PXvspP9m+T5IrUl3jOIc9b8o499BFhp1KFJCikLw48FKVo3LIFIQ55OSQeZwkHZa6OzR00CYnrIUSLTdp5ho+OR4xqRLMmWUqSEhjcqGz6La4unyVJVmm/9lT4tGIului5BYZkaC1ymRlHUmGGIek/QkqSRFaQFaMKJ1boFpsImUDDBtKDsLWoWDjqAwr/ZJGItuTGautRQpOhVl3gPDKLG0ssVxZYv+HP6e3t0+xtYRZX8C78xjynObmCqNhl0pBI9N0XNHADXWY9dGymGAwpZ+fsZS6JKMpZT2iDJRKDdYurlO5uMTW0X1aF9eZ03dYWb5KeW6JyQdfkHsJtmXQbDY4eNbFqDqsv7rBox98htkoY81pPH50QDjNeTk4j6yWMKSBlIKpmDHOp4yzKf2wD3nOfnpMICKUquC6VaZhgBH5nN3/nIIFURC88OMCUjIyBKQ5jm2i4hRHGuhCQ2WKLE0JiYjJEYANNAybVBgkWRE5N8/it99Cnj+HaFbQihZKAxoVpne3qFGEhQLtsy7t8RBPpLQTj3Y8IACEpjPQTNoqIubFEJPiBaiSF4NbSEGkcsgz0v+fCqpORjvtc3D6nCwKMQXcKM6jjWKmQjEVOYf58IXBSmhwTpaQMqdUb3H7yktcMRcJvzimmkhKdpXC/DzUS8xVLLQbF8lrLkEUYiUJbsFBpgnCtIllztlsh7qbYNk2CB2kAk2glQqIUhGZ//LT6L8SvG/+xrcZn3boHHXRQpPV5U3e+cGf8dpbv88wiVjevMR8cxWtXGPvzjPOth7Ti3t44YjKZovX/rN/Sfejz9n7yY8YJRmnxJSvrrF5620KxyGz7YcE+0/IdKCo8cMvfoSzd5e21+Was06xNs8nd+7y2fgBq9VFVudXOPNOMTMolCTanMNBsM2j4V02115ip3OP48OHaMKme+ch5fkqabtHSUp6g1Mmgy6xjEnwsA2bdnJGIhI0CUZmsLp5Ga1aJe4cMuy1ETlY0qLiFhn7M9I8RiBI4+RFLnKuIXIQv4h+jdPsF7BLEiEQeQa6TXFhnqW3X0feOg9zVTJXR+o6mlugZBWIM0HTcjk46/DZ/uc8bu8xyhN6WcLUBD+FOE+x5+poviCdeLglnZppMxl6iAxcQ0fXdOIkRaXAiyorPiARdPF4NnjMbNLF1FxUnrPUXMVzbaZSoftdguGAxcjkglZjoTLP0s1XmF9ZZ/rJE7Shjy0t0jijd3ZGEI1pzF2kYJtIJbAsE2mbyDyCmU8S9Qn9Y06Pt4jGh5xbV2jFNYKZR64KFMw60tbIEvXleJVZbp0LFxZ40v0Md3EJNZmSRgP0eEqhXGbcDXj+44/YWFvHyRReHDKYtDmJ29T8hIWD+zx9+BnKHxPJHE/A3EtXqX7zTcZ3tjg4+pS9bMB+2EViMxE57ckppWaJzx48oLFWIgXcgktvPCScjQhmM6KTmEQqIpkxFEP0RY33t37OJ5/f5SW5QVnp3Puzv0ZJsHKfYi7RMDAti2ma4uYvPotgEKqQXjZixV2idutl0pUlJv/3/zN5EGAZBlW9Su3CKjv7u5yMz1ASyF50taSS5HlOLBMUoCN/MYUlCbMcshQpclrNGo1bV2GpTmZJhKWhwhQ6Y6xBhJYKtBRO2secnp4RZ4ppHjMT4AlINEgyEGlImkS4Jiw1KzSdClvDfXRdwzZN0iwlyl5070wkEkWGIiRnLDJK2RSVhriixtzmVb7+L/459vlzBHnCtH3M+3/6Z/if77Im6yw7i5RkCd1XTE771BQIaWBbBgk5ui7RDA3iFMgQyYtI3OSkD7Mhw8EWXnpMlLYZjqasZOcxqJEMe+RxEZEsQvT/fWx+CfBmvsIolSi7NU6fbnH3vU+4uHCD2ek+jmlTvHmV6OOH7H94B+kNkFrKhdsXeXRnm739Lzj5kx4LU4OmAldIVpwmaujz8O//Aa075ZPdh+RzJZK+Q6IStJKNN5synQTkesh0f4aUFkESUlIOaDlSl8zVixxPZ7z/yQPGJ7vUcRgmQ/LRmNr5a1zUFthtdykWSxyN+yhRQCu4ZBLibEbOi7JTqiQxMT4hMYKzx8+ZPnpCFsdYmobEJkoCDrb3yNIYU+gv/qd4cVpoQkeh8FVAqnJMQJM6mVAgNQQmdrFKfXMDvTWHMiSxzLEQiCiic/ch/rN9yrFCCp1mdZ7fvfkH/OT5J0x27qPiAAVIAa6tUywUmIUhBdviwtoqeAlCKfI0YZKlKBQIhYHEQlI0LTRNI458vCwhlAk2OSkBWThjjZyFWo0kmjJ7MqMcWbScReZUBT3WkIlAICmZLqYek0qJyHIMS0PoBvFoSrS1TaZS7IKJ6droJ0Oi0Smx6jHT+sysGaGW8vD5x+j+c57tt6mtnOeNWg2zWGUwGLP4O5u/FI9CKfXLL8r/Wr/W/4D0yxfVfq1f639g+jW8v9Y/Wv0a3l/rH61+De+v9Y9Wv4b31/pHq1/D+2v9o9Wv4f21/tHq1/D+Wv9o9Wt4f61/tPr/AJXV/niB/aSwAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADECAYAAADZLWDNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADRfUlEQVR4nOz9Z7BkWXqehz7pvfcnM08eb8q2ne4xaJgBMBQxvIQkSgApKgCJpHAlgUYKiiL1QxQlyoZCAV4CYoCKkKALkRKDIYqkRAwINzMY043u6u6q6qo63uTJk957n/v+2Pmt7hoMZqZrgCY5t1dERXVXZWXm2Xvttb71fq8xaJqm8fH4eHwPDeM/6y/w8fh4/H6Pjyf1x+N7bnw8qT8e33Pj40n98fieGx9P6o/H99z4eFJ/PL7nxseT+uPxPTc+ntQfj++58fGk/nh8z41/8Sb12hr89E+///9f+hIYDPrvv1/DYID/7D/7/Xu//38b/4yv34eb1L/0S/oXll92O+zswM/+LJTLfzDf8A9q/Mqv/Is9cb/xXhgMEI3CD/4gfOELf/Cf/8/x9TM/07/6z/9zWF+H0Qi++lX4W39L/yEfPQKn8/f5K36b8dprMByC1frh/t2v/Ar8wi988xszHIL52S7NRz7kXmiavrD80i/BH/7D8H//3/D5z//Bfe63un7/jMez3bl/6V+Cl17S//tP/2kIheB/+B/gH/0j+ON//Jv/m34fXK5n/JrfYhiN+o7x+zl+v9/vD3J88F4A/Kk/BbEY/O//+x/spP7nePz+1NQ/9EP67xcX+u8//dPgdsPZmb5qeDzwb/wb+t8tFvBzPwc3b+qTJxaDn/kZaDaffk9Ng7/+1yGV0lf/H/xBePz4d3/271VT/87v6J8dCOgP05078Df+xvvf7xd+Qf/vD27fMr5ZTfjuu/oE8nr1n+2zn4U33nj6NVISfO1r8B/+hxCJ6J/9L//LUK1+m4v4+zT8fnA4fvdO851ed9DLl+/7Pv27ezzwYz/29LX/dtfvm418Hv7tf1v/XJtN/x7/8//8u1/3N/+m/ndOp37vXnoJ/u7f/RAX4FlX6m8cZ2f676HQ+382m8HnPgef+Qz89//9+2XJz/yMfvP/rX8L/tyf0x+En/95fdJ87Wtgseiv+0//U31S/+E/rP965x340R+FyeTbf59f/3V9lUok4M//eYjH4eAA/p//R///n/kZKBT01/3yL3/793v8WL/JXi/8pb+kf8df/EX4gR+AL38ZXnnl6df/2T+r35C/+lfh8lKfTD/7s/D3/t63/6wPO9ptqNX0RaBS0SdFrwd/8k8+/brv9Lr/8i/DT/2Ufu/+2/8WBgO9vPzMZ/TXrq19+OtXLsOrr+oT/2d/Vn/Yv/AFfVfpdOAv/AX9df/T/6R/tz/2x/T7NBrBw4f6AvUn/sR3fk20DzP+l/9F00DTfuM3NK1a1bRcTtP+j/9D00IhTXM4NO36Wn/dT/2U/rq//Jef/vdf+Yr+53/n7zz957/6q0//eaWiaVarpv3Yj2naYvH+6/6T/0R/3U/91Pt/9sUv6n/2xS/q/z+badr6uqZlMprWbD79OR98r3//39f/3TcboGl/9a++//8//uP69zk7e//PCgVN83g07bXXfvf1+eEffvqz/oP/QNNMJk1rtb755z3LkM/6xl82m6b90i89/drv9Lp3u5rm92van/kzT7+uVNI0n+/pP/8w1+9P/SlNSyQ0rVZ7+nU/+ZP6+w4G+v//0T+qaTdvftsf/duNZys/fviH9actnYaf/El9O/6//i9IJp9+3b/77z79/3//74PPBz/yI/rqIr9efFF/jy9+UX/db/yGviL/2T/79LYmT/S3Gu++q69Cf+Ev6FvxB8e32yK/2ZjP4dd+DX78x2Fj4/0/TyT01eOrX9VXmw+Of+ffefqzvu/79PfJZj/853+78Qu/oK+Yv/7r8L/9b3qZ9qf/NPyDf/D+a77T6/7rvw6tln4u+uDrTCZ9N5LXfZihafB//p/wR/6I/t8ffN/PfU7fad55R3+t3w/X1/DWW9/VJXm28uMXfkGH8sxmvUba3dUPbE+9s1mvhz84Tk70HyIa/ebvW6nov8vN395++u8jEX1b/1ZDSqFbt779z/GdjGpV34J3d3/33+3v67VqLqfXgTJWV59+nXznb1a/yhgO9WvzwRGPf/vv94lPPH1Q/ON/HJ5/Xt/mP/95HRX6Tq/7yYn+u5yRvnF4vd/++3zjqFb1B+Vv/23917f6/P/4P9YXtE98Ara29HLzT/wJ+PSnP9RHPtuk/sYL+c2Gzfa7J/pioV/Yv/N3vvm/iUSe6ev8czdMpm/+599KOff3/p5e736nr/+9htGor9Z/42/ok/Tmze/8ui8W+u+//Mvf/IF6FphT3vNP/km9Vv9m484d/ff9fTg60s8+v/qr+gr/P/6P+vnqr/217/gjP1owdnNTfxI//Wn9hP57jUxG//3k5Oktv1r91qudfAbomPkP//Dv/brvtBSJRPRD7tHR7/67w0N9EqXT39l7favxuc/p2//vx5jN9N97Pf337/S6y7WLRr/1tYMPd/08Hr38+nbvCTri8hM/of+aTOBf+Vfgv/wv4a/8le8Yav1o2+T/+r+u/3D/xX/xu/9uNtO3KdB/eItFP8l/cLX6uZ/79p/xwgt6M+Lnfu7995PxwfcSzPwbX/ONw2TSt8F/9I90JENGuaxDTZ/5zLNty984Egn95/7gr2cZ06l+BrBa9ZUPvvPr/rnP6T/Lf/Vf6e/zjeODsOSHuX7/6r+qr7qPHn3r96zXn/47qxVu3NDv2zf7Pr/H+GhX6u//fh0O+q//a7h/X58sFou+Iv/9v69vmX/sj+lP91/8i/rrPv95HdJ7910dBgqHv/VnGI06BPVH/gg895y+pScS+qr6+DH803+qv+7FF/Xf/9yf02+myaQfer/Z+Ot/XV9FP/MZ+Pf+PX0b/sVfhPEY/rv/7vfr6jzb+MIX9J8N9Nr07/5d/Xr+5b/8/sP2nV53r1e/dv/mv6kvDj/5k/q9uLqCf/JP9JX+539ef88Pc/3+m/9GP2S+8gr8mT+jT9RGQz8g/sZv6P8N+veKx/XPicV0GPbnf17HyT2e7/yafCisRGCkt9761q/7qZ/SNJfr9/77v/23Ne3FF3UY0OPRtNu3Ne0v/SUdJpMxn2vaX/trOhTkcGjaD/yApj16pEN13wrSk/HVr2raj/yI/v4ul6bduaNpf/Nvvv/3s5mm/dk/q2mRiKYZDE/DU98ISWmapr3zjqZ97nOa5nZrmtOpaT/4g5r29a9/Z9fn9/qO3834ZpCe3a5pzz2naX/rbz0NKcr4Tq67fN/PfU6H2+x2Tdvc1LSf/mlNu3fv/dd82OtXLuswYDqtaRaLpsXjmvbZz+rfScYv/qIOkYZCOjS5ualp/9F/pGnt9oe6NAb9O3w8Ph7fO+NfPOrpx+Pj8W3Gx5P64/E9Nz6e1B+P77nx8aT+eHzPjY8n9cfje258PKk/Ht9z4+NJ/fH4nhvP3FH8S3/x/43X68VkMhEIBJjP51xfX1MsFkmn00yHY9qtFtvb2/T7fYxGI7lcDrvdzubWFt1+D7fHjc1uZzAYUCwWARiPx8TjCdAMDIcTZrM5JpOJdDpNoVAgm82yublJoXCNxWIkGApgtVqZTCbM53Om0ylra2skk0m+9KUvYbfbmc/nrKysYDQaOT4+xm63k0gkACMet49arcZ4PCYYDGIymZhMJlxdXZHJrHFxcYnVamVnZ4dSqcR0OmWxWBCLxUilUjx+/B6TyYTV1VXsdju1Wo1yucze3h5Go5HHjx/j8Xiw2Ww4nU4mkwnT6ZRarcZwOGA2GuHz+djZ2eHk5ASz2YzZbGY0GlEul9nYWMNgMFCv12k2m9hsNsLhMDabDbPZTLlaZ3v3BhaLBbvdTrfb5fj4GJfLhc/nw2Kx4HK5aLVamEwmGo0Gi8UCs9lMt9slFoupe3fjxg3y+Tw2mw2v16uum9vtpl6vc3p6isvlYmNjg3a7zXw+Zz6fMRwOGI0GmEwm4vE4Jycn+P1+kskkJycngIHBYMinP/1p8vk8FouFQqGAz+fDZDLhcjoxLOYcHh4yGo2IRqNYLBaKxSL/n1/8Xz/03HzmlToYDBIMBmm329TrdVqtFs1mE6vVisvlIhKNMJ3O0DQNo9HIYrFgb2+PSCRCt9PBZDZjMBoZDAbM53NsNhubm5usrKyQy11RLBYJh8M4nU5SqRQ2m41AIMBsNsNoNOL1erHb7ZRKJRaLBaPRiPl8znA4pNPpUK/XMS9ZZW63m3A4TLfbZTweo2kaLpcLs0n/+2KxiNlspt/vA+B0OrFYLIxGIxKJBFtbWwyHQ3Z3d4lEIsRiMcbjMePxGIDhcEi/31ffwWq1UiqVuH//PqPRiFqtxmKxwGg0Mp1OGQwGmM1mfD4/bo+HVCqF3+8nFArh9XqxWq3M53MSiQTdbg+z2YzJZGJ3dxev18f6+joejwe3281kMuXk+JjJZMJkMmGxWGCxWNSDWalUWCwWaJrG1tYWDoeDRqOByWRSi0Gz2cTv9+PxePB4PGiaxmQyYTAYcHp6SqVSoVar4XQ6CQaD1Ot1er0eV1dXeL0+VlaShEJhMpkMuVyOF198kRs3bmAwGHA4HDgcDkwmE6enp9RqNY6Pj5nP5ywWC1KplH5flt99Pp+zu7uL3+9nLgy/DzmeeaUeDSfYrFNsVgd+X5DBYMDW5g5Wq5XhaIjJbCUYiTAcT5hrcH2d1yeL1YrT6SDiD2A0mBiPh7icToyGHl6PH7PJSrvVxW63MxqNGY1GNBoNnE4ngUCA1157jVKphMPhwONxUyyWmE0XOB1uGo0GRoMJq8WO2+UlncoQDAY5Pz+n1ezgcfsIBsKMx2MG/RGgr4A+n4+1tTV++7d/m2QyicvlwuVyMZmM0TQDdrsdh8OhHlC58fIAF4tFms0mTqeTdrtNtVplY2MDn89HoVBgNBrhcDjUg1Kr1ej1evh8PuLRGN3+kGa7S6PVwe120e70cHl8dLtdDAYDk/mC3nCEczJlARRKZVxut/5QeL04HC6GwyGnp6dqstrtdvx+P06nE6PRqK/q5TK9Xo/ZbMZ8Pmdvb49ut0ur1SIcDjOdTtnd3aXT6XB6ekq/38dsNtNutzGZTLTbbSqVCi6XC4/Hg8lkotvt4nI5mM3mzGYLwuEIZ2cXWK1W+v0+3W6XdDpNo9GkXC6zvr5OtVolGo3SarX4nd/5HaxWK067g3AkRqvVIpvLk0olicYSH+2klqffuFxt5Sk2GAxcX18znU5xu9243G663S6z+ZxKtUo6nWZ1NUOz2cTucDCfzZnN5kynM66urvB4PASDQVwuD263F7/fz4MHD/B4PCSTSdxu93JyDIEFDoeDwWCAw+HA6XSytraGx+PhyZMnlMtlXn75ZUKhEL1eD5fLxe3bt9X3nc8XNJstHA4HnU6HVquF3W7HZrOpiXx+fqnKgUwmw/n5Ofv7+4xGIzweDw6HA5fLxWg0YrFY0G63GY1GxGIxNXlnsxnD4ZDpdKquk6ZpGAwG5vM52WyWyWSC1WplPJ7QbrdJJBJ0Oh16/R537t6h3+/z6NEj1tfXyRcKhMP6w+n1+pjN5pTLZfr9Ptvb20ynU8LhMCaTCafTicFgwGg0sr6+jsvl4v79+6yvr9Nut4lEIjQajeXPes7Nmze5vLykVCqxsrJCo9EgFArpE8/ppFKpoGkaZrNZ7YqXl+dYrVZMJhOJxAq/9Vu/RSAQwOVy8cILL+D1elksFrzxxhtqtyoWi+zv7/Puu+9iNpuxhMzE43G8Ph/9fp9isYT3GdmPzzypbTYH/f6QRqOFwWAkGAyhaWCxWKlUavj9fjY2t+n2ukznC5574UWusldEonECwTDT2YKzszMSiQTNZhuXy4PRaKbV6jCfz3G7vbTbbTKZDNVqdblyjxgMBtRqNYLBINVqjdu37zKdTshmr7BarRgMRnq9Ad1un2g0xng8BYwEg2G63Q6dThen00Wr1cG69AqZzfQy6c6dO8znc7UqtVototEow+FQ34GGQ2w2G5qmMRgMyOVyrK9n6Pf71Go1RqORKnk6nQ6pVEpNRI/Hw2KxIBwOk0qleOutt3A6nZitNlKrGaxWGxaLmclkQiKZxuX14XA10QyA0cRoPMXrD5BeXQNgvphTr9WxWm3LMmRCKpVSD/l8PsdisXBwcIDP58PtdjOfzzGbzVitVlXPtlotfD4fk8mEF198kWazqR76tbU1vF4vDodjOdGKRKNRVQY2Gg0GgwHr65skEglqtRrT6ZzXXvsBHj9+jMPholZrYLPZVRm5s7NDv9+nXC6rsnA0GhGKRKk2muzu7KhFwGazPdPcfOaa2uPxMJ1O2d/fJxqNUS5XKBb1+jYej5NaTdMfDak3m5gsFsbTKem1DLGVBOfZS2KJOIFAALvdjs/nY39/n729veUKOqdWq1OtVnn99deJxWJ4vV5sNhtHR0dqaw+Hw8uazYnX6+X27duEwxGsViubm5vs7OwymUwoFovkcjmGwxHD4Yhut8vl5SXZbFatZtFoFLfbzXQ6RdM01tfX8fsD2Gw2ptMpo9GI6XTK3bt3AWg2m3Q6HarVKovFgpdeeknVrcFgkPF4TL1eZ39/nxs3bnDr1i3G4zFHR0e0223W1taYzeZ0en2G4wkOl4tkepV2t4c/GCSeWGE0mWK22Wh1OiRSSV58+WW6gz4PHr2Hx+cjvZah1+9jMpkIhUJcXV0xHo/Z3Nyk3+8zn8+x2+1kMhkcDgfdbpdiscjOzg6NRgO32w3AxsYGmqZxcHBAq9UiGAyyubmJ2+1WE9hsNuN26yXe1dUVo9GIu3fv8uKLL9JudajXGlzn8gz6Q1xON5nVNbqdHn5fgFpNP+TW63VqtRobGxssFguur6/xer14fT4arTYaBgwmM75AkKOTU7r9wUc7qY1GMwaDCafTRa83YD7XcLk8aJqB+VxjOplzcX7JYq4xn2nUqg1SyVVMRjMup5v8dRGDwYim6at+uVylVKoQCATZ3Nzmxo2bdDodTk5O6HQ6GI1GqtWqOo3b7Xaur/OcnZ3jcrmxWGwMBiNarQ5gAIyMRmMWC0gkkuo1k8kUg8GEz+dX238kEsFoNOLz+dA0jXg8Tr/fZzgcKOQmFApRr9fRNA2Px0MmkyEUCi1XpymzpdokmUwSCoXodrtUKhVMJhOLxYJWq4XNZmMymdDpdDAYDKRSKdLpNG63m+FwiNvtVrvEdDrFYDBgtzmYzzQMGJflWBCX043FbGM+1/C4PcxmMywWC1arVZ1BzGazOohpmsZoNKLVajEYDDg+PqbVanFycsJwOGQymZBMJpfljBe32008HqdQKDyFmCQSCaLRKPV6XZUhpVKJWCwGQKVSUQ+7oEHDob7qr65m8Hq9XF5eYrFYSKVSmM36zrSaXmU0GpFMJun1emSzWVZXVymVSh/tpB6PxwQCAS4uLtna2mJlZQWz2cx0OtWRkFYTr8/LxsYGfr+ftbU1Hj16RKvVxmKx4nA48PsDrK5maLVaVJbiS5/Pz3Q65fT0lLW1NSKRiCo7Go0GVqtVwV77+zdIpdKUyxXC4TC9Xm95AGlzfn5OtVpT7xuPJzAajUSjsWXNGcFms6sbNJlM8Hq9ZDIZDAYD5+fnaBoYjUa1ld+5c4fhcMh4PCYSiagtVdM08vk85XJZnSc6nQ4Wi4VwOEyr1eLevXtcXl6STqdxOByMx2POz8947733ALBarVxfX5NOp4nFYlQqFe7evYvFYlkiGBp2mx2zycznP/9H0DSN+UxfiZ1OJ2azmeeff556vU65XKZQKPDkyROGw6F6wPr9/hJdytHtdrl58yYvv/zy8lA80Q+u8TjhpRDDYrEwHo+JRqMKVRGozmazcXZ2RiQSwWK1MJ/P+eQnP4nJZOLi4oJGo8GNGzdwuz1qwRiPJxgMBp48ecL6+jqHh4f4/X5WMxlu3rzJ6urqEgDwEIvF2P5G4fUf9KSOxSJo2oJ2u0mzWUfTFsznM2azKXa7lcl4QDjgo9tpUirmGQ36GFjgsNuYz2ZoiwU2m43BYECv16PRaDCfzzk7O2M4HBJPJAiFwxjNZmx2O26vl8TKCoVikd5ggMPlolQq0el0yGazVKtV6vW6Om03m01cLhdra2t0u12GwyGj0YjxeEylUsHpdC5XYRPNZpter4/RaMZqtS1rQBcWq5XJbMZ0Pqc/HGJzOKjWapQqFSbTKf3hkMFgRDKZIp3OoGkGwEAwGMLr9TEaTRgOxzidbhwOF06nm15vwOXlFd1uD5vNgc1qYTjo0+926He72K0WXE4HRsCARiIeV4dWm82mUA550ExLVEMOujabTdXvrVaL7NUVvX6fQDBIo9Wi0+uxvrnJXNNodzocHh/T6XYJBIMYTCZG4zHjyYTheMxgNMLhdOL1+ZhrGodHR/SHQ0xmMxgMaAYDtUaDSDSC3enA6XExHI8IhIKEYxHm2gKz1UK70+Hs4oJYPMHzL7xEfCXFZDonEo1TLFcZDHUo9OTk5CkEKfDtnAN+j/HMB8VOp4PX68Fut3Pv3j0ikQg7OzvY7XbW19d479FDTCaoVev4/QGKxTzp9Crz2YzBEtN1u91EIhHu3r3LW2+9hcvlUpOu1++TTKV4Zel+JIezYCiEpmk8eu89YrEYnU6HZDLJW2+9RTqdXq6w2nLr07dWl8vFxcUFHo9HoRbFYpH5fIHX62M+n1OpVFksNPx+P5VKlY2NTTTgKpcjGo3i9/s5PT1lNZNhPp/T7fWolMtMJxP8fj/N5jHNZhOLRV+1HA4Hi8WU+/fvq7o0nU5jNptxOp0cHx/rTRmrFbfLhcFg4Ooqy3isoywej5vRaER/eeiTppCspNlsVh36hsMhrVYLj8eD1+ulVqvhcDhYW1ujPxgwHI0wmUyqX/DKK6+Qz+e5yuXQNI1Op8NisSCfz2MwGEin0wpBcrlc2Ox2vbGSSGCz2ej3+8zmc3w+HwDZqys2NjZ4+PAh88Uco8moY93TCRoa2zu7SziwhtFkpt3u0Gq1iURjOJ1OqtUadrudjY0Nrq+vOTo6QtM02u02P/b5H//Qc/OZV+pAIKC27FAoxGAwoNVqUSwWsdvtqjng8/vV/0tTIxqNsrq6SqPRIJfLLR8QLwaDQW3vg8GAi4sL+v2+Qj5MJhO9Xo+joyPiiYT6fL2U8dNsNlUjx2w2qwPbcDhkZWWFQCCgttBer4fH48FgMFCtVrFYLAwGA5rNJs1mk0AggMftJp1Oq67cbDbD7/fTarXodDo4XS6cTieFQkHV3cVikWq1ymw2UzW1QJ/j8ZiNjQ1sNhutVoter4fX68VisWCxWDCbdVirXC6r7mCv12MwGJDNZlX59c4773B1dUWz2WQ2m6lDbCaTIRqNkkgkVFPMarHQ6/WwWCzEYjHC4TD5fF6992KxwOfzYbVa6XQ6uFwutcqnUikWiwWdTkcdKuWBlR3WarUSjUa5urpSDZxqtcp8Pqff73Pv3j1Go6FqSi0WC4bDIV6vl5OTE8bjsWoGNRoNZrMZ4XCYZDKJ58PoEj8wnnmllnZ0LpdTdS7oh4X799/FarVQq1WYjKf8yI/8KEajiXv33iYUCjOdztThxO/3c3Jygt1u5/LykvX1dZxOHc144803KZVKrK+vc+PGDbLZLMPhkJ2dHebzOX6/n3q9jsvl4rnnnlONh0KhwPr6OmdnZ1gsFlZXV3G5XORyOcLhMIPBgHA4TCwWUzdzfX2dZrOp6uvFQsfAi+UyHo+HXC6H0Wjk0VIRvbe3R6PR4NHDh9y9exez2ay6nbVaTdWlDoeD2WyGyWQiGAzy3nvvYTKZ+KEf+iEikQjT6ZTr62vMZrNqvZdKJSwWC5lMhtd/53dUI8VsNvPOO+9w9+5dBoMBbrebq8tLfuiHfoiDgwP1HnLYG4/HnJ6dkVxCfQ6HgzfffJNkMonD4WB7e5tCoUCn01GrdCAQ4N1338Xv9/Pyyy/z4MED+v0+DoeDq6sr4vG4wr673a7qwkrHs9Fo0Gg0+NVf/VW2t7fZ3d2l29Uf3k6ng9/vR9M0qtUqr776KpqmcXl5qWp2k8nE/v4+19fXaif4sOOZV+rZbMbFxYVqUQ8GA87OzjCZTGqlFJ6E3GyZRAaDgXa7zcnJCWdnZ2xvb7OxsYHVaiUUCuFwOLi+vsZkMuHz+SiVSnzxi19kMBhw69YtLBYLtVpN4cjdbhev18twOGR9fZ3pdEq321UcCeEyOBwOLi8vVX0K8OjRI2azGT6fT0FgTqcTt9vNZTarGjM2m01NmMViQS6Xw+FwqNJCdoRkMkk8HlcIh+xQwo/Z3NzEbrczm82oVqsMh0Oi0SjxeJxYLMZkMmFzc5PBYIDBYGBrc5Po0lkplUphsVh44403iEajjMdjnC4X+Xye6XSK3+/n0aNHFAoFVlZW1OQW3DmZTKpdM7Qs41wuFzabDZ/PpxpnXq8Xp9NJeWmkL80nl8ulMG7B+BOJBLFYjP39fSKRCP1+H4PBwNramo4/h0JYrRa143S7Xba3t1VXVnYzmS+CiWuahuNbeZT8QUxqQEFEoHcYV1dXWSwWmEwm1tbW8Pv9GIxGstksBweHDIdDhkP94rz66qsMh0Oq1SoHBwe0221efPFF1cKt1+u88MIL/KE/9IdIp9OqnZtOp1XHz2w2c3R0RDAYxGKxYDAYeOONN9QFzWQyJBIJhdF6vV40TcNiseDxeNQ232q1yOfzeL1ehad+5Stf4fT0lMFgQDKZpFAoKDJUOBxmOByyWCyw2+1qey8UCtTrdWw2m958WtaIk2XdrdfZ+kNutVpJp9OcnJxw7949xUk5Pz/n8PCQfD6v//lkolrtDx48IJVKcefOHUwmEwaDgYuLC87Pz7m8vOTLX/4yw+GQSqWyRH+q3Lp1i0wmw2g0otPp8Morr2A0Gmm326rjORqN2NjYYHNzE03TzxWRSITHjx/T7/dZW1uj1+uxsrKCpmlcXV2pVfX8/FxBoaBDmru7uzidTr761a9y7949SqUS7Xabn/iJnyCTyTAcDjk4OMDr9fL8888zmUz4whe+QKFQwOv18vjxYy4uLmh/ow3bH/SklgOJ1WolHo/rBJT5nGAwyOrqKtOl+YgBA263G4/HTa1Wo1IpPwX637p1i263y8XFBQ8ePFAt3enyxptMJgUrOZ1Orq6u6Pf7NBoN2u328qBRVWQZadLI5JGaLbk0rwyFQqp2l4dS2tt2ux1N01QZ0O/3GY/HHBwcYLVaVbOoVCqpVcdutyuGoNlsJhAI0G63abfbOj1gNqPdbtPr9ZhOp5yfn1MoFKjValSrVe7cuUMymeThw4fqYRsMBmxvbxMMBpnNZhgMBpxOJ3a7nbOlV6DUtCsrK5hMpiWuPsTpdBKJRGi32xSLRUajkcLHc7kctVqNWCymFgXQD+Gz2Qyv18vu7i7T6VTtINlslpOTE3zL9vX19TW9Xg+Hw6Fa9b1ej+FwyMOHDwkGg2QyGbXaa5qmJvJ8Plc7nfzbwWDA/v4+n/70p1lbW1M7eiaTUTvFRzap8/k8L730ElarldXVVdbW1lQ5sVgsGAwHlMsVolG9w/fSSy8pYowcIoSNJew3h8NBqVTCbrfj9XiIx+Pcv38fm83G1tYWFotF1ajX19csFguCwSDz+XyJZswZjUaq0fDuu+9SrVYxGo30ej1OT09VebG7u8vKygrNZpN4PE6tVsNgMGC1WpnNZng8HgKBACaTCa/XqzpqRqORYDDI7u4u8Xgcg8HA5eUlhUKBwWCAx+NRu0kwGCSVSrG5LCFsNhtra2uYTCYODg4YDAb6bmbQH/x79+5RLpe5efMmX//618lkdAzfarWiaZo63F5eXnJ4eMhkMmFjfV2VRUISMplMbG9vk0gkKBQKCv5rt9vMZjNyuZx6nXBVpEQpFotMJhN6vR6VSoV0Os1gMKBer7O2tsaNGzfw+XwkEgksFgtra2u0Wi3G4zFnZ2ecn5+rBkw8HieRSNDvD9A0Te1Kh0vznfl8TigU4t69e7z99tvqwP3pT3+a3d3dj36lDgZD9PsDWq02Z2fndLs9QqEwNpudYrGMzxdgNtfo9gZYrA6Ojk9xOF08/8KLLDSNcDjM4eEhr7/+OolEApfLxeHhIY8ePaJarWIwGimXStisVpwOByuJBPnra8qlEv1eDzRNlQCrq6vcvXtXHTLdbjdms5lQKKS6fefn55yentJut2k0GhgMBpqtFuPJhPligcFoZDafE4vHmc5mOF0uAgGdq+31emm1Wmqlcjqd1Ot13G43VpuNH/6RH6Hd6bC1vc3jJ0949PgxyVSK4WhEuVIhEomwWCzweDxsbGywsbFBtVql1WpxdXWlYEeAbrer2t2TZekhO8HZ2ZlCTvL5PLlcjkq1SigcZntnh+FoRK/fx2gy4XA68SxXy8vLS3Z3d3n11Vfx+wP0ej16PX1ld7ncbG/vqIZVv98nmUzh8/kxm3WOtlyzQqGwfLj61OsNdnd32dvbx+Px0O8P2N7eAVANn0Qiwfb2tmr2SMNue3ub/f19/R4sYdDLy0u8Xi/Z7CXn5+e4XE42NtafaW4+s5nNX/tP/wo3b96k3+9zdnbG+vo6wWCQX/u1X8NqtbK1s43d4cDtcuN0OtVK6XA4yGQy2KxWfu2f/lMMBgMvv/wyfr9fdeGq1ao6TLZaLTKZDD6fj1wuh8/no9FokEqlyOVyip8gF2c8HjOdThmPx+zt7VGtVrm+vqZUKrGxscHa2hqLxUKnfvr9lMplvF6vItk4HI4lb9mrOnyC8AiUF4vFaLfbOBwOCoUCfr+fWCyGy+XiS1/6Eo1Gg7t37+q1tM+ncHmXy6Vq8sPDQ5LJJJNlMsKNGzc4Ojri8PCQaDTKYKCT7t1eL+VyGZfLRbfbJZlMomkaXq8Xl8ul2vCXl5dMJhN1nuj3+1SrVf0w6XTx4osvKq6LzWbDYDCQzWbJZDK02200TcPn82G32xUqY7FYyOfzCu83Go3qXhqNRra3t9X1FsRmOp0SCoXw+Xy4XC7K5TKlUolIJEK5XGY0GpFOpwkGg+o8c3FxwWDQV0xAOWBOJhP+3J//ix96bj7zSh2JRDCZTDpe63QyGAzUYaRarTKfzZmMJ4pTbLVa+dSnPoXL5eL6+pqzszNVPzUaDdUUAVSjQOikw+GQy8tL7Ha74gwLTNdoNNREqdVqqoVusVhwOp2sr68rHvN0OsVoNKpTervdVrTU/f19er0e3W5XqUui0SgHBwe43fqDGQqFeO6557DZbMTjcSwWC4vFglKpxOrqKo8ePeLFF19kc3OTu3fv6qjHEsIaDAZUKhUGg4EiXBUKBWazmVKipFIpVUYIRcDhcKjyZ319XXVHnU4nZ2dnNBoNer0eBoMBn89HJBJRyEK321W00tFopFQ3JpNJUWVHoxHtdhu/38/h4SFOp5Nut0s2m6Xb7RKNRkmn02oXlNJDWv1y7UOhEKurq2iapkQEx8fHnJ6eUi6XyWazpNNpdnZ2qFQqzGYz3G73UlwxXLI1m+RyOcXjXltbe6a5+V3xqTudDisrK7z++uuqyfDyyy9zdXVFYmWFJ0+eqFrXbDbT6/XY3Nwkn88TDoXwLWE2aV93u13q9ToOh4NyuYzFYuHTn/40x8fHHBwcsLGxoQ5F0hru9XqUSiWl1NjZ2WE8HlMoFCiXy2xvb7O3t6dgstPTU27evMn6+jqj8RijycRwOOTi4oJ4PK7q8evrayXBurq6wuFw4Ha7WSwWeL1exUVutVqUy2WKxSJ3795lvuy01et1MpkMJ8fHXJyfE4/HMZlMlEolBSfKoVRIPLlcTpF8DAaDXld2Oqrrl0gkGI1GBINBLi4umE6nCh/v9XrEYjHOz8+ZTqe4XC5+5Ed+hFzuWn3HN998k09+8pNYrVaazaZq1sh7zudzGo0GzWZT4eyTyQSz2ay4Iw6HQ/391dUVkUiE9fV1dfj3eDxKPHF9fY3b7VbQYqlUwmw2s7W1pRbB8XjM2toa+XyeSCRCsVjEaDQymUw++ppa0zTm87kC7Hu9Hpqm4XQ6dbL7aMTamq6vi8Vi6mDSW3omD4dDDAYDmUxmuf0M1IUR/Hl16cgv8i3ZlgQKDAaDOJ1OtfpIO9zlchEOh6lUKqpcEImUEM+lTg6FQmxsbLCysgJAr9dTncnz83NFSvL7/bjdbt5++20WiwX9fh+Xy7WsS3X1Szwe5+HDh9RqNTqdjvq+sVhMTQhpKAgZ6vBQoM4hs9mMZrPJe++9h8FgYLFYcHR8jNlsVt/XZDJht9txuVzU63VmsxmZTEa9Vz6fV93KR48ekUyu6MKCfJ7d3V2KxSKdjs4lPzo6Uh3FbrdLPB7HZrOpg7LBYKBYLDIcDgmFQlSrVXWgdLlc7O3tUSgUlIijXC4/hSIZDAbMZjObm5uYTCa1O/X7fbVLJBIJPB4vRqNRdWXD4fAzN17gu1ip8/k84XBY4ZTRaFTxGuLxOPPFglqtxmAwYG9vj06nowS2Xq+Xs9NTbuzv0+/3CQaD1Go1hZ/KRW42m9jtdtxuN5qmKagpkUionULgqkgkojpc1WpVwXvZbJZAIMD5+TnRaJRbt25RKpU4OzsjEAioxkK73VY6SmnizOdzpappNBqq7Oh2u4BeJvn9ftbX1ymXy3S7XUwmk/oZR6MR/V6PT3/601QqFS4vL1VpIy1mwfPz+Twej4doNKqUIa1Wi/ayjr9x4waLxYLNzU0sFguRSASbzUa9Xmc4HKr3OT09VbWp3W5nPB6TyWTUTloul4lGo5RKJW7evKlKBanPh8MhFouFbrdLKBRSdAhBODRNY21tjXa7rdAii8XC4eEhpVJJ3SuBFAXjlp04HA5zcHBAKpVSu+udO3dUh/bevXtsbGwQCoV48ODBM83N70p4K00G6aYBGAwGLEu+Qb/fV3Ihj8dDt9tVh7TxeIzJZCKXy7FYLJSCOB6P4/V6efnll+n3+wr+EaK70WjE7/cTDoeVsDMUCilobrFYKCRhOp3Sbre5vr5WXGPBXOUcoFMix+TzeVXXi6pcmjqz2YybN28q/oZ0T9966y0MBgPj8Riz2Uw+n1c1cy6X0xXZsxlfWmY8vvLKK+p6FAoFzs/PcTqdeDwe5vM5a2trXFxcKHxWEJZWq8V8PleH3uFwqA7GwWAQn8+ndkCDwUClUlErpPw7h8NBu93GZrPRbDYZjUa6mCOVUg2jnZ0d8vm8IjRJfS73Vg7UuVyO6+trRSl1uVzM53MCgQArKyuKRlur1dSKvbu7S7/fVx3lyWRCuVzG5/Op+yG8+fPzc8rlMoZnCZ7iu1ipRT1tNpuJRCL4/X510jWZTHh8PtVxs9vtlMtlVZ4EAgGikQjValWtEvV6nVQqpba3y8tLIpGIwo1tNl22JNuytLbNZrMiM5WXPI1Go6FWI9muZQeo1+uqDCmWSjx69AiDwUCj0WB9fZ3FYoHBYOD09BSDwYDNZsO1bEULGapUKnH37l1arZb6Tr1eTx2arVar4oCkV1f5R//wH5JMJqnX6+pQZTKZODo6ol6vEwgE1I5y9+5d/sk/+SdL+M3PAvB4vYqPcnFxQbfbZX19nUAgoAhfArs5HA42NzeVysThcCj7CZGtbS5jMKQEMBqNVCoV/H4/fr9fQZd2u10tOul0mmg0qlb70WhEtVql0+kovFvOCtfX14o8JeCa1OK1Wo1oNKp47oeHhywWC1ZWdNz79u3btFotRfJ6lvHMK7V05qLRKK4ldXJra0vVzfJDptNpOp2O+gGFAmq1Wmm32zobbnlalwk7Ho9ZaBoms5lSuUx/MMBmt2MwGmk2W9jtDvrLg0a9XlfwUiwWU3yTVqvF9s4Oa2trhCMR1ZgxGnVFzIMHD1gsFeGTyUQ9NM1mk8jy9YPBQDWDLi4uOD4+ZnV1VTWcAoGAarDIDiX14AsvvIDBYKBWqykN4FUuR6FY1JX329s89/zztNpthqMRt+/cIRQKYbFY2N7Z4ezsjLfffpvZbE44HKbdbhMOh9nY2Fgq4P2MRjpNVxYMn8+nkBFhw5nNFvVz1et1xuMx2WxW8UCGwyGRSEQ1euSMIk2lWq2myGOhUEg1clZWVvB4dAHAzvI6y+QWbF+6uI1GQ+HWKysr+P1+tSvK4XAwGLC2tkan01li9Tl0BdNHOKlXVlZUu1o6XrKllUoliss+fr1eVwer6XRKMBjEaDQSCARUXSgtXpng4vERicawO5xc5a6pN5qEI1E8Ph/ZXA63R6eqrqysYLfrChbBdq1W6xKe62Gx2bHZHezu38DmcBKKRElnMsw1FGkoFospOApQRi0GgwGv16u6crFYjAcPHjCbzXj8+DG5XI7T01Ourq7QNA33kqoaj8dpNBrs7Oxgs9u5ffcugVCIUDiMzW6n0WoxmU6JxmKk0mmKpRKT6RS700mz3cbpcmE0m7EuiU/9/gCTyczZ2TkGg5HtbR3hKRaLH1Dfu5RCRXaQ6XSKzWZTFFez2Uw0GiUcDtNoNOj3+4oQJpNR9J+i2RTlUalUUg+22WxWnxuLxdSCIPh9Op1WpVqr1VJ8Hmnfm81mdbh1uVxsb29TrdZ49937gIHZbK7oqx/ppO50OvT7fQaDgTqoSbctmUyq1rXgs5VKhdFopIxeGo0GGxsbahvLZDJMp1NWVlZ0SC5feKpeDgQCqtlxscxA9wcCCscej8e0220lOpXaTXcRmqutcT6f0+12eemll9ThyOVyKV6z8B2azSZbW1skEgnVpZSVJJVKUavV6Ha7OJ1OxSrs9/s0m03Oz895+PChguiSyaTikWiahslkolqtqoOiOC8Vi0VcLhdXV1dLYXGEbPZSTYTFYqELJYJBOp0OmUxGtcjH4zGPHz9W98VoNCqLA6EKAGpLF13meDwmnU6rg6AgMfalMEAm68nJCScnJ4qdV6lUFP344uJC8YAEopVmS7PZxOv1Kgbe1taWavaIkl08USaTidJAdjod7N9hGtc3jmeuqev1upo0MqFEnpVOpwmEQlwu06yEryFcZ5moVouFbDaroLzpdKpEnjs7G4wmU6xWq9p+HQ6H4mHXajXCwYDqdn2w3jYajaopkL26wm63K5X72dkZXq+XYDBIOr2KZfkdRFgqIgFBYgQbns/nHBwccHMZArqyskKr1cJoNCoWncCMmUxGNXJSqZTqIAKKTnt5ecn19TU7OzusrKwQDAYpl8vqrBAKhZRNwenpKQA7Ozucnp6qkk8/EJqUrYHwTaRJUqvV1IIjKJMgG/KAiWWa7Lj37t1ja2tL+ZYIMW02mxGJRBRy02q1iMViFAoFYrEYxWJR2Y3lcjkFjRoMBmWhJoCBXGvxWBFBhxz819bWnrnxAt+l8gV0rsIH4RyXy6Xss6bTKdPpVLXQhQrq9XoVr1j89/L5vOLQrq+v43A4ee+99xRLTQSywWCQmzdvqlXo/Pxc+fS1Wi0ePnxIv9/XedWzqUIPNE1TyIW0c3UjlksFQ7VaLcWR7vf7HB8fU6/XFTe51WqpRoRs98JPTqfTCooslUq89NJLxONxdb6QA5VMEmluXFxcsL6+rvjEQsEdj8f4/X4l4xJNpcFg4OTkhF6vp6436KjH5uYmoVCIfr9PvV4nn89TXUa6zWYzBoMB0+lUwYnSPJLubSAQIBqNEo1GabfbirMRi8WUcY88CP1+n/v375PNZlUJI3SC4XDI48ePuby8VNRWr9fLvXv3lIwtFotxenpKPp/H4XCwsbGhONehUIh0Ov3Rm9mINlBKDOkEdrtdzGYzRoNBeWR0u12leAAd4+73egQDAW7evEmhUMBsNqvJt1gsGC25G+PxmJs3b3JycqK2bkE8JqP3OQnS0rVYLKr1PRiOsDscrKysqImxtbWF0Wjk8vJySbmcKrhLSEQfJCCB3gwClOGjyWTCZDIRjUY5PT3F6XSSSCQUlDccDslms6RSKcW/iMfjiko7m82w2+3cuXOHd999l8PDQ9VgOTg4UJ50brcbm82uqLR2u13BbYL5ZzI6XcBoNHJycqKYc1IeAQQCQbUT2Gw2rFYr+Xweu91OMpmkXC4roUEgEMBoNGKxWHSEqFhUKhrhfehWYy6leBJ3qEwmozqE4XCYt956i83NTVwulzpzrKysUCwWiUQiyutvPB4r+oEYXT5+/FiVTB92PPNKPRqNCAQChMNh4vG48rMQnrN/uZKLl4R0/QQb7fV6ynRQnDdrtRr1ep0nT55QWZKLhLCTXqbKyvbZqNeXIt91pdoAVCes0Wgwnen85cViwdXVlbJvkG5fIhFXCID4z9VqNaWXk3pdShe73c7JyYniMp+enrJYLCiXyywWC6rVKslkknA4rAhIYh4pJB9Z8arVKoVCQeHl4/GYZDLJYrFQJdfx8TGDwYDbt28rvnoymVQ7nU708mOz2TAajZRKJarVKvl8HpPJRDabVSIGr9er3mM4HKoDu9VqpVqtqho4l8spjF7cYY1Go/ISEfQDWNqk6YdBAQiE2irvLWKIbDZLOBxW9f/R0RG7u7vU63Xq9TrHx8dMp1M8S8PMer2uytePbFJrmkaxWGRlZYWtra2nevUiwRLZlMFg4Pj4WEmNZGWfzWYEg0FCoRCJRELV6OFwmMTywCjEmZWVFdWtdLlcdJcedXJAkyd8sViQzWaXqu4FyWSSVqulWuuDwUCRiPL5gsKlZUIFAgEGgwEul0t1LBeLBQcHB3S7XZ577jmef/55BWPKd5byJxwO6yrupXZPSgaRn4m3HqC6mEKYF+em8XisHs7RaEShUKBSqRAIBMjn87z77ruUSiXlZiUeg16vl1gshtvtVniwSNlarRbtdpujoyPVcRW5mRCIPvnJTzKfzykUChSLRbrdruru+f1+tePKZ4RCIUKhEMfHx9hsNvb391ksFuzu7tJqtdjb21O2DiJ2Fqtgu91OMBh8SmwsrXuj0cgrr7yiTHI+skldq9WUaFO+2Pb2Nj6fj2q1Sn9ZSwnZPLQ0RZS6cTQaoWkap6enivsspKdwOMxwMOD6OkejUV9O7JGC+ubzOeWyvipMJhOOjo7U6V0md6VSoVjQJ61uIabXp9K90znKum2ByWRSN0Zgp7W1NRwOB9FoVKmnhcQk7LmtrS21EgkLrt/vqxXTbDYrVhroGkNRygiPQ9rX0WiU+/fvL4XL91ksFkQiER4+fMi7777LbDYjHo8znU6VZYPZbKZer3FxcaF87lwuF5lMhnQ6zWc+8xlF0Hr55ZeVBlI8Vh4+fECtVuPVV19VCniXy8WjR4+UuLbT6ShOh8Cz9Xodj8ejGlnSg9jb21POVXfu3GFtbY3JZMLXvvY1gsEgn/nMZxTjcjweK09EIWCJhcPJyQmTyUSVTx92PHNNLUR5QB083EuHU4/Hg8/no1Kp0Go09LoqHMa+NFoxGAzEY7GlY1KUyWRCpVLBaDRy+/ZtyuXyUiXuZOGwYTbCxfkpbpebbruhb7kWs96xW6pMms0mgNripT5v1GuYTUZW4jFVo/W7XVjM8brddFotvTzJZvG4XBgBl9PJZDTC5XTS7+q19npmlVgkTLtZ53FHX/l9HhelQkEXxC797C7Oztjd3QVN42pJfE+trOjeHQYDVouFUrHI7va28qWrlsv86I/+KJ1Wi3vLkiFy86baiYbDIT6fl9lsis/nXZ4rTDQaPcUKFKeo4+Njjo+PFea/srJCr9fj/PyMfr9HIhHH7XZhNBoYj2dcXl4QCPhZXU3TaNRZW8vgcNjRtAV+vw+j0aDe++TkRC1kGxsbJJNJGo0GLpdLgQKapvHuu++SSqV0EcXyHPHgwQM++9nP4vf71WIwnU5JJpNYrVZlvJlIJBTU96wHxWdeqQW9SCQSnJ+fc35+ztnZmYKjRkuHfCHX1Go1arUap6eniocsnANBDKTrJz4eTqeDfD5PNnuJtlhgtVoYDofK9EWErDJZBVvtdrvKXfPy8pLy0pZWeB66+2mHyWTCbDbTjdD7fXX6Di51htPphIcPH1IoFCiVioTDukeeuIpeXl6ysbGh5P9C6ex2u4SX/OJGo0EsFsNsNqNpGsPBgPlsppykotGoQji2t7eJx+Osra0pAlUikVA7g2gyRQQhpCGhoEYiETY2NhRSIu1mo9FIv99XCnFptIhu8vT0VLEa+/0+hUJBaQ+FC+12u1VjRhYvYUSazWYajQZPnjxR6vVqtarupRhkHh8fK864y+VSeHo4HMZoNHLv3j1MJpM62D/reOZJvVjo9erh4aE6KL1fq+ZVBIT8AIIuyKoqCIaQYex2u7I+0HFL/RQuzDG5UcLnECckqae3t7eV0FXa21KzaZrG48ePVfNnNBpht9sVeUZ4zaPRiGKxyNHR0fIz9AObxWJB0zTVMpYySjyl3W43e3t7qnaXw+nm5qZSc4utghyW3W43DoeDWCzGysoKg8GAJ0+esLKyoiDEwnIXuHPnjuLayAMlvtEul4v33ntPKbBFQCv4uzQ/xFtE/D/sdjsvvvgit27dUjvj7u4uhUJBQZw2m41Go6EaI4J0TSYTxSkpl8tEIhFWVla4ceOG0nAOBgNOTk4U/9zv9yvDoOl0qkhborQR8tvV1RWgQ5QCf35kk1rTNLa3twmHw6r9OhqNuLq6IhAIKC5HIBDg+vr6KRWFHBZMJpOqy2bL1Uu4HAINis1WPB5XN3M4HKJpKCxZYKdMJgOgcNNOp8NsNlMT/eDggIcPHzKbzdjc3FSlSjabVexAYQICXF5eMhgMFPLR6/XY3d3VaQDFor7yDofUajUymQy3bt0iHA5zdnbG1dUV3W6X+XyuOBWic5SfQZTZuVyOer2uSEBXV1dqZ9EWC0KhkOIrS25MqVSiVCqp7z2ZTNTDK+JZcc4S2+NKpYLX61X2ZBaLRVFNRSHvdDoBPTJEDqrn52eKY22321ldXcXpdLK/v68MKZ1OJzabjfl8rnwMHQ4Hh4eHSrwcCoUwGo3K2iwQCChllOTJhEIhMpmMOgM9y3jmmlombrPZVK1tsR6QxkYikVB8ZZvNpg5eFxcXNJtNEokEZ2dnBINBta3Lyt3r9dnf31UTebFYsFiaSuodxx2urq65urriE5/4hMJSpdslvAHfki0ofA5ZreQcIFu/kPxXV1fVdjocDpThYjwe5/LyUun0xF5hONQdUEV9YzAYnprsi8VC8SzEK0O45WJnUCgUVMtekCDplDZaLYpLlyox0pQdT6I9nnvuOWWoKG3+SCTC6qpukev3+5U9meyKYmUmq//29raCOqU+ljJwOp0p2G86nbKzs6Oke62l1ZyY+rhcLqVAb7VaCvmRA6tg0oFAgGKxqAhue3t7eDweJpMJ9Xodp9PJrVu3PtpJfX19zWg0YjgccufOHcUN2NraUiv37u4u9+7do91us7u7y/HxMVarlVgsplzshX9gMBj4xCc+gcfjUWpiUTc7HA6y2Swej0d5wXk8HsVc8/v9ijshkinZ3jc3N1XWyMnJidIlgs4Dkcl+fHxMu91WIgRdhRGm1WpwcXGhav+vfvWr+P1+rFbrcoXS1S83btygUqmwsrJCJpPh+PiY6+trVXr1+33i8TjRaBSfz4ff7+f8/Jxut8vq6qqSpcXjca6vrxXnubvEuMUJdDabKdZjNptdLgC6J969e/eU0aIgF0L0F8RByinx/Tg4OFAWEaLYuX37NpVKZWlpYWYy0UsOPVFsqHZOq9XKnTt3VJmwWCwUf6fRaCj6qjhRSU6MvtO+3+GVlvjbb7/N3bt3MRqNyifkI53UGxsbPH78WDUdbDabajwI8ejJkydqpT46OlK17NramsKx5QcTDWCj0VjW4U56va5Sz0i4kDjlr62tY7XqIgVR11itVo6PjxVfudlssr29rZyjZHLKBRuPx6RSKebzOT/2Yz+m8HO5wTabFYMBhcwIrVYutv5zVLi+viYYDKqYjFAopKRRBwcH9Pt99vf3VccyFovxhS98gVQqpX5e8d8T0lKv19P9mZdxePJ50qre3t5W7qnNZpO7d++ysbFBs9lUMKFYL5yenqrzheD24gBw69YtRVONRqN4PB7MZjM3btxgPp/z+PFjIpEIp6en+Hw+NjY2VCaMpEnMZjNFiZWyUlyaqtUq9+/fZz6fs7W1pTSQrVZL2cOZzWaq1aryQJHu70fOp+50OmqLk87Y+vq6mlidTkeRZoTEPplMyOfzyuBbAn/sdrtivolDaLvdeUreJVu31GZnZ6eYTLriWCwS5GAqN8/n8/HOO+9gMBhYX19XsiaDwaDKjn6/r3YHcVYSNYrFYlXke3El8vv9ilSVyWTQtIXiX4s9mnA8FosFTqdTtcXT6bTiZdjtdqxWqyonzGaz+hlWVlbodrscHR0pJbvb7Va7jxCThOQvsXEPHz6k3W4v2+s2RqMRzWZTqfWz2axypJJWuugxBQkSLDqfz6vmk6jAJbZP3GPls6+vr+l0OjSbTWUXJtrLRCKBpmn0+328Xq+iCouC6dVXX+X8/JxSqUS32+Xk5ERJ8s7Pz59pbj7zSi1bmKy40mIOhUJsbm4qv7XZbKa0gMLI0ldfveNms1mx2SxcX+eWqhELnU53SRe14/F48Xi8bGxsLSd5i+FwhNGo18Yizzo/P2cymSjb31arpRhoYsgukq9CoUAkEuH27duALlMaDAZKTCtkeqvVyng6w+Fy43a5VXxFf6CXEtPZgmg0RigUUjTJyWTCwcEByWSSbDZLIpFQaplqtYqmaQQCATY3NzEuFUKz+ZxYIkG/16PebGJbmr3HlzKtRqOxdDrqq3Z+u90mGAzicbuZTiaMRyOm4zHNRoMzTSMYDNLrdqlVq6RSKWbTKZ/+5CepVKs06nUWS3RjY2ODSqWC3WbT4cbplIMnT2DJj08mkyzmM5IrCd0U6OycVrOhOCxGo5H1tQy9TpvpRK/1W406bo8Ho9HAvTffZDQc4HI6ODx4grZYcHB4yGK+wOfzEvB5mY5HdJbNKKxWTAaYTKdo89kzzc1nXqllQpfLZYLB4FIV7KFSqSgvZHlCxahGp3ummU6ny5Z1X9V2nU4bj8e9NHLpqxVMj7XQIbxyuczx8YnK+/P7/WorlIen0+moySVYrth6aZqmakyxO5AWcTgcVrIxSa7S2Xer2Gx23B4P48mETreL2+3h/PyC1pJ91+122dzcVPRMs9msbG8FN5/P56rZ5Pf7qVardJf1q3fppeFfkolG4zGxWIyXX35Z2YvF43Hi8bja4kXjJ7QBAzrzL51KMZ/NmE4m7O3u4vf5aLdaVCsVPcS12dTpn/M52tJvpFarwZIsZrPZmCzLHdlJet0unXYbj9uNz+clHArhcjpp1Os4HQ4WSx2kx+0mGAhQr9fx+3xYLRacTgdrmQzhUIh+r6fnOhoM+P06o1Ew8UQijtlswm7XmzDTZQnyLOOZV+rz83P1JEttp2kaqVRKNQWE/yz1tFhm6YfMIX6/T4lEpX4SG9dAIEAqlSKbzeJyuTg4OFAZfEKGikaj7O/v02g0FMohyIZwM2KxmFqpA4GA4jj3l80WMRoXcakcRAVlcS3txwAlVCiVSsoOTFJ5Hzx4oFyFAoEAZ2dnqpkkTkXSZZWtPl8osLKMYZPaVacAlHnuuecwGAw899xzT1FshaUoRHyzycR42ehyu920220KhYIiU4m/hpCPRDImJjz3799X3Gav18vV1ZXiN4sRvuyEDx8+VPa6QjySQ3wymcRgMChey5MnT7Db7U9ZMwsDMBgMArpQYTweqzLK7/djXLrkfvAA+WHHM6/Ukmgq7c1er8dkMlHog5CRhJooDC2pwyTv+vz8XJ2qJcY3HA5jt9s5OjpSPhbC1pNJ4nA4ePLkCbVaTYl7Jb7O6XSSy+VUU0G6W1JmSFtWXJgEYpQoumazqYefArFYTHUEhZsi8qVMJqMiliWgSGpQcUgV6ZrYfAmE5na79RV16Rp1eXnJ8fGxKnGk8xcKhTg/P1cHcCEcSd0pBjESndfr9ZTYWNiBFouFREIvH2q1mgr+XFlZUWbrh4eHKnPxtddeUykM0hV+32vaqiyA5dwghCyhJ9RqNXX9zWaz8vOQMFEp8YQbIwdHQYGEgvqRq8lFk9hbbiniIp/NZhUiIem0wWBQURPlBui0UiMvvPAC19fXKjlWOL8Gg/Epkot4PQvXV8IpBZIrlUpKfyf5M2dnZ7jdbnUDCoWCYqUJZRR0xc3q6iqnp6fqcLu7u4ttyfqTTqPwoieTiQos9SwbBoDifMvqLri4oBciW3ry5Ak3btxgf5nfLdCkSNDkRou9QzQaZTabkUqlAF1bKeeU61xuSSnQHUtns5mC2YRSKzTSSqWifEWkBBRrXWmUibedcMpby8x5oRWEQiFeeeWVpS1zRdkiFAoFtcBJFo2kBIhKR9h4t2/fVqY3QkkV1y2hOoC+2j/LeOaVWlhogjvKCT8SibC2tqaom+INATo01u12lSupqC1Go9EyyOdKtdt7va4SDPiXMWdil3B2dsZoNFJ52nLIE+hPZEE7OzuK5hiPx9XWJ3Kver2uBAqymgiHu9PpsL21RavV4sGDBxweHtLtdp9yty+VSmqFl5VGHjTZdWSl7PV6yv7WaDQqXaKQ9Le3t5U1mlgWSDkQCoVU46Lf75NKpZQnx6Df5/z8XAVAGQwGJXKWVVUerEqlwtnZ2fIM01FxIyKnkwO/4N7isS26SFH5CNIhKIzP51O2yPJzSWNLFhSHw8HDhw/p9XqqsxgMBimVSrzwwguYzWZOTk5UG18Wko90UkciEQJL4avZbOb8/JzZbKYOiL1eT23Z0mmyWCxKwSxYqtiPCcwmCbN+v1/VyJ1OhwcPHqgwow+GFQn5XkI2y+Uyk8lE+SRLA0BqPTkANhoN/H4/e3t7yg5APt/r9dJoNFRtHQwG2draUrIy8dqQJNyDgwPFSdna2tLTxXo97Ha7slp48cUXVdxyJpPB5XLx8MEDTk5OFPVVJqyIGXK5HMlkUvnviRBAMiWz2SyZtTVsNtvvyk0RG+J+v6/qeOE/95cpuRsbGwpbFx66wHvyAGcyGTY3NxU+Lu8pIaiAogy8/fbb6l6KrlQoD4KWiD+MtPZFyS70YFEZFYtF7ty589FOauENdDod9bQ3m00lrBWnnmAwSKFQUAaGsvqKbe98PldtdVnBxU9kf29PCVAnk4lCT1KplMpFFCJULBYjGAzy3HPPqXawtLJFsSFEJ6E9yve22WyKMyFdL4vFwvnFhXLrl59HwuzFXkEeYE3T1IMiNg/CqJOtWTgook8sFoucn58r8o+obdbW1hTas76+jsvlUq5U4XCYJ0+ekMvlFFkpk8lgt9u5efOmKkUmk4k6f8g1FyMdUWoLD0QWHZGMCT9DErykAyp+hPKQiaBaSE6yM32QiuB2u5VRjixY/X7/qa5wNpslGAwqJ12p/Z91PHNNXa1WCYfDuN1uCoWCinAQib48nTLpRMUdjUYpl8uKeyv2B7KSSlv1/OyMSCjEcNDDZrVgMhrQAKvNpnMnlvWi0BxNJhPhcFi5IB0cHChrNFFKX19fq2i3RCKBxWzi7PgIp9vN/t6ejtDY7YwnU5wuE1arjdFwSKvZ1Gmu8zntVguT0Uh6SaF87+FDRXIXNb1IlvL5PF6fn0xmnflCw2A0MZvPmc5mzOYz9m7s4XHrOsBbN2+yvrbGyfExLpeLjaVMbTQckojHiUYiGA0GNjc26HW7OB0OgskknSWNVOioYjJUKpWUEMPucGCxWvEuVezRWAx/IMDp2ZmyNBZBtDRvQqGQQn/Ozs4wGAwqyk78RcQEyGw2Y7fbeemll1SSg7T8xVhSvEkqlQrPPfecUuV4PB6azSbvvPOO8hPp9XrcuHFDRYF82PHMK7VIgXw+n+r9S0lydHSkyE3vvfcem5ubBINBLi8vFavshRdeUE++RM99EIY6OTnmKnuJeUmsF4suj9eHPxDE4/WpTqTo50wmE2+//bbCpgV9kTLB5XIp/vN4PCIWjVCrlqlVyqymUwQDASqVKh6vF7PFytb2NsmVFVrNJqPhEKPBAJrGew8fEo/FGA2HpFIphQ643W5msxlXV1dKAODx+ojE4rjcerB8Kp2m2+uSL+bZ3tkmnUrhdrmIRaME/H7cLhdX2Sx2mw2T0cjJ8THdTgeH3U69VuMqm8Xn9RLw++l1u2oSSQklbXzB6QfDIRarFavNpmdaOhz4AwEMRiMLTYNlfS9mNXa7nd3dXWVlIKu6dF8BtXuK7fDFxYVi4wk5THYZkX8JpOfz+XjvvffULioQsHhkn56e0ul09IP60qvlI5vUItQU2wKxIhgMBgomWiwWFItFisWieqLF2FBqajnYSVdO0AexHyuXyzpsZ7Mxm+n2ulJOCDyVWCaxiv6wUqngcDjUwUxav+LNobdoA4zHI0X+0aMmKso2OJ1OP4Wf1ut1/H4/KysrT3HGjUajUs2fnp4qDoPwxg0YlD6w0agvGYc6deD+u/dVaSLWXNVqVZn/5HI5IpEIBoOBQqGgEBexbBMJl1gVm81mstmsspWQXHgx2jw4OFC8ZtlpJVZEaKanp6eMRiOePHmi+BmCKskD5PV61WF2PB7jWkZqS9SH0FoF4hXagMPhUFwTIbSJ358c5J1O51NZlx/ppBZikJzgpbEhimBxNRWCjXBDnE6nOuTIBWg0GmqCxGKx5YofXHJzG0odYTIZ1QMhu4NoJOVAuLKyonBZl8vFzs6O8uqQ+j2fzy8fwvZTjZt0epUXX3pRcZ4PDg7UwVNIRpPJRKW6ijpDPOU+eCgSJMjr9RKJRJbYt95UajR0yqgsAIKYCNKwv78PoLSR4sUnW7oklomBpuDm4gMilF9xXRXvDSkNRYm0ubmpUJ/19XW9nT6b8eDBA+W4JMjQeDxWURjS/CmXy8oEX4KfxLVK1E/NZpNsNqtgVIHyBOPv9/vqvCMNHZfLpaDYZxnPXFML90C2JjH/FqNto9FIvV5nZ2dHPckbGxvKM0JXqUx58803MRgM5PN5FVkXDAaJRiI8fvgAg8G4ZPNNYMmnNhqN5PN5FrMpzz//PO+++64iHQk+LPWh5ACKCEGwY4ms0CeNrnSORKM4HU7FKx6PRizmM+WHIRwO8Tj5YOpBvV5XCplcLqeaMRaLhfnSQ0TT5kQiKdqdNpPJiFg8xngwJhgMks1mOTs7Y22JZgg1s9VqKd9Co9GoOpMiH3v06BGRSIRgMKh451IKLRYLhksjRvG+E4Gx0WhUrXvpKna7XQUJCkW1VqupA7Tcx3w+TygUUmjTYDBQft6iK5R8TTl053I5pZQX54FUKvVUqq64Ogmy8qzC2++qphYZV7PZVNL/ZrOpwH1x6RSWnbj23Lp1Sx3i5GEQuGixWCyzUHRzQ7PFrFZJu92hMruvrrLqBgrHVyCkQCCgsGWhfgr5XQx1stlLhbh0up2lINioqK3pdBrH0j1UFCs+n49Wq4XNZiOXyynapdx0gNXVVSKRiMJ0W+2W6nomk0nlqXHjxg0FT2qaxiuvvKKyCmu1GhaLhZ2dHba3t5nNZiq38PLyUj1AEqIqGeVyHhG+sphlfpAjLtmGfr9fMRLFKky6fCKNE9GCdHuFQSneKAKjSlqCIC3Cp1ksFpyenrK6uqr4LlK6STbl1taWUuYcHR1xeXmpdi7xevmw45lXajkBiyOofFmj0ai6i16vV0U5xONxJdQUNl2p9H4qgODH7Xab0jJWLuT3MVo60A8GA7yBoCK/+7w+plM9Sno4HKpOo5i1NBoNtra2iEQiqimhlzCmJefXiMNhxxUMUK3Vsdl1/nalUoElZ8QAVMwmZY3bbDaxWq3KzFLKJ4ErhTYqybn5fJ5iqcKNm7eWZ4s8kUhYYb7hcBi75f12drerf75YHVerVZxOp3LhlyaHtP4TiQTBYPB9lGNZfgmxLJfLqexJi8Wisljy+bzqjDocDiKRCPV6nc3NzaX9r1k1osQqQRQpkUgE0F22er0ed+7coVQqqfLOYrHQarUYjUYq+1JMh1rLTEghZImxp9TQ4q9dLBYVPeFZxjOv1NPpVGHDYvgnGkVJjcrn80pKlMvliMVi6ktfXl5SLpeZz+eKvC9sPmGHaZrGjRs31EOQTK6QTqdZXV3FaDJhs+lQlhgXxuNxisUi9+/fV3IgSYKSrHBBX6RzJkGaOzs7rGXW0NAx+KurKyxLvzlZ5US6FovF2NnZYXV1VT3IQjDSNE2tkvoBsaPyvN96602y2SzlUkk3k8GgnEKFmiqIgfAyOp2Osv+6urpSE9Ptdiuhw/n5OdfX17z00ktEo1EajQbxeJzhcKgCN0UKFwwG2d/fp9lsKidW6fLeuHEDTdP4nd/5HaUqPz4+Vl1Wr9erXEolmbjX66m4jA8iWdVqlWKxSLVaVZNTIkLu3r2rWuPdbpe1tTXcbjc+n49AIPDUQfMjndTj8VghCYIvilhUin8h0VwsmxiifpDVbDab0uksecEeDw6HE4fDxWymYTAY6fRHaAYTVpuN1UyGxXxOr91iMuxjMmiYjDpH4INoiTQYPB6POskHg0HVUi+Xy/j9fsBAtzdgPJ1RKJZpdzp4/T5WVhJ4PG5MRiOT8Uhh7JIrKCyyWq2malkx6JEGhLgb3bhxA5fLxetff5233nyTbqfL/t6eHr28tC0Qspaw40QFIp1YWTwCS0qndAOTyaTSc0ojxGg0MpvNlExOVD0mkwmX00lnCXW6XC6eu3sXj8dDIh7HvTSm+dKXv6yjGz4fnW4Xq9VKKBym1WrhcrlIpVIYjUa1K8iBWix/B8MhzVZLF1hYrRSW9g3tpe+iCIsvLi+JJxJEYzFa7TaVSoVUKkUqnabZatFf6idnH7U/dSaTURcwHo/j8Xi4ceMGN2/e5KWXXlKxEkI8Ei9m3YLsiGKxwNbWFg6HY1mn2jGbrUTCUdwuNy++9ApWh5PpAtKZddbWN8henHN9leXq4gyXw6YgOsktl7Lj+eef5/r6WnGRhUH2QW2kz+cjnljBbLUzmkx4+N4j3n77HXqdDr1Oh82NdSLhMMFgUCm/BX5zOByqVV6v19Wh9OGyESMRGeFwmFdfeYV0MkmpUGQ8HDGdTGg3m+zv7lGrVJ9CE6Sz5/f7ubi4UPX2xcUFd+7cUQ2kfr+vlCQ3b97ktddeI5VKcXV1RT6fp1QqqcOt2WSi1+lgs1qJhMNkLy746m//NoN+n93tbZ0ePJ0ynk4xGI14fD5cbjfnFxf0h0OGoxG5XE7V4cLJqNVqisrw+OCARDK5bFxNWAB3n3uOl15+mcz6OgeHh9x/+JC7zz/P1s4OG5ubeH0+fvO3fotCsYjBZKLRamEwGkmmUjSaTZrtNt5nTOh65kn9+uuvK3Yd6ELcq6srgsEgDodDqcodDocS1Ap7Sw5bbreLmzdvYrFYODk5YTrROR/6iqCfwnW8tEkoFCKZTDJb+tZNJhNMS2NxCdiRoKT33ntPpXqtr6+rFVSMyKXkEYtdUb5bLBa+/vWv8+TJE0VCEs86cZYaDAZcX1+rJovb7VYokNBufT6fUkqPhkPS6bSOzAR1yOv09JQnT56oyX94eKjYbdfX16qkEPhSiEKpVEqJBUajEaBTY0X2Nh6PVZqD5NUkk0l1/hEP61AoRD6fp9lsMl5iz4vFQtFN5/O5iokDnWMudmHz+Zy7d++qQKbpdMpoOFSWCuJ76PP5lPupQL1HR0cqvk4OyUI7Hg6HCjkRyPKD5LEPM74r0/VIJKKI6TabTeUhrq6usre3RzweVwcAkVaNRiMajSbFYn6p74vy/d///bz99jvYHbppoDDfXnvtNcbjMacnJzx58hgjqANTu91ma2uPlVRSRQ0bjUYymYyKk3M6ncrxXjgMpVJJSfcHgwEbGxuqMwYoTPqD6mqpQSVxS/xGxFCy2WyyubnJdDpVjp9ifC7v6fP5uHPn1pLROOfw8JDPfe5zGI1mdahWtbzFwsbGhuIjVyoVZe8FqBrd6/XqTaOlX7YEcgoS9ejRIzKZDEajkWKxyOrqqgoR+qC1rzDj8vk8gMoQ/yDWLHW5CA5MJhP7+/s8efKEar1OfNlClyjteDxOv99XyI3H4+Hq6ord3V0VCnXr1i3lbjocDvmBH/gB5XsCPHOW4jNPar/frwwLZdUQ/w9plgg/VohDEkwpyvHNzU3efPNNtrd3sNvtPHn8mFJRJxyNlhpBHZR3oy0WNNs6t9egzUmmkgxHQyXk7Xa7KqbM6XQquElWPKExSgdL6k85/PV6PVX7RyIRnjx5wnw+V4KDRqNBOBxWVNa7d+/SaDQURTQajRIMBhUHWGrXcrnM1VWOZHKFV199lV5fpwL0ep2lF4hNJb5+UGUjB2zRJwrxSHaPRCJBNpvFbDYrF1LhhYuDlOyK4gIrOLrX62V9fZ3r62uqtRp3n3uO6+trcrkcu7u7quyx2WxqwQDUNSuVSmiaxsbGBuFwmHfv36dcLhOLxdTBU9LOJHFCDs8CDQp56oOWFk+ePFHJC8Ph8KM3iJS6Ttx+XC6XsjMQcP/k5IRQKMRsNlO2YcKxFlsyOVjt7e3z7rsPVAeyWq3S7esOqJYlrPbVr/y2Hlnn85BIJDg8OmOhaSooZ3V1VbHPNE1T+re7d+/icrkUs022bAm2vL6+VlCVxBI7nU6lRAdUVN79+/dVLuDGxgZf/OIXFZ9BOmOgdzoLhQJej5/f/u3f5rOf/Sw2m43rfA6Px025XFzaOURUHW0ymUgkEvrqV60qKFScqy4vLxWn5fT0VKlrGo2GcraS5pLIsSqViprIEj/idDpViSUIRiAQ4IUXXqBUKikehvDTM+m08pqWg6GgIy6Xi1c/+Ul6vZ4qMeV88+abb6rPEN8QOX+IpEvTNCUa8Pv9ChYV8OFZxncVOScm5CLREqGAuMxLHJvAO+KPZjbryhe54O12W88Gj8VIJBK43W5e+/7vV3ZYOm4aXLbAzUtTm4gC+j/IKJNDjGxdUp9K/Sft/Xq9rnwxRBwrhHahrQqFdH9/n1qtxptvvqm2SgkXEv9maZ0DanIPBgO+/vWvqwZFs9VcNmX02lGMEJ88eYLf78fn8ymPbTHWkeRfQHE6AFX2SCKCqPUljkPCiORhTKfTihXp9XqV/nA8HnN1daVsDmSSC49EiEuCLV9dXelnhSWJSq6lPDBGo1HxfOR9xehS7CxkksuKLYdaof3K4nP//v1nmpvPvFILK046dffv31eHqS9/+cs0m03Fu9je3mY4HHJ6eqpsCvr9norGGAyGrK6ukrvKE4/rMRNPnjxma2dn6Vkx5vXX31jSSyPKytbtcpNM65ax/X5fEeEjkQiPHz8GUI0A4V+AfhCRHBrx5hBDR4HAqtUqL7/8MmdnZ+TzeVZXVzk8PMTlcrG6uqq8AWWVFHK8ELnkQbBYLHzuc5/DbDZxlc1Sb9RJpZIKl69UdI7Fw4cPMZvNvPbaa9y+fVvh/NVqlYODA37qp36KRCKhpHAiOLBYLMovZGNjQ7W2hTshxjehUIh79+4pPvpiseDy8hKz2Uw6nVYqFFEqTSYTRQu46Pe5s8x53Nra4urqCoPBQCQSodPp8OlPfYpoLKau7/HxMc8//zzr6+vMZjNlxi4lkDxM8/mcR48e8fnPf149kOIlYzKZPnrfD+EZ7O/vKz80IfSIQFPopKIydrvdit1mMpkYDPSYhvm8trTFmir8V1znF4sFsWiEVrOJzapflG5vwPn5JaFIiEqlwsHBAWazCZfLrW6Ow+FQPiTiT+Hz+dSKoydPTRSWK8p4r8erhyH1BhwfnWAwohQ4Lpd++DMZjZRLJW7fvk00FqVWfb/s8nq9hIJBctfXPH78hIA/qFTgJpNh+V7OZcu9TSyRwNFp43K7mIzHaJpO96xV61ycXfLgvQesrWXUQVAU2lKqZLNZpZQBln0DE/1+7ymhwr179xgOh6r+llo7Foup++P1egkvcenxeMz6+rr+kFQqajFaXV2l3W5Tq9We6viJyWa9Xl/e24Ga+GIwdHx8rM4pRqORjY0NWsucxVqtphCsF154gdFoxMrKykc7qcUWazLRJ4YEuAtPoNtt8+TJI5V+Kniyy+VgsZjR7fbI5fJ4vV7W1jZYWVkhl7umVqvyzrtvMxwOGPZ7bG5u6tDcxoZ+kNnXyeNPDo+JxSJsbW0RDgf58pe/jMlk4s6dO5jNRsZjHfeVsCWRjYn3nk6dLPLmm6/jdnu4e/d5hsMR17kC6+tb9PsTWu0ONruFF198kffee0i71cIADAd9DIYF9956g83dXQwmA48fPiaZWGE2nDDqjjh6cozP7cXhsDEc9Uim4pyfn+tck06HTqfHVS6Pw+PG6bQRCQfptKY8efKI6XjOl37jaxQLZb7vBz/Jrbs3lOQqFospxEOn3FpZLGaYTAYqldLyAL6B1+vj8eNH9Ps9TCYDBoPGaDTgvfcecH6u+1EHAj6cLoc6WA6HQ9544w2sViuJRIJUKsVoNOT48IB2u8V4PMTpdLGyEsdohHxetyY+PDzEtjQzkoejXq+zsbFBIBAgl8up0uzOnTuqCwuwvb3Nb/7mb7Kzs6O0riaTSZ0PnmU8c00thwWJUpMmxXw+XwZKxmk2mypTW8KKpOYSWE4Es8Vikf7yYCiQ1QdXEeE9DAYDLi4uCIfDbG1tUa/XFVwnkXWSnCW4qyimq9WqIiY5nU6i0Sivvvoq7Xabg4NDcrkrZvMpbreLdDqJ2+2iWCpRKJUIR6K0O10MRgMGo5FYPIGGgU6nxWQ8pttp02q1SKaSrCQTTEZDMukM6XRKcT1EJiW17mw6ZTGbY9Cg02zjcbkJBUL0Ol2q1Qqj4ZC7d++q3EnhZUiHUXBkMd0UxqTOlDQtrSR0u7OVlRW2t7dV5HS1WtWV7K22WknFU6TRaKgk31arrcwqdVsG3ThS6MW5XA6LVfdske8oKImQpLrdrqKfCrlMfLzn87kqWz8YoS3Q4LOMZ16pJdVWOnXX19dcXFwQCASW4lDdmuvmzZvq8HV+fs7+/j65XA6fz0evp9fBEjcncWZSixYKBfb395VZynw+54033lCNgHw+p6wCxHhRYLR6XY96ODo6VtwE4TZL88brdeNyOdnd3aHZbNPrdQkELFSqZVLpFdxeJyaLSRlHvvDSSzqZfzhiNJsTDobwOJz43R7W0mlOT84YjYZcnJ9jwoDdbMZitrBYGrZLbmGlUtEdjTweLAZwma30+z1mZiv94YBBd4jf42M1mWEy1bNRpIl0enpKJBJR2TqdTptEIq7QCYl2K5fLKkHgV37lV1hfX1fEJ4PBoDqe5XKZR48eEVrSfZ1OJ/Wl+KJcLhMMBPj+7/9+isUC0WiU6+trJeUSdKJQKBCPJ1RgkXBMstmsWmy2trYUlHh1dcXt27c5Pj5W/PdC4f0Os/j/CZT4kU1ql8ulTtqgs7YkDqFarTKd6k+Z2OvKlx2Px8sDmp7vIXiq5FVLE0Q4F48ePVJOTyLoFHFpqVSgXC6rsKFgMMijR4/Y2dlZCglmCgUxGAzs7+9js9k4Ozvj4OCAO3duc3p6jtPpJJVKU6mU6XY7pNNpJpMxNpuVaDRCsajDXMFQCF8gwLBcJhSOLD1EBlgsZmazBdV6jfPzS5r1BrFIlMl4TDSdYCWV5L333lNwViAQYH19HaMBWvUq2csLkispauU6mmagVCwSCPjZ2tym2+0wmoyUjnOxWKimisViWdJHHeo+2Gw2tWqLy5Se/V1Vk3o0GqmcRIvFwqOHD9W1kVTaYCBAdBlbMRj0le+3oFrz+Zx4PK47bFltOJ0uNjc39ZyfVot6vc5wOFQ1szxIh4eHSkAiAVCBQIByuUw6ndah3CXn/iO3HZtOp8o/7h//43+s6jAB2F0ul3o6T09PVb3UbreXeLIDu12f6OJMJPYJPp9PpaeKs9N0OuXk5ERh4J1OB03TVLxDLBaj1+spM3X9O86U74ZkkgtvW2/Jmrh96wXeeustjEYbK4m0OuQM+gO8Xg/DXpdqqcjG5jZGsxmP14fL7WV7exez0cDJ4WNanTbVRoPtG7f4X3/p/8t0OObG3i1icR1vFfW1WAsvFgulLHHa7SxmM1xOF4P+mPfee0ytVucTn3iVZHKFCRNW11YZDAb4/X7Ozs4U7VRvQbcVy04mm/yMjx8/Znd3VzHrhJgkUKo4oPq8XtLJFMVikXRSPzhXSmVmE53ElSvmSSaTVKtVGo0GjUZDJRhrmkY0luBkmbIWDAaVKY6cryQWROBbQKU8iFm9mOZLUm8oFFKR2R92PHNNLYLJWq3Gzs6OMiCRTA9NQ7WnM5kM9XpdNSYEoHe5XEqVsbq6qrBJIfqLNYHgtW63W2VjixFkPp9XhCCJBJZsEvHnkwdA6JMAV1dX3HvrHV7/+ltoCyPj4QyXy8fa2ibRSJxIJMZ0POGNr3yNUa+PSYNhr4/FaMFlc8HCiMlkI3uVp9XpgcXKdbmK0+OnWm8xmxsYDCfMF5o6a0hnVR58XQbn49btWxhNJowmM/limf5ohMPjArMBp9PB6uoqoVBIRWI7nU6FKolblExm4dEI/isTSZIYxAJNP/fo5ZrL6XpqogEqtFTum4Q8Se0rPtR64NNUtfCFCpFKpbh586ZqZgl82ul0lPLd4/GoiI1oNKrotIASczzLeOaVWtQf4uYj3TkhxmxtbajDhXhtRCIRRQRaW1tnMpmqOOH5fE4kElHiWaE3itH66uoq19fXlEolvF4vw+GAQCDCYjFXcJ2oJwTcPzu7UEJT6Xhms1nd/TQYolbt8dabDxgM9KaL1+cmGo3g9jjxej0YZxNsRhPNcpX7b73NaDLl8PEJw/EEq8OJz+vj7fvv0B706E+nzDSNXquDtjDw5dffJBEKs7WXxmLVmzter5fz83NFvJ/P50znUxrNOi5PkP5oRHc4xGa3M9XmzE3Q63R455139Fi7ZbkhBjw2m01hwZubm6rEECmd7E7xeFxxR2TSiouT3+fn+iKHNl9gs1g5Pzlla3ubgM+Hz+2hPxzQH5hUkoHFYlGC2MPDw2V3eMLOzg6LxYI333yTyWRCr9fj1q1blEol7ty5o2zKZMeRxk6xWFTkqZOTE4bDIfF4XM2Fj3RSv/HGG8orT5TJnU5HmRSOx3pt7HK5OD8/V8m3Epyjq8rfjxCW9AGJnahWq8p8XDSNYuQuoZM+n1dFP2uapvSQ35gqJW6s5XJ5aXQzIxAMEPAn8PujnJwcUyhco2lzmk3dZd/n9xLyOHGZDcrhyWgwcH19TTgaJ3uRpdlqkauVwGSm0e0wmU1wOWx4nW5GsynFWp1Aw8tLLz3H5aVO9qpWKuzt7eNy6t/TG/BxfpnFaHFRq9cYDIcYzCYm8ynNVpOA10On3eb8/JxEIqHQJHFrMhoNCl2R7yn6QfHYFrs2sfuSySS6RLNVV6usZTIMBgOajQbdXo9YNIbFbmM8HWM0GRWKJN57slvS6WIw6jWyz+fj0aNHKl1gMpnw4MED5bolTRdN08jn88sFbk2xJWu1Gp/4xCewWCwqVPUjm9SBgI9Op7ucXB4Wizk+nwefz0OlUma8FK5OZ1OCft0vr1KtYLXasJotDAdDEpsrXF9fUywW2d/fx2g0Klm+w+HA7nTS7fVIpdOYjEZ6gwHxRIJur4fFZlXswK2tLSUpSqVSKo/G7fYodft0OmEyGbO1tcF8PmM0HlOttXAHTLz8qdvY7S+TvbwknU7TbrUo5vNsb2xw9OQxkViE9a0NHE4XX339LSxWO1elIifXWaYuJy6HD/vCAOMKZkeDUNqC02WhcNUjUO1QrXZYSaxQKV0TW13BMJ8xx0ipWKVcvyIYCxEJJ+kOJsznMJ8tWE0l2dhch8WMSrmyPJf0cbvdeDwuldvt9+v2YjIBRO0ikjCJr9Y0jWw2y8bGBmtra/h8Pq6vr7FabcRWYniDXnwBP8nVpK551GZcl/TmV6PZUDn0V1dXSqgg5KnDoxOGw5EiJu3s7ChxSCwWoz/ok06nOD4+YjWT4uDJAVvbWzx8eJ/t7W1arQaDfp+NjQ3mswnddguX24Xp2UxPvzsrX4vFrLb/+Xym8lL8frEcSOP1eJVLk91mx2qxLIn0DhVM5Pf7ub6+VnwJ4S+73W6sywPWeOlBN53Nlt3HiXJlMhqNKp9bEBJJoRLLgEqlitVqWWokp5hNZixWE6FwgFRqheGgh8fjIhIJ8eqrn+C55+/iC/hxetwYjEYcLieT6Zhg0I/FYqJSLmFAY9Br0O+1sJg0Ah4Ha+kwLz53i/liTrfXYzCs4/VbsDuNjKcD+sM+ZquRaCSI0ajhcDqxWm2USnrXzmqzKi6LbWn2s1jMsVot7O/vk0qllCUCgNFoUAdjqbElPElqbenuikWYCI71FX6hKKbdXpfxZEwoHGI1s8pgOFguRFZlnyxEMKvVqvLiXW6Xipvzer288sor3LhxQ0XPWcxmrq9zGAwG1tbWyKzpKJfFaiGxkmA0GtLrdnE5ncRjMex2G2aTid3dnWeam8+8UotoU5hgYn3VbDbJZDLs7eyq1q3T6VTk9V6vh9FoxOPxcHh4qDL1ptMp8XhcHSQMy61ebBOk1JH3GQ2HDPpdleMnXm8bGxtYrdalE2mbZDKpmgJ7e3u43R7KZR3f3VzfxO/1kc1d0W631WpWLpexmM3U2w2msxmD0UjnoAxHdFtt2p0+Js1ALBhk1MhinPUIeMJYLSbu7Gyzs7pP7eqM2aBIuZxlOGnj8sZIpPXgo85gSCRmwGzS6PdGLDQDNqsPr9fP7u4OkUgIo9FAPn9Nf5nO+8ILL6jySWRVq6urtFotNdnkICo5M3LeGY1GinQvyQfiDTKdTjk/Pye4zI6Xbf+DjR05cIp2EnRPEvHFSyaT2Gx25SQgIoxGo4Hb7SaRiNPrd1XMXDwep1qtkk6nOTw8xOf1kkysqCaaWAR/5B1FEQdI50dUy263m0AgQDabVQdIIcGL26nZbGY4HKnVpNvtKk2dmLVYrVaG/T7MF/g9XjqtFvPJFJfdjs/jIRqJYLFYiUaj6mEQXFSaMR6PC01b8PjxYz3zr9nm9OScyXjGaDhlMVtwcXpG6TrPdDRGm82JLyVf5WoFm8OOxW7D5rARCgaxO/T8wel4wnw2YzGd47bacRgM+OwuYv44uZMar3/xIe3aAI/DR7HQ4vikxKPDIkfZBkZ7EIc3RDZ3zWA0ZDY1YDTYaTZazOcLVlfTbG1tsFjMGU90rH+xWADv823EwEcIVFI7C6dGdiipf4WkJXEgdrtdnX9isZjKkrFYLOzt7SletOx6kh0vAabpdFqZyE8mEwygbBFsNptKgxCIrtlqKuZjpVJRnovyZ16vV0G60m3WNO39mv1DjmdeqcXkUczIk8mkcup89913sVn0hor4VAtfWEgzlWpNrdqTyYRoNKoSmgRDjYR0snhumaLr9Xpx2B3K7D0a1eEiMZ8xm808efIEn8/HbDZT7vv9fo9+b8ij9x4zHI747Gd/mJ2dPcb9LqXrAk6Xk1giznQ+R0MPNioUiwSDQVqNOpq24Oj0BI/HSyy5QrvV5fTyAg2YLaa4nB5q5QbDrp12t4XZWqE7mDCdGplNrTQ7Jk4LFxyeHpPJJHnh9i63t9YJBwM02lOODk84PDwkmUyytbWOw2nD7XZis1txf8BBNplMKpK9WCXUajW1EFSrVcW3EJRBRAeiJxUa6NHRkYqhlswan8/HcDhUjlrj8Ri/3080GuX+/fsMh0NefvllZccrFAR5sKRX0O12lTBbvBZns6mCgSV0SjrHvV4Pg4Yyhvf7/WqB+kgndalUIrJsq4pL0Xg8VuLR6JIiKuiGKI/FddSyrK3FxFsMWtrttu7ZNhxiD0UU/u10ONAWC0bLJNjpdIo2W3B8fMxkMqHT6Sg+hBiui9nL5uYWpWKJbrdPo1Hmq195nfOzKzwOKy6HFbPJhM1ixem2cHpyQjAU0r2zR8NlWWOh3e/Q6fd4dHRAqVzD4nGiaQYYDpkt5gynfRbDKZppjsE6I+AzM51NMePh4PJtplYDvoydq/YFzddLGBYLbm3tc3R4yde/9iYutwOTyYzbo+90k+mATCbD1UVWeQPabDaVOiCpueIc9UEbXeE1y4IipYRce7HYlTgLSVYTboksLB+EYt1utzp0drtdisUiW1tbALQ6uppHLC9ELCAc8UK+QCqdpN1uK9MdoSTrO4ZLZVrmcjmlC31W0/VnntRSpwaDQT71qU+pbpeUAbPZjEKhoExbTk5OFKnp8vISj1fHlSWy+PT0FKPRqOiLG+vrDDo6WX0+mVKr6O4+ot5OptMYLQalngkEAoq8//LLL6vy4/DwmGg0yvraBs8//zLNRodms0WhUOLhgwdYDAsCoRD9QZ8bt29x+9YtTs7P2djcYNQf8OTxY8LxKMFokDffeIff/MrXmS40TD4XZpMVx8iO22Vj2G+yME8Jx3ysb6dIbvnp9mucHJ1R6+bYfvE2I20BVzNaV1V+4ytf4/C9LI/eeYd4LMorn3gRr8/NYjHDZrMQCsfRNL18+9SnPsXh4aHCbQOBgJrc4uEndl6lUolQKITL5VrqQRuK8ba+vk57aUmQyWQ4OjpS/z0a6eWg1WpV4VHCyXE6ncpmQtM0FcMhxp7VWoPBYEC322Vvb0/V7Ds7O7jdbn7jN35d0UrFo+Xq6kqZ1vgDfixGk0qSGH0gmOkjndR7e3vLk7WNg4ND/H7fkr+xpocF2XSm3XCkdwOtViupdJrrXE7nECx5CZqmMZ/PVb62+IMMh0MFHWmaRq/f06MY/D78Pj+atqDXHWA2mzAY9PCgq6sr7HY7rVYbu922TH6a62Sh6QyfL0gqnSKVSrO6ukYi7IPFlJPTM1rtPo1GB5cvgMups9um4xGJlQTD6YTf+tKXefPdd+hPRtgcLkwWC8NBn3m3DkY34agHjTH+iJEXXl1jZmzi12x4QyGqTQ1bqMPU4qY/XtCqDCllyzjwsr21xe7u1tIRyUp6NYbZYmIyHtOoN7DZbAQCwaXgVRcWXF5mMZnMyutESP3CaGy1WiphQRYYUW7b7XaFkkg7W5T0gGpZJxIJksmkUp2DTlxKp9OEw2GVaDAej3VnJadT57wvE9jarRaJeBxtsSAajWJ36IhNv6dLAGPRGBjAYXfQ6/Zwu1w4HE7m8zn9wYBCsciz9hSf+aA4mczweHx4vT7K5QrFYplGo8Xa2jqpVJrReMxF9pJGs0mj1cTlcetE+NkUm8Oue0Qs48bE0lfChVwuF/PFHLffw/rOBiurSSKJKFf5HAazAcwGWt0m9WaNxEqMRCJGLpfFYDAsbbe8bGxsUq/WCPv9dFotWs06l5dneAMu7G4zk0WP5z/1Aj/643+UWGaP3sjB2WWH4dDC8y+8zFwbsLoWZWMjQ73R4Cybp97qM59qWDSYtioE7VO8gQkm0wSjyUS9VcflbBDzt7i89zv0Tq/ZDZv4f31im1cTATacRtZWHHgCC4bzFq1+nVc/eYtPfGKfgN9KJOLBZjUT9Pv56m9/nYPHRzgcLh4+fI92u0ssFqffH+LxeNnb22dv78ZTjqsS3Txbwp5PnjxRNrnS1BJbB+GWS0SGJA9YrVZVxoiblWgOO52OSg0Tpt5kMmF9LcOdW7fY2d7WFf/tNkeHhxwdHtJsNPC6PdzYvYHf46dWqZHL5vC4PNy9dZd6tc5sMqNWb7LAwMbWNja7k0KxjNP1bBrF70pNPp1OSSQSyi85lUopSwIhtsihzuv1Kq61+KhJXW232zk8PFRUxVgshs/npdXSVwgMuiZybV33kTAYDNQbNRxOBxaLGbPJsCQy2Wm1Wrzwwot6q7bbw+mwEwoGMJrMVOt1zGYTvd4YgwFa7RZGk41QOMzR0X18viBgpFyuEAj4mYwnlEtldUMXmoamLeh3u0xHPWbTHhaHkdFoiMHUZ7EwYHfqSQg2i5Hnbz3HeHpFrzTEYLLixEzCbyfs65A31bGaNba21oA5Pr9+4BJ3pbW1NTY3NxVKIfk40iUVMtJoNMZm05RJp3QaJY9FDOglQqRYLKq6V9yd/MtMcLPZrFIFTCaTEumKZ3ggEMBms9HtdtU9DAaD6t9LSFQsFlOeeo1Gg5WVlaeU/mJ0JFYMrVYL69IGTnIfPR6PShH+sOOZV2qHQ6c7npycsLKyohw533nnHZVlPR6Pef7555X9wPn5ubIj8Hq97OzssLGxoTDP+XyOz+cjEomoevDw8JDZbKba43JYisViBJcJt5IYoGkad+/e5eoqx9tvv4PJZFQC0V6vx2o6jcfjWdoROJcWYhcUS3kazQqNZoWvfe3LvPPOO+SuirTbXQZDHRc2W0wkUwnm0zGDfg+Tycx0BqHoGmarj15/hN/vY9Sf88bXHrK2lsLttDFsmvFaVzHP3fRrPdajcYJWC+b5mGGvrVK9QDcEkgOZtKGPj48ZDodsb28rqKxer3N6esq9e/eYzfR0svl8zt7eHnt7eyqHcjabEQwGVR9B2uSSf3h5ecnZ2RlvvfUWq6ur3Lx5U9nsSo58tVolHo8rs5x4PK5EDiJ8GA51MtnXv/51hXisrKywu7vLrVu3aDQaHB8fK6FAqVSi0WgoYlS9XldJD9lsFkDBkB/ppNY0bel/52CxjANOp9MK1rm+ziuDm+3tbeUob7fbiUajatIKM8vhcCghgK7qnql4BLETE0W42WxWdrmSkiXxaWJU3ut16fX0AM1KtUqr1cLt9mCApUTMg8VsxevxkEomYDFjOOxhtZjwejzMpwvajR5ejx+z2UapXCafu8bucmJzOBj2RxgNRvrtAbPRBON8hjYawXjMqNNFG4+ZjTvEEwlMDjueUACH28l4MGQ6nOCwObDaHCwWmsKA5SbLaixEfInbkA6dkH3G4zFut0eteoPBQLXLxaRGDopms5mLiwtWVlZIpVIqPSyTySgdp/htB4NBlXS7srKi0owlXS0Wi7GxsUE8HiebzZLNXir/a9lFYrEYrWUGo8fjUSafW1tbytxIrIRF0f9BiweRvT3LeOby4+rqiuFwqALb5UvabDaKxSKLxeypLO0PSnx0CdeQZDLF4eEhnU5HxyqXK6rEsl1e6tujRF+Mx2MymYzyVm40agRDAer1phIKVKtV9vb2yOWumE9GHB40qNbqLDT94agtozKy2Sxer3eJz4YZjcYcHR1znc+STEeYjE2M+hOGgykOjweT0YrRBGaTmZlpgdFkwmqyMesOsEwnWLQ5XqOdeWtI0Gsmd3pMv1nEn1ljbrXR7Pc5u8zhcXeZDMBu92GzeWl32ty6uUelUlGxxiJjEni00+lwcXGhfL0lUViscg0G3W5hY2ODarWqsl+kPyAcanGX0jRNOYxK6JGgViLGOD09VbF0kjhgNBpVZrykkEWjUcxmi9Kqijd2sVjE7XbTaOiH3bW1NdVke/XVV9Wh1Wq1Ek8kMJpMFAoF3G43JycnKobuI53UYhMwHo9xOp1KLiVRdNvbmyou+PLyErfbTTKZVNwDo9GoUpukZSvdJvFWdjhsqltoMpmWbqVipNNTKo7hcLQ0drcphc1sNsNqsegc7GgMq1U3eD89PcVuty9xX71rOZ+O6fda+DxOmq0mjVqd9dXnOKtlOT/NMTdroJmZjAdY7XaMRjNoRrS5AbvDgmE+xWXVmAwn9LsTXHY7dqePwXjK4cOHGN1eeiPQZlbGvQnTvgGzwYzJaGS+mHN0dKTYiPP5XFn0StKYNDCkIysrXz6fx2Qysljo7WTxG4nH40oBL+bpMpEltEjKvkajoZJvpZxQZvTL/oHT6cRutytDdzEcMi0n4mAwUrF3Qm3N5/OEw2Fl4yAt70KhQDAYZHd3V9nLWcxmOss8+WQyyWw2w+PxPLNI4JkntdRn0WiU8/Nz9WUGg8Fy29FzTeQgeX19zfX1NTs7O0tDQo1kMqWcflZXV8lkMsoo/PT0hNFooCKbxeagVCrh9/sxmy30elWqtQoBf4hAIMB4PF2GTk51WCoaZtDvU6s3GQyGGIwmxtOZMqFpt1oUCrqiPZmMMo+FGQziXF5e0Wl1uTgrEAmluH9wn35nRHp9g9liyqDbw+NeZgrWO7icVubjGTODGW3gYtIyU7/oE0n4WZhDOBwpas0h/fIAz9REJhDhE6+tk1jdoN+uKzOgD9r47u/v02q1VDtZks5WVlYYjUZEo9HlZJnx4MF9lWIrv1ZXV0mn0+RyOeXWCqjwITmQCc97PB6TzWaVvnFnZ4eDgwOKxaJ+Hlld1e0hTCa1IguHZz5fcHFxoawxpMkjaQq6llIvJYRvLzpN8fGTRp3NZmN3d5ednR2Ojo4+2knd7XbUdikrn/A6stksRqNBeb05HA62t7epVCqMRiP29/fpdLoqUEfawL1eTz3dermiKTxVVi8JHbq6yuJyOTAZTcrWzOk0KlhwMBhQKxeX5okeDEYTJrOJ1ZUkk8mERqPBbDJlNplSLBTo9zpEIzE+8dLLPPQ/5v79R5SLFQrXLartJiaLjel0xmgyxmAwYTBozOYzZgYrw7mBkC+AyWJiqGm47F5sPisTk4lqeUTrrECjCSuOKHtb24TcdubanFm/g2lJ6Op0OiwWCx4+fKh4ydKV83q9PHjwQKEVQi3QD2sLBecZDAaVl9Lr9ej3+2xtbSlITshnEr8MqJpWMhGvr69JJBKqwycPgZRCUkICKrqjVKqodLG9vT3W1tbUAzqbzRQPKJlMKkHIxcWFih5Jp9Mq9kQeiN3dXYXgfGSTWne510/JunumnWBQ73TV63UCgRC7u/u02y2cTr0ufOmlT9Dr6X4fNpuVarWM3W6l0ajR7VoU4UaXc/mVVZkc/iqVCicnJ0vc1cZoMGE+g/FwwsnRCWDA6/XqZHSDgQUGmu0e0fgqmmbAiInxYApoVGoVzCYLHo+XbjuPw2LF63bw+PF9xtMxn/r+l1nb2uDddx9xw5Pkt77y61gY0mg0mYx02itGA0ZNYzIe0h+bWWhePI40066PQrvFdNImHb3JtDVg2K5Sb+a48o1wB1J4XS7S8QSXpTEnFyc4nG4yqxkMFiOTxQiTaUKvU8JgdFAoXLO7u43FYqHTaVGplOh2exgMsLa2xo0bN9RZRAzcNU1jc3NTCWCDwaAuCFjycWQifzAXxuFwKAVRpVJRpU8mk1HUYKfTqSZns9nEbDbz/PN31QSezSbkctllDqKFwWBKKBSk1+syn08xm530eh3CYT1UqVwuk0wm8Lj9GNGIRUKUymX+8T/8B7z40ksf7aTu9bqUSkXlpGk2z1R8st1uZzQaLv03YlxdXSldmqzWLpeTcFgH+SUxV0hJotSIRqMqyuL09FT5OYvFltX8foSC5CVKylMiEWeuzXA4rUxnYyxmG4Nhn9F4wPbOFhoz2p0OBuMcu9PCYgrj0Zh+f0Cl3sZocbGSSnKeu6DRKhJN+Oh3R6ytr9LpDpjNx8wXcwYzvWwwGmC2mKHNzRhmNmZjM25ngMGgicNpwqMZCEfX6C/anBavCAVMnBcfUW/asVrd7O49xzv3H+DxBrHZ3FxeXDPotfD6w8r/LhqNKp8Uq9WiurESoywHLTlQyw4m+Yvlclkp2QWq6/V6FJfkLRHnSkSdpNxGIhFKpRIAo9GI5557TknuAGXbKz7XwswcDAYYjUbcbr1DK56F8/lc6SQFizabTFitOiEuGomQn0zIX19/tJPaaDTy0ksvkUqlODg4AFA4pC4oDdLv9xVxxu/3KxsFvYGCiumV7VEEpYvFQqnApaYsFouk02leeumlpc2YGZfbjWVJu5TVXB4Ci8XEZNZjdTVGo1HDZLQuoawu1UqOyWRMu10hd3VEwBdgOp7zW7/1VS6zJWwOPwbzEWOtT62bxWybk0hGsHldNBoDDPY5VpMRs8XMvNvHYJySXkkyGRjJnRxT0Rx4PAbm5hnByIzV7TiDixyX9Sw2S5iewYo37Wc+7+AwTSlcX1N5o47Pk8KCn+y0jsdhwmJckF4NYrU5VBqax+NRHHE5MIp5j/Cgt7a2lEmmTGzxAWk0GsosX4JEV1ZWFFIhzbJQKKREvSJcFui1UCiQz+eVeZC01h88eIDL5VKm7hLtMZ1O8fl8ivS2trYG6Ibx+Xxe5TeKVYYQo4Ry+6Hn5rNOakAdDMVBVH7IVCqFpumK8+l0SrfbpVAoqCxz8Z2uVCocHx+rbUwSbiUUUji9ooKW+nJra4tyucz52ZlK2R0OhySTSUqlEvP5nEKxSDQaI5lMoS00vB4PBgygGei09Yg5s8mM1WqnVmvyla98ncFwxK3bd/D4/Jxns1TqNRqdOt1Rn1AsTL3ToDNsU64Vwbqg2ihhsc1wuDScHtjcXcFoGRKO2VhJuQlFrWzsRvGFYXXLSTQNFneXfOWCR0fX1Dvgj5lY3fBSaxV48N67fPFLv82bb77L+XmOwXDCo8dPlLFMJBJRD7oQiMSbzuVyqfgPQHl7yN/3ej1lpWs2m/UgpSUWLRNd6lyBZzudjvKZjkajTwWSVqtVrFarahbJ4VbYdQLBSujr5eWlOhSKvCwUCqmkAdkhLBYLkUiEVCr1zB3FZ16px+MxZ2dnSp0tYe87Ozs0m006nQ47OzsUCgWm0ykrKyuKSCOrSyAQUCoXvZGgw36RSEQlO0kY0M7ODtVqVXWjrq6uSCZWaDQa6sYJi00OLf3OhKODYwbDMRbDBLfDQiSYQtPmJJMruBwxCoUyv/nr/5RCoca/9hP/Gq986lO8ce8djG44vjhkOphhx8TDx4/o90a06wMcLju9QZNY0ofHaWIwbNLrljBrGvGElZWYk82tMJ1eDru5QTK8zmY6QW+zw8Jo4uy0zpd/8xLTPMjW9hjzbMDmjQQP3y6QzKwRC8bYziTwuCxcXV+ymrmrzGQ+6Nlss9nY29vTdYKHh+TzeRVJYbValZ2BqOmFnioNL6fTyfd93/dRr9cpFAoqxiIQCKiur/itSFpwsVjEbrerWGc5YDabTcrlMhsbG5yenhKLxVQqsIgOxMa3UChQr9d14cb/r7336pXsStMzn+3D+4jjvU2fJDPJZpHqriq1kQS1WgN0382FruaPCbrXANNQT1uqesrRJtMf7yPihPcRO7abix1rNTl3nQVwhAIXUCgUi+Q5GbH22t/6vvd93plzJ5fL8fDhQ7755huZevuu63du6QnyjuhPCma073s8e/aMVqtFsVhkaWlJCtPF/y8ITZqmyWDKMBk2kBEWoo4WP2s0GhGNRpmbm5MOF+HmUBRF9srX19f55stnvH71llgsTeN2wP/8p18zNzfH48cPmU58xhOf68sGJ8dXxGIJYvEY9XaVxdUCi/Usb04mmJpONp2j3WkydXwUXcPxPAxfwXWmxCIZVCzwbTR1ysJ8ivW1HMmEx3DcZWctQyZi4rsZotEUetxG3zD4NlmlWe9ycl4nlUgST8cwogofvP+Qj97/kE6tjOJPWF77mMIsC1KI/7PZLIZhyM+q3+/z6NEjST7q9XqyS7K+vs7Z2ZlkqaTTaebn5zk8PJQJs+IyLtLGxAEhpBDNZpP79+/z/vvvS0HU2dkZKysrrKysMD8/Lx3jQuPxXa+oiL179eqV7G4IEZXg/IlEt0wm8723/g+6qePx+PdCKkX4ZK/XY2dnh2+++VbqDJLJJG/evJGCnO3tbV68eC5Zadls6IgWmlsR1iMGNOJVaNu2BNb4vk+v38P3fBYXF6lWq5RKJZaXl2Ukhq6HHOvA93CmNs1Gg3azyW31hmgsSoBGo9HEc8c8/uAxhqXT6XZI5rMcnZ7QbnawjCid2z6epxC4KqqvogYK4/aYmKbR8JrousPaWg5dNai3mvTaBqsrCwwHUyxcvNEYQ1WIJlJU68dUb65JpFzq52VOjh021uc4OTqmetPlG+1LkvEoHz58QL/dYDKx5dtNZIsLucHZ2Zn0ipbLZZmGIIZawpkiprKCb+d5nswx/MUvfsGjR49kVs10OuXo6EjGl4gJpIBriinie++9J8f3gPSaikGcyN8R/WeBcBDlyOLi4izZ2JUt3MPDQxkjLcRw77LeuaYWT1cikWAymUhRSqVSoVgsEo/HiMVi7O/vS1ezuBkDMuBIqLvW19flrVsATZ48eUKxWJSXx1KpNFPwpcNTOZmSdKd+vy+fdnH7dtwxS4tz3LmzRaGYJpuNs7G5xM7OGkvLRRaXs+zfXeHnf/wTfvbzf8PW9gaFQomr6yoXlzV8z8Ad+gybQ2J6HM3VSUUy4CgkI1EUB8Y9G0s1MRSDwPFwp2Omox6V6yPiUR1nHGM4cNCMPr5SYzi5pT9qE89EwXSxx2nqNZ12y8NVdVqtkBtdr9ep3Ta4uLiUgakC6pNOp+UGFHR/QJowhH4mnPaNKJVKDAYDms2mJM3G43HZNfkuxUnoLgzDkBdvMaF89eqVpPyLny+moZFIhEwmI/vl9Xqd/MxBJJzmIlVMZAJtbGxICazI6BH4NGEmfpf1O2W+iJgF4foWPdLLy8uZCTcpSUCx2EwAPhzy7bffks1micfDp/ry8hLbtun1erJtpes6r169kkMXYSsSSVO7u7uhrT4eRzcNEskkAQGxRJwAmDpT8sUia2sJtrZ3aTSaWDGD1dVVCsUiL148Z219jXgswmQ0ottqMrbHjLyAk7MLkpkc7XYf35kSiaaY2OEkcjoZoKseBGBqFmYQkIokcMdTBoM+qXQExXQYux79Rh9nbKBpKrXuLZql4qo6vpJgNJpg6nG8sUWjPMLUUhAE2K5Ho9VG03UyuQydbicEzczC6k9PTyWiQLDstre3v4coEEpG0bIT4UsC/iiMA4qiSDrSgwcPGA6HjMdjiVmuVCqUSiUcxwUUYrE4ruvR6w2o12tUKlVc1+WmHFr7EskEKBqKqqMZZhi+OnWo1xt4nitTBY6Pj6VBOpFIcHh4SDKVQdUNri6vWFhcoJjOYFj/P0hP8/k85XJZ1mXCSyfkh2JkK27BoqZrtVoy5xDC0a1AUolAIqEh6Xa70swpnB2inz0YDtH08LmMRCN4vh8mQ7Vb1BsNEqksnqIytifcVMtki3k8JaA/GqAaOuOJzeHBCc7UIxaNEZ+9Oi+vL6l36riBjRozwNAIFJjYQ2x7gKq6aBrohk7ge4wGIyrlJt3uiNFkTHfQw4jEQNNodRt0Bm2mvsfUN+gNNSrlIZMhDHtTmHrY/THjwZjAV4jHEySSCVx3SixmsbS8QD6fl/IB4dwXXsxutytTrt6+fSsBi4VCQTrFxYQ1FovJsCfR+RCliyA/Cf1HPp+XQUm3tzXy+QJ3795jYWFxJm2NzgJdjVBB2W7TaDTpdLukMxkMw+Ts/JwXL1/hzRw6Nzc3tFotKpUKwSyAajAYMBqPmdg2lhXBtCwikSjTachjfJf1zie1qHVFkz5E61a5e/cu/X4fy4pKy/vt7a2sA0W0w+vXr9ja2pQxaYCUNQo2hQgpErX27e0t+Xye1dXV74l1RMkh2G7igRGeu/bMXFoul2eDmYVwNGtFwPMZjyf0BzbaeEi9UafdbuH5PhgGiqoxHg4xUHAcF1XxcR2FQq5AsZin16jiBh5TJ/xCut0xUU+lXO1gRX0Y+ei2A7rG1B/R6nn0uj6OE0dFZ+o4gM5wOMLzFVzHo9kMDcqGaRIEiuR2pNNp2dZMJpOUy2VisRhnZ2dsbGxI06yIshCB9sIkIC5vi4uL1Ot1bm5uJA9REGmz2SytVovHjx+j6zrn5+eyEyFAkCI6MJ/Ps76+ztuDAwm8WVtbw3Ec2d0QJgVxAZ1MJuzu7mJZltS51BsNUDTW1sIYEMEZEU74f+1655P65OREAlIEe8M0Tela8H1PEjEty6JUKnFyckK/3+f+/fusrKwwHo/l3y9ekWJIUCwWZ3yQMdlsdhbVEMY2X19f02w2JUlTSDE1TePJkycMBgMpoxS6FNd1pdtcAAjFxSWdSZNIJnE9l/6gT7ffQzcMVEPHJ8B3nVkb0kDXTUzDRFV0JqMJvhIQaDpoUSZTg6lrMZnq1NtDJo6P7fl4CngB9AeT0HWDQac9QNcMuu0+49EYZ+qgqjqO41KvNXBdj1Ip7PCIi51IbEgkElJMv7a2JglMIhVtZWWFcrnMycmJBFGKz1FIEUQyr0CWCX2H6GdfXl7KE16EDwm3TCKRkBPOdDrNYJYQ4LqujJgTQE4xgFlYWGAwU+KJLoc4FNdm4ivLsuTlVLRlf9BNPRgMiMViZDIZEomEzPsQI1nTtGQrbmNjg9XV1e8FhAq1nrg4OI4DILnNc3NzM810S46GhXiqUqlwMhu8iETW4XBIsViUHL56vS75FQIwbpqmTOA6OzujUq3iqxCJx0ikktQbDWLxsCb3CTBNHS/w0C0Tw7RQFJWIGSHwwLN9JmObqT/GiupMnAn90YhA1XC8gMJckWyhQCafptl2sacak4nPcOgytQN8V8GeuGRzOZLJNOl0Rka1+UFAp9Pj5rpMuxVS9efn5+VET1VV2u22xBOLfnS9Xpcdpnw+T6lUIjtzB4kgKXG57HZDrrV42JeXlyVbxHVdDg8Pubq6kp+5KBXr9bokqopsF/FdTSYTzs/P+eabb2i320SjUVnCjEYjzs/POTs7k6GtYp7Rnf1+QpUYiUS4ubnh+Pj4h93UAmewvb0tx7aiyS/6k7u7u9y/f5/9/X15Wgull2jsJ5NJ2RrsdDoyO1Go/lKplMSb7e/vs7GxMcseqcuot7t377KxsSEvqqEM1ZbaA5E7Eo/H5Rc9HA7xgxAOny8UWFxaAkXhtl5H1UORT6CA57t4vouiqqCoGIZJ4MFkZNPvDnA9J9RUaz72dIgfuPiBh2lEsCc+fqBRKGbp9kf4gUU6XcQPVAr5Iul0hkgkimGY4QULlUgkiuf6xGNxNC2Ub4ZOonC0LQA2ghEoaEvtdpv19XXq9Tqnp6eoqir10mKDCc+gAP1sbGzIVDGhYR4Oh1xdXUknk/hORX74cDjkq6++4vT0VHI50qkU9+7dk3X91dUVo9GI/f19crkcmqbJEb7okIiTXehHRPflxYsXBEHA+vr6D58kICDZYqwqLiv/QpEPJ4wC23p0dCQ10Z1OB01TJZpWWLRECSGE6EIiKUIkBYf6Jz/5SRgLN9vcpVJJBsCLIU8olYzJKGThYby+viaZDC1QAVAoFjFMk06nQaFU5KrZJAjAikVodVsQ+BimieZrOO4Ed+qhKhr4Cn4Aumcw6I1IJ2LEohF6fZt+d8TlaZNEUiFqBmQyabSpRqc75LbWxR6brG6UaLd6dDoDEslw4OB7YYchqht0Ol10JWBxaYnBaEi32+X169fy8/q+ojHs8wtwpIDdi/vF/fv3Q3rpDFsmdM66rlMoFLi5uWE0GjEcDgHY3d1ldXVVvmlt25amWDHKFgkP+XwedZZgKwJJhXZHAO6DAPk2Fm/S79bf6XQGzTCllU38fj+49FSowS4vL6XeQEgaxV8XQJRIJCI5EWJaJZwroQ46bPe9ePFCOpnr9Tpzc3OMx2MZlzAejxmNRjx69IjRaCSDcEQW9mAwYHt7W9ZskUhUngCFQuF7PrxSqUSgKERjMQ4OD5jaoWPEeR7GMatBAEFAoILnK3iTCb7j4Gg6QeDjuRCNxbFHAWMVokmFiGHSmY5wbR/PjjJwHYKEh+sOcdyAiR3MOg86t7cVBoMRqmrg2FOmYxszGp7O/XGPZrNFKhZSqXK5nMxBX14OjRXdbpfz83M2NjZYXFyU+eNCc+26royl29vbk+WauLeILEPR0hPhT9vb23LULtIbhJv8u1mU33XfDGfGkHg8LqUOKysrsmPl+6F7fX19Xab/CnVlEAR4voc+k0qI+OhUKvXOF8V33tSRSITDw0OazSbz8/PSqiVkkoah8/r1K/IzFtzcXEna/8NBzZhsNiPrrna7jWmaMo328vKKiR1iaSf2lMWlMNm2Ur3F8wNisTipVJpEIjkT/ddmpNQbtrd3Zoq0NtlsViZ+CTWbEFS5voeu52Y19xx6xKLb6WOPp4xHTXRVwx47KCp4kymmFUHRNJzpFBSFTDZLqzVBCRQGnRGqpjPoOkwmYJDAd8fY4z5T28GIGEQsi9HQRkEjly2C36XbGjJ1XCzTwrIitLodPG/KaDpma2eL2m2VeDzOcDgkk8nIIZewrVUqFRYXFyUIUrQ9RSKDaZpS1C9iAoX7XqjzRHLx5uamHK/XajV5v3GcsB5vNpuzt7NHNBphOrVnp3aebrdH7TZMedA1lcODtxyfnJDL5ZiMRyTiMQmxPDg4QNd1VldXURSFL774gkQyJSeWc3NzvHn7ls139Ci+c03d7XY5Pj6m2Wziuq4cfyaTSVzX5ZNPfsJ0anN6ekK73cJ1HZaWFkmlkui6RiQSknyEhHFlZUVm+bmuSy6fYzSeMLGnLCwuEU8kmTouK6trOK5HNl9gZ2d3Zvp0UBQVUJifXyASiQKKfBOIfu7JyYlEnDmOQzaTIZWIs7mxgaLqlMs1eu0+iqsQ0ywKyRyaYhAxoui6RTQaR9V1jIhJNJ3ACWwM08Y0fSJmFHsInm2gEWM0sJnaDhEjSjoRx5lMsSdDFBQ0xaTTGjMZhfB3fAVT0TFQCQyNieJDRKM76tHrh6ZbcQoKmr8wuAoOHiDLibW1NXRdD99GM6SC6G33ej1SqZSkNn13spvP52eBo5Y8AMIS0sXzXPL5HJZlkk6nWFxcIJGIY5oGiXiMTDpJPBalWMiTz2VJxGMEnsvayjKuM5UlZbvd5vLykqOjI6rVqswjn4xHqArUa7dkM2l816HZqL/T3nznk7pSqUjYeRAE3N7esry8TDKZ5OjoSEohFUWRm13UZEKtJdzFR0dHPHz4UEIQO50Ok1mLyTAM6cs7PDzEsiwZW6x8R89bq9XY3NyUoUepVIp0Oi1zB3d3d6lWqyiKIgOUup0OmqrMyJ0qrucyv7CAHUB3MmbqTNA1DQi1xPZkEkYxB6ENqdudUsrrGKbOeOyjGyauO8YwI7ieh+dOmYw1VA08z0HTIkztgIhloiomCjau56FFNMaDMZphAQHxWa742dkZ2URK9u+HwzCbUmTbiP7x4eGhjEsWI/RWq0WpVJLsD0A+GEKgf3p6yvLyMnNzcxL722g0JAP8u8laxWKRfD7PxcWFbK32+32pvxZzCNFREW1IUb589/6zv78vvzPheSyXyzIEdTAYsLy8/MNzPwTARqjkBoMBmUxG9hjfvHmDaZpsb29L9ZxIMhWXDM/zuLq6otvtMhqNuH//Ptvb2zI3W4zHhRtGxEELmeNwOJStLDEm/u1vf0u5XMa2bUkHFakG+/v78jJkmiZnZ2ccHh5ydHTMs2ff8Pr1a/qDAdFEnF67zWRq4ysKnusRzKSXruMgUhtUVWM4GtLr9+j1uriei6JqeF6APXUxdBNn6jEeOSiBge/qdDs2/f6EbreHoqoy/ElsBFXVSKdSVG9vpfa8WCxKcFAQBJRKJSlS0nVd+hlFT7ndbsskM5GYZlkW+XyeWCwmTb5BEMhhl1BMXlxcyPLE931OTk6kQeDzzz+XuSzi9BfZ52/fvuXly5dSvHR9fU0ul2M0Gn0P+xuyAbOy5y6wGuHAzpqhMc4lKvpd1u+k/QCkFlpM+GzblqGUAk1m2zb9fl86ZJ4+fYrruhSLRbk5xXRJWPj1GcS93+/L2/38/DyANOhqiiIFNPPz8/KSmkwm6Xa7lEql77myRc9aRBgLiWQsFmNlZYXBdMrp+TlqLIqVTNDrtfFdF8OwMCMRNBQC32XqTGdBm1PyuQg+AdG4yXjsY1omqmZgGBqaDp47xXUUxlMPRfVIJpK4rkIqlcUPXAbDUKxlztzew9EQx51gpaKhhnrclIZU8UYUPWYhDhNvPlELj8djLMuSURmAbKGKoYhAWlxdXcl6XEzyWq2WjKMD6HQ6FItFNjc3OTo6khIG4U5yXVcOxyCUPYiHSxg8UqmU1GsLcLzoaB0eHso/32g0kie+orxb6Ms7b2qRnppIJGYeRZ2joyMAWXqIyIaPPvpI2rJExIUxY3KIaZVwZ1xdXXFzcwMofPzJiixThsMhiqLIUerV1RXtblcOBQTFPpFIsLm5SavVotFoyP65qqpkMhmePn1KrVYLx7+xGB89/RAfiKfS9CYT3MBnOh7RsyeYpoHu+vjeLPNcURkN+xhGSPFXNQVV98lmUtTqQwxTx8eBAHxFYTAak45rqIqKqgQEgY7rBEynDh23jRfMNOi+D4Svb9v38f2QvXFyckrCishyKZ/Pz9KEHekSEn3k0LcYbvLz83O63a5MsRWjakFtEp+36JBYlsXNzQ2Li4tsbGzIN6SA6gg4++rqqjRvCIe/uEwuLCzIye3XX3/N1tYWjuNQrVZZXV2VJ/hoNJK1f3fWChT2rW63K/Xe4me+y3rn8kM8pWITh2bbyffC0kUpIkI/19bWuHfvnlRn9ft91tfXiUQi8gYvJIyCNP/w4UMAiRy7urqSdZ8Ihq/VavLmL2IgxN8r1GDD4ZDz83N5ihSLYQxzq9Xi6OiI16/fcHV9haqpoCkUSkU8Pyw7otGohEOGdV6opYjFI1hxDcefoJsB6VyCVCaGr3goaoAR0UmnUySTKRLxGIqiYehhd0FRA1zXRtd0lJkBwvM8prZN4Ic/J51Jk0wm5Rsmn8/LN0yxWJRBQiLQ/ujoiNFoJAcrS0tLEj3R7YbcPnE6CmGYAN0YhiHtYQJ+b5qmDPY0DINXr17h+740J4gxeb/f5/r6WgrXLMuSh56YXgrylO/7UlufyWRkho2YaUQiEV6+fCmbEO+yfqc+tSDRiwuMYLCJOk6kqp6enlIul4lEIiwtLcmx7Xf507FYjHa7LZOpmBFA37x5I8PpE4kEr1694tGjRxQKBd6+fo3ruiwsLDA3Nycnh+I0AaSzwrZtDg8PefLkCbe3t2FftlHntlolnckScT00w0AzDaKWSSSZpHlbwZ/aTDUDezTCmzoYuopuCuabRjJl4PsuuhFnMnIZ230MUydXSBOPGyjTCdGoie1OcV2bSCSOHzi4gYdhqLieTxAojEcjvEBBS4dTNJFDLrQr4oEFpEJP9IoFi29xcVESkURZIGpp0UorFApyNlAoFOS9ZnNzk4uLEIcspnyDQThLEN0S27bD0nCWNyP0J6Zp0mw2WV9fZzKZkMlkqNVq8sInzNnFYlEqN0VUd7/fJ5fLyaGNyMTM5XKUy+V32pvvfFKHNVWBRCI5+4NZstNhWRarq6t4bhhHN7WnRCNRFBRcx2VjY3MWthODGZ/i4OAAZiPv5eVl4rE4pdmHYFkWu7u7rKyuhKE3yQTD0Yjt7W3ef/992VtdXFoiXyjgzep5FEgmk/T7Paly63Q6dDpt+SDouoZhGrOJ2Ti8/A0GVMo34QekarPyIBS7R6JRdN0AFFzXY+qMmdhDjIiCE0xA9TAjBrqhgeITT8YxIxaapszgMx4oPorihyP1mV5c07WwnJnV+aqqY+qmhMiIlul3s99FT1eQTsXFLRw8RaSGWiQOCF+i0NwIrEG/35dKvTB/MiEPJ5EnI6TD4rsXl9RYLCYhkyIXXuQoivImkUhQLBZpt9tMJhM6nY4UK4kL6suXL6UeRIAxhUXwB9vUoHJ8fEKtVkdVdbrdHpYVZWlpBdOMMByMaLc69Dp9FFSikRi5bJ5Ou0ssEsNQVS5OjolGTCxTZzgcsH9nn3gqRbc/JJ3OoCsqih/Qa3cY9HqAwr/9kz9GMw1iqQSP3n+fSCzG2La5urlhMByiGwbLKysUSiXm5kqAz+npCTc3V8TjUX7zm19RrVY4PHxLLG6RL+UJFIWFxWWGIxvP9/F9DytqoBkGqUx2xvUIiCWi6IaB6wWoepThyMMy4vh42EEHPeaQKqRwgoBsvkg0nsAxQItHcVFRFZ/JtI1uOGiWgmIaRKMxDEMDPBTFw3NtxsMRGhGmY4VUMiO7EeVyWZYRzWaTSqUi062ePn3K6uoq0+lU8glbrTDUUxgDPvjgA5LJJIoSpviKzsknn3wi9TXz8/NcX19zcHAgrVzi7SkoTyEUUpenuqIo39ORWJYlXTr5fF5GOwts2aNHj0ilUrK//t577/HkyRP6/T5XV1fyLb63t/fDbmoh+FZVVbKmRVJTr9ejPxjgE8ZafP7lF9xUyswvzLO2sU6z3eLlq1ehNsGyuLy8ZDSTLwqDbWf25em6jqIqVG9vKZfL1Bt1Wq0WgeejzU6uzc1NOeq9f/++1A5rqsabN29kRNvZ2RnJZJKVlRU8z2UwHEAAnV6P8/MLzs/PZVen32yhENDtdBiOhviEHZ9uJzRE+AEYRpRarQ9EyBdK5ItFXM8nkUrg+S6WpaMaPmNnwHDSpzPoYpgGQ3uEbprohsFoNGY6dXA9Bz/w0XQV0wz/+vVNWWKPhelY9O1F58Z1XW5ubmT2twDGdLtdKVsVNrkvv/xS2qqE2fnZs2dcXl7Ki/zh4aHMW+n1elxdXcmxujBHC6OBwC10Oh1ub2+5uLiQnaY7d+7Ik9ZxHJ4/f46u69y7d4+3b9/y6tUrUqmUpKj2ej22t7claFLoTn7QTb24uIhhGJJE32q15OhWOMTH4zHD2cXFtm0iM7fMcDjk/OIcw9BJpZKSTTwYDLi5vp71JxWsiMVoPMIwTTzfp91uYegGsUiU3OwV67ouc3NzMimqWAxTwa6vr+UpI/4+wzAk3NA0LQqFIq4baiWuZx2XUC8dQZ0FZ/ozQVbgeWFKrmESmfXEVVXDNNOoagzf0+kPbNKZ8GTF91BVn2hURzcB1UczNQJNQdF1bNdhbNtMHQ9dN8KfAyiqQbffxw/A9wKSMx+mqoacwOXlZZaWltBnjh+x8VqtlvQPVioVWXcLiL0o0RzHIZ/Ps7W1Jf89IsRoOBxK/cX6+jr5fJ5arcbFRZgQdnZ2xmAwkK6nfr/P6uoqpVJJPjwiJm48HlOtVmk0GszNzZFKpaQVb21tTQKKBD+k0+mwtrbGxsaGVPK9azb57yQ9XVpaIplMcnFxwcHBgXw1ffrpp2RzOTTDYDINvYKluTmyuRytTodqLcx1EYOHyWTC7e0t06nD2awdpekae/v7sq1Uq9VwHZdOq41lmBwcHEh1ma7rs2i5LY6OjmQ6VKvdkgAVQcEXuTDb29tUK7dcX9/Q7fQ5eHtIvR6K8wMgUHUCH3BdAj8ARUGZRSaPx2OUIEBRVMYTlU53SrM9RFVMND1EF8QTESIRE8cdoRtgux5j16XZ7+OpGkY0gmFZaLqOqhtYkTimGZ5QkWiUjY0NlldWsKc2k8mE09NTyUgRpCuRaCYug0+ePEHTNAmYESm2g8GAxcVFisUi/qyz4rqu5G3c3NzIsfrm5qaES8bjcTkVHAwGUot+fHz8vdlDp9Mhm83y4Ycfomkav/jFLyQPRCR7ffLJJ2QyGV6+fEmxWOTP//zPwyjBWIzPP/+cJ0+eSKhOLpeTk+N3We/c/RBtM9/3ef36tfQrJhIJVlZWqDebRCIRafK0LAtm9vfJZEJpbg7Fd5k6Togci4dZ2SgKOzs7jEYjqrUatuMwv7go+Ra6rqMCGoqUvAqbktDp9vt9lpaWQhf1TGnmeZ588nVdR9f1mdbX4PTimnqtgaYaGHrAZOrgOW644eJxvOkUb+rgqFrYxlQUDNNkYk+xXRUjYuC4Ab7uzfQrKt1um2g0iWkaOK6LYigEukE0Fcf1FJwgYOpOcadTVCNKLJ7AjEbpz6IxFE1nMnUo35QxrVCzITJVEokEb9++ldHTIjG23+/LrJQgCHAcR3aBCoUCn376qaTIHhwcMBqN5Bt1aWlJat2/ywNZXl6m1WrNQI5LslUrLpMCFi86NIZhkMvlZCdMMGHu3bvHf/2v/5Vut0u322VnZ4e9vT2azaZ0xAg8sdChiC7MD7apFUVhdXWV09NTnjx5QqFQAOD58+d0ul1cz2NxeYl+r49pmVSrVVzPIxqLsbSyTNTQubk44/Likv5gwIcffsRto4k9nTIZhxhZwzS5c/cOvhdqEJzplMX5eb788suQVjRLjhKWfEBu9GazSTqVlmZaQfWUOY6z/m9pbh7NjPPbz59Rr1ZQYlESyQTTfrix3ZkhVZmNlVVVQ1PDSZdhGHiArinki/lQXtrXMVSNuWKJVEpHdwKqtSaoFqqlMx57aKaBHjEwYhHGODiuF+aUj8YoMSv8815f07ttkowG7O9vMzc3J/Fsom338OFDiWgbDofyVX95eSktXhCWZPV6XXZRREyGbduyjSo+v06nw+vXr2XLViQ0eJ4nVX+KotBsNqWzSPxe4nD56KOPpBxYSBhevHiBqqpsbm7Sbrc5OztjaWlJmheazSaHh4dsbW3JQ1Dcb36wTV0qleh2u0SjUe7fv4/rumiaxunpKc1Gg0gsRjoWxZ7avP/B++FEiQDd0Ol0uqSWFpg6DpGIRWSmp56bn6PValO+CTP0coV8iD2wotRrNQgCPvvsM0aDISurK9RrdTRDl+2tZ8+ekcvl/sUaVr8lNhM8iZpawFKGw+GsrbeIolksLi5yVqmA69PrD/EcN1T+KQqggKIQBOFGDghQNQ3dUonEVPqjFqiFWRsvYDjsYyykSCYSDBoD/EAnlSkRjKEzaqKoGkN7jOO7oXXMD9B0Hdf3MA0LV3Ho9vpMvAGKsiMtXCIXRgw1AJmhIyJKRqMRlUpFDq1EvXx+fi4fBmGXEzWugAM5Tgir39/fl0GdAhUndPCJREImdolJ4OXlJaNRmNArUrnEaVupVKQPUgzogiDg5OSE+fn5GYLBkbMKYfQV4/p3We9cUwshvzB1np+f0263uf/gwb9Y34cj7uzvMx6P+elPf8rz5y/kbD8IoN5o0usPsMwIjWZTUjgXFhZotlvclG+4ub6Rr0nLstjc3JRTrFo91Dk0m02SyaS8FD169EgGKkUiUVl+iHG7iK1rNBrc3Fxjj8esra1hmQbpVBJD09HMCIEfoMw6LLqmzQYaDj4BU9djMBpixVXMmMrcUo65+Rw725t88P57xOMxIrEIhmWSymZRDIOxM0UxDBRdR1HCS5ui6Wi6TqBpoOp4fhBGbwTgei7dXleKe8RrXlD5p9OpvGxZliXxbj//+c9JJBK4rsvS0hLOrMQTVi4RLWfbNpVKRZpyFxYWWFhYIJ1Ofy+rXKj6hBZE/Hxhjo5EInS7XW5ubqRFS8iRxdRWhBWJMCOR6ygeJHEBFdNLkcD2g25q3TRxXJfeYIAPTKZTOr0enW6X3mBAr9ul1WiQSaYYD8c8+/oZyWSKjfVt0qkcvcEIN1AxIjEi8QTJdI7abYOpHdrrG7c1JqMx+UwW13Gwp1PMSIS5hQWmriNLmYWFBRkpnc1mOTo6wnEcPvzwQ5YWl8nl8hQKRaZTl+FwzGAwJBqNo+smtdotBwevqFav8D2biKHiOVMMRcPAxHd9PM8lCHx8Z4pjjwlQmDgefWeKayhgjrDSAamChut1KWWSPNjfZ2m1RLwQIVmKECsYdNwGtjbEShsouoJrgzvwUHwT9CijQEGJxXC8AE0z8HwYTR1sx6FcLuN5njQpi3aa7/uMRiPK5bJ0nqiqysrKitxUqVSKbrcrU73gX5K7giCQIinP86S/VJgBLMuaJaWF5FqhFxFan0KhQKPRkKWC0JwIcZWo8UU2j2D2+b4vp5SXl5csLS1JZmKhUKBSqcgh0jvtzXfd1NPplO1ZYPqrV6/Y2tqSr8Ziscj66gpffvkV/dmtOZfLgaLR7fYwTJP5uRLjmUO83eliWhE5sRJRZ91ul2v3Wo52e71e2AKa+SG3dnY4OzsjEolIJ/n+/j4XFxfhiHXWKfhu6qsg3udyWRwnDJB3p1Pu7u3y1bNvGDkBg+kU23GJWjHswMcb26Hp1rRAAVUB09BJJmPYzoBIMsZgNAXVxHXBDxQmQYCuBdhmQLXfYOzbBJqBPZrCWMHp2wSuhqIbeEoYbxE4LqauEzFMRtM+03Go576+vpY96QcPHkhus6ZpsrVmGIacHQg7l8CB7e/vS8d9rVbD932pzxCpWb1ej+fPn2MYhlRXxuNxUqkUX3zxBYqiyLJODHCEICmbzRKLxeSbVgSXirDTTCZDtVqVl1LhnxRpbIeHh5I6NR6PJdHrXVV673xSl8tlNjfDcff19bWURAqWRD6Xw7IM+jPGceg+afN//+3/IJfL0mo35QcgOiQAzWZThosWi0VpYRqNRmxsbEiqqUAeCAqo0CFks1l5MRrPPtxyuSwF9GLoEIlEWZxfREdlMhoTsyKUMnn6rQ6T/hB/YmNoBqoeQTEsjEgcL1BxXQ9D14mZOtPhmHbDxbXjTEZRuj2VRn/KVDWJ5Eq0Jz61/oDu2MZFwfdVcFXcsY8zdMHVMGJRookYuqYSeC5a4BM3TTTPw1IDVpaWyGQy8lW8vr4epijMlHGZWV9cOFUUReHo6EgOU8QGE1RTVVX59ttvOT8//x4oMpFIkMlk5Ob3PI/pdEomk5Eb7bujb5GRKLC7m5ubPH78WGpSBC5DtP5c1yWdTks1psCbiRpdqDcvLy9R1TDU9Qf3KN7c3PA3f/M3MpKiXq/LYBvTCk/EMLD9mna3QzabkwONeDzGzfWIZDLJ4uKijKATzotKpSINsltbWxIILlC24osSRgLRyBcCH3mCZDIcHR7KfO1arSYtULVajeloRCadY9QfYagaK4tLXF5X6I7HqJrOxA/QzSiBq+C5Nr4/xTRM7MkURfXx8PB0g0FX5/igw6g/oRur4asHqNmASreMq/mMXfA8HdUz0BwV1wZdjeCrhBdFBeYW5um326iOgxn4RHWVqJVgfm6OaNSUWSzValUCGh3HodVqkU6nSafT5PN5CQwCpNbl9PRURrjNz8/LqAshSEun00QiESzLkhNhIaAaDoeSrSdi616+fEkmE3JKTk5OSCQSzM/Pc+fOHb788kt6vR7xeJzt7W1ev35NpVJhYWGBnZ0dWq2W1H7cuXOH8/Nz0um0xDO8evWKpaUlUqmUpOL+a9c7n9Rzc3Pf4zb0+315sRgOh0ydKXNzRTzfQTe02WkR4d69u3Q6bUnvSSQSkjIk0Fcix09MK4UuejQacT3LAdnZ2SGVSsnTW4ioxCb3PI/LGRBe1G61Wo1ut0uhUGAwGFBvNFmYW0TXDN68ecvJ8TH7u7ssFAvoBOiKQiKWJJZIYcSSpApzBKpJPJEEzyNmRND9EPLYa6o0qlMqlS7fPHvNN8/e8vr1OfXagMbtkHHHYdp1GVw3mfanqIGJbliohg4KjAcDAsfBG40YdtpENIVMIsZ4NJK1ciaT4fT0VNaxgimoKIqMHzk/P2c0GklRk8hjFIIokR0u2pyivhW681KpxNXVFZ7nSc20QFuI+GYRuz2dTul0OlK6KrQpYp5QKBRmqRKB7K8Ll9RgMODVq1d0u12q1Sr1el16MIWgSbQZ/7XrnU9qQTzd2tqS6ahig3fabSKmhu87qKpCqxVqBqJujNvbKslkaCzIZDLyFRiLxaSARljDhBRR3OBvb29lgOjh4WEY1G6adLvd2dg6bFE9ePAgVIPNgO+j0Ui6Y25vb6ULfmVpmXa3S6fb5ezZt1ixOAvzcyQyKWr/zy/RPB/XttEUBd2KEo3HqZw3megBlhaA7aCoJs4Ier0+vqugOzbD3gB9aqBELfo1G2WkY0wUxq0pwTSM5TMsi0BRiScTDPo9EqYVtjiTSebzOSzfJ5/NoCiBrI2FkF/ESQgKvxiNj8dj9vb2pOhJTPNEzJxpmvLzFZngmqZJPJzgD4raWdCvRE+/Wq1y584d5ubmaLVaaJrG0tKSxFoIl5Jt29IrahgGe3t78sER9wHBpBYbWVxa79+/L7XyYuT+r13vfFIfHh7K6N4wuCgrpY+pdOglPL84A3zi8RjX11dcXJxLF4Z4Wm3b5quvvsL3fdbX11ldXaXb7VKv1zk+PqZcLsssk1KpJI2+wgEtOgKxWIzT01M52dJ1HXN2YRJC9Lm5OenyADAsi0yhQKvTpdXpks1lsaIWhqkzN1dECTx8exLqPkyLkeOixZJgRBlPPFw3YDLoETgewVjBH/j0am0G9TZxNYbdmnB7WKd72cNtuQR9Hw2DWDyBp0IkHWd3extLVcmn06SiMe7t7VLMZ/npT/8Nf/mX/5uEBgldRrfblam3QhAkbFSxWEwaXUUZIVqYAO12m7m5OXK5nEwR7vf70vd5dXUlp4iihhaoBdECFcFHzWaTt2/fSi23sHgJaamYJjqOIzsfIkrl/6sSFMSo6+trOp2OjDEUvfgfbFMLh7LjOKysrMiTdTQakUykMA2TydgGFHnRMQyd+/fvMjdXYmFhXvoRRZ3rui4ff/wxH3zwAfv7+1KMdHh4KH2F4gFKJBKsr69Lf564NO7t7VEqlWTA0c3NjbQmVatVGYdcyBfI5QpcXF5xcX1FNB7DjFg0202y2QwfffwhuUwSUwM1CNBUFdOKEEmkQDGwYmn8QGU6HTPodYnoBolIFHc4Qpk6jFtdvKGLOlZhqDHtuSiOQtSKkc5kCVRwA49uu4Ua+NTKZeJRi831VbKpJHMLJaLJKFbEkv5LkX3Y6/Wo1WpSliBEQIVCQbIM79y5I2lHi4uLuK7Lt99+C8Af/MEfcOfOHeky0nVdBr0WCgUWFxflJVMQAb47PRSCJvHPXF5eSgVfsVhke3s7hG+6LrqhS/12t9uVyLl8Ps/du3elZ3QymWCapsQL/y7Q9Xfe1KurazMkbAPLirC6uoam6czPL5DL5fECBccLMMwovd6A8dhmZXmV9bUNBv0BiqKiqhrX1zfEYnF8P6DZbKEoKsPhiHq9EeKoNI12u0M8nmA0Gs841mPW1tZZX98AFHq9PuPxhO3tHSwrguf5YUz0ygrpTIbiTP+bSqZIJ1MkIjEihsn15QX/9I//wHg0IJ1JEI9bGBqMBx02l+d47+G9UOmWSqD4Ds5ojKFbWLE0U2KMXQs/UBkN+nR7Ffq9G3B6BPaA6vkZ/VabYAzuGBxfx7ViGJkcVioFKDiTMeeXJ0zdCalYhD/7+c9o1WpsrK1hT6e8OjjgcmZfE69ukYQlEBWDwUC2+wShKZvNyoMiZEsXiceTLC4uo6o6tj0lm81RqzWIRuNkszny+aL87KPROA8ePCQeT1IoFBmNxgwGI4bDMTc3ZdrtLltb2zx8+JidnT3m5+Z58+YtNzdlxuMJi0srFOfmMUyLZDqLqumSmCqotSJR7F9oUnVisThbWzusrKyRTmeIRn9gll4QBJyenqFpGoVCQZpAFxYWZprdBRYWFlldXeXs7AzTsHjx/AWT8WRG7ZnIpCjB35ufn5eoA6EoE5MyEUkmSE4ifDKdTkvrknBEi05A5bZCLJlAM/RQwXdwSK1SDU+NTpdas0E+lyGXy1EqFSkW8gS+h+d7xAyNxbk5Hty7w9HJGX3HJmrGUI0IvhVD1WLY9gTPsfB9l6k/xVQNFD0ATUM1I/iqjq5oaJqCoxsEpsEg8PE7HTRFQfE8HGdEIZXk5z/9lHwqydFwSDwaZTAeMXUdxrMJrHBbFwoFdF1nd3eXubk5Xr16JbHGoh0nnDGCglqrhfSq8XjM7e0t6+vrqKomW63xeGLWG45zdXVNtVrlZz/72SxT/gbHcUmlYjOpcUSaYlut0IC7tLjE7W095Hz3B6GEVlEZ2zYT20ad3beEHU30r4V2WlU1hsMRW1vbqKrK9fU1R0dH30si+9esdz6pBfg7Go2yvb3NwcEBJycnEsUqhjC2bfPee++xt7dPo9Hg+PhYGmdd15VZfYL/cHl5SbVapdvtAqHWQoDCNzc3efDggSw1hORxaWmJWq3G8fExuq7LS0yz2cSxp/R74cWqXKkwHI8xLAtVU1ldXeU//cVfsLq2xt6dfbK5HKquMXWmdLpdPGfMh4/ucn93ExMXAxdLC9ACj0Q8SiaXJ1rcxyzsoqY3URPrmOld4vl7JIv3iKZ3WVi9y/zyDqn0HIl4BkNRcSZDIpqChU/Wsvj3P/s5nzx5yj9/9k8YMzSvgCWqmsr+/j6O43ByciIZKeLPXiqVJDek2+3KEqHRaMhULGGIFXkqlUpF6jWCIJBBUMLoGo1GOT8/lywR0Z8WvBbRexbBVdFolPWZy1/83s5MCyTyfIQLR1VV/viP/5hMJkOv15sdhPPyoigUfJ9++uk7h4P+TkkCYhASZpNbM99hXMIhRTyw6JTcvXtXGjjn5uZkTHO/35cCl1qtJtGxhmHIeIednZ1QgzGjozqOw927d1FVlWq1ymAwkI6OSCTC3Nwc9/37jGedj2+fP6fZahIQkC8WSKaTLC+vkslm6HS7qJpGLB5D1ZjBaXqsry7zzVffkIvHeHx3l4tylVqniapHwPBQNRMzYqFjMtU8VNdFRcWImLiaiqGpTB0V39dRVQNFmaLq4QBGcW0yiRibS3NszC8w7HQYDwasbu9gWRYjd4L/HeGS+HxjsRiNRoOTk5Nwqru9/T3W9OJMpjsej9na2uLsLGzxCVmpOEw2NjZkPJzYtI7jsLGxQTKZlH1/QVX9roZEjMnDOcSN1Ko3Wk3i8Xj4UJomjhcCOfMzRvXi4qL0Sq6vr1MulyV6YWEhNCxcXFzIeLt3Xb9T+TEYDHj06BG//OUvWVhYkJeT6XQqEQTValUGhH744Yd0Oh2++uorptOpVGyl02n+83/+zziOw/z8vPTLjUYjer2ezN0WbSABpZyfn6fVanFwcECr1SKTyXBycsKnn34aZplHo8SiUT7//HOOj49ZX1vDikXJFvOkkin56lO0UI13en4WZmgbOpqhY5o6jcoNu/t3+OSj99moNfk//8ff47hDVMXH92yCwMaKRjAsj4ilMR73CaY2phklGomBY2BoFqrm4zpTfM/F1BV2tne5u7tFr1qhXr7G8j3y2QxW1KQ/HJBIJxmOxywvrzCdTllbWyOXy0n5p9AlO47D0tISw+GQ4+NjiR5oNBoz6UAoEKtWq7x584a5uTmSySTZbJZoNATmPH78mGfPnsmhiWVZnJ2dcXl5KWWp29vbFItFDg4OZO5MCOZssbG+gTHLSk/MujKKovCbz38bgkPHI8knWVhY4Le//a1kj4cUKVvSV9++fSvbtWtraz/sphYtOXFLdV2XSqVCtVplbW2NyWQs6zjBxxOpW+EHn5UbWxhLb2eorclkQq1WI51Os76+Lt3Ml5eXMvbCMAyazSYvXryQXrzz83MZw6Fpmvz9RLKVbhh4gU8imUTVNXTTwDJCV3R/MKBYLDGZhObRXr/P1fk5lhVhbW2dy/ItCj7/9o8+pdZs8+rtIbY7RbHBmXik0mmc4ZhIoJI0LcaTMQo+fuAxdqZYJkTUKZFEhHv7W/z7P/4Zo36Pw2GfdCLO1dUl6xtrFEol/ABuyuFUNbZlSQi9ANMIUb9ofabTaZmPI+4hiqLwzTffkEymZJrw9va2fEBEKoEA4wjFnWjJCVaKwMOJeDqRCiD+d6lUojf7narVauguX1+nVq9RrYYUVMe2GfS6EvkQj8e5uLiQY3gIMWXigbRtWwKP3mW9c00t+pzVapW9vT3ZSy2VSvzd3/2dFKOMx2PK5TIHBwe0222eP3/OT37yEz755Ceydu71enz22WdS7CIkk4LAqes6e3t7bG5usrS0xH/5L/+Fx48fS6zW/Pw8c3NzkqEnHqLKTZnPf/Mb5kol3v/gA7KFHKPJmGq9xvLaKt1ejxevXqJoKp1uh4vLSxLJJFs7OyyvrrC4skYsnafS6NAbDjEMDUML+NOff8K93VWWC2livkrE15h0hgQTh1wizkI2RTSYEgybeONbNLeF4Xf4w6d3+T/+979ke3keZzRiMhqB4qNHNIyYQSQRRTdN1jbWWV9bI5cJHSpXV1eyHSnaeUKm2e/3qVarkh0tYks8z5NvOUVRpMQgHo/TarV4/fo1CwsLAJLnLdws8/PzUtQ0nU7Z3NwkCAK+/vprJpMJP/3pTyVQMpsN3fbV2/B3YBbVMZ06cuBTrVblf0Tb9S//8i/xfV/KZsVEtFgsSuXg119//U5783eaKJbLZZaXl1lYWODw8FDWfML5PD8/L8Pd5+fnefv2LXt7e6iqKvMW8/k8Dx8+lFpnkcIlxtnRaJTj42M5dAAkBEU09cUJI276g8GAk5MTVIUZU0On1W7R7fXY3Noin8+TzmSwZzoRkYKQyaRnqrMMk8mIeDJFbm6JZCbH4uoK0WiUN2/fYE9GbG2ssDhf4nbR5rJSRo9a6IFPp3xJreWRn4+jW1EGAxXPCViYz/PwzhbbG8t44yGK7zPqD5n6Dv3REDQVzTL58tnX/NlMcbiwsMhwNJAYMGGVSqVSTGyb+GwCKE7U8/Nzcrkc9+7dk3asSCRKoVCQ6QI7OzsyGUukp9m2LUfSYnCzu7srpZ8CVi/StoQSUDwQqm7Q7YYa69RMwWeZJsvLy3JAJnJ7AGkcEA2FwWBILJZgb2+P0WjEysqKpDn9oJtagBgty+Kzzz7jT//0T3Fm2l8x66/Vauh66EzZ3d3l7du3lMtlHj9+LG/iH330ERsbGxwcHPC3f/u3MmyoXC4Tj8fZ2dnh22+/5dWrV/KkPj8/5w//8A95+fIlqVSK+/fvk8lkKJfLfPLJJzJuw3WmrKyuhu7yq2sWlhb52U9/xsXFBb/+1a9oN8OuS7FY5P79e+zt7dHpdDg7O+Xmuoptu5ydnaOoCu8/eR/f90gk4miaSr1W48/+7I9xAoeXr1/z5ddfsbK0zHA7Qa1yw87+BkvLy8TNRUZDm9PjIzrNBkeeT/nmhk73bWiw3dojn8/z8sULhsMRCuHkL5FMUSgU+fLL3xDgE42EzOh4IgTYvHj5CjMSY3F5hf/52T9Rua0SiURIZzP8X3/912RzWaKxGJ7nU6lWMU2Tn3zyiQRDLi4thQZcz+PXv/611FqLejkIApaWlri+vpZwyHK5TK/X4+uvv5ZckUgkwvLyMnfv3wvLyZn2ZmJPWFhYYDye8OjhI6qV8ix6MOypv3r1mkKhyPn5OeVyhYuLC9niq9frEvn8Luudyw8x1habtlwuy4FAaIfXZIxFq9X6HmC72+0ynYb9ZMdxJJpXjLzDSAVfCs9FW0mMgE3T5ObmhmQyKb8MIaoZj8cSr/Xo8XtYkSi9Xh97YrO3vUvUitKoNTh6c4ipG98BxVQ4P7/g+PiE4XDM/fsPmZsrEY2Z2PaYqT1h0O9j21OCQEFVdV69eIs38lgtLbOSX2RzcYuVhW0e3PuYRGSJYJoEX2N3Z494Ig2KSac3QLcijG0b04owV1olncxjaRFGvSGT4YjbSjXEkanhGDlqmTSbDSIRC03Tua3V0UyLVDbHwtIy7z/5gPmFBaq3t/T6fTq9LigKtjPF9T2mjkOtXuf07IwA8IKA21qN0WyQI1BiAjQJoTl5Y2NDWuBGoxEPHz6U4n7BFnddl9t6nV6/j+f7dHu9kP3R7eE6Lq7jcH1zQ7Ua0gIGgyGqGvIIBelK1w3i8RhB4JNIxMM8+cDHst4NEPnOJ/X9+/f5p3/6J+LxOD/72c9IJBL89//+33EcR/Y/IeyQCNNnr9eTF8ybm7JMborFYmFLqNEgl8vx4MED3r59SywW46//+q+Jx+Ps7+8D8Hd/93eUSiUZXvTs2TNOTk4A+JM/+RPZmrq+vmZxcRFd1zk4OKBSqfD27VvG4zEvZmCVdDrD+saGxGV1Oh0ODg7QNI1Go8Hy8jJ/9Vd/yeeffy7rdZGWFYb7DPnNr39Lt9flL/7iL+h2urRbHXTdZHdnl+fPX3AzrZHJhC2x7e1trq+vZxekLJ1Od4atHTAcDEinkyQTSRRVYTAYojXqmJaJ77v4AXi+j6GquI7D6soKnu8zmsVkP3nyRJornj59yueffz6zRM1L+anwJwp8gSCOionko0ePGA6H/OY3v5H6GmHOLRQKZDIZ/vAP/5DhcEilUpFakTt373L//n3+23/7b3IYJ77X8XhMPpdjOpnIZAPh6r979y6DwYDnz58DYbbN/Pw8L1++ZGdn54c/qYWgRtxm4/E4H374IfPz87NWmcIvf/lLzs7O8DyP29tbotGoTEbd2tqiVCqxsLAgSZ6maUqqZiqV4vj4GNd1ef/997m5uSESifDpp5+ysbEhN+F4PKZSqUjyZjqdZm5uDtM0Ze0WjUbJZDIyIkJ0SxqNOqqqygvU/Pw8q6urtNtt2Wf/8ssv6ff7vHjxQl7QHMfBMAy2trYwDJNet8/V5TWFQpGV5VV8L6B2W2fQH0jZaBAElMtlmV67s7PD8vIyNzdlLs7P2d7eZnUWkHn37r0ZUeqcdrtDvlDg3r37eJ5PMpUkm81Qq91Sv63SaNRnvMA+a2trbG5uSqB6LpfDmtWu+/v7LC8v0+/3JR213W4zniGAQ8DPv5yMYt4AIQxUGHovLy85OTmRSr5cLkdxNgBKpVI8fvyYXq/HZDKRhNXl5WUKhYIcvsRiMcmgXl1dxfPCzlm73ebo6Ah9prt/V+3H79TSm0zCuikIAp4/fy5jMEQA5dbWFs+fP2djY0P2R/v9Pjs7O1xf3/DVV1+xvLyMOiPqi5aTYC2vra1x//59KYQpl8s8ffqUo6MjOSq3LIvl5eUQoeA4/P3f/z0PHz7k448/5ttvv6VUKgGhqaHdbuO6Lh988EEYRddu89lnn8nXbLPZpFqt8sknn3xPABWJRHjy5AlBENDpdFhYWODk5ISTkxNKpXBUfXh4SCKRnDGcw2HQ/v4+q6trlEolms0mv/71r6Vjp9vtsr6xger4rD96xK9+8RnjcRhwen19TSYXUpVQdSaTkOZ0c1PGtKL4vofvOGGHo9/FskIt+rNnz7i4uGB/P5zehg7tOE+f3pfA85cvX8oIv1Qqxd7eHqZhMBqNWFhY4M2bN/i+TywW4/b2VhpmDcPgzp07fPPNNxwcHHDnzh0ePXpErVbj8uKC21qNvb09xuOxRDGMRqPQhVSrycnm2dkZH374Ifl8Xia7ra6ukkolOTk5kUO9s7OzH55PLVp58/PzUg03HA7Z398nk8nIDSriMwSvQnAlrq6uJONYkEtFrssvfvELGo0Gm5ubJJNJGV0s+B4C4L2wsCA52Ts7Ozx69EiqxkSAvOu6TKdTCoWCDJQXIJuFhXl2dnZkfIeIcDDNkAD1XbKRsDiJoYMY2Yd54VnW1zcBePny1WzTBNRqdcrlMpZl8d5770nt89raGnt7eyRnxFjh8s7nwj7z7axFZ9s2//HP/xzNMDk/v2R9fYNCocCbt2/QdZVY1MIyDRmTLHIJRUb7aDSiXClzfn7O0dER7XabZrMpNR8bGxuUy2WSySRLS0u8fPlSyhzE6a1pmrwXtdvt8LI6y44Rn2+tXqfRaEiB1cXFhRzDC6ueEGMNh0MODw8lLTV8OweSSiC4h0I6+4NuapF4KxwMwn7jeR5/9Vd/JV3J6+vr/NEf/RFzc3O8fftWxmksLy9x79495ubmuLi4kIR8YVtaXV2VQMSrqys5Lr+4uEBVVX7zm9/w2Wef8fr1axqNBouLi5JLsbKywtdff02j0ZBZ2j//+c/Z2Njg6dOn+L7P6ekplhWRPOTr62uy2Sz1ep2vv/6aJ0+esLGxQTweZ29vjxcvXkjrvvhSYrEY9XqTnZ09isUSb98eUiiUyOeLPHnylHa7S6VS5ejoiK+//lqyB8UpKWJF4vE4mWyWqTMNQemWSSqdJhKNsLgUElx39/exp1MuL8/Z2dri5uoSx7FZX13D0HXW19f5+OOPaTQasle9uLhIrVaT2e1LS0u89957PH36lPX1dam9EJfBSqUiPZ6JRII/+ZM/kYm66XSazc1NJpMJZ2dnfP7553zxxRfhpp+BPd++fSu5IdlsVjqNLi8vefXqFdFolNXVVal9FyNzkVO/sLCAaZoMh0MePXr0zm7yd97UQkA+HA7pdDryNZ3NZmX9K7oY0+lUKsa2trYkMFJs8MlkIv8Qy8vLEuQotACRSIRcLofv+7KWTafTcmI5GAw4OjpiMplw9+5d2u221BQHQYBt27x9+5ZGo0G9Xsf3fTY2NqSGW5QaYtQ+HA65vLyk3+8TBIG0iokUKuEIEYFB77//PouLi5imKQN5bHvK06dP2doKozrOz89JpVKsrKwQi8WoVCqSauS6LuZMuCUz3ms1dE3ntlZDN0KlYiQSYTIa40xtMtkMsWiEdrvJ9ewtOZ1OWVlZAZBhRWFbbSydJAJdJoY2wsUtgDK+78sLsbjYiY7H9fW1TNASP09RFB7Myj3XdTk9PQWQv69pmmSzWXnRNE2TyWSC4zgUCgWZTZPJZHjvvfd48OABxWKRs7Ozd3a+vHNNvbi4KJkSAhZZqVRmGg2bQi7L5sYqBPCrX/6SVDrN3t4eu7u7VG5v+fy3n7O1GUYvXF5eymizMF+vwuHhIaVSkfn5BRYXFxnbNooyc0KfnfH+B+8Tj8e5vb3F930WFhY4ODiQ7GShPQG4uLjg6uqKe/fuSWnsixcvKBRDD534Z8bjseyh1+t1zs/OWJy9jZKJJKZhksvlaTZbLC4usru7y9/+zd+xtLTEm7dv2Nra4vDwEMd1yOWyLC0tMp6EAqD33n+fTqfD5cUl3W6Xi4vL8L7Q67O2tsr65ibPvvmGpcUF3h4ds7C0QrGQ5/ToiEjUwrFtCrkcC3NFfvXLX5LP50BRqdcb6KbJ8dER1dtb2u02mUyGfC5PvpBnMBjSbnXCYNUZcVQMusQp3Wo2Zf0sWqO6YZDJZsnmclxdXclL283NDWtra3z8k58wGAw4PTujPxyytLQEQMSyWFxYCAkA4zG2bYegnPk5yuUK3W6HIIBWq8kXX3wBhKrASqVFt9uTRuxqtcrl5dUPu6nb7RZLS2GSbbl8Q6NRZ2srfD21W03ajVt836VUmsNZWSKbK3DbaFC5raHqBvce3KfTbHJ+fkYsFpUIgE6nTb1e4+TkmKgZvq5X1za4rZ/TaLVRVJXRcMjnv/k1G5vbbG5ucn19jeu6rK2tyQ6LGMsKR4WAqIjxazQaJZ3JsLW1hT3LbPR9X3Y4VlZWOD89xp4MePvqJXt7d0mvhsJ1y4zMuigaqAFvDl6HVqrUPIVSmF2SyqSoVqtk0jkKxTnm5+ep1+vc3tYJULEiUaxIFLt2y/HRYQhvdBwm4zF3791nZWWFXrfL5ckx8VgMw9TJZLOh6VfRcH0FD514IommqnTbHXzHxVA18Hx6nQ4rS0sszi8Q+CGxX6jxzs/PsW2bUqlEvV5neXmZ63KZ8syDOBwO6fZ6TB2H0twcmVlrzbZtkuk0+3fvUigW2dndxf/qK06Oj/Fdl9TMLL2/t8c///M/c3l+TjwaxdVUWs36LIL7IdPpdHaQXUgylKquzO5cvZkPNcHy8uoPu6lFlotwBzcaDa6urjBNkwcP7mPqCp//9reomo6qqXS7IUHIikQwDBNdgd6sG+H7PpVKRWoASqUSD+7fx3ddbm9rvH79hmw+z8rqKqVSgfl8jmq1jOu4MpD0H/7hH6Qp9e7duywsLHBzcyOlkCINLJVKsbOzI9lxQsI5Go0k+y2Xy7G0tMTHf/Ax1fIVmmaSz+d58+YtqVRauqxHoxFbW1u8ePGC09NTut2ubFEeHR2FYEXf4/Wr19ze3kq/odBSdNptNjc3icViXF9fk0qleP36Ndvb2ziOw/HJCXf297m8OKdeq3F7e4uqG8wvLlKcKzGaeQLjs/p+MpmwtrYmh1me57Gzs8vi0rJ02eu6zvz8PFdXV+TzefZnuOTBYMDq6irJZBLbtmm1WvzjP/4jq6ur0n+6urrKyckJvu+TSCRQVZUPPviAxw8f8s///M+ySyKwB5qm8ezZM/b391DVcFw+nU4l9Gh3d3eGYw5P9FwuRywW+14o6busd66pLy4u6Pf7TKfh5UZAuj3PI53JEASQzeWYTp0Q6xuLkkjEOZ1FYszPz0vppOAlx+NxcrmcdK4EISla/kEJwtdbJp3hvfffZzq1JYt6MplwcXFBpVLBdV06nQ537tyROuKVlRV835cm3nQ6LU8vIXMVabJCDJTL5+j1+2iqiqqoJBIhS+7hw4eYpiFv8+vr61JQpaqqRDBks1mymSyZTIZisSg3lQC1vHr9WrrjBRhdpFhVKhVubm7wfJ+7d++TzRVB0WaWN4V+r0+72SKbzcmHQEz5RIrAaDTi+YsXEiuRTCbp9Xrs7+/LeYJgbliWxdbWlkxaEBocsRqNhky7FXHQYvo4dRw2Nzcl91u4lO7fv08ulyOTycoZhNDKdzodIpEI+Xyem5tr2Tu/ubmhVCrxB3/wBz88oen6+ppyuczNzQ2apoVQ9BnImwA8L2BxcZlsPk88luDq8hpd0xgNB1ycnXF6eiIxVOKi9l3z5XQahh/Nzy/IqIRoNEIqnSaVTnNyfBz2bWcXD5G/t7OzQ6PR4Le//W04wp3ZzHZ3d4nH45ycnHB9fS2jjjOZjDT1CuiK2Oz1Wj10ZI9GZLIZHjx4SLPZ5OgoFG8lEgn5xQj8rABcigulbYeX16urK+r1Oo8fP2ZjY2NG+U/JyDiRaiWmoI8fP+bf/bt/x+X1DZPplGKpyMLiIq7nUK/dUr6+pFq+5uDtGy4uLiSpSsSFCJ/ibbUqzQEiDkNRFEqlEuVymVqtJtO5BATHm4UrCUqpSBwW+umzszN5Ia5Wq4yGQ6LRqJxYClFZpVJBURRyueys47Us5ca6rvPFF19we3tLpVKRnJKdnR36/b5sv/6gm1pQ4r8bjLO1tSUpmZ1en8XlVfb37xEEMBqPsO0xmgL2eEhlxrAQta4YpUMYYfbs2TMazQa9XpdOtyORr93ZKfDq1WvK5ZCTt7CwIMsLRVE4PDyUqKx79+5JKufS0hKtVksiY8XgRhCJhEUpCAIqlQoBgXTXBEFANpvBtiek06EIX/RgE4kECwsLrK6uSv237/vous75xYW0WAn+nNC0bG5uyUuqbdvc3NzQ7XYlc3pjY4P/8B/+I7bjks3l2dzaYm9vD8syyGZSaCpMbZuDgwMJuxElliDPptJplpaWuLi44OLiQkIfI5EIKysrEt6YSCQ4OjoKSxxVlUOXTqcjw1VN05Sj71arxenpqTT8DgaD7/23QJwJ651gjYhOyNbWlpSZilLQ8zzZXfnVr34lUyT+teuda+rNzU05FHnz5g2tVkumN6mqytMPP+Ti8pKvvv6ap0+f8urVS44PjyiVirTbTXK5cGwqkGXfjWwQdqxep41qWGzv3pnd1k1cN9QixGIx3nvvffmhvvfee1LfMJmE5t7j42MKhQKu6/LixQsWFhZIJBJyY+fzea6urhiNRrz33nukUikpkWy321xfnBExdRw3kKdQoVDk+PiYvf1t6QUULo54PC7ZI/l8PnR4qAbZTFiTnpyc8Pz5c548ecL+/j6DQV+2Q1VVpd1u89FHH2HbNl9++SX3798nYsXZv3sPw9T4h7//e6KRCPFYBF1TSMSiWKaFblqyDhYjaAipWffur0u4ZrPZJJPJcH19zfLyMisrKxKsfnp6ymg04sWLFzLEVQCEDg8PUVVVZsV4nke5XKZcLvPw4UP5GSSTSWq1GsNhOBldWVmRmZpijlEul2XQ6507d3Ach5ubsmztvX79Gt/36Xa779ynVoJ3PeN/XD+u/0XX75Cj+OP6cf2vuX7c1D+u37v146b+cf3erR839Y/r9279uKl/XL9368dN/eP6vVs/buof1+/d+nFT/7h+79aPm/rH9Xu3/l8Z5PhLXspBmgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOEAAADECAYAAABp0kb/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADS0UlEQVR4nOz9ebhuaVrXh3+eaU3vsKdzTg3dVdVdPUJjAzajgKJgd0BQcEBBfyKoIYggRi5iciXilAujicEg5gfJFYMRfxqihkiIKEJACDMNTTf2VF3dXXXOqTPt4X3fNT7T74977X2quqqrm7alTpJzX9e+9jnvXvt9117redZzP/f9HVTOOXM/7sf9eMlCv9QncD/ux//b4/4kvB/34yWO+5PwftyPlzjuT8L7cT9e4rg/Ce/H/XiJ4/4kvB/34yWO+5PwftyPlzjuT8L7cT9e4rg/Ce/H/XiJ4/9+k/AVr4A/9sfu/v///D9BKfn+8Qql4C/+xY/f+92P58b73y/X+L/8L1/qM7kn4tc3Cf/H/1Eu3vlXVcFrXwt/+k/DjRv/bs7w31X80A/9P2OiPfmkXP/XvhaaRr4+8RPhG74B3va2l/rs7sdHEfZj+q2//Jfhla+EYYCf/En4b/9bGdRvf7sMgt/I+K2/FfoeiuLX93s/9EPwXd/1whOx78F+bJfmNzR+8AfhD/5BOdc//Ifhkz8ZtIZ3vhP+yT+R+/Lkk/DYYy/1md6PF4mPbaR90RfBp32a/PtP/Ak4OoK/+TfhB34AvvIrX/h32hYWi4/xNF8ktJYV+eMZH+/3+3cRTzwBf+gPyQT7V/8KHnrouT//L/4L+Dt/R67Pi8W/q/vy//YYBlkYPtL15+O1J/wdv0O+P/mkfP9jfwyWSxkoX/zFsFrJkxogJfiO74A3vEEG+wMPwNd9HZycPPc9c4a/+lfh5S+X1fW3/3Z4xzue/9kfbk/4sz8rn31wIIPsjW+Ev/W37p7fd32X/PvZ6fV5vNCe8K1vlYfPei1/2xd8AfzMzzz3mPN0/ad+Cv7D/xAuX5bP/vIvh1u3PsJF/HXGX//rMoH+7t99/gQEWR2/6ZvgkUfuvvZi9+Vf/2v4A38AHn0UylJ+78/+WckKnh3PPANf8zVyX8pSPvv3/B7Z553HL/wCvOUtcOkS1LVkTV/7tS/8d3zP98CrXiXv9emfDj//888/5kd/FD7v8+Ra7u/L5/2bf/PcY/7iX5Rr/853wld8hdynoyP4M39GJsSzQylJ4b/v++B1r5Nx+KY3wU/8xPM/++pVOfcHHpBzfMMb4H/4H557zPkY/If/EP7T/xRe9jIZs5vNC//NHxIfn5zriSfk+9HR3ddCkBvxuZ8rG/DzNPXrvk4G69d8jQySJ5+Ev/23ZZD/1E+Bc3LcX/gLMgm/+Ivl65d+Cd78Zpimj3w+//Jfwpd8iQyQP/Nn4MEH5ab94A/K/7/u6+DaNTnuf/qfPvL7veMdMgjWa/jWb5Vz/O7vhs//fPjxH4fP/MznHv+N3yiT/9u+TQbnd3yH3PR/9I8+8md9tPGDPwivfvXzP/sjxYe7L9///dB18PVfL/fx534OvvM74emn5Wfn8ft+n1yPb/xGKZLdvCnX8YMfvPv/N79ZHkB//s/LpHn/+yU9/tD4B/8Atlu5H0rJg+X3/l543/vujoMf+RF5+D3+uEy0vpfz+pzPkTHxilc89z2/4ivktW//dnlI/jf/jTzg/97fe+5xP/7jcj++6Ztkcv2dvwP/3r8nf/cnfZIcc+MGfNZn3Z20ly/D//F/wB//4zLBvvmbn/uef+WvyOr3Ld8C4/jRb5Hyryf+7t/NGXL+kR/J+datnJ96Kud/+A9zPjrKua5zfvppOe6rv1qO+/N//rm//6//tbz+fd/33Nf/+T9/7us3b+ZcFDn/rt+Vc0p3j/tP/hM57qu/+u5rP/Zj8tqP/Zj8P4ScX/nKnB97LOeTk+d+zrPf6xu+QX7vhQJy/rZvu/v/L/syOZ8nnrj72rVrOa9WOf/W3/r86/OFX/jcz/qzfzZnY3I+PX3hz/v1xtmZfM6Xfdnzf3ZyIvfm/Kvr7v7sw92XnJ973Hl8+7fnrFTOH/jA3feGnP/G3/jw5/ZP/6kc8/M//+GPefJJOeboKOfj47uv/8APyOv/7J/dfe1TPiXnK1dyvnPn7mu/8is5a53zH/2jd1/7tm+T3/3dv/u5n/Wn/pS8/iu/cvc1ybNy/oVfuPvaBz6Qc1Xl/OVffve1P/7Hc37ooZxv337ue/6hP5Tz3t7da3Y+Bh9//IWv40eIjy0d/cIvlKfCI4/IvmS5hH/6T2UZfnZ8/dc/9//f//2wtwe/83fC7dt3v970JnmPH/sxOe5HfkRWvG/8xuemiR/65HmheOtbZXX95m+Wp/Cz49nv9dFGjPAv/gV82ZfJ0/g8HnoIvuqrpDD1oWnHv//vP/ezPu/z5H0+8IFf/+e/UJx/3nL5/J99/ufLvTn/Ok+7nx0fel9A0sbzaFu5L7/lt8hwfetb7x5TFJJ+fej24TzOr/kP/iB4/+J/xx/8g5IxnMfnfZ58f9/75Pv16/DLvyxp9OHh3ePe+EYZQz/0Q89/z2/4huf+/xu/Ub5/6LGf/dky7s7j0Uclzf3hH5Z7lTP8438MX/ql8u9nj9e3vAXOzmQlfnZ89Vc/9zp+lPGxpaPf9V1SErdWcuXXve75G1BrZd/w7HjPe+Tkr1x54fe9eVO+nw/W17zmuT+/fPm5N+2F4jw1Pk8p/m3j1i1J0173uuf/7BM+Qfa4Tz0le4XzePTR5x53fs4fbuCCpFlnZ8997cEHX/jY1Uq+73bP/9l3f7ekeDduwB/5I8//+QvdF5B08i/8Bfjf/rfnn+f5eZWlFHz+3J+T+/5ZnyVp/x/9o3fP9bf9NklZ/9Jfgv/6v5aHwpd9mTywyvK57/uRrtP5OPhw1/6Hf/j5haUPHTOvepWMzWfvWV/oOJAx3XVyz7WG01PZs37P9zz/WLg7Xs/jla984eM+Qnxsk/AzPuNudfTDRVk+f2KmJBPw+77vhX/n8uWP6XTuuTDmhV9/MSWRf/SPZJ/80Ry/tycr8dvf/vyfne8RP3TQnccL3ZcYZWU5Pob/6D+C179eBvbVq7IKpXT32G/+Zlkd/tf/VSbBf/afyf7rR38UPvVTJQP4X/4X2Y/9s38mx3zt18J/9V/Ja89evT+W6/TrjY8l+4G7f/Mf+SOywr1QvPGNz/3/x7AKwserMPPRxqteJanm53zOi5/weV/rPe95bgp469aLrybnnwEyQL/wCz/8cR/tzbl8WYoX73rX83/2znfKgH52BfJjjbe8RQocH238rt8F//1/L4WEz/iMf7vP/tVfhXe/G773e2VVO48Pdz6vepWshn/uz8k9+pRPkUn29//+3WM+67Pk6z//z6UA84f/sFQP/8Sf+OjP63wcfLhrf+nS89sr73nPc1ek975XJtSHFnDe857nv+e73y33+nwxWK3kAfVi4+jjEL+xsLWv+Ar5o/7KX3n+z0KQ5R/kj3ZOqmDPfip+x3d85M/4zb9ZbsJ3fMfd9zuPZ7/X+c370GM+NIyRat8P/MBzV5cbN2Rwfe7nStX03zYeekj+7md/vVh867fKgPnar31htNKvZzU5X5Ge/Ts5323pnEfXPb/c/6pXyWAdR/n/ycnzP/tTPkW+nx/z0cZDD8nvfu/3Pvc+vf3tsk//4i9+/u986B74O79Tvn/RFz339Z/+6efu6Z56Su7xm98s18MYSav/8T9+4Yzj49hy+o1dCX/bb5Ny9Ld/u2y43/xmmWzveY8Ubf7W34Lf//vlSfQt3yLHfcmXyMV+61ulPHzp0ot/htaCFPnSL5Ub+DVfIzfzne+U0voP/7Acd74p/6ZvklXIGCkyvVD81b8qq8Lnfi78qT8l+6rv/m4ZVH/9r3+8rs6vL17zGnkIfOVXyp7pHDGTsxSm/sE/kGvxQvu/D43Xv14m07d8i6Sg67UMvg/NOt79bumPfsVXCDTOWinI3bhx99p97/dKuf/Lv1zec7uF/+6/k/d8oUnzkeJv/A2ZQJ/92dIaOG9R7O29MNrpySfhd/9uaTf89E/L6vxVXyXX5tnxSZ8k9/3ZLQqQvex5/LW/JsXCz/xM+JN/Uv7m42OZvD/yI/Lvj0f8umqp5yX4Fys/5yyl8MXiw//8e74n5ze9Sdoaq1XOv+k35fyt3ypl//OIMee/9JekRFzXOX/+5+f89rdL6+HFWhTn8ZM/mfPv/J3y/otFzm98Y87f+Z13fx5Czt/4jTlfvixl+Gdfig9tUeSc8y/9Us5veUvOy2XOTZPzb//tOf9f/9dHd30+3Dl+POK97835678+51e/WkrsdZ3z61+f83/wH+T8y7/83GNf7L782q9Ja2W5zPnSpZz/5J+Usj7I35WzlOq/4Rvk/RcLKdN/5mfm/D//z3ff55d+Keev/MqcH30057KU9sKXfMlz2wHnLYoXanW80LX/kR/J+XM+R/629TrnL/1SOd9nx3mL4td+Leff//vlvh8c5Pyn/3TOff/8z/iGb8j57//9nF/zGjnPT/3UF74/N27IsY88krNzOT/4YM5f8AUyhs/j/P5+//e/8LX9CKHknO7H/fi/efzFvyir2K1bHzlbUkpaGX/7b/+GnNpHiv/7UZnux/34f1jcn4T34368xHF/Et6P+/ESx/094f24Hy9x3F8J78f9eInj/iS8H/fjJY77k/B+3I+XOO45IZW/8NWPkFJAaYjRs2iWuKJh6EY22w60wseEtYaqqsk5EUIk54xSGVKkqUsEGZpompqqLvB+QikBkZTO4H2g6ydCTIAlxESKmaIoyASMhpwTzjmsUvjgWSwapmkihEiMgZQSxmiUysToUVqjFISsQVuccyilmCah9EzThPceMPigyGTICRQUhcUYBSqjjWHKFu89wXt5fz+RY6QsHcYYtNYYYxgGj58C1mmKwlFVFm0UqIJ+GMg5YZzBR49zDu003ns2xy1V1ZBVwlgDOqONwhaGtmtRuSAEAeCklEgp4b3HGINzjpwgBY0ClIaUIq6wQEKpjLUaH6b5umTKssSaAj8F+j4SkyIk+XtDGNE2Ya0iZ0VOGmMsOXnW6wXOOabJMwwDOYMxlr7vUSTqumJ/f5+2bTHGoJS6uO7GGMI4Mk0TOWeK0pJzxHvP3/z/fpzQLh+HuOcmYYyBuikIIdC2PWVZkqeOmBLLRY0ylgygFH6amMaRnEFrRcpZJk/KGGuYJs/J6Sn7rOeJEsg5E6xFKU2MCaUUfd/jvQzSlBUpTigrAz3nBNpQFI5h6IkxEUKCDNoYUjqXuVlgrSWlRB8Ck49onS5eAxkc1lpCyPRDh9KKqipJKZJzIGfDOA74EEmmkkGvFMZqnHO4qsJajVKKnCHGjLMlChn8zhYyQUi03cg0BTl/H0BnmThTJqWIUpqcYAqR0PdUdcn+4T5t31G4Cj9luVYhEGMEZDLmLK9PU4CsMUauUVEUuNKScyLnSFaZrMA4Kw+mGNnbXzIOnmHaEkPE2hJUxhUFq3WDMZqUMkM/EkLEuZpmZv6HELHWEmOkKCxlucJow3q9oixLvPccHh4SQqDve8ZxRCnIwRPCSMqZcn5oLxblhxt+L0ncc5OwKgzOaIw2HOwtcU6TYsYZRbNYsGs7cs4YbdHOkJOZB0kiJlnNhiFSliXOOUzS84BNxJjRSjH05wMrY4zBqIwyisIqCgtjzjOGV5FSIOSMNZYQEllByhqtLSlHQow4bZgCTGHCGIvRBTkN9N1IVSkURgYwMnGGccCHgcOjQ4wx7LY91lpQshJrE+kD6JlyNE0Trq4uVr+cM95HxjGQkvxt5CQrq07kDLtdR0pS+M5klAFXAFqhlMEaQ4wJHyKg8T5xerol5UzKEbJGKYMxRs4NcM5dTMiikAeZUvJ+VVVQVg4FhODxwZNSxhiFKxxaKTIw+YlMpqoLlqsVmUiIE2XpqJuKafLkHNFekUKgbVvKskQpeS9jLEpDVZaUZUlKgWvXbjGOI8tlg/cTu92WlBJVVeAKRTGPhbIqmaYR5z4MheolintuEsbkiVHSmb1LB7S7HmMMfTdx+9YNhnGkWaxw1pBUwhpQc/JZuAJjZFLKUzwSgp9TVYXWmikExtFjtMYZRVlalssacsT7EaUjhVU4q7HWMgwDKWW8z/PAAnJB9JG+76mqkilFJt8RQqCsKqq6RmtL2/aMo6SiwzCgtUYbTYgeZaBuKnJO2MLKCgNY50hKo+ZVerVYonRGkymspaoKttsdPiQymhAjSlm0yUw+EXYdSoH3CaM11lliiiitcLYiKeHJxRwktdOGmBLjGJiCHCcp3/lEk+vmvb9YCZVSLBaSysrKJClyiH5eKSXFLaiw1uAKwzh2dL18WVfQ1A3aRLq+ZRh6MhWT70kpzemkpp08vvf4IFsJ55y8t8kUpcaHnqHvsVbhXE3f78jAatXQdh1lZXEGlMocHBzgnGHXwvjrZXP8O457bhLurdZYq0k5MvY95Iw1hv31HidpgzGapnY0Tck0TRRWXaSjMWayUuRs8V5WO+ccoPA+YIxCazdPMEVhZaVJIVA4g3YWWR01RVHAvBLErIhJWFjGFsSkiCmhtKYbBlIKjONIUVjyMND1g6woSdI0YzR1XRNjJKUICqyz7HY76qahWSwZ+gFrraw8WQPjnAoGNIoQPBrwXuFDIMRIjBmlNSjIgLEG5yQlLItzIZWMUhqtlaSRYUKh5HqlBPN+Fi0ZRwpZHhYqM44jxsgqPk3TnJ7L32WdRht5/2HoUdpgtKZtWzJQ1zVV1VAUlmHsGEcv++kYMVmxbbcoLfv4uq6wxjH0HcZqVqslkEkxkKIiRPls5yQLUDrj/UDb7iCDtY4MVHUzP0AMKRcYo5imnrbbgkocHOyTUqTrXkCR4CWMe24SjuOE9zJIFosFIx7vI9rBcrHE2ExZOtlou4qqKum6jr7vCcmT5glzvgdTSgYOyCDLgNIKpRTr1ZqmKdFElgtZDbe7jQwoa+fiSo22jlt3jslkJg9+mgg+UFYOnSWVa1w979UyKiWICWu1pFl1TVEUTNPEMAz0fiQbQBuG0RNCJCVFP06kJKtLNw6EEHDGYKxGk9mOI5tNRGmDj5EUwRhJ9UBWoBDl98myumqlKUqHdYaYzh9EGp1BRYghgZLMwboC68p5ogWUVjRNw97eHnfu3KHrOgB5QKHIKmOc7NPGweO9rK7OFXifmaYWbTJdt+XgYI/13pLN2Zac9fxAChhjKcsa7z1ZLso8+RWusASfMbbEGHlwKu24ffum7JOtQyuDtef3eF6FjWV/f821a1cJ00BRGJSCvu/Ybrfz+d87cc9Nwts3jilLS1E6xn6ALMToXChCzBQFLJuSEAIpTvStF0X+wpJjIGFIIZNTRhJVRUaRU5ZKX06kHAgBxnHAWnAKul2L1Zo0JZKSPVdMI7t+IgGnpzvJ0ZRUBF1hiFFWKkg4V8yrSkRpjSss1spKmonE5NEGmkVFHhSn2y277UBRFFhbMA6yUkyTJ6aELfVFlS+EgMoJlTNaQwhS1VXKoAxkEilFYkzonEg5omJCaxl8MXqUScQYCDmikiIHj1IKayyUDh8iZeVoFgumaaLrAgBVVbFYLDg7O5uLSuHiXqUokzwnKVbJNsJhTTE/TALaaJpGCNR935NJ8+rKxarlfWSaIlpZhn5AKVgsKqqyZuelBmCtZtduWK0WHF06wBhF1/ayFVEJyIxTLw+wvqUoHEoLYaIsa4y2xCiffX4+90rcc5PwypUrXLp0gPfTXGlT9P2EVoY43yCrFdoavJf9jVIKT8YZDbagGzumyVMUENFYU1LXFcMwMk4dxmbQirPthnEcqAuHVlA5h9aGbhzY7HbEDGhLSMjTO0BMkapU80BZSJpHoiwLtNYy0M8HqlKkKAUT76VYcZ7eFeUC6+SpDYqitFhXUtWQUiApP09gqWYeHuxTlyXD0DGOE6XOWFdirSMESYdj9FhnKMuK0i7IKTP5kZgitjBUtqAf57ZFKddktd4nZbh69RmGsaftOpRSgDwEju+ccPv27eeU/621+OCZfCSnQMqZnDVGa8iWGKVYUzcF49jOD45AWRYUrpwrn/M+MkTGoZeHXgxonajrAsigMicnJ6QUuXx5n6oquXLlEjdvXsfaggeuXKLvR3lwzXUA586r0ZmmruhTYn//gLou6QeZtOfFpXsl7rlJWFeKnEdynlitluzt7eEnL/ugsCSEzOQDzlXEPO9BUsKHgNaaNEqaprWFrOd2glQAJU07r5ZmYkik7FHGkWLEZw1ENruemPS82iSZTPINgyJOGYwmTOcFjkTG4pwhRFHqkHQrSZlcQQqRTJRVGUXpjKTFKKZpYvT9xaRVStZwrQAide3QNhHxZJ0xzlAU0kIZxk4mXwGWPKfABqud9BgjWKMpS8t6vebmzcAwjCSbsDGCNpAAZUhJE0OSFNcopimQYpbVpNLIgTBNETLEKUGUFHQaJ2LMGJPohgmtoPQapaSnq7VD64KylDaMXBs19yEjmUBZGSBjbGLyHUpV1AtLVS6omwpn5X4P3UiOmaPDA8apwxWgQ8b7kYy0aMiK6APWQN9uSKFEadAqEnz/4YbfSxL33CTMyRC9RuWCrp3YnF2fUz6om4ZxDNw+PkUpNT85DSEErLUUZYkPHpRU/UL0xJhIOTFNo6RIKeG0k8a6hphh0/YYoznebKRCaYu58CFPTGPMXGCRz8pB+l6bccsUPMZoxmm6KMZkMj5M8nulA6RHWZYFtnD4fiT6IK0ABBRQlZqyLJimER8zIWm0lnZBypFhTCikj6aUJscMEXL2WKfIOVCUVsr0U2QcOrpuoCgFFHDn+JRde4afMiEktNZs+5bj9z1BUVRMPtH3AzFCXVsUGjWv0EZDTPKwqeuKlCIpZRaLipwUbbtjvVoAirYb0DmjrUVraZForfDec3p6CvODoigLlM5YKz3d1XpNCB5rS9Z7DZvtCSH2LBaOnANdd0bwgZQihbHkFNmenaJ1YrlqyDnTtQM5K2nZoOj9RJg8ZtGgSKwWC4xZsGs/Onn636i45ybhdjPhJ1lJpkkqhnFGY7S7M2KOdHPKJH2zfNFAzvPKY4y6SKlyTsS5Z5WzuqgY6jwPM6VQKqOAsijJKpOyxir5mZ8FbGOMFz2zmAIohUFhnJaKpFa03Y7gPdrqeaCJlHsIfn7yS/EgxmkuoAQ5X2uo6prFoqFtM2kY0dZIEcUYtJGUNMVImPt6Fikwaa2pygJjK5RKsleeM4PJ9xRVhVbMKVvA2RpjIBNJIUGSNN4UmlAZwpQxWjZsRoOeHxTljIapSof3mb4fKAvN+mBNxjP5ibKqODxa4yfPFDyKRIgBY520h6YJY5Sgl3Siqi2uNFhbUJaSpgq6pqDyFTlFpjiRU5yvvyKGSCDjsma3OcOWmr6TtozRDm0MzliMsXhrGfOAVgZjHMPg0RrSvZWN3nuTUBtH13v6vgXAWMn1x9FLszX4i0Y8MMPCJmkBpEhOSaqB1mK0HJOS9Ia6rpNVYJY7zDmjpH4zw5xkoCiTCd6DUjiryCmiNJADMSacsxhrCTGANpRVgbEGpdPcI9NUdQVkuq6VPh0ZpSNKR7QBqzLWGbRWWGuIsWe7HZj8CEpTN4IgMTYDiWnK5LmgEWMmBDm/nIMgdkzBMA648z1hWWGtQlt5KD362IN4H/FTYhwnsoaUM5dfdgWtDWdnZ7hiyTT3NVPKxJjkfGIGrHwmI0XhaBpNxpNSx966wBRLFosl/TDSdZkyQgyKBx54mP39fZ5++inOzkaqqiBnSyZweNiQkmcapRebYmIaRoZB9sVNXcg+E4sis2wWDMPA4f7BXGnuME7gfdPkBVgRAkUhmVBOicI6tFYEH0DBNI3zA/reiXtuEiojTgHNqibGwHK5YLlcst2eMY4DmcxysURrLSV85yiKgrquGeafS0UwSvVOS9kbZKKllDBOU7iCaRpIOaHmVTGjcNaRckRrNa+q9gIG54whxTBPDk3KkEgoEuPkiVFS0xAnQtRARltY2GpuARjGqUepiNZgrKJwDm30XGTKLMuGKcjPlRZcZUppXgHVXE2cyIq5EJTo+57JjxgrDfbVakXfBaq6ZBh7tJbmvXMFZVFgzMh4XrAxmpQTxkCKkdWq5PDwkM1my2azY7FYkkkUzglYIQZy9lRVNbcF5CHgbGYcW6ZplMmvNVErmsYRwkiIUjia5ixnsagZx56YJmI47+M6lBJUk9wyuSaFM7S7HappaOqKuipYLxe0fUHbtfgsmQIZmrqRyTwNTNPIclHjw0RKmbIoL8bAvRT33CS88uAht27fYLlckpLgBfvxjNG3FLUDPfel5kbyeSp648YNac6XJSokyrIiRNkLxphmtAf4KVKaSDZpLrn7eWBqSflyIiRAxRkupS5SqWFssVae4jlDVVn6cWAYOxIyqazRhOTxfsA5TVUZgbilTM4RYxwhyPKrjaIqC0KcsM7MFUNNP3j8/DdmIqvVUsr4YyArzf7+Ptpodm2L1pn1esnh0T5l5bhx4zqbzYbdZiLGiHUQssIVBUM/0fc7gk9EJXvUvm9pux1l4VgsLZcuHXJwsE+ILXV9QFWXtO0Wow0+mjkl9iwXNRpD1lLoGqeJtt1KMWe+JyF6jo9vysqTAgf7S4ZhhAyHh3sUZWLyhuw03kf6rieliLFzgz5bmqbBKEVdVfNDMHJyfEwMgV3XorSibmoKZ2aYHeeFVdarhsuXjthut7zs4ZfTdi1Xn77+0g7wF4h7bhJefuBB3vu+JzDW4v3IcrFkGEdCjNjkcK4gRS6a2ueT8LzaBpKu5Syg374fZDXLoNAUriQnaRkoBcEHCudmgPM8URSsDvbJSdLJqlpK+2NGwGSlpNJmBNmj1PzvFIgXmEXZy6Z0vo+TSbparZim89QuzyldmGFiFUJLSKQsED6l0gX4PASPc4IhnWYYmaz0zGiUic1mw3q9jzGOGM+RRBEm2VflJO2Dwiq0UhTOMqiMIpJT5uT4JrvdMdMUqcoFmoifBqYs4IO99YqUAs6WM5olkRRodb6/VhfggWEaMUZA+UVp0dowjAMpRYZhYLPZEaK/qFjL7ZN7kHOkrlbUlQDZy0LSbQFBWMhQOkfIgRQEVTQOA6ZpSDFSOEeYJtp2w3q9pG4Krl57Cq0zi3vMFPWem4Rv+5V3UJVLujaw23VstyNVVWJMRVktyTHhs79A1EsjV1KwTCbEzDhF+t4TfCB42WtobWYajsVkKcQoMs5aFGCNneFOhqp2NIuaaRyJwaOQz2jqSoo1KeKDlwINeUamSPqac2Ly0wykTnP5XdKqytUygJ2+oObs7++Rs+LgcI++H+a+20RKeqYEGdn7GEdROEKI+GlHmgtMaT6XrusYpx5QbLc7UiiZxomchcXgrAWtCSrK5LMJpTPr1YJFUzBOPZcvH9APO9pui9FwdnoHaw1N07BeLxmngXHspLBSK7yHafSMkyCVSEj2oDXGKB5++IDlYsFms2O72zH2I0bJ5NmebQh+ZLFcSEFGZfbWS9nj2ozWcs37rifFiNaawjqmEC8oZ3VTUS8qttst282Oo8MDyrJGBFsyVVWwfyBAg6vXPsDke1brhdyfeyjuuUmIzsTg0drgSjeDnh0heGKEOAWmyROC7EW0VhibL1gRKUW00cQoDVxJJxVFaTBG46cJHwJmRrMorUk5E2ZgclYaHzInpzu0AuMqxmkipnjBcjBakWdz31ILHC35QMwJTUbN1VHvpaATZxB5SsLE8D6w3bU0i4ZmuWK73dJ2E103CODZ1oJRjWFe9SbKoqYsNLtdR86R6CemaZpXBUXXjZA1KTpyypSFnjOGiNFzmpxlVU0EvM+M08Bm07JeLymKhA+JlKRFE+cqq1ICm4spXCCElJIJPAY5Z7Sb023hamYCZWkonGYcWpRKpJlSdJ6RpJTYWy85ODgApQjeUzcVKQemqQcSKiUUEZUjOSZsVZKTrIJyrxPTOEEWrKpWGmuFITKMI6v1inrRcOv4mLHvSAr6aRC87T0U99wkNC7MCBZDUQndZhx6oQHlQMqJTEKbjPcTxiq0FuiTsZqi1BTVkpw1fTfRdR2r1XLmlE0sV5Z1c8QwjLRdR4iB3W6H6S1lJSY1YxiQjYVQZvTcfmAurtRNhdKKED3eS+k/RCl/u7LEOU0mUpSaplmy2+0Yx0FYBgh9yLoSrR1nZ9sLTGlKMrBQipgEH7ter5imxNnpnYs9qtLSYjBWYZ1iHAfGyeOnSFXVwsHME/v7S0IIhBjout0FKbeuCoqypPTCyDg+vsN6vWC73ZKzsCLGMcyAbYG2jeM0P/gUWhf0Q8+VBx4kHCk++IHrKGVmoHRgsXKAJ3jhXFaV5ZWPP8LmbEPfC7HZe4/WEdTEOI7y8BwD0zTS9wPNomJZF9SF9EbHceLwYI8YEk2z5M6dO3MGYom+p65qjLFszzaCKy5KYkyc7XZ4DyEJiF7YKveWttk9NwmDnwTzaGR7VJXyVI4xsqgrJj3gvfSFmqamaWoWiwVt29L3Az4EiiqTksc5xeHRHo8//gpOTm+z3Z6iMFRlKfsLJfw2HwMZ0GFiGEcyCVdYUkyMKuOcw/vpomc5jJ3w8ZI03LWBuiiwTvqIU+wZu8Byubzo21lrcVbgWM4aUr5Lt7LWobWfOXOGmDKTjwKzG8cLXuA5K6SqKlarlVSLs1T6lssaZ91cjDGUxZKmWbDZnJFGCEl6cNYZisKiraKyjq5rpU0wjVSVpNtFURFCFtSRXBmmUe6BNhpQFEVBUTg2Z2cYLVVlY1YsVxVKTzincVbNDw5N327JObBoCvohY0ym7wZu375NXc1E5HZiGEaCD1iTGVViuWwoS4tzBbvdjmnyogiQ4datOyyXzYyvFaJyXTfzXlnT9h39OKKlMQoZFs2Svu9ekrH94eKem4QgPL3CFTTNkpQCdVWw3W7Z7TbsrRuMqRnHiaZpUMrMT2gjLYMoOMUQAtZZxmnD1WtPUJSG1bogJ8Pu9IzR9xinsFFTmUJWnxxE7sEY6kWNUjAMPcPUE5ESeGULsgromWysc6Yo7ExDEr6gTpasNCEM7HbbeY8isg0hRKyzz+HoFUVB0zQXRabRB1xp2T9Yk1Li5s1jmrpgb39PKsIpo7QS6lROF+yIspwxl2QKWzD5DldoiqIiRsHFyjEw+BGtNK7QoASY7b3n0qXLVFWFnxJ9384KBYGUFNZWghhKAhF7/5NP4n0WY9sUqOoKZxXdMEixJUJdOXa77dwekD25s5Cyo3TS+qmqis1mQ4qJaAU8UBQKa4XCVRQFN2/e5IEHLvPwwy9jt205PT29UF9omloIyl64p8L2h74b6IZJthwp4ackxaRngdDvhbjnJmFVFgx9JymEH1HaoLWhcI6u2+FsoKwKXNZz5c/Tjz0pcUHgJUsFbLEsGQaN0rKfiwkBGGdB9yutqZQgNXyQ1XBR1iQyw9ixXC5ZLBvpV64bwgxRiylinaKoirnvJPskQb4UpKzwYWIc/cyrq9jtunnfqlBKM4w9IYQLKNw5LM5aS9hsUHPLpK4rylKz3l9Rlo7tbsc0jtIfLQus1Vit6IcWHzqpBNY1KhsmP5BzmFkdsy6N1XNlVvarzhmUKkhJpCy6rrto/1hrUVrdXcmdYximOf0O5BxwRYk1ZuarRDabY5RKLPYOOTxY03XtRRq/WAplyWjD5CNFaeY2lOLS0T6T91SDoF2WyyV+lNpA1/XEKA+JzeaM3bab74WlKARtE2NkNzsXn58rGcqiIuWMdlKwMtqQ4v0+4YtG37fsrZcUZTmDh4U6VKwX9EOHNooQJpTSpORnXGgnnEOtAc2u3RGzJ9OTCRSFE9GkEMjJMkwTYCT9swplDNpp8tzkDz5IQ79ypBSoXCPNdb1A6cyuTYQ0UdtqHtQzHC1Lb09baQMoJRjGlPKFDkoMAq07X62LosB7T9+Lns40TezaHcv1Ch8mpu3AclWT0kTXe5SKLJb1/LTP5BxmISZJa8fRz22YOAtRmbufHRPWymQT3p+kitZKC8QYjQ8jk880TUWzKNnt2lnMSs9pnOy3dFAoZamq8kL+Ypq3EgJwSLTbdp6EsDvb0BlNisJTJIPRSpA9WqOVwpYlpXPklNAIb1GuXcH+vnhAnkMW9/b2WC5XM1um5Nq1a6SUZwBDJiUhENe18CGPj0/YWy0pCkffDy849l6quOcm4d56Je2GDOMwst21KKUoi4qmbmgWBdvdGaIpI3ukKw8czRShzDAEjk+3aAPGKVJSjJMAk6UfJXhNlLC6XeEISdgRKFlNu6GFpBinftYjSUyTF/ByTnM/TBNTwnD+NL5L2s1e0kohqjKTduPFnq5uBH6nlJr3diPb7ZYYRQnMWivyETM1xxjLNI2AkpXPGoHMzRNimibKshINmBA52+yw2mKtk0b/5GmnTrh35Xw+CBfQaItSIs4k0D0hxk5TR1WXpDwRQqaqarSWlNc5h580qMh6vaJuKnbbLSEMYITBGcKELmvOTjfCii/MXKkGqwSYEIKHnBmHgRgjy+USozUxI2wSLavxOE4XCnPWimLbeXvK+8DBwSFN03Dr1rGAynPGGEtTlKQcsVazv79it9vS98I6uZfinpuETV1QWEPKmdXRIYVz7HY7UvSkmNmlwDRFWQkMs+RBkIqXyhfFB6MF1qW1Q2EElpZFf2YKW7mpyhBTJKYsKYsRTGjViCqXthplNKMfGfqOMQxoJYzvpq7wfmKYpI84BWmRKGMIU2AaZbKfs+3PMaXO6Rk5IwUOWZXyTO6VCR1TxFpDWbqLlfK8AANKqEQkmkXDarmaBZ8yu92WcZSm+6IxaGe4feuYYRgxRviBQ++Zxgha2hrj2M97WcGYGquIUWQMUYnFoiIEadRLWwByjrK3cwXBTwxdBOIsWajxfkSrkrpecHBwmWkS6Y+u25GVmqvAIktxngZLD1f2/uc6M2UxbxXmB1Pbdih6QLNcLlkuV5ycbHjve54gA3vrfeq6oKprckqcbU4pCsM09TMTRjR66qp6Scb2h4t7bhL2fUdROHlKG6gqR0wN4zAyThMBT1LnONDI6D2udFjnGKeRfpxkhbIWraxIMFjR1Aw+Yo2hCALsjimx63ZoM/e5VLjoK1Z1M6NdAienJ+QUMZOQbKUQkOfVLVyAqOumJBPxQSqsai7xngs4aQ3aKGL2oGV/mHLAFhqlBZu5t7cixMh2u0EpRdt6yqLEGsc065AKBy+gtaOuhM3edT1dN1CWJVVVYXVmsazZtqf4OLC3f5mcM9utpO7WiUbqZrudV4r1/GACN7dqUkosl6sLXdccZmlDK5KBRWFkVVFpfmAYJj8yji05CwqoaSpQieWiucCL+jBRFELxatsWVxQ0tbQYQjjnhjqmKXJ2tmEaPQeHh9y+dUw3K9httz273cg4iMJdXdes12uROkSQPO2uozzaw9kS7yeCj6xWzX3EzEeK0llyCkwx0nYbQlQYW9GNEz6Jcpa2Gj+DcP04UdQ1hXGcbk9oO4/C4QOMXprKxojcREhzSldovJfq6RQDu3aLUoaYRfqwKS0aS1Fa2ralsIbdbsA1TgiqaKZhIIaIKxxFUWJsQimPImJdJBrpX+Yk0hoJSSPrRc0wdqADhStZLpdobbh9+yZTGEBXLJt67qUFurYnlpGiqChdyTQEtLJSFfaamzdOiCngnBXmemEwViBvw9Sy3q9plg5jMiFk8sUetWBvf8XkhznVM4AhJcWwk7aNKxzOKeq6YRoH+hDQpmR/vc8wDPg4cO4npLUGlaltQVkeEbxn8i279hjvPVWlKIoSmzTaFDPZWRQSlNaElLl954RpBnJbV3Ljxoa+a6mqkrpaslpVaK1kW5EMXdtxLkoMzG2Tgs1mMwP7K4qioa6WDMMJRVGhlOH4+OwlGt0vHPfcJBSY1iBf44C2jv39ei7ABJEKdNUFmqQoam7dPuH0dMs4TqSsZhHfzHbXEmPg0tEhShl27cA4DDhrcUUh6aZOAoLeXxBipO1ahnGirCyr9VL2jU64dClF9vYOKMuSzWZz0ai3WapxxkpzOwNOuVmUVxNDxoeAUAMMWsllz1kxDCN937PdthijODvboJXooJyenjFNkcVSgMneT4CfpTAaUk5stzvZpxXSMpn8yDhJkUdWRoOzhdDAxkBdO8ZxwFgRVDoX+D2vjOYs6KOY84wwGlgta+Y+i/ROh4GTkxOmIAiforCQHT4IlcoVIiN56egyx8fHF/u6c7wvMCu2OVFKS9DuWkKIs/BTNaepPRnNy172IF3XslhIQaquGsqyFPbI5GnbVtQJZinDcRwvUtzTkw1Dfw40gHHYzvvreyfuuUk4TVJwKMtC6EJKM44D5ERdO+Lc4FbKYK1DKVltpikBws9LKQi2MgEYjo83M8s+inyDnuUIrWa1WlA3JWXl8FFRL/fIPs76oCPaZJpFSVHu03cdfb9jGLqZRnU+mYQEKw+FhuXKgXKcnW7ZboaL9sk0qhloLXIdg+pxVoi4Vbkg58Q4TJycblk2axaLhrJ0ApnTAesyDzx0iKiGR+LkObq0jzVmxqdapklA7EZbUk5sNj11XfHww5c5PT0jZzXD9WSw9n3PuZZoXdcYYzg4OEBbw63btxj6DlJkuVhw5coD7DYtTz75PobRC6HZWtZ7S4qixHshVk/TQG4UN2/epizrix7kMEyMk+A2jdEYM86N9jRXbh1V1QhYAzg8XIs8iUq07QalNJMfaZqKmLyIOSk975nzDGxIF836afKMQ2AcvBSz5hZWWd1XW3vREASJxhUOkzUhyWvNsmSaEjqDj6JeZrOdfQZmJn2GlOMFQNfZAmMsbTuw2+1Yr/coyxqlZuaDVlhrsVkR04TWGWU0rjh/ykpvryxL9vaWaJ3YbESyzxUWa0SunxwYxpGYwDmL1pIuSmU0XPx7moJMFpWxxtF1I9txALSosOVIWRaMQ8CageVyiVKJyjoRJnaKo0trnC14/weuU5RS2Qwxsbe3pqpKbt68JdozvQABunZgGgNdN9D3PZCpG2k9nLMezqu254rfR0dHJBLb3RlnJ6fUVUVRVPTdKNdxb0U5yoNOuISVtIwi+CQIo76PbLenwi6JkYTCWMfCFWQQBQL9rKKVMSglHNGhn6hqQQWFMNH3HdZJ68HNnhvDMKAQBbVz9sz5qg6Smvopkgsza9B6lsslzhl8uA/gftFomkbK23PvSKVMUThcUXLr1onsJbTCGAc5MYwDIURpUKPx0VPqc8VtafJLgaWiKC3OCR0n5iSrYxb0iTFimpJCZPIj3oeLSSpSG9N8w2VfulrNaB1v6YeWdtdTN5Y9rdnttrTdQE5aoGzmXAQq8+CDh3jvuX3njvTUrMaa+Zii5PBwT3phWtjzSktPbLM5xftp1mlROGfY2ztgt2slpe0G2rYXSX0n/btxmFBKVOn+za+9F2sVTVNhnb1oxl+6dElk9mcVtbZtefrpp7GFgODrumC1WqO1ZbPZEnxgvV6h9YgrSna7Hdvthl0rxTLnRHk85YR1hjTORjTaCB3NCvWqWVRzqpKxNjCOE9Y4ClfS7gQN4+weVV0TghCSFRGjRRo/xkRdFaxWC85lIc+xoVqfiy1nlAqzmLOjaRrqpuL09OSlHOLPi3tuEpZlRd93Ak4uLCEF6spRVTXbescYPDbLiuMnKYuPg4COrXUwZKq6EVk+L5O5KC1Hl9Yopdi1W9mzVCWnZ6cMM6reKQdZyuTt9jbnHgszAIcQhANnrSNlSUXHccTPaemlyweUpUjn2xhpFhUqGyn3K816tSaTOTzc5/TsjJOzE5QP1FWJNoaycITo2e425JxYL1bsdjvs7KIkONIJ76UJn7JmtUpzmX/g5s3beB9pW89yWXDlyiHDDKe7deuEs7OWxaIgRpFnXO+tsFaqiud78PNVZBxHRh+pm5Khkz26s6VgWJViGHrxtNDSFhrGjsPDowu1g3O2f1aJuqkJQfZgmYy1EaOFgGuNMFG8Dxerct8PdF0vPc+U54dIIEVYLNYYU7DdiNy90hqtxQ+jLEuappFrNuujpjhnVU4MfUQxXNo791Lcc5Nwt9vN6moFdV2Rh55h6NHWUjclRTbsuhatk6iMIax1IY96UrrrESGIGGZNGFlZtanxXtjwfT8QYkJbIaFaV2K0o6oWsmd0jmEY8dMgQrNaLLushpgm+l5cms4l2o0xgAzOVVMzDIH2dIdWmt4ZUg7E2z1nm+0MF6tIUfaUSouGbc6y2vbDjpQ9UFIWNcFnghficd9PWGe5c+dUGCRTnB8gjkVjWS4WFKUBLDlpLl06QnEqAO8wkayaJQpFvOocZHCXFB2Z4gizq1TbdkQvm+zlYok2mUwihJGyNECF1nlmYBjqeo+ydOz6HmMLQjhnmyRMiALRcxZr7AUpWWvDOEqaWJYldV2zt95nt9uy2XRYY1FqwBpHzkZQRt1I8FLo8d5zfHx8UZQRyJ2opTvnSET6YaRtg9Du76G45ybhYtHMN1dcd0JKbLctpycnLJcrtMoYlUXHROkZOZE4OT0hhiwoCyevG6uoKIhxulBpFinETEiJjMLM+8bTkw3GFmg7uzMV8roxibbthKemLSlp6qoSvqNzKBUZJxE3coWhKAtRGIuSahaFYQqRs80JKNjuBBgwDJ6cFXW1YJwmpmlAG4XSc+8tKpqm5uxsx9lmQ7NYURSeszMBhCdEFHkYJ6IXrVCVoa4XLJd7ojw+p2aLxYLtpkMpjTYlxhScOyqFuVrZNA0xJaZZECvmwGJZyZ7PWfqhFzRLrC5A1z6E2fdRkXNkGCaKomAYRk5PW5RRDMMWEO8NZjV1hUYrQ9t2OCepY0qZaepIMV2oAly79ozA0EJmu9mw3XSUZTXr0Zi5jTNduEUNwzBLniTGqefWzQ1KJR5++EGWyyXjOEgmZO67Mr1oKJOIBHbdBm1FAEhnRd/19LueyERZFSLznjV10TBZiEETcoCYUVYRQ8DZgmnwovdpC0L0TCERsuiPhpQpK0dOaha/hRwyQSecMsQMrqyoEgznaHyvoE8zvy6R8izXphUhwjhl2tZzctayWCxJSouKNhqttLQBAJQlz8LARV3Qth2FMww+AQmyYfCBXT/C6W2MdZAzrtYoa0jI5J5CQCE+gTFm+mkknZ1x+1RAD6I0Jw3tTJxV2CxZi3mOGInKylAUBXEYKKoKZyGHhEIJtC1P+DHSm566OCQMikTByZ0Nxib292ZKkU9sznbEoDBZkaO0ne6+l4IUiX6kKC0hekIMqFmzXmlNVmJWk5NkN0M/YY0AtS/OM8pE1Aa0Eh2fohCXK1cojClIRwGNQ2XN9mzL3t4eOclYupfinpuExiYeeugSbdvTde0M1I7UVcU4jWIQoiXts9agtGG9tyTlDev1ipQiTVOxXC25fv06XdfOEDBB2qc896qU0F2C98QgMhfeBxSilj0OkRhbUhQcYgyiKi1thHEucwvwOaVI4TQpesJ0rlcaZq89xXbbYo28fwhR5BGNVCKzEtepKw8ccXp6IiuOUewfXBYRqtpSNaVUDwEfxJU3JggRxBVVoVRAW2Goh1lFLec5zbbCVnDOwYwTPRdNvtBszSI5L0poC0onK7JWhjD/Ledc2JOTY0LMpKxou5b9gwXBB/LsP7Fc1ChliUn0SZXKFyY8OYc5BTfiEKxmS7UkKCBrzz0QNdYVs9GpfO65ut5isZh7fdKOMFb27ZJe6wuN14PDA8IY2Wy2ojqehfKWuU9letFwhUywuikF/GtEz9MYC8rhSndRLIkxkGMkZ7A2U1aKlAzGKpzTNE2FmH0KnjHnROEsCTHsFOvk856jTEpUpigNhbNstzu6fqSpK6pKiL1Ga7RThDCyv7+mKBxnmzOsU2idgCCyg3ol6dIUIRmKSpgF65UwRCY/iWhtSlRFhdMKpzWuEYXrsjDUpaWpRM5xu90K8qQQ74qYxclppgdSzIyIYRhxrsDg5n6qPBCCF2EplcSvorCWQL4rbjw7QB3s7VFVFcEHmvW+SHFsNiybmqNLR2ig7zpJ3Y3lMC1BpdnKOs1psKSDo59Yr+Ua5SxGOSI7EkhJbMNj9HSdgAuM5QJMXpTn1ttp9rLwNItKIHxOk5KQn5OPF5NUzQJTwv4/l12LaJOpGzdjW2XS3ktxj52OOCWdN3df9vKHmSbPUx98Sm6SKSALi7p0Innvw0TIkWbpUGpCAV3f0w8blDKUlRim9MOIVoZFVWKi+PuZuU+VUmBvf5+cYRhaVuuaqipYrxecnJzgXMH+/h5939N1PSEkhmFkf180UY1Js22Y9L5qV3G0XN9tHsdEXS+4efPm/H/P/npFORdzDg/3OT65w6KpZnFaw257RjGbzExeCZt/NgmVQkOmHwb0pC72d1VVCrJoGAk5zswHTVUVaK1EYj9MpDTSdR7ninmVzDBnC9ZaIVBvdly+dFmKYkqxWi3nvbih3F8KbC2M1HUtwPF+mAtUgsOtCsdyXc/ABNEZreuG3W5L102zVo2aV65AjAKdc4Wmqh1lUdHuRpTOHB7tkXNmb29vRsYMIvExS1mmJFKSQpSeyEh1dm9viXWaZlEiwPdRCjb5fnX0RUMqY83sypRnWs9itg3rUcaxXO6xXC64fuM6MQVsYdAqz0RddVE9E+aBwvtIUy8EO6gVigE9i8vGGKirmoODFQrNdjv7OxihzaxWC1KMdN12HmQAitVqIdZnWnF4uM9iWZFioO06bly/gY832N/f4/Bgn7NtO1uvZdKc0na7DeM4slg27LZn0qLwE9WymfeXgRgC2SiGbsBqi1EajSb6QEywqvfZxZ24I+WMrQri1BKmRF2Kp6EmUVjL/sE+p6fHHJ9sUUBOCj8GjLUYLYrhUk0ciGGgLCynJ8fCUzQaTYlRmRwEZZScxRYK8nnvVCwGyEKqFeSSZ5oEWlaWBu8t526/2lhyVjNCSrIQM4uGaq1mNynPaiVSFtKm6S5W7jzD6mKM6NJwLnsZY8QV5kKRvZzdm8+ZGeccznsp7rlJmJJIlZMVN565eSENURQ1RaHoB892sxNpg11H1dQw9+Ock5WjcGJPPY5eFMci9L2naz2JgCs0ZeFwWrNcLXDO0W7PhK9mMtOURJ7PGJwWB980a4gW1rC/PhLjz9LJ6uJHckoyIff3mSbN1avHbPKOZV0T/cTZ5kzUo5ta7NJS5uhgj/VqxTBKG6Z0hnEYQCkOji5xdibWbXp2TgoxkopZY9U6qrLhA+9/hpOTMw4O9jg6fICqmLh9c0NxYPEkUR7oFXVtKZxmf6/BOUMM0pNLKaJ1Zhw3pJR46KGHOD2NWFPip0i7E9W5vb0VpXPcunGDs9NTDg73qZclWhk2Zx5nLNMUaKeO5bKZWy1KGB1zm8O5khASfT9htKEsoXA11tQXrA6lmP9mzXq1IIQ8S5WIsrnY0M37+6go5wllraXve4ZhYJoie/t7OC1k7qIoLlLeZyNs7pW45ybhOIj0hBQD0ozkKPCTZ7vdMc3CSGUlfLXJe8ZuwjonlbShw/uBsqwwRhrMWmnGwaOUoapKiuK8YKGZppFh6EAltLbEmCEr8ZrPE3VTc3iwT9fvuHnzBkpBVVacnZ4R4qxe1lQYY2eOnePo0FBVC4ahZ5qkiHO5PKKqhDOYUyZMUt4XFbSJui4k7VsecvXadU5PNnRzFS8jGqrGaHbblrquOTu5w+nJbZyFV7/qYYZh4Oz0Fn3fc+loSbvbUdclZVUQwsTJ6S2ctZiLfZFlsXQXPMZpEpPSxdKh9AKiwWjHalnTtS05RoaYyEmhsYzDSNYTh4eXWC4XdN3IwtVAmrmJMOZzuzQ3g69L/NSRk8KVNUMvAswpJ9QIVVWiDfhpNtzRImcYgp8B2XJ9nTPztiVfIH1EKcBh7Wreish4ykmJcnlSDP0EWd03hPlIYbSbq3Ua8XpUFzqVUr20jKOnG3rZmCOrox4T0TOzCEasrXDOMsWJFKWn5mxBUViiD4j+puA4m4X4XgQvVTOtHOMkRZjN6QZSollUHO4fYGZoV4pxNiHpyTmxv7dHirDtdgxBHKCsNeR8LlB8rnUporRRa9SQRNo9gBbfUrrtFlJm6EdCiBweCmD7+PiYGMWp14dIjJNMsrKknMWaUvSUlSVHkacwVgSElcqzCLGmqmoyid2uoywqkffQUqwolZ2ZImvCmAg+cnS4x8Heihwz0zgRRk9dN1gLPrfstsKcN8awaBZ4P858Smkl6CheIOv1AdPo0cpSuJqc9FwgE+yoNrJt0ElMgXJOImM5AyTOiy92figbO2GNmQWpRspCKsh1vWC5EvSM1tC34wwW9xeIoPsr4UeIfpLUo2gKXOyYfE+YpCFcWEcMC7bDKd7s6KInpgJCjQH82GKLTEgKnxT4QFIKVzoO7HqWSw/kEKkX5Vw08MQQGcdI243kBP10itaCsywKRztMDCFw7vqTcqSqHIu9BePY0w0d2jrAMI1xNoaBsiyEoU6mKmt8iIQh0ThLVRdoJXbWdrFCGyEZ20Kxf2DxIROjY1HLSuWnhpTOlcOhdiWreokrCnEgCpEpRpqqlkpiraSNkjPDIAUMa8AZI+0DB6BRGaIPkBIpZvrdxPZ0ZFE3LBrBZfrkyTqy2m8wpRSagg+4XM525IG6MsTY4eeUMSuNMiI6nJPQprpWSNc5CV528gFmBQTnCiKJEDPOOqryrl3B5mzDMHqqsppNf0ZhjiTotxNt21HVBXt7C1STL2zg+m5ic9pRz/vdqhILgWG8rzHzotEPPXvVelYuqxj1yNnJGYvFinopzdptCJxuJvYOX8WlK49z7YPX6HbPcLgn0hNVEmY4IdA0NaUrKcuCs9MN09DhrBbVLRIWB0qhtUXryDCJoBJklIZm0YiWjRFspyukorhcVfgwok1DRsmAIpPSuR8DVFVBVTl2u40ow4VA8JGzs1MO9lcoxH4spkjK55xDxTiO1M2SwlXkmUUiELphxkvCpaNLKCXK00op/DSxXCxnr4uRbjijnLGjVVVccAfPoWrndJ5pHDn3TUwx0faB3bbng7uJw4M1e3srck7UTSmVy6qUVTkknC4FEJAVfhyJKdE0Da4oGKeRmyfPcHh0hC1KNmcb/CQivoVrRJTKjwIl1BpjRb4xpYjShowClUk5MYwTfS9sFOscISQ22x1hDJS2ZBhHlqsKbRT90M2W4gJxC1H0aIq5/5hSEkuAeyjurbNBqEjeT3T9SOEMq9WKsmgIITF6zzCe8dBjD/JY9SCPPPr5XL70OLdefZX3vOdnmaZ3odJAGPLsX6BQaSLFTNePoAPKiYS9thaTICP7v6EPeC9M+QdXR+x2W1YrgTqlnGYNTEFpxOgZRz0XD1aMQ5hNMxuMNVijaWpL04ga93YbadsN2207gwAypIGyrkVyPmW6rqMfJlISXKcPlqosQU2EMBGjJ5NZLER2o6oKtNH0Xct2t8Vahw8Tu3Yj/homCRB7JrpK6yDNGE4BvKMyaZrQs3rZOEychZbF0s1ivmoW3J2YfM00efb2lriiJEWxE+hnEHvOkk/nETAGbQ1lVTGOE9MYadsWaypijJzszjjQiPegEoJv8EEsA2YYYte1lM5RFJZHXv4g3ntRh0OIz1YXFPsLCuvYPxS/yrouZxVxEYDyk2wFtrsNVahmBFGkWdQv7SD/kLjnJqFxThD4KRAmKZKU9YIpTmAAu2S59yDGHdDsVUTds9xb8gmf9Cbe+ounWL0lhhtMQ3fxtLeVFSVmK9VON2NOQ4zifhQzRVWRlbjsrlYNIY64wtJ1Hc7ZWXtTelpdv6MfRBtTVOE8wSeczVSVxWhhjeecmfyE0oo4eZqmRuuI0YnV3gJrC/p+onAFVdkwjLOcRcwoNc7+E6KmllJm/2Atnn7RM4w9y+WSoixIGzGfCbNSOWTczGg4t3aDu3shYwyYLIY2RlA49WJBWTdEREqRYBgHQcpIT1JWuq7vZzEqAEXXj/RDL/biQFE49sRRFWMcfTfgfULMWcWxKqUJaw1T8GQRgyUEdWHJLddJz4Y8Iw8++ADWimocKNbrh1FK8KQxeoqqmOX/G46Pb3N0dAnvvfh26Ez0gZA8JosXY3sftvbiIf0lgIwfR86myEoXJG14xSs/gdXqlex6z83jq2ynJ4i2oR0tpblESq9h270Pre6QFFinZR9kFXdOtjzw0MuomwXddkvbtrRtj3WloGYMwtqfJpRqODo8pO12WGtYLJrZTTfMvavlBbUo+IS1JVW1vHADLpxiGjuKUlogSmlcUeBsRVMbwF+sSnruda3W69lxaCa2juL3p3QDiFLbhZa7yjMjXnp0IpokamnnvVDvB9FqsXZeve/afRdFQeTc6VekGzfbDqUM4yRSjMt6SeEUXSc6LsKEkHS5LBuUjsJ6sBpblhhg72B/bgMEkXDMgbKcHzwmohD2ftMssUVBTU03dIKgyXI9FouG9XrNndu3yTlhtaMqq/l6TThnsRYxvakc3idiiJSlIyWRpayqSiz0kjxoXGGFKjVP7PNe470S99wknPxIXRbESXZsWWnULEL08KOPc+XypzMGzd7Nd/LBGz/DhOX6MxOVeYx2rGgWD6DVLbQDpSMxTVKxmzzL1Yph1vgcx4ld21M4qJaNoHSCWDBbl7l8+ZIwBfw0w6wmXOFQ2lLXFTEmht5T1+VcMDGkKDfdaEtOkbISGpKfAuQoAPEkEhB5NsNU2hBSoCody+UCP8kqh0p03QZtAtqIj2AIHoHNCsxOPAvDheJ0CIFxHLHKXnhFwLkVuFicjeN4AbRGW1FSS45xkCLKdiM6M0ZVHB0csetaIVG7UhgXGcZz+lAUcxuMJqdEWVWUVcXJ6Sk+JZpqMa/CIlo8TRNDNwibY3IslutZ4FeYDzmnC4Z/SpllvWTZVOis6dqOMHri5ElzlTOEwP7BAbdv3yFn2G53F9/rusEVjqmTvmuIgcKUM5jjpRnbHy7uuUnoY2C/WmPKGm8H+smz2bbUewfowpKLjqI45PKV1/CeJz/IyckxH3j6afbXis9985s5OvpENieHvP2Xfobh9OZs9NnjnGW72TGFibbr8D6RsxbfhygpWcyZojp/kp/NwO8CpTLDOGGzFA+GoZ8rd5Fp2pKiSAGKpCFC5M2G7aZjHCfZo2ktNs6jJ6WR1apEYZnGwOQnur4npcBqvUCbNNthiyCx0HukmX2OLIlpZlvMBqVlKfzLpqlnsLQ09QVOJ0Tdc+JuURRMEXwc2W56FJa+22GsoW2F9JrTCcvFkhDDXBgqsXNtdprEIm0KE8aKaczoZ3fh3Y6zzRkhRvR87gItE5C4XE8jx3tRyR6GXrRiZ27jyckJKYmw12gi4xiYpiCslVmGUjIDTddNDEMgJwFpK6U4OzubLfUURTn7jERBTx0cHnJyfPpSDe8XjHtuEo6juM3WtkDPT6y2a1keXaZoLGfDk0zDjt1pTRpfzY0PvovXvObTqFeBN372SoDM/jOp6oK3/tS/oju7jc4Jv+s5Pj7hwYceYuh62t1AN/QotGR4SqFgFugVmNM0zpovkxhVnnPnptkUc29vTdtOtGOLUoGytDMzQ0xTMlEqq+tSNFBn/0TvE+MottMpp9nGa2K7O2W9XrPeW6CtPOlFFwZRhTMap+tZgXtkms5lCS1uXvWKsqBtdxd7QxBmf9u2ov3SDRRlweBhGCPBC71oNIOsplHEsobRc/P2LabRM3kPSqO1KMVtNqJw3ixk5dtsNrR9z41bN8nAME3klBi7Aa24gImdMyCstWx3LcZaJu9pmmbOOAQDaozwMpPPTKPYhAcfmSZxwHLaSLaBoe9GyqJhsznDGMP+/j45b1EKhnEkEURDNgtTwzhHvt8nfPEoC8s0DtgEJFG0Xiwq9o+WbHZ3cMWCDz75Dk6PPZ/wiW/ikcdew8sfX2OqiTu3PsjLHn4FrrzEGz75zbzjV66y659gvRzRNhLHnv7sJotFgXMiEhRiwhrBV8YsvofOgLNQVTXWKuIkkLFCl4JXtNIw1zrhXKIsxURTm2ImoTLLKWZW6/pCvzSmRFKJrDJZweilQLFYLhjGca4keozVM7wtC1fOzJo5swlmWRYwiXVZDJF2NxKmTFZiINO2O6yVSqIQbUuWiz1AsdsGhi5jq5KqCODmdkBOKEasFnUzZy0xSHHFWZGgSDmgVMCngNEaTwA/MkwTxojjlXAyxc4uJw9WVNL391egFF0rgr3r5T7aWmIIaKUwZYnKzNVli8HO1fBEPhMOZgiKFAQfWtUW73sRXa5rjIPlohFitDL0feBs2xNyoqwzwU8slg3btkMLAPieiXtuEq5WS1RWmJjp245xGlF1xZ1bz2CbmqZ6DQ9cejl7eydk9z4++dNey3J1CDrx9PWBGzdOsWpFDitOd1c4bXfs70cW60wa7pBCD9piTWa1EFqQMXn2n7cXSBTxgNCEMGGtpqwKykJkGMc4EFJinEQ9uqyWsxe8iBxp5SjKmmHc0fU9IRpGP15UJclgnCXh0Vaa1uIYJPqcLjmcKRmYUGgppMw20b3vCT6gjaGuV9y+fcx2u6UoDPuHKykexYQ1ipgi7a4j1WKsKaihSniGOUsrpVnMK5Hn1q1bHB0dzGaidha5EjObPE2ESbRDtdUkRBBLa8VitaSKMPTCzcxRkZNo01y+LG5Seva4UEpEiO/cPmGcRvnsuZ2ktSHFyNhPjOPEdtsRPKzXgnc1VjR/uj7QD56cPau9mpgD1hkeeOgK1hRcu36LFOV+ZuxcedW03cBioS7MYO+VuOcmYe8nKleSVaZZLihTIjtLGAa2t0/Ze3QfpY5YLCoW+z1D2FLnFTkadmcNv/TLH2D/sMGZCczLUGi6dqByBlMF4nDM1LZYZ9jfc8QsXDsfMjEoQoCqrEU6cfIXxiOgaLuOsirRTs9uRwZnS/Hvy4ndbsfNm6dUVcVy5Zmmjs12YLmsWa6WksqOA5nMMAwXvoTnFchzsPM0TbOY8UjTLNFas9ueXDSbtZ4wVtP3E3dun7LbjSyWTtxqtWbRrOa0OV3YkYUwYgys1+IRH2eyr0jqJ1arFcCFx8Q0TbP9mEgRFljGaSTGONvVKYxRs6FqQR4jmXNL8Vn3xpkLZ6W+F/Vz4fnNUv4xzb3TYVYyLy6YFCFErBFW/3otsvVt186EXYExrvf2ZiqUxtqKq1dvCgE7KhSi7oY21LV4Wt6+c4vttmO5vD8JXzTaYWIYPI110ndyDp0zkLh97SmK+t3sxQWXLz9MVQQyJ+zGayzKl/MLP33M294ZcaurvOUtv4MHXq7Jqebo0FGYy2y7nmnYAuIYawspigSbscEwDBqjHbu2ncv853Zqc5M7SQ9rfdBQFI6yrGZPisRyWdH1Ur00NpGSqHijKsrKzcTUcOHqlFJisVhcuON672edUUHM3Lp9TNuOPPpozdnZHYC5f6jFJDQLPMtYLbKEyxVKWdbrQ/q+4+TkNtYa1usVbbtjsz2jqhrKwpGysEqk0CHKANM0orVmHIVnKCrms9+jErzr5Eesm4tMRJSKM7tEVqKytLRBlNJyFqB3CAFpKhqsNRfKasZq9vb2uXHjmL4Xl11nFbYoWCwaUSVPJ6z3aspqVrbzXhT1spohf46UFMbaucAzSAFGaTKKmDI5hZnzKUp7RZGo6/uT8EVjmjzZR1SZCOPIwXqNUhPaaGyOPPG+n8Bdv83rX/3bSOlBVOHJ7pQYMtevTlx72vPY62t++md/gt/9uz6PT/qkByi1ozSv4wNPl1z7wJLh9lO4MjCGY8bkxYN+mmFjCkLM6KxnE01ZmVzpaKylbhpyDhes9RDSPBFKDg5LFstLKOVo256iFPCxpFFSJClnou7+ek3TNEzTdFG4KIriooWwXu+R84aTkxNCCDMgWSqNKGZfethb75GSsELG0bPb9ty5c0ea49qDyhcOvecyF0qBVpahm0AniiLT993c5lCEKaOtsNKNtoQYSF6cn84JxM44lJGVVClxWLJG9EXJ0u6gyHMbZcJ7SCmzaJYopVkuG8bRs7e3YLk853kq0QddLIgx4AqxFQ9hmkHYQgIOXjiJm80WpUWD9bz1oLXFFQqVLTFp0Iq27ShLwytf+Qq8lxX5Xop7bhLabPCz7ISzDlc4mqqQhnF7Sml39N07+Pmfu8Yb3vBmXvv6T+DmHcVP/MTP8dCVT6Wq71DYkd/5BZ/GYnnCwd6S2q24fcOzvvRGYmz4YP8TbMeboqJtK6pFQTjbUNRRtEKBYZxwRUFVlkzTObMjYwqxJhuGHufEFzDnyMnpbYwxPPjgESGIdEbVuNkvLwkj3wvh2M4k01u3bklatV5T1zVt29L3Pd576tWao/JIYHOzALI1siIorYhxZLfb0tR7LBZLTk/PCDFw7do16rrk4Ycf4vj4DuMwcXR0wKVLl+j7kXbXoRQ0zZL12qF0ZJp6YvIcHBzyvieuMQ5nIpZk4eGHH2bsOnyIrNf7bLY7NpsdRVmw2mtwVrzkN+MJIcjfMo1Ci6qLiu22FZhcKc65w+AvVv4Q4owbVbNkpKVZlJSFYaosi7zg8uUj9vcOuP7MM8SYZkuBVrwqJlEBT53QvMQXw2FNCTOIYfSett0xeYOdbfTOpRXvlbjnJuGibNhNgUXdYDS4omDvYJ+ubXGjGKxkeooy8ou/+AO8571v49M++/fxxjd+Lj/1Mz/D0WXFww8O6HibdX2Aih2n3cQYC0I6ILlX8MhrHaenT3Fy+/2M/Q3622fkUGJNxFmIcaKqLdZq+nEn3TGtySnOTHCRRHRO7L28n+aJ0mCtYhhH0BHnyrmpnlGKmQmuSM8yYZEUcLzokRVFQVVXhDhR1/WspyLpsDJQ1oVM6naiKA2LRTnrtnjKwjFO0h7ZbnpS1Bhb0veexWJJUzuMLml3Hbfv7EgJrjy4NwvjNsToWa8bjr0YsywWFdMY6duRKUb29hx1vWTXjmw2AlVbNMIlbHfDjCkVGlfOQs49b0vIKisK3Of7YO/FOkCpeY9dOUIYuHV7N+uHRrpuYLu5yjTvR40x7B+sBLHkhfI2hYEUBRljnfRyY4x03cjkxcMkZ7GbK4p7bsjfe5OQKbIoa6qiZJxaUNANPbaYe0PeYuNAYGR/DZv+Xfz4T/4Tji6/hle/9nW87W3/O5/42kd5/OE1NpYsmiXORGJ0/P3/3z8nxIL/zx/+PXz6yw554l1v5Z2/+lOc3Pg3eH8VayfqKrIqI8MgRYC9SnRmoo8XE8/aCoUwPgTPKEWOmDxdv5snamLXbtnuTgUq5ipQwmLQSrFYr56lWB0vdDSV1uTgCSoyTp2Qlocwi+pKX04chjW1aShKQ9uOIitPRhtpTUxTxE+iO3p854w4r1LL5ZrtpieGxMnpGc3SUBTSYtkFkWnMSRgHTd0QvCdFTd/1XL92E7RQkw4PjmgWogFaVwajKw4PD2Yh4RZrHcu6mkHvjnEUgu/BwR7j2Au4XsvDSes8m5NKH9aHgRAD4+jZbrpZT1SxWNRoo+aiUEmZDTEZNruIdRWHh6KyPvRiWTDNMiBlVc62AnHmd760Q/xD456bhI+87DJd35NJFK4i+pHoFWFunCulpM+FpnAKg+ep2+/g5PQ6b/mir+aRR7+IO8fX2GxvcLR3xO6kJZt9UqxZLA943wdu8M/+95/gUz/5k/jE134Cr/69r2d3+gRPP/mrHD9znd32GF2c0fnr9OMZhcpcemDN6cktSBGtLcZKg11bsTYb+3Fmbo9CGNYWlaWgUzf1rJkTGf1EyAmNxUdNUS7wfscw9NLA9wJGjvmuB72zBcEkYhLa0zSOOGcviM7WGoxSaCcmNXVVc3rS4r0Yki6XC4rCkIm07VZWl7ZFkalKEeT1kxRYQFEVmQcfPOLq1etM40izWND1Ig2h1GxOqhSF1RTOEv1E4TRNtSTFSN92MyhbUvKUpLosOz5RgxuGUaTxc5p9RsRXMYSIQvqKq9WCYZhEUqS0eB+p6zWTH0QicSYCa2uIYcTZUiQXUyIlP1evFWHwRC/aqspoXNMI+OAeintuEqbUslzYOaURupDohCp04bClYvARTUaFQOUK1JFjM+74p//4b/DyRz6dz/ktn8O73vtuarfhjW/8FHyEzZmkka9+5SeiYuZH/+WPU5jP4JM/9VVgDnj89V/AY69UlFXDZvcM737nL7LbPsNuexWjB3qfUSmIS3DZMQ47NJasRTu0qSumaSCmyMIeokNi8FtUUhitmZIgNjQFXT/xrnf9GutVySMPP0DXTnTDjmpRY5qSkDLLWnCVbdvSVBYfPOMQGQnEuBMsq15QGsXY7aiaTFMe4LRjb9nQ+4hSBU3juHx5j6oqePrpq/RtK4307FmvajESV4phGIDM8XCLXXHKMHSs9h4SGUKd0SpgtZJmurWo7Bn7M5mQRclqtWK72WG1YprlKHLu2N8/oGs9221PimleARFFg7rCaCicoSlLzsYNSmsKq9EkDg5r2mFgt50gKm7cOqFwDlcoUk6UhSLEDq0iOQX8KHoyVmuK0qCyZb85IsTEruvJSR7m3t9bS+E9Nwm997O8oVQUz4sVTdOgtMYWlqNLB/S7HSqL2+tBWVA1hrYfGTfP8MQ7n+DwqGbnAk889RTrg4hyD9KUiXe87d38pjf8Jl7/+ldRlorbN6/hxwGrFDl59vUBR0eP8lmf/TJS2oHuuHXjA9Srn+POrRtMU0dRdoTQolVgtW84OblBOw4kLCiLTwZtCkoycRrZnQ7EEKhcidKWHBNlralqS1laDo/2KXtHSFH87n2gzyPWFMQgfvbbXQucI2cshYVCLdF5gS1qYt4y+JExSKXUWDtjR1v0jP/b7fq5iS6q10Uh/cDHH38lT199mnMx45wFjB28SEg+9tgj7La7eaJKX1GsyUeKokShuXXzphRLZu6j7JUjXTugtePS0QEhBMqqmFNCjcqisxNURC+0aLpqTVVVs7yFp65KutYT/EDwI0pJzzXmRE6iSLdcNoRwV0PVOQ1ZOKVpBo6H4MU1WYlE5L0U99wkTEnIqNYKYuO8b5ZzJqZIsaiZfE9dFpRGVKRXK8Pgwe8rkt3w1BM/xTvfUfK5v+Mt/OAP/SpR/Tx/4A98FZ/yxn1Obz3F00/9AsvTFZ/3OW9ktRY5w9OTG0y9sMsX9QHbdosxiWbpWF96mM/6/C+ebb0y7e07XL/2QbSZ6Lozpvh+ut3IdjNCMETXoe0pygqXT+kRn3qUESnFw9WSWFwmh0jWkaFvKWtHqUpuHx8TYiJ7TQy7WS1tpHClFHGGiYyiNA1K9wz+DiEuCMHiGSjKDmJFMbcYBAc68OSTT5GzZtHsU1VrQhxomoamaTg7O5sNQvUsPtVRlTNrQynMjKvNWRyVrBNYWAoRTGSKPfv7+6Qskol1aS8UvolZ1MuZvUCUollU7B9eZnu6oe97rl69RZqJxiqLAroPE7YyaDJXLh1yojfcvn2CygprKnROKGNBwThEmtqJgFNK1NWCnCPRWVJIlJWjampOTjZ0XUvm/iR80RBW9PkT7a5x5XlaGmOgLJxooqhMWTp8v8Nax95Cke1ACIkQe/7NO36Vxx5/A8/cvsG/+uGf5LM/81P5Lb/lMd717ttYE/H+KmVxhDP7lNZxfOeYt7/9Zzm58wTWaS5fvoRWa9q+xxYOXddopVgeWV536RUoHckx8vJXPM7uNHDzess73/EBbt15huXqkMUiMMVnSP6YZDxl6Rj8BD6xXO8x9i3aaRbLWrQ1U5opg5qmXmKM5ni3IZO4dHSZlCJdO4qxiskY7Qlqh3ZHFDxE124Yxy2Fm7Cztk3KieBhb39fwNCz4rjWmr7v7xJ9rZ4RNFIsWS4aUd/ebrl+bRSxpSgGrEVRUDqLswIzu/zAZS4dHrHd7Ri7VhqHGbRa0A8Tm7MzqmrN/t4adCQnT7c9I4VAXVaobBl7T47Se+27DmUUhbJY53jooSso1AynUyiVsEbTDz3DGHC24uTklKqcvSicIhMJccLqAmsdRVWz2Wxlj1ndW9hRlfO9VSv6618nzO7Vaily7CFcKENfeeCK+PepRIpx5uglQogslwsC0I2eTb/DEylXr+TaM4aUXsZydcDo7/Ca1z3Op336p3G2ez9td8qrH38TtX2MvfWDDNNV+uH9vO9XfwGrHY88+hpu3+mo631Gb3jk8ddR1DXXb72bemFQuifnHmMjKssDIsXMtes77tzquHz0ENefvsX7nniSpmx46qkPUhSW28fv5fHX1Czrgm5zB01CK0VKmWdu3CH4zOH+Jeq65Oatp8lIj26xWHHn1hlDN9I4iykyqZwomweo7SdyegvG8f245ioqe1bLNSFOlGXJotnj2tVn2G5HUoKyEBHith3ousirX/MQTVNR1xUnJyes1wvxLuyHuVcp5jfjMMy90YxGz+JJkgILVE6EnrTWaF1ROMswtjhnWK/XtO2WrutpFktOz7bUVU1RFNy+fRvrnOi/KEVOiePNKdoaXv6yl5Nz5vT0lLJ0rNZL2m4nluPDSNPscXznZC7e1CKlT0SphPcJpSxXHnyIECI3b91hGD1/+a/dO0ah99xKuFgsREq+ri+whCJ9PqJQLJsl3SCwspTUTBcKhAjDNDL0sz+B6tD+Kg/sH/DBp99Hz6NMOXP16nVe+7prvOo1L6PvDjE60g03iHFLs8oY63n4kTVOOYLfUBc1i2rFsJs4vbbl8IGaMBjGmRibcqKqM84lQhSrr5c94njFK69wdrZl73DF6z/xMzi5E9nsem7f6FivH6GqPMcnt+k2GzSB1aIBxNBFm4JpGnGFoqoLFosKmFcAq9HGkJD+oB9KxlCyiVtUzFgXSN6w6zYoXTAMLVU1oXRBVtAsajabHVoLZWi36ykKKczUdUlRFCglfhNaQdPUpBSkh2kNzi4uuJlKGRQihZhzRBspQqm59ZKzpJSF04xjR99xsVcbup4U4kXmY4y4Kptz2zJrIUJRlbS7Vib9LNVx6eiIvutROVKVFdMolmha29kkSOFcwTj2OKdFgqPvaNteDGuWzUs4wp8f99wkFHiVnYV7ZCKenZ3hvefatWtcOjzEZENGM0yRhKabYDecEYJn2w48cOkQqxpyO7G36HnsTVeIZcOP/tR7uf3uBOmYdvuJfPKnvpGqKuj7kZx2nGyvsdm9l8Ke4SlIec3i8HFOT59iTDVtX/LMr17nxtnTXLlyxHKxAFVQEGddmUBId2DQeJaE05aqWtOsDE058lV/5DWYMnH12ob3v+eYw/3L/PIv3GC9EAEkpTRlUXK22eG0o+sCVWNBBbwPNItmJg1HOq/Q9mESV/A548o7NPUxJnToWHC49wCQGMctPgwcHikuX7lESopmUdPtNtRVxYMPFrjCsd1uuHPneF71IuMwolTi8HCftt1SXCi3VXRdx9npFoNmb7WiKh1d1zKOA9kayspiVKIsFZvNLaq6YLUUxbvgM9vYc+fkRExtsohcNU1DjBHvPeOs3BYDxKjZbnu8H2ZxYM3p6Yann77Byx95gNV6xVMfvMY4dBjjaKeB5bKhsBZFQcqw2Wx55sY1nC3p+5HR30fMvGhYazHWiiT9/F1MJNOsli0wrjEEhmlCW0sGqkUj7rAffJqqdFRmRb8bUUkmWT/eol5pxgA3nznh53/uZwnphDf95s+icEfcOT7mrH0S7DVcBTkNIurkC5JeUi4vY8zIY5ePsLef4vAosl5VxClRFJGi0nSjYuoDoYUHHr6M9Q7rHGcntyhqO7MkHA9eepCHLr2eovB84ic8xDPXPsh73/UepmHi5Y/sw9NXiT6TkqYwBW17Km5UCcZRk2lIaUmhHqEbLdFco6lvY8sJowqUrpmSIoQB5xqUDux2nSi7BZGQWK+XrNdrurZjvbei73cXRjx6BokPw0QI8a7Hg3N0XcfkJ8rSiuGtEv/Bc2fklER5TWnJUna7FqXSTAsLjKNgV6uqxkc/i3qli9bCGAOFtQzTKPSyIP3AaQoURQlZU5YVe3vLi3qBjAk4O9vSNAXGKLpemDJlVbFc1ey6nqIwDCO0u3tL6Ome2xP+vb/0cqqqmmkyGeeEl9a2u1naIFKVojXpY8A6R9lUFxP1+NYxD195gClqTtqEqQ4Ycs0Hrp+w2r/CerXm7b/yq5yeXOfyAwWf+qbH+bRPfz22HHEusqgVKgx4P9B1I9XiCK0PID+MVS9jsbhEdjuMauh3hmmcqBc9Pl0DcwcfTsl9waWDV3Lj6lWaxZpmsSDrSN1YumGLq/bYO3iIlFqm5CFU+NbxSz/70/ziz/4gOXcsVldYrxf0ux3eR45PE21f0nb7OHfAwaoCtSHqpykXO46ODui2JU++a+D2zZHtdsPRkeUNbzwihC19v6XbRY4OVtS1w1QiUpwzFLbAKMs0TIyDZ7lYcvvOKctVwcHhPtM0zu5Umr39ldCHYsQg4PZxGFgul3Nbw5OB09MTjM0zc0L8EBf1kqpuODvb0LU9VdVc6OIYK74V8qDtRZ+nWogZqhd2/clmBwo+/TM/mf2DFSfHd9huWobeM02BJ598mmZR8NBDh4Q4zCakkdVqSdMsadue27fuUFUNf/pbr7/UQ/0i7rmVEJXZtpsZoZEZxkxRSLN6sRQV6mkUGcFFs3yWGlhAGUNZF7R9xxgVm82AC5mTNlLZikUZUYy86tWPgHqAd7/717j6zG1ecXzMck/hXMC4Eh0jbd8TomdVQgg9k7/Npu2Z4ilT3lBVB0xtSWlLun5DiGcs9mAYRioWnJ12KBxGi4RjvSxn09DEcmXw/g5arSjVw4xec+eZ6yybB3DmCGsqpvFp0A1jzox5n+14hZMzQ9YlqegoD57CGY/3Cj8c8sH3ON733tuc3hlYr/d55eOXceVA159iXWJvf48HH6g5uX2Ttt9xsNgjRqk4rhZrwhQpqpo46+2Ii1HBdrsFMoeH+yJFaJRYe2tDDBEUXH7gyswbTGL8CZidIcSJ9d7ejBONxCwVyxAnEqIzap0VZy1nWO+tGMeCohTJDltUKOMYek9ZZDZdyzhO3LjxDDGNtK2o5llbUTclTSOeJdPksfP+sqxEfa2qhHYmdLF7q0Vxz62Ef+c/3sc62WAbIwWajMCgnJsxiCHIRSWLuK2SgTN50bFUWTPFhLEly9U+u2GiG0SC4crLXs2YlwzTSModlx9ccba5zlvf9mu87OGSlz96hYcu77FYWLRO1HVJ0yyJwTIOVgxrbEldX+bywStJPjNOt2n769SLzJ3bz7CyL6c0h5yenfDQww+wWFWcbu8wTFseePiKyGKUe5j4GHeuPsi1pzrCMPCLv/gvePDhLZvNBzB6QLkDnjpecbItuH6zI8aehx/WLOuJzTNPcvuZE4Zec7h/mUceu0K1GDDVsfQlh5phGFg0lhQzYy/N7/W+oWkMMYrXx3azwxrLerlitVjRdz1nZxtS8ly6fMBms6GqKmHHazVnI56yKFHAOE0smoYQI8fHdzDasFytcM6iFRxdOmScBm7dvElROkIQiXrQlG5J3w8wW6s5Z2fLuowrHGXd0HYDt2/doaxqEoqT0xOyUly5coTSMA0joAUNE+Ds9AwfAotFhdYZV2nW6xXTFGa3Y3Gj+jP/8e2XbpB/SNxzK6FxlpgiOWbGKTAFz2KxEF9zLf6D2orCc4yRsq5o25bJByGcFoYwRbQKaJPZbG7RjwPNconKgb57hgdf+UYG7/DRgc588OljtHacbTUnb7vO1f0TXv2aK2gVWC5LqqrjyuUrNAvDOLR4b1mvShSJq09/gHoZ6fpTXFlQ1Y5FVZGnBHqiHU/BFSgzYIvAtr1JWdRodUS/03zwiR1XP7Dj6tX3cv3mLT79c17Lu95zk9NTw9ltuH6muHl6RtfusGSeeKtiOutpmsyVBx7gk96wx95hxpUbxrGbPf8s1iVsFIfj6BPeK4bBs8wOY4tZiTvz6KOvQCES/doaMufuRsWFMpuQbEW1zTlHVTUYY+n7jiQkPjTgilLaFF5WoqppyEoxTgEfI4UucJUDn9BKxKmGyZOyWIgbJ9KH0zRhnJ01UxVF6VAqs7e3Bi1M/gcffJA7d26jq4z3CZ+ELLy3vyb4SEbYMApD34vMpVKKpmlo2+4lHOHPj3tuEk6BC8Z3iJ6iSMQscn/94C/Y7nVdYwqpoA4+su362fX2CEWgoBB1NJ1p6gLSiLOWHI+5+cxbiUlT1ks225G9xZpFeUBK4oi7O7nJO992HWPhwQcPKMoeqxa87OUrLl+5Qg4P0+00t7sN1lrqCowrUWqicHD7+Gn8ZNjbX5DUCbdOdnTDlqop2C/WVLrk9Djyvref8M5f2LJrn+HW7kd49RtWfODq+/j5X7rGafs4d043XD99G2UZeNVjJa94YMlDteZouWKyNVdvfpDF+gQfJ2IPMWhp0SRFVhM5K7Y7z9BltmeZccyEPHD7zhZjIn07sVoe8vKXP8zP/+wvoFRmtWjIKgudKkgh7Lz/J/Sgnt024pzm0ccuk7OSoo+zLJcrtDbcvHXzgvQ8jAOLZUNV1YzjNIPAM9PUMVpF34m/hjGWzUZkF2PwLBYrmmZBP0iBTBtFWRZcunSJEGAcEkMfKMuClDoE5ZAYhonFYk1OsGvFLMYYTQyJqi7Zbnfs7e291MP8OXHPTcKun5imSfQ0daZQlmEU0mbOs1aJUtgCwhjJyuOjwlppIDeLFW3bic2ztYyzPIXWkNDoHGnPbqBNSZgGwqBoij2SKdi1EzpmCLAs98gkbl3fUjWWoX8/y+Uei8WC/fU+JkeqquH69WPGaUCpyKJusNqSp4HCabSJ9MMZtjRc3jtk8iNT8JxtNlx73we4c/MVnBxPDOG9PPDoKQ89VrDb1rzqVZ/KT/zMLUK6wes+4YSXPbxkqTv2XWZdaKzt0dU+e+sG43qUFlnClAzBG1QWXVHjNK4sCS4yTDtSVpxuBowNrJaWlOGJ972f3a5l142kGNnf3yMEzzAOrFciFnzz5v+/vf9qlizJsjSxT9lhRi5zEpG8uwqNnukRYID5Efi/wAPwBIhM94jgCQMMqyZVlZUkiLtfZuQwpXjYahbVQ6LnqfOKjKtISmVlRHjca3b06Na91/rWIyWLSbZkVe/oXnDyqsjJZcTHt9vtZOOUwhpWhk3Pw/t3+Pj5SgCYpoUQItZIVqCxMvMNUcJfQvDYpmV/G+i6gWHYVHZpxvvE8/MRpS2vL6/c3g50XQPFczy+Mo6Sv6GVlbuf0TUj0eCsqz7H9S/9mP97681twlwMBSvxxzGzrJlhaMlFEWNA6QZQhKiY5ol2TXTDwO5m4MvjI5++PNP3HdMahMWiHKVYyIrpGICVvrXYtnA6P+JzYX8TiUUxNI67rUOlO/y64kNkGReM6vl33z/RNC3//D/9a86n/4bTcUVlg1KZ03Tm179+z3zOvL68kLOAbEPONN2A0oUQFIoNyxT58fsX/p//9/83Q3PPuJ749hcDv/r1ni9fnvn9H/+EURv+xf/uQMkrlIKbR262N3y4u2XxX/jjy59RqsGYFqu3DM174jSBD5jiOZ5OxKLZ3Q7c3e/I+YWiZ25uH5gWWP2Ete2V1fLl8ZndbsuXL4/8+ONntIbf/vqbitnYo5Th9fVA13VQ7Ui9cpzOI9YY7h/uKbnw9PzEMBT2+1vOpxNeJZZ1oet6Pn74FpTmxx8+8Ztf/4I//uHPHI9nQHF/fwfI9+RXT9tt8D7x+OUFa42kacXAeVpBWZ6ezngv+Pt18Xz4eCdxbEUgU13vrsL3oorkVTQNWhv2+45pGv+iz/j/eL25TTjs9pzPZzm9jKJpWyGDGUv0oTJdHMa2DDVp1rUNMULbbDgeX1HKEEJmGmfabkDVABi/Rm73O0wqrEeJeG47Q2MiJXga4zBY+r7l+HIEZXn/cE/W8P6+8Pvf/xlrNQ/vd/TdlqfnE7vdDS/Pn/nxhx/41S9/wzcff0PTduTiOZ7EeqN0IZWE94WnLzP/5f/rb9hub/jlbxO7TcHqwr/5mx/Zbt/RuDN9f0LxSgkN+D2Na7A6EdPMl0PkcOrZ2h1D26Aai7OKzcYwj2fm0UNyaKNwtmGaTkzLiX4w9BuNMg39xrAZWkpukZhVaFrHZiMkAK0lg6Jptrx//56UxBGx39/grBNny7KQQ2LYbWk6ERvYxuFrZ7XfDqQskjm05uHDR9YlMP3+T6jXM8dx5jx5bm/3dMOW1S9kFK7r6YaBdZ15PZxEGxwSpSiGzYb7+w8o9YUffviMtdLoOZ9GUJFhaNntZBSRHZLKW8AYR9f1KCUE8HX5mk/4s8u0hX0rZZCQe7Ig6nNENYr9ds8wbEUkjKZpO1YvQZLjNBM8lKjZ9bdkr9BFMhv6pmHbd5QEc0CwB0MjXb4Mu27H+TwRVORlnVk99H1LWJJs+tCg557f/7eP/KGdMO5Fyis1sfpAzAurOmJuXnn9dGIcT3RWs+82OJ3Y7Cx/+P0j/93/78w//au/4uNvIIUVnTd8/uGZ/a6nb4vcZdeJqDvsxhJcYCkrQzuQjeHdw0e220hYFmIMjD6RR8vxMHMaC1+eJowx3N0LBnI+Ql5bdBJQ7/1Ni7MNrhE1yjIHyWpMK0PvuL3bopV0ndcYGNeJYgo39xtyCaxpRTWRoWnossNYy7ouKA37my3WWKZ5kqZKFgDUPM/87d/+LX4V5c/nz1/QWsJy0FLRTPMo0rmhZZzPaKVZvOfx+UzbShxAjEIbuL1taLt3nE8j290DKQnOcdh0NRxGeKnrmklZo5RmngLTNDIMHSm/qYHA29uEm+0Way2Hw6EmAYU6B8zsdvuaJXBgWVaMcSg1obUlxExKoDGcjudrtNYliSjFjPczGkHlXYIonWtqAEmW8ErX8Pr6A9O8ssyxpggpgo9Y5M85zytaR2bv0UZmWVmD95kffvie06QI60CjwdxBzk+clshxHvmn//wdbV9qlJni+HRmmQopBNac+fhwy48/ToRYA0rLWdzwy8o4B+7uP9D1HeN4lDTaJTGOK4+PByiim1y8Rxvoh555WjHaYo2BknEGSg588+0vmZeF+TwTfGToe0JY2AwNh6OAee0iVqFClm5jdcnryiJNPhCjSMDOh5Gu7XDbhrbpmedZkpb8wrKuaH3m/u6+iipGjGlY1nD1JoYQ0UYLsUAruq7F+sD5/EguFoWQ1sbxhLUG5zTaFN69uyeEhbZzLMuM94Fh2HA+z1UBlCuWUf7vugasM3/Zh/x/tN7cJvzxh0farsHZpuY/gF9FMtU0A68vZz5/epHhcKlqC21xTct4mmgby+3NDSGIJMq5hl//+tes68Lj41PF5cXa+DG0bc+XL194fT3Sdz3DdodzHS4KTkKSfqSh4FzDbrdnm7REfxmAzLrMJBVplGXX7WgHy9Oz5fh84vn1O4ZhZtNvSWqHdivjsnL+QTiihIxRDZmIsYrn10fO05lCy7JE1qVQsGStSAX+9b/+PatP/O63v6QZNH/8w/e4xnJzdydpRM6w0R2/+6vfcjgcOZ4P0thQHYXEGgJ93/D8fEBrhXUt799/S+saHh8/s/oZv8pooq1D82VZyTlXcrciZqAkrNViwQqRFDO0lvNprVQ06Xh671HFURJo7Whbw8vLC1pH2mYgF0HtD4PGWsdm2+NqAtXz8wvD0GGt+BxfD6+V9yqojc1mxzSv5CSyPFSm6zc42/F6mIgpS9xclhSpYejYbre8f//wF3zC/6frzW3Cw2miHM8SgNk0pKx5Pc70vWIf4OV1QpkGZRrivOLXzM2+o6SCVZrGWh4e7mmalj/+8Y/Vpe8YxwPLIqUXiD8xhsjpOEKRYe/5LMj6ftjw7t03zPPCDz98h/ep8kKl4dLYhriuNM6iTcuX5xNDvyEuiem0om/OvP/Flq5X/OHvE/OypeRbToeFogLn1yNpygxdy8cP93StuDK0zhwPB5TWhACfv7xIJl/bstvfiFvAOnojEdVKt6SsSWtiu+14/6HHGMV+v8W1hi9PX0glYxtLqztxXcSIWr3wbNqWTe/4/PmF0+nAMo84pxiGjqFvOZ0OtO0g8W4hsSyeeZ4lY74xdH3DsnhKkbIzpUxOwv5c1xW/LpXkJqm/CkM/9LRtV2lzGW0sxlgUEo9ujUOhmMZTnUnKqKnv90zTDMVwPIwUMl274TwGYvJM00jjDL/45cD5dGKaAssilALnhJ06bLYUFKEycN7KenObsOt3LPPC62Fi6AtN26J0w+EwUsoFc56kY9rAOM50TUvwKxqF1qK+uLu75fPnzyil+fOfv+d4OFYgbmKz2UAptG0neAZlxRWvNVq35KyZ50iMBefEKGqN0KSPxyMqGYyzbIcNMUlIyevziX/7r/+e4/mGd791vPvlwu6m45/+07/ib//1C0+fzyzzjM4taW256TUqw6cfHtkMFk3g+fmJ273QvU9nQRKiHbkYfCi8vp55//59Zc9MnE4j/bBhXT3TvPDNN+9Z1hFtNcfTKHdZo5kXX7MKFfPiCVGCY/waKWnhy5cn5mlmM7SkWBj6DbvdHcfDiWn0bDYbjImczy8cj2fu729IKfP8fABgu9lXqZ086G3bE8MTfs2UYjDakWLk06dH3r9/4OH+A4fDgXmRSmY8zzhnOJ7OctWnEGPgF7/8hhDkvte2A9MUyEnhXE/wgRBh9YF5mdFGswb4459+xJoG7yFlg7EWZTT77R7rOtZ15XA4/wWf8P/penObsCRDKZocNUo5gi8M/Y6u3UhsNCLdj1kQhMOm5+7uhmk8k/zCZiNMy0+fPuG9GFvNtsVoR86lOvQvbgFDDJll9igleQZ9v2dZFg7LqYaDgnMNoKtky0N2uCIclxA1xjSYbMjZ8vq8cjyN+DHxi99suNnc8ttf7fmv/tW/wq9Hbjb3mGIpwTAvCylNWLWhbbSQq+2AUtB2nlYZYoSYM/OyknNhnCeJDdeC4shFyrxliTw+PqONCLPXNWK0I8aC0oZ5Fuiu1nLnysi/zymL94nNsAOkbEsZnr68sM4Jvx4kR9EvhBBoGiNdxkYedEksTpQMznWVSh7ZbHpSzKQU2e/3PD4+cjqdMNpxf3fPNHq0seQE5/PC3d2eEES8LVkeErKTE+SkpIGkGpxrmacF7yH7yLysjNPKL37xnphWKIoQiiRjKYdtG4zWdN2GGMH7UjElb2e9uU04Lh7vE+/ff0RrzcvLC8syc3NziykKYxV3d3sa6xiPB7rG0fcNJTnaDw+8//ieP373J15eXri9faBtO/7dv/t7jHHc7O/45S9/wZ///EceD4/E6Nlut3ifaNxAzppllk2UijBRCvEfNW4E867omZeJcJ5Yo6Ld7Oh1R9NpjE2EeeJP/8OJPLf81T97x7cfbvir3/yWP/z935GXE1op2s0DJimM7bBGHuamGfjxhxd+/ZtfsdkGlDL8+PmFXDQxJobdhlwS43SsYaCO1XtihuAz45dnvvn2ntuHd/zxD9/x+PhI3+2umYnWWW5udlhnyVkSc41ta56Dw7meTS8SsZfXkfEoUOFp9Nzebdlut7hG0zSaphlQNBxfFw4vX9judmwGS7Gw3/eM40lYojUc9GZ/KxKyKfKUj/gVvvnFO7RWnM9n7u/v+PHTDzRNW/mqDc71NK7n8emJnKq38LDy8nLEGEOuOYrWNdzcPvBv/+2/E7hwP1DQHI4jiz/QtA3Ny5lh0xNj4HD8Klv72aWwhHVhGlfBxSdoXEffDfR9h9KZm5u9zHpUoeta/Cq4vr5vWf1aQ1YMuWQen55Y1pWu1RyOB0IMHA4HrGvIWZESIvMqovzIRQjZkv4Dxjq6rmO3G4jRM05H2rbDtYJaVzkzT8ICHXZ7tPVMLyPj6RXwOJf57W/+Ob/68Cv+4X/4jnEZ2e8tTQud6SklsMwz07yQkyJnzevhTDGBptFsNluRgj0+Unym6Sxd37Hf7wk+sy5R4FQ3e1BbjDb4NaN1Q9du0FoSkqZpRSlPzoquc6zxhNGKnCSOPMSMUomm25GSgHpd06GjBiTPQmsIPrCugc1gUHQo1QAikZsmSdzVRkJJvRcd6N3dPQUYhg0hJqZx5uH+A99+8wv+/P13jOPMfr+nbcTKVIpCYSlZk4vEkjsnEOPLX+u6DS/HA9oY/pN//r8Xo/KU2e4cKYMxDblMxKQwCVTrKkS5JZf0l3zE/yfr7W3CZDg8jyxTYBi62opOWB359hcfMNryb//tv5NM+Maxu93Sti1t65iXmc/f/0DT97iu4+X1xLys+JwxKtNvOsY5EEsLGWzT0gz3nJ4epZHgPbkU2r7DmRajFYpC0/aUrDmfFyiGOa4SVJJB03E6zrx7t8eqzPHwhRA99/fviGHlv////B3zQfG73/01m5uVze2ODx/v+e5Pv+fu7p67uweeDiemNUIp/Pa3fwVASkLB/s//8/+Md+/e8S//5X/J0/MjTive3z3gXItXgV982/D6esRow7IUjs8L59fEmiLWDjIS6Aooyb/47rsvdL1jf9PR9pab2/ekbFiXhcdncbs3ToPOfPjmRj7broEC5/HEPBeOx5HT8UhYT+SS2Gxv2O22PD4+0SuHtTtQnpJDlYx1rP4MKoMSOZu2mn/z7/6Ox8dnpmlG14F6Ac7nldUrmlk6sA8P33A4ngiRayZHCLKRfvdPfsG/+E//E15fX+n7lt3ujqfnA+8ebmj6gBuEWZsKaNtwGMV18ZbWm9uErtH0g6u4Q2my9P3A4Xjk4zcPWC3BIt5HtsMWpR3Pryfu7+44Hp4E3zDs5QQIr8SQq2Km4FNmTYkQU41bVkzTQkwZrQ3DZkNMSaxUjaOkRExiGJUTJmGclqyDIjRujYjLX1+f6YdbSpKmR0qJZV0pRTSvxio+fvvAeZwZp5E1JRIKnxIJ6smqmdZZYp0pnMeRu7sHdrs9XT/w8PCO0+nI8fXMuDzRdZIC7GOEkohJEXIiV9q3dVbKtlwk1cnoqvM0/PJX72VAvi48Pz3z8cNHzqcjispqMYZ3796z3e5QCj59+lxDQBUUGQl1bcs8TyitOR4lM965nnkSdH/XDwybXlKkuoaXlyeW2fPwcE/KwgPdbrdSPhZNCOmnU3teRWQx9Hx4/5HxPFWolJzMKUe++eYdm2HLH//0J15eXmnblnleaJxjnEZCDHRDyzjJqCrU7/4y23wr681tws3W8ctfvYeiefdOOoHaaJ6ePvP50ytQeH45AJqhL3z5cmQcRz79eBTgkCo03SrjjSTdTm0KPhTycWEcJ4Z+h23lS/Gn+jbfbOj7jvP5zLyuxJxZloWudiLHcUQBKRaSVkzzirWJxlnevRMHxvF4oN8outZKoCWR7X7D/naHaxuG7YbnlwMxRrabG2KUkMymaclZwMeHw0mE6mdx9v9f/2//D379q1/x8nLi4eGe83nhy+OBVDTjGLG2+vCMxvsV6zRRJRot+tt5ma6JUqUUNlu5F737cMvf/M330mxKkafnF7RpiMlw09+yTgf+4Q8/8ItfCBLxy5dXTufxSlFDGZrOcnv/gf1+z/fff88aMs/PJ7777sDQ96ScCHFmjSO73Yama3h5PfHgNNYZun5gWT0+LpwOB/p+YF0XjscTxhiGYYN1A3/40/fiL7WOmDwpRZQqGOso2fL73/+Zl5dXVh9JObPZDsTkCXFlPXqcq6leQTJClPqqmPnZNWxaNpsOaztubx54fn7hy/efJWpZw+vxQMySbND1O1JKzPNJUmWVwdjCOHmWNREjzLMnKw0KUilsdzusrpkWq2eeJnb7DatfyTkxzzPneQY0fddJrnqQ/IVhI+bVtboGuq4jpwIqY12Ddo5+0LUMkwQi66QM7IdeGC3zUvEdcnfabHesqyfUmK8UEymKHen+7o51Wfjuu094P2N0I6og7Wr8msa6FmONsF0odH3D6gOuCFv08fFJ7tLqJ26rcw0//PCDjFl2O6ZJLEvCIl358ccvdE7xcLvH+8w8zxwOkzgfrBhv28YwTmeUymx3W4yR6PG269ltN7Rtz7y+XLMZQ/C0XcP9wy3ONcIAxeF9qKoWBLhVZCxkjGa3E1ZqSgXnVDX+NpXspskUljXwd3/3PcYpXCOexI/ffuRwPDAuM1071M80V5iWKG/e0npzm/Dp6ZGSlVhSln/DMOxkwK5gXidcu8HHmc1mizIt5MR59FDEha9K5uX5TKFUw6lDAcYour7l3cM7fvjhM8/PT9zd3WDdntP5IL7AvmMN4tRY15X7+y0pBEIqNM7S9ltOn7/w9PrCGhbev7/j3buPTGPk+fkTv/7NR4z1fPn0yv3dHZttx/F84sfPT9zeP/Hhwy/5h3/4xLp6xnEGCq8vZ8ZxYrvdknMiBE8ICUPH8+GMUoUQR8mHt6P89RixtmddE/3gmMaVaT5hrQa1cH9/R9/t+fLlC33f8utf/6pakj4jMzjPaVzR1vDp82digpQyjTKknPFzYB4j6+L57odHttsNa4Dd7v6aW+GTIC9ubm85jSNZaYpELGGblvv3H3h68qxe/jdlHf1mSzfs+PTjF2LIrN6zrqGe0tIgun94j9aa4/HIy+uRaZq5udkxbPfk7NntNoQoRLgffvhETJ/Z7OSl1m86Qoz86c9/Zpo9XT9gTYuu1LhpmiTX5I2tN7cJKbqGWS74NeNsZnO7Z5onVDFsd3csPqNtS0JkV9Z18s9qhXGOrrU0jSOJVorTeERpRdd3hCQDdxDeyPPz8zUXUO6hnmHYUqgDb63IMWG05nA4sXqJ+tp3Db/61S9p257T6TPb3UAh1QZBz8eP3zCvE8fjSD/APEdeXl8kGKUUmU+ui0Ro5wRqFGT9Il47lRMhRHa7DakUCoqYEiEKzSwjib2n88zLyzNaF+7u9zRti2vaOtpZeP/+PW3b8qc//bGqWuQuRjTksFLqIxBTEqgvmZQTKiXGcUJrTdu2dWOc6Pqe/f6GlD1KGZZFXhrWSJBqDAE6+PzpR8Z5JMYVY4SUvtncYLTly+cX5mUEXA1i7WRuq0UGN46TUNq0ou8F4hVD4PXwwjieuLu/IyURctgCw0a4MdM0oozBuoa7fsO6eEDVENYNp9OZeZ758OH9X+rp/p9db24TxuAgQ9+1/PN/9k/48uULx8OZmAJd3zNNnnlJ5LLw+vpHtFKEtDIMA8ZKzt7NzQNt3/L49IjW4FpHTJGiCtMy020Gmqbl8+MXXl4P3N/f0A8D2mraoefp6ZXzecQay2boMVpTSrje33a7W/Y3HT9++oGcC22z4f3Hb3h5+SwtdtfxN//m7zBGkZLc3aY5sRlumGaBUpUcWZbIsi5stx1N0/HNN9/whz/8Xjqfs5S4gqeXslMbxc3tjWACUcSYeH15pXEdXS+puMLgKRxeD2itubnZ8/T0iLWWYeglQbfvcJuO58NBJHgq42yLVlByYti26Nzg57U6F8SSZCuo9+X1lVwSj09fuL29QRuFtZa264lp4YdP35NSxrkWpaG3LZ8+vzKOgbbrCFExDDfEVDiPMz5MrOvKNM3c3t6Qc0Ybx8dv31NKElXNspIKZCwvhzPee0JY2d/uxFgcFlKBbTfgY+b5+YUQI5oF7yPPz880TUPf99zcfnXW/+xa5irGxfL4+Mq6RpbFA4VjOOLRFGWIKWOMYV1mhqGjG1rmacJZw3maeDm+4uNC0wpPZVknchHAkHMtd3d3DEPHvAi9uQBd34MSAbI2tl7oi6QBtS1t19F3Pdo1lALL4quCBE7HQ83ik8G4UnLfKUh++/FwRtFRiuTGOyui5ZQE8//Xf/3XKKXkAVSmkuUyw9Bd7zHOOc7jCaMNTdtRylqF1oOU3MqhlcL7gHOuNnpkMw7DcE26MsbQdQPl9cS6Boy2NZOihrYYmQkOwwYfRLaWc77+WUopYhK0RNv2NbNQo3WpdIOOEDJ+zby7u2N/s+X5+QuH44idVrq2F8iz0sAso6HKNpW7tK2pxpGcA8sijghQrKuAotZ15eH9Lbe3e3KGZbXksjJOE0/PB9GMWoc24qR3ztL3PfM88sMPbwd3CG9xE/qZpusp2fByfCHhabYGRcM4ilZQGiGK3c2Ou3c77m5u8T5wPJ9JPpFeXwgh0rY9netolaXbDLjGoLTm89Mryw+fSCkSk+LldcaaQAgaYzQfPzwQwso8j2gDJWuc1bRdT4iF5fgk/rV+Vxkn4iqX3PSeGGX47VqDNolM5M9//oGwbvkv/rP/C5+fn/nx+c/4cKLdJm7fDbwe/57TceKX3/yK42FkWc+UUqCI5nO7EdmeRgDJORfu7+9qlPaKNRZTv81pWgQjaCxKO0IF+GqdWdZAzAmzOHQRVU7XOpZFxNbzvBDmmZIK97d7tDI0G1fp1iP39/fc3t7y/Q/fQ4n4tLCGBWs02lia3pKzwiX4+IsbjscDP3yS3MGu7+l6CZrJirox2tqtbNhu5UXRNA3GWj59PrCsvgYDmeq4UBjXsula+m3LGkdKMaAUIYsofNj2bLXh5u6WeR7F5ZESU1hRxnEav44ofnbd3N5wOq6ElClEXGf4+O0Hhv6W/+9//TeEkGo0NIQYmOYR5xqU0oSYIEdc7QYGn4htZrPZCu8ySBjnT/l5oqfMqZDIjOcJ6wx3t1tWP5FKlLmZNRRV5L4WC9YqrJO7R4yZZV1Z69u8cQ1Kt/LFF49rC861aF04HJ5IXv76MNwzqIEQCsMAJb+I5y0V+mbAuiT+PbK07r0Al7q+BeTePM9i7DVGk3OEqqstBUGBKMEaxlhQ1Wle+YJM05m+a1kXQRg65zgej2y2Pbe3O/7w++9xraPpGtbgcRRsYxnnkf3tHqUg5UzRRRKC+1aaKyqSk6JkhY8LVKpAYyy7mxv6fuDz5y+cx5GcBOicsgTiKCX0daUVuo4oznPAoGkahw+FogohR7qm4cvTF4yO9P0eq1umUcJqttuB/X5PKonTOV45qjYJ5S2lryOKn13TtDKOSzXeStv6xx++0DQTznYy/M6KUmo2eY786U/fYbRlGLZolUl+wVjD7e09w7Dhhx++Z/UzfddgnJRN/eDYbDteXw9VlxjFbZAdn76MxOj5zW9+xf/5v/g/8a//5t/yt3/79/TdDq0LbddUt4ZmXmeUkpmm9wKpCnGh6HgNSNEarPN0/ZnX83/HNDtc+w1QeH//O9ou0rfvaMwjh+eZaVrotwZndTUVD7y8vBBC4OHhgXX1HE9y11FKVXyh5Ps1TUfX9cTU0DQN8yT3usPhFa01yxr53e8+yIaaJt69e8cf//gnnOu4ubmR1KjHZ1wj5aExhnmeOZ1ONX/e8Pj4SC6SvCSm6whIrN00+ur/bOn7nhAirmkx1jJOM95Hci7iuA+LwBO04A1lrrlKaawWlLJ0nWPYCJriNM50XcMwdLU839G1woJ9fHrFuA0KVx0dicP5RMmWnDIhJHJc0TpVf+jbWW9uE87TXN9UkvITU8L7yDy9UoqkEwn2ENRGOpohR9DQdQPT+CrcTCPu/M+fv3A8HumHhq5zFJVROhOjp+t6nDNkkyle2Jfb7YacE49PwjLdbves3jNNM02zASV6xsa1DBsxpa7rwrIuGGN5ePcgQ2K/0DYyw6Mk2s6hTWZef6TbfKQUj7Mt2+0Np9NnGid31cIJdCRlUfv74FlfV+Zlpm0bUIV5mYn1/nTJbYwxXh9krQ1908q5qCGmQAji+/s//B//OQ8Pd/zX/81/y2YzcDqNPD6e+PbbTrD0aRVMoC4cDoeakqWv91Vrazc1iLi7bRuZl+bE6TTifSL4TEoKpQ3LKjPVGFPVjoqDXilNQckd0JnqL4zE+jtRCglqwtNKCCtKUZsrAyF4Pn74BdN05vD6wjQHtlaTs8Kv6aqEAg1FqALeJ3Llk76l9eY2ofdBbEuhUHKiG0RVfziMhHUlpkTTysC47zuJwlKKEGItT2f++q9+R4qZH374wnE80296yUnXun6Rjq5vxbw6dHz69IW2dbRtz2bT8/J6pmlaVu/5l//qv+J8PnN3/0CuIoHD4UQIkZubO5RaUNoSQ2SaRuZ5JWVpAMXGMmx6xvGI0hPvP+y5u79h8TPz/D3L7PDLCyGOPD6PaBM5nV9xTUO/eUcMwl5davOo7VrmZWZ/s0OplpfnV0H5OYNSXd2QgZwDeI+x5upC3+0kcm6z6ZkXGYe0bcfjlxcJ0jlNTNOEdZIJcREchPAT61XoBg23t7d0Xcd4ltmkMYZpmslZmjnNTY/WlpQFPnw+i8exoESYUP+8nFVN39pwPp9JWaoLARgHUT+1TXXGK7SSUJkvX56qx9Phl5XgYb+9x4fC+XQGfabvG1IpVaSfSbmQUxHxQP5q6v3Zdf9wy83+PePkeX19ouk0TesY+o5zjISUJafAKla/kLKWN2sspORxja0RzD/yzcdf0Pc9zy9PdK6V+VzO1SbjOByOPD+98utf/xqtDefzWaKqa+Z7KYqn52diTOx3d8yzkL3O4yxYhVKqwXhAaU3KGXIiR9G8znMgRtFnoiLDxmOdY5lfqwJmIBcozMQ8oYi0g2G32+FXL4hBBa5xgn8/SedyDZ55jnS9tNyXZaldRYFfQabtetFL+oR8zcILfXr+glKFu9tbjHWAputaQeUvnmHYs99vKdkTw1JHGwLeGoaB29tbUSlNkyATtWa32/Pb3/6WP/zhT6xrQGHIdUNZZ2g6UawcjtLZDSnjvXQ7ldKsPlQnx1pfKg6dRE4now51DSYNPpFSrh3pUe6SGLR2lCylrLGiRrpUTDn/FKNQSqZ8la39/Lq52aCIKJW4ud1gmkLRmbazgOWhu2NdZ7QVTN88j3x4/5FPP35G6cS7d/ccjke00cR66e/6Hms1/abn9nbLOB5ZlyAJRNsdoPn06bPM2FImpMKwHVhDwFqxRD09vzDPgZJBGYO2mmlZMUZzGieUgtv7B/GrvR6wqlBUJJVI0yrAMk9SvvlZUchYq1DKo00gZk9OmaG7JSbL/TuZZXnvabsWVWdx67oSQqDrDKWA0kHCRI2MTXJO1aCsaVvLMi8VP2EFkqsEeDQtnjCudG1H1woavmkbuq6HosSVUe+AF0nbuko60/l8Zl3EambsDu8Df/u3f4/WuoaHOiiakJM0WpRmWSUhGGdQ2oA2aCUb8vz4dM2ktM7Rdh0oxXI4EIInRcmt9F5ekCEkKAVFwOiC0Q7IKK2wVoJlmtbw5emp0hQE46g0ONtg3pan9+1twnk9o2lZVg9kPr5/Bybx8nwSHWH2xLyybQa0zuz3W8bxxHk8cmPuGMczpWS6rr2m+5Z6Yk3jiPeCTBctZcZawzwvONcynmdCShRlMdaRcsRQyWJZmCx9N6BNYlmmqmV0dUwQeHx6qmmyBesKxoJSvmLkE36FeYosS+bmbo/RQrJuO8vQ3pAykDfkBMvq+Zu/+RMfPvR0XcswDAybAZRszJQ9bSNWr5wTWkvpJ6h5Ta4ZgagCqmCdQWnZpNN8ZpkzpVhKNoQgIKefsBmB25uBYZDoMu89WkvZeSlPjTEY41jmhePxQIzwzTfvaJqWcRRPYFKFxcvPE0LgcvKFmIT2/XB3nQ0CUqnUYB/rGqxroArP11VORYAcEXtSzKATygqEWSl1fdG0bc8w9KyrKG+MlbJ9GKQP8JbWm9uEp9kTwsK6BrRW6GfD3cMt2jhsiyQvKQgpUqIETmptaZoNp3Fht92SM6x+ZTNYlDa1rU91DAjiolBAaXwMlAVQmrYfaFAordFo0KLLvMSAucZiDFinMaYnJ7FUpVxIMaNNwTqHUpbtfos2SU5to3Ftj8Lx9HhEu4YlJAbX0ndbcvLc3d4xjQuvL8INfTmM7PYD9/cPkoK7yKmllcZZQ06ZfmgpGVJaWdfI3V2HdRumcSJ6KB2kKovLSRoWOYFfEiUKaW4aV6bzjDWGUFaUilinUAVa13M+PaO1OO+N1gTv8atnM2wwxpByQivLw8OOlKj3RrGPTWGm1BSnftiInUpbnh5f0MYAEk+wu9lSciGmSAyR1c9QJAbBWitSOJWw9UXQ90JkC2FBGUNMkltpnMMnz/HxII6SpgEyysgzsNvvSDGRy9c74c8v2xLDTKSgUcSsOZ898yKD2OPpJExK13A+i+3n9maP0oEwe/wa0VruTvubfQ0aOcjbVqlKxxYUfMypXvwLyzLXxoupr1q5SwQfMeaSZSD3lpgjbSN5g/O8Yq2VMqo1DENLSoVSTEX8WVKKlCJNpxBXbNPic8SmiNOOGBU/fPdUTxlpqGhr2G46xvPC8XDi9naP0455nRh6qQKUUuRisKYheAlDGYZGyjLdEkOpM9HE+bxwe3snhtlFSOaagCoKqyxZbBk0raJxGl/lb+scuLu/pW1bcg50u45hGADBUshwvROp3Pn1+rlZ50Q2tx9wriUGcagoNM7pOsOMWCv+RYBwFmWUNU7Az2SMgf3+TlwXWdCXzonXdJo9zjiMszVvRBGjnOhKabqu5+4epnkCVXh5eWGeJ5xzf4kn+39xvb1NqBKuMWjTCP5OKZZlrbkFMouSAEsroZRGopov5ZRSmpwCSquKqEhM01QhR1pa3tXSY2q73TpHi2IaVwr52nbfbre8vr5yOp1qloEmpgA5cZiP1ewrl31nOyDzejiQIigM252Eak7juQ7QCyFAzAGVJEq6OzRYa4irmFFzKThkvhi9ZyUTYyKGxOFw4OnpmYeHO5GUeY9fgyDih54YPdMcyVkcEE3T8s0331RQcKLve07HmV/9+lu+/+4TIZ4wpmG7a1iWUpOPpLEj9qKMtQLJalxLzhL6AgW/rtfotP1+z48//kiMkYeHB969e8fLyyv5NKKVoyTpXsca9NM0DdZI/mOhkrVXX+d38iJUWqMS5FQqA6gjlyjVkZbrRUF0uF3XUYMNaZoGgBgj0zQxzyOrX1nXme1uy/3DbZXAvZ315jZh01iGoSNX0KxYfnQd8FoRWmtVu2aOzXaLD4F19XTtIPevFGltS0pJ7hkp4ay0zPEBtDQ5lC5M08g333zLsohIoGtbrJWS55LTbupN/nJ3UUqjtag4StHVgrSikpx2KRkoYGyQ/PRJHAcUjVbykOg6/1pLAMDapoagrrW0spUyrljXSD9s2O+3/PDDF0JIPH4RCjlA13V8+PjA6ifG8VCH3ZkQF5TaobXmfD4TQuQ8Ttzde5pOGhzOwu3tDYfXU5W2Vd9hiVA0fbeBoiXfIcvLS9dOsLUO7z1//vN35Jy4u7vj5uamOjhWnGlpXMM8z4TVywxTgVaFppXZo2TUKrTuUErK/xASJedKy9YYUxgGGa0oRf3vE0rLHfKiN73OMC8zxyyOkKZx9QVxz2az4Xw+/cd9qP8D681twjUF2mGgMRatLdPqWWZPyBlKYdN2Am8KC33fkSmcTycyhVgypFKR7RlfB9jGCgJCa2kKSBfOAom2ba/ytb7riTExz+Kkzzmz3W7puu769jTaYp0GfO1EQghZXB6uw7mOECLGNqRi5A7XbYhBzKmldupyTljT0DaNxL4laac3zcAalquqJOdYobqZ19cju92G/f6W7//8yPEw8e79PdZaXl5e6HvH0IvYOgUZeo/jKDPGtquYC5kb/u53v+Z0lmZX00DT6jpSSTKjyxprDSlJmbuuMylHuq6V5KOuJ2ehnDdNw83Nnq7rOB6PHI/HOqCXsUcIHm0UJUnntnEWVTK5FEKMNK5jv7sh+MzpOBF8oRRFKZrTcWSeF8bRMmw6cs7My8w4jpWeIKfipRJaVxlTtG1LKpm+bVnWld1uW0/GSaxcb2i9uU2otSPlQoiBlBameSangnVa3orWirWmM4QYeXp+xvtEzPk6W9IloY3Be38dMqeUUFrTNpbNsMFaGKfTVQmyLCvjNNaZk5Q21lratr06D4y5KDtEofK73/2GEALn80kG0trIsByFUQZtnDR5dKn5gQVdXf4kMEaE2HmNDF1XS+yEQqNQ1ePYM/QDbddxeH6hHwaca4ixiG51WQVLOJ8Yhp7tdkOMgWmaubu7xRhHyaBVQ8qh/vXIvEioqlKREBesgzJFStHIyXTpukpnV6jbHSFUjWy7wzmH9+u1Q3yR7bWt3Isv6b6XbEAQAUZKEmOmrMZWR773nvN5kVBSLKWI86MUad7IbLIGxpwnfAi0bY/WXCuVi/fx4shQRdXNjFD16tyxfG3M/PwKAVY/IkLkxOoXSeWtdz9Koetb+to+TzlXVUjCGAEUOStlzryK6LlpGpquvXbWGuvwYbnOj5wT94CEjhigXO+e8zxXWFKukjCNXzzDIDjBnGc5kXOpZmSP63pCDJRZ7relCGWsFBEg5yzteKUKMSeUKmy6gZIVzrb0/YaIxxmD9ytGGw6HE+MoaUfHg5SOu92ubhIhCwSfCR6WJdE0HVpZ5tEzLyslF1a/cn8vzgijHG3fsi6Bm5s9z8+voCRvwlahQikJ0IQ4s9vtuLu74cdPn0SRQ/npnl2TfNd1vX5OoGgbW8NbnFDCzwt/9df/lBhWXg6vWKXpe/F2pgTn8yPGaMkZyQXrYLvraJuWED2lyHd9PK5Y3WJNA1p+DrF7mauFK8YoEsOkcLZjXSQstu26+nu9nfXmNuHhMFdgkaHtLNvdlra1+LCCjvi1sNkOuKapCIssnFGdMNphDSjStXy8gHvbrsPZirJ/PdJ2tiYjBW5ubiv3cqhOcV83fUfTNLy+ih41Vld7jAlrLE9Pj4zTCa0Vts7MQgi0w4aiIOWARWGsqHrWdSH5WO+UAAWrteT6+Vj/t0YYNg1oJCfQKF29ex3LsnI6nfGhsBkG+Wx8ZrO5FYlW0AQPulWUrGspK5+BNfKwx1hY1kyMgv/zXoby282GeYp4X5svfuHjxw/sykBKEes0m03HsswIrdtUN3y53iUvDvmmkTtuDKnemWtHVmlJ51UNVjf84Q+fGUfPZqNRytA0Lc4JZiNncYigcrWJtazLQorgugZnW3xarl3Tvu8FyFU3JEWhtNi0SlEY01CyIr2tvszb24Q5FQmWpGCU5v27D0DE+4VcMiVlGtuSsyAnstaEdRUkfAhkI2WUjChuCSEwjaOcmE2DQjHPCzk7col1jhXp+455fkWpTNvaOojXKJV5eHfLPM1sdwPHw5EUA/MkJuFSEhjByvd9IwPuokDbCmMS4FPbWigty+LrbFMMtpe3eK6n72kciSnQdI7gIvubO3bbgekstDcZdZyunUXvA23Tsd/f8uc/fS/A3JxonEFpyzSdibXTKSe2CAuWxVf5n+b15chms+XubofWI2pcpPHiNgLIyjJbk4QqMFY600orCkVmg66paI6A0RoFhEVQHsY6Pnx4YLtZ+e677xj6oZbimZvbDZtNT0zS6UylEEmgqBDmQmMajHNM48RU6XEhJYou6CqRKyipRpYVqkBjnhdSXmrsmqlKLPn73tJ6c5tQkWmclAxt07LMC1rDukaenh652d+ikflXihFnhQMqwZYzMVga20FWqKxIPpBjEk4Mkn9H0XL5R9rjT0+vbDYtyzKijRHuqDFomzFGsd32nM6vDLbFNYpbt6PvBpZlpG33WCdl7bouoBQ+g9KGdRUFi9EaZy3tvqk/r65wpYhSkMksNT0II53SlGFeI8MmoYxmDZ7oI4qGXCzaFdAKHyIUxdPjC+NpYrvdAJkYYRpn1lVK1bbtUFrx+vpyDdEUuFVPzqW6OsTPaK0lrgvWWc7jWG1SDXHxdSxkK+VNy1230svXdcUoDQWWUcYD2/0OrcGHFWM10zKB0iitUEa8jW3XkRcv2RMUfC4Yo+X+XKBoTcqJyU+E5Lm5uSEET8yRGENFRhaMa1HacTyeaoCPRKOlWNCpiK3KSdz6W1pvbhMaq69Iemk4jJSSa+s+s98WYvFQCrlEGtPx7t07UgU4RZ/ZbveM55Hz+VW+nGqdUerSdDDV6SBjjtvbW+b5jFK6IvYDxjjWRSBFjYuUDIfXIwB3N3ucc2x3MgY5n8/VzaGZ5pmEkVmgUljTXLuExlgpiUo9Xeq8E1XQVXScZMiIUoDKTPMo0jMK3q/EKMoZ4wwlR1IOhJjZbja8/3An2s+cycT6uxtUFXWvPnB3dwck5nm5fs7eB5bZ18BUaXIUYJ4lXsBasSKlFOuGbCsBWxoc8zxDzZxoXINWiu12y+3tjqIkViCETNf1fPvNt0zTQtv3nMYTKSewtnY5uYKmrDOQSiXlaXJJlJLY77fc3d9wPh0Zho7zWcBVSgmhzXvR4Gr3E+LROum0X0Ys8hy8nfXmNqF0JnO9R0hSruSOW7bbrlKYZT5UlsTt7b7S08S5cP+wZzNs8P4MCqztiKHQNC0xSqMFitDYUkApaiKwPLTOtox10Lssi9C+1wxFOqxt2xDCwjwf+fDhIyFI7Nh2u+Pl5YXxPJO1IUtQW+2sWtY1Aom+l4bSPM9ix7EGXali1oqTo5SMdaCN/POrX1BZNKDOaZSurvvqKLm7veHbb77lx+9/IMZI2zQUZZnn5ZpUbK3ldHrl3btf1g6nBK0uNb89hCCuizquAa4eRWNsvdOl619b15WYLpkdCrRClSKlaL2TGaPY3kiu4OpHPnz4wO/+yT/heBx5Obzy3/33/z0xZFL0kr6URUpYirgsjCoYrYipKmms5CKu64Sxis12wFrL589fAAkPatvu2kiTGWJkt9vWVOdSma5fu6M/u7qurV1L8Y5tt1ti9OIX9ImSJbxZOmqRdfX8+ONnNpsNHz++45tvPxC8p5Cq0LgREnQI13uYaEBls8foeXp6oe9bnGt5enwlhMK6etY10rUt59NcQ0KFnzItI/M8YltHjJnbm3vO08rxvGBcJ+VvhotQPEZ5y1tjMNric7iOPQSMK2iKrmulTFOKzbZHKTgeDjTNRuK8moxShu12K0iNRUpGheL5+ZnzeK7586mmLDmMWSklYYwE25QCoLi7u6NtW7777jsZcpf875G6L+6HEESiZ4ylZCnhqWbclMrVbW/qWCdniUZbxoWb2+HqwliWhe+//x4fIsOw5fPnz+Tq7vA+4X2hKF2/30zTGrrGYrQ0fYw1uEYzTWeUFm/kPE8oxE1ijFQxKWXZ9OsqrhDb0nbi6uj7Fq3F+/iW1pvbhJcN+I9nPpvNHu9DfdBmqC4J7zMxTDjbyN0qg18D43iuWEDNMPSkNNeh8sUEzPUUilFVjIOtRtWpEtMyXdvTdV11ETi22y3zPOJjJBfNNK6sq8evmcfHZ7p2YH+z5zSOGCX3zaYRDWWK+dqIGXpxQxijKWRJlPWCd4eCsRrnRHPadT13dw/kGDkfT0Kf1mIu1kqUOeM4C+Kvit7bpmWajuxvdsKtyZnX1ydQ8OOPP7KuK7/85beAVA8XkfQ8z9cZ6M3tHY1rOZ/P1+4paErOlIxY9sl1BpdxF+5olDmgranGMcTrjPX777/n9XCg6zdM88yyLqIkQmOspnHyYg3V3SL3wiq4z5lpmthsxNO4rjNPT89oZbi7uyMl6XQvi8fWF0Y/9Bgnn6XWhq67wa/S/X5L681tQsEYmHpyWcG+q2rkxNSk1lYG9LHU9nRHyTCeV9blR06nI8sc2O12lKKq+0DUH3IayoN8mYl5n5nGheATWssmlTLMME3T9VSeZ2l0KNsIT2UOrD6wrIXNdg8ojqczqaQKrm3rpjconVmXlXGCzWZbk3OhFHUVE5Qifrm2hlhuNjtKGhnHGZVK9d8lxnFEm5Z1TWK81ZacIkZbKEocE14G9tYq2rZhsxVl0Lp4tLa8vh7YbjcVeKyh6GqWlbuV0UY8mP1Q534XuZ68XLRRV0uQZNTLf8iFtmvZbQacg9fDK9Y6+q5nbqSxo5Vmu92CysRcSFGhrQFd56lKXSVpMrtVIoJI0LgWhSYG+Zmslc8x58y6XhpHpqpmHEVnUpKXqLWqwpe/zgn/g+syTDXG4NfIcT3VGVRCo4k+1CyHah71kWWdyVmTgqfrW25utvjV8/T4ClAfNin1tLnMD6W9Lgj6XPPYDdYYmt3uei/c7XYAHI9HOc20JtbZWy7QOEXTdNWJITM25xy//vUvSEnU+yGuQGZdp/pnCH9UHohSlTmJEAPee8ZxIiWYRs88Hdn0A1plmkbMsOsSWZdYTzHJctBO0XUbtFJsNjsg4/1C00oJG0JkREy+ovBRVVWUrim7wyD6WyG8BS7x5M6JcugyhmiUq53GgPczKchLajtseP/uA0YVzuNzJXbv+fzlmf1+j4+R8/mMrve7jw8PnE4zr4cz5+nMZjOwGTrpdCeFLiJ2SKnQ91tCKDx+eaGQKVlVmZqEqAp0ChSyyZ0zLEEaeykrjicJ4/kaCPMfWPWlexVJC0IiV7e4FdmRAq00xjWkkEmxUJJinlYaZ7G6wWpHtlJ2rstKVvkqO+u6Bm2kuwiy2Teb4VqajeNCyol+aEnJs7/ZsswzShf8spKVrXI0g0bj2oam7ZiWGds4nDO8e3/Pui48Pj5W/kqSIXRK5BIxSJuepLhwh6SbKpyY8TyRQpEQT5S8IIDN5lZsPONZyHNFc/0DMJQMWRVRAlVtpTGGp8dHchFWakriTBe4roi2+66r0ddrvafKy6DUzydECcW5nDzjuDAtE7utKId8kA4lSnE6nYCMtfIZnU5j/TnrZ2Zkvhiix1dSHGTaxtI2rv7ckRBFamiNJVX472XOGmOo7BkwJlS3hUgD26a7codSjGLtMvaqUvraHf0PrII0K6yTWZTSkdN4xFqHKmBVomsMVitU0RjA2EZi3LWiaxq6pmW73XI6nSRnojoU2irmDR6aVrLXL9I414j16Pb2ls+fnq6u+f1+w8vLCzGKT9E1hlglF/v9jpwL79+/5/7+jhRX5nmmayUp+HB4vrb8nTOVAD2DKiSCzMUkUoIYPMYoNIGmkzvktu+lTCaKmqSV+eHnz0/ErDHaksPF2KyIJRFzrOW2GF1zhuAVKcmDrTeCMNztNxijKoWgJ+fEOJ3RSoboIWYyGq2tOOFDrPc0hU+e7U1H2/Ysi2dZM0o5jDPoxrFkT04JWzqmg+f56ZXd7S3TLNVMQVVyQuT1+CPOSvxd41qCz2JFK0KpuwSLKq2ud0trLfM8EUKpzFlLQRixioxoUSOFhLaublbZyPP8dUTxH1xSEkp5sVSNZgxbYswSr9X2fPvxHX0/8Pj4CK6IORTo+hZrDN4vzIvcI0JccVZy7cXqkplWXxs50sZe10iKmd1+z/k0EaoBNUZRu4A46EX4Kwp9Yy3ei2Xm8+fPnI5npmkm+MiTf+b59YWURG7Vtj1KqYq870nk6ocrOCueSWcUMa3c3uzZbHrIiZgSd3dbbm+3vLwcUBRSjPRtR7oSAMQe5KylpARKThVxd3ica3HW0TadbKDq0JC5qahHzucJrax4FFePMQ5tFUZfPJhIRNoyAQnnBL5ljKJtLVoPdbRBPeUSmcTxdMT7RN9tJOSlEtliunRhFx4e7thut5zPZ5ZlZBgGuk7sTylJ0IxfpbN9jWZTBmdbBJdR6Pseay1Pj8/1+5QgGNcY5nmtLxmplFKUz+strTe3CXMSOZqEk0BJhZLl4bPaULLieBh5fT0IMzSHarOR8rGQmOaJZZ2uYuxcIkqLE8PHIieaM4RQ6t1QUmIPryee4is5STlWCjSNWIoU4j+kKKyVDb1UHeMUV9YlVS1qIiSPMohYvGooZS5YxHSavMSYFZklahQprRiV6ygEconEuLLbdmw2O9ZlZV2FlP3x4w0hxUpZC/Rdx263ZZlGxvNZ0H5GE6OqhLFC13WEsKK1FmJaFvCSrpAkU93tlzEOJdf7c0YJ/IamcdzdvWOz7fB+YRxHUr74aWWGGFKkhFI9jYqucyzryOthxDiHtQ0qF8Zp5vamZb/fVv1pYl0Xbm/3GFOtXtZctb9aa3LKrHHFr5KiVYqYvIdhwDnH89NLFZBfCGsOhfQVYpgl06RoEl/nhD+7nJOToeRCKfyjTDl5e1sjmD6tLauf0brw/sNd1SImxmmi33TXBz/FiDEanzxhCqwhiKcwOU7jiFZyUuVUiBHadiu2meUggKglopTYX7bbLW3b4hpbRcxVBge1PQ+gsdZhrK4PtiJ4OWnlJFbc7PdoKxtWFWjbltdnz83+ntY5tpsBsOy3G5YlsM4jJQcUme0wME0T6MKwcfg1UYpHq4iz0LYGpYQ6bczAdrvjdBw5HA7SzCjyecRQ5WemIeRwfdAvL5cP33wgEplnT0rQ960I5VXmy5cv9b4nJ+Xry4Gmaen6hhg9xkjsnFY9ry8H5nnGOU3RkiUxbPdsdwO3N53cC/1K0zru7m/o+5ZcMn0viP5lCVcXRkqxeggTSkllkstP5ISLuEDXlOLgI9a112fLmoaYIn5d/2M/1j+73t4m1OZajlJKZaDoa1koX0BT1S4ZpQv3D7csy8rjlxPaGvpB5nvGGl5fBZB7yeULMbHZ3bCGSK7JsiFCjJkYM0UHjsfjlW5NvcynlDDegzEUCs/PL2w2m9oskgaBOAmk1rkEm1ww9RfhtNDBDTGtaCUD/NZp9rsN281AjjJzC1HQhn5dCWGicQ27egL5dSGrRKc6TqcjjdacVWG7GbCbnhgjL68nmqaTDu+6sC7SnXWNwTkrWtIa+HkZMZhqnRK6W8d5OdeNpigZUdcoGR1oZauVK+MaV08m6arJ75toWoV1mmHoKAp8zHW0IeEwOYvkzznLdru5NsZyzigUwa/XzSXlK7VJV3ml60JMvo6O1msC8jwveB+w1gmxDRjHkWmaiCmx2/X/8R/sn1lvbxNa8YMp6hghUcNCNEab+t8zxipsY+m6VhQas2eePZvtlqbp2e1vKEVj7MTN7QPPz0+grBC3smwMaxu0sYSK9MvZczoJbl1pVdU7QhQLPtTOYcbuBoZB5HPU00XVaDBtQGlbJWCplkdy6hljJJn2mCiscp9yIjzvu44cM8fXkfNxIueJphWxOVk2dU6Su66VqIZSiLSuYbcZBOFQJWdT5aqIfSdfZ5zGKvphV6V/jk+fvtC1gvN/eXmun4lQu5+en4glonDVuRErbsNU87HifJ6w1rEZhD1KVdRYIylO3i/SJDKw329ZfCAluTPGGBnnmZgiORXmZqXUWaN4FDWuaTmf15+kcdewm1jRjhJDfnHKXzq6Spn64hXejnWOfmhBSxCqQJLfznpzm1Ah90LBTqQa2dXQOHnTGg2FKPFoVhHCwjhqxnEhRo0PBR8Sr69igs1ZHqAQpFvoQ0bplrW2s7XJpFKRF40hIfAmUwrb/fbarrfOEHzAOMP79/dM4/ma14eSDmVB3Byif+T6Fg/VVZ9zxPtAjAZnkyAeQoACk1pYp5XxHNFout5gbOabbz4I8Nd7QOaj1hlKDWEy2pBCQjkn9PCccMbRNrmKEwol59q8kGbMPM/4deJ8miiZGj0mHUOpQgLrmrGtY509y5IwuiFFCD5IU6QouV/FwlJCdcCLyqXrLM62hLhSiFfb2c3tnnFcWL2/Gn9zEizj+fQTjEt8hLbazBKXBF9r3fVELOWnGARxRzjG81R9nzL2MNbQ9Q2rX1GqcHe34/7+9trdfivrzW3CS9pPzvl6yhkjHTqKjMRSCqAiOYvaw5iGZTlCMUzTSsgvVXEjJ+jj82vFwYtRdl1+0g4Kg0XVNrg0bEoudbhdFR5aVBtByckXY5CThkJM4SeEXiooJ4GjKCrqMFd1jvwtfS8U8BQnLtzNvutIEZIvGANaiR4yJzgdJ5pWHr6UIsOmJ8aAD0mi36Inx0TXSRrTPI1Y13B/P3A4nK6BLqL7lLz6ZUkY08u9TUNMF2ralmEzcDodQYtC53w+kRLc3uyw1nE4nDifz+z2W7R2gs8PkiEYU2SeVwoyoklpJaVC2/bXZOFh6IhxZF2DhOoMG9bV1/ltL+QCH64KGK319fO9KIuaRhKnut7x8vLIdruTplfr6otAUYrDWBGxh+iJMRCTq6KJr8P6n125JEROWDBW0Q0N67KyeLEvOe2ujRJlZP728noG3ZBVYlk9S9UryryMWsrIXQMFSpfrZo8xkZMmFWjbDlKgaxusNqQQsUZffy5jIKfA4/OLNABsQ4oJatKtqtpKRSbnSIhe5l+tY57lpWCbjDYXR4XMDYsq2MZx9/6WYSenwLrMBO9RrtD0Dm0L53Gk6TrCKCduzHXuViArKEqTVVXy5Jmms+xuNvRDx3kc6fue8/lccwgdbedqerE4C9rBom3GNtB1GygGDexvNnS9ONNjUKSsiH4mldpJVYLtSDliG8c0r6jalEpJXCLLsjBNM9988y1D2+KXlWk6cnPzLaWIi2VZJtq25eZmLw25mJj9gq32tnWN1znhbrdBG812d8PzyxPWCv5ks9nQdxu8D7y+nJnngtZOMJezoD70G5tRvLlNWHKqUZcS3zz0LV0raAnvPY1x1SQKKEVMuQaKKjCapoKZQMoXOVUhhFTzGDqyisQUWealYhOa2mApGOMIXgzDtoKXQDZyWxst4n2T+1eIiVwuXd3LXcRXhYdwMI1RdN09Xdfw9PzI+TwyDJYQEilBihBLQJtMJknpqQoYWMNKOkvoTNO1pCL3Lm0spQhz9OLEKBXvGGOQ4E2tORwPzNPCzc2eprE0jaVtHdpe7l62Nj7kd42xXJmu6+LZbDoeKq5+XVd2O7EPLWvgPEpFIA2on6xXUjZS3SESUqOUEN+mSWR7WsF2t2FehGx3IaaJhlbKTW0E66FU+UfpW6FWPhO5wDSLFSvGyGZzizGKw/GVnMRuBTUSoO47GV/8R3yg/1esN7cJpSFZ6glWqkhYhuzGtLRO2uDWtShbGSpFzJ+N0hUpUa6dNqVUbaiInScXuayTRemvlKZvW/lyor9e/C8ibgE+yYjkYj8SQ+u/v6RrK9+0QGytRHkFQeT/6lffsr/Z8enTI/M4UtIGiITgWdxPsWMXo60zYlFKUfx2zjaUDDEISVxVaZoIquP1jnUp5XKGWBLLfMR7KcFySTStoU8NMQoJrWkEYTgMO7z3HA6H2ggxovZRuXJ0NHf3d5xOJxkJaFOlY8L4SUkAxevi+fDhAyklDuNRyGu6YE1Dipll9tUh07G/2UkWorFc2LIXY7Gv90bJPqyM2c2Gx8fHa7dbqNyFtm0oZOZxqt+dQSvH+SxKq2HToZPQDqSj+7Uc/dllTR3OKqBkrBFL07pMaAW5CFDXGINtG3KGdJ5IqWZXmExKVJmTAJZEbB2rO/sitSyouuFTReHJgL7Uu6f41VwjZdVlJibDb3/tyF3ur1fCF6CUaDgL0tVrGsvxOHI6nbGmQbcWskMb6fimlMhJWDExyf2qda24xKtD/3g8XhsX67qiEWGzcw6UuxpZpRurcKajVAxIs2mRLm6p9DMDSuDFxtgrO0YpabQUxP7TtK6e/IlplmBSkKi2eQnkkhg2Pf3QcTqeKPkiI9NM80gu4INAeJ115AK7/Z5lXSjA8TiSUqgVS64OFmm0qEohvzBEL9S8C9ntAg7uuhYfFtrWXU9rrR1Gyws95xXnhNZ3d3fLOC74NfwFnuz/5fUGNyHkmmykVcbogjVKuqJFAMDaarxf693PkqJYkxYvcqVc6dDGgrWKzeaW81nemgo52UqO5JiklEMewJKToBG0NAJSSpisr3K3C4FNPHPmWvYCXNB/IUgpm1IFIDWGGDLPz68oBcbIA3LJ7zPagZJmQtP0QpHLWU72pq0UNnPVh6YkhuZlmurMra1SLjm1rRHLUkyZnBJN6whhxTWW0/GEUhv5nK0wT2318R2P5ypta+T3K9B2PVTDMChOZ0EuPjw84MOJeVnY32yJcSUm6dwKnl+6wbatL5KUiJUwEErBpwwlk2KkbZufGDHGCsG8jnNkLpi4cEUfHx+vFYcxhr7r0Gj63U7qTJWI9QQ1StE5iw8LD3d7TscD+03P46fPgkp8Q+vNbcKcIk3bopVEZacYCF5hjSJnTcwRnTXiGFD4GKmJWVxSgmLy2KzI+RLEMhPCCkrkUI1zNG1H0AHvQ5XIZaxWpKJIOaK1vUq4SsnM81S9h/56D7s8DD/h3OUEDWREY2krGPfiVlDXdr1oVyMXpH/OME0L3q+kFNnvNteSTN7ucncVW1FXTzE5/YL3xCCNnhglkz2EtepTU5X3UbuZimGz5eVFJF5hraZc113zJ5qmxTjH8TiBUkzTirHCEC0YzueZZfU4Jy1rKRcbYkiVXC6I/WIUBYWuM75L5oRWmpRL/dwAVA3DScQQq0E31SuFVAoX5ZRzgjAchoEcE6ko4bRGX90h0FgHKG5vbqWSyIXWOo6vr/SNvW7qt7Le3CZUlStijBhIQ1ivps4YE2glQKCiKVkTfKiC4Ih2l/JFSilUJiYvHkFXIU/KXO+AqSYRVY+4/Hu1ZQ35J26pMfWhiFcrlDwglxOS6zC5aSRIJsVcA04KIcqmkiQhXaneDRrZXMZoks9X97qckJZ1DVd/IwiBDRSHw5F5Xmgs12DNEDLzNInL3we6rieEsf6zmabpry+AlBQKR46OlDLzKMEuF5dCybIh59nz8nrAGMM4zux2W9pGEn3HccVYR9c3NfMwX0tBQXmU+j10EkmQkvx+1uArl9Svvn7PYlXzPgi2Mpd6Jwy1i1mupup/PK5o25bTciKsnr5zhOiBJJQ8LTkmqkCJmZfHZ5QudF1D29h/r4J5C+vNbcJ3Dw8oraoLfK2hm5qu665duWWOhFjqXQ9iiCgNjbGgDTlLw8I5Wy/9tQS93KGQrEK5oMsD07S2lqJGOpT1YREtophdL3euS+lZiqQXXeaRICfh5T4aU6DkhNaFppGfwzlL1ztKDKxrYl3ry6VyWy5/xiVF6TIXk1OuhrGkRDN017/XWUtuW4wRcrUMqjXWaFxjr5pKqpj50+dnzscFirrSrpMPGFvYbASzv4YFlCHEjDaOgmFdBTDlnKOpWt1SKWulYvAv8XIXZqjSSnD0uVxfbCklQgrkJM2zEIKclrVCuOhDQebGVwlhDUhtGocPHmsNfsk1gFRwFlqLLjYXaWqJ80IRQ2C4v5E0qfTVWf+z6+OHO06nM7tNz/PzEyUrfv3ttxTgu+9+QKMlRTcJc9IYR0ye1jnaXhAGfpWTyVZ1/7IsrPOMa5w0RpSiJAkCzUFRLGz6HmM1q/eEIs0E4zRKy0ig7TrWda1ZC4KRuHRxq84HEPsQ1YVgtZLyqGlpm+pQt1osR0YJpbsUUm2hhxSEEGc02+2Gvut4fX2l7ZrqgDDyJs8FXd3vCsWUFqyx0rgoCh+8WKS0xF6nAjFDiheHiUfrlhwTIWVSjkzTzLDpaFLmcDqhjauu+kDjenJSzHFFaSFjK2MZdr0Yk7MilURGWKjCBhKHu1ZCStBK1Xz5TIqJkiIJRY4BXUHPF9+gs4btpud8OlEomMbRNoacijS7xHVK23dEvxKjp5DZml5K5pIpIZBLEHG7bmga8T+eTxOXxN+3st7cJpQ8g8S6xivd61CxEsu6EhNQ5B6Wqru661pco1EU+q7DKkUu+VomtU1D14r6JnhP2+iqQtEss3Aqp2mkH6SEtU46hIVMzEk0q9ZhkoaAOPNrmRh8rJ3Sy0lYMxTr29YaQ9e2ovpBNkLKHtfIbHJd5c/PJVeDrViLmq6h6Vt4LazrIieGX2icvY4xSqbiLWIVvEtIptEGH4NAF+vd9nyeWCvKolT4btO1LIs0eLqhFe5pyQJzitLYIXOVeYmpWWEMmFoqxhTIWZCHrrEo5Wja5gp8ykWYMkbJ99G1HbpVxOgoSf5d1uircFtO+3yVvzVNg7GWZa5ulpwpOaJsg3WKthPRuVKC3g8hiGaUzG6/QZXuSmbwPsh3vn4FPf3s8qHgfeF0PssXGROlSNKuD/LFyhcv0dmiXJH5j6n4vMPr6To0jjHw8PCOtm14fn7hgtS3tjZS9GW4XeiHW3bbgXQ+1XtoIoQsDYgSAUnt1VrKOKMNKY5X0fA/Tm9S5TI7lP97Op2qqdfRtFagtlqTo1ChrdI4Z+rJkQnryjyOgMjftpuB07LQVlao9ysLa2XTSLc1ZE9K4q8rqq0jDYexjtPpkfoLgxafn1YarVvariHlKN3UxlUCnKdU/o3ScooZa1A1BZnajCpFiWqolArHciglxO1UY+hS3VzWmjoisez3W1TJHA6vNK2t3VDJnZhnCYTd3+zRWrMsM9YptJbfffWzBPqoDW1n2Ww7lmXh5eWZdQ3XDXl788A0HjBGuuUX3WyKX8vRn13TuDBOE36VLpnk6inmJcisSUOsbz7XOChwOJzZxA6Mkuz1ILClnOVe9/p6IATJ1rPGkrMnZSllb2434oivd4ymbdixYZxGrHM0TsJFjYZiJeWnlJ/oYm3bMgwDIUgr/RKQApXYZvXVI3l520uDBEpWV/ivqpRtazTGSPpUipHNZmCeJm5ubpjPZ1JOdG1L2/zjNru+wnmNrSd4jOQs/w5lgtz9inQtFQLUvb+75cuXM+PzkYd3DySVQcl4xBpNf7un1HwHrXT18wmz9eIO0VpsUUEnVM1EnOeZGER+1/ddPUlLneVFUgoyQC8ibtCaWkYWtG4r2l6i1CSUVJGz6Hf3+y0StZ3o+65KBOVF9fJ8lNGQbUkaId9FsYM1ddaotJLn5g2tN7cJjWtQemVZA/O80PrEdrsDND4kXGvo+wZjHEVJGVhUqfchjV/jlYuZE9JsUXKHM6YhppV1mXHOUpzg43f7Da8vL3ICeU8IC8sycnd7h1aGeVklE8MYbm+2hCjUMZlVDfU0WkkpXyFK1GRhozXGGLbbTaVdy9/TtZLDeLMXG9A8TwSfuL//SNNIYu8yi0ChaxpOr/LzqaJQVsvpaS26AqceH78gaL+GdR0pxYjL3wd0VQ456zBG8hm0gpQ9VAnffr9lHEdilEH2vCw0rThLllXGRusqnkvvM9pKSZ9yRjuR7Rlt6+mfaTtp+IQYaBqL9zU/JEu8tdGap8cvGKOvDSgZ91hy7q8NKLjIz6g+x4HdbsfpdCJnX4fyms1m4Hyaq2hcuqyvL0dSXllXiddr2xYfw9Wb+lbWm9uE4zgKsbnOxtSF0KWLiKEbjVKCSZjXJAGYtaUtx1WunUqRcTWN4/7+XhJ6UiL4iFJWVP5RQkXb7h8zYyaUzbTO4SpWsWRq1gKUlNHKyOwvZdbl9apSueLVs3QLU0qsXrIV2rZhs9mI+398JdeZ123FxJcsYCIohOAlXKaIGFzVmDLnrEhKjRDYpmmm7/tKRSvc3OwxRrP6QEq6lsKSc1EbwWQySknardKC0e+7pt7HEsssrJiuE+M0JIZNS9u0KFVYFonzTiGwel+NtPYqilZKsd1uKEVxPJ4RSnqqpahGZ+GV+iBD/Aw8P79cURZSNVxyJC6MnvZ6Dw4hXschOUdsJRgIQ9ZUCZ26dlOV0ljXUBBSXNe1NO3XYf3PrpCCwGNLZhi28oCpDJqf2v6lEKvDulTsRc5CfzYajL10LqW76cOKNgUfPCiIoVTtpfwzh8ORGDKliDG3NQqrHeN5Ybd1dG1HWCOFwuoDqqr6Y4zEcAlecVftKEhzZlkWtJGZ1vUeacQ064wmeM+PP3xPTjLDQimc1oQYMBr2uw2aQkiBvuvRSrEuC1rXPHtrOR4PeL/SDx2ukYe4GwQMbBeR7aVc5WMxUVJCm4JWjmVeubm5ReF4/PKC94F1DQLn3TUkFWjajqGOQ3IxDMMtMUqpJ84SK5hFcm0wldoxzaQkYmuQcZE2ClNL53l+IgeBLYfgidHUxspyvVfvdnuWZWEc5Y4v46XE6TTWxlwkJ6HmXZipMqO8ZHj46wYsFBbvcW2D0l9paz+7nJMmS6GjbZvrPE9ralqP/kd3slTvCnKxj0VkaE0dB/w0zPbXf8ZoQzGOFCPFwLr4CmSyNeuCKpcSAYAwQwvTNNcvF0qWP0+G25CSJxf5sxUKbbU0XaoDQ7LyZmKMNI27NiesdQQvuRExeDabAWM0IUqWouDzxeDsrOGiYQ3eS55fdR5ATUYi8+HDey5MHmngyvhDqYI2IlPLdQC+LGudlV50sZoUEf6oh23b0FbRg2RzrDinsKaj6wbmRUzBsSR0zYWUqkD/e4qippFZYKje0EvKExXaK2Wo/EeUL5mus4xVkC161EsjqCrUlOAihZou1Y+Ai+P1zmiNsE5REhtwiTPQXzfhz69pXq6NjFQStpGcueAT8zzSdQ37mz0lKwqeaVrpmo55nsk+0vTyzxptsMZhratKjoBzht32huNByiQo1fkuRDfvJX4LBU0jZdHr6xFrHNrIn6NVDfRUsN1uawfVVKeGgIUap2mblnUVRY+vNqPtpqPrHbI3VSWrXYTglhA8x+OBYehoW0eoUdnDpmeazvIycopCpq+G2OAj67pezbfTtFbTsbx0vF/R1tJ2LTHJRkxFDLt393v6vkEvomkNIaGrqqdpC5dMEIVmmRdizFgrIxNpZGkad7FABXISlETJMiRvrMPU78J0ihBgs+mqX3BmOgtBLufMfre/VheqbpplnqpyShpBFLGTLesqM8kiJ6+4R9Z6WlqmWcTufT9wPI8UlFD8jOZ0nmoI7dtZb24Tppxp6l0wpiwaxKzqm7+wrBF1ErDPPK/1vqiIwct9SQvtTE4oRV5ETC0Z6JZ+aIkh4f16vV+kmKv0rFSVjLn6CyURyLEZtvUuKISvkFYaZ4gqo9BY01BKpmkbGqfE8ZELRosfrhTpDl4Myd6Lo0GioBW6iOdRa0OMma6VmafWWiRZSk62nCOJhFXiW5zmmRgK1kocuML8lLCUxaV/sWQVMtrIadI1ltvbG2IsdJ0TL6WvFimTUSpV3aqEcLbtBmNkLlsotI3BWnEuWGfRSjEHT0mJ/c0Nh8MRHyONczhjSTkwdC2Ns2iVyUnuveri5rC6eg1FuypueE8pBmfFFtZ2rTRdUqric/mei7r4BC/qGep4RtG1jYygkJeL1VbAwm9ovblN2HVdxRhICed9hKKvg1ylJXRSgK7yFjyfz1XaZFhXTz/0tH3H8ThKUq7RdJ3Ivo7HF2K8UJ0T1ilSFtkTqpByIiWHtR0xCu3rIqValkVOlxAQPkrhIkMUvqh8nJttS/SeGBxJKTYbcS6kygp1VtT945hwTUUu5kLjOh7ut0Dh5fkL3ieUEoH0ZtMzDD0owb1f3Bry0hBa3IWoXUi0rQgBtHF0Q09OmbBEbm7uSUUo16+vB/b7W9qh5fn5FYCYPKuXpodLuoZ+Gow2nCYJQ22atuLrLwCmSwdT8f69lMPLsoo3M3l8EBnh8TTxL37zz5jnsW4wKUU3mx7vF5ZlYrfbobXm6elQZ4/i+bycXtM0IdBfhV9XjLEVja9q2Vro6x1WvhcnjSwlTZt5Wv9n/aB/yfXmNuFP7uqfmisp/mSolZgruR9K+RKueMELagGoZQp1Zidf5ul8ZlkSXdNdN/VFEypOBemg3d3d1TI11ow/Ce8UDkpX03MV5/NYXQpCH5PGgfgRQ4j1AZWO4gVwG3ygcY6PHz5wPB0xWjp4wrbh+u9ZFn/Vy4L8/zFlhqHDaANOUBsxehSOrpOXQAiBmIWS3bYCyHXOMYeFeV7Ybm8o6Kuusmt71nVlHKXZcTE0ay1i96bpqtFZoLrWilrI6EsXWk6hYRiq19FfP8sYhZjunCGXRM6R7777s1QSIdT7sauwpsusUO6fzllK1eleStJ19df7pNaaYgTonLI07S6zxYuz41LGiun5Aowq19HHW1lvbhP+xPGU+ZpWihTFRNt1Hd98/Mi8TDw/v1y7YG3FX0zTiDaafugJ4RKjrK4XefmS9NX2st/veXh44OXlhXWdq8u8uXIs5QQSBP/xcJI5k/f0g/BGx/EsliRd0I2tzZyMqb6/XBRKSUhmyZI72LadBJbUsMrNpuX5+YXtdodWRqhxIdF3g+hTs8JoSWxal8h4fqFtWzbbS+iJOAemaa6fhXQhYwySrLQGzsczj08vnM4r85TQxtD3hpQCf/d3f3dtVJQCgrbvkFFJuJ48lxeivCRz/RxF8L7bbbnkGr6+HIkpsd3uca5mTRqqsRbxCyYZ5DedqH2WZSKmSNe3KAXWGZp2y/uH9zVcRtF3fd2cDbvdni9fHlkWmWt2/U4yCbnErMefNprS9bus9LuQWZav8N+fXT+dhNJ9XGO4esj6vhPaWPJ0Xcs0zXS9zLC8r458o9ntdpxPIvm6ZECsq8iorL04B/J1w1/w9AK/9VdIr6p3wEuX9dI4EIrXTEq5KkiqxtFYlJKRSCmSHJUQ1s26eEx1Sjw+PqGVFrOtk6gzRdU2ZsFjpIoCbFpLjIK7FyuURitX8wSLIPtTqk4MOf2HTc/+ZkvOhdNp4vV4rOZgzX6/J6aEtdTmlDhW9vs9wzBwPp95eHhgWRbO57E2nsTt7yp2Ule3Q8mKGGS2KGzVeBVux5BoGsPpdMQ6w/v37+ugX0rpm5sNkqWYayPNiUZXy7y16zr6+vNM01zhxYp5XjgcjpVfkyqxWyBTsuQzMNoKA9XZKqK4EMY1b6wv8zY34eXL9N7TOMHnXchkv//939M0rnYWJc75V7/6JTkXjscjzy8vHA6vrGsUcHD1oj0/n7FW8fDujsY2dbMlDocT6ypBLZcH2TmH9zUYRUvre13C1d6Ua/ev6zrJlqCwzJ6YJAuvbapCZg7c7G8BzT/8wz+gjb6ezH3fc39/RwgLl1CTnOerETknacEb3RIpFWuvf8I61jxAhUPrhpxF+G6twZmeaYw8Pn6pLX3F/f09hYK1Cm0tXStkMqXA+7VK7zxKFU6n1+pBlBPygiIcx3PdlMJxCT4zDAPeB8ZxrBu1FX3nGqQTnIV29vT4StsOUAwf3t8CCAi5BMmtT4Gzv4C3HN6PzNOCUlJOU2Acp1qSimm3FM/t3QDA6+vh+n2VXNBGOqeXK4xSFUES8vUe/1bWm9uEF3xB28oHrTBVTCwSKMGal0rdklCX0/lI8JHX1wPjNGGdE91kUVzAsUB1LshsbpqEJi0mUFvvPKqWWD/lRly6bZfT86ILFQNvX+8zcjeLUZzsXeeIVWzetC2H1wPWWvquB5WvsqrL7yvwXVPvti3ztLLMkhy1LIJ377ue19dXJCnKsq4Ty7zSdztyUayL/JxGJ47HER89OUunt+kGrDMoI4iItuvoW7lbihlWGDbzMkkilCr1HmYrKa6rzvaCAJmSmKxDqS8uaokqM71LmpUxsilzEthV2xgUltfXs2wUbeoLV4zAKZYaCNRgXYPRhZjE5SLNLVVVNFKxPDzcsttveX5+JsZQlVOxbrzqG+Vyckupesm4f0vrzW3CS2kEmpeXF6bJc3tzK0qQXhDmSsnwfLvdk/PCly9PpFI4n05ycU+RtumkpMsiau77Lb/6zbe0bcPf/e0fBB2YREfprLsaSUMUzKKiME5nGQ1oYbm4xgkxbPHEKF1K6bzJ27rrmhpIqWtTp+H5+ZllXhg2PSlJOtTN/gayCAVOp4mh7xnHz4Im3N8LWdsqQvDMc7yWesuyst1uAH2N9m67hpJLfWlJnLRWFmcUJUsjw1rN/cMtIQa+fP5cjcaanBWn44y1QiDza8EaodKdzxJ4kxM8P73UUUKLVob7+zs+f37kGM6sa6BtHF3bE6JnXXzVzJoqgXNM48huf0PbDZyqn0/mqiIcMEqjjKmzX3BZMc4rwc80VsQYzl2USZK0tRl61nXhdLxEzsnvP/Qd3osjJOWIsQpXDc6UIjPPr1amn1+udWirOZ1GfBSTa78ZqgxsvZ4cOcH5vFIQuVdKnvsP71AKzucTa/RQDBRwWohnrbOE6DGtxip7RSrEksWDqAwxUyPTSu0sGoyFtrX4VRo60o1z16YLFDHENlb0mlHkXDEK1NY6uetc5oBy15lIRZGzJSfDZtgxndYqg0t0naHtWvwaQf10R5bgT2lu3N7s+PjxhteXZ7bbLcsayVHXrHrL0Hcs6xmlDfN4JCvF0Pco7TidZkIQ58Hd3R2laJzZSOUxRdpOrFrnWcY8fT/QtZtr00zuWdJd3myHWqYKg0cVTcqR8ywdYp8iISWmZSErRSqFmAVRoo0lJEFQ5pSxzhJSFVH4jHMDKM00e7SSxldJgVLx/uNpFDapVVjb0jYdz8/PdXyTUXll6DeEUMhO1XzCr6ben12bzfYq8QJou5ZxHOsb3VyhQfMiOMCmE0d8ru3zgqANtFGSbuRDbXsvfP/9D6Ar9q9p5Qof5CR0jSNOC0Jru9wlWnIKLLMnRcXqI/O04GuuYdttatmbaqNoZJ5HrG5QWFIWCVWKGSpkWCsj7NCKGASY54W+6xmGjVDWrMM6VXHvcsfKRR4ckakV9rs99/d3zJW6hpI2/TKtV/UIl1NXizh7XlaMkQjtNQhjdbe7QWtRvczzhA8FYyTm7ZLapKsTJMbI7e1t7ZjKKGCz7RmGjsPhUBEeVVLoE6u/4AyNfC5WY4w0wba7npeXEyHKS8zoGjSTuIq3cymEmChZSvCQJM04hHDNpD+PJ7FLxcjQ90zTUuV1DcbAu4d7YRBlz2boUcpx+xX09PPr0khwriXFn7ieF+ZmSpFlXsXB4FONN+uIKXE4HECJ290ah3aGtlWUJHOiUhA/YSrkmMgxk2Ni8TMppOv9L+eMX1PdiJJNIdI2qkJHSp2cU220qKuXUII1LVa35LUIADhG5nlCkIdWciSCp3GNiMO9v5LV4PI7pyrDaupDCUbL/KvvB4a+4Xw+Y51lu73h5fkFpWwVPm8JIda/t+d4PghxfA1oJc2SpmmvDRYhA5Sr3lPKXxkjXEUSVQcqo6BJpGops64T1ioBWmUZD5VS0Fbhj/mq91zXhZwjw6aj7SQee59bXl9PUq048SkuMZCiCES1kvu2doK4P7yOpKTqdYUrENgYqUi0Ol87p9KptjRNR28djYv8+OMjD+9uCPFrIMzPrmn0pFyqyqWrg1kZFYzjSAy+DngduZia/0AdKF8EzWKF8X6l7zqZ5WWZ2ZE1KYpbQBo/ioyIwZWGXIXFl86avJkzxkBK0LY9PhwlY69rK5JPHsxpEtxfTgXjHFqnOtpYCUEE4DGK+TaXLLBcI14/HwLzNDEMQ+XT/CQ2kAZSJivJCNxsBtrG8OOPT2x325od/1lMzMrKA20VKV+EzTuJFs8anyLKSFqvPLC5it3F3XEpfUWhotjtdtfNB3A6nao7RbPZiMBbhOq5RqfVl2WMNK6lFMn/aFuL0uIzNFbkdw/vbvjm2/dM55nD4UzTdChEhpeydIO9X2idYbPZUHJks+kZT0ckoVkisbUWT+LT0xOlSDUld8fM6Xjm9u6e5+dXvI88PT1i35ip923JyRH25jwtzJPkCMQoLMuLbEkeSHtNIVLa1s6cqhuA+iYVOVWu2RbGiEtinjzzuGAw9E3H0PX0TYsm0znLzX5Loab7el91p4oYSjUGCwbfOcMvfvENm83ARaFx6RRSlSfAP7rLCulNkIftdT7ZDz03NzdQ5M9Yl4XGCV3tcrrKy+jCshFVjVKw2WzY7245vJ44n5crYl5OtMKlNJR5nEIpW0XatpLRLi5/Kf8uxteLlQi44vlFqfLT7yTpUrc1F3JBKUHZe5+ESzr7Opu7YD8s1tirCAIKx9cXnNZE7wX4VGC/3WA1qJxYl0UcJK7h8HoQPMU013xF0ZqGENnv92y3O5qm5d27dxgjL+GSBaf46dNn5nnBVDOv3OPfznpzJ+GyyMMxDKbKqKTkG0fhvijjxIwbEzlLcCYKihKB8mXYHVOirIIbtEpXFKKUmtZYoo9opdnvd5JZYBqsNSII6BvatmM8LyxL5Hg4MQwbEUBrxf3DRrATy8Tz86Ng3Uthu91IQ+YiziZXJISr8z950Hf7Xf1ZReLWdd1VNvbu3XuGvmP2R+Z5pusGERqkRN8PzPMsfrxlRiklY5lxlZdOPSmt1bhG9JWn04nV5+pYF2f8uqxwc+GBSpbf3d0dzhlWX10MSlVwcb5u/n/M60xRKG0hZMEaolHI7FAAxECV5HVtx7yMgIjf+64X8byPfP/nH1DKShxcRhwgq7y0rDE0rpEXYggVYqVonCh6LnPMp6cnQgh8/PhB7r6zaHwTFyaslrLVNhyPJ2HSvqGlylsjoX5dX9f/xtabK0e/rq/rf2vr6yb8ur6uv/D6ugm/rq/rL7y+bsKv6+v6C6+vm/Dr+rr+wuvrJvy6vq6/8Pq6Cb+ur+svvL5uwq/r6/oLr6+b8Ov6uv7C6/8PQGToEh/W4bQAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Predictions using: predicted_ResNet50V2_saved\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAL8AAADECAYAAADOD/AEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAoPUlEQVR4nO2de5QkRZ3vP5FZ1dXvnp6enhfzHl4OCChPV2BAB1BxVURRju4i6l7WB+x17+qu7llRVy9n191VV2XVPascFY6I6OXqAUEUXAEFriAyAzMMw/CYBzM9j35Xd1Vm/u4fkVmVlfXuzuqu7o7vmZ7uzPxlZGTkN37xi1/8IkKJiGBgsABhzXYGDAxmC4b8BgsWhvwGCxaG/AYLFob8BgsWhvwGCxaG/AYLFob8BgsWhvwGCxZzj/zr1sH73pc/vv9+UEr/jgtKwWc+E196BoVoxDebAuoj/0036UwHP62tcPzx8NGPwoEDjclho3DnnXOf4E8+Ce94B6xdq7/FMcfARRfBV7862zmbE1B1xfbcdBNcfTV87nOwfj1MTMADD8D3vqc/wNat0N7euNyC1vwXXKDzAuB5kMlASwtYddTlj34Uvv51KPX6ExOQSOifZsVDD8GFF8KaNXDVVbB8Obz0Evzud7BrFzz77GznsDym+s1ixtS+7hvfCGecof/+4Aehrw/+7d/gjjvgyitL3zM2Bh0dU8xmBViW1npxIu70GoEvfAF6euDRR2HRosJrBw/ObF7Gx+tTeo34ZlNAPNXuda/Tv3fv1r/f9z7o7NQa6E1vgq4ueM979DXPgy9/GU46SRfAsmVwzTVw9GhhmiLw+c/DqlW6YC+8ELZtK352Ofvx4Yf1s3t7daU75RT4ylfy+fv61/XfYTMuQCmb//HHdaXv7tbv9vrXay0bRmAWPvgg/PVfQ3+/fvZll8HAQJVCrBO7dukyjBIfYOnS4nPf/z6cdZYuy95eOP98uOeeQpkbb9RpplKwciV85CMwOFgoc8EFcPLJ8Pvf6zTa2+FTn9LX1q2DN79Zp3vaafr7btoEP/5xYRrlvtltt8Hpp0NbGyxZAu99L+zdWygTcGvvXnjb2/Tf/f3wN38Drlu2uEohHvLv2qV/9/XlzzkOXHKJ/hD/8i9w+eX6/DXXwMc/Dq99rSbj1VfDzTdr2Ww2f/+nPw3/8A9w6qnwxS/Chg1w8cW6BamGX/xCf5innoK/+iv413/VlednP8vn4aKL9N/f+17+pxy2bYPzzoMnnoBPfELna/duTYSHHy6Wv/ZaLXv99fChD8FPf6rNrDixdq0m4Nat1WU/+1n4sz+DZFKbrJ/9LKxeDb/6VV7mM5/RZF+5UpfX5ZfDN7+pyzz8XQAOH9aK4LTTtCK78ML8tZ074V3v0tdvuEGbju98p/4mlXDTTXDFFWDb+r6/+Atdac49t7gCuq7mS1+f5tbmzTrP3/pW9bIIQ+rBd74jAiL33isyMCDy0ksiP/iBSF+fSFubyJ49Wu6qq7Tc3/1d4f2/+Y0+f/PNhed//vPC8wcPirS0iFx6qYjn5eU+9Sktd9VV+XP33afP3XefPnYckfXrRdauFTl6tPA54bQ+8hF9XymAyPXX54/f9jadn1278uf27RPp6hI5//zi8tmypfBZH/uYiG2LDA6Wft5UcM89Ok3bFnnNa0Q+8QmRu+8WyWQK5XbuFLEskcsuE3HdwmtBHoPyvvjiQpmvfU2/z7e/nT+3ebM+941vFOdp7Vp97fbb8+eGhkRWrBB51avy56LfLJMRWbpU5OSTRdLpvNzPfqblPv3p/LmAW5/7XOGzX/UqkdNPL85TBUyN/NGftWs1gaMZfOGFwvuvu06kp0cX9sBA4U9np8gHP6jlbrlF3x9OU0TfV438jz6qj7/0pcrvUiv5HUekvV3kiiuK5a65RhNraEgfB+Xzwx8Wyv34x/r8E09UzlO9eOQRTer29vy36O8XueOOvMwXv6jPP/54+XSC8r7zzsLzk5Mi3d0il1+eP7d5s0gqpa9FsXatyMqVhRVfRORv/1anv3+/Po5+s4ce0sc33lic5oknFpI64NbBg4Vy110n0ttb/h1LYGod3q9/Xbs4Ewlts59wQnGvPZHQ9noYO3fC0FBpmxTyHbUXXtC/jzuu8Hp/v7ZXKyEwwU4+ufp71IKBAd2hO+GE4muveIXuw7z0kraVA6xZUygX5DnarwkjndZlE8by5ZXzduaZ2jTIZLSZ9ZOfwJe+pN2ff/iDtrd37dLfZtOm8ukE5R19x5YWbW4G1wMcc4y+VgrHHlvYfwLNFYDnny/9TuWeD3DiidqjGEZrq+ZCGL29lcu3BKZG/rPOynt7yiGVKq4QnqeJf/PNpe+JvtBchW2XPl/Jq3zrrbr/U6t8GC0tuiKceaYm2tVX687j9dfXdn+9aGtrTLq1olz51omZdWRv3Aj33qs7u5UKcO1a/XvnTq15AgwMVK/dGzfq31u3wpYt5eWi2qkc+vu1R2PHjuJr27frCr56dW1pVcIll1TvFNaCQCnt369/b9yolc5TT+kOaikE5b1jR2F5ZzK6Y1+pHKN49lldacPl+8wz+ve6ddWfH3gOA+zYkb8eM2Z2hOGKK3RP/R//sfia4+R79Vu2aM/EV79aqP2+/OXqz3j1q/UA3Je/XOwlCKcVjDlEZaKwbe3xuOMO3WwHOHAAbrlFeyO6u6vnqxpWrNDvHf6phPvuK90y3Hmn/h2YEG97m66gn/ucrgRhBPdv2aJbj3//98I0/+u/tCl26aW1v8e+fdr8CjA8DN/9rq545cy4M87QFsE3vgGTk/nzd90FTz9d3/PrwMxq/s2btZvxhhu0TXrxxZrkO3fqZvorX9H2auC3veEG7Td+05u0n/2uu7T/txIsC/7jP+BP/1QX+NVXa2Jt365dlnffreVOP13/vu46rXVtG9797tJpfv7zWiufey58+MO6P/PNb+oP9c//HFfp1Idrr9V9kcsu03ZxJqNHfW+9VWvYwIQ69lj4+7/XCue88+Dtb9cm6aOParfmDTfo8v7kJ7UL9A1vgLe8RWvcG2/UptR731t7vo4/Hj7wAZ3+smXw7W9rRfGd75S/J5mEf/onnefNm/VA6YEDmg/r1sHHPjadkiqPurrHgTfj0Ucry111lUhHR/nr3/qW7sG3tWl34StfqV11+/blZVxX5LOf1W6ytjaRCy4Q2bpVexQqeXsCPPCAyEUX6fQ7OkROOUXkq1/NX3cckWuv1d4RpQo9P1FXp4jIY4+JXHKJ9kq1t4tceKH2UtRSPuXyOB3cdZfI+9+vvSGdndpVeeyx+p0OHCiW//a3tTswldJekc2bRX7xi0KZr31Np5dMiixbJvKhDxW7izdvFjnppNJ5WrtWu6fvvluXdyql07vttkK5cuVx6635PC5eLPKe9+Td5wHKcev668t778qgvtgeA4NKWLdOe9mCwcQmx9wLaTYwiAmG/AYLFob8BgsWxuY3WLAwmt9gwcKQ32DBwpDfYMEi3hHeI3tiTc5gnkMAEmSzLnv2vsyRw0cZGR+lo7ONjceuwxKPdDqN4ziEu6ZrTj07lscbzW/QHBDwPA8RDxFBxKt+zzRhyG/QpKgx6nYaMOQ3aA4osCzL/1GoWkPOpwFDfoPZgeT/UEofK6VwXQ/X1SZPo0egGk/+el7AyC5YWUEQEX8VGVVZOCY0nvz1tF5GduHK6njkOhObHhpA/iZWL0a2CWXF/1/wPA+lFErNjDXegJlczaxejGxzyAr5SqGJblkWtm3jui7igcJGKaGRoWdNvBKrwfxGuAJAvpLkK4tSNJT8xttj0CTQJNdmj2q4pwcM+Q2aBX6HN3D0zESkvSG/wSwhb+aIr/Vd18XzJHdZhIYOdhnyG8wOIia+ZVu0tLTkOr66PkgB+QOTKC4Y8hs0B/zAthzhZ8Ddb7w9CxGlnCylztWUVqFtLmFNXfXmvITneXiuIKLIZDJYymr0AO8MkL+eQTsjOyOygvJvEpQELscQ08S/XibdUFgOCgGC8GMLfcZCifiPE1BB+spP2ye2J5DwUOKBayFuioQCJQo8HcMvnperYCISa30w4Q0LUTZMxiIBVVO6guVXIshXHgFRiOgKUD6jwbMV4CBk8UQBCTwXLEth2Q6Ih3hSUDebnPxzYUjdyIKHwgtJajIHP7UjVGFyZ0KVQYWJHmpNFGArPycgygHLwVUZVNJDaPxkFhPesABllXhoylmIsjTxJdD4gVFUSyXTFUVhka9orn+s08qZUDnoCqFnbCmUagEUylZ4ahLHGUORYAYmcpkO73yFhO1kEaxEQtv3tg2u4LkuyrYQwPEEx3HIZCZJJmxaW5J4lqVHWv0dDkUEK7LZiIig7AQiLspSiOv49rmb61uIlcBCaTLroB1/IEvhuRaWSoIobBTDRw8zmRkFtxOLBKL0M5VSuJ5HvBa/If+8hOigGB0k5pNflMJOJHSlEGFwaIiHfvcoj/z+CVo7OkjYCY4MvExmfITO9lb+5LwLOff882lrb9dpZTJgWVi2rfdYSCbJjI2RakmBsvHQMt5kGmVrTW63tIJSiFjQkkKykzjZNHZCUALKtVBWioRYWE6aNnsCVBomhxkfPEprRyciOtrTTtg4jhNrOcW7YptZvaEpkHUc7EQCFdLUbjZLNptl8OhR9r+8nzt/fhe/+vWDeFaS/mVLWdbXx/Yn/8DA3t0s7u5keAL+87vf5ZSTNoEIlm1rzwsgnm+yJLXJ8uKLL3L/L+9lcnyEPc8/S1d7K5e9+11sPGET4lqgWsBViK1ItCqc7DjZ8RGcsTTdPStgcpJ9e3cwNLSfhx68n97eJSRblnDCqWfRuagXAM+f7OIB62JavcGQf15Bf0rPE21b2DYC/PGxx3jowQc5MDDA8OAg+15+mUNDwyzqX0pLayejo6Ns37qNDtvjzJPWkkrYPPD77bz+oov5/P/+Ai3+5nOT6TSHDh3i6OAgu3e/wLannmY0PcHeffs5uH8vkknT3qLAzdKzpI/VG45j8Gia11/0Rs454xzSziTfuPErjI6NctKGRXjpEa76879kYnyce+6+lY5OwSJDV8di1m44m/alJyCJlH4nP94/TvIbs2eOoVhTCeIJyrZ8d7uHKG3miOPyy3t/yY9+dDvPPPMMXV3djAyPMJ6ZpLWzk0MDhxCOcPDAQY4MHCDR28vyFcewaFE3j2/fg23p1uOFF3Zz/6/u5fChgzz33C4mJyd57vn9pCcdEokk2UwGN5tm9Yp+WhPCkeFhnt+zl63bdzE0OMEd//fnLFvSR++iXv647UksEX7fZ7N8UZIj+16gd3E/49kRVq5aSldPF32rNnDM8Scy6XUxlp4Mjf7GC0P+OQl/xjcAgutmUWKhLIVlWzy9bRu/ffQRDg8c5g+P/4GDBw/TvaiXdHqCZ3e/hCew4bh23vLmi1na389/338/e17sYf3a9QyOjPPEtqeZnBhm4MCLfOcb/87evS+y/emnWNzbha2EVjtBd2cHo6MDKCdD/6Iuxscm6G5VLF7URVebzaLeXsYm0rRaGY4cGactOYLlZDjn1DU4E2mS7iibNixjdHiYE086lRUbT8JRCUh24Hb2k1aLQXn+WFie+HH65g355wESqZSeBuhk2fbEk9x8yy389v89gpN1se0ky5atYNWq1ex+7nlc10FQXPT6i/jQ/7iGZHsrb7z0DWSGj0JC8b3//Ba7d+/Ay4xyYM827jm4k9NffQbHLOnGyWTo7ujCSrTQuqoXyUxy9MghOlIWlptgdPAwXSlYvqSHlctdhG6Gh9oYGR2hv78PBEZGRhgZzpKULlo7l/MXf/k/WbH2WA4MjDBwdITB0QyO0w60IqQbW24NTR2aalh/3soCiHDPXXfx87vuYnBomGNWrGbPS3sYOHiUVStXM3jkMDt37iIz6XL+eefw7ssv11p0Is2i9ha8ZDdPPPk4B/Y/T8qG1at7WLG0n4mxNEcP7GX0yCBeVrAnHUbGJzgyMk46ncZ2M6jsOIvaU4wMH+XZHbvY19ZFd7eis6ONZDJJV6qL1Ss3YtsJLDtB38qVdHf2s279Jtad/GpcSTC5P4MrWSxlYZEET+nxsQai8eRv3rGeOSsbLHKg3eUKcRz2v7yfn/zkJwwPDbFy5Sr27D/AwQMHGRwa4zWv/RNOOflkujpvx7aTXPGud3L8icf60QUT/P7h3/LT//NDDg3sZ9czT9Pe2UV75xJG09Dd2cvY2DhOdgI8ECtFa6tFcswlPTJKd08rI4NHsC3F6tXH0N3dw969L7PjmX1MOoOc9soTOOucM7nsXVfStaQfsh5tHR1YyRRYNuLqWB/VkgI7jVJ+rJC4ofdtTC1oAPmbRR3OV1k/cEBZenxVKQaPHuFnP/0phw8fRgHP7HyWoeFxHEexYtkyjtuwgXPPO49zXnMOllLguVhkeX770zz5xGM8/tgjTIwM0dPeSt+iTlrbu3joj3t5w0Vb6OtuhcwQL+/dzdjYEGlnhN7ePlw6sJOtHD1ylJGRUd3x9fbT2wc9vct4yzvPZPmqNZx51tl0dPewdN0GPUYglh70FZ/kCRvHyYDloiwXT9KIZ6PI4orrr9+Zn+IYJ0x4w1yTFUBEL+/heYjn8ePbb+eRRx5hfHwcSym6OnsZH89y8kmbePeV7+Kcc85BiWBbCs9xsBKK9PAhHvrNL7n3np+THhuip6udTa84HndylIMDgxwZnmDVmg2ctOEYnnriAfCydHWkGJsYY2hkkJcPHmHFsmM4++wLGJ/IMjQ8zm8ffZL9z+7jvX9+Htd87EN0drViWQmyjgMJD89zUP7MLeVZILZ+d+WBcrEsQVkelu2hLFCeCs3pjb8CmA7vXIMChdK7qSuF67g89NBDHDjwMiMjIzjZLKedegbv/8AWXnnqKaxYuxbPzYK4ZCcnOXL4EHte3MW+Xdv442MPMzZ8GPEclvevZnJ8jO62dg4xSN+iViZH9jF0OMPwwEtkBg+TbElhe0kOvnwE7Hb2DwyzdOU4Z59/Ab29S7n4rVl6+5ax8YQTaGvvRlwXxxUsWvRorvhh1CjwLMBCobSnSnSrgCTAS4DYKJU3fRoxndGQf64hmOKqFJ7r4PkhDMuXLcO2FMODgzzw4AP8r49/ksV9i2FyAsSBhMUzTz/N9793E3tfeIa1y7vwnCyTk2kWL+5nw7GvIJseZ8/w80yOOSS9LGODexhMjTE6uJ/s5CiDR0aBJIt7+8i2trHxhBO59m8/yZL+FYirELFRVgJXQFwby7Jz8Tw4XmG0p+++FCws0S2BuApxbTzPD7RTqmDqYhCqERcM+ecilIXnuSjbRiaF1mQLba0pDuzdixJY3NtLa1sL4AAumcwEQwcO8cQjD7J7x1ZSKgNpyGTASvSw4cRzSHatAWuYwZFddHX2srxX0d2+iLEJhxHXI9XXR8/KHtpSvXQsXkHf6g28bssWepesznfA/RVnbQXY+tnaopOIZSfBv5C3ykXhoWwPbA8SHpbkb2pEp9eQf85BENfBStiAXuojYdsMDAzgui6jo2Ocu/l1tLS1I56L6zn86t57eOoPj5FOj7CkbzE9nSlaVIbBiXFWrd9I34rljDkTpFqFDcctxc1OcnR0hF3PPU97Z4rxjEUikaKnewlvvexKTj3rtbR09mLZCZQoPBGsnIaWgrxWeRU/zF933BXgeQ52wsL1XBLxWzoFMOSfc1BYVn4aYqKlha7ubp5/fjeu4+JkM3R39/Dw737LuvXr2LN/Dz+67TYm06OccNwGlixdSnuLRUo5ZFUrx7/yVbR2dpKeGGJy7BAqMYabGeOMs0/h17/ZyjKVZNWak1m74VjecOmlrD7+eJRlY6tWfypiTGEHfuUJe3caDUP+OQalwEN7erDAU4qVK1ey85kd9HR3MTo2yg9v+yHf+f4tnH3mGRwe2E9LwmLTK46js7sDJS4v7d7BykUteJk0e5/bznGv2MTwgb0c2Pcc3e1CR1uKfUeO8OHrPsCpp72G/uXrSLR3YdmCp7K44mB5DpCP+VfWNAMPgtBrPxS7uBWJH4b8cw25SeOACAngT9/8Zo4cPsQz27fT1taG5XiMT0yydesT9PV2sainj+7uLjw3Q3dXB51tSUaP7KUt1cGzTz1OenSUF1/cS19vD8sXH0Pv4h4uecclrDnuFFqSPUAbiI2I6/tqtD2ifA0dneQyJSht19t2Asuy8DwPy3dxBqs3xw0T3jAHZfNeE40Vq1axatUq/vvXv2bw6Air16/Cw2HdmjU42Qn2732B/p52eno6yY4PMTk+jD0xTGcyRW9XF/v27GftmuPZ8oZLOfeii7GUIC2AJLQL0rIQz988AguUratAjpBq+u8meW9OnudzXfM3wbjQvJYF7LY2Ln3rW1m/fj0/vv12nt6+lcz4KLZkWb58Ccv7OunpTOFMjpJ1MmQms1heFxtWb+LKt1xBqrufVNdiursX4dgWllLY4k9htAAmQfnrMRTNyY3n3fLTLj2Usuaq2TMHVOecli2GymRY0r+UzZsv4PQzTue2H9zCfff9itaUTWdHB0NH0wwePcqink76li/nxONPZN26Y9l40mn0L18FyVa8RAsTbhaVgJZkCsbx7fgsgVdJidIDUcGE9ZqyXNu7BfNzw3OPp1EkNcGEN8w5WSjUiAplJ7SmTCi6Fi3myj9/P298+zsZHR7GVjCRTtOaStHR2UFHRzstyRZaUm0o284928KiXSUQByzP9QeX9CBUzpGfy2o9GrmS/aZ0HVIKy7JRSpFIJPxjKzdtslEwHd65hiiXlMqf8jueqfYOVnR0IkuXI0rpYLaw+1CkqAOpRLCD7YA8CAiu8sstxIzwAJY2dxzHKRjNVTR2ZxazUO08hFIK19HL/eG6OQ2q/GvTdkvGAZ0Z/0AKzJ24wxjKoQlKwSB2KIWdTKIAK5nU2jRCrqZAZPlx27b9VqC4ZWoEDPnnI1wXPE8v+ERe4+fQLOQPlkLxF8QKRneDharClcDE9hjUhIJBp0inMZj91RQQyeXFtm2SySTZbNbPf+NbKKP5DWYR+Uroup6/Ipv4v43ZYzCvIQWdce3t0ZScHzZ/s6/UbWRnQVZ8kycfpqEspeOSlB5EK+Xij7uzbjanMLKzJOvl4/gVuUVolVJ6BTqfmnPMz9806sXINrGsSPBfcKxDmXMrSZeoUHNgN8amUi9GtpllRXz+6zDp3F4CFQbhmpz8Bga1IhS5GdXqoYn6Emkh4oIhv8GsQPmjb/nQZckNynn+LixR0sdt/xvyGzQJ9PxdJ9hNpsERnWDIb9AksIIw5lxIw3zw8xsYlEQwMUb/Lfg7r3iu3qlxBrYiNeQ3mAUowAJl+X/nV2ZTCixbMRNR14b8Bs2B3AR2fWjCG4zsgpENe3fiHswqBxPeYGRnSbZ4WUNN/so1qcn9/E2sXoxsc8kWzCsmtFKbP7fdvxxMbokbJrzByDaFbLB0SbBeZ9AJhsbN6zUdXoOmQLBcSfC3XrwqvMJD/NGdhvwGTYH89kP483lLSsX6TEN+g1mHUgpLWST9lSYKbXwV+okXhvwGs4eQWeN6OqbHcbIF0xlL3BTb4w35DWYJeW0erNXjiZdbwqTRi9SCIb/BbCKkxG3LxrZsWlpSufU6Gw1DfoPZQzhe31+yJJvN4DgOrus1bP/dACa8wcg2hawi6Oha2LaNbTeemia8wcg2haznr9Lsui6u6+J5c9Lmb2L1YmSbUFbH8wTbHNmWhW3Z/o6TjYUJbzCysyTrx/TjgMog4mLbSUQSOI5fIRR+JQiHNsTXIpiFag1mF7lV2wTLsgHL34HRzU1t1GEP8c/sMt4egyaBDm3wPG3zB1uQhjelNoFtBvMTCkBwXc9fudwqSfwmj+c3MJgaNPE9P+qh3DKHhvwG8wx6WyJNR28G1uwBQ36DJoFC78kVLFQ7R/38Bga1ICC3XqQWtMZP2P5+XF4+vGHudnjnwjiLkZ0FWUGJiyIJtICyyGYnELJYtuS2S23k1qQmvMHIzrKsH9oselO6bDYzl0Oam0q9GNk5JKtj+ef0hnRNqV6MbFPKqoIV2kTE34jabEJtMK+hwPb32wUs2/KnMTozQnww5DeYReQmqkDOOiqM42/ssoWG/AazBCmYyaUsPYklWLnB89zQys2NqQSG/AazguhujLZPfs/z/E0qChZ3aAgM+Q1mAaKZZ+c3pAt8+S0tKSyVQDzt+QmC24zmN5g3UJEVmQX8EGbJhTQbzW8wT5G3+ZUq3JPLdd3c8iXhxWrjhglvMLKzKJuP7wFNcNdx/EEuITxGMDfJ3+zjLEa2KWSV5Ud1+j9RwTli8zedejGyc0RWRHDc/PIljY7vMeENRrZJZLXN7ziumcxisNCg3ZmOk/W9PWYfXoN5ChEFaNte+Wvz2AkbpSwSiRZEtJ9/bnt7DAyKoPBEEM/DE23b27bv8vR3ZVFK5Uz+RsX3mEWrDGYFlr/5hACI5BamSiYSuG4WZancJnWNmsZoyG8wa9BxPIncBJZMJoPg4bpZXMfBsr2ihavixLwnf92FVqKJDZ8plZpU8U5EoxIL8qRUXb6TUgi0Z7U8hJ9fEC8TyUPV9JQqLCefnNG19AvMleCe/OwVLGWTyWRJp8eZzExg2UJHZxutrW2ASzartygKvD9G84dQ8iOFPuRUikokEmob/dBEyK4UKlGlGCOVI5xv5acxHYjnVXxXy7KKnpE78t+valkVbBgteK6L8sOPBVC2jQoqgD8ry9PrD/r+e1fn00/HcwURmJiYIJPJYNs2bW2trFmzilQqhes5eD75g4oat+3fePIXjlJPXzZcAKXiXkWmNTRSNxlFwHUri1C5Ik6rJRBy+9eG06gLkQpflKdyafoEFxGcTCYXmlBqjc1wevoYlCiyvl/ftvVujFYygWUpPM9p6DqdMBPkj3E8pFxzXKDp49AOUU1fcFAcXutV+TBWpPUItxwCuWU68o+oQsTo9SoLPJWzmSVQFCXIWW2gKSC053n+ZhJe7jjsngyHJBfsqO6BEsufvEI+ktO29GK1noelVG5Ob1Ch4kSs5M9kskH/PPhXgKhWlVo6MlXIHL0aJeJUqkJB21FN4YR2Ds/fU4qc+XMFeYw25yWI50UGfLRplj8OTINKeYxW2FwkvQiC5CqQ5K5Fy7FEhQ+tqaPNwyBl5bdggmXlF57S2c5zQyKzuQDf/amJrsjvyN4IxEr+8fREUTNVaQv5qhqO4hevVhBTSbNehNMsskWFIhs/Ci9CrWh+ptbEV3gnoUizF4kU1ffKrVvQFwo4HzZtPE9KjNAGWj94hqDX5i/sgIsIeGCJ8uuQPpffojQ+xEp+HYqaf5kijRhB9COUIuV0X7jUM6qRqxoZq+a7ihkiRXo1cr0B9m0tzwgrrHrf2Yt4fOp5dpT8UeUSoBqf6kWs5I92cKLEnWmtXOo4jiY0mmb0o4hbRfNL3jujImbTVJbmi9r0U33Herb9LPdtq+U/fF+0bxBFo5cwiZX82WwWKDYLgnNTIXsjtGClZ05Fc9WLKAGKKk+d6VfSlqVQ6nrUT19v6xj1xZfLUznzq1JLVElmOmiI2ROGFVlwNIzwQEstBV4rpkvuacnXliiQz2e4MhQQgrzlXe2dwrLl8lzqeeXSK5WHSpWsWjmV8viEEUxhLPWcRiFW8kcLVSmVaw2C9VjCiGqb4Fz4/iiqmTHVKlGjCraACLXI1ylTVRNXuFZJ6dSTh3oxUyuvTRUN9fNPxbtTz/VaZeqVj8P7IhW+u6ojuVqfXSvRZkKjzhU0nPzhpraclo5TQ4TTm+qHnhLZw6ZCzole2331vn8lD1atruU4KkG96dWj/OI0g8uhId6eUqhkwsThqag1H9NNs5oLV6iu2avZ5gWyNbRC0QoUdhmWiomp1etWqkKVckfWi3o60/V0wutFQ8lfi/0dN+J2bYYLP/ip6LWqRQOWeUZRWlNAtX5UvWlNJx/NjhnT/LXIN6J2x928lzqebh8hnhHe+sozjpHyevPSbJhV8pe6f6YLqZaBnWhTX4sXqpZn1pNWJS0eJnkpc6dUudZC7mo2fZyt6mygoXN450LTNx3UYk9XQxwDOQHhp2ruVGod4iLmVN6rnnGEqaDpJrM0usKU+5j1au56AvZqSa/S8VTNwVq9MVPV6o1wM88kmor8s1k49Tw7SsapkH+6lSfOUex674kr/Wot1JyK7SmF6XkMIOobiTvwrdT5WjqD5bRxHNowfCYIFw4PtepI+eh9FSbgVM9E8TOLUlJFAtXyUMuXCr9++O+Z6AY0jPxT4bzKTYbIpVKUTjgWSD+nyHEYTbXK9cJ0g7+nMw9hOv0AgYIsS4kcl+JFQanVMchWKkFRKlcBgqwrFS7z4gk20WSmQ/zC40I+xImYvT1x3F87kUp7SgqPoyK1aOtK5C9V6UrFNFVCVbOpWuWJkFupwpZg2uajSEHBlarsJfslFWbATcUULH5u1STqwozG9tSCWsyaam7JyrLFxCp3T7nwi3qPq6FaUFy96cdhK1cLPalaBtSi/cunUcqsbOoR3unOtKlVA0cLKYpKH0YqRZyVeHa1AhcpHe5Qj9lUSH6hVMBx5XeK3wcfHdsIV4RaOqiqsJtS5p7K7xCd5BM3YiV/LUQMEzjatJX6wKW0QaUPX33QSJXsTNXr7an0vOmhdP7KPb8c4hhwLPfMcmVc8C1D/0fTKTUmUYonjR4lnnFvT2Afhycv1HpvtfPVroE2ZUuJRCthrT5yqN/mny5mYyR8uiiX51rfpek1f7XOZHhCS60DN/V0lOIsoFKaJ3hWLd6fmbDLDaaHhmr+StPlZmtAK+LIyKGUKVWqj1HK7DJEnptooJ+/mNyN2m6mnCYu2cz6DrlCAoO/4qR/Xvl+bL9FKU4khDLLCwYnSwwGKWpYG7PpEfUh5/4DKNFpVxGRiIdLiofMooi7zBqq+WvpAM80Crq+QefLH0xTOf+5rgDB56i2ema0MhVeE0qNvpZPs7ZPPKtxMmUfXaGcCspHla47U3nkNNBUsT3NgJwWiolccVf22YqDKchD8P8cb77MtkQlELb5my0SsWkwD4ql4UuXNB3CcTM+sQO3q1IqsGFyxzOqUXN9lRl7ZCwo57mLM+y7ER69hps9s1EBKoY/ROzNUoMsYdLPhJlRT7x+symUWsMf6kW5Ed+mJX+zfZhaYFyV9UMV/lcSjSjXuM1Q0+GlRPhDxeu+VA2tw/xG4bs3ogzmXXhDNTQ+NKDEMwslIqutFdvhIoXvFR1XqDfQrEh+JupSpWKuITuKyt82bMrF9U3dKts/1YuFqfmj36zg40ihgNKXC6I8/X593Npu5syvWvIdqe1FKTRWK4fTDMyduMvbuDpjxsI0gRqHRrqbF6bmjxkL2/ZvHKLzCeLGnCd/3HZltefMR36XJFaM71krcauFsNfjEq4Fs07+ZnAzFhRocdhJTib3ESjeSWWmB8QaigYRv564/VLjL3FvSjfr5J8O4tACRe40qDLEOk8I3mSo1qktNfNvuphT5J8Nm7qkWTUPTZ+ZRj0TmRrVos4p8teCWnlZrnmVqtGKZUKXYxqQmbEwh+hjQq89lZSnophKxftMZ4pqvZhT5K/2wSMe+pL3RQdnRCQ3vVJEisZ3c8fzStsXv2PBbuhlVs2ohlKautZKGg4yDI6rrdwxXcwp8hvMHOLWstON6mwEDPkNitAME2ZmArGTf6b87vWglgjDODpgs/XuMxE/Nd1YnerrKc085p3mr3W0tZkqZ6NRi6+9WoWuhlJ2frXBqfD5cKx+ravlTRczOoF9pmp6uaVHSq34VitqqVRxfLBmqJTTCdeoJcI1uF5P+g0JnJPZbnsMDGYJJqrTYMHCkN9gwcKQ32DBwpDfYMHCkN9gwcKQ32DBwpDfYMHCkN9gwcKQ32DB4v8Dysvaujtxw+AAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAADECAYAAADpoXHsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7QsyX3fCX7Sl/f2evfufd6/9t1oi4YnQBI0Eq2WZiSKlDQ74urMnkMOR1oZylErcUhpSJGS6ECAIAGCDdPe9/P+Xe9v1S3vXfr9o6ZPowEQ6MYQ1GC2P+fUycrMyMjIiG/84he/zMoSXNd1eY/3+C5E/O9dgPd4j2+X98T7Ht+1vCfe9/iu5T3xvsd3Le+J9z2+a3lPvO/xXct74n2P71reE+97fNfynnjf47uW7z7xTk3BT/zEW+svvACCMFz+VSEI8L/8L391+f1fga+tt78OtraGdfm7v/sdyf7difd3f3dYmDc/Hg/Mz8Pf/btQLH5HCvgd46mn/u8h0PV1+NmfhZmZYXuEQnD//fDv/h30+/+9S/cdRf62jvpf/1eYnobBAF55BX7jN4ZiuHULfL6/4iJ+Cx56aNhIqvrujnvqKfj1X//GAu73Qf72quavlb/4C/jkJ0HT4Md+DI4eBcMYtsk//Idw+zb8p/80TLu8DOJ330D7zfj2WuiDH4SzZ4fff+qnIB6Hf/Nv4HOfgx/+4W98TLcLfv+3WcxvgigOLc5fJX/V+X0n2NyEH/ohmJyE556DbPatfT/3c7C2NhT3m2jaX38Zv8P81XTFRx8dLjc3h8uf+AkIBIZD2oc+BMEg/M2/OdznOPBrvwZHjgxFkk4Ph716/e15ui78k38CY2NDa/7II0NL8rX8ZT7v+fPDc0ejw05z/PhwKH2zfL/+68PvX+0Gvck38nmvXh122lBoeG2PPQZvvPH2NG+6Va++Cv/j/wjJ5PDcn/gElMvfohLfJb/6q9DpwG//9tuF+yZzc/D3/t5b69/I52004B/8g+E+TRvW9Y/9GFQqw/2GAb/0S3DmDITDw2t58EF4/vmvP1+jMcw/HIZIBH78x4fbvpYbN4bp3nRzMhn4W38LqtV3XQV/NWPj+vpwGY+/tc2y4Mkn4YEH4F/9q7fciZ/92WEj/+RPwi/8wlDw/+E/DMXx6qugKMN0v/RLQ/F+6EPDz5Ur8P73Dyv0W/H00/CRjwwb9e/9vWEFLS7CF74wXP/Zn4V8fpjuv/23b53f7dvDRguF4Bd/cVjG//gf4eGH4cUX4e67357+539+2Gl++ZeHk5Zf+7XhvOBTn/rW53qn/PmfDwVw333f3vGdzvCaFheH4jl9eijaz38e9vYgkYBWC37rt4aj6U//NLTbw87y5JNw4QKcPDnMy3Xhe75n6K78D/8DHDoEf/qnQwF/LU8/DRsbw/bPZN5ybW7fHhqDrzYi3wr33fA7v+O64LrPPOO65bLr7u667h/9kevG467r9bru3t4w3Y//+DDdP/pHbz/+5ZeH23//99++/Utfevv2Usl1VdV1P/xh13Wct9L9z//zMN2P//hb255/frjt+eeH65blutPTrjs56br1+tvP89V5/dzPDY/7RoDr/vIvv7X+8Y8Py7O+/ta2fN51g0HXfeihr6+fxx9/+7n+wT9wXUly3UbjG5/v3dJsDs/zPd/zzo+ZnHx7vf3SLw3z+Oxnvz7tm2W3LNfV9bfvq9ddN5123b/1t97a9md/NszrV3/1rW2W5boPPjjc/ju/89b2Xu/rz/eHfzhM99JL7/x6XNf99tyGxx8fDonj40O/KxAY9rTR0ben+9t/++3rn/70cFh54olhL3/zc+bMMI83h6Nnnhla2J//+bf3xL//97912a5eHVrzv//3h8PXV/NuevWb2DZ85Svw8Y8PLd2bZLPwN/7G0Nq0Wm8/5md+5u3nevDBYT7b2+/+/N+IN88XDH77efzJn8CJE0OX5mt5s+yS9NZE2HGgVhuOqGfPDkfCN3nqqeEE96vbW5KG7fe1eL1vfR8Mhu1/zz3D9a/O8x3w7bkNv/7rwxCZLA991oWFr5/JyvLQh/pqVleh2YRU6hvnWyoNl2828oEDb9+fTA6H42/Gmy7M0aPf+jreCeUy9HrDa/xaDh0aNuru7tCHf5OJibene7PMX+vXfzX9/rBuvppM5hunDYWGy3b7m5f9m7G+Dt/3fd863X/5L/Cv/zUsLYFpvrV9evqt79vbw84cCLz92G9UZ7Ua/MqvwB/90Vvt/SZfe/3fgm9PvHfd9Va04S9D075e0I4zFO7v//43PiaZ/LaK8385JOkbb/9mv7j61KeGfuA7SR8KwcjIMDT5neT3fm84ufr4x4eht1RqeG3/7J+9ZSTeLT/wA/Daa8P8Tp4cCt5x4AMfGC7fBX+9wczZ2aFLcP/9bx8+vpbJyeFydfXtQ3W5/M2t15vngGHDPv74X57unboQyeRwsrm8/PX7lpaGHXR8/J3l9c148snhZOad8pGPDCc6r78O99777s83O/utxf+Zzwzr/7OffXt9/fIvvz3d5CQ8++xwEvjV1vdr66xeH6b7lV8ZTsjfZHX13Zefv+7bwz/wA0Pf7x//46/fZ1lvhVYef3w4o//3//7t1ufXfu1bn+P06eGQ9mu/9vWhmq/O682Y8zcK53w1kjSMcnzuc8PIwZsUi/AHfzCMprw5jP+fIZsdXvdXf74Zv/iLw2v4qZ/6xnc319ffCg1+I77v++D69eFc5Wt5s57eHEG+ut7Onx92mK/mQx8att9v/MZb22x72H5fzTfKD95Zu34D/not7/veNwxT/bN/BteuDUWhKMOe9+lPDyv7+79/aO3+p/9pmO4jHxlWztWr8MUvDkM43wxRHFbiRz86HJZ+8ieHwlhaGoZjvvzlYbozZ4bLX/iFodWTpOHk8xvxT/7J0Co+8AD8nb8z9Of/438EXR/GW/97MDs77Dw/+IND3/ur77C99tqwPr/Zswz/8B8OLesnPzkMlZ05M/RHP/95+M3fHE7mPvKRodX9xCfgwx8eToR/8zfh8OGhlX2Tj350OJr+o3807OCHDw+P+1ofNhQa3hH91V8d+s+jo8PJ8Jv3B94t7yo28WYo6OLFb57ux3/cdf3+v3z/f/pPrnvmzDC8Fgy67rFjrvuLvzgMP72Jbbvur/yK62azw3QPP+y6t259fcjna0Nlb/LKK677xBPD/P1+1z1+3HX//b9/a79lue7P/7zrJpOuKwhvD5t9bajMdV33yhXXffJJ1w0EXNfnc91HHnHd1157Z/Xzl5Xxr4KVFdf96Z923ampYTgvGHTd++8fXutg8Fa6r60313XdatV1/+7fdd3R0eGxY2PDNJXKcL/juO4//afDYzXNdU+dct0vfGGYZnLy6/P60R913VDIdcPh4ferV78+VLa357qf+ITrRiLDdJ/85LDdv1GdfwsE133vvQ3v8d3J/72e1HiP/7/iPfG+x3ct74n3Pb5reU+87/Fdy3vifY/vWt4T73t81/KeeN/ju5Z3dYftsWMZGrUqc7NpQmEve/kCHVNg5sAs69sFbAsC3gC1coVEREaWBUIBL7lclempMQTHplQoM7Bc5g4eJJWOgNNnZ2uZmckR9H4XwZWwdY1b1/bY3q4STWoIXpGF49P0dZNqpY4re3js0Xu59NKzjAQCVNb2MLoSEhFOJs/Sb/boSRY3cys0ZYvswhg9SWdpc417jk1wYmES0xHYK9cQBYvR4Ajhpoy6BXtr24zJIxxNHWHEP4rltSnFKggxmz97/tOEYj5iGQVNcFi9tUMsOsVdj/4cswfuITsxj1NrcPWf/AsytoZTtwlpKYKxOLncKo6kY+pNZE2lJNS5I22x1s0z+eAZJubn+cf/8d8jegXSaoCJ8Wl8AYWTx4+SW9ok4gly6/YGSxvbuK6EJAgImsuxew7RaNfY3NgkG5nAaOmUq0UCHg1bkDk1fRp7o8XZxCxeR2JzfxtPIEh8kGQ8O8qBk4e4sHgZW7Q4evo0zuYu3a0CfkOinYwz+v4nKFSKrF2+gN3bYb1xlWaizcxDR/CHw4R8EWxB440X32B9awctFET1eqiurDMVCHP0rscYDETEzoCA7CKFHVqqze1SnlKuhD8RQgqpDFSbWyur+AM+vnTtnf3q5F2J94e+/6N87nN/ioBNNpthbuEApWaLW8s57nngLJVilXq5xu5uG7EpcvrkLEGfhirLNGt5Oj2d6blZyrU6O/t75Kt5zp07xsT8PIY1oNSwiXhsQp4Isaiffr/DfQ+dxBvxYEsCrU6P0n6NvfU9/nz/zzg0HubE3ATLxoCG6WNpucTPP/wQhesrFCv7tHx+VoQmYtAmpInEci6ljV1uN+rIqoeOYTGaibB4+wIPz53kxIF5TkcnKd9p4DUlCru7HP/o+4iOZHht6UVK/QZG3+ZA+jDTI1luXs3R7rQ4ceogkZFRers7LL/2Omv7S0jeEfyOF3dQwuobuAGX8dlJ9rfX8IYChBfm+OLnX0MPusyfOsn/9lu/TXNgodgC4yN+Pvqxj/HHn/kjej2dq1dvMJMeZ2J0jPXtPRw0+qaBhMxuqQmKwOMf+x4efeBRPvdHn6X0wj7YJlPZUaRWn4OjU8wHRmnnSqQdFToWcXGAUM5RX7bRulWCmSjb118hICr0jDLNVo+Ar8/eK1+igcHkySy5vs7iV8pITZPOy4sYFgxqPRRHZXJilkP+A2TSWSzTJDw/w5QvxeKtDpao8OAHPo7sDnj95S9j6CY/9v4f4Y5yk6tbt7l+Y5GBVwBVIVf5Fg9efbvibVbLGL0BpuLQbncYm57k1WvXKNc67OQ2iYdjbKzuMzoepN/S8Qc0sE3OnTmAVznKy+evonpVvAEvo8kkrXaf1fVNMpkIG2v7bC/nmIhqpKMGQZ+PybEEB+bGOfe+e7h8+RKdjs54apQ3Xn6FgOwi620Wr1zB448hoCF6vbT1OuGoRqXUIeqTyQS9uKqF6BiMhcPML4zTaJp0OwNmZxN0WzWy2RiWa1Nu1YgNooTtEE7HxUWiuL1FsVvGFl2iI2nafRNvIkVNd5g4MIJreVi6/grpWg19u0ozv067X2PXtJgIj6H6PNgxm0qxzN7SMla/R5AovnqbxPwIk7NZ/uVv/jp93cEjyvg8Xor1Fr/8z/8lH3ziMdY3cvQ7A9a7W4wOHMIhP82+jSsoNC2dnaUlRidGmAM2S7ucuP8IpU6eXqNDNJWkvFwhJQXZaxaQRQst6Md0TGIjIfZz21Ryu5TMOrou0DYNTp46xU61wNzxCUq1IlKtSkmxKesd9JiMdzSDU6mgFGXCngjTsVEECzTTjy8YQOq4KAgkHC/pfhJNliGZYmb8QcxWgfuPyPR29okuKRy1DnDk3Clmb7/BS5uXKPZa9CzrOyPe8y89z92nF2i0u5SKFSKFApFYkJGpLDfv3ME1dBzXRNX8ZOYiZLJjbC4vYhk2voCXu8+c5NWLlymXehycncMnw9LiDiFVpFtvMZ7yMptOUS93AJ3BoMPm6m2Wl66zsrbBg/c/TCyawuPaZNMpOpU+rmGSW85z6p6P8MmP/R2s4i7/9Q//CyePHmN8YpyzR+f4i1dfYm1lh9FEiszYNB/+4QfYWdnh+pXrbO/2qO7V2NH6zPtNTkgBjoQOkhibQIh6qQxyvHLhEjdy1zjzgXOcuucUr116jhuXV4l5XCLBBL/xn/8tk+kJwrrKoNBgPJpkNDWO2bPRIwbjx5LsCptcuHiB2dFxhIBK24Xv+3/+NL/0z/85lV4bUfIiImMOLEzBIRiJcPHmHRq7+yQkjb6hs5Pb5kMf/ShfPv86+7k8Xdek59gIPg/X7tziD/7wj/m+D9/DJ3/yY+zVmtB2SY000JoS56+scXj6ABOzh7AGPbarOZqajdcjMTZ2ACes8fzVi/yrl/8AfyDIQ+k43oBDdWmFgSGw9fINGrpJRgpx1H+QUSPOienjWLU2Pb2L7Sikxw6Q21lFGgxo7ZWQZJmkf4pwLEPt2du0rCaJmVn2bt9CbxVxfRLzT85zUpxG93QoOE2WulvfGfHGIxqapmA3LDw+D3u5AtMz0+wV80yOZxAdGQGFRqNLLtegXO4wkUzxlWeucWx+ksnpCaZHxtDcGvW9PMXCPna9gxwd4DdtvKqLqw/Qe10qZRtRtdha2yEQVDg6M8X6zdsUlB0mRyYQZQlZCaFZJhN+iUdGjhPXw/zuhT/iAz/xCdY393jtyjI/MnmQI+4EvXYD0fVy8cvXuHNpHbGjko2miLVjZEMZpmMzdPNdQtlpJo89iOLzkGsX2Cs2eN/Dj6O/OuDskbu59PoFdCwEyaLUdBidinA8mSbujZG7uEIg7OPBex4m7o2wdPM2FbPO1ac/Q61Tpi+ZVO0G9z74OErKz3Zpm1DUg7Pu4FoDbMdFlATm5uf40Ic+wm/+1u+guiKa5ME1QHAc2r0WYwtTGBERW5TYyheZnBwl4pM5Op7i/lNHGI0lWV7d5o1nXuPEyGHWF/fotlucmr2fA9/7KEatzK3zLzJzJMnNq+eZO3UGTzyIsHaF2UMTdNo2o7FRBkYTkuNIgoy7V+Cu7BgPnXuU/maZ2s112ps5pNYAWRHRgh7kbIKE1KV05zauDzzZCJWlHYxWm6ZsY/ghngyQGctQWNlAGQgYuX3MSoNw38ayXY4rf8mvbP7PijcaC7K4dId628KUNEq1DtbF28iqzH0PzNFrW/T7fSwXurpDoaqzvbWJPXBoNhY5f/E6xw7P8si959DbDdR+G6Hewq7WyWgaqVQMjyqT26gyNRHFF5SxrD4z4yNYA5ft/Rw1o87AEahVLSbjQc5NzmPXanjXBnzxP/9nAsc0Hrz3SRZXP0WIMNKOxhO++xhJjbDerrOzvkxvucAT808QqUR4cuouNEVjZmSB0IkYlXyNveVlZh97AF/YYPfKDvXlPhPxBF/51J+iSyYH75mmF26wWNrl2o1FfuCHv59P/7c/ZtSKMpY9TDCWZTCwiWSz5Ko5dNXF8ItUWx2CSoi9dpH83j7dCKj2gKQmISk+etggmzz86N3cWLzOoNUm7k9g9h08soYlDNjY2+Lv/tN/xOjCOL/7v/82Fy9e5oc+8gRSz6Gfr3Hpj1/iC4XPUh+0kLou5k6QGSVMx6Ny7YvP0VvZJBD08OXXnmEsGaNVLzDoNIhmEiR0BSoWU24E7YUCY+EsiprF4wnxkZNhNjZ3qF0vMn33Gax2nygi1cYGpuvS7RqsvPR5NvZXiUkKx2ZO4JmOU94tEhRUkpJCpVamvXid2btOs1fJM6g3KJV3kQQT1Rzgs3RC6jt/Z8a7Em+xXEJWNNqdAT3bIJlIUKm3iYclqvsl+gODhYVxml2d2ysFdNchEA+iAK1qE78qs1+q8uzzL3Df6eOMZbN4BRHXhq2NPRIhH+2uQasBfr9LZiZJpbzP0o1tvHKQA1OT6JZNvy3ga1Y5pi1wV+Qk50svsL1WYGJygWK3ycqfr3BKOkjElZjSM9SW8hzwTJGJTzLpiSGJDlPiJELHZCqZ4frVi/jLNnYgQ6tQoTfosXneYuzhIyhyj2Z5h3ved45Lt14lPZEhbsvEXI2EEqTWs3n+S89y5ugx0laC/K198rslDk0dwBeNEzRHUQsh9qpbOIpOKOTnwsXX8SUCzMwdRpUUqrt1NH+AQ/edoEsf025x8/plIn4NWRZwXAcHmb5tsbG3w4XXXmW0NEG9VKa4tc0Ln/8SI1oatSFzInIOT34RT3+fpOJnykyjmRrhRJxIKkyrUWTUlyR+/ANsbN1BTR3AFQRmMnNcy9+EyoDRWIyMmCApJOm2LNy6jTsRxhW8pE8eJfLhBzASAjf/y+8T8oLpOvTDKmPHp7iSv0HAlVA1hY2lZTzJKK2mjbfTxiPICF0duzPAEw9TNRqsFjdRZRg4Jh6fj5b5zl9R9e4sbyrFoaOn8V9f5vKNHfb3m/yNv/l+Uskgr7zyZWS/xNh4DAo1EskAK2tNXLPL3HSS8QNTVEsl9hsdjJCPyzduoToW2VgIn+KlqHloNpoEg15OnUqTHh1DUWW6zRauZjMSTREOxgllElCXcUWLo0xRfGWLWd8CM2ceIDA5Qe7Zm2Tb42xcu4a/mMT2CBweO4tZb7K/u40nMc1AlEjH5pjMZNjdvoVXEOi0c4SiIqOTISo383h1L7krz5IKGqQmJ9hdv0q/VaW01iY8NcmsliA2k2DkwATPn3+RrZvblIwS/k4QVYuxfHOV3f1NguMxjj12jsPqcV586StsLN/iR3/qR+kaHQz6GI02j505xZdevcTW5m3OPnYva2u7PPLQaV5/9ho+2cPD9z1Br9lgq7ZFaCzC008/ze7v7iM6An/7J3+S0kqJ9p06H3joR7HXukzMzWOHwdyt0djMkfbFmErNkN9fJ9RWiKFQy9dIyX729vKYXjife51+3yHipsDwET9zAo8QJOJNsHr5Bq+8eoHpx88y/r2P06TGHz3zaazaDkfj40SzKR7+sb9Bs11ifn0Za6+C3Rfo1Lqc+5mfxdwpkn/qBZRen36xw/aVZc594AlW1y6zfPUCDb1DC4doOEql2vrWQvx2xFtptbi5dJ1Ks83MQprzFza4cec6J44fpKe7FMp9bKFEbq/IaCKNETNo1A0m00l6vT69Xg+rb2EOHDQHxmMRZFSOHFwgny9gOA61gYMpDAiINqJlUyq1CRoeUtFRZiKzPPXMUwwqJvfG78ESXA4cOEnZ7OA9eJjcygr5jRzNpTXsdhW/IzMSCtGut+j2q7iRLkrQJZbI0q1t0QkoYNgochBbtLl0+zxZNYHPkBAcHUIapeVd6pJNtVwhJnjw6l5q+T7BYJCbN8/TKuY5FJ1gv1kmGR+lrjdx6VMs74DZQ7TCmAORzkBEsAIEPCk+++WnEUQbY9BG73cpN5v4gjJHjp3k1Kl7uHRzC68AdGFudoxMLEjbZ7FnwOruNslxHwvBJGcnT3Nu/h4u3XiFJx9+koDpYye/Tkz14O8o9IUQqs+g1++R39tB1/uEg1EcF/wqrA8amGGNqOTl5MIpbt7ZxrAkjk/cSzx5BKuvM+h2aLarhMMacn9A7YWrrOZWydRFdDzU6xUG1oDqtdv4RkcYTyywmDPZcRz803F61UUq5RyN/g7evoXkCdPRa+h2i3a7wfShBW6v3kY3FUbm5xlsv/PXUr2rh9F/8oMxfP4gA1vg1uI+ra5BMCRz5vQxdnZ2aDR7nD55hr2dLcx+m/m5UVwH3riwzvh4hkrVIJPOsrO2g6QbpIMqEU1HEm18QR8DFzo9HVdXWRhJMih3OXXgNLLtY2utQMAfZmt9GamtcDByiFNjR5G9CvnaBuvtHJmJcazNBlFbpFergCszf+phlGCaK5dexqXN1PEZ1nb3yO/VmY8f5fDsISSPSHAkQGX7Bq39AnRNLI9DLz4g39+l5lS579x9LH7pJqIl0fbrxFJh9qs5Wp0eRl/E7MPj554gm51AiwZ4/ZUXOXr0CHOn7sKNpGi2O7i9Op36Hn9y/r+xld/lwESadGaUy4vLjM+Nc/LB+/i1//SfGZ3Kcvn8bcatMClviPc9dg9zJ+doM2D2+DFCiSDSwOT5//AF9l/c4Z6pBxiJTuAYBqFUgsUXn0XRLSQpSM+USI2lafRK6FaLTrdF2Beg3l7nsrVLW9U5nZxhLjxGPtdGJULYDiH0AxDwQ0zj8JljrN6+QcjjxdRtJEli584NkgE/A82m0qnRNfokM2nmzp4levgwQkBj8dVneO61r3B0dp6RrkTMVqi3+2jjWW52K1xfvklqIsPa7gY9Y4AgSHhlL/+ic+Ed6fFdWd6FmWlGxidZ3ylSb+pE+haNVhPLNvF4Vbq5Njvbe5RKLTSxS7GwzemTRzh9LIll2rzvvnu58PoiqmtRb/aR+z0i40FUVUMWfAxaTfyql7DHw6nYIWYPzTGo9Xnt8jX8ySSPfOBJvvgHPdq9DqKqsbK3wal7TjAzOkbh9g6ZEQ+3F3dQiNDBxFUEakYds9ogkg2zvVllYyuHxx8iGlI58MgjJPwx7HaDrStvUCtvM+hWsJ0+qdERTh0+wcbzqySTScyahWppJKNJ/L4WzVYLfeCQSo4SUKKsL24hmxLN3QrFnU20cIDk7BRCJIKpO1z5wtOcfvAc8USKqelRHMXAUaE+aPKh73mMG4uLfOr3P42ki2T9QU5MjuMWe5w5eQTLHfDqay9yfXmDhdk3yMQSCE0Dz7rIAhMo2wbd3D5aVMFUHSrdPXwoaK6LIPoYDJq0O1VCCT+RsUlyuztYXgkMkYnRCSzbZiW3wuToQUJSDLkuYToS4bEM2nSSaq9BoVGmrjtEFT8eFMa8KSLBKPl2nrASwe/xM5edpLe1R3Vrh9jUKFrPpNQo8eLNKg9NHsWQNFZKa1SKl1k2myixIFs7e1S7NSRZxXFcPMY7n7C9K8v7/3hfGkfscnOxj624iKrM5GwaR7BoNvusLjZJREP86I9+CNHOUy5uotgWmqxx+sTd3Li0xs5Sg5AcIxMfZXVpkW6vQaFQ4uNPfhTBdtlYWuKREw+ScqMUNwpU23U2mpscefwuPvAj38fO68u8+Cdf4aG7H0dVVF5//UvsVu8g+QX0wYAZZQy/ncarjTN75hQbOxfQpQaBcJbgIApIbG7t0WpZzE2fJOYJs3HtGmHJJCpb9MUK4+cmyG/nmT97D7n8Fh29hd7qYxQNvJKMFLNwVJW9VgdB9aA6CklvjIQdIRJK0Vb6XFy7St3pMjs1i13u4zoWB+89RE2u04jsEEgFubK0xN5+CWQ/Z06d5E9+708YH5ng2MEMjm5Q3KoiyQq31teYPTDO0lKOoCUx6h9BrsBZ8SAHjSnCagpNkWl5SmwYq+zU14gFI8h2gEHPJZlJMXFojLbVZLW4y3Zum047R2J2lL1KAU2QEDvw0Ln3YxcMvIaXiblTiKEAhXqR7e0teuU6PlckJHkIB0NEvVE6gx5lo8XUwjQ72+uEFA3FtNENg86giycZZitmsWc1WFm6TlgS8QsuTaPDptugQg8HcFwB0QUPChFvhP/cyb0jPb4ryzs/m2Bz1+ToYT+VtkW9M0CRZWLxBPGojez22N7IcefmCj/yww/TqKR55ZkvU2o2sZvnya3XuPvAIzT22sTNAEU9gDuwuH9hnmPxE6xcu81Hz36S8XCW2m4dRXGIxAOIrV1uvPIStcIqfsvH7MIkNxYvk0zEmTw4QXt9n+Nnj3Dj+g1qW22QUoxPTzNx7m5qrFHvVRB8A1zVQHbD7BW3CfmyJJNh9HoX1+2DY+FYJpba4/KtV7F6IvYFCUuE+EiSgdXHMA28sozZMuhbFqYlMT41wcLcAeLRDKXXl3EqOvn9DaIeH4fOniAS8HJ+8Xn6TovO1RLSuIoalrhxaZEb67u0DZP3P/kkTz37DLF0kmvLq5w+PoHXq1HR6siahKS5eAMe/MIwaiNUBaakMYL+EHFPHMVQMDEodAoUnX10V8eVHGRNpDdoUWmX0FoK/qk4q9dWMDAwhC5+0eXhM+fo9hw2FneJZuYQXQPaDuVWCdlpoiCg9gcoLgRElYE+wIwG6PscPKkoE4EsDgLxSBqx3cestxBMG02Q0esG5z72QY56TZbW1yh2qqS9Xg4cPkpM1Xnx9ht0+328okrMGyIdSaG3e+9Yj+9KvLoOGxtNFK/G/Q8/QCAa5pXzr9JtVuh2e9QrfeZms1y8eAdN1Mnv5oloEiGPglfxE1Zsctc2COh+8nfWOLtwkrbeRS91qT67Q6ymErQcwmfG0BJjzBwIgjJgcmqEm1ef5fjIYXZ3SzS364Q8IS5deh2vR0IKC1SbXUKJDBubWxw/MI/lmNiVArlKHkduMBC6LOfu0Nqx0LxBPvijHyM2Pscbv/d7DKQCpk8k3yvhTSrUrRphLYUjwtzsPP5MBE9QI69ukd/bJe2LEw9nGY/NMnrsCI3tRZ5+5o/pN3XCxHDdHkavh1UocLm2y15vFyUlI4ZF6u08+TfqGK6Azxvn8fffx2/8zp9waC7LQ4/cz6OPilx/41Va1Qay5VKv1TEdB3Fgce/hM9yuLxMhgh8NW7SouXW8mo+e3cP2CgTEKMlAlFqtjJbVSIanKLWKVKUOFy5fRfcOECWR+46dQ6j30ToGt/ZyfPiTP0J7qYmdN4iOTeBLOXQEC6XUZVTzIvREVI+XfblLzyvSVLrsba8wnhlnfmSWft9B6gvEwin6gz6VVg2f68XebRCcSePqIn4iqKKGOVBZ2lhGMWXiQhAfKmNqioQUIT9456+wenfiNUxiMZX98oAv/MWreP0QCCskYylmJkcw+ht4vA6a5jA6NkUimmHQaDCZDTKZSXLXkSiVSzUayzWMPoynsixuLEPbRBEsQo7GIF9lvfUa3vQIMw89gGnLpNQxzs29D0odstochVqLdDBNX+kSiCuMn83y+u03OHvfPfiNCKGQj/ziNssXTbyGiyeRZaea4+rabSIkSAe8lAvLREMKpdYW4QkN2+3QEloce/Jxtl/KUS01UKwmstfDlasXqLWLeLwiZx8+TXOvRSY5QbutsHrxAnv7t+kYDRxFIZbU8Ho16vs16maZFh2iB8e4/wMPoSUlzl99hfLKgJPHTzAyMUkwEuHe+QkUTWL1zi3qtQrOwGJ6cpY7l+5A32UsGSLsqvQLTfyWRjYSw2tLNK0KZYa+qyXYOB4LTBjUDQJCEI+psdkqUjYbrC1u07Zr9O0u2XicQrVCylQJpfxMTUzjaC6F6h4BWyUjJTANg72VVYS2jb8nEteC6JJNNJogeXiWqm1SrrWZGT8AukC3WCWmaAg+BcvRsVWDoC9Ec3+femUPr+2QkiOkAjH2C1VwJEzbRkbGq3pQRRFz0McnKe9Yj+/K5/2ZR7OMT06xmy9SrrfQrQEOLgIuJ06MoHhVbtzaxDRE/j+/8i+JZ0b5x//w/0Upl2c8JUIXTifOYOUM6usNvJ4AT370e2GvRfPSNjR72KKFrPjJZA/gDSTZr5TpdfsEgj4EWcYJppl95EnsnR32Lj9Hl30GoQqx42lGDk7Ttwye+eMvojYl5kbnSZ85TCjj5fWlC3TdAfVah5uXb+CVFUbCCUTbIBCWyUxGuL54ESEoYA10jiZPU7nRYzQ1QoMarmZgyh1c2yIZmKBXV5gdOUuzWWOneJXR2TRyIM6Rcw9St/PIzoCV23e4tZujoXnZq1UoF3cJiJD2BTg8dxDTNJicmsIVDVa3VljPr+ANqDiGj/nxebYu30TS+5w8fICwL0R9q4emR2hUS3glgcn0JFbPxbEkZqfnqRXKpIJhittbNAYNPOlRQofmiBzO8vQbf8ry+mWSCT/VYoWYHCLRcZgcn+Tg9z6Jf2qSl3//z8mfv0HCHyfujVCs1fBqMdKhMUYSY8geL7Zpsl7Ikxo/SGrsINLAYP/iRYRKCUXSIWZhBV2KtQYT6VkCs1PUB32un79MUFKpmm1qmkHg7nGu526wt7FBNhCHzgBMnZFMir+/de0d6fFdWd5IMsqps0cwLnawhRqjUxNEk3EWV9bZLjeRNDAMi8n0CM889Wd4/EGWtrfJJFSK9S5W06G9fx1P1yUoSAjtHIZQQvPYNOQGXhUCmojscfEkVGqlCmbbIKSEEEybyYlJKsUWmtFnENDoW6DZAUakKFIvwNalMvEDI5w9cx8vfelLbJc28OSjFBsKt66vsl5ao2v20RSViBZm/sg4ihdePP8Cyzf6OKJJQPTTMvpsl3fxCl4mJ7OELQ/RqSiLlRVev/wGp1IjLC2vUjV0CsUck4fiWBmoDvbRd16h3+rQLFfQdZPdYoX8wMSQJXTXg1/z8eC999NtNtlY28TvCbC6ucTe/jbjM1m2NnYQdY0F3yzH507QKO2zfGeDowsHOXniNM19g26ngqgYbNe2KTcaJL1Zou0E8ZE4qgT2noVH8qGpHsZPHqell9HrXXyolPeLjI9mEfHRdxqsVbaZHlQpX9vFGOzTlhuEtQCHDh8kslYiqEQxXS+lWpfxhVGazRqReAbbEZFMqO+VcGwVSQiAqrDXXKVHn7MfeYRexWRjZxFV9hCURfRBB0lyuOfocYyEDxICuWKetVqBqORFxkF4F2++fFeW9wfuDnHi5Dy63qPVrfH4hx/l7kce4+LVDf7fv/TrTE4EUbsdDo9PsbO1SziVwBuL0apU6G1XmIyO0av0mMxm2d9cZWFylLsPneSNr1yitWfhtf2MZROk0qOsbuQIOymOpE5SW9nH4wG/5qVu90meOUEgmaG5V8UnapRu3KQfk8icmmdx5SLV/RUkqYduDpg8fJzIxCRPXfsKS/k79NwBkYCPTCCA0WsQSYdpmS0yIxk6zRaxVJR2t0taTOFumwTlAO//vo9Rt2p0fG167oC9jRx7S3lq200efvQxdio76HafI/e+j8LNNUo3yyTCCUr1Kk27z53cJroHNrsF/JqHjFdBE2V+8Md+lIuvvcaNy2+gaTJjYxmW1zY4Ep1kMjWB5vNiuzo7u0vMTU/SLg8wuhLdWoGFA2PUGjrJyASnDt+NWO2zeP06zX4Vc2Cgij4MrwdtbITMaAKPH1597cu0zSITs+MUyx1GwxGMboOu3kL2efB5QkyPzNHcaRBrh9EaCqKhEczOETpyGFJRHNdm8/I1JrKzhFLj2LZL7/pturkcWtrHSusK284mBatGwAoQNjx40XBMiaY1wFZkQrEw42dmWRUKfOXSq+QqJQQRAqKGV9b4/e9EtMGjyeT3KmxtF5mYzSArEV5/7SZPPX0ZSfTg06JolkAkHGfywUku3biJUS4T94Yx2iUKuTXOHTuN5EI8HGZuYRxd7lK2CszfdRq7p7GynePitVX8rh8t4GW/vI7symSScxD0IEZV1GiMjdUdRpNT+JJjaPkWtupQ3uwg1iS0nh9JEAhoQZSBh0HbpNcyKLe7GF6bufE5/KqMU7eo6X1cVcGRNQqVBvvVJrqh0/KYxIUkWtDL4vY6YjrA8vUbNHt1BvU2ld0m9594DK8W5sH7P4ze7fO5Tz1FeavGXGQGR9Cw6i6lap50MMDY4Slyr28ysPrUTQ9er4Y16FMo5rBcG9F26ff7xEN+RkZSmEaPO7dvcfLkMRSfQLVXwRJtSnqHZCrE7dwaguDBVBRixTWyWhxTdIjGRumZfXwxP+v7BRr1AtMHp/B7JCRHIaiE6NX7TMYyRAN+xg4ucOXOdfKVItnMLKMjk4TsKO4OKB3AlBE9AaRUGiYzKK6DdeE6mgVmpUKjWsNp1dDNDpXNHfadMr2gSLdloakOrisgiBJ918YRZHquQ7tRo3ipjXcmiDswEWQRRxIp2QOC8jt/Afi7srx/+4ksoiIjKiHG58bJlfOs7RQpVS0sW0WVDJKqiFeEEycOcPTUKT79R58m6wnz2NRJWstFHrr3UbY2l1HH/NxZOk9Lr6N4gyhilEbRorBeBlPHa4qMKaMcH7uXlH8OS/QycvokymQCZ7tC/eommhtEjaco1irER9MIIT82HezSDvlbl2nVixz+8MMQgc9eforV7ha51i6y4hDVFIJejWKtRq3VJB6JUCtUGU0kSKcyCIKGLPiZmZxmb3sDUTA5uDDCKy89S8wbRBODnDj0EPlqAy0SpVJtcv3SMn4pyMcf+iCKInL7xnny1W0cj4WU0Li4eYua3sYAYuEQc5MTLK6v4XQ6hH0qk6MZquUKU4E08WCMZq+LYeuI2gBJsfH5A/g8IWLRFJ1ul62dPSRbRO2KTATGOHvoHnZ3KgRSIfZ7ea7dWKRvuMxlp7lr9hh72yus5q6TTMYYSUTotBpYrk1fckiMjTE3s4DPUQm6ASrbHdycjt8J0RY0PMcWUKayGK06+uo2Zsug1e1R3tom4DoEBANBtImfmscJadTkDovL1+jkyhj6AEnwMXBdBiJYrk18JELRKtGLSCyW99jv1BAViV6vx7V3+ED6u7K8g16HaDKO7hg8/dzrjE6l0TQf9UqRSEijVG7QcQXmJ0LUG222dnbY2mjSosPfuu8TbCy2MPM91IFK7vYW12+uMH1qku16FVccsLVZhq4AxoBRb4S8USZFD29IxfGHkOZHufOlp3DWyoR6HhwpiulA/MAkoYkxUBSq+xs0yh06AxmUKMWtPV5ae4NVY5dtvUBXaKJbPSLTkxw7chJ5bRmvJ8CZ46d44amnCSkRHrv/SUqNFq9cuoJdKjDQB0Q9CjPpGQqxDdZWVgn6RVwE1vY2Wb78CqKi4bgylU6Dz774KWL+AIX6DkePHWTi0DT/9c8+Rcc1sVUF27YQZQkUl9FMhN31NsiQSCfBBb3ncmd1gzPn7sF0dHaKy9juAF3qYyoy7XoBV5AZaAK23keVBLqqjhj3ktDGScyOcvlLNzAlF8VR6da7xOU0qcNZ7KaBZQ7YWd0Cx8ETCKCFwyhCGMn20yw2ECJ+rKgKAwe3ZqL0DJRqFVcxiaXC9BN+Not5XEnFE/ZhtVsYjoFu9GiurTFz7m52KwV2W00Mq4vguGiaAZLMwDBIJBPMH11gJr7AcivP5eIGkWiEqdFxinu771iP7+728MExKo0e9UYdSZGp15tMTcyw8OET/P5/+zzBqB/RMJlKTxEQJOp7JT76/vexe2eTV167yLgQ4trFG7SNLumjI7TaLisbZQ6fPUrHkLiyUqZgdBkN+Rm0eow7Gu1mizYVItkAzct3WD9/mZShkgqOY5strI5ENDDD6qUXkWwLSRYJJOL4JydxjRaXbj3DVn2HmlCnb/UxRR2vK1LZqfB0+RkcWcQXCHD5/FWsvkOz1OJPPvWndByb3XYN9jcQu31OTR7g0guXcDsiiuEnFE2wtrfDQLFoyC38YS/5Vh3JdRA7Mi3LhxRRuVC+xQuNZfJ06QGm4SI6NuVGg2jDw9HD8xTz+ySSIbr9LvFMgogQ5uChMHc/9CS5zXW2Cjs0mi2CikCtWGFyeoaBZdFxbBKpBNpAoNJo8Wcvfx7QGGtP0bOaBPwaYTnKodgCStNGtzpMjx/klZUXScfiGJ0BmcgoofgIyegEzZ0mTstib3cD30KawIiPdreO31XZv36edH+K/Z0+G5srDBo6M+PHmZ47yNrKIv5wiEY7z9QjZ9EOHqHyWo7dfgvbaqIJIumQF0ey2Kvs4pgWjxx6mE9feppKr0E8GGA2O4nYsUB/538G+a5++u7zesjtlSmV+qSSCTKpMfqNAWFFJCSIpDQ/M5EYWTVGf6vC3pVVYorGR554nOXlVWxBoN6ss5HfIjo6ziMPP0o0HKOwX2F+7hCPPfY442NpHnniCRLpLA4ePPjxdQUGizusPPMicX+YU/fcR2RqAn8mQTDkQ6iV6a8t0Vm9TTzsx4NAJpkiPTOBE9GoOHW6dg/LNcEVkFwFyVXpdHRUzUcgGKVR6xLwRWi0O5RqdTrGADwylXoVSxZJZUdZXt2h0dDJjMwyf+QUK3u73Mytk5lJcM8Dp0n7ZTKKzGgoTDjoAa/AncImVzaWKek9eoYOroBPVsGxqVUqPP/8i4yPR4kno3gDHhxR5OqtG5RbVQamTqFYpm/YjI6M02w2mZyeIBAKUKvXWN3Y4+rNZSrtDuFskvhkHC0hcHXpJfZr61h2i7BPJunzUs3vUd7PIWoi0WiC0GiGydkD+JQwY8lZ/HaIkBBjduYEYS3C3o07FAo7pM8dInxihkBYw64WSPhUsukQkmywn99kJ5dDjafInjjO4cffx/T3fxhlbpSDd53FEBx0TAwMlqsrXC3dwD8W5uzH7uGLV5/mjeuv0qgWmEtlsPbKdBd3OCG/87fMvyvLW610KJdN+rZEqdBGErvIusuYN80PPv4kL71+gYhHY/fKEkfGkkylIzTX99i7us7hQ0c5duQYm7LMiew5KqU9er0m0VCASqfNzuoGDx67Fy0/gFyPWW2Ckckxzozfh73Xx3YHxOMpxNERnFgKrxbELTVZv3yZsXYTt1pEHJhUXnwByZ9EcqGX8bCys0xfMNFFA0GUCYp+NFfAcm0MV6TW7dEwTCRVpq9b9EQHGx3No2A4Dj1sfK7NtdVloqKINdA5NJ2kZvYJpeIEnBoxTxi90CHaU0kIIY4mDlDo1VjplpAlDRkdx3bwuwp+UUMWTFxRxqdKhKNpfD6ZSq1GLAK5XIVev8HS+k2UZ71sbGyxX8nRN7yImouiijiWTiQYIhIO0OsarG3s0a20OHXyIAdOjqAvlWjX+xilKtWWxI4pklQSxBamqLoVFh48xIVLr5CwgnjaMn5zl3goQ8AfpLZVRmgYTA00yqUmfHCETqVFLxNG6Paobm+SM2toR7PMHr6P7aUuIU+YcqfH5voSW5LOyXveR0bxcCw7TdGx6OhNmpLJgdOHmL/rKK+tLoLW56d+5kcwi21Wz9/h3NhBZMlmNjv/nRHv6mYFv1fFaBk06w38fh8+KYBR7vLjj/0A875xrr/0EmmvyiOHzpFrFnj21hWK9SY/+uM/zfrrlzl47zH2Gw2+8mev4A072F6HvXydrWtFpNsm/rZLbr/FSOQQjz34vSS1NJaRo1TYpZLL4/T7rBkrzE4fQLZcDPpEF05SrGzTHdTw1LoIAwnHHGAUa/QGfWKpETq9HaxBDyQZUVARHANZAseV6HQGqC64gy6SKKL4ffRF2K7WMF0Hqd9m19kmkBoln9uncquO4vGx1ysS9PnYvFqirnmIi36Ctky/3aXXG+AqIgFfCAQTHAej0SYZjVGutpFV0DwuPr9FMOqh1TPxR0KcHZ/i1vkLGD2deq/Ifn0HV7Roddskgz6SsQibm3ssr+wRDEeptcp0LIN2rYK9usxaaZV2q4YPFw9euvTRAw7R2RRSXCLuTzHwCVzavMMPPfw99NerCO4AvVlDcG1y2xsMWhVUOkSOHsDuNWl2G8Tnshj5Eru31xi/6zDTn3gSSQ3R4A7UdVZu3GBj+wbevVXijkpyYZbv/8THefr5L3Dhznme/P6Pcu/3P8G//Q//goNHjvCD3/cjODtVPvOvf5uFxBTTwWkq1TrxmWPfGfG2TS+ZTIqpaY2m1aetD2hsNWl2VbZfuMzBeIrQ9GHuPnucjltn6Y1Fas0aokfm5deexW52WbtcptIaIHq9GIMG84fnCHnHkHdVlE2XuBrnyNEPMHrkQYSmwcql10gpYHQa6M0a3UaRTHoCb7XK5sYqrmJTrO1iBb30un7sfhuv00Xo7xM+dYzHU9/Pb/35b1Pu6XSdDqaooFg6QUnE1k0UR0K2ZSIBFVUDZJfYxATP3r5By7YJ+71MREIcmx6lW9vHCnbpI2LQZTThIZ2IYrY9pAJRfLaH/NYeW+0OA0Gk0+3Sc3sMXAtkEZ8qE4r72a3YZEIBZK+IJVpEkxHagwHrO/skEwIz8wfpNOu0Bk3G5jNUq2VMfUAoHKZRqeE6ApLqoWs4KH4v6USC3H6B27kyBwhybHaefq6IoSvIoTiT507i+H0UW1XshsPi5TWi2QQ3ayuIRoeA6UBbwu3FiM+NkvaNsZ67zm5jDU9zniuvvYriSBw7epSCT6fbLdBZu831G9cQSnUGuTJCqw2yRWvQ57nnP8tk8yAVs85SZZPxM4eIT4zwyrPPkBa8pAwvL/3b/4q3bDFixThz7D46TYHRM7ME56e/pQ6/LfFGk1kOHpzj4MI0t9dvsbNf4N75uxjpB7C2dC698jLBgES3m6Vil+gIXbRUmJ1Sk61qk1TAS6vWZn0rz5PH7yLtk9ASPj784Cku/NkNJLtP1A2TkKKEtTCip0muW6Drd3DkPo7cxidppCIBurUKMc1Lq9sgf+EK8x/4OGOxErZeo+7UiDy0gP/ICPLFbSzdIuQJ03b6bHfL+EUFRUswMPrEBJW4J0hIg8nxBANhwE6vRNs2sB2X/kBnYJo4gksiGyCdPYBihxEEEWvQIREJYfo1jK4+fLwwrGI3TAKayow3hdioUBm0MRyHvmvT7ndAEvEHIzRbNXoDG4cS4XCCpY2b3Fov8cQ9Rzl511lEXG5eu4qqJFlb26Vv9nE1gVq3QywZ5+bWPrJoc/TwUWan0ixdv008EicdHWN3t0ut1mbm0CiK4ufO4jKKKtLrd1hfX0UJw9rOKv6BgNcWEHQv3mCY4+9/HMHucqgb5qU3nmW3uUPTN2Bhbh47oyKWPFTlGu2dS3z6hc/w4MIh4pMaB8cPc+H8JZr9HlOzGUbPjVJdreFr+7hx+waLGzc5cfwQI06K/WdWsXNd5pKTLMwfolFpI/uDuKqJSZ13OmV7V+K9cmOJTrvF6xcvUmpUCEdCHLn3KKqk0ZHazCzMofoEivUCS807tKQONUelYllsVep0bAPJ0pGQ8dU8ZMw4pWIVXRpwKD3P9vIi8UASp2tS39lC8tnoviYtfx85KtE2KnilCLq3R7VUQXMVZI8EokhtY51YMMJafYsdq4Tvlomw/BrLF28yZWlMeDPYzSKxkQzNdgs0kRF5FHUgEJQUXLND3+0QTPspXlsm6LHpdMC0HXLlGoLR5/ThOOGgD4/fy9VrK1idNuPZOLLr0un2cWTwKSJBv4zsugiuw+FUBl/qEFvVAnvtKt6AD02T2c0X8XhVFFuhsVHl5KlRxkYz2M6A167fZqdQ4uNPPsTEeJbc7jbgEM+k6IsmXXt4UyPolRFcm7U7Nzh78hij955lJJZF6rnInRBTviy9osPn/+iLYBlEMn5OHT9O4ESYm/nrlLstvIKELotks+Mc/Z7vQZ1Is3H5NXa2rxGdz3B55yaLhTUGSfAZ2ySOxPHF/JT6PY7fd4gPfs+HMXstuq0WJ2fuR/GEGBg2ry+9TrvSYHdzC7PR45HTj4FuMelJ0lVCJCZjtGo9UtkFIifn+fJTn0LSBLZurPF+PvxXL95EKkYym2VjfQVBVmg2Onzm058lZGq8f/oE46NTKJZOtVVlt1QiNhajZujMpbLkc/us5uuMheJk5TRpN4F3R0NqSPRpogkeIoIfRQkRTo/SHLS4cOk5WvYystXEdk2KnTrZwBRjkVnMpkFpv8Tk+Dhrm5tECy5K4hivN2+zUVnDu3eZiORnUhnl7um72OvmsAdVlIMj3Mpt4tR0MC00x4PTszDDOnXDYtAZMJoN4Q+JyPkBzWYPWYR2Z8D+fpN4PMHlO2vsF8sEJNjeLZBMJ5k+fIj9Zp07q9tM9xxigpdwMMKBkSlq5gC700NEpNMfMDqawDItQGF6ZpbnXniJ8xeuMjubpd0bYEsOa/slMqNpzhydZ2ctTbNZQ/ZIFGoVWj0dq+8gmn0mx+NgDVi5epH7Tj+EasH5l68x5kwwkz1MxJvmdvMGptgiI8aZCE+y2tggpo5y97Fp4opK/eYuAi6hmSztdoHL55/hztbL3PvhhygNKkydmKVs1unkKljbA8bnJpk5dJTv/eSHkXwKQjjETreAZdv4RY3VjTVe+vOXyMgxAnaI8XiWJ84+ztNP/wUbG+s4LR0LC9vxgTeAafSwvBb5Rp65hbl3rMd3Jd7xbIS1tUVsx6TT6WN2bZKqF80LbtLL5JlTXPqLZ6g1uzz66IdYK65QqO/h83hwUi4iFkEtzF0Ld9G50SVQc4koKTo7AwZWm3qtQubQvUTmF6gsXaNlVtnt7aLrFXxBH223h2AXuL1/k3KlhSgqtNpdykKVzVad5164yJK9SURUWFDDTEgJfKEwpx5/hNLNFymWLiGv5ggpLpFkivpmDdvU8aCg9ANUCzUG+02mRzIkAhEiGdiw8mghjWhEw2wXMQyRrVwdTBnNEomoEVpdhQtXlmjYA8YmRvAUm/RaPaI+iY7eoVCvEI7FWN3dYmAanF4YpVlv0GwPKBV2mR5P0O62cO0eM5NZ5g9PUdov0R+02Nqtsbq+woGFGVb2CnT0Pv2OTtQTxB9Q8dmQTWSo2zLt/SKWZjA3eYAjwbNMJRcIe1KEXB/V2h4ev8D20haSqnFw7j7UqQDlxSsMem3cwYDlV/4cWRUIyi2OHl0gkU5SeD7P7aVFQsEAI9ko6ZFROu0+pf19Pv/5pynWG4yNhbnr7DlEXSBiikTaXo5J08SlKH4hikfwcPPCLWqlGu1WmbDqx6XO7NwMN/aW8LUFzl85z34tz4VbV3jof/vXf/Xi9UoDBt0aguInFR+afo9tU87tc2npIiE5zcc+8XE2rp1nJBFiYmqewYWvsFHOM5fOMuJNMh6YZjYxzbQZp3Ojwn6tBYrKeCxGd2DQKuRRTZFBZY9o2Me2YaMENQRFBkfA0PusbiySDE9SaTbIl/IIPoXKoETHsXAEk4DqB8tgYPVAcHEzMXbWHXYFg2BlgGwPaAhVQoIfn+ghTRRJlChVqriopLIZHjr+APW+wedbX8FJaKheGcGr0G5ZuJaMR5AIuAopNcWB+Tleuf4G9XoVwdtifmqM5Ru3iXolLKPD2MIBfJksjI5RbNaYSIVZKjcw221KrTpjYwk0UaJbq1GxTWYOzjI/M8kb51/FJ0sMen3mZhcoX1ohGAmhuS6Fwj4z8QiODn29Ta/UQYt4Of3AWYyWjKwLhFNhxL6L5lWQJGh0qkTH45QqZR64+wG2aytomkZ6PMbm3iq59YuYisWgVeXs3Q+zX2swlR5BwyUZiRH2BcE0ESWbQr6Ia1rcc9ddfN8PfgKn2ecP/7+/w+Wbz5MWoxzSxnnoxAco7BTp2AO+9MyXCcS8lIwadbuBbefpVhV2ru9ioqPbfSzbYdD9Dr23YSSuknrwKD3DoVHrIRgug04HzSejSyZPXXgK1TQI6i5f+OPfY2RqlNl7j5FvdSgWq/gsFSIDdisbJAMhlLlRJrKnUSNhmhtLxPwSqimyfv0qtqhz17lj6Bs5WkKFVq1LTJbJulHCvhQKYbwhP3vNPRp6h67TQfP5SZt+RNulIbpoHomx0SwbL72BdHuHScuHLxCmYVTxqgL3HDnLtJRlggyyJTC6m6HWqJDuBihezdF3+oQsKHfaFApNTh47yt7WHgFHwmMLZOQAIR0CXZtJT4S+r02z2kA6skAgFaevQk3vsr+3xc6N66yWq5w4fIK4P8NUqkNA8VBvNDg0PUl+P4coK9RqXfbXttC8KpmRJPF4hE67y/LGBjMTkzSqPSKKg091uf/4WTTbxuh2GQ2OoHq99FttOn2LQrNK806Ts6cfxTOuEtBUFCGAfz5FeFtn8earaGMq19cvEMAme3iafaHPZmWf2UyGQrtBf2Bwz5m7uX31OnZfp7ZbQ00HcCJBFK+fu++/i0BmhEtvXOLCF57DynU5658mOvBwLHWIoOGgJbPslPOMREZZqi9x7/sfZHltke3tHV5ZfZ6YEiakhdBMHx7Vhyu98/tm70q8tUqR8dkpjHoXY9CmuNvl+MI4pdIAXe8SS/j43FOf4aHZMyS9GeaTC+glg7tnT9G0dIxCm5gS5777n+DWaxtIrsj8PUeIRGNYXp3lZ7aINE1ss0VnUGdntYUqaYS0GMgKlm0QFH0obfD4ZKKxFKqkcqO6iF/1kUxnsEotGoMObixEod1Hv3yemO3hSDbB/PhZXircpGyauK7L4uItIkmBk5lJkoEUmdksF25doLizRWVzj+n5UUKCRKU3oNtoc+vOMvFAiIiqoBmQDATwCSL1fJ50IIASmaRmdbm9uES10WAuFmKnVsFEIV9t0TNMlu8sEq23yCaijKVGSMaiXLt6h1gsQCqSod0YYPQNisUikgyu4LC9UeFDjz9BVE5x+cUriF6LxOEQq0urjI6McNc9D6LaDuVKmXyhQHZijJxao1Ddxh116SkSb1x4DV9Uo/HSGxw/cYpGt0EmPE76QJZnn3+eUUa566Pvx1cv0StXmTx8mBvXbvLMl76CZDtUSiWUoI9kJk6t3eb43DTlUpXPfObzhGQFte0w7kTxuC5JwYtdbbBVayJJHqKxGMeyB+gZPayBTK5Yw3EgGvCi2jYjvjC2LSAKHqx38a+A70q8O/stPOEaYxNTFPIVYnGJuQNZMgkfpe0cMVcjcOAIMTWB6ddZXlmm5y3RdwcYlszpqdMcnDhIIDXL2Y+cYeXKHexOi607SyTGs8Smxth+5UWkfpNAwMNA7IM/SLnRJRMfo1nPYwCWq2O6A46eOMOUX6b2mkOlepu1vS3Cooo/GOD+e+/nmS89R81u0PWEcXEZ9UdJBRQqHXAlhaigsL+5xkpFoR2cIBhJI/RNfIKK15tmJ1dgbHIC3RDQNBEl6SWTznC1VKNl6JTEDlgOdG3M5oBgKsj09ChruQL1dptoMsxOqQaWyng2iq9Swi/DfDYBIlT7LS6urOAPedmttek5OVzBYiDYjMyMUanWkSU/I4k0le0ye5vrJE0PE4EUtUIVyYTra2ss5reRXJuIFER2vYhumIUjByiHGmzV16DTIn1ymr7dYTY9ynZtn6bQxBH8bA7qRGenOHvvfRiVJrtXbxANBfnSZz5HuVgkHAmSHEuRNSbpuw7Nvk1rr8hf3PgLJmJhzoazaLIXJajQzTVouz0qsohiiISUMEKziVWvEg76+ZGzn+A3Xv80STtLdiZFXPUj1LpIPZO+bFJotxh8pyyvbjo0WwOinT7RmJ+a2aPfbxKN+fBLWeS+SCY2xkxgDqVpofgMruZfpdB1GEnNMpGaodPsYTZ1rE6L+cgY9eduU9xYIfbBx5BtkWa/i+IO6Hc6GKbAPl0qehsrapH2hQkYMqrqwxQ8CJEobiLAcn4XbypMrdGiZvVQBB8vvfg86VgMR4xi9XUM2eKNxTeYPjCBThJfKoLX9tBq7ROLBhjJxlGCUdw1k4mJcdp2l2g0zoFzCyw+9buIrsNoKoU/FODEfWewDIvdtS0K+SKmYxLUVIqFJn3ZAklhYWECn19hajrLcy9cQ5JUgh6NgWFwY3uFbq9LOBEhEQ4wPjvB7l4O3TSYnpnkjau3SI4kQYU7myVmp8bYunmVmUCa6YVx7I6E2VSZS88yrQjsFndod+r09A7HZucZTRwkKKUoltvs79xkYWGOD9z/KGbQZr2zQ/F6mYVolnq7SKtZJF8qsLedYvfOOoJuY3Ukjp29m+/5iZ8m6hcpNsoEQ0H61T4719bJ6VH6ahNBsqlUKmTHkyxvbaJICnc/8BBrl27S7ZgkVBmP18ug38fviGhtiwUyhIMB7j31Pqq6yea1m0iOwUZ1A4/rI5vIfmfE6/X66fcdVpY3aXdbSC402i021lYZSUVxLZWXX3yKc5NH+Mh9j+LYBl4xwrmZ43zq86+xeavET3z4F6g2WuSurRJvgZqrEOyaOJU20XgSTzRCv9BFchVcy0ZTNFTZoNbu4kUljA/J40cNR1lZvIUZkhD8GobQQ/Vp9Ls9HBsc3WB+ZpyRkREuXr5Ip10nEo3hFVQCrsKg3qWj14kpXnpmm83KBrG4FyWrkTl5gJ0rr5EZHeXq6h36pkXPMlhdWsUSoS9qzB84yOmH7mV7Yx1FFNjd3aZv9Cj2DASrg+oLkssZeMMJpmYn6dabyCIgKIQOTNDPF9AFl/rA4og3wMTIKOV6CUQJ21IJ+FMMbAEvGrl6AxFILEywXM1RXaoRtSNk1Qgz2SyHzkwjRDSquSr9okGgp9C4XCJoh1iYOcitG1dYXlvB8plMHh5lUoyQv7bM2Y89zqmTx3nxpefplMvcf/IU0yPz6D2b+OQk7d0Sz++sUO+1iYeibF9chK02J8ePEI2O8+KV58Hs4kvC+07dQ73YIqxFiRJnIpLC7vSp9js4kkswpKGqIpNqhBF/kvbFVeJj4xRbNqapExa9+IJ+ROWdP4z+7t6M3jSxHZFIxMP05Bi9do31zU3S6Si1fhPDlNCjFvVwlz9b/BIDq8NKqYZ3fYXHP/QBxE0BbXKC5MQJeoXr5G9c5KAWwA4FEFIBorMTKFcCtKoSmiAxOTHKyYksi9ubbG7vYCkemrZCIJXm6Psfp9SucmXzOj1FZ2ZqFKlg0bM9JANxwi0BX8emtZ7j9NxBlrcXObAwRa2yT6lepSe6KKqGLIuYMYkrmzeobl0gPTPB8s2nubW3yKFIHzWo4ckk8EpRkqMx1rc32NrbZ2X9ORQBZBFGM3H0fp/RkTRnTp/E6tWZnZvm6RdfI5WK8oEPfZjnvvwcK8vrrOWLfPHyVQTb4cP3382srFEvlulbFqrmoVStYRoDnn3maY7dfZLjJ4/RKpa5/sYlxjPTaFmRXlxnIjhH89YG+3u7RAJpRucOsFoqYZh91l+/wKw4BgGJrd4q/kScyEgYu11n6/deR3VcbMNl64V1nKREp9yiXiixWTIoXNmk3TYYPXiYQDbBxYuXCEejJMcjRAcBov4og+062yv7THqy9KUAnbUie3c2eOSBJxms18gSR+nL9AyRlmBStuosxCap2W1injBCz8Bs1Ont1JgOyKx3arhih6ZgsLVX4ke/E+J1UPD4/OzvV1BkB69HxBYc+oY+/FmLYTFzdI5yo8Ot/TYoAm3bRK23WV1aJtpNIgT8dJotEukEox96lN7qCm23QXghim8syuShOarbG1i47JZy7LbKmJKM40DbNrElE9tuczDuZ2Y+Q8fX50sXP0s5ZyHpBurAod0qMRYYxWn3KVTLVNcatO0eckAkV8mhe1RarknHaLMvtpDqQXYHeWp2n7X9JoVOg3Qqw7bZ4FDmIN3aJo5ls3npOoZtE9ZEvFGVbDZOsdDi+JF5XNOmUWty5fXLTE0mKBdrPPTggzQ6bW5ceYNTpw4SDGhYgkBJkmgUy+TyOQ7dez9XtjaJxsP4kzFaA51MqkWh2mJza41CPo+nYzEbyvLyZ54lnUqT8qcxU3X8o2mC0ynsKS/OgRinpj7Apd/7CndWL6J4TAJKisz8ArGFWVZefYXCzRViHR8eUaPn9XLq3k+wvH8DR99BlgIYlkM6GWP20Cj+mQO0HZuwN8gj9z3BVHKMP3n9t3HxoFt9wqoGpolX9uH3+VFQqS7nuWvmPrqlGrIgI8S8VOnSate52d5iLDFF26gjdSwmtDh+xY9/Js3OrkG7s0MHC0OU3rEe35V4RdVHOBrAq8HhQ5NcvXYZRVWRPSFGJibYz1V4+aUVZFcgncngCCLjo0EiHo1BvUbP9tAv1wmMTtDt5Om3aoijEr7JSRpaFaHTplreomc3MWQR23Iw62Aj4vMHsBWR7WaR1a0CzT8e8KEPf5SrL73EA1MnWNy8TDaaYCDYyI6L3ulhKgaOLFDutGnSpbB6nZLZQonFqNo2XdHFJ4uEVJ3rgyJd2SbuE+kIFnulFZS6h5eWLpMOhug0aoxHAmRjQbJTowwGfQRJotdqUtzbwtFt8ns1LMuhVS2zn2+hOzCzMMn9D5/FMHucO3OUj3z0w4SmZ/nzP/scQrNLu9ngAx98nFa7yVPPP0eta5CO+Tl0MMHMyTNEAwnWnr/GE6ceQG/2eOPiJQqdfXYDmxw4fZKD77uXxAOzWH4TeeCy0DnHWmGDQlBhMutDmfHyxtOfIeJ6Cfn9SIJEH4lDjz5BbPo4xydHeeHCeRYO34Pb73DugQe4s7rOV576LIcWjvAzP/NztIoVrl14jfX6DpbrIiAy5ckQdkUEy0VqOWT9Y3htP5Vai2DQS7drEjw0yasvP0NNrvPI2dNo3jiLK9uE/UGOnD2DR4shzaSwl2VWXs3h9cYJ6P53rMd39Ru29x0JsnAgzcRoEhmDjY0NerqJrHkxLJF6q8u4Zwy55jLrnaZWbuJoDgOaBCIGpyYeINNaIDAIE2y7uPaAa/mLrA026GkGh8dmiLsariazvLfJ0ZOnqJWaxIJxCvkKtzYX0Y0+ISWA4khkQklm52a4cvsiA6uPLdlYpguWS0QIEI+l2LeabLT3aUodynYNA+hKMjXXZOA6BASJsCRj2QMcv8KZc4c5MT9Nudziy198CckSSHoDjAXCHBnNsrxyCzveJxDy448EyecLxEMpMERCWoRrl2/hChKx+Ai1Xp++0GZhPkk44qHZ6OHzhphdOEwoGMTo9Cjkdkkn4/Q6bdrtJmfOnmFiep4eLiuNKpcvXyd/dZ0PnbuXI8cOocaDDHomAS2MnAjjG49i+Qa4Qg/JAqNt4+LDsgR8ioZHVCjvlmheW6Gyvk9cjuBaIiuNBu//kR9ClR3+4A/+K+MTIyzevsrK3jooIgFLQRJFIqkU49MThENBijs7DKp1cqubKD1QuwJpKcZ4ZAxjANFUmoFjMntgjmAkSUeCX/rML1OyCwS8PhJCkA/NPcm5449Q3iuz09in6Dd4ffsmi3vLuG6fjODnU9bWO9Lju7K84YiE7djk8vv0W3U63T66Ab6gh/WtClpMo9Zp4M05zEzdw5nsEepyi2t7V0hnU5w5cxpWolRfWaOx30J3u/hUC6XTxtNu0+6b2GqAgU9mr5En0RpFVhRSmeGzAP5VkZQniuoKCI5LwDCZjKZoJ8bZKO/RNLoI/0df7GARC/sQTJOBDrokYpoSsUyaUqXAwHBAELGBlqEjyiK9/oA7y6sUd7ZJRNMcmJpmY2WTlD+MZDkcXTjM1uYqXclAUCWa3Q5d3WAqEqReaFKpVBAFEVnxMTE+S293g2q1Rq3WQpYcem2dYwenmE6k2VjbYH19Ha/fi392BtcWhq7Eeo7J6WMsr22QPX2EX3jyI1Cuo1er+GJenKCMpw+uKdETHGqNPCFTIBaQQBARohqO4EF0ZGS/B9O1iKbSZM9NYe43qa3so0kaactADvdo1bv84E/+OBt7uzz92gucX10ESSLoujiOi7Wu4FyWiCbjLCSTvG/hGGFFolFs0tpvMuhaaKEwoVSU/U6LU0++j+RoCsERESQRKe6nW7YwOw1kyWRrc53DUyfZ3b7Djd3LrMo1lvUCVbuPT4Km1HjHenxX4lW1EOvrdTBFOq0eqgKZkQSuKWN0ajTqBnMxL2NSnHPp+wklJ3j2jc8Rd5IkfUksQeBO+QJOoM2xkzP4+km2Nixm1En29A3G5iaRVQ+B0SSeaoxiLU+v2mM6kmWUECPHnoBgjMsXX8agS9/sc+vKebz+IJKpoNkBIj4PgUySm4V11sv7+BSJiA59wQJF4ujZUxxXBV585gVUUWW/XqclunRsG1MAvWqQt00i+RxjAT+C7bBe3MXv0fjCxk3eaNQJ912kapPHP/gA8UydVCjBaHyCw9PHKa7u0ewOSE9lOHnPDI1GlXggRK/V4ubNa2zc2mIukGXCjdIfpFlc2yJs57GqTZ48+35eevk8f1j6EybvPkY8kaDX7yJ4TJRRH13DRDQlRH+AwcDA7Ov0O33yhQaqXyMaixGPBFDsAR7JRNFFRNUFs4/dHyD7NGKnfFiijGHbCF2D1Veucvmlq+SKeS7vrdByHUxHJHRgjCOpCZYvLbLTa7K6ucPG9g4r17cIaiEUWSBg28wmQ1QjBmfuPkhUUBk7dgZ9v0q/UqVpNwhYFjEEosE4qqMxf/IwL1/6MpVSDjBQBwNGZIWZoBe730W0v0N/ZaUbOsVyE1UAS4dY2I+GS6NY5dhomu52hyPOBPcfup9MdBYjkEQ1PPh7Gkcj89y8vcjt4hIeQ2IuO41qCiiGTEIK0Rf8PHjPQ2y0K6ztraNbJopXxbE7NGsNgmKGZDyLmp6ktlfgzs41+qaBYZvY3Q4+X4BWq45pudQaLQRHwTBNvBb48XJiaoqsZtKutrj7vjOYx1v0uzrV1hV0U2eAiyMIdAwb0QEFkVqjQcDnA0OnY+i8euMGfcdC6glogo98oYss+7i5tI/R7FDc6hJUgwQCXoLhALeXb1Ddr/DGnS2S0QR+2UM4HUbz+khPp3nluYvIusyc9xDjMxGaS1XmJ04S+9AY0w+eoOWAbhq4toHq1/D7AgwGLq9eusGt5RWq+0XKpRLldgNTgVAgwMzoBB994lHuOnsYV7FxZBPRMbCxGRhtHGmAI6tI3gA4EguPnOOV515mP59HQ8IrySQyEX7wEx/iuc99hZbRw1Bluo6F6LooDND7Bn1HJ+aK7OsGdUmhduM1Dhw4wqjeYG/1NlnNz9LFl3n82Bk+f6FESFUQHJFKc49Ce5f4aJhqvcOIL4vdzJMNhlE8EaqNyjvW47vyeZ8466XTNvGqQ1/KLxnEZI2IGkHtyCRrKRbEY0S0DLHwHLFsGitmYQ1yXLr657y0fxl3NICmq0wPsjw0cg/C/gDX7EFYZ/yBA+Spstcqc+nWDRqNLm7PRGuLHFPnmQpNEE5M4k8EeOX6izR6+yBYyLJCzxHpOBYiAgZgI4DtoLkuqurh8OP38PTyRTZbazx4391cv3qNaqvNdqtOGYM+DobjYgsgigIRB2Y9PiaCEWTBZamUR5cEHMcl40+iaQotvUEilaRartHudBgLpPDIGlGfiDfiJShJHE7OoNUF6Dj0Ok2UsIp6MElua527Zk5R3eoy2p3FLevYoxLq2SSzf2MMI+BS0l3wePBpErLgsr2xx2c//0VeuHiD5sAkoGp4PRquImKJNrIroNmQjkc4c9dRPvjkI2TTIaxBGwETx7YRRQnXlcEMIGLgVT38h//p33D9mZuEg0msAOwOdkik0uyubWEaHpqyhOm6TMRjdDo11npNaoqI1xHJWApZwUNWCDIZTXEwlsJTN1iIj1GqVNGmVWpCg/R0hldfPU+90aFj9smOTbK5U0ILqIQElbDgohg6hj7gHxmld6THd2V5+12dcDiMV1VB72C2DWKRMAeiacy2y8HECUa0o1T2qlzJ32CSAxw+epTi9hb79SqCa3BwbJTKdo3p8Qn8wRj9dhdbV+gLHZ575QLjd88QjafZL5bxSkF8goekGkR2RfTOACEkEA4nCfjDNPQKPauHMxjQEVwE2YMkq1iGg+xK+EQPflHFFgUCaoRmtY3mSvT3m4g9l3ari+FaCOLwoW4ZB8d1sR0bVdI4NjPPWDBKYW+bczMHWauVaPR6OI7Ifr2OLMNursjk5CS93RxFQycTiaCGPZiDLp3egM3dTZJWlIXYLLW2Q66yj2PYOD2XplBGKqtMKiOYlo416kU8maJhV7C6Lt7YCI6qoRsDdMvhxtIqr5y/RGtgo/lDgIukqiheFUECyXLw2S52u8Pi5SssZDOk7z6NYYM3EsGxXXTDQnJkRFOk7zVwPQZzR+dY/PIyT8w+ii7pPL/Spb6+x4gUJhafBl0i5CpENQ+3asuYgkVH0DFEBwsTCRWvA3azhdkTCFkSg26R6fQEF+5cwQw4PPaRD5EZneBf/Ma/I2902dgfkEilKZdKHI+NEVf8yIJE0eq8Yz2+u1CZ48XSRXqWhWJDUNJYyB4g1A1gtcEfjJEOpYlORAkqO0hWl73rr3Fn5zoTh6fZX8qzvbzO3MhBVMmH6yokkxNofj+LW5fRqxYeMYJf8XD33L1sb+zhtWWC+AgIfuL+KJFUCk86iTcSoFnuIckyujnAxEJxPdgOOK6N6Mqo0jAuffDUMVxVxdJ7iLZJc68MpoPjuAiCjCABpoUEeACv7CWp+Yj5w/gUD/FgFDUYYL9axxIUHGuATxRxsGkbOvlqhabZR5BU/IJOrtljLBgigsbh7FGO+g7i7Uqk1Cwj9iwt1SIYEintbdDr9hik+vSkDolTYwhHA1SEMo4rsrW1zbXby7SbdQ7PzzE9d4BP/uAPcPX2bfr9PgFNIxYJUSjt0+00mUgk8OsOUS1EPKwRq9cRd/fxBP2I/jCS5sO0HVzHwZV7CAEwRYuTZ8+QXygzJU9hdPtU5cOsuhIBMcq8Oo+nZ6PZBs2mTjM2xeSR+/jZBw6xfPUq2186z9nkASIDDavZJWl4GfeESXkTCEqUh9//Y+Tqm/zpp76IEJIwvV6yEyNEp8aYnZ7k9c/+BbbTp9HuEBAUYuHYd0a8Zk+g0xn+8jWgSiiGiNtRUNsBzk2fRdNj7F2+Q0CSSMjG0ALcWMPjNejVdTrtPqGRJOFImttX1zhyz/108y18rh+/qXJm5DBS2WX15hIZOY2juujdNl5TQRFEzN4AyxpgO316dh/Bp2ILBrYrEJBCIGnouoHkgCKL6PYA23CQ/DLJdJSootLQHVrlGqZkI4gCpmSjer3otoFXUBAQiAdCiLrJ2tYm7WCIsMfH0soqdt8C08F0e5iuRcjrR1VUVAHsYIBCvc7y9gYxQYB4Aq+cJhDxMb1whmbNYPO5Z0hNZqjlNxDDPsKBNLLfwTggUtyrMnrMQ9ndxZYFFCXEH/7W/86FKzeQsZE/+kG+7xNHmZqZ5IEHz4FjIls2rm3Q6bQwem2kTo/CzSWKK6vIHZlGu8t6qULi2FE8Xg9ywoOqaAi2CarJQO8hyzLxbJqjZ44xGzxJ69oO2+0kHbNDXIoQK0mMKiFMqUc7qvDxv/0jjD9wmpBsk88e5NlrLcItBaHrguMnIYSQeyLdQRdX8nPwyD30bgmsvPIUHalDYmGC7U6dW1eusbK2SFqUmMpMMKoFKeT26Fr6d0a8iWiMvXIe03IRfSJW16FT65PFi9T1ouLH5w1j9hr0hTbrO2t0AwbHj51gu7SNZqk4FYcb+zc5mbqbVq6O0nMolNZRBYNOq0W7UKY7aJFMh5gOTFCu5fAKw/8rcEyDZi1PSA9iqCZdsU82naK4k6dj9hEMC9UR8SpeRFFgIFjokkvFqrFxfQOvbWOjYtgWJjb+cIi45mezUQFcVBFUUcIyDExTZ73WI98sIzugqAqSIGM4FgGPd9iZTZ2wN8DRQye4urKEJ6XQ7HaISAJBvw+P68Era9x5+TVU10t8cpy+x6QmVNjeruEbiXPukx8kdmoKqeSlpe6jOwa64eWV1y9w+84mti0TDvpIJ5PImAiWjVdx8GleNFHA1nvEgzIaETYuXUUzOoQEl7VbWxTkfUbGq8z6vUzOZem1LFRJJSBIGG4HTQfBEBA0B3FKYH+wzf5glVQ6gacu4nFEEqqK6PQoy1UOfeRhDn/kISg22P7KJQbbRR44+X6MpRIBOUC7WEAY9PBYNqIkYIs2/ZUNtm8sEcCLKNvs5wvk6mUarkWo7yfiH6Gz2yF4aJbUsWlub69+Z8QrYJJOR1GDEpMjcfYubbC3u8d0co58rozt6Jy+/17MfoWVwjX82TnKjS3WymVkRyXjxjk+eZKV5S1Cth+9Y5EcGUPxyOTytxE7Jgndj18K4HNCjJ4+SdWzRHlrB58DhqnTNtq4AQnJr6CFvDQGbXRsbEdABWQBVFHEVUXqnQY1p4M/H6Kc32ViLMV+0aHQaeAILrboYgsOhqmD7WI7DjoGXQDXpS26KK5A2OPHJ0kEJBXZ1khHEvTaHboDC7M9oJ6v0qu2UaN+Ah4/fg2OHT9G684+m7vbRNsdpqcOkZ6foqN0EAZQ7Td58Id/mOmPnqMbrhJ009R2djBNiWt3lvn0n36RdsdAVX3MTI0zPTGOawzQHQOvz4dHU1BxQdIQHBnRGDCezdJd2eBOqUWuOmAyKlCvN2jUK0yYLYxuHVkUECQV0zJxHQ+KomArNoc+dgx3sw/SGCz2CdyS0Et1XLND260hjLpMnxxn9Yt/TuvldcZTh0hEFrArFQqdMh6vgBKOkj42h5HfYXdni4AvSqdaQLQswrKC61j0axUk1yKJj2jfR0KNcnLyEClfli+/9AJls/kdEq/QQ1NlvKqKYFtoHolB30ZKRUjNnkX2Z7GDHqobO/j8cQ6deJj2l/+C7VvrxEMa5+afZOHAOcY8eYJyhEKjjXlyAjGbIL7ko3vtNma+SK/dxnE6dJe38fsieI4l0Dt9nIAHMetl3+izU9im5bZZrxcxHYEoKiNiBMPxoAgydbtB0S1Ts5tMyWNEkxH6zQH9gYEjCAxEi4bepdkbkPKrqIqHXqONa9vIgCQNZ9im69I0DQzTRrAsoqqXkWAMOZIgl8/RNns0u216goVjGAQjYQTF4VZhF7lZw2MLxOZnST94mpA3hCrpdC65RE4cIv3JuzCDOkq3jOhYDFDo6gpffukyLd0mFvIS8Kk88dBZ5ibSSIKJJHmRXBuzWcbVPGgeL0gygqwSnfMwbjuYHg+p67do1dtYiogoO7jtKr6Aiqpp9AYG9qCHI/joKTaCT0ALhJGmVVITGeR7+pjbGRq7FajW8XT8zN1zkGq/wYu//Vmmu2m8k2FuVS7S314nZos4toeIP4iQMei7K8iZEi2px6H3PcIDBxTcp+9QbQm4hsqkECPgG+NkappurUXMCSM0JGY8UySNxndGvDOTcXb265TzJVRbR1UkxqYPcOSBh8kGH8LerVG4cZHd29cZjcfpXt/l7pEznJ25C59XRwskEL0ZWs4AX2KEeEJHGomQq+UZnZxCXtplYBUJaUG8Xj+tXAECfsbOnUNSPQjjGeyoy6f/+F9R7VcZOTxGadsgl6uSklQkERzHxTEFLNdFUTzIVovbN6/z/pOP0Gv0cCwby7UwRQtHcBFcm1Q4Siwa53ZjGUESEG0XTQDBAX3Ya9FNC8MRMC2Z/x9t//Vsa37fd37vJ4eV487h7L3PDif26YhudAIaAAlCpEhxSIoqjcZlj6wLl8OVfeGyq+yaKo/tssdTKmlUMyNRGoqiKAaRIBGaaKQGOvfJcZ+d8145PDn74tj3QJW61p+wXuup5/dd39/n41oWYRIzSj20Wp7d3im90ANihoGLFEecKALfWr/BYm6F619/E7NQx98b0B118EKJr/7+f0bcFEn9AQV/RBQlhMj4mUBnMAAhpVpUmJussLo4iaZkyJKC57nkdRk1ihAyAVk2cL0QRIFMEKhcXOJyTqNZlHn0aBuzXGP24iJZ+uzHF4oKUZQRux7IkKUi1fokZqWGNbTwfBtxXkReblJPp9AiyFwLsWAQ3t3jN//BP8D9+JyHH99Fq0p4yohWGiIpNWQhZefpJmptzOyVAt3zDsnph+z9/GPy/gGzkyYXqxcxzIt0+0VkQSfIZLrDjMtr8xSVMdVc+YvBW85LpNN5tKFEHKeYisnS3Crx0CU42aZ3bwvreIu6ZmC1eth9l8r0HLMzqwxOtvGHA8y8TLfdp3LlEjPX1oiHHYKHO9jLAtpkicFmRLVUoDDZJB12GEU+Z91TOqM+aq+OMClhlnJ4HTjunZHzYZ0GM0YVNYYpcwpFzbNR3eBh7ynXm9fx/AG943PqlHju4gY/3b6JokoIkoyYyQRRxNFZC1XXUDUVdzRCEEXkFAQB3CAgJUOVJHRN4HH7hFhKyXIyJVNk2IuQTYUgjJgsGChOiiHKBH2H3fNDmo0nVMMTjG6AlTg8/ztfY+7NqwyyLmrmE6YeXhwgmxUca0RBCDB10MWYlYUpqpU8kgRJEjMajbBaQ6zuKcurl9EMHVkSiNNn43pZBrWg0lybIysXiDIVpVbGl6CQKyBrBeRMxk6gPxig6hKlJCbwXRTdQCvWCTLwhBQ3SZD8iGK+jEZKlgZ0dh+StnusLeQRSybnx3ew4pCZiQVypSI6I8SCQ/d8B1EyOf3s36NKIVPLEpXJHGY8jzMqk0QlPFWnJGkogkRxosbS8jxBq/XF4B1ZAzrDIZmiky+UUMYKDx7dZ+2FDTbvnjItlMkrEqkgEJsylakZBDMPik77sI/tR6y9NMPM3ALWqE/O90h3zyjtd1ALJYJgQJC5nPVG2MmIvj2kndr4/V3m1lfZebKNvTemenmCvd4J4anFEhNcV1bIkUfQRF689AKKoCMUyjRq8wR5n2JD4a//4x8SyyKl2QLFikl9ZRnD7fP4YI8wTOlbDtVCEc006I8tCqZJMrJJspRIyAgySAiJ8ZFSnyiN0DyFwYmHoYq8/dXXuX/nPhUzj3/c59L0Eo04R9iFD//yXdakaeakHKWXFrn2u1/FK2cIYoREhCKDF0ZIQojVPWWhqFIuVFi6tMLalTUKBYNMyDB0jdmpSax2gNUJ8P0RkishKM/m24qskCUxsZIRKjFW6nJydoreKJJXiiAb6GYV1Sghyjm6VsDY9oj3dzGLI+rz64iSQZAKyLqMpMpIKRhhSP/Dj7j/R39CeG8HxgmmWCdRdBYbk0xPLdI0GgS9U86PdxEGZ0gXCsw83yRzB4hxSHGhRhZlJCcxYd/l/KhPJEkIpDSbNYThLvJwB2909sXgzcwiqeuimzqCIDK/MEfRyDEKDyk2TU6OBshqAcXIM3X5KuV6HS9NyXJFcssraI4HcUipWaONy96Pfoz4cBd9OKRrdxlkForiMg4HDHptgiwh0QREQ6U4oyN4Ll6/y2efbxPHIU2zwVuzr5LbS5BilQSBJILx6SlCMWbt+ask9YQnR7fImUXGno3TPcElJAwDnu4f0rUcDFmmYhioGYx7fYr5AuVimY7jE0UBifrsyRaQ4Mc2miyipSLX5+aR44hRv0M5TFiYqBHGGZqYI+2FXJ1/DqcfIMh5rk1eIvMHmNcWiMoCfjIG38aME+QsQRYSKpJAPYlZ0hTKOY0JQyUvS0CGoiqkcYxARiFvcnF1lTBOaZ2fYuaLaIZJLEmkcUQS2vjOiMhzSCIfMU1QRRmijNAJSeMAo9xgdilj0G0zGo5IXZ9SnJCFEYJqIqcCeqKgZhrt23f46//qn7Ngj1jNF2iPznBzIcW1DW58+VeJzh0Gn29ij7vULi7QzULmf/tFxGYRI7I4/eB9cn4fb5hy94Nj6upz5JMCXmCjChm93XO00QmO3SeM/S8G7/b5GEXWmalNc75zwt2tbX7typfo2UfMrV1mxx0xM/kci9dfZe/hU6SKQbGSwxvbRHmVibkpMstGKijMTy5zducOYRIiSwn+sIuVDolCGz/zqBbriBlYwZCTXofN954SZQlSAnEuo5ApzJvTXGyuoAxdup0eduixe/tTclIdITXIzcxhSS3ubz3G1yXcIKLbOqCnJhw/fcIocFEEATGKETORer2IIUg0mlOcHR+TpRmSJFKrVxn5LpbjEqcgilCQFP4Xv/P7MBzx7T/7Y4xxyHSxyuPdfVQrI69ohE/GrBXXqZbmyBXLHNCjtFojzRzS2COfZmhRhBAHSKQURZHJGD7b3GLxucu0t7Yo1YqUpp4t6JiKgpglxHHMYDhCN/JEUUyWJiSBh+c5BJ6NnAR4gx5aljJfb5BXVAxRIg0jBCnG9cd4fsD09By16XkOdnawbA/fDyjkBURVJCFBijLkVOfJD+4wetonyQOmSKaJqPN1Ln7jHTS1yf4Pfshg+xizkFKeXyHRTM5HKYPTba5N1ujsJUxJZYRhQnTepjht0GjM0rNDDENm/2ST484AKa8ydXXji8F70rUp6yoj2cHadVguT/L2jV/l4OFDztsdpKKCnw4Yn2+z//AWe09vcu35y/SPz6jIVbqnQ0LHpixPI3VDNF0iXqrjxzpnu6f4YYxZqiL1LCJRRS+YRD0bL0wZ+RZFs8BEsYQU2diCBMOQvZ0D3lx+Hde9TzAOyZllMlFmcX2JrtXi7vEH7LrH9P0OQTxmHLucBA4jIUXJ50g9DyGJWJ6aYqJY5OjohAW5wERzgVHks909RpBUUnyECBBEojQlECI+unMLyXVJFBXXCxFTmSv1RdQxXFGWKPcNTK1JkGnErRZeVUDdmCLARcpS5CSFOCFTZRRdIOw59Ld2MZ2QzY8+R1yaYe2FG3ieh2xqZKSEkU+UZCSChp4rMZkvkSUJaeijkCDJ4Ns27nCALBXQCwaKJBBHAYkYk0oacarhJhHDsU2+UKQ5u4xh2ciyjBR7pI5PIovEToaw52BujVjKLdJoSPSsQ5J8ges3XkexRPbu3MLtBphSDsGzOL13zlCz2Fh5CVOucvA3n5Lv5bh164jJyTlmpl4gJxTIkhjNKGLWC+StLmdjH1XPUX/7G18M3tEoZqFcoy6WiTybVy+/TtGdZtJI2Nm5zUQjx+joIWUvIjnZpVTN8eGffQhJQjEuIyUK9YsXOX14Sq3apFQu0XjnBsZClaO/CplyMtTQYNO6Q21qkY2vvI5y832srVuMR0fUJ2aQPR9pFPLi5AaDtseoP8aZjVBNk3zkERMTpAGiIXDz47/lL598n+1on1AM0CWVRIYQmXHsUzMMcoJAOhzi93pAxvXyNL/9wtewQo+/ffQRrmfhpAJCqlATNVRZpRX4BGnEX37wI+ZmJrlwYZa9kzZCz0Z34X928fe5Ur9EX7LxjBLVxQtkbo9KTUFbrBMpx8ipgChAJolkmkoY+Yi+h9vpkXYdZEOmoOYQE4EkTtEVBUnISJNnuxjFygSCopI3ddzRkCAKEZMIIQqw+h1sa0S5kicjIRVj/MQlERSSYIwoFyiVJolT6I1c9FyRysQsYuSSejZEEZpWQTwbEHxnk+ZeyGR1g+aVCeL0hAe3PkEKdfwTF1mvMP/iIvbODv74jOODTWItpX3HpbkwzeH9BMPNEYdl3Pwiq6+/g3vS5uzeJmZ5iuLEBNOWieXFBP6IhC9oJZIs5eRkgLfnsl6cZXlmns07NzF1ky+/8Xc433/KXFPHPQ340uXnyJQQd7CLG0UUpqaZnVhAUXQuzs3jRQHyZAXpwiyxKeC5CcHuKblIQtIkvDSiNxqilIuoRZ2obzE8PaKYb6BnKkKQUirUqdaWUBbmcE73ifWUNK9z5bU3KCwvsVCLMHofoTklxk4XJw4IhRg/jSkoCm6niwJUJA3CiPFRi1cvLXH8yS0m1pbwzjqUFIX19UVGoyH7D7aRUhnDrNJyBwROROwF/OD2Peq6yVuzaxRbEc18k8QVKF25ThZGGM0yw+MuxtoiYuohZxGREKCILrIUkOoqWRggJlCYqFBZbBJkCY5vE7gWOc8CTyROI2J3TJZmpIJEiA5iRgykooyQgDe2GXd7pElKJkAmQkaKJAgkmUiCTCjIGPkKSSQSRimiHaLHIpH67LCnjn0G9x5y8gc/I3vvmIXcFLGcolcXST2NlY0lihfniMQpDCtBm5hBWamQjIfED/MEoyEHd86RkiL19bcpKjoHj/Y5bNkkP71JPV+CWMBrtfAJkYIhRmwTuwHOT/+GBr//nx6vroGml6nWJznZOmXgHjJh6rRaZ1zMvUFJDfGOT5kuznP/9s8ZZ0OuX7lBkKpMvPHryJLI+OZ91I7H9vCMiy9fZtDqUY+hMtZwuz5eMKSTDjn097h5+DPayYDToEtJlpjRm1SVEpopYzsxS+vrvPqV30Q1m3Q//iFW2ONk6OC067x+Y5ELL13miv8y5498jg8GDAObYqlE4toIaUpJUSmqGmoU0dCKrOZruL0+BTnBs4actPeJDIlcW0KWZQQyJEHCSGQ0rYwgRsRnFnEYcOyF3O7v8Io6x8npKZFpMn2lQdQ+4uTgKeVGiWxlAkHy0dKIVHKR4wG4IzAKGKLGuH1IZbnMRLKGbbmkRZM084mGHRIxoNs9QxUzVFVBlDXiyCRMIiRJI8lExBTaZ+ecHh5RLOURxAyyCHc0oCzWEVSNTDUo1mbJ9Bp+YIMMlUIJNQoZhD5azeTBez/m+3/wh1w/Frlgi3StfagXqYwU0qCPqEaE8RBPNGCiSuHqNOr6JHG3T/niHGF7wCd//h2qk89T+PVLpInH0f/4h8jOPklrQC4uI6QlyFLcU5so9ZCSCCkZcX7vQxZ/QY+/FF4pVdjYmEX1Je7fa/Gz2z/mf/mr/zlCFBAc9+hvH5H5Az7Yu0WlapCNA1LNpJxrkpy0UdeWicg43d/DmCqTuC55U8N3xtRyOXK1Jv1egBD3GEUniGaCFY5JkajkL3B55XUON7eJfIFqrs60UWdw1OXp/Q8JBYmjyMIrSbx/+32SssCx3+UnTz/h04PbBGmKICv4QYQdRggCpKRM5ArMG2Wurqzya9/8Nf7N//v/g2yYqFJKMVdhEFo8ebRLLIqIiYIqpEw06ow9i9Afk1M0ppMMH7hSnafYhfFohGC1qB4eki+pBGmCWCmSSTGxJJGkMWICpCqZoOOMPZzBiDDuY+Rh6fpFvACUvEmYpTijMd3WGWOrRyGnUykUkBUNQQuRzATJMCH0CVwH23bIRIkojogDF0WRSayQIIvBrJKRR02zZ70cmkKqSnQFH1VO0RKZ4Sd3uf/u31Il5MqFORLrmChKSGU4Pd7BzGJSWSU9GxBVKtTXJ8gkSAYusqBArggTEsl8g6CkUSgbYIe4AmSqRuoltPtddMVEUzTkVETKUowgj5dahO4XFLS3MjvP7/7ON/nsw4+wz6vEUcj33n2Pq1Ov0LXOONtrM3+jRn1tiotX17nz3ifsKzKXNy6z++2f0Tg6ozxTQymabG8/ZfTDn9F87RKiKeGXZc4HZ5QLOZRQwBn0KJoaGhKFrMabr/026xM3ONz+YyRRQwkN9j5+QrPqYCgK1974KtX9JsXnJvin//L/xr/93r+kL1rsRWMiISaTZXRJJ04iMgQURUbKBCQvZG11jaJp8N7Pf8Sh2yPKUoZthXbsIMoScpCRE1RUsUgag9NxyGRQU42qVgQ0Bp6DOA5ZbCwxZU6RdCWEIMI76VKbn2Prw58x+fzLhABSRBYnBImCJFdI0hBJFRkmPkrqodYryFIez/YY9QekYUiaxexsbqEZMhem55ASEFSVUq1KUnh2ABr1eqSZiJYr4IYOXhCRy6UoWULkjHGcGLIqZi2hKmjYukSiq/zs1ic8uPUpF0465PYPsFq7rPkO0niMqscYRYV8s0omgrvZZvrVNxmNU5SaitKoEkcB4WCMbCUIkoy2sMjG3/sVZEUl1QVSDJ5/56u08vcZ/PwuThIQA0mioadgyjo1uQyRjZUOvhi8taLOD37wQx7ef8z61ASXKpd4Z+abiC0TdVii+PoCneQeF65cxLd69EKXL735FqZcRVNVDh48wK3fYOErr6MMO9jDPsWlGcwLVU4+v4kiCaRZSOBEiJlBWZ4mX85TqF7khcuvYQwVnnvhDWLPxT7uEJ+PaEg6IQLOcZtSrsrhk12ub1zho6c/RtEiTFlgaAuIWUIauyiSTEU1KJkGC7kyRhByOugi5xR2D/YpGXk0VWb7cJdB6FIoFKiXmgjjiOmsTJJmWCn0Ah9DUfGsAD8NIBFJVInp9TWWJl/E/vwUZ/+QNBkTDoeYUoh9eExNuoyTRUBKopqIsknqxUhiGbWxjN09JBZEDEMm9Z91xGVhRBh6XL5yhZPWKRkipq4ThD690yPOkxjX81AVDVlUSAQdNwmxQhEtkolSEU1VkQp11MoUkWhwfN7nUafN8XmLO9uPOTjYIR9nXFtZY0yPQs/HdD2iICFvGhhSxun9B2RRniRIUct5tHyJNBNIw4C4OyLq+siahmAo1CcngYSYlESA4vIyWihx/tkdPNehognPZsqJhIaMKiqUlDxZ/AU9ee/cOqQxl8fQSmxsvMlbq1+h2J5GzErc//gjikpMdVnnkz/9GeWcTnQeoPoiJ1uPiLyYUUlh/ZuvEioC01eW0dQNrN0T7v3JnzK8/RBjNMBSM6Zra0ypzxHZMV//5n+GL4qIJwHjdpv5tWv0z9ucPT0nlya4rVMkVSKu5ijMT7PeKNLpb5FEPongISOQF0TkVKCq6uilIqSQDUasTzexsoAfPb5N7mCT+XyZ640Z/ud//x/yw0d3+fiv/gjPHVMyqyxWG7wsL5I6GZ8MWyRJRpSAKEjMlRts947JZIOPb9+lcmmSklFEtgcUJZm01aVY0hkfdUh6LnE1JIsC7EhFEFVUfYowCFEXJcrlJWq1DNseUjBLqIJM6AaQpURJwPSFJcKxSzi2kBSRfCYT+C5Z4DIcjZH1EgEGaBqOUCGJyhT1EpqeQ9brZLHJw4/v8TfffY801VidXyUTRMy0ysnohO+d36RQg8kXllFv7tBIZMaSxOOoQ38+RzmeoBQLuAOPkuURHZ6QxAnmcIzz5AjJjxHPGuTeuEKqPjsQqppBZI04OT6gJYyIFJt20qaqyNSTHEmiUcgEdM1Ez37x3IZfbqtMUVldf46D7accbp3wFze/xz/56v+WwHJJpRQ/8rj7k0cIaUxxqcbzl67hPHxK/6BFlMVQLxONXPzjM5xej6P2Ob0nmxjDMRNBTCxpdLOElcUrzM9eYfz0nNGuhTFR4/Rwn9HRKbOi8Gz5XM0hZWMkIYIkQsqp1Ncu8sMf/inbmzuQZpDJaIpK6tmUjRxGFlHTVaIwZUzCabfFaWTjCBlxltIOfDbbJ/z1e99nu9+hKCt4SYQ/GpLkNfrWOROFafI5k74bkSQJCgp6qDAlNUj8iFhNGfshRUOjND+D7PVwXYdh55zWkwEzgytIeZHEe9bBi5pi6hqCpKKVFhBMHS08xY0FRFVB0XJEqUQUhwiSgCoISGjIsoY/apP6PqoqUa2U8WKLWFKRJQVNksGo4GU5HFdkcNbhyd5N9lpjQskgEWVKkoHvBBSrZRxBwYp8xsc7vCZXCBIX30uJlARrfoqb1ohMqTDXkin2xoRmjsnJCTB04pGFKgkkgY+zf4ZojTBmmwiTFVRNQQgjjvf3GdpDtKbJ+fkpshEhqBKSlJA4KmmmI6cZdvKLZ5z+UnhPhw7/4c+/h5kJWLLFG9NvoqglxHpEY7VCc3Yd8+cFBrtdHLvK1NoaJ91tKgs1mt/4OvGTfTb/6R8h2A4TUzNMKBnmOEZ1EiRFJZ6a5sIrb1JevMDWX/8QpeNilioU52aZXL5E0nGJDjqU6xNk+SqBN6JaVtg922JutoivREhaDk0pIsd5vGjMOBIQMBHImKqZbMxN8fDpAfLiDKdZxP7pEMHUGXgh3cSjG0cMn97C1AymckVCd4wUJsSRQzI1w8+37tLPFIRcgXxiUEl0Xl9+ibPTNpId8eWrX2L+a99EEGu0f/o+QauFRkgpX8aol1FCFWFs0No+o7g8xdD3GNnHmKUCckkiGniYbkxRMOhaHmqhhqjpRLZN4nrEcYygyChVA8QIr+8gRAmGaqCa4IcaJTOHkUYcjRw+Ozzl4eE5Yy/A9V1U0yAVJcxqifHY51wQ8USPLHUxqhJTQZG3R1A/GSCaBTaJeHQ+4DyW2Wg0ePXydfr9gLQ5h3xhhmLFoFivwDhCKmtInke02eWs0yV/4zKll26Q6Qk5QaJ8eYU72z/gSXTAK29fYnqhhnkq0f20Ta/tIQUZLj7Xvgi81XqJ1plHmoAX+Ei6SiRGHO0/Qs0r5NYuUDyOsDoJuakF9Nk58oZDcXUZkRgliFnI8siyxmi3RSLESEmKKGsIaoZq5KFUI/JCXN+nqgiYmkR76zFyY4bU0EmzGN8ZM+i10QXouRZxTsGYrpFbnCEWE0q5Apeal3GOn9CPPFRBJQwdWu0h0eAu577PwFYYEuOHMbIgkQjgknIehWRhSEGwaGgaL7/wHCuz07T3DznYO6QyVcXu+DiRj5jIaLLO8zfe4Ex9wvG9J2ixQNAfoeU1jnonWN0TJlOYX7yCr4mk5yPkep5ee0hjdRk5fTYV8K2IOHYRnB4MO/iuyyhKyHSd+tQ0mpYQRQnIAbIkEachgipjmDlC61nWgiCpiGmGESZw3sFqjUgdgcQNiZJn5YliJhCnKSKgqyJBYBNnRchSFFlkeaqB+XifzPWJzCJ9NyQcBdRDDdPukRohwkSVqS+/SFI0CNMIQ5FAEcmyBN8aYoQZYX9MdHxOujJArJVQDZXA7bHfOUQsK9i5kOOoRVMqMBCGqLKCnKlkav4X9vjLXcCM+hRVGSNVEBOR+wcf83/5f/wTJqQm/+h3/3ekoc64e86FKwuUZucJPBdjdoGsVOTg239D+OiAkiUghBl1o4FZKjHsHBFkLqKSEWYSyf4Rd/fOWZ29QtodoCQhZ0+3MMWE1d9+k4gRZALzmwp7n91i+/ycoRiT3brFi40G3uCAqNfhSnkVyZDIc0ZbcQgzBVUWKNXLuL02siQiOw5JFpCTJfJFnTQncdIaocsqnudyHLkc3LlF/ulDqgn8ly9/mZcuXePdn93m7r0tvvb8b3F55SWUoYzQSZhVTArWiNPvvUftymXWXl7DrvqMHt9mML7H/uce07WUqeefZ/0br4NSoJxJONKANBqTnp2iiD521CfKIshkhu0ukxNzVIwiT3YO8e0R9VoNSYZEUAgSFS/N46egKJCzDqkMIqTHR1wTA1auLuNKBp92FVIbvJFHls+R+RpRFGCqOrbl4EUxDVlirmGiXzaQ9QXOuiH6WcaaKtJcmmT26ivoi89RuPAC4tQMqZzCYMBwdx/n/iMms4x8KU/W6VP0QtztLUbrTcrLL1KcnCJ2NTItJt/UOY+GjDoZZ/unpM6YklLh+ZffYnrt8heD99LEFKW1JuORz9H2IV2nRc5LWVmYxz49Q7A87FaHel1jtL/PWE3RhRre0SG9g1MmcyVkLyR0HULbwUhFDEElChz8OKCy1GTvpE3ZLFEsFHC6fTonR5hKSlGMiUfnHA0eU6uWeLr9EXJVptfqM4oijrY2KWYSmg1lvUkkwOTcBDsHp8ixhxvbtDyPntth4/Ilbrz0HN//9l+hjCP0NGVjZgY/p8LwPq9cXmBtbZ2/+I/fZ2/kMQh8UFRO4oRlER49fcpkY4bX3/oKuazC4Q8+Je4PMcMYu9UiVnPkixqJLtFvn2D1zxn2E0aqTLq1zWR8mcRQybSEVBARJRUhMGGsE4cZiWgimxJqpuKlEuMwo1ZrotemGbgRWWkGXdOJj7eIsAnVlNi3iQYtGjmB1ekpbLuFoATYjRDDKDO0hqhRTE4QEFPIRi5e7CPJEugGXvysTXN43oZigbhWxB10kYKUeq4CHohmBW1+CfJlEBUkIcGUdbIYhmlCxx4S+zYFWSQfpehhwqDbp6IqUFYZtnaJHR//zCaVTM7PbaRhihGBcSFHMq3xydaH/MYXgXfGKFOq1Wj3N+lGIybNPG89/xKr2TTdz+6TTUxx5cISAjqtbpeZ569gCxGtsz4No0ozP4FjtamXC6h+hDfuk4kCUSZho5B2bZaXN9ArTVq7e4zbx8ROG91MKWszPP7we7z/5AdYyRilkGMQBtiZTxIn/NrlNxk82eSFxSukdYM//fgvuD+4j5uMyVL32XKKJqOKIidPN5FO9nlB8Hnt1VXiOGOYSXyyf8hbczNUW+dMqHn+4coLfLB5yK3AYxwG/PHPP+FHtx+wmJWw+i53vve3qJbMRmGGNIpJQ48g8VAbGonV5fMPP6N/ukkhDciyhNCLOXm4j/Tn7/Pcr7xGMiMTyCmxBqKYYRZqxCOLWAzwSMk1ZpAymV6gkoYy9ZXnqCxsEIpFxFQh7z+LbZKEPsGZRWd7kyh2yS9WmF9VWJmYwMwZbG+F3LTaqGoBPw2IEHADaJQMPHeMktfx4pAdV0RHoN0ekvd7FFyZqNtnpr6AWmjQOuxx6n6KZByRaQZ5XadZqJIT8iy8/Tbh/j5nvs/woI3ScREzkaQ7IO0PQNa4+ZMfURU1hv0RtVyOyeIFngw28QsZE69fxKkHdFrHv7DHXwrvg60trKePEYsGG9cXUIcRo24HMTdLKSvSrNZpP9lEk0zKa+uMB11sEy489xydH7zP1q27rM2uE/t9gsAGScBXBULNID85h1at03ccdPqYtRJ2WyYaePj+mGD3PoduF9/1sISQ7mBEP/Xx05AmJpubN5mkiFFSkBomvuoxSsbEmYtEhiqo+IIMaUIliljVRF5fmqJgiPzw/iN65KjkqzTVHG+tXMU9tRk+7fPm1IvkvJhPjx7ipT0iPyNJMpRM5mBrm4ZYYZwZKDkFP1OIpQzLsZgCrNBGNHREFTzHRZB0Qifmzp/8nIXiDLW3VsnXFAI9e7ZMJKXIIggIuLaLUojxs4xUiukPRkxNTJIQIcg6YSIj6hqKKjFpVth6cI/I8lHEjG7LoT53Ad/1SPJl8pKMmfZRlBJ+7JDP15heWmF8ekgOFUESCeOMYeBxxxswEAL+i7XLdG7tY2spvuTyZPM+ZzcfMb3yMvOL1xEFjZ7lkEYipWad/IsbGNNNFr/yKu79baJPNkn9gEG7TfHOXYQJA+vo2UKSqRqYRhEtX8fMn1CZypHLaTijHv54+MXgbQshgiajiwo7j89YwMRs6KiCQtz3ifaOiAc97KCNn7nYBYXLv/4OWZbQ75+xsrRENLAJM5dAdwnlhKEmUrl2mfzFNUpTC+z9+GOEkkrtwhzj4Q7OWMR1fEZWi5e+8WssKd/kj/7yX3PubmMpGUKaUmvW2LW2OXQj5sxFuiOf4/iQkeQRRzELlVmQdIa9cxxCFA0uFk3Ubpe0kHHlleu4fhl9UEIdZfRv+kTtjIVkCaE3QaBJfPM3foXPNn/IsHWKboGcilxaXmemMoU5McmjD39KZKTops705BLq0grLkUUwOsMfd3B7Xa698XXM+jS3/9X/RPDdc2JzAmFOJpoKyOSIyB2hyhlCFiKlCQopqSASJCGJm6AKNQxDIiLCTlzQbRYaJjt//B8o9fpcmprhtNdClhZIy6+y5z/lzr1T7u4JREaDyDQpT8yR+XB4sI8pgSTLlDUNUxRw9894odFkyteIbx9S1AOsKwoPhRYjxaJWmOV6pYLQG9BoLBPYAannoRQirPMzzLV5pJUpcuUCabOBfXTOXGhheB63vvdTBkd79CKfQRqzubdLIp+SJD5By+Xpz+5QU3TEY/eLwfvm175E52zMzQ8fUgpVLi9dQrI0PC8hJ+m0T07JUgdVzxEbIqEU8dOffJfO3i4XPJGTcUaeHGE8Rp/QMOZrSHmDiVeeRyzW6Bx1iOWUqY1l4tTntHuCLAqYeoFQ0TBmLzBjarz46hs8/uAcLxyhCxlWZFMtVjlzWjwePsKRBfrBELGQwx1aDJMIExEti0ilhHaQMCLjhYvz9MSUh3f3MbMpvjJzjf64z9mJTYUShlhAiDTeevV16hsX0IMxP91/l7pSYqI+SbXSxItj9u58ytG4xevf+halfA5rr83xg/ucHe/iY3Nw9Jgsgxl3yGz1CheKC5zfP+aRf4KyUeaFf/QKmZriOBayJpOlGUImIAGaJKPIKpKiIMQ+siyQRDZyHKILPlnrmPzpKbLl04tT+raDUUzwZBs7GPHlS/Pk3THFMKabC9l3dnBGMaaQJ1Y1rDSjIEjUDJPnJxe4Hgokeyd0zR655/L4hYyzXh9Rz7jaaBJYYwxJRw1jBr0eWq3MSEh48PA+S2WFxYsXyWSVxPbIlQyydovYGrK994Re2OccmwExdgZRGj3bhOtGmE5MpuaQnF/c4y+FtynK5MUCw7TAhrnCirvA29ffIS/WUcUao1s/Qk0hM0ymv/VVZpomLe+cp//8c4TxgKUrq3gdD1GVKa/XOPLa+LFO3utSrjUZn56QCRFCMKZ/dMB4PER1HUxBRMGk8/l9uppFriqB6JEKEX6Scjbs0REcwjTGuf8hei7HmWPTzVLsLMH3+jRkmXkN1teXEcWQo+4Z96hSK02jRAmvvfbbzMx9FcPcpKg9haFFYocopkZtYgrfSXl0c5dJeYHnF9dJgZPjFovLS1h7Djk5T3Y+YL/7lP7RIZms0MViz91nkHQQBBHrp3/Ow8d3EB2HSBL42tf+IepGE0UWiCSXUHGRNQkUAVFT8WMRzTRRNQPD1ImjkCSIQRKoFwrYdw7ofv9dxP0OVRHEaoFjUWAk2Gwd/JiZWYUVUUC0u1TjApuSwrHbRc1UclKORFDIZBM/EkiylMAf0+uPUPDoFYvoqsrkYonqfEb/KKAyeYFmdAnNLzPseQxrGrVrc5QvL/NiQUPLmURxghsHmJNVECbYfXSTva0H3I2O6Qgh52JKmEKSCjhZRiLCMAEzVqiqRepy+sXg3f7pXQphid+48BavzX4ZxgL18iKiUqS3d0asyvg9B5IY79FdlGGJsTCmN27TVDVylRxEAo5ns3e4g2ck6MYkg4N95MCkbubQ8jnaJ3sc7TzFdSzUFKI0xpBERr0Wt0e3uT16glmGV+oXefTgKUmWMow8bBKsrkszqZIhE0Y+qDJ2EnJRV/jWjed4+dIVTvrnfPjAoaNpPN064uxkwJWew/KKSiDLOPaYwO6jJBJi6hBGHk6/x8vPvUUzXyDt99k+3MW2HaRyiXq5it1uc3TnPr5rIRESCyKVyTznocwwjZEkkZF7hrMzRsGk2pggP1nHnJzHkceESUyayAgoSFoRUxFJJY1MUJFUgyQDUZQRBBHN0JHGQ3qf3KL76ROm/RS1ohMPHeYnS+Q2pth99IR0qs69rVMePu0yihc4i2XyygKpFxGTkskJcRQhZjkcz6WdunT9c5LMQzRmELtjNgo+tZKCVtSx5ICxkDLYOsSxQxZev0H961+GSg4pCpGihGTkkq83kGwfd+8QVwy5efaY/cxnIIKngBiLZLFAkGU4aUZChh7FVIMAXdJ+YY+/VMTpn6z/r7g4vcx4p40ZmwiCxtT6GpXFBcRqmaR7yu57f41r9XDEiKUbV/EMhdu3PmNWM1hfeZFCeR77yTZxp006U6L0xnMIkoLnhOQ1jfs3f8KDRx+jKSLJIODS5Cq6ovDk/D5BI2RQj/npo5ukkk5Zz+PbPtVqjX27x5k9QslSEl1hYXqO/tDhxBqhRD4vl0yem6mTaiUOxxZPui1yhoLTGnG1usBLMy+h+jUaQo7h023CNKY+OcvyletoU4sIfsTWnUdMT0zw5Mlt2qMOmiAxVaujjy0IXILYQhUVDEkly9eofP3LfHbwAT/85M9A8JiXZ8mSPBYxk4bG5MwK/uISz/+vf51cw0LzN9FSBVeZQDTzREKKoD7Da9k2hq5RyOURDj7Bev/bxB/dh5MulVIBr9tFLau4kwK9isnWqcVBmKOnVGjZRdpjlYFjkyvrhIGPlBUQaym+kFCiSiFKkdMjOuMz3KRAuTRPoa4Si8fMTdisV2BRnOKC+irheInaxgsUVmdQqnUyISOVE4hCJCcmsWPOvvseZ/c+4Wb3Pk4pY2Cq7B61ONo9Qc4ExmGELciM0piQlAoi04LCvKzyR+H4F/L4y43KcotszF/H1S2e3NukuXCBmVdeIVNFgpxKGPXIFprY5w5fevWr9LoD9p4e0ijOMVWrchC4rE9XCXdVRDTiYcDmpzeprC4gk9E7POTB5k84H53gCyFaokI3oaoVcCWXjY3LDAsex8fH+OMIwZKYqy9wPO6QRSGaKBBl0HFDZmSJxQuL+KfHOJ02qSDgZBHbh9t0/Yz5lUW80MMbOPhBwObOI157/u9QLU7zZOsOqShiGCL7rSMaacbe3h4n+2eMnQFOFJOEGbEQMm53KBVLmLpGZIuQRjik1GpNko6LbAlomYImy8w2LhKGBk7vGCsNcd0jGnqDYiHDVDOiSCfKTNRSHTlXRBUyEiHEGgfErkpjromcbrJz+h32Hv6AVU2nOZcntH0ELSNXUElEkF0X0U8Y9yzamkhWrWEYOoEVopoghhLpSMLUNDQxQYsVktRBzskoskFBrFDRCiDEuImAKOvoBZGpqVlmGquk8ksos5d4ljIugiiRBg6hG2AKCnGa4IcOF2+sU59ep35lkf/2X/x3EIUIUUwmCEhkKCmoKETEOGS0sogo+oJeGzauvEirO0BSc2y88zUkUcT2HIxiFad7RqxFWFWB07bPoKBweuqz8fyr5AoVzDhmYaZB1rWRJZkwryGKMf7xEVv2DoPxKY51wurVdRphk6f7R5yeHVPJWQiij2+HfPjB5wRCyJJQR89kZpeW6KkJu+0zxCShhMg5Gcgp2/sHVHJdumFIKadilAsUGlVKcULnpE+71aZRK3Jt9SKdnVOuvHCdiflZ7m5t0Z2UKal57p4+pqKX0Q738YIAlwinGyMJCjIZ89OTrK6tcv/JbexBl6lMxkwyxrLMVLPO3u4x9smAVWUd2dBZmHuZiQtXaZw/oPRClcm3Z9EzgUff/wv0osjGb34DL1dBFFUSMUGSBIgMSoZCo2AjWt9mdPo96tU2pa9No2zZiOcJ1sCikFMYuh5KNY+iamTCiEZJJE08BuePqMhlVmWdsOsjaDmeKAWIpGcpmgWBIPYw9YSlcoXRmYXU3sIJbWpNeHnmEhuzRaxuQq8qU5+fJNNUhCwhEwRSL8A77yMELpkmkYUBcTFDWbvApx/9DXf/6i94cu8BWRhTyAQSUsgyNAQyBEJRJBJSxhmkv/iLwC+HN+zYNGvTCJKGXm1gWyPufvgRV15+jkz0ODy6y/s/+x4vvvoSY6vN7Mo8nWOLqaV1ju4+ZDISYe+UQqWC8eI64aDN8JMTtjbvcB6fUMwbZILJl19/h7XnPP70r/4nxFLM4vws9z96jD9KSISQCbVBUyqQtGPGDKhWGsihyGDYRURAkQS0NMHt9RFlARSJvFxFlXRWpufIq0WenJyjxSm6CZoMR+MWH3/nj/EkgYPeAXlkZoQCOUVFTBOiKCYRwRZcXDFBEQLKhokgnfFng08JfIfn5CbzYoG6OccoSijUJrhcrOLJIY6QMDt3ndrEBUqvTSKt6nz24V/Sf7zDpz/4CcsvP8fV3/ldEttFruXIJAMxUlAQyIItzrbeI+/8ACnYptPzKOWmiUWFLPMplPIomUyoS8gNk92tQ879lNrMNNOaycHtfUoDn9VCDXmc0I187lUEMn0aVS0TpyGy7CPbAxakItZoSGSH+FmK0I5w7x6yvyni2AaLdR18CSHxyaIxsW+Rej7K2CMeW5yN21j9E4SKxk8ef8r/8G//PTONEhdLNUatIX4WkkrgiwlyqiALEZmQME5TxAwK4i/+zvtL4R3sHGKGIsOxS2U2RC3nqUQR0c429SuL2IHPly7M8Orzl0EwUbU6NSFEIaVRzXPywafEXsji3/8GwtevED3ewvssJifIaLJG30nonstkyTRzEyZ/5xu/w62732P/7JRMElERqOSbTJWmKWYazbULbG99wos3XuaT2+8T+x5NEYRwTFWEVAA1yagaGmaUcXD/KbMLS9T1Iop/RPfglKxcxk98fnjnAyIqRIKIkAYYaJiqhqZKaImIohrEns8wHnCQdNGyhEfbjxjtRByKDgkZo8jiijjJi8MK/tYuF155nfmFJcR6CSeLOL61SXjrHrVKwpM/e8Sf/g//goqc4/V3foOX/v7f5fSje9z94V/wzf/r/xnyk+iyjJK2+fl3/xl7t3/I1VmdxTmDpOVz72iP5eY6zXwGSYJn2wRKiFZUGKUpdiZQ1VUsy+HiXJ4LvsoFtY6UjNg86+CIHmmhTinXQBU8JHvEjJBxRZXI5auEekRS1HDEmMHemIf7fZ6/8jrVYQFhp0/gHIA6IlZHiGKC2xqwfecRTx/dY359BsVY4J/+m3+DIiXUNJO5pEQ+iQgzFT8KCcUISRRI0xhFzHBSMAWZGbXwxeA1FAW320X0YkJOyWkLTCYJ48cP6D38gL59Sqq7vPuv/pCNay9SrsxzcOuYqeUNqrkczcU5TgjJvbWOX4R2OGQQRYR+youXvkyuMc/K9W9QUCq0t3eYmZzHv3CDQe+YhaLC1r2n+GlMX0+orCxiT1aIehrtYZuBa4GasTw5gzGWEC2bq0sLPDo9R44ywt4QkpDPbt8nklXqtTqynDHqdUFQUHSRyE+REShLBkU00iTBcR1ERUSURbzYw4tdEmxsYoaCwzALEESJiXIdYyShy0WWyxcYJQKViSlESSVBItcssfpqnrPvvkv3vZt4ZsLsV77G5PQ0b/z6f46Sz/HhH/5rnHAPWdlCVnaRwiNG+/t4e5/QjF1mS3XUzGdxYYGj/X2iscNJ2yc3DFAnahTnahgFkfWFabp3epzudui7DvMVE8d1GYw9LhRNvFhi2VSxaxVcUcUQRGZMnVeUMrOjEM1JCLIMqarilgsImU6BKo3cNOGTc7qtXdrdU9Kyxca3VpAqEEk9Huy8z8yFOS6/cZX//s/+in53QBXo7Z1zrV5lojCP7zhYsYWTemQZSGlCPo1QRIWyYFAJjS8G7/TSLN5JmyDw4egEr3WK3dvF9lukko8iCTSqk8ROh6MnexyP9imGZaT0lFYSUL94ieaFBYRYpP3uJ0idDnmliJFfZaX2CgM35vyzR4z0hP29+/S8ETMbG+SFRUp5mRderPKdj/6WzcObWEefUZyZoB8MOHl0QJj4CCJcmrlOIvuIqc9s1SBKy0ROStoeIqQJrviswWbYH1ASBebKFS4tLWF58Mn9A9IY8qmESoabeeAJjLyQFJEIAU3QKGYSrpCgKip6FHOjvMLvvf2bDG8eUw9NhCGUijn8T26RxTK9okbh7WvkcjK1pTpPvruPfPkC/8c/+yMyt8/+v36P7rufc3Wjxuw//G1k/UNkqUUy3mHrr+5yrbKGK6qookqSaIxGDuuvzRO3Q+6932IlAq0zRE0nSTyBqiuwJOU5iiK6mUharnIaWeyfWYwqIWpR5BsLU/zUzUh1DSVMeW5iGu3mFs7ZACvyyOKUaNxjU0uoXnueCIlYMunsHXP0+IhcmmAsJKjCgGHYJiilvPRbL3D9pa/Tjzwe7+1hJFAESplA2dfYqC0h6zCwOgySEbEEx04HLw2o6xX0SKIgfkF4N+98zuzEPMVCjrHbxxk6iFFIUdexhIgoFekPLcxGk62nmywV5llZvoQmaJwf7jN6eohrW1RkGefnn9I+2kVTTTaWXkT285x2z1i4WGDr3gc4o3OGnkOhMs8Lb30Fz+9RKGbMdrfwxmc8OHqE2HJxvBGGLJIvGUiKQLt1TOv0lLevr2KoGoZmM2p3ma5U6A8HDOOYvgA5TSeToDOyCJ0Ab+BixhFSYqChISCBIBMCQpagSgo5zUQgJfMNpExGVYrU5YRlv4Z4p8ulqIkRKoyDgKJRQBjaiFaE6JkIlsXusE/D6RKEKjwdEv7TbzMeHbH/J+9SDnS0Ug7FqhMPH5PJLqNbPkpfQYwictIEJ08izKkSyrxDdTpFNCNyb44o7PukAfQHPRQtR+/YoXeQkFUN8oaGJmpIZkyqh6iFHBPlAqHvEfe7CHKVYafH7sEZTStEcCNEISWvgqsoqKbMZ/fvISoTrL79NaYKq6Sigb25h+yP6W3tU/lSHa2kUmrmwRRxzl0S22FCFCilUERhaWaRqfIi1pNDamKBer5AbWKahzubOIGDmslMTU5SrTS+GLxRBqNWl/z0HJVrq7j9LlJXpmu32U9dElPg6eAQp+9RylTa7jm7jz9FE/IUp+aRTZ2ZhVliUSAWTWam1mhMT5EpGsO9E6YLOax2C0MsoJVKNCaLNFevkatMYmolPrn9HofdNrtnmxTUFAWXimYgqzpGM48djGA0YlpT2dw947PBGEkQmTDK2JlEN0xJ05giIkPXopPE5FOJ4O4u5USlgkFBqKBKFTwEIllCEhMSt4+ehpihjiRJ1MoLuE7AVG6G1dlVlGGG6mRkQ5dRMCRIU8puihwG6LKFmVoIvXOe+7tfwjq4jfJhkaZW5vifffvZhVBLwVdsup6F824b//ABUj7A29XRwwUyZ5HuVptj+Zyl+TyaXuXpvV1KksPKl6bxzDOCAxdNNNGrZQpKnoJv049CauU8mdVhdnaGbrXEu/e3ydtDVq9sUHdS8qlNkK8gCD7h6IxICJieqWBWUvxmnl4KvX5Mak5w4e03kEvLLLzwIsnmU279wb/g7N9sM/dgit3cGfNvXadQmOTJd37AdUejaijEXogiSOxt3WcgHbNgNJCTEK81IAok1pMS+eIC566F48sYU/NfDN61N7+M1g/oHJxilnIcxS6rL13l4NOfsH75JcxCjpO/+XMEBCLBZ4zH0EjJ6SqxFCMJIYVSDqVWYWl9Az0SSTyXRFcwS2U0AfY2t5D8hMXFVeRSDSdIaZ+3aPtH3N68x6P2U8LMp5So1LQSgZcwsgLO4zOs1CVN4MLMFCf9AaVqFWto40URkpg+G4bLJvPVKXq+S9vuU1KKlMUqRirQUJ81kY89j5gMTdFpNCboHAWkUUxCQhallAITKc2oKSbRcEwtP0mumEMyE5zRmP7gnEH/gEY+5dzdYaiCgUYukCHXxRJG1JQ8spFHCCFMJRwhxDQiwtSlf9Blai7Pc89/CWW4SHZaxg8/5rlLJYzrM3z04UfcvXnEK9dLLEyZCGaEWkmp1spkpoSiywxPYm5tOVipx/pijm77hK6TISoqG88/T6Fa4Plxj8TdJ6yo7IxaDCYMSqUiSbHEUTbgaWdMTxZxbYFLc03wXNJigFAwEY08s/UlTs9HtO/0GNVGcFVgsNfl7O4OM2YZM4KxH0ISE6Y2niSTleqEgY+fWnRGR5SyIlIqIukGuUqZ+ItqfQ99H7NWJfNdPjvd5dr1DXa37+OVBJ7/e18h6QS8vnfOaNClVCrgpzFX33oHvdzEP7NwM4nhuI8a2MQjD+9sQL/TI1FEytUap4fHlOMGKgnVwizHx6c0X75MWtb4H//1n7PvbhLJEZIsk49UrhUuEksJQzHEnkj42fZNpExia/+EWJORU4FQVtjvdSnpOSTNZLG0wKX157j5+CGKLbCgzTCvThAELtPGPOuXlvnxR9+nqIj43pjjvT6ZICCIEmESUBB1SrGBn6X0+ztMrK2CYREKMrKnkQgGghwxZJex0kW7KlN5dYnJN0Cc2UHqizz/+gabH+9w7dqv0n18iE7E9MY0p80PUJdcqmGelfo8ykDE3rFx4oz6r8zSDt/j59/5OQgmv/07axD3GFpdZClFEBP8wYCoL3C+43D2JAMMTuOAxkyO5akqxztdJipL+McS4t5j1NYRaysm0y9e5cn0BT56/4jjTKPdOac4W6MVwf7uMZcKJY4e3WXn/b/l8peByEAaBIStCM0pUBBzHD7t8NP/7gfMXlzAfTRAG6d4WYohiCiSiJ7G6GJIc75C92iI7w7wkzaaPIsiq9Sv3kBeWubBo7tc/SLw2gdHaPMy5RuXyW8Jz1JZhmNMHc6OHqFkDWIvoZDpyF7G9MwkT+8/YNQZIg0iyo1J6hdXiNyQWmOa1uNjcGIEWcBhTBaLCKGELig4+2cQB5zv7dKcXCJXNGnkqqxPzxA4Dr2tM0RJJ/E9pFTg1N5lUtGRE5FUUXGTgJ5loyRgmkVqjQa25dDqd3A+/5Sx61JONTYa87w8d4PNz56QT3IUMp2qbmLHFqau03V8BDmPGwWIWYKkSmAo+E5ApA152L7J2y9/g1qljv84xOpaCGqCUAyIlxIuvLmOfmUCbV0DYpxti0effYhvKZzs79BcXuf01gmtbgdlw6c5rzNqaxw+PiJvRyT+HJUry0SzLpIjU5rQmJuZoTEnkcVFjGIN9+4J0fmAUStj0HaRxDx6SSTvJuSimEalydTGFcL7P332lffOWarIyEtFGpcb+DJookbvbEhhpoZdVAhyeeIMclWD4kQRwUtJxick2w+whwnRrkcSBEyUm4haTM0uY/dPcHZ71LPcs+NtFiFmKbIAShYjRT5Hm3dx3RFKFqIIMWli4/ljcr6LbOZYvnzlF/b4S+Htnu9x1G5xfXqCjfXLWE+fsjgxRTc754fvfpvT7R7/+PXfRXciBmdtetsnnPUGTFUmyDmQr8jEpwM8y6MnWjSqUwz7+7j9MbWNdVauN+jcesT4+JDEicDU0QwZvazz1q9+hd2DT2kfPMHqDrjx6mt84+t/nx/8h+9yev8uV5qzyLmYB1af1qiHWikRpAm2Y6OmIHaHCJlAsVxg4A2J0oBlfZpZ2aQp5pm//hq7D3ZpPzygHCnManWcyKNkNNDnlzjsnDEYn+EKDrf9EUY95jf/8TuM+0fs7t2hs3fI+InIjLqIXpG49q0XMP7BMsKUCeUco60n9P7yDmd/vk2TJn0ZzkYtcpMz6GWVuZU5xKkWuXLMdHONo08OefDJJubEkNxEC6GmI+cnOB93sMJjYrPMVHOamz/dwXo0YjbTqEo16mWVzcN9OvikgkJT0xmf+Hzk7qDmanRae1xZKDP/4hrBcIKdVsq/+/NPaI9SJkSFRuISb7Xo9loUxYxXNy4wcbFB52CXzfs/JP/4CZFs8uBpi5cmXkIiRzj2qVFESlM6p10EASrkMcU8ERa6ruB5EUIW4g57iITkhQRDADELkYixei2cx/cYSbD0C3oUfxm8S2++REESsR/vk1dLGLki2tV15IKJ6fo0CwZbx485HRwjSSlGBnU0orM+me0iBQn1ch3Ji7HHYyKRZ1kEZHh724xOdwlTl3E2hgmTKC8RGxAlHtv373L3s8/onraIo5i3fuXrpFWN5Zc2qM41ybIECYGltRXylQKSqZKpChECumziuQGu53Hcb3NidVFkmbymM+50efjRB/RPT6jWawReSFWuIAcZhVRirtxkZXmNr/zKtxBUiUiIcM2QbeeE9z77Hj979D53j+7w4PAeghyRrxgUmmWSQoVMLxMLOZKRDHaT448tpFMDbxQ8a6IsywhNjUDxkXUBUyvh7vVJeg71SpFcTeHSGzXy1RhTA8tKkcwS7ZFEvrzC55+d8vknXQ73QyqNKcqXl8jPl9GrKeVpmdTMY1Zm6Bz3Efpd6kqI7ViM0pCj3hDLEnn3u5tEYhmxUkQ0RAYHByxmMU3XYkFT0DyXs6MDmlNNVtYWUZSEKBqQr8CBtYUyZZBvlCjlKxTUEiDiEqKIGgU5j5ypRKnwLLVdVpAVDUMyqWhlimIBHRXSjO6gRSTFzKxf+IU9/lJP3qfODtGwRf62SKvrkbs6z97eY25++HMa9ZSvfetN9rf3+PzebaaiKsXY5EJ+gXFgM3HhIo4IYW9MvdpAWl9h584tajNlPOuU8fk5VuseBS2HUlNQJzUm15YZ5CV+9uAjdg836fdbSIKMK0T81/+v/wo/SFAzlRfXn6PVSWn1TojpMAiGDNwMP0q5NDWPOooQkwRdVBhlHoqkUjJKNEsN+idjFFHHLuXZePVthMczBHvbyFGPVu+ATNFJChW+//P32PPOEDMHMciQSjFtb0h9osALL77AVLrA6V91GKcOvfaQ/E6O0//nT7DsI4qFJtOFdZrWDQJ3izBzKK7OUvnaC5jlHBfyF3hw5ydkpw+IC0O0goSfxszfaOBnEd07LlbS4v7ZmDEJK1du8OnDFps323zr9a/TiAPGm3cJ7TaFUgF5roCaq5MjY9SOKMceRdtByjXYI+Ozhx2MvsfCXI3rN/L8/t/7bQ73z7n37/4jV9dK3Hh1lU9v73M08Ln/6RFXry/T3z7hbNBnaW6GifVZqq7Fcn0V7zBGFUwa5ipx74yGqhFJKWoigBcilivsW6dYpBQ1FSVRMUQZJRXRUYhlCQ9QJg2aX7mMncT8on8Q/1J4z0ct5utFVE+lUqsh1CboP/wxfuDjJgIffP5DLi1d4oXXnofjmN6D02ex+aKI1KiiJTFqqUT3+AzdHXPh1Rv0P79DomWMfZtQTFAE6NgOsZNnd3PE5zuP2ew8IodPSS4wTFMiISUYD0njmFAQ+fzxpyxdXUHNRQTJGNkQaeRKjCyfOIrRUtBEhWapgRzYDJ0xxBD7GbpaYHruIkuvvUqaN5i6eoU4E+kf3cNPI8QsY9Rtc9hrEWQZOV0mByiCwurSOgO/TXVyFvsoo2ONEcghlwuMdx3cUY/IaXHknCItFCh4RWJBRZYl3Ayufukyghjj2ft4BEzk6gSyRK83JD+hMPYd7n3eR800rtxY4MaVAlt2F7Oe8eDxLpmcksvr5AOJysVV+p1z9s+7WGadT/dc3G7IgibRLCuMJZfjsY0fCOSTjKKQx+708ZMhd37wZxztWWSjkPLFCqrmcbGhE0oSt3YsKn5MSapwO7Mwrl9CLOVp3fqYWSOh2CgSOSKhJRCkGvnyDFPLsySdDmm7TSfx6aQ+4ywDWUDMl4nGPnEskwkmQRrjCSGxmiEYKYEX/sIefym87/yffgf1M4fgrkvrzMK5+TE5T2Q+a+AedZDPRcapy93TTeKuQykWmXA0BE1nONhCMxskpyn2zi5n3TbzX36RxBQ5l7ocscmZ3yUKVZI0pvh4i1qxSS1ReFmcoK5V0GQdcbbG9+7/Lb4acigeEcoxc+vTRHKGoqkIisqVtcucHp2zPrOEdTTAG9pI5HDHDknoUZNMtEAmllPWGxcReiHt9z9AKSjIcYocKbQsG/OVL3Hpt36NWMgYjQ756893EPQS+bFLKIZcufFV/ul/898wUzjhyuwVnCmJD5/eJ6+YPP/Sy3zynW2cfps1YYnxgy6mkiEIGl1ln15vm9a/3eON3/s1/uV3/u+szlZ48SuXyfQZJpqnJLJDb6eLqIe8+NZFmqszfHjrDkd7DqhtFjeKtGWPW49vsWyb1MYBRlVj/Stv8vjmPX71whT23IChdUhdM3h14goPPz9gQRO4sJBneUOhb2k4pybTWo5XXqyhXrIRIxvr7Aw5SamMXP7urEjD6FNYmEW6vsr7dz+iexYijDwq1ed584Uvkb59gb27TxgMe1y6sk6+XOPJH/8JRklm75OHuJnK/Mtv8s7v/R712gycdNj9V39CPxJovP4Szdk6aUEkkBPK019QcXYQheimwXn3gJw5zeT0AkefnFGQdJrSJKIkI3kKb1//Mj/6yV8hCAKh7DKxcIFMK6NLJs5Rl6JukhgatdlphFyMsycxiEOSoozrhiR+iBnJRIMeZbWBlClUU4OiXscszrFWXeVY6PC0d0ycCjw92md1dp5WuweTEjs758hJgFIAXVRoTM4SdDwEX0AXVDRJQxdkDEmnYpaYylcJPIv9nQfIEgReTKhpDHsiq7JIQZJZrtYoCTKuH6HLBmmWcv+9j+mcjZidXcFL4Ul7Hx8fO/W4e/SAE6tFUyhRFksUEjCEAAoSR8E53aTPP3hlDVXYY3YpYnZZ59P9e9ihzaXfbyIqEgvGIrLcYvpijaPzQx5vttndy3juhQVWn5viY+sm5zd7TKQgdm2STKPq2KxcaDDsO5wdd5i/WGJwNKRzvsPKpEFZ0BDUhKHvI9aqeH2Ho/Y+hcIKw9MzJvM6lUqTbFZDMy12Hx9Tn5/ErmjcufeUo0MHq59R0WXaY4+4VECZbTA7XWNahVypRHjYRiqYYAX4kUtR0NDGMe5hD3HlBll7hLyxwOS1qxhvvAz1CknnBHtvD9P9gtqA+re2Sdw6WU6nmi+DkFBbajI6e0DBCclCFSkS6R1s8Y2vXeFkZ4ez43MmG2/h2A1OD9voikDt6jrltUWigsbBjx9Ry3IMCw2Oh4+IkoSpXI3puMpUUqIcF0niiCyxGIYeRqPB3/vm73DAOZ//u4dEicNobHPn0SM0RWJiYprEGlMtVjjYOSXph8QE5GIDLVPQ0RBTAS2VcMc2J+4hsWCRiT4FyaA0PwmNOvtH+5ztbvM3//V/y/WpOezTQ6ppwqRQQhVSSGXu/Ogp5bDKrQ+e8un9W/RbfeIkRnUlngz2UWKJ1ellXlt8mYP7D1HnoC318OsWX3n7IsXlFu7wIQsLGZVplw8ftMjPG4iLeRJ/THfsU1qc5MHjXQ5Ouly/eplq1SEXSQjnKQ29yMRzBdari1gf36a918J8CvXr82g1Dz2IIDF54fVL0DkiCQKi+Rof3jrn5JFAWBzy4tvTPL8xjf3wFPm4QDYy2Hx4xNw7G9zrCnx6HLLYzHj46JjjoUMQZ6iahIBMoVhFKORIlYy0kkMyJEhFkk6bhphD810uS5OoQgbb5/RP/5LDb/8ER0x49R/9FtqVC0R6jKSkJLUKSeCC8AX9STFRBCUvUX/tIufv7zB4csTS5UmK00XiR3uAQClfIxY07tz8CENRkOUJBkfnlOoXqCyvIYsh8rUNhIkS3cNjkrFHMZaR+gFZ6KOYOYpGmapfo0kVI1KQZPBEn2ESEaUp5fok2ycn6IKBnwXEJGRCQhAl7D7eQxREhHHCRKlBpqqY8bM+4pyYI45TsjhBEWR0QSOnGVS1MgVdJcHBaEwgX16jfGmd4X/492SWz2i8T7VgcFGboR/5QIokyHiOgBEX+eRHt4mVjHH6LLNXlmSm5+c5Pz7nJLF5ZJ/Q0/r4xQBh1ue//N9/jcA7pn90wJ27+1xdbiDlBDZezLP0pSXirE233aUpNUmFmPZgyHHLZ7/9EM/LMCWRJ3fvY5Q02scWcc3h8oJAoVLB92KePNlGnJe4uD5D2HXoPd0hp9nkJicoag3SQ5fuYYaUj1l6YwGBhHPf52xvgHHSRRMSLuoqgRAzAK4sLqKrJ0gE6E6IoYiUXBnNF5FDSMIUIYXMi2Bko/Q8yomB1Quok0clJU3BHtuEWUZjbZG438d5EiI0Z9CmMqRmjaxYIlBF1C8C75PDv+Dita/x5JMPWV1cYuB2eHx6AoaDJwxQRA+n7RGr4NhFnrv2ZWSrgKE0sXafECQSWRDgbT6mP1Ph0re+yurvfYP241tEHz1G7Jo4XowVRsSijqlNUZBUgtghyzL8xKc97DH+/FPutR5RylUZ2zaalCKLIkkYoMcSoiCiZTJh30cJRMgEcmoOLdMo6jqe5yIlCVkW4wcubmwTWBGyFGNHPoOdfebWVrhUm2R4dEIzZ6KWChhjHTUNCdOIWr7GXHWKYeTxoLODK/rIgoKTeIjA1tkBg8Cl4wzZPX/AUsFgtr7C3LpJ5t9BjM7RqzHPfb3KzMQcUSbiHoxYLMUcHQ8o9BP277URI5EoytA1mUJjlnbb5qwzJArHpDmFV39tmcm8hB4GmOI0g/OYD9/9nGKiQi1iqaLhhB5JpvJwc0Q3C3n9t55n9O4RxoJFdapK0HW4d+AQehm//pV5SrJLa/cBVaVELq/w/mefc+y7yIqAIqasrc4jbLuYoYwQSkiKga4YZK6N/fiQs5/dZb4PyTilJBQRxJg9wSGarFLcWOb6O19h88O/RWr5lOrLFDo2xavXqEw28dNf/O77Lxdx2r9P/3OHpnwROysye7FG23XJTVb47N4dFMElHlgISom1hXcoNK6TeiM6O4fg2BhSjljT0JtTKEt1tLVJDGkGORfhPn2PxMlTjWSkWKYyM8X8ldfp3HpAp9vDJ8bJUhQ14LXXX6JkT/DjP/iYMIvI/IBqXgNZQ0MljEJIEpIoQs4UwiyiUKygxDL22CaOY1ISQiL82CfMfNQsQxYzgrGDnstztrnNTLVEnD1L8M5XK6htHcIxpmKQV4toWo6NF19k970OdhySpM9yfkexh+uPSIWUPDLTWo4VDU7f+wCtJTF1cQatoWNlXYyGiFQeIopFqkcpwrkHhwIbs2vUJhwODwacdh0q9Un2D8fs7PbJGSK5QspsvU6pqSCZGZ1zG9EXiAKf0oTOoBUwFiyycoxakDjrpfQcqF/QEP0uv/Jr1+jFx3TPRhixSa1a5upvLmGGA6Q0YDYrE48UcrmUc9siSxMKeg5VCnEHA6arFcZenzgcwbhNpCekcYiiiKiqiqgJyJJEmAiMEw/z2hIX/u47iNNF/HGXROgi51MOd26RP+mzOjGLXipA9AVNG0oTywRtldPzNpX6LEauwXhnl4enB+wGNhIBMgXyYp03X/wVTvbaKIlGWqgQuWOyzCGaKrH0979M5ZV5Oi2Lws0jgkdPSbsWa7PL1AMZJTVYur7C1ugpPa3LULNQhBS9UGL1Ky8iXyhTGbtcXF+lc6dFkgbEToAuStT0AmpexbJskjjh//85HZw/u3YSy8iCgCgCAoiaiKwqhGObOA4RJZnZ5hRMl/GO9lEE8DyHk6MD8GMKmYavSJy5fbp+i89HO+w4JwRihJumRJmIJEuImUQ1SXhJV/mSrjJHiqCLqHbKJ3/S4savL1BYi0m0EUl4jt87wwwUWh8foVdNBqcDHDti4+oy/ftP6Pl9hv2YYQvERkZjqkLkSwzbLjv9Ls16gYlSHdM0yXYdbly5RF4fodQzXNFm4etrVIc+/ce7RFaXz26dsdUaUWlovHn9ed587jLhwR6SEiNkKm6okeVVMkMmDULUIMO0PIqpyMpEBWc4JNY6PNr+McuNN5GkFEUXEUsppYZM0mkT+i0CHFwilLKBMVfFz/c5at0mnDhHLknkhypHtz5CLtTYmPod1PIXdA3oS6/9Pqcfn3Dr5j2yWp3+3oDwcIzfcXBlhTgKmSzWqU8vYSwsUMNECTKKikzv5mdYJ0dIYoasSbQO20w1Z+mcfsat736PYuIyW5sil1M47HT50a33OB4OEVKBmXyDQiYT+Bb7vUOmclcZDxwCKSIkREFATDM0SUZDQooFhDRFkxQEZBRRJRMywiQiQ0QUZVIhIxJi7MBhEA2QkxglTagYRWJBZNzrMOy1ySIbMU0x0wwtg5Ksc/1rr/Hdn/2QJ6NDOo5NLCggQADECKiChJkJNIHpyKecRJSLRWrXlugZMVuP9pg4jFhaKuFFLjEhfssnGYvYTsrEeol8I09tJkUsy2wYBT67c87Xvr7BxbkRe0cjDF3B7SV098aUaiWKep18ZZZPfnSLMFFwPRdVF+gnEmIjjzYZ40o+54MuZTHP5lMbJwY9g73bm4xxqUtgVgqMXI2bN7dJ6xP0U4lSrYJ0PqIhSSxXmxSDjCR2mJuUaOQDjKQHsY511mX06VNqoYBz+pTUb+FnNpksYHXOiE4PCSd77Hc+Z+qijFxQMUOD4ZbN2fYm69YIof4F7fNSnsGY8ll5dZXmTBVbUxg/MCmUF5gc6cxvrKHoDfL5GqKbUMxkUhlONjepryziRGOc1jEP//kf4DR00quXOdvdR6tW+WrjEr1hF2m+QiNXZqe9S9c7BEkicmyENMIOx8g/P2Kr+4TDs2OOjraZTQ0UQX0WLaQIxE5A6DuYgoSQyWSiRpCkxIQIogCiSJwEaCkIWYwuKEyYTVTVxHcDWpmAWM+jmjX80zPEXJUkTegEIYtvvMaHNz+l/WQTX5Z57rlXuLl/n93eEUkMqRCTZDFZkqKRUs3laOg5hMDnMA540OnAXI6v/he/wcnBEx782zY3Xi1QnvLITxVJGiHibEjhYkronJE4Bjk0ZtfzFGbnMJQpTvfbhK5HMBJRqjJWUsQ+kfj05wdUykMebR4jRjEfDc741W/OISUj9FBAnxbRRY3l60sEIxn9yQFzlSZzjTq7Dx+hNMs4fsrNWwOGg4T67Dx6PU/T98nnRJRmnmiYEMsqF268yXVd4nDnEw6PPuZkfI/1198maduYkotcUhjmnyApNqmrUiw1OFVb+OET7m/eRKl4zF29xuHhMeWFPCwMqeVVMu8I9+kuxRcX/tPjTTp9jlqbyHWRm0cf0Cyu8/Y/+cd4fZ8f/bP/nsXyJaTCBP3jM1rvfoR71qZWKXFyvEPh6rfwOxon20ekg5jyuM6Dg22eto65PH2VsZUgyTNUF9aYqqXE9+HJyUMkWUWpKGSSjN3qIDotdjZjhiOLWiyjCSaqmOFnAhMLc1jnHZz2EDEUSREIshRB0f5/iTPgxA4SAlkmoIs5RFMnyMvEvkClMoc+VcOtm0xVJriSrxKOhmyfHyCbAtrGBbyzLR4ePEGQRQzHhkxEkRTizMNPfUIy4jRBJsVzRJxEJMgXGcouo0zE6Q+4vCjywvoNTrcfEztjTk6GXHxlFm98hB9EZL5PMI5pb9s0JkWMiZBcXuP+3W0ePu3hugJ/57VLOGS898ObZFaKc55x+WoVTSvz8OCUpiERagVEwSXzEpKRSqtnM7ZT/BASJeXKtQUIU0Ix4t7xkF4PYl/nysoFznyPaO+cnAKCN2JxuUonF3HedjgXIU012nZKGB0zPTVFmh5y97PbTOlT6M0ZCi/liMYelbDKWdfizD1B70J+RWRicRlige5Jl3p9grQWI2gO/ZPb/PhnP+Z3/8Hv/qfHKz5ucXV6hbQocTrpUqtdQCksE+/Y5LQmudRkqrnAXGwyuvkIxQvRSjA5O0USjkkEB0PLIaY6k/VFxvYWg/iE47jAwsV1ltffIkxdZNEmGLioqYYgG1h+xFhw8EUJPUrwRmOE9Fk4ha4ZmDmFXFFlee4C9056KImKJiiIGOSnmhz0O4xCi4SYYmYgCRKCLJMaCl5R4H5yQBQkPL9aQdGH/OSv/4JrC5dYnVpibnaO8SBi/tol5p+/wlRnhz988n2SNEG0E0QhQ5CyZwvVmYiYJWQIzGoT3MgtslZq0h5uI0wp/M7/4XlOo22yyqcEcp7aSoXuGbz/nQPs3hGz8zI5vYAUTiNbPazzc6xel4tGlcCV2bzXJm/qrK5MUp4wkToCxlBgoVxicTUHpsP1qVWCxCPwLOwkRvQVGsUKiDMcHj+i1RtTrplkaszcxSJHO6dIpsjG+ixRoNE6GGENe9y7c0a9WWKsWSyuFFGrVeo5gf32IX/znT+houaQGHH95RobGxc42dlGUGUCVaAXWexZPXzXQhEFDtwWk+t1aktFGmsTmOUid+48ZNDu0ueMcdjD8gMc08fXv6Bpw6MHu1z79ddIKwmi5LHbuc+6o2PtueiCTDr2aH96G8kNiVyLnKTRH3RQF6oU15dRJIv48TGJJVOUCwSWQ5B5bPV3uCANmEj69B9t0enuMT7pcGP2OpaY4psiH259TJz4GLKOFwUgSkRZgqnnuPGlV+g5Q4adEamdYiYGpmAgiirvfPlr3N55wmcPbjEORyjIqIJCImZ0whFH3R6DyCbLZDaf9NFSgSSyUAcqyzcuckCbv7rzXS44u/xvvn4dryCwJ/ZJ0pBKplIQVTQkDFFBIkOKA0pSgWulVVblZTZm11FzJvJKH6UhMts0CCQFLVdH9JfQF/LUPumxdaeN108pVWBNn6TQWMB2emh6jDNucj5MiL0Rs1Mmb/7qFZpVk/c/v8Us8JVrM1Rq8PnWAZeuXCIubHB00mP9+nV+9IMf4UU+s4sShUqJSLFYXC7y5W/OEtoDnu49YXqlxFd/4w32Ntuc7PwEMTNZLOfxvQCjVKHUaNBxA3RdZ3qpwXB0Qmdks7RcZePGZYxCnkI+pK3H7PdadJ4+4vj4iImJArIaM64EvPLyPMWpHMV6BVHLc3rSxeuHnEUnHJyeU2nUMFWVfvoFhUvnlq+RFidx4mP65wfUK002H77L8YdHfOmVVzHjIodPz5CyDHO6wqnnMgiHzGpVrPuPaN16TD5UkMQExl0KqUZenuDUG/PB4x9TMFTsVp9B+5SV+UVWXrxB97xFyx9ydrTLuXOGn8Z4RPhJRIqA7cV8+2c/xpBlVGSqQZGqlqesFanU6pw/OkQIYyZzVYxMRIwzFGSC2MeSPLqJxSB1CWXI/CGKn1JBJowltNObHLXPeRC3eHpgs3zvfd69/3NGQoQqZ4iqjIiIFKRogkQh00iQWcrqzIVlmpUVvKGB7hRxnmxyfveQ0tcMHM9AKhQY9w7ICzUuvzDJ8abD1FKDYlOlG4Scn3dYvDHJ5qMT/uw/7pNKBqNRSrVks3X7FuOawqQZMH2jQa1gYeQz1l8qItZbVEWRUWDwg59+zv0HHaYmciyunjF0zplcEJCLPXJNBdfusvryAhM1A3PKZT6EtfUqR7ct5i+uUm5Os/jiRaJiwL0n7zOwx+SLJqWyznA4pueOOeu10Uo6f/2dj2m3HArlKt3hEK2goRVLdP0WSy9MY4kWRmqQpiZJWsDQ5yhPzKBnIcXLZXp+m9P2U4qNLyjuaXDkUC11yM/pLBRrGEWZsBmw+tVFmuVlvCOD3tY+669/icraEvfeexfslKfHm9T3t1CH0FSKSOqQwBswXWryzsYl/vzmd9g+v8dHjzIqwSTv/MbXcfoD/HaPZOgSDYYs6DU8u8dp5uEQ4xOSChJ+JjAat6hjUMHkojbLUnGWxYkZmhcW+P4n73LeOUTVJCaNMrbrIGQyhiKQFlS2++f4YkwoCtiRhw5IgsrQOeLznx/gEBMhoYQ2/+7H/5Gbm7eJ0gRJAi/yIRUQExETnTwKeQzembzKGytvUC2vMT48J+gkMAoY3jqi+uYVKo0qMTaOuE2xMs/IeohqSsxfvsHu8S6V2SXyKtz79AMcOY8nRezstMmpArWyzs5Wh5lGg4WLCoo9BgGGWUR5ZYq44pKTVIwDibPjXRRFoN7U6I0OEbSI66+vkSR9fG9AY7aJYQRoRZHdrXeRxgZXLk/Qe+AjxBFXXnie8uWLRJLF2Olw9/5HhNGQRsOk27OJkoDD41MUReH4dEiWidjnffw4YWZlgixJiSWJq69ep39ygi4WkKQZ/H7Kazf+LoYjc7p5myT9/7b3X7G6ZveZJ/Zb683vl8Pe+9vx7L1PzhVZVWSRokhJZEtq9YxnpBGme2y3YcDw9dz5wjeGjWkYmCvb6HHosce2WjOtaQWKpBKLoVi56lSdfM4+Z+f45fjmsHxxaMCXJOACRgAf4Lv/Ln5Y71r/8DwDCq7JTE7w89mXA2/l8YQ7P/uMa9+8QOPVIk92H7J26QrdKCEpGPj+hFprDqdWJtJzKBiMh1NkEKKFOQtGC6KQOA0YpymzYpFirUXRrTAb6jzcvcPq3GW+aM8R7J3geBa16iJJnjOYjQhJSFQOQiCUQGiQqQRJhoNgzWzwytpLLFdWEZMZan/MSl4HO4GKRpiFBKqMKppERs4Xp09YcuY58s4QmUIoDUMqlAYzYrokREBChiMlh71D/GSGkUOew1ilhICBQUEohEqpyCJNUSKf5fRmRxTn6sh2CSdrYngxureIXDVBdanNm0gZUNWhttAiOglYWrqFadf45IMvcM0qay8Vcecn9JNdXN3CUyaXLpbZePUCSecUX0zwshRrsUVUsCGD4UmXfGZw45KLW9S4dn2JWdjGrBnoRhlv4pElFlGU020P2agImnM6qcoY7fexVEQYz/j845+Rfv4hk9RjHI3xogBURNEusDRXZTqbcHrcJQlTCiWTcT8jmaU0KgVyPyGyUl566zydzhkvX/saRkcy+GmHONSZP38DEhM9aJFPc8wk5NziKgM1+nLgLe4PKc8UwY7HYE7HTx16xzGjpxOiuZjawgZ6W+I93cE4PCQ/GzA9OeOb3/gW8Z37MAxI44QMi1nyYrZzd/8ZYehTtat0wxkHsz06P9mnpkp8+6Xvkhs273/2EV4WEBo6Kot+0fsWpPkLW3pbmKzJBldKS7TMJrXUwZtMGOwfU9IkTeHQHw7xswHr517i9W/8JkdBh/aPBvjDXUrKRCAQhiTLE2KRI7KMDIiBlBxLJEwnA0hSLGWQkBGInFiBKwQlCXkGUkj8achp5yH23DLN25s0tcuYXgbVeVR6iRfrIYeoWYQyykQ7z+iOhqTmPeKKzSzL2Hq6z+2vzFNZWqZeS7l0q8rz5xPaPcHrF5cZmD6n3ozOIGIUx/zW1xbJs5SgE7D3SZeC6fLKrRbjyRlFxyNKI6qlZQ53Ij5595iFeonxwEfogvXbNtVCkUF3QjBKcXSbw+kpp096RInJJAiYRQFOSYEGUzemUSqjNIPIC5haEUgLfzrDyQQ1adA/HtK8UsOpFDg+OeWtjRqzvQlP/909olBHfLOGqtWoaqvoRpXepEjFK1EuiS8HXtfMkUnMzv1d4qnDy7/7Df5f//v/E1dL11hcPaRYSykIBykUp1u7OFnG1bk1OGiTeII8TChLG6NYZm6pgLfm8tMnPyLXParSRWUNRnikAsxygTsHDxj6CYM8wJMhISmSHElOLtSLU1cJHCRVzcTKBd1unzCaYCUJtXKZUqFC2gsZB4qyU2UWxTw7OuBsfEwwnaAriS50NF74mmW5BHIKSGpCoquc1NBRWU670ydKM3TTJc0TjDzBFRJHN8mUIM4UUZai2S4GBRbrTVAJh16bYNyhsh1g/dkh69/+NkFoE/oCaRtYJ4f4Ox1iccaJiFBzgm+9vE5nMOXxh0cMHbh28Srt9n2+/vUr3Hi1xSTcpR0lPDgLKc6b9JKEzcYK3QfPmC9UWd+oMfUnpGmA54+ZTBIGgw5nvSOG45BaaYmtxwOkSrj+8oS1izqmYdGYb+DeukBzU7D7fJfxwINMUDQ1lBbjxRFhnDAMxzTnLHTXRSKRYUwpEcypCuWgwOqFSwS2YnyQwtjm7GdHTD8dIE+hWqpSb55Hn6vQfv9jzOEUVy+jm3UKi+tfDryZG+OpPnguV40bFM/mWJ2sUzPqdJ/v4BeGXLj9NqHmcO6f3iAfHvPkxz/k8KyPih2qbpNE5mCl7M8O+eTTx3w+eIiQGWWnhlA5XpxhYZC5FllRpxO16WQj4Be5uyIjFymonDRP0dDIlcJLPGapT2vOpllfR3a7DPunaJGGjBJcYTHT4HHvgI9+/IgsnSEECE0j0jUkMWaaYSKIlaAoBbmmY+YZk1wyzTICoZOjIVVKRk4LnQVhUtZsvDgiQiGkZL7YxE501CTCe/SUx88/5djbo3ZkcrVXYHmSEA8E3Y7Czw65Or+G03B51nnI0BA4VQvXVtS0JgEVjh4/4+R0SDLLuHF5hXrZQkWgk5ILsNwSceqyvzfm+z/Y5sJcifPnI4Koj+VqjGeSydhhZ7tPksDyWoP5tRbO3VN032b8eIZabhKnIYlp07j5Ouu1l7mwt8eofcLdT37O0e4T4jBDxmDZGr4XY9UdLs7NMxjPGA2mrMUW5/Ul4sDmlYu/RXmxyu7RFp3jPdo/3yU9jtHlPO5KE60xh793RO+D+zTDDCV1ss0Mc+Mav+zZ+yvB++H252iug1aSDFQXq7/LN7/5TcYHfRpalWptjpPDpxQubCCXDaiVCHcrzC+tYVAmD2Hc7aOUz+H9e4ynfXRgnAVs+ympUHRVhMgjwv4xlXDKNA1B18izHD+P0WSKFJCKF63YF90sk6mhoFFk9aULuKHJ0W6HUTLCUIKUhDiPSIBbr7zC1skz4uGYWeiRpD7TLEaJFCE0DKVIScmkQDMkxosLBZqCKIpACGSao2kSW7eQSUYWh4g8oyhdXj1/nZbu4FqSsN9nGmdILSNLc4aDKafZAH8pIT+N0Z97aMmU9sopC2uQXCywebPK8toaT+4e0hsJnh/fRdVSch9WNxvgJJycDjCpUtQCWk5Oq7BEVVT44sEjurOAW9eWSBBEqYMfxIRJwNFhxGQChgadU4/7P9/BinXSmUfvOOL5RyHlxgp6eQVzbhGtukK1PE95NqW+donOznN6W1s8/9l7aJOAXEZIP8PWJFVVROsMaeY1LlbW0ctV8r2A6UTnXGWTooTu2VMKkYUwDRpGhcG792h/fpfaJKYBJGGI2jkh/IcPcP/Xv/X/f3jblsc4PcPrp1TUARtZh//grT+Evs/g8Qli+5CBnnMWdSDaZXpywI2FNUqFMve2dqleuczlP/h9tE6HQbhDcuqR+xnHPsSkxCrFUiZCE6RZRpIkOFJHZClK6C/MnfMMiUDoBlGekylFRkpXZAwcxfOTLfSjCeGwS5jHiERhahqZ0AhFysVbV1naXOP54wfc3bpPGCXEZOTkzITEIkcKRSYUicpIBVRqFUSUMM28F0k95AhNkOUvHpAyE4BAB6aTEQezbcqRQ6k6h1Uv8vb576DuvsdsPGJh4waVq69wtvsudd+hphc5GQ5oaxPe+p9eQ6woth/67HdzOmdjMhJu31rmYNxl9fIcnzz9lMvr55m3Fzl99IRqbLKUw72//4xP758RojjoZRTdgJOOh7R1ptOIySwFoZPEitCP6O0dsVS2cGXMbCj5/COf9ctrXL26iV0skpsOuSqTziR2Uefi7YusmJcoPcxI9o4Qysf3+py9s4tybZqxy3JhgQXRIB4L7vzgIzJN0FicJ49i3NiCKMUUYHgpJ589ITnuoVTAKJvgoBG3R8SdQ9xfksdfzatszsJydPY6xzSWNeobFTIzQVo6Rd3GzQRlN0HNV2hHM8qmS+9n9xHlNrVikdX6PJplMuueMhwOWGwsYJd19IOQKA2I8owJilQKQEMLUrTsxZap0Aws0yAVBkN/hKYEsdSYpBEzcoLojJMnQ2JzxmvlDXTLxPMDTLdIpbXAtQvL5N4Jf/HR35BEAYPDY8b+CE1LKeeCXEhMCSJXCCExpCSPQ2IFajyhtbiAF4R4QUIiIM8zvOxFmrkuJbphkmU52+09bpy7RqVyjsrqBnFRUn3tAq/Vi5xs7fPSW98msgqktoUyE/RChn2lTnmzQJhqRE9HPLyfsnU4Zb65QO9kRJK6nL+wSLVloCIDLZEcPGhDJ8TKFPOZiV6qMVszeHYyJUjGzJKUQsNFCUl/NMW0DaTQUVKxuryAlrl4nSOiJMI2K8RhyPHzIfn4Hteuz1MuLSPaOVlvhswlFMuYscvi3EWyoYmcjkhym06S0B3PKJg6uR8xCE9evAuiGYYwyLuTF1+s9MV7RWVDYn/AYmOeg7MTPD1jmkSYJDjKwMD4pXn8leDdjru0Wk2Wa4u89ZtvUghcfvrO37CkzuFIDa3SpB1uU6nofPUP/wDpa2z/qz+htnSeJA4hTMmOTth99gxqZVoXF1mVEXu7TzHjnJq00UmZqBw/z4nTiKLmkqgMpWmkls40jAjIkCl45CB1AqHI8wxDg3qtiOeNuHDpZaQ3YeHGDSrLLfJWmZfdmP/+v/zP2dt/QENzcaWGlsc0pSSXAqkLJmFEIiSOplOSFrViAadR5cqt6xzu/wCpCUapIgXSHBKhKBZdbt++zUJi4t07ZPPN11lbucZoOiPRM/RKlaJTYf/xAeXoU9bP36ZcrXCgTzCKHhf+6dukixl7p3ucPR7xp3+1z2/89m1uvnSJp/92n5/+7Bm/9R+2qDg5tfll7v3tPo/+5pCXVh1W6jrTvSPGKuO333ybb1VrfP75u+TqjELBwAtipClxiwZDL0LD5PLl81y/+hZ7Dz9l694dDN1hvbVC53TCvR//HOMo4WYlw3/qI3IbY24RtbFOkusEhk2ltfSi03kWgCgTqYggSwjVjF56TKoyMkKkMogDUEIwzafkROjJDNWXrLouOinHQZuxaFPScxrKop7ZXw68/WDM089O2Vip8/OfvMd4Z0TLX2SiPFaSVbRAI9VT0sTjdNBBOxjhC5hFEYV6mSfvfcjShSVEDm/+0R8hvC5bdz9EaSZKmsS6YKQyhoYiEoLEzwgzH0VGluf4gSKNQ2yp4ygDV74wswi1jDSNsS1JrHmkhk1/esTaq19BP7/KJz/9KVHFQLu4wO7JHjEhMZKSdLCUJFc6scqYxTGRysmUThZnCFPy0s3rnLtwnj///g+ZcwvMohiVpcS5wiXDQaPulinYLic7+zSkRn//gIZZ47NHd/HNjJdKMTufvIseDIg6h6SiQKdzRGVljdqVq5wcn7J861UCr04fl/qcz+NnHabhGC8XXNqcp1qoU8hMGAlEJ+T2psnta2voUnAyTTk6PGHvRz9h8/oVLKkTZhmZEoRxBEg0XqzrWAZ0T084Kx1x+dJtVmrzHO1uUS2XqZpVLD+j8+gh/dwm2lcIVSKsnWKFMauv36b++k3ix88IIx8GNoXYpZAa6CogxWdCQkqKj4+BTY5NqgSempDhUyBB92xGe3vYSUCiebjLRaplg/SwTzz5kobRx0GAVIr1pTXW6ssMx0N+57d/n+d3tunuTQmU4kn7EcMfvI/zD3/Orc1XuFV/meSsi9btsSRyqhPF0dYx8aVLDB5v8eSDz3EyC+k2mFoZR8Mux0mIkho1aVPXXJpGgVDBIPVwpE3JtFFxjkIjFDBKPUIhePP2NUYnHWSmc+nydex5ePLoXZ7v3eVg0mX3/RFGFiGROBiYmYGW5eiaQZJH+HnOiAQ/j3E0k7Lj8PTwkHc/+4QLFy5Q8nxmQx+/n5EagjQYsGBWSXsz7v7sI0qJ4msbX2V0esAXswkfbn/CKB/wxf0/58LKIkFxQuAU+fmdHZZWz7Nx+Q0OH3xB5s8hv36Ty1dvce/DMa+96aC7gp+9/w5+piFtg2iaE+zlaP6My1UbWbMpNqtYK2v8/Mf3uHsasLRi8+TRUyaTIedvlVBKQ2XgmBrDfkIaCuq1IrPehI+fv0Plre9Sr62xsVAgTDoY9pTNzVVOpicMds+wModoEpG7FcIooGkK3JuXsGplEnTidg8rLFCTFTppRKJifCJimZCIBHKFIiTNNQIRkiofCx0tS9C8EIOM6mqV9T98GQ2P/kcPiR90vhx4U3TOrzZ4+ytfp/30gGAcEHk+F199lc+678N6FW8HmsUmb117BTtysIVBNh1jp0AS4818rjXmmf7dpzBt0/R0tNjEzyNimYEmybMMC5MFu8yqqrBqV/HiiBKCV771TY73jjjZO8IPQow4RUgDt1ZkqVZhe28Ht1jjk+cfsGyG5LrLaX+PlJhiHnNO1iiYi2gqJ49jpJAgTYTQEFJhComyJJ7vEU6mHA7HrC03aS6v8PmPfoKTCq4657AqRdonCc3MxDEsMk2jKgxmgxkHyZR+x+c0aCMrGsXlJis3zjE669P3PFiwkQtVuqdj/J5BHPl070wY1k4ZnLV599N3aLYWWN24Rru/xXg65L2fnXDOcVktStbWFxmFHk/22shZyt1nO0xzE4wipbLg4qV5lOUTxj6W7pIimAynFG2HeqVK96iN7AiSdsK4O2Y8bSOLU7RSim46lOoLRN0YqRyWLl2l9PLbxMsrRKbJcDyi7tpY9XmUU4KRia25OLlFlIUkKiWTilyTZECWxaRKIwdyFAKJpnQykZE6irgIxkqFaRASLVjEp1/SndfNLHptjz//i+/znTfeZjTs89ff+/cszp9nYeMC9csNvurcpFWssnd4wmQ0Yxh1cEKDcBpRR6PwiyT0emuRLBIszgk074y98ISsPME2TPQ+mHmOnRpoqYGUJueXWrR3P+TxvXtMxx71UgMtnuGQo6kZrlvg6bNneCLhMBuz297nx09/zkRaZLKIKSX1wORN9wob1RUOxjucxB3cyiLDDJK4Tc4MK0+YhWBjkGk2RuYz6o74+797h2GcIpXDDb1KJaswUjErosobi7fwg5iOLWjLgE+Of8aEEXEhZNlt8Xsv/w7RIOLp/iGTPORf/ub/knwUMXu6hZEPOT1r8/G/+t/yd3zB2I3Q3SLffPU2H/z4U5QImKsoJmeKdtvDurpOwV7k7sljRqKP1Rwy6Sc0LJ1sMMJqLLCyusnByRPyOMDWdOLMIhpP2LjocuP6HNsqIGhHzE77iCQmur9NFHewLtdZun6FstMknJsSzBeYrSxQ+so6heoyhURBf0zyfJtsZx8V5wTSIlQGsVJMVcxMSzCkjq50YikR+QBeNOYwcDFlDawCh2mfbnLM9GDCrcmbaKagEw7RxJc0EpklIVomqNtFLi1vsl97wuQ4JgglL//m7/Huj/6Sz+58gOsaVDObebvF4jfeon7zdaJPn9H+yXvMpKCdRYSzIYGVcfm3f4cLm3WC7/8/2b73d7RqDaq1GoOTIVkUc+nqNa6uXeDjxx8Tl2zO+kc4ymTWDXBkgVKpQpoLDrunRKQEWcYgT1gj53y1zDASCL3InNGk5ZRYFRvYnkOSzHPl4g0u/tbvMfN9Pnj+IX/58z+hqOdYhsTOBeM0xTYtqk2Xs+kUL8vIkwSiBHuW8Jq7wao7h9bP2Fg9j6Mprm200MsZ6y+t8NP3/oHy0GT4Xhs7MrklNpBFg957d4lHY/JgSppnFFyXheIC5ZmLyCQXVhd59MEdiirld7/zVR48+pi3bsxRvlrm4OEpldEptpNz+8pVjoYdLm0UGbVn5DNBOFIkvkalME8UjsgSxXSWsLy+QG2phl6usnjJIUh8cl9DpCZJXsbIJDxPGRzuUxAFXL1GeW4ONTAZf/9TTtrv0CwUqamMuHPG5KCNoXICU9Ge+RynHjMSLGVgphJT6SihIZRCQ8MSDpVChYvnrhEFMXcO7tLjDFMp9j/9mOpGk/H+CXbnS4J3xahj2wbFzGR2Nub2lZfZUWeEZoXSlcv43wu5dusVFubmOX7/HsSKuUubSC1l0jtFX6xTbC0i15aYu7LB1sFTnBsbFNyUG69c5972+2hFibR1Joc9TF2w1GrRHQ5QjkGltICaSKbDEalIaFZLVGp1zg6GCGUyiX1SYM11WDcl1SyjjI2KDC4Wl1mSLUyvieOUyPwA1y9Q6CSUl9e4thHx7p2f0guPUHmMRKJLCJOQQqnJP/vaa/zXf/FDDOPF589IoRxpmGlOlGWcHHa58J3vEIuU8+4y460Rbyy8RUkXzI+KGIGksdBEmjmnp89RnofSXgRH15oLZCLkj279MX/x879gxaoRl1N+93/8+zTrAWr0gN//1ht88KP7rK43KdY1MmmClrG4vIw/g3Fnm7PTAbqlEOo6tllEKAMkBHGIbll0Jz5fPNslCTS0FGoTkzS0mJlVRmc+9SBHy31mKqSjAhYu1qmniqR9yHqtSVGkzE626R7tkgidlYsXUInG8aNdjpOUFFgUFqYwKCqDPNcQ0sQybVq1Jebm5pFC0T4+JswmxFqCTGD73nOuWxpZ28cNviTTkQvJKnEaE++FvD/8AN0y2R8OiJ0S3/vB/40HJ3f543/yB/RPu/zW/+yfoxUrjDt77H6yx/rCPIub6+ycdtg4d42sbDDLEhzd5fTpQw4eniImGie9I3zloaUZWpbw+bvvU3UrrF5d5uqly/zs2YfElqJmFNg+PCWeHJPmkBqSIMqZR3DBcXhzrgZnPQxnkTxfo8kG9XSZIEwRSUolNYg7U7bf+4y5mzdxaoKyXSYqzOHWNYZhxNHJLrlMOX95jVuv3SL/i++TKkl5vkk5LZKFKWGcUGttUFg+hxjnjA6OsMcJWZJRr9dZK6+QDibkYUB+4oMJqTcmywNCTTFVitzzKS61qDg2f/TVP+L8K4voAhaqTTrdz7l57jzBacqjB0OqFUWZCgurc6hamU4Q89lnd1k8V+Crv/M6yJDmsslsbCBlSr83wy2VWV3foFS3MV0TsgJGaDDfnacQLqGcc4RjxfAv/wHxdIe5c6voG5cZtQeMOmPm5heQtuT4+Cn3n73PIOgRaxb68xPcVp2tMuynOiJRuK6DrbmUzTIi1WjUF5mbXwQhOR71OTp+ysTvMWRGnmsYoY7qpPg7MeVJnWr8Jd15z4t1pvgEesTEG9MfdghtySCY8r2f/3ek0x4f/PSHGDE011pIc5728y/YfvCY9Np15vI67dNTwvdmbL75DUpKEh/12P5ki6ybIqeShbkFdoY7OLrLnF2nJCysMOPZh5+R7Rs0Xl3h0+3HpOEZuZCMQh+lFHahAppOMUtwp2McW2Op3iDLa+jWBr0dQSJNdCVI8xmWyCgbFkPP52xvh2pzlctXNjFSi30mPNl/ziQNMTXF53fvsX9yjFAvHC9zKQiyjEJxjoo2T6K7VDcuE/ZGJEOfDXcFPxmihQ7jwQkyjhE6CNNAui4yMPH9MTOVkZouuRSMJx6XL5/n0Z17GEmE26gynHisXVrGcjXiSYw/hmrZJYoFZ90xJ0enjEVMN5jx3W/d4tU3LzM8eoZuhcwXKvRnRcJ0Smt+k0qzRUZIqV7F1OsoX6e3dUShOoecK1NbWcIdZByME1i/gDO3RH/nFGlbKJEy7Bzz9PABu/4xYzVllivGnVM6nRTflGSGxBUSEUw4zWZUxQhLOrhZjDvtk6QJYTTDDzukaoYgo6BcXK3KvLNAVZyj0Gpin/pfDryr1VUGmodfy1hcMfn06WeE2Yxe94gsFhQyRbuzy9WlTT5453sMQx+RRQwHPfydMamfsJAtkE58KlqJlcs30Icety/d4sHZO7TMGtvBDkmak5GyfG2TRlSk9/SQplsjVhn37jwknQQkeYwyJcvn5gnCBE26mAq+tr7KRjBDUymyWOG0n7HQLNA8v4I5KjIdd/GD6QsLojjEMKG2OMfAG/Ng+x5PgyP20xlZmlK1bCqWgTWJ0fMZ1+0GyodpZ8Dy/HnWXv4qvSfHWJrJ1id3WFlcpWQVEMEMGWoUF1x66pSx0SFIFYoSN698FXN7jvRkhq9mVBsVtEKZnaMjKg8dLteWaK2sUrp5HXOzim6OkOkY/WjEt74qMMse/fABNb3K4s01Hux/Tm1R0Jif0Tn9lKk3RkxCLixeYqFVxS1qZDHsbt0HkRHFKV95/Tc5eHzKpz/7jJc3R1xtrmNmJYKqTbjUIBwPSbYOKHkhxZLD8PQ5vckxRtanKnJSlSI1iZclxCimWU6YgodAkTGTkk4eIVMPczxCTgQShRAKnYRcZZQxmNNbXNh8icXNC1QWlpCRIHl6/OXAq5UFzYUFLv2Hv8HMCfjkXz9muVin3e2gSdBkzMblC0wHHv3ekI1LF5mGU45HB3QGh2iBw5s3vsZKZQXbKhKddBjlAZqeI5IJVp5gzQRaqjHRYkZGTsHR6YqAZcvl0qVLHDwfU8okwnJobbawyyX8MOXZ1hGmknRHPiIMqNQrBEHI436HRblDMZyxyCLFuQpOvkQyOkXFEY7tUFtY5GD2jNNej0D5aCSU0CgLg0KQsAAUwoxaUsTUHMqJThzEPNx/hpGbVKceVqYRZCeMhgMqRQdPQP/sGQN9m8pFk06ny8rqq4hLJTpPAwZJTCxzTs9OQAwpYmH0R9QrRRqVKsWlRdTl8+T5ADkaosU+65uCk86H5JOcvJNyNL2PUfFZXNaxZICBxmw4o1FtkecZjmPTnKvTOVR4g0OkyPGmIVFnzOD5Po424XTvHheOt9AuLlK/tEox+xrdP/8++fERBopZzycKhxS1FGSKqTvUMkVaMrBjj4kfkuSAAoEiEZDZOkIXxF6AyhIaRYskTDDynHrJJfAiHErMNc9h11qoUgNr4yK5n6DSL6vDVhyweXsFbcMlDwJWLqzyGy+9SXgy4tVrN0jtEC8cM/VnlKXJanmBO70xaW7SMKuAS+XCDfSkgNedEasZh5Ndcitk7/AhWeJh8cI8JCLk7x59zLeuv8nG12+z/ek9kkOBm2msWlV8Aoa7p1TnEsJU4abgRyFbp0MmhiBJxvjTAZrZwNJ8JuEepaLAdAvE3QCVp2TJjCiE4w8/wF92+b3f/g+wFk3spXnOtrd57wffp0zGK40lylqRZGJRLFTRYkllYZlnhwNee/O3qXoWpp8THR1Qa1YIXIPAjhjnp3jFAOpjMttna/qAaFvDLGnkpoJcEMcBdauApjJqpkFJSo63n7O02cJJlvDShKJeQlaLlFfWOTr5hHyUs9BaYDg+olypUdFy4qHHcOITTwyqi2sksYmgTO9sytMHp+SzHH8WkEQJH/7te0TtERVLMCc11LPHhH2LzF2lEOpU0AlJieOANJ6hiRSVJRSUwpA6BemSSQ2zbEIhZjcIGQQxQr3IElZxjDAMimWTqmPx+kvXONh6xuBsQM1xqSgTOytx7vxFVq5cR28tkC5UkKnA0L6kB5v2FZ1e5Qg3uM/Im1KwpixU4cpmi5dvXka/XCTNhxx+8gj/swG1yOaqfpmiWcIKEnJbMr+8SDVrcna6hdc94XnnU/ayQ/Is5+L8GroXYSU6mhQc+3265oiFepmhNmSwe0jB0XE1k2Jxjp2zEwaeR4bEVCaGMtClxihJCaIIjQK1zMSPQhYqNZauniPe6ZPEIWkeIhmCCmjOX8W6cYPN5YST/hZL566xVl7hs//uB8ybJX5z4WuIQUaWaWi+Q3FtDS/J6SLxxwFWnpCOZzhNB/vCCrGZc/7y1wnHD3n/4R6ThQFhPGHnzh6Dfp+5oIFHQK28QDTwaCddSoZLoeZSlC6PHt6jdnENd3IRqRLySCENA2OuxNLydQaPt9CCedbnLvKot4NaMRFen/H+Q4pmGTeos73dZ3e/zdbWM8ZnIU4isFHYFiQElISg7lTRvBz/pM30wftEA4eG3qQU6lTcFkEyIBcamQqQRFgqQc98LA0msSRNEkpFnYbIKGk5tjAQRpF+5NP2I5xGgVduXyIJJpRrVfww47Q9wk2hVV2gVlvAac0TlSyUlrxYZq0Yv3RQyq8E7/Kr5/n0p//AODmm0ZpjeaPIR09/Qv2iyw8/+2u8rZjf+/bbuKbEcesExx41r0LZ3aTr7xOFMY/+7keUKptsVBeQOCS9GR3/jIJZZhxOSUSE7Wjc2LyEah/ybOcpeb/P0nIT5dpUXJcMye7RMQVRIs4ECYIUhQBELklyQSwkhhCYOXR7Yy5fuEwySvB9sBfOEeAx2euTyZzmRoO+NeXH3/9TFs4V2bjVYrJ7nwXbYdNcIjwJ0ccSM7CRlsFsEOCFEVfPX8VtLZN3B3i9HnbBpH93gHl7k3H7gNzrsLS2wFOekpVitEbG6KCNFmTYdolZ6KPpBuVykaJpk2Qx3b5Hoz5PwXCRPR85HqGUgKoNeUTVnme1eRWTOo6+whvzG8xVDbaf/Q3ero0qO4zqMDgJGZ9BOLWwdMVcxWWu6pBnY1bPNUmTiMmDCWqgGJweoHcc3KSBshLEwjK6XsDQEpSmoxtVcEEkU9KwT5jNSPwhCB/inGKWEEiF0iSBruFlJkGcUhA5zeUmezs73N8/I04yTAUoCPyY9vYhtdUNdE1i1i2i8QjvtMcv643+K8G7/8Ud2if7SCvm1ltXKC/YPHmyxWA4oHC5QO+0QxAnzEYR/lFES6xh6xVm4RChFemHA9KpR2uzQOAd88mzn9JNzohEzEqjTtkpcdIdMAwH/M6Nr1NdrvD+zz5glgj6yqcmXPRigSuXLnHS65NnL6yVMkDJnEwIVGaSqRy0BE2DaRITC8G47RPEkKYl5m+9RdzZY3j8nNSKWJ23GCc7eNkOF259g7/7q/+K8XafRc2hJguE44yaLKPQyZWgWq+geSHFSxdpHx2Qn3QQsxlqmiFkSmG9xWh3l5lzSuU1E5IMaUqW1hfojDzkGOYbTWRcxHVK3HztFexGncH79+n6fdZffQXHqcDjU2h3oWTDQpmcGGOcs1a/iDAtTp5NifOQQljg7N6EJK9TvHmdsn2dl6+e58L6CY+ff8LOzkNWlupsrM3RPnvKyoUah2djDDfHVBJtkLMs6ujKRsUxhFOUXkS6FdIowdRMLMsmywUQU9AN3GRGIYtpZjkFHQ51waTksJcqTpMElYMdZ2hVh6xksDMM0FDMqxfJzmkiGB93oD3BKtZgnEF3in/c/3Lg/fT+Q1596yuMgx5//fc/RJqS1uIi85U56tUGt79ykfbdU27c+gofvvMpiWYj44S5UpNBMCPKIq6+8goTM+H49DHPgmec0mds5EzI2O4ekMRTmsUireY8W7vPmXMb1HQTv+0xiyYMRIxRq1KbW8AyfbrdIULlKKHIxYs2pBSSVOWEWUrRKFAyy4RhwvhsAspleHBAkAdktSWMeUHtygrtnedc3ZijoGsMnx5Riys09QUqaZ2F+QsUzRL93SOEyMlmM0ScoqNIspDx4IxK5hFrCaZtEUwG+P6QQXCGM8koFEokcUTTaWJVi1hnFk4kiGYBSSzIpcBozeNZEJYNRLMGmST79Bmz3QPK5+bRpwtgQDKY4o08IiMgUhr2fAvNcNi89G1yR2A26mhyCcucYKiMl6/eJg46rFxaYn51jjRvg8ppb4+Yt9eZv7wOXo4cFkhGCVHoM+l2sEsKXbcJdJM0E1QSQZLoJMpFSAPsOlaa0FAxPRFilgziisFxd0YvSygCWBDInGmWICRoKRQyhyo2S+Ul1hrL6LOU/HRIb+8I3TYo1L+sTIpigXc+u4NhKw5Pt5FC8urLN7h84TK7z/ZYXVzg6GTElXMNCs0NasUN+vcf4nkdGutlspLJz997BzFnodcTShfrTI/P8NKEp/1DFtMCZUOnWqpz/Gib0UGHb73+BqmfcMghe/sH9IddBp9/Qpqk1EQFYRno5ISR92LYmhDbsAkzRZJGVN0F6laFelbBzDTcWgVN+BSaRYpyhak9Ic4DVpYaTLZy9r73KZftG7x87Q1mdyf43RizMI/mOgjrGLKEqN0jUXC29QCzWWD+covJoxGBkSELMWc7d9AqDsXNOmYhoZjV0chpiDmWGyZTOSDszTASl8Sbcbq9jdsoYa02cAoWmWMSjyboe2fYe2fE3hQzSZDFAqkXk6YZWqvIuZdvYGwuIu2cZe0aAoHKBErFJKOAdnuIUfC4dvkqkTnl5PAIEoPu8zFL6QXOX/wWBeM8kRUSHYUYwxB9PEbLE3S3zHTqEcUBhu1gnj9PenpIdJaj9AzKNiQOqdcj06ZUVsoc5SGTowgpQeRQLNl0B0P29s/QE0VZSVZlk83iAm/e+hpmXiAYTul1+xz4I9beeInW1fNfDry3v/PbPP7sY86OdggCgSklO4/PqBpzXNq8iowUr776Xfyxzs3Xv4o+hsn2EwZjjyhKmb+wSe/ODsd7p/j7Q0RVMo4TRglUM0GxNIed5nRPZ5z2PuHyjcukgWL7+QG+H+PxYkh9OhszX5lnEMRsbGxw2j7GlTaRH1K1KuRZRkEWKdotlrR55sx53KjAzJtRisvMhscUz11h/eJt2tM9/tv/x/+Boj3isuWixjXK8irlTh2dAkZVkUiJlqdEIkemMcViGc+b4i7VKH/tBv0nd4g8jeHkjNTOab12EwxBbcnEqEdo04jRcZu1hfM4CyX8i0P8XkQUmuSmQaXVQpfQWFukvCRxa3WIOqSjHkbikfZ8UpFi1ucxS2Wqi3PIy8toN87BcoVUz154t/kJ8dAjHY5JgozIg6O9PRavVrCcOid7z9D6kJ/CsnGe6aFF4qTIyhzuXA2tO2W6c4jX7yJtSbHUYBZ6iGKJ2DaIpEZeKFJaXqC1MU/FP+bx1gfM/JRplpJMfSoRGLlGxTQ5V2lRyhwKiU5D6SyIKm9c/Aor9RaxYeGbJvOLq2j9EefMZeZevolYbX458C7PVZFXN9GyKXk0wdIcXr35CutrG/ROZ1xaOE+reo1prIEAoUfYRUimPgsXLlC/uk728CcMhj00I0OPXSxKiCQgVYIwUhiZjURDi3127u8T8pxJHJGhkZsOKT5OuUhWcKAgOfKHjMMZX739Mp9+/CGmDmkkmNOa/Ob136Kuqpi+zrxbpfNsD284YRgGuIXrLLx0Cf95n+jhiKYZkXRi9OMmBcNiuN8myQWNa1ewrq2T9rsEjxUyU1hry9ijDpXrq+hXFpifv0hpJWXQLTPKxqy9volbdPjp338Pf+eE1UqFYlqmoOqoVKMw36TcdMC3QdOgYoISuI4LVhEcF1WwiJWHwkNPFJz6JF6EWl3BuLmGWF1A1F2UK8iVJAkygtGYbDKmXHIpNi8g0lP2n4f44yKLC6vYiYfj61iZ5OxRzPJ5xVR0Wd2oI9MYVEI0GjBtt4mTGcbVy8yvtgjHHuOdbXQpsAtFRC4ZHXTICzkH0zGPhx1EbmAJwXWjSsWZY2WxxaVzLabDMSXPQCmDZafFy298ncJci9AEe20J4Sumd59QW5rDWGqROBq/bLHsV7vzvvN9rl27wmKzSs25jMrh4uWLrJy7wsftz/n4nfu8eW2dxvJNxqPn9B7exyXALmuMp12OPziiP+1gmBKhSSpmjTWrQZIP0MMIK7cwZRmlYuIkxY9neET4MkW3LRLxYiLUz2L2jna4dOkqQtM42+vz+MFjNufWqIgKSZxxe/0tbq6/TXwW0tvdZVIIqTaXIIpI5AghBNPZgL3+Ab3ZEZuL87SMOfwDKKYSXWrMCiaTaITl9zk9PUBzSiRxztPj59jzVRrnF8ijPp8//IimI1m+tc6cHTMMTxj0A8xqgj+JODk+ZNFdeuE6YRqImoXIHKLJFBULGPgQzLCmATAitkyivQMgQJkJVhyj5ZJkpuP1LSq6RNcMlB+SqRDfD4n9GE3TqS8vYxgCQo881Sg58+iUEFkDU4UsuHPYWoWGZhMEEfl4BFaXUadH2p9gKZ2q4xJqMZOjfWqVOVxdQxQL6LpB6M042nlOFE1Jq1AouTTMBtNkRoEyv/36t1jbfIlyxYW8zUd330ObCBqizmJlCXN5hbhaQluuoOZrpDtn9FWA5RgIy0RJ9Uvz+CvB22xpzLVsjo8jXnn5Bn/973/A3bzI3MZrLJ1/jWKSs/PuNv5CwlKxjtZa4OkX9zj2DxndfUrgKIZqzCCeYhgFbEy0MGPTaKBlKUWtgMo00lxDSIsg85kKRShyDC2iXCkyGI8I44hRmvKTR/cwgQ2zTNkr8Wr9JaykQE7Cq1e/jVFfY7zzDGOSIaIZRtlBScX64jp5YnH6xT2++PkPmfYHeLZLZ6ogLDDJ+1T0ArVmnaGu8cHWXTavXAZdMt31iZ2YQk1xuPsQTU/59E+/RyEN+dpvv8X8rQ0ymTDqnUDqo5c1LKuA70VQtdCtCnE3AT/Hy2dkXkw2SsjynIJVwBQmYKMlEVa5TOj3yOIJCpM8kWgDHdkboo5OyNIpfskAy6Y+v4hRLpHrGWk0Q46HkJVZXH4b2ShSaGyyvDHEv9ulfuU2aqTofPEZslBA03RK0uRw75SBF6LbDoEKiVRCub5Cpmk4KWRpxnQ8Jk4jEpEQiZSv//Y3uG6F/Ozd90lGOq+/+V3cxiq6qzPtPadU6bI0L9G9CRvaPKrdpzvuUVq5QVkHFXhks/ELuyGVv/gSfRnwLq/MMRgPsEo10Cq8euNrhFmZYmWd4qUSs36HYssi021EnjNutwlERuqYtNUZbX/8wvtLEyBMeqMJjnQxEzByiZHmCJFjSEGkBJkQRCojEhlp7FMWLksLDUZ+yCAYI5Qizl9sXdxcvMaN5k3idoQ0E/JBQN7wUVqEU9VhOiKbecRGRNyZ4JgZ80s2ry1s8Hn/OY20hZHYFJsN0kFCriL83hkzUaD1xgXWvvs1Rh/cZTQ74uj0Eb1Pv8D/9AcslErMDSQVauy/c4oM5hiUQoJhjKYbVGtNdBPMXOANx7hVGyMUSD+lbDlIZRJFCXmWIxOQSYiV6RBnpOMQLVboQiNXGZoAK41J7z8mCUfw0nlkeYXi4gKyUiLLM/IsIU9S0uGEcKhYvPBVsrkyca5j2FXyomCW5VB0WLp1HTme0H+0QzEWmLV5KGWU11eR0yFmGFK4ep3B7gFiOCOdTJgMx6R5SieZMAsiup9/xFf+6bf4w3/xLxkchZjFIonI0StFNOMcl98qceniV+j81fsUpynayKfeKqGlCjEJydt9zOEUberDLEQZX1ImRTJM+ezOA9rHHt/fe4/vvP37fOc//s8wjRX67TadLOL2H/4ezGL6/82/Y7i3S6RG9FSfR/kZ/TxlzqxgGTZECks3sHINUoUmBAVpYSrJLAkxSbEkFIROniVYhsW19Qv4Xod2OmGkzVBZjC4FZcvkra++xrq9wf54C8yczhd3GI/atG5fR6tIjn7yHE1aKBlyuveMRurjJE3cSUZT1Dl5NqLSvI5l10nUmCBNCH0f093g9ldukuYx7S8+Qc8CJpNTLi+fx1QmDbNMOBxhKAuZlKl6LQobt5h5z9n/7Eecf+scjfU6/fEBwy92SQpjxNimJG0s6UCq4ToOqOzFL0lgnJB7E/JxhJ25SCXJSEikICYi2dklJ6X4ykXsuTrS1In9CbHIsITADGN2njxl/9MtVi5/lWQmOds5pWK5rF27xfajB3S7PV65fAtjEnKy16Z33MOp1Vl8+03c21dp9Pp4x8fI1TXiww6Z1ycd+6goQZGSiIx+OKHzcA9qFt/5zv+I1eY8k8MTGpeqiIKNW13ErTegMqF6fcLg0Q5eZ0B5uYnIdYSfEXYmpJ0x9EPoeGi/vMPprwbvT370cyqlRVYbm9yon6OSLiKOJV73gGn3GDeB3v33EcdDZoc7FLOYSa4oCJO6UcVyDAzdwUwM1udXyScJ6SxGExp5nmNoBrZlkkvJMAzQ0ShiYuYCFcPjD7+g5EK5UcPRFKYQL6Jg/YD3P3yXU/kcPa0wNzdPPYBeu0Nauo1GAWkKotgnmHXRpSDLEnTLxCwVMScVJpMRR2cDYhmzljtoAgQZ4WTIbO+AwDYJdo+RQcxG9TYvnbuBHIaMDk+wUhvTMsjyBD0KKDfPo7cTRkkLN2xiywV06TPo9Kg3BfE4oTcYUs00NCnIKzbC1hE1h1TPsbQUZaRkSAwcUAINg5gMJVLIEwxLx56rIQ2T7GxApmJU2UQYBscP7/PZT/4Wo68In+6SlUo0KxUcx0bYgqXzixiGIhr3MFSMTUaSRfjBhMl0SO/xQ5qFEhMvwJ68qGlPh1P0IEF/YYiFwEQXLiocEXUCtt+9i0uV2Uyn1Gyhz9fRlEkWJGhCw5qr4y57zFRKwTIwhA6TkLg9QPRniNMRqt5DxsmXA2+hVufSxWvsfdHjD/7Jf0KyFTB+9zlJSeenf/FfEYqAql1gtbBACxdpgeYbzDPPNVniOA/Y6h/jKJPzNzZp7xzje1NM/ReTREKydO085Y0mJ+//Lel4BrOUkpLYpkPFKpFLj/VLF5m5Ajkd8rWXX+PZD+9RKBRxnArLN7/BQuMcu3/5DnO1FWr1BuNen1Kxjj/okmcOmabhF6o0blzh2edbvNt+xqJWoJxFuLKBk1gYmobhOoxygb9/yvYHHzE3TFlsbTCcW8EttoiPtjBDhyz3cQTEMmA2PiCZnTLyh8wvLFGtnwOnQn3FRnUkllnG1gX9yT7T4QiVpcwmCYVzcxRqVZStgR2QyIigp1GJDVxMyEIsV6GXJDPdRK7WwTFI908Ru12ckkO27NJtH/CD/+u/5tnDD7ldvsz2j35A4eoNVr76OkILmQxOOG3v8+jTT0kOu5yvzOF5p0yTPmpqsf2TU179ne9C6UVCaSXTiE/aFIROiiAUgkRJXFmlkukUShVeW3yDeXMBXblk603yGILTHlaxhGboZDmIxSYWOUIqxEoTigXod0iPOjhjj/TeY0gl8uLqlwPv/tkMw9jDsWqkkym7j3Yw2zGWFVNOpoR5j5M4J8mmnIVFTGVSMEvIHCppgcDwaUiPJAu5+8UX6JHAERaGrlMt1Ek1xdPTPXq9B4z0kFC8cGGs4VCWZSpOjf3xmP5oyGtvvkTx9IDYizBTg9X6Gg17nrnL1zj75BFxlDC3UGLwYJves31sD3RRwShV8JSifukm1sY6S/kNjLP3Waut0hw7BPseMymxNYdARKSOxXT3OVqeUdA0Zt02lddeQhYswiMJ9TJRe0wW5MxERqNYwionJPoQowSqZKOkhdALNNcuoacCNfFori4zGvuoBGqNCpXNC+gXlxCuDoki741JI/BOhgg/RdMN9JqDsVTGdHWS5SqKlP7uMf5n29QbFWansHXylOPDbZAZmRZiVsAopTw/vMvezhMe3fuI0/4JwXiK8kI+FTp6BiIX2Mqm5bYYZwPYCSgVDIyyi6NLSpUS4zRkkExIhIZSgjmrxdrFdVaal/Cfn4JlU1ycQxmCGA2CBJXmSAWi5OBqc6g4AAOIAvJuHzka4KoUbTzEe/oUu2D+0lD+av68pQUGk5RzZYfD3ik3fuNteDbk5MnHlEsFjrwT9uM+XS9h3jnHudo8aWAzG3hYWhFt6jGHSyg0oiBEmA6TyCdLFLZw0E2Nw84OB3mf0M5wBCw6ZZp5gSyESXeC1C0eP3lKOthhEkfEhylvqJu4fZOljWWC7SMmz/Yhz5C6TrzXpe4ZaMV5pv6UlRuXSTRJUmwg3SpFs8hytUUsY+4f73FOtSiU6hznM8Z2SqFV4mfv/g1loSHlElWzyOnTd7DXVtn8/a/Qu7cNHwREXsCoVODc175Gecnhwd/vURMmy/MNsiAimSSkCbilIqDQph4yU7jCQNNsaI8YKI/y5U3MGxeRrZjsoEOxXiM/7SBUQlgRFJbq9DIPoee4cUylWmXurdfwjw/4+7/8tzxuP3lRjhSQl2301TI//Oz7/PVH7yIijzKChJwX07eKEYKJUIQSLM2gMh3y5AeHrJpzvH7jDZpaE2feYvj8lGk6xRcRiWliiCJzjQXm3Rad97fwj4aYZgFNGdhXFrEaS6Ak/miMFGBLiXQttGhK1u8ju30mH3yEHHYoqAQtSgi6McHdnNKXAe/F86/xZOsBOycdVsw+i9UYITOSRpneQYaX6xiUEJmOqQTpZEoepdRs+0W5JcqpaCZ5FpOSM409dGVg8iIDuKGVeGnuAmVVYWt2wNTvYRTLFC2HHB2h26Q6LNQkO7NT+r0ZLVXmSnkd2Uno9rbomY8pBCn15jxnh9tYs5xCbBJJAbaNcgxkqcTk8JStf3OX7eA+h48fUlo/z9raRYJ2ABerPHxyh+fdUwaD90nzmHlRYLNQQxoW65duUnz5MvrGOvFwgHlQpL/fw1yrky/Ae9/7PrsPnnBt9SKqPUTmAn2akEQxsmWTZynRZIqd5DhoiETin/Q5PZkQT0NaK8sITVJanKcgLTJHEvtjgqJANYtU7Tq+gCxXOGvL5NOQZw/eZ/vsgL43xCPDFibPjo85+bM/4f70jEkSUhGCgmZQtItYOGRhRKwiRB6Q5CkBKanKyFEEfkj/8wlTf8j18hqjeEyY+OQCcglWtUh9pUW/12N4ckYl0jHSkOS0g9E00Zcr4BYwdZ1oNiVOMwxNYMxCkt4QGUZEp6cYWYjMU6TK0DPBpHv25cD7W//8f8IfNhrouY1375T3//p9vvnmN6h6JtOd72GwxMospqR0/pPv/HNOHjzndGuHWHkMRYqu57jYGKZDoCtCEeN5UxKhMU1DlowlXr7xGp27f4uIYiSKfjBms7XBy7deZ6G+wt725xyXz5h2PMJhyO+c+zrfdN+gmVSJRkPmKw6T4S7j00PKi2uAQjMLFGoWg/Y2Z3vbxGGEWy5yuWRyvD2gnNmMe2MCd4womOyWJ3yW7JE7AqlpL0zibINv/4v/OU8/fELh/KtYFzdQ85LazUX+7Z/9lxyOH/PVxW/zv/rf/DHloc2t8jkWtALs9/F9n2DqUV+cJzs+4fBHP0YMZqxQRGUR2fEIdEHNluh7A5hmYCkKtSpxv4fvQFQo0fjqy+jnWuSTKXqvT2ba5K7JZNLl4527tGdtfBUipcTOdZIsp9/vo5NQl+AaGnqxTLnZYoUmRT+lICTPx2c88tocq4BI5IzzkEiL8NOIf3jwY3a0Oc7bixTcArW5JVpXr9G88TLp6YD2z97DicBUCjPNmTzbZdY9pu5PcW5dRV+aQwoY7O6iezGVJCfvD9HSlHnNxotT8tRHoiGzmPovPc37q14bVptomYHfmXDmd5m73cK67PD8R1v8xnd/Bz102HvnM9LhGD03CBNwik3C2YCRmBGSoWFjSpcwDojzACVjwlzh6GW0SoX6tVssj3f4vPcQR3NIckW5Ns/1W29hzCSRdsitr9xg/+dnJGP4jbe+TeV5ndnhkCTxsc4mTKIZieswmszIVZniuXNYImBuZjHr9lBhiAz7qLRI0XZxRYtRMmDS3yVN4XG7jakVuLJ8Hn/SYziOOW8s0Xk0oWys0N7eYulchdHpASdbn/M0fUq6rojncwbTDs3SOTRbEQ76hJlDmOd0hn2yyKes65jDMXaukcsUREZGAEJgJgZiMmP6/qeoioO0deIswWzNU2/W0NfXUVWXXEr0gosq18B1sU2DpmVSEOAphZML1oRBw6qhKYO1ZEZfjekmIQf9HnuTMbvyjMtmjQWriJ/GJFlGToYkf+H2niscUopCYamMIJxilxyK9TLlSpHx0yfkB31kL6CQa0heLKaa0sCY5uRPzggME6vsIh0To1xGyzzEdIweKdRkhhj76EoiMIAUgxwVfEm+DamXopUUxcaM9dsp8UwDZ4LdarB+4S2++Ksf0p10WGg22dp6wtqly+yoQ8IsxUkywmRAoqW8/MpL3Nt5QLdzTCRCsCSxndPRhjw5+JxpNKJqutiajRsbxGczPvq7n3Ll/EsYzSWe3nuMOjrjD99+jYcPf8qlr//njLY/JO0FjI0+qgKtq+uUL7/M8EmbaNQlnnbw2oeYek4Wj4j6gvFU59z1y9z+6n/Ev/o3/wX92KYiLW4Vr3Jp8xprc8s8uPMxuV7gxvw1HJPBFQAAFPxJREFU5OEJc3OrtMdjDj/+iC/OPubp1vuMLZ9Kq8KHB0+QS/OcdgbU0wLuVy5gOy2sXNG4fg00SPpDdGViCg1D6cg8RxcvDPFsQ6KCkHz/jKxeRD+/QHl9EW2hQuYYZI4iswVCK2Ohg7RfWFWOPew4wZUSJ5csGC5fc1bYLCxh+ZJEDxmKGcdmxM8np+wnHif08KIhhalOQEpIjk3OHBoLSmNBs2nZDeaNJqW4gBbpJOOIs0/vcHjnc1LNZqm+wnqzwSgK0TINqUt0ATJLCY87DMZdluYruJfOUTm3DFUPNQnI4oTJ3gmFLH4Brg5pKtDQQX5JHba9+w9ZXy2hFwLG/cekSsNtLWOWNQ4O9nm2/ZCBmLC2tsnGylVKpUVKXkY+GWDFHg2txkSEGLZOpickxCQqISfEsVOcc2V+vvURxye7aJpASxRVo8hkPKRkTjkZ9mku1bh+8StsdT9gc7nK0XRCON4lziOkZpBpOaNgTFGFOJHHaXufllVHI8PAIE+HWCRoUiNKFSLJcKXBpdVLhFsjNgstXl17iSw0ONe6ycA4Qbgu4ckES2TMkpzmN1+H9QpfdN7jrH/Eq29f5ygdYJaL/NEf/yEf/enfkA5zktwnL5kQJuSWRDaqkCUoqSNyDYmOIiVTGTqgsoxMpRQWmhiX12G9CQWNJA2I/AjTL2KUXLBMwEBEoLyQw4dP2Hu2RZj6ZORIwMkEjp9SmkqkEpQ0G9dyYbFBZdLl/ckzYjJiYiKRoyQ00VkSLuuYrJVrWJmJ7mfINMcUOplKkSQoFZOnKWnkY9QWKBQd/OEM7Rd1ay3PkUpRigS20hGOiyqbKE0im1W0/oQszchS9QJYeDFDiY76pcdyftXV95rL/oO77B7eZ/XKPJ1+D6lsUj3n8d4jRCvku//8P+bJ1nPstRL337vD+itv03rlGg//mz9hOJuwuLnBpw8/ZnuwRSB8NF0SqZit3lPeeedjQgVNrciaXqaEjYw1hJRcffstzr/9TeLeGf/1X/3vmKYTyqsFLheKfPz9v+D85W9TN5aIHkw411xl/uIrdJ7uMZtNUc1FSvOb2OUC3Z3PIY4wlY0hFVnoEe/t8pXSPPPVi7h5mWWxQHN1nf77W5QmDpnvIJWPMCZ4s5jpYJG515Z49a3X+PjzH7C6vsG7f/kF02ibD//6fS6ValTXNvjRxz+g5dyhVKhTbtRZXFvBTBWq5BL5CkeaZCpC5ZJE5cQqIUOgr89hXFwGb0je6TNtn4Jl4egOoloj1zXQdRj6xHvHHNx9wGTQIwd8oJOGbOkTbK3COdvBjXVKUkNLNLLEwnQc/HDCUTqmq0JmekwK1CSYCJxM4g/7pDiYqopTamAVKniTjCSYgYqomQWEN+Vod4uaWcKWILIEPVOYaAgkeigZPtjGaVRwf/MlBDlMfDQk1uNdjPYIPQeBBCUQQqDUl3TndWzFXKNBpfUNynWHenNMv9MlHU4ZjJ+yvLnB6lsv00tCnu/vc9w9pTUeUXEKGCrj0q2XKZyf597fPSJKfXRDksUpumlh6SYq1vCJGWUhNWWxZJZxjRJJlGM7kAc9BuMOQZ7QzzNmpuDevY8pWi3q330da6Bj7BXxRhHTp8d43RnnVtapLi+ivIC8XGWGgaMVSTMDXebIsc/eZx/S6Z1hxyEFw2FyNqCqldDiBFfqGNUWjgvT/lNiIhYur2M6FnffuYcKJf/wJ3+FzCJyz8dCox+dcb8/5HJlg52jMSWjjHaos7NbZLW1zEvXLhHtnJF5CXEEmcpJgdzQMApFpNRgNCE5OSEb9Mn7XWTZRYQBZAlZnmJgoaIIbzDAm01+EW8gSYCBSnmqZphqipeELCqNluni5TGj/oxyvcF/+uY/4c/v/oRocko3SUilYpal9ERATQh0JdBQpCJnFnvkuobQcnSZQZZjZjm2JgijgHGiqIjCL87MnEyAUDkojb2tHbSC4Ny1RSqNKtIyyPOUNM8QmUD7Rb6TkDpJnoCUX06dN0/6GCLBLcxz7/MtrrzxBqvnynQ/+YRR4RA3LXD4N1+w6SwibYP5m6sMHhzy7OiAPM6g3eUg6qKcnGwaY+kGeizRIg2zYLJaWGAyPSNOcoQwQZkgJVEy4W/+4b/F//v/N45r8Nrr13gylfzrP/kec4bDyaPHnCoXNbH45tobON0cZmDMMhL/hOPOPtXWEkdnXWLTZP3qK8STEG//Gf3JKcfxHnke05I1qtJETmcMdh+zsNgi6Y2oLZ1HLxi0T+8xjgKyB3dZcSUX569yWnmG0uYZqSEn8SFfe+V16stVHt9/iH84pm4UMNKIPJrSnu0T94+4ulnDNg3G3RF5liCFJFaQ5AKldMp7I5LjEfG4TR5OqC03YKlBv31Mca2G1CH3E2QY4g/7jP0xU10xziWjTBCSMwkHPItmLCiNdelwMauwUmtx+63vAgWmnz/gP331n/Ljw3uke3c4SUZMydgiJtI0bsoi84ZDoBL6yTFydERTK1CRFjoWMocwj0kNi1RCrjJcTadgF4mFIrIkxeV5rl9eRazNI5WOGvvk04DR4SmmNDArFdLZiDhPwNIIyUjIaH0Z8GqWhiIhmLxYfnz/B3/PldWruBOTb77yH9Hb62L1NU4PDjGSCpNuSHw2w8h0eipnOhqzdu0Kjv8YQ9MIfY8aVapOg0EWIMOYAiaQYWgmWZLipROyPGQyPANXsrK0SdTtsP3gCQfJgHHdRqtZPNr+jM3yeYzzi5hayHinTzQZo9IBmQgo2JJwOsRxDVJvzPC4gxf5TEVIJF7kumluCccsIL2ELJ4yDLvkMUyOdaxK4Rd5xxnHj58QaBrnbr/E1Y3X2DhfYLv3hL9p/wWf3/mYVnuZ/ZNDlo15rNxhvlAhC33sOEeGGcODA+pWHVOAEhppDrowiDKBNwuw99tYFZtERChTIOoukYrpHPYoX7mAMAKkpYEQVBs1MHU8leJJiHNJrHJmKJSKyNDJVUYUh3iznMKzezihjdaLmbt+hTcvv8rd7iGTkY9HiIfiVGWsug6mbTGZDYlzD/MX8w+5rFLTS5iY5MKg1Jqn2ljA1orIkUfkefgqJV+ukl89h3thHVGrgmahshy8hLpdBrtANh0Qa4pYE1i1Ao6robIvyRn9b/79n7C0vMTmtVu8/OYtgolFpXiL7M4Bd//t3+O3O1xsLhNu96iut1g4d5nd9j3Wrt3ixqurxIMeXzx9l+OjA9IkoqKV2axd4ubl1/ji2ROU30VpFpOkx+sXrvLm0nXOHm6TEzBxBmTVmPu7HyIznXNzcywurfHRwSOcpoHuD2kuOUxnJxApamUHO6niD2ZMkhmZC9d+63V29p7yyeNPqMoSIR5jLWWChtA0QrtEdzRjMbPRCDClxHJLBHlKMJ1QqFbI0hG+N+Dg7mcsnL/EZmOej957h8PxHjEZK40lxh0fI7QRmUHJrkEiqJgVSmiYKOw4IcmmSMMkyiWZ5ZJbGpViBU0ZFFvzyMUqZskjMwNm6YyH9x9Qm1vGOhuhYoXSB8R+ynH3mL1Zj65K8DVQUkfLciAhR5LqGgORkaiIqZcwfPgzzlmLXJebECo2Ll7nf/HHTf6P//3/haejfSZpyGme8IHfw456RFmIJRQVDU6FYj6D5VRj2a1z/sYtKusbzHaOON7bw9UtWpcvUFxukm5WYL6EEg4I4KxH3GkT3H9OdjQkG04IRISoW2SGRWNt7sWj1vyS7ryoAIyAv/vRX/DaG/+Mc+d+E7MNj356D609YqFQpvq11+hnMcoBoyhxqxaJLXET8MMEM8o5ZzZx0ghNmnzzN/8ZreI6Qcfh6qrBh6fvsXUyIeydceq7qJmkOxkzWjhGLMQMijOCfsqrSxfwZIJRdEg0xVk45ief/pj2A4/fv/o75EoSlIqk+hrSbiFfOU9cNfj40wf4aYcNYwFd5gQiodZcoKi7nCuvEec+pgd2KkhyxSQzkI05GutLPPvs3zHOh4RCAibf/zf/BZmAdtxlfnmeUlAmlTplo4gioVWYw9ZdQj8gjXycJKCs2eRZzEhXTK2MUqtO89pFZnFAseCSHveRSw3EYoWUEGVKJu0Bk6BDcBzQOFgi2PIxbJOnwwn/7p1/4Hl/j0yk6FJDVxkpGTHgArYSaEIQIOiqGJX3yKKYBbvAgorRcpNo6JNEAbqlIIc0U4xzn4kQCEtgJRBnioEKmWFQdTSWLl+lNtfi5POHhMd9qpmO4UpmsUeptYm5NocywD/z0YIEdbBN3Dslm82IdLCun6dY0TFqDma1iFktEIyHL5zXvwx4G6urDCYjrl+9jpbmPHzvPeZnq/T7XYqGxsGgj3r6lFGaoPsznEEHQybYyZSdj98jiELkwOOG1aIXRszShNGdp5i6z8JpgD5MuJTZaGaVWf+IYVrk5pU3uL54g/eGf8sHZ58wN7/I2197kycPn3F3/xmBnRMbKfWKy2rrIq8vvwxexG7njBtf/12C0x5qzqHxjZeJox5qwWJ//5hGocS5xSU8L2F3cESuEuJpSCOvkGUGdaGRGQZOs4GzvsJ02EbJnKE/ZhZmKCQxAqHriDzj5OgAP50Rex5l6VLSi3jTGYlIMOSLfLdM5ehpjEZAoGm0vvoSzWtXsTZXcAsW2dEpx72fYj/fQu+aWKsSWc25++w+Pa/PXvspP9m+T5IrUl3jOIc9b8o499BFhp1KFJCikLw48FKVo3LIFIQ55OSQeZwkHZa6OzR00CYnrIUSLTdp5ho+OR4xqRLMmWUqSEhjcqGz6La4unyVJVmm/9lT4tGIului5BYZkaC1ymRlHUmGGIek/QkqSRFaQFaMKJ1boFpsImUDDBtKDsLWoWDjqAwr/ZJGItuTGautRQpOhVl3gPDKLG0ssVxZYv+HP6e3t0+xtYRZX8C78xjynObmCqNhl0pBI9N0XNHADXWY9dGymGAwpZ+fsZS6JKMpZT2iDJRKDdYurlO5uMTW0X1aF9eZ03dYWb5KeW6JyQdfkHsJtmXQbDY4eNbFqDqsv7rBox98htkoY81pPH50QDjNeTk4j6yWMKSBlIKpmDHOp4yzKf2wD3nOfnpMICKUquC6VaZhgBH5nN3/nIIFURC88OMCUjIyBKQ5jm2i4hRHGuhCQ2WKLE0JiYjJEYANNAybVBgkWRE5N8/it99Cnj+HaFbQihZKAxoVpne3qFGEhQLtsy7t8RBPpLQTj3Y8IACEpjPQTNoqIubFEJPiBaiSF4NbSEGkcsgz0v+fCqpORjvtc3D6nCwKMQXcKM6jjWKmQjEVOYf58IXBSmhwTpaQMqdUb3H7yktcMRcJvzimmkhKdpXC/DzUS8xVLLQbF8lrLkEUYiUJbsFBpgnCtIllztlsh7qbYNk2CB2kAk2glQqIUhGZ//LT6L8SvG/+xrcZn3boHHXRQpPV5U3e+cGf8dpbv88wiVjevMR8cxWtXGPvzjPOth7Ti3t44YjKZovX/rN/Sfejz9n7yY8YJRmnxJSvrrF5620KxyGz7YcE+0/IdKCo8cMvfoSzd5e21+Was06xNs8nd+7y2fgBq9VFVudXOPNOMTMolCTanMNBsM2j4V02115ip3OP48OHaMKme+ch5fkqabtHSUp6g1Mmgy6xjEnwsA2bdnJGIhI0CUZmsLp5Ga1aJe4cMuy1ETlY0qLiFhn7M9I8RiBI4+RFLnKuIXIQv4h+jdPsF7BLEiEQeQa6TXFhnqW3X0feOg9zVTJXR+o6mlugZBWIM0HTcjk46/DZ/uc8bu8xyhN6WcLUBD+FOE+x5+poviCdeLglnZppMxl6iAxcQ0fXdOIkRaXAiyorPiARdPF4NnjMbNLF1FxUnrPUXMVzbaZSoftdguGAxcjkglZjoTLP0s1XmF9ZZ/rJE7Shjy0t0jijd3ZGEI1pzF2kYJtIJbAsE2mbyDyCmU8S9Qn9Y06Pt4jGh5xbV2jFNYKZR64KFMw60tbIEvXleJVZbp0LFxZ40v0Md3EJNZmSRgP0eEqhXGbcDXj+44/YWFvHyRReHDKYtDmJ29T8hIWD+zx9+BnKHxPJHE/A3EtXqX7zTcZ3tjg4+pS9bMB+2EViMxE57ckppWaJzx48oLFWIgXcgktvPCScjQhmM6KTmEQqIpkxFEP0RY33t37OJ5/f5SW5QVnp3Puzv0ZJsHKfYi7RMDAti2ma4uYvPotgEKqQXjZixV2idutl0pUlJv/3/zN5EGAZBlW9Su3CKjv7u5yMz1ASyF50taSS5HlOLBMUoCN/MYUlCbMcshQpclrNGo1bV2GpTmZJhKWhwhQ6Y6xBhJYKtBRO2secnp4RZ4ppHjMT4AlINEgyEGlImkS4Jiw1KzSdClvDfXRdwzZN0iwlyl5070wkEkWGIiRnLDJK2RSVhriixtzmVb7+L/459vlzBHnCtH3M+3/6Z/if77Im6yw7i5RkCd1XTE771BQIaWBbBgk5ui7RDA3iFMgQyYtI3OSkD7Mhw8EWXnpMlLYZjqasZOcxqJEMe+RxEZEsQvT/fWx+CfBmvsIolSi7NU6fbnH3vU+4uHCD2ek+jmlTvHmV6OOH7H94B+kNkFrKhdsXeXRnm739Lzj5kx4LU4OmAldIVpwmaujz8O//Aa075ZPdh+RzJZK+Q6IStJKNN5synQTkesh0f4aUFkESUlIOaDlSl8zVixxPZ7z/yQPGJ7vUcRgmQ/LRmNr5a1zUFthtdykWSxyN+yhRQCu4ZBLibEbOi7JTqiQxMT4hMYKzx8+ZPnpCFsdYmobEJkoCDrb3yNIYU+gv/qd4cVpoQkeh8FVAqnJMQJM6mVAgNQQmdrFKfXMDvTWHMiSxzLEQiCiic/ch/rN9yrFCCp1mdZ7fvfkH/OT5J0x27qPiAAVIAa6tUywUmIUhBdviwtoqeAlCKfI0YZKlKBQIhYHEQlI0LTRNI458vCwhlAk2OSkBWThjjZyFWo0kmjJ7MqMcWbScReZUBT3WkIlAICmZLqYek0qJyHIMS0PoBvFoSrS1TaZS7IKJ6droJ0Oi0Smx6jHT+sysGaGW8vD5x+j+c57tt6mtnOeNWg2zWGUwGLP4O5u/FI9CKfXLL8r/Wr/W/4D0yxfVfq1f639g+jW8v9Y/Wv0a3l/rH61+De+v9Y9Wv4b31/pHq1/D+2v9o9Wv4f21/tHq1/D+Wv9o9Wt4f61/tPr/AJXV/niB/aSwAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADECAYAAADZLWDNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADRfUlEQVR4nOz9Z7BkWXqehz7pvfcnM08eb8q2ne4xaJgBMBQxvIQkSgApKgCJpHAlgUYKiiL1QxQlyoZCAV4CYoCKkKALkRKDIYqkRAwINzMY043u6u6q6qo63uTJk957n/v+2Pmt7hoMZqZrgCY5t1dERXVXZWXm2Xvttb71fq8xaJqm8fH4eHwPDeM/6y/w8fh4/H6Pjyf1x+N7bnw8qT8e33Pj40n98fieGx9P6o/H99z4eFJ/PL7nxseT+uPxPTc+ntQfj++58fGk/nh8z41/8Sb12hr89E+///9f+hIYDPrvv1/DYID/7D/7/Xu//38b/4yv34eb1L/0S/oXll92O+zswM/+LJTLfzDf8A9q/Mqv/Is9cb/xXhgMEI3CD/4gfOELf/Cf/8/x9TM/07/6z/9zWF+H0Qi++lX4W39L/yEfPQKn8/f5K36b8dprMByC1frh/t2v/Ar8wi988xszHIL52S7NRz7kXmiavrD80i/BH/7D8H//3/D5z//Bfe63un7/jMez3bl/6V+Cl17S//tP/2kIheB/+B/gH/0j+ON//Jv/m34fXK5n/JrfYhiN+o7x+zl+v9/vD3J88F4A/Kk/BbEY/O//+x/spP7nePz+1NQ/9EP67xcX+u8//dPgdsPZmb5qeDzwb/wb+t8tFvBzPwc3b+qTJxaDn/kZaDaffk9Ng7/+1yGV0lf/H/xBePz4d3/271VT/87v6J8dCOgP05078Df+xvvf7xd+Qf/vD27fMr5ZTfjuu/oE8nr1n+2zn4U33nj6NVISfO1r8B/+hxCJ6J/9L//LUK1+m4v4+zT8fnA4fvdO851ed9DLl+/7Pv27ezzwYz/29LX/dtfvm418Hv7tf1v/XJtN/x7/8//8u1/3N/+m/ndOp37vXnoJ/u7f/RAX4FlX6m8cZ2f676HQ+382m8HnPgef+Qz89//9+2XJz/yMfvP/rX8L/tyf0x+En/95fdJ87Wtgseiv+0//U31S/+E/rP965x340R+FyeTbf59f/3V9lUok4M//eYjH4eAA/p//R///n/kZKBT01/3yL3/793v8WL/JXi/8pb+kf8df/EX4gR+AL38ZXnnl6df/2T+r35C/+lfh8lKfTD/7s/D3/t63/6wPO9ptqNX0RaBS0SdFrwd/8k8+/brv9Lr/8i/DT/2Ufu/+2/8WBgO9vPzMZ/TXrq19+OtXLsOrr+oT/2d/Vn/Yv/AFfVfpdOAv/AX9df/T/6R/tz/2x/T7NBrBw4f6AvUn/sR3fk20DzP+l/9F00DTfuM3NK1a1bRcTtP+j/9D00IhTXM4NO36Wn/dT/2U/rq//Jef/vdf+Yr+53/n7zz957/6q0//eaWiaVarpv3Yj2naYvH+6/6T/0R/3U/91Pt/9sUv6n/2xS/q/z+badr6uqZlMprWbD79OR98r3//39f/3TcboGl/9a++//8//uP69zk7e//PCgVN83g07bXXfvf1+eEffvqz/oP/QNNMJk1rtb755z3LkM/6xl82m6b90i89/drv9Lp3u5rm92van/kzT7+uVNI0n+/pP/8w1+9P/SlNSyQ0rVZ7+nU/+ZP6+w4G+v//0T+qaTdvftsf/duNZys/fviH9actnYaf/El9O/6//i9IJp9+3b/77z79/3//74PPBz/yI/rqIr9efFF/jy9+UX/db/yGviL/2T/79LYmT/S3Gu++q69Cf+Ev6FvxB8e32yK/2ZjP4dd+DX78x2Fj4/0/TyT01eOrX9VXmw+Of+ffefqzvu/79PfJZj/853+78Qu/oK+Yv/7r8L/9b3qZ9qf/NPyDf/D+a77T6/7rvw6tln4u+uDrTCZ9N5LXfZihafB//p/wR/6I/t8ffN/PfU7fad55R3+t3w/X1/DWW9/VJXm28uMXfkGH8sxmvUba3dUPbE+9s1mvhz84Tk70HyIa/ebvW6nov8vN395++u8jEX1b/1ZDSqFbt779z/GdjGpV34J3d3/33+3v67VqLqfXgTJWV59+nXznb1a/yhgO9WvzwRGPf/vv94lPPH1Q/ON/HJ5/Xt/mP/95HRX6Tq/7yYn+u5yRvnF4vd/++3zjqFb1B+Vv/23917f6/P/4P9YXtE98Ara29HLzT/wJ+PSnP9RHPtuk/sYL+c2Gzfa7J/pioV/Yv/N3vvm/iUSe6ev8czdMpm/+599KOff3/p5e736nr/+9htGor9Z/42/ok/Tmze/8ui8W+u+//Mvf/IF6FphT3vNP/km9Vv9m484d/ff9fTg60s8+v/qr+gr/P/6P+vnqr/217/gjP1owdnNTfxI//Wn9hP57jUxG//3k5Oktv1r91qudfAbomPkP//Dv/brvtBSJRPRD7tHR7/67w0N9EqXT39l7favxuc/p2//vx5jN9N97Pf337/S6y7WLRr/1tYMPd/08Hr38+nbvCTri8hM/of+aTOBf+Vfgv/wv4a/8le8Yav1o2+T/+r+u/3D/xX/xu/9uNtO3KdB/eItFP8l/cLX6uZ/79p/xwgt6M+Lnfu7995PxwfcSzPwbX/ONw2TSt8F/9I90JENGuaxDTZ/5zLNty984Egn95/7gr2cZ06l+BrBa9ZUPvvPr/rnP6T/Lf/Vf6e/zjeODsOSHuX7/6r+qr7qPHn3r96zXn/47qxVu3NDv2zf7Pr/H+GhX6u//fh0O+q//a7h/X58sFou+Iv/9v69vmX/sj+lP91/8i/rrPv95HdJ7910dBgqHv/VnGI06BPVH/gg895y+pScS+qr6+DH803+qv+7FF/Xf/9yf02+myaQfer/Z+Ot/XV9FP/MZ+Pf+PX0b/sVfhPEY/rv/7vfr6jzb+MIX9J8N9Nr07/5d/Xr+5b/8/sP2nV53r1e/dv/mv6kvDj/5k/q9uLqCf/JP9JX+539ef88Pc/3+m/9GP2S+8gr8mT+jT9RGQz8g/sZv6P8N+veKx/XPicV0GPbnf17HyT2e7/yafCisRGCkt9761q/7qZ/SNJfr9/77v/23Ne3FF3UY0OPRtNu3Ne0v/SUdJpMxn2vaX/trOhTkcGjaD/yApj16pEN13wrSk/HVr2raj/yI/v4ul6bduaNpf/Nvvv/3s5mm/dk/q2mRiKYZDE/DU98ISWmapr3zjqZ97nOa5nZrmtOpaT/4g5r29a9/Z9fn9/qO3834ZpCe3a5pzz2naX/rbz0NKcr4Tq67fN/PfU6H2+x2Tdvc1LSf/mlNu3fv/dd82OtXLuswYDqtaRaLpsXjmvbZz+rfScYv/qIOkYZCOjS5ualp/9F/pGnt9oe6NAb9O3w8Ph7fO+NfPOrpx+Pj8W3Gx5P64/E9Nz6e1B+P77nx8aT+eHzPjY8n9cfje258PKk/Ht9z4+NJ/fH4nhvP3FH8S3/x/43X68VkMhEIBJjP51xfX1MsFkmn00yHY9qtFtvb2/T7fYxGI7lcDrvdzubWFt1+D7fHjc1uZzAYUCwWARiPx8TjCdAMDIcTZrM5JpOJdDpNoVAgm82yublJoXCNxWIkGApgtVqZTCbM53Om0ylra2skk0m+9KUvYbfbmc/nrKysYDQaOT4+xm63k0gkACMet49arcZ4PCYYDGIymZhMJlxdXZHJrHFxcYnVamVnZ4dSqcR0OmWxWBCLxUilUjx+/B6TyYTV1VXsdju1Wo1yucze3h5Go5HHjx/j8Xiw2Ww4nU4mkwnT6ZRarcZwOGA2GuHz+djZ2eHk5ASz2YzZbGY0GlEul9nYWMNgMFCv12k2m9hsNsLhMDabDbPZTLlaZ3v3BhaLBbvdTrfb5fj4GJfLhc/nw2Kx4HK5aLVamEwmGo0Gi8UCs9lMt9slFoupe3fjxg3y+Tw2mw2v16uum9vtpl6vc3p6isvlYmNjg3a7zXw+Zz6fMRwOGI0GmEwm4vE4Jycn+P1+kskkJycngIHBYMinP/1p8vk8FouFQqGAz+fDZDLhcjoxLOYcHh4yGo2IRqNYLBaKxSL/n1/8Xz/03HzmlToYDBIMBmm329TrdVqtFs1mE6vVisvlIhKNMJ3O0DQNo9HIYrFgb2+PSCRCt9PBZDZjMBoZDAbM53NsNhubm5usrKyQy11RLBYJh8M4nU5SqRQ2m41AIMBsNsNoNOL1erHb7ZRKJRaLBaPRiPl8znA4pNPpUK/XMS9ZZW63m3A4TLfbZTweo2kaLpcLs0n/+2KxiNlspt/vA+B0OrFYLIxGIxKJBFtbWwyHQ3Z3d4lEIsRiMcbjMePxGIDhcEi/31ffwWq1UiqVuH//PqPRiFqtxmKxwGg0Mp1OGQwGmM1mfD4/bo+HVCqF3+8nFArh9XqxWq3M53MSiQTdbg+z2YzJZGJ3dxev18f6+joejwe3281kMuXk+JjJZMJkMmGxWGCxWNSDWalUWCwWaJrG1tYWDoeDRqOByWRSi0Gz2cTv9+PxePB4PGiaxmQyYTAYcHp6SqVSoVar4XQ6CQaD1Ot1er0eV1dXeL0+VlaShEJhMpkMuVyOF198kRs3bmAwGHA4HDgcDkwmE6enp9RqNY6Pj5nP5ywWC1KplH5flt99Pp+zu7uL3+9nLgy/DzmeeaUeDSfYrFNsVgd+X5DBYMDW5g5Wq5XhaIjJbCUYiTAcT5hrcH2d1yeL1YrT6SDiD2A0mBiPh7icToyGHl6PH7PJSrvVxW63MxqNGY1GNBoNnE4ngUCA1157jVKphMPhwONxUyyWmE0XOB1uGo0GRoMJq8WO2+UlncoQDAY5Pz+n1ezgcfsIBsKMx2MG/RGgr4A+n4+1tTV++7d/m2QyicvlwuVyMZmM0TQDdrsdh8OhHlC58fIAF4tFms0mTqeTdrtNtVplY2MDn89HoVBgNBrhcDjUg1Kr1ej1evh8PuLRGN3+kGa7S6PVwe120e70cHl8dLtdDAYDk/mC3nCEczJlARRKZVxut/5QeL04HC6GwyGnp6dqstrtdvx+P06nE6PRqK/q5TK9Xo/ZbMZ8Pmdvb49ut0ur1SIcDjOdTtnd3aXT6XB6ekq/38dsNtNutzGZTLTbbSqVCi6XC4/Hg8lkotvt4nI5mM3mzGYLwuEIZ2cXWK1W+v0+3W6XdDpNo9GkXC6zvr5OtVolGo3SarX4nd/5HaxWK067g3AkRqvVIpvLk0olicYSH+2klqffuFxt5Sk2GAxcX18znU5xu9243G663S6z+ZxKtUo6nWZ1NUOz2cTucDCfzZnN5kynM66urvB4PASDQVwuD263F7/fz4MHD/B4PCSTSdxu93JyDIEFDoeDwWCAw+HA6XSytraGx+PhyZMnlMtlXn75ZUKhEL1eD5fLxe3bt9X3nc8XNJstHA4HnU6HVquF3W7HZrOpiXx+fqnKgUwmw/n5Ofv7+4xGIzweDw6HA5fLxWg0YrFY0G63GY1GxGIxNXlnsxnD4ZDpdKquk6ZpGAwG5vM52WyWyWSC1WplPJ7QbrdJJBJ0Oh16/R537t6h3+/z6NEj1tfXyRcKhMP6w+n1+pjN5pTLZfr9Ptvb20ynU8LhMCaTCafTicFgwGg0sr6+jsvl4v79+6yvr9Nut4lEIjQajeXPes7Nmze5vLykVCqxsrJCo9EgFArpE8/ppFKpoGkaZrNZ7YqXl+dYrVZMJhOJxAq/9Vu/RSAQwOVy8cILL+D1elksFrzxxhtqtyoWi+zv7/Puu+9iNpuxhMzE43G8Ph/9fp9isYT3GdmPzzypbTYH/f6QRqOFwWAkGAyhaWCxWKlUavj9fjY2t+n2ukznC5574UWusldEonECwTDT2YKzszMSiQTNZhuXy4PRaKbV6jCfz3G7vbTbbTKZDNVqdblyjxgMBtRqNYLBINVqjdu37zKdTshmr7BarRgMRnq9Ad1un2g0xng8BYwEg2G63Q6dThen00Wr1cG69AqZzfQy6c6dO8znc7UqtVototEow+FQ34GGQ2w2G5qmMRgMyOVyrK9n6Pf71Go1RqORKnk6nQ6pVEpNRI/Hw2KxIBwOk0qleOutt3A6nZitNlKrGaxWGxaLmclkQiKZxuX14XA10QyA0cRoPMXrD5BeXQNgvphTr9WxWm3LMmRCKpVSD/l8PsdisXBwcIDP58PtdjOfzzGbzVitVlXPtlotfD4fk8mEF198kWazqR76tbU1vF4vDodjOdGKRKNRVQY2Gg0GgwHr65skEglqtRrT6ZzXXvsBHj9+jMPholZrYLPZVRm5s7NDv9+nXC6rsnA0GhGKRKk2muzu7KhFwGazPdPcfOaa2uPxMJ1O2d/fJxqNUS5XKBb1+jYej5NaTdMfDak3m5gsFsbTKem1DLGVBOfZS2KJOIFAALvdjs/nY39/n729veUKOqdWq1OtVnn99deJxWJ4vV5sNhtHR0dqaw+Hw8uazYnX6+X27duEwxGsViubm5vs7OwymUwoFovkcjmGwxHD4Yhut8vl5SXZbFatZtFoFLfbzXQ6RdM01tfX8fsD2Gw2ptMpo9GI6XTK3bt3AWg2m3Q6HarVKovFgpdeeknVrcFgkPF4TL1eZ39/nxs3bnDr1i3G4zFHR0e0223W1taYzeZ0en2G4wkOl4tkepV2t4c/GCSeWGE0mWK22Wh1OiRSSV58+WW6gz4PHr2Hx+cjvZah1+9jMpkIhUJcXV0xHo/Z3Nyk3+8zn8+x2+1kMhkcDgfdbpdiscjOzg6NRgO32w3AxsYGmqZxcHBAq9UiGAyyubmJ2+1WE9hsNuN26yXe1dUVo9GIu3fv8uKLL9JudajXGlzn8gz6Q1xON5nVNbqdHn5fgFpNP+TW63VqtRobGxssFguur6/xer14fT4arTYaBgwmM75AkKOTU7r9wUc7qY1GMwaDCafTRa83YD7XcLk8aJqB+VxjOplzcX7JYq4xn2nUqg1SyVVMRjMup5v8dRGDwYim6at+uVylVKoQCATZ3Nzmxo2bdDodTk5O6HQ6GI1GqtWqOo3b7Xaur/OcnZ3jcrmxWGwMBiNarQ5gAIyMRmMWC0gkkuo1k8kUg8GEz+dX238kEsFoNOLz+dA0jXg8Tr/fZzgcKOQmFApRr9fRNA2Px0MmkyEUCi1XpymzpdokmUwSCoXodrtUKhVMJhOLxYJWq4XNZmMymdDpdDAYDKRSKdLpNG63m+FwiNvtVrvEdDrFYDBgtzmYzzQMGJflWBCX043FbGM+1/C4PcxmMywWC1arVZ1BzGazOohpmsZoNKLVajEYDDg+PqbVanFycsJwOGQymZBMJpfljBe32008HqdQKDyFmCQSCaLRKPV6XZUhpVKJWCwGQKVSUQ+7oEHDob7qr65m8Hq9XF5eYrFYSKVSmM36zrSaXmU0GpFMJun1emSzWVZXVymVSh/tpB6PxwQCAS4uLtna2mJlZQWz2cx0OtWRkFYTr8/LxsYGfr+ftbU1Hj16RKvVxmKx4nA48PsDrK5maLVaVJbiS5/Pz3Q65fT0lLW1NSKRiCo7Go0GVqtVwV77+zdIpdKUyxXC4TC9Xm95AGlzfn5OtVpT7xuPJzAajUSjsWXNGcFms6sbNJlM8Hq9ZDIZDAYD5+fnaBoYjUa1ld+5c4fhcMh4PCYSiagtVdM08vk85XJZnSc6nQ4Wi4VwOEyr1eLevXtcXl6STqdxOByMx2POz8947733ALBarVxfX5NOp4nFYlQqFe7evYvFYlkiGBp2mx2zycznP/9H0DSN+UxfiZ1OJ2azmeeff556vU65XKZQKPDkyROGw6F6wPr9/hJdytHtdrl58yYvv/zy8lA80Q+u8TjhpRDDYrEwHo+JRqMKVRGozmazcXZ2RiQSwWK1MJ/P+eQnP4nJZOLi4oJGo8GNGzdwuz1qwRiPJxgMBp48ecL6+jqHh4f4/X5WMxlu3rzJ6urqEgDwEIvF2P5G4fUf9KSOxSJo2oJ2u0mzWUfTFsznM2azKXa7lcl4QDjgo9tpUirmGQ36GFjgsNuYz2ZoiwU2m43BYECv16PRaDCfzzk7O2M4HBJPJAiFwxjNZmx2O26vl8TKCoVikd5ggMPlolQq0el0yGazVKtV6vW6Om03m01cLhdra2t0u12GwyGj0YjxeEylUsHpdC5XYRPNZpter4/RaMZqtS1rQBcWq5XJbMZ0Pqc/HGJzOKjWapQqFSbTKf3hkMFgRDKZIp3OoGkGwEAwGMLr9TEaTRgOxzidbhwOF06nm15vwOXlFd1uD5vNgc1qYTjo0+926He72K0WXE4HRsCARiIeV4dWm82mUA550ExLVEMOujabTdXvrVaL7NUVvX6fQDBIo9Wi0+uxvrnJXNNodzocHh/T6XYJBIMYTCZG4zHjyYTheMxgNMLhdOL1+ZhrGodHR/SHQ0xmMxgMaAYDtUaDSDSC3enA6XExHI8IhIKEYxHm2gKz1UK70+Hs4oJYPMHzL7xEfCXFZDonEo1TLFcZDHUo9OTk5CkEKfDtnAN+j/HMB8VOp4PX68Fut3Pv3j0ikQg7OzvY7XbW19d479FDTCaoVev4/QGKxTzp9Crz2YzBEtN1u91EIhHu3r3LW2+9hcvlUpOu1++TTKV4Zel+JIezYCiEpmk8eu89YrEYnU6HZDLJW2+9RTqdXq6w2nLr07dWl8vFxcUFHo9HoRbFYpH5fIHX62M+n1OpVFksNPx+P5VKlY2NTTTgKpcjGo3i9/s5PT1lNZNhPp/T7fWolMtMJxP8fj/N5jHNZhOLRV+1HA4Hi8WU+/fvq7o0nU5jNptxOp0cHx/rTRmrFbfLhcFg4Ooqy3isoywej5vRaER/eeiTppCspNlsVh36hsMhrVYLj8eD1+ulVqvhcDhYW1ujPxgwHI0wmUyqX/DKK6+Qz+e5yuXQNI1Op8NisSCfz2MwGEin0wpBcrlc2Ox2vbGSSGCz2ej3+8zmc3w+HwDZqys2NjZ4+PAh88Uco8moY93TCRoa2zu7SziwhtFkpt3u0Gq1iURjOJ1OqtUadrudjY0Nrq+vOTo6QtM02u02P/b5H//Qc/OZV+pAIKC27FAoxGAwoNVqUSwWsdvtqjng8/vV/0tTIxqNsrq6SqPRIJfLLR8QLwaDQW3vg8GAi4sL+v2+Qj5MJhO9Xo+joyPiiYT6fL2U8dNsNlUjx2w2qwPbcDhkZWWFQCCgttBer4fH48FgMFCtVrFYLAwGA5rNJs1mk0AggMftJp1Oq67cbDbD7/fTarXodDo4XS6cTieFQkHV3cVikWq1ymw2UzW1QJ/j8ZiNjQ1sNhutVoter4fX68VisWCxWDCbdVirXC6r7mCv12MwGJDNZlX59c4773B1dUWz2WQ2m6lDbCaTIRqNkkgkVFPMarHQ6/WwWCzEYjHC4TD5fF6992KxwOfzYbVa6XQ6uFwutcqnUikWiwWdTkcdKuWBlR3WarUSjUa5urpSDZxqtcp8Pqff73Pv3j1Go6FqSi0WC4bDIV6vl5OTE8bjsWoGNRoNZrMZ4XCYZDKJ58PoEj8wnnmllnZ0LpdTdS7oh4X799/FarVQq1WYjKf8yI/8KEajiXv33iYUCjOdztThxO/3c3Jygt1u5/LykvX1dZxOHc144803KZVKrK+vc+PGDbLZLMPhkJ2dHebzOX6/n3q9jsvl4rnnnlONh0KhwPr6OmdnZ1gsFlZXV3G5XORyOcLhMIPBgHA4TCwWUzdzfX2dZrOp6uvFQsfAi+UyHo+HXC6H0Wjk0VIRvbe3R6PR4NHDh9y9exez2ay6nbVaTdWlDoeD2WyGyWQiGAzy3nvvYTKZ+KEf+iEikQjT6ZTr62vMZrNqvZdKJSwWC5lMhtd/53dUI8VsNvPOO+9w9+5dBoMBbrebq8tLfuiHfoiDgwP1HnLYG4/HnJ6dkVxCfQ6HgzfffJNkMonD4WB7e5tCoUCn01GrdCAQ4N1338Xv9/Pyyy/z4MED+v0+DoeDq6sr4vG4wr673a7qwkrHs9Fo0Gg0+NVf/VW2t7fZ3d2l29Uf3k6ng9/vR9M0qtUqr776KpqmcXl5qWp2k8nE/v4+19fXaif4sOOZV+rZbMbFxYVqUQ8GA87OzjCZTGqlFJ6E3GyZRAaDgXa7zcnJCWdnZ2xvb7OxsYHVaiUUCuFwOLi+vsZkMuHz+SiVSnzxi19kMBhw69YtLBYLtVpN4cjdbhev18twOGR9fZ3pdEq321UcCeEyOBwOLi8vVX0K8OjRI2azGT6fT0FgTqcTt9vNZTarGjM2m01NmMViQS6Xw+FwqNJCdoRkMkk8HlcIh+xQwo/Z3NzEbrczm82oVqsMh0Oi0SjxeJxYLMZkMmFzc5PBYIDBYGBrc5Po0lkplUphsVh44403iEajjMdjnC4X+Xye6XSK3+/n0aNHFAoFVlZW1OQW3DmZTKpdM7Qs41wuFzabDZ/PpxpnXq8Xp9NJeWmkL80nl8ulMG7B+BOJBLFYjP39fSKRCP1+H4PBwNramo4/h0JYrRa143S7Xba3t1VXVnYzmS+CiWuahuNbeZT8QUxqQEFEoHcYV1dXWSwWmEwm1tbW8Pv9GIxGstksBweHDIdDhkP94rz66qsMh0Oq1SoHBwe0221efPFF1cKt1+u88MIL/KE/9IdIp9OqnZtOp1XHz2w2c3R0RDAYxGKxYDAYeOONN9QFzWQyJBIJhdF6vV40TcNiseDxeNQ232q1yOfzeL1ehad+5Stf4fT0lMFgQDKZpFAoKDJUOBxmOByyWCyw2+1qey8UCtTrdWw2m958WtaIk2XdrdfZ+kNutVpJp9OcnJxw7949xUk5Pz/n8PCQfD6v//lkolrtDx48IJVKcefOHUwmEwaDgYuLC87Pz7m8vOTLX/4yw+GQSqWyRH+q3Lp1i0wmw2g0otPp8Morr2A0Gmm326rjORqN2NjYYHNzE03TzxWRSITHjx/T7/dZW1uj1+uxsrKCpmlcXV2pVfX8/FxBoaBDmru7uzidTr761a9y7949SqUS7Xabn/iJnyCTyTAcDjk4OMDr9fL8888zmUz4whe+QKFQwOv18vjxYy4uLmh/ow3bH/SklgOJ1WolHo/rBJT5nGAwyOrqKtOl+YgBA263G4/HTa1Wo1IpPwX637p1i263y8XFBQ8ePFAt3enyxptMJgUrOZ1Orq6u6Pf7NBoN2u328qBRVWQZadLI5JGaLbk0rwyFQqp2l4dS2tt2ux1N01QZ0O/3GY/HHBwcYLVaVbOoVCqpVcdutyuGoNlsJhAI0G63abfbOj1gNqPdbtPr9ZhOp5yfn1MoFKjValSrVe7cuUMymeThw4fqYRsMBmxvbxMMBpnNZhgMBpxOJ3a7nbOlV6DUtCsrK5hMpiWuPsTpdBKJRGi32xSLRUajkcLHc7kctVqNWCymFgXQD+Gz2Qyv18vu7i7T6VTtINlslpOTE3zL9vX19TW9Xg+Hw6Fa9b1ej+FwyMOHDwkGg2QyGbXaa5qmJvJ8Plc7nfzbwWDA/v4+n/70p1lbW1M7eiaTUTvFRzap8/k8L730ElarldXVVdbW1lQ5sVgsGAwHlMsVolG9w/fSSy8pYowcIoSNJew3h8NBqVTCbrfj9XiIx+Pcv38fm83G1tYWFotF1ajX19csFguCwSDz+XyJZswZjUaq0fDuu+9SrVYxGo30ej1OT09VebG7u8vKygrNZpN4PE6tVsNgMGC1WpnNZng8HgKBACaTCa/XqzpqRqORYDDI7u4u8Xgcg8HA5eUlhUKBwWCAx+NRu0kwGCSVSrG5LCFsNhtra2uYTCYODg4YDAb6bmbQH/x79+5RLpe5efMmX//618lkdAzfarWiaZo63F5eXnJ4eMhkMmFjfV2VRUISMplMbG9vk0gkKBQKCv5rt9vMZjNyuZx6nXBVpEQpFotMJhN6vR6VSoV0Os1gMKBer7O2tsaNGzfw+XwkEgksFgtra2u0Wi3G4zFnZ2ecn5+rBkw8HieRSNDvD9A0Te1Kh0vznfl8TigU4t69e7z99tvqwP3pT3+a3d3dj36lDgZD9PsDWq02Z2fndLs9QqEwNpudYrGMzxdgNtfo9gZYrA6Ojk9xOF08/8KLLDSNcDjM4eEhr7/+OolEApfLxeHhIY8ePaJarWIwGimXStisVpwOByuJBPnra8qlEv1eDzRNlQCrq6vcvXtXHTLdbjdms5lQKKS6fefn55yentJut2k0GhgMBpqtFuPJhPligcFoZDafE4vHmc5mOF0uAgGdq+31emm1Wmqlcjqd1Ot13G43VpuNH/6RH6Hd6bC1vc3jJ0949PgxyVSK4WhEuVIhEomwWCzweDxsbGywsbFBtVql1WpxdXWlYEeAbrer2t2TZekhO8HZ2ZlCTvL5PLlcjkq1SigcZntnh+FoRK/fx2gy4XA68SxXy8vLS3Z3d3n11Vfx+wP0ej16PX1ld7ncbG/vqIZVv98nmUzh8/kxm3WOtlyzQqGwfLj61OsNdnd32dvbx+Px0O8P2N7eAVANn0Qiwfb2tmr2SMNue3ub/f19/R4sYdDLy0u8Xi/Z7CXn5+e4XE42NtafaW4+s5nNX/tP/wo3b96k3+9zdnbG+vo6wWCQX/u1X8NqtbK1s43d4cDtcuN0OtVK6XA4yGQy2KxWfu2f/lMMBgMvv/wyfr9fdeGq1ao6TLZaLTKZDD6fj1wuh8/no9FokEqlyOVyip8gF2c8HjOdThmPx+zt7VGtVrm+vqZUKrGxscHa2hqLxUKnfvr9lMplvF6vItk4HI4lb9mrOnyC8AiUF4vFaLfbOBwOCoUCfr+fWCyGy+XiS1/6Eo1Gg7t37+q1tM+ncHmXy6Vq8sPDQ5LJJJNlMsKNGzc4Ojri8PCQaDTKYKCT7t1eL+VyGZfLRbfbJZlMomkaXq8Xl8ul2vCXl5dMJhN1nuj3+1SrVf0w6XTx4osvKq6LzWbDYDCQzWbJZDK02200TcPn82G32xUqY7FYyOfzCu83Go3qXhqNRra3t9X1FsRmOp0SCoXw+Xy4XC7K5TKlUolIJEK5XGY0GpFOpwkGg+o8c3FxwWDQV0xAOWBOJhP+3J//ix96bj7zSh2JRDCZTDpe63QyGAzUYaRarTKfzZmMJ4pTbLVa+dSnPoXL5eL6+pqzszNVPzUaDdUUAVSjQOikw+GQy8tL7Ha74gwLTNdoNNREqdVqqoVusVhwOp2sr68rHvN0OsVoNKpTervdVrTU/f19er0e3W5XqUui0SgHBwe43fqDGQqFeO6557DZbMTjcSwWC4vFglKpxOrqKo8ePeLFF19kc3OTu3fv6qjHEsIaDAZUKhUGg4EiXBUKBWazmVKipFIpVUYIRcDhcKjyZ319XXVHnU4nZ2dnNBoNer0eBoMBn89HJBJRyEK321W00tFopFQ3JpNJUWVHoxHtdhu/38/h4SFOp5Nut0s2m6Xb7RKNRkmn02oXlNJDWv1y7UOhEKurq2iapkQEx8fHnJ6eUi6XyWazpNNpdnZ2qFQqzGYz3G73UlwxXLI1m+RyOcXjXltbe6a5+V3xqTudDisrK7z++uuqyfDyyy9zdXVFYmWFJ0+eqFrXbDbT6/XY3Nwkn88TDoXwLWE2aV93u13q9ToOh4NyuYzFYuHTn/40x8fHHBwcsLGxoQ5F0hru9XqUSiWl1NjZ2WE8HlMoFCiXy2xvb7O3t6dgstPTU27evMn6+jqj8RijycRwOOTi4oJ4PK7q8evrayXBurq6wuFw4Ha7WSwWeL1exUVutVqUy2WKxSJ3795lvuy01et1MpkMJ8fHXJyfE4/HMZlMlEolBSfKoVRIPLlcTpF8DAaDXld2Oqrrl0gkGI1GBINBLi4umE6nCh/v9XrEYjHOz8+ZTqe4XC5+5Ed+hFzuWn3HN998k09+8pNYrVaazaZq1sh7zudzGo0GzWZT4eyTyQSz2ay4Iw6HQ/391dUVkUiE9fV1dfj3eDxKPHF9fY3b7VbQYqlUwmw2s7W1pRbB8XjM2toa+XyeSCRCsVjEaDQymUw++ppa0zTm87kC7Hu9Hpqm4XQ6dbL7aMTamq6vi8Vi6mDSW3omD4dDDAYDmUxmuf0M1IUR/Hl16cgv8i3ZlgQKDAaDOJ1OtfpIO9zlchEOh6lUKqpcEImUEM+lTg6FQmxsbLCysgJAr9dTncnz83NFSvL7/bjdbt5++20WiwX9fh+Xy7WsS3X1Szwe5+HDh9RqNTqdjvq+sVhMTQhpKAgZ6vBQoM4hs9mMZrPJe++9h8FgYLFYcHR8jNlsVt/XZDJht9txuVzU63VmsxmZTEa9Vz6fV93KR48ekUyu6MKCfJ7d3V2KxSKdjs4lPzo6Uh3FbrdLPB7HZrOpg7LBYKBYLDIcDgmFQlSrVXWgdLlc7O3tUSgUlIijXC4/hSIZDAbMZjObm5uYTCa1O/X7fbVLJBIJPB4vRqNRdWXD4fAzN17gu1ip8/k84XBY4ZTRaFTxGuLxOPPFglqtxmAwYG9vj06nowS2Xq+Xs9NTbuzv0+/3CQaD1Go1hZ/KRW42m9jtdtxuN5qmKagpkUionULgqkgkojpc1WpVwXvZbJZAIMD5+TnRaJRbt25RKpU4OzsjEAioxkK73VY6SmnizOdzpappNBqq7Oh2u4BeJvn9ftbX1ymXy3S7XUwmk/oZR6MR/V6PT3/601QqFS4vL1VpIy1mwfPz+Twej4doNKqUIa1Wi/ayjr9x4waLxYLNzU0sFguRSASbzUa9Xmc4HKr3OT09VbWp3W5nPB6TyWTUTloul4lGo5RKJW7evKlKBanPh8MhFouFbrdLKBRSdAhBODRNY21tjXa7rdAii8XC4eEhpVJJ3SuBFAXjlp04HA5zcHBAKpVSu+udO3dUh/bevXtsbGwQCoV48ODBM83N70p4K00G6aYBGAwGLEu+Qb/fV3Ihj8dDt9tVh7TxeIzJZCKXy7FYLJSCOB6P4/V6efnll+n3+wr+EaK70WjE7/cTDoeVsDMUCilobrFYKCRhOp3Sbre5vr5WXGPBXOUcoFMix+TzeVXXi6pcmjqz2YybN28q/oZ0T9966y0MBgPj8Riz2Uw+n1c1cy6X0xXZsxlfWmY8vvLKK+p6FAoFzs/PcTqdeDwe5vM5a2trXFxcKHxWEJZWq8V8PleH3uFwqA7GwWAQn8+ndkCDwUClUlErpPw7h8NBu93GZrPRbDYZjUa6mCOVUg2jnZ0d8vm8IjRJfS73Vg7UuVyO6+trRSl1uVzM53MCgQArKyuKRlur1dSKvbu7S7/fVx3lyWRCuVzG5/Op+yG8+fPzc8rlMoZnCZ7iu1ipRT1tNpuJRCL4/X510jWZTHh8PtVxs9vtlMtlVZ4EAgGikQjValWtEvV6nVQqpba3y8tLIpGIwo1tNl22JNuytLbNZrMiM5WXPI1Go6FWI9muZQeo1+uqDCmWSjx69AiDwUCj0WB9fZ3FYoHBYOD09BSDwYDNZsO1bEULGapUKnH37l1arZb6Tr1eTx2arVar4oCkV1f5R//wH5JMJqnX6+pQZTKZODo6ol6vEwgE1I5y9+5d/sk/+SdL+M3PAvB4vYqPcnFxQbfbZX19nUAgoAhfArs5HA42NzeVysThcCj7CZGtbS5jMKQEMBqNVCoV/H4/fr9fQZd2u10tOul0mmg0qlb70WhEtVql0+kovFvOCtfX14o8JeCa1OK1Wo1oNKp47oeHhywWC1ZWdNz79u3btFotRfJ6lvHMK7V05qLRKK4ldXJra0vVzfJDptNpOp2O+gGFAmq1Wmm32zobbnlalwk7Ho9ZaBoms5lSuUx/MMBmt2MwGmk2W9jtDvrLg0a9XlfwUiwWU3yTVqvF9s4Oa2trhCMR1ZgxGnVFzIMHD1gsFeGTyUQ9NM1mk8jy9YPBQDWDLi4uOD4+ZnV1VTWcAoGAarDIDiX14AsvvIDBYKBWqykN4FUuR6FY1JX329s89/zztNpthqMRt+/cIRQKYbFY2N7Z4ezsjLfffpvZbE44HKbdbhMOh9nY2Fgq4P2MRjpNVxYMn8+nkBFhw5nNFvVz1et1xuMx2WxW8UCGwyGRSEQ1euSMIk2lWq2myGOhUEg1clZWVvB4dAHAzvI6y+QWbF+6uI1GQ+HWKysr+P1+tSvK4XAwGLC2tkan01li9Tl0BdNHOKlXVlZUu1o6XrKllUoliss+fr1eVwer6XRKMBjEaDQSCARUXSgtXpng4vERicawO5xc5a6pN5qEI1E8Ph/ZXA63R6eqrqysYLfrChbBdq1W6xKe62Gx2bHZHezu38DmcBKKRElnMsw1FGkoFospOApQRi0GgwGv16u6crFYjAcPHjCbzXj8+DG5XI7T01Ourq7QNA33kqoaj8dpNBrs7Oxgs9u5ffcugVCIUDiMzW6n0WoxmU6JxmKk0mmKpRKT6RS700mz3cbpcmE0m7EuiU/9/gCTyczZ2TkGg5HtbR3hKRaLH1Dfu5RCRXaQ6XSKzWZTFFez2Uw0GiUcDtNoNOj3+4oQJpNR9J+i2RTlUalUUg+22WxWnxuLxdSCIPh9Op1WpVqr1VJ8Hmnfm81mdbh1uVxsb29TrdZ49937gIHZbK7oqx/ppO50OvT7fQaDgTqoSbctmUyq1rXgs5VKhdFopIxeGo0GGxsbahvLZDJMp1NWVlZ0SC5feKpeDgQCqtlxscxA9wcCCscej8e0220lOpXaTXcRmqutcT6f0+12eemll9ThyOVyKV6z8B2azSZbW1skEgnVpZSVJJVKUavV6Ha7OJ1OxSrs9/s0m03Oz895+PChguiSyaTikWiahslkolqtqoOiOC8Vi0VcLhdXV1dLYXGEbPZSTYTFYqELJYJBOp0OmUxGtcjH4zGPHz9W98VoNCqLA6EKAGpLF13meDwmnU6rg6AgMfalMEAm68nJCScnJ4qdV6lUFP344uJC8YAEopVmS7PZxOv1Kgbe1taWavaIkl08USaTidJAdjod7N9hGtc3jmeuqev1upo0MqFEnpVOpwmEQlwu06yEryFcZ5moVouFbDaroLzpdKpEnjs7G4wmU6xWq9p+HQ6H4mHXajXCwYDqdn2w3jYajaopkL26wm63K5X72dkZXq+XYDBIOr2KZfkdRFgqIgFBYgQbns/nHBwccHMZArqyskKr1cJoNCoWncCMmUxGNXJSqZTqIAKKTnt5ecn19TU7OzusrKwQDAYpl8vqrBAKhZRNwenpKQA7Ozucnp6qkk8/EJqUrYHwTaRJUqvV1IIjKJMgG/KAiWWa7Lj37t1ja2tL+ZYIMW02mxGJRBRy02q1iMViFAoFYrEYxWJR2Y3lcjkFjRoMBmWhJoCBXGvxWBFBhxz819bWnrnxAt+l8gV0rsIH4RyXy6Xss6bTKdPpVLXQhQrq9XoVr1j89/L5vOLQrq+v43A4ee+99xRLTQSywWCQmzdvqlXo/Pxc+fS1Wi0ePnxIv9/XedWzqUIPNE1TyIW0c3UjlksFQ7VaLcWR7vf7HB8fU6/XFTe51WqpRoRs98JPTqfTCooslUq89NJLxONxdb6QA5VMEmluXFxcsL6+rvjEQsEdj8f4/X4l4xJNpcFg4OTkhF6vp6436KjH5uYmoVCIfr9PvV4nn89TXUa6zWYzBoMB0+lUwYnSPJLubSAQIBqNEo1GabfbirMRi8WUcY88CP1+n/v375PNZlUJI3SC4XDI48ePuby8VNRWr9fLvXv3lIwtFotxenpKPp/H4XCwsbGhONehUIh0Ov3Rm9mINlBKDOkEdrtdzGYzRoNBeWR0u12leAAd4+73egQDAW7evEmhUMBsNqvJt1gsGC25G+PxmJs3b3JycqK2bkE8JqP3OQnS0rVYLKr1PRiOsDscrKysqImxtbWF0Wjk8vJySbmcKrhLSEQfJCCB3gwClOGjyWTCZDIRjUY5PT3F6XSSSCQUlDccDslms6RSKcW/iMfjiko7m82w2+3cuXOHd999l8PDQ9VgOTg4UJ50brcbm82uqLR2u13BbYL5ZzI6XcBoNHJycqKYc1IeAQQCQbUT2Gw2rFYr+Xweu91OMpmkXC4roUEgEMBoNGKxWHSEqFhUKhrhfehWYy6leBJ3qEwmozqE4XCYt956i83NTVwulzpzrKysUCwWiUQiyutvPB4r+oEYXT5+/FiVTB92PPNKPRqNCAQChMNh4vG48rMQnrN/uZKLl4R0/QQb7fV6ynRQnDdrtRr1ep0nT55QWZKLhLCTXqbKyvbZqNeXIt91pdoAVCes0Wgwnen85cViwdXVlbJvkG5fIhFXCID4z9VqNaWXk3pdShe73c7JyYniMp+enrJYLCiXyywWC6rVKslkknA4rAhIYh4pJB9Z8arVKoVCQeHl4/GYZDLJYrFQJdfx8TGDwYDbt28rvnoymVQ7nU708mOz2TAajZRKJarVKvl8HpPJRDabVSIGr9er3mM4HKoDu9VqpVqtqho4l8spjF7cYY1Go/ISEfQDWNqk6YdBAQiE2irvLWKIbDZLOBxW9f/R0RG7u7vU63Xq9TrHx8dMp1M8S8PMer2uytePbFJrmkaxWGRlZYWtra2nevUiwRLZlMFg4Pj4WEmNZGWfzWYEg0FCoRCJRELV6OFwmMTywCjEmZWVFdWtdLlcdJcedXJAkyd8sViQzWaXqu4FyWSSVqulWuuDwUCRiPL5gsKlZUIFAgEGgwEul0t1LBeLBQcHB3S7XZ577jmef/55BWPKd5byJxwO6yrupXZPSgaRn4m3HqC6mEKYF+em8XisHs7RaEShUKBSqRAIBMjn87z77ruUSiXlZiUeg16vl1gshtvtVniwSNlarRbtdpujoyPVcRW5mRCIPvnJTzKfzykUChSLRbrdruru+f1+tePKZ4RCIUKhEMfHx9hsNvb391ksFuzu7tJqtdjb21O2DiJ2Fqtgu91OMBh8SmwsrXuj0cgrr7yiTHI+skldq9WUaFO+2Pb2Nj6fj2q1Sn9ZSwnZPLQ0RZS6cTQaoWkap6enivsspKdwOMxwMOD6OkejUV9O7JGC+ubzOeWyvipMJhOOjo7U6V0md6VSoVjQJ61uIabXp9K90znKum2ByWRSN0Zgp7W1NRwOB9FoVKmnhcQk7LmtrS21EgkLrt/vqxXTbDYrVhroGkNRygiPQ9rX0WiU+/fvL4XL91ksFkQiER4+fMi7777LbDYjHo8znU6VZYPZbKZer3FxcaF87lwuF5lMhnQ6zWc+8xlF0Hr55ZeVBlI8Vh4+fECtVuPVV19VCniXy8WjR4+UuLbT6ShOh8Cz9Xodj8ejGlnSg9jb21POVXfu3GFtbY3JZMLXvvY1gsEgn/nMZxTjcjweK09EIWCJhcPJyQmTyUSVTx92PHNNLUR5QB083EuHU4/Hg8/no1Kp0Go09LoqHMa+NFoxGAzEY7GlY1KUyWRCpVLBaDRy+/ZtyuXyUiXuZOGwYTbCxfkpbpebbruhb7kWs96xW6pMms0mgNripT5v1GuYTUZW4jFVo/W7XVjM8brddFotvTzJZvG4XBgBl9PJZDTC5XTS7+q19npmlVgkTLtZ53FHX/l9HhelQkEXxC797C7Oztjd3QVN42pJfE+trOjeHQYDVouFUrHI7va28qWrlsv86I/+KJ1Wi3vLkiFy86baiYbDIT6fl9lsis/nXZ4rTDQaPcUKFKeo4+Njjo+PFea/srJCr9fj/PyMfr9HIhHH7XZhNBoYj2dcXl4QCPhZXU3TaNRZW8vgcNjRtAV+vw+j0aDe++TkRC1kGxsbJJNJGo0GLpdLgQKapvHuu++SSqV0EcXyHPHgwQM++9nP4vf71WIwnU5JJpNYrVZlvJlIJBTU96wHxWdeqQW9SCQSnJ+fc35+ztnZmYKjRkuHfCHX1Go1arUap6eniocsnANBDKTrJz4eTqeDfD5PNnuJtlhgtVoYDofK9EWErDJZBVvtdrvKXfPy8pLy0pZWeB66+2mHyWTCbDbTjdD7fXX6Di51htPphIcPH1IoFCiVioTDukeeuIpeXl6ysbGh5P9C6ex2u4SX/OJGo0EsFsNsNqNpGsPBgPlsppykotGoQji2t7eJx+Osra0pAlUikVA7g2gyRQQhpCGhoEYiETY2NhRSIu1mo9FIv99XCnFptIhu8vT0VLEa+/0+hUJBaQ+FC+12u1VjRhYvYUSazWYajQZPnjxR6vVqtarupRhkHh8fK864y+VSeHo4HMZoNHLv3j1MJpM62D/reOZJvVjo9erh4aE6KL1fq+ZVBIT8AIIuyKoqCIaQYex2u7I+0HFL/RQuzDG5UcLnECckqae3t7eV0FXa21KzaZrG48ePVfNnNBpht9sVeUZ4zaPRiGKxyNHR0fIz9AObxWJB0zTVMpYySjyl3W43e3t7qnaXw+nm5qZSc4utghyW3W43DoeDWCzGysoKg8GAJ0+esLKyoiDEwnIXuHPnjuLayAMlvtEul4v33ntPKbBFQCv4uzQ/xFtE/D/sdjsvvvgit27dUjvj7u4uhUJBQZw2m41Go6EaI4J0TSYTxSkpl8tEIhFWVla4ceOG0nAOBgNOTk4U/9zv9yvDoOl0qkhborQR8tvV1RWgQ5QCf35kk1rTNLa3twmHw6r9OhqNuLq6IhAIKC5HIBDg+vr6KRWFHBZMJpOqy2bL1Uu4HAINis1WPB5XN3M4HKJpKCxZYKdMJgOgcNNOp8NsNlMT/eDggIcPHzKbzdjc3FSlSjabVexAYQICXF5eMhgMFPLR6/XY3d3VaQDFor7yDofUajUymQy3bt0iHA5zdnbG1dUV3W6X+XyuOBWic5SfQZTZuVyOer2uSEBXV1dqZ9EWC0KhkOIrS25MqVSiVCqp7z2ZTNTDK+JZcc4S2+NKpYLX61X2ZBaLRVFNRSHvdDoBPTJEDqrn52eKY22321ldXcXpdLK/v68MKZ1OJzabjfl8rnwMHQ4Hh4eHSrwcCoUwGo3K2iwQCChllOTJhEIhMpmMOgM9y3jmmlombrPZVK1tsR6QxkYikVB8ZZvNpg5eFxcXNJtNEokEZ2dnBINBta3Lyt3r9dnf31UTebFYsFiaSuodxx2urq65urriE5/4hMJSpdslvAHfki0ofA5ZreQcIFu/kPxXV1fVdjocDpThYjwe5/LyUun0xF5hONQdUEV9YzAYnprsi8VC8SzEK0O45WJnUCgUVMtekCDplDZaLYpLlyox0pQdT6I9nnvuOWWoKG3+SCTC6qpukev3+5U9meyKYmUmq//29raCOqU+ljJwOp0p2G86nbKzs6Oke62l1ZyY+rhcLqVAb7VaCvmRA6tg0oFAgGKxqAhue3t7eDweJpMJ9Xodp9PJrVu3PtpJfX19zWg0YjgccufOHcUN2NraUiv37u4u9+7do91us7u7y/HxMVarlVgsplzshX9gMBj4xCc+gcfjUWpiUTc7HA6y2Swej0d5wXk8HsVc8/v9ijshkinZ3jc3N1XWyMnJidIlgs4Dkcl+fHxMu91WIgRdhRGm1WpwcXGhav+vfvWr+P1+rFbrcoXS1S83btygUqmwsrJCJpPh+PiY6+trVXr1+33i8TjRaBSfz4ff7+f8/Jxut8vq6qqSpcXjca6vrxXnubvEuMUJdDabKdZjNptdLgC6J969e/eU0aIgF0L0F8RByinx/Tg4OFAWEaLYuX37NpVKZWlpYWYy0UsOPVFsqHZOq9XKnTt3VJmwWCwUf6fRaCj6qjhRSU6MvtO+3+GVlvjbb7/N3bt3MRqNyifkI53UGxsbPH78WDUdbDabajwI8ejJkydqpT46OlK17NramsKx5QcTDWCj0VjW4U56va5Sz0i4kDjlr62tY7XqIgVR11itVo6PjxVfudlssr29rZyjZHLKBRuPx6RSKebzOT/2Yz+m8HO5wTabFYMBhcwIrVYutv5zVLi+viYYDKqYjFAopKRRBwcH9Pt99vf3VccyFovxhS98gVQqpX5e8d8T0lKv19P9mZdxePJ50qre3t5W7qnNZpO7d++ysbFBs9lUMKFYL5yenqrzheD24gBw69YtRVONRqN4PB7MZjM3btxgPp/z+PFjIpEIp6en+Hw+NjY2VCaMpEnMZjNFiZWyUlyaqtUq9+/fZz6fs7W1pTSQrVZL2cOZzWaq1aryQJHu70fOp+50OmqLk87Y+vq6mlidTkeRZoTEPplMyOfzyuBbAn/sdrtivolDaLvdeUreJVu31GZnZ6eYTLriWCwS5GAqN8/n8/HOO+9gMBhYX19XsiaDwaDKjn6/r3YHcVYSNYrFYlXke3El8vv9ilSVyWTQtIXiX4s9mnA8FosFTqdTtcXT6bTiZdjtdqxWqyonzGaz+hlWVlbodrscHR0pJbvb7Va7jxCThOQvsXEPHz6k3W4v2+s2RqMRzWZTqfWz2axypJJWuugxBQkSLDqfz6vmk6jAJbZP3GPls6+vr+l0OjSbTWUXJtrLRCKBpmn0+328Xq+iCouC6dVXX+X8/JxSqUS32+Xk5ERJ8s7Pz59pbj7zSi1bmKy40mIOhUJsbm4qv7XZbKa0gMLI0ldfveNms1mx2SxcX+eWqhELnU53SRe14/F48Xi8bGxsLSd5i+FwhNGo18Yizzo/P2cymSjb31arpRhoYsgukq9CoUAkEuH27duALlMaDAZKTCtkeqvVyng6w+Fy43a5VXxFf6CXEtPZgmg0RigUUjTJyWTCwcEByWSSbDZLIpFQaplqtYqmaQQCATY3NzEuFUKz+ZxYIkG/16PebGJbmr3HlzKtRqOxdDrqq3Z+u90mGAzicbuZTiaMRyOm4zHNRoMzTSMYDNLrdqlVq6RSKWbTKZ/+5CepVKs06nUWS3RjY2ODSqWC3WbT4cbplIMnT2DJj08mkyzmM5IrCd0U6OycVrOhOCxGo5H1tQy9TpvpRK/1W406bo8Ho9HAvTffZDQc4HI6ODx4grZYcHB4yGK+wOfzEvB5mY5HdJbNKKxWTAaYTKdo89kzzc1nXqllQpfLZYLB4FIV7KFSqSgvZHlCxahGp3ummU6ny5Z1X9V2nU4bj8e9NHLpqxVMj7XQIbxyuczx8YnK+/P7/WorlIen0+moySVYrth6aZqmakyxO5AWcTgcVrIxSa7S2Xer2Gx23B4P48mETreL2+3h/PyC1pJ91+122dzcVPRMs9msbG8FN5/P56rZ5Pf7qVardJf1q3fppeFfkolG4zGxWIyXX35Z2YvF43Hi8bja4kXjJ7QBAzrzL51KMZ/NmE4m7O3u4vf5aLdaVCsVPcS12dTpn/M52tJvpFarwZIsZrPZmCzLHdlJet0unXYbj9uNz+clHArhcjpp1Os4HQ4WSx2kx+0mGAhQr9fx+3xYLRacTgdrmQzhUIh+r6fnOhoM+P06o1Ew8UQijtlswm7XmzDTZQnyLOOZV+rz83P1JEttp2kaqVRKNQWE/yz1tFhm6YfMIX6/T4lEpX4SG9dAIEAqlSKbzeJyuTg4OFAZfEKGikaj7O/v02g0FMohyIZwM2KxmFqpA4GA4jj3l80WMRoXcakcRAVlcS3txwAlVCiVSsoOTFJ5Hzx4oFyFAoEAZ2dnqpkkTkXSZZWtPl8osLKMYZPaVacAlHnuuecwGAw899xzT1FshaUoRHyzycR42ehyu920220KhYIiU4m/hpCPRDImJjz3799X3Gav18vV1ZXiN4sRvuyEDx8+VPa6QjySQ3wymcRgMChey5MnT7Db7U9ZMwsDMBgMArpQYTweqzLK7/djXLrkfvAA+WHHM6/Ukmgq7c1er8dkMlHog5CRhJooDC2pwyTv+vz8XJ2qJcY3HA5jt9s5OjpSPhbC1pNJ4nA4ePLkCbVaTYl7Jb7O6XSSy+VUU0G6W1JmSFtWXJgEYpQoumazqYefArFYTHUEhZsi8qVMJqMiliWgSGpQcUgV6ZrYfAmE5na79RV16Rp1eXnJ8fGxKnGk8xcKhTg/P1cHcCEcSd0pBjESndfr9ZTYWNiBFouFREIvH2q1mgr+XFlZUWbrh4eHKnPxtddeUykM0hV+32vaqiyA5dwghCyhJ9RqNXX9zWaz8vOQMFEp8YQbIwdHQYGEgvqRq8lFk9hbbiniIp/NZhUiIem0wWBQURPlBui0UiMvvPAC19fXKjlWOL8Gg/Epkot4PQvXV8IpBZIrlUpKfyf5M2dnZ7jdbnUDCoWCYqUJZRR0xc3q6iqnp6fqcLu7u4ttyfqTTqPwoieTiQos9SwbBoDifMvqLri4oBciW3ry5Ak3btxgf5nfLdCkSNDkRou9QzQaZTabkUqlAF1bKeeU61xuSSnQHUtns5mC2YRSKzTSSqWifEWkBBRrXWmUibedcMpby8x5oRWEQiFeeeWVpS1zRdkiFAoFtcBJFo2kBIhKR9h4t2/fVqY3QkkV1y2hOoC+2j/LeOaVWlhogjvKCT8SibC2tqaom+INATo01u12lSupqC1Go9EyyOdKtdt7va4SDPiXMWdil3B2dsZoNFJ52nLIE+hPZEE7OzuK5hiPx9XWJ3Kver2uBAqymgiHu9PpsL21RavV4sGDBxweHtLtdp9yty+VSmqFl5VGHjTZdWSl7PV6yv7WaDQqXaKQ9Le3t5U1mlgWSDkQCoVU46Lf75NKpZQnx6Df5/z8XAVAGQwGJXKWVVUerEqlwtnZ2fIM01FxIyKnkwO/4N7isS26SFH5CNIhKIzP51O2yPJzSWNLFhSHw8HDhw/p9XqqsxgMBimVSrzwwguYzWZOTk5UG18Wko90UkciEQJL4avZbOb8/JzZbKYOiL1eT23Z0mmyWCxKwSxYqtiPCcwmCbN+v1/VyJ1OhwcPHqgwow+GFQn5XkI2y+Uyk8lE+SRLA0BqPTkANhoN/H4/e3t7yg5APt/r9dJoNFRtHQwG2draUrIy8dqQJNyDgwPFSdna2tLTxXo97Ha7slp48cUXVdxyJpPB5XLx8MEDTk5OFPVVJqyIGXK5HMlkUvnviRBAMiWz2SyZtTVsNtvvyk0RG+J+v6/qeOE/95cpuRsbGwpbFx66wHvyAGcyGTY3NxU+Lu8pIaiAogy8/fbb6l6KrlQoD4KWiD+MtPZFyS70YFEZFYtF7ty589FOauENdDod9bQ3m00lrBWnnmAwSKFQUAaGsvqKbe98PldtdVnBxU9kf29PCVAnk4lCT1KplMpFFCJULBYjGAzy3HPPqXawtLJFsSFEJ6E9yve22WyKMyFdL4vFwvnFhXLrl59HwuzFXkEeYE3T1IMiNg/CqJOtWTgook8sFoucn58r8o+obdbW1hTas76+jsvlUq5U4XCYJ0+ekMvlFFkpk8lgt9u5efOmKkUmk4k6f8g1FyMdUWoLD0QWHZGMCT9DErykAyp+hPKQiaBaSE6yM32QiuB2u5VRjixY/X7/qa5wNpslGAwqJ12p/Z91PHNNXa1WCYfDuN1uCoWCinAQib48nTLpRMUdjUYpl8uKeyv2B7KSSlv1/OyMSCjEcNDDZrVgMhrQAKvNpnMnlvWi0BxNJhPhcFi5IB0cHChrNFFKX19fq2i3RCKBxWzi7PgIp9vN/t6ejtDY7YwnU5wuE1arjdFwSKvZ1Gmu8zntVguT0Uh6SaF87+FDRXIXNb1IlvL5PF6fn0xmnflCw2A0MZvPmc5mzOYz9m7s4XHrOsBbN2+yvrbGyfExLpeLjaVMbTQckojHiUYiGA0GNjc26HW7OB0OgskknSWNVOioYjJUKpWUEMPucGCxWvEuVezRWAx/IMDp2ZmyNBZBtDRvQqGQQn/Ozs4wGAwqyk78RcQEyGw2Y7fbeemll1SSg7T8xVhSvEkqlQrPPfecUuV4PB6azSbvvPOO8hPp9XrcuHFDRYF82PHMK7VIgXw+n+r9S0lydHSkyE3vvfcem5ubBINBLi8vFavshRdeUE++RM99EIY6OTnmKnuJeUmsF4suj9eHPxDE4/WpTqTo50wmE2+//bbCpgV9kTLB5XIp/vN4PCIWjVCrlqlVyqymUwQDASqVKh6vF7PFytb2NsmVFVrNJqPhEKPBAJrGew8fEo/FGA2HpFIphQ643W5msxlXV1dKAODx+ojE4rjcerB8Kp2m2+uSL+bZ3tkmnUrhdrmIRaME/H7cLhdX2Sx2mw2T0cjJ8THdTgeH3U69VuMqm8Xn9RLw++l1u2oSSQklbXzB6QfDIRarFavNpmdaOhz4AwEMRiMLTYNlfS9mNXa7nd3dXWVlIKu6dF8BtXuK7fDFxYVi4wk5THYZkX8JpOfz+XjvvffULioQsHhkn56e0ul09IP60qvlI5vUItQU2wKxIhgMBgomWiwWFItFisWieqLF2FBqajnYSVdO0AexHyuXyzpsZ7Mxm+n2ulJOCDyVWCaxiv6wUqngcDjUwUxav+LNobdoA4zHI0X+0aMmKso2OJ1OP4Wf1ut1/H4/KysrT3HGjUajUs2fnp4qDoPwxg0YlD6w0agvGYc6deD+u/dVaSLWXNVqVZn/5HI5IpEIBoOBQqGgEBexbBMJl1gVm81mstmsspWQXHgx2jw4OFC8ZtlpJVZEaKanp6eMRiOePHmi+BmCKskD5PV61WF2PB7jWkZqS9SH0FoF4hXagMPhUFwTIbSJ358c5J1O51NZlx/ppBZikJzgpbEhimBxNRWCjXBDnE6nOuTIBWg0GmqCxGKx5YofXHJzG0odYTIZ1QMhu4NoJOVAuLKyonBZl8vFzs6O8uqQ+j2fzy8fwvZTjZt0epUXX3pRcZ4PDg7UwVNIRpPJRKW6ijpDPOU+eCgSJMjr9RKJRJbYt95UajR0yqgsAIKYCNKwv78PoLSR4sUnW7oklomBpuDm4gMilF9xXRXvDSkNRYm0ubmpUJ/19XW9nT6b8eDBA+W4JMjQeDxWURjS/CmXy8oEX4KfxLVK1E/NZpNsNqtgVIHyBOPv9/vqvCMNHZfLpaDYZxnPXFML90C2JjH/FqNto9FIvV5nZ2dHPckbGxvKM0JXqUx58803MRgM5PN5FVkXDAaJRiI8fvgAg8G4ZPNNYMmnNhqN5PN5FrMpzz//PO+++64iHQk+LPWh5ACKCEGwY4ms0CeNrnSORKM4HU7FKx6PRizmM+WHIRwO8Tj5YOpBvV5XCplcLqeaMRaLhfnSQ0TT5kQiKdqdNpPJiFg8xngwJhgMks1mOTs7Y22JZgg1s9VqKd9Co9GoOpMiH3v06BGRSIRgMKh451IKLRYLhksjRvG+E4Gx0WhUrXvpKna7XQUJCkW1VqupA7Tcx3w+TygUUmjTYDBQft6iK5R8TTl053I5pZQX54FUKvVUqq64Ogmy8qzC2++qphYZV7PZVNL/ZrOpwH1x6RSWnbj23Lp1Sx3i5GEQuGixWCyzUHRzQ7PFrFZJu92hMruvrrLqBgrHVyCkQCCgsGWhfgr5XQx1stlLhbh0up2lINioqK3pdBrH0j1UFCs+n49Wq4XNZiOXyynapdx0gNXVVSKRiMJ0W+2W6nomk0nlqXHjxg0FT2qaxiuvvKKyCmu1GhaLhZ2dHba3t5nNZiq38PLyUj1AEqIqGeVyHhG+sphlfpAjLtmGfr9fMRLFKky6fCKNE9GCdHuFQSneKAKjSlqCIC3Cp1ksFpyenrK6uqr4LlK6STbl1taWUuYcHR1xeXmpdi7xevmw45lXajkBiyOofFmj0ai6i16vV0U5xONxJdQUNl2p9H4qgODH7Xab0jJWLuT3MVo60A8GA7yBoCK/+7w+plM9Sno4HKpOo5i1NBoNtra2iEQiqimhlzCmJefXiMNhxxUMUK3Vsdl1/nalUoElZ8QAVMwmZY3bbDaxWq3KzFLKJ4ErhTYqybn5fJ5iqcKNm7eWZ4s8kUhYYb7hcBi75f12drerf75YHVerVZxOp3LhlyaHtP4TiQTBYPB9lGNZfgmxLJfLqexJi8Wisljy+bzqjDocDiKRCPV6nc3NzaX9r1k1osQqQRQpkUgE0F22er0ed+7coVQqqfLOYrHQarUYjUYq+1JMh1rLTEghZImxp9TQ4q9dLBYVPeFZxjOv1NPpVGHDYvgnGkVJjcrn80pKlMvliMVi6ktfXl5SLpeZz+eKvC9sPmGHaZrGjRs31EOQTK6QTqdZXV3FaDJhs+lQlhgXxuNxisUi9+/fV3IgSYKSrHBBX6RzJkGaOzs7rGXW0NAx+KurKyxLvzlZ5US6FovF2NnZYXV1VT3IQjDSNE2tkvoBsaPyvN96602y2SzlUkk3k8GgnEKFmiqIgfAyOp2Osv+6urpSE9Ptdiuhw/n5OdfX17z00ktEo1EajQbxeJzhcKgCN0UKFwwG2d/fp9lsKidW6fLeuHEDTdP4nd/5HaUqPz4+Vl1Wr9erXEolmbjX66m4jA8iWdVqlWKxSLVaVZNTIkLu3r2rWuPdbpe1tTXcbjc+n49AIPDUQfMjndTj8VghCYIvilhUin8h0VwsmxiifpDVbDab0uksecEeDw6HE4fDxWymYTAY6fRHaAYTVpuN1UyGxXxOr91iMuxjMmiYjDpH4INoiTQYPB6POskHg0HVUi+Xy/j9fsBAtzdgPJ1RKJZpdzp4/T5WVhJ4PG5MRiOT8Uhh7JIrKCyyWq2malkx6JEGhLgb3bhxA5fLxetff5233nyTbqfL/t6eHr28tC0Qspaw40QFIp1YWTwCS0qndAOTyaTSc0ojxGg0MpvNlExOVD0mkwmX00lnCXW6XC6eu3sXj8dDIh7HvTSm+dKXv6yjGz4fnW4Xq9VKKBym1WrhcrlIpVIYjUa1K8iBWix/B8MhzVZLF1hYrRSW9g3tpe+iCIsvLi+JJxJEYzFa7TaVSoVUKkUqnabZatFf6idnH7U/dSaTURcwHo/j8Xi4ceMGN2/e5KWXXlKxEkI8Ei9m3YLsiGKxwNbWFg6HY1mn2jGbrUTCUdwuNy++9ApWh5PpAtKZddbWN8henHN9leXq4gyXw6YgOsktl7Lj+eef5/r6WnGRhUH2QW2kz+cjnljBbLUzmkx4+N4j3n77HXqdDr1Oh82NdSLhMMFgUCm/BX5zOByqVV6v19Wh9OGyESMRGeFwmFdfeYV0MkmpUGQ8HDGdTGg3m+zv7lGrVJ9CE6Sz5/f7ubi4UPX2xcUFd+7cUQ2kfr+vlCQ3b97ktddeI5VKcXV1RT6fp1QqqcOt2WSi1+lgs1qJhMNkLy746m//NoN+n93tbZ0ePJ0ynk4xGI14fD5cbjfnFxf0h0OGoxG5XE7V4cLJqNVqisrw+OCARDK5bFxNWAB3n3uOl15+mcz6OgeHh9x/+JC7zz/P1s4OG5ubeH0+fvO3fotCsYjBZKLRamEwGkmmUjSaTZrtNt5nTOh65kn9+uuvK3Yd6ELcq6srgsEgDodDqcodDocS1Ap7Sw5bbreLmzdvYrFYODk5YTrROR/6iqCfwnW8tEkoFCKZTDJb+tZNJhNMS2NxCdiRoKT33ntPpXqtr6+rFVSMyKXkEYtdUb5bLBa+/vWv8+TJE0VCEs86cZYaDAZcX1+rJovb7VYokNBufT6fUkqPhkPS6bSOzAR1yOv09JQnT56oyX94eKjYbdfX16qkEPhSiEKpVEqJBUajEaBTY0X2Nh6PVZqD5NUkk0l1/hEP61AoRD6fp9lsMl5iz4vFQtFN5/O5iokDnWMudmHz+Zy7d++qQKbpdMpoOFSWCuJ76PP5lPupQL1HR0cqvk4OyUI7Hg6HCjkRyPKD5LEPM74r0/VIJKKI6TabTeUhrq6usre3RzweVwcAkVaNRiMajSbFYn6p74vy/d///bz99jvYHbppoDDfXnvtNcbjMacnJzx58hgjqANTu91ma2uPlVRSRQ0bjUYymYyKk3M6ncrxXjgMpVJJSfcHgwEbGxuqMwYoTPqD6mqpQSVxS/xGxFCy2WyyubnJdDpVjp9ifC7v6fP5uHPn1pLROOfw8JDPfe5zGI1mdahWtbzFwsbGhuIjVyoVZe8FqBrd6/XqTaOlX7YEcgoS9ejRIzKZDEajkWKxyOrqqgoR+qC1rzDj8vk8gMoQ/yDWLHW5CA5MJhP7+/s8efKEar1OfNlClyjteDxOv99XyI3H4+Hq6ord3V0VCnXr1i3lbjocDvmBH/gB5XsCPHOW4jNPar/frwwLZdUQ/w9plgg/VohDEkwpyvHNzU3efPNNtrd3sNvtPHn8mFJRJxyNlhpBHZR3oy0WNNs6t9egzUmmkgxHQyXk7Xa7KqbM6XQquElWPKExSgdL6k85/PV6PVX7RyIRnjx5wnw+V4KDRqNBOBxWVNa7d+/SaDQURTQajRIMBhUHWGrXcrnM1VWOZHKFV199lV5fpwL0ep2lF4hNJb5+UGUjB2zRJwrxSHaPRCJBNpvFbDYrF1LhhYuDlOyK4gIrOLrX62V9fZ3r62uqtRp3n3uO6+trcrkcu7u7quyx2WxqwQDUNSuVSmiaxsbGBuFwmHfv36dcLhOLxdTBU9LOJHFCDs8CDQp56oOWFk+ePFHJC8Ph8KM3iJS6Ttx+XC6XsjMQcP/k5IRQKMRsNlO2YcKxFlsyOVjt7e3z7rsPVAeyWq3S7esOqJYlrPbVr/y2Hlnn85BIJDg8OmOhaSooZ3V1VbHPNE1T+re7d+/icrkUs022bAm2vL6+VlCVxBI7nU6lRAdUVN79+/dVLuDGxgZf/OIXFZ9BOmOgdzoLhQJej5/f/u3f5rOf/Sw2m43rfA6Px025XFzaOURUHW0ymUgkEvrqV60qKFScqy4vLxWn5fT0VKlrGo2GcraS5pLIsSqViprIEj/idDpViSUIRiAQ4IUXXqBUKikehvDTM+m08pqWg6GgIy6Xi1c/+Ul6vZ4qMeV88+abb6rPEN8QOX+IpEvTNCUa8Pv9ChYV8OFZxncVOScm5CLREqGAuMxLHJvAO+KPZjbryhe54O12W88Gj8VIJBK43W5e+/7vV3ZYOm4aXLbAzUtTm4gC+j/IKJNDjGxdUp9K/Sft/Xq9rnwxRBwrhHahrQqFdH9/n1qtxptvvqm2SgkXEv9maZ0DanIPBgO+/vWvqwZFs9VcNmX02lGMEJ88eYLf78fn8ymPbTHWkeRfQHE6AFX2SCKCqPUljkPCiORhTKfTihXp9XqV/nA8HnN1daVsDmSSC49EiEuCLV9dXelnhSWJSq6lPDBGo1HxfOR9xehS7CxkksuKLYdaof3K4nP//v1nmpvPvFILK046dffv31eHqS9/+cs0m03Fu9je3mY4HHJ6eqpsCvr9norGGAyGrK6ukrvKE4/rMRNPnjxma2dn6Vkx5vXX31jSSyPKytbtcpNM65ax/X5fEeEjkQiPHz8GUI0A4V+AfhCRHBrx5hBDR4HAqtUqL7/8MmdnZ+TzeVZXVzk8PMTlcrG6uqq8AWWVFHK8ELnkQbBYLHzuc5/DbDZxlc1Sb9RJpZIKl69UdI7Fw4cPMZvNvPbaa9y+fVvh/NVqlYODA37qp36KRCKhpHAiOLBYLMovZGNjQ7W2hTshxjehUIh79+4pPvpiseDy8hKz2Uw6nVYqFFEqTSYTRQu46Pe5s8x53Nra4urqCoPBQCQSodPp8OlPfYpoLKau7/HxMc8//zzr6+vMZjNlxi4lkDxM8/mcR48e8fnPf149kOIlYzKZPnrfD+EZ7O/vKz80IfSIQFPopKIydrvdit1mMpkYDPSYhvm8trTFmir8V1znF4sFsWiEVrOJzapflG5vwPn5JaFIiEqlwsHBAWazCZfLrW6Ow+FQPiTiT+Hz+dSKoydPTRSWK8p4r8erhyH1BhwfnWAwohQ4Lpd++DMZjZRLJW7fvk00FqVWfb/s8nq9hIJBctfXPH78hIA/qFTgJpNh+V7OZcu9TSyRwNFp43K7mIzHaJpO96xV61ycXfLgvQesrWXUQVAU2lKqZLNZpZQBln0DE/1+7ymhwr179xgOh6r+llo7Foup++P1egkvcenxeMz6+rr+kFQqajFaXV2l3W5Tq9We6viJyWa9Xl/e24Ga+GIwdHx8rM4pRqORjY0NWsucxVqtphCsF154gdFoxMrKykc7qcUWazLRJ4YEuAtPoNtt8+TJI5V+Kniyy+VgsZjR7fbI5fJ4vV7W1jZYWVkhl7umVqvyzrtvMxwOGPZ7bG5u6tDcxoZ+kNnXyeNPDo+JxSJsbW0RDgf58pe/jMlk4s6dO5jNRsZjHfeVsCWRjYn3nk6dLPLmm6/jdnu4e/d5hsMR17kC6+tb9PsTWu0ONruFF198kffee0i71cIADAd9DIYF9956g83dXQwmA48fPiaZWGE2nDDqjjh6cozP7cXhsDEc9Uim4pyfn+tck06HTqfHVS6Pw+PG6bQRCQfptKY8efKI6XjOl37jaxQLZb7vBz/Jrbs3lOQqFospxEOn3FpZLGaYTAYqldLyAL6B1+vj8eNH9Ps9TCYDBoPGaDTgvfcecH6u+1EHAj6cLoc6WA6HQ9544w2sViuJRIJUKsVoNOT48IB2u8V4PMTpdLGyEsdohHxetyY+PDzEtjQzkoejXq+zsbFBIBAgl8up0uzOnTuqCwuwvb3Nb/7mb7Kzs6O0riaTSZ0PnmU8c00thwWJUpMmxXw+XwZKxmk2mypTW8KKpOYSWE4Es8Vikf7yYCiQ1QdXEeE9DAYDLi4uCIfDbG1tUa/XFVwnkXWSnCW4qyimq9WqIiY5nU6i0Sivvvoq7Xabg4NDcrkrZvMpbreLdDqJ2+2iWCpRKJUIR6K0O10MRgMGo5FYPIGGgU6nxWQ8pttp02q1SKaSrCQTTEZDMukM6XRKcT1EJiW17mw6ZTGbY9Cg02zjcbkJBUL0Ol2q1Qqj4ZC7d++q3EnhZUiHUXBkMd0UxqTOlDQtrSR0u7OVlRW2t7dV5HS1WtWV7K22WknFU6TRaKgk31arrcwqdVsG3ThS6MW5XA6LVfdske8oKImQpLrdrqKfCrlMfLzn87kqWz8YoS3Q4LOMZ16pJdVWOnXX19dcXFwQCASW4lDdmuvmzZvq8HV+fs7+/j65XA6fz0evp9fBEjcncWZSixYKBfb395VZynw+54033lCNgHw+p6wCxHhRYLR6XY96ODo6VtwE4TZL88brdeNyOdnd3aHZbNPrdQkELFSqZVLpFdxeJyaLSRlHvvDSSzqZfzhiNJsTDobwOJz43R7W0mlOT84YjYZcnJ9jwoDdbMZitrBYGrZLbmGlUtEdjTweLAZwma30+z1mZiv94YBBd4jf42M1mWEy1bNRpIl0enpKJBJR2TqdTptEIq7QCYl2K5fLKkHgV37lV1hfX1fEJ4PBoDqe5XKZR48eEVrSfZ1OJ/Wl+KJcLhMMBPj+7/9+isUC0WiU6+trJeUSdKJQKBCPJ1RgkXBMstmsWmy2trYUlHh1dcXt27c5Pj5W/PdC4f0Os/j/CZT4kU1ql8ulTtqgs7YkDqFarTKd6k+Z2OvKlx2Px8sDmp7vIXiq5FVLE0Q4F48ePVJOTyLoFHFpqVSgXC6rsKFgMMijR4/Y2dlZCglmCgUxGAzs7+9js9k4Ozvj4OCAO3duc3p6jtPpJJVKU6mU6XY7pNNpJpMxNpuVaDRCsajDXMFQCF8gwLBcJhSOLD1EBlgsZmazBdV6jfPzS5r1BrFIlMl4TDSdYCWV5L333lNwViAQYH19HaMBWvUq2csLkispauU6mmagVCwSCPjZ2tym2+0wmoyUjnOxWKimisViWdJHHeo+2Gw2tWqLy5Se/V1Vk3o0GqmcRIvFwqOHD9W1kVTaYCBAdBlbMRj0le+3oFrz+Zx4PK47bFltOJ0uNjc39ZyfVot6vc5wOFQ1szxIh4eHSkAiAVCBQIByuUw6ndah3CXn/iO3HZtOp8o/7h//43+s6jAB2F0ul3o6T09PVb3UbreXeLIDu12f6OJMJPYJPp9PpaeKs9N0OuXk5ERh4J1OB03TVLxDLBaj1+spM3X9O86U74ZkkgtvW2/Jmrh96wXeeustjEYbK4m0OuQM+gO8Xg/DXpdqqcjG5jZGsxmP14fL7WV7exez0cDJ4WNanTbVRoPtG7f4X3/p/8t0OObG3i1icR1vFfW1WAsvFgulLHHa7SxmM1xOF4P+mPfee0ytVucTn3iVZHKFCRNW11YZDAb4/X7Ozs4U7VRvQbcVy04mm/yMjx8/Znd3VzHrhJgkUKo4oPq8XtLJFMVikXRSPzhXSmVmE53ElSvmSSaTVKtVGo0GjUZDJRhrmkY0luBkmbIWDAaVKY6cryQWROBbQKU8iFm9mOZLUm8oFFKR2R92PHNNLYLJWq3Gzs6OMiCRTA9NQ7WnM5kM9XpdNSYEoHe5XEqVsbq6qrBJIfqLNYHgtW63W2VjixFkPp9XhCCJBJZsEvHnkwdA6JMAV1dX3HvrHV7/+ltoCyPj4QyXy8fa2ibRSJxIJMZ0POGNr3yNUa+PSYNhr4/FaMFlc8HCiMlkI3uVp9XpgcXKdbmK0+OnWm8xmxsYDCfMF5o6a0hnVR58XQbn49btWxhNJowmM/limf5ohMPjArMBp9PB6uoqoVBIRWI7nU6FKolblExm4dEI/isTSZIYxAJNP/fo5ZrL6XpqogEqtFTum4Q8Se0rPtR64NNUtfCFCpFKpbh586ZqZgl82ul0lPLd4/GoiI1oNKrotIASczzLeOaVWtQf4uYj3TkhxmxtbajDhXhtRCIRRQRaW1tnMpmqOOH5fE4kElHiWaE3itH66uoq19fXlEolvF4vw+GAQCDCYjFXcJ2oJwTcPzu7UEJT6Xhms1nd/TQYolbt8dabDxgM9KaL1+cmGo3g9jjxej0YZxNsRhPNcpX7b73NaDLl8PEJw/EEq8OJz+vj7fvv0B706E+nzDSNXquDtjDw5dffJBEKs7WXxmLVmzter5fz83NFvJ/P50znUxrNOi5PkP5oRHc4xGa3M9XmzE3Q63R455139Fi7ZbkhBjw2m01hwZubm6rEECmd7E7xeFxxR2TSiouT3+fn+iKHNl9gs1g5Pzlla3ubgM+Hz+2hPxzQH5hUkoHFYlGC2MPDw2V3eMLOzg6LxYI333yTyWRCr9fj1q1blEol7ty5o2zKZMeRxk6xWFTkqZOTE4bDIfF4XM2Fj3RSv/HGG8orT5TJnU5HmRSOx3pt7HK5OD8/V8m3Epyjq8rfjxCW9AGJnahWq8p8XDSNYuQuoZM+n1dFP2uapvSQ35gqJW6s5XJ5aXQzIxAMEPAn8PujnJwcUyhco2lzmk3dZd/n9xLyOHGZDcrhyWgwcH19TTgaJ3uRpdlqkauVwGSm0e0wmU1wOWx4nW5GsynFWp1Aw8tLLz3H5aVO9qpWKuzt7eNy6t/TG/BxfpnFaHFRq9cYDIcYzCYm8ynNVpOA10On3eb8/JxEIqHQJHFrMhoNCl2R7yn6QfHYFrs2sfuSySS6RLNVV6usZTIMBgOajQbdXo9YNIbFbmM8HWM0GRWKJN57slvS6WIw6jWyz+fj0aNHKl1gMpnw4MED5bolTRdN08jn88sFbk2xJWu1Gp/4xCewWCwqVPUjm9SBgI9Op7ucXB4Wizk+nwefz0OlUma8FK5OZ1OCft0vr1KtYLXasJotDAdDEpsrXF9fUywW2d/fx2g0Klm+w+HA7nTS7fVIpdOYjEZ6gwHxRIJur4fFZlXswK2tLSUpSqVSKo/G7fYodft0OmEyGbO1tcF8PmM0HlOttXAHTLz8qdvY7S+TvbwknU7TbrUo5vNsb2xw9OQxkViE9a0NHE4XX339LSxWO1elIifXWaYuJy6HD/vCAOMKZkeDUNqC02WhcNUjUO1QrXZYSaxQKV0TW13BMJ8xx0ipWKVcvyIYCxEJJ+kOJsznMJ8tWE0l2dhch8WMSrmyPJf0cbvdeDwuldvt9+v2YjIBRO0ikjCJr9Y0jWw2y8bGBmtra/h8Pq6vr7FabcRWYniDXnwBP8nVpK551GZcl/TmV6PZUDn0V1dXSqgg5KnDoxOGw5EiJu3s7ChxSCwWoz/ok06nOD4+YjWT4uDJAVvbWzx8eJ/t7W1arQaDfp+NjQ3mswnddguX24Xp2UxPvzsrX4vFrLb/+Xym8lL8frEcSOP1eJVLk91mx2qxLIn0DhVM5Pf7ub6+VnwJ4S+73W6sywPWeOlBN53Nlt3HiXJlMhqNKp9bEBJJoRLLgEqlitVqWWokp5hNZixWE6FwgFRqheGgh8fjIhIJ8eqrn+C55+/iC/hxetwYjEYcLieT6Zhg0I/FYqJSLmFAY9Br0O+1sJg0Ah4Ha+kwLz53i/liTrfXYzCs4/VbsDuNjKcD+sM+ZquRaCSI0ajhcDqxWm2USnrXzmqzKi6LbWn2s1jMsVot7O/vk0qllCUCgNFoUAdjqbElPElqbenuikWYCI71FX6hKKbdXpfxZEwoHGI1s8pgOFguRFZlnyxEMKvVqvLiXW6Xipvzer288sor3LhxQ0XPWcxmrq9zGAwG1tbWyKzpKJfFaiGxkmA0GtLrdnE5ncRjMex2G2aTid3dnWeam8+8UotoU5hgYn3VbDbJZDLs7eyq1q3T6VTk9V6vh9FoxOPxcHh4qDL1ptMp8XhcHSQMy61ebBOk1JH3GQ2HDPpdleMnXm8bGxtYrdalE2mbZDKpmgJ7e3u43R7KZR3f3VzfxO/1kc1d0W631WpWLpexmM3U2w2msxmD0UjnoAxHdFtt2p0+Js1ALBhk1MhinPUIeMJYLSbu7Gyzs7pP7eqM2aBIuZxlOGnj8sZIpPXgo85gSCRmwGzS6PdGLDQDNqsPr9fP7u4OkUgIo9FAPn9Nf5nO+8ILL6jySWRVq6urtFotNdnkICo5M3LeGY1GinQvyQfiDTKdTjk/Pye4zI6Xbf+DjR05cIp2EnRPEvHFSyaT2Gx25SQgIoxGo4Hb7SaRiNPrd1XMXDwep1qtkk6nOTw8xOf1kkysqCaaWAR/5B1FEQdI50dUy263m0AgQDabVQdIIcGL26nZbGY4HKnVpNvtKk2dmLVYrVaG/T7MF/g9XjqtFvPJFJfdjs/jIRqJYLFYiUaj6mEQXFSaMR6PC01b8PjxYz3zr9nm9OScyXjGaDhlMVtwcXpG6TrPdDRGm82JLyVf5WoFm8OOxW7D5rARCgaxO/T8wel4wnw2YzGd47bacRgM+OwuYv44uZMar3/xIe3aAI/DR7HQ4vikxKPDIkfZBkZ7EIc3RDZ3zWA0ZDY1YDTYaTZazOcLVlfTbG1tsFjMGU90rH+xWADv823EwEcIVFI7C6dGdiipf4WkJXEgdrtdnX9isZjKkrFYLOzt7SletOx6kh0vAabpdFqZyE8mEwygbBFsNptKgxCIrtlqKuZjpVJRnovyZ16vV0G60m3WNO39mv1DjmdeqcXkUczIk8mkcup89913sVn0hor4VAtfWEgzlWpNrdqTyYRoNKoSmgRDjYR0snhumaLr9Xpx2B3K7D0a1eEiMZ8xm808efIEn8/HbDZT7vv9fo9+b8ij9x4zHI747Gd/mJ2dPcb9LqXrAk6Xk1giznQ+R0MPNioUiwSDQVqNOpq24Oj0BI/HSyy5QrvV5fTyAg2YLaa4nB5q5QbDrp12t4XZWqE7mDCdGplNrTQ7Jk4LFxyeHpPJJHnh9i63t9YJBwM02lOODk84PDwkmUyytbWOw2nD7XZis1txf8BBNplMKpK9WCXUajW1EFSrVcW3EJRBRAeiJxUa6NHRkYqhlswan8/HcDhUjlrj8Ri/3080GuX+/fsMh0NefvllZccrFAR5sKRX0O12lTBbvBZns6mCgSV0SjrHvV4Pg4Yyhvf7/WqB+kgndalUIrJsq4pL0Xg8VuLR6JIiKuiGKI/FddSyrK3FxFsMWtrttu7ZNhxiD0UU/u10ONAWC0bLJNjpdIo2W3B8fMxkMqHT6Sg+hBiui9nL5uYWpWKJbrdPo1Hmq195nfOzKzwOKy6HFbPJhM1ixem2cHpyQjAU0r2zR8NlWWOh3e/Q6fd4dHRAqVzD4nGiaQYYDpkt5gynfRbDKZppjsE6I+AzM51NMePh4PJtplYDvoydq/YFzddLGBYLbm3tc3R4yde/9iYutwOTyYzbo+90k+mATCbD1UVWeQPabDaVOiCpueIc9UEbXeE1y4IipYRce7HYlTgLSVYTboksLB+EYt1utzp0drtdisUiW1tbALQ6uppHLC9ELCAc8UK+QCqdpN1uK9MdoSTrO4ZLZVrmcjmlC31W0/VnntRSpwaDQT71qU+pbpeUAbPZjEKhoExbTk5OFKnp8vISj1fHlSWy+PT0FKPRqOiLG+vrDDo6WX0+mVKr6O4+ot5OptMYLQalngkEAoq8//LLL6vy4/DwmGg0yvraBs8//zLNRodms0WhUOLhgwdYDAsCoRD9QZ8bt29x+9YtTs7P2djcYNQf8OTxY8LxKMFokDffeIff/MrXmS40TD4XZpMVx8iO22Vj2G+yME8Jx3ysb6dIbvnp9mucHJ1R6+bYfvE2I20BVzNaV1V+4ytf4/C9LI/eeYd4LMorn3gRr8/NYjHDZrMQCsfRNL18+9SnPsXh4aHCbQOBgJrc4uEndl6lUolQKITL5VrqQRuK8ba+vk57aUmQyWQ4OjpS/z0a6eWg1WpV4VHCyXE6ncpmQtM0FcMhxp7VWoPBYEC322Vvb0/V7Ds7O7jdbn7jN35d0UrFo+Xq6kqZ1vgDfixGk0qSGH0gmOkjndR7e3vLk7WNg4ND/H7fkr+xpocF2XSm3XCkdwOtViupdJrrXE7nECx5CZqmMZ/PVb62+IMMh0MFHWmaRq/f06MY/D78Pj+atqDXHWA2mzAY9PCgq6sr7HY7rVYbu922TH6a62Sh6QyfL0gqnSKVSrO6ukYi7IPFlJPTM1rtPo1GB5cvgMups9um4xGJlQTD6YTf+tKXefPdd+hPRtgcLkwWC8NBn3m3DkY34agHjTH+iJEXXl1jZmzi12x4QyGqTQ1bqMPU4qY/XtCqDCllyzjwsr21xe7u1tIRyUp6NYbZYmIyHtOoN7DZbAQCwaXgVRcWXF5mMZnMyutESP3CaGy1WiphQRYYUW7b7XaFkkg7W5T0gGpZJxIJksmkUp2DTlxKp9OEw2GVaDAej3VnJadT57wvE9jarRaJeBxtsSAajWJ36IhNv6dLAGPRGBjAYXfQ6/Zwu1w4HE7m8zn9wYBCsciz9hSf+aA4mczweHx4vT7K5QrFYplGo8Xa2jqpVJrReMxF9pJGs0mj1cTlcetE+NkUm8Oue0Qs48bE0lfChVwuF/PFHLffw/rOBiurSSKJKFf5HAazAcwGWt0m9WaNxEqMRCJGLpfFYDAsbbe8bGxsUq/WCPv9dFotWs06l5dneAMu7G4zk0WP5z/1Aj/643+UWGaP3sjB2WWH4dDC8y+8zFwbsLoWZWMjQ73R4Cybp97qM59qWDSYtioE7VO8gQkm0wSjyUS9VcflbBDzt7i89zv0Tq/ZDZv4f31im1cTATacRtZWHHgCC4bzFq1+nVc/eYtPfGKfgN9KJOLBZjUT9Pv56m9/nYPHRzgcLh4+fI92u0ssFqffH+LxeNnb22dv78ZTjqsS3Txbwp5PnjxRNrnS1BJbB+GWS0SGJA9YrVZVxoiblWgOO52OSg0Tpt5kMmF9LcOdW7fY2d7WFf/tNkeHhxwdHtJsNPC6PdzYvYHf46dWqZHL5vC4PNy9dZd6tc5sMqNWb7LAwMbWNja7k0KxjNP1bBrF70pNPp1OSSQSyi85lUopSwIhtsihzuv1Kq61+KhJXW232zk8PFRUxVgshs/npdXSVwgMuiZybV33kTAYDNQbNRxOBxaLGbPJsCQy2Wm1Wrzwwot6q7bbw+mwEwoGMJrMVOt1zGYTvd4YgwFa7RZGk41QOMzR0X18viBgpFyuEAj4mYwnlEtldUMXmoamLeh3u0xHPWbTHhaHkdFoiMHUZ7EwYHfqSQg2i5Hnbz3HeHpFrzTEYLLixEzCbyfs65A31bGaNba21oA5Pr9+4BJ3pbW1NTY3NxVKIfk40iUVMtJoNMZm05RJp3QaJY9FDOglQqRYLKq6V9yd/MtMcLPZrFIFTCaTEumKZ3ggEMBms9HtdtU9DAaD6t9LSFQsFlOeeo1Gg5WVlaeU/mJ0JFYMrVYL69IGTnIfPR6PShH+sOOZV2qHQ6c7npycsLKyohw533nnHZVlPR6Pef7555X9wPn5ubIj8Hq97OzssLGxoTDP+XyOz+cjEomoevDw8JDZbKba43JYisViBJcJt5IYoGkad+/e5eoqx9tvv4PJZFQC0V6vx2o6jcfjWdoROJcWYhcUS3kazQqNZoWvfe3LvPPOO+SuirTbXQZDHRc2W0wkUwnm0zGDfg+Tycx0BqHoGmarj15/hN/vY9Sf88bXHrK2lsLttDFsmvFaVzHP3fRrPdajcYJWC+b5mGGvrVK9QDcEkgOZtKGPj48ZDodsb28rqKxer3N6esq9e/eYzfR0svl8zt7eHnt7eyqHcjabEQwGVR9B2uSSf3h5ecnZ2RlvvfUWq6ur3Lx5U9nsSo58tVolHo8rs5x4PK5EDiJ8GA51MtnXv/51hXisrKywu7vLrVu3aDQaHB8fK6FAqVSi0WgoYlS9XldJD9lsFkDBkB/ppNY0bel/52CxjANOp9MK1rm+ziuDm+3tbeUob7fbiUajatIKM8vhcCghgK7qnql4BLETE0W42WxWdrmSkiXxaWJU3ut16fX0AM1KtUqr1cLt9mCApUTMg8VsxevxkEomYDFjOOxhtZjwejzMpwvajR5ejx+z2UapXCafu8bucmJzOBj2RxgNRvrtAbPRBON8hjYawXjMqNNFG4+ZjTvEEwlMDjueUACH28l4MGQ6nOCwObDaHCwWmsKA5SbLaixEfInbkA6dkH3G4zFut0eteoPBQLXLxaRGDopms5mLiwtWVlZIpVIqPSyTySgdp/htB4NBlXS7srKi0owlXS0Wi7GxsUE8HiebzZLNXir/a9lFYrEYrWUGo8fjUSafW1tbytxIrIRF0f9BiweRvT3LeOby4+rqiuFwqALb5UvabDaKxSKLxeypLO0PSnx0CdeQZDLF4eEhnU5HxyqXK6rEsl1e6tujRF+Mx2MymYzyVm40agRDAer1phIKVKtV9vb2yOWumE9GHB40qNbqLDT94agtozKy2Sxer3eJz4YZjcYcHR1znc+STEeYjE2M+hOGgykOjweT0YrRBGaTmZlpgdFkwmqyMesOsEwnWLQ5XqOdeWtI0Gsmd3pMv1nEn1ljbrXR7Pc5u8zhcXeZDMBu92GzeWl32ty6uUelUlGxxiJjEni00+lwcXGhfL0lUViscg0G3W5hY2ODarWqsl+kPyAcanGX0jRNOYxK6JGgViLGOD09VbF0kjhgNBpVZrykkEWjUcxmi9Kqijd2sVjE7XbTaOiH3bW1NdVke/XVV9Wh1Wq1Ek8kMJpMFAoF3G43JycnKobuI53UYhMwHo9xOp1KLiVRdNvbmyou+PLyErfbTTKZVNwDo9GoUpukZSvdJvFWdjhsqltoMpmWbqVipNNTKo7hcLQ0drcphc1sNsNqsegc7GgMq1U3eD89PcVuty9xX71rOZ+O6fda+DxOmq0mjVqd9dXnOKtlOT/NMTdroJmZjAdY7XaMRjNoRrS5AbvDgmE+xWXVmAwn9LsTXHY7dqePwXjK4cOHGN1eeiPQZlbGvQnTvgGzwYzJaGS+mHN0dKTYiPP5XFn0StKYNDCkIysrXz6fx2Qysljo7WTxG4nH40oBL+bpMpEltEjKvkajoZJvpZxQZvTL/oHT6cRutytDdzEcMi0n4mAwUrF3Qm3N5/OEw2Fl4yAt70KhQDAYZHd3V9nLWcxmOss8+WQyyWw2w+PxPLNI4JkntdRn0WiU8/Nz9WUGg8Fy29FzTeQgeX19zfX1NTs7O0tDQo1kMqWcflZXV8lkMsoo/PT0hNFooCKbxeagVCrh9/sxmy30elWqtQoBf4hAIMB4PF2GTk51WCoaZtDvU6s3GQyGGIwmxtOZMqFpt1oUCrqiPZmMMo+FGQziXF5e0Wl1uTgrEAmluH9wn35nRHp9g9liyqDbw+NeZgrWO7icVubjGTODGW3gYtIyU7/oE0n4WZhDOBwpas0h/fIAz9REJhDhE6+tk1jdoN+uKzOgD9r47u/v02q1VDtZks5WVlYYjUZEo9HlZJnx4MF9lWIrv1ZXV0mn0+RyOeXWCqjwITmQCc97PB6TzWaVvnFnZ4eDgwOKxaJ+Hlld1e0hTCa1IguHZz5fcHFxoawxpMkjaQq6llIvJYRvLzpN8fGTRp3NZmN3d5ednR2Ojo4+2knd7XbUdikrn/A6stksRqNBeb05HA62t7epVCqMRiP29/fpdLoqUEfawL1eTz3dermiKTxVVi8JHbq6yuJyOTAZTcrWzOk0KlhwMBhQKxeX5okeDEYTJrOJ1ZUkk8mERqPBbDJlNplSLBTo9zpEIzE+8dLLPPQ/5v79R5SLFQrXLartJiaLjel0xmgyxmAwYTBozOYzZgYrw7mBkC+AyWJiqGm47F5sPisTk4lqeUTrrECjCSuOKHtb24TcdubanFm/g2lJ6Op0OiwWCx4+fKh4ydKV83q9PHjwQKEVQi3QD2sLBecZDAaVl9Lr9ej3+2xtbSlITshnEr8MqJpWMhGvr69JJBKqwycPgZRCUkICKrqjVKqodLG9vT3W1tbUAzqbzRQPKJlMKkHIxcWFih5Jp9Mq9kQeiN3dXYXgfGSTWne510/JunumnWBQ73TV63UCgRC7u/u02y2cTr0ufOmlT9Dr6X4fNpuVarWM3W6l0ajR7VoU4UaXc/mVVZkc/iqVCicnJ0vc1cZoMGE+g/FwwsnRCWDA6/XqZHSDgQUGmu0e0fgqmmbAiInxYApoVGoVzCYLHo+XbjuPw2LF63bw+PF9xtMxn/r+l1nb2uDddx9xw5Pkt77y61gY0mg0mYx02itGA0ZNYzIe0h+bWWhePI40066PQrvFdNImHb3JtDVg2K5Sb+a48o1wB1J4XS7S8QSXpTEnFyc4nG4yqxkMFiOTxQiTaUKvU8JgdFAoXLO7u43FYqHTaVGplOh2exgMsLa2xo0bN9RZRAzcNU1jc3NTCWCDwaAuCFjycWQifzAXxuFwKAVRpVJRpU8mk1HUYKfTqSZns9nEbDbz/PN31QSezSbkctllDqKFwWBKKBSk1+syn08xm530eh3CYT1UqVwuk0wm8Lj9GNGIRUKUymX+8T/8B7z40ksf7aTu9bqUSkXlpGk2z1R8st1uZzQaLv03YlxdXSldmqzWLpeTcFgH+SUxV0hJotSIRqMqyuL09FT5OYvFltX8foSC5CVKylMiEWeuzXA4rUxnYyxmG4Nhn9F4wPbOFhoz2p0OBuMcu9PCYgrj0Zh+f0Cl3sZocbGSSnKeu6DRKhJN+Oh3R6ytr9LpDpjNx8wXcwYzvWwwGmC2mKHNzRhmNmZjM25ngMGgicNpwqMZCEfX6C/anBavCAVMnBcfUW/asVrd7O49xzv3H+DxBrHZ3FxeXDPotfD6w8r/LhqNKp8Uq9WiurESoywHLTlQyw4m+Yvlclkp2QWq6/V6FJfkLRHnSkSdpNxGIhFKpRIAo9GI5557TknuAGXbKz7XwswcDAYYjUbcbr1DK56F8/lc6SQFizabTFitOiEuGomQn0zIX19/tJPaaDTy0ksvkUqlODg4AFA4pC4oDdLv9xVxxu/3KxsFvYGCiumV7VEEpYvFQqnApaYsFouk02leeumlpc2YGZfbjWVJu5TVXB4Ci8XEZNZjdTVGo1HDZLQuoawu1UqOyWRMu10hd3VEwBdgOp7zW7/1VS6zJWwOPwbzEWOtT62bxWybk0hGsHldNBoDDPY5VpMRs8XMvNvHYJySXkkyGRjJnRxT0Rx4PAbm5hnByIzV7TiDixyX9Sw2S5iewYo37Wc+7+AwTSlcX1N5o47Pk8KCn+y0jsdhwmJckF4NYrU5VBqax+NRHHE5MIp5j/Cgt7a2lEmmTGzxAWk0GsosX4JEV1ZWFFIhzbJQKKREvSJcFui1UCiQz+eVeZC01h88eIDL5VKm7hLtMZ1O8fl8ivS2trYG6Ibx+Xxe5TeKVYYQo4Ry+6Hn5rNOakAdDMVBVH7IVCqFpumK8+l0SrfbpVAoqCxz8Z2uVCocHx+rbUwSbiUUUji9ooKW+nJra4tyucz52ZlK2R0OhySTSUqlEvP5nEKxSDQaI5lMoS00vB4PBgygGei09Yg5s8mM1WqnVmvyla98ncFwxK3bd/D4/Jxns1TqNRqdOt1Rn1AsTL3ToDNsU64Vwbqg2ihhsc1wuDScHtjcXcFoGRKO2VhJuQlFrWzsRvGFYXXLSTQNFneXfOWCR0fX1Dvgj5lY3fBSaxV48N67fPFLv82bb77L+XmOwXDCo8dPlLFMJBJRD7oQiMSbzuVyqfgPQHl7yN/3ej1lpWs2m/UgpSUWLRNd6lyBZzudjvKZjkajTwWSVqtVrFarahbJ4VbYdQLBSujr5eWlOhSKvCwUCqmkAdkhLBYLkUiEVCr1zB3FZ16px+MxZ2dnSp0tYe87Ozs0m006nQ47OzsUCgWm0ykrKyuKSCOrSyAQUCoXvZGgw36RSEQlO0kY0M7ODtVqVXWjrq6uSCZWaDQa6sYJi00OLf3OhKODYwbDMRbDBLfDQiSYQtPmJJMruBwxCoUyv/nr/5RCoca/9hP/Gq986lO8ce8djG44vjhkOphhx8TDx4/o90a06wMcLju9QZNY0ofHaWIwbNLrljBrGvGElZWYk82tMJ1eDru5QTK8zmY6QW+zw8Jo4uy0zpd/8xLTPMjW9hjzbMDmjQQP3y6QzKwRC8bYziTwuCxcXV+ymrmrzGQ+6Nlss9nY29vTdYKHh+TzeRVJYbValZ2BqOmFnioNL6fTyfd93/dRr9cpFAoqxiIQCKiur/itSFpwsVjEbrerWGc5YDabTcrlMhsbG5yenhKLxVQqsIgOxMa3UChQr9d14cb/r7336pXsStMzn+3D+4jjvU2fJDPJZpHqriq1kQS1WgN0382FruaPCbrXANNQT1uqesrRJtMf7yPihPcRO7abix1rNTl3nQVwhAIXUCgUi+Q5GbH22t/6vvd93plzJ5fL8fDhQ7755huZevuu63du6QnyjuhPCma073s8e/aMVqtFsVhkaWlJCtPF/y8ITZqmyWDKMBk2kBEWoo4WP2s0GhGNRpmbm5MOF+HmUBRF9srX19f55stnvH71llgsTeN2wP/8p18zNzfH48cPmU58xhOf68sGJ8dXxGIJYvEY9XaVxdUCi/Usb04mmJpONp2j3WkydXwUXcPxPAxfwXWmxCIZVCzwbTR1ysJ8ivW1HMmEx3DcZWctQyZi4rsZotEUetxG3zD4NlmlWe9ycl4nlUgST8cwogofvP+Qj97/kE6tjOJPWF77mMIsC1KI/7PZLIZhyM+q3+/z6NEjST7q9XqyS7K+vs7Z2ZlkqaTTaebn5zk8PJQJs+IyLtLGxAEhpBDNZpP79+/z/vvvS0HU2dkZKysrrKysMD8/Lx3jQuPxXa+oiL179eqV7G4IEZXg/IlEt0wm8723/g+6qePx+PdCKkX4ZK/XY2dnh2+++VbqDJLJJG/evJGCnO3tbV68eC5Zadls6IgWmlsR1iMGNOJVaNu2BNb4vk+v38P3fBYXF6lWq5RKJZaXl2Ukhq6HHOvA93CmNs1Gg3azyW31hmgsSoBGo9HEc8c8/uAxhqXT6XZI5rMcnZ7QbnawjCid2z6epxC4KqqvogYK4/aYmKbR8JrousPaWg5dNai3mvTaBqsrCwwHUyxcvNEYQ1WIJlJU68dUb65JpFzq52VOjh021uc4OTqmetPlG+1LkvEoHz58QL/dYDKx5dtNZIsLucHZ2Zn0ipbLZZmGIIZawpkiprKCb+d5nswx/MUvfsGjR49kVs10OuXo6EjGl4gJpIBriinie++9J8f3gPSaikGcyN8R/WeBcBDlyOLi4izZ2JUt3MPDQxkjLcRw77LeuaYWT1cikWAymUhRSqVSoVgsEo/HiMVi7O/vS1ezuBkDMuBIqLvW19flrVsATZ48eUKxWJSXx1KpNFPwpcNTOZmSdKd+vy+fdnH7dtwxS4tz3LmzRaGYJpuNs7G5xM7OGkvLRRaXs+zfXeHnf/wTfvbzf8PW9gaFQomr6yoXlzV8z8Ad+gybQ2J6HM3VSUUy4CgkI1EUB8Y9G0s1MRSDwPFwp2Omox6V6yPiUR1nHGM4cNCMPr5SYzi5pT9qE89EwXSxx2nqNZ12y8NVdVqtkBtdr9ep3Ta4uLiUgakC6pNOp+UGFHR/QJowhH4mnPaNKJVKDAYDms2mJM3G43HZNfkuxUnoLgzDkBdvMaF89eqVpPyLny+moZFIhEwmI/vl9Xqd/MxBJJzmIlVMZAJtbGxICazI6BH4NGEmfpf1O2W+iJgF4foWPdLLy8uZCTcpSUCx2EwAPhzy7bffks1micfDp/ry8hLbtun1erJtpes6r169kkMXYSsSSVO7u7uhrT4eRzcNEskkAQGxRJwAmDpT8sUia2sJtrZ3aTSaWDGD1dVVCsUiL148Z219jXgswmQ0ottqMrbHjLyAk7MLkpkc7XYf35kSiaaY2OEkcjoZoKseBGBqFmYQkIokcMdTBoM+qXQExXQYux79Rh9nbKBpKrXuLZql4qo6vpJgNJpg6nG8sUWjPMLUUhAE2K5Ho9VG03UyuQydbicEzczC6k9PTyWiQLDstre3v4coEEpG0bIT4UsC/iiMA4qiSDrSgwcPGA6HjMdjiVmuVCqUSiUcxwUUYrE4ruvR6w2o12tUKlVc1+WmHFr7EskEKBqKqqMZZhi+OnWo1xt4nitTBY6Pj6VBOpFIcHh4SDKVQdUNri6vWFhcoJjOYFj/P0hP8/k85XJZ1mXCSyfkh2JkK27BoqZrtVoy5xDC0a1AUolAIqEh6Xa70swpnB2inz0YDtH08LmMRCN4vh8mQ7Vb1BsNEqksnqIytifcVMtki3k8JaA/GqAaOuOJzeHBCc7UIxaNEZ+9Oi+vL6l36riBjRozwNAIFJjYQ2x7gKq6aBrohk7ge4wGIyrlJt3uiNFkTHfQw4jEQNNodRt0Bm2mvsfUN+gNNSrlIZMhDHtTmHrY/THjwZjAV4jHEySSCVx3SixmsbS8QD6fl/IB4dwXXsxutytTrt6+fSsBi4VCQTrFxYQ1FovJsCfR+RCliyA/Cf1HPp+XQUm3tzXy+QJ3795jYWFxJm2NzgJdjVBB2W7TaDTpdLukMxkMw+Ts/JwXL1/hzRw6Nzc3tFotKpUKwSyAajAYMBqPmdg2lhXBtCwikSjTachjfJf1zie1qHVFkz5E61a5e/cu/X4fy4pKy/vt7a2sA0W0w+vXr9ja2pQxaYCUNQo2hQgpErX27e0t+Xye1dXV74l1RMkh2G7igRGeu/bMXFoul2eDmYVwNGtFwPMZjyf0BzbaeEi9UafdbuH5PhgGiqoxHg4xUHAcF1XxcR2FQq5AsZin16jiBh5TJ/xCut0xUU+lXO1gRX0Y+ei2A7rG1B/R6nn0uj6OE0dFZ+o4gM5wOMLzFVzHo9kMDcqGaRIEiuR2pNNp2dZMJpOUy2VisRhnZ2dsbGxI06yIshCB9sIkIC5vi4uL1Ot1bm5uJA9REGmz2SytVovHjx+j6zrn5+eyEyFAkCI6MJ/Ps76+ztuDAwm8WVtbw3Ec2d0QJgVxAZ1MJuzu7mJZltS51BsNUDTW1sIYEMEZEU74f+1655P65OREAlIEe8M0Tela8H1PEjEty6JUKnFyckK/3+f+/fusrKwwHo/l3y9ekWJIUCwWZ3yQMdlsdhbVEMY2X19f02w2JUlTSDE1TePJkycMBgMpoxS6FNd1pdtcAAjFxSWdSZNIJnE9l/6gT7ffQzcMVEPHJ8B3nVkb0kDXTUzDRFV0JqMJvhIQaDpoUSZTg6lrMZnq1NtDJo6P7fl4CngB9AeT0HWDQac9QNcMuu0+49EYZ+qgqjqO41KvNXBdj1Ip7PCIi51IbEgkElJMv7a2JglMIhVtZWWFcrnMycmJBFGKz1FIEUQyr0CWCX2H6GdfXl7KE16EDwm3TCKRkBPOdDrNYJYQ4LqujJgTQE4xgFlYWGAwU+KJLoc4FNdm4ivLsuTlVLRlf9BNPRgMiMViZDIZEomEzPsQI1nTtGQrbmNjg9XV1e8FhAq1nrg4OI4DILnNc3NzM810S46GhXiqUqlwMhu8iETW4XBIsViUHL56vS75FQIwbpqmTOA6OzujUq3iqxCJx0ikktQbDWLxsCb3CTBNHS/w0C0Tw7RQFJWIGSHwwLN9JmObqT/GiupMnAn90YhA1XC8gMJckWyhQCafptl2sacak4nPcOgytQN8V8GeuGRzOZLJNOl0Rka1+UFAp9Pj5rpMuxVS9efn5+VET1VV2u22xBOLfnS9Xpcdpnw+T6lUIjtzB4kgKXG57HZDrrV42JeXlyVbxHVdDg8Pubq6kp+5KBXr9bokqopsF/FdTSYTzs/P+eabb2i320SjUVnCjEYjzs/POTs7k6GtYp7Rnf1+QpUYiUS4ubnh+Pj4h93UAmewvb0tx7aiyS/6k7u7u9y/f5/9/X15Wgull2jsJ5NJ2RrsdDoyO1Go/lKplMSb7e/vs7GxMcseqcuot7t377KxsSEvqqEM1ZbaA5E7Eo/H5Rc9HA7xgxAOny8UWFxaAkXhtl5H1UORT6CA57t4vouiqqCoGIZJ4MFkZNPvDnA9J9RUaz72dIgfuPiBh2lEsCc+fqBRKGbp9kf4gUU6XcQPVAr5Iul0hkgkimGY4QULlUgkiuf6xGNxNC2Ub4ZOonC0LQA2ghEoaEvtdpv19XXq9Tqnp6eoqir10mKDCc+gAP1sbGzIVDGhYR4Oh1xdXUknk/hORX74cDjkq6++4vT0VHI50qkU9+7dk3X91dUVo9GI/f19crkcmqbJEb7okIiTXehHRPflxYsXBEHA+vr6D58kICDZYqwqLiv/QpEPJ4wC23p0dCQ10Z1OB01TJZpWWLRECSGE6EIiKUIkBYf6Jz/5SRgLN9vcpVJJBsCLIU8olYzJKGThYby+viaZDC1QAVAoFjFMk06nQaFU5KrZJAjAikVodVsQ+BimieZrOO4Ed+qhKhr4Cn4Aumcw6I1IJ2LEohF6fZt+d8TlaZNEUiFqBmQyabSpRqc75LbWxR6brG6UaLd6dDoDEslw4OB7YYchqht0Ol10JWBxaYnBaEi32+X169fy8/q+ojHs8wtwpIDdi/vF/fv3Q3rpDFsmdM66rlMoFLi5uWE0GjEcDgHY3d1ldXVVvmlt25amWDHKFgkP+XwedZZgKwJJhXZHAO6DAPk2Fm/S79bf6XQGzTCllU38fj+49FSowS4vL6XeQEgaxV8XQJRIJCI5EWJaJZwroQ46bPe9ePFCOpnr9Tpzc3OMx2MZlzAejxmNRjx69IjRaCSDcEQW9mAwYHt7W9ZskUhUngCFQuF7PrxSqUSgKERjMQ4OD5jaoWPEeR7GMatBAEFAoILnK3iTCb7j4Gg6QeDjuRCNxbFHAWMVokmFiGHSmY5wbR/PjjJwHYKEh+sOcdyAiR3MOg86t7cVBoMRqmrg2FOmYxszGp7O/XGPZrNFKhZSqXK5nMxBX14OjRXdbpfz83M2NjZYXFyU+eNCc+26royl29vbk+WauLeILEPR0hPhT9vb23LULtIbhJv8u1mU33XfDGfGkHg8LqUOKysrsmPl+6F7fX19Xab/CnVlEAR4voc+k0qI+OhUKvXOF8V33tSRSITDw0OazSbz8/PSqiVkkoah8/r1K/IzFtzcXEna/8NBzZhsNiPrrna7jWmaMo328vKKiR1iaSf2lMWlMNm2Ur3F8wNisTipVJpEIjkT/ddmpNQbtrd3Zoq0NtlsViZ+CTWbEFS5voeu52Y19xx6xKLb6WOPp4xHTXRVwx47KCp4kymmFUHRNJzpFBSFTDZLqzVBCRQGnRGqpjPoOkwmYJDAd8fY4z5T28GIGEQsi9HQRkEjly2C36XbGjJ1XCzTwrIitLodPG/KaDpma2eL2m2VeDzOcDgkk8nIIZewrVUqFRYXFyUIUrQ9RSKDaZpS1C9iAoX7XqjzRHLx5uamHK/XajV5v3GcsB5vNpuzt7NHNBphOrVnp3aebrdH7TZMedA1lcODtxyfnJDL5ZiMRyTiMQmxPDg4QNd1VldXURSFL774gkQyJSeWc3NzvHn7ls139Ci+c03d7XY5Pj6m2Wziuq4cfyaTSVzX5ZNPfsJ0anN6ekK73cJ1HZaWFkmlkui6RiQSknyEhHFlZUVm+bmuSy6fYzSeMLGnLCwuEU8kmTouK6trOK5HNl9gZ2d3Zvp0UBQVUJifXyASiQKKfBOIfu7JyYlEnDmOQzaTIZWIs7mxgaLqlMs1eu0+iqsQ0ywKyRyaYhAxoui6RTQaR9V1jIhJNJ3ACWwM08Y0fSJmFHsInm2gEWM0sJnaDhEjSjoRx5lMsSdDFBQ0xaTTGjMZhfB3fAVT0TFQCQyNieJDRKM76tHrh6ZbcQoKmr8wuAoOHiDLibW1NXRdD99GM6SC6G33ej1SqZSkNn13spvP52eBo5Y8AMIS0sXzXPL5HJZlkk6nWFxcIJGIY5oGiXiMTDpJPBalWMiTz2VJxGMEnsvayjKuM5UlZbvd5vLykqOjI6rVqswjn4xHqArUa7dkM2l816HZqL/T3nznk7pSqUjYeRAE3N7esry8TDKZ5OjoSEohFUWRm13UZEKtJdzFR0dHPHz4UEIQO50Ok1mLyTAM6cs7PDzEsiwZW6x8R89bq9XY3NyUoUepVIp0Oi1zB3d3d6lWqyiKIgOUup0OmqrMyJ0qrucyv7CAHUB3MmbqTNA1DQi1xPZkEkYxB6ENqdudUsrrGKbOeOyjGyauO8YwI7ieh+dOmYw1VA08z0HTIkztgIhloiomCjau56FFNMaDMZphAQHxWa742dkZ2URK9u+HwzCbUmTbiP7x4eGhjEsWI/RWq0WpVJLsD0A+GEKgf3p6yvLyMnNzcxL722g0JAP8u8laxWKRfD7PxcWFbK32+32pvxZzCNFREW1IUb589/6zv78vvzPheSyXyzIEdTAYsLy8/MNzPwTARqjkBoMBmUxG9hjfvHmDaZpsb29L9ZxIMhWXDM/zuLq6otvtMhqNuH//Ptvb2zI3W4zHhRtGxEELmeNwOJStLDEm/u1vf0u5XMa2bUkHFakG+/v78jJkmiZnZ2ccHh5ydHTMs2ff8Pr1a/qDAdFEnF67zWRq4ysKnusRzKSXruMgUhtUVWM4GtLr9+j1uriei6JqeF6APXUxdBNn6jEeOSiBge/qdDs2/f6EbreHoqoy/ElsBFXVSKdSVG9vpfa8WCxKcFAQBJRKJSlS0nVd+hlFT7ndbsskM5GYZlkW+XyeWCwmTb5BEMhhl1BMXlxcyPLE931OTk6kQeDzzz+XuSzi9BfZ52/fvuXly5dSvHR9fU0ul2M0Gn0P+xuyAbOy5y6wGuHAzpqhMc4lKvpd1u+k/QCkFlpM+GzblqGUAk1m2zb9fl86ZJ4+fYrruhSLRbk5xXRJWPj1GcS93+/L2/38/DyANOhqiiIFNPPz8/KSmkwm6Xa7lEql77myRc9aRBgLiWQsFmNlZYXBdMrp+TlqLIqVTNDrtfFdF8OwMCMRNBQC32XqTGdBm1PyuQg+AdG4yXjsY1omqmZgGBqaDp47xXUUxlMPRfVIJpK4rkIqlcUPXAbDUKxlztzew9EQx51gpaKhhnrclIZU8UYUPWYhDhNvPlELj8djLMuSURmAbKGKoYhAWlxdXcl6XEzyWq2WjKMD6HQ6FItFNjc3OTo6khIG4U5yXVcOxyCUPYiHSxg8UqmU1GsLcLzoaB0eHso/32g0kie+orxb6Ms7b2qRnppIJGYeRZ2joyMAWXqIyIaPPvpI2rJExIUxY3KIaZVwZ1xdXXFzcwMofPzJiixThsMhiqLIUerV1RXtblcOBQTFPpFIsLm5SavVotFoyP65qqpkMhmePn1KrVYLx7+xGB89/RAfiKfS9CYT3MBnOh7RsyeYpoHu+vjeLPNcURkN+xhGSPFXNQVV98lmUtTqQwxTx8eBAHxFYTAak45rqIqKqgQEgY7rBEynDh23jRfMNOi+D4Svb9v38f2QvXFyckrCishyKZ/Pz9KEHekSEn3k0LcYbvLz83O63a5MsRWjakFtEp+36JBYlsXNzQ2Li4tsbGzIN6SA6gg4++rqqjRvCIe/uEwuLCzIye3XX3/N1tYWjuNQrVZZXV2VJ/hoNJK1f3fWChT2rW63K/Xe4me+y3rn8kM8pWITh2bbyffC0kUpIkI/19bWuHfvnlRn9ft91tfXiUQi8gYvJIyCNP/w4UMAiRy7urqSdZ8Ihq/VavLmL2IgxN8r1GDD4ZDz83N5ihSLYQxzq9Xi6OiI16/fcHV9haqpoCkUSkU8Pyw7otGohEOGdV6opYjFI1hxDcefoJsB6VyCVCaGr3goaoAR0UmnUySTKRLxGIqiYehhd0FRA1zXRtd0lJkBwvM8prZN4Ic/J51Jk0wm5Rsmn8/LN0yxWJRBQiLQ/ujoiNFoJAcrS0tLEj3R7YbcPnE6CmGYAN0YhiHtYQJ+b5qmDPY0DINXr17h+740J4gxeb/f5/r6WgrXLMuSh56YXgrylO/7UlufyWRkho2YaUQiEV6+fCmbEO+yfqc+tSDRiwuMYLCJOk6kqp6enlIul4lEIiwtLcmx7Xf507FYjHa7LZOpmBFA37x5I8PpE4kEr1694tGjRxQKBd6+fo3ruiwsLDA3Nycnh+I0AaSzwrZtDg8PefLkCbe3t2FftlHntlolnckScT00w0AzDaKWSSSZpHlbwZ/aTDUDezTCmzoYuopuCuabRjJl4PsuuhFnMnIZ230MUydXSBOPGyjTCdGoie1OcV2bSCSOHzi4gYdhqLieTxAojEcjvEBBS4dTNJFDLrQr4oEFpEJP9IoFi29xcVESkURZIGpp0UorFApyNlAoFOS9ZnNzk4uLEIcspnyDQThLEN0S27bD0nCWNyP0J6Zp0mw2WV9fZzKZkMlkqNVq8sInzNnFYlEqN0VUd7/fJ5fLyaGNyMTM5XKUy+V32pvvfFKHNVWBRCI5+4NZstNhWRarq6t4bhhHN7WnRCNRFBRcx2VjY3MWthODGZ/i4OAAZiPv5eVl4rE4pdmHYFkWu7u7rKyuhKE3yQTD0Yjt7W3ef/992VtdXFoiXyjgzep5FEgmk/T7Paly63Q6dDpt+SDouoZhGrOJ2Ti8/A0GVMo34QekarPyIBS7R6JRdN0AFFzXY+qMmdhDjIiCE0xA9TAjBrqhgeITT8YxIxaapszgMx4oPorihyP1mV5c07WwnJnV+aqqY+qmhMiIlul3s99FT1eQTsXFLRw8RaSGWiQOCF+i0NwIrEG/35dKvTB/MiEPJ5EnI6TD4rsXl9RYLCYhkyIXXuQoivImkUhQLBZpt9tMJhM6nY4UK4kL6suXL6UeRIAxhUXwB9vUoHJ8fEKtVkdVdbrdHpYVZWlpBdOMMByMaLc69Dp9FFSikRi5bJ5Ou0ssEsNQVS5OjolGTCxTZzgcsH9nn3gqRbc/JJ3OoCsqih/Qa3cY9HqAwr/9kz9GMw1iqQSP3n+fSCzG2La5urlhMByiGwbLKysUSiXm5kqAz+npCTc3V8TjUX7zm19RrVY4PHxLLG6RL+UJFIWFxWWGIxvP9/F9DytqoBkGqUx2xvUIiCWi6IaB6wWoepThyMMy4vh42EEHPeaQKqRwgoBsvkg0nsAxQItHcVFRFZ/JtI1uOGiWgmIaRKMxDEMDPBTFw3NtxsMRGhGmY4VUMiO7EeVyWZYRzWaTSqUi062ePn3K6uoq0+lU8glbrTDUUxgDPvjgA5LJJIoSpviKzsknn3wi9TXz8/NcX19zcHAgrVzi7SkoTyEUUpenuqIo39ORWJYlXTr5fF5GOwts2aNHj0ilUrK//t577/HkyRP6/T5XV1fyLb63t/fDbmoh+FZVVbKmRVJTr9ejPxjgE8ZafP7lF9xUyswvzLO2sU6z3eLlq1ehNsGyuLy8ZDSTLwqDbWf25em6jqIqVG9vKZfL1Bt1Wq0WgeejzU6uzc1NOeq9f/++1A5rqsabN29kRNvZ2RnJZJKVlRU8z2UwHEAAnV6P8/MLzs/PZVen32yhENDtdBiOhviEHZ9uJzRE+AEYRpRarQ9EyBdK5ItFXM8nkUrg+S6WpaMaPmNnwHDSpzPoYpgGQ3uEbprohsFoNGY6dXA9Bz/w0XQV0wz/+vVNWWKPhelY9O1F58Z1XW5ubmT2twDGdLtdKVsVNrkvv/xS2qqE2fnZs2dcXl7Ki/zh4aHMW+n1elxdXcmxujBHC6OBwC10Oh1ub2+5uLiQnaY7d+7Ik9ZxHJ4/f46u69y7d4+3b9/y6tUrUqmUpKj2ej22t7claFLoTn7QTb24uIhhGJJE32q15OhWOMTH4zHD2cXFtm0iM7fMcDjk/OIcw9BJpZKSTTwYDLi5vp71JxWsiMVoPMIwTTzfp91uYegGsUiU3OwV67ouc3NzMimqWAxTwa6vr+UpI/4+wzAk3NA0LQqFIq4baiWuZx2XUC8dQZ0FZ/ozQVbgeWFKrmESmfXEVVXDNNOoagzf0+kPbNKZ8GTF91BVn2hURzcB1UczNQJNQdF1bNdhbNtMHQ9dN8KfAyiqQbffxw/A9wKSMx+mqoacwOXlZZaWltBnjh+x8VqtlvQPVioVWXcLiL0o0RzHIZ/Ps7W1Jf89IsRoOBxK/cX6+jr5fJ5arcbFRZgQdnZ2xmAwkK6nfr/P6uoqpVJJPjwiJm48HlOtVmk0GszNzZFKpaQVb21tTQKKBD+k0+mwtrbGxsaGVPK9azb57yQ9XVpaIplMcnFxwcHBgXw1ffrpp2RzOTTDYDINvYKluTmyuRytTodqLcx1EYOHyWTC7e0t06nD2awdpekae/v7sq1Uq9VwHZdOq41lmBwcHEh1ma7rs2i5LY6OjmQ6VKvdkgAVQcEXuTDb29tUK7dcX9/Q7fQ5eHtIvR6K8wMgUHUCH3BdAj8ARUGZRSaPx2OUIEBRVMYTlU53SrM9RFVMND1EF8QTESIRE8cdoRtgux5j16XZ7+OpGkY0gmFZaLqOqhtYkTimGZ5QkWiUjY0NlldWsKc2k8mE09NTyUgRpCuRaCYug0+ePEHTNAmYESm2g8GAxcVFisUi/qyz4rqu5G3c3NzIsfrm5qaES8bjcTkVHAwGUot+fHz8vdlDp9Mhm83y4Ycfomkav/jFLyQPRCR7ffLJJ2QyGV6+fEmxWOTP//zPwyjBWIzPP/+cJ0+eSKhOLpeTk+N3We/c/RBtM9/3ef36tfQrJhIJVlZWqDebRCIRafK0LAtm9vfJZEJpbg7Fd5k6Togci4dZ2SgKOzs7jEYjqrUatuMwv7go+Ra6rqMCGoqUvAqbktDp9vt9lpaWQhf1TGnmeZ588nVdR9f1mdbX4PTimnqtgaYaGHrAZOrgOW644eJxvOkUb+rgqFrYxlQUDNNkYk+xXRUjYuC4Ab7uzfQrKt1um2g0iWkaOK6LYigEukE0Fcf1FJwgYOpOcadTVCNKLJ7AjEbpz6IxFE1nMnUo35QxrVCzITJVEokEb9++ldHTIjG23+/LrJQgCHAcR3aBCoUCn376qaTIHhwcMBqN5Bt1aWlJat2/ywNZXl6m1WrNQI5LslUrLpMCFi86NIZhkMvlZCdMMGHu3bvHf/2v/5Vut0u322VnZ4e9vT2azaZ0xAg8sdChiC7MD7apFUVhdXWV09NTnjx5QqFQAOD58+d0ul1cz2NxeYl+r49pmVSrVVzPIxqLsbSyTNTQubk44/Likv5gwIcffsRto4k9nTIZhxhZwzS5c/cOvhdqEJzplMX5eb788suQVjRLjhKWfEBu9GazSTqVlmZaQfWUOY6z/m9pbh7NjPPbz59Rr1ZQYlESyQTTfrix3ZkhVZmNlVVVQ1PDSZdhGHiArinki/lQXtrXMVSNuWKJVEpHdwKqtSaoFqqlMx57aKaBHjEwYhHGODiuF+aUj8YoMSv8815f07ttkowG7O9vMzc3J/Fsom338OFDiWgbDofyVX95eSktXhCWZPV6XXZRREyGbduyjSo+v06nw+vXr2XLViQ0eJ4nVX+KotBsNqWzSPxe4nD56KOPpBxYSBhevHiBqqpsbm7Sbrc5OztjaWlJmheazSaHh4dsbW3JQ1Dcb36wTV0qleh2u0SjUe7fv4/rumiaxunpKc1Gg0gsRjoWxZ7avP/B++FEiQDd0Ol0uqSWFpg6DpGIRWSmp56bn6PValO+CTP0coV8iD2wotRrNQgCPvvsM0aDISurK9RrdTRDl+2tZ8+ekcvl/sUaVr8lNhM8iZpawFKGw+GsrbeIolksLi5yVqmA69PrD/EcN1T+KQqggKIQBOFGDghQNQ3dUonEVPqjFqiFWRsvYDjsYyykSCYSDBoD/EAnlSkRjKEzaqKoGkN7jOO7oXXMD9B0Hdf3MA0LV3Ho9vpMvAGKsiMtXCIXRgw1AJmhIyJKRqMRlUpFDq1EvXx+fi4fBmGXEzWugAM5Tgir39/fl0GdAhUndPCJREImdolJ4OXlJaNRmNArUrnEaVupVKQPUgzogiDg5OSE+fn5GYLBkbMKYfQV4/p3We9cUwshvzB1np+f0263uf/gwb9Y34cj7uzvMx6P+elPf8rz5y/kbD8IoN5o0usPsMwIjWZTUjgXFhZotlvclG+4ub6Rr0nLstjc3JRTrFo91Dk0m02SyaS8FD169EgGKkUiUVl+iHG7iK1rNBrc3Fxjj8esra1hmQbpVBJD09HMCIEfoMw6LLqmzQYaDj4BU9djMBpixVXMmMrcUo65+Rw725t88P57xOMxIrEIhmWSymZRDIOxM0UxDBRdR1HCS5ui6Wi6TqBpoOp4fhBGbwTgei7dXleKe8RrXlD5p9OpvGxZliXxbj//+c9JJBK4rsvS0hLOrMQTVi4RLWfbNpVKRZpyFxYWWFhYIJ1Ofy+rXKj6hBZE/Hxhjo5EInS7XW5ubqRFS8iRxdRWhBWJMCOR6ygeJHEBFdNLkcD2g25q3TRxXJfeYIAPTKZTOr0enW6X3mBAr9ul1WiQSaYYD8c8+/oZyWSKjfVt0qkcvcEIN1AxIjEi8QTJdI7abYOpHdrrG7c1JqMx+UwW13Gwp1PMSIS5hQWmriNLmYWFBRkpnc1mOTo6wnEcPvzwQ5YWl8nl8hQKRaZTl+FwzGAwJBqNo+smtdotBwevqFav8D2biKHiOVMMRcPAxHd9PM8lCHx8Z4pjjwlQmDgefWeKayhgjrDSAamChut1KWWSPNjfZ2m1RLwQIVmKECsYdNwGtjbEShsouoJrgzvwUHwT9CijQEGJxXC8AE0z8HwYTR1sx6FcLuN5njQpi3aa7/uMRiPK5bJ0nqiqysrKitxUqVSKbrcrU73gX5K7giCQIinP86S/VJgBLMuaJaWF5FqhFxFan0KhQKPRkKWC0JwIcZWo8UU2j2D2+b4vp5SXl5csLS1JZmKhUKBSqcgh0jvtzXfd1NPplO1ZYPqrV6/Y2tqSr8Ziscj66gpffvkV/dmtOZfLgaLR7fYwTJP5uRLjmUO83eliWhE5sRJRZ91ul2v3Wo52e71e2AKa+SG3dnY4OzsjEolIJ/n+/j4XFxfhiHXWKfhu6qsg3udyWRwnDJB3p1Pu7u3y1bNvGDkBg+kU23GJWjHswMcb26Hp1rRAAVUB09BJJmPYzoBIMsZgNAXVxHXBDxQmQYCuBdhmQLXfYOzbBJqBPZrCWMHp2wSuhqIbeEoYbxE4LqauEzFMRtM+03Go576+vpY96QcPHkhus6ZpsrVmGIacHQg7l8CB7e/vS8d9rVbD932pzxCpWb1ej+fPn2MYhlRXxuNxUqkUX3zxBYqiyLJODHCEICmbzRKLxeSbVgSXirDTTCZDtVqVl1LhnxRpbIeHh5I6NR6PJdHrXVV673xSl8tlNjfDcff19bWURAqWRD6Xw7IM+jPGceg+afN//+3/IJfL0mo35QcgOiQAzWZThosWi0VpYRqNRmxsbEiqqUAeCAqo0CFks1l5MRrPPtxyuSwF9GLoEIlEWZxfREdlMhoTsyKUMnn6rQ6T/hB/YmNoBqoeQTEsjEgcL1BxXQ9D14mZOtPhmHbDxbXjTEZRuj2VRn/KVDWJ5Eq0Jz61/oDu2MZFwfdVcFXcsY8zdMHVMGJRookYuqYSeC5a4BM3TTTPw1IDVpaWyGQy8lW8vr4epijMlHGZWV9cOFUUReHo6EgOU8QGE1RTVVX59ttvOT8//x4oMpFIkMlk5Ob3PI/pdEomk5Eb7bujb5GRKLC7m5ubPH78WGpSBC5DtP5c1yWdTks1psCbiRpdqDcvLy9R1TDU9Qf3KN7c3PA3f/M3MpKiXq/LYBvTCk/EMLD9mna3QzabkwONeDzGzfWIZDLJ4uKijKATzotKpSINsltbWxIILlC24osSRgLRyBcCH3mCZDIcHR7KfO1arSYtULVajeloRCadY9QfYagaK4tLXF5X6I7HqJrOxA/QzSiBq+C5Nr4/xTRM7MkURfXx8PB0g0FX5/igw6g/oRur4asHqNmASreMq/mMXfA8HdUz0BwV1wZdjeCrhBdFBeYW5um326iOgxn4RHWVqJVgfm6OaNSUWSzValUCGh3HodVqkU6nSafT5PN5CQwCpNbl9PRURrjNz8/LqAshSEun00QiESzLkhNhIaAaDoeSrSdi616+fEkmE3JKTk5OSCQSzM/Pc+fOHb788kt6vR7xeJzt7W1ev35NpVJhYWGBnZ0dWq2W1H7cuXOH8/Nz0um0xDO8evWKpaUlUqmUpOL+a9c7n9Rzc3Pf4zb0+315sRgOh0ydKXNzRTzfQTe02WkR4d69u3Q6bUnvSSQSkjIk0Fcix09MK4UuejQacT3LAdnZ2SGVSsnTW4ioxCb3PI/LGRBe1G61Wo1ut0uhUGAwGFBvNFmYW0TXDN68ecvJ8TH7u7ssFAvoBOiKQiKWJJZIYcSSpApzBKpJPJEEzyNmRND9EPLYa6o0qlMqlS7fPHvNN8/e8vr1OfXagMbtkHHHYdp1GVw3mfanqIGJbliohg4KjAcDAsfBG40YdtpENIVMIsZ4NJK1ciaT4fT0VNaxgimoKIqMHzk/P2c0GklRk8hjFIIokR0u2pyivhW681KpxNXVFZ7nSc20QFuI+GYRuz2dTul0OlK6KrQpYp5QKBRmqRKB7K8Ll9RgMODVq1d0u12q1Sr1el16MIWgSbQZ/7XrnU9qQTzd2tqS6ahig3fabSKmhu87qKpCqxVqBqJujNvbKslkaCzIZDLyFRiLxaSARljDhBRR3OBvb29lgOjh4WEY1G6adLvd2dg6bFE9ePAgVIPNgO+j0Ui6Y25vb6ULfmVpmXa3S6fb5ezZt1ixOAvzcyQyKWr/zy/RPB/XttEUBd2KEo3HqZw3megBlhaA7aCoJs4Ier0+vqugOzbD3gB9aqBELfo1G2WkY0wUxq0pwTSM5TMsi0BRiScTDPo9EqYVtjiTSebzOSzfJ5/NoCiBrI2FkF/ESQgKvxiNj8dj9vb2pOhJTPNEzJxpmvLzFZngmqZJPJzgD4raWdCvRE+/Wq1y584d5ubmaLVaaJrG0tKSxFoIl5Jt29IrahgGe3t78sER9wHBpBYbWVxa79+/L7XyYuT+r13vfFIfHh7K6N4wuCgrpY+pdOglPL84A3zi8RjX11dcXJxLF4Z4Wm3b5quvvsL3fdbX11ldXaXb7VKv1zk+PqZcLsssk1KpJI2+wgEtOgKxWIzT01M52dJ1HXN2YRJC9Lm5OenyADAsi0yhQKvTpdXpks1lsaIWhqkzN1dECTx8exLqPkyLkeOixZJgRBlPPFw3YDLoETgewVjBH/j0am0G9TZxNYbdmnB7WKd72cNtuQR9Hw2DWDyBp0IkHWd3extLVcmn06SiMe7t7VLMZ/npT/8Nf/mX/5uEBgldRrfblam3QhAkbFSxWEwaXUUZIVqYAO12m7m5OXK5nEwR7vf70vd5dXUlp4iihhaoBdECFcFHzWaTt2/fSi23sHgJaamYJjqOIzsfIkrl/6sSFMSo6+trOp2OjDEUvfgfbFMLh7LjOKysrMiTdTQakUykMA2TydgGFHnRMQyd+/fvMjdXYmFhXvoRRZ3rui4ff/wxH3zwAfv7+1KMdHh4KH2F4gFKJBKsr69Lf564NO7t7VEqlWTA0c3NjbQmVatVGYdcyBfI5QpcXF5xcX1FNB7DjFg0202y2QwfffwhuUwSUwM1CNBUFdOKEEmkQDGwYmn8QGU6HTPodYnoBolIFHc4Qpk6jFtdvKGLOlZhqDHtuSiOQtSKkc5kCVRwA49uu4Ua+NTKZeJRi831VbKpJHMLJaLJKFbEkv5LkX3Y6/Wo1WpSliBEQIVCQbIM79y5I2lHi4uLuK7Lt99+C8Af/MEfcOfOHeky0nVdBr0WCgUWFxflJVMQAb47PRSCJvHPXF5eSgVfsVhke3s7hG+6LrqhS/12t9uVyLl8Ps/du3elZ3QymWCapsQL/y7Q9Xfe1KurazMkbAPLirC6uoam6czPL5DL5fECBccLMMwovd6A8dhmZXmV9bUNBv0BiqKiqhrX1zfEYnF8P6DZbKEoKsPhiHq9EeKoNI12u0M8nmA0Gs841mPW1tZZX98AFHq9PuPxhO3tHSwrguf5YUz0ygrpTIbiTP+bSqZIJ1MkIjEihsn15QX/9I//wHg0IJ1JEI9bGBqMBx02l+d47+G9UOmWSqD4Ds5ojKFbWLE0U2KMXQs/UBkN+nR7Ffq9G3B6BPaA6vkZ/VabYAzuGBxfx7ViGJkcVioFKDiTMeeXJ0zdCalYhD/7+c9o1WpsrK1hT6e8OjjgcmZfE69ukYQlEBWDwUC2+wShKZvNyoMiZEsXiceTLC4uo6o6tj0lm81RqzWIRuNkszny+aL87KPROA8ePCQeT1IoFBmNxgwGI4bDMTc3ZdrtLltb2zx8+JidnT3m5+Z58+YtNzdlxuMJi0srFOfmMUyLZDqLqumSmCqotSJR7F9oUnVisThbWzusrKyRTmeIRn9gll4QBJyenqFpGoVCQZpAFxYWZprdBRYWFlldXeXs7AzTsHjx/AWT8WRG7ZnIpCjB35ufn5eoA6EoE5MyEUkmSE4ifDKdTkvrknBEi05A5bZCLJlAM/RQwXdwSK1SDU+NTpdas0E+lyGXy1EqFSkW8gS+h+d7xAyNxbk5Hty7w9HJGX3HJmrGUI0IvhVD1WLY9gTPsfB9l6k/xVQNFD0ATUM1I/iqjq5oaJqCoxsEpsEg8PE7HTRFQfE8HGdEIZXk5z/9lHwqydFwSDwaZTAeMXUdxrMJrHBbFwoFdF1nd3eXubk5Xr16JbHGoh0nnDGCglqrhfSq8XjM7e0t6+vrqKomW63xeGLWG45zdXVNtVrlZz/72SxT/gbHcUmlYjOpcUSaYlut0IC7tLjE7W095Hz3B6GEVlEZ2zYT20ad3beEHU30r4V2WlU1hsMRW1vbqKrK9fU1R0dH30si+9esdz6pBfg7Go2yvb3NwcEBJycnEsUqhjC2bfPee++xt7dPo9Hg+PhYGmdd15VZfYL/cHl5SbVapdvtAqHWQoDCNzc3efDggSw1hORxaWmJWq3G8fExuq7LS0yz2cSxp/R74cWqXKkwHI8xLAtVU1ldXeU//cVfsLq2xt6dfbK5HKquMXWmdLpdPGfMh4/ucn93ExMXAxdLC9ACj0Q8SiaXJ1rcxyzsoqY3URPrmOld4vl7JIv3iKZ3WVi9y/zyDqn0HIl4BkNRcSZDIpqChU/Wsvj3P/s5nzx5yj9/9k8YMzSvgCWqmsr+/j6O43ByciIZKeLPXiqVJDek2+3KEqHRaMhULGGIFXkqlUpF6jWCIJBBUMLoGo1GOT8/lywR0Z8WvBbRexbBVdFolPWZy1/83s5MCyTyfIQLR1VV/viP/5hMJkOv15sdhPPyoigUfJ9++uk7h4P+TkkCYhASZpNbM99hXMIhRTyw6JTcvXtXGjjn5uZkTHO/35cCl1qtJtGxhmHIeIednZ1QgzGjozqOw927d1FVlWq1ymAwkI6OSCTC3Nwc9/37jGedj2+fP6fZahIQkC8WSKaTLC+vkslm6HS7qJpGLB5D1ZjBaXqsry7zzVffkIvHeHx3l4tylVqniapHwPBQNRMzYqFjMtU8VNdFRcWImLiaiqGpTB0V39dRVQNFmaLq4QBGcW0yiRibS3NszC8w7HQYDwasbu9gWRYjd4L/HeGS+HxjsRiNRoOTk5Nwqru9/T3W9OJMpjsej9na2uLsLGzxCVmpOEw2NjZkPJzYtI7jsLGxQTKZlH1/QVX9roZEjMnDOcSN1Ko3Wk3i8Xj4UJomjhcCOfMzRvXi4qL0Sq6vr1MulyV6YWEhNCxcXFzIeLt3Xb9T+TEYDHj06BG//OUvWVhYkJeT6XQqEQTValUGhH744Yd0Oh2++uorptOpVGyl02n+83/+zziOw/z8vPTLjUYjer2ezN0WbSABpZyfn6fVanFwcECr1SKTyXBycsKnn34aZplHo8SiUT7//HOOj49ZX1vDikXJFvOkkin56lO0UI13en4WZmgbOpqhY5o6jcoNu/t3+OSj99moNfk//8ff47hDVMXH92yCwMaKRjAsj4ilMR73CaY2phklGomBY2BoFqrm4zpTfM/F1BV2tne5u7tFr1qhXr7G8j3y2QxW1KQ/HJBIJxmOxywvrzCdTllbWyOXy0n5p9AlO47D0tISw+GQ4+NjiR5oNBoz6UAoEKtWq7x584a5uTmSySTZbJZoNATmPH78mGfPnsmhiWVZnJ2dcXl5KWWp29vbFItFDg4OZO5MCOZssbG+gTHLSk/MujKKovCbz38bgkPHI8knWVhY4Le//a1kj4cUKVvSV9++fSvbtWtraz/sphYtOXFLdV2XSqVCtVplbW2NyWQs6zjBxxOpW+EHn5UbWxhLb2eorclkQq1WI51Os76+Lt3Ml5eXMvbCMAyazSYvXryQXrzz83MZw6Fpmvz9RLKVbhh4gU8imUTVNXTTwDJCV3R/MKBYLDGZhObRXr/P1fk5lhVhbW2dy/ItCj7/9o8+pdZs8+rtIbY7RbHBmXik0mmc4ZhIoJI0LcaTMQo+fuAxdqZYJkTUKZFEhHv7W/z7P/4Zo36Pw2GfdCLO1dUl6xtrFEol/ABuyuFUNbZlSQi9ANMIUb9ofabTaZmPI+4hiqLwzTffkEymZJrw9va2fEBEKoEA4wjFnWjJCVaKwMOJeDqRCiD+d6lUojf7narVauguX1+nVq9RrYYUVMe2GfS6EvkQj8e5uLiQY3gIMWXigbRtWwKP3mW9c00t+pzVapW9vT3ZSy2VSvzd3/2dFKOMx2PK5TIHBwe0222eP3/OT37yEz755Ceydu71enz22WdS7CIkk4LAqes6e3t7bG5usrS0xH/5L/+Fx48fS6zW/Pw8c3NzkqEnHqLKTZnPf/Mb5kol3v/gA7KFHKPJmGq9xvLaKt1ejxevXqJoKp1uh4vLSxLJJFs7OyyvrrC4skYsnafS6NAbDjEMDUML+NOff8K93VWWC2livkrE15h0hgQTh1wizkI2RTSYEgybeONbNLeF4Xf4w6d3+T/+979ke3keZzRiMhqB4qNHNIyYQSQRRTdN1jbWWV9bI5cJHSpXV1eyHSnaeUKm2e/3qVarkh0tYks8z5NvOUVRpMQgHo/TarV4/fo1CwsLAJLnLdws8/PzUtQ0nU7Z3NwkCAK+/vprJpMJP/3pTyVQMpsN3fbV2/B3YBbVMZ06cuBTrVblf0Tb9S//8i/xfV/KZsVEtFgsSuXg119//U5783eaKJbLZZaXl1lYWODw8FDWfML5PD8/L8Pd5+fnefv2LXt7e6iqKvMW8/k8Dx8+lFpnkcIlxtnRaJTj42M5dAAkBEU09cUJI276g8GAk5MTVIUZU0On1W7R7fXY3Noin8+TzmSwZzoRkYKQyaRnqrMMk8mIeDJFbm6JZCbH4uoK0WiUN2/fYE9GbG2ssDhf4nbR5rJSRo9a6IFPp3xJreWRn4+jW1EGAxXPCViYz/PwzhbbG8t44yGK7zPqD5n6Dv3REDQVzTL58tnX/NlMcbiwsMhwNJAYMGGVSqVSTGyb+GwCKE7U8/Nzcrkc9+7dk3asSCRKoVCQ6QI7OzsyGUukp9m2LUfSYnCzu7srpZ8CVi/StoQSUDwQqm7Q7YYa69RMwWeZJsvLy3JAJnJ7AGkcEA2FwWBILJZgb2+P0WjEysqKpDn9oJtagBgty+Kzzz7jT//0T3Fm2l8x66/Vauh66EzZ3d3l7du3lMtlHj9+LG/iH330ERsbGxwcHPC3f/u3MmyoXC4Tj8fZ2dnh22+/5dWrV/KkPj8/5w//8A95+fIlqVSK+/fvk8lkKJfLfPLJJzJuw3WmrKyuhu7yq2sWlhb52U9/xsXFBb/+1a9oN8OuS7FY5P79e+zt7dHpdDg7O+Xmuoptu5ydnaOoCu8/eR/f90gk4miaSr1W48/+7I9xAoeXr1/z5ddfsbK0zHA7Qa1yw87+BkvLy8TNRUZDm9PjIzrNBkeeT/nmhk73bWiw3dojn8/z8sULhsMRCuHkL5FMUSgU+fLL3xDgE42EzOh4IgTYvHj5CjMSY3F5hf/52T9Rua0SiURIZzP8X3/912RzWaKxGJ7nU6lWMU2Tn3zyiQRDLi4thQZcz+PXv/611FqLejkIApaWlri+vpZwyHK5TK/X4+uvv5ZckUgkwvLyMnfv3wvLyZn2ZmJPWFhYYDye8OjhI6qV8ix6MOypv3r1mkKhyPn5OeVyhYuLC9niq9frEvn8Luudyw8x1habtlwuy4FAaIfXZIxFq9X6HmC72+0ynYb9ZMdxJJpXjLzDSAVfCs9FW0mMgE3T5ObmhmQyKb8MIaoZj8cSr/Xo8XtYkSi9Xh97YrO3vUvUitKoNTh6c4ipG98BxVQ4P7/g+PiE4XDM/fsPmZsrEY2Z2PaYqT1h0O9j21OCQEFVdV69eIs38lgtLbOSX2RzcYuVhW0e3PuYRGSJYJoEX2N3Z494Ig2KSac3QLcijG0b04owV1olncxjaRFGvSGT4YjbSjXEkanhGDlqmTSbDSIRC03Tua3V0UyLVDbHwtIy7z/5gPmFBaq3t/T6fTq9LigKtjPF9T2mjkOtXuf07IwA8IKA21qN0WyQI1BiAjQJoTl5Y2NDWuBGoxEPHz6U4n7BFnddl9t6nV6/j+f7dHu9kP3R7eE6Lq7jcH1zQ7Ua0gIGgyGqGvIIBelK1w3i8RhB4JNIxMM8+cDHst4NEPnOJ/X9+/f5p3/6J+LxOD/72c9IJBL89//+33EcR/Y/IeyQCNNnr9eTF8ybm7JMborFYmFLqNEgl8vx4MED3r59SywW46//+q+Jx+Ps7+8D8Hd/93eUSiUZXvTs2TNOTk4A+JM/+RPZmrq+vmZxcRFd1zk4OKBSqfD27VvG4zEvZmCVdDrD+saGxGV1Oh0ODg7QNI1Go8Hy8jJ/9Vd/yeeffy7rdZGWFYb7DPnNr39Lt9flL/7iL+h2urRbHXTdZHdnl+fPX3AzrZHJhC2x7e1trq+vZxekLJ1Od4atHTAcDEinkyQTSRRVYTAYojXqmJaJ77v4AXi+j6GquI7D6soKnu8zmsVkP3nyRJornj59yueffz6zRM1L+anwJwp8gSCOionko0ePGA6H/OY3v5H6GmHOLRQKZDIZ/vAP/5DhcEilUpFakTt373L//n3+23/7b3IYJ77X8XhMPpdjOpnIZAPh6r979y6DwYDnz58DYbbN/Pw8L1++ZGdn54c/qYWgRtxm4/E4H374IfPz87NWmcIvf/lLzs7O8DyP29tbotGoTEbd2tqiVCqxsLAgSZ6maUqqZiqV4vj4GNd1ef/997m5uSESifDpp5+ysbEhN+F4PKZSqUjyZjqdZm5uDtM0Ze0WjUbJZDIyIkJ0SxqNOqqqygvU/Pw8q6urtNtt2Wf/8ssv6ff7vHjxQl7QHMfBMAy2trYwDJNet8/V5TWFQpGV5VV8L6B2W2fQH0jZaBAElMtlmV67s7PD8vIyNzdlLs7P2d7eZnUWkHn37r0ZUeqcdrtDvlDg3r37eJ5PMpUkm81Qq91Sv63SaNRnvMA+a2trbG5uSqB6LpfDmtWu+/v7LC8v0+/3JR213W4zniGAQ8DPv5yMYt4AIQxUGHovLy85OTmRSr5cLkdxNgBKpVI8fvyYXq/HZDKRhNXl5WUKhYIcvsRiMcmgXl1dxfPCzlm73ebo6Ah9prt/V+3H79TSm0zCuikIAp4/fy5jMEQA5dbWFs+fP2djY0P2R/v9Pjs7O1xf3/DVV1+xvLyMOiPqi5aTYC2vra1x//59KYQpl8s8ffqUo6MjOSq3LIvl5eUQoeA4/P3f/z0PHz7k448/5ttvv6VUKgGhqaHdbuO6Lh988EEYRddu89lnn8nXbLPZpFqt8sknn3xPABWJRHjy5AlBENDpdFhYWODk5ISTkxNKpXBUfXh4SCKRnDGcw2HQ/v4+q6trlEolms0mv/71r6Vjp9vtsr6xger4rD96xK9+8RnjcRhwen19TSYXUpVQdSaTkOZ0c1PGtKL4vofvOGGHo9/FskIt+rNnz7i4uGB/P5zehg7tOE+f3pfA85cvX8oIv1Qqxd7eHqZhMBqNWFhY4M2bN/i+TywW4/b2VhpmDcPgzp07fPPNNxwcHHDnzh0ePXpErVbj8uKC21qNvb09xuOxRDGMRqPQhVSrycnm2dkZH374Ifl8Xia7ra6ukkolOTk5kUO9s7OzH55PLVp58/PzUg03HA7Z398nk8nIDSriMwSvQnAlrq6uJONYkEtFrssvfvELGo0Gm5ubJJNJGV0s+B4C4L2wsCA52Ts7Ozx69EiqxkSAvOu6TKdTCoWCDJQXIJuFhXl2dnZkfIeIcDDNkAD1XbKRsDiJoYMY2Yd54VnW1zcBePny1WzTBNRqdcrlMpZl8d5770nt89raGnt7eyRnxFjh8s7nwj7z7axFZ9s2//HP/xzNMDk/v2R9fYNCocCbt2/QdZVY1MIyDRmTLHIJRUb7aDSiXClzfn7O0dER7XabZrMpNR8bGxuUy2WSySRLS0u8fPlSyhzE6a1pmrwXtdvt8LI6y44Rn2+tXqfRaEiB1cXFhRzDC6ueEGMNh0MODw8lLTV8OweSSiC4h0I6+4NuapF4KxwMwn7jeR5/9Vd/JV3J6+vr/NEf/RFzc3O8fftWxmksLy9x79495ubmuLi4kIR8YVtaXV2VQMSrqys5Lr+4uEBVVX7zm9/w2Wef8fr1axqNBouLi5JLsbKywtdff02j0ZBZ2j//+c/Z2Njg6dOn+L7P6ekplhWRPOTr62uy2Sz1ep2vv/6aJ0+esLGxQTweZ29vjxcvXkjrvvhSYrEY9XqTnZ09isUSb98eUiiUyOeLPHnylHa7S6VS5ejoiK+//lqyB8UpKWJF4vE4mWyWqTMNQemWSSqdJhKNsLgUElx39/exp1MuL8/Z2dri5uoSx7FZX13D0HXW19f5+OOPaTQasle9uLhIrVaT2e1LS0u89957PH36lPX1dam9EJfBSqUiPZ6JRII/+ZM/kYm66XSazc1NJpMJZ2dnfP7553zxxRfhpp+BPd++fSu5IdlsVjqNLi8vefXqFdFolNXVVal9FyNzkVO/sLCAaZoMh0MePXr0zm7yd97UQkA+HA7pdDryNZ3NZmX9K7oY0+lUKsa2trYkMFJs8MlkIv8Qy8vLEuQotACRSIRcLofv+7KWTafTcmI5GAw4OjpiMplw9+5d2u221BQHQYBt27x9+5ZGo0G9Xsf3fTY2NqSGW5QaYtQ+HA65vLyk3+8TBIG0iokUKuEIEYFB77//PouLi5imKQN5bHvK06dP2doKozrOz89JpVKsrKwQi8WoVCqSauS6LuZMuCUz3ms1dE3ntlZDN0KlYiQSYTIa40xtMtkMsWiEdrvJ9ewtOZ1OWVlZAZBhRWFbbSydJAJdJoY2wsUtgDK+78sLsbjYiY7H9fW1TNASP09RFB7Myj3XdTk9PQWQv69pmmSzWXnRNE2TyWSC4zgUCgWZTZPJZHjvvfd48OABxWKRs7Ozd3a+vHNNvbi4KJkSAhZZqVRmGg2bQi7L5sYqBPCrX/6SVDrN3t4eu7u7VG5v+fy3n7O1GUYvXF5eymizMF+vwuHhIaVSkfn5BRYXFxnbNooyc0KfnfH+B+8Tj8e5vb3F930WFhY4ODiQ7GShPQG4uLjg6uqKe/fuSWnsixcvKBRDD534Z8bjseyh1+t1zs/OWJy9jZKJJKZhksvlaTZbLC4usru7y9/+zd+xtLTEm7dv2Nra4vDwEMd1yOWyLC0tMp6EAqD33n+fTqfD5cUl3W6Xi4vL8L7Q67O2tsr65ibPvvmGpcUF3h4ds7C0QrGQ5/ToiEjUwrFtCrkcC3NFfvXLX5LP50BRqdcb6KbJ8dER1dtb2u02mUyGfC5PvpBnMBjSbnXCYNUZcVQMusQp3Wo2Zf0sWqO6YZDJZsnmclxdXclL283NDWtra3z8k58wGAw4PTujPxyytLQEQMSyWFxYCAkA4zG2bYegnPk5yuUK3W6HIIBWq8kXX3wBhKrASqVFt9uTRuxqtcrl5dUPu6nb7RZLS2GSbbl8Q6NRZ2srfD21W03ajVt836VUmsNZWSKbK3DbaFC5raHqBvce3KfTbHJ+fkYsFpUIgE6nTb1e4+TkmKgZvq5X1za4rZ/TaLVRVJXRcMjnv/k1G5vbbG5ucn19jeu6rK2tyQ6LGMsKR4WAqIjxazQaJZ3JsLW1hT3LbPR9X3Y4VlZWOD89xp4MePvqJXt7d0mvhsJ1y4zMuigaqAFvDl6HVqrUPIVSmF2SyqSoVqtk0jkKxTnm5+ep1+vc3tYJULEiUaxIFLt2y/HRYQhvdBwm4zF3791nZWWFXrfL5ckx8VgMw9TJZLOh6VfRcH0FD514IommqnTbHXzHxVA18Hx6nQ4rS0sszi8Q+CGxX6jxzs/PsW2bUqlEvV5neXmZ63KZ8syDOBwO6fZ6TB2H0twcmVlrzbZtkuk0+3fvUigW2dndxf/qK06Oj/Fdl9TMLL2/t8c///M/c3l+TjwaxdVUWs36LIL7IdPpdHaQXUgylKquzO5cvZkPNcHy8uoPu6lFlotwBzcaDa6urjBNkwcP7mPqCp//9reomo6qqXS7IUHIikQwDBNdgd6sG+H7PpVKRWoASqUSD+7fx3ddbm9rvH79hmw+z8rqKqVSgfl8jmq1jOu4MpD0H/7hH6Qp9e7duywsLHBzcyOlkCINLJVKsbOzI9lxQsI5Go0k+y2Xy7G0tMTHf/Ax1fIVmmaSz+d58+YtqVRauqxHoxFbW1u8ePGC09NTut2ubFEeHR2FYEXf4/Wr19ze3kq/odBSdNptNjc3icViXF9fk0qleP36Ndvb2ziOw/HJCXf297m8OKdeq3F7e4uqG8wvLlKcKzGaeQLjs/p+MpmwtrYmh1me57Gzs8vi0rJ02eu6zvz8PFdXV+TzefZnuOTBYMDq6irJZBLbtmm1WvzjP/4jq6ur0n+6urrKyckJvu+TSCRQVZUPPviAxw8f8s///M+ySyKwB5qm8ezZM/b391DVcFw+nU4l9Gh3d3eGYw5P9FwuRywW+14o6busd66pLy4u6Pf7TKfh5UZAuj3PI53JEASQzeWYTp0Q6xuLkkjEOZ1FYszPz0vppOAlx+NxcrmcdK4EISla/kEJwtdbJp3hvfffZzq1JYt6MplwcXFBpVLBdV06nQ537tyROuKVlRV835cm3nQ6LU8vIXMVabJCDJTL5+j1+2iqiqqoJBIhS+7hw4eYpiFv8+vr61JQpaqqRDBks1mymSyZTIZisSg3lQC1vHr9WrrjBRhdpFhVKhVubm7wfJ+7d++TzRVB0WaWN4V+r0+72SKbzcmHQEz5RIrAaDTi+YsXEiuRTCbp9Xrs7+/LeYJgbliWxdbWlkxaEBocsRqNhky7FXHQYvo4dRw2Nzcl91u4lO7fv08ulyOTycoZhNDKdzodIpEI+Xyem5tr2Tu/ubmhVCrxB3/wBz88oen6+ppyuczNzQ2apoVQ9BnImwA8L2BxcZlsPk88luDq8hpd0xgNB1ycnXF6eiIxVOKi9l3z5XQahh/Nzy/IqIRoNEIqnSaVTnNyfBz2bWcXD5G/t7OzQ6PR4Le//W04wp3ZzHZ3d4nH45ycnHB9fS2jjjOZjDT1CuiK2Oz1Wj10ZI9GZLIZHjx4SLPZ5OgoFG8lEgn5xQj8rABcigulbYeX16urK+r1Oo8fP2ZjY2NG+U/JyDiRaiWmoI8fP+bf/bt/x+X1DZPplGKpyMLiIq7nUK/dUr6+pFq+5uDtGy4uLiSpSsSFCJ/ibbUqzQEiDkNRFEqlEuVymVqtJtO5BATHm4UrCUqpSBwW+umzszN5Ia5Wq4yGQ6LRqJxYClFZpVJBURRyueys47Us5ca6rvPFF19we3tLpVKRnJKdnR36/b5sv/6gm1pQ4r8bjLO1tSUpmZ1en8XlVfb37xEEMBqPsO0xmgL2eEhlxrAQta4YpUMYYfbs2TMazQa9XpdOtyORr93ZKfDq1WvK5ZCTt7CwIMsLRVE4PDyUqKx79+5JKufS0hKtVksiY8XgRhCJhEUpCAIqlQoBgXTXBEFANpvBtiek06EIX/RgE4kECwsLrK6uSv237/vous75xYW0WAn+nNC0bG5uyUuqbdvc3NzQ7XYlc3pjY4P/8B/+I7bjks3l2dzaYm9vD8syyGZSaCpMbZuDgwMJuxElliDPptJplpaWuLi44OLiQkIfI5EIKysrEt6YSCQ4OjoKSxxVlUOXTqcjw1VN05Sj71arxenpqTT8DgaD7/23QJwJ651gjYhOyNbWlpSZilLQ8zzZXfnVr34lUyT+teuda+rNzU05FHnz5g2tVkumN6mqytMPP+Ti8pKvvv6ap0+f8urVS44PjyiVirTbTXK5cGwqkGXfjWwQdqxep41qWGzv3pnd1k1cN9QixGIx3nvvffmhvvfee1LfMJmE5t7j42MKhQKu6/LixQsWFhZIJBJyY+fzea6urhiNRrz33nukUikpkWy321xfnBExdRw3kKdQoVDk+PiYvf1t6QUULo54PC7ZI/l8PnR4qAbZTFiTnpyc8Pz5c548ecL+/j6DQV+2Q1VVpd1u89FHH2HbNl9++SX3798nYsXZv3sPw9T4h7//e6KRCPFYBF1TSMSiWKaFblqyDhYjaAipWffur0u4ZrPZJJPJcH19zfLyMisrKxKsfnp6ymg04sWLFzLEVQCEDg8PUVVVZsV4nke5XKZcLvPw4UP5GSSTSWq1GsNhOBldWVmRmZpijlEul2XQ6507d3Ach5ubsmztvX79Gt/36Xa779ynVoJ3PeN/XD+u/0XX75Cj+OP6cf2vuX7c1D+u37v146b+cf3erR839Y/r9279uKl/XL9368dN/eP6vVs/buof1+/d+nFT/7h+79aPm/rH9Xu3/l8Z5PhLXspBmgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOEAAADECAYAAABp0kb/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADS0UlEQVR4nOz9ebhuaVrXh3+eaU3vsKdzTg3dVdVdPUJjAzajgKJgd0BQcEBBfyKoIYggRi5iciXilAujicEg5gfJFYMRfxqihkiIKEJACDMNTTf2VF3dXXXOqTPt4X3fNT7T74977X2quqqrm7alTpJzX9e+9jnvXvt9117redZzP/f9HVTOOXM/7sf9eMlCv9QncD/ux//b4/4kvB/34yWO+5PwftyPlzjuT8L7cT9e4rg/Ce/H/XiJ4/4kvB/34yWO+5PwftyPlzjuT8L7cT9e4rg/Ce/H/XiJ4/9+k/AVr4A/9sfu/v///D9BKfn+8Qql4C/+xY/f+92P58b73y/X+L/8L1/qM7kn4tc3Cf/H/1Eu3vlXVcFrXwt/+k/DjRv/bs7w31X80A/9P2OiPfmkXP/XvhaaRr4+8RPhG74B3va2l/rs7sdHEfZj+q2//Jfhla+EYYCf/En4b/9bGdRvf7sMgt/I+K2/FfoeiuLX93s/9EPwXd/1whOx78F+bJfmNzR+8AfhD/5BOdc//Ifhkz8ZtIZ3vhP