diff --git a/Intrusion Detection/Dataset/README.md b/Intrusion Detection/Dataset/README.md
new file mode 100644
index 000000000..d2c62b803
--- /dev/null
+++ b/Intrusion Detection/Dataset/README.md
@@ -0,0 +1,33 @@
+
+---
+
+# KDD Cup 1999 Dataset
+
+## Overview
+
+The KDD Cup 1999 dataset is a benchmark dataset commonly used for evaluating intrusion detection systems (IDS). It was introduced as part of the Third International Knowledge Discovery and Data Mining Tools Competition, held alongside the Fifth International Conference on Knowledge Discovery and Data Mining (KDD-99).
+
+## Description
+
+The dataset comprises network connection records captured in a university department's local area network (LAN) over a period of several weeks. It is structured to represent various types of network traffic, including normal and malicious activities. Multiple types of attacks were simulated in the dataset, covering denial of service (DoS), user to root (U2R), remote to local (R2L), and probe attacks.
+
+## Files
+
+- **[kddcup.data_10_percent.gz](https://kdd.ics.uci.edu/databases/kddcup99/kddcup.data_10_percent.gz)**: This compressed file contains a 10% subset of the complete dataset. It serves as a manageable sample for initial exploration and experimentation.
+
+## Columns
+
+The dataset is composed of numerous features describing each network connection record. Some of the key columns include:
+
+- `duration`: The length of the connection in seconds.
+- `protocol_type`: The protocol used in the connection (e.g., TCP, UDP, ICMP).
+- `service`: The network service on the destination (e.g., http, smtp, telnet).
+- `flag`: The status of the connection (e.g., SF for normal, S0 for connection attempts, REJ for rejected connections).
+- `src_bytes`: The number of data bytes from source to destination.
+- `dst_bytes`: The number of data bytes from destination to source.
+- `target`: Binary label indicating whether the connection is normal or an attack.
+- `Attack Type`: Categorical label specifying the type of attack (DoS, U2R, R2L, probe).
+
+## Usage
+
+The KDD Cup 1999 dataset serves as valuable data for training and evaluating intrusion detection systems (IDS), anomaly detection algorithms, and machine learning models in general. Researchers and practitioners in the field of cybersecurity often utilize this dataset to benchmark their approaches and compare performance against existing methods.
diff --git a/Intrusion Detection/Dataset/kddcup.data_10_percent.gz.zip b/Intrusion Detection/Dataset/kddcup.data_10_percent.gz.zip
new file mode 100644
index 000000000..31a1fd547
Binary files /dev/null and b/Intrusion Detection/Dataset/kddcup.data_10_percent.gz.zip differ
diff --git a/Intrusion Detection/Images/ann_accuracy.png b/Intrusion Detection/Images/ann_accuracy.png
new file mode 100644
index 000000000..95d56779c
Binary files /dev/null and b/Intrusion Detection/Images/ann_accuracy.png differ
diff --git a/Intrusion Detection/Images/ann_loss.png b/Intrusion Detection/Images/ann_loss.png
new file mode 100644
index 000000000..d496266aa
Binary files /dev/null and b/Intrusion Detection/Images/ann_loss.png differ
diff --git a/Intrusion Detection/Images/attack_type.png b/Intrusion Detection/Images/attack_type.png
new file mode 100644
index 000000000..5fa52cb40
Binary files /dev/null and b/Intrusion Detection/Images/attack_type.png differ
diff --git a/Intrusion Detection/Images/cnn_accuracy.png b/Intrusion Detection/Images/cnn_accuracy.png
new file mode 100644
index 000000000..ae32e29df
Binary files /dev/null and b/Intrusion Detection/Images/cnn_accuracy.png differ
diff --git a/Intrusion Detection/Images/cnn_loss.png b/Intrusion Detection/Images/cnn_loss.png
new file mode 100644
index 000000000..17276eecd
Binary files /dev/null and b/Intrusion Detection/Images/cnn_loss.png differ
diff --git a/Intrusion Detection/Images/correlation_heatmap.png b/Intrusion Detection/Images/correlation_heatmap.png
new file mode 100644
index 000000000..c2d23bd1a
Binary files /dev/null and b/Intrusion Detection/Images/correlation_heatmap.png differ
diff --git a/Intrusion Detection/Images/deep_accuracy.png b/Intrusion Detection/Images/deep_accuracy.png
new file mode 100644
index 000000000..f7e94511a
Binary files /dev/null and b/Intrusion Detection/Images/deep_accuracy.png differ
diff --git a/Intrusion Detection/Images/deep_loss.png b/Intrusion Detection/Images/deep_loss.png
new file mode 100644
index 000000000..f7f3ea623
Binary files /dev/null and b/Intrusion Detection/Images/deep_loss.png differ
diff --git a/Intrusion Detection/Images/flag.png b/Intrusion Detection/Images/flag.png
new file mode 100644
index 000000000..d5a2e8edd
Binary files /dev/null and b/Intrusion Detection/Images/flag.png differ
diff --git a/Intrusion Detection/Images/logged_in.png b/Intrusion Detection/Images/logged_in.png
new file mode 100644
index 000000000..24346a51e
Binary files /dev/null and b/Intrusion Detection/Images/logged_in.png differ
diff --git a/Intrusion Detection/Images/model_comparison.png b/Intrusion Detection/Images/model_comparison.png
new file mode 100644
index 000000000..78dfb38c5
Binary files /dev/null and b/Intrusion Detection/Images/model_comparison.png differ
diff --git a/Intrusion Detection/Images/protocol_type.png b/Intrusion Detection/Images/protocol_type.png
new file mode 100644
index 000000000..9b3527e55
Binary files /dev/null and b/Intrusion Detection/Images/protocol_type.png differ
diff --git a/Intrusion Detection/Images/service.png b/Intrusion Detection/Images/service.png
new file mode 100644
index 000000000..39d6e0a3b
Binary files /dev/null and b/Intrusion Detection/Images/service.png differ
diff --git a/Intrusion Detection/Images/target.png b/Intrusion Detection/Images/target.png
new file mode 100644
index 000000000..43d00a2f4
Binary files /dev/null and b/Intrusion Detection/Images/target.png differ
diff --git a/Intrusion Detection/Model/Intrusion_Detection_ann_dnn_cnn.ipynb b/Intrusion Detection/Model/Intrusion_Detection_ann_dnn_cnn.ipynb
new file mode 100644
index 000000000..3238ed5a7
--- /dev/null
+++ b/Intrusion Detection/Model/Intrusion_Detection_ann_dnn_cnn.ipynb
@@ -0,0 +1,3132 @@
+{
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ },
+ "language_info": {
+ "pygments_lexer": "ipython3",
+ "nbconvert_exporter": "python",
+ "version": "3.6.4",
+ "file_extension": ".py",
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "name": "python",
+ "mimetype": "text/x-python"
+ },
+ "kaggle": {
+ "accelerator": "none",
+ "dataSources": [
+ {
+ "sourceId": 208170,
+ "sourceType": "datasetVersion",
+ "datasetId": 90131
+ }
+ ],
+ "dockerImageVersionId": 30301,
+ "isInternetEnabled": true,
+ "language": "python",
+ "sourceType": "notebook",
+ "isGpuEnabled": false
+ },
+ "colab": {
+ "provenance": [],
+ "toc_visible": true,
+ "gpuType": "T4"
+ },
+ "accelerator": "GPU"
+ },
+ "nbformat_minor": 0,
+ "nbformat": 4,
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Importing Libraries"
+ ],
+ "metadata": {
+ "id": "1KhBNrb1fir1"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns"
+ ],
+ "metadata": {
+ "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
+ "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
+ "execution": {
+ "iopub.status.busy": "2022-11-14T04:34:48.430767Z",
+ "iopub.execute_input": "2022-11-14T04:34:48.431246Z",
+ "iopub.status.idle": "2022-11-14T04:34:48.603521Z",
+ "shell.execute_reply.started": "2022-11-14T04:34:48.431209Z",
+ "shell.execute_reply": "2022-11-14T04:34:48.601497Z"
+ },
+ "trusted": true,
+ "id": "e2n0bD3cfJnd"
+ },
+ "execution_count": 1,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Loading Dataset"
+ ],
+ "metadata": {
+ "id": "fRoHXJOYfm3n"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "!unzip /content/kddcup.data_10_percent.gz.zip\n"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "Y19C8zpBfqXo",
+ "outputId": "14d06c2b-11da-43b4-f00a-c0b215269f74"
+ },
+ "execution_count": 2,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Archive: /content/kddcup.data_10_percent.gz.zip\n",
+ " inflating: kddcup.data_10_percent.gz \n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "path = \"/content/kddcup.data_10_percent.gz\"\n"
+ ],
+ "metadata": {
+ "id": "AwgYOgXefh28"
+ },
+ "execution_count": 3,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Prepocessing the data as taken dataset is subset"
+ ],
+ "metadata": {
+ "id": "cKkdwDJ-fJnZ"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "cols=\"\"\"duration,\n",
+ "protocol_type,\n",
+ "service,\n",
+ "flag,\n",
+ "src_bytes,\n",
+ "dst_bytes,\n",
+ "land,\n",
+ "wrong_fragment,\n",
+ "urgent,\n",
+ "hot,\n",
+ "num_failed_logins,\n",
+ "logged_in,\n",
+ "num_compromised,\n",
+ "root_shell,\n",
+ "su_attempted,\n",
+ "num_root,\n",
+ "num_file_creations,\n",
+ "num_shells,\n",
+ "num_access_files,\n",
+ "num_outbound_cmds,\n",
+ "is_host_login,\n",
+ "is_guest_login,\n",
+ "count,\n",
+ "srv_count,\n",
+ "serror_rate,\n",
+ "srv_serror_rate,\n",
+ "rerror_rate,\n",
+ "srv_rerror_rate,\n",
+ "same_srv_rate,\n",
+ "diff_srv_rate,\n",
+ "srv_diff_host_rate,\n",
+ "dst_host_count,\n",
+ "dst_host_srv_count,\n",
+ "dst_host_same_srv_rate,\n",
+ "dst_host_diff_srv_rate,\n",
+ "dst_host_same_src_port_rate,\n",
+ "dst_host_srv_diff_host_rate,\n",
+ "dst_host_serror_rate,\n",
+ "dst_host_srv_serror_rate,\n",
+ "dst_host_rerror_rate,\n",
+ "dst_host_srv_rerror_rate\"\"\"\n",
+ "\n",
+ "columns=[]\n",
+ "for c in cols.split(','):\n",
+ " if(c.strip()):\n",
+ " columns.append(c.strip())\n",
+ "\n",
+ "columns.append('target')\n",
+ "#print(columns)\n",
+ "print(len(columns))"
+ ],
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2022-11-14T04:34:48.778089Z",
+ "iopub.execute_input": "2022-11-14T04:34:48.778464Z",
+ "iopub.status.idle": "2022-11-14T04:34:48.785716Z",
+ "shell.execute_reply.started": "2022-11-14T04:34:48.778433Z",
+ "shell.execute_reply": "2022-11-14T04:34:48.784648Z"
+ },
+ "trusted": true,
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "rypxjiVLfJng",
+ "outputId": "e01ee99c-8729-4802-bb4f-9fc98e4a5995"
+ },
+ "execution_count": 4,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "42\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "attacks_types = {\n",
+ " 'normal': 'normal',\n",
+ "'back': 'dos',\n",
+ "'buffer_overflow': 'u2r',\n",
+ "'ftp_write': 'r2l',\n",
+ "'guess_passwd': 'r2l',\n",
+ "'imap': 'r2l',\n",
+ "'ipsweep': 'probe',\n",
+ "'land': 'dos',\n",
+ "'loadmodule': 'u2r',\n",
+ "'multihop': 'r2l',\n",
+ "'neptune': 'dos',\n",
+ "'nmap': 'probe',\n",
+ "'perl': 'u2r',\n",
+ "'phf': 'r2l',\n",
+ "'pod': 'dos',\n",
+ "'portsweep': 'probe',\n",
+ "'rootkit': 'u2r',\n",
+ "'satan': 'probe',\n",
+ "'smurf': 'dos',\n",
+ "'spy': 'r2l',\n",
+ "'teardrop': 'dos',\n",
+ "'warezclient': 'r2l',\n",
+ "'warezmaster': 'r2l',\n",
+ "}"
+ ],
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2022-11-14T04:34:49.259933Z",
+ "iopub.execute_input": "2022-11-14T04:34:49.26304Z",
+ "iopub.status.idle": "2022-11-14T04:34:49.269676Z",
+ "shell.execute_reply.started": "2022-11-14T04:34:49.262959Z",
+ "shell.execute_reply": "2022-11-14T04:34:49.268264Z"
+ },
+ "trusted": true,
+ "id": "DbYzs88BfJnh"
+ },
+ "execution_count": 5,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df = pd.read_csv(path,names=columns)\n",
+ "#Adding Attack Type column\n",
+ "df['Attack Type'] = df.target.apply(lambda r:attacks_types[r[:-1]])\n",
+ "\n",
+ "df.head()"
+ ],
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2022-11-14T04:34:49.623447Z",
+ "iopub.execute_input": "2022-11-14T04:34:49.62418Z",
+ "iopub.status.idle": "2022-11-14T04:34:51.038923Z",
+ "shell.execute_reply.started": "2022-11-14T04:34:49.62414Z",
+ "shell.execute_reply": "2022-11-14T04:34:51.037676Z"
+ },
+ "trusted": true,
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 273
+ },
+ "id": "9bIMzxxQfJni",
+ "outputId": "b8e83e4b-be93-464b-c041-7f353fb1929d"
+ },
+ "execution_count": 6,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " duration protocol_type service flag src_bytes dst_bytes land \\\n",
+ "0 0 tcp http SF 181 5450 0 \n",
+ "1 0 tcp http SF 239 486 0 \n",
+ "2 0 tcp http SF 235 1337 0 \n",
+ "3 0 tcp http SF 219 1337 0 \n",
+ "4 0 tcp http SF 217 2032 0 \n",
+ "\n",
+ " wrong_fragment urgent hot ... dst_host_same_srv_rate \\\n",
+ "0 0 0 0 ... 1.0 \n",
+ "1 0 0 0 ... 1.0 \n",
+ "2 0 0 0 ... 1.0 \n",
+ "3 0 0 0 ... 1.0 \n",
+ "4 0 0 0 ... 1.0 \n",
+ "\n",
+ " dst_host_diff_srv_rate dst_host_same_src_port_rate \\\n",
+ "0 0.0 0.11 \n",
+ "1 0.0 0.05 \n",
+ "2 0.0 0.03 \n",
+ "3 0.0 0.03 \n",
+ "4 0.0 0.02 \n",
+ "\n",
+ " dst_host_srv_diff_host_rate dst_host_serror_rate \\\n",
+ "0 0.0 0.0 \n",
+ "1 0.0 0.0 \n",
+ "2 0.0 0.0 \n",
+ "3 0.0 0.0 \n",
+ "4 0.0 0.0 \n",
+ "\n",
+ " dst_host_srv_serror_rate dst_host_rerror_rate dst_host_srv_rerror_rate \\\n",
+ "0 0.0 0.0 0.0 \n",
+ "1 0.0 0.0 0.0 \n",
+ "2 0.0 0.0 0.0 \n",
+ "3 0.0 0.0 0.0 \n",
+ "4 0.0 0.0 0.0 \n",
+ "\n",
+ " target Attack Type \n",
+ "0 normal. normal \n",
+ "1 normal. normal \n",
+ "2 normal. normal \n",
+ "3 normal. normal \n",
+ "4 normal. normal \n",
+ "\n",
+ "[5 rows x 43 columns]"
+ ],
+ "text/html": [
+ "\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " duration | \n",
+ " protocol_type | \n",
+ " service | \n",
+ " flag | \n",
+ " src_bytes | \n",
+ " dst_bytes | \n",
+ " land | \n",
+ " wrong_fragment | \n",
+ " urgent | \n",
+ " hot | \n",
+ " ... | \n",
+ " dst_host_same_srv_rate | \n",
+ " dst_host_diff_srv_rate | \n",
+ " dst_host_same_src_port_rate | \n",
+ " dst_host_srv_diff_host_rate | \n",
+ " dst_host_serror_rate | \n",
+ " dst_host_srv_serror_rate | \n",
+ " dst_host_rerror_rate | \n",
+ " dst_host_srv_rerror_rate | \n",
+ " target | \n",
+ " Attack Type | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " tcp | \n",
+ " http | \n",
+ " SF | \n",
+ " 181 | \n",
+ " 5450 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.11 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " normal. | \n",
+ " normal | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0 | \n",
+ " tcp | \n",
+ " http | \n",
+ " SF | \n",
+ " 239 | \n",
+ " 486 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.05 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " normal. | \n",
+ " normal | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0 | \n",
+ " tcp | \n",
+ " http | \n",
+ " SF | \n",
+ " 235 | \n",
+ " 1337 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.03 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " normal. | \n",
+ " normal | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 0 | \n",
+ " tcp | \n",
+ " http | \n",
+ " SF | \n",
+ " 219 | \n",
+ " 1337 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.03 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " normal. | \n",
+ " normal | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0 | \n",
+ " tcp | \n",
+ " http | \n",
+ " SF | \n",
+ " 217 | \n",
+ " 2032 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.02 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " normal. | \n",
+ " normal | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows ร 43 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df"
+ }
+ },
+ "metadata": {},
+ "execution_count": 6
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df['Attack Type'].value_counts()"
+ ],
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2022-11-14T04:34:51.040576Z",
+ "iopub.execute_input": "2022-11-14T04:34:51.041204Z",
+ "iopub.status.idle": "2022-11-14T04:34:51.071556Z",
+ "shell.execute_reply.started": "2022-11-14T04:34:51.041175Z",
+ "shell.execute_reply": "2022-11-14T04:34:51.070486Z"
+ },
+ "trusted": true,
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "GCfcFVIHfJni",
+ "outputId": "9ae16dfe-2981-48dd-ec72-748de98a4b42"
+ },
+ "execution_count": 7,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "Attack Type\n",
+ "dos 391458\n",
+ "normal 97278\n",
+ "probe 4107\n",
+ "r2l 1126\n",
+ "u2r 52\n",
+ "Name: count, dtype: int64"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 7
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# EDA"
+ ],
+ "metadata": {
+ "id": "Btki-mjCfJnj"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "# Function to create and save bar graphs\n",
+ "def bar_graph(feature, filename):\n",
+ " plt.figure(figsize=(10, 5)) # Adjust the figure size as needed\n",
+ " df[feature].value_counts().plot(kind=\"bar\")\n",
+ " plt.title(f\"Bar graph of {feature}\")\n",
+ " plt.savefig(f\"/content/{filename}.png\") # Save the plot as a .png file\n",
+ " plt.show()\n",
+ "\n",
+ "\n"
+ ],
+ "metadata": {
+ "id": "L9ltondDgO0D"
+ },
+ "execution_count": 12,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Create and save bar graphs for the specified features\n",
+ "bar_graph('protocol_type', 'protocol_type')\n",
+ "\n"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 507
+ },
+ "id": "34eRzFyxgVeR",
+ "outputId": "5d18077a-2adc-4795-e3da-563ff5440681"
+ },
+ "execution_count": 13,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAHqCAYAAAD2wITBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEXklEQVR4nO3deVhV5d7/8c8GZFAEnAB5JLA0FTUtHKLBoTiikh5Lc6ijaJqnBFOxUhvM0o5lJ6dSrCcTGzSzwUrLIVSsRCvSHFKPdpxKQTMBJWVcvz/6sR634IDdsh3er+va1+W+13et9V1L2vFx7XUvh2VZlgAAAAAARri5ugEAAAAAuJIQsgAAAADAIEIWAAAAABhEyAIAAAAAgwhZAAAAAGAQIQsAAAAADCJkAQAAAIBBhCwAAAAAMIiQBQAAAAAGEbIAAJeU8PBw3XXXXRd9P4WFhXr88ccVGhoqNzc3devW7aLv83LUrl07tWvXztVtAMBlhZAFABUsOTlZDofD6RUYGKj27dvriy++cHV7V40333xTL730knr06KG5c+dqxIgRrm5JkjRv3jxNnTrV1W38JTNnzlRycrKr2wAAl/FwdQMAcLV67rnnVLduXVmWpczMTCUnJ6tz58767LPPKuRKztVu5cqV+p//+R9NmTLF1a04mTdvnrZs2aLhw4e7upULNnPmTNWsWVP9+/d3dSsA4BKELABwkU6dOqlFixb2+4EDByooKEjz5883ErKKi4uVn58vb2/vv7yt0+Xm5qpKlSrGt1uRDh06pICAgIu+nyvhXAEAyoevCwLAJSIgIEA+Pj7y8HD+969///vfuuWWW1SjRg35+PgoMjJSH3zwQan1HQ6HEhIS9O6776px48by8vLS0qVLz7i/4uJijRs3TiEhIapcubLat2+vn376SeHh4U5XIEq+3piamqohQ4YoMDBQderUkSTt3btXQ4YMUYMGDeTj46MaNWro3nvv1Z49e5z2VbKNNWvW6J///Kdq1KghPz8/9evXT0ePHi2zv6+//lqtWrWSt7e3rr32Wr311lvndR5zc3M1cuRIhYaGysvLSw0aNNC///1vWZYlSdqzZ48cDodWrVqlrVu32l/ZXL169Rm3WXKf2PLly9W8eXN5e3srIiJCH330UZnHWda5kv68wlPydxMSEqL4+HhlZWXZy9u1a6clS5Zo7969dl/h4eH28kOHDtlh3NvbW82aNdPcuXNL9VtcXKxp06apadOm8vb2Vq1atdSxY0d9//33dk1hYaHGjx+v6667Tl5eXgoPD9cTTzyhvLy88zrPZztXW7duVWpqqn0M7dq103//+185HI4yrxyuXbtWDodD8+fPlySNGzdODodD27dvV8+ePeXn56caNWpo2LBhOnnyZKn133nnHUVGRsrHx0fVq1dX7969tX///r90HADwV3AlCwBcJDs7W7/99pssy9KhQ4f0yiuv6Pjx4/rHP/7hVDdt2jR17dpV999/v/Lz8/Xee+/p3nvv1eLFixUbG+tUu3LlSr3//vtKSEhQzZo1nX5BP92YMWM0adIkdenSRTExMfrxxx8VExNT5i+xkjRkyBDVqlVLY8eOVW5uriTpu+++09q1a9W7d2/VqVNHe/bsUVJSktq1a6effvpJlStXdtpGQkKCAgICNG7cOO3YsUNJSUnau3evVq9eLYfDYdft2rVLPXr00MCBAxUXF6c333xT/fv3V2RkpBo3bnzGY7IsS127dtWqVas0cOBANW/eXMuWLdNjjz2mX3/9VVOmTFGtWrX09ttv6/nnn9fx48c1ceJESVKjRo3OuF1J2rlzp3r16qWHHnpIcXFxmjNnju69914tXbpUf/vb3855rsaNG6dnn31W0dHRevjhh+3j/+677/TNN9+oUqVKevLJJ5Wdna1ffvnFDiO+vr6SpBMnTqhdu3batWuXEhISVLduXS1cuFD9+/dXVlaWhg0bZu9/4MCBSk5OVqdOnTRo0CAVFhbqq6++0rp16+yrp4MGDdLcuXPVo0cPjRw5UuvXr9fEiRO1bds2ffzxx2c9F2czdepUDR06VL6+vnryySclSUFBQbr22mt166236t133y11/9u7776rqlWr6u9//7vTeM+ePRUeHq6JEydq3bp1mj59uo4ePeoUuJ9//nk9/fTT6tmzpwYNGqTDhw/rlVdeUZs2bbRhw4YKuVoJAKVYAIAKNWfOHEtSqZeXl5eVnJxcqv6PP/5wep+fn281adLEuuOOO5zGJVlubm7W1q1bz9lDRkaG5eHhYXXr1s1pfNy4cZYkKy4urlS/t912m1VYWHjW3izLstLS0ixJ1ltvvVVqG5GRkVZ+fr49PmnSJEuS9cknn9hjYWFhliRrzZo19tihQ4csLy8va+TIkWc9rkWLFlmSrAkTJjiN9+jRw3I4HNauXbvssbZt21qNGzc+6/ZO7+nDDz+0x7Kzs63atWtbN954Y6njPP1cHTp0yPL09LQ6dOhgFRUV2eOvvvqqJcl688037bHY2FgrLCysVA9Tp061JFnvvPOOPZafn29FRUVZvr6+Vk5OjmVZlrVy5UpLkvXII4+U2kZxcbFlWZa1ceNGS5I1aNAgp+WPPvqoJclauXKlPda2bVurbdu25zpFTho3blzmOq+99polydq2bZvTMdSsWdPpZ+6ZZ56xJFldu3Z1Wn/IkCGWJOvHH3+0LMuy9uzZY7m7u1vPP/+8U93mzZstDw+PUuMAUFH4uiAAuMiMGTO0YsUKrVixQu+8847at2+vQYMGlfoKmo+Pj/3no0ePKjs7W7fffrt++OGHUtts27atIiIizrnvlJQUFRYWasiQIU7jQ4cOPeM6Dz74oNzd3c/YW0FBgY4cOaJ69eopICCgzP4GDx6sSpUq2e8ffvhheXh46PPPP3eqi4iI0O23326/r1Wrlho0aKD//ve/Zz2uzz//XO7u7nrkkUecxkeOHCnLsv7S7I0hISG6++677fclX3fcsGGDMjIynGpPP1dffvml8vPzNXz4cLm5uTnV+fn5acmSJefc/+eff67g4GD16dPHHqtUqZIeeeQRHT9+XKmpqZKkDz/8UA6HQ88880ypbZRcLSw534mJiU7LR44cKUnn1c+F6Nmzp7y9vfXuu+/aY8uWLdNvv/1W6gquJMXHxzu9L/n5LOn/o48+UnFxsXr27KnffvvNfgUHB6t+/fpatWrVRTkOADgXvi4IAC7SqlUrp4kv+vTpoxtvvFEJCQm666675OnpKUlavHixJkyYoI0bNzrdL3Pq1+tK1K1b97z2vXfvXklSvXr1nMarV6+uatWqlblOWds+ceKEJk6cqDlz5ujXX3+173uS/vw65Onq16/v9N7X11e1a9cudQ/XNddcU2rdatWqnfH+rRJ79+5VSEiIqlat6jRe8lXAkuO+EPXq1St1zq+//npJf97nFRwcbI+ffq5K9tugQQOncU9PT1177bXn1dfevXtVv359p5AmlT62n3/+WSEhIapevfpZt+Xm5lbq7z84OFgBAQF/6TydTUBAgLp06aJ58+Zp/Pjxkv78quD//M//6I477ihVf/rPy3XXXSc3Nzf752Xnzp2yLKtUXYlTAz0AVCRCFgBcItzc3NS+fXtNmzZNO3fuVOPGjfXVV1+pa9euatOmjWbOnKnatWurUqVKmjNnjubNm1dqG6deWTKtrG0PHTpUc+bM0fDhwxUVFSV/f385HA717t1bxcXFF7yv06+YlTg1xF3KLubfg0llBfWLrV+/flq4cKHWrl2rpk2b6tNPP9WQIUNKhceynN5vcXGxHA6HvvjiizJ/ZkruZwOAikbIAoBLSGFhoSTp+PHjkv786pe3t7eWLVsmLy8vu27OnDl/aT9hYWGS/pxg4tSrLkeOHDnn1aJTffDBB4qLi9PLL79sj508edJpxrxT7dy5U+3bt7ffHz9+XAcPHlTnzp3LeQRlCwsL05dffqljx445Xc3avn27vfxC7dq1S5ZlOf2i/5///EeSzjrByKn73bFjh6699lp7PD8/X7t371Z0dLQ9dqbgExYWpk2bNqm4uNgpkJx+bNddd52WLVum33///YxXs8LCwlRcXKydO3c6TfiRmZmprKysv3SeznYMktSxY0fVqlVL7777rlq3bq0//vhDffv2LbN2586dTj+fu3btUnFxsX2+r7vuOlmWpbp169pXFQHgUsA9WQBwiSgoKNDy5cvl6elp/+Lr7u4uh8OhoqIiu27Pnj1atGjRX9rXnXfeKQ8PDyUlJTmNv/rqq+Xajru7e6mrS6+88opTv6d6/fXXVVBQYL9PSkpSYWGhOnXqVK79nknnzp1VVFRU6jimTJkih8Pxl/Zz4MABp1n3cnJy9NZbb6l58+ZOXxUsS3R0tDw9PTV9+nSn8zV79mxlZ2c7zRJZpUqVMr9q2blzZ2VkZGjBggX2WGFhoV555RX5+vqqbdu2kqTu3bvLsiw9++yzpbZRsu+SUDt16lSn5ZMnT5akUrNWlleVKlXOGLQ9PDzUp08fvf/++0pOTlbTpk11ww03lFk7Y8YMp/evvPKKJNl/j/fcc4/c3d317LPPlvo5tCxLR44c+UvHAQAXiitZAOAiX3zxhX0V4tChQ5o3b5527typ0aNHy8/PT9Kfv+xOnjxZHTt21H333adDhw5pxowZqlevnjZt2nTB+w4KCtKwYcP08ssvq2vXrurYsaN+/PFHffHFF6pZs+Z5f43srrvu0ttvvy1/f39FREQoLS1NX375pWrUqFFmfX5+vu6880717NlTO3bs0MyZM3Xbbbepa9euF3wsp+rSpYvat2+vJ598Unv27FGzZs20fPlyffLJJxo+fLiuu+66C9729ddfr4EDB+q7775TUFCQ3nzzTWVmZp7XVcVatWppzJgxevbZZ9WxY0d17drVPv6WLVs6TfoQGRmpBQsWKDExUS1btpSvr6+6dOmiwYMH67XXXlP//v2Vnp6u8PBwffDBB/rmm280depU+8pd+/bt1bdvX02fPl07d+5Ux44dVVxcrK+++krt27dXQkKCmjVrpri4OL3++uvKyspS27Zt9e2332ru3Lnq1q2b09XGCxEZGamkpCRNmDBB9erVU2BgoNM9V/369dP06dO1atUqvfjii2fczu7du+2fz7S0NL3zzju677771KxZM0l/XsmaMGGCxowZoz179qhbt26qWrWqdu/erY8//liDBw/Wo48++peOBQAuiGsmNQSAq1dZU7h7e3tbzZs3t5KSkuxptkvMnj3bql+/vuXl5WU1bNjQmjNnjj3F9akkWfHx8efdR2FhofX0009bwcHBlo+Pj3XHHXdY27Zts2rUqGE99NBDpfr97rvvSm3j6NGj1oABA6yaNWtavr6+VkxMjLV9+3YrLCyszGngU1NTrcGDB1vVqlWzfH19rfvvv986cuSI0zbDwsKs2NjYUvs636nEjx07Zo0YMcIKCQmxKlWqZNWvX9966aWXSp3X8k7hHhsbay1btsy64YYb7L+LhQsXOtWd7VxZ1p9Ttjds2NCqVKmSFRQUZD388MPW0aNHnWqOHz9u3XfffVZAQIAlyWk698zMTPt8e3p6Wk2bNrXmzJlTaj+FhYXWSy+9ZDVs2NDy9PS0atWqZXXq1MlKT0+3awoKCqxnn33Wqlu3rlWpUiUrNDTUGjNmjHXy5MlS56m8U7hnZGRYsbGxVtWqVS1JZa7fuHFjy83Nzfrll19KLSv5+f7pp5+sHj16WFWrVrWqVatmJSQkWCdOnChV/+GHH1q33XabVaVKFatKlSpWw4YNrfj4eGvHjh3l6hsATHFY1mVyFzEA4KLLyspStWrVNGHCBPtBsiYkJydrwIAB+u6775xmVLxchIeHq0mTJlq8eLGrW7li3HjjjapevbpSUlJKLSt5cPPhw4dVs2ZNF3QHAH8N92QBwFXqxIkTpcZK7tFp165dxTaDq8r333+vjRs3ql+/fq5uBQAuCu7JAoCr1IIFC5ScnKzOnTvL19dXX3/9tebPn68OHTro1ltvdXV7uAQdPnz4jJOaSH8+9+tsz+fasmWL0tPT9fLLL6t27drq1avXxWgTAFyOkAUAV6kbbrhBHh4emjRpknJycuzJMCZMmODq1nCJatmy5VkfVNy2bVutXr36jMs/+OADPffcc2rQoIHmz58vb2/vi9AlALge92QBAIDz8s0335T5NdMS1apVU2RkZAV2BACXJkIWAAAAABjExBcAAAAAYBD3ZJ1FcXGxDhw4oKpVq573gzkBAAAAXHksy9KxY8cUEhIiN7ezX6siZJ3FgQMHFBoa6uo2AAAAAFwi9u/frzp16py1hpB1FlWrVpX054n08/NzcTcAAAAAXCUnJ0ehoaF2RjgbQtZZlHxF0M/Pj5AFAAAA4LxuI2LiCwAAAAAwiJAFAAAAAAYRsgAAAADAIEIWAAAAABhEyAIAAAAAgwhZAAAAAGAQIQsAAAAADCJkAQAAAIBBhCwAAAAAMIiQBQAAAAAGEbIAAAAAwCBCFgAAAAAYRMgCAAAAAIMIWQAAAABgECELAAAAAAzycHUDuPSFj17i6hbgYnteiHV1CwAAAJcNrmQBAAAAgEGELAAAAAAwiJAFAAAAAAYRsgAAAADAIEIWAAAAABhEyAIAAAAAgwhZAAAAAGAQIQsAAAAADCJkAQAAAIBBhCwAAAAAMIiQBQAAAAAGEbIAAAAAwCBCFgAAAAAYRMgCAAAAAIMIWQAAAABgECELAAAAAAwiZAEAAACAQYQsAAAAADCIkAUAAAAABhGyAAAAAMAgQhYAAAAAGETIAgAAAACDCFkAAAAAYBAhCwAAAAAMImQBAAAAgEGELAAAAAAwiJAFAAAAAAYRsgAAAADAIEIWAAAAABhEyAIAAAAAgwhZAAAAAGAQIQsAAAAADCJkAQAAAIBBhCwAAAAAMIiQBQAAAAAGEbIAAAAAwCBCFgAAAAAYRMgCAAAAAIMIWQAAAABgULlC1sSJE9WyZUtVrVpVgYGB6tatm3bs2OFU065dOzkcDqfXQw895FSzb98+xcbGqnLlygoMDNRjjz2mwsJCp5rVq1frpptukpeXl+rVq6fk5ORS/cyYMUPh4eHy9vZW69at9e233zotP3nypOLj41WjRg35+vqqe/fuyszMLM8hAwAAAEC5lCtkpaamKj4+XuvWrdOKFStUUFCgDh06KDc316nuwQcf1MGDB+3XpEmT7GVFRUWKjY1Vfn6+1q5dq7lz5yo5OVljx461a3bv3q3Y2Fi1b99eGzdu1PDhwzVo0CAtW7bMrlmwYIESExP1zDPP6IcfflCzZs0UExOjQ4cO2TUjRozQZ599poULFyo1NVUHDhzQPffcU+6TBAAAAADny2FZlnWhKx8+fFiBgYFKTU1VmzZtJP15Jat58+aaOnVqmet88cUXuuuuu3TgwAEFBQVJkmbNmqVRo0bp8OHD8vT01KhRo7RkyRJt2bLFXq93797KysrS0qVLJUmtW7dWy5Yt9eqrr0qSiouLFRoaqqFDh2r06NHKzs5WrVq1NG/ePPXo0UOStH37djVq1EhpaWm6+eabS/WWl5envLw8+31OTo5CQ0OVnZ0tPz+/Cz1Nl73w0Utc3QJcbM8Lsa5uAQAAwKVycnLk7+9/XtngL92TlZ2dLUmqXr260/i7776rmjVrqkmTJhozZoz++OMPe1laWpqaNm1qByxJiomJUU5OjrZu3WrXREdHO20zJiZGaWlpkqT8/Hylp6c71bi5uSk6OtquSU9PV0FBgVNNw4YNdc0119g1p5s4caL8/f3tV2hoaLnPCQAAAICrm8eFrlhcXKzhw4fr1ltvVZMmTezx++67T2FhYQoJCdGmTZs0atQo7dixQx999JEkKSMjwylgSbLfZ2RknLUmJydHJ06c0NGjR1VUVFRmzfbt2+1teHp6KiAgoFRNyX5ON2bMGCUmJtrvS65kAQAAAMD5uuCQFR8fry1btujrr792Gh88eLD956ZNm6p27dq688479fPPP+u666678E4rgJeXl7y8vFzdBgAAAIDL2AV9XTAhIUGLFy/WqlWrVKdOnbPWtm7dWpK0a9cuSVJwcHCpGf5K3gcHB5+1xs/PTz4+PqpZs6bc3d3LrDl1G/n5+crKyjpjDQAAAACYVq6QZVmWEhIS9PHHH2vlypWqW7fuOdfZuHGjJKl27dqSpKioKG3evNlpFsAVK1bIz89PERERdk1KSorTdlasWKGoqChJkqenpyIjI51qiouLlZKSYtdERkaqUqVKTjU7duzQvn377BoAAAAAMK1cXxeMj4/XvHnz9Mknn6hq1ar2vU3+/v7y8fHRzz//rHnz5qlz586qUaOGNm3apBEjRqhNmza64YYbJEkdOnRQRESE+vbtq0mTJikjI0NPPfWU4uPj7a/qPfTQQ3r11Vf1+OOP64EHHtDKlSv1/vvva8mS/5vlLjExUXFxcWrRooVatWqlqVOnKjc3VwMGDLB7GjhwoBITE1W9enX5+flp6NChioqKKnNmQQAAAAAwoVwhKykpSdKf07Sfas6cOerfv788PT315Zdf2oEnNDRU3bt311NPPWXXuru7a/HixXr44YcVFRWlKlWqKC4uTs8995xdU7duXS1ZskQjRozQtGnTVKdOHb3xxhuKiYmxa3r16qXDhw9r7NixysjIUPPmzbV06VKnyTCmTJkiNzc3de/eXXl5eYqJidHMmTPLdYIAAAAAoDz+0nOyrnTlmQv/SsZzssBzsgAAwNWuwp6TBQAAAABwRsgCAAAAAIMIWQAAAABgECELAAAAAAwiZAEAAACAQYQsAAAAADCIkAUAAAAABhGyAAAAAMAgQhYAAAAAGETIAgAAAACDCFkAAAAAYBAhCwAAAAAMImQBAAAAgEGELAAAAAAwiJAFAAAAAAYRsgAAAADAIEIWAAAAABhEyAIAAAAAgwhZAAAAAGAQIQsAAAAADCJkAQAAAIBBhCwAAAAAMIiQBQAAAAAGEbIAAAAAwCBCFgAAAAAYRMgCAAAAAIMIWQAAAABgECELAAAAAAwiZAEAAACAQYQsAAAAADCIkAUAAAAABhGyAAAAAMAgQhYAAAAAGETIAgAAAACDCFkAAAAAYBAhCwAAAAAMImQBAAAAgEGELAAAAAAwiJAFAAAAAAYRsgAAAADAIEIWAAAAABhEyAIAAAAAgwhZAAAAAGAQIQsAAAAADCJkAQAAAIBBhCwAAAAAMIiQBQAAAAAGEbIAAAAAwCBCFgAAAAAYRMgCAAAAAIMIWQAAAABgECELAAAAAAwiZAEAAACAQeUKWRMnTlTLli1VtWpVBQYGqlu3btqxY4dTzcmTJxUfH68aNWrI19dX3bt3V2ZmplPNvn37FBsbq8qVKyswMFCPPfaYCgsLnWpWr16tm266SV5eXqpXr56Sk5NL9TNjxgyFh4fL29tbrVu31rffflvuXgAAAADApHKFrNTUVMXHx2vdunVasWKFCgoK1KFDB+Xm5to1I0aM0GeffaaFCxcqNTVVBw4c0D333GMvLyoqUmxsrPLz87V27VrNnTtXycnJGjt2rF2ze/duxcbGqn379tq4caOGDx+uQYMGadmyZXbNggULlJiYqGeeeUY//PCDmjVrppiYGB06dOi8ewEAAAAA0xyWZVkXuvLhw4cVGBio1NRUtWnTRtnZ2apVq5bmzZunHj16SJK2b9+uRo0aKS0tTTfffLO++OIL3XXXXTpw4ICCgoIkSbNmzdKoUaN0+PBheXp6atSoUVqyZIm2bNli76t3797KysrS0qVLJUmtW7dWy5Yt9eqrr0qSiouLFRoaqqFDh2r06NHn1cu55OTkyN/fX9nZ2fLz87vQ03TZCx+9xNUtwMX2vBDr6hYAAABcqjzZ4C/dk5WdnS1Jql69uiQpPT1dBQUFio6OtmsaNmyoa665RmlpaZKktLQ0NW3a1A5YkhQTE6OcnBxt3brVrjl1GyU1JdvIz89Xenq6U42bm5uio6PtmvPp5XR5eXnKyclxegEAAABAeVxwyCouLtbw4cN16623qkmTJpKkjIwMeXp6KiAgwKk2KChIGRkZds2pAatkecmys9Xk5OToxIkT+u2331RUVFRmzanbOFcvp5s4caL8/f3tV2ho6HmeDQAAAAD40wWHrPj4eG3ZskXvvfeeyX5casyYMcrOzrZf+/fvd3VLAAAAAC4zHheyUkJCghYvXqw1a9aoTp069nhwcLDy8/OVlZXldAUpMzNTwcHBds3pswCWzPh3as3pswBmZmbKz89PPj4+cnd3l7u7e5k1p27jXL2czsvLS15eXuU4EwAAAADgrFxXsizLUkJCgj7++GOtXLlSdevWdVoeGRmpSpUqKSUlxR7bsWOH9u3bp6ioKElSVFSUNm/e7DQL4IoVK+Tn56eIiAi75tRtlNSUbMPT01ORkZFONcXFxUpJSbFrzqcXAAAAADCtXFey4uPjNW/ePH3yySeqWrWqfW+Tv7+/fHx85O/vr4EDByoxMVHVq1eXn5+fhg4dqqioKHs2vw4dOigiIkJ9+/bVpEmTlJGRoaeeekrx8fH2VaSHHnpIr776qh5//HE98MADWrlypd5//30tWfJ/s9wlJiYqLi5OLVq0UKtWrTR16lTl5uZqwIABdk/n6gUAAAAATCtXyEpKSpIktWvXzml8zpw56t+/vyRpypQpcnNzU/fu3ZWXl6eYmBjNnDnTrnV3d9fixYv18MMPKyoqSlWqVFFcXJyee+45u6Zu3bpasmSJRowYoWnTpqlOnTp64403FBMTY9f06tVLhw8f1tixY5WRkaHmzZtr6dKlTpNhnKsXAAAAADDtLz0n60rHc7L+xHOywHOyAADA1a7CnpMFAAAAAHBGyAIAAAAAgwhZAAAAAGAQIQsAAAAADCJkAQAAAIBBhCwAAAAAMKhcz8kCAFydeJQDeJQDAJw/rmQBAAAAgEGELAAAAAAwiJAFAAAAAAYRsgAAAADAIEIWAAAAABhEyAIAAAAAgwhZAAAAAGAQIQsAAAAADCJkAQAAAIBBhCwAAAAAMIiQBQAAAAAGEbIAAAAAwCBCFgAAAAAYRMgCAAAAAIMIWQAAAABgECELAAAAAAwiZAEAAACAQYQsAAAAADCIkAUAAAAABhGyAAAAAMAgQhYAAAAAGETIAgAAAACDCFkAAAAAYBAhCwAAAAAMImQBAAAAgEGELAAAAAAwiJAFAAAAAAYRsgAAAADAIEIWAAAAABhEyAIAAAAAgwhZAAAAAGAQIQsAAAAADCJkAQAAAIBBhCwAAAAAMIiQBQAAAAAGEbIAAAAAwCBCFgAAAAAYRMgCAAAAAIMIWQAAAABgECELAAAAAAwiZAEAAACAQYQsAAAAADCIkAUAAAAABhGyAAAAAMAgQhYAAAAAGETIAgAAAACDCFkAAAAAYFC5Q9aaNWvUpUsXhYSEyOFwaNGiRU7L+/fvL4fD4fTq2LGjU83vv/+u+++/X35+fgoICNDAgQN1/Phxp5pNmzbp9ttvl7e3t0JDQzVp0qRSvSxcuFANGzaUt7e3mjZtqs8//9xpuWVZGjt2rGrXri0fHx9FR0dr586d5T1kAAAAADhv5Q5Zubm5atasmWbMmHHGmo4dO+rgwYP2a/78+U7L77//fm3dulUrVqzQ4sWLtWbNGg0ePNhenpOTow4dOigsLEzp6el66aWXNG7cOL3++ut2zdq1a9WnTx8NHDhQGzZsULdu3dStWzdt2bLFrpk0aZKmT5+uWbNmaf369apSpYpiYmJ08uTJ8h42AAAAAJwXh2VZ1gWv7HDo448/Vrdu3eyx/v37Kysrq9QVrhLbtm1TRESEvvvuO7Vo0UKStHTpUnXu3Fm//PKLQkJClJSUpCeffFIZGRny9PSUJI0ePVqLFi3S9u3bJUm9evVSbm6uFi9ebG/75ptvVvPmzTVr1ixZlqWQkBCNHDlSjz76qCQpOztbQUFBSk5OVu/evc95fDk5OfL391d2drb8/Pwu5BRdEcJHL3F1C3CxPS/EuroFuBifA+BzAMDVrjzZ4KLck7V69WoFBgaqQYMGevjhh3XkyBF7WVpamgICAuyAJUnR0dFyc3PT+vXr7Zo2bdrYAUuSYmJitGPHDh09etSuiY6OdtpvTEyM0tLSJEm7d+9WRkaGU42/v79at25t15wuLy9POTk5Ti8AAAAAKA/jIatjx4566623lJKSohdffFGpqanq1KmTioqKJEkZGRkKDAx0WsfDw0PVq1dXRkaGXRMUFORUU/L+XDWnLj91vbJqTjdx4kT5+/vbr9DQ0HIfPwAAAICrm4fpDZ76NbymTZvqhhtu0HXXXafVq1frzjvvNL07o8aMGaPExET7fU5ODkELAAAAQLlc9Cncr732WtWsWVO7du2SJAUHB+vQoUNONYWFhfr9998VHBxs12RmZjrVlLw/V82py09dr6ya03l5ecnPz8/pBQAAAADlcdFD1i+//KIjR46odu3akqSoqChlZWUpPT3drlm5cqWKi4vVunVru2bNmjUqKCiwa1asWKEGDRqoWrVqdk1KSorTvlasWKGoqChJUt26dRUcHOxUk5OTo/Xr19s1AAAAAGBauUPW8ePHtXHjRm3cuFHSnxNMbNy4Ufv27dPx48f12GOPad26ddqzZ49SUlL097//XfXq1VNMTIwkqVGjRurYsaMefPBBffvtt/rmm2+UkJCg3r17KyQkRJJ03333ydPTUwMHDtTWrVu1YMECTZs2zemrfMOGDdPSpUv18ssva/v27Ro3bpy+//57JSQkSPpz5sPhw4drwoQJ+vTTT7V582b169dPISEhTrMhAgAAAIBJ5b4n6/vvv1f79u3t9yXBJy4uTklJSdq0aZPmzp2rrKwshYSEqEOHDho/fry8vLzsdd59910lJCTozjvvlJubm7p3767p06fby/39/bV8+XLFx8crMjJSNWvW1NixY52epXXLLbdo3rx5euqpp/TEE0+ofv36WrRokZo0aWLXPP7448rNzdXgwYOVlZWl2267TUuXLpW3t3d5DxsAAAAAzstfek7WlY7nZP2J5+OA5+OAzwHwOQDgaufy52QBAAAAwNWKkAUAAAAABhGyAAAAAMAgQhYAAAAAGETIAgAAAACDCFkAAAAAYBAhCwAAAAAMImQBAAAAgEGELAAAAAAwiJAFAAAAAAYRsgAAAADAIEIWAAAAABhEyAIAAAAAgwhZAAAAAGAQIQsAAAAADCJkAQAAAIBBhCwAAAAAMIiQBQAAAAAGEbIAAAAAwCBCFgAAAAAYRMgCAAAAAIMIWQAAAABgECELAAAAAAwiZAEAAACAQYQsAAAAADCIkAUAAAAABhGyAAAAAMAgQhYAAAAAGETIAgAAAACDCFkAAAAAYBAhCwAAAAAMImQBAAAAgEGELAAAAAAwiJAFAAAAAAYRsgAAAADAIEIWAAAAABhEyAIAAAAAgwhZAAAAAGAQIQsAAAAADCJkAQAAAIBBhCwAAAAAMIiQBQAAAAAGEbIAAAAAwCBCFgAAAAAYRMgCAAAAAIMIWQAAAABgECELAAAAAAwiZAEAAACAQYQsAAAAADCIkAUAAAAABhGyAAAAAMAgQhYAAAAAGETIAgAAAACDCFkAAAAAYFC5Q9aaNWvUpUsXhYSEyOFwaNGiRU7LLcvS2LFjVbt2bfn4+Cg6Olo7d+50qvn99991//33y8/PTwEBARo4cKCOHz/uVLNp0ybdfvvt8vb2VmhoqCZNmlSql4ULF6phw4by9vZW06ZN9fnnn5e7FwAAAAAwqdwhKzc3V82aNdOMGTPKXD5p0iRNnz5ds2bN0vr161WlShXFxMTo5MmTds3999+vrVu3asWKFVq8eLHWrFmjwYMH28tzcnLUoUMHhYWFKT09XS+99JLGjRun119/3a5Zu3at+vTpo4EDB2rDhg3q1q2bunXrpi1btpSrFwAAAAAwyWFZlnXBKzsc+vjjj9WtWzdJf145CgkJ0ciRI/Xoo49KkrKzsxUUFKTk5GT17t1b27ZtU0REhL777ju1aNFCkrR06VJ17txZv/zyi0JCQpSUlKQnn3xSGRkZ8vT0lCSNHj1aixYt0vbt2yVJvXr1Um5urhYvXmz3c/PNN6t58+aaNWvWefVyury8POXl5dnvc3JyFBoaquzsbPn5+V3oabrshY9e4uoW4GJ7Xoh1dQtwMT4HwOcAgKtdTk6O/P39zysbGL0na/fu3crIyFB0dLQ95u/vr9atWystLU2SlJaWpoCAADtgSVJ0dLTc3Ny0fv16u6ZNmzZ2wJKkmJgY7dixQ0ePHrVrTt1PSU3Jfs6nl9NNnDhR/v7+9is0NPSvnA4AAAAAVyGjISsjI0OSFBQU5DQeFBRkL8vIyFBgYKDTcg8PD1WvXt2ppqxtnLqPM9WcuvxcvZxuzJgxys7Otl/79+8/j6MGAAAAgP/j4eoGLiVeXl7y8vJydRsAAAAALmNGr2QFBwdLkjIzM53GMzMz7WXBwcE6dOiQ0/LCwkL9/vvvTjVlbePUfZyp5tTl5+oFAAAAAEwzGrLq1q2r4OBgpaSk2GM5OTlav369oqKiJElRUVHKyspSenq6XbNy5UoVFxerdevWds2aNWtUUFBg16xYsUINGjRQtWrV7JpT91NSU7Kf8+kFAAAAAEwrd8g6fvy4Nm7cqI0bN0r6c4KJjRs3at++fXI4HBo+fLgmTJigTz/9VJs3b1a/fv0UEhJiz0DYqFEjdezYUQ8++KC+/fZbffPNN0pISFDv3r0VEhIiSbrvvvvk6empgQMHauvWrVqwYIGmTZumxMREu49hw4Zp6dKlevnll7V9+3aNGzdO33//vRISEiTpvHoBAAAAANPKfU/W999/r/bt29vvS4JPXFyckpOT9fjjjys3N1eDBw9WVlaWbrvtNi1dulTe3t72Ou+++64SEhJ05513ys3NTd27d9f06dPt5f7+/lq+fLni4+MVGRmpmjVrauzYsU7P0rrllls0b948PfXUU3riiSdUv359LVq0SE2aNLFrzqcXAAAAADDpLz0n60pXnrnwr2Q8Hwc8Hwd8DoDPAQBXO5c9JwsAAAAArnaELAAAAAAwiJAFAAAAAAYRsgAAAADAIEIWAAAAABhEyAIAAAAAgwhZAAAAAGAQIQsAAAAADCJkAQAAAIBBhCwAAAAAMIiQBQAAAAAGEbIAAAAAwCBCFgAAAAAYRMgCAAAAAIMIWQAAAABgECELAAAAAAwiZAEAAACAQYQsAAAAADCIkAUAAAAABhGyAAAAAMAgQhYAAAAAGETIAgAAAACDCFkAAAAAYBAhCwAAAAAMImQBAAAAgEGELAAAAAAwiJAFAAAAAAYRsgAAAADAIEIWAAAAABhEyAIAAAAAgwhZAAAAAGAQIQsAAAAADCJkAQAAAIBBhCwAAAAAMIiQBQAAAAAGEbIAAAAAwCBCFgAAAAAYRMgCAAAAAIMIWQAAAABgECELAAAAAAwiZAEAAACAQYQsAAAAADCIkAUAAAAABhGyAAAAAMAgQhYAAAAAGETIAgAAAACDCFkAAAAAYBAhCwAAAAAMImQBAAAAgEGELAAAAAAwiJAFAAAAAAYRsgAAAADAIEIWAAAAABhkPGSNGzdODofD6dWwYUN7+cmTJxUfH68aNWrI19dX3bt3V2ZmptM29u3bp9jYWFWuXFmBgYF67LHHVFhY6FSzevVq3XTTTfLy8lK9evWUnJxcqpcZM2YoPDxc3t7eat26tb799lvThwsAAAAATi7KlazGjRvr4MGD9uvrr7+2l40YMUKfffaZFi5cqNTUVB04cED33HOPvbyoqEixsbHKz8/X2rVrNXfuXCUnJ2vs2LF2ze7duxUbG6v27dtr48aNGj58uAYNGqRly5bZNQsWLFBiYqKeeeYZ/fDDD2rWrJliYmJ06NChi3HIAAAAACDpIoUsDw8PBQcH26+aNWtKkrKzszV79mxNnjxZd9xxhyIjIzVnzhytXbtW69atkyQtX75cP/30k9555x01b95cnTp10vjx4zVjxgzl5+dLkmbNmqW6devq5ZdfVqNGjZSQkKAePXpoypQpdg+TJ0/Wgw8+qAEDBigiIkKzZs1S5cqV9eabb16MQwYAAAAASRcpZO3cuVMhISG69tprdf/992vfvn2SpPT0dBUUFCg6Otqubdiwoa655hqlpaVJktLS0tS0aVMFBQXZNTExMcrJydHWrVvtmlO3UVJTso38/Hylp6c71bi5uSk6OtquKUteXp5ycnKcXgAAAABQHsZDVuvWrZWcnKylS5cqKSlJu3fv1u23365jx44pIyNDnp6eCggIcFonKChIGRkZkqSMjAyngFWyvGTZ2WpycnJ04sQJ/fbbbyoqKiqzpmQbZZk4caL8/f3tV2ho6AWdAwAAAABXLw/TG+zUqZP95xtuuEGtW7dWWFiY3n//ffn4+JjenVFjxoxRYmKi/T4nJ4egBQAAAKBcLvoU7gEBAbr++uu1a9cuBQcHKz8/X1lZWU41mZmZCg4OliQFBweXmm2w5P25avz8/OTj46OaNWvK3d29zJqSbZTFy8tLfn5+Ti8AAAAAKI+LHrKOHz+un3/+WbVr11ZkZKQqVaqklJQUe/mOHTu0b98+RUVFSZKioqK0efNmp1kAV6xYIT8/P0VERNg1p26jpKZkG56enoqMjHSqKS4uVkpKil0DAAAAABeD8ZD16KOPKjU1VXv27NHatWt19913y93dXX369JG/v78GDhyoxMRErVq1Sunp6RowYICioqJ08803S5I6dOigiIgI9e3bVz/++KOWLVump556SvHx8fLy8pIkPfTQQ/rvf/+rxx9/XNu3b9fMmTP1/vvva8SIEXYfiYmJ+t///V/NnTtX27Zt08MPP6zc3FwNGDDA9CEDAAAAgM34PVm//PKL+vTpoyNHjqhWrVq67bbbtG7dOtWqVUuSNGXKFLm5ual79+7Ky8tTTEyMZs6caa/v7u6uxYsX6+GHH1ZUVJSqVKmiuLg4Pffcc3ZN3bp1tWTJEo0YMULTpk1TnTp19MYbbygmJsau6dWrlw4fPqyxY8cqIyNDzZs319KlS0tNhgEAAAAAJjksy7Jc3cSlKicnR/7+/srOzr6q788KH73E1S3Axfa8EOvqFuBifA6AzwEAV7vyZIOLfk8WAAAAAFxNCFkAAAAAYBAhCwAAAAAMImQBAAAAgEGELAAAAAAwiJAFAAAAAAYRsgAAAADAIEIWAAAAABhEyAIAAAAAgwhZAAAAAGAQIQsAAAAADCJkAQAAAIBBhCwAAAAAMIiQBQAAAAAGEbIAAAAAwCBCFgAAAAAYRMgCAAAAAIMIWQAAAABgECELAAAAAAwiZAEAAACAQYQsAAAAADCIkAUAAAAABhGyAAAAAMAgQhYAAAAAGETIAgAAAACDCFkAAAAAYBAhCwAAAAAMImQBAAAAgEGELAAAAAAwiJAFAAAAAAYRsgAAAADAIA9XNwAAAIDLQ/joJa5uAS6254VYV7dwWeBKFgAAAAAYRMgCAAAAAIMIWQAAAABgECELAAAAAAwiZAEAAACAQYQsAAAAADCIkAUAAAAABhGyAAAAAMAgQhYAAAAAGETIAgAAAACDCFkAAAAAYBAhCwAAAAAMImQBAAAAgEGELAAAAAAwiJAFAAAAAAYRsgAAAADAIEIWAAAAABhEyAIAAAAAgwhZAAAAAGAQIQsAAAAADCJkAQAAAIBBhCwAAAAAMOiqCFkzZsxQeHi4vL291bp1a3377beubgkAAADAFeqKD1kLFixQYmKinnnmGf3www9q1qyZYmJidOjQIVe3BgAAAOAKdMWHrMmTJ+vBBx/UgAEDFBERoVmzZqly5cp68803Xd0aAAAAgCuQh6sbuJjy8/OVnp6uMWPG2GNubm6Kjo5WWlpaqfq8vDzl5eXZ77OzsyVJOTk5F7/ZS1hx3h+ubgEudrX/NwA+B8DnAP7EZwGu5s+CkmO3LOuctVd0yPrtt99UVFSkoKAgp/GgoCBt3769VP3EiRP17LPPlhoPDQ29aD0ClwP/qa7uAICr8TkAQOKzQJKOHTsmf3//s9Zc0SGrvMaMGaPExET7fXFxsX7//XfVqFFDDofDhZ3BlXJychQaGqr9+/fLz8/P1e0AcAE+BwDwOQDLsnTs2DGFhIScs/aKDlk1a9aUu7u7MjMzncYzMzMVHBxcqt7Ly0teXl5OYwEBARezRVxG/Pz8+FAFrnJ8DgDgc+Dqdq4rWCWu6IkvPD09FRkZqZSUFHusuLhYKSkpioqKcmFnAAAAAK5UV/SVLElKTExUXFycWrRooVatWmnq1KnKzc3VgAEDXN0aAAAAgCvQFR+yevXqpcOHD2vs2LHKyMhQ8+bNtXTp0lKTYQBn4uXlpWeeeabUV0kBXD34HADA5wDKw2GdzxyEAAAAAIDzckXfkwUAAAAAFY2QBQAAAAAGEbIAAAAAwCBCFgAAAAAYRMgCAAAAAIMIWQAAnMX+/fu1f/9+V7cBALiMELKAc7AsSzzpALi6FBYW6umnn5a/v7/Cw8MVHh4uf39/PfXUUyooKHB1ewCAS9wV/zBi4ELNnj1bU6ZM0c6dOyVJ9evX1/DhwzVo0CAXdwbgYhs6dKg++ugjTZo0SVFRUZKktLQ0jRs3TkeOHFFSUpKLOwRQUY4eParZs2dr27ZtkqRGjRrpgQceUPXq1V3cGS5lPIwYKMPYsWM1efJkDR061OkXrFdffVUjRozQc8895+IOAVxM/v7+eu+999SpUyen8c8//1x9+vRRdna2izoDUJHWrFmjrl27ys/PTy1atJAkpaenKysrS5999pnatGnj4g5xqSJkAWWoVauWpk+frj59+jiNz58/X0OHDtVvv/3mos4AVITAwEClpqaqUaNGTuPbtm1TmzZtdPjwYRd1BqAiNW3aVFFRUUpKSpK7u7skqaioSEOGDNHatWu1efNmF3eISxX3ZAFlKCgosP/F6lSRkZEqLCx0QUcAKlJCQoLGjx+vvLw8eywvL0/PP/+8EhISXNgZgIq0a9cujRw50g5YkuTu7q7ExETt2rXLhZ3hUsc9WUAZ+vbtq6SkJE2ePNlp/PXXX9f999/voq4AVJQNGzYoJSVFderUUbNmzSRJP/74o/Lz83XnnXfqnnvusWs/+ugjV7UJ4CK76aabtG3bNjVo0MBpfNu2bfZnA1AWQhZwBrNnz9by5ct18803S5LWr1+vffv2qV+/fkpMTLTrTg9iAC5/AQEB6t69u9NYaGioi7oB4CqPPPKIhg0bpl27dtm/D6xbt04zZszQCy+8oE2bNtm1N9xwg6vaxCWIe7KAMrRv3/686hwOh1auXHmRuwEAAK7g5nb2O2scDocsy5LD4VBRUVEFdYXLASELAIDT7N69W4WFhapfv77T+M6dO1WpUiWFh4e7pjEAFWrv3r3nXRsWFnYRO8Hlhq8LAgBwmv79++uBBx4oFbLWr1+vN954Q6tXr3ZNYwAqFMEJF4orWUAZTp48qVdeeUWrVq3SoUOHVFxc7LT8hx9+cFFnACqCn5+ffvjhB9WrV89pfNeuXWrRooWysrJc0xiAi+7TTz8979quXbtexE5wOeNKFlCGgQMHavny5erRo4datWolh8Ph6pYAVCCHw6Fjx46VGs/Ozua+C+AK161bN6f3Jfddnfq+BJ8HOBOuZAFl8Pf31+eff65bb73V1a0AcIEuXbrIx8dH8+fPd3oAaa9evZSbm6svvvjCxR0CqAhffvmlRo0apX/961+KioqSJKWlpempp57Sv/71L/3tb39zcYe4VBGygDJERETovffeYzpW4Cq1detWtW3bVgEBAbr99tslSV999ZVycnK0cuVKNWnSxMUdAqgITZo00axZs3Tbbbc5jX/11VcaPHiwtm3b5qLOcKk7+7yUwFXq5Zdf1qhRo8o1qxCAK0fVqlW1adMm9ezZU4cOHdKxY8fUr18/bd++XX5+fq5uD0AF+fnnnxUQEFBq3N/fX3v27KnwfnD54EoWUIbDhw+rZ8+eWrNmjSpXrqxKlSo5Lf/9999d1BmAiuDu7q6DBw8qMDDQafzIkSMKDAzkPgzgKtGmTRt5e3vr7bffVlBQkCQpMzNT/fr108mTJ5WamuriDnGpYuILoAx9+vTRr7/+qn/9618KCgpi4gvgKnOmf388fvy4vL29K7gbAK7y5ptv6u6779Y111yj0NBQSdL+/ftVv359ffzxxy7uDpcyrmQBZahcubLS0tLUrFkzV7cCoAIlJiZKkqZNm6YHH3xQlStXtpcVFRVp/fr1cnd31zfffOOqFgFUMMuy9OWXX9r3XzVq1EjR0dH8AyzOiitZQBkaNmyoEydOuLoNABVsw4YNkv78pWrz5s3y9PS0l3l6eqpZs2Z69NFHXdUegAr23HPPlRpLS0tTWlqaJGns2LEV3RIuE1zJAsqwfPlyPfvss3r++efVtGnTUvdkceM7cGUbMGCApk2bxn/rwFXuxhtvdHpfUFCg3bt3y8PDQ9ddd51++OEHF3WGSx0hCyiDm9ufE2+e/lUAy7LkcDi46R0AgKtUTk6O+vfvr7vvvlt9+/Z1dTu4RBGygDKca7agtm3bVlAnAADgUrN582Z16dKFadxxRtyTBZSBEAUAAM4kOztb2dnZrm4DlzBCFlCGOXPmyNfXV/fee6/T+MKFC/XHH38oLi7ORZ0BAICKMn36dKf3lmXp4MGDevvtt9WpUycXdYXLAV8XBMpw/fXX67XXXlP79u2dxlNTUzV48GDt2LHDRZ0BAICKUrduXaf3bm5uqlWrlu644w6NGTNGVatWdVFnuNRxJQsow759+0p9sEpSWFiY9u3b54KOAABARdu9e7erW8Blys3VDQCXosDAQG3atKnU+I8//qgaNWq4oCMAAABcLghZQBn69OmjRx55RKtWrVJRUZGKioq0cuVKDRs2TL1793Z1ewAAALiEcU8WUIb8/Hz17dtXCxculIfHn9+qLSoqUlxcnJKSkuTl5eXiDgEAAHCpImQBZ7Fz505t3LhRPj4+atq0qcLCwlzdEgAAAC5xhCzg/0tMTNT48eNVpUoVJSYmnrV28uTJFdQVAAAALjfMLgj8fxs2bFBBQYH95zNxOBwV1RIAAAAuQ1zJAgAAAACDmF0QAAAAAAwiZAEAAACAQYQsAAAAADCIkAUAAAAABhGyAAD4C9q1a6fhw4e7ug0AwCWEkAUAuCKEh4dr6tSprm7jrC6HHgEAfx0hCwBwScvPz3d1CwAAlAshCwBQodq1a6eEhAQlJCTI399fNWvW1NNPP62SxzaGh4dr/Pjx6tevn/z8/DR48GBJ0ocffqjGjRvLy8tL4eHhevnll522uXfvXo0YMUIOh8PpoeFnW0+S8vLyNGrUKIWGhsrLy0v16tXT7Nmz7eWpqalq1aqVvLy8VLt2bY0ePVqFhYUXdNyn95ibmys/Pz998MEHTrWLFi1SlSpVdOzYMe3Zs0cOh0PvvfeebrnlFnl7e6tJkyZKTU11WmfLli3q1KmTfH19FRQUpL59++q3334rd58AgL+OkAUAqHBz586Vh4eHvv32W02bNk2TJ0/WG2+8YS//97//rWbNmmnDhg16+umnlZ6erp49e6p3797avHmzxo0bp6efflrJycmSpI8++kh16tTRc889p4MHD+rgwYOSdM71JKlfv36aP3++pk+frm3btum1116Tr6+vJOnXX39V586d1bJlS/34449KSkrS7NmzNWHChHIfc1k9VqlSRb1799acOXOcaufMmaMePXqoatWq9thjjz2mkSNHasOGDYqKilKXLl105MgRSVJWVpbuuOMO3Xjjjfr++++1dOlSZWZmqmfPnuXuEwBggAUAQAVq27at1ahRI6u4uNgeGzVqlNWoUSPLsiwrLCzM6tatm9M69913n/W3v/3Naeyxxx6zIiIi7PdhYWHWlClTyrXejh07LEnWihUryuz1iSeesBo0aODU64wZMyxfX1+rqKjIPp5hw4adx5GX3eP69estd3d368CBA5ZlWVZmZqbl4eFhrV692rIsy9q9e7clyXrhhRfsdQoKCqw6depYL774omVZljV+/HirQ4cOTtvdv3+/JcnasWPHefUGADCHK1kAgAp38803O32lLyoqSjt37lRRUZEkqUWLFk7127Zt06233uo0duuttzqtU5Zzrbdx40a5u7urbdu2Z1w/KirKqddbb71Vx48f1y+//HJ+B3sOrVq1UuPGjTV37lxJ0jvvvKOwsDC1adPGqS4qKsr+s4eHh1q0aKFt27ZJkn788UetWrVKvr6+9qthw4aSpJ9//tlInwCA8+fh6gYAADhdlSpVKmQ/Pj4+FbKfcxk0aJBmzJih0aNHa86cORowYIBTsDuX48ePq0uXLnrxxRdLLatdu7bJVgEA54ErWQCACrd+/Xqn9+vWrVP9+vXl7u5eZn2jRo30zTffOI198803uv766+11PD09S13VOtd6TZs2VXFxcalJJE5dPy0tzZ6Uo2T9qlWrqk6dOud3sKcoq0dJ+sc//qG9e/dq+vTp+umnnxQXF1eqZt26dfafCwsLlZ6erkaNGkmSbrrpJm3dulXh4eGqV6+e06uiAisA4P8QsgAAFW7fvn1KTEzUjh07NH/+fL3yyisaNmzYGetHjhyplJQUjR8/Xv/5z380d+5cvfrqq3r00UftmvDwcK1Zs0a//vqrPaveudYLDw9XXFycHnjgAS1atEi7d+/W6tWr9f7770uShgwZov3792vo0KHavn27PvnkEz3zzDNKTEyUm1v5/xdaVo+SVK1aNd1zzz167LHH1KFDhzID3IwZM/Txxx9r+/btio+P19GjR/XAAw9IkuLj4/X777+rT58++u677/Tzzz9r2bJlGjBgwFm/TgkAuEhcfVMYAODq0rZtW2vIkCHWQw89ZPn5+VnVqlWznnjiCXtyibImh7Asy/rggw+siIgIq1KlStY111xjvfTSS07L09LSrBtuuMHy8vKyTv3f27nWO3HihDVixAirdu3alqenp1WvXj3rzTfftJevXr3aatmypeXp6WkFBwdbo0aNsgoKCpyO53wnvjhTj5ZlWSkpKZYk6/3333caL5n4Yt68eVarVq0sT09PKyIiwlq5cqVT3X/+8x/r7rvvtgICAiwfHx+rYcOG1vDhw50m7QAAVAyHZZ3yHQgAAC6ydu3aqXnz5po6daqrW7mkvP322xoxYoQOHDggT09Pe3zPnj2qW7euNmzYoObNm7uuQQDAeWPiCwAAXOiPP/7QwYMH9cILL+if//ynU8ACAFyeuCcLAAADvvrqK6cp1E9/ncmkSZPUsGFDBQcHa8yYMRXYMQDgYuHrggAAGHDixAn9+uuvZ1xer169CuwGAOBKhCwAAAAAMIivCwIAAACAQYQsAAAAADCIkAUAAAAABhGyAAAAAMAgQhYAAAAAGETIAgAAAACDCFkAAAAAYND/A+4lg0JbZn75AAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "bar_graph('service', 'service')\n",
+ "\n"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 562
+ },
+ "id": "Kaso4q0EgYu3",
+ "outputId": "d9cda079-a74d-472f-d29b-b526b7739895"
+ },
+ "execution_count": 14,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1oAAAIhCAYAAABXMMsoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADOT0lEQVR4nOzdd1gU1/s28HvpIFUQUUHBhgUVS1TUqCgRu9h7NxoFC3aNscXYEsUasaNGY0s0URR7r6AidsGGDTUqIFho5/2Dd+fHsAvs4viNSe7Pde11sbNnZ88M056Zc56jEkIIEBERERERkWIM/u4KEBERERER/dsw0CIiIiIiIlIYAy0iIiIiIiKFMdAiIiIiIiJSGAMtIiIiIiIihTHQIiIiIiIiUhgDLSIiIiIiIoUx0CIiIiIiIlIYAy0iIiIiIiKFMdAiIqL/LFdXV7Rs2fKT/05aWhrGjh0LFxcXGBgYwM/P75P/plJUKhWmTp36d1eDiOgfh4EWEdG/WEhICFQqlezl6OgIb29v7N279++u3n/GmjVr8OOPP6JDhw5Yt24dAgMD/+4qERHRJ2b0d1eAiIg+venTp8PNzQ1CCDx79gwhISFo3rw5du3a9T95ovNfd/jwYRQrVgxBQUF/d1X09u7dOxgZ8XKBiEhfPHISEf0HNGvWDDVq1JDe9+/fH4ULF8avv/6qSKCVkZGBlJQUmJmZffS8sktOTkaBAgUUn+//0vPnz2Fra/t3VwNCCLx//x7m5uY6f+dT/E+JiP4L2HSQiOg/yNbWFubm5hpPKn766SfUqVMH9vb2MDc3R/Xq1bF9+3aN76tUKgQEBGDjxo2oWLEiTE1NERYWluPvZWRkYOrUqShatCgsLCzg7e2N69evw9XVFX369JHKqZs6Hjt2DEOGDIGjoyOcnZ0BAA8ePMCQIUPg7u4Oc3Nz2Nvbo2PHjrh//77st9TzOH78OAYNGgR7e3tYW1ujV69eeP36tdb6nTx5EjVr1oSZmRlKliyJ9evX67Qek5OTMWrUKLi4uMDU1BTu7u746aefIIQAANy/fx8qlQpHjhzBtWvXpOabR48ezXGeERER8PX1hYODA8zNzeHm5oZ+/fpprM8FCxagYsWKMDMzQ+HChTFo0CCN5VP3Qdu3bx9q1KgBc3NzLF++HB4eHvD29tb47YyMDBQrVgwdOnSQpmnro/X48WP0798fRYsWhampKdzc3DB48GCkpKRIZeLj4zFixAhp3ZQuXRpz5sxBRkaGTuuWiOifjk+0iIj+AxISEvDXX39BCIHnz59j8eLFSEpKQo8ePWTlFi5ciNatW6N79+5ISUnB5s2b0bFjR+zevRstWrSQlT18+DC2bt2KgIAAODg4wNXVNcffnzBhAubOnYtWrVrB19cXly9fhq+vL96/f6+1/JAhQ1CoUCFMnjwZycnJAIDw8HCcPn0aXbp0gbOzM+7fv49ly5ahYcOGuH79OiwsLGTzCAgIgK2tLaZOnYpbt25h2bJlePDgAY4ePQqVSiWVi4mJQYcOHdC/f3/07t0ba9asQZ8+fVC9enVUrFgxx2USQqB169Y4cuQI+vfvD09PT+zbtw9jxozB48ePERQUhEKFCmHDhg344YcfkJSUhFmzZgEAypcvr3Wez58/R5MmTVCoUCGMHz8etra2uH//Pn7//XdZuUGDBiEkJAR9+/bFsGHDcO/ePSxZsgSXLl3CqVOnYGxsLJW9desWunbtikGDBuHrr7+Gu7s7OnfujKlTpyIuLg5OTk5S2ZMnT+LJkyfo0qVLjsv95MkT1KxZE/Hx8Rg4cCDKlSuHx48fY/v27Xj79i1MTEzw9u1bNGjQAI8fP8agQYNQvHhxnD59GhMmTMDTp0+xYMGCHOdPRPSvIYiI6F9r7dq1AoDGy9TUVISEhGiUf/v2rex9SkqK8PDwEI0aNZJNByAMDAzEtWvX8qxDXFycMDIyEn5+frLpU6dOFQBE7969Nepbr149kZaWlmvdhBDizJkzAoBYv369xjyqV68uUlJSpOlz584VAMQff/whTStRooQAII4fPy5Ne/78uTA1NRWjRo3Kdbl27twpAIgZM2bIpnfo0EGoVCoRExMjTWvQoIGoWLFirvMTQogdO3YIACI8PDzHMidOnBAAxMaNG2XTw8LCNKarly8sLExW9tatWwKAWLx4sWz6kCFDhKWlpWxdAxBTpkyR3vfq1UsYGBhorWNGRoYQQojvv/9eFChQQNy+fVv2+fjx44WhoaGIjY3NcfmIiP4t2HSQiOg/YOnSpThw4AAOHDiAX375Bd7e3hgwYIDGk5KsfXdev36NhIQEfPnll7h48aLGPBs0aIAKFSrk+duHDh1CWloahgwZIps+dOjQHL/z9ddfw9DQMMe6paam4uXLlyhdujRsbW211m/gwIGyJzuDBw+GkZER9uzZIytXoUIFfPnll9L7QoUKwd3dHXfv3s11ufbs2QNDQ0MMGzZMNn3UqFEQQuQrq6O6H9fu3buRmpqqtcy2bdtgY2ODr776Cn/99Zf0ql69OiwtLXHkyBFZeTc3N/j6+sqmlS1bFp6entiyZYs0LT09Hdu3b0erVq1y7MOVkZGBnTt3olWrVrI+f2rqJ4Xbtm3Dl19+CTs7O1kdfXx8kJ6ejuPHj+u8ToiI/qnYdJCI6D+gZs2asgvjrl27omrVqggICEDLli1hYmICIPMCf8aMGYiMjMSHDx+k8lmb2qm5ubnp9NsPHjwAAJQuXVo2vWDBgrCzs9P6HW3zfvfuHWbNmoW1a9fi8ePHUj8oILNpZHZlypSRvbe0tESRIkU0+nQVL15c47t2dnY59udSe/DgAYoWLQorKyvZdHWzQPVy66NBgwZo3749pk2bhqCgIDRs2BB+fn7o1q0bTE1NAQDR0dFISEiAo6Oj1nk8f/5c9j6n/1Pnzp0xceJEPH78GMWKFcPRo0fx/PlzdO7cOcf6vXjxAomJifDw8Mh1OaKjoxEVFYVChQrpVEcion8jBlpERP9BBgYG8Pb2xsKFCxEdHY2KFSvixIkTaN26NerXr4+ff/4ZRYoUgbGxMdauXYtNmzZpzEOfzHX60jbvoUOHYu3atRgxYgS8vLxgY2MDlUqFLl26fFSChexPztSyBnL/KyqVCtu3b8fZs2exa9cu7Nu3D/369cO8efNw9uxZWFpaIiMjA46Ojti4caPWeWQPbnL6P3Xu3BkTJkzAtm3bMGLECGzduhU2NjZo2rTpRy9HRkYGvvrqK4wdO1br52XLlv3o3yAi+twx0CIi+o9KS0sDACQlJQEAfvvtN5iZmWHfvn3S0xMAWLt27Uf9TokSJQBkJp3I+nTl5cuXeT41ymr79u3o3bs35s2bJ017//494uPjtZaPjo6WZdZLSkrC06dP0bx5cz2XQLsSJUrg4MGDePPmjeyp1s2bN6XP86t27dqoXbs2fvjhB2zatAndu3fH5s2bMWDAAJQqVQoHDx5E3bp1PyrYdXNzQ82aNbFlyxYEBATg999/h5+fn+x/n12hQoVgbW2Nq1ev5jrvUqVKISkpCT4+PvmuHxHRPx37aBER/QelpqZi//79MDExkZq6GRoaQqVSIT09XSp3//597Ny586N+q3HjxjAyMsKyZctk05csWaLXfAwNDTWeMi1evFhW36xWrFgh6+e0bNkypKWloVmzZnr9bk6aN2+O9PR0jeUICgqCSqXK1++8fv1aYxk9PT0BQGrK2alTJ6Snp+P777/X+H5aWlqOgac2nTt3xtmzZ7FmzRr89ddfuTYbBDKfhPr5+WHXrl2IiIjQ+Fxd906dOuHMmTPYt2+fRpn4+HgpyCci+jfjEy0iov+AvXv3Sk9anj9/jk2bNiE6Ohrjx4+HtbU1AKBFixaYP38+mjZtim7duuH58+dYunQpSpcujaioqHz/duHChTF8+HDMmzcPrVu3RtOmTXH58mXs3bsXDg4OWvt/adOyZUts2LABNjY2qFChAs6cOYODBw/C3t5ea/mUlBQ0btwYnTp1wq1bt/Dzzz+jXr16aN26db6XJatWrVrB29sb3377Le7fv48qVapg//79+OOPPzBixAiUKlVK73muW7cOP//8M9q2bYtSpUrhzZs3WLlyJaytraUncQ0aNMCgQYMwa9YsREZGokmTJjA2NkZ0dDS2bduGhQsXysbByk2nTp0wevRojB49GgULFtTpCdTMmTOxf/9+NGjQAAMHDkT58uXx9OlTbNu2DSdPnoStrS3GjBmDP//8Ey1btpRS5ScnJ+PKlSvYvn077t+/DwcHB73XDxHRPwkDLSKi/4DJkydLf5uZmaFcuXJYtmwZBg0aJE1v1KgRVq9ejdmzZ2PEiBFwc3PDnDlzcP/+/Y8KtABgzpw5sLCwwMqVK3Hw4EF4eXlh//79qFevHszMzHSax8KFC2FoaIiNGzfi/fv3qFu3Lg4ePKiRUU9tyZIl2LhxIyZPnozU1FR07doVixYt0jmwy4uBgQH+/PNPTJ48GVu2bMHatWvh6uqKH3/8EaNGjcrXPBs0aIDz589j8+bNePbsGWxsbFCzZk1s3LhR1uwyODgY1atXx/LlyzFx4kQYGRnB1dUVPXr0QN26dXX+PWdnZ9SpUwenTp3CgAEDZFkac1KsWDGcO3cO3333HTZu3IjExEQUK1YMzZo1k8Yys7CwwLFjxzBz5kxs27YN69evh7W1NcqWLYtp06bBxsZG/5VDRPQPoxJ/R29fIiL6z4uPj4ednR1mzJiBb7/9VrH5qgfyDQ8P15qCnIiI6H+BfbSIiOiTe/funca0BQsWAAAaNmz4v60MERHR/wCbDhIR0Se3ZcsWhISEoHnz5rC0tMTJkyfx66+/okmTJno1dSMiIvqnYKBFRESfXOXKlWFkZIS5c+ciMTFRSpAxY8aMv7tqREREnwT7aBERERERESmMfbSIiIiIiIgUxqaDucjIyMCTJ09gZWWlWDpgIiIiIiL65xFC4M2bNyhatCgMDPJ+XsVAKxdPnjyBi4vL310NIiIiIiL6TDx8+BDOzs55lmOglQsrKysAmSvT2tr6b64NERERERH9XRITE+Hi4iLFCHlhoJULdXNBa2trBlpERERERKRzlyImwyAiIiIiIlIYAy0iIiIiIiKFMdAiIiIiIiJSGAMtIiIiIiIihTHQIiIiIiIiUhgDLSIiIiIiIoUx0CIiIiIiIlIYAy0iIiIiIiKFMdAiIiIiIiJSGAMtIiIiIiIihTHQIiIiIiIiUhgDLSIiIiIiIoUx0CIiIiIiIlIYAy0iIiIiIiKFMdAiIiIiIiJSGAMtIiIiIiIihRn93RX4J3EdH6p1+v3ZLf7HNSEiIiIios8Zn2gREREREREpjIEWERERERGRwhhoERERERERKYyBFhERERERkcIYaBERERERESmMgRYREREREZHCGGgREREREREpjIEWERERERGRwhhoERERERERKYyBFhERERERkcIYaBERERERESmMgRYREREREZHCGGgREREREREpjIEWERERERGRwhhoERERERERKYyBFhERERERkcIYaBERERERESmMgRYREREREZHCGGgREREREREpjIEWERERERGRwhhoERERERERKYyBFhERERERkcIYaBERERERESmMgRYREREREZHCGGgREREREREpjIEWERERERGRwhhoERERERERKYyBFhERERERkcIYaBERERERESmMgRYREREREZHCGGgREREREREpjIEWERERERGRwhhoERERERERKYyBFhERERERkcIYaBERERERESmMgRYREREREZHC9Aq0Zs2ahS+++AJWVlZwdHSEn58fbt26JSvTsGFDqFQq2eubb76RlYmNjUWLFi1gYWEBR0dHjBkzBmlpabIyR48eRbVq1WBqaorSpUsjJCREoz5Lly6Fq6srzMzMUKtWLZw/f172+fv37+Hv7w97e3tYWlqiffv2ePbsmT6LTEREREREpDe9Aq1jx47B398fZ8+exYEDB5CamoomTZogOTlZVu7rr7/G06dPpdfcuXOlz9LT09GiRQukpKTg9OnTWLduHUJCQjB58mSpzL1799CiRQt4e3sjMjISI0aMwIABA7Bv3z6pzJYtWzBy5EhMmTIFFy9eRJUqVeDr64vnz59LZQIDA7Fr1y5s27YNx44dw5MnT9CuXTu9VxIREREREZE+VEIIkd8vv3jxAo6Ojjh27Bjq168PIPOJlqenJxYsWKD1O3v37kXLli3x5MkTFC5cGAAQHByMcePG4cWLFzAxMcG4ceMQGhqKq1evSt/r0qUL4uPjERYWBgCoVasWvvjiCyxZsgQAkJGRARcXFwwdOhTjx49HQkICChUqhE2bNqFDhw4AgJs3b6J8+fI4c+YMateunefyJSYmwsbGBgkJCbC2tobr+FCt5e7PbqHbCiMiIiIion+k7LFBXj6qj1ZCQgIAoGDBgrLpGzduhIODAzw8PDBhwgS8fftW+uzMmTOoVKmSFGQBgK+vLxITE3Ht2jWpjI+Pj2yevr6+OHPmDAAgJSUFFy5ckJUxMDCAj4+PVObChQtITU2VlSlXrhyKFy8ulcnuw4cPSExMlL2IiIiIiIj0ZZTfL2ZkZGDEiBGoW7cuPDw8pOndunVDiRIlULRoUURFRWHcuHG4desWfv/9dwBAXFycLMgCIL2Pi4vLtUxiYiLevXuH169fIz09XWuZmzdvSvMwMTGBra2tRhn172Q3a9YsTJs2Tc81QUREREREJJfvQMvf3x9Xr17FyZMnZdMHDhwo/V2pUiUUKVIEjRs3xp07d1CqVKn81/R/YMKECRg5cqT0PjExES4uLn9jjYiIiIiI6J8oX00HAwICsHv3bhw5cgTOzs65lq1VqxYAICYmBgDg5OSkkflP/d7JySnXMtbW1jA3N4eDgwMMDQ21lsk6j5SUFMTHx+dYJjtTU1NYW1vLXkRERERERPrSK9ASQiAgIAA7duzA4cOH4ebmlud3IiMjAQBFihQBAHh5eeHKlSuy7IAHDhyAtbU1KlSoIJU5dOiQbD4HDhyAl5cXAMDExATVq1eXlcnIyMChQ4ekMtWrV4exsbGszK1btxAbGyuVISIiIiIi+hT0ajro7++PTZs24Y8//oCVlZXU18nGxgbm5ua4c+cONm3ahObNm8Pe3h5RUVEIDAxE/fr1UblyZQBAkyZNUKFCBfTs2RNz585FXFwcJk2aBH9/f5iamgIAvvnmGyxZsgRjx45Fv379cPjwYWzduhWhof+X9W/kyJHo3bs3atSogZo1a2LBggVITk5G3759pTr1798fI0eORMGCBWFtbY2hQ4fCy8tLp4yDRERERERE+aVXoLVs2TIAmSncs1q7di369OkDExMTHDx4UAp6XFxc0L59e0yaNEkqa2hoiN27d2Pw4MHw8vJCgQIF0Lt3b0yfPl0q4+bmhtDQUAQGBmLhwoVwdnbGqlWr4OvrK5Xp3LkzXrx4gcmTJyMuLg6enp4ICwuTJcgICgqCgYEB2rdvjw8fPsDX1xc///yzXiuIiIiIiIhIXx81jta/HcfRIiIiIiIi4H88jhYRERERERFpYqBFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwvQKtWbNm4YsvvoCVlRUcHR3h5+eHW7duycq8f/8e/v7+sLe3h6WlJdq3b49nz57JysTGxqJFixawsLCAo6MjxowZg7S0NFmZo0ePolq1ajA1NUXp0qUREhKiUZ+lS5fC1dUVZmZmqFWrFs6fP693XYiIiIiIiJSmV6B17Ngx+Pv74+zZszhw4ABSU1PRpEkTJCcnS2UCAwOxa9cubNu2DceOHcOTJ0/Qrl076fP09HS0aNECKSkpOH36NNatW4eQkBBMnjxZKnPv3j20aNEC3t7eiIyMxIgRIzBgwADs27dPKrNlyxaMHDkSU6ZMwcWLF1GlShX4+vri+fPnOteFiIiIiIjoU1AJIUR+v/zixQs4Ojri2LFjqF+/PhISElCoUCFs2rQJHTp0AADcvHkT5cuXx5kzZ1C7dm3s3bsXLVu2xJMnT1C4cGEAQHBwMMaNG4cXL17AxMQE48aNQ2hoKK5evSr9VpcuXRAfH4+wsDAAQK1atfDFF19gyZIlAICMjAy4uLhg6NChGD9+vE51yUtiYiJsbGyQkJAAa2truI4P1Vru/uwW+V2FRERERET0D5A9NsjLR/XRSkhIAAAULFgQAHDhwgWkpqbCx8dHKlOuXDkUL14cZ86cAQCcOXMGlSpVkoIsAPD19UViYiKuXbsmlck6D3UZ9TxSUlJw4cIFWRkDAwP4+PhIZXSpS3YfPnxAYmKi7EVERERERKSvfAdaGRkZGDFiBOrWrQsPDw8AQFxcHExMTGBraysrW7hwYcTFxUllsgZZ6s/Vn+VWJjExEe/evcNff/2F9PR0rWWyziOvumQ3a9Ys2NjYSC8XFxcd1wYREREREdH/yXeg5e/vj6tXr2Lz5s1K1udvNWHCBCQkJEivhw8f/t1VIiIiIiKifyCj/HwpICAAu3fvxvHjx+Hs7CxNd3JyQkpKCuLj42VPkp49ewYnJyepTPbsgOpMgFnLZM8O+OzZM1hbW8Pc3ByGhoYwNDTUWibrPPKqS3ampqYwNTXVY00QERERERFp0uuJlhACAQEB2LFjBw4fPgw3NzfZ59WrV4exsTEOHTokTbt16xZiY2Ph5eUFAPDy8sKVK1dk2QEPHDgAa2trVKhQQSqTdR7qMup5mJiYoHr16rIyGRkZOHTokFRGl7oQERERERF9Cno90fL398emTZvwxx9/wMrKSurrZGNjA3Nzc9jY2KB///4YOXIkChYsCGtrawwdOhReXl5Slr8mTZqgQoUK6NmzJ+bOnYu4uDhMmjQJ/v7+0tOkb775BkuWLMHYsWPRr18/HD58GFu3bkVo6P9l/Rs5ciR69+6NGjVqoGbNmliwYAGSk5PRt29fqU551YWIiIiIiOhT0CvQWrZsGQCgYcOGsulr165Fnz59AABBQUEwMDBA+/bt8eHDB/j6+uLnn3+WyhoaGmL37t0YPHgwvLy8UKBAAfTu3RvTp0+Xyri5uSE0NBSBgYFYuHAhnJ2dsWrVKvj6+kplOnfujBcvXmDy5MmIi4uDp6cnwsLCZAky8qoLERERERHRp/BR42j923EcLSIiIiIiAv7H42gRERERERGRJgZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQK0zvQOn78OFq1aoWiRYtCpVJh586dss/79OkDlUolezVt2lRW5tWrV+jevTusra1ha2uL/v37IykpSVYmKioKX375JczMzODi4oK5c+dq1GXbtm0oV64czMzMUKlSJezZs0f2uRACkydPRpEiRWBubg4fHx9ER0fru8hERERERER60TvQSk5ORpUqVbB06dIcyzRt2hRPnz6VXr/++qvs8+7du+PatWs4cOAAdu/ejePHj2PgwIHS54mJiWjSpAlKlCiBCxcu4Mcff8TUqVOxYsUKqczp06fRtWtX9O/fH5cuXYKfnx/8/Pxw9epVqczcuXOxaNEiBAcH49y5cyhQoAB8fX3x/v17fRebiIiIiIhIZyohhMj3l1Uq7NixA35+ftK0Pn36ID4+XuNJl9qNGzdQoUIFhIeHo0aNGgCAsLAwNG/eHI8ePULRokWxbNkyfPvtt4iLi4OJiQkAYPz48di5cydu3rwJAOjcuTOSk5Oxe/duad61a9eGp6cngoODIYRA0aJFMWrUKIwePRoAkJCQgMKFCyMkJARdunTJc/kSExNhY2ODhIQEWFtbw3V8qNZy92e3yHNeRERERET0z5U9NsjLJ+mjdfToUTg6OsLd3R2DBw/Gy5cvpc/OnDkDW1tbKcgCAB8fHxgYGODcuXNSmfr160tBFgD4+vri1q1beP36tVTGx8dH9ru+vr44c+YMAODevXuIi4uTlbGxsUGtWrWkMtl9+PABiYmJshcREREREZG+FA+0mjZtivXr1+PQoUOYM2cOjh07hmbNmiE9PR0AEBcXB0dHR9l3jIyMULBgQcTFxUllChcuLCujfp9XmayfZ/2etjLZzZo1CzY2NtLLxcVF7+UnIiIiIiIyUnqGWZvkVapUCZUrV0apUqVw9OhRNG7cWOmfU9SECRMwcuRI6X1iYiKDLSIiIiIi0tsnT+9esmRJODg4ICYmBgDg5OSE58+fy8qkpaXh1atXcHJykso8e/ZMVkb9Pq8yWT/P+j1tZbIzNTWFtbW17EVERERERKSvTx5oPXr0CC9fvkSRIkUAAF5eXoiPj8eFCxekMocPH0ZGRgZq1aollTl+/DhSU1OlMgcOHIC7uzvs7OykMocOHZL91oEDB+Dl5QUAcHNzg5OTk6xMYmIizp07J5UhIiIiIiL6FPQOtJKSkhAZGYnIyEgAmUknIiMjERsbi6SkJIwZMwZnz57F/fv3cejQIbRp0walS5eGr68vAKB8+fJo2rQpvv76a5w/fx6nTp1CQEAAunTpgqJFiwIAunXrBhMTE/Tv3x/Xrl3Dli1bsHDhQlmzvuHDhyMsLAzz5s3DzZs3MXXqVERERCAgIABAZkbEESNGYMaMGfjzzz9x5coV9OrVC0WLFpVlSSQiIiIiIlKa3n20IiIi4O3tLb1XBz+9e/fGsmXLEBUVhXXr1iE+Ph5FixZFkyZN8P3338PU1FT6zsaNGxEQEIDGjRvDwMAA7du3x6JFi6TPbWxssH//fvj7+6N69epwcHDA5MmTZWNt1alTB5s2bcKkSZMwceJElClTBjt37oSHh4dUZuzYsUhOTsbAgQMRHx+PevXqISwsDGZmZvouNhERERERkc4+ahytfzuOo0VERERERMBnMo4WERERERHRfxkDLSIiIiIiIoUx0CIiIiIiIlIYAy0iIiIiIiKFMdAiIiIiIiJSGAMtIiIiIiIihTHQIiIiIiIiUhgDLSIiIiIiIoUx0CIiIiIiIlIYAy0iIiIiIiKFMdAiIiIiIiJSGAMtIiIiIiIihTHQIiIiIiIiUhgDLSIiIiIiIoUx0CIiIiIiIlIYAy0iIiIiIiKFMdAiIiIiIiJSGAMtIiIiIiIihTHQIiIiIiIiUhgDLSIiIiIiIoUx0CIiIiIiIlIYAy0iIiIiIiKFMdAiIiIiIiJSGAMtIiIiIiIihTHQIiIiIiIiUhgDLSIiIiIiIoUx0CIiIiIiIlIYAy0iIiIiIiKFMdAiIiIiIiJSGAMtIiIiIiIihTHQIiIiIiIiUhgDLSIiIiIiIoUx0CIiIiIiIlIYAy0iIiIiIiKFMdAiIiIiIiJSGAMtIiIiIiIihTHQIiIiIiIiUhgDLSIiIiIiIoUx0CIiIiIiIlIYAy0iIiIiIiKFMdAiIiIiIiJSGAMtIiIiIiIihTHQIiIiIiIiUhgDLSIiIiIiIoUZ/d0V+DdzHR+qdfr92S3+xzUhIiIiIqL/JT7RIiIiIiIiUhgDLSIiIiIiIoUx0CIiIiIiIlIYAy0iIiIiIiKFMdAiIiIiIiJSGAMtIiIiIiIihTHQIiIiIiIiUhgDLSIiIiIiIoUx0CIiIiIiIlIYAy0iIiIiIiKF6R1oHT9+HK1atULRokWhUqmwc+dO2edCCEyePBlFihSBubk5fHx8EB0dLSvz6tUrdO/eHdbW1rC1tUX//v2RlJQkKxMVFYUvv/wSZmZmcHFxwdy5czXqsm3bNpQrVw5mZmaoVKkS9uzZo3ddiIiIiIiIlKZ3oJWcnIwqVapg6dKlWj+fO3cuFi1ahODgYJw7dw4FChSAr68v3r9/L5Xp3r07rl27hgMHDmD37t04fvw4Bg4cKH2emJiIJk2aoESJErhw4QJ+/PFHTJ06FStWrJDKnD59Gl27dkX//v1x6dIl+Pn5wc/PD1evXtWrLkREREREREpTCSFEvr+sUmHHjh3w8/MDkPkEqWjRohg1ahRGjx4NAEhISEDhwoUREhKCLl264MaNG6hQoQLCw8NRo0YNAEBYWBiaN2+OR48eoWjRoli2bBm+/fZbxMXFwcTEBAAwfvx47Ny5Ezdv3gQAdO7cGcnJydi9e7dUn9q1a8PT0xPBwcE61SW7Dx8+4MOHD9L7xMREuLi4ICEhAdbW1nAdH6p1Pdyf3ULrdH3LExERERHR5ykxMRE2NjZSbJAXRfto3bt3D3FxcfDx8ZGm2djYoFatWjhz5gwA4MyZM7C1tZWCLADw8fGBgYEBzp07J5WpX7++FGQBgK+vL27duoXXr19LZbL+jrqM+nd0qUt2s2bNgo2NjfRycXH5mNVBRERERET/UYoGWnFxcQCAwoULy6YXLlxY+iwuLg6Ojo6yz42MjFCwYEFZGW3zyPobOZXJ+nledcluwoQJSEhIkF4PHz7UYamJiIiIiIjkjP7uCnxOTE1NYWpq+ndXg4iIiIiI/uEUfaLl5OQEAHj27Jls+rNnz6TPnJyc8Pz5c9nnaWlpePXqlayMtnlk/Y2cymT9PK+6EBERERERfQqKBlpubm5wcnLCoUOHpGmJiYk4d+4cvLy8AABeXl6Ij4/HhQsXpDKHDx9GRkYGatWqJZU5fvw4UlNTpTIHDhyAu7s77OzspDJZf0ddRv07utSFiIiIiIjoU9A70EpKSkJkZCQiIyMBZCadiIyMRGxsLFQqFUaMGIEZM2bgzz//xJUrV9CrVy8ULVpUykxYvnx5NG3aFF9//TXOnz+PU6dOISAgAF26dEHRokUBAN26dYOJiQn69++Pa9euYcuWLVi4cCFGjhwp1WP48OEICwvDvHnzcPPmTUydOhUREREICAgAAJ3qQkRERERE9Cno3UcrIiIC3t7e0nt18NO7d2+EhIRg7NixSE5OxsCBAxEfH4969eohLCwMZmZm0nc2btyIgIAANG7cGAYGBmjfvj0WLVokfW5jY4P9+/fD398f1atXh4ODAyZPniwba6tOnTrYtGkTJk2ahIkTJ6JMmTLYuXMnPDw8pDK61IWIiIiIiEhpHzWO1r9d9lz5HEeLiIiIiOi/6W8dR4uIiIiIiIgYaBERERERESmOgRYREREREZHCGGgREREREREpjIEWERERERGRwhhoERERERERKYyBFhERERERkcIYaBERERERESmMgRYREREREZHCGGgREREREREpjIEWERERERGRwhhoERERERERKYyBFhERERERkcIYaBERERERESmMgRYREREREZHCGGgREREREREpjIEWERERERGRwhhoERERERERKYyBFhERERERkcIYaBERERERESmMgRYREREREZHCGGgREREREREpjIEWERERERGRwhhoERERERERKYyBFhERERERkcIYaBERERERESmMgRYREREREZHCGGgREREREREpjIEWERERERGRwhhoERERERERKYyBFhERERERkcIYaBERERERESmMgRYREREREZHCGGgREREREREpjIEWERERERGRwhhoERERERERKYyBFhERERERkcIYaBERERERESmMgRYREREREZHCjP7uCtD/cR0fqnX6/dkt/sc1ISIiIiKij8EnWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwxQOtqVOnQqVSyV7lypWTPn///j38/f1hb28PS0tLtG/fHs+ePZPNIzY2Fi1atICFhQUcHR0xZswYpKWlycocPXoU1apVg6mpKUqXLo2QkBCNuixduhSurq4wMzNDrVq1cP78eaUXl4iIiIiISMMneaJVsWJFPH36VHqdPHlS+iwwMBC7du3Ctm3bcOzYMTx58gTt2rWTPk9PT0eLFi2QkpKC06dPY926dQgJCcHkyZOlMvfu3UOLFi3g7e2NyMhIjBgxAgMGDMC+ffukMlu2bMHIkSMxZcoUXLx4EVWqVIGvry+eP3/+KRaZiIiIiIhI8kkCLSMjIzg5OUkvBwcHAEBCQgJWr16N+fPno1GjRqhevTrWrl2L06dP4+zZswCA/fv34/r16/jll1/g6emJZs2a4fvvv8fSpUuRkpICAAgODoabmxvmzZuH8uXLIyAgAB06dEBQUJBUh/nz5+Prr79G3759UaFCBQQHB8PCwgJr1qzJsd4fPnxAYmKi7EVERERERKSvTxJoRUdHo2jRoihZsiS6d++O2NhYAMCFCxeQmpoKHx8fqWy5cuVQvHhxnDlzBgBw5swZVKpUCYULF5bK+Pr6IjExEdeuXZPKZJ2Huox6HikpKbhw4YKsjIGBAXx8fKQy2syaNQs2NjbSy8XF5SPXBBERERER/RcpHmjVqlULISEhCAsLw7Jly3Dv3j18+eWXePPmDeLi4mBiYgJbW1vZdwoXLoy4uDgAQFxcnCzIUn+u/iy3MomJiXj37h3++usvpKenay2jnoc2EyZMQEJCgvR6+PBhvtYBERERERH9txkpPcNmzZpJf1euXBm1atVCiRIlsHXrVpibmyv9c4oyNTWFqanp310NIiIiIiL6h/vk6d1tbW1RtmxZxMTEwMnJCSkpKYiPj5eVefbsGZycnAAATk5OGlkI1e/zKmNtbQ1zc3M4ODjA0NBQaxn1PIiIiIiIiD6VTx5oJSUl4c6dOyhSpAiqV68OY2NjHDp0SPr81q1biI2NhZeXFwDAy8sLV65ckWUHPHDgAKytrVGhQgWpTNZ5qMuo52FiYoLq1avLymRkZODQoUNSGSIiIiIiok9F8UBr9OjROHbsGO7fv4/Tp0+jbdu2MDQ0RNeuXWFjY4P+/ftj5MiROHLkCC5cuIC+ffvCy8sLtWvXBgA0adIEFSpUQM+ePXH58mXs27cPkyZNgr+/v9Ss75tvvsHdu3cxduxY3Lx5Ez///DO2bt2KwMBAqR4jR47EypUrsW7dOty4cQODBw9GcnIy+vbtq/QiExERERERySjeR+vRo0fo2rUrXr58iUKFCqFevXo4e/YsChUqBAAICgqCgYEB2rdvjw8fPsDX1xc///yz9H1DQ0Ps3r0bgwcPhpeXFwoUKIDevXtj+vTpUhk3NzeEhoYiMDAQCxcuhLOzM1atWgVfX1+pTOfOnfHixQtMnjwZcXFx8PT0RFhYmEaCDCIiIiIiIqWphBDi767E5yoxMRE2NjZISEiAtbU1XMeHai13f3YLrdM/dXkiIiIiIvrfyB4b5OWT99EiIiIiIiL6r2GgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERApjoEVERERERKQwBlpEREREREQKY6BFRERERESkMAZaRERERERECmOgRUREREREpDAGWkRERERERAoz+rsrQPnnOj5UY9r92S3+hpoQEREREVFWfKJFRERERESkMAZaRERERERECmPTwf8Ibc0MATY1JCIiIiL6FPhEi4iIiIiISGF8okVa8QkYEREREVH+MdAiRTAwIyIiIiL6P2w6SEREREREpDAGWkRERERERAr7TwRaS5cuhaurK8zMzFCrVi2cP3/+764SERERERH9i/3r+2ht2bIFI0eORHBwMGrVqoUFCxbA19cXt27dgqOj499dvf8k9uciIiIion+7f32gNX/+fHz99dfo27cvACA4OBihoaFYs2YNxo8fLyv74cMHfPjwQXqfkJAAAEhMTAQAZHx4q/U31J9n93eU/5zqklN5feftMWWf1ulXp/kqUp6IiIiIKC/qa1UhhE7lVULXkv9AKSkpsLCwwPbt2+Hn5ydN7927N+Lj4/HHH3/Iyk+dOhXTpk37H9eSiIiIiIj+KR4+fAhnZ+c8y/2rn2j99ddfSE9PR+HChWXTCxcujJs3b2qUnzBhAkaOHCm9z8jIwKtXr2Bvbw+VSiVNT0xMhIuLCx4+fAhra+s86/Epy39OdWHd/xnlP6e6sO7/jPKsC+v+OdWFdf9nlP+c6sK6/zPK/xPqIoTAmzdvULRo0Tx/D/iXB1r6MjU1hampqWyara1tjuWtra11+sf+L8p/TnXRt/znVBd9y39OddG3/OdUF33Lf0510bf851QXfcuzLsqU/5zqom/5z6ku+pb/nOqib/nPqS76lv+c6qJv+c+pLvqW/5zqom/5z70uNjY2Ov/WvzrroIODAwwNDfHs2TPZ9GfPnsHJyelvqhUREREREf3b/asDLRMTE1SvXh2HDh2SpmVkZODQoUPw8vL6G2tGRERERET/Zv/6poMjR45E7969UaNGDdSsWRMLFixAcnKylIUwP0xNTTFlyhSNZoZ/R/nPqS76lv+c6qJv+c+pLvqW/5zqom/5z6ku+pb/nOqib3nWRZnyn1Nd9C3/OdVF3/KfU130Lf851UXf8p9TXfQt/znVRd/yn1Nd9C3/T65LTv7VWQfVlixZgh9//BFxcXHw9PTEokWLUKtWrb+7WkRERERE9C/1nwi0iIiIiIiI/pf+1X20iIiIiIiI/g4MtIiIiIiIiBTGQIuIiIiIiEhhDLSIiIiIiIgUxkCLiD5b6enpOH78OOLj4//uqhAREenlzz//RGpq6t9dDfobMdD6h3v48CEePnyY4+epqakwMjLC1atX/4e1Ut7z589x4sQJnDhxAs+fP9f4PDU1FY0bN0Z0dPQnq8Px48eRlpamMT0tLQ3Hjx//ZL+rlDt37mDSpEno2rWrtA737t2La9euaZS9ePEirly5Ir3/448/4Ofnh4kTJyIlJeV/VmdDQ0M0adIEr1+//p/9Zm4aNWqkNehLTExEo0aN/vcVQmYw+ttvv2HGjBmYMWMGduzYgfT09I+e7+eyvf8v9m1SRmxsLLQlMhZCIDY2VpHfiIiIwIYNG7BhwwZEREQoMs//hbS0NBw8eBDLly/HmzdvAABPnjxBUlLS31yzf5bw8HCcO3dOY/q5c+c+y+2hbdu20jnD0NBQ6/UL6S42NjbX1+foXz9g8cdYtGgRBg4cCDMzMyxatCjXssOGDdOYdufOHaxduxZ37tzBwoUL4ejoiL1796J48eKoWLFivuuVlpaGadOmYdGiRdJB2tLSEkOHDsWUKVNgbGwslTU2Nkbx4sX1uvDq169frp+vWbNG9j45ORnHjh1DbGysxkX4sGHDEBUVBQ8PDxgYGCAqKirXeVeuXFn2/s2bNxgyZAg2b94sLYOhoSE6d+6MpUuXwsbGBkDmcuY174/l7e2Np0+fwtHRUTY9ISEB3t7eilzcRkdH48iRI3j+/DkyMjJkn02ePDnf8z127BiaNWuGunXr4vjx4/jhhx/g6OiIy5cvY/Xq1di+fbus/KBBgzB+/HhUqlQJd+/eRZcuXdC2bVts27YNb9++xYIFCzR+Iz09HTt27MCNGzcAAOXLl4efnx+MjD7uMOPh4YG7d+/Czc0txzL6/O+zb2PPnj3D6NGjcejQITx//lzjQjHr//Xo0aNaA83379/jxIkTOtchq6pVq0KlUulU9uLFi7L3MTExaNGiBR49egR3d3cAwKxZs+Di4oLQ0FCUKlVKYx7x8fHYvn077ty5gzFjxqBgwYK4ePEiChcujGLFiknl9N3e161bBwcHB7Ro0QIAMHbsWKxYsQIVKlTAr7/+ihIlSkhlU1NTYW5ujsjISHh4eOS6zB+7b6v/n7quY6Xn3759e9SsWRPjxo2TTZ87dy7Cw8Oxbdu2T1KvT0F9U8/FxUXr525ublq3mVevXsHNze2jjpGPHj1C165dcerUKdja2gLI3Jbr1KmDzZs3w9nZWVY+OTkZs2fPlvbr7MfTu3fv5rsuQOa+aGxsjEqVKgHIvBm1du1aVKhQAVOnToWJiYlU9sGDB2jatCliY2Px4cMHfPXVV7CyssKcOXPw4cMHBAcHy+atz74EZN7osba21lrPmJgYlC5dOtdlSUxMxOHDh+Hu7o7y5cvnWC4iIkJ2fK9Ro0au8/0U/P39MXbsWI2xUB8/fow5c+ZoDcKAzJu12raD7OcDQNlrt0KFCuHs2bNo1aoVhBB6HYdiY2Ph4uKi8R0hBB4+fIjixYsDAFJSUrBz506cOXMGcXFxAAAnJyfUqVMHbdq0kW2Lf6fLly+jWrVqSE9Pz/f1taura67rMKdjzKe6PtEFx9HKhZubGyIiImBvb5/rRZ5KpdI4aGe/sL1x4wZKliyJ2bNnIyIiQuPCFgBu3bqFxYsXyzaEoUOHShdQaoMHD8bvv/+O6dOnw8vLCwBw5swZTJ06FX5+fli2bJms/OrVq/H7779jw4YNKFiwYJ7L3bZtW9n71NRUXL16FfHx8WjUqBF+//136bNLly6hefPmePv2LZKTk1GwYEH89ddfsLCwgKOjI+7evQsDAwPExcXB0dERBgYGUKlUsotZ9XuVSqWxk3Tu3BmXLl3C4sWLZcs6fPhweHp6YvPmzVLZwMBAmJqaYvbs2bkuX8GCBXH79m04ODjAzs4u15321atX0t8GBgZ49uwZChUqJCtz+/Zt1KhRA4mJibLp+gasK1euxODBg+Hg4AAnJydZvVQqlewie9WqVThx4gQaNmyIvn37YsuWLZg6dSo+fPiAnj17Ytq0abJ5e3l5oWPHjhg5ciSsrKxw+fJllCxZEufPn0e7du3w6NEjWXkbGxtcvHgRpUqVwpw5c3D48GHs27cPp06dQpcuXTSeol67dg2tW7dGXFyctL3evn0bhQoVwq5du/K8mC5ZsiT27duHMmXKaHwWFhaGCRMm4Pvvv0f16tVRoEAB2efW1tay7SqvE1n2baxZs2aIjY1FQEAAihQpovH9Nm3aSBf6np6eOHz4sGw/Sk9PR1hYGJYvX4779+9r/c3c9u3s/6vcTJkyRfa+efPmEEJg48aNUp1evnyJHj16wMDAAKGhobLyUVFR8PHxgY2NDe7fv49bt26hZMmSmDRpEmJjY7F+/XqprL7bu7u7O5YtW4ZGjRrhzJkz8PHxQVBQEHbv3g0jIyPZcQPI/J/v2LEDVapUyXO5dd23s1q9ejWCgoKkJ2FlypTBiBEjMGDAAI2y+gTb+s6/UKFCOHz4sHRBrnblyhX4+Pjg2bNnsun5CRB0PXeoHTp0KMf5Zz8u6XNjL6dt5sGDB6hQoQKSk5M16vL69WusXr1aVvd+/fppnKuaNm2K+Ph4rFu3TlquW7duoW/fvrC2tkZYWJisfNeuXXHs2DH07NlT6349fPhw2fv09HSEhITkuF4OHz4se//FF19g/PjxaN++Pe7evYuKFSuibdu2CA8PR4sWLWQ3o/z8/GBlZYXVq1fD3t5eOv4ePXoUX3/9tcbTWn33pS+//BIHDx6EqampbPqtW7fQuHFjjeN7p06dUL9+fQQEBODdu3eoUqUK7t+/DyEENm/ejPbt28vK6xPkXr58Gbt27ULBggXRqVMnODg4SJ8lJiZixIgR0jZ24MABnDx5Eg0aNECjRo1w/PhxzJo1SzqP9e3bF9lZWloiKioKJUuWlE2/d+8eKleuLD0tVLtw4QJ69+6NGzduyG6K5HTNkde126FDh3QOll69eoWpU6di+vTpOn0ne10MDQ213rh4+fIlHB0dkZ6ejpiYGPj6+uLJkyeoVasWChcuDCDzmHbu3Dk4Oztj7969UrB94cIFjB49Gn/88YdGcJ6QkAA/Pz8sWLAAVapUwciRI/H999+jQIECGDlyZK51nz9/fp7Ld/nyZVStWhUZGRn5vr6+fPmy7PPU1FRcunQJ8+fPxw8//IB27dppzEOX65OPfbCSGz7RysW9e/e0/q2L8ePHY8aMGdKFrVqjRo2wZMkSjfK//fYbunTpgho1akgBxdmzZ+Hh4aFx4Nu0aRM2b96MZs2aSdMqV64MFxcXdO3aVSPQWrJkCWJiYlC0aFGUKFFC40I1+13yHTt2aNQvIyMDgwcP1rhDHhgYiFatWiE4OBg2NjY4e/YsjI2N0aNHD+lEdu/ePenEq+963L17N/bt24d69epJ03x9fbFy5Uo0bdpUVjYtLQ1r1qzBwYMHtV6Qqw8EQUFB0v9E25OZ7NQ7rkqlQp8+fWQns/T0dERFRaFOnToa38ve3C17wJrdjBkz8MMPP2jc+c5uwYIFmDRpEnx9ffHtt9/iyZMnCAoKQmBgINLT0zFv3jwUK1YMAwcOlL5z5coVbNq0SWNejo6O+OuvvzSmCyGkC42DBw+iZcuWADLvZGsrP2DAAFSsWBERERGws7OTlr9Pnz4YOHAgTp8+DQA5HsBiY2Oxdu1aODk5AZAfyJo3bw4AaN26texklfVEmXW7unTpEkaPHo0xY8bIgvN58+Zh7ty5Gr998uRJnDhxAp6enlrrBmQGWCqVCiqVSuv/ztzcHIsXL9b63bz27ezBkz6OHTuGs2fPyi5K7e3tMXv2bNStW1ej/MiRI9GnTx/MnTtXdlxq3rw5unXrBiD/2/vDhw+lk/nOnTvRvn17DBw4EHXr1kXDhg01yn/77beYOHGiTjeAdN231SZPnoz58+dj6NChsm0gMDAQsbGxmD59uqx8nz59EBsbi++++07rRXl2+sw/KSlJ6x1lY2NjjWAVyNyXcgsQstPn3AEA06ZNw/Tp01GjRg2d5j906FD8/vvvmDt3rsaNvZcvX2LZsmXSRZhKpcJ3330HCwsL6fvp6ek4d+6c1v3r+PHjaN26NaytraWnI4sXL8b333+PXbt2oX79+lLZY8eO4fTp07Lg0d3dHYsXL8aXX36pMe+9e/ciNDRU636gzfDhwxESEoIWLVrAw8Mjz/Vy+/ZtaZm2bduG+vXrY9OmTdLNqKznlhMnTuD06dMa24GrqyseP36sMW999yVLS0u0bdsWf/75p3SH/saNG2jUqBE6deqkUf748eP49ttvAWSe74UQUhA7Y8YMjW1mwIABSE1NxY0bNzSC3AEDBkhB7v79+9GqVSuUKVMGb968weTJk7Ft2zZ4e3sDAN69e4d169ZhzZo1+OWXX9C3b19UrlwZ8+fPx+LFixEYGIgOHTogIyMD33zzDaysrNChQwdZXUxNTfHs2TONQOvp06dan07069cPZcuWxerVq1G4cOE8/695Xbvpcs2Q1dSpU9GlSxfExMSgdevWWLt2rRSs5iWnG4dJSUkwMzMDkHnjvVKlSrh06ZJG4JSYmIhevXrB398f+/btAwDMmzcPjRo10voE1MbGBl999RV+/PFH/PLLL7h06ZLUv+zSpUs51lNdR21BTlYJCQlS2fxeX2u7MVejRg0ULVoUP/74o9Y66HJ9EhQUhO7du8PMzAxBQUE5/r5KpdI70IIgRVlZWYk7d+6IAgUKiLt37wohhLC0tBR37twRQghx7949YWpqqvG9kiVLiu+++05j+uTJk0XJkiVl0woVKiSuX7+uUfb69evCwcFBY/rUqVNzfenq5s2bwsnJSTbNxsZG3Lx5U/pbXa+zZ88Kd3d3needXfPmzcWTJ0+Ei4uLiIqK0vj88uXLolixYrJpDRs2zPHl7e2d77r06dNHVK9eXahUKtG5c2fRp08f6TVw4EAxc+ZM8eLFC53mlZ6eLgYOHCjmzJmj8Zl628lLuXLlxMaNG4UQQly8eFEYGRmJVatWSZ+vWrVKVK9eXfadYsWKiVOnTgkh5Nvj77//rrF9CSGEt7e36NWrl1i/fr0wNjYW0dHRQgghjh49KkqUKKFR3szMTFy9elVj+pUrV4SZmZn0XqVSCWdnZ+Hq6ip7qVQqUaxYMeHq6irc3Nxk8zh69Giur+y++OILERoaqjE9NDRUVKtWTWN6+fLlxcWLFzWmZ3X//n1x7949oVKpRHh4uLh//770evLkiUhLS8vxu/rs2/qys7OT/q9ZnTx5UtjZ2WlMt7a2FjExMUII+XZw//596bik3rb13d4LFSokrUdPT0+xfv16IYQQMTExokCBAhrlPT09haWlpTA1NRVly5YVVatWlb2y0nffdnBwEJs2bdKYvmnTJmFvb68x3dLSUly6dEljek70mf8XX3whpk2bplF2ypQpWrdHGxsbcfLkSZ3rou/25eTkJP1vdGFtbS327NmjMT00NFRYW1sLIf7v/6NSqUSdOnVk/58mTZqIgQMHitu3b2vMw8PDQ3z99dey/SctLU0MHDhQeHh4yMqWKVNGnDt3TmMe586dE6VKldKY7urqqvU8mRN7e3utx42cWFlZScvk4+MjFixYIIQQ4sGDB7JjnhBC2NraimvXrgkh5PvdiRMnhKOjo8a89d2X3r59K+rUqSM6deokMjIyxJUrV4Sjo6MIDAzUWnczMzMRGxsrhBCiZ8+eYty4cVLdtc3fzMxM6zEyIiJCmJubS++9vLzExIkThRBCZGRkiDlz5ghLS0uxd+9eIYQQcXFxwsDAQFquhQsXCiGEOHjwoDA3Nxfz58+X5vXTTz+JunXravxmly5dRIMGDUR8fLw07fXr16JBgwaiY8eOGuUtLS2l85cu9L1208fUqVNFcnJynuUCAwNFYGCgMDAwEIMGDZLeBwYGimHDholatWqJOnXqCCGEMDc3F1euXMlxXlFRUbL/UcmSJcXly5dzLZ/9HKwrIyMj4e3tLXr37i07b6hfrVu3lv7/+ZHbNVJ0dLSwsLDQ+pmu1yefCgMthal3TH0vbM3NzbUeDG7fvi3bSYQQYtq0aaJr167i/fv30rT379+L7t276xU46Ss0NFQjkHNwcJBONmXKlBFhYWFCCCFu3LiR40avC/U6W758ufDx8RFPnz6VPnv69Klo0qSJCA4Ozvf89WVlZSWGDx8ukpKSPnpe2gJWIYTo16+fWLZsWZ7fNzc3Fw8ePJDem5qayg4i0dHRwtbWVvadUaNGiXr16omnT58KKysrER0dLU6ePClKliypdZu5fPmy8PDwENbW1rLPAwICRNeuXTXKV65cWRw6dEhj+qFDh2QXTIMGDRKenp4aF0BGRkbShcjHMjMzy/FGhLaD6r59+0STJk3EvXv3FPn97PLat21tbYWdnZ1Or+x69uwpKlasKM6ePSsyMjJERkaGOHPmjPDw8BC9e/fWKJ/1Ai7rcWn//v3C2dlZVnbq1Kl6be/dunUT1apVE/379xcWFhbir7/+EkII8ccff4iKFStqlFfqBpA2NjY2Wi/sb926JWxsbDSm6xJs53f+f/75pzAyMhK9evUSISEhIiQkRPTs2VMYGRmJHTt2aMxD3wBBn3OHEEIULFhQCrZ1oc+NvT59+oiEhASd521mZibdqMvq5s2bGvvqzp07Rc2aNUV4eLg0LTw8XNSuXVvretywYYPo0KGDThe2QghRpEgRcevWLZ3rrs/NqE6dOomvv/5aCJG53929e1e8efNGNGrUSPTp00dj3vruS0JkBhtVqlQRHTp0EI6OjmL06NE51r1MmTJiy5YtIikpSRQqVEg6dkdGRmq9EaFrkJv1Ro7axo0bRYECBcSuXbtkgVbWgEYIIYyNjWUBwI0bN7TW5dGjR6JkyZLCxsZGCuZtbW2Fu7u7FDxm1aZNG7F9+/Yc10V2eV27JSQk6PzKztvbW7x+/VpjekJCguyGkT43LooUKSJ27dqV4/L8+eefokiRItJ7U1NT2XrP7u7du/kOPipVqiRMTU1zDIYuXbr0UYGWpaWliIyMlK3j+Ph4cePGDdG5c2dRpUoVrd/T9fpEX7reHGegpTD1jqnvhW2zZs3EmjVrNKavWbNGNGnSRDbNz89PWFlZCQcHB9G4cWPRuHFj4eDgIKytrUXbtm1lL7XXr1+LlStXivHjx4uXL18KIYS4cOGCePTokcZvZr17EhgYKEaMGCE6d+4sLC0thb+/v6zsV199JT1dGTBggKhZs6b45ZdfhK+vr6hZs6b+K/D/U69H9V1vY2NjUapUKVGqVClhbGwsLC0tc7wDHh0dLcLCwsTbt2+FEJl31j6Wuj6pqaniwIEDIjg4WCQmJgohhHj8+LF48+aNzvPKGrAuXLhQes2cOVM4ODiI3r17i59++kn2mfrOnxCZd16zXvg4OzuL+/fvS++jo6OFpaWl7Dc/fPggBgwYIIyMjIRKpRLGxsbCwMBA9OjRI9enMdm9e/dOpKSkCCGE7GAXGhoqKlasKLZt2yYePnwoHj58KLZt2yYqVaqkcZf4999/Fy4uLmLx4sXStLwCrePHj4vu3bsLLy8vaZtdv369OHHihEbZqlWrip49e4oPHz7Ilr9nz54aT0qEyLzbbGJiIgwMDISlpWWewY0QQly7dk3s3btX/PHHH7KXNnnt2+qLb11e2b1+/Vq0bt1aqFQqYWJiIi2Hn5+f7I6vWv/+/YWfn59ISUmRLvgePHggqlatKoYPH65RXp/t/fXr18Lf31+0bt1auoMtROaTlRkzZmhdN/rSdd8OCAjQejd/1KhRYsiQIRrT9Q229Z3/7t27RZ06dYSFhYWwt7cX3t7eWp/GCqF/gKDPuUMIIcaOHSumT5+u07yFyN+NPV3/T3Xq1NEaJO3YsUPUqlVLNi3rfpp1WzcxMZH2VUNDQ2FoaCidE6ysrISlpaXw8PDI9YmpEJlPUIYMGaLz+UKfm1EPHz4UFSpUEOXLlxdGRkaidu3awt7eXri7u4tnz55pzFuXfUnbhf3NmzeFi4uLGDx4cK4X/EuXLhVGRkbC1tZWVKlSRaSnpwshhFi0aJFo2LChRnldg9xChQqJiIgIje//+uuvwsLCQixbtky60La1tZUF2VmDGiEyL/hzulmblJQkli9fLoYMGSJGjRol1q1bJ52Xsnvx4oVo3ry5mDp1qti+fXuex+y8rt1UKpUwMDDI9aUuk52BgYHW//ezZ8+EkZGRxnRdblx89913ws7OTsyfP19cvnxZxMXFibi4OHH58mUxf/58UbBgQTFlyhSpvLOzs2ybym7Pnj0aN9101adPH2FsbJxj8HH9+nXh6uqar3kLkbmNaFv/KpVKFC9eXJw+fVrr9/K6PsltX8mrProEWkyGoTB1ogFnZ2f4+/sjJCQE6enpMDIyQnp6Orp164aQkBAYGhrKvhccHIzJkyejU6dOqF27NoDMdvbbtm3DtGnTULRoUamstj5UOVm7dq1eHeABSO2p1QwMDFCoUCE0atQI/fr1k7WDjoiIwJs3b+Dt7Y3nz5+jV69eOH36NMqUKYPVq1fn2u8lN+r1uH79ep07ngYEBKBTp044cuQIVCoVoqOjUbJkSfTr1w92dnaYN29evuqirs+ePXswcOBAKXPU7du3UbJkSQwfPlxr5qjsnUeFEHj69ClCQ0PRu3dvLFmyJNdOoFll7RBar149DB06FJ07d9Zadvfu3ZgwYYIsPbtabGwsrl69iqSkJFStWlVr8omsUlJStHYML168uJSAIuvyqeua/X32Tr6PHz9Gr169YGJigrVr18LFxQWXL19GhQoVNOrw22+/oWfPnujevTs2bNiA69evo2TJkliyZAn27NmDPXv2yMqfP39eyvCkzigVFRUFlUqFXbt2oWbNmrLy69aty3Ud9O7dW/r77t27aNu2La5cuSJL6qJeZm1JE/TZt1u3bp1rXXISHR2NmzdvAshMJpBTlrGEhAR06NBB2m+LFi2KuLg4eHl5Yc+ePbK+T9kzpeW1veeHrhkQX758qde+PXToUKxfvx4uLi7SOj937hxiY2PRq1cvWQKH+fPnw87ODm/fvkVaWhosLCxknwPypDj5mb8+qlatijt37kAIAVdXV426ZO9Tq8v2tXr1agBAqVKlkJGRgXXr1qFy5cqoXLmyxvyz17dt27Y4dOgQTE1Npf4Rly9fRkpKCho3biwru2rVKnTs2FHn/9OWLVswduxYDB06VFb3pUuXYvbs2bIMeLn1EVHbuXMnAOh03sneN7Jt27Y4cuQIChYsiIoVK2qsl+wJKHLy/v17GBoaanw/LS0NmzdvRlRUFJKSklCtWjV0794d5ubmADL7t4SEhMDa2hrr169Hp06dpH442mQ//qoJHRI+AJnn7ocPH+Krr76CpaUlACA0NBS2trYa/dqy7h/q87/676zHjDdv3mDWrFkYPXq0xu/9+uuv6N27N9LT05Geno4vvvgCkyZNQps2bQBk9ieysrKSlungwYPw9/fHrVu3clwHuti1axd69uyptT+ktnWTkpKS67XbyZMndf7tBg0aAMBHJ1PKy5w5c7Bw4ULExcXJzr9OTk4YMWIExo4dK5Xt27cvYmJitGbJFULgyy+/RJkyZbB27Vq96/HhwwfY29trTVaiBCsrK6xYsUJ2zlRfn5YuXTrHDIIGBv83kpW26xP1+5z2ldzqo05skxsGWgrLvuIfPnyIK1eu5Hlhm3VDyI2+GwIA+Pj4oFq1alIHeHX9Tp8+jW7duuV75z516hRq1KihkelICbpuwFn16tULz58/x6pVq1C+fHnp+/v27cPIkSO1jhelT31q164NJycnnTNH6ROw6uPUqVMoUKBAjhcTP//8MzIyMhAQEJCv+QOZHb379+8vJbFQy3owOnbsmM7zU59wss9r9uzZWLRoEV68eIGoqCitgVbVqlURGBiIXr16ybaLS5cuoVmzZlI626ySk5OxceNGWfDRrVs3jSQK+mrVqhUMDQ2xatUquLm54fz583j58iVGjRqFn376SWunfH337U81LERWJ0+elF3w+fj4aJTRJVPaxwzdoM8NIH337ez7Xk5UKhUOHz6sV7Cdn/kD8tTYFSpUQPXq1bV+J68slNkDBF22L/VpXlsiheyOHDkie68t81tO0tPT9fo/5VX3vIIFJeW1nNouPHW9UaALExMTPHjwAEWKFIGhoSHi4uI0sjdm9bHHX33ktX+oXbhwAYaGhjkmE9i0aRNWrlyJI0eOYMeOHbC3t5clPMlq9uzZSE5Oxvfff6/x2YYNG7B8+XLcvXsXZ86cQYkSJRAUFISSJUtKgZuaq6srWrZsie+++07KyKcLfW9K5iZrUKztkludTElbpuKIiAhs3bpV6/A52YP/e/fuydK7a7uRe+fOHVSvXh3u7u4YNWqUlNzk5s2bmDdvHm7fvo2IiIg8hwTISX6u3T7FvFu0aIFVq1ahSJEin2xf0bk+ej0nozyp22xOmzZNa9OPt2/fau0YrQ9d2/mq6dIBPj+srKxE7dq19aqLrtT1dHNzk9qnZ/X69WuNDpuFCxcWkZGRsu8LIaTkJB/D0tJS1tQheydZbX0hdHXy5Enx/v37T7bNbNq0Sbx580Zs3bpVDB48WLRv3z7HJqZqderUEfXr1xd79uwRly5dEpGRkbKXkiIiIsSCBQvEq1evtH5ubm4uNenK/n/Nvv2mpKSIkiVL5tnHJWsTAX3a2dvb20v9CKytraXt4dChQ8LT01P3hc7B0aNHhbm5ufDx8REmJibSss6aNUu0b99eo3xaWppYtWqV6Nq1q2jcuLHw9vaWvT5GwYIF89zeVSqV1BRG3aRDpVJJr9ya0TRu3FiMGTNGY/6nTp3S6OPyKfftT+3hw4eiXr16QqVSSU3cVCqVqFu3rnj48OHfXT1F6ft/yppUJq/XgwcPcn1lFxsbK1u/586dE8OHDxfLly9XZFkvX74sHBwcROnSpYWRkZG0rN9++63o2bOnRvnHjx+LLVu2iMWLF2ttFl6pUiXRu3dvERISIlQqlVi8eLFYt26d1tfH+pTHDX1s2rRJ737PP//8s3BwcBAzZswQZmZm0npfu3at1maPlpaWevVJ1JcuzdqzJlOKiIjQOZnSr7/+KoyNjUXLli2FiYmJaNmypShbtqywsbHR2rdPV+Hh4aJixYqyZngqlUpUrFhRnD9/Pt/zFSL35nSpqala91Vd6donKq96KEXX32B6d4WJ/3+3Ytq0afjmm29kaW4B4O3bt5g2bZrG4LPr169H586dNZ4OpaSkYPPmzejVq5c0Td9BU01NTbU+NlePI5BfQgicO3dO8QFcs7p//77WO5kfPnzQGBskOTlZY30Dmc1+lHjqlpGRobUujx49kqWB1VezZs0QGRmp9zajq0GDBmHfvn3YvHkzvL29dUpxGxkZiQsXLqBcuXI6/058fLxsPJyKFSuiX79+0qDSOalWrRqqVauWY52cnJwQExMDV1dX2fSTJ09q3EkyNjbG+/fv86yrnZ2dND6Jra1tjk1wst9JT09Pl/7XDg4OePLkCdzd3VGiRImPbuIC6D8shC4pqfUZH8TS0hIVK1ZErVq1dNreP2bohvDwcCxfvlxjerFixTSeUuq7b/fr1w8LFy7U2C+Tk5MxdOhQjbGi9Bl8Vt/565oa+39F33Vz7949pKWladzRj46OhrGxsWy/1Pf/lH3g3dzk1FROLfu22q1bNwwcOBA9e/ZEXFwcfHx84OHhgY0bNyIuLu6jBoAHMpuG9+3bN9ehEtRCQkIwaNAgmJiYwN7eXmOMxGHDhiE4OBgjR45EaGgoVCoVJk2apHV5VSqV7HpALT4+HufPn9fa1Dt7eX1T2Wf1/v17jXN+ToMl52XQoEGoVauW7DgeEhKCtm3b5njeWLx4MVauXAk/Pz/ZuHo1atTQ2mSxXbt2OHLkiNbB27URQmD79u04cuSI1nWZ9SlS1mbtFy9exIcPHwBkNtGeOXOm1KxdvZ3PmDEDly9f1nhytWbNGrx48UJjaJeZM2ciKCgI/v7+sLKywsKFC+Hm5oZBgwahSJEiWuv/5MkTLF++HDExMShSpAgGDBigcR6vUaMGrl69ikuXLiEmJgZCCJQtW1ZqJfPu3TupSau+ctuWrl27Jg1YnB/iIxrgvX//HlFRUVr/p/ltsq/zfvNJw71/CV3vkguRma71/fv3QqVSiefPn2t8fujQIa0p2HPqJPnXX39Jd4MvX74sLl++LFQqlThy5Ij0/vLly+LixYti5syZWlNv69sBXheXL18W5ubmetdFVz179hQbN24UKpVKrF+/XtZ59ffffxf+/v6ibNmysu80a9ZMTJo0SQjxf5md0tPTRceOHbU+DdBHs2bNRKtWrfTKHKUr9V0RfbcZfeZvY2OjV+riGjVqaE00kZPw8HBRsGBBUaxYMekpmbOzs7C3txcXLlzQ+p1Vq1aJihUrSh3bK1asKFauXKlRbubMmaJChQri7NmzwsrKSpw4cUL88ssvolChQmLRokUa5X/44QfRu3dvkZqammN9jx49Kn2uT/r4evXqSZ2/u3btKpo2bSpOnjwpevXqlWM2MCEyO2+HhoaKZcuW5ZjkRAj9UwvrkpLa1dVVeiqcPa1+9leRIkWEoaGhGD16tN6Z0vSlTwZEffftnI6nL168EIaGhhrTa9SoIWUmUz8p7dq1qyhdurTWY6Q+89clNbadnZ2UMj+vLJTZZd+e1K9FixaJFStWiMOHD8vumOu7burXr681EcuGDRtEgwYNZNP0/T+FhISI3bt3S+/HjBkjbGxshJeXlyzBjxBC46l6eHi4WLFihShXrpz47bffNOadtQXCwoULpXTY+/btk1pDVK1aVXqS7unpqZEwI7fkGfq0FHF2dhYzZsyQkk7kJeuTYl38+eefwsrKSqhUKmFjYyNsbW2ll7ZtRt9U9klJScLf318UKlRIa/KH/NL2RMDY2DjXay0zMzNp28j6/du3b2vNljdjxgydkkypDRs2TJiamoqmTZtqTVOelaenp/SEMWtdLl68KAoXLqwx7xIlSmgdjuPs2bNak0RYWFhIrTkKFiwoDXVz/fp1KXOxubm5dN1w7do1YWNjI0qXLi06duwoypUrJywsLHJN557V+/fvxU8//aS17rrK7SlPZGTkR20v6utrfeuxd+9eUahQIVlri6ytLvJL1ydaDLR0VLRoUZ0CLfWBzcDAQOOEaW1tLQwMDLRmpcrpIjsyMlI6UGZ/zJv9ZWFhIVavXq0xj/j4eOHj4yNsbW2FoaGhcHFxEcbGxqJ+/fr5TleuUqkEAL3rIkTmWCABAQFSxsShQ4fKHu1HRkZqnaf6ZWJiIsqWLauR0lQ9dkjTpk2FiYmJ6NChgyhfvrwoXLhwrk0H0tLSxLZt28T06dPF9OnTxbZt27RepOubOUpXAISNjY3e24yuLC0thbOzs7hx44bO3zl06JDw8vISR44cEX/99VeeaWvr1asn+vTpI1tvqamponfv3uLLL7/UKP/dd9+JAgUKiPHjx0sB9Pjx44WlpaXGmEAZGRlixowZokCBAtI2YGZmJl3QZafOylmkSBHRpEmTPJtJ6iMsLEy6qIuOjhbu7u5CpVIJBwcHcfDgQa3fuXjxonBychLW1tbC0NBQOuAXKFBAo/mrvsNC6JOSOiUlRXh7e+dZfv/+/cLBwSFf23te+3ZW+twA0nXfVqf7ValUIiYmRrbNvnr1Sqxbt06W6lgt60Xz7NmzpWx9J0+elAV9+Zm/LqmxQ0JCpAsIfTNPurq6SvtGwYIFRcGCBaXtq3DhwkKlUolSpUqJa9eu5WvdqDOvZRcdHa2Ryl7fY3DZsmWltMunT58W5ubmYvny5aJVq1Y676u7d+/WCPiEyLxpob5IbdWqlZg9e7YQQj7OVdZxjfQdbkCfGwX6ptS/f/++XplWy5QpI4YPH/7JUtkPGTJElC9fXmzfvl2Ym5uLNWvWiO+//144OzuLX375Ref5ZGVnZyed+7Ke89TBYk43FsqXLy927twphJCv90WLFmkNiHO7saRtvCg7Ozudg1B9mrULkXNq9ZzKFytWTAquKlWqJI3dd/r0aWkMu6xBeZs2bUSrVq2k83B6erro0qWLaNmypTTP9+/fi/Hjx4vq1asLLy8v6cbhmjVrRJEiRYSzs7O0r+iratWqWjN8ql/lypXTGthkZGTo1bVBF1n/H6VLlxZDhgwRcXFx+ZpXTnQN/Nh0UEf+/v6YM2cOVq1alWsSgwULFkAIgX79+mHatGmyx98mJiZwdXWFl5eXNK1q1apQqVRQqVRo3LixbN7p6em4d+8emjZtCiCzCYcQAiVLlsT58+dlzf5MTEzg6Oiokc0QyBzt+8CBAzp1gNfVvXv3UKFCBbx7906vuuzbtw+tW7eGp6enlNno1KlTqFixInbt2oWvvvoK1apVQ1xcHBwdHeHm5obw8HA4ODjkWScPDw/cvn0bS5YsgZWVFZKSktCuXTv4+/vn+Jj92rVraN26NeLi4qRmPXPmzEGhQoWwa9cueHh4SGWdnZ1x+fJlWeao/v37yzJH5YepqSkmTpyI8ePH67TN5MewYcMwbdo0rFmzRqe6qreN7FnFRA4d0yMiIrBy5UrZ9mtkZISxY8eiRo0aGvNftmwZVq5cia5du0rTWrdujcqVK2Po0KGYPn26NF2lUuHbb7/FmDFjEBMTg6SkJFSoUEHKlJWdra0t2rdvn+cyZvf27VutHY6zJnHw9fWV/i5dujRu3ryJV69ewc7OLsdmBIGBgWjVqhWCg4NhY2ODs2fPwtjYGD169MDw4cNlZbt06YJx48Zh27ZtUKlUyMjIwKlTpzB69GitzYVGjRqFhQsXYsmSJXk2YzA2NsaVK1fyTEBQr149TJo0Se/tXZd9O6t58+ahQ4cOcHR0xLt379CgQQMpA+IPP/wgK6vrvq1uBqpSqVC2bFmNOqpUKq3JJoQQUnOSgwcPomXLlgAAFxcX/PXXXx81/x9//BFDhw7F0qVLpX0hIiICw4cPx08//QRAnmwje+KNvMycORMrVqzAqlWrpOZRMTExGDRoEAYOHIi6deuiS5cuqFixotT8Tp91o1Kp8ObNG43pCQkJGscBfY/BDx8+lDrd79y5Ex06dJDqrEviDgBwd3dHeHi4xvSKFSsiODgYLVq0wIEDB6SkCk+ePIG9vT0AeWKR7ElG8tK6dWtMnz4dW7duBZC5nmJjYzFu3DiN40///v2xbds2jB8/Xqd5R0RE6NQkTe3x48cYNmyY1mab2uhz3AAyM/etX78eDRs2RN++ffHll1+idOnSKFGiBDZu3Iju3bvr9LtZpaamwtDQEN9++y0cHR0BZO6HAwYMwNixY3NMJjJy5Ej4+/vj/fv3EELg/Pnz+PXXXzFr1iysWrVKo7y+TZptbGx0TuSgT7N2IPN4curUKY0kFadOnZJl0lOrX78+Dhw4gEqVKqFjx44YPnw4Dh8+jAMHDmicm4HMJtAbN26UzsMGBgYYO3YsWrRoIZWZPHkyli9fDh8fH5w+fRodO3ZE3759cfbsWcyfPx8dO3bUeu2WnJyM2bNn49ChQ1qb3929exfXr19Hly5dcsym/PTpU9y+fVtj+ogRI7B8+XKduzbo69mzZxg5cmSuyVCyZ4nOjToza7169XT7gqLh3b+YvnfJjx49muO4Dlmp75apVCoxevRo2R20mTNnik2bNsnGA/qc6NMxUc3T01MahT6rcePGSXejChYsKM6ePSuEyGzmou1Jn1Jq164tWrVqJUvE8OrVK9G6dWvh5eX1yX43K/WdF123mfzM/9q1a8LX11fnMWX0aU4nhBCOjo5i3759GtPDwsKEo6OjxnR9B5T9lJ4/fy5atGiR45goWfXt21caTyqrpKQk0bdvX63zt7GxkZow2djYSE/Gz549K9zd3WVldRnvLPuxx8bGRri5uYmWLVvmeVwaMWKE1v1PCbrs29qcPHlSLF26VMyZM0ccOHDgo+pw9OhRceTIEaFSqcTvv/8u22ZPnz4tHj9+rPV7ug4+m5/56zL+U9a79zklZUlMTNR6LihZsqS4dOmSxvSLFy9Kd+xPnTolChYsmK9107JlS9GxY0dZ88O0tDTRvn170bRpU+3/CB1lfSrk6ekp1q9fL4TIfDKaPXlG9vWR10ClR44cEba2tsLAwEC2b06YMOGjn2wLoV9LkbS0NNG0aVPRoEEDaQy2rK/s9G2S1rZtW7Flyxad6+7n56fXcaNAgQJSEoNixYpJT2jv3r2b72Q00dHRwsDAQLRt21Y2Lp8ug9f/8ssvonTp0lILh2LFiolVq1blqx7ZhYSEiC5dukhjwOVG32btc+bMEfb29mLNmjVSMozVq1cLe3t7MXPmTI3yL1++lPbL9PR0MWvWLNGqVSsxcuRI6Zol6zVSiRIlNJoJZh+A2M3NTRo/7MqVK0KlUom+ffvmOX5cly5dRJEiRcTYsWNFUFCQWLBggewlhBDVq1cXP//8c47zyGnAYn2eIuoq637Tt2/fPLePrINCN2zYUFhbWwsLCwvpGqlAgQLC2to6X8li+ERLR/reJc+aIjK3zqPqu2iurq7o0qWLzkkbnjx5gpMnT2q9szBs2DCN8ocOHcrxTkT2zs+6Elk6Jl6/fl3r04DsnQxv3Lgh3QHMql+/fliwYAEAoH379qhfv750h6dGjRpa77AAkMaWApBjemmVSgUzMzMUL15cY/1GRkYiIiICdnZ20jQ7Ozv88MMP+OKLLzTmFR0dnWMn2fx2rlbfvXFzc8PTp09zLFe8ePF8zR8AxowZgwsXLqBHjx463THSNcXpkCFDMH36dHTu3Bn9+/fHTz/9hDp16gDIvEs3ZswY2VMrtZ49e2LZsmUaY/asWLFC4+6oLnfSPsaIESMQHx+Pc+fOoWHDhtixYweePXuGGTNmaIz7s27dOsyePVsjkcC7d++wfv16rfuSsbGx9BTJ0dERsbGxKF++PGxsbPDw4UNZWRMTE6xcuRLfffddjqmFs3cSb9u2rc7LmpaWhjVr1uDgwYOoXr26Rrr77P8PfbZ3XfbtrNQJgOrWrSsbt0edAMjT01Pv1PHq7fbevXtwcXHRObX+ggUL0L17d+zcuRPffvut9JRl+/bt0vacff6Ojo64cuWKbN28ePECKpUKrVq1ks1bHzklZ1FzdnZGnz59MGXKFBgYGODp06dIS0vTKJeWliYlFSlatCg+fPiAhg0b6r1u5syZg/r168Pd3V0avuDEiRNITEyUUtdnpU9Shq+++goDBgxA1apVcfv2bTRv3hxAZkuD7E8JtK0XIQRcXFywefNmjXrUqlULjx49QkpKCuzs7PDgwQPs2LEDJUqUQGBgoEb5nJ5Kq88fpUuXRp8+faQ08Pq0FJk1axb27dsntZrIngwju1u3bmlNe25jY4P4+HiN6S1atMCYMWNw/fp1VKpUSWMMr+znYVtbW72OGyVLlsS9e/dQvHhxlCtXDlu3bkXNmjWxa9cu2Nra6jyfrEqXLg1zc3MUKlQInp6eWLduncb4XTnp3r07unfvjrdv3yIpKUl6IqZNTk8qsv5f27RpI41t1alTJ/z6669wdHTMcxy78ePHIyMjA40bN8bbt29Rv359mJqaYvTo0Rg6dKjGb44ZMwYvX77EkCFDpGslMzMzjBs3DhMmTNAon3W8LQMDA61PRMX/T2ShUqmQlJSEqKgoWSuMmJgYODk5Se8fPXokDS3h4eEBU1NTBAYG5nlNsHfvXoSGhub6P6pbt26uSaGsrKxy3K6VTgc/ceJEaf0tWbIEHTt2xIkTJ7TuH8OGDZMNazF//nxYWVlh3bp10rXh69evpae5+uI4Wp/I27dvMXbsWGzduhUvX77U+Dx7k4uSJUsiPDxcatKgFh8fj2rVqskuJvPKYJT9wnPatGmYPn06atSogSJFimjsUPoMgJydvgO4uri4SI+ns9q6dStGjx6N2NhYAEBYWBhiYmIwbNgwTJ8+PcesflmbXmkbqyLrshobG6Nz585Yvny5NBBklSpVEBQUhEaNGsnme/jwYQwfPlw26O/KlSsxePBgODg4wMnJSWO9Zx9IVFfqsRhKly6tV1YtXXl4eODu3bvYv3+/7o+6dWRtbY3IyEg4OztjzJgxCA4Oli76jI2NMXjwYMyePVsjwNVnwNenT5/i2LFj6Nmzp9btN3vzOyDzAjmnsUey/5+KFCmCP/74AzVr1oS1tTUiIiJQtmxZ/Pnnn5g7dy5OnjyJxMRECCFgZ2eH6OhoWVPZ9PR07Nq1C+PHj8eTJ0806tKkSRP06dMH3bp1w9dff42oqCgMGzYMGzZswOvXr3Hu3DldVrUichv/KeuYT4D+27uu+7aaoaGhlPkxq5cvX8LR0RFCCKkJsXrf1na6ymmMJX0u+HOS0+Cz+/btQ8+ePWXNCrXVJy0tDZs2bYKvr6/OY/isX78e3377Lfr06SMNrn3+/HmsW7cOkyZNwosXL/DTTz9hzJgxmDhxIlq0aIG4uDisWrUKVatWBZA5uO/XX38NJycn7N69G7t27cLEiRNlxzNdmsqqPXnyBEuWLMHly5dhbm6OypUrIyAgQHYhCGQ2MevevTuSkpJgbW2tsc1kH/g5Pj4ekyZNwsOHDzF48GCpmfyUKVNgYmKCb7/9ViqbfSycvAYqbdKkCdq1a4dvvvkG8fHxcHd3h4mJCf766y/Mnz8fgwcPlpUPCgrCDz/8gGbNmsnWe1hYGAIDA3Hv3j1s2LABixcvxtdff63xe7mxs7NDUFAQ+vTpo1P5kiVLYsWKFfDx8ZGN1bN+/XrMnj0b169f11gXOclp/9CFeqzMn3/+GYaGhhg2bBgOHjwoDQifmpqK+fPnaz0G68LDwwN79+5FdHQ0+vbti+7du+Onn35CZGSk1jEVAWDq1KmYPHmyxjInJCTgm2++wa+//iqb7u3tjYsXLyI9PV0KdG/fvg1DQ0OUK1cOt27dgkqlwsmTJ1GhQgVpYPQOHTpovSmprYlpSkqKTs3a1ZKSknDjxg2Ym5ujTJkyOd5gz+sYmZ6erjHGmbu7u3ROBYDvv/8er1+/lm6iZR+jzcrKClFRUTk291Nzc3PDnj17ZIOIK2XdunUICwvTuWvDrVu3sHjxYinDcfny5TF06FDp/5vd6tWr8c0338DMzEyna+ZixYph//79GuNWXr16FU2aNNF6ns+V3s/A/qPu3r2rtanT7du3pc6QWenbeTSnLENxcXHCxMRENk3fDEZOTk5SkwxdxMXFiR49ekgZyHJrStWyZUvRpk0b8eLFC2FpaSmuX78uTpw4IWrWrCmOHz+uMe9p06YJW1tbMXv2bHH8+HFx/PhxMWvWLGFrayumT5+uUb5Pnz5am2pps3PnTuHu7i5WrVoloqKiRFRUlFi1apUoX7682Lx5s/jll1+Es7OzGDVqlPSd0NBQUbFiRbFt2zbx8OFD8fDhQ7Ft2zZRqVIlERoaKmuqUrx48Xx1En327Jm0rLklzdA3q5ZaeHi4WL9+vVi/fr0IDw/XWsbd3V3nzEP6yJ51Jzk5WVr3uXXMzv6YPqeXt7e3sLGxESdPntS5TgsXLhSWlpYiICBAmJiYiEGDBgkfHx9hY2MjJk6cqFHeyspK2oeLFy8u/dbdu3dl40Xl1LTQwMBAGBoaihkzZmitT3h4uDh8+LAQInNb8PX1FVZWVqJatWoaY5LpO76Nvsclfei7veu7b+eVAOj+/ftSc5a8xljKTt8sbPqOuaRP52pzc3OtdcxJo0aNtDYD27Jli2jUqJEQIjMpgrrZ6dOnT4WPj4+UKMjExESoVCrx1VdfSfU7fPiw1LRXn6ay+tI3KcOnZG9vL65evSqEEGLlypWicuXKIj09XWzdulWUK1dOo3y7du3EsmXLNKYHBweLdu3aCSEyEy54eHhIn50/f17MmTNHjBo1KtfmgIULF9a6n+ZE3yZpn0pO3QPu378vfvvttzzPKbqcm9T++usv0bZtW1m2SG2cnZ2Fl5eXrF5HjhwRLi4u4osvvtAoHxQUJNq1aydL4hQfHy86dOggFixYIJKTk0WbNm2kBDgWFhZ6Zdz9lHK6Lnz8+LHWDIu6zrNp06ZSM1EjIyOdusNs2LBBdOjQIdd9e9KkSTmOCSZEZiIaHx8fjelv377VuWvD9u3bpeRM6n3Ny8tLGBkZSZljsytcuLD44YcfdL5mtrS0FEeOHNGYfvjwYWFpaanTPLJioKUjfVLcCiGEi4uL9I/KmrVp/fr1olmzZlI5dcY1fdKY65vBSN/yTZs2FRUqVBA///yz2LFjh9i5c6fslZW+A7hmZGSI+fPni2LFisnaVy9YsCDPNsJ5+eKLL0RYWJjG9LCwMOkAvGPHDln2tuxpPrNmUcz63sDAQO8+aYmJiaJHjx5SfxuVSiWMjIxE9+7dRXx8vM7zySmrlj4Doe7evVv4+vp+9MV3dv+LQQFdXV11yvip5u7uLmVnylq/7777Tvj7+2uUr1GjhrTdtGrVSvTs2VM8evRIjB07VtpW8tv3R1/+/v6iQIEColOnTmL48OFixIgRsld2+h6X9KHv9q7rvq1Oo21gYCAqVaokO6FWrlxZWFlZiY4dO0rlU1JSRN++fbVm68qJvhf89erVk25GPX36VFhbWwsvLy/h4OCgdbBwKysrnY+pDRo0kDJ76cLMzCzH4Fkd+Ge9CaB28+ZN6dyR24Vqt27dRN26dUV4eLgoUKCA2L9/v9iwYYNwd3eXpVpXO3bsWK6vrCwsLPQ+Hrx+/Vrs27dPbNiwQTYob/bzYV6v7MzNzaV+RR07dpQyB8bGxmodYL5AgQI5ZldU90OKiYkRFhYWQojMYSRUKpUoV66caNCggcYNoqxmzpwphg4dqvM60TfT6qeS3+P7pxyk+9WrV6Jjx47CyspKrFixQowePVoYGxuLiRMnas0WXLRoUa19vq5evSqKFi0qhBDiwoULwt7eXgih303JpKQkMWnSJOHl5SVKlSol3NzcZK/8UqeeNzAwED/88IMsHf38+fOFn5+f1usrXRgZGYn27dtrpK3XlsY++5AHVlZWuQZDLi4uwtPTU1y5ckXjd4ODg4WVlZXWfp0dO3YUDg4O4ptvvhFTpkzJNeNnyZIlNTITCyHE5MmTtWbmFSKzD5g+18A9e/YUrq6u4rfffpNuwG/fvl24ubmJXr166TwfNTYd1JG1tTUuXrwotd1Xi4mJQY0aNTTaTVtaWuL69esoXrw4nJ2d8fvvv6NmzZq4d+8eKlWqhKSkJAD/98hfW7MY9WCQ8+bNk7JgAcDYsWNRsGBBnTMYjRs3DpaWlvjuu+90Km9lZYUTJ05Ig9flxs7ODhcvXoSbmxtKlSqFVatWwdvbG3fu3EGlSpXw9u3bHL+rzmT1MYP9ZmVubo5Lly5pDM538+ZNVK1aFe/evcP9+/dRoUIFqV7Zm6PkZv369fjiiy/wzTff6FS+c+fOuHTpEhYvXixlDTxz5gyGDx8OT09Prf0KtImJiUGVKlWQnJwsm960aVPEx8dj3bp1GgOhWltbywZCtbOzw9u3b5GWlgYLCwuNplDZm/Tool27dti/fz+ioqK0DhSZlXog3G+++SbPAYyz++WXX/DHH39g3bp1OmXVsrCwwI0bN1CiRAk4OjriwIEDqFKlCqKjo1G7dm2Npry//PIL0tLS0KdPH1y4cAFNmzbFq1evYGJigpCQEHTu3Fkq++DBAxQvXlyvrEjv3r2DEEKqu7qvSIUKFdCkSRNZWQcHB6xfv17qq5IXfY9L+ujfv79e23tWue3b6sx206ZNw6hRo2TNbNRZNtu3by8bJNjGxgaRkZF5Nm9RK1CgAK5cuaJzu387OzucPXsW7u7uWLRoEbZs2YJTp05h//79+OabbzSalvTr1w9169ZF//7985z31q1bMWHCBAQGBmrtF5e9qV7ZsmXRrl072WCsQGZ/kB07duDWrVuIiIhAmzZt8PjxYwCZTWOCgoIQHR0NAChTpgxGjBiBAQMGaNRHl6ayWWlrlpZ1+8/aLK1du3bo0qULOnXqlOd6AfJuaph9+81+nsypHkDmeh0wYADatm0LDw8PhIWFwcvLCxcuXJCaW2ZVvHhxBAYGavTfCgoKQlBQEGJjYxEVFYUmTZogLi4OhQsXxpw5c3RqDti2bVscPnwY9vb2qFixosbxN+sguFnl1iRNn4HItfXbzsuiRYswZswYjBs3Ls+sv9nnr8+5Kbu+ffvihx9+0JqFL6uJEydi9uzZMDIywt69e7Vm4QMyzz27d+/WyGJ59OhRtGrVCm/evMHdu3fh6emJxMREhIaGYvHixQgODtboJ5hd165d9W7Wrgv1ce7BgwdwdnaW9VFXHyOnT5+OWrVq6T3vrE1R86ItC2lOpkyZgsTERAQEBGDr1q2YMmUKxo0bh0ePHqFfv34IDw/Hjz/+iIEDB2p8t0CBAti3b59OXRssLCwQFRWlcc6Ljo5GlSpVtF5zBgYGolChQpg4caJOy/L27VuMHj0aa9asQWpqKoDMLMr9+/fHjz/+qHEMzwuTYehInxS3gO6dR9V9B/RJYz5r1iy0bNkSYWFhWjv2zZ8/X9YBNCMjAytWrMDBgwdRuXJlreWzcnFx0XkEbg8PD1y+fBlubm6oVasW5s6dCxMTE6xYsULrjnzv3j2kpaWhTJkysouw6OhoKbDMr3LlymH27NlYsWKFdJGWmpqK2bNnS8HX48ePpb4SaWlpOHbsGPr16wdnZ+c853/69Gl89913OHv2bI4dKrPavXu3xsHD19cXK1eulPoiZJWYmCh7L4TA06dPMXXqVFkyBLVjx47h9OnTsnbJ7u7uWLx4sUaHTX075Osia8CUV/D04cMHBAcH49SpU/jzzz8BZKYwzqkf1b1792QnrZiYGBQuXDjPzslAZsrdV69eoUSJEihevDjOnj2LKlWqSMMjZNejRw/p7+rVq+PBgwe4efMmihcvrrE/3rhxAw8fPpT+p0uXLsXKlStRoUIFLF26VJZURa1NmzayviI1a9bMsa+IiYmJxgkkN/oel/RRunRpvbb3rHK7eZI1AVDnzp2l/pK58fPzw86dO7UmMdDG19cXEREROgdaqampUj+JgwcPSskDypUrpzVBjS6dq9W6dOmiMU0dMGjrP/PTTz+hY8eO2Lt3r5SQJyIiAjdv3sT27dsBAOHh4dINgMmTJ2P+/PkYOnSo7IZOYGAgYmNjZUMlAJnJZdR9Puzs7PDixQuULVsWlSpV0trP9PXr1xrr6tKlS/juu+800vDrm5Rh1KhR6NevH2bOnJnnTZSDBw9i3LhxmDlzpmw5J02ahJkzZ2qUnzx5Mrp164bAwEA0btxY+s7+/fulvmxZfffddxg8eDCOHDki9dEKDw/Hnj17EBwcDAA4cOCAlBDFwMBA5+QNtra2aNeunU5lszIxMcmxr1JQUBC6d+8OMzMzBAUF5TgPlUqVr0ArKCgIqampWLt2LYyMjPDixQu8fftWun6Jj4+HhYUFHB0dNeavy7kppwQ3GzduRJs2baR9V1ufwcWLF2PhwoXo2rUrLly4gGHDhmHTpk2oUqWKRtk2bdqgX79+mDdvnrQ/hYeHY/To0fDz8wOQ2RdPPeRBjx498PbtW5QqVSrPm5K6JIjID3VKem9vb/z+++9azyv59e7dOwwePDjXYEGlUuG3336TjtVpaWmYOXNmntdK1tbWWL9+Pdq3b49BgwZhy5YtuHfvHmrWrImoqCiUKFFC6/dcXFykBHF5adiwIU6cOKFxnjx58mSOiSrS09Mxd+5c7Nu3T6drYAsLC/z888/48ccfcefOHQBAqVKl9A6w1PhES0etWrWCubk5fv31V+nuQnp6Ojp37ozk5GTs3btXVj4oKEjvzqO6ZgacMWMGJk+eDHd3d43OmuoO7bl1es8ua7YVIPNENG/ePCxfvjzPwGffvn1ITk5Gu3btEBMTg5YtW+L27duwt7fHli1bNJJMNGjQAP369dMYK+aXX37BqlWrcPToUZ3rnd3p06fRunVrGBgYSAfnK1euID09Hbt370bt2rWxYcMGxMXFYcyYMQAyLwivXLmiU4CX2910bR0qixcvjtDQUFSqVEk2PSoqCs2bN8ejR49k07Mm81ATWbJqZR9Lq2zZsvjll1+kiwK18+fPo1u3boiJiclzmT6WPnfHrl+/jsqVKyMlJQVbt25Fr1694Ovri/3796NJkya4ffs2nj17hrZt2+oVcGfvnDxgwAC4uLhgypQpWLp0KcaMGYO6desiIiIC7dq1w+rVq/VdTEmlSpUwZ84cNG/eHFeuXEGNGjUwatQoHDlyBOXKlcPatWs1vuPg4IBjx46hYsWKWLVqFRYvXoxLly7ht99+w+TJk6UOvUDm2FJ3797VeXwbfY9L+tB3e3/27BlGjx4tHcOyn1pyCvxSUlK0HvOyZtlUZ4Bs3Lix1qdC2S/0Vq9ejenTp6Nv3746XfDXqlUL3t7eaNGiBZo0aSIF52fPnkWHDh009lV9Olc/ePBA63Krabv4uHfvHpYvXy6NOePu7o5BgwZp3S8KFSqERYsWaWT3/PXXXzF06FCNhB1ffPEFZsyYAV9fX7Ru3Rq2traYNWsWFi1ahO3bt0sXFnk5duwYRo4ciQsXLkjT9E3KoM+TRw8PDwQHB2vc9T5x4gQGDhwo24/U4uLi8PTpU1SpUkWq2/nz52Ftba3R8gHITP6wZMkSKXOau7s7hg4dKss8qTZ37lw8efLkk9zE+lyoj+9nz57Fzz//jNWrV8ueUH399dcYNGiQRqZYXc5NeSW4yelGRNOmTREeHo7ly5ejQ4cOePfuHUaOHImQkBBMmzYNY8eOlZVPSkpCYGAg1q9fLyVqMjIyQu/evREUFIQCBQogMjISAKTsh7nJeu3yKRNEaJOeno4rV66gRIkS+Q6+jI2N0aZNmzxbEmU/l+lzrfTs2TP06NEDhw4dQoECBbB79+5cMxnr8xQxODgYkydPRqdOnaSkH2fPnsW2bdswbdo02ZNQ9XFenyRQWcXExODOnTuoX78+zM3NpW1SXwy0dHT9+nXUr18ftra2shS3CQkJOHLkiGxgW20ePHiACxcuoHTp0lrv0EyfPh3Tpk3TKTOgvhmM9PWxzcxyG8D1UzZ1AjKbLG3cuFF2gdKtW7ccDyrqpw36DhKqixUrVmDbtm3YsGGDlF41Li4OvXv3Rrt27TBo0CBZeX2zav3xxx+YOXOmxkCoQ4cOxbhx49CoUSPpLlH2p2XZZb+bFBsbCxcXF62B38OHD6WL4MGDB+P777/X6Ulseno6bG1tcfnyZfj5+WHQoEHw9/eXTuZubm4YNGgQihQpoleThewyMjKQkZEhrbPNmzfj9OnTKFOmjJStM/sybd++Pcc05lmb9VhaWuLq1atwdXXF1KlTcfXqVWzfvh0XL15E8+bNNZojAZl3x9RPyDp16oSKFStiypQpePjwIdzd3TWebh4+fBgFCxbUqYnRxx6XlNSsWTPExsYiICBA6zGsTZs2svfR0dHo168fTp8+LZuu7QJL36BP3wv+o0ePom3btkhMTETv3r2lG1sTJ07EzZs3Nda7k5MThg0bhvHjx+ucJv1TsbW1RXh4uMZT79u3b6NmzZoax1R9msrm5ubNm6hRo4bUDD4/9GlqaG5ujvDwcI1tOioqCrVq1cK7d+/yXY/8yMjIQIsWLXD79m1UqFBB5+aAStF1gFWVSqUxTIWu1Fllv/rqK2zfvl3jSeCFCxfQoUMHjUGB8zo3+fn5wdPTE87Ozvjpp5+kTHNCCJQpUwZ79+6VtufsNyK++uorrFu3TqNpYWhoKAYMGJDjEClJSUnScaJkyZJ5ZgbUhb7N2vU1YsQIVKpUCf3790d6ejrq16+PM2fOwMLCQmtzSF3oc3M0K12vlX799VcEBATA09NTCs4XLlyIIUOGYNasWVpbMOhzzanr8fZjsm2+fPlSyj6pUqkQHR2NkiVLol+/frCzs9N7f2KgpYcnT55g6dKliIyMzDXFLZA54r2Li4vO8y5SpAjmzp2Lnj175lnWyckJJ06c0NqcTJt+/fph4cKFGsFGcnIyhg4dqjH2jz53dPRlY2ODo0ePaj1gN2zYUGszqE8pODgY06ZNQ/fu3bXeKc9+51sfVatWRUxMDD58+CAFJrGxsTA1NdX432VtsqPrmGRZD07qoEL9d4ECBfD69WvY2NjAwMAA8fHxWgPfnO4a6pJWNj/UB/lKlSpJY+XY29vj6NGjqFSpEm7cuIFGjRppPVlGRERId60rVKggjQXysYYPH57rqPRZ7+wVLFhQSgNcr1499OrVCwMHDtTo+5dVXn1FmjVrpnNdtT0x0+e49CmoL8aqVKmic99OIHPMFSMjI4wfP15rYKatGdCnlJ6ejsTERNmd4vv370vNo4D/S3ddpEgRhIeHo1SpUjrNW9/x9+Lj47F69Wppe69YsSL69euntYnu0KFDYWxsrNH8ZfTo0Xj37h2WLl2aa93evn2bY1NZQLOJl7pJ8+zZs5GWlqbRp0sf+jx5rF+/PszMzLBhwwap+fezZ8/Qq1cvvH//Xq/+tjlJT0/Hzp07Zeu9devWWsdxDAgIkPokaztuXL58GYcOHYKdnR2qVq2a653w/AwNomurldzu2OdFfbz28PDAsWPHNMaWPH/+PBo2bKhx3Mvr3ARkbkfv3r1DqVKl8Msvv0jXBMbGxrh8+XKOTSaBzJtJy5cvx507d7B9+3YUK1YMGzZsgKura77GOcqJtjFQGzRooNGsXQihU7N2fRUrVgx//PEHatSogZ07d8Lf3x9HjhzBhg0bcPjwYZw6dUrveaqP1/oGWrpcK7Vv3x779u3DrFmzZOOInT59Whp/LiQkRKN1zqe85syPXr164fnz51i1ahXKly8vBab79u3DyJEjce3aNb3mxz5aerhz5w7u37+PV69eyXZuNzc3jeYMrq6uqFevHnr06IEOHTrk+Zg3JSVFa/MEbYYPH47Fixfn2QFWTd9BVvPaqPVpa579rl79+vUxa9YsjaZOs2bNUmSMJ30vaIYMGQJAs40ukHmC0qcza/Z5tGnTRq/HzHfv3kW7du0QFRWl05hkeTVZuXnzJsqUKSOtZxcXF40LhoyMDI3xjQDk+Ig8KSlJpz41ebGzs5OC6mLFiuHq1auoVKkS4uPjNU7ajx49QteuXXHq1ClZ/4A6depg8+bNGm3G165dC0tLS43xnLZt24a3b99qbN8bNmzA77//rlMCinr16mHkyJGoW7cuzp8/jy1btgDIfHqQU9v1vPqKZA2e3r17h4yMDOkkdv/+fezcuRPly5eHr6+v1vnrc1z6FNTbqT59O4HMwcIvXLigtQmXEnJqiq1SqbQ2HzU0NNQ4TmdvxtKsWTNERkaid+/e2LJli06dq/Majyz7cSkiIgK+vr4wNzeXml7Nnz8fP/zwA/bv349q1arJnmaoVCqsWrUK+/fv1zomXW6EEDA3N0e1atVyLOPp6am1iVft2rW1DtAdHh6e4zE4+zFSPR5V9n5k6uXKesxbs2YN2rZti+LFi0s3MR8+fIgyZcpg586duS6nLmJiYtC8eXM8fvxYah43a9YsuLi4IDQ0VCOoXrduHX777Te0aNFC6/ymTZsm9fvT91ygi+xN/vWha4Ie9TG6cePGGDRoEFatWiVtKxcuXMDgwYO1DtCsT3NKR0dHtG7dGkOGDMG4cePyLP/bb7+hZ8+e6N69Oy5duoQPHz4AyOyXOmvWLHz55ZcfdY2SnJyMcePG5TgGqrbriE/l5cuXUmuYPXv2oGPHjihbtqx08zw/8vtsJa9rpfT0dMTFxeHSpUsaN5Lr1KmDyMhIjB8/Hg0aNNAIXvUJpNQD3Wcfe0w90L22Y563t3eu+1/2GxH79+/Hvn37NM7pZcqUybMpuDYMtHSU2849c+ZM7NmzR1Y+IiICmzZtwvTp0zF06FA0bdoUPXr0QKtWrbQOTjdgwABs2rRJp8yA58+fx+HDh7F79+5cmxepB1kVQuDNmzeyC+T09HTs2bNHulObmJioczOzrHdVhRDYsWMHbGxspCYCFy5cQHx8vNaD3Zw5c1C/fn24u7trber0MfS9oAGgcSGQnT53DbObOnWqTt9VGz58OFxdXXHw4EG4ubnh3LlzePXqFUaNGoWffvpJo7w+B6fcnlD5+PhI81JfwKlUKnz33Xey5hDp6ek4d+6czk8sclO/fn0cOHAAlSpVQseOHTF8+HAcPnwYBw4c0MgeNWDAAKSmpuLGjRsaGawGDBigkcFq1qxZWL58ucZvOjo6YuDAgRrrTZ9R6ZcsWYIhQ4Zg+/btWLZsGYoVKwYgs1O0tgQnANChQwfUq1dP6iui1rhxY419JHvijNq1a8PY2DjHQVb1PS59SgsWLMD48eN16tsJZD6V1Dbgrzb9+vXL9fPsF/x5DdKeX+qLFH06V8+YMQM//PCDTheRQGaGrNatW2PlypWypwEDBgzAiBEjcPz4cVy6dEn2HfXTXXX/KgcHBzg4OOR451WfLIXZm4WpmzRru+Eyc+ZMTJo0Kcf+w9nldfzNqnTp0oiKisKBAwdw8+ZNAJkDlfr4+Cjy/x02bBhKlSqFs2fPSk+DX758iR49emDYsGEIDQ2VlS9YsGCuTzSz9h3V91zwqWU/ztSqVSvX48yaNWvQu3dv1KhRQ9rWU1NT0bRpU6xcuVJj/vo+gYiIiEDfvn116lM6Y8YMBAcHo1evXrLMvXXr1sWMGTMAfNw1ytixY3HkyBEsW7YMPXv2xNKlS/H48WMsX74cs2fP1uiP9ikVLlz4/7V353E1pv//wF+nfU8iREgahKxjGWPNkGwVFUJl+9iKkjCWyTq27NtIkSWNYYyxTJayNiMqlWXspTC2KJKlcv3+6HvuX6f7nDprp/R+Ph49Zro7nXOVzn3f1/Z649atW6hTpw6io6OxdetWAEWz0OJmWQsLC/Hq1SvuPSqOvKuGpHmvXrx4UeLSPn19faxfvx5DhgwBINs9Z/GtDT4+PnB0dOTdy7x79w4+Pj5iO1ol71ny8/ORnJyMGzduiP1bff/+vdiloK9fv5ZYXLo0tHRQSm3atIG/vz9Gjx4tssb12rVr6Nevn9i9GUDRm/zcuXOIjIzEoUOH8OXLF7i6uiI8PJyXDBgREQF7e/syL9zCKVhJhCPk4sIVihMIBFi4cCHmzp0rciMu6fvELTObNWsWXr9+jW3btonMUE2ePBkmJiZYtWoV73lUtdSpQYMGUo+KCYkbSRUSdjbk1ahRI1y9ehXm5uYix7Ozs9G2bVvevpIaNWogNjYW9vb2MDU1xZUrV9CkSRPExsZixowZvJsrQPqlLhoaGnj+/Dnv5Pvo0SPY2dlx0fHCjuX58+fRuXNnkf1MwljZwMBAqZetliR871SrVg0fP36EpaUlvnz5gpUrV3L7qObNmycys6Cvr4+///5b7HLTrl278mbA9PT0cPv2bd7Nfnp6Opo1a8bbyyFrVXpZybJ0V5bgDED+85KymJmZITs7m1ui+v79e6n3dsbGxnKJceKWjRW/uLq4uIh8LT8/Hzdu3EB2djZ69erFG5WWZSm2LIS/49Ji3Usu1ZJ1qY6kMhW3bt1C+/btSy2ZIQ1JKYWbNm2Cv78/75xY2jlS+HxCskSeC8k686gqhoaGXMJmcSkpKejSpQtvL9rOnTsRHR2NnTt3lrk/R9ZrgarJep4RunfvHve1pk2bckl94siyDFNow4YNOHv2LDZu3ChxhYCBgQFu3bqFhg0bipzzHj58CDs7O3z8+FHk8bLeo9SvXx+7d+9Gjx49RPaU79mzB/v37xcZvMrMzIRAIODaeuXKFURGRsLOzk5sjLmsgoODsW7dOtSpUwd5eXm4e/cudHV1ER4ejtDQUPzzzz8AivanrVixAleuXOHiyI2NjTFw4EAsXbpUJFhIXsq+V5L3nlPSvUxKSgp69uwpU6ma4OBg5Obm8gaynZyc0K5dOyxevBjGxsZcYuKwYcPw5csXLv1VWjSjJaU7d+6gW7duvOOmpqalBjgIBAL07NkTPXv2xKRJkzB27FhEREQgPDycd+Ms7HXfuHGD9xzFbdmyRarlRWfPngVjDL169cKhQ4dEOjI6Ojpo0KABt6FUuAFf+H3SCg8Px6VLl0ROnpqamggICMB3330ntqOlqqVOb9684S0XK0vxkBGg6AYuLS0NWlpasLGxEXvykDaJJj09Xexepk+fPvFSzICik7/wZrxGjRp4+vQpmjRpggYNGnApWCXbUdZSF1lnqIT/9j4+Pli/fr3UkavSEv6eiv8tamholFoTzsrKirt4FFdYWCi21oqFhQVSU1N5Ha2UlBTejQ4AuLu7Y//+/bCwsChznX337t0xduxYuLm5Sd0pk2Xpbl5eHve4U6dOwdXVFRoaGujUqZPYJQvynpeUZd26dfjf//6HuXPn8kYYyyJcclRyBlPcxbXk+xQoGpyaNGmS2FkFWZZiy0OWc6SbmxtXj0saJiYmyMjI4HW0MjMzlVJzcOvWrQgNDRVJKRw0aBDs7e3h6+vLu6Eq6xxZvKMlS+Q5IPvMY0xMDNauXcvdvDdr1gzTp08Xu3xNVrq6umJH+3Nzc3kBOkBRp+DBgwdSlZ2Q9VqgatKcZ8oK2yieEFxyOZmsyzCF/Pz8JEbR9+/fHzt27EDt2rVx//593vn90qVLYgczZL1Hef36Nfc8JiYm3I37999/z5vpGzFiBCZMmIBRo0bh2bNn6N27N1q0aIF9+/bh2bNnCi8zDA4ORosWLZCZmQk3NzduNkVTU5O7Zu7ZswdTpkzBhAkT0K1bN4SFhcHb2xsNGjRAVFQU2rVrxw1iKkKee6XSFL/n3LlzZ5lbG4T7HAUCARwcHEQCwgoLC5GWliZxVYkkI0eORIcOHXgdrVWrVqFXr15ISEjA58+fERQUhJs3b+L169dy7YujjpaUZH1zCz1+/BiRkZGIjIzEjRs30LlzZ25zsrxL5aRdXiSM00xLS4OJiQnCw8NFRpeKbzYtHr1ZWgxnSQUFBbh9+7ZIvQygaH+QuKlmVS51kvWGBoDYWaK3b9/C29ubN4ouKYlm7NixIkk0wjpRQFH8ffFlDIWFhYiJiRGboiZrTTJplroIfz7GGK5fv86boWrVqpXYYsPCWVFlxZsKlZxAf/Hihdi9HMWTOVetWgVfX19egtW0adPELqkcPnw4/Pz8YGxszHVCzp8/j2nTpnE1jYrz8vJCYmIiRo4cKXZTe3Ft2rRBYGAgfH194e7ujrFjx3L7YkqSZemuUOPGjfHHH3/AxcUFJ0+e5OpGvXjxQmynV97zkrJ4eXnB19cXQ4YMQXBwMHr06IHu3btLFRKh6FJhDQ0NBAQEoEePHrxIZ1mWYquarPXIPDw8MHbsWKxevZrrLMbFxWHmzJm8CHd55Ofnc++j4tq1a8fFXxcnyznS398fmzdvlnqPzrZt27Br1y6pZh63bNmCadOmYejQodze2cuXL8PJyQlr167FlClTpHpNSQYMGIAJEyYgLCyM2xsXHx+PiRMnig1FEtZgKo281wJVk+Y8I+7fXRxx50tZl2FK48KFC/jw4QPGjx+PadOmITw8HAKBAE+fPsU///yDwMBAse93We9RpK2BChQNigv/Vg4cOICWLVuKFDpXtKMlaT/S8OHDuWWTy5YtQ2hoKJcW6uzsDBcXF2RkZGDixIkYNmwYZs2apXAKpiznAWkUv88cM2ZMmVsbhO+35ORk9O3bV2Khe1n8888/vCXQ+fn58PPzw9GjR3H69GkYGxsjNzcXrq6umDJlCurUqSPjTwqAEaksW7aM2dnZscuXLzNjY2N28eJFtnfvXlazZk22YcMG3uO3bdvGunXrxjQ1NVnz5s3ZsmXLWHp6ulLaYm5uzm7cuMEYYyw0NJTZ29uzwsJCduDAAda0aVPe469evcrMzc1Z3bp1mYuLC3NxcWH16tVj5ubmLDExUeLrvH//nv37778sJSVF5KM4f39/Zm5uzkJCQtjFixfZxYsX2erVq1mNGjWYv78/7zlbt27NIiIiGGOMGRkZsQcPHjDGGEtKSmK1atWS+3fCWNG/UY0aNZiXlxdbvXo1W79+vciHLFJTU1mDBg1Ejo0aNYr17duXZWZmirQ9Ojqa2dnZcY8TCARMIBAwDQ0N7v+FHzo6Ouybb75hR48e5b1mdHQ0O3ToEGOMsXv37rEmTZowgUDAatSowWJiYniPNzAwYKmpqbzjycnJzNDQUOSYt7c3y8nJkfrnz8rKYr169eJ+DuHP6uPjwwICAiR+371791h0dDTLy8tjjDH25csXka9nZGSwgoIClpCQwJo3by72d6ShoSHyPdWqVWM6OjpMQ0OD6ejoiPy/mZmZyAdjjH369Im5u7szgUDAtLW1mba2NtPU1GQ+Pj7s06dPvDYbGBiwixcvSv27yc/PZ4cOHWKDBg1i2trarFmzZmzVqlXs2bNnIo8T/iySPjQ1NdmSJUtEvue3335j2traTENDg/3www/c8WXLljFHR0deW2Q9L6mC8L0wbtw4ZmtryzQ0NFi9evWYp6cnCw0NZXfv3lXZax8/fpzVqFGDd9zPz49Vq1aNdevWjU2dOpX5+/uLfMjL2NiYey9Iq2HDhhI/rK2teY//9OkT8/Pz4/7ONTQ0mK6uLps+fTr7+PGj3G0XEv4+SpoxYwabPHmy1M8j7hxZWFjIHB0dWaNGjdiAAQO4643wo6Tq1auz+/fvS/V6devWZRs3buQd37RpE7O0tJS63ZK8efOGDRo0iDtP6+joMIFAwJydndmbN2/kek55rwWqVvw807t3b+64pPOMrGS5NklLeJ758uULW7JkCTM0NOR+l3p6emzevHliv0/We5Q1a9Zw9wunT59menp6TFdXl2loaLB169aJPNbQ0JClpaUxxhgbOHAgW758OWOMsUePHjE9PT25fs7iNDQ02PPnz3nHX716xV0n9fX1uTYIaWlpsSdPnjDGGIuPj2fVqlVTuC2SiDsPyEogELAXL17wjqenpzMDAwPm4uLC3b/s2rVL5vNgyfOQs7Mz69ixI9PU1GTBwcG8x9eoUUOp1y3aoyUlxhiWLVuGn3/+mVsjr6uri8DAQCxevJj3eCsrKwwfPhyenp5Kjykuqy5PyTX8Xbt2RePGjcVurn748CEuXLgg8viXL1+WujG1+BKIL1++YPXq1Vi/fj0XyV2nTh1MmzYNM2bM4E0Fy7q+Whay1topzaVLlzBw4EC8efOGO1a7dm2cPHkSrVq14rXd3t6et4bf2toaV69elarGlCSl1SSrXr06jh07xlsiFRcXh4EDB8q0VrkkWeNNs7Ky4OHhgdjYWKnqTrRq1Qo2NjaYNWuW2Fmk4rVTyop+La74xtZ79+5x+wBbtmwpsSq9cNRSXH27srx48QLbt2/H0qVLUVhYCCcnJ/j5+aFXr144f/681Et3i5OlyKqs5yVVuHTpEr799ltu1PXJkye4cOECzp8/j/Pnz+Pu3buoU6cOHj9+jNTUVLRo0QIaGhq82PCSiv97lFzGxP4vYvz48ePw8vLCpk2bRL4ub4HKsshbg0YeeXl5XLiFjY2N0ur0+Pr6Yvfu3bCyshKbUlh8xk1cwpiQuHNkWZHnJcsTzJo1C0ZGRlLNPBoZGSE5OZlXg/HevXto06aNQvW8irt//77I0sSSrycPZVwLlE3WYs6yUMW1qeR77/Pnz7h//z5yc3NhZ2cnsS6WrPcoJZVWA1XWQueykmY/kp2dHRYtWoShQ4cCKFqy2rlzZy4w4/79+2jdurXS3h8liTsPSEt4Xl+/fj3Gjx8vdmuDpqYmrl69ikePHqFOnToSg71KUzLXQBgW0qtXL5GUTSF/f3/o6upi+fLlMv9M4tDSQSkJBALMnTsXM2fOlOrNnZGRofQ4VyFZlxclJCSIdLKAosroQUFBYpeQTJ8+HdnZ2YiPj0ePHj1w+PBhPH/+HEuWLOHdMGtoaCAoKAhBQUFccoy4Ngjrz6hyqVPJdCxplIzIF97A7dmzh1ffSNYkmrS0NIkbvQF+Upo4pQWEyLrURRayxpv6+/tDS0sLGRkZaNasGXfcw8MDAQEBvL+bhw8f4tChQ1LdxMhbQ8PW1ha2trYoLCzE9evXYWJiIrbMQkhICIKCgqSqSl/clStXsHPnTkRFRcHCwgLe3t548uQJBgwYgMmTJ3PLGoXLUMo6H0yePBmLFi1C7dq1uUhfIeG/b0mynpfKIm0RVOD/34SX3FdpZmYGc3NzmJmZoVq1atDS0uJuFFq3bo1nz57BwsJCYmy48OcqPqBTctmK8EIZEhIiNpFQ1mWJssZdlwcDAwNeMIMy3Lhxg4voLplSWHx/sPDvVZZzZFmR5yV9/PgR27dvx5kzZ8oMgRo0aBAOHz6MmTNnijzmyJEjGDBggFSvV1JZf+/F/45KdjoLCwuxdu1aHDhwQGzdw+KdiZiYmArVyQLAnWeEnYF69epJPM/ISpXXJiEdHZ1Sa20JyXqPoqurK/V1e+XKlXB2dsaqVavg5eXFDar/+eef6Nixo9w/myz7kaZMmYJx48bh6tWr0NPTw44dOzBq1CiuAxkfH19qaIm0ZDkPSEvarQ1DhgzBnDlz0LNnTzDGcODAAYn7x8WlDoqrP1magoIChIeH48yZM2JrhpU2ACUOdbRkVNqbu/ho7fXr10t9HnlGz4XKqstTkqybq2NjY7kieRoaGmjQoAF++OEHmJiY4Oeff5Z4ES0tOEFYf0bW9dWqtnbtWpHPhTdwXl5emDNnjsjXunbtit27d3MzBQKBgEvMEzeCvmjRIixcuFDpEdNCGzZsgJeXFzp37iwSuTt48GC5a2wIydqplLVj5uDggJSUFKlHi2VJsJo+fTpatmyJsWPHorCwEN27d8fff/8NAwMDHDt2DD169BB5/MiRI5GXl8fNGpSWlvfixQvs2bMHO3fuxL179zBw4EDs378fffv25f59vb294ejoyHW0JM2klbR3714EBgbKdUMm7U1HWRTZl/Hjjz/i3LlzuHbtGpo1a4bu3btj9uzZ6NatG9fBTUtL4zpdsgyMKLqfqyyyxl3LQppoekXq/shK2t/l48eP8eXLF5nOkWVFnpeUmpoqdQiUnZ0dli5dinPnznHXvMuXLyMuLg4zZswQuRGUFKhQkiJ/7wsXLsSOHTswY8YMzJs3D3PnzuWCqUruzWncuDEXpDN06FCl1CJUxJcvX7iBU+FMh7GxMWbMmIG5c+dKjOiWliqvTYqQ5h5lz549Uge0PH36FK9eveIVOp8wYYJCKwpk2Y80ZcoUaGhoYO/evfj06RO8vb1F7qU6dOiAyMhIudsiJMt5QFrShm9t27YNAQEBOH78OAQCAebNmyf230UgEJRZO1AaxQej7t69y3sNWdHSQSXS0NDgRmuFcZXFf73Cz0uO1spDlml/Pz8/HD58WOzm6iFDhvA2LpuYmHCpbQ0aNEBkZCS6dOmCtLQ0NG/eXK54YeG0v7W1tVKXOgUEBGDx4sUwNDQsc3RS1lGIkm7cuAEHBwe0bdsWsbGxGDRokEgSTckbDFVFTJd0//593Lp1C0DRzYgylrrIGm9qbGyMpKQk2NraiizxEBZfLVn48dWrV/Dy8kKHDh3QokULXuem+KinuASrO3fuSEywqlevHv744w+0b98ef/zxByZPnoxz585hz549iI2N5aUGyVKVXkdHBzY2NhgzZgy8vb3F1ip5+/YtBg8eLHPnoDyXpamC8MLr7+8PV1fXUkdR8/Pz8b///Q/z58+XKQzg5cuXXAJnkyZNJNaKkZW8cdfSkCaavqySHUICgUCqmXBlkDWWHpAt8lxW0v6dyLpMXF42NjbYsGED+vfvD2NjYyQnJ3PHLl++LHJzm5ycjJ07d2L//v34/PkzF3iirBkkWc2ZMwdhYWFYuHAhlxJ56dIlBAcHY/z48Vi6dKlSXkeZ1yZVnx+Fz9+lSxepr9vVqlXD/v37eTM6/v7+iIqK4pYqyisiIgIeHh5q75hXJBoaGnjy5AkvlIIxhoyMDG5gU9KWC3EU2WYhFaXt9iIsPT2d2/yfnp5e6kd5knVzdfv27Vl0dDRjrGiD56hRo9jjx49ZUFAQa9SokVxtKB4eIWzTzZs3WXx8PHv37p18PxhjzMzMjL18+ZIxxliPHj0kfvTs2VPu1xB69OgRy8rKYkuWLGFubm6sX79+bO7cuezp06fs0aNHvMfLstFbXjt27GDNmzfnNm83b96chYaGKvy8169fZxYWFszR0ZHp6OiwoUOHsmbNmrFatWqJ/Zn69evHbUY2MjJiDx8+ZIWFhczNzY0NGTKE9/g///yTmZqa8jaIiwvD6NevH3N0dGRZWVncsVevXjFHR0fm5OTEe25dXV2WmZnJGGNs/PjxbNq0aYwxxh4+fMiMjY3l/p0wxtj58+dZbm4u93l6ejpbu3Yt935RRMn3SGWTnJzM1q9fz1xcXFiNGjWYpaUlGz58OPvll1/YnTt3eI83MTFhDx8+lOq5c3NzmY+PD9PU1OT+TrS0tNiYMWPY+/fvFW67vr4+9x52c3PjNkhnZGQwfX19hZ+/pMLCQjZhwgS2YsUK3tciIyMlfl9gYKDS2yKJPH+PrVu3ZsbGxszIyIi1aNGCtWnTRuTja2JgYMD9zdSuXZsLlnrw4AEzMTER+z3CIJ2BAwcybW1t1rx5cxYSEiI2CECV6tSpw44cOcI7/scffyglWIQx5V+bli1bJncoiTSEf++yXLePHTvGTE1NRcKUpk6dyiwtLdm///6rlHa9efOGhYaGstmzZ3PXwMTERPb48eNSv+/Zs2di70sqO4FAwJ4+fco7XjwghLGi0AzhR0hICDMzM2PDhg3jwtGGDRvGzMzM2Jo1a1TeZupoqcDnz5+Zj4+P1DcR5eX9+/csNTWVpaamlnpzsmfPHrZz507GGGMJCQmsRo0aTENDg+np6bGoqCi5XltVN5ECgYBL5bG2tmavXr1S+msISZMAVFxQUBBbtGiRytozf/58ZmhoyGbPns2OHDnCjhw5wmbPns2MjIzY/PnzFX7+7OxssZ1KcWTtmDVo0IBNmTKFl9QnjqwJVvXr12cnT55kBQUFzMrKih07dowxxtiNGzckpi8VFBSwgwcPssWLF7PFixez33//nRUUFPAe98MPP7CtW7cyxoougBYWFqxevXpMT0+PbdmypcyfpTQVraPl7OzMS2uS9CFOcnIy8/LyYlpaWmLfH6NHj5b6IjdhwgTWqFEjduLECZaTk8NycnLY8ePHmY2NDZs4caJCPydjjLVs2ZKtX7+eZWRkMBMTE/b3338zxorOf4qmoUpy+/ZtVrt2bd5xU1NTduLECd5xf39/sY9XFXn+HoODg0v9+Jp888037PLly4wxxrp06cJ+/vlnxhhjUVFRrGbNmqV+78ePH9maNWuYrq4uEwgETFdXl40aNUri+VXZdHV1xQ5+3L59WylpebJem27fvs2mTJnCevXqxXr16sWmTJnCbt++rXA7ZCH8e5f1ur1v3z5mZmbGEhIS2KRJk5ilpaXY3608UlJSWM2aNVnjxo2ZlpYW936cO3cuGzVqFGOMsbdv3zJPT09Wv359Nnr0aPbp0yc2efJkbtCyW7duMiUOV3TF7/mKEyYUiuPq6io2sXTjxo1s8ODBym4iD+3RUgFtbW0cOnSoQtRwKU7azdUjR47k/r9du3Z49OgRl3JY0Tb0mpmZIS0tDRYWFkhPTxdbF0NZmIRVtrm5uWKn9mXZ6C0PWQuPysrU1BRz586V6rEtWrTA3bt3sWnTJqnqTmRlZcHf3x+1atUq87llLSTq4+MDd3d3bn29sJhpfHy82DQtWYprJiUlcWvVDx48iNq1a4ssMVNkL09FY2pqisOHD8PU1JQLzUlMTEROTg6cnZ15yzIYY7h27RrOnTuHc+fO4dKlS3j79i3s7e3F1uaztbXFokWLEBcXJ3bDcfF9NocOHcLBgwdF9tc5OTlBX18f7u7u2Lp1q0I/a/F9r7169Spz36syPHjwQGzdqn379mH48OE4duwYFzTi6+uLQ4cOqXyvmqIyMzPh6elZauqjvKTZ61aeXFxcEBMTg44dO8LX1xcjR45EWFgYMjIyuICqkhISEhAeHo6oqCgYGhoiMDAQY8eOxePHj7Fw4UIMHjwYV65cUXnbW7VqhU2bNvECDjZt2qSUlGRZrk2HDh3CsGHD0L59e5G9dy1atEBUVJTMtZEUJet1e8SIEcjOzkaXLl1Qs2ZNnD9/XinL94GiJYje3t5YuXKlyH56JycnjBgxAkDR3tjExEQEBgbi999/h7u7Ox48eICLFy+isLAQkyZNwooVK5S2HFRdhFtDBAIBFixYIDahULjfs6STJ09ixYoVvOOOjo5c4WdVoo6Wijg7O+OPP/6QeMKtTAwMDLiNgfJSVQLjkCFD0L17d+6mun379hLjWuVdty/vG1yWjd7ykLXwqKyys7Nx5coVsclLJTecZmRkwMrKSmzHLCMjA/Xr1xc55urqirNnz0q1cV7WBKvg4GC0aNECmZmZcHNz48I7NDU1xZ5UZSmumZeXx13wTp06BVdXV2hoaKBTp05iQz8qs1q1asHd3R3btm3j3lOFhYWYPHkyTExMsGrVKpHHV69eHbm5uWjVqhW6d++O8ePHo2vXrrwin0JhYWGoVq0aEhMTkZiYKPI1gUAg0tHKy8sT2ym3sLCQa89oSUOHDsX333/P7XsVcnBwkKsYZ3FlRdOX1L9/f2zZsgWDBg3C6dOnERYWhiNHjuDcuXNKSQ9TpZcvX6Jfv36oWbOm0sublIyPLrnXrbwVj3728PBA/fr18c8//8DW1hYDBw4UeeyaNWuwc+dO3LlzB05OTti9ezecnJy4/dXW1tbYtWuXTKmnili5ciX69++PM2fOcJ2bf/75B5mZmThx4oTCzy/LtSkoKAhz5szhDQz+9NNPCAoKKreOlvCaXNZ1W9Je8Jo1a6Jt27bYsmULd0zRwdSEhARs376dd7xu3bp49uwZgKLUzYiICPTs2RNDhgxBvXr18Oeff3J771auXIkZM2ZU+o6WtAmF4pibm+PIkSOYMWOGyPEjR47A3NxcdY3+PxSGoSLCRB8HB4cyR2srGsYYDh48iLNnz4q9yZYn9UqVG1mjo6Nx//59+Pn5YdGiRWKTFAFg2rRpcj2/cHT2/Pnz6Ny5M+8N3rBhQwQGBsLW1lau55eXr68vtLW1eSfzwMBAfPjwAZs3b5b7uY8ePQpPT0/k5ubCxMREpGMoEAh4m0cl1bbIysqChYUFL/xl6dKlWLduHfr374+WLVvyRg2Lvz+ys7Ph5eWFo0eP8hKsdu7cKfFGXlqGhoa4fPkyb7ZXuDG6eP0Re3t7jBs3Di4uLmjRogWio6PRuXNnJCYmon///tzFTx6TJk3C4sWLK8yscc2aNXHp0iVulk/ozp07+O6773gBJ8ePH0fXrl1LTfaSRHgZkjQA4eDgAHNzc+zevZubPf7w4QO8vLzw+vVrnDlzRubXlKR43LUylJzdKV7DZcyYMSLRzcVt2bIFAQEBqFmzJs6ePau0UXJpyROGARR1iH777TdERkbi4sWLaNq0KTw9PTFixAildyS+fPmCSZMmwcbGBkFBQUp9bmWytbXlAnTEzfADRXWh9u/fL3c5C1k9ffoUmzdvxu3btwEU1QybPHmy2Np+spLl2mRgYIDU1FSx9dFatWqllIEUaUh7jyLtbK0i9fqELCwscPLkSbRp00akfadPn8aYMWOQmZkJPT093Lt3D1ZWVgCKrmfXrl3jBmUePXoEOzs7vH//XqG2VBRlJRSKs2vXLowbNw79+vXjYvfj4+MRHR2N0NBQeHt7q6i1RaijpSLKLJ5b3qZNm4ZffvlF6qKTQFHsdfE0MFmKySmLj48PNmzYILGjpYznl/UNrkrKKjwqzjfffAMnJycsW7ZMqvQwSYUVJZ3k5Xl/lFZIdMOGDZgwYQL09PR4y2FKKjnIIUtxzYMHD2LEiBEoLCyEg4MDTp06BaBoqeGFCxckFvnOzs5GWFiYSDz9mDFjYGpqWmpb1cnMzAy7du3C4MGDRY4fOXIE3t7echWoLCksLAxr167FvXv3ABTdkE6fPh3jxo0Tedz169fh6OiIT58+cTMkKSkp0NXVxalTp9C8eXOF2qHKuOu8vDwwxrjBNmEEeLNmzdC3b18Akus5/fbbb2jbtq3IzK+io+TSUsbg2OPHj7F//36Eh4fj3r17SplpL+nOnTvo0aOHwglv8rh3757EAcmSEe9ViSzXptu3b8PNzY2XvCmsUXjy5EmF2iJtjbyKaNy4ccjKysKBAwdQvXp1pKamQlNTE87OzujWrRvWrVuHunXr4ujRo9yqoxEjRmDdunXcPdjNmzfRtWtX1SfrVXDx8fHYsGGDyD2En5+fQvXOpEUdrXJQ1mhtRVO9enXs3bsXTk5OZT723bt3mDx5MqKiorhZC01NTXh4eGDz5s0V+kayslPlyJqhoSGuX79e5k2WtJXdS0aqy0LSTahAIICenh4aN26M4OBgJCUlwdzcXOZO3OjRo5GUlMRbmjh+/Hi0a9cOu3btEnm8LKUVAHAR9/r6+tzzX716FR8+fMCpU6cUXparKgEBAdi9ezd+/PFHkd/Lzz//jNGjRyt8w79gwQKsWbMGvr6+IsuXNm3aBH9/f95Sory8POzbt09kBN7T0xP6+voKtQNQbdx1nz59RGp0NW3alFejqzxHyYvLzMwEAG40vOTXLC0tJS7FLkt+fj6OHz+OvXv34vjx46hevTqePHmiUHvFOXHiBLy8vPDy5UulP3dpQkNDMWnSJNSoUQO1a9fmzfonJSXxvicvL09scWNF6mpKq3idz9TU1FIfq2h7ZPl7dnd3x4IFC+Du7s51yi5fvozffvsNCxcuFJlhk6fYsTTvv4oqJycHQ4cORUJCAt69ewdLS0s8e/YMnTp1wl9//QVDQ0P069cPzs7O+N///if2OXbt2oXQ0FCFrsFVxfLlyzFx4kSFV8nwqDxuowpTVfS2qjVs2FDqaFJ3d3dma2vLoqOjuTSw6Oho1qRJE+bh4aHilhJVcXFxYb/++muZjxPG5wsEAvbdd9+JROr36dOHTZgwgd29e5cxVpSaJoxG9/f3l/gREBDAew0TExNmaGjI2rZty9q2bcuMjIyYqakp69ixI6tWrRozMzNjN2/elOtnffPmDRs0aBATCATce1UgEDBnZ2elxAl///33zNvbm+Xn53PH8vPzmZeXF+vatavCz68qhYWFbMWKFczS0pKLVK9bty5bsWKF2ERGWdWoUUNslHlkZCQzNzcXObZs2TIWFhbGe2xYWBhbvny5wm1RZdy1ubk5u3HjBmOMsdDQUGZvb88KCwvZgQMHWNOmTRV6bnnk5+ezefPmMRMTE67ch4mJCZs7dy77/Pmzws8fGxvLxo0bx8zMzJipqSnz8fFhZ86c4UqfyKvkeWL69OnMw8ODGRkZsSlTpijcblnVr19f6r+9Fy9eMCcnJ+73XfKjPBRPaxMm0klTXqM82iXNh7ztqmjvP3lcunSJbd68ma1YsYKdPn1a5GtZWVmlXqdOnDjBzp07p+IWfh2MjY1VkvxLYRgqImm01t/fHxkZGQonwqlScHAwFi5ciPDw8DJHi48dO4aTJ09y6VgA0LdvX4SGhsLR0VHVTSUq0r9/f8ycORO3bt0Su4dKOLIobWV3oGgza35+Pvf/kpSc+R08eDCqV6+OnTt3cs+fk5ODcePG4fvvv8f48eNhb28PJycnuLq6lvpzCQQChISEiByrVq0ajhw5UurSREUkJCQgNDRUZC+OlpYWgoKCxG4Yryg+ffqEqVOnIigoCG/fvkV6ejpiYmJgZ2cn9yxHcbJsmP/ll19ECsAKNW/eHMOGDcOsWbMUasvr16/FzkY2bdpU4SU3FS1AxdfXF7///jtWrlwpcm0KDg5GVlaWQgmOdevWxevXr+Ho6Ijt27dj4MCBXBiNokqeM4R73UJCQspMJFSFN2/ewM3NTarHTp8+HTk5OYiPj0ePHj1w+PBhPH/+nFuuWh7S0tK4pd1paWnl8prSUGVSMFDx3n+yiomJQUxMDLc89fbt29y5MDw8HG5ubpgyZYrEa9+3336LDh06VOjtKhUFU9UCP6V33QhjTLbR2oomLy+P9e3bV6qik1ZWVmJrHKWkpLC6deuWV5OJkikyspiZmckVDFYGS0tLsbNVN27c4GYb2rVrx7S0tLjZNBMTE2ZgYMD9zRoaGjITExOucHVpM2olPxRlYWHBTp48yTseHR3NLCwsFH5+VSlZM6xWrVpKqxnGWFFhT3G/3xkzZrDJkyeLHNPV1RVbl/DBgwdMV1dX4bZ06NCB+fr6im1jx44dFXpuddToKo2JiYnYOl3Hjx+XWGhXWtu3b1dZUdn379+LFAtPS0tTWrFweYwZM4Z7f5Sldu3aLD4+njFWNGourLN05MgR1qVLF5W1sTKIiIhgHz9+5B3/9OkTi4iIUPj5K9r7TxbBwcFMQ0ODdejQgQ0ePJg5OzuLfDBWdK3W1NRkCxYsEPscz549K/dZyspKVbUsaUZLRVQdva1KXl5eSExMxMiRI8WGYRQ3b948BAQEYM+ePahduzaAoj0sM2fOrHB1xIj0ZB1lVGWYQE5ODl68eAE7OzuR4y9fvsTbt28BAAcOHEDr1q1x9uxZrFmzBsbGxoiIiICZmRmAotFnHx8fdO3aFQB/dDwpKQkFBQVcwt7du3ehqamJdu3ayd1uIQ8PD4wdOxarV6/mAjfi4uIwc+ZMkTozFU3JmmG1atVSes2wsLAwnDp1SuyG+eJ786ysrBAXF8fbfxcXF6eUlDRVxl0Xr9Hl4OBQLjW6SqOrqys2/c/a2lpsXTpZjB8/XqHvL42zs7PIXptOnTqpda9N48aNMX/+fC6xtLTk1Pfv33PhBGZmZnj58iW++eYbtGzZUuxervJw584dbNy4UWQW39fXl5cyqmo+Pj5wdHTkBWi9e/cOPj4+vFIislJHjTxl2bZtG3bt2oVRo0aV+ritW7ciMDAQqamp2Lt3Ly/lmqiZ0rtuhDEm22htRWNgYMAuXrwo1WNbt27NjIyMmLa2NrOxsWE2NjZMW1ubGRkZlToTRiqf0kaqZ8+ezWrWrMm2bNnCUlJSWEpKCtu8eTOrWbMm+/HHHxV63REjRjBra2v2+++/c7Nlv//+O2vUqBEbOXIkY4yx/fv3s3bt2jHGimbAhGvyi7t+/TqrU6cO73hISAgbOHAge/36NXfs9evXbPDgwWz16tUKtZ2xopFZPz8/pqOjw+3J0NXVZdOnTxc7kltR6Ovrs0ePHjHGGHNzc2PBwcGMMcYyMjKYvr6+ws9ffD9faR89e/ZkK1asYObm5iw8PJylp6ez9PR0FhYWxszNzdmyZcsUbgtjjD158oT9+OOPzNXVlbm6urK5c+eyJ0+eKOW5//vvP5aUlMQKCwu5Y/Hx8VLvhVWmhQsXsuHDh4v87X38+JF5enpy/8YVUUXba9OwYUOJH9bW1iKPbd++PTfzNnDgQDZq1Cj2+PFjFhQUxBo1alTubT948CDT0tJinTp14mbuO3fuzLS0tNjBgwfLtS0CgYC9ePGCdzw5OZmZmZkp5TUq0vtPFtWrV2f3798v9THCvXe3bt1itra2rEWLFiKzMjSjJT1VzWhR6qCKqDJ6W9WaNm2KAwcOSJU8FBwcLHWa4k8//aRo00g5WbFiBRo2bAgPDw8AgJubGw4dOoQ6dergxIkTvCKklpaW2LZtGy8V6siRI5g8ebJCaWO5ubnw9/fH7t27udlgLS0teHl5Ye3atTA0NERycjIAoHXr1jA2NsbRo0fRo0cPkec5e/YsBg0ahHfv3okcr1u3rtiI8Bs3bqBPnz54+vSp3G0vLi8vDw8ePAAA2NjYSBWbr06qrBkmK8YYZs+ejQ0bNnCJbXp6epg1a1aVjtGWh4uLC2JiYqCrqysSlf/582c4ODiIPFaemomqYmBggNu3b6N+/fpwd3dH8+bN8dNPPyEzMxNNmjQpt3pL8ti7dy8KCgrg7e2NxMREODo6IisrCzo6OoiIiODOs+XFxsYGnp6eYosE7927lztPqVKbNm0gEAiQkpKC5s2bi+xhLSwsRFpaGhwdHXHgwAGlvaaya+Sp2qxZs2BkZFTq6iANDQ08e/YMFhYWyMnJwfDhwxEfH49ff/0VvXv3xvPnz2FpacmrZUn4VFXvlTpaKqKuuF5lOH78ODZu3Iht27aVW6V6UrFYW1tj3759+O6773D69Gm4u7vj119/xYEDB5CRkcHVjxLS09NDamoqVyRR6M6dO2jdujU+fPigcJtyc3O5Db2NGjWCkZGR2MeNHj0aFy9eREhIiEgs+cyZM9G1a1dERESIPF7Wjpmi3r59i9jYWDRp0gTNmjVT6nMrk7w1w1QpNzcX//77L/T19WFra6tQ0EJ5xl1XJCXrFZVGXM1EdalIHX8AWLRoEQIDA3kDJh8+fMCqVatKHQDIy8vjOo3qKFBeEYoEL1y4kPvvjBkzRM7nOjo6aNiwIYYMGaLwclZVLmtXtWnTpmH37t2wt7eHvb09b3nqmjVrRDpaQNGg1Jw5c7BmzRqsWLECI0aMoI6WlJycnBAWFiaxqLi8qKNFeMzMzJCXl4eCggIYGBjw3tzFU7gaNWqEq1evwtzcXOQx2dnZaNu2LSXdVFL6+vq4e/curKysMG3aNHz8+BG//PIL7t69i44dO/KK1Xbs2BEdO3bkFQv29fXF1atXcfny5XJre15eHgIDAxEeHs6lHGppaWHs2LFYtWoVb/26rB0zWbm7u6Nbt26YOnUqPnz4gFatWiE9PR2MMURFRWHIkCEKPb8qyVozrDIpfoOioaEBgUAgNnVKIBDQTUoFUNE6/pqamvjvv/94e4uysrJgYWGBadOmSf1c5b2qxcnJSaVFgmURERGBYcOGKS2dsiRV1shTtdIG7IWD9JL+DqOiojBu3Dj07NkTJ06coHMYgBcvXogtLq7qgTTqaBGesm4svby8uP8vOZoi9Pz5c1hZWfEKM5LKwdLSEgcPHsR3332HJk2aYMmSJXBzc8OdO3fw7bffciEUQufPn0f//v1Rv359sWECwhCK8vT+/XuRpXqSNgjL2jGTVe3atXHy5Em0atUKkZGR+Omnn5CSkoKIiAhs37691Kh7ojqPHj1C/fr1IRAIyox5btCgQTm1SvXS0tJQUFAAW1tbkeP37t2DtrZ2hV7FUJE6/hoaGnj+/DkXmS4UGxsLDw8PtGjRQuR4aYE75bGq5c8//+T+/+nTp6UWCZ44caLK2yOk6sFaVS5rrwgk3YMBQHJyMpydnZGZmVmlO1qJiYnw8vLCv//+yw2mCQfWymMgjTpaRC7Ck7azszMiIiJgamrKfa2wsBAxMTE4ffo07ty5o64mEgVMnToVx44dg62tLa5du4b09HQYGRkhKioKK1euFJuU9fTpU2zevBm3b98GUJRiNXnyZKWkwpUHaTtmsio+Ozh69GhYWlpi+fLlyMjIgJ2dHbechZDy0L17d4wZM0ZkwAwo2ke0Y8cOnDt3Tj0NqyTMzMwgEAiQk5MDExMTkT3KhYWFyM3NxcSJE7F582bu+Jo1a3Du3DmJSagzZsxQebulXSJX3jO4pQ3W1q9fH58+fVLo+ctjWbs6nT9/Hl26dBHZ41ZcVlYWjh8/rnB6Y2XWqlUr2NjYYNasWWKTtFU9kEYdLSJWYWEh/vjjDy76tXnz5hg0aBA0NTWRkpJSaiyqcFQ0JCQEAwYMKK8mEyXKz8/Hhg0bkJGRAW9vb+7fe+3atTAxMcHYsWPV3MLK45tvvsGSJUvQv39/WFtbIyoqCr169UJKSgocHBzw6tUrdTeRoOLEXauaiYkJkpKSePtz7t+/j/bt2yM7O1s9DaskIiIiwBjDmDFjsG7dOpFBRuHeIuGsvlB5Be5UJuU1WFuRlrUT9TA2Nsa1a9d457zyQnW0CM/9+/fh5OSEJ0+ecDcZP//8M6ysrHD8+HG0bduWG4GytrbG1atX1bKhl6jO6tWrUatWLd5Iq6mpKV6+fCn2ez5+/IjU1FSxa6BLLtuoSqZPnw5PT08YGRmhfv36XOjGhQsX0LJlS/U2jgAADh06hGHDhqF9+/bcTfLly5fRokWLCr+PTlYCgUBswEtOTk6VXl4kLeFMoLW1dakzCcW9fftW7Hnz5cuXSg/bkcbu3bvh4eHB2xf1+fNnREVFlcvsh7OzM4Civ8eSs6vFB2sVpcoaeaRycHBwQEpKito6WjSjRXicnJzAGMO+fftQvXp1AEXTzyNHjoSGhgYuX76MEydOoGPHjtDU1MSzZ89469RJ5dawYUNERkZyBXaF4uPjMWzYMKSlpYkcj46OxujRo8XOzlCYQNEa8YyMDPTp04dbknj8+HGYmZnxfsek/FWEuOvyMnDgQOjr62P//v3Q1NQEUDSD4OHhgffv36slTbIySkpKgra2NjdYcuTIEezcuRN2dnYIDg4WSctTdeCOrMoK8ijP83V5DNZW9mXtRDGvXr2Cl5cXOnTogBYtWvAC3lQ9EEwdLcJjaGjIVbsvLiUlBV26dMGIESMQEREBS0tLZGRkoF69etwFuyRKHayc9PT08O+//8La2lrk+MOHD2FnZ4ePHz+KHLe1tUWfPn2wYMEC1KpVqzybWiEFBARg8eLFMDQ0REBAQKmPrWh19KqiihB3XV5u3bqFbt26oVq1alxIzcWLF7myAyVDHIh43377LWbPno0hQ4Zw50VXV1dcvXoV/fv3x7p167jHqjpwR1aSgjxSUlLQs2dPkWTh8hATE4OYmBixqyHCw8PLtS3k63P06FGMGjWKF+IFlM9AMC0dJDy6urpilzPk5uZCR0cH27dvh6urK+7fvw8/Pz+MHz8exsbGamgpURUrKyvExcXxOlpxcXFiRwGfP3+OgIAA6mT9n2vXrnE3VKWlCkpb7JuoVo8ePXDx4kVeR+vSpUtqScxUJTs7O6SmpmLTpk1ISUmBvr4+Ro8ejalTp3IrGEjZ7t69i9atWwMAfvvtN3Tv3h2RkZGIi4vDsGHDRDpaBgYG2LJlC1atWqWSwB1pCYsECwQCODg4SCwSXJ4WLVqEhQsXon379qhTp45SzolVtUYeEc/X1xcjR47E/Pnz1XKPQh0twjNgwABMmDABYWFhIsscJk6cyE2xCk/GiYmJmDZtGnW0vjLjx4/H9OnTkZ+fj169egEoGnUMCgoSm5A1dOhQnDt3DjY2NuXd1Arp7NmzYv+fVBzF464HDRqEWbNmITExUWzc9dfG0tISy5YtU3czKjXGGDf7cubMGS74ycrKSmLAjaGhoVpv7IX7opKTk9G3b1+JRYLL09atW7Fr1y6MGjVKac/ZunVrbh9569atqUZeFZeVlQV/f3+1DQTT0kHCk52dDS8vLxw9epRby5qfn4/Bgwdj586dqFatmnobSFSOMYbZs2djw4YNXC00PT09zJo1CwsWLOA9Pi8vD25ubqhZsyZatmzJWwPt5+dXLu0mRFoVNe5a1S5cuFDq17t161ZOLancevXqBSsrK/Tu3Rtjx47FrVu30LhxY5w/fx5eXl5IT09XdxMlioiIgIeHB/T09NTdFJibm+PKlStKHaSrqjXyiHheXl7o2rUrxo0bp5bXp44Wkej+/fsiUcfqSmwh6pObm4t///0X+vr6sLW15aVUCYWFhWHixInQ09ODubm5yPIPgUBAe/UIqSDEdTBL1oIiZUtNTYWnpycyMjIQEBCAn376CUDRMqWsrCxERkaquYWly87OxsGDB/HgwQPMnDkT1atXR1JSEmrVqoW6deuWWztmzZoFIyMjzJ8/v9xek1QtS5cuxbp169C/f3+1DARTR4sAQJkb9oujzfukpNq1a8PPzw+zZ8+WeqaAkIqiIsRdl5ecnByRz/Pz83Ht2jXMnz8fS5cuhYODg5pa9nX4+PEjNDU1eTdzFUlqaip69+4NU1NTpKen486dO2jUqBHmzZuHjIwM7N69W6WvX/x+48uXL4iIiIC9vT3s7e15vzdl3G9UlRp5RLySe82LK4+BYOpoEQBAz549RT5PSkpCQUEBdyK6e/cuNDU10a5dO8TGxqqjiaQCq169Oq5evUp7tEilVJHirtXl/PnzCAgIQGJiorqbUqkkJiZyN/B2dnZo27atmltUNgcHB7Rr1w4rV66EsbExUlJS0KhRI/z9998YMWKEypc9lrzfkEQgECh8vyGpRt7Vq1e/uhp5pGzCLk95BlFRGAYBILphf82aNTA2NkZERATMzMwAAG/evIGPj89Xl8BFlMPLywu//vorfvzxR3U3hRCZMcbEXngfP34MU1NTNbSo/NWqVQt37txRdzMqjRcvXsDDwwPnz5/n9i1nZ2ejZ8+eiIqKqtC1JRMSErB9+3be8bp16+LZs2cqf/3yDAgKCgrCnDlzxNbICwoKoo5WFREWFoa1a9fi3r17AIpK0kyfPr1c9m1RR4vwhISE4NSpU1wnCwDMzMywZMkS9OnTR2zqHKnaCgsLsXLlSpw8eVJlyz8IUbaKGHetaiXjrhlj+O+//7B8+XIurpyUzdfXF7m5ubh58yaaNWsGoKhGmZeXF/z8/LB//341t1AyXV1dsTWF7t69W6E7iPL477//xC79HTlyJFatWqWGFpHytmDBAqxZswa+vr7crOY///wDf39/ZGRk8DrhykYdLcLz9u1bvHz5knf85cuXYutrEXL9+nW0adMGAHDjxg2Rr1GtKFJRVcS4a1WTFHfdqVMnKg4rg+joaJw5c4brZAFFSwc3b96MPn36qLFlZRs0aBAWLVqEAwcOACg6R2dkZGDWrFlf3d97VaqRR8TbunUrQkNDMXz4cO7YoEGDYG9vD19fX+pokfLn4uICHx8fhISEiNTRmjlzJlxdXdXcOlIRUa0oUhkJk+IaNmxYYeKuVS0tLU3kcw0NDdSsWbNK/OzK9OXLF7GBF9ra2lx9rYoqJCQEQ4cOhYWFBT58+IDu3bvj2bNn6NSpE5YuXaru5imsKtfII3z5+flo374973i7du1QUFCg8tenMAzCk5eXh8DAQISHhyM/Px8AoKWlhbFjx2LVqlXlXs2eVB7379/HgwcP0K1bN+jr60vc+0JIRVNR4q5VrazRW3F18gjf4MGDkZ2djf3798PS0hIA8OTJE3h6esLMzAyHDx9WcwvLFhcXh5SUFOTm5qJt27bo3bu3upukFFW1Rh4Rz9fXF9ra2rwtDIGBgfjw4QM2b96s0tenjhaR6P3793jw4AEAwMbGhjpYRKKsrCy4u7vj7NmzEAgEuHfvHho1aoQxY8bAzMwMISEh6m4iIRKpO+66PAmX+Arl5+cjLS0NWlpasLGxQVJSkppaVrlkZmZi0KBBuHnzJqysrAAAGRkZaNmyJf7880/Uq1dPzS0sXUxMDGJiYvDixQveDBwtISVfE19fX+zevRtWVlbcrGZ8fDwyMjIwevRokZlpVewnp44WIURho0ePxosXL7Bjxw40a9aMiws+efIkAgICcPPmTXU3kRCJ1B13rW5v376Ft7c3XFxcMGrUKHU3p9JgjCEmJkakPlNlmBVauHAhFi1ahPbt26NOnTq8VQeVYTZOWlWpRh4RrzzLCYh9XupoEUIUVbt2bZw8eRKtWrUSuVF9+PAh7O3tkZubq+4mEiKRqakpkpKSYGNjI/L3++jRIzRp0gQfP35UdxNV7vr16xg4cOBX36lUpso6K1SnTh2sXLmySnSqqUYeUTcKwyCEKOz9+/cwMDDgHX/9+jVvJJGQiqYqxV1LkpOTg5ycHHU3o9Ioa1aoIvv8+TO+++47dTejXFCNPKJu1NEihCisa9eu2L17NxYvXgygaAr+y5cvWLlypdTT9oSoS1WKu96wYYPI58I6Wnv27EG/fv3U1KrKZ9u2bdi1a1elnBUaN24cIiMjMX/+fHU3RWWqYo08UjFRR4sQorBVq1ahV69eSEhIwOfPnxEUFISbN2/i9evXiIuLU3fzCCnV1x53XdzatWtFPhfGu3t5eWHOnDlqalXlU5lnhT5+/Ijt27fjzJkzX22B+apYI49UTLRHixCikPz8fDg6OuLnn3/G6dOnReKCp0yZgjp16qi7iYRI5WuNuybKN2vWLBgZGVXKWaHSVhmoKhBAXSIiIqpMjTxSMVFHixCisJo1a+Lvv/+Gra2tuptCiFwqa7ABKT8BAQHc/3/58gURERGwt7f/ameFvhZVpUYeqZioo0UIUZi/vz90dXWxfPlydTeFEJlVpbhrIj91x0QT2VWlGnmkYqKOFiFEYcKCgLa2tmjXrh2vuDWN7pKKrCrFXRNSlVT1GnlE/SgMgxCisBs3bqBt27YAiiKxi6tMscekaqrMwQaEEMkSEhKwfft23vG6devi2bNnamgRqWqoo0UIUdjZs2fV3QRC5FYV4q4JqYqoRh5RN+poEUIIqdKqQtw1IVVRVaqRRyom2qNFCCGkSqtKcdeEVCU5OTkYOnQoEhIS8O7dO1haWnI18v766y/efmJClI06WoQQQggh5KtFNfKIulBHixBCCCGEfJWoRh5RJ9qjRQghhBBCvjpl1cgjRNVoRosQQgghhHx1qEYeUTcNdTeAEEIIIYQQZaMaeUTdqKNFCCGEEEK+OsIaeYSoC+3RIoQQQgghXx2qkUfUjfZoEUIIIYSQrw7VyCPqRh0tQgghhBBCCFEy2qNFCCGEEEIIIUpGHS1CCCGEEEIIUTLqaBFCCCGEEEKIklFHixBCCCGEEEKUjDpahBBCiJzS09MhEAiQnJys7qYQQgipYCh1kBBCCJFTYWEhXr58iRo1akBLi0pTEkII+f+oo0UIIYSIkZ+fzytwSgghhEiLlg4SQgj5ahw8eBAtW7aEvr4+zM3N0bt3b7x//x4AsGPHDjRr1gx6enpo2rQptmzZwn2fcAngr7/+iu7du0NPTw9bt26Fvr4+/vrrL5HXOHz4MIyNjZGXlyd26eDNmzcxYMAAmJiYwNjYGF27dsWDBw+4r5fWDkIIIV8PWudACCHkq/Dff/9h+PDhWLlyJVxcXPDu3TtcvHgRjDHs27cPCxYswKZNm9CmTRtcu3YN48ePh6GhIby8vLjnmD17NkJCQtCmTRvo6enh4sWLiIyMRL9+/bjH7Nu3D87OzjAwMOC14cmTJ+jWrRt69OiB2NhYmJiYIC4uDgUFBdz3StMOQgghlR91tAghhHwV/vvvPxQUFMDV1RUNGjQAALRs2RIA8NNPPyEkJASurq4AAGtra9y6dQu//PKLSAdn+vTp3GMAwNPTE6NGjUJeXh4MDAzw9u1bHD9+HIcPHxbbhs2bN8PU1BRRUVHcssNvvvmG+7q07SCEEFL5UUeLEELIV6FVq1ZwcHBAy5Yt0bdvX/Tp0wdDhw6Fjo4OHjx4gLFjx2L8+PHc4wsKCmBqairyHO3btxf53MnJCdra2vjzzz8xbNgwHDp0CCYmJujdu7fYNiQnJ6Nr165i93a9f/9e6nYQQgip/KijRQgh5KugqamJ06dP4++//8apU6ewceNGzJ07F0ePHgUAhIaGomPHjrzvKc7Q0FDkcx0dHQwdOhSRkZEYNmwYIiMj4eHhITFhUF9fX2L7cnNzpW4HIYSQyo86WoQQQr4aAoEAXbp0QZcuXbBgwQI0aNAAcXFxsLS0xMOHD+Hp6Snzc3p6euKHH37AzZs3ERsbiyVLlkh8rL29PSIiIsQmFtaqVUuhdhBCCKlcqKNFCCHkqxAfH4+YmBj06dMHFhYWiI+Px8uXL9GsWTMsXLgQfn5+MDU1haOjIz59+oSEhAS8efMGAQEBpT5vt27dULt2bXh6esLa2po3G1Xc1KlTsXHjRgwbNgxz5syBqakpLl++jA4dOqBJkyYKtYMQQkjlQh0tQgghXwUTExNcuHAB69atw9u3b9GgQQOEhIRwiYEGBgZYtWoVZs6cCUNDQ7Rs2RLTp08v83kFAgGXZrhgwYJSH2tubo7Y2FjMnDkT3bt3h6amJlq3bo0uXboAAMaNGyd3OwghhFQuVLCYEEIIIYQQQpSMChYTQgghhBBCiJJRR4sQQgghhBBClIw6WoQQQgghhBCiZNTRIoQQQgghhBAlo44WIYQQQgghhCgZdbQIIYQQQgghRMmoo0UIIYQQQgghSkYdLUIIIYQQQghRMupoEUIIIYQQQoiSUUeLEEIIIYQQQpSMOlqEEEIIIYQQomT/D5QcfJaIm2WxAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "bar_graph('flag', 'flag')\n",
+ "\n"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 528
+ },
+ "id": "WFYR8mrZgoTJ",
+ "outputId": "ffd9afe2-6396-42bb-970b-d0751fa10326"
+ },
