-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp2.py
56 lines (45 loc) · 1.93 KB
/
app2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import streamlit as st
from ChestCancerClassifier.utils.common import decodeImage
from ChestCancerClassifier.pipeline.prediction import PredictionPipeline
from PIL import Image
import base64
# Initialize the classifier
class ClientApp:
def __init__(self):
self.filename = "inputImage.jpg"
self.classifier = PredictionPipeline(self.filename)
clApp = ClientApp()
def main():
st.title("Chest Cancer Classifier")
st.text("Upload a chest X-ray image for image classification as cancerous or non-cancerous")
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
if uploaded_file is not None:
# Save the uploaded file
with open(clApp.filename, "wb") as f:
f.write(uploaded_file.getbuffer())
# Display the uploaded image
# image = Image.open(uploaded_file)
# st.image(image, caption='Uploaded Image.', use_column_width=True)
# Encode the image to base64
with open(clApp.filename, "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode('utf-8')
# Decode the image and make a prediction
decodeImage(base64_image, clApp.filename)
result = clApp.classifier.predict()
# Display the prediction result
st.write("## Prediction Result")
st.write(result)
# Optionally, you can add a button to trigger the prediction
if st.button('Predict'):
if uploaded_file is not None:
# Encode the image to base64
with open(clApp.filename, "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode('utf-8')
decodeImage(base64_image, clApp.filename)
result = clApp.classifier.predict()
st.write("## Prediction Result")
st.write(result.get('image', 'No image key found'))
else:
st.write("Please upload an image first.")
if __name__ == "__main__":
main()