+yT+R+/Lkk/DYYy/1md6PF4mPbaR90RfBp32a/PtP/Ak4OoK/+TfhB34AvvIrX/h32hYWi4/xNF8ktJYV+eMZH+/3+3cRTzwBf+gPyQT7V/8KHnrouT//L/4L+Dt/R67Pi8W/q/vy//YYBlkYPtL15+O1J/wdv0O+P/mkfP9jfwyWSxkoX/zFsFrJkxogJfiO74A3vEEG+wMPwNd9HZycPPc9c4a/+lfh5S+X1fW3/3Z4xzue/9kfbk/4sz8rn31wIIPsjW+Ev/W37p7fd32X/PvZ6fV5vNCe8K1vlYfPei1/2xd8AfzMzzz3mPN0/ad+Cv7D/xAuX5bP/vIvh1u3PsJF/HXGX//rMoH+7t99/gQEWR2/6ZvgkUfuvvZi9+Vf/2v4A38AHn0UylJ+78/+WckKnh3PPANf8zVyX8pSPvv3/B7Z553HL/wCvOUtcOkS1LVkTV/7tS/8d3zP98CrXiXv9emfDj//888/5kd/FD7v8+Ra7u/L5/2bf/PcY/7iX5Rr/853wld8hdynoyP4M39GJsSzQylJ4b/v++B1r5Nx+KY3wU/8xPM/++pVOfcHHpBzfMMb4H/4H557zPkY/If/EP7T/xRe9jIZs5vNC//NHxIfn5zriSfk+9HR3ddCkBvxuZ8rG/DzNPXrvk4G69d8jQySJ5+Ev/23ZZD/1E+Bc3LcX/gLMgm/+Ivl65d+Cd78Zpimj3w+//Jfwpd8iQyQP/Nn4MEH5ab94A/K/7/u6+DaNTnuf/qfPvL7veMdMgjWa/jWb5Vz/O7vhs//fPjxH4fP/MznHv+N3yiT/9u+TQbnd3yH3PR/9I8+8md9tPGDPwivfvXzP/sjxYe7L9///dB18PVfL/fx534OvvM74emn5Wfn8ft+n1yPb/xGKZLdvCnX8YMfvPv/N79ZHkB//s/LpHn/+yU9/tD4B/8Atlu5H0rJg+X3/l543/vujoMf+RF5+D3+uEy0vpfz+pzPkTHxilc89z2/4ivktW//dnlI/jf/jTzg/97fe+5xP/7jcj++6Ztkcv2dvwP/3r8nf/cnfZIcc+MGfNZn3Z20ly/D//F/wB//4zLBvvmbn/uef+WvyOr3Ld8C4/jRb5Hyryf+7t/NGXL+kR/J+datnJ96Kud/+A9zPjrKua5zfvppOe6rv1qO+/N//rm//6//tbz+fd/33Nf/+T9/7us3b+ZcFDn/rt+Vc0p3j/tP/hM57qu/+u5rP/Zj8tqP/Zj8P4ScX/nKnB97LOeTk+d+zrPf6xu+QX7vhQJy/rZvu/v/L/syOZ8nnrj72rVrOa9WOf/W3/r86/OFX/jcz/qzfzZnY3I+PX3hz/v1xtmZfM6Xfdnzf3ZyIvfm/Kvr7v7sw92XnJ973Hl8+7fnrFTOH/jA3feGnP/G3/jw5/ZP/6kc8/M//+GPefJJOeboKOfj47uv/8APyOv/7J/dfe1TPiXnK1dyvnPn7mu/8is5a53zH/2jd1/7tm+T3/3dv/u5n/Wn/pS8/iu/cvc1ybNy/oVfuPvaBz6Qc1Xl/OVffve1P/7Hc37ooZxv337ue/6hP5Tz3t7da3Y+Bh9//IWv40eIjy0d/cIvlKfCI4/IvmS5hH/6T2UZfnZ8/dc/9//f//2wtwe/83fC7dt3v970JnmPH/sxOe5HfkRWvG/8xuemiR/65HmheOtbZXX95m+Wp/Cz49nv9dFGjPAv/gV82ZfJ0/g8HnoIvuqrpDD1oWnHv//vP/ezPu/z5H0+8IFf/+e/UJx/3nL5/J99/ufLvTn/Ok+7nx0fel9A0sbzaFu5L7/lt8hwfetb7x5TFJJ+fej24TzOr/kP/iB4/+J/xx/8g5IxnMfnfZ58f9/75Pv16/DLvyxp9OHh3ePe+EYZQz/0Q89/z2/4huf+/xu/Ub5/6LGf/dky7s7j0Uclzf3hH5Z7lTP8438MX/ql8u9nj9e3vAXOzmQlfnZ89Vc/9zp+lPGxpaPf9V1SErdWcuXXve75G1BrZd/w7HjPe+Tkr1x54fe9eVO+nw/W17zmuT+/fPm5N+2F4jw1Pk8p/m3j1i1J0173uuf/7BM+Qfa4Tz0le4XzePTR5x53fs4fbuCCpFlnZ8997cEHX/jY1Uq+73bP/9l3f7ekeDduwB/5I8//+QvdF5B08i/8Bfjf/rfnn+f5eZWlFHz+3J+T+/5ZnyVp/x/9o3fP9bf9NklZ/9Jfgv/6v5aHwpd9mTywyvK57/uRrtP5OPhw1/6Hf/j5haUPHTOvepWMzWfvWV/oOJAx3XVyz7WG01PZs37P9zz/WLg7Xs/jla984eM+Qnxsk/AzPuNudfTDRVk+f2KmJBPw+77vhX/n8uWP6XTuuTDmhV9/MSWRf/SPZJ/80Ry/tycr8dvf/vyfne8RP3TQnccL3ZcYZWU5Pob/6D+C179eBvbVq7IKpXT32G/+Zlkd/tf/VSbBf/afyf7rR38UPvVTJQP4X/4X2Y/9s38mx3zt18J/9V/Ja89evT+W6/TrjY8l+4G7f/Mf+SOywr1QvPGNz/3/x7AKwserMPPRxqteJanm53zOi5/weV/rPe95bgp469aLrybnnwEyQL/wCz/8cR/tzbl8WYoX73rX83/2znfKgH52BfJjjbe8RQocH238rt8F//1/L4WEz/iMf7vP/tVfhXe/G773e2VVO48Pdz6vepWshn/uz8k9+pRPkUn29//+3WM+67Pk6z//z6UA84f/sFQP/8Sf+OjP63wcfLhrf+nS89sr73nPc1ek975XJtSHFnDe857nv+e73y33+nwxWK3kAfVi4+jjEL+xsLWv+Ar5o/7KX3n+z0KQ5R/kj3ZOqmDPfip+x3d85M/4zb9ZbsJ3fMfd9zuPZ7/X+c370GM+NIyRat8P/MBzV5cbN2Rwfe7nStX03zYeekj+7md/vVh867fKgPnar31htNKvZzU5X5Ge/Ts5323pnEfXPb/c/6pXyWAdR/n/ycnzP/tTPkW+nx/z0cZDD8nvfu/3Pvc+vf3tsk//4i9+/u986B74O79Tvn/RFz339Z/+6efu6Z56Su7xm98s18MYSav/8T9+4Yzj49hy+o1dCX/bb5Ny9Ld/u2y43/xmmWzveY8Ubf7W34Lf//vlSfQt3yLHfcmXyMV+61ulPHzp0ot/htaCFPnSL5Ub+DVfIzfzne+U0voP/7Acd74p/6ZvklXIGCkyvVD81b8qq8Lnfi78qT8l+6rv/m4ZVH/9r3+8rs6vL17zGnkIfOVXyp7pHDGTsxSm/sE/kGvxQvu/D43Xv14m07d8i6Sg67UMvg/NOt79bumPfsVXCDTOWinI3bhx99p97/dKuf/Lv1zec7uF/+6/k/d8oUnzkeJv/A2ZQJ/92dIaOG9R7O29MNrpySfhd/9uaTf89E/L6vxVXyXX5tnxSZ8k9/3ZLQqQvex5/LW/JsXCz/xM+JN/Uv7m42OZvD/yI/Lvj0f8umqp5yX4Fys/5yyl8MXiw//8e74n5ze9Sdoaq1XOv+k35fyt3ypl//OIMee/9JekRFzXOX/+5+f89rdL6+HFWhTn8ZM/mfPv/J3y/otFzm98Y87f+Z13fx5Czt/4jTlfvixl+Gdfig9tUeSc8y/9Us5veUvOy2XOTZPzb//tOf9f/9dHd30+3Dl+POK97835678+51e/WkrsdZ3z61+f83/wH+T8y7/83GNf7L782q9Ja2W5zPnSpZz/5J+Usj7I35WzlOq/4Rvk/RcLKdN/5mfm/D//z3ff55d+Keev/MqcH30057KU9sKXfMlz2wHnLYoXanW80LX/kR/J+XM+R/629TrnL/1SOd9nx3mL4td+Leff//vlvh8c5Pyn/3TOff/8z/iGb8j57//9nF/zGjnPT/3UF74/N27IsY88krNzOT/4YM5f8AUyhs/j/P5+//e/8LX9CKHknO7H/fi/efzFvyir2K1bHzlbUkpaGX/7b/+GnNpHiv/7UZnux/34f1jcn4T34368xHF/Et6P+/ESx/094f24Hy9x3F8J78f9eInj/iS8H/fjJY77k/B+3I+XOO45IZW/8NWPkFJAaYjRs2iWuKJh6EY22w60wseEtYaqqsk5EUIk54xSGVKkqUsEGZpompqqLvB+QikBkZTO4H2g6ydCTIAlxESKmaIoyASMhpwTzjmsUvjgWSwapmkihEiMgZQSxmiUysToUVqjFISsQVuccyilmCah9EzThPceMPigyGTICRQUhcUYBSqjjWHKFu89wXt5fz+RY6QsHcYYtNYYYxgGj58C1mmKwlFVFm0UqIJ+GMg5YZzBR49zDu003ns2xy1V1ZBVwlgDOqONwhaGtmtRuSAEAeCklEgp4b3HGINzjpwgBY0ClIaUIq6wQEKpjLUaH6b5umTKssSaAj8F+j4SkyIk+XtDGNE2Ya0iZ0VOGmMsOXnW6wXOOabJMwwDOYMxlr7vUSTqumJ/f5+2bTHGoJS6uO7GGMI4Mk0TOWeK0pJzxHvP3/z/fpzQLh+HuOcmYYyBuikIIdC2PWVZkqeOmBLLRY0ylgygFH6amMaRnEFrRcpZJk/KGGuYJs/J6Sn7rOeJEsg5E6xFKU2MCaUUfd/jvQzSlBUpTigrAz3nBNpQFI5h6IkxEUKCDNoYUjqXuVlgrSWlRB8Ck49onS5eAxkc1lpCyPRDh9KKqipJKZJzIGfDOA74EEmmkkGvFMZqnHO4qsJajVKKnCHGjLMlChn8zhYyQUi03cg0BTl/H0BnmThTJqWIUpqcYAqR0PdUdcn+4T5t31G4Cj9luVYhEGMEZDLmLK9PU4CsMUauUVEUuNKScyLnSFaZrMA4Kw+mGNnbXzIOnmHaEkPE2hJUxhUFq3WDMZqUMkM/EkLEuZpmZv6HELHWEmOkKCxlucJow3q9oixLvPccHh4SQqDve8ZxRCnIwRPCSMqZcn5oLxblhxt+L0ncc5OwKgzOaIw2HOwtcU6TYsYZRbNYsGs7cs4YbdHOkJOZB0kiJlnNhiFSliXOOUzS84BNxJjRSjH05wMrY4zBqIwyisIqCgtjzjOGV5FSIOSMNZYQEllByhqtLSlHQow4bZgCTGHCGIvRBTkN9N1IVSkURgYwMnGGccCHgcOjQ4wx7LY91lpQshJrE+kD6JlyNE0Trq4uVr+cM95HxjGQkvxt5CQrq07kDLtdR0pS+M5klAFXAFqhlMEaQ4wJHyKg8T5xerol5UzKEbJGKYMxRs4NcM5dTMiikAeZUvJ+VVVQVg4FhODxwZNSxhiFKxxaKTIw+YlMpqoLlqsVmUiIE2XpqJuKafLkHNFekUKgbVvKskQpeS9jLEpDVZaUZUlKgWvXbjGOI8tlg/cTu92WlBJVVeAKRTGPhbIqmaYR5z4MheolintuEsbkiVHSmb1LB7S7HmMMfTdx+9YNhnGkWaxw1pBUwhpQc/JZuAJjZFLKUzwSgp9TVYXWmikExtFjtMYZRVlalssacsT7EaUjhVU4q7HWMgwDKWW8z/PAAnJB9JG+76mqkilFJt8RQqCsKqq6RmtL2/aMo6SiwzCgtUYbTYgeZaBuKnJO2MLKCgNY50hKo+ZVerVYonRGkymspaoKttsdPiQymhAjSlm0yUw+EXYdSoH3CaM11lliiiitcLYiKeHJxRwktdOGmBLjGJiCHCcp3/lEk+vmvb9YCZVSLBaSysrKJClyiH5eKSXFLaiw1uAKwzh2dL18WVfQ1A3aRLq+ZRh6MhWT70kpzemkpp08vvf4IFsJ55y8t8kUpcaHnqHvsVbhXE3f78jAatXQdh1lZXEGlMocHBzgnGHXwvjrZXP8O457bhLurdZYq0k5MvY95Iw1hv31HidpgzGapnY0Tck0TRRWXaSjMWayUuRs8V5WO+ccoPA+YIxCazdPMEVhZaVJIVA4g3YWWR01RVHAvBLErIhJWFjGFsSkiCmhtKYbBlIKjONIUVjyMND1g6woSdI0YzR1XRNjJKUICqyz7HY76qahWSwZ+gFrraw8WQPjnAoGNIoQPBrwXuFDIMRIjBmlNSjIgLEG5yQlLItzIZWMUhqtlaSRYUKh5HqlBPN+Fi0ZRwpZHhYqM44jxsgqPk3TnJ7L32WdRht5/2HoUdpgtKZtWzJQ1zVV1VAUlmHsGEcv++kYMVmxbbcoLfv4uq6wxjH0HcZqVqslkEkxkKIiRPls5yQLUDrj/UDb7iCDtY4MVHUzP0AMKRcYo5imnrbbgkocHOyTUqTrXkCR4CWMe24SjuOE9zJIFosFIx7vI9rBcrHE2ExZOtlou4qqKum6jr7vCcmT5glzvgdTSgYOyCDLgNIKpRTr1ZqmKdFElgtZDbe7jQwoa+fiSo22jlt3jslkJg9+mgg+UFYOnSWVa1w979UyKiWICWu1pFl1TVEUTNPEMAz0fiQbQBuG0RNCJCVFP06kJKtLNw6EEHDGYKxGk9mOI5tNRGmDj5EUwRhJ9UBWoBDl98myumqlKUqHdYaYzh9EGp1BRYghgZLMwboC68p5ogWUVjRNw97eHnfu3KHrOgB5QKHIKmOc7NPGweO9rK7OFXifmaYWbTJdt+XgYI/13pLN2Zac9fxAChhjKcsa7z1ZLso8+RWusASfMbbEGHlwKu24ffum7JOtQyuDtef3eF6FjWV/f821a1cJ00BRGJSCvu/Ybrfz+d87cc9Nwts3jilLS1E6xn6ALMToXChCzBQFLJuSEAIpTvStF0X+wpJjIGFIIZNTRhJVRUaRU5ZKX06kHAgBxnHAWnAKul2L1Zo0JZKSPVdMI7t+IgGnpzvJ0ZRUBF1hiFFWKkg4V8yrSkRpjSss1spKmonE5NEGmkVFHhSn2y277UBRFFhbMA6yUkyTJ6aELfVFlS+EgMoJlTNaQwhS1VXKoAxkEilFYkzonEg5omJCaxl8MXqUScQYCDmikiIHj1IKayyUDh8iZeVoFgumaaLrAgBVVbFYLDg7O5uLSuHiXqUokzwnKVbJNsJhTTE/TALaaJpGCNR935NJ8+rKxarlfWSaIlpZhn5AKVgsKqqyZuelBmCtZtduWK0WHF06wBhF1/ayFVEJyIxTLw+wvqUoHEoLYaIsa4y2xCiffX4+90rcc5PwypUrXLp0gPfTXGlT9P2EVoY43yCrFdoavJf9jVIKT8YZDbagGzumyVMUENFYU1LXFcMwMk4dxmbQirPthnEcqAuHVlA5h9aGbhzY7HbEDGhLSMjTO0BMkapU80BZSJpHoiwLtNYy0M8HqlKkKAUT76VYcZ7eFeUC6+SpDYqitFhXUtWQUiApP09gqWYeHuxTlyXD0DGOE6XOWFdirSMESYdj9FhnKMuK0i7IKTP5kZgitjBUtqAf57ZFKddktd4nZbh69RmGsaftOpRSgDwEju+ccPv27eeU/621+OCZfCSnQMqZnDVGa8iWGKVYUzcF49jOD45AWRYUrpwrn/M+MkTGoZeHXgxonajrAsigMicnJ6QUuXx5n6oquXLlEjdvXsfaggeuXKLvR3lwzXUA586r0ZmmruhTYn//gLou6QeZtOfFpXsl7rlJWFeKnEdynlitluzt7eEnL/ugsCSEzOQDzlXEPO9BUsKHgNaaNEqaprWFrOd2glQAJU07r5ZmYkik7FHGkWLEZw1ENruemPS82iSZTPINgyJOGYwmTOcFjkTG4pwhRFHqkHQrSZlcQQqRTJRVGUXpjKTFKKZpYvT9xaRVStZwrQAide3QNhHxZJ0xzlAU0kIZxk4mXwGWPKfABqud9BgjWKMpS8t6vebmzcAwjCSbsDGCNpAAZUhJE0OSFNcopimQYpbVpNLIgTBNETLEKUGUFHQaJ2LMGJPohgmtoPQapaSnq7VD64KylDaMXBs19yEjmUBZGSBjbGLyHUpV1AtLVS6omwpn5X4P3UiOmaPDA8apwxWgQ8b7kYy0aMiK6APWQN9uSKFEadAqEnz/4YbfSxL33CTMyRC9RuWCrp3YnF2fUz6om4ZxDNw+PkUpNT85DSEErLUUZYkPHpRU/UL0xJhIOTFNo6RIKeG0k8a6hphh0/YYoznebKRCaYu58CFPTGPMXGCRz8pB+l6bccsUPMZoxmm6KMZkMj5M8nulA6RHWZYFtnD4fiT6IK0ABBRQlZqyLJimER8zIWm0lnZBypFhTCikj6aUJscMEXL2WKfIOVCUVsr0U2QcOrpuoCgFFHDn+JRde4afMiEktNZs+5bj9z1BUVRMPtH3AzFCXVsUGjWv0EZDTPKwqeuKlCIpZRaLipwUbbtjvVoAirYb0DmjrUVraZForfDec3p6CvODoigLlM5YKz3d1XpNCB5rS9Z7DZvtCSH2LBaOnANdd0bwgZQihbHkFNmenaJ1YrlqyDnTtQM5K2nZoOj9RJg8ZtGgSKwWC4xZsGs/Onn636i45ybhdjPhJ1lJpkkqhnFGY7S7M2KOdHPKJH2zfNFAzvPKY4y6SKlyTsS5Z5WzuqgY6jwPM6VQKqOAsijJKpOyxir5mZ8FbGOMFz2zmAIohUFhnJaKpFa03Y7gPdrqeaCJlHsIfn7yS/EgxmkuoAQ5X2uo6prFoqFtM2kY0dZIEcUYtJGUNMVImPt6Fikwaa2pygJjK5RKsleeM4PJ9xRVhVbMKVvA2RpjIBNJIUGSNN4UmlAZwpQxWjZsRoOeHxTljIapSof3mb4fKAvN+mBNxjP5ibKqODxa4yfPFDyKRIgBY520h6YJY5Sgl3Siqi2uNFhbUJaSpgq6pqDyFTlFpjiRU5yvvyKGSCDjsma3OcOWmr6TtozRDm0MzliMsXhrGfOAVgZjHMPg0RrSvZWN3nuTUBtH13v6vgXAWMn1x9FLszX4i0Y8MMPCJmkBpEhOSaqB1mK0HJOS9Ia6rpNVYJY7zDmjpH4zw5xkoCiTCd6DUjiryCmiNJADMSacsxhrCTGANpRVgbEGpdPcI9NUdQVkuq6VPh0ZpSNKR7QBqzLWGbRWWGuIsWe7HZj8CEpTN4IgMTYDiWnK5LmgEWMmBDm/nIMgdkzBMA648z1hWWGtQlt5KD362IN4H/FTYhwnsoaUM5dfdgWtDWdnZ7hiyTT3NVPKxJjkfGIGrHwmI0XhaBpNxpNSx966wBRLFosl/TDSdZkyQgyKBx54mP39fZ5++inOzkaqqiBnSyZweNiQkmcapRebYmIaRoZB9sVNXcg+E4sis2wWDMPA4f7BXGnuME7gfdPkBVgRAkUhmVBOicI6tFYEH0DBNI3zA/reiXtuEiojTgHNqibGwHK5YLlcst2eMY4DmcxysURrLSV85yiKgrquGeafS0UwSvVOS9kbZKKllDBOU7iCaRpIOaHmVTGjcNaRckRrNa+q9gIG54whxTBPDk3KkEgoEuPkiVFS0xAnQtRARltY2GpuARjGqUepiNZgrKJwDm30XGTKLMuGKcjPlRZcZUppXgHVXE2cyIq5EJTo+57JjxgrDfbVakXfBaq6ZBh7tJbmvXMFZVFgzMh4XrAxmpQTxkCKkdWq5PDwkM1my2azY7FYkkkUzglYIQZy9lRVNbcF5CHgbGYcW6ZplMmvNVErmsYRwkiIUjia5ixnsagZx56YJmI47+M6lBJUk9wyuSaFM7S7HappaOqKuipYLxe0fUHbtfgsmQIZmrqRyTwNTNPIclHjw0RKmbIoL8bAvRT33CS88uAht27fYLlckpLgBfvxjNG3FLUDPfel5kbyeSp648YNac6XJSokyrIiRNkLxphmtAf4KVKaSDZpLrn7eWBqSflyIiRAxRkupS5SqWFssVae4jlDVVn6cWAYOxIyqazRhOTxfsA5TVUZgbilTM4RYxwhyPKrjaIqC0KcsM7MFUNNP3j8/DdmIqvVUsr4YyArzf7+Ptpodm2L1pn1esnh0T5l5bhx4zqbzYbdZiLGiHUQssIVBUM/0fc7gk9EJXvUvm9pux1l4VgsLZcuHXJwsE+ILXV9QFWXtO0Wow0+mjkl9iwXNRpD1lLoGqeJtt1KMWe+JyF6jo9vysqTAgf7S4ZhhAyHh3sUZWLyhuw03kf6rieliLFzgz5bmqbBKEVdVfNDMHJyfEwMgV3XorSibmoKZ2aYHeeFVdarhsuXjthut7zs4ZfTdi1Xn77+0g7wF4h7bhJefuBB3vu+JzDW4v3IcrFkGEdCjNjkcK4gRS6a2ueT8LzaBpKu5Syg374fZDXLoNAUriQnaRkoBcEHCudmgPM8URSsDvbJSdLJqlpK+2NGwGSlpNJmBNmj1PzvFIgXmEXZy6Z0vo+TSbparZim89QuzyldmGFiFUJLSKQsED6l0gX4PASPc4IhnWYYmaz0zGiUic1mw3q9jzGOGM+RRBEm2VflJO2Dwiq0UhTOMqiMIpJT5uT4JrvdMdMUqcoFmoifBqYs4IO99YqUAs6WM5olkRRodb6/VhfggWEaMUZA+UVp0dowjAMpRYZhYLPZEaK/qFjL7ZN7kHOkrlbUlQDZy0LSbQFBWMhQOkfIgRQEVTQOA6ZpSDFSOEeYJtp2w3q9pG4Krl57Cq0zi3vMFPWem4Rv+5V3UJVLujaw23VstyNVVWJMRVktyTHhs79A1EsjV1KwTCbEzDhF+t4TfCB42WtobWYajsVkKcQoMs5aFGCNneFOhqp2NIuaaRyJwaOQz2jqSoo1KeKDlwINeUamSPqac2Ly0wykTnP5XdKqytUygJ2+oObs7++Rs+LgcI++H+a+20RKeqYEGdn7GEdROEKI+GlHmgtMaT6XrusYpx5QbLc7UiiZxomchcXgrAWtCSrK5LMJpTPr1YJFUzBOPZcvH9APO9pui9FwdnoHaw1N07BeLxmngXHspLBSK7yHafSMkyCVSEj2oDXGKB5++IDlYsFms2O72zH2I0bJ5NmebQh+ZLFcSEFGZfbWS9nj2ozWcs37rifFiNaawjqmEC8oZ3VTUS8qttst282Oo8MDyrJGBFsyVVWwfyBAg6vXPsDke1brhdyfeyjuuUmIzsTg0drgSjeDnh0heGKEOAWmyROC7EW0VhibL1gRKUW00cQoDVxJJxVFaTBG46cJHwJmRrMorUk5E2ZgclYaHzInpzu0AuMqxmkipnjBcjBakWdz31ILHC35QMwJTUbN1VHvpaATZxB5SsLE8D6w3bU0i4ZmuWK73dJ2E103CODZ1oJRjWFe9SbKoqYsNLtdR86R6CemaZpXBUXXjZA1KTpyypSFnjOGiNFzmpxlVU0EvM+M08Bm07JeLymKhA+JlKRFE+cqq1ICm4spXCCElJIJPAY5Z7Sb023hamYCZWkonGYcWpRKpJlSdJ6RpJTYWy85ODgApQjeUzcVKQemqQcSKiUUEZUjOSZsVZKTrIJyrxPTOEEWrKpWGmuFITKMI6v1inrRcOv4mLHvSAr6aRC87T0U99wkNC7MCBZDUQndZhx6oQHlQMqJTEKbjPcTxiq0FuiTsZqi1BTVkpw1fTfRdR2r1XLmlE0sV5Z1c8QwjLRdR4iB3W6H6S1lJSY1YxiQjYVQZvTcfmAurtRNhdKKED3eS+k/RCl/u7LEOU0mUpSaplmy2+0Yx0FYBgh9yLoSrR1nZ9sLTGlKMrBQipgEH7ter5imxNnpnYs9qtLSYjBWYZ1iHAfGyeOnSFXVwsHME/v7S0IIhBjout0FKbeuCoqypPTCyDg+vsN6vWC73ZKzsCLGMcyAbYG2jeM0P/gUWhf0Q8+VBx4kHCk++IHrKGVmoHRgsXKAJ3jhXFaV5ZWPP8LmbEPfC7HZe4/WEdTEOI7y8BwD0zTS9wPNomJZF9SF9EbHceLwYI8YEk2z5M6dO3MGYom+p65qjLFszzaCKy5KYkyc7XZ4DyEJiF7YKveWttk9NwmDnwTzaGR7VJXyVI4xsqgrJj3gvfSFmqamaWoWiwVt29L3Az4EiiqTksc5xeHRHo8//gpOTm+z3Z6iMFRlKfsLJfw2HwMZ0GFiGEcyCVdYUkyMKuOcw/vpomc5jJ3w8ZI03LWBuiiwTvqIU+wZu8Byubzo21lrcVbgWM4aUr5Lt7LWobWfOXOGmDKTjwKzG8cLXuA5K6SqKlarlVSLs1T6lssaZ91cjDGUxZKmWbDZnJFGCEl6cNYZisKiraKyjq5rpU0wjVSVpNtFURFCFtSRXBmmUe6BNhpQFEVBUTg2Z2cYLVVlY1YsVxVKTzincVbNDw5N327JObBoCvohY0ym7wZu375NXc1E5HZiGEaCD1iTGVViuWwoS4tzBbvdjmnyogiQ4datOyyXzYyvFaJyXTfzXlnT9h39OKKlMQoZFs2Svu9ekrH94eKem4QgPL3CFTTNkpQCdVWw3W7Z7TbsrRuMqRnHiaZpUMrMT2gjLYMoOMUQAtZZxmnD1WtPUJSG1bogJ8Pu9IzR9xinsFFTmUJWnxxE7sEY6kWNUjAMPcPUE5ESeGULsgromWysc6Yo7ExDEr6gTpasNCEM7HbbeY8isg0hRKyzz+HoFUVB0zQXRabRB1xp2T9Yk1Li5s1jmrpgb39PKsIpo7QS6lROF+yIspwxl2QKWzD5DldoiqIiRsHFyjEw+BGtNK7QoASY7b3n0qXLVFWFnxJ9384KBYGUFNZWghhKAhF7/5NP4n0WY9sUqOoKZxXdMEixJUJdOXa77dwekD25s5Cyo3TS+qmqis1mQ4qJaAU8UBQKa4XCVRQFN2/e5IEHLvPwwy9jt205PT29UF9omloIyl64p8L2h74b6IZJthwp4ackxaRngdDvhbjnJmFVFgx9JymEH1HaoLWhcI6u2+FsoKwKXNZz5c/Tjz0pcUHgJUsFbLEsGQaN0rKfiwkBGGdB9yutqZQgNXyQ1XBR1iQyw9ixXC5ZLBvpV64bwgxRiylinaKoirnvJPskQb4UpKzwYWIc/cyrq9jtunnfqlBKM4w9IYQLKNw5LM5aS9hsUHPLpK4rylKz3l9Rlo7tbsc0jtIfLQus1Vit6IcWHzqpBNY1KhsmP5BzmFkdsy6N1XNlVvarzhmUKkhJpCy6rrto/1hrUVrdXcmdYximOf0O5BxwRYk1ZuarRDabY5RKLPYOOTxY03XtRRq/WAplyWjD5CNFaeY2lOLS0T6T91SDoF2WyyV+lNpA1/XEKA+JzeaM3bab74WlKARtE2NkNzsXn58rGcqiIuWMdlKwMtqQ4v0+4YtG37fsrZcUZTmDh4U6VKwX9EOHNooQJpTSpORnXGgnnEOtAc2u3RGzJ9OTCRSFE9GkEMjJMkwTYCT9swplDNpp8tzkDz5IQ79ypBSoXCPNdb1A6cyuTYQ0UdtqHtQzHC1Lb09baQMoJRjGlPKFDkoMAq07X62LosB7T9+Lns40TezaHcv1Ch8mpu3AclWT0kTXe5SKLJb1/LTP5BxmISZJa8fRz22YOAtRmbufHRPWymQT3p+kitZKC8QYjQ8jk880TUWzKNnt2lnMSs9pnOy3dFAoZamq8kL+Ypq3EgJwSLTbdp6EsDvb0BlNisJTJIPRSpA9WqOVwpYlpXPklNAIb1GuXcH+vnhAnkMW9/b2WC5XM1um5Nq1a6SUZwBDJiUhENe18CGPj0/YWy0pCkffDy849l6quOcm4d56Je2GDOMwst21KKUoi4qmbmgWBdvdGaIpI3ukKw8czRShzDAEjk+3aAPGKVJSjJMAk6UfJXhNlLC6XeEISdgRKFlNu6GFpBinftYjSUyTF/ByTnM/TBNTwnD+NL5L2s1e0kohqjKTduPFnq5uBH6nlJr3diPb7ZYYRQnMWivyETM1xxjLNI2AkpXPGoHMzRNimibKshINmBA52+yw2mKtk0b/5GmnTrh35Xw+CBfQaItSIs4k0D0hxk5TR1WXpDwRQqaqarSWlNc5h580qMh6vaJuKnbbLSEMYITBGcKELmvOTjfCii/MXKkGqwSYEIKHnBmHgRgjy+USozUxI2wSLavxOE4XCnPWimLbeXvK+8DBwSFN03Dr1rGAynPGGEtTlKQcsVazv79it9vS98I6uZfinpuETV1QWEPKmdXRIYVz7HY7UvSkmNmlwDRFWQkMs+RBkIqXyhfFB6MF1qW1Q2EElpZFf2YKW7mpyhBTJKYsKYsRTGjViCqXthplNKMfGfqOMQxoJYzvpq7wfmKYpI84BWmRKGMIU2AaZbKfs+3PMaXO6Rk5IwUOWZXyTO6VCR1TxFpDWbqLlfK8AANKqEQkmkXDarmaBZ8yu92WcZSm+6IxaGe4feuYYRgxRviBQ++Zxgha2hrj2M97WcGYGquIUWQMUYnFoiIEadRLWwByjrK3cwXBTwxdBOIsWajxfkSrkrpecHBwmWkS6Y+u25GVmqvAIktxngZLD1f2/uc6M2UxbxXmB1Pbdih6QLNcLlkuV5ycbHjve54gA3vrfeq6oKprckqcbU4pCsM09TMTRjR66qp6Scb2h4t7bhL2fUdROHlKG6gqR0wN4zAyThMBT1LnONDI6D2udFjnGKeRfpxkhbIWraxIMFjR1Aw+Yo2hCALsjimx63ZoM/e5VLjoK1Z1M6NdAienJ+QUMZOQbKUQkOfVLVyAqOumJBPxQSqsai7xngs4aQ3aKGL2oGV/mHLAFhqlBZu5t7cixMh2u0EpRdt6yqLEGsc065AKBy+gtaOuhM3edT1dN1CWJVVVYXVmsazZtqf4OLC3f5mcM9utpO7WiUbqZrudV4r1/GACN7dqUkosl6sLXdccZmlDK5KBRWFkVVFpfmAYJj8yji05CwqoaSpQieWiucCL+jBRFELxatsWVxQ0tbQYQjjnhjqmKXJ2tmEaPQeHh9y+dUw3K9httz273cg4iMJdXdes12uROkSQPO2uozzaw9kS7yeCj6xWzX3EzEeK0llyCkwx0nYbQlQYW9GNEz6Jcpa2Gj+DcP04UdQ1hXGcbk9oO4/C4QOMXprKxojcREhzSldovJfq6RQDu3aLUoaYRfqwKS0aS1Fa2ralsIbdbsA1TgiqaKZhIIaIKxxFUWJsQimPImJdJBrpX+Yk0hoJSSPrRc0wdqADhStZLpdobbh9+yZTGEBXLJt67qUFurYnlpGiqChdyTQEtLJSFfaamzdOiCngnBXmemEwViBvw9Sy3q9plg5jMiFk8sUetWBvf8XkhznVM4AhJcWwk7aNKxzOKeq6YRoH+hDQpmR/vc8wDPg4cO4npLUGlaltQVkeEbxn8i279hjvPVWlKIoSmzTaFDPZWRQSlNaElLl954RpBnJbV3Ljxoa+a6mqkrpaslpVaK1kW5EMXdtxLkoMzG2Tgs1mMwP7K4qioa6WDMMJRVGhlOH4+OwlGt0vHPfcJBSY1iBf44C2jv39ei7ABJEKdNUFmqQoam7dPuH0dMs4TqSsZhHfzHbXEmPg0tEhShl27cA4DDhrcUUh6aZOAoLeXxBipO1ahnGirCyr9VL2jU64dClF9vYOKMuSzWZz0ai3WapxxkpzOwNOuVmUVxNDxoeAUAMMWsllz1kxDCN937PdthijODvboJXooJyenjFNkcVSgMneT4CfpTAaUk5stzvZpxXSMpn8yDhJkUdWRoOzhdDAxkBdO8ZxwFgRVDoX+D2vjOYs6KOY84wwGlgta+Y+i/ROh4GTkxOmIAiforCQHT4IlcoVIiN56egyx8fHF/u6c7wvMCu2OVFKS9DuWkKIs/BTNaepPRnNy172IF3XslhIQaquGsqyFPbI5GnbVtQJZinDcRwvUtzTkw1Dfw40gHHYzvvreyfuuUk4TVJwKMtC6EJKM44D5ERdO+Lc4FbKYK1DKVltpikBws9LKQi2MgEYjo83M8s+inyDnuUIrWa1WlA3JWXl8FFRL/fIPs76oCPaZJpFSVHu03cdfb9jGLqZRnU+mYQEKw+FhuXKgXKcnW7ZboaL9sk0qhloLXIdg+pxVoi4Vbkg58Q4TJycblk2axaLhrJ0ApnTAesyDzx0iKiGR+LkObq0jzVmxqdapklA7EZbUk5sNj11XfHww5c5PT0jZzXD9WSw9n3PuZZoXdcYYzg4OEBbw63btxj6DlJkuVhw5coD7DYtTz75PobRC6HZWtZ7S4qixHshVk/TQG4UN2/epizrix7kMEyMk+A2jdEYM86N9jRXbh1V1QhYAzg8XIs8iUq07QalNJMfaZqKmLyIOSk975nzDGxIF836afKMQ2AcvBSz5hZWWd1XW3vREASJxhUOkzUhyWvNsmSaEjqDj6JeZrOdfQZmJn2GlOMFQNfZAmMsbTuw2+1Yr/coyxqlZuaDVlhrsVkR04TWGWU0rjh/ykpvryxL9vaWaJ3YbESyzxUWa0SunxwYxpGYwDmL1pIuSmU0XPx7moJMFpWxxtF1I9txALSosOVIWRaMQ8CageVyiVKJyjoRJnaKo0trnC14/weuU5RS2Qwxsbe3pqpKbt68JdozvQABunZgGgNdN9D3PZCpG2k9nLMezqu254rfR0dHJBLb3RlnJ6fUVUVRVPTdKNdxb0U5yoNOuISVtIwi+CQIo76PbLenwi6JkYTCWMfCFWQQBQL9rKKVMSglHNGhn6hqQQWFMNH3HdZJ68HNnhvDMKAQBbVz9sz5qg6Smvopkgsza9B6lsslzhl8uA/gftFomkbK23PvSKVMUThcUXLr1onsJbTCGAc5MYwDIURpUKPx0VPqc8VtafJLgaWiKC3OCR0n5iSrYxb0iTFimpJCZPIj3oeLSSpSG9N8w2VfulrNaB1v6YeWdtdTN5Y9rdnttrTdQE5aoGzmXAQq8+CDh3jvuX3njvTUrMaa+Zii5PBwT3phWtjzSktPbLM5xftp1mlROGfY2ztgt2slpe0G2rYXSX0n/btxmFBKVOn+za+9F2sVTVNhnb1oxl+6dElk9mcVtbZtefrpp7GFgODrumC1WqO1ZbPZEnxgvV6h9YgrSna7Hdvthl0rxTLnRHk85YR1hjTORjTaCB3NCvWqWVRzqpKxNjCOE9Y4ClfS7gQN4+weVV0TghCSFRGjRRo/xkRdFaxWC85lIc+xoVqfiy1nlAqzmLOjaRrqpuL09OSlHOLPi3tuEpZlRd93Ak4uLCEF6spRVTXbescYPDbLiuMnKYuPg4COrXUwZKq6EVk+L5O5KC1Hl9Yopdi1W9mzVCWnZ6cMM6reKQdZyuTt9jbnHgszAIcQhANnrSNlSUXHccTPaemlyweUpUjn2xhpFhUqGyn3K816tSaTOTzc5/TsjJOzE5QP1FWJNoaycITo2e425JxYL1bsdjvs7KIkONIJ76UJn7JmtUpzmX/g5s3beB9pW89yWXDlyiHDDKe7deuEs7OWxaIgRpFnXO+tsFaqiud78PNVZBxHRh+pm5Khkz26s6VgWJViGHrxtNDSFhrGjsPDowu1g3O2f1aJuqkJQfZgmYy1EaOFgGuNMFG8Dxerct8PdF0vPc+U54dIIEVYLNYYU7DdiNy90hqtxQ+jLEuappFrNuujpjhnVU4MfUQxXNo791Lcc5Nwt9vN6moFdV2Rh55h6NHWUjclRTbsuhatk6iMIax1IY96UrrrESGIGGZNGFlZtanxXtjwfT8QYkJbIaFaV2K0o6oWsmd0jmEY8dMgQrNaLLushpgm+l5cms4l2o0xgAzOVVMzDIH2dIdWmt4ZUg7E2z1nm+0MF6tIUfaUSouGbc6y2vbDjpQ9UFIWNcFnghficd9PWGe5c+dUGCRTnB8gjkVjWS4WFKUBLDlpLl06QnEqAO8wkayaJQpFvOocZHCXFB2Z4gizq1TbdkQvm+zlYok2mUwihJGyNECF1nlmYBjqeo+ydOz6HmMLQjhnmyRMiALRcxZr7AUpWWvDOEqaWJYldV2zt95nt9uy2XRYY1FqwBpHzkZQRt1I8FLo8d5zfHx8UZQRyJ2opTvnSET6YaRtg9Du76G45ybhYtHMN1dcd0JKbLctpycnLJcrtMoYlUXHROkZOZE4OT0hhiwoCyevG6uoKIhxulBpFinETEiJjMLM+8bTkw3GFmg7uzMV8roxibbthKemLSlp6qoSvqNzKBUZJxE3coWhKAtRGIuSahaFYQqRs80JKNjuBBgwDJ6cFXW1YJwmpmlAG4XSc+8tKpqm5uxsx9lmQ7NYURSeszMBhCdEFHkYJ6IXrVCVoa4XLJd7ojw+p2aLxYLtpkMpjTYlxhScOyqFuVrZNA0xJaZZECvmwGJZyZ7PWfqhFzRLrC5A1z6E2fdRkXNkGCaKomAYRk5PW5RRDMMWEO8NZjV1hUYrQ9t2OCepY0qZaepIMV2oAly79ozA0EJmu9mw3XSUZTXr0Zi5jTNduEUNwzBLniTGqefWzQ1KJR5++EGWyyXjOEgmZO67Mr1oKJOIBHbdBm1FAEhnRd/19LueyERZFSLznjV10TBZiEETcoCYUVYRQ8DZgmnwovdpC0L0TCERsuiPhpQpK0dOaha/hRwyQSecMsQMrqyoEgznaHyvoE8zvy6R8izXphUhwjhl2tZzctayWCxJSouKNhqttLQBAJQlz8LARV3Qth2FMww+AQmyYfCBXT/C6W2MdZAzrtYoa0jI5J5CQCE+gTFm+mkknZ1x+1RAD6I0Jw3tTJxV2CxZi3mOGInKylAUBXEYKKoKZyGHhEIJtC1P+DHSm566OCQMikTByZ0Nxib292ZKkU9sznbEoDBZkaO0ne6+l4IUiX6kKC0hekIMqFmzXmlNVmJWk5NkN0M/YY0AtS/OM8pE1Aa0Eh2fohCXK1cojClIRwGNQ2XN9mzL3t4eOclYupfinpuExiYeeugSbdvTde0M1I7UVcU4jWIQoiXts9agtGG9tyTlDev1ipQiTVOxXC25fv06XdfOEDBB2qc896qU0F2C98QgMhfeBxSilj0OkRhbUhQcYgyiKi1thHEucwvwOaVI4TQpesJ0rlcaZq89xXbbYo28fwhR5BGNVCKzEtepKw8ccXp6IiuOUewfXBYRqtpSNaVUDwEfxJU3JggRxBVVoVRAW2Goh1lFLec5zbbCVnDOwYwTPRdNvtBszSI5L0poC0onK7JWhjD/Ledc2JOTY0LMpKxou5b9gwXBB/LsP7Fc1ChliUn0SZXKFyY8OYc5BTfiEKxmS7UkKCBrzz0QNdYVs9GpfO65ut5isZh7fdKOMFb27ZJe6wuN14PDA8IY2Wy2ojqehfKWuU9letFwhUywuikF/GtEz9MYC8rhSndRLIkxkGMkZ7A2U1aKlAzGKpzTNE2FmH0KnjHnROEsCTHsFOvk856jTEpUpigNhbNstzu6fqSpK6pKiL1Ga7RThDCyv7+mKBxnmzOsU2idgCCyg3ol6dIUIRmKSpgF65UwRCY/iWhtSlRFhdMKpzWuEYXrsjDUpaWpRM5xu90K8qQQ74qYxclppgdSzIyIYRhxrsDg5n6qPBCCF2EplcSvorCWQL4rbjw7QB3s7VFVFcEHmvW+SHFsNiybmqNLR2ig7zpJ3Y3lMC1BpdnKOs1psKSDo59Yr+Ua5SxGOSI7EkhJbMNj9HSdgAuM5QJMXpTn1ttp9rLwNItKIHxOk5KQn5OPF5NUzQJTwv4/l12LaJOpGzdjW2XS3ktxj52OOCWdN3df9vKHmSbPUx98Sm6SKSALi7p0Innvw0TIkWbpUGpCAV3f0w8blDKUlRim9MOIVoZFVWKi+PuZuU+VUmBvf5+cYRhaVuuaqipYrxecnJzgXMH+/h5939N1PSEkhmFkf180UY1Js22Y9L5qV3G0XN9tHsdEXS+4efPm/H/P/npFORdzDg/3OT65w6KpZnFaw257RjGbzExeCZt/NgmVQkOmHwb0pC72d1VVCrJoGAk5zswHTVUVaK1EYj9MpDTSdR7ninmVzDBnC9ZaIVBvdly+dFmKYkqxWi3nvbih3F8KbC2M1HUtwPF+mAtUgsOtCsdyXc/ABNEZreuG3W5L102zVo2aV65AjAKdc4Wmqh1lUdHuRpTOHB7tkXNmb29vRsYMIvExS1mmJFKSQpSeyEh1dm9viXWaZlEiwPdRCjb5fnX0RUMqY83sypRnWs9itg3rUcaxXO6xXC64fuM6MQVsYdAqz0RddVE9E+aBwvtIUy8EO6gVigE9i8vGGKirmoODFQrNdjv7OxihzaxWC1KMdN12HmQAitVqIdZnWnF4uM9iWZFioO06bly/gY832N/f4/Bgn7NtO1uvZdKc0na7DeM4slg27LZn0qLwE9WymfeXgRgC2SiGbsBqi1EajSb6QEywqvfZxZ24I+WMrQri1BKmRF2Kp6EmUVjL/sE+p6fHHJ9sUUBOCj8GjLUYLYrhUk0ciGGgLCynJ8fCUzQaTYlRmRwEZZScxRYK8nnvVCwGyEKqFeSSZ5oEWlaWBu8t526/2lhyVjNCSrIQM4uGaq1mNynPaiVSFtKm6S5W7jzD6mKM6NJwLnsZY8QV5kKRvZzdm8+ZGeccznsp7rlJmJJIlZMVN565eSENURQ1RaHoB892sxNpg11H1dQw9+Ock5WjcGJPPY5eFMci9L2naz2JgCs0ZeFwWrNcLXDO0W7PhK9mMtOURJ7PGJwWB980a4gW1rC/PhLjz9LJ6uJHckoyIff3mSbN1avHbPKOZV0T/cTZ5kzUo5ta7NJS5uhgj/VqxTBKG6Z0hnEYQCkOji5xdibWbXp2TgoxkopZY9U6qrLhA+9/hpOTMw4O9jg6fICqmLh9c0NxYPEkUR7oFXVtKZxmf6/BOUMM0pNLKaJ1Zhw3pJR46KGHOD2NWFPip0i7E9W5vb0VpXPcunGDs9NTDg73qZclWhk2Zx5nLNMUaKeO5bKZWy1KGB1zm8O5khASfT9htKEsoXA11tQXrA6lmP9mzXq1IIQ8S5WIsrnY0M37+6go5wllraXve4ZhYJoie/t7OC1k7qIoLlLeZyNs7pW45ybhOIj0hBQD0ozkKPCTZ7vdMc3CSGUlfLXJe8ZuwjonlbShw/uBsqwwRhrMWmnGwaOUoapKiuK8YKGZppFh6EAltLbEmCEr8ZrPE3VTc3iwT9fvuHnzBkpBVVacnZ4R4qxe1lQYY2eOnePo0FBVC4ahZ5qkiHO5PKKqhDOYUyZMUt4XFbSJui4k7VsecvXadU5PNnRzFS8jGqrGaHbblrquOTu5w+nJbZyFV7/qYYZh4Oz0Fn3fc+loSbvbUdclZVUQwsTJ6S2ctZiLfZFlsXQXPMZpEpPSxdKh9AKiwWjHalnTtS05RoaYyEmhsYzDSNYTh4eXWC4XdN3IwtVAmrmJMOZzuzQ3g69L/NSRk8KVNUMvAswpJ9QIVVWiDfhpNtzRImcYgp8B2XJ9nTPztiVfIH1EKcBh7Wreish4ykmJcnlSDP0EWd03hPlIYbSbq3Ua8XpUFzqVUr20jKOnG3rZmCOrox4T0TOzCEasrXDOMsWJFKWn5mxBUViiD4j+puA4m4X4XgQvVTOtHOMkRZjN6QZSollUHO4fYGZoV4pxNiHpyTmxv7dHirDtdgxBHKCsNeR8LlB8rnUporRRa9SQRNo9gBbfUrrtFlJm6EdCiBweCmD7+PiYGMWp14dIjJNMsrKknMWaUvSUlSVHkacwVgSElcqzCLGmqmoyid2uoywqkffQUqwolZ2ZImvCmAg+cnS4x8Heihwz0zgRRk9dN1gLPrfstsKcN8awaBZ4P858Smkl6CheIOv1AdPo0cpSuJqc9FwgE+yoNrJt0ElMgXJOImM5AyTOiy92figbO2GNmQWpRspCKsh1vWC5EvSM1tC34wwW9xeIoPsr4UeIfpLUo2gKXOyYfE+YpCFcWEcMC7bDKd7s6KInpgJCjQH82GKLTEgKnxT4QFIKVzoO7HqWSw/kEKkX5Vw08MQQGcdI243kBP10itaCsywKRztMDCFw7vqTcqSqHIu9BePY0w0d2jrAMI1xNoaBsiyEoU6mKmt8iIQh0ThLVRdoJXbWdrFCGyEZ20Kxf2DxIROjY1HLSuWnhpTOlcOhdiWreokrCnEgCpEpRpqqlkpiraSNkjPDIAUMa8AZI+0DB6BRGaIPkBIpZvrdxPZ0ZFE3LBrBZfrkyTqy2m8wpRSagg+4XM525IG6MsTY4eeUMSuNMiI6nJPQprpWSNc5CV528gFmBQTnCiKJEDPOOqryrl3B5mzDMHqqsppNf0ZhjiTotxNt21HVBXt7C1STL2zg+m5ic9pRz/vdqhILgWG8rzHzotEPPXvVelYuqxj1yNnJGYvFinopzdptCJxuJvYOX8WlK49z7YPX6HbPcLgn0hNVEmY4IdA0NaUrKcuCs9MN09DhrBbVLRIWB0qhtUXryDCJoBJklIZm0YiWjRFspyukorhcVfgwok1DRsmAIpPSuR8DVFVBVTl2u40ow4VA8JGzs1MO9lcoxH4spkjK55xDxTiO1M2SwlXkmUUiELphxkvCpaNLKCXK00op/DSxXCxnr4uRbjijnLGjVVVccAfPoWrndJ5pHDn3TUwx0faB3bbng7uJw4M1e3srck7UTSmVy6qUVTkknC4FEJAVfhyJKdE0Da4oGKeRmyfPcHh0hC1KNmcb/CQivoVrRJTKjwIl1BpjRb4xpYjShowClUk5MYwTfS9sFOscISQ22x1hDJS2ZBhHlqsKbRT90M2W4gJxC1H0aIq5/5hSEkuAeyjurbNBqEjeT3T9SOEMq9WKsmgIITF6zzCe8dBjD/JY9SCPPPr5XL70OLdefZX3vOdnmaZ3odJAGPLsX6BQaSLFTNePoAPKiYS9thaTICP7v6EPeC9M+QdXR+x2W1YrgTqlnGYNTEFpxOgZRz0XD1aMQ5hNMxuMNVijaWpL04ga93YbadsN2207gwAypIGyrkVyPmW6rqMfJlISXKcPlqosQU2EMBGjJ5NZLER2o6oKtNH0Xct2t8Vahw8Tu3Yj/homCRB7JrpK6yDNGE4BvKMyaZrQs3rZOEychZbF0s1ivmoW3J2YfM00efb2lriiJEWxE+hnEHvOkk/nETAGbQ1lVTGOE9MYadsWaypijJzszjjQiPegEoJv8EEsA2YYYte1lM5RFJZHXv4g3ntRh0OIz1YXFPsLCuvYPxS/yrouZxVxEYDyk2wFtrsNVahmBFGkWdQv7SD/kLjnJqFxThD4KRAmKZKU9YIpTmAAu2S59yDGHdDsVUTds9xb8gmf9Cbe+ounWL0lhhtMQ3fxtLeVFSVmK9VON2NOQ4zifhQzRVWRlbjsrlYNIY64wtJ1Hc7ZWXtTelpdv6MfRBtTVOE8wSeczVSVxWhhjeecmfyE0oo4eZqmRuuI0YnV3gJrC/p+onAFVdkwjLOcRcwoNc7+E6KmllJm/2Atnn7RM4w9y+WSoixIGzGfCbNSOWTczGg4t3aDu3shYwyYLIY2RlA49WJBWTdEREqRYBgHQcpIT1JWuq7vZzEqAEXXj/RDL/biQFE49sRRFWMcfTfgfULMWcWxKqUJaw1T8GQRgyUEdWHJLddJz4Y8Iw8++ADWimocKNbrh1FK8KQxeoqqmOX/G46Pb3N0dAnvvfh26Ez0gZA8JosXY3sftvbiIf0lgIwfR86myEoXJG14xSs/gdXqlex6z83jq2ynJ4i2oR0tpblESq9h270Pre6QFFinZR9kFXdOtjzw0MuomwXddkvbtrRtj3WloGYMwtqfJpRqODo8pO12WGtYLJrZTTfMvavlBbUo+IS1JVW1vHADLpxiGjuKUlogSmlcUeBsRVMbwF+sSnruda3W69lxaCa2juL3p3QDiFLbhZa7yjMjXnp0IpokamnnvVDvB9FqsXZeve/afRdFQeTc6VekGzfbDqUM4yRSjMt6SeEUXSc6LsKEkHS5LBuUjsJ6sBpblhhg72B/bgMEkXDMgbKcHzwmohD2ftMssUVBTU03dIKgyXI9FouG9XrNndu3yTlhtaMqq/l6TThnsRYxvakc3idiiJSlIyWRpayqSiz0kjxoXGGFKjVP7PNe470S99wknPxIXRbESXZsWWnULEL08KOPc+XypzMGzd7Nd/LBGz/DhOX6MxOVeYx2rGgWD6DVLbQDpSMxTVKxmzzL1Yph1vgcx4ld21M4qJaNoHSCWDBbl7l8+ZIwBfw0w6wmXOFQ2lLXFTEmht5T1+VcMDGkKDfdaEtOkbISGpKfAuQoAPEkEhB5NsNU2hBSoCody+UCP8kqh0p03QZtAtqIj2AIHoHNCsxOPAvDheJ0CIFxHLHKXnhFwLkVuFicjeN4AbRGW1FSS45xkCLKdiM6M0ZVHB0csetaIVG7UhgXGcZz+lAUcxuMJqdEWVWUVcXJ6Sk+JZpqMa/CIlo8TRNDNwibY3IslutZ4FeYDzmnC4Z/SpllvWTZVOis6dqOMHri5ElzlTOEwP7BAbdv3yFn2G53F9/rusEVjqmTvmuIgcKUM5jjpRnbHy7uuUnoY2C/WmPKGm8H+smz2bbUewfowpKLjqI45PKV1/CeJz/IyckxH3j6afbXis9985s5OvpENieHvP2Xfobh9OZs9NnjnGW72TGFibbr8D6RsxbfhygpWcyZojp/kp/NwO8CpTLDOGGzFA+GoZ8rd5Fp2pKiSAGKpCFC5M2G7aZjHCfZo2ktNs6jJ6WR1apEYZnGwOQnur4npcBqvUCbNNthiyCx0HukmX2OLIlpZlvMBqVlKfzLpqlnsLQ09QVOJ0Tdc+JuURRMEXwc2W56FJa+22GsoW2F9JrTCcvFkhDDXBgqsXNtdprEIm0KE8aKaczoZ3fh3Y6zzRkhRvR87gItE5C4XE8jx3tRyR6GXrRiZ27jyckJKYmw12gi4xiYpiCslVmGUjIDTddNDEMgJwFpK6U4OzubLfUURTn7jERBTx0cHnJyfPpSDe8XjHtuEo6juM3WtkDPT6y2a1keXaZoLGfDk0zDjt1pTRpfzY0PvovXvObTqFeBN372SoDM/jOp6oK3/tS/oju7jc4Jv+s5Pj7hwYceYuh62t1AN/QotGR4SqFgFugVmNM0zpovkxhVnnPnptkUc29vTdtOtGOLUoGytDMzQ0xTMlEqq+tSNFBn/0TvE+MottMpp9nGa2K7O2W9XrPeW6CtPOlFFwZRhTMap+tZgXtkms5lCS1uXvWKsqBtdxd7QxBmf9u2ov3SDRRlweBhGCPBC71oNIOsplHEsobRc/P2LabRM3kPSqO1KMVtNqJw3ixk5dtsNrR9z41bN8nAME3klBi7Aa24gImdMyCstWx3LcZaJu9pmmbOOAQDaozwMpPPTKPYhAcfmSZxwHLaSLaBoe9GyqJhsznDGMP+/j45b1EKhnEkEURDNgtTwzhHvt8nfPEoC8s0DtgEJFG0Xiwq9o+WbHZ3cMWCDz75Dk6PPZ/wiW/ikcdew8sfX2OqiTu3PsjLHn4FrrzEGz75zbzjV66y659gvRzRNhLHnv7sJotFgXMiEhRiwhrBV8YsvofOgLNQVTXWKuIkkLFCl4JXtNIw1zrhXKIsxURTm2ImoTLLKWZW6/pCvzSmRFKJrDJZweilQLFYLhjGca4keozVM7wtC1fOzJo5swlmWRYwiXVZDJF2NxKmTFZiINO2O6yVSqIQbUuWiz1AsdsGhi5jq5KqCODmdkBOKEasFnUzZy0xSHHFWZGgSDmgVMCngNEaTwA/MkwTxojjlXAyxc4uJw9WVNL391egFF0rgr3r5T7aWmIIaKUwZYnKzNVli8HO1fBEPhMOZgiKFAQfWtUW73sRXa5rjIPlohFitDL0feBs2xNyoqwzwU8slg3btkMLAPieiXtuEq5WS1RWmJjp245xGlF1xZ1bz2CbmqZ6DQ9cejl7eydk9z4++dNey3J1CDrx9PWBGzdOsWpFDitOd1c4bXfs70cW60wa7pBCD9piTWa1EFqQMXn2n7cXSBTxgNCEMGGtpqwKykJkGMc4EFJinEQ9uqyWsxe8iBxp5SjKmmHc0fU9IRpGP15UJclgnCXh0Vaa1uIYJPqcLjmcKRmYUGgppMw20b3vCT6gjaGuV9y+fcx2u6UoDPuHKykexYQ1ipgi7a4j1WKsKaihSniGOUsrpVnMK5Hn1q1bHB0dzGaidha5EjObPE2ESbRDtdUkRBBLa8VitaSKMPTCzcxRkZNo01y+LG5Seva4UEpEiO/cPmGcRvnsuZ2ktSHFyNhPjOPEdtsRPKzXgnc1VjR/uj7QD56cPau9mpgD1hkeeOgK1hRcu36LFOV+ZuxcedW03cBioS7MYO+VuOcmYe8nKleSVaZZLihTIjtLGAa2t0/Ze3QfpY5YLCoW+z1D2FLnFTkadmcNv/TLH2D/sMGZCczLUGi6dqByBlMF4nDM1LZYZ9jfc8QsXDsfMjEoQoCqrEU6cfIXxiOgaLuOsirRTs9uRwZnS/Hvy4ndbsfNm6dUVcVy5Zmmjs12YLmsWa6WksqOA5nMMAwXvoTnFchzsPM0TbOY8UjTLNFas9ueXDSbtZ4wVtP3E3dun7LbjSyWTtxqtWbRrOa0OV3YkYUwYgys1+IRH2eyr0jqJ1arFcCFx8Q0TbP9mEgRFljGaSTGONvVKYxRs6FqQR4jmXNL8Vn3xpkLZ6W+F/Vz4fnNUv4xzb3TYVYyLy6YFCFErBFW/3otsvVt186EXYExrvf2ZiqUxtqKq1dvCgE7KhSi7oY21LV4Wt6+c4vttmO5vD8JXzTaYWIYPI110ndyDp0zkLh97SmK+t3sxQWXLz9MVQQyJ+zGayzKl/MLP33M294ZcaurvOUtv4MHXq7Jqebo0FGYy2y7nmnYAuIYawspigSbscEwDBqjHbu2ncv853Zqc5M7SQ9rfdBQFI6yrGZPisRyWdH1Ur00NpGSqHijKsrKzcTUcOHqlFJisVhcuON672edUUHM3Lp9TNuOPPpozdnZHYC5f6jFJDQLPMtYLbKEyxVKWdbrQ/q+4+TkNtYa1usVbbtjsz2jqhrKwpGysEqk0CHKANM0orVmHIVnKCrms9+jErzr5Eesm4tMRJSKM7tEVqKytLRBlNJyFqB3CAFpKhqsNRfKasZq9vb2uXHjmL4Xl11nFbYoWCwaUSVPJ6z3aspqVrbzXhT1spohf46UFMbaucAzSAFGaTKKmDI5hZnzKUp7RZGo6/uT8EVjmjzZR1SZCOPIwXqNUhPaaGyOPPG+n8Bdv83rX/3bSOlBVOHJ7pQYMtevTlx72vPY62t++md/gt/9uz6PT/qkByi1ozSv4wNPl1z7wJLh9lO4MjCGY8bkxYN+mmFjCkLM6KxnE01ZmVzpaKylbhpyDhes9RDSPBFKDg5LFstLKOVo256iFPCxpFFSJClnou7+ek3TNEzTdFG4KIriooWwXu+R84aTkxNCCDMgWSqNKGZfethb75GSsELG0bPb9ty5c0ea49qDyhcOvecyF0qBVpahm0AniiLT993c5lCEKaOtsNKNtoQYSF6cn84JxM44lJGVVClxWLJG9EXJ0u6gyHMbZcJ7SCmzaJYopVkuG8bRs7e3YLk853kq0QddLIgx4AqxFQ9hmkHYQgIOXjiJm80WpUWD9bz1oLXFFQqVLTFp0Iq27ShLwytf+Qq8lxX5Xop7bhLabPCz7ISzDlc4mqqQhnF7Sml39N07+Pmfu8Yb3vBmXvv6T+DmHcVP/MTP8dCVT6Wq71DYkd/5BZ/GYnnCwd6S2q24fcOzvvRGYmz4YP8TbMeboqJtK6pFQTjbUNRRtEKBYZxwRUFVlkzTObMjYwqxJhuGHufEFzDnyMnpbYwxPPjgESGIdEbVuNkvLwkj3wvh2M4k01u3bklatV5T1zVt29L3Pd576tWao/JIYHOzALI1siIorYhxZLfb0tR7LBZLTk/PCDFw7do16rrk4Ycf4vj4DuMwcXR0wKVLl+j7kXbXoRQ0zZL12qF0ZJp6YvIcHBzyvieuMQ5nIpZk4eGHH2bsOnyIrNf7bLY7NpsdRVmw2mtwVrzkN+MJIcjfMo1Ci6qLiu22FZhcKc65w+AvVv4Q4owbVbNkpKVZlJSFYaosi7zg8uUj9vcOuP7MM8SYZkuBVrwqJlEBT53QvMQXw2FNCTOIYfSett0xeYOdbfTOpRXvlbjnJuGibNhNgUXdYDS4omDvYJ+ubXGjGKxkeooy8ou/+AO8571v49M++/fxxjd+Lj/1Mz/D0WXFww8O6HibdX2Aih2n3cQYC0I6ILlX8MhrHaenT3Fy+/2M/Q3622fkUGJNxFmIcaKqLdZq+nEn3TGtySnOTHCRRHRO7L28n+aJ0mCtYhhH0BHnyrmpnlGKmQmuSM8yYZEUcLzokRVFQVVXhDhR1/WspyLpsDJQ1oVM6naiKA2LRTnrtnjKwjFO0h7ZbnpS1Bhb0veexWJJUzuMLml3Hbfv7EgJrjy4NwvjNsToWa8bjr0YsywWFdMY6duRKUb29hx1vWTXjmw2AlVbNMIlbHfDjCkVGlfOQs49b0vIKisK3Of7YO/FOkCpeY9dOUIYuHV7N+uHRrpuYLu5yjTvR40x7B+sBLHkhfI2hYEUBRljnfRyY4x03cjkxcMkZ7GbK4p7bsjfe5OQKbIoa6qiZJxaUNANPbaYe0PeYuNAYGR/DZv+Xfz4T/4Tji6/hle/9nW87W3/O5/42kd5/OE1NpYsmiXORGJ0/P3/3z8nxIL/zx/+PXz6yw554l1v5Z2/+lOc3Pg3eH8VayfqKrIqI8MgRYC9SnRmoo8XE8/aCoUwPgTPKEWOmDxdv5snamLXbtnuTgUq5ipQwmLQSrFYr56lWB0vdDSV1uTgCSoyTp2Qlocwi+pKX04chjW1aShKQ9uOIitPRhtpTUxTxE+iO3p854w4r1LL5ZrtpieGxMnpGc3SUBTSYtkFkWnMSRgHTd0QvCdFTd/1XL92E7RQkw4PjmgWogFaVwajKw4PD2Yh4RZrHcu6mkHvjnEUgu/BwR7j2Au4XsvDSes8m5NKH9aHgRAD4+jZbrpZT1SxWNRoo+aiUEmZDTEZNruIdRWHh6KyPvRiWTDNMiBlVc62AnHmd760Q/xD456bhI+87DJd35NJFK4i+pHoFWFunCulpM+FpnAKg+ep2+/g5PQ6b/mir+aRR7+IO8fX2GxvcLR3xO6kJZt9UqxZLA943wdu8M/+95/gUz/5k/jE134Cr/69r2d3+gRPP/mrHD9znd32GF2c0fnr9OMZhcpcemDN6cktSBGtLcZKg11bsTYb+3Fmbo9CGNYWlaWgUzf1rJkTGf1EyAmNxUdNUS7wfscw9NLA9wJGjvmuB72zBcEkYhLa0zSOOGcviM7WGoxSaCcmNXVVc3rS4r0Yki6XC4rCkIm07VZWl7ZFkalKEeT1kxRYQFEVmQcfPOLq1etM40izWND1Ig2h1GxOqhSF1RTOEv1E4TRNtSTFSN92MyhbUvKUpLosOz5RgxuGUaTxc5p9RsRXMYSIQvqKq9WCYZhEUqS0eB+p6zWTH0QicSYCa2uIYcTZUiQXUyIlP1evFWHwRC/aqspoXNMI+OAeintuEqbUslzYOaURupDohCp04bClYvARTUaFQOUK1JFjM+74p//4b/DyRz6dz/ktn8O73vtuarfhjW/8FHyEzZmkka9+5SeiYuZH/+WPU5jP4JM/9VVgDnj89V/AY69UlFXDZvcM737nL7LbPsNuexWjB3qfUSmIS3DZMQ47NJasRTu0qSumaSCmyMIeokNi8FtUUhitmZIgNjQFXT/xrnf9GutVySMPP0DXTnTDjmpRY5qSkDLLWnCVbdvSVBYfPOMQGQnEuBMsq15QGsXY7aiaTFMe4LRjb9nQ+4hSBU3juHx5j6oqePrpq/RtK4307FmvajESV4phGIDM8XCLXXHKMHSs9h4SGUKd0SpgtZJmurWo7Bn7M5mQRclqtWK72WG1YprlKHLu2N8/oGs9221PimleARFFg7rCaCicoSlLzsYNSmsKq9EkDg5r2mFgt50gKm7cOqFwDlcoUk6UhSLEDq0iOQX8KHoyVmuK0qCyZb85IsTEruvJSR7m3t9bS+E9Nwm997O8oVQUz4sVTdOgtMYWlqNLB/S7HSqL2+tBWVA1hrYfGTfP8MQ7n+DwqGbnAk889RTrg4hyD9KUiXe87d38pjf8Jl7/+ldRlorbN6/hxwGrFDl59vUBR0eP8lmf/TJS2oHuuHXjA9Srn+POrRtMU0dRdoTQolVgtW84OblBOw4kLCiLTwZtCkoycRrZnQ7EEKhcidKWHBNlralqS1laDo/2KXtHSFH87n2gzyPWFMQgfvbbXQucI2cshYVCLdF5gS1qYt4y+JExSKXUWDtjR1v0jP/b7fq5iS6q10Uh/cDHH38lT199mnMx45wFjB28SEg+9tgj7La7eaJKX1GsyUeKokShuXXzphRLZu6j7JUjXTugtePS0QEhBMqqmFNCjcqisxNURC+0aLpqTVVVs7yFp65KutYT/EDwI0pJzzXmRE6iSLdcNoRwV0PVOQ1ZOKVpBo6H4MU1WYlE5L0U99wkTEnIqNYKYuO8b5ZzJqZIsaiZfE9dFpRGVKRXK8Pgwe8rkt3w1BM/xTvfUfK5v+Mt/OAP/SpR/Tx/4A98FZ/yxn1Obz3F00/9AsvTFZ/3OW9ktRY5w9OTG0y9sMsX9QHbdosxiWbpWF96mM/6/C+ebb0y7e07XL/2QbSZ6Lozpvh+ut3IdjNCMETXoe0pygqXT+kRn3qUESnFw9WSWFwmh0jWkaFvKWtHqUpuHx8TYiJ7TQy7WS1tpHClFHGGiYyiNA1K9wz+DiEuCMHiGSjKDmJFMbcYBAc68OSTT5GzZtHsU1VrQhxomoamaTg7O5sNQvUsPtVRlTNrQynMjKvNWRyVrBNYWAoRTGSKPfv7+6Qskol1aS8UvolZ1MuZvUCUollU7B9eZnu6oe97rl69RZqJxiqLAroPE7YyaDJXLh1yojfcvn2CygprKnROKGNBwThEmtqJgFNK1NWCnCPRWVJIlJWjampOTjZ0XUvm/iR80RBW9PkT7a5x5XlaGmOgLJxooqhMWTp8v8Nax95Cke1ACIkQe/7NO36Vxx5/A8/cvsG/+uGf5LM/81P5Lb/lMd717ttYE/H+KmVxhDP7lNZxfOeYt7/9Zzm58wTWaS5fvoRWa9q+xxYOXddopVgeWV536RUoHckx8vJXPM7uNHDzess73/EBbt15huXqkMUiMMVnSP6YZDxl6Rj8BD6xXO8x9i3aaRbLWrQ1U5opg5qmXmKM5ni3IZO4dHSZlCJdO4qxiskY7Qlqh3ZHFDxE124Yxy2Fm7Cztk3KieBhb39fwNCz4rjWmr7v7xJ9rZ4RNFIsWS4aUd/ebrl+bRSxpSgGrEVRUDqLswIzu/zAZS4dHrHd7Ri7VhqHGbRa0A8Tm7MzqmrN/t4adCQnT7c9I4VAXVaobBl7T47Se+27DmUUhbJY53jooSso1AynUyiVsEbTDz3DGHC24uTklKqcvSicIhMJccLqAmsdRVWz2Wxlj1ndW9hRlfO9VSv6618nzO7Vaily7CFcKENfeeCK+PepRIpx5uglQogslwsC0I2eTb/DEylXr+TaM4aUXsZydcDo7/Ca1z3Op336p3G2ez9td8qrH38TtX2MvfWDDNNV+uH9vO9XfwGrHY88+hpu3+mo631Gb3jk8ddR1DXXb72bemFQuifnHmMjKssDIsXMtes77tzquHz0ENefvsX7nniSpmx46qkPUhSW28fv5fHX1Czrgm5zB01CK0VKmWdu3CH4zOH+Jeq65Oatp8lIj26xWHHn1hlDN9I4iykyqZwomweo7SdyegvG8f245ioqe1bLNSFOlGXJotnj2tVn2G5HUoKyEBHith3ousirX/MQTVNR1xUnJyes1wvxLuyHuVcp5jfjMMy90YxGz+JJkgILVE6EnrTWaF1ROMswtjhnWK/XtO2WrutpFktOz7bUVU1RFNy+fRvrnOi/KEVOiePNKdoaXv6yl5Nz5vT0lLJ0rNZL2m4nluPDSNPscXznZC7e1CKlT0SphPcJpSxXHnyIECI3b91hGD1/+a/dO0ah99xKuFgsREq+ri+whCJ9PqJQLJsl3SCwspTUTBcKhAjDNDL0sz+B6tD+Kg/sH/DBp99Hz6NMOXP16nVe+7prvOo1L6PvDjE60g03iHFLs8oY63n4kTVOOYLfUBc1i2rFsJs4vbbl8IGaMBjGmRibcqKqM84lQhSrr5c94njFK69wdrZl73DF6z/xMzi5E9nsem7f6FivH6GqPMcnt+k2GzSB1aIBxNBFm4JpGnGFoqoLFosKmFcAq9HGkJD+oB9KxlCyiVtUzFgXSN6w6zYoXTAMLVU1oXRBVtAsajabHVoLZWi36ykKKczUdUlRFCglfhNaQdPUpBSkh2kNzi4uuJlKGRQihZhzRBspQqm59ZKzpJSF04xjR99xsVcbup4U4kXmY4y4Kptz2zJrIUJRlbS7Vib9LNVx6eiIvutROVKVFdMolmha29kkSOFcwTj2OKdFgqPvaNteDGuWzUs4wp8f99wkFHiVnYV7ZCKenZ3hvefatWtcOjzEZENGM0yRhKabYDecEYJn2w48cOkQqxpyO7G36HnsTVeIZcOP/tR7uf3uBOmYdvuJfPKnvpGqKuj7kZx2nGyvsdm9l8Ke4SlIec3i8HFOT59iTDVtX/LMr17nxtnTXLlyxHKxAFVQEGddmUBId2DQeJaE05aqWtOsDE058lV/5DWYMnH12ob3v+eYw/3L/PIv3GC9EAEkpTRlUXK22eG0o+sCVWNBBbwPNItmJg1HOq/Q9mESV/A548o7NPUxJnToWHC49wCQGMctPgwcHikuX7lESopmUdPtNtRVxYMPFrjCsd1uuHPneF71IuMwolTi8HCftt1SXCi3VXRdx9npFoNmb7WiKh1d1zKOA9kayspiVKIsFZvNLaq6YLUUxbvgM9vYc+fkRExtsohcNU1DjBHvPeOs3BYDxKjZbnu8H2ZxYM3p6Yann77Byx95gNV6xVMfvMY4dBjjaKeB5bKhsBZFQcqw2Wx55sY1nC3p+5HR30fMvGhYazHWiiT9/F1MJNOsli0wrjEEhmlCW0sGqkUj7rAffJqqdFRmRb8bUUkmWT/eol5pxgA3nznh53/uZwnphDf95s+icEfcOT7mrH0S7DVcBTkNIurkC5JeUi4vY8zIY5ePsLef4vAosl5VxClRFJGi0nSjYuoDoYUHHr6M9Q7rHGcntyhqO7MkHA9eepCHLr2eovB84ic8xDPXPsh73/UepmHi5Y/sw9NXiT6TkqYwBW17Km5UCcZRk2lIaUmhHqEbLdFco6lvY8sJowqUrpmSIoQB5xqUDux2nSi7BZGQWK+XrNdrurZjvbei73cXRjx6BokPw0QI8a7Hg3N0XcfkJ8rSiuGtEv/Bc2fklER5TWnJUna7FqXSTAsLjKNgV6uqxkc/i3qli9bCGAOFtQzTKPSyIP3AaQoURQlZU5YVe3vLi3qBjAk4O9vSNAXGKLpemDJlVbFc1ey6nqIwDCO0u3tL6Ome2xP+vb/0cqqqmmkyGeeEl9a2u1naIFKVojXpY8A6R9lUFxP1+NYxD195gClqTtqEqQ4Ycs0Hrp+w2r/CerXm7b/yq5yeXOfyAwWf+qbH+bRPfz22HHEusqgVKgx4P9B1I9XiCK0PID+MVS9jsbhEdjuMauh3hmmcqBc9Pl0DcwcfTsl9waWDV3Lj6lWaxZpmsSDrSN1YumGLq/bYO3iIlFqm5CFU+NbxSz/70/ziz/4gOXcsVldYrxf0ux3eR45PE21f0nb7OHfAwaoCtSHqpykXO46ODui2JU++a+D2zZHtdsPRkeUNbzwihC19v6XbRY4OVtS1w1QiUpwzFLbAKMs0TIyDZ7lYcvvOKctVwcHhPtM0zu5Umr39ldCHYsQg4PZxGFgul3Nbw5OB09MTjM0zc0L8EBf1kqpuODvb0LU9VdVc6OIYK74V8qDtRZ+nWogZqhd2/clmBwo+/TM/mf2DFSfHd9huWobeM02BJ598mmZR8NBDh4Q4zCakkdVqSdMsadue27fuUFUNf/pbr7/UQ/0i7rmVEJXZtpsZoZEZxkxRSLN6sRQV6mkUGcFFs3yWGlhAGUNZF7R9xxgVm82AC5mTNlLZikUZUYy86tWPgHqAd7/717j6zG1ecXzMck/hXMC4Eh0jbd8TomdVQgg9k7/Npu2Z4ilT3lBVB0xtSWlLun5DiGcs9mAYRioWnJ12KBxGi4RjvSxn09DEcmXw/g5arSjVw4xec+eZ6yybB3DmCGsqpvFp0A1jzox5n+14hZMzQ9YlqegoD57CGY/3Cj8c8sH3ON733tuc3hlYr/d55eOXceVA159iXWJvf48HH6g5uX2Ttt9xsNgjRqk4rhZrwhQpqpo46+2Ii1HBdrsFMoeH+yJFaJRYe2tDDBEUXH7gyswbTGL8CZidIcSJ9d7ejBONxCwVyxAnEqIzap0VZy1nWO+tGMeCohTJDltUKOMYek9ZZDZdyzhO3LjxDDGNtK2o5llbUTclTSOeJdPksfP+sqxEfa2qhHYmdLF7q0Vxz62Ef+c/3sc62WAbIwWajMCgnJsxiCHIRSWLuK2SgTN50bFUWTPFhLEly9U+u2GiG0SC4crLXs2YlwzTSModlx9ccba5zlvf9mu87OGSlz96hYcu77FYWLRO1HVJ0yyJwTIOVgxrbEldX+bywStJPjNOt2n769SLzJ3bz7CyL6c0h5yenfDQww+wWFWcbu8wTFseePiKyGKUe5j4GHeuPsi1pzrCMPCLv/gvePDhLZvNBzB6QLkDnjpecbItuH6zI8aehx/WLOuJzTNPcvuZE4Zec7h/mUceu0K1GDDVsfQlh5phGFg0lhQzYy/N7/W+oWkMMYrXx3azwxrLerlitVjRdz1nZxtS8ly6fMBms6GqKmHHazVnI56yKFHAOE0smoYQI8fHdzDasFytcM6iFRxdOmScBm7dvElROkIQiXrQlG5J3w8wW6s5Z2fLuowrHGXd0HYDt2/doaxqEoqT0xOyUly5coTSMA0joAUNE+Ds9AwfAotFhdYZV2nW6xXTFGa3Y3Gj+jP/8e2XbpB/SNxzK6FxlpgiOWbGKTAFz2KxEF9zLf6D2orCc4yRsq5o25bJByGcFoYwRbQKaJPZbG7RjwPNconKgb57hgdf+UYG7/DRgc588OljtHacbTUnb7vO1f0TXv2aK2gVWC5LqqrjyuUrNAvDOLR4b1mvShSJq09/gHoZ6fpTXFlQ1Y5FVZGnBHqiHU/BFSgzYIvAtr1JWdRodUS/03zwiR1XP7Dj6tX3cv3mLT79c17Lu95zk9NTw9ltuH6muHl6RtfusGSeeKtiOutpmsyVBx7gk96wx95hxpUbxrGbPf8s1iVsFIfj6BPeK4bBs8wOY4tZiTvz6KOvQCES/doaMufuRsWFMpuQbEW1zTlHVTUYY+n7jiQkPjTgilLaFF5WoqppyEoxTgEfI4UucJUDn9BKxKmGyZOyWIgbJ9KH0zRhnJ01UxVF6VAqs7e3Bi1M/gcffJA7d26jq4z3CZ+ELLy3vyb4SEbYMApD34vMpVKKpmlo2+4lHOHPj3tuEk6BC8Z3iJ6iSMQscn/94C/Y7nVdYwqpoA4+su362fX2CEWgoBB1NJ1p6gLSiLOWHI+5+cxbiUlT1ks225G9xZpFeUBK4oi7O7nJO992HWPhwQcPKMoeqxa87OUrLl+5Qg4P0+00t7sN1lrqCowrUWqicHD7+Gn8ZNjbX5DUCbdOdnTDlqop2C/WVLrk9Djyvref8M5f2LJrn+HW7kd49RtWfODq+/j5X7rGafs4d043XD99G2UZeNVjJa94YMlDteZouWKyNVdvfpDF+gQfJ2IPMWhp0SRFVhM5K7Y7z9BltmeZccyEPHD7zhZjIn07sVoe8vKXP8zP/+wvoFRmtWjIKgudKkgh7Lz/J/Sgnt024pzm0ccuk7OSoo+zLJcrtDbcvHXzgvQ8jAOLZUNV1YzjNIPAM9PUMVpF34m/hjGWzUZkF2PwLBYrmmZBP0iBTBtFWRZcunSJEGAcEkMfKMuClDoE5ZAYhonFYk1OsGvFLMYYTQyJqi7Zbnfs7e291MP8OXHPTcKun5imSfQ0daZQlmEU0mbOs1aJUtgCwhjJyuOjwlppIDeLFW3bic2ztYyzPIXWkNDoHGnPbqBNSZgGwqBoij2SKdi1EzpmCLAs98gkbl3fUjWWoX8/y+Uei8WC/fU+JkeqquH69WPGaUCpyKJusNqSp4HCabSJ9MMZtjRc3jtk8iNT8JxtNlx73we4c/MVnBxPDOG9PPDoKQ89VrDb1rzqVZ/KT/zMLUK6wes+4YSXPbxkqTv2XWZdaKzt0dU+e+sG43qUFlnClAzBG1QWXVHjNK4sCS4yTDtSVpxuBowNrJaWlOGJ972f3a5l142kGNnf3yMEzzAOrFciFnzz5v+/vf9qlizJsjSxT9lhRi5zEpG8uwqNnukRYID5Efi/wAPwBIhM94jgCQMMqyZVlZUkiLtfZuQwpXjYahbVQ6LnqfOKjKtISmVlRHjca3b06Na91/rWIyWLSbZkVe/oXnDyqsjJZcTHt9vtZOOUwhpWhk3Pw/t3+Pj5SgCYpoUQItZIVqCxMvMNUcJfQvDYpmV/G+i6gWHYVHZpxvvE8/MRpS2vL6/c3g50XQPFczy+Mo6Sv6GVlbuf0TUj0eCsqz7H9S/9mP97681twlwMBSvxxzGzrJlhaMlFEWNA6QZQhKiY5ol2TXTDwO5m4MvjI5++PNP3HdMahMWiHKVYyIrpGICVvrXYtnA6P+JzYX8TiUUxNI67rUOlO/y64kNkGReM6vl33z/RNC3//D/9a86n/4bTcUVlg1KZ03Tm179+z3zOvL68kLOAbEPONN2A0oUQFIoNyxT58fsX/p//9/83Q3PPuJ749hcDv/r1ni9fnvn9H/+EURv+xf/uQMkrlIKbR262N3y4u2XxX/jjy59RqsGYFqu3DM174jSBD5jiOZ5OxKLZ3Q7c3e/I+YWiZ25uH5gWWP2Ete2V1fLl8ZndbsuXL4/8+ONntIbf/vqbitnYo5Th9fVA13VQ7Ui9cpzOI9YY7h/uKbnw9PzEMBT2+1vOpxNeJZZ1oet6Pn74FpTmxx8+8Ztf/4I//uHPHI9nQHF/fwfI9+RXT9tt8D7x+OUFa42kacXAeVpBWZ6ezngv+Pt18Xz4eCdxbEUgU13vrsL3oorkVTQNWhv2+45pGv+iz/j/eL25TTjs9pzPZzm9jKJpWyGDGUv0oTJdHMa2DDVp1rUNMULbbDgeX1HKEEJmGmfabkDVABi/Rm73O0wqrEeJeG47Q2MiJXga4zBY+r7l+HIEZXn/cE/W8P6+8Pvf/xlrNQ/vd/TdlqfnE7vdDS/Pn/nxhx/41S9/wzcff0PTduTiOZ7EeqN0IZWE94WnLzP/5f/rb9hub/jlbxO7TcHqwr/5mx/Zbt/RuDN9f0LxSgkN+D2Na7A6EdPMl0PkcOrZ2h1D26Aai7OKzcYwj2fm0UNyaKNwtmGaTkzLiX4w9BuNMg39xrAZWkpukZhVaFrHZiMkAK0lg6Jptrx//56UxBGx39/grBNny7KQQ2LYbWk6ERvYxuFrZ7XfDqQskjm05uHDR9YlMP3+T6jXM8dx5jx5bm/3dMOW1S9kFK7r6YaBdZ15PZxEGxwSpSiGzYb7+w8o9YUffviMtdLoOZ9GUJFhaNntZBSRHZLKW8AYR9f1KCUE8HX5mk/4s8u0hX0rZZCQe7Ig6nNENYr9ds8wbEUkjKZpO1YvQZLjNBM8lKjZ9bdkr9BFMhv6pmHbd5QEc0CwB0MjXb4Mu27H+TwRVORlnVk99H1LWJJs+tCg557f/7eP/KGdMO5Fyis1sfpAzAurOmJuXnn9dGIcT3RWs+82OJ3Y7Cx/+P0j/93/78w//au/4uNvIIUVnTd8/uGZ/a6nb4vcZdeJqDvsxhJcYCkrQzuQjeHdw0e220hYFmIMjD6RR8vxMHMaC1+eJowx3N0LBnI+Ql5bdBJQ7/1Ni7MNrhE1yjIHyWpMK0PvuL3bopV0ndcYGNeJYgo39xtyCaxpRTWRoWnossNYy7ouKA37my3WWKZ5kqZKFgDUPM/87d/+LX4V5c/nz1/QWsJy0FLRTPMo0rmhZZzPaKVZvOfx+UzbShxAjEIbuL1taLt3nE8j290DKQnOcdh0NRxGeKnrmklZo5RmngLTNDIMHSm/qYHA29uEm+0Way2Hw6EmAYU6B8zsdvuaJXBgWVaMcSg1obUlxExKoDGcjudrtNYliSjFjPczGkHlXYIonWtqAEmW8ErX8Pr6A9O8ssyxpggpgo9Y5M85zytaR2bv0UZmWVmD95kffvie06QI60CjwdxBzk+clshxHvmn//wdbV9qlJni+HRmmQopBNac+fhwy48/ToRYA0rLWdzwy8o4B+7uP9D1HeN4lDTaJTGOK4+PByiim1y8Rxvoh555WjHaYo2BknEGSg588+0vmZeF+TwTfGToe0JY2AwNh6OAee0iVqFClm5jdcnryiJNPhCjSMDOh5Gu7XDbhrbpmedZkpb8wrKuaH3m/u6+iipGjGlY1nD1JoYQ0UYLsUAruq7F+sD5/EguFoWQ1sbxhLUG5zTaFN69uyeEhbZzLMuM94Fh2HA+z1UBlCuWUf7vugasM3/Zh/x/tN7cJvzxh0farsHZpuY/gF9FMtU0A68vZz5/epHhcKlqC21xTct4mmgby+3NDSGIJMq5hl//+tes68Lj41PF5cXa+DG0bc+XL194fT3Sdz3DdodzHS4KTkKSfqSh4FzDbrdnm7REfxmAzLrMJBVplGXX7WgHy9Oz5fh84vn1O4ZhZtNvSWqHdivjsnL+QTiihIxRDZmIsYrn10fO05lCy7JE1qVQsGStSAX+9b/+PatP/O63v6QZNH/8w/e4xnJzdydpRM6w0R2/+6vfcjgcOZ4P0thQHYXEGgJ93/D8fEBrhXUt799/S+saHh8/s/oZv8pooq1D82VZyTlXcrciZqAkrNViwQqRFDO0lvNprVQ06Xh671HFURJo7Whbw8vLC1pH2mYgF0HtD4PGWsdm2+NqAtXz8wvD0GGt+BxfD6+V9yqojc1mxzSv5CSyPFSm6zc42/F6mIgpS9xclhSpYejYbre8f//wF3zC/6frzW3Cw2miHM8SgNk0pKx5Pc70vWIf4OV1QpkGZRrivOLXzM2+o6SCVZrGWh4e7mmalj/+8Y/Vpe8YxwPLIqUXiD8xhsjpOEKRYe/5LMj6ftjw7t03zPPCDz98h/ep8kKl4dLYhriuNM6iTcuX5xNDvyEuiem0om/OvP/Flq5X/OHvE/OypeRbToeFogLn1yNpygxdy8cP93StuDK0zhwPB5TWhACfv7xIJl/bstvfiFvAOnojEdVKt6SsSWtiu+14/6HHGMV+v8W1hi9PX0glYxtLqztxXcSIWr3wbNqWTe/4/PmF0+nAMo84pxiGjqFvOZ0OtO0g8W4hsSyeeZ4lY74xdH3DsnhKkbIzpUxOwv5c1xW/LpXkJqm/CkM/9LRtV2lzGW0sxlgUEo9ujUOhmMZTnUnKqKnv90zTDMVwPIwUMl274TwGYvJM00jjDL/45cD5dGKaAssilALnhJ06bLYUFKEycN7KenObsOt3LPPC62Fi6AtN26J0w+EwUsoFc56kY9rAOM50TUvwKxqF1qK+uLu75fPnzyil+fOfv+d4OFYgbmKz2UAptG0neAZlxRWvNVq35KyZ50iMBefEKGqN0KSPxyMqGYyzbIcNMUlIyevziX/7r/+e4/mGd791vPvlwu6m45/+07/ib//1C0+fzyzzjM4taW256TUqw6cfHtkMFk3g+fmJ273QvU9nQRKiHbkYfCi8vp55//59Zc9MnE4j/bBhXT3TvPDNN+9Z1hFtNcfTKHdZo5kXX7MKFfPiCVGCY/waKWnhy5cn5mlmM7SkWBj6DbvdHcfDiWn0bDYbjImczy8cj2fu729IKfP8fABgu9lXqZ086G3bE8MTfs2UYjDakWLk06dH3r9/4OH+A4fDgXmRSmY8zzhnOJ7OctWnEGPgF7/8hhDkvte2A9MUyEnhXE/wgRBh9YF5mdFGswb4459+xJoG7yFlg7EWZTT77R7rOtZ15XA4/wWf8P/penObsCRDKZocNUo5gi8M/Y6u3UhsNCLdj1kQhMOm5+7uhmk8k/zCZiNMy0+fPuG9GFvNtsVoR86lOvQvbgFDDJll9igleQZ9v2dZFg7LqYaDgnMNoKtky0N2uCIclxA1xjSYbMjZ8vq8cjyN+DHxi99suNnc8ttf7fmv/tW/wq9Hbjb3mGIpwTAvCylNWLWhbbSQq+2AUtB2nlYZYoSYM/OyknNhnCeJDdeC4shFyrxliTw+PqONCLPXNWK0I8aC0oZ5Fuiu1nLnysi/zymL94nNsAOkbEsZnr68sM4Jvx4kR9EvhBBoGiNdxkYedEksTpQMznWVSh7ZbHpSzKQU2e/3PD4+cjqdMNpxf3fPNHq0seQE5/PC3d2eEES8LVkeErKTE+SkpIGkGpxrmacF7yH7yLysjNPKL37xnphWKIoQiiRjKYdtG4zWdN2GGMH7UjElb2e9uU04Lh7vE+/ff0RrzcvLC8syc3NziykKYxV3d3sa6xiPB7rG0fcNJTnaDw+8//ieP373J15eXri9faBtO/7dv/t7jHHc7O/45S9/wZ///EceD4/E6Nlut3ifaNxAzppllk2UijBRCvEfNW4E867omZeJcJ5Yo6Ld7Oh1R9NpjE2EeeJP/8OJPLf81T97x7cfbvir3/yWP/z935GXE1op2s0DJimM7bBGHuamGfjxhxd+/ZtfsdkGlDL8+PmFXDQxJobdhlwS43SsYaCO1XtihuAz45dnvvn2ntuHd/zxD9/x+PhI3+2umYnWWW5udlhnyVkSc41ta56Dw7meTS8SsZfXkfEoUOFp9Nzebdlut7hG0zSaphlQNBxfFw4vX9judmwGS7Gw3/eM40lYojUc9GZ/KxKyKfKUj/gVvvnFO7RWnM9n7u/v+PHTDzRNW/mqDc71NK7n8emJnKq38LDy8nLEGEOuOYrWNdzcPvBv/+2/E7hwP1DQHI4jiz/QtA3Ny5lh0xNj4HD8Klv72aWwhHVhGlfBxSdoXEffDfR9h9KZm5u9zHpUoeta/Cq4vr5vWf1aQ1YMuWQen55Y1pWu1RyOB0IMHA4HrGvIWZESIvMqovzIRQjZkv4Dxjq6rmO3G4jRM05H2rbDtYJaVzkzT8ICHXZ7tPVMLyPj6RXwOJf57W/+Ob/68Cv+4X/4jnEZ2e8tTQud6SklsMwz07yQkyJnzevhTDGBptFsNluRgj0+Unym6Sxd37Hf7wk+sy5R4FQ3e1BbjDb4NaN1Q9du0FoSkqZpRSlPzoquc6zxhNGKnCSOPMSMUomm25GSgHpd06GjBiTPQmsIPrCugc1gUHQo1QAikZsmSdzVRkJJvRcd6N3dPQUYhg0hJqZx5uH+A99+8wv+/P13jOPMfr+nbcTKVIpCYSlZk4vEkjsnEOPLX+u6DS/HA9oY/pN//r8Xo/KU2e4cKYMxDblMxKQwCVTrKkS5JZf0l3zE/yfr7W3CZDg8jyxTYBi62opOWB359hcfMNryb//tv5NM+Maxu93Sti1t65iXmc/f/0DT97iu4+X1xLys+JwxKtNvOsY5EEsLGWzT0gz3nJ4epZHgPbkU2r7DmRajFYpC0/aUrDmfFyiGOa4SVJJB03E6zrx7t8eqzPHwhRA99/fviGHlv////B3zQfG73/01m5uVze2ODx/v+e5Pv+fu7p67uweeDiemNUIp/Pa3fwVASkLB/s//8/+Md+/e8S//5X/J0/MjTive3z3gXItXgV982/D6esRow7IUjs8L59fEmiLWDjIS6Aooyb/47rsvdL1jf9PR9pab2/ekbFiXhcdncbs3ToPOfPjmRj7broEC5/HEPBeOx5HT8UhYT+SS2Gxv2O22PD4+0SuHtTtQnpJDlYx1rP4MKoMSOZu2mn/z7/6Ox8dnpmlG14F6Ac7nldUrmlk6sA8P33A4ngiRayZHCLKRfvdPfsG/+E//E15fX+n7lt3ujqfnA+8ebmj6gBuEWZsKaNtwGMV18ZbWm9uErtH0g6u4Q2my9P3A4Xjk4zcPWC3BIt5HtsMWpR3Pryfu7+44Hp4E3zDs5QQIr8SQq2Km4FNmTYkQU41bVkzTQkwZrQ3DZkNMSaxUjaOkRExiGJUTJmGclqyDIjRujYjLX1+f6YdbSpKmR0qJZV0pRTSvxio+fvvAeZwZp5E1JRIKnxIJ6smqmdZZYp0pnMeRu7sHdrs9XT/w8PCO0+nI8fXMuDzRdZIC7GOEkohJEXIiV9q3dVbKtlwk1cnoqvM0/PJX72VAvi48Pz3z8cNHzqcjispqMYZ3796z3e5QCj59+lxDQBUUGQl1bcs8TyitOR4lM965nnkSdH/XDwybXlKkuoaXlyeW2fPwcE/KwgPdbrdSPhZNCOmnU3teRWQx9Hx4/5HxPFWolJzMKUe++eYdm2HLH//0J15eXmnblnleaJxjnEZCDHRDyzjJqCrU7/4y23wr681tws3W8ctfvYeiefdOOoHaaJ6ePvP50ytQeH45AJqhL3z5cmQcRz79eBTgkCo03SrjjSTdTm0KPhTycWEcJ4Z+h23lS/Gn+jbfbOj7jvP5zLyuxJxZloWudiLHcUQBKRaSVkzzirWJxlnevRMHxvF4oN8outZKoCWR7X7D/naHaxuG7YbnlwMxRrabG2KUkMymaclZwMeHw0mE6mdx9v9f/2//D379q1/x8nLi4eGe83nhy+OBVDTjGLG2+vCMxvsV6zRRJRot+tt5ma6JUqUUNlu5F737cMvf/M330mxKkafnF7RpiMlw09+yTgf+4Q8/8ItfCBLxy5dXTufxSlFDGZrOcnv/gf1+z/fff88aMs/PJ7777sDQ96ScCHFmjSO73Yama3h5PfHgNNYZun5gWT0+LpwOB/p+YF0XjscTxhiGYYN1A3/40/fiL7WOmDwpRZQqGOso2fL73/+Zl5dXVh9JObPZDsTkCXFlPXqcq6leQTJClPqqmPnZNWxaNpsOaztubx54fn7hy/efJWpZw+vxQMySbND1O1JKzPNJUmWVwdjCOHmWNREjzLMnKw0KUilsdzusrpkWq2eeJnb7DatfyTkxzzPneQY0fddJrnqQ/IVhI+bVtboGuq4jpwIqY12Ddo5+0LUMkwQi66QM7IdeGC3zUvEdcnfabHesqyfUmK8UEymKHen+7o51Wfjuu094P2N0I6og7Wr8msa6FmONsF0odH3D6gOuCFv08fFJ7tLqJ26rcw0//PCDjFl2O6ZJLEvCIl358ccvdE7xcLvH+8w8zxwOkzgfrBhv28YwTmeUymx3W4yR6PG269ltN7Rtz7y+XLMZQ/C0XcP9wy3ONcIAxeF9qKoWBLhVZCxkjGa3E1ZqSgXnVDX+NpXspskUljXwd3/3PcYpXCOexI/ffuRwPDAuM1071M80V5iWKG/e0npzm/Dp6ZGSlVhSln/DMOxkwK5gXidcu8HHmc1mizIt5MR59FDEha9K5uX5TKFUw6lDAcYour7l3cM7fvjhM8/PT9zd3WDdntP5IL7AvmMN4tRY15X7+y0pBEIqNM7S9ltOn7/w9PrCGhbev7/j3buPTGPk+fkTv/7NR4z1fPn0yv3dHZttx/F84sfPT9zeP/Hhwy/5h3/4xLp6xnEGCq8vZ8ZxYrvdknMiBE8ICUPH8+GMUoUQR8mHt6P89RixtmddE/3gmMaVaT5hrQa1cH9/R9/t+fLlC33f8utf/6pakj4jMzjPaVzR1vDp82digpQyjTKknPFzYB4j6+L57odHttsNa4Dd7v6aW+GTIC9ubm85jSNZaYpELGGblvv3H3h68qxe/jdlHf1mSzfs+PTjF2LIrN6zrqGe0tIgun94j9aa4/HIy+uRaZq5udkxbPfk7NntNoQoRLgffvhETJ/Z7OSl1m86Qoz86c9/Zpo9XT9gTYuu1LhpmiTX5I2tN7cJKbqGWS74NeNsZnO7Z5onVDFsd3csPqNtS0JkV9Z18s9qhXGOrrU0jSOJVorTeERpRdd3hCQDdxDeyPPz8zUXUO6hnmHYUqgDb63IMWG05nA4sXqJ+tp3Db/61S9p257T6TPb3UAh1QZBz8eP3zCvE8fjSD/APEdeXl8kGKUUmU+ui0Ro5wRqFGT9Il47lRMhRHa7DakUCoqYEiEKzSwjib2n88zLyzNaF+7u9zRti2vaOtpZeP/+PW3b8qc//bGqWuQuRjTksFLqIxBTEqgvmZQTKiXGcUJrTdu2dWOc6Pqe/f6GlD1KGZZFXhrWSJBqDAE6+PzpR8Z5JMYVY4SUvtncYLTly+cX5mUEXA1i7WRuq0UGN46TUNq0ou8F4hVD4PXwwjieuLu/IyURctgCw0a4MdM0oozBuoa7fsO6eEDVENYNp9OZeZ758OH9X+rp/p9db24TxuAgQ9+1/PN/9k/48uULx8OZmAJd3zNNnnlJ5LLw+vpHtFKEtDIMA8ZKzt7NzQNt3/L49IjW4FpHTJGiCtMy020Gmqbl8+MXXl4P3N/f0A8D2mraoefp6ZXzecQay2boMVpTSrje33a7W/Y3HT9++oGcC22z4f3Hb3h5+SwtdtfxN//m7zBGkZLc3aY5sRlumGaBUpUcWZbIsi5stx1N0/HNN9/whz/8Xjqfs5S4gqeXslMbxc3tjWACUcSYeH15pXEdXS+puMLgKRxeD2itubnZ8/T0iLWWYeglQbfvcJuO58NBJHgq42yLVlByYti26Nzg57U6F8SSZCuo9+X1lVwSj09fuL29QRuFtZa264lp4YdP35NSxrkWpaG3LZ8+vzKOgbbrCFExDDfEVDiPMz5MrOvKNM3c3t6Qc0Ybx8dv31NKElXNspIKZCwvhzPee0JY2d/uxFgcFlKBbTfgY+b5+YUQI5oF7yPPz880TUPf99zcfnXW/+xa5irGxfL4+Mq6RpbFA4VjOOLRFGWIKWOMYV1mhqGjG1rmacJZw3maeDm+4uNC0wpPZVknchHAkHMtd3d3DEPHvAi9uQBd34MSAbI2tl7oi6QBtS1t19F3Pdo1lALL4quCBE7HQ83ik8G4UnLfKUh++/FwRtFRiuTGOyui5ZQE8//Xf/3XKKXkAVSmkuUyw9Bd7zHOOc7jCaMNTdtRylqF1oOU3MqhlcL7gHOuNnpkMw7DcE26MsbQdQPl9cS6Boy2NZOihrYYmQkOwwYfRLaWc77+WUopYhK0RNv2NbNQo3WpdIOOEDJ+zby7u2N/s+X5+QuH44idVrq2F8iz0sAso6HKNpW7tK2pxpGcA8sijghQrKuAotZ15eH9Lbe3e3KGZbXksjJOE0/PB9GMWoc24qR3ztL3PfM88sMPbwd3CG9xE/qZpusp2fByfCHhabYGRcM4ilZQGiGK3c2Ou3c77m5u8T5wPJ9JPpFeXwgh0rY9netolaXbDLjGoLTm89Mryw+fSCkSk+LldcaaQAgaYzQfPzwQwso8j2gDJWuc1bRdT4iF5fgk/rV+Vxkn4iqX3PSeGGX47VqDNolM5M9//oGwbvkv/rP/C5+fn/nx+c/4cKLdJm7fDbwe/57TceKX3/yK42FkWc+UUqCI5nO7EdmeRgDJORfu7+9qlPaKNRZTv81pWgQjaCxKO0IF+GqdWdZAzAmzOHQRVU7XOpZFxNbzvBDmmZIK97d7tDI0G1fp1iP39/fc3t7y/Q/fQ4n4tLCGBWs02lia3pKzwiX4+IsbjscDP3yS3MGu7+l6CZrJirox2tqtbNhu5UXRNA3GWj59PrCsvgYDmeq4UBjXsula+m3LGkdKMaAUIYsofNj2bLXh5u6WeR7F5ZESU1hRxnEav44ofnbd3N5wOq6ElClEXGf4+O0Hhv6W/+9//TeEkGo0NIQYmOYR5xqU0oSYIEdc7QYGn4htZrPZCu8ySBjnT/l5oqfMqZDIjOcJ6wx3t1tWP5FKlLmZNRRV5L4WC9YqrJO7R4yZZV1Z69u8cQ1Kt/LFF49rC861aF04HJ5IXv76MNwzqIEQCsMAJb+I5y0V+mbAuiT+PbK07r0Al7q+BeTePM9i7DVGk3OEqqstBUGBKMEaxlhQ1Wle+YJM05m+a1kXQRg65zgej2y2Pbe3O/7w++9xraPpGtbgcRRsYxnnkf3tHqUg5UzRRRKC+1aaKyqSk6JkhY8LVKpAYyy7mxv6fuDz5y+cx5GcBOicsgTiKCX0daUVuo4oznPAoGkahw+FogohR7qm4cvTF4yO9P0eq1umUcJqttuB/X5PKonTOV45qjYJ5S2lryOKn13TtDKOSzXeStv6xx++0DQTznYy/M6KUmo2eY786U/fYbRlGLZolUl+wVjD7e09w7Dhhx++Z/UzfddgnJRN/eDYbDteXw9VlxjFbZAdn76MxOj5zW9+xf/5v/g/8a//5t/yt3/79/TdDq0LbddUt4ZmXmeUkpmm9wKpCnGh6HgNSNEarPN0/ZnX83/HNDtc+w1QeH//O9ou0rfvaMwjh+eZaVrotwZndTUVD7y8vBBC4OHhgXX1HE9y11FKVXyh5Ps1TUfX9cTU0DQN8yT3usPhFa01yxr53e8+yIaaJt69e8cf//gnnOu4ubmR1KjHZ1wj5aExhnmeOZ1ONX/e8Pj4SC6SvCSm6whIrN00+ur/bOn7nhAirmkx1jJOM95Hci7iuA+LwBO04A1lrrlKaawWlLJ0nWPYCJriNM50XcMwdLU839G1woJ9fHrFuA0KVx0dicP5RMmWnDIhJHJc0TpVf+jbWW9uE87TXN9UkvITU8L7yDy9UoqkEwn2ENRGOpohR9DQdQPT+CrcTCPu/M+fv3A8HumHhq5zFJVROhOjp+t6nDNkkyle2Jfb7YacE49PwjLdbves3jNNM02zASV6xsa1DBsxpa7rwrIuGGN5ePcgQ2K/0DYyw6Mk2s6hTWZef6TbfKQUj7Mt2+0Np9NnGid31cIJdCRlUfv74FlfV+Zlpm0bUIV5mYn1/nTJbYwxXh9krQ1908q5qCGmQAji+/s//B//OQ8Pd/zX/81/y2YzcDqNPD6e+PbbTrD0aRVMoC4cDoeakqWv91Vrazc1iLi7bRuZl+bE6TTifSL4TEoKpQ3LKjPVGFPVjoqDXilNQckd0JnqL4zE+jtRCglqwtNKCCtKUZsrAyF4Pn74BdN05vD6wjQHtlaTs8Kv6aqEAg1FqALeJ3Llk76l9eY2ofdBbEuhUHKiG0RVfziMhHUlpkTTysC47zuJwlKKEGItT2f++q9+R4qZH374wnE80296yUnXun6Rjq5vxbw6dHz69IW2dbRtz2bT8/J6pmlaVu/5l//qv+J8PnN3/0CuIoHD4UQIkZubO5RaUNoSQ2SaRuZ5JWVpAMXGMmx6xvGI0hPvP+y5u79h8TPz/D3L7PDLCyGOPD6PaBM5nV9xTUO/eUcMwl5davOo7VrmZWZ/s0OplpfnV0H5OYNSXd2QgZwDeI+x5upC3+0kcm6z6ZkXGYe0bcfjlxcJ0jlNTNOEdZIJcREchPAT61XoBg23t7d0Xcd4ltmkMYZpmslZmjnNTY/WlpQFPnw+i8exoESYUP+8nFVN39pwPp9JWaoLARgHUT+1TXXGK7SSUJkvX56qx9Phl5XgYb+9x4fC+XQGfabvG1IpVaSfSbmQUxHxQP5q6v3Zdf9wy83+PePkeX19ouk0TesY+o5zjISUJafAKla/kLKWN2sspORxja0RzD/yzcdf0Pc9zy9PdK6V+VzO1SbjOByOPD+98utf/xqtDefzWaKqa+Z7KYqn52diTOx3d8yzkL3O4yxYhVKqwXhAaU3KGXIiR9G8znMgRtFnoiLDxmOdY5lfqwJmIBcozMQ8oYi0g2G32+FXL4hBBa5xgn8/SedyDZ55jnS9tNyXZaldRYFfQabtetFL+oR8zcILfXr+glKFu9tbjHWAputaQeUvnmHYs99vKdkTw1JHGwLeGoaB29tbUSlNkyATtWa32/Pb3/6WP/zhT6xrQGHIdUNZZ2g6UawcjtLZDSnjvXQ7ldKsPlQnx1pfKg6dRE4now51DSYNPpFSrh3pUe6SGLR2lCylrLGiRrpUTDn/FKNQSqZ8la39/Lq52aCIKJW4ud1gmkLRmbazgOWhu2NdZ7QVTN88j3x4/5FPP35G6cS7d/ccjke00cR66e/6Hms1/abn9nbLOB5ZlyAJRNsdoPn06bPM2FImpMKwHVhDwFqxRD09vzDPgZJBGYO2mmlZMUZzGieUgtv7B/GrvR6wqlBUJJVI0yrAMk9SvvlZUchYq1DKo00gZk9OmaG7JSbL/TuZZXnvabsWVWdx67oSQqDrDKWA0kHCRI2MTXJO1aCsaVvLMi8VP2EFkqsEeDQtnjCudG1H1woavmkbuq6HosSVUe+AF0nbuko60/l8Zl3EambsDu8Df/u3f4/WuoaHOiiakJM0WpRmWSUhGGdQ2oA2aCUb8vz4dM2ktM7Rdh0oxXI4EIInRcmt9F5ekCEkKAVFwOiC0Q7IKK2wVoJlmtbw5emp0hQE46g0ONtg3pan9+1twnk9o2lZVg9kPr5/Bybx8nwSHWH2xLyybQa0zuz3W8bxxHk8cmPuGMczpWS6rr2m+5Z6Yk3jiPeCTBctZcZawzwvONcynmdCShRlMdaRcsRQyWJZmCx9N6BNYlmmqmV0dUwQeHx6qmmyBesKxoJSvmLkE36FeYosS+bmbo/RQrJuO8vQ3pAykDfkBMvq+Zu/+RMfPvR0XcswDAybAZRszJQ9bSNWr5wTWkvpJ6h5Ta4ZgagCqmCdQWnZpNN8ZpkzpVhKNoQgIKefsBmB25uBYZDoMu89WkvZeSlPjTEY41jmhePxQIzwzTfvaJqWcRRPYFKFxcvPE0LgcvKFmIT2/XB3nQ0CUqnUYB/rGqxroArP11VORYAcEXtSzKATygqEWSl1fdG0bc8w9KyrKG+MlbJ9GKQP8JbWm9uEp9kTwsK6BrRW6GfD3cMt2jhsiyQvKQgpUqIETmptaZoNp3Fht92SM6x+ZTNYlDa1rU91DAjiolBAaXwMlAVQmrYfaFAordFo0KLLvMSAucZiDFinMaYnJ7FUpVxIMaNNwTqHUpbtfos2SU5to3Ftj8Lx9HhEu4YlJAbX0ndbcvLc3d4xjQuvL8INfTmM7PYD9/cPkoK7yKmllcZZQ06ZfmgpGVJaWdfI3V2HdRumcSJ6KB2kKovLSRoWOYFfEiUKaW4aV6bzjDWGUFaUilinUAVa13M+PaO1OO+N1gTv8atnM2wwxpByQivLw8OOlKj3RrGPTWGm1BSnftiInUpbnh5f0MYAEk+wu9lSciGmSAyR1c9QJAbBWitSOJWw9UXQ90JkC2FBGUNMkltpnMMnz/HxII6SpgEyysgzsNvvSDGRy9c74c8v2xLDTKSgUcSsOZ898yKD2OPpJExK13A+i+3n9maP0oEwe/wa0VruTvubfQ0aOcjbVqlKxxYUfMypXvwLyzLXxoupr1q5SwQfMeaSZSD3lpgjbSN5g/O8Yq2VMqo1DENLSoVSTEX8WVKKlCJNpxBXbNPic8SmiNOOGBU/fPdUTxlpqGhr2G46xvPC8XDi9naP0455nRh6qQKUUuRisKYheAlDGYZGyjLdEkOpM9HE+bxwe3snhtlFSOaagCoKqyxZbBk0raJxGl/lb+scuLu/pW1bcg50u45hGADBUshwvROp3Pn1+rlZ50Q2tx9wriUGcagoNM7pOsOMWCv+RYBwFmWUNU7Az2SMgf3+TlwXWdCXzonXdJo9zjiMszVvRBGjnOhKabqu5+4epnkCVXh5eWGeJ5xzf4kn+39xvb1NqBKuMWjTCP5OKZZlrbkFMouSAEsroZRGopov5ZRSmpwCSquKqEhM01QhR1pa3tXSY2q73TpHi2IaVwr52nbfbre8vr5yOp1qloEmpgA5cZiP1ewrl31nOyDzejiQIigM252Eak7juQ7QCyFAzAGVJEq6OzRYa4irmFFzKThkvhi9ZyUTYyKGxOFw4OnpmYeHO5GUeY9fgyDih54YPdMcyVkcEE3T8s0331RQcKLve07HmV/9+lu+/+4TIZ4wpmG7a1iWUpOPpLEj9qKMtQLJalxLzhL6AgW/rtfotP1+z48//kiMkYeHB969e8fLyyv5NKKVoyTpXsca9NM0DdZI/mOhkrVXX+d38iJUWqMS5FQqA6gjlyjVkZbrRUF0uF3XUYMNaZoGgBgj0zQxzyOrX1nXme1uy/3DbZXAvZ315jZh01iGoSNX0KxYfnQd8FoRWmtVu2aOzXaLD4F19XTtIPevFGltS0pJ7hkp4ay0zPEBtDQ5lC5M08g333zLsohIoGtbrJWS55LTbupN/nJ3UUqjtag4StHVgrSikpx2KRkoYGyQ/PRJHAcUjVbykOg6/1pLAMDapoagrrW0spUyrljXSD9s2O+3/PDDF0JIPH4RCjlA13V8+PjA6ifG8VCH3ZkQF5TaobXmfD4TQuQ8Ttzde5pOGhzOwu3tDYfXU5W2Vd9hiVA0fbeBoiXfIcvLS9dOsLUO7z1//vN35Jy4u7vj5uamOjhWnGlpXMM8z4TVywxTgVaFppXZo2TUKrTuUErK/xASJedKy9YYUxgGGa0oRf3vE0rLHfKiN73OMC8zxyyOkKZx9QVxz2az4Xw+/cd9qP8D681twjUF2mGgMRatLdPqWWZPyBlKYdN2Am8KC33fkSmcTycyhVgypFKR7RlfB9jGCgJCa2kKSBfOAom2ba/ytb7riTExz+Kkzzmz3W7puu769jTaYp0GfO1EQghZXB6uw7mOECLGNqRi5A7XbYhBzKmldupyTljT0DaNxL4laac3zcAalquqJOdYobqZ19cju92G/f6W7//8yPEw8e79PdZaXl5e6HvH0IvYOgUZeo/jKDPGtquYC5kb/u53v+Z0lmZX00DT6jpSSTKjyxprDSlJmbuuMylHuq6V5KOuJ2ehnDdNw83Nnq7rOB6PHI/HOqCXsUcIHm0UJUnntnEWVTK5FEKMNK5jv7sh+MzpOBF8oRRFKZrTcWSeF8bRMmw6cs7My8w4jpWeIKfipRJaVxlTtG1LKpm+bVnWld1uW0/GSaxcb2i9uU2otSPlQoiBlBameSangnVa3orWirWmM4QYeXp+xvtEzPk6W9IloY3Be38dMqeUUFrTNpbNsMFaGKfTVQmyLCvjNNaZk5Q21lratr06D4y5KDtEofK73/2GEALn80kG0trIsByFUQZtnDR5dKn5gQVdXf4kMEaE2HmNDF1XS+yEQqNQ1ePYM/QDbddxeH6hHwaca4ixiG51WQVLOJ8Yhp7tdkOMgWmaubu7xRhHyaBVQ8qh/vXIvEioqlKREBesgzJFStHIyXTpukpnV6jbHSFUjWy7wzmH9+u1Q3yR7bWt3Isv6b6XbEAQAUZKEmOmrMZWR773nvN5kVBSLKWI86MUad7IbLIGxpwnfAi0bY/WXCuVi/fx4shQRdXNjFD16tyxfG3M/PwKAVY/IkLkxOoXSeWtdz9Koetb+to+TzlXVUjCGAEUOStlzryK6LlpGpquvXbWGuvwYbnOj5wT94CEjhigXO+e8zxXWFKukjCNXzzDIDjBnGc5kXOpZmSP63pCDJRZ7relCGWsFBEg5yzteKUKMSeUKmy6gZIVzrb0/YaIxxmD9ytGGw6HE+MoaUfHg5SOu92ubhIhCwSfCR6WJdE0HVpZ5tEzLyslF1a/cn8vzgijHG3fsi6Bm5s9z8+voCRvwlahQikJ0IQ4s9vtuLu74cdPn0SRQ/npnl2TfNd1vX5OoGgbW8NbnFDCzwt/9df/lBhWXg6vWKXpe/F2pgTn8yPGaMkZyQXrYLvraJuWED2lyHd9PK5Y3WJNA1p+DrF7mauFK8YoEsOkcLZjXSQstu26+nu9nfXmNuHhMFdgkaHtLNvdlra1+LCCjvi1sNkOuKapCIssnFGdMNphDSjStXy8gHvbrsPZirJ/PdJ2tiYjBW5ubiv3cqhOcV83fUfTNLy+ih41Vld7jAlrLE9Pj4zTCa0Vts7MQgi0w4aiIOWARWGsqHrWdSH5WO+UAAWrteT6+Vj/t0YYNg1oJCfQKF29ex3LsnI6nfGhsBkG+Wx8ZrO5FYlW0AQPulWUrGspK5+BNfKwx1hY1kyMgv/zXoby282GeYp4X5svfuHjxw/sykBKEes0m03HsswIrdtUN3y53iUvDvmmkTtuDKnemWtHVmlJ51UNVjf84Q+fGUfPZqNRytA0Lc4JZiNncYigcrWJtazLQorgugZnW3xarl3Tvu8FyFU3JEWhtNi0SlEY01CyIr2tvszb24Q5FQmWpGCU5v27D0DE+4VcMiVlGtuSsyAnstaEdRUkfAhkI2WUjChuCSEwjaOcmE2DQjHPCzk7col1jhXp+455fkWpTNvaOojXKJV5eHfLPM1sdwPHw5EUA/MkJuFSEhjByvd9IwPuokDbCmMS4FPbWigty+LrbFMMtpe3eK6n72kciSnQdI7gIvubO3bbgekstDcZdZyunUXvA23Tsd/f8uc/fS/A3JxonEFpyzSdibXTKSe2CAuWxVf5n+b15chms+XubofWI2pcpPHiNgLIyjJbk4QqMFY600orCkVmg66paI6A0RoFhEVQHsY6Pnx4YLtZ+e677xj6oZbimZvbDZtNT0zS6UylEEmgqBDmQmMajHNM48RU6XEhJYou6CqRKyipRpYVqkBjnhdSXmrsmqlKLPn73tJ6c5tQkWmclAxt07LMC1rDukaenh652d+ikflXihFnhQMqwZYzMVga20FWqKxIPpBjEk4Mkn9H0XL5R9rjT0+vbDYtyzKijRHuqDFomzFGsd32nM6vDLbFNYpbt6PvBpZlpG33WCdl7bouoBQ+g9KGdRUFi9EaZy3tvqk/r65wpYhSkMksNT0II53SlGFeI8MmoYxmDZ7oI4qGXCzaFdAKHyIUxdPjC+NpYrvdAJkYYRpn1lVK1bbtUFrx+vpyDdEUuFVPzqW6OsTPaK0lrgvWWc7jWG1SDXHxdSxkK+VNy1230svXdcUoDQWWUcYD2/0OrcGHFWM10zKB0iitUEa8jW3XkRcv2RMUfC4Yo+X+XKBoTcqJyU+E5Lm5uSEET8yRGENFRhaMa1HacTyeaoCPRKOlWNCpiK3KSdz6W1pvbhMaq69Iemk4jJSSa+s+s98WYvFQCrlEGtPx7t07UgU4RZ/ZbveM55Hz+VW+nGqdUerSdDDV6SBjjtvbW+b5jFK6IvYDxjjWRSBFjYuUDIfXIwB3N3ucc2x3MgY5n8/VzaGZ5pmEkVmgUljTXLuExlgpiUo9Xeq8E1XQVXScZMiIUoDKTPMo0jMK3q/EKMoZ4wwlR1IOhJjZbja8/3An2s+cycT6uxtUFXWvPnB3dwck5nm5fs7eB5bZ18BUaXIUYJ4lXsBasSKlFOuGbCsBWxoc8zxDzZxoXINWiu12y+3tjqIkViCETNf1fPvNt0zTQtv3nMYTKSewtnY5uYKmrDOQSiXlaXJJlJLY77fc3d9wPh0Zho7zWcBVSgmhzXvR4Gr3E+LROum0X0Ys8hy8nfXmNqF0JnO9R0hSruSOW7bbrlKYZT5UlsTt7b7S08S5cP+wZzNs8P4MCqztiKHQNC0xSqMFitDYUkApaiKwPLTOtox10Lssi9C+1wxFOqxt2xDCwjwf+fDhIyFI7Nh2u+Pl5YXxPJO1IUtQW+2sWtY1Aom+l4bSPM9ix7EGXali1oqTo5SMdaCN/POrX1BZNKDOaZSurvvqKLm7veHbb77lx+9/IMZI2zQUZZnn5ZpUbK3ldHrl3btf1g6nBK0uNb89hCCuizquAa4eRWNsvdOl619b15WYLpkdCrRClSKlaL2TGaPY3kiu4OpHPnz4wO/+yT/heBx5Obzy3/33/z0xZFL0kr6URUpYirgsjCoYrYipKmms5CKu64Sxis12wFrL589fAAkPatvu2kiTGWJkt9vWVOdSma5fu6M/u7qurV1L8Y5tt1ti9OIX9ImSJbxZOmqRdfX8+ONnNpsNHz++45tvPxC8p5Cq0LgREnQI13uYaEBls8foeXp6oe9bnGt5enwlhMK6etY10rUt59NcQ0KFnzItI/M8YltHjJnbm3vO08rxvGBcJ+VvhotQPEZ5y1tjMNric7iOPQSMK2iKrmulTFOKzbZHKTgeDjTNRuK8moxShu12K0iNRUpGheL5+ZnzeK7586mmLDmMWSklYYwE25QCoLi7u6NtW7777jsZcpf875G6L+6HEESiZ4ylZCnhqWbclMrVbW/qWCdniUZbxoWb2+HqwliWhe+//x4fIsOw5fPnz+Tq7vA+4X2hKF2/30zTGrrGYrQ0fYw1uEYzTWeUFm/kPE8oxE1ijFQxKWXZ9OsqrhDb0nbi6uj7Fq3F+/iW1pvbhJcN+I9nPpvNHu9DfdBmqC4J7zMxTDjbyN0qg18D43iuWEDNMPSkNNeh8sUEzPUUilFVjIOtRtWpEtMyXdvTdV11ETi22y3zPOJjJBfNNK6sq8evmcfHZ7p2YH+z5zSOGCX3zaYRDWWK+dqIGXpxQxijKWRJlPWCd4eCsRrnRHPadT13dw/kGDkfT0Kf1mIu1kqUOeM4C+Kvit7bpmWajuxvdsKtyZnX1ydQ8OOPP7KuK7/85beAVA8XkfQ8z9cZ6M3tHY1rOZ/P1+4paErOlIxY9sl1BpdxF+5olDmgranGMcTrjPX777/n9XCg6zdM88yyLqIkQmOspnHyYg3V3SL3wiq4z5lpmthsxNO4rjNPT89oZbi7uyMl6XQvi8fWF0Y/9Bgnn6XWhq67wa/S/X5L681tQsEYmHpyWcG+q2rkxNSk1lYG9LHU9nRHyTCeV9blR06nI8sc2O12lKKq+0DUH3IayoN8mYl5n5nGheATWssmlTLMME3T9VSeZ2l0KNsIT2UOrD6wrIXNdg8ojqczqaQKrm3rpjconVmXlXGCzWZbk3OhFHUVE5Qifrm2hlhuNjtKGhnHGZVK9d8lxnFEm5Z1TWK81ZacIkZbKEocE14G9tYq2rZhsxVl0Lp4tLa8vh7YbjcVeKyh6GqWlbuV0UY8mP1Q534XuZ68XLRRV0uQZNTLf8iFtmvZbQacg9fDK9Y6+q5nbqSxo5Vmu92CysRcSFGhrQFd56lKXSVpMrtVIoJI0LgWhSYG+Zmslc8x58y6XhpHpqpmHEVnUpKXqLWqwpe/zgn/g+syTDXG4NfIcT3VGVRCo4k+1CyHah71kWWdyVmTgqfrW25utvjV8/T4ClAfNin1tLnMD6W9Lgj6XPPYDdYYmt3uei/c7XYAHI9HOc20JtbZWy7QOEXTdNWJITM25xy//vUvSEnU+yGuQGZdp/pnCH9UHohSlTmJEAPee8ZxIiWYRs88Hdn0A1plmkbMsOsSWZdYTzHJctBO0XUbtFJsNjsg4/1C00oJG0JkREy+ovBRVVWUrim7wyD6WyG8BS7x5M6JcugyhmiUq53GgPczKchLajtseP/uA0YVzuNzJXbv+fzlmf1+j4+R8/mMrve7jw8PnE4zr4cz5+nMZjOwGTrpdCeFLiJ2SKnQ91tCKDx+eaGQKVlVmZqEqAp0ChSyyZ0zLEEaeykrjicJ4/kaCPMfWPWlexVJC0IiV7e4FdmRAq00xjWkkEmxUJJinlYaZ7G6wWpHtlJ2rstKVvkqO+u6Bm2kuwiy2Teb4VqajeNCyol+aEnJs7/ZsswzShf8spKVrXI0g0bj2oam7ZiWGds4nDO8e3/Pui48Pj5W/kqSIXRK5BIxSJuepLhwh6SbKpyY8TyRQpEQT5S8IIDN5lZsPONZyHNFc/0DMJQMWRVRAlVtpTGGp8dHchFWakriTBe4roi2+66r0ddrvafKy6DUzydECcW5nDzjuDAtE7utKId8kA4lSnE6nYCMtfIZnU5j/TnrZ2Zkvhiix1dSHGTaxtI2rv7ckRBFamiNJVX472XOGmOo7BkwJlS3hUgD26a7codSjGLtMvaqUvraHf0PrII0K6yTWZTSkdN4xFqHKmBVomsMVitU0RjA2EZi3LWiaxq6pmW73XI6nSRnojoU2irmDR6aVrLXL9I414j16Pb2ls+fnq6u+f1+w8vLCzGKT9E1hlglF/v9jpwL79+/5/7+jhRX5nmmayUp+HB4vrb8nTOVAD2DKiSCzMUkUoIYPMYoNIGmkzvktu+lTCaKmqSV+eHnz0/ErDHaksPF2KyIJRFzrOW2GF1zhuAVKcmDrTeCMNztNxijKoWgJ+fEOJ3RSoboIWYyGq2tOOFDrPc0hU+e7U1H2/Ysi2dZM0o5jDPoxrFkT04JWzqmg+f56ZXd7S3TLNVMQVVyQuT1+CPOSvxd41qCz2JFK0KpuwSLKq2ud0trLfM8EUKpzFlLQRixioxoUSOFhLaublbZyPP8dUTxH1xSEkp5sVSNZgxbYswSr9X2fPvxHX0/8Pj4CK6IORTo+hZrDN4vzIvcI0JccVZy7cXqkplWXxs50sZe10iKmd1+z/k0EaoBNUZRu4A46EX4Kwp9Yy3ei2Xm8+fPnI5npmkm+MiTf+b59YWURG7Vtj1KqYq870nk6ocrOCueSWcUMa3c3uzZbHrIiZgSd3dbbm+3vLwcUBRSjPRtR7oSAMQe5KylpARKThVxd3ica3HW0TadbKDq0JC5qahHzucJrax4FFePMQ5tFUZfPJhIRNoyAQnnBL5ljKJtLVoPdbRBPeUSmcTxdMT7RN9tJOSlEtliunRhFx4e7thut5zPZ5ZlZBgGuk7sTylJ0IxfpbN9jWZTBmdbBJdR6Pseay1Pj8/1+5QgGNcY5nmtLxmplFKUz+strTe3CXMSOZqEk0BJhZLl4bPaULLieBh5fT0IMzSHarOR8rGQmOaJZZ2uYuxcIkqLE8PHIieaM4RQ6t1QUmIPryee4is5STlWCjSNWIoU4j+kKKyVDb1UHeMUV9YlVS1qIiSPMohYvGooZS5YxHSavMSYFZklahQprRiV6ygEconEuLLbdmw2O9ZlZV2FlP3x4w0hxUpZC/Rdx263ZZlGxvNZ0H5GE6OqhLFC13WEsKK1FmJaFvCSrpAkU93tlzEOJdf7c0YJ/IamcdzdvWOz7fB+YRxHUr74aWWGGFKkhFI9jYqucyzryOthxDiHtQ0qF8Zp5vamZb/fVv1pYl0Xbm/3GFOtXtZctb9aa3LKrHHFr5KiVYqYvIdhwDnH89NLFZBfCGsOhfQVYpgl06RoEl/nhD+7nJOToeRCKfyjTDl5e1sjmD6tLauf0brw/sNd1SImxmmi33TXBz/FiDEanzxhCqwhiKcwOU7jiFZyUuVUiBHadiu2meUggKglopTYX7bbLW3b4hpbRcxVBge1PQ+gsdZhrK4PtiJ4OWnlJFbc7PdoKxtWFWjbltdnz83+ntY5tpsBsOy3G5YlsM4jJQcUme0wME0T6MKwcfg1UYpHq4iz0LYGpYQ6bczAdrvjdBw5HA7SzCjyecRQ5WemIeRwfdAvL5cP33wgEplnT0rQ960I5VXmy5cv9b4nJ+Xry4Gmaen6hhg9xkjsnFY9ry8H5nnGOU3RkiUxbPdsdwO3N53cC/1K0zru7m/o+5ZcMn0viP5lCVcXRkqxeggTSkllkstP5ISLuEDXlOLgI9a112fLmoaYIn5d/2M/1j+73t4m1OZajlJKZaDoa1koX0BT1S4ZpQv3D7csy8rjlxPaGvpB5nvGGl5fBZB7yeULMbHZ3bCGSK7JsiFCjJkYM0UHjsfjlW5NvcynlDDegzEUCs/PL2w2m9oskgaBOAmk1rkEm1ww9RfhtNDBDTGtaCUD/NZp9rsN281AjjJzC1HQhn5dCWGicQ27egL5dSGrRKc6TqcjjdacVWG7GbCbnhgjL68nmqaTDu+6sC7SnXWNwTkrWtIa+HkZMZhqnRK6W8d5OdeNpigZUdcoGR1oZauVK+MaV08m6arJ75toWoV1mmHoKAp8zHW0IeEwOYvkzznLdru5NsZyzigUwa/XzSXlK7VJV3ml60JMvo6O1msC8jwveB+w1gmxDRjHkWmaiCmx2/X/8R/sn1lvbxNa8YMp6hghUcNCNEab+t8zxipsY+m6VhQas2eePZvtlqbp2e1vKEVj7MTN7QPPz0+grBC3smwMaxu0sYSK9MvZczoJbl1pVdU7QhQLPtTOYcbuBoZB5HPU00XVaDBtQGlbJWCplkdy6hljJJn2mCiscp9yIjzvu44cM8fXkfNxIueJphWxOVk2dU6Su66VqIZSiLSuYbcZBOFQJWdT5aqIfSdfZ5zGKvphV6V/jk+fvtC1gvN/eXmun4lQu5+en4glonDVuRErbsNU87HifJ6w1rEZhD1KVdRYIylO3i/SJDKw329ZfCAluTPGGBnnmZgiORXmZqXUWaN4FDWuaTmf15+kcdewm1jRjhJDfnHKXzq6Spn64hXejnWOfmhBSxCqQJLfznpzm1Ah90LBTqQa2dXQOHnTGg2FKPFoVhHCwjhqxnEhRo0PBR8Sr69igs1ZHqAQpFvoQ0bplrW2s7XJpFKRF40hIfAmUwrb/fbarrfOEHzAOMP79/dM4/ma14eSDmVB3Byif+T6Fg/VVZ9zxPtAjAZnkyAeQoACk1pYp5XxHNFout5gbOabbz4I8Nd7QOaj1hlKDWEy2pBCQjkn9PCccMbRNrmKEwol59q8kGbMPM/4deJ8miiZGj0mHUOpQgLrmrGtY509y5IwuiFFCD5IU6QouV/FwlJCdcCLyqXrLM62hLhSiFfb2c3tnnFcWL2/Gn9zEizj+fQTjEt8hLbazBKXBF9r3fVELOWnGARxRzjG81R9nzL2MNbQ9Q2rX1GqcHe34/7+9trdfivrzW3CS9pPzvl6yhkjHTqKjMRSCqAiOYvaw5iGZTlCMUzTSsgvVXEjJ+jj82vFwYtRdl1+0g4Kg0XVNrg0bEoudbhdFR5aVBtByckXY5CThkJM4SeEXiooJ4GjKCrqMFd1jvwtfS8U8BQnLtzNvutIEZIvGANaiR4yJzgdJ5pWHr6UIsOmJ8aAD0mi36Inx0TXSRrTPI1Y13B/P3A4nK6BLqL7lLz6ZUkY08u9TUNMF2ralmEzcDodQYtC53w+kRLc3uyw1nE4nDifz+z2W7R2gs8PkiEYU2SeVwoyoklpJaVC2/bXZOFh6IhxZF2DhOoMG9bV1/ltL+QCH64KGK319fO9KIuaRhKnut7x8vLIdruTplfr6otAUYrDWBGxh+iJMRCTq6KJr8P6n125JEROWDBW0Q0N67KyeLEvOe2ujRJlZP728noG3ZBVYlk9S9UryryMWsrIXQMFSpfrZo8xkZMmFWjbDlKgaxusNqQQsUZffy5jIKfA4/OLNABsQ4oJatKtqtpKRSbnSIhe5l+tY57lpWCbjDYXR4XMDYsq2MZx9/6WYSenwLrMBO9RrtD0Dm0L53Gk6TrCKCduzHXuViArKEqTVVXy5Jmms+xuNvRDx3kc6fue8/lccwgdbedqerE4C9rBom3GNtB1GygGDexvNnS9ONNjUKSsiH4mldpJVYLtSDliG8c0r6jalEpJXCLLsjBNM9988y1D2+KXlWk6cnPzLaWIi2VZJtq25eZmLw25mJj9gq32tnWN1znhbrdBG812d8PzyxPWCv5ks9nQdxu8D7y+nJnngtZOMJezoD70G5tRvLlNWHKqUZcS3zz0LV0raAnvPY1x1SQKKEVMuQaKKjCapoKZQMoXOVUhhFTzGDqyisQUWealYhOa2mApGOMIXgzDtoKXQDZyWxst4n2T+1eIiVwuXd3LXcRXhYdwMI1RdN09Xdfw9PzI+TwyDJYQEilBihBLQJtMJknpqQoYWMNKOkvoTNO1pCL3Lm0spQhz9OLEKBXvGGOQ4E2tORwPzNPCzc2eprE0jaVtHdpe7l62Nj7kd42xXJmu6+LZbDoeKq5+XVd2O7EPLWvgPEpFIA2on6xXUjZS3SESUqOUEN+mSWR7WsF2t2FehGx3IaaJhlbKTW0E66FU+UfpW6FWPhO5wDSLFSvGyGZzizGKw/GVnMRuBTUSoO47GV/8R3yg/1esN7cJpSFZ6glWqkhYhuzGtLRO2uDWtShbGSpFzJ+N0hUpUa6dNqVUbaiInScXuayTRemvlKZvW/lyor9e/C8ibgE+yYjkYj8SQ+u/v6RrK9+0QGytRHkFQeT/6lffsr/Z8enTI/M4UtIGiITgWdxPsWMXo60zYlFKUfx2zjaUDDEISVxVaZoIquP1jnUp5XKGWBLLfMR7KcFySTStoU8NMQoJrWkEYTgMO7z3HA6H2ggxovZRuXJ0NHf3d5xOJxkJaFOlY8L4SUkAxevi+fDhAyklDuNRyGu6YE1Dipll9tUh07G/2UkWorFc2LIXY7Gv90bJPqyM2c2Gx8fHa7dbqNyFtm0oZOZxqt+dQSvH+SxKq2HToZPQDqSj+7Uc/dllTR3OKqBkrBFL07pMaAW5CFDXGINtG3KGdJ5IqWZXmExKVJmTAJZEbB2rO/sitSyouuFTReHJgL7Uu6f41VwjZdVlJibDb3/tyF3ur1fCF6CUaDgL0tVrGsvxOHI6nbGmQbcWskMb6fimlMhJWDExyf2qda24xKtD/3g8XhsX67qiEWGzcw6UuxpZpRurcKajVAxIs2mRLm6p9DMDSuDFxtgrO0YpabQUxP7TtK6e/IlplmBSkKi2eQnkkhg2Pf3QcTqeKPkiI9NM80gu4INAeJ115AK7/Z5lXSjA8TiSUqgVS64OFmm0qEohvzBEL9S8C9ntAg7uuhYfFtrWXU9rrR1Gyws95xXnhNZ3d3fLOC74NfwFnuz/5fUGNyHkmmykVcbogjVKuqJFAMDaarxf693PkqJYkxYvcqVc6dDGgrWKzeaW81nemgo52UqO5JiklEMewJKToBG0NAJSSpisr3K3C4FNPHPmWvYCXNB/IUgpm1IFIDWGGDLPz68oBcbIA3LJ7zPagZJmQtP0QpHLWU72pq0UNnPVh6YkhuZlmurMra1SLjm1rRHLUkyZnBJN6whhxTWW0/GEUhv5nK0wT2318R2P5ypta+T3K9B2PVTDMChOZ0EuPjw84MOJeVnY32yJcSUm6dwKnl+6wbatL5KUiJUwEErBpwwlk2KkbZufGDHGCsG8jnNkLpi4cEUfHx+vFYcxhr7r0Gj63U7qTJWI9QQ1StE5iw8LD3d7TscD+03P46fPgkp8Q+vNbcKcIk3bopVEZacYCF5hjSJnTcwRnTXiGFD4GKmJWVxSgmLy2KzI+RLEMhPCCkrkUI1zNG1H0AHvQ5XIZaxWpKJIOaK1vUq4SsnM81S9h/56D7s8DD/h3OUEDWREY2krGPfiVlDXdr1oVyMXpH/OME0L3q+kFNnvNteSTN7ucncVW1FXTzE5/YL3xCCNnhglkz2EtepTU5X3UbuZimGz5eVFJF5hraZc113zJ5qmxTjH8TiBUkzTirHCEC0YzueZZfU4Jy1rKRcbYkiVXC6I/WIUBYWuM75L5oRWmpRL/dwAVA3DScQQq0E31SuFVAoX5ZRzgjAchoEcE6ko4bRGX90h0FgHKG5vbqWSyIXWOo6vr/SNvW7qt7Le3CZUlStijBhIQ1ivps4YE2glQKCiKVkTfKiC4Ih2l/JFSilUJiYvHkFXIU/KXO+AqSYRVY+4/Hu1ZQ35J26pMfWhiFcrlDwglxOS6zC5aSRIJsVcA04KIcqmkiQhXaneDRrZXMZoks9X97qckJZ1DVd/IwiBDRSHw5F5Xmgs12DNEDLzNInL3we6rieEsf6zmabpry+AlBQKR46OlDLzKMEuF5dCybIh59nz8nrAGMM4zux2W9pGEn3HccVYR9c3NfMwX0tBQXmU+j10EkmQkvx+1uArl9Svvn7PYlXzPgi2Mpd6Jwy1i1mupup/PK5o25bTciKsnr5zhOiBJJQ8LTkmqkCJmZfHZ5QudF1D29h/r4J5C+vNbcJ3Dw8oraoLfK2hm5qu665duWWOhFjqXQ9iiCgNjbGgDTlLw8I5Wy/9tQS93KGQrEK5oMsD07S2lqJGOpT1YREtophdL3euS+lZiqQXXeaRICfh5T4aU6DkhNaFppGfwzlL1ztKDKxrYl3ry6VyWy5/xiVF6TIXk1OuhrGkRDN017/XWUtuW4wRcrUMqjXWaFxjr5pKqpj50+dnzscFirrSrpMPGFvYbASzv4YFlCHEjDaOgmFdBTDlnKOpWt1SKWulYvAv8XIXZqjSSnD0uVxfbCklQgrkJM2zEIKclrVCuOhDQebGVwlhDUhtGocPHmsNfsk1gFRwFlqLLjYXaWqJ80IRQ2C4v5E0qfTVWf+z6+OHO06nM7tNz/PzEyUrfv3ttxTgu+9+QKMlRTcJc9IYR0ye1jnaXhAGfpWTyVZ1/7IsrPOMa5w0RpSiJAkCzUFRLGz6HmM1q/eEIs0E4zRKy0ig7TrWda1ZC4KRuHRxq84HEPsQ1YVgtZLyqGlpm+pQt1osR0YJpbsUUm2hhxSEEGc02+2Gvut4fX2l7ZrqgDDyJs8FXd3vCsWUFqyx0rgoCh+8WKS0xF6nAjFDiheHiUfrlhwTIWVSjkzTzLDpaFLmcDqhjauu+kDjenJSzHFFaSFjK2MZdr0Yk7MilURGWKjCBhKHu1ZCStBK1Xz5TIqJkiIJRY4BXUHPF9+gs4btpud8OlEomMbRNoacijS7xHVK23dEvxKjp5DZml5K5pIpIZBLEHG7bmga8T+eTxOXxN+3st7cJpQ8g8S6xivd61CxEsu6EhNQ5B6Wqru661pco1EU+q7DKkUu+VomtU1D14r6JnhP2+iqQtEss3Aqp2mkH6SEtU46hIVMzEk0q9ZhkoaAOPNrmRh8rJ3Sy0lYMxTr29YaQ9e2ovpBNkLKHtfIbHJd5c/PJVeDrViLmq6h6Vt4LazrIieGX2icvY4xSqbiLWIVvEtIptEGH4NAF+vd9nyeWCvKolT4btO1LIs0eLqhFe5pyQJzitLYIXOVeYmpWWEMmFoqxhTIWZCHrrEo5Wja5gp8ykWYMkbJ99G1HbpVxOgoSf5d1uircFtO+3yVvzVNg7GWZa5ulpwpOaJsg3WKthPRuVKC3g8hiGaUzG6/QZXuSmbwPsh3vn4FPf3s8qHgfeF0PssXGROlSNKuD/LFyhcv0dmiXJH5j6n4vMPr6To0jjHw8PCOtm14fn7hgtS3tjZS9GW4XeiHW3bbgXQ+1XtoIoQsDYgSAUnt1VrKOKMNKY5X0fA/Tm9S5TI7lP97Op2qqdfRtFagtlqTo1ChrdI4Z+rJkQnryjyOgMjftpuB07LQVlao9ysLa2XTSLc1ZE9K4q8rqq0jDYexjtPpkfoLgxafn1YarVvariHlKN3UxlUCnKdU/o3ScooZa1A1BZnajCpFiWqolArHciglxO1UY+hS3VzWmjoisez3W1TJHA6vNK2t3VDJnZhnCYTd3+zRWrMsM9YptJbfffWzBPqoDW1n2Ww7lmXh5eWZdQ3XDXl788A0HjBGuuUX3WyKX8vRn13TuDBOE36VLpnk6inmJcisSUOsbz7XOChwOJzZxA6Mkuz1ILClnOVe9/p6IATJ1rPGkrMnZSllb2434oivd4ymbdixYZxGrHM0TsJFjYZiJeWnlJ/oYm3bMgwDIUgr/RKQApXYZvXVI3l520uDBEpWV/ivqpRtazTGSPpUipHNZmCeJm5ubpjPZ1JOdG1L2/zjNru+wnmNrSd4jOQs/w5lgtz9inQtFQLUvb+75cuXM+PzkYd3DySVQcl4xBpNf7un1HwHrXT18wmz9eIO0VpsUUEnVM1EnOeZGER+1/ddPUlLneVFUgoyQC8ibtCaWkYWtG4r2l6i1CSUVJGz6Hf3+y0StZ3o+65KBOVF9fJ8lNGQbUkaId9FsYM1ddaotJLn5g2tN7cJjWtQemVZA/O80PrEdrsDND4kXGvo+wZjHEVJGVhUqfchjV/jlYuZE9JsUXKHM6YhppV1mXHOUpzg43f7Da8vL3ICeU8IC8sycnd7h1aGeVklE8MYbm+2hCjUMZlVDfU0WkkpXyFK1GRhozXGGLbbTaVdy9/TtZLDeLMXG9A8TwSfuL//SNNIYu8yi0ChaxpOr/LzqaJQVsvpaS26AqceH78gaL+GdR0pxYjL3wd0VQ456zBG8hm0gpQ9VAnffr9lHEdilEH2vCw0rThLllXGRusqnkvvM9pKSZ9yRjuR7Rlt6+mfaTtp+IQYaBqL9zU/JEu8tdGap8cvGKOvDSgZ91hy7q8NKLjIz6g+x4HdbsfpdCJnX4fyms1m4Hyaq2hcuqyvL0dSXllXiddr2xYfw9Wb+lbWm9uE4zgKsbnOxtSF0KWLiKEbjVKCSZjXJAGYtaUtx1WunUqRcTWN4/7+XhJ6UiL4iFJWVP5RQkXb7h8zYyaUzbTO4SpWsWRq1gKUlNHKyOwvZdbl9apSueLVs3QLU0qsXrIV2rZhs9mI+398JdeZ123FxJcsYCIohOAlXKaIGFzVmDLnrEhKjRDYpmmm7/tKRSvc3OwxRrP6QEq6lsKSc1EbwWQySknardKC0e+7pt7HEsssrJiuE+M0JIZNS9u0KFVYFonzTiGwel+NtPYqilZKsd1uKEVxPJ4RSnqqpahGZ+GV+iBD/Aw8P79cURZSNVxyJC6MnvZ6Dw4hXschOUdsJRgIQ9ZUCZ26dlOV0ljXUBBSXNe1NO3XYf3PrpCCwGNLZhi28oCpDJqf2v6lEKvDulTsRc5CfzYajL10LqW76cOKNgUfPCiIoVTtpfwzh8ORGDKliDG3NQqrHeN5Ybd1dG1HWCOFwuoDqqr6Y4zEcAlecVftKEhzZlkWtJGZ1vUeacQ064wmeM+PP3xPTjLDQimc1oQYMBr2uw2aQkiBvuvRSrEuC1rXPHtrOR4PeL/SDx2ukYe4GwQMbBeR7aVc5WMxUVJCm4JWjmVeubm5ReF4/PKC94F1DQLn3TUkFWjajqGOQ3IxDMMtMUqpJ84SK5hFcm0wldoxzaQkYmuQcZE2ClNL53l+IgeBLYfgidHUxspyvVfvdnuWZWEc5Y4v46XE6TTWxlwkJ6HmXZipMqO8ZHj46wYsFBbvcW2D0l9paz+7nJMmS6GjbZvrPE9ralqP/kd3slTvCnKxj0VkaE0dB/w0zPbXf8ZoQzGOFCPFwLr4CmSyNeuCKpcSAYAwQwvTNNcvF0qWP0+G25CSJxf5sxUKbbU0XaoDQ7LyZmKMNI27NiesdQQvuRExeDabAWM0IUqWouDzxeDsrOGiYQ3eS55fdR5ATUYi8+HDey5MHmngyvhDqYI2IlPLdQC+LGudlV50sZoUEf6oh23b0FbRg2RzrDinsKaj6wbmRUzBsSR0zYWUqkD/e4qippFZYKje0EvKExXaK2Wo/EeUL5mus4xVkC161EsjqCrUlOAihZou1Y+Ai+P1zmiNsE5REhtwiTPQXzfhz69pXq6NjFQStpGcueAT8zzSdQ37mz0lKwqeaVrpmo55nsk+0vTyzxptsMZhratKjoBzht32huNByiQo1fkuRDfvJX4LBU0jZdHr6xFrHNrIn6NVDfRUsN1uawfVVKeGgIUap2mblnUVRY+vNqPtpqPrHbI3VSWrXYTglhA8x+OBYehoW0eoUdnDpmeazvIycopCpq+G2OAj67pezbfTtFbTsbx0vF/R1tJ2LTHJRkxFDLt393v6vkEvomkNIaGrqqdpC5dMEIVmmRdizFgrIxNpZGkad7FABXISlETJMiRvrMPU78J0ihBgs+mqX3BmOgtBLufMfre/VheqbpplnqpyShpBFLGTLesqM8kiJ6+4R9Z6WlqmWcTufT9wPI8UlFD8jOZ0nmoI7dtZb24Tppxp6l0wpiwaxKzqm7+wrBF1ErDPPK/1vqiIwct9SQvtTE4oRV5ETC0Z6JZ+aIkh4f16vV+kmKv0rFSVjLn6CyURyLEZtvUuKISvkFYaZ4gqo9BY01BKpmkbGqfE8ZELRosfrhTpDl4Myd6Lo0GioBW6iOdRa0OMma6VmafWWiRZSk62nCOJhFXiW5zmmRgK1kocuML8lLCUxaV/sWQVMtrIadI1ltvbG2IsdJ0TL6WvFimTUSpV3aqEcLbtBmNkLlsotI3BWnEuWGfRSjEHT0mJ/c0Nh8MRHyONczhjSTkwdC2Ns2iVyUnuveri5rC6eg1FuypueE8pBmfFFtZ2rTRdUqric/mei7r4BC/qGep4RtG1jYygkJeL1VbAwm9ovblN2HVdxRhICed9hKKvg1ylJXRSgK7yFjyfz1XaZFhXTz/0tH3H8ThKUq7RdJ3Ivo7HF2K8UJ0T1ilSFtkTqpByIiWHtR0xCu3rIqValkVOlxAQPkrhIkMUvqh8nJttS/SeGBxJKTYbcS6kygp1VtT945hwTUUu5kLjOh7ut0Dh5fkL3ieUEoH0ZtMzDD0owb1f3Bry0hBa3IWoXUi0rQgBtHF0Q09OmbBEbm7uSUUo16+vB/b7W9qh5fn5FYCYPKuXpodLuoZ+Gow2nCYJQ22atuLrLwCmSwdT8f69lMPLsoo3M3l8EBnh8TTxL37zz5jnsW4wKUU3mx7vF5ZlYrfbobXm6elQZ4/i+bycXtM0IdBfhV9XjLEVja9q2Vro6x1WvhcnjSwlTZt5Wv9n/aB/yfXmNuFP7uqfmisp/mSolZgruR9K+RKueMELagGoZQp1Zidf5ul8ZlkSXdNdN/VFEypOBemg3d3d1TI11ow/Ce8UDkpX03MV5/NYXQpCH5PGgfgRQ4j1AZWO4gVwG3ygcY6PHz5wPB0xWjp4wrbh+u9ZFn/Vy4L8/zFlhqHDaANOUBsxehSOrpOXQAiBmIWS3bYCyHXOMYeFeV7Ybm8o6Kuusmt71nVlHKXZcTE0ay1i96bpqtFZoLrWilrI6EsXWk6hYRiq19FfP8sYhZjunCGXRM6R7777s1QSIdT7sauwpsusUO6fzllK1eleStJ19df7pNaaYgTonLI07S6zxYuz41LGiun5Aowq19HHW1lvbhP+xPGU+ZpWihTFRNt1Hd98/Mi8TDw/v1y7YG3FX0zTiDaafugJ4RKjrK4XefmS9NX2st/veXh44OXlhXWdq8u8uXIs5QQSBP/xcJI5k/f0g/BGx/EsliRd0I2tzZyMqb6/XBRKSUhmyZI72LadBJbUsMrNpuX5+YXtdodWRqhxIdF3g+hTs8JoSWxal8h4fqFtWzbbS+iJOAemaa6fhXQhYwySrLQGzsczj08vnM4r85TQxtD3hpQCf/d3f3dtVJQCgrbvkFFJuJ48lxeivCRz/RxF8L7bbbnkGr6+HIkpsd3uca5mTRqqsRbxCyYZ5DedqH2WZSKmSNe3KAXWGZp2y/uH9zVcRtF3fd2cDbvdni9fHlkWmWt2/U4yCbnErMefNprS9bus9LuQWZav8N+fXT+dhNJ9XGO4esj6vhPaWPJ0Xcs0zXS9zLC8r458o9ntdpxPIvm6ZECsq8iorL04B/J1w1/w9AK/9VdIr6p3wEuX9dI4EIrXTEq5KkiqxtFYlJKRSCmSHJUQ1s26eEx1Sjw+PqGVFrOtk6gzRdU2ZsFjpIoCbFpLjIK7FyuURitX8wSLIPtTqk4MOf2HTc/+ZkvOhdNp4vV4rOZgzX6/J6aEtdTmlDhW9vs9wzBwPp95eHhgWRbO57E2nsTt7yp2Ule3Q8mKGGS2KGzVeBVux5BoGsPpdMQ6w/v37+ugX0rpm5sNkqWYayPNiUZXy7y16zr6+vNM01zhxYp5XjgcjpVfkyqxWyBTsuQzMNoKA9XZKqK4EMY1b6wv8zY34eXL9N7TOMHnXchkv//939M0rnYWJc75V7/6JTkXjscjzy8vHA6vrGsUcHD1oj0/n7FW8fDujsY2dbMlDocT6ypBLZcH2TmH9zUYRUvre13C1d6Ua/ev6zrJlqCwzJ6YJAuvbapCZg7c7G8BzT/8wz+gjb6ezH3fc39/RwgLl1CTnOerETknacEb3RIpFWuvf8I61jxAhUPrhpxF+G6twZmeaYw8Pn6pLX3F/f09hYK1Cm0tXStkMqXA+7VK7zxKFU6n1+pBlBPygiIcx3PdlMJxCT4zDAPeB8ZxrBu1FX3nGqQTnIV29vT4StsOUAwf3t8CCAi5BMmtT4Gzv4C3HN6PzNOCUlJOU2Acp1qSimm3FM/t3QDA6+vh+n2VXNBGOqeXK4xSFUES8vUe/1bWm9uEF3xB28oHrTBVTCwSKMGal0rdklCX0/lI8JHX1wPjNGGdE91kUVzAsUB1LshsbpqEJi0mUFvvPKqWWD/lRly6bZfT86ILFQNvX+8zcjeLUZzsXeeIVWzetC2H1wPWWvquB5WvsqrL7yvwXVPvti3ztLLMkhy1LIJ377ue19dXJCnKsq4Ty7zSdztyUayL/JxGJ47HER89OUunt+kGrDMoI4iItuvoW7lbihlWGDbzMkkilCr1HmYrKa6rzvaCAJmSmKxDqS8uaokqM71LmpUxsilzEthV2xgUltfXs2wUbeoLV4zAKZYaCNRgXYPRhZjE5SLNLVVVNFKxPDzcsttveX5+JsZQlVOxbrzqG+Vyckupesm4f0vrzW3CS2kEmpeXF6bJc3tzK0qQXhDmSsnwfLvdk/PCly9PpFI4n05ycU+RtumkpMsiau77Lb/6zbe0bcPf/e0fBB2YREfprLsaSUMUzKKiME5nGQ1oYbm4xgkxbPHEKF1K6bzJ27rrmhpIqWtTp+H5+ZllXhg2PSlJOtTN/gayCAVOp4mh7xnHz4Im3N8LWdsqQvDMc7yWesuyst1uAH2N9m67hpJLfWlJnLRWFmcUJUsjw1rN/cMtIQa+fP5cjcaanBWn44y1QiDza8EaodKdzxJ4kxM8P73UUUKLVob7+zs+f37kGM6sa6BtHF3bE6JnXXzVzJoqgXNM48huf0PbDZyqn0/mqiIcMEqjjKmzX3BZMc4rwc80VsQYzl2USZK0tRl61nXhdLxEzsnvP/Qd3osjJOWIsQpXDc6UIjPPr1amn1+udWirOZ1GfBSTa78ZqgxsvZ4cOcH5vFIQuVdKnvsP71AKzucTa/RQDBRwWohnrbOE6DGtxip7RSrEksWDqAwxUyPTSu0sGoyFtrX4VRo60o1z16YLFDHENlb0mlHkXDEK1NY6uetc5oBy15lIRZGzJSfDZtgxndYqg0t0naHtWvwaQf10R5bgT2lu3N7s+PjxhteXZ7bbLcsayVHXrHrL0Hcs6xmlDfN4JCvF0Pco7TidZkIQ58Hd3R2laJzZSOUxRdpOrFrnWcY8fT/QtZtr00zuWdJd3myHWqYKg0cVTcqR8ywdYp8iISWmZSErRSqFmAVRoo0lJEFQ5pSxzhJSFVH4jHMDKM00e7SSxldJgVLx/uNpFDapVVjb0jYdz8/PdXyTUXll6DeEUMhO1XzCr6ben12bzfYq8QJou5ZxHOsb3VyhQfMiOMCmE0d8ru3zgqANtFGSbuRDbXsvfP/9D6Ar9q9p5Qof5CR0jSNOC0Jru9wlWnIKLLMnRcXqI/O04GuuYdttatmbaqNoZJ5HrG5QWFIWCVWKGSpkWCsj7NCKGASY54W+6xmGjVDWrMM6VXHvcsfKRR4ckakV9rs99/d3zJW6hpI2/TKtV/UIl1NXizh7XlaMkQjtNQhjdbe7QWtRvczzhA8FYyTm7ZLapKsTJMbI7e1t7ZjKKGCz7RmGjsPhUBEeVVLoE6u/4AyNfC5WY4w0wba7npeXEyHKS8zoGjSTuIq3cymEmChZSvCQJM04hHDNpD+PJ7FLxcjQ90zTUuV1DcbAu4d7YRBlz2boUcpx+xX09PPr0khwriXFn7ieF+ZmSpFlXsXB4FONN+uIKXE4HECJ290ah3aGtlWUJHOiUhA/YSrkmMgxk2Ni8TMppOv9L+eMX1PdiJJNIdI2qkJHSp2cU220qKuXUII1LVa35LUIADhG5nlCkIdWciSCp3GNiMO9v5LV4PI7pyrDaupDCUbL/KvvB4a+4Xw+Y51lu73h5fkFpWwVPm8JIda/t+d4PghxfA1oJc2SpmmvDRYhA5Sr3lPKXxkjXEUSVQcqo6BJpGops64T1ioBWmUZD5VS0Fbhj/mq91zXhZwjw6aj7SQee59bXl9PUq048SkuMZCiCES1kvu2doK4P7yOpKTqdYUrENgYqUi0Ol87p9KptjRNR28djYv8+OMjD+9uCPFrIMzPrmn0pFyqyqWrg1kZFYzjSAy+DngduZia/0AdKF8EzWKF8X6l7zqZ5WWZ2ZE1KYpbQBo/ioyIwZWGXIXFl86avJkzxkBK0LY9PhwlY69rK5JPHsxpEtxfTgXjHFqnOtpYCUEE4DGK+TaXLLBcI14/HwLzNDEMQ+XT/CQ2kAZSJivJCNxsBtrG8OOPT2x325od/1lMzMrKA20VKV+EzTuJFs8anyLKSFqvPLC5it3F3XEpfUWhotjtdtfNB3A6nao7RbPZiMBbhOq5RqfVl2WMNK6lFMn/aFuL0uIzNFbkdw/vbvjm2/dM55nD4UzTdChEhpeydIO9X2idYbPZUHJks+kZT0ckoVkisbUWT+LT0xOlSDUld8fM6Xjm9u6e5+dXvI88PT1i35ip923JyRH25jwtzJPkCMQoLMuLbEkeSHtNIVLa1s6cqhuA+iYVOVWu2RbGiEtinjzzuGAw9E3H0PX0TYsm0znLzX5Loab7el91p4oYSjUGCwbfOcMvfvENm83ARaFx6RRSlSfAP7rLCulNkIftdT7ZDz03NzdQ5M9Yl4XGCV3tcrrKy+jCshFVjVKw2WzY7245vJ44n5crYl5OtMKlNJR5nEIpW0XatpLRLi5/Kf8uxteLlQi44vlFqfLT7yTpUrc1F3JBKUHZe5+ESzr7Opu7YD8s1tirCAIKx9cXnNZE7wX4VGC/3WA1qJxYl0UcJK7h8HoQPMU013xF0ZqGENnv92y3O5qm5d27dxgjL+GSBaf46dNn5nnBVDOv3OPfznpzJ+GyyMMxDKbKqKTkG0fhvijjxIwbEzlLcCYKihKB8mXYHVOirIIbtEpXFKKUmtZYoo9opdnvd5JZYBqsNSII6BvatmM8LyxL5Hg4MQwbEUBrxf3DRrATy8Tz86Ng3Uthu91IQ+YiziZXJISr8z950Hf7Xf1ZReLWdd1VNvbu3XuGvmP2R+Z5pusGERqkRN8PzPMsfrxlRiklY5lxlZdOPSmt1bhG9JWn04nV5+pYF2f8uqxwc+GBSpbf3d0dzhlWX10MSlVwcb5u/n/M60xRKG0hZMEaolHI7FAAxECV5HVtx7yMgIjf+64X8byPfP/nH1DKShxcRhwgq7y0rDE0rpEXYggVYqVonCh6LnPMp6cnQgh8/PhB7r6zaHwTFyaslrLVNhyPJ2HSvqGlylsjoX5dX9f/xtabK0e/rq/rf2vr6yb8ur6uv/D6ugm/rq/rL7y+bsKv6+v6C6+vm/Dr+rr+wuvrJvy6vq6/8Pq6Cb+ur+svvL5uwq/r6/oLr6+b8Ov6uv7C6/8PQGToEh/W4bQAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Predictions using: predicted_Xception_saved\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAL8AAADECAYAAADOD/AEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAoPUlEQVR4nO2de5QkRZ3vP5FZ1dXvnp6enhfzHl4OCChPV2BAB1BxVURRju4i6l7WB+x17+qu7llRVy9n191VV2XVPascFY6I6OXqAUEUXAEFriAyAzMMw/CYBzM9j35Xd1Vm/u4fkVmVlfXuzuqu7o7vmZ7uzPxlZGTkN37xi1/8IkKJiGBgsABhzXYGDAxmC4b8BgsWhvwGCxaG/AYLFob8BgsWhvwGCxaG/AYLFob8BgsWhvwGCxZzj/zr1sH73pc/vv9+UEr/jgtKwWc+E196BoVoxDebAuoj/0036UwHP62tcPzx8NGPwoEDjclho3DnnXOf4E8+Ce94B6xdq7/FMcfARRfBV7862zmbE1B1xfbcdBNcfTV87nOwfj1MTMADD8D3vqc/wNat0N7euNyC1vwXXKDzAuB5kMlASwtYddTlj34Uvv51KPX6ExOQSOifZsVDD8GFF8KaNXDVVbB8Obz0Evzud7BrFzz77GznsDym+s1ixtS+7hvfCGecof/+4Aehrw/+7d/gjjvgyitL3zM2Bh0dU8xmBViW1npxIu70GoEvfAF6euDRR2HRosJrBw/ObF7Gx+tTeo34ZlNAPNXuda/Tv3fv1r/f9z7o7NQa6E1vgq4ueM979DXPgy9/GU46SRfAsmVwzTVw9GhhmiLw+c/DqlW6YC+8ELZtK352Ofvx4Yf1s3t7daU75RT4ylfy+fv61/XfYTMuQCmb//HHdaXv7tbv9vrXay0bRmAWPvgg/PVfQ3+/fvZll8HAQJVCrBO7dukyjBIfYOnS4nPf/z6cdZYuy95eOP98uOeeQpkbb9RpplKwciV85CMwOFgoc8EFcPLJ8Pvf6zTa2+FTn9LX1q2DN79Zp3vaafr7btoEP/5xYRrlvtltt8Hpp0NbGyxZAu99L+zdWygTcGvvXnjb2/Tf/f3wN38Drlu2uEohHvLv2qV/9/XlzzkOXHKJ/hD/8i9w+eX6/DXXwMc/Dq99rSbj1VfDzTdr2Ww2f/+nPw3/8A9w6qnwxS/Chg1w8cW6BamGX/xCf5innoK/+iv413/VlednP8vn4aKL9N/f+17+pxy2bYPzzoMnnoBPfELna/duTYSHHy6Wv/ZaLXv99fChD8FPf6rNrDixdq0m4Nat1WU/+1n4sz+DZFKbrJ/9LKxeDb/6VV7mM5/RZF+5UpfX5ZfDN7+pyzz8XQAOH9aK4LTTtCK78ML8tZ074V3v0tdvuEGbju98p/4mlXDTTXDFFWDb+r6/+Atdac49t7gCuq7mS1+f5tbmzTrP3/pW9bIIQ+rBd74jAiL33isyMCDy0ksiP/iBSF+fSFubyJ49Wu6qq7Tc3/1d4f2/+Y0+f/PNhed//vPC8wcPirS0iFx6qYjn5eU+9Sktd9VV+XP33afP3XefPnYckfXrRdauFTl6tPA54bQ+8hF9XymAyPXX54/f9jadn1278uf27RPp6hI5//zi8tmypfBZH/uYiG2LDA6Wft5UcM89Ok3bFnnNa0Q+8QmRu+8WyWQK5XbuFLEskcsuE3HdwmtBHoPyvvjiQpmvfU2/z7e/nT+3ebM+941vFOdp7Vp97fbb8+eGhkRWrBB51avy56LfLJMRWbpU5OSTRdLpvNzPfqblPv3p/LmAW5/7XOGzX/UqkdNPL85TBUyN/NGftWs1gaMZfOGFwvuvu06kp0cX9sBA4U9np8gHP6jlbrlF3x9OU0TfV438jz6qj7/0pcrvUiv5HUekvV3kiiuK5a65RhNraEgfB+Xzwx8Wyv34x/r8E09UzlO9eOQRTer29vy36O8XueOOvMwXv6jPP/54+XSC8r7zzsLzk5Mi3d0il1+eP7d5s0gqpa9FsXatyMqVhRVfRORv/1anv3+/Po5+s4ce0sc33lic5oknFpI64NbBg4Vy110n0ttb/h1LYGod3q9/Xbs4Ewlts59wQnGvPZHQ9noYO3fC0FBpmxTyHbUXXtC/jzuu8Hp/v7ZXKyEwwU4+ufp71IKBAd2hO+GE4muveIXuw7z0kraVA6xZUygX5DnarwkjndZlE8by5ZXzduaZ2jTIZLSZ9ZOfwJe+pN2ff/iDtrd37dLfZtOm8ukE5R19x5YWbW4G1wMcc4y+VgrHHlvYfwLNFYDnny/9TuWeD3DiidqjGEZrq+ZCGL29lcu3BKZG/rPOynt7yiGVKq4QnqeJf/PNpe+JvtBchW2XPl/Jq3zrrbr/U6t8GC0tuiKceaYm2tVX687j9dfXdn+9aGtrTLq1olz51omZdWRv3Aj33qs7u5UKcO1a/XvnTq15AgwMVK/dGzfq31u3wpYt5eWi2qkc+vu1R2PHjuJr27frCr56dW1pVcIll1TvFNaCQCnt369/b9yolc5TT+kOaikE5b1jR2F5ZzK6Y1+pHKN49lldacPl+8wz+ve6ddWfH3gOA+zYkb8eM2Z2hOGKK3RP/R//sfia4+R79Vu2aM/EV79aqP2+/OXqz3j1q/UA3Je/XOwlCKcVjDlEZaKwbe3xuOMO3WwHOHAAbrlFeyO6u6vnqxpWrNDvHf6phPvuK90y3Hmn/h2YEG97m66gn/ucrgRhBPdv2aJbj3//98I0/+u/tCl26aW1v8e+fdr8CjA8DN/9rq545cy4M87QFsE3vgGTk/nzd90FTz9d3/PrwMxq/s2btZvxhhu0TXrxxZrkO3fqZvorX9H2auC3veEG7Td+05u0n/2uu7T/txIsC/7jP+BP/1QX+NVXa2Jt365dlnffreVOP13/vu46rXVtG9797tJpfv7zWiufey58+MO6P/PNb+oP9c//HFfp1Idrr9V9kcsu03ZxJqNHfW+9VWvYwIQ69lj4+7/XCue88+Dtb9cm6aOParfmDTfo8v7kJ7UL9A1vgLe8RWvcG2/UptR731t7vo4/Hj7wAZ3+smXw7W9rRfGd75S/J5mEf/onnefNm/VA6YEDmg/r1sHHPjadkiqPurrHgTfj0Ucry111lUhHR/nr3/qW7sG3tWl34StfqV11+/blZVxX5LOf1W6ytjaRCy4Q2bpVexQqeXsCPPCAyEUX6fQ7OkROOUXkq1/NX3cckWuv1d4RpQo9P1FXp4jIY4+JXHKJ9kq1t4tceKH2UtRSPuXyOB3cdZfI+9+vvSGdndpVeeyx+p0OHCiW//a3tTswldJekc2bRX7xi0KZr31Np5dMiixbJvKhDxW7izdvFjnppNJ5WrtWu6fvvluXdyql07vttkK5cuVx6635PC5eLPKe9+Td5wHKcev668t778qgvtgeA4NKWLdOe9mCwcQmx9wLaTYwiAmG/AYLFob8BgsWxuY3WLAwmt9gwcKQ32DBwpDfYMEi3hHeI3tiTc5gnkMAEmSzLnv2vsyRw0cZGR+lo7ONjceuwxKPdDqN4ziEu6ZrTj07lscbzW/QHBDwPA8RDxFBxKt+zzRhyG/QpKgx6nYaMOQ3aA4osCzL/1GoWkPOpwFDfoPZgeT/UEofK6VwXQ/X1SZPo0egGk/+el7AyC5YWUEQEX8VGVVZOCY0nvz1tF5GduHK6njkOhObHhpA/iZWL0a2CWXF/1/wPA+lFErNjDXegJlczaxejGxzyAr5SqGJblkWtm3jui7igcJGKaGRoWdNvBKrwfxGuAJAvpLkK4tSNJT8xttj0CTQJNdmj2q4pwcM+Q2aBX6HN3D0zESkvSG/wSwhb+aIr/Vd18XzJHdZhIYOdhnyG8wOIia+ZVu0tLTkOr66PkgB+QOTKC4Y8hs0B/zAthzhZ8Ddb7w9CxGlnCylztWUVqFtLmFNXfXmvITneXiuIKLIZDJYymr0AO8MkL+eQTsjOyOygvJvEpQELscQ08S/XibdUFgOCgGC8GMLfcZCifiPE1BB+spP2ye2J5DwUOKBayFuioQCJQo8HcMvnperYCISa30w4Q0LUTZMxiIBVVO6guVXIshXHgFRiOgKUD6jwbMV4CBk8UQBCTwXLEth2Q6Ih3hSUDebnPxzYUjdyIKHwgtJajIHP7UjVGFyZ0KVQYWJHmpNFGArPycgygHLwVUZVNJDaPxkFhPesABllXhoylmIsjTxJdD4gVFUSyXTFUVhka9orn+s08qZUDnoCqFnbCmUagEUylZ4ahLHGUORYAYmcpkO73yFhO1kEaxEQtv3tg2u4LkuyrYQwPEEx3HIZCZJJmxaW5J4lqVHWv0dDkUEK7LZiIig7AQiLspSiOv49rmb61uIlcBCaTLroB1/IEvhuRaWSoIobBTDRw8zmRkFtxOLBKL0M5VSuJ5HvBa/If+8hOigGB0k5pNflMJOJHSlEGFwaIiHfvcoj/z+CVo7OkjYCY4MvExmfITO9lb+5LwLOff882lrb9dpZTJgWVi2rfdYSCbJjI2RakmBsvHQMt5kGmVrTW63tIJSiFjQkkKykzjZNHZCUALKtVBWioRYWE6aNnsCVBomhxkfPEprRyciOtrTTtg4jhNrOcW7YptZvaEpkHUc7EQCFdLUbjZLNptl8OhR9r+8nzt/fhe/+vWDeFaS/mVLWdbXx/Yn/8DA3t0s7u5keAL+87vf5ZSTNoEIlm1rzwsgnm+yJLXJ8uKLL3L/L+9lcnyEPc8/S1d7K5e9+11sPGET4lqgWsBViK1ItCqc7DjZ8RGcsTTdPStgcpJ9e3cwNLSfhx68n97eJSRblnDCqWfRuagXAM+f7OIB62JavcGQf15Bf0rPE21b2DYC/PGxx3jowQc5MDDA8OAg+15+mUNDwyzqX0pLayejo6Ns37qNDtvjzJPWkkrYPPD77bz+oov5/P/+Ai3+5nOT6TSHDh3i6OAgu3e/wLannmY0PcHeffs5uH8vkknT3qLAzdKzpI/VG45j8Gia11/0Rs454xzSziTfuPErjI6NctKGRXjpEa76879kYnyce+6+lY5OwSJDV8di1m44m/alJyCJlH4nP94/TvIbs2eOoVhTCeIJyrZ8d7uHKG3miOPyy3t/yY9+dDvPPPMMXV3djAyPMJ6ZpLWzk0MDhxCOcPDAQY4MHCDR28vyFcewaFE3j2/fg23p1uOFF3Zz/6/u5fChgzz33C4mJyd57vn9pCcdEokk2UwGN5tm9Yp+WhPCkeFhnt+zl63bdzE0OMEd//fnLFvSR++iXv647UksEX7fZ7N8UZIj+16gd3E/49kRVq5aSldPF32rNnDM8Scy6XUxlp4Mjf7GC0P+OQl/xjcAgutmUWKhLIVlWzy9bRu/ffQRDg8c5g+P/4GDBw/TvaiXdHqCZ3e/hCew4bh23vLmi1na389/338/e17sYf3a9QyOjPPEtqeZnBhm4MCLfOcb/87evS+y/emnWNzbha2EVjtBd2cHo6MDKCdD/6Iuxscm6G5VLF7URVebzaLeXsYm0rRaGY4cGactOYLlZDjn1DU4E2mS7iibNixjdHiYE086lRUbT8JRCUh24Hb2k1aLQXn+WFie+HH65g355wESqZSeBuhk2fbEk9x8yy389v89gpN1se0ky5atYNWq1ex+7nlc10FQXPT6i/jQ/7iGZHsrb7z0DWSGj0JC8b3//Ba7d+/Ay4xyYM827jm4k9NffQbHLOnGyWTo7ujCSrTQuqoXyUxy9MghOlIWlptgdPAwXSlYvqSHlctdhG6Gh9oYGR2hv78PBEZGRhgZzpKULlo7l/MXf/k/WbH2WA4MjDBwdITB0QyO0w60IqQbW24NTR2aalh/3soCiHDPXXfx87vuYnBomGNWrGbPS3sYOHiUVStXM3jkMDt37iIz6XL+eefw7ssv11p0Is2i9ha8ZDdPPPk4B/Y/T8qG1at7WLG0n4mxNEcP7GX0yCBeVrAnHUbGJzgyMk46ncZ2M6jsOIvaU4wMH+XZHbvY19ZFd7eis6ONZDJJV6qL1Ss3YtsJLDtB38qVdHf2s279Jtad/GpcSTC5P4MrWSxlYZEET+nxsQai8eRv3rGeOSsbLHKg3eUKcRz2v7yfn/zkJwwPDbFy5Sr27D/AwQMHGRwa4zWv/RNOOflkujpvx7aTXPGud3L8icf60QUT/P7h3/LT//NDDg3sZ9czT9Pe2UV75xJG09Dd2cvY2DhOdgI8ECtFa6tFcswlPTJKd08rI4NHsC3F6tXH0N3dw969L7PjmX1MOoOc9soTOOucM7nsXVfStaQfsh5tHR1YyRRYNuLqWB/VkgI7jVJ+rJC4ofdtTC1oAPmbRR3OV1k/cEBZenxVKQaPHuFnP/0phw8fRgHP7HyWoeFxHEexYtkyjtuwgXPPO49zXnMOllLguVhkeX770zz5xGM8/tgjTIwM0dPeSt+iTlrbu3joj3t5w0Vb6OtuhcwQL+/dzdjYEGlnhN7ePlw6sJOtHD1ylJGRUd3x9fbT2wc9vct4yzvPZPmqNZx51tl0dPewdN0GPUYglh70FZ/kCRvHyYDloiwXT9KIZ6PI4orrr9+Zn+IYJ0x4w1yTFUBEL+/heYjn8ePbb+eRRx5hfHwcSym6OnsZH89y8kmbePeV7+Kcc85BiWBbCs9xsBKK9PAhHvrNL7n3np+THhuip6udTa84HndylIMDgxwZnmDVmg2ctOEYnnriAfCydHWkGJsYY2hkkJcPHmHFsmM4++wLGJ/IMjQ8zm8ffZL9z+7jvX9+Htd87EN0drViWQmyjgMJD89zUP7MLeVZILZ+d+WBcrEsQVkelu2hLFCeCs3pjb8CmA7vXIMChdK7qSuF67g89NBDHDjwMiMjIzjZLKedegbv/8AWXnnqKaxYuxbPzYK4ZCcnOXL4EHte3MW+Xdv442MPMzZ8GPEclvevZnJ8jO62dg4xSN+iViZH9jF0OMPwwEtkBg+TbElhe0kOvnwE7Hb2DwyzdOU4Z59/Ab29S7n4rVl6+5ax8YQTaGvvRlwXxxUsWvRorvhh1CjwLMBCobSnSnSrgCTAS4DYKJU3fRoxndGQf64hmOKqFJ7r4PkhDMuXLcO2FMODgzzw4AP8r49/ksV9i2FyAsSBhMUzTz/N9793E3tfeIa1y7vwnCyTk2kWL+5nw7GvIJseZ8/w80yOOSS9LGODexhMjTE6uJ/s5CiDR0aBJIt7+8i2trHxhBO59m8/yZL+FYirELFRVgJXQFwby7Jz8Tw4XmG0p+++FCws0S2BuApxbTzPD7RTqmDqYhCqERcM+ecilIXnuSjbRiaF1mQLba0pDuzdixJY3NtLa1sL4AAumcwEQwcO8cQjD7J7x1ZSKgNpyGTASvSw4cRzSHatAWuYwZFddHX2srxX0d2+iLEJhxHXI9XXR8/KHtpSvXQsXkHf6g28bssWepesznfA/RVnbQXY+tnaopOIZSfBv5C3ykXhoWwPbA8SHpbkb2pEp9eQf85BENfBStiAXuojYdsMDAzgui6jo2Ocu/l1tLS1I56L6zn86t57eOoPj5FOj7CkbzE9nSlaVIbBiXFWrd9I34rljDkTpFqFDcctxc1OcnR0hF3PPU97Z4rxjEUikaKnewlvvexKTj3rtbR09mLZCZQoPBGsnIaWgrxWeRU/zF933BXgeQ52wsL1XBLxWzoFMOSfc1BYVn4aYqKlha7ubp5/fjeu4+JkM3R39/Dw737LuvXr2LN/Dz+67TYm06OccNwGlixdSnuLRUo5ZFUrx7/yVbR2dpKeGGJy7BAqMYabGeOMs0/h17/ZyjKVZNWak1m74VjecOmlrD7+eJRlY6tWfypiTGEHfuUJe3caDUP+OQalwEN7erDAU4qVK1ey85kd9HR3MTo2yg9v+yHf+f4tnH3mGRwe2E9LwmLTK46js7sDJS4v7d7BykUteJk0e5/bznGv2MTwgb0c2Pcc3e1CR1uKfUeO8OHrPsCpp72G/uXrSLR3YdmCp7K44mB5DpCP+VfWNAMPgtBrPxS7uBWJH4b8cw25SeOACAngT9/8Zo4cPsQz27fT1taG5XiMT0yydesT9PV2sainj+7uLjw3Q3dXB51tSUaP7KUt1cGzTz1OenSUF1/cS19vD8sXH0Pv4h4uecclrDnuFFqSPUAbiI2I6/tqtD2ifA0dneQyJSht19t2Asuy8DwPy3dxBqs3xw0T3jAHZfNeE40Vq1axatUq/vvXv2bw6Air16/Cw2HdmjU42Qn2732B/p52eno6yY4PMTk+jD0xTGcyRW9XF/v27GftmuPZ8oZLOfeii7GUIC2AJLQL0rIQz988AguUratAjpBq+u8meW9OnudzXfM3wbjQvJYF7LY2Ln3rW1m/fj0/vv12nt6+lcz4KLZkWb58Ccv7OunpTOFMjpJ1MmQms1heFxtWb+LKt1xBqrufVNdiursX4dgWllLY4k9htAAmQfnrMRTNyY3n3fLTLj2Usuaq2TMHVOecli2GymRY0r+UzZsv4PQzTue2H9zCfff9itaUTWdHB0NH0wwePcqink76li/nxONPZN26Y9l40mn0L18FyVa8RAsTbhaVgJZkCsbx7fgsgVdJidIDUcGE9ZqyXNu7BfNzw3OPp1EkNcGEN8w5WSjUiAplJ7SmTCi6Fi3myj9/P298+zsZHR7GVjCRTtOaStHR2UFHRzstyRZaUm0o284928KiXSUQByzP9QeX9CBUzpGfy2o9GrmS/aZ0HVIKy7JRSpFIJPxjKzdtslEwHd65hiiXlMqf8jueqfYOVnR0IkuXI0rpYLaw+1CkqAOpRLCD7YA8CAiu8sstxIzwAJY2dxzHKRjNVTR2ZxazUO08hFIK19HL/eG6OQ2q/GvTdkvGAZ0Z/0AKzJ24wxjKoQlKwSB2KIWdTKIAK5nU2jRCrqZAZPlx27b9VqC4ZWoEDPnnI1wXPE8v+ERe4+fQLOQPlkLxF8QKRneDharClcDE9hjUhIJBp0inMZj91RQQyeXFtm2SySTZbNbPf+NbKKP5DWYR+Uroup6/Ipv4v43ZYzCvIQWdce3t0ZScHzZ/s6/UbWRnQVZ8kycfpqEspeOSlB5EK+Xij7uzbjanMLKzJOvl4/gVuUVolVJ6BTqfmnPMz9806sXINrGsSPBfcKxDmXMrSZeoUHNgN8amUi9GtpllRXz+6zDp3F4CFQbhmpz8Bga1IhS5GdXqoYn6Emkh4oIhv8GsQPmjb/nQZckNynn+LixR0sdt/xvyGzQJ9PxdJ9hNpsERnWDIb9AksIIw5lxIw3zw8xsYlEQwMUb/Lfg7r3iu3qlxBrYiNeQ3mAUowAJl+X/nV2ZTCixbMRNR14b8Bs2B3AR2fWjCG4zsgpENe3fiHswqBxPeYGRnSbZ4WUNN/so1qcn9/E2sXoxsc8kWzCsmtFKbP7fdvxxMbokbJrzByDaFbLB0SbBeZ9AJhsbN6zUdXoOmQLBcSfC3XrwqvMJD/NGdhvwGTYH89kP483lLSsX6TEN+g1mHUgpLWST9lSYKbXwV+okXhvwGs4eQWeN6OqbHcbIF0xlL3BTb4w35DWYJeW0erNXjiZdbwqTRi9SCIb/BbCKkxG3LxrZsWlpSufU6Gw1DfoPZQzhe31+yJJvN4DgOrus1bP/dACa8wcg2hawi6Oha2LaNbTeemia8wcg2haznr9Lsui6u6+J5c9Lmb2L1YmSbUFbH8wTbHNmWhW3Z/o6TjYUJbzCysyTrx/TjgMog4mLbSUQSOI5fIRR+JQiHNsTXIpiFag1mF7lV2wTLsgHL34HRzU1t1GEP8c/sMt4egyaBDm3wPG3zB1uQhjelNoFtBvMTCkBwXc9fudwqSfwmj+c3MJgaNPE9P+qh3DKHhvwG8wx6WyJNR28G1uwBQ36DJoFC78kVLFQ7R/38Bga1ICC3XqQWtMZP2P5+XF4+vGHudnjnwjiLkZ0FWUGJiyIJtICyyGYnELJYtuS2S23k1qQmvMHIzrKsH9oselO6bDYzl0Oam0q9GNk5JKtj+ef0hnRNqV6MbFPKqoIV2kTE34jabEJtMK+hwPb32wUs2/KnMTozQnww5DeYReQmqkDOOiqM42/ssoWG/AazBCmYyaUsPYklWLnB89zQys2NqQSG/AazguhujLZPfs/z/E0qChZ3aAgM+Q1mAaKZZ+c3pAt8+S0tKSyVQDzt+QmC24zmN5g3UJEVmQX8EGbJhTQbzW8wT5G3+ZUq3JPLdd3c8iXhxWrjhglvMLKzKJuP7wFNcNdx/EEuITxGMDfJ3+zjLEa2KWSV5Ud1+j9RwTli8zedejGyc0RWRHDc/PIljY7vMeENRrZJZLXN7ziumcxisNCg3ZmOk/W9PWYfXoN5ChEFaNte+Wvz2AkbpSwSiRZEtJ9/bnt7DAyKoPBEEM/DE23b27bv8vR3ZVFK5Uz+RsX3mEWrDGYFlr/5hACI5BamSiYSuG4WZancJnWNmsZoyG8wa9BxPIncBJZMJoPg4bpZXMfBsr2ihavixLwnf92FVqKJDZ8plZpU8U5EoxIL8qRUXb6TUgi0Z7U8hJ9fEC8TyUPV9JQqLCefnNG19AvMleCe/OwVLGWTyWRJp8eZzExg2UJHZxutrW2ASzartygKvD9G84dQ8iOFPuRUikokEmob/dBEyK4UKlGlGCOVI5xv5acxHYjnVXxXy7KKnpE78t+valkVbBgteK6L8sOPBVC2jQoqgD8ry9PrD/r+e1fn00/HcwURmJiYIJPJYNs2bW2trFmzilQqhes5eD75g4oat+3fePIXjlJPXzZcAKXiXkWmNTRSNxlFwHUri1C5Ik6rJRBy+9eG06gLkQpflKdyafoEFxGcTCYXmlBqjc1wevoYlCiyvl/ftvVujFYygWUpPM9p6DqdMBPkj3E8pFxzXKDp49AOUU1fcFAcXutV+TBWpPUItxwCuWU68o+oQsTo9SoLPJWzmSVQFCXIWW2gKSC053n+ZhJe7jjsngyHJBfsqO6BEsufvEI+ktO29GK1noelVG5Ob1Ch4kSs5M9kskH/PPhXgKhWlVo6MlXIHL0aJeJUqkJB21FN4YR2Ds/fU4qc+XMFeYw25yWI50UGfLRplj8OTINKeYxW2FwkvQiC5CqQ5K5Fy7FEhQ+tqaPNwyBl5bdggmXlF57S2c5zQyKzuQDf/amJrsjvyN4IxEr+8fREUTNVaQv5qhqO4hevVhBTSbNehNMsskWFIhs/Ci9CrWh+ptbEV3gnoUizF4kU1ffKrVvQFwo4HzZtPE9KjNAGWj94hqDX5i/sgIsIeGCJ8uuQPpffojQ+xEp+HYqaf5kijRhB9COUIuV0X7jUM6qRqxoZq+a7ihkiRXo1cr0B9m0tzwgrrHrf2Yt4fOp5dpT8UeUSoBqf6kWs5I92cKLEnWmtXOo4jiY0mmb0o4hbRfNL3jujImbTVJbmi9r0U33Herb9LPdtq+U/fF+0bxBFo5cwiZX82WwWKDYLgnNTIXsjtGClZ05Fc9WLKAGKKk+d6VfSlqVQ6nrUT19v6xj1xZfLUznzq1JLVElmOmiI2ROGFVlwNIzwQEstBV4rpkvuacnXliiQz2e4MhQQgrzlXe2dwrLl8lzqeeXSK5WHSpWsWjmV8viEEUxhLPWcRiFW8kcLVSmVaw2C9VjCiGqb4Fz4/iiqmTHVKlGjCraACLXI1ylTVRNXuFZJ6dSTh3oxUyuvTRUN9fNPxbtTz/VaZeqVj8P7IhW+u6ojuVqfXSvRZkKjzhU0nPzhpraclo5TQ4TTm+qHnhLZw6ZCzole2331vn8lD1atruU4KkG96dWj/OI0g8uhId6eUqhkwsThqag1H9NNs5oLV6iu2avZ5gWyNbRC0QoUdhmWiomp1etWqkKVckfWi3o60/V0wutFQ8lfi/0dN+J2bYYLP/ip6LWqRQOWeUZRWlNAtX5UvWlNJx/NjhnT/LXIN6J2x928lzqebh8hnhHe+sozjpHyevPSbJhV8pe6f6YLqZaBnWhTX4sXqpZn1pNWJS0eJnkpc6dUudZC7mo2fZyt6mygoXN450LTNx3UYk9XQxwDOQHhp2ruVGod4iLmVN6rnnGEqaDpJrM0usKU+5j1au56AvZqSa/S8VTNwVq9MVPV6o1wM88kmor8s1k49Tw7SsapkH+6lSfOUex674kr/Wot1JyK7SmF6XkMIOobiTvwrdT5WjqD5bRxHNowfCYIFw4PtepI+eh9FSbgVM9E8TOLUlJFAtXyUMuXCr9++O+Z6AY0jPxT4bzKTYbIpVKUTjgWSD+nyHEYTbXK9cJ0g7+nMw9hOv0AgYIsS4kcl+JFQanVMchWKkFRKlcBgqwrFS7z4gk20WSmQ/zC40I+xImYvT1x3F87kUp7SgqPoyK1aOtK5C9V6UrFNFVCVbOpWuWJkFupwpZg2uajSEHBlarsJfslFWbATcUULH5u1STqwozG9tSCWsyaam7JyrLFxCp3T7nwi3qPq6FaUFy96cdhK1cLPalaBtSi/cunUcqsbOoR3unOtKlVA0cLKYpKH0YqRZyVeHa1AhcpHe5Qj9lUSH6hVMBx5XeK3wcfHdsIV4RaOqiqsJtS5p7K7xCd5BM3YiV/LUQMEzjatJX6wKW0QaUPX33QSJXsTNXr7an0vOmhdP7KPb8c4hhwLPfMcmVc8C1D/0fTKTUmUYonjR4lnnFvT2Afhycv1HpvtfPVroE2ZUuJRCthrT5yqN/mny5mYyR8uiiX51rfpek1f7XOZHhCS60DN/V0lOIsoFKaJ3hWLd6fmbDLDaaHhmr+StPlZmtAK+LIyKGUKVWqj1HK7DJEnptooJ+/mNyN2m6mnCYu2cz6DrlCAoO/4qR/Xvl+bL9FKU4khDLLCwYnSwwGKWpYG7PpEfUh5/4DKNFpVxGRiIdLiofMooi7zBqq+WvpAM80Crq+QefLH0xTOf+5rgDB56i2ema0MhVeE0qNvpZPs7ZPPKtxMmUfXaGcCspHla47U3nkNNBUsT3NgJwWiolccVf22YqDKchD8P8cb77MtkQlELb5my0SsWkwD4ql4UuXNB3CcTM+sQO3q1IqsGFyxzOqUXN9lRl7ZCwo57mLM+y7ER69hps9s1EBKoY/ROzNUoMsYdLPhJlRT7x+symUWsMf6kW5Ed+mJX+zfZhaYFyV9UMV/lcSjSjXuM1Q0+GlRPhDxeu+VA2tw/xG4bs3ogzmXXhDNTQ+NKDEMwslIqutFdvhIoXvFR1XqDfQrEh+JupSpWKuITuKyt82bMrF9U3dKts/1YuFqfmj36zg40ihgNKXC6I8/X593Npu5syvWvIdqe1FKTRWK4fTDMyduMvbuDpjxsI0gRqHRrqbF6bmjxkL2/ZvHKLzCeLGnCd/3HZltefMR36XJFaM71krcauFsNfjEq4Fs07+ZnAzFhRocdhJTib3ESjeSWWmB8QaigYRv564/VLjL3FvSjfr5J8O4tACRe40qDLEOk8I3mSo1qktNfNvuphT5J8Nm7qkWTUPTZ+ZRj0TmRrVos4p8teCWnlZrnmVqtGKZUKXYxqQmbEwh+hjQq89lZSnophKxftMZ4pqvZhT5K/2wSMe+pL3RQdnRCQ3vVJEisZ3c8fzStsXv2PBbuhlVs2ohlKautZKGg4yDI6rrdwxXcwp8hvMHOLWstON6mwEDPkNitAME2ZmArGTf6b87vWglgjDODpgs/XuMxE/Nd1YnerrKc085p3mr3W0tZkqZ6NRi6+9WoWuhlJ2frXBqfD5cKx+ravlTRczOoF9pmp6uaVHSq34VitqqVRxfLBmqJTTCdeoJcI1uF5P+g0JnJPZbnsMDGYJJqrTYMHCkN9gwcKQ32DBwpDfYMHCkN9gwcKQ32DBwpDfYMHCkN9gwcKQ32DB4v8Dysvaujtxw+AAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAADECAYAAADpoXHsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7QsyX3fCX7Sl/f2evfufd6/9t1oi4YnQBI0Eq2WZiSKlDQ74urMnkMOR1oZylErcUhpSJGS6ECAIAGCDdPe9/P+Xe9v1S3vXfr9o6ZPowEQ6MYQ1GC2P+fUycrMyMjIiG/84he/zMoSXNd1eY/3+C5E/O9dgPd4j2+X98T7Ht+1vCfe9/iu5T3xvsd3Le+J9z2+a3lPvO/xXct74n2P71reE+97fNfynnjf47uW7z7xTk3BT/zEW+svvACCMFz+VSEI8L/8L391+f1fga+tt78OtraGdfm7v/sdyf7difd3f3dYmDc/Hg/Mz8Pf/btQLH5HCvgd46mn/u8h0PV1+NmfhZmZYXuEQnD//fDv/h30+/+9S/cdRf62jvpf/1eYnobBAF55BX7jN4ZiuHULfL6/4iJ+Cx56aNhIqvrujnvqKfj1X//GAu73Qf72quavlb/4C/jkJ0HT4Md+DI4eBcMYtsk//Idw+zb8p/80TLu8DOJ330D7zfj2WuiDH4SzZ4fff+qnIB6Hf/Nv4HOfgx/+4W98TLcLfv+3WcxvgigOLc5fJX/V+X0n2NyEH/ohmJyE556DbPatfT/3c7C2NhT3m2jaX38Zv8P81XTFRx8dLjc3h8uf+AkIBIZD2oc+BMEg/M2/OdznOPBrvwZHjgxFkk4Ph716/e15ui78k38CY2NDa/7II0NL8rX8ZT7v+fPDc0ejw05z/PhwKH2zfL/+68PvX+0Gvck38nmvXh122lBoeG2PPQZvvPH2NG+6Va++Cv/j/wjJ5PDcn/gElMvfohLfJb/6q9DpwG//9tuF+yZzc/D3/t5b69/I52004B/8g+E+TRvW9Y/9GFQqw/2GAb/0S3DmDITDw2t58EF4/vmvP1+jMcw/HIZIBH78x4fbvpYbN4bp3nRzMhn4W38LqtV3XQV/NWPj+vpwGY+/tc2y4Mkn4YEH4F/9q7fciZ/92WEj/+RPwi/8wlDw/+E/DMXx6qugKMN0v/RLQ/F+6EPDz5Ur8P73Dyv0W/H00/CRjwwb9e/9vWEFLS7CF74wXP/Zn4V8fpjuv/23b53f7dvDRguF4Bd/cVjG//gf4eGH4cUX4e67357+539+2Gl++ZeHk5Zf+7XhvOBTn/rW53qn/PmfDwVw333f3vGdzvCaFheH4jl9eijaz38e9vYgkYBWC37rt4aj6U//NLTbw87y5JNw4QKcPDnMy3Xhe75n6K78D/8DHDoEf/qnQwF/LU8/DRsbw/bPZN5ybW7fHhqDrzYi3wr33fA7v+O64LrPPOO65bLr7u667h/9kevG467r9bru3t4w3Y//+DDdP/pHbz/+5ZeH23//99++/Utfevv2Usl1VdV1P/xh13Wct9L9z//zMN2P//hb255/frjt+eeH65blutPTrjs56br1+tvP89V5/dzPDY/7RoDr/vIvv7X+8Y8Py7O+/ta2fN51g0HXfeihr6+fxx9/+7n+wT9wXUly3UbjG5/v3dJsDs/zPd/zzo+ZnHx7vf3SLw3z+Oxnvz7tm2W3LNfV9bfvq9ddN5123b/1t97a9md/NszrV3/1rW2W5boPPjjc/ju/89b2Xu/rz/eHfzhM99JL7/x6XNf99tyGxx8fDonj40O/KxAY9rTR0ben+9t/++3rn/70cFh54olhL3/zc+bMMI83h6Nnnhla2J//+bf3xL//97912a5eHVrzv//3h8PXV/NuevWb2DZ85Svw8Y8PLd2bZLPwN/7G0Nq0Wm8/5md+5u3nevDBYT7b2+/+/N+IN88XDH77efzJn8CJE0OX5mt5s+yS9NZE2HGgVhuOqGfPDkfCN3nqqeEE96vbW5KG7fe1eL1vfR8Mhu1/zz3D9a/O8x3w7bkNv/7rwxCZLA991oWFr5/JyvLQh/pqVleh2YRU6hvnWyoNl2828oEDb9+fTA6H42/Gmy7M0aPf+jreCeUy9HrDa/xaDh0aNuru7tCHf5OJibene7PMX+vXfzX9/rBuvppM5hunDYWGy3b7m5f9m7G+Dt/3fd863X/5L/Cv/zUsLYFpvrV9evqt79vbw84cCLz92G9UZ7Ua/MqvwB/90Vvt/SZfe/3fgm9PvHfd9Va04S9D075e0I4zFO7v//43PiaZ/LaK8385JOkbb/9mv7j61KeGfuA7SR8KwcjIMDT5neT3fm84ufr4x4eht1RqeG3/7J+9ZSTeLT/wA/Daa8P8Tp4cCt5x4AMfGC7fBX+9wczZ2aFLcP/9bx8+vpbJyeFydfXtQ3W5/M2t15vngGHDPv74X57unboQyeRwsrm8/PX7lpaGHXR8/J3l9c148snhZOad8pGPDCc6r78O99777s83O/utxf+Zzwzr/7OffXt9/fIvvz3d5CQ8++xwEvjV1vdr66xeH6b7lV8ZTsjfZHX13Zefv+7bwz/wA0Pf7x//46/fZ1lvhVYef3w4o//3//7t1ufXfu1bn+P06eGQ9mu/9vWhmq/O682Y8zcK53w1kjSMcnzuc8PIwZsUi/AHfzCMprw5jP+fIZsdXvdXf74Zv/iLw2v4qZ/6xnc319ffCg1+I77v++D69eFc5Wt5s57eHEG+ut7Onx92mK/mQx8att9v/MZb22x72H5fzTfKD95Zu34D/not7/veNwxT/bN/BteuDUWhKMOe9+lPDyv7+79/aO3+p/9pmO4jHxlWztWr8MUvDkM43wxRHFbiRz86HJZ+8ieHwlhaGoZjvvzlYbozZ4bLX/iFodWTpOHk8xvxT/7J0Co+8AD8nb8z9Of/438EXR/GW/97MDs77Dw/+IND3/ur77C99tqwPr/Zswz/8B8OLesnPzkMlZ05M/RHP/95+M3fHE7mPvKRodX9xCfgwx8eToR/8zfh8OGhlX2Tj350OJr+o3807OCHDw+P+1ofNhQa3hH91V8d+s+jo8PJ8Jv3B94t7yo28WYo6OLFb57ux3/cdf3+v3z/f/pPrnvmzDC8Fgy67rFjrvuLvzgMP72Jbbvur/yK62azw3QPP+y6t259fcjna0Nlb/LKK677xBPD/P1+1z1+3HX//b9/a79lue7P/7zrJpOuKwhvD5t9bajMdV33yhXXffJJ1w0EXNfnc91HHnHd1157Z/Xzl5Xxr4KVFdf96Z923ampYTgvGHTd++8fXutg8Fa6r60313XdatV1/+7fdd3R0eGxY2PDNJXKcL/juO4//afDYzXNdU+dct0vfGGYZnLy6/P60R913VDIdcPh4ferV78+VLa357qf+ITrRiLDdJ/85LDdv1GdfwsE133vvQ3v8d3J/72e1HiP/7/iPfG+x3ct74n3Pb5reU+87/Fdy3vifY/vWt4T73t81/KeeN/ju5Z3dYftsWMZGrUqc7NpQmEve/kCHVNg5sAs69sFbAsC3gC1coVEREaWBUIBL7lclempMQTHplQoM7Bc5g4eJJWOgNNnZ2uZmckR9H4XwZWwdY1b1/bY3q4STWoIXpGF49P0dZNqpY4re3js0Xu59NKzjAQCVNb2MLoSEhFOJs/Sb/boSRY3cys0ZYvswhg9SWdpc417jk1wYmES0xHYK9cQBYvR4Ajhpoy6BXtr24zJIxxNHWHEP4rltSnFKggxmz97/tOEYj5iGQVNcFi9tUMsOsVdj/4cswfuITsxj1NrcPWf/AsytoZTtwlpKYKxOLncKo6kY+pNZE2lJNS5I22x1s0z+eAZJubn+cf/8d8jegXSaoCJ8Wl8AYWTx4+SW9ok4gly6/YGSxvbuK6EJAgImsuxew7RaNfY3NgkG5nAaOmUq0UCHg1bkDk1fRp7o8XZxCxeR2JzfxtPIEh8kGQ8O8qBk4e4sHgZW7Q4evo0zuYu3a0CfkOinYwz+v4nKFSKrF2+gN3bYb1xlWaizcxDR/CHw4R8EWxB440X32B9awctFET1eqiurDMVCHP0rscYDETEzoCA7CKFHVqqze1SnlKuhD8RQgqpDFSbWyur+AM+vnTtnf3q5F2J94e+/6N87nN/ioBNNpthbuEApWaLW8s57nngLJVilXq5xu5uG7EpcvrkLEGfhirLNGt5Oj2d6blZyrU6O/t75Kt5zp07xsT8PIY1oNSwiXhsQp4Isaiffr/DfQ+dxBvxYEsCrU6P0n6NvfU9/nz/zzg0HubE3ATLxoCG6WNpucTPP/wQhesrFCv7tHx+VoQmYtAmpInEci6ljV1uN+rIqoeOYTGaibB4+wIPz53kxIF5TkcnKd9p4DUlCru7HP/o+4iOZHht6UVK/QZG3+ZA+jDTI1luXs3R7rQ4ceogkZFRers7LL/2Omv7S0jeEfyOF3dQwuobuAGX8dlJ9rfX8IYChBfm+OLnX0MPusyfOsn/9lu/TXNgodgC4yN+Pvqxj/HHn/kjej2dq1dvMJMeZ2J0jPXtPRw0+qaBhMxuqQmKwOMf+x4efeBRPvdHn6X0wj7YJlPZUaRWn4OjU8wHRmnnSqQdFToWcXGAUM5RX7bRulWCmSjb118hICr0jDLNVo+Ar8/eK1+igcHkySy5vs7iV8pITZPOy4sYFgxqPRRHZXJilkP+A2TSWSzTJDw/w5QvxeKtDpao8OAHPo7sDnj95S9j6CY/9v4f4Y5yk6tbt7l+Y5GBVwBVIVf5Fg9efbvibVbLGL0BpuLQbncYm57k1WvXKNc67OQ2iYdjbKzuMzoepN/S8Qc0sE3OnTmAVznKy+evonpVvAEvo8kkrXaf1fVNMpkIG2v7bC/nmIhqpKMGQZ+PybEEB+bGOfe+e7h8+RKdjs54apQ3Xn6FgOwi620Wr1zB448hoCF6vbT1OuGoRqXUIeqTyQS9uKqF6BiMhcPML4zTaJp0OwNmZxN0WzWy2RiWa1Nu1YgNooTtEE7HxUWiuL1FsVvGFl2iI2nafRNvIkVNd5g4MIJreVi6/grpWg19u0ozv067X2PXtJgIj6H6PNgxm0qxzN7SMla/R5AovnqbxPwIk7NZ/uVv/jp93cEjyvg8Xor1Fr/8z/8lH3ziMdY3cvQ7A9a7W4wOHMIhP82+jSsoNC2dnaUlRidGmAM2S7ucuP8IpU6eXqNDNJWkvFwhJQXZaxaQRQst6Md0TGIjIfZz21Ryu5TMOrou0DYNTp46xU61wNzxCUq1IlKtSkmxKesd9JiMdzSDU6mgFGXCngjTsVEECzTTjy8YQOq4KAgkHC/pfhJNliGZYmb8QcxWgfuPyPR29okuKRy1DnDk3Clmb7/BS5uXKPZa9CzrOyPe8y89z92nF2i0u5SKFSKFApFYkJGpLDfv3ME1dBzXRNX8ZOYiZLJjbC4vYhk2voCXu8+c5NWLlymXehycncMnw9LiDiFVpFtvMZ7yMptOUS93AJ3BoMPm6m2Wl66zsrbBg/c/TCyawuPaZNMpOpU+rmGSW85z6p6P8MmP/R2s4i7/9Q//CyePHmN8YpyzR+f4i1dfYm1lh9FEiszYNB/+4QfYWdnh+pXrbO/2qO7V2NH6zPtNTkgBjoQOkhibQIh6qQxyvHLhEjdy1zjzgXOcuucUr116jhuXV4l5XCLBBL/xn/8tk+kJwrrKoNBgPJpkNDWO2bPRIwbjx5LsCptcuHiB2dFxhIBK24Xv+3/+NL/0z/85lV4bUfIiImMOLEzBIRiJcPHmHRq7+yQkjb6hs5Pb5kMf/ShfPv86+7k8Xdek59gIPg/X7tziD/7wj/m+D9/DJ3/yY+zVmtB2SY000JoS56+scXj6ABOzh7AGPbarOZqajdcjMTZ2ACes8fzVi/yrl/8AfyDIQ+k43oBDdWmFgSGw9fINGrpJRgpx1H+QUSPOienjWLU2Pb2L7Sikxw6Q21lFGgxo7ZWQZJmkf4pwLEPt2du0rCaJmVn2bt9CbxVxfRLzT85zUpxG93QoOE2WulvfGfHGIxqapmA3LDw+D3u5AtMz0+wV80yOZxAdGQGFRqNLLtegXO4wkUzxlWeucWx+ksnpCaZHxtDcGvW9PMXCPna9gxwd4DdtvKqLqw/Qe10qZRtRtdha2yEQVDg6M8X6zdsUlB0mRyYQZQlZCaFZJhN+iUdGjhPXw/zuhT/iAz/xCdY393jtyjI/MnmQI+4EvXYD0fVy8cvXuHNpHbGjko2miLVjZEMZpmMzdPNdQtlpJo89iOLzkGsX2Cs2eN/Dj6O/OuDskbu59PoFdCwEyaLUdBidinA8mSbujZG7uEIg7OPBex4m7o2wdPM2FbPO1ac/Q61Tpi+ZVO0G9z74OErKz3Zpm1DUg7Pu4FoDbMdFlATm5uf40Ic+wm/+1u+guiKa5ME1QHAc2r0WYwtTGBERW5TYyheZnBwl4pM5Op7i/lNHGI0lWV7d5o1nXuPEyGHWF/fotlucmr2fA9/7KEatzK3zLzJzJMnNq+eZO3UGTzyIsHaF2UMTdNo2o7FRBkYTkuNIgoy7V+Cu7BgPnXuU/maZ2s112ps5pNYAWRHRgh7kbIKE1KV05zauDzzZCJWlHYxWm6ZsY/ghngyQGctQWNlAGQgYuX3MSoNw38ayXY4rf8mvbP7PijcaC7K4dId628KUNEq1DtbF28iqzH0PzNFrW/T7fSwXurpDoaqzvbWJPXBoNhY5f/E6xw7P8si959DbDdR+G6Hewq7WyWgaqVQMjyqT26gyNRHFF5SxrD4z4yNYA5ft/Rw1o87AEahVLSbjQc5NzmPXanjXBnzxP/9nAsc0Hrz3SRZXP0WIMNKOxhO++xhJjbDerrOzvkxvucAT808QqUR4cuouNEVjZmSB0IkYlXyNveVlZh97AF/YYPfKDvXlPhPxBF/51J+iSyYH75mmF26wWNrl2o1FfuCHv59P/7c/ZtSKMpY9TDCWZTCwiWSz5Ko5dNXF8ItUWx2CSoi9dpH83j7dCKj2gKQmISk+etggmzz86N3cWLzOoNUm7k9g9h08soYlDNjY2+Lv/tN/xOjCOL/7v/82Fy9e5oc+8gRSz6Gfr3Hpj1/iC4XPUh+0kLou5k6QGSVMx6Ny7YvP0VvZJBD08OXXnmEsGaNVLzDoNIhmEiR0BSoWU24E7YUCY+EsiprF4wnxkZNhNjZ3qF0vMn33Gax2nygi1cYGpuvS7RqsvPR5NvZXiUkKx2ZO4JmOU94tEhRUkpJCpVamvXid2btOs1fJM6g3KJV3kQQT1Rzgs3RC6jt/Z8a7Em+xXEJWNNqdAT3bIJlIUKm3iYclqvsl+gODhYVxml2d2ysFdNchEA+iAK1qE78qs1+q8uzzL3Df6eOMZbN4BRHXhq2NPRIhH+2uQasBfr9LZiZJpbzP0o1tvHKQA1OT6JZNvy3ga1Y5pi1wV+Qk50svsL1WYGJygWK3ycqfr3BKOkjElZjSM9SW8hzwTJGJTzLpiSGJDlPiJELHZCqZ4frVi/jLNnYgQ6tQoTfosXneYuzhIyhyj2Z5h3ved45Lt14lPZEhbsvEXI2EEqTWs3n+S89y5ugx0laC/K198rslDk0dwBeNEzRHUQsh9qpbOIpOKOTnwsXX8SUCzMwdRpUUqrt1NH+AQ/edoEsf025x8/plIn4NWRZwXAcHmb5tsbG3w4XXXmW0NEG9VKa4tc0Ln/8SI1oatSFzInIOT34RT3+fpOJnykyjmRrhRJxIKkyrUWTUlyR+/ANsbN1BTR3AFQRmMnNcy9+EyoDRWIyMmCApJOm2LNy6jTsRxhW8pE8eJfLhBzASAjf/y+8T8oLpOvTDKmPHp7iSv0HAlVA1hY2lZTzJKK2mjbfTxiPICF0duzPAEw9TNRqsFjdRZRg4Jh6fj5b5zl9R9e4sbyrFoaOn8V9f5vKNHfb3m/yNv/l+Uskgr7zyZWS/xNh4DAo1EskAK2tNXLPL3HSS8QNTVEsl9hsdjJCPyzduoToW2VgIn+KlqHloNpoEg15OnUqTHh1DUWW6zRauZjMSTREOxgllElCXcUWLo0xRfGWLWd8CM2ceIDA5Qe7Zm2Tb42xcu4a/mMT2CBweO4tZb7K/u40nMc1AlEjH5pjMZNjdvoVXEOi0c4SiIqOTISo383h1L7krz5IKGqQmJ9hdv0q/VaW01iY8NcmsliA2k2DkwATPn3+RrZvblIwS/k4QVYuxfHOV3f1NguMxjj12jsPqcV586StsLN/iR3/qR+kaHQz6GI02j505xZdevcTW5m3OPnYva2u7PPLQaV5/9ho+2cPD9z1Br9lgq7ZFaCzC008/ze7v7iM6An/7J3+S0kqJ9p06H3joR7HXukzMzWOHwdyt0djMkfbFmErNkN9fJ9RWiKFQy9dIyX729vKYXjife51+3yHipsDwET9zAo8QJOJNsHr5Bq+8eoHpx88y/r2P06TGHz3zaazaDkfj40SzKR7+sb9Bs11ifn0Za6+C3Rfo1Lqc+5mfxdwpkn/qBZRen36xw/aVZc594AlW1y6zfPUCDb1DC4doOEql2vrWQvx2xFtptbi5dJ1Ks83MQprzFza4cec6J44fpKe7FMp9bKFEbq/IaCKNETNo1A0m00l6vT69Xg+rb2EOHDQHxmMRZFSOHFwgny9gOA61gYMpDAiINqJlUyq1CRoeUtFRZiKzPPXMUwwqJvfG78ESXA4cOEnZ7OA9eJjcygr5jRzNpTXsdhW/IzMSCtGut+j2q7iRLkrQJZbI0q1t0QkoYNgochBbtLl0+zxZNYHPkBAcHUIapeVd6pJNtVwhJnjw6l5q+T7BYJCbN8/TKuY5FJ1gv1kmGR+lrjdx6VMs74DZQ7TCmAORzkBEsAIEPCk+++WnEUQbY9BG73cpN5v4gjJHjp3k1Kl7uHRzC68AdGFudoxMLEjbZ7FnwOruNslxHwvBJGcnT3Nu/h4u3XiFJx9+koDpYye/Tkz14O8o9IUQqs+g1++R39tB1/uEg1EcF/wqrA8amGGNqOTl5MIpbt7ZxrAkjk/cSzx5BKuvM+h2aLarhMMacn9A7YWrrOZWydRFdDzU6xUG1oDqtdv4RkcYTyywmDPZcRz803F61UUq5RyN/g7evoXkCdPRa+h2i3a7wfShBW6v3kY3FUbm5xlsv/PXUr2rh9F/8oMxfP4gA1vg1uI+ra5BMCRz5vQxdnZ2aDR7nD55hr2dLcx+m/m5UVwH3riwzvh4hkrVIJPOsrO2g6QbpIMqEU1HEm18QR8DFzo9HVdXWRhJMih3OXXgNLLtY2utQMAfZmt9GamtcDByiFNjR5G9CvnaBuvtHJmJcazNBlFbpFergCszf+phlGCaK5dexqXN1PEZ1nb3yO/VmY8f5fDsISSPSHAkQGX7Bq39AnRNLI9DLz4g39+l5lS579x9LH7pJqIl0fbrxFJh9qs5Wp0eRl/E7MPj554gm51AiwZ4/ZUXOXr0CHOn7sKNpGi2O7i9Op36Hn9y/r+xld/lwESadGaUy4vLjM+Nc/LB+/i1//SfGZ3Kcvn8bcatMClviPc9dg9zJ+doM2D2+DFCiSDSwOT5//AF9l/c4Z6pBxiJTuAYBqFUgsUXn0XRLSQpSM+USI2lafRK6FaLTrdF2Beg3l7nsrVLW9U5nZxhLjxGPtdGJULYDiH0AxDwQ0zj8JljrN6+QcjjxdRtJEli584NkgE/A82m0qnRNfokM2nmzp4levgwQkBj8dVneO61r3B0dp6RrkTMVqi3+2jjWW52K1xfvklqIsPa7gY9Y4AgSHhlL/+ic+Ed6fFdWd6FmWlGxidZ3ylSb+pE+haNVhPLNvF4Vbq5Njvbe5RKLTSxS7GwzemTRzh9LIll2rzvvnu58PoiqmtRb/aR+z0i40FUVUMWfAxaTfyql7DHw6nYIWYPzTGo9Xnt8jX8ySSPfOBJvvgHPdq9DqKqsbK3wal7TjAzOkbh9g6ZEQ+3F3dQiNDBxFUEakYds9ogkg2zvVllYyuHxx8iGlI58MgjJPwx7HaDrStvUCtvM+hWsJ0+qdERTh0+wcbzqySTScyahWppJKNJ/L4WzVYLfeCQSo4SUKKsL24hmxLN3QrFnU20cIDk7BRCJIKpO1z5wtOcfvAc8USKqelRHMXAUaE+aPKh73mMG4uLfOr3P42ki2T9QU5MjuMWe5w5eQTLHfDqay9yfXmDhdk3yMQSCE0Dz7rIAhMo2wbd3D5aVMFUHSrdPXwoaK6LIPoYDJq0O1VCCT+RsUlyuztYXgkMkYnRCSzbZiW3wuToQUJSDLkuYToS4bEM2nSSaq9BoVGmrjtEFT8eFMa8KSLBKPl2nrASwe/xM5edpLe1R3Vrh9jUKFrPpNQo8eLNKg9NHsWQNFZKa1SKl1k2myixIFs7e1S7NSRZxXFcPMY7n7C9K8v7/3hfGkfscnOxj624iKrM5GwaR7BoNvusLjZJREP86I9+CNHOUy5uotgWmqxx+sTd3Li0xs5Sg5AcIxMfZXVpkW6vQaFQ4uNPfhTBdtlYWuKREw+ScqMUNwpU23U2mpscefwuPvAj38fO68u8+Cdf4aG7H0dVVF5//UvsVu8g+QX0wYAZZQy/ncarjTN75hQbOxfQpQaBcJbgIApIbG7t0WpZzE2fJOYJs3HtGmHJJCpb9MUK4+cmyG/nmT97D7n8Fh29hd7qYxQNvJKMFLNwVJW9VgdB9aA6CklvjIQdIRJK0Vb6XFy7St3pMjs1i13u4zoWB+89RE2u04jsEEgFubK0xN5+CWQ/Z06d5E9+708YH5ng2MEMjm5Q3KoiyQq31teYPTDO0lKOoCUx6h9BrsBZ8SAHjSnCagpNkWl5SmwYq+zU14gFI8h2gEHPJZlJMXFojLbVZLW4y3Zum047R2J2lL1KAU2QEDvw0Ln3YxcMvIaXiblTiKEAhXqR7e0teuU6PlckJHkIB0NEvVE6gx5lo8XUwjQ72+uEFA3FtNENg86giycZZitmsWc1WFm6TlgS8QsuTaPDptugQg8HcFwB0QUPChFvhP/cyb0jPb4ryzs/m2Bz1+ToYT+VtkW9M0CRZWLxBPGojez22N7IcefmCj/yww/TqKR55ZkvU2o2sZvnya3XuPvAIzT22sTNAEU9gDuwuH9hnmPxE6xcu81Hz36S8XCW2m4dRXGIxAOIrV1uvPIStcIqfsvH7MIkNxYvk0zEmTw4QXt9n+Nnj3Dj+g1qW22QUoxPTzNx7m5qrFHvVRB8A1zVQHbD7BW3CfmyJJNh9HoX1+2DY+FYJpba4/KtV7F6IvYFCUuE+EiSgdXHMA28sozZMuhbFqYlMT41wcLcAeLRDKXXl3EqOvn9DaIeH4fOniAS8HJ+8Xn6TovO1RLSuIoalrhxaZEb67u0DZP3P/kkTz37DLF0kmvLq5w+PoHXq1HR6siahKS5eAMe/MIwaiNUBaakMYL+EHFPHMVQMDEodAoUnX10V8eVHGRNpDdoUWmX0FoK/qk4q9dWMDAwhC5+0eXhM+fo9hw2FneJZuYQXQPaDuVWCdlpoiCg9gcoLgRElYE+wIwG6PscPKkoE4EsDgLxSBqx3cestxBMG02Q0esG5z72QY56TZbW1yh2qqS9Xg4cPkpM1Xnx9ht0+328okrMGyIdSaG3e+9Yj+9KvLoOGxtNFK/G/Q8/QCAa5pXzr9JtVuh2e9QrfeZms1y8eAdN1Mnv5oloEiGPglfxE1Zsctc2COh+8nfWOLtwkrbeRS91qT67Q6ymErQcwmfG0BJjzBwIgjJgcmqEm1ef5fjIYXZ3SzS364Q8IS5deh2vR0IKC1SbXUKJDBubWxw/MI/lmNiVArlKHkduMBC6LOfu0Nqx0LxBPvijHyM2Pscbv/d7DKQCpk8k3yvhTSrUrRphLYUjwtzsPP5MBE9QI69ukd/bJe2LEw9nGY/NMnrsCI3tRZ5+5o/pN3XCxHDdHkavh1UocLm2y15vFyUlI4ZF6u08+TfqGK6Azxvn8fffx2/8zp9waC7LQ4/cz6OPilx/41Va1Qay5VKv1TEdB3Fgce/hM9yuLxMhgh8NW7SouXW8mo+e3cP2CgTEKMlAlFqtjJbVSIanKLWKVKUOFy5fRfcOECWR+46dQ6j30ToGt/ZyfPiTP0J7qYmdN4iOTeBLOXQEC6XUZVTzIvREVI+XfblLzyvSVLrsba8wnhlnfmSWft9B6gvEwin6gz6VVg2f68XebRCcSePqIn4iqKKGOVBZ2lhGMWXiQhAfKmNqioQUIT9456+wenfiNUxiMZX98oAv/MWreP0QCCskYylmJkcw+ht4vA6a5jA6NkUimmHQaDCZDTKZSXLXkSiVSzUayzWMPoynsixuLEPbRBEsQo7GIF9lvfUa3vQIMw89gGnLpNQxzs29D0odstochVqLdDBNX+kSiCuMn83y+u03OHvfPfiNCKGQj/ziNssXTbyGiyeRZaea4+rabSIkSAe8lAvLREMKpdYW4QkN2+3QEloce/Jxtl/KUS01UKwmstfDlasXqLWLeLwiZx8+TXOvRSY5QbutsHrxAnv7t+kYDRxFIZbU8Ho16vs16maZFh2iB8e4/wMPoSUlzl99hfLKgJPHTzAyMUkwEuHe+QkUTWL1zi3qtQrOwGJ6cpY7l+5A32UsGSLsqvQLTfyWRjYSw2tLNK0KZYa+qyXYOB4LTBjUDQJCEI+psdkqUjYbrC1u07Zr9O0u2XicQrVCylQJpfxMTUzjaC6F6h4BWyUjJTANg72VVYS2jb8nEteC6JJNNJogeXiWqm1SrrWZGT8AukC3WCWmaAg+BcvRsVWDoC9Ec3+femUPr+2QkiOkAjH2C1VwJEzbRkbGq3pQRRFz0McnKe9Yj+/K5/2ZR7OMT06xmy9SrrfQrQEOLgIuJ06MoHhVbtzaxDRE/j+/8i+JZ0b5x//w/0Upl2c8JUIXTifOYOUM6usNvJ4AT370e2GvRfPSNjR72KKFrPjJZA/gDSTZr5TpdfsEgj4EWcYJppl95EnsnR32Lj9Hl30GoQqx42lGDk7Ttwye+eMvojYl5kbnSZ85TCjj5fWlC3TdAfVah5uXb+CVFUbCCUTbIBCWyUxGuL54ESEoYA10jiZPU7nRYzQ1QoMarmZgyh1c2yIZmKBXV5gdOUuzWWOneJXR2TRyIM6Rcw9St/PIzoCV23e4tZujoXnZq1UoF3cJiJD2BTg8dxDTNJicmsIVDVa3VljPr+ANqDiGj/nxebYu30TS+5w8fICwL0R9q4emR2hUS3glgcn0JFbPxbEkZqfnqRXKpIJhittbNAYNPOlRQofmiBzO8vQbf8ry+mWSCT/VYoWYHCLRcZgcn+Tg9z6Jf2qSl3//z8mfv0HCHyfujVCs1fBqMdKhMUYSY8geL7Zpsl7Ikxo/SGrsINLAYP/iRYRKCUXSIWZhBV2KtQYT6VkCs1PUB32un79MUFKpmm1qmkHg7nGu526wt7FBNhCHzgBMnZFMir+/de0d6fFdWd5IMsqps0cwLnawhRqjUxNEk3EWV9bZLjeRNDAMi8n0CM889Wd4/EGWtrfJJFSK9S5W06G9fx1P1yUoSAjtHIZQQvPYNOQGXhUCmojscfEkVGqlCmbbIKSEEEybyYlJKsUWmtFnENDoW6DZAUakKFIvwNalMvEDI5w9cx8vfelLbJc28OSjFBsKt66vsl5ao2v20RSViBZm/sg4ihdePP8Cyzf6OKJJQPTTMvpsl3fxCl4mJ7OELQ/RqSiLlRVev/wGp1IjLC2vUjV0CsUck4fiWBmoDvbRd16h3+rQLFfQdZPdYoX8wMSQJXTXg1/z8eC999NtNtlY28TvCbC6ucTe/jbjM1m2NnYQdY0F3yzH507QKO2zfGeDowsHOXniNM19g26ngqgYbNe2KTcaJL1Zou0E8ZE4qgT2noVH8qGpHsZPHqell9HrXXyolPeLjI9mEfHRdxqsVbaZHlQpX9vFGOzTlhuEtQCHDh8kslYiqEQxXS+lWpfxhVGazRqReAbbEZFMqO+VcGwVSQiAqrDXXKVHn7MfeYRexWRjZxFV9hCURfRBB0lyuOfocYyEDxICuWKetVqBqORFxkF4F2++fFeW9wfuDnHi5Dy63qPVrfH4hx/l7kce4+LVDf7fv/TrTE4EUbsdDo9PsbO1SziVwBuL0apU6G1XmIyO0av0mMxm2d9cZWFylLsPneSNr1yitWfhtf2MZROk0qOsbuQIOymOpE5SW9nH4wG/5qVu90meOUEgmaG5V8UnapRu3KQfk8icmmdx5SLV/RUkqYduDpg8fJzIxCRPXfsKS/k79NwBkYCPTCCA0WsQSYdpmS0yIxk6zRaxVJR2t0taTOFumwTlAO//vo9Rt2p0fG167oC9jRx7S3lq200efvQxdio76HafI/e+j8LNNUo3yyTCCUr1Kk27z53cJroHNrsF/JqHjFdBE2V+8Md+lIuvvcaNy2+gaTJjYxmW1zY4Ep1kMjWB5vNiuzo7u0vMTU/SLg8wuhLdWoGFA2PUGjrJyASnDt+NWO2zeP06zX4Vc2Cgij4MrwdtbITMaAKPH1597cu0zSITs+MUyx1GwxGMboOu3kL2efB5QkyPzNHcaRBrh9EaCqKhEczOETpyGFJRHNdm8/I1JrKzhFLj2LZL7/pturkcWtrHSusK284mBatGwAoQNjx40XBMiaY1wFZkQrEw42dmWRUKfOXSq+QqJQQRAqKGV9b4/e9EtMGjyeT3KmxtF5mYzSArEV5/7SZPPX0ZSfTg06JolkAkHGfywUku3biJUS4T94Yx2iUKuTXOHTuN5EI8HGZuYRxd7lK2CszfdRq7p7GynePitVX8rh8t4GW/vI7symSScxD0IEZV1GiMjdUdRpNT+JJjaPkWtupQ3uwg1iS0nh9JEAhoQZSBh0HbpNcyKLe7GF6bufE5/KqMU7eo6X1cVcGRNQqVBvvVJrqh0/KYxIUkWtDL4vY6YjrA8vUbNHt1BvU2ld0m9594DK8W5sH7P4ze7fO5Tz1FeavGXGQGR9Cw6i6lap50MMDY4Slyr28ysPrUTQ9er4Y16FMo5rBcG9F26ff7xEN+RkZSmEaPO7dvcfLkMRSfQLVXwRJtSnqHZCrE7dwaguDBVBRixTWyWhxTdIjGRumZfXwxP+v7BRr1AtMHp/B7JCRHIaiE6NX7TMYyRAN+xg4ucOXOdfKVItnMLKMjk4TsKO4OKB3AlBE9AaRUGiYzKK6DdeE6mgVmpUKjWsNp1dDNDpXNHfadMr2gSLdloakOrisgiBJ918YRZHquQ7tRo3ipjXcmiDswEWQRRxIp2QOC8jt/Afi7srx/+4ksoiIjKiHG58bJlfOs7RQpVS0sW0WVDJKqiFeEEycOcPTUKT79R58m6wnz2NRJWstFHrr3UbY2l1HH/NxZOk9Lr6N4gyhilEbRorBeBlPHa4qMKaMcH7uXlH8OS/QycvokymQCZ7tC/eommhtEjaco1irER9MIIT82HezSDvlbl2nVixz+8MMQgc9eforV7ha51i6y4hDVFIJejWKtRq3VJB6JUCtUGU0kSKcyCIKGLPiZmZxmb3sDUTA5uDDCKy89S8wbRBODnDj0EPlqAy0SpVJtcv3SMn4pyMcf+iCKInL7xnny1W0cj4WU0Li4eYua3sYAYuEQc5MTLK6v4XQ6hH0qk6MZquUKU4E08WCMZq+LYeuI2gBJsfH5A/g8IWLRFJ1ul62dPSRbRO2KTATGOHvoHnZ3KgRSIfZ7ea7dWKRvuMxlp7lr9hh72yus5q6TTMYYSUTotBpYrk1fckiMjTE3s4DPUQm6ASrbHdycjt8J0RY0PMcWUKayGK06+uo2Zsug1e1R3tom4DoEBANBtImfmscJadTkDovL1+jkyhj6AEnwMXBdBiJYrk18JELRKtGLSCyW99jv1BAViV6vx7V3+ED6u7K8g16HaDKO7hg8/dzrjE6l0TQf9UqRSEijVG7QcQXmJ0LUG222dnbY2mjSosPfuu8TbCy2MPM91IFK7vYW12+uMH1qku16FVccsLVZhq4AxoBRb4S8USZFD29IxfGHkOZHufOlp3DWyoR6HhwpiulA/MAkoYkxUBSq+xs0yh06AxmUKMWtPV5ae4NVY5dtvUBXaKJbPSLTkxw7chJ5bRmvJ8CZ46d44amnCSkRHrv/SUqNFq9cuoJdKjDQB0Q9CjPpGQqxDdZWVgn6RVwE1vY2Wb78CqKi4bgylU6Dz774KWL+AIX6DkePHWTi0DT/9c8+Rcc1sVUF27YQZQkUl9FMhN31NsiQSCfBBb3ncmd1gzPn7sF0dHaKy9juAF3qYyoy7XoBV5AZaAK23keVBLqqjhj3ktDGScyOcvlLNzAlF8VR6da7xOU0qcNZ7KaBZQ7YWd0Cx8ETCKCFwyhCGMn20yw2ECJ+rKgKAwe3ZqL0DJRqFVcxiaXC9BN+Not5XEnFE/ZhtVsYjoFu9GiurTFz7m52KwV2W00Mq4vguGiaAZLMwDBIJBPMH11gJr7AcivP5eIGkWiEqdFxinu771iP7+728MExKo0e9UYdSZGp15tMTcyw8OET/P5/+zzBqB/RMJlKTxEQJOp7JT76/vexe2eTV167yLgQ4trFG7SNLumjI7TaLisbZQ6fPUrHkLiyUqZgdBkN+Rm0eow7Gu1mizYVItkAzct3WD9/mZShkgqOY5strI5ENDDD6qUXkWwLSRYJJOL4JydxjRaXbj3DVn2HmlCnb/UxRR2vK1LZqfB0+RkcWcQXCHD5/FWsvkOz1OJPPvWndByb3XYN9jcQu31OTR7g0guXcDsiiuEnFE2wtrfDQLFoyC38YS/5Vh3JdRA7Mi3LhxRRuVC+xQuNZfJ06QGm4SI6NuVGg2jDw9HD8xTz+ySSIbr9LvFMgogQ5uChMHc/9CS5zXW2Cjs0mi2CikCtWGFyeoaBZdFxbBKpBNpAoNJo8Wcvfx7QGGtP0bOaBPwaYTnKodgCStNGtzpMjx/klZUXScfiGJ0BmcgoofgIyegEzZ0mTstib3cD30KawIiPdreO31XZv36edH+K/Z0+G5srDBo6M+PHmZ47yNrKIv5wiEY7z9QjZ9EOHqHyWo7dfgvbaqIJIumQF0ey2Kvs4pgWjxx6mE9feppKr0E8GGA2O4nYsUB/538G+a5++u7zesjtlSmV+qSSCTKpMfqNAWFFJCSIpDQ/M5EYWTVGf6vC3pVVYorGR554nOXlVWxBoN6ss5HfIjo6ziMPP0o0HKOwX2F+7hCPPfY442NpHnniCRLpLA4ePPjxdQUGizusPPMicX+YU/fcR2RqAn8mQTDkQ6iV6a8t0Vm9TTzsx4NAJpkiPTOBE9GoOHW6dg/LNcEVkFwFyVXpdHRUzUcgGKVR6xLwRWi0O5RqdTrGADwylXoVSxZJZUdZXt2h0dDJjMwyf+QUK3u73Mytk5lJcM8Dp0n7ZTKKzGgoTDjoAa/AncImVzaWKek9eoYOroBPVsGxqVUqPP/8i4yPR4kno3gDHhxR5OqtG5RbVQamTqFYpm/YjI6M02w2mZyeIBAKUKvXWN3Y4+rNZSrtDuFskvhkHC0hcHXpJfZr61h2i7BPJunzUs3vUd7PIWoi0WiC0GiGydkD+JQwY8lZ/HaIkBBjduYEYS3C3o07FAo7pM8dInxihkBYw64WSPhUsukQkmywn99kJ5dDjafInjjO4cffx/T3fxhlbpSDd53FEBx0TAwMlqsrXC3dwD8W5uzH7uGLV5/mjeuv0qgWmEtlsPbKdBd3OCG/87fMvyvLW610KJdN+rZEqdBGErvIusuYN80PPv4kL71+gYhHY/fKEkfGkkylIzTX99i7us7hQ0c5duQYm7LMiew5KqU9er0m0VCASqfNzuoGDx67Fy0/gFyPWW2Ckckxzozfh73Xx3YHxOMpxNERnFgKrxbELTVZv3yZsXYTt1pEHJhUXnwByZ9EcqGX8bCys0xfMNFFA0GUCYp+NFfAcm0MV6TW7dEwTCRVpq9b9EQHGx3No2A4Dj1sfK7NtdVloqKINdA5NJ2kZvYJpeIEnBoxTxi90CHaU0kIIY4mDlDo1VjplpAlDRkdx3bwuwp+UUMWTFxRxqdKhKNpfD6ZSq1GLAK5XIVev8HS+k2UZ71sbGyxX8nRN7yImouiijiWTiQYIhIO0OsarG3s0a20OHXyIAdOjqAvlWjX+xilKtWWxI4pklQSxBamqLoVFh48xIVLr5CwgnjaMn5zl3goQ8AfpLZVRmgYTA00yqUmfHCETqVFLxNG6Paobm+SM2toR7PMHr6P7aUuIU+YcqfH5voSW5LOyXveR0bxcCw7TdGx6OhNmpLJgdOHmL/rKK+tLoLW56d+5kcwi21Wz9/h3NhBZMlmNjv/nRHv6mYFv1fFaBk06w38fh8+KYBR7vLjj/0A875xrr/0EmmvyiOHzpFrFnj21hWK9SY/+uM/zfrrlzl47zH2Gw2+8mev4A072F6HvXydrWtFpNsm/rZLbr/FSOQQjz34vSS1NJaRo1TYpZLL4/T7rBkrzE4fQLZcDPpEF05SrGzTHdTw1LoIAwnHHGAUa/QGfWKpETq9HaxBDyQZUVARHANZAseV6HQGqC64gy6SKKL4ffRF2K7WMF0Hqd9m19kmkBoln9uncquO4vGx1ysS9PnYvFqirnmIi36Ctky/3aXXG+AqIgFfCAQTHAej0SYZjVGutpFV0DwuPr9FMOqh1TPxR0KcHZ/i1vkLGD2deq/Ifn0HV7Roddskgz6SsQibm3ssr+wRDEeptcp0LIN2rYK9usxaaZV2q4YPFw9euvTRAw7R2RRSXCLuTzHwCVzavMMPPfw99NerCO4AvVlDcG1y2xsMWhVUOkSOHsDuNWl2G8Tnshj5Eru31xi/6zDTn3gSSQ3R4A7UdVZu3GBj+wbevVXijkpyYZbv/8THefr5L3Dhznme/P6Pcu/3P8G//Q//goNHjvCD3/cjODtVPvOvf5uFxBTTwWkq1TrxmWPfGfG2TS+ZTIqpaY2m1aetD2hsNWl2VbZfuMzBeIrQ9GHuPnucjltn6Y1Fas0aokfm5deexW52WbtcptIaIHq9GIMG84fnCHnHkHdVlE2XuBrnyNEPMHrkQYSmwcql10gpYHQa6M0a3UaRTHoCb7XK5sYqrmJTrO1iBb30un7sfhuv00Xo7xM+dYzHU9/Pb/35b1Pu6XSdDqaooFg6QUnE1k0UR0K2ZSIBFVUDZJfYxATP3r5By7YJ+71MREIcmx6lW9vHCnbpI2LQZTThIZ2IYrY9pAJRfLaH/NYeW+0OA0Gk0+3Sc3sMXAtkEZ8qE4r72a3YZEIBZK+IJVpEkxHagwHrO/skEwIz8wfpNOu0Bk3G5jNUq2VMfUAoHKZRqeE6ApLqoWs4KH4v6USC3H6B27kyBwhybHaefq6IoSvIoTiT507i+H0UW1XshsPi5TWi2QQ3ayuIRoeA6UBbwu3FiM+NkvaNsZ67zm5jDU9zniuvvYriSBw7epSCT6fbLdBZu831G9cQSnUGuTJCqw2yRWvQ57nnP8tk8yAVs85SZZPxM4eIT4zwyrPPkBa8pAwvL/3b/4q3bDFixThz7D46TYHRM7ME56e/pQ6/LfFGk1kOHpzj4MI0t9dvsbNf4N75uxjpB7C2dC698jLBgES3m6Vil+gIXbRUmJ1Sk61qk1TAS6vWZn0rz5PH7yLtk9ASPj784Cku/NkNJLtP1A2TkKKEtTCip0muW6Drd3DkPo7cxidppCIBurUKMc1Lq9sgf+EK8x/4OGOxErZeo+7UiDy0gP/ICPLFbSzdIuQJ03b6bHfL+EUFRUswMPrEBJW4J0hIg8nxBANhwE6vRNs2sB2X/kBnYJo4gksiGyCdPYBihxEEEWvQIREJYfo1jK4+fLwwrGI3TAKayow3hdioUBm0MRyHvmvT7ndAEvEHIzRbNXoDG4cS4XCCpY2b3Fov8cQ9Rzl511lEXG5eu4qqJFlb26Vv9nE1gVq3QywZ5+bWPrJoc/TwUWan0ixdv008EicdHWN3t0ut1mbm0CiK4ufO4jKKKtLrd1hfX0UJw9rOKv6BgNcWEHQv3mCY4+9/HMHucqgb5qU3nmW3uUPTN2Bhbh47oyKWPFTlGu2dS3z6hc/w4MIh4pMaB8cPc+H8JZr9HlOzGUbPjVJdreFr+7hx+waLGzc5cfwQI06K/WdWsXNd5pKTLMwfolFpI/uDuKqJSZ13OmV7V+K9cmOJTrvF6xcvUmpUCEdCHLn3KKqk0ZHazCzMofoEivUCS807tKQONUelYllsVep0bAPJ0pGQ8dU8ZMw4pWIVXRpwKD3P9vIi8UASp2tS39lC8tnoviYtfx85KtE2KnilCLq3R7VUQXMVZI8EokhtY51YMMJafYsdq4Tvlomw/BrLF28yZWlMeDPYzSKxkQzNdgs0kRF5FHUgEJQUXLND3+0QTPspXlsm6LHpdMC0HXLlGoLR5/ThOOGgD4/fy9VrK1idNuPZOLLr0un2cWTwKSJBv4zsugiuw+FUBl/qEFvVAnvtKt6AD02T2c0X8XhVFFuhsVHl5KlRxkYz2M6A167fZqdQ4uNPPsTEeJbc7jbgEM+k6IsmXXt4UyPolRFcm7U7Nzh78hij955lJJZF6rnInRBTviy9osPn/+iLYBlEMn5OHT9O4ESYm/nrlLstvIKELotks+Mc/Z7vQZ1Is3H5NXa2rxGdz3B55yaLhTUGSfAZ2ySOxPHF/JT6PY7fd4gPfs+HMXstuq0WJ2fuR/GEGBg2ry+9TrvSYHdzC7PR45HTj4FuMelJ0lVCJCZjtGo9UtkFIifn+fJTn0LSBLZurPF+PvxXL95EKkYym2VjfQVBVmg2Onzm058lZGq8f/oE46NTKJZOtVVlt1QiNhajZujMpbLkc/us5uuMheJk5TRpN4F3R0NqSPRpogkeIoIfRQkRTo/SHLS4cOk5WvYystXEdk2KnTrZwBRjkVnMpkFpv8Tk+Dhrm5tECy5K4hivN2+zUVnDu3eZiORnUhnl7um72OvmsAdVlIMj3Mpt4tR0MC00x4PTszDDOnXDYtAZMJoN4Q+JyPkBzWYPWYR2Z8D+fpN4PMHlO2vsF8sEJNjeLZBMJ5k+fIj9Zp07q9tM9xxigpdwMMKBkSlq5gC700NEpNMfMDqawDItQGF6ZpbnXniJ8xeuMjubpd0bYEsOa/slMqNpzhydZ2ctTbNZQ/ZIFGoVWj0dq+8gmn0mx+NgDVi5epH7Tj+EasH5l68x5kwwkz1MxJvmdvMGptgiI8aZCE+y2tggpo5y97Fp4opK/eYuAi6hmSztdoHL55/hztbL3PvhhygNKkydmKVs1unkKljbA8bnJpk5dJTv/eSHkXwKQjjETreAZdv4RY3VjTVe+vOXyMgxAnaI8XiWJ84+ztNP/wUbG+s4LR0LC9vxgTeAafSwvBb5Rp65hbl3rMd3Jd7xbIS1tUVsx6TT6WN2bZKqF80LbtLL5JlTXPqLZ6g1uzz66IdYK65QqO/h83hwUi4iFkEtzF0Ld9G50SVQc4koKTo7AwZWm3qtQubQvUTmF6gsXaNlVtnt7aLrFXxBH223h2AXuL1/k3KlhSgqtNpdykKVzVad5164yJK9SURUWFDDTEgJfKEwpx5/hNLNFymWLiGv5ggpLpFkivpmDdvU8aCg9ANUCzUG+02mRzIkAhEiGdiw8mghjWhEw2wXMQyRrVwdTBnNEomoEVpdhQtXlmjYA8YmRvAUm/RaPaI+iY7eoVCvEI7FWN3dYmAanF4YpVlv0GwPKBV2mR5P0O62cO0eM5NZ5g9PUdov0R+02Nqtsbq+woGFGVb2CnT0Pv2OTtQTxB9Q8dmQTWSo2zLt/SKWZjA3eYAjwbNMJRcIe1KEXB/V2h4ev8D20haSqnFw7j7UqQDlxSsMem3cwYDlV/4cWRUIyi2OHl0gkU5SeD7P7aVFQsEAI9ko6ZFROu0+pf19Pv/5pynWG4yNhbnr7DlEXSBiikTaXo5J08SlKH4hikfwcPPCLWqlGu1WmbDqx6XO7NwMN/aW8LUFzl85z34tz4VbV3jof/vXf/Xi9UoDBt0aguInFR+afo9tU87tc2npIiE5zcc+8XE2rp1nJBFiYmqewYWvsFHOM5fOMuJNMh6YZjYxzbQZp3Ojwn6tBYrKeCxGd2DQKuRRTZFBZY9o2Me2YaMENQRFBkfA0PusbiySDE9SaTbIl/IIPoXKoETHsXAEk4DqB8tgYPVAcHEzMXbWHXYFg2BlgGwPaAhVQoIfn+ghTRRJlChVqriopLIZHjr+APW+wedbX8FJaKheGcGr0G5ZuJaMR5AIuAopNcWB+Tleuf4G9XoVwdtifmqM5Ru3iXolLKPD2MIBfJksjI5RbNaYSIVZKjcw221KrTpjYwk0UaJbq1GxTWYOzjI/M8kb51/FJ0sMen3mZhcoX1ohGAmhuS6Fwj4z8QiODn29Ta/UQYt4Of3AWYyWjKwLhFNhxL6L5lWQJGh0qkTH45QqZR64+wG2aytomkZ6PMbm3iq59YuYisWgVeXs3Q+zX2swlR5BwyUZiRH2BcE0ESWbQr6Ia1rcc9ddfN8PfgKn2ecP/7+/w+Wbz5MWoxzSxnnoxAco7BTp2AO+9MyXCcS8lIwadbuBbefpVhV2ru9ioqPbfSzbYdD9Dr23YSSuknrwKD3DoVHrIRgug04HzSejSyZPXXgK1TQI6i5f+OPfY2RqlNl7j5FvdSgWq/gsFSIDdisbJAMhlLlRJrKnUSNhmhtLxPwSqimyfv0qtqhz17lj6Bs5WkKFVq1LTJbJulHCvhQKYbwhP3vNPRp6h67TQfP5SZt+RNulIbpoHomx0SwbL72BdHuHScuHLxCmYVTxqgL3HDnLtJRlggyyJTC6m6HWqJDuBihezdF3+oQsKHfaFApNTh47yt7WHgFHwmMLZOQAIR0CXZtJT4S+r02z2kA6skAgFaevQk3vsr+3xc6N66yWq5w4fIK4P8NUqkNA8VBvNDg0PUl+P4coK9RqXfbXttC8KpmRJPF4hE67y/LGBjMTkzSqPSKKg091uf/4WTTbxuh2GQ2OoHq99FttOn2LQrNK806Ts6cfxTOuEtBUFCGAfz5FeFtn8earaGMq19cvEMAme3iafaHPZmWf2UyGQrtBf2Bwz5m7uX31OnZfp7ZbQ00HcCJBFK+fu++/i0BmhEtvXOLCF57DynU5658mOvBwLHWIoOGgJbPslPOMREZZqi9x7/sfZHltke3tHV5ZfZ6YEiakhdBMHx7Vhyu98/tm70q8tUqR8dkpjHoXY9CmuNvl+MI4pdIAXe8SS/j43FOf4aHZMyS9GeaTC+glg7tnT9G0dIxCm5gS5777n+DWaxtIrsj8PUeIRGNYXp3lZ7aINE1ss0VnUGdntYUqaYS0GMgKlm0QFH0obfD4ZKKxFKqkcqO6iF/1kUxnsEotGoMObixEod1Hv3yemO3hSDbB/PhZXircpGyauK7L4uItIkmBk5lJkoEUmdksF25doLizRWVzj+n5UUKCRKU3oNtoc+vOMvFAiIiqoBmQDATwCSL1fJ50IIASmaRmdbm9uES10WAuFmKnVsFEIV9t0TNMlu8sEq23yCaijKVGSMaiXLt6h1gsQCqSod0YYPQNisUikgyu4LC9UeFDjz9BVE5x+cUriF6LxOEQq0urjI6McNc9D6LaDuVKmXyhQHZijJxao1Ddxh116SkSb1x4DV9Uo/HSGxw/cYpGt0EmPE76QJZnn3+eUUa566Pvx1cv0StXmTx8mBvXbvLMl76CZDtUSiWUoI9kJk6t3eb43DTlUpXPfObzhGQFte0w7kTxuC5JwYtdbbBVayJJHqKxGMeyB+gZPayBTK5Yw3EgGvCi2jYjvjC2LSAKHqx38a+A70q8O/stPOEaYxNTFPIVYnGJuQNZMgkfpe0cMVcjcOAIMTWB6ddZXlmm5y3RdwcYlszpqdMcnDhIIDXL2Y+cYeXKHexOi607SyTGs8Smxth+5UWkfpNAwMNA7IM/SLnRJRMfo1nPYwCWq2O6A46eOMOUX6b2mkOlepu1vS3Cooo/GOD+e+/nmS89R81u0PWEcXEZ9UdJBRQqHXAlhaigsL+5xkpFoR2cIBhJI/RNfIKK15tmJ1dgbHIC3RDQNBEl6SWTznC1VKNl6JTEDlgOdG3M5oBgKsj09ChruQL1dptoMsxOqQaWyng2iq9Swi/DfDYBIlT7LS6urOAPedmttek5OVzBYiDYjMyMUanWkSU/I4k0le0ye5vrJE0PE4EUtUIVyYTra2ss5reRXJuIFER2vYhumIUjByiHGmzV16DTIn1ymr7dYTY9ynZtn6bQxBH8bA7qRGenOHvvfRiVJrtXbxANBfnSZz5HuVgkHAmSHEuRNSbpuw7Nvk1rr8hf3PgLJmJhzoazaLIXJajQzTVouz0qsohiiISUMEKziVWvEg76+ZGzn+A3Xv80STtLdiZFXPUj1LpIPZO+bFJotxh8pyyvbjo0WwOinT7RmJ+a2aPfbxKN+fBLWeS+SCY2xkxgDqVpofgMruZfpdB1GEnNMpGaodPsYTZ1rE6L+cgY9eduU9xYIfbBx5BtkWa/i+IO6Hc6GKbAPl0qehsrapH2hQkYMqrqwxQ8CJEobiLAcn4XbypMrdGiZvVQBB8vvfg86VgMR4xi9XUM2eKNxTeYPjCBThJfKoLX9tBq7ROLBhjJxlGCUdw1k4mJcdp2l2g0zoFzCyw+9buIrsNoKoU/FODEfWewDIvdtS0K+SKmYxLUVIqFJn3ZAklhYWECn19hajrLcy9cQ5JUgh6NgWFwY3uFbq9LOBEhEQ4wPjvB7l4O3TSYnpnkjau3SI4kQYU7myVmp8bYunmVmUCa6YVx7I6E2VSZS88yrQjsFndod+r09A7HZucZTRwkKKUoltvs79xkYWGOD9z/KGbQZr2zQ/F6mYVolnq7SKtZJF8qsLedYvfOOoJuY3Ukjp29m+/5iZ8m6hcpNsoEQ0H61T4719bJ6VH6ahNBsqlUKmTHkyxvbaJICnc/8BBrl27S7ZgkVBmP18ug38fviGhtiwUyhIMB7j31Pqq6yea1m0iOwUZ1A4/rI5vIfmfE6/X66fcdVpY3aXdbSC402i021lYZSUVxLZWXX3yKc5NH+Mh9j+LYBl4xwrmZ43zq86+xeavET3z4F6g2WuSurRJvgZqrEOyaOJU20XgSTzRCv9BFchVcy0ZTNFTZoNbu4kUljA/J40cNR1lZvIUZkhD8GobQQ/Vp9Ls9HBsc3WB+ZpyRkREuXr5Ip10nEo3hFVQCrsKg3qWj14kpXnpmm83KBrG4FyWrkTl5gJ0rr5EZHeXq6h36pkXPMlhdWsUSoS9qzB84yOmH7mV7Yx1FFNjd3aZv9Cj2DASrg+oLkssZeMMJpmYn6dabyCIgKIQOTNDPF9AFl/rA4og3wMTIKOV6CUQJ21IJ+FMMbAEvGrl6AxFILEywXM1RXaoRtSNk1Qgz2SyHzkwjRDSquSr9okGgp9C4XCJoh1iYOcitG1dYXlvB8plMHh5lUoyQv7bM2Y89zqmTx3nxpefplMvcf/IU0yPz6D2b+OQk7d0Sz++sUO+1iYeibF9chK02J8ePEI2O8+KV58Hs4kvC+07dQ73YIqxFiRJnIpLC7vSp9js4kkswpKGqIpNqhBF/kvbFVeJj4xRbNqapExa9+IJ+ROWdP4z+7t6M3jSxHZFIxMP05Bi9do31zU3S6Si1fhPDlNCjFvVwlz9b/BIDq8NKqYZ3fYXHP/QBxE0BbXKC5MQJeoXr5G9c5KAWwA4FEFIBorMTKFcCtKoSmiAxOTHKyYksi9ubbG7vYCkemrZCIJXm6Psfp9SucmXzOj1FZ2ZqFKlg0bM9JANxwi0BX8emtZ7j9NxBlrcXObAwRa2yT6lepSe6KKqGLIuYMYkrmzeobl0gPTPB8s2nubW3yKFIHzWo4ckk8EpRkqMx1rc32NrbZ2X9ORQBZBFGM3H0fp/RkTRnTp/E6tWZnZvm6RdfI5WK8oEPfZjnvvwcK8vrrOWLfPHyVQTb4cP3382srFEvlulbFqrmoVStYRoDnn3maY7dfZLjJ4/RKpa5/sYlxjPTaFmRXlxnIjhH89YG+3u7RAJpRucOsFoqYZh91l+/wKw4BgGJrd4q/kScyEgYu11n6/deR3VcbMNl64V1nKREp9yiXiixWTIoXNmk3TYYPXiYQDbBxYuXCEejJMcjRAcBov4og+062yv7THqy9KUAnbUie3c2eOSBJxms18gSR+nL9AyRlmBStuosxCap2W1injBCz8Bs1Ont1JgOyKx3arhih6ZgsLVX4ke/E+J1UPD4/OzvV1BkB69HxBYc+oY+/FmLYTFzdI5yo8Ot/TYoAm3bRK23WV1aJtpNIgT8dJotEukEox96lN7qCm23QXghim8syuShOarbG1i47JZy7LbKmJKM40DbNrElE9tuczDuZ2Y+Q8fX50sXP0s5ZyHpBurAod0qMRYYxWn3KVTLVNcatO0eckAkV8mhe1RarknHaLMvtpDqQXYHeWp2n7X9JoVOg3Qqw7bZ4FDmIN3aJo5ls3npOoZtE9ZEvFGVbDZOsdDi+JF5XNOmUWty5fXLTE0mKBdrPPTggzQ6bW5ceYNTpw4SDGhYgkBJkmgUy+TyOQ7dez9XtjaJxsP4kzFaA51MqkWh2mJza41CPo+nYzEbyvLyZ54lnUqT8qcxU3X8o2mC0ynsKS/OgRinpj7Apd/7CndWL6J4TAJKisz8ArGFWVZefYXCzRViHR8eUaPn9XLq3k+wvH8DR99BlgIYlkM6GWP20Cj+mQO0HZuwN8gj9z3BVHKMP3n9t3HxoFt9wqoGpolX9uH3+VFQqS7nuWvmPrqlGrIgI8S8VOnSate52d5iLDFF26gjdSwmtDh+xY9/Js3OrkG7s0MHC0OU3rEe35V4RdVHOBrAq8HhQ5NcvXYZRVWRPSFGJibYz1V4+aUVZFcgncngCCLjo0EiHo1BvUbP9tAv1wmMTtDt5Om3aoijEr7JSRpaFaHTplreomc3MWQR23Iw62Aj4vMHsBWR7WaR1a0CzT8e8KEPf5SrL73EA1MnWNy8TDaaYCDYyI6L3ulhKgaOLFDutGnSpbB6nZLZQonFqNo2XdHFJ4uEVJ3rgyJd2SbuE+kIFnulFZS6h5eWLpMOhug0aoxHAmRjQbJTowwGfQRJotdqUtzbwtFt8ns1LMuhVS2zn2+hOzCzMMn9D5/FMHucO3OUj3z0w4SmZ/nzP/scQrNLu9ngAx98nFa7yVPPP0eta5CO+Tl0MMHMyTNEAwnWnr/GE6ceQG/2eOPiJQqdfXYDmxw4fZKD77uXxAOzWH4TeeCy0DnHWmGDQlBhMutDmfHyxtOfIeJ6Cfn9SIJEH4lDjz5BbPo4xydHeeHCeRYO34Pb73DugQe4s7rOV576LIcWjvAzP/NztIoVrl14jfX6DpbrIiAy5ckQdkUEy0VqOWT9Y3htP5Vai2DQS7drEjw0yasvP0NNrvPI2dNo3jiLK9uE/UGOnD2DR4shzaSwl2VWXs3h9cYJ6P53rMd39Ru29x0JsnAgzcRoEhmDjY0NerqJrHkxLJF6q8u4Zwy55jLrnaZWbuJoDgOaBCIGpyYeINNaIDAIE2y7uPaAa/mLrA026GkGh8dmiLsariazvLfJ0ZOnqJWaxIJxCvkKtzYX0Y0+ISWA4khkQklm52a4cvsiA6uPLdlYpguWS0QIEI+l2LeabLT3aUodynYNA+hKMjXXZOA6BASJsCRj2QMcv8KZc4c5MT9Nudziy198CckSSHoDjAXCHBnNsrxyCzveJxDy448EyecLxEMpMERCWoRrl2/hChKx+Ai1Xp++0GZhPkk44qHZ6OHzhphdOEwoGMTo9Cjkdkkn4/Q6bdrtJmfOnmFiep4eLiuNKpcvXyd/dZ0PnbuXI8cOocaDDHomAS2MnAjjG49i+Qa4Qg/JAqNt4+LDsgR8ioZHVCjvlmheW6Gyvk9cjuBaIiuNBu//kR9ClR3+4A/+K+MTIyzevsrK3jooIgFLQRJFIqkU49MThENBijs7DKp1cqubKD1QuwJpKcZ4ZAxjANFUmoFjMntgjmAkSUeCX/rML1OyCwS8PhJCkA/NPcm5449Q3iuz09in6Dd4ffsmi3vLuG6fjODnU9bWO9Lju7K84YiE7djk8vv0W3U63T66Ab6gh/WtClpMo9Zp4M05zEzdw5nsEepyi2t7V0hnU5w5cxpWolRfWaOx30J3u/hUC6XTxtNu0+6b2GqAgU9mr5En0RpFVhRSmeGzAP5VkZQniuoKCI5LwDCZjKZoJ8bZKO/RNLoI/0df7GARC/sQTJOBDrokYpoSsUyaUqXAwHBAELGBlqEjyiK9/oA7y6sUd7ZJRNMcmJpmY2WTlD+MZDkcXTjM1uYqXclAUCWa3Q5d3WAqEqReaFKpVBAFEVnxMTE+S293g2q1Rq3WQpYcem2dYwenmE6k2VjbYH19Ha/fi392BtcWhq7Eeo7J6WMsr22QPX2EX3jyI1Cuo1er+GJenKCMpw+uKdETHGqNPCFTIBaQQBARohqO4EF0ZGS/B9O1iKbSZM9NYe43qa3so0kaactADvdo1bv84E/+OBt7uzz92gucX10ESSLoujiOi7Wu4FyWiCbjLCSTvG/hGGFFolFs0tpvMuhaaKEwoVSU/U6LU0++j+RoCsERESQRKe6nW7YwOw1kyWRrc53DUyfZ3b7Djd3LrMo1lvUCVbuPT4Km1HjHenxX4lW1EOvrdTBFOq0eqgKZkQSuKWN0ajTqBnMxL2NSnHPp+wklJ3j2jc8Rd5IkfUksQeBO+QJOoM2xkzP4+km2Nixm1En29A3G5iaRVQ+B0SSeaoxiLU+v2mM6kmWUECPHnoBgjMsXX8agS9/sc+vKebz+IJKpoNkBIj4PgUySm4V11sv7+BSJiA59wQJF4ujZUxxXBV585gVUUWW/XqclunRsG1MAvWqQt00i+RxjAT+C7bBe3MXv0fjCxk3eaNQJ912kapPHP/gA8UydVCjBaHyCw9PHKa7u0ewOSE9lOHnPDI1GlXggRK/V4ubNa2zc2mIukGXCjdIfpFlc2yJs57GqTZ48+35eevk8f1j6EybvPkY8kaDX7yJ4TJRRH13DRDQlRH+AwcDA7Ov0O33yhQaqXyMaixGPBFDsAR7JRNFFRNUFs4/dHyD7NGKnfFiijGHbCF2D1Veucvmlq+SKeS7vrdByHUxHJHRgjCOpCZYvLbLTa7K6ucPG9g4r17cIaiEUWSBg28wmQ1QjBmfuPkhUUBk7dgZ9v0q/UqVpNwhYFjEEosE4qqMxf/IwL1/6MpVSDjBQBwNGZIWZoBe730W0v0N/ZaUbOsVyE1UAS4dY2I+GS6NY5dhomu52hyPOBPcfup9MdBYjkEQ1PPh7Gkcj89y8vcjt4hIeQ2IuO41qCiiGTEIK0Rf8PHjPQ2y0K6ztraNbJopXxbE7NGsNgmKGZDyLmp6ktlfgzs41+qaBYZvY3Q4+X4BWq45pudQaLQRHwTBNvBb48XJiaoqsZtKutrj7vjOYx1v0uzrV1hV0U2eAiyMIdAwb0QEFkVqjQcDnA0OnY+i8euMGfcdC6glogo98oYss+7i5tI/R7FDc6hJUgwQCXoLhALeXb1Ddr/DGnS2S0QR+2UM4HUbz+khPp3nluYvIusyc9xDjMxGaS1XmJ04S+9AY0w+eoOWAbhq4toHq1/D7AgwGLq9eusGt5RWq+0XKpRLldgNTgVAgwMzoBB994lHuOnsYV7FxZBPRMbCxGRhtHGmAI6tI3gA4EguPnOOV515mP59HQ8IrySQyEX7wEx/iuc99hZbRw1Bluo6F6LooDND7Bn1HJ+aK7OsGdUmhduM1Dhw4wqjeYG/1NlnNz9LFl3n82Bk+f6FESFUQHJFKc49Ce5f4aJhqvcOIL4vdzJMNhlE8EaqNyjvW47vyeZ8466XTNvGqQ1/KLxnEZI2IGkHtyCRrKRbEY0S0DLHwHLFsGitmYQ1yXLr657y0fxl3NICmq0wPsjw0cg/C/gDX7EFYZ/yBA+Spstcqc+nWDRqNLm7PRGuLHFPnmQpNEE5M4k8EeOX6izR6+yBYyLJCzxHpOBYiAgZgI4DtoLkuqurh8OP38PTyRTZbazx4391cv3qNaqvNdqtOGYM+DobjYgsgigIRB2Y9PiaCEWTBZamUR5cEHMcl40+iaQotvUEilaRartHudBgLpPDIGlGfiDfiJShJHE7OoNUF6Dj0Ok2UsIp6MElua527Zk5R3eoy2p3FLevYoxLq2SSzf2MMI+BS0l3wePBpErLgsr2xx2c//0VeuHiD5sAkoGp4PRquImKJNrIroNmQjkc4c9dRPvjkI2TTIaxBGwETx7YRRQnXlcEMIGLgVT38h//p33D9mZuEg0msAOwOdkik0uyubWEaHpqyhOm6TMRjdDo11npNaoqI1xHJWApZwUNWCDIZTXEwlsJTN1iIj1GqVNGmVWpCg/R0hldfPU+90aFj9smOTbK5U0ILqIQElbDgohg6hj7gHxmld6THd2V5+12dcDiMV1VB72C2DWKRMAeiacy2y8HECUa0o1T2qlzJ32CSAxw+epTi9hb79SqCa3BwbJTKdo3p8Qn8wRj9dhdbV+gLHZ575QLjd88QjafZL5bxSkF8goekGkR2RfTOACEkEA4nCfjDNPQKPauHMxjQEVwE2YMkq1iGg+xK+EQPflHFFgUCaoRmtY3mSvT3m4g9l3ari+FaCOLwoW4ZB8d1sR0bVdI4NjPPWDBKYW+bczMHWauVaPR6OI7Ifr2OLMNursjk5CS93RxFQycTiaCGPZiDLp3egM3dTZJWlIXYLLW2Q66yj2PYOD2XplBGKqtMKiOYlo416kU8maJhV7C6Lt7YCI6qoRsDdMvhxtIqr5y/RGtgo/lDgIukqiheFUECyXLw2S52u8Pi5SssZDOk7z6NYYM3EsGxXXTDQnJkRFOk7zVwPQZzR+dY/PIyT8w+ii7pPL/Spb6+x4gUJhafBl0i5CpENQ+3asuYgkVH0DFEBwsTCRWvA3azhdkTCFkSg26R6fQEF+5cwQw4PPaRD5EZneBf/Ma/I2902dgfkEilKZdKHI+NEVf8yIJE0eq8Yz2+u1CZ48XSRXqWhWJDUNJYyB4g1A1gtcEfjJEOpYlORAkqO0hWl73rr3Fn5zoTh6fZX8qzvbzO3MhBVMmH6yokkxNofj+LW5fRqxYeMYJf8XD33L1sb+zhtWWC+AgIfuL+KJFUCk86iTcSoFnuIckyujnAxEJxPdgOOK6N6Mqo0jAuffDUMVxVxdJ7iLZJc68MpoPjuAiCjCABpoUEeACv7CWp+Yj5w/gUD/FgFDUYYL9axxIUHGuATxRxsGkbOvlqhabZR5BU/IJOrtljLBgigsbh7FGO+g7i7Uqk1Cwj9iwt1SIYEintbdDr9hik+vSkDolTYwhHA1SEMo4rsrW1zbXby7SbdQ7PzzE9d4BP/uAPcPX2bfr9PgFNIxYJUSjt0+00mUgk8OsOUS1EPKwRq9cRd/fxBP2I/jCS5sO0HVzHwZV7CAEwRYuTZ8+QXygzJU9hdPtU5cOsuhIBMcq8Oo+nZ6PZBs2mTjM2xeSR+/jZBw6xfPUq2186z9nkASIDDavZJWl4GfeESXkTCEqUh9//Y+Tqm/zpp76IEJIwvV6yEyNEp8aYnZ7k9c/+BbbTp9HuEBAUYuHYd0a8Zk+g0xn+8jWgSiiGiNtRUNsBzk2fRdNj7F2+Q0CSSMjG0ALcWMPjNejVdTrtPqGRJOFImttX1zhyz/108y18rh+/qXJm5DBS2WX15hIZOY2juujdNl5TQRFEzN4AyxpgO316dh/Bp2ILBrYrEJBCIGnouoHkgCKL6PYA23CQ/DLJdJSootLQHVrlGqZkI4gCpmSjer3otoFXUBAQiAdCiLrJ2tYm7WCIsMfH0soqdt8C08F0e5iuRcjrR1VUVAHsYIBCvc7y9gYxQYB4Aq+cJhDxMb1whmbNYPO5Z0hNZqjlNxDDPsKBNLLfwTggUtyrMnrMQ9ndxZYFFCXEH/7W/86FKzeQsZE/+kG+7xNHmZqZ5IEHz4FjIls2rm3Q6bQwem2kTo/CzSWKK6vIHZlGu8t6qULi2FE8Xg9ywoOqaAi2CarJQO8hyzLxbJqjZ44xGzxJ69oO2+0kHbNDXIoQK0mMKiFMqUc7qvDxv/0jjD9wmpBsk88e5NlrLcItBaHrguMnIYSQeyLdQRdX8nPwyD30bgmsvPIUHalDYmGC7U6dW1eusbK2SFqUmMpMMKoFKeT26Fr6d0a8iWiMvXIe03IRfSJW16FT65PFi9T1ouLH5w1j9hr0hTbrO2t0AwbHj51gu7SNZqk4FYcb+zc5mbqbVq6O0nMolNZRBYNOq0W7UKY7aJFMh5gOTFCu5fAKw/8rcEyDZi1PSA9iqCZdsU82naK4k6dj9hEMC9UR8SpeRFFgIFjokkvFqrFxfQOvbWOjYtgWJjb+cIi45mezUQFcVBFUUcIyDExTZ73WI98sIzugqAqSIGM4FgGPd9iZTZ2wN8DRQye4urKEJ6XQ7HaISAJBvw+P68Era9x5+TVU10t8cpy+x6QmVNjeruEbiXPukx8kdmoKqeSlpe6jOwa64eWV1y9w+84mti0TDvpIJ5PImAiWjVdx8GleNFHA1nvEgzIaETYuXUUzOoQEl7VbWxTkfUbGq8z6vUzOZem1LFRJJSBIGG4HTQfBEBA0B3FKYH+wzf5glVQ6gacu4nFEEqqK6PQoy1UOfeRhDn/kISg22P7KJQbbRR44+X6MpRIBOUC7WEAY9PBYNqIkYIs2/ZUNtm8sEcCLKNvs5wvk6mUarkWo7yfiH6Gz2yF4aJbUsWlub69+Z8QrYJJOR1GDEpMjcfYubbC3u8d0co58rozt6Jy+/17MfoWVwjX82TnKjS3WymVkRyXjxjk+eZKV5S1Cth+9Y5EcGUPxyOTytxE7Jgndj18K4HNCjJ4+SdWzRHlrB58DhqnTNtq4AQnJr6CFvDQGbXRsbEdABWQBVFHEVUXqnQY1p4M/H6Kc32ViLMV+0aHQaeAILrboYgsOhqmD7WI7DjoGXQDXpS26KK5A2OPHJ0kEJBXZ1khHEvTaHboDC7M9oJ6v0qu2UaN+Ah4/fg2OHT9G684+m7vbRNsdpqcOkZ6foqN0EAZQ7Td58Id/mOmPnqMbrhJ009R2djBNiWt3lvn0n36RdsdAVX3MTI0zPTGOawzQHQOvz4dHU1BxQdIQHBnRGDCezdJd2eBOqUWuOmAyKlCvN2jUK0yYLYxuHVkUECQV0zJxHQ+KomArNoc+dgx3sw/SGCz2CdyS0Et1XLND260hjLpMnxxn9Yt/TuvldcZTh0hEFrArFQqdMh6vgBKOkj42h5HfYXdni4AvSqdaQLQswrKC61j0axUk1yKJj2jfR0KNcnLyEClfli+/9AJls/kdEq/QQ1NlvKqKYFtoHolB30ZKRUjNnkX2Z7GDHqobO/j8cQ6deJj2l/+C7VvrxEMa5+afZOHAOcY8eYJyhEKjjXlyAjGbIL7ko3vtNma+SK/dxnE6dJe38fsieI4l0Dt9nIAHMetl3+izU9im5bZZrxcxHYEoKiNiBMPxoAgydbtB0S1Ts5tMyWNEkxH6zQH9gYEjCAxEi4bepdkbkPKrqIqHXqONa9vIgCQNZ9im69I0DQzTRrAsoqqXkWAMOZIgl8/RNns0u216goVjGAQjYQTF4VZhF7lZw2MLxOZnST94mpA3hCrpdC65RE4cIv3JuzCDOkq3jOhYDFDo6gpffukyLd0mFvIS8Kk88dBZ5ibSSIKJJHmRXBuzWcbVPGgeL0gygqwSnfMwbjuYHg+p67do1dtYiogoO7jtKr6Aiqpp9AYG9qCHI/joKTaCT0ALhJGmVVITGeR7+pjbGRq7FajW8XT8zN1zkGq/wYu//Vmmu2m8k2FuVS7S314nZos4toeIP4iQMei7K8iZEi2px6H3PcIDBxTcp+9QbQm4hsqkECPgG+NkappurUXMCSM0JGY8UySNxndGvDOTcXb265TzJVRbR1UkxqYPcOSBh8kGH8LerVG4cZHd29cZjcfpXt/l7pEznJ25C59XRwskEL0ZWs4AX2KEeEJHGomQq+UZnZxCXtplYBUJaUG8Xj+tXAECfsbOnUNSPQjjGeyoy6f/+F9R7VcZOTxGadsgl6uSklQkERzHxTEFLNdFUTzIVovbN6/z/pOP0Gv0cCwby7UwRQtHcBFcm1Q4Siwa53ZjGUESEG0XTQDBAX3Ya9FNC8MRMC2Z/x9t//Vsa37fd37vJ4eV487h7L3PDif26YhudAIaAAlCpEhxSIoqjcZlj6wLl8OVfeGyq+yaKo/tssdTKmlUMyNRGoqiKAaRIBGaaKQGOvfJcZ+d8145PDn74tj3QJW61p+wXuup5/dd39/n41oWYRIzSj20Wp7d3im90ANihoGLFEecKALfWr/BYm6F619/E7NQx98b0B118EKJr/7+f0bcFEn9AQV/RBQlhMj4mUBnMAAhpVpUmJussLo4iaZkyJKC57nkdRk1ihAyAVk2cL0QRIFMEKhcXOJyTqNZlHn0aBuzXGP24iJZ+uzHF4oKUZQRux7IkKUi1fokZqWGNbTwfBtxXkReblJPp9AiyFwLsWAQ3t3jN//BP8D9+JyHH99Fq0p4yohWGiIpNWQhZefpJmptzOyVAt3zDsnph+z9/GPy/gGzkyYXqxcxzIt0+0VkQSfIZLrDjMtr8xSVMdVc+YvBW85LpNN5tKFEHKeYisnS3Crx0CU42aZ3bwvreIu6ZmC1eth9l8r0HLMzqwxOtvGHA8y8TLfdp3LlEjPX1oiHHYKHO9jLAtpkicFmRLVUoDDZJB12GEU+Z91TOqM+aq+OMClhlnJ4HTjunZHzYZ0GM0YVNYYpcwpFzbNR3eBh7ynXm9fx/AG943PqlHju4gY/3b6JokoIkoyYyQRRxNFZC1XXUDUVdzRCEEXkFAQB3CAgJUOVJHRN4HH7hFhKyXIyJVNk2IuQTYUgjJgsGChOiiHKBH2H3fNDmo0nVMMTjG6AlTg8/ztfY+7NqwyyLmrmE6YeXhwgmxUca0RBCDB10MWYlYUpqpU8kgRJEjMajbBaQ6zuKcurl9EMHVkSiNNn43pZBrWg0lybIysXiDIVpVbGl6CQKyBrBeRMxk6gPxig6hKlJCbwXRTdQCvWCTLwhBQ3SZD8iGK+jEZKlgZ0dh+StnusLeQRSybnx3ew4pCZiQVypSI6I8SCQ/d8B1EyOf3s36NKIVPLEpXJHGY8jzMqk0QlPFWnJGkogkRxosbS8jxBq/XF4B1ZAzrDIZmiky+UUMYKDx7dZ+2FDTbvnjItlMkrEqkgEJsylakZBDMPik77sI/tR6y9NMPM3ALWqE/O90h3zyjtd1ALJYJgQJC5nPVG2MmIvj2kndr4/V3m1lfZebKNvTemenmCvd4J4anFEhNcV1bIkUfQRF689AKKoCMUyjRq8wR5n2JD4a//4x8SyyKl2QLFikl9ZRnD7fP4YI8wTOlbDtVCEc006I8tCqZJMrJJspRIyAgySAiJ8ZFSnyiN0DyFwYmHoYq8/dXXuX/nPhUzj3/c59L0Eo04R9iFD//yXdakaeakHKWXFrn2u1/FK2cIYoREhCKDF0ZIQojVPWWhqFIuVFi6tMLalTUKBYNMyDB0jdmpSax2gNUJ8P0RkishKM/m24qskCUxsZIRKjFW6nJydoreKJJXiiAb6GYV1Sghyjm6VsDY9oj3dzGLI+rz64iSQZAKyLqMpMpIKRhhSP/Dj7j/R39CeG8HxgmmWCdRdBYbk0xPLdI0GgS9U86PdxEGZ0gXCsw83yRzB4hxSHGhRhZlJCcxYd/l/KhPJEkIpDSbNYThLvJwB2909sXgzcwiqeuimzqCIDK/MEfRyDEKDyk2TU6OBshqAcXIM3X5KuV6HS9NyXJFcssraI4HcUipWaONy96Pfoz4cBd9OKRrdxlkForiMg4HDHptgiwh0QREQ6U4oyN4Ll6/y2efbxPHIU2zwVuzr5LbS5BilQSBJILx6SlCMWbt+ask9YQnR7fImUXGno3TPcElJAwDnu4f0rUcDFmmYhioGYx7fYr5AuVimY7jE0UBifrsyRaQ4Mc2miyipSLX5+aR44hRv0M5TFiYqBHGGZqYI+2FXJ1/DqcfIMh5rk1eIvMHmNcWiMoCfjIG38aME+QsQRYSKpJAPYlZ0hTKOY0JQyUvS0CGoiqkcYxARiFvcnF1lTBOaZ2fYuaLaIZJLEmkcUQS2vjOiMhzSCIfMU1QRRmijNAJSeMAo9xgdilj0G0zGo5IXZ9SnJCFEYJqIqcCeqKgZhrt23f46//qn7Ngj1jNF2iPznBzIcW1DW58+VeJzh0Gn29ij7vULi7QzULmf/tFxGYRI7I4/eB9cn4fb5hy94Nj6upz5JMCXmCjChm93XO00QmO3SeM/S8G7/b5GEXWmalNc75zwt2tbX7typfo2UfMrV1mxx0xM/kci9dfZe/hU6SKQbGSwxvbRHmVibkpMstGKijMTy5zducOYRIiSwn+sIuVDolCGz/zqBbriBlYwZCTXofN954SZQlSAnEuo5ApzJvTXGyuoAxdup0eduixe/tTclIdITXIzcxhSS3ubz3G1yXcIKLbOqCnJhw/fcIocFEEATGKETORer2IIUg0mlOcHR+TpRmSJFKrVxn5LpbjEqcgilCQFP4Xv/P7MBzx7T/7Y4xxyHSxyuPdfVQrI69ohE/GrBXXqZbmyBXLHNCjtFojzRzS2COfZmhRhBAHSKQURZHJGD7b3GLxucu0t7Yo1YqUpp4t6JiKgpglxHHMYDhCN/JEUUyWJiSBh+c5BJ6NnAR4gx5aljJfb5BXVAxRIg0jBCnG9cd4fsD09By16XkOdnawbA/fDyjkBURVJCFBijLkVOfJD+4wetonyQOmSKaJqPN1Ln7jHTS1yf4Pfshg+xizkFKeXyHRTM5HKYPTba5N1ujsJUxJZYRhQnTepjht0GjM0rNDDENm/2ST484AKa8ydXXji8F70rUp6yoj2cHadVguT/L2jV/l4OFDztsdpKKCnw4Yn2+z//AWe09vcu35y/SPz6jIVbqnQ0LHpixPI3VDNF0iXqrjxzpnu6f4YYxZqiL1LCJRRS+YRD0bL0wZ+RZFs8BEsYQU2diCBMOQvZ0D3lx+Hde9TzAOyZllMlFmcX2JrtXi7vEH7LrH9P0OQTxmHLucBA4jIUXJ50g9DyGJWJ6aYqJY5OjohAW5wERzgVHks909RpBUUnyECBBEojQlECI+unMLyXVJFBXXCxFTmSv1RdQxXFGWKPcNTK1JkGnErRZeVUDdmCLARcpS5CSFOCFTZRRdIOw59Ld2MZ2QzY8+R1yaYe2FG3ieh2xqZKSEkU+UZCSChp4rMZkvkSUJaeijkCDJ4Ns27nCALBXQCwaKJBBHAYkYk0oacarhJhHDsU2+UKQ5u4xh2ciyjBR7pI5PIovEToaw52BujVjKLdJoSPSsQ5J8ges3XkexRPbu3MLtBphSDsGzOL13zlCz2Fh5CVOucvA3n5Lv5bh164jJyTlmpl4gJxTIkhjNKGLWC+StLmdjH1XPUX/7G18M3tEoZqFcoy6WiTybVy+/TtGdZtJI2Nm5zUQjx+joIWUvIjnZpVTN8eGffQhJQjEuIyUK9YsXOX14Sq3apFQu0XjnBsZClaO/CplyMtTQYNO6Q21qkY2vvI5y832srVuMR0fUJ2aQPR9pFPLi5AaDtseoP8aZjVBNk3zkERMTpAGiIXDz47/lL598n+1on1AM0CWVRIYQmXHsUzMMcoJAOhzi93pAxvXyNL/9wtewQo+/ffQRrmfhpAJCqlATNVRZpRX4BGnEX37wI+ZmJrlwYZa9kzZCz0Z34X928fe5Ur9EX7LxjBLVxQtkbo9KTUFbrBMpx8ipgChAJolkmkoY+Yi+h9vpkXYdZEOmoOYQE4EkTtEVBUnISJNnuxjFygSCopI3ddzRkCAKEZMIIQqw+h1sa0S5kicjIRVj/MQlERSSYIwoFyiVJolT6I1c9FyRysQsYuSSejZEEZpWQTwbEHxnk+ZeyGR1g+aVCeL0hAe3PkEKdfwTF1mvMP/iIvbODv74jOODTWItpX3HpbkwzeH9BMPNEYdl3Pwiq6+/g3vS5uzeJmZ5iuLEBNOWieXFBP6IhC9oJZIs5eRkgLfnsl6cZXlmns07NzF1ky+/8Xc433/KXFPHPQ340uXnyJQQd7CLG0UUpqaZnVhAUXQuzs3jRQHyZAXpwiyxKeC5CcHuKblIQtIkvDSiNxqilIuoRZ2obzE8PaKYb6BnKkKQUirUqdaWUBbmcE73ifWUNK9z5bU3KCwvsVCLMHofoTklxk4XJw4IhRg/jSkoCm6niwJUJA3CiPFRi1cvLXH8yS0m1pbwzjqUFIX19UVGoyH7D7aRUhnDrNJyBwROROwF/OD2Peq6yVuzaxRbEc18k8QVKF25ThZGGM0yw+MuxtoiYuohZxGREKCILrIUkOoqWRggJlCYqFBZbBJkCY5vE7gWOc8CTyROI2J3TJZmpIJEiA5iRgykooyQgDe2GXd7pElKJkAmQkaKJAgkmUiCTCjIGPkKSSQSRimiHaLHIpH67LCnjn0G9x5y8gc/I3vvmIXcFLGcolcXST2NlY0lihfniMQpDCtBm5hBWamQjIfED/MEoyEHd86RkiL19bcpKjoHj/Y5bNkkP71JPV+CWMBrtfAJkYIhRmwTuwHOT/+GBr//nx6vroGml6nWJznZOmXgHjJh6rRaZ1zMvUFJDfGOT5kuznP/9s8ZZ0OuX7lBkKpMvPHryJLI+OZ91I7H9vCMiy9fZtDqUY+hMtZwuz5eMKSTDjn097h5+DPayYDToEtJlpjRm1SVEpopYzsxS+vrvPqV30Q1m3Q//iFW2ONk6OC067x+Y5ELL13miv8y5498jg8GDAObYqlE4toIaUpJUSmqGmoU0dCKrOZruL0+BTnBs4actPeJDIlcW0KWZQQyJEHCSGQ0rYwgRsRnFnEYcOyF3O7v8Io6x8npKZFpMn2lQdQ+4uTgKeVGiWxlAkHy0dKIVHKR4wG4IzAKGKLGuH1IZbnMRLKGbbmkRZM084mGHRIxoNs9QxUzVFVBlDXiyCRMIiRJI8lExBTaZ+ecHh5RLOURxAyyCHc0oCzWEVSNTDUo1mbJ9Bp+YIMMlUIJNQoZhD5azeTBez/m+3/wh1w/Frlgi3StfagXqYwU0qCPqEaE8RBPNGCiSuHqNOr6JHG3T/niHGF7wCd//h2qk89T+PVLpInH0f/4h8jOPklrQC4uI6QlyFLcU5so9ZCSCCkZcX7vQxZ/QY+/FF4pVdjYmEX1Je7fa/Gz2z/mf/mr/zlCFBAc9+hvH5H5Az7Yu0WlapCNA1LNpJxrkpy0UdeWicg43d/DmCqTuC55U8N3xtRyOXK1Jv1egBD3GEUniGaCFY5JkajkL3B55XUON7eJfIFqrs60UWdw1OXp/Q8JBYmjyMIrSbx/+32SssCx3+UnTz/h04PbBGmKICv4QYQdRggCpKRM5ArMG2Wurqzya9/8Nf7N//v/g2yYqFJKMVdhEFo8ebRLLIqIiYIqpEw06ow9i9Afk1M0ppMMH7hSnafYhfFohGC1qB4eki+pBGmCWCmSSTGxJJGkMWICpCqZoOOMPZzBiDDuY+Rh6fpFvACUvEmYpTijMd3WGWOrRyGnUykUkBUNQQuRzATJMCH0CVwH23bIRIkojogDF0WRSayQIIvBrJKRR02zZ70cmkKqSnQFH1VO0RKZ4Sd3uf/u31Il5MqFORLrmChKSGU4Pd7BzGJSWSU9GxBVKtTXJ8gkSAYusqBArggTEsl8g6CkUSgbYIe4AmSqRuoltPtddMVEUzTkVETKUowgj5dahO4XFLS3MjvP7/7ON/nsw4+wz6vEUcj33n2Pq1Ov0LXOONtrM3+jRn1tiotX17nz3ifsKzKXNy6z++2f0Tg6ozxTQymabG8/ZfTDn9F87RKiKeGXZc4HZ5QLOZRQwBn0KJoaGhKFrMabr/026xM3ONz+YyRRQwkN9j5+QrPqYCgK1974KtX9JsXnJvin//L/xr/93r+kL1rsRWMiISaTZXRJJ04iMgQURUbKBCQvZG11jaJp8N7Pf8Sh2yPKUoZthXbsIMoScpCRE1RUsUgag9NxyGRQU42qVgQ0Bp6DOA5ZbCwxZU6RdCWEIMI76VKbn2Prw58x+fzLhABSRBYnBImCJFdI0hBJFRkmPkrqodYryFIez/YY9QekYUiaxexsbqEZMhem55ASEFSVUq1KUnh2ABr1eqSZiJYr4IYOXhCRy6UoWULkjHGcGLIqZi2hKmjYukSiq/zs1ic8uPUpF0465PYPsFq7rPkO0niMqscYRYV8s0omgrvZZvrVNxmNU5SaitKoEkcB4WCMbCUIkoy2sMjG3/sVZEUl1QVSDJ5/56u08vcZ/PwuThIQA0mioadgyjo1uQyRjZUOvhi8taLOD37wQx7ef8z61ASXKpd4Z+abiC0TdVii+PoCneQeF65cxLd69EKXL735FqZcRVNVDh48wK3fYOErr6MMO9jDPsWlGcwLVU4+v4kiCaRZSOBEiJlBWZ4mX85TqF7khcuvYQwVnnvhDWLPxT7uEJ+PaEg6IQLOcZtSrsrhk12ub1zho6c/RtEiTFlgaAuIWUIauyiSTEU1KJkGC7kyRhByOugi5xR2D/YpGXk0VWb7cJdB6FIoFKiXmgjjiOmsTJJmWCn0Ah9DUfGsAD8NIBFJVInp9TWWJl/E/vwUZ/+QNBkTDoeYUoh9eExNuoyTRUBKopqIsknqxUhiGbWxjN09JBZEDEMm9Z91xGVhRBh6XL5yhZPWKRkipq4ThD690yPOkxjX81AVDVlUSAQdNwmxQhEtkolSEU1VkQp11MoUkWhwfN7nUafN8XmLO9uPOTjYIR9nXFtZY0yPQs/HdD2iICFvGhhSxun9B2RRniRIUct5tHyJNBNIw4C4OyLq+siahmAo1CcngYSYlESA4vIyWihx/tkdPNehognPZsqJhIaMKiqUlDxZ/AU9ee/cOqQxl8fQSmxsvMlbq1+h2J5GzErc//gjikpMdVnnkz/9GeWcTnQeoPoiJ1uPiLyYUUlh/ZuvEioC01eW0dQNrN0T7v3JnzK8/RBjNMBSM6Zra0ypzxHZMV//5n+GL4qIJwHjdpv5tWv0z9ucPT0nlya4rVMkVSKu5ijMT7PeKNLpb5FEPongISOQF0TkVKCq6uilIqSQDUasTzexsoAfPb5N7mCT+XyZ640Z/ud//x/yw0d3+fiv/gjPHVMyqyxWG7wsL5I6GZ8MWyRJRpSAKEjMlRts947JZIOPb9+lcmmSklFEtgcUJZm01aVY0hkfdUh6LnE1JIsC7EhFEFVUfYowCFEXJcrlJWq1DNseUjBLqIJM6AaQpURJwPSFJcKxSzi2kBSRfCYT+C5Z4DIcjZH1EgEGaBqOUCGJyhT1EpqeQ9brZLHJw4/v8TfffY801VidXyUTRMy0ysnohO+d36RQg8kXllFv7tBIZMaSxOOoQ38+RzmeoBQLuAOPkuURHZ6QxAnmcIzz5AjJjxHPGuTeuEKqPjsQqppBZI04OT6gJYyIFJt20qaqyNSTHEmiUcgEdM1Ez37x3IZfbqtMUVldf46D7accbp3wFze/xz/56v+WwHJJpRQ/8rj7k0cIaUxxqcbzl67hPHxK/6BFlMVQLxONXPzjM5xej6P2Ob0nmxjDMRNBTCxpdLOElcUrzM9eYfz0nNGuhTFR4/Rwn9HRKbOi8Gz5XM0hZWMkIYIkQsqp1Ncu8sMf/inbmzuQZpDJaIpK6tmUjRxGFlHTVaIwZUzCabfFaWTjCBlxltIOfDbbJ/z1e99nu9+hKCt4SYQ/GpLkNfrWOROFafI5k74bkSQJCgp6qDAlNUj8iFhNGfshRUOjND+D7PVwXYdh55zWkwEzgytIeZHEe9bBi5pi6hqCpKKVFhBMHS08xY0FRFVB0XJEqUQUhwiSgCoISGjIsoY/apP6PqoqUa2U8WKLWFKRJQVNksGo4GU5HFdkcNbhyd5N9lpjQskgEWVKkoHvBBSrZRxBwYp8xsc7vCZXCBIX30uJlARrfoqb1ohMqTDXkin2xoRmjsnJCTB04pGFKgkkgY+zf4ZojTBmmwiTFVRNQQgjjvf3GdpDtKbJ+fkpshEhqBKSlJA4KmmmI6cZdvKLZ5z+UnhPhw7/4c+/h5kJWLLFG9NvoqglxHpEY7VCc3Yd8+cFBrtdHLvK1NoaJ91tKgs1mt/4OvGTfTb/6R8h2A4TUzNMKBnmOEZ1EiRFJZ6a5sIrb1JevMDWX/8QpeNilioU52aZXL5E0nGJDjqU6xNk+SqBN6JaVtg922JutoivREhaDk0pIsd5vGjMOBIQMBHImKqZbMxN8fDpAfLiDKdZxP7pEMHUGXgh3cSjG0cMn97C1AymckVCd4wUJsSRQzI1w8+37tLPFIRcgXxiUEl0Xl9+ibPTNpId8eWrX2L+a99EEGu0f/o+QauFRkgpX8aol1FCFWFs0No+o7g8xdD3GNnHmKUCckkiGniYbkxRMOhaHmqhhqjpRLZN4nrEcYygyChVA8QIr+8gRAmGaqCa4IcaJTOHkUYcjRw+Ozzl4eE5Yy/A9V1U0yAVJcxqifHY51wQ8USPLHUxqhJTQZG3R1A/GSCaBTaJeHQ+4DyW2Wg0ePXydfr9gLQ5h3xhhmLFoFivwDhCKmtInke02eWs0yV/4zKll26Q6Qk5QaJ8eYU72z/gSXTAK29fYnqhhnkq0f20Ta/tIQUZLj7Xvgi81XqJ1plHmoAX+Ei6SiRGHO0/Qs0r5NYuUDyOsDoJuakF9Nk58oZDcXUZkRgliFnI8siyxmi3RSLESEmKKGsIaoZq5KFUI/JCXN+nqgiYmkR76zFyY4bU0EmzGN8ZM+i10QXouRZxTsGYrpFbnCEWE0q5Apeal3GOn9CPPFRBJQwdWu0h0eAu577PwFYYEuOHMbIgkQjgknIehWRhSEGwaGgaL7/wHCuz07T3DznYO6QyVcXu+DiRj5jIaLLO8zfe4Ex9wvG9J2ixQNAfoeU1jnonWN0TJlOYX7yCr4mk5yPkep5ee0hjdRk5fTYV8K2IOHYRnB4MO/iuyyhKyHSd+tQ0mpYQRQnIAbIkEachgipjmDlC61nWgiCpiGmGESZw3sFqjUgdgcQNiZJn5YliJhCnKSKgqyJBYBNnRchSFFlkeaqB+XifzPWJzCJ9NyQcBdRDDdPukRohwkSVqS+/SFI0CNMIQ5FAEcmyBN8aYoQZYX9MdHxOujJArJVQDZXA7bHfOUQsK9i5kOOoRVMqMBCGqLKCnKlkav4X9vjLXcCM+hRVGSNVEBOR+wcf83/5f/wTJqQm/+h3/3ekoc64e86FKwuUZucJPBdjdoGsVOTg239D+OiAkiUghBl1o4FZKjHsHBFkLqKSEWYSyf4Rd/fOWZ29QtodoCQhZ0+3MMWE1d9+k4gRZALzmwp7n91i+/ycoRiT3brFi40G3uCAqNfhSnkVyZDIc0ZbcQgzBVUWKNXLuL02siQiOw5JFpCTJfJFnTQncdIaocsqnudyHLkc3LlF/ulDqgn8ly9/mZcuXePdn93m7r0tvvb8b3F55SWUoYzQSZhVTArWiNPvvUftymXWXl7DrvqMHt9mML7H/uce07WUqeefZ/0br4NSoJxJONKANBqTnp2iiD521CfKIshkhu0ukxNzVIwiT3YO8e0R9VoNSYZEUAgSFS/N46egKJCzDqkMIqTHR1wTA1auLuNKBp92FVIbvJFHls+R+RpRFGCqOrbl4EUxDVlirmGiXzaQ9QXOuiH6WcaaKtJcmmT26ivoi89RuPAC4tQMqZzCYMBwdx/n/iMms4x8KU/W6VP0QtztLUbrTcrLL1KcnCJ2NTItJt/UOY+GjDoZZ/unpM6YklLh+ZffYnrt8heD99LEFKW1JuORz9H2IV2nRc5LWVmYxz49Q7A87FaHel1jtL/PWE3RhRre0SG9g1MmcyVkLyR0HULbwUhFDEElChz8OKCy1GTvpE3ZLFEsFHC6fTonR5hKSlGMiUfnHA0eU6uWeLr9EXJVptfqM4oijrY2KWYSmg1lvUkkwOTcBDsHp8ixhxvbtDyPntth4/Ilbrz0HN//9l+hjCP0NGVjZgY/p8LwPq9cXmBtbZ2/+I/fZ2/kMQh8UFRO4oRlER49fcpkY4bX3/oKuazC4Q8+Je4PMcMYu9UiVnPkixqJLtFvn2D1zxn2E0aqTLq1zWR8mcRQybSEVBARJRUhMGGsE4cZiWgimxJqpuKlEuMwo1ZrotemGbgRWWkGXdOJj7eIsAnVlNi3iQYtGjmB1ekpbLuFoATYjRDDKDO0hqhRTE4QEFPIRi5e7CPJEugGXvysTXN43oZigbhWxB10kYKUeq4CHohmBW1+CfJlEBUkIcGUdbIYhmlCxx4S+zYFWSQfpehhwqDbp6IqUFYZtnaJHR//zCaVTM7PbaRhihGBcSFHMq3xydaH/MYXgXfGKFOq1Wj3N+lGIybNPG89/xKr2TTdz+6TTUxx5cISAjqtbpeZ569gCxGtsz4No0ozP4FjtamXC6h+hDfuk4kCUSZho5B2bZaXN9ArTVq7e4zbx8ROG91MKWszPP7we7z/5AdYyRilkGMQBtiZTxIn/NrlNxk82eSFxSukdYM//fgvuD+4j5uMyVL32XKKJqOKIidPN5FO9nlB8Hnt1VXiOGOYSXyyf8hbczNUW+dMqHn+4coLfLB5yK3AYxwG/PHPP+FHtx+wmJWw+i53vve3qJbMRmGGNIpJQ48g8VAbGonV5fMPP6N/ukkhDciyhNCLOXm4j/Tn7/Pcr7xGMiMTyCmxBqKYYRZqxCOLWAzwSMk1ZpAymV6gkoYy9ZXnqCxsEIpFxFQh7z+LbZKEPsGZRWd7kyh2yS9WmF9VWJmYwMwZbG+F3LTaqGoBPw2IEHADaJQMPHeMktfx4pAdV0RHoN0ekvd7FFyZqNtnpr6AWmjQOuxx6n6KZByRaQZ5XadZqJIT8iy8/Tbh/j5nvs/woI3ScREzkaQ7IO0PQNa4+ZMfURU1hv0RtVyOyeIFngw28QsZE69fxKkHdFrHv7DHXwrvg60trKePEYsGG9cXUIcRo24HMTdLKSvSrNZpP9lEk0zKa+uMB11sEy489xydH7zP1q27rM2uE/t9gsAGScBXBULNID85h1at03ccdPqYtRJ2WyYaePj+mGD3PoduF9/1sISQ7mBEP/Xx05AmJpubN5mkiFFSkBomvuoxSsbEmYtEhiqo+IIMaUIliljVRF5fmqJgiPzw/iN65KjkqzTVHG+tXMU9tRk+7fPm1IvkvJhPjx7ipT0iPyNJMpRM5mBrm4ZYYZwZKDkFP1OIpQzLsZgCrNBGNHREFTzHRZB0Qifmzp/8nIXiDLW3VsnXFAI9e7ZMJKXIIggIuLaLUojxs4xUiukPRkxNTJIQIcg6YSIj6hqKKjFpVth6cI/I8lHEjG7LoT53Ad/1SPJl8pKMmfZRlBJ+7JDP15heWmF8ekgOFUESCeOMYeBxxxswEAL+i7XLdG7tY2spvuTyZPM+ZzcfMb3yMvOL1xEFjZ7lkEYipWad/IsbGNNNFr/yKu79baJPNkn9gEG7TfHOXYQJA+vo2UKSqRqYRhEtX8fMn1CZypHLaTijHv54+MXgbQshgiajiwo7j89YwMRs6KiCQtz3ifaOiAc97KCNn7nYBYXLv/4OWZbQ75+xsrRENLAJM5dAdwnlhKEmUrl2mfzFNUpTC+z9+GOEkkrtwhzj4Q7OWMR1fEZWi5e+8WssKd/kj/7yX3PubmMpGUKaUmvW2LW2OXQj5sxFuiOf4/iQkeQRRzELlVmQdIa9cxxCFA0uFk3Ubpe0kHHlleu4fhl9UEIdZfRv+kTtjIVkCaE3QaBJfPM3foXPNn/IsHWKboGcilxaXmemMoU5McmjD39KZKTops705BLq0grLkUUwOsMfd3B7Xa698XXM+jS3/9X/RPDdc2JzAmFOJpoKyOSIyB2hyhlCFiKlCQopqSASJCGJm6AKNQxDIiLCTlzQbRYaJjt//B8o9fpcmprhtNdClhZIy6+y5z/lzr1T7u4JREaDyDQpT8yR+XB4sI8pgSTLlDUNUxRw9894odFkyteIbx9S1AOsKwoPhRYjxaJWmOV6pYLQG9BoLBPYAannoRQirPMzzLV5pJUpcuUCabOBfXTOXGhheB63vvdTBkd79CKfQRqzubdLIp+SJD5By+Xpz+5QU3TEY/eLwfvm175E52zMzQ8fUgpVLi9dQrI0PC8hJ+m0T07JUgdVzxEbIqEU8dOffJfO3i4XPJGTcUaeHGE8Rp/QMOZrSHmDiVeeRyzW6Bx1iOWUqY1l4tTntHuCLAqYeoFQ0TBmLzBjarz46hs8/uAcLxyhCxlWZFMtVjlzWjwePsKRBfrBELGQwx1aDJMIExEti0ilhHaQMCLjhYvz9MSUh3f3MbMpvjJzjf64z9mJTYUShlhAiDTeevV16hsX0IMxP91/l7pSYqI+SbXSxItj9u58ytG4xevf+halfA5rr83xg/ucHe/iY3Nw9Jgsgxl3yGz1CheKC5zfP+aRf4KyUeaFf/QKmZriOBayJpOlGUImIAGaJKPIKpKiIMQ+siyQRDZyHKILPlnrmPzpKbLl04tT+raDUUzwZBs7GPHlS/Pk3THFMKabC9l3dnBGMaaQJ1Y1rDSjIEjUDJPnJxe4Hgokeyd0zR655/L4hYyzXh9Rz7jaaBJYYwxJRw1jBr0eWq3MSEh48PA+S2WFxYsXyWSVxPbIlQyydovYGrK994Re2OccmwExdgZRGj3bhOtGmE5MpuaQnF/c4y+FtynK5MUCw7TAhrnCirvA29ffIS/WUcUao1s/Qk0hM0ymv/VVZpomLe+cp//8c4TxgKUrq3gdD1GVKa/XOPLa+LFO3utSrjUZn56QCRFCMKZ/dMB4PER1HUxBRMGk8/l9uppFriqB6JEKEX6Scjbs0REcwjTGuf8hei7HmWPTzVLsLMH3+jRkmXkN1teXEcWQo+4Z96hSK02jRAmvvfbbzMx9FcPcpKg9haFFYocopkZtYgrfSXl0c5dJeYHnF9dJgZPjFovLS1h7Djk5T3Y+YL/7lP7RIZms0MViz91nkHQQBBHrp3/Ow8d3EB2HSBL42tf+IepGE0UWiCSXUHGRNQkUAVFT8WMRzTRRNQPD1ImjkCSIQRKoFwrYdw7ofv9dxP0OVRHEaoFjUWAk2Gwd/JiZWYUVUUC0u1TjApuSwrHbRc1UclKORFDIZBM/EkiylMAf0+uPUPDoFYvoqsrkYonqfEb/KKAyeYFmdAnNLzPseQxrGrVrc5QvL/NiQUPLmURxghsHmJNVECbYfXSTva0H3I2O6Qgh52JKmEKSCjhZRiLCMAEzVqiqRepy+sXg3f7pXQphid+48BavzX4ZxgL18iKiUqS3d0asyvg9B5IY79FdlGGJsTCmN27TVDVylRxEAo5ns3e4g2ck6MYkg4N95MCkbubQ8jnaJ3sc7TzFdSzUFKI0xpBERr0Wt0e3uT16glmGV+oXefTgKUmWMow8bBKsrkszqZIhE0Y+qDJ2EnJRV/jWjed4+dIVTvrnfPjAoaNpPN064uxkwJWew/KKSiDLOPaYwO6jJBJi6hBGHk6/x8vPvUUzXyDt99k+3MW2HaRyiXq5it1uc3TnPr5rIRESCyKVyTznocwwjZEkkZF7hrMzRsGk2pggP1nHnJzHkceESUyayAgoSFoRUxFJJY1MUJFUgyQDUZQRBBHN0JHGQ3qf3KL76ROm/RS1ohMPHeYnS+Q2pth99IR0qs69rVMePu0yihc4i2XyygKpFxGTkskJcRQhZjkcz6WdunT9c5LMQzRmELtjNgo+tZKCVtSx5ICxkDLYOsSxQxZev0H961+GSg4pCpGihGTkkq83kGwfd+8QVwy5efaY/cxnIIKngBiLZLFAkGU4aUZChh7FVIMAXdJ+YY+/VMTpn6z/r7g4vcx4p40ZmwiCxtT6GpXFBcRqmaR7yu57f41r9XDEiKUbV/EMhdu3PmNWM1hfeZFCeR77yTZxp006U6L0xnMIkoLnhOQ1jfs3f8KDRx+jKSLJIODS5Cq6ovDk/D5BI2RQj/npo5ukkk5Zz+PbPtVqjX27x5k9QslSEl1hYXqO/tDhxBqhRD4vl0yem6mTaiUOxxZPui1yhoLTGnG1usBLMy+h+jUaQo7h023CNKY+OcvyletoU4sIfsTWnUdMT0zw5Mlt2qMOmiAxVaujjy0IXILYQhUVDEkly9eofP3LfHbwAT/85M9A8JiXZ8mSPBYxk4bG5MwK/uISz/+vf51cw0LzN9FSBVeZQDTzREKKoD7Da9k2hq5RyOURDj7Bev/bxB/dh5MulVIBr9tFLau4kwK9isnWqcVBmKOnVGjZRdpjlYFjkyvrhIGPlBUQaym+kFCiSiFKkdMjOuMz3KRAuTRPoa4Si8fMTdisV2BRnOKC+irheInaxgsUVmdQqnUyISOVE4hCJCcmsWPOvvseZ/c+4Wb3Pk4pY2Cq7B61ONo9Qc4ExmGELciM0piQlAoi04LCvKzyR+H4F/L4y43KcotszF/H1S2e3NukuXCBmVdeIVNFgpxKGPXIFprY5w5fevWr9LoD9p4e0ijOMVWrchC4rE9XCXdVRDTiYcDmpzeprC4gk9E7POTB5k84H53gCyFaokI3oaoVcCWXjY3LDAsex8fH+OMIwZKYqy9wPO6QRSGaKBBl0HFDZmSJxQuL+KfHOJ02qSDgZBHbh9t0/Yz5lUW80MMbOPhBwObOI157/u9QLU7zZOsOqShiGCL7rSMaacbe3h4n+2eMnQFOFJOEGbEQMm53KBVLmLpGZIuQRjik1GpNko6LbAlomYImy8w2LhKGBk7vGCsNcd0jGnqDYiHDVDOiSCfKTNRSHTlXRBUyEiHEGgfErkpjromcbrJz+h32Hv6AVU2nOZcntH0ELSNXUElEkF0X0U8Y9yzamkhWrWEYOoEVopoghhLpSMLUNDQxQYsVktRBzskoskFBrFDRCiDEuImAKOvoBZGpqVlmGquk8ksos5d4ljIugiiRBg6hG2AKCnGa4IcOF2+sU59ep35lkf/2X/x3EIUIUUwmCEhkKCmoKETEOGS0sogo+oJeGzauvEirO0BSc2y88zUkUcT2HIxiFad7RqxFWFWB07bPoKBweuqz8fyr5AoVzDhmYaZB1rWRJZkwryGKMf7xEVv2DoPxKY51wurVdRphk6f7R5yeHVPJWQiij2+HfPjB5wRCyJJQR89kZpeW6KkJu+0zxCShhMg5Gcgp2/sHVHJdumFIKadilAsUGlVKcULnpE+71aZRK3Jt9SKdnVOuvHCdiflZ7m5t0Z2UKal57p4+pqKX0Q738YIAlwinGyMJCjIZ89OTrK6tcv/JbexBl6lMxkwyxrLMVLPO3u4x9smAVWUd2dBZmHuZiQtXaZw/oPRClcm3Z9EzgUff/wv0osjGb34DL1dBFFUSMUGSBIgMSoZCo2AjWt9mdPo96tU2pa9No2zZiOcJ1sCikFMYuh5KNY+iamTCiEZJJE08BuePqMhlVmWdsOsjaDmeKAWIpGcpmgWBIPYw9YSlcoXRmYXU3sIJbWpNeHnmEhuzRaxuQq8qU5+fJNNUhCwhEwRSL8A77yMELpkmkYUBcTFDWbvApx/9DXf/6i94cu8BWRhTyAQSUsgyNAQyBEJRJBJSxhmkv/iLwC+HN+zYNGvTCJKGXm1gWyPufvgRV15+jkz0ODy6y/s/+x4vvvoSY6vN7Mo8nWOLqaV1ju4+ZDISYe+UQqWC8eI64aDN8JMTtjbvcB6fUMwbZILJl19/h7XnPP70r/4nxFLM4vws9z96jD9KSISQCbVBUyqQtGPGDKhWGsihyGDYRURAkQS0NMHt9RFlARSJvFxFlXRWpufIq0WenJyjxSm6CZoMR+MWH3/nj/EkgYPeAXlkZoQCOUVFTBOiKCYRwRZcXDFBEQLKhokgnfFng08JfIfn5CbzYoG6OccoSijUJrhcrOLJIY6QMDt3ndrEBUqvTSKt6nz24V/Sf7zDpz/4CcsvP8fV3/ldEttFruXIJAMxUlAQyIItzrbeI+/8ACnYptPzKOWmiUWFLPMplPIomUyoS8gNk92tQ879lNrMNNOaycHtfUoDn9VCDXmc0I187lUEMn0aVS0TpyGy7CPbAxakItZoSGSH+FmK0I5w7x6yvyni2AaLdR18CSHxyaIxsW+Rej7K2CMeW5yN21j9E4SKxk8ef8r/8G//PTONEhdLNUatIX4WkkrgiwlyqiALEZmQME5TxAwK4i/+zvtL4R3sHGKGIsOxS2U2RC3nqUQR0c429SuL2IHPly7M8Orzl0EwUbU6NSFEIaVRzXPywafEXsji3/8GwtevED3ewvssJifIaLJG30nonstkyTRzEyZ/5xu/w62732P/7JRMElERqOSbTJWmKWYazbULbG99wos3XuaT2+8T+x5NEYRwTFWEVAA1yagaGmaUcXD/KbMLS9T1Iop/RPfglKxcxk98fnjnAyIqRIKIkAYYaJiqhqZKaImIohrEns8wHnCQdNGyhEfbjxjtRByKDgkZo8jiijjJi8MK/tYuF155nfmFJcR6CSeLOL61SXjrHrVKwpM/e8Sf/g//goqc4/V3foOX/v7f5fSje9z94V/wzf/r/xnyk+iyjJK2+fl3/xl7t3/I1VmdxTmDpOVz72iP5eY6zXwGSYJn2wRKiFZUGKUpdiZQ1VUsy+HiXJ4LvsoFtY6UjNg86+CIHmmhTinXQBU8JHvEjJBxRZXI5auEekRS1HDEmMHemIf7fZ6/8jrVYQFhp0/gHIA6IlZHiGKC2xqwfecRTx/dY359BsVY4J/+m3+DIiXUNJO5pEQ+iQgzFT8KCcUISRRI0xhFzHBSMAWZGbXwxeA1FAW320X0YkJOyWkLTCYJ48cP6D38gL59Sqq7vPuv/pCNay9SrsxzcOuYqeUNqrkczcU5TgjJvbWOX4R2OGQQRYR+youXvkyuMc/K9W9QUCq0t3eYmZzHv3CDQe+YhaLC1r2n+GlMX0+orCxiT1aIehrtYZuBa4GasTw5gzGWEC2bq0sLPDo9R44ywt4QkpDPbt8nklXqtTqynDHqdUFQUHSRyE+REShLBkU00iTBcR1ERUSURbzYw4tdEmxsYoaCwzALEESJiXIdYyShy0WWyxcYJQKViSlESSVBItcssfpqnrPvvkv3vZt4ZsLsV77G5PQ0b/z6f46Sz/HhH/5rnHAPWdlCVnaRwiNG+/t4e5/QjF1mS3XUzGdxYYGj/X2iscNJ2yc3DFAnahTnahgFkfWFabp3epzudui7DvMVE8d1GYw9LhRNvFhi2VSxaxVcUcUQRGZMnVeUMrOjEM1JCLIMqarilgsImU6BKo3cNOGTc7qtXdrdU9Kyxca3VpAqEEk9Huy8z8yFOS6/cZX//s/+in53QBXo7Z1zrV5lojCP7zhYsYWTemQZSGlCPo1QRIWyYFAJjS8G7/TSLN5JmyDw4egEr3WK3dvF9lukko8iCTSqk8ROh6MnexyP9imGZaT0lFYSUL94ieaFBYRYpP3uJ0idDnmliJFfZaX2CgM35vyzR4z0hP29+/S8ETMbG+SFRUp5mRderPKdj/6WzcObWEefUZyZoB8MOHl0QJj4CCJcmrlOIvuIqc9s1SBKy0ROStoeIqQJrviswWbYH1ASBebKFS4tLWF58Mn9A9IY8qmESoabeeAJjLyQFJEIAU3QKGYSrpCgKip6FHOjvMLvvf2bDG8eUw9NhCGUijn8T26RxTK9okbh7WvkcjK1pTpPvruPfPkC/8c/+yMyt8/+v36P7rufc3Wjxuw//G1k/UNkqUUy3mHrr+5yrbKGK6qookqSaIxGDuuvzRO3Q+6932IlAq0zRE0nSTyBqiuwJOU5iiK6mUharnIaWeyfWYwqIWpR5BsLU/zUzUh1DSVMeW5iGu3mFs7ZACvyyOKUaNxjU0uoXnueCIlYMunsHXP0+IhcmmAsJKjCgGHYJiilvPRbL3D9pa/Tjzwe7+1hJFAESplA2dfYqC0h6zCwOgySEbEEx04HLw2o6xX0SKIgfkF4N+98zuzEPMVCjrHbxxk6iFFIUdexhIgoFekPLcxGk62nmywV5llZvoQmaJwf7jN6eohrW1RkGefnn9I+2kVTTTaWXkT285x2z1i4WGDr3gc4o3OGnkOhMs8Lb30Fz+9RKGbMdrfwxmc8OHqE2HJxvBGGLJIvGUiKQLt1TOv0lLevr2KoGoZmM2p3ma5U6A8HDOOYvgA5TSeToDOyCJ0Ab+BixhFSYqChISCBIBMCQpagSgo5zUQgJfMNpExGVYrU5YRlv4Z4p8ulqIkRKoyDgKJRQBjaiFaE6JkIlsXusE/D6RKEKjwdEv7TbzMeHbH/J+9SDnS0Ug7FqhMPH5PJLqNbPkpfQYwictIEJ08izKkSyrxDdTpFNCNyb44o7PukAfQHPRQtR+/YoXeQkFUN8oaGJmpIZkyqh6iFHBPlAqHvEfe7CHKVYafH7sEZTStEcCNEISWvgqsoqKbMZ/fvISoTrL79NaYKq6Sigb25h+yP6W3tU/lSHa2kUmrmwRRxzl0S22FCFCilUERhaWaRqfIi1pNDamKBer5AbWKahzubOIGDmslMTU5SrTS+GLxRBqNWl/z0HJVrq7j9LlJXpmu32U9dElPg6eAQp+9RylTa7jm7jz9FE/IUp+aRTZ2ZhVliUSAWTWam1mhMT5EpGsO9E6YLOax2C0MsoJVKNCaLNFevkatMYmolPrn9HofdNrtnmxTUFAWXimYgqzpGM48djGA0YlpT2dw947PBGEkQmTDK2JlEN0xJ05giIkPXopPE5FOJ4O4u5USlgkFBqKBKFTwEIllCEhMSt4+ehpihjiRJ1MoLuE7AVG6G1dlVlGGG6mRkQ5dRMCRIU8puihwG6LKFmVoIvXOe+7tfwjq4jfJhkaZW5vifffvZhVBLwVdsup6F824b//ABUj7A29XRwwUyZ5HuVptj+Zyl+TyaXuXpvV1KksPKl6bxzDOCAxdNNNGrZQpKnoJv049CauU8mdVhdnaGbrXEu/e3ydtDVq9sUHdS8qlNkK8gCD7h6IxICJieqWBWUvxmnl4KvX5Mak5w4e03kEvLLLzwIsnmU279wb/g7N9sM/dgit3cGfNvXadQmOTJd37AdUejaijEXogiSOxt3WcgHbNgNJCTEK81IAok1pMS+eIC566F48sYU/NfDN61N7+M1g/oHJxilnIcxS6rL13l4NOfsH75JcxCjpO/+XMEBCLBZ4zH0EjJ6SqxFCMJIYVSDqVWYWl9Az0SSTyXRFcwS2U0AfY2t5D8hMXFVeRSDSdIaZ+3aPtH3N68x6P2U8LMp5So1LQSgZcwsgLO4zOs1CVN4MLMFCf9AaVqFWto40URkpg+G4bLJvPVKXq+S9vuU1KKlMUqRirQUJ81kY89j5gMTdFpNCboHAWkUUxCQhallAITKc2oKSbRcEwtP0mumEMyE5zRmP7gnEH/gEY+5dzdYaiCgUYukCHXxRJG1JQ8spFHCCFMJRwhxDQiwtSlf9Blai7Pc89/CWW4SHZaxg8/5rlLJYzrM3z04UfcvXnEK9dLLEyZCGaEWkmp1spkpoSiywxPYm5tOVipx/pijm77hK6TISoqG88/T6Fa4Plxj8TdJ6yo7IxaDCYMSqUiSbHEUTbgaWdMTxZxbYFLc03wXNJigFAwEY08s/UlTs9HtO/0GNVGcFVgsNfl7O4OM2YZM4KxH0ISE6Y2niSTleqEgY+fWnRGR5SyIlIqIukGuUqZ+ItqfQ99H7NWJfNdPjvd5dr1DXa37+OVBJ7/e18h6QS8vnfOaNClVCrgpzFX33oHvdzEP7NwM4nhuI8a2MQjD+9sQL/TI1FEytUap4fHlOMGKgnVwizHx6c0X75MWtb4H//1n7PvbhLJEZIsk49UrhUuEksJQzHEnkj42fZNpExia/+EWJORU4FQVtjvdSnpOSTNZLG0wKX157j5+CGKLbCgzTCvThAELtPGPOuXlvnxR9+nqIj43pjjvT6ZICCIEmESUBB1SrGBn6X0+ztMrK2CYREKMrKnkQgGghwxZJex0kW7KlN5dYnJN0Cc2UHqizz/+gabH+9w7dqv0n18iE7E9MY0p80PUJdcqmGelfo8ykDE3rFx4oz6r8zSDt/j59/5OQgmv/07axD3GFpdZClFEBP8wYCoL3C+43D2JAMMTuOAxkyO5akqxztdJipL+McS4t5j1NYRaysm0y9e5cn0BT56/4jjTKPdOac4W6MVwf7uMZcKJY4e3WXn/b/l8peByEAaBIStCM0pUBBzHD7t8NP/7gfMXlzAfTRAG6d4WYohiCiSiJ7G6GJIc75C92iI7w7wkzaaPIsiq9Sv3kBeWubBo7tc/SLw2gdHaPMy5RuXyW8Jz1JZhmNMHc6OHqFkDWIvoZDpyF7G9MwkT+8/YNQZIg0iyo1J6hdXiNyQWmOa1uNjcGIEWcBhTBaLCKGELig4+2cQB5zv7dKcXCJXNGnkqqxPzxA4Dr2tM0RJJ/E9pFTg1N5lUtGRE5FUUXGTgJ5loyRgmkVqjQa25dDqd3A+/5Sx61JONTYa87w8d4PNz56QT3IUMp2qbmLHFqau03V8BDmPGwWIWYKkSmAo+E5ApA152L7J2y9/g1qljv84xOpaCGqCUAyIlxIuvLmOfmUCbV0DYpxti0effYhvKZzs79BcXuf01gmtbgdlw6c5rzNqaxw+PiJvRyT+HJUry0SzLpIjU5rQmJuZoTEnkcVFjGIN9+4J0fmAUStj0HaRxDx6SSTvJuSimEalydTGFcL7P332lffOWarIyEtFGpcb+DJookbvbEhhpoZdVAhyeeIMclWD4kQRwUtJxick2w+whwnRrkcSBEyUm4haTM0uY/dPcHZ71LPcs+NtFiFmKbIAShYjRT5Hm3dx3RFKFqIIMWli4/ljcr6LbOZYvnzlF/b4S+Htnu9x1G5xfXqCjfXLWE+fsjgxRTc754fvfpvT7R7/+PXfRXciBmdtetsnnPUGTFUmyDmQr8jEpwM8y6MnWjSqUwz7+7j9MbWNdVauN+jcesT4+JDEicDU0QwZvazz1q9+hd2DT2kfPMHqDrjx6mt84+t/nx/8h+9yev8uV5qzyLmYB1af1qiHWikRpAm2Y6OmIHaHCJlAsVxg4A2J0oBlfZpZ2aQp5pm//hq7D3ZpPzygHCnManWcyKNkNNDnlzjsnDEYn+EKDrf9EUY95jf/8TuM+0fs7t2hs3fI+InIjLqIXpG49q0XMP7BMsKUCeUco60n9P7yDmd/vk2TJn0ZzkYtcpMz6GWVuZU5xKkWuXLMdHONo08OefDJJubEkNxEC6GmI+cnOB93sMJjYrPMVHOamz/dwXo0YjbTqEo16mWVzcN9OvikgkJT0xmf+Hzk7qDmanRae1xZKDP/4hrBcIKdVsq/+/NPaI9SJkSFRuISb7Xo9loUxYxXNy4wcbFB52CXzfs/JP/4CZFs8uBpi5cmXkIiRzj2qVFESlM6p10EASrkMcU8ERa6ruB5EUIW4g57iITkhQRDADELkYixei2cx/cYSbD0C3oUfxm8S2++REESsR/vk1dLGLki2tV15IKJ6fo0CwZbx485HRwjSSlGBnU0orM+me0iBQn1ch3Ji7HHYyKRZ1kEZHh724xOdwlTl3E2hgmTKC8RGxAlHtv373L3s8/onraIo5i3fuXrpFWN5Zc2qM41ybIECYGltRXylQKSqZKpChECumziuQGu53Hcb3NidVFkmbymM+50efjRB/RPT6jWawReSFWuIAcZhVRirtxkZXmNr/zKtxBUiUiIcM2QbeeE9z77Hj979D53j+7w4PAeghyRrxgUmmWSQoVMLxMLOZKRDHaT448tpFMDbxQ8a6IsywhNjUDxkXUBUyvh7vVJeg71SpFcTeHSGzXy1RhTA8tKkcwS7ZFEvrzC55+d8vknXQ73QyqNKcqXl8jPl9GrKeVpmdTMY1Zm6Bz3Efpd6kqI7ViM0pCj3hDLEnn3u5tEYhmxUkQ0RAYHByxmMU3XYkFT0DyXs6MDmlNNVtYWUZSEKBqQr8CBtYUyZZBvlCjlKxTUEiDiEqKIGgU5j5ypRKnwLLVdVpAVDUMyqWhlimIBHRXSjO6gRSTFzKxf+IU9/lJP3qfODtGwRf62SKvrkbs6z97eY25++HMa9ZSvfetN9rf3+PzebaaiKsXY5EJ+gXFgM3HhIo4IYW9MvdpAWl9h584tajNlPOuU8fk5VuseBS2HUlNQJzUm15YZ5CV+9uAjdg836fdbSIKMK0T81/+v/wo/SFAzlRfXn6PVSWn1TojpMAiGDNwMP0q5NDWPOooQkwRdVBhlHoqkUjJKNEsN+idjFFHHLuXZePVthMczBHvbyFGPVu+ATNFJChW+//P32PPOEDMHMciQSjFtb0h9osALL77AVLrA6V91GKcOvfaQ/E6O0//nT7DsI4qFJtOFdZrWDQJ3izBzKK7OUvnaC5jlHBfyF3hw5ydkpw+IC0O0goSfxszfaOBnEd07LlbS4v7ZmDEJK1du8OnDFps323zr9a/TiAPGm3cJ7TaFUgF5roCaq5MjY9SOKMceRdtByjXYI+Ozhx2MvsfCXI3rN/L8/t/7bQ73z7n37/4jV9dK3Hh1lU9v73M08Ln/6RFXry/T3z7hbNBnaW6GifVZqq7Fcn0V7zBGFUwa5ipx74yGqhFJKWoigBcilivsW6dYpBQ1FSVRMUQZJRXRUYhlCQ9QJg2aX7mMncT8on8Q/1J4z0ct5utFVE+lUqsh1CboP/wxfuDjJgIffP5DLi1d4oXXnofjmN6D02ex+aKI1KiiJTFqqUT3+AzdHXPh1Rv0P79DomWMfZtQTFAE6NgOsZNnd3PE5zuP2ew8IodPSS4wTFMiISUYD0njmFAQ+fzxpyxdXUHNRQTJGNkQaeRKjCyfOIrRUtBEhWapgRzYDJ0xxBD7GbpaYHruIkuvvUqaN5i6eoU4E+kf3cNPI8QsY9Rtc9hrEWQZOV0mByiCwurSOgO/TXVyFvsoo2ONEcghlwuMdx3cUY/IaXHknCItFCh4RWJBRZYl3Ayufukyghjj2ft4BEzk6gSyRK83JD+hMPYd7n3eR800rtxY4MaVAlt2F7Oe8eDxLpmcksvr5AOJysVV+p1z9s+7WGadT/dc3G7IgibRLCuMJZfjsY0fCOSTjKKQx+708ZMhd37wZxztWWSjkPLFCqrmcbGhE0oSt3YsKn5MSapwO7Mwrl9CLOVp3fqYWSOh2CgSOSKhJRCkGvnyDFPLsySdDmm7TSfx6aQ+4ywDWUDMl4nGPnEskwkmQRrjCSGxmiEYKYEX/sIefym87/yffgf1M4fgrkvrzMK5+TE5T2Q+a+AedZDPRcapy93TTeKuQykWmXA0BE1nONhCMxskpyn2zi5n3TbzX36RxBQ5l7ocscmZ3yUKVZI0pvh4i1qxSS1ReFmcoK5V0GQdcbbG9+7/Lb4acigeEcoxc+vTRHKGoqkIisqVtcucHp2zPrOEdTTAG9pI5HDHDknoUZNMtEAmllPWGxcReiHt9z9AKSjIcYocKbQsG/OVL3Hpt36NWMgYjQ756893EPQS+bFLKIZcufFV/ul/898wUzjhyuwVnCmJD5/eJ6+YPP/Sy3zynW2cfps1YYnxgy6mkiEIGl1ln15vm9a/3eON3/s1/uV3/u+szlZ48SuXyfQZJpqnJLJDb6eLqIe8+NZFmqszfHjrDkd7DqhtFjeKtGWPW49vsWyb1MYBRlVj/Stv8vjmPX71whT23IChdUhdM3h14goPPz9gQRO4sJBneUOhb2k4pybTWo5XXqyhXrIRIxvr7Aw5SamMXP7urEjD6FNYmEW6vsr7dz+iexYijDwq1ed584Uvkb59gb27TxgMe1y6sk6+XOPJH/8JRklm75OHuJnK/Mtv8s7v/R712gycdNj9V39CPxJovP4Szdk6aUEkkBPK019QcXYQheimwXn3gJw5zeT0AkefnFGQdJrSJKIkI3kKb1//Mj/6yV8hCAKh7DKxcIFMK6NLJs5Rl6JukhgatdlphFyMsycxiEOSoozrhiR+iBnJRIMeZbWBlClUU4OiXscszrFWXeVY6PC0d0ycCjw92md1dp5WuweTEjs758hJgFIAXVRoTM4SdDwEX0AXVDRJQxdkDEmnYpaYylcJPIv9nQfIEgReTKhpDHsiq7JIQZJZrtYoCTKuH6HLBmmWcv+9j+mcjZidXcFL4Ul7Hx8fO/W4e/SAE6tFUyhRFksUEjCEAAoSR8E53aTPP3hlDVXYY3YpYnZZ59P9e9ihzaXfbyIqEgvGIrLcYvpijaPzQx5vttndy3juhQVWn5viY+sm5zd7TKQgdm2STKPq2KxcaDDsO5wdd5i/WGJwNKRzvsPKpEFZ0BDUhKHvI9aqeH2Ho/Y+hcIKw9MzJvM6lUqTbFZDMy12Hx9Tn5/ErmjcufeUo0MHq59R0WXaY4+4VECZbTA7XWNahVypRHjYRiqYYAX4kUtR0NDGMe5hD3HlBll7hLyxwOS1qxhvvAz1CknnBHtvD9P9gtqA+re2Sdw6WU6nmi+DkFBbajI6e0DBCclCFSkS6R1s8Y2vXeFkZ4ez43MmG2/h2A1OD9voikDt6jrltUWigsbBjx9Ry3IMCw2Oh4+IkoSpXI3puMpUUqIcF0niiCyxGIYeRqPB3/vm73DAOZ//u4dEicNobHPn0SM0RWJiYprEGlMtVjjYOSXph8QE5GIDLVPQ0RBTAS2VcMc2J+4hsWCRiT4FyaA0PwmNOvtH+5ztbvM3//V/y/WpOezTQ6ppwqRQQhVSSGXu/Ogp5bDKrQ+e8un9W/RbfeIkRnUlngz2UWKJ1ellXlt8mYP7D1HnoC318OsWX3n7IsXlFu7wIQsLGZVplw8ftMjPG4iLeRJ/THfsU1qc5MHjXQ5Ouly/eplq1SEXSQjnKQ29yMRzBdari1gf36a918J8CvXr82g1Dz2IIDF54fVL0DkiCQKi+Rof3jrn5JFAWBzy4tvTPL8xjf3wFPm4QDYy2Hx4xNw7G9zrCnx6HLLYzHj46JjjoUMQZ6iahIBMoVhFKORIlYy0kkMyJEhFkk6bhphD810uS5OoQgbb5/RP/5LDb/8ER0x49R/9FtqVC0R6jKSkJLUKSeCC8AX9STFRBCUvUX/tIufv7zB4csTS5UmK00XiR3uAQClfIxY07tz8CENRkOUJBkfnlOoXqCyvIYsh8rUNhIkS3cNjkrFHMZaR+gFZ6KOYOYpGmapfo0kVI1KQZPBEn2ESEaUp5fok2ycn6IKBnwXEJGRCQhAl7D7eQxREhHHCRKlBpqqY8bM+4pyYI45TsjhBEWR0QSOnGVS1MgVdJcHBaEwgX16jfGmd4X/492SWz2i8T7VgcFGboR/5QIokyHiOgBEX+eRHt4mVjHH6LLNXlmSm5+c5Pz7nJLF5ZJ/Q0/r4xQBh1ue//N9/jcA7pn90wJ27+1xdbiDlBDZezLP0pSXirE233aUpNUmFmPZgyHHLZ7/9EM/LMCWRJ3fvY5Q02scWcc3h8oJAoVLB92KePNlGnJe4uD5D2HXoPd0hp9nkJicoag3SQ5fuYYaUj1l6YwGBhHPf52xvgHHSRRMSLuoqgRAzAK4sLqKrJ0gE6E6IoYiUXBnNF5FDSMIUIYXMi2Bko/Q8yomB1Quok0clJU3BHtuEWUZjbZG438d5EiI0Z9CmMqRmjaxYIlBF1C8C75PDv+Dita/x5JMPWV1cYuB2eHx6AoaDJwxQRA+n7RGr4NhFnrv2ZWSrgKE0sXafECQSWRDgbT6mP1Ph0re+yurvfYP241tEHz1G7Jo4XowVRsSijqlNUZBUgtghyzL8xKc97DH+/FPutR5RylUZ2zaalCKLIkkYoMcSoiCiZTJh30cJRMgEcmoOLdMo6jqe5yIlCVkW4wcubmwTWBGyFGNHPoOdfebWVrhUm2R4dEIzZ6KWChhjHTUNCdOIWr7GXHWKYeTxoLODK/rIgoKTeIjA1tkBg8Cl4wzZPX/AUsFgtr7C3LpJ5t9BjM7RqzHPfb3KzMQcUSbiHoxYLMUcHQ8o9BP277URI5EoytA1mUJjlnbb5qwzJArHpDmFV39tmcm8hB4GmOI0g/OYD9/9nGKiQi1iqaLhhB5JpvJwc0Q3C3n9t55n9O4RxoJFdapK0HW4d+AQehm//pV5SrJLa/cBVaVELq/w/mefc+y7yIqAIqasrc4jbLuYoYwQSkiKga4YZK6N/fiQs5/dZb4PyTilJBQRxJg9wSGarFLcWOb6O19h88O/RWr5lOrLFDo2xavXqEw28dNf/O77Lxdx2r9P/3OHpnwROysye7FG23XJTVb47N4dFMElHlgISom1hXcoNK6TeiM6O4fg2BhSjljT0JtTKEt1tLVJDGkGORfhPn2PxMlTjWSkWKYyM8X8ldfp3HpAp9vDJ8bJUhQ14LXXX6JkT/DjP/iYMIvI/IBqXgNZQ0MljEJIEpIoQs4UwiyiUKygxDL22CaOY1ISQiL82CfMfNQsQxYzgrGDnstztrnNTLVEnD1L8M5XK6htHcIxpmKQV4toWo6NF19k970OdhySpM9yfkexh+uPSIWUPDLTWo4VDU7f+wCtJTF1cQatoWNlXYyGiFQeIopFqkcpwrkHhwIbs2vUJhwODwacdh0q9Un2D8fs7PbJGSK5QspsvU6pqSCZGZ1zG9EXiAKf0oTOoBUwFiyycoxakDjrpfQcqF/QEP0uv/Jr1+jFx3TPRhixSa1a5upvLmGGA6Q0YDYrE48UcrmUc9siSxMKeg5VCnEHA6arFcZenzgcwbhNpCekcYiiiKiqiqgJyJJEmAiMEw/z2hIX/u47iNNF/HGXROgi51MOd26RP+mzOjGLXipA9AVNG0oTywRtldPzNpX6LEauwXhnl4enB+wGNhIBMgXyYp03X/wVTvbaKIlGWqgQuWOyzCGaKrH0979M5ZV5Oi2Lws0jgkdPSbsWa7PL1AMZJTVYur7C1ugpPa3LULNQhBS9UGL1Ky8iXyhTGbtcXF+lc6dFkgbEToAuStT0AmpexbJskjjh//85HZw/u3YSy8iCgCgCAoiaiKwqhGObOA4RJZnZ5hRMl/GO9lEE8DyHk6MD8GMKmYavSJy5fbp+i89HO+w4JwRihJumRJmIJEuImUQ1SXhJV/mSrjJHiqCLqHbKJ3/S4savL1BYi0m0EUl4jt87wwwUWh8foVdNBqcDHDti4+oy/ftP6Pl9hv2YYQvERkZjqkLkSwzbLjv9Ls16gYlSHdM0yXYdbly5RF4fodQzXNFm4etrVIc+/ce7RFaXz26dsdUaUWlovHn9ed587jLhwR6SEiNkKm6okeVVMkMmDULUIMO0PIqpyMpEBWc4JNY6PNr+McuNN5GkFEUXEUsppYZM0mkT+i0CHFwilLKBMVfFz/c5at0mnDhHLknkhypHtz5CLtTYmPod1PIXdA3oS6/9Pqcfn3Dr5j2yWp3+3oDwcIzfcXBlhTgKmSzWqU8vYSwsUMNECTKKikzv5mdYJ0dIYoasSbQO20w1Z+mcfsat736PYuIyW5sil1M47HT50a33OB4OEVKBmXyDQiYT+Bb7vUOmclcZDxwCKSIkREFATDM0SUZDQooFhDRFkxQEZBRRJRMywiQiQ0QUZVIhIxJi7MBhEA2QkxglTagYRWJBZNzrMOy1ySIbMU0x0wwtg5Ksc/1rr/Hdn/2QJ6NDOo5NLCggQADECKiChJkJNIHpyKecRJSLRWrXlugZMVuP9pg4jFhaKuFFLjEhfssnGYvYTsrEeol8I09tJkUsy2wYBT67c87Xvr7BxbkRe0cjDF3B7SV098aUaiWKep18ZZZPfnSLMFFwPRdVF+gnEmIjjzYZ40o+54MuZTHP5lMbJwY9g73bm4xxqUtgVgqMXI2bN7dJ6xP0U4lSrYJ0PqIhSSxXmxSDjCR2mJuUaOQDjKQHsY511mX06VNqoYBz+pTUb+FnNpksYHXOiE4PCSd77Hc+Z+qijFxQMUOD4ZbN2fYm69YIof4F7fNSnsGY8ll5dZXmTBVbUxg/MCmUF5gc6cxvrKHoDfL5GqKbUMxkUhlONjepryziRGOc1jEP//kf4DR00quXOdvdR6tW+WrjEr1hF2m+QiNXZqe9S9c7BEkicmyENMIOx8g/P2Kr+4TDs2OOjraZTQ0UQX0WLaQIxE5A6DuYgoSQyWSiRpCkxIQIogCiSJwEaCkIWYwuKEyYTVTVxHcDWpmAWM+jmjX80zPEXJUkTegEIYtvvMaHNz+l/WQTX5Z57rlXuLl/n93eEUkMqRCTZDFZkqKRUs3laOg5hMDnMA540OnAXI6v/he/wcnBEx782zY3Xi1QnvLITxVJGiHibEjhYkronJE4Bjk0ZtfzFGbnMJQpTvfbhK5HMBJRqjJWUsQ+kfj05wdUykMebR4jRjEfDc741W/OISUj9FBAnxbRRY3l60sEIxn9yQFzlSZzjTq7Dx+hNMs4fsrNWwOGg4T67Dx6PU/T98nnRJRmnmiYEMsqF268yXVd4nDnEw6PPuZkfI/1198maduYkotcUhjmnyApNqmrUiw1OFVb+OET7m/eRKl4zF29xuHhMeWFPCwMqeVVMu8I9+kuxRcX/tPjTTp9jlqbyHWRm0cf0Cyu8/Y/+cd4fZ8f/bP/nsXyJaTCBP3jM1rvfoR71qZWKXFyvEPh6rfwOxon20ekg5jyuM6Dg22eto65PH2VsZUgyTNUF9aYqqXE9+HJyUMkWUWpKGSSjN3qIDotdjZjhiOLWiyjCSaqmOFnAhMLc1jnHZz2EDEUSREIshRB0f5/iTPgxA4SAlkmoIs5RFMnyMvEvkClMoc+VcOtm0xVJriSrxKOhmyfHyCbAtrGBbyzLR4ePEGQRQzHhkxEkRTizMNPfUIy4jRBJsVzRJxEJMgXGcouo0zE6Q+4vCjywvoNTrcfEztjTk6GXHxlFm98hB9EZL5PMI5pb9s0JkWMiZBcXuP+3W0ePu3hugJ/57VLOGS898ObZFaKc55x+WoVTSvz8OCUpiERagVEwSXzEpKRSqtnM7ZT/BASJeXKtQUIU0Ix4t7xkF4PYl/nysoFznyPaO+cnAKCN2JxuUonF3HedjgXIU012nZKGB0zPTVFmh5y97PbTOlT6M0ZCi/liMYelbDKWdfizD1B70J+RWRicRlige5Jl3p9grQWI2gO/ZPb/PhnP+Z3/8Hv/qfHKz5ucXV6hbQocTrpUqtdQCksE+/Y5LQmudRkqrnAXGwyuvkIxQvRSjA5O0USjkkEB0PLIaY6k/VFxvYWg/iE47jAwsV1ltffIkxdZNEmGLioqYYgG1h+xFhw8EUJPUrwRmOE9Fk4ha4ZmDmFXFFlee4C9056KImKJiiIGOSnmhz0O4xCi4SYYmYgCRKCLJMaCl5R4H5yQBQkPL9aQdGH/OSv/4JrC5dYnVpibnaO8SBi/tol5p+/wlRnhz988n2SNEG0E0QhQ5CyZwvVmYiYJWQIzGoT3MgtslZq0h5uI0wp/M7/4XlOo22yyqcEcp7aSoXuGbz/nQPs3hGz8zI5vYAUTiNbPazzc6xel4tGlcCV2bzXJm/qrK5MUp4wkToCxlBgoVxicTUHpsP1qVWCxCPwLOwkRvQVGsUKiDMcHj+i1RtTrplkaszcxSJHO6dIpsjG+ixRoNE6GGENe9y7c0a9WWKsWSyuFFGrVeo5gf32IX/znT+houaQGHH95RobGxc42dlGUGUCVaAXWexZPXzXQhEFDtwWk+t1aktFGmsTmOUid+48ZNDu0ueMcdjD8gMc08fXv6Bpw6MHu1z79ddIKwmi5LHbuc+6o2PtueiCTDr2aH96G8kNiVyLnKTRH3RQF6oU15dRJIv48TGJJVOUCwSWQ5B5bPV3uCANmEj69B9t0enuMT7pcGP2OpaY4psiH259TJz4GLKOFwUgSkRZgqnnuPGlV+g5Q4adEamdYiYGpmAgiirvfPlr3N55wmcPbjEORyjIqIJCImZ0whFH3R6DyCbLZDaf9NFSgSSyUAcqyzcuckCbv7rzXS44u/xvvn4dryCwJ/ZJ0pBKplIQVTQkDFFBIkOKA0pSgWulVVblZTZm11FzJvJKH6UhMts0CCQFLVdH9JfQF/LUPumxdaeN108pVWBNn6TQWMB2emh6jDNucj5MiL0Rs1Mmb/7qFZpVk/c/v8Us8JVrM1Rq8PnWAZeuXCIubHB00mP9+nV+9IMf4UU+s4sShUqJSLFYXC7y5W/OEtoDnu49YXqlxFd/4w32Ntuc7PwEMTNZLOfxvQCjVKHUaNBxA3RdZ3qpwXB0Qmdks7RcZePGZYxCnkI+pK3H7PdadJ4+4vj4iImJArIaM64EvPLyPMWpHMV6BVHLc3rSxeuHnEUnHJyeU2nUMFWVfvoFhUvnlq+RFidx4mP65wfUK002H77L8YdHfOmVVzHjIodPz5CyDHO6wqnnMgiHzGpVrPuPaN16TD5UkMQExl0KqUZenuDUG/PB4x9TMFTsVp9B+5SV+UVWXrxB97xFyx9ydrTLuXOGn8Z4RPhJRIqA7cV8+2c/xpBlVGSqQZGqlqesFanU6pw/OkQIYyZzVYxMRIwzFGSC2MeSPLqJxSB1CWXI/CGKn1JBJowltNObHLXPeRC3eHpgs3zvfd69/3NGQoQqZ4iqjIiIFKRogkQh00iQWcrqzIVlmpUVvKGB7hRxnmxyfveQ0tcMHM9AKhQY9w7ICzUuvzDJ8abD1FKDYlOlG4Scn3dYvDHJ5qMT/uw/7pNKBqNRSrVks3X7FuOawqQZMH2jQa1gYeQz1l8qItZbVEWRUWDwg59+zv0HHaYmciyunjF0zplcEJCLPXJNBdfusvryAhM1A3PKZT6EtfUqR7ct5i+uUm5Os/jiRaJiwL0n7zOwx+SLJqWyznA4pueOOeu10Uo6f/2dj2m3HArlKt3hEK2goRVLdP0WSy9MY4kWRmqQpiZJWsDQ5yhPzKBnIcXLZXp+m9P2U4qNLyjuaXDkUC11yM/pLBRrGEWZsBmw+tVFmuVlvCOD3tY+669/icraEvfeexfslKfHm9T3t1CH0FSKSOqQwBswXWryzsYl/vzmd9g+v8dHjzIqwSTv/MbXcfoD/HaPZOgSDYYs6DU8u8dp5uEQ4xOSChJ+JjAat6hjUMHkojbLUnGWxYkZmhcW+P4n73LeOUTVJCaNMrbrIGQyhiKQFlS2++f4YkwoCtiRhw5IgsrQOeLznx/gEBMhoYQ2/+7H/5Gbm7eJ0gRJAi/yIRUQExETnTwKeQzembzKGytvUC2vMT48J+gkMAoY3jqi+uYVKo0qMTaOuE2xMs/IeohqSsxfvsHu8S6V2SXyKtz79AMcOY8nRezstMmpArWyzs5Wh5lGg4WLCoo9BgGGWUR5ZYq44pKTVIwDibPjXRRFoN7U6I0OEbSI66+vkSR9fG9AY7aJYQRoRZHdrXeRxgZXLk/Qe+AjxBFXXnie8uWLRJLF2Olw9/5HhNGQRsOk27OJkoDD41MUReH4dEiWidjnffw4YWZlgixJiSWJq69ep39ygi4WkKQZ/H7Kazf+LoYjc7p5myT9/7b3X7G6ZveZJ/Zb683vl8Pe+9vx7L1PzhVZVWSRokhJZEtq9YxnpBGme2y3YcDw9dz5wjeGjWkYmCvb6HHosce2WjOtaQWKpBKLoVi56lSdfM4+Z+f45fjmsHxxaMCXJOACRgAf4Lv/Ln5Y71r/8DwDCq7JTE7w89mXA2/l8YQ7P/uMa9+8QOPVIk92H7J26QrdKCEpGPj+hFprDqdWJtJzKBiMh1NkEKKFOQtGC6KQOA0YpymzYpFirUXRrTAb6jzcvcPq3GW+aM8R7J3geBa16iJJnjOYjQhJSFQOQiCUQGiQqQRJhoNgzWzwytpLLFdWEZMZan/MSl4HO4GKRpiFBKqMKppERs4Xp09YcuY58s4QmUIoDUMqlAYzYrokREBChiMlh71D/GSGkUOew1ilhICBQUEohEqpyCJNUSKf5fRmRxTn6sh2CSdrYngxureIXDVBdanNm0gZUNWhttAiOglYWrqFadf45IMvcM0qay8Vcecn9JNdXN3CUyaXLpbZePUCSecUX0zwshRrsUVUsCGD4UmXfGZw45KLW9S4dn2JWdjGrBnoRhlv4pElFlGU020P2agImnM6qcoY7fexVEQYz/j845+Rfv4hk9RjHI3xogBURNEusDRXZTqbcHrcJQlTCiWTcT8jmaU0KgVyPyGyUl566zydzhkvX/saRkcy+GmHONSZP38DEhM9aJFPc8wk5NziKgM1+nLgLe4PKc8UwY7HYE7HTx16xzGjpxOiuZjawgZ6W+I93cE4PCQ/GzA9OeOb3/gW8Z37MAxI44QMi1nyYrZzd/8ZYehTtat0wxkHsz06P9mnpkp8+6Xvkhs273/2EV4WEBo6Kot+0fsWpPkLW3pbmKzJBldKS7TMJrXUwZtMGOwfU9IkTeHQHw7xswHr517i9W/8JkdBh/aPBvjDXUrKRCAQhiTLE2KRI7KMDIiBlBxLJEwnA0hSLGWQkBGInFiBKwQlCXkGUkj8achp5yH23DLN25s0tcuYXgbVeVR6iRfrIYeoWYQyykQ7z+iOhqTmPeKKzSzL2Hq6z+2vzFNZWqZeS7l0q8rz5xPaPcHrF5cZmD6n3ozOIGIUx/zW1xbJs5SgE7D3SZeC6fLKrRbjyRlFxyNKI6qlZQ53Ij5595iFeonxwEfogvXbNtVCkUF3QjBKcXSbw+kpp096RInJJAiYRQFOSYEGUzemUSqjNIPIC5haEUgLfzrDyQQ1adA/HtK8UsOpFDg+OeWtjRqzvQlP/909olBHfLOGqtWoaqvoRpXepEjFK1EuiS8HXtfMkUnMzv1d4qnDy7/7Df5f//v/E1dL11hcPaRYSykIBykUp1u7OFnG1bk1OGiTeII8TChLG6NYZm6pgLfm8tMnPyLXParSRWUNRnikAsxygTsHDxj6CYM8wJMhISmSHElOLtSLU1cJHCRVzcTKBd1unzCaYCUJtXKZUqFC2gsZB4qyU2UWxTw7OuBsfEwwnaAriS50NF74mmW5BHIKSGpCoquc1NBRWU670ydKM3TTJc0TjDzBFRJHN8mUIM4UUZai2S4GBRbrTVAJh16bYNyhsh1g/dkh69/+NkFoE/oCaRtYJ4f4Ox1iccaJiFBzgm+9vE5nMOXxh0cMHbh28Srt9n2+/vUr3Hi1xSTcpR0lPDgLKc6b9JKEzcYK3QfPmC9UWd+oMfUnpGmA54+ZTBIGgw5nvSOG45BaaYmtxwOkSrj+8oS1izqmYdGYb+DeukBzU7D7fJfxwINMUDQ1lBbjxRFhnDAMxzTnLHTXRSKRYUwpEcypCuWgwOqFSwS2YnyQwtjm7GdHTD8dIE+hWqpSb55Hn6vQfv9jzOEUVy+jm3UKi+tfDryZG+OpPnguV40bFM/mWJ2sUzPqdJ/v4BeGXLj9NqHmcO6f3iAfHvPkxz/k8KyPih2qbpNE5mCl7M8O+eTTx3w+eIiQGWWnhlA5XpxhYZC5FllRpxO16WQj4Be5uyIjFymonDRP0dDIlcJLPGapT2vOpllfR3a7DPunaJGGjBJcYTHT4HHvgI9+/IgsnSEECE0j0jUkMWaaYSKIlaAoBbmmY+YZk1wyzTICoZOjIVVKRk4LnQVhUtZsvDgiQiGkZL7YxE501CTCe/SUx88/5djbo3ZkcrVXYHmSEA8E3Y7Czw65Or+G03B51nnI0BA4VQvXVtS0JgEVjh4/4+R0SDLLuHF5hXrZQkWgk5ILsNwSceqyvzfm+z/Y5sJcifPnI4Koj+VqjGeSydhhZ7tPksDyWoP5tRbO3VN032b8eIZabhKnIYlp07j5Ouu1l7mwt8eofcLdT37O0e4T4jBDxmDZGr4XY9UdLs7NMxjPGA2mrMUW5/Ul4sDmlYu/RXmxyu7RFp3jPdo/3yU9jtHlPO5KE60xh793RO+D+zTDDCV1ss0Mc+Mav+zZ+yvB++H252iug1aSDFQXq7/LN7/5TcYHfRpalWptjpPDpxQubCCXDaiVCHcrzC+tYVAmD2Hc7aOUz+H9e4ynfXRgnAVs+ympUHRVhMgjwv4xlXDKNA1B18izHD+P0WSKFJCKF63YF90sk6mhoFFk9aULuKHJ0W6HUTLCUIKUhDiPSIBbr7zC1skz4uGYWeiRpD7TLEaJFCE0DKVIScmkQDMkxosLBZqCKIpACGSao2kSW7eQSUYWh4g8oyhdXj1/nZbu4FqSsN9nGmdILSNLc4aDKafZAH8pIT+N0Z97aMmU9sopC2uQXCywebPK8toaT+4e0hsJnh/fRdVSch9WNxvgJJycDjCpUtQCWk5Oq7BEVVT44sEjurOAW9eWSBBEqYMfxIRJwNFhxGQChgadU4/7P9/BinXSmUfvOOL5RyHlxgp6eQVzbhGtukK1PE95NqW+donOznN6W1s8/9l7aJOAXEZIP8PWJFVVROsMaeY1LlbW0ctV8r2A6UTnXGWTooTu2VMKkYUwDRpGhcG792h/fpfaJKYBJGGI2jkh/IcPcP/Xv/X/f3jblsc4PcPrp1TUARtZh//grT+Evs/g8Qli+5CBnnMWdSDaZXpywI2FNUqFMve2dqleuczlP/h9tE6HQbhDcuqR+xnHPsSkxCrFUiZCE6RZRpIkOFJHZClK6C/MnfMMiUDoBlGekylFRkpXZAwcxfOTLfSjCeGwS5jHiERhahqZ0AhFysVbV1naXOP54wfc3bpPGCXEZOTkzITEIkcKRSYUicpIBVRqFUSUMM28F0k95AhNkOUvHpAyE4BAB6aTEQezbcqRQ6k6h1Uv8vb576DuvsdsPGJh4waVq69wtvsudd+hphc5GQ5oaxPe+p9eQ6woth/67HdzOmdjMhJu31rmYNxl9fIcnzz9lMvr55m3Fzl99IRqbLKUw72//4xP758RojjoZRTdgJOOh7R1ptOIySwFoZPEitCP6O0dsVS2cGXMbCj5/COf9ctrXL26iV0skpsOuSqTziR2Uefi7YusmJcoPcxI9o4Qysf3+py9s4tybZqxy3JhgQXRIB4L7vzgIzJN0FicJ49i3NiCKMUUYHgpJ589ITnuoVTAKJvgoBG3R8SdQ9xfksdfzatszsJydPY6xzSWNeobFTIzQVo6Rd3GzQRlN0HNV2hHM8qmS+9n9xHlNrVikdX6PJplMuueMhwOWGwsYJd19IOQKA2I8owJilQKQEMLUrTsxZap0Aws0yAVBkN/hKYEsdSYpBEzcoLojJMnQ2JzxmvlDXTLxPMDTLdIpbXAtQvL5N4Jf/HR35BEAYPDY8b+CE1LKeeCXEhMCSJXCCExpCSPQ2IFajyhtbiAF4R4QUIiIM8zvOxFmrkuJbphkmU52+09bpy7RqVyjsrqBnFRUn3tAq/Vi5xs7fPSW98msgqktoUyE/RChn2lTnmzQJhqRE9HPLyfsnU4Zb65QO9kRJK6nL+wSLVloCIDLZEcPGhDJ8TKFPOZiV6qMVszeHYyJUjGzJKUQsNFCUl/NMW0DaTQUVKxuryAlrl4nSOiJMI2K8RhyPHzIfn4Hteuz1MuLSPaOVlvhswlFMuYscvi3EWyoYmcjkhym06S0B3PKJg6uR8xCE9evAuiGYYwyLuTF1+s9MV7RWVDYn/AYmOeg7MTPD1jmkSYJDjKwMD4pXn8leDdjru0Wk2Wa4u89ZtvUghcfvrO37CkzuFIDa3SpB1uU6nofPUP/wDpa2z/qz+htnSeJA4hTMmOTth99gxqZVoXF1mVEXu7TzHjnJq00UmZqBw/z4nTiKLmkqgMpWmkls40jAjIkCl45CB1AqHI8wxDg3qtiOeNuHDpZaQ3YeHGDSrLLfJWmZfdmP/+v/zP2dt/QENzcaWGlsc0pSSXAqkLJmFEIiSOplOSFrViAadR5cqt6xzu/wCpCUapIgXSHBKhKBZdbt++zUJi4t07ZPPN11lbucZoOiPRM/RKlaJTYf/xAeXoU9bP36ZcrXCgTzCKHhf+6dukixl7p3ucPR7xp3+1z2/89m1uvnSJp/92n5/+7Bm/9R+2qDg5tfll7v3tPo/+5pCXVh1W6jrTvSPGKuO333ybb1VrfP75u+TqjELBwAtipClxiwZDL0LD5PLl81y/+hZ7Dz9l694dDN1hvbVC53TCvR//HOMo4WYlw3/qI3IbY24RtbFOkusEhk2ltfSi03kWgCgTqYggSwjVjF56TKoyMkKkMogDUEIwzafkROjJDNWXrLouOinHQZuxaFPScxrKop7ZXw68/WDM089O2Vip8/OfvMd4Z0TLX2SiPFaSVbRAI9VT0sTjdNBBOxjhC5hFEYV6mSfvfcjShSVEDm/+0R8hvC5bdz9EaSZKmsS6YKQyhoYiEoLEzwgzH0VGluf4gSKNQ2yp4ygDV74wswi1jDSNsS1JrHmkhk1/esTaq19BP7/KJz/9KVHFQLu4wO7JHjEhMZKSdLCUJFc6scqYxTGRysmUThZnCFPy0s3rnLtwnj///g+ZcwvMohiVpcS5wiXDQaPulinYLic7+zSkRn//gIZZ47NHd/HNjJdKMTufvIseDIg6h6SiQKdzRGVljdqVq5wcn7J861UCr04fl/qcz+NnHabhGC8XXNqcp1qoU8hMGAlEJ+T2psnta2voUnAyTTk6PGHvRz9h8/oVLKkTZhmZEoRxBEg0XqzrWAZ0T084Kx1x+dJtVmrzHO1uUS2XqZpVLD+j8+gh/dwm2lcIVSKsnWKFMauv36b++k3ix88IIx8GNoXYpZAa6CogxWdCQkqKj4+BTY5NqgSempDhUyBB92xGe3vYSUCiebjLRaplg/SwTzz5kobRx0GAVIr1pTXW6ssMx0N+57d/n+d3tunuTQmU4kn7EcMfvI/zD3/Orc1XuFV/meSsi9btsSRyqhPF0dYx8aVLDB5v8eSDz3EyC+k2mFoZR8Mux0mIkho1aVPXXJpGgVDBIPVwpE3JtFFxjkIjFDBKPUIhePP2NUYnHWSmc+nydex5ePLoXZ7v3eVg0mX3/RFGFiGROBiYmYGW5eiaQZJH+HnOiAQ/j3E0k7Lj8PTwkHc/+4QLFy5Q8nxmQx+/n5EagjQYsGBWSXsz7v7sI0qJ4msbX2V0esAXswkfbn/CKB/wxf0/58LKIkFxQuAU+fmdHZZWz7Nx+Q0OH3xB5s8hv36Ty1dvce/DMa+96aC7gp+9/w5+piFtg2iaE+zlaP6My1UbWbMpNqtYK2v8/Mf3uHsasLRi8+TRUyaTIedvlVBKQ2XgmBrDfkIaCuq1IrPehI+fv0Plre9Sr62xsVAgTDoY9pTNzVVOpicMds+wModoEpG7FcIooGkK3JuXsGplEnTidg8rLFCTFTppRKJifCJimZCIBHKFIiTNNQIRkiofCx0tS9C8EIOM6mqV9T98GQ2P/kcPiR90vhx4U3TOrzZ4+ytfp/30gGAcEHk+F199lc+678N6FW8HmsUmb117BTtysIVBNh1jp0AS4818rjXmmf7dpzBt0/R0tNjEzyNimYEmybMMC5MFu8yqqrBqV/HiiBKCV771TY73jjjZO8IPQow4RUgDt1ZkqVZhe28Ht1jjk+cfsGyG5LrLaX+PlJhiHnNO1iiYi2gqJ49jpJAgTYTQEFJhComyJJ7vEU6mHA7HrC03aS6v8PmPfoKTCq4657AqRdonCc3MxDEsMk2jKgxmgxkHyZR+x+c0aCMrGsXlJis3zjE669P3PFiwkQtVuqdj/J5BHPl070wY1k4ZnLV599N3aLYWWN24Rru/xXg65L2fnXDOcVktStbWFxmFHk/22shZyt1nO0xzE4wipbLg4qV5lOUTxj6W7pIimAynFG2HeqVK96iN7AiSdsK4O2Y8bSOLU7RSim46lOoLRN0YqRyWLl2l9PLbxMsrRKbJcDyi7tpY9XmUU4KRia25OLlFlIUkKiWTilyTZECWxaRKIwdyFAKJpnQykZE6irgIxkqFaRASLVjEp1/SndfNLHptjz//i+/znTfeZjTs89ff+/cszp9nYeMC9csNvurcpFWssnd4wmQ0Yxh1cEKDcBpRR6PwiyT0emuRLBIszgk074y98ISsPME2TPQ+mHmOnRpoqYGUJueXWrR3P+TxvXtMxx71UgMtnuGQo6kZrlvg6bNneCLhMBuz297nx09/zkRaZLKIKSX1wORN9wob1RUOxjucxB3cyiLDDJK4Tc4MK0+YhWBjkGk2RuYz6o74+797h2GcIpXDDb1KJaswUjErosobi7fwg5iOLWjLgE+Of8aEEXEhZNlt8Xsv/w7RIOLp/iGTPORf/ub/knwUMXu6hZEPOT1r8/G/+t/yd3zB2I3Q3SLffPU2H/z4U5QImKsoJmeKdtvDurpOwV7k7sljRqKP1Rwy6Sc0LJ1sMMJqLLCyusnByRPyOMDWdOLMIhpP2LjocuP6HNsqIGhHzE77iCQmur9NFHewLtdZun6FstMknJsSzBeYrSxQ+so6heoyhURBf0zyfJtsZx8V5wTSIlQGsVJMVcxMSzCkjq50YikR+QBeNOYwcDFlDawCh2mfbnLM9GDCrcmbaKagEw7RxJc0EpklIVomqNtFLi1vsl97wuQ4JgglL//m7/Huj/6Sz+58gOsaVDObebvF4jfeon7zdaJPn9H+yXvMpKCdRYSzIYGVcfm3f4cLm3WC7/8/2b73d7RqDaq1GoOTIVkUc+nqNa6uXeDjxx8Tl2zO+kc4ymTWDXBkgVKpQpoLDrunRKQEWcYgT1gj53y1zDASCL3InNGk5ZRYFRvYnkOSzHPl4g0u/tbvMfN9Pnj+IX/58z+hqOdYhsTOBeM0xTYtqk2Xs+kUL8vIkwSiBHuW8Jq7wao7h9bP2Fg9j6Mprm200MsZ6y+t8NP3/oHy0GT4Xhs7MrklNpBFg957d4lHY/JgSppnFFyXheIC5ZmLyCQXVhd59MEdiirld7/zVR48+pi3bsxRvlrm4OEpldEptpNz+8pVjoYdLm0UGbVn5DNBOFIkvkalME8UjsgSxXSWsLy+QG2phl6usnjJIUh8cl9DpCZJXsbIJDxPGRzuUxAFXL1GeW4ONTAZf/9TTtrv0CwUqamMuHPG5KCNoXICU9Ge+RynHjMSLGVgphJT6SihIZRCQ8MSDpVChYvnrhEFMXcO7tLjDFMp9j/9mOpGk/H+CXbnS4J3xahj2wbFzGR2Nub2lZfZUWeEZoXSlcv43wu5dusVFubmOX7/HsSKuUubSC1l0jtFX6xTbC0i15aYu7LB1sFTnBsbFNyUG69c5972+2hFibR1Joc9TF2w1GrRHQ5QjkGltICaSKbDEalIaFZLVGp1zg6GCGUyiX1SYM11WDcl1SyjjI2KDC4Wl1mSLUyvieOUyPwA1y9Q6CSUl9e4thHx7p2f0guPUHmMRKJLCJOQQqnJP/vaa/zXf/FDDOPF589IoRxpmGlOlGWcHHa58J3vEIuU8+4y460Rbyy8RUkXzI+KGIGksdBEmjmnp89RnofSXgRH15oLZCLkj279MX/x879gxaoRl1N+93/8+zTrAWr0gN//1ht88KP7rK43KdY1MmmClrG4vIw/g3Fnm7PTAbqlEOo6tllEKAMkBHGIbll0Jz5fPNslCTS0FGoTkzS0mJlVRmc+9SBHy31mKqSjAhYu1qmniqR9yHqtSVGkzE626R7tkgidlYsXUInG8aNdjpOUFFgUFqYwKCqDPNcQ0sQybVq1Jebm5pFC0T4+JswmxFqCTGD73nOuWxpZ28cNviTTkQvJKnEaE++FvD/8AN0y2R8OiJ0S3/vB/40HJ3f543/yB/RPu/zW/+yfoxUrjDt77H6yx/rCPIub6+ycdtg4d42sbDDLEhzd5fTpQw4eniImGie9I3zloaUZWpbw+bvvU3UrrF5d5uqly/zs2YfElqJmFNg+PCWeHJPmkBqSIMqZR3DBcXhzrgZnPQxnkTxfo8kG9XSZIEwRSUolNYg7U7bf+4y5mzdxaoKyXSYqzOHWNYZhxNHJLrlMOX95jVuv3SL/i++TKkl5vkk5LZKFKWGcUGttUFg+hxjnjA6OsMcJWZJRr9dZK6+QDibkYUB+4oMJqTcmywNCTTFVitzzKS61qDg2f/TVP+L8K4voAhaqTTrdz7l57jzBacqjB0OqFUWZCgurc6hamU4Q89lnd1k8V+Crv/M6yJDmsslsbCBlSr83wy2VWV3foFS3MV0TsgJGaDDfnacQLqGcc4RjxfAv/wHxdIe5c6voG5cZtQeMOmPm5heQtuT4+Cn3n73PIOgRaxb68xPcVp2tMuynOiJRuK6DrbmUzTIi1WjUF5mbXwQhOR71OTp+ysTvMWRGnmsYoY7qpPg7MeVJnWr8Jd15z4t1pvgEesTEG9MfdghtySCY8r2f/3ek0x4f/PSHGDE011pIc5728y/YfvCY9Np15vI67dNTwvdmbL75DUpKEh/12P5ki6ybIqeShbkFdoY7OLrLnF2nJCysMOPZh5+R7Rs0Xl3h0+3HpOEZuZCMQh+lFHahAppOMUtwp2McW2Op3iDLa+jWBr0dQSJNdCVI8xmWyCgbFkPP52xvh2pzlctXNjFSi30mPNl/ziQNMTXF53fvsX9yjFAvHC9zKQiyjEJxjoo2T6K7VDcuE/ZGJEOfDXcFPxmihQ7jwQkyjhE6CNNAui4yMPH9MTOVkZouuRSMJx6XL5/n0Z17GEmE26gynHisXVrGcjXiSYw/hmrZJYoFZ90xJ0enjEVMN5jx3W/d4tU3LzM8eoZuhcwXKvRnRcJ0Smt+k0qzRUZIqV7F1OsoX6e3dUShOoecK1NbWcIdZByME1i/gDO3RH/nFGlbKJEy7Bzz9PABu/4xYzVllivGnVM6nRTflGSGxBUSEUw4zWZUxQhLOrhZjDvtk6QJYTTDDzukaoYgo6BcXK3KvLNAVZyj0Gpin/pfDryr1VUGmodfy1hcMfn06WeE2Yxe94gsFhQyRbuzy9WlTT5453sMQx+RRQwHPfydMamfsJAtkE58KlqJlcs30Icety/d4sHZO7TMGtvBDkmak5GyfG2TRlSk9/SQplsjVhn37jwknQQkeYwyJcvn5gnCBE26mAq+tr7KRjBDUymyWOG0n7HQLNA8v4I5KjIdd/GD6QsLojjEMKG2OMfAG/Ng+x5PgyP20xlZmlK1bCqWgTWJ0fMZ1+0GyodpZ8Dy/HnWXv4qvSfHWJrJ1id3WFlcpWQVEMEMGWoUF1x66pSx0SFIFYoSN698FXN7jvRkhq9mVBsVtEKZnaMjKg8dLteWaK2sUrp5HXOzim6OkOkY/WjEt74qMMse/fABNb3K4s01Hux/Tm1R0Jif0Tn9lKk3RkxCLixeYqFVxS1qZDHsbt0HkRHFKV95/Tc5eHzKpz/7jJc3R1xtrmNmJYKqTbjUIBwPSbYOKHkhxZLD8PQ5vckxRtanKnJSlSI1iZclxCimWU6YgodAkTGTkk4eIVMPczxCTgQShRAKnYRcZZQxmNNbXNh8icXNC1QWlpCRIHl6/OXAq5UFzYUFLv2Hv8HMCfjkXz9muVin3e2gSdBkzMblC0wHHv3ekI1LF5mGU45HB3QGh2iBw5s3vsZKZQXbKhKddBjlAZqeI5IJVp5gzQRaqjHRYkZGTsHR6YqAZcvl0qVLHDwfU8okwnJobbawyyX8MOXZ1hGmknRHPiIMqNQrBEHI436HRblDMZyxyCLFuQpOvkQyOkXFEY7tUFtY5GD2jNNej0D5aCSU0CgLg0KQsAAUwoxaUsTUHMqJThzEPNx/hpGbVKceVqYRZCeMhgMqRQdPQP/sGQN9m8pFk06ny8rqq4hLJTpPAwZJTCxzTs9OQAwpYmH0R9QrRRqVKsWlRdTl8+T5ADkaosU+65uCk86H5JOcvJNyNL2PUfFZXNaxZICBxmw4o1FtkecZjmPTnKvTOVR4g0OkyPGmIVFnzOD5Po424XTvHheOt9AuLlK/tEox+xrdP/8++fERBopZzycKhxS1FGSKqTvUMkVaMrBjj4kfkuSAAoEiEZDZOkIXxF6AyhIaRYskTDDynHrJJfAiHErMNc9h11qoUgNr4yK5n6DSL6vDVhyweXsFbcMlDwJWLqzyGy+9SXgy4tVrN0jtEC8cM/VnlKXJanmBO70xaW7SMKuAS+XCDfSkgNedEasZh5Ndcitk7/AhWeJh8cI8JCLk7x59zLeuv8nG12+z/ek9kkOBm2msWlV8Aoa7p1TnEsJU4abgRyFbp0MmhiBJxvjTAZrZwNJ8JuEepaLAdAvE3QCVp2TJjCiE4w8/wF92+b3f/g+wFk3spXnOtrd57wffp0zGK40lylqRZGJRLFTRYkllYZlnhwNee/O3qXoWpp8THR1Qa1YIXIPAjhjnp3jFAOpjMttna/qAaFvDLGnkpoJcEMcBdauApjJqpkFJSo63n7O02cJJlvDShKJeQlaLlFfWOTr5hHyUs9BaYDg+olypUdFy4qHHcOITTwyqi2sksYmgTO9sytMHp+SzHH8WkEQJH/7te0TtERVLMCc11LPHhH2LzF2lEOpU0AlJieOANJ6hiRSVJRSUwpA6BemSSQ2zbEIhZjcIGQQxQr3IElZxjDAMimWTqmPx+kvXONh6xuBsQM1xqSgTOytx7vxFVq5cR28tkC5UkKnA0L6kB5v2FZ1e5Qg3uM/Im1KwpixU4cpmi5dvXka/XCTNhxx+8gj/swG1yOaqfpmiWcIKEnJbMr+8SDVrcna6hdc94XnnU/ayQ/Is5+L8GroXYSU6mhQc+3265oiFepmhNmSwe0jB0XE1k2Jxjp2zEwaeR4bEVCaGMtClxihJCaIIjQK1zMSPQhYqNZauniPe6ZPEIWkeIhmCCmjOX8W6cYPN5YST/hZL566xVl7hs//uB8ybJX5z4WuIQUaWaWi+Q3FtDS/J6SLxxwFWnpCOZzhNB/vCCrGZc/7y1wnHD3n/4R6ThQFhPGHnzh6Dfp+5oIFHQK28QDTwaCddSoZLoeZSlC6PHt6jdnENd3IRqRLySCENA2OuxNLydQaPt9CCedbnLvKot4NaMRFen/H+Q4pmGTeos73dZ3e/zdbWM8ZnIU4isFHYFiQElISg7lTRvBz/pM30wftEA4eG3qQU6lTcFkEyIBcamQqQRFgqQc98LA0msSRNEkpFnYbIKGk5tjAQRpF+5NP2I5xGgVduXyIJJpRrVfww47Q9wk2hVV2gVlvAac0TlSyUlrxYZq0Yv3RQyq8E7/Kr5/n0p//AODmm0ZpjeaPIR09/Qv2iyw8/+2u8rZjf+/bbuKbEcesExx41r0LZ3aTr7xOFMY/+7keUKptsVBeQOCS9GR3/jIJZZhxOSUSE7Wjc2LyEah/ybOcpeb/P0nIT5dpUXJcMye7RMQVRIs4ECYIUhQBELklyQSwkhhCYOXR7Yy5fuEwySvB9sBfOEeAx2euTyZzmRoO+NeXH3/9TFs4V2bjVYrJ7nwXbYdNcIjwJ0ccSM7CRlsFsEOCFEVfPX8VtLZN3B3i9HnbBpH93gHl7k3H7gNzrsLS2wFOekpVitEbG6KCNFmTYdolZ6KPpBuVykaJpk2Qx3b5Hoz5PwXCRPR85HqGUgKoNeUTVnme1eRWTOo6+whvzG8xVDbaf/Q3ero0qO4zqMDgJGZ9BOLWwdMVcxWWu6pBnY1bPNUmTiMmDCWqgGJweoHcc3KSBshLEwjK6XsDQEpSmoxtVcEEkU9KwT5jNSPwhCB/inGKWEEiF0iSBruFlJkGcUhA5zeUmezs73N8/I04yTAUoCPyY9vYhtdUNdE1i1i2i8QjvtMcv643+K8G7/8Ud2if7SCvm1ltXKC/YPHmyxWA4oHC5QO+0QxAnzEYR/lFES6xh6xVm4RChFemHA9KpR2uzQOAd88mzn9JNzohEzEqjTtkpcdIdMAwH/M6Nr1NdrvD+zz5glgj6