+ "execution_count": 15,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAH/CAYAAACl2xfpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSnklEQVR4nO3deViU9f7/8ReLLIqDubEkbtlRcT2hItpGkpNiHk/o0WxBs0xDT0Inl/KLVnY0LbfcWkU7WmrHJbVQxNRKzNTc06w0NR1cASUBgfn90c/7OAoqecMgPB/XNdflfX/ec8977miYF/d9f24Xu91uFwAAAADAFK7ObgAAAAAAyhJCFgAAAACYiJAFAAAAACYiZAEAAACAiQhZAAAAAGAiQhYAAAAAmIiQBQAAAAAmImQBAAAAgIkIWQAAAABgIkIWAABFVLduXXXp0qXYXyc3N1dDhw5VUFCQXF1d1a1bt2vWT5gwQfXr15ebm5tatmxp9NqnT59i7xUA8D+ELADAVRISEuTi4uLwqFmzpsLDw/XFF184u71y48MPP9SECRPUvXt3zZkzR7GxsYXWrl69WkOHDlX79u01e/Zs/fvf/y7BTgEAl3N3dgMAgNLr1VdfVb169WS325WamqqEhAR17txZy5cvL5EjOeXd2rVrdfvtt2vSpEk3VOvq6qoPPvhAHh4eJdAdAKAwhCwAQKE6deqkVq1aGcv9+vWTn5+fPv74Y1NCVn5+vnJycuTl5XXT27pSZmamKlWqZPp2S9KJEydUpUqVG6719vYmYAFAKcDpggCAG1alShV5e3vL3d3xb3Rvvvmm2rVrp2rVqsnb21shISH69NNPr3q+i4uLBg0apHnz5qlJkyby9PRUYmJioa+Xn5+v0aNHKzAwUBUrVlR4eLj27t171XVGl05vXL9+vZ577jnVrFlTtWrVkiT9+uuveu6559SwYUN5e3urWrVq6tGjhw4dOuTwWpe2sWHDBj377LOqVq2aLBaLnnzySZ09e7bA/r7++mu1adNGXl5eql+/vubOnXtD+zEzM1MvvPCCgoKC5OnpqYYNG+rNN9+U3W6XJB06dEguLi768ssvtWfPHuOUzXXr1hW4PRcXF82ePVuZmZlGbUJCQoG1Z86c0b/+9S81a9ZMPj4+slgs6tSpk3bs2HFV7a+//qquXbuqUqVKqlmzpmJjY7Vq1apr9gIA4EgWAOAa0tPTderUKdntdp04cUJvv/22zp8/r8cff9yhbsqUKeratasee+wx5eTk6JNPPlGPHj20YsUKRUZGOtSuXbtWCxcu1KBBg1S9enXVrVu30NcfMWKExo8fr4cfflhWq1U7duyQ1WpVVlZWgfXPPfecatSoofj4eGVmZkqSvvvuO23cuFG9evVSrVq1dOjQIc2cOVP333+/9u7dq4oVKzpsY9CgQapSpYpGjx6t/fv3a+bMmfr111+1bt06ubi4GHU//fSTunfvrn79+ik6Oloffvih+vTpo5CQEDVp0qTQ92S329W1a1d9+eWX6tevn1q2bKlVq1bpxRdf1G+//aZJkyapRo0a+uijj/T666/r/PnzGjt2rCSpcePGBW7zo48+0rvvvqvNmzfr/ffflyS1a9euwNpffvlFS5cuVY8ePVSvXj2lpqbqnXfe0X333ae9e/cqMDBQ0h9B8IEHHtDx48f1/PPPy9/fX/Pnz9eXX35Z6HsDAPx/dgAArjB79my7pKsenp6e9oSEhKvqf//9d4flnJwce9OmTe0PPPCAw3pJdldXV/uePXuu24PNZrO7u7vbu3Xr5rB+9OjRdkn26Ojoq/q9++677bm5udfszW6321NSUuyS7HPnzr1qGyEhIfacnBxj/fjx4+2S7MuWLTPW1alTxy7JvmHDBmPdiRMn7J6envYXXnjhmu9r6dKldkn2MWPGOKzv3r273cXFxf7TTz8Z6+677z57kyZNrrm9S6Kjo+2VKlW6an2dOnUc9lVWVpY9Ly/PoebgwYN2T09P+6uvvmqse+utt+yS7EuXLjXWXbhwwd6oUSO7JPuXX355Q30BQHnE6YIAgEJNnz5dSUlJSkpK0n/+8x+Fh4fr6aef1uLFix3qvL29jX+fPXtW6enpuueee7Rt27artnnfffcpODj4uq+dnJys3NxcPffccw7rBw8eXOhznnnmGbm5uRXa28WLF3X69Gk1aNBAVapUKbC//v37q0KFCsbywIED5e7urs8//9yhLjg4WPfcc4+xXKNGDTVs2FC//PLLNd/X559/Ljc3N/3zn/90WP/CCy/IbrcX++yNnp6ecnX949d/Xl6eTp8+LR8fHzVs2NBhfyQmJur2229X165djXVeXl565plnirU/ACgLOF0QAFCoNm3aOEx88eijj+qvf/2rBg0apC5duhiTLKxYsUJjxozR9u3blZ2dbdRffnrdJfXq1buh1/71118lSQ0aNHBYX7VqVd12220FPqegbV+4cEFjx47V7Nmz9dtvvxnXPUl/nA55pTvvvNNh2cfHRwEBAVddw1W7du2rnnvbbbcVev3WJb/++qsCAwNVuXJlh/WXTgW89L6LS35+vqZMmaIZM2bo4MGDysvLM8aqVavm0Ocdd9xx1X/DK/97AACuxpEsAMANc3V1VXh4uI4fP64DBw5Ikr766it17dpVXl5emjFjhj7//HMlJSWpd+/eDoHmksuPLJmtoG0PHjxYr7/+uv7xj39o4cKFWr16tZKSklStWjXl5+f/6de68ojZJQW959Lk3//+t+Li4nTvvffqP//5j1atWqWkpCQ1adLkpvYHAOB/OJIFACiS3NxcSdL58+clSf/973/l5eWlVatWydPT06ibPXv2Tb1OnTp1JP0xwcTlR6hOnz593aNFl/v0008VHR2tt956y1iXlZWltLS0AusPHDig8PBwY/n8+fM6fvy4OnfuXMR3ULA6depozZo1OnfunMPRrH379hnjxenTTz9VeHi4PvjgA4f1aWlpql69ukOfe/fuld1uv2rCDwDAtXEkCwBwwy5evKjVq1fLw8PDOL3Nzc1NLi4uDqedHTp0SEuXLr2p1+rQoYPc3d01c+ZMh/XTpk0r0nbc3NyuOrr09ttvO/R7uXfffVcXL140lmfOnKnc3Fx16tSpSK9bmM6dOysvL++q9zFp0iS5uLiY9jqFKWh/LFq0SL/99pvDOqvVqt9++02fffaZsS4rK0vvvfdesfYHAGUBR7IAAIX64osvjCMsJ06c0Pz583XgwAENHz5cFotFkhQZGamJEyfqoYceUu/evXXixAlNnz5dDRo00M6dO//0a/v5+en555/XW2+9pa5du+qhhx7Sjh079MUXX6h69eoFXu9VkC5duuijjz6Sr6+vgoODlZKSojVr1jhcf3S5nJwcdejQQf/4xz+0f/9+zZgxQ3fffbfDBBA34+GHH1Z4eLhefvllHTp0SC1atNDq1au1bNkyDRkyRHfccYcpr1OYLl266NVXX1Xfvn3Vrl077dq1S/PmzVP9+vUd6p599llNmzZNjz76qJ5//nkFBARo3rx5xo2jb3T/A0B5RMgCABQqPj7e+LeXl5caNWqkmTNn6tlnnzXWP/DAA/rggw80btw4DRkyRPXq1dMbb7yhQ4cO3VTIkqQ33nhDFStW1Hvvvac1a9YoLCxMq1ev1t1332182b+eKVOmyM3NTfPmzVNWVpbat2+vNWvWyGq1Flg/bdo0zZs3T/Hx8bp48aIeffRRTZ061bRQ4erqqs8++0zx8fFasGCBZs+erbp162rChAl64YUXTHmNa3nppZeUmZmp+fPna8GCBbrrrru0cuVKDR8+3KHOx8dHa9eu1eDBgzVlyhT5+PjoySefVLt27RQVFXXD+x8AyiMXe2m/QhcAgMukpaXptttu05gxY/Tyyy+btt2EhAT17dtX3333ncOMinA0efJkxcbG6ujRo7r99tud3Q4AlEpckwUAKLUuXLhw1brJkydLku6///6SbaYcunL/Z2Vl6Z133tGdd95JwAKAa+B0QQBAqbVgwQIlJCSoc+fO8vHx0ddff62PP/5YHTt2VPv27Z3dXpn3yCOPqHbt2mrZsqXS09P1n//8R/v27dO8efOc3RoAlGqELABAqdW8eXO5u7tr/PjxysjIMCbDGDNmjLNbKxesVqvef/99zZs3T3l5eQoODtYnn3yinj17Ors1ACjVuCYLAAAAAEzENVkAAAAAYCJOF7yG/Px8HTt2TJUrV+Z+IAAAAEA5Zrfbde7cOQUGBsrV9drHqghZ13Ds2DEFBQU5uw0AAAAApcSRI0dUq1ata9YQsq6hcuXKkv7YkRaLxcndAAAAAHCWjIwMBQUFGRnhWghZ13DpFEGLxULIAgAAAHBDlxEx8QUAAAAAmIiQBQAAAAAmImQBAAAAgIkIWQAAAABgIkIWAAAAAJiIkAUAAAAAJiJkAQAAAICJCFkAAAAAYCJCFgAAAACYiJAFAAAAACYiZAEAAACAiQhZAAAAAGAiQhYAAAAAmIiQBQAAAAAmImQBAAAAgIkIWQAAAABgIndnN1Be1B2+0tktGA6Ni3R2CwAAAECZxZEsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMVKWTNnDlTzZs3l8VikcViUVhYmL744gtj/P7775eLi4vDY8CAAQ7bOHz4sCIjI1WxYkXVrFlTL774onJzcx1q1q1bp7vuukuenp5q0KCBEhISrupl+vTpqlu3rry8vBQaGqrNmzc7jGdlZSkmJkbVqlWTj4+PoqKilJqaWpS3CwAAAABFVqSQVatWLY0bN05bt27Vli1b9MADD+hvf/ub9uzZY9Q888wzOn78uPEYP368MZaXl6fIyEjl5ORo48aNmjNnjhISEhQfH2/UHDx4UJGRkQoPD9f27ds1ZMgQPf3001q1apVRs2DBAsXFxWnUqFHatm2bWrRoIavVqhMnThg1sbGxWr58uRYtWqT169fr2LFjeuSRR/7UTgIAAACAG+Vit9vtN7OBqlWrasKECerXr5/uv/9+tWzZUpMnTy6w9osvvlCXLl107Ngx+fn5SZJmzZqlYcOG6eTJk/Lw8NCwYcO0cuVK7d6923her169lJaWpsTERElSaGioWrdurWnTpkmS8vPzFRQUpMGDB2v48OFKT09XjRo1NH/+fHXv3l2StG/fPjVu3FgpKSlq27Ztgf1lZ2crOzvbWM7IyFBQUJDS09NlsVhuZjep7vCVN/V8Mx0aF+nsFgAAAIBbSkZGhnx9fW8oG/zpa7Ly8vL0ySefKDMzU2FhYcb6efPmqXr16mratKlGjBih33//3RhLSUlRs2bNjIAlSVarVRkZGcbRsJSUFEVERDi8ltVqVUpKiiQpJydHW7dudahxdXVVRESEUbN161ZdvHjRoaZRo0aqXbu2UVOQsWPHytfX13gEBQX9mV0DAAAAoBxzL+oTdu3apbCwMGVlZcnHx0dLlixRcHCwJKl3796qU6eOAgMDtXPnTg0bNkz79+/X4sWLJUk2m80hYEkylm022zVrMjIydOHCBZ09e1Z5eXkF1uzbt8/YhoeHh6pUqXJVzaXXKciIESMUFxdnLF86kgUAAAAAN6rIIathw4bavn270tPT9emnnyo6Olrr169XcHCw+vfvb9Q1a9ZMAQEB6tChg37++WfdcccdpjZeHDw9PeXp6ensNgAAAADcwop8uqCHh4caNGigkJAQjR07Vi1atNCUKVMKrA0NDZUk/fTTT5Ikf3//q2b4u7Ts7+9/zRqLxSJvb29Vr15dbm5uBdZcvo2cnBylpaUVWgMAAAAAxeGm75OVn5/vMFnE5bZv3y5JCggIkCSFhYVp165dDrMAJiUlyWKxGKcchoWFKTk52WE7SUlJxnVfHh4eCgkJcajJz89XcnKyURMSEqIKFSo41Ozfv1+HDx92uH4MAAAAAMxWpNMFR4wYoU6dOql27do6d+6c5s+fr3Xr1mnVqlX6+eefNX/+fHXu3FnVqlXTzp07FRsbq3vvvVfNmzeXJHXs2FHBwcF64oknNH78eNlsNo0cOVIxMTHGaXoDBgzQtGnTNHToUD311FNau3atFi5cqJUr/zc7X1xcnKKjo9WqVSu1adNGkydPVmZmpvr27StJ8vX1Vb9+/RQXF6eqVavKYrFo8ODBCgsLK3RmQQAAAAAwQ5FC1okTJ/Tkk0/q+PHj8vX1VfPmzbVq1So9+OCDOnLkiNasWWMEnqCgIEVFRWnkyJHG893c3LRixQoNHDhQYWFhqlSpkqKjo/Xqq68aNfXq1dPKlSsVGxurKVOmqFatWnr//fdltVqNmp49e+rkyZOKj4+XzWZTy5YtlZiY6DAZxqRJk+Tq6qqoqChlZ2fLarVqxowZN7OvAAAAAOC6bvo+WWVZUebCvx7ukwUAAADcukrkPlkAAAAAgKsRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMVKWTNnDlTzZs3l8VikcViUVhYmL744gtjPCsrSzExMapWrZp8fHwUFRWl1NRUh20cPnxYkZGRqlixomrWrKkXX3xRubm5DjXr1q3TXXfdJU9PTzVo0EAJCQlX9TJ9+nTVrVtXXl5eCg0N1ebNmx3Gb6QXAAAAADBbkUJWrVq1NG7cOG3dulVbtmzRAw88oL/97W/as2ePJCk2NlbLly/XokWLtH79eh07dkyPPPKI8fy8vDxFRkYqJydHGzdu1Jw5c5SQkKD4+Hij5uDBg4qMjFR4eLi2b9+uIUOG6Omnn9aqVauMmgULFiguLk6jRo3Stm3b1KJFC1mtVp04ccKouV4vAAAAAFAcXOx2u/1mNlC1alVNmDBB3bt3V40aNTR//nx1795dkrRv3z41btxYKSkpatu2rb744gt16dJFx44dk5+fnyRp1qxZGjZsmE6ePCkPDw8NGzZMK1eu1O7du43X6NWrl9LS0pSYmChJCg0NVevWrTVt2jRJUn5+voKCgjR48GANHz5c6enp1+3lRmRkZMjX11fp6emyWCw3s5tUd/jKm3q+mQ6Ni3R2CwAAAMAtpSjZ4E9fk5WXl6dPPvlEmZmZCgsL09atW3Xx4kVFREQYNY0aNVLt2rWVkpIiSUpJSVGzZs2MgCVJVqtVGRkZxtGwlJQUh21cqrm0jZycHG3dutWhxtXVVREREUbNjfRSkOzsbGVkZDg8AAAAAKAoihyydu3aJR8fH3l6emrAgAFasmSJgoODZbPZ5OHhoSpVqjjU+/n5yWazSZJsNptDwLo0fmnsWjUZGRm6cOGCTp06pby8vAJrLt/G9XopyNixY+Xr62s8goKCbmynAAAAAMD/V+SQ1bBhQ23fvl3ffvutBg4cqOjoaO3du7c4eitxI0aMUHp6uvE4cuSIs1sCAAAAcItxL+oTPDw81KBBA0lSSEiIvvvuO02ZMkU9e/ZUTk6O0tLSHI4gpaamyt/fX5Lk7+9/1SyAl2b8u7zmylkAU1NTZbFY5O3tLTc3N7m5uRVYc/k2rtdLQTw9PeXp6VmEvQEAAAAAjm76Pln5+fnKzs5WSEiIKlSooOTkZGNs//79Onz4sMLCwiRJYWFh2rVrl8MsgElJSbJYLAoODjZqLt/GpZpL2/Dw8FBISIhDTX5+vpKTk42aG+kFAAAAAIpDkY5kjRgxQp06dVLt2rV17tw5zZ8/X+vWrdOqVavk6+urfv36KS4uTlWrVpXFYtHgwYMVFhZmzObXsWNHBQcH64knntD48eNls9k0cuRIxcTEGEeQBgwYoGnTpmno0KF66qmntHbtWi1cuFArV/5vdr64uDhFR0erVatWatOmjSZPnqzMzEz17dtXkm6oFwAAAAAoDkUKWSdOnNCTTz6p48ePy9fXV82bN9eqVav04IMPSpImTZokV1dXRUVFKTs7W1arVTNmzDCe7+bmphUrVmjgwIEKCwtTpUqVFB0drVdffdWoqVevnlauXKnY2FhNmTJFtWrV0vvvvy+r1WrU9OzZUydPnlR8fLxsNptatmypxMREh8kwrtcLAAAAABSHm75PVlnGfbIAAAAASCV0nywAAAAAwNUIWQAAAABgIkIWAAAAAJiIkAUAAAAAJiJkAQAAAICJCFkAAAAAYCJCFgAAAACYiJAFAAAAACYiZAEAAACAiQhZAAAAAGAiQhYAAAAAmIiQBQAAAAAmImQBAAAAgIkIWQAAAABgIkIWAAAAAJiIkAUAAAAAJiJkAQAAAICJCFkAAAAAYCJCFgAAAACYiJAFAAAAACYiZAEAAACAiQhZAAAAAGAiQhYAAAAAmIiQBQAAAAAmImQBAAAAgIkIWQAAAABgIkIWAAAAAJiIkAUAAAAAJiJkAQAAAICJCFkAAAAAYCJCFgAAAACYiJAFAAAAACYiZAEAAACAiQhZAAAAAGAiQhYAAAAAmIiQBQAAAAAmImQBAAAAgIkIWQAAAABgoiKFrLFjx6p169aqXLmyatasqW7dumn//v0ONffff79cXFwcHgMGDHCoOXz4sCIjI1WxYkXVrFlTL774onJzcx1q1q1bp7vuukuenp5q0KCBEhISrupn+vTpqlu3rry8vBQaGqrNmzc7jGdlZSkmJkbVqlWTj4+PoqKilJqaWpS3DAAAAABFUqSQtX79esXExGjTpk1KSkrSxYsX1bFjR2VmZjrUPfPMMzp+/LjxGD9+vDGWl5enyMhI5eTkaOPGjZozZ44SEhIUHx9v1Bw8eFCRkZEKDw/X9u3bNWTIED399NNatWqVUbNgwQLFxcVp1KhR2rZtm1q0aCGr1aoTJ04YNbGxsVq+fLkWLVqk9evX69ixY3rkkUeKvJMAAAAA4Ea52O12+5998smTJ1WzZk2tX79e9957r6Q/jmS1bNlSkydPLvA5X3zxhbp06aJjx47Jz89PkjRr1iwNGzZMJ0+elIeHh4YNG6aVK1dq9+7dxvN69eqltLQ0JSYmSpJCQ0PVunVrTZs2TZKUn5+voKAgDR48WMOHD1d6erpq1Kih+fPnq3v37pKkffv2qXHjxkpJSVHbtm2v6i07O1vZ2dnGckZGhoKCgpSeni6LxfJnd5Mkqe7wlTf1fDMdGhfp7BYAAACAW0pGRoZ8fX1vKBvc1DVZ6enpkqSqVas6rJ83b56qV6+upk2basSIEfr999+NsZSUFDVr1swIWJJktVqVkZGhPXv2GDUREREO27RarUpJSZEk5eTkaOvWrQ41rq6uioiIMGq2bt2qixcvOtQ0atRItWvXNmquNHbsWPn6+hqPoKCgIu8TAAAAAOWb+599Yn5+voYMGaL27duradOmxvrevXurTp06CgwM1M6dOzVs2DDt379fixcvliTZbDaHgCXJWLbZbNesycjI0IULF3T27Fnl5eUVWLNv3z5jGx4eHqpSpcpVNZde50ojRoxQXFycsXzpSBYAAAAA3Kg/HbJiYmK0e/duff311w7r+/fvb/y7WbNmCggIUIcOHfTzzz/rjjvu+POdlgBPT095eno6uw0AAAAAt7A/dbrgoEGDtGLFCn355ZeqVavWNWtDQ0MlST/99JMkyd/f/6oZ/i4t+/v7X7PGYrHI29tb1atXl5ubW4E1l28jJydHaWlphdYAAAAAgNmKFLLsdrsGDRqkJUuWaO3atapXr951n7N9+3ZJUkBAgCQpLCxMu3btcpgFMCkpSRaLRcHBwUZNcnKyw3aSkpIUFhYmSfLw8FBISIhDTX5+vpKTk42akJAQVahQwaFm//79Onz4sFEDAAAAAGYr0umCMTExmj9/vpYtW6bKlSsb1zb5+vrK29tbP//8s+bPn6/OnTurWrVq2rlzp2JjY3XvvfeqefPmkqSOHTsqODhYTzzxhMaPHy+bzaaRI0cqJibGOFVvwIABmjZtmoYOHaqnnnpKa9eu1cKFC7Vy5f9m6IuLi1N0dLRatWqlNm3aaPLkycrMzFTfvn2Nnvr166e4uDhVrVpVFotFgwcPVlhYWIEzCwIAAACAGYoUsmbOnCnpj2naLzd79mz16dNHHh4eWrNmjRF4goKCFBUVpZEjRxq1bm5uWrFihQYOHKiwsDBVqlRJ0dHRevXVV42aevXqaeXKlYqNjdWUKVNUq1Ytvf/++7JarUZNz549dfLkScXHx8tms6lly5ZKTEx0mAxj0qRJcnV1VVRUlLKzs2W1WjVjxowi7SAAAAAAKIqbuk9WWVeUufCvh/tkAQAAALeuErtPFgAAAADAESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwUZFC1tixY9W6dWtVrlxZNWvWVLdu3bR//36HmqysLMXExKhatWry8fFRVFSUUlNTHWoOHz6syMhIVaxYUTVr1tSLL76o3Nxch5p169bprrvukqenpxo0aKCEhISr+pk+fbrq1q0rLy8vhYaGavPmzUXuBQAAAADMVKSQtX79esXExGjTpk1KSkrSxYsX1bFjR2VmZho1sbGxWr58uRYtWqT169fr2LFjeuSRR4zxvLw8RUZGKicnRxs3btScOXOUkJCg+Ph4o+bgwYOKjIxUeHi4tm/friFDhujpp5/WqlWrjJoFCxYoLi5Oo0aN0rZt29SiRQtZrVadOHHihnsBAAAAALO52O12+5998smTJ1WzZk2tX79e9957r9LT01WjRg3Nnz9f3bt3lyTt27dPjRs3VkpKitq2basvvvhCXbp00bFjx+Tn5ydJmjVrloYNG6aTJ0/Kw8NDw4YN08qVK7V7927jtXr16qW0tDQlJiZKkkJDQ9W6dWtNmzZNkpSfn6+goCANHjxYw4cPv6FericjI0O+vr5KT0+XxWL5s7tJklR3+Mqber6ZDo2LdHYLAAAAwC2lKNngpq7JSk9PlyRVrVpVkrR161ZdvHhRERERRk2jRo1Uu3ZtpaSkSJJSUlLUrFkzI2BJktVqVUZGhvbs2WPUXL6NSzWXtpGTk6OtW7c61Li6uioiIsKouZFerpSdna2MjAyHBwAAAAAUxZ8OWfn5+RoyZIjat2+vpk2bSpJsNps8PDxUpUoVh1o/Pz/ZbDaj5vKAdWn80ti1ajIyMnThwgWdOnVKeXl5BdZcvo3r9XKlsWPHytfX13gEBQXd4N4AAAAAgD/86ZAVExOj3bt365NPPjGzH6caMWKE0tPTjceRI0ec3RIAAACAW4z7n3nSoEGDtGLFCm3YsEG1atUy1vv7+ysnJ0dpaWkOR5BSU1Pl7+9v1Fw5C+ClGf8ur7lyFsDU1FRZLBZ5e3vLzc1Nbm5uBdZcvo3r9XIlT09PeXp6FmFPAAAAAICjIh3JstvtGjRokJYsWaK1a9eqXr16DuMhISGqUKGCkpOTjXX79+/X4cOHFRYWJkkKCwvTrl27HGYBTEpKksViUXBwsFFz+TYu1VzahoeHh0JCQhxq8vPzlZycbNTcSC8AAAAAYLYiHcmKiYnR/PnztWzZMlWuXNm4tsnX11fe3t7y9fVVv379FBcXp6pVq8pisWjw4MEKCwszZvPr2LGjgoOD9cQTT2j8+PGy2WwaOXKkYmJijKNIAwYM0LRp0zR06FA99dRTWrt2rRYuXKiVK/83Q19cXJyio6PVqlUrtWnTRpMnT1ZmZqb69u1r9HS9XgAAAADAbEUKWTNnzpQk3X///Q7rZ8+erT59+kiSJk2aJFdXV0VFRSk7O1tWq1UzZswwat3c3LRixQoNHDhQYWFhqlSpkqKjo/Xqq68aNfXq1dPKlSsVGxurKVOmqFatWnr//fdltVqNmp49e+rkyZOKj4+XzWZTy5YtlZiY6DAZxvV6AQAAAACz3dR9sso67pMFAAAAQCrB+2QBAAAAABwRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMVOWRt2LBBDz/8sAIDA+Xi4qKlS5c6jPfp00cuLi4Oj4ceesih5syZM3rsscdksVhUpUoV9evXT+fPn3eo2blzp+655x55eXkpKChI48ePv6qXRYsWqVGjRvLy8lKzZs30+eefO4zb7XbFx8crICBA3t7eioiI0IEDB4r6lgEAAADghhU5ZGVmZqpFixaaPn16oTUPPfSQjh8/bjw+/vhjh/HHHntMe/bsUVJSklasWKENGzaof//+xnhGRoY6duyoOnXqaOvWrZowYYJGjx6td99916jZuHGjHn30UfXr10/ff/+9unXrpm7dumn37t1Gzfjx4zV16lTNmjVL3377rSpVqiSr1aqsrKyivm0AAAAAuCEudrvd/qef7OKiJUuWqFu3bsa6Pn36KC0t7aojXJf88MMPCg4O1nfffadWrVpJkhITE9W5c2cdPXpUgYGBmjlzpl5++WXZbDZ5eHhIkoYPH66lS5dq3759kqSePXsqMzNTK1asMLbdtm1btWzZUrNmzZLdbldgYKBeeOEF/etf/5Ikpaeny8/PTwkJCerVq9d1319GRoZ8fX2Vnp4ui8XyZ3aRoe7wlTf1fDMdGhfp7BYAAACAW0pRskGxXJO1bt061axZUw0bNtTAgQN1+vRpYywlJUVVqlQxApYkRUREyNXVVd9++61Rc++99xoBS5KsVqv279+vs2fPGjUREREOr2u1WpWSkiJJOnjwoGw2m0ONr6+vQkNDjZorZWdnKyMjw+EBAAAAAEVhesh66KGHNHfuXCUnJ+uNN97Q+vXr1alTJ+Xl5UmSbDabatas6fAcd3d3Va1aVTabzajx8/NzqLm0fL2ay8cvf15BNVcaO3asfH19jUdQUFCR3z8AAACA8s3d7A1efhpes2bN1Lx5c91xxx1at26dOnToYPbLmWrEiBGKi4szljMyMghaAAAAAIqk2Kdwr1+/vqpXr66ffvpJkuTv768TJ0441OTm5urMmTPy9/c3alJTUx1qLi1fr+by8cufV1DNlTw9PWWxWBweAAAAAFAUxR6yjh49qtOnTysgIECSFBYWprS0NG3dutWoWbt2rfLz8xUaGmrUbNiwQRcvXjRqkpKS1LBhQ912221GTXJyssNrJSUlKSwsTJJUr149+fv7O9RkZGTo22+/NWoAAAAAwGxFDlnnz5/X9u3btX37dkl/TDCxfft2HT58WOfPn9eLL76oTZs26dChQ0pOTtbf/vY3NWjQQFarVZLUuHFjPfTQQ3rmmWe0efNmffPNNxo0aJB69eqlwMBASVLv3r3l4eGhfv36ac+ePVqwYIGmTJnicCrf888/r8TERL311lvat2+fRo8erS1btmjQoEGS/pj5cMiQIRozZow+++wz7dq1S08++aQCAwMdZkMEAAAAADMV+ZqsLVu2KDw83Fi+FHyio6M1c+ZM7dy5U3PmzFFaWpoCAwPVsWNHvfbaa/L09DSeM2/ePA0aNEgdOnSQq6uroqKiNHXqVGPc19dXq1evVkxMjEJCQlS9enXFx8c73EurXbt2mj9/vkaOHKmXXnpJd955p5YuXaqmTZsaNUOHDlVmZqb69++vtLQ03X333UpMTJSXl1dR3zYAAAAA3JCbuk9WWcd9sgAAAABIpeA+WQAAAABQXhGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBERQ5ZGzZs0MMPP6zAwEC5uLho6dKlDuN2u13x8fEKCAiQt7e3IiIidODAAYeaM2fO6LHHHpPFYlGVKlXUr18/nT9/3qFm586duueee+Tl5aWgoCCNHz/+ql4WLVqkRo0aycvLS82aNdPnn39e5F4AAAAAwExFDlmZmZlq0aKFpk+fXuD4+PHjNXXqVM2aNUvffvutKlWqJKvVqqysLKPmscce0549e5SUlKQVK1Zow4YN6t+/vzGekZGhjh07qk6dOtq6dasmTJig0aNH69133zVqNm7cqEcffVT9+vXT999/r27duqlbt27avXt3kXoBAAAAADO52O12+59+souLlixZom7dukn648hRYGCgXnjhBf3rX/+SJKWnp8vPz08JCQnq1auXfvjhBwUHB+u7775Tq1atJEmJiYnq3Lmzjh49qsDAQM2cOVMvv/yybDabPDw8JEnDhw/X0qVLtW/fPklSz549lZmZqRUrVhj9tG3bVi1bttSsWbNuqJfrycjIkK+vr9LT02WxWP7sbpIk1R2+8qaeb6ZD4yKd3QIAAABwSylKNjD1mqyDBw/KZrMpIiLCWOfr66vQ0FClpKRIklJSUlSlShUjYElSRESEXF1d9e233xo19957rxGwJMlqtWr//v06e/asUXP561yqufQ6N9LLlbKzs5WRkeHwAAAAAICiMDVk2Ww2SZKfn5/Dej8/P2PMZrOpZs2aDuPu7u6qWrWqQ01B27j8NQqruXz8er1caezYsfL19TUeQUFBN/CuAQAAAOB/mF3wMiNGjFB6errxOHLkiLNbAgAAAHCLMTVk+fv7S5JSU1Md1qemphpj/v7+OnHihMN4bm6uzpw541BT0DYuf43Cai4fv14vV/L09JTFYnF4AAAAAEBRmBqy6tWrJ39/fyUnJxvrMjIy9O233yosLEySFBYWprS0NG3dutWoWbt2rfLz8xUaGmrUbNiwQRcvXjRqkpKS1LBhQ912221GzeWvc6nm0uvcSC8AAAAAYLYih6zz589r+/bt2r59u6Q/JpjYvn27Dh8+LBcXFw0ZMkRjxozRZ599pl27dunJJ59UYGCgMQNh48aN9dBDD+mZZ57R5s2b9c0332jQoEHq1auXAgMDJUm9e/eWh4eH+vXrpz179mjBggWaMmWK4uLijD6ef/55JSYm6q233tK+ffs0evRobdmyRYMGDZKkG+oFAAAAAMzmXtQnbNmyReHh4cbypeATHR2thIQEDR06VJmZmerfv7/S0tJ09913KzExUV5eXsZz5s2bp0GDBqlDhw5ydXVVVFSUpk6daoz7+vpq9erViomJUUhIiKpXr674+HiHe2m1a9dO8+fP18iRI/XSSy/pzjvv1NKlS9W0aVOj5kZ6AQAAAAAz3dR9sso67pMFAAAAQHLifbIAAAAAoLwjZAEAAACAiQhZAAAAAGAiQhYAAAAAmIiQBQAAAAAmKvIU7oCZStOsixIzLwIAAODmcSQLAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARKaHrNGjR8vFxcXh0ahRI2M8KytLMTExqlatmnx8fBQVFaXU1FSHbRw+fFiRkZGqWLGiatasqRdffFG5ubkONevWrdNdd90lT09PNWjQQAkJCVf1Mn36dNWtW1deXl4KDQ3V5s2bzX67AAAAAOCgWI5kNWnSRMePHzceX3/9tTEWGxur5cuXa9GiRVq/fr2OHTumRx55xBjPy8tTZGSkcnJytHHjRs2ZM0cJCQmKj483ag4ePKjIyEiFh4dr+/btGjJkiJ5++mmtWrXKqFmwYIHi4uI0atQobdu2TS1atJDVatWJEyeK4y0DAAAAgKRiClnu7u7y9/c3HtWrV5ckpaen64MPPtDEiRP1wAMPKCQkRLNnz9bGjRu1adMmSdLq1au1d+9e/ec//1HLli3VqVMnvfbaa5o+fbpycnIkSbNmzVK9evX01ltvqXHjxho0aJC6d++uSZMmGT1MnDhRzzzzjPr27avg4GDNmjVLFStW1IcfflgcbxkAAAAAJBVTyDpw4IACAwNVv359PfbYYzp8+LAkaevWrbp48aIiIiKM2kaNGql27dpKSUmRJKWkpKhZs2by8/MzaqxWqzIyMrRnzx6j5vJtXKq5tI2cnBxt3brVocbV1VURERFGTUGys7OVkZHh8AAAAACAojA9ZIWGhiohIUGJiYmaOXOmDh48qHvuuUfnzp2TzWaTh4eHqlSp4vAcPz8/2Ww2SZLNZnMIWJfGL41dqyYjI0MXLlzQqVOnlJeXV2DNpW0UZOzYsfL19TUeQUFBf2ofAAAAACi/3M3eYKdOnYx/N2/eXKGhoapTp44WLlwob29vs1/OVCNGjFBcXJyxnJGRQdACAAAAUCTFPoV7lSpV9Je//EU//fST/P39lZOTo7S0NIea1NRU+fv7S5L8/f2vmm3w0vL1aiwWi7y9vVW9enW5ubkVWHNpGwXx9PSUxWJxeAAAAABAURR7yDp//rx+/vlnBQQEKCQkRBUqVFBycrIxvn//fh0+fFhhYWGSpLCwMO3atcthFsCkpCRZLBYFBwcbNZdv41LNpW14eHgoJCTEoSY/P1/JyclGDQAAAAAUB9ND1r/+9S+tX79ehw4d0saNG/X3v/9dbm5uevTRR+Xr66t+/fopLi5OX375pbZu3aq+ffsqLCxMbdu2lSR17NhRwcHBeuKJJ7Rjxw6tWrVKI0eOVExMjDw9PSVJAwYM0C+//KKhQ4dq3759mjFjhhYuXKjY2Fijj7i4OL333nuaM2eOfvjhBw0cOFCZmZnq27ev2W8ZAAAAAAymX5N19OhRPfroozp9+rRq1Kihu+++W5s2bVKNGjUkSZMmTZKrq6uioqKUnZ0tq9WqGTNmGM93c3PTihUrNHDgQIWFhalSpUqKjo7Wq6++atTUq1dPK1euVGxsrKZMmaJatWrp/fffl9VqNWp69uypkydPKj4+XjabTS1btlRiYuJVk2EAAAAAgJlc7Ha73dlNlFYZGRny9fVVenr6TV+fVXf4SpO6unmHxkU6uwVDadovUunaNwAAACg9ipINiv2aLAAAAAAoTwhZAAAAAGAiQhYAAAAAmIiQBQAAAAAmImQBAAAAgIkIWQAAAABgIkIWAAAAAJiIkAUAAAAAJiJkAQAAAICJCFkAAAAAYCJCFgAAAACYiJAFAAAAACYiZAEAAACAiQhZAAAAAGAiQhYAAAAAmMjd2Q0AKFjd4Sud3YLh0LhIZ7cAAABwy+BIFgAAAACYiJAFAAAAACYiZAEAAACAiQhZAAAAAGAiQhYAAAAAmIiQBQAAAAAmImQBAAAAgIkIWQAAAABgIkIWAAAAAJiIkAUAAAAAJiJkAQAAAICJCFkAAAAAYCJCFgAAAACYiJAFAAAAACYiZAEAAACAiQhZAAAAAGAiQhYAAAAAmIiQBQAAAAAmImQBAAAAgIkIWQAAAABgIkIWAAAAAJiIkAUAAAAAJioXIWv69OmqW7euvLy8FBoaqs2bNzu7JQAAAABlVJkPWQsWLFBcXJxGjRqlbdu2qUWLFrJarTpx4oSzWwMAAABQBrk7u4HiNnHiRD3zzDPq27evJGnWrFlauXKlPvzwQw0fPtyhNjs7W9nZ2cZyenq6JCkjI+Om+8jP/v2mt2EWM96PWUrTfpHYN4UpTfsFAADAGS59H7Lb7detdbHfSNUtKicnRxUrVtSnn36qbt26Geujo6OVlpamZcuWOdSPHj1ar7zySgl3CQAAAOBWceTIEdWqVeuaNWX6SNapU6eUl5cnPz8/h/V+fn7at2/fVfUjRoxQXFycsZyfn68zZ86oWrVqcnFxKfZ+rycjI0NBQUE6cuSILBaLs9spNdgvBWO/FI59UzD2S+HYNwVjvxSOfVMw9kvh2DcFK037xW6369y5cwoMDLxubZkOWUXl6ekpT09Ph3VVqlRxTjPXYLFYnP5DVhqxXwrGfikc+6Zg7JfCsW8Kxn4pHPumYOyXwrFvClZa9ouvr+8N1ZXpiS+qV68uNzc3paamOqxPTU2Vv7+/k7oCAAAAUJaV6ZDl4eGhkJAQJScnG+vy8/OVnJyssLAwJ3YGAAAAoKwq86cLxsXFKTo6Wq1atVKbNm00efJkZWZmGrMN3ko8PT01atSoq05pLO/YLwVjvxSOfVMw9kvh2DcFY78Ujn1TMPZL4dg3BbtV90uZnl3wkmnTpmnChAmy2Wxq2bKlpk6dqtDQUGe3BQAAAKAMKhchCwAAAABKSpm+JgsAAAAAShohCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATFTmb0Z8K6pdu7a+//57VatWTdIf9/l68sknZbFYnNxZ6bF582alpKTIZrNJkvz9/RUWFqY2bdo4uTPnycjIuG6Nu7u7KlasWALdALeuv/71r3Jxcblu3bZt20qgm1vH2bNntXz5cj355JPObsVp8vPz5ep69d+v8/PzdfToUdWuXdsJXZUOubm52rNnj8Pv7eDgYFWoUMHJnTmP3W7XoUOHFBQUJHd3d+Xk5GjJkiXKzs5W586dVb16dWe3WOKmTp16Q3X//Oc/i7mTm8d9skohV1dX2Ww21axZU5JksVi0fft21a9f38mdOd+JEycUFRWlb775RrVr15afn58kKTU1VYcPH1b79u313//+19h35Ymrq+sNfTH08fFRRESEpkyZolq1apVAZ6Xb4sWLNXr0aO3cudPZrThFbm6uJk2apI8//lg//vijJOkvf/mLevfureeff75cfgF65ZVXjH/b7XaNHTtWAwYMUNWqVR3qRo0aVdKtlWo7duzQXXfdpby8PGe3UuIyMjL09NNPa/ny5bJYLHr22Wc1atQoubm5Sfrjd1RgYGC53Df5+fmKj4/X9OnTlZ6e7jDm6+urQYMG6ZVXXikwnJZl+/fvl9Vq1ZEjR1S/fn2tXr1aPXr00L59+2S321WxYkVt3LhRd955p7NbLVH16tVzWD5y5IgCAgLk7v6/40IuLi765ZdfSrq1IiNklUJXhqzKlStrx44dhCxJ3bt317FjxzR79mw1bNjQYWz//v166qmnFBgYqEWLFjmpQ+dZv379dWvy8/OVmpqq6dOnq3Llyvr8889LoDPne+edd5SUlCQPDw89//zzCg0N1dq1a/XCCy/oxx9/1JNPPqmZM2c6u80Sd+HCBT344INKSUlRRESEGjduLEn64YcftGbNGrVv316rV6+Wl5eXkzt1Lj6D/3C9o+U7d+7UfffdVy6DxPPPP6/ExES9/vrrSktL05gxY9S0aVMtXrxYHh4eSk1NVUBAgPLz853daokbOnSoEhIS9Nprr8lqtTr8cXT16tX6v//7P/Xp00dvvPGGkzstWd26dZPdbteYMWP04YcfatWqVfrLX/6iRYsWKT8/Xz169JCvr68++ugjZ7fqVLf0568dpY6Li4s9NTXVWPbx8bH//PPPTuyo9PDx8bFv27at0PEtW7bYfXx8SrCjW9OePXvslStXdnYbJWLs2LH2ChUq2ENCQuyVKlWyV6xY0f7666/b/f397WPHjrWfOXPG2S06TXx8vL127dr2HTt2XDW2fft2e+3ate2jRo0q+cZKGT6D/+Di4mJ3dXUt9HFpvDyqXbu2/csvvzSWT548aW/Tpo29Y8eO9qysLLvNZiu3+8bPz8+emJhY6HhiYqK9Zs2aJdhR6VCjRg37999/b7fb7fbz58/bXVxc7F999ZUx/s0339hr167tpO5Kj1v585drskqp999/Xz4+PpL+OJ0nISHhqnNzb4XzUc3m6el5zb+mnjt3Tp6eniXYUemxcOFCdevWTR4eHpKko0ePKjAw0DgF4/fff9e0adM0dOhQNWjQoNz8dWz27Nl67733FB0dra+++kr33XefNm7cqJ9++kmVKlVydntO9cknn2jixIlq3rz5VWMtWrTQm2++qZdfflmjR48u+eZQ6lSuXFkvv/yyQkNDCxw/cOCAnn322RLuqnQ4efKk6tSpYyxXr15da9askdVqVefOnfX+++87sTvnOnfunAIDAwsdDwgIUGZmZgl2VDqcP3/eOAW5UqVKqlSpkgICAozxoKAgpaamOqs9mIDTBUuhunXrXvfamlvlfFSzxcTEaOXKlZo0aZI6dOhgTAaSkZGh5ORkxcXFqUuXLnr77bed3GnJc3Nz0/Hjxwu9lq+8XhPg7e2tH3/8UUFBQZL+COobN25USEiIkztzPi8vLx04cMDYN1c6cuSI7rzzTmVlZZVwZ6XLLX26ionCw8PVqVMnDR06tMDxHTt26K9//Wu5PCWuUaNGmjhxojp37uyw/vz58+rYsaN+//137dq1q9x9/kpSZGSkcnNzNW/evKv+WHzq1Ck98cQTcnNz04oVK5zUoXM0aNBACQkJuvvuuyVJM2fO1OOPP67KlStL+mNincjISB0/ftyZbTrdrfz5y5GsUujQoUPObqHUmjhxovLz89WrVy/l5uYaR21ycnLk7u6ufv366c0333Ryl85x5d9L+PvJH7Kzsx2uKfLw8LhqAoPyymKx6MSJE4WGLJvNZvzCL0+unN2Kswn+0Lt3b/3++++Fjvv7+5fbyUAefPBBzZ49+6qQ5ePjo8TERHXs2NFJnTnfrFmz1LlzZwUEBKhZs2YO12Tt2rVLwcHB5S5gSVJERIT27dtnhKyBAwc6jK9evVp33XWXM1pzqivPVnJxcdH58+evWn8rzLjNkaxSKCUlRadPn1aXLl2MdXPnztWoUaOUmZmpbt266e233y63p8VJf/xPuHXrVoepYFu1alUuvxBecr0JU8rrkSxXV1f179/fmLp++vTpevzxx+Xr6+tQN3HiRGe051Q9e/ZUbm6u/vvf/xY4HhUVJTc3Ny1cuLCEO3OuK2e3Kkh5PZsABTt79qyOHTumJk2aFDh+7tw5bdu2Tffdd18Jd1Y65Ofna9WqVdq0adNVt17p2LFjuZtZ8EYcPHhQXl5eDqcQlgdXzpRst9sLXL4VvstwJKsUeuWVVxQeHm6ErF27dqlfv37q06ePGjdurAkTJigwMLBcXidxeQANDw+X9EcAfeqppwigKNC9996r/fv3G8vt2rW76svxjUx9XxaNGjVKoaGhatu2reLi4tSoUSPZ7Xb98MMPmjRpkvbu3atNmzY5u80Sd/DgQWe3UCrxB8DC7du3T6dPn3YIWQXtm/LK1dVVnTp1UqdOnZzdSqlxo/8/lTdffvmls1swj9Om3ECh/P397d99952x/NJLL9nbt29vLC9cuNDeuHFjZ7TmdA899JB93LhxxvLOnTvtFSpUsD/99NP2t956y+7v719uZ0NzcXGxz507175s2TL7smXL7BUrVrS/++67xvKcOXPK7exWKFxKSoo9ODjYYeY4FxcXe+PGje0bN250dntOsXHjRvvy5csd1s2ZM8det25de40aNezPPPOMPSsry0ndOU9Bn7/u7u58/trZN9dy8uRJ+6FDhxzW7d69296nTx97jx497PPmzXNSZ85ltVr5mSnAnDlzysznKyGrFPL09LQfPnzYWG7fvr19zJgxxvLBgwfL7TTlBNDCubi43NCjvKlXr5791KlTzm6j1Pv+++/tCxYssC9YsMCYVri84stPwfj8LRz7pnC9evWyx8XFGcupqan22267zd6kSRN7165d7RUqVLDPnTvXiR06Bz8zBXN1dXW4jdGtjJNgSyE/Pz/jdJWcnBxt27ZNbdu2NcbPnTunChUqOKs9pzp79qxx0az0xw14Lz/9oHXr1jpy5IgzWnO6/Pz86z7Onz/v7DZL3KFDh26Jc7edoX79+jp9+rQkqWXLlvrHP/6hf/zjH2rZsqVzG3OyHTt2qEOHDsbyJ598otDQUL333nuKi4vT1KlTy911ahKfv9fCvincpk2b1LVrV2N57ty5qlq1qrZv365ly5bp3//+t6ZPn+7EDp2Dn5mC2cvQVBGErFKoc+fOGj58uL766iuNGDFCFStW1D333GOM79y5U3fccYcTO3QeAuifk52drYkTJ96SU6Ci+BBAC8aXn4Lx+Vs49k3hbDab6tatayyvXbtWjzzyiNzd/5gWoGvXrjpw4ICTunMefmYKV1auk2bii1Lotdde0yOPPKL77rtPPj4+mjNnjjFVuSR9+OGH5XY62EsB9I033tDSpUsJoJfJzs7W6NGjlZSUJA8PDw0dOlTdunXThx9+qJEjR8rNzU2xsbHObtMpVq1addVsgle6/C+tKN8uffkJCgoyvvy88sorxnh5/fLD52/h2DeFs1gsSktLM27WvHnzZvXr188Yd3FxUXZ2trPacxp+ZgrXoUMHI4QXZtu2bSXUzZ9HyCqFqlevrg0bNig9PV0+Pj5yc3NzGF+0aJF8fHyc1J1zEUALFx8fr3feeUcRERHauHGjevToob59+2rTpk2aOHGievTocdXPUnkRHR19zfFbZTrY4kAAvRpffgrG52/h2DeFa9u2raZOnar33ntPixcv1rlz5/TAAw8Y45ffLL484WemcFartUx8z+U+WbglFRZAz5w5Ix8fH4cPqvKifv36mjx5srp27ardu3erefPm6tOnjz744IMyc+j9z7jy/mH4nxu5N015DKCnTp3SI488oq+//tr48vP3v//dGO/QoYPatm2r119/3YldOg+fv4Vj31xt586d6tChgzIyMpSbm6uXXnpJr732mjH+xBNPqFKlSpo1a5YTu3QefmYclaXf2YQsoIzw8PDQwYMHdfvtt0uSvL29tXnzZjVr1szJnTmXm5ubjh8/XiY+sM1Wln6ZFQe+/ADmOHXqlL755hv5+/srNDTUYWzlypUKDg6+oZuAo+wrS7+zOV0QKCPy8vIcvvS5u7uXicPtN4u/IxWuPB/hvBGFnUZZtWrVEu4EuLVVr15df/vb3woci4yMLOFuUJpd+Tv71KlTkv74GbrVELKAMsJut6tPnz7y9PSUJGVlZWnAgAGqVKmSQ93ixYud0Z7TREdHy9vb29ltlEoEUAAlITc3V5MmTdLHH3+sH3/8UZL0l7/8Rb1799bzzz9fLieSQcEOHjyoChUqKCYmRgsWLNDZs2clSbfddpt69eqlMWPGqEqVKs5t8gZxuiBQRvTt2/eG6mbPnl3MnZQuFy9eVH5+vhE+JSk1NVWzZs1SZmamunbtqrvvvtuJHTpP3759NXXqVFWuXNnZrQAooy5cuKAHH3xQKSkpioiIUOPGjSVJP/zwg9asWaP27dtr9erV8vLycnKnKA3OnDmjsLAw/fbbb3rssceMn5e9e/dq/vz5CgoK0saNG3Xbbbc5udPrI2QBKNP69u0rDw8PvfPOO5L+mH67SZMmysrKUkBAgPbu3atly5apc+fOTu605BFAARS3UaNGKSEhQcuXL1fz5s0dxnbs2KGuXbuqb9++Gj16tHMaRKkyZMgQJScna82aNQ73K5T+uOdax44d1aFDB02aNMlJHd44bkYMoEz75ptvFBUVZSzPnTtXeXl5OnDggHbs2KG4uDhNmDDBiR06T//+/fXPf/7TWD537pxat26t6dOna9WqVQoPD9fnn3/uxA4B3Oo++eQTTZw48aqAJUktWrTQm2++qfnz5zuhM5RGS5cu1ZtvvnlVwJIkf39/jR8/XkuWLHFCZ0VHyAJQpv3222+68847jeXk5GRFRUUZkxpER0drz549zmrPqQigAIrbr7/+qjZt2hQ63rZtWx0+fLgEO0Jpdvz4cTVp0qTQ8aZNm8pms5VgR38eIQtAmebl5aULFy4Yy5s2bXKYQtjLy0vnz593RmtORwAFUNwsFotOnDhR6LjNZuO6UBiqV6+uQ4cOFTp+8ODBW2aGV0IWgDKtZcuW+uijjyRJX331lVJTU/XAAw8Y4z///LMCAwOd1Z5TEUABFLfw8HD9+9//LnR83LhxCg8PL8GOUJpZrVa9/PLLysnJuWosOztb//d//6eHHnrICZ0VHRNfACjT1q9fr06dOikgIEDHjx/Xo48+qg8++MAYf+6553T+/HnNnTvXiV06R4cOHdSmTRuNHTtWX331le6//34dPXpUAQEBkqSkpCQNHDhQP/30k5M7BXCr2rt3r0JDQ9WkSRPFxcWpUaNGstvt+uGHHzRp0iTt3btXmzZtuuYpYig/jh49qlatWsnT01MxMTEOPy8zZsxQdna2tmzZoqCgIGe3el2ELABl3t69e5WUlCR/f3/16NFDrq7/O4j/7rvvqlmzZgoLC3Nih85BAAVQEjZt2qR+/frphx9+MG6Cbrfb1ahRI33wwQfl8vMXhTt48KCee+45rV692rifo4uLix588EFNmzZNDRo0cHKHN4aQBaDcys7O1rRp0zRhwoRb5kJasxFAAZSU7du3O9yMuGXLls5tCKXa2bNndeDAAUlSgwYNbplrsS4hZAEo07KzszV69GglJSXJw8NDQ4cOVbdu3TR79my9/PLLcnNz06BBgzRs2DBnt1qqEEABmKF+/fr67rvvVK1aNWe3ApQoJr4AUKbFx8dr5syZqlu3rg4dOqQePXqof//+mjRpkiZOnKhDhw6V24CVnZ2tESNGqFWrVmrXrp2WLl0qSZo9e7bq1aunyZMnKzY21rlNArilHTp0SHl5ec5uAyhx7s5uAACK06JFizR37lx17dpVu3fvVvPmzZWbm6sdO3YY1waUV/Hx8XrnnXcUERGhjRs3qkePHurbt682bdqkiRMnqkePHnJzc3N2mwAA3HIIWQDKtKNHjyokJETSHzcx9PT0VGxsbLkPWBIBFEDJWLVqlXH/vcJ07dq1hLoBSgbXZAEo09zc3GSz2VSjRg1JUuXKlbVz507Vq1fPyZ05n4eHhw4ePKjbb79dkuTt7a3NmzerWbNmTu4MQFlx+WQ6hXFxceGUQpQ5HMkCUKbZ7Xb16dNHnp6ekqSsrCwNGDBAlSpVcqhbvHixM9pzqry8PHl4eBjL7u7u8vHxcWJHAMoim82mmjVrOrsNoEQRsgCUadHR0Q7Ljz/+uJM6KX0IoACKG6ceo7zidEEAKKf69u17Q3WzZ88u5k4AlFWurq4cyUK5xJEsACinCE8Ailt0dLS8vb2d3QZQ4jiSBQAAgGJx8eJF5efnG6clS1JqaqpmzZqlzMxMde3aVXfffbcTOwSKByELAAAAxaJv377y8PDQO++8I0k6d+6cmjRpoqysLAUEBGjv3r1atmyZOnfu7OROAXNdf15NAAAA4E/45ptvFBUVZSzPnTtXeXl5OnDggHbs2KG4uDhNmDDBiR0CxYOQBQAAgGLx22+/6c477zSWk5OTFRUVZdycODo6Wnv27HFWe0CxIWQBAACgWHh5eenChQvG8qZNmxQaGuowfv78eWe0BhQrQhYAAACKRcuWLfXRRx9Jkr766iulpqbqgQceMMZ//vlnBQYGOqs9oNgwhTsAAACKRXx8vDp16qSFCxfq+PHj6tOnjwICAozxJUuWqF27dk7sECgehCwAAAAUi/vuu09btmxRUlKS/P391aNHD4fxli1bqlmzZk7qDig+hCwAAAAUm+DgYAUHB1+1Pjs7W+fOndPf//532Ww2J3QGFB+uyQIAAECxyM7O1ogRI9SqVSu1a9dOS5culSTNnj1b9erV0+TJkxUbG+vcJoFiwM2IAQAAUCyGDRumd955RxEREdq4caNOnjypvn37atOmTXrppZfUo0cPubm5ObtNwHScLggAAIBisWjRIs2dO1ddu3bV7t271bx5c+Xm5mrHjh1ycXFxdntAseFIFgAAAIqFh4eHDh48qNtvv12S5O3trc2bNzPZBco8rskCAABAscjLy5OHh4ex7O7uLh8fHyd2BJQMThcEAABAsbDb7erTp488PT0lSVlZWRowYIAqVarkULd48WJntAcUG0IWAAAAikV0dLTD8uOPP+6kToCSxTVZAAAAAGAirskCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgCUS3a7Xf3791fVqlXl4uKiKlWqaMiQIc5uCwBQBhCyAADlUmJiohISErRixQodP35cTZs2dXZLAIAygvtkAQDKpZ9//lkBAQFq166dJMndnV+JAABzcCQLAFDu9OnTR4MHD9bhw4fl4uKiunXrXlXz0UcfqVWrVqpcubL8/f3Vu3dvnThxwqHms88+05133ikvLy+Fh4drzpw5cnFxUVpaWsm8EQBAqUTIAgCUO1OmTNGrr76qWrVq6fjx4/ruu++uqrl48aJee+017dixQ0uXLtWhQ4fUp08fY/zgwYPq3r27unXrph07dujZZ5/Vyy+/XILvAgBQWnFuBACg3PH19VXlypXl5uYmf3//Amueeuop49/169fX1KlT1bp1a50/f14+Pj5655131LBhQ02YMEGS1LBhQ+3evVuvv/56ibwHAEDpxZEsAAAKsHXrVj388MOqXbu2KleurPvuu0+SdPjwYUnS/v371bp1a4fntGnTpsT7BACUPoQsAACukJmZKavVKovFonnz5um7777TkiVLJEk5OTlO7g4AUNpxuiAAAFfYt2+fTp8+rXHjxikoKEiStGXLFoeahg0b6vPPP3dYV9C1XQCA8ocjWQAAXKF27dry8PDQ22+/rV9++UWfffaZXnvtNYeaZ599Vvv27dOwYcP0448/auHChUpISJAkubi4OKFrAEBpQcgCAOAKNWrUUEJCghYtWqTg4GCNGzdOb775pkNNvXr19Omnn2rx4sVq3ry5Zs6cacwu6Onp6Yy2AQClhIvdbrc7uwkAAMqC119/XbNmzdKRI0ec3QoAwIm4JgsAgD9pxowZat26tapVq6ZvvvlGEyZM0KBBg5zdFgDAyQhZAAD8SQcOHNCYMWN05swZ1a5dWy+88IJGjBjh7LYAAE7G6YIAAAAAYCImvgAAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATPT/AM4Xm1t9yN8TAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "bar_graph('logged_in', 'logged_in')\n",
+ "\n"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 482
+ },
+ "id": "pmvp7dT1gqs3",
+ "outputId": "f2b0bfda-f9e0-4829-bb1f-0d602b0deb78"
+ },
+ "execution_count": 16,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAHRCAYAAACYfXOvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHJUlEQVR4nO3de1yUdf7//ycHARVnyAMgKyqbrUqeVkycDqZJjoqVpbtabaGhpgtsQuVh84vW2mJ28JAH2tzE3dXW3N0sRTHExC0pFSMPBR9tNW11gEqYJAWE+f3Rj2sdIRW9lNTH/Xa7bjfner+u9/WaoVv49JrrfXm4XC6XAAAAAACm8GzoBgAAAADgWkLIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAFxz2rdvr6FDh17285w+fVqTJ09WaGioPD09NWzYsB+t7devn/r163fZe7pS2rdvr9GjR1/2YwDgakTIAoCrUFpamjw8PNy2wMBA9e/fXxs2bGjo9q4bb7zxhl588UWNGDFCy5cvV2JiYkO3BAD4CfBu6AYAABfvueeeU1hYmFwulwoLC5WWlqYhQ4Zo7dq1V+RKzvVu8+bN+tnPfqa5c+c2dCtXhYKCAnl68u+7AK59hCwAuIoNHjxYvXr1Ml7HxsYqKChIb775pikhq7q6WhUVFfLz87vkuc5WVlampk2bmj7vlVRUVKSAgICGbuOq4evr29AtAMAVwT8nAcA1JCAgQI0bN5a3t/u/ob300ku69dZb1aJFCzVu3FgRERH6xz/+Uet4Dw8PxcfHa8WKFbr55pvl6+urjIyMHz1fdXW1Zs6cqZCQEDVp0kT9+/fXZ599Vuvem5qvN2ZnZ+u3v/2tAgMD1aZNG0nSl19+qd/+9rfq2LGjGjdurBYtWuhXv/qVDh065Haumjm2bt2qxx9/XC1atJDFYtGjjz6q48eP19nfBx98oN69e8vPz08///nP9Ze//OWCPseysjI9+eSTCg0Nla+vrzp27KiXXnpJLpdLknTo0CF5eHjo/fff1759+4yvbG7ZsuWC5q9RVFRkBGM/Pz91795dy5cvr1X3zTff6JFHHpHFYlFAQIBiYmL06aefysPDQ2lpaW61q1evVnh4uPz8/NSlSxe9/fbbGj16tNq3b+9WV11drXnz5unmm2+Wn5+fgoKC9Pjjj9f6LF0ul2bNmqU2bdoYP+N9+/bV633W+LH/Lj788EMlJSWpVatWatq0qe6//34VFxdf1DkA4KeAK1kAcBUrLS3V119/LZfLpaKiIr366qs6ceKEfvOb37jVzZ8/X/fee68efvhhVVRU6O9//7t+9atfad26dYqOjnar3bx5s9566y3Fx8erZcuWtf5yfqZp06Zpzpw5uueee2S32/Xpp5/Kbrfr1KlTddb/9re/VatWrZScnKyysjJJ0o4dO7Rt2zaNGjVKbdq00aFDh7RkyRL169dPn332mZo0aeI2R3x8vAICAjRz5kwVFBRoyZIl+vLLL7VlyxZ5eHgYdQcOHNCIESMUGxurmJgYvfHGGxo9erQiIiJ08803/+h7crlcuvfee/X+++8rNjZWPXr00MaNG/X000/rv//9r+bOnatWrVrpr3/9q55//nmdOHFCKSkpkqTOnTv/6LxnO3nypPr166cDBw4oPj5eYWFhWr16tUaPHq2SkhI98cQTkn4IQ/fcc4+2b9+uiRMnqlOnTnrnnXcUExNTa8709HSNHDlSXbt2VUpKio4fP67Y2Fj97Gc/q1X7+OOPKy0tTWPGjNHvfvc7HTx4UAsXLtQnn3yiDz/8UI0aNZIkJScna9asWRoyZIiGDBmiXbt2aeDAgaqoqLjg93o+CQkJuuGGGzRjxgwdOnRI8+bNU3x8vFatWmXaOQDginIBAK46y5Ytc0mqtfn6+rrS0tJq1X///fdurysqKlxdunRx3XXXXW77Jbk8PT1d+/btO28PDofD5e3t7Ro2bJjb/pkzZ7okuWJiYmr1e/vtt7tOnz59zt5cLpcrJyfHJcn1l7/8pdYcERERroqKCmP/nDlzXJJc77zzjrGvXbt2LkmurVu3GvuKiopcvr6+rieffPKc72vNmjUuSa5Zs2a57R8xYoTLw8PDdeDAAWPfnXfe6br55pvPOd+ZtXfeeafxet68eS5Jrr/97W/GvoqKCpfNZnP5+/u7nE6ny+Vyuf75z3+6JLnmzZtn1FVVVbnuuusulyTXsmXLjP1du3Z1tWnTxvXdd98Z+7Zs2eKS5GrXrp2x79///rdLkmvFihVuPWZkZLjtLyoqcvn4+Liio6Nd1dXVRt3vf//7Wj/jC9GuXbs6/7uIiopymz8xMdHl5eXlKikpqdf8APBTwdcFAeAqtmjRImVmZiozM1N/+9vf1L9/f40dO1b/+te/3OoaN25s/Pn48eMqLS3VHXfcoV27dtWa884771R4ePh5z52VlaXTp0/rt7/9rdv+hISEHz1m3Lhx8vLy+tHeKisr9c0336hDhw4KCAios7/x48cbV1kkaeLEifL29tb69evd6sLDw3XHHXcYr1u1aqWOHTvqP//5zznf1/r16+Xl5aXf/e53bvuffPJJuVwu01ZvXL9+vYKDg/Xggw8a+xo1aqTf/e53OnHihLKzsyVJGRkZatSokcaNG2fUeXp6Ki4uzm2+o0ePas+ePXr00Ufl7+9v7L/zzjvVtWtXt9rVq1fLarXq7rvv1tdff21sERER8vf31/vvvy9J2rRpkyoqKpSQkOB2lXDSpEmmfAY1xo8f7zb/HXfcoaqqKn355ZemngcArhS+LggAV7HevXu7LXzx4IMP6pe//KXi4+M1dOhQ+fj4SJLWrVunWbNmKS8vT+Xl5Ub9mX+xrREWFnZB5675C3CHDh3c9jdv3lw33HBDncfUNffJkyeVkpKiZcuW6b///a9x35P0w9chz3bTTTe5vfb391fr1q1r3cPVtm3bWsfecMMNP3r/Vo0vv/xSISEhatasmdv+mq8CmvUX/y+//FI33XRTrdX2zj7Pl19+qdatW9f62uTZn/uP/Txq9p0ZWPfv36/S0lIFBgbW2VtRUZHbnGd/5q1atfrRn/HFOPtnVTP3+X5WAPBTRcgCgGuIp6en+vfvr/nz52v//v26+eab9e9//1v33nuv+vbtq8WLF6t169Zq1KiRli1bppUrV9aa48wrS2ara+6EhAQtW7ZMkyZNks1mk9VqlYeHh0aNGqXq6uqLPtfZV8xqnBnirlfV1dUKDAzUihUr6hxv1arVFe2HnxWAaw0hCwCuMadPn5YknThxQpL0z3/+U35+ftq4caPbEtrLli27pPO0a9dO0g8LTJx5heqbb76p1xWIf/zjH4qJidHLL79s7Dt16pRKSkrqrN+/f7/69+9vvD5x4oSOHTumIUOG1PMd1K1du3batGmTvvvuO7erWfn5+ca4WefZvXu3qqur3a5mnX2edu3a6f3339f333/vdjXrwIEDteara39d+2688UZt2rRJt9122zlDdc2c+/fv189//nNjf3FxMVeZAOAcuCcLAK4hlZWVeu+99+Tj42N87czLy0seHh6qqqoy6g4dOqQ1a9Zc0rkGDBggb29vLVmyxG3/woUL6zWPl5dXrSsWr776qlu/Z/rTn/6kyspK4/WSJUt0+vRpDR48uF7n/TFDhgxRVVVVrfcxd+5ceXh4mHoeh8PhtoLe6dOn9eqrr8rf31933nmnJMlut6uyslKvv/66UVddXa1Fixa5zRcSEqIuXbroL3/5ixGwJSk7O1t79uxxq/31r3+tqqoq/eEPf6jV1+nTp42AGxUVpUaNGunVV191+xnNmzfvot83AFwPuJIFAFexDRs2GFc+ioqKtHLlSu3fv19Tp06VxWKRJEVHR+uVV17RoEGD9NBDD6moqEiLFi1Shw4dtHv37os+d1BQkJ544gm9/PLLuvfeezVo0CB9+umn2rBhg1q2bFnn/V51GTp0qP7617/KarUqPDxcOTk52rRpk1q0aFFnfUVFhQYMGKBf//rXKigo0OLFi3X77bfr3nvvvej3cqZ77rlH/fv31zPPPKNDhw6pe/fueu+99/TOO+9o0qRJuvHGG005z/jx4/Xaa69p9OjRys3NVfv27fWPf/xDH374oebNm2dcRRs2bJh69+6tJ598UgcOHFCnTp307rvv6ttvv5Xkfl/dH//4R91333267bbbNGbMGB0/flwLFy5Uly5d3ILXnXfeqccff1wpKSnKy8vTwIED1ahRI+3fv1+rV6/W/PnzNWLECLVq1UpPPfWUUlJSNHToUA0ZMkSffPKJ8TMGANSNkAUAV7Hk5GTjz35+furUqZOWLFmixx9/3Nh/11136c9//rNmz56tSZMmKSwsTC+88IIOHTp0SSFLkl544QU1adJEr7/+ujZt2iSbzab33ntPt99+u/z8/C5ojvnz58vLy0srVqzQqVOndNttt2nTpk2y2+111i9cuFArVqxQcnKyKisr9eCDD2rBggUXHOrOx9PTU++++66Sk5O1atUqLVu2TO3bt9eLL76oJ5980pRzSD/cn7ZlyxZNnTpVy5cvl9PpVMeOHbVs2TK3B/Z6eXkpPT1dTzzxhJYvXy5PT0/df//9mjFjhm677Ta3z/mee+7Rm2++qZkzZ2rq1Km66aablJaWpuXLl9d6gHBqaqoiIiL02muv6fe//728vb3Vvn17/eY3v9Ftt91m1M2aNUt+fn5KTU3V+++/r8jISL333nu1nq8GAPgfDxd3lQIATFRSUqIbbrhBs2bN0jPPPGPavDUPzt2xY4fbiorXqzVr1uj+++/XBx984BaK6tKjRw+1atVKmZmZV6g7ALi+cU8WAOCinTx5sta+mvt1+vXrd2WbuYad/TlXVVXp1VdflcViUc+ePY39lZWVxsInNbZs2aJPP/2UnwcAXEF8XRAAcNFWrVqltLQ0DRkyRP7+/vrggw/05ptvauDAgee9uoILl5CQoJMnT8pms6m8vFz/+te/tG3bNv3xj390Wx3wv//9r6KiovSb3/xGISEhys/PV2pqqoKDgzVhwoTL1p/D4TjneOPGjWW1Wi/b+QHgp4aQBQC4aN26dZO3t7fmzJkjp9NpLIYxa9ashm7tmnLXXXfp5Zdf1rp163Tq1Cl16NBBr776quLj493qbrjhBkVERGjp0qUqLi5W06ZNFR0drdmzZ//oQiJmaN269TnHY2JilJaWdtnODwA/NdyTBQAALsmmTZvOOR4SEqLw8PAr1A0ANDxCFgAAAACYiIUvAAAAAMBE3JN1DtXV1Tp69KiaNWtm2vNXAAAAAFx9XC6XvvvuO4WEhMjT89zXqghZ53D06FGFhoY2dBsAAAAAfiKOHDmiNm3anLOGkHUOzZo1k/TDB2mxWBq4GwAAAAANxel0KjQ01MgI50LIOoearwhaLBZCFgAAAIALuo2IhS8AAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAEzk3dANAOfTfmp6Q7cANLhDs6MbugUAAHCBuJIFAAAAACYiZAEAAACAiQhZAAAAAGAiQhYAAAAAmIiQBQAAAAAmImQBAAAAgIkIWQAAAABgIkIWAAAAAJiIkAUAAAAAJiJkAQAAAICJCFkAAAAAYCJCFgAAAACYiJAFAAAAACa6pJA1e/ZseXh4aNKkSca+U6dOKS4uTi1atJC/v7+GDx+uwsJCt+MOHz6s6OhoNWnSRIGBgXr66ad1+vRpt5otW7aoZ8+e8vX1VYcOHZSWllbr/IsWLVL79u3l5+enyMhIbd++3W38QnoBAAAAADNddMjasWOHXnvtNXXr1s1tf2JiotauXavVq1crOztbR48e1QMPPGCMV1VVKTo6WhUVFdq2bZuWL1+utLQ0JScnGzUHDx5UdHS0+vfvr7y8PE2aNEljx47Vxo0bjZpVq1YpKSlJM2bM0K5du9S9e3fZ7XYVFRVdcC8AAAAAYDYPl8vlqu9BJ06cUM+ePbV48WLNmjVLPXr00Lx581RaWqpWrVpp5cqVGjFihCQpPz9fnTt3Vk5Ojvr06aMNGzZo6NChOnr0qIKCgiRJqampmjJlioqLi+Xj46MpU6YoPT1de/fuNc45atQolZSUKCMjQ5IUGRmpW265RQsXLpQkVVdXKzQ0VAkJCZo6deoF9XI+TqdTVqtVpaWlslgs9f2YYJL2U9MbugWgwR2aHd3QLQAAcF2rTza4qCtZcXFxio6OVlRUlNv+3NxcVVZWuu3v1KmT2rZtq5ycHElSTk6OunbtagQsSbLb7XI6ndq3b59Rc/bcdrvdmKOiokK5ubluNZ6enoqKijJqLqSXs5WXl8vpdLptAAAAAFAf3vU94O9//7t27dqlHTt21BpzOBzy8fFRQECA2/6goCA5HA6j5syAVTNeM3auGqfTqZMnT+r48eOqqqqqsyY/P/+CezlbSkqKnn322XO8ewAAAAA4t3pdyTpy5IieeOIJrVixQn5+fperpwYzbdo0lZaWGtuRI0cauiUAAAAAV5l6hazc3FwVFRWpZ8+e8vb2lre3t7Kzs7VgwQJ5e3srKChIFRUVKikpcTuusLBQwcHBkqTg4OBaK/zVvD5fjcViUePGjdWyZUt5eXnVWXPmHOfr5Wy+vr6yWCxuGwAAAADUR71C1oABA7Rnzx7l5eUZW69evfTwww8bf27UqJGysrKMYwoKCnT48GHZbDZJks1m0549e9xWAczMzJTFYlF4eLhRc+YcNTU1c/j4+CgiIsKtprq6WllZWUZNRETEeXsBAAAAALPV656sZs2aqUuXLm77mjZtqhYtWhj7Y2NjlZSUpObNm8tisSghIUE2m81YzW/gwIEKDw/XI488ojlz5sjhcGj69OmKi4uTr6+vJGnChAlauHChJk+erMcee0ybN2/WW2+9pfT0/60yl5SUpJiYGPXq1Uu9e/fWvHnzVFZWpjFjxkiSrFbreXsBAAAAALPVe+GL85k7d648PT01fPhwlZeXy263a/Hixca4l5eX1q1bp4kTJ8pms6lp06aKiYnRc889Z9SEhYUpPT1diYmJmj9/vtq0aaOlS5fKbrcbNSNHjlRxcbGSk5PlcDjUo0cPZWRkuC2Gcb5eAAAAAMBsF/WcrOsFz8n6aeA5WQDPyQIAoKFd9udkAQAAAADqRsgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExUr5C1ZMkSdevWTRaLRRaLRTabTRs2bDDG+/XrJw8PD7dtwoQJbnMcPnxY0dHRatKkiQIDA/X000/r9OnTbjVbtmxRz5495evrqw4dOigtLa1WL4sWLVL79u3l5+enyMhIbd++3W381KlTiouLU4sWLeTv76/hw4ersLCwPm8XAAAAAOqtXiGrTZs2mj17tnJzc7Vz507ddddduu+++7Rv3z6jZty4cTp27JixzZkzxxirqqpSdHS0KioqtG3bNi1fvlxpaWlKTk42ag4ePKjo6Gj1799feXl5mjRpksaOHauNGzcaNatWrVJSUpJmzJihXbt2qXv37rLb7SoqKjJqEhMTtXbtWq1evVrZ2dk6evSoHnjggYv6kAAAAADgQnm4XC7XpUzQvHlzvfjii4qNjVW/fv3Uo0cPzZs3r87aDRs2aOjQoTp69KiCgoIkSampqZoyZYqKi4vl4+OjKVOmKD09XXv37jWOGzVqlEpKSpSRkSFJioyM1C233KKFCxdKkqqrqxUaGqqEhARNnTpVpaWlatWqlVauXKkRI0ZIkvLz89W5c2fl5OSoT58+F/TenE6nrFarSktLZbFYLvYjwiVqPzW9oVsAGtyh2dEN3QIAANe1+mSDi74nq6qqSn//+99VVlYmm81m7F+xYoVatmypLl26aNq0afr++++NsZycHHXt2tUIWJJkt9vldDqNq2E5OTmKiopyO5fdbldOTo4kqaKiQrm5uW41np6eioqKMmpyc3NVWVnpVtOpUye1bdvWqKlLeXm5nE6n2wYAAAAA9eFd3wP27Nkjm82mU6dOyd/fX2+//bbCw8MlSQ899JDatWunkJAQ7d69W1OmTFFBQYH+9a9/SZIcDodbwJJkvHY4HOescTqdOnnypI4fP66qqqo6a/Lz8405fHx8FBAQUKum5jx1SUlJ0bPPPlvPTwQAAAAA/qfeIatjx47Ky8tTaWmp/vGPfygmJkbZ2dkKDw/X+PHjjbquXbuqdevWGjBggL744gvdeOONpjZ+OUybNk1JSUnGa6fTqdDQ0AbsCAAAAMDVpt5fF/Tx8VGHDh0UERGhlJQUde/eXfPnz6+zNjIyUpJ04MABSVJwcHCtFf5qXgcHB5+zxmKxqHHjxmrZsqW8vLzqrDlzjoqKCpWUlPxoTV18fX2NlRNrNgAAAACoj0t+TlZ1dbXKy8vrHMvLy5MktW7dWpJks9m0Z88et1UAMzMzZbFYjK8c2mw2ZWVluc2TmZlp3Pfl4+OjiIgIt5rq6mplZWUZNREREWrUqJFbTUFBgQ4fPux2/xgAAAAAmK1eXxecNm2aBg8erLZt2+q7777TypUrtWXLFm3cuFFffPGFVq5cqSFDhqhFixbavXu3EhMT1bdvX3Xr1k2SNHDgQIWHh+uRRx7RnDlz5HA4NH36dMXFxcnX11eSNGHCBC1cuFCTJ0/WY489ps2bN+utt95Sevr/VphLSkpSTEyMevXqpd69e2vevHkqKyvTmDFjJElWq1WxsbFKSkpS8+bNZbFYlJCQIJvNdsErCwIAAADAxahXyCoqKtKjjz6qY8eOyWq1qlu3btq4caPuvvtuHTlyRJs2bTICT2hoqIYPH67p06cbx3t5eWndunWaOHGibDabmjZtqpiYGD333HNGTVhYmNLT05WYmKj58+erTZs2Wrp0qex2u1EzcuRIFRcXKzk5WQ6HQz169FBGRobbYhhz586Vp6enhg8frvLyctntdi1evPhSPisAAAAAOK9Lfk7WtYznZP008JwsgOdkAQDQ0K7Ic7IAAAAAALURsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExUr5C1ZMkSdevWTRaLRRaLRTabTRs2bDDGT506pbi4OLVo0UL+/v4aPny4CgsL3eY4fPiwoqOj1aRJEwUGBurpp5/W6dOn3Wq2bNminj17ytfXVx06dFBaWlqtXhYtWqT27dvLz89PkZGR2r59u9v4hfQCAAAAAGarV8hq06aNZs+erdzcXO3cuVN33XWX7rvvPu3bt0+SlJiYqLVr12r16tXKzs7W0aNH9cADDxjHV1VVKTo6WhUVFdq2bZuWL1+utLQ0JScnGzUHDx5UdHS0+vfvr7y8PE2aNEljx47Vxo0bjZpVq1YpKSlJM2bM0K5du9S9e3fZ7XYVFRUZNefrBQAAAAAuBw+Xy+W6lAmaN2+uF198USNGjFCrVq20cuVKjRgxQpKUn5+vzp07KycnR3369NGGDRs0dOhQHT16VEFBQZKk1NRUTZkyRcXFxfLx8dGUKVOUnp6uvXv3GucYNWqUSkpKlJGRIUmKjIzULbfcooULF0qSqqurFRoaqoSEBE2dOlWlpaXn7eVCOJ1OWa1WlZaWymKxXMrHhEvQfmp6Q7cANLhDs6MbugUAAK5r9ckGF31PVlVVlf7+97+rrKxMNptNubm5qqysVFRUlFHTqVMntW3bVjk5OZKknJwcde3a1QhYkmS32+V0Oo2rYTk5OW5z1NTUzFFRUaHc3Fy3Gk9PT0VFRRk1F9JLXcrLy+V0Ot02AAAAAKiPeoesPXv2yN/fX76+vpowYYLefvtthYeHy+FwyMfHRwEBAW71QUFBcjgckiSHw+EWsGrGa8bOVeN0OnXy5El9/fXXqqqqqrPmzDnO10tdUlJSZLVajS00NPTCPhQAAAAA+P/VO2R17NhReXl5+vjjjzVx4kTFxMTos88+uxy9XXHTpk1TaWmpsR05cqShWwIAAABwlfGu7wE+Pj7q0KGDJCkiIkI7duzQ/PnzNXLkSFVUVKikpMTtClJhYaGCg4MlScHBwbVWAaxZ8e/MmrNXASwsLJTFYlHjxo3l5eUlLy+vOmvOnON8vdTF19dXvr6+9fg0AAAAAMDdJT8nq7q6WuXl5YqIiFCjRo2UlZVljBUUFOjw4cOy2WySJJvNpj179ritApiZmSmLxaLw8HCj5sw5ampq5vDx8VFERIRbTXV1tbKysoyaC+kFAAAAAC6Hel3JmjZtmgYPHqy2bdvqu+++08qVK7VlyxZt3LhRVqtVsbGxSkpKUvPmzWWxWJSQkCCbzWas5jdw4ECFh4frkUce0Zw5c+RwODR9+nTFxcUZV5AmTJighQsXavLkyXrssce0efNmvfXWW0pP/98Kc0lJSYqJiVGvXr3Uu3dvzZs3T2VlZRozZowkXVAvAAAAAHA51CtkFRUV6dFHH9WxY8dktVrVrVs3bdy4UXfffbckae7cufL09NTw4cNVXl4uu92uxYsXG8d7eXlp3bp1mjhxomw2m5o2baqYmBg999xzRk1YWJjS09OVmJio+fPnq02bNlq6dKnsdrtRM3LkSBUXFys5OVkOh0M9evRQRkaG22IY5+sFAAAAAC6HS35O1rWM52T9NPCcLIDnZAEA0NCuyHOyAAAAAAC1EbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABPVK2SlpKTolltuUbNmzRQYGKhhw4apoKDAraZfv37y8PBw2yZMmOBWc/jwYUVHR6tJkyYKDAzU008/rdOnT7vVbNmyRT179pSvr686dOigtLS0Wv0sWrRI7du3l5+fnyIjI7V9+3a38VOnTikuLk4tWrSQv7+/hg8frsLCwvq8ZQAAAACol3qFrOzsbMXFxemjjz5SZmamKisrNXDgQJWVlbnVjRs3TseOHTO2OXPmGGNVVVWKjo5WRUWFtm3bpuXLlystLU3JyclGzcGDBxUdHa3+/fsrLy9PkyZN0tixY7Vx40ajZtWqVUpKStKMGTO0a9cude/eXXa7XUVFRUZNYmKi1q5dq9WrVys7O1tHjx7VAw88UO8PCQAAAAAulIfL5XJd7MHFxcUKDAxUdna2+vbtK+mHK1k9evTQvHnz6jxmw4YNGjp0qI4ePaqgoCBJUmpqqqZMmaLi4mL5+PhoypQpSk9P1969e43jRo0apZKSEmVkZEiSIiMjdcstt2jhwoWSpOrqaoWGhiohIUFTp05VaWmpWrVqpZUrV2rEiBGSpPz8fHXu3Fk5OTnq06fPed+f0+mU1WpVaWmpLBbLxX5MuETtp6Y3dAtAgzs0O7qhWwAA4LpWn2xwSfdklZaWSpKaN2/utn/FihVq2bKlunTpomnTpun77783xnJyctS1a1cjYEmS3W6X0+nUvn37jJqoqCi3Oe12u3JyciRJFRUVys3Ndavx9PRUVFSUUZObm6vKykq3mk6dOqlt27ZGzdnKy8vldDrdNgAAAACoD++LPbC6ulqTJk3Sbbfdpi5duhj7H3roIbVr104hISHavXu3pkyZooKCAv3rX/+SJDkcDreAJcl47XA4zlnjdDp18uRJHT9+XFVVVXXW5OfnG3P4+PgoICCgVk3Nec6WkpKiZ599tp6fBAAAAAD8z0WHrLi4OO3du1cffPCB2/7x48cbf+7atatat26tAQMG6IsvvtCNN9548Z1eAdOmTVNSUpLx2ul0KjQ0tAE7AgAAAHC1uaivC8bHx2vdunV6//331aZNm3PWRkZGSpIOHDggSQoODq61wl/N6+Dg4HPWWCwWNW7cWC1btpSXl1edNWfOUVFRoZKSkh+tOZuvr68sFovbBgAAAAD1Ua+Q5XK5FB8fr7ffflubN29WWFjYeY/Jy8uTJLVu3VqSZLPZtGfPHrdVADMzM2WxWBQeHm7UZGVluc2TmZkpm80mSfLx8VFERIRbTXV1tbKysoyaiIgINWrUyK2moKBAhw8fNmoAAAAAwGz1+rpgXFycVq5cqXfeeUfNmjUz7m2yWq1q3LixvvjiC61cuVJDhgxRixYttHv3biUmJqpv377q1q2bJGngwIEKDw/XI488ojlz5sjhcGj69OmKi4uTr6+vJGnChAlauHChJk+erMcee0ybN2/WW2+9pfT0/60yl5SUpJiYGPXq1Uu9e/fWvHnzVFZWpjFjxhg9xcbGKikpSc2bN5fFYlFCQoJsNtsFrSwIAAAAABejXiFryZIlkn5Ypv1My5Yt0+jRo+Xj46NNmzYZgSc0NFTDhw/X9OnTjVovLy+tW7dOEydOlM1mU9OmTRUTE6PnnnvOqAkLC1N6eroSExM1f/58tWnTRkuXLpXdbjdqRo4cqeLiYiUnJ8vhcKhHjx7KyMhwWwxj7ty58vT01PDhw1VeXi673a7FixfX6wMCAAAAgPq4pOdkXet4TtZPA8/JAnhOFgAADe2KPScLAAAAAOCOkAUAAAAAJiJkAQAAAICJCFkAAAAAYCJCFgAAAACYiJAFAAAAACYiZAEAAACAiQhZAAAAAGAiQhYAAAAAmIiQBQAAAAAmImQBAAAAgIkIWQAAAABgIkIWAAAAAJiIkAUAAAAAJiJkAQAAAICJCFkAAAAAYCJCFgAAAACYiJAFAAAAACYiZAEAAACAiQhZAAAAAGAiQhYAAAAAmIiQBQAAAAAmImQBAAAAgIkIWQAAAABgIkIWAAAAAJiIkAUAAAAAJiJkAQAAAICJCFkAAAAAYCJCFgAAAACYiJAFAAAAACYiZAEAAACAiQhZAAAAAGAiQhYAAAAAmKheISslJUW33HKLmjVrpsDAQA0bNkwFBQVuNadOnVJcXJxatGghf39/DR8+XIWFhW41hw8fVnR0tJo0aaLAwEA9/fTTOn36tFvNli1b1LNnT/n6+qpDhw5KS0ur1c+iRYvUvn17+fn5KTIyUtu3b693LwAAAABgpnqFrOzsbMXFxemjjz5SZmamKisrNXDgQJWVlRk1iYmJWrt2rVavXq3s7GwdPXpUDzzwgDFeVVWl6OhoVVRUaNu2bVq+fLnS0tKUnJxs1Bw8eFDR0dHq37+/8vLyNGnSJI0dO1YbN240alatWqWkpCTNmDFDu3btUvfu3WW321VUVHTBvQAAAACA2TxcLpfrYg8uLi5WYGCgsrOz1bdvX5WWlqpVq1ZauXKlRowYIUnKz89X586dlZOToz59+mjDhg0aOnSojh49qqCgIElSamqqpkyZouLiYvn4+GjKlClKT0/X3r17jXONGjVKJSUlysjIkCRFRkbqlltu0cKFCyVJ1dXVCg0NVUJCgqZOnXpBvZytvLxc5eXlxmun06nQ0FCVlpbKYrFc7MeES9R+anpDtwA0uEOzoxu6BQAArmtOp1NWq/WCssEl3ZNVWloqSWrevLkkKTc3V5WVlYqKijJqOnXqpLZt2yonJ0eSlJOTo65duxoBS5LsdrucTqf27dtn1Jw5R01NzRwVFRXKzc11q/H09FRUVJRRcyG9nC0lJUVWq9XYQkNDL+6DAQAAAHDduuiQVV1drUmTJum2225Tly5dJEkOh0M+Pj4KCAhwqw0KCpLD4TBqzgxYNeM1Y+eqcTqdOnnypL7++mtVVVXVWXPmHOfr5WzTpk1TaWmpsR05cuQCPw0AAAAA+IH3xR4YFxenvXv36oMPPjCznwbl6+srX1/fhm4DAAAAwFXsoq5kxcfHa926dXr//ffVpk0bY39wcLAqKipUUlLiVl9YWKjg4GCj5uwV/mpen6/GYrGocePGatmypby8vOqsOXOO8/UCAAAAAGarV8hyuVyKj4/X22+/rc2bNyssLMxtPCIiQo0aNVJWVpaxr6CgQIcPH5bNZpMk2Ww27dmzx20VwMzMTFksFoWHhxs1Z85RU1Mzh4+PjyIiItxqqqurlZWVZdRcSC8AAAAAYLZ6fV0wLi5OK1eu1DvvvKNmzZoZ9zZZrVY1btxYVqtVsbGxSkpKUvPmzWWxWJSQkCCbzWas5jdw4ECFh4frkUce0Zw5c+RwODR9+nTFxcUZX9WbMGGCFi5cqMmTJ+uxxx7T5s2b9dZbbyk9/X+rzCUlJSkmJka9evVS7969NW/ePJWVlWnMmDFGT+frBQAAAADMVq+QtWTJEklSv3793PYvW7ZMo0ePliTNnTtXnp6eGj58uMrLy2W327V48WKj1svLS+vWrdPEiRNls9nUtGlTxcTE6LnnnjNqwsLClJ6ersTERM2fP19t2rTR0qVLZbfbjZqRI0equLhYycnJcjgc6tGjhzIyMtwWwzhfLwAAAABgtkt6Tta1rj5r4ePy4TlZAM/JAgCgoV2x52QBAAAAANwRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExU75C1detW3XPPPQoJCZGHh4fWrFnjNj569Gh5eHi4bYMGDXKr+fbbb/Xwww/LYrEoICBAsbGxOnHihFvN7t27dccdd8jPz0+hoaGaM2dOrV5Wr16tTp06yc/PT127dtX69evdxl0ul5KTk9W6dWs1btxYUVFR2r9/f33fMgAAAABcsHqHrLKyMnXv3l2LFi360ZpBgwbp2LFjxvbmm2+6jT/88MPat2+fMjMztW7dOm3dulXjx483xp1OpwYOHKh27dopNzdXL774ombOnKk//elPRs22bdv04IMPKjY2Vp988omGDRumYcOGae/evUbNnDlztGDBAqWmpurjjz9W06ZNZbfbderUqfq+bQAAAAC4IB4ul8t10Qd7eOjtt9/WsGHDjH2jR49WSUlJrStcNT7//HOFh4drx44d6tWrlyQpIyNDQ4YM0VdffaWQkBAtWbJEzzzzjBwOh3x8fCRJU6dO1Zo1a5Sfny9JGjlypMrKyrRu3Tpj7j59+qhHjx5KTU2Vy+VSSEiInnzyST311FOSpNLSUgUFBSktLU2jRo067/tzOp2yWq0qLS2VxWK5mI8IJmg/Nb2hWwAa3KHZ0Q3dAgAA17X6ZIPLck/Wli1bFBgYqI4dO2rixIn65ptvjLGcnBwFBAQYAUuSoqKi5OnpqY8//tio6du3rxGwJMlut6ugoEDHjx83aqKiotzOa7fblZOTI0k6ePCgHA6HW43ValVkZKRRc7by8nI5nU63DQAAAADqw/SQNWjQIP3lL39RVlaWXnjhBWVnZ2vw4MGqqqqSJDkcDgUGBrod4+3trebNm8vhcBg1QUFBbjU1r89Xc+b4mcfVVXO2lJQUWa1WYwsNDa33+wcAAABwffM2e8Izv4bXtWtXdevWTTfeeKO2bNmiAQMGmH06U02bNk1JSUnGa6fTSdACAAAAUC+XfQn3n//852rZsqUOHDggSQoODlZRUZFbzenTp/Xtt98qODjYqCksLHSrqXl9vpozx888rq6as/n6+spisbhtAAAAAFAflz1kffXVV/rmm2/UunVrSZLNZlNJSYlyc3ONms2bN6u6ulqRkZFGzdatW1VZWWnUZGZmqmPHjrrhhhuMmqysLLdzZWZmymazSZLCwsIUHBzsVuN0OvXxxx8bNQAAAABgtnqHrBMnTigvL095eXmSflhgIi8vT4cPH9aJEyf09NNP66OPPtKhQ4eUlZWl++67Tx06dJDdbpckde7cWYMGDdK4ceO0fft2ffjhh4qPj9eoUaMUEhIiSXrooYfk4+Oj2NhY7du3T6tWrdL8+fPdvsr3xBNPKCMjQy+//LLy8/M1c+ZM7dy5U/Hx8ZJ+WPlw0qRJmjVrlt59913t2bNHjz76qEJCQtxWQwQAAAAAM9X7nqydO3eqf//+xuua4BMTE6MlS5Zo9+7dWr58uUpKShQSEqKBAwfqD3/4g3x9fY1jVqxYofj4eA0YMECenp4aPny4FixYYIxbrVa99957iouLU0REhFq2bKnk5GS3Z2ndeuutWrlypaZPn67f//73uummm7RmzRp16dLFqJk8ebLKyso0fvx4lZSU6Pbbb1dGRob8/Pzq+7YBAAAA4IJc0nOyrnU8J+ungedkATwnCwCAhtbgz8kCAAAAgOsVIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMFG9Q9bWrVt1zz33KCQkRB4eHlqzZo3buMvlUnJyslq3bq3GjRsrKipK+/fvd6v59ttv9fDDD8tisSggIECxsbE6ceKEW83u3bt1xx13yM/PT6GhoZozZ06tXlavXq1OnTrJz89PXbt21fr16+vdCwAAAACYqd4hq6ysTN27d9eiRYvqHJ8zZ44WLFig1NRUffzxx2ratKnsdrtOnTpl1Dz88MPat2+fMjMztW7dOm3dulXjx483xp1OpwYOHKh27dopNzdXL774ombOnKk//elPRs22bdv04IMPKjY2Vp988omGDRumYcOGae/evfXqBQAAAADM5OFyuVwXfbCHh95++20NGzZM0g9XjkJCQvTkk0/qqaeekiSVlpYqKChIaWlpGjVqlD7//HOFh4drx44d6tWrlyQpIyNDQ4YM0VdffaWQkBAtWbJEzzzzjBwOh3x8fCRJU6dO1Zo1a5Sfny9JGjlypMrKyrRu3Tqjnz59+qhHjx5KTU29oF7Ox+l0ymq1qrS0VBaL5WI/Jlyi9lPTG7oFoMEdmh3d0C0AAHBdq082MPWerIMHD8rhcCgqKsrYZ7VaFRkZqZycHElSTk6OAgICjIAlSVFRUfL09NTHH39s1PTt29cIWJJkt9tVUFCg48ePGzVnnqempuY8F9LL2crLy+V0Ot02AAAAAKgPU0OWw+GQJAUFBbntDwoKMsYcDocCAwPdxr29vdW8eXO3mrrmOPMcP1Zz5vj5ejlbSkqKrFarsYWGhl7AuwYAAACA/2F1wTNMmzZNpaWlxnbkyJGGbgkAAADAVcbUkBUcHCxJKiwsdNtfWFhojAUHB6uoqMht/PTp0/r222/dauqa48xz/FjNmePn6+Vsvr6+slgsbhsAAAAA1IepISssLEzBwcHKysoy9jmdTn388cey2WySJJvNppKSEuXm5ho1mzdvVnV1tSIjI42arVu3qrKy0qjJzMxUx44ddcMNNxg1Z56npqbmPBfSCwAAAACYrd4h68SJE8rLy1NeXp6kHxaYyMvL0+HDh+Xh4aFJkyZp1qxZevfdd7Vnzx49+uijCgkJMVYg7Ny5swYNGqRx48Zp+/bt+vDDDxUfH69Ro0YpJCREkvTQQw/Jx8dHsbGx2rdvn1atWqX58+crKSnJ6OOJJ55QRkaGXn75ZeXn52vmzJnauXOn4uPjJemCegEAAAAAs3nX94CdO3eqf//+xuua4BMTE6O0tDRNnjxZZWVlGj9+vEpKSnT77bcrIyNDfn5+xjErVqxQfHy8BgwYIE9PTw0fPlwLFiwwxq1Wq9577z3FxcUpIiJCLVu2VHJystuztG699VatXLlS06dP1+9//3vddNNNWrNmjbp06WLUXEgvAAAAAGCmS3pO1rWO52T9NPCcLIDnZAEA0NAa7DlZAAAAAHC9I2QBAAAAgIkIWQAAAABgIkIWAAAAAJiIkAUAAAAAJiJkAQAAAICJCFkAAAAAYCJCFgAAAACYiJAFAAAAACYiZAEAAACAiQhZAAAAAGAiQhYAAAAAmIiQBQAAAAAmImQBAAAAgIkIWQAAAABgIkIWAAAAAJjIu6EbAAAAuBDtp6Y3dAtAgzo0O7qhW8AF4koWAAAAAJiIkAUAAAAAJiJkAQAAAICJCFkAAAAAYCJCFgAAAACYiJAFAAAAACYiZAEAAACAiQhZAAAAAGAiQhYAAAAAmIiQBQAAAAAmImQBAAAAgIkIWQAAAABgIkIWAAAAAJiIkAUAAAAAJiJkAQAAAICJTA9ZM2fOlIeHh9vWqVMnY/zUqVOKi4tTixYt5O/vr+HDh6uwsNBtjsOHDys6OlpNmjRRYGCgnn76aZ0+fdqtZsuWLerZs6d8fX3VoUMHpaWl1epl0aJFat++vfz8/BQZGant27eb/XYBAAAAwM1luZJ1880369ixY8b2wQcfGGOJiYlau3atVq9erezsbB09elQPPPCAMV5VVaXo6GhVVFRo27ZtWr58udLS0pScnGzUHDx4UNHR0erfv7/y8vI0adIkjR07Vhs3bjRqVq1apaSkJM2YMUO7du1S9+7dZbfbVVRUdDneMgAAAABIukwhy9vbW8HBwcbWsmVLSVJpaan+/Oc/65VXXtFdd92liIgILVu2TNu2bdNHH30kSXrvvff02Wef6W9/+5t69OihwYMH6w9/+IMWLVqkiooKSVJqaqrCwsL08ssvq3PnzoqPj9eIESM0d+5co4dXXnlF48aN05gxYxQeHq7U1FQ1adJEb7zxxuV4ywAAAAAg6TKFrP379yskJEQ///nP9fDDD+vw4cOSpNzcXFVWVioqKsqo7dSpk9q2baucnBxJUk5Ojrp27aqgoCCjxm63y+l0at++fUbNmXPU1NTMUVFRodzcXLcaT09PRUVFGTV1KS8vl9PpdNsAAAAAoD5MD1mRkZFKS0tTRkaGlixZooMHD+qOO+7Qd999J4fDIR8fHwUEBLgdExQUJIfDIUlyOBxuAatmvGbsXDVOp1MnT57U119/raqqqjprauaoS0pKiqxWq7GFhoZe1GcAAAAA4PrlbfaEgwcPNv7crVs3RUZGql27dnrrrbfUuHFjs09nqmnTpikpKcl47XQ6CVoAAAAA6uWyL+EeEBCgX/ziFzpw4ICCg4NVUVGhkpISt5rCwkIFBwdLkoKDg2utNljz+nw1FotFjRs3VsuWLeXl5VVnTc0cdfH19ZXFYnHbAAAAAKA+LnvIOnHihL744gu1bt1aERERatSokbKysozxgoICHT58WDabTZJks9m0Z88et1UAMzMzZbFYFB4ebtScOUdNTc0cPj4+ioiIcKuprq5WVlaWUQMAAAAAl4PpIeupp55Sdna2Dh06pG3btun++++Xl5eXHnzwQVmtVsXGxiopKUnvv/++cnNzNWbMGNlsNvXp00eSNHDgQIWHh+uRRx7Rp59+qo0bN2r69OmKi4uTr6+vJGnChAn6z3/+o8mTJys/P1+LFy/WW2+9pcTERKOPpKQkvf7661q+fLk+//xzTZw4UWVlZRozZozZbxkAAAAADKbfk/XVV1/pwQcf1DfffKNWrVrp9ttv10cffaRWrVpJkubOnStPT08NHz5c5eXlstvtWrx4sXG8l5eX1q1bp4kTJ8pms6lp06aKiYnRc889Z9SEhYUpPT1diYmJmj9/vtq0aaOlS5fKbrcbNSNHjlRxcbGSk5PlcDjUo0cPZWRk1FoMAwAAAADM5OFyuVwN3cRPldPplNVqVWlpKfdnNaD2U9MbugWgwR2aHd3QLQANjt8HuN7xu6Bh1ScbXPZ7sgAAAADgekLIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMdF2ErEWLFql9+/by8/NTZGSktm/f3tAtAQAAALhGXfMha9WqVUpKStKMGTO0a9cude/eXXa7XUVFRQ3dGgAAAIBr0DUfsl555RWNGzdOY8aMUXh4uFJTU9WkSRO98cYbDd0aAAAAgGuQd0M3cDlVVFQoNzdX06ZNM/Z5enoqKipKOTk5terLy8tVXl5uvC4tLZUkOZ3Oy98sflR1+fcN3QLQ4Pj/EMDvA4DfBQ2r5vN3uVznrb2mQ9bXX3+tqqoqBQUFue0PCgpSfn5+rfqUlBQ9++yztfaHhoZeth4B4EJY5zV0BwCAhsbvgp+G7777Tlar9Zw113TIqq9p06YpKSnJeF1dXa1vv/1WLVq0kIeHRwN2BjQcp9Op0NBQHTlyRBaLpaHbAQA0EH4f4Hrncrn03XffKSQk5Ly113TIatmypby8vFRYWOi2v7CwUMHBwbXqfX195evr67YvICDgcrYIXDUsFgu/VAEA/D7Ade18V7BqXNMLX/j4+CgiIkJZWVnGvurqamVlZclmszVgZwAAAACuVdf0lSxJSkpKUkxMjHr16qXevXtr3rx5Kisr05gxYxq6NQAAAADXoGs+ZI0cOVLFxcVKTk6Ww+FQjx49lJGRUWsxDAB18/X11YwZM2p9lRYAcH3h9wFw4TxcF7IGIQAAAADgglzT92QBAAAAwJVGyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMdM0v4Q6gfr7++mu98cYbysnJkcPhkCQFBwfr1ltv1ejRo9WqVasG7hAAAOCnjStZAAw7duzQL37xCy1YsEBWq1V9+/ZV3759ZbVatWDBAnXq1Ek7d+5s6DYBAA3syJEjeuyxxxq6DeAni+dkATD06dNH3bt3V2pqqjw8PNzGXC6XJkyYoN27dysnJ6eBOgQA/BR8+umn6tmzp6qqqhq6FeAnia8LAjB8+umnSktLqxWwJMnDw0OJiYn65S9/2QCdAQCupHffffec4//5z3+uUCfA1YmQBcAQHBys7du3q1OnTnWOb9++XUFBQVe4KwDAlTZs2DB5eHjoXF94qusf5AD8gJAFwPDUU09p/Pjxys3N1YABA4xAVVhYqKysLL3++ut66aWXGrhLAMDl1rp1ay1evFj33XdfneN5eXmKiIi4wl0BVw9CFgBDXFycWrZsqblz52rx4sXGd+29vLwUERGhtLQ0/frXv27gLgEAl1tERIRyc3N/NGSd7yoXcL1j4QsAdaqsrNTXX38tSWrZsqUaNWrUwB0BAK6Uf//73yorK9OgQYPqHC8rK9POnTt15513XuHOgKsDIQsAAAAATMRzsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAFeFfv36adKkSQ3dxnkdOnRIHh4eysvLO2/tli1b5OHhoZKSksveFwDgyiFkAQDQQG699VYdO3ZMVqu1oVsBAJiIhxEDANBAfHx8FBwc3NBtAABMxpUsAMBV5/jx43r00Ud1ww03qEmTJho8eLD279/vVvP6668rNDRUTZo00f33369XXnlFAQEBbjWzZs1SYGCgmjVrprFjx2rq1Knq0aOHW83SpUvVuXNn+fn5qVOnTlq8eLHb+Pbt2/XLX/5Sfn5+6tWrlz755JMLfh9nf10wLS1NAQEB2rhxozp37ix/f38NGjRIx44du+A5AQANj5AFALjqjB49Wjt37tS7776rnJwcuVwuDRkyRJWVlZKkDz/8UBMmTNATTzyhvLw83X333Xr++efd5lixYoWef/55vfDCC8rNzVXbtm21ZMmSWjXJycl6/vnn9fnnn+uPf/yj/t//+39avny5JOnEiRMaOnSowsPDlZubq5kzZ+qpp566pPf2/fff66WXXtJf//pXbd26VYcPH77kOQEAVxZfFwQAXFX279+vd999Vx9++KFuvfVWST+EodDQUK1Zs0a/+tWv9Oqrr2rw4MFGOPnFL36hbdu2ad26dcY8r776qmJjYzVmzBhJUnJyst577z2dOHHCqJkxY4ZefvllPfDAA5KksLAwffbZZ3rttdcUExOjlStXqrq6Wn/+85/l5+enm2++WV999ZUmTpx40e+vsrJSqampuvHGGyVJ8fHxeu655y56PgDAlceVLADAVeXzzz+Xt7e3IiMjjX0tWrRQx44d9fnnn0uSCgoK1Lt3b7fjzn59vpqysjJ98cUXio2Nlb+/v7HNmjVLX3zxhdFLt27d5OfnZxxns9ku6f01adLECFiS1Lp1axUVFV3SnACAK4srWQAA1KHmitbrr7/uFugkycvL67Kdt1GjRm6vPTw85HK5Ltv5AADm40oWAOCq0rlzZ50+fVoff/yxse+bb75RQUGBwsPDJUkdO3bUjh073I47+/X5aoKCghQSEqL//Oc/6tChg9sWFhZm9LJ7926dOnXKOO6jjz4y540CAK5ahCwAwFXlpptu0n333adx48bpgw8+0Keffqrf/OY3+tnPfqb77rtPkpSQkKD169frlVde0f79+/Xaa69pw4YN8vDwMOZJSEjQn//8Zy1fvlz79+/XrFmztHv3breaZ599VikpKVqwYIH+7//+T3v27NGyZcv0yiuvSJIeeugheXh4aNy4cfrss8+0fv16vfTSS1f2AwEA/OQQsgAAV51ly5YpIiJCQ4cOlc1mk8vl0vr1642v2t12221KTU3VK6+8ou7duysjI0OJiYlu9049/PDDmjZtmp566in17NlTBw8e1OjRo91qxo4dq6VLl2rZsmXq2rWr7rzzTqWlpRlXsvz9/bV27Vrt2bNHv/zlL/XMM8/ohRdeuLIfBgDgJ8fDxRe9AQDXgXHjxik/P1///ve/f7Tm7rvvVnBwsP76179ewc4AANcaFr4AAFyTXnrpJd19991q2rSpNmzYoOXLl7s9SPj7779Xamqq7Ha7vLy89Oabb2rTpk3KzMxswK4BANcCvi4IALgmbd++XXfffbe6du2q1NRULViwQGPHjjXGPTw8tH79evXt21cRERFau3at/vnPfyoqKsq0HiZMmOC2/PuZ24QJE0w7DwDgp4WvCwIAcJkUFRXJ6XTWOWaxWBQYGHiFOwIAXAmELAAAAAAwEV8XBAAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMNH/B7swzuuyNByeAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "bar_graph('target', 'target')\n",
+ "\n"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 585
+ },
+ "id": "P_8hB-K1gs1S",
+ "outputId": "89ce3bc0-e19f-45e8-9a02-e122b40c2d44"
+ },
+ "execution_count": 17,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAI4CAYAAACY3iN4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQdUlEQVR4nOzdd1RUV/c38C8gVaoUEUUBC4Jig6hYKGoExWCPxoZdIxIF+6Mhakw0JvYCj7Ggid1YEjVYUMBeEEHsHaOCBgUEFSn3/YOX+2McbMmdO/PI97PWrCV3DnM2OMzMvvecvbUEQRBAREREREREktBWdwBEREREREQfEyZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERP+fg4MDOnXqpPJ5CgoKMHHiRNjb20NbWxtdunRR+ZxERCQfJllEROVIVFQUtLS0FG42Njbw9fXFn3/+qe7wyo3Vq1fjxx9/RI8ePbB27VqEhoa+cezy5csRFRUlX3D/0v9avEREqlBB3QEQEZH8Zs6cCUdHRwiCgPT0dERFRaFjx474448/ZLmSU94dOnQIVatWxYIFC945dvny5bCyssLAgQNVH5gE/tfiJSJSBSZZRETlUIcOHeDh4SF+PWTIEFSuXBkbN26UJMkqKirCq1evYGBg8K8f63W5ubmoWLGi5I8rp0ePHsHc3Fxt8798+RJ6enrQ1uaCFiIiVeCrKxERwdzcHIaGhqhQQfHc208//YQWLVrA0tIShoaGcHd3x7Zt25S+X0tLC6NHj8b69etRr1496OvrIzo6+o3zFRUVYfr06bCzs4ORkRF8fX1x6dIlODg4KFwBKVneGBcXh1GjRsHGxgbVqlUDANy9exejRo2Cs7MzDA0NYWlpiZ49e+LOnTsKc5U8Rnx8PEaMGAFLS0uYmppiwIABePr0aZnxHT16FE2bNoWBgQGcnJywbt269/o95ubmYty4cbC3t4e+vj6cnZ3x008/QRAEAMCdO3egpaWFw4cP4+LFi+KSzdjY2DIfz8HBARcvXkRcXJw41sfHBwDw5MkTjB8/Hm5ubjA2NoapqSk6dOiApKQkhceIjY2FlpYWNm3ahGnTpqFq1aowMjJCdnY2AGDr1q1wdXWFgYEB6tevjx07dmDgwIFwcHBQeJyioiIsXLgQ9erVg4GBASpXrowRI0Yo/A7fFi8RUXnCK1lEROVQVlYW/v77bwiCgEePHmHJkiXIyclBv379FMYtWrQIgYGB6Nu3L169eoVNmzahZ8+e2L17NwICAhTGHjp0CFu2bMHo0aNhZWWl9CG9tClTpmDu3Ln47LPP4Ofnh6SkJPj5+eHly5dljh81ahSsra0RHh6O3NxcAMCZM2dw/Phx9O7dG9WqVcOdO3cQEREBHx8fXLp0CUZGRgqPMXr0aJibm2P69Om4evUqIiIicPfuXTEJKXHjxg306NEDQ4YMQVBQEFavXo2BAwfC3d0d9erVe+PPJAgCAgMDcfjwYQwZMgSNGjXCvn37MGHCBNy/fx8LFiyAtbU1fvnlF3z33XfIycnB7NmzAQAuLi5lPubChQsREhICY2NjTJ06FQBQuXJlAMCtW7ewc+dO9OzZE46OjkhPT8d///tfeHt749KlS7Czs1N4rG+//RZ6enoYP3488vLyoKenhz179qBXr15wc3PD7Nmz8fTpUwwZMgRVq1ZVimXEiBGIiorCoEGD8NVXX+H27dtYunQpEhMTcezYMejq6r41XiKickUgIqJyY82aNQIApZu+vr4QFRWlNP758+cKX7969UqoX7++0KZNG4XjAARtbW3h4sWL74whLS1NqFChgtClSxeF49OnTxcACEFBQUrxtmrVSigoKHhrbIIgCCdOnBAACOvWrVN6DHd3d+HVq1fi8blz5woAhF27donHatSoIQAQ4uPjxWOPHj0S9PX1hXHjxr3159q5c6cAQJg1a5bC8R49eghaWlrCjRs3xGPe3t5CvXr13vp4JerVqyd4e3srHX/58qVQWFiocOz27duCvr6+MHPmTPHY4cOHBQCCk5OT0u/Mzc1NqFatmvDs2TPxWGxsrABAqFGjhnjsyJEjAgBh/fr1Ct8fHR2tdPxN8RIRlSdcLkhEVA4tW7YMBw4cwIEDB/Drr7/C19cXQ4cOxfbt2xXGGRoaiv9++vQpsrKy0Lp1a5w7d07pMb29veHq6vrOuWNiYlBQUIBRo0YpHA8JCXnj9wwbNgw6OjpvjC0/Px8ZGRmoVasWzM3Ny4xv+PDh0NXVFb/+8ssvUaFCBezdu1dhnKurK1q3bi1+bW1tDWdnZ9y6deutP9fevXuho6ODr776SuH4uHHjIAiC5NUb9fX1xT1VhYWFyMjIgLGxMZydncv8+YOCghR+Zw8ePMCFCxcwYMAAGBsbi8e9vb3h5uam8L1bt26FmZkZPv30U/z999/izd3dHcbGxjh8+LCkPxsR0f86LhckIiqHmjZtqlD44osvvkDjxo0xevRodOrUCXp6egCA3bt3Y9asWTh//jzy8vLE8aWX15VwdHR8r7nv3r0LAKhVq5bC8UqVKsHCwqLM7ynrsV+8eIHZs2djzZo1uH//vrjvCSheDvm62rVrK3xtbGyMKlWqKO3hql69utL3WlhYvHH/Vom7d+/Czs4OJiYmCsdLlgKW/NxSKSoqwqJFi7B8+XLcvn0bhYWF4n2WlpZK41//Hb7p/6HkWOlE7fr168jKyoKNjU2ZsTx69Ogf/QxERB8rJllERARtbW34+vpi0aJFuH79OurVq4cjR44gMDAQXl5eWL58OapUqQJdXV2sWbMGGzZsUHqM0ldJpFbWY4eEhGDNmjUYO3YsPD09YWZmBi0tLfTu3RtFRUX/eK7Xr5iVKJ3EaYLvv/8eX3/9NQYPHoxvv/0WlSpVgra2NsaOHVvmz/9v/n+KiopgY2OD9evXl3m/tbX1P35sIqKPEZMsIiICABQUFAAAcnJyAAC//fYbDAwMsG/fPujr64vj1qxZ86/mqVGjBoDiAhOlr65kZGS882pRadu2bUNQUBDmzZsnHnv58iUyMzPLHH/9+nX4+vqKX+fk5ODhw4fo2LHjB/4EZatRowYOHjyIZ8+eKVzNunLlinj/P1HWVUOg+Of39fXFqlWrFI5nZmbCysrqveIFiv8fXvf6sZo1a+LgwYNo2bLlO5O1N8VLRFSecE8WEREhPz8f+/fvh56enri8TUdHB1paWgrL0O7cuYOdO3f+q7natm2LChUqICIiQuH40qVLP+hxdHR0lK4uLVmyRCHe0lasWIH8/Hzx64iICBQUFKBDhw4fNO+bdOzYEYWFhUo/x4IFC6ClpfWP56lYsWKZiWNZP//WrVtx//7993pcOzs71K9fH+vWrRMTawCIi4vDhQsXFMZ+/vnnKCwsxLfffqv0OAUFBQrxvSleIqLyhFeyiIjKoT///FO8wvLo0SNs2LAB169fx+TJk2FqagoACAgIwPz58+Hv748+ffrg0aNHWLZsGWrVqoXk5OR/PHflypUxZswYzJs3D4GBgfD390dSUhL+/PNPWFlZvfeVkE6dOuGXX36BmZkZXF1dceLECRw8eLDM/UgA8OrVK7Rt2xaff/45rl69iuXLl6NVq1YIDAz8xz9LaZ999hl8fX0xdepU3LlzBw0bNsT+/fuxa9cujB07FjVr1vxHj+vu7o6IiAjMmjULtWrVgo2NDdq0aYNOnTph5syZGDRoEFq0aIELFy5g/fr1cHJyeu/H/v7779G5c2e0bNkSgwYNwtOnT7F06VLUr19fIfHy9vbGiBEjMHv2bJw/fx7t27eHrq4url+/jq1bt2LRokXo0aPHW+MlIipX1FrbkIiIZFVWCXcDAwOhUaNGQkREhFBUVKQwftWqVULt2rUFfX19oW7dusKaNWuEb775Rnj97QOAEBwc/N5xFBQUCF9//bVga2srGBoaCm3atBEuX74sWFpaCiNHjlSK98yZM0qP8fTpU2HQoEGClZWVYGxsLPj5+QlXrlwRatSoUWYZ+Li4OGH48OGChYWFYGxsLPTt21fIyMhQeMwaNWoIAQEBSnN5e3u/V1nyZ8+eCaGhoYKdnZ2gq6sr1K5dW/jxxx+Vfq8fUsI9LS1NCAgIEExMTAQAYhwvX74Uxo0bJ1SpUkUwNDQUWrZsKZw4cUIp1pIS7lu3bi3z8Tdt2iTUrVtX0NfXF+rXry/8/vvvQvfu3YW6desqjV2xYoXg7u4uGBoaCiYmJoKbm5swceJE4cGDB++Ml4ioPNESBA3byUtEROVSZmYmLCwsMGvWLLGRrRRKGuieOXNGoaIivVmjRo1gbW2NAwcOqDsUIqL/SdyTRUREsnvx4oXSsYULFwIAfHx85A2mHMvPzxcLnpSIjY1FUlIS/x+IiP4F7skiIiLZbd68GVFRUejYsSOMjY1x9OhRbNy4Ee3bt0fLli3VHV65cf/+fbRr1w79+vWDnZ0drly5gsjISNja2mLkyJHqDo+I6H8WkywiIpJdgwYNUKFCBcydOxfZ2dliMYxZs2apO7RyxcLCAu7u7li5ciUeP36MihUrIiAgAHPmzHljAREiIno37skiIiIiIiKSEPdkERERERERSYhJFhERERERkYS4J+stioqK8ODBA5iYmLx3c0wiIiIiIvr4CIKAZ8+ewc7ODtrab79WxSTrLR48eAB7e3t1h0FERERERBri3r17qFat2lvHMMl6CxMTEwDFv0hTU1M1R0NEREREROqSnZ0Ne3t7MUd4GyZZb1GyRNDU1JRJFhERERERvdc2Iha+ICIiIiIikhCTLCIiIiIiIgkxySIiIiIiIpIQkywiIiIiIiIJMckiIiIiIiKSEJMsIiIiIiIiCTHJIiIiIiIikhCTLCIiIiIiIgkxySIiIiIiIpIQkywiIiIiIiIJMckiIiIiIiKSEJMsIiIiIiIiCTHJIiIiIiIikhCTLCIiIiIiIgkxySIiIiIiIpJQBXUH8DFwmLznXz/GnTkBEkRCRERERETqxitZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQS+qAka/bs2fjkk09gYmICGxsbdOnSBVevXlUY4+PjAy0tLYXbyJEjFcakpqYiICAARkZGsLGxwYQJE1BQUKAwJjY2Fk2aNIG+vj5q1aqFqKgopXiWLVsGBwcHGBgYoFmzZjh9+rTC/S9fvkRwcDAsLS1hbGyM7t27Iz09/UN+ZCIiIiIiog/yQUlWXFwcgoODcfLkSRw4cAD5+flo3749cnNzFcYNGzYMDx8+FG9z584V7yssLERAQABevXqF48ePY+3atYiKikJ4eLg45vbt2wgICICvry/Onz+PsWPHYujQodi3b584ZvPmzQgLC8M333yDc+fOoWHDhvDz88OjR4/EMaGhofjjjz+wdetWxMXF4cGDB+jWrdsH/5KIiIiIiIjel5YgCMI//ebHjx/DxsYGcXFx8PLyAlB8JatRo0ZYuHBhmd/z559/olOnTnjw4AEqV64MAIiMjMSkSZPw+PFj6OnpYdKkSdizZw9SUlLE7+vduzcyMzMRHR0NAGjWrBk++eQTLF26FABQVFQEe3t7hISEYPLkycjKyoK1tTU2bNiAHj16AACuXLkCFxcXnDhxAs2bN3/nz5ednQ0zMzNkZWXB1NT0jeMcJu959y/rHe7MCfjXj0FERERERKrxvrkB8C/3ZGVlZQEAKlWqpHB8/fr1sLKyQv369TFlyhQ8f/5cvO/EiRNwc3MTEywA8PPzQ3Z2Ni5evCiOadeuncJj+vn54cSJEwCAV69eISEhQWGMtrY22rVrJ45JSEhAfn6+wpi6deuievXq4hgiIiIiIiKpVfin31hUVISxY8eiZcuWqF+/vni8T58+qFGjBuzs7JCcnIxJkybh6tWr2L59OwAgLS1NIcECIH6dlpb21jHZ2dl48eIFnj59isLCwjLHXLlyRXwMPT09mJubK40pmed1eXl5yMvLE7/Ozs5+318HERERERERgH+RZAUHByMlJQVHjx5VOD58+HDx325ubqhSpQratm2LmzdvombNmv88UhnMnj0bM2bMUHcYRERERET0P+wfLRccPXo0du/ejcOHD6NatWpvHdusWTMAwI0bNwAAtra2ShX+Sr62tbV96xhTU1MYGhrCysoKOjo6ZY4p/RivXr1CZmbmG8e8bsqUKcjKyhJv9+7de+vPRkRERERE9LoPSrIEQcDo0aOxY8cOHDp0CI6Oju/8nvPnzwMAqlSpAgDw9PTEhQsXFKoAHjhwAKampnB1dRXHxMTEKDzOgQMH4OnpCQDQ09ODu7u7wpiioiLExMSIY9zd3aGrq6sw5urVq0hNTRXHvE5fXx+mpqYKNyIiIiIiog/xQcsFg4ODsWHDBuzatQsmJibi3iYzMzMYGhri5s2b2LBhAzp27AhLS0skJycjNDQUXl5eaNCgAQCgffv2cHV1Rf/+/TF37lykpaVh2rRpCA4Ohr6+PgBg5MiRWLp0KSZOnIjBgwfj0KFD2LJlC/bs+b8qfmFhYQgKCoKHhweaNm2KhQsXIjc3F4MGDRJjGjJkCMLCwlCpUiWYmpoiJCQEnp6e71VZkIiIiIiI6J/4oCQrIiICQHGZ9tLWrFmDgQMHQk9PDwcPHhQTHnt7e3Tv3h3Tpk0Tx+ro6GD37t348ssv4enpiYoVKyIoKAgzZ84Uxzg6OmLPnj0IDQ3FokWLUK1aNaxcuRJ+fn7imF69euHx48cIDw9HWloaGjVqhOjoaIViGAsWLIC2tja6d++OvLw8+Pn5Yfny5R/0CyIiIiIiIvoQ/6pP1seOfbKIiIiIiAiQsU8WERERERERKWKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEvqgJGv27Nn45JNPYGJiAhsbG3Tp0gVXr15VGPPy5UsEBwfD0tISxsbG6N69O9LT0xXGpKamIiAgAEZGRrCxscGECRNQUFCgMCY2NhZNmjSBvr4+atWqhaioKKV4li1bBgcHBxgYGKBZs2Y4ffr0B8dCREREREQkpQ9KsuLi4hAcHIyTJ0/iwIEDyM/PR/v27ZGbmyuOCQ0NxR9//IGtW7ciLi4ODx48QLdu3cT7CwsLERAQgFevXuH48eNYu3YtoqKiEB4eLo65ffs2AgIC4Ovri/Pnz2Ps2LEYOnQo9u3bJ47ZvHkzwsLC8M033+DcuXNo2LAh/Pz88OjRo/eOhYiIiIiISGpagiAI//SbHz9+DBsbG8TFxcHLywtZWVmwtrbGhg0b0KNHDwDAlStX4OLighMnTqB58+b4888/0alTJzx48ACVK1cGAERGRmLSpEl4/Pgx9PT0MGnSJOzZswcpKSniXL1790ZmZiaio6MBAM2aNcMnn3yCpUuXAgCKiopgb2+PkJAQTJ48+b1ieZfs7GyYmZkhKysLpqambxznMHnPP/sFlnJnTsC/fgwiIiIiIlKN980NgH+5JysrKwsAUKlSJQBAQkIC8vPz0a5dO3FM3bp1Ub16dZw4cQIAcOLECbi5uYkJFgD4+fkhOzsbFy9eFMeUfoySMSWP8erVKyQkJCiM0dbWRrt27cQx7xPL6/Ly8pCdna1wIyIiIiIi+hD/OMkqKirC2LFj0bJlS9SvXx8AkJaWBj09PZibmyuMrVy5MtLS0sQxpROskvtL7nvbmOzsbLx48QJ///03CgsLyxxT+jHeFcvrZs+eDTMzM/Fmb2//nr8NIiIiIiKiYv84yQoODkZKSgo2bdokZTxqNWXKFGRlZYm3e/fuqTskIiIiIiL6H1Phn3zT6NGjsXv3bsTHx6NatWricVtbW7x69QqZmZkKV5DS09Nha2srjnm9CmBJxb/SY16vApieng5TU1MYGhpCR0cHOjo6ZY4p/RjviuV1+vr60NfX/4DfBBERERERkaIPupIlCAJGjx6NHTt24NChQ3B0dFS4393dHbq6uoiJiRGPXb16FampqfD09AQAeHp64sKFCwpVAA8cOABTU1O4urqKY0o/RsmYksfQ09ODu7u7wpiioiLExMSIY94nFiIiIiIiIql90JWs4OBgbNiwAbt27YKJiYm4t8nMzAyGhoYwMzPDkCFDEBYWhkqVKsHU1BQhISHw9PQUq/m1b98erq6u6N+/P+bOnYu0tDRMmzYNwcHB4lWkkSNHYunSpZg4cSIGDx6MQ4cOYcuWLdiz5/+q+IWFhSEoKAgeHh5o2rQpFi5ciNzcXAwaNEiM6V2xEBERERERSe2DkqyIiAgAgI+Pj8LxNWvWYODAgQCABQsWQFtbG927d0deXh78/PywfPlycayOjg52796NL7/8Ep6enqhYsSKCgoIwc+ZMcYyjoyP27NmD0NBQLFq0CNWqVcPKlSvh5+cnjunVqxceP36M8PBwpKWloVGjRoiOjlYohvGuWIiIiIiIiKT2r/pkfezYJ4uIiIiIiAAZ+2QRERERERGRIiZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEmKSRUREREREJCEmWURERERERBJikkVERERERCQhJllEREREREQS+uAkKz4+Hp999hns7OygpaWFnTt3Ktw/cOBAaGlpKdz8/f0Vxjx58gR9+/aFqakpzM3NMWTIEOTk5CiMSU5ORuvWrWFgYAB7e3vMnTtXKZatW7eibt26MDAwgJubG/bu3atwvyAICA8PR5UqVWBoaIh27drh+vXrH/ojExERERERvbcPTrJyc3PRsGFDLFu27I1j/P398fDhQ/G2ceNGhfv79u2Lixcv4sCBA9i9ezfi4+MxfPhw8f7s7Gy0b98eNWrUQEJCAn788UdMnz4dK1asEMccP34cX3zxBYYMGYLExER06dIFXbp0QUpKijhm7ty5WLx4MSIjI3Hq1ClUrFgRfn5+ePny5Yf+2ERERERERO9FSxAE4R9/s5YWduzYgS5duojHBg4ciMzMTKUrXCUuX74MV1dXnDlzBh4eHgCA6OhodOzYEX/99Rfs7OwQERGBqVOnIi0tDXp6egCAyZMnY+fOnbhy5QoAoFevXsjNzcXu3bvFx27evDkaNWqEyMhICIIAOzs7jBs3DuPHjwcAZGVloXLlyoiKikLv3r3f+fNlZ2fDzMwMWVlZMDU1feM4h8l73vlY73JnTsC/fgwiIiIiIlKN980NABXtyYqNjYWNjQ2cnZ3x5ZdfIiMjQ7zvxIkTMDc3FxMsAGjXrh20tbVx6tQpcYyXl5eYYAGAn58frl69iqdPn4pj2rVrpzCvn58fTpw4AQC4ffs20tLSFMaYmZmhWbNm4pjX5eXlITs7W+FGRERERET0ISRPsvz9/bFu3TrExMTghx9+QFxcHDp06IDCwkIAQFpaGmxsbBS+p0KFCqhUqRLS0tLEMZUrV1YYU/L1u8aUvr/095U15nWzZ8+GmZmZeLO3t//gn5+IiIiIiMq3ClI/YOlleG5ubmjQoAFq1qyJ2NhYtG3bVurpJDVlyhSEhYWJX2dnZzPRIiIiIiKiD6LyEu5OTk6wsrLCjRs3AAC2trZ49OiRwpiCggI8efIEtra24pj09HSFMSVfv2tM6ftLf19ZY16nr68PU1NThRsREREREdGHUHmS9ddffyEjIwNVqlQBAHh6eiIzMxMJCQnimEOHDqGoqAjNmjUTx8THxyM/P18cc+DAATg7O8PCwkIcExMTozDXgQMH4OnpCQBwdHSEra2twpjs7GycOnVKHENERERERCS1D06ycnJycP78eZw/fx5AcYGJ8+fPIzU1FTk5OZgwYQJOnjyJO3fuICYmBp07d0atWrXg5+cHAHBxcYG/vz+GDRuG06dP49ixYxg9ejR69+4NOzs7AECfPn2gp6eHIUOG4OLFi9i8eTMWLVqksJRvzJgxiI6Oxrx583DlyhVMnz4dZ8+exejRowEUVz4cO3YsZs2ahd9//x0XLlzAgAEDYGdnp1ANkYiIiIiISEofvCfr7Nmz8PX1Fb8uSXyCgoIQERGB5ORkrF27FpmZmbCzs0P79u3x7bffQl9fX/ye9evXY/To0Wjbti20tbXRvXt3LF68WLzfzMwM+/fvR3BwMNzd3WFlZYXw8HCFXlotWrTAhg0bMG3aNPznP/9B7dq1sXPnTtSvX18cM3HiROTm5mL48OHIzMxEq1atEB0dDQMDgw/9sYmIiIiIiN7Lv+qT9bFjnywiIiIiIgI0oE8WERERERFRecUki4iIiIiISEJMsoiIiIiIiCTEJIuIiIiIiEhCTLKIiIiIiIgkxCSLiIiIiIhIQkyyiIiIiIiIJMQki4iIiIiISEJMsoiIiIiIiCTEJIuIiIiIiEhCTLKIiIiIiIgkxCSLiIiIiIhIQkyyiIiIiIiIJMQki4iIiIiISEJMsoiIiIiIiCTEJIuIiIiIiEhCTLKIiIiIiIgkxCSLiIiIiIhIQkyyiIiIiIiIJMQki4iIiIiISEJMsoiIiIiIiCTEJIuIiIiIiEhCTLKIiIiIiIgkxCSLiIiIiIhIQkyyiIiIiIiIJMQki4iIiIiISEJMsoiIiIiIiCTEJIuIiIiIiEhCTLKIiIiIiIgkxCSLiIiIiIhIQkyyiIiIiIiIJMQki4iIiIiISEJMsoiIiIiIiCTEJIuIiIiIiEhCTLKIiIiIiIgkxCSLiIiIiIhIQkyyiIiIiIiIJMQki4iIiIiISEJMsoiIiIiIiCTEJIuIiIiIiEhCTLKIiIiIiIgkxCSLiIiIiIhIQkyyiIiIiIiIJMQki4iIiIiISEJMsoiIiIiIiCTEJIuIiIiIiEhCTLKIiIiIiIgkxCSLiIiIiIhIQkyyiIiIiIiIJFRB3QGQNBwm7/nXj3FnToAEkRARERERlW+8kkVERERERCQhJllEREREREQSYpJFREREREQkISZZREREREREEvrgJCs+Ph6fffYZ7OzsoKWlhZ07dyrcLwgCwsPDUaVKFRgaGqJdu3a4fv26wpgnT56gb9++MDU1hbm5OYYMGYKcnByFMcnJyWjdujUMDAxgb2+PuXPnKsWydetW1K1bFwYGBnBzc8PevXs/OBYiIiIiIiIpfXCSlZubi4YNG2LZsmVl3j937lwsXrwYkZGROHXqFCpWrAg/Pz+8fPlSHNO3b19cvHgRBw4cwO7duxEfH4/hw4eL92dnZ6N9+/aoUaMGEhIS8OOPP2L69OlYsWKFOOb48eP44osvMGTIECQmJqJLly7o0qULUlJSPigWIiIiIiIiKWkJgiD842/W0sKOHTvQpUsXAMVXjuzs7DBu3DiMHz8eAJCVlYXKlSsjKioKvXv3xuXLl+Hq6oozZ87Aw8MDABAdHY2OHTvir7/+gp2dHSIiIjB16lSkpaVBT08PADB58mTs3LkTV65cAQD06tULubm52L17txhP8+bN0ahRI0RGRr5XLO+SnZ0NMzMzZGVlwdTU9I3jNKF8uibEQERERET0sXrf3ACQeE/W7du3kZaWhnbt2onHzMzM0KxZM5w4cQIAcOLECZibm4sJFgC0a9cO2traOHXqlDjGy8tLTLAAwM/PD1evXsXTp0/FMaXnKRlTMs/7xPK6vLw8ZGdnK9yIiIiIiIg+hKRJVlpaGgCgcuXKCscrV64s3peWlgYbGxuF+ytUqIBKlSopjCnrMUrP8aYxpe9/Vyyvmz17NszMzMSbvb39e/zURERERERE/4fVBUuZMmUKsrKyxNu9e/fUHRIREREREf2PkTTJsrW1BQCkp6crHE9PTxfvs7W1xaNHjxTuLygowJMnTxTGlPUYped405jS978rltfp6+vD1NRU4UZERERERPQhJE2yHB0dYWtri5iYGPFYdnY2Tp06BU9PTwCAp6cnMjMzkZCQII45dOgQioqK0KxZM3FMfHw88vPzxTEHDhyAs7MzLCwsxDGl5ykZUzLP+8RCREREREQktQof+g05OTm4ceOG+PXt27dx/vx5VKpUCdWrV8fYsWMxa9Ys1K5dG46Ojvj6669hZ2cnViB0cXGBv78/hg