forked from thu-ml/tianshou
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathatari_wrapper.py
368 lines (310 loc) · 11.8 KB
/
atari_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
# Borrow a lot from openai baselines:
# https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py
import warnings
from collections import deque
import cv2
import gymnasium as gym
import numpy as np
from tianshou.env import ShmemVectorEnv
try:
import envpool
except ImportError:
envpool = None
def _parse_reset_result(reset_result):
contains_info = (
isinstance(reset_result, tuple) and len(reset_result) == 2
and isinstance(reset_result[1], dict)
)
if contains_info:
return reset_result[0], reset_result[1], contains_info
return reset_result, {}, contains_info
class NoopResetEnv(gym.Wrapper):
"""Sample initial states by taking random number of no-ops on reset.
No-op is assumed to be action 0.
:param gym.Env env: the environment to wrap.
:param int noop_max: the maximum value of no-ops to run.
"""
def __init__(self, env, noop_max=30):
super().__init__(env)
self.noop_max = noop_max
self.noop_action = 0
assert env.unwrapped.get_action_meanings()[0] == 'NOOP'
def reset(self, **kwargs):
_, info, return_info = _parse_reset_result(self.env.reset(**kwargs))
if hasattr(self.unwrapped.np_random, "integers"):
noops = self.unwrapped.np_random.integers(1, self.noop_max + 1)
else:
noops = self.unwrapped.np_random.randint(1, self.noop_max + 1)
for _ in range(noops):
step_result = self.env.step(self.noop_action)
if len(step_result) == 4:
obs, rew, done, info = step_result
else:
obs, rew, term, trunc, info = step_result
done = term or trunc
if done:
obs, info, _ = _parse_reset_result(self.env.reset())
if return_info:
return obs, info
return obs
class MaxAndSkipEnv(gym.Wrapper):
"""Return only every `skip`-th frame (frameskipping) using most recent raw
observations (for max pooling across time steps)
:param gym.Env env: the environment to wrap.
:param int skip: number of `skip`-th frame.
"""
def __init__(self, env, skip=4):
super().__init__(env)
self._skip = skip
def step(self, action):
"""Step the environment with the given action. Repeat action, sum
reward, and max over last observations.
"""
obs_list, total_reward = [], 0.
new_step_api = False
for _ in range(self._skip):
step_result = self.env.step(action)
if len(step_result) == 4:
obs, reward, done, info = step_result
else:
obs, reward, term, trunc, info = step_result
done = term or trunc
new_step_api = True
obs_list.append(obs)
total_reward += reward
if done:
break
max_frame = np.max(obs_list[-2:], axis=0)
if new_step_api:
return max_frame, total_reward, term, trunc, info
return max_frame, total_reward, done, info
class EpisodicLifeEnv(gym.Wrapper):
"""Make end-of-life == end-of-episode, but only reset on true game over. It
helps the value estimation.
:param gym.Env env: the environment to wrap.
"""
def __init__(self, env):
super().__init__(env)
self.lives = 0
self.was_real_done = True
self._return_info = False
def step(self, action):
step_result = self.env.step(action)
if len(step_result) == 4:
obs, reward, done, info = step_result
new_step_api = False
else:
obs, reward, term, trunc, info = step_result
done = term or trunc
new_step_api = True
self.was_real_done = done
# check current lives, make loss of life terminal, then update lives to
# handle bonus lives
lives = self.env.unwrapped.ale.lives()
if 0 < lives < self.lives:
# for Qbert sometimes we stay in lives == 0 condition for a few
# frames, so its important to keep lives > 0, so that we only reset
# once the environment is actually done.
done = True
term = True
self.lives = lives
if new_step_api:
return obs, reward, term, trunc, info
return obs, reward, done, info
def reset(self, **kwargs):
"""Calls the Gym environment reset, only when lives are exhausted. This
way all states are still reachable even though lives are episodic, and
the learner need not know about any of this behind-the-scenes.
"""
if self.was_real_done:
obs, info, self._return_info = _parse_reset_result(
self.env.reset(**kwargs)
)
else:
# no-op step to advance from terminal/lost life state
step_result = self.env.step(0)
obs, info = step_result[0], step_result[-1]
self.lives = self.env.unwrapped.ale.lives()
if self._return_info:
return obs, info
else:
return obs
class FireResetEnv(gym.Wrapper):
"""Take action on reset for environments that are fixed until firing.
Related discussion: https://github.com/openai/baselines/issues/240
:param gym.Env env: the environment to wrap.
"""
def __init__(self, env):
super().__init__(env)
assert env.unwrapped.get_action_meanings()[1] == 'FIRE'
assert len(env.unwrapped.get_action_meanings()) >= 3
def reset(self, **kwargs):
_, _, return_info = _parse_reset_result(self.env.reset(**kwargs))
obs = self.env.step(1)[0]
return (obs, {}) if return_info else obs
class WarpFrame(gym.ObservationWrapper):
"""Warp frames to 84x84 as done in the Nature paper and later work.
:param gym.Env env: the environment to wrap.
"""
def __init__(self, env):
super().__init__(env)
self.size = 84
self.observation_space = gym.spaces.Box(
low=np.min(env.observation_space.low),
high=np.max(env.observation_space.high),
shape=(self.size, self.size),
dtype=env.observation_space.dtype
)
def observation(self, frame):
"""returns the current observation from a frame"""
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
return cv2.resize(frame, (self.size, self.size), interpolation=cv2.INTER_AREA)
class ScaledFloatFrame(gym.ObservationWrapper):
"""Normalize observations to 0~1.
:param gym.Env env: the environment to wrap.
"""
def __init__(self, env):
super().__init__(env)
low = np.min(env.observation_space.low)
high = np.max(env.observation_space.high)
self.bias = low
self.scale = high - low
self.observation_space = gym.spaces.Box(
low=0., high=1., shape=env.observation_space.shape, dtype=np.float32
)
def observation(self, observation):
return (observation - self.bias) / self.scale
class ClipRewardEnv(gym.RewardWrapper):
"""clips the reward to {+1, 0, -1} by its sign.
:param gym.Env env: the environment to wrap.
"""
def __init__(self, env):
super().__init__(env)
self.reward_range = (-1, 1)
def reward(self, reward):
"""Bin reward to {+1, 0, -1} by its sign. Note: np.sign(0) == 0."""
return np.sign(reward)
class FrameStack(gym.Wrapper):
"""Stack n_frames last frames.
:param gym.Env env: the environment to wrap.
:param int n_frames: the number of frames to stack.
"""
def __init__(self, env, n_frames):
super().__init__(env)
self.n_frames = n_frames
self.frames = deque([], maxlen=n_frames)
shape = (n_frames, ) + env.observation_space.shape
self.observation_space = gym.spaces.Box(
low=np.min(env.observation_space.low),
high=np.max(env.observation_space.high),
shape=shape,
dtype=env.observation_space.dtype
)
def reset(self, **kwargs):
obs, info, return_info = _parse_reset_result(self.env.reset(**kwargs))
for _ in range(self.n_frames):
self.frames.append(obs)
return (self._get_ob(), info) if return_info else self._get_ob()
def step(self, action):
step_result = self.env.step(action)
if len(step_result) == 4:
obs, reward, done, info = step_result
new_step_api = False
else:
obs, reward, term, trunc, info = step_result
new_step_api = True
self.frames.append(obs)
if new_step_api:
return self._get_ob(), reward, term, trunc, info
return self._get_ob(), reward, done, info
def _get_ob(self):
# the original wrapper use `LazyFrames` but since we use np buffer,
# it has no effect
return np.stack(self.frames, axis=0)
def wrap_deepmind(
env_id,
episode_life=True,
clip_rewards=True,
frame_stack=4,
scale=False,
warp_frame=True
):
"""Configure environment for DeepMind-style Atari. The observation is
channel-first: (c, h, w) instead of (h, w, c).
:param str env_id: the atari environment id.
:param bool episode_life: wrap the episode life wrapper.
:param bool clip_rewards: wrap the reward clipping wrapper.
:param int frame_stack: wrap the frame stacking wrapper.
:param bool scale: wrap the scaling observation wrapper.
:param bool warp_frame: wrap the grayscale + resize observation wrapper.
:return: the wrapped atari environment.
"""
assert 'NoFrameskip' in env_id
env = gym.make(env_id)
env = NoopResetEnv(env, noop_max=30)
env = MaxAndSkipEnv(env, skip=4)
if episode_life:
env = EpisodicLifeEnv(env)
if 'FIRE' in env.unwrapped.get_action_meanings():
env = FireResetEnv(env)
if warp_frame:
env = WarpFrame(env)
if scale:
env = ScaledFloatFrame(env)
if clip_rewards:
env = ClipRewardEnv(env)
if frame_stack:
env = FrameStack(env, frame_stack)
return env
def make_atari_env(task, seed, training_num, test_num, **kwargs):
"""Wrapper function for Atari env.
If EnvPool is installed, it will automatically switch to EnvPool's Atari env.
:return: a tuple of (single env, training envs, test envs).
"""
if envpool is not None:
if kwargs.get("scale", 0):
warnings.warn(
"EnvPool does not include ScaledFloatFrame wrapper, "
"please set `x = x / 255.0` inside CNN network's forward function."
)
# parameters convertion
train_envs = env = envpool.make_gymnasium(
task.replace("NoFrameskip-v4", "-v5"),
num_envs=training_num,
seed=seed,
episodic_life=True,
reward_clip=True,
stack_num=kwargs.get("frame_stack", 4),
)
test_envs = envpool.make_gymnasium(
task.replace("NoFrameskip-v4", "-v5"),
num_envs=test_num,
seed=seed,
episodic_life=False,
reward_clip=False,
stack_num=kwargs.get("frame_stack", 4),
)
else:
warnings.warn(
"Recommend using envpool (pip install envpool) "
"to run Atari games more efficiently."
)
env = wrap_deepmind(task, **kwargs)
train_envs = ShmemVectorEnv(
[
lambda:
wrap_deepmind(task, episode_life=True, clip_rewards=True, **kwargs)
for _ in range(training_num)
]
)
test_envs = ShmemVectorEnv(
[
lambda:
wrap_deepmind(task, episode_life=False, clip_rewards=False, **kwargs)
for _ in range(test_num)
]
)
env.seed(seed)
train_envs.seed(seed)
test_envs.seed(seed)
return env, train_envs, test_envs