-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFishNet2.py
77 lines (60 loc) · 2.73 KB
/
FishNet2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dropout, Flatten, Dense
from keras import applications
# dimensions of our images.
img_width, img_height = 150, 150
top_model_weights_path = 'fc_model.h5'
train_data_dir = 'data/train'
validation_data_dir = 'data/validation'
nb_train_samples = 3056
nb_validation_samples = 736
epochs = 70
batch_size = 16
def save_bottlebeck_features():
datagen = ImageDataGenerator(rescale=1./255)
# build the VGG16 network
model = applications.VGG16(include_top=False, weights='imagenet')
generator = datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode=None,
shuffle=False)
bottleneck_features_train = model.predict_generator(
generator, nb_train_samples // batch_size)
np.save(open('bottleneck_features_train.npy', 'wb'),
bottleneck_features_train)
generator = datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode=None,
shuffle=False)
bottleneck_features_validation = model.predict_generator(
generator, nb_validation_samples // batch_size)
np.save(open('bottleneck_features_validation.npy', 'wb'),
bottleneck_features_validation)
def train_top_model():
train_data = np.load(open('bottleneck_features_train.npy','rb'))
train_labels = np.array(
[[1, 0, 0, 0, 0, 0, 0, 0]] * (1363) + [[0,1,0,0,0,0,0,0]] * (200) + [[0,0,1,0,0,0,0,0]] * (93) + [[0,0,0,1,0,0,0,0]] * (54) + [[0,0,0,0,1,0,0,0]] * (375) + [[0,0,0,0,0,1,0,0]] * (239) + [[0,0,0,0,0,0,1,0]] * (141) + [[0,0,0,0,0,0,0,1]] * (591))
validation_data = np.load(open('bottleneck_features_validation.npy','rb'))
validation_labels = np.array(
[[1,0,0,0,0,0,0,0]] * (331) + [[0,1,0,0,0,0,0,0]] * (40) + [[0,0,1,0,0,0,0,0]] * (24) + [[0,0,0,1,0,0,0,0]] * (13) + [[0,0,0,0,1,0,0,0]] * (90) + [[0,0,0,0,0,1,0,0]] * (60) + [[0,0,0,0,0,0,1,0]] * (35) + [[0,0,0,0,0,0,0,1]] * (143))
model = Sequential()
model.add(Flatten(input_shape=train_data.shape[1:]))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(8, activation='softmax'))
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(train_data, train_labels,
epochs=epochs,
batch_size=batch_size,
validation_data=(validation_data, validation_labels))
model.save_weights(top_model_weights_path)
model.save('fc_model.h5')
save_bottlebeck_features()
train_top_model()