yqcmXPRigSuXLnHS65NnL6yVMkDJnEwIVGaSqRy0BE2DaRITC8G47RPEkKYl5m+9RdzZY3j8nNSKWJ23GCc7eNkOF259g7/7q/+K8XafRc2hJguE44yaLKPQyZWgWq+geSHFSxdpHx2Qn3QQsxlqmiFkSmG9xWh3l5lzSuU1E5IMaUqW1hfojDzkGOYbTWRcxHVK3HztFexGncH79+n6fdZffQXHqcDjU2h3oWTDQpmcGGOcs1a/iDAtTp5NifOQQljg7N6EJK9TvHmdsn2dl6+e58L6CY+ff8LOzkNWlupsrM3RPnvKyoUah2djDDfHVBJtkLMs6ujKRsUxhFOUXkS6FdIowdRMLMsmywUQU9AN3GRGIYtpZjkFHQ51waTksJcqTpMElYMdZ2hVh6xksDMM0FDMqxfJzmkiGB93oD3BKtZgnEF3in/c/3Lg/fT+Q1596yuMgx5//fc/RJqS1uIi85U56tUGt79ykfbdU27c+gofvvMpiWYj44S5UpNBMCPKIq6+8goTM+H49DHPgmec0mds5EzI2O4ekMRTmsUireY8W7vPmXMb1HQTv+0xiyYMRIxRq1KbW8AyfbrdIULlKKHIxYs2pBSSVOWEWUrRKFAyy4RhwvhsAspleHBAkAdktSWMeUHtygrtnedc3ZijoGsMnx5Riys09QUqaZ2F+QsUzRL93SOEyMlmM0ScoqNIspDx4IxK5hFrCaZtEUwG+P6QQXCGM8koFEokcUTTaWJVi1hnFk4kiGYBSSzIpcBozeNZEJYNRLMGmST79Bmz3QPK5+bRpwtgQDKY4o08IiMgUhr2fAvNcNi89G1yR2A26mhyCcucYKiMl6/eJg46rFxaYn51jjRvg8ppb4+Yt9eZv7wOXo4cFkhGCVHoM+l2sEsKXbcJdJM0E1QSQZLoJMpFSAPsOlaa0FAxPRFilgziisFxd0YvSygCWBDInGmWICRoKRQyhyo2S+Ul1hrL6LOU/HRIb+8I3TYo1L+sTIpigXc+u4NhKw5Pt5FC8urLN7h84TK7z/ZYXVzg6GTElXMNCs0NasUN+vcf4nkdGutlspLJz997BzFnodcTShfrTI/P8NKEp/1DFtMCZUOnWqpz/Gib0UGHb73+BqmfcMghe/sH9IddBp9/Qpqk1EQFYRno5ISR92LYmhDbsAkzRZJGVN0F6laFelbBzDTcWgVN+BSaRYpyhak9Ic4DVpYaTLZy9r73KZftG7x87Q1mdyf43RizMI/mOgjrGLKEqN0jUXC29QCzWWD+covJoxGBkSELMWc7d9AqDsXNOmYhoZjV0chpiDmWGyZTOSDszTASl8Sbcbq9jdsoYa02cAoWmWMSjyboe2fYe2fE3hQzSZDFAqkXk6YZWqvIuZdvYGwuIu2cZe0aAoHKBErFJKOAdnuIUfC4dvkqkTnl5PAIEoPu8zFL6QXOX/wWBeM8kRUSHYUYwxB9PEbLE3S3zHTqEcUBhu1gnj9PenpIdJaj9AzKNiQOqdcj06ZUVsoc5SGTowgpQeRQLNl0B0P29s/QE0VZSVZlk83iAm/e+hpmXiAYTul1+xz4I9beeInW1fNfDry3v/PbPP7sY86OdggCgSklO4/PqBpzXNq8iowUr776Xfyxzs3Xv4o+hsn2EwZjjyhKmb+wSe/ODsd7p/j7Q0RVMo4TRglUM0GxNIed5nRPZ5z2PuHyjcukgWL7+QG+H+PxYkh9OhszX5lnEMRsbGxw2j7GlTaRH1K1KuRZRkEWKdotlrR55sx53KjAzJtRisvMhscUz11h/eJt2tM9/tv/x/+Boj3isuWixjXK8irlTh2dAkZVkUiJlqdEIkemMcViGc+b4i7VKH/tBv0nd4g8jeHkjNTOab12EwxBbcnEqEdo04jRcZu1hfM4CyX8i0P8XkQUmuSmQaXVQpfQWFukvCRxa3WIOqSjHkbikfZ8UpFi1ucxS2Wqi3PIy8toN87BcoVUz154t/kJ8dAjHY5JgozIg6O9PRavVrCcOid7z9D6kJ/CsnGe6aFF4qTIyhzuXA2tO2W6c4jX7yJtSbHUYBZ6iGKJ2DaIpEZeKFJaXqC1MU/FP+bx1gfM/JRplpJMfSoRGLlGxTQ5V2lRyhwKiU5D6SyIKm9c/Aor9RaxYeGbJvOLq2j9EefMZeZevolYbX458C7PVZFXN9GyKXk0wdIcXr35CutrG/ROZ1xaOE+reo1prIEAoUfYRUimPgsXLlC/uk728CcMhj00I0OPXSxKiCQgVYIwUhiZjURDi3127u8T8pxJHJGhkZsOKT5OuUhWcKAgOfKHjMMZX739Mp9+/CGmDmkkmNOa/Ob136Kuqpi+zrxbpfNsD284YRgGuIXrLLx0Cf95n+jhiKYZkXRi9OMmBcNiuN8myQWNa1ewrq2T9rsEjxUyU1hry9ijDpXrq+hXFpifv0hpJWXQLTPKxqy9volbdPjp338Pf+eE1UqFYlqmoOqoVKMw36TcdMC3QdOgYoISuI4LVhEcF1WwiJWHwkNPFJz6JF6EWl3BuLmGWF1A1F2UK8iVJAkygtGYbDKmXHIpNi8g0lP2n4f44yKLC6vYiYfj61iZ5OxRzPJ5xVR0Wd2oI9MYVEI0GjBtt4mTGcbVy8yvtgjHHuOdbXQpsAtFRC4ZHXTICzkH0zGPhx1EbmAJwXWjSsWZY2WxxaVzLabDMSXPQCmDZafFy298ncJci9AEe20J4Sumd59QW5rDWGqROBq/bLHsV7vzvvN9rl27wmKzSs25jMrh4uWLrJy7wsftz/n4nfu8eW2dxvJNxqPn9B7exyXALmuMp12OPziiP+1gmBKhSSpmjTWrQZIP0MMIK7cwZRmlYuIkxY9neET4MkW3LRLxYiLUz2L2jna4dOkqQtM42+vz+MFjNufWqIgKSZxxe/0tbq6/TXwW0tvdZVIIqTaXIIpI5AghBNPZgL3+Ab3ZEZuL87SMOfwDKKYSXWrMCiaTaITl9zk9PUBzSiRxztPj59jzVRrnF8ijPp8//IimI1m+tc6cHTMMTxj0A8xqgj+JODk+ZNFdeuE6YRqImoXIHKLJFBULGPgQzLCmATAitkyivQMgQJkJVhyj5ZJkpuP1LSq6RNcMlB+SqRDfD4n9GE3TqS8vYxgCQo881Sg58+iUEFkDU4UsuHPYWoWGZhMEEfl4BFaXUadH2p9gKZ2q4xJqMZOjfWqVOVxdQxQL6LpB6M042nlOFE1Jq1AouTTMBtNkRoEyv/36t1jbfIlyxYW8zUd330ObCBqizmJlCXN5hbhaQluuoOZrpDtn9FWA5RgIy0RJ9Uvz+CvB22xpzLVsjo8jXnn5Bn/973/A3bzI3MZrLJ1/jWKSs/PuNv5CwlKxjtZa4OkX9zj2DxndfUrgKIZqzCCeYhgFbEy0MGPTaKBlKUWtgMo00lxDSIsg85kKRShyDC2iXCkyGI8I44hRmvKTR/cwgQ2zTNkr8Wr9JaykQE7Cq1e/jVFfY7zzDGOSIaIZRtlBScX64jp5YnH6xT2++PkPmfYHeLZLZ6ogLDDJ+1T0ArVmnaGu8cHWXTavXAZdMt31iZ2YQk1xuPsQTU/59E+/RyEN+dpvv8X8rQ0ymTDqnUDqo5c1LKuA70VQtdCtCnE3AT/Hy2dkXkw2SsjynIJVwBQmYKMlEVa5TOj3yOIJCpM8kWgDHdkboo5OyNIpfskAy6Y+v4hRLpHrGWk0Q46HkJVZXH4b2ShSaGyyvDHEv9ulfuU2aqTofPEZslBA03RK0uRw75SBF6LbDoEKiVRCub5Cpmk4KWRpxnQ8Jk4jEpEQiZSv//Y3uG6F/Ozd90lGOq+/+V3cxiq6qzPtPadU6bI0L9G9CRvaPKrdpzvuUVq5QVkHFXhks/ELuyGVv/gSfRnwLq/MMRgPsEo10Cq8euNrhFmZYmWd4qUSs36HYssi021EnjNutwlERuqYtNUZbX/8wvtLEyBMeqMJjnQxEzByiZHmCJFjSEGkBJkQRCojEhlp7FMWLksLDUZ+yCAYI5Qizl9sXdxcvMaN5k3idoQ0E/JBQN7wUVqEU9VhOiKbecRGRNyZ4JgZ80s2ry1s8Hn/OY20hZHYFJsN0kFCriL83hkzUaD1xgXWvvs1Rh/cZTQ74uj0Eb1Pv8D/9AcslErMDSQVauy/c4oM5hiUQoJhjKYbVGtNdBPMXOANx7hVGyMUSD+lbDlIZRJFCXmWIxOQSYiV6RBnpOMQLVboQiNXGZoAK41J7z8mCUfw0nlkeYXi4gKyUiLLM/IsIU9S0uGEcKhYvPBVsrkyca5j2FXyomCW5VB0WLp1HTme0H+0QzEWmLV5KGWU11eR0yFmGFK4ep3B7gFiOCOdTJgMx6R5SieZMAsiup9/xFf+6bf4w3/xLxkchZjFIonI0StFNOMcl98qceniV+j81fsUpynayKfeKqGlCjEJydt9zOEUberDLEQZX1ImRTJM+ezOA9rHHt/fe4/vvP37fOc//s8wjRX67TadLOL2H/4ezGL6/82/Y7i3S6RG9FSfR/kZ/TxlzqxgGTZECks3sHINUoUmBAVpYSrJLAkxSbEkFIROniVYhsW19Qv4Xod2OmGkzVBZjC4FZcvkra++xrq9wf54C8yczhd3GI/atG5fR6tIjn7yHE1aKBlyuveMRurjJE3cSUZT1Dl5NqLSvI5l10nUmCBNCH0f093g9ldukuYx7S8+Qc8CJpNTLi+fx1QmDbNMOBxhKAuZlKl6LQobt5h5z9n/7Eecf+scjfU6/fEBwy92SQpjxNimJG0s6UCq4ToOqOzFL0lgnJB7E/JxhJ25SCXJSEikICYi2dklJ6X4ykXsuTrS1In9CbHIsITADGN2njxl/9MtVi5/lWQmOds5pWK5rF27xfajB3S7PV65fAtjEnKy16Z33MOp1Vl8+03c21dp9Pp4x8fI1TXiww6Z1ycd+6goQZGSiIx+OKHzcA9qFt/5zv+I1eY8k8MTGpeqiIKNW13ErTegMqF6fcLg0Q5eZ0B5uYnIdYSfEXYmpJ0x9EPoeGi/vMPprwbvT370cyqlRVYbm9yon6OSLiKOJV73gGn3GDeB3v33EcdDZoc7FLOYSa4oCJO6UcVyDAzdwUwM1udXyScJ6SxGExp5nmNoBrZlkkvJMAzQ0ShiYuYCFcPjD7+g5EK5UcPRFKYQL6Jg/YD3P3yXU/kcPa0wNzdPPYBeu0Nauo1GAWkKotgnmHXRpSDLEnTLxCwVMScVJpMRR2cDYhmzljtoAgQZ4WTIbO+AwDYJdo+RQcxG9TYvnbuBHIaMDk+wUhvTMsjyBD0KKDfPo7cTRkkLN2xiywV06TPo9Kg3BfE4oTcYUs00NCnIKzbC1hE1h1TPsbQUZaRkSAwcUAINg5gMJVLIEwxLx56rIQ2T7GxApmJU2UQYBscP7/PZT/4Wo68In+6SlUo0KxUcx0bYgqXzixiGIhr3MFSMTUaSRfjBhMl0SO/xQ5qFEhMvwJ68qGlPh1P0IEF/YYiFwEQXLiocEXUCtt+9i0uV2Uyn1Gyhz9fRlEkWJGhCw5qr4y57zFRKwTIwhA6TkLg9QPRniNMRqt5DxsmXA2+hVufSxWvsfdHjD/7Jf0KyFTB+9zlJSeenf/FfEYqAql1gtbBACxdpgeYbzDPPNVniOA/Y6h/jKJPzNzZp7xzje1NM/ReTREKydO085Y0mJ+//Lel4BrOUkpLYpkPFKpFLj/VLF5m5Ajkd8rWXX+PZD+9RKBRxnArLN7/BQuMcu3/5DnO1FWr1BuNen1Kxjj/okmcOmabhF6o0blzh2edbvNt+xqJWoJxFuLKBk1gYmobhOoxygb9/yvYHHzE3TFlsbTCcW8EttoiPtjBDhyz3cQTEMmA2PiCZnTLyh8wvLFGtnwOnQn3FRnUkllnG1gX9yT7T4QiVpcwmCYVzcxRqVZStgR2QyIigp1GJDVxMyEIsV6GXJDPdRK7WwTFI908Ru12ckkO27NJtH/CD/+u/5tnDD7ldvsz2j35A4eoNVr76OkILmQxOOG3v8+jTT0kOu5yvzOF5p0yTPmpqsf2TU179ne9C6UVCaSXTiE/aFIROiiAUgkRJXFmlkukUShVeW3yDeXMBXblk603yGILTHlaxhGboZDmIxSYWOUIqxEoTigXod0iPOjhjj/TeY0gl8uLqlwPv/tkMw9jDsWqkkym7j3Yw2zGWFVNOpoR5j5M4J8mmnIVFTGVSMEvIHCppgcDwaUiPJAu5+8UX6JHAERaGrlMt1Ek1xdPTPXq9B4z0kFC8cGGs4VCWZSpOjf3xmP5oyGtvvkTx9IDYizBTg9X6Gg17nrnL1zj75BFxlDC3UGLwYJves31sD3RRwShV8JSifukm1sY6S/kNjLP3Waut0hw7BPseMymxNYdARKSOxXT3OVqeUdA0Zt02lddeQhYswiMJ9TJRe0wW5MxERqNYwionJPoQowSqZKOkhdALNNcuoacCNfFori4zGvuoBGqNCpXNC+gXlxCuDoki741JI/BOhgg/RdMN9JqDsVTGdHWS5SqKlP7uMf5n29QbFWansHXylOPDbZAZmRZiVsAopTw/vMvezhMe3fuI0/4JwXiK8kI+FTp6BiIX2Mqm5bYYZwPYCSgVDIyyi6NLSpUS4zRkkExIhIZSgjmrxdrFdVaal/Cfn4JlU1ycQxmCGA2CBJXmSAWi5OBqc6g4AAOIAvJuHzka4KoUbTzEe/oUu2D+0lD+av68pQUGk5RzZYfD3ik3fuNteDbk5MnHlEsFjrwT9uM+XS9h3jnHudo8aWAzG3hYWhFt6jGHSyg0oiBEmA6TyCdLFLZw0E2Nw84OB3mf0M5wBCw6ZZp5gSyESXeC1C0eP3lKOthhEkfEhylvqJu4fZOljWWC7SMmz/Yhz5C6TrzXpe4ZaMV5pv6UlRuXSTRJUmwg3SpFs8hytUUsY+4f73FOtSiU6hznM8Z2SqFV4mfv/g1loSHlElWzyOnTd7DXVtn8/a/Qu7cNHwREXsCoVODc175Gecnhwd/vURMmy/MNsiAimSSkCbilIqDQph4yU7jCQNNsaI8YKI/y5U3MGxeRrZjsoEOxXiM/7SBUQlgRFJbq9DIPoee4cUylWmXurdfwjw/4+7/8tzxuP3lRjhSQl2301TI//Oz7/PVH7yIijzKChJwX07eKEYKJUIQSLM2gMh3y5AeHrJpzvH7jDZpaE2feYvj8lGk6xRcRiWliiCJzjQXm3Rad97fwj4aYZgFNGdhXFrEaS6Ak/miMFGBLiXQttGhK1u8ju30mH3yEHHYoqAQtSgi6McHdnNKXAe/F86/xZOsBOycdVsw+i9UYITOSRpneQYaX6xiUEJmOqQTpZEoepdRs+0W5JcqpaCZ5FpOSM409dGVg8iIDuKGVeGnuAmVVYWt2wNTvYRTLFC2HHB2h26Q6LNQkO7NT+r0ZLVXmSnkd2Uno9rbomY8pBCn15jxnh9tYs5xCbBJJAbaNcgxkqcTk8JStf3OX7eA+h48fUlo/z9raRYJ2ABerPHxyh+fdUwaD90nzmHlRYLNQQxoW65duUnz5MvrGOvFwgHlQpL/fw1yrky/Ae9/7PrsPnnBt9SKqPUTmAn2akEQxsmWTZynRZIqd5DhoiETin/Q5PZkQT0NaK8sITVJanKcgLTJHEvtjgqJANYtU7Tq+gCxXOGvL5NOQZw/eZ/vsgL43xCPDFibPjo85+bM/4f70jEkSUhGCgmZQtItYOGRhRKwiRB6Q5CkBKanKyFEEfkj/8wlTf8j18hqjeEyY+OQCcglWtUh9pUW/12N4ckYl0jHSkOS0g9E00Zcr4BYwdZ1oNiVOMwxNYMxCkt4QGUZEp6cYWYjMU6TK0DPBpHv25cD7W//8f8IfNhrouY1375T3//p9vvnmN6h6JtOd72GwxMospqR0/pPv/HNOHjzndGuHWHkMRYqu57jYGKZDoCtCEeN5UxKhMU1DlowlXr7xGp27f4uIYiSKfjBms7XBy7deZ6G+wt725xyXz5h2PMJhyO+c+zrfdN+gmVSJRkPmKw6T4S7j00PKi2uAQjMLFGoWg/Y2Z3vbxGGEWy5yuWRyvD2gnNmMe2MCd4womOyWJ3yW7JE7AqlpL0zibINv/4v/OU8/fELh/KtYFzdQ85LazUX+7Z/9lxyOH/PVxW/zv/rf/DHloc2t8jkWtALs9/F9n2DqUV+cJzs+4fBHP0YMZqxQRGUR2fEIdEHNluh7A5hmYCkKtSpxv4fvQFQo0fjqy+jnWuSTKXqvT2ba5K7JZNLl4527tGdtfBUipcTOdZIsp9/vo5NQl+AaGnqxTLnZYoUmRT+lICTPx2c88tocq4BI5IzzkEiL8NOIf3jwY3a0Oc7bixTcArW5JVpXr9G88TLp6YD2z97DicBUCjPNmTzbZdY9pu5PcW5dRV+aQwoY7O6iezGVJCfvD9HSlHnNxotT8tRHoiGzmPovPc37q14bVptomYHfmXDmd5m73cK67PD8R1v8xnd/Bz102HvnM9LhGD03CBNwik3C2YCRmBGSoWFjSpcwDojzACVjwlzh6GW0SoX6tVssj3f4vPcQR3NIckW5Ns/1W29hzCSRdsitr9xg/+dnJGP4jbe+TeV5ndnhkCTxsc4mTKIZieswmszIVZniuXNYImBuZjHr9lBhiAz7qLRI0XZxRYtRMmDS3yVN4XG7jakVuLJ8Hn/SYziOOW8s0Xk0oWys0N7eYulchdHpASdbn/M0fUq6rojncwbTDs3SOTRbEQ76hJlDmOd0hn2yyKes65jDMXaukcsUREZGAEJgJgZiMmP6/qeoioO0deIswWzNU2/W0NfXUVWXXEr0gosq18B1sU2DpmVSEOAphZML1oRBw6qhKYO1ZEZfjekmIQf9HnuTMbvyjMtmjQWriJ/GJFlGToYkf+H2niscUopCYamMIJxilxyK9TLlSpHx0yfkB31kL6CQa0heLKaa0sCY5uRPzggME6vsIh0To1xGyzzEdIweKdRkhhj76EoiMIAUgxwVfEm+DamXopUUxcaM9dsp8UwDZ4LdarB+4S2++Ksf0p10WGg22dp6wtqly+yoQ8IsxUkywmRAoqW8/MpL3Nt5QLdzTCRCsCSxndPRhjw5+JxpNKJqutiajRsbxGczPvq7n3Ll/EsYzSWe3nuMOjrjD99+jYcPf8qlr//njLY/JO0FjI0+qgKtq+uUL7/M8EmbaNQlnnbw2oeYek4Wj4j6gvFU59z1y9z+6n/Ev/o3/wX92KYiLW4Vr3Jp8xprc8s8uPMxuV7gxvw1HJPBFQAAFPxJREFU5OEJc3OrtMdjDj/+iC/OPubp1vuMLZ9Kq8KHB0+QS/OcdgbU0wLuVy5gOy2sXNG4fg00SPpDdGViCg1D6cg8RxcvDPFsQ6KCkHz/jKxeRD+/QHl9EW2hQuYYZI4iswVCK2Ohg7RfWFWOPew4wZUSJ5csGC5fc1bYLCxh+ZJEDxmKGcdmxM8np+wnHif08KIhhalOQEpIjk3OHBoLSmNBs2nZDeaNJqW4gBbpJOOIs0/vcHjnc1LNZqm+wnqzwSgK0TINqUt0ATJLCY87DMZdluYruJfOUTm3DFUPNQnI4oTJ3gmFLH4Brg5pKtDQQX5JHba9+w9ZXy2hFwLG/cekSsNtLWOWNQ4O9nm2/ZCBmLC2tsnGylVKpUVKXkY+GWDFHg2txkSEGLZOpickxCQqISfEsVOcc2V+vvURxye7aJpASxRVo8hkPKRkTjkZ9mku1bh+8StsdT9gc7nK0XRCON4lziOkZpBpOaNgTFGFOJHHaXufllVHI8PAIE+HWCRoUiNKFSLJcKXBpdVLhFsjNgstXl17iSw0ONe6ycA4Qbgu4ckES2TMkpzmN1+H9QpfdN7jrH/Eq29f5ygdYJaL/NEf/yEf/enfkA5zktwnL5kQJuSWRDaqkCUoqSNyDYmOIiVTGTqgsoxMpRQWmhiX12G9CQWNJA2I/AjTL2KUXLBMwEBEoLyQw4dP2Hu2RZj6ZORIwMkEjp9SmkqkEpQ0G9dyYbFBZdLl/ckzYjJiYiKRoyQ00VkSLuuYrJVrWJmJ7mfINMcUOplKkSQoFZOnKWnkY9QWKBQd/OEM7Rd1ay3PkUpRigS20hGOiyqbKE0im1W0/oQszchS9QJYeDFDiY76pcdyftXV95rL/oO77B7eZ/XKPJ1+D6lsUj3n8d4jRCvku//8P+bJ1nPstRL337vD+itv03rlGg//mz9hOJuwuLnBpw8/ZnuwRSB8NF0SqZit3lPeeedjQgVNrciaXqaEjYw1hJRcffstzr/9TeLeGf/1X/3vmKYTyqsFLheKfPz9v+D85W9TN5aIHkw411xl/uIrdJ7uMZtNUc1FSvOb2OUC3Z3PIY4wlY0hFVnoEe/t8pXSPPPVi7h5mWWxQHN1nf77W5QmDpnvIJWPMCZ4s5jpYJG515Z49a3X+PjzH7C6vsG7f/kF02ibD//6fS6ValTXNvjRxz+g5dyhVKhTbtRZXFvBTBWq5BL5CkeaZCpC5ZJE5cQqIUOgr89hXFwGb0je6TNtn4Jl4egOoloj1zXQdRj6xHvHHNx9wGTQIwd8oJOGbOkTbK3COdvBjXVKUkNLNLLEwnQc/HDCUTqmq0JmekwK1CSYCJxM4g/7pDiYqopTamAVKniTjCSYgYqomQWEN+Vod4uaWcKWILIEPVOYaAgkeigZPtjGaVRwf/MlBDlMfDQk1uNdjPYIPQeBBCUQQqDUl3TndWzFXKNBpfUNynWHenNMv9MlHU4ZjJ+yvLnB6lsv00tCnu/vc9w9pTUeUXEKGCrj0q2XKZyf597fPSJKfXRDksUpumlh6SYq1vCJGWUhNWWxZJZxjRJJlGM7kAc9BuMOQZ7QzzNmpuDevY8pWi3q330da6Bj7BXxRhHTp8d43RnnVtapLi+ivIC8XGWGgaMVSTMDXebIsc/eZx/S6Z1hxyEFw2FyNqCqldDiBFfqGNUWjgvT/lNiIhYur2M6FnffuYcKJf/wJ3+FzCJyz8dCox+dcb8/5HJlg52jMSWjjHaos7NbZLW1zEvXLhHtnJF5CXEEmcpJgdzQMApFpNRgNCE5OSEb9Mn7XWTZRYQBZAlZnmJgoaIIbzDAm01+EW8gSYCBSnmqZphqipeELCqNluni5TGj/oxyvcF/+uY/4c/v/oRocko3SUilYpal9ERATQh0JdBQpCJnFnvkuobQcnSZQZZjZjm2JgijgHGiqIjCL87MnEyAUDkojb2tHbSC4Ny1RSqNKtIyyPOUNM8QmUD7Rb6TkDpJnoCUX06dN0/6GCLBLcxz7/MtrrzxBqvnynQ/+YRR4RA3LXD4N1+w6SwibYP5m6sMHhzy7OiAPM6g3eUg6qKcnGwaY+kGeizRIg2zYLJaWGAyPSNOcoQwQZkgJVEy4W/+4b/F//v/N45r8Nrr13gylfzrP/kec4bDyaPHnCoXNbH45tobON0cZmDMMhL/hOPOPtXWEkdnXWLTZP3qK8STEG//Gf3JKcfxHnke05I1qtJETmcMdh+zsNgi6Y2oLZ1HLxi0T+8xjgKyB3dZcSUX569yWnmG0uYZqSEn8SFfe+V16stVHt9/iH84pm4UMNKIPJrSnu0T94+4ulnDNg3G3RF5liCFJFaQ5AKldMp7I5LjEfG4TR5OqC03YKlBv31Mca2G1CH3E2QY4g/7jP0xU10xziWjTBCSMwkHPItmLCiNdelwMauwUmtx+63vAgWmnz/gP331n/Ljw3uke3c4SUZMydgiJtI0bsoi84ZDoBL6yTFydERTK1CRFjoWMocwj0kNi1RCrjJcTadgF4mFIrIkxeV5rl9eRazNI5WOGvvk04DR4SmmNDArFdLZiDhPwNIIyUjIaH0Z8GqWhiIhmLxYfnz/B3/PldWruBOTb77yH9Hb62L1NU4PDjGSCpNuSHw2w8h0eipnOhqzdu0Kjv8YQ9MIfY8aVapOg0EWIMOYAiaQYWgmWZLipROyPGQyPANXsrK0SdTtsP3gCQfJgHHdRqtZPNr+jM3yeYzzi5hayHinTzQZo9IBmQgo2JJwOsRxDVJvzPC4gxf5TEVIJF7kumluCccsIL2ELJ4yDLvkMUyOdaxK4Rd5xxnHj58QaBrnbr/E1Y3X2DhfYLv3hL9p/wWf3/mYVnuZ/ZNDlo15rNxhvlAhC33sOEeGGcODA+pWHVOAEhppDrowiDKBNwuw99tYFZtERChTIOoukYrpHPYoX7mAMAKkpYEQVBs1MHU8leJJiHNJrHJmKJSKyNDJVUYUh3iznMKzezihjdaLmbt+hTcvv8rd7iGTkY9HiIfiVGWsug6mbTGZDYlzD/MX8w+5rFLTS5iY5MKg1Jqn2ljA1orIkUfkefgqJV+ukl89h3thHVGrgmahshy8hLpdBrtANh0Qa4pYE1i1Ao6robIvyRn9b/79n7C0vMTmtVu8/OYtgolFpXiL7M4Bd//t3+O3O1xsLhNu96iut1g4d5nd9j3Wrt3ixqurxIMeXzx9l+OjA9IkoqKV2axd4ubl1/ji2ROU30VpFpOkx+sXrvLm0nXOHm6TEzBxBmTVmPu7HyIznXNzcywurfHRwSOcpoHuD2kuOUxnJxApamUHO6niD2ZMkhmZC9d+63V29p7yyeNPqMoSIR5jLWWChtA0QrtEdzRjMbPRCDClxHJLBHlKMJ1QqFbI0hG+N+Dg7mcsnL/EZmOej957h8PxHjEZK40lxh0fI7QRmUHJrkEiqJgVSmiYKOw4IcmmSMMkyiWZ5ZJbGpViBU0ZFFvzyMUqZskjMwNm6YyH9x9Qm1vGOhuhYoXSB8R+ynH3mL1Zj65K8DVQUkfLciAhR5LqGgORkaiIqZcwfPgzzlmLXJebECo2Ll7nf/HHTf6P//3/haejfSZpyGme8IHfw456RFmIJRQVDU6FYj6D5VRj2a1z/sYtKusbzHaOON7bw9UtWpcvUFxukm5WYL6EEg4I4KxH3GkT3H9OdjQkG04IRISoW2SGRWNt7sWj1vyS7ryoAIyAv/vRX/DaG/+Mc+d+E7MNj356D609YqFQpvq11+hnMcoBoyhxqxaJLXET8MMEM8o5ZzZx0ghNmnzzN/8ZreI6Qcfh6qrBh6fvsXUyIeydceq7qJmkOxkzWjhGLMQMijOCfsqrSxfwZIJRdEg0xVk45ief/pj2A4/fv/o75EoSlIqk+hrSbiFfOU9cNfj40wf4aYcNYwFd5gQiodZcoKi7nCuvEec+pgd2KkhyxSQzkI05GutLPPvs3zHOh4RCAibf/zf/BZmAdtxlfnmeUlAmlTplo4gioVWYw9ZdQj8gjXycJKCs2eRZzEhXTK2MUqtO89pFZnFAseCSHveRSw3EYoWUEGVKJu0Bk6BDcBzQOFgi2PIxbJOnwwn/7p1/4Hl/j0yk6FJDVxkpGTHgArYSaEIQIOiqGJX3yKKYBbvAgorRcpNo6JNEAbqlIIc0U4xzn4kQCEtgJRBnioEKmWFQdTSWLl+lNtfi5POHhMd9qpmO4UpmsUeptYm5NocywD/z0YIEdbBN3Dslm82IdLCun6dY0TFqDma1iFktEIyHL5zXvwx4G6urDCYjrl+9jpbmPHzvPeZnq/T7XYqGxsGgj3r6lFGaoPsznEEHQybYyZSdj98jiELkwOOG1aIXRszShNGdp5i6z8JpgD5MuJTZaGaVWf+IYVrk5pU3uL54g/eGf8sHZ58wN7/I2197kycPn3F3/xmBnRMbKfWKy2rrIq8vvwxexG7njBtf/12C0x5qzqHxjZeJox5qwWJ//5hGocS5xSU8L2F3cESuEuJpSCOvkGUGdaGRGQZOs4GzvsJ02EbJnKE/ZhZmKCQxAqHriDzj5OgAP50Rex5l6VLSi3jTGYlIMOSLfLdM5ehpjEZAoGm0vvoSzWtXsTZXcAsW2dEpx72fYj/fQu+aWKsSWc25++w+Pa/PXvspP9m+T5IrUl3jOIc9b8o499BFhp1KFJCikLw48FKVo3LIFIQ55OSQeZwkHZa6OzR00CYnrIUSLTdp5ho+OR4xqRLMmWUqSEhjcqGz6La4unyVJVmm/9lT4tGIului5BYZkaC1ymRlHUmGGIek/QkqSRFaQFaMKJ1boFpsImUDDBtKDsLWoWDjqAwr/ZJGItuTGautRQpOhVl3gPDKLG0ssVxZYv+HP6e3t0+xtYRZX8C78xjynObmCqNhl0pBI9N0XNHADXWY9dGymGAwpZ+fsZS6JKMpZT2iDJRKDdYurlO5uMTW0X1aF9eZ03dYWb5KeW6JyQdfkHsJtmXQbDY4eNbFqDqsv7rBox98htkoY81pPH50QDjNeTk4j6yWMKSBlIKpmDHOp4yzKf2wD3nOfnpMICKUquC6VaZhgBH5nN3/nIIFURC88OMCUjIyBKQ5jm2i4hRHGuhCQ2WKLE0JiYjJEYANNAybVBgkWRE5N8/it99Cnj+HaFbQihZKAxoVpne3qFGEhQLtsy7t8RBPpLQTj3Y8IACEpjPQTNoqIubFEJPiBaiSF4NbSEGkcsgz0v+fCqpORjvtc3D6nCwKMQXcKM6jjWKmQjEVOYf58IXBSmhwTpaQMqdUb3H7yktcMRcJvzimmkhKdpXC/DzUS8xVLLQbF8lrLkEUYiUJbsFBpgnCtIllztlsh7qbYNk2CB2kAk2glQqIUhGZ//LT6L8SvG/+xrcZn3boHHXRQpPV5U3e+cGf8dpbv88wiVjevMR8cxWtXGPvzjPOth7Ti3t44YjKZovX/rN/Sfejz9n7yY8YJRmnxJSvrrF5620KxyGz7YcE+0/IdKCo8cMvfoSzd5e21+Was06xNs8nd+7y2fgBq9VFVudXOPNOMTMolCTanMNBsM2j4V02115ip3OP48OHaMKme+ch5fkqabtHSUp6g1Mmgy6xjEnwsA2bdnJGIhI0CUZmsLp5Ga1aJe4cMuy1ETlY0qLiFhn7M9I8RiBI4+RFLnKuIXIQv4h+jdPsF7BLEiEQeQa6TXFhnqW3X0feOg9zVTJXR+o6mlugZBWIM0HTcjk46/DZ/uc8bu8xyhN6WcLUBD+FOE+x5+poviCdeLglnZppMxl6iAxcQ0fXdOIkRaXAiyorPiARdPF4NnjMbNLF1FxUnrPUXMVzbaZSoftdguGAxcjkglZjoTLP0s1XmF9ZZ/rJE7Shjy0t0jijd3ZGEI1pzF2kYJtIJbAsE2mbyDyCmU8S9Qn9Y06Pt4jGh5xbV2jFNYKZR64KFMw60tbIEvXleJVZbp0LFxZ40v0Md3EJNZmSRgP0eEqhXGbcDXj+44/YWFvHyRReHDKYtDmJ29T8hIWD+zx9+BnKHxPJHE/A3EtXqX7zTcZ3tjg4+pS9bMB+2EViMxE57ckppWaJzx48oLFWIgXcgktvPCScjQhmM6KTmEQqIpkxFEP0RY33t37OJ5/f5SW5QVnp3Puzv0ZJsHKfYi7RMDAti2ma4uYvPotgEKqQXjZixV2idutl0pUlJv/3/zN5EGAZBlW9Su3CKjv7u5yMz1ASyF50taSS5HlOLBMUoCN/MYUlCbMcshQpclrNGo1bV2GpTmZJhKWhwhQ6Y6xBhJYKtBRO2secnp4RZ4ppHjMT4AlINEgyEGlImkS4Jiw1KzSdClvDfXRdwzZN0iwlyl5070wkEkWGIiRnLDJK2RSVhriixtzmVb7+L/459vlzBHnCtH3M+3/6Z/if77Im6yw7i5RkCd1XTE771BQIaWBbBgk5ui7RDA3iFMgQyYtI3OSkD7Mhw8EWXnpMlLYZjqasZOcxqJEMe+RxEZEsQvT/fWx+CfBmvsIolSi7NU6fbnH3vU+4uHCD2ek+jmlTvHmV6OOH7H94B+kNkFrKhdsXeXRnm739Lzj5kx4LU4OmAldIVpwmaujz8O//Aa075ZPdh+RzJZK+Q6IStJKNN5synQTkesh0f4aUFkESUlIOaDlSl8zVixxPZ7z/yQPGJ7vUcRgmQ/LRmNr5a1zUFthtdykWSxyN+yhRQCu4ZBLibEbOi7JTqiQxMT4hMYKzx8+ZPnpCFsdYmobEJkoCDrb3yNIYU+gv/qd4cVpoQkeh8FVAqnJMQJM6mVAgNQQmdrFKfXMDvTWHMiSxzLEQiCiic/ch/rN9yrFCCp1mdZ7fvfkH/OT5J0x27qPiAAVIAa6tUywUmIUhBdviwtoqeAlCKfI0YZKlKBQIhYHEQlI0LTRNI458vCwhlAk2OSkBWThjjZyFWo0kmjJ7MqMcWbScReZUBT3WkIlAICmZLqYek0qJyHIMS0PoBvFoSrS1TaZS7IKJ6droJ0Oi0Smx6jHT+sysGaGW8vD5x+j+c57tt6mtnOeNWg2zWGUwGLP4O5u/FI9CKfXLL8r/Wr/W/4D0yxfVfq1f639g+jW8v9Y/Wv0a3l/rH61+De+v9Y9Wv4b31/pHq1/D+2v9o9Wv4f21/tHq1/D+Wv9o9Wt4f61/tPr/AJXV/niB/aSwAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAADECAYAAADZLWDNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADRfUlEQVR4nOz9Z7BkWXqehz7pvfcnM08eb8q2ne4xaJgBMBQxvIQkSgApKgCJpHAlgUYKiiL1QxQlyoZCAV4CYoCKkKALkRKDIYqkRAwINzMY043u6u6q6qo63uTJk957n/v+2Pmt7hoMZqZrgCY5t1dERXVXZWXm2Xvttb71fq8xaJqm8fH4eHwPDeM/6y/w8fh4/H6Pjyf1x+N7bnw8qT8e33Pj40n98fieGx9P6o/H99z4eFJ/PL7nxseT+uPxPTc+ntQfj++58fGk/nh8z41/8Sb12hr89E+///9f+hIYDPrvv1/DYID/7D/7/Xu//38b/4yv34eb1L/0S/oXll92O+zswM/+LJTLfzDf8A9q/Mqv/Is9cb/xXhgMEI3CD/4gfOELf/Cf/8/x9TM/07/6z/9zWF+H0Qi++lX4W39L/yEfPQKn8/f5K36b8dprMByC1frh/t2v/Ar8wi988xszHIL52S7NRz7kXmiavrD80i/BH/7D8H//3/D5z//Bfe63un7/jMez3bl/6V+Cl17S//tP/2kIheB/+B/gH/0j+ON//Jv/m34fXK5n/JrfYhiN+o7x+zl+v9/vD3J88F4A/Kk/BbEY/O//+x/spP7nePz+1NQ/9EP67xcX+u8//dPgdsPZmb5qeDzwb/wb+t8tFvBzPwc3b+qTJxaDn/kZaDaffk9Ng7/+1yGV0lf/H/xBePz4d3/271VT/87v6J8dCOgP05078Df+xvvf7xd+Qf/vD27fMr5ZTfjuu/oE8nr1n+2zn4U33nj6NVISfO1r8B/+hxCJ6J/9L//LUK1+m4v4+zT8fnA4fvdO851ed9DLl+/7Pv27ezzwYz/29LX/dtfvm418Hv7tf1v/XJtN/x7/8//8u1/3N/+m/ndOp37vXnoJ/u7f/RAX4FlX6m8cZ2f676HQ+382m8HnPgef+Qz89//9+2XJz/yMfvP/rX8L/tyf0x+En/95fdJ87Wtgseiv+0//U31S/+E/rP965x340R+FyeTbf59f/3V9lUok4M//eYjH4eAA/p//R///n/kZKBT01/3yL3/793v8WL/JXi/8pb+kf8df/EX4gR+AL38ZXnnl6df/2T+r35C/+lfh8lKfTD/7s/D3/t63/6wPO9ptqNX0RaBS0SdFrwd/8k8+/brv9Lr/8i/DT/2Ufu/+2/8WBgO9vPzMZ/TXrq19+OtXLsOrr+oT/2d/Vn/Yv/AFfVfpdOAv/AX9df/T/6R/tz/2x/T7NBrBw4f6AvUn/sR3fk20DzP+l/9F00DTfuM3NK1a1bRcTtP+j/9D00IhTXM4NO36Wn/dT/2U/rq//Jef/vdf+Yr+53/n7zz957/6q0//eaWiaVarpv3Yj2naYvH+6/6T/0R/3U/91Pt/9sUv6n/2xS/q/z+badr6uqZlMprWbD79OR98r3//39f/3TcboGl/9a++//8//uP69zk7e//PCgVN83g07bXXfvf1+eEffvqz/oP/QNNMJk1rtb755z3LkM/6xl82m6b90i89/drv9Lp3u5rm92van/kzT7+uVNI0n+/pP/8w1+9P/SlNSyQ0rVZ7+nU/+ZP6+w4G+v//0T+qaTdvftsf/duNZys/fviH9actnYaf/El9O/6//i9IJp9+3b/77z79/3//74PPBz/yI/rqIr9efFF/jy9+UX/db/yGviL/2T/79LYmT/S3Gu++q69Cf+Ev6FvxB8e32yK/2ZjP4dd+DX78x2Fj4/0/TyT01eOrX9VXmw+Of+ffefqzvu/79PfJZj/853+78Qu/oK+Yv/7r8L/9b3qZ9qf/NPyDf/D+a77T6/7rvw6tln4u+uDrTCZ9N5LXfZihafB//p/wR/6I/t8ffN/PfU7fad55R3+t3w/X1/DWW9/VJXm28uMXfkGH8sxmvUba3dUPbE+9s1mvhz84Tk70HyIa/ebvW6nov8vN395++u8jEX1b/1ZDSqFbt779z/GdjGpV34J3d3/33+3v67VqLqfXgTJWV59+nXznb1a/yhgO9WvzwRGPf/vv94lPPH1Q/ON/HJ5/Xt/mP/95HRX6Tq/7yYn+u5yRvnF4vd/++3zjqFb1B+Vv/23917f6/P/4P9YXtE98Ara29HLzT/wJ+PSnP9RHPtuk/sYL+c2Gzfa7J/pioV/Yv/N3vvm/iUSe6ev8czdMpm/+599KOff3/p5e736nr/+9htGor9Z/42/ok/Tmze/8ui8W+u+//Mvf/IF6FphT3vNP/km9Vv9m484d/ff9fTg60s8+v/qr+gr/P/6P+vnqr/217/gjP1owdnNTfxI//Wn9hP57jUxG//3k5Oktv1r91qudfAbomPkP//Dv/brvtBSJRPRD7tHR7/67w0N9EqXT39l7favxuc/p2//vx5jN9N97Pf337/S6y7WLRr/1tYMPd/08Hr38+nbvCTri8hM/of+aTOBf+Vfgv/wv4a/8le8Yav1o2+T/+r+u/3D/xX/xu/9uNtO3KdB/eItFP8l/cLX6uZ/79p/xwgt6M+Lnfu7995PxwfcSzPwbX/ONw2TSt8F/9I90JENGuaxDTZ/5zLNty984Egn95/7gr2cZ06l+BrBa9ZUPvvPr/rnP6T/Lf/Vf6e/zjeODsOSHuX7/6r+qr7qPHn3r96zXn/47qxVu3NDv2zf7Pr/H+GhX6u//fh0O+q//a7h/X58sFou+Iv/9v69vmX/sj+lP91/8i/rrPv95HdJ7910dBgqHv/VnGI06BPVH/gg895y+pScS+qr6+DH803+qv+7FF/Xf/9yf02+myaQfer/Z+Ot/XV9FP/MZ+Pf+PX0b/sVfhPEY/rv/7vfr6jzb+MIX9J8N9Nr07/5d/Xr+5b/8/sP2nV53r1e/dv/mv6kvDj/5k/q9uLqCf/JP9JX+539ef88Pc/3+m/9GP2S+8gr8mT+jT9RGQz8g/sZv6P8N+veKx/XPicV0GPbnf17HyT2e7/yafCisRGCkt9761q/7qZ/SNJfr9/77v/23Ne3FF3UY0OPRtNu3Ne0v/SUdJpMxn2vaX/trOhTkcGjaD/yApj16pEN13wrSk/HVr2raj/yI/v4ul6bduaNpf/Nvvv/3s5mm/dk/q2mRiKYZDE/DU98ISWmapr3zjqZ97nOa5nZrmtOpaT/4g5r29a9/Z9fn9/qO3834ZpCe3a5pzz2naX/rbz0NKcr4Tq67fN/PfU6H2+x2Tdvc1LSf/mlNu3fv/dd82OtXLuswYDqtaRaLpsXjmvbZz+rfScYv/qIOkYZCOjS5ualp/9F/pGnt9oe6NAb9O3w8Ph7fO+NfPOrpx+Pj8W3Gx5P64/E9Nz6e1B+P77nx8aT+eHzPjY8n9cfje258PKk/Ht9z4+NJ/fH4nhvP3FH8S3/x/43X68VkMhEIBJjP51xfX1MsFkmn00yHY9qtFtvb2/T7fYxGI7lcDrvdzubWFt1+D7fHjc1uZzAYUCwWARiPx8TjCdAMDIcTZrM5JpOJdDpNoVAgm82yublJoXCNxWIkGApgtVqZTCbM53Om0ylra2skk0m+9KUvYbfbmc/nrKysYDQaOT4+xm63k0gkACMet49arcZ4PCYYDGIymZhMJlxdXZHJrHFxcYnVamVnZ4dSqcR0OmWxWBCLxUilUjx+/B6TyYTV1VXsdju1Wo1yucze3h5Go5HHjx/j8Xiw2Ww4nU4mkwnT6ZRarcZwOGA2GuHz+djZ2eHk5ASz2YzZbGY0GlEul9nYWMNgMFCv12k2m9hsNsLhMDabDbPZTLlaZ3v3BhaLBbvdTrfb5fj4GJfLhc/nw2Kx4HK5aLVamEwmGo0Gi8UCs9lMt9slFoupe3fjxg3y+Tw2mw2v16uum9vtpl6vc3p6isvlYmNjg3a7zXw+Zz6fMRwOGI0GmEwm4vE4Jycn+P1+kskkJycngIHBYMinP/1p8vk8FouFQqGAz+fDZDLhcjoxLOYcHh4yGo2IRqNYLBaKxSL/n1/8Xz/03HzmlToYDBIMBmm329TrdVqtFs1mE6vVisvlIhKNMJ3O0DQNo9HIYrFgb2+PSCRCt9PBZDZjMBoZDAbM53NsNhubm5usrKyQy11RLBYJh8M4nU5SqRQ2m41AIMBsNsNoNOL1erHb7ZRKJRaLBaPRiPl8znA4pNPpUK/XMS9ZZW63m3A4TLfbZTweo2kaLpcLs0n/+2KxiNlspt/vA+B0OrFYLIxGIxKJBFtbWwyHQ3Z3d4lEIsRiMcbjMePxGIDhcEi/31ffwWq1UiqVuH//PqPRiFqtxmKxwGg0Mp1OGQwGmM1mfD4/bo+HVCqF3+8nFArh9XqxWq3M53MSiQTdbg+z2YzJZGJ3dxev18f6+joejwe3281kMuXk+JjJZMJkMmGxWGCxWNSDWalUWCwWaJrG1tYWDoeDRqOByWRSi0Gz2cTv9+PxePB4PGiaxmQyYTAYcHp6SqVSoVar4XQ6CQaD1Ot1er0eV1dXeL0+VlaShEJhMpkMuVyOF198kRs3bmAwGHA4HDgcDkwmE6enp9RqNY6Pj5nP5ywWC1KplH5flt99Pp+zu7uL3+9nLgy/DzmeeaUeDSfYrFNsVgd+X5DBYMDW5g5Wq5XhaIjJbCUYiTAcT5hrcH2d1yeL1YrT6SDiD2A0mBiPh7icToyGHl6PH7PJSrvVxW63MxqNGY1GNBoNnE4ngUCA1157jVKphMPhwONxUyyWmE0XOB1uGo0GRoMJq8WO2+UlncoQDAY5Pz+n1ezgcfsIBsKMx2MG/RGgr4A+n4+1tTV++7d/m2QyicvlwuVyMZmM0TQDdrsdh8OhHlC58fIAF4tFms0mTqeTdrtNtVplY2MDn89HoVBgNBrhcDjUg1Kr1ej1evh8PuLRGN3+kGa7S6PVwe120e70cHl8dLtdDAYDk/mC3nCEczJlARRKZVxut/5QeL04HC6GwyGnp6dqstrtdvx+P06nE6PRqK/q5TK9Xo/ZbMZ8Pmdvb49ut0ur1SIcDjOdTtnd3aXT6XB6ekq/38dsNtNutzGZTLTbbSqVCi6XC4/Hg8lkotvt4nI5mM3mzGYLwuEIZ2cXWK1W+v0+3W6XdDpNo9GkXC6zvr5OtVolGo3SarX4nd/5HaxWK067g3AkRqvVIpvLk0olicYSH+2klqffuFxt5Sk2GAxcX18znU5xu9243G663S6z+ZxKtUo6nWZ1NUOz2cTucDCfzZnN5kynM66urvB4PASDQVwuD263F7/fz4MHD/B4PCSTSdxu93JyDIEFDoeDwWCAw+HA6XSytraGx+PhyZMnlMtlXn75ZUKhEL1eD5fLxe3bt9X3nc8XNJstHA4HnU6HVquF3W7HZrOpiXx+fqnKgUwmw/n5Ofv7+4xGIzweDw6HA5fLxWg0YrFY0G63GY1GxGIxNXlnsxnD4ZDpdKquk6ZpGAwG5vM52WyWyWSC1WplPJ7QbrdJJBJ0Oh16/R537t6h3+/z6NEj1tfXyRcKhMP6w+n1+pjN5pTLZfr9Ptvb20ynU8LhMCaTCafTicFgwGg0sr6+jsvl4v79+6yvr9Nut4lEIjQajeXPes7Nmze5vLykVCqxsrJCo9EgFArpE8/ppFKpoGkaZrNZ7YqXl+dYrVZMJhOJxAq/9Vu/RSAQwOVy8cILL+D1elksFrzxxhtqtyoWi+zv7/Puu+9iNpuxhMzE43G8Ph/9fp9isYT3GdmPzzypbTYH/f6QRqOFwWAkGAyhaWCxWKlUavj9fjY2t+n2ukznC5574UWusldEonECwTDT2YKzszMSiQTNZhuXy4PRaKbV6jCfz3G7vbTbbTKZDNVqdblyjxgMBtRqNYLBINVqjdu37zKdTshmr7BarRgMRnq9Ad1un2g0xng8BYwEg2G63Q6dThen00Wr1cG69AqZzfQy6c6dO8znc7UqtVototEow+FQ34GGQ2w2G5qmMRgMyOVyrK9n6Pf71Go1RqORKnk6nQ6pVEpNRI/Hw2KxIBwOk0qleOutt3A6nZitNlKrGaxWGxaLmclkQiKZxuX14XA10QyA0cRoPMXrD5BeXQNgvphTr9WxWm3LMmRCKpVSD/l8PsdisXBwcIDP58PtdjOfzzGbzVitVlXPtlotfD4fk8mEF198kWazqR76tbU1vF4vDodjOdGKRKNRVQY2Gg0GgwHr65skEglqtRrT6ZzXXvsBHj9+jMPholZrYLPZVRm5s7NDv9+nXC6rsnA0GhGKRKk2muzu7KhFwGazPdPcfOaa2uPxMJ1O2d/fJxqNUS5XKBb1+jYej5NaTdMfDak3m5gsFsbTKem1DLGVBOfZS2KJOIFAALvdjs/nY39/n729veUKOqdWq1OtVnn99deJxWJ4vV5sNhtHR0dqaw+Hw8uazYnX6+X27duEwxGsViubm5vs7OwymUwoFovkcjmGwxHD4Yhut8vl5SXZbFatZtFoFLfbzXQ6RdM01tfX8fsD2Gw2ptMpo9GI6XTK3bt3AWg2m3Q6HarVKovFgpdeeknVrcFgkPF4TL1eZ39/nxs3bnDr1i3G4zFHR0e0223W1taYzeZ0en2G4wkOl4tkepV2t4c/GCSeWGE0mWK22Wh1OiRSSV58+WW6gz4PHr2Hx+cjvZah1+9jMpkIhUJcXV0xHo/Z3Nyk3+8zn8+x2+1kMhkcDgfdbpdiscjOzg6NRgO32w3AxsYGmqZxcHBAq9UiGAyyubmJ2+1WE9hsNuN26yXe1dUVo9GIu3fv8uKLL9JudajXGlzn8gz6Q1xON5nVNbqdHn5fgFpNP+TW63VqtRobGxssFguur6/xer14fT4arTYaBgwmM75AkKOTU7r9wUc7qY1GMwaDCafTRa83YD7XcLk8aJqB+VxjOplzcX7JYq4xn2nUqg1SyVVMRjMup5v8dRGDwYim6at+uVylVKoQCATZ3Nzmxo2bdDodTk5O6HQ6GI1GqtWqOo3b7Xaur/OcnZ3jcrmxWGwMBiNarQ5gAIyMRmMWC0gkkuo1k8kUg8GEz+dX238kEsFoNOLz+dA0jXg8Tr/fZzgcKOQmFApRr9fRNA2Px0MmkyEUCi1XpymzpdokmUwSCoXodrtUKhVMJhOLxYJWq4XNZmMymdDpdDAYDKRSKdLpNG63m+FwiNvtVrvEdDrFYDBgtzmYzzQMGJflWBCX043FbGM+1/C4PcxmMywWC1arVZ1BzGazOohpmsZoNKLVajEYDDg+PqbVanFycsJwOGQymZBMJpfljBe32008HqdQKDyFmCQSCaLRKPV6XZUhpVKJWCwGQKVSUQ+7oEHDob7qr65m8Hq9XF5eYrFYSKVSmM36zrSaXmU0GpFMJun1emSzWVZXVymVSh/tpB6PxwQCAS4uLtna2mJlZQWz2cx0OtWRkFYTr8/LxsYGfr+ftbU1Hj16RKvVxmKx4nA48PsDrK5maLVaVJbiS5/Pz3Q65fT0lLW1NSKRiCo7Go0GVqtVwV77+zdIpdKUyxXC4TC9Xm95AGlzfn5OtVpT7xuPJzAajUSjsWXNGcFms6sbNJlM8Hq9ZDIZDAYD5+fnaBoYjUa1ld+5c4fhcMh4PCYSiagtVdM08vk85XJZnSc6nQ4Wi4VwOEyr1eLevXtcXl6STqdxOByMx2POz8947733ALBarVxfX5NOp4nFYlQqFe7evYvFYlkiGBp2mx2zycznP/9H0DSN+UxfiZ1OJ2azmeeff556vU65XKZQKPDkyROGw6F6wPr9/hJdytHtdrl58yYvv/zy8lA80Q+u8TjhpRDDYrEwHo+JRqMKVRGozmazcXZ2RiQSwWK1MJ/P+eQnP4nJZOLi4oJGo8GNGzdwuz1qwRiPJxgMBp48ecL6+jqHh4f4/X5WMxlu3rzJ6urqEgDwEIvF2P5G4fUf9KSOxSJo2oJ2u0mzWUfTFsznM2azKXa7lcl4QDjgo9tpUirmGQ36GFjgsNuYz2ZoiwU2m43BYECv16PRaDCfzzk7O2M4HBJPJAiFwxjNZmx2O26vl8TKCoVikd5ggMPlolQq0el0yGazVKtV6vW6Om03m01cLhdra2t0u12GwyGj0YjxeEylUsHpdC5XYRPNZpter4/RaMZqtS1rQBcWq5XJbMZ0Pqc/HGJzOKjWapQqFSbTKf3hkMFgRDKZIp3OoGkGwEAwGMLr9TEaTRgOxzidbhwOF06nm15vwOXlFd1uD5vNgc1qYTjo0+926He72K0WXE4HRsCARiIeV4dWm82mUA550ExLVEMOujabTdXvrVaL7NUVvX6fQDBIo9Wi0+uxvrnJXNNodzocHh/T6XYJBIMYTCZG4zHjyYTheMxgNMLhdOL1+ZhrGodHR/SHQ0xmMxgMaAYDtUaDSDSC3enA6XExHI8IhIKEYxHm2gKz1UK70+Hs4oJYPMHzL7xEfCXFZDonEo1TLFcZDHUo9OTk5CkEKfDtnAN+j/HMB8VOp4PX68Fut3Pv3j0ikQg7OzvY7XbW19d479FDTCaoVev4/QGKxTzp9Crz2YzBEtN1u91EIhHu3r3LW2+9hcvlUpOu1++TTKV4Zel+JIezYCiEpmk8eu89YrEYnU6HZDLJW2+9RTqdXq6w2nLr07dWl8vFxcUFHo9HoRbFYpH5fIHX62M+n1OpVFksNPx+P5VKlY2NTTTgKpcjGo3i9/s5PT1lNZNhPp/T7fWolMtMJxP8fj/N5jHNZhOLRV+1HA4Hi8WU+/fvq7o0nU5jNptxOp0cHx/rTRmrFbfLhcFg4Ooqy3isoywej5vRaER/eeiTppCspNlsVh36hsMhrVYLj8eD1+ulVqvhcDhYW1ujPxgwHI0wmUyqX/DKK6+Qz+e5yuXQNI1Op8NisSCfz2MwGEin0wpBcrlc2Ox2vbGSSGCz2ej3+8zmc3w+HwDZqys2NjZ4+PAh88Uco8moY93TCRoa2zu7SziwhtFkpt3u0Gq1iURjOJ1OqtUadrudjY0Nrq+vOTo6QtM02u02P/b5H//Qc/OZV+pAIKC27FAoxGAwoNVqUSwWsdvtqjng8/vV/0tTIxqNsrq6SqPRIJfLLR8QLwaDQW3vg8GAi4sL+v2+Qj5MJhO9Xo+joyPiiYT6fL2U8dNsNlUjx2w2qwPbcDhkZWWFQCCgttBer4fH48FgMFCtVrFYLAwGA5rNJs1mk0AggMftJp1Oq67cbDbD7/fTarXodDo4XS6cTieFQkHV3cVikWq1ymw2UzW1QJ/j8ZiNjQ1sNhutVoter4fX68VisWCxWDCbdVirXC6r7mCv12MwGJDNZlX59c4773B1dUWz2WQ2m6lDbCaTIRqNkkgkVFPMarHQ6/WwWCzEYjHC4TD5fF6992KxwOfzYbVa6XQ6uFwutcqnUikWiwWdTkcdKuWBlR3WarUSjUa5urpSDZxqtcp8Pqff73Pv3j1Go6FqSi0WC4bDIV6vl5OTE8bjsWoGNRoNZrMZ4XCYZDKJ58PoEj8wnnmllnZ0LpdTdS7oh4X799/FarVQq1WYjKf8yI/8KEajiXv33iYUCjOdztThxO/3c3Jygt1u5/LykvX1dZxOHc144803KZVKrK+vc+PGDbLZLMPhkJ2dHebzOX6/n3q9jsvl4rnnnlONh0KhwPr6OmdnZ1gsFlZXV3G5XORyOcLhMIPBgHA4TCwWUzdzfX2dZrOp6uvFQsfAi+UyHo+HXC6H0Wjk0VIRvbe3R6PR4NHDh9y9exez2ay6nbVaTdWlDoeD2WyGyWQiGAzy3nvvYTKZ+KEf+iEikQjT6ZTr62vMZrNqvZdKJSwWC5lMhtd/53dUI8VsNvPOO+9w9+5dBoMBbrebq8tLfuiHfoiDgwP1HnLYG4/HnJ6dkVxCfQ6HgzfffJNkMonD4WB7e5tCoUCn01GrdCAQ4N1338Xv9/Pyyy/z4MED+v0+DoeDq6sr4vG4wr673a7qwkrHs9Fo0Gg0+NVf/VW2t7fZ3d2l29Uf3k6ng9/vR9M0qtUqr776KpqmcXl5qWp2k8nE/v4+19fXaif4sOOZV+rZbMbFxYVqUQ8GA87OzjCZTGqlFJ6E3GyZRAaDgXa7zcnJCWdnZ2xvb7OxsYHVaiUUCuFwOLi+vsZkMuHz+SiVSnzxi19kMBhw69YtLBYLtVpN4cjdbhev18twOGR9fZ3pdEq321UcCeEyOBwOLi8vVX0K8OjRI2azGT6fT0FgTqcTt9vNZTarGjM2m01NmMViQS6Xw+FwqNJCdoRkMkk8HlcIh+xQwo/Z3NzEbrczm82oVqsMh0Oi0SjxeJxYLMZkMmFzc5PBYIDBYGBrc5Po0lkplUphsVh44403iEajjMdjnC4X+Xye6XSK3+/n0aNHFAoFVlZW1OQW3DmZTKpdM7Qs41wuFzabDZ/PpxpnXq8Xp9NJeWmkL80nl8ulMG7B+BOJBLFYjP39fSKRCP1+H4PBwNramo4/h0JYrRa143S7Xba3t1VXVnYzmS+CiWuahuNbeZT8QUxqQEFEoHcYV1dXWSwWmEwm1tbW8Pv9GIxGstksBweHDIdDhkP94rz66qsMh0Oq1SoHBwe0221efPFF1cKt1+u88MIL/KE/9IdIp9OqnZtOp1XHz2w2c3R0RDAYxGKxYDAYeOONN9QFzWQyJBIJhdF6vV40TcNiseDxeNQ232q1yOfzeL1ehad+5Stf4fT0lMFgQDKZpFAoKDJUOBxmOByyWCyw2+1qey8UCtTrdWw2m958WtaIk2XdrdfZ+kNutVpJp9OcnJxw7949xUk5Pz/n8PCQfD6v//lkolrtDx48IJVKcefOHUwmEwaDgYuLC87Pz7m8vOTLX/4yw+GQSqWyRH+q3Lp1i0wmw2g0otPp8Morr2A0Gmm326rjORqN2NjYYHNzE03TzxWRSITHjx/T7/dZW1uj1+uxsrKCpmlcXV2pVfX8/FxBoaBDmru7uzidTr761a9y7949SqUS7Xabn/iJnyCTyTAcDjk4OMDr9fL8888zmUz4whe+QKFQwOv18vjxYy4uLmh/ow3bH/SklgOJ1WolHo/rBJT5nGAwyOrqKtOl+YgBA263G4/HTa1Wo1IpPwX637p1i263y8XFBQ8ePFAt3enyxptMJgUrOZ1Orq6u6Pf7NBoN2u328qBRVWQZadLI5JGaLbk0rwyFQqp2l4dS2tt2ux1N01QZ0O/3GY/HHBwcYLVaVbOoVCqpVcdutyuGoNlsJhAI0G63abfbOj1gNqPdbtPr9ZhOp5yfn1MoFKjValSrVe7cuUMymeThw4fqYRsMBmxvbxMMBpnNZhgMBpxOJ3a7nbOlV6DUtCsrK5hMpiWuPsTpdBKJRGi32xSLRUajkcLHc7kctVqNWCymFgXQD+Gz2Qyv18vu7i7T6VTtINlslpOTE3zL9vX19TW9Xg+Hw6Fa9b1ej+FwyMOHDwkGg2QyGbXaa5qmJvJ8Plc7nfzbwWDA/v4+n/70p1lbW1M7eiaTUTvFRzap8/k8L730ElarldXVVdbW1lQ5sVgsGAwHlMsVolG9w/fSSy8pYowcIoSNJew3h8NBqVTCbrfj9XiIx+Pcv38fm83G1tYWFotF1ajX19csFguCwSDz+XyJZswZjUaq0fDuu+9SrVYxGo30ej1OT09VebG7u8vKygrNZpN4PE6tVsNgMGC1WpnNZng8HgKBACaTCa/XqzpqRqORYDDI7u4u8Xgcg8HA5eUlhUKBwWCAx+NRu0kwGCSVSrG5LCFsNhtra2uYTCYODg4YDAb6bmbQH/x79+5RLpe5efMmX//618lkdAzfarWiaZo63F5eXnJ4eMhkMmFjfV2VRUISMplMbG9vk0gkKBQKCv5rt9vMZjNyuZx6nXBVpEQpFotMJhN6vR6VSoV0Os1gMKBer7O2tsaNGzfw+XwkEgksFgtra2u0Wi3G4zFnZ2ecn5+rBkw8HieRSNDvD9A0Te1Kh0vznfl8TigU4t69e7z99tvqwP3pT3+a3d3dj36lDgZD9PsDWq02Z2fndLs9QqEwNpudYrGMzxdgNtfo9gZYrA6Ojk9xOF08/8KLLDSNcDjM4eEhr7/+OolEApfLxeHhIY8ePaJarWIwGimXStisVpwOByuJBPnra8qlEv1eDzRNlQCrq6vcvXtXHTLdbjdms5lQKKS6fefn55yentJut2k0GhgMBpqtFuPJhPligcFoZDafE4vHmc5mOF0uAgGdq+31emm1Wmqlcjqd1Ot13G43VpuNH/6RH6Hd6bC1vc3jJ0949PgxyVSK4WhEuVIhEomwWCzweDxsbGywsbFBtVql1WpxdXWlYEeAbrer2t2TZekhO8HZ2ZlCTvL5PLlcjkq1SigcZntnh+FoRK/fx2gy4XA68SxXy8vLS3Z3d3n11Vfx+wP0ej16PX1ld7ncbG/vqIZVv98nmUzh8/kxm3WOtlyzQqGwfLj61OsNdnd32dvbx+Px0O8P2N7eAVANn0Qiwfb2tmr2SMNue3ub/f19/R4sYdDLy0u8Xi/Z7CXn5+e4XE42NtafaW4+s5nNX/tP/wo3b96k3+9zdnbG+vo6wWCQX/u1X8NqtbK1s43d4cDtcuN0OtVK6XA4yGQy2KxWfu2f/lMMBgMvv/wyfr9fdeGq1ao6TLZaLTKZDD6fj1wuh8/no9FokEqlyOVyip8gF2c8HjOdThmPx+zt7VGtVrm+vqZUKrGxscHa2hqLxUKnfvr9lMplvF6vItk4HI4lb9mrOnyC8AiUF4vFaLfbOBwOCoUCfr+fWCyGy+XiS1/6Eo1Gg7t37+q1tM+ncHmXy6Vq8sPDQ5LJJJNlMsKNGzc4Ojri8PCQaDTKYKCT7t1eL+VyGZfLRbfbJZlMomkaXq8Xl8ul2vCXl5dMJhN1nuj3+1SrVf0w6XTx4osvKq6LzWbDYDCQzWbJZDK02200TcPn82G32xUqY7FYyOfzCu83Go3qXhqNRra3t9X1FsRmOp0SCoXw+Xy4XC7K5TKlUolIJEK5XGY0GpFOpwkGg+o8c3FxwWDQV0xAOWBOJhP+3J//ix96bj7zSh2JRDCZTDpe63QyGAzUYaRarTKfzZmMJ4pTbLVa+dSnPoXL5eL6+pqzszNVPzUaDdUUAVSjQOikw+GQy8tL7Ha74gwLTNdoNNREqdVqqoVusVhwOp2sr68rHvN0OsVoNKpTervdVrTU/f19er0e3W5XqUui0SgHBwe43fqDGQqFeO6557DZbMTjcSwWC4vFglKpxOrqKo8ePeLFF19kc3OTu3fv6qjHEsIaDAZUKhUGg4EiXBUKBWazmVKipFIpVUYIRcDhcKjyZ319XXVHnU4nZ2dnNBoNer0eBoMBn89HJBJRyEK321W00tFopFQ3JpNJUWVHoxHtdhu/38/h4SFOp5Nut0s2m6Xb7RKNRkmn02oXlNJDWv1y7UOhEKurq2iapkQEx8fHnJ6eUi6XyWazpNNpdnZ2qFQqzGYz3G73UlwxXLI1m+RyOcXjXltbe6a5+V3xqTudDisrK7z++uuqyfDyyy9zdXVFYmWFJ0+eqFrXbDbT6/XY3Nwkn88TDoXwLWE2aV93u13q9ToOh4NyuYzFYuHTn/40x8fHHBwcsLGxoQ5F0hru9XqUSiWl1NjZ2WE8HlMoFCiXy2xvb7O3t6dgstPTU27evMn6+jqj8RijycRwOOTi4oJ4PK7q8evrayXBurq6wuFw4Ha7WSwWeL1exUVutVqUy2WKxSJ3795lvuy01et1MpkMJ8fHXJyfE4/HMZlMlEolBSfKoVRIPLlcTpF8DAaDXld2Oqrrl0gkGI1GBINBLi4umE6nCh/v9XrEYjHOz8+ZTqe4XC5+5Ed+hFzuWn3HN998k09+8pNYrVaazaZq1sh7zudzGo0GzWZT4eyTyQSz2ay4Iw6HQ/391dUVkUiE9fV1dfj3eDxKPHF9fY3b7VbQYqlUwmw2s7W1pRbB8XjM2toa+XyeSCRCsVjEaDQymUw++ppa0zTm87kC7Hu9Hpqm4XQ6dbL7aMTamq6vi8Vi6mDSW3omD4dDDAYDmUxmuf0M1IUR/Hl16cgv8i3ZlgQKDAaDOJ1OtfpIO9zlchEOh6lUKqpcEImUEM+lTg6FQmxsbLCysgJAr9dTncnz83NFSvL7/bjdbt5++20WiwX9fh+Xy7WsS3X1Szwe5+HDh9RqNTqdjvq+sVhMTQhpKAgZ6vBQoM4hs9mMZrPJe++9h8FgYLFYcHR8jNlsVt/XZDJht9txuVzU63VmsxmZTEa9Vz6fV93KR48ekUyu6MKCfJ7d3V2KxSKdjs4lPzo6Uh3FbrdLPB7HZrOpg7LBYKBYLDIcDgmFQlSrVXWgdLlc7O3tUSgUlIijXC4/hSIZDAbMZjObm5uYTCa1O/X7fbVLJBIJPB4vRqNRdWXD4fAzN17gu1ip8/k84XBY4ZTRaFTxGuLxOPPFglqtxmAwYG9vj06nowS2Xq+Xs9NTbuzv0+/3CQaD1Go1hZ/KRW42m9jtdtxuN5qmKagpkUionULgqkgkojpc1WpVwXvZbJZAIMD5+TnRaJRbt25RKpU4OzsjEAioxkK73VY6SmnizOdzpappNBqq7Oh2u4BeJvn9ftbX1ymXy3S7XUwmk/oZR6MR/V6PT3/601QqFS4vL1VpIy1mwfPz+Twej4doNKqUIa1Wi/ayjr9x4waLxYLNzU0sFguRSASbzUa9Xmc4HKr3OT09VbWp3W5nPB6TyWTUTloul4lGo5RKJW7evKlKBanPh8MhFouFbrdLKBRSdAhBODRNY21tjXa7rdAii8XC4eEhpVJJ3SuBFAXjlp04HA5zcHBAKpVSu+udO3dUh/bevXtsbGwQCoV48ODBM83N70p4K00G6aYBGAwGLEu+Qb/fV3Ihj8dDt9tVh7TxeIzJZCKXy7FYLJSCOB6P4/V6efnll+n3+wr+EaK70WjE7/cTDoeVsDMUCilobrFYKCRhOp3Sbre5vr5WXGPBXOUcoFMix+TzeVXXi6pcmjqz2YybN28q/oZ0T9966y0MBgPj8Riz2Uw+n1c1cy6X0xXZsxlfWmY8vvLKK+p6FAoFzs/PcTqdeDwe5vM5a2trXFxcKHxWEJZWq8V8PleH3uFwqA7GwWAQn8+ndkCDwUClUlErpPw7h8NBu93GZrPRbDYZjUa6mCOVUg2jnZ0d8vm8IjRJfS73Vg7UuVyO6+trRSl1uVzM53MCgQArKyuKRlur1dSKvbu7S7/fVx3lyWRCuVzG5/Op+yG8+fPzc8rlMoZnCZ7iu1ipRT1tNpuJRCL4/X510jWZTHh8PtVxs9vtlMtlVZ4EAgGikQjValWtEvV6nVQqpba3y8tLIpGIwo1tNl22JNuytLbNZrMiM5WXPI1Go6FWI9muZQeo1+uqDCmWSjx69AiDwUCj0WB9fZ3FYoHBYOD09BSDwYDNZsO1bEULGapUKnH37l1arZb6Tr1eTx2arVar4oCkV1f5R//wH5JMJqnX6+pQZTKZODo6ol6vEwgE1I5y9+5d/sk/+SdL+M3PAvB4vYqPcnFxQbfbZX19nUAgoAhfArs5HA42NzeVysThcCj7CZGtbS5jMKQEMBqNVCoV/H4/fr9fQZd2u10tOul0mmg0qlb70WhEtVql0+kovFvOCtfX14o8JeCa1OK1Wo1oNKp47oeHhywWC1ZWdNz79u3btFotRfJ6lvHMK7V05qLRKK4ldXJra0vVzfJDptNpOp2O+gGFAmq1Wmm32zobbnlalwk7Ho9ZaBoms5lSuUx/MMBmt2MwGmk2W9jtDvrLg0a9XlfwUiwWU3yTVqvF9s4Oa2trhCMR1ZgxGnVFzIMHD1gsFeGTyUQ9NM1mk8jy9YPBQDWDLi4uOD4+ZnV1VTWcAoGAarDIDiX14AsvvIDBYKBWqykN4FUuR6FY1JX329s89/zztNpthqMRt+/cIRQKYbFY2N7Z4ezsjLfffpvZbE44HKbdbhMOh9nY2Fgq4P2MRjpNVxYMn8+nkBFhw5nNFvVz1et1xuMx2WxW8UCGwyGRSEQ1euSMIk2lWq2myGOhUEg1clZWVvB4dAHAzvI6y+QWbF+6uI1GQ+HWKysr+P1+tSvK4XAwGLC2tkan01li9Tl0BdNHOKlXVlZUu1o6XrKllUoliss+fr1eVwer6XRKMBjEaDQSCARUXSgtXpng4vERicawO5xc5a6pN5qEI1E8Ph/ZXA63R6eqrqysYLfrChbBdq1W6xKe62Gx2bHZHezu38DmcBKKRElnMsw1FGkoFospOApQRi0GgwGv16u6crFYjAcPHjCbzXj8+DG5XI7T01Ourq7QNA33kqoaj8dpNBrs7Oxgs9u5ffcugVCIUDiMzW6n0WoxmU6JxmKk0mmKpRKT6RS700mz3cbpcmE0m7EuiU/9/gCTyczZ2TkGg5HtbR3hKRaLH1Dfu5RCRXaQ6XSKzWZTFFez2Uw0GiUcDtNoNOj3+4oQJpNR9J+i2RTlUalUUg+22WxWnxuLxdSCIPh9Op1WpVqr1VJ8Hmnfm81mdbh1uVxsb29TrdZ49937gIHZbK7oqx/ppO50OvT7fQaDgTqoSbctmUyq1rXgs5VKhdFopIxeGo0GGxsbahvLZDJMp1NWVlZ0SC5feKpeDgQCqtlxscxA9wcCCscej8e0220lOpXaTXcRmqutcT6f0+12eemll9ThyOVyKV6z8B2azSZbW1skEgnVpZSVJJVKUavV6Ha7OJ1OxSrs9/s0m03Oz895+PChguiSyaTikWiahslkolqtqoOiOC8Vi0VcLhdXV1dLYXGEbPZSTYTFYqELJYJBOp0OmUxGtcjH4zGPHz9W98VoNCqLA6EKAGpLF13meDwmnU6rg6AgMfalMEAm68nJCScnJ4qdV6lUFP344uJC8YAEopVmS7PZxOv1Kgbe1taWavaIkl08USaTidJAdjod7N9hGtc3jmeuqev1upo0MqFEnpVOpwmEQlwu06yEryFcZ5moVouFbDaroLzpdKpEnjs7G4wmU6xWq9p+HQ6H4mHXajXCwYDqdn2w3jYajaopkL26wm63K5X72dkZXq+XYDBIOr2KZfkdRFgqIgFBYgQbns/nHBwccHMZArqyskKr1cJoNCoWncCMmUxGNXJSqZTqIAKKTnt5ecn19TU7OzusrKwQDAYpl8vqrBAKhZRNwenpKQA7Ozucnp6qkk8/EJqUrYHwTaRJUqvV1IIjKJMgG/KAiWWa7Lj37t1ja2tL+ZYIMW02mxGJRBRy02q1iMViFAoFYrEYxWJR2Y3lcjkFjRoMBmWhJoCBXGvxWBFBhxz819bWnrnxAt+l8gV0rsIH4RyXy6Xss6bTKdPpVLXQhQrq9XoVr1j89/L5vOLQrq+v43A4ee+99xRLTQSywWCQmzdvqlXo/Pxc+fS1Wi0ePnxIv9/XedWzqUIPNE1TyIW0c3UjlksFQ7VaLcWR7vf7HB8fU6/XFTe51WqpRoRs98JPTqfTCooslUq89NJLxONxdb6QA5VMEmluXFxcsL6+rvjEQsEdj8f4/X4l4xJNpcFg4OTkhF6vp6436KjH5uYmoVCIfr9PvV4nn89TXUa6zWYzBoMB0+lUwYnSPJLubSAQIBqNEo1GabfbirMRi8WUcY88CP1+n/v375PNZlUJI3SC4XDI48ePuby8VNRWr9fLvXv3lIwtFotxenpKPp/H4XCwsbGhONehUIh0Ov3Rm9mINlBKDOkEdrtdzGYzRoNBeWR0u12leAAd4+73egQDAW7evEmhUMBsNqvJt1gsGC25G+PxmJs3b3JycqK2bkE8JqP3OQnS0rVYLKr1PRiOsDscrKysqImxtbWF0Wjk8vJySbmcKrhLSEQfJCCB3gwClOGjyWTCZDIRjUY5PT3F6XSSSCQUlDccDslms6RSKcW/iMfjiko7m82w2+3cuXOHd999l8PDQ9VgOTg4UJ50brcbm82uqLR2u13BbYL5ZzI6XcBoNHJycqKYc1IeAQQCQbUT2Gw2rFYr+Xweu91OMpmkXC4roUEgEMBoNGKxWHSEqFhUKhrhfehWYy6leBJ3qEwmozqE4XCYt956i83NTVwulzpzrKysUCwWiUQiyutvPB4r+oEYXT5+/FiVTB92PPNKPRqNCAQChMNh4vG48rMQnrN/uZKLl4R0/QQb7fV6ynRQnDdrtRr1ep0nT55QWZKLhLCTXqbKyvbZqNeXIt91pdoAVCes0Wgwnen85cViwdXVlbJvkG5fIhFXCID4z9VqNaWXk3pdShe73c7JyYniMp+enrJYLCiXyywWC6rVKslkknA4rAhIYh4pJB9Z8arVKoVCQeHl4/GYZDLJYrFQJdfx8TGDwYDbt28rvnoymVQ7nU708mOz2TAajZRKJarVKvl8HpPJRDabVSIGr9er3mM4HKoDu9VqpVqtqho4l8spjF7cYY1Go/ISEfQDWNqk6YdBAQiE2irvLWKIbDZLOBxW9f/R0RG7u7vU63Xq9TrHx8dMp1M8S8PMer2uytePbFJrmkaxWGRlZYWtra2nevUiwRLZlMFg4Pj4WEmNZGWfzWYEg0FCoRCJRELV6OFwmMTywCjEmZWVFdWtdLlcdJcedXJAkyd8sViQzWaXqu4FyWSSVqulWuuDwUCRiPL5gsKlZUIFAgEGgwEul0t1LBeLBQcHB3S7XZ577jmef/55BWPKd5byJxwO6yrupXZPSgaRn4m3HqC6mEKYF+em8XisHs7RaEShUKBSqRAIBMjn87z77ruUSiXlZiUeg16vl1gshtvtVniwSNlarRbtdpujoyPVcRW5mRCIPvnJTzKfzykUChSLRbrdruru+f1+tePKZ4RCIUKhEMfHx9hsNvb391ksFuzu7tJqtdjb21O2DiJ2Fqtgu91OMBh8SmwsrXuj0cgrr7yiTHI+skldq9WUaFO+2Pb2Nj6fj2q1Sn9ZSwnZPLQ0RZS6cTQaoWkap6enivsspKdwOMxwMOD6OkejUV9O7JGC+ubzOeWyvipMJhOOjo7U6V0md6VSoVjQJ61uIabXp9K90znKum2ByWRSN0Zgp7W1NRwOB9FoVKmnhcQk7LmtrS21EgkLrt/vqxXTbDYrVhroGkNRygiPQ9rX0WiU+/fvL4XL91ksFkQiER4+fMi7777LbDYjHo8znU6VZYPZbKZer3FxcaF87lwuF5lMhnQ6zWc+8xlF0Hr55ZeVBlI8Vh4+fECtVuPVV19VCniXy8WjR4+UuLbT6ShOh8Cz9Xodj8ejGlnSg9jb21POVXfu3GFtbY3JZMLXvvY1gsEgn/nMZxTjcjweK09EIWCJhcPJyQmTyUSVTx92PHNNLUR5QB083EuHU4/Hg8/no1Kp0Go09LoqHMa+NFoxGAzEY7GlY1KUyWRCpVLBaDRy+/ZtyuXyUiXuZOGwYTbCxfkpbpebbruhb7kWs96xW6pMms0mgNripT5v1GuYTUZW4jFVo/W7XVjM8brddFotvTzJZvG4XBgBl9PJZDTC5XTS7+q19npmlVgkTLtZ53FHX/l9HhelQkEXxC797C7Oztjd3QVN42pJfE+trOjeHQYDVouFUrHI7va28qWrlsv86I/+KJ1Wi3vLkiFy86baiYbDIT6fl9lsis/nXZ4rTDQaPcUKFKeo4+Njjo+PFea/srJCr9fj/PyMfr9HIhHH7XZhNBoYj2dcXl4QCPhZXU3TaNRZW8vgcNjRtAV+vw+j0aDe++TkRC1kGxsbJJNJGo0GLpdLgQKapvHuu++SSqV0EcXyHPHgwQM++9nP4vf71WIwnU5JJpNYrVZlvJlIJBTU96wHxWdeqQW9SCQSnJ+fc35+ztnZmYKjRkuHfCHX1Go1arUap6eniocsnANBDKTrJz4eTqeDfD5PNnuJtlhgtVoYDofK9EWErDJZBVvtdrvKXfPy8pLy0pZWeB66+2mHyWTCbDbTjdD7fXX6Di51htPphIcPH1IoFCiVioTDukeeuIpeXl6ysbGh5P9C6ex2u4SX/OJGo0EsFsNsNqNpGsPBgPlsppykotGoQji2t7eJx+Osra0pAlUikVA7g2gyRQQhpCGhoEYiETY2NhRSIu1mo9FIv99XCnFptIhu8vT0VLEa+/0+hUJBaQ+FC+12u1VjRhYvYUSazWYajQZPnjxR6vVqtarupRhkHh8fK864y+VSeHo4HMZoNHLv3j1MJpM62D/reOZJvVjo9erh4aE6KL1fq+ZVBIT8AIIuyKoqCIaQYex2u7I+0HFL/RQuzDG5UcLnECckqae3t7eV0FXa21KzaZrG48ePVfNnNBpht9sVeUZ4zaPRiGKxyNHR0fIz9AObxWJB0zTVMpYySjyl3W43e3t7qnaXw+nm5qZSc4utghyW3W43DoeDWCzGysoKg8GAJ0+esLKyoiDEwnIXuHPnjuLayAMlvtEul4v33ntPKbBFQCv4uzQ/xFtE/D/sdjsvvvgit27dUjvj7u4uhUJBQZw2m41Go6EaI4J0TSYTxSkpl8tEIhFWVla4ceOG0nAOBgNOTk4U/9zv9yvDoOl0qkhborQR8tvV1RWgQ5QCf35kk1rTNLa3twmHw6r9OhqNuLq6IhAIKC5HIBDg+vr6KRWFHBZMJpOqy2bL1Uu4HAINis1WPB5XN3M4HKJpKCxZYKdMJgOgcNNOp8NsNlMT/eDggIcPHzKbzdjc3FSlSjabVexAYQICXF5eMhgMFPLR6/XY3d3VaQDFor7yDofUajUymQy3bt0iHA5zdnbG1dUV3W6X+XyuOBWic5SfQZTZuVyOer2uSEBXV1dqZ9EWC0KhkOIrS25MqVSiVCqp7z2ZTNTDK+JZcc4S2+NKpYLX61X2ZBaLRVFNRSHvdDoBPTJEDqrn52eKY22321ldXcXpdLK/v68MKZ1OJzabjfl8rnwMHQ4Hh4eHSrwcCoUwGo3K2iwQCChllOTJhEIhMpmMOgM9y3jmmlombrPZVK1tsR6QxkYikVB8ZZvNpg5eFxcXNJtNEokEZ2dnBINBta3Lyt3r9dnf31UTebFYsFiaSuodxx2urq65urriE5/4hMJSpdslvAHfki0ofA5ZreQcIFu/kPxXV1fVdjocDpThYjwe5/LyUun0xF5hONQdUEV9YzAYnprsi8VC8SzEK0O45WJnUCgUVMtekCDplDZaLYpLlyox0pQdT6I9nnvuOWWoKG3+SCTC6qpukev3+5U9meyKYmUmq//29raCOqU+ljJwOp0p2G86nbKzs6Oke62l1ZyY+rhcLqVAb7VaCvmRA6tg0oFAgGKxqAhue3t7eDweJpMJ9Xodp9PJrVu3PtpJfX19zWg0YjgccufOHcUN2NraUiv37u4u9+7do91us7u7y/HxMVarlVgsplzshX9gMBj4xCc+gcfjUWpiUTc7HA6y2Swej0d5wXk8HsVc8/v9ijshkinZ3jc3N1XWyMnJidIlgs4Dkcl+fHxMu91WIgRdhRGm1WpwcXGhav+vfvWr+P1+rFbrcoXS1S83btygUqmwsrJCJpPh+PiY6+trVXr1+33i8TjRaBSfz4ff7+f8/Jxut8vq6qqSpcXjca6vrxXnubvEuMUJdDabKdZjNptdLgC6J969e/eU0aIgF0L0F8RByinx/Tg4OFAWEaLYuX37NpVKZWlpYWYy0UsOPVFsqHZOq9XKnTt3VJmwWCwUf6fRaCj6qjhRSU6MvtO+3+GVlvjbb7/N3bt3MRqNyifkI53UGxsbPH78WDUdbDabajwI8ejJkydqpT46OlK17NramsKx5QcTDWCj0VjW4U56va5Sz0i4kDjlr62tY7XqIgVR11itVo6PjxVfudlssr29rZyjZHLKBRuPx6RSKebzOT/2Yz+m8HO5wTabFYMBhcwIrVYutv5zVLi+viYYDKqYjFAopKRRBwcH9Pt99vf3VccyFovxhS98gVQqpX5e8d8T0lKv19P9mZdxePJ50qre3t5W7qnNZpO7d++ysbFBs9lUMKFYL5yenqrzheD24gBw69YtRVONRqN4PB7MZjM3btxgPp/z+PFjIpEIp6en+Hw+NjY2VCaMpEnMZjNFiZWyUlyaqtUq9+/fZz6fs7W1pTSQrVZL2cOZzWaq1aryQJHu70fOp+50OmqLk87Y+vq6mlidTkeRZoTEPplMyOfzyuBbAn/sdrtivolDaLvdeUreJVu31GZnZ6eYTLriWCwS5GAqN8/n8/HOO+9gMBhYX19XsiaDwaDKjn6/r3YHcVYSNYrFYlXke3El8vv9ilSVyWTQtIXiX4s9mnA8FosFTqdTtcXT6bTiZdjtdqxWqyonzGaz+hlWVlbodrscHR0pJbvb7Va7jxCThOQvsXEPHz6k3W4v2+s2RqMRzWZTqfWz2axypJJWuugxBQkSLDqfz6vmk6jAJbZP3GPls6+vr+l0OjSbTWUXJtrLRCKBpmn0+328Xq+iCouC6dVXX+X8/JxSqUS32+Xk5ERJ8s7Pz59pbj7zSi1bmKy40mIOhUJsbm4qv7XZbKa0gMLI0ldfveNms1mx2SxcX+eWqhELnU53SRe14/F48Xi8bGxsLSd5i+FwhNGo18Yizzo/P2cymSjb31arpRhoYsgukq9CoUAkEuH27duALlMaDAZKTCtkeqvVyng6w+Fy43a5VXxFf6CXEtPZgmg0RigUUjTJyWTCwcEByWSSbDZLIpFQaplqtYqmaQQCATY3NzEuFUKz+ZxYIkG/16PebGJbmr3HlzKtRqOxdDrqq3Z+u90mGAzicbuZTiaMRyOm4zHNRoMzTSMYDNLrdqlVq6RSKWbTKZ/+5CepVKs06nUWS3RjY2ODSqWC3WbT4cbplIMnT2DJj08mkyzmM5IrCd0U6OycVrOhOCxGo5H1tQy9TpvpRK/1W406bo8Ho9HAvTffZDQc4HI6ODx4grZYcHB4yGK+wOfzEvB5mY5HdJbNKKxWTAaYTKdo89kzzc1nXqllQpfLZYLB4FIV7KFSqSgvZHlCxahGp3ummU6ny5Z1X9V2nU4bj8e9NHLpqxVMj7XQIbxyuczx8YnK+/P7/WorlIen0+moySVYrth6aZqmakyxO5AWcTgcVrIxSa7S2Xer2Gx23B4P48mETreL2+3h/PyC1pJ91+122dzcVPRMs9msbG8FN5/P56rZ5Pf7qVardJf1q3fppeFfkolG4zGxWIyXX35Z2YvF43Hi8bja4kXjJ7QBAzrzL51KMZ/NmE4m7O3u4vf5aLdaVCsVPcS12dTpn/M52tJvpFarwZIsZrPZmCzLHdlJet0unXYbj9uNz+clHArhcjpp1Os4HQ4WSx2kx+0mGAhQr9fx+3xYLRacTgdrmQzhUIh+r6fnOhoM+P06o1Ew8UQijtlswm7XmzDTZQnyLOOZV+rz83P1JEttp2kaqVRKNQWE/yz1tFhm6YfMIX6/T4lEpX4SG9dAIEAqlSKbzeJyuTg4OFAZfEKGikaj7O/v02g0FMohyIZwM2KxmFqpA4GA4jj3l80WMRoXcakcRAVlcS3txwAlVCiVSsoOTFJ5Hzx4oFyFAoEAZ2dnqpkkTkXSZZWtPl8osLKMYZPaVacAlHnuuecwGAw899xzT1FshaUoRHyzycR42ehyu920220KhYIiU4m/hpCPRDImJjz3799X3Gav18vV1ZXiN4sRvuyEDx8+VPa6QjySQ3wymcRgMChey5MnT7Db7U9ZMwsDMBgMArpQYTweqzLK7/djXLrkfvAA+WHHM6/Ukmgq7c1er8dkMlHog5CRhJooDC2pwyTv+vz8XJ2qJcY3HA5jt9s5OjpSPhbC1pNJ4nA4ePLkCbVaTYl7Jb7O6XSSy+VUU0G6W1JmSFtWXJgEYpQoumazqYefArFYTHUEhZsi8qVMJqMiliWgSGpQcUgV6ZrYfAmE5na79RV16Rp1eXnJ8fGxKnGk8xcKhTg/P1cHcCEcSd0pBjESndfr9ZTYWNiBFouFREIvH2q1mgr+XFlZUWbrh4eHKnPxtddeUykM0hV+32vaqiyA5dwghCyhJ9RqNXX9zWaz8vOQMFEp8YQbIwdHQYGEgvqRq8lFk9hbbiniIp/NZhUiIem0wWBQURPlBui0UiMvvPAC19fXKjlWOL8Gg/Epkot4PQvXV8IpBZIrlUpKfyf5M2dnZ7jdbnUDCoWCYqUJZRR0xc3q6iqnp6fqcLu7u4ttyfqTTqPwoieTiQos9SwbBoDifMvqLri4oBciW3ry5Ak3btxgf5nfLdCkSNDkRou9QzQaZTabkUqlAF1bKeeU61xuSSnQHUtns5mC2YRSKzTSSqWifEWkBBRrXWmUibedcMpby8x5oRWEQiFeeeWVpS1zRdkiFAoFtcBJFo2kBIhKR9h4t2/fVqY3QkkV1y2hOoC+2j/LeOaVWlhogjvKCT8SibC2tqaom+INATo01u12lSupqC1Go9EyyOdKtdt7va4SDPiXMWdil3B2dsZoNFJ52nLIE+hPZEE7OzuK5hiPx9XWJ3Kver2uBAqymgiHu9PpsL21RavV4sGDBxweHtLtdp9yty+VSmqFl5VGHjTZdWSl7PV6yv7WaDQqXaKQ9Le3t5U1mlgWSDkQCoVU46Lf75NKpZQnx6Df5/z8XAVAGQwGJXKWVVUerEqlwtnZ2fIM01FxIyKnkwO/4N7isS26SFH5CNIhKIzP51O2yPJzSWNLFhSHw8HDhw/p9XqqsxgMBimVSrzwwguYzWZOTk5UG18Wko90UkciEQJL4avZbOb8/JzZbKYOiL1eT23Z0mmyWCxKwSxYqtiPCcwmCbN+v1/VyJ1OhwcPHqgwow+GFQn5XkI2y+Uyk8lE+SRLA0BqPTkANhoN/H4/e3t7yg5APt/r9dJoNFRtHQwG2draUrIy8dqQJNyDgwPFSdna2tLTxXo97Ha7slp48cUXVdxyJpPB5XLx8MEDTk5OFPVVJqyIGXK5HMlkUvnviRBAMiWz2SyZtTVsNtvvyk0RG+J+v6/qeOE/95cpuRsbGwpbFx66wHvyAGcyGTY3NxU+Lu8pIaiAogy8/fbb6l6KrlQoD4KWiD+MtPZFyS70YFEZFYtF7ty589FOauENdDod9bQ3m00lrBWnnmAwSKFQUAaGsvqKbe98PldtdVnBxU9kf29PCVAnk4lCT1KplMpFFCJULBYjGAzy3HPPqXawtLJFsSFEJ6E9yve22WyKMyFdL4vFwvnFhXLrl59HwuzFXkEeYE3T1IMiNg/CqJOtWTgook8sFoucn58r8o+obdbW1hTas76+jsvlUq5U4XCYJ0+ekMvlFFkpk8lgt9u5efOmKkUmk4k6f8g1FyMdUWoLD0QWHZGMCT9DErykAyp+hPKQiaBaSE6yM32QiuB2u5VRjixY/X7/qa5wNpslGAwqJ12p/Z91PHNNXa1WCYfDuN1uCoWCinAQib48nTLpRMUdjUYpl8uKeyv2B7KSSlv1/OyMSCjEcNDDZrVgMhrQAKvNpnMnlvWi0BxNJhPhcFi5IB0cHChrNFFKX19fq2i3RCKBxWzi7PgIp9vN/t6ejtDY7YwnU5wuE1arjdFwSKvZ1Gmu8zntVguT0Uh6SaF87+FDRXIXNb1IlvL5PF6fn0xmnflCw2A0MZvPmc5mzOYz9m7s4XHrOsBbN2+yvrbGyfExLpeLjaVMbTQckojHiUYiGA0GNjc26HW7OB0OgskknSWNVOioYjJUKpWUEMPucGCxWvEuVezRWAx/IMDp2ZmyNBZBtDRvQqGQQn/Ozs4wGAwqyk78RcQEyGw2Y7fbeemll1SSg7T8xVhSvEkqlQrPPfecUuV4PB6azSbvvPOO8hPp9XrcuHFDRYF82PHMK7VIgXw+n+r9S0lydHSkyE3vvfcem5ubBINBLi8vFavshRdeUE++RM99EIY6OTnmKnuJeUmsF4suj9eHPxDE4/WpTqTo50wmE2+//bbCpgV9kTLB5XIp/vN4PCIWjVCrlqlVyqymUwQDASqVKh6vF7PFytb2NsmVFVrNJqPhEKPBAJrGew8fEo/FGA2HpFIphQ643W5msxlXV1dKAODx+ojE4rjcerB8Kp2m2+uSL+bZ3tkmnUrhdrmIRaME/H7cLhdX2Sx2mw2T0cjJ8THdTgeH3U69VuMqm8Xn9RLw++l1u2oSSQklbXzB6QfDIRarFavNpmdaOhz4AwEMRiMLTYNlfS9mNXa7nd3dXWVlIKu6dF8BtXuK7fDFxYVi4wk5THYZkX8JpOfz+XjvvffULioQsHhkn56e0ul09IP60qvlI5vUItQU2wKxIhgMBgomWiwWFItFisWieqLF2FBqajnYSVdO0AexHyuXyzpsZ7Mxm+n2ulJOCDyVWCaxiv6wUqngcDjUwUxav+LNobdoA4zHI0X+0aMmKso2OJ1OP4Wf1ut1/H4/KysrT3HGjUajUs2fnp4qDoPwxg0YlD6w0agvGYc6deD+u/dVaSLWXNVqVZn/5HI5IpEIBoOBQqGgEBexbBMJl1gVm81mstmsspWQXHgx2jw4OFC8ZtlpJVZEaKanp6eMRiOePHmi+BmCKskD5PV61WF2PB7jWkZqS9SH0FoF4hXagMPhUFwTIbSJ358c5J1O51NZlx/ppBZikJzgpbEhimBxNRWCjXBDnE6nOuTIBWg0GmqCxGKx5YofXHJzG0odYTIZ1QMhu4NoJOVAuLKyonBZl8vFzs6O8uqQ+j2fzy8fwvZTjZt0epUXX3pRcZ4PDg7UwVNIRpPJRKW6ijpDPOU+eCgSJMjr9RKJRJbYt95UajR0yqgsAIKYCNKwv78PoLSR4sUnW7oklomBpuDm4gMilF9xXRXvDSkNRYm0ubmpUJ/19XW9nT6b8eDBA+W4JMjQeDxWURjS/CmXy8oEX4KfxLVK1E/NZpNsNqtgVIHyBOPv9/vqvCMNHZfLpaDYZxnPXFML90C2JjH/FqNto9FIvV5nZ2dHPckbGxvKM0JXqUx58803MRgM5PN5FVkXDAaJRiI8fvgAg8G4ZPNNYMmnNhqN5PN5FrMpzz//PO+++64iHQk+LPWh5ACKCEGwY4ms0CeNrnSORKM4HU7FKx6PRizmM+WHIRwO8Tj5YOpBvV5XCplcLqeaMRaLhfnSQ0TT5kQiKdqdNpPJiFg8xngwJhgMks1mOTs7Y22JZgg1s9VqKd9Co9GoOpMiH3v06BGRSIRgMKh451IKLRYLhksjRvG+E4Gx0WhUrXvpKna7XQUJCkW1VqupA7Tcx3w+TygUUmjTYDBQft6iK5R8TTl053I5pZQX54FUKvVUqq64Ogmy8qzC2++qphYZV7PZVNL/ZrOpwH1x6RSWnbj23Lp1Sx3i5GEQuGixWCyzUHRzQ7PFrFZJu92hMruvrrLqBgrHVyCkQCCgsGWhfgr5XQx1stlLhbh0up2lINioqK3pdBrH0j1UFCs+n49Wq4XNZiOXyynapdx0gNXVVSKRiMJ0W+2W6nomk0nlqXHjxg0FT2qaxiuvvKKyCmu1GhaLhZ2dHba3t5nNZiq38PLyUj1AEqIqGeVyHhG+sphlfpAjLtmGfr9fMRLFKky6fCKNE9GCdHuFQSneKAKjSlqCIC3Cp1ksFpyenrK6uqr4LlK6STbl1taWUuYcHR1xeXmpdi7xevmw45lXajkBiyOofFmj0ai6i16vV0U5xONxJdQUNl2p9H4qgODH7Xab0jJWLuT3MVo60A8GA7yBoCK/+7w+plM9Sno4HKpOo5i1NBoNtra2iEQiqimhlzCmJefXiMNhxxUMUK3Vsdl1/nalUoElZ8QAVMwmZY3bbDaxWq3KzFLKJ4ErhTYqybn5fJ5iqcKNm7eWZ4s8kUhYYb7hcBi75f12drerf75YHVerVZxOp3LhlyaHtP4TiQTBYPB9lGNZfgmxLJfLqexJi8Wisljy+bzqjDocDiKRCPV6nc3NzaX9r1k1osQqQRQpkUgE0F22er0ed+7coVQqqfLOYrHQarUYjUYq+1JMh1rLTEghZImxp9TQ4q9dLBYVPeFZxjOv1NPpVGHDYvgnGkVJjcrn80pKlMvliMVi6ktfXl5SLpeZz+eKvC9sPmGHaZrGjRs31EOQTK6QTqdZXV3FaDJhs+lQlhgXxuNxisUi9+/fV3IgSYKSrHBBX6RzJkGaOzs7rGXW0NAx+KurKyxLvzlZ5US6FovF2NnZYXV1VT3IQjDSNE2tkvoBsaPyvN96602y2SzlUkk3k8GgnEKFmiqIgfAyOp2Osv+6urpSE9Ptdiuhw/n5OdfX17z00ktEo1EajQbxeJzhcKgCN0UKFwwG2d/fp9lsKidW6fLeuHEDTdP4nd/5HaUqPz4+Vl1Wr9erXEolmbjX66m4jA8iWdVqlWKxSLVaVZNTIkLu3r2rWuPdbpe1tTXcbjc+n49AIPDUQfMjndTj8VghCYIvilhUin8h0VwsmxiifpDVbDab0uksecEeDw6HE4fDxWymYTAY6fRHaAYTVpuN1UyGxXxOr91iMuxjMmiYjDpH4INoiTQYPB6POskHg0HVUi+Xy/j9fsBAtzdgPJ1RKJZpdzp4/T5WVhJ4PG5MRiOT8Uhh7JIrKCyyWq2malkx6JEGhLgb3bhxA5fLxetff5233nyTbqfL/t6eHr28tC0Qspaw40QFIp1YWTwCS0qndAOTyaTSc0ojxGg0MpvNlExOVD0mkwmX00lnCXW6XC6eu3sXj8dDIh7HvTSm+dKXv6yjGz4fnW4Xq9VKKBym1WrhcrlIpVIYjUa1K8iBWix/B8MhzVZLF1hYrRSW9g3tpe+iCIsvLi+JJxJEYzFa7TaVSoVUKkUqnabZatFf6idnH7U/dSaTURcwHo/j8Xi4ceMGN2/e5KWXXlKxEkI8Ei9m3YLsiGKxwNbWFg6HY1mn2jGbrUTCUdwuNy++9ApWh5PpAtKZddbWN8henHN9leXq4gyXw6YgOsktl7Lj+eef5/r6WnGRhUH2QW2kz+cjnljBbLUzmkx4+N4j3n77HXqdDr1Oh82NdSLhMMFgUCm/BX5zOByqVV6v19Wh9OGyESMRGeFwmFdfeYV0MkmpUGQ8HDGdTGg3m+zv7lGrVJ9CE6Sz5/f7ubi4UPX2xcUFd+7cUQ2kfr+vlCQ3b97ktddeI5VKcXV1RT6fp1QqqcOt2WSi1+lgs1qJhMNkLy746m//NoN+n93tbZ0ePJ0ynk4xGI14fD5cbjfnFxf0h0OGoxG5XE7V4cLJqNVqisrw+OCARDK5bFxNWAB3n3uOl15+mcz6OgeHh9x/+JC7zz/P1s4OG5ubeH0+fvO3fotCsYjBZKLRamEwGkmmUjSaTZrtNt5nTOh65kn9+uuvK3Yd6ELcq6srgsEgDodDqcodDocS1Ap7Sw5bbreLmzdvYrFYODk5YTrROR/6iqCfwnW8tEkoFCKZTDJb+tZNJhNMS2NxCdiRoKT33ntPpXqtr6+rFVSMyKXkEYtdUb5bLBa+/vWv8+TJE0VCEs86cZYaDAZcX1+rJovb7VYokNBufT6fUkqPhkPS6bSOzAR1yOv09JQnT56oyX94eKjYbdfX16qkEPhSiEKpVEqJBUajEaBTY0X2Nh6PVZqD5NUkk0l1/hEP61AoRD6fp9lsMl5iz4vFQtFN5/O5iokDnWMudmHz+Zy7d++qQKbpdMpoOFSWCuJ76PP5lPupQL1HR0cqvk4OyUI7Hg6HCjkRyPKD5LEPM74r0/VIJKKI6TabTeUhrq6usre3RzweVwcAkVaNRiMajSbFYn6p74vy/d///bz99jvYHbppoDDfXnvtNcbjMacnJzx58hgjqANTu91ma2uPlVRSRQ0bjUYymYyKk3M6ncrxXjgMpVJJSfcHgwEbGxuqMwYoTPqD6mqpQSVxS/xGxFCy2WyyubnJdDpVjp9ifC7v6fP5uHPn1pLROOfw8JDPfe5zGI1mdahWtbzFwsbGhuIjVyoVZe8FqBrd6/XqTaOlX7YEcgoS9ejRIzKZDEajkWKxyOrqqgoR+qC1rzDj8vk8gMoQ/yDWLHW5CA5MJhP7+/s8efKEar1OfNlClyjteDxOv99XyI3H4+Hq6ord3V0VCnXr1i3lbjocDvmBH/gB5XsCPHOW4jNPar/frwwLZdUQ/w9plgg/VohDEkwpyvHNzU3efPNNtrd3sNvtPHn8mFJRJxyNlhpBHZR3oy0WNNs6t9egzUmmkgxHQyXk7Xa7KqbM6XQquElWPKExSgdL6k85/PV6PVX7RyIRnjx5wnw+V4KDRqNBOBxWVNa7d+/SaDQURTQajRIMBhUHWGrXcrnM1VWOZHKFV199lV5fpwL0ep2lF4hNJb5+UGUjB2zRJwrxSHaPRCJBNpvFbDYrF1LhhYuDlOyK4gIrOLrX62V9fZ3r62uqtRp3n3uO6+trcrkcu7u7quyx2WxqwQDUNSuVSmiaxsbGBuFwmHfv36dcLhOLxdTBU9LOJHFCDs8CDQp56oOWFk+ePFHJC8Ph8KM3iJS6Ttx+XC6XsjMQcP/k5IRQKMRsNlO2YcKxFlsyOVjt7e3z7rsPVAeyWq3S7esOqJYlrPbVr/y2Hlnn85BIJDg8OmOhaSooZ3V1VbHPNE1T+re7d+/icrkUs022bAm2vL6+VlCVxBI7nU6lRAdUVN79+/dVLuDGxgZf/OIXFZ9BOmOgdzoLhQJej5/f/u3f5rOf/Sw2m43rfA6Px025XFzaOURUHW0ymUgkEvrqV60qKFScqy4vLxWn5fT0VKlrGo2GcraS5pLIsSqViprIEj/idDpViSUIRiAQ4IUXXqBUKikehvDTM+m08pqWg6GgIy6Xi1c/+Ul6vZ4qMeV88+abb6rPEN8QOX+IpEvTNCUa8Pv9ChYV8OFZxncVOScm5CLREqGAuMxLHJvAO+KPZjbryhe54O12W88Gj8VIJBK43W5e+/7vV3ZYOm4aXLbAzUtTm4gC+j/IKJNDjGxdUp9K/Sft/Xq9rnwxRBwrhHahrQqFdH9/n1qtxptvvqm2SgkXEv9maZ0DanIPBgO+/vWvqwZFs9VcNmX02lGMEJ88eYLf78fn8ymPbTHWkeRfQHE6AFX2SCKCqPUljkPCiORhTKfTihXp9XqV/nA8HnN1daVsDmSSC49EiEuCLV9dXelnhSWJSq6lPDBGo1HxfOR9xehS7CxkksuKLYdaof3K4nP//v1nmpvPvFILK046dffv31eHqS9/+cs0m03Fu9je3mY4HHJ6eqpsCvr9norGGAyGrK6ukrvKE4/rMRNPnjxma2dn6Vkx5vXX31jSSyPKytbtcpNM65ax/X5fEeEjkQiPHz8GUI0A4V+AfhCRHBrx5hBDR4HAqtUqL7/8MmdnZ+TzeVZXVzk8PMTlcrG6uqq8AWWVFHK8ELnkQbBYLHzuc5/DbDZxlc1Sb9RJpZIKl69UdI7Fw4cPMZvNvPbaa9y+fVvh/NVqlYODA37qp36KRCKhpHAiOLBYLMovZGNjQ7W2hTshxjehUIh79+4pPvpiseDy8hKz2Uw6nVYqFFEqTSYTRQu46Pe5s8x53Nra4urqCoPBQCQSodPp8OlPfYpoLKau7/HxMc8//zzr6+vMZjNlxi4lkDxM8/mcR48e8fnPf149kOIlYzKZPnrfD+EZ7O/vKz80IfSIQFPopKIydrvdit1mMpkYDPSYhvm8trTFmir8V1znF4sFsWiEVrOJzapflG5vwPn5JaFIiEqlwsHBAWazCZfLrW6Ow+FQPiTiT+Hz+dSKoydPTRSWK8p4r8erhyH1BhwfnWAwohQ4Lpd++DMZjZRLJW7fvk00FqVWfb/s8nq9hIJBctfXPH78hIA/qFTgJpNh+V7OZcu9TSyRwNFp43K7mIzHaJpO96xV61ycXfLgvQesrWXUQVAU2lKqZLNZpZQBln0DE/1+7ymhwr179xgOh6r+llo7Foup++P1egkvcenxeMz6+rr+kFQqajFaXV2l3W5Tq9We6viJyWa9Xl/e24Ga+GIwdHx8rM4pRqORjY0NWsucxVqtphCsF154gdFoxMrKykc7qcUWazLRJ4YEuAtPoNtt8+TJI5V+Kniyy+VgsZjR7fbI5fJ4vV7W1jZYWVkhl7umVqvyzrtvMxwOGPZ7bG5u6tDcxoZ+kNnXyeNPDo+JxSJsbW0RDgf58pe/jMlk4s6dO5jNRsZjHfeVsCWRjYn3nk6dLPLmm6/jdnu4e/d5hsMR17kC6+tb9PsTWu0ONruFF198kffee0i71cIADAd9DIYF9956g83dXQwmA48fPiaZWGE2nDDqjjh6cozP7cXhsDEc9Uim4pyfn+tck06HTqfHVS6Pw+PG6bQRCQfptKY8efKI6XjOl37jaxQLZb7vBz/Jrbs3lOQqFospxEOn3FpZLGaYTAYqldLyAL6B1+vj8eNH9Ps9TCYDBoPGaDTgvfcecH6u+1EHAj6cLoc6WA6HQ9544w2sViuJRIJUKsVoNOT48IB2u8V4PMTpdLGyEsdohHxetyY+PDzEtjQzkoejXq+zsbFBIBAgl8up0uzOnTuqCwuwvb3Nb/7mb7Kzs6O0riaTSZ0PnmU8c00thwWJUpMmxXw+XwZKxmk2mypTW8KKpOYSWE4Es8Vikf7yYCiQ1QdXEeE9DAYDLi4uCIfDbG1tUa/XFVwnkXWSnCW4qyimq9WqIiY5nU6i0Sivvvoq7Xabg4NDcrkrZvMpbreLdDqJ2+2iWCpRKJUIR6K0O10MRgMGo5FYPIGGgU6nxWQ8pttp02q1SKaSrCQTTEZDMukM6XRKcT1EJiW17mw6ZTGbY9Cg02zjcbkJBUL0Ol2q1Qqj4ZC7d++q3EnhZUiHUXBkMd0UxqTOlDQtrSR0u7OVlRW2t7dV5HS1WtWV7K22WknFU6TRaKgk31arrcwqdVsG3ThS6MW5XA6LVfdske8oKImQpLrdrqKfCrlMfLzn87kqWz8YoS3Q4LOMZ16pJdVWOnXX19dcXFwQCASW4lDdmuvmzZvq8HV+fs7+/j65XA6fz0evp9fBEjcncWZSixYKBfb395VZynw+54033lCNgHw+p6wCxHhRYLR6XY96ODo6VtwE4TZL88brdeNyOdnd3aHZbNPrdQkELFSqZVLpFdxeJyaLSRlHvvDSSzqZfzhiNJsTDobwOJz43R7W0mlOT84YjYZcnJ9jwoDdbMZitrBYGrZLbmGlUtEdjTweLAZwma30+z1mZiv94YBBd4jf42M1mWEy1bNRpIl0enpKJBJR2TqdTptEIq7QCYl2K5fLKkHgV37lV1hfX1fEJ4PBoDqe5XKZR48eEVrSfZ1OJ/Wl+KJcLhMMBPj+7/9+isUC0WiU6+trJeUSdKJQKBCPJ1RgkXBMstmsWmy2trYUlHh1dcXt27c5Pj5W/PdC4f0Os/j/CZT4kU1ql8ulTtqgs7YkDqFarTKd6k+Z2OvKlx2Px8sDmp7vIXiq5FVLE0Q4F48ePVJOTyLoFHFpqVSgXC6rsKFgMMijR4/Y2dlZCglmCgUxGAzs7+9js9k4Ozvj4OCAO3duc3p6jtPpJJVKU6mU6XY7pNNpJpMxNpuVaDRCsajDXMFQCF8gwLBcJhSOLD1EBlgsZmazBdV6jfPzS5r1BrFIlMl4TDSdYCWV5L333lNwViAQYH19HaMBWvUq2csLkispauU6mmagVCwSCPjZ2tym2+0wmoyUjnOxWKimisViWdJHHeo+2Gw2tWqLy5Se/V1Vk3o0GqmcRIvFwqOHD9W1kVTaYCBAdBlbMRj0le+3oFrz+Zx4PK47bFltOJ0uNjc39ZyfVot6vc5wOFQ1szxIh4eHSkAiAVCBQIByuUw6ndah3CXn/iO3HZtOp8o/7h//43+s6jAB2F0ul3o6T09PVb3UbreXeLIDu12f6OJMJPYJPp9PpaeKs9N0OuXk5ERh4J1OB03TVLxDLBaj1+spM3X9O86U74ZkkgtvW2/Jmrh96wXeeustjEYbK4m0OuQM+gO8Xg/DXpdqqcjG5jZGsxmP14fL7WV7exez0cDJ4WNanTbVRoPtG7f4X3/p/8t0OObG3i1icR1vFfW1WAsvFgulLHHa7SxmM1xOF4P+mPfee0ytVucTn3iVZHKFCRNW11YZDAb4/X7Ozs4U7VRvQbcVy04mm/yMjx8/Znd3VzHrhJgkUKo4oPq8XtLJFMVikXRSPzhXSmVmE53ElSvmSSaTVKtVGo0GjUZDJRhrmkY0luBkmbIWDAaVKY6cryQWROBbQKU8iFm9mOZLUm8oFFKR2R92PHNNLYLJWq3Gzs6OMiCRTA9NQ7WnM5kM9XpdNSYEoHe5XEqVsbq6qrBJIfqLNYHgtW63W2VjixFkPp9XhCCJBJZsEvHnkwdA6JMAV1dX3HvrHV7/+ltoCyPj4QyXy8fa2ibRSJxIJMZ0POGNr3yNUa+PSYNhr4/FaMFlc8HCiMlkI3uVp9XpgcXKdbmK0+OnWm8xmxsYDCfMF5o6a0hnVR58XQbn49btWxhNJowmM/limf5ohMPjArMBp9PB6uoqoVBIRWI7nU6FKolblExm4dEI/isTSZIYxAJNP/fo5ZrL6XpqogEqtFTum4Q8Se0rPtR64NNUtfCFCpFKpbh586ZqZgl82ul0lPLd4/GoiI1oNKrotIASczzLeOaVWtQf4uYj3TkhxmxtbajDhXhtRCIRRQRaW1tnMpmqOOH5fE4kElHiWaE3itH66uoq19fXlEolvF4vw+GAQCDCYjFXcJ2oJwTcPzu7UEJT6Xhms1nd/TQYolbt8dabDxgM9KaL1+cmGo3g9jjxej0YZxNsRhPNcpX7b73NaDLl8PEJw/EEq8OJz+vj7fvv0B706E+nzDSNXquDtjDw5dffJBEKs7WXxmLVmzter5fz83NFvJ/P50znUxrNOi5PkP5oRHc4xGa3M9XmzE3Q63R455139Fi7ZbkhBjw2m01hwZubm6rEECmd7E7xeFxxR2TSiouT3+fn+iKHNl9gs1g5Pzlla3ubgM+Hz+2hPxzQH5hUkoHFYlGC2MPDw2V3eMLOzg6LxYI333yTyWRCr9fj1q1blEol7ty5o2zKZMeRxk6xWFTkqZOTE4bDIfF4XM2Fj3RSv/HGG8orT5TJnU5HmRSOx3pt7HK5OD8/V8m3Epyjq8rfjxCW9AGJnahWq8p8XDSNYuQuoZM+n1dFP2uapvSQ35gqJW6s5XJ5aXQzIxAMEPAn8PujnJwcUyhco2lzmk3dZd/n9xLyOHGZDcrhyWgwcH19TTgaJ3uRpdlqkauVwGSm0e0wmU1wOWx4nW5GsynFWp1Aw8tLLz3H5aVO9qpWKuzt7eNy6t/TG/BxfpnFaHFRq9cYDIcYzCYm8ynNVpOA10On3eb8/JxEIqHQJHFrMhoNCl2R7yn6QfHYFrs2sfuSySS6RLNVV6usZTIMBgOajQbdXo9YNIbFbmM8HWM0GRWKJN57slvS6WIw6jWyz+fj0aNHKl1gMpnw4MED5bolTRdN08jn88sFbk2xJWu1Gp/4xCewWCwqVPUjm9SBgI9Op7ucXB4Wizk+nwefz0OlUma8FK5OZ1OCft0vr1KtYLXasJotDAdDEpsrXF9fUywW2d/fx2g0Klm+w+HA7nTS7fVIpdOYjEZ6gwHxRIJur4fFZlXswK2tLSUpSqVSKo/G7fYodft0OmEyGbO1tcF8PmM0HlOttXAHTLz8qdvY7S+TvbwknU7TbrUo5vNsb2xw9OQxkViE9a0NHE4XX339LSxWO1elIifXWaYuJy6HD/vCAOMKZkeDUNqC02WhcNUjUO1QrXZYSaxQKV0TW13BMJ8xx0ipWKVcvyIYCxEJJ+kOJsznMJ8tWE0l2dhch8WMSrmyPJf0cbvdeDwuldvt9+v2YjIBRO0ikjCJr9Y0jWw2y8bGBmtra/h8Pq6vr7FabcRWYniDXnwBP8nVpK551GZcl/TmV6PZUDn0V1dXSqgg5KnDoxOGw5EiJu3s7ChxSCwWoz/ok06nOD4+YjWT4uDJAVvbWzx8eJ/t7W1arQaDfp+NjQ3mswnddguX24Xp2UxPvzsrX4vFrLb/+Xym8lL8frEcSOP1eJVLk91mx2qxLIn0DhVM5Pf7ub6+VnwJ4S+73W6sywPWeOlBN53Nlt3HiXJlMhqNKp9bEBJJoRLLgEqlitVqWWokp5hNZixWE6FwgFRqheGgh8fjIhIJ8eqrn+C55+/iC/hxetwYjEYcLieT6Zhg0I/FYqJSLmFAY9Br0O+1sJg0Ah4Ha+kwLz53i/liTrfXYzCs4/VbsDuNjKcD+sM+ZquRaCSI0ajhcDqxWm2USnrXzmqzKi6LbWn2s1jMsVot7O/vk0qllCUCgNFoUAdjqbElPElqbenuikWYCI71FX6hKKbdXpfxZEwoHGI1s8pgOFguRFZlnyxEMKvVqvLiXW6Xipvzer288sor3LhxQ0XPWcxmrq9zGAwG1tbWyKzpKJfFaiGxkmA0GtLrdnE5ncRjMex2G2aTid3dnWeam8+8UotoU5hgYn3VbDbJZDLs7eyq1q3T6VTk9V6vh9FoxOPxcHh4qDL1ptMp8XhcHSQMy61ebBOk1JH3GQ2HDPpdleMnXm8bGxtYrdalE2mbZDKpmgJ7e3u43R7KZR3f3VzfxO/1kc1d0W631WpWLpexmM3U2w2msxmD0UjnoAxHdFtt2p0+Js1ALBhk1MhinPUIeMJYLSbu7Gyzs7pP7eqM2aBIuZxlOGnj8sZIpPXgo85gSCRmwGzS6PdGLDQDNqsPr9fP7u4OkUgIo9FAPn9Nf5nO+8ILL6jySWRVq6urtFotNdnkICo5M3LeGY1GinQvyQfiDTKdTjk/Pye4zI6Xbf+DjR05cIp2EnRPEvHFSyaT2Gx25SQgIoxGo4Hb7SaRiNPrd1XMXDwep1qtkk6nOTw8xOf1kkysqCaaWAR/5B1FEQdI50dUy263m0AgQDabVQdIIcGL26nZbGY4HKnVpNvtKk2dmLVYrVaG/T7MF/g9XjqtFvPJFJfdjs/jIRqJYLFYiUaj6mEQXFSaMR6PC01b8PjxYz3zr9nm9OScyXjGaDhlMVtwcXpG6TrPdDRGm82JLyVf5WoFm8OOxW7D5rARCgaxO/T8wel4wnw2YzGd47bacRgM+OwuYv44uZMar3/xIe3aAI/DR7HQ4vikxKPDIkfZBkZ7EIc3RDZ3zWA0ZDY1YDTYaTZazOcLVlfTbG1tsFjMGU90rH+xWADv823EwEcIVFI7C6dGdiipf4WkJXEgdrtdnX9isZjKkrFYLOzt7SletOx6kh0vAabpdFqZyE8mEwygbBFsNptKgxCIrtlqKuZjpVJRnovyZ16vV0G60m3WNO39mv1DjmdeqcXkUczIk8mkcup89913sVn0hor4VAtfWEgzlWpNrdqTyYRoNKoSmgRDjYR0snhumaLr9Xpx2B3K7D0a1eEiMZ8xm808efIEn8/HbDZT7vv9fo9+b8ij9x4zHI747Gd/mJ2dPcb9LqXrAk6Xk1giznQ+R0MPNioUiwSDQVqNOpq24Oj0BI/HSyy5QrvV5fTyAg2YLaa4nB5q5QbDrp12t4XZWqE7mDCdGplNrTQ7Jk4LFxyeHpPJJHnh9i63t9YJBwM02lOODk84PDwkmUyytbWOw2nD7XZis1txf8BBNplMKpK9WCXUajW1EFSrVcW3EJRBRAeiJxUa6NHRkYqhlswan8/HcDhUjlrj8Ri/3080GuX+/fsMh0NefvllZccrFAR5sKRX0O12lTBbvBZns6mCgSV0SjrHvV4Pg4Yyhvf7/WqB+kgndalUIrJsq4pL0Xg8VuLR6JIiKuiGKI/FddSyrK3FxFsMWtrttu7ZNhxiD0UU/u10ONAWC0bLJNjpdIo2W3B8fMxkMqHT6Sg+hBiui9nL5uYWpWKJbrdPo1Hmq195nfOzKzwOKy6HFbPJhM1ixem2cHpyQjAU0r2zR8NlWWOh3e/Q6fd4dHRAqVzD4nGiaQYYDpkt5gynfRbDKZppjsE6I+AzM51NMePh4PJtplYDvoydq/YFzddLGBYLbm3tc3R4yde/9iYutwOTyYzbo+90k+mATCbD1UVWeQPabDaVOiCpueIc9UEbXeE1y4IipYRce7HYlTgLSVYTboksLB+EYt1utzp0drtdisUiW1tbALQ6uppHLC9ELCAc8UK+QCqdpN1uK9MdoSTrO4ZLZVrmcjmlC31W0/VnntRSpwaDQT71qU+pbpeUAbPZjEKhoExbTk5OFKnp8vISj1fHlSWy+PT0FKPRqOiLG+vrDDo6WX0+mVKr6O4+ot5OptMYLQalngkEAoq8//LLL6vy4/DwmGg0yvraBs8//zLNRodms0WhUOLhgwdYDAsCoRD9QZ8bt29x+9YtTs7P2djcYNQf8OTxY8LxKMFokDffeIff/MrXmS40TD4XZpMVx8iO22Vj2G+yME8Jx3ysb6dIbvnp9mucHJ1R6+bYfvE2I20BVzNaV1V+4ytf4/C9LI/eeYd4LMorn3gRr8/NYjHDZrMQCsfRNL18+9SnPsXh4aHCbQOBgJrc4uEndl6lUolQKITL5VrqQRuK8ba+vk57aUmQyWQ4OjpS/z0a6eWg1WpV4VHCyXE6ncpmQtM0FcMhxp7VWoPBYEC322Vvb0/V7Ds7O7jdbn7jN35d0UrFo+Xq6kqZ1vgDfixGk0qSGH0gmOkjndR7e3vLk7WNg4ND/H7fkr+xpocF2XSm3XCkdwOtViupdJrrXE7nECx5CZqmMZ/PVb62+IMMh0MFHWmaRq/f06MY/D78Pj+atqDXHWA2mzAY9PCgq6sr7HY7rVYbu922TH6a62Sh6QyfL0gqnSKVSrO6ukYi7IPFlJPTM1rtPo1GB5cvgMups9um4xGJlQTD6YTf+tKXefPdd+hPRtgcLkwWC8NBn3m3DkY34agHjTH+iJEXXl1jZmzi12x4QyGqTQ1bqMPU4qY/XtCqDCllyzjwsr21xe7u1tIRyUp6NYbZYmIyHtOoN7DZbAQCwaXgVRcWXF5mMZnMyutESP3CaGy1WiphQRYYUW7b7XaFkkg7W5T0gGpZJxIJksmkUp2DTlxKp9OEw2GVaDAej3VnJadT57wvE9jarRaJeBxtsSAajWJ36IhNv6dLAGPRGBjAYXfQ6/Zwu1w4HE7m8zn9wYBCsciz9hSf+aA4mczweHx4vT7K5QrFYplGo8Xa2jqpVJrReMxF9pJGs0mj1cTlcetE+NkUm8Oue0Qs48bE0lfChVwuF/PFHLffw/rOBiurSSKJKFf5HAazAcwGWt0m9WaNxEqMRCJGLpfFYDAsbbe8bGxsUq/WCPv9dFotWs06l5dneAMu7G4zk0WP5z/1Aj/643+UWGaP3sjB2WWH4dDC8y+8zFwbsLoWZWMjQ73R4Cybp97qM59qWDSYtioE7VO8gQkm0wSjyUS9VcflbBDzt7i89zv0Tq/ZDZv4f31im1cTATacRtZWHHgCC4bzFq1+nVc/eYtPfGKfgN9KJOLBZjUT9Pv56m9/nYPHRzgcLh4+fI92u0ssFqffH+LxeNnb22dv78ZTjqsS3Txbwp5PnjxRNrnS1BJbB+GWS0SGJA9YrVZVxoiblWgOO52OSg0Tpt5kMmF9LcOdW7fY2d7WFf/tNkeHhxwdHtJsNPC6PdzYvYHf46dWqZHL5vC4PNy9dZd6tc5sMqNWb7LAwMbWNja7k0KxjNP1bBrF70pNPp1OSSQSyi85lUopSwIhtsihzuv1Kq61+KhJXW232zk8PFRUxVgshs/npdXSVwgMuiZybV33kTAYDNQbNRxOBxaLGbPJsCQy2Wm1Wrzwwot6q7bbw+mwEwoGMJrMVOt1zGYTvd4YgwFa7RZGk41QOMzR0X18viBgpFyuEAj4mYwnlEtldUMXmoamLeh3u0xHPWbTHhaHkdFoiMHUZ7EwYHfqSQg2i5Hnbz3HeHpFrzTEYLLixEzCbyfs65A31bGaNba21oA5Pr9+4BJ3pbW1NTY3NxVKIfk40iUVMtJoNMZm05RJp3QaJY9FDOglQqRYLKq6V9yd/MtMcLPZrFIFTCaTEumKZ3ggEMBms9HtdtU9DAaD6t9LSFQsFlOeeo1Gg5WVlaeU/mJ0JFYMrVYL69IGTnIfPR6PShH+sOOZV2qHQ6c7npycsLKyohw533nnHZVlPR6Pef7555X9wPn5ubIj8Hq97OzssLGxoTDP+XyOz+cjEomoevDw8JDZbKba43JYisViBJcJt5IYoGkad+/e5eoqx9tvv4PJZFQC0V6vx2o6jcfjWdoROJcWYhcUS3kazQqNZoWvfe3LvPPOO+SuirTbXQZDHRc2W0wkUwnm0zGDfg+Tycx0BqHoGmarj15/hN/vY9Sf88bXHrK2lsLttDFsmvFaVzHP3fRrPdajcYJWC+b5mGGvrVK9QDcEkgOZtKGPj48ZDodsb28rqKxer3N6esq9e/eYzfR0svl8zt7eHnt7eyqHcjabEQwGVR9B2uSSf3h5ecnZ2RlvvfUWq6ur3Lx5U9nsSo58tVolHo8rs5x4PK5EDiJ8GA51MtnXv/51hXisrKywu7vLrVu3aDQaHB8fK6FAqVSi0WgoYlS9XldJD9lsFkDBkB/ppNY0bel/52CxjANOp9MK1rm+ziuDm+3tbeUob7fbiUajatIKM8vhcCghgK7qnql4BLETE0W42WxWdrmSkiXxaWJU3ut16fX0AM1KtUqr1cLt9mCApUTMg8VsxevxkEomYDFjOOxhtZjwejzMpwvajR5ejx+z2UapXCafu8bucmJzOBj2RxgNRvrtAbPRBON8hjYawXjMqNNFG4+ZjTvEEwlMDjueUACH28l4MGQ6nOCwObDaHCwWmsKA5SbLaixEfInbkA6dkH3G4zFut0eteoPBQLXLxaRGDopms5mLiwtWVlZIpVIqPSyTySgdp/htB4NBlXS7srKi0owlXS0Wi7GxsUE8HiebzZLNXir/a9lFYrEYrWUGo8fjUSafW1tbytxIrIRF0f9BiweRvT3LeOby4+rqiuFwqALb5UvabDaKxSKLxeypLO0PSnx0CdeQZDLF4eEhnU5HxyqXK6rEsl1e6tujRF+Mx2MymYzyVm40agRDAer1phIKVKtV9vb2yOWumE9GHB40qNbqLDT94agtozKy2Sxer3eJz4YZjcYcHR1znc+STEeYjE2M+hOGgykOjweT0YrRBGaTmZlpgdFkwmqyMesOsEwnWLQ5XqOdeWtI0Gsmd3pMv1nEn1ljbrXR7Pc5u8zhcXeZDMBu92GzeWl32ty6uUelUlGxxiJjEni00+lwcXGhfL0lUViscg0G3W5hY2ODarWqsl+kPyAcanGX0jRNOYxK6JGgViLGOD09VbF0kjhgNBpVZrykkEWjUcxmi9Kqijd2sVjE7XbTaOiH3bW1NdVke/XVV9Wh1Wq1Ek8kMJpMFAoF3G43JycnKobuI53UYhMwHo9xOp1KLiVRdNvbmyou+PLyErfbTTKZVNwDo9GoUpukZSvdJvFWdjhsqltoMpmWbqVipNNTKo7hcLQ0drcphc1sNsNqsegc7GgMq1U3eD89PcVuty9xX71rOZ+O6fda+DxOmq0mjVqd9dXnOKtlOT/NMTdroJmZjAdY7XaMRjNoRrS5AbvDgmE+xWXVmAwn9LsTXHY7dqePwXjK4cOHGN1eeiPQZlbGvQnTvgGzwYzJaGS+mHN0dKTYiPP5XFn0StKYNDCkIysrXz6fx2Qysljo7WTxG4nH40oBL+bpMpEltEjKvkajoZJvpZxQZvTL/oHT6cRutytDdzEcMi0n4mAwUrF3Qm3N5/OEw2Fl4yAt70KhQDAYZHd3V9nLWcxmOss8+WQyyWw2w+PxPLNI4JkntdRn0WiU8/Nz9WUGg8Fy29FzTeQgeX19zfX1NTs7O0tDQo1kMqWcflZXV8lkMsoo/PT0hNFooCKbxeagVCrh9/sxmy30elWqtQoBf4hAIMB4PF2GTk51WCoaZtDvU6s3GQyGGIwmxtOZMqFpt1oUCrqiPZmMMo+FGQziXF5e0Wl1uTgrEAmluH9wn35nRHp9g9liyqDbw+NeZgrWO7icVubjGTODGW3gYtIyU7/oE0n4WZhDOBwpas0h/fIAz9REJhDhE6+tk1jdoN+uKzOgD9r47u/v02q1VDtZks5WVlYYjUZEo9HlZJnx4MF9lWIrv1ZXV0mn0+RyOeXWCqjwITmQCc97PB6TzWaVvnFnZ4eDgwOKxaJ+Hlld1e0hTCa1IguHZz5fcHFxoawxpMkjaQq6llIvJYRvLzpN8fGTRp3NZmN3d5ednR2Ojo4+2knd7XbUdikrn/A6stksRqNBeb05HA62t7epVCqMRiP29/fpdLoqUEfawL1eTz3dermiKTxVVi8JHbq6yuJyOTAZTcrWzOk0KlhwMBhQKxeX5okeDEYTJrOJ1ZUkk8mERqPBbDJlNplSLBTo9zpEIzE+8dLLPPQ/5v79R5SLFQrXLartJiaLjel0xmgyxmAwYTBozOYzZgYrw7mBkC+AyWJiqGm47F5sPisTk4lqeUTrrECjCSuOKHtb24TcdubanFm/g2lJ6Op0OiwWCx4+fKh4ydKV83q9PHjwQKEVQi3QD2sLBecZDAaVl9Lr9ej3+2xtbSlITshnEr8MqJpWMhGvr69JJBKqwycPgZRCUkICKrqjVKqodLG9vT3W1tbUAzqbzRQPKJlMKkHIxcWFih5Jp9Mq9kQeiN3dXYXgfGSTWne510/JunumnWBQ73TV63UCgRC7u/u02y2cTr0ufOmlT9Dr6X4fNpuVarWM3W6l0ajR7VoU4UaXc/mVVZkc/iqVCicnJ0vc1cZoMGE+g/FwwsnRCWDA6/XqZHSDgQUGmu0e0fgqmmbAiInxYApoVGoVzCYLHo+XbjuPw2LF63bw+PF9xtMxn/r+l1nb2uDddx9xw5Pkt77y61gY0mg0mYx02itGA0ZNYzIe0h+bWWhePI40066PQrvFdNImHb3JtDVg2K5Sb+a48o1wB1J4XS7S8QSXpTEnFyc4nG4yqxkMFiOTxQiTaUKvU8JgdFAoXLO7u43FYqHTaVGplOh2exgMsLa2xo0bN9RZRAzcNU1jc3NTCWCDwaAuCFjycWQifzAXxuFwKAVRpVJRpU8mk1HUYKfTqSZns9nEbDbz/PN31QSezSbkctllDqKFwWBKKBSk1+syn08xm530eh3CYT1UqVwuk0wm8Lj9GNGIRUKUymX+8T/8B7z40ksf7aTu9bqUSkXlpGk2z1R8st1uZzQaLv03YlxdXSldmqzWLpeTcFgH+SUxV0hJotSIRqMqyuL09FT5OYvFltX8foSC5CVKylMiEWeuzXA4rUxnYyxmG4Nhn9F4wPbOFhoz2p0OBuMcu9PCYgrj0Zh+f0Cl3sZocbGSSnKeu6DRKhJN+Oh3R6ytr9LpDpjNx8wXcwYzvWwwGmC2mKHNzRhmNmZjM25ngMGgicNpwqMZCEfX6C/anBavCAVMnBcfUW/asVrd7O49xzv3H+DxBrHZ3FxeXDPotfD6w8r/LhqNKp8Uq9WiurESoywHLTlQyw4m+Yvlclkp2QWq6/V6FJfkLRHnSkSdpNxGIhFKpRIAo9GI5557TknuAGXbKz7XwswcDAYYjUbcbr1DK56F8/lc6SQFizabTFitOiEuGomQn0zIX19/tJPaaDTy0ksvkUqlODg4AFA4pC4oDdLv9xVxxu/3KxsFvYGCiumV7VEEpYvFQqnApaYsFouk02leeumlpc2YGZfbjWVJu5TVXB4Ci8XEZNZjdTVGo1HDZLQuoawu1UqOyWRMu10hd3VEwBdgOp7zW7/1VS6zJWwOPwbzEWOtT62bxWybk0hGsHldNBoDDPY5VpMRs8XMvNvHYJySXkkyGRjJnRxT0Rx4PAbm5hnByIzV7TiDixyX9Sw2S5iewYo37Wc+7+AwTSlcX1N5o47Pk8KCn+y0jsdhwmJckF4NYrU5VBqax+NRHHE5MIp5j/Cgt7a2lEmmTGzxAWk0GsosX4JEV1ZWFFIhzbJQKKREvSJcFui1UCiQz+eVeZC01h88eIDL5VKm7hLtMZ1O8fl8ivS2trYG6Ibx+Xxe5TeKVYYQo4Ry+6Hn5rNOakAdDMVBVH7IVCqFpumK8+l0SrfbpVAoqCxz8Z2uVCocHx+rbUwSbiUUUji9ooKW+nJra4tyucz52ZlK2R0OhySTSUqlEvP5nEKxSDQaI5lMoS00vB4PBgygGei09Yg5s8mM1WqnVmvyla98ncFwxK3bd/D4/Jxns1TqNRqdOt1Rn1AsTL3ToDNsU64Vwbqg2ihhsc1wuDScHtjcXcFoGRKO2VhJuQlFrWzsRvGFYXXLSTQNFneXfOWCR0fX1Dvgj5lY3fBSaxV48N67fPFLv82bb77L+XmOwXDCo8dPlLFMJBJRD7oQiMSbzuVyqfgPQHl7yN/3ej1lpWs2m/UgpSUWLRNd6lyBZzudjvKZjkajTwWSVqtVrFarahbJ4VbYdQLBSujr5eWlOhSKvCwUCqmkAdkhLBYLkUiEVCr1zB3FZ16px+MxZ2dnSp0tYe87Ozs0m006nQ47OzsUCgWm0ykrKyuKSCOrSyAQUCoXvZGgw36RSEQlO0kY0M7ODtVqVXWjrq6uSCZWaDQa6sYJi00OLf3OhKODYwbDMRbDBLfDQiSYQtPmJJMruBwxCoUyv/nr/5RCoca/9hP/Gq986lO8ce8djG44vjhkOphhx8TDx4/o90a06wMcLju9QZNY0ofHaWIwbNLrljBrGvGElZWYk82tMJ1eDru5QTK8zmY6QW+zw8Jo4uy0zpd/8xLTPMjW9hjzbMDmjQQP3y6QzKwRC8bYziTwuCxcXV+ymrmrzGQ+6Nlss9nY29vTdYKHh+TzeRVJYbValZ2BqOmFnioNL6fTyfd93/dRr9cpFAoqxiIQCKiur/itSFpwsVjEbrerWGc5YDabTcrlMhsbG5yenhKLxVQqsIgOxMa3UChQr9d14cb/r7336pXsStMzn+3D+4jjvU2fJDPJZpHqriq1kQS1WgN0382FruaPCbrXANNQT1uqesrRJtMf7yPihPcRO7abix1rNTl3nQVwhAIXUCgUi+Q5GbH22t/6vvd93plzJ5fL8fDhQ7755huZevuu63du6QnyjuhPCma073s8e/aMVqtFsVhkaWlJCtPF/y8ITZqmyWDKMBk2kBEWoo4WP2s0GhGNRpmbm5MOF+HmUBRF9srX19f55stnvH71llgsTeN2wP/8p18zNzfH48cPmU58xhOf68sGJ8dXxGIJYvEY9XaVxdUCi/Usb04mmJpONp2j3WkydXwUXcPxPAxfwXWmxCIZVCzwbTR1ysJ8ivW1HMmEx3DcZWctQyZi4rsZotEUetxG3zD4NlmlWe9ycl4nlUgST8cwogofvP+Qj97/kE6tjOJPWF77mMIsC1KI/7PZLIZhyM+q3+/z6NEjST7q9XqyS7K+vs7Z2ZlkqaTTaebn5zk8PJQJs+IyLtLGxAEhpBDNZpP79+/z/vvvS0HU2dkZKysrrKysMD8/Lx3jQuPxXa+oiL179eqV7G4IEZXg/IlEt0wm8723/g+6qePx+PdCKkX4ZK/XY2dnh2+++VbqDJLJJG/evJGCnO3tbV68eC5Zadls6IgWmlsR1iMGNOJVaNu2BNb4vk+v38P3fBYXF6lWq5RKJZaXl2Ukhq6HHOvA93CmNs1Gg3azyW31hmgsSoBGo9HEc8c8/uAxhqXT6XZI5rMcnZ7QbnawjCid2z6epxC4KqqvogYK4/aYmKbR8JrousPaWg5dNai3mvTaBqsrCwwHUyxcvNEYQ1WIJlJU68dUb65JpFzq52VOjh021uc4OTqmetPlG+1LkvEoHz58QL/dYDKx5dtNZIsLucHZ2Zn0ipbLZZmGIIZawpkiprKCb+d5nswx/MUvfsGjR49kVs10OuXo6EjGl4gJpIBriinie++9J8f3gPSaikGcyN8R/WeBcBDlyOLi4izZ2JUt3MPDQxkjLcRw77LeuaYWT1cikWAymUhRSqVSoVgsEo/HiMVi7O/vS1ezuBkDMuBIqLvW19flrVsATZ48eUKxWJSXx1KpNFPwpcNTOZmSdKd+vy+fdnH7dtwxS4tz3LmzRaGYJpuNs7G5xM7OGkvLRRaXs+zfXeHnf/wTfvbzf8PW9gaFQomr6yoXlzV8z8Ad+gybQ2J6HM3VSUUy4CgkI1EUB8Y9G0s1MRSDwPFwp2Omox6V6yPiUR1nHGM4cNCMPr5SYzi5pT9qE89EwXSxx2nqNZ12y8NVdVqtkBtdr9ep3Ta4uLiUgakC6pNOp+UGFHR/QJowhH4mnPaNKJVKDAYDms2mJM3G43HZNfkuxUnoLgzDkBdvMaF89eqVpPyLny+moZFIhEwmI/vl9Xqd/MxBJJzmIlVMZAJtbGxICazI6BH4NGEmfpf1O2W+iJgF4foWPdLLy8uZCTcpSUCx2EwAPhzy7bffks1micfDp/ry8hLbtun1erJtpes6r169kkMXYSsSSVO7u7uhrT4eRzcNEskkAQGxRJwAmDpT8sUia2sJtrZ3aTSaWDGD1dVVCsUiL148Z219jXgswmQ0ottqMrbHjLyAk7MLkpkc7XYf35kSiaaY2OEkcjoZoKseBGBqFmYQkIokcMdTBoM+qXQExXQYux79Rh9nbKBpKrXuLZql4qo6vpJgNJpg6nG8sUWjPMLUUhAE2K5Ho9VG03UyuQydbicEzczC6k9PTyWiQLDstre3v4coEEpG0bIT4UsC/iiMA4qiSDrSgwcPGA6HjMdjiVmuVCqUSiUcxwUUYrE4ruvR6w2o12tUKlVc1+WmHFr7EskEKBqKqqMZZhi+OnWo1xt4nitTBY6Pj6VBOpFIcHh4SDKVQdUNri6vWFhcoJjOYFj/P0hP8/k85XJZ1mXCSyfkh2JkK27BoqZrtVoy5xDC0a1AUolAIqEh6Xa70swpnB2inz0YDtH08LmMRCN4vh8mQ7Vb1BsNEqksnqIytifcVMtki3k8JaA/GqAaOuOJzeHBCc7UIxaNEZ+9Oi+vL6l36riBjRozwNAIFJjYQ2x7gKq6aBrohk7ge4wGIyrlJt3uiNFkTHfQw4jEQNNodRt0Bm2mvsfUN+gNNSrlIZMhDHtTmHrY/THjwZjAV4jHEySSCVx3SixmsbS8QD6fl/IB4dwXXsxutytTrt6+fSsBi4VCQTrFxYQ1FovJsCfR+RCliyA/Cf1HPp+XQUm3tzXy+QJ3795jYWFxJm2NzgJdjVBB2W7TaDTpdLukMxkMw+Ts/JwXL1/hzRw6Nzc3tFotKpUKwSyAajAYMBqPmdg2lhXBtCwikSjTachjfJf1zie1qHVFkz5E61a5e/cu/X4fy4pKy/vt7a2sA0W0w+vXr9ja2pQxaYCUNQo2hQgpErX27e0t+Xye1dXV74l1RMkh2G7igRGeu/bMXFoul2eDmYVwNGtFwPMZjyf0BzbaeEi9UafdbuH5PhgGiqoxHg4xUHAcF1XxcR2FQq5AsZin16jiBh5TJ/xCut0xUU+lXO1gRX0Y+ei2A7rG1B/R6nn0uj6OE0dFZ+o4gM5wOMLzFVzHo9kMDcqGaRIEiuR2pNNp2dZMJpOUy2VisRhnZ2dsbGxI06yIshCB9sIkIC5vi4uL1Ot1bm5uJA9REGmz2SytVovHjx+j6zrn5+eyEyFAkCI6MJ/Ps76+ztuDAwm8WVtbw3Ec2d0QJgVxAZ1MJuzu7mJZltS51BsNUDTW1sIYEMEZEU74f+1655P65OREAlIEe8M0Tela8H1PEjEty6JUKnFyckK/3+f+/fusrKwwHo/l3y9ekWJIUCwWZ3yQMdlsdhbVEMY2X19f02w2JUlTSDE1TePJkycMBgMpoxS6FNd1pdtcAAjFxSWdSZNIJnE9l/6gT7ffQzcMVEPHJ8B3nVkb0kDXTUzDRFV0JqMJvhIQaDpoUSZTg6lrMZnq1NtDJo6P7fl4CngB9AeT0HWDQac9QNcMuu0+49EYZ+qgqjqO41KvNXBdj1Ip7PCIi51IbEgkElJMv7a2JglMIhVtZWWFcrnMycmJBFGKz1FIEUQyr0CWCX2H6GdfXl7KE16EDwm3TCKRkBPOdDrNYJYQ4LqujJgTQE4xgFlYWGAwU+KJLoc4FNdm4ivLsuTlVLRlf9BNPRgMiMViZDIZEomEzPsQI1nTtGQrbmNjg9XV1e8FhAq1nrg4OI4DILnNc3NzM810S46GhXiqUqlwMhu8iETW4XBIsViUHL56vS75FQIwbpqmTOA6OzujUq3iqxCJx0ikktQbDWLxsCb3CTBNHS/w0C0Tw7RQFJWIGSHwwLN9JmObqT/GiupMnAn90YhA1XC8gMJckWyhQCafptl2sacak4nPcOgytQN8V8GeuGRzOZLJNOl0Rka1+UFAp9Pj5rpMuxVS9efn5+VET1VV2u22xBOLfnS9Xpcdpnw+T6lUIjtzB4kgKXG57HZDrrV42JeXlyVbxHVdDg8Pubq6kp+5KBXr9bokqopsF/FdTSYTzs/P+eabb2i320SjUVnCjEYjzs/POTs7k6GtYp7Rnf1+QpUYiUS4ubnh+Pj4h93UAmewvb0tx7aiyS/6k7u7u9y/f5/9/X15Wgull2jsJ5NJ2RrsdDoyO1Go/lKplMSb7e/vs7GxMcseqcuot7t377KxsSEvqqEM1ZbaA5E7Eo/H5Rc9HA7xgxAOny8UWFxaAkXhtl5H1UORT6CA57t4vouiqqCoGIZJ4MFkZNPvDnA9J9RUaz72dIgfuPiBh2lEsCc+fqBRKGbp9kf4gUU6XcQPVAr5Iul0hkgkimGY4QULlUgkiuf6xGNxNC2Ub4ZOonC0LQA2ghEoaEvtdpv19XXq9Tqnp6eoqir10mKDCc+gAP1sbGzIVDGhYR4Oh1xdXUknk/hORX74cDjkq6++4vT0VHI50qkU9+7dk3X91dUVo9GI/f19crkcmqbJEb7okIiTXehHRPflxYsXBEHA+vr6D58kICDZYqwqLiv/QpEPJ4wC23p0dCQ10Z1OB01TJZpWWLRECSGE6EIiKUIkBYf6Jz/5SRgLN9vcpVJJBsCLIU8olYzJKGThYby+viaZDC1QAVAoFjFMk06nQaFU5KrZJAjAikVodVsQ+BimieZrOO4Ed+qhKhr4Cn4Aumcw6I1IJ2LEohF6fZt+d8TlaZNEUiFqBmQyabSpRqc75LbWxR6brG6UaLd6dDoDEslw4OB7YYchqht0Ol10JWBxaYnBaEi32+X169fy8/q+ojHs8wtwpIDdi/vF/fv3Q3rpDFsmdM66rlMoFLi5uWE0GjEcDgHY3d1ldXVVvmlt25amWDHKFgkP+XwedZZgKwJJhXZHAO6DAPk2Fm/S79bf6XQGzTCllU38fj+49FSowS4vL6XeQEgaxV8XQJRIJCI5EWJaJZwroQ46bPe9ePFCOpnr9Tpzc3OMx2MZlzAejxmNRjx69IjRaCSDcEQW9mAwYHt7W9ZskUhUngCFQuF7PrxSqUSgKERjMQ4OD5jaoWPEeR7GMatBAEFAoILnK3iTCb7j4Gg6QeDjuRCNxbFHAWMVokmFiGHSmY5wbR/PjjJwHYKEh+sOcdyAiR3MOg86t7cVBoMRqmrg2FOmYxszGp7O/XGPZrNFKhZSqXK5nMxBX14OjRXdbpfz83M2NjZYXFyU+eNCc+26royl29vbk+WauLeILEPR0hPhT9vb23LULtIbhJv8u1mU33XfDGfGkHg8LqUOKysrsmPl+6F7fX19Xab/CnVlEAR4voc+k0qI+OhUKvXOF8V33tSRSITDw0OazSbz8/PSqiVkkoah8/r1K/IzFtzcXEna/8NBzZhsNiPrrna7jWmaMo328vKKiR1iaSf2lMWlMNm2Ur3F8wNisTipVJpEIjkT/ddmpNQbtrd3Zoq0NtlsViZ+CTWbEFS5voeu52Y19xx6xKLb6WOPp4xHTXRVwx47KCp4kymmFUHRNJzpFBSFTDZLqzVBCRQGnRGqpjPoOkwmYJDAd8fY4z5T28GIGEQsi9HQRkEjly2C36XbGjJ1XCzTwrIitLodPG/KaDpma2eL2m2VeDzOcDgkk8nIIZewrVUqFRYXFyUIUrQ9RSKDaZpS1C9iAoX7XqjzRHLx5uamHK/XajV5v3GcsB5vNpuzt7NHNBphOrVnp3aebrdH7TZMedA1lcODtxyfnJDL5ZiMRyTiMQmxPDg4QNd1VldXURSFL774gkQyJSeWc3NzvHn7ls139Ci+c03d7XY5Pj6m2Wziuq4cfyaTSVzX5ZNPfsJ0anN6ekK73cJ1HZaWFkmlkui6RiQSknyEhHFlZUVm+bmuSy6fYzSeMLGnLCwuEU8kmTouK6trOK5HNl9gZ2d3Zvp0UBQVUJifXyASiQKKfBOIfu7JyYlEnDmOQzaTIZWIs7mxgaLqlMs1eu0+iqsQ0ywKyRyaYhAxoui6RTQaR9V1jIhJNJ3ACWwM08Y0fSJmFHsInm2gEWM0sJnaDhEjSjoRx5lMsSdDFBQ0xaTTGjMZhfB3fAVT0TFQCQyNieJDRKM76tHrh6ZbcQoKmr8wuAoOHiDLibW1NXRdD99GM6SC6G33ej1SqZSkNn13spvP52eBo5Y8AMIS0sXzXPL5HJZlkk6nWFxcIJGIY5oGiXiMTDpJPBalWMiTz2VJxGMEnsvayjKuM5UlZbvd5vLykqOjI6rVqswjn4xHqArUa7dkM2l816HZqL/T3nznk7pSqUjYeRAE3N7esry8TDKZ5OjoSEohFUWRm13UZEKtJdzFR0dHPHz4UEIQO50Ok1mLyTAM6cs7PDzEsiwZW6x8R89bq9XY3NyUoUepVIp0Oi1zB3d3d6lWqyiKIgOUup0OmqrMyJ0qrucyv7CAHUB3MmbqTNA1DQi1xPZkEkYxB6ENqdudUsrrGKbOeOyjGyauO8YwI7ieh+dOmYw1VA08z0HTIkztgIhloiomCjau56FFNMaDMZphAQHxWa742dkZ2URK9u+HwzCbUmTbiP7x4eGhjEsWI/RWq0WpVJLsD0A+GEKgf3p6yvLyMnNzcxL722g0JAP8u8laxWKRfD7PxcWFbK32+32pvxZzCNFREW1IUb589/6zv78vvzPheSyXyzIEdTAYsLy8/MNzPwTARqjkBoMBmUxG9hjfvHmDaZpsb29L9ZxIMhWXDM/zuLq6otvtMhqNuH//Ptvb2zI3W4zHhRtGxEELmeNwOJStLDEm/u1vf0u5XMa2bUkHFakG+/v78jJkmiZnZ2ccHh5ydHTMs2ff8Pr1a/qDAdFEnF67zWRq4ysKnusRzKSXruMgUhtUVWM4GtLr9+j1uriei6JqeF6APXUxdBNn6jEeOSiBge/qdDs2/f6EbreHoqoy/ElsBFXVSKdSVG9vpfa8WCxKcFAQBJRKJSlS0nVd+hlFT7ndbsskM5GYZlkW+XyeWCwmTb5BEMhhl1BMXlxcyPLE931OTk6kQeDzzz+XuSzi9BfZ52/fvuXly5dSvHR9fU0ul2M0Gn0P+xuyAbOy5y6wGuHAzpqhMc4lKvpd1u+k/QCkFlpM+GzblqGUAk1m2zb9fl86ZJ4+fYrruhSLRbk5xXRJWPj1GcS93+/L2/38/DyANOhqiiIFNPPz8/KSmkwm6Xa7lEql77myRc9aRBgLiWQsFmNlZYXBdMrp+TlqLIqVTNDrtfFdF8OwMCMRNBQC32XqTGdBm1PyuQg+AdG4yXjsY1omqmZgGBqaDp47xXUUxlMPRfVIJpK4rkIqlcUPXAbDUKxlztzew9EQx51gpaKhhnrclIZU8UYUPWYhDhNvPlELj8djLMuSURmAbKGKoYhAWlxdXcl6XEzyWq2WjKMD6HQ6FItFNjc3OTo6khIG4U5yXVcOxyCUPYiHSxg8UqmU1GsLcLzoaB0eHso/32g0kie+orxb6Ms7b2qRnppIJGYeRZ2joyMAWXqIyIaPPvpI2rJExIUxY3KIaZVwZ1xdXXFzcwMofPzJiixThsMhiqLIUerV1RXtblcOBQTFPpFIsLm5SavVotFoyP65qqpkMhmePn1KrVYLx7+xGB89/RAfiKfS9CYT3MBnOh7RsyeYpoHu+vjeLPNcURkN+xhGSPFXNQVV98lmUtTqQwxTx8eBAHxFYTAak45rqIqKqgQEgY7rBEynDh23jRfMNOi+D4Svb9v38f2QvXFyckrCishyKZ/Pz9KEHekSEn3k0LcYbvLz83O63a5MsRWjakFtEp+36JBYlsXNzQ2Li4tsbGzIN6SA6gg4++rqqjRvCIe/uEwuLCzIye3XX3/N1tYWjuNQrVZZXV2VJ/hoNJK1f3fWChT2rW63K/Xe4me+y3rn8kM8pWITh2bbyffC0kUpIkI/19bWuHfvnlRn9ft91tfXiUQi8gYvJIyCNP/w4UMAiRy7urqSdZ8Ihq/VavLmL2IgxN8r1GDD4ZDz83N5ihSLYQxzq9Xi6OiI16/fcHV9haqpoCkUSkU8Pyw7otGohEOGdV6opYjFI1hxDcefoJsB6VyCVCaGr3goaoAR0UmnUySTKRLxGIqiYehhd0FRA1zXRtd0lJkBwvM8prZN4Ic/J51Jk0wm5Rsmn8/LN0yxWJRBQiLQ/ujoiNFoJAcrS0tLEj3R7YbcPnE6CmGYAN0YhiHtYQJ+b5qmDPY0DINXr17h+740J4gxeb/f5/r6WgrXLMuSh56YXgrylO/7UlufyWRkho2YaUQiEV6+fCmbEO+yfqc+tSDRiwuMYLCJOk6kqp6enlIul4lEIiwtLcmx7Xf507FYjHa7LZOpmBFA37x5I8PpE4kEr1694tGjRxQKBd6+fo3ruiwsLDA3Nycnh+I0AaSzwrZtDg8PefLkCbe3t2FftlHntlolnckScT00w0AzDaKWSSSZpHlbwZ/aTDUDezTCmzoYuopuCuabRjJl4PsuuhFnMnIZ230MUydXSBOPGyjTCdGoie1OcV2bSCSOHzi4gYdhqLieTxAojEcjvEBBS4dTNJFDLrQr4oEFpEJP9IoFi29xcVESkURZIGpp0UorFApyNlAoFOS9ZnNzk4uLEIcspnyDQThLEN0S27bD0nCWNyP0J6Zp0mw2WV9fZzKZkMlkqNVq8sInzNnFYlEqN0VUd7/fJ5fLyaGNyMTM5XKUy+V32pvvfFKHNVWBRCI5+4NZstNhWRarq6t4bhhHN7WnRCNRFBRcx2VjY3MWthODGZ/i4OAAZiPv5eVl4rE4pdmHYFkWu7u7rKyuhKE3yQTD0Yjt7W3ef/992VtdXFoiXyjgzep5FEgmk/T7Paly63Q6dDpt+SDouoZhGrOJ2Ti8/A0GVMo34QekarPyIBS7R6JRdN0AFFzXY+qMmdhDjIiCE0xA9TAjBrqhgeITT8YxIxaapszgMx4oPorihyP1mV5c07WwnJnV+aqqY+qmhMiIlul3s99FT1eQTsXFLRw8RaSGWiQOCF+i0NwIrEG/35dKvTB/MiEPJ5EnI6TD4rsXl9RYLCYhkyIXXuQoivImkUhQLBZpt9tMJhM6nY4UK4kL6suXL6UeRIAxhUXwB9vUoHJ8fEKtVkdVdbrdHpYVZWlpBdOMMByMaLc69Dp9FFSikRi5bJ5Ou0ssEsNQVS5OjolGTCxTZzgcsH9nn3gqRbc/JJ3OoCsqih/Qa3cY9HqAwr/9kz9GMw1iqQSP3n+fSCzG2La5urlhMByiGwbLKysUSiXm5kqAz+npCTc3V8TjUX7zm19RrVY4PHxLLG6RL+UJFIWFxWWGIxvP9/F9DytqoBkGqUx2xvUIiCWi6IaB6wWoepThyMMy4vh42EEHPeaQKqRwgoBsvkg0nsAxQItHcVFRFZ/JtI1uOGiWgmIaRKMxDEMDPBTFw3NtxsMRGhGmY4VUMiO7EeVyWZYRzWaTSqUi062ePn3K6uoq0+lU8glbrTDUUxgDPvjgA5LJJIoSpviKzsknn3wi9TXz8/NcX19zcHAgrVzi7SkoTyEUUpenuqIo39ORWJYlXTr5fF5GOwts2aNHj0ilUrK//t577/HkyRP6/T5XV1fyLb63t/fDbmoh+FZVVbKmRVJTr9ejPxjgE8ZafP7lF9xUyswvzLO2sU6z3eLlq1ehNsGyuLy8ZDSTLwqDbWf25em6jqIqVG9vKZfL1Bt1Wq0WgeejzU6uzc1NOeq9f/++1A5rqsabN29kRNvZ2RnJZJKVlRU8z2UwHEAAnV6P8/MLzs/PZVen32yhENDtdBiOhviEHZ9uJzRE+AEYRpRarQ9EyBdK5ItFXM8nkUrg+S6WpaMaPmNnwHDSpzPoYpgGQ3uEbprohsFoNGY6dXA9Bz/w0XQV0wz/+vVNWWKPhelY9O1F58Z1XW5ubmT2twDGdLtdKVsVNrkvv/xS2qqE2fnZs2dcXl7Ki/zh4aHMW+n1elxdXcmxujBHC6OBwC10Oh1ub2+5uLiQnaY7d+7Ik9ZxHJ4/f46u69y7d4+3b9/y6tUrUqmUpKj2ej22t7claFLoTn7QTb24uIhhGJJE32q15OhWOMTH4zHD2cXFtm0iM7fMcDjk/OIcw9BJpZKSTTwYDLi5vp71JxWsiMVoPMIwTTzfp91uYegGsUiU3OwV67ouc3NzMimqWAxTwa6vr+UpI/4+wzAk3NA0LQqFIq4baiWuZx2XUC8dQZ0FZ/ozQVbgeWFKrmESmfXEVVXDNNOoagzf0+kPbNKZ8GTF91BVn2hURzcB1UczNQJNQdF1bNdhbNtMHQ9dN8KfAyiqQbffxw/A9wKSMx+mqoacwOXlZZaWltBnjh+x8VqtlvQPVioVWXcLiL0o0RzHIZ/Ps7W1Jf89IsRoOBxK/cX6+jr5fJ5arcbFRZgQdnZ2xmAwkK6nfr/P6uoqpVJJPjwiJm48HlOtVmk0GszNzZFKpaQVb21tTQKKBD+k0+mwtrbGxsaGVPK9azb57yQ9XVpaIplMcnFxwcHBgXw1ffrpp2RzOTTDYDINvYKluTmyuRytTodqLcx1EYOHyWTC7e0t06nD2awdpekae/v7sq1Uq9VwHZdOq41lmBwcHEh1ma7rs2i5LY6OjmQ6VKvdkgAVQcEXuTDb29tUK7dcX9/Q7fQ5eHtIvR6K8wMgUHUCH3BdAj8ARUGZRSaPx2OUIEBRVMYTlU53SrM9RFVMND1EF8QTESIRE8cdoRtgux5j16XZ7+OpGkY0gmFZaLqOqhtYkTimGZ5QkWiUjY0NlldWsKc2k8mE09NTyUgRpCuRaCYug0+ePEHTNAmYESm2g8GAxcVFisUi/qyz4rqu5G3c3NzIsfrm5qaES8bjcTkVHAwGUot+fHz8vdlDp9Mhm83y4Ycfomkav/jFLyQPRCR7ffLJJ2QyGV6+fEmxWOTP//zPwyjBWIzPP/+cJ0+eSKhOLpeTk+N3We/c/RBtM9/3ef36tfQrJhIJVlZWqDebRCIRafK0LAtm9vfJZEJpbg7Fd5k6Togci4dZ2SgKOzs7jEYjqrUatuMwv7go+Ra6rqMCGoqUvAqbktDp9vt9lpaWQhf1TGnmeZ588nVdR9f1mdbX4PTimnqtgaYaGHrAZOrgOW644eJxvOkUb+rgqFrYxlQUDNNkYk+xXRUjYuC4Ab7uzfQrKt1um2g0iWkaOK6LYigEukE0Fcf1FJwgYOpOcadTVCNKLJ7AjEbpz6IxFE1nMnUo35QxrVCzITJVEokEb9++ldHTIjG23+/LrJQgCHAcR3aBCoUCn376qaTIHhwcMBqN5Bt1aWlJat2/ywNZXl6m1WrNQI5LslUrLpMCFi86NIZhkMvlZCdMMGHu3bvHf/2v/5Vut0u322VnZ4e9vT2azaZ0xAg8sdChiC7MD7apFUVhdXWV09NTnjx5QqFQAOD58+d0ul1cz2NxeYl+r49pmVSrVVzPIxqLsbSyTNTQubk44/Likv5gwIcffsRto4k9nTIZhxhZwzS5c/cOvhdqEJzplMX5eb788suQVjRLjhKWfEBu9GazSTqVlmZaQfWUOY6z/m9pbh7NjPPbz59Rr1ZQYlESyQTTfrix3ZkhVZmNlVVVQ1PDSZdhGHiArinki/lQXtrXMVSNuWKJVEpHdwKqtSaoFqqlMx57aKaBHjEwYhHGODiuF+aUj8YoMSv8815f07ttkowG7O9vMzc3J/Fsom338OFDiWgbDofyVX95eSktXhCWZPV6XXZRREyGbduyjSo+v06nw+vXr2XLViQ0eJ4nVX+KotBsNqWzSPxe4nD56KOPpBxYSBhevHiBqqpsbm7Sbrc5OztjaWlJmheazSaHh4dsbW3JQ1Dcb36wTV0qleh2u0SjUe7fv4/rumiaxunpKc1Gg0gsRjoWxZ7avP/B++FEiQDd0Ol0uqSWFpg6DpGIRWSmp56bn6PValO+CTP0coV8iD2wotRrNQgCPvvsM0aDISurK9RrdTRDl+2tZ8+ekcvl/sUaVr8lNhM8iZpawFKGw+GsrbeIolksLi5yVqmA69PrD/EcN1T+KQqggKIQBOFGDghQNQ3dUonEVPqjFqiFWRsvYDjsYyykSCYSDBoD/EAnlSkRjKEzaqKoGkN7jOO7oXXMD9B0Hdf3MA0LV3Ho9vpMvAGKsiMtXCIXRgw1AJmhIyJKRqMRlUpFDq1EvXx+fi4fBmGXEzWugAM5Tgir39/fl0GdAhUndPCJREImdolJ4OXlJaNRmNArUrnEaVupVKQPUgzogiDg5OSE+fn5GYLBkbMKYfQV4/p3We9cUwshvzB1np+f0263uf/gwb9Y34cj7uzvMx6P+elPf8rz5y/kbD8IoN5o0usPsMwIjWZTUjgXFhZotlvclG+4ub6Rr0nLstjc3JRTrFo91Dk0m02SyaS8FD169EgGKkUiUVl+iHG7iK1rNBrc3Fxjj8esra1hmQbpVBJD09HMCIEfoMw6LLqmzQYaDj4BU9djMBpixVXMmMrcUo65+Rw725t88P57xOMxIrEIhmWSymZRDIOxM0UxDBRdR1HCS5ui6Wi6TqBpoOp4fhBGbwTgei7dXleKe8RrXlD5p9OpvGxZliXxbj//+c9JJBK4rsvS0hLOrMQTVi4RLWfbNpVKRZpyFxYWWFhYIJ1Ofy+rXKj6hBZE/Hxhjo5EInS7XW5ubqRFS8iRxdRWhBWJMCOR6ygeJHEBFdNLkcD2g25q3TRxXJfeYIAPTKZTOr0enW6X3mBAr9ul1WiQSaYYD8c8+/oZyWSKjfVt0qkcvcEIN1AxIjEi8QTJdI7abYOpHdrrG7c1JqMx+UwW13Gwp1PMSIS5hQWmriNLmYWFBRkpnc1mOTo6wnEcPvzwQ5YWl8nl8hQKRaZTl+FwzGAwJBqNo+smtdotBwevqFav8D2biKHiOVMMRcPAxHd9PM8lCHx8Z4pjjwlQmDgefWeKayhgjrDSAamChut1KWWSPNjfZ2m1RLwQIVmKECsYdNwGtjbEShsouoJrgzvwUHwT9CijQEGJxXC8AE0z8HwYTR1sx6FcLuN5njQpi3aa7/uMRiPK5bJ0nqiqysrKitxUqVSKbrcrU73gX5K7giCQIinP86S/VJgBLMuaJaWF5FqhFxFan0KhQKPRkKWC0JwIcZWo8UU2j2D2+b4vp5SXl5csLS1JZmKhUKBSqcgh0jvtzXfd1NPplO1ZYPqrV6/Y2tqSr8Ziscj66gpffvkV/dmtOZfLgaLR7fYwTJP5uRLjmUO83eliWhE5sRJRZ91ul2v3Wo52e71e2AKa+SG3dnY4OzsjEolIJ/n+/j4XFxfhiHXWKfhu6qsg3udyWRwnDJB3p1Pu7u3y1bNvGDkBg+kU23GJWjHswMcb26Hp1rRAAVUB09BJJmPYzoBIMsZgNAXVxHXBDxQmQYCuBdhmQLXfYOzbBJqBPZrCWMHp2wSuhqIbeEoYbxE4LqauEzFMRtM+03Go576+vpY96QcPHkhus6ZpsrVmGIacHQg7l8CB7e/vS8d9rVbD932pzxCpWb1ej+fPn2MYhlRXxuNxUqkUX3zxBYqiyLJODHCEICmbzRKLxeSbVgSXirDTTCZDtVqVl1LhnxRpbIeHh5I6NR6PJdHrXVV673xSl8tlNjfDcff19bWURAqWRD6Xw7IM+jPGceg+afN//+3/IJfL0mo35QcgOiQAzWZThosWi0VpYRqNRmxsbEiqqUAeCAqo0CFks1l5MRrPPtxyuSwF9GLoEIlEWZxfREdlMhoTsyKUMnn6rQ6T/hB/YmNoBqoeQTEsjEgcL1BxXQ9D14mZOtPhmHbDxbXjTEZRuj2VRn/KVDWJ5Eq0Jz61/oDu2MZFwfdVcFXcsY8zdMHVMGJRookYuqYSeC5a4BM3TTTPw1IDVpaWyGQy8lW8vr4epijMlHGZWV9cOFUUReHo6EgOU8QGE1RTVVX59ttvOT8//x4oMpFIkMlk5Ob3PI/pdEomk5Eb7bujb5GRKLC7m5ubPH78WGpSBC5DtP5c1yWdTks1psCbiRpdqDcvLy9R1TDU9Qf3KN7c3PA3f/M3MpKiXq/LYBvTCk/EMLD9mna3QzabkwONeDzGzfWIZDLJ4uKijKATzotKpSINsltbWxIILlC24osSRgLRyBcCH3mCZDIcHR7KfO1arSYtULVajeloRCadY9QfYagaK4tLXF5X6I7HqJrOxA/QzSiBq+C5Nr4/xTRM7MkURfXx8PB0g0FX5/igw6g/oRur4asHqNmASreMq/mMXfA8HdUz0BwV1wZdjeCrhBdFBeYW5um326iOgxn4RHWVqJVgfm6OaNSUWSzValUCGh3HodVqkU6nSafT5PN5CQwCpNbl9PRURrjNz8/LqAshSEun00QiESzLkhNhIaAaDoeSrSdi616+fEkmE3JKTk5OSCQSzM/Pc+fOHb788kt6vR7xeJzt7W1ev35NpVJhYWGBnZ0dWq2W1H7cuXOH8/Nz0um0xDO8evWKpaUlUqmUpOL+a9c7n9Rzc3Pf4zb0+315sRgOh0ydKXNzRTzfQTe02WkR4d69u3Q6bUnvSSQSkjIk0Fcix09MK4UuejQacT3LAdnZ2SGVSsnTW4ioxCb3PI/LGRBe1G61Wo1ut0uhUGAwGFBvNFmYW0TXDN68ecvJ8TH7u7ssFAvoBOiKQiKWJJZIYcSSpApzBKpJPJEEzyNmRND9EPLYa6o0qlMqlS7fPHvNN8/e8vr1OfXagMbtkHHHYdp1GVw3mfanqIGJbliohg4KjAcDAsfBG40YdtpENIVMIsZ4NJK1ciaT4fT0VNaxgimoKIqMHzk/P2c0GklRk8hjFIIokR0u2pyivhW681KpxNXVFZ7nSc20QFuI+GYRuz2dTul0OlK6KrQpYp5QKBRmqRKB7K8Ll9RgMODVq1d0u12q1Sr1el16MIWgSbQZ/7XrnU9qQTzd2tqS6ahig3fabSKmhu87qKpCqxVqBqJujNvbKslkaCzIZDLyFRiLxaSARljDhBRR3OBvb29lgOjh4WEY1G6adLvd2dg6bFE9ePAgVIPNgO+j0Ui6Y25vb6ULfmVpmXa3S6fb5ezZt1ixOAvzcyQyKWr/zy/RPB/XttEUBd2KEo3HqZw3megBlhaA7aCoJs4Ier0+vqugOzbD3gB9aqBELfo1G2WkY0wUxq0pwTSM5TMsi0BRiScTDPo9EqYVtjiTSebzOSzfJ5/NoCiBrI2FkF/ESQgKvxiNj8dj9vb2pOhJTPNEzJxpmvLzFZngmqZJPJzgD4raWdCvRE+/Wq1y584d5ubmaLVaaJrG0tKSxFoIl5Jt29IrahgGe3t78sER9wHBpBYbWVxa79+/L7XyYuT+r13vfFIfHh7K6N4wuCgrpY+pdOglPL84A3zi8RjX11dcXJxLF4Z4Wm3b5quvvsL3fdbX11ldXaXb7VKv1zk+PqZcLsssk1KpJI2+wgEtOgKxWIzT01M52dJ1HXN2YRJC9Lm5OenyADAsi0yhQKvTpdXpks1lsaIWhqkzN1dECTx8exLqPkyLkeOixZJgRBlPPFw3YDLoETgewVjBH/j0am0G9TZxNYbdmnB7WKd72cNtuQR9Hw2DWDyBp0IkHWd3extLVcmn06SiMe7t7VLMZ/npT/8Nf/mX/5uEBgldRrfblam3QhAkbFSxWEwaXUUZIVqYAO12m7m5OXK5nEwR7vf70vd5dXUlp4iihhaoBdECFcFHzWaTt2/fSi23sHgJaamYJjqOIzsfIkrl/6sSFMSo6+trOp2OjDEUvfgfbFMLh7LjOKysrMiTdTQakUykMA2TydgGFHnRMQyd+/fvMjdXYmFhXvoRRZ3rui4ff/wxH3zwAfv7+1KMdHh4KH2F4gFKJBKsr69Lf564NO7t7VEqlWTA0c3NjbQmVatVGYdcyBfI5QpcXF5xcX1FNB7DjFg0202y2QwfffwhuUwSUwM1CNBUFdOKEEmkQDGwYmn8QGU6HTPodYnoBolIFHc4Qpk6jFtdvKGLOlZhqDHtuSiOQtSKkc5kCVRwA49uu4Ua+NTKZeJRi831VbKpJHMLJaLJKFbEkv5LkX3Y6/Wo1WpSliBEQIVCQbIM79y5I2lHi4uLuK7Lt99+C8Af/MEfcOfOHeky0nVdBr0WCgUWFxflJVMQAb47PRSCJvHPXF5eSgVfsVhke3s7hG+6LrqhS/12t9uVyLl8Ps/du3elZ3QymWCapsQL/y7Q9Xfe1KurazMkbAPLirC6uoam6czPL5DL5fECBccLMMwovd6A8dhmZXmV9bUNBv0BiqKiqhrX1zfEYnF8P6DZbKEoKsPhiHq9EeKoNI12u0M8nmA0Gs841mPW1tZZX98AFHq9PuPxhO3tHSwrguf5YUz0ygrpTIbiTP+bSqZIJ1MkIjEihsn15QX/9I//wHg0IJ1JEI9bGBqMBx02l+d47+G9UOmWSqD4Ds5ojKFbWLE0U2KMXQs/UBkN+nR7Ffq9G3B6BPaA6vkZ/VabYAzuGBxfx7ViGJkcVioFKDiTMeeXJ0zdCalYhD/7+c9o1WpsrK1hT6e8OjjgcmZfE69ukYQlEBWDwUC2+wShKZvNyoMiZEsXiceTLC4uo6o6tj0lm81RqzWIRuNkszny+aL87KPROA8ePCQeT1IoFBmNxgwGI4bDMTc3ZdrtLltb2zx8+JidnT3m5+Z58+YtNzdlxuMJi0srFOfmMUyLZDqLqumSmCqotSJR7F9oUnVisThbWzusrKyRTmeIRn9gll4QBJyenqFpGoVCQZpAFxYWZprdBRYWFlldXeXs7AzTsHjx/AWT8WRG7ZnIpCjB35ufn5eoA6EoE5MyEUkmSE4ifDKdTkvrknBEi05A5bZCLJlAM/RQwXdwSK1SDU+NTpdas0E+lyGXy1EqFSkW8gS+h+d7xAyNxbk5Hty7w9HJGX3HJmrGUI0IvhVD1WLY9gTPsfB9l6k/xVQNFD0ATUM1I/iqjq5oaJqCoxsEpsEg8PE7HTRFQfE8HGdEIZXk5z/9lHwqydFwSDwaZTAeMXUdxrMJrHBbFwoFdF1nd3eXubk5Xr16JbHGoh0nnDGCglqrhfSq8XjM7e0t6+vrqKomW63xeGLWG45zdXVNtVrlZz/72SxT/gbHcUmlYjOpcUSaYlut0IC7tLjE7W095Hz3B6GEVlEZ2zYT20ad3beEHU30r4V2WlU1hsMRW1vbqKrK9fU1R0dH30si+9esdz6pBfg7Go2yvb3NwcEBJycnEsUqhjC2bfPee++xt7dPo9Hg+PhYGmdd15VZfYL/cHl5SbVapdvtAqHWQoDCNzc3efDggSw1hORxaWmJWq3G8fExuq7LS0yz2cSxp/R74cWqXKkwHI8xLAtVU1ldXeU//cVfsLq2xt6dfbK5HKquMXWmdLpdPGfMh4/ucn93ExMXAxdLC9ACj0Q8SiaXJ1rcxyzsoqY3URPrmOld4vl7JIv3iKZ3WVi9y/zyDqn0HIl4BkNRcSZDIpqChU/Wsvj3P/s5nzx5yj9/9k8YMzSvgCWqmsr+/j6O43ByciIZKeLPXiqVJDek2+3KEqHRaMhULGGIFXkqlUpF6jWCIJBBUMLoGo1GOT8/lywR0Z8WvBbRexbBVdFolPWZy1/83s5MCyTyfIQLR1VV/viP/5hMJkOv15sdhPPyoigUfJ9++uk7h4P+TkkCYhASZpNbM99hXMIhRTyw6JTcvXtXGjjn5uZkTHO/35cCl1qtJtGxhmHIeIednZ1QgzGjozqOw927d1FVlWq1ymAwkI6OSCTC3Nwc9/37jGedj2+fP6fZahIQkC8WSKaTLC+vkslm6HS7qJpGLB5D1ZjBaXqsry7zzVffkIvHeHx3l4tylVqniapHwPBQNRMzYqFjMtU8VNdFRcWImLiaiqGpTB0V39dRVQNFmaLq4QBGcW0yiRibS3NszC8w7HQYDwasbu9gWRYjd4L/HeGS+HxjsRiNRoOTk5Nwqru9/T3W9OJMpjsej9na2uLsLGzxCVmpOEw2NjZkPJzYtI7jsLGxQTKZlH1/QVX9roZEjMnDOcSN1Ko3Wk3i8Xj4UJomjhcCOfMzRvXi4qL0Sq6vr1MulyV6YWEhNCxcXFzIeLt3Xb9T+TEYDHj06BG//OUvWVhYkJeT6XQqEQTValUGhH744Yd0Oh2++uorptOpVGyl02n+83/+zziOw/z8vPTLjUYjer2ezN0WbSABpZyfn6fVanFwcECr1SKTyXBycsKnn34aZplHo8SiUT7//HOOj49ZX1vDikXJFvOkkin56lO0UI13en4WZmgbOpqhY5o6jcoNu/t3+OSj99moNfk//8ff47hDVMXH92yCwMaKRjAsj4ilMR73CaY2phklGomBY2BoFqrm4zpTfM/F1BV2tne5u7tFr1qhXr7G8j3y2QxW1KQ/HJBIJxmOxywvrzCdTllbWyOXy0n5p9AlO47D0tISw+GQ4+NjiR5oNBoz6UAoEKtWq7x584a5uTmSySTZbJZoNATmPH78mGfPnsmhiWVZnJ2dcXl5KWWp29vbFItFDg4OZO5MCOZssbG+gTHLSk/MujKKovCbz38bgkPHI8knWVhY4Le//a1kj4cUKVvSV9++fSvbtWtraz/sphYtOXFLdV2XSqVCtVplbW2NyWQs6zjBxxOpW+EHn5UbWxhLb2eorclkQq1WI51Os76+Lt3Ml5eXMvbCMAyazSYvXryQXrzz83MZw6Fpmvz9RLKVbhh4gU8imUTVNXTTwDJCV3R/MKBYLDGZhObRXr/P1fk5lhVhbW2dy/ItCj7/9o8+pdZs8+rtIbY7RbHBmXik0mmc4ZhIoJI0LcaTMQo+fuAxdqZYJkTUKZFEhHv7W/z7P/4Zo36Pw2GfdCLO1dUl6xtrFEol/ABuyuFUNbZlSQi9ANMIUb9ofabTaZmPI+4hiqLwzTffkEymZJrw9va2fEBEKoEA4wjFnWjJCVaKwMOJeDqRCiD+d6lUojf7narVauguX1+nVq9RrYYUVMe2GfS6EvkQj8e5uLiQY3gIMWXigbRtWwKP3mW9c00t+pzVapW9vT3ZSy2VSvzd3/2dFKOMx2PK5TIHBwe0222eP3/OT37yEz755Ceydu71enz22WdS7CIkk4LAqes6e3t7bG5usrS0xH/5L/+Fx48fS6zW/Pw8c3NzkqEnHqLKTZnPf/Mb5kol3v/gA7KFHKPJmGq9xvLaKt1ejxevXqJoKp1uh4vLSxLJJFs7OyyvrrC4skYsnafS6NAbDjEMDUML+NOff8K93VWWC2livkrE15h0hgQTh1wizkI2RTSYEgybeONbNLeF4Xf4w6d3+T/+979ke3keZzRiMhqB4qNHNIyYQSQRRTdN1jbWWV9bI5cJHSpXV1eyHSnaeUKm2e/3qVarkh0tYks8z5NvOUVRpMQgHo/TarV4/fo1CwsLAJLnLdws8/PzUtQ0nU7Z3NwkCAK+/vprJpMJP/3pTyVQMpsN3fbV2/B3YBbVMZ06cuBTrVblf0Tb9S//8i/xfV/KZsVEtFgsSuXg119//U5783eaKJbLZZaXl1lYWODw8FDWfML5PD8/L8Pd5+fnefv2LXt7e6iqKvMW8/k8Dx8+lFpnkcIlxtnRaJTj42M5dAAkBEU09cUJI276g8GAk5MTVIUZU0On1W7R7fXY3Noin8+TzmSwZzoRkYKQyaRnqrMMk8mIeDJFbm6JZCbH4uoK0WiUN2/fYE9GbG2ssDhf4nbR5rJSRo9a6IFPp3xJreWRn4+jW1EGAxXPCViYz/PwzhbbG8t44yGK7zPqD5n6Dv3REDQVzTL58tnX/NlMcbiwsMhwNJAYMGGVSqVSTGyb+GwCKE7U8/Nzcrkc9+7dk3asSCRKoVCQ6QI7OzsyGUukp9m2LUfSYnCzu7srpZ8CVi/StoQSUDwQqm7Q7YYa69RMwWeZJsvLy3JAJnJ7AGkcEA2FwWBILJZgb2+P0WjEysqKpDn9oJtagBgty+Kzzz7jT//0T3Fm2l8x66/Vauh66EzZ3d3l7du3lMtlHj9+LG/iH330ERsbGxwcHPC3f/u3MmyoXC4Tj8fZ2dnh22+/5dWrV/KkPj8/5w//8A95+fIlqVSK+/fvk8lkKJfLfPLJJzJuw3WmrKyuhu7yq2sWlhb52U9/xsXFBb/+1a9oN8OuS7FY5P79e+zt7dHpdDg7O+Xmuoptu5ydnaOoCu8/eR/f90gk4miaSr1W48/+7I9xAoeXr1/z5ddfsbK0zHA7Qa1yw87+BkvLy8TNRUZDm9PjIzrNBkeeT/nmhk73bWiw3dojn8/z8sULhsMRCuHkL5FMUSgU+fLL3xDgE42EzOh4IgTYvHj5CjMSY3F5hf/52T9Rua0SiURIZzP8X3/912RzWaKxGJ7nU6lWMU2Tn3zyiQRDLi4thQZcz+PXv/611FqLejkIApaWlri+vpZwyHK5TK/X4+uvv5ZckUgkwvLyMnfv3wvLyZn2ZmJPWFhYYDye8OjhI6qV8ix6MOypv3r1mkKhyPn5OeVyhYuLC9niq9frEvn8Luudyw8x1habtlwuy4FAaIfXZIxFq9X6HmC72+0ynYb9ZMdxJJpXjLzDSAVfCs9FW0mMgE3T5ObmhmQyKb8MIaoZj8cSr/Xo8XtYkSi9Xh97YrO3vUvUitKoNTh6c4ipG98BxVQ4P7/g+PiE4XDM/fsPmZsrEY2Z2PaYqT1h0O9j21OCQEFVdV69eIs38lgtLbOSX2RzcYuVhW0e3PuYRGSJYJoEX2N3Z494Ig2KSac3QLcijG0b04owV1olncxjaRFGvSGT4YjbSjXEkanhGDlqmTSbDSIRC03Tua3V0UyLVDbHwtIy7z/5gPmFBaq3t/T6fTq9LigKtjPF9T2mjkOtXuf07IwA8IKA21qN0WyQI1BiAjQJoTl5Y2NDWuBGoxEPHz6U4n7BFnddl9t6nV6/j+f7dHu9kP3