-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathshare_function.py
489 lines (396 loc) · 16.8 KB
/
share_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
from __future__ import division
import tensorflow as tf
import numpy
import time
import os
from operator import mul
from data_iterator import disTextIterator
from data_iterator import genTextIterator
from data_iterator import TextIterator
from collections import defaultdict
from math import exp
def prepare_gan_dis_data(train_data_source, train_data_target, gan_dis_source_data, gan_dis_positive_data,
num=None, reshuf=True):
source = open(train_data_source, 'r')
sourceLists = source.readlines()
if num is None or num > len(sourceLists):
num = len(sourceLists)
if reshuf:
os.popen('python shuffle.py ' +train_data_source+' '+train_data_target)
os.popen('head -n ' + str(num) +' '+ train_data_source+'.shuf'+' >'+gan_dis_source_data)
os.popen('head -n ' + str(num) +' '+ train_data_target+'.shuf'+' >'+gan_dis_positive_data)
else:
os.popen('head -n ' + str(num) +' '+ train_data_source + '.shuf' + ' >'+gan_dis_source_data)
os.popen('head -n ' + str(num) +' '+ train_data_target + '.shuf' + ' >'+gan_dis_positive_data)
os.popen('rm '+train_data_source+'.shuf')
os.popen('rm '+train_data_target+'.shuf')
return num
def prepare_three_gan_dis_dev_data(gan_dis_positive_data, gan_dis_negative_data, gan_dis_source_data, dev_dis_positive_data, dev_dis_negative_data, dev_dis_source_data, num):
gan_dis = open(gan_dis_positive_data, 'r')
disLists = gan_dis.readlines()
if num is None or num > len(disLists):
num = len(disLists)
os.popen('head -n '+ str(num) +' '+gan_dis_positive_data+' >'+dev_dis_positive_data)
os.popen('head -n '+ str(num) +' '+gan_dis_negative_data+' >'+dev_dis_negative_data)
os.popen('head -n '+ str(num) +' '+gan_dis_source_data+' >'+dev_dis_source_data)
return num
def prepare_gan_dis_dev_data(gan_dis_positive_data, gan_dis_negative_data, dev_dis_positive_data, dev_dis_negative_data, num):
gan_dis = open(gan_dis_positive_data, 'r')
disLists = gan_dis.readlines()
if num is None or num > len(disLists):
num = len(disLists)
os.popen('head -n '+ str(num) +' '+gan_dis_positive_data+' >'+dev_dis_positive_data)
os.popen('head -n '+ str(num) +' '+gan_dis_negative_data+' >'+dev_dis_negative_data)
return num
def print_string(src_or_trg, indexs, worddicts_r):
sample_str = ''
for index in indexs:
if index > 0:
if src_or_trg == 'y':
word_str = worddicts_r[1][index]
else:
word_str = worddicts_r[0][index]
sample_str = sample_str + word_str + ' '
return sample_str
class FlushFile:
"""
A wrapper for File, allowing users see result immediately.
"""
def __init__(self, f):
self.f = f
def write(self, x):
self.f.write(x)
self.f.flush()
def _p(pp, name):
return '%s_%s' % (pp, name)
def dis_train_iter(dis_positive_data, dis_negative_data, reshuffle, dictionary, n_words_trg, batch_size, maxlen):
iter = 0
while True:
if reshuffle:
os.popen('python shuffle.py '+dis_positive_data+' '+dis_positive_data)
os.popen('mv ' + dis_negative_data + '.shuf ' + dis_negtive_data)
os.popen('mv ' + dis_negative_data + '.shuf ' + dis_negative_data)
disTrain = disTextIterator(dis_positive_data, dis_negative_data, dictionary, batch_size, maxlen, n_words_trg)
iter +=1
ExampleNum = 0
iterStart = time.time()
for x, y in disTrain:
ExampleNum += len(x)
yield x, y, iter
TimeCost = time.time() - EpochStart
print('Seen ', ExampleNum, ' examples for discriminator. Time cost : ', TimeCost)
def gen_train_iter(gen_file, reshuffle, dictionary, n_words, batch_size, maxlen):
iter = 0
while True:
if reshuffle:
os.popen('python shuffle.py '+ gen_file)
os.popen('mv '+ gen_file +'.shuf ' + gen_file)
gen_train = genTextIterator(gen_file, dictionary, n_words_source = n_words, batch_size = batch_size, maxlen=maxlen)
ExampleNum = 0
EpochStart = time.time()
for x in gen_train:
if len(x) < batch_size:
continue
ExampleNum +=len(x)
yield x, iter
TimeCost = time.time() - EpochStart
iter +=1
print('Seen ', ExampleNum, 'generator samples. Time cost is ', TimeCost)
def gen_force_train_iter(source_data, target_data, reshuffle, source_dict, target_dict, batch_size, maxlen, n_words_src, n_words_trg):
iter = 0
while True:
if reshuffle:
os.popen('python shuffle.py '+ source_data + ' ' + target_data)
os.popen('mv '+ source_data + '.shuf ' + source_data)
os.popen('mv '+ target_data + '.shuf ' + target_data)
gen_force_train = TextIterator(source_data, target_data, source_dict, target_dict, batch_size, maxlen, n_words_src, n_words_trg)
ExampleNum = 0
EpochStart = time.time()
for x, y in gen_force_train:
if len(x) < batch_size and len(y) < batch_size:
continue
ExampleNum += len(x)
yield x, y, iter
TimeCost = time.time() - EpochStart
iter +=1
print('Seen', ExampleNum, 'generator samples. Time cost is ', TimeCost)
def prepare_data(seqs_x, seqs_y, maxlen=None, n_words_src=30000,
n_words=30000, precision='float32'):
# x: a list of sentences
lengths_x = [len(s) for s in seqs_x]
lengths_y = [len(s) for s in seqs_y]
if maxlen is not None:
new_seqs_x = []
new_seqs_y = []
new_lengths_x = []
new_lengths_y = []
for l_x, s_x, l_y, s_y in zip(lengths_x, seqs_x, lengths_y, seqs_y):
if l_x < maxlen and l_y < maxlen:
new_seqs_x.append(s_x)
new_lengths_x.append(l_x)
new_seqs_y.append(s_y)
new_lengths_y.append(l_y)
lengths_x = new_lengths_x
seqs_x = new_seqs_x
lengths_y = new_lengths_y
seqs_y = new_seqs_y
if len(lengths_x) < 1 or len(lengths_y) < 1:
return None, None, None, None
n_samples = len(seqs_x)
maxlen_x = numpy.max(lengths_x) + 1
maxlen_y = numpy.max(lengths_y) + 1
x = numpy.zeros((maxlen_x, n_samples)).astype('int32')
y = numpy.zeros((maxlen_y, n_samples)).astype('int32')
x_mask = numpy.zeros((maxlen_x, n_samples)).astype(precision)
y_mask = numpy.zeros((maxlen_y, n_samples)).astype(precision)
for idx, [s_x, s_y] in enumerate(zip(seqs_x, seqs_y)):
x[:lengths_x[idx], idx] = s_x
x_mask[:lengths_x[idx]+1, idx] = 1.
y[:lengths_y[idx], idx] = s_y
y_mask[:lengths_y[idx]+1, idx] = 1.
return x, x_mask, y, y_mask
def dis_three_length_prepare(seqs_x, seqs_y, seqs_xs, maxlen=50):
n_samples = len(seqs_x)
x = numpy.zeros((maxlen, n_samples)).astype('int32')
y = numpy.zeros((2, n_samples)).astype('int32')
xs = numpy.zeros((maxlen, n_samples)).astype('int32')
for idx, [s_x, s_y, s_xs] in enumerate(zip(seqs_x, seqs_y, seqs_xs)):
x[:len(s_x), idx] = s_x
y[:len(s_y), idx] = s_y
xs[:len(s_xs), idx] = s_xs
return x, y, xs
def dis_length_prepare(seqs_x, seqs_y, num_classes=2, maxlen=50):
n_samples = len(seqs_x)
x = numpy.zeros((maxlen, n_samples)).astype('int32')
y = numpy.zeros((num_classes, n_samples)).astype('int32')
for idx, [s_x, s_y] in enumerate(zip(seqs_x, seqs_y)):
x[:len(s_x), idx] = s_x
y[:len(s_y), idx] = s_y
return x, y
def prepare_single_sentence(seqs_x, maxlen=50):
n_samples = len(seqs_x)
lens_x = [len(seq) for seq in seqs_x]
maxlen_x = numpy.max(lens_x) + 1
x = numpy.zeros((maxlen_x, n_samples)).astype('int32')
for idx, s_x in enumerate(seqs_x):
x[:len(s_x), idx] = s_x
return x
def prepare_multiple_sentence(seqs_x, maxlen=50, precision='float32'):
n_samples = len(seqs_x)
lens_x = [len(seq) for seq in seqs_x]
maxlen_x = numpy.max(lens_x) + 1
x = numpy.zeros((maxlen_x, n_samples)).astype('int32')
x_mask = numpy.zeros((maxlen_x, n_samples)).astype(precision)
for idx, s_x in enumerate(seqs_x):
x[:len(s_x), idx] = s_x
x_mask[:len(s_x), idx] = 1.
return x, x_mask
def prepare_sentence_to_maxlen(seqs_x, maxlen=50, precision='float32'):
n_samples = len(seqs_x)
x = numpy.zeros((maxlen, n_samples)).astype('int32')
for idx, s_x in enumerate(seqs_x):
x[:len(s_x), idx]=s_x
return x
def extend_sentence_to_maxlen(seqs, maxlen = 50):
n_samples = len(seqs)
x=numpy.zeros((n_samples, maxlen)).astype('int32')
for idx, seq in enumerate(seqs):
x[idx, :len(seq)]=seq
return x
def deal_generated_y_sentence(seqs_y, worddicts, precision='float32'):
n_samples = len(seqs_y)
lens_y = [len(seq) for seq in seqs_y]
maxlen_y = numpy.max(lens_y)
eosTag = '<EOS2>'
eosIndex = worddicts[1][eosTag]
y = numpy.zeros((maxlen_y, n_samples)).astype('int32')
y_mask = numpy.zeros((maxlen_y, n_samples)).astype(precision)
for idy, s_y in enumerate(seqs_y):
try:
firstIndex = s_y.tolist().index(eosIndex)+1
except ValueError:
firstIndex = maxlen_y - 1
y[:firstIndex, idy]=s_y[:firstIndex]
y_mask[:firstIndex, idy]=1.
return y, y_mask
def deal_generated_samples(y_sample, dicts):
eosTag='</S>'
eosIndex = dicts.get(eosTag)
#print("eosIndex is", eosIndex)
n_samples = len(y_sample)
lens_y = [len(y) for y in y_sample]
maxlen_y = numpy.max(lens_y)
y = numpy.zeros((n_samples, maxlen_y)).astype('int32')
y_mask = numpy.zeros((n_samples, maxlen_y)).astype('float32')
for idy, s_y in enumerate(y_sample):
try:
firstIndex = s_y.tolist().index(eosIndex) ### </s> not included
except:
firstIndex = len(s_y)
y[idy, :firstIndex]=s_y[:firstIndex]
y_mask[idy, :firstIndex]=1.
return y, y_mask
def deal_generated_samples_to_maxlen(y_sample, dicts, maxlen):
eosTag='</S>'
eosIndex = dicts.get(eosTag)
#print("eosIndex is", eosIndex)
n_samples = len(y_sample)
y = numpy.zeros((n_samples, maxlen)).astype('int32')
y_mask = numpy.zeros((n_samples, maxlen)).astype('float32')
for idy, s_y in enumerate(y_sample):
try:
firstIndex = s_y.tolist().index(eosIndex) ### </s> not included
except:
firstIndex = len(s_y)
y[idy, :firstIndex]=s_y[:firstIndex]
y_mask[idy, :firstIndex]=1.
return y, y_mask
def remove_pad_tolist(seqs):
seqs_removed_list=[]
for ids, s_y in enumerate(seqs):
try:
firstIndex = s_y.tolist().index(0)
except ValueError:
firstIndex = len(s_y) - 1
seqs_removed_list.append(s_y[:firstIndex])
return seqs_removed_list
def ortho_weight(ndim, precision='float32'):
W=numpy.random.randn(ndim, ndim)
u,s,v=numpy.linalg.svd(W)
return u.astype(precision)
def norm_weight(nin, nout=None, scale=0.01, ortho=True, precision='float32'):
if nout is None:
nout=nin
if nout == nin and ortho:
W=ortho_weight(nin)
else:
W=scale * numpy.random.randn(nin,nout)
return W.astype(precision)
def tableLookup(vocab_size, embedding_size, scope="tableLookup", init_device='/cpu:0', reuse_var=False, prefix='tablelookup'):
if not scope:
scope=tf.get_variable_scope()
with tf.variable_scope(scope) as vs:
if not reuse_var:
with tf.device(init_device):
embeddings_init=norm_weight(vocab_size, embedding_size)
embeddings=tf.get_variable('embeddings',shape=[vocab_size, embedding_size], initializer=tf.constant_initializer(embeddings_init))
else:
tf.get_variable_scope().reuse_variables()
embeddings=tf.get_variable('embeddings')
return embeddings
def FCLayer(state_below, input_size, output_size, is_3d = True, reuse_var = False, use_bias=True, activation=None, scope='ff', init_device='/cpu:0', prefix='ff', precision='float32'):
if not scope:
scope=tf.get_variable_scope()
with tf.variable_scope(scope):
if not reuse_var:
with tf.device(init_device):
W_init = norm_weight(input_size, output_size)
matrix=tf.get_variable('W', [input_size, output_size], initializer=tf.constant_initializer(W_init), trainable=True)
if use_bias:
bias_init = numpy.zeros((output_size,)).astype(precision)
bias = tf.get_variable('b', output_size, initializer=tf.constant_initializer(bias_init), trainable=True)
else:
tf.get_variable_scope().reuse_variables()
matrix=tf.get_variable('W')
if use_bias:
bias=tf.get_variable('b')
inputShape = tf.shape(state_below)
if is_3d :
state_below=tf.reshape(state_below, [-1, inputShape[2]])
output=tf.matmul(state_below, matrix)
output=tf.reshape(output, [-1, inputShape[1] , output_size])
else :
output=tf.matmul(state_below, matrix)
if use_bias:
output=tf.add(output, bias)
if activation is not None:
output = activation(output)
return output
def average_clip_gradient(tower_grads, clip_c):
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
grads = []
for g, _ in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
#Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
if clip_c > 0:
grad, value = zip(*average_grads)
grad, global_norm = tf.clip_by_global_norm(grad, clip_c)
average_grads = zip(grad,value)
#self.average_grads = average_grads
return average_grads
def average_clip_gradient_by_value(tower_grads, clip_min, clip_max):
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
grads = []
for g, _ in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
#Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
if clip_max > 0:
grad, value = zip(*average_grads)
grad = [tf.clip_by_value(x, clip_min, clip_max) for x in grad]
average_grads = zip(grad,value)
#self.average_grads = average_grads
return average_grads
def get_ngrams(input_tokens, max_n=None):
if max_n is None:
max_n = 4
n_grams=[]
for n in range(1, max_n+1):
n_grams.append(defaultdict(int))
for n_gram in zip(*[input_tokens[i:] for i in range(n)]):
n_grams[n-1][n_gram] +=1
return n_grams
def score(ref_tokens, hypothesis_tokens, max_n=None):
if max_n is None:
max_n =4
def product(iterable):
return reduce(mul, iterable, 1)
def n_gram_precision(ref_ngrams, hyp_ngrams):
precision=[]
for n in range(1, max_n + 1):
overlap = 0
for ref_ngram, ref_ngram_count in ref_ngrams[n-1].iteritems():
if ref_ngram in hyp_ngrams[n-1]:
overlap += min(ref_ngram_count, hyp_ngrams[n-1][ref_ngram])
hyp_length = max(0, len(hypothesis_tokens)-n+1)
if n >=2:
overlap += 1
hyp_length += 1
precision.append(overlap/hyp_length if hyp_length > 0 else 0.0)
return precision
def brevity_penalty(ref_length, hyp_length):
return min(1.0, exp(1-(ref_length/hyp_length if hyp_length > 0 else 0.0)))
hypothesis_length = len(hypothesis_tokens)
ref_length = len(ref_tokens)
hypothesis_ngrams = get_ngrams(hypothesis_tokens)
ref_ngrams = get_ngrams(ref_tokens)
np = n_gram_precision(ref_ngrams, hypothesis_ngrams)
bp = brevity_penalty(ref_length, hypothesis_length)
return product(np)**(1 / max_n) * bp