0bhsjISOTn52P06NHo3bs37OzsAAB9+vTBjBkzMGTIEEyaNAkpKSlYtGgRFixYIM47ZswYeHt7Y968eQgICMCmTZtw9uxZscy7lpbWO2Mh6bHKIRERERGVdx+cZJ09exa+vr7i12FhYQCAoKAgREVFYeLEicjNzcXw4cORmZmJVq1aITo6GgYGBuL3rF+/HqNHj0bbtm2hra2N7t27Y/HixeL9ZmZm2L9/P4KDg+Hu7g4rKyuEh4cr9NJq0aIFNmzYgGnTpuE///kPateujZ07d6J+/frimPeJhYiIiIiISEr/qk/Wx459sv534yAiIiIikpLa+mQRERERERGVd0yyiIiIiIiIJMQki4iIiIiISEJMsoiIiIiIiCTEJIuIiIiIiEhCTLKIiIiIiIgkxCSLiIiIiIhIQkyyiIiIiIiIJMQki4iIiIiISEJMsoiIiIiIiCTEJIuIiIiIiEhCTLKIiIiIiIgkxCSLiIiIiIhIQkyyiIiIiIiIJMQki4iIiIiISEJMsoiIiIiIiCTEJIuIiIiIiEhCTLKIiIiIiIgkxCSLiIiIiIhIQkyyiIiIiIiIJMQki4iIiIiISEJMsoiIiIiIiCTEJIuIiIiIiEhCTLKIiIiIiIgkxCSLiIiIiIhIQkyyiIiIiIiIJMQki4iIiIiISEJMsoiIiIiIiCTEJIuIiIiIiEhCTLKIiIiIiIgkxCSLiIiIiIhIQkyyiIiIiIiIJMQki4iIiIiISEJMsoiIiIiIiCTEJIuIiIiIiEhCTLKIiIiIiIgkxCSLiIiIiIhIQkyyiIiIiIiIJMQki4iIiIiISEJMsoiIiIiIiCTEJIuIiIiIiEhCTLKIiIiIiIgkxCSLiIiIiIhIQkyyiIiIiIiIJMQki4iIiIiISEJMsoiIiIiIiCTEJIuIiIiIiEhCTLKIiIiIiIgkxCSLiIiIiIhIQkyyiIiIiIiIJMQki4iIiIiISEJMsoiIiIiIiCTEJIuIiIiIiEhCTLKIiIiIiIgkxCSLiIiIiIhIQpInWdOnT4eWlpbCrW7duuL9L1++RHBwMCwtLWFsbIzu3bsjPT1d4TFSU1MREBAAIyMj2NjYYMKECSgoKFAYExsbiyZNmkBfXx+1atVCVFSUUizLli2Dg4MDDAwM0KxZM5w+fVrqH5eIiIiIiEiBSq5k1atXDw8fPhRvR48eFe8LDQ3FH3/8ga1btyIuLg4PHjxAt27dxPsLCwsREBCAV69e4fjx41i7di2ioqIQHh4ujrl9+zYCAgLg6+uL8+fPY+zYsRg6dCj27dsnjtm8eTPCwsLwzTff4Ny5c2jYsCH8/Pzw6NEjVfzIREREREREAFSUZFWoUAG2trbizcrKCgCQlZWFVatWYf78+WjTpg3c3d2xZs0aHD9+HCdPngQA7N+/H5cuXcKvv/6KRo0aoUOHDvj222+xbNkyvHr1CgAQGRkJR0dHzJs3Dy4uLhg9ejR69OiBBQsWiDHMnz8fw4YNw6BBg+Dq6orIyEgYGRlh9erVqviRiYiIiIiIAKgoybp+/Trs7Ozg5OSEvn37IjU1FQCQkJCA/Px8tGvXThxbt25dVK9eHSdOnAAAnDhxAm5ubqhcubI4xs/PD9nZ2bh48aI4pvRjlIwpeYxXr14hISFBYYy2tjbatWsnjilLXl4esrOzFW5EREREREQfQvIkq1mzZoiKikJ0dDQiIiJw+/ZttG7dGs+ePUNaWhr09PRgbm6u8D2VK1dGWloaACAtLU0hwSq5v+S+t43Jzs7Gixcv8Pfff6OwsLDMMSWPUZbZs2fDzMxMvNnb2/+j3wEREREREZVfFaR+wA4dOoj/btCgAZo1a4YaNWpgy5YtMDQ0lHo6SU2ZMgVhYWHi19nZ2Uy0iIiIiIjog6i8hLu5uTnq1KmDGzduwNbWFq9evUJmZqbCmPT0dNja2gIAbG1tlaoNlnz9rjGmpqYwNDSElZUVdHR0yhxT8hhl0dfXh6mpqcKNiIiIiIjoQ6g8ycrJycHNmzdRpUoVuLu7Q1dXFzExMeL9V69eRWpqKjw9PQEAnp6euHDhgkIVwAMHDsDU1BSurq7imNKPUTKm5DH09PTg7u6uMKaoqAgxMTHiGCIiIiIiIlWQPMkaP3484uLicOfOHRw/fhxdu3aFjo4OvvjiC5iZmWHIkCEICwvD4cOHkZCQgEGDBsHT0xPNmzcHALRv3x6urq7o378/kpKSsG/fPkybNg3BwcHQ19cHAIwcORK3bt3CxIkTceXKFSxfvhxbtmxBaGioGEdYWBh+/vlnrF27FpcvX8aXX36J3NxcDBo0SOofmYiIiIiISCT5nqy//voLX3zxBTIyMmBtbY1WrVrh5MmTsLa2BgAsWLAA2tra6N69O/Ly8uDn54fly5eL36+jo4Pdu3fjyy+/hKenJypWrIigoCDMnDlTHOPo6Ig9e/YgNDQUixYtQrVq1bBy5Ur4+fmJY3r16oXHjx8jPDwcaWlpaNSoEaKjo5WKYRAREREREUlJSxAEQd1BaKrs7GyYmZkhKyvrrfuzHCbv+ddz3ZkT8K++XxNi0KQ4iIiIiIik9L65ASDDniwiIiIiIqLyhEkWERERERGRhJhkERERERERSYhJFhERERERkYSYZBEREREREUmISRYREREREZGEmGQRERERERFJiEkWERERERGRhJhkERERERERSYhJFhERERERkYSYZBEREREREUmISRYREREREZGEmGQRERERERFJiEkWERERERGRhJhkERERERERSYhJFhERERERkYSYZBEREREREUmISRYREREREZGEmGQRERERERFJiEkWERERERGRhJhkERERERERSYhJFhERERERkYSYZBEREREREUmISRYREREREZGEmGQRERERERFJiEkWERERERGRhJhkERERERERSYhJFhERERERkYSYZBEREREREUmISRYREREREZGEmGQRERERERFJiEkWERERERGRhJhkERERERERSYhJFhERERERkYSYZBEREREREUmISRYREREREZGEmGQRERERERFJiEkWERERERGRhJhkERERERERSYhJFhERERERkYSYZBEREREREUmISRYREREREZGEmGQRERERERFJiEkWERERERGRhJhkERERERERSYhJFhERERERkYSYZBEREREREUmISRYREREREZGEmGQRERERERFJiEkWERERERGRhJhkERERERERSYhJFhERERERkYSYZBEREREREUmISRYREREREZGEykWStWzZMjg4OMDAwADNmjXD6dOn1R0SERERERF9pCqoOwBV27x5M8LCwhAZGYlmzZph4cKF8PPzw9WrV2FjY6Pu8EhFHCbv+dePcWdOgASREBEREVF589EnWfPnz8ewYcMwaNAgAEBkZCT27NmD1atXY/LkyWqOjj52/zbZkyLRY8JJREREJK+POsl69eoVEhISMGXKFPGYtrY22rVrhxMnTiiNz8vLQ15envh1VlYWACA7O/ut8xTlPf/Xsb5rjnfRhBgYh/RxaEIMUsVR/5t9//oxUmb4qT0OTYhBqjiIiIjo/ZV8HhIE4Z1jtYT3GfU/6sGDB6hatSqOHz8OT09P8fjEiRMRFxeHU6dOKYyfPn06ZsyYIXeYRERERET0P+LevXuoVq3aW8d81FeyPtSUKVMQFhYmfl1UVIQnT57A0tISWlpa/+gxs7OzYW9vj3v37sHU1FSqUBnH/3gMjEPzYmAcmhcD49DMODQhBsaheTEwDs2LgXFIH4MgCHj27Bns7OzeOfajTrKsrKygo6OD9PR0hePp6emwtbVVGq+vrw99fX2FY+bm5pLEYmpqqtYnN+PQzBgYh+bFwDg0LwbGoZlxaEIMjEPzYmAcmhcD45A2BjMzs/ca91GXcNfT04O7uztiYmLEY0VFRYiJiVFYPkhERERERCSVj/pKFgCEhYUhKCgIHh4eaNq0KRYuXIjc3Fyx2iAREREREZGUPvokq1evXnj8+DHCw8ORlpaGRo0aITo6GpUrV5Zlfn19fXzzzTdKyxDlxjg0KwbGoXkxMA7Ni4FxaGYcmhAD49C8GBiH5sXAONQbw0ddXZCIiIiIiEhuH/WeLCIiIiIiIrkxySIiIiIiIpIQkywiIiIiIiIJMckiIiIiIiKSEJMsIiIiIiIiCTHJIiIiIiIikhCTLCINsHz5csycOVPdYVApu3btwrp169QaQ1BQENq0aaPWGEjZ2bNnER8fr+4wiIjoH3r48CFSU1NVOgeTLBm5uLhAR0dH3WFozAf6//znPxg8eLC6w5DlD+1dfvvtN0RFRak1Bk3Srl07ODk5qTWGSZMmYdCgQWqNoWrVqqhRo4ZaYyihCX8nmvKa0b9/f/j6+qo7DCZ7pWjK+6umnBjhSaJimvK8ADTjs5cmxABoxnt8mzZt4OjoqNI5Kqj00cuR33//HR06dICuru4bx8yePRtZWVkyRlW23377Dbdv30Z4eLha47h//z7u3bun1hiA4j+0a9euobCwUG0xxMTEqG3u0lxcXNT+uwCArl274u+//1ZrDFeuXFHr/ADw/fffqzsEkSb8nWjKa0ZMTAzy8/PVHQb69++v9v8TOV8zCgoKsGHDBvj5+aFy5coK92nK+2vVqlWhra3+89eTJk3C9evXMWDAALXFoAm/C015XgCa8dlLE2IA5H2PDwoKwpAhQ+Dl5aVwfN26dXj+/LlK59YSBEFQ6QzlhI6ODtLS0mBtbQ0dHR08fPgQNjY26g6L3sOZM2fw/PlzeHt7qzsUtdu5cyeysrIQFBSk7lBkk5qaCnt7e2hpaZV5X/Xq1WWNp+Qluax41Il/J5rnwYMHyM/PV+vVTrlfM4yMjHD58mWNucJLpCmaNGmCmJgYWFhYYObMmRg/fjyMjIzUHZbadenSBXv37kWNGjUwaNAgBAUFoWrVqrLMzSRLIra2tvj555/x2WefQVtbG+np6bC2tlZ3WPSeBEGQ7UPt9evXcfjwYTx69AhFRUUK96n77JI6lVyhsLe3l3XeN50UycjIgI2NjWxXCVatWoUFCxbg+vXrAIDatWtj7NixGDp0qCzzU7Hs7Oz3HmtqaqrCSP5P9erV4ePjA29vb/j4+KBmzZqyzKuJfHx8EBoais6dO6s7FJE6T4xo0kmiV69e4fbt26hZsyYqVJB/oVRBQQFiY2Nx8+ZN9OnTByYmJnjw4AFMTU1hbGwsezxyMzQ0xPXr11GtWjWe7H/N48eP8csvv2Dt2rW4dOkS2rVrhyFDhqBz585vXYH2bzHJksj06dMxc+bM93qRlXNpxy+//ILIyEjcvn0bJ06cQI0aNbBgwQI4OTmp9E1q8eLF7z32q6++Ulkcpf3444+YMGGC0vHCwkL069cPGzduVHkMP//8M7788ktYWVnB1tZW4fmipaWFc+fOqTyG0h49eoSrV68CAJydnWV/QS4oKMCMGTOwePFi5OTkAACMjY0REhKCb775RqUvfiXedFLk7t27cHV1RW5urspjCA8Px/z58xESEgJPT08AwIkTJ7B06VKEhoZqxBp6ucXExGDBggW4fPkygOJlaWPHjkW7du1UOq+2tvZ7f1iW67X8119/RXx8PGJjY3Hjxg1UrVoV3t7eYtJVu3ZtWeLQBFu2bMGUKVMQGhoKd3d3VKxYUeH+Bg0ayBaLJpwY0YSTRM+fP0dISAjWrl0LALh27RqcnJwQEhKCqlWrYvLkySqP4e7du/D390dqairy8vLEGMaMGYO8vDxERkaqPIbSrl69iiVLlii8fo0ePRp169ZV2Zyenp4wNjZGq1atMGPGDIwfP/6NyaUqT+h269btvcdu375dZXG8yblz57BmzRqsXLkSxsbG6NevH0aNGqWS11EmWRK6cuUKbty4gcDAQKxZswbm5uZljpPrDFxERATCw8MxduxYfPfdd0hJSYGTkxOioqKwdu1aHD58WGVzv+9mQi0tLdy6dUtlcZRmY2OD2bNnY8iQIeKxwsJC9O7dGykpKeKLoSrVqFEDo0aNwqRJk1Q+19s8e/YMo0aNwqZNm8Q3YR0dHfTq1QvLli2DmZmZLHF8+eWX2L59O2bOnKmQXEyfPh1dunRBRESEyuYOCwsDACxatAjDhg1TWFZRWFiIU6dOQUdHB8eOHVNZDCWsra2xePFifPHFFwrHN27ciJCQEJWvXbewsHjvxOLJkycqjQUo3pw9ZswY9OjRQ3xenDx5Etu2bcOCBQsQHByssrnj4uLEf9+5cweTJ0/GwIEDFZ6fa9euxezZs9WyrPbhw4eIi4vD7t27sXnzZhQVFansg3Tjxo3f+3kh1wmisvb4aGlpiasR5Ep8NeXEiCacJBozZgyOHTuGhQsXwt/fH8nJyXBycsKuXbswffp0JCYmqjyGLl26wMTEBKtWrYKlpSWSkpLg5OSE2NhYDBs2TEyE5fDbb7+hd+/e8PDwUHj9OnPmDDZt2oTu3burZN6rV6/im2++wc2bN3Hu3Dm4urqWeUVR1Sd0P6Rg1Jo1a1QWR1kePnyIdevWYc2aNfjrr7/QvXt33L9/H3FxcZg7dy5CQ0OlnVAgSRUVFQkDBw4Unj17pu5QBBcXF2HHjh2CIAiCsbGxcPPmTUEQBOHChQuCpaWlGiNTj9OnTwvm5ubC1q1bBUEQhPz8fKFr166Ci4uL8PDhQ1liMDExEf8f1Onzzz8XateuLURHRwtZWVlCVlaWEB0dLTg7Owu9evWSLQ5TU1Nh7969Ssf37NkjmJqaqnRuHx8fwcfHR9DS0hJatGghfu3j4yO0b99eGD58uHDt2jWVxlDCzMyszLmuXr0qmJmZqXz+qKgo8TZv3jzBwsJC6N27t7Bo0SJh0aJFQu/evQULCwth/vz5Ko9FEAShatWqwpIlS5SOL126VLCzs5MlBkEQhDZt2ggbNmxQOr5+/XrB29tbtjgEQRByc3OFffv2CVOmTBGaN28u6OvrC40aNRLGjh2rsjmnT58u3iZPniyYmpoKzZs3F0JDQ4XQ0FDB09NTMDU1FSZPnqyyGF53586dt97kYmVlVeZzY8OGDbK8v5b8H2hrawsjRowQvw4NDRW++uoroVmzZkKLFi1UHocgCEL16tWFEydOCIKg+Fnj+vXrgomJiSwxVKpUSbhy5YpSDLdv3xYMDQ1liaGEk5OT8PXXXysdDw8PF5ycnGSJQUtLS0hPT5dlrjcpKioS7t69Kzx//lytcbx69UrYtm2bEBAQIOjq6gru7u5CRESEkJWVJY7Zvn27YG5uLvncTLIkVlhYKOjq6sr24extDAwMxDed0i86165dEwwMDNQZmtrExMQIJiYmwq5du4TAwEDB1dVVSEtLk23+wYMHCxEREbLN9yZGRkbCkSNHlI7Hx8cLRkZGssVhbW0tXLp0Sen4pUuXBCsrK1liGDhwoMKLrTqMHj1aCA0NVTo+btw4YdSoUbLG0q1btzITnCVLlgidO3eWJYaKFSsK169fVzp+7do1oWLFirLEIAiCYGho+MbkV84Pbp6enoKBgYHQuHFjITQ0VNi5c6fw5MkT2eYXBEEYMmSIMG3aNKXj4eHhwqBBg2SNRROo+8SIJp0kMjQ0FD9flP6scf78eZWfLCthbm4uXLx4USmGI0eOCDY2NrLEUMLQ0PCNr19yJ3zqpCmfhy0tLQULCwth1KhRQmJiYpljnj59Kjg4OEg+N0u4S0xbWxu1a9dGRkaG2tfJOzo64vz580pVmKKjo+Hi4iJrLH/99Rd+//13pKam4tWrVwr3zZ8/X7Y42rRpg3Xr1qF79+5wcXFBXFwcrKysZJu/Vq1a+Prrr3Hy5Em4ubkp7TmSa3+apaVlmUsCzczMYGFhIUsMADB69Gh8++23WLNmDfT19QEAeXl5+O677zB69GhZYpB7ucKbrFq1Cvv370fz5s0BAKdOnUJqaioGDBggLm0EVP/3sm/fPvzwww9Kx/39/WXZWwEAgYGB2LFjh9Ieyl27dqFTp06yxAAUF2H5+eefMXfuXIXjK1eulLVAy5UrV1CxYkXUrVsXdevWhYuLi6x/pwCwdetWnD17Vul4v3794OHhgdWrV8sWS1l7jRcuXAhHR0fZluP3798fERERSn+PK1asQN++fVU+f8ly/0GDBmHRokWyFWEpi4eHB/bs2YOQkBAA/1cAZOXKleJyOVVr3749Fi5ciBUrVogx5OTk4JtvvkHHjh1liaGEj48Pjhw5glq1aikcP3r0KFq3bi1bHOousqUpn4cXLFiAnj17wsDA4I1jzM3Ncfv2bcnnZpKlAnPmzMGECRMQERGB+vXrqy2OsLAwBAcH4+XLlxAEAadPn8bGjRsxe/ZsrFy5UrY4YmJiEBgYCCcnJ1y5cgX169fHnTt3IAgCmjRpotK537QB09raGubm5hg+fLh4TI4NmCtWrICxsTHi4uIU9n4AxW8KciVZ06ZNQ1hYGH755RfY2toCANLS0jBhwgR8/fXXssQAAImJiYiJiUG1atXQsGFDAEBSUhJevXqFtm3bKvz/qer/Jzc3F3PmzEFMTEyZb0Zy7BlMSUkR/xZu3rwJALCysoKVlRVSUlLEcXJUL7O0tMSuXbswbtw4heO7du2CpaWlyucHAFdXV3z33XeIjY1V2NNw7NgxjBs3TqGwjir/ZhYsWIDu3bvjzz//RLNmzQAAp0+fxvXr1/Hbb7+pbN7XZWRk4MKFC4iNjcW+ffswdepU6OnpwdvbG76+vhg2bJjKYzA0NMSxY8eUPiwdO3bsrR9epPb6XuOSPVjm5uZYuHChrFUHNeHEiCacJPr+++/RoUMHXLp0CQUFBVi0aBEuXbqE48ePK73Pqcq8efPg5+cHV1dXvHz5En369MH169dhZWUlS1Gr0gIDAzFp0iQkJCSIz42TJ09i69atmDFjBn7//XeFsarwriJbclUy1oTPw/379xf/LXcVYxa+UAELCws8f/4cBQUF0NPTg6GhocL9cmwcL7F+/XpMnz5d/OBmZ2eHGTNmKBR/ULWmTZuiQ4cOmDFjBkxMTJCUlAQbGxv07dsX/v7++PLLL1U2tyZvwFSnxo0b48aNG8jLyxNL/KampkJfX1/pQ9THvkH2iy++QFxcHPr3748qVaooJTJjxoxRybyaKioqCkOHDkWHDh3ExOLUqVOIjo7Gzz//jIEDB6o8Bk0qnHPv3j1ERESIzaldXFwwcuRI2VsNlBAEAQkJCVi6dCnWr1+v0sIXpc2ZMwczZszAsGHD0LRpUwDFz4vVq1fj66+/lu0qp6urK77//nux0EFJgYOUlBT4+PjI1uDU19f3vcZpaWnh0KFDks7drVs3REVFwdTU9J2V3OSq3nbz5k3MmTMHSUlJyMnJQZMmTTBp0iS4ubnJMj9QXK128+bNCjH07dtX6TOYqr1vA2ZVFmrRlCJbmvB5WJ1VjJlkqUBJGdM3UUdFqufPnyMnJ0ctPRNMTExw/vx51KxZExYWFjh69Cjq1auHpKQkdO7cGXfu3JE9pvJuxowZ7z32m2++UWEk6mdubo49e/agZcuW6g4FQPHSWgCoVq2a2mI4deoUFi9erFB++KuvvhKTLpLXuXPnEBsbi9jYWBw9ehTPnj2Dm5ub2DtLrqs3W7ZswaJFixSeF2PGjMHnn38uy/xA8RW1K1euoEaNGgpJ1vXr19GgQQO8ePFCtljUZdCgQVi8eDFMTEzeeaKqvJw8jI+PR4sWLZSq6RUUFOD48ePw8vJSU2TqYWpqivPnz8PJyUmtcWjC52F1VjFmkkUqZ2tri8OHD8PFxQWurq6YM2cOAgMDkZSUhJYtW4pnFlTt9u3bKCgoULpSc/36dejq6sLBwUGWODRlf5qmUHcDSUdHR+zdu1f2fYqlFRUVYdasWZg3b57492BiYoJx48Zh6tSp731mlKTl5eUFHx8f+Pj4oEWLFrIuiyutQoUKaNy4sdgby8vLS7Y2C5rG1dUVs2fPRufOnRWSrCVLlmDNmjWy9xosrzStabcm9AvTJEOGDMEnn3yCkSNHqjsUtTMzM8OmTZvQoUMHheN79+7FF198gaysLJXNzT1ZKpCamvrW++XqwJ6eno7x48eLe01ez6fletFp3rw5jh49ChcXF3Ts2BHjxo3DhQsXsH37dnG9shwGDhyIwYMHKyVZp06dwsqVKxEbG6vyGNS5P+11mZmZ2LZtG27evIkJEyagUqVKOHfuHCpXroyqVavKEsPrDSQ//fRTmJiY4IcffpCtgeS3336L8PBwrF27VqFXlpymTp2KVatWYc6cOeIVtaNHj2L69Ol4+fIlvvvuO1njKSwsxM6dO8UrFvXq1UNgYCB0dHRki0ETTka0b98e8fHxmD9/PgoKCuDh4SFePWrZsqVsz5cnT56otbBBaa9evSpz76Jc72uastcYAM6ePYstW7aU+RyVa5nexo0blfrrlZgwYQJ+/PFHlcxrbm7+zj2igoy9y0rmel1GRoZSw2o5xMXF4aeffhJfQ11dXTFhwgSVFr4ovVdVU4psAcVLSdesWYObN29i0aJFsLGxwZ9//onq1aujXr16Kp9fX1+/zJPojo6O0NPTU+ncvJKlAtra2m998ZEruenQoQNSU1MxevToMveayLXE5NatW8jJyUGDBg2Qm5uLcePG4fjx46hduzbmz5+vVP1QVUxNTXHu3Dmlij83btyAh4cHMjMzVR6DOvenlZacnIx27drBzMwMd+7cwdWrV+Hk5IRp06YhNTUV69atkyUOTWgg2bhxY9y8eROCIMDBwUHpzUiOM+N2dnaIjIxU2gS9a9cujBo1Cvfv31d5DCVu3LiBgIAA/PXXX3B2dgZQ3OTS3t4ee/bsQc2aNVUew7tORki9x+VdCgoKcObMGcTFxSE2NhaHDh2CtrY2Xr58KWscCQkJCh/a5Dwxc/36dQwePBjHjx9XOC7nB+kSmrDXeNOmTRgwYAD8/Pywf/9+tG/fHteuXUN6ejq6du0q2zI9c3NzbNy4UeksfWhoKDZt2oSHDx+qZN4PKWjh7e2tkhiA/ytutWvXLvj7+4tVaoHiz1rJyclwdnZGdHS0ymJ43a+//opBgwahW7du4kmzY8eOYceOHYiKikKfPn1UMq8m7WUtERcXhw4dOqBly5aIj4/H5cuX4eTkhDlz5uDs2bPYtm2bymOYOXMmrly5olTFeMiQIahdu7ZKt0QwyVKBpKQkha/z8/ORmJiI+fPn47vvvnvnRlWpmJiY4MiRI2jUqJEs82k6MzMzxMbGonHjxgrHExIS4OPjg2fPnqk8Bk3Zn9auXTs0adIEc+fOVVhyc/z4cfTp00e2OCwtLXH8+HE4OzsrxHHnzh24urri+fPnKo/hXfvT5NiTZmBggOTkZNSpU0fh+NWrV9GoUSNZ95l07NgRgiBg/fr1qFSpEoDis8H9+vWDtrY29uzZo/IYNOVkRIlr164hNjYWhw8fRlxcHPLy8uDl5YUdO3bIMv+jR4/Qq1cvxMXFwdzcHEDxlWhfX19s2rQJ1tbWKo+hZcuWqFChAiZPnlzmSbuS6qByUude4wYNGmDEiBEIDg4Wn6OOjo4YMWIEqlSp8kH7Xv+NPXv2oG/fvti9ezdatWoFAAgJCcH27dsRExODunXryhKHupTsSVu7di0+//xzhcIKenp6cHBwwLBhw2Rt1eLi4oLhw4cjNDRU4fj8+fPx888/iydK5FLyMV+O6rSv8/T0RM+ePREWFqbwHn/69Gl069ZN3IOsSl27dkVMTAz09fXLrGJcmuRXoCXvvEVvtHv3bsHb21u2+VxcXIRz587JNt/7ePbsmZCVlaVwk0unTp2Enj17CgUFBeKxgoICoXv37oK/v78sMVSuXFlsvuvi4iLs2rVLEITipo1yNlk1NTUVbty4IQiCYuPGO3fuCPr6+rLFoUkNJNWpadOmQkhIiNLx0aNHC82aNZM1FiMjIyE5OVnpuJzPUWNjY/H5aW5uLqSkpIgx1KhRQ5YYBEEQvvjiC8HOzk6wtLQUunbtKixcuFA4f/68UFRUJFsMgiAIn3/+ueDh4aHQuPvixYuCh4eH0Lt3b1liMDIyEi5fvizLXG/j6+srPH36VOl4VlaW4OvrK1scRkZGwu3btwVBEIRKlSqJfzOXLl0SbG1tZYtDEARh/fr1goWFhXD27Fnhyy+/FOzs7ISrV6/KNn9cXNxbb3KYPn26kJOTI8tc76Knp1dmM+Lr16/L+v66cuVKoV69eoKenp6gp6cn1KtXT/j5559lm18QihvL37p1SxAExff427dvy/a7GDhw4HvfpMY9WTJydnbGmTNnZJtv4cKFmDx5Mv773//KVtShLLdv38bo0aMRGxursLxGkHmZyQ8//AAvLy84OzuL66KPHDmC7Oxs2ZYfacr+NH19/TI3Ll+7dk2Ws+IlNKWBpLr3p82dOxcBAQE4ePCgQvWje/fuYe/evSqfvzR9ff0yr+rm5OSofP16iYoVK4p7XKpUqYKbN2+Ka/flKtENFC8Js7KywtChQ9GmTRu0atVKLfv2oqOjcfDgQYXiLK6urli2bBnat28vSwyurq6y/u7fJDY2Vmn/EwC8fPkSR44ckS0OCwsL8e+katWqSElJgZubGzIzM2W5Al9anz59kJmZiZYtW8La2hpxcXFKy+JVycfHR+lY6asmcrzHa1IVXHt7e8TExCj9Hxw8eFC21g/h4eGYP38+QkJCFN5TQkNDkZqaipkzZ8oSh7m5OR4+fKi0lDExMVG2vd/Lly9HUVGRuDfvzp072LlzJ1xcXODn56fSuZlkqcDrH14FQcDDhw8xffp0Wbte9+rVC8+fP0fNmjVhZGSktNdErn5d/fr1gyAIWL16NSpXrqyWS9ZA8YeE5ORkLF26FElJSTA0NMSAAQMwevRocVmUqs2fP1+sHjdjxgzk5ORg8+bN4v40uQQGBmLmzJnYsmULgOI3xNTUVEyaNAndu3eXLQ5NaCD5+v60YcOGoVKlSti+fbts+9O8vb1x7do1LFu2TOzH1K1bN4waNQp2dnYqn7+0Tp06Yfjw4Vi1apVCP6SRI0eqrHHm6zTlZERGRgaOHDmC2NhYTJkyBZcvX0ajRo3EioNyJThFRUVl9nLR1dVVKkChKj/88AMmTpyI77//vsyN9KouzJGcnCz++9KlS0hLSxO/LiwsRHR0tGwf2oDiypMHDhyAm5sbevbsiTFjxuDQoUM4cOCA0hIkqZVudFyatbU1mjRpguXLl4vH5Hhfefr0qcLXJVskvv76a5UW7WnSpAliYmJgYWGBxo0bv/WzhZxVJ8eNG4evvvoK58+fR4sWLQAU78mKiorCokWLZIkhIiICP//8s0JRlMDAQDRo0AAhISGyJVm9e/fGpEmTsHXrVmhpaaGoqAjHjh3D+PHjMWDAAFli6Ny5M7p164aRI0ciMzMTzZs3h66uLv7++2/Mnz9fpcvPuSdLBcoqfCEIAuzt7bFp0ybxrIKqaUJ/AqC46VtCQoK4iZ7ULysrCz169MDZs2fx7Nkz2NnZIS0tDZ6enti7d6+s1ZgKCgqwadMmJCcnq6WBpLr3p+Xn58Pf3x+RkZGynoR5k8zMTAQFBeGPP/4QP0jn5+ejc+fOiIqKkqV0uKYUy3ndjRs3MGvWLFmbAAPFHxIyMzOxceNGMem+f/8++vbtCwsLC1n2hpW0ESjrvU2OFQml31fL+thiaGiIJUuWYPDgwSqNo8STJ0/w8uVL2NnZoaioCHPnzhWfo9OmTYOFhYXK5n7fRsgAcPjwYZXF8S5xcXEICwtDQkKCSh5/xowZmDBhAoyMjDRib21pO3bswLx58xR6yk2YMEG2gmPm5uY4c+aM0nvKtWvX0LRpU1kKfQHF1UiDg4MRFRWFwsJCVKhQAQUFBejbty+ioqJkqVhrZWWFuLg41KtXDytXrsSSJUuQmJiI3377DeHh4SrdI8ckSwVer7qjra0Na2tr1KpVS6lRXnng6+uLqVOnol27duoOBUDxZumySu42aNBA5XM7OTnhzJkzsLS0VDiemZmJJk2ayFbxp8TRo0cVkhtN+T+Sk5mZGc6dO4eaNWsqJFl3796Fs7OzLBXkrK2txQ9omuLGjRu4dOkSgOKrwHIuP9IUGRkZYkXB2NhYXLp0Cebm5vDy8oK3tzfGjBkjSxz37t1DYGAgLl68KC43unfvHurXr4/ff/9dlsbV76omp8oKckBxuwdBEMRN86WXNevp6cHGxkbWFgP0bleuXIGHh4fKe2EWFhbi2LFjaNCggVgYprwLCQmBrq6u0pXM8ePH48WLF1i2bJms8dy7dw8XLlxAbm4uGjduLOv7iZGREa5cuYLq1avj888/R7169fDNN9/g3r17cHZ2VunyXiZZHzFN6dd18+ZNjBw5Ev369UP9+vWVlpnIkdwAwOPHjzFo0CD8+eefZd4vx1lpbW1tpKWlKVXDSk9PR/Xq1ZGXl6fyGF738uVL6Ovrq20Z5y+//IL//ve/uHXrFk6cOIEaNWpgwYIFcHJykuWsn42NDfbt24fGjRsrJFkHDhzA4MGDce/ePZXHEBoaCn19fcyZM0flc72PVatWYcGCBWIJ/dq1a2Ps2LEYOnSo7LHk5OQoLYmTq2eUjo4OrKys0Lp1a3h7e8PHxwdubm6yzP06QRBw8OBBcTmpi4tLuTwpomkePXpUZt8wud7XBg8ejEWLFsHExETheG5uLkJCQrB69WqVx1B6KSfwf1sk5syZg4KCAhw9elTlMRgYGODy5cvvXcZcDursKRcSEoJ169bB3t5eXGJ96tQppKamYsCAAQqfw1S9pFTd7ycNGjTA0KFD0bVrV9SvXx/R0dHw9PREQkICAgICFJYeS638XVaRyYMHD3D06NEy/8DkagLn4OCgEf26Hj9+jJs3b4qlVoHiJSdyF74YO3YsMjMzcerUKfj4+GDHjh1IT0/HrFmzMG/ePJXO/fvvv4v/3rdvn8KSq8LCQsTExMhanKSoqAjfffcdIiMjkZ6ejmvXrsHJyQlff/01HBwcZOs3ExERgfDwcIwdOxazZs0SnwsWFhZYuHChLEmWJuxPKygowOrVq3Hw4EG4u7srLdeUc7+eJmyY1pRiOcnJybI0y3wfWlpa+PTTT/Hpp5+qNQ51rgQAipfBW1lZISAgAAAwceJErFixAq6urti4caNsS0kTEhIQFBSEy5cvKy1flPM5unbtWsyZM0cpyXrx4gXWrVsnS5LVqFEj8T29tObNm8syPwDUr18ft27d0ogkSxN6yqWkpIh99Er6yVlZWcHKygopKSniOFWfXNWE95Pw8HD06dMHoaGhaNu2rRjH/v37lVr6SI1XslQgKioKI0aMgJ6eHiwtLRWexHI2gdOUfl2urq5wcXHBxIkTyyx8IdebYpUqVbBr1y40bdoUpqamOHv2LOrUqYPff/8dc+fOVenZttL7GV7/k9PV1YWDgwPmzZuHTp06qSyG0mbOnIm1a9di5syZGDZsGFJSUuDk5ITNmzdj4cKFOHHihCxxuLq64vvvvxebEpdcRUpJSYGPj48s1cw0YX/a2/ZYaGlpydp819raGosXL1bYMA0AGzduREhIiCz/Jy1btoQgCBgzZkyZrxmqXppW4sWLFxAEQawoePfuXezYsUOWqlSLFy9+77FynLjThJUAQHGV3oiICLRp0wYnTpxA27ZtsXDhQuzevRsVKlSQvs/NGzRs2BA1a9bEpEmT1PK+lp2dDUEQYGFhgevXryssnywsLMQff/yByZMn48GDByqNAyj+uyitZIuEgYGByucuER0djSlTpuDbb78t80SVXFe/Ac3sKacumvB+AgBpaWl4+PAhGjZsKH4eO336NExNTVXbS07yovAkVKtWTZg1a5ZQWFio7lDKJHe/LiMjozJ7RsjNxMRE7GtSvXp14ejRo4IgCMKtW7cEQ0NDWWJwcHAQHj9+LMtcb1OzZk3h4MGDgiAo9q64fPmyYG5uLlscBgYGwp07d5TiuHbtmmBgYCBbHIJQ3Jtr2bJlwg8//CAcOHBA1rk1iZmZmXDt2jWl41evXhXMzMxkiaFixYrClStXZJnrbT799FMhIiJCEARBePr0qWBjYyNUq1ZNMDAwEJYvX67SuR0cHN7r5ujoqNI4SvTp00do2bKlcObMGaFixYrC/v37hV9++UVwdnYWdu/eLUsMgiAIhoaGwt27dwVBEISJEycK/fv3FwRBEFJSUgQrKyvZ4jA2Nlbr+5qWlpagra39xpuOjo4wa9YstcUnNy0tLfFW+vdQ8rWcNKWnnCbQhPcTdeJyQRV4/vw5evfuLWbLmkbufl1t2rRBUlKS2jfOOzs74+rVq3BwcEDDhg3F/mGRkZGoUqWKLDHcvn1blnne5f79+2X+fxQVFSE/P1+2OBwdHXH+/Hmls77R0dEKPYHk0KpVK7Rq1UrWOTVR//79ERERobREccWKFejbt68sMXzyySfipmR1OnfuHBYsWAAA2LZtG2xtbRWqUqmy9O/58+dlqeT4vg4dOoRdu3bBw8MD2traqFGjBj799FOYmppi9uzZ4vI9VTM2NkZGRgaqV6+O/fv3i+XMDQwM8OLFC1liAIC2bduq9X3t8OHDEAQBbdq0wW+//abQhkRPTw81atRQafsHTbvSeujQIbXtK36dpvSU0wSa8H6iTkyyVGDIkCHYunUrJk+erNY4NKVf12effYbQ0FBcuHChzP4qcvXeGTNmDB4+fAiguJyrv78/fv31V+jp6b2z3L2UcnNzERcXV+a+Brn267m6uuLIkSNKyc22bdtUvka5tLCwMAQHB+Ply5cQBAGnT5/Gxo0bMXv2bKxcuVJl8y5evBjDhw+HgYHBOz8sqOr/5EOW68q1BKrEqlWrsH///jI3TJfu0aOqvWIrV67EyJEjcf/+fbUWy3n+/Lm412X//v3o1q0btLW10bx5c6UlUlKrVKkS0tLSYG1tjTZt2mD79u1qrZyWm5srFuyxsLDA48ePUadOHbi5ucnag+jTTz/F0KFD0bhxY1y7dk1sWn7x4kVZ97WuXLkSQUFBSElJKfM5qur3tZIls7dv34a9vb3sJ3VLTj6UePz4MZ4/fy4+RzMzM2FkZAQbGxtZ3tfKaogsp9Kft9TdU07TqPv9RJ24J0sFCgsL0alTJ7x48aLMPzC5nkia0q/rbS/+cm4QLk0QBLx48UIs62llZSXLvImJiejYsSOeP3+O3NxcVKpUCX///bf4ZiTXfr1du3YhKCgIU6ZMwcyZMzFjxgxcvXoV69atw+7du2XdXL9+/XpMnz5d3JxrZ2eHGTNmqLT4hqOjI86ePQtLS8u3bpRW5R7K0oVgBEHAjh07YGZmBg8PDwDFG+szMzPRrVs3rFmzRiUxlOV9e/Cocq/YyZMnlXqUqaNYjjqrUpmZmeHkyZNwcXGBtrY20tPTFfbdyO2TTz7BrFmz4Ofnh8DAQJibm2P27NlYvHgxtm3bJv79qlpmZiamTZuGe/fu4csvv4S/vz+A4hNnenp6mDp1qixx/PHHH+jfv7/SyUxA/ve1zMxMrFq1Suz3U69ePQwePFi2K6EbNmzA8uXLsWrVKvHq89WrVzFs2DCMGDFClisWXl5e8PHxgbe3N1q2bCnrfjBA+fNWyWtVaXK/fmkCTXg/UScmWSowa9YshIeHw9nZWWlDrJxPJPbrUqbuUqI+Pj6oU6cOIiMjYWZmhqSkJOjq6qJfv34YM2aMbMVIAODIkSOYOXMmkpKSxD5Z4eHhaN++vWwxlPb8+XPk5OQolbcvDyZNmoQnT54gMjJS7PVTWFiIUaNGwdTUFD/++KOaI5SXphTL2bZtG/r06YPCwkK0bdsW+/fvBwDMnj0b8fHxbywCIYXu3bvj2LFjcHFxQVxcHFq0aAE9Pb0yx8rxnvLrr7+ioKAAAwcOREJCAvz9/ZGRkSGuBOjVq5fKY9AkDg4O6NSpE77++mtUrlxZbXGcPXsWfn5+MDQ0RNOmTQEAZ86cwYsXL7B//36xwpwq1axZs8xVEAkJCejRo4csy+RnzZqF+Ph4HD9+HAUFBfDw8FBIukqK16jKu/rIlSZX4R5SPyZZKmBhYYEFCxZg4MCBao0jPj4eLVq0UEqoCgoKcPz4cXh5eak8hvz8fBgaGuL8+fOoX7++yud7mzeVEl26dClCQ0NlKSVqbm6OU6dOwdnZGebm5jhx4gRcXFxw6tQpBAUFiT1wyovVq1fD19dXI8ruqpO1tTWOHj2qtAfp6tWraNGiBTIyMtQUmXpUrFhRI/ZxAuqrSvXixQusXbsWN2/exLx58zBs2LA3flB8femWHJ4/fy77SoDX51dnKXkTExOcP38eNWvWlGW+N2ndujVq1aqFn3/+WXyvLygowNChQ3Hr1i3Ex8erPAYjIyPExcXhk08+UTh++vRp+Pj4qLTZ6+sKCgpw5swZsYn4oUOHoK2tLUtTeaLXlc/LGSqmr6+Pli1bqjsM+Pr64uHDh0pXBrKysuDr6yvLJWtdXV1Ur15dIy6PR0RE4Oeff1YoJRoYGIgGDRogJCREliRLV1dX/KBmY2OD1NRUuLi4wMzMTJamtyXCw8Ph6+sLT09P2ZdVlDZ79mwMGzYMVatWhbe3t9jwVdUfrkuvA38XOZb3FhQU4MqVK0pJ1pUrV5T67JUHmlIsBwBsbW1ha2sLoHjfxaFDh+Ds7Kzasr8ADA0NMXLkSADFVyt++OEH2fdkadrfCVC892fgwIGIjo4u83653mu6deuGw4cPqz3JOnv2rEKCBQAVKlTAxIkTxaXHqta2bVuMGDECK1euFK+cJSQk4Msvv5S9YfatW7dw4cIFJCUlITk5GSYmJrKcUE5OTkb9+vWhra2t1Jz5dXKdCCD1Y5KlAmPGjMGSJUs+qPqOKpS1JhgAMjIyZOn9U2Lq1Kn4z3/+g19++UWhApLc8vPzy3zTcXd3R0FBgSwxNG7cGGfOnEHt2rXh7e2N8PBw/P333/jll19kvdJ34sQJzJ8/HwUFBfjkk0/E5KZly5YwNDSULY7r16/j/v37iI2NRXx8PH766SeMGDECVapUgY+PD3799VeVzJuYmPhe4+SqVjVo0CAMGTIEN2/eFJf8nDp1CnPmzFHYu1VeaEqxnM8//xxeXl4YPXo0Xrx4AQ8PD9y5cweCIGDTpk2yNKvOz89HamoqHj58KHuSpWl/J0BxU/msrCy1NJUvrU6dOpgyZQqOHj1a5nNUriJGpqamSE1NVUr67927p9SgWFVWr16NoKAgeHh4iL+HgoIC+Pn5qbSAUWl9+vRBXFwc8vLy4OXlBW9vb0yePBkNGjSQ5fnZqFEjpKWlwcbG5o3NmQH17UMn9eByQRXo2rUrDh06BEtLS9SrV0/pxVfVlcJK9vXs2rUL/v7+0NfXF+8rLCxEcnIynJ2d33gmUGqNGzfGjRs3kJ+fjxo1aigleHJVpgoJCYGurq7SGdfx48fjxYsXWLZsmcpjKGl46+vri0ePHmHAgAE4fvw46tSpg5UrV6JRo0Yqj6FEQUEBTp06hfj4eMTFxeH48ePIy8vDJ598otLGzG/y/PlzHDlyBBs3bsT69eshCIJsya+6FRUV4aeffsKiRYvECphVqlTBmDFjMG7cOHGfVnmhKcVybG1tsW/fPjRs2BAbNmzAN998g6SkJKxduxYrVqx47yTk36patSoOHjwoe1sDTaTOpvKlqatgzuu++uor7NixAz/99BNatGgBADh27BgmTJiA7t27Y+HChbLEAQDXrl3D5cuXoaWlhbp166JOnTqyza2trQ0rKysMHjwYbdq0QatWrVS+D6u0u3fvonr16tDS0npn5VG59pSS+vFKlgqYm5vLWsDgdSUVhQRBgImJicKVCT09PTRv3hzDhg2TLZ4uXbrINtfrSi930dLSwsqVK99YSlQO9erVE89u2djYIDIyEjt27ICrq6usCRZQvKSkZcuWsLa2RqVKlWBiYoKdO3fKui9s//79iI2NRWxsLBITE+Hi4gJvb29s27ZNliUeQPHy2cLCQqWrrE+ePEGFChVUXm63oKAAGzZsQFBQECZOnChWKytvZX5L05QlkllZWeLzIjo6Gt27d4eRkRECAgIwYcIE2eIIDg7GDz/8gJUrV5bbokUlNKWUvKb0PPzpp5+gpaWFAQMGiCeldHV18eWXX2LOnDmyxlKnTh2xPYzcPasyMjJw5MgRxMbGYsqUKbh8+TIaNWoEHx8f+Pj4qLygU+nE6e7du2/dD88kq/zglSwVePHiBYqKisQrNnfu3MHOnTvh4uICPz8/2eKYMWMGxo8fL+vSQE2jaeVD27dvj27dumHkyJHIzMxE3bp1oauri7///hvz589XaXPT0lasWIHY2FhxeUXr1q3FNyO5llcA/1fxcty4cRg+fLha+gB16NABn332GUaNGqVwPDIyEr///jv27t2r8hiMjIxw+fJlvvmWEhMTg5iYGDx69Egh6dLS0sKqVatkiaFOnTqYNWsWAgIC4OjoiE2bNon7xdq2bStbw9GuXbsiJiYGxsbGcHNzU3pNl7uPmjqps5R8WFgYvv32W1SsWPGt+9W0tLRkXboIFK8EKPnZa9asKetVHABYt24dfvzxR7Fyb506dTBhwgT0799f1jhK3LhxA7NmzcL69etRVFQk6xI9HR2dMvfDZ2RkwMbGhssFy5HyfUpMRTp37qzwQbp58+Zq+SD9zTffAAAePXqEq1evAgCcnZ3VViI7ISFBoY+HHE1vDx8+rPI5PsS5c+fESmDbtm1D5cqVkZiYiN9++w3h4eGyPTdGjhwpJjejRo2CsbGxLPO+bv78+YiPj8fcuXOxaNEicW9YSal7OZw6darMTfs+Pj6y9dxp2rQpEhMTmWT9fzNmzMDMmTPh4eGBKlWqyH5WvMTYsWPRt29fGBsbo0aNGmLD0/j4eLi5uckWh7m5uSz7v/4XlNVUfv369dDT00NUVJRK505MTER+fr747zdRx/PVyMgIFhYW4r/lNH/+fHz99dcYPXq0WPTr6NGjGDlyJP7++2+EhoaqPIaMjAyxomBsbCwuXboEc3NzfPbZZ7KXTNeU/fCkAQSSnKWlpZCSkiIIgiD8/PPPQoMGDYTCwkJhy5YtQt26dWWLIzs7W+jXr59QoUIFQUtLS9DS0hIqVKgg9O3bV8jMzJQtjvT0dMHX11fQ0tISLCwsBAsLC0FLS0to06aN8OjRI9ni0ASGhobC3bt3BUEQhJ49ewrTp08XBEEQUlNTBUNDQ9ni2LFjhxAaGio0btxYMDAwEDw9PYUpU6YI+/btE3Jzc2WLo7Tk5GRhyZIlQteuXQVdXV2hatWqssxrZGQkJCcnlxmPXP8nmzdvFpycnIQlS5YIx48fF5KSkhRu5Y2tra2wbt06dYchCIIgnD17Vti+fbvw7Nkz8dju3buFo0ePqjEqKpGbmyskJCQIjx8/VncoalFYWCjMmDFDMDU1FbS1tQVtbW3BzMxMmDlzplBYWChLDA4ODsLatWuVjkdFRQkODg6yxKCtrS3Y2NgI3bt3FxYvXlzma7qqde3aVejataugra0tdOzYUfy6a9euQmBgoODg4CD4+fnJHhepD69kqcDz58/Fqj779+9Ht27doK2tjebNm79zQ6SUhg4disTEROzevVuhL9SYMWMwYsQIbNq0SZY4QkJC8OzZM1y8eFHcuH3p0iUEBQXhq6++wsaNG2WJQxPUqlULO3fuRNeuXbFv3z7xDN+jR49k3YPTpUsXca9cVlYWjhw5gq1bt6JTp06y9xQRBAGJiYmIjY3F4cOHcfToURQVFcHa2lqW+Zs2bYoVK1ZgyZIlCscjIyPh7u4uSwy9e/cGoFiRrKQ6VXmsRvXq1StxE7+6ubu7Kz0PAgICZI+joKAAsbGxuHnzJvr06QMTExM8ePAApqamarsSrQmMjIxkabirqaZOnYpVq1Zhzpw5CleRpk+fjpcvX+K7775TeQwPHz4s8++1RYsW4lVHVUtOTka9evXeOe7YsWPw8PBQKAgmFU3bD0/qxz1ZKtCgQQMMHToUXbt2Rf369REdHQ1PT08kJCQgICAAaWlpssRRsWJF7Nu3D61atVI4fuTIEfj7+yM3N1eWOMzMzHDw4MEyGxW2b98emZmZssShCbZt24Y+ffqgsLAQbdu2xf79+wEU94uKj4/Hn3/+KVssry+vuHjxIiwsLNC6dWvs2LFDlhg+++wzHDt2DNnZ2WjYsCF8fHzg7e0NLy8v2fZnHTt2DO3atcMnn3yCtm3bAijeD3TmzBns378frVu3VnkMrEalaNKkSTA2NsbXX3+t7lDw119/4ffffy+z8a1cvaHu3r0Lf39/pKamIi8vD9euXYOTkxPGjBmDvLw8REZGyhKHJhAEAdu2bcPhw4eV9usB5Wt/GgDY2dkhMjJSqa3Brl27MGrUKNy/f1/lMdSvXx99+vTBf/7zH4Xjs2bNwubNm3HhwgWVx/C+TE1Ncf78eTg5OalsDu6HpxK8kqUC4eHh6NOnD0JDQ9G2bVvxKtL+/ftl2YdUwtLSUjyzUpqZmZm4dlsORUVFSmXsgeIKSJpSRUwuPXr0QKtWrfDw4UM0bNhQPN62bVt07dpVtjjc3Nxw+fJlWFhYwMvLC8OGDYO3t7fsTRLr1q2LESNGoHXr1mU+V+XQsmVLnDhxAj/++CO2bNkCQ0NDNGjQAKtWrRIrZalaeUui3uXly5dYsWIFDh48iAYNGii9fsiV3MTExCAwMBBOTk64cuUK6tevL/bJkvPqyZgxY+Dh4YGkpCRYWlqKx7t27VruzoyPHTsW//3vf+Hr64vKlSurbb+epnjy5EmZjbHr1q2LJ0+eyBLDjBkz0KtXL8THx4tX044dO4aYmBhs2bJFlhjelxzXFUr2wxPxSpaKpKWliR+kS3q+nD59GqampmW+IKrCihUrsHXrVvzyyy+wtbUV4woKCkK3bt0wYsQIWeLo3LkzMjMzsXHjRtjZ2QEA7t+/j759+8LCwkK2qyb0f5YtWwZvb29ZGyC/r8zMTLVUGdQEly5dKvOKiVzNdzXF26qCylUJFCheStqhQwfMmDEDJiYmSEpKgo2NDfr27Qt/f3/ZCtVYWlri+PHjcHZ2FuNwcnLCnTt34OrqiufPn8sShyaoVKkSfv31V3Ts2FHdoWiEZs2aoVmzZli8eLHC8ZCQEJw5cwYnT56UJY6EhAQsWLBALG7l4uKCcePGyXpi+X2U/vuRUuPGjd874Zez1QCpF5Osj1hJE+C8vDxUr14dAJCamgp9fX2lM/Sq/KO/d+8eAgMDcfHiRdjb24txuLm54ffff0e1atVUNje9n8LCQly4cAE1atSQ9SrnDz/8AAcHB/Tq1QsA8Pnnn2Pbtm2oUqUK9u7dq3C1T1XatGkDb29vpbOPT58+Rffu3WX5QH/r1i107doVFy5cEPdiAf9Xpay87cnSFCYmJjh//jxq1qwJCwsLHD16FPXq1UNSUhI6d+6MO3fuyBKHhYUFjh07BldXV4UPiUePHkX37t2Rnp4uSxyawNHREX/++adsJys1XXx8PDp27Ijq1asr7L2+d+8e9u7dK8ty5/8lqkqyZsyY8d5jeaWr/OBywY+YOpsAl2Zvb49z584hJiZG4SxXu3bt1BxZ+TV27Fi4ublhyJAhKCwshJeXF06cOAEjIyPs3r1bLFWtapGRkVi/fj0A4MCBAzhw4ACio6OxZcsWTJgwQdyzpkqxsbG4cOECEhMTsX79enEd/atXrxAXF6fy+YHi5WCOjo6IiYmBo6MjTp8+jYyMDIwbNw4//fSTLDGQsooVK4pXFatUqYKbN2+Km+vl6pEFFPfXW7hwIVasWAGgOPnOycnBN998U+6u6EyfPh0zZszA6tWrFQoLlEf5+fmYMWMG9u7di/3794vvr926dcOoUaPElSNyefToUZn75ORehq4OTJyoLLySRbJ4U2NRAFi9erWaoiq/qlWrhp07d8LDwwM7d+5EcHAwDh8+jF9++QWHDh3CsWPHZInD0NAQ165dg729PcaMGYOXL1/iv//9L65du4ZmzZrh6dOnKo9BW1sbiYmJGDFiBHJzc/HHH3/AwcEB6enpsLOzk+UqkpWVFQ4dOoQGDRrAzMwMp0+fhrOzMw4dOoRx48a9tScPqU6XLl0QEBCAYcOGYfz48di1axcGDhyI7du3w8LCAgcPHpQljr/++gt+fn4QBAHXr1+Hh4cHrl+/DisrK8THx6ut96E6vHjxAl27dsWxY8fg4OCgtF+vvC3Fsra2xvHjx2XbP1qWhIQEBAUF4fLly0p7njStOqochS+ISvBK1kcuMzMT27Ztw82bNzFhwgRUqlQJ586dQ+XKlVG1alVZYtCUxqL0f/7++29xn97evXvRs2dP1KlTB4MHD8aiRYtki8PCwgL37t2Dvb09oqOjMWvWLADFm5PlfGOuUqUK4uLiMGjQIHzyySfYunWr2G5ADoWFhWLbBysrKzx48ADOzs6oUaOG2Eic5Dd//nzk5OQAKH4dy8nJwebNm1G7dm3Zim8AxSdFkpKSsGnTJiQnJyMnJwdDhgxB3759y93VnKCgICQkJKBfv34sfAGgX79+Ygl3dRk8eDDq1KmDVatWafz/iRzXFbS1td/6O9CkpJNUi0nWRyw5ORnt2rWDmZkZ7ty5g2HDhqFSpUrYvn07UlNTsW7dOlniiIyMRFRUFPr37y/LfPRulStXxqVLl1ClShVER0cjIiICQHGPNx0dHdni6NatG/r06YPatWsjIyMDHTp0AAAkJiaiVq1assRQ8maor6+PDRs2YNasWfD398ekSZNkmR8oLoGclJQER0dHNGvWDHPnzoWenh5WrFjBM65qVPp3X7FiRbWVSn/58iUMDAzQr18/tcyvSfbs2VNma5LyqqCgAKtXr8bBgwfh7u6uVDZcjpMBt27dwm+//Sbba/bbPHr0SDwx5ezsrHSV99mzZyqP4fViXvn5+UhMTMTatWs/aO8W/e9jkvURCwsLw8CBAzF37lzxLDkAdOzYEX369JEtDk1qLErFBg0ahM8//1y8sliyP+7UqVOybihfsGABHBwccO/ePcydO1dsqvrw4UOMGjVKlhheP7M5bdo0uLi4ICgoSJb5S+Ys6Vs3c+ZMdOrUCa1bt4alpSU2b94sWxxUtrNnz4r7XVxdXWVrUl3CxsYGXbt2Rb9+/dC2bVuxYm15ZG9vL2vjdk2XkpIithO4du2awn1yXVFq27YtkpKS1JpkPXv2DKNGjcKmTZvEK0U6Ojro1asXli1bJmuLkM6dOysd69GjB+rVq4fNmzdjyJAhssVC6sU9WR8xMzMznDt3DjVr1lSoqHP37l04Ozvj5cuXssShSY1F6f9s27YN9+7dQ8+ePcUKj2vXroW5uXmZbxKqEB8fjxYtWqBCBcXzPQUFBTh+/Di8vLxUHsPdu3dhb2+v9ME1JSVF3GugDk+ePIGFhYVGL7352P3111/44osvcOzYMbGtQGZmJlq0aIFNmzbJVhl1x44d2LBhA/bs2QMzMzP06tUL/fr1g4eHhyzza5I9e/ZgyZIliIyMhIODg7rDIRQvPw8KCkLTpk1Rv359pX1ycrSg6NWrFxITE7FkyRKFKotjxoxBo0aNsGnTJpXH8C63bt1CgwYNxCXI9PFjkvURs7Gxwb59+9C4cWOFJOvAgQMYPHgw7t27J0scY8aMwbp169CgQQO1NhYlzaOjo4OHDx8qLenIyMiAjY2NrGvXb9y4gZs3b8LLywuGhoYQBEH2BEcTYqD/4+/vj8zMTKxduxbOzs4AgKtXr2LQoEEwNTVFdHS0rPE8e/YM27Ztw8aNG3Ho0CE4OTmhX79+CA8PlzUOdbKwsMDz589RUFAAIyMjpfcTuRrw0v/5448/0L9/f2RnZyvdJ1fhi4oVK5a5jPTIkSPw9/cXVwqoy4sXLzBlyhT8+eef3GdbjjDJ+ogNHToUGRkZ2LJlCypVqoTk5GTo6OigS5cu8PLywsKFC2WJQ1Mai5KimJgYpeaRY8eOlbW0vra2NtLT02Ftba1w/Nq1a/Dw8CjzTVtqGRkZ6NWrFw4dOgQtLS1cv34dTk5OGDx4MCpVqiRLCfWMjAx8/vnnOHz4sFIMFhYWmDdvnspjIGWGhoY4fvy4UkPVhIQEtG7dWq1NgC9duoS+ffsiOTm5XG2kj4qKeuuJB3VdeS7PHBwc0KlTJ3z99deoXLmyWmKoXr069uzZAzc3N4XjycnJ6NixI/766y/ZYnl9BYIgCHj27BkMDQ2xfv36ctdcvjzjnqyP2Lx589CjRw/Y2NjgxYsX8Pb2RlpaGpo3b47vvvtOtjgOHz4s21z0fpYvX44xY8agR48eGDNmDADg5MmT6NixIxYsWIDg4GCVzt+tWzcAxUn2wIEDoa+vL95XWFiI5ORk2fbxhYaGokKFCkhNTVWoKNirVy+EhYXJkmSFhoZCV1f3jTEwyVIPe3t75OfnKx0vLCyUvQcRUFwA4/fff8eGDRsQHR2NypUrY8KECbLHoU4DBw5Udwj0moyMDISGhqotwQKK97WGhYXhl19+ESvnpqWlYcKECbJvVViwYIFCkqWtrQ1ra2s0a9YMFhYWssZC6sUrWeXAsWPHkJSUhJycHDRp0oRNgAnVqlXD5MmTMXr0aIXjy5Ytw/fff4/79++rdP5BgwYBKN4D9vnnnyuUodbT04ODgwOGDRsGKysrlcYBALa2tti3bx8aNmyosKxWzvXzmhADKdu1axe+//57LFu2TNz/dPbsWYSEhGDSpEmyNXzft28fNmzYgJ07d6JChQro0aMH+vbtK8ueRU3Tpk0beHt7KzV/ffr0Kbp3786VEWoQFBSE1q1bY+jQoWqLoXHjxrhx4wby8vJQvXp1AEBqair09fWVeojJ0Uvt5cuXSE5OLrM3KK9klR+8kvWRe70J8JUrV7BhwwYAbAJcnmVmZsLf31/pePv27WUpXb5mzRqxqt+SJUvEqoLqkJubCyMjI6XjT548UbjC9rHHQMoGDhyI58+fo1mzZmJxloKCAlSoUAGDBw/G4MGDxbGq3AvUtWtXdOrUCevWrUPHjh2V9iGVJ7Gxsbhw4QISExOxfv16sWT5q1evEBcXp+boyqc6depgypQpOHr0KNzc3JSen1999ZXKY+jcubPG7F+Njo7GgAEDkJGRofHNmUm1eCXrI/auJsCv93Kg8qNPnz5o3Lix0lKjn376CWfPnpWlElNRUREMDAxw8eJFpTONcurYsSPc3d3x7bffwsTEBMnJyahRowZ69+6NoqIibNu2rVzEQMrWrl373mNVuRfo2bNnCm04yjNtbW0kJiZixIgRyM3NxR9//AEHBwekp6fDzs6OH2DVwNHR8Y33aWlp4datWzJGo361a9dG+/btER4ertYllKR+TLI+YlWqVMHcuXPZBJiUzJo1Cz/99BNatmwplrs9efIkjh07hnHjxin0oVHlWch69eph1apVaN68ucrmeJeUlBS0bdsWTZo0waFDhxAYGIiLFy/iyZMnOHbsGGrWrFkuYqB/bs6cORg5cqRY5l0VCgsLsXPnToV+XZ07d5a1ebgm0NbWRlpaGszMzDBo0CAcOHAAW7duhYuLC5OscszJyQlnzpyBpaWlwvHMzEw0adJE1kTP1NQUiYmJfN0mJlkfM0tLS5w+fZp/6KTkbWceS1P1Wcg//vgDc+fORUREBOrXr6+yed4lKysLS5cuVdi7GBwcjCpVqsgyf2pqKoyNjREREaEUQ35+vrjHgDSTqakpzp8/DycnJ5U8/o0bN9CxY0fcv39foZS8vb099uzZU65e419v+zBr1izMmjULkyZNwqxZs5hklVMlyffr7UDS09Nhb2+PV69eyRbL4MGD0bJlSzYdJiZZHzM2ASZNV7rnjZ6enkIBDED1PW/y8/Ph7++PyMhItS5Z1KR+YfThShcrUYWOHTtCEASsX78elSpVAlD83OjXrx+0tbWxZ88elcyricr6MP3bb78hKCgIL1684N+KTMLCwt57rCp7Yf7+++8AgC5dumDt2rUwMzMT7yssLERMTAwOHDgga2+q58+fo2fPnrC2tlbbHjXSDCx88RF7+fIlVqxYgYMHD7IJMCEsLAzffvstKlas+NY3SC0tLdlKhsvVq+1NdHV1kZycrNYYAChtji6Rk5MDAwMDmaMhTRMXF4eTJ0+KCRZQvFJhzpw5aNmypRojk9/t27eVqo52794dzs7OSEhIUFNU5U9iYqLC1+fOnUNBQYF4pfXatWvQ0dGBu7u7ymJISkpSqPD5+r5IXV1dODg4yN4CY+PGjdi/fz8MDAwQGxursB9eS0uLSVY5wiTrI5acnIxGjRoBKN7zUZqmVOEh+SQmJoo9f15/gyxNzueGJjQO7devH1atWoU5c+bIPndJsqulpYXw8HCFCoOFhYU4deqU+DdM5Ze+vj6ePXumdDwnJwd6enpqiEh9atSoAaB4CeXNmzfh5eUFQ0ND1KtXT61Ljsub0v0v58+fDxMTE6xdu1bsA/X06VMMGjQIrVu3VlkMTZo0Ea9qOjo64syZM7K0/XiXqVOnYsaMGZg8eTK0tbXVHQ6pEZcLEpFavb6hv169eggMDJRtQ39ISAjWrVuH2rVrw93dXSwJXUKVV3x9fX0BFF+p8PT0VPjAXNIvbPz48WpdykjvpurlggMGDMC5c+ewatUqNG3aFABw6tQpDBs2DO7u7oiKilLJvJooIyMDvXr1wqFDh6ClpYXr16/DyckJgwcPRqVKlWRpHk6Kqlativ3796NevXoKx1NSUtC+fXs8ePBAJfNaWlpi7969aNasGXR0dJCWlgZra2uVzPUhKlWqhDNnzpSrvZJUNl7JIiK1KWtD/+zZs2Xd0J+SkoImTZoAKF7iUpqqr+qVnA0eNGgQFi1apFDVkajE4sWLERQUBE9PT3HZd0FBAQIDA7Fo0SI1Ryev0NBQVKhQAampqXBxcRGP9+rVC2FhYUyy1CA7OxuPHz9WOv748eMyr8BKpXv37vDy8oKdnR0AwMPD440n5+SsLhgUFITNmzfjP//5j2xzkmbilSwiUhtu6KePQceOHbFq1SqVV6O8ceOGeMXXxcUFtWrVUul8msjW1hb79u1Dw4YNFa4g3rp1Cw0aNEBOTo66Qyx3BgwYgCNHjmDevHkKV1onTJiA1q1bf1C/uQ8VHR2NGzdu4KuvvsLMmTPf2E9uzJgxKovhdV999RXWrVuHhg0bcj98Occki4jUpmLFijh58iTc3NwUjiclJaFly5b8wERqde7cOejq6orPz127dmHNmjVwdXXF9OnTNW4/lKpLyWsCExMTnDt3DrVr11ZIss6ePQs/Pz9kZGSoO8Ry5/nz5xg/fjxWr14t7vutUKEChgwZgh9//FFpCbYqDBo0CIsXL9aIpt0ly8DLoqWlhUOHDskYDakTlwsSkdpoyob+s2fPYsuWLUhNTVXqp7J9+3bZ4iDNMmLECEyePBlubm64desWevfuja5du2Lr1q14/vy52qtjvq48nDNt3bo11q1bh2+//RZA8YfWoqIizJ07960fbkl1jIyMsHz5cvz444+4efMmAKBmzZqyJFcl1qxZI9tc71K6KAiVbyx7QkRq06lTJwwfPhynTp2CIAgQBAEnT57EyJEjERgYKEsMmzZtQosWLXD58mXs2LED+fn5uHjxIg4dOqTQc4XKn2vXronVHbdu3QovLy9s2LABUVFR+O2339QbXDk1d+5crFixAh06dMCrV68wceJE1K9fH/Hx8fjhhx/UHV65VrFiRTRo0AANGjSQNcEi0lS8kkVEalPWhv78/Hx07txZtg3933//PRYsWIDg4GCYmJhg0aJFcHR0xIgRI1S+x4Y0myAIKCoqAgAcPHgQnTp1AgDY29vj77//Vmdo5Vb9+vVx7do1LF26FCYmJsjJyUG3bt0QHBzMv1c14moAImXck0VEanfjxg1cunQJAODq6irrhv6KFSvi4sWLcHBwgKWlJWJjY+Hm5obLly+jTZs2ePjwoWyxkGZp06YN7O3t0a5dOwwZMgSXLl1CrVq1EBcXh6CgINy5c0fdISpQdSl5dcvPz4e/vz8iIyPZ1kCDbNq0CQMGDICfnx/279+P9u3b49q1a0hPT0fXrl01aikfkZy4XJCI1GrVqlXo0qULevbsiZ49e6JLly5YuXKlbPNbWFiI+8KqVq0qNu7OzMzE8+fPZYuDNM/ChQtx7tw5jB49GlOnThWT/23btqFFixZqjk7Zx95kXldXF8nJyeoOg15Tshrgjz/+gJ6eHhYtWoQrV67g888/R/Xq1dUdHpHacLkgEalNeHg45s+fj5CQEHh6egIATpw4gdDQUKSmpmLmzJkqj8HLywsHDhyAm5sbevbsiTFjxuDQoUM4cOAA2rZtq/L5SXM1aNAAFy5cUDr+448/ytYs+0OUh4Up/fr1w6pVqzBnzhx1h0L/382bNxEQEACguIl6bm4utLS0EBoaijZt2mDGjBlqjpBIPZhkEZHaRERE4Oeff8YXX3whHgsMDESDBg0QEhIiS5K1dOlSvHz5EgAwdepU6Orq4vjx4+jevTumTZum8vlJc927dw9aWlqoVq0aAOD06dPYsGEDXF1dMXz4cFliyM/PR926dbF7926F5rtl+fPPP1G1alVZ4lKXgoICrF69GgcPHoS7u7tSgQX2IJJfWasB3NzcuBqAyj0mWUSkNvn5+fDw8FA67u7ujoKCAlliGDt2LHx9feHl5YWaNWti8uTJssxLmq9Pnz4YPnw4+vfvj7S0NHz66aeoV68e1q9fj7S0NISHh6s8Bl1dXfEkwLu0atVKxdGoX0pKCpo0aQKguPpjaR/7cklNxdUARGVj4QsiUpuQkBDo6uoqnX0eP348Xrx4gWXLlqk8hqFDhyI+Ph43btxA1apV4e3tDR8fH3h7e3NzfTlnYWGBkydPwtnZGYsXL8bmzZtx7Ngx7N+/HyNHjsStW7dkieP777/HtWvXsHLlSlSowHOjpFmePHmCly9fws7OTuxZdvz4cdSuXRvTpk2DhYWFukMkUgsmWUSkNiEhIVi3bh3s7e3RvHlzAMCpU6eQmpqKAQMGiGXdAdUvA7p//z7i4+MRFxeHuLg4XLt2DVWqVMFff/2l0nlJcxkbGyMlJQUODg4IDAxEy5YtMWnSJKSmpsLZ2RkvXryQJY6uXbsiJiYGxsbGcHNzU1oixxLZRESah6fEiEhtSi/9uXnzJgDAysoKVlZWYpU/QJ5lQBYWFrC0tISFhQXMzc1RoUIFWFtbq3xe0lz16tVDZGQkAgICcODAAXz77bcAgAcPHsDS0lK2OMzNzdG9e3fZ5tN07MmkeQoLC7Fz505cvnwZQPHfTmBgoEYWiCGSC69kEVG59p///AexsbFITEyEi4uLuFzQy8uLy1zKudjYWHTt2hXZ2dkICgrC6tWrARQ/Z65cucIP9GrAnkya58aNGwgICMBff/0FZ2dnAMDVq1dhb2+PPXv2oGbNmmqOkEg9mGQRUbmmra0Na2trhIaGolu3bqhTp466QyINUlhYiOzsbIWE+86dOzAyMoKNjY1scRQUFCA2NhY3b95Enz59YGJiggcPHsDU1BTGxsayxaFuDRo0wIgRIxAcHCw2X3Z0dMSIESNQpUoVlgtXg44dO0IQBKxfvx6VKlUCAGRkZKBfv37Q1tbGnj171BwhkXowySKici0pKQlxcXGIjY3FkSNHoKenJ17N8vHxYdJVzmlCcnP37l34+/sjNTUVeXl5uHbtGpycnDBmzBjk5eUhMjJSljg0QcWKFXHx4kU4ODjA0tISsbGxcHNzw+XLl9GmTRs8fPhQ3SGWOxUrVsTJkyfh5uamcDwpKQktW7ZETk6OmiIjUi9tdQdARKRODRs2xFdffYXt27fj8ePH2Lt3L/T09BAcHPzOvkT0cbt79y7c3NzQuXNnBAcH4/HjxwCAH374AePHj5ctjjFjxsDDwwNPnz6FoaGheLykIEZ5UlZPJgDsyaRG+vr64v9JaTk5OdDT01NDRESagYUviKhcEwQBiYmJiI2NRez/a+/uY6osHz+Of24g4lmwzgrRhiaQDJGIWRQP4h+wXIbZ0qmpkcB6mAsYrZYFk81WSwMcrUZoG8OyWrOHPxo5kSdxZAOOqxUgzRgkK3LBzmTx+P3D/c5+xEHNcc59hPfrL87Ffbg+hz/Qz+7rvq76ejU3N2t4eFixsbFKTU01Ox5M9H/lxmq1Ttvo4oknnlBOTo7LcjQ1NamlpWXGf1jDw8PV39/vshzugDOZ3M9jjz2m3NxcHTlyRGvXrpV0dZfY5557To8//rjJ6QDzULIALGiLFy+WzWbTmjVrlJqaqpycHCUnJys4ONjsaDCZu5SbyclJTUxMzBjv6+tTYGCgy3K4g4qKCvvhzPv27dNtt92mlpYWPfnkk3r99ddNTrcwHT58WLt371ZiYqL92I2xsTFlZmaqrKzM3HCAiShZABa0mpoaJScnKygoyOwocDPuUm7S09NVVlamyspKSVePNLDZbCouLtaGDRtclsMd5OXlKS0tTSkpKbr33nv16quvmh1pwQsODtZXX32lCxcu2LdwX7VqlVauXGlyMsBcbHwBAIADW7du1aJFi1RZWanAwECdP39eFotFmZmZuueee1y2XXhfX58yMjI0NTWl7u5uJSQkqLu7W3feeacaGxtdusuh2bKzs9XY2KgLFy4oLCzMvklNamqqIiIizI63YBQUFNzwtc4+SB5wV5QsAAAccKdyMz4+rk8//VRWq1U2m03x8fHasWPHtI0wFpL+/n41NjaqoaFBDQ0N6urqUmhoqPr6+syOtiCkpaXd0HWGYaiurs7JaQD3RMkCAGAW4+PjOn78uM6fP+/SchMfH69Tp04pJCREJSUlKiwslJ+fn1PnvJVcuXJFzc3NOn36tOrr69XW1qbo6Gi1t7ebHQ0AJFGyAABwO76+vuru7tbSpUvl6empS5cuLahlgbN57bXXVF9fr/b2dq1atcq+XDAlJWXagdEAYDZKFgAADlRXV1/z+7t27XLa3ImJiQoICFBSUpL279+vwsLCWQ8/LioqcloOd+Ph4SGLxaL8/Hxt3ryZw8IBuC1KFgAADvz7zsjY2JiuXLkib29v+fn56fLly06bu7OzU8XFxerp6bEvhfPymrkhsGEYamtrc1oOd2O1WtXQ0KD6+no1NTXJ29vbfjdr3bp1lC4AboOSBQDADeru7tbzzz+vl19+WRkZGS6Z08PDQwMDAywXdMBqtaq0tFTHjh2bdct9ADAD52QBAHCDIiIi9NZbb+npp5/WL7/84rR5/v/GF8XFxbMuFVxopqam1N7ervr6etXX16u5uVnDw8OKjY1Vamqq2fEAwI47WQAA/AcdHR1KSUnR8PCw0+Zg4wvHQkJCZLPZtGbNGvsyweTkZAUHB5sdDQCm4U4WAAAOfP3119NeT01N6dKlS6qoqNAjjzzi1Lnj4uKUlZWlpKQkTU1N6eDBg2x8IammpkbJyckKCgoyOwoAXBN3sgAAcMDDw2Paa8MwZLFYtH79eh06dEihoaFOm5uNLwDg1kbJAgDAjbHxBQDceihZAAA4UFBQ4HDcMAz5+Pho5cqVyszM1OLFi12cDADg7ihZAAA4kJaWpra2Nk1MTCgqKkqS1NXVJU9PT913333q7OyUYRhqbm5WdHS003KYeSgyAODmULIAAHCgrKxMTU1N+uijj+wbLQwNDSk7O1tJSUnKycnR9u3bNTIyotraWqflMPNQZADAzaFkAQDgQFhYmE6ePDnjLtVPP/2k9PR09ff3q62tTenp6RocHHRpNjMORQYA3DiP618CAMDCMzQ0pD/++GPG+J9//mk/Iys4OFijo6OujmY/FPmll15y+dwAgOujZAEA4EBmZqaeffZZnThxQn19ferr69OJEye0Z88ebdq0SZL0/fffKzIy0pR8Xl5e+v33302ZGwBwbSwXBADAAZvNpvz8fFVXV2t8fFzS1WKze/dulZaWyt/fXx0dHZKuHh7sLNc6FHnZsmX69ttvnTY3AODmULIAALgGm82mX3/9VZK0YsUKBQQEuHR+Mw9FBgDcHEoWAAC3iMnJSUkzixcAwL3wVxoAADd35MgRxcTEyNfXV76+voqJiVFVVZXZsQAAs/AyOwAAAJhdUVGR3n33Xe3du1eJiYmSpLNnzyo/P1+9vb0qKSkxOSEA4N9YLggAgBuzWCw6fPiwtm3bNm38k08+0d69e11+RhcA4PpYLggAgBsbGxtTQkLCjPEHHnjAvushAMC9ULIAAHBjO3fu1Pvvvz9jvLKyUjt27DAhEQDgengmCwAAN1NQUGD/2jAMVVVV6bvvvtNDDz0kSWptbVVvb6927dplVkQAwDXwTBYAAG4mLS3thq4zDEN1dXVOTgMA+K8oWQAAAAAwh3gmCwAAAADmECULAAAAAOYQJQsAAAAA5hAlCwAAAADmECULADAvrVu3Tnl5eWbHsHO3PAAA56FkAQAwi9HRUbMjAABuQZQsAMC888wzz6ihoUHl5eUyDEOGYainp0d79uzR8uXL5evrq6ioKJWXl89436ZNm3TgwAEtWbJEUVFRkqSWlhbFxcXJx8dHCQkJ+vLLL2UYhjo6Ouzv/fHHH/Xoo48qICBAd911l3bu3KnBwcFZ81y8eNFVvw4AgIt5mR0AAIC5Vl5erq6uLsXExKikpESSFBISoqVLl+rzzz/XHXfcoZaWFuXm5io0NFRbtmyxv/fUqVMKCgrSyZMnJUnDw8PauHGjNmzYoI8//li//fbbjGV/f//9t9avX6/s7GyVlpZqZGREr7zyirZs2aK6ujqHeSwWi2t+GQAAl6NkAQDmnUWLFsnb21t+fn66++677eP79++3f718+XKdPXtWn3322bSS5e/vr6qqKnl7e0uSPvjgAxmGoQ8//FA+Pj6Kjo5Wf3+/cnJy7O+pqKjQ/fffrzfffNM+dvToUS1btkxdXV2KjIx0mAcAMD9RsgAAC8Z7772no0ePqre3VyMjIxodHVVcXNy0a1avXm0vWJLU2dmp2NhY+fj42MfWrl077T1Wq1WnT59WQEDAjDl7enoUGRk5tx8EAODWKFkAgAXh+PHjKiws1KFDh5SYmKjAwEC98847am1tnXadv7//f/7ZNptNGzdu1Ntvvz3je6GhoTedGQBwa6JkAQDmJW9vb01MTNhfnzlzRg8//LBeeOEF+1hPT891f05UVJRqamr0zz//6Pbbb5cknTt3bto18fHx+uKLLxQeHi4vL8f/tP47DwBg/mJ3QQDAvBQeHq7W1lZdvHhRg4ODioiI0A8//KDa2lp1dXXpjTfemFGWHNm+fbsmJyeVm5urn3/+WbW1tTp48KAkyTAMSdKLL76oy5cva9u2bTp37px6enpUW1urrKwse7H6d57JyUnnfXgAgKkoWQCAeamwsFCenp6Kjo6WxWJRRkaGNm/erK1bt+rBBx/UX3/9Ne2u1myCgoL0zTffqKOjQ3Fxcdq3b5+Kiookyf6c1pIlS3TmzBlNTEwoPT1dq1evVl5enoKDg+Xh4eEwT29vr/M+PADAVMbU1NSU2SEAALiVHDt2TFlZWRoaGpKvr6/ZcQAAboZnsgAAuI7q6mqtWLFCYWFhslqt9jOwKFgAAEcoWQAAXMfAwICKioo0MDCg0NBQPfXUUzpw4IDZsQAAborlggAAAAAwh9j4AgAAAADmECULAAAAAOYQJQsAAAAA5hAlCwAAAADmECULAAAAAOYQJQsAAAAA5hAlCwAAAADmECULAAAAAOYQJQsAAAAA5tD/AA5B923DE0laAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "bar_graph('Attack Type', 'attack_type')\n",
+ "\n"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 522
+ },
+ "id": "S4s85MD2gvQm",
+ "outputId": "6a8bf7df-79cb-4ce2-f291-be526afb6236"
+ },
+ "execution_count": 18,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAH5CAYAAABzgvT0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXmklEQVR4nO3de3hNZ97/8c9OIgliJw6RyIhDMYhjxSl6RCoIqmVKKakGQ0MrUaepcZrOw+jUoeM0nSLa0mI6tJWKRpymlRbROLUUpdGSiJJsgoRk//7oL2tsSREWW9L367rWddn3+q61v3vPfp76uNe6l8Vut9sFAAAAADCFi7MbAAAAAIDShJAFAAAAACYiZAEAAACAiQhZAAAAAGAiQhYAAAAAmIiQBQAAAAAmImQBAAAAgIkIWQAAAABgIkIWAAAAAJiIkAUAKFFq1aqlbt263fX3uXr1qsaOHavAwEC5uLioZ8+ed/0974UpU6bIYrHozJkzzm4FAEotQhYA3GdiY2NlsVgctqpVq6p9+/Zav369s9v7zViyZIlef/119e7dW8uWLVN0dPQtHde6dWtZLBYtXLiwyP0rVqzQnDlzCo2fPHlSU6ZMUUpKyh10ffdc/5v8tW3Lli3ObhUAnM7N2Q0AAIo2bdo01a5dW3a7Xenp6YqNjVXXrl31ySef3JOZnN+6TZs26Xe/+51mz559y8ccPnxYO3fuVK1atbR8+XINHz68UM2KFSu0f/9+jRo1ymH85MmTmjp1qmrVqqXmzZvfYffme/fddx1ev/POO0pISCg03rBhw3vZFgDclwhZAHCf6tKli1q2bGm8joyMlJ+fn95//31TQlZ+fr5yc3Pl6el5x+e6XnZ2tsqXL2/6ee+l06dPy8fHp1jHvPfee6patareeOMN9e7dW8ePH1etWrXuSn/32nPPPefw+ssvv1RCQkKhcQAAlwsCQInh4+OjsmXLys3N8d/H/v73v6tdu3aqXLmyypYtq+DgYP373/8udLzFYtGIESO0fPlyNWrUSB4eHoqPj//V98vPz9eUKVMUEBCgcuXKqX379vrmm29Uq1YtPf/880ZdweWNW7du1YsvvqiqVauqevXqkqQffvhBL774ourXr6+yZcuqcuXK+sMf/qDjx487vFfBObZt26Y//vGPqly5sqxWqwYOHKhz584V2d/nn3+u1q1by9PTUw888IDeeeedW/oes7OzNXr0aAUGBsrDw0P169fX3//+d9ntdknS8ePHZbFYtHnzZh04cKBYl8GtWLFCvXv3Vrdu3eTt7a0VK1Y47H/88ccVFxenH374wThvrVq1tGXLFrVq1UqSNGjQIGNfbGysJOm///2v/vCHP6hGjRry8PBQYGCgoqOjdenSpUI9HDx4UM8884x8fX1VtmxZ1a9fX6+++uoN+/7hhx9Ut25dNW7cWOnp6bfwLRYWERGhKlWq6MqVK4X2derUSfXr1zdeX/tbrF+/vjw9PRUcHKxt27YVOvann37SCy+8ID8/P3l4eKhRo0ZasmTJbfUIAPcKM1kAcJ/KysrSmTNnZLfbdfr0af3jH//QhQsXCs0czJ07Vz169FD//v2Vm5urDz74QH/4wx+0bt06hYeHO9Ru2rRJq1at0ogRI1SlSpUbzrJMmDBBM2fOVPfu3RUWFqY9e/YoLCxMly9fLrL+xRdflK+vryZNmqTs7GxJ0s6dO7V9+3b17dtX1atX1/Hjx7Vw4UI9/vjj+uabb1SuXDmHc4wYMUI+Pj6aMmWKDh06pIULF+qHH37Qli1bZLFYjLojR46od+/eioyMVEREhJYsWaLnn39ewcHBatSo0a9+Jrvdrh49emjz5s2KjIxU8+bNtWHDBo0ZM0Y//fSTZs+eLV9fX7377rv661//qgsXLmj69OmSbn4Z3FdffaUjR45o6dKlcnd319NPP63ly5frT3/6k1Hz6quvKisrSz/++KNxGaKXl5caNmyoadOmadKkSRo6dKgeeeQRSVK7du0kSatXr9bFixc1fPhwVa5cWTt27NA//vEP/fjjj1q9erVx/r179+qRRx5RmTJlNHToUNWqVUtHjx7VJ598or/+9a9F9n306FF16NBBlSpVUkJCgqpUqXLDz/lrBgwYoHfeeUcbNmxwmGlNS0vTpk2bNHnyZIf6rVu3auXKlXrppZfk4eGhBQsWqHPnztqxY4caN24sSUpPT1fbtm2NUObr66v169crMjJSNput0CWXAHDfsAMA7itLly61Syq0eXh42GNjYwvVX7x40eF1bm6uvXHjxvYOHTo4jEuyu7i42A8cOHDTHtLS0uxubm72nj17OoxPmTLFLskeERFRqN+HH37YfvXq1Rv2Zrfb7UlJSXZJ9nfeeafQOYKDg+25ubnG+MyZM+2S7B999JExVrNmTbsk+7Zt24yx06dP2z08POyjR4++4edau3atXZL9tddecxjv3bu33WKx2I8cOWKMPfbYY/ZGjRrd8HzXGjFihD0wMNCen59vt9vt9s8++8wuyf7111871IWHh9tr1qxZ6PidO3faJdmXLl1aaF9R3+P06dPtFovF/sMPPxhjjz76qL1ChQoOY3a73ejJbrfbJ0+ebJdkz8jIsH/77bf2gIAAe6tWrexnz5695c9qt9vtUVFR9mv/GpGXl2evXr26vU+fPg51s2bNslssFvv3339vjBX8pnft2mWM/fDDD3ZPT0/7U089ZYxFRkbaq1WrZj9z5ozDOfv27Wv39vYu8nsBgPsBlwsCwH1q/vz5SkhIUEJCgt577z21b99egwcP1n/+8x+HurJlyxp/PnfunLKysvTII49o9+7dhc752GOPKSgo6KbvnZiYqKtXr+rFF190GB85cuSvHjNkyBC5urr+am9XrlzRzz//rLp168rHx6fI/oYOHaoyZcoYr4cPHy43Nzd9+umnDnVBQUHGbI8k+fr6qn79+vr+++9v+Lk+/fRTubq66qWXXnIYHz16tOx2+22v3nj16lWtXLlSffr0MWbcOnTooKpVq2r58uW3dc5rXfs9Zmdn68yZM2rXrp3sdru+/vprSVJGRoa2bdumF154QTVq1HA4/tpZwAL79+/XY489plq1amnjxo2qWLHiHfXo4uKi/v376+OPP9b58+eN8eXLl6tdu3aqXbu2Q31ISIiCg4ON1zVq1NCTTz6pDRs2KC8vT3a7XR9++KG6d+8uu92uM2fOGFtYWJiysrKK/A0BwP2AkAUA96nWrVsrNDRUoaGh6t+/v+Li4hQUFKQRI0YoNzfXqFu3bp3atm0rT09PVapUSb6+vlq4cKGysrIKnfP6v+j+mh9++EGSVLduXYfxSpUq/epfxos696VLlzRp0iTj/qcqVarI19dXmZmZRfZXr149h9deXl6qVq1aoXu4rg8RklSxYsVfvX/r2s8VEBCgChUqOIwXXApY8LmL67PPPlNGRoZat26tI0eO6MiRIzp27Jjat2+v999/X/n5+bd13gKpqal6/vnnValSJXl5ecnX11ePPfaYJBnfY0HALLjU7ma6d++uChUqaMOGDbJarXfUX4GBAwfq0qVLWrNmjSTp0KFDSk5O1oABAwrVXv+/tST9/ve/18WLF5WRkaGMjAxlZmbqrbfekq+vr8M2aNAgSb8sTgIA9yPuyQKAEsLFxUXt27fX3LlzdfjwYTVq1Ej//e9/1aNHDz366KNasGCBqlWrpjJlymjp0qWFFl2QHGdEzFbUuUeOHKmlS5dq1KhRCgkJkbe3tywWi/r27XtHweP6GbMC9v+/eMW9VjBb9cwzzxS5f+vWrWrfvv1tnTsvL09PPPGEzp49q3HjxqlBgwYqX768fvrpJz3//PO3/T326tVLy5Yt0/Lly/XHP/7xts5xvaCgIAUHB+u9997TwIED9d5778nd3f1Xv5cbKfhczz33nCIiIoqsadq06R31CwB3CyELAEqQq1evSpIuXLggSfrwww/l6empDRs2yMPDw6hbunTpHb1PzZo1Jf2ywMS1M1Q///zzTWeLrvXvf/9bEREReuONN4yxy5cvKzMzs8j6w4cPO4SRCxcu6NSpU+ratWsxP0HRatasqY0bN+r8+fMOs1kHDx409hdXdna2PvroI/Xp00e9e/cutP+ll17S8uXLjc9V1KV7Nxrft2+fvvvuOy1btkwDBw40xhMSEhzqHnjgAUm/XAZ4K15//XW5ubnpxRdfVIUKFdSvX79bOu5mBg4cqJiYGJ06dUorVqxQeHh4kbOfhw8fLjT23XffqVy5cvL19ZUkVahQQXl5eQoNDTWlNwC4V7hcEABKiCtXruizzz6Tu7u7cXmbq6urLBaL8vLyjLrjx49r7dq1d/ReHTt2lJubmxYuXOgwPm/evGKdx9XVtdDs0j/+8Q+Hfq/11ltvOSwBvnDhQl29elVdunQp1vv+mq5duyovL6/Q55g9e7YsFsttvc+aNWuUnZ2tqKgo9e7du9DWrVs3ffjhh8rJyZEklS9fvshLJQueK3Z9AC2Ytbv2e7Tb7Zo7d65Dna+vrx599FEtWbJEqampDvuKmuGzWCx666231Lt3b0VEROjjjz8u9mcvyrPPPiuLxaKXX35Z33///a8+RyspKcnhnqoTJ07oo48+UqdOneTq6ipXV1f16tVLH374YZHBMSMjw5R+AeBuYCYLAO5T69evN2ZYTp8+rRUrVujw4cMaP368cQ9NeHi4Zs2apc6dO6tfv346ffq05s+fr7p162rv3r23/d5+fn56+eWX9cYbb6hHjx7q3Lmz9uzZo/Xr16tKlSq/OutyvW7duundd9+Vt7e3goKClJSUpI0bN6py5cpF1ufm5qpjx4565plndOjQIS1YsEAPP/ywevTocduf5Vrdu3dX+/bt9eqrr+r48eNq1qyZPvvsM3300UcaNWqU6tSpU+xzLl++XJUrVzaWW79ejx499K9//UtxcXF6+umnFRwcrJUrVyomJkatWrWSl5eXunfvrjp16sjHx0eLFi1ShQoVVL58ebVp00YNGjRQnTp19Morr+inn36S1WrVhx9+WOSM4ptvvqmHH35YLVq00NChQ1W7dm0dP35ccXFxSklJKVTv4uKi9957Tz179tQzzzyjTz/9VB06dCj2d3AtX19fde7cWatXr5aPj0+hxwgUaNy4scLCwhyWcJekqVOnGjUzZszQ5s2b1aZNGw0ZMkRBQUE6e/asdu/erY0bN+rs2bN31CsA3DVOW9cQAFCkopZw9/T0tDdv3ty+cOFCh+W47Xa7ffHixfZ69erZPTw87A0aNLAvXbrUWKb7WpLsUVFRt9zH1atX7X/+85/t/v7+9rJly9o7dOhg//bbb+2VK1e2Dxs2rFC/O3fuLHSOc+fO2QcNGmSvUqWK3cvLyx4WFmY/ePCgvWbNmkUuA79161b70KFD7RUrVrR7eXnZ+/fvb//5558dzlmzZk17eHh4ofd67LHH7I899thNP9f58+ft0dHR9oCAAHuZMmXs9erVs7/++uuFvtdbWcI9PT3d7ubmZh8wYMCv1ly8eNFerlw5Y2nyCxcu2Pv162f38fGxS3JYzv2jjz6yBwUF2d3c3ByWc//mm2/soaGhdi8vL3uVKlXsQ4YMse/Zs6fIJd/3799vf+qpp+w+Pj52T09Pe/369e1//vOfjf3XLuF+bY+PPfaY3cvLy/7ll1/e8DMXuH4J92utWrXKLsk+dOjQIvcX/Bbfe+8947f74IMP2jdv3lyoNj093R4VFWUPDAy0lylTxu7v72/v2LGj/a233rqlPgHAGSx2u5PuEgYAlDiZmZmqWLGiXnvtNb366qumnTc2NlaDBg3Szp071bJlS9POC+f46KOP1LNnT23bts1hqf0CFotFUVFRxb78FABKCu7JAgAU6dKlS4XG5syZI0l6/PHH720zKFH+9a9/6YEHHtDDDz/s7FYAwCm4JwsAUKSVK1cqNjZWXbt2lZeXlz7//HO9//776tSpkx566CFnt4f70AcffKC9e/cqLi5Oc+fOveV79wCgtCFkAQCK1LRpU7m5uWnmzJmy2WzGYhivvfaas1vDferZZ5+Vl5eXIiMj9eKLLzq7HQBwGu7JAgAAAAATcU8WAAAAAJiIkAUAAAAAJuKerBvIz8/XyZMnVaFCBW7eBQAAAH7D7Ha7zp8/r4CAALm43HiuipB1AydPnlRgYKCz2wAAAABwnzhx4oSqV69+wxpC1g1UqFBB0i9fpNVqdXI3AAAAAJzFZrMpMDDQyAg3Qsi6gYJLBK1WKyELAAAAwC3dRsTCFwAAAABgIkIWAAAAAJiIkAUAAAAAJrqjkDVjxgxZLBaNGjXKGLt8+bKioqJUuXJleXl5qVevXkpPT3c4LjU1VeHh4SpXrpyqVq2qMWPG6OrVqw41W7ZsUYsWLeTh4aG6desqNja20PvPnz9ftWrVkqenp9q0aaMdO3Y47L+VXgAAAADATLcdsnbu3Kl//vOfatq0qcN4dHS0PvnkE61evVpbt27VyZMn9fTTTxv78/LyFB4ertzcXG3fvl3Lli1TbGysJk2aZNQcO3ZM4eHhat++vVJSUjRq1CgNHjxYGzZsMGpWrlypmJgYTZ48Wbt371azZs0UFham06dP33IvAAAAAGA2i91utxf3oAsXLqhFixZasGCBXnvtNTVv3lxz5sxRVlaWfH19tWLFCvXu3VuSdPDgQTVs2FBJSUlq27at1q9fr27duunkyZPy8/OTJC1atEjjxo1TRkaG3N3dNW7cOMXFxWn//v3Ge/bt21eZmZmKj4+XJLVp00atWrXSvHnzJP3y4ODAwECNHDlS48ePv6VebsZms8nb21tZWVmsLggAAAD8hhUnG9zWTFZUVJTCw8MVGhrqMJ6cnKwrV644jDdo0EA1atRQUlKSJCkpKUlNmjQxApYkhYWFyWaz6cCBA0bN9ecOCwszzpGbm6vk5GSHGhcXF4WGhho1t9LL9XJycmSz2Rw2AAAAACiOYj8n64MPPtDu3bu1c+fOQvvS0tLk7u4uHx8fh3E/Pz+lpaUZNdcGrIL9BftuVGOz2XTp0iWdO3dOeXl5RdYcPHjwlnu53vTp0zV16tQbfHoAAAAAuLFizWSdOHFCL7/8spYvXy5PT8+71ZPTTJgwQVlZWcZ24sQJZ7cEAAAAoIQpVshKTk7W6dOn1aJFC7m5ucnNzU1bt27Vm2++KTc3N/n5+Sk3N1eZmZkOx6Wnp8vf31+S5O/vX2iFv4LXN6uxWq0qW7asqlSpIldX1yJrrj3HzXq5noeHh6xWq8MGAAAAAMVRrJDVsWNH7du3TykpKcbWsmVL9e/f3/hzmTJllJiYaBxz6NAhpaamKiQkRJIUEhKiffv2OawCmJCQIKvVqqCgIKPm2nMU1BScw93dXcHBwQ41+fn5SkxMNGqCg4Nv2gsAAAAAmK1Y92RVqFBBjRs3dhgrX768KleubIxHRkYqJiZGlSpVktVq1ciRIxUSEmKs5tepUycFBQVpwIABmjlzptLS0jRx4kRFRUXJw8NDkjRs2DDNmzdPY8eO1QsvvKBNmzZp1apViouLM943JiZGERERatmypVq3bq05c+YoOztbgwYNkiR5e3vftBcAAAAAMFuxF764mdmzZ8vFxUW9evVSTk6OwsLCtGDBAmO/q6ur1q1bp+HDhyskJETly5dXRESEpk2bZtTUrl1bcXFxio6O1ty5c1W9enW9/fbbCgsLM2r69OmjjIwMTZo0SWlpaWrevLni4+MdFsO4WS8AAAAAYLbbek7WbwXPyQIAAAAg3YPnZAEAAAAAimb65YK4d2qNj7t5EQo5PiPc2S0AAACgFGMmCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExUrZC1cuFBNmzaV1WqV1WpVSEiI1q9fb+x//PHHZbFYHLZhw4Y5nCM1NVXh4eEqV66cqlatqjFjxujq1asONVu2bFGLFi3k4eGhunXrKjY2tlAv8+fPV61ateTp6ak2bdpox44dDvsvX76sqKgoVa5cWV5eXurVq5fS09OL83EBAAAAoNiKFbKqV6+uGTNmKDk5Wbt27VKHDh305JNP6sCBA0bNkCFDdOrUKWObOXOmsS8vL0/h4eHKzc3V9u3btWzZMsXGxmrSpElGzbFjxxQeHq727dsrJSVFo0aN0uDBg7VhwwajZuXKlYqJidHkyZO1e/duNWvWTGFhYTp9+rRREx0drU8++USrV6/W1q1bdfLkST399NO39SUBAAAAwK2y2O12+52coFKlSnr99dcVGRmpxx9/XM2bN9ecOXOKrF2/fr26deumkydPys/PT5K0aNEijRs3ThkZGXJ3d9e4ceMUFxen/fv3G8f17dtXmZmZio+PlyS1adNGrVq10rx58yRJ+fn5CgwM1MiRIzV+/HhlZWXJ19dXK1asUO/evSVJBw8eVMOGDZWUlKS2bdve0mez2Wzy9vZWVlaWrFbr7X5Fd02t8XHObqFEOj4j3NktAAAAoIQpTja47Xuy8vLy9MEHHyg7O1shISHG+PLly1WlShU1btxYEyZM0MWLF419SUlJatKkiRGwJCksLEw2m82YDUtKSlJoaKjDe4WFhSkpKUmSlJubq+TkZIcaFxcXhYaGGjXJycm6cuWKQ02DBg1Uo0YNo6YoOTk5stlsDhsAAAAAFIdbcQ/Yt2+fQkJCdPnyZXl5eWnNmjUKCgqSJPXr1081a9ZUQECA9u7dq3HjxunQoUP6z3/+I0lKS0tzCFiSjNdpaWk3rLHZbLp06ZLOnTunvLy8ImsOHjxonMPd3V0+Pj6FagrepyjTp0/X1KlTi/mNAAAAAMD/FDtk1a9fXykpKcrKytK///1vRUREaOvWrQoKCtLQoUONuiZNmqhatWrq2LGjjh49qjp16pja+N0wYcIExcTEGK9tNpsCAwOd2BEAAACAkqbYlwu6u7urbt26Cg4O1vTp09WsWTPNnTu3yNo2bdpIko4cOSJJ8vf3L7TCX8Frf3//G9ZYrVaVLVtWVapUkaura5E1154jNzdXmZmZv1pTFA8PD2PlxIINAAAAAIrjjp+TlZ+fr5ycnCL3paSkSJKqVasmSQoJCdG+ffscVgFMSEiQ1Wo1LjkMCQlRYmKiw3kSEhKM+77c3d0VHBzsUJOfn6/ExESjJjg4WGXKlHGoOXTokFJTUx3uHwMAAAAAsxXrcsEJEyaoS5cuqlGjhs6fP68VK1Zoy5Yt2rBhg44ePaoVK1aoa9euqly5svbu3avo6Gg9+uijatq0qSSpU6dOCgoK0oABAzRz5kylpaVp4sSJioqKkoeHhyRp2LBhmjdvnsaOHasXXnhBmzZt0qpVqxQX97+V9GJiYhQREaGWLVuqdevWmjNnjrKzszVo0CBJkre3tyIjIxUTE6NKlSrJarVq5MiRCgkJueWVBQEAAADgdhQrZJ0+fVoDBw7UqVOn5O3traZNm2rDhg164okndOLECW3cuNEIPIGBgerVq5cmTpxoHO/q6qp169Zp+PDhCgkJUfny5RUREaFp06YZNbVr11ZcXJyio6M1d+5cVa9eXW+//bbCwsKMmj59+igjI0OTJk1SWlqamjdvrvj4eIfFMGbPni0XFxf16tVLOTk5CgsL04IFC+7kuwIAAACAm7rj52SVZjwnq3TiOVkAAAAornvynCwAAAAAQGGELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATFStkLVy4UE2bNpXVapXValVISIjWr19v7L98+bKioqJUuXJleXl5qVevXkpPT3c4R2pqqsLDw1WuXDlVrVpVY8aM0dWrVx1qtmzZohYtWsjDw0N169ZVbGxsoV7mz5+vWrVqydPTU23atNGOHTsc9t9KLwAAAABgtmKFrOrVq2vGjBlKTk7Wrl271KFDBz355JM6cOCAJCk6OlqffPKJVq9era1bt+rkyZN6+umnjePz8vIUHh6u3Nxcbd++XcuWLVNsbKwmTZpk1Bw7dkzh4eFq3769UlJSNGrUKA0ePFgbNmwwalauXKmYmBhNnjxZu3fvVrNmzRQWFqbTp08bNTfrBQAAAADuBovdbrffyQkqVaqk119/Xb1795avr69WrFih3r17S5IOHjyohg0bKikpSW3bttX69evVrVs3nTx5Un5+fpKkRYsWady4ccrIyJC7u7vGjRunuLg47d+/33iPvn37KjMzU/Hx8ZKkNm3aqFWrVpo3b54kKT8/X4GBgRo5cqTGjx+vrKysm/ZyK2w2m7y9vZWVlSWr1XonX9NdUWt8nLNbKJGOzwh3dgsAAAAoYYqTDW77nqy8vDx98MEHys7OVkhIiJKTk3XlyhWFhoYaNQ0aNFCNGjWUlJQkSUpKSlKTJk2MgCVJYWFhstlsxmxYUlKSwzkKagrOkZubq+TkZIcaFxcXhYaGGjW30ktRcnJyZLPZHDYAAAAAKI5ih6x9+/bJy8tLHh4eGjZsmNasWaOgoCClpaXJ3d1dPj4+DvV+fn5KS0uTJKWlpTkErIL9BftuVGOz2XTp0iWdOXNGeXl5RdZce46b9VKU6dOny9vb29gCAwNv7UsBAAAAgP+v2CGrfv36SklJ0VdffaXhw4crIiJC33zzzd3o7Z6bMGGCsrKyjO3EiRPObgkAAABACeNW3APc3d1Vt25dSVJwcLB27typuXPnqk+fPsrNzVVmZqbDDFJ6err8/f0lSf7+/oVWASxY8e/amutXAUxPT5fValXZsmXl6uoqV1fXImuuPcfNeimKh4eHPDw8ivFtAAAAAICjO35OVn5+vnJychQcHKwyZcooMTHR2Hfo0CGlpqYqJCREkhQSEqJ9+/Y5rAKYkJAgq9WqoKAgo+bacxTUFJzD3d1dwcHBDjX5+flKTEw0am6lFwAAAAC4G4o1kzVhwgR16dJFNWrU0Pnz57VixQpt2bJFGzZskLe3tyIjIxUTE6NKlSrJarVq5MiRCgkJMVbz69Spk4KCgjRgwADNnDlTaWlpmjhxoqKioowZpGHDhmnevHkaO3asXnjhBW3atEmrVq1SXNz/VtKLiYlRRESEWrZsqdatW2vOnDnKzs7WoEGDJOmWegEAAACAu6FYIev06dMaOHCgTp06JW9vbzVt2lQbNmzQE088IUmaPXu2XFxc1KtXL+Xk5CgsLEwLFiwwjnd1ddW6des0fPhwhYSEqHz58oqIiNC0adOMmtq1aysuLk7R0dGaO3euqlevrrffflthYWFGTZ8+fZSRkaFJkyYpLS1NzZs3V3x8vMNiGDfrBQAAAADuhjt+TlZpxnOySieekwUAAIDiuifPyQIAAAAAFEbIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADBRsULW9OnT1apVK1WoUEFVq1ZVz549dejQIYeaxx9/XBaLxWEbNmyYQ01qaqrCw8NVrlw5Va1aVWPGjNHVq1cdarZs2aIWLVrIw8NDdevWVWxsbKF+5s+fr1q1asnT01Nt2rTRjh07HPZfvnxZUVFRqly5sry8vNSrVy+lp6cX5yMDAAAAQLEUK2Rt3bpVUVFR+vLLL5WQkKArV66oU6dOys7OdqgbMmSITp06ZWwzZ8409uXl5Sk8PFy5ubnavn27li1bptjYWE2aNMmoOXbsmMLDw9W+fXulpKRo1KhRGjx4sDZs2GDUrFy5UjExMZo8ebJ2796tZs2aKSwsTKdPnzZqoqOj9cknn2j16tXaunWrTp48qaeffrrYXxIAAAAA3CqL3W633+7BGRkZqlq1qrZu3apHH31U0i8zWc2bN9ecOXOKPGb9+vXq1q2bTp48KT8/P0nSokWLNG7cOGVkZMjd3V3jxo1TXFyc9u/fbxzXt29fZWZmKj4+XpLUpk0btWrVSvPmzZMk5efnKzAwUCNHjtT48eOVlZUlX19frVixQr1795YkHTx4UA0bNlRSUpLatm17089ns9nk7e2trKwsWa3W2/2a7ppa4+Oc3UKJdHxGuLNbAAAAQAlTnGxwR/dkZWVlSZIqVarkML58+XJVqVJFjRs31oQJE3Tx4kVjX1JSkpo0aWIELEkKCwuTzWbTgQMHjJrQ0FCHc4aFhSkpKUmSlJubq+TkZIcaFxcXhYaGGjXJycm6cuWKQ02DBg1Uo0YNo+Z6OTk5stlsDhsAAAAAFIfb7R6Yn5+vUaNG6aGHHlLjxo2N8X79+qlmzZoKCAjQ3r17NW7cOB06dEj/+c9/JElpaWkOAUuS8TotLe2GNTabTZcuXdK5c+eUl5dXZM3BgweNc7i7u8vHx6dQTcH7XG/69OmaOnVqMb8JAAAAAPif2w5ZUVFR2r9/vz7//HOH8aFDhxp/btKkiapVq6aOHTvq6NGjqlOnzu13eg9MmDBBMTExxmubzabAwEAndgQAAACgpLmtywVHjBihdevWafPmzapevfoNa9u0aSNJOnLkiCTJ39+/0Ap/Ba/9/f1vWGO1WlW2bFlVqVJFrq6uRdZce47c3FxlZmb+as31PDw8ZLVaHTYAAAAAKI5ihSy73a4RI0ZozZo12rRpk2rXrn3TY1JSUiRJ1apVkySFhIRo3759DqsAJiQkyGq1KigoyKhJTEx0OE9CQoJCQkIkSe7u7goODnaoyc/PV2JiolETHBysMmXKONQcOnRIqampRg0AAAAAmK1YlwtGRUVpxYoV+uijj1ShQgXj3iZvb2+VLVtWR48e1YoVK9S1a1dVrlxZe/fuVXR0tB599FE1bdpUktSpUycFBQVpwIABmjlzptLS0jRx4kRFRUXJw8NDkjRs2DDNmzdPY8eO1QsvvKBNmzZp1apViov732p6MTExioiIUMuWLdW6dWvNmTNH2dnZGjRokNFTZGSkYmJiVKlSJVmtVo0cOVIhISG3tLIgAAAAANyOYoWshQsXSvplmfZrLV26VM8//7zc3d21ceNGI/AEBgaqV69emjhxolHr6uqqdevWafjw4QoJCVH58uUVERGhadOmGTW1a9dWXFycoqOjNXfuXFWvXl1vv/22wsLCjJo+ffooIyNDkyZNUlpampo3b674+HiHxTBmz54tFxcX9erVSzk5OQoLC9OCBQuK9QUBAAAAQHHc0XOySjuek1U68ZwsAAAAFNc9e04WAAAAAMARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMVK2RNnz5drVq1UoUKFVS1alX17NlThw4dcqi5fPmyoqKiVLlyZXl5ealXr15KT093qElNTVV4eLjKlSunqlWrasyYMbp69apDzZYtW9SiRQt5eHiobt26io2NLdTP/PnzVatWLXl6eqpNmzbasWNHsXsBAAAAADMVK2Rt3bpVUVFR+vLLL5WQkKArV66oU6dOys7ONmqio6P1ySefaPXq1dq6datOnjypp59+2tifl5en8PBw5ebmavv27Vq2bJliY2M1adIko+bYsWMKDw9X+/btlZKSolGjRmnw4MHasGGDUbNy5UrFxMRo8uTJ2r17t5o1a6awsDCdPn36lnsBAAAAALNZ7Ha7/XYPzsjIUNWqVbV161Y9+uijysrKkq+vr1asWKHevXtLkg4ePKiGDRsqKSlJbdu21fr169WtWzedPHlSfn5+kqRFixZp3LhxysjIkLu7u8aNG6e4uDjt37/feK++ffsqMzNT8fHxkqQ2bdqoVatWmjdvniQpPz9fgYGBGjlypMaPH39LvdyMzWaTt7e3srKyZLVab/drumtqjY9zdgsl0vEZ4c5uAQAAACVMcbLBHd2TlZWVJUmqVKmSJCk5OVlXrlxRaGioUdOgQQPVqFFDSUlJkqSkpCQ1adLECFiSFBYWJpvNpgMHDhg1156joKbgHLm5uUpOTnaocXFxUWhoqFFzK70AAAAAgNncbvfA/Px8jRo1Sg899JAaN24sSUpLS5O7u7t8fHwcav38/JSWlmbUXBuwCvYX7LtRjc1m06VLl3Tu3Dnl5eUVWXPw4MFb7uV6OTk5ysnJMV7bbLabfQ0AAAAA4OC2Z7KioqK0f/9+ffDBB2b241TTp0+Xt7e3sQUGBjq7JQAAAAAlzG2FrBEjRmjdunXavHmzqlevboz7+/srNzdXmZmZDvXp6eny9/c3aq5f4a/g9c1qrFarypYtqypVqsjV1bXImmvPcbNerjdhwgRlZWUZ24kTJ27h2wAAAACA/ylWyLLb7RoxYoTWrFmjTZs2qXbt2g77g4ODVaZMGSUmJhpjhw4dUmpqqkJCQiRJISEh2rdvn8MqgAkJCbJarQoKCjJqrj1HQU3BOdzd3RUcHOxQk5+fr8TERKPmVnq5noeHh6xWq8MGAAAAAMVRrHuyoqKitGLFCn300UeqUKGCcW+Tt7e3ypYtK29vb0VGRiomJkaVKlWS1WrVyJEjFRISYqzm16lTJwUFBWnAgAGaOXOm0tLSNHHiREVFRcnDw0OSNGzYMM2bN09jx47VCy+8oE2bNmnVqlWKi/vfanoxMTGKiIhQy5Yt1bp1a82ZM0fZ2dkaNGiQ0dPNegEAAAAAsxUrZC1cuFCS9PjjjzuML126VM8//7wkafbs2XJxcVGvXr2Uk5OjsLAwLViwwKh1dXXVunXrNHz4cIWEhKh8+fKKiIjQtGnTjJratWsrLi5O0dHRmjt3rqpXr663335bYWFhRk2fPn2UkZGhSZMmKS0tTc2bN1d8fLzDYhg36wUAAAAAzHZHz8kq7XhOVunEc7IAAABQXPfsOVkAAAAAAEeELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATFTtkbdu2Td27d1dAQIAsFovWrl3rsP/555+XxWJx2Dp37uxQc/bsWfXv319Wq1U+Pj6KjIzUhQsXHGr27t2rRx55RJ6engoMDNTMmTML9bJ69Wo1aNBAnp6eatKkiT799FOH/Xa7XZMmTVK1atVUtmxZhYaG6vDhw8X9yAAAAABwy4odsrKzs9WsWTPNnz//V2s6d+6sU6dOGdv777/vsL9///46cOCAEhIStG7dOm3btk1Dhw419ttsNnXq1Ek1a9ZUcnKyXn/9dU2ZMkVvvfWWUbN9+3Y9++yzioyM1Ndff62ePXuqZ8+e2r9/v1Ezc+ZMvfnmm1q0aJG++uorlS9fXmFhYbp8+XJxPzYAAAAA3BKL3W633/bBFovWrFmjnj17GmPPP/+8MjMzC81wFfj2228VFBSknTt3qmXLlpKk+Ph4de3aVT/++KMCAgK0cOFCvfrqq0pLS5O7u7skafz48Vq7dq0OHjwoSerTp4+ys7O1bt0649xt27ZV8+bNtWjRItntdgUEBGj06NF65ZVXJElZWVny8/NTbGys+vbte9PPZ7PZ5O3traysLFmt1tv5iu6qWuPjnN1CiXR8RrizWwAAAEAJU5xscFfuydqyZYuqVq2q+vXra/jw4fr555+NfUlJSfLx8TECliSFhobKxcVFX331lVHz6KOPGgFLksLCwnTo0CGdO3fOqAkNDXV437CwMCUlJUmSjh07prS0NIcab29vtWnTxqi5Xk5Ojmw2m8MGAAAAAMVhesjq3Lmz3nnnHSUmJupvf/ubtm7dqi5duigvL0+SlJaWpqpVqzoc4+bmpkqVKiktLc2o8fPzc6gpeH2zmmv3X3tcUTXXmz59ury9vY0tMDCw2J8fAAAAwG+bm9knvPYyvCZNmqhp06aqU6eOtmzZoo4dO5r9dqaaMGGCYmJijNc2m42gBQAAAKBY7voS7g888ICqVKmiI0eOSJL8/f11+vRph5qrV6/q7Nmz8vf3N2rS09Mdagpe36zm2v3XHldUzfU8PDxktVodNgAAAAAojrsesn788Uf9/PPPqlatmiQpJCREmZmZSk5ONmo2bdqk/Px8tWnTxqjZtm2brly5YtQkJCSofv36qlixolGTmJjo8F4JCQkKCQmRJNWuXVv+/v4ONTabTV999ZVRAwAAAABmK3bIunDhglJSUpSSkiLplwUmUlJSlJqaqgsXLmjMmDH68ssvdfz4cSUmJurJJ59U3bp1FRYWJklq2LChOnfurCFDhmjHjh364osvNGLECPXt21cBAQGSpH79+snd3V2RkZE6cOCAVq5cqblz5zpcyvfyyy8rPj5eb7zxhg4ePKgpU6Zo165dGjFihKRfVj4cNWqUXnvtNX388cfat2+fBg4cqICAAIfVEAEAAADATMW+J2vXrl1q37698bog+ERERGjhwoXau3evli1bpszMTAUEBKhTp076y1/+Ig8PD+OY5cuXa8SIEerYsaNcXFzUq1cvvfnmm8Z+b29vffbZZ4qKilJwcLCqVKmiSZMmOTxLq127dlqxYoUmTpyoP/3pT6pXr57Wrl2rxo0bGzVjx45Vdna2hg4dqszMTD388MOKj4+Xp6dncT82AAAAANySO3pOVmnHc7JKJ56TBQAAgOJy+nOyAAAAAOC3ipAFAAAAACYiZAEAAACAiQhZAAAAAGAiQhYAAAAAmIiQBQAAAAAmImQBAAAAgIkIWQAAAABgIkIWAAAAAJiIkAUAAAAAJiJkAQAAAICJCFkAAAAAYCJCFgAAAACYiJAFAAAAACYiZAEAAACAiQhZAAAAAGAiQhYAAAAAmIiQBQAAAAAmImQBAAAAgIkIWQAAAABgIkIWAAAAAJiIkAUAAAAAJiJkAQAAAICJCFkAAAAAYCJCFgAAAACYiJAFAAAAACYiZAEAAACAiQhZAAAAAGAiQhYAAAAAmIiQBQAAAAAmImQBAAAAgIkIWQAAAABgIkIWAAAAAJiIkAUAAAAAJiJkAQAAAICJCFkAAAAAYKJih6xt27ape/fuCggIkMVi0dq1ax322+12TZo0SdWqVVPZsmUVGhqqw4cPO9ScPXtW/fv3l9VqlY+PjyIjI3XhwgWHmr179+qRRx6Rp6enAgMDNXPmzEK9rF69Wg0aNJCnp6eaNGmiTz/9tNi9AAAAAICZih2ysrOz1axZM82fP7/I/TNnztSbb76pRYsW6auvvlL58uUVFhamy5cvGzX9+/fXgQMHlJCQoHXr1mnbtm0aOnSosd9ms6lTp06qWbOmkpOT9frrr2vKlCl66623jJrt27fr2WefVWRkpL7++mv17NlTPXv21P79+4vVCwAAAACYyWK32+23fbDFojVr1qhnz56Sfpk5CggI0OjRo/XKK69IkrKysuTn56fY2Fj17dtX3377rYKCgrRz5061bNlSkhQfH6+uXbvqxx9/VEBAgBYuXKhXX31VaWlpcnd3lySNHz9ea9eu1cGDByVJffr0UXZ2ttatW2f007ZtWzVv3lyLFi26pV5uxmazydvbW1lZWbJarbf7Nd01tcbHObuFEun4jHBntwAAAIASpjjZwNR7so4dO6a0tDSFhoYaY97e3mrTpo2SkpIkSUlJSfLx8TECliSFhobKxcVFX331lVHz6KOPGgFLksLCwnTo0CGdO3fOqLn2fQpqCt7nVnq5Xk5Ojmw2m8MGAAAAAMVhashKS0uTJPn5+TmM+/n5GfvS0tJUtWpVh/1ubm6qVKmSQ01R57j2PX6t5tr9N+vletOnT5e3t7exBQYG3sKnBgAAAID/YXXBa0yYMEFZWVnGduLECWe3BAAAAKCEMTVk+fv7S5LS09MdxtPT0419/v7+On36tMP+q1ev6uzZsw41RZ3j2vf4tZpr99+sl+t5eHjIarU6bAAAAABQHG5mnqx27dry9/dXYmKimjdvLumXG8S++uorDR8+XJIUEhKizMxMJScnKzg4WJK0adMm5efnq02bNkbNq6++qitXrqhMmTKSpISEBNWvX18VK1Y0ahITEzVq1Cjj/RMSEhQSEnLLvQC4NSyycntYZAUAgN+mYs9kXbhwQSkpKUpJSZH0ywITKSkpSk1NlcVi0ahRo/Taa6/p448/1r59+zRw4EAFBAQYKxA2bNhQnTt31pAhQ7Rjxw598cUXGjFihPr27auAgABJUr9+/eTu7q7IyEgdOHBAK1eu1Ny5cxUTE2P08fLLLys+Pl5vvPGGDh48qClTpmjXrl0aMWKEJN1SLwAAAABgtmLPZO3atUvt27c3XhcEn4iICMXGxmrs2LHKzs7W0KFDlZmZqYcffljx8fHy9PQ0jlm+fLlGjBihjh07ysXFRb169dKbb75p7Pf29tZnn32mqKgoBQcHq0qVKpo0aZLDs7TatWunFStWaOLEifrTn/6kevXqae3atWrcuLFRcyu9AAAAAICZ7ug5WaUdz8kqnbiEq/j4rd0efmsAAJQeTntOFgAAAAD81hGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExkesiaMmWKLBaLw9agQQNj/+XLlxUVFaXKlSvLy8tLvXr1Unp6usM5UlNTFR4ernLlyqlq1aoaM2aMrl696lCzZcsWtWjRQh4eHqpbt65iY2ML9TJ//nzVqlVLnp6eatOmjXbs2GH2xwUAAAAAB3dlJqtRo0Y6deqUsX3++efGvujoaH3yySdavXq1tm7dqpMnT+rpp5829ufl5Sk8PFy5ubnavn27li1bptjYWE2aNMmoOXbsmMLDw9W+fXulpKRo1KhRGjx4sDZs2GDUrFy5UjExMZo8ebJ2796tZs2aKSwsTKdPn74bHxkAAAAAJN2lkOXm5iZ/f39jq1KliiQpKytLixcv1qxZs9ShQwcFBwdr6dKl2r59u7788ktJ0meffaZvvvlG7733npo3b64uXbroL3/5i+bPn6/c3FxJ0qJFi1S7dm298cYbatiwoUaMGKHevXtr9uzZRg+zZs3SkCFDNGjQIAUFBWnRokUqV66clixZcjc+MgAAAABIuksh6/DhwwoICNADDzyg/v37KzU1VZKUnJysK1euKDQ01Kht0KCBatSooaSkJElSUlKSmjRpIj8/P6MmLCxMNptNBw4cMGquPUdBTcE5cnNzlZyc7FDj4uKi0NBQo6YoOTk5stlsDhsAAAAAFIfpIatNmzaKjY1VfHy8Fi5cqGPHjumRRx7R+fPnlZaWJnd3d/n4+Dgc4+fnp7S0NElSWlqaQ8Aq2F+w70Y1NptNly5d0pkzZ5SXl1dkTcE5ijJ9+nR5e3sbW2Bg4G19BwAAAAB+u9zMPmGXLl2MPzdt2lRt2rRRzZo1tWrVKpUtW9bstzPVhAkTFBMTY7y22WwELQAAAADFcteXcPfx8dHvf/97HTlyRP7+/srNzVVmZqZDTXp6uvz9/SVJ/v7+hVYbLHh9sxqr1aqyZcuqSpUqcnV1LbKm4BxF8fDwkNVqddgAAAAAoDjuesi6cOGCjh49qmrVqik4OFhlypRRYmKisf/QoUNKTU1VSEiIJCkkJET79u1zWAUwISFBVqtVQUFBRs215yioKTiHu7u7goODHWry8/OVmJho1AAAAADA3WB6yHrllVe0detWHT9+XNu3b9dTTz0lV1dXPfvss/L29lZkZKRiYmK0efNmJScna9CgQQoJCVHbtm0lSZ06dVJQUJAGDBigPXv2aMOGDZo4caKioqLk4eEhSRo2bJi+//57jR07VgcPHtSCBQu0atUqRUdHG33ExMToX//6l5YtW6Zvv/1Ww4cPV3Z2tgYNGmT2RwYAAAAAg+n3ZP3444969tln9fPPP8vX11cPP/ywvvzyS/n6+kqSZs+eLRcXF/Xq1Us5OTkKCwvTggULjONdXV21bt06DR8+XCEhISpfvrwiIiI0bdo0o6Z27dqKi4tTdHS05s6dq+rVq+vtt99WWFiYUdOnTx9lZGRo0qRJSktLU/PmzRUfH19oMQwAAAAAMJPFbrfbnd3E/cpms8nb21tZWVn35f1ZtcbHObuFEun4jHBnt1Di8Fu7PfzWAAAoPYqTDe76PVkAAAAA8FtCyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBEhCwAAAAAMBEhCwAAAABMRMgCAAAAABMRsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwkZuzG7gX5s+fr9dff11paWlq1qyZ/vGPf6h169bObgsAcJ1a4+Oc3UKJdHxGuLNbAABco9TPZK1cuVIxMTGaPHmydu/erWbNmiksLEynT592dmsAAAAASqFSH7JmzZqlIUOGaNCgQQoKCtKiRYtUrlw5LVmyxNmtAQAAACiFSvXlgrm5uUpOTtaECROMMRcXF4WGhiopKalQfU5OjnJycozXWVlZkiSbzXb3m70N+TkXnd1CiXS//u95P+O3dnv4rRUfv7Xbw2+t+BpP3uDsFkqk/VPDnN0C4DQF/7/WbrfftLZUh6wzZ84oLy9Pfn5+DuN+fn46ePBgofrp06dr6tSphcYDAwPvWo+497znOLsD/FbwW8O9wm8N9wq/NUA6f/68vL29b1hTqkNWcU2YMEExMTHG6/z8fJ09e1aVK1eWxWJxYmcli81mU2BgoE6cOCGr1ersdlCK8VvDvcJvDfcKvzXcK/zWis9ut+v8+fMKCAi4aW2pDllVqlSRq6ur0tPTHcbT09Pl7+9fqN7Dw0MeHh4OYz4+PnezxVLNarXyf7S4J/it4V7ht4Z7hd8a7hV+a8VzsxmsAqV64Qt3d3cFBwcrMTHRGMvPz1diYqJCQkKc2BkAAACA0qpUz2RJUkxMjCIiItSyZUu1bt1ac+bMUXZ2tgYNGuTs1gAAAACUQqU+ZPXp00cZGRmaNGmS0tLS1Lx5c8XHxxdaDAPm8fDw0OTJkwtdegmYjd8a7hV+a7hX+K3hXuG3dndZ7LeyBiEAAAAA4JaU6nuyAAAAAOBeI2QBAAAAgIkIWQAAAABgIkIWAAAAAJiIkAUAAAAAJiJkAQAAAKVcXl6etm3bpszMTGe38ptAyIIp4uPj9fnnnxuv58+fr+bNm6tfv346d+6cEzsDgNuXmZmpt99+WxMmTNDZs2clSbt379ZPP/3k5M5Q0tlstlveADO4urqqU6dO/L3sHuE5WTBFkyZN9Le//U1du3bVvn371KpVK8XExGjz5s1q0KCBli5d6uwWUYK9+eabt1z70ksv3cVO8Fuyd+9ehYaGytvbW8ePH9ehQ4f0wAMPaOLEiUpNTdU777zj7BZRgrm4uMhisdywxm63y2KxKC8v7x51hdKuZcuW+tvf/qaOHTs6u5VSj5AFU3h5eWn//v2qVauWpkyZov379+vf//63du/era5duyotLc3ZLaIEq1279i3VWSwWff/993e5G/xWhIaGqkWLFpo5c6YqVKigPXv26IEHHtD27dvVr18/HT9+3NktogTbunXrLdc+9thjd7ET/JbEx8drwoQJ+stf/qLg4GCVL1/eYb/VanVSZ6WPm7MbQOng7u6uixcvSpI2btyogQMHSpIqVarEpQ64Y8eOHXN2C/gN2rlzp/75z38WGv/d737HPxzhjhGc4Axdu3aVJPXo0cNhJpVZU/MRsmCKhx9+WDExMXrooYe0Y8cOrVy5UpL03XffqXr16k7uDgCKz8PDo8h/JPruu+/k6+vrhI5QWuXn58vFpfBt8vn5+frxxx9Vo0YNJ3SF0mjz5s3ObuE3g8sFYYrU1FS9+OKLOnHihF566SVFRkZKkqKjo5WXl1ese2qAm/nxxx/18ccfKzU1Vbm5uQ77Zs2a5aSuUNoMHjxYP//8s1atWqVKlSpp7969cnV1Vc+ePfXoo49qzpw5zm4RJZzNZtPgwYP1ySefyGq16o9//KMmT54sV1dXSVJ6eroCAgKYXQBKIEIWgBIlMTFRPXr00AMPPKCDBw+qcePGOn78uOx2u1q0aKFNmzY5u0WUEllZWerdu7d27dql8+fPKyAgQGlpaQoJCdGnn35a6F4GoLhefvllxcfH669//asyMzP12muvqXHjxvrPf/4jd3d3paenq1q1asrPz3d2qyglmDW9dwhZME1eXp7Wrl2rb7/9VpLUqFEj9ejRw/gXOcAMrVu3VpcuXTR16lRjMYKqVauqf//+6ty5s4YPH+7sFlHKfP7559q7d68uXLigFi1aKDQ01NktoZSoWbOmli1bpscff1ySdObMGYWHh8vHx0cff/yxMjMzmcmCKZg1vfcIWTDFkSNH1LVrV/3000+qX7++JOnQoUMKDAxUXFyc6tSp4+QOUVpUqFBBKSkpqlOnjipWrKjPP/9cjRo10p49e/Tkk0+y4huAEqNcuXI6cOCAwwqq58+fV1hYmMqWLau3335bdevW5S++uGPMmt57PIwYpnjppZdUp04dnThxQrt379bu3buVmpqq2rVr89wimKp8+fLGfVjVqlXT0aNHjX1nzpxxVlsopRITE9WtWzfVqVNHderUUbdu3bRx40Znt4VSokaNGsbVHwUqVKigzz77TJcuXdJTTz3lpM5Q2qxdu1b//Oc/1bt3bw0ePFi7du1SRkaGunfvrpycHEm66XPbUDyELJhi69atmjlzpipVqmSMVa5cWTNmzCjWs0CAm2nbtq0+//xzSb8sRTt69Gj99a9/1QsvvKC2bds6uTuUJgsWLFDnzp1VoUIFvfzyy3r55ZdltVrVtWtXzZ8/39ntoRTo1KmTli5dWmjcy8tLGzZskKenpxO6QmmUkZGhmjVrGq+rVKmijRs36vz58+ratavxGB6Yh8sFYYpKlSpp3bp1ateuncP4F198oe7du+vs2bNO6gylzffff68LFy6oadOmys7O1ujRo7V9+3bVq1dPs2bNcviPCHAnqlevrvHjx2vEiBEO4/Pnz9f//d//6aeffnJSZygtzp07pxMnTig6OlqLFi1SvXr1HPafP39eu3fv5plauGMNGjTQrFmzjOdkFbhw4YI6deqkixcvat++fVyaaiJCFkwxcOBA7d69W4sXL1br1q0lSV999ZWGDBmi4OBgxcbGOrdBACgmLy8vpaSkqG7dug7jhw8f1oMPPqgLFy44qTOUNr6+vsY/FgF3w0svvaRTp05p9erVhfadP39eTzzxhHbu3EnIMhEhC6bIzMxURESEPvnkE5UpU0aSdOXKFT355JNaunSpfHx8nNsgSqULFy4UuknXarU6qRuUNv369dODDz6oMWPGOIz//e9/165du/TBBx84qTOUNtHR0fLw8NCMGTOc3QpKqXPnzunkyZNq1KhRkfuZNTWfm7MbQOng4+Ojjz76SEeOHDFu4m3YsGGhfwEG7tSxY8c0YsQIbdmyRZcvXzbG7Xa7LBYL/wqHO3Ltg9ODgoL017/+VVu2bFFISIgk6csvv9QXX3yh0aNHO6tFlEJXr17VkiVLtHHjRgUHBxd6BhsPWcedqlixoipWrKhp06bdsI6QZR5msnDbYmJibrmW/0DALA899JDsdrtefvll+fn5FVoNif9A4E5cu5T2jVgsFn3//fd3uRv8VrRv3/5X91ksFh6yDtM8+OCDDq+vXLmiY8eOyc3NTXXq1NHu3bud1FnpQ8jCbbv+Pwq7d+/W1atXjedkfffdd3J1dVVwcDD/gYBpvLy8lJycbPzOAADA7bPZbHr++ef11FNPacCAAc5up9TgckHcts2bNxt/njVrlipUqKBly5apYsWKkn65/nfQoEF65JFHnNUiSqFWrVrpxIkThCzcUwX/HslzZACUNlarVVOnTlX37t0JWSZiJgum+N3vfqfPPvus0A2V+/fvV6dOnXTy5EkndYbS5ujRoxo2bJiee+45NW7c2FhopUDTpk2d1BlKo3feeUevv/66Dh8+LEn6/e9/rzFjxvAXEQClyueff67u3bvr3Llzzm6l1GAmC6aw2WzKyMgoNJ6RkaHz5887oSOUVhkZGTp69KgGDRpkjFksFha+gOlmzZqlP//5zxoxYoQeeughSb/8RWTYsGE6c+aMoqOjndwhABTPtYv7SL/M0p86dUrvvvuuunTp4qSuSidmsmCKgQMH6r///a/eeOMNh+dkjRkzRo888oiWLVvm5A5RWgQFBalhw4YaO3ZskQtf8DBimKV27dqaOnWqBg4c6DC+bNkyTZkyRceOHXNSZwBwe65f3MfFxUW+vr7q0KGDJkyYoAoVKjips9KHkAVTXLx4Ua+88oqWLFmiK1euSJLc3NwUGRmp119/vdBytMDtKl++vPbs2cPjAXDXeXp6av/+/UU+jLhJkyYOjxAAAOBaLs5uAKVDuXLltGDBAv3888/6+uuv9fXXX+vs2bNasGABAQum6tChg/bs2ePsNvAbULduXa1atarQ+MqVK1WvXj0ndAQAKCm4JwumKl++PAsP4K7q3r27oqOjtW/fPjVp0qTQwhc9evRwUmcobaZOnao+ffpo27Ztxj1ZX3zxhRITE4sMXwAAFOByQQAliovLr0/As/AFzLZ7927NmjVL3377rSSpYcOGGj16dKEHegIAcC1CFgAA17ly5Yr++Mc/6s9//nOhG8UBALgZ7skCUGJcuXJFbm5u2r9/v7NbQSlXpkwZffjhh85uAwBQQhGyAJQYZcqUUY0aNbgkEPdEz549tXbtWme3AQAogVj4AkCJ8uqrr+pPf/qT3n33XVWqVMnZ7aAUq1evnqZNm6YvvvhCwcHBhVZKfemll5zUGQDgfsc9WQBKlAcffFBHjhzRlStXVLNmzUJ/8d29e7eTOkNpc6N7sSwWi77//vt72A0AoCRhJgtAidKzZ09nt4DfiGPHjhl/Lvj3SIvF4qx2AAAlCDNZAAD8isWLF2v27Nk6fPiwpF8uIRw1apQGDx7s5M4AAPczZrIAlEjJycnGs4saNWrEc4tgukmTJmnWrFkaOXKkQkJCJElJSUmKjo5Wamqqpk2b5uQOAQD3K2ayAJQop0+fVt++fbVlyxb5+PhIkjIzM9W+fXt98MEH8vX1dW6DKDV8fX315ptv6tlnn3UYf//99zVy5EidOXPGSZ0BAO53LOEOoEQZOXKkzp8/rwMHDujs2bM6e/as9u/fL5vNxmpvMNWVK1fUsmXLQuPBwcG6evWqEzoCAJQUzGQBKFG8vb21ceNGtWrVymF8x44d6tSpkzIzM53TGEqdkSNHqkyZMpo1a5bD+CuvvKJLly5p/vz5TuoMAHC/454sACVKfn6+ypQpU2i8TJkyys/Pd0JHKM0WL16szz77TG3btpUkffXVV0pNTdXAgQMVExNj1F0fxAAAv23MZAEoUZ588kllZmbq/fffV0BAgCTpp59+Uv/+/VWxYkWtWbPGyR2itGjfvv0t1VksFm3atOkudwMAKEkIWQBKlBMnTqhHjx46cOCAAgMDJUmpqalq0qSJPv74Y1WvXt3JHQIAgN86QhaAEsdutysxMdFYwr1hw4YKDQ11clcAAAC/IGQBKHESExOVmJio06dPF7oPa8mSJU7qCgAA4BcsfAGgRJk6daqmTZumli1bqlq1arJYLM5uCQAAwAEzWQBKlGrVqmnmzJkaMGCAs1sBAAAoEg8jBlCi5Obmql27ds5uAwAA4FcRsgCUKIMHD9aKFSuc3QYAAMCv4p4sACXK5cuX9dZbb2njxo1q2rRpoQcT81BYAADgbNyTBaBEudEDYnkoLAAAuB8QsgAAAADARNyTBQAAAAAmImQBAAAAgIkIWQAAAABgIkIWAABF2LJliywWizIzM53dCgCghCFkAQDuK0lJSXJ1dVV4eHihfVOmTFHz5s0LjVssFq1du/buN3cDFovlhtuUKVOc2h8A4N7hOVkAgPvK4sWLNXLkSC1evFgnT55UQECAs1u6JadOnTL+vHLlSk2aNEmHDh0yxry8vJzRFgDACZjJAgDcNy5cuKCVK1dq+PDhCg8PV2xsrLEvNjZWU6dO1Z49e4zZodjYWNWqVUuS9NRTT8lisRivjx49qieffFJ+fn7y8vJSq1attHHjRof3y8nJ0bhx4xQYGCgPDw/VrVtXixcvLrK3ixcvqkuXLnrooYeKvITQ39/f2Ly9vWWxWOTv768KFSro97//veLj4x3q165dq/Lly+v8+fM6fvy4LBaLPvjgA7Vr106enp5q3Lixtm7d6nDM/v371aVLF3l5ecnPz08DBgzQmTNnivclAwDuOkIWAOC+sWrVKjVo0ED169fXc889pyVLlqjgcY59+vTR6NGj1ahRI506dUqnTp1Snz59tHPnTknS0qVLderUKeP1hQsX1LVrVyUmJurrr79W586d1b17d6WmphrvN3DgQL3//vt688039e233+qf//xnkTNOmZmZeuKJJ5Sfn6+EhAT5+Pjc8mcqX768+vbtq6VLlzqML126VL1791aFChWMsTFjxmj06NH6+uuvFRISou7du+vnn382eujQoYMefPBB7dq1S/Hx8UpPT9czzzxzy70AAO4NLhcEANw3Fi9erOeee06S1LlzZ2VlZWnr1q16/PHHVbZsWXl5ecnNzU3+/v7GMWXLlpUk+fj4OIw3a9ZMzZo1M17/5S9/0Zo1a/Txxx9rxIgR+u6777Rq1SolJCQoNDRUkvTAAw8U6iktLU19+vRRvXr1tGLFCrm7uxf7cw0ePFjt2rXTqVOnVK1aNZ0+fVqffvppoZm1ESNGqFevXpKkhQsXKj4+XosXL9bYsWM1b948Pfjgg/q///s/o37JkiUKDAzUd999p9///vfF7gsAcHcwkwUAuC8cOnRIO3bs0LPPPitJcnNzU58+fX718r2buXDhgl555RU1bNhQPj4+8vLy0rfffmvMZKWkpMjV1VWPPfbYDc/zxBNPqG7dulq5cuVtBSxJat26tRo1aqRly5ZJkt577z3VrFlTjz76qENdSEiI8Wc3Nze1bNlS3377rSRpz5492rx5s7y8vIytQYMGkn65NBIAcP9gJgsAcF9YvHixrl696rDQhd1ul4eHh+bNmydvb+9ine+VV15RQkKC/v73v6tu3boqW7asevfurdzcXEn/mwG7mfDwcH344Yf65ptv1KRJk2L1cK3Bgwdr/vz5Gj9+vJYuXapBgwbJYrHc8vEXLlxQ9+7d9be//a3QvmrVqt12XwAA8zGTBQBwuqtXr+qdd97RG2+8oZSUFGPbs2ePAgIC9P7770uS3N3dlZeXV+j4MmXKFBr/4osv9Pzzz+upp55SkyZN5O/vr+PHjxv7mzRpovz8/EKLS1xvxowZioiIUMeOHfXNN9/c9md87rnn9MMPP+jNN9/UN998o4iIiEI1X375pfHnq1evKjk5WQ0bNpQktWjRQgcOHFCtWrVUt25dh618+fK33RcAwHyELACA061bt07nzp1TZGSkGjdu7LD16tXLuGSwVq1aOnbsmFJSUnTmzBnl5OQY44mJiUpLS9O5c+ckSfXq1dN//vMfI6z169dP+fn5xnvWqlVLEREReuGFF7R27VodO3ZMW7Zs0apVqwr19/e//139+/dXhw4ddPDgwdv6jBUrVtTTTz+tMWPGqFOnTqpevXqhmvnz52vNmjU6ePCgoqKidO7cOb3wwguSpKioKJ09e1bPPvusdu7cqaNHj2rDhg0aNGhQkcETAOA8hCwAgNMtXrxYoaGhRV4S2KtXL+3atUt79+5Vr1691LlzZ7Vv316+vr7GDNcbb7yhhIQEBQYG6sEHH5QkzZo1SxUrVlS7du3UvXt3hYWFqUWLFg7nXrhwoXr37q0XX3xRDRo00JAhQ5SdnV1kj7Nnz9YzzzyjDh066LvvvrutzxkZGanc3FwjOF1vxowZmjFjhpo1a6bPP/9cH3/8sapUqSJJCggI0BdffKG8vDx16tRJTZo00ahRo+Tj4yMXF/5zDgD3E4u9YG1cAABwV7377ruKjo7WyZMnHRbROH78uGrXrq2vv/5azZs3d16DAABTsPAFAAB32cWLF3Xq1CnNmDFDf/zjH297lUIAQMnA9QUAANxlM2fOVIMGDeTv768JEyY4ux0AwF3G5YIAAAAAYCJmsgAAAADARIQsAAAAADARIQsAAAAATETIAgAAAAATEbIAAAAAwESELAAAAAAwESELAAAAAExEyAIAAAAAExGyAAAAAMBE/w9MpsFLt99aZgAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Display the columns of the dataframe\n",
