-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathengine_pretrain.py
122 lines (96 loc) · 4.71 KB
/
engine_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------
import math
import sys
from typing import Iterable
import torch
import util.misc as misc
import util.lr_sched as lr_sched
def train_one_epoch(model: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler,
log_writer=None,
args=None,
epoch_size=1):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
accum_iter = args.accum_iter
optimizer.zero_grad()
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
data_loader_i = iter(data_loader)
for data_iter_step in metric_logger.log_every(range(epoch_size), print_freq, header):
(batch, _) = next(data_loader_i)
# we use a per iteration (instead of per epoch) lr scheduler
if isinstance(batch, tuple):
samples, visual_tokens = batch
samples = samples.to(device, non_blocking=True)
visual_tokens = visual_tokens.to(device, non_blocking=True)
else: # hack for consistency
samples = batch
samples = samples.to(device, non_blocking=True)
visual_tokens = samples
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)
with torch.cuda.amp.autocast():
loss_dict, _, _ = model(samples, visual_tokens, mask_ratio=args.mask_ratio)
loss = torch.stack([loss_dict[l] for l in loss_dict if 'unscaled' not in l]).sum()
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
loss /= accum_iter
loss_scaler(loss, optimizer, parameters=model.parameters(),
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(**{k: v.item() for k, v in loss_dict.items()})
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.add_scalar('train_loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', lr, epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def validate(model, data_loader, device, epoch, log_writer, args):
model.eval()
metric_logger = misc.MetricLogger(delimiter=" ")
header = 'Epoch: [{}]'.format(epoch)
print_freq = 50
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
for data_iter_step, (batch, _) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
samples, visual_tokens = batch
samples = samples.to(device, non_blocking=True)
visual_tokens = visual_tokens.to(device, non_blocking=True)
with torch.cuda.amp.autocast():
loss_dict, _, _ = model(samples, visual_tokens, mask_ratio=args.mask_ratio)
loss = torch.stack([loss_dict[l] for l in loss_dict if 'unscaled' not in l]).sum()
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
metric_logger.update(**{k: v.item() for k, v in loss_dict.items()})
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats for val:", metric_logger)
return {'val_' + k: meter.global_avg for k, meter in metric_logger.meters.items()}