R7eE6Lq7jcH1zQ7Ua0gIGgyGqGvIIBelK1w3i8RhB4JNIxMM8+cDHst4NEPnOJ/X9+/f5p3/6J+LxOD/72c9IJBL89//+33EcR/Y/IeyQCNNnr9eTF8ybm7JMborFYmFLqNEgl8vx4MED3r59SywW46//+q+Jx+Ps7+8D8Hd/93eUSiUZXvTs2TNOTk4A+JM/+RPZmrq+vmZxcRFd1zk4OKBSqfD27VvG4zEvZmCVdDrD+saGxGV1Oh0ODg7QNI1Go8Hy8jJ/9Vd/yeeffy7rdZGWFYb7DPnNr39Lt9flL/7iL+h2urRbHXTdZHdnl+fPX3AzrZHJhC2x7e1trq+vZxekLJ1Od4atHTAcDEinkyQTSRRVYTAYojXqmJaJ77v4AXi+j6GquI7D6soKnu8zmsVkP3nyRJornj59yueffz6zRM1L+anwJwp8gSCOionko0ePGA6H/OY3v5H6GmHOLRQKZDIZ/vAP/5DhcEilUpFakTt373L//n3+23/7b3IYJ77X8XhMPpdjOpnIZAPh6r979y6DwYDnz58DYbbN/Pw8L1++ZGdn54c/qYWgRtxm4/E4H374IfPz87NWmcIvf/lLzs7O8DyP29tbotGoTEbd2tqiVCqxsLAgSZ6maUqqZiqV4vj4GNd1ef/997m5uSESifDpp5+ysbEhN+F4PKZSqUjyZjqdZm5uDtM0Ze0WjUbJZDIyIkJ0SxqNOqqqygvU/Pw8q6urtNtt2Wf/8ssv6ff7vHjxQl7QHMfBMAy2trYwDJNet8/V5TWFQpGV5VV8L6B2W2fQH0jZaBAElMtlmV67s7PD8vIyNzdlLs7P2d7eZnUWkHn37r0ZUeqcdrtDvlDg3r37eJ5PMpUkm81Qq91Sv63SaNRnvMA+a2trbG5uSqB6LpfDmtWu+/v7LC8v0+/3JR213W4zniGAQ8DPv5yMYt4AIQxUGHovLy85OTmRSr5cLkdxNgBKpVI8fvyYXq/HZDKRhNXl5WUKhYIcvsRiMcmgXl1dxfPCzlm73ebo6Ah9prt/V+3H79TSm0zCuikIAp4/fy5jMEQA5dbWFs+fP2djY0P2R/v9Pjs7O1xf3/DVV1+xvLyMOiPqi5aTYC2vra1x//59KYQpl8s8ffqUo6MjOSq3LIvl5eUQoeA4/P3f/z0PHz7k448/5ttvv6VUKgGhqaHdbuO6Lh988EEYRddu89lnn8nXbLPZpFqt8sknn3xPABWJRHjy5AlBENDpdFhYWODk5ISTkxNKpXBUfXh4SCKRnDGcw2HQ/v4+q6trlEolms0mv/71r6Vjp9vtsr6xger4rD96xK9+8RnjcRhwen19TSYXUpVQdSaTkOZ0c1PGtKL4vofvOGGHo9/FskIt+rNnz7i4uGB/P5zehg7tOE+f3pfA85cvX8oIv1Qqxd7eHqZhMBqNWFhY4M2bN/i+TywW4/b2VhpmDcPgzp07fPPNNxwcHHDnzh0ePXpErVbj8uKC21qNvb09xuOxRDGMRqPQhVSrycnm2dkZH374Ifl8Xia7ra6ukkolOTk5kUO9s7OzH55PLVp58/PzUg03HA7Z398nk8nIDSriMwSvQnAlrq6uJONYkEtFrssvfvELGo0Gm5ubJJNJGV0s+B4C4L2wsCA52Ts7Ozx69EiqxkSAvOu6TKdTCoWCDJQXIJuFhXl2dnZkfIeIcDDNkAD1XbKRsDiJoYMY2Yd54VnW1zcBePny1WzTBNRqdcrlMpZl8d5770nt89raGnt7eyRnxFjh8s7nwj7z7axFZ9s2//HP/xzNMDk/v2R9fYNCocCbt2/QdZVY1MIyDRmTLHIJRUb7aDSiXClzfn7O0dER7XabZrMpNR8bGxuUy2WSySRLS0u8fPlSyhzE6a1pmrwXtdvt8LI6y44Rn2+tXqfRaEiB1cXFhRzDC6ueEGMNh0MODw8lLTV8OweSSiC4h0I6+4NuapF4KxwMwn7jeR5/9Vd/JV3J6+vr/NEf/RFzc3O8fftWxmksLy9x79495ubmuLi4kIR8YVtaXV2VQMSrqys5Lr+4uEBVVX7zm9/w2Wef8fr1axqNBouLi5JLsbKywtdff02j0ZBZ2j//+c/Z2Njg6dOn+L7P6ekplhWRPOTr62uy2Sz1ep2vv/6aJ0+esLGxQTweZ29vjxcvXkjrvvhSYrEY9XqTnZ09isUSb98eUiiUyOeLPHnylHa7S6VS5ejoiK+//lqyB8UpKWJF4vE4mWyWqTMNQemWSSqdJhKNsLgUElx39/exp1MuL8/Z2dri5uoSx7FZX13D0HXW19f5+OOPaTQasle9uLhIrVaT2e1LS0u89957PH36lPX1dam9EJfBSqUiPZ6JRII/+ZM/kYm66XSazc1NJpMJZ2dnfP7553zxxRfhpp+BPd++fSu5IdlsVjqNLi8vefXqFdFolNXVVal9FyNzkVO/sLCAaZoMh0MePXr0zm7yd97UQkA+HA7pdDryNZ3NZmX9K7oY0+lUKsa2trYkMFJs8MlkIv8Qy8vLEuQotACRSIRcLofv+7KWTafTcmI5GAw4OjpiMplw9+5d2u221BQHQYBt27x9+5ZGo0G9Xsf3fTY2NqSGW5QaYtQ+HA65vLyk3+8TBIG0iokUKuEIEYFB77//PouLi5imKQN5bHvK06dP2doKozrOz89JpVKsrKwQi8WoVCqSauS6LuZMuCUz3ms1dE3ntlZDN0KlYiQSYTIa40xtMtkMsWiEdrvJ9ewtOZ1OWVlZAZBhRWFbbSydJAJdJoY2wsUtgDK+78sLsbjYiY7H9fW1TNASP09RFB7Myj3XdTk9PQWQv69pmmSzWXnRNE2TyWSC4zgUCgWZTZPJZHjvvfd48OABxWKRs7Ozd3a+vHNNvbi4KJkSAhZZqVRmGg2bQi7L5sYqBPCrX/6SVDrN3t4eu7u7VG5v+fy3n7O1GUYvXF5eymizMF+vwuHhIaVSkfn5BRYXFxnbNooyc0KfnfH+B+8Tj8e5vb3F930WFhY4ODiQ7GShPQG4uLjg6uqKe/fuSWnsixcvKBRDD534Z8bjseyh1+t1zs/OWJy9jZKJJKZhksvlaTZbLC4usru7y9/+zd+xtLTEm7dv2Nra4vDwEMd1yOWyLC0tMp6EAqD33n+fTqfD5cUl3W6Xi4vL8L7Q67O2tsr65ibPvvmGpcUF3h4ds7C0QrGQ5/ToiEjUwrFtCrkcC3NFfvXLX5LP50BRqdcb6KbJ8dER1dtb2u02mUyGfC5PvpBnMBjSbnXCYNUZcVQMusQp3Wo2Zf0sWqO6YZDJZsnmclxdXclL283NDWtra3z8k58wGAw4PTujPxyytLQEQMSyWFxYCAkA4zG2bYegnPk5yuUK3W6HIIBWq8kXX3wBhKrASqVFt9uTRuxqtcrl5dUPu6nb7RZLS2GSbbl8Q6NRZ2srfD21W03ajVt836VUmsNZWSKbK3DbaFC5raHqBvce3KfTbHJ+fkYsFpUIgE6nTb1e4+TkmKgZvq5X1za4rZ/TaLVRVJXRcMjnv/k1G5vbbG5ucn19jeu6rK2tyQ6LGMsKR4WAqIjxazQaJZ3JsLW1hT3LbPR9X3Y4VlZWOD89xp4MePvqJXt7d0mvhsJ1y4zMuigaqAFvDl6HVqrUPIVSmF2SyqSoVqtk0jkKxTnm5+ep1+vc3tYJULEiUaxIFLt2y/HRYQhvdBwm4zF3791nZWWFXrfL5ckx8VgMw9TJZLOh6VfRcH0FD514IommqnTbHXzHxVA18Hx6nQ4rS0sszi8Q+CGxX6jxzs/PsW2bUqlEvV5neXmZ63KZ8syDOBwO6fZ6TB2H0twcmVlrzbZtkuk0+3fvUigW2dndxf/qK06Oj/Fdl9TMLL2/t8c///M/c3l+TjwaxdVUWs36LIL7IdPpdHaQXUgylKquzO5cvZkPNcHy8uoPu6lFlotwBzcaDa6urjBNkwcP7mPqCp//9reomo6qqXS7IUHIikQwDBNdgd6sG+H7PpVKRWoASqUSD+7fx3ddbm9rvH79hmw+z8rqKqVSgfl8jmq1jOu4MpD0H/7hH6Qp9e7duywsLHBzcyOlkCINLJVKsbOzI9lxQsI5Go0k+y2Xy7G0tMTHf/Ax1fIVmmaSz+d58+YtqVRauqxHoxFbW1u8ePGC09NTut2ubFEeHR2FYEXf4/Wr19ze3kq/odBSdNptNjc3icViXF9fk0qleP36Ndvb2ziOw/HJCXf297m8OKdeq3F7e4uqG8wvLlKcKzGaeQLjs/p+MpmwtrYmh1me57Gzs8vi0rJ02eu6zvz8PFdXV+TzefZnuOTBYMDq6irJZBLbtmm1WvzjP/4jq6ur0n+6urrKyckJvu+TSCRQVZUPPviAxw8f8s///M+ySyKwB5qm8ezZM/b391DVcFw+nU4l9Gh3d3eGYw5P9FwuRywW+14o6busd66pLy4u6Pf7TKfh5UZAuj3PI53JEASQzeWYTp0Q6xuLkkjEOZ1FYszPz0vppOAlx+NxcrmcdK4EISla/kEJwtdbJp3hvfffZzq1JYt6MplwcXFBpVLBdV06nQ537tyROuKVlRV835cm3nQ6LU8vIXMVabJCDJTL5+j1+2iqiqqoJBIhS+7hw4eYpiFv8+vr61JQpaqqRDBks1mymSyZTIZisSg3lQC1vHr9WrrjBRhdpFhVKhVubm7wfJ+7d++TzRVB0WaWN4V+r0+72SKbzcmHQEz5RIrAaDTi+YsXEiuRTCbp9Xrs7+/LeYJgbliWxdbWlkxaEBocsRqNhky7FXHQYvo4dRw2Nzcl91u4lO7fv08ulyOTycoZhNDKdzodIpEI+Xyem5tr2Tu/ubmhVCrxB3/wBz88oen6+ppyuczNzQ2apoVQ9BnImwA8L2BxcZlsPk88luDq8hpd0xgNB1ycnXF6eiIxVOKi9l3z5XQahh/Nzy/IqIRoNEIqnSaVTnNyfBz2bWcXD5G/t7OzQ6PR4Le//W04wp3ZzHZ3d4nH45ycnHB9fS2jjjOZjDT1CuiK2Oz1Wj10ZI9GZLIZHjx4SLPZ5OgoFG8lEgn5xQj8rABcigulbYeX16urK+r1Oo8fP2ZjY2NG+U/JyDiRaiWmoI8fP+bf/bt/x+X1DZPplGKpyMLiIq7nUK/dUr6+pFq+5uDtGy4uLiSpSsSFCJ/ibbUqzQEiDkNRFEqlEuVymVqtJtO5BATHm4UrCUqpSBwW+umzszN5Ia5Wq4yGQ6LRqJxYClFZpVJBURRyueys47Us5ca6rvPFF19we3tLpVKRnJKdnR36/b5sv/6gm1pQ4r8bjLO1tSUpmZ1en8XlVfb37xEEMBqPsO0xmgL2eEhlxrAQta4YpUMYYfbs2TMazQa9XpdOtyORr93ZKfDq1WvK5ZCTt7CwIMsLRVE4PDyUqKx79+5JKufS0hKtVksiY8XgRhCJhEUpCAIqlQoBgXTXBEFANpvBtiek06EIX/RgE4kECwsLrK6uSv237/vous75xYW0WAn+nNC0bG5uyUuqbdvc3NzQ7XYlc3pjY4P/8B/+I7bjks3l2dzaYm9vD8syyGZSaCpMbZuDgwMJuxElliDPptJplpaWuLi44OLiQkIfI5EIKysrEt6YSCQ4OjoKSxxVlUOXTqcjw1VN05Sj71arxenpqTT8DgaD7/23QJwJ651gjYhOyNbWlpSZilLQ8zzZXfnVr34lUyT+teuda+rNzU05FHnz5g2tVkumN6mqytMPP+Ti8pKvvv6ap0+f8urVS44PjyiVirTbTXK5cGwqkGXfjWwQdqxep41qWGzv3pnd1k1cN9QixGIx3nvvffmhvvfee1LfMJmE5t7j42MKhQKu6/LixQsWFhZIJBJyY+fzea6urhiNRrz33nukUikpkWy321xfnBExdRw3kKdQoVDk+PiYvf1t6QUULo54PC7ZI/l8PnR4qAbZTFiTnpyc8Pz5c548ecL+/j6DQV+2Q1VVpd1u89FHH2HbNl9++SX3798nYsXZv3sPw9T4h7//e6KRCPFYBF1TSMSiWKaFblqyDhYjaAipWffur0u4ZrPZJJPJcH19zfLyMisrKxKsfnp6ymg04sWLFzLEVQCEDg8PUVVVZsV4nke5XKZcLvPw4UP5GSSTSWq1GsNhOBldWVmRmZpijlEul2XQ6507d3Ach5ubsmztvX79Gt/36Xa779ynVoJ3PeN/XD+u/0XX75Cj+OP6cf2vuX7c1D+u37v146b+cf3erR839Y/r9279uKl/XL9368dN/eP6vVs/buof1+/d+nFT/7h+79aPm/rH9Xu3/l8Z5PhLXspBmgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOEAAADECAYAAABp0kb/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADS0UlEQVR4nOz9ebhuaVrXh3+eaU3vsKdzTg3dVdVdPUJjAzajgKJgd0BQcEBBfyKoIYggRi5iciXilAujicEg5gfJFYMRfxqihkiIKEJACDMNTTf2VF3dXXXOqTPt4X3fNT7T74977X2quqqrm7alTpJzX9e+9jnvXvt9117redZzP/f9HVTOOXM/7sf9eMlCv9QncD/ux//b4/4kvB/34yWO+5PwftyPlzjuT8L7cT9e4rg/Ce/H/XiJ4/4kvB/34yWO+5PwftyPlzjuT8L7cT9e4rg/Ce/H/XiJ4/9+k/AVr4A/9sfu/v///D9BKfn+8Qql4C/+xY/f+92P58b73y/X+L/8L1/qM7kn4tc3Cf/H/1Eu3vlXVcFrXwt/+k/DjRv/bs7w31X80A/9P2OiPfmkXP/XvhaaRr4+8RPhG74B3va2l/rs7sdHEfZj+q2//Jfhla+EYYCf/En4b/9bGdRvf7sMgt/I+K2/FfoeiuLX93s/9EPwXd/1whOx78F+bJfmNzR+8AfhD/5BOdc//Ifhkz8ZtIZ3vhP+yT+R+/Lkk/DYYy/1md6PF4mPbaR90RfBp32a/PtP/Ak4OoK/+TfhB34AvvIrX/h32hYWi4/xNF8ktJYV+eMZH+/3+3cRTzwBf+gPyQT7V/8KHnrouT//L/4L+Dt/R67Pi8W/q/vy//YYBlkYPtL15+O1J/wdv0O+P/mkfP9jfwyWSxkoX/zFsFrJkxogJfiO74A3vEEG+wMPwNd9HZycPPc9c4a/+lfh5S+X1fW3/3Z4xzue/9kfbk/4sz8rn31wIIPsjW+Ev/W37p7fd32X/PvZ6fV5vNCe8K1vlYfPei1/2xd8AfzMzzz3mPN0/ad+Cv7D/xAuX5bP/vIvh1u3PsJF/HXGX//rMoH+7t99/gQEWR2/6ZvgkUfuvvZi9+Vf/2v4A38AHn0UylJ+78/+WckKnh3PPANf8zVyX8pSPvv3/B7Z553HL/wCvOUtcOkS1LVkTV/7tS/8d3zP98CrXiXv9emfDj//888/5kd/FD7v8+Ra7u/L5/2bf/PcY/7iX5Rr/853wld8hdynoyP4M39GJsSzQylJ4b/v++B1r5Nx+KY3wU/8xPM/++pVOfcHHpBzfMMb4H/4H557zPkY/If/EP7T/xRe9jIZs5vNC//NHxIfn5zriSfk+9HR3ddCkBvxuZ8rG/DzNPXrvk4G69d8jQySJ5+Ev/23ZZD/1E+Bc3LcX/gLMgm/+Ivl65d+Cd78Zpimj3w+//Jfwpd8iQyQP/Nn4MEH5ab94A/K/7/u6+DaNTnuf/qfPvL7veMdMgjWa/jWb5Vz/O7vhs//fPjxH4fP/MznHv+N3yiT/9u+TQbnd3yH3PR/9I8+8md9tPGDPwivfvXzP/sjxYe7L9///dB18PVfL/fx534OvvM74emn5Wfn8ft+n1yPb/xGKZLdvCnX8YMfvPv/N79ZHkB//s/LpHn/+yU9/tD4B/8Atlu5H0rJg+X3/l543/vujoMf+RF5+D3+uEy0vpfz+pzPkTHxilc89z2/4ivktW//dnlI/jf/jTzg/97fe+5xP/7jcj++6Ztkcv2dvwP/3r8nf/cnfZIcc+MGfNZn3Z20ly/D//F/wB//4zLBvvmbn/uef+WvyOr3Ld8C4/jRb5Hyryf+7t/NGXL+kR/J+datnJ96Kud/+A9zPjrKua5zfvppOe6rv1qO+/N//rm//6//tbz+fd/33Nf/+T9/7us3b+ZcFDn/rt+Vc0p3j/tP/hM57qu/+u5rP/Zj8tqP/Zj8P4ScX/nKnB97LOeTk+d+zrPf6xu+QX7vhQJy/rZvu/v/L/syOZ8nnrj72rVrOa9WOf/W3/r86/OFX/jcz/qzfzZnY3I+PX3hz/v1xtmZfM6Xfdnzf3ZyIvfm/Kvr7v7sw92XnJ973Hl8+7fnrFTOH/jA3feGnP/G3/jw5/ZP/6kc8/M//+GPefJJOeboKOfj47uv/8APyOv/7J/dfe1TPiXnK1dyvnPn7mu/8is5a53zH/2jd1/7tm+T3/3dv/u5n/Wn/pS8/iu/cvc1ybNy/oVfuPvaBz6Qc1Xl/OVffve1P/7Hc37ooZxv337ue/6hP5Tz3t7da3Y+Bh9//IWv40eIjy0d/cIvlKfCI4/IvmS5hH/6T2UZfnZ8/dc/9//f//2wtwe/83fC7dt3v970JnmPH/sxOe5HfkRWvG/8xuemiR/65HmheOtbZXX95m+Wp/Cz49nv9dFGjPAv/gV82ZfJ0/g8HnoIvuqrpDD1oWnHv//vP/ezPu/z5H0+8IFf/+e/UJx/3nL5/J99/ufLvTn/Ok+7nx0fel9A0sbzaFu5L7/lt8hwfetb7x5TFJJ+fej24TzOr/kP/iB4/+J/xx/8g5IxnMfnfZ58f9/75Pv16/DLvyxp9OHh3ePe+EYZQz/0Q89/z2/4huf+/xu/Ub5/6LGf/dky7s7j0Uclzf3hH5Z7lTP8438MX/ql8u9nj9e3vAXOzmQlfnZ89Vc/9zp+lPGxpaPf9V1SErdWcuXXve75G1BrZd/w7HjPe+Tkr1x54fe9eVO+nw/W17zmuT+/fPm5N+2F4jw1Pk8p/m3j1i1J0173uuf/7BM+Qfa4Tz0le4XzePTR5x53fs4fbuCCpFlnZ8997cEHX/jY1Uq+73bP/9l3f7ekeDduwB/5I8//+QvdF5B08i/8Bfjf/rfnn+f5eZWlFHz+3J+T+/5ZnyVp/x/9o3fP9bf9NklZ/9Jfgv/6v5aHwpd9mTywyvK57/uRrtP5OPhw1/6Hf/j5haUPHTOvepWMzWfvWV/oOJAx3XVyz7WG01PZs37P9zz/WLg7Xs/jla984eM+Qnxsk/AzPuNudfTDRVk+f2KmJBPw+77vhX/n8uWP6XTuuTDmhV9/MSWRf/SPZJ/80Ry/tycr8dvf/vyfne8RP3TQnccL3ZcYZWU5Pob/6D+C179eBvbVq7IKpXT32G/+Zlkd/tf/VSbBf/afyf7rR38UPvVTJQP4X/4X2Y/9s38mx3zt18J/9V/Ja89evT+W6/TrjY8l+4G7f/Mf+SOywr1QvPGNz/3/x7AKwserMPPRxqteJanm53zOi5/weV/rPe95bgp469aLrybnnwEyQL/wCz/8cR/tzbl8WYoX73rX83/2znfKgH52BfJjjbe8RQocH238rt8F//1/L4WEz/iMf7vP/tVfhXe/G773e2VVO48Pdz6vepWshn/uz8k9+pRPkUn29//+3WM+67Pk6z//z6UA84f/sFQP/8Sf+OjP63wcfLhrf+nS89sr73nPc1ek975XJtSHFnDe857nv+e73y33+nwxWK3kAfVi4+jjEL+xsLWv+Ar5o/7KX3n+z0KQ5R/kj3ZOqmDPfip+x3d85M/4zb9ZbsJ3fMfd9zuPZ7/X+c370GM+NIyRat8P/MBzV5cbN2Rwfe7nStX03zYeekj+7md/vVh867fKgPnar31htNKvZzU5X5Ge/Ts5323pnEfXPb/c/6pXyWAdR/n/ycnzP/tTPkW+nx/z0cZDD8nvfu/3Pvc+vf3tsk//4i9+/u986B74O79Tvn/RFz339Z/+6efu6Z56Su7xm98s18MYSav/8T9+4Yzj49hy+o1dCX/bb5Ny9Ld/u2y43/xmmWzveY8Ubf7W34Lf//vlSfQt3yLHfcmXyMV+61ulPHzp0ot/htaCFPnSL5Ub+DVfIzfzne+U0voP/7Acd74p/6ZvklXIGCkyvVD81b8qq8Lnfi78qT8l+6rv/m4ZVH/9r3+8rs6vL17zGnkIfOVXyp7pHDGTsxSm/sE/kGvxQvu/D43Xv14m07d8i6Sg67UMvg/NOt79bumPfsVXCDTOWinI3bhx99p97/dKuf/Lv1zec7uF/+6/k/d8oUnzkeJv/A2ZQJ/92dIaOG9R7O29MNrpySfhd/9uaTf89E/L6vxVXyXX5tnxSZ8k9/3ZLQqQvex5/LW/JsXCz/xM+JN/Uv7m42OZvD/yI/Lvj0f8umqp5yX4Fys/5yyl8MXiw//8e74n5ze9Sdoaq1XOv+k35fyt3ypl//OIMee/9JekRFzXOX/+5+f89rdL6+HFWhTn8ZM/mfPv/J3y/otFzm98Y87f+Z13fx5Czt/4jTlfvixl+Gdfig9tUeSc8y/9Us5veUvOy2XOTZPzb//tOf9f/9dHd30+3Dl+POK97835678+51e/WkrsdZ3z61+f83/wH+T8y7/83GNf7L782q9Ja2W5zPnSpZz/5J+Usj7I35WzlOq/4Rvk/RcLKdN/5mfm/D//z3ff55d+Keev/MqcH30057KU9sKXfMlz2wHnLYoXanW80LX/kR/J+XM+R/629TrnL/1SOd9nx3mL4td+Leff//vlvh8c5Pyn/3TOff/8z/iGb8j57//9nF/zGjnPT/3UF74/N27IsY88krNzOT/4YM5f8AUyhs/j/P5+//e/8LX9CKHknO7H/fi/efzFvyir2K1bHzlbUkpaGX/7b/+GnNpHiv/7UZnux/34f1jcn4T34368xHF/Et6P+/ESx/094f24Hy9x3F8J78f9eInj/iS8H/fjJY77k/B+3I+XOO45IZW/8NWPkFJAaYjRs2iWuKJh6EY22w60wseEtYaqqsk5EUIk54xSGVKkqUsEGZpompqqLvB+QikBkZTO4H2g6ydCTIAlxESKmaIoyASMhpwTzjmsUvjgWSwapmkihEiMgZQSxmiUysToUVqjFISsQVuccyilmCah9EzThPceMPigyGTICRQUhcUYBSqjjWHKFu89wXt5fz+RY6QsHcYYtNYYYxgGj58C1mmKwlFVFm0UqIJ+GMg5YZzBR49zDu003ns2xy1V1ZBVwlgDOqONwhaGtmtRuSAEAeCklEgp4b3HGINzjpwgBY0ClIaUIq6wQEKpjLUaH6b5umTKssSaAj8F+j4SkyIk+XtDGNE2Ya0iZ0VOGmMsOXnW6wXOOabJMwwDOYMxlr7vUSTqumJ/f5+2bTHGoJS6uO7GGMI4Mk0TOWeK0pJzxHvP3/z/fpzQLh+HuOcmYYyBuikIIdC2PWVZkqeOmBLLRY0ylgygFH6amMaRnEFrRcpZJk/KGGuYJs/J6Sn7rOeJEsg5E6xFKU2MCaUUfd/jvQzSlBUpTigrAz3nBNpQFI5h6IkxEUKCDNoYUjqXuVlgrSWlRB8Ck49onS5eAxkc1lpCyPRDh9KKqipJKZJzIGfDOA74EEmmkkGvFMZqnHO4qsJajVKKnCHGjLMlChn8zhYyQUi03cg0BTl/H0BnmThTJqWIUpqcYAqR0PdUdcn+4T5t31G4Cj9luVYhEGMEZDLmLK9PU4CsMUauUVEUuNKScyLnSFaZrMA4Kw+mGNnbXzIOnmHaEkPE2hJUxhUFq3WDMZqUMkM/EkLEuZpmZv6HELHWEmOkKCxlucJow3q9oixLvPccHh4SQqDve8ZxRCnIwRPCSMqZcn5oLxblhxt+L0ncc5OwKgzOaIw2HOwtcU6TYsYZRbNYsGs7cs4YbdHOkJOZB0kiJlnNhiFSliXOOUzS84BNxJjRSjH05wMrY4zBqIwyisIqCgtjzjOGV5FSIOSMNZYQEllByhqtLSlHQow4bZgCTGHCGIvRBTkN9N1IVSkURgYwMnGGccCHgcOjQ4wx7LY91lpQshJrE+kD6JlyNE0Trq4uVr+cM95HxjGQkvxt5CQrq07kDLtdR0pS+M5klAFXAFqhlMEaQ4wJHyKg8T5xerol5UzKEbJGKYMxRs4NcM5dTMiikAeZUvJ+VVVQVg4FhODxwZNSxhiFKxxaKTIw+YlMpqoLlqsVmUiIE2XpqJuKafLkHNFekUKgbVvKskQpeS9jLEpDVZaUZUlKgWvXbjGOI8tlg/cTu92WlBJVVeAKRTGPhbIqmaYR5z4MheolintuEsbkiVHSmb1LB7S7HmMMfTdx+9YNhnGkWaxw1pBUwhpQc/JZuAJjZFLKUzwSgp9TVYXWmikExtFjtMYZRVlalssacsT7EaUjhVU4q7HWMgwDKWW8z/PAAnJB9JG+76mqkilFJt8RQqCsKqq6RmtL2/aMo6SiwzCgtUYbTYgeZaBuKnJO2MLKCgNY50hKo+ZVerVYonRGkymspaoKttsdPiQymhAjSlm0yUw+EXYdSoH3CaM11lliiiitcLYiKeHJxRwktdOGmBLjGJiCHCcp3/lEk+vmvb9YCZVSLBaSysrKJClyiH5eKSXFLaiw1uAKwzh2dL18WVfQ1A3aRLq+ZRh6MhWT70kpzemkpp08vvf4IFsJ55y8t8kUpcaHnqHvsVbhXE3f78jAatXQdh1lZXEGlMocHBzgnGHXwvjrZXP8O457bhLurdZYq0k5MvY95Iw1hv31HidpgzGapnY0Tck0TRRWXaSjMWayUuRs8V5WO+ccoPA+YIxCazdPMEVhZaVJIVA4g3YWWR01RVHAvBLErIhJWFjGFsSkiCmhtKYbBlIKjONIUVjyMND1g6woSdI0YzR1XRNjJKUICqyz7HY76qahWSwZ+gFrraw8WQPjnAoGNIoQPBrwXuFDIMRIjBmlNSjIgLEG5yQlLItzIZWMUhqtlaSRYUKh5HqlBPN+Fi0ZRwpZHhYqM44jxsgqPk3TnJ7L32WdRht5/2HoUdpgtKZtWzJQ1zVV1VAUlmHsGEcv++kYMVmxbbcoLfv4uq6wxjH0HcZqVqslkEkxkKIiRPls5yQLUDrj/UDb7iCDtY4MVHUzP0AMKRcYo5imnrbbgkocHOyTUqTrXkCR4CWMe24SjuOE9zJIFosFIx7vI9rBcrHE2ExZOtlou4qqKum6jr7vCcmT5glzvgdTSgYOyCDLgNIKpRTr1ZqmKdFElgtZDbe7jQwoa+fiSo22jlt3jslkJg9+mgg+UFYOnSWVa1w979UyKiWICWu1pFl1TVEUTNPEMAz0fiQbQBuG0RNCJCVFP06kJKtLNw6EEHDGYKxGk9mOI5tNRGmDj5EUwRhJ9UBWoBDl98myumqlKUqHdYaYzh9EGp1BRYghgZLMwboC68p5ogWUVjRNw97eHnfu3KHrOgB5QKHIKmOc7NPGweO9rK7OFXifmaYWbTJdt+XgYI/13pLN2Zac9fxAChhjKcsa7z1ZLso8+RWusASfMbbEGHlwKu24ffum7JOtQyuDtef3eF6FjWV/f821a1cJ00BRGJSCvu/Ybrfz+d87cc9Nwts3jilLS1E6xn6ALMToXChCzBQFLJuSEAIpTvStF0X+wpJjIGFIIZNTRhJVRUaRU5ZKX06kHAgBxnHAWnAKul2L1Zo0JZKSPVdMI7t+IgGnpzvJ0ZRUBF1hiFFWKkg4V8yrSkRpjSss1spKmonE5NEGmkVFHhSn2y277UBRFFhbMA6yUkyTJ6aELfVFlS+EgMoJlTNaQwhS1VXKoAxkEilFYkzonEg5omJCaxl8MXqUScQYCDmikiIHj1IKayyUDh8iZeVoFgumaaLrAgBVVbFYLDg7O5uLSuHiXqUokzwnKVbJNsJhTTE/TALaaJpGCNR935NJ8+rKxarlfWSaIlpZhn5AKVgsKqqyZuelBmCtZtduWK0WHF06wBhF1/ayFVEJyIxTLw+wvqUoHEoLYaIsa4y2xCiffX4+90rcc5PwypUrXLp0gPfTXGlT9P2EVoY43yCrFdoavJf9jVIKT8YZDbagGzumyVMUENFYU1LXFcMwMk4dxmbQirPthnEcqAuHVlA5h9aGbhzY7HbEDGhLSMjTO0BMkapU80BZSJpHoiwLtNYy0M8HqlKkKAUT76VYcZ7eFeUC6+SpDYqitFhXUtWQUiApP09gqWYeHuxTlyXD0DGOE6XOWFdirSMESYdj9FhnKMuK0i7IKTP5kZgitjBUtqAf57ZFKddktd4nZbh69RmGsaftOpRSgDwEju+ccPv27eeU/621+OCZfCSnQMqZnDVGa8iWGKVYUzcF49jOD45AWRYUrpwrn/M+MkTGoZeHXgxonajrAsigMicnJ6QUuXx5n6oquXLlEjdvXsfaggeuXKLvR3lwzXUA586r0ZmmruhTYn//gLou6QeZtOfFpXsl7rlJWFeKnEdynlitluzt7eEnL/ugsCSEzOQDzlXEPO9BUsKHgNaaNEqaprWFrOd2glQAJU07r5ZmYkik7FHGkWLEZw1ENruemPS82iSZTPINgyJOGYwmTOcFjkTG4pwhRFHqkHQrSZlcQQqRTJRVGUXpjKTFKKZpYvT9xaRVStZwrQAide3QNhHxZJ0xzlAU0kIZxk4mXwGWPKfABqud9BgjWKMpS8t6vebmzcAwjCSbsDGCNpAAZUhJE0OSFNcopimQYpbVpNLIgTBNETLEKUGUFHQaJ2LMGJPohgmtoPQapaSnq7VD64KylDaMXBs19yEjmUBZGSBjbGLyHUpV1AtLVS6omwpn5X4P3UiOmaPDA8apwxWgQ8b7kYy0aMiK6APWQN9uSKFEadAqEnz/4YbfSxL33CTMyRC9RuWCrp3YnF2fUz6om4ZxDNw+PkUpNT85DSEErLUUZYkPHpRU/UL0xJhIOTFNo6RIKeG0k8a6hphh0/YYoznebKRCaYu58CFPTGPMXGCRz8pB+l6bccsUPMZoxmm6KMZkMj5M8nulA6RHWZYFtnD4fiT6IK0ABBRQlZqyLJimER8zIWm0lnZBypFhTCikj6aUJscMEXL2WKfIOVCUVsr0U2QcOrpuoCgFFHDn+JRde4afMiEktNZs+5bj9z1BUVRMPtH3AzFCXVsUGjWv0EZDTPKwqeuKlCIpZRaLipwUbbtjvVoAirYb0DmjrUVraZForfDec3p6CvODoigLlM5YKz3d1XpNCB5rS9Z7DZvtCSH2LBaOnANdd0bwgZQihbHkFNmenaJ1YrlqyDnTtQM5K2nZoOj9RJg8ZtGgSKwWC4xZsGs/Onn636i45ybhdjPhJ1lJpkkqhnFGY7S7M2KOdHPKJH2zfNFAzvPKY4y6SKlyTsS5Z5WzuqgY6jwPM6VQKqOAsijJKpOyxir5mZ8FbGOMFz2zmAIohUFhnJaKpFa03Y7gPdrqeaCJlHsIfn7yS/EgxmkuoAQ5X2uo6prFoqFtM2kY0dZIEcUYtJGUNMVImPt6Fikwaa2pygJjK5RKsleeM4PJ9xRVhVbMKVvA2RpjIBNJIUGSNN4UmlAZwpQxWjZsRoOeHxTljIapSof3mb4fKAvN+mBNxjP5ibKqODxa4yfPFDyKRIgBY520h6YJY5Sgl3Siqi2uNFhbUJaSpgq6pqDyFTlFpjiRU5yvvyKGSCDjsma3OcOWmr6TtozRDm0MzliMsXhrGfOAVgZjHMPg0RrSvZWN3nuTUBtH13v6vgXAWMn1x9FLszX4i0Y8MMPCJmkBpEhOSaqB1mK0HJOS9Ia6rpNVYJY7zDmjpH4zw5xkoCiTCd6DUjiryCmiNJADMSacsxhrCTGANpRVgbEGpdPcI9NUdQVkuq6VPh0ZpSNKR7QBqzLWGbRWWGuIsWe7HZj8CEpTN4IgMTYDiWnK5LmgEWMmBDm/nIMgdkzBMA648z1hWWGtQlt5KD362IN4H/FTYhwnsoaUM5dfdgWtDWdnZ7hiyTT3NVPKxJjkfGIGrHwmI0XhaBpNxpNSx966wBRLFosl/TDSdZkyQgyKBx54mP39fZ5++inOzkaqqiBnSyZweNiQkmcapRebYmIaRoZB9sVNXcg+E4sis2wWDMPA4f7BXGnuME7gfdPkBVgRAkUhmVBOicI6tFYEH0DBNI3zA/reiXtuEiojTgHNqibGwHK5YLlcst2eMY4DmcxysURrLSV85yiKgrquGeafS0UwSvVOS9kbZKKllDBOU7iCaRpIOaHmVTGjcNaRckRrNa+q9gIG54whxTBPDk3KkEgoEuPkiVFS0xAnQtRARltY2GpuARjGqUepiNZgrKJwDm30XGTKLMuGKcjPlRZcZUppXgHVXE2cyIq5EJTo+57JjxgrDfbVakXfBaq6ZBh7tJbmvXMFZVFgzMh4XrAxmpQTxkCKkdWq5PDwkM1my2azY7FYkkkUzglYIQZy9lRVNbcF5CHgbGYcW6ZplMmvNVErmsYRwkiIUjia5ixnsagZx56YJmI47+M6lBJUk9wyuSaFM7S7HappaOqKuipYLxe0fUHbtfgsmQIZmrqRyTwNTNPIclHjw0RKmbIoL8bAvRT33CS88uAht27fYLlckpLgBfvxjNG3FLUDPfel5kbyeSp648YNac6XJSokyrIiRNkLxphmtAf4KVKaSDZpLrn7eWBqSflyIiRAxRkupS5SqWFssVae4jlDVVn6cWAYOxIyqazRhOTxfsA5TVUZgbilTM4RYxwhyPKrjaIqC0KcsM7MFUNNP3j8/DdmIqvVUsr4YyArzf7+Ptpodm2L1pn1esnh0T5l5bhx4zqbzYbdZiLGiHUQssIVBUM/0fc7gk9EJXvUvm9pux1l4VgsLZcuHXJwsE+ILXV9QFWXtO0Wow0+mjkl9iwXNRpD1lLoGqeJtt1KMWe+JyF6jo9vysqTAgf7S4ZhhAyHh3sUZWLyhuw03kf6rieliLFzgz5bmqbBKEVdVfNDMHJyfEwMgV3XorSibmoKZ2aYHeeFVdarhsuXjthut7zs4ZfTdi1Xn77+0g7wF4h7bhJefuBB3vu+JzDW4v3IcrFkGEdCjNjkcK4gRS6a2ueT8LzaBpKu5Syg374fZDXLoNAUriQnaRkoBcEHCudmgPM8URSsDvbJSdLJqlpK+2NGwGSlpNJmBNmj1PzvFIgXmEXZy6Z0vo+TSbparZim89QuzyldmGFiFUJLSKQsED6l0gX4PASPc4IhnWYYmaz0zGiUic1mw3q9jzGOGM+RRBEm2VflJO2Dwiq0UhTOMqiMIpJT5uT4JrvdMdMUqcoFmoifBqYs4IO99YqUAs6WM5olkRRodb6/VhfggWEaMUZA+UVp0dowjAMpRYZhYLPZEaK/qFjL7ZN7kHOkrlbUlQDZy0LSbQFBWMhQOkfIgRQEVTQOA6ZpSDFSOEeYJtp2w3q9pG4Krl57Cq0zi3vMFPWem4Rv+5V3UJVLujaw23VstyNVVWJMRVktyTHhs79A1EsjV1KwTCbEzDhF+t4TfCB42WtobWYajsVkKcQoMs5aFGCNneFOhqp2NIuaaRyJwaOQz2jqSoo1KeKDlwINeUamSPqac2Ly0wykTnP5XdKqytUygJ2+oObs7++Rs+LgcI++H+a+20RKeqYEGdn7GEdROEKI+GlHmgtMaT6XrusYpx5QbLc7UiiZxomchcXgrAWtCSrK5LMJpTPr1YJFUzBOPZcvH9APO9pui9FwdnoHaw1N07BeLxmngXHspLBSK7yHafSMkyCVSEj2oDXGKB5++IDlYsFms2O72zH2I0bJ5NmebQh+ZLFcSEFGZfbWS9nj2ozWcs37rifFiNaawjqmEC8oZ3VTUS8qttst282Oo8MDyrJGBFsyVVWwfyBAg6vXPsDke1brhdyfeyjuuUmIzsTg0drgSjeDnh0heGKEOAWmyROC7EW0VhibL1gRKUW00cQoDVxJJxVFaTBG46cJHwJmRrMorUk5E2ZgclYaHzInpzu0AuMqxmkipnjBcjBakWdz31ILHC35QMwJTUbN1VHvpaATZxB5SsLE8D6w3bU0i4ZmuWK73dJ2E103CODZ1oJRjWFe9SbKoqYsNLtdR86R6CemaZpXBUXXjZA1KTpyypSFnjOGiNFzmpxlVU0EvM+M08Bm07JeLymKhA+JlKRFE+cqq1ICm4spXCCElJIJPAY5Z7Sb023hamYCZWkonGYcWpRKpJlSdJ6RpJTYWy85ODgApQjeUzcVKQemqQcSKiUUEZUjOSZsVZKTrIJyrxPTOEEWrKpWGmuFITKMI6v1inrRcOv4mLHvSAr6aRC87T0U99wkNC7MCBZDUQndZhx6oQHlQMqJTEKbjPcTxiq0FuiTsZqi1BTVkpw1fTfRdR2r1XLmlE0sV5Z1c8QwjLRdR4iB3W6H6S1lJSY1YxiQjYVQZvTcfmAurtRNhdKKED3eS+k/RCl/u7LEOU0mUpSaplmy2+0Yx0FYBgh9yLoSrR1nZ9sLTGlKMrBQipgEH7ter5imxNnpnYs9qtLSYjBWYZ1iHAfGyeOnSFXVwsHME/v7S0IIhBjout0FKbeuCoqypPTCyDg+vsN6vWC73ZKzsCLGMcyAbYG2jeM0P/gUWhf0Q8+VBx4kHCk++IHrKGVmoHRgsXKAJ3jhXFaV5ZWPP8LmbEPfC7HZe4/WEdTEOI7y8BwD0zTS9wPNomJZF9SF9EbHceLwYI8YEk2z5M6dO3MGYom+p65qjLFszzaCKy5KYkyc7XZ4DyEJiF7YKveWttk9NwmDnwTzaGR7VJXyVI4xsqgrJj3gvfSFmqamaWoWiwVt29L3Az4EiiqTksc5xeHRHo8//gpOTm+z3Z6iMFRlKfsLJfw2HwMZ0GFiGEcyCVdYUkyMKuOcw/vpomc5jJ3w8ZI03LWBuiiwTvqIU+wZu8Byubzo21lrcVbgWM4aUr5Lt7LWobWfOXOGmDKTjwKzG8cLXuA5K6SqKlarlVSLs1T6lssaZ91cjDGUxZKmWbDZnJFGCEl6cNYZisKiraKyjq5rpU0wjVSVpNtFURFCFtSRXBmmUe6BNhpQFEVBUTg2Z2cYLVVlY1YsVxVKTzincVbNDw5N327JObBoCvohY0ym7wZu375NXc1E5HZiGEaCD1iTGVViuWwoS4tzBbvdjmnyogiQ4datOyyXzYyvFaJyXTfzXlnT9h39OKKlMQoZFs2Svu9ekrH94eKem4QgPL3CFTTNkpQCdVWw3W7Z7TbsrRuMqRnHiaZpUMrMT2gjLYMoOMUQAtZZxmnD1WtPUJSG1bogJ8Pu9IzR9xinsFFTmUJWnxxE7sEY6kWNUjAMPcPUE5ESeGULsgromWysc6Yo7ExDEr6gTpasNCEM7HbbeY8isg0hRKyzz+HoFUVB0zQXRabRB1xp2T9Yk1Li5s1jmrpgb39PKsIpo7QS6lROF+yIspwxl2QKWzD5DldoiqIiRsHFyjEw+BGtNK7QoASY7b3n0qXLVFWFnxJ9384KBYGUFNZWghhKAhF7/5NP4n0WY9sUqOoKZxXdMEixJUJdOXa77dwekD25s5Cyo3TS+qmqis1mQ4qJaAU8UBQKa4XCVRQFN2/e5IEHLvPwwy9jt205PT29UF9omloIyl64p8L2h74b6IZJthwp4ackxaRngdDvhbjnJmFVFgx9JymEH1HaoLWhcI6u2+FsoKwKXNZz5c/Tjz0pcUHgJUsFbLEsGQaN0rKfiwkBGGdB9yutqZQgNXyQ1XBR1iQyw9ixXC5ZLBvpV64bwgxRiylinaKoirnvJPskQb4UpKzwYWIc/cyrq9jtunnfqlBKM4w9IYQLKNw5LM5aS9hsUHPLpK4rylKz3l9Rlo7tbsc0jtIfLQus1Vit6IcWHzqpBNY1KhsmP5BzmFkdsy6N1XNlVvarzhmUKkhJpCy6rrto/1hrUVrdXcmdYximOf0O5BxwRYk1ZuarRDabY5RKLPYOOTxY03XtRRq/WAplyWjD5CNFaeY2lOLS0T6T91SDoF2WyyV+lNpA1/XEKA+JzeaM3bab74WlKARtE2NkNzsXn58rGcqiIuWMdlKwMtqQ4v0+4YtG37fsrZcUZTmDh4U6VKwX9EOHNooQJpTSpORnXGgnnEOtAc2u3RGzJ9OTCRSFE9GkEMjJMkwTYCT9swplDNpp8tzkDz5IQ79ypBSoXCPNdb1A6cyuTYQ0UdtqHtQzHC1Lb09baQMoJRjGlPKFDkoMAq07X62LosB7T9+Lns40TezaHcv1Ch8mpu3AclWT0kTXe5SKLJb1/LTP5BxmISZJa8fRz22YOAtRmbufHRPWymQT3p+kitZKC8QYjQ8jk880TUWzKNnt2lnMSs9pnOy3dFAoZamq8kL+Ypq3EgJwSLTbdp6EsDvb0BlNisJTJIPRSpA9WqOVwpYlpXPklNAIb1GuXcH+vnhAnkMW9/b2WC5XM1um5Nq1a6SUZwBDJiUhENe18CGPj0/YWy0pCkffDy849l6quOcm4d56Je2GDOMwst21KKUoi4qmbmgWBdvdGaIpI3ukKw8czRShzDAEjk+3aAPGKVJSjJMAk6UfJXhNlLC6XeEISdgRKFlNu6GFpBinftYjSUyTF/ByTnM/TBNTwnD+NL5L2s1e0kohqjKTduPFnq5uBH6nlJr3diPb7ZYYRQnMWivyETM1xxjLNI2AkpXPGoHMzRNimibKshINmBA52+yw2mKtk0b/5GmnTrh35Xw+CBfQaItSIs4k0D0hxk5TR1WXpDwRQqaqarSWlNc5h580qMh6vaJuKnbbLSEMYITBGcKELmvOTjfCii/MXKkGqwSYEIKHnBmHgRgjy+USozUxI2wSLavxOE4XCnPWimLbeXvK+8DBwSFN03Dr1rGAynPGGEtTlKQcsVazv79it9vS98I6uZfinpuETV1QWEPKmdXRIYVz7HY7UvSkmNmlwDRFWQkMs+RBkIqXyhfFB6MF1qW1Q2EElpZFf2YKW7mpyhBTJKYsKYsRTGjViCqXthplNKMfGfqOMQxoJYzvpq7wfmKYpI84BWmRKGMIU2AaZbKfs+3PMaXO6Rk5IwUOWZXyTO6VCR1TxFpDWbqLlfK8AANKqEQkmkXDarmaBZ8yu92WcZSm+6IxaGe4feuYYRgxRviBQ++Zxgha2hrj2M97WcGYGquIUWQMUYnFoiIEadRLWwByjrK3cwXBTwxdBOIsWajxfkSrkrpecHBwmWkS6Y+u25GVmqvAIktxngZLD1f2/uc6M2UxbxXmB1Pbdih6QLNcLlkuV5ycbHjve54gA3vrfeq6oKprckqcbU4pCsM09TMTRjR66qp6Scb2h4t7bhL2fUdROHlKG6gqR0wN4zAyThMBT1LnONDI6D2udFjnGKeRfpxkhbIWraxIMFjR1Aw+Yo2hCALsjimx63ZoM/e5VLjoK1Z1M6NdAienJ+QUMZOQbKUQkOfVLVyAqOumJBPxQSqsai7xngs4aQ3aKGL2oGV/mHLAFhqlBZu5t7cixMh2u0EpRdt6yqLEGsc065AKBy+gtaOuhM3edT1dN1CWJVVVYXVmsazZtqf4OLC3f5mcM9utpO7WiUbqZrudV4r1/GACN7dqUkosl6sLXdccZmlDK5KBRWFkVVFpfmAYJj8yji05CwqoaSpQieWiucCL+jBRFELxatsWVxQ0tbQYQjjnhjqmKXJ2tmEaPQeHh9y+dUw3K9httz273cg4iMJdXdes12uROkSQPO2uozzaw9kS7yeCj6xWzX3EzEeK0llyCkwx0nYbQlQYW9GNEz6Jcpa2Gj+DcP04UdQ1hXGcbk9oO4/C4QOMXprKxojcREhzSldovJfq6RQDu3aLUoaYRfqwKS0aS1Fa2ralsIbdbsA1TgiqaKZhIIaIKxxFUWJsQimPImJdJBrpX+Yk0hoJSSPrRc0wdqADhStZLpdobbh9+yZTGEBXLJt67qUFurYnlpGiqChdyTQEtLJSFfaamzdOiCngnBXmemEwViBvw9Sy3q9plg5jMiFk8sUetWBvf8XkhznVM4AhJcWwk7aNKxzOKeq6YRoH+hDQpmR/vc8wDPg4cO4npLUGlaltQVkeEbxn8i279hjvPVWlKIoSmzTaFDPZWRQSlNaElLl954RpBnJbV3Ljxoa+a6mqkrpaslpVaK1kW5EMXdtxLkoMzG2Tgs1mMwP7K4qioa6WDMMJRVGhlOH4+OwlGt0vHPfcJBSY1iBf44C2jv39ei7ABJEKdNUFmqQoam7dPuH0dMs4TqSsZhHfzHbXEmPg0tEhShl27cA4DDhrcUUh6aZOAoLeXxBipO1ahnGirCyr9VL2jU64dClF9vYOKMuSzWZz0ai3WapxxkpzOwNOuVmUVxNDxoeAUAMMWsllz1kxDCN937PdthijODvboJXooJyenjFNkcVSgMneT4CfpTAaUk5stzvZpxXSMpn8yDhJkUdWRoOzhdDAxkBdO8ZxwFgRVDoX+D2vjOYs6KOY84wwGlgta+Y+i/ROh4GTkxOmIAiforCQHT4IlcoVIiN56egyx8fHF/u6c7wvMCu2OVFKS9DuWkKIs/BTNaepPRnNy172IF3XslhIQaquGsqyFPbI5GnbVtQJZinDcRwvUtzTkw1Dfw40gHHYzvvreyfuuUk4TVJwKMtC6EJKM44D5ERdO+Lc4FbKYK1DKVltpikBws9LKQi2MgEYjo83M8s+inyDnuUIrWa1WlA3JWXl8FFRL/fIPs76oCPaZJpFSVHu03cdfb9jGLqZRnU+mYQEKw+FhuXKgXKcnW7ZboaL9sk0qhloLXIdg+pxVoi4Vbkg58Q4TJycblk2axaLhrJ0ApnTAesyDzx0iKiGR+LkObq0jzVmxqdapklA7EZbUk5sNj11XfHww5c5PT0jZzXD9WSw9n3PuZZoXdcYYzg4OEBbw63btxj6DlJkuVhw5coD7DYtTz75PobRC6HZWtZ7S4qixHshVk/TQG4UN2/epizrix7kMEyMk+A2jdEYM86N9jRXbh1V1QhYAzg8XIs8iUq07QalNJMfaZqKmLyIOSk975nzDGxIF836afKMQ2AcvBSz5hZWWd1XW3vREASJxhUOkzUhyWvNsmSaEjqDj6JeZrOdfQZmJn2GlOMFQNfZAmMsbTuw2+1Yr/coyxqlZuaDVlhrsVkR04TWGWU0rjh/ykpvryxL9vaWaJ3YbESyzxUWa0SunxwYxpGYwDmL1pIuSmU0XPx7moJMFpWxxtF1I9txALSosOVIWRaMQ8CageVyiVKJyjoRJnaKo0trnC14/weuU5RS2Qwxsbe3pqpKbt68JdozvQABunZgGgNdN9D3PZCpG2k9nLMezqu254rfR0dHJBLb3RlnJ6fUVUVRVPTdKNdxb0U5yoNOuISVtIwi+CQIo76PbLenwi6JkYTCWMfCFWQQBQL9rKKVMSglHNGhn6hqQQWFMNH3HdZJ68HNnhvDMKAQBbVz9sz5qg6Smvopkgsza9B6lsslzhl8uA/gftFomkbK23PvSKVMUThcUXLr1onsJbTCGAc5MYwDIURpUKPx0VPqc8VtafJLgaWiKC3OCR0n5iSrYxb0iTFimpJCZPIj3oeLSSpSG9N8w2VfulrNaB1v6YeWdtdTN5Y9rdnttrTdQE5aoGzmXAQq8+CDh3jvuX3njvTUrMaa+Zii5PBwT3phWtjzSktPbLM5xftp1mlROGfY2ztgt2slpe0G2rYXSX0n/btxmFBKVOn+za+9F2sVTVNhnb1oxl+6dElk9mcVtbZtefrpp7GFgODrumC1WqO1ZbPZEnxgvV6h9YgrSna7Hdvthl0rxTLnRHk85YR1hjTORjTaCB3NCvWqWVRzqpKxNjCOE9Y4ClfS7gQN4+weVV0TghCSFRGjRRo/xkRdFaxWC85lIc+xoVqfiy1nlAqzmLOjaRrqpuL09OSlHOLPi3tuEpZlRd93Ak4uLCEF6spRVTXbescYPDbLiuMnKYuPg4COrXUwZKq6EVk+L5O5KC1Hl9Yopdi1W9mzVCWnZ6cMM6reKQdZyuTt9jbnHgszAIcQhANnrSNlSUXHccTPaemlyweUpUjn2xhpFhUqGyn3K816tSaTOTzc5/TsjJOzE5QP1FWJNoaycITo2e425JxYL1bsdjvs7KIkONIJ76UJn7JmtUpzmX/g5s3beB9pW89yWXDlyiHDDKe7deuEs7OWxaIgRpFnXO+tsFaqiud78PNVZBxHRh+pm5Khkz26s6VgWJViGHrxtNDSFhrGjsPDowu1g3O2f1aJuqkJQfZgmYy1EaOFgGuNMFG8Dxerct8PdF0vPc+U54dIIEVYLNYYU7DdiNy90hqtxQ+jLEuappFrNuujpjhnVU4MfUQxXNo791Lcc5Nwt9vN6moFdV2Rh55h6NHWUjclRTbsuhatk6iMIax1IY96UrrrESGIGGZNGFlZtanxXtjwfT8QYkJbIaFaV2K0o6oWsmd0jmEY8dMgQrNaLLushpgm+l5cms4l2o0xgAzOVVMzDIH2dIdWmt4ZUg7E2z1nm+0MF6tIUfaUSouGbc6y2vbDjpQ9UFIWNcFnghficd9PWGe5c+dUGCRTnB8gjkVjWS4WFKUBLDlpLl06QnEqAO8wkayaJQpFvOocZHCXFB2Z4gizq1TbdkQvm+zlYok2mUwihJGyNECF1nlmYBjqeo+ydOz6HmMLQjhnmyRMiALRcxZr7AUpWWvDOEqaWJYldV2zt95nt9uy2XRYY1FqwBpHzkZQRt1I8FLo8d5zfHx8UZQRyJ2opTvnSET6YaRtg9Du76G45ybhYtHMN1dcd0JKbLctpycnLJcrtMoYlUXHROkZOZE4OT0hhiwoCyevG6uoKIhxulBpFinETEiJjMLM+8bTkw3GFmg7uzMV8roxibbthKemLSlp6qoSvqNzKBUZJxE3coWhKAtRGIuSahaFYQqRs80JKNjuBBgwDJ6cFXW1YJwmpmlAG4XSc+8tKpqm5uxsx9lmQ7NYURSeszMBhCdEFHkYJ6IXrVCVoa4XLJd7ojw+p2aLxYLtpkMpjTYlxhScOyqFuVrZNA0xJaZZECvmwGJZyZ7PWfqhFzRLrC5A1z6E2fdRkXNkGCaKomAYRk5PW5RRDMMWEO8NZjV1hUYrQ9t2OCepY0qZaepIMV2oAly79ozA0EJmu9mw3XSUZTXr0Zi5jTNduEUNwzBLniTGqefWzQ1KJR5++EGWyyXjOEgmZO67Mr1oKJOIBHbdBm1FAEhnRd/19LueyERZFSLznjV10TBZiEETcoCYUVYRQ8DZgmnwovdpC0L0TCERsuiPhpQpK0dOaha/hRwyQSecMsQMrqyoEgznaHyvoE8zvy6R8izXphUhwjhl2tZzctayWCxJSouKNhqttLQBAJQlz8LARV3Qth2FMww+AQmyYfCBXT/C6W2MdZAzrtYoa0jI5J5CQCE+gTFm+mkknZ1x+1RAD6I0Jw3tTJxV2CxZi3mOGInKylAUBXEYKKoKZyGHhEIJtC1P+DHSm566OCQMikTByZ0Nxib292ZKkU9sznbEoDBZkaO0ne6+l4IUiX6kKC0hekIMqFmzXmlNVmJWk5NkN0M/YY0AtS/OM8pE1Aa0Eh2fohCXK1cojClIRwGNQ2XN9mzL3t4eOclYupfinpuExiYeeugSbdvTde0M1I7UVcU4jWIQoiXts9agtGG9tyTlDev1ipQiTVOxXC25fv06XdfOEDBB2qc896qU0F2C98QgMhfeBxSilj0OkRhbUhQcYgyiKi1thHEucwvwOaVI4TQpesJ0rlcaZq89xXbbYo28fwhR5BGNVCKzEtepKw8ccXp6IiuOUewfXBYRqtpSNaVUDwEfxJU3JggRxBVVoVRAW2Goh1lFLec5zbbCVnDOwYwTPRdNvtBszSI5L0poC0onK7JWhjD/Ledc2JOTY0LMpKxou5b9gwXBB/LsP7Fc1ChliUn0SZXKFyY8OYc5BTfiEKxmS7UkKCBrzz0QNdYVs9GpfO65ut5isZh7fdKOMFb27ZJe6wuN14PDA8IY2Wy2ojqehfKWuU9letFwhUywuikF/GtEz9MYC8rhSndRLIkxkGMkZ7A2U1aKlAzGKpzTNE2FmH0KnjHnROEsCTHsFOvk856jTEpUpigNhbNstzu6fqSpK6pKiL1Ga7RThDCyv7+mKBxnmzOsU2idgCCyg3ol6dIUIRmKSpgF65UwRCY/iWhtSlRFhdMKpzWuEYXrsjDUpaWpRM5xu90K8qQQ74qYxclppgdSzIyIYRhxrsDg5n6qPBCCF2EplcSvorCWQL4rbjw7QB3s7VFVFcEHmvW+SHFsNiybmqNLR2ig7zpJ3Y3lMC1BpdnKOs1psKSDo59Yr+Ua5SxGOSI7EkhJbMNj9HSdgAuM5QJMXpTn1ttp9rLwNItKIHxOk5KQn5OPF5NUzQJTwv4/l12LaJOpGzdjW2XS3ktxj52OOCWdN3df9vKHmSbPUx98Sm6SKSALi7p0Innvw0TIkWbpUGpCAV3f0w8blDKUlRim9MOIVoZFVWKi+PuZuU+VUmBvf5+cYRhaVuuaqipYrxecnJzgXMH+/h5939N1PSEkhmFkf180UY1Js22Y9L5qV3G0XN9tHsdEXS+4efPm/H/P/npFORdzDg/3OT65w6KpZnFaw257RjGbzExeCZt/NgmVQkOmHwb0pC72d1VVCrJoGAk5zswHTVUVaK1EYj9MpDTSdR7ninmVzDBnC9ZaIVBvdly+dFmKYkqxWi3nvbih3F8KbC2M1HUtwPF+mAtUgsOtCsdyXc/ABNEZreuG3W5L102zVo2aV65AjAKdc4Wmqh1lUdHuRpTOHB7tkXNmb29vRsYMIvExS1mmJFKSQpSeyEh1dm9viXWaZlEiwPdRCjb5fnX0RUMqY83sypRnWs9itg3rUcaxXO6xXC64fuM6MQVsYdAqz0RddVE9E+aBwvtIUy8EO6gVigE9i8vGGKirmoODFQrNdjv7OxihzaxWC1KMdN12HmQAitVqIdZnWnF4uM9iWZFioO06bly/gY832N/f4/Bgn7NtO1uvZdKc0na7DeM4slg27LZn0qLwE9WymfeXgRgC2SiGbsBqi1EajSb6QEywqvfZxZ24I+WMrQri1BKmRF2Kp6EmUVjL/sE+p6fHHJ9sUUBOCj8GjLUYLYrhUk0ciGGgLCynJ8fCUzQaTYlRmRwEZZScxRYK8nnvVCwGyEKqFeSSZ5oEWlaWBu8t526/2lhyVjNCSrIQM4uGaq1mNynPaiVSFtKm6S5W7jzD6mKM6NJwLnsZY8QV5kKRvZzdm8+ZGeccznsp7rlJmJJIlZMVN565eSENURQ1RaHoB892sxNpg11H1dQw9+Ock5WjcGJPPY5eFMci9L2naz2JgCs0ZeFwWrNcLXDO0W7PhK9mMtOURJ7PGJwWB980a4gW1rC/PhLjz9LJ6uJHckoyIff3mSbN1avHbPKOZV0T/cTZ5kzUo5ta7NJS5uhgj/VqxTBKG6Z0hnEYQCkOji5xdibWbXp2TgoxkopZY9U6qrLhA+9/hpOTMw4O9jg6fICqmLh9c0NxYPEkUR7oFXVtKZxmf6/BOUMM0pNLKaJ1Zhw3pJR46KGHOD2NWFPip0i7E9W5vb0VpXPcunGDs9NTDg73qZclWhk2Zx5nLNMUaKeO5bKZWy1KGB1zm8O5khASfT9htKEsoXA11tQXrA6lmP9mzXq1IIQ8S5WIsrnY0M37+6go5wllraXve4ZhYJoie/t7OC1k7qIoLlLeZyNs7pW45ybhOIj0hBQD0ozkKPCTZ7vdMc3CSGUlfLXJe8ZuwjonlbShw/uBsqwwRhrMWmnGwaOUoapKiuK8YKGZppFh6EAltLbEmCEr8ZrPE3VTc3iwT9fvuHnzBkpBVVacnZ4R4qxe1lQYY2eOnePo0FBVC4ahZ5qkiHO5PKKqhDOYUyZMUt4XFbSJui4k7VsecvXadU5PNnRzFS8jGqrGaHbblrquOTu5w+nJbZyFV7/qYYZh4Oz0Fn3fc+loSbvbUdclZVUQwsTJ6S2ctZiLfZFlsXQXPMZpEpPSxdKh9AKiwWjHalnTtS05RoaYyEmhsYzDSNYTh4eXWC4XdN3IwtVAmrmJMOZzuzQ3g69L/NSRk8KVNUMvAswpJ9QIVVWiDfhpNtzRImcYgp8B2XJ9nTPztiVfIH1EKcBh7Wreish4ykmJcnlSDP0EWd03hPlIYbSbq3Ua8XpUFzqVUr20jKOnG3rZmCOrox4T0TOzCEasrXDOMsWJFKWn5mxBUViiD4j+puA4m4X4XgQvVTOtHOMkRZjN6QZSollUHO4fYGZoV4pxNiHpyTmxv7dHirDtdgxBHKCsNeR8LlB8rnUporRRa9SQRNo9gBbfUrrtFlJm6EdCiBweCmD7+PiYGMWp14dIjJNMsrKknMWaUvSUlSVHkacwVgSElcqzCLGmqmoyid2uoywqkffQUqwolZ2ZImvCmAg+cnS4x8Heihwz0zgRRk9dN1gLPrfstsKcN8awaBZ4P858Smkl6CheIOv1AdPo0cpSuJqc9FwgE+yoNrJt0ElMgXJOImM5AyTOiy92figbO2GNmQWpRspCKsh1vWC5EvSM1tC34wwW9xeIoPsr4UeIfpLUo2gKXOyYfE+YpCFcWEcMC7bDKd7s6KInpgJCjQH82GKLTEgKnxT4QFIKVzoO7HqWSw/kEKkX5Vw08MQQGcdI243kBP10itaCsywKRztMDCFw7vqTcqSqHIu9BePY0w0d2jrAMI1xNoaBsiyEoU6mKmt8iIQh0ThLVRdoJXbWdrFCGyEZ20Kxf2DxIROjY1HLSuWnhpTOlcOhdiWreokrCnEgCpEpRpqqlkpiraSNkjPDIAUMa8AZI+0DB6BRGaIPkBIpZvrdxPZ0ZFE3LBrBZfrkyTqy2m8wpRSagg+4XM525IG6MsTY4eeUMSuNMiI6nJPQprpWSNc5CV528gFmBQTnCiKJEDPOOqryrl3B5mzDMHqqsppNf0ZhjiTotxNt21HVBXt7C1STL2zg+m5ic9pRz/vdqhILgWG8rzHzotEPPXvVelYuqxj1yNnJGYvFinopzdptCJxuJvYOX8WlK49z7YPX6HbPcLgn0hNVEmY4IdA0NaUrKcuCs9MN09DhrBbVLRIWB0qhtUXryDCJoBJklIZm0YiWjRFspyukorhcVfgwok1DRsmAIpPSuR8DVFVBVTl2u40ow4VA8JGzs1MO9lcoxH4spkjK55xDxTiO1M2SwlXkmUUiELphxkvCpaNLKCXK00op/DSxXCxnr4uRbjijnLGjVVVccAfPoWrndJ5pHDn3TUwx0faB3bbng7uJw4M1e3srck7UTSmVy6qUVTkknC4FEJAVfhyJKdE0Da4oGKeRmyfPcHh0hC1KNmcb/CQivoVrRJTKjwIl1BpjRb4xpYjShowClUk5MYwTfS9sFOscISQ22x1hDJS2ZBhHlqsKbRT90M2W4gJxC1H0aIq5/5hSEkuAeyjurbNBqEjeT3T9SOEMq9WKsmgIITF6zzCe8dBjD/JY9SCPPPr5XL70OLdefZX3vOdnmaZ3odJAGPLsX6BQaSLFTNePoAPKiYS9thaTICP7v6EPeC9M+QdXR+x2W1YrgTqlnGYNTEFpxOgZRz0XD1aMQ5hNMxuMNVijaWpL04ga93YbadsN2207gwAypIGyrkVyPmW6rqMfJlISXKcPlqosQU2EMBGjJ5NZLER2o6oKtNH0Xct2t8Vahw8Tu3Yj/homCRB7JrpK6yDNGE4BvKMyaZrQs3rZOEychZbF0s1ivmoW3J2YfM00efb2lriiJEWxE+hnEHvOkk/nETAGbQ1lVTGOE9MYadsWaypijJzszjjQiPegEoJv8EEsA2YYYte1lM5RFJZHXv4g3ntRh0OIz1YXFPsLCuvYPxS/yrouZxVxEYDyk2wFtrsNVahmBFGkWdQv7SD/kLjnJqFxThD4KRAmKZKU9YIpTmAAu2S59yDGHdDsVUTds9xb8gmf9Cbe+ounWL0lhhtMQ3fxtLeVFSVmK9VON2NOQ4zifhQzRVWRlbjsrlYNIY64wtJ1Hc7ZWXtTelpdv6MfRBtTVOE8wSeczVSVxWhhjeecmfyE0oo4eZqmRuuI0YnV3gJrC/p+onAFVdkwjLOcRcwoNc7+E6KmllJm/2Atnn7RM4w9y+WSoixIGzGfCbNSOWTczGg4t3aDu3shYwyYLIY2RlA49WJBWTdEREqRYBgHQcpIT1JWuq7vZzEqAEXXj/RDL/biQFE49sRRFWMcfTfgfULMWcWxKqUJaw1T8GQRgyUEdWHJLddJz4Y8Iw8++ADWimocKNbrh1FK8KQxeoqqmOX/G46Pb3N0dAnvvfh26Ez0gZA8JosXY3sftvbiIf0lgIwfR86myEoXJG14xSs/gdXqlex6z83jq2ynJ4i2oR0tpblESq9h270Pre6QFFinZR9kFXdOtjzw0MuomwXddkvbtrRtj3WloGYMwtqfJpRqODo8pO12WGtYLJrZTTfMvavlBbUo+IS1JVW1vHADLpxiGjuKUlogSmlcUeBsRVMbwF+sSnruda3W69lxaCa2juL3p3QDiFLbhZa7yjMjXnp0IpokamnnvVDvB9FqsXZeve/afRdFQeTc6VekGzfbDqUM4yRSjMt6SeEUXSc6LsKEkHS5LBuUjsJ6sBpblhhg72B/bgMEkXDMgbKcHzwmohD2ftMssUVBTU03dIKgyXI9FouG9XrNndu3yTlhtaMqq/l6TThnsRYxvakc3idiiJSlIyWRpayqSiz0kjxoXGGFKjVP7PNe470S99wknPxIXRbESXZsWWnULEL08KOPc+XypzMGzd7Nd/LBGz/DhOX6MxOVeYx2rGgWD6DVLbQDpSMxTVKxmzzL1Yph1vgcx4ld21M4qJaNoHSCWDBbl7l8+ZIwBfw0w6wmXOFQ2lLXFTEmht5T1+VcMDGkKDfdaEtOkbISGpKfAuQoAPEkEhB5NsNU2hBSoCody+UCP8kqh0p03QZtAtqIj2AIHoHNCsxOPAvDheJ0CIFxHLHKXnhFwLkVuFicjeN4AbRGW1FSS45xkCLKdiM6M0ZVHB0csetaIVG7UhgXGcZz+lAUcxuMJqdEWVWUVcXJ6Sk+JZpqMa/CIlo8TRNDNwibY3IslutZ4FeYDzmnC4Z/SpllvWTZVOis6dqOMHri5ElzlTOEwP7BAbdv3yFn2G53F9/rusEVjqmTvmuIgcKUM5jjpRnbHy7uuUnoY2C/WmPKGm8H+smz2bbUewfowpKLjqI45PKV1/CeJz/IyckxH3j6afbXis9985s5OvpENieHvP2Xfobh9OZs9NnjnGW72TGFibbr8D6RsxbfhygpWcyZojp/kp/NwO8CpTLDOGGzFA+GoZ8rd5Fp2pKiSAGKpCFC5M2G7aZjHCfZo2ktNs6jJ6WR1apEYZnGwOQnur4npcBqvUCbNNthiyCx0HukmX2OLIlpZlvMBqVlKfzLpqlnsLQ09QVOJ0Tdc+JuURRMEXwc2W56FJa+22GsoW2F9JrTCcvFkhDDXBgqsXNtdprEIm0KE8aKaczoZ3fh3Y6zzRkhRvR87gItE5C4XE8jx3tRyR6GXrRiZ27jyckJKYmw12gi4xiYpiCslVmGUjIDTddNDEMgJwFpK6U4OzubLfUURTn7jERBTx0cHnJyfPpSDe8XjHtuEo6juM3WtkDPT6y2a1keXaZoLGfDk0zDjt1pTRpfzY0PvovXvObTqFeBN372SoDM/jOp6oK3/tS/oju7jc4Jv+s5Pj7hwYceYuh62t1AN/QotGR4SqFgFugVmNM0zpovkxhVnnPnptkUc29vTdtOtGOLUoGytDMzQ0xTMlEqq+tSNFBn/0TvE+MottMpp9nGa2K7O2W9XrPeW6CtPOlFFwZRhTMap+tZgXtkms5lCS1uXvWKsqBtdxd7QxBmf9u2ov3SDRRlweBhGCPBC71oNIOsplHEsobRc/P2LabRM3kPSqO1KMVtNqJw3ixk5dtsNrR9z41bN8nAME3klBi7Aa24gImdMyCstWx3LcZaJu9pmmbOOAQDaozwMpPPTKPYhAcfmSZxwHLaSLaBoe9GyqJhsznDGMP+/j45b1EKhnEkEURDNgtTwzhHvt8nfPEoC8s0DtgEJFG0Xiwq9o+WbHZ3cMWCDz75Dk6PPZ/wiW/ikcdew8sfX2OqiTu3PsjLHn4FrrzEGz75zbzjV66y659gvRzRNhLHnv7sJotFgXMiEhRiwhrBV8YsvofOgLNQVTXWKuIkkLFCl4JXtNIw1zrhXKIsxURTm2ImoTLLKWZW6/pCvzSmRFKJrDJZweilQLFYLhjGca4keozVM7wtC1fOzJo5swlmWRYwiXVZDJF2NxKmTFZiINO2O6yVSqIQbUuWiz1AsdsGhi5jq5KqCODmdkBOKEasFnUzZy0xSHHFWZGgSDmgVMCngNEaTwA/MkwTxojjlXAyxc4uJw9WVNL391egFF0rgr3r5T7aWmIIaKUwZYnKzNVli8HO1fBEPhMOZgiKFAQfWtUW73sRXa5rjIPlohFitDL0feBs2xNyoqwzwU8slg3btkMLAPieiXtuEq5WS1RWmJjp245xGlF1xZ1bz2CbmqZ6DQ9cejl7eydk9z4++dNey3J1CDrx9PWBGzdOsWpFDitOd1c4bXfs70cW60wa7pBCD9piTWa1EFqQMXn2n7cXSBTxgNCEMGGtpqwKykJkGMc4EFJinEQ9uqyWsxe8iBxp5SjKmmHc0fU9IRpGP15UJclgnCXh0Vaa1uIYJPqcLjmcKRmYUGgppMw20b3vCT6gjaGuV9y+fcx2u6UoDPuHKykexYQ1ipgi7a4j1WKsKaihSniGOUsrpVnMK5Hn1q1bHB0dzGaidha5EjObPE2ESbRDtdUkRBBLa8VitaSKMPTCzcxRkZNo01y+LG5Seva4UEpEiO/cPmGcRvnsuZ2ktSHFyNhPjOPEdtsRPKzXgnc1VjR/uj7QD56cPau9mpgD1hkeeOgK1hRcu36LFOV+ZuxcedW03cBioS7MYO+VuOcmYe8nKleSVaZZLihTIjtLGAa2t0/Ze3QfpY5YLCoW+z1D2FLnFTkadmcNv/TLH2D/sMGZCczLUGi6dqByBlMF4nDM1LZYZ9jfc8QsXDsfMjEoQoCqrEU6cfIXxiOgaLuOsirRTs9uRwZnS/Hvy4ndbsfNm6dUVcVy5Zmmjs12YLmsWa6WksqOA5nMMAwXvoTnFchzsPM0TbOY8UjTLNFas9ueXDSbtZ4wVtP3E3dun7LbjSyWTtxqtWbRrOa0OV3YkYUwYgys1+IRH2eyr0jqJ1arFcCFx8Q0TbP9mEgRFljGaSTGONvVKYxRs6FqQR4jmXNL8Vn3xpkLZ6W+F/Vz4fnNUv4xzb3TYVYyLy6YFCFErBFW/3otsvVt186EXYExrvf2ZiqUxtqKq1dvCgE7KhSi7oY21LV4Wt6+c4vttmO5vD8JXzTaYWIYPI110ndyDp0zkLh97SmK+t3sxQWXLz9MVQQyJ+zGayzKl/MLP33M294ZcaurvOUtv4MHXq7Jqebo0FGYy2y7nmnYAuIYawspigSbscEwDBqjHbu2ncv853Zqc5M7SQ9rfdBQFI6yrGZPisRyWdH1Ur00NpGSqHijKsrKzcTUcOHqlFJisVhcuON672edUUHM3Lp9TNuOPPpozdnZHYC5f6jFJDQLPMtYLbKEyxVKWdbrQ/q+4+TkNtYa1usVbbtjsz2jqhrKwpGysEqk0CHKANM0orVmHIVnKCrms9+jErzr5Eesm4tMRJSKM7tEVqKytLRBlNJyFqB3CAFpKhqsNRfKasZq9vb2uXHjmL4Xl11nFbYoWCwaUSVPJ6z3aspqVrbzXhT1spohf46UFMbaucAzSAFGaTKKmDI5hZnzKUp7RZGo6/uT8EVjmjzZR1SZCOPIwXqNUhPaaGyOPPG+n8Bdv83rX/3bSOlBVOHJ7pQYMtevTlx72vPY62t++md/gt/9uz6PT/qkByi1ozSv4wNPl1z7wJLh9lO4MjCGY8bkxYN+mmFjCkLM6KxnE01ZmVzpaKylbhpyDhes9RDSPBFKDg5LFstLKOVo256iFPCxpFFSJClnou7+ek3TNEzTdFG4KIriooWwXu+R84aTkxNCCDMgWSqNKGZfethb75GSsELG0bPb9ty5c0ea49qDyhcOvecyF0qBVpahm0AniiLT993c5lCEKaOtsNKNtoQYSF6cn84JxM44lJGVVClxWLJG9EXJ0u6gyHMbZcJ7SCmzaJYopVkuG8bRs7e3YLk853kq0QddLIgx4AqxFQ9hmkHYQgIOXjiJm80WpUWD9bz1oLXFFQqVLTFp0Iq27ShLwytf+Qq8lxX5Xop7bhLabPCz7ISzDlc4mqqQhnF7Sml39N07+Pmfu8Yb3vBmXvv6T+DmHcVP/MTP8dCVT6Wq71DYkd/5BZ/GYnnCwd6S2q24fcOzvvRGYmz4YP8TbMeboqJtK6pFQTjbUNRRtEKBYZxwRUFVlkzTObMjYwqxJhuGHufEFzDnyMnpbYwxPPjgESGIdEbVuNkvLwkj3wvh2M4k01u3bklatV5T1zVt29L3Pd576tWao/JIYHOzALI1siIorYhxZLfb0tR7LBZLTk/PCDFw7do16rrk4Ycf4vj4DuMwcXR0wKVLl+j7kXbXoRQ0zZL12qF0ZJp6YvIcHBzyvieuMQ5nIpZk4eGHH2bsOnyIrNf7bLY7NpsdRVmw2mtwVrzkN+MJIcjfMo1Ci6qLiu22FZhcKc65w+AvVv4Q4owbVbNkpKVZlJSFYaosi7zg8uUj9vcOuP7MM8SYZkuBVrwqJlEBT53QvMQXw2FNCTOIYfSett0xeYOdbfTOpRXvlbjnJuGibNhNgUXdYDS4omDvYJ+ubXGjGKxkeooy8ou/+AO8571v49M++/fxxjd+Lj/1Mz/D0WXFww8O6HibdX2Aih2n3cQYC0I6ILlX8MhrHaenT3Fy+/2M/Q3622fkUGJNxFmIcaKqLdZq+nEn3TGtySnOTHCRRHRO7L28n+aJ0mCtYhhH0BHnyrmpnlGKmQmuSM8yYZEUcLzokRVFQVVXhDhR1/WspyLpsDJQ1oVM6naiKA2LRTnrtnjKwjFO0h7ZbnpS1Bhb0veexWJJUzuMLml3Hbfv7EgJrjy4NwvjNsToWa8bjr0YsywWFdMY6duRKUb29hx1vWTXjmw2AlVbNMIlbHfDjCkVGlfOQs49b0vIKisK3Of7YO/FOkCpeY9dOUIYuHV7N+uHRrpuYLu5yjTvR40x7B+sBLHkhfI2hYEUBRljnfRyY4x03cjkxcMkZ7GbK4p7bsjfe5OQKbIoa6qiZJxaUNANPbaYe0PeYuNAYGR/DZv+Xfz4T/4Tji6/hle/9nW87W3/O5/42kd5/OE1NpYsmiXORGJ0/P3/3z8nxIL/zx/+PXz6yw554l1v5Z2/+lOc3Pg3eH8VayfqKrIqI8MgRYC9SnRmoo8XE8/aCoUwPgTPKEWOmDxdv5snamLXbtnuTgUq5ipQwmLQSrFYr56lWB0vdDSV1uTgCSoyTp2Qlocwi+pKX04chjW1aShKQ9uOIitPRhtpTUxTxE+iO3p854w4r1LL5ZrtpieGxMnpGc3SUBTSYtkFkWnMSRgHTd0QvCdFTd/1XL92E7RQkw4PjmgWogFaVwajKw4PD2Yh4RZrHcu6mkHvjnEUgu/BwR7j2Au4XsvDSes8m5NKH9aHgRAD4+jZbrpZT1SxWNRoo+aiUEmZDTEZNruIdRWHh6KyPvRiWTDNMiBlVc62AnHmd760Q/xD456bhI+87DJd35NJFK4i+pHoFWFunCulpM+FpnAKg+ep2+/g5PQ6b/mir+aRR7+IO8fX2GxvcLR3xO6kJZt9UqxZLA943wdu8M/+95/gUz/5k/jE134Cr/69r2d3+gRPP/mrHD9znd32GF2c0fnr9OMZhcpcemDN6cktSBGtLcZKg11bsTYb+3Fmbo9CGNYWlaWgUzf1rJkTGf1EyAmNxUdNUS7wfscw9NLA9wJGjvmuB72zBcEkYhLa0zSOOGcviM7WGoxSaCcmNXVVc3rS4r0Yki6XC4rCkIm07VZWl7ZFkalKEeT1kxRYQFEVmQcfPOLq1etM40izWND1Ig2h1GxOqhSF1RTOEv1E4TRNtSTFSN92MyhbUvKUpLosOz5RgxuGUaTxc5p9RsRXMYSIQvqKq9WCYZhEUqS0eB+p6zWTH0QicSYCa2uIYcTZUiQXUyIlP1evFWHwRC/aqspoXNMI+OAeintuEqbUslzYOaURupDohCp04bClYvARTUaFQOUK1JFjM+74p//4b/DyRz6dz/ktn8O73vtuarfhjW/8FHyEzZmkka9+5SeiYuZH/+WPU5jP4JM/9VVgDnj89V/AY69UlFXDZvcM737nL7LbPsNuexWjB3qfUSmIS3DZMQ47NJasRTu0qSumaSCmyMIeokNi8FtUUhitmZIgNjQFXT/xrnf9GutVySMPP0DXTnTDjmpRY5qSkDLLWnCVbdvSVBYfPOMQGQnEuBMsq15QGsXY7aiaTFMe4LRjb9nQ+4hSBU3juHx5j6oqePrpq/RtK4307FmvajESV4phGIDM8XCLXXHKMHSs9h4SGUKd0SpgtZJmurWo7Bn7M5mQRclqtWK72WG1YprlKHLu2N8/oGs9221PimleARFFg7rCaCicoSlLzsYNSmsKq9EkDg5r2mFgt50gKm7cOqFwDlcoUk6UhSLEDq0iOQX8KHoyVmuK0qCyZb85IsTEruvJSR7m3t9bS+E9Nwm997O8oVQUz4sVTdOgtMYWlqNLB/S7HSqL2+tBWVA1hrYfGTfP8MQ7n+DwqGbnAk889RTrg4hyD9KUiXe87d38pjf8Jl7/+ldRlorbN6/hxwGrFDl59vUBR0eP8lmf/TJS2oHuuHXjA9Srn+POrRtMU0dRdoTQolVgtW84OblBOw4kLCiLTwZtCkoycRrZnQ7EEKhcidKWHBNlralqS1laDo/2KXtHSFH87n2gzyPWFMQgfvbbXQucI2cshYVCLdF5gS1qYt4y+JExSKXUWDtjR1v0jP/b7fq5iS6q10Uh/cDHH38lT199mnMx45wFjB28SEg+9tgj7La7eaJKX1GsyUeKokShuXXzphRLZu6j7JUjXTugtePS0QEhBMqqmFNCjcqisxNURC+0aLpqTVVVs7yFp65KutYT/EDwI0pJzzXmRE6iSLdcNoRwV0PVOQ1ZOKVpBo6H4MU1WYlE5L0U99wkTEnIqNYKYuO8b5ZzJqZIsaiZfE9dFpRGVKRXK8Pgwe8rkt3w1BM/xTvfUfK5v+Mt/OAP/SpR/Tx/4A98FZ/yxn1Obz3F00/9AsvTFZ/3OW9ktRY5w9OTG0y9sMsX9QHbdosxiWbpWF96mM/6/C+ebb0y7e07XL/2QbSZ6Lozpvh+ut3IdjNCMETXoe0pygqXT+kRn3qUESnFw9WSWFwmh0jWkaFvKWtHqUpuHx8TYiJ7TQy7WS1tpHClFHGGiYyiNA1K9wz+DiEuCMHiGSjKDmJFMbcYBAc68OSTT5GzZtHsU1VrQhxomoamaTg7O5sNQvUsPtVRlTNrQynMjKvNWRyVrBNYWAoRTGSKPfv7+6Qskol1aS8UvolZ1MuZvUCUollU7B9eZnu6oe97rl69RZqJxiqLAroPE7YyaDJXLh1yojfcvn2CygprKnROKGNBwThEmtqJgFNK1NWCnCPRWVJIlJWjampOTjZ0XUvm/iR80RBW9PkT7a5x5XlaGmOgLJxooqhMWTp8v8Nax95Cke1ACIkQe/7NO36Vxx5/A8/cvsG/+uGf5LM/81P5Lb/lMd717ttYE/H+KmVxhDP7lNZxfOeYt7/9Zzm58wTWaS5fvoRWa9q+xxYOXddopVgeWV536RUoHckx8vJXPM7uNHDzess73/EBbt15huXqkMUiMMVnSP6YZDxl6Rj8BD6xXO8x9i3aaRbLWrQ1U5opg5qmXmKM5ni3IZO4dHSZlCJdO4qxiskY7Qlqh3ZHFDxE124Yxy2Fm7Cztk3KieBhb39fwNCz4rjWmr7v7xJ9rZ4RNFIsWS4aUd/ebrl+bRSxpSgGrEVRUDqLswIzu/zAZS4dHrHd7Ri7VhqHGbRa0A8Tm7MzqmrN/t4adCQnT7c9I4VAXVaobBl7T47Se+27DmUUhbJY53jooSso1AynUyiVsEbTDz3DGHC24uTklKqcvSicIhMJccLqAmsdRVWz2Wxlj1ndW9hRlfO9VSv6618nzO7Vaily7CFcKENfeeCK+PepRIpx5uglQogslwsC0I2eTb/DEylXr+TaM4aUXsZydcDo7/Ca1z3Op336p3G2ez9td8qrH38TtX2MvfWDDNNV+uH9vO9XfwGrHY88+hpu3+mo631Gb3jk8ddR1DXXb72bemFQuifnHmMjKssDIsXMtes77tzquHz0ENefvsX7nniSpmx46qkPUhSW28fv5fHX1Czrgm5zB01CK0VKmWdu3CH4zOH+Jeq65Oatp8lIj26xWHHn1hlDN9I4iykyqZwomweo7SdyegvG8f245ioqe1bLNSFOlGXJotnj2tVn2G5HUoKyEBHith3ousirX/MQTVNR1xUnJyes1wvxLuyHuVcp5jfjMMy90YxGz+JJkgILVE6EnrTWaF1ROMswtjhnWK/XtO2WrutpFktOz7bUVU1RFNy+fRvrnOi/KEVOiePNKdoaXv6yl5Nz5vT0lLJ0rNZL2m4nluPDSNPscXznZC7e1CKlT0SphPcJpSxXHnyIECI3b91hGD1/+a/dO0ah99xKuFgsREq+ri+whCJ9PqJQLJsl3SCwspTUTBcKhAjDNDL0sz+B6tD+Kg/sH/DBp99Hz6NMOXP16nVe+7prvOo1L6PvDjE60g03iHFLs8oY63n4kTVOOYLfUBc1i2rFsJs4vbbl8IGaMBjGmRibcqKqM84lQhSrr5c94njFK69wdrZl73DF6z/xMzi5E9nsem7f6FivH6GqPMcnt+k2GzSB1aIBxNBFm4JpGnGFoqoLFosKmFcAq9HGkJD+oB9KxlCyiVtUzFgXSN6w6zYoXTAMLVU1oXRBVtAsajabHVoLZWi36ykKKczUdUlRFCglfhNaQdPUpBSkh2kNzi4uuJlKGRQihZhzRBspQqm59ZKzpJSF04xjR99xsVcbup4U4kXmY4y4Kptz2zJrIUJRlbS7Vib9LNVx6eiIvutROVKVFdMolmha29kkSOFcwTj2OKdFgqPvaNteDGuWzUs4wp8f99wkFHiVnYV7ZCKenZ3hvefatWtcOjzEZENGM0yRhKabYDecEYJn2w48cOkQqxpyO7G36HnsTVeIZcOP/tR7uf3uBOmYdvuJfPKnvpGqKuj7kZx2nGyvsdm9l8Ke4SlIec3i8HFOT59iTDVtX/LMr17nxtnTXLlyxHKxAFVQEGddmUBId2DQeJaE05aqWtOsDE058lV/5DWYMnH12ob3v+eYw/3L/PIv3GC9EAEkpTRlUXK22eG0o+sCVWNBBbwPNItmJg1HOq/Q9mESV/A548o7NPUxJnToWHC49wCQGMctPgwcHikuX7lESopmUdPtNtRVxYMPFrjCsd1uuHPneF71IuMwolTi8HCftt1SXCi3VXRdx9npFoNmb7WiKh1d1zKOA9kayspiVKIsFZvNLaq6YLUUxbvgM9vYc+fkRExtsohcNU1DjBHvPeOs3BYDxKjZbnu8H2ZxYM3p6Yann77Byx95gNV6xVMfvMY4dBjjaKeB5bKhsBZFQcqw2Wx55sY1nC3p+5HR30fMvGhYazHWiiT9/F1MJNOsli0wrjEEhmlCW0sGqkUj7rAffJqqdFRmRb8bUUkmWT/eol5pxgA3nznh53/uZwnphDf95s+icEfcOT7mrH0S7DVcBTkNIurkC5JeUi4vY8zIY5ePsLef4vAosl5VxClRFJGi0nSjYuoDoYUHHr6M9Q7rHGcntyhqO7MkHA9eepCHLr2eovB84ic8xDPXPsh73/UepmHi5Y/sw9NXiT6TkqYwBW17Km5UCcZRk2lIaUmhHqEbLdFco6lvY8sJowqUrpmSIoQB5xqUDux2nSi7BZGQWK+XrNdrurZjvbei73cXRjx6BokPw0QI8a7Hg3N0XcfkJ8rSiuGtEv/Bc2fklER5TWnJUna7FqXSTAsLjKNgV6uqxkc/i3qli9bCGAOFtQzTKPSyIP3AaQoURQlZU5YVe3vLi3qBjAk4O9vSNAXGKLpemDJlVbFc1ey6nqIwDCO0u3tL6Ome2xP+vb/0cqqqmmkyGeeEl9a2u1naIFKVojXpY8A6R9lUFxP1+NYxD195gClqTtqEqQ4Ycs0Hrp+w2r/CerXm7b/yq5yeXOfyAwWf+qbH+bRPfz22HHEusqgVKgx4P9B1I9XiCK0PID+MVS9jsbhEdjuMauh3hmmcqBc9Pl0DcwcfTsl9waWDV3Lj6lWaxZpmsSDrSN1YumGLq/bYO3iIlFqm5CFU+NbxSz/70/ziz/4gOXcsVldYrxf0ux3eR45PE21f0nb7OHfAwaoCtSHqpykXO46ODui2JU++a+D2zZHtdsPRkeUNbzwihC19v6XbRY4OVtS1w1QiUpwzFLbAKMs0TIyDZ7lYcvvOKctVwcHhPtM0zu5Umr39ldCHYsQg4PZxGFgul3Nbw5OB09MTjM0zc0L8EBf1kqpuODvb0LU9VdVc6OIYK74V8qDtRZ+nWogZqhd2/clmBwo+/TM/mf2DFSfHd9huWobeM02BJ598mmZR8NBDh4Q4zCakkdVqSdMsadue27fuUFUNf/pbr7/UQ/0i7rmVEJXZtpsZoZEZxkxRSLN6sRQV6mkUGcFFs3yWGlhAGUNZF7R9xxgVm82AC5mTNlLZikUZUYy86tWPgHqAd7/717j6zG1ecXzMck/hXMC4Eh0jbd8TomdVQgg9k7/Npu2Z4ilT3lBVB0xtSWlLun5DiGcs9mAYRioWnJ12KBxGi4RjvSxn09DEcmXw/g5arSjVw4xec+eZ6yybB3DmCGsqpvFp0A1jzox5n+14hZMzQ9YlqegoD57CGY/3Cj8c8sH3ON733tuc3hlYr/d55eOXceVA159iXWJvf48HH6g5uX2Ttt9xsNgjRqk4rhZrwhQpqpo46+2Ii1HBdrsFMoeH+yJFaJRYe2tDDBEUXH7gyswbTGL8CZidIcSJ9d7ejBONxCwVyxAnEqIzap0VZy1nWO+tGMeCohTJDltUKOMYek9ZZDZdyzhO3LjxDDGNtK2o5llbUTclTSOeJdPksfP+sqxEfa2qhHYmdLF7q0Vxz62Ef+c/3sc62WAbIwWajMCgnJsxiCHIRSWLuK2SgTN50bFUWTPFhLEly9U+u2GiG0SC4crLXs2YlwzTSModlx9ccba5zlvf9mu87OGSlz96hYcu77FYWLRO1HVJ0yyJwTIOVgxrbEldX+bywStJPjNOt2n769SLzJ3bz7CyL6c0h5yenfDQww+wWFWcbu8wTFseePiKyGKUe5j4GHeuPsi1pzrCMPCLv/gvePDhLZvNBzB6QLkDnjpecbItuH6zI8aehx/WLOuJzTNPcvuZE4Zec7h/mUceu0K1GDDVsfQlh5phGFg0lhQzYy/N7/W+oWkMMYrXx3azwxrLerlitVjRdz1nZxtS8ly6fMBms6GqKmHHazVnI56yKFHAOE0smoYQI8fHdzDasFytcM6iFRxdOmScBm7dvElROkIQiXrQlG5J3w8wW6s5Z2fLuowrHGXd0HYDt2/doaxqEoqT0xOyUly5coTSMA0joAUNE+Ds9AwfAotFhdYZV2nW6xXTFGa3Y3Gj+jP/8e2XbpB/SNxzK6FxlpgiOWbGKTAFz2KxEF9zLf6D2orCc4yRsq5o25bJByGcFoYwRbQKaJPZbG7RjwPNconKgb57hgdf+UYG7/DRgc588OljtHacbTUnb7vO1f0TXv2aK2gVWC5LqqrjyuUrNAvDOLR4b1mvShSJq09/gHoZ6fpTXFlQ1Y5FVZGnBHqiHU/BFSgzYIvAtr1JWdRodUS/03zwiR1XP7Dj6tX3cv3mLT79c17Lu95zk9NTw9ltuH6muHl6RtfusGSeeKtiOutpmsyVBx7gk96wx95hxpUbxrGbPf8s1iVsFIfj6BPeK4bBs8wOY4tZiTvz6KOvQCES/doaMufuRsWFMpuQbEW1zTlHVTUYY+n7jiQkPjTgilLaFF5WoqppyEoxTgEfI4UucJUDn9BKxKmGyZOyWIgbJ9KH0zRhnJ01UxVF6VAqs7e3Bi1M/gcffJA7d26jq4z3CZ+ELLy3vyb4SEbYMApD34vMpVKKpmlo2+4lHOHPj3tuEk6BC8Z3iJ6iSMQscn/94C/Y7nVdYwqpoA4+su362fX2CEWgoBB1NJ1p6gLSiLOWHI+5+cxbiUlT1ks225G9xZpFeUBK4oi7O7nJO992HWPhwQcPKMoeqxa87OUrLl+5Qg4P0+00t7sN1lrqCowrUWqicHD7+Gn8ZNjbX5DUCbdOdnTDlqop2C/WVLrk9Djyvref8M5f2LJrn+HW7kd49RtWfODq+/j5X7rGafs4d043XD99G2UZeNVjJa94YMlDteZouWKyNVdvfpDF+gQfJ2IPMWhp0SRFVhM5K7Y7z9BltmeZccyEPHD7zhZjIn07sVoe8vKXP8zP/+wvoFRmtWjIKgudKkgh7Lz/J/Sgnt024pzm0ccuk7OSoo+zLJcrtDbcvHXzgvQ8jAOLZUNV1YzjNIPAM9PUMVpF34m/hjGWzUZkF2PwLBYrmmZBP0iBTBtFWRZcunSJEGAcEkMfKMuClDoE5ZAYhonFYk1OsGvFLMYYTQyJqi7Zbnfs7e291MP8OXHPTcKun5imSfQ0daZQlmEU0mbOs1aJUtgCwhjJyuOjwlppIDeLFW3bic2ztYyzPIXWkNDoHGnPbqBNSZgGwqBoij2SKdi1EzpmCLAs98gkbl3fUjWWoX8/y+Uei8WC/fU+JkeqquH69WPGaUCpyKJusNqSp4HCabSJ9MMZtjRc3jtk8iNT8JxtNlx73we4c/MVnBxPDOG9PPDoKQ89VrDb1rzqVZ/KT/zMLUK6wes+4YSXPbxkqTv2XWZdaKzt0dU+e+sG43qUFlnClAzBG1QWXVHjNK4sCS4yTDtSVpxuBowNrJaWlOGJ972f3a5l142kGNnf3yMEzzAOrFciFnzz5v+/vf9qlizJsjSxT9lhRi5zEpG8uwqNnukRYID5Efi/wAPwBIhM94jgCQMMqyZVlZUkiLtfZuQwpXjYahbVQ6LnqfOKjKtISmVlRHjca3b06Na91/rWIyWLSbZkVe/oXnDyqsjJZcTHt9vtZOOUwhpWhk3Pw/t3+Pj5SgCYpoUQItZIVqCxMvMNUcJfQvDYpmV/G+i6gWHYVHZpxvvE8/MRpS2vL6/c3g50XQPFczy+Mo6Sv6GVlbuf0TUj0eCsqz7H9S/9mP97681twlwMBSvxxzGzrJlhaMlFEWNA6QZQhKiY5ol2TXTDwO5m4MvjI5++PNP3HdMahMWiHKVYyIrpGICVvrXYtnA6P+JzYX8TiUUxNI67rUOlO/y64kNkGReM6vl33z/RNC3//D/9a86n/4bTcUVlg1KZ03Tm179+z3zOvL68kLOAbEPONN2A0oUQFIoNyxT58fsX/p//9/83Q3PPuJ749hcDv/r1ni9fnvn9H/+EURv+xf/uQMkrlIKbR262N3y4u2XxX/jjy59RqsGYFqu3DM174jSBD5jiOZ5OxKLZ3Q7c3e/I+YWiZ25uH5gWWP2Ete2V1fLl8ZndbsuXL4/8+ONntIbf/vqbitnYo5Th9fVA13VQ7Ui9cpzOI9YY7h/uKbnw9PzEMBT2+1vOpxNeJZZ1oet6Pn74FpTmxx8+8Ztf/4I//uHPHI9nQHF/fwfI9+RXT9tt8D7x+OUFa42kacXAeVpBWZ6ezngv+Pt18Xz4eCdxbEUgU13vrsL3oorkVTQNWhv2+45pGv+iz/j/eL25TTjs9pzPZzm9jKJpWyGDGUv0oTJdHMa2DDVp1rUNMULbbDgeX1HKEEJmGmfabkDVABi/Rm73O0wqrEeJeG47Q2MiJXga4zBY+r7l+HIEZXn/cE/W8P6+8Pvf/xlrNQ/vd/TdlqfnE7vdDS/Pn/nxhx/41S9/wzcff0PTduTiOZ7EeqN0IZWE94WnLzP/5f/rb9hub/jlbxO7TcHqwr/5mx/Zbt/RuDN9f0LxSgkN+D2Na7A6EdPMl0PkcOrZ2h1D26Aai7OKzcYwj2fm0UNyaKNwtmGaTkzLiX4w9BuNMg39xrAZWkpukZhVaFrHZiMkAK0lg6Jptrx//56UxBGx39/grBNny7KQQ2LYbWk6ERvYxuFrZ7XfDqQskjm05uHDR9YlMP3+T6jXM8dx5jx5bm/3dMOW1S9kFK7r6YaBdZ15PZxEGxwSpSiGzYb7+w8o9YUffviMtdLoOZ9GUJFhaNntZBSRHZLKW8AYR9f1KCUE8HX5mk/4s8u0hX0rZZCQe7Ig6nNENYr9ds8wbEUkjKZpO1YvQZLjNBM8lKjZ9bdkr9BFMhv6pmHbd5QEc0CwB0MjXb4Mu27H+TwRVORlnVk99H1LWJJs+tCg557f/7eP/KGdMO5Fyis1sfpAzAurOmJuXnn9dGIcT3RWs+82OJ3Y7Cx/+P0j/93/78w//au/4uNvIIUVnTd8/uGZ/a6nb4vcZdeJqDvsxhJcYCkrQzuQjeHdw0e220hYFmIMjD6RR8vxMHMaC1+eJowx3N0LBnI+Ql5bdBJQ7/1Ni7MNrhE1yjIHyWpMK0PvuL3bopV0ndcYGNeJYgo39xtyCaxpRTWRoWnossNYy7ouKA37my3WWKZ5kqZKFgDUPM/87d/+LX4V5c/nz1/QWsJy0FLRTPMo0rmhZZzPaKVZvOfx+UzbShxAjEIbuL1taLt3nE8j290DKQnOcdh0NRxGeKnrmklZo5RmngLTNDIMHSm/qYHA29uEm+0Way2Hw6EmAYU6B8zsdvuaJXBgWVaMcSg1obUlxExKoDGcjudrtNYliSjFjPczGkHlXYIonWtqAEmW8ErX8Pr6A9O8ssyxpggpgo9Y5M85zytaR2bv0UZmWVmD95kffvie06QI60CjwdxBzk+clshxHvmn//wdbV9qlJni+HRmmQopBNac+fhwy48/ToRYA0rLWdzwy8o4B+7uP9D1HeN4lDTaJTGOK4+PByiim1y8Rxvoh555WjHaYo2BknEGSg588+0vmZeF+TwTfGToe0JY2AwNh6OAee0iVqFClm5jdcnryiJNPhCjSMDOh5Gu7XDbhrbpmedZkpb8wrKuaH3m/u6+iipGjGlY1nD1JoYQ0UYLsUAruq7F+sD5/EguFoWQ1sbxhLUG5zTaFN69uyeEhbZzLMuM94Fh2HA+z1UBlCuWUf7vugasM3/Zh/x/tN7cJvzxh0farsHZpuY/gF9FMtU0A68vZz5/epHhcKlqC21xTct4mmgby+3NDSGIJMq5hl//+tes68Lj41PF5cXa+DG0bc+XL194fT3Sdz3DdodzHS4KTkKSfqSh4FzDbrdnm7REfxmAzLrMJBVplGXX7WgHy9Oz5fh84vn1O4ZhZtNvSWqHdivjsnL+QTiihIxRDZmIsYrn10fO05lCy7JE1qVQsGStSAX+9b/+PatP/O63v6QZNH/8w/e4xnJzdydpRM6w0R2/+6vfcjgcOZ4P0thQHYXEGgJ93/D8fEBrhXUt799/S+saHh8/s/oZv8pooq1D82VZyTlXcrciZqAkrNViwQqRFDO0lvNprVQ06Xh671HFURJo7Whbw8vLC1pH2mYgF0HtD4PGWsdm2+NqAtXz8wvD0GGt+BxfD6+V9yqojc1mxzSv5CSyPFSm6zc42/F6mIgpS9xclhSpYejYbre8f//wF3zC/6frzW3Cw2miHM8SgNk0pKx5Pc70vWIf4OV1QpkGZRrivOLXzM2+o6SCVZrGWh4e7mmalj/+8Y/Vpe8YxwPLIqUXiD8xhsjpOEKRYe/5LMj6ftjw7t03zPPCDz98h/ep8kKl4dLYhriuNM6iTcuX5xNDvyEuiem0om/OvP/Flq5X/OHvE/OypeRbToeFogLn1yNpygxdy8cP93StuDK0zhwPB5TWhACfv7xIJl/bstvfiFvAOnojEdVKt6SsSWtiu+14/6HHGMV+v8W1hi9PX0glYxtLqztxXcSIWr3wbNqWTe/4/PmF0+nAMo84pxiGjqFvOZ0OtO0g8W4hsSyeeZ4lY74xdH3DsnhKkbIzpUxOwv5c1xW/LpXkJqm/CkM/9LRtV2lzGW0sxlgUEo9ujUOhmMZTnUnKqKnv90zTDMVwPIwUMl274TwGYvJM00jjDL/45cD5dGKaAssilALnhJ06bLYUFKEycN7KenObsOt3LPPC62Fi6AtN26J0w+EwUsoFc56kY9rAOM50TUvwKxqF1qK+uLu75fPnzyil+fOfv+d4OFYgbmKz2UAptG0neAZlxRWvNVq35KyZ50iMBefEKGqN0KSPxyMqGYyzbIcNMUlIyevziX/7r/+e4/mGd791vPvlwu6m45/+07/ib//1C0+fzyzzjM4taW256TUqw6cfHtkMFk3g+fmJ273QvU9nQRKiHbkYfCi8vp55//59Zc9MnE4j/bBhXT3TvPDNN+9Z1hFtNcfTKHdZo5kXX7MKFfPiCVGCY/waKWnhy5cn5mlmM7SkWBj6DbvdHcfDiWn0bDYbjImczy8cj2fu729IKfP8fABgu9lXqZ086G3bE8MTfs2UYjDakWLk06dH3r9/4OH+A4fDgXmRSmY8zzhnOJ7OctWnEGPgF7/8hhDkvte2A9MUyEnhXE/wgRBh9YF5mdFGswb4459+xJoG7yFlg7EWZTT77R7rOtZ15XA4/wWf8P/penObsCRDKZocNUo5gi8M/Y6u3UhsNCLdj1kQhMOm5+7uhmk8k/zCZiNMy0+fPuG9GFvNtsVoR86lOvQvbgFDDJll9igleQZ9v2dZFg7LqYaDgnMNoKtky0N2uCIclxA1xjSYbMjZ8vq8cjyN+DHxi99suNnc8ttf7fmv/tW/wq9Hbjb3mGIpwTAvCylNWLWhbbSQq+2AUtB2nlYZYoSYM/OyknNhnCeJDdeC4shFyrxliTw+PqONCLPXNWK0I8aC0oZ5Fuiu1nLnysi/zymL94nNsAOkbEsZnr68sM4Jvx4kR9EvhBBoGiNdxkYedEksTpQMznWVSh7ZbHpSzKQU2e/3PD4+cjqdMNpxf3fPNHq0seQE5/PC3d2eEES8LVkeErKTE+SkpIGkGpxrmacF7yH7yLysjNPKL37xnphWKIoQiiRjKYdtG4zWdN2GGMH7UjElb2e9uU04Lh7vE+/ff0RrzcvLC8syc3NziykKYxV3d3sa6xiPB7rG0fcNJTnaDw+8//ieP373J15eXri9faBtO/7dv/t7jHHc7O/45S9/wZ///EceD4/E6Nlut3ifaNxAzppllk2UijBRCvEfNW4E867omZeJcJ5Yo6Ld7Oh1R9NpjE2EeeJP/8OJPLf81T97x7cfbvir3/yWP/z935GXE1op2s0DJimM7bBGHuamGfjxhxd+/ZtfsdkGlDL8+PmFXDQxJobdhlwS43SsYaCO1XtihuAz45dnvvn2ntuHd/zxD9/x+PhI3+2umYnWWW5udlhnyVkSc41ta56Dw7meTS8SsZfXkfEoUOFp9Nzebdlut7hG0zSaphlQNBxfFw4vX9judmwGS7Gw3/eM40lYojUc9GZ/KxKyKfKUj/gVvvnFO7RWnM9n7u/v+PHTDzRNW/mqDc71NK7n8emJnKq38LDy8nLEGEOuOYrWNdzcPvBv/+2/E7hwP1DQHI4jiz/QtA3Ny5lh0xNj4HD8Klv72aWwhHVhGlfBxSdoXEffDfR9h9KZm5u9zHpUoeta/Cq4vr5vWf1aQ1YMuWQen55Y1pWu1RyOB0IMHA4HrGvIWZESIvMqovzIRQjZkv4Dxjq6rmO3G4jRM05H2rbDtYJaVzkzT8ICHXZ7tPVMLyPj6RXwOJf57W/+Ob/68Cv+4X/4jnEZ2e8tTQud6SklsMwz07yQkyJnzevhTDGBptFsNluRgj0+Unym6Sxd37Hf7wk+sy5R4FQ3e1BbjDb4NaN1Q9du0FoSkqZpRSlPzoquc6zxhNGKnCSOPMSMUomm25GSgHpd06GjBiTPQmsIPrCugc1gUHQo1QAikZsmSdzVRkJJvRcd6N3dPQUYhg0hJqZx5uH+A99+8wv+/P13jOPMfr+nbcTKVIpCYSlZk4vEkjsnEOPLX+u6DS/HA9oY/pN//r8Xo/KU2e4cKYMxDblMxKQwCVTrKkS5JZf0l3zE/yfr7W3CZDg8jyxTYBi62opOWB359hcfMNryb//tv5NM+Maxu93Sti1t65iXmc/f/0DT97iu4+X1xLys+JwxKtNvOsY5EEsLGWzT0gz3nJ4epZHgPbkU2r7DmRajFYpC0/aUrDmfFyiGOa4SVJJB03E6zrx7t8eqzPHwhRA99/fviGHlv////B3zQfG73/01m5uVze2ODx/v+e5Pv+fu7p67uweeDiemNUIp/Pa3fwVASkLB/s//8/+Md+/e8S//5X/J0/MjTive3z3gXItXgV982/D6esRow7IUjs8L59fEmiLWDjIS6Aooyb/47rsvdL1jf9PR9pab2/ekbFiXhcdncbs3ToPOfPjmRj7broEC5/HEPBeOx5HT8UhYT+SS2Gxv2O22PD4+0SuHtTtQnpJDlYx1rP4MKoMSOZu2mn/z7/6Ox8dnpmlG14F6Ac7nldUrmlk6sA8P33A4ngiRayZHCLKRfvdPfsG/+E//E15fX+n7lt3ujqfnA+8ebmj6gBuEWZsKaNtwGMV18ZbWm9uErtH0g6u4Q2my9P3A4Xjk4zcPWC3BIt5HtsMWpR3Pryfu7+44Hp4E3zDs5QQIr8SQq2Km4FNmTYkQU41bVkzTQkwZrQ3DZkNMSaxUjaOkRExiGJUTJmGclqyDIjRujYjLX1+f6YdbSpKmR0qJZV0pRTSvxio+fvvAeZwZp5E1JRIKnxIJ6smqmdZZYp0pnMeRu7sHdrs9XT/w8PCO0+nI8fXMuDzRdZIC7GOEkohJEXIiV9q3dVbKtlwk1cnoqvM0/PJX72VAvi48Pz3z8cNHzqcjispqMYZ3796z3e5QCj59+lxDQBUUGQl1bcs8TyitOR4lM965nnkSdH/XDwybXlKkuoaXlyeW2fPwcE/KwgPdbrdSPhZNCOmnU3teRWQx9Hx4/5HxPFWolJzMKUe++eYdm2HLH//0J15eXmnblnleaJxjnEZCDHRDyzjJqCrU7/4y23wr681tws3W8ctfvYeiefdOOoHaaJ6ePvP50ytQeH45AJqhL3z5cmQcRz79eBTgkCo03SrjjSTdTm0KPhTycWEcJ4Z+h23lS/Gn+jbfbOj7jvP5zLyuxJxZloWudiLHcUQBKRaSVkzzirWJxlnevRMHxvF4oN8outZKoCWR7X7D/naHaxuG7YbnlwMxRrabG2KUkMymaclZwMeHw0mE6mdx9v9f/2//D379q1/x8nLi4eGe83nhy+OBVDTjGLG2+vCMxvsV6zRRJRot+tt5ma6JUqUUNlu5F737cMvf/M330mxKkafnF7RpiMlw09+yTgf+4Q8/8ItfCBLxy5dXTufxSlFDGZrOcnv/gf1+z/fff88aMs/PJ7777sDQ96ScCHFmjSO73Yama3h5PfHgNNYZun5gWT0+LpwOB/p+YF0XjscTxhiGYYN1A3/40/fiL7WOmDwpRZQqGOso2fL73/+Zl5dXVh9JObPZDsTkCXFlPXqcq6leQTJClPqqmPnZNWxaNpsOaztubx54fn7hy/efJWpZw+vxQMySbND1O1JKzPNJUmWVwdjCOHmWNREjzLMnKw0KUilsdzusrpkWq2eeJnb7DatfyTkxzzPneQY0fddJrnqQ/IVhI+bVtboGuq4jpwIqY12Ddo5+0LUMkwQi66QM7IdeGC3zUvEdcnfabHesqyfUmK8UEymKHen+7o51Wfjuu094P2N0I6og7Wr8msa6FmONsF0odH3D6gOuCFv08fFJ7tLqJ26rcw0//PCDjFl2O6ZJLEvCIl358ccvdE7xcLvH+8w8zxwOkzgfrBhv28YwTmeUymx3W4yR6PG269ltN7Rtz7y+XLMZQ/C0XcP9wy3ONcIAxeF9qKoWBLhVZCxkjGa3E1ZqSgXnVDX+NpXspskUljXwd3/3PcYpXCOexI/ffuRwPDAuM1071M80V5iWKG/e0npzm/Dp6ZGSlVhSln/DMOxkwK5gXidcu8HHmc1mizIt5MR59FDEha9K5uX5TKFUw6lDAcYour7l3cM7fvjhM8/PT9zd3WDdntP5IL7AvmMN4tRY15X7+y0pBEIqNM7S9ltOn7/w9PrCGhbev7/j3buPTGPk+fkTv/7NR4z1fPn0yv3dHZttx/F84sfPT9zeP/Hhwy/5h3/4xLp6xnEGCq8vZ8ZxYrvdknMiBE8ICUPH8+GMUoUQR8mHt6P89RixtmddE/3gmMaVaT5hrQa1cH9/R9/t+fLlC33f8utf/6pakj4jMzjPaVzR1vDp82digpQyjTKknPFzYB4j6+L57odHttsNa4Dd7v6aW+GTIC9ubm85jSNZaYpELGGblvv3H3h68qxe/jdlHf1mSzfs+PTjF2LIrN6zrqGe0tIgun94j9aa4/HIy+uRaZq5udkxbPfk7NntNoQoRLgffvhETJ/Z7OSl1m86Qoz86c9/Zpo9XT9gTYuu1LhpmiTX5I2tN7cJKbqGWS74NeNsZnO7Z5onVDFsd3csPqNtS0JkV9Z18s9qhXGOrrU0jSOJVorTeERpRdd3hCQDdxDeyPPz8zUXUO6hnmHYUqgDb63IMWG05nA4sXqJ+tp3Db/61S9p257T6TPb3UAh1QZBz8eP3zCvE8fjSD/APEdeXl8kGKUUmU+ui0Ro5wRqFGT9Il47lRMhRHa7DakUCoqYEiEKzSwjib2n88zLyzNaF+7u9zRti2vaOtpZeP/+PW3b8qc//bGqWuQuRjTksFLqIxBTEqgvmZQTKiXGcUJrTdu2dWOc6Pqe/f6GlD1KGZZFXhrWSJBqDAE6+PzpR8Z5JMYVY4SUvtncYLTly+cX5mUEXA1i7WRuq0UGN46TUNq0ou8F4hVD4PXwwjieuLu/IyURctgCw0a4MdM0oozBuoa7fsO6eEDVENYNp9OZeZ758OH9X+rp/p9db24TxuAgQ9+1/PN/9k/48uULx8OZmAJd3zNNnnlJ5LLw+vpHtFKEtDIMA8ZKzt7NzQNt3/L49IjW4FpHTJGiCtMy020Gmqbl8+MXXl4P3N/f0A8D2mraoefp6ZXzecQay2boMVpTSrje33a7W/Y3HT9++oGcC22z4f3Hb3h5+SwtdtfxN//m7zBGkZLc3aY5sRlumGaBUpUcWZbIsi5stx1N0/HNN9/whz/8Xjqfs5S4gqeXslMbxc3tjWACUcSYeH15pXEdXS+puMLgKRxeD2itubnZ8/T0iLWWYeglQbfvcJuO58NBJHgq42yLVlByYti26Nzg57U6F8SSZCuo9+X1lVwSj09fuL29QRuFtZa264lp4YdP35NSxrkWpaG3LZ8+vzKOgbbrCFExDDfEVDiPMz5MrOvKNM3c3t6Qc0Ybx8dv31NKElXNspIKZCwvhzPee0JY2d/uxFgcFlKBbTfgY+b5+YUQI5oF7yPPz880TUPf99zcfnXW/+xa5irGxfL4+Mq6RpbFA4VjOOLRFGWIKWOMYV1mhqGjG1rmacJZw3maeDm+4uNC0wpPZVknchHAkHMtd3d3DEPHvAi9uQBd34MSAbI2tl7oi6QBtS1t19F3Pdo1lALL4quCBE7HQ83ik8G4UnLfKUh++/FwRtFRiuTGOyui5ZQE8//Xf/3XKKXkAVSmkuUyw9Bd7zHOOc7jCaMNTdtRylqF1oOU3MqhlcL7gHOuNnpkMw7DcE26MsbQdQPl9cS6Boy2NZOihrYYmQkOwwYfRLaWc77+WUopYhK0RNv2NbNQo3WpdIOOEDJ+zby7u2N/s+X5+QuH44idVrq2F8iz0sAso6HKNpW7tK2pxpGcA8sijghQrKuAotZ15eH9Lbe3e3KGZbXksjJOE0/PB9GMWoc24qR3ztL3PfM88sMPbwd3CG9xE/qZpusp2fByfCHhabYGRcM4ilZQGiGK3c2Ou3c77m5u8T5wPJ9JPpFeXwgh0rY9netolaXbDLjGoLTm89Mryw+fSCkSk+LldcaaQAgaYzQfPzwQwso8j2gDJWuc1bRdT4iF5fgk/rV+Vxkn4iqX3PSeGGX47VqDNolM5M9//oGwbvkv/rP/C5+fn/nx+c/4cKLdJm7fDbwe/57TceKX3/yK42FkWc+UUqCI5nO7EdmeRgDJORfu7+9qlPaKNRZTv81pWgQjaCxKO0IF+GqdWdZAzAmzOHQRVU7XOpZFxNbzvBDmmZIK97d7tDI0G1fp1iP39/fc3t7y/Q/fQ4n4tLCGBWs02lia3pKzwiX4+IsbjscDP3yS3MGu7+l6CZrJirox2tqtbNhu5UXRNA3GWj59PrCsvgYDmeq4UBjXsula+m3LGkdKMaAUIYsofNj2bLXh5u6WeR7F5ZESU1hRxnEav44ofnbd3N5wOq6ElClEXGf4+O0Hhv6W/+9//TeEkGo0NIQYmOYR5xqU0oSYIEdc7QYGn4htZrPZCu8ySBjnT/l5oqfMqZDIjOcJ6wx3t1tWP5FKlLmZNRRV5L4WC9YqrJO7R4yZZV1Z69u8cQ1Kt/LFF49rC861aF04HJ5IXv76MNwzqIEQCsMAJb+I5y0V+mbAuiT+PbK07r0Al7q+BeTePM9i7DVGk3OEqqstBUGBKMEaxlhQ1Wle+YJM05m+a1kXQRg65zgej2y2Pbe3O/7w++9xraPpGtbgcRRsYxnnkf3tHqUg5UzRRRKC+1aaKyqSk6JkhY8LVKpAYyy7mxv6fuDz5y+cx5GcBOicsgTiKCX0daUVuo4oznPAoGkahw+FogohR7qm4cvTF4yO9P0eq1umUcJqttuB/X5PKonTOV45qjYJ5S2lryOKn13TtDKOSzXeStv6xx++0DQTznYy/M6KUmo2eY786U/fYbRlGLZolUl+wVjD7e09w7Dhhx++Z/UzfddgnJRN/eDYbDteXw9VlxjFbZAdn76MxOj5zW9+xf/5v/g/8a//5t/yt3/79/TdDq0LbddUt4ZmXmeUkpmm9wKpCnGh6HgNSNEarPN0/ZnX83/HNDtc+w1QeH//O9ou0rfvaMwjh+eZaVrotwZndTUVD7y8vBBC4OHhgXX1HE9y11FKVXyh5Ps1TUfX9cTU0DQN8yT3usPhFa01yxr53e8+yIaaJt69e8cf//gnnOu4ubmR1KjHZ1wj5aExhnmeOZ1ONX/e8Pj4SC6SvCSm6whIrN00+ur/bOn7nhAirmkx1jJOM95Hci7iuA+LwBO04A1lrrlKaawWlLJ0nWPYCJriNM50XcMwdLU839G1woJ9fHrFuA0KVx0dicP5RMmWnDIhJHJc0TpVf+jbWW9uE87TXN9UkvITU8L7yDy9UoqkEwn2ENRGOpohR9DQdQPT+CrcTCPu/M+fv3A8HumHhq5zFJVROhOjp+t6nDNkkyle2Jfb7YacE49PwjLdbves3jNNM02zASV6xsa1DBsxpa7rwrIuGGN5ePcgQ2K/0DYyw6Mk2s6hTWZef6TbfKQUj7Mt2+0Np9NnGid31cIJdCRlUfv74FlfV+Zlpm0bUIV5mYn1/nTJbYwxXh9krQ1908q5qCGmQAji+/s//B//OQ8Pd/zX/81/y2YzcDqNPD6e+PbbTrD0aRVMoC4cDoeakqWv91Vrazc1iLi7bRuZl+bE6TTifSL4TEoKpQ3LKjPVGFPVjoqDXilNQckd0JnqL4zE+jtRCglqwtNKCCtKUZsrAyF4Pn74BdN05vD6wjQHtlaTs8Kv6aqEAg1FqALeJ3Llk76l9eY2ofdBbEuhUHKiG0RVfziMhHUlpkTTysC47zuJwlKKEGItT2f++q9+R4qZH374wnE80296yUnXun6Rjq5vxbw6dHz69IW2dbRtz2bT8/J6pmlaVu/5l//qv+J8PnN3/0CuIoHD4UQIkZubO5RaUNoSQ2SaRuZ5JWVpAMXGMmx6xvGI0hPvP+y5u79h8TPz/D3L7PDLCyGOPD6PaBM5nV9xTUO/eUcMwl5davOo7VrmZWZ/s0OplpfnV0H5OYNSXd2QgZwDeI+x5upC3+0kcm6z6ZkXGYe0bcfjlxcJ0jlNTNOEdZIJcREchPAT61XoBg23t7d0Xcd4ltmkMYZpmslZmjnNTY/WlpQFPnw+i8exoESYUP+8nFVN39pwPp9JWaoLARgHUT+1TXXGK7SSUJkvX56qx9Phl5XgYb+9x4fC+XQGfabvG1IpVaSfSbmQUxHxQP5q6v3Zdf9wy83+PePkeX19ouk0TesY+o5zjISUJafAKla/kLKWN2sspORxja0RzD/yzcdf0Pc9zy9PdK6V+VzO1SbjOByOPD+98utf/xqtDefzWaKqa+Z7KYqn52diTOx3d8yzkL3O4yxYhVKqwXhAaU3KGXIiR9G8znMgRtFnoiLDxmOdY5lfqwJmIBcozMQ8oYi0g2G32+FXL4hBBa5xgn8/SedyDZ55jnS9tNyXZaldRYFfQabtetFL+oR8zcILfXr+glKFu9tbjHWAputaQeUvnmHYs99vKdkTw1JHGwLeGoaB29tbUSlNkyATtWa32/Pb3/6WP/zhT6xrQGHIdUNZZ2g6UawcjtLZDSnjvXQ7ldKsPlQnx1pfKg6dRE4now51DSYNPpFSrh3pUe6SGLR2lCylrLGiRrpUTDn/FKNQSqZ8la39/Lq52aCIKJW4ud1gmkLRmbazgOWhu2NdZ7QVTN88j3x4/5FPP35G6cS7d/ccjke00cR66e/6Hms1/abn9nbLOB5ZlyAJRNsdoPn06bPM2FImpMKwHVhDwFqxRD09vzDPgZJBGYO2mmlZMUZzGieUgtv7B/GrvR6wqlBUJJVI0yrAMk9SvvlZUchYq1DKo00gZk9OmaG7JSbL/TuZZXnvabsWVWdx67oSQqDrDKWA0kHCRI2MTXJO1aCsaVvLMi8VP2EFkqsEeDQtnjCudG1H1woavmkbuq6HosSVUe+AF0nbuko60/l8Zl3EambsDu8Df/u3f4/WuoaHOiiakJM0WpRmWSUhGGdQ2oA2aCUb8vz4dM2ktM7Rdh0oxXI4EIInRcmt9F5ekCEkKAVFwOiC0Q7IKK2wVoJlmtbw5emp0hQE46g0ONtg3pan9+1twnk9o2lZVg9kPr5/Bybx8nwSHWH2xLyybQa0zuz3W8bxxHk8cmPuGMczpWS6rr2m+5Z6Yk3jiPeCTBctZcZawzwvONcynmdCShRlMdaRcsRQyWJZmCx9N6BNYlmmqmV0dUwQeHx6qmmyBesKxoJSvmLkE36FeYosS+bmbo/RQrJuO8vQ3pAykDfkBMvq+Zu/+RMfPvR0XcswDAybAZRszJQ9bSNWr5wTWkvpJ6h5Ta4ZgagCqmCdQWnZpNN8ZpkzpVhKNoQgIKefsBmB25uBYZDoMu89WkvZeSlPjTEY41jmhePxQIzwzTfvaJqWcRRPYFKFxcvPE0LgcvKFmIT2/XB3nQ0CUqnUYB/rGqxroArP11VORYAcEXtSzKATygqEWSl1fdG0bc8w9KyrKG+MlbJ9GKQP8JbWm9uEp9kTwsK6BrRW6GfD3cMt2jhsiyQvKQgpUqIETmptaZoNp3Fht92SM6x+ZTNYlDa1rU91DAjiolBAaXwMlAVQmrYfaFAordFo0KLLvMSAucZiDFinMaYnJ7FUpVxIMaNNwTqHUpbtfos2SU5to3Ftj8Lx9HhEu4YlJAbX0ndbcvLc3d4xjQuvL8INfTmM7PYD9/cPkoK7yKmllcZZQ06ZfmgpGVJaWdfI3V2HdRumcSJ6KB2kKovLSRoWOYFfEiUKaW4aV6bzjDWGUFaUilinUAVa13M+PaO1OO+N1gTv8atnM2wwxpByQivLw8OOlKj3RrGPTWGm1BSnftiInUpbnh5f0MYAEk+wu9lSciGmSAyR1c9QJAbBWitSOJWw9UXQ90JkC2FBGUNMkltpnMMnz/HxII6SpgEyysgzsNvvSDGRy9c74c8v2xLDTKSgUcSsOZ898yKD2OPpJExK13A+i+3n9maP0oEwe/wa0VruTvubfQ0aOcjbVqlKxxYUfMypXvwLyzLXxoupr1q5SwQfMeaSZSD3lpgjbSN5g/O8Yq2VMqo1DENLSoVSTEX8WVKKlCJNpxBXbNPic8SmiNOOGBU/fPdUTxlpqGhr2G46xvPC8XDi9naP0455nRh6qQKUUuRisKYheAlDGYZGyjLdEkOpM9HE+bxwe3snhtlFSOaagCoKqyxZbBk0raJxGl/lb+scuLu/pW1bcg50u45hGADBUshwvROp3Pn1+rlZ50Q2tx9wriUGcagoNM7pOsOMWCv+RYBwFmWUNU7Az2SMgf3+TlwXWdCXzonXdJo9zjiMszVvRBGjnOhKabqu5+4epnkCVXh5eWGeJ5xzf4kn+39xvb1NqBKuMWjTCP5OKZZlrbkFMouSAEsroZRGopov5ZRSmpwCSquKqEhM01QhR1pa3tXSY2q73TpHi2IaVwr52nbfbre8vr5yOp1qloEmpgA5cZiP1ewrl31nOyDzejiQIigM252Eak7juQ7QCyFAzAGVJEq6OzRYa4irmFFzKThkvhi9ZyUTYyKGxOFw4OnpmYeHO5GUeY9fgyDih54YPdMcyVkcEE3T8s0331RQcKLve07HmV/9+lu+/+4TIZ4wpmG7a1iWUpOPpLEj9qKMtQLJalxLzhL6AgW/rtfotP1+z48//kiMkYeHB969e8fLyyv5NKKVoyTpXsca9NM0DdZI/mOhkrVXX+d38iJUWqMS5FQqA6gjlyjVkZbrRUF0uF3XUYMNaZoGgBgj0zQxzyOrX1nXme1uy/3DbZXAvZ315jZh01iGoSNX0KxYfnQd8FoRWmtVu2aOzXaLD4F19XTtIPevFGltS0pJ7hkp4ay0zPEBtDQ5lC5M08g333zLsohIoGtbrJWS55LTbupN/nJ3UUqjtag4StHVgrSikpx2KRkoYGyQ/PRJHAcUjVbykOg6/1pLAMDapoagrrW0spUyrljXSD9s2O+3/PDDF0JIPH4RCjlA13V8+PjA6ifG8VCH3ZkQF5TaobXmfD4TQuQ8Ttzde5pOGhzOwu3tDYfXU5W2Vd9hiVA0fbeBoiXfIcvLS9dOsLUO7z1//vN35Jy4u7vj5uamOjhWnGlpXMM8z4TVywxTgVaFppXZo2TUKrTuUErK/xASJedKy9YYUxgGGa0oRf3vE0rLHfKiN73OMC8zxyyOkKZx9QVxz2az4Xw+/cd9qP8D681twjUF2mGgMRatLdPqWWZPyBlKYdN2Am8KC33fkSmcTycyhVgypFKR7RlfB9jGCgJCa2kKSBfOAom2ba/ytb7riTExz+Kkzzmz3W7puu769jTaYp0GfO1EQghZXB6uw7mOECLGNqRi5A7XbYhBzKmldupyTljT0DaNxL4laac3zcAalquqJOdYobqZ19cju92G/f6W7//8yPEw8e79PdZaXl5e6HvH0IvYOgUZeo/jKDPGtquYC5kb/u53v+Z0lmZX00DT6jpSSTKjyxprDSlJmbuuMylHuq6V5KOuJ2ehnDdNw83Nnq7rOB6PHI/HOqCXsUcIHm0UJUnntnEWVTK5FEKMNK5jv7sh+MzpOBF8oRRFKZrTcWSeF8bRMmw6cs7My8w4jpWeIKfipRJaVxlTtG1LKpm+bVnWld1uW0/GSaxcb2i9uU2otSPlQoiBlBameSangnVa3orWirWmM4QYeXp+xvtEzPk6W9IloY3Be38dMqeUUFrTNpbNsMFaGKfTVQmyLCvjNNaZk5Q21lratr06D4y5KDtEofK73/2GEALn80kG0trIsByFUQZtnDR5dKn5gQVdXf4kMEaE2HmNDF1XS+yEQqNQ1ePYM/QDbddxeH6hHwaca4ixiG51WQVLOJ8Yhp7tdkOMgWmaubu7xRhHyaBVQ8qh/vXIvEioqlKREBesgzJFStHIyXTpukpnV6jbHSFUjWy7wzmH9+u1Q3yR7bWt3Isv6b6XbEAQAUZKEmOmrMZWR773nvN5kVBSLKWI86MUad7IbLIGxpwnfAi0bY/WXCuVi/fx4shQRdXNjFD16tyxfG3M/PwKAVY/IkLkxOoXSeWtdz9Koetb+to+TzlXVUjCGAEUOStlzryK6LlpGpquvXbWGuvwYbnOj5wT94CEjhigXO+e8zxXWFKukjCNXzzDIDjBnGc5kXOpZmSP63pCDJRZ7relCGWsFBEg5yzteKUKMSeUKmy6gZIVzrb0/YaIxxmD9ytGGw6HE+MoaUfHg5SOu92ubhIhCwSfCR6WJdE0HVpZ5tEzLyslF1a/cn8vzgijHG3fsi6Bm5s9z8+voCRvwlahQikJ0IQ4s9vtuLu74cdPn0SRQ/npnl2TfNd1vX5OoGgbW8NbnFDCzwt/9df/lBhWXg6vWKXpe/F2pgTn8yPGaMkZyQXrYLvraJuWED2lyHd9PK5Y3WJNA1p+DrF7mauFK8YoEsOkcLZjXSQstu26+nu9nfXmNuHhMFdgkaHtLNvdlra1+LCCjvi1sNkOuKapCIssnFGdMNphDSjStXy8gHvbrsPZirJ/PdJ2tiYjBW5ubiv3cqhOcV83fUfTNLy+ih41Vld7jAlrLE9Pj4zTCa0Vts7MQgi0w4aiIOWARWGsqHrWdSH5WO+UAAWrteT6+Vj/t0YYNg1oJCfQKF29ex3LsnI6nfGhsBkG+Wx8ZrO5FYlW0AQPulWUrGspK5+BNfKwx1hY1kyMgv/zXoby282GeYp4X5svfuHjxw/sykBKEes0m03HsswIrdtUN3y53iUvDvmmkTtuDKnemWtHVmlJ51UNVjf84Q+fGUfPZqNRytA0Lc4JZiNncYigcrWJtazLQorgugZnW3xarl3Tvu8FyFU3JEWhtNi0SlEY01CyIr2tvszb24Q5FQmWpGCU5v27D0DE+4VcMiVlGtuSsyAnstaEdRUkfAhkI2WUjChuCSEwjaOcmE2DQjHPCzk7col1jhXp+455fkWpTNvaOojXKJV5eHfLPM1sdwPHw5EUA/MkJuFSEhjByvd9IwPuokDbCmMS4FPbWigty+LrbFMMtpe3eK6n72kciSnQdI7gIvubO3bbgekstDcZdZyunUXvA23Tsd/f8uc/fS/A3JxonEFpyzSdibXTKSe2CAuWxVf5n+b15chms+XubofWI2pcpPHiNgLIyjJbk4QqMFY600orCkVmg66paI6A0RoFhEVQHsY6Pnx4YLtZ+e677xj6oZbimZvbDZtNT0zS6UylEEmgqBDmQmMajHNM48RU6XEhJYou6CqRKyipRpYVqkBjnhdSXmrsmqlKLPn73tJ6c5tQkWmclAxt07LMC1rDukaenh652d+ikflXihFnhQMqwZYzMVga20FWqKxIPpBjEk4Mkn9H0XL5R9rjT0+vbDYtyzKijRHuqDFomzFGsd32nM6vDLbFNYpbt6PvBpZlpG33WCdl7bouoBQ+g9KGdRUFi9EaZy3tvqk/r65wpYhSkMksNT0II53SlGFeI8MmoYxmDZ7oI4qGXCzaFdAKHyIUxdPjC+NpYrvdAJkYYRpn1lVK1bbtUFrx+vpyDdEUuFVPzqW6OsTPaK0lrgvWWc7jWG1SDXHxdSxkK+VNy1230svXdcUoDQWWUcYD2/0OrcGHFWM10zKB0iitUEa8jW3XkRcv2RMUfC4Yo+X+XKBoTcqJyU+E5Lm5uSEET8yRGENFRhaMa1HacTyeaoCPRKOlWNCpiK3KSdz6W1pvbhMaq69Iemk4jJSSa+s+s98WYvFQCrlEGtPx7t07UgU4RZ/ZbveM55Hz+VW+nGqdUerSdDDV6SBjjtvbW+b5jFK6IvYDxjjWRSBFjYuUDIfXIwB3N3ucc2x3MgY5n8/VzaGZ5pmEkVmgUljTXLuExlgpiUo9Xeq8E1XQVXScZMiIUoDKTPMo0jMK3q/EKMoZ4wwlR1IOhJjZbja8/3An2s+cycT6uxtUFXWvPnB3dwck5nm5fs7eB5bZ18BUaXIUYJ4lXsBasSKlFOuGbCsBWxoc8zxDzZxoXINWiu12y+3tjqIkViCETNf1fPvNt0zTQtv3nMYTKSewtnY5uYKmrDOQSiXlaXJJlJLY77fc3d9wPh0Zho7zWcBVSgmhzXvR4Gr3E+LROum0X0Ys8hy8nfXmNqF0JnO9R0hSruSOW7bbrlKYZT5UlsTt7b7S08S5cP+wZzNs8P4MCqztiKHQNC0xSqMFitDYUkApaiKwPLTOtox10Lssi9C+1wxFOqxt2xDCwjwf+fDhIyFI7Nh2u+Pl5YXxPJO1IUtQW+2sWtY1Aom+l4bSPM9ix7EGXali1oqTo5SMdaCN/POrX1BZNKDOaZSurvvqKLm7veHbb77lx+9/IMZI2zQUZZnn5ZpUbK3ldHrl3btf1g6nBK0uNb89hCCuizquAa4eRWNsvdOl619b15WYLpkdCrRClSKlaL2TGaPY3kiu4OpHPnz4wO/+yT/heBx5Obzy3/33/z0xZFL0kr6URUpYirgsjCoYrYipKmms5CKu64Sxis12wFrL589fAAkPatvu2kiTGWJkt9vWVOdSma5fu6M/u7qurV1L8Y5tt1ti9OIX9ImSJbxZOmqRdfX8+ONnNpsNHz++45tvPxC8p5Cq0LgREnQI13uYaEBls8foeXp6oe9bnGt5enwlhMK6etY10rUt59NcQ0KFnzItI/M8YltHjJnbm3vO08rxvGBcJ+VvhotQPEZ5y1tjMNric7iOPQSMK2iKrmulTFOKzbZHKTgeDjTNRuK8moxShu12K0iNRUpGheL5+ZnzeK7586mmLDmMWSklYYwE25QCoLi7u6NtW7777jsZcpf875G6L+6HEESiZ4ylZCnhqWbclMrVbW/qWCdniUZbxoWb2+HqwliWhe+//x4fIsOw5fPnz+Tq7vA+4X2hKF2/30zTGrrGYrQ0fYw1uEYzTWeUFm/kPE8oxE1ijFQxKWXZ9OsqrhDb0nbi6uj7Fq3F+/iW1pvbhJcN+I9nPpvNHu9DfdBmqC4J7zMxTDjbyN0qg18D43iuWEDNMPSkNNeh8sUEzPUUilFVjIOtRtWpEtMyXdvTdV11ETi22y3zPOJjJBfNNK6sq8evmcfHZ7p2YH+z5zSOGCX3zaYRDWWK+dqIGXpxQxijKWRJlPWCd4eCsRrnRHPadT13dw/kGDkfT0Kf1mIu1kqUOeM4C+Kvit7bpmWajuxvdsKtyZnX1ydQ8OOPP7KuK7/85beAVA8XkfQ8z9cZ6M3tHY1rOZ/P1+4paErOlIxY9sl1BpdxF+5olDmgranGMcTrjPX777/n9XCg6zdM88yyLqIkQmOspnHyYg3V3SL3wiq4z5lpmthsxNO4rjNPT89oZbi7uyMl6XQvi8fWF0Y/9Bgnn6XWhq67wa/S/X5L681tQsEYmHpyWcG+q2rkxNSk1lYG9LHU9nRHyTCeV9blR06nI8sc2O12lKKq+0DUH3IayoN8mYl5n5nGheATWssmlTLMME3T9VSeZ2l0KNsIT2UOrD6wrIXNdg8ojqczqaQKrm3rpjconVmXlXGCzWZbk3OhFHUVE5Qifrm2hlhuNjtKGhnHGZVK9d8lxnFEm5Z1TWK81ZacIkZbKEocE14G9tYq2rZhsxVl0Lp4tLa8vh7YbjcVeKyh6GqWlbuV0UY8mP1Q534XuZ68XLRRV0uQZNTLf8iFtmvZbQacg9fDK9Y6+q5nbqSxo5Vmu92CysRcSFGhrQFd56lKXSVpMrtVIoJI0LgWhSYG+Zmslc8x58y6XhpHpqpmHEVnUpKXqLWqwpe/zgn/g+syTDXG4NfIcT3VGVRCo4k+1CyHah71kWWdyVmTgqfrW25utvjV8/T4ClAfNin1tLnMD6W9Lgj6XPPYDdYYmt3uei/c7XYAHI9HOc20JtbZWy7QOEXTdNWJITM25xy//vUvSEnU+yGuQGZdp/pnCH9UHohSlTmJEAPee8ZxIiWYRs88Hdn0A1plmkbMsOsSWZdYTzHJctBO0XUbtFJsNjsg4/1C00oJG0JkREy+ovBRVVWUrim7wyD6WyG8BS7x5M6JcugyhmiUq53GgPczKchLajtseP/uA0YVzuNzJXbv+fzlmf1+j4+R8/mMrve7jw8PnE4zr4cz5+nMZjOwGTrpdCeFLiJ2SKnQ91tCKDx+eaGQKVlVmZqEqAp0ChSyyZ0zLEEaeykrjicJ4/kaCPMfWPWlexVJC0IiV7e4FdmRAq00xjWkkEmxUJJinlYaZ7G6wWpHtlJ2rstKVvkqO+u6Bm2kuwiy2Teb4VqajeNCyol+aEnJs7/ZsswzShf8spKVrXI0g0bj2oam7ZiWGds4nDO8e3/Pui48Pj5W/kqSIXRK5BIxSJuepLhwh6SbKpyY8TyRQpEQT5S8IIDN5lZsPONZyHNFc/0DMJQMWRVRAlVtpTGGp8dHchFWakriTBe4roi2+66r0ddrvafKy6DUzydECcW5nDzjuDAtE7utKId8kA4lSnE6nYCMtfIZnU5j/TnrZ2Zkvhiix1dSHGTaxtI2rv7ckRBFamiNJVX472XOGmOo7BkwJlS3hUgD26a7codSjGLtMvaqUvraHf0PrII0K6yTWZTSkdN4xFqHKmBVomsMVitU0RjA2EZi3LWiaxq6pmW73XI6nSRnojoU2irmDR6aVrLXL9I414j16Pb2ls+fnq6u+f1+w8vLCzGKT9E1hlglF/v9jpwL79+/5/7+jhRX5nmmayUp+HB4vrb8nTOVAD2DKiSCzMUkUoIYPMYoNIGmkzvktu+lTCaKmqSV+eHnz0/ErDHaksPF2KyIJRFzrOW2GF1zhuAVKcmDrTeCMNztNxijKoWgJ+fEOJ3RSoboIWYyGq2tOOFDrPc0hU+e7U1H2/Ysi2dZM0o5jDPoxrFkT04JWzqmg+f56ZXd7S3TLNVMQVVyQuT1+CPOSvxd41qCz2JFK0KpuwSLKq2ud0trLfM8EUKpzFlLQRixioxoUSOFhLaublbZyPP8dUTxH1xSEkp5sVSNZgxbYswSr9X2fPvxHX0/8Pj4CK6IORTo+hZrDN4vzIvcI0JccVZy7cXqkplWXxs50sZe10iKmd1+z/k0EaoBNUZRu4A46EX4Kwp9Yy3ei2Xm8+fPnI5npmkm+MiTf+b59YWURG7Vtj1KqYq870nk6ocrOCueSWcUMa3c3uzZbHrIiZgSd3dbbm+3vLwcUBRSjPRtR7oSAMQe5KylpARKThVxd3ica3HW0TadbKDq0JC5qahHzucJrax4FFePMQ5tFUZfPJhIRNoyAQnnBL5ljKJtLVoPdbRBPeUSmcTxdMT7RN9tJOSlEtliunRhFx4e7thut5zPZ5ZlZBgGuk7sTylJ0IxfpbN9jWZTBmdbBJdR6Pseay1Pj8/1+5QgGNcY5nmtLxmplFKUz+strTe3CXMSOZqEk0BJhZLl4bPaULLieBh5fT0IMzSHarOR8rGQmOaJZZ2uYuxcIkqLE8PHIieaM4RQ6t1QUmIPryee4is5STlWCjSNWIoU4j+kKKyVDb1UHeMUV9YlVS1qIiSPMohYvGooZS5YxHSavMSYFZklahQprRiV6ygEconEuLLbdmw2O9ZlZV2FlP3x4w0hxUpZC/Rdx263ZZlGxvNZ0H5GE6OqhLFC13WEsKK1FmJaFvCSrpAkU93tlzEOJdf7c0YJ/IamcdzdvWOz7fB+YRxHUr74aWWGGFKkhFI9jYqucyzryOthxDiHtQ0qF8Zp5vamZb/fVv1pYl0Xbm/3GFOtXtZctb9aa3LKrHHFr5KiVYqYvIdhwDnH89NLFZBfCGsOhfQVYpgl06RoEl/nhD+7nJOToeRCKfyjTDl5e1sjmD6tLauf0brw/sNd1SImxmmi33TXBz/FiDEanzxhCqwhiKcwOU7jiFZyUuVUiBHadiu2meUggKglopTYX7bbLW3b4hpbRcxVBge1PQ+gsdZhrK4PtiJ4OWnlJFbc7PdoKxtWFWjbltdnz83+ntY5tpsBsOy3G5YlsM4jJQcUme0wME0T6MKwcfg1UYpHq4iz0LYGpYQ6bczAdrvjdBw5HA7SzCjyecRQ5WemIeRwfdAvL5cP33wgEplnT0rQ960I5VXmy5cv9b4nJ+Xry4Gmaen6hhg9xkjsnFY9ry8H5nnGOU3RkiUxbPdsdwO3N53cC/1K0zru7m/o+5ZcMn0viP5lCVcXRkqxeggTSkllkstP5ISLuEDXlOLgI9a112fLmoaYIn5d/2M/1j+73t4m1OZajlJKZaDoa1koX0BT1S4ZpQv3D7csy8rjlxPaGvpB5nvGGl5fBZB7yeULMbHZ3bCGSK7JsiFCjJkYM0UHjsfjlW5NvcynlDDegzEUCs/PL2w2m9oskgaBOAmk1rkEm1ww9RfhtNDBDTGtaCUD/NZp9rsN281AjjJzC1HQhn5dCWGicQ27egL5dSGrRKc6TqcjjdacVWG7GbCbnhgjL68nmqaTDu+6sC7SnXWNwTkrWtIa+HkZMZhqnRK6W8d5OdeNpigZUdcoGR1oZauVK+MaV08m6arJ75toWoV1mmHoKAp8zHW0IeEwOYvkzznLdru5NsZyzigUwa/XzSXlK7VJV3ml60JMvo6O1msC8jwveB+w1gmxDRjHkWmaiCmx2/X/8R/sn1lvbxNa8YMp6hghUcNCNEab+t8zxipsY+m6VhQas2eePZvtlqbp2e1vKEVj7MTN7QPPz0+grBC3smwMaxu0sYSK9MvZczoJbl1pVdU7QhQLPtTOYcbuBoZB5HPU00XVaDBtQGlbJWCplkdy6hljJJn2mCiscp9yIjzvu44cM8fXkfNxIueJphWxOVk2dU6Su66VqIZSiLSuYbcZBOFQJWdT5aqIfSdfZ5zGKvphV6V/jk+fvtC1gvN/eXmun4lQu5+en4glonDVuRErbsNU87HifJ6w1rEZhD1KVdRYIylO3i/SJDKw329ZfCAluTPGGBnnmZgiORXmZqXUWaN4FDWuaTmf15+kcdewm1jRjhJDfnHKXzq6Spn64hXejnWOfmhBSxCqQJLfznpzm1Ah90LBTqQa2dXQOHnTGg2FKPFoVhHCwjhqxnEhRo0PBR8Sr69igs1ZHqAQpFvoQ0bplrW2s7XJpFKRF40hIfAmUwrb/fbarrfOEHzAOMP79/dM4/ma14eSDmVB3Byif+T6Fg/VVZ9zxPtAjAZnkyAeQoACk1pYp5XxHNFout5gbOabbz4I8Nd7QOaj1hlKDWEy2pBCQjkn9PCccMbRNrmKEwol59q8kGbMPM/4deJ8miiZGj0mHUOpQgLrmrGtY509y5IwuiFFCD5IU6QouV/FwlJCdcCLyqXrLM62hLhSiFfb2c3tnnFcWL2/Gn9zEizj+fQTjEt8hLbazBKXBF9r3fVELOWnGARxRzjG81R9nzL2MNbQ9Q2rX1GqcHe34/7+9trdfivrzW3CS9pPzvl6yhkjHTqKjMRSCqAiOYvaw5iGZTlCMUzTSsgvVXEjJ+jj82vFwYtRdl1+0g4Kg0XVNrg0bEoudbhdFR5aVBtByckXY5CThkJM4SeEXiooJ4GjKCrqMFd1jvwtfS8U8BQnLtzNvutIEZIvGANaiR4yJzgdJ5pWHr6UIsOmJ8aAD0mi36Inx0TXSRrTPI1Y13B/P3A4nK6BLqL7lLz6ZUkY08u9TUNMF2ralmEzcDodQYtC53w+kRLc3uyw1nE4nDifz+z2W7R2gs8PkiEYU2SeVwoyoklpJaVC2/bXZOFh6IhxZF2DhOoMG9bV1/ltL+QCH64KGK319fO9KIuaRhKnut7x8vLIdruTplfr6otAUYrDWBGxh+iJMRCTq6KJr8P6n125JEROWDBW0Q0N67KyeLEvOe2ujRJlZP728noG3ZBVYlk9S9UryryMWsrIXQMFSpfrZo8xkZMmFWjbDlKgaxusNqQQsUZffy5jIKfA4/OLNABsQ4oJatKtqtpKRSbnSIhe5l+tY57lpWCbjDYXR4XMDYsq2MZx9/6WYSenwLrMBO9RrtD0Dm0L53Gk6TrCKCduzHXuViArKEqTVVXy5Jmms+xuNvRDx3kc6fue8/lccwgdbedqerE4C9rBom3GNtB1GygGDexvNnS9ONNjUKSsiH4mldpJVYLtSDliG8c0r6jalEpJXCLLsjBNM9988y1D2+KXlWk6cnPzLaWIi2VZJtq25eZmLw25mJj9gq32tnWN1znhbrdBG812d8PzyxPWCv5ks9nQdxu8D7y+nJnngtZOMJezoD70G5tRvLlNWHKqUZcS3zz0LV0raAnvPY1x1SQKKEVMuQaKKjCapoKZQMoXOVUhhFTzGDqyisQUWealYhOa2mApGOMIXgzDtoKXQDZyWxst4n2T+1eIiVwuXd3LXcRXhYdwMI1RdN09Xdfw9PzI+TwyDJYQEilBihBLQJtMJknpqQoYWMNKOkvoTNO1pCL3Lm0spQhz9OLEKBXvGGOQ4E2tORwPzNPCzc2eprE0jaVtHdpe7l62Nj7kd42xXJmu6+LZbDoeKq5+XVd2O7EPLWvgPEpFIA2on6xXUjZS3SESUqOUEN+mSWR7WsF2t2FehGx3IaaJhlbKTW0E66FU+UfpW6FWPhO5wDSLFSvGyGZzizGKw/GVnMRuBTUSoO47GV/8R3yg/1esN7cJpSFZ6glWqkhYhuzGtLRO2uDWtShbGSpFzJ+N0hUpUa6dNqVUbaiInScXuayTRemvlKZvW/lyor9e/C8ibgE+yYjkYj8SQ+u/v6RrK9+0QGytRHkFQeT/6lffsr/Z8enTI/M4UtIGiITgWdxPsWMXo60zYlFKUfx2zjaUDDEISVxVaZoIquP1jnUp5XKGWBLLfMR7KcFySTStoU8NMQoJrWkEYTgMO7z3HA6H2ggxovZRuXJ0NHf3d5xOJxkJaFOlY8L4SUkAxevi+fDhAyklDuNRyGu6YE1Dipll9tUh07G/2UkWorFc2LIXY7Gv90bJPqyM2c2Gx8fHa7dbqNyFtm0oZOZxqt+dQSvH+SxKq2HToZPQDqSj+7Uc/dllTR3OKqBkrBFL07pMaAW5CFDXGINtG3KGdJ5IqWZXmExKVJmTAJZEbB2rO/sitSyouuFTReHJgL7Uu6f41VwjZdVlJibDb3/tyF3ur1fCF6CUaDgL0tVrGsvxOHI6nbGmQbcWskMb6fimlMhJWDExyf2qda24xKtD/3g8XhsX67qiEWGzcw6UuxpZpRurcKajVAxIs2mRLm6p9DMDSuDFxtgrO0YpabQUxP7TtK6e/IlplmBSkKi2eQnkkhg2Pf3QcTqeKPkiI9NM80gu4INAeJ115AK7/Z5lXSjA8TiSUqgVS64OFmm0qEohvzBEL9S8C9ntAg7uuhYfFtrWXU9rrR1Gyws95xXnhNZ3d3fLOC74NfwFnuz/5fUGNyHkmmykVcbogjVKuqJFAMDaarxf693PkqJYkxYvcqVc6dDGgrWKzeaW81nemgo52UqO5JiklEMewJKToBG0NAJSSpisr3K3C4FNPHPmWvYCXNB/IUgpm1IFIDWGGDLPz68oBcbIA3LJ7zPagZJmQtP0QpHLWU72pq0UNnPVh6YkhuZlmurMra1SLjm1rRHLUkyZnBJN6whhxTWW0/GEUhv5nK0wT2318R2P5ypta+T3K9B2PVTDMChOZ0EuPjw84MOJeVnY32yJcSUm6dwKnl+6wbatL5KUiJUwEErBpwwlk2KkbZufGDHGCsG8jnNkLpi4cEUfHx+vFYcxhr7r0Gj63U7qTJWI9QQ1StE5iw8LD3d7TscD+03P46fPgkp8Q+vNbcKcIk3bopVEZacYCF5hjSJnTcwRnTXiGFD4GKmJWVxSgmLy2KzI+RLEMhPCCkrkUI1zNG1H0AHvQ5XIZaxWpKJIOaK1vUq4SsnM81S9h/56D7s8DD/h3OUEDWREY2krGPfiVlDXdr1oVyMXpH/OME0L3q+kFNnvNteSTN7ucncVW1FXTzE5/YL3xCCNnhglkz2EtepTU5X3UbuZimGz5eVFJF5hraZc113zJ5qmxTjH8TiBUkzTirHCEC0YzueZZfU4Jy1rKRcbYkiVXC6I/WIUBYWuM75L5oRWmpRL/dwAVA3DScQQq0E31SuFVAoX5ZRzgjAchoEcE6ko4bRGX90h0FgHKG5vbqWSyIXWOo6vr/SNvW7qt7Le3CZUlStijBhIQ1ivps4YE2glQKCiKVkTfKiC4Ih2l/JFSilUJiYvHkFXIU/KXO+AqSYRVY+4/Hu1ZQ35J26pMfWhiFcrlDwglxOS6zC5aSRIJsVcA04KIcqmkiQhXaneDRrZXMZoks9X97qckJZ1DVd/IwiBDRSHw5F5Xmgs12DNEDLzNInL3we6rieEsf6zmabpry+AlBQKR46OlDLzKMEuF5dCybIh59nz8nrAGMM4zux2W9pGEn3HccVYR9c3NfMwX0tBQXmU+j10EkmQkvx+1uArl9Svvn7PYlXzPgi2Mpd6Jwy1i1mupup/PK5o25bTciKsnr5zhOiBJJQ8LTkmqkCJmZfHZ5QudF1D29h/r4J5C+vNbcJ3Dw8oraoLfK2hm5qu665duWWOhFjqXQ9iiCgNjbGgDTlLw8I5Wy/9tQS93KGQrEK5oMsD07S2lqJGOpT1YREtophdL3euS+lZiqQXXeaRICfh5T4aU6DkhNaFppGfwzlL1ztKDKxrYl3ry6VyWy5/xiVF6TIXk1OuhrGkRDN017/XWUtuW4wRcrUMqjXWaFxjr5pKqpj50+dnzscFirrSrpMPGFvYbASzv4YFlCHEjDaOgmFdBTDlnKOpWt1SKWulYvAv8XIXZqjSSnD0uVxfbCklQgrkJM2zEIKclrVCuOhDQebGVwlhDUhtGocPHmsNfsk1gFRwFlqLLjYXaWqJ80IRQ2C4v5E0qfTVWf+z6+OHO06nM7tNz/PzEyUrfv3ttxTgu+9+QKMlRTcJc9IYR0ye1jnaXhAGfpWTyVZ1/7IsrPOMa5w0RpSiJAkCzUFRLGz6HmM1q/eEIs0E4zRKy0ig7TrWda1ZC4KRuHRxq84HEPsQ1YVgtZLyqGlpm+pQt1osR0YJpbsUUm2hhxSEEGc02+2Gvut4fX2l7ZrqgDDyJs8FXd3vCsWUFqyx0rgoCh+8WKS0xF6nAjFDiheHiUfrlhwTIWVSjkzTzLDpaFLmcDqhjauu+kDjenJSzHFFaSFjK2MZdr0Yk7MilURGWKjCBhKHu1ZCStBK1Xz5TIqJkiIJRY4BXUHPF9+gs4btpud8OlEomMbRNoacijS7xHVK23dEvxKjp5DZml5K5pIpIZBLEHG7bmga8T+eTxOXxN+3st7cJpQ8g8S6xivd61CxEsu6EhNQ5B6Wqru661pco1EU+q7DKkUu+VomtU1D14r6JnhP2+iqQtEss3Aqp2mkH6SEtU46hIVMzEk0q9ZhkoaAOPNrmRh8rJ3Sy0lYMxTr29YaQ9e2ovpBNkLKHtfIbHJd5c/PJVeDrViLmq6h6Vt4LazrIieGX2icvY4xSqbiLWIVvEtIptEGH4NAF+vd9nyeWCvKolT4btO1LIs0eLqhFe5pyQJzitLYIXOVeYmpWWEMmFoqxhTIWZCHrrEo5Wja5gp8ykWYMkbJ99G1HbpVxOgoSf5d1uircFtO+3yVvzVNg7GWZa5ulpwpOaJsg3WKthPRuVKC3g8hiGaUzG6/QZXuSmbwPsh3vn4FPf3s8qHgfeF0PssXGROlSNKuD/LFyhcv0dmiXJH5j6n4vMPr6To0jjHw8PCOtm14fn7hgtS3tjZS9GW4XeiHW3bbgXQ+1XtoIoQsDYgSAUnt1VrKOKMNKY5X0fA/Tm9S5TI7lP97Op2qqdfRtFagtlqTo1ChrdI4Z+rJkQnryjyOgMjftpuB07LQVlao9ysLa2XTSLc1ZE9K4q8rqq0jDYexjtPpkfoLgxafn1YarVvariHlKN3UxlUCnKdU/o3ScooZa1A1BZnajCpFiWqolArHciglxO1UY+hS3VzWmjoisez3W1TJHA6vNK2t3VDJnZhnCYTd3+zRWrMsM9YptJbfffWzBPqoDW1n2Ww7lmXh5eWZdQ3XDXl788A0HjBGuuUX3WyKX8vRn13TuDBOE36VLpnk6inmJcisSUOsbz7XOChwOJzZxA6Mkuz1ILClnOVe9/p6IATJ1rPGkrMnZSllb2434oivd4ymbdixYZxGrHM0TsJFjYZiJeWnlJ/oYm3bMgwDIUgr/RKQApXYZvXVI3l520uDBEpWV/ivqpRtazTGSPpUipHNZmCeJm5ubpjPZ1JOdG1L2/zjNru+wnmNrSd4jOQs/w5lgtz9inQtFQLUvb+75cuXM+PzkYd3DySVQcl4xBpNf7un1HwHrXT18wmz9eIO0VpsUUEnVM1EnOeZGER+1/ddPUlLneVFUgoyQC8ibtCaWkYWtG4r2l6i1CSUVJGz6Hf3+y0StZ3o+65KBOVF9fJ8lNGQbUkaId9FsYM1ddaotJLn5g2tN7cJjWtQemVZA/O80PrEdrsDND4kXGvo+wZjHEVJGVhUqfchjV/jlYuZE9JsUXKHM6YhppV1mXHOUpzg43f7Da8vL3ICeU8IC8sycnd7h1aGeVklE8MYbm+2hCjUMZlVDfU0WkkpXyFK1GRhozXGGLbbTaVdy9/TtZLDeLMXG9A8TwSfuL//SNNIYu8yi0ChaxpOr/LzqaJQVsvpaS26AqceH78gaL+GdR0pxYjL3wd0VQ456zBG8hm0gpQ9VAnffr9lHEdilEH2vCw0rThLllXGRusqnkvvM9pKSZ9yRjuR7Rlt6+mfaTtp+IQYaBqL9zU/JEu8tdGap8cvGKOvDSgZ91hy7q8NKLjIz6g+x4HdbsfpdCJnX4fyms1m4Hyaq2hcuqyvL0dSXllXiddr2xYfw9Wb+lbWm9uE4zgKsbnOxtSF0KWLiKEbjVKCSZjXJAGYtaUtx1WunUqRcTWN4/7+XhJ6UiL4iFJWVP5RQkXb7h8zYyaUzbTO4SpWsWRq1gKUlNHKyOwvZdbl9apSueLVs3QLU0qsXrIV2rZhs9mI+398JdeZ123FxJcsYCIohOAlXKaIGFzVmDLnrEhKjRDYpmmm7/tKRSvc3OwxRrP6QEq6lsKSc1EbwWQySknardKC0e+7pt7HEsssrJiuE+M0JIZNS9u0KFVYFonzTiGwel+NtPYqilZKsd1uKEVxPJ4RSnqqpahGZ+GV+iBD/Aw8P79cURZSNVxyJC6MnvZ6Dw4hXschOUdsJRgIQ9ZUCZ26dlOV0ljXUBBSXNe1NO3XYf3PrpCCwGNLZhi28oCpDJqf2v6lEKvDulTsRc5CfzYajL10LqW76cOKNgUfPCiIoVTtpfwzh8ORGDKliDG3NQqrHeN5Ybd1dG1HWCOFwuoDqqr6Y4zEcAlecVftKEhzZlkWtJGZ1vUeacQ064wmeM+PP3xPTjLDQimc1oQYMBr2uw2aQkiBvuvRSrEuC1rXPHtrOR4PeL/SDx2ukYe4GwQMbBeR7aVc5WMxUVJCm4JWjmVeubm5ReF4/PKC94F1DQLn3TUkFWjajqGOQ3IxDMMtMUqpJ84SK5hFcm0wldoxzaQkYmuQcZE2ClNL53l+IgeBLYfgidHUxspyvVfvdnuWZWEc5Y4v46XE6TTWxlwkJ6HmXZipMqO8ZHj46wYsFBbvcW2D0l9paz+7nJMmS6GjbZvrPE9ralqP/kd3slTvCnKxj0VkaE0dB/w0zPbXf8ZoQzGOFCPFwLr4CmSyNeuCKpcSAYAwQwvTNNcvF0qWP0+G25CSJxf5sxUKbbU0XaoDQ7LyZmKMNI27NiesdQQvuRExeDabAWM0IUqWouDzxeDsrOGiYQ3eS55fdR5ATUYi8+HDey5MHmngyvhDqYI2IlPLdQC+LGudlV50sZoUEf6oh23b0FbRg2RzrDinsKaj6wbmRUzBsSR0zYWUqkD/e4qippFZYKje0EvKExXaK2Wo/EeUL5mus4xVkC161EsjqCrUlOAihZou1Y+Ai+P1zmiNsE5REhtwiTPQXzfhz69pXq6NjFQStpGcueAT8zzSdQ37mz0lKwqeaVrpmo55nsk+0vTyzxptsMZhratKjoBzht32huNByiQo1fkuRDfvJX4LBU0jZdHr6xFrHNrIn6NVDfRUsN1uawfVVKeGgIUap2mblnUVRY+vNqPtpqPrHbI3VSWrXYTglhA8x+OBYehoW0eoUdnDpmeazvIycopCpq+G2OAj67pezbfTtFbTsbx0vF/R1tJ2LTHJRkxFDLt393v6vkEvomkNIaGrqqdpC5dMEIVmmRdizFgrIxNpZGkad7FABXISlETJMiRvrMPU78J0ihBgs+mqX3BmOgtBLufMfre/VheqbpplnqpyShpBFLGTLesqM8kiJ6+4R9Z6WlqmWcTufT9wPI8UlFD8jOZ0nmoI7dtZb24Tppxp6l0wpiwaxKzqm7+wrBF1ErDPPK/1vqiIwct9SQvtTE4oRV5ETC0Z6JZ+aIkh4f16vV+kmKv0rFSVjLn6CyURyLEZtvUuKISvkFYaZ4gqo9BY01BKpmkbGqfE8ZELRosfrhTpDl4Myd6Lo0GioBW6iOdRa0OMma6VmafWWiRZSk62nCOJhFXiW5zmmRgK1kocuML8lLCUxaV/sWQVMtrIadI1ltvbG2IsdJ0TL6WvFimTUSpV3aqEcLbtBmNkLlsotI3BWnEuWGfRSjEHT0mJ/c0Nh8MRHyONczhjSTkwdC2Ns2iVyUnuveri5rC6eg1FuypueE8pBmfFFtZ2rTRdUqric/mei7r4BC/qGep4RtG1jYygkJeL1VbAwm9ovblN2HVdxRhICed9hKKvg1ylJXRSgK7yFjyfz1XaZFhXTz/0tH3H8ThKUq7RdJ3Ivo7HF2K8UJ0T1ilSFtkTqpByIiWHtR0xCu3rIqValkVOlxAQPkrhIkMUvqh8nJttS/SeGBxJKTYbcS6kygp1VtT945hwTUUu5kLjOh7ut0Dh5fkL3ieUEoH0ZtMzDD0owb1f3Bry0hBa3IWoXUi0rQgBtHF0Q09OmbBEbm7uSUUo16+vB/b7W9qh5fn5FYCYPKuXpodLuoZ+Gow2nCYJQ22atuLrLwCmSwdT8f69lMPLsoo3M3l8EBnh8TTxL37zz5jnsW4wKUU3mx7vF5ZlYrfbobXm6elQZ4/i+bycXtM0IdBfhV9XjLEVja9q2Vro6x1WvhcnjSwlTZt5Wv9n/aB/yfXmNuFP7uqfmisp/mSolZgruR9K+RKueMELagGoZQp1Zidf5ul8ZlkSXdNdN/VFEypOBemg3d3d1TI11ow/Ce8UDkpX03MV5/NYXQpCH5PGgfgRQ4j1AZWO4gVwG3ygcY6PHz5wPB0xWjp4wrbh+u9ZFn/Vy4L8/zFlhqHDaANOUBsxehSOrpOXQAiBmIWS3bYCyHXOMYeFeV7Ybm8o6Kuusmt71nVlHKXZcTE0ay1i96bpqtFZoLrWilrI6EsXWk6hYRiq19FfP8sYhZjunCGXRM6R7777s1QSIdT7sauwpsusUO6fzllK1eleStJ19df7pNaaYgTonLI07S6zxYuz41LGiun5Aowq19HHW1lvbhP+xPGU+ZpWihTFRNt1Hd98/Mi8TDw/v1y7YG3FX0zTiDaafugJ4RKjrK4XefmS9NX2st/veXh44OXlhXWdq8u8uXIs5QQSBP/xcJI5k/f0g/BGx/EsliRd0I2tzZyMqb6/XBRKSUhmyZI72LadBJbUsMrNpuX5+YXtdodWRqhxIdF3g+hTs8JoSWxal8h4fqFtWzbbS+iJOAemaa6fhXQhYwySrLQGzsczj08vnM4r85TQxtD3hpQCf/d3f3dtVJQCgrbvkFFJuJ48lxeivCRz/RxF8L7bbbnkGr6+HIkpsd3uca5mTRqqsRbxCyYZ5DedqH2WZSKmSNe3KAXWGZp2y/uH9zVcRtF3fd2cDbvdni9fHlkWmWt2/U4yCbnErMefNprS9bus9LuQWZav8N+fXT+dhNJ9XGO4esj6vhPaWPJ0Xcs0zXS9zLC8r458o9ntdpxPIvm6ZECsq8iorL04B/J1w1/w9AK/9VdIr6p3wEuX9dI4EIrXTEq5KkiqxtFYlJKRSCmSHJUQ1s26eEx1Sjw+PqGVFrOtk6gzRdU2ZsFjpIoCbFpLjIK7FyuURitX8wSLIPtTqk4MOf2HTc/+ZkvOhdNp4vV4rOZgzX6/J6aEtdTmlDhW9vs9wzBwPp95eHhgWRbO57E2nsTt7yp2Ule3Q8mKGGS2KGzVeBVux5BoGsPpdMQ6w/v37+ugX0rpm5sNkqWYayPNiUZXy7y16zr6+vNM01zhxYp5XjgcjpVfkyqxWyBTsuQzMNoKA9XZKqK4EMY1b6wv8zY34eXL9N7TOMHnXchkv//939M0rnYWJc75V7/6JTkXjscjzy8vHA6vrGsUcHD1oj0/n7FW8fDujsY2dbMlDocT6ypBLZcH2TmH9zUYRUvre13C1d6Ua/ev6zrJlqCwzJ6YJAuvbapCZg7c7G8BzT/8wz+gjb6ezH3fc39/RwgLl1CTnOerETknacEb3RIpFWuvf8I61jxAhUPrhpxF+G6twZmeaYw8Pn6pLX3F/f09hYK1Cm0tXStkMqXA+7VK7zxKFU6n1+pBlBPygiIcx3PdlMJxCT4zDAPeB8ZxrBu1FX3nGqQTnIV29vT4StsOUAwf3t8CCAi5BMmtT4Gzv4C3HN6PzNOCUlJOU2Acp1qSimm3FM/t3QDA6+vh+n2VXNBGOqeXK4xSFUES8vUe/1bWm9uEF3xB28oHrTBVTCwSKMGal0rdklCX0/lI8JHX1wPjNGGdE91kUVzAsUB1LshsbpqEJi0mUFvvPKqWWD/lRly6bZfT86ILFQNvX+8zcjeLUZzsXeeIVWzetC2H1wPWWvquB5WvsqrL7yvwXVPvti3ztLLMkhy1LIJ377ue19dXJCnKsq4Ty7zSdztyUayL/JxGJ47HER89OUunt+kGrDMoI4iItuvoW7lbihlWGDbzMkkilCr1HmYrKa6rzvaCAJmSmKxDqS8uaokqM71LmpUxsilzEthV2xgUltfXs2wUbeoLV4zAKZYaCNRgXYPRhZjE5SLNLVVVNFKxPDzcsttveX5+JsZQlVOxbrzqG+Vyckupesm4f0vrzW3CS2kEmpeXF6bJc3tzK0qQXhDmSsnwfLvdk/PCly9PpFI4n05ycU+RtumkpMsiau77Lb/6zbe0bcPf/e0fBB2YREfprLsaSUMUzKKiME5nGQ1oYbm4xgkxbPHEKF1K6bzJ27rrmhpIqWtTp+H5+ZllXhg2PSlJOtTN/gayCAVOp4mh7xnHz4Im3N8LWdsqQvDMc7yWesuyst1uAH2N9m67hpJLfWlJnLRWFmcUJUsjw1rN/cMtIQa+fP5cjcaanBWn44y1QiDza8EaodKdzxJ4kxM8P73UUUKLVob7+zs+f37kGM6sa6BtHF3bE6JnXXzVzJoqgXNM48huf0PbDZyqn0/mqiIcMEqjjKmzX3BZMc4rwc80VsQYzl2USZK0tRl61nXhdLxEzsnvP/Qd3osjJOWIsQpXDc6UIjPPr1amn1+udWirOZ1GfBSTa78ZqgxsvZ4cOcH5vFIQuVdKnvsP71AKzucTa/RQDBRwWohnrbOE6DGtxip7RSrEksWDqAwxUyPTSu0sGoyFtrX4VRo60o1z16YLFDHENlb0mlHkXDEK1NY6uetc5oBy15lIRZGzJSfDZtgxndYqg0t0naHtWvwaQf10R5bgT2lu3N7s+PjxhteXZ7bbLcsayVHXrHrL0Hcs6xmlDfN4JCvF0Pco7TidZkIQ58Hd3R2laJzZSOUxRdpOrFrnWcY8fT/QtZtr00zuWdJd3myHWqYKg0cVTcqR8ywdYp8iISWmZSErRSqFmAVRoo0lJEFQ5pSxzhJSFVH4jHMDKM00e7SSxldJgVLx/uNpFDapVVjb0jYdz8/PdXyTUXll6DeEUMhO1XzCr6ben12bzfYq8QJou5ZxHOsb3VyhQfMiOMCmE0d8ru3zgqANtFGSbuRDbXsvfP/9D6Ar9q9p5Qof5CR0jSNOC0Jru9wlWnIKLLMnRcXqI/O04GuuYdttatmbaqNoZJ5HrG5QWFIWCVWKGSpkWCsj7NCKGASY54W+6xmGjVDWrMM6VXHvcsfKRR4ckakV9rs99/d3zJW6hpI2/TKtV/UIl1NXizh7XlaMkQjtNQhjdbe7QWtRvczzhA8FYyTm7ZLapKsTJMbI7e1t7ZjKKGCz7RmGjsPhUBEeVVLoE6u/4AyNfC5WY4w0wba7npeXEyHKS8zoGjSTuIq3cymEmChZSvCQJM04hHDNpD+PJ7FLxcjQ90zTUuV1DcbAu4d7YRBlz2boUcpx+xX09PPr0khwriXFn7ieF+ZmSpFlXsXB4FONN+uIKXE4HECJ290ah3aGtlWUJHOiUhA/YSrkmMgxk2Ni8TMppOv9L+eMX1PdiJJNIdI2qkJHSp2cU220qKuXUII1LVa35LUIADhG5nlCkIdWciSCp3GNiMO9v5LV4PI7pyrDaupDCUbL/KvvB4a+4Xw+Y51lu73h5fkFpWwVPm8JIda/t+d4PghxfA1oJc2SpmmvDRYhA5Sr3lPKXxkjXEUSVQcqo6BJpGops64T1ioBWmUZD5VS0Fbhj/mq91zXhZwjw6aj7SQee59bXl9PUq048SkuMZCiCES1kvu2doK4P7yOpKTqdYUrENgYqUi0Ol87p9KptjRNR28djYv8+OMjD+9uCPFrIMzPrmn0pFyqyqWrg1kZFYzjSAy+DngduZia/0AdKF8EzWKF8X6l7zqZ5WWZ2ZE1KYpbQBo/ioyIwZWGXIXFl86avJkzxkBK0LY9PhwlY69rK5JPHsxpEtxfTgXjHFqnOtpYCUEE4DGK+TaXLLBcI14/HwLzNDEMQ+XT/CQ2kAZSJivJCNxsBtrG8OOPT2x325od/1lMzMrKA20VKV+EzTuJFs8anyLKSFqvPLC5it3F3XEpfUWhotjtdtfNB3A6nao7RbPZiMBbhOq5RqfVl2WMNK6lFMn/aFuL0uIzNFbkdw/vbvjm2/dM55nD4UzTdChEhpeydIO9X2idYbPZUHJks+kZT0ckoVkisbUWT+LT0xOlSDUld8fM6Xjm9u6e5+dXvI88PT1i35ip923JyRH25jwtzJPkCMQoLMuLbEkeSHtNIVLa1s6cqhuA+iYVOVWu2RbGiEtinjzzuGAw9E3H0PX0TYsm0znLzX5Loab7el91p4oYSjUGCwbfOcMvfvENm83ARaFx6RRSlSfAP7rLCulNkIftdT7ZDz03NzdQ5M9Yl4XGCV3tcrrKy+jCshFVjVKw2WzY7245vJ44n5crYl5OtMKlNJR5nEIpW0XatpLRLi5/Kf8uxteLlQi44vlFqfLT7yTpUrc1F3JBKUHZe5+ESzr7Opu7YD8s1tirCAIKx9cXnNZE7wX4VGC/3WA1qJxYl0UcJK7h8HoQPMU013xF0ZqGENnv92y3O5qm5d27dxgjL+GSBaf46dNn5nnBVDOv3OPfznpzJ+GyyMMxDKbKqKTkG0fhvijjxIwbEzlLcCYKihKB8mXYHVOirIIbtEpXFKKUmtZYoo9opdnvd5JZYBqsNSII6BvatmM8LyxL5Hg4MQwbEUBrxf3DRrATy8Tz86Ng3Uthu91IQ+YiziZXJISr8z950Hf7Xf1ZReLWdd1VNvbu3XuGvmP2R+Z5pusGERqkRN8PzPMsfrxlRiklY5lxlZdOPSmt1bhG9JWn04nV5+pYF2f8uqxwc+GBSpbf3d0dzhlWX10MSlVwcb5u/n/M60xRKG0hZMEaolHI7FAAxECV5HVtx7yMgIjf+64X8byPfP/nH1DKShxcRhwgq7y0rDE0rpEXYggVYqVonCh6LnPMp6cnQgh8/PhB7r6zaHwTFyaslrLVNhyPJ2HSvqGlylsjoX5dX9f/xtabK0e/rq/rf2vr6yb8ur6uv/D6ugm/rq/rL7y+bsKv6+v6C6+vm/Dr+rr+wuvrJvy6vq6/8Pq6Cb+ur+svvL5uwq/r6/oLr6+b8Ov6uv7C6/8PQGToEh/W4bQAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "import csv\n", + "import os\n", + "from keras.preprocessing import image\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Example usage\n", + "filenames = [\n", + " '/content/insect-dataset/ImageClassesCombinedWithCOCOAnnotations/images_raw/00004481.jpg',\n", + " '/content/insect-dataset/ImageClassesCombinedWithCOCOAnnotations/images_raw/00010709.jpg',\n", + " '/content/insect-dataset/ImageClassesCombinedWithCOCOAnnotations/images_raw/00009691.jpg',\n", + " '/content/insect-dataset/ImageClassesCombinedWithCOCOAnnotations/images_raw/00013954.jpg'\n", + "]\n", + "\n", + "def load_predicted_labels(csv_file_path):\n", + " predicted_labels = {}\n", + " with open(csv_file_path, 'r') as csvfile:\n", + " reader = csv.DictReader(csvfile)\n", + " for row in reader:\n", + " predicted_labels[row['Image_Path']] = row['Label']\n", + " return predicted_labels\n", + "\n", + "def visualize_predictions(filenames, predicted_labels):\n", + " for filename in filenames:\n", + " img = image.load_img(filename, target_size=(224, 224))\n", + " img_array = image.img_to_array(img)\n", + " img_processed = img_array / 255.0 # Normalize the image\n", + "\n", + " # Check if the filename is in predicted_labels\n", + " if filename in predicted_labels:\n", + " predicted_class_name = predicted_labels[filename]\n", + " else:\n", + " print(f\"Filename not found: {filename}\")\n", + " predicted_class_name = \"Unknown\" # Handle cases where filename not found\n", + "\n", + " plt.figure(figsize=(2, 2))\n", + " plt.imshow(img_processed) # Display the processed image\n", + " plt.title(f\"Prediction - {predicted_class_name}\", size=12, color='red')\n", + " plt.axis('off') # Hide axes\n", + " plt.show()\n", + "\n", + "# Directory containing the predicted CSV files\n", + "csv_dir = '/content/saved_models'\n", + "\n", + "# Iterate over each CSV file in the directory\n", + "for csv_file in os.listdir(csv_dir):\n", + " if csv_file.startswith('predicted_') and csv_file.endswith('.csv'):\n", + " # Determine the model name\n", + " model_name = csv_file.split('.')[0]\n", + "\n", + " # Path to the CSV file containing predictions for the current model\n", + " predicted_csv_file = os.path.join(csv_dir, csv_file)\n", + "\n", + " # Load predicted labels from the CSV file\n", + " predicted_labels = load_predicted_labels(predicted_csv_file)\n", + "\n", + " # Predict and plot images using predicted labels\n", + " print(f\"Predictions using: {model_name}\")\n", + " visualize_predictions(filenames, predicted_labels)\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/Insect Detection and Classification using DL/requirement.txt b/Insect Detection and Classification using DL/requirement.txt new file mode 100644 index 000000000..7e7db6fe9 --- /dev/null +++ b/Insect Detection and Classification using DL/requirement.txt @@ -0,0 +1,9 @@ +**Requirements For Project :-** + +1. NumPy: Fundamental package for numerical computing. +2. pandas: Data analysis and manipulation library. +3. scikit-learn: Machine learning library for classification, regression, and clustering. +4. Matplotlib: Plotting library for creating visualizations. +5. Keras: High-level neural networks API, typically used with TensorFlow backend. +6. tqdm: Progress bar utility for tracking iterations. +7. seaborn: Statistical data visualization library based on Matplotlib. \ No newline at end of file