-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontroller.py
529 lines (452 loc) · 18.1 KB
/
controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import numpy as np
import quadprog
from planner import Planner
from utils import Utils
from cvxopt import matrix
from cvxopt.blas import dot
from cvxopt.solvers import qp, options
from cvxopt import matrix, sparse
class Controller:
def __init__(self, N, vlim=0.12, wlim=3.4, p_vlim=0.12, p_wlim=0.2,
vcf=1.0, wcf=1.0,
knob_length=7.5, body_length=34, padding_length=1,
vw_pt=[[0.037,-2.19],[0.1164,0]], vw_pt_pilot=[[0.412,-1.571],[0.548,0]]):
self.N = N
self.vlim = vlim
self.wlim = wlim
self.p_vlim = p_vlim
self.p_wlim = p_wlim
self.vcf = vcf
self.wcf = wcf
self.vw_pt = np.array(vw_pt)
self.vw_pt_pilot = np.array(vw_pt_pilot)
self.knob_length = knob_length
self.body_length = body_length
self.padding_length = padding_length
self.Lx = (self.knob_length*1.5 + self.padding_length) / 1e3
self.L = self.body_length / 1e3
self.r = self.knob_length / 2 / 1e3
self.planner = Planner(N, L=self.L, r=self.r,
pad=self.padding_length/1e3)
self.utils = Utils()
self.prev_du = np.zeros([2, N])
self.id_pair = None
self.contact_pair = None
self.mid_pair = None
self.mcontact_pair = None
# params for behavior pair pool
self.pair_dict = None
self.colm_idx = 0
self.connected_dict = {}
self.disconn_dict = {}
self.pairs_exec = {}
self.robot_busy = np.zeros(N, dtype=bool)
def contact_dis(self, x, goal, p_dict, goal_wt, dx_cf=1e-4, dt_cf=1e-4, dis_th=2e-3, dts=[], pilot_ids=[]):
'''
goal: target du, 2-by-N;
p_dict: dict of contact pairs to maintain
keys: id pair tuple, values: contact array - 2-by-2 matrix
goal_wt: weights of goals, N dim vector
dx_cf: weight of linear velocity in goal
dt_cf: weight of angular velocity in goal
dis_th: threshold of distance between contact pairs
dts: the time difference
pilot_ids: ids of the pilot robots in the system
'''
N = x.shape[1]
M = len(p_dict)
if M == 0: return goal
du = goal.copy()
# back up du
contact_pairs = ()
id_pairs = []
for p in p_dict:
contact_pairs += (p_dict[p],)
id_pairs.append(list(p))
id_pairs = np.array(id_pairs).T
cdu = self.go_to_contact_pairs(x, p_dict, dif_th=dis_th)
cdu = self.cap_constr(cdu, pilot_ids=pilot_ids)
dis_arr = self.utils.get_pair_dis(x, p_dict)
disconn_ps = []
Q = np.zeros([2*N, 2*N])
Q = Q + np.eye(2*N, 2*N)*1e-4
diag = np.zeros(2*N)
diag[::2] = dx_cf * goal_wt
diag[1::2] = dt_cf * goal_wt
np.fill_diagonal(Q, diag)
P = np.zeros(2*N)
P[::2] = goal[0, :] * dx_cf * goal_wt
P[1::2] = goal[1, :] * dt_cf * goal_wt
A = np.zeros([4*M+4*N+4*N, 2*N])
b = np.zeros(4*M+4*N+4*N)
# A[4*M:4*(M+N), :]= np.vstack((np.eye(2*N, 2*N), -np.eye(2*N, 2*N)))
A[4*(M+N):(4*M+8*N), :]= np.vstack((np.eye(2*N, 2*N), -np.eye(2*N, 2*N)))
vw_pt = self.utils.get_vw_ks(self.vw_pt)