+ "print(df.columns)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "w6ZROcj4gxVa",
+ "outputId": "b16fde34-f497-4948-f25e-1761d5685ba5"
+ },
+ "execution_count": 19,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Index(['duration', 'protocol_type', 'service', 'flag', 'src_bytes',\n",
+ " 'dst_bytes', 'land', 'wrong_fragment', 'urgent', 'hot',\n",
+ " 'num_failed_logins', 'logged_in', 'num_compromised', 'root_shell',\n",
+ " 'su_attempted', 'num_root', 'num_file_creations', 'num_shells',\n",
+ " 'num_access_files', 'num_outbound_cmds', 'is_host_login',\n",
+ " 'is_guest_login', 'count', 'srv_count', 'serror_rate',\n",
+ " 'srv_serror_rate', 'rerror_rate', 'srv_rerror_rate', 'same_srv_rate',\n",
+ " 'diff_srv_rate', 'srv_diff_host_rate', 'dst_host_count',\n",
+ " 'dst_host_srv_count', 'dst_host_same_srv_rate',\n",
+ " 'dst_host_diff_srv_rate', 'dst_host_same_src_port_rate',\n",
+ " 'dst_host_srv_diff_host_rate', 'dst_host_serror_rate',\n",
+ " 'dst_host_srv_serror_rate', 'dst_host_rerror_rate',\n",
+ " 'dst_host_srv_rerror_rate', 'target', 'Attack Type'],\n",
+ " dtype='object')\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Display the columns of the dataframe\n",
+ "print(df.columns)\n",
+ "\n",
+ "# Drop columns with NaN\n",
+ "df = df.dropna(axis=1)\n",
+ "\n",
+ "# Keep columns where there are more than 1 unique values\n",
+ "df = df[[col for col in df if df[col].nunique() > 1]]\n",
+ "\n",
+ "# Select only numerical columns for correlation\n",
+ "df_numeric = df.select_dtypes(include=['number'])\n",
+ "\n",
+ "# Calculate the correlation matrix for numerical columns\n",
+ "corr = df_numeric.corr()\n",
+ "\n",
+ "plt.figure(figsize=(15,12))\n",
+ "\n",
+ "sns.heatmap(corr)\n",
+ "plt.savefig('correlation_heatmap.png')\n",
+ "plt.show()"
+ ],
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2022-11-14T04:34:54.784787Z",
+ "iopub.execute_input": "2022-11-14T04:34:54.785347Z",
+ "iopub.status.idle": "2022-11-14T04:34:57.097796Z",
+ "shell.execute_reply.started": "2022-11-14T04:34:54.785315Z",
+ "shell.execute_reply": "2022-11-14T04:34:57.096557Z"
+ },
+ "trusted": true,
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "id": "iNaNXenafJnm",
+ "outputId": "dd21552c-98be-4792-ae22-5637b65ac14e"
+ },
+ "execution_count": 23,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Index(['duration', 'protocol_type', 'service', 'flag', 'src_bytes',\n",
+ " 'dst_bytes', 'land', 'wrong_fragment', 'urgent', 'hot',\n",
+ " 'num_failed_logins', 'logged_in', 'num_compromised', 'root_shell',\n",
+ " 'su_attempted', 'num_root', 'num_file_creations', 'num_shells',\n",
+ " 'num_access_files', 'is_guest_login', 'count', 'srv_count',\n",
+ " 'serror_rate', 'srv_serror_rate', 'rerror_rate', 'srv_rerror_rate',\n",
+ " 'same_srv_rate', 'diff_srv_rate', 'srv_diff_host_rate',\n",
+ " 'dst_host_count', 'dst_host_srv_count', 'dst_host_same_srv_rate',\n",
+ " 'dst_host_diff_srv_rate', 'dst_host_same_src_port_rate',\n",
+ " 'dst_host_srv_diff_host_rate', 'dst_host_serror_rate',\n",
+ " 'dst_host_srv_serror_rate', 'dst_host_rerror_rate',\n",
+ " 'dst_host_srv_rerror_rate', 'target', 'Attack Type'],\n",
+ " dtype='object')\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABSUAAASICAYAAADlBKpiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xUVf7/8fdNbyQQSgqG3gLSm4AUAQ0WviIqiAVCc9EFFpGWVekSYIWlZBUXkaCLiooiK90sASnSNIASESMxukaC0kzQtJnfH/6cdaQlITlDhtfz8biPB3Pn3PP53Dszd8JnzrnXstvtdgEAAAAAAACAIR6uTgAAAAAAAADA9YWiJAAAAAAAAACjKEoCAAAAAAAAMIqiJAAAAAAAAACjKEoCAAAAAAAAMIqiJAAAAAAAAACjKEoCAAAAAAAAMIqiJAAAAAAAAACjKEoCAAAAAAAAMIqiJAAAAAAAAACjKEoCAAAAAAAA5cT27dvVu3dvRUZGyrIsrVmz5orbJCcnq1WrVvL19VW9evWUmJh4QZt//OMfqlWrlvz8/NS+fXvt3bu39JP/HYqSAAAAAAAAQDmRk5Oj5s2b6x//+EeR2h8/flx33nmnbrnlFqWkpGjMmDEaNmyYNm3a5GizatUqjR07VlOmTNHHH3+s5s2bKyYmRllZWWW1G7Lsdru9zHoHAAAAAAAAUCYsy9K7776rPn36XLLNxIkTtW7dOn366aeOdQ888IDOnDmjjRs3SpLat2+vtm3bKiEhQZJks9kUFRWlUaNGadKkSWWSOyMlAQAAAAAAABfJzc3VuXPnnJbc3NxS63/37t3q2bOn07qYmBjt3r1bkpSXl6cDBw44tfHw8FDPnj0dbcqCV5n1DOCi8n/4ykic7U3ijMRxJzZDcUz9GuRpaI8KDe1RviwjcSp55pV5jFybZ5nHkCQfj0Ijccy8MpKnh5n39Nl8XyNxvC1TZ52yl+Fh5pj5GprgE2Bzn9dGkvxl5lxggpdl5j1g6vx5rtDHSBwvQ38TfOtV9vtj6tN5b+8fjMQ5/F6gkTg5NjP/9Tf195oJfsbebWZ0P/Gmq1MwwtT/t0tbfMIrmjZtmtO6KVOmaOrUqaXS//fff6+wsDCndWFhYTp37px+/vlnnT59WoWFhRdt8/nnn5dKDhdDURIAAAAAAABwkbi4OI0dO9Zpna+vmR99XYmiJAAAAAAAAOAivr6+ZVqEDA8P14kTJ5zWnThxQsHBwfL395enp6c8PT0v2iY8PLzM8uKakgAAAAAAAICb6tChg5KSkpzWbdmyRR06dJAk+fj4qHXr1k5tbDabkpKSHG3KAiMlAQAAAAAAUP7Z3Oc6ypeTnZ2tL7/80vH4+PHjSklJUWhoqGrUqKG4uDj997//1SuvvCJJGjFihBISEjRhwgQNGTJE//nPf/Tmm29q3bp1jj7Gjh2rQYMGqU2bNmrXrp0WLFignJwcDR48uMz2g6IkAAAAAAAAUE7s379ft9xyi+Pxb9ejHDRokBITE5WZmamMjAzH87Vr19a6dev0xBNPaOHChbrhhhv00ksvKSYmxtGmf//+OnnypCZPnqzvv/9eLVq00MaNGy+4+U1psux2Q7cxBC6iW7duatGihRYsWGA8dnJysm655RadPn1aFStWNBaXu29fu7j7dslw9+3i4+7bJcPdt69d3H372sbdt4uPu2+XDHffLj7uvn3t4u7b5VN+1jFXp1Ai3tXquzoFl+CakrgudOvWTWPGjHFa17FjR2VmZiokJMQ1SQEAAAAAgNJjt5XP5TpFURLlWn5+fom39fHxUXh4uCzLfX7NAwAAAAAAKA8oSsKYnJwcDRw4UEFBQYqIiNC8efOcnrcsS2vWrHFaV7FiRSUmJkqS0tPTZVmWVq1apa5du8rPz08rV67Ujz/+qAEDBqh69eoKCAhQ06ZN9frrrzv6iI2N1bZt27Rw4UJZliXLspSenq7k5GRZlqUzZ8442q5evVpNmjSRr6+vatWqdUGOtWrV0qxZszRkyBBVqFBBNWrU0D//+c9SPU4AAAAAAADujqIkjBk/fry2bdum9957T5s3b1ZycrI+/vjjYvczadIk/eUvf1FqaqpiYmL0yy+/qHXr1lq3bp0+/fRTPfroo3rkkUe0d+9eSdLChQvVoUMHDR8+XJmZmcrMzFRUVNQF/R44cED9+vXTAw88oMOHD2vq1Kl65plnHEXR38ybN09t2rTRJ598oscff1yPPfaYjh49WqJjAgAAAAAAcD3i7tswIjs7W8uWLdO//vUv9ejRQ5K0YsUK3XDDDcXua8yYMerbt6/TunHjxjn+PWrUKG3atElvvvmm2rVrp5CQEPn4+CggIEDh4eGX7Hf+/Pnq0aOHnnnmGUlSgwYNdOTIEf3tb39TbGyso90dd9yhxx9/XJI0ceJE/f3vf9fWrVvVsGHDYu8LAAAAAAAoJW52szp3x0hJGJGWlqa8vDy1b9/esS40NLREhbw2bdo4PS4sLNSMGTPUtGlThYaGKigoSJs2bVJGRkax+k1NTVWnTp2c1nXq1EnHjh1TYeH/7sDYrFkzx78ty1J4eLiysrIu2mdubq7OnTvntOTm5hYrLwAAAAAAAHdDURLXDMuyZLfbndZd7EY2gYGBTo//9re/aeHChZo4caK2bt2qlJQUxcTEKC8vr0zy9Pb2dnpsWZZsl/g1Jj4+XiEhIU7LnIVLyiQvAAAAAACA8oLp2zCibt268vb21p49e1SjRg1J0unTp/XFF1+oa9eukqSqVasqMzPTsc2xY8d0/vz5K/a9c+dO3X333Xr44YclSTabTV988YUaN27saOPj4+M02vFioqOjtXPnzgv6btCggTw9PYu2o38QFxensWPHOq3z+Om/JeoLAAAAAABcmt3O9O3yhKIkjAgKCtLQoUM1fvx4Va5cWdWqVdNTTz0lD4//Ddbt3r27EhIS1KFDBxUWFmrixIkXjEq8mPr16+vtt9/Wrl27VKlSJc2fP18nTpxwKkrWqlVLe/bsUXp6uoKCghQaGnpBP08++aTatm2rGTNmqH///tq9e7cSEhL0/PPPl3i/fX195evr67QuP++HEvcHAAAAAADgDpi+DWP+9re/qXPnzurdu7d69uypm2++Wa1bt3Y8P2/ePEVFRalz58568MEHNW7cOAUEBFyx36efflqtWrVSTEyMunXrpvDwcPXp08epzbhx4+Tp6anGjRuratWqF73eZKtWrfTmm2/qjTfe0I033qjJkydr+vTpTje5AQAAAAAAwNWz7H+8iB+AMpX/w1dG4mxvEmckjjsxNdDf1K9Bnob2qNDQHuXLMhKnkmfZXI/293JtJbskRHH5eFz+shWlxcwrI3l6mHlPn833vXKjUuBtuc/0ogwPM8fM19CfrQFududOf5k5F5jgZZl5D5g6f54r9DESx8vQ3wTfepX9/pj6dN7b28zspsPvBV65USnIsZmZJGnq7zUT/Iy928zofuJNV6dgRN53n7k6hRLxiWzi6hRcgunbAAAAAAAAKP/c7IdFd8f0bQAAAAAAAABGUZQEAAAAAAAAYBRFSQAAAAAAAABGcU1JAAAAAAAAlH92rilZnjBSEgAAAAAAAIBRFCUBAAAAAAAAGMX0bQAAAAAAAJR/tkJXZ4BioCgJGLa9SZyROF0+izcSx9T+mOBuQ8cL3WyPvGU3Eie70NtIHBPyC93rPSA3+xsz3+4+r09YYb6rUyhV7vPK/Mouy9UplJpcu5l9KSg0E8fT0HdboaH3QESB+5wL9r4b4uoUSpWp85qvofe0Ce507gSuVe72NxcAAAAAAACAaxxFSQAAAAAAAABGMX0bAAAAAAAA5Z/d5uoMUAyMlAQAAAAAAABgFEVJAAAAAAAAAEZRlES5NHXqVLVo0cLVaQAAAAAAgGuFzVY+l+sURUlctxITE1WxYkVXpwEAAAAAAHDdoSgJl8jLy3N1CgAAAAAAAHARipIoVW+//baaNm0qf39/Va5cWT179lROTo5iY2PVp08fPfvss4qMjFTDhg0lSd9++60GDBig0NBQBQYGqk2bNtqzZ0+R47344ouKiopSQECA+vXrp7Nnz0qStm/fLm9vb33//fdO7ceMGaPOnTsrOTlZgwcP1tmzZ2VZlizL0tSpUyVJubm5GjdunKpXr67AwEC1b99eycnJjj6+/vpr9e7dW5UqVVJgYKCaNGmi9evXX92BAwAAAAAAuI54uToBuI/MzEwNGDBAc+fO1T333KOffvpJH374oex2uyQpKSlJwcHB2rJliyQpOztbXbt2VfXq1bV27VqFh4fr448/lq2I11P48ssv9eabb+rf//63zp07p6FDh+rxxx/XypUr1aVLF9WpU0evvvqqxo8fL0nKz8/XypUrNXfuXHXs2FELFizQ5MmTdfToUUlSUFCQJGnkyJE6cuSI3njjDUVGRurdd99Vr169dPjwYdWvX19//vOflZeXp+3btyswMFBHjhxxbAsAAAAAAFzDbr9+r89YHlGURKnJzMxUQUGB+vbtq5o1a0qSmjZt6ng+MDBQL730knx8fCRJ//znP3Xy5Ent27dPoaGhkqR69eoVOd4vv/yiV155RdWrV5ckLV68WHfeeafmzZun8PBwDR06VMuXL3cUJf/973/rl19+Ub9+/eTj46OQkBBZlqXw8HBHnxkZGVq+fLkyMjIUGRkpSRo3bpw2btyo5cuXa9asWcrIyNC9997r2Lc6depcMsfc3Fzl5uY6rcuzF8rH8izyfgIAAAAAALgbpm+j1DRv3lw9evRQ06ZNdf/992vp0qU6ffq04/mmTZs6CpKSlJKSopYtWzoKksVVo0YNR0FSkjp06CCbzeYY+RgbG6svv/xSH330kaRfb2zTr18/BQYGXrLPw4cPq7CwUA0aNFBQUJBj2bZtm9LS0iRJo0eP1syZM9WpUydNmTJFhw4dumR/8fHxCgkJcVpez0kt0f4CAAAAAAC4C4qSKDWenp7asmWLNmzYoMaNG2vx4sVq2LChjh8/LkkXFAP9/f3LNJ9q1aqpd+/eWr58uU6cOKENGzZoyJAhl90mOztbnp6eOnDggFJSUhxLamqqFi5cKEkaNmyYvvrqKz3yyCM6fPiw2rRpo8WLF1+0v7i4OJ09e9ZpGRAYXer7CgAAAAAAUJ4wfRulyrIsderUSZ06ddLkyZNVs2ZNvfvuuxdt26xZM7300ks6depUiUZLZmRk6LvvvnNMs/7oo4/k4eHhuImO9GsBccCAAbrhhhtUt25dderUyfGcj4+PCgsLnfps2bKlCgsLlZWVpc6dO18ydlRUlEaMGKERI0YoLi5OS5cu1ahRoy5o5+vrK19fX6d1TN0GAAAAAKAMFPEeFbg2MFISpWbPnj2aNWuW9u/fr4yMDL3zzjs6efKkoqMvPjJwwIABCg8PV58+fbRz50599dVXWr16tXbv3l2keH5+fho0aJAOHjyoDz/8UKNHj1a/fv2crhEZExOj4OBgzZw5U4MHD3bavlatWsrOzlZSUpJ++OEHnT9/Xg0aNNBDDz2kgQMH6p133tHx48e1d+9excfHa926dZJ+vYP3pk2bdPz4cX388cfaunXrJfcRAAAAAAAAF6IoiVITHBys7du364477lCDBg309NNPa968ebr99tsv2t7Hx0ebN29WtWrVdMcdd6hp06aaPXu2PD2LNpKwXr166tu3r+644w7ddtttatasmZ5//nmnNh4eHoqNjVVhYaEGDhzo9FzHjh01YsQI9e/fX1WrVtXcuXMlScuXL9fAgQP15JNPqmHDhurTp4/27dunGjVqSJIKCwv15z//WdHR0erVq5caNGhwQVwAAAAAAABcmmW32+2uTgIoS0OHDtXJkye1du1aV6ciSUoK628kTpfP4o3E2d4kzkgcAMC1y90mSvGr/bXL1HvNU2b+i2SXZSSOu31GTeA8AHfT48QqV6dgRO4XO1ydQon4NrjZ1Sm4BNeUhNs6e/asDh8+rNdee+2aKUgCAAAAAACAH4BwjWrSpImCgoIuuqxcubJIfdx999267bbbNGLECN16661lnDEAAAAAAACKipGSuCatX79e+fn5F30uLCysSH0kJyeXYkYAAAAAAAAoLRQlcU2qWbOmq1MAAAAAAADlia3Q1RmgGJi+DQAAAAAAAMAoipIAAAAAAAAAjGL6NgAAAAAAAMo/u83VGaAYKEoCbmp7kzgjcbp8Fm8kjqn9McFTZr4oCw0Nhg/0vPhNqUqbzW4ZiVNgL/vjZsle5jEkyd+rwEic8wXeRuLkG3htTDLxPrDLzOfmF8vMa+NpN/PZcbc/kE2dc0zwNvQdmm/oO9TT0Gtz3jLzrg6wl/213Ewds0JD509TcXwMfXYK3GgypjudO4FrlfucMQAAAAAAAACUCxQlAQAAAAAAABjlbrNTAAAAAAAAcD2ycU3J8oSRkgAAAAAAAACMoigJAAAAAAAAwCiKkgAAAAAAAACMoiiJMtOtWzeNGTOm1PtNTk6WZVk6c+ZMqfcNAAAAAADKKbutfC7XKYqScLmyKl5eTnp6uizLUkpKitG4AAAAAAAAoCgJAAAAAAAAwDCKkigVOTk5GjhwoIKCghQREaF58+Y5Pf/888+rfv368vPzU1hYmO677z5JUmxsrLZt26aFCxfKsixZlqX09PQixdy5c6eaNWsmPz8/3XTTTfr0008duQQHB+vtt992ar9mzRoFBgbqp59+Uu3atSVJLVu2lGVZ6tatm6PdSy+9pOjoaPn5+alRo0Z6/vnnHc/l5eVp5MiRioiIkJ+fn2rWrKn4+PjiHi4AAAAAAFDabLbyuVynvFydANzD+PHjtW3bNr333nuqVq2a/vrXv+rjjz9WixYttH//fo0ePVqvvvqqOnbsqFOnTunDDz+UJC1cuFBffPGFbrzxRk2fPl2SVLVq1SLHXLhwocLDw/XXv/5VvXv31hdffKHAwEA98MADWr58uaP4KcnxuEKFCtq7d6/atWunDz74QE2aNJGPj48kaeXKlZo8ebISEhLUsmVLffLJJxo+fLgCAwM1aNAgLVq0SGvXrtWbb76pGjVq6JtvvtE333xTykcTAAAAAADAvVGUxFXLzs7WsmXL9K9//Us9evSQJK1YsUI33HCDJCkjI0OBgYG66667VKFCBdWsWVMtW7aUJIWEhMjHx0cBAQEKDw8vVtwpU6bo1ltvdYr37rvvql+/fho2bJg6duyozMxMRUREKCsrS+vXr9cHH3wg6X+Fz8qVKzvFnTJliubNm6e+fftKkmrXrq0jR47oxRdf1KBBg5SRkaH69evr5ptvlmVZqlmz5mVzzM3NVW5urtO6PHuhfCzPYu0rAAAAAACAO2H6Nq5aWlqa8vLy1L59e8e60NBQNWzYUJJ06623qmbNmqpTp44eeeQRrVy5UufPn7/quB06dLggXmpqqiSpXbt2atKkiVasWCFJ+te//qWaNWuqS5cul+wvJydHaWlpGjp0qIKCghzLzJkzlZaWJunX6eYpKSlq2LChRo8erc2bN182x/j4eIWEhDgtr+ekXu2uAwAAAAAAlGsUJVHmKlSooI8//livv/66IiIiNHnyZDVv3lxnzpwp07jDhg1TYmKipF+nbg8ePFiWZV2yfXZ2tiRp6dKlSklJcSyffvqpPvroI0lSq1atdPz4cc2YMUM///yz+vXr5zRF/I/i4uJ09uxZp2VAYHTp7SQAAAAAAJAk2e2F5XK5XlGUxFWrW7euvL29tWfPHse606dP64svvnA89vLyUs+ePTV37lwdOnRI6enp+s9//iNJ8vHxUWFh8T+EvxUKfx8vOvp/Bb+HH35YX3/9tRYtWqQjR45o0KBBjud+u4bk7+OGhYUpMjJSX331lerVq+e0/HZjHEkKDg5W//79tXTpUq1atUqrV6/WqVOnLpqjr6+vgoODnRambgMAAAAAgOsd15TEVQsKCtLQoUM1fvx4Va5cWdWqVdNTTz0lD49fa97vv/++vvrqK3Xp0kWVKlXS+vXrZbPZHNO7a9WqpT179ig9PV1BQUEKDQ11bHs506dPV+XKlRUWFqannnpKVapUUZ8+fRzPV6pUSX379tX48eN12223Oa5xKUnVqlWTv7+/Nm7cqBtuuEF+fn4KCQnRtGnTNHr0aIWEhKhXr17Kzc3V/v37dfr0aY0dO1bz589XRESEWrZsKQ8PD7311lsKDw9XxYoVS/WYAgAAAAAAuDNGSqJU/O1vf1Pnzp3Vu3dv9ezZUzfffLNat24tSapYsaLeeecdde/eXdHR0VqyZIlef/11NWnSRJI0btw4eXp6qnHjxqpataoyMjKKFHP27Nn6y1/+otatW+v777/Xv//9b8cIyN8MHTpUeXl5GjJkiNN6Ly8vLVq0SC+++KIiIyN19913S/p1yvdLL72k5cuXq2nTpuratasSExMdIyUrVKiguXPnqk2bNmrbtq3S09O1fv36IhVRAQAAAABAGbLbyudynbLsdrvd1UkAZeXVV1/VE088oe++++6CgqWrJIX1d3UKparLZ/FG4mxvEmckjgmeMvOlU2jod6dAz3wjcWz2S18TtjQV2Mv+uFky89Xr71VgJM75Am8jcfINvDYmmXgf2GXmc3PeMvPaeBr6s9XdphKZOueY4G3oOzTf0Heop6HX5ifLzLs6wMB10Uwds0JD509TcXwMfXYK3GjckzudOyXp1hOrXJ2CEb+kvO/qFErEr8Vdrk7BJdztby5AknT+/HllZmZq9uzZ+tOf/nTNFCQBAAAAAADA9G1cg0aMGKGgoKCLLiNGjChSH3PnzlWjRo0UHh6uuDj3GWEHAAAAAADgDpi+jWtOVlaWzp07d9HngoODVa1aNcMZlS6mb5cM07eLj+nbJcP07eJj+nbJMH27+Ji+XTLuNAWR6dslw/Tt4mP6dskwffvadd1M3/54ratTKBG/Vv/n6hRcwt3+5oIbqFatWrkvPAIAAAAAAODS3OdnDAAAAAAAAADlAkVJAAAAAAAAAEYxfRsAAAAAAADln93M9VNROihKArgqpm5AY+KGOqb2xdQNaEzJKTRzkxNTf16406uTl+/p6hRwGaZuQmOCr6Eb0Ji66YCpm6mY4k7fO6b2xdQR87XMvNd+MfSfdBPnNVO3HjH1HvAwtEcVfXKNxDmT52skjgnu9D0NXKvc5y8UAAAAAAAAAOUCIyUBAAAAAABQ/tkKXZ0BioGRkgAAAAAAAACMoigJAAAAAAAAwCiKkgAAAAAAAACMoigJt9StWzeNGTOmTGNMnTpVLVq0KNMYAAAAAACgiOy28rlcpyhKAgAAAAAAADCKoiQAAAAAAAAAoyhKwu29+uqratOmjSpUqKDw8HA9+OCDysrKcjyfnJwsy7KUlJSkNm3aKCAgQB07dtTRo0ed+pk9e7bCwsJUoUIFDR06VL/88ovpXQEAAAAAAHALFCXh9vLz8zVjxgwdPHhQa9asUXp6umJjYy9o99RTT2nevHnav3+/vLy8NGTIEMdzb775pqZOnapZs2Zp//79ioiI0PPPP29wLwAAAAAAwGXZbOVzuU55uToBoKz9vrhYp04dLVq0SG3btlV2draCgoIczz377LPq2rWrJGnSpEm688479csvv8jPz08LFizQ0KFDNXToUEnSzJkz9cEHHzBaEgAAAAAAoAQYKQm3d+DAAfXu3Vs1atRQhQoVHIXHjIwMp3bNmjVz/DsiIkKSHNO8U1NT1b59e6f2HTp0uGLs3NxcnTt3zmnJsxde1f4AAAAAAACUdxQl4dZycnIUExOj4OBgrVy5Uvv27dO7774rScrLy3Nq6+3t7fi3ZVmSJNtVDqOOj49XSEiI0/J6TupV9QkAAAAAAC7Cbiufy3WKoiTc2ueff64ff/xRs2fPVufOndWoUSOnm9wUVXR0tPbs2eO07qOPPrridnFxcTp79qzTMiAwutjxAQAAAAAA3AnXlIRbq1Gjhnx8fLR48WKNGDFCn376qWbMmFHsfv7yl78oNjZWbdq0UadOnbRy5Up99tlnqlOnzmW38/X1la+vr9M6H8uz2PEBAAAAAADcCSMl4daqVq2qxMREvfXWW2rcuLFmz56t5557rtj99O/fX88884wmTJig1q1b6+uvv9Zjjz1WBhkDAAAAAAC4P8tut9tdnQRwPUkK6+/qFMqlLp/Fl3mM7U3iyjwGSs7UlVb4tQ4ovkJZRuJYMvNnq7exM44ZhZzZrll+lpkbIJ61m5kgZyKKp6HzgLup5POLkThn8nyv3KicsBv6bjOlx4lVrk7BiF92rnR1CiXi1+khV6fgEvyFAgAAAAAAAMAoipIAAAAAAAAAjOJGNwAAAAAAACj/bO51CRZ3x0hJAAAAAAAAAEZRlAQAAAAAAABgFEVJAAAAAAAAAEZxTUkAAAAAAACUe3Z7oatTQDEwUhIAAAAAAACAUYyUBAwzdS8wd/vFYXuTuDKP0eWz+DKPIZnZF8n93muFsozE8ZDdSBzABFPngWzLzJnA00gUyd9u5nzjbudpE3xkZgRMvqGj9ovdzLva29B3W45l6lNa9m7wOm8kzol8fyNxzuT5GomT50ZnnECrwEicn+2UZXD9cp8zBgAAAAAAAIBygZI8AAAAAAAAyj+bqXkIKA2MlAQAAAAAAABgFEVJAAAAAAAAAEYxfRsAAAAAAADln53p2+UJIyVRaux2ux599FGFhobKsiylpKS4OiUAAAAAAABcgyhKotRs3LhRiYmJev/995WZmakbb7zR1SmVmW7dumnMmDGuTgMAAAAAAKBcYvp2OVdYWCjLsuTh4fr6clpamiIiItSxY8dLtsnLy5OPj4/BrAAAAAAAAHCtcX0lC3r//fdVsWJFFRYWSpJSUlJkWZYmTZrkaDNs2DA9/PDDSkxMVMWKFbV27Vo1btxYvr6+ysjI0OnTpzVw4EBVqlRJAQEBuv3223Xs2DHH9r9tt2nTJkVHRysoKEi9evVSZmamo01BQYFGjx6tihUrqnLlypo4caIGDRqkPn36XHEfYmNjNWrUKGVkZMiyLNWqVUvSryMKR44cqTFjxqhKlSqKiYmRJM2fP19NmzZVYGCgoqKi9Pjjjys7O9upz6VLlyoqKkoBAQG65557NH/+fFWsWNHx/NSpU9WiRQu9/PLLqlGjhoKCgvT444+rsLBQc+fOVXh4uKpVq6Znn33Wqd8zZ85o2LBhqlq1qoKDg9W9e3cdPHjwgn5fffVV1apVSyEhIXrggQf0008/OfZ127ZtWrhwoSzLkmVZSk9Pv+IxAgAAAAAAZchmK5/LdYqi5DWgc+fO+umnn/TJJ59IkrZt26YqVaooOTnZ0Wbbtm3q1q2bJOn8+fOaM2eOXnrpJX322WeqVq2aYmNjtX//fq1du1a7d++W3W7XHXfcofz8fEcf58+f13PPPadXX31V27dvV0ZGhsaNG+d4fs6cOVq5cqWWL1+unTt36ty5c1qzZk2R9mHhwoWaPn26brjhBmVmZmrfvn2O51asWCEfHx/t3LlTS5YskSR5eHho0aJF+uyzz7RixQr95z//0YQJExzb7Ny5UyNGjNBf/vIXpaSk6NZbb72guCj9Ojpzw4YN2rhxo15//XUtW7ZMd955p7799ltt27ZNc+bM0dNPP609e/Y4trn//vuVlZWlDRs26MCBA2rVqpV69OihU6dOOfW7Zs0avf/++3r//fe1bds2zZ4927GvHTp00PDhw5WZmanMzExFRUUV6TgBAAAAAACA6dvXhJCQELVo0ULJyclq06aNkpOT9cQTT2jatGnKzs7W2bNn9eWXX6pr167auXOn8vPz9fzzz6t58+aSpGPHjmnt2rXauXOnY+r0ypUrFRUVpTVr1uj++++XJOXn52vJkiWqW7euJGnkyJGaPn26I4/FixcrLi5O99xzjyQpISFB69evL/I+VKhQQZ6engoPD3d6rn79+po7d67Tut9fj7FWrVqaOXOmRowYoeeff96Ry+233+4omjZo0EC7du3S+++/79SPzWbTyy+/rAoVKqhx48a65ZZbdPToUa1fv14eHh5q2LCh5syZo61bt6p9+/basWOH9u7dq6ysLPn6+kqSnnvuOa1Zs0Zvv/22Hn30UUe/iYmJqlChgiTpkUceUVJSkp599lmFhITIx8dHAQEBF+zrH+Xm5io3N9dpXZ69UD6WZ1EOKwAAAAAAgFtipOQ1omvXrkpOTpbdbteHH36ovn37Kjo6Wjt27NC2bdsUGRmp+vXrS5J8fHzUrFkzx7apqany8vJS+/btHesqV66shg0bKjU11bEuICDAUZCUpIiICGVlZUmSzp49qxMnTqhdu3aO5z09PdW6deur3reL9fHBBx+oR48eql69uipUqKBHHnlEP/74o86fPy9JOnr0qFMuki54LP1a0PytcChJYWFhaty4sdM1NsPCwhz7efDgQWVnZ6ty5coKCgpyLMePH1daWtol+/39sSqO+Ph4hYSEOC1v5KReeUMAAAAAAFA8dlv5XK5TjJS8RnTr1k0vv/yyDh48KG9vbzVq1EjdunVTcnKyTp8+ra5duzra+vv7y7KsYsfw9vZ2emxZlux2+1XnfiWBgYFOj9PT03XXXXfpscce07PPPqvQ0FDt2LFDQ4cOVV5engICAorc98X26WLrbP//Gg3Z2dmKiIhwmhr/m99fr/JyfRRHXFycxo4d67Tuw3pDit0PAAAAAACAO2Gk5DXit+tK/v3vf3cUIH8rSiYnJzuuJ3kx0dHRKigocLpu4o8//qijR4+qcePGRYofEhKisLAwp2tBFhYW6uOPPy7ZDl3GgQMHZLPZNG/ePN10001q0KCBvvvuO6c2DRs2dMpF0gWPS6JVq1b6/vvv5eXlpXr16jktVapUKXI/Pj4+jhsTXY6vr6+Cg4OdFqZuAwAAAACA6x1FyWtEpUqV1KxZM61cudJRgOzSpYs+/vhjffHFF04jJf+ofv36uvvuuzV8+HDt2LFDBw8e1MMPP6zq1avr7rvvLnIOo0aNUnx8vN577z0dPXpUf/nLX3T69OkSjcq8nHr16ik/P1+LFy/WV199pVdffdVxA5zf57J+/XrNnz9fx44d04svvqgNGzZcdS49e/ZUhw4d1KdPH23evFnp6enatWuXnnrqKe3fv7/I/dSqVUt79uxRenq6fvjhhxKNogQAAAAAALheUZS8hnTt2lWFhYWOomRoaKgaN26s8PBwNWzY8LLbLl++XK1bt9Zdd92lDh06yG63a/369RdMQ76ciRMnasCAARo4cKA6dOigoKAgxcTEyM/P72p26wLNmzfX/PnzNWfOHN14441auXKl4uPjndp06tRJS5Ys0fz589W8eXNt3LhRTzzxxFXnYlmW1q9fry5dumjw4MFq0KCBHnjgAX399dcKCwsrcj/jxo2Tp6enGjdurKpVqyojI+Oq8gIAAAAAAFfJZiufy3XKspu4qCDKJZvNpujoaPXr108zZsxwdToaPny4Pv/8c3344YeuTuWqbAnrbyQOvzgUX5fP4q/cqBRsbxJnJI6przZT77V8le6o7UvxFl+LcB+mzgM/Gbo0iakLoPgbuuC8u52nTfDRlS+fUxryDR01U6+NqfdajhtdpugGr/NG4pzI9zcSx9/QZyfPjc44gVaBkTg/283c6uO2E28YieNqP29+3tUplIj/bY8Xe5t//OMf+tvf/qbvv/9ezZs31+LFiy96g2Dp18sDbtu27YL1d9xxh9atWydJio2N1YoVK5yej4mJ0caNG4udW1Fxoxs4fP3119q8ebO6du2q3NxcJSQk6Pjx43rwwQddks9zzz2nW2+9VYGBgdqwYYNWrFih558vnycYAAAAAACA0rBq1SqNHTtWS5YsUfv27bVgwQLFxMTo6NGjqlat2gXt33nnHeXl5Tke//jjj2revLnuv/9+p3a9evXS8uXLHY99fX3LbidEURK/4+HhocTERI0bN052u1033nijPvjgA0VHRysjI+OyN805cuSIatSoUar57N27V3PnztVPP/2kOnXqaNGiRRo2bFipxgAAAAAAAChP5s+fr+HDh2vw4MGSpCVLlmjdunV6+eWXNWnSpAvah4aGOj1+4403FBAQcEFR0tfXV+Hh4WWX+B9QlIRDVFSUdu7cedHnIiMjlZKScsltIyMjSz2fN998s9T7BAAAAAAAbsrQJVhKW25urnJzc53W+fr6XnSkYl5eng4cOKC4uP9dFszDw0M9e/bU7t27ixRv2bJleuCBBxQYGOi0Pjk5WdWqVVOlSpXUvXt3zZw5U5UrVy7BHhUNRUkUiZeXl+rVq+fqNAAAAAAAANxKfHy8pk2b5rRuypQpmjp16gVtf/jhBxUWFl5ws96wsDB9/vnnV4y1d+9effrpp1q2bJnT+l69eqlv376qXbu20tLS9Ne//lW33367du/eLU/PsrlmMEVJAAAAAAAAwEXi4uI0duxYp3VldT3HZcuWqWnTphfcFOeBBx5w/Ltp06Zq1qyZ6tatq+TkZPXo0aNMcqEoCQAAAAAAgPLPVj6nb19qqvbFVKlSRZ6enjpx4oTT+hMnTlzxepA5OTl64403NH369CvGqVOnjqpUqaIvv/yyzIqSHmXSKwAAAAAAAIBS5ePjo9atWyspKcmxzmazKSkpSR06dLjstm+99ZZyc3P18MMPXzHOt99+qx9//FERERFXnfOlMFISMMzdfgnwlJlfogoNHLntTeKu3KgUdPks3kgcU/tTPeQnI3G+OxtkJI6H7GUew9sq+xiS9Iu9bK798keWgWMmmXltJDPnG0nytsr+/JlvN7MvFeyFRuKYYuq72swn1L2Y+ny6299rpgS60bngXL6PkTg+hv6WtssyEsfb0He1CXmG/o7ydKNjBnPGjh2rQYMGqU2bNmrXrp0WLFignJwcx924Bw4cqOrVqys+3vn/nsuWLVOfPn0uuHlNdna2pk2bpnvvvVfh4eFKS0vThAkTVK9ePcXExJTZflCUBAAAAAAAAMqJ/v376+TJk5o8ebK+//57tWjRQhs3bnTc/CYjI0MeHs4/sR09elQ7duzQ5s2bL+jP09NThw4d0ooVK3TmzBlFRkbqtttu04wZM8rs2pYSRUkAAAAAAAC4g3J6TcmSGDlypEaOHHnR55KTky9Y17BhQ9ntFx+Z6+/vr02bNpVmekXCzAQAAAAAAAAARlGUBAAAAAAAAGAU07cBAAAAAABQ/tmvn+nb7oCRkgAAAAAAAACMoigJAAAAAAAAwCiKkkAJJCYmqmLFiq5OAwAAAAAAoFzimpJwG/n5+fL29nZ1GgAAAAAAwBVsXFOyPGGkJK5ZtWrV0oIFC5zWtWjRQlOnTpUkWZalF154Qf/3f/+nwMBAPfvss5KkmTNnqlq1aqpQoYKGDRumSZMmqUWLFk79vPTSS4qOjpafn58aNWqk559/3vFcenq6LMvSO++8o1tuuUUBAQFq3ry5du/eLUlKTk7W4MGDdfbsWVmWJcuyHDkBAAAAAADgyihKolybOnWq7rnnHh0+fFhDhgzRypUr9eyzz2rOnDk6cOCAatSooRdeeMFpm5UrV2ry5Ml69tlnlZqaqlmzZumZZ57RihUrnNo99dRTGjdunFJSUtSgQQMNGDBABQUF6tixoxYsWKDg4GBlZmYqMzNT48aNM7nbAAAAAAAA5RrTt1GuPfjggxo8eLDj8eLFizV06FDHusmTJ2vz5s3Kzs52tJkyZYrmzZunvn37SpJq166tI0eO6MUXX9SgQYMc7caNG6c777xTkjRt2jQ1adJEX375pRo1aqSQkBBZlqXw8PDL5pebm6vc3FyndXn2QvlYnle34wAAAAAAAOUYIyVRrrVp08bp8dGjR9WuXTundb9/nJOTo7S0NA0dOlRBQUGOZebMmUpLS3ParlmzZo5/R0RESJKysrKKlV98fLxCQkKcltdzUovVBwAAAAAAKAK7rXwu1ylGSuKa5eHhIbvd7rQuPz/f6XFgYGCx+vxtxOTSpUvVvn17p+c8PZ1HL/7+pjmWZUmSbMW8aG5cXJzGjh3rtG5nvSHF6gMAAAAAAMDdUJTENatq1arKzMx0PD537pyOHz9+2W0aNmyoffv2aeDAgY51+/btc/w7LCxMkZGR+uqrr/TQQw+VODcfHx8VFhZesZ2vr698fX2dt2XqNgAAAAAAuM5RlMQ1q3v37kpMTFTv3r1VsWJFTZ48+YLRjH80atQoDR8+XG3atFHHjh21atUqHTp0SHXq1HG0mTZtmkaPHq2QkBD16tVLubm52r9/v06fPn3BqMZLqVWrlrKzs5WUlKTmzZsrICBAAQEBV7W/AAAAAADgKhRzdiNci2tK4poVFxenrl276q677tKdd96pPn36qG7dupfd5qGHHlJcXJzGjRunVq1a6fjx44qNjZWfn5+jzbBhw/TSSy9p+fLlatq0qbp27arExETVrl27yLl17NhRI0aMUP/+/VW1alXNnTu3xPsJAAAAAABwvbHsf7xoH+Bmbr31VoWHh+vVV191dSqSpKSw/q5OoVR5yswvUYVu9BtKl8/ijcTZ3iTOSJzqIT8ZifPd2SAjcTxU9l+L3paZr95f7GYuF2EZOGaSmddGMne+8bbK/vyZbzezL+42JsF9vnGAX7nbZ9QET2PfOZaROJzX0OPEKlenYMTP7852dQol4n/PJFen4BJM34ZbOX/+vJYsWaKYmBh5enrq9ddf1wcffKAtW7a4OjUAAAAAAAD8fxQl4VYsy9L69ev17LPP6pdfflHDhg21evVq9ezZ09WpAQAAAACAsmRnbHh5QlESbsXf318ffPCBq9MAAAAAAADAZXBpCQAAAAAAAABGMVISAAAAAAAA5Z+N6dvlCSMlAQAAAAAAABhFURIAAAAAAACAUUzfBgzzlJnh5IWGfnMwFccEUwP9tzeJMxKny2fxRuJ82GSSkThV/H82EueHn/3LPEZhmUcwyy7LSBwPy24kjs1uJk6+vezPn53WDyjzGJL0/l1vGYnjbei18XWzO3d6ysxxM8HXMvPa5Br4fErmRojkGzpPF1plH8fT0HnA1GuTY3kaiRNoN/PXR6Gh95oJ7nTuBK5VFCUBAAAAAABQ/nFNyXLFfYY4AQAAAAAAACgXKEoCAAAAAAAAMIqiJAAAAAAAAACjuKYkAAAAAAAAyj9DN8NC6WCkJK5L3bp105gxY1ydBgAAAAAAwHWJoiRQAlOnTlWLFi1cnQYAAAAAAEC5xPRtAAAAAAAAlH82m6szQDEwUhLXLZvNpgkTJig0NFTh4eGaOnWq47mMjAzdfffdCgoKUnBwsPr166cTJ05IkhITEzVt2jQdPHhQlmXJsiwlJia6ZicAAAAAAADKIYqSuG6tWLFCgYGB2rNnj+bOnavp06dry5Ytstlsuvvuu3Xq1Clt27ZNW7Zs0VdffaX+/ftLkvr3768nn3xSTZo0UWZmpjIzMx3PAQAAAAAA4MqYvo3rVrNmzTRlyhRJUv369ZWQkKCkpCRJ0uHDh3X8+HFFRUVJkl555RU1adJE+/btU9u2bRUUFCQvLy+Fh4e7LH8AAAAAAIDyiqIkrlvNmjVzehwREaGsrCylpqYqKirKUZCUpMaNG6tixYpKTU1V27ZtixwjNzdXubm5Tuvy7IXysTyvLnkAAAAAAOCMa0qWK0zfxnXL29vb6bFlWbKV8gksPj5eISEhTstrOZ+XagwAAAAAAIDyhqIk8AfR0dH65ptv9M033zjWHTlyRGfOnFHjxo0lST4+PiosLLxiX3FxcTp79qzT8mBgozLLHQAAAAAAoDxg+jbwBz179lTTpk310EMPacGCBSooKNDjjz+url27qk2bNpKkWrVq6fjx40pJSdENN9ygChUqyNfX94K+fH19L1jP1G0AAAAAAHC9Y6Qk8AeWZem9995TpUqV1KVLF/Xs2VN16tTRqlWrHG3uvfde9erVS7fccouqVq2q119/3YUZAwAAAAAA2W3lc7lOMVIS16Xk5OQL1q1Zs8bx7xo1aui999675Pa+vr56++23yyAzAAAAAAAA98dISQAAAAAAAABGMVISAAAAAAAA5Z/t+p0KXR4xUhIAAAAAAACAURQlAQAAAAAAABhFURIAAAAAAACAUVxTEgAAAAAAAOWf3e7qDFAMjJQEAAAAAAAAYBRFSQAAAAAAAABGMX0bMKzQzX4LCPTMNxInp9C7zGOYemWqh/xkJM6HTSYZidP5s9lG4mxvEmckjqWyn/LhaSCGJIUG5hiJcyIn0EicfLt7nT9N2HnH60biBMsyEscUE+cBk3wtm6tTKDWmzgOmzjbu88r8ytfAtElT36GmBNjNvAu8jb3b3Oe72p3OndcVG69beeI+ZwwAAAAAAAAA5QJFSQAAAAAAAABGUZQEAAAAAAAAYBTXlAQAAAAAAED5xzUlyxVGSgIAAAAAAAAwiqLkdchut+vRRx9VaGioLMtSSkrKFbdJT093apucnCzLsnTmzJmryqVWrVpasGBBkdpalqU1a9ZcVbw/6tatm8aMGVOqfQIAAAAAAODymL59Hdq4caMSExOVnJysOnXqqEqVKlfcJioqSpmZmUVqW56888478vb2dnUaAAAAAAAA1xWKktehtLQ0RUREqGPHjkXextPTU+Hh4WWYlWuEhoa6OgUAAAAAAFAa7FxTsjxh+nYZ69atm0aPHq0JEyYoNDRU4eHhmjp1qqQLp0RL0pkzZ2RZlpKTkyX9b5r0pk2b1LJlS/n7+6t79+7KysrShg0bFB0dreDgYD344IM6f/78FfOJjY3VqFGjlJGRIcuyVKtWLUm/jp68+eabVbFiRVWuXFl33XWX0tLSHNtdLNc/2rFjhzp37ix/f39FRUVp9OjRysnJcTyflZWl3r17y9/fX7Vr19bKlSuLfBwv5vDhw+revbv8/f1VuXJlPfroo8rOznY8X1BQoNGjRzv2aeLEiRo0aJD69OnjaPPH6du1atXSrFmzNGTIEFWoUEE1atTQP//5T8fzeXl5GjlypCIiIuTn56eaNWsqPj7+qvYDAAAAAADgekNR0oAVK1YoMDBQe/bs0dy5czV9+nRt2bKlWH1MnTpVCQkJ2rVrl7755hv169dPCxYs0GuvvaZ169Zp8+bNWrx48RX7WbhwoaZPn64bbrhBmZmZ2rdvnyQpJydHY8eO1f79+5WUlCQPDw/dc889shXxzlVpaWnq1auX7r33Xh06dEirVq3Sjh07NHLkSEeb2NhYffPNN9q6davefvttPf/888rKyirWcfhNTk6OYmJiVKlSJe3bt09vvfWWPvjgA6d4c+bM0cqVK7V8+XLt3LlT586dK9I1KefNm6c2bdrok08+0eOPP67HHntMR48elSQtWrRIa9eu1ZtvvqmjR49q5cqVjsIuAAAAAAAAiobp2wY0a9ZMU6ZMkSTVr19fCQkJSkpKUv369Yvcx8yZM9WpUydJ0tChQxUXF6e0tDTVqVNHknTfffdp69atmjhx4mX7CQkJUYUKFS6Yjn3vvfc6tXv55ZdVtWpVHTlyRDfeeOMV84uPj9dDDz3kGHVYv359LVq0SF27dtULL7ygjIwMbdiwQXv37lXbtm0lScuWLVN0dHSRj8Hvvfbaa/rll1/0yiuvKDAwUJKUkJCg3r17a86cOQoLC9PixYsVFxene+65x/H8+vXrr9j3HXfcoccff1ySNHHiRP3973/X1q1b1bBhQ2VkZKh+/fq6+eabZVmWatasedm+cnNzlZub67Quz14oH8uzJLsNAAAAAAAuwW6zuzoFFAMjJQ1o1qyZ0+OIiIhijxD8fR9hYWEKCAhwFCR/W1fSUYeSdOzYMQ0YMEB16tRRcHCwY/RfRkZGkbY/ePCgEhMTFRQU5FhiYmJks9l0/PhxpaamysvLS61bt3Zs06hRI1WsWLFE+aampqp58+aOgqQkderUSTabTUePHtXZs2d14sQJtWvXzvG8p6enU/xL+f2xtixL4eHhjmMbGxurlJQUNWzYUKNHj9bmzZsv21d8fLxCQkKcltdzUou7uwAAAAAAAG6FoqQBf7y7s2VZstls8vD49fDb7f+r5Ofn51+xD8uyLtlnSfXu3VunTp3S0qVLtWfPHu3Zs0fSr9dQLIrs7Gz96U9/UkpKimM5ePCgjh07prp165Y4L1e43LFt1aqVjh8/rhkzZujnn39Wv379dN99912yr7i4OJ09e9ZpGRBYstGhAAAAAAAA7oKipAtVrVpVkpSZmelYd7kbyZSVH3/8UUePHtXTTz+tHj16KDo6WqdPny5WH61atdKRI0dUr169CxYfHx81atRIBQUFOnDggGObo0eP6syZMyXKOTo6WgcPHnS6kc7OnTvl4eGhhg0bKiQkRGFhYY5rZkpSYWGhPv744xLF+73g4GD1799fS5cu1apVq7R69WqdOnXqom19fX0VHBzstDB1GwAAAAAAXO+4pqQL+fv766abbtLs2bNVu3ZtZWVl6emnnzaeR6VKlVS5cmX985//VEREhDIyMjRp0qRi9TFx4kTddNNNGjlypIYNG6bAwEAdOXJEW7ZsUUJCgho2bKhevXrpT3/6k1544QV5eXlpzJgx8vf3L1HODz30kKZMmaJBgwZp6tSpOnnypEaNGqVHHnlEYWFhkqRRo0YpPj5e9erVU6NGjbR48WKdPn1almWVKKYkzZ8/XxEREWrZsqU8PDz01ltvKTw8vMTT0AEAAAAAQCm5ihmkMI+Rki728ssvq6CgQK1bt9aYMWM0c+ZM4zl4eHjojTfe0IEDB3TjjTfqiSee0N/+9rdi9dGsWTNt27ZNX3zxhTp37qyWLVtq8uTJioyMdLRZvny5IiMj1bVrV/Xt21ePPvqoqlWrVqKcAwICtGnTJp06dUpt27bVfffdpx49eighIcHRZuLEiRowYIAGDhyoDh06OK5z6efnV6KYklShQgXNnTtXbdq0Udu2bZWenq7169c7puIDAAAAAADgyiz77y9oCLgxm82m6Oho9evXTzNmzHBZHklh/V0WuywEel78OqilLafQ+8qNyonqIT8ZifPd2SAjcTp/NttInO1N4ozEsVT2X4u+lplfcEMCfjES50RO4JUbwa0VquSzEK5FJs4DJpk655iQb3evH4JNvTL5hj6jJqbhebrZ59PU+dNHhUbi5LvRuCd3OndKUpfv33J1CkacX/IXV6dQIgEjFro6BZdg+jbc1tdff63Nmzera9euys3NVUJCgo4fP64HH3zQ1akBAAAAAIDSZnevYrK7c5+fMSBJysjIUFBQ0CWXjIwMV6d4UStXrrxkzk2aNClRnx4eHkpMTFTbtm3VqVMnHT58WB988IGio7n7NQAAAAAAgCsxUtLNREZGXvYO3r+/xuO15P/+7//Uvn37iz7n7V2yabtRUVHauXPn1aQFAAAAAACAMkBR0s14eXmpXr16rk6j2CpUqKAKFSq4Og0AAAAAAAAYQFESAAAAAAAA5Z/NvW6G5e64piQAAAAAAAAAoyhKAgAAAAAAADCK6duAYfmyjMTxlplh6za7mf2xGYhRaOi1+e5skJE4Vfx/NhJne5M4I3G6fBZvJM7OJhPLPIap91pWToCROJ5GPqGSh5nDZoy/Z0GZx/DyNPPaDMrLMhKntk9lI3G6qaKROKZUK/u3mjwM/d3ROSrTSJyPMiKMxOnR8b9G4nTfmW8kzqsBlco8hp+fmX05dMrM+eZfvtlG4szyNXAikLThl1AjcUwILzBzXvNgtjGuYxQlAQAAAAAAUP7ZzPwgi9LB9G0AAAAAAAAARlGUBAAAAAAAAGAU07cBAAAAAABQ/jF9u1xhpCQAAAAAAAAAoyhKAgAAAAAAADCKoiRKRbdu3TRmzBhXp3FF6enpsixLKSkpV2ybnJwsy7J05syZMs8LAAAAAADgesI1JYFL6NixozIzMxUSEuLqVAAAAAAAwJXY7a7OAMVAURK4BB8fH4WHh7s6DQAAAAAAALfD9G2UutOnT2vgwIGqVKmSAgICdPvtt+vYsWNObZYuXaqoqCgFBATonnvu0fz581WxYkWnNjNnzlS1atVUoUIFDRs2TJMmTVKLFi2c2rz00kuKjo6Wn5+fGjVqpOeff97p+b1796ply5by8/NTmzZt9MknnxR5P/44fTsxMVEVK1bUpk2bFB0draCgIPXq1UuZmZlF7hMAAAAAAAAUJVEGYmNjtX//fq1du1a7d++W3W7XHXfcofz8fEnSzp07NWLECP3lL39RSkqKbr31Vj377LNOfaxcuVLPPvus5syZowMHDqhGjRp64YUXLmgzefJkPfvss0pNTdWsWbP0zDPPaMWKFZKk7Oxs3XXXXWrcuLEOHDigqVOnaty4cVe1b+fPn9dzzz2nV199Vdu3b1dGRsZV9wkAAAAAAEqBzVY+l+sU07dRqo4dO6a1a9dq586d6tixo6Rfi4dRUVFas2aN7r//fi1evFi33367o5jXoEED7dq1S++//76jn8WLF2vo0KEaPHiwJGny5MnavHmzsrOzHW2mTJmiefPmqW/fvpKk2rVr68iRI3rxxRc1aNAgvfbaa7LZbFq2bJn8/PzUpEkTffvtt3rsscdKvH/5+flasmSJ6tatK0kaOXKkpk+ffsn2ubm5ys3NdVqXZy+Uj+VZ4hwAAAAAAADKO0ZKolSlpqbKy8tL7du3d6yrXLmyGjZsqNTUVEnS0aNH1a5dO6ft/vj4Sm1ycnKUlpamoUOHKigoyLHMnDlTaWlpjlyaNWsmPz8/x3YdOnS4qv0LCAhwFCQlKSIiQllZWZdsHx8fr5CQEKflzZzUq8oBAAAAAACgvGOkJMql30ZMLl261KkAKkmenmU3CtHb29vpsWVZsl/m7l5xcXEaO3as07rkekPLJDcAAAAAAIDygpGSKFXR0dEqKCjQnj17HOt+/PFHHT16VI0bN5YkNWzYUPv27XPa7o+Pr9QmLCxMkZGR+uqrr1SvXj2npXbt2o5cDh06pF9++cWx3UcffVQ6O1pEvr6+Cg4OdlqYug0AAAAAQBmw2cvncp2iKIlSVb9+fd19990aPny4duzYoYMHD+rhhx9W9erVdffdd0uSRo0apfXr12v+/Pk6duyYXnzxRW3YsEGWZTn6GTVqlJYtW6YVK1bo2LFjmjlzpg4dOuTUZtq0aYqPj9eiRYv0xRdf6PDhw1q+fLnmz58vSXrwwQdlWZaGDx+uI0eOaP369XruuefMHhAAAAAAAABcgKIkSt3y5cvVunVr3XXXXerQoYPsdrvWr1/vmPrcqVMnLVmyRPPnz1fz5s21ceNGPfHEE07XfnzooYcUFxencePGqVWrVjp+/LhiY2Od2gwbNkwvvfSSli9frqZNm6pr165KTEx0jJQMCgrSv//9bx0+fFgtW7bUU089pTlz5pg9GAAAAAAAALiAZb/cBfEAQ4YPH67PP/9cH3744SXb3HrrrQoPD9err75qMLPStzHsASNxvGXmo+3vUWAkTo6t7C+BWyjryo1KgY9sRuJU8f/ZSJyTPwcYidPls3gjcXY2mVjmMTzMvNVUYDcTyMPQ+cbUcTPF37Psz59enmbON4PyLn3Tt9JU26eykTjdVNFIHFOqGfiqNnUe6ByVaSTORxkRRuL06PhfI3G678w3EufVgEplHsPPz8y+HDpl5nzzL99sI3Fm+Zr5m33DL6FG4pgQXmDo7xtDFZn+mSvNBHKx888Nc3UKJRIw7iVXp+AS3OgGLvHcc8/p1ltvVWBgoDZs2KAVK1bo+eefdzx//vx5LVmyRDExMfL09NTrr7+uDz74QFu2bHFh1gAAAAAA4JplN/ODLEoH07fhEnv37tWtt96qpk2basmSJVq0aJGGDfvfLxqWZWn9+vXq0qWLWrdurX//+99avXq1evbsWWo5jBgxQkFBQRddRowYUWpxAAAAAAAA4IyRknCJN99887LP+/v764MPPijTHKZPn65x48Zd9Lng4OAyjQ0AAAAAAHA9oyiJ61a1atVUrVo1V6cBAAAAAABKg43bppQnTN8GAAAAAAAAYBRFSQAAAAAAAABGUZQEAAAAAAAAYJRlt9uZcA8YtCeyr5E42YXeRuJ4WzYjcfLt7vMbiqfMHDObLCNxTPGQma+rTp/NKfMYp+4bUuYxJCl49G1G4nh1ecBInA+bTDISx5S29/5U5jH2rjZz4zYzZzWUlPt8g6Kk+IwWn6nPjanXhv1BjxOrXJ2CETnxg1ydQokExq1wdQouwWcZAAAAAAAAgFEUJQEAAAAAAAAYRVESAAAAAAAAgFFerk4AAAAAAAAAuGo2bptSnjBSEgAAAAAAAIBRFCXhtrp166YxY8aUWf/JycmyLEtnzpwpsxgAAAAAAADuiOnbcFvvvPOOvL29XZ0GAAAAAAAwwW5zdQYoBoqScBm73a7CwkJ5eZXN2zA0NLRM+gUAAAAAAMDVYfr2VerWrZtGjx6tCRMmKDQ0VOHh4Zo6daokKT09XZZlKSUlxdH+zJkzsixLycnJkv43BXjTpk1q2bKl/P391b17d2VlZWnDhg2Kjo5WcHCwHnzwQZ0/f75IOdlsNs2dO1f16tWTr6+vatSooWeffdbx/OHDh9W9e3f5+/urcuXKevTRR5Wdne14PjY2Vn369NGsWbMUFhamihUravr06SooKND48eMVGhqqG264QcuXL3ds89u+vvHGG+rYsaP8/Px04403atu2bY42v+3rhg0b1Lp1a/n6+mrHjh3Kzc3V6NGjVa1aNfn5+enmm2/Wvn37LtiuuMfoj9O3n3/+edWvX19+fn4KCwvTfffd53TM4uPjVbt2bfn7+6t58+Z6++23nY7r+vXr1aBBA/n7++uWW25Renp6kV4PAAAAAAAAOKMoWQpWrFihwMBA7dmzR3PnztX06dO1ZcuWYvUxdepUJSQkaNeuXfrmm2/Ur18/LViwQK+99prWrVunzZs3a/HixUXqKy4uTrNnz9YzzzyjI0eO6LXXXlNYWJgkKScnRzExMapUqZL27dunt956Sx988IFGjhzp1Md//vMffffdd9q+fbvmz5+vKVOm6K677lKlSpW0Z88ejRgxQn/605/07bffOm03fvx4Pfnkk/rkk0/UoUMH9e7dWz/++KNTm0mTJmn27NlKTU1Vs2bNNGHCBK1evVorVqzQxx9/rHr16ikmJkanTp0qtWO0f/9+jR49WtOnT9fRo0e1ceNGdenSxfF8fHy8XnnlFS1ZskSfffaZnnjiCT388MOOouo333yjvn37qnfv3kpJSdGwYcM0adKkIr0eAAAAAAAAcMb07VLQrFkzTZkyRZJUv359JSQkKCkpSfXr1y9yHzNnzlSnTp0kSUOHDlVcXJzS0tJUp04dSdJ9992nrVu3auLEiZft56efftLChQuVkJCgQYMGSZLq1q2rm2++WZL02muv6ZdfftErr7yiwMBASVJCQoJ69+6tOXPmOIqXoaGhWrRokTw8PNSwYUPNnTtX58+f11//+ldJ/yt87tixQw888IAj/siRI3XvvfdKkl544QVt3LhRy5Yt04QJExxtpk+frltvvVXSr0XSF154QYmJibr99tslSUuXLtWWLVu0bNkyjR8/vlSOUUZGhgIDA3XXXXepQoUKqlmzplq2bClJys3N1axZs/TBBx+oQ4cOkqQ6depox44devHFF9W1a1e98MILqlu3rubNmydJatiwoQ4fPqw5c+Zc9vUAAAAAAACG2OyuzgDFQFGyFDRr1szpcUREhLKyskrcR1hYmAICAhzFtt/W7d2794r9pKamKjc3Vz169Ljk882bN3cUJCWpU6dOstlsOnr0qKMo2aRJE3l4/G8gbVhYmG688UbHY09PT1WuXPmC/fytqCdJXl5eatOmjVJTU53atGnTxvHvtLQ05efnO4qNkuTt7a127dpdsN3VHKNbb71VNWvWVJ06ddSrVy/16tVL99xzjwICAvTll1/q/PnzjkLpb/Ly8hyFy9TUVLVv3/6S+3opubm5ys3Nde7XXigfy/OK2wIAAAAAALgrpm+Xgj/e4dmyLNlsNkdRz27/X6U+Pz//in1YlnXJPq/E39+/yHlfzsXilzSnP/p9QbSkORU3nwoVKujjjz/W66+/roiICE2ePFnNmzfXmTNnHNfTXLdunVJSUhzLkSNHLriuZHHFx8crJCTEaVmR/cVV9QkAAAAAAFDeUZQsQ1WrVpUkZWZmOtb9/qY3ZaF+/fry9/dXUlLSRZ+Pjo7WwYMHlZOT41i3c+dOxzTtq/XRRx85/l1QUKADBw4oOjr6ku3r1q0rHx8f7dy507EuPz9f+/btU+PGja86n9/z8vJSz549NXfuXB06dEjp6en6z3/+o8aNG8vX11cZGRmqV6+e0xIVFSXp1+P2x1GYv9/XS4mLi9PZs2edlkFBDUp1vwAAAAAAgCSbrXwuJfCPf/xDtWrVkp+fn9q3b3/Z2bWJiYmyLMtp8fPzc2pjt9s1efJkRUREyN/fXz179tSxY8dKlFtRMX27DPn7++umm27S7NmzVbt2bWVlZenpp58u05h+fn6aOHGiJkyYIB8fH3Xq1EknT57UZ599pqFDh+qhhx7SlClTNGjQIE2dOlUnT57UqFGj9Mgjjzimbl+Nf/zjH6pfv76io6P197//XadPn9aQIUMu2T4wMFCPPfaY467eNWrUcFy/cujQoVedz2/ef/99ffXVV+rSpYsqVaqk9evXy2azqWHDhqpQoYLGjRunJ554QjabTTfffLPOnj2rnTt3Kjg4WIMGDdKIESM0b948jR8/XsOGDdOBAweUmJh4xbi+vr7y9fV1WsfUbQAAAAAAUFKrVq3S2LFjtWTJErVv314LFixQTEyMjh49qmrVql10m+DgYB09etTx2LIsp+fnzp2rRYsWacWKFapdu7aeeeYZxcTE6MiRIxcUMEsLIyXL2Msvv6yCggK1bt1aY8aM0cyZM8s85jPPPKMnn3xSkydPVnR0tPr37++49mNAQIA2bdqkU6dOqW3btrrvvvvUo0cPJSQklErs2bNna/bs2WrevLl27NihtWvXqkqVKlfc5t5779UjjzyiVq1a6csvv9SmTZtUqVKlUslJkipWrKh33nlH3bt3V3R0tJYsWaLXX39dTZo0kSTNmDFDzzzzjOLj4xUdHa1evXpp3bp1ql27tiSpRo0aWr16tdasWaPmzZtryZIlmjVrVqnlBwAAAAAAUBTz58/X8OHDNXjwYDVu3FhLlixRQECAXn755UtuY1mWwsPDHcvvB6bZ7XYtWLBATz/9tO6++241a9ZMr7zyir777jutWbOmzPbDsv/+godACaWnp6t27dr65JNP1KJFC1enc03bE9nXSJzsQu8rNyoF3lbJhpoXV77dfX5D8ZSZY2aTdeVG5YiHzHxddfpsTpnHOHXfpUeQl6bg0bcZiePV5QEjcT5sMslIHFPa3vtTmcfYuzq4zGNIMnRWQ0m5zzcoSorPaPGZ+tyYem3YH/Q4scrVKRiRM3WAq1MoEa+4xAtuknuxmZfSrzflDQgI0Ntvv60+ffo41g8aNEhnzpzRe++9d8E2iYmJGjZsmKpXry6bzaZWrVpp1qxZjoFaX331lerWrXtBTadr165q0aKFFi5cWDo7+gd8lgEAAAAAAFD+2ezlcrnYTXLj4+Mvuos//PCDCgsLL7gEX1hYmL7//vuLbtOwYUO9/PLLeu+99/Svf/1LNptNHTt21LfffitJju2K02dp4JqS5UxGRsZlbwBz5MgR1ahRw2BGAAAAAAAAKKm4uDiNHTvWad3FRkmWVIcOHdShQwfH444dOyo6OlovvviiZsyYUWpxiouiZDkTGRl52Tt4R0ZGmkvmd2rVqiWuBAAAAAAAAFA8l5qqfTFVqlSRp6enTpw44bT+xIkTCg8PL1If3t7eatmypb788ktJcmx34sQJRUREOPVZlpfoY/p2OePl5aV69epdcvHyos4MAAAAAADgjnx8fNS6dWslJSU51tlsNiUlJTmNhrycwsJCHT582FGArF27tsLDw536PHfunPbs2VPkPkuCChYAAAAAAADKP/v1cWuvsWPHatCgQWrTpo3atWunBQsWKCcnR4MHD5YkDRw4UNWrV3dcl3L69Om66aabVK9ePZ05c0Z/+9vf9PXXX2vYsGGSfr0z95gxYzRz5kzVr19ftWvX1jPPPKPIyEinm+mUNoqSAAAAAAAAQDnRv39/nTx5UpMnT9b333+vFi1aaOPGjY4b1WRkZMjD43+To0+fPq3hw4fr+++/V6VKldS6dWvt2rXL6Z4lEyZMUE5Ojh599FGdOXNGN998szZu3Cg/P78y2w/LzoUAAaP2RPY1Eie70NtIHG/LzC9R+Xb3udqEp8wcM5ssI3FM8ZCZr6tOn80p8xin7htS5jEkKXj0bUbieHV5wEicD5tMMhLHlLb3/lTmMfauDi7zGJIMndVQUu7zDYqS4jNafKY+N6ZeG/YHPU6scnUKRuQ808/VKZRI4Iw3XZ2CSzBSEgAAAAAAAOWfjXF35QlFScCwXJunq1MoVZah0WvuxNsyc8wKjUSRPA29BwoNjfw0MYox9O2XyzyGJJ19ZLCROIWLNhuJU8k3xEickJCfjcTJ3Oo+4zzsbjYy292+29xplJz7fGrMyjf0GTXxn0tTf3e4G3Mzdcx8Sk3sjbuNLgWuRXyvAwAAAAAAADCKoiQAAAAAAAAAo5i+DQAAAAAAgHLPbmNCfHnCSEkAAAAAAAAARlGUBAAAAAAAAGAURUlcN2JjY9WnT5+r6iMxMVEVK1Z0PJ46dapatGhxVX0CAAAAAIBSYLOXz+U6RVES16zk5GRZlqUzZ864OhUAAAAAAACUIoqSKBN5eXmuTgEAAAAAAADXKIqSKBXdunXTyJEjNWbMGFWpUkUxMTHatm2b2rVrJ19fX0VERGjSpEkqKChwbJObm6vRo0erWrVq8vPz080336x9+/ZJktLT03XLLbdIkipVqiTLshQbG3vFPN5++201bdpU/v7+qly5snr27KmcnBynNs8995wiIiJUuXJl/fnPf1Z+fr5TTuPGjVP16tUVGBio9u3bKzk5+eoPEAAAAAAAABwoSqLUrFixQj4+Ptq5c6emTp2qO+64Q23bttXBgwf1wgsvaNmyZZo5c6aj/YQJE7R69WqtWLFCH3/8serVq6eYmBidOnVKUVFRWr16tSTp6NGjyszM1MKFCy8bPzMzUwMGDNCQIUOUmpqq5ORk9e3bV3b7/67PsHXrVqWlpWnr1q1asWKFEhMTlZiY6Hh+5MiR2r17t9544w0dOnRI999/v3r16qVjx46V7sECAAAAAACly9XXhuSaksXi5eoE4D7q16+vuXPnSpJeeeUVRUVFKSEhQZZlqVGjRvruu+80ceJETZ48WT///LNeeOEFJSYm6vbbb5ckLV26VFu2bNGyZcs0fvx4hYaGSpKqVavmdHOZS8nMzFRBQYH69u2rmjVrSpKaNm3q1KZSpUpKSEiQp6enGjVqpDvvvFNJSUkaPny4MjIytHz5cmVkZCgyMlKSNG7cOG3cuFHLly/XrFmzin1McnNzlZub67Quz14oH8uz2H0BAAAAAAC4C0ZKotS0bt3a8e/U1FR16NBBlmU51nXq1EnZ2dn69ttvlZaWpvz8fHXq1MnxvLe3t9q1a6fU1NQSxW/evLl69Oihpk2b6v7779fSpUt1+vRppzZNmjSRp+f/CoIRERHKysqSJB0+fFiFhYVq0KCBgoKCHMu2bduUlpZWopzi4+MVEhLitKzM+bxEfQEAAAAAALgLRkqi1AQGBro0vqenp7Zs2aJdu3Zp8+bNWrx4sZ566int2bNHtWvXlvRr4fP3LMuSzWaTJGVnZ8vT01MHDhxwKlxKUlBQUIlyiouL09ixY53W7a0fW6K+AAAAAAAA3AUjJVEmoqOjtXv3bqfrOe7cuVMVKlTQDTfcoLp16zquP/mb/Px87du3T40bN5Yk+fj4SJIKCwuLHNeyLHXq1EnTpk3TJ598Ih8fH7377rtF2rZly5YqLCxUVlaW6tWr57SEh4cXOYff8/X1VXBwsNPC1G0AAAAAAMqA3VY+l+sURUmUiccff1zffPONRo0apc8//1zvvfeepkyZorFjx8rDw0OBgYF67LHHNH78eG3cuFFHjhzR8OHDdf78eQ0dOlSSVLNmTVmWpffff18nT55Udnb2ZWPu2bNHs2bN0v79+5WRkaF33nlHJ0+eVHR0dJFybtCggR566CENHDhQ77zzjo4fP669e/cqPj5e69atu+pjAgAAAAAAgF8xfRtlonr16lq/fr3Gjx+v5s2bKzQ0VEOHDtXTTz/taDN79mzZbDY98sgj+umnn9SmTRtt2rRJlSpVcvQxbdo0TZo0SYMHD9bAgQOd7pT9R8HBwdq+fbsWLFigc+fOqWbNmpo3b57jRjpFsXz5cs2cOVNPPvmk/vvf/6pKlSq66aabdNddd5X4WAAAAAAAAMCZZf/9/FoAZW57+P1G4uTbzQyE9rGKPr3+auTZ3Wfau5+hY1Yo68qNSoGnzHyNmNqfho1OlnmM0LdfLvMYknT2kcFG4hT+bOa1+e6rECNxQkJ+NhKnoKDsz9PfnDJzzEx9Pk2xDJ3XUHxM8yqZXEOfURMjXkz93WGKqUmb3oYi5bvRp9TUnph6D9x6YpWhSK6VPfb/XJ1CiQTNX+vqFFzCfc4YAAAAAAAAAMoFipIoNzIyMhQUFHTJJSMjw9UpAgAAAAAAoAi4piTKjcjISKWkpFz2eQAAAAAAAFz7KEqi3PDy8lK9evVcnQYAAAAAALgG2W3udd1Zd8f0bQAAAAAAAABGUZQEAAAAAAAAYBTTtwEAAAAAAFD+MX27XKEoCRjm41FoJE5+oZmB0P5eBUbi5OV7Goljwi9299kXSQoNzDESJysnwEic4NG3lXmMs48MLvMYkhTy6nIjcQq2v2EkzmePpRiJ89NJHyNxbuyQVeYxvtkVUuYxJMkS/wG4ljE1Ct5u9Bm1GYrjbp+bQkN75G7HzQSOGa5nvP8BAAAAAAAAGEVREgAAAAAAAIBRTN8GAAAAAABA+WczdZEHlAZGSgIAAAAAAAAwiqIkAAAAAAAAAKMoSgIAAAAAAAAwiqIkcBUSExNVsWJFV6cBAAAAAABs9vK5XKcoSqLUJCcny7IsnTlzxml9t27dNGbMGJfkdDEUEgEAAAAAAFyLoiQAAAAAAAAAoyhKuqG3335bTZs2lb+/vypXrqyePXsqJyfnoiMW+/Tpo9jY2CL1++qrr6pNmzaqUKGCwsPD9eCDDyorK0uSlJ6erltuuUWSVKlSJVmWpdjYWMXGxmrbtm1auHChLMuSZVlKT0+XJH366ae6/fbbFRQUpLCwMD3yyCP64YcfHPG6deumUaNGacyYMapUqZLCwsK0dOlS5eTkaPDgwapQoYLq1aunDRs2OLb5bbTmunXr1KxZM/n5+emmm27Sp59+6nh+8ODBOnv2rCOfqVOnSpJyc3M1btw4Va9eXYGBgWrfvr2Sk5OdjkFiYqJq1KihgIAA3XPPPfrxxx+L+KoAAAAAAIAy5epp2EzfLhaKkm4mMzNTAwYM0JAhQ5Samqrk5GT17dtXdvvVv8nz8/M1Y8YMHTx4UGvWrFF6erqjoBkVFaXVq1dLko4eParMzEwtXLhQCxcuVIcOHTR8+HBlZmYqMzNTUVFROnPmjLp3766WLVtq//792rhxo06cOKF+/fo5xVyxYoWqVKmivXv3atSoUXrsscd0//33q2PHjvr4449122236ZFHHtH58+edths/frzmzZunffv2qWrVqurdu7fy8/PVsWNHLViwQMHBwY58xo0bJ0kaOXKkdu/erTfeeEOHDh3S/fffr169eunYsWOSpD179mjo0KEaOXKkUlJSdMstt2jmzJlXfVwBAAAAAACuN16uTgClKzMzUwUFBerbt69q1qwpSWratGmp9D1kyBDHv+vUqaNFixapbdu2ys7OVlBQkEJDQyVJ1apVc7pmo4+PjwICAhQeHu5Yl5CQoJYtW2rWrFmOdS+//LKioqL0xRdfqEGDBpKk5s2b6+mnn5YkxcXFafbs2apSpYqGDx8uSZo8ebJeeOEFHTp0SDfddJOjrylTpujWW2+V9Gth84YbbtC7776rfv36KSQkRJZlOeWTkZGh5cuXKyMjQ5GRkZKkcePGaePGjVq+fLlmzZqlhQsXqlevXpowYYIkqUGDBtq1a5c2btx4yWOWm5ur3Nxcp3V59kL5WJ5XOtwAAAAAAABui5GSbqZ58+bq0aOHmjZtqvvvv19Lly7V6dOnS6XvAwcOqHfv3qpRo4YqVKigrl27Svq1oFdcBw8e1NatWxUUFORYGjVqJElKS0tztGvWrJnj356enqpcubJTkTUsLEySHNPIf9OhQwfHv0NDQ9WwYUOlpqZeMp/Dhw+rsLBQDRo0cMpp27ZtjnxSU1PVvn37S8a5mPj4eIWEhDgtr2R/cdltAAAAAAAA3B0jJd2Mp6entmzZol27dmnz5s1avHixnnrqKe3Zs0ceHh4XTOPOz88vUr85OTmKiYlRTEyMVq5cqapVqyojI0MxMTHKy8srdp7Z2dnq3bu35syZc8FzERERjn97e3s7PWdZltM6y7IkSTabrdg5/DEfT09PHThwQJ6ezqMYg4KCStxvXFycxo4d67QupeEjJe4PAAAAAABcXGlcug7mUJR0Q5ZlqVOnTurUqZMmT56smjVr6t1331XVqlWVmZnpaFdYWKhPP/3UcYOay/n888/1448/avbs2YqKipIk7d+/36mNj4+Po98/rv/julatWmn16tWqVauWvLxK/2340UcfqUaNGpKk06dP64svvlB0dPQl82nZsqUKCwuVlZWlzp07X7TP6Oho7dmz54I4l+Pr6ytfX1+ndUzdBgAAAAAA1zumb7uZPXv2aNasWdq/f78yMjL0zjvv6OTJk4qOjlb37t21bt06rVu3Tp9//rkee+wxnTlzpkj91qhRQz4+Plq8eLG++uorrV27VjNmzHBqU7NmTVmWpffff18nT55Udna2JKlWrVras2eP0tPT9cMPP8hms+nPf/6zTp06pQEDBmjfvn1KS0vTpk2bNHjw4AsKhiUxffp0JSUl6dNPP1VsbKyqVKmiPn36OPLJzs5WUlKSfvjhB50/f14NGjTQQw89pIEDB+qdd97R8ePHtXfvXsXHx2vdunWSpNGjR2vjxo167rnndOzYMSUkJFz2epIAAAAAAAC4OIqSbiY4OFjbt2/XHXfcoQYNGujpp5/WvHnzdPvtt2vIkCEaNGiQBg4cqK5du6pOnTpFGiUpSVWrVlViYqLeeustNW7cWLNnz9Zzzz3n1KZ69eqaNm2aJk2apLCwMI0cOVLSrzeM8fT0VOPGjR3TviMjI7Vz504VFhbqtttuU9OmTTVmzBhVrFhRHh5X/7acPXu2/vKXv6h169b6/vvv9e9//9sxkrNjx44aMWKE+vfvr6pVq2ru3LmSpOXLl2vgwIF68skn1bBhQ/Xp00f79u1zjLi86aabtHTpUi1cuFDNmzfX5s2bHTfhAQAAAAAALmazl8/lOmXZmXAPN5KcnKxbbrlFp0+fdroD+LXko8i+RuLkFHpfuVEpCPHOvXKjUnA23/fKjeASYYE5RuJk5QQYidPhhRZlHiNn6aYyjyFJIa8uNxKnYPsbRuLsfizFSBwvy8yfRjd2yLpyo6v0ya7wMo8hSVd3ZWeUNUYhgM9o8Zn63Jh6bTgPoMeJVa5OwYhzw29zdQolErx0s6tTcAnOTQAAAAAAAACMoigJSdKHH36ooKCgSy4AAAAAAABAaeHu25AktWnTRikpKa5O46p169ZNXJEAAAAAAIDr0HV8fcbyiKIkJEn+/v6qV6+eq9MAAAAAAADAdYDp2wAAAAAAAACMoigJAAAAAAAAwCimbwMAAAAAAKDcs3NNyXKFoiRgmOXqBErZ+QJvV6dQ7lgy80VpN/RuO5ETaCSOp2xG4nh1eaDMYxQu2lzmMSSpYPsbRuKYOGa/SjESxdTfst4RAWYCAbjumfqbwNTfOLh2mflrjSmfgLvgswwAAAAAAADAKEZKAgAAAAAAoPxj+na5wkhJAAAAAAAAAEZRlAQAAAAAAABgFEVJAAAAAAAAAEZxTUkAAAAAAACUf6ZuAY9SwUhJoASSk5NlWZbOnDnj6lQAAAAAAADKHYqSuK7k5eW5OgUAAAAAAIDrHkVJlJpu3bpp9OjRmjBhgkJDQxUeHq6pU6dKktLT02VZllJSUhztz5w5I8uylJycLOl/ow83bdqkli1byt/fX927d1dWVpY2bNig6OhoBQcH68EHH9T58+eLnNPIkSM1ZswYValSRTExMZKkbdu2qV27dvL19VVERIQmTZqkgoICx3a5ubkaPXq0qlWrJj8/P918883at2+fY19uueUWSVKlSpVkWZZiY2Ov7uABAAAAAABcRyhKolStWLFCgYGB2rNnj+bOnavp06dry5Ytxepj6tSpSkhI0K5du/TNN9+oX79+WrBggV577TWtW7dOmzdv1uLFi4uVk4+Pj3bu3KklS5bov//9r+644w61bdtWBw8e1AsvvKBly5Zp5syZjm0mTJig1atXa8WKFfr4449Vr149xcTE6NSpU4qKitLq1aslSUePHlVmZqYWLlxYrH0EAAAAAACly26zl8vlesWNblCqmjVrpilTpkiS6tevr4SEBCUlJal+/fpF7mPmzJnq1KmTJGno0KGKi4tTWlqa6tSpI0m67777tHXrVk2cOLFI/dWvX19z5851PH7qqacUFRWlhIQEWZalRo0a6bvvvtPEiRM1efJk/fzzz3rhhReUmJio22+/XZK0dOlSbdmyRcuWLdP48eMVGhoqSapWrZoqVqxY5H0DAAAAAAAARUmUsmbNmjk9joiIUFZWVon7CAsLU0BAgKMg+du6vXv3Frm/1q1bOz1OTU1Vhw4dZFmWY12nTp2UnZ2tb7/9VmfOnFF+fr6jMCpJ3t7eateunVJTU4u1L7m5ucrNzXVal2cvlI/lWax+AAAAAAAA3AnTt1GqvL29nR5bliWbzSYPj1/fanb7/4Yl5+fnX7EPy7Iu2WdRBQYGFrltaYuPj1dISIjTsiL7C5flAwAAAACA27LZy+dynaIoCSOqVq0qScrMzHSs+/1Nb0yKjo7W7t27nQqkO3fuVIUKFXTDDTeobt26jmtQ/iY/P1/79u1T48aNJUk+Pj6SpMLCwsvGiouL09mzZ52WQUENymCvAAAAAAAAyg+KkjDC399fN910k2bPnq3U1FRt27ZNTz/9tEtyefzxx/XNN99o1KhR+vzzz/Xee+9pypQpGjt2rDw8PBQYGKjHHntM48eP18aNG3XkyBENHz5c58+f19ChQyVJNWvWlGVZev/993Xy5EllZ2dfNJavr6+Cg4OdFqZuAwAAAACA6x1FSRjz8ssvq6CgQK1bt9aYMWOc7nZtUvXq1bV+/Xrt3btXzZs314gRIzR06FCnIuns2bN177336pFHHlGrVq305ZdfatOmTapUqZKjj2nTpmnSpEkKCwvTyJEjXbIvAAAAAAAA5ZFl//0cVgBlbk9kXyNxsgu9r9yoFHhbRb++59XIt7vPbyiWzJx27bKu3Kgc8ZSZ91qnz+aUeYxT9w0p8xiSFDz6NiNxvLo8YCTOh00mGYnjYegz2vrei4+yL017VweXeQxJhj6dKCn3+QZFSRUa+pvA1N84Jpj63Jg6f7I/6HFilatTMOJM/1tcnUKJVFy11dUpuASfZQAAAAAAAABGUZREuZWRkaGgoKBLLhkZGa5OEQAAAAAAABfh5eoEgJKKjIy87B28IyMjzSUDAAAAAABcym5zn8tIXA8oSqLc8vLyUr169VydBgAAAAAAAIqJ6dsAAAAAAAAAjKIoCQAAAAAAAMAopm8DAAAAAACg/LO5OgEUByMlAQAAAAAAABjFSEnAME8PQz/dFJoJk2/nt43i8pCZO8J5WGbimHoPeFhGwujDJpPKPEYl35AyjyFJnz2WYiSOZCZO589mG4mT0vxJI3GO/dunzGN4GhoukC9PI3FMfeNYhs7TprjToBF3+6vD1HvNJjNfoh4G4pg6Zqbi2A29qy1jZwIz7zUTe+Nu5xvgWsTnDAAAAAAAAIBRjJQEAAAAAABAuWe3uddsB3fHSEkAAAAAAAAARlGUBAAAAAAAAGAU07cBAAAAAABQ/rnT3d2uA4yUdGN2u12PPvqoQkNDZVmWUlJS1K1bN40ZM8bRplatWlqwYIHLcixLf9xXAAAAAAAAXBsYKenGNm7cqMTERCUnJ6tOnTqqUqWK3nnnHXl7e7s6tVKVnJysW265RadPn1bFihUd691xXwEAAAAAANwBRUk3lpaWpoiICHXs2NGxLjQ01IUZOcvLy5OPj0+Z9X8t7SsAAAAAAAD+h+nbpaRbt24aPXq0JkyYoNDQUIWHh2vq1KmSpPT0dMf06d+cOXNGlmUpOTlZ0q+j/SzL0qZNm9SyZUv5+/ure/fuysrK0oYNGxQdHa3g4GA9+OCDOn/+/BXziY2N1ahRo5SRkSHLslSrVi1Hnpeb0nzmzBkNGzZMVatWVXBwsLp3766DBw8W+Tj8+9//Vtu2beXn56cqVaronnvucTxXq1YtzZgxQwMHDlRwcLAeffRRSdKOHTvUuXNn+fv7KyoqSqNHj1ZOTo5ju1dffVVt2rRRhQoVFB4ergcffFBZWVmSfj22t9xyiySpUqVKsixLsbGxF93X06dPa+DAgapUqZICAgJ0++2369ixY47nExMTVbFiRW3atEnR0dEKCgpSr169lJmZ6WiTnJysdu3aKTAwUBUrVlSnTp309ddfF/n4AAAAAACAsmG3lc/lekVRshStWLFCgYGB2rNnj+bOnavp06dry5Ytxepj6tSpSkhI0K5du/TNN9+oX79+WrBggV577TWtW7dOmzdv1uLFi6/Yz8KFCzV9+nTdcMMNyszM1L59+4oU//7773cUQg8cOKBWrVqpR48eOnXq1BW3Xbdune655x7dcccd+uSTT5SUlKR27do5tXnuuefUvHlzffLJJ3rmmWeUlpamXr166d5779WhQ4e0atUq7dixQyNHjnRsk5+frxkzZujgwYNas2aN0tPTHYXHqKgorV69WpJ09OhRZWZmauHChRfNLzY2Vvv379fatWu1e/du2e123XHHHcrPz3e0OX/+vJ577jm9+uqr2r59uzIyMjRu3DhJUkFBgfr06aOuXbvq0KFD2r17tx599FFZllWkYwsAAAAAAIBfMX27FDVr1kxTpkyRJNWvX18JCQlKSkpS/fr1i9zHzJkz1alTJ0nS0KFDFRcXp7S0NNWpU0eSdN9992nr1q2aOHHiZfsJCQlRhQoV5OnpqfDw8CLF3rFjh/bu3ausrCz5+vpK+rWIuGbNGr399tuOkY2X8uyzz+qBBx7QtGnTHOuaN2/u1KZ79+568sknHY+HDRumhx56yDGisX79+lq0aJG6du2qF154QX5+fhoyZIijfZ06dbRo0SK1bdtW2dnZCgoKckzTrlatmtM1JX/v2LFjWrt2rXbu3OmYzr5y5UpFRUVpzZo1uv/++yX9WgBdsmSJ6tatK0kaOXKkpk+fLkk6d+6czp49q7vuusvxfHR09GWPSW5urnJzc53W5dkL5WN5XnY7AAAAAAAAd8ZIyVLUrFkzp8cRERGOacYl6SMsLEwBAQGOguRv64rbZ1EdPHhQ2dnZqly5soKCghzL8ePHlZaWdsXtU1JS1KNHj8u2adOmzQUxExMTneLFxMTIZrPp+PHjkqQDBw6od+/eqlGjhipUqKCuXbtKkjIyMoq8b6mpqfLy8lL79u0d6ypXrqyGDRsqNTXVsS4gIMBRcJScX8PQ0FDFxsYqJiZGvXv31sKFC52mdl9MfHy8QkJCnJbEn45ddhsAAAAAAFACtnK6XKcYKVmK/ninZ8uyZLPZ5OHxa+3Xbrc7nvv9lOFL9WFZ1iX7LAvZ2dmKiIhwXOfy9y41AvH3/P39r9gmMDDwgph/+tOfNHr06Ava1qhRQzk5OYqJiVFMTIxWrlypqlWrKiMjQzExMcrLy7tivOK62PH+/eu2fPlyjR49Whs3btSqVav09NNPa8uWLbrpppsu2l9cXJzGjh3rtO7T6IdKPW8AAAAAAIDyhKKkAVWrVpUkZWZmqmXLlpLkdNOba0WrVq30/fffy8vLy3FjnOJo1qyZkpKSNHjw4GLFPHLkiOrVq3fR5w8fPqwff/xRs2fPVlRUlCRp//79Tm1+u4N3YWHhJeNER0eroKBAe/bscUzf/vHHH3X06FE1bty4yPlKUsuWLdWyZUvFxcWpQ4cOeu211y5ZlPT19XVMhXfky9RtAAAAAABwnWP6tgH+/v666aabNHv2bKWmpmrbtm16+umnXZ3WBXr27KkOHTqoT58+2rx5s9LT07Vr1y499dRTFxQCL2bKlCl6/fXXNWXKFKWmpurw4cOaM2fOZbeZOHGidu3apZEjRyolJUXHjh3Te++957jRTY0aNeTj46PFixfrq6++0tq1azVjxgynPmrWrCnLsvT+++/r5MmTys7OviBO/fr1dffdd2v48OHasWOHDh48qIcffljVq1fX3XffXaTjc/z4ccXFxWn37t36+uuvtXnzZh07duyK15UEAAAAAACAM4qShrz88ssqKChQ69atNWbMGM2cOdPVKV3AsiytX79eXbp00eDBg9WgQQM98MAD+vrrrxUWFnbF7bt166a33npLa9euVYsWLdS9e3ft3bv3sts0a9ZM27Zt0xdffKHOnTurZcuWmjx5siIjIyX9Oso0MTFRb731lho3bqzZs2frueeec+qjevXqmjZtmiZNmqSwsDCnO3f/3vLly9W6dWvddddd6tChg+x2u9avX3/BlO1LCQgI0Oeff657771XDRo00KOPPqo///nP+tOf/lSk7QEAAAAAQNmx28rncr2y7L+/YB6AMrf/hj5G4pzN971yI7iEp6ErGXtYRsIo327m9y1vy8xxK7CX/YGr5Jtb5jEk6XSue50HOn8220iclOZPGonj6VH27+lzeT5lHkOSfpGZS5OY+jXdEn8eX6vcbUSFqfdanqEjZyKKqWPmaShOgaHXxsvQ35+FMvQHqAHudr7pcWKVq1Mw4ofbu7o6hRKpsmGbq1NwCXf7nAEAAAAAAAC4xlGULKcyMjIUFBR0ySUjI6PUYzZp0uSS8VauXFnq8QAAAAAAAOCeuPt2ORUZGXnZO3j/dk3G0rR+/Xrl5+df9LmiXHMSAAAAAACgzFzH12csjyhKllNeXl6qV6+e0Zg1a9Y0Gg8AAAAAAADuienbAAAAAAAAAIxipCQAAAAAAADKPTvTt8sVRkoCAAAAAAAAMIqRkoBhZ/N9XZ0CXKzQ0O9BNrvdSBwUX0jIz0bi/HTSx0gcm6G3WkrzJ43EaXFwnpE4u2+cWOYxTJ1v+JUbKBm7LFengEsw9dpYMvMlynut+BhwB5Q9/oYEAAAAAAAAYBQjJQEAAAAAAFDucU3J8oWRkgAAAAAAAACMoigJAAAAAAAAwCimbwMAAAAAAKDcY/p2+cJISQAAAAAAAABGUZSE24iNjVWfPn2uqo/ExERVrFjR8Xjq1Klq0aLFVfUJAAAAAAAAZxQlAQAAAAAAABjFNSUBAAAAAABQ/tktV2eAYmCkJC6pW7duGj16tCZMmKDQ0FCFh4dr6tSpkqT09HRZlqWUlBRH+zNnzsiyLCUnJ0uSkpOTZVmWNm3apJYtW8rf31/du3dXVlaWNmzYoOjoaAUHB+vBBx/U+fPni5TT22+/raZNm8rf31+VK1dWz549lZOT49TmueeeU0REhCpXrqw///nPys/PdzyXm5urcePGqXr16goMDFT79u0d+RZFcnKy2rVrp8DAQFWsWFGdOnXS119/XeTtAQAAAAAArtY//vEP1apVS35+fmrfvr327t17ybZLly5V586dValSJVWqVEk9e/a8oH1sbKwsy3JaevXqVab7QFESl7VixQoFBgZqz549mjt3rqZPn64tW7YUq4+pU6cqISFBu3bt0jfffKN+/fppwYIFeu2117Ru3Tpt3rxZixcvvmI/mZmZGjBggIYMGaLU1FQlJyerb9++stvtjjZbt25VWlqatm7dqhUrVigxMVGJiYmO50eOHKndu3frjTfe0KFDh3T//ferV69eOnbs2BXjFxQUqE+fPuratasOHTqk3bt369FHH5Vl8UsMAAAAAAAwY9WqVRo7dqymTJmijz/+WM2bN1dMTIyysrIu2j45OVkDBgzQ1q1btXv3bkVFRem2227Tf//7X6d2vXr1UmZmpmN5/fXXy3Q/mL6Ny2rWrJmmTJkiSapfv74SEhKUlJSk+vXrF7mPmTNnqlOnTpKkoUOHKi4uTmlpaapTp44k6b777tPWrVs1ceLEy/aTmZmpgoIC9e3bVzVr1pQkNW3a1KlNpUqVlJCQIE9PTzVq1Eh33nmnkpKSNHz4cGVkZGj58uXKyMhQZGSkJGncuHHauHGjli9frlmzZl02/rlz53T27Fndddddqlu3riQpOjr6stvk5uYqNzfXaV2evVA+ludltwMAAAAAALiY+fPna/jw4Ro8eLAkacmSJVq3bp1efvllTZo06YL2K1eudHr80ksvafXq1UpKStLAgQMd6319fRUeHl62yf8OIyVxWc2aNXN6HBERccnKe1H6CAsLU0BAgKMg+du6ovTZvHlz9ejRQ02bNtX999+vpUuX6vTp005tmjRpIk/P/xX8fp/v4cOHVVhYqAYNGigoKMixbNu2TWlpaVeMHxoaqtjYWMXExKh3795auHChMjMzL7tNfHy8QkJCnJbXc1KvGAsAAAAAABSP3VY+l9zcXJ07d85p+eMAp9/k5eXpwIED6tmzp2Odh4eHevbsqd27dxfpOJ0/f175+fkKDQ11Wp+cnKxq1aqpYcOGeuyxx/Tjjz+W/MUoAoqSuCxvb2+nx5ZlyWazycPj17fO76dO//7ajZfqw7KsS/Z5JZ6entqyZYs2bNigxo0ba/HixWrYsKGOHz9+xXwlKTs7W56enjpw4IBSUlIcS2pqqhYuXHjF+JK0fPly7d69Wx07dtSqVavUoEEDffTRR5dsHxcXp7NnzzotAwIvP7oSAAAAAABcPy42oCk+Pv6ibX/44QcVFhYqLCzMaX1YWJi+//77IsWbOHGiIiMjnQqbvXr10iuvvKKkpCTNmTNH27Zt0+23367CwsKS79gVMH0bJVK1alVJv06pbtmypSQ53fSmrFiWpU6dOqlTp06aPHmyatasqXfffVdjx4694rYtW7ZUYWGhsrKy1Llz5xLn0LJlS7Vs2VJxcXHq0KGDXnvtNd10000Xbevr6ytfX1+ndUzdBgAAAAAAv4mLi7ugrvHHWkJpmT17tt544w0lJyfLz8/Psf6BBx5w/Ltp06Zq1qyZ6tatq+TkZPXo0aNMcqEoiRLx9/fXTTfdpNmzZ6t27drKysrS008/XaYx9+zZo6SkJN12222qVq2a9uzZo5MnT17xuo6/adCggR566CENHDhQ8+bNU8uWLXXy5EklJSWpWbNmuvPOOy+7/fHjx/XPf/5T//d//6fIyEgdPXpUx44dc7r+AgAAAAAAcA27rXzeiPZiA5oupUqVKvL09NSJEyec1p84ceKK14N87rnnNHv2bH3wwQcXXK7vj+rUqaMqVaroyy+/LLOiJNO3UWIvv/yyCgoK1Lp1a40ZM0YzZ84s03jBwcHavn277rjjDjVo0EBPP/205s2bp9tvv73IfSxfvlwDBw7Uk08+qYYNG6pPnz7at2+fatSoccVtAwIC9Pnnn+vee+9VgwYN9Oijj+rPf/6z/vSnP13NbgEAAAAAABSJj4+PWrduraSkJMc6m82mpKQkdejQ4ZLbzZ07VzNmzNDGjRvVpk2bK8b59ttv9eOPPyoiIqJU8r4Yy/77iwICKHNJYf1dnQKuE5bMnN7tMvNrpLd15WvPloYCe9nvT61qZ8o8hiR9ezLESBybob8kAr0KjMRpcXCekTi7b5xY5jHy7WZ+fy40dB4wxdT5E8XHiIqSyTf0GTXx+pj6fJp6r5n568b99gfFd+uJVa5OwYjMm29xdQolErFja7Har1q1SoMGDdKLL76odu3aacGCBXrzzTf1+eefKywsTAMHDlT16tUd16WcM2eOJk+erNdee02dOnVy9PPbDYCzs7M1bdo03XvvvQoPD1daWpomTJign376SYcPHy6zqeRM3wYAAAAAAADKif79++vkyZOaPHmyvv/+e7Vo0UIbN2503PwmIyPDcYNiSXrhhReUl5en++67z6mfKVOmaOrUqfL09NShQ4e0YsUKnTlzRpGRkbrttts0Y8aMMitIShQlcQ3JyMhQ48aNL/n8kSNHijTNGgAAAAAAXH/s19Fw3ZEjR2rkyJEXfS45OdnpcXp6+mX78vf316ZNm0ops6KjKIlrRmRk5GXv4B0ZGWkuGQAAAAAAAJQZipK4Znh5ealevXquTgMAAAAAAABljKIkAAAAAAAAyj27gZtWovRwAzsAAAAAAAAARlGUBAAAAAAAAGAU07cBw7wtM7cDy7eb+c3Bkt1IHLvcZxi+u70HTPH3LDASp9Hdv5R5jMytZl6bGztkGYnjHRFgJM6xf/sYibP7xolG4nT4dE6Zx9jeJK7MY0hSrmXmHO1h5itH3mbCGGPqu9oETxn6DjU0dsPX2N8EnkbieLrRe+3/sXfnYVWV+///X5t52AyCKJIKThAaKkqakkOKOaQ5T/F1yrQyj5lj5mwO6ZGjplmmJZo4nHLoNFlqkqZmDqGWREYqnhOl5VBgMu7fH/7an3aigMJC4Pm4rnXlXute9/u9FpvF7r3vey2jZBr0XnMx6HenLH1mL0vXTuBuRVESAAAAAAAApZ7FmPo7ikjZGkYDAAAAAAAA4K5HURIAAAAAAACAoShKAgAAAAAAADAU95QEAAAAAABAqWfJLTsPWyoPGCmJMu3bb7/VAw88IBcXFzVs2FBnzpyRyWRSQkKCJCk+Pl4mk0mXL18u0TwBAAAAAADKE0ZKokybPn263N3dlZSUJLPZLG9vb6WmpqpixYolnRoAAAAAAEC5RVESZVpycrIeeeQRBQYGWtf5+/uXYEYAAAAAAKA4WCwlnQEKg+nbJaB169YaNWqUJkyYIB8fH/n7+2vGjBmSdMP0Ykm6fPmyTCaT4uPjJf3flOOPP/5Y4eHhcnV1VZs2bXT+/Hl99NFHCg0Nlaenpx577DFdvXq1QDlt375dDz74oLy9veXr66vOnTsrOTnZps1///tf9e/fXz4+PnJ3d1dERIQOHjxo3f7ee+/p/vvvl4uLiypWrKju3btbt2VkZGjcuHG655575O7urqZNm1qPR5LOnj2rLl26qEKFCnJ3d1e9evX04YcfSpIuXbqk6Oho+fn5ydXVVXXq1NHq1avzPSaTyaQjR45o1qxZMplMmjFjRp7n9+8+//xztWjRQq6urqpWrZpGjRql9PR06/bly5erTp06cnFxUeXKldWrV698cwEAAAAAAMD/YaRkCVmzZo3GjBmjgwcP6sCBAxo8eLAiIyNVp06dAvcxY8YMLVu2TG5uburTp4/69OkjZ2dnrV+/XmlpaerevbuWLl2qiRMn5ttXenq6xowZo/r16ystLU3Tpk1T9+7dlZCQIDs7O6WlpalVq1a655579J///Ef+/v46evSocnNzJUkffPCBunfvrsmTJ2vt2rXKzMy0FhUlaeTIkTp58qQ2btyogIAAbd26VR06dNCJEydUp04dPfPMM8rMzNSePXvk7u6ukydPymw2S5KmTp2qkydP6qOPPlLFihX1/fff648//sj3mFJTUxUVFaUOHTpo3LhxMpvN+uWXX265T3Jysjp06KDZs2frzTff1IULFzRy5EiNHDlSq1ev1uHDhzVq1Ci99dZbat68uS5evKi9e/fmmwsAAAAAAAD+D0XJElK/fn1Nnz5dklSnTh0tW7ZMu3btKlRRcvbs2YqMjJQkDR06VJMmTVJycrJq1qwpSerVq5d2795doKJkz549bV6/+eab8vPz08mTJ3Xfffdp/fr1unDhgg4dOiQfHx9JUu3ata3t58yZo379+mnmzJnWdQ0aNJAkpaSkaPXq1UpJSVFAQIAkady4cdq+fbtWr16tuXPnKiUlRT179lRYWJgkWY/hz/3Dw8MVEREhSQoKCirQ+fH395eDg4PMZrN1ynZ+Rcl58+YpOjpao0ePlnT9Z/Pyyy+rVatWevXVV5WSkiJ3d3d17txZHh4eCgwMVHh4eIHyAQAAAAAAwHUUJUtI/fr1bV5XqVJF58+fv+0+KleuLDc3N5tiXuXKlfXll18WqK9Tp05p2rRpOnjwoH755RfrCMiUlBTdd999SkhIUHh4uLUg+XcJCQkaNmxYnttOnDihnJwcBQcH26zPyMiQr6+vJGnUqFF6+umn9cknnygqKko9e/a0Ht/TTz+tnj176ujRo3r44YfVrVs3NW/evEDHVVjHjh3T8ePHFRcXZ11nsViUm5ur06dPq127dgoMDFTNmjXVoUMHdejQQd27d5ebm1ue/WVkZCgjI8NmXaYlR04m+2LJHwAAAACA8sqSayrpFFAI3FOyhDg6Otq8NplMys3NlZ3d9R+J5S93Z83Kysq3D5PJdNM+C6JLly66ePGiVq5cqYMHD1rvFZmZmSlJcnV1veX+t9qelpYme3t7HTlyRAkJCdYlMTFRS5YskSQ98cQT+uGHHzRgwACdOHFCERERWrp0qSSpY8eOOnv2rJ577jn9+OOPatu2rcaNG1eg4yqstLQ0PfnkkzZ5Hjt2TKdOnVKtWrXk4eGho0ePasOGDapSpYqmTZumBg0a6PLly3n2N2/ePHl5edkscenfFkvuAAAAAAAApQVFybuMn5+fpOv3Q/zTrR7KUhR+/fVXJSUlacqUKWrbtq1CQ0N16dIlmzb169dXQkKCLl68mGcf9evX165du/LcFh4erpycHJ0/f161a9e2Wf76JOxq1arpqaee0pYtWzR27FitXLnSus3Pz0+DBg3SunXrtHjxYr3++utFcOQ3atSokU6ePHlDnrVr15aTk5MkycHBQVFRUVqwYIGOHz+uM2fO6NNPP82zv0mTJunKlSs2S7T7vcWSOwAAAAAAQGnB9O27jKurqx544AG99NJLqlGjhs6fP68pU6YUa8wKFSrI19dXr7/+uqpUqaKUlBQ9//zzNm369++vuXPnqlu3bpo3b56qVKmir776SgEBAWrWrJmmT5+utm3bqlatWurXr5+ys7P14YcfauLEiQoODlZ0dLQGDhyomJgYhYeH68KFC9q1a5fq16+vRx55RKNHj1bHjh0VHBysS5cuaffu3QoNDZUkTZs2TY0bN1a9evWUkZGh999/37qtqE2cOFEPPPCARo4cqSeeeML60J0dO3Zo2bJlev/99/XDDz+oZcuWqlChgj788EPl5uYqJCQkz/6cnZ3l7Oxss46p2wAAAAAAoLxjpORd6M0331R2drYaN26s0aNHa/bs2cUaz87OThs3btSRI0d033336bnnntM///lPmzZOTk765JNPVKlSJXXq1ElhYWF66aWXZG9/vcDWunVrvf322/rPf/6jhg0bqk2bNjb3s1y9erUGDhyosWPHKiQkRN26ddOhQ4dUvXp1SVJOTo6eeeYZhYaGqkOHDgoODtby5cutsSdNmqT69eurZcuWsre318aNG4vlXNSvX1+fffaZvvvuO7Vo0ULh4eGaNm2a9QE93t7e2rJli9q0aaPQ0FC99tpr2rBhg+rVq1cs+QAAAAAAgIKx5JpK5VJemSx/vXkhgGK3x7+3IXGyLMZ852CSMZcQi8rOhdrRVLB7vd4po94DRvF0yDQkzr1drxV7jNTdxvzeVLz3D0PiOFbJ+2FfRe3Ue06GxEnLMiZOs6/nF3uMPfUmFXsMSbpqMuZ6Y2fQp1ZHg/62GcWov9VGcJRBf0MNGrvhbNBngqsWY2bqlLXfHSNcM+i95mLQ705OGfrMXpaunZLU7udNJZ2CIc40bFfSKdyWoIQdJZ1CiShb/8cKAAAAAAAA4K5HUbIcSElJkdlsvumSkpJS0inelrlz5970mDp27FjS6QEAAAAAAANZLKVzKa940E05EBAQcMsneP95v8TS5qmnnlKfPn3y3Obq6mpwNgAAAAAAACgoipLlgIODg2rXrl3SaRQ5Hx8f+fj4lHQaAAAAAAAAKCSmbwMAAAAAAAAwFCMlAQAAAAAAUOpZcsvOE+DLA0ZKAgAAAAAAADAURUkAAAAAAAAAhmL6NoA7YlHZGR6fa1CcLIsx3wdFftjfkDj7Om0wJI6DvTE/oS83exoSxwjn9nuVdApFyt6g39Icg76z3VNvUrHHaPnNvGKPIUkf3DfFkDgyWQwJk2tMGMPYGxCjLH0ekIwbuZFh0GeCHIN+Phmm4j8eOxnzC+puyTEkjlEzTcvadc2ITwRGXDtR9CyWsvX3qKxjpCQAAAAAAAAAQ1GUBAAAAAAAAGAoipIAAAAAAAAADMU9JQEAAAAAAFDqWYx6UACKBCMlAQAAAAAAABiKomQZ0rp1a40ePbqk0ygRJpNJ27ZtK9I+y/P5BAAAAAAAKE5M3y5DtmzZIkdHx5JO447NmDFD27ZtU0JCQonmUVbOJwAAAAAAwN2GomQZ4uPjU9IplCmcTwAAAAAASo9ci6mkU0AhMH27DPnrdOPly5erTp06cnFxUeXKldWrV68C9fH7778rOjpa7u7uqlKlihYtWnTDNOa8pkp7e3srNjbW+vrcuXPq06ePvL295ePjo65du+rMmTPW7fHx8WrSpInc3d3l7e2tyMhInT17VrGxsZo5c6aOHTsmk8kkk8lk029BnThxQm3atJGrq6t8fX01fPhwpaWlWbdnZ2dr1KhR8vb2lq+vryZOnKhBgwapW7du1jZ/P+6goCDNnTtXjz/+uDw8PFS9enW9/vrrhc4NAAAAAACgvKMoWQYdPnxYo0aN0qxZs5SUlKTt27erZcuWBdp3zJgx2rdvn/7zn/9ox44d2rt3r44ePVqo