-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathmain_train.py
48 lines (38 loc) · 1.54 KB
/
main_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from __future__ import print_function, absolute_import, division
import os
import time
import numpy as np
import tensorflow as tf
from TrainerNormal import Trainer
import CommonUtil as util
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def main():
util.safe_mkdir('./results')
util.safe_mkdir('./debug')
# please define your own split here
img_total_num = 28000
split = 0.8
indices = np.asarray(range(img_total_num))
testing_flag = (indices > split*max_idx)
testing_inds = indices[testing_flag]
training_inds = indices[np.logical_not(testing_flag)]
testing_inds = testing_inds.tolist()
training_inds = training_inds.tolist()
np.random.shuffle(testing_inds)
np.random.shuffle(training_inds)
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.8)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
time_str = time.strftime('%y_%m_%d_%H_%M_%S')
trainer = Trainer(sess)
trainer.train('./TrainingDataPreparation/synthetic_dataset_final', training_inds, testing_inds,
results_dir='./results/results_final_' + time_str, # directory to stored the results
graph_dir='./results/graph_final_' + time_str, # directory as tensorboard working space
batch_size=4, # batch size
epoch_num=12, # epoch number
first_channel=8,
bottle_width=4,
dis_reps=1,
mode='retrain',
pre_model_dir=None)
if __name__ == '__main__':
main()