k0n, b0n = vw_pt[0, :]
k1n, b1n = vw_pt[1, :]
vw_pt_pilot = self.utils.get_vw_ks(self.vw_pt_pilot)
k0p, b0p = vw_pt_pilot[0, :]
k1p, b1p = vw_pt_pilot[1, :]
k0, b0, k1, b1 = [k0n, b0n, k1n, b1n]
# for vw constraints
for m in range(M):
key = p_dict.keys()[m]
md = p_dict[key]
if dis_arr[m] > dis_th*1.5:
print 'disconnected:', key, " md:", md, ' dis:', dis_arr[m]
disconn_ps += list(key)
continue
for i in range(2):
ii = key[i]
th = x[2, ii]
dx, dy = md[:, i]
sn = i*2-1
A[m*4:(4*m+2), 2*ii] = dts[i] * sn * np.array([np.cos(th), np.sin(th)])
A[m*4:(4*m+2), 2*ii+1] = dts[i] * sn * np.array([
-dx*np.sin(th) - dy*np.cos(th),
dx*np.cos(th) - dy*np.sin(th)
])
b[m*4:(4*m+2)] += -sn * np.array([
x[0,ii] + dx*np.cos(th) - dy*np.sin(th),
x[1,ii] + dx*np.sin(th) + dy*np.cos(th)
])
A[(4*m+2):(4*m+4)] = - A[m*4:(4*m+2)]
b[(4*m+2):(4*m+4)] = - b[m*4:(4*m+2)]
b[4*m:(4*m+4)] -= dis_th
# b[4*M:(4*M+4*N):2] = -self.vlim
# b[(4*M+1):(4*M+4*N):2] = -self.wlim
# for vw constraints
b[4*M:4*M+2*N] = b0
b[4*M+2*N:4*M+4*N] = b1
for i in range(N):
if i in pilot_ids:
k0, b0, k1, b1 = [k0p, b0p, k1p, b1p]
b[4*M+2*i:4*M+2*(i+1)] = b0
b[4*M+2*(i+N):4*M+2*(i+N+1)] = b1
else:
k0, b0, k1, b1 = [k0n, b0n, k1n, b1n]
A[4*M+i*2, 2*i:2*(i+1)] = [k0, 1]
A[4*M+i*2+1, 2*i:2*(i+1)] = [k0, -1]
A[4*M+i*2+2*N, 2*i:2*(i+1)] = [k1, 1]
A[4*M+i*2+2*N+1, 2*i:2*(i+1)] = [k1, -1]
if goal[0, i] < 0:
A[4*M+2*i:4*M+2*(i+1), 2*i:2*(i+1)] *= -1
A[4*M+2*(i+N):4*M+2*(i+N+1), 2*i:2*(i+1)] *= -1
# velocity limits
b[(4*M+4*N):(4*M+8*N):2] = -self.vlim
b[(4*M+4*N+1):(4*M+8*N):2] = -self.wlim
pilot_ids = np.array(pilot_ids, dtype=int)
b[4*M+4*N+2*pilot_ids] = -self.p_vlim
b[4*M+4*N+2*pilot_ids+1] = -self.p_wlim
b[4*M+6*N+2*pilot_ids] = -self.p_vlim
b[4*M+6*N+2*pilot_ids+1] = -self.p_wlim
np.set_printoptions(suppress=True)
print 'goal:', goal
try:
A = -A
b = -b
options['show_progress'] = False
prob = qp(matrix(Q), matrix(-P), matrix(A), matrix(b), initvals={'x': matrix(du.T.flatten())})
# print 'status:', prob['status']
if prob['status'] is not 'optimal':
raise Exception("status: " + prob['status'])
# print 'obj value:', prob['primal objective']
res = prob['x']
res = np.array(res)
du[:, :] = res.reshape([N, 2]).T
except Exception as e:
print(e)
du += cdu
du = self.cap_constr(du, pilot_ids=pilot_ids)
du[:, disconn_ps] = cdu[:, disconn_ps]
norm = np.linalg.norm(du, axis=0)
du[:, norm<1e-5] = 0
return du
def go_to_contact_pairs(self, x, p_dict, dif_th=1.0e-3, angle_en=True, use_bc=False, bc_th=10):
'''
Assume no conflicting pairs for now
p_dict: dict of contact pairs to maintain
keys: id pair tuple, values: contact array - 2-by-2 matrix
thth: target angle difference in config
angle_cf: enable angle vector pointing to the other robot
'''
N = self.N
du = np.zeros([2, N])
M = len(p_dict.keys())
if M == 0: return du
J1 = np.zeros([3, 2])
J2 = np.zeros([3, 2])
J1[2, 1] = 1
J2[2, 1] = 1
angle_mat = np.array([[0.5, -0.5], [-0.5, 0.5]])
for m in range(M):
i0, i1 = p_dict.keys()[m]
md = p_dict[(i0, i1)]
angle_cf = 1 if angle_en else 0
gt0, gt1 = x[2, [i0, i1]]
x0 = x[:, i0].copy()
x1 = x[:, i1].copy()
x0[0:2] = self.utils.getR(x[2,i0]).dot(md[:, 0]) + x[0:2, i0]
x1[0:2] = self.utils.getR(x[2,i1]).dot(md[:, 1]) + x[0:2, i1]
J1[0:2, 0] = [np.cos(gt0), np.sin(gt0)]
J2[0:2, 0] = [np.cos(gt1), np.sin(gt1)]
dif_q = x1 - x0
if np.linalg.norm(dif_q[0:2]) < dif_th:
continue
vec_norm = np.linalg.norm(dif_q[0:2])
dis_diff = np.linalg.norm(x[0:2, i0] - x[0:2, i1])
angle_th = np.zeros(2)
md_dis = np.linalg.norm(md, axis=0)
if np.any(md_dis < 0.7*self.L):
for ag in angle_mat:
dis = self.utils.project_robot_dis(ag, md)
if dis < self.L: continue
angle_th[:] = ag
angle_cf = 0
# first robot in the pair
dif_q[2] = angle_cf * np.arctan2(dif_q[1], dif_q[0])
dif_q0 = dif_q.copy()
dif_q0[2] += (1 - angle_cf) * angle_th[0]
dif_q0[2] = self.utils.wrap_pi_2(dif_q0[2])
dif_q0[2] -= gt0
du[:, i0] += np.linalg.pinv(J1).dot(dif_q0)
# second robot in the pair
dif_q1 = - dif_q
dif_q1[2] = angle_cf * np.arctan2(dif_q1[1], dif_q1[0])
dif_q1[2] += (1 - angle_cf) * angle_th[1]
dif_q1[2] = self.utils.wrap_pi_2(dif_q1[2])
dif_q1[2] -= gt1
du[:, i1] += np.linalg.pinv(J2).dot(dif_q1)
return du
def go_to_pair_pool(self, x, eth=1.5e-3, use_bc=False, pilot_ids=[], dts=[], gth=5e-2):
N = self.N
du = np.zeros([2, N])
pilot_num = len(pilot_ids)
robot_busy = self.robot_busy
pair_dict = self.pair_dict
pairs_exec = self.pairs_exec
connected_dict = self.connected_dict
if pair_dict is None:
pair_dict = self.planner.generate_pair_pool([2, 2], x[0:2, :])
self.pair_dict = pair_dict
# check number of column formation pairs
for k in pair_dict.keys():
cp = pair_dict[k]
if np.min(np.abs(cp)) > (self.L/2 - eth):
self.colm_idx += 1
if len(pair_dict) == len(connected_dict) and len(pairs_exec) == 0:
return du
print 'pair_dict:', pair_dict
print 'connected_dict:', connected_dict
# update already connected pairs
connected_dict = self.planner.update_contact_with_ids(x, connected_dict)
# decide which pairs to execute
for k in pair_dict.keys():
if np.any(robot_busy[list(k)]):
continue
if k in connected_dict:
continue
cp = pair_dict[k]
if np.min(np.abs(cp)) < (self.L/2 - eth):
if len(connected_dict) < self.colm_idx:
continue
robot_busy[list(k)] = True
pairs_exec[k] = cp
print 'pairs_exec:', pairs_exec
# execute pair
has_goal = np.zeros(N, dtype=bool)
goal_conn_id = np.arange(N)
conn_list = np.array(connected_dict.keys())
for p in pairs_exec.keys():
cp = pairs_exec[p]
if np.min(np.abs(cp)) > (self.L/2 -eth):
pairs_exec[p] = self.planner.update_contact_with_ids(x, {p: cp})[p]
for pi in p:
has_goal[pi] = True
count = np.argwhere(conn_list == pi)
for cidx in count:
goal_conn_id[conn_list[cidx[0], cidx[1]-1]] = pi
du = self.go_to_contact_pairs(x, pairs_exec, dif_th=eth, use_bc=use_bc)
du = self.p_control(du)
du = self.cap_constr(du, pilot_ids=pilot_ids)
goal_wt = np.zeros(N) + 0.5
goal_wt[has_goal] = 1
du[:, ~has_goal] = self.si_to_du(x[:, ~has_goal],
x[0:2, goal_conn_id[~has_goal]] - x[0:2, ~has_goal])
du[:, :] = du[:, goal_conn_id]
du = self.cap_constr(du, pilot_ids=pilot_ids)
print 'du before:', du
conn_bias = self.utils.connection_bias(x, connected_dict)
conn_bias = self.cap_constr(conn_bias, pilot_ids=pilot_ids)
du = (1 - gth) * du + gth * self.si_to_du(x, conn_bias)
du = self.contact_dis(x, du, connected_dict, goal_wt,
dx_cf=1, dt_cf=1e-3, dis_th=eth, dts=dts, pilot_ids=pilot_ids)
# avoid moving pilot robots in the initial stage
if len(connected_dict) < len(pilot_ids):
du[:, pilot_ids] = 0
# check which pair is done execute
pdis = self.utils.get_pair_dis(x, pairs_exec)
print 'pdis:', pdis
done_idx = np.where(pdis < eth)[0]
done_pairs = []
for idx in done_idx:
ip = pairs_exec.keys()[idx]
connected_dict[ip] = pairs_exec[ip]
done_pairs.append(ip)
robot_busy[list(ip)] = 0
du[:, list(ip)] = 0
for ip in done_pairs:
pairs_exec.pop(ip)
return np.zeros([2, N])
done_idx = np.where(pdis < 3*eth)[0]
for idx in done_idx:
ip = pairs_exec.keys()[idx]
du[0, list(ip)] *= 50
du[1, list(ip)] *= 3
# du = self.p_control(du)
du = self.cap_constr(du, pilot_ids=pilot_ids)
# update saved variables
self.connected_dict = connected_dict
self.robot_busy = robot_busy
self.pairs_exec = pairs_exec
return du
def cap(self, _du):
du = np.array(_du, copy=True)
idx = np.abs(du[0, :]) > self.vlim
du[0, idx] = self.vlim * np.sign(du[0, idx])
idx = np.abs(du[1, :]) > self.wlim
du[1, idx] = self.wlim * np.sign(du[1, idx])
return du
def p_control(self, du):
du[0, :] *= self.vcf
du[1, :] *= self.wcf
return du
def cap_constr(self, _du, pilot_ids=[]):
assert(_du.shape[1] == self.N)
N = self.N
du = np.array(_du, copy=True)
du = self.cap(du)
vw_pt = self.utils.get_vw_ks(self.vw_pt)
k0, b0 = vw_pt[0, :]
k1, b1 = vw_pt[1, :]
Q = np.eye(2*N)
P = np.zeros(2*N)
P[::2] = du[0, :]
P[1::2] = du[1, :]
A = np.zeros([8*N, 2*N])
A[4*N:8*N, :]= np.vstack((np.eye(2*N, 2*N), -np.eye(2*N, 2*N)))
b = np.zeros(8*N)
# for vw constraints
b[0:2*N] = b0
b[2*N:4*N] = b1
b[4*N:8*N:2] = -self.vlim
b[(4*N+1):(8*N):2] = -self.wlim
# for vw constraints
for i in range(N):
A[i*2, 2*i:2*(i+1)] = [k0, 1]
A[i*2+1, 2*i:2*(i+1)] = [k0, -1]
A[i*2+2*N, 2*i:2*(i+1)] = [k1, 1]
A[i*2+2*N+1, 2*i:2*(i+1)] = [k1, -1]
if du[0, i] < 0:
A[2*i:2*(i+1), 2*i:2*(i+1)] *= -1
A[2*(i+N):2*(i+N+1), 2*i:2*(i+1)] *= -1
if i in pilot_ids:
b[4*N+2*i] = - self.p_vlim
b[4*N+2*i+1] = - self.p_wlim
b[6*N+2*i] = - self.p_vlim
b[6*N+2*i+1] = - self.p_wlim
np.set_printoptions(suppress=True)
try:
res = quadprog.solve_qp(Q, P, A.T, b)
res = res[0]
du[:, :] = res.reshape([N, 2]).T
except:
print 'error qp in cap_constr'
du[np.abs(du) < 1e-5] = 0
return du
def go_to_goal(self, x, goal, weights=[1,1], eth=1e-3):
'''
x: 3-by-N matrix, goal: 2-by-N matrix or 3-by-N
'''
N = x.shape[1]
weights = np.array([weights]).T
dis_th = 0.1
du = np.zeros([2, N])
diff = goal[0:2, :] - x[0:2, :]
if np.linalg.norm(diff * weights) < eth:
return du
if goal.shape[0] < 3:
goal = np.vstack((goal, np.arctan2(diff[1, :], diff[0, :])))
for i in range(N):
th = x[2, i]
dif_i = goal[:, i] - x[:, i]
dif_i[2] = np.arctan2(dif_i[1], dif_i[0])
dif_i[2] = self.utils.wrap_pi_2(goal[2, i])
dif_i[2] -= th
J_inv = np.array([[np.cos(th), np.sin(th), 0], [0, 0, 1]])
du[:, i] = J_inv.dot(dif_i)
du[:, np.linalg.norm(diff[0:2, :] * weights) < eth] = 0
return du
def forward_y(self, x, eth=1.5e-3, dts=None, gth=1e-2, pilot_ids=[], stop_x=0.5, angle_bias=-1.0):
'''
Input: x: 3-by-N matrix
gth: coeff for connection pair attraction
Output: du: 1-by-2 vector
'''
N = self.N
du = np.zeros([2, N])
if np.min(x[0, :]) > stop_x: return du
du[0, :] = self.vlim * 0.5
du[1, :] = -x[2, :] + angle_bias
du = self.cap(du)
connected_dict = self.connected_dict
conn_bias = self.utils.connection_bias(x, connected_dict)
conn_bias = self.cap_constr(conn_bias, pilot_ids=pilot_ids)
du = (1 - gth) * du + gth * self.si_to_du(x, conn_bias)
du = self.cap_constr(du, pilot_ids=pilot_ids)
goal_wt = np.ones(N)
du = self.contact_dis(x, du, connected_dict, goal_wt, dx_cf=1e-2, dt_cf=1e-3, dis_th=eth, pilot_ids=pilot_ids, dts=dts)
du = self.p_control(du)
du = self.cap_constr(du, pilot_ids=pilot_ids)
return du
def anti_rendezvous(self, x, eth=1e-2, dts=None, gth=None, pilot_ids=[], stop_x=0.0):
N = self.N
du = np.zeros([2, N])
pair_dict = self.pair_dict
connected_dict = self.connected_dict
disconn_dict = self.disconn_dict
if len(pair_dict) == 0:
return du
if len(disconn_dict) == len(pair_dict):
return du
pair_dict = self.planner.update_contact_with_ids(x, pair_dict)
center = np.mean(x[0:2, :], axis=1)
dx = center[:, np.newaxis] - x[0:2, :]
dx = - dx
du = self.si_to_du(x, dx)
pdis = self.utils.get_pair_dis(x, pair_dict)
done_idx = np.where(pdis > eth)[0]
done_pairs = []
for idx in done_idx:
ip = pair_dict.keys()[idx]
disconn_dict[ip] = pair_dict[ip]
done_pairs.append(ip)
du[:, list(ip)] = 0
for ip in done_pairs:
if ip in connected_dict:
connected_dict.pop(ip)
du[:, list(ip)] = 0
du = self.p_control(du)
du = self.cap_constr(du, pilot_ids=pilot_ids)
return du
def du_to_si(self, x, du):
N = du.shape[1]
assert(x.shape[1] == N)
dx = np.zeros([2, N])
dx[0, :] = np.cos(x[2, :] + du[1, :]) * du[0, :]
dx[1, :] = np.sin(x[2, :] + du[1, :]) * du[0, :]
return dx
def si_to_du(self, x, dx):
N = dx.shape[1]
du = self.go_to_goal(x, x[0:2, :] + dx)
return du