+FlZWWrfvr08PDy0d+9e7du3T2azWR06dFBmZqays7PVrVs3tWrVSsePH9eBAwc0fPhwmUwm9e3bV2PHjlW9evWUmpqq1NRU9e3bt1Dx09PT1b59e1WoUEGHDh3S22+/rZ07d2rkyJHWNvPnz1dcXJxWr16tffv26bfffivQPSljYmIUERGhr776SiNGjNDTTz+tpKSkQuUHAAAAAABQ3jF9uwxKSUmRu7u7OnfuLA8PDwUGBio8PDzf/X7//XetWbNG69evV9u2bSVJq1evVkBAQKHib9q0Sbm5uVq1apVMJpO1H29vb8XHxysiIkJXrlxR586dVatWLUlSaGiodX+z2SwHBwf5+/sXKu6f1q9fr2vXrmnt2rVyd3eXJC1btkxdunTR/PnzVblyZS1dulSTJk1S9+7drds//PDDfPvu1KmTRowYIUmaOHGiFi1apN27dyskJCTP9hkZGcrIyLBZl2nJkZPJ/raODQAAAAAA5M3C9O1ShZGSZVC7du0UGBiomjVrasCAAYqLi9PVq1fz3e+HH35QVlaWmjRpYl3n5eV104LbzRw7dkzff/+9PDw8ZDabZTab5ePjo2vXrik5OVk+Pj4aPHiw2rdvry5dumjJkiVKTU0t9HHeTGJioho0aGAtSEpSZGSkcnNzlZSUpCtXrujnn3+2OU57e3s1btw4377r169v/bfJZJK/v7/Onz9/0/bz5s2Tl5eXzRKX/u1tHhkAAAAAAEDZQFGyDPLw8NDRo0e1YcMGValSRdOmTVODBg10+fLlIunfZDLJYrHYrMvKyrL+Oy0tTY0bN1ZCQoLN8t133+mxxx6TdH3k5IEDB9S8eXNt2rRJwcHB+uKLL4okv+L096dxm0wm5ebm3rT9pEmTdOXKFZsl2v3e4k4TAAAAAADgrkZRsoxycHBQVFSUFixYoOPHj+vMmTP69NNPb7lPzZo15ejoqEOHDlnXXblyRd99951NOz8/P5uRjadOnbIZidmoUSOdOnVKlSpVUu3atW0WLy8va7vw8HBNmjRJ+/fv13333af169dLkpycnJSTk3Pbxx4aGqpjx44pPT3dum7fvn2ys7NTSEiIvLy8VLlyZZvjzMnJKfS9MwvC2dlZnp6eNgtTtwEAAAAAQHlHUbIMev/99/Xyyy8rISFBZ8+e1dq1a5Wbm5vvNGwPDw8NGjRI48eP1+7du/XNN99o6NChsrOzs94bUpLatGmjZcuW6auvvtLhw4f11FNP2YwgjI6OVsWKFdW1a1ft3btXp0+fVnx8vEaNGqX//ve/On36tCZNmqQDBw7o7Nmz+uSTT3Tq1CnrfSWDgoJ0+vRpJSQk6Jdffrnhnoz5iY6OlouLiwYNGqSvv/5au3fv1j/+8Q8NGDBAlStXliT94x//0Lx58/Tuu+8qKSlJzz77rC5dumRznAAAAAAAoPSw5JpK5VJeUZQsg7y9vbVlyxa1adNGoaGheu2117RhwwbVq1cv333/9a9/qVmzZurcubOioqIUGRmp0NBQubi4WNvExMSoWrVqatGihR577DGNGzdObm5u1u1ubm7as2ePqlevrh49eig0NFRDhw7VtWvX5OnpKTc3N3377bfq2bOngoODNXz4cD3zzDN68sknJUk9e/ZUhw4d9NBDD8nPz08bNmwo1PG7ubnp448/1sWLF3X//ferV69eatu2rZYtW2ZtM3HiRPXv318DBw5Us2bNZDab1b59e5vjBAAAAAAAQPEwWf5+c0DgL9LT03XPPfcoJiZGQ4cOLel0ik1ubq5CQ0PVp08fvfjii8Uaa49/72Lt/09ZFr5zKKyb3x20aBn1k4n8sL8hcfZ1KtwXB7fLx/maIXEuZvDlxN3K3qDf0pwy9J1ty2/mGRLng/umGBLHXsZ8bHUsYx+PjThvFhkzysNJt3+Ln8Iw6jpg1GePTIOOJ9uAWUd2Bl0H3C3GvNfSDbq1k4vFmHebUdcCI47GqL85Rmn386aSTsEQ3wZ3KukUbsu9331Y0imUCIeSTgB3l6+++krffvutmjRpoitXrmjWrFmSpK5du5ZwZkXrz2njrVq1UkZGhpYtW6bTp09bH8QDAAAAAABKlzL2vWKZV3aGAiBfKSkpMpvNN11SUlIkSQsXLlSDBg0UFRWl9PR07d27VxUrViyxvOPi4m6ac0GmpOfFzs5OsbGxuv/++xUZGakTJ05o586d1vtaAgAAAAAAoPgwUrIcCQgIUEJCwi23V69eXUeOHDEuqQJ49NFH1bRp0zy3/fUBO4VRrVo17du3707SAgAAAAAAwG2iKFmOODg4qHbt2iWdRqF5eHjIw8OjpNMAAAAAAABAEaEoCQAAAAAAgFLPkmvMw5ZQNLinJAAAAAAAAABDUZQEAAAAAAAAYCimbwMGS7FzNiRO5ZwsQ+JcMxnz3YazxVLsMdIMOhYPS44hcd7v/LYhcTxlzBSJQZnnDYkTo+rFHsNi0Dkzqfh/b4yUJXtD4hj1jW2GqfjfBx/cN6XYY0jSI1/PNiSOJf2yIXFeaPVPQ+IYxT+37HzkfyLyZ0PirPv8HkPi/GCfbUicF590MiSOcor/M47l96vFHkOSFm50NSTO8+/2NyTOP7tuMCTOFVOuIXGMUJaunZLUrqQTAPJQtn7LAAAAAAAAUC7lWrinZGnC9G0AAAAAAAAAhqIoCQAAAAAAAMBQTN8GAAAAAABAqWdh+napwkhJAAAAAAAAAIaiKAkAAAAAAADAUBQlAQAAAAAAABiKoiRwG86cOSOTyaSEhISSTgUAAAAAAEiyWErnUl5RlAQAAAAAAABgKIqSKJVyc3O1YMEC1a5dW87OzqpevbrmzJkjSTpx4oTatGkjV1dX+fr6avjw4UpLS7Pu27p1a40ePdqmv27dumnw4MHW10FBQZo7d64ef/xxeXh4qHr16nr99det22vUqCFJCg8Pl8lkUuvWrYvtWAEAAAAAAMoaipIolSZNmqSXXnpJU6dO1cmTJ7V+/XpVrlxZ6enpat++vSpUqKBDhw7p7bff1s6dOzVy5MhCx4iJiVFERIS++uorjRgxQk8//bSSkpIkSV9++aUkaefOnUpNTdWWLVuK9PgAAAAAAEDh5FpMpXIprxxKOgGgsH7//XctWbJEy5Yt06BBgyRJtWrV0oMPPqiVK1fq2rVrWrt2rdzd3SVJy5YtU5cuXTR//nxVrly5wHE6deqkESNGSJImTpyoRYsWaffu3QoJCZGfn58kydfXV/7+/jftIyMjQxkZGTbrsiw5cjTZF+qYAQAAAAAAyhJGSqLUSUxMVEZGhtq2bZvntgYNGlgLkpIUGRmp3Nxc6yjHgqpfv7713yaTSf7+/jp//nyh+pg3b568vLxslvfSvilUHwAAAAAAAGUNRUmUOq6urne0v52dnSx/e7xVVlbWDe0cHR1tXptMJuXm5hYq1qRJk3TlyhWbpYu5XuGTBgAAAAAAKEMoSqLUqVOnjlxdXbVr164btoWGhurYsWNKT0+3rtu3b5/s7OwUEhIiSfLz81Nqaqp1e05Ojr7++utC5eDk5GTd91acnZ3l6elpszB1GwAAAACAomexmErlUl5RlESp4+LiookTJ2rChAlau3atkpOT9cUXX+iNN95QdHS0XFxcNGjQIH399dfavXu3/vGPf2jAgAHW+0m2adNGH3zwgT744AN9++23evrpp3X58uVC5VCpUiW5urpq+/bt+vnnn3XlypViOFIAAAAAAICyiaIkSqWpU6dq7NixmjZtmkJDQ9W3b1+dP39ebm5u+vjjj3Xx4kXdf//96tWrl9q2batly5ZZ93388cc1aNAgDRw4UK1atVLNmjX10EMPFSq+g4ODXn75Za1YsUIBAQHq2rVrUR8iAAAAAABAmcXTt1Eq2dnZafLkyZo8efIN28LCwvTpp5/edF9HR0ctX75cy5cvv2mbM2fO3LAuISHB5vUTTzyhJ554osA5AwAAAAAA4DqKkgAAAAAAACj1/vZMW9zlmL4NAAAAAAAAwFAUJQEAAAAAAAAYiunbAAAAAAAAKPVyLaaSTgGFwEhJAAAAAAAAAIaiKAkAAAAAAADAUBQlAQAAAAAAABiKe0oCBnO2WEo6hSJlb9DxmFT8ceyLPYKxHMvYe62Gk68xgTKMCYPCK2vfpNoZ8StqMuY6YEm/bEgck7u3IXESci4aEsco99sbdP00gHPbcEPinDuQakgcX4sxnz5yzvxkSBzHR9oVf5DMa8UfQ9KlTV8bEseuQoAhcTwNus/eZ7ll5/pZlq6d5YmFe0qWKmXt8z0AAAAAAACAuxxFSQAAAAAAAACGoigJAAAAAAAAwFDcUxIAAAAAAAClXi73lCxVGCkJAAAAAAAAwFAUJQEAAAAAAAAYiqIkcJtMJpO2bdtW0mkAAAAAAABJllK6lFcUJWGozMzMkk4BAAAAAAAAJYyiJIrEO++8o7CwMLm6usrX11dRUVFKT0/X4MGD1a1bN82ZM0cBAQEKCQnRCy+8oKZNm97QR4MGDTRr1qwCxXvzzTdVr149OTs7q0qVKho5cqR1W0pKirp27Sqz2SxPT0/16dNHP//8s3X7nzn91ejRo9W6dWvr69atW2vUqFGaMGGCfHx85O/vrxkzZli3BwUFSZK6d+8uk8lkfQ0AAAAAAID8UZTEHUtNTVX//v31+OOPKzExUfHx8erRo4csluuDkHft2qWkpCTt2LFD77//vqKjo/Xll18qOTnZ2sc333yj48eP67HHHss33quvvqpnnnlGw4cP14kTJ/Sf//xHtWvXliTl5uaqa9euunjxoj777DPt2LFDP/zwg/r27Vvo41qzZo3c3d118OBBLViwQLNmzdKOHTskSYcOHZIkrV69WqmpqdbXAAAAAAAAyJ9DSSeA0i81NVXZ2dnq0aOHAgMDJUlhYWHW7e7u7lq1apWcnJys6xo0aKD169dr6tSpkqS4uDg1bdrUWly8ldmzZ2vs2LF69tlnrevuv/9+SdcLoCdOnNDp06dVrVo1SdLatWtVr149HTp0yNquIOrXr6/p06dLkurUqaNly5Zp165dateunfz8/CRJ3t7e8vf3L3CfAAAAAACgeORaTCWdAgqBkZK4Yw0aNFDbtm0VFham3r17a+XKlbp06ZJ1e1hYmE1BUpKio6O1fv16SZLFYtGGDRsUHR2db6zz58/rxx9/VNu2bfPcnpiYqGrVqlkLkpJUt25deXt7KzExsVDHVb9+fZvXVapU0fnz5wvVR0ZGhn777TebJcuSU6g+AAAAAAAAyhqKkrhj9vb22rFjhz766CPVrVtXS5cuVUhIiE6fPi3p+kjJv+vfv7+SkpJ09OhR7d+/X+fOnSvQFGtXV9c7ztfOzs46tfxPWVlZN7RzdHS0eW0ymZSbm1uoWPPmzZOXl5fNsjXtm8InDQAAAAAAUIZQlESRMJlMioyM1MyZM/XVV1/JyclJW7duvWn7qlWrqlWrVoqLi1NcXJzatWunSpUq5RvHw8NDQUFB2rVrV57bQ0NDde7cOZ07d8667uTJk7p8+bLq1q0rSfLz81NqaqrNfgkJCQU4SluOjo7Kybn1qMdJkybpypUrNkt3c71CxwIAAAAAALdmsZhK5VJeUZTEHTt48KDmzp2rw4cPKyUlRVu2bNGFCxcUGhp6y/2io6O1ceNGvf322wWauv2nGTNmKCYmRi+//LJOnTqlo0ePaunSpZKkqKgohYWFKTo6WkePHtWXX36pgQMHqlWrVoqIiJAktWnTRocPH9batWt16tQpTZ8+XV9//XWhj/vP4uhPP/1kM139r5ydneXp6WmzOJrsCx0LAAAAAACgLKEoiTvm6empPXv2qFOnTgoODtaUKVMUExOjjh073nK/Xr166ddff9XVq1fVrVu3AscbNGiQFi9erOXLl6tevXrq3LmzTp06Jen6iM13331XFSpUUMuWLRUVFaWaNWtq06ZN1v3bt2+vqVOnasKECbr//vv1+++/a+DAgYU+7piYGO3YsUPVqlVTeHh4ofcHAAAAAAAor3j6Nu5YaGiotm/fnue22NjYm+7n7e2ta9eu3VbMJ598Uk8++WSe26pXr6533333lvvPnDlTM2fOvOn2+Pj4G9Zt27bN5nWXLl3UpUuXfHMFAAAAAACALYqSAAAAAAAAKPUK92halDSmb+OuYzabb7rs3bu3pNMDAAAAAADAHWKkJO46t3oS9j333GNcIgAAAAAAACgWFCVx16ldu3ZJpwAAAAAAAIBiRFESAAAAAAAApZ5FppJOAYXAPSUBAAAAAAAAGIqiJAAAAAAAAABDMX0bAAAAAAAApV6upaQzQGFQlAQM5paba0gco4ZBG3URcVTxnzdXizH3HzHqZ+NsMea9ZpIxf/lby9uQOFJWsUcw6pyVNWXtvDkaEMOoD+YvtPqnIXESci4aEuejr141JI5RNjSYVtIpFBmPEZsMifO/5nUMifPpd/cYEuenPcZ8xnlg/Ypij5Gdm1PsMSTpaKAx74FWzccaEmdsboAhcT46UXaun2Xp2gncrZi+DQAAAAAAAMBQFCUBAAAAAAAAGIrp2wAAAAAAACj1cmXM7SpQNBgpCQAAAAAAAMBQFCUBAAAAAACAUuSVV15RUFCQXFxc1LRpU3355Ze3bP/222/r3nvvlYuLi8LCwvThhx/abLdYLJo2bZqqVKkiV1dXRUVF6dSpU8V5CBQlAQAAAAAAUPpZZCqVS2Ft2rRJY8aM0fTp03X06FE1aNBA7du31/nz5/Nsv3//fvXv319Dhw7VV199pW7duqlbt276+uuvrW0WLFigl19+Wa+99poOHjwod3d3tW/fXteuXbvtn0d+KEoCeZgxY4YaNmxY0mkAAAAAAADY+Ne//qVhw4ZpyJAhqlu3rl577TW5ubnpzTffzLP9kiVL1KFDB40fP16hoaF68cUX1ahRIy1btkzS9VGSixcv1pQpU9S1a1fVr19fa9eu1Y8//qht27YV23FQlIShsrKybliXmZl5W33dzn63GwsAAAAAAKA4ZGRk6LfffrNZMjIy8mybmZmpI0eOKCoqyrrOzs5OUVFROnDgQJ77HDhwwKa9JLVv397a/vTp0/rpp59s2nh5ealp06Y37bMoUJREvt555x2FhYXJ1dVVvr6+ioqKUnp6uiRp1apVCg0NlYuLi+69914tX77cut+ZM2dkMpm0adMmtWrVSi4uLoqLi9PgwYPVrVs3zZkzRwEBAQoJCZEknThxQm3atLHGGT58uNLS0qz93Wy/WwkKCtKLL76ogQMHytPTU8OHD5ckTZw4UcHBwXJzc1PNmjU1depUa8E0NjZWM2fO1LFjx2QymWQymRQbGytJunz5sp544gn5+fnJ09NTbdq00bFjx4rkPAMAAAAAgPJn3rx58vLyslnmzZuXZ9tffvlFOTk5qly5ss36ypUr66effspzn59++umW7f/8b2H6LAoOxdYzyoTU1FT1799fCxYsUPfu3fX7779r7969slgsiouL07Rp07Rs2TKFh4frq6++0rBhw+Tu7q5BgwZZ+3j++ecVExOj8PBwubi4KD4+Xrt27ZKnp6d27NghSUpPT1f79u3VrFkzHTp0SOfPn9cTTzyhkSNHWguCkm7YryAWLlyoadOmafr06dZ1Hh4eio2NVUBAgE6cOKFhw4bJw8NDEyZMUN++ffX1119r+/bt2rlzp6Tr3xBIUu/eveXq6qqPPvpIXl5eWrFihdq2bavvvvtOPj4+d3KqAQAAAADAHcgt6QRu06RJkzRmzBibdc7OziWUjXEoSuKWUlNTlZ2drR49eigwMFCSFBYWJkmaPn26YmJi1KNHD0lSjRo1dPLkSa1YscKmKDl69Ghrmz+5u7tr1apVcnJykiStXLlS165d09q1a+Xu7i5JWrZsmbp06aL58+dbq/V/368g2rRpo7Fjx9qsmzJlivXfQUFBGjdunDZu3KgJEybI1dVVZrNZDg4O8vf3t7b7/PPP9eWXX+r8+fPWi8PChQu1bds2vfPOO9ZRmH+VkZFxw5DrLEuOHE32Bc4fAAAAAACUXc7OzgUuQlasWFH29vb6+eefbdb//PPPNjWMv/L3979l+z//+/PPP6tKlSo2bYrzeRtM38YtNWjQQG3btlVYWJh69+6tlStX6tKlS0pPT1dycrKGDh0qs9lsXWbPnq3k5GSbPiIiIm7oNywszKawmJiYqAYNGlgLkpIUGRmp3NxcJSUl3XS/gsgr/qZNmxQZGSl/f3+ZzWZNmTJFKSkpt+zn2LFjSktLk6+vr80xnz59+oZj/lNeQ7D/nX6yUPkDAAAAAABIkpOTkxo3bqxdu3ZZ1+Xm5mrXrl1q1qxZnvs0a9bMpr0k7dixw9q+Ro0a8vf3t2nz22+/6eDBgzftsygwUhK3ZG9vrx07dmj//v365JNPtHTpUk2ePFnvvfeepOsjHJs2bXrDPn/110LjrdYVxO3s9/d9Dhw4oOjoaM2cOVPt27eXl5eXNm7cqJiYmFv2k5aWpipVqig+Pv6Gbd7e3nnuk9cQ7E9rP1Go/AEAAAAAAP40ZswYDRo0SBEREWrSpIkWL16s9PR0DRkyRJI0cOBA3XPPPdb7Uj777LNq1aqVYmJi9Mgjj2jjxo06fPiwXn/9dUmSyWTS6NGjNXv2bNWpU0c1atTQ1KlTFRAQoG7duhXbcVCURL5MJpMiIyMVGRmpadOmKTAwUPv27VNAQIB++OEHRUdH33GM0NBQxcbGKj093VpE3Ldvn+zs7Ar0QJvC2L9/vwIDAzV58mTrurNnz9q0cXJyUk5Ojs26Ro0a6aeffpKDg4OCgoIKFCuvIdhM3QYAAAAAoOhZZCrpFAzRt29fXbhwQdOmTdNPP/2khg0bavv27dZb36WkpMjO7v8mRzdv3lzr16/XlClT9MILL6hOnTratm2b7rvvPmubCRMmKD09XcOHD9fly5f14IMPavv27XJxcSm246AoiVs6ePCgdu3apYcffliVKlXSwYMHdeHCBYWGhmrmzJkaNWqUvLy81KFDB2VkZOjw4cO6dOnSDaMD8xMdHa3p06dr0KBBmjFjhi5cuKB//OMfGjBgwA1Pf7pTderUUUpKijZu3Kj7779fH3zwgbZu3WrTJigoSKdPn1ZCQoKqVq0qDw8PRUVFqVmzZurWrZsWLFig4OBg/fjjj/rggw/UvXv3PKeJAwAAAAAAFLWRI0dq5MiReW7La4Zn79691bt375v2ZzKZNGvWLM2aNauoUswX95TELXl6emrPnj3q1KmTgoODNWXKFMXExKhjx4564okntGrVKq1evVphYWFq1aqVYmNjVaNGjULHcXNz08cff6yLFy/q/vvvV69evdS2bVstW7asyI/p0Ucf1XPPPaeRI0eqYcOG2r9/v6ZOnWrTpmfPnurQoYMeeugh+fn5acOGDTKZTPrwww/VsmVLDRkyRMHBwerXr5/Onj1b5IVTAAAAAACAssxksVgsJZ0EUJ58ULm/IXFclGtInByDhsc7KSf/RncoU8ZMrbeXMZfdLIN+NkYdz9fOjobEuS8jy5A4gBHTi4z5SyDtdDXmepOQc9GQOB999aohcYyyocG0kk6hyDx+Ybchcf7XvI4hcT797h5D4jT2+tWQOA/8N++HPxal7Nzi/0woSUcDjXkPDLiSaUicsbkBhsTpeuJFQ+IYoSxdOyVp4P/WlXQKhtheuV9Jp3BbOvy8saRTKBGMlAQAAAAAAABgKIqSKLX27t0rs9l80wUAAAAAAAB3Jx50g1IrIiJCCQkJJZ0GAAAAAAAAComiJEotV1dX1a5du6TTAAAAAAAAdwGj7qeNosH0bQAAAAAAAACGoigJAAAAAAAAwFBM3wYAAAAAAECpZ5GppFNAIVCUBID/n1H3H7E3KA4AAAAAAHcrpm8DAAAAAAAAMBRFSQAAAAAAAACGYvo2AAAAAAAASr1cbilZqjBSEgAAAAAAAIChKEoCAAAAAAAAMBRFSQAAAAAAAACG4p6SAAAAAAAAKPVyxU0lSxNGSgJ5iI2Nlbe3d0mnAQAAAAAAUCZRlCzDMjMzSzqFG2RlZd2w7nbzvJ397sZzAgAAAAAAUN5QlCyF3nnnHYWFhcnV1VW+vr6KiopSenq6Bg8erG7dumnOnDkKCAhQSEiIXnjhBTVt2vSGPho0aKBZs2blGys+Pl5NmjSRu7u7vL29FRkZqbNnz1q3v/vuu2rUqJFcXFxUs2ZNzZw5U9nZ2dbtJpNJr776qh599FG5u7trzpw5mjFjhho2bKhVq1apRo0acnFxkSSlpKSoa9euMpvN8vT0VJ8+ffTzzz9b+7rZfrfSunVrjRw5UqNHj1bFihXVvn17SdK//vUvhYWFyd3dXdWqVdOIESOUlpZmPeYhQ4boypUrMplMMplMmjFjhiQpIyND48aN0z333CN3d3c1bdpU8fHx+eYBAAAAAACKl6WULuUV95QsZVJTU9W/f38tWLBA3bt31++//669e/fKYrn+Nt61a5c8PT21Y8cO6z7z5s1TcnKyatWqJUn65ptvdPz4cW3evPmWsbKzs9WtWzcNGzZMGzZsUGZmpr788kuZTNfv0bB3714NHDhQL7/8slq0aKHk5GQNHz5ckjR9+nRrPzNmzNBLL72kxYsXy8HBQW+++aa+//57bd68WVu2bJG9vb1yc3OtBcnPPvtM2dnZeuaZZ9S3b1+bot/f9yuINWvW6Omnn9a+ffus6+zs7PTyyy+rRo0a+uGHHzRixAhNmDBBy5cvV/PmzbV48WJNmzZNSUlJkiSz2SxJGjlypE6ePKmNGzcqICBAW7duVYcOHXTixAnVqVOnQPkAAAAAAACUdxQlS5nU1FRlZ2erR48eCgwMlCSFhYVZt7u7u2vVqlVycnKyrmvQoIHWr1+vqVOnSpLi4uLUtGlT1a5d+5axfvvtN125ckWdO3e2FjRDQ0Ot22fOnKnnn39egwYNkiTVrFlTL774oiZMmGBTlHzsscc0ZMgQm74zMzO1du1a+fn5SZJ27NihEydO6PTp06pWrZokae3atapXr54OHTqk+++/P8/9CqJOnTpasGCBzbrRo0db/x0UFKTZs2frqaee0vLly+Xk5CQvLy+ZTCb5+/tb26WkpGj16tVKSUlRQECAJGncuHHavn27Vq9erblz594QOyMjQxkZGTbrsiw5cjQVrKAKAAAAAABQFjF9u5Rp0KCB2rZtq7CwMPXu3VsrV67UpUuXrNvDwsJsCpKSFB0drfXr10uSLBaLNmzYoOjo6Hxj+fj4aPDgwWrfvr26dOmiJUuWKDU11br92LFjmjVrlsxms3UZNmyYUlNTdfXqVWu7iIiIG/oODAy0KSwmJiaqWrVq1oKkJNWtW1fe3t5KTEy86X4F0bhx4xvW7dy5U23bttU999wjDw8PDRgwQL/++qtN3n934sQJ5eTkKDg42OaYP/vsMyUnJ+e5z7x58+Tl5WWz/Dv9ZKHyBwAAAAAAKGsoSpYy9vb22rFjhz766CPVrVtXS5cuVUhIiE6fPi3p+kjJv+vfv7+SkpJ09OhR7d+/X+fOnVPfvn0LFG/16tU6cOCAmjdvrk2bNik4OFhffPGFJCktLU0zZ85UQkKCdTlx4oROnTplc7/HvHLKa11B3M5+f9/nzJkz6ty5s+rXr6/NmzfryJEjeuWVVyTd+kE4aWlpsre315EjR2yOOTExUUuWLMlzn0mTJunKlSs2Sx/3uoU+BgAAAAAAcGu5pXQpr5i+XQqZTCZFRkYqMjJS06ZNU2BgoLZu3XrT9lWrVlWrVq0UFxenP/74Q+3atVOlSpUKHC88PFzh4eGaNGmSmjVrpvXr1+uBBx5Qo0aNlJSUlO808IIIDQ3VuXPndO7cOetoyZMnT+ry5cuqW7doi3hHjhxRbm6uYmJiZGd3vS7/73//26aNk5OTcnJybNaFh4crJydH58+fV4sWLQoUy9nZWc7OzjbrmLoNAAAAAADKO4qSpczBgwe1a9cuPfzww6pUqZIOHjyoCxcuKDQ0VMePH7/pftHR0Zo+fboyMzO1aNGiAsU6ffq0Xn/9dT366KMKCAhQUlKSTp06pYEDB0qSpk2bps6dO6t69erq1auX7OzsdOzYMX399deaPXt2oY4rKipKYWFhio6O1uLFi5Wdna0RI0aoVatWeU7/vhO1a9dWVlaWli5dqi5dumjfvn167bXXbNoEBQUpLS1Nu3btUoMGDeTm5qbg4GBFR0dr4MCBiomJUXh4uC5cuKBdu3apfv36euSRR4o0TwAAAAAAgLKK6duljKenp/bs2aNOnTopODhYU6ZMUUxMjDp27HjL/Xr16mW9Z2K3bt0KFMvNzU3ffvutevbsqeDgYA0fPlzPPPOMnnzySUlS+/bt9f777+uTTz7R/fffrwceeECLFi2yPoCnMEwmk959911VqFBBLVu2VFRUlGrWrKlNmzYVuq/8NGjQQP/61780f/583XfffYqLi9O8efNs2jRv3lxPPfWU+vbtKz8/P+uDclavXq2BAwdq7NixCgkJUbdu3XTo0CFVr169yPMEAAAAAAAFl2sylcqlvDJZLBZLSScBlCcfVO5vSBwXg+5MkSNjLqBOysm/0R26JmOm1jvKmMtulkE/G3uDjudrZ0dD4tyXkWVIHMBiwO+oUfco2ulqzPUmIeeiIXE++upVQ+IYZUODaSWdQpF5/MJuQ+L8r3kdQ+J8+t09hsRp7PWrIXEe+G/eD38sStm5xf+ZUJKOBhrzHhhw5eb3tC9KY3MDDInT9cSLhsQxQlm6dkrSwP+tK+kUDPFOlfwf6ns36pUaV9IplAhGSgIAAAAAAAAwFEXJcs5sNt902bt3b0mnd0spKSm3zD8lJaWkUwQAAAAAAEAeeNBNOZeQkHDTbffcY8x0ktsVEBBwy/wDAoyZogAAAAAAAEoe9ycsXShKlnO1a9cu6RRum4ODQ6nOHwAAAAAAoLxi+jYAAAAAAAAAQ1GUBAAAAAAAAGAopm8DAAAAAACg1Mst6QRQKBQlAYO5KseQOBaZDIljMuhWwjkGDOwua0PH7Q362TibjPnTXynbkDCGvA+M+rBU1t7TZe1DphHXT/tij3Cdf64xHynvt/c1JM6GBtMMiWOU/sdmlXQKReZIxAuGxMnJ/NmQOPfkZhoS56vLxvzuDPD1LvYYRl3XnN0vGBKn3VVjHs55n9MlQ+KUpetn/6+mGxPIUtY+4QAFV9b+fwUAAAAAAADAXY6RkgAAAAAAACj1co2ZMIgiwkhJAAAAAAAAAIaiKAkAAAAAAADAUBQlAQAAAAAAABiKe0oCAAAAAACg1MsVN5UsTRgpCfzNmTNnZDKZlJCQUNKpAAAAAAAAlEkUJXFbMjMzi2Qfi8Wi7OzsQvd1O/vdTs4AAAAAAAAoehQlUSCtW7fWyJEjNXr0aFWsWFHt27fX119/rY4dO8psNqty5coaMGCAfvnll1vuEx8fL5PJpI8++kiNGzeWs7OzPv/8c2VkZGjUqFGqVKmSXFxc9OCDD+rQoUPWvm62363MmDFDDRs21KpVq1SjRg25uLhIkrZv364HH3xQ3t7e8vX1VefOnZWcnGzdr0aNGpKk8PBwmUwmtW7d2rpt1apVCg0NlYuLi+69914tX768KE4vAAAAAABAuUJREgW2Zs0aOTk5ad++fXrppZfUpk0bhYeH6/Dhw9q+fbt+/vln9enT56b7vPbaa9b1zz//vF566SUlJiaqfv36mjBhgjZv3qw1a9bo6NGjql27ttq3b6+LFy/a9Pf3/fLz/fffa/PmzdqyZYt1OnZ6errGjBmjw4cPa9euXbKzs1P37t2Vm5srSfryyy8lSTt37lRqaqq2bNkiSYqLi9O0adM0Z84cJSYmau7cuZo6darWrFlz2+cUAAAAAAAUDUspXcorHnSDAqtTp44WLFggSZo9e7bCw8M1d+5c6/Y333xT1apV03fffafg4OAb9pGk1NRUSdKsWbPUrl07SdeLhK+++qpiY2PVsWNHSdLKlSu1Y8cOvfHGGxo/frx1/7/uVxCZmZlau3at/Pz8rOt69uxp0+bNN9+Un5+fTp48qfvuu8/a1tfXV/7+/tZ206dPV0xMjHr06CHp+ojKkydPasWKFRo0aFCBcwIAAAAAACjvKEqiwBo3bmz997Fjx7R7926ZzeYb2iUnJ1uLkn/d568iIiJs2mdlZSkyMtK6ztHRUU2aNFFiYuJN9yuIwMBAm4KkJJ06dUrTpk3TwYMH9csvv1hHSKakpOi+++7Ls5/09HQlJydr6NChGjZsmHV9dna2vLy8bho/IyNDGRkZNusyLTlyMtkX6jgAAAAAAADKEoqSKDB3d3frv9PS0tSlSxfNnz//hnZVqlTJc5+b9XW7Odxu+y5duigwMFArV65UQECAcnNzdd99993yQThpaWmSro/gbNq0qc02e/ubFxjnzZunmTNn2qwb6FZXg8z1CnMYAAAAAAAgH7mmks4AhUFRErelUaNG2rx5s4KCguTgcGdvo1q1alnvOxkYGChJysrK0qFDhzR69OgiyPb//Prrr0pKStLKlSvVokULSbrhgTlOTk6SpJycHOu6ypUrKyAgQD/88IOio6MLHG/SpEkaM2aMzbr9tYfcbvoAAAAAAABlAkVJ3JZnnnlGK1euVP/+/TVhwgT5+Pjo+++/18aNG7Vq1apbjh78O3d3dz399NMaP368fHx8VL16dS1YsEBXr17V0KFDizTvChUqyNfXV6+//rqqVKmilJQUPf/88zZtKlWqJFdXV23fvl1Vq1aVi4uLvLy8NHPmTI0aNUpeXl7q0KGDMjIydPjwYV26dOmGwuOfnJ2d5ezsbLOOqdsAAAAAAKC84+nbuC0BAQHat2+fcnJy9PDDDyssLEyjR4+Wt7e37OwK/7Z66aWX1LNnTw0YMECNGjXS999/r48//lgVKlQo0rzt7Oy0ceNGHTlyRPfdd5+ee+45/fOf/7Rp4+DgoJdfflkrVqxQQECAunbtKkl64okntGrVKq1evVphYWFq1aqVYmNjVaNGjSLNEQAAAAAAoKwzWSyW8vz0ccBwn1buY0gci4y5mUauIVGM+QYlx6BzZi9jLrtG/WycTcZEOmfnnH+jIuCfk1XsMcrS742RjDpvKLxjzo6GxPnVzph3QWhW2frt6X9sVkmnUGTGRbxgSJyJAT8bEuf7HyoaEifV5GRInP3OOfk3ukNGzTl6zu+CIXFWXvA3JM5jTpcMifNluo8hcYzQ/6vpxgSyGPO3zbFyiCFxSlrsPf+vpFO4LYP/t66kUygRZesTFwAAAAAAAIC7HkVJlFr16tWT2WzOc4mLiyvp9AAAAAAAAHATPOgGpdaHH36orKy8p1lWrlzZ4GwAAAAAAEBJ4v6EpQtFSZRagYGBJZ0CAAAAAAAAbgPTtwEAAAAAAAAYiqIkAAAAAAAAAEMxfRsAAAAAAAClXq6ppDNAYTBSEgAAAAAAAIChGCkJACgV7HiWHlBoFjFcALibmcrY3zZGvNy9LGXrrWYMS64xcUz85qD84t0PAAAAAAAAwFCMlAQAAAAAAECpZ9D4VhQRRkoCAAAAAAAAMBRFSQAAAAAAAACGYvo2AAAAAAAASj2mb5cujJQEAAAAAAAAYCiKkkAeTCaTtm3bVtJpAAAAAAAAlEkUJcu4zMzMu6bPm+2XlZV1W/0Vdr+cnBzl5jKYGwAAAAAAoKRRlCyl3nnnHYWFhcnV1VW+vr6KiopSenq6Bg8erG7dumnOnDkKCAhQSEiIXnjhBTVt2vSGPho0aKBZs2blGyuvPiXp3Llz6tOnj7y9veXj46OuXbvqzJkzt9zvzJkzMplM2rRpk1q1aiUXFxfFxcUpNzdXs2bNUtWqVeXs7KyGDRtq+/bt1r5utt+txMbGytvbW//5z39Ut25dOTs7KyUlRYcOHVK7du1UsWJFeXl5qVWrVjp69Kh1v6CgIElS9+7dZTKZrK8l6d1331WjRo3k4uKimjVraubMmcrOzs73HAIAAAAAgOJlMZXOpbziQTelUGpqqvr3768FCxaoe/fu+v3337V3715ZLBZJ0q5du+Tp6akdO3ZY95k3b56Sk5NVq1YtSdI333yj48ePa/PmzQWK+fc+s7Ky1L59ezVr1kx79+6Vg4ODZs+erQ4dOuj48eNycnK6aS6S9PzzzysmJkbh4eFycXHRkiVLFBMToxUrVig8PFxvvvmmHn30UX3zzTeqU6fOTffLz9WrVzV//nytWrVKvr6+qlSpkn744QcNGjRIS5culcViUUxMjDp16qRTp07Jw8NDhw4dUqVKlbR69Wp16NBB9vb2kqS9e/dq4MCBevnll9WiRQslJydr+PDhkqTp06cX6DwCAAAAAACAomSplJqaquzsbPXo0UOBgYGSpLCwMOt2d3d3rVq1yloYlK6Pily/fr2mTp0qSYqLi1PTpk1Vu3btAsX8e5/r1q1Tbm6uVq1aJZPpell/9erV8vb2Vnx8vB5++OE89/tzJOXo0aPVo0cPa/8LFy7UxIkT1a9fP0nS/PnztXv3bi1evFivvPKKtd3f98tPVlaWli9frgYNGljXtWnTxqbN66+/Lm9vb3322Wfq3Lmz/Pz8JEne3t7y9/e3tps5c6aef/55DRo0SJJUs2ZNvfjii5owYcJNi5IZGRnKyMiwWZdpyZGTyb7AxwAAAAAAAFDWMH27FGrQoIHatm2rsLAw9e7dWytXrtSlS5es28PCwmwKkpIUHR2t9evXS5IsFos2bNig6OjoAsf8e5/Hjh3T999/Lw8PD5nNZpnNZvn4+OjatWtKTk6+ZS6SFBERYf33b7/9ph9//FGRkZE2bSIjI5WYmHjT/QrCyclJ9evXt1n3888/a9iwYapTp468vLzk6emptLQ0paSk3LKvY8eOadasWdbjNZvNGjZsmFJTU3X16tU895k3b568vLxslg3p3xbqGAAAAAAAQP5yS+lSXjFSshSyt7fXjh07tH//fn3yySdaunSpJk+erIMHD0q6Pjrx7/r376+JEyfq6NGj+uOPP3Tu3Dn17du3wDH/3mdaWpoaN26c530d/xxpeLNcbrW+sHnkx9XV1TqS80+DBg3Sr7/+qiVLligwMFDOzs5q1qxZvg/wSUtL08yZM/McqXmzqeSTJk3SmDFjbNbtrz2kUMcAAAAAAABQ1lCULKVMJpMiIyMVGRmpadOmKTAwUFu3br1p+6pVq6pVq1aKi4vTH3/8oXbt2qlSpUq3Hb9Ro0batGmTKlWqJE9Pz9vuR5I8PT0VEBCgffv2qVWrVtb1+/btU5MmTe6o77zs27dPy5cvV6dOnSRdf2DPL7/8YtPG0dFROTk5NusaNWqkpKSkAk95lyRnZ2c5OzvbrGPqNgAAAAAAKO+Yvl0KHTx4UHPnztXhw4eVkpKiLVu26MKFCwoNDb3lftHR0dq4caPefvvtQk3dvllfFStWVNeuXbV3716dPn1a8fHxGjVqlP773/8Wur/x48dr/vz52rRpk5KSkvT8888rISFBzz777B3lmZc6derorbfeUmJiog4ePKjo6Gi5urratAkKCtKuXbv0008/WafGT5s2TWvXrtXMmTP1zTffKDExURs3btSUKVOKPEcAAAAAAICyjKJkKeTp6ak9e/aoU6dOCg4O1pQpUxQTE6OOHTvecr9evXrp119/1dWrV9WtW7c7ysHNzU179uxR9erV1aNHD4WGhmro0KG6du3abY2cHDVqlMaMGaOxY8cqLCxM27dv13/+8x+bJ28XlTfeeEOXLl1So0aNNGDAAI0aNeqGUaMxMTHasWOHqlWrpvDwcElS+/bt9f777+uTTz7R/fffrwceeECLFi2yPmwIAAAAAACUnJK+NyT3lCwck8VisZR0EkB58mnlPobEsciUf6MiYNQF1IhvUHIMOmf2Muaya9TPxtlkTKT/2d340KziUCknu9hjlKXfGyOV5w9st8uovwXHnY25I9Cvdsa8C0KzytZvT/9js0o6hSIzLuIFQ+JMDPjZkDjJP/gaEudHk3P+jYrAF845+Te6Q8Zc1aTn/C4YEmflBX9D4vR3vJR/oyJw6KqPIXGM0P/oVGMCmYz5m+NYqegH/NyNllX7fyWdwm0ZeW5dSadQIsrWJy4AAAAAAAAAdz2KkpDZbL7psnfv3pJO76Y6dux407znzp1b0ukBAAAAAADgJnj6NpSQkHDTbffcc49xiRTSqlWr9Mcff+S5zcen7EwbAAAAAAAA+eP+hKULRUmodu3aJZ3CbbmbC6YAAAAAAAC4OaZvAwAAAAAAADAUIyUBAAAAAABQ6uWaSjoDFAYjJQEAAAAAAAAYipGSgMEcTMbcejfDYsxXRI7KNSROjgHfoTgpp9hjSMYciyQ5m4z52WRZjDmeFtVSDYmTdMav2GPwjeDtKWvnzd6g66cRnoj82ZA4zm3DDYnjMWKTIXGMciTihZJOocgsPDzXkDiDGo81JM7zLhmGxEnIcTEkzkvbny72GCYn12KPIUmz2ywxJM6kOTUNiZP4/HFD4jx+YbchcYxwpGl2SadQpJac2VjSKQA3KGuf7wEAAAAAAADc5RgpCQAAAAAAgFKv7MxDKR8YKQkAAAAAAADAUBQlAQAAAAAAABiK6dsAAAAAAAAo9Zi+XbowUhIAAAAAAACAoShKAgAAAAAAADAURUkgDzNmzFDDhg1LOg0AAAAAAIAyiXtK4q6VmZkpJyenu75PAAAAAABQ8iwlnQAKhZGSpdw777yjsLAwubq6ytfXV1FRUUpPT9ehQ4fUrl07VaxYUV5eXmrVqpWOHj1qs6/JZNKKFSvUuXNnubm5KTQ0VAcOHND333+v1q1by93dXc2bN1dycrLNfu+++64aNWokFxcX1axZUzNnzlR2dna+uVosFs2YMUPVq1eXs7OzAgICNGrUKOv2oKAgvfjiixo4cKA8PT01fPhwNW/eXBMnTrTp58KFC3J0dNSePXvyjZlXn5I0ceJEBQcHy83NTTVr1tTUqVOVlZUlSYqNjdXMmTN17NgxmUwmmUwmxcbGSpIuX76sJ554Qn5+fvL09FSbNm107NixfPMAAAAAAADA/6EoWYqlpqaqf//+evzxx5WYmKj4+Hj16NFDFotFv//+uwYNGqTPP/9cX3zxherUqaNOnTrp999/t+njz4JdQkKC7r33Xj322GN68sknNWnSJB0+fFgWi0UjR460tt+7d68GDhyoZ599VidPntSKFSsUGxurOXPm5Jvv5s2btWjRIq1YsUKnTp3Stm3bFBYWZtNm4cKFatCggb766itNnTpV0dHR2rhxoyyW//u+Y9OmTQoICFCLFi0KdJ7+3qckeXh4KDY2VidPntSSJUu0cuVKLVq0SJLUt29fjR07VvXq1VNqaqpSU1PVt29fSVLv3r11/vx5ffTRRzpy5IgaNWqktm3b6uLFiwXKBQAAAAAAAEzfLtVSU1OVnZ2tHj16KDAwUJKsRb42bdrYtH399dfl7e2tzz77TJ07d7auHzJkiPr06SPp+ujBZs2aaerUqWrfvr0k6dlnn9WQIUOs7WfOnKnnn39egwYNkiTVrFlTL774oiZMmKDp06ffMt+UlBT5+/srKipKjo6Oql69upo0aWLTpk2bNho7dqz1dZ8+fTR69Gh9/vnn1iLk+vXr1b9/f5lMpgKdp7/3KUlTpkyx/jsoKEjjxo3Txo0bNWHCBLm6uspsNsvBwUH+/v7Wdp9//rm+/PJLnT9/Xs7OzpKuFzy3bdumd955xzoK868yMjKUkZFhsy7TkiMnk32BcgcAAAAAACiLGClZijVo0EBt27ZVWFiYevfurZUrV+rSpUuSpJ9//lnDhg1TnTp15OXlJU9PT6WlpSklJcWmj/r161v/XblyZUmyGb1YuXJlXbt2Tb/99psk6dixY5o1a5bMZrN1GTZsmFJTU3X16tVb5tu7d2/98ccfqlmzpoYNG6atW7feMO07IiLC5rWfn58efvhhxcXFSZJOnz6tAwcOKDo6usDn6e99StdHW0ZGRsrf319ms1lTpky54dz83bFjx5SWliZfX1+b4z99+vQNU9z/NG/ePHl5edkscenfFjh3AAAAAABQMLmm0rmUVxQlSzF7e3vt2LFDH330kerWraulS5cqJCREp0+f1qBBg5SQkKAlS5Zo//79SkhIkK+vrzIzM236cHR0tP77z5GHea3Lzc2VJKWlpWnmzJlKSEiwLidOnNCpU6fk4uJyy3yrVaumpKQkLV++XK6urhoxYoRatmxpvZejJLm7u9+wX3R0tN555x1lZWVp/fr1CgsLu2Ha9638vc8/i5qdOnXS+++/r6+++kqTJ0++4dz8XVpamqpUqWJz7AkJCUpKStL48ePz3GfSpEm6cuWKzRLtfm+BcwcAAAAAACiLmL5dyplMJkVGRioyMlLTpk1TYGCgtm7dqn379mn58uXq1KmTJOncuXP65Zdf7jheo0aNlJSUpNq1a9/W/q6ururSpYu6dOmiZ555Rvfee69OnDihRo0a3XSfrl27avjw4dq+fbvWr1+vgQMH3m76kqT9+/crMDBQkydPtq47e/asTRsnJyfl5OTYrGvUqJF++uknOTg4KCgoqECxnJ2drVO9rX0zdRsAAAAAAJRzFCVLsYMHD2rXrl16+OGHValSJR08eFAXLlxQaGio6tSpo7feeksRERH67bffNH78eLm6ut5xzGnTpqlz586qXr26evXqJTs7Ox07dkxff/21Zs+efct9Y2NjlZOTo6ZNm8rNzU3r1q2Tq6ur9X6YN+Pu7q5u3bpp6tSpSkxMVP/+/e/oGOrUqaOUlBRt3LhR999/vz744ANt3brVpk1QUJBOnz6thIQEVa1aVR4eHoqKilKzZs3UrVs3LViwQMHBwfrxxx/1wQcfqHv37nlOEwcAAAAAAMbILekEUChM3y7FPD09tWfPHnXq1EnBwcGaMmWKYmJi1LFjR73xxhu6dOmSGjVqpAEDBmjUqFGqVKnSHcds37693n//fX3yySe6//779cADD2jRokX5FhYlydvbWytXrlRkZKTq16+vnTt36r333pOvr2+++0ZHR+vYsWNq0aKFqlevfkfH8Oijj+q5557TyJEj1bBhQ+3fv9/6VO4/9ezZUx06dNBDDz0kPz8/bdiwQSaTSR9++KFatmypIUOGKDg4WP369dPZs2et9+MEAAAAAABA/kwWi8VS0kkA5cke/96GxMmwGPOdg6NB30XlGPAdin0ZOhZJcjQZczxZBr3XQoIuGBIn6YyfIXEAo645RmjY5s5vEVMQzm3DDYnjMWKTIXGM8kxAi5JOocgsPDzXkDiDGo81JM7zpuz8GxWBz3K8DIkzfMewYo9hcrrz2V8FMbvNEkPiTJpT05A4ic8fNyROk58PGxLHCGXp2ilJS85sLOkUDPFS4P8r6RRuy/Nn15V0CiWCkZIAAAAAAAAADEVREkUmLi5OZrM5z6VevXpFHm/v3r03jWc2m4s8HgAAAAAAuHtZSulSXvGgGxSZRx99VE2bNs1zm6OjY5HHi4iIUEJCQpH3CwAAAAAAgOJFURJFxsPDQx4eHobFc3V1Ve3atQ2LBwAAAAAAgKJBURIAAAAAAAClXm65ngxd+nBPSQAAAAAAAACGoigJAAAAAAAAwFBM3wYM5mSXY0ic7ByTIXGyDPpuw4goZelYJCnDUraO54uUKobEqaBsQ+IARlxzjPr9XPf5PYbEOXcg1ZA4/2tex5A4RsnJ/LmkUygygxqPNSTOmiMxhsTZVe8FQ+I0sb9qSJyh7ZcUewyjpmauHG7MvfLnTf7BkDgPZLoaEqcsXT+zM84bEsdkYroxyi+KkgAAAAAAACj1cks6ARQK07cBAAAAAACAMujixYuKjo6Wp6envL29NXToUKWlpd2y/T/+8Q+FhITI1dVV1atX16hRo3TlyhWbdiaT6YZl48aNhcqNkZIAAAAAAABAGRQdHa3U1FTt2LFDWVlZGjJkiIYPH67169fn2f7HH3/Ujz/+qIULF6pu3bo6e/asnnrqKf3444965513bNquXr1aHTp0sL729vYuVG4UJQEAAAAAAIASkpGRoYyMDJt1zs7OcnZ2vqN+ExMTtX37dh06dEgRERGSpKVLl6pTp05auHChAgICbtjnvvvu0+bNm62va9WqpTlz5uj//b//p+zsbDk4/F8p0dvbW/7+/redH9O3AQAAAAAAUOpZSukyb948eXl52Szz5s274/Nx4MABeXt7WwuSkhQVFSU7OzsdPHiwwP1cuXJFnp6eNgVJSXrmmWdUsWJFNWnSRG+++aYslsI9uImiJGy0bt1ao0ePliQFBQVp8eLF1m0//fST2rVrJ3d3d+uQ3LzWAQAAAAAAoGAmTZqkK1eu2CyTJk26435/+uknVapUyWadg4ODfHx89NNPPxWoj19++UUvvviihg8fbrN+1qxZ+ve//60dO3aoZ8+eGjFihJYuXVqo/Ji+jZs6dOiQ3N3dra8XLVqk1NRUJSQkyMvL66bryoIZM2Zo27ZtSkhIKOlUAAAAAABAGVbYqdrPP/+85s+ff8s2iYmJd5qWfvvtNz3yyCOqW7euZsyYYbNt6tSp1n+Hh4crPT1d//znPzVq1KgC909REjfl5+dn8zo5OVmNGzdWnTp1brmuqGRmZsrJyemu7xMAAAAAAJS83JJOwCBjx47V4MGDb9mmZs2a8vf31/nz523WZ2dn6+LFi/neC/L3339Xhw4d5OHhoa1bt8rR0fGW7Zs2baoXX3xRGRkZBS6wMn27HEtPT9fAgQNlNptVpUoVxcTE2Gz/6/TtoKAgbd68WWvXrpXJZNLgwYPzXHcrFotFM2bMUPXq1eXs7KyAgACbCnpQUJBefPFFDRw4UJ6enho+fLiaN2+uiRMn2vRz4cIFOTo6as+ePfkeY159StLEiRMVHBwsNzc31axZU1OnTlVWVpYkKTY2VjNnztSxY8esj7WPjY2VJF2+fFlPPPGE/Pz85OnpqTZt2ujYsWP55gEAAAAAAFAU/Pz8dO+9995ycXJyUrNmzXT58mUdOXLEuu+nn36q3NxcNW3a9Kb9//bbb3r44Yfl5OSk//znP3Jxcck3p4SEBFWoUKFQIz4ZKVmOjR8/Xp999pneffddVapUSS+88IKOHj2qhg0b3tD20KFD1sLekiVL5OrqqszMzBvW3crmzZu1aNEibdy4UfXq1dNPP/10Q0Fv4cKFmjZtmqZPny5J2r59uxYsWKCXXnpJJpNJkrRp0yYFBASoRYsWBTrOv/cpSR4eHoqNjVVAQIBOnDihYcOGycPDQxMmTFDfvn319ddfa/v27dq5c6ckWaem9+7dW66urvroo4/k5eWlFStWqG3btvruu+/k4+NToHwAAAAAAACKW2hoqDp06KBhw4bptddeU1ZWlkaOHKl+/fpZn7z9v//9T23bttXatWvVpEkTa0Hy6tWrWrdunX777Tf99ttvkq4XQ+3t7fXee+/p559/1gMPPCAXFxft2LFDc+fO1bhx4wqVH0XJciotLU1vvPGG1q1bp7Zt20qS1qxZo6pVq+bZ3s/PT87OznJ1dbUZ4pvXuptJSUmRv7+/oqKi5OjoqOrVq6tJkyY2bdq0aaOxY8daX/fp00ejR4/W559/bi1Crl+/Xv3797cWKfPz9z4lacqUKdZ/BwUFady4cdq4caMmTJggV1dXmc1mOTg42BzX559/ri+//FLnz5+3Vv4XLlyobdu26Z133rnhpq8AAAAAAAAlKS4uTiNHjlTbtm1lZ2ennj176uWXX7Zuz8rKUlJSkq5evSpJOnr0qPXJ3LVr17bp6/Tp0woKCpKjo6NeeeUVPffcc7JYLKpdu7b+9a9/adiwYYXKjaJkOZWcnKzMzEyb4bo+Pj4KCQkptpi9e/fW4sWLVbNmTXXo0EGdOnVSly5dbB4p/9fH1EvXi6EPP/yw4uLi1KJFC50+fVoHDhzQihUrChz3731K10dbvvzyy0pOTlZaWpqys7Pl6el5y36OHTumtLQ0+fr62qz/448/lJycnOc+GRkZysjIsFmXacmRk8m+wPkDAAAAAID85RZs7FK54uPjo/Xr1990e1BQkCwWi/V169atbV7npUOHDurQocMd58Y9JWGYatWqKSkpScuXL5erq6tGjBihli1bWu/lKMnmad9/io6O1jvvvKOsrCytX79eYWFhCgsLK3Dcv/d54MABRUdHq1OnTnr//ff11VdfafLkycrMzLxlP2lpaapSpYoSEhJslqSkJI0fPz7PfebNmycvLy+bZW3adwXOHQAAAAAAoCyiKFlO1apVS46OjtYhuZJ06dIlffdd8RbMXF1d1aVLF7388suKj4/XgQMHdOLEiVvu07VrV127dk3bt2/X+vXrFR0dfUc57N+/X4GBgZo8ebIiIiJUp04dnT171qaNk5OTcnJybNY1atRIP/30kxwcHFS7dm2bpWLFinnGmjRpkq5cuWKzDDQH31H+AAAAAAAApR3Tt8sps9msoUOHavz48fL19VWlSpU0efJk2dkVX506NjZWOTk5atq0qdzc3LRu3Tq5uroqMDDwlvu5u7urW7dumjp1qhITE9W/f/87yqNOnTpKSUnRxo0bdf/99+uDDz7Q1q1bbdoEBQXp9OnTSkhIUNWqVeXh4aGoqCg1a9ZM3bp104IFCxQcHKwff/xRH3zwgbp3757nNHFnZ+cbnjzF1G0AAAAAAFDeMVKyHPvnP/+pFi1aqEuXLoqKitKDDz6oxo0bF1s8b29vrVy5UpGRkapfv7527typ995774Z7NOYlOjpax44dU4sWLVS9evU7yuPRRx/Vc889p5EjR6phw4bav3+/pk6datOmZ8+e6tChgx566CH5+flpw4YNMplM+vDDD9WyZUsNGTJEwcHB6tevn86ePavKlSvfUU4AAAAAAODO5MpSKpfyymTJ7+6VAIrUFwE9DIlzNceYgdA5MuZOwkZ8g5JrQAzJuG+DytrxXLIz5j1dITfbkDiAEb+jRv1+Jjo5GhLnnH1O/o2KwJigVEPiGCUns+zc9X/c/7wNibPmSIwhcXbVe8GQOBXsb33v9KKy1IBLgVH/875yuIchceavNOa69sAfxsRpHPqTIXGMkJ1hzF9Rk8mY93TA/t2GxClpU4IeK+kUbsvsMzd/EE1ZxkhJAAAAAAAAAIaiKIkiExcXJ7PZnOdSr169Io+3d+/em8Yzm81FHg8AAAAAANy9LKV0Ka940A2KzKOPPqqmTZvmuc3RsejnckRERCghIaHI+wUAAAAAAEDxoiiJIuPh4SEPD2PuvSJJrq6uql27tmHxAAAAAAAAUDSYvg0AAAAAAADAUIyUBAAAAAAAQKmXW9IJoFAYKQkAAAAAAADAUBQlAQAAAAAAABiK6duAwX7LcTIkjr0sZSqOs6n4B+Jfs9gXewwjGfWtk1FTJNo2/58hcY5+XtmQOCg8k0HXG4tMhsQx4rqWYTHmSvCDfbYhcXwNuk5/+t09hsQxyj25mcUew6jfz+ddMgyJs6veC4bEafvNXEPiPB0xwZA4Q/4o/t9RVztjrjf7Xzbmvebr7GhInMZ1Uw2J82lSVUPiGMGIa6eRAko6AYPkGvT3CEWDkZIAAAAAAAAADEVREgAAAAAAAIChKEoCAAAAAAAAMBT3lAQAAAAAAECpxx0lSxdGSgIAAAAAAAAwFEXJcmLw4MHq1q2b9XXr1q01evRo6+urV6+qZ8+e8vT0lMlk0uXLl/NcdytBQUFavHhxseQPAAAAAACAsoPp2+XUli1b5OjoaH29Zs0a7d27V/v371fFihXl5eWl11577YZ1JWnGjBnatm2bEhISij3W4MGDdfnyZW3btq3YYwEAAAAAAJQ3FCXvMpmZmXJycir2OD4+Pjavk5OTFRoaqvvuu++W60q7rKwsm2IsAAAAAAAoG3JLOgEUCtO3DfLOO+8oLCxMrq6u8vX1VVRUlNLT063TqufMmaOAgACFhITohRdeUNOmTW/oo0GDBpo1a1a+sXJycjRmzBh5e3vL19dXEyZMkMVie7vXv07fbt26tWJiYrRnzx6ZTCa1bt06z3UFcfXqVT3++OPy8PBQ9erV9frrr9tsP3HihNq0aWM9D8OHD1daWpp1e3x8vJo0aSJ3d3d5e3srMjJSZ8+eVWxsrGbOnKljx47JZDLJZDIpNjY233xMJpNeffVVPfroo3J3d9ecOXOUk5OjoUOHqkaNGnJ1dVVISIiWLFli3WfGjBlas2aN3n33XWus+Ph4SdK5c+fUp08feXt7y8fHR127dtWZM2cKdG4AAAAAAABwHUVJA6Smpqp///56/PHHlZiYqPj4ePXo0cNaKNy1a5eSkpK0Y8cOvf/++4qOjtaXX36p5ORkax/ffPONjh8/rsceeyzfeDExMYqNjdWbb76pzz//XBcvXtTWrVtv2n7Lli0aNmyYmjVrptTUVG3ZsiXPdQURExOjiIgIffXVVxoxYoSefvppJSUlSZLS09PVvn17VahQQYcOHdLbb7+tnTt3auTIkZKk7OxsdevWTa1atdLx48d14MABDR8+XCaTSX379tXYsWNVr149paamKjU1VX379i1QTjNmzFD37t114sQJPf7448rNzVXVqlX19ttv6+TJk5o2bZpeeOEF/fvf/5YkjRs3Tn369FGHDh2ssZo3b66srCy1b99eHh4e2rt3r/bt2yez2awOHTooMzOzQLkAAAAAAACA6duGSE1NVXZ2tnr06KHAwEBJUlhYmHW7u7u7Vq1aZTNtu0GDBlq/fr2mTp0qSYqLi1PTpk1Vu3btfOMtXrxYkyZNUo8ePSRJr732mj7++OObtvfx8ZGbm5ucnJzk7+9vXZ/Xuvx06tRJI0aMkCRNnDhRixYt0u7duxUSEqL169fr2rVrWrt2rdzd3SVJy5YtU5cuXTR//nw5OjrqypUr6ty5s2rVqiVJCg0NtfZtNpvl4OBQqHwk6bHHHtOQIUNs1s2cOdP67xo1aujAgQP697//rT59+shsNsvV1VUZGRk2sdatW6fc3FytWrVKJpNJkrR69Wp5e3srPj5eDz/88A2xMzIylJGRYbMu05IjJ5N9oY4BAAAAAADcWq4s+TfCXYORkgZo0KCB2rZtq7CwMPXu3VsrV67UpUuXrNvDwsJuuI9kdHS01q9fL0myWCzasGGDoqOj84115coVpaam2kz/dnBwUERERBEdza3Vr1/f+m+TySR/f3+dP39ekpSYmKgGDRpYC5KSFBkZqdzcXCUlJcnHx0eDBw9W+/bt1aVLFy1ZskSpqal3nFNex/7KK6+ocePG8vPzk9ls1uuvv66UlJRb9nPs2DF9//338vDwkNlsltlslo+Pj65du2YzqvWv5s2bJy8vL5tlU3riHR8TAAAAAABAaUZR0gD29vbasWOHPvroI9WtW1dLly5VSEiITp8+LUk2Rbo/9e/fX0lJSTp69Kj279+vc+fOFXi6ckn6+0NkTCaTcnMLfqvZ1atX68CBA2revLk2bdqk4OBgffHFF3eU09/P78aNGzVu3DgNHTpUn3zyiRISEjRkyJB8p2CnpaWpcePGSkhIsFm+++67m06rnzRpkq5cuWKz9HUPzbMtAAAAAABAecH0bYOYTCZFRkYqMjJS06ZNU2Bg4C3v81i1alW1atVKcXFx+uOPP9SuXTtVqlQp3zheXl6qUqWKDh48qJYtW0q6fq/GI0eOqFGjRkV2PLcjNDRUsbGxSk9PtxYK9+3bJzs7O4WEhFjbhYeHKzw8XJMmTVKzZs20fv16PfDAA3JyclJOTs4d57Fv3z41b97cOs1c0g0jHfOK1ahRI23atEmVKlWSp6dngWI5OzvL2dnZtm+mbgMAAAAAgHKOkZIGOHjwoObOnavDhw8rJSVFW7Zs0YULF2zul5iX6Ohobdy4UW+//XaBpm7/6dlnn9VLL72kbdu26dtvv9WIESN0+fLlOzyKOxcdHS0XFxcNGjRIX3/9tXbv3q1//OMfGjBggCpXrqzTp09r0qRJOnDggM6ePatPPvlEp06dsp6noKAgnT59WgkJCfrll19uuFdjQdWpU0eHDx/Wxx9/rO+++05Tp07VoUOHbNoEBQXp+PHjSkpK0i+//KKsrCxFR0erYsWK6tq1q/bu3avTp08rPj5eo0aN0n//+987Pj8AAAAAAOD2WUrpUl5RlDSAp6en9uzZo06dOik4OFhTpkxRTEyMOnbseMv9evXqpV9//VVXr15Vt27dChxv7NixGjBggAYNGqRmzZrJw8ND3bt3v8OjuHNubm76+OOPdfHiRd1///3q1auX2rZtq2XLllm3f/vtt+rZs6eCg4M1fPhwPfPMM3ryySclST179lSHDh300EMPyc/PTxs2bLitPJ588kn16NFDffv2VdOmTfXrr7/ajJqUpGHDhikkJEQRERHy8/PTvn375Obmpj179qh69erq0aOHQkNDNXToUF27dq3AIycBAAAAAAAgmSwWS3kuygKG+6RyP0Pi2Bv0fYvJoDjOpoLfm/R2XbMwtf52FP9P5rqIB382JM7RzysbEgeFZ9T1xiKTIXEcDbiuZViM+f75I1djzpmvQdfpmlmGhDHMPbm3vm92UTDq99PL5fZmyhTWj3/ceM/34tD2m7mGxHk6YoIhcfr/Ufy/o6522cUeQ5LSc42509lJZ8f8GxWBfrXOGRLn06SqhsQxghHXTiO1/Ontkk7BEM8FGfP/20Vt0ZmNJZ1CieCekgAAAAAAACj1jBowgaLB9O1SyGw233TZu3dvscTcu3fvLeOWhLi4uJvmU69evRLJCQAAAAAAAPljpGQplJCQcNNt99xzT7HEjIiIuGXckvDoo4+qadOmeW5zdDRmGgQAAAAAAAAKj6JkKVS7dm3DY7q6upZI3Fvx8PCQh4dHSacBAAAAAACAQqIoCQAAAAAAgFLPYtCD11A0uKckAAAAAAAAAENRlAQAAAAAAABgKKZvAwZzUK4hcXJkMiTOVZMxl5FrluI/b45lbKh/lkHvAaO02ZdlSJwFBsQw6mdj1HvaYtDx5Jax93SWxb7YYxj1t+DFJ50MiZNz5idD4vy0p2y917667FvSKRSZhBwXQ+I0sb9qSJynIyYYEufVw0b8dZN21Huh2GOk2LkWewxJqmXJMCROdL1zhsQZ/I3ZkDj/8vrVkDhGOHLFmGunXdn6XxCgUChKAgAAAAAAoNQzZggQigrTtwEAAAAAAAAYiqIkAAAAAAAAAEMxfRsAAAAAAAClXm4Ze05AWcdISQAAAAAAAACGoigJAAAAAAAAwFAUJcuI1q1ba/To0UXeb3x8vEwmky5fvlzkfQMAAAAAAKB8oihZzhRX8fJOBAUFafHixSWdRqHdjecSAAAAAIDyylJKl/KKoiQAAAAAAAAAQ1GULIXS09M1cOBAmc1mValSRTExMTbbly9frjp16sjFxUWVK1dWr169JEmDBw/WZ599piVLlshkMslkMunMmTMFinnkyBFFRETIzc1NzZs3V1JSks32V199VbVq1ZKTk5NCQkL01ltvWbdZLBbNmDFD1atXl7OzswICAjRq1ChJ10cbnj17Vs8995w1p4LYt2+fWrduLTc3N1WoUEHt27fXpUuXJEkZGRkaNWqUKlWqJBcXFz344IM6dOiQdd/Y2Fh5e3vb9Ldt2zab2DNmzFDDhg311ltvKSgoSF5eXurXr59+//33Oz6XAAAAAAAA5R1FyVJo/Pjx+uyzz/Tuu+/qk08+UXx8vI4ePSpJOnz4sEaNGqVZs2YpKSlJ27dvV8uWLSVJS5YsUbNmzTRs2DClpqYqNTVV1apVK1DMyZMnKyYmRocPH5aDg4Mef/xx67atW7fq2Wef1dixY/X111/rySef1JAhQ7R7925J0ubNm7Vo0SKtWLFCp06d0rZt2xQWFiZJ2rJli6pWrapZs2ZZc8pPQkKC2rZtq7p16+rAgQP6/PPP1aVLF+Xk5EiSJkyYoM2bN2vNmjU6evSoateurfbt2+vixYsFP8mSkpOTtW3bNr3//vt6//339dlnn+mll16643MJAAAAAACKXq4spXIprxxKOgEUTlpamt544w2tW7dObdu2lSStWbNGVatWlSSlpKTI3d1dnTt3loeHhwIDAxUeHi5J8vLykpOTk9zc3OTv71+ouHPmzFGrVq0kSc8//7weeeQRXbt2TS4uLlq4cKEGDx6sESNGSJLGjBmjL774QgsXLtRDDz2klJQU+fv7KyoqSo6OjqpevbqaNGkiSfLx8ZG9vb08PDwKnNOCBQsUERGh5cuXW9fVq1dP0vVRpK+++qpiY2PVsWNHSdLKlSu1Y8cOvfHGGxo/fnyBjzk3N1exsbHy8PCQJA0YMEC7du3SnDlzCnwuMzIylJGRYbMu05IjJ5N9gfMAAAAAAAAoaxgpWcokJycrMzNTTZs2ta7z8fFRSEiIJKldu3YKDAxUzZo1NWDAAMXFxenq1at3HLd+/frWf1epUkWSdP78eUlSYmKiIiMjbdpHRkYqMTFRktS7d2/98ccfqlmzpoYNG6atW7cqOzv7tnP5c6RkXpKTk5WVlWWTj6Ojo5o0aWLNp6CCgoKsBUnp+nH/ecwFNW/ePHl5edksG9K/LVQfAAAAAAAAZQ1FyTLGw8NDR48e1YYNG1SlShVNmzZNDRo00OXLl++oX0dHR+u//7z3Ym5uboH2rVatmpKSkrR8+XK5urpqxIgRatmypbKysm4rF1dX19va7092dnayWGyHR+eVy1+PWbp+3AU95j9NmjRJV65csVn6u99b+KQBAAAAAADKEIqSpUytWrXk6OiogwcPWtddunRJ3333nfW1g4ODoqKitGDBAh0/flxnzpzRp59+KklycnKy3nuxqISGhmrfvn026/bt26e6detaX7u6uqpLly56+eWXFR8frwMHDujEiRO3lVP9+vW1a9euPLf9+bCdv+aTlZWlQ4cOWfPx8/PT77//rvT0dGubhISEAsf/U0HydnZ2lqenp83C1G0AAAAAAIpebildyivuKVnKmM1mDR06VOPHj5evr68qVaqkyZMny87uen35/fff1w8//KCWLVuqQoUK+vDDD5Wbm2ud3h0UFKSDBw/qzJkzMpvN8vHxse57u8aPH68+ffooPDxcUVFReu+997Rlyxbt3LlT0vWnXefk5Khp06Zyc3PTunXr5OrqqsDAQGtOe/bsUb9+/eTs7KyKFSveMt6kSZMUFhamESNG6KmnnpKTk5N2796t3r17q2LFinr66ac1fvx4+fj4qHr16lqwYIGuXr2qoUOHSpI1jxdeeEGjRo3SwYMHFRsbW+jjLo5zCQAAAAAAUB5QQSmF/vnPf6pFixbq0qWLoqKi9OCDD6px48aSJG9vb23ZskVt2rRRaGioXnvtNW3YsMH6IJhx48bJ3t5edevWlZ+fn1JSUu44n27dumnJkiVauHCh6tWrpxUrVmj16tVq3bq1NaeVK1cqMjJS9evX186dO/Xee+/J19dXkjRr1iydOXNGtWrVkp+fX77xgoOD9cknn+jYsWNq0qSJmjVrpnfffVcODtdr7C+99JJ69uypAQMGqFGjRvr+++/18ccfq0KFCpKu34Nz3bp1+vDDDxUWFqYNGzZoxowZhT7u4jiXAAAAAAAA5YHJ8veb6wEoVp9W7mNInByZDIlz1aDp6I6W4h/U7qiydTnMMug9YJTJpnOGxFlgqVrsMYz62Rj1nrYYdDzleWrL7TLqb0Hr0U6GxMk585MhcX7aU7aun19d9i3pFIrMeQdjfjZNcu78QZEFsdLJmDEirx5eYEicHfVeKPYYPzsYM9mvVk6GIXHqhhfuQZq3a/A3ZkPi/Mu9aG8VVpKOXDHm2mln0P+C9E2NMyZQCRsW1LukU7gtK8+8XdIplAimbwMAAAAAAKDUs5SxgSZlHdO3y7mnnnpKZrM5z+Wpp54qkZw6dux405zmzp1bIjkBAAAAAACg6DBSspybNWuWxo0bl+c2T09Pg7O5btWqVfrjjz/y3Obj42NwNgAAAAAAAChqFCXLuUqVKqlSpUolnYaNe+65p6RTAAAAAAAApQz3IC9dmL4NAAAAAAAAwFAUJQEAAAAAAAAYiqIkAAAAAAAAAENxT0nAYP91cDIkTpXsLEPiuFlyDIljkanYY6Sb7Is9hiS5G3TOckzFf84kydliMSTOW24VDImTml78McraH1+TjHkP2BlwHTCSvQHnLcNk0PfPOcZc1xwfaWdInAfWrzAkjlEG+HoXewyjRjq8tP1pQ+IMbb/EkDhD/jDms8eOei8YEqfdN3OLP0hWRvHHkNT3gYmGxIkb3MaQOCNHJRoS54FLRwyJYwQjrp1G6lvSCRjEYtDnUhQNRkoCAAAAAAAAMBRFSQAAAAAAAACGoigJAAAAAAAAwFBl7bZWAAAAAAAAKIdySzoBFAojJQEAAAAAAAAYiqJkMWndurVGjx5d5P3Gx8fLZDLp8uXLRd43AAAAAAAAYASKkiWsuIqXdyIoKEiLFy8u6TTueoMHD1a3bt1KOg0AAAAAACAp12IplUt5RVEShrJYLMrOzi7pNAAAAAAAAFCCKEoWgfT0dA0cOFBms1lVqlRRTEyMzfbly5erTp06cnFxUeXKldWrVy9J10faffbZZ1qyZIlMJpNMJpPOnDlToJhHjhxRRESE3Nzc1Lx5cyUlJdlsf/XVV1WrVi05OTkpJCREb731lnWbxWLRjBkzVL16dTk7OysgIECjRo2SdH3k5tmzZ/Xcc89Zc8rP2bNn1aVLF1WoUEHu7u6qV6+ePvzwQ0n/N938o48+UuPGjeXs7Kw333xTJpNJ3377rU0/ixYtUq1atQp0/N988406d+4sT09PeXh4qEWLFkpOTpYk5ebmatasWapataqcnZ3VsGFDbd++3bpvXlPgExISbM5/bGysvL299fHHHys0NFRms1kdOnRQamqqJGnGjBlas2aN3n33Xet5io+PL1DuAAAAAAAA5R1FySIwfvx4ffbZZ3r33Xf1ySefKD4+XkePHpUkHT58WKNGjdKsWbOUlJSk7du3q2XLlpKkJUuWqFmzZho2bJhSU1OVmpqqatWqFSjm5MmTFRMTo8OHD8vBwUGPP/64ddvWrVv17LPPauzYsfr666/15JNPasiQIdq9e7ckafPmzVq0aJFWrFihU6dOadu2bQoLC5MkbdmyRVWrVtWsWbOsOeXnmWeeUUZGhvbs2aMTJ05o/vz5MpvNNm2ef/55vfTSS0pMTFSvXr0UERGhuLg4mzZxcXF67LHH8o33v//9Ty1btpSzs7M+/fRTHTlyRI8//rh1BOaSJUsUExOjhQsX6vjx42rfvr0effRRnTp1Kt++/+rq1atauHCh3nrrLe3Zs0cpKSkaN26cJGncuHHq06ePtVCZmpqq5s2bF6p/AAAAAACA8sqhpBMo7dLS0vTGG29o3bp1atu2rSRpzZo1qlq1qiQpJSVF7u7u6ty5szw8PBQYGKjw8HBJkpeXl5ycnOTm5iZ/f/9CxZ0zZ45atWol6XrB75FHHtG1a9fk4uKihQsXavDgwRoxYoQkacyYMfriiy+0cOFCPfTQQ0pJSZG/v7+ioqLk6Oio6tWrq0mTJpIkHx8f2dvby8PDo8A5paSkqGfPntbCZs2aNW9oM2vWLLVr1876Ojo6WsuWLdOLL74oSfruu+905MgRrVu3Lt94r7zyiry8vLRx40Y5OjpKkoKDg63bFy5cqIkTJ6pfv36SpPnz52v37t1avHixXnnllQIdkyRlZWXptddes47eHDlypGbNmiVJMpvNcnV1VUZGRqF/dgAAAAAAoOiV37szlk6MlLxDycnJyszMVNOmTa3rfHx8FBISIklq166dAgMDVbNmTQ0YMEBxcXG6evXqHcetX7++9d9VqlSRJJ0/f16SlJiYqMjISJv2kZGRSkxMlCT17t1bf/zxh2rWrKlhw4Zp69atd3Sfx1GjRmn27NmKjIzU9OnTdfz48RvaRERE2Lzu16+fzpw5oy+++ELS9VGSjRo10r333ptvvISEBLVo0cJakPyr3377TT/++OMtj7+g3NzcbKaTV6lSxXqOCyojI0O//fabzZJlySlUHwAAAAAAAGUNRcli5uHhoaNHj2rDhg2qUqWKpk2bpgYNGtjcz/B2/LUg9+d9H3Nzcwu0b7Vq1ZSUlKTly5fL1dVVI0aMUMuWLZWVlXVbuTzxxBP64YcfNGDAAJ04cUIRERFaunSpTRt3d3eb1/7+/mrTpo3Wr18vSVq/fr2io6MLFM/V1fW28vyTnd31t73lL0+4yuvY/170NJlMNvsUxLx58+Tl5WWzvP/7N7eRNQAAAAAAQNlBUfIO1apVS46Ojjp48KB13aVLl/Tdd99ZXzs4OCgqKkoLFizQ8ePHdebMGX366aeSJCcnJ+XkFO3IudDQUO3bt89m3b59+1S3bl3ra1dXV3Xp0kUvv/yy4uPjdeDAAZ04ceK2c6pWrZqeeuopbdmyRWPHjtXKlSvz3Sc6OlqbNm3SgQMH9MMPP1inW+enfv362rt3b56FRE9PTwUEBNzy+P38/CTJ5n6ZCQkJBYr9VwU5T5MmTdKVK1dsls4e9QodCwAAAAAA3FquLKVyKa+4p+QdMpvNGjp0qMaPHy9fX19VqlRJkydPto7Ge//99/XDDz+oZcuWqlChgj788EPl5uZap3cHBQXp4MGDOnPmjMxms3x8fKz73q7x48erT58+Cg8PV1RUlN577z1t2bJFO3fulHT9ydI5OTlq2rSp3NzctG7dOrm6uiowMNCa0549e9SvXz85OzurYsWKt4w3evRodezYUcHBwbp06ZJ2796t0NDQfPPs0aOHnn76aT399NN66KGHFBAQUKDjGzlypJYuXap+/fpp0qRJ8vLy0hdffKEmTZooJCRE48eP1/Tp01WrVi01bNhQq1evVkJCgvXBOrVr11a1atU0Y8YMzZkzR999990NT0wviKCgIH388cdKSkqSr6+vvLy8bhhd6ezsLGdnZ5t1jib7QscCAAAAAAAoSxgpWQT++c9/qkWLFurSpYuioqL04IMPqnHjxpIkb29vbdmyRW3atFFoaKhee+01bdiwQfXqXR8tN27cONnb26tu3bry8/NTSkrKHefTrVs3LVmyRAsXLlS9evW0YsUKrV69Wq1bt7bmtHLlSkVGRqp+/frauXOn3nvvPfn6+kq6/lCaM2fOqFatWtZRhbeSk5OjZ555RqGhoerQoYOCg4O1fPnyfPfz8PBQly5ddOzYsQJP3ZYkX19fffrpp0pLS1OrVq3UuHFjrVy50loQHDVqlMaMGaOxY8cqLCxM27dv13/+8x/VqVNH0vVp2Rs2bNC3336r+vXra/78+Zo9e3aB4/9p2LBhCgkJUUREhPz8/G4YnQkAAAAAAIC8mSyFvUkegDuy9p7/Z0icKtm3d4/Qu5VFpmKPcdVkzPc07gY97OiaQcfjbNCfkQD3NEPipKa759/oDhnxfpYkUxmbCmLUeTOKvQE/nzSDRudHjTTmemNXv6Ehce6JXmFIHKMM8G1c7DGMGunw0vanDYkztP0SQ+IMuXbjgxuLQ4ZB189238wt/iBZGcUfQ1LfByYaEiduQfH/fkrSZ6MK99DP2/XY1SOGxDGCEddOIy05s7GkUzDEY4HdSzqF27L+7NaSTqFEMH0bAAAAAAAApZ6ljH0pX9Yxffsu89RTT8lsNue5PPXUUyWSU8eOHW+a09y5Rf9t6N14DgAAAAAAAFB0GCl5l5k1a5bGjRuX5zZPT0+Ds7lu1apV+uOPP/Lc5uPjU+Tx7sZzAAAAAAAAgKJDUfIuU6lSJVWqVKmk07Bxzz33GBrvbjwHAAAAAAAAKDoUJQEAAAAAAFDq5ZZ0AigU7ikJAAAAAAAAwFAUJQEAAAAAAAAYiunbAAAAAAAAKPVyZSnpFFAIFCUBg5W1e1zYG3TR509L4dlbjDlrRr0HXFyyDImj9OIPYdQ5K2vXGxNXgkKzM+oa/ftVQ+Io85ohYbJzcwyJYxT7kk6gCJmcXA2JY9T/1LraZRsSJ8XOmPOmrIzij+HoXPwxJFkM+hylXGP+WlewzzQkTmaOMe9pO5Op+GMUewQA/J4BAAAAAAAAMBRFSQAAAAAAAACGYvo2AAAAAAAASj0Lt/spVRgpCQAAAAAAAMBQFCUBAAAAAAAAGKrMFSVbt26t0aNHF3m/8fHxMplMunz5cpH3DQAAAAAAgDuTW0qX8qrMFSULqriKl3ciKChIixcvLuk0IOnMmTMymUxKSEgo6VQAAAAAAADKnHJblMTdLzMzs1T0CQAAAAAAgMIp1UXJ9PR0DRw4UGazWVWqVFFMTIzN9uXLl6tOnTpycXFR5cqV1atXL0nS4MGD9dlnn2nJkiUymUwymUw6c+ZMgWIeOXJEERERcnNzU/PmzZWUlGSz/dVXX1WtWrXk5OSkkJAQvfXWW9ZtFotFM2bMUPXq1eXs7KyAgACNGjVK0vWRm2fPntVzzz1nzSk/Z8+eVZcuXVShQgW5u7urXr16+vDDDyVJOTk5Gjp0qGrUqCFXV1eFhIRoyZIlNvsPHjxY3bp109y5c1W5cmV5e3tr1qxZys7O1vjx4+Xj46OqVatq9erVNvudO3dOffr0kbe3t3x8fNS1a9cCn7/4+Hg1adJE7u7u8vb2VmRkpM6ePStJmjFjhho2bKhVq1apRo0acnFx0euvv66AgADl5toOaO7atasef/zxfOPl1ackbd++XQ8++KC8vb3l6+urzp07Kzk52bpfjRo1JEnh4eEymUxq3bq1dduqVasUGhoqFxcX3XvvvVq+fHmBjh0AAAAAAADXleqi5Pjx4/XZZ5/p3Xff1SeffKL4+HgdPXpUknT48GGNGjVKs2bNUlJSkrZv366WLVtKkpYsWaJmzZpp2LBhSk1NVWpqqqpVq1agmJMnT1ZMTIwOHz4sBwcHm8LY1q1b9eyzz2rs2LH6+uuv9eSTT2rIkCHavXu3JGnz5s1atGiRVqxYoVOnTmnbtm0KCwuTJG3ZskVVq1bVrFmzrDnl55lnnlFGRob27NmjEydOaP78+TKbzZKk3NxcVa1aVW+//bZOnjypadOm6YUXXtC///1vmz4+/fRT/fjjj9qzZ4/+9a9/afr06ercubMqVKiggwcP6qmnntKTTz6p//73v5KkrKwstW/fXh4eHtq7d6/27dsns9msDh065DsKMTs7W926dVOrVq10/PhxHThwQMOHD7cpwH7//ffavHmztmzZooSEBPXu3Vu//vqr9RxK0sWLF7V9+3ZFR0fne47y6lO6XtAeM2aMDh8+rF27dsnOzk7du3e3Fj+//PJLSdLOnTuVmpqqLVu2SJLi4uI0bdo0zZkzR4mJiZo7d66mTp2qNWvWFCgXAAAAAABQPCwWS6lcyiuHkk7gdqWlpemNN97QunXr1LZtW0nSmjVrVLVqVUlSSkqK3N3d1blzZ3l4eCgwMFDh4eGSJC8vLzk5OcnNzU3+/v6Fijtnzhy1atVKkvT888/rkUce0bVr1+Ti4qKFCxdq8ODBGjFihCRpzJgx+uKLL7Rw4UI99NBDSklJkb+/v6KiouTo6Kjq1aurSZMmkiQfHx/Z29vLw8OjwDmlpKSoZ8+e1sJmzZo1rdscHR01c+ZM6+saNWrowIED+ve//60+ffpY1/v4+Ojll1+WnZ2dQkJCtGDBAl29elUvvPCCJGnSpEl66aWX9Pnnn6tfv37atGmTcnNztWrVKmsxcfXq1fL29lZ8fLwefvjhm+b722+/6cqVK+rcubNq1aolSQoNDbVpk5mZqbVr18rPz8+6rmPHjlq/fr315/zOO++oYsWKeuihhwp0nvLqs2fPnjZt3nzzTfn5+enkyZO67777rG19fX1tfh7Tp09XTEyMevToYT2vJ0+e1IoVKzRo0KAbYmdkZCgjI8NmXZYlR44m+wLlDgAAAAAAUBaV2pGSycnJyszMVNOmTa3rfHx8FBISIklq166dAgMDVbNmTQ0YMEBxcXG6evXqHcetX7++9d9VqlSRJJ0/f16SlJiYqMjISJv2kZGRSkxMlCT17t1bf/zxh2rWrKlhw4Zp69atys7Ovu1cRo0apdmzZysyMlLTp0/X8ePHbba/8soraty4sfz8/GQ2m/X6668rJSXFpk29evVkZ/d/b4PKlStbi5ySZG9vL19fX+sxHjt2TN9//708PDxkNptlNpvl4+Oja9eu2Ux/zouPj48GDx6s9u3bq0uXLlqyZMkNI0IDAwNtioeSFB0drc2bN1uLe3FxcerXr59N3reSV5+nTp1S//79VbNmTXl6eiooKEiSbjg/f5Wenq7k5GQNHTrUeuxms1mzZ8++6bHPmzdPXl5eNssHv39ToLwBAPj/2Lv3uBzvx3/gr7vDfXfX3VlHnRRROUVjZI4ZRvgwZoxFszUspzI+5pQzGbHlUFYOOWwTPsxCIyxnFpkWItnWZiMsh8rd9fujX9fXvUqnuyvxenpcj0f3dXq9r+u6u9y97/f7fRERERERvazqbKVkeYyNjXH+/Hls3boVdnZ2mDlzJlq0aIF79+5Va7/6+vriz8UtBf893mFZHB0dkZ6ejsjISCiVSowZMwYdO3ZEQUFBlcrywQcf4Pr16xg+fDhSU1Ph4+ODVatWAQC2bduGkJAQBAYG4sCBA0hJScHIkSNLdLF+9niKj6m0ecXHmJubi9atWyMlJUVjunLlCoYOHVpumWNiYnDixAm0b98e27dvh7u7O06ePCkuNzIyKrGNv78/BEHAd999h1u3buHYsWMV7rr9vH3evXsXUVFROHXqFE6dOgXg+Q/Cyc3NBQBERUVpHPulS5c0juFZ06ZNw/379zWm3sZeFS47EREREREREdHLqM5WSrq5uUFfX1+sTAKAnJwcXLlyRXytp6cHPz8/LFmyBBcvXkRmZiYOHToEAJDL5VCr1Votk4eHB5KTkzXmJScnw9PTU3ytVCrh7++PlStXIikpCSdOnEBqamqVy+To6IigoCDEx8dj8uTJiIqKEnPbt2+PMWPGwNvbGw0bNiy3JWNFtGrVClevXoW1tTUaNmyoMZmamlZoH97e3pg2bRqOHz+Opk2bYsuWLc9d38DAAAMGDEBcXBy2bt2Kxo0bo1WrVlU+hjt37iA9PR2fffYZunXrBg8PD+Tk5GisI5fLAUDjetjY2MDe3h7Xr18vcezFD8b5N4VCARMTE42JXbeJiIiIiIiItK8QQp2cXlV1dkxJlUqFwMBAhIaGwtLSEtbW1pg+fbrYpXfv3r24fv06OnbsCHNzc+zbtw+FhYVi924XFxecOnUKmZmZYhfkinYHLktoaCgGDx4Mb29v+Pn5Yc+ePYiPj0diYiIAIDY2Fmq1Gm3btoWhoSE2b94MpVIJZ2dnsUxHjx7FkCFDoFAoUK9evefmTZgwAb169YK7uztycnJw+PBhcYzGRo0aYePGjdi/fz8aNGiATZs24cyZM2VWnlXUsGHDsHTpUvTr1w9hYWFwcHDAzZs3ER8fjylTpohjepbmxo0bWLduHfr27Qt7e3ukp6fj6tWrGDFiRIVy+/Tpg59//hnvvfdetY7B3NwclpaWWLduHezs7JCVlYWpU6dqrGNtbQ2lUomEhAQ4ODjAwMAApqammDNnDoKDg2FqaoqePXsiLy8PZ8+eRU5ODiZNmlStchERERERERERvSrqbEtJAFi6dCneeOMN+Pv7w8/PDx06dEDr1q0BAGZmZoiPj0fXrl3h4eGBNWvWYOvWrfDyKuo6GxISAl1dXXh6esLKyuq5YwlWVP/+/REREYHw8HB4eXlh7dq1iImJQefOncUyRUVFwdfXF82bN0diYiL27NkDS0tLAEBYWBgyMzPh5uZWYgzE0qjVaowdOxYeHh7o2bMn3N3dERkZCQD46KOPMGDAALzzzjto27Yt7ty5Iz6ApzoMDQ1x9OhRODk5YcCAAfDw8EBgYCCePHkCExOTcrf95ZdfMHDgQLi7u+PDDz/E2LFj8dFHH5Wb27VrV1hYWCA9Pb1C3cSfR0dHB9u2bcO5c+fQtGlTTJw4EUuXLtVYR09PDytXrsTatWthb2+Pfv36ASjqMh8dHY2YmBg0a9YMnTp1QmxsbLUre4mIiIiIiIiIXiUy4VV+9jhRLYitX72WnhVV/2nVxiqtLF2JmpoLkNV4xj8Sda03ErQ7dERZCiQ4ZwCgkOg94Gx5T5KcG3fMajxDqm8EKzbiMdUWKd4Hj2TSvNu6vJ8nSY7ua1UfvqUybN7/SpIcqXxg1aa2i6A1iw5J0zMloMtCSXLG5UvzO5quo5Qk572z02s+RF9R8xkABrcaL0nOlsXS3NcuTk6VJKfbvZ8kydGRmGCXmAABAABJREFU1fzn3MCX6N4JAMszt9V2ESTh79SntotQJXuy9tZ2EWpFnW4pSURERERERERERHUPKyX/v6CgIKhUqlKnoKCgWilTr169yizTggULaqVM5SmrvCqVCseOHdN6npeXV5l5cXFxWs8jIiIiIiIiIqLqq7MPutG2sLAwhISElLqsvLESa0p0dDQeP35c6jILCwuJS1MxKSkpZS6rX7++1vP27duHgoLSuynb2NhoPY+IiIiIiIiIiKqPlZL/n7W1NaytrWu7GBpqohKvpjVs2FDSvOInlxMRERERERHRq02QaLx70g523yYiIiIiIiIiIiJJsVKSiIiIiIiIiIjoJXT37l0MGzYMJiYmMDMzQ2BgIHJzc5+7TefOnSGTyTSmfz9vJSsrC71794ahoSGsra0RGhqKp0+fVqps7L5NRERERERERER1XiG7b5cwbNgwZGdn4+DBgygoKMDIkSPx4YcfYsuWLc/dbvTo0QgLCxNfGxoaij+r1Wr07t0btra2OH78OLKzszFixAjo6+tX6sHMMkEQeMWIJPRPUE9Jck7vNJUkp1CSFGmadZvq50mQAjwokEuSI0AmSY5U7st0JckxFdSS5FDlyST6kPky/e5Idc6OGuhLkpMjk+b38xPDHElypKIwqlyrhRdZ1F+2kuR8Olqa/3OOr5Tms4dCJs0nthWKmj8eqf58/fp8hCQ5671nSpLjnp8vSY6T5X1JcqRgYFz6A1W1TSiU5nOH45kfJMmpbW85vVXbRaiSfVn7amS/aWlp8PT0xJkzZ+Dj4wMASEhIwFtvvYVff/0V9vb2pW7XuXNntGzZEitWrCh1+ffff48+ffrg999/Fx8yvGbNGnz66af466+/IJdX7G9edt8mIiIiIiIiIiKqJXl5eXjw4IHGlJdX/S96Tpw4ATMzM7FCEgD8/Pygo6ODU6dOPXfbuLg41KtXD02bNsW0adPw6NEjjf02a9ZMrJAEgB49euDBgwf4+eefK1w+VkoSERERERERERHVkoULF8LU1FRjWrhwYbX3+8cff8Da2lpjnp6eHiwsLPDHH3+Uud3QoUOxefNmHD58GNOmTcOmTZvw3nvvaez32QpJAOLr5+333zimJBERERERERER1Xl1dYTCadOmYdKkSRrzFApFmetPnToVixcvfu4+09LSqlyeDz/8UPy5WbNmsLOzQ7du3ZCRkQE3N7cq7/ffWClJRERERERERERUSxQKxXMrIf9t8uTJCAgIeO46rq6usLW1xe3btzXmP336FHfv3oWtbcXHaW7bti0A4Nq1a3Bzc4OtrS1Onz6tsc6ff/4JAJXaLysliYiIiIiIiIiI6ggrKytYWVmVu167du1w7949nDt3Dq1btwYAHDp0CIWFhWJFY0WkpKQAAOzs7MT9zp8/H7dv3xa7hx88eBAmJibw9PSs8H45piQREREREREREdFLxsPDAz179sTo0aNx+vRpJCcnY9y4cRgyZIj45O3ffvsNTZo0EVs+ZmRkYO7cuTh37hwyMzPxv//9DyNGjEDHjh3RvHlzAMCbb74JT09PDB8+HBcuXMD+/fvx2WefYezYsZVq8clKyf+vc+fOmDBhgtb3m5SUBJlMhnv37ml939oUGxsLMzMz8fXs2bPRsmVLjXVmz54NGxsbyGQy7Nq1q8x5RERERERERERSK6yjU02Ki4tDkyZN0K1bN7z11lvo0KED1q1bJy4vKChAenq6+HRtuVyOxMREvPnmm2jSpAkmT56MgQMHYs+ePeI2urq62Lt3L3R1ddGuXTu89957GDFiBMLCwipVNnbfrqTOnTujZcuWWLFiRW0XReTi4oIJEyZotVI1JCQEn3zyifg6LS0Nc+bMwc6dO/H666/D3Ny81Hkvg8zMTDRo0AA//fRTiYpZIiIiIiIiIqK6wsLCAlu2bClzuYuLi8YDghwdHXHkyJFy9+vs7Ix9+/ZVq2yslKRSqVQqqFQq8XVGRgYAoF+/fpDJZGXO05b8/HzI5fIXfp9ERERERERERFR5r2T37YcPH2LEiBFQqVSws7PDsmXLNJZHRkaiUaNGMDAwgI2NDd5++20AQEBAAI4cOYKIiAjIZDLIZDJkZmZWKPPcuXPw8fGBoaEh2rdvj/T0dI3lq1evhpubG+RyORo3boxNmzaJywRBwOzZs+Hk5ASFQgF7e3sEBwcDKGq5efPmTUycOFEsU0XExsbCyckJhoaG+M9//oM7d+5oLH+2+/bs2bPh7+8PANDR0YFMJit1XnmSkpLQpk0bGBkZwczMDL6+vrh586ZGXnR0NBo0aAADAwOsW7cO9vb2KCzUbMzcr18/jBo1qty80vYJAAkJCejQoQPMzMxgaWmJPn36iBWsANCgQQMAgLe3N2QyGTp37iwui46OhoeHBwwMDNCkSRNERkaWWw4iIiIiIiIiqnlCHf33qnolKyVDQ0Nx5MgR7N69GwcOHEBSUhLOnz8PADh79iyCg4MRFhaG9PR0JCQkoGPHjgCAiIgItGvXDqNHj0Z2djays7Ph6OhYoczp06dj2bJlOHv2LPT09DQq1Xbu3Inx48dj8uTJuHTpEj766COMHDkShw8fBgDs2LEDy5cvx9q1a3H16lXs2rULzZo1AwDEx8fDwcEBYWFhYpnKc+rUKQQGBmLcuHFISUlBly5dMG/evDLXDwkJQUxMDACIGaXNe56nT5+if//+6NSpEy5evIgTJ07gww8/1KjMvHbtGnbs2IH4+HikpKRg0KBBuHPnjngeAODu3btISEjAsGHDyj3O0vYJFFVKT5o0CWfPnsUPP/wAHR0d/Oc//xErP4sHd01MTER2djbi4+MBFI3DMHPmTMyfPx9paWlYsGABZsyYgQ0bNlSoLEREREREREREVOSV676dm5uL9evXY/PmzejWrRsAYMOGDXBwcAAAZGVlwcjICH369IGxsTGcnZ3h7e0NADA1NYVcLoehoSFsbW0rlTt//nx06tQJADB16lT07t0bT548gYGBAcLDwxEQEIAxY8YAACZNmoSTJ08iPDwcXbp0QVZWFmxtbeHn5wd9fX04OTmhTZs2AIrGBtDV1YWxsXGFyxQREYGePXtiypQpAAB3d3ccP34cCQkJpa6vUqnEh+A8m1HavLI8ePAA9+/fR58+feDm5gag6ClQz8rPz8fGjRs1Hmvfq1cvbNmyRbxW3377LerVq4cuXbpU6FhL2+fAgQM11vnqq69gZWWFy5cvo2nTpuK6lpaWGsc2a9YsLFu2DAMGDABQ1KLy8uXLWLt2Ld5///1S8/Py8pCXl6dZJnUhFLqv5PcBREREREREREQAXsGWkhkZGcjPz0fbtm3FeRYWFmjcuDEAoHv37nB2doarqyuGDx+OuLg48QlE1VH82HQAsLOzAwDcvn0bQNFDZHx9fTXW9/X1RVpaGgBg0KBBePz4MVxdXTF69Gjs3LkTT58+rXJZ0tLSNI4fANq1a1fl/VWEhYUFAgIC0KNHD/j7+yMiIqJE60pnZ2eNykMAGDZsGHbs2CFW7MXFxWHIkCHQ0anYW7e0fV69ehXvvvsuXF1dYWJiAhcXFwBFFdJlefjwITIyMhAYGCiOt6lSqTBv3jyNrt//tnDhQpiammpMy366XqGyExERERERERG9rF65SsnyGBsb4/z589i6dSvs7Owwc+ZMtGjRAvfu3avWfvX19cWfi7ss/3usxLI4OjoiPT0dkZGRUCqVGDNmDDp27IiCgoJqlUlqMTExOHHiBNq3b4/t27fD3d0dJ0+eFJcbGRmV2Mbf3x+CIOC7777DrVu3cOzYsQp33X7ePu/evYuoqCicOnUKp06dAlDUqrIsubm5AICoqCikpKSI06VLlzSO4d+mTZuG+/fva0yTvV0rXH4iIiIiIiIiqphCCHVyelW9cpWSbm5u0NfXFyuiACAnJwdXrlwRX+vp6cHPzw9LlizBxYsXkZmZiUOHDgEA5HI51Gq1Vsvk4eGB5ORkjXnJycnw9PQUXyuVSvj7+2PlypVISkrCiRMnkJqaWqUyeXh4aBw/gOdWrGmTt7c3pk2bhuPHj6Np06bPfSw9ABgYGGDAgAGIi4vD1q1b0bhxY7Rq1arK+Xfu3EF6ejo+++wzdOvWDR4eHsjJydFYp/gJ3c+eUxsbG9jb2+P69eto2LChxlT8YJzSKBQKmJiYaEzsuk1EREREREREr7pXbkxJlUqFwMBAhIaGwtLSEtbW1pg+fbrYHXjv3r24fv06OnbsCHNzc+zbtw+FhYVi924XFxecOnUKmZmZUKlUsLCwqHBX4rKEhoZi8ODB8Pb2hp+fH/bs2YP4+HgkJiYCKHpStlqtRtu2bWFoaIjNmzdDqVTC2dlZLNPRo0cxZMgQKBQK1KtX77l5wcHB8PX1RXh4OPr164f9+/eXOZ6ktty4cQPr1q1D3759YW9vj/T0dFy9ehUjRowod9thw4ahT58++Pnnn/Hee+9Vqxzm5uawtLTEunXrYGdnh6ysLEydOlVjHWtrayiVSiQkJMDBwQEGBgYwNTXFnDlzEBwcDFNTU/Ts2RN5eXk4e/YscnJyMGnSpGqVi4iIiIiIiIjoVfJKNtlaunQp3njjDfj7+8PPzw8dOnRA69atARQ9vCU+Ph5du3aFh4cH1qxZg61bt8LLywtA0ZOodXV14enpCSsrq+eOQ1hR/fv3R0REBMLDw+Hl5YW1a9ciJiYGnTt3FssUFRUFX19fNG/eHImJidizZw8sLS0BAGFhYcjMzISbm1uJ8RNL8/rrryMqKgoRERFo0aIFDhw4gM8++6zax/E8hoaG+OWXXzBw4EC4u7vjww8/xNixY/HRRx+Vu23Xrl1hYWGB9PR0DB06tFrl0NHRwbZt23Du3Dk0bdoUEydOxNKlSzXW0dPTw8qVK7F27VrY29ujX79+AIAPPvgA0dHRiImJQbNmzdCpUyfExsY+t6UkEREREREREUlDEIQ6Ob2qZMKrfPREteCfoJ6S5JzeaSpJTsVGRq0+Kb5BMdXPK38lLXhQIJckR4BMkhyp3JfpSpJjKmh3iA7SHplE4+28TL87Up2zowb65a+kBTkyaX4/PzHMKX+lOkRhVPUHJL5oov6ylSTn09HS/J9zfKU0nz0UMmk+sa1Q1PzxSPXn69fnIyTJWe89U5Ic9+eMn69NTpb3JcmRgoGxNM9wEAql+dzheOYHSXJqWzeHN2u7CFXyw68HarsIteKVbClJREREREREREREtYeVktUUFBQElUpV6hQUFFQrZerVq1eZZVqwYEGN5ZaVqVKpcOzYMa3neXl5lZkXFxen9TwiIiIiIiIiItKOV+5BN9oWFhaGkJCQUpeZmJhIXJoi0dHRePz4canLLCwsaiw3JSWlzGX169fXet6+fftQUFB6k3obGxut5xERERERERHRi6tQoqFrSDtYKVlN1tbWsLa2ru1iaKiJCsCKaNiwoaR5xU8fJyIiIiIiIiKiuoXdt4mIiIiIiIiIiEhSrJQkIiIiIiIiIiIiSbH7NhERERERERER1XkCx5SsU1gpSSSx1N1GtV0ErVJDJkmOjgT/ufxZoKzxDACQo1CSnIcyXUlyDAVpjmezIleSnI+fSPM+oMoTJOrgIZPow2y+BMdTKM0tGlN3vytJjo65vSQ5ndpPliRHKt0fSXPepDBtvqskOQunX5ckx1KhL0nOMK9bkuTEBXSt+ZBCaT53rPeeKUlO4E9hkuTsafqZJDnT7+dLkiOFl+neCQDSvNOIKofdt4mIiIiIiIiIiEhSbClJRERERERERER1XqHA7tt1CVtKEhERERERERERkaRYKUlERERERERERESSYqUkERERERERERERSUorlZKdO3fGhAkTtLErDUlJSZDJZLh3757W901ERERERERERC8PoY5OrypJW0rWVOVldbi4uGDFihW1XQyqACkrqWNjY2FmZlbjOUREREREREREryJ23yYN+fn5tV2EUhUUFGhlPy/q8RERERERERERvUoqXSn58OFDjBgxAiqVCnZ2dli2bJnG8sjISDRq1AgGBgawsbHB22+/DQAICAjAkSNHEBERAZlMBplMhszMzAplnjt3Dj4+PjA0NET79u2Rnp6usXz16tVwc3ODXC5H48aNsWnTJnGZIAiYPXs2nJycoFAoYG9vj+DgYABFLTdv3ryJiRMnimUqz82bN+Hv7w9zc3MYGRnBy8sL+/btAwCo1WoEBgaiQYMGUCqVaNy4MSIiIjS2DwgIQP/+/bFgwQLY2NjAzMwMYWFhePr0KUJDQ2FhYQEHBwfExMRobHfr1i0MHjwYZmZmsLCwQL9+/Sp8/pKSktCmTRsYGRnBzMwMvr6+uHnzJgBg9uzZaNmyJaKjo9GgQQMYGBgAAO7du4ePPvoINjY2MDAwQNOmTbF3795ys4pbGO7atUt8H/To0QO3bt3SWO951wwAZDIZVq9ejb59+8LIyAijR49Gly5dAADm5uaQyWQICAgotzydO3fGuHHjMGHCBNSrVw89evQAAHz++edo1qwZjIyM4OjoiDFjxiA3N1c8XyNHjsT9+/fF98Xs2bMBAHl5eQgJCUH9+vVhZGSEtm3bIikpqdxyEBERERERERHR/9Gr7AahoaE4cuQIdu/eDWtra/z3v//F+fPn0bJlS5w9exbBwcHYtGkT2rdvj7t37+LYsWMAgIiICFy5cgVNmzZFWFgYAMDKyqpCmdOnT8eyZctgZWWFoKAgjBo1CsnJyQCAnTt3Yvz48VixYgX8/Pywd+9ejBw5Eg4ODujSpQt27NiB5cuXY9u2bfDy8sIff/yBCxcuAADi4+PRokULfPjhhxg9enSFyjJ27Fjk5+fj6NGjMDIywuXLl6FSqQAAhYWFcHBwwDfffANLS0scP34cH374Iezs7DB48GBxH4cOHYKDgwOOHj2K5ORkBAYG4vjx4+jYsSNOnTqF7du346OPPkL37t3h4OCAgoIC9OjRA+3atcOxY8egp6eHefPmoWfPnrh48SLkcnmZ5X369Cn69++P0aNHY+vWrcjPz8fp06c1KmCvXbuGHTt2ID4+Hrq6uigsLESvXr3wzz//YPPmzXBzc8Ply5ehq6tboXP06NEjzJ8/Hxs3boRcLseYMWMwZMiQCl+zYrNnz8aiRYuwYsUK6Orqom/fvhg4cCDS09NhYmICpVJZofJs2LABH3/8sZgPADo6Oli5ciUaNGiA69evY8yYMZgyZQoiIyPRvn17rFixAjNnzhQrwIuv8bhx43D58mVs27YN9vb22LlzJ3r27InU1FQ0atSoQuUhIiIiIiIiIu0rfKVHaKx7KlUpmZubi/Xr12Pz5s3o1q0bgKIKHwcHBwBAVlYWjIyM0KdPHxgbG8PZ2Rne3t4AAFNTU8jlchgaGsLW1rZShZw/fz46deoEAJg6dSp69+6NJ0+ewMDAAOHh4QgICMCYMWMAAJMmTcLJkycRHh6OLl26ICsrC7a2tvDz84O+vj6cnJzQpk0bAICFhQV0dXVhbGxc4TJlZWVh4MCBaNasGQDA1dVVXKavr485c+aIrxs0aIATJ07g66+/1qiUtLCwwMqVK6Gjo4PGjRtjyZIlePToEf773/8CAKZNm4ZFixbhxx9/xJAhQ7B9+3YUFhYiOjparEyMiYmBmZkZkpKS8Oabb5ZZ3gcPHuD+/fvo06cP3NzcAAAeHh4a6+Tn52Pjxo1iJfGBAwdw+vRppKWlwd3dvcRxlqegoABffPEF2rZtC6DoPeLh4YHTp0+jTZs25V6zYkOHDsXIkSPF1zdu3AAAWFtbV2q8x0aNGmHJkiUa854d29TFxQXz5s1DUFAQIiMjIZfLYWpqCplMpvG+yMrKQkxMDLKysmBvbw8ACAkJQUJCAmJiYrBgwYIKl4mIiIiIiIiI6FVWqe7bGRkZyM/PFyubgKIKtsaNGwMAunfvDmdnZ7i6umL48OGIi4vDo0ePql3I5s2biz/b2dkBAG7fvg0ASEtLg6+vr8b6vr6+SEtLAwAMGjQIjx8/hqurK0aPHo2dO3fi6dOnVS5LcHAw5s2bB19fX8yaNQsXL17UWP7ll1+idevWsLKygkqlwrp165CVlaWxjpeXF3R0/u/U29jYiJWcAKCrqwtLS0vxGC9cuIBr167B2NgYKpUKKpUKFhYWePLkCTIyMp5bXgsLCwQEBKBHjx7w9/dHREQEsrOzNdZxdnbWaLWakpICBwcHsUKysvT09PDaa6+Jr5s0aQIzMzPxmpR3zYr5+PhUKf/fWrduXWJeYmIiunXrhvr168PY2BjDhw/HnTt3nvt+TU1NhVqthru7u3gdVCoVjhw5UuZ1yMvLw4MHDzSmfEGtleMiIiIiIiIiIqqrtPqgG2NjY5w/fx5bt26FnZ0dZs6ciRYtWlT7acn6+vriz8UtBQsLCyu0raOjI9LT0xEZGQmlUokxY8agY8eOVX5wygcffIDr169j+PDhSE1NhY+PD1atWgUA2LZtG0JCQhAYGIgDBw4gJSUFI0eOLPFwlWePp/iYSptXfIy5ublo3bo1UlJSNKYrV65g6NCh5ZY5JiYGJ06cQPv27bF9+3a4u7vj5MmT4nIjIyON9SvaLbqm/btc2tpPZmYm+vTpg+bNm2PHjh04d+4cvvzySwDPfxBObm4udHV1ce7cOY3rkJaWVmLs0GILFy6EqampxrQpN73UdYmIiIiIiIio6goh1MnpVVWpSkk3Nzfo6+vj1KlT4rycnBxcuXJFfK2npwc/Pz8sWbIEFy9eRGZmJg4dOgQAkMvlUKu120rMw8NDY6xAAEhOToanp6f4WqlUwt/fHytXrkRSUhJOnDiB1NTUKpfJ0dERQUFBiI+Px+TJkxEVFSXmtm/fHmPGjIG3tzcaNmxYbkvGimjVqhWuXr0Ka2trNGzYUGMyNTWt0D68vb0xbdo0HD9+HE2bNsWWLVvKXLd58+b49ddfNa5rZTx9+hRnz54VX6enp+PevXtit/GKXLPSFI+dWd330Llz51BYWIhly5bh9ddfh7u7O37//fcSWf/O8fb2hlqtxu3bt0tch7K6/0+bNg3379/XmIarGler/EREREREREREdV2lxpRUqVQIDAxEaGgoLC0tYW1tjenTp4tdkffu3Yvr16+jY8eOMDc3x759+1BYWCh273ZxccGpU6eQmZkpdkF+thtzVYSGhmLw4MHw9vaGn58f9uzZg/j4eCQmJgIoehq0Wq1G27ZtYWhoiM2bN0OpVMLZ2Vks09GjRzFkyBAoFArUq1fvuXkTJkxAr1694O7ujpycHBw+fFisbGvUqBE2btyI/fv3o0GDBti0aRPOnDmDBg0aVOsYhw0bhqVLl6Jfv34ICwuDg4MDbt68ifj4eEyZMkUc07M0N27cwLp169C3b1/Y29sjPT0dV69exYgRI8rcplOnTujYsSMGDhyIzz//HA0bNsQvv/wCmUyGnj17lltefX19fPLJJ1i5ciX09PQwbtw4vP766+JYnuVds7I4OztDJpNh7969eOutt6BUKsUH0FRGw4YNUVBQgFWrVsHf3x/JyclYs2aNxjouLi7Izc3FDz/8gBYtWsDQ0BDu7u4YNmwYRowYgWXLlsHb2xt//fUXfvjhBzRv3hy9e/cukaVQKKBQKDTmyWUVe2AQEREREREREdHLqtI1gkuXLsUbb7wBf39/+Pn5oUOHDuKYfWZmZoiPj0fXrl3h4eGBNWvWYOvWrfDy8gJQ9FAQXV1deHp6wsrKqsRYi1XRv39/REREIDw8HF5eXli7di1iYmLQuXNnsUxRUVHw9fVF8+bNkZiYiD179sDS0hIAEBYWhszMTLi5uVXoaeBqtRpjx46Fh4cHevbsCXd3d0RGRgIAPvroIwwYMADvvPMO2rZtizt37ogPc6kOQ0NDHD16FE5OThgwYAA8PDwQGBiIJ0+ewMTEpNxtf/nlFwwcOBDu7u748MMPMXbsWHz00UfP3W7Hjh147bXX8O6778LT0xNTpkypcAtFQ0NDfPrppxg6dCh8fX2hUqmwfft2cXl516ws9evXx5w5czB16lTY2Nhg3LhxFSrPv7Vo0QKff/45Fi9ejKZNmyIuLg4LFy7UWKd9+/YICgrCO++8AysrK/FBOTExMRgxYgQmT56Mxo0bo3///jhz5gycnJyqVBYiIiIiIiIioleRTBCEV7fzOmldbGwsJkyYUO1xRF9mx+0GSpLzuLBSDaGrrAAySXL0JRhn44l2h9ktkxwVGxO3uh5K1CrXUJDmeNYYVP/BaRXx8ZMXY1xdKkmQ6H4jk2hcn3wJ7jmF0pwydE8YJkmOjrm9JDmd2k+WJEcq3fWlOW9SmDbfVZKchdOvS5JjKdEv6TCvW5LkGAV0rfmQCj5boLo2TKn+MFwVEfhTmCQ5e5p+JknOUt3s8leqI16meycAhGXG1XYRJPG6fefaLkKVnPw9qbaLUCuk+QuciIiIiIiIiIiI6P+r1UrJoKAgqFSqUqegoKBaKVOvXr3KLNOCBQtqpUzlKau8KpUKx44d02rWi3R+srKynnvs2hgegIiIiIiIiIiItE+a/p1lCAsLQ0hISKnLyhsrsaZER0fj8ePHpS6zsLCQuDQVk5KSUuay+vXrazWrvPNjYWGBgIAArWaWxd7e/rnHbm//cjW3JyIiIiIiIqKyFUo0DA9pR61WSlpbW8Pa2ro2i1CCtivxpNCwYUPJsl6k86OnpyfpsRMRERERERERkXZwTEkiIiIiIiIiIiKSFCsliYiIiIiIiIiISFK12n2biIiIiIiIiIhIGwSOKVmnsKUkERERERERERERSUomCAKrkYkkdNDmHUlypPrGQSbRN1Fm8rwaz7iXr6jxDAAQIJMkp1CSFEBfoiRb04eS5Px237jGM3QlOmfql+y7R6nuN1L9jkpBqvvASQNpOt+YCNJcm/oFL9fH46bGOTWeIdVfFI+f6EuS80e+UpKc1p7ZkuQEZqgkyRmXV/P/h5rr5td4BgA8VEtzX7snkybH/9I8SXJ2N5shSY4UpLh3SqnJlX21XQRJvGbfsbaLUCVnfj9a20WoFS/XXytERERERERERET0wuOYkkREREREREREVOexM3DdwpaSREREREREREREJClWShIREREREREREZGk2H2biIiIiIiIiIjqvEKJHoxI2lFrLSU7d+6MCRMmaH2/SUlJkMlkuHfvntb3XZf9+7zExsbCzMxMY51169bB0dEROjo6WLFiRZnzyjJ79my0bNlS62UnIiIiIiIiIqKXywvffbumKi+rw8XFpdwKuhfdO++8gytXroivHzx4gHHjxuHTTz/Fb7/9hg8//LDUebUpMzMTMpkMKSkpNZ7Fym0iIiIiIiIioprD7tsvGEEQoFaroadXs5dGqVRCqVSKr7OyslBQUIDevXvDzs4OAHDp0qUS8+q6/Px8yOXy2i4GEREREREREdErTZKWkg8fPsSIESOgUqlgZ2eHZcuWaSyPjIxEo0aNYGBgABsbG7z99tsAgICAABw5cgQRERGQyWSQyWTIzMysUOa5c+fg4+MDQ0NDtG/fHunp6RrLV69eDTc3N8jlcjRu3BibNm0SlwmCgNmzZ8PJyQkKhQL29vYIDg4GUNRy8+bNm5g4caJYpvLcvHkT/v7+MDc3h5GREby8vLBv3z4A/9ci7/vvv0fr1q2hUCjw1VdfQSaT4ZdfftHYz/Lly+Hm5lah49+3bx/c3d2hVCrRpUuXEuft2e7bsbGxaNasGQDA1dUVMpms1HkVPfebNm2Ci4sLTE1NMWTIEPzzzz/isry8PAQHB8Pa2hoGBgbo0KEDzpw5Iy7PycnBsGHDYGVlBaVSiUaNGiEmJgYA0KBBAwCAt7c3ZDIZOnfuXG5ZAgIC0L9/f8yfPx/29vZo3LixWEYfHx8YGxvD1tYWQ4cOxe3btwEUtcjs0qULAMDc3BwymQwBAQEAgMLCQixcuBANGjSAUqlEixYt8O2331bovBARERERERFRzREEoU5OrypJKiVDQ0Nx5MgR7N69GwcOHEBSUhLOnz8PADh79iyCg4MRFhaG9PR0JCQkoGPHjgCAiIgItGvXDqNHj0Z2djays7Ph6OhYoczp06dj2bJlOHv2LPT09DBq1Chx2c6dOzF+/HhMnjwZly5dwkcffYSRI0fi8OHDAIAdO3Zg+fLlWLt2La5evYpdu3aJFXTx8fFwcHBAWFiYWKbyjB07Fnl5eTh69ChSU1OxePFiqFQqjXWmTp2KRYsWIS0tDW+//TZ8fHwQFxensU5cXByGDh1abt6tW7cwYMAA+Pv7IyUlBR988AGmTp1a5vrvvPMOEhMTAQCnT59GdnY2Bg0aVGJeRc59RkYGdu3ahb1792Lv3r04cuQIFi1aJC6fMmUKduzYgQ0bNuD8+fNo2LAhevTogbt37wIAZsyYgcuXL+P7779HWloaVq9ejXr16onlAIDExERkZ2cjPj6+3PIAwA8//ID09HQcPHgQe/fuBQAUFBRg7ty5uHDhAnbt2oXMzEyx4tHR0RE7duwAAKSnpyM7OxsREREAgIULF2Ljxo1Ys2YNfv75Z0ycOBHvvfcejhw5UqGyEBERERERERGRBN23c3NzsX79emzevBndunUDAGzYsAEODg4AiroNGxkZoU+fPjA2NoazszO8vb0BAKamppDL5TA0NIStrW2lcufPn49OnToBKKrw6927N548eQIDAwOEh4cjICAAY8aMAQBMmjQJJ0+eRHh4OLp06YKsrCzY2trCz88P+vr6cHJyQps2bQAAFhYW0NXVFVvYVURWVhYGDhyo0fLw38LCwtC9e3fx9bBhw/DFF19g7ty5AIArV67g3Llz2Lx5c7l5xa1Ai1ukNm7cWKwMLY1SqYSlpSUAwMrKSjyu0uaVp7CwELGxsTA2NgYADB8+HD/88APmz5+Phw8fYvXq1YiNjUWvXr0AAFFRUTh48CDWr1+P0NBQZGVlwdvbGz4+PgCKxu8sZmVlJZarMu8HIyMjREdHa3TbfraS2tXVFStXrsRrr72G3NxcqFQqWFhYAACsra3FFqV5eXlYsGABEhMT0a5dO3HbH3/8EWvXrhXfb8/Ky8tDXl6exrx8QQ25TLfC5SciIiIiIiIietnUeEvJjIwM5Ofno23btuI8CwsLsRtt9+7d4ezsDFdXVwwfPhxxcXF49OhRtXObN28u/lw8HmJx99y0tDT4+vpqrO/r64u0tDQAwKBBg/D48WO4urpi9OjR2LlzJ54+fVrlsgQHB2PevHnw9fXFrFmzcPHixRLrFFfCFRsyZAgyMzNx8uRJAEWtJFu1aoUmTZqUm5eWlqZxvgGIlWg1zcXFRayQBIrOffF5z8jIQEFBgca519fXR5s2bcRz//HHH2Pbtm1o2bIlpkyZguPHj1e7TM2aNSsxjuS5c+fg7+8PJycnGBsbixWKWVlZZe7n2rVrePToEbp37w6VSiVOGzduREZGRqnbLFy4EKamphrTtodp1T4mIiIiIiIiItJUCKFOTq+qWn/6trGxMc6fP4+tW7fCzs4OM2fORIsWLar91GN9fX3x5+JxHwsLCyu0raOjI9LT0xEZGQmlUokxY8agY8eOKCgoqFJZPvjgA1y/fh3Dhw9HamoqfHx8sGrVKo11jIyMNF7b2tqia9eu2LJlCwBgy5YtGDZsWJXypfTseQeKzn1FzzsA9OrVSxyz8/fff0e3bt0QEhJSrTL9+9w+fPgQPXr0gImJCeLi4nDmzBns3LkTQNGDcMqSm5sLAPjuu++QkpIiTpcvXy5zXMlp06bh/v37GtMQI49qHQ8RERERERERUV1X45WSbm5u0NfXx6lTp8R5OTk5uHLlivhaT08Pfn5+WLJkCS5evIjMzEwcOnQIACCXy6FWq7VaJg8PDyQnJ2vMS05Ohqenp/haqVTC398fK1euRFJSEk6cOIHU1NQql8nR0RFBQUGIj4/H5MmTERUVVe42w4YNw/bt23HixAlcv34dQ4YMqVCWh4eHOP5iseIWl7Wp+MFCz577goICnDlzRuPcW1lZ4f3338fmzZuxYsUKrFu3DgDE1o7VfT/88ssvuHPnDhYtWoQ33ngDTZo0EVtzFisty9PTEwqFAllZWWjYsKHGVNZ4mwqFAiYmJhoTu24TERERERER0auuxseUVKlUCAwMRGhoKCwtLWFtbY3p06dDR6eoPnTv3r24fv06OnbsCHNzc+zbtw+FhYVi924XFxecOnUKmZmZ4lh/xdtWVWhoKAYPHgxvb2/4+flhz549iI+PFx/sEhsbC7VajbZt28LQ0BCbN2+GUqmEs7OzWKajR49iyJAhUCgU4oNYyjJhwgT06tUL7u7uyMnJweHDh+HhUX5ruQEDBuDjjz/Gxx9/jC5dusDe3r5CxxcUFIRly5YhNDQUH3zwAc6dO4fY2NgKbVuTjIyM8PHHHyM0NBQWFhZwcnLCkiVL8OjRIwQGBgIAZs6cidatW8PLywt5eXnYu3eveK6sra2hVCqRkJAABwcHGBgYwNTUtNLlcHJyglwux6pVqxAUFIRLly6JY3cWc3Z2hkwmw969e/HWW29BqVTC2NgYISEhmDhxIgoLC9GhQwfcv38fycnJMDExwfvvv1/9k0RERERERERE9AqQpPv20qVL8cYbb8Df3x9+fn7o0KEDWrduDQAwMzNDfHw8unbtCg8PD6xZswZbt26Fl5cXACAkJAS6urrw9PSElZXVc8f8q6j+/fsjIiIC4eHh8PLywtq1axETE4POnTuLZYqKioKvry+aN2+OxMRE7NmzR3zwS1hYGDIzM+Hm5iY+fOV51Go1xo4dCw8PD/Ts2RPu7u6IjIwsdztjY2P4+/vjwoULleq67eTkhB07dmDXrl1o0aIF1qxZgwULFlR4+5q0aNEiDBw4EMOHD0erVq1w7do17N+/H+bm5gCKWihOmzYNzZs3R8eOHaGrq4tt27YBKGpRu3LlSqxduxb29vbo169flcpgZWWF2NhYfPPNN/D09MSiRYsQHh6usU79+vUxZ84cTJ06FTY2Nhg3bhwAYO7cuZgxYwYWLlwoXs/vvvsODRo0qMZZISIiIiIiIqLqEurov1eVTBCEV/foiWrBQZt3JMmRasBYmUQ3UDN5XvkrVdO9fEWNZwCAAJkkORUfzbV69CVKsjV9KEnOb/eNy1+pmnQlOmfq2h86Wqukut9I9TsqBanuAycNarzzDQDARJDm2tQveLk+Hjc1zqnxDKn+onj8RL/8lbTgj3ylJDmtPbMlyQnMUEmSMy6v5v8PNdctewx4bXqolua+dk8mTY7/pXmS5OxuNkOSHClIce+UUpMr+2q7CJJobivNQ3617eIfJ2q7CLXi5fprhYiIiIiIiIiIiF54da5SMigoCCqVqtQpKCioVsrUq1evMstUE92ma+sceHl5lZkbFxdXY7nPU1Z5VCoVjh07VitlIiIiIiIiIiKi55OmrbgWhYWFISQkpNRlJiYmEpemSHR0NB4/flzqMgsLC63n1dY52LdvHwoKCkpdZmNjU2O5z5OSklLmsvr160tXECIiIiIiIiKqVYUcobBOqXOVktbW1rC2tq7tYmiQuvKrts5B8dPHXyQNGzas7SIQEREREREREVEl1bnu20RERERERERERFS31bmWkkRERERERERERP8mgN236xK2lCQiIiIiIiIiIiJJsaUkkcQKIJMkRyHRN0RPJfpu416+osYz8iU6Fn2Jro1aoveaVN9vff9E+w8OK01TlP5AL20qlOicSfXNY6FEOZDsPS0N4SU6nvsyad4FRwrvSpLzfepqSXKksrXFzNougtaM+uuwJDm/tW8kSc6hdAdJcj43vSNJzus552o8I1/9tMYzACDFxV2SnOn38yXJKWw2Q5KcfqlzJcmRwst07wSAJrVdAKJSsKUkERERERERERERSYotJYmIiIiIiIiIqM4rFDimZF3ClpJEREREREREREQkKVZKEhERERERERERkaTYfZuIiIiIiIiIiOo8QaKHipJ2sKUkERERERERERERSYqVkpXUuXNnTJgwQev7TUpKgkwmw71797S+byIiIiIiIiIiohcJKyVrSE1VXlaHi4sLVqxYUdvFeOFlZmZCJpMhJSWltotCRERERERERPRS4piSJJn8/HzI5XKNeYIgQK1WQ0+vcm/FqmxXWj4RERERERERvRwKBY4pWZewpeRzPHz4ECNGjIBKpYKdnR2WLVumsTwyMhKNGjWCgYEBbGxs8PbbbwMAAgICcOTIEUREREAmk0EmkyEzM7NCmefOnYOPjw8MDQ3Rvn17pKenayxfvXo13NzcIJfL0bhxY2zatElcJggCZs+eDScnJygUCtjb2yM4OBhAUcvNmzdvYuLEiWKZynPz5k34+/vD3NwcRkZG8PLywr59+8Tlly5dQq9evaBSqWBjY4Phw4fj77//Fpd37twZ48aNw4QJE1CvXj306NFD7Kb+/fffo3Xr1lAoFPjxxx+Rl5eH4OBgWFtbw8DAAB06dMCZM2fEfZW13fPMnj0bLVu2RHR0NBo0aAADAwMAQEJCAjp06AAzMzNYWlqiT58+yMjIELdr0KABAMDb2xsymQydO3cWl0VHR8PDwwMGBgZo0qQJIiMjyz2PRERERERERESkiZWSzxEaGoojR45g9+7dOHDgAJKSknD+/HkAwNmzZxEcHIywsDCkp6cjISEBHTt2BABERESgXbt2GD16NLKzs5GdnQ1HR8cKZU6fPh3Lli3D2bNnoaenh1GjRonLdu7cifHjx2Py5Mm4dOkSPvroI4wcORKHDx8GAOzYsQPLly/H2rVrcfXqVezatQvNmjUDAMTHx8PBwQFhYWFimcozduxY5OXl4ejRo0hNTcXixYuhUqkAAPfu3UPXrl3h7e2Ns2fPIiEhAX/++ScGDx6ssY8NGzZALpcjOTkZa9asEedPnToVixYtQlpaGpo3b44pU6Zgx44d2LBhA86fP4+GDRuiR48euHv3rsb+/r1dea5du4YdO3YgPj5e7I798OFDTJo0CWfPnsUPP/wAHR0d/Oc//0FhYSEA4PTp0wCAxMREZGdnIz4+HgAQFxeHmTNnYv78+UhLS8OCBQswY8YMbNiwodxyEBERERERERHR/2H37TLk5uZi/fr12Lx5M7p16wagqILNwcEBAJCVlQUjIyP06dMHxsbGcHZ2hre3NwDA1NQUcrkchoaGsLW1rVTu/Pnz0alTJwBFFXC9e/fGkydPYGBggPDwcAQEBGDMmDEAgEmTJuHkyZMIDw9Hly5dkJWVBVtbW/j5+UFfXx9OTk5o06YNAMDCwgK6urowNjaucJmysrIwcOBAsWLT1dVVXPbFF1/A29sbCxYsEOd99dVXcHR0xJUrV+Du7g4AaNSoEZYsWSKuU1wZGhYWhu7duwMoqiRcvXo1YmNj0atXLwBAVFQUDh48iPXr1yM0NFTc/tntKiI/Px8bN26ElZWVOG/gwIEa63z11VewsrLC5cuX0bRpU3FdS0tLjXM1a9YsLFu2DAMGDABQ1KLy8uXLWLt2Ld5///1S8/Py8pCXl6cxr0BQQ1+mW+FjICIiIiIiIiJ62bClZBkyMjKQn5+Ptm3bivMsLCzQuHFjAED37t3h7OwMV1dXDB8+HHFxcXj06FG1c59t/WdnZwcAuH37NgAgLS0Nvr6+Guv7+voiLS0NADBo0CA8fvwYrq6uGD16NHbu3ImnT59WuSzBwcGYN28efH19MWvWLFy8eFFcduHCBRw+fBgqlUqcmjRpAgAaXaFbt25d6r59fHzEnzMyMlBQUKBxbPr6+mjTpo14bKVtVxHOzs4aFZIAcPXqVbz77rtwdXWFiYkJXFxcABRVwpbl4cOHyMjIQGBgoMYxz5s3T+N4/23hwoUwNTXVmL5+mFbm+kRERERERERUNUId/feqYqVkFRkbG+P8+fPYunUr7OzsMHPmTLRo0QL37t2r1n719fXFn4vHfSzuVlweR0dHpKenIzIyEkqlEmPGjEHHjh1RUFBQpbJ88MEHuH79OoYPH47U1FT4+Phg1apVAIpakvr7+yMlJUVjunr1qtiNHQCMjIxK3XdZ88tT2e1KW9/f3x93795FVFQUTp06hVOnTgEoalVZltzcXABFLTifPd5Lly7h5MmTZW43bdo03L9/X2MabORRqWMgIiIiIiIiInrZsFKyDG5ubtDX1xcrrAAgJycHV65cEV/r6enBz88PS5YswcWLF5GZmYlDhw4BAORyOdRqtVbL5OHhgeTkZI15ycnJ8PT0FF8rlUr4+/tj5cqVSEpKwokTJ5CamlrlMjk6OiIoKAjx8fGYPHkyoqKiAACtWrXCzz//DBcXFzRs2FBjqmzFYfGDe549toKCApw5c0bj2LThzp07SE9Px2effYZu3brBw8MDOTk5GusUP6H72XNlY2MDe3t7XL9+vcTxFj8YpzQKhQImJiYaE7tuExEREREREdGrjmNKlkGlUiEwMBChoaGwtLSEtbU1pk+fDh2donrcvXv34vr16+jYsSPMzc2xb98+FBYWit27XVxccOrUKWRmZkKlUsHCwkLctqpCQ0MxePBgeHt7w8/PD3v27EF8fDwSExMBALGxsVCr1Wjbti0MDQ2xefNmKJVKODs7i2U6evQohgwZAoVCgXr16j03b8KECejVqxfc3d2Rk5ODw4cPw8OjqJXf2LFjERUVhXfffRdTpkyBhYUFrl27hm3btiE6Ohq6uhWveDMyMsLHH3+M0NBQWFhYwMnJCUuWLMGjR48QGBhYxbNVOnNzc1haWmLdunWws7NDVlYWpk6dqrGOtbU1lEolEhIS4ODgAAMDA5iammLOnDkIDg6Gqakpevbsiby8PJw9exY5OTmYNGmSVstJRERERERERJVTKLy6XaHrIraUfI6lS5fijTfegL+/P/z8/NChQwdxjEQzMzPEx8eja9eu8PDwwJo1a7B161Z4eXkBAEJCQqCrqwtPT09YWVk9d7zCiurfvz8iIiIQHh4OLy8vrF27FjExMejcubNYpqioKPj6+qJ58+ZITEzEnj17YGlpCaDoITGZmZlwc3MrMc5iadRqNcaOHQsPDw/07NkT7u7uiIyMBADY29sjOTkZarUab775Jpo1a4YJEybAzMysSpWvixYtwsCBAzF8+HC0atUK165dw/79+2Fubl7pfT2Pjo4Otm3bhnPnzqFp06aYOHEili5dqrGOnp4eVq5cibVr18Le3h79+vUDUNSdPTo6GjExMWjWrBk6deqE2NjY57aUJCIiIiIiIiKikmSCwGpkIintsxkiSY5CosFy1ZBJkqOHio2tWh35En1Poy/RtSmQ6NroSnQ8lxT65a+kBU3zqjYO74tIqm8ea/638+UkSPQ7KoUDSmmOJUV9V5Kc739aLUmOVLa2mFnbRdCaUX8dliTnt/aNJMk5dKW+JDmtTe9IkvP6r2U/AFJb8tVVf5BnZaS4uEuSM/x+2ePaa9PkQntJcvqlzpUkRwov070TAEb8trm2iyAJt3qtarsIVZLx9/naLkKtYEtJIiIiIiIiIiIikhQrJSUSFBQElUpV6hQUFFQrZerVq1eZZVqwYEGtlKkyvLy8yix/XFxcbRePiIiIiIiIiCQk1NF/ryo+6EYiYWFhCAkJKXWZiYmJxKUpEh0djcePH5e6zMLCQuLSVN6+fftQUFB6N0sbGxuJS0NERERERERERBXFSkmJWFtbw9rauraLoaF+fWnGsKkpxU8VJyIiIiIiIiKiuoWVkkREREREREREVOcJAh/BWJdwTEkiIiIiIiIiIiKSFCsliYiIiIiIiIiISFLsvk1ERPQMKb6te9k6lUj1DefLdt6kwHNGRC8bHZmstotARERawkpJIiIiIiIiIiKq8woh1HYRqBLYfZuIiIiIiIiIiIgkxUpJIiIiIiIiIiIikhQrJYmIiIiIiIiIiEhSHFOSiIiIiIiIiIjqPEHgmJJ1SZ1vKdm5c2dMmDBB6/tNSkqCTCbDvXv3tL5vIiIiIiIiIiKiV1mdr5SsqJqqvKwOFxcXrFixoraLQaWQyWTYtWtXbReDiIiIiIiIiOilxO7bLylBEKBWq6Gn9+Jc4vz8fMjl8hLzCwoKoK+vX+n9VXY7tVoNmUwGHZ1Xpi6eiIiIiIiI6JVRCHbfrkvqVO3Mw4cPMWLECKhUKtjZ2WHZsmUayyMjI9GoUSMYGBjAxsYGb7/9NgAgICAAR44cQUREBGQyGWQyGTIzMyuUee7cOfj4+MDQ0BDt27dHenq6xvLVq1fDzc0NcrkcjRs3xqZNm8RlgiBg9uzZcHJygkKhgL29PYKDgwEUtdy8efMmJk6cKJapPDdv3oS/vz/Mzc1hZGQELy8v7Nu3D8D/dTf//vvv0bp1aygUCnz11VeQyWT45ZdfNPazfPlyuLm5lZuXk5ODYcOGwcrKCkqlEo0aNUJMTIy4/NatWxg8eDDMzMxgYWGBfv36aZzXgIAA9O/fH/Pnz4e9vT0aN26MzMxMyGQybN++HZ06dYKBgQHi4uJQWFiIsLAwODg4QKFQoGXLlkhISBD3VdZ2zxMbGwszMzP873//g6enJxQKBbKysnDmzBl0794d9erVg6mpKTp16oTz58+L27m4uAAA/vOf/0Amk4mvAWD37t1o1aoVDAwM4Orqijlz5uDp06flnksiIiIiIiIiIvo/dapSMjQ0FEeOHMHu3btx4MABJCUliZVJZ8+eRXBwMMLCwpCeno6EhAR07NgRABAREYF27dph9OjRyM7ORnZ2NhwdHSuUOX36dCxbtgxnz56Fnp4eRo0aJS7buXMnxo8fj8mTJ+PSpUv46KOPMHLkSBw+fBgAsGPHDixfvhxr167F1atXsWvXLjRr1gwAEB8fDwcHB4SFhYllKs/YsWORl5eHo0ePIjU1FYsXL4ZKpdJYZ+rUqVi0aBHS0tLw9ttvw8fHp0TlXVxcHIYOHVpu3owZM3D58mV8//33SEtLw+rVq1GvXj0ARa0Ue/ToAWNjYxw7dgzJyclQqVTo2bMn8vPzxX388MMPSE9Px8GDB7F3716Nco4fPx5paWno0aMHIiIisGzZMoSHh+PixYvo0aMH+vbti6tXr5Y4vme3K8+jR4+wePFiREdH4+eff4a1tTX++ecfvP/++/jxxx9x8uRJNGrUCG+99Rb++ecfAMCZM2cAADExMcjOzhZfHzt2DCNGjMD48eNx+fJlrF27FrGxsZg/f3655SAiIiIiIiIiov/z4vTtLUdubi7Wr1+PzZs3o1u3bgCADRs2wMHBAQCQlZUFIyMj9OnTB8bGxnB2doa3tzcAwNTUFHK5HIaGhrC1ta1U7vz589GpUycARRVivXv3xpMnT2BgYIDw8HAEBARgzJgxAIBJkybh5MmTCA8PR5cuXZCVlQVbW1v4+flBX18fTk5OaNOmDQDAwsICurq6MDY2rnCZsrKyMHDgQLFi09XVtcQ6YWFh6N69u/h62LBh+OKLLzB37lwAwJUrV3Du3Dls3ry5Qnne3t7w8fEBAI0Wg9u3b0dhYSGio6PFVp4xMTEwMzNDUlIS3nzzTQCAkZERoqOjxW7bxS0pJ0yYgAEDBoj7Cw8Px6effoohQ4YAABYvXozDhw9jxYoV+PLLL8X1/r1deQoKChAZGYkWLVqI87p27aqxzrp162BmZoYjR46gT58+sLKyAgCYmZlpXJs5c+Zg6tSpeP/99wEUnf+5c+diypQpmDVrVoXLRERERERERET0qqszLSUzMjKQn5+Ptm3bivMsLCzQuHFjAED37t3h7OwMV1dXDB8+HHFxcXj06FG1c5s3by7+bGdnBwC4ffs2ACAtLQ2+vr4a6/v6+iItLQ0AMGjQIDx+/Biurq4YPXo0du7cWa2uvsHBwZg3bx58fX0xa9YsXLx4scQ6xRWIxYYMGYLMzEycPHkSQFEryVatWqFJkybl5n388cfYtm0bWrZsiSlTpuD48ePisgsXLuDatWswNjaGSqWCSqWChYUFnjx5goyMDHG9Zs2alTqO5LPlfPDgAX7//ffnnsuyjq88crlc4xoCwJ9//onRo0ejUaNGMDU1hYmJCXJzc5GVlfXcfV24cAFhYWHi8apUKrH1bVnvtby8PDx48EBjKhDUlToGIiIiIiIiIiqfIAh1cnpV1ZlKyfIYGxvj/Pnz2Lp1K+zs7DBz5ky0aNEC9+7dq9Z+n32QSnGLwMLCwgpt6+joiPT0dERGRkKpVGLMmDHo2LEjCgoKqlSWDz74ANevX8fw4cORmpoKHx8frFq1SmMdIyMjjde2trbo2rUrtmzZAgDYsmULhg0bVqG8Xr16ieNe/v777+jWrRtCQkIAFLVcbd26NVJSUjSmK1euaHQN/3d5yptfnspup1QqS4zX+f777yMlJQURERE4fvw4UlJSYGlpqdHtvDS5ubmYM2eOxvGmpqbi6tWrMDAwKHWbhQsXwtTUVGP6+mFaqesSEREREREREb0q6kylpJubG/T19XHq1ClxXk5ODq5cuSK+1tPTg5+fH5YsWYKLFy8iMzMThw4dAlDUYk6t1m4LNQ8PDyQnJ2vMS05Ohqenp/haqVTC398fK1euRFJSEk6cOIHU1NQql8nR0RFBQUGIj4/H5MmTERUVVe42w4YNw/bt23HixAlcv35d7CJdEVZWVnj//fexefNmrFixAuvWrQMAtGrVClevXoW1tTUaNmyoMZmamlbqmExMTGBvb1/uudSW5ORkBAcH46233oKXlxcUCgX+/vtvjXX09fVLXJtWrVohPT29xPE2bNiwzCd6T5s2Dffv39eYBht5aP2YiIiIiIiIiIjqkjozpqRKpUJgYCBCQ0NhaWkJa2trTJ8+XawM2rt3L65fv46OHTvC3Nwc+/btQ2Fhodi928XFBadOnUJmZqbY1bisiqSKCg0NxeDBg+Ht7Q0/Pz/s2bMH8fHxSExMBFD09Ge1Wo22bdvC0NAQmzdvhlKphLOzs1imo0ePYsiQIVAoFOJDZMoyYcIE9OrVC+7u7sjJycHhw4fh4VF+BdeAAQPw8ccf4+OPP0aXLl1gb29foeObOXMmWrduDS8vL+Tl5WHv3r1i3rBhw7B06VL069dPfGr2zZs3ER8fjylTpohjfVZUaGgoZs2aBTc3N7Rs2RIxMTFISUkp9wnbVdGoUSNs2rQJPj4+ePDgAUJDQ6FUKjXWcXFxwQ8//ABfX18oFAqYm5tj5syZ6NOnD5ycnPD2229DR0cHFy5cwKVLlzBv3rxSsxQKBRQKhcY8fZmu1o+JiIiIiIiIiKguqTMtJQFg6dKleOONN+Dv7w8/Pz906NABrVu3BlD0UJL4+Hh07doVHh4eWLNmDbZu3QovLy8AQEhICHR1deHp6QkrK6tyxw+siP79+yMiIgLh4eHw8vLC2rVrERMTg86dO4tlioqKgq+vL5o3b47ExETs2bMHlpaWAIoeSpOZmQk3Nzfx4SrPo1arMXbsWHh4eKBnz55wd3dHZGRkudsZGxvD398fFy5cqHDXbaCoJee0adPQvHlzdOzYEbq6uti2bRsAwNDQEEePHoWTkxMGDBgADw8PBAYG4smTJzAxMalwRrHg4GBMmjQJkydPRrNmzZCQkID//e9/aNSoUaX3VZ7169cjJycHrVq1wvDhwxEcHAxra2uNdZYtW4aDBw/C0dFRfGBSjx49sHfvXhw4cACvvfYaXn/9dSxfvlysZCYiIiIiIiKi2lMoCHVyelXJhFd5RE2iWrDPpuLd56tDAWl+tdWQlb+SFuihYmO5Vke+RN/T6Et0bQokuja6Eh3PJYV++StpQfO8qo37Wxk1/24uUqe+eawAqc6bVAQJfkelOmeJSmnuNynqu5LkfP/TaklypLK1xczaLoLWjPrrsCQ5v7XX/hfjpTl0pb4kOa1N70iS8/qvGeWvVE1PC6V5aOR5Z2neA8PvP39ce22ZXFix3nLV1S91riQ5UniZ7p0AMOK3zbVdBEnYmWl/CDgpZN+7XNtFqBUv298rRERERERERERE9IJ7ZSslg4KCoFKpSp2CgoJqpUy9evUqs0wLFizQet6LeA4qQ+rzRUREREREREQvLqGO/qtJd+/exbBhw2BiYgIzMzMEBgYiNze3zPUzMzMhk8lKnb755htxvdKWFw/5V1F15kE32hYWFoaQkJBSl1VlTERtiI6OxuPHj0tdZmFhofW8F/EcVIbU54uIiIiIiIiIqC4ZNmwYsrOzcfDgQRQUFGDkyJH48MMPsWXLllLXd3R0RHZ2tsa8devWYenSpejVq5fG/JiYGPTs2VN8bWZmVqmyvbKVktbW1iUeblLb6teXZkyZYi/iOagMqc8XEREREREREVFdkZaWhoSEBJw5cwY+Pj4AgFWrVuGtt95CeHg47O1Ljjerq6sLW1tbjXk7d+7E4MGDoVKpNOabmZmVWLcyXtnu20RERERERERERLUtLy8PDx480Jjy8vKqvd8TJ07AzMxMrJAEAD8/P+jo6ODUqVMV2se5c+eQkpKCwMDAEsvGjh2LevXqoU2bNvjqq69Q2Wdps1KSiIiIiIiIiIjqPEEQ6uS0cOFCmJqaakwLFy6s9vn4448/SvSQ1dPTg4WFBf74448K7WP9+vXw8PBA+/btNeaHhYXh66+/xsGDBzFw4ECMGTMGq1atqlT5Xtnu20RERERERERERLVt2rRpmDRpksY8hUJR5vpTp07F4sWLn7vPtLS0apfr8ePH2LJlC2bMmFFi2bPzvL298fDhQyxduhTBwcEV3j8rJYmIiIiIiIiIiGqJQqF4biXkv02ePBkBAQHPXcfV1RW2tra4ffu2xvynT5/i7t27FRoL8ttvv8WjR48wYsSIctdt27Yt5s6di7y8vAofCysliSRmgEJJcgTIJMmRoXJjRlSVFMdjJHta4xkAkC/oSpKjK9G1UcikeU/bPpXmeKTAsVOqRqrzJs07Wpr7pzR3G8C2UJqPlK/pWkqSs7XFTElypPLuT7NqPkSQ5jfnXFtp/q9+mne7/JW0oH5hviQ55+5L87sz3NKsxjOk+r/AwFia90D3RyUfMlETmspzJMl5me6f714IkyZIXSBNziuiUKK/gWqblZUVrKysyl2vXbt2uHfvHs6dO4fWrVsDAA4dOoTCwkK0bdu23O3Xr1+Pvn37VigrJSUF5ubmlapcZaUkERERERERERHRS8bDwwM9e/bE6NGjsWbNGhQUFGDcuHEYMmSI+OTt3377Dd26dcPGjRvRpk0bcdtr167h6NGj2LdvX4n97tmzB3/++Sdef/11GBgY4ODBg1iwYAFCQkIqVT5WShIREREREREREb2E4uLiMG7cOHTr1g06OjoYOHAgVq5cKS4vKChAeno6Hj16pLHdV199BQcHB7z55psl9qmvr48vv/wSEydOhCAIaNiwIT7//HOMHj26UmVjpSQREREREREREdFLyMLCAlu2bClzuYuLCwShZLf3BQsWYMGCBaVu07NnT/Ts2bPaZWOlJBERERERERER1XmlVa7Ri4tj7RMREREREREREZGkWClZRZ07d8aECRO0vt+kpCTIZDLcu3dP6/smIiIiIiIiIiJ6EbBSsobVVOVldbi4uGDFihW1XYwX2ot43YiIiIiIiIiIXhYcU5IqTa1WQyaTQUencnXaZW2Xn58PuVxe6XJUZbuCggLo6+tXOouIiIiIiIiIXmyFHFOyTmFLyQp4+PAhRowYAZVKBTs7OyxbtkxjeWRkJBo1agQDAwPY2Njg7bffBgAEBATgyJEjiIiIgEwmg0wmQ2ZmZoUyz507Bx8fHxgaGqJ9+/ZIT0/XWL569Wq4ublBLpejcePG2LRpk7hMEATMnj0bTk5OUCgUsLe3R3BwMICiFoA3b97ExIkTxTKVJzY2FmZmZvjf//4HT09PKBQKZGVlIS8vDyEhIahfvz6MjIzQtm1bJCUllbudi4sL5s6dixEjRsDExAQffvghAGDHjh3w8vKCQqGAi4tLifNc1nZlyczMhEwmw/bt29GpUycYGBggLi4Od+7cwbvvvov69evD0NAQzZo1w9atW8XtnnfdLl26hF69ekGlUsHGxgbDhw/H33//Xe45JCIiIiIiIiKi/8NKyQoIDQ3FkSNHsHv3bhw4cABJSUk4f/48AODs2bMIDg5GWFgY0tPTkZCQgI4dOwIAIiIi0K5dO4wePRrZ2dnIzs6Go6NjhTKnT5+OZcuW4ezZs9DT08OoUaPEZTt37sT48eMxefJkXLp0CR999BFGjhyJw4cPAyiq3Fu+fDnWrl2Lq1evYteuXWjWrBkAID4+Hg4ODggLCxPLVBGPHj3C4sWLER0djZ9//hnW1tYYN24cTpw4gW3btuHixYsYNGgQevbsiatXrz53OwAIDw9HixYt8NNPP2HGjBk4d+4cBg8ejCFDhiA1NRWzZ8/GjBkzEBsbq1GOf29XEVOnTsX48eORlpaGHj164MmTJ2jdujW+++47XLp0CR9++CGGDx+O06dPAyj7ut27dw9du3aFt7c3zp49i4SEBPz5558YPHhwhcpBRERERERERERF2H27HLm5uVi/fj02b96Mbt26AQA2bNgABwcHAEBWVhaMjIzQp08fGBsbw9nZGd7e3gAAU1NTyOVyGBoawtbWtlK58+fPR6dOnQAUVar17t0bT548gYGBAcLDwxEQEIAxY8YAACZNmoSTJ08iPDwcXbp0QVZWFmxtbeHn5wd9fX04OTmhTZs2AAALCwvo6urC2Ni4UmUqKChAZGQkWrRoIR53TEwMsrKyYG9vDwAICQlBQkICYmJisGDBglK3K9a1a1dMnjxZfD1s2DB069ZNrGh0d3fH5cuXsXTpUgQEBJS5XUVMmDABAwYM0JgXEhIi/vzJJ59g//79+Prrr9GmTZsyr9sXX3wBb29v8dgA4KuvvoKjoyOuXLkCd3f3Etl5eXnIy8vTmJcvqCGX6VbqGIiIiIiIiIjo+QR2365T2FKyHBkZGcjPz0fbtm3FeRYWFmjcuDEAoHv37nB2doarqyuGDx+OuLg4PHr0qNq5zZs3F3+2s7MDANy+fRsAkJaWBl9fX431fX19kZaWBgAYNGgQHj9+DFdXV4wePRo7d+7E06dPq1UeuVyuUabU1FSo1Wq4u7tDpVKJ05EjR5CRkVHmdsV8fHw0Xpd1TFevXoVarS5zu4r49zZqtRpz585Fs2bNYGFhAZVKhf379yMrK+u5+7lw4QIOHz6scbxNmjQBAI1jftbChQthamqqMW19+Eulj4GIiIiIiIiI6GXClpLVZGxsjPPnzyMpKQkHDhzAzJkzMXv2bJw5cwZmZmZV3u+zD2MpHvexsLCwQts6OjoiPT0diYmJOHjwIMaMGYOlS5fiyJEjVX7Ii1Kp1Bh/Mjc3F7q6ujh37hx0dTVb/alUqjK3K2ZkZFSlclRlu39vs3TpUkRERGDFihVo1qwZjIyMMGHCBOTn5z93P7m5ufD398fixYtLLCuuOP63adOmYdKkSRrzjjccWckjICIiIiIiIiJ6ubClZDnc3Nygr6+PU6dOifNycnJw5coV8bWenh78/PywZMkSXLx4EZmZmTh06BCAopaCz7b00wYPDw8kJydrzEtOToanp6f4WqlUwt/fHytXrkRSUhJOnDiB1NRUrZXJ29sbarUat2/fRsOGDTWmynZVf94xubu7l6j0rK7k5GT069cP7733Hlq0aAFXV1eN6wmUfo5atWqFn3/+GS4uLiWOuazKUoVCARMTE42JXbeJiIiIiIiI6FXHlpLlUKlUCAwMRGhoKCwtLWFtbY3p06dDR6eoPnfv3r24fv06OnbsCHNzc+zbtw+FhYVi924XFxecOnUKmZmZUKlUsLCwELetqtDQUAwePBje3t7w8/PDnj17EB8fj8TERABFT71Wq9Vo27YtDA0NsXnzZiiVSjg7O4tlOnr0KIYMGQKFQoF69epVugzu7u4YNmwYRowYgWXLlsHb2xt//fUXfvjhBzRv3hy9e/eu1P4mT56M1157DXPnzsU777yDEydO4IsvvkBkZGSly1aeRo0a4dtvv8Xx48dhbm6Ozz//HH/++adGpW5p123s2LGIiorCu+++iylTpsDCwgLXrl3Dtm3bEB0drfXKUyIiIiIiIiKquEJwTMm6hC0lK2Dp0qV444034O/vDz8/P3To0AGtW7cGAJiZmSE+Ph5du3aFh4cH1qxZg61bt8LLywtA0QNVdHV14enpCSsrq3LHLayI/v37IyIiAuHh4fDy8sLatWsRExODzp07i2WKioqCr68vmjdvjsTEROzZsweWlpYAgLCwMGRmZsLNzQ1WVlZVLkdMTAxGjBiByZMno3Hjxujfvz/OnDkDJyenSu+rVatW+Prrr7Ft2zY0bdoUM2fORFhYmMZDbrTls88+Q6tWrdCjRw907twZtra26N+/v8Y6pV03e3t7JCcnQ61W480330SzZs0wYcIEmJmZVbuimYiIiIiIiIjoVSIT+GgiIkkdshksSY6AkmN51oSKjXRafVJU+8pl2h1qoSz5gjStaqW6NgqZNEm/6cglybFWV+/BYFT3SfW78zK5oKjamNWVdUdHmqvjUfByfdn47k+zaj5EkObahLSV4FgATLG7LUlOxg1LSXKk+j/0pLzmP0tJ9ds52Uaa98C6P0sfm17bhspzJMk5/dBCkhwpvHshTJogdYEkMfo2jSXJqW2mKrfaLkKV3M8t/eG5Lzt23yYiIiIiIiIiojqP7e7qlpfra+A6ICgoCCqVqtQpKCioVsrUq1evMsu0YMGCWilTRSxYsKDMcvfq1au2i0dERERERERERGVgS0mJhYWFISQkpNRlJiYmEpemSHR0NB4/flzqMguLF7f5fVBQEAYPLr0rtFKplLg0RERERERERERUUayUlJi1tTWsra1ruxga6tevX9tFqBILC4sXutKUiIiIiIiIiIhKx0pJIiIiIiIiIiKq8wo5pmSdwjEliYiIiIiIiIiISFKslCQiIiIiIiIiIiJJsfs2EdH/91iQ5paoC3YpqAqdl+i0FUqUw28eiQgAIEhw15G9XHccmewl+k8HL9f/oVIRCmW1XQSqbeoCaXJ09aXJIXoBsVKSiIiIiIiIiIjqPIENQOqUl+srTSIiIiIiIiIiInrhsVKSiIiIiIiIiIiIJMXu20REREREREREVOcVCuy+XZewpSQRERERERERERFJipWSREREREREREREJKmXplKyc+fOmDBhgtb3m5SUBJlMhnv37ml930RERERERERERK+il6ZSsqJqqvKyOlxcXLBixYraLgY9IyAgAP3796/tYhARERERERFRBQmCUCenV9UrVyn5qhEEAU+fPn0h9lnWdvn5+VUqR1W2KygoqFIWERERERERERFpT52slHz48CFGjBgBlUoFOzs7LFu2TGN5ZGQkGjVqBAMDA9jY2ODtt98GUNT67ciRI4iIiIBMJoNMJkNmZmaFMs+dOwcfHx8YGhqiffv2SE9P11i+evVquLm5QS6Xo3Hjxti0aZO4TBAEzJ49G05OTlAoFLC3t0dwcDCAopabN2/exMSJE8UylefmzZvw9/eHubk5jIyM4OXlhX379gH4v+7m33//PVq3bg2FQoGvvvoKMpkMv/zyi8Z+li9fDjc3t3LzStvnjz/+iMLCQixcuBANGjSAUqlEixYt8O2335a7XefOnTFu3DhMmDAB9erVQ48ePQAAR44cQZs2baBQKGBnZ4epU6dqVGKWtd3zyGQyrF69Gn379oWRkRHmz58PtVqNwMBAsdyNGzdGRESEuM3s2bOxYcMG7N69W7wmSUlJAIBbt25h8ODBMDMzg4WFBfr161fh9xARERERERERERXRq+0CVEVoaCiOHDmC3bt3w9raGv/9739x/vx5tGzZEmfPnkVwcDA2bdqE9u3b4+7duzh27BgAICIiAleuXEHTpk0RFhYGALCysqpQ5vTp07Fs2TJYWVkhKCgIo0aNQnJyMgBg586dGD9+PFasWAE/Pz/s3bsXI0eOhIODA7p06YIdO3Zg+fLl2LZtG7y8vPDHH3/gwoULAID4+Hi0aNECH374IUaPHl2hsowdOxb5+fk4evQojIyMcPnyZahUKo11pk6divDwcLi6usLc3BxRUVGIi4vD3LlzxXXi4uIwdOjQCmWWts+FCxdi8+bNWLNmDRo1aoSjR4/ivffeg5WVFTp16lTmdgCwYcMGfPzxx+I5/O233/DWW28hICAAGzduxC+//ILRo0fDwMAAs2fPFvf17+0qYvbs2Vi0aBFWrFgBPT09FBYWwsHBAd988w0sLS1x/PhxfPjhh7Czs8PgwYMREhKCtLQ0PHjwADExMQAACwsLFBQUoEePHmjXrh2OHTsGPT09zJs3Dz179sTFixchl8srXCYiIiIiIiIi0i4Br25X6LqozlVK5ubmYv369di8eTO6desGoKiiysHBAQCQlZUFIyMj9OnTB8bGxnB2doa3tzcAwNTUFHK5HIaGhrC1ta1U7vz588WKtqlTp6J379548uQJDAwMEB4ejoCAAIwZMwYAMGnSJJw8eRLh4eHo0qULsrKyYGtrCz8/P+jr68PJyQlt2rQBUFTZpaurC2Nj4wqXKSsrCwMHDkSzZs0AAK6uriXWCQsLQ/fu3cXXw4YNwxdffCFWSl65cgXnzp3D5s2bK3wOnt1nXl4eFixYgMTERLRr104sx48//oi1a9dqVEr+uywA0KhRIyxZskR8PX36dDg6OuKLL76ATCZDkyZN8Pvvv+PTTz/FzJkzoaOjU+p2FTF06FCMHDlSY96cOXPEnxs0aIATJ07g66+/xuDBg6FSqaBUKpGXl6dxTTZv3ozCwkJER0eLLVpjYmJgZmaGpKQkvPnmmyWy8/LykJeXpzEvX1BDLtOt1DEQEREREREREb1M6lz37YyMDOTn56Nt27biPAsLCzRu3BgA0L17dzg7O8PV1RXDhw9HXFwcHj16VO3c5s2biz/b2dkBAG7fvg0ASEtLg6+vr8b6vr6+SEtLAwAMGjQIjx8/hqurK0aPHo2dO3dWa5zH4OBgzJs3D76+vpg1axYuXrxYYh0fHx+N10OGDEFmZiZOnjwJoKiVZKtWrdCkSZMK5z67z2vXruHRo0fo3r07VCqVOG3cuBEZGRnPLQsAtG7dWuN1Wloa2rVrp9F93dfXF7m5ufj111/L3K6y5S725ZdfonXr1rCysoJKpcK6deuQlZX13P1cuHAB165dg7GxsXi8FhYWePLkSYljLrZw4UKYmppqTFsf/lLqukREREREREREr4o6VylZHmNjY5w/fx5bt26FnZ0dZs6ciRYtWuDevXvV2q++vr74c3HFWWFhYYW2dXR0RHp6OiIjI6FUKjFmzBh07Nixyg9d+eCDD3D9+nUMHz4cqamp8PHxwapVqzTWMTIy0nhta2uLrl27YsuWLQCALVu2YNiwYZXKfXafubm5AIDvvvsOKSkp4nT58mWNcSVLK0tZ8ypbhqpus23bNoSEhCAwMBAHDhxASkoKRo4cWe6Dc3Jzc9G6dWuN401JScGVK1fK7AY/bdo03L9/X2N616jiFcFERERERERERC+jOlcp6ebmBn19fZw6dUqcl5OTgytXroiv9fT04OfnhyVLluDixYvIzMzEoUOHAAByuRxqtVqrZfLw8CgxxmFycjI8PT3F10qlEv7+/li5ciWSkpJw4sQJpKamVrlMjo6OCAoKQnx8PCZPnoyoqKhytxk2bBi2b9+OEydO4Pr16xgyZEilMp/l6ekJhUKBrKwsNGzYUGNydHSs9P48PDxw4sQJCML/jf+QnJwMY2NjsWu+tiQnJ6N9+/YYM2YMvL290bBhwxItHUu7Jq1atcLVq1dhbW1d4phNTU1LzVIoFDAxMdGY2HWbiIiIiIiISPsEQaiT06uqzlVKqlQqBAYGIjQ0FIcOHcKlS5cQEBAgjjm4d+9erFy5EikpKbh58yY2btyIwsJCsXu3i4sLTp06hczMTPz9998Vbu34PKGhoYiNjcXq1atx9epVfP7554iPj0dISAgAIDY2FuvXr8elS5dw/fp1bN68GUqlEs7OzmKZjh49it9++w1///13uXkTJkzA/v37cePGDZw/fx6HDx+Gh4dHudsNGDAA//zzDz7++GN06dIF9vb2VT5mY2NjhISEYOLEidiwYQMyMjJw/vx5rFq1Chs2bKj0/saMGYNbt27hk08+wS+//ILdu3dj1qxZmDRpknhttaVRo0Y4e/Ys9u/fjytXrmDGjBk4c+aMxjouLi64ePEi0tPT8ffff6OgoADDhg1DvXr10K9fPxw7dgw3btxAUlISgoODNbqYExERERERERHR89W5SkkAWLp0Kd544w34+/vDz88PHTp0EMcaNDMzQ3x8PLp27QoPDw+sWbMGW7duhZeXFwAgJCQEurq68PT0hJWVVbnjCFZE//79ERERgfDwcHh5eWHt2rWIiYlB586dxTJFRUXB19cXzZs3R2JiIvbs2QNLS0sARQ+CyczMhJubW4WeBq5WqzF27Fh4eHigZ8+ecHd3R2RkZLnbGRsbw9/fHxcuXKh01+3SzJ07FzNmzMDChQvFsnz33Xdo0KBBpfdVv3597Nu3D6dPn0aLFi0QFBSEwMBAfPbZZ9Uu57999NFHGDBgAN555x20bdsWd+7cER9SVGz06NFo3LgxfHx8YGVlheTkZBgaGuLo0aNwcnLCgAED4OHhgcDAQDx58gQmJiZaLycRERERERER0ctKJrzK7USJasEhm8GS5AiQlb+SFlS/rXHFSPENilqic6YLaW67Ul0bhUyapGyZXJKceoVVfxBZRb1MvzcvI6muz8vkgkK//JW04I6ONFfHo+Dl+u159/yMmg+RSXPOQtpIcCwAPrX/U5Kca9frSZIj1f+hxxXaHSarNFL9dk6y+kuSnKi/bCXJGSrPkSTn9EMLSXKkIMm9EwB0pfk/VL+eqyQ5tU2u0O7wb1LJz3s1e1/q1XYBiIiIiIiIiIiIqovt7uqWl+tr4CoICgqCSqUqdQoKCqqVMvXq1avMMi1YsEDreS/iOaiIuLi4Mstd3F2fiIiIiIiIiIhePK98S8mwsDDxgTT/VlvjBEZHR+Px48elLrOw0H5z+BfxHFRE37590bZt21KX6etL0wSeiIiIiIiIiIgq75WvlLS2toa1tXVtF0ND/fr1Jc17Ec9BRRgbG8PY2Li2i0FERERERERELwB23q5bXvnu20RERERERERERCQtVkoSERERERERERGRpFgpSURERERERERERNISiOiF9uTJE2HWrFnCkydPmPOC5bxMx8KcFzvnZToW5rzYOS/TsTDnxc55mY6FOS92zst0LMx5sXNepmMhkopMEASOA0r0Anvw4AFMTU1x//79Gn0aOnNezAzmMEeqDOYwR6oM5jBHqgzmMEeqDOYwR6oMKXOIpMDu20RERERERERERCQpVkoSERERERERERGRpFgpSURERERERERERJJipSTRC06hUGDWrFlQKBTMecFyXqZjYc6LnfMyHQtzXuycl+lYmPNi57xMx8KcFzvnZToW5rzYOS/TsRBJhQ+6ISIiIiIiIiIiIkmxpSQRERERERERERFJipWSREREREREREREJClWShIREREREREREZGkWClJREREREREREREkmKlJBEREREREREREUmKlZJEVCvu3btX20WokqysLAiCUGK+IAjIysqqhRIREdUNXbt2LfXe/+DBA3Tt2lVrOa6urrhz506J+ffu3YOrq6vWcor3GR0djWnTpuHu3bsAgPPnz+O3337Tas7L6MmTJzW6f6mujVQ5T58+RWJiItauXYt//vkHAPD7778jNzdXaxlSfMY5evQonj59WmL+06dPcfToUa1kEP1bTd9vAODatWvYv38/Hj9+DACl/i5VlxT3ASKpsVKS6AV19epVrFu3DvPmzUNYWJjGpC0JCQn48ccfxddffvklWrZsiaFDhyInJ0drOYsXL8b27dvF14MHD4alpSXq16+PCxcuaC1HCg0aNMBff/1VYv7du3fRoEEDreWEhYXh0aNHJeY/fvxYq++BjRs3Ii8vr8T8/Px8bNy4UWs5pamrFdMvA3Nzc1hYWFRo0pZRo0aJH6Cf9fDhQ4waNUprObdu3cKvv/4qvj59+jQmTJiAdevWaS1Dypx/e/DgAXbt2oW0tLQazakJSUlJyM/PLzH/yZMnOHbsmNZyMjMzoVarS8zPy8vTakXRxYsX4e7ujsWLFyM8PFy8p8XHx2PatGlay8nIyMBnn32Gd999F7dv3wYAfP/99/j555+1liGVwsJCzJ07F/Xr14dKpcL169cBADNmzMD69eu1liPVtZEq5+bNm2jWrBn69euHsWPHip9DFi9ejJCQEK3lSPEZp0uXLmLl7bPu37+PLl26aCWj2KZNm+Dr6wt7e3vcvHkTALBixQrs3r27TuZIdS84duwY3nvvPbRr1068Z27atEnjbwZtqOnzJtX95s6dO/Dz84O7uzveeustZGdnAwACAwMxefJkreVIdR8gkpxARC+cdevWCbq6uoKNjY3QokULoWXLluLk7e2ttZymTZsK3333nSAIgnDx4kVBoVAI06ZNE15//XUhICBAazkuLi5CcnKyIAiCcODAAcHMzEzYv3+/EBgYKHTv3r1a+y4+JxWZtEEmkwm3b98uMT8zM1MwNDTUSoYgCIKOjo7w559/lpj/999/Czo6OnUuZ9GiRcK2bdvE14MGDRJ0dHQEe3t7ISUlRWs5f/zxh/Dee+8JdnZ2gq6urqCjo6MxVcf9+/crPFWHFO/p2NhYcVq2bJlgbm4uDBkyRIiIiBAiIiKEIUOGCObm5sLnn39erWN5Vlnvtb/++kvQ1dXVWk6HDh2EjRs3CoIgCNnZ2YKJiYnQrl07oV69esKcOXPqXM6gQYOEVatWCYIgCI8ePRIaNWok6OvrC3p6esK3336rtRxBEIQrV64Ia9euFebOnSvMmTNHY6qOCxcuCBcuXBBkMplw+PBh8fWFCxeE8+fPCwsWLBCcnZ2rXf7du3cLu3fvFmQymbBx40bx9e7du4X4+Hhh7Nixgru7e7VzinXr1k0IDQ0VBEEQVCqVkJGRIQiCICQnJ2vleARBEJKSkgSlUin4+fkJcrlczFi4cKEwcOBArWQ8a+PGjUL79u0FOzs7ITMzUxAEQVi+fLmwa9curex/zpw5gqurq7B582ZBqVSKx7Nt2zbh9ddf10qGIEhzbaTM6devn/Dee+8JeXl5GjmHDx8WGjZsqLUcKT7jlJWRnp4uGBsbayVDEAQhMjJSqFevnjBv3jyN91pMTIzQuXPnOpcj1b3g22+/FZRKpfDBBx8ICoVCzFm1apXQq1cvreVIcd6kut8MHz5c6NGjh3Dr1i2N38+EhATB09NTazlS3QeIpKZX25WiRFTSvHnzMH/+fHz66ac1mnPjxg14enoCAHbs2IE+ffpgwYIFOH/+PN566y2t5fzxxx9wdHQEAOzduxeDBw/Gm2++CRcXF7Rt27Za++7fv7/485MnTxAZGQlPT0+0a9cOAHDy5En8/PPPGDNmTLVyJk2aBACQyWSYMWMGDA0NxWVqtRqnTp1Cy5Ytq5XxLEEQIJPJSsy/cOGCVluvlZXz66+/wtTUVGs5a9asQVxcHADg4MGDOHjwIL7//nt8/fXXCA0NxYEDB7SSExAQgKysLMyYMQN2dnalHltVmZmZVXh/pbXSqqhn39M15f333xd/HjhwIMLCwjBu3DhxXnBwML744gskJiZi4sSJ1cp68OABBEGAIAj4559/YGBgIC5Tq9XYt28frK2tq5XxrEuXLqFNmzYAgK+//hpNmzZFcnIyDhw4gKCgIMycObNO5Rw9ehTTp08HAOzcuROCIODevXvYsGED5s2bh4EDB2olJyoqCh9//DHq1asHW1tbjfe6TCar1vG0bNkSMpkMMpms1G7aSqUSq1atqvL+ixX/7shkMo33OADo6+vDxcUFy5Ytq3ZOsTNnzmDt2rUl5tevXx9//PGHVjKmTp2KefPmYdKkSTA2Nhbnd+3aFV988YVWMoqtXr0aM2fOxIQJEzB//nzxPmZmZoYVK1agX79+1c7YuHEj1q1bh27duiEoKEic36JFC/zyyy/V3n8xKa6NlDnHjh3D8ePHIZfLNea7uLhopfWvFJ9xBgwYIGYEBARAoVBoZFy8eBHt27evVsazVq1ahaioKPTv3x+LFi0S5/v4+Gi1VZlUOVLdC+bNm4c1a9ZgxIgR2LZtmzjf19cX8+bN01qOFOdNqvvNgQMHsH//fjg4OGjMb9SokdgCVBtq+j5AVFtYKUn0AsrJycGgQYNqPEcul4tdhBMTEzFixAgAgIWFBR48eKC1HHNzc9y6dQuOjo5ISEgQP9QIglCtyhsAmDVrlvjzBx98gODgYMydO7fEOrdu3apWzk8//QSgqMypqakaHwjkcjlatGihlQ9R5ubm4h/v7u7uGhUDarUaubm5Gh+sqsrb21vM6datG/T0/u+/A7VajRs3bqBnz57VzilWkxXTz/rxxx9x7NgxrVYQFzt8+LD4c2ZmJqZOnYqAgACxAvzEiRPYsGEDFi5cWK2cZ9/TUti/fz8WL15cYn7Pnj0xderUau+/uDK3+D39bzKZDHPmzKl2TrGCggLxj93ExET07dsXANCkSROxS1Vdyrl//774RURCQgIGDhwIQ0ND9O7dG6GhoVrLqckvw27cuAFBEODq6orTp0/DyspKXCaXy2FtbQ1dXd1q5xQWFgIo6oJ65swZ1KtXr9r7fB6FQlHq/5VXrlzROMbqSE1NxZYtW0rMt7a2xt9//62VjGJSVBL89ttvaNiwYYn5hYWFKCgo0EoGIM21kTKnsLCw1M9Lv/76q0YFVVVJ8Rmn+ItOQRBgbGwMpVKpkfH6669j9OjR1cp41o0bN+Dt7V1ivkKhwMOHD+tcjlT3gvT0dHTs2LHEfFNTU60OuyPFeZPqfvPw4UONivxid+/e1ah8r66avg8Q1RZWShK9gAYNGiS2tqlJHTp0wKRJk+Dr64vTp0+L4z5euXKlxLd91TFgwAAMHToUjRo1wp07d9CrVy8ARR+CS/uwUFXffPMNzp49W2L+e++9Bx8fH3z11VdV3ndxhdTIkSMREREBExOTKu/reVasWAFBEDBq1CjMmTNHo7WiXC6Hi4uLWAlWHcUtilJSUtCjRw+oVKoSOdpqgQXUbMX0sxwdHWtkYHEA6NSpk/hzWFgYPv/8c7z77rvivL59+6JZs2ZYt25diVZaLzJLS0vs3r27xLhHu3fvhqWlZbX3f/jwYQiCgK5du2LHjh0aLX3lcjmcnZ1hb29f7ZxiXl5eWLNmDXr37o2DBw+KX1L8/vvvWjkeqXMcHR1x4sQJWFhYICEhQWy5kpOTo9HqtLpq8sswZ2dnAP9XaVjTbty4IUlO3759ERYWhq+//hpAUQV7VlYWPv30U63dP83MzJCdnV1iPL+ffvoJ9evX10pGMSkqCTw9PXHs2DHxPVHs22+/LTW7qqS4NlLmvPnmm1ixYoU4Zq1MJkNubi5mzZqllZ4tUnzGiYmJAVDUqiskJARGRkZaz3hWgwYNkJKSUuK9lpCQAA8PjzqXI9W9wNbWFteuXYOLi4vG/B9//FGrDwqT4rxJdb954403sHHjRvFzgEwmQ2FhIZYsWaLVcVJr+j5AVGtqo884ET3fggULhHr16gnvv/++EB4eLo7zVjxpy82bN4XevXsLzZs3F6Kjo8X5EyZMED755BOt5eTn5wtLly4VgoODhfPnz4vzP//8cyEqKkprOTY2NkJMTEyJ+TExMYK1tbXWcqSQlJQk5Ofn13hObGys8Pjx4xrPGTt2rODs7Cz4+fkJlpaWwj///CMIgiBs3bpVq+Ok7t+/X3jzzTeFGzduaG2fpVEqlcKVK1dKzE9PTxeUSmW19m1mZiaYm5tXaNKGmJgYQVdXV+jTp48wd+5cYe7cuUKfPn0EPT29Un+fqiozM1NQq9Va219ZDh8+LJiZmQk6OjrCyJEjxfnTpk0T/vOf/9S5nC+//FLQ09MTzMzMhObNm4vncOXKlVodr2zUqFHC6tWrtba/stTUuJX/lpiYKEybNk0IDAwURo4cqTFpy7179wQ/Pz/BzMxM0NXVFRwdHQV9fX2hY8eOQm5urlYyJk+eLHTo0EHIzs4WjI2NhatXrwo//vij4OrqKsyePVsrGcU8PDzEsSOfHa9s5cqVWrtP79q1SzA1NRUWLVokGBoaCkuXLhU++OADQS6XCwcOHNBKhiBIc22kzLl165bg6ekpeHh4CHp6esLrr78uWFpaCo0bNy51rF4ShKioKKF+/frCtm3bBCMjI2Hr1q3CvHnzxJ/rWo5U94IFCxYInp6ewsmTJwVjY2Ph2LFjwubNmwUrKyth5cqVWsuR4rxJdb9JTU0VrK2thZ49ewpyuVx4++23BQ8PD8HGxka4du2a1nJ4H6CXlUwQaqhJCRFV2fOecCiTycSnx5GmRYsWYc6cORg9erQ41tupU6fw1VdfYcaMGVrpivrw4UMsWrQIP/zwA27fvl2i5Y82r01hYSGuXbtWak5pXWuq49y5c+LTfL28vLT6DTJQ1NU1IiICt27dQkBAgLj/5cuXw9jYGB988IFWcszNzfHo0SM8ffoUhoaG0NfX11he2hM/q6Jx48bo168flixZojF/ypQp2L17N9LT06u87w0bNlR4XW21yDx16hRWrlwpvgc8PDwQHBys1a71QNET19evX6/xXhs1apRWxy8FioYgePDgAczNzcV5mZmZMDQ01Or4lVLlnD17Frdu3UL37t3FVs3fffcdzMzM4Ovrq5WMhQsX4vPPP0fv3r3RrFmzEr87wcHB1c4ob9zK8+fPVzsDAObMmYOwsDD4+PiUOrbszp07tZJTLDk5GRcuXEBubi5atWoFPz8/re07Pz8fY8eORWxsLNRqNfT09KBWqzF06FDExsZqpdt7sejoaMyePRvLli1DYGAgoqOjkZGRgYULFyI6OhpDhgzRSs6xY8cQFhamcc5mzpyJN998Uyv7f1ZNXhupc54+fYrt27dr5AwbNkyjG3R1SfEZ588//0RISIiY8e8/RbXZeyIuLg6zZ89GRkYGAMDe3h5z5sxBYGCg1jKkypHqXiAIAhYsWICFCxeKQzwpFAqEhISUGB6puqQ4b1Ldb+7fv48vvvhCI2fs2LGws7PTao4U9wEiqbFSkugVl5GRgZiYGGRkZCAiIgLW1tb4/vvv4eTkBC8vL63lbNq0CWvXrsX169dx4sQJODs7Y8WKFWjQoIFWBs8v9vXXXyMiIkKjcmX8+PEYPHiwVvb/7rvv4siRIxg+fHipf+yOHz9eKzknT57E0KFDcfPmzRIf2GUymdY+tN++fRtDhgxBUlISzMzMABRVHHXp0gXbtm3T6phYUiivQk9blXj79u3DwIED0bBhQ7Hi7vTp07h69Sp27NjBbjSlOHv2LHr06AGlUil+aXDmzBk8fvwYBw4cQKtWrWq5hC+2/Px83LhxA25ubhpjwGqLFF+GOTs7Y8yYMTX+EDc7OzssWbIEw4cPr9GcjRs34p133ikxZlh+fj62bdsmjtOsDbdu3UJqaipyc3Ph7e2NRo0aaW3fz5KqEqemSXVtpMo5evQo2rdvX+J3/+nTpzh+/LjWvqiU4jNOr169kJWVhXHjxpWaoc3PhMUePXqE3NxcrX5ZVFs5Ut0L8vPzce3aNeTm5sLT01NjmB9tk+r61JSsrCw4OjqW+jDErKwsODk5aSVHqvsAkeRqsZUmEVVAYWGhUFhYWCP7TkpKEpRKpeDn5yfI5XKxq9bChQuFgQMHai0nMjJSqFevnjBv3jxBqVSKOTExMVrtfigFU1NT4ccff6zxnBYtWgiDBg0SLl++LOTk5Aj37t3TmLRl8ODBgo+Pj3D58mVx3s8//yz4+PgIQ4YM0VqOIEjXbVMqWVlZYlfd//znP8J///tfISsrS+s5165dE6ZPny4MGTJE7J6zb98+4dKlS1rPePfdd2sso0OHDkJAQIBQUFAgzisoKBDef/994Y033tBazh9//CG89957gp2dnaCrqyvo6OhoTNXRsmVLwdvbu0KTtjx8+FAYNWqUoKurK+jq6or3z3HjxgkLFy7UWo4UjI2NxfLXJAsLC612mSuLjo5OqV3m/v7772q/14rNmTNHePjwYYn5jx49qtF758OHD2ukO2CDBg2Ev//+u8T8nJwcoUGDBlrLkeLavIw5UnzGUalUwk8//VSjGYIgCF26dBFycnJKzL9//77QpUuXOpcj1b1g5MiRwoMHD0rMz83N1erwF1KcN95viOoGtpQkekFt3LgRS5cuxdWrVwEA7u7uCA0N1WrLj3bt2mHQoEGYNGkSjI2NceHCBfHpqAMGDMCvv/6qlRxPT08sWLAA/fv318i5dOkSOnfurPUniObn55fa7Ugb31Q2aNAA+/bt0+rg5aUxMjLChQsXtPogoNKYmpoiMTERr732msb806dP480339TakxZrstvmgwcPxEH5y3tqfE09oKimHDlyBL169YKvry+OHj2KtLQ0uLq6YtGiRTh79iy+/fbbOpEBAEqlEj/99BOaNGmiMf/y5cvw8fERu4lVV022wqnMU8K19RT18ePHIzk5GStWrEDPnj1x8eJFuLq6Yvfu3Zg9e7b41Ny6IDAwEK+99lqNP8Tt008/hUqlwowZM2o0R0dHB3/++WeJFuUXLlxAly5dtDJchK6uLrKzs0u0ILpz5w6sra212tW1a9euiI+PF1vNF3vw4AH69++PQ4cOVTtDR0cHf/zxR4nj+fPPP+Hk5IS8vLxqZxTn1PS1eRFyrly5Ah8fn3L/76soKT7jeHp6Ii4uTuvDxPxbWe+127dvo379+lp7+rJUOVLdC8rK+fvvv2Fra4unT59qJUeK81bb95ubN2/C09NTaw8Kk+o+QCQ1Pn2b6AX0+eefY8aMGRg3bpw4XtiPP/6IoKAg/P3335g4caJWclJTU7Fly5YS862trbVaUSjFEz0B4OrVqxg1ahSOHz+uMV8QBK11eZ47dy5mzpyJDRs2wNDQsNr7K0vbtm1x7dq1Gq+ULCwsLDF2HADo6+tr9Um58+bNw/z582uk26a5ubn4AdrMzKzU7jPafA8UO3bsmDgkwTfffIP69etj06ZNaNCgATp06KCVjKlTp2LevHniFwfFunbtii+++KLOZABFFcJZWVklKiVv3bqlkVtdP/74I44dO4aWLVtqbZ/FtFXRWBm7du3C9u3b8frrr2u8t728vMQutlU1adIkzJ07F0ZGRpg0adJz1/3888+rlQUADRs2xIwZM3Dy5MkaG7cSAJ48eYJ169YhMTERzZs3L5FT3WPx9vaGTCaDTCZDt27dNLrSqdVq3LhxAz179qxWRrHie9e/XbhwQeNJ9tqQlJSE/Pz8EvOfPHmCY8eOVWvf//vf/8Sf9+/frzGOrFqtxg8//FDiab9VIdW1kSpnwIABAIq+vAsICNDoJq5Wq3Hx4kW0b9++2jnFpPiMs2LFCkydOhVr167VyjX/t4sXL4o/X758GX/88Yf4Wq1WIyEhQStPq5Yqp1hN3wsePHgAQRAgCAL++ecfGBgYiMvUajX27dunle7VUpw3qe43xf9vymQyzJgxQ+N3Rq1W49SpU1r5LCL1fYBIaqyUJHoBrVq1CqtXr9YYi6hv377w8vLC7NmztVYpaWZmhuzs7BJjif30009a/SDVoEEDpKSkwNnZWWN+QkKCVr+NDwgIgJ6eHvbu3VtqCyltWLZsGTIyMmBjYwMXF5cSf+xq60ENn3zyCSZPnow//vij1D/emzdvrpWcrl27Yvz48di6dSvs7e0BAL/99hsmTpyIbt26aSUDAHJycjBo0CCt7e9Zhw4dEj+QHz58uEYy/m3Hjh0YPnw4hg0bhvPnz4vftt+/fx8LFizAvn37tJIjxRcHUn058c477yAwMBDh4eHih+fk5GSEhobi3Xff1VqOo6NjiXFY67K//vqr1D8EHz58WO173E8//SS2Rnlei0tt3UvXrVsHlUqFI0eO4MiRIyUytFUpefHiRfEPwUuXLpXIqa7+/fsDAFJSUtCjRw+NsdbkcjlcXFwwcODAamWYm5uLlV7u7u4a5Var1cjNzdVai1MpKgmKz5lMJisxtq++vj5cXFywbNmyamU8m1OT10bKnOLKFEEQYGxsrPEwC7lcjtdffx2jR4+udk4xKT7jvPPOO3j06BHc3Nxq5IF0LVu2FH93unbtWmK5UqnEqlWrqpUhZY5U94LiL3WLc/5NJpNVqrdAWaQ4b1Ldb4r/3xQEAampqZDL5eIyuVyOFi1aICQkpNo5Ut8HiKTGSkmiF1B2dnap33i1b98e2dnZWssZMmQIPv30U3zzzTeQyWQoLCxEcnIyQkJCtDpA/6RJkzB27Fg8efIEgiDg9OnT2Lp1q/hET21JSUnBuXPnSrTE0qbiDzo1rfiPmVGjRonzZDKZ1lv8ffHFF+jbty9cXFzg6OgIoGhQ7mbNmmHz5s1ayQCAQYMG4cCBAzXSbbNTp06l/vw8Y8aMQVhYGOrVq1elzHnz5mHNmjUYMWIEtm3bJs739fXFvHnzqrTP0kjxxYFUX06Eh4dDJpNhxIgRYvcvfX19fPzxx1i0aJHWcmqyFU7xH4cVoa1umz4+Pvjuu+/wySefAPi/SrXo6Gi0a9euWvt+thJfigr9Gzdu1HgGUPPHUtxi1sXFBe+8845GiyJtWbFiBQRBwKhRozBnzhyNlj7FlV7Vvf7FpKgkKG5536BBA5w5c6bK997ySHFtpMyJiYkRc0JCQmBkZFQjOcWk+IyzYsWKGt3/jRs3IAiCOBzRs11d5XI5rK2ttfKkaqlypLoXHD58GIIgoGvXrtixY4dG60u5XA5nZ2fxy+vqkOK8SXW/Kf6/ZuTIkYiIiKixIYKkvg8QSY1jShK9gJo2bYqhQ4fiv//9r8b8efPmYfv27UhNTdVKTn5+PsaOHYvY2Fio1Wro6elBrVZj6NChiI2N1cqHqWJSPNHztddew/Lly7XWdbY23bx587nL/93qtDoEQcAPP/yg8cRyPz8/re0fABYuXIjPP/8cvXv3rtFumxVlYmKClJQUuLq6Vml7Q0NDXL58GS4uLhrjpF6/fh2enp548uSJVsoZEhKCU6dO4ZtvvoG7uzvOnz+PP//8EyNGjMCIESO00p1YioxnPXr0SLwPFLeU0SZzc3M8evQIT58+1XornPKe7v4sbT3p/ccff0SvXr3w3nvvITY2Fh999BEuX76M48eP48iRI2jdurVWcujFdOTIEbRv377UYTa05ebNm5JUrhBR1UlxLwCK7geOjo7Q0dGp0RwiomKslCR6Ae3YsQPvvPMO/Pz8xDElk5OT8cMPP+Drr/8fe2ceV9P2///XaS6NKiVSJCVF4ZqnyjxnVqTBEK7IPI9JXBm7V4ibIsM1j+kiIbNUpmRIZR6Tiqvh/fuj39nfjpOps86ufPbz8dgPnbWP9VrnnL3X3vu93sMuuLi4MNXLyMjAjRs3kJ2dDQcHB1haWjLtvzi5ubnIzs5mkpfmS06dOoXZs2cjICCgRMMXqxXMzMxM7N69Gw8ePMCUKVNQuXJlxMfHw8jIiKlnGV+cPHkSJ0+eLLE40ObNm5lofOmFVxyRSISHDx8y0flRihsSS0OtWrWwYcMGtG/fXqKv8PBwBAYG4vbt20zGycfCAZ+LE2LERbSqV6/OvO/vGQ5ZGQv55MGDBwgMDERiYiKys7PRsGFDTJs2DXZ2dsw0XFxcSvQCFYlEUFNTQ+3ateHq6gorK6tSaxT3/C4JVvONo6PjNz1aWRRsAYpCJ1euXIldu3YhPT1dKh8jK29ZMZ8+fZLSqGjFu4Ci1AOxsbElfmesFqj4+m34PAZ27979VR1WqWP4ID09/Zv7WRQlLM7t27dL/M569uxZIXUAfuaC3NzcEj8Pq/RBYuT9vfEx3wDA1atXv3p+7t27l5nOrzIPCAhIwFeZbwEBgZ/j6tWr5ObmRg0bNqSGDRuSm5sbxcfHM9VYsGAB5eTkSLXn5ubSggULmOk4OjrSu3fvpNrfv39Pjo6OzHREIhGJRCJSUFCQ2MRtLEhMTCRDQ0OqXbs2KSkp0YMHD4iIaNasWTR06FAmGmLCw8OpRYsWVLVqVXr06BEREa1cuZL279/PTGP+/PmkoKBATZo0oV69elHv3r0ltl8VTU1N7rcrDQEBAWRjY0MXL14kLS0tOnv2LG3dupUMDQ1pzZo1DEdaRFpaGh05coR27txJKSkpzPsnIkpPT5erRkFBAS1YsIC0tbW5c1NHR4cWLlxIBQUFzPX44P79+zRr1iwaNGgQvXjxgoiIjh49Sjdv3izjkf08w4YNIx0dHTIzM6M+ffpQnz59yNzcnHR1dWnAgAFkZWVFqqqqdO7cuVJrfDm/dOvWjczMzEhHR4dcXFyYfZYJEyZIbGPHjqWWLVuSjo4O+fr6MtOZM2cOVa1alZYvX05qamq0aNEi8vb2Jn19fVq9ejUTjZycHBo7diwZGhpKXdtYXde+5NatW3Ts2DE6cOCAxMaC+Ph4MjY2Jm1tbVJUVCRDQ0MSiURUqVIlqlmzJhMNIn5+Gz51Vq9eTZqamvT777+TiooKjRo1itq3b086Ojo0c+ZMZjol3UOxPt740CAievDgAdWvX5/T+/IesaLp8DUXvHz5krp16/ZL/D58zTfbt28nZWVl6t69O6moqFD37t2pTp06pKOjQx4eHsx0+JoHBAT4RjBKCgj8D6OgoMA9SBfn9evXTG88RCJRiTovXrwgJSUlZjqnT5/+5sYCZ2dnmjJlChFJGrbi4uLIzMyMiQYR0V9//UUGBgbk7+9P6urqnM7ff/9N7dq1Y6ZjbGxM4eHhzPqrKMhqlCwsLCR/f3+qVKkSdyOtpqZGs2fPZjhKfuBrcWL69OlkaGhIf/31FyUmJlJiYiL9+eefZGhoyPxmOj8/n3bv3k2LFi2iRYsW0d69eyk/P5+pxunTp0ldXZ3at29PKioq3PG0ZMkS6tu3r0x9v3///oc3VkybNo1Gjx4tYSAuKCig33//nWbMmEGFhYU0cuRIatmyJTNNscbIkSNp6dKlTPstiXnz5tGkSZOY9VerVi06fPgwERXNKffv3yeiogfHwYMHM9EYM2YM1a1bl3bv3k3q6uq0efNmWrRoEVWvXp22bt3KREMMH0aCtm3b0ogRI6igoICbh9PT06lNmza0Z88eJhpE/Pw2fOpYWVlRZGQkpyOeb+bMmUNjx45lprN//36J7Z9//qGZM2dStWrVKDQ0lIlGQkKCxHblyhXasGEDWVtbMz0GunfvTr169aJXr16RpqYm3b59m86ePUtNmjShM2fOVDgdvuYCV1dXatmyJV25coUqVapE0dHRFBERQVZWVtyxzgI+vje+5hs7OzsKDg4mov87PwsLC2nEiBE0d+5cZjp8zQMCAnwjGCUFBMoJxR8u+XoIFYlE9PLlS6n2kydPkoGBgcz9iw0PIpGIYmJiuNeJiYkUHx9PAQEBTA15fKCtrc09dBS/IXj06BGpqqoy06lbty7t27dPSufGjRukr6/PTKdy5crc52GNn58fZWdnc39/a+MbWY2SYv777z+6desWXbp0iT58+MBgZJLk5+dTaGgoDR48mJydncnR0VFiYwFfixNVq1Yt0dtq//79ZGJiwkzn3r17ZGlpSRoaGuTg4EAODg6koaFBVlZWTI/1Zs2aUVBQEBFJHk+XLl2iatWqydT39zyJWHuAExEZGBjQ3bt3pdrv3r3LzTlJSUmko6PDTFNMcnIyGRsbM+/3S+7du0d6enrM+tPQ0KC0tDQiKlrguXbtGhEVGfe0tbWZaJiamlJMTAwREWlpadG9e/eIqMiTvkuXLkw0xPBhJNDR0aHk5GTu79u3bxMR0cWLF8nKyoqJBhE/vw2fOurq6lzEhKGhISUkJBARUUpKClWuXJmZztfYtm0b9ezZU64ahw8fprZt2zLrT19fnxITE4mo6N5NfNydPHmS7O3tK5wOX3OBsbExXbp0idMRXxcOHDjAdFGKj++Nz/kmNTWViIruq5OSkoiI6Pbt20yvbWU9DwgIyAuh+raAQDlBT08Pz549Q5UqVaCrq1tiPixiVHlZXEFWJBKhTp06EloFBQXIzs5mUiWZj4qeJSHPPDiqqqrIysqSak9JSZEoDiArqampcHBwKFE/JyeHmc7w4cMRGRmJOXPmMOtTzPXr15GXl8f9/TV+tJpxeURFRQU2NjbIysrCiRMnYGVlhbp16zLrf/z48QgLC0O3bt1ga2srl+9KPK98SWJiokT1TVl5+/YtrK2tpdqtra2Z5l3z9fWFhYUFLl68yI3/zZs3GDJkCHx9fXHkyBEmOjdu3EBkZKRUe5UqVfD69WuZ+uajEvaX5OfnIzk5GXXq1JFoT05O5q45ampqcjkGHzx4wFVklycXLlxgWiW5evXqePbsGWrUqAELCwtER0ejYcOGuHLlClRVVZlovH37lst9q62tzZ0rrVq1wujRo5loiLlw4QJOnToFAwMDKCgoQEFBAa1atcKSJUvg6+v7zXn8R1FWVuYKaFSpUgXp6emoW7cudHR0kJGRIXP/Yvj4bfjUMTY2xtu3b2FmZoYaNWrg4sWLaNCgAVfJWN40a9YMI0eOlKuGlZUVrly5wqy/goICaGlpAQAMDAzw9OlTWFlZwczMDHfv3q1wOnzNBTk5OVzedz09Pbx69Qp16tSBnZ0d05yFfHxvfM03enp6+PDhAwCgWrVquHnzJuzs7JCZmYnc3FxmOmU9DwgIyAvBKCkgUE44deoU9wAt7wfSVatWgYjg5eWFBQsWQEdHh9unoqICc3NzNG/eXGYd8UWSr4qer169gqenJ44dO1biflmNuUBR4u2FCxdi165dAIoMaunp6Zg2bRr69u0rc/9iatasiYSEBKkq21FRUTIbvSZOnMj9XVhYiA0bNuDEiROoX7++VHGgFStWlFqn+HFcFkaWbzFkyBCZksIPGDAAbdq0we+//46PHz/it99+4473HTt2MDsWduzYgV27dqFr165M+isOX4sTYho0aIDg4GCsWbNGoj04OBgNGjRgphMbGythkAQAfX19BAYGcoXDWKCrq4tnz55JFXG6fv26zAWv2rZtK9P/Lw1Dhw6Ft7c3Zs6cid9++w0AcOXKFQQEBMDd3R1A0Xdbr169UmsUn3uAIoP4s2fPcOTIEaYFiPr06VOiztWrV5kuwLi4uODkyZNo2rQpxo0bhyFDhmDTpk1IT0+Hn58fE41atWohNTUVNWrUgLW1NXbt2oUmTZrg0KFD0NXVZaIhhg8jgYODA65cuQJLS0u0bdsWc+fOxevXrxEREQFbW1smGgA/vw2fOk5OTjh48CAcHBzg6ekJPz8/7N69G1evXpU63lnz8eNHrFmzhlkhvy8XdsXn5/z585kWWrS1tUViYiJq1qyJpk2bYtmyZVBRUcGGDRtKXeSuLHX4mgusrKxw9+5dmJubo0GDBli/fj3Mzc0REhKCqlWrMtPh43vja75p06YN/v33X9jZ2aF///4YP348Tp06hX///RfOzs7MdMpyHhAQkCdC9W0BgXJIeno6TE1NpTxSiAgZGRnMKhPGxsaiZcuWUFKS7/pETk4OKlWqJFcNAHBzc0NaWhpWrVqFdu3aYd++fXjx4gX8/f0RFBSEbt26yazx/v179OvXD1evXsWHDx9gYmKC58+fo3nz5jh69CizzxkaGor58+cjKCgI3t7eCA0NxYMHD7BkyRKEhoZi0KBBpe7b0dHxh94nEomYVamVJ0lJST/8XlZVI42NjXH8+HE0aNAAkZGRmDdvHhITE7FlyxZs2LCBiUcRAJiYmOD06dNS3mss2LJlC7c4sWrVKrktToiJjY1Ft27dUKNGDa7fCxcuICMjA0ePHkXr1q2Z6FSuXBmHDx9GixYtJNrj4uLQo0cPZl6ZkydPxqVLl/DPP/+gTp06iI+Px4sXL+Du7g53d3fMmzev1H0nJSXB1tYWCgoK3z2+WR3TBQUFCAwMRHBwMF68eAEAMDIywrhx4zBt2jQoKioiPT0dCgoKpa6a/uXco6CgAENDQzg5OcHLy4vZtcjT0/OrOh07dmSiURIXL17E+fPnYWlpiR49ejDpc+XKlVBUVISvry9OnDiBHj16gIiQl5eHFStWYPz48Ux0AKB169aYNGkSevfuDVdXV7x79w6zZ8/Ghg0bcO3aNdy8eVNmDfG109HRES9fvoS7uzv3nW3evJnpAkVx5PHb8KlTWFiIwsJC7hzZsWMHpzNq1CioqKgw0REvVokhInz48AEaGhrYunUrk4rICgoKJd7fmpqaYseOHcyuO8ePH0dOTg769OmD+/fvo3v37khJSYG+vj527txZYgRPedbhay7YunUr8vPz4eHhgWvXrqFz5854+/YtVFRUEBYWhoEDBzLR4eN742u+efv2LT59+gQTExMUFhZi2bJlnM7s2bOhp6fHRIeveUBAgG8Eo6SAQDlEUVGRC+Uuzps3b1ClShUmHn9AkTeOt7c3+vfvD3V1dSZ9loSmpiYGDBgALy8vtGrVSm46VatWxYEDB9CkSRNoa2vj6tWrqFOnDg4ePIhly5bh3LlzzLTOnTuHpKQkZGdno2HDhmjfvj2zvsVs27YN8+fPx4MHDwAUGagWLFgAb29v5lryxsXFpcSwT5FIBDU1NdSuXRuurq6wsrL66b7FDzhfC0MuDqtzR11dHSkpKTA1NYW7uztMTEwQGBiI9PR02NjYIDs7m4lOUFAQHj58iODgYLmFucfGxqJFixZSXrLy4OnTp/jzzz+RnJwMAKhbty7GjBkDExMTZhru7u6Ij4/Hpk2b0KRJEwDApUuXMGLECDRq1AhhYWFMdD5//oyxY8ciLCwMBQUFUFJSQkFBAVxdXREWFiaTF7iCggKeP3+OKlWqSBzfX8IinUdJiD2ZZPEm/tXJy8vDqFGjMGfOHClvWXmSlpaGa9euoXbt2swM0mLkbSQQL6xWqVKFaRj9l/D12/Clk5+fj4CAAHh5eZV6QeBH2bJli8RrsUG/adOmzAwrsbGxJWrUrl1b7ovkb9++lTK8VlQdec4FxcnNzUVycjJq1KgBAwMDuekAbL83vuab/Px8REZGolOnTjAyMpKrDl/zgIAA3whGSQGBcoiCggJevHghlaMwLS0NNjY2zHIKTpgwAZGRkfjvv/8wYMAAeHt7o1mzZkz6Ls7+/fsRFhaGo0ePwtzcHF5eXpwhhyXa2tpISkqCubk5zMzMEBkZiZYtWyI1NRX16tVjmteFT3Jzc5GdnS1lpK5IeHh4YP/+/dDV1UWjRo0AAPHx8cjMzETHjh2RmJiIR48e4eTJkz8dYpuWlsb9ff36dUyePBlTpkyR8MYLCgrCsmXL0Lt3byafp06dOvD390e3bt1Qs2ZN7NixA05OTkhMTISzs7NMOQW/DMERp3aoV6+elOFw7969pdYpTkFBAfbt24c7d+4AAGxsbNCrVy9mD4h5eXno3LkzQkJCmIbnlURmZiaGDRuGQ4cOcd9Xfn4+evbsibCwMAmPUBakp6fj5s2byM7OhoODA5PPl5aWhho1akAkEkkc3yXxZYoHWXn16hUXqmttbS2Xh9DiGlZWVkzz8Rbn2rVr3DFdr169EvP0yoKOjg4SEhLkZpDi87z5GiyNBIWFhVBTU8OtW7fk/nnk/dvwraOpqYmbN2/C3Nxcrjq/Cnl5eVBXV0dCQgLTMN2y1OFjLsjLy4O1tTUOHz7MND92STry/t74nG80NDRw584d5tfjLxHmAYFfFSGnpIBAOUKcb0skEmHOnDnQ0NDg9hUUFODSpUuwt7dnprdq1SosX74cBw8exJYtW9CmTRvUrl0bXl5eGDp0KLMVv969e6N379549eoVIiIiEBYWhjlz5qBTp07w8vJCz549mRg/+MqDc+XKFcTExODly5coLCyU2CdLDsavoaGhIXEsVESMjY3h6uqK4OBgLul4YWEhxo8fDy0tLezYsQM+Pj6YNm3aT3u0Fr8J7N+/P9asWSORg7F+/fowNTXFnDlzmBklJ0yYADc3N2hqasLMzAzt2rUDAJw5cwZ2dnYy9f2l0czFxUWm/r7HrVu30LNnTzx//pzzVF26dCkMDQ1x6NAhJg8MysrKPxVmLwu6uro4cOAA7t27J+GRWbt2bbno1ahRg1lKDTHiPHV6enrYsmULJk+eLPc5ICcnB+PGjUN4eDg3rykqKsLd3R1r165los+HBgC8fPkSgwYNwunTp7lca5mZmXB0dMSOHTuYGUF79+6N/fv3M80dWBw+z5uvGQlYFrtSUFCApaUl3rx5I3cjgbx/G751nJ2dERsby4sxIjMzE5s2bZIw6Ht5eTFd0Hnw4AFWrVolsRA2fvx4WFhYMOlfWVkZNWrUkIsneVnp8DEXKCsr49OnT7zoyPt743O+adKkSYl54FnD5zwgIMAngqekgEA5QpxvKzY2Fs2bN5fIDSLO8TZ58mS5XVxfvnyJDRs2YPHixSgoKEDXrl3h6+vLLB9OcdauXYspU6bg8+fPMDAwgI+PD6ZPny7TQ2lJeXDevHkDFRUVbNmyhUkenICAAMyePRtWVlYwMjKS8B5hmYPRwcHhu+HOHh4eP5wfsqwxNDREXFycVG7ElJQUtGjRAq9fv8aNGzfQunVrZGZmllpHXV0d8fHxUiv8d+7cQcOGDfHx48dS9/0lV69eRUZGBjp06ABNTU0AwJEjR6Crq8u0oIq8ad68OQwNDbFlyxYuPO/du3fw8PDAq1evcP78eSY6fn5+UFVVRWBgIJP+ypqCggKEhYXh5MmTJS5QyDIXqKur4969e6hevfpX03mwZtSoUThx4gSCg4O54/fcuXPw9fVFhw4dsG7dugqhAQADBw7Ew4cPER4ezs0Ft2/fxrBhw1C7dm1s376diY44X7GzszMaNWoklVPY19dXZg0+z5tatWph3759csvrCACHDh3CsmXLsG7dOrl6lvHx2/CpExISggULFsDNza1EHRa5HoGi61qnTp2grq7Opb+4cuUKPn78yFUWl5Xjx4+jZ8+esLe35+aBuLg4JCYm4tChQ+jQoYPMGgCwadMm7N27FxEREUyN62Wlw9dcEBAQgJSUFISGhso1nJ6P742v+WbXrl2YMWMG/Pz8Sjw/WYXX8zUPCAjwjWCUFBAoh3h6emL16tW85vO6fPky/v77b+zYsQPa2trw8PDAkydPEBkZiTFjxmD58uUya7x48QJbtmxBWFgY0tLS4OLiAm9vbzx+/BhLly6FiYkJoqOjGXyaIuSRB8fIyAhLly6Fh4cHk/6+xowZM7Bu3TrY2dlJPBgkJSXBw8MDt2/fxsmTJ7F371706tVLrmNhgdjj68sbpoMHD2LYsGF49+4d7t27hyZNmuDdu3el1mnYsCFsbW0RGhrKGfU/f/6M4cOH4+bNm4iPj5fpc/DNx48fQUScsT4tLQ379u2DjY0Ns4Id6urquHr1qlRV5Zs3b+K3335jZsgVe8hZWlqWeDMti5fxxIkTsWjRIlSqVEmqwvOXsPJm/v333xEWFoZu3bqhatWqUosIK1euLHXfzZs3h6amJlq1aoUFCxZg8uTJnOH7S+bOnVtqneIYGBhg9+7dnNevmJiYGAwYMACvXr2qEBpAkbfxiRMnuCriYi5fvoyOHTvKtPBRnG+F7IpEIjx8+FBmDXmeN1/Ch5FAT08Pubm5yM/Ph4qKilQ+a1aFqPj4bfjUEUcYfE2HlcdZ69atUbt2bWzcuJEzSOXn52P48OF4+PAhzpw5I7OGg4MDOnXqJGVcmz59OqKjo5ldpx0cHHD//n3k5eXBzMxM6typaDp8zQViT31NTU3Y2dlJ6bBKG8PH98bXfFPS+Vk81zmr85OveUBAgG+E8G0BgXLI33//zYvOy5cvERERgb///hv37t1Djx49sH37dnTq1Il7wPbw8EDnzp1lMkru3bsXf//9N44fPw4bGxuMGTMGQ4YM4cLqAKBFixalyl/zPQNEcVjcsCkoKPDiBff69WtMmjQJc+bMkWj39/dHWloaoqOjMW/ePCxatKhCGCWHDh0Kb29vzJw5kzMUXLlyBQEBAXB3dwdQ5CH8pWHsZwkJCUGPHj1QvXp1bmU6KSkJIpEIhw4dkqnvsjB89erVC3369IGPjw8yMzPRpEkTqKio4PXr11ixYgVGjx4ts0adOnXw4sULqe/+5cuXTEOeb968yXnZpKSkSOyTNV/d9evXkZeXx/3NBzt27MCuXbskUgWwIiwsDPPmzcPhw4chEolw7NixEj1WRCIRM6Nkbm5uiSk7qlSpwiwfLx8aQFFqiJIKNykrK0t5tMpCamoqs76+hjzPmy8JDg7G/fv3YWJiIjcjwapVq2Tu40fg47fhU4flcfstrl69KmGQBAAlJSVMnToVjRs3ZqJx584d7Nq1S6rdy8uL6fHBKl1LedHhay7Q1dVF3759mfX3Nfj43n61+YaveUBAgG8ET0kBgXLK1atXsWvXLqSnp+Pz588S+1itUqqoqMDCwgJeXl7w8PAoMc9WVlYWevXqhZiYmFLr6OjoYNCgQRg+fLiU54qYjx8/YtmyZZg3b95P9f2j4cusQquXLVuGp0+fyv1GR0dHh6uqWJz79++jUaNGeP/+PZKTk/Hbb7/hw4cPch0LCwoKChAYGIjg4GC8ePECQJHX6bhx4zBt2jQoKioiPT0dCgoKMlcVzMnJwbZt2yTyCbq6uko9YP8sjo6O2LdvH3R1db953LEM4zcwMOCMtaGhoVi7di2uX7+OPXv2YO7cuVw+Llk4evQopk6divnz53OFri5evIiFCxciMDAQrVq14t7Lh/f248ePYWJi8k2PgPKAiYkJTp8+LZWSgDXFK3HLE2dnZ+jr6yM8PJyrVPrx40cMGzYMb9++xYkTJyqEBlBkzM/MzMT27du5gmpPnjyBm5sb9PT0sG/fPiY6P4q2tjYSEhJQq1YtuWmwOG8WLFjwzf0/e32WhcDAQPj4+EgsXsoDPn4bPnXs7Oxw9OhRmJqalur/GxkZISIiQsoT//jx43B3d+eu37JgamqKFStWoH///hLtu3btwuTJk5Geni6zxs+wfft29OzZU+Z7hPKiw9c1NC4uDo0bN4aqqqpcdfj43viab7p164bQ0FCmee5LQtZ5QECAd0hAQKDcsX37dlJWVqbu3buTiooKde/enerUqUM6Ojrk4eHBTOfMmTPM+voWOTk5vOjwQUFBAXXu3Jlq1apF3bt3JxcXF4mNFVWqVKEtW7ZItW/ZsoWqVKlCRES3bt0iAwMDZpp88f79e3r//n1ZD6NCoK6uTmlpaURE1L9/f5o/fz4REaWnp5O6ujoTDZFIxG0KCgqkoKBQ4msFBQUmet9DS0uLHjx4UOr/7+npSVlZWVLt2dnZ5OnpKcvQJFi+fDmNGTOGCgsLmfUpC127dqWnT5+W+v/fuHGDTExMSF9fn5ycnMjJyYn09fWpWrVqdPPmTSZjTEpKKlHDxMSEmQZR0flhb29PysrKVKtWLapVqxYpKyuTg4MDZWRkMNP5UTQ1NWU6pn8EWc+bnyEyMpKys7PlqsHX5+Hjt6lIOuPGjaPq1avTjh07KD09ndLT02n79u1UvXp1Gj9+PJMxLliwgHR1dSkwMJDOnDlDZ86coSVLlpCuri4tXLiQicbPwNexJuiUXx1hvhEQKFuE8G0BgXJIQEAAVq5cibFjx0JLSwurV69GzZo1MWrUKKara61btwZQFKZ59+5dAEUVrFl75GhoaKCgoAD79u3jPLvq1q2L3r17yzWJtjzw9fVFTEwMHB0doa+vzzx8Tsy4cePg4+ODa9euSYQ7h4aGYubMmQCKPBdYVmPng1evXnHHmrW1NbNcn8WJiIjA+vXr8fDhQ1y4cAFmZmZYuXIlatWqVSFC3YtTu3Zt7N+/Hy4uLjh+/DhX4fXly5fMvBZl8YKWByRjAMeWLVsQGBgILS0tifaPHz8iPDwcmzdvLnXfffr0kXh96tQpHDt2DPXq1ZMKF2bl0f6jnDlzRqb8n7a2trh3756El/HgwYPh5uYmlYertNjZ2cldAyjyxIqPj8eJEyckPKbbt2/PTKO8Iet58zOMGjUKTZs2lavXH5+fR+D/WL58OUQiEdzd3ZGfnw+gKO3B6NGjmRVYmTNnDrS0tBAUFIQZM2YAKPI8nz9/PrPCQD8DX8eaoFN+dYT5RkCgbKlY1gABgf8RHjx4gG7dugEoCrHOycmBSCSCn58fnJycvhti9aN8+PABY8aMwY4dO7jkyIqKihg4cCD+/PNP6OjoMNG5desWevTogRcvXsDKygoAsHTpUhgaGuLQoUNyrYjHmi1btmDPnj3c7yMvZs+ejZo1ayI4OBgREREAigzGGzduhKurKwDAx8eHSU5BPsjJyeGStItz4igqKsLd3R1r166Vqep6cdatW4e5c+diwoQJ8Pf3545rPT09rFq1iplR8tOnT1i7di1iYmJKrLzMKrH93Llz4erqCj8/Pzg7O6N58+YAgOjoaDg4ODDRaNu2LZN+ypqsrCwQEYgIHz584MKDgaL0AUePHpV5weXLOdHFxUWm/sobGhoaGDFihNz6X7JkCYyMjKQ0Nm/ejFevXmHatGnMtEQiETp06MCskq/A/yE8wP+6qKioYPXq1ViyZAkePHgAALCwsGB2jQbA3c/6+flx6We+XEQSEBAQEPjfQTBKCgiUQ/T09LgbtWrVquHmzZuws7NDZmYm02IAw4cPx/Xr13H48GHO2HHhwgWMHz8eo0aNwo4dO5jp2Nra4tq1a9DT0wMAvHv3Dh4eHhg5ciTOnz/PRIcPKleuDAsLC7lq5OfnIyAgAF5eXnBzc/vq+1h6FsmbiRMnIjY2FocOHeIKBZ07dw6+vr6YNGkS1q1bx0Rn7dq12LhxI3r37i3h1dG4cWNMnjyZiQYAeHt7Izo6Gv369UOTJk3k5jHbr18/tGrVCs+ePUODBg24dmdnZwmDmKw5pD59+oSkpKQSDaxfVkwvr+jq6kIkEkEkEpWY51EkEsm8oMNXETK+OHjw4A+/l8VxsH79ekRGRkq116tXD4MGDWJmlPT19UXt2rWlvK7EhVz4Kn4gIFDReP/+PQoKClC5cmXY2dlx7W/fvoWSkhITD/3U1FTk5+fD0tJSwhh57949KCsrw9zcXGYNAQEBAYGKg2CUFBAoh7Rp0wb//vsv7Ozs0L9/f4wfPx6nTp3Cv//+C2dnZ2Y6hw8fxvHjxyUKWXTq1AkbN25E586dmekkJCTg6tWrnEESKDK8Ll68+KuFb8or8+fPx7x58/D3338z9RwojpKSEpYtW8ZVpf4V2LNnD3bv3o127dpxbV27doW6ujoGDBjAzCiZmppaogehqqoqcnJymGgARefO0aNHeanEbmxsDGNjY4m2Jk2aSLy2sbEpdRGFqKgouLu74/Xr11L7RCIR521a3omJiQERwcnJCXv27EHlypW5fSoqKjAzM+OKnrDg48ePICJuHkhLS8O+fftgY2MjVSSivPKj1U9ZHQfPnz8vMQWJoaEhnj17JnP/Yvbs2VOiwbVFixYIDAzk3Sgpr0ULAdnh67epKMfAoEGD0KNHD4wZM0aifdeuXTh48CCOHj0qs4aHhwe8vLxgaWkp0X7p0iWEhobi9OnTMmsICAgICFQcBKOkgEA5JDg4GJ8+fQIAzJo1C8rKyjh//jz69u2L2bNnM9PR19cvMURbR0dHwoAoK3Xq1MGLFy9Qr149ifaXL19KVZcu76xZswYPHjyAkZERzM3NpfLIsQrbdXZ2Rmxs7C/jMZCbmwsjIyOp9ipVqjD1/q1ZsyYSEhJgZmYm0R4VFYW6desy06lWrVq5CjeTJZxy3Lhx6N+/P+bOnVvib8Q3pX14F4ehp6amwtTUVO6VR3v16oU+ffrAx8cHmZmZaNKkCVRUVPD69WusWLGiQqRW+NIrVt6YmpoiLi4ONWvWlGiPi4tjajB+8+ZNidc2bW3tEo3v8oaPcOeKYvQqb/xKefFYcOnSJaxYsUKqvV27dpg1axYTjevXr5e4oNesWTP8/vvvTDT+lxEM7QICAhUNwSgpIFDOyM/Px+HDh9GpUycAgIKCAqZPny4XrdmzZ2PixImIiIjgPLGeP3+OKVOmYM6cOTL1nZWVxf29ZMkS+Pr6Yv78+WjWrBkA4OLFi1i4cCGWLl0qkw7f/Khnkax06dIF06dPx40bN9CoUSNUqlRJYn9FCakV07x5c8ybNw/h4eFcrr+PHz9iwYIFXOoAFkycOBFjx47Fp0+fQES4fPkytm/fjiVLliA0NJSZTlBQEKZNm4aQkBApA2hF48WLF5g4cWK5MEgCsj+8i3+P3NxcpKen4/PnzxL769evL1P/YuLj47Fy5UoAwO7du2FsbIzr169jz549mDt3boUwSpYGOzs7HD16FKampj/9f0eMGIEJEyYgLy8PTk5OAICTJ09i6tSpmDRpErMx1q5dG1FRUVIGjmPHjjErzpKXlwdra2scPnz4uwsex44dQ7Vq1Zjofo2KYPTKz89HZGQkOnXq9N35pnXr1jKlKDl37pxEFMjXkPW34UsnPDwcAwcOhKqqqkT758+fsWPHDi6yYv369TLN5f/99x9X4KY4eXl5MhXSKo5IJOJSFBVHHDrON2ZmZlILzBVZpyIY2gsKChAXF4f69etDV1f3m+8t7ffG13yTl5eHUaNGYc6cOVILbl8yc+ZMiSiOn9Xp3LkzQkJCpLyMv0TWeUBAgHd4rPQtICDwg6irq9OjR4/k0re9vT05ODhwm6amJikrK5OFhQVZWFiQsrIyaWpqkoODg0w6IpGIFBQUuE0kEkm0FX8tII34+ylpq4jf2Y0bN8jExIT09fXJycmJnJycSF9fn6pVq0Y3b95kqrV161aqXbs2931Vq1aNQkNDmWq8fPmS2rVrRwoKCqSpqUl6enoSG99oamrSgwcPSvV/PT09mX8/spCenk75+fml/v8vX76kbt26Scw/xTdWqKurU1paGhER9e/fn+bPn09EReNXV1dnpvOjBAQE0Lt37+SuI8uxVlhYSFOnTiU1NTXu99DQ0KAFCxYwHeOmTZtIXV2d5s6dS6dPn6bTp0/TnDlzSENDgzZs2MBMx8TEhG7fvs2svy/5/PkzKSoq0o0bN777XlnPm/z8fIqNjf2hY6hevXqUnp5eKh153t8UR1lZmczNzWnGjBl069atCq+joKBAL168kGp//fo103mtXbt29Pvvv0u1jxkzhlq1asVEo3v37tS/f3+J4zU/P5/69u1LnTt3ZqJBROTt7U0xMTHM+itrHU9PT8rKypJqz87OJk9PT+61rHOBo6NjifPA+/fvydHRsdT9fomqqio9fPiQWX8lwdd8o62tLffPQkRkYGBAKSkpctcREOAbEVEFWFoVEPgfo127dvDz82NWKbg4P1PoYd68eaXWiY2N/eH3/irVfwW+TW5uLrZt24bk5GQAQN26deHm5ia3gj25ubnIzs6WueJySbRv3x7p6enw9vaGkZGRVBjTsGHDmGt+Cy0tLSQmJpbKCyw3Nxf9+/eHoaEh7OzspDwSviwWUlr4qlju5uaGtLQ0rFq1Cu3atcO+ffvw4sUL+Pv7IygoCN26dWOiU79+fQwfPhwuLi6wtbVFVFQUmjdvjmvXrqFbt254/vw5E50tW7bAwMCAG/fUqVOxYcMG2NjYYPv27bx76spyrInJzs7GnTt3oK6uDktLSynvLxasW7cOixcvxtOnTwEA5ubmmD9/PtNcvQEBAUhJSUFoaCiUlOQTfFSrVi3s27dPotCVvFBTU8OdO3e+6+0jC/K8vynO69evsWPHDmzfvh0XLlxA/fr14ebmhsGDB6N69eoVTkdBQQEvXryAoaGhRHtiYiIcHR3x9u1bJjpxcXFo3749fvvtNy6H+cmTJ3HlyhVER0ejdevWMmvcvn0bbdq0ga6uLtff2bNnkZWVhVOnTsHW1lZmDaAoxcbx48dhaGiIQYMGYciQIXI5j/jSUVRUxLNnz6TuaV6/fg1jY+MSPVxLg4KCAp4/fy6l8/LlS1SrVg15eXlMdBo3boylS5cyzZX/JXzNN8OGDYO9vT38/PzkquPn5wdVVVWJQo4CAr8CglFSQKAcsmvXLsyYMQN+fn4lhu6yCj/8UbZv346ePXtKjYM1Y8aMwcKFC2FgYCBXHVnQ09MrMY+OSCSCmpoaateuDQ8PD3h6esqks3Dhwq/uE4lEMofXC8iGhoYGLly4wIuh4EfQ1tYudaGbTZs2wcfHB2pqatDX15c4vkUiER4+fMhkjG5ublzF8pIMubIsghSnatWqOHDgAJo0aQJtbW1cvXoVderUwcGDB7Fs2TKcO3eOic7u3bvh6uqKgoICODs7Izo6GkBRuoozZ87g2LFjTHSsrKywbt06ODk54cKFC2jfvj1WrlyJw4cPQ0lJCXv37mWi86OwMEryyatXr6Curg5NTU2pfXFxcWjcuHGpjaIuLi44efIkNDU1YWdnJ3WNZPHbbNq0CXv37kVERESpw/5+FD6MBGVxf5OamorIyEhs374dycnJaNOmDU6dOlUhdBwcHCASiZCYmIh69epJGL8LCgqQmpqKzp07Y9euXbIOnyMhIQF//PEHEhISoK6ujvr162PGjBnfDRn9GZ4+fYrg4GAkJiZyGr///jvzY/zdu3f4559/EBkZibNnz8La2hpubm5wdXVlmrNbnjpZWVkgIujp6eHevXsShumCggIcOnQI06dP5xZgSktSUhIAwN7eHqdOnZL4LQoKChAVFYX169fj0aNHMumIiYqKwowZM7Bo0aIS5wIWld75mm/Ei57Ozs4l6rBa3B03bhzCw8NhaWlZok5J+WAFBCoCglFSQKAcUlKBBpFIBCIqk2q4shg8yqOOLKxcuRKLFy9Gly5duArIly9fRlRUFPz8/JCamoqIiAisXbsWI0aMKLXOlxWk8/LykJqaCiUlJVhYWDDzKpMnJVW//RqscmSKH+C+5EujsaOjo0w6DRs2xF9//cXlSC1rZDEUGRsbw9fXF9OnT5drcRgdHR1eKpZra2sjKSkJ5ubmMDMzQ2RkJFq2bInU1FTUq1ePaWGl58+f49mzZ2jQoAH33V2+fBna2tqwtrYGADx+/BgmJial/m41NDSQnJyMGjVqYNq0aXj27BnCw8Nx69YttGvXDq9evWL2eX6EimaU/BayXnO+t/j0999/l6rf4jg4OOD+/fvIy8uDmZmZ1EMoy2sBH0aCsrq/KSgowLFjxzBnzhwkJSVVGB1xdMuCBQswadIkCeO6iooKzM3N0bdvX6ioqMik87MEBgbCx8fnu/kAZYH1QvXjx4+xfft2bN68Gffu3WPmWShvHQUFhW8WlRGJRFiwYIHMhYiK65RkHlBXV8fatWvh5eUlk05xPTHFPx/LuYCv+eZb3uUsF3e/de8qEonkstgiIMAHQqEbAYFySGpqalkPQQK+1i4qwhrJuXPn4O/vDx8fH4n29evXIzo6Gnv27EH9+vWxZs0amYyS169fl2rLysqCh4cHXFxcSt0vn/xoUSCWN4adO3fGunXrYGdnxxmNr1y5gqSkJHh4eOD27dto37499u7dK1M4T2BgICZNmoTFixeXGPLM4uEdALy8vLB69WqpSt85OTkYN24cNm/eDKAoHK601Ys/f/6MgQMHyr1aNV8Vy62srHD37l2Ym5ujQYMGWL9+PczNzRESEoKqVasy1TI2NuaKhIkRH3dibGxsZDJ8aWpq4s2bN6hRowaio6MxceJEAEWhtqwKT/yvIus1h4XR8XvwVVwNALp27QqgaJFIXkYCvu9v4uLisG3bNuzevRufPn1Cr169sGTJkgqjI/YgNzc3x6BBg+SS6qA0BAQEYMCAAXI1Sm7duhWTJ09mYpTMy8vD1atXcenSJTx69EhuRUDkoRMTEwMigpOTE/bs2SPhwaiiogIzM7NSX/+Lk5qaCiJCrVq1cPnyZQmPTBUVFVSpUgWKiooy64iJiYlh1tfX4Gu+4UuHj+9MQKAsEDwlBQQEvgtfnjEVwQNHU1MTCQkJqF27tkT7/fv3YW9vj+zsbDx48AD169dHTk4Oc/0bN26gR48ezMJnfjVGjBiBGjVqSIW3+/v7Iy0tDRs3bsS8efNw5MgRXL16tdQ6YgPel94LrFff+cgh5efnB0NDQ8ycOVPmvr7FsWPHsGbNGrlXLN+6dSvy8/Ph4eGBa9euoXPnznj79i1UVFQQFhaGgQMHyk27JGSd19zc3JCcnAwHBwds374d6enp0NfXx8GDBzFz5kzcvHmT8Yi/TUWYp38UVp/l1atXuHv3LoAio/iXef8qCt/LBV2R8j9Pnz4dO3fuxNOnT9GhQwe4ubmhV69e0NDQqJA6GRkZEIlEXJ7Ky5cvIzIyEjY2Nhg5ciRTrR+Bj3mAhUZMTAwiIyOxZ88eFBYWok+fPnBzc4OTk9M3vQ/Lm05+fj5GjBiBhQsXwtTUlMGIBeSF2LTC8vgqicePHwMA09y1AgJlheApKSBQDgkPD//mfpaJ+gV+jsqVK+PQoUNSyawPHTrErV7n5OTIzSPs/fv3eP/+vVz6Lg/Y2dnh6NGjpb7p3rVrF65duybVPmjQIDRq1AgbN27E4MGDZc67I+/VanEOKSLChw8foKamxu0rKCjA0aNHmRXwKSgowLJly3D8+HHUr19fyuuTVY6ixo0b49OnT6hVqxY0NDSkdFgVahgyZAj3d6NGjZCWlsaFP5fnfLVf488//8Ts2bORkZGBPXv2QF9fHwBw7do1DB48mJlOeHg4Bg4cKOWJ9fnzZ+zYsYO77qxfv15uXkYVDbHHcnh4OFe4SVFREe7u7li7di1Tw9S1a9dw584dAEC9evWkUnywgC+j44MHD7Bq1Sru89jY2GD8+PGwsLBgpnH27FlMmTIFAwYMkOt5z5eOq6srRo4ciaFDh+L58+do3749bG1tsW3bNjx//hxz586Vm3ZFpVq1anj79i06d+6MDRs2oEePHnLxNOVDR0lJCbt372aWe/lb8FlcLTMzE5s2bZKY27y8vKCjo8NMg4/5Bii6hv7xxx+4d+8eAKBOnTqYMmUKhg4dykyjsLCQy1+ZnZ0NoMh4P2nSJMyaNUvuES8CAvJCMEoKCJRDxo8fL/E6Ly8Pubm5UFFRgYaGhmCULEPmzJmD0aNHIyYmRiI8+OjRowgJCQEA/PvvvzI/3K1Zs0biNRHh2bNniIiIQJcuXWTquzzz6NEjmSo7qqmp4fz581KerOfPn+cMe4WFhRJGvtIg74d3XV1diEQiiEQi1KlTR2q/OIcUC27cuMEZOL70umO50j948GA8efIEAQEBJRa6Yc3nz5+RmpoKCwsLNGzYUK5a8kRXVxfBwcFS7ax+fzGenp7o3LmzlLH7w4cP8PT05K47rq6uTHUrMhMnTkRsbCwOHTrE5Uo9d+4cfH19MWnSJKxbt05mjZcvX2LQoEE4ffo0FyqbmZkJR0dH7Nixg7lXpryNBMePH0fPnj1hb2/PfWdxcXGoV68eDh06hA4dOsiskZeXBysrK3Tp0kWuhkK+dICiuVl8z7Fr1y7Y2dkhLi4O0dHR8PHxEYySJTB//nz0799friHmfOo4OTkhNjaWaYGekggICODmrgsXLiA4OBirVq3C4cOH4efnx6y42tWrV9GpUyeoq6tzx/aKFSuwePFiREdHM7lu8zHfAEXjnjNnDn7//XeJa4GPjw9ev37NrCr3rFmzsGnTJgQGBkrozJ8/H58+fcLixYuZ6AgI8A4JCAhUCFJSUsjZ2ZmioqJ419bU1KQHDx78Mjqycu7cORo0aBA5ODiQg4MDDRo0iOLi4phqmJubS2y1atWipk2b0owZMygrK4upVnlC1mNg0aJFpK6uTr6+vhQREUERERHk6+tLGhoa5O/vT0REK1asoPbt28s81nfv3tHy5cvJ29ubvL29acWKFZSZmSlzv0REp0+fppiYGBKJRLR37146ffo0t50/f56ePHnCRIdP1NXVKSEhQe46OTk55OXlRYqKiqSoqMgdT7///jstWbJE7vpfIusxfezYMTp79iz3Ojg4mBo0aECDBw+mt2/fshgiERGJRCJ6+fKlVHtCQgLp6ekx0ylPaGlpyfTb6OvrU0xMjFT7qVOnyMDAQIaR/R8DBgygxo0b0+3bt7m2W7duUePGjWnQoEFMNMRcuXKFKleuTNWqVSMXFxdycXGh6tWrk76+Pl27do2Jhr29PU2bNk2qfdq0aeTg4MBEg4hIW1ubHj58yKy/stapVKkSpaamEhFRjx49KDAwkIiI0tLSSE1NTe76X8LH/ZosGp8/fyZFRUW6ceMG41GVjQ4R0bp168jY2JgmTZpEkZGRdODAAYmNFerq6pSWlkZERFOnTqWhQ4cSEdHNmzeZzWtERK1atSIPDw/Ky8vj2vLy8mjYsGHUunVrJhp8zTfm5ua0ZcsWqfawsDAyNzdnplO1atUSf+v9+/eTiYkJMx0BAb4RjJICAhWIK1eukJWVFe+69erVo/T09FL//7S0NCosLJRqLyws5G58iIh8fHzo1atXpdYRqPiweNDZunUrNWvWjPT09EhPT4+aNWtG27Zt4/bn5ubSx48fZdLg4+GdiOjRo0dUUFDArL9vce/ePYqKiqLc3FwiohLPWVlwcHCgCxcuMO2zJHx9falRo0Z09uxZqlSpEnc87d+/n+zt7eWu/yWyGr5sbW3pyJEjRESUlJREqqqqNGPGDGrWrBl5eHjIPD57e3tycHAgBQUFsrOz4xZbHBwcqH79+qSlpUX9+/eXWac8Iut8o66uLmEsFHPz5k3S0NCQZWgc2tradPnyZan2S5cukY6ODhMNMXwYCVRVVSklJUWq/e7du6SqqspEg4jI3d2dVqxYway/stZp0qQJTZs2jc6cOUNqamrcAs+FCxeoWrVqctf/kvJulCQiqlmzJi8LYXzpiESir24KCgrMdAwNDSk+Pp6Iiq4P4eHhRER0//59qlSpEjMdNTU1unPnjlT7rVu3SF1dnYkGX/ONqqoq3bt3T6o9JSWFuc7du3el2pOTk8tkcUJAgBVC+LaAQAVCSUkJT58+ZdbflStXUFhYiKZNm0q0X7p0CYqKimjcuDEA6ZDOn6VmzZolFut4+/YtatasyRUFYRHqxiefPn3C58+fJdpYVV0WKD1ubm5wc3P76n51dXWZNfz8/NCzZ09s3LgRSkpFl9L8/HwMHz4cEyZMwJkzZ2TWAAAzMzO5h1O+efMGAwYMQExMDEQiEe7du4datWrB29sbenp6CAoKYqLDV8Xy/fv3Y+fOnWjWrJlEiHi9evXw4MEDJho/A8lYTzA1NRU2NjYAgD179qB79+4ICAhAfHw8Vy1ZFsTVnRMSEtCpUydoampy+1RUVGBubo6+ffvKrMMn/v7+cHNzQ82aNb/5vg8fPsik07x5c8ybNw/h4eFcSoiPHz9iwYIFaN68uUx9iyksLJQ6VwBAWVmZy2PJiqtXr0rMaUDRfcfUqVO5+wFZMTQ0REJCAiwtLSXaExISmOXJBQBLS0ssXLgQcXFxaNSoESpVqiSx39fXt0LpLF26FC4uLvjjjz8wbNgwNGjQAABw8OBBLvSVT1q3bs3kWvothgwZItN1YdasWZg5cyYiIiIkKlazhi8d1uf71+jQoQOGDx8OBwcHpKSkcNeZW7duMQ0d19bWRnp6OqytrSXaMzIymOVl52u+qV27Nnbt2iVVMHDnzp1S2rLQoEEDBAcHS6V4Cg4O5uYEAYGKiGCUFBAohxw8eFDiNf3/fILBwcFcDhEWjB07FlOnTpUySj558gRLly7FpUuXmOjQ/69I/CXZ2dky5/bjm9zcXEydOhW7du3CmzdvpPazqrosUL7h4+FdrCPvnEt+fn5QVlZGeno66taty7UPHDgQEydOZGaU7Ny5MwDA2dlZop0YVyx/9epViQ8bOTk5cs9jWRK3b9+GiYlJqf+/iooKcnNzAQAnTpzgcjtWrlwZWVlZMo9PXDjB3NwcgwYNkkshCL75559/MG/ePDRt2hRDhgyRWxGSVatWoXPnzqhevTr3QJiYmAg1NTUcP36ciYaTkxPGjx+P7du3c8fRkydP4OfnJ3UuyQofRoIRI0Zg5MiRePjwIVq0aAGgKMfb0qVLMXHiRCYaALBp0ybo6uri2rVrUsXPRCIRM2MhXzrt2rXD69evkZWVBT09Pa595MiRTAsqKSoqlriI/ObNG1SpUoWbp48ePVpqjdq1a2PIkCFwdXUtMWeyGFkXqoODg3H//n2YmJjAzMxMymAcHx8vU/986/AFX8XVBg4cCG9vbyxfvlxiLpgyZQozHb7mmwULFmDgwIE4c+aMRO7KkydPYteuXcx0li1bhm7duuHEiRPcwteFCxeQkZEh0zkpIFDWCEZJAYFyiNhzRYxIJIKhoSGcnJyYGQiAooflkowaDg4OuH37tsz9iy/4IpEIc+bMkbhxLigowKVLl2Bvby+zDp9MmTIFMTExWLduHYYOHYo///wTT548wfr16xEYGFjWw/ufR09Pr0TDk0gkgpqaGmrXrg0PDw94enrKpMPHwzvAj0dmdHQ0jh8/jurVq0u0W1paIi0tTeb+xci7YrmYxo0b48iRIxg3bhyA/yvWExoaysx7DSjylF67di1iYmLw8uVLKS8W8YNoaSvJi2nVqhUmTpyIli1b4vLly9i5cycAICUlReo3kwUnJye8evWK6/Py5cuIjIyEjY0NRo4cyUyHDxITE3Hr1i1s27YNy5cvx4QJE9ChQwe4ubmhd+/ezIw4dnZ2uHfvHrZt24bk5GQARQWd3NzcmHmRBQcHo2fPnjA3N+eOpYyMDNja2mLr1q1MNMTwYSSYM2cOtLS0EBQUhBkzZgAATExMMH/+fGYGPKDIw5gP+NIBigyG+fn5OHfuHADAysqKedGTr3l2//fff1BRUWGiMXbsWERGRmLRokVo2LAhhgwZgoEDB8LY2JhJ/2K+vJeWF3zpAEBsbCyWL18uUUl6ypQpaN26NTMNvoqrLV++HCKRCO7u7sjPzwdQ5AE+evRoZvfTfM03ffv2xeXLl7FixQrs378fAFC3bl1cvnyZKyTIgrZt2yIlJQV//vknd83p06cPxowZI9Pip4BAWSMiWeOKBAQEKiz6+vo4fPiw1IP6+fPn0a1bN7x7906m/h0dHQEU3UQ1b95c4oZWHBY4efJkpqEN8qZGjRoIDw9Hu3btoK2tjfj4eNSuXRsRERHYvn27sFIpI5GRkejVq5eUp8GPsnLlSixevBhdunThPAsvX76MqKgo+Pn5ITU1FREREVi7di1GjBhR6nH6+vpi3759JT689+3bF6tWrSp138VRV1fH9evXpYyft2/fRuPGjTkPOlnQ0tJCfHw8LC0toaWlhcTERNSqVYvz0izJI7g8c+7cOXTp0gVDhgxBWFgYRo0ahdu3b+P8+fOIjY1Fo0aNmOi4ubkhOjoa/fr1K7GauNgDUVbS09MxZswYZGRkwNfXF97e3gCKDNYFBQVSYVylpXXr1hg5ciSGDh2K58+fo06dOrC1tcW9e/cwbty4Cl3dNy4uDpGRkfjnn3/w6dMnJh6meXl5sLa2xuHDhyU8jOUBEeHEiRPcQ2jdunXRvn175jqfP3/GlClTEBISUqKRQFYv2vz8fERGRqJTp04wMjLiwudZLuR8jYKCAty4cQNmZmYSnoYVRScnJwfjxo1DeHg4twCiqKgId3d3rF27VmZDu3ge8fPzw6JFiyTSOBQUFODMmTN49OgRrl+/LpNOcVJSUrBt2zZs374dqampcHR0xJAhQzhvcAFJtm7dCk9PT/Tp00fCG2/fvn0ICwuDq6srMy15p40pKChAXFwc7OzsoKqqyqVWsbCwYLZoxNd8k5eXh1GjRmHOnDnfTRkiq07nzp0REhJSoZ6bBAR+BMEoKSBQTviZMIIVK1Yw0Rw8eDCePXuGAwcOcDcamZmZ6N27N6pUqcIs5MDT0xOrV6/+JfItampq4vbt26hRowaqV6+OvXv3okmTJkhNTYWdnR2ys7PLeojlhp8xlrBase7bty86dOgAHx8fifb169cjOjoae/bswdq1a7FhwwbcuHGj1DryfngXY2RkhIiICHTs2FGi/fjx43B3d8eLFy9k1ujatSsaNWqERYsWQUtLC0lJSTAzM8OgQYNQWFiI3bt3y6wB4LtenW3atGGiAwAPHz7EkiVLkJiYiOzsbDRs2BDTpk2DnZ0dMw0dHR0cPXqUaUqNskRPTw8XL16ElZUV1qxZg507dyIuLg7R0dHw8fHBw4cPy3qIpSYhIQFbt27Fjh078ObNG3z8+JFJv9WqVcOJEyfkZpTMy8uDuro6EhISYGtrKxcNMXwYCQBAQ0MDd+7cgZmZGbM+S2LChAmws7ODt7c3CgoK0KZNG1y4cAEaGho4fPgw2rVrV6F0Ro0ahRMnTkik8Tl37hx8fX3RoUMHmUOdxcaUtLQ0VK9eHYqKitw+8SLywoULpdL9sOLixYsYPXo0kpKSmKXyyMjIgEgkkrv3N186devWxciRI+Hn5yfRvmLFCmzcuJEzIMpKSWljrly5go8fPzJLGwMAampquHPnjlwNeXzNNzo6OkhISJDrZwGKcmSeP39eMEoK/HqUVYUdAQEBSdq1ayexaWtrk4aGBlcFtVKlSqStrU2Ojo7MNDMyMqhWrVqko6PD6erq6pKVlZVM1ba/x/v372nfvn0lVt0r79jZ2dHp06eJiMjZ2ZkmTZpERESrV68ukwqY5Rlzc3OJrVKlSiQSibiq2CKRiCpVqkQ1a9ZkplmpUqUSKyDeu3ePqxp5//59mSrj5ufnU2xsLL19+5ZycnIoKSmJkpKSKCcnp9R9fo1x48ZR9erVaceOHZSenk7p6em0fft2ql69Oo0fP56Jxo0bN6hKlSrUuXNnUlFRoX79+lHdunXJyMiI7t+/z0SDqOTKoQoKCtzGgs+fP5Onpyc9fPiQSX/fom7dupSYmCh3HaKiY3bWrFk0aNAgevHiBRERHT16lG7evMlMo1KlSpSamkpERD169KDAwEAiIkpLS6uQVT0fPnxI/v7+ZGNjQ4qKiuTk5EShoaGUmZnJTGPx4sU0bNgwiWrVrOGrsi9RUWVXeZ87bdu2pX379slVg4ioWrVqdOXKFSIi2rdvH5mYmNDdu3dp9uzZ1KJFiwqno6+vTzExMVLtp06dIgMDA2Y67dq1o7dv3zLr73tcunSJxo8fT8bGxqShoUEDBw5k1nerVq24ytHPnj0jLS0tat68ORkYGNCCBQsqnI6KispX729YVnhu1aoVeXh4SMxreXl5NGzYMGrdujUznUaNGtGJEyeY9VcSfM037u7utGLFCrnrTJgwgaZNmyZ3HQEBvhGMkgIC5ZCgoCDq0aOHxI3h27dvqVevXrR8+XKmWtnZ2bR+/XoaM2YMTZo0ibZs2UKfP39mqtG/f39au3YtERHl5uaSpaUlKSsrk5KSEu3evZuplrxZsWIFrV69moiI/v33X1JTUyNVVVVSUFCgVatWlfHoyi/btm2jli1bUnJyMteWnJxMrVu3pq1btzLTMTU1LfHGcMWKFWRqakpERImJiWRkZCSTDh8P70RE//33H/n6+pKKigpnvFNVVaUJEybQp0+fmOlkZmaSv78/9e/fn7p06UKzZs2ip0+fMutfrFF8e/XqFUVHR1PTpk2ZPphoa2vz8tscPXqUOnfuTI8ePZKrzunTp0ldXZ3at29PKioq9ODBAyIiWrJkCfXt25eZTpMmTWjatGl05swZUlNT4wxhFy5cqHALLk2bNiUFBQWyt7enP/74gx4/fiwXnd69e5OWlhZVrVqVOnbsSC4uLhIbC0JDQ6lr16705s0bJv19Cz6MBDt37qRatWrR2rVr6fz585SYmCixsUJVVZUyMjKIiGjEiBHcIs7Dhw9JS0urwumoq6vT7du3pdpv3rwp0yLb98jPz6fr168zNVTevXuX5s6dS5aWlqSkpEQdO3akLVu20IcPH5hpEBHp6upy9xyrV6/mjMTHjx9nuhjKl46FhQWFhIRIta9bt45q167NTEdNTa1Ep4Fbt26Ruro6M51jx46Rvb09HTp0iJ4+fUrv37+X2FjA13yzaNEi0tXVpb59+1JAQACtXr1aYmPF77//Ttra2tSoUSMaOXIk+fn5SWwCAhUVwSgpIFAOMTExKdED5saNG1S1alUmGp8/f6ZatWqVeJPLGiMjI+4Bd9u2bVS7dm3Kycmhv/76i+zt7eWuL08ePXpEe/bs4c1jqqJSq1Ytio+Pl2q/evUqmZubM9PZsGEDKSoqUo8ePWjRokW0aNEi6tmzJykpKVFoaCgRES1fvpwGDBggkw4fD+/FkadHZlpaGhUWFn51n7w5ffo0NWzYkFl/fHksvHz5ktq1a0cKCgqkqanJeQCLN1Y0a9aMgoKCiIhIU1OTM0peunSJqbEwJiaGdHV1SUFBgTw9Pbn2GTNmMDOw8cXMmTPp1q1bctfx8PD45sYCe3t70tTUJFVVVapTpw4XPSHeWMKHkeBrHtPif1lRo0YNOn78OOXn55OpqSkdPnyYiIqMeLq6uhVOx8nJifr3708fP37k2nJzc6l///7k7OzMTGf8+PHctTI/P59atGjBRTWU5KlZGkQiETVp0oRWrVpFz58/Z9JnSfDl/c2Xzl9//UUqKirk4+ND4eHhFB4eTqNGjSJVVdUSjZWlpUqVKnT8+HGp9qioKKpSpQozna9FTbCcC/iab76MDCq+sTRMfxlVV3xjGUknIMA3QvVtAYFySFZWFl69eiXV/urVKy5Rs6woKyvj06dPTPr6Hu/fv0flypUBAFFRUejbty80NDTQrVs3TJkyhZcxsKCkJNNmZmZyz1XzK/Ds2TMu92JxCgoKmORFFDNixAjY2NggODgYe/fuBVBUoTQ2NpYrSDNp0iSZdfz9/TF58mQsWrQIjRo1kirMwzp/qoaGBlc0gWV+N6Aol9izZ89QpUoVifY3b96gZs2azPJ7fQ0jIyPcvXuXWX+WlpZYuHAh4uLiSvxtWOUvHTx4MJ48eYKAgIASC92w4saNG4iMjJRqr1KlCl6/fs1Mp127dnj9+jWysrIkCnSMHDmS+TEnT/Ly8rBjxw4MGTJErjr5+flwdHREx44dmVcNLg6flX27du0KAOjZs6fE8UxEEIlETOYCvqpVe3p6YsCAAahatSpEIhFXGOjSpUtShcMqgs7q1avRqVMnVK9eHQ0aNABQVGVeTU0Nx48fZ6bzzz//cOfOoUOH8OjRIyQnJyMiIgKzZs1CXFycTP0XFBRg/fr16Nevn1wLDgFFxVlCQkLQrVs3/Pvvv1i0aBEA4OnTp9DX169wOqNHj4axsTGCgoK4nO9169bFzp070atXL2Y6AwcOhLe3d4mF/AYPHsxMJyYmhllfX4OP+YaIcPr0aVSpUgXq6upy0ykoKMCCBQtgZ2cn93NHQIB3ytoqKiAgIM3QoUPJ3Nyc9uzZQxkZGZSRkUG7d++mmjVrkru7OzMdPvJhERFZWlrSzp07KTs7mwwNDenkyZNERJSQkED6+vpy1WaNgYEBpaSklPUwKhzdu3cnBwcHunbtGtd29epVatiwIfXo0aMMR1Y6+FjhJyIqKCigBQsWkLa2Nqeho6NDCxcupIKCAiYaIpGIXr58KdX+6NEjpmGBX4ZNJSQk0LFjx6ht27bUsmVLZjp8eSyoq6vzkuuvWrVqFBcXR0SSnpJ79+6lWrVqMdXKy8ujf//9l0JCQigrK4uIiJ48ecI8rFLemJiY8BIFoK6uLtfw/by8PFqwYAEXHixvTp8+/c1NVviM0CAi+ueff2jFihUS319YWBjt37+/Qurk5OTQhg0baOLEiTRx4kTauHEj5ebmMtXgIxydr/QnfHl//0pe5kT8pI35/PkzOTk5yfV+mq/5pqCggJSVlXl5NuDr3BEQ4BvBU1JAoBwSEhKCyZMnw9XVFXl5eQAAJSUleHt7448//mCmc+XKFZw8eRLR0dGws7OT8igSe5rJyoQJE+Dm5gZNTU3UqFGDq0Z55swZptVw+WDIkCHYtGkTAgMDy3ooFYrNmzdj2LBhaNy4MZSVlQEUeRp16tQJoaGhTLUKCgqwf/9+rhJlvXr10LNnT4lqorLCxwo/AMyaNYs73opXXJ0/fz4+ffqExYsXl7rviRMnAgBEIhHmzJkj4Q1XUFCAS5cuwd7eXqbxF8fe3h4ikQhEJNHerFkzbN68mZkOX55Y1tbWzKo4f4tBgwZh2rRp+OeffyASiVBYWIi4uDhMnjwZ7u7uzHTS0tLQuXNnpKen47///kOHDh2gpaWFpUuX4r///kNISAgzLXkzduxYLF26FKGhoVBSkt+tbpMmTXD9+nW5ecsrKSnhjz/+YPo7f428vDwsXLhQIhKANXxGaABAv379pNqGDRsm8drOzg5Hjx6FqalpudfR0NDAiBEjSv3/fwQjIyPcvn0bVatWRVRUFFfVOzc3l9k11NbWFg8fPpR7peIf9f6Oi4tD48aNoaqqWq51xFy9epW7v7GxsUGjRo1k6u9LVFRUsHr1aixZsgQPHjwAAFhYWDD1mFdWVkZSUhKz/r6mwcd8o6CgAEtLS7x580buVbH5OncEBPhGRF8+HQgICJQbcnJyJG4IvjQayoqnp+c39//999/MtK5du4b09HR07NiR+xxHjhyBnp4eFx5SERg3bhzCw8NhaWlZYmjoihUrymhkFYOUlBQkJycDKDLq1KlTh2n/9+/fR9euXfHkyRNYWVkBAO7evQtTU1McOXIEFhYWTPXkjYmJCUJCQtCzZ0+J9gMHDmDMmDF48uRJqft2dHQEAMTGxqJ58+ZQUVHh9qmoqMDc3ByTJ09mdpOdlpYm8VpBQQGGhoZQU1Nj0j/fREdHY8GCBVi8eDHs7Ow4Y7sYViH8nz9/xtixYxEWFoaCggIoKSmhoKAArq6uCAsLY2Yo6N27N7S0tLBp0ybo6+sjMTERtWrVwunTpzFixAjcu3ePiQ4fuLi44OTJk9DU1JTrgtuuXbswY8YM+Pn5lXg9qF+/vswavXr1Qp8+faSMXPLA0NAQ58+fl+uDdUBAAFJSUuRuMP5RtLS0uGO9vOvcu3cPMTExePnyJQoLCyX2zZ07V9YhAgDmz5+PVatWoWrVqsjNzUVKSgpUVVWxefNmbNy4ERcuXJBZIyoqCjNmzOAt/cn30NbWRkJCgtyPAVl1Hj9+jMGDByMuLg66uroAgMzMTLRo0QI7duxA9erVGY5W/vj5+UFVVVWui/x8zTeHDh3CsmXLsG7dOtja2spNp7ydOwICrBCMkgIC/8N8/PgRhYWF3EXt0aNH2L9/P+rWrYtOnTrJ1LfYC+tHqEiGPLEhpyREIhFOnTrF42gqHp8/f0ZqaiosLCzkcoPYtWtXEBG2bdvG5TF98+YNhgwZAgUFBRw5coSZ1rt377Bp0yYJjwVPT09OlwVqampISkqSMt7evXsX9vb2TDz1PD09sXr1al5uZk+ePImTJ0+W+FDNyluyb9++aNKkCaZNmybRvmzZMly5cgX//PMPEx0FBQUAkMolSQzz7xUnIyMDN27cQHZ2NhwcHJgbjvT19XH+/HlYWVlJGFAePXoEGxsb5ObmMtWTJ3wtuImPgeKIvYFZHQMhISFYsGAB3NzcSnwI/XLBQhb4MBLwZTD+USqKUXLjxo0YPXo0DAwMYGxsLDHviEQixMfHsxoqdu/ejYyMDPTv358zdG3ZsgW6urpMchcWP2/klbv0Z6gox0Dnzp2RmZmJLVu2SCy6enp6QltbG1FRUUzGmZOTg8DAwK9eqx8+fMhEh49Ffr7mGz09PeTm5iI/Px8qKipSuSXfvn3LRKe8nTsCAqwo+yVKAQGBMkPsgeHj44PMzEw0a9YMysrKeP36NVasWIHRo0eXuu/r169LvI6Pj0d+fj53I5WSkgJFRUXmYSfyICkpCba2tlBQUOAtbPdXIzc3F+PGjcOWLVsAFP3+tWrVwrhx41CtWjVMnz6diU5sbCwuXrwoYRjU19eXCH9mwZkzZ9CjRw/o6OigcePGAIA1a9Zg4cKFOHToENq0acNEp0GDBggODsaaNWsk2oODg7liB7IiEolKLNKSk5ODcePGMTMWLliwAAsXLkTjxo25ohDy4MyZM5g/f75Ue5cuXRAUFMRMh++5wNTUVKbQz+9RWFhY4gPN48ePoaWlJTddefDXX3/JbcGtOHykChgzZgyAkh/QWT+E5ufnY/PmzThx4oTcjAS6urro27evzP38r+Hv74/FixdLLbbIgx8JR5cF4T6qdMTGxnILR2KsrKywdu1atG7dmpnO8OHDERsbi6FDh8r1Wn3z5k00bNgQQNE9YXFYafI136xatUruGoBw7gj8wpRVMksBAYGyR19fn27evElERBs3bqT69etTQUEB7dq1i6ytrZnpBAUFUY8ePejt27dc29u3b6lXr160fPlyZjryQkFBgV68eEFERDVr1qTXr1+X8YgqHr6+vtSoUSM6e/YsVapUiSvWsX//frK3t2emo6enxxUFKc65c+dIT0+PmY6trS2NGDGC8vPzubb8/HwaOXIk2draMtOJjY2lSpUqUd26dcnLy4u8vLyobt26pKmpSWfOnGGiUfz4Ls6rV69IUVGRiQYRkbGxMYWHhzPr72uoqalRcnKyVPudO3dITU1N7vqs6dOnDwUGBkq1L126lPr168dMZ8CAATRixAgiKiqo8/DhQ/rw4QM5OTmRh4cHMx0+6NChA61bt46IiN69e0dGRkZUvXp1UlNTo7/++quMR1d+adeu3Vc3R0fHsh6eXChePKo862hpafEyTqKigkfdu3cnCwsLsrCwoB49ejC73pRHKsoxYGlpSZcuXZJqv3TpEllYWMgyNAl0dHTo3LlzzPoTEBAQ+B7ScScCAgL/M+Tm5nIeMNHR0ejTpw8UFBTQrFkzqfxvshAUFIQlS5ZIJADX09ODv78/U88leaGrq8t5xDx69EgqlEXg++zfvx/BwcFo1aqVxAp4vXr1uLypLOjevTtGjhyJS5cugYhARLh48SJ8fHyYhjnev38fkyZNksjnp6ioiIkTJ+L+/ftMNPLy8rBgwQIcPXoUffr0QWZmJjIzM9GnTx/cvXtXZs+IrKwsvH//HkSEDx8+ICsri9vevXuHo0ePokqVKkw+C1AUus9H/lg7Ozvs3LlTqn3Hjh2wsbFhpnPmzJlvbix1unbtKtXepUsXpjpBQUGIi4uDjY0NPn36BFdXV5ibm+PJkydYunQpMx0+iI+P586P3bt3w8jICGlpaQgPD5fyOpaViIgItGzZEiYmJtx1c9WqVThw4ABTHQByL9oQExPz1Y1lapL8/HycOHEC69evx4cPHwAAT58+RXZ2NjONX43+/fsjOjpa7jpbt25F+/btoaGhAV9fX/j6+kJdXR3Ozs6IjIxkohEVFYVz585xr//880/Y29vD1dUV7969Y6LxK/LHH39g3LhxuHr1Ktd29epVjB8/HsuXL2emo6enxzQNzfe4f/8+jh8/zqWjIcaZ5fiabx48eIDZs2dj8ODBePnyJQDg2LFjuHXrFlOds2fPYsiQIWjRogWXVzwiIkLinBIQqHCUrU1UQECgLLGzs6PVq1dTeno6aWtr0/nz54mI6OrVq2RkZMRMR1NTk2JiYqTaT506RZqamsx05MWIESNIVVWVzM3NSUFBgWrUqEE1a9YscRMoGXV1dc5DoLi3QEJCAmlrazPTeffuHfXs2ZNEIhGpqKiQiooKiUQi6t27N717946ZTosWLWjfvn1S7fv27aOmTZsy0zEwMKCUlBRm/RVHJBKRgoLCVzdFRUXy9/dnpjd16lRauHAhs/6+xsGDB0lJSYnc3d0pLCyMwsLCaOjQoaSkpFTib1ZaRCKR1Fb8+2MFn56feXl5FBERQVOmTKHRo0fTxo0bKTc3l6kGH6irq1NaWhoREfXv35/mz59PRETp6emkrq7OTOevv/4iAwMD8vf3l5jj/v77b2rXrh0Tjfz8fFq4cCGZmJiQoqIipzF79mwKDQ1lovEl9+7do6ioKO63LywsZNb3o0ePyNramjQ0NCQ+j6+vL40aNYqZzo9Snr3kVq9ezW0BAQFkYGBAw4YNo+XLl0vsW716NbNxWltb04oVK6Tag4KCmEXQ2Nra0pEjR4iIKCkpiVRUVGjGjBnUrFmzMvHK5ssLVVYdXV1dUlFRIQUFBe7+Rvy3np6exCYLERER1K9fP8rJyZGpn+/x+vVrcnJy4q6d4u/G09OTJk6cyESDr/nm9OnTpK6uTu3btycVFRVOZ8mSJdS3b19mOrt37yZ1dXUaPnw4qaqqcjpr166lLl26MNMREOAbIaekgMD/MHPnzoWrqyv8/Pzg7OyM5s2bAyjymnRwcGCm4+LiAk9PTwQFBaFJkyYAgEuXLmHKlCno06cPMx15sWHDBvTp0wf379+Hr68vRowYUeFyrJU1jRs3xpEjRzBu3DgA/5cvKDQ0lDvuWKCrq4sDBw7g/v37XAGaunXronbt2sw0AMDX1xfjx4/H/fv30axZMwDAxYsX8eeffyIwMBBJSUnce2WpwDtkyBBs2rRJLoUnYmJiQERwcnLCnj17JDwjVFRUYGZmBhMTE2Z6nz59woYNG3DixAnUr19fqlo1q4JXPXr0wP79+xEQEIDdu3dDXV0d9evXx4kTJ9C2bVsmGgCkPHry8vJw/fp1zJkzB4sXL2amI/b8/LK6LmvPTwBQUlLCkCFDmPZZFtSuXRv79++Hi4sLjh8/Dj8/PwDAy5cvmRZ0Wrt2LTZu3IjevXtLnKONGzfG5MmTmWgsXrwYW7ZswbJlyzBixAiu3dbWFqtWrYK3tzcTHaCoKNiAAQMQExMDkUiEe/fuoVatWvD29oaenh6TyIbx48ejcePGSExMhL6+Ptfu4uIi8flY8unTJ6ipqZW4b/369TAyMvqp/ipXroyUlBQYGBjAy8sLq1ev/u49QWl0Vq5cKfFaU1MTsbGxiI2NlWgXiUTw9fX9qb6/xsOHD9GjRw+p9p49e2LmzJlMNFJTU7m5a8+ePejRowcCAgIQHx9fole4vKFSeOYdPHgQXbp0kbqOsdYpjjzzFjo4OEhEsdy/fx9GRkYwNzeX+oysiir5+flBWVkZ6enpqFu3Ltc+cOBATJw4sULNN9OnT4e/vz8mTpwoMRc4OTkhODiYmY6/vz9CQkLg7u6OHTt2cO0tW7aEv78/Mx0BAb4RjJICAv/D9OvXD61atcKzZ88kimY4OzvDxcWFmU5ISAgmT54MV1dX5OXlASh6+PX29sYff/zBTEeedO7cGQBw7do1jB8//rsPII8fP4aJiUmJ1Vn/FwkICECXLl1w+/Zt5OfnY/Xq1bh9+zbOnz8v9YD1s3yv0nvxxOCsDF+DBw8GAEydOrXEfawq8Mqz8ITYQJeamgpTU1O5H6tJSUmwt7cHUJTgvjisE+l369YN3bp1++Z7tm/fjp49e0p9pz+Kjo6OVFuHDh2goqKCiRMn4tq1a6Xq90vmzJmDPn364MGDB3BycgJQVMV8+/btzCqJA0B4ePg397u7uzPTkjd8LbilpqaW2J+qqipycnKYaISHh2PDhg1wdnaGj48P196gQQMkJycz0RDDh5Hg7NmzOH/+PFRUVCTaxakCWFFYWIjFixcjJCQEL1684IqrzZkzB+bm5pwx19XV9af7/vz5M7KysmBgYIAtW7Zg6dKl370nKI0OH4WUvsTU1BQnT56UWsg7ceIEs0JbKioqyM3N5foVzy2VK1dGVlYWEw0x+fn5OH36NB48eABXV1doaWnh6dOn0NbWhqamJgBwIb0/g4uLC54/fw5DQ0MoKiri2bNn3013Uhqd4vxosaHAwEBkZmZCV1f3h/vu3bt36QYlA9HR0Th+/DhX4V2MpaUlsxRSfM03N27cKDG9QZUqVfD69WtmOnfv3i2xkKKOjg4yMzOZ6QgI8I1glBQQ+B/H2NgYxsbGEm1ib0ZWaGho4K+//sIff/zB5Q+0sLAotTGgLPn7779/6H02NjZISEhArVq15DyiikGrVq2QkJCAwMBA2NnZITo6Gg0bNsSFCxdgZ2cnU99fVnr/GiwNX3w9LPJRndLMzAxAUY7Z9PR0fP78WWK/LJ6exSlvVSNHjRqFpk2bMj9HjYyMcPfuXWb98eX5OX78eInXeXl5yM3NhYqKCjQ0NCqUUZKvBbeaNWsiISGBO4fEREVFSRj1ZOHJkyclenoXFhZyi3ys4MNIwFeVd39/f7l5mDZv3hy9e/dGo0aNQERc3sWS2Lx5c6l1SoO2trZM9x6TJk2Cr68vEhISuBzAcXFxCAsLw+rVq5mMsVWrVpg4cSJatmyJy5cvczmAU1JSpI49WUhLS0Pnzp2Rnp6O//77Dx06dICWlhaWLl2K//77DyEhIaXu29DQEBcvXkSPHj24BcjyQkBAAAYMGPBTRsl58+b9tI6sC3s5OTnQ0NCQan/79i1UVVVL1eeX8DXf6Orq4tmzZ6hZs6ZE+/Xr11GtWjVmOsbGxrh//z7Mzc0l2s+dOyc8bwhUaASjpICAAG9UqlSJmYGjvCNrmM6viIWFBTZu3Mi837Iwdn1phJAXfHy2V69ewdPTE8eOHStxvyyenuUZWc/R4iH64v6ePXuGwMBAziOUFT/i+SkrJRWYuHfvHkaPHo0pU6bIVVse8LHgNnHiRIwdOxafPn0CEeHy5cvYvn07lixZgtDQUCYaNjY2OHv2rNScs3v3bqZenwA/RoKOHTti1apV2LBhA4CixZXs7GzMmzePaeiuPD1Mt27dipUrV3KLrO/fv5d7EaIfRdZ5bfTo0TA2NkZQUBB27doFoCgFys6dO9GrVy8WQ0RwcDDGjBmD3bt3Y926dZzR5tixY1xUCgvkGbrr4+ODXr16QSQSQSQSSc01xeH7GsrX/aesC3utW7dGeHg4Fi1aBKBoLigsLMSyZcvg6OjIZIx8zTeDBg3CtGnT8M8//3CfIy4uDpMnT2a6oDdixAiMHz8emzdvhkgkwtOnT3HhwgVMnjwZc+bMYaYjIMA3glFSQEBAQEAu/EwYFss8b3zx9OlTnDt3Di9fvpSqyM4qvxcfTJgwAZmZmbh06RLatWuHffv24cWLF/D392cSrvmrYm9vz4XpF6dZs2ZMvaOuXLmCwsJCNG3aVKL90qVLUFRUROPGjZlpfYmlpSUCAwMxZMgQ5qHCvwLDhw+Huro6Zs+ejdzcXLi6uqJatWpYvXo1Bg0axERj7ty5GDZsGJ48eYLCwkLs3bsXd+/eRXh4OA4fPsxEQwwfRoLly5ejc+fOElXe7927BwMDA2zfvp2JBiBfD1MjIyMuh2jNmjUREREhYfSq6Li4uDD1KP6SGjVqlHjsfplDMzAwED4+Pj/l8VcceYbuzp8/H4MGDcL9+/fRs2dP/P3336UeZ0VFVuPnsmXL4OzsjKtXr+Lz58+YOnUqbt26hbdv3yIuLo7JGIOCgtCpUye5zzcBAQEYO3YsTE1NUVBQABsbGxQUFMDV1RWzZ89mpjN9+nQUFhbC2dkZubm5aNOmDVRVVTF58mQuZ7uAQEVEMEoKCAgICMgFXV3d74Y0sci7WBaEhYVh1KhRUFFRgb6+vsTnZFl0gA9OnTqFAwcOoHHjxlBQUICZmRk6dOgAbW1tLFmyRO4eehWVL0P4FRQUYGho+NWCGqVl7NixmDp1qpRR8smTJ1i6dCkuXbrEVO9LlJSU8PTpU7lqVFQ+fvwIFxcXuLm5ITc3Fzdv3kRcXBzTENRevXrh0KFDWLhwISpVqoS5c+eiYcOGOHToEDp06MBMBwD++OMPODk5ydVIYGpqisTEROzcuROJiYnIzs6Gt7c33NzcvhoCXRrk6WFavNCNo6OjlNHrV+Dz588lLrjVqFGDtzGUJgy5OPIM3RUXurG2tsa8efPQv3//Er2MBb6Ora0tUlJSEBwcDC0tLWRnZ6NPnz4YO3YsqlatykSjevXqcp9viAjPnz/HmjVrMHfuXNy4cQPZ2dlwcHCApaUlEw2gyOM2Li4OY8eOxZQpU3D//n1kZ2fDxsaGy48qIFBREZEQYyggICDAHC0tLSQmJv5P53j5mQI2LHPj8YGpqSl8fHwwY8aMCl/MSFtbG0lJSTA3N4eZmRkiIyPRsmVLpKamol69elxBgl8NFufoyZMncfLkyRIf3ll5S2pqaiIpKUlqnKmpqahfv77MxRPEHDx4UOK1OBw9ODgYpqamXw3v/1+mY8eO6NOnD3x8fJCZmQlra2soKyvj9evXWLFiBUaPHl3WQ/xh8vLy0LlzZyxZsgT//vsv9wDfsGFDZkaCvLw8WFtb4/Dhw8xybn6NAwcOYNiwYZgxYwYWLlyIBQsWSHiYymLQLX5OKioqcgVPygOyzmv37t2Dl5cXzp8/L9FeFguIsn6WgQMHQkdHBxs2bICWlhaSkpJgaGiIXr16oUaNGj+cI7wkiv/uP1rohi/4uv8U7nOLKCwshJqaGm7dusXUCFkSampquHPnjlTuSgGBio7gKSkgICAgB8pT0vOyoqIZGn+G3NxcDBo0qMIbJAHAysoKd+/ehbm5ORo0aID169fD3NwcISEhzLwVfkUWLFiAhQsXonHjxqhatarcznlVVVW8ePFC6sHv2bNnUFJidxv3ZfVVkUgEQ0NDODk5CWH8XyE+Pp4LOd29ezeMjIxw/fp17NmzB3PnzmVilMzIyIBIJOK8Ly9fvozIyEjY2Nhg5MiRMvcvRllZGUlJSdDT08OsWbOY9fulBl+5F+XpYVqeC93IOg95eHhASUkJhw8fluu8xgfyDN0tz4VuKgpRUVHQ1NREq1atAAB//vknNm7cCBsbG/z555/Q09OTWWPLli0wMDDgIj6mTp2KDRs2wMbGBtu3b2eSH1xBQQGWlpZ48+aN3I2Stra2ePjwoWCUFPjlEDwlBQQEBOSAsIJcVAjE1tYWCgoKUkVBvqSiFUCaOnUqKleujOnTp5f1UGRm69atyM/Ph4eHB65du4bOnTvj7du3UFFRQVhYGAYOHFjWQ5QLtra2OHbsGExNTUv1/6tWrYply5Zh6NChjEcmyeDBg/Hs2TMcOHAAOjo6AIDMzEz07t0bVapU4YpRCPCPhoYGkpOTUaNGDQwYMAD16tXDvHnzkJGRASsrKyZexq1bt8bIkSMxdOhQPH/+HHXq1IGtrS3u3buHcePGYe7cuQw+SRF+fn5QVVXl8iXKg4CAAKSkpCA0NJSpUZ1PXrx4wRW62bt3Lzp16vTVQkD79u0rtU5WVtZP51uW9d6jUqVKuHbtGqytrUv1/1nC4j4qPz8fO3bsQFJSEuf5yyJ0d/78+Vi4cOEPGSP5Tk/TtWtXbNq0Se6LirL+PnZ2dli6dCm6du2KGzduoHHjxpg0aRJiYmJgbW0tkyerGCsrK6xbtw5OTk64cOECnJ2dsWrVKhw+fBhKSkrYu3evzBoAcOjQISxbtgzr1q2Dra0tkz5LIioqCjNmzMCiRYvQqFEjqcrnFTE/u4AAIBglBQQEBORCRkYGTExMoKioWNZDKTMUFBTw/PlzVKlSBQoKCiUWBQFQIXNKFhQUoHv37vj48SPs7OygrKwssX/FihVlNDLZyc3N5QwtBgYGZT2cUpGZmYndu3fjwYMHmDJlCipXroz4+HgYGRlxlV5lRV9fH5cvX4aFhQWT/r7GkydP0KZNG7x584bLhZeQkAAjIyP8+++/pTaqCshO/fr1MXz4cLi4uMDW1hZRUVFo3rw5rl27hm7duuH58+cya+jp6eHixYuwsrLCmjVrsHPnTsTFxSE6Oho+Pj54+PAhg09SxLhx4xAeHg5LS8sSH3hZzGsuLi44efIkNDU1YWdnJ6XBykhQnOzsbKn0Cqwe3mvWrImrV6/KpdBN8bBgJycn7N2797v5Fc+dO4fffvut1NXSf/vtN6xcuZLzXitLyvvibnJy8g8VumFVtfzo0aNQVFREp06dJNqPHz+OwsJCdOnSpdR9r1mzBiNHjoSamhrS09Nhamr6XYOrrAt7mpqauHnzJszNzTF//nzcvHkTu3fvRnx8PLp27cpk/iy+cDRt2jQ8e/YM4eHhuHXrFtq1a4dXr17JrAEUzdO5ubnIz8+HioqKlNH77du3THSKR+cU/30qan52AQExFXOJUkBAQKCMcHFxKfFGTSQSQU1NDbVr14arqyusrKzKYHTli9TUVC7P1pdFQSo6S5YswfHjx7nf+ctCNxUZDQ0NNGzYUKpdW1sbCQkJ5fYBUUxSUhLat28PHR0dPHr0CCNGjEDlypWxd+9epKenIzw8nInO8OHDERkZiTlz5jDp72tUq1YNSUlJ2LZtGxITE6Gurg5PT08MHjxYyhguCxMnTiyxvfjc1qtXL1SuXJmZZkVn7ty5cHV1hZ+fH5ydndG8eXMAQHR0tMzFVMTk5eVxBqYTJ06gZ8+eAABra2s8e/aMiYaYmzdvcud+SkqKxD5W85quri769u3LpK9vkZqait9//x2nT5+WCBln/fAuz2ubpqYm3rx5gypVquD06dM/VDW8NMbErKws7u+lS5di6tSpCAgIKHHBraJ5Yj19+hTnzp0rMe+vrAXprK2teS10M3369BK9mIkI06dPl8koOXHiRAwaNAhqamqoWbPmD+XIvHnzZqn1AEBFRYXzJj9x4gTc3d0BFBWSKn5MyoL4HKpRowaio6O565yamho+fvzIRAMAVq1axayvbxETE8OLjoAA3wiekgICAgI/gYeHB/bv3w9dXV00atQIQFFesczMTHTs2BGJiYl49OgRTp48iZYtW5bxaAXkhZ6eHlauXAkPD4+yHgpvlHevFTHt27dHw4YNsWzZMokxnz9/Hq6urnj06BETnfHjxyM8PBz169dH/fr1K7y3rKOjI+Lj41FQUMAZ21NSUqCoqAhra2vcvXsXIpEI586dg42NTRmPtvzw/PlzPHv2DA0aNOC8WC5fvgxtbW0mIbBNmzaFo6MjunXrho4dO+LixYto0KABLl68iH79+uHx48cya5RH4uLi0Lhx41J7/LVs2RJEhPHjx8PIyEjKqCpLzuPiXmVr1qz55ntlMXz17dsXcXFxqFu3LmJjY9GiRYuvVvo+depUqXXEkQxiSsqRWBaeWLKGIYeFhWHUqFFQUVGBvr6+1OIhSy9jPlBXV8edO3dgbm4u0f7o0SPUq1cPOTk5pe67Ro0amDFjBrp27cp5/34tUoJVBfaePXvi8+fPaNmyJRYtWoTU1FRUq1YN0dHR+P3336UWRkqDm5sbkpOT4eDggO3btyM9PR36+vo4ePAgZs6cKbNh9WcJDAyEj49PqSvK/yhjxozBwoULK2y0i8D/HoJRUkBAQOAnmD59OrKyshAcHMw9gBYWFmL8+PHQ0tLC4sWL4ePjg1u3buHcuXNlPNryx+3bt5Geno7Pnz9LtIu9fyoKxsbGOHv2rNyTmpcnKopRUkdHB/Hx8bCwsJAYc1paGqysrJgV2nB0dPzqPpFIJJORoCTkfe6sWrUKZ8+exd9//815Q71//x7Dhw9Hq1atMGLECLi6uuLjx484fvw4E02B73P69Gm4uLggKysLw4YN4wqnzJw5E8nJyXIJdy4PyOqZrampiWvXrsklaqF4yPa3Ck7Iavj6+PEjtmzZggcPHiAoKAgjRoz4qjeeuOBSaYiNjf3h97IoYPe1atVir1BWhk9TU1P4+PhgxowZzIvSNWzYECdPnoSenh4cHBy+6UkcHx/PRNPY2BiRkZFwcnKSaD9x4gRcXV3x8uXLUve9YcMGjBs3Dvn5+V99D2vDdHp6OsaMGYOMjAz4+vrC29sbQFFu24KCgu8a/H+EzMxMzJ49GxkZGRg9ejQ6d+4MAJg3bx5UVFTkVtTra/AVcVJRIlsEBMQIRkkBAQGBn8DQ0BBxcXGoU6eORHtKSgpatGiB169f48aNG2jdujUyMzPLZpDlkIcPH8LFxQU3btyQyC0pvpGvaHlwlixZgmfPnjG5aa4oVBSjZJUqVXD8+HE4ODhIjPnff/+Fl5cXMjIyynqIPwVf5061atXw77//SnlB3rp1Cx07dsSTJ08QHx+Pjh074vXr10w0BX6MgoICZGVlSVSjffToETQ0NDjDjqyeheUNWecbR0dHzJo1C+3bt2c8Mv4oXujG0dER+/btk7uH1Y8iiydW8XzTxXn69CksLCyYhdXKM+/vggULMGXKFGhoaGDBggXffO+8efOYaI4aNQoXLlzAvn37uM90//599O3bF7/99htCQ0Nl6v/Dhw9IS0tD/fr1ceLEia/mSW3QoIFMOj8LH96FfHkW8nUfVVHu1wQExAg5JQUEBAR+gvz8fCQnJ0sZJZOTkznjgJqaWoXPK8ia8ePHo2bNmjh58iRq1qyJy5cv482bN5g0aRKWL19e1sP7aS5fvoxTp07h8OHDqFevnlTo7q/qvVQR6NmzJxYuXMhVpRaJREhPT8e0adN4yWXHGr7Onffv3+Ply5dSRslXr15x+b10dXWlPDUF5I+ioqKEQRKAVAhnly5dBM+YYoSGhsLHxwdPnjyBra2t1Bxdv379Uvf9tfyrXyISiRAUFFRqHT09Pc6jsLzdU2zduhWTJ0/+KSOOeBFPJBIhNDQUmpqa3L6CggKcOXOGadVvb29v/PPPP5g+fTqzPsUUNzSyMjp+j2XLlqFz586wtrZG9erVAQCPHz9G69atZb4WiFMS2Nra4u+//0bz5s1lrlDOioCAAAwYMECuRsnSHM8CAgLsEIySAgICAj/B0KFD4e3tjZkzZ+K3334DAFy5cgUBAQFcku7Y2FjUq1evLIdZ7rhw4QJOnToFAwMDKCgoQEFBAa1atcKSJUvg6+uL69evl/UQfwpdXV306dOnrIfBK+XtofhrBAUFoV+/fqhSpQo+fvyItm3b4vnz52jevDkWL15c1sP7afg6d3r16gUvLy8EBQVJzG2TJ09G7969ARQZ479ckBEoHwiBT5K8evUKDx48gKenJ9cm9jSWNQT1y3MuPj4e+fn5UrlYxXmnS0vxQjexsbE/VOiGL0pzvIlDzIkIISEhUFRU5PapqKjA3NwcISEhzMa4ZMkSdO/eHVFRUSUW7aloeX91dHRw/vx5/Pvvv1zRs/r166NNmzYy91280I2Xlxe6dOlSboySfMxtwvwpIFC2CEZJAQEBgZ9g5cqVMDIywrJly/DixQsAgJGREfz8/DBt2jQAQMeOHbm8NQJFFBQUQEtLCwBgYGCAp0+fwsrKCmZmZrh7924Zj+7n+fvvv8t6CLxTUW7adXR08O+//+LcuXNISkpCdnY2GjZsWGHDOPk6d9avXw8/Pz8MGjSIyyumpKSEYcOGccYEa2trmUMEBQT4wMvLiytuUVKhG1koXgF3xYoV0NLSwpYtWzhv1nfv3sHT0xOtW7eWSad9+/ZwdHRE3bp1QURwcXGRS6EbvhBXKnd0dMTevXulvH9Zs2TJEhw/fpwzFn9Z6EYW9PT0friPt2/fyqQFAHl5eVBXV0dCQgI6duyIjh07ytxncUxMTLBnzx507doVRITHjx9/Nf8yq0I3AgICAmIEo6SAgIDAT6CoqIhZs2Zh1qxZXEijOOeTGOGGTRpbW1skJiaiZs2aaNq0KZYtWwYVFRVs2LChQocbvnr1ijMMWVlZwdDQsIxHJD+OHTuGatWqlfUwfphWrVqhVatWZT0MmeHr3NHU1MTGjRuxcuVKrjhHrVq1JEIs7e3t8fjxYxQWFjIvHCEgUBxZjUZpaWk4ePAgateuzWhEJRMUFITo6GgJA5uenh78/f3RsWNHTJo0qdR9b926lSt0I47A+Fqhm4pEcaMuULTwcuPGDZiZmTE1VAYFBWHz5s3w8PBg1qeYVatWcX+/efMG/v7+6NSpE5o3bw6gyMP9+PHjmDNnDhM9ZWVl1KhRQ275t2fPno1x48bh999/h0gk4rzli1MWFdgFBAT+NxCMkgICAgKl5EtjpMDXmT17NnJycgAACxcuRPfu3dG6dWvo6+tj586dZTy6nycnJwfjxo1DeHg4CgsLARQZrN3d3bF27doK9eDo5eX1zf3iar/l2cD3MwWHfH195TgS9vB97mhqan4z356NjY2Qu1BA7sjqme3k5ITExES5GyWzsrLw6tUrqfZXr17hw4cPMvWtrq4OHx8fAMDVq1exdOnSclPoRhYmTJgAOzs7eHt7o6CgAG3atMGFCxegoaGBw4cPo127dkx0VFVV0bJlSyZ9fcmwYcO4v/v27YuFCxfi999/59p8fX0RHByMEydOwM/Pj4nmrFmzMHPmTERERKBy5cpM+hQzcuRIDB48+IcK3QiUntatW/MSFj9kyBDhGUWgQiFU3xYQEBD4CV68eIHJkyfj5MmTePnypdSDk7CC/H8kJSXB1tb2qx5Vb9++/akQqPLEqFGjcOLECQQHB3MPPefOnYOvry86dOiAdevWlfEIfxwXFxeJ13l5ebh58yYyMzPh5ORUIYr21KxZ84feJxKJOC/AikxJ587jx49hYmIidw9Goapn+URbW7tCGIv9/f3h5ub2w+dsadmwYQP8/f3h5eVVYj7Bnj17MtFxd3fH2bNnERQUhCZNmgAALl26hClTpqB169bYsmULE53yhizzQLVq1XDgwAE0btwY+/fvx9ixYxETE4OIiAicOnUKcXFxTMa4ZMkSPHv27KcWrUqDpqYmEhISpAzg9+/fh729PbKzs5noODg44P79+8jLy4OZmRkqVaoksT8+Pp6JzpYtWzBo0CCoqqoy6U9W+LjmyKqhqKjIFaUqjjgnLKtng9q1a2PIkCFwdXUV8jsL/FIInpICAgICP4GHhwfS09MxZ84cVK1atUIa1PjCwcGBu0mrVasWrly5IrHyznqln0/27NmD3bt3S3h0dO3aFerq6hgwYECFMkru27dPqq2wsBCjR4+GhYVFGYzo5xHnKvtfoaRzR/Bg/N+movgY/PPPP5g3bx6aNm2KIUOGYMCAAXKpeCv2MFy4cKHUPpYhqCEhIZg8eTJcXV25QjRKSkrw9vbGH3/8IVPfEydOxKJFi1CpUqXvVvxmVbQlPT0dpqamUvc2RISMjAwuPY0snlhv3ryBsbExAODo0aPo378/6tSpAy8vL6xevVq2D1CMy5cv49SpUzh8+DDq1asnZZhmteCmr6+PAwcOSIXqHzhwgKm3objgmLwp7gVaHuDDu1BWz8Kvzb///fffV/PAloaxY8ciMjISixYtQsOGDTFkyBAMHDiQO58EBCoqgqekgICAwE+gpaWFs2fPwt7evqyHUu7R19fH0aNH0bRpUygoKODFixe/TM5FDQ0NXLt2DXXr1pVov3XrFpo0acKF21Zk7t69i3bt2uHZs2dlPRSBH4AvD0bBU5Jf+PIs5JNbt25h27Zt2LFjBx4/fowOHTrAzc0NvXv3rlCpL4qTk5ODBw8eAAAsLCykvNhKg6OjI/bt2wddXV04Ojp+9X0ikYhZoRs+PL7MzMywceNGODs7o2bNmli3bh26deuGW7duoVWrVnj37p3MGgAkKq+XBKuCdWFhYRg+fDi6dOmCpk2bAijylo2KisLGjRvlktOSNZUrV0ZKSgoMDAy+G8HConAPwM+xJm/PQrEXrp+fHxYtWiSRg7mgoABnzpzBo0ePcP36daa6KSkp2LZtG7Zv347U1FQ4OjpiyJAhcHd3Z6ojIMAXglFSQEBA4CewsbHBtm3b4ODgUNZDKfeMHDkS4eHhqFq1KtLT01G9enUoKiqW+N6KFlLr7OwMfX19hIeHQ01NDQDw8eNHDBs2DG/fvsWJEyfKeISyc/ToUQwbNqzEfGnljbLwKCpvCEbJX5MGDRrg5s2bcvcsLCvi4uIQGRmJf/75B58+feIKyAmUDV9bQExLS4ONjQ2TBbf58+dj1apVqFq1KnJzc5GSkgJVVVVs3rwZGzduxIULF2TW4JtLly5hzZo1uHPnDgCgbt268PX15YyULMjIyIBIJEL16tUBFHmCRkZGwsbGBiNHjpSp7+Ih22FhYd80SrLypFRQUMDz58+ljJJPnz6FhYUFPn78KLPGypUrERkZifj4eLl4FooXi9LS0qTucVVUVGBubo6FCxcyPQ6+5OLFixg9ejSSkpKEFFICFRYhfFtAQEDgJ1i1ahWmT5+O9evXw9zcvKyHU67ZsGED+vTpg/v378PX1xcjRoyAlpZWWQ+LCatXr0anTp1QvXp1NGjQAACQmJgINTU1HD9+vIxH93N8acQjIjx79gxHjhwpd2FcX+P69etc6GR8fPxXH6iEdAuyI3yH/JKYmMh5Fi5fvhwTJkz4JTwLxVSqVAnq6upQUVGRuTDMl+Tk5CA2Nhbp6en4/PmzxL6KVvBK3oivAyKRCHPmzJE4rgoKCnDp0iVmESLz58+Hra0tMjIy0L9/fy53oaKiIqZPn85Eg2+aNm2Kbdu2ffM9gYGB8PHxKXWxIldXV4wcORJDhw7F8+fP0b59e9ja2mLbtm14/vw55s6dW6p+AUlDo7w9O8XehSKRCKGhoSV6F1pbWzPR8vPzg5+fH+dZ+Oeff2Ly5MnMPAvFqWMcHR2xd+9eptXjv4fYKL1z505kZWWhf//+vGkLCLBG8JQUEBAQ+An09PSQm5uL/Px8aGhoSOUoYhXW8qvh6emJNWvWfNcoyVexDhbk5uZi27ZtSE5OBlDkGeHm5sZLZUWWfBkWqKCgAENDQzg5OcHLywtKSuV//fJ7RZX+FxA8Jf83+BU8C1NTUxEZGYnIyEjcvXsXbdu2haurK/r16wcdHR0mGtevX0fXrl2Rm5uLnJwcVK5cGa9fv4aGhgaqVKlSIbzz+/Tp88PvlTU/ovg6EBsbi+bNm0vkwRN7fE2ePBmWlpYy6fDN7t27sWvXrhIN06wKw/woshaj0tPTw8WLF2FlZYU1a9Zg586diIuLQ3R0NHx8fGQ6pn9mHpG1qnNZexfy4VlYUFCAGzduwMzMjKmh8suwbScnJ7i5uaFPnz4Sxl0BgYpG+X/SEBAQEChHrFq1qqyHUCH50dxNFalYh4aGBkaMGFHWw5CZI0eOgIi4HGiPHj3C/v37YWZmViEMksD3iyr9L8DagzErKwunTp2ClZWVRO7U27dvw8TEhKmWwI8jT89CPmjWrBmuXLmC+vXrw9PTE4MHD0a1atWY6/j5+aFHjx4ICQmBjo4OLl68CGVlZQwZMgTjx49nricPihtoiVKzpb0AAD6TSURBVAj79u2Djo4OGjduDAC4du0aMjMzf8p4+TViYmIAFC0grl69WmbD0/eIjY3F8uXLuXBnGxsbrmI5K9asWYNZs2bBw8MDBw4cgKenJx48eIArV65g7NixzHR+FFn9gPLy8jiv0hMnTnAV5K2trWXO/ayrq/vD1xBZDXll5V0oT8/CCRMmwM7ODt7e3igoKECbNm1w4cIFaGho4PDhwxJFEWXB2toav/32G8aOHYtBgwbByMiISb8CAmUOCQgICAgIlBM0NTXpwYMHZT2M7xIQEECbNm2Sat+0aRMFBgaWwYhKT4cOHWjdunVERPTu3TsyMjKi6tWrk5qaGv31119lPLofo3LlynTx4kUiIhKJRPTy5csyHhH/yHru9O/fn9auXUtERLm5uWRpaUnKysqkpKREu3fvZjVMgVLw8OFD8vf3JxsbG1JUVCQnJycKDQ2lzMzMsh7aTzNz5ky6deuW3HV0dHQoOTmZ+/v27dtERHTx4kWysrKSuz5rpk6dSsOHD6f8/HyuLT8/n0aOHEmTJ0+Wm+779+9p3759dOfOHWZ9RkREkJKSEg0YMIBWr15Nq1evpgEDBpCysjJt27aNmY6VlRVFRkYSkeT8OGfOHBo7diwznR9F1jm6SZMmNG3aNDpz5gypqalRQkICERFduHCBqlWrJtPYTp8+zW1hYWFkbGxM06dPpwMHDtCBAwdo+vTpVLVqVQoLC5NJ51vk5+fT9evX6e3bt8z6vHv3Ls2dO5csLS1JSUmJOnbsSFu2bKEPHz4w0yAiMjExoStXrhAR0b59+8jExITu3r1Ls2fPphYtWjDRyM/Ppw0bNjD9fgQEyguCUVJAQEDgJ8nPz6fdu3fTokWLaNGiRbR3716JBwWB0lNRjJJmZmYUFxcn1X7x4kUyNzcvgxGVHn19fbp58yYREW3cuJHq169PBQUFtGvXLrK2ti7j0f0YI0aMIFVVVTI3NycFBQWqUaMG1axZs8TtVyU9PV2mecjIyIh7yN22bRvVrl2bcnJy6K+//iJ7e3tWwxT4SZo2bUoKCgpkb29Pf/zxBz1+/Lish1RqPn/+TLVq1eIMhPLEwMCAUlJSiIjI0tKSoqKiiIjozp07pKGhIXd91hgYGHBG1uIkJydT5cqVmenwsThhbW1NK1askGoPCgpies1RV1enR48eERGRoaEhN7+lpKQw/c5+FFnvb2JiYkhXV5cUFBTI09OTa58xYwa5uLiwGCIRETk5OXHG3OJs27aN2rZty0xn/PjxFBoaSkRF99UtWrQgkUhElSpVopiYGCYaIpGImjRpQqtWraLnz58z6bMkVFVVKSMjg4iK7kfGjx9PREULSlpaWkx1Hj58yKw/AYHyQsWIyxIQEBAoJ9y/fx9du3bFkydPYGVlBQBYsmQJTE1NceTIEVhYWJTxCAX44Pnz56hatapUu6GhocxhVHyTm5vL5fqMjo5Gnz59oKCggGbNmiEtLa2MR/dj/MpFlT59+oS1a9ciJiYGL1++RGFhocR+cV40U1NTmXTev3+PypUrAwCioqLQt29faGhooFu3bpgyZYpMfQuUHmdnZ2zevBk2NjZlPRSZUVZWxqdPn3jRcnBwwJUrV2BpaYm2bdti7ty5eP36NSIiImBra8vLGFiSn5+P5ORk7r5DTHJystScIAtnzpzBrFmzAAD79u0DESEzMxNbtmyBv78/+vbtK7PGw4cP0aNHD6n2nj17YubMmTL3L8bY2Bhv376FmZkZatSogYsXL6JBgwZITU2VOZS6LGjXrh1ev36NrKwsiZDnkSNHShQmiouLQ+PGjblQ75/lwoULCAkJkWpv3Lgxhg8fXqo+S+Kff/7BkCFDAACHDh3Co0ePkJycjIiICMyaNQtxcXEy9V9QUID169ejX79+cg8RNzIywu3bt1G1alVERUVh3bp1AIrur4rnzJQVW1tbPHz4kMvLKSDwqyAYJQUEBAR+Al9fX1hYWODixYvcA/ybN28wZMgQ+Pr64siRI2U8QgE+MDU1RVxcnNSNYVxcXIXLt1e7dm3s378fLi4uOH78OPz8/AAAL1++lHteMZZ07twZQFGetfHjx/8yRZW8vb0RHR2Nfv36oUmTJnKrfm1qaooLFy6gcuXKiIqKwo4dOwAA7969g5qamlw0Bb5NXl4eduzYwT24/wqMHTsWS5cuRWhoqFxz1gYEBHA5NxcvXgx3d3eMHj0aderUQWhoqNx05YWnpye8vb3x4MEDNGnSBABw6dIlBAYGwtPTk5kOH4sTpqamOHnyJGrXri3RfuLECZkXV4rj5OSEgwcPwsHBAZ6envDz88Pu3btx9epVJnk4ywJFRUUpA5u5ubnE6y5dusiUm9vU1BQbN27EsmXLJNpDQ0OZ/j5v3ryBsbExAODo0aPo378/6tSpAy8vL6xevVrm/hUVFTFu3Di0b99e7kZJT09PDBgwAFWrVoVIJEL79u0BFJ2jrCqJA4C/vz8mT56MRYsWoVGjRlwucDEV6Z5NQKA4glFSQEBA4CeIjY2VMEgCgL6+PgIDA9GyZcsyHNmvgbwMLqwZMWIEJkyYgLy8PDg5OQEATp48ialTp2LSpEllPLqfY+7cuXB1dYWfnx+cnZ3RvHlzAEVekw4ODmU8up/nVyuqdPjwYRw9elTu88uECRPg5uYGTU1N1KhRg0vMf+bMGdjZ2clVW6Bk+PQs5IsrV67g5MmTiI6Ohp2dndRDtaxVpMXUq1eP84arUqUKQkJCsG/fPtjY2MDe3p6JBp8sX74cxsbGCAoK4rzxq1atiilTpjC95vCxODFp0iT4+voiISEBLVq0AFC0oBcWFsbEGCVmw4YNnBfp2LFjoa+vj/Pnz6Nnz54YNWoUM50fpXXr1lBXV5e7jqxeoCtXrkTfvn1x7NgxrgL25cuXce/ePezZs4fFEAHw413Il2fh/PnzYWtri4yMDPTv35/zUlVUVMT06dOZ6XTt2hVAkVdx8ftlIoJIJJJbNXEBAXkjoorovy4gICBQRlSuXBmHDx/mbqTFxMXFoUePHnj79m0ZjezXQEtLC4mJieXeUEREmD59OtasWYPPnz8DANTU1DBt2jTMnTu3jEf38zx//hzPnj1DgwYNOM/By5cvQ1tbm+kqf3miohxrNjY22LFjB+rXry93rWvXriE9PR0dO3bkjEVHjhyBnp6e1JwnwA8BAQFISUmRu2chX3zPq+9HFxW+R8eOHdGnTx/4+PggMzMT1tbWUFZWxuvXr7FixQqMHj2aiU5ZkJWVBaBkryhZQ3f/+usvjB8/nlucuH79OhQUFLB27Vrs3buXq9ItK/v27UNQUBBXfbtu3bqYMmUKevXqxaR/PlFUVMSzZ89QpUoVifY3b96gSpUqvBuKWFzbHj9+jHXr1kn8Pj4+Pkw9JefPn49Vq1ahatWqyM3NRUpKClRVVbF582Zs3LgRFy5ckFkjKioKM2bM+GU8C2NjY7+5v23btjyNRECALYJRUkBAQOAncHd3R3x8PDZt2iQRQjVixAg0atQIYWFhZTvACk5GRgZMTEyY5uCRJ9nZ2bhz5w7U1dVhaWkp9SBYUUKE/xepKEbJY8eOYc2aNQgJCYGZmRnTvidOnIhFixahUqVKmDhx4jffu2LFCqbaAj+Gi4sLTp48CU1NTbl6FvLFx48fUVhYyH2OR48eYf/+/ahbty46derETMfAwACxsbGoV68eQkNDsXbtWly/fh179uzB3LlzOWPLr4a2trbMHuC/yuJEVFQUNDU10apVKwDAn3/+iY0bN8LGxgZ//vkns5BeBQUFPH/+XMoo+fTpU1hYWODjx49MdH4Uvq5tY8aMwcKFC2FgYFDqPnbv3s15F1avXh0AsGXLFujq6jIxUBe/95K3Z2FsbCyWL1/OzS02NjaYMmUKWrduzUxDQOBXpeIvuQoICAjwyJo1azBs2DA0b94cysrKAIoS0Pfs2ZNp2NGvBl/FOvhGU1MTv/3221f3V5QQYYHyS+PGjfHp0yfUqlULGhoa3LwjRhbv7OvXryMvL4/7+2tUlLQKvyK6urpMiouUF3r16iXhwdisWTO5eDD+CgW8SkNpfE2+tiBx9uxZqTaWRsnPnz+XeD9Qo0YNJv1PmTIFS5cuBQDcuHEDEydOxKRJkxATE4OJEyfK7JW7Zs0aAEXzY2hoKDQ1Nbl9BQUFOHPmzC8baQAAW7duxeTJk2UySvbr10+qbdiwYbIMSwJWnr3fY+vWrfD09ESfPn3g6+sLoMhr2dnZGWFhYXB1dWWiw5ehXUCAbwSjpICAgMAPQkTIysrCjh078OTJE4mwli8TtgtIwlexjvKGEIwgICuDBw/GkydPEBAQACMjI6bnTvEHNr4e3gR+jr/++osXz0K+iI+Px8qVKwEUeUkZGRlJeDCyMkr+KgW8+ODLBYn4+Hjk5+dzlb5TUlKgqKiIRo0aMdG7d+8evLy8cP78eYl21t5rqampXNX6PXv2oEePHggICEB8fDyXm08WxMcxESEkJEQiwkNFRQXm5uYlVrGWN3zdX7G4v5G3dyFf4cyLFy/GsmXLuHkGKCqMuWLFCixatIiZUVLehnYBgbJCMEoKCAgI/CBEhNq1a+PWrVuwtLQUDJE/AV/FOgQEfpSKYhg/f/48Lly4gAYNGpT1UATKAL48C/mCLw/GX62AlzwpviCxYsUKaGlpYcuWLZzX1bt37+Dp6cnMUOTh4QElJSUcPnyYq1YsD1RUVJCbmwugqLK3u7s7gKLc4OK8nLKQmpoKAHB0dMTevXvLjZdaRVkM5cO7kC/PwocPH6JHjx5S7T179sTMmTOZaADyN7QLCJQVQpIrAQEBgR9EQUEBlpaWePPmTVkPpcJRrVo17kFUQKA8UFEe3KytrXnPSSZQfoiPj+eMQWLPwrS0NISHh3PhoxUJsQdjRkYGjh8/jo4dOwJg78HYr18/pKen4+rVq4iKiuLanZ2dOQ83AWmCgoKwZMkSCWONnp4e/P39ERQUxEQjISEB69evR5cuXWBvb48GDRpIbKxo1aoVlzf38uXL6NatG4Aiz09x/kIWxMTESHxfBQUFSEhIwLt375hpiMnPz8eJEyewfv16fPjwAUBR7srs7GzuPR8+fKgQKWPE3oU7d+6Er68vfH19sXPnTgQGBmLRokVMNKZMmcIZoMWehV27dkVqaup38yj/DKampjh58qRU+4kTJ5imJfrS0C6eP1kZ2gUEygrBKCkgICDwEwQGBmLKlCm4efNmWQ+lQhEUFIRp06b90rm8BCoWt2/fZl44Rh4EBgZi0qRJOH36NN68eYOsrCyJTeDX5lfLjTh37lxMnjwZ5ubmaNq0qVw9GI2NjeHg4CBR7KJJkya/dJ4/Wb0Os7Ky8OrVK6n2V69ecUYwWbGxscHr16+Z9PUtgoODoaSkhN27d2PdunWoVq0agKLiYZ07d2amM2HCBGzatAlAkUGyTZs2aNiwIUxNTXH69GlmOmlpabCzs0OvXr0wduxY7ndaunQpJk+ezEyHL77lXSj2QpWVr3kW/vnnnzh27BgTDQCYNGkSfH19MXr0aERERCAiIgI+Pj6YMGEC09+GL0O7gADfCOHbAgICAj+Bu7s7cnNz0aBBA6ioqEBdXV1ivyxFJ35l5FmsozxTUUKEfyV+taJK4odnZ2dniXZ5VA8VKH/8arkR+/Xrh1atWuHZs2cSXnHOzs5wcXEpw5H9GsjqAe7i4gJPT08EBQWhSZMmAIBLly5hypQp6NOnT6n7Lb6AsnTpUkydOhUBAQGws7OTuh9gdVzXqFEDhw8flmr/0lM2MDAQPj4+0NXVLZXOP//8gyFDhgAADh06hEePHiE5ORkRERGYNWsW4uLiStXvl4wfPx6NGzdGYmIi9PX1uXYXFxeMGDGCiQafiL0Lv0yFxNK7UN4h/GJGjx4NY2NjBAUFYdeuXQCK8s3v3LmTSRVxMcHBwRgzZozcDe0CAnwjGCUFBAQEfoJVq1aV9RAqJPIs1lGeqSghwr8Sv1pRJaEAzf82v2JuRGNjYxgbG0u0iQ1gAiXj7+8PNzc31KxZ85vvk9WbMSQkBJMnT4arqyvy8vIAAEpKSvD29sYff/xR6n51dXUl5mIiKjcLLQEBARgwYECpjZJv3rzhjuejR4+if//+qFOnDry8vLB69Wpm4zx79izOnz8PFRUViXZzc3M8efKEmc6PMmTIEJkMyGLvwoSEBK6qe1xcHMLCwph9b2LPwpYtW+Ly5cvYuXMnAPl4Frq4uMh9YYUvQ7uAAN+ISHhiEhAQEPhh3N3d0a5dO7Rt2xYWFhZlPZwKg4aGxv9ksY6MjAyYmJhIVOUUkC86OjpCUSWBX4rnz59znoXiUOTLly9DW1v7lw5FFvg/GjRogJv/r727j4ryvvIA/oUhIw5ggChKcVDBREABW1k1KiDF0J64xgWUpsAaR1Yb0aW8DDk21sQXdKMGDDZRjmYRNsTFxIjZxYayCoJBgg1vgmkKEhBcSYKvo6BVJ7N/cGbWEWKFeWaemfH7Ocdzwm/guZeENuTOvb/b3IxZs2YhPj4eMTExGD16tNHi9fb2oq2tDQDg7e2t2/4+XBUVFY/9uabamKzl5OSExsbGYd/DOGHCBOzfvx/h4eGYNGkS9u7di4ULF+LcuXOYN2+eYHdLuri4oKqqCn5+fno5f/7554iOjsZ3330nSJzJkycjPj4esbGxeO655wR55o8pKipCZmambvu2r68v0tPTBesu7OzsRGJiIrq6upCUlISEhAQAQEpKCtRqteD38t69e3fQCQ1PT09B4/w9o0aNQkNDg0XcLUoEsChJRDQkK1euREVFBdra2vCTn/wEoaGhuiLls88+K3Z6ZutnP/sZ9uzZg9mzZ4udiiAed0SYTM/Pzw+FhYUICAgQOxVBVFZWPvL1kJAQE2VCRGI6d+4cPvzwQxQWFuLixYt44YUXEBcXh3/6p3+CTCYTOz3BJSYmYvPmzUYtvgKGFyU3btyId955B+7u7ujr60NLSwtGjBiB3Nxc7N+/H9XV1YLk+atf/QpPP/009u3bBycnJ5w9exZjxozB4sWL4enpiQMHDggSZ9euXTh48CDq6urws5/9DPHx8fjVr341oLvZmhjaWdja2ooVK1bg9OnTeudidf8a+jNNZGosShIRDcP//u//orKyEhUVFaioqEBLSwvc3d1x8eJFsVMzS6Wlpdi0aRO2bt1q1DukTCUuLk43IjzYOPqbb74pUmb02WefYffu3cjJybGIRTZ/z4NLOrQe/HnjnZJET56qqiocPHgQH3/8Me7cuWOVS69M1e0lRAHn8OHD6OrqwtKlS3Vjwfn5+XB2dhas6+/ixYv4xS9+AY1Gg9bWVgQFBaG1tRWjR49GZWUl3NzcBImj1dLSgg8//BD/+Z//ifb2doSFhSE+Pl53L6NQzKG70NCftblz58LOzg7r1q2Du7v7gN8JTT0lxKIkWRreKUlENAwuLi545pln4OLiAmdnZ9jZ2WHMmDFip2W2rG1ZR3FxMUeEzZS1LVV6ePTv3r17qK+vx4YNG7B161aRsiIiMTk4OGDkyJGQSqWCbcU2N5bUN7NkyZIBZ6+88oqgMcaPH4/GxkYUFhbi7NmzuHXrFhISEhAXFzdg6aIQnnvuOWzatAmbNm3CF198gdWrV0OhUAhWlDSn7kJDf9YaGhpQW1vL6zSIholFSSKiIXj99ddx8uRJ1NfXw9fXF6GhoVi3bh1CQkLg4uIidnpmy9qWdXh4eMDJyUnsNGgQ1rZU6emnnx5w9sILL0AqlSI1NRW1tbUiZEVEptbe3o6DBw/i4MGD+Otf/4rQ0FBs2rRp0IIYmVZFRQXefvtt3d2Ifn5+SE9PR3BwsKBx7OzsdJu+TeHMmTM4ePAgDh06BJVKhaVLlwr27OXLl8POzg7FxcWDdhdaEj8/P1y+fFnsNIgsFse3iYiGwNbWFmPGjEFKSgqioqKMfgk4mSdrGxG2Jk/KUqWvv/4aQUFBuHXrltipEJGRzZ49G3/+858REBCAuLg4/PrXv4aHh4fYaRmVqUZQX3zxRfz7v/873N3dh/X1BQUFUCgUiIqK0k1PVFVVoaioCHl5eYiNjRUs10uXLuHzzz8fdNw5KSlJkBgPj23//Oc/R1xcHKKiouDo6ChIDKC/29dcuguH87P24JUJX375JX7/+99j27ZtZnFFEce3ydKwU5KIaAjq6+tRUVGBkydPIjMzE1KpVLfsZv78+SxS/ghrW9ZhbSPC1sTHxwe3b98WOw3BnD17Vu9jjUaD7u5uvPXWW5g+fbo4SRGRSYWHhyM3Nxd+fn5ip2IxJBIJuru7B9y1eOXKFbi5uenGg//4xz8aFGfr1q3YsWMHUlJSdGdJSUnIysrCli1bBCtK5uXl4Te/+Q2kUimeeeYZvc5CGxsbwYqSPj4++Id/+AesWbMGL7/8MsaOHSvIcx9m6d2Fzs7Oev8MNBqN2VxRFBwcbJSRfiJjYackEZEBGhsbsWvXLnz44Yf44YcfLO5uRFOxtmUdCxYsQGdnJxISEgYdERb6Lil6fNa2VMnW1hY2NjYD7ryaPXs2cnNzzaLLhIiM5969e/Dx8UFxcTF8fX3FTsdkDO32srW1xbfffjugKHnp0iV4e3sL9ubViBEjcO7cOUyePFnv/Pz585g2bRru3LkjSBy5XI5XX30Vv/vd7wb9nUoIarUaubm5WLJkiVGuJDLX7sLh/KxVVFQ89ueGhoYOJ60BHrfQTmRp2ClJRDQEGo0G9fX1OHnyJE6ePInPP/8cKpUKAQEBgv3SYY2sbVnH6dOnn4gRYUtkbUuV2tvb9T7WXiFhb28vUkZEZEpPPfWUYIUtc9DZ2Qm5XD7gzTyNRoOuri7d1uX4+PhhFaZ2794NoP+Nz/fff19v5FitVqOyslLQN3PkcjlOnDgxoCh5/PhxyOVyweL09fXh5ZdfNlpBEugvev3rv/4rFixYYJSipLl2Fw6ns3A4v/MnJiZi8+bNGD169JC/FvjxhTx/+9vfIJVKh/VMInPAoiQR0RC4urri1q1bCAwMRGhoKFauXIng4GA4OzuLnZpZs7ZlHdY2ImxNrG2p0oQJE3DixAmcOHFi0HvEcnNzRcqMiExlzZo12L59O95//33Y2Vn2f75NmjRp0G6vq1evYtKkSbpi1N69e4f1/F27dgHoL+Dk5ORAIpHoXpNKpZg4cSJycnKGmf1AaWlpSEpKQkNDA+bMmQOg/07JvLw8ZGdnCxYnISEBH3/8MdatWyfYMwczbdo0fPPNN5g0aZLgzzb1v59NNcL/uAoKCqBUKodclDR1oZ3I1Di+TUQ0BMeOHUNwcLDFjYCaK0td1mFtI8JkvjZt2oTNmzcjKCho0A2lRUVFImVGRKYSGRmJEydOwNHREf7+/nBwcNB7/ciRIyJlNnS2trb47rvvMGbMGL3zCxcuwM/PD729vYLECQsLw5EjR4zS8fewoqIiZGZm6rZv+/r6Ij09HYsXLxYshlqtxj/+4z/i9u3bg/7ekZWVJUickpIS/O53v8OWLVswY8aMAT9rpv79xpDuQlON8D+u4V5JoC0QX7hwAePHjx+00L5582bMmjVL0HyJTIVFSSIiMrpHLeu4f/8+Pv/8c5EyGx7t+NRg42eWOCJsTaxtqZK7uzt27NiBf/7nfxY7FSISiUKheOTrBw4cMFEmw5eamgoAyM7OxsqVKyGTyXSvqdVq1NTUQCKRoKqqyijx1Wo1mpqaMGHCBJMUKoWWkZGBN954A1OmTBlwl7WNjQ3KysoEifPgePjDo9Zi/H4zatQoNDQ0DKmQp+0sTElJwZYtWwbtLOzo6EB9fb3g+T6KofekmrLQTmRKlt3/T0REFmH69OmPXNZhaaxtRNiazJ8/f8CZJS9Vunv3rm4kkIieTHv27MEPP/yg61rr6OjA0aNH4evri1/84hciZ/d4tAUgjUaDpqYmvTvwpFIpAgMDoVQqBYuXnJwMf39/JCQkQK1WIyQkBNXV1ZDJZCguLh703xWGuHv37qBXbGjvyDRUZmYmcnNzsXz5ckGe92PM7feb4fRPmXqE31Qe/mdj6YV2Ii0WJYmIyOisbVkHlxqZL2tbqvQv//IvOHjwIDZs2CB2KkQkksWLFyMqKgqvvvoqrl+/jtmzZ+Opp57C5cuXkZWVhdWrV4ud4t+lLagoFApkZ2cbfQz4448/Rnx8PADgv//7v9HR0YGvv/4aH3zwAdavXy9YR2ZraytWrFiB06dP650L3Vk4YsQIzJ07V5BnPYo1/H6j/Z3T2joLTV1oJzIVjm8TEZFJWNOyDmsbEX4SVFRUWORSpd/+9rf4j//4DwQEBCAgIMBo94gRkfkaPXo0KioqMHXqVLz//vv4wx/+gPr6enzyySd44403dHcZWiKVSoWysjL4+PgIuqzD3t4e58+fx/jx47Fq1SrIZDK88847aG9vR2BgIFQqlSBx5s6dCzs7O6xbt27Qe38DAwMFifNv//Zv6O7u1o0mG0tJSQkcHR0xb948AMB7772H/fv3w8/PD++9957JC3yGjjw/SOzOQkO/Fw8PD3z66acICgrC0aNHsWbNGpSXl+ODDz5AWVmZ0a4+IDI2dkoSEZHR/b1lHZbG2kaEnwRjx47FX//6V7HTGLKzZ89i+vTpAIDm5ma91yz9f0dE9Hj6+vrg5OQEoH/RWlRUFGxtbTF79mxcuHBB5OyGJiYmBiEhIVi7di1u376NoKAgdHR0QKPRoLCwENHR0YLEGTt2LL766iu4u7ujpKREt827r69Pb5zXUA0NDaitrTX69uMzZ86grKwMxcXFmDp16oA3qIRadpSeno7t27cDAJqampCamoq0tDSUl5cjNTXVIu4v1TJVZ2FnZyfkcvmg94x3dXXpRvjj4+MN6hC+cuUKxo0bB6B/Y/jSpUvx3HPPYcWKFYJueicyNRYliYjI6HJycpCXl2c1yzqsbUTYmjxqqZK2uGdJzO1+LyIyvcmTJ+Po0aOIjIzEn/70J6SkpAAAvv/+e5NvQzZUZWUl1q9fD6B/a7VGo8H169eRn5+PjIwMwYqSCoUCMTExujdCFyxYAACoqakRtIDo5+eHy5cvC/a8H+Ps7IyoqCijx2lvb4efnx8A4JNPPsGiRYuwbds21NXV4cUXXzR6fCGZaoR/0qRJ6O7uHrDl++rVq5g0aZLujWptYXy4TFVoJzI1FiWJiMjorG1Zx9NPPz3g7IUXXoBUKrXIEWFrYm1LlYiI3njjDcTGxiIlJQXh4eF4/vnnAfR3Tf70pz8VObuhuXHjBlxdXQH0jwpHR0dDJpNh4cKFSE9PFyzOxo0bMW3aNHR1dWHp0qUYMWIEAEAikWDdunUGPfvB0e/t27fjtddew7Zt2+Dv7z+gg1GoorGpOhSlUin6+voAAMePH8eyZcsAAK6uroKNvAOm6S40VWeh9v7Qh926dUvQu9NNVWgnMjUWJYmIyOielGUdljoibE2sbakSEdGSJUswb948dHd3691RGB4ejsjISBEzGzq5XI7q6mq4urqipKQEhYWFAPonEIT+/+klS5YMOHvllVcMfq6zs7NeEUqj0SA8PFzvc4RedGMq8+bNQ2pqKubOnYszZ87g0KFDAICWlhaMHz9esDim6C40dmdhamoqgP6rVDZs2ACZTKZ7Ta1Wo6amRtAJDWMW2onExKIkEREZ3Z07d7Bv3z4cP37cKpZ1WNuIsDWZMGGCVS1VIiICgHHjxum6vrRmzpwpUjbDl5ycjLi4ODg6OsLT01N3r19lZSX8/f0FjVVRUYG3335btwjIz88P6enpCA4ONui5Yl2rcfjwYXz00Ufo7OzE3bt39V6rq6sTJMa7776LxMREHD58GHv37oWHhwcA4LPPPsMvf/lLQWIApukuNHZnYX19PYD+76WpqQlSqVT3mlQqRWBgIJRKpcFxHmSsQjuRmLh9m4iIjC4sLOxHX7OxsUFZWZkJszGcra3tI0eEOUYjnr+3VKmoqEikzIiICABqa2vR2dmJiIgIODg4AACOHTsGFxcXwa56KSgogEKhQFRUFObOnQsAqKqqQlFREfLy8hAbGytInMeVmJiIzZs3Y/To0cP6+t27d2P9+vVYvnw59u3bB4VCgba2Nvz5z3/GmjVrTH6f9VtvvYVXX30Vzs7OQ/o6bXdhdnY2Vq5cOWh3oUQiEey+x8OHD+s6C7Wdnvn5+XB2dsbixYsFiaFQKJCdnW2S+12NVWgnEhOLkkREREP08LZTjgibD3d3d+zYscNqlioREVk6bSHqcQg1OeHr64tVq1bplgI9+Pz9+/frijqmMmrUKDQ0NMDLy2tYX+/j44M333wTv/71r+Hk5ITGxkZ4eXnhjTfewNWrV/Huu+8KnPGjDff70b5JXVFRgeeff35Ad+HEiROhVCrx7LPPCpqvKalUKpSVlcHHx0fQN6nNrdBOJBQWJYmIiIaBI8Lm6ZlnnsGZM2fg7e0tdipERISB0xJ1dXW4f/8+pkyZAqD/vkKJRIIZM2YINjkxYsQInDt3DpMnT9Y7P3/+PKZNm4Y7d+4IEudxPVhIHA6ZTIa//OUvmDBhAtzc3PA///M/CAwMRGtrK2bPno0rV64InPGjGfr9mKq70BSdhTExMQgJCcHatWtx+/ZtBAYGoqOjAxqNBoWFhYJtlDe3QjuRUGzFToCIiMjSbNq0CREREThx4gQuX76Ma9eu6f0h8WiXKhERkXkoLy/X/Vm0aBFCQ0Nx8eJF1NXVoa6uDl1dXQgLC8PChQsFiymXy3HixIkB58ePH4dcLhcsjqmMGzcOV69eBQB4enriiy++ANC/3M0Se4wOHDigV5BUqVQ4evQovv76a8FiFBQUYMGCBZDJZEhKSkJSUhJGjhyJ8PBwQX9PqKys1BU5i4qKoNFocP36dezevRsZGRmCxfnmm2+waNGiAecvvfTSgCV/RJaEi26IiIiGKCcnB3l5eRwRNkPWtlSJiMiaZGZmorS0FC4uLrozFxcXZGRkICIiAmlpaYLESUtLQ1JSEhoaGnT3VFZVVSEvLw/Z2dmCxDCln//85/iv//ov/PSnP4VCoUBKSgoOHz6ML7/8ElFRUWKnN2QPdxcGBQUJ3l24detW7NixQ6+zMCkpCVlZWdiyZYtg4843btyAq6srAKCkpATR0dGQyWRYuHAh0tPTBYkB/H+h/eHuX0sttBNpsShJREQ0RHfv3hXsMn4S1tmzZ3Ub0Jubm/VeG2zTJxERmY5KpUJPT8+A856eHty8eVOwOKtXr8a4ceOQmZmJjz76CED/+OuhQ4cEW3BiSvv27dNdFbNmzRo888wzOH36NF566SX85je/ETm7oausrMT69esB6HcX5ufnIyMjQ5Ci5KM6C19//XWDn68ll8tRXV0NV1dXlJSUoLCwEABw7do1Qe8at7ZCO5EWi5JERERDpB0R3rBhg9ip0EPKy8vFToGIiH5EZGQkFAoFMjMzMXPmTABATU0N0tPTBe/4i4yMRGRkpKDPFIutrS1sbf//5rWXX34ZL7/8sogZGcYU3YWm6ixMTk5GXFwcHB0d4enpifnz5wPoL7z6+/sLFsfaCu1EWixKEhERDRFHhImIiIYuJycHSqUSsbGxuHfvHgDAzs4OCQkJ2Llzp+Dx7t69O+hCOk9PT0Ge39nZCblcPqATX6PRoKurSxcnPj7eoKUuJSUlcHR0xLx58wAA7733Hvbv3w8/Pz+89957euPwphAcHIyRI0cO++tN0V1oqs7CxMREzJo1C52dnYiIiNAVj728vLB161bB4gDWVWgn0uL2bSIioiF6eJPog2xsbATbHkpERGSNent70dbWBgDw9vaGg4ODoM9vbW3FihUrcPr0ab1zjUYDGxsbqNVqQeJIJBJ0d3fDzc1N7/zKlStwc3MTLI6/vz+2b9+OF198EU1NTQgKCkJaWhrKy8vh4+ODAwcOCBLHVN/Pnj178Nvf/lbXXVhfXw9bW1v84Q9/wJEjRwSbeigqKkJmZqZuM7Wvry/S09MN7ixMTU197M8V+o1qYxfaiUyNRUkiIiIiIiKyGnPnzoWdnR3WrVsHd3f3AZ2MgYGBgsSxtbXFd999hzFjxuidX7hwAX5+fujt7RUkjqOjI5qbmzFx4kRs3LgRzc3NOHz4MOrq6vDiiy/i22+/FSSOra0tvv322wFFyUuXLsHb2xu3b98WJA4A1NbW6roLtUXpY8eOwcXFxezv7X74zem6ujrcv38fU6ZMAQC0tLRAIpFgxowZgr1RbapCO5GpcXybiIiIiIiIrEZDQwNqa2vh4+NjlOdrO+VsbGywYcMGyGQy3WtqtRo1NTW6pWtCkEql6OvrA9B/J+KyZcsAAK6urlCpVAY/f/fu3QD6v5/3338fjo6OutfUajUqKysN/nv5Y92Fp06dGnAmZFHSGJ2FD3ZyZmVlwcnJCfn5+box+mvXrkGhUCA4OHjYMR62fPly2NnZobi4eNBCO5GlYlGSiIiIiIiIrIafnx8uX75stOfX19cD6O9Sa2pqglQq1b0mlUoRGBgIpVIpWLx58+YhNTUVc+fOxZkzZ3Do0CEA/R1548ePN/j5u3btAtD//eTk5EAikehek0qlmDhxInJycgyKof17pvWo7kIhmKqzMDMzE6WlpXr3erq4uCAjIwMRERFIS0sTJI6xC+1EYmFRkoiIiIiIiCzagx2D27dvx2uvvYZt27bB399/wEI6Q5bOAP/fKadQKJCdnW3w8/6ed999F4mJiTh8+DD27t0LDw8PAMBnn32GX/7ylwY/v729HUD/WPKRI0eMsjjH1N2FpuosVKlU6OnpGXDe09ODmzdvChbH2IV2IrHwTkkiIiIiIiKyaLa2tnqFJ21H3IOMff+eSqVCWVkZfHx8ROloe+utt/Dqq6/C2dlZkOep1Wo0NTVhwoQJghYqPTw8UFpaiqlTp+qdNzc3IyIiApcuXTI4hoODg0k6C5ctW4ZTp04hMzMTM2fOBADU1NQgPT0dwcHByM/PH/azHyy0f/nll/j9739vtEI7kVjYKUlEREREREQWTaiNzUMRExODkJAQrF27Frdv30ZQUBA6Ojqg0WhQWFiI6Ohok+azbds2xMTEDLsomZycDH9/fyQkJECtViMkJATV1dWQyWQoLi7G/PnzBcnTFN2FpuoszMnJgVKpRGxsLO7duwcAsLOzQ0JCAnbu3GnQs52dnQcU2sPDw/U+h4tuyNKxU5KIiIiIiIieOImJidi8eTNGjx49rK8fN24c/vSnPyEwMBAHDx7Em2++icbGRuTn52Pfvn0D7lE0NicnJzQ2NsLLy2tYX+/h4YFPP/0UQUFBOHr0KNasWYPy8nJ88MEHKCsrQ1VVlSB5Gqu7UMzOwt7eXrS1tQEAvL29dRvFDVFRUfHYnxsaGmpwPCIxsChJRERERERET5xRo0ahoaFh2EW8kSNHoqWlBXK5HMuWLcNPfvITvPXWW+js7ISfnx9u3bolcMaPZmhR0t7eHufPn8f48eOxatUqyGQyvPPOO2hvb0dgYKAgm74BoK+vD0qlErm5uYN2Fw63oGcOI/xiM7TQTmRqHN8mIiIiIiKiJ46h/TlyuRzV1dVwdXVFSUkJCgsLAfQvbbG3txciRZMaO3YsvvrqK7i7u6OkpAR79+4F0F9EfHAjt6FkMhn27NmDnTt3CtpdKMYIv7kpKCiAUqlkUZIsBouSREREREREREOUnJyMuLg4ODo6wtPTU3fnYmVlJfz9/cVNbhgUCgViYmJ026oXLFgAoH+02hgLYxwcHBAQECDY84YzwmxtnYUchCVLw6IkERERERER0RAlJiZi1qxZ6OzsREREBGxtbQEAXl5e2Lp1q8jZDd3GjRsxbdo0dHV1YenSpRgxYgQAQCKRYN26dSJnZxzsLCQSF4uSRERERERERI8hNTV10PNTp04NOJszZ46x09ETHByMkSNHGvSMJUuWDDh75ZVXDHqmOWNnIZG4WJQkIiIiIiIiegwPb9Suq6vD/fv3MWXKFABAS0sLJBIJZsyYIVhMiUSC7u5uuLm56Z1fuXIFbm5uuqUtf/zjHw2OVVFRgbfffht/+ctfAAB+fn66rdhEREKzFTsBIiIiIiIiIqF0dnYO2gGn0WjQ2dmp+zg+Ph6jRo0a0rPLy8t1fxYtWoTQ0FBcvHgRdXV1qKurQ1dXF8LCwrBw4UKDv48H8x7M3/72N0ilUsHiFBQUYMGCBZDJZEhKSkJSUhJGjhyJ8PBwHDx4ULA4RERaNhr2KxMREREREZGVeNzOQkN5eHigtLQUU6dO1Ttvbm5GREQELl26ZNDzd+/eDQBISUnBli1b4OjoqHtNrVajsrISHR0dA7o3h8vX1xerVq1CSkqK3nlWVhb279+v6560Jk5OTmhsbISXl5fYqTxSZ2cn5HI5bGxs9M41Gg26urrg6ekJAFi9ejW2bNnCOzLJYnB8m4iIiIiIiKyGRqMZULwBgFu3bsHe3l6wOCqVCj09PQPOe3p6cPPmTYOfv2vXLgD9309OTg4kEonuNalUiokTJyInJ8fgOFrffPMNFi1aNOD8pZdewuuvvy5YHBq6SZMmDVpov3r1KiZNmqQrtO/du1eM9IiGjUVJIiIiIiIisnjaJTQ2NjbYsGEDZDKZ7jW1Wo2amhpMnz5dsHiRkZFQKBTIzMzEzJkzAQA1NTVIT09HVFSUwc9vb28HAISFheHIkSNwcXEx+JmPIpfLceLECUyePFnv/Pjx45DL5UaNLbTH7Swczgi/GExVaCcyNRYliYiIiIiIyOJpx5g1Gg2ampr07luUSqUIDAyEUqkULF5OTg6USiViY2Nx7949AICdnR0SEhKwc+dOweKUl5frfaxWq9HU1IQJEyYIWqhMS0tDUlISGhoadJvDq6qqkJeXh+zsbMHimIK1dBaautBOZGq8U5KIiIiIiIishkKhQHZ2tsk64Hp7e9HW1gYA8Pb2hoODg6DPT05Ohr+/PxISEqBWqxESEoLq6mrIZDIUFxdj/vz5gsUqKipCZmam7v5IX19fpKenY/HixYLFMAVbW1t89913GDNmjN75hQsX4Ofnh97eXpEyG5qwsDAA/VvRn3/++QGF9okTJ0KpVOLZZ58VK0Uig7AoSURERERERFZLpVKhrKwMPj4+8PHxETudIfPw8MCnn36KoKAgHD16FGvWrEF5eTk++OADlJWVoaqqSuwUzYa2szA7OxsrV64ctLNQIpFY3N8zUxfaiUyFRUkiIiIiIiKyGjExMQgJCcHatWtx+/ZtBAYGoqOjAxqNBoWFhYiOjhY7xSGxt7fH+fPnMX78eKxatQoymQzvvPMO2tvbERgYCJVKJWi8u3fv4vvvv8cPP/ygd669h9GcPSmdhZZeaCfS4p2SREREREREZDUqKyuxfv16AP3jyBqNBtevX0d+fj4yMjIsrig5duxYfPXVV3B3d0dJSYnuHsS+vj69jdyGam1txYoVK3D69Gm9c+2SFe09jOZMe/+mtXUWPlxoDwoKsuhCO5EWi5JERERERERkNW7cuAFXV1cAQElJCaKjoyGTybBw4UKkp6eLnN3QKRQKxMTEwN3dHTY2NliwYAGA/k3fQnbJLV++HHZ2diguLtbFslQHDhzQ+9jSOwutrdBOpMWiJBEREREREVkNuVyO6upquLq6oqSkBIWFhQCAa9euwd7eXuTshm7jxo2YNm0aurq6sHTpUowYMQIAIJFIsG7dOsHiNDQ0oLa21iKLdg+zts5Cayu0E2mxKElERERERERWIzk5GXFxcXB0dISnp6duO3VlZSX8/f3FTW6YlixZMuDslVdeETSGn58fLl++LOgzxWJtnYXWVmgn0rIVOwEiIiIiIiIioSQmJuKLL75Abm4uTp8+DVvb/v/s9fLywtatW0XObngqKiqwaNEiTJ48GZMnT8ZLL72EU6dOGfxclUql+7N9+3a89tprOHnyJK5cuaL3mtDLdIztUZ2Fra2tImc3dNpC+/jx4+Hu7m4VhXYigJ2SREREREREZOFSU1MHPR+scDdnzhxjpyOogoICKBQKREVFISkpCQBQVVWF8PBw5OXlITY2dtjPdnZ21rs7UqPRIDw8XO9zLGnRjZa1dRYmJiZi1qxZ6OzsREREhFUU2okAFiWJiIiIiIjIwtXX1+t9XFdXh/v372PKlCkAgJaWFkgkEsyYMUOM9AyydetW7NixAykpKbqzpKQkZGVlYcuWLQYVJbXbqq2NNYzwW3OhnUjLRqPRaMROgoiIiIiIiEgIWVlZOHnyJPLz8+Hi4gKgv0NOoVAgODgYaWlpImc4NCNGjMC5c+cwefJkvfPz589j2rRpuHPnjknzSUxMxObNmzF69GiTxh2q2tpaXWehg4MDAODYsWNwcXGxiCJeWFiY3sePKrSXlZWJkSKRwdgpSURERERERFYjMzMTpaWluoIkALi4uCAjIwMREREWV5SUy+U4ceLEgKLk8ePHIZfLTZ5PQUEBlEql2RUlra2z8MEu1qysLDg5Of1ooZ3IUrEoSURERERERFZDpVKhp6dnwHlPTw9u3rwpQkaGSUtLQ1JSEhoaGnTFtKqqKuTl5SE7O9vk+ZjrsKU1j/BbW6GdSItFSSIiIiIiIrIakZGRUCgUyMzMxMyZMwEANTU1SE9PR1RUlMjZDd3q1asxbtw4ZGZm4qOPPgIA+Pr64tChQ1i8eLHI2ZkPa+4stLZCO5EW75QkIiIiIiIiq9HX1welUonc3Fzcu3cPAGBnZ4eEhATs3LlTd78gDY+TkxMaGxvh5eUldio/ysPDA6WlpZg6dareeXNzMyIiInDp0iWRMhueZcuW4dSpU4MW2oODg5Gfny9yhkTDw05JIiIiIiIishoymQx79uzBzp070dbWBgDw9va2+GLk3bt38f333+OHH37QO/f09BQpI/NlbZ2FOTk5UCqViI2NHbTQTmSp2ClJREREREREZKZaW1uxYsUKnD59Wu9co9HAxsYGarXapPlYQqektXYW9vb2WlWhnYidkkRERERERERmavny5bCzs0NxcTHc3d1hY2NjlDidnZ2Qy+UDnq/RaNDV1aXryIyPj8eoUaOMkoNQrLWz0MHBAQEBAWKnQSQYdkoSERERERERmSkHBwfU1tbCx8fHqHEkEgm6u7vh5uamd37lyhW4ubmZvCNTCOwsJDJv7JQkIiIiIiIiMlN+fn64fPmy0eNox8EfduvWLdjb2xs9vjGws5DIvLEoSURERERERGRGVCqV7q+3b9+O1157Ddu2bYO/vz+eeuopvc81dJQ6NTUVAGBjY4MNGzZAJpPpXlOr1aipqcH06dMNikFENBgWJYmIiIiIiIjMiLOzs17XokajQXh4uN7nCLXopr6+Xve8pqYmSKVS3WtSqRSBgYFQKpUGxSAiGgzvlCQiIiIiIiIyIxUVFY/9uaGhoYLEVCgUyM7ONvslNkRkPViUJCIiIiIiIrJwiYmJ2Lx5M0aPHi3I81QqFcrKyuDj42P0JTtE9GSyFTsBIiIiIiIiIjJMQUGB3l2UQxUTE4N3330XAHD79m0EBQUhJiYG/v7++OSTT4RKk4hIh0VJIiIiIiIiIgtn6BBkZWUlgoODAQBFRUXQaDS4fv06du/ejYyMDCFSJCLSw6IkERERERER0RPuxo0bcHV1BQCUlJQgOjoaMpkMCxcuRGtrq8jZEZE1YlGSiIiIiIiI6Aknl8tRXV2N3t5elJSUICIiAgBw7do12Nvbi5wdEVkjO7ETICIiIiIiIiJxJScnIy4uDo6OjvD09MT8+fMB9I91+/v7i5scEVklbt8mIiIiIiIisnBOTk5obGyEl5fXsJ9RW1uLzs5OREREwMHBAQBw7NgxuLi4YM6cOUKlSkQEgJ2SRERERERERGars7MTcrkcNjY2eucajQZdXV3w9PQEAMTHx2PUqFFDenZqauqg56dOnRpwxqIkEQmNnZJEREREREREZkoikaC7uxtubm5651euXIGbmxvUavWwnx0WFqb3cV1dHe7fv48pU6YAAFpaWiCRSDBjxgyUlZUNOw4R0WDYKUlERERERERkpjQazYAuSQC4deuWwQtoysvLdX+dlZUFJycn5Ofnw8XFBUD/khuFQoHg4GCD4hARDYadkkRERERERERmRjtanZ2djZUrV0Imk+leU6vVqKmpgUQiQVVVlSDxPDw8UFpaiqlTp+qdNzc3IyIiApcuXRIkDhGRFjsliYiIiIiIiMxMfX09gP5OyaamJkilUt1rUqkUgYGBUCqVgsVTqVTo6ekZcN7T04ObN28KFoeISIudkkRERERERERmSqFQIDs7e8hLbIZq2bJlOHXqFDIzMzFz5kwAQE1NDdLT0xEcHIz8/HyjxieiJw+LkkREREREREQWQqVSoaysDD4+PvDx8RHsuX19fVAqlcjNzcW9e/cAAHZ2dkhISMDOnTvh4OAgWCwiIoBFSSIiIiIiIiKzFRMTg5CQEKxduxa3b99GYGAgOjo6oNFoUFhYiOjoaEHj9fb2oq2tDQDg7e3NYiQRGY2t2AkQERERERER0eAqKyt126+Lioqg0Whw/fp17N69GxkZGYLHc3BwQEBAAAICAliQJCKjYlGSiIiIiIiIyEzduHEDrq6uAICSkhJER0dDJpNh4cKFaG1tFTk7IqLhY1GSiIiIiIiIyEzJ5XJUV1ejt7cXJSUliIiIAABcu3YN9vb2ImdHRDR8dmInQERERERERESDS05ORlxcHBwdHeHp6Yn58+cD6B/r9vf3Fzc5IiIDcNENERERERERkRmrra1FZ2cnIiIidPc8Hjt2DC4uLpgzZ47I2RERDQ+LkkRERERERERmJDU19bE/Nysry4iZEBEZD8e3iYiIiIiIiMxIfX293sd1dXW4f/8+pkyZAgBoaWmBRCLBjBkzxEiPiEgQLEoSERERERERmZHy8nLdX2dlZcHJyQn5+flwcXEB0L/kRqFQIDg4WKwUiYgMxvFtIiIiIiIiIjPl4eGB0tJSTJ06Ve+8ubkZERERuHTpkkiZEREZxlbsBIiIiIiIiIhocCqVCj09PQPOe3p6cPPmTREyIiISBouSRERERERERGYqMjISCoUCR44cwcWLF3Hx4kV88sknSEhIQFRUlNjpERENG8e3iYiIiIiIiMxUX18flEolcnNzce/ePQCAnZ0dEhISsHPnTjg4OIicIRHR8LAoSURERERERGTment70dbWBgDw9vZmMZKILB6LkkRERERERERERGRSvFOSiIiIiIiIiIiITIpFSSIiIiIiIiIiIjIpFiWJiIiIiIiIiIjIpFiUJCIiIiIiIiIiIpNiUZKIiIiIiIiIiIhMikVJIiIiIiIiIiIiMikWJYmIiIiIiIiIiMik/g/+mtc/DkAp2gAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#This variable is highly correlated with num_compromised and should be ignored for analysis.\n",
+ "#(Correlation = 0.9938277978738366)\n",
+ "df.drop('num_root',axis = 1,inplace = True)\n",
+ "\n",
+ "#This variable is highly correlated with serror_rate and should be ignored for analysis.\n",
+ "#(Correlation = 0.9983615072725952)\n",
+ "df.drop('srv_serror_rate',axis = 1,inplace = True)\n",
+ "\n",
+ "#This variable is highly correlated with rerror_rate and should be ignored for analysis.\n",
+ "#(Correlation = 0.9947309539817937)\n",
+ "df.drop('srv_rerror_rate',axis = 1, inplace=True)\n",
+ "\n",
+ "#This variable is highly correlated with srv_serror_rate and should be ignored for analysis.\n",
+ "#(Correlation = 0.9993041091850098)\n",
+ "df.drop('dst_host_srv_serror_rate',axis = 1, inplace=True)\n",
+ "\n",
+ "#This variable is highly correlated with rerror_rate and should be ignored for analysis.\n",
+ "#(Correlation = 0.9869947924956001)\n",
+ "df.drop('dst_host_serror_rate',axis = 1, inplace=True)\n",
+ "\n",
+ "#This variable is highly correlated with srv_rerror_rate and should be ignored for analysis.\n",
+ "#(Correlation = 0.9821663427308375)\n",
+ "df.drop('dst_host_rerror_rate',axis = 1, inplace=True)\n",
+ "\n",
+ "#This variable is highly correlated with rerror_rate and should be ignored for analysis.\n",
+ "#(Correlation = 0.9851995540751249)\n",
+ "df.drop('dst_host_srv_rerror_rate',axis = 1, inplace=True)\n",
+ "\n",
+ "#This variable is highly correlated with dst_host_srv_count and should be ignored for analysis.\n",
+ "#(Correlation = 0.9736854572953938)\n",
+ "df.drop('dst_host_same_srv_rate',axis = 1, inplace=True)"
+ ],
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2022-11-14T04:34:57.099506Z",
+ "iopub.execute_input": "2022-11-14T04:34:57.09987Z",
+ "iopub.status.idle": "2022-11-14T04:34:57.510696Z",
+ "shell.execute_reply.started": "2022-11-14T04:34:57.099838Z",
+ "shell.execute_reply": "2022-11-14T04:34:57.50944Z"
+ },
+ "trusted": true,
+ "id": "-VTRrgVhfJnn"
+ },
+ "execution_count": 24,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.head()"
+ ],
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2022-11-14T04:34:57.512404Z",
+ "iopub.execute_input": "2022-11-14T04:34:57.513073Z",
+ "iopub.status.idle": "2022-11-14T04:34:57.536696Z",
+ "shell.execute_reply.started": "2022-11-14T04:34:57.51304Z",
+ "shell.execute_reply": "2022-11-14T04:34:57.535669Z"
+ },
+ "trusted": true,
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 273
+ },
+ "id": "xez6CK-bfJno",
+ "outputId": "d018dba0-b399-492f-e824-8ff1a507b3f2"
+ },
+ "execution_count": 25,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " duration protocol_type service flag src_bytes dst_bytes land \\\n",
+ "0 0 tcp http SF 181 5450 0 \n",
+ "1 0 tcp http SF 239 486 0 \n",
+ "2 0 tcp http SF 235 1337 0 \n",
+ "3 0 tcp http SF 219 1337 0 \n",
+ "4 0 tcp http SF 217 2032 0 \n",
+ "\n",
+ " wrong_fragment urgent hot ... same_srv_rate diff_srv_rate \\\n",
+ "0 0 0 0 ... 1.0 0.0 \n",
+ "1 0 0 0 ... 1.0 0.0 \n",
+ "2 0 0 0 ... 1.0 0.0 \n",
+ "3 0 0 0 ... 1.0 0.0 \n",
+ "4 0 0 0 ... 1.0 0.0 \n",
+ "\n",
+ " srv_diff_host_rate dst_host_count dst_host_srv_count \\\n",
+ "0 0.0 9 9 \n",
+ "1 0.0 19 19 \n",
+ "2 0.0 29 29 \n",
+ "3 0.0 39 39 \n",
+ "4 0.0 49 49 \n",
+ "\n",
+ " dst_host_diff_srv_rate dst_host_same_src_port_rate \\\n",
+ "0 0.0 0.11 \n",
+ "1 0.0 0.05 \n",
+ "2 0.0 0.03 \n",
+ "3 0.0 0.03 \n",
+ "4 0.0 0.02 \n",
+ "\n",
+ " dst_host_srv_diff_host_rate target Attack Type \n",
+ "0 0.0 normal. normal \n",
+ "1 0.0 normal. normal \n",
+ "2 0.0 normal. normal \n",
+ "3 0.0 normal. normal \n",
+ "4 0.0 normal. normal \n",
+ "\n",
+ "[5 rows x 33 columns]"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " duration | \n",
+ " protocol_type | \n",
+ " service | \n",
+ " flag | \n",
+ " src_bytes | \n",
+ " dst_bytes | \n",
+ " land | \n",
+ " wrong_fragment | \n",
+ " urgent | \n",
+ " hot | \n",
+ " ... | \n",
+ " same_srv_rate | \n",
+ " diff_srv_rate | \n",
+ " srv_diff_host_rate | \n",
+ " dst_host_count | \n",
+ " dst_host_srv_count | \n",
+ " dst_host_diff_srv_rate | \n",
+ " dst_host_same_src_port_rate | \n",
+ " dst_host_srv_diff_host_rate | \n",
+ " target | \n",
+ " Attack Type | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " tcp | \n",
+ " http | \n",
+ " SF | \n",
+ " 181 | \n",
+ " 5450 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 9 | \n",
+ " 9 | \n",
+ " 0.0 | \n",
+ " 0.11 | \n",
+ " 0.0 | \n",
+ " normal. | \n",
+ " normal | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0 | \n",
+ " tcp | \n",
+ " http | \n",
+ " SF | \n",
+ " 239 | \n",
+ " 486 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 19 | \n",
+ " 19 | \n",
+ " 0.0 | \n",
+ " 0.05 | \n",
+ " 0.0 | \n",
+ " normal. | \n",
+ " normal | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0 | \n",
+ " tcp | \n",
+ " http | \n",
+ " SF | \n",
+ " 235 | \n",
+ " 1337 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 29 | \n",
+ " 29 | \n",
+ " 0.0 | \n",
+ " 0.03 | \n",
+ " 0.0 | \n",
+ " normal. | \n",
+ " normal | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 0 | \n",
+ " tcp | \n",
+ " http | \n",
+ " SF | \n",
+ " 219 | \n",
+ " 1337 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 39 | \n",
+ " 39 | \n",
+ " 0.0 | \n",
+ " 0.03 | \n",
+ " 0.0 | \n",
+ " normal. | \n",
+ " normal | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0 | \n",
+ " tcp | \n",
+ " http | \n",
+ " SF | \n",
+ " 217 | \n",
+ " 2032 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 49 | \n",
+ " 49 | \n",
+ " 0.0 | \n",
+ " 0.02 | \n",
+ " 0.0 | \n",
+ " normal. | \n",
+ " normal | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows ร 33 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df"
+ }
+ },
+ "metadata": {},
+ "execution_count": 25
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Feature encoding"
+ ],
+ "metadata": {
+ "id": "ax_voBy5fJno"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#protocol_type feature mapping\n",
+ "pmap = {'icmp':0,'tcp':1,'udp':2}\n",
+ "df['protocol_type'] = df['protocol_type'].map(pmap)"
+ ],
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2022-11-14T04:34:57.539043Z",
+ "iopub.execute_input": "2022-11-14T04:34:57.539627Z",
+ "iopub.status.idle": "2022-11-14T04:34:57.582924Z",
+ "shell.execute_reply.started": "2022-11-14T04:34:57.539516Z",
+ "shell.execute_reply": "2022-11-14T04:34:57.581549Z"
+ },
+ "trusted": true,
+ "id": "IhJ8YcypfJnp"
+ },
+ "execution_count": 26,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#flag feature mapping\n",
+ "fmap = {'SF':0,'S0':1,'REJ':2,'RSTR':3,'RSTO':4,'SH':5 ,'S1':6 ,'S2':7,'RSTOS0':8,'S3':9 ,'OTH':10}\n",
+ "df['flag'] = df['flag'].map(fmap)"
+ ],
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2022-11-14T04:34:58.165751Z",
+ "iopub.execute_input": "2022-11-14T04:34:58.166128Z",
+ "iopub.status.idle": "2022-11-14T04:34:58.208464Z",
+ "shell.execute_reply.started": "2022-11-14T04:34:58.166098Z",
+ "shell.execute_reply": "2022-11-14T04:34:58.207739Z"
+ },
+ "trusted": true,
+ "id": "Puajj0WsfJnp"
+ },
+ "execution_count": 27,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#attack type feature mapping\n",
+ "amap = {'dos':0,'normal':1,'probe':2,'r2l':3,'u2r':4}\n",
+ "df['Attack Type'] = df['Attack Type'].map(amap)"
+ ],
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2022-11-14T04:34:58.769039Z",
+ "iopub.execute_input": "2022-11-14T04:34:58.769403Z",
+ "iopub.status.idle": "2022-11-14T04:34:58.802526Z",
+ "shell.execute_reply.started": "2022-11-14T04:34:58.769378Z",
+ "shell.execute_reply": "2022-11-14T04:34:58.800772Z"
+ },
+ "trusted": true,
+ "id": "jUvm48P-fJnq"
+ },
+ "execution_count": 28,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.drop('service',axis = 1,inplace= True)"
+ ],
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2022-11-14T04:34:59.794244Z",
+ "iopub.execute_input": "2022-11-14T04:34:59.794875Z",
+ "iopub.status.idle": "2022-11-14T04:34:59.857705Z",
+ "shell.execute_reply.started": "2022-11-14T04:34:59.794843Z",
+ "shell.execute_reply": "2022-11-14T04:34:59.856687Z"
+ },
+ "trusted": true,
+ "id": "08szUu2-fJnq"
+ },
+ "execution_count": 29,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Models"
+ ],
+ "metadata": {
+ "id": "oOrz_H99fJnr"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.preprocessing import MinMaxScaler\n",
+ "from sklearn.metrics import accuracy_score"
+ ],
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2022-11-14T04:35:00.333238Z",
+ "iopub.execute_input": "2022-11-14T04:35:00.333657Z",
+ "iopub.status.idle": "2022-11-14T04:35:00.33976Z",
+ "shell.execute_reply.started": "2022-11-14T04:35:00.333626Z",
+ "shell.execute_reply": "2022-11-14T04:35:00.338333Z"
+ },
+ "trusted": true,
+ "id": "HdKTwtt2fJnr"
+ },
+ "execution_count": 30,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "import tensorflow as tf\n",
+ "from keras.models import Sequential, Model\n",
+ "from keras.layers import Dense, Conv1D, MaxPooling1D, Flatten, Dropout, Input, Concatenate, Add"
+ ],
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2022-11-14T04:35:01.062238Z",
+ "iopub.execute_input": "2022-11-14T04:35:01.062637Z",
+ "iopub.status.idle": "2022-11-14T04:35:07.263624Z",
+ "shell.execute_reply.started": "2022-11-14T04:35:01.062583Z",
+ "shell.execute_reply": "2022-11-14T04:35:07.262652Z"
+ },
+ "trusted": true,
+ "id": "dX08xr5EfJnr"
+ },
+ "execution_count": 31,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df = df.drop(['target',], axis=1)\n",
+ "print(df.shape)\n",
+ "\n",
+ "# Target variable and train set\n",
+ "Y = df[['Attack Type']]\n",
+ "X = df.drop(['Attack Type',], axis=1)\n",
+ "\n",
+ "sc = MinMaxScaler()\n",
+ "X = sc.fit_transform(X)\n",
+ "\n",
+ "# Split test and train data\n",
+ "X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.33, random_state=42)\n",
+ "print(X_train.shape, X_test.shape)\n",
+ "print(Y_train.shape, Y_test.shape)"
+ ],
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2022-11-14T04:35:07.265373Z",
+ "iopub.execute_input": "2022-11-14T04:35:07.265985Z",
+ "iopub.status.idle": "2022-11-14T04:35:07.654828Z",
+ "shell.execute_reply.started": "2022-11-14T04:35:07.265946Z",
+ "shell.execute_reply": "2022-11-14T04:35:07.653903Z"
+ },
+ "trusted": true,
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "AuJrNvMTfJnr",
+ "outputId": "f111fbe1-4772-4bb7-9312-77d9dd283e52"
+ },
+ "execution_count": 32,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "(494021, 31)\n",
+ "(330994, 30) (163027, 30)\n",
+ "(330994, 1) (163027, 1)\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.to_csv(\"ids.csv\", index=False)"
+ ],
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2022-11-14T04:37:55.966266Z",
+ "iopub.execute_input": "2022-11-14T04:37:55.966688Z",
+ "iopub.status.idle": "2022-11-14T04:37:59.294378Z",
+ "shell.execute_reply.started": "2022-11-14T04:37:55.966654Z",
+ "shell.execute_reply": "2022-11-14T04:37:59.292389Z"
+ },
+ "trusted": true,
+ "id": "2aDGMM_dfJns"
+ },
+ "execution_count": 33,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "pd.read_csv(\"ids.csv\")"
+ ],
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2022-11-14T04:37:59.296806Z",
+ "iopub.execute_input": "2022-11-14T04:37:59.297153Z",
+ "iopub.status.idle": "2022-11-14T04:37:59.945352Z",
+ "shell.execute_reply.started": "2022-11-14T04:37:59.297122Z",
+ "shell.execute_reply": "2022-11-14T04:37:59.944196Z"
+ },
+ "trusted": true,
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 461
+ },
+ "id": "FB0UoN_xfJns",
+ "outputId": "586c2114-134a-40de-8ecc-865b7f19c118"
+ },
+ "execution_count": 34,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " duration protocol_type flag src_bytes dst_bytes land \\\n",
+ "0 0 1 0 181 5450 0 \n",
+ "1 0 1 0 239 486 0 \n",
+ "2 0 1 0 235 1337 0 \n",
+ "3 0 1 0 219 1337 0 \n",
+ "4 0 1 0 217 2032 0 \n",
+ "... ... ... ... ... ... ... \n",
+ "494016 0 1 0 310 1881 0 \n",
+ "494017 0 1 0 282 2286 0 \n",
+ "494018 0 1 0 203 1200 0 \n",
+ "494019 0 1 0 291 1200 0 \n",
+ "494020 0 1 0 219 1234 0 \n",
+ "\n",
+ " wrong_fragment urgent hot num_failed_logins ... rerror_rate \\\n",
+ "0 0 0 0 0 ... 0.0 \n",
+ "1 0 0 0 0 ... 0.0 \n",
+ "2 0 0 0 0 ... 0.0 \n",
+ "3 0 0 0 0 ... 0.0 \n",
+ "4 0 0 0 0 ... 0.0 \n",
+ "... ... ... ... ... ... ... \n",
+ "494016 0 0 0 0 ... 0.0 \n",
+ "494017 0 0 0 0 ... 0.0 \n",
+ "494018 0 0 0 0 ... 0.0 \n",
+ "494019 0 0 0 0 ... 0.0 \n",
+ "494020 0 0 0 0 ... 0.0 \n",
+ "\n",
+ " same_srv_rate diff_srv_rate srv_diff_host_rate dst_host_count \\\n",
+ "0 1.0 0.0 0.00 9 \n",
+ "1 1.0 0.0 0.00 19 \n",
+ "2 1.0 0.0 0.00 29 \n",
+ "3 1.0 0.0 0.00 39 \n",
+ "4 1.0 0.0 0.00 49 \n",
+ "... ... ... ... ... \n",
+ "494016 1.0 0.0 0.40 86 \n",
+ "494017 1.0 0.0 0.00 6 \n",
+ "494018 1.0 0.0 0.17 16 \n",
+ "494019 1.0 0.0 0.17 26 \n",
+ "494020 1.0 0.0 0.14 6 \n",
+ "\n",
+ " dst_host_srv_count dst_host_diff_srv_rate \\\n",
+ "0 9 0.0 \n",
+ "1 19 0.0 \n",
+ "2 29 0.0 \n",
+ "3 39 0.0 \n",
+ "4 49 0.0 \n",
+ "... ... ... \n",
+ "494016 255 0.0 \n",
+ "494017 255 0.0 \n",
+ "494018 255 0.0 \n",
+ "494019 255 0.0 \n",
+ "494020 255 0.0 \n",
+ "\n",
+ " dst_host_same_src_port_rate dst_host_srv_diff_host_rate Attack Type \n",
+ "0 0.11 0.00 1 \n",
+ "1 0.05 0.00 1 \n",
+ "2 0.03 0.00 1 \n",
+ "3 0.03 0.00 1 \n",
+ "4 0.02 0.00 1 \n",
+ "... ... ... ... \n",
+ "494016 0.01 0.05 1 \n",
+ "494017 0.17 0.05 1 \n",
+ "494018 0.06 0.05 1 \n",
+ "494019 0.04 0.05 1 \n",
+ "494020 0.17 0.05 1 \n",
+ "\n",
+ "[494021 rows x 31 columns]"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " duration | \n",
+ " protocol_type | \n",
+ " flag | \n",
+ " src_bytes | \n",
+ " dst_bytes | \n",
+ " land | \n",
+ " wrong_fragment | \n",
+ " urgent | \n",
+ " hot | \n",
+ " num_failed_logins | \n",
+ " ... | \n",
+ " rerror_rate | \n",
+ " same_srv_rate | \n",
+ " diff_srv_rate | \n",
+ " srv_diff_host_rate | \n",
+ " dst_host_count | \n",
+ " dst_host_srv_count | \n",
+ " dst_host_diff_srv_rate | \n",
+ " dst_host_same_src_port_rate | \n",
+ " dst_host_srv_diff_host_rate | \n",
+ " Attack Type | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 181 | \n",
+ " 5450 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.00 | \n",
+ " 9 | \n",
+ " 9 | \n",
+ " 0.0 | \n",
+ " 0.11 | \n",
+ " 0.00 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 239 | \n",
+ " 486 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.00 | \n",
+ " 19 | \n",
+ " 19 | \n",
+ " 0.0 | \n",
+ " 0.05 | \n",
+ " 0.00 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 235 | \n",
+ " 1337 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.00 | \n",
+ " 29 | \n",
+ " 29 | \n",
+ " 0.0 | \n",
+ " 0.03 | \n",
+ " 0.00 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 219 | \n",
+ " 1337 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.00 | \n",
+ " 39 | \n",
+ " 39 | \n",
+ " 0.0 | \n",
+ " 0.03 | \n",
+ " 0.00 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 217 | \n",
+ " 2032 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.00 | \n",
+ " 49 | \n",
+ " 49 | \n",
+ " 0.0 | \n",
+ " 0.02 | \n",
+ " 0.00 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 494016 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 310 | \n",
+ " 1881 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.40 | \n",
+ " 86 | \n",
+ " 255 | \n",
+ " 0.0 | \n",
+ " 0.01 | \n",
+ " 0.05 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 494017 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 282 | \n",
+ " 2286 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.00 | \n",
+ " 6 | \n",
+ " 255 | \n",
+ " 0.0 | \n",
+ " 0.17 | \n",
+ " 0.05 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 494018 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 203 | \n",
+ " 1200 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.17 | \n",
+ " 16 | \n",
+ " 255 | \n",
+ " 0.0 | \n",
+ " 0.06 | \n",
+ " 0.05 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 494019 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 291 | \n",
+ " 1200 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.17 | \n",
+ " 26 | \n",
+ " 255 | \n",
+ " 0.0 | \n",
+ " 0.04 | \n",
+ " 0.05 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 494020 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 219 | \n",
+ " 1234 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " 0.0 | \n",
+ " 0.14 | \n",
+ " 6 | \n",
+ " 255 | \n",
+ " 0.0 | \n",
+ " 0.17 | \n",
+ " 0.05 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
494021 rows ร 31 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe"
+ }
+ },
+ "metadata": {},
+ "execution_count": 34
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## Artificial Neural Network"
+ ],
+ "metadata": {
+ "id": "lXiMTVV2fJns"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "1. **Input Layer (Dense Layer)**\n",
+ " - `Dense(1024, input_dim=30, activation='relu')`\n",
+ " - **Dense**: This is a fully connected layer with 1024 neurons.\n",
+ " - **input_dim=30**: This specifies that the input layer expects 30 features (or input variables).\n",
+ " - **activation='relu'**: The ReLU (Rectified Linear Unit) activation function is applied. ReLU is a popular activation function that introduces non-linearity into the model, allowing it to learn more complex patterns. It outputs 0 for any negative input and the input itself for any positive input.\n",
+ "\n",
+ "2. **Dropout Layer**\n",
+ " - `Dropout(0.40)`\n",
+ " - **Dropout**: This layer randomly sets 40% of the neurons to zero during each training step. Dropout is a regularization technique used to prevent overfitting by ensuring that the network doesn't rely too much on any individual neuron and instead learns a more robust representation of the data.\n",
+ "\n",
+ "3. **Output Layer (Dense Layer)**\n",
+ " - `Dense(5, activation='sigmoid')`\n",
+ " - **Dense**: This is another fully connected layer, but with only 5 neurons.\n",
+ " - **activation='sigmoid'**: The Sigmoid activation function is used, which outputs values between 0 and 1. This is particularly useful for binary or multi-label classification tasks where each output can be interpreted as a probability of belonging to a certain class.\n",
+ "\n",
+ "### Architecture Summary\n",
+ "\n",
+ "- **Input Layer**: Takes in 30 features and passes them to the first Dense layer.\n",
+ "- **First Dense Layer**: 1024 neurons with ReLU activation function. It introduces non-linearity and allows the model to learn complex patterns.\n",
+ "- **Dropout Layer**: Regularizes the model by randomly turning off 40% of the neurons during training to prevent overfitting.\n",
+ "- **Output Layer**: 5 neurons with Sigmoid activation function. It produces 5 outputs, each representing the probability of a specific class.\n",
+ "\n"
+ ],
+ "metadata": {
+ "id": "6aLon2EwpZpL"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "ann_model = Sequential([\n",
+ " Dense(1024, input_dim=30, activation='relu'),\n",
+ " Dropout(0.40),\n",
+ " Dense(5, activation='sigmoid')\n",
+ "])"
+ ],
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2022-11-07T14:04:43.132209Z",
+ "iopub.execute_input": "2022-11-07T14:04:43.132535Z",
+ "iopub.status.idle": "2022-11-07T14:04:43.163794Z",
+ "shell.execute_reply.started": "2022-11-07T14:04:43.132504Z",
+ "shell.execute_reply": "2022-11-07T14:04:43.162796Z"
+ },
+ "trusted": true,
+ "id": "F3vAYLiOfJnt"
+ },
+ "execution_count": 47,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "ann_model.compile(loss ='sparse_categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy'])"
+ ],
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2022-11-07T14:04:43.165393Z",
+ "iopub.execute_input": "2022-11-07T14:04:43.165727Z",
+ "iopub.status.idle": "2022-11-07T14:04:43.176208Z",
+ "shell.execute_reply.started": "2022-11-07T14:04:43.165697Z",
+ "shell.execute_reply": "2022-11-07T14:04:43.174913Z"
+ },
+ "trusted": true,
+ "id": "umOrI3hAfJnt"
+ },
+ "execution_count": 48,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Train the model with early stopping\n",
+ "ann_model.fit(X_train, Y_train.values.ravel(), epochs=5, batch_size=32,validation_data=(X_test, Y_test))"
+ ],
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2022-11-07T14:04:43.292663Z",
+ "iopub.execute_input": "2022-11-07T14:04:43.293525Z",
+ "iopub.status.idle": "2022-11-07T14:09:05.699222Z",
+ "shell.execute_reply.started": "2022-11-07T14:04:43.293481Z",
+ "shell.execute_reply": "2022-11-07T14:09:05.697983Z"
+ },
+ "trusted": true,
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "DKqUMuDufJnu",
+ "outputId": "fea814d7-b774-43ee-ae83-9895cb231750"
+ },
+ "execution_count": 50,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Epoch 1/5\n",
+ "10344/10344 [==============================] - 39s 4ms/step - loss: 0.0047 - accuracy: 0.9988 - val_loss: 0.0042 - val_accuracy: 0.9990\n",
+ "Epoch 2/5\n",
+ "10344/10344 [==============================] - 40s 4ms/step - loss: 0.0044 - accuracy: 0.9989 - val_loss: 0.0048 - val_accuracy: 0.9988\n",
+ "Epoch 3/5\n",
+ "10344/10344 [==============================] - 54s 5ms/step - loss: 0.0042 - accuracy: 0.9989 - val_loss: 0.0043 - val_accuracy: 0.9991\n",
+ "Epoch 4/5\n",
+ "10344/10344 [==============================] - 54s 5ms/step - loss: 0.0044 - accuracy: 0.9989 - val_loss: 0.0040 - val_accuracy: 0.9991\n",
+ "Epoch 5/5\n",
+ "10344/10344 [==============================] - 40s 4ms/step - loss: 0.0042 - accuracy: 0.9990 - val_loss: 0.0041 - val_accuracy: 0.9990\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 50
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Get training and validation accuracy and loss values\n",
+ "history = ann_model.history\n",
+ "\n",
+ "# Plot the accuracy graph\n",
+ "plt.figure(figsize=(8, 6))\n",
+ "plt.plot(history.history['accuracy'], label='Training Accuracy')\n",
+ "plt.plot(history.history['val_accuracy'], label='Validation Accuracy')\n",
+ "plt.title('Model Accuracy')\n",
+ "plt.xlabel('Epoch')\n",
+ "plt.ylabel('Accuracy')\n",
+ "plt.legend()\n",
+ "plt.savefig('/content/ann_accuracy.png')\n",
+ "\n",
+ "\n",
+ "plt.show()\n"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 564
+ },
+ "id": "RKMDyNCOixEj",
+ "outputId": "4b3bb4a1-6add-49e2-82ba-0a2d427ce75e"
+ },
+ "execution_count": 52,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "