forked from NVlabs/FoundationPose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUtils.py
1020 lines (866 loc) · 34.5 KB
/
Utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os, sys, time,torch,pickle,trimesh,itertools,pdb,zipfile,datetime,imageio,gzip,logging,joblib,importlib,uuid,signal,multiprocessing,psutil,subprocess,tarfile,scipy,argparse
from pytorch3d.transforms import so3_log_map,so3_exp_map,se3_exp_map,se3_log_map,matrix_to_axis_angle,matrix_to_euler_angles,euler_angles_to_matrix, rotation_6d_to_matrix
from pytorch3d.renderer import FoVPerspectiveCameras, PerspectiveCameras, look_at_view_transform, look_at_rotation, RasterizationSettings, MeshRenderer, MeshRasterizer, BlendParams, SoftSilhouetteShader, HardPhongShader, PointLights, TexturesVertex
from pytorch3d.renderer.mesh.rasterize_meshes import barycentric_coordinates
from pytorch3d.renderer.mesh.shader import SoftDepthShader, HardFlatShader
from pytorch3d.renderer.mesh.textures import Textures
from pytorch3d.structures import Meshes
from scipy.interpolate import griddata
import nvdiffrast.torch as dr
import torch.nn.functional as F
import torchvision
import torch.nn as nn
from functools import partial
import pandas as pd
import open3d as o3d
from uuid import uuid4
import cv2
from PIL import Image
import numpy as np
from collections import defaultdict
import multiprocessing as mp
import matplotlib.pyplot as plt
import math,glob,re,copy
from transformations import *
from scipy.spatial import cKDTree
from collections import OrderedDict
import ruamel.yaml
yaml = ruamel.yaml.YAML()
code_dir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(code_dir)
# sys.path.append(f"{code_dir}/mycpp/build")
try:
import kornia
except:
kornia = None
try:
import mycpp.build.mycpp as mycpp
except:
mycpp = None
try:
from bundlesdf.mycuda import common
except:
common = None
try:
import warp as wp
wp.init()
except:
wp = None
enable_timer = 0
def NestDict():
return defaultdict(NestDict)
to8b = lambda x : (255*np.clip(x,0,1)).astype(np.uint8)
BAD_DEPTH = 99
BAD_COLOR = 0
glcam_in_cvcam = np.array([[1,0,0,0],
[0,-1,0,0],
[0,0,-1,0],
[0,0,0,1]]).astype(float)
COLOR_MAP=np.array([[0, 0, 0], #Ignore
[128,0,0], #Background
[0,128,0], #Wall
[128,128,0], #Floor
[0,0,128], #Ceiling
[128,0,128], #Table
[0,128,128], #Chair
[128,128,128], #Window
[64,0,0], #Door
[192,0,0], #Monitor
[64, 128, 0], # 11th
[192, 0, 128],
[64, 128, 128],
[192, 128, 128],
[0, 64, 0],
[128, 64, 0],
[0, 192, 0],
[128, 192, 0],
])
def set_logging_format(level=logging.INFO):
importlib.reload(logging)
FORMAT = '[%(funcName)s()] %(message)s'
logging.basicConfig(level=level, format=FORMAT)
set_logging_format()
def make_mesh_tensors(mesh, device='cuda', max_tex_size=None):
mesh_tensors = {}
if isinstance(mesh.visual, trimesh.visual.texture.TextureVisuals):
img = np.array(mesh.visual.material.image.convert('RGB'))
img = img[...,:3]
if max_tex_size is not None:
max_size = max(img.shape[0], img.shape[1])
if max_size>max_tex_size:
scale = 1/max_size * max_tex_size
img = cv2.resize(img, fx=scale, fy=scale, dsize=None)
mesh_tensors['tex'] = torch.as_tensor(img, device=device, dtype=torch.float)[None]/255.0
mesh_tensors['uv_idx'] = torch.as_tensor(mesh.faces, device=device, dtype=torch.int)
uv = torch.as_tensor(mesh.visual.uv, device=device, dtype=torch.float)
uv[:,1] = 1 - uv[:,1]
mesh_tensors['uv'] = uv
else:
if mesh.visual.vertex_colors is None:
logging.info(f"WARN: mesh doesn't have vertex_colors, assigning a pure color")
mesh.visual.vertex_colors = np.tile(np.array([128,128,128]).reshape(1,3), (len(mesh.vertices), 1))
mesh_tensors['vertex_color'] = torch.as_tensor(mesh.visual.vertex_colors[...,:3], device=device, dtype=torch.float)/255.0
mesh_tensors.update({
'pos': torch.tensor(mesh.vertices, device=device, dtype=torch.float),
'faces': torch.tensor(mesh.faces, device=device, dtype=torch.int),
'vnormals': torch.tensor(mesh.vertex_normals, device=device, dtype=torch.float),
})
return mesh_tensors
def nvdiffrast_render(K=None, H=None, W=None, ob_in_cams=None, glctx=None, context='cuda', get_normal=False, mesh_tensors=None, mesh=None, projection_mat=None, bbox2d=None, output_size=None, use_light=False, light_color=None, light_dir=np.array([0,0,1]), light_pos=np.array([0,0,0]), w_ambient=0.8, w_diffuse=0.5, extra={}):
'''Just plain rendering, not support any gradient
@K: (3,3) np array
@ob_in_cams: (N,4,4) torch tensor, openCV camera
@projection_mat: np array (4,4)
@output_size: (height, width)
@bbox2d: (N,4) (umin,vmin,umax,vmax) if only roi need to render.
@light_dir: in cam space
@light_pos: in cam space
'''
if glctx is None:
if context == 'gl':
glctx = dr.RasterizeGLContext()
elif context=='cuda':
glctx = dr.RasterizeCudaContext()
else:
raise NotImplementedError
logging.info("created context")
if mesh_tensors is None:
mesh_tensors = make_mesh_tensors(mesh)
pos = mesh_tensors['pos']
vnormals = mesh_tensors['vnormals']
pos_idx = mesh_tensors['faces']
has_tex = 'tex' in mesh_tensors
ob_in_glcams = torch.tensor(glcam_in_cvcam, device='cuda', dtype=torch.float)[None]@ob_in_cams
if projection_mat is None:
projection_mat = projection_matrix_from_intrinsics(K, height=H, width=W, znear=0.001, zfar=100)
projection_mat = torch.as_tensor(projection_mat.reshape(-1,4,4), device='cuda', dtype=torch.float)
mtx = projection_mat@ob_in_glcams
if output_size is None:
output_size = np.asarray([H,W])
pts_cam = transform_pts(pos, ob_in_cams)
pos_homo = to_homo_torch(pos)
pos_clip = (mtx[:,None]@pos_homo[None,...,None])[...,0]
if bbox2d is not None:
l = bbox2d[:,0]
t = H-bbox2d[:,1]
r = bbox2d[:,2]
b = H-bbox2d[:,3]
tf = torch.eye(4, dtype=torch.float, device='cuda').reshape(1,4,4).expand(len(ob_in_cams),4,4).contiguous()
tf[:,0,0] = W/(r-l)
tf[:,1,1] = H/(t-b)
tf[:,3,0] = (W-r-l)/(r-l)
tf[:,3,1] = (H-t-b)/(t-b)
pos_clip = pos_clip@tf
rast_out, _ = dr.rasterize(glctx, pos_clip, pos_idx, resolution=np.asarray(output_size))
xyz_map, _ = dr.interpolate(pts_cam, rast_out, pos_idx)
depth = xyz_map[...,2]
if has_tex:
texc, _ = dr.interpolate(mesh_tensors['uv'], rast_out, mesh_tensors['uv_idx'])
color = dr.texture(mesh_tensors['tex'], texc, filter_mode='linear')
else:
color, _ = dr.interpolate(mesh_tensors['vertex_color'], rast_out, pos_idx)
if use_light:
get_normal = True
if get_normal:
vnormals_cam = transform_dirs(vnormals, ob_in_cams)
normal_map, _ = dr.interpolate(vnormals_cam, rast_out, pos_idx)
normal_map = F.normalize(normal_map, dim=-1)
normal_map = torch.flip(normal_map, dims=[1])
else:
normal_map = None
if use_light:
if light_dir is not None:
light_dir_neg = -torch.as_tensor(light_dir, dtype=torch.float, device='cuda')
else:
light_dir_neg = torch.as_tensor(light_pos, dtype=torch.float, device='cuda').reshape(1,1,3) - pts_cam
diffuse_intensity = (F.normalize(vnormals_cam, dim=-1) * F.normalize(light_dir_neg, dim=-1)).sum(dim=-1).clip(0, 1)[...,None]
diffuse_intensity_map, _ = dr.interpolate(diffuse_intensity, rast_out, pos_idx) # (N_pose, H, W, 1)
if light_color is None:
light_color = color
else:
light_color = torch.as_tensor(light_color, device='cuda', dtype=torch.float)
color = color*w_ambient + diffuse_intensity_map*light_color*w_diffuse
color = color.clip(0,1)
color = color * torch.clamp(rast_out[..., -1:], 0, 1) # Mask out background using alpha
color = torch.flip(color, dims=[1]) # Flip Y coordinates
depth = torch.flip(depth, dims=[1])
extra['xyz_map'] = torch.flip(xyz_map, dims=[1])
return color, depth, normal_map
def set_seed(random_seed):
import torch,random
np.random.seed(random_seed)
random.seed(random_seed)
torch.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def add_err(pred,gt,model_pts,symetry_tfs=np.eye(4)[None]):
"""
Average Distance of Model Points for objects with no indistinguishable views
- by Hinterstoisser et al. (ACCV 2012).
"""
pred_pts = transform_pts(model_pts, pred)
gt_pts = transform_pts(model_pts, gt)
e = np.linalg.norm(pred_pts - gt_pts, axis=-1).mean()
return e
def adds_err(pred,gt,model_pts):
"""
@pred: 4x4 mat
@gt:
@model: (N,3)
"""
pred_pts = transform_pts(model_pts, pred)
gt_pts = transform_pts(model_pts, gt)
nn_index = cKDTree(pred_pts)
nn_dists, _ = nn_index.query(gt_pts, k=1, workers=-1)
e = nn_dists.mean()
return e
def compute_auc_sklearn(errs, max_val=0.1, step=0.001):
from sklearn import metrics
errs = np.sort(np.array(errs))
X = np.arange(0, max_val+step, step)
Y = np.ones(len(X))
for i,x in enumerate(X):
y = (errs<=x).sum()/len(errs)
Y[i] = y
if y>=1:
break
auc = metrics.auc(X, Y) / (max_val*1)
return auc
def normalizeRotation(pose):
'''Assume no shear case
'''
new_pose = pose.copy()
scales = np.linalg.norm(pose[:3,:3],axis=0)
new_pose[:3,:3] /= scales.reshape(1,3)
return new_pose
def toOpen3dCloud(points,colors=None,normals=None):
cloud = o3d.geometry.PointCloud()
cloud.points = o3d.utility.Vector3dVector(points.astype(np.float64))
if colors is not None:
if colors.max()>1:
colors = colors/255.0
cloud.colors = o3d.utility.Vector3dVector(colors.astype(np.float64))
if normals is not None:
cloud.normals = o3d.utility.Vector3dVector(normals.astype(np.float64))
return cloud
def make_grid_image(imgs, nrow, padding=5, pad_value=255):
'''
@imgs: (B,H,W,C) np array
@nrow: num of images per row
'''
grid = torchvision.utils.make_grid(torch.as_tensor(np.asarray(imgs)).permute(0,3,1,2), nrow=nrow, padding=padding, pad_value=pad_value)
grid = grid.permute(1,2,0).contiguous().data.cpu().numpy().astype(np.uint8)
return grid
if wp is not None:
@wp.kernel(enable_backward=False)
def bilateral_filter_depth_kernel(depth:wp.array(dtype=float, ndim=2), out:wp.array(dtype=float, ndim=2), radius:int, zfar:float, sigmaD:float, sigmaR:float):
h,w = wp.tid()
H = depth.shape[0]
W = depth.shape[1]
if w>=W or h>=H:
return
out[h,w] = 0.0
mean_depth = float(0.0)
num_valid = int(0)
for u in range(w-radius, w+radius+1):
if u<0 or u>=W:
continue
for v in range(h-radius, h+radius+1):
if v<0 or v>=H:
continue
cur_depth = depth[v,u]
if cur_depth>=0.001 and cur_depth<zfar:
num_valid += 1
mean_depth += cur_depth
if num_valid==0:
return
mean_depth /= float(num_valid)
depthCenter = depth[h,w]
sum_weight = float(0.0)
sum = float(0.0)
for u in range(w-radius, w+radius+1):
if u<0 or u>=W:
continue
for v in range(h-radius, h+radius+1):
if v<0 or v>=H:
continue
cur_depth = depth[v,u]
if cur_depth>=0.001 and cur_depth<zfar and abs(cur_depth-mean_depth)<0.01:
weight = wp.exp( -float((u-w)*(u-w) + (h-v)*(h-v)) / (2.0*sigmaD*sigmaD) - (depthCenter-cur_depth)*(depthCenter-cur_depth)/(2.0*sigmaR*sigmaR) )
sum_weight += weight
sum += weight*cur_depth
if sum_weight>0 and num_valid>0:
out[h,w] = sum/sum_weight
def bilateral_filter_depth(depth, radius=2, zfar=100, sigmaD=2, sigmaR=100000, device='cuda'):
if isinstance(depth, np.ndarray):
depth_wp = wp.array(depth, dtype=float, device=device)
else:
depth_wp = wp.from_torch(depth)
out_wp = wp.zeros(depth.shape, dtype=float, device=device)
wp.launch(kernel=bilateral_filter_depth_kernel, device=device, dim=[depth.shape[0], depth.shape[1]], inputs=[depth_wp, out_wp, radius, zfar, sigmaD, sigmaR])
depth_out = wp.to_torch(out_wp)
if isinstance(depth, np.ndarray):
depth_out = depth_out.data.cpu().numpy()
return depth_out
@wp.kernel(enable_backward=False)
def erode_depth_kernel(depth:wp.array(dtype=float, ndim=2), out:wp.array(dtype=float, ndim=2), radius:int, depth_diff_thres:float, ratio_thres:float, zfar:float):
h,w = wp.tid()
H = depth.shape[0]
W = depth.shape[1]
if w>=W or h>=H:
return
d_ori = depth[h,w]
if d_ori<0.001 or d_ori>=zfar:
out[h,w] = 0.0
bad_cnt = float(0)
total = float(0)
for u in range(w-radius, w+radius+1):
if u<0 or u>=W:
continue
for v in range(h-radius, h+radius+1):
if v<0 or v>=H:
continue
cur_depth = depth[v,u]
total += 1.0
if cur_depth<0.001 or cur_depth>=zfar or abs(cur_depth-d_ori)>depth_diff_thres:
bad_cnt += 1.0
if bad_cnt/total>ratio_thres:
out[h,w] = 0.0
else:
out[h,w] = d_ori
def erode_depth(depth, radius=2, depth_diff_thres=0.001, ratio_thres=0.8, zfar=100, device='cuda'):
depth_wp = wp.from_torch(torch.as_tensor(depth, dtype=torch.float, device=device))
out_wp = wp.zeros(depth.shape, dtype=float, device=device)
wp.launch(kernel=erode_depth_kernel, device=device, dim=[depth.shape[0], depth.shape[1]], inputs=[depth_wp, out_wp, radius, depth_diff_thres, ratio_thres, zfar],)
depth_out = wp.to_torch(out_wp)
if isinstance(depth, np.ndarray):
depth_out = depth_out.data.cpu().numpy()
return depth_out
def depth2xyzmap(depth, K, uvs=None):
invalid_mask = (depth<0.001)
H,W = depth.shape[:2]
if uvs is None:
vs,us = np.meshgrid(np.arange(0,H),np.arange(0,W), sparse=False, indexing='ij')
vs = vs.reshape(-1)
us = us.reshape(-1)
else:
uvs = uvs.round().astype(int)
us = uvs[:,0]
vs = uvs[:,1]
zs = depth[vs,us]
xs = (us-K[0,2])*zs/K[0,0]
ys = (vs-K[1,2])*zs/K[1,1]
pts = np.stack((xs.reshape(-1),ys.reshape(-1),zs.reshape(-1)), 1) #(N,3)
xyz_map = np.zeros((H,W,3), dtype=np.float32)
xyz_map[vs,us] = pts
xyz_map[invalid_mask] = 0
return xyz_map
def depth2xyzmap_batch(depths, Ks, zfar):
'''
@depths: torch tensor (B,H,W)
@Ks: torch tensor (B,3,3)
'''
bs = depths.shape[0]
invalid_mask = (depths<0.001) | (depths>zfar)
H,W = depths.shape[-2:]
vs,us = torch.meshgrid(torch.arange(0,H),torch.arange(0,W), indexing='ij')
vs = vs.reshape(-1).float().cuda()[None].expand(bs,-1)
us = us.reshape(-1).float().cuda()[None].expand(bs,-1)
zs = depths.reshape(bs,-1)
Ks = Ks[:,None].expand(bs,zs.shape[-1],3,3)
xs = (us-Ks[...,0,2])*zs/Ks[...,0,0] #(B,N)
ys = (vs-Ks[...,1,2])*zs/Ks[...,1,1]
pts = torch.stack([xs,ys,zs], dim=-1) #(B,N,3)
xyz_maps = pts.reshape(bs,H,W,3)
xyz_maps[invalid_mask] = 0
return xyz_maps
def rle_to_mask(rle: dict) -> np.ndarray:
"""Compute a binary mask from an uncompressed RLE."""
h, w = rle["size"]
mask = np.empty(h * w, dtype=bool)
idx = 0
parity = False
for count in rle["counts"]:
mask[idx : idx + count] = parity
idx += count
parity ^= True
mask = mask.reshape(w, h)
return mask.transpose() # Put in C order
def depth_to_vis(depth, zmin=None, zmax=None, mode='rgb', inverse=True):
if zmin is None:
zmin = depth.min()
if zmax is None:
zmax = depth.max()
if inverse:
invalid = depth<0.001
vis = zmin/(depth+1e-8)
vis[invalid] = 0
else:
depth = depth.clip(zmin, zmax)
invalid = (depth==zmin) | (depth==zmax)
vis = (depth-zmin)/(zmax-zmin)
vis[invalid] = 1
if mode=='gray':
vis = (vis*255).clip(0, 255).astype(np.uint8)
elif mode=='rgb':
vis = cv2.applyColorMap((vis*255).astype(np.uint8), cv2.COLORMAP_JET)[...,::-1]
else:
raise RuntimeError
return vis
def sample_views_icosphere(n_views, subdivisions=None, radius=1):
if subdivisions is not None:
mesh = trimesh.creation.icosphere(subdivisions=subdivisions, radius=radius)
else:
subdivision = 1
while 1:
mesh = trimesh.creation.icosphere(subdivisions=subdivision, radius=radius)
if mesh.vertices.shape[0]>=n_views:
break
subdivision += 1
cam_in_obs = np.tile(np.eye(4)[None], (len(mesh.vertices),1,1))
cam_in_obs[:,:3,3] = mesh.vertices
up = np.array([0,0,1])
z_axis = -cam_in_obs[:,:3,3] #(N,3)
z_axis /= np.linalg.norm(z_axis, axis=-1).reshape(-1,1)
x_axis = np.cross(up.reshape(1,3), z_axis)
invalid = (x_axis==0).all(axis=-1)
x_axis[invalid] = [1,0,0]
x_axis /= np.linalg.norm(x_axis, axis=-1).reshape(-1,1)
y_axis = np.cross(z_axis, x_axis)
y_axis /= np.linalg.norm(y_axis, axis=-1).reshape(-1,1)
cam_in_obs[:,:3,0] = x_axis
cam_in_obs[:,:3,1] = y_axis
cam_in_obs[:,:3,2] = z_axis
return cam_in_obs
def to_homo(pts):
'''
@pts: (N,3 or 2) will homogeneliaze the last dimension
'''
assert len(pts.shape)==2, f'pts.shape: {pts.shape}'
homo = np.concatenate((pts, np.ones((pts.shape[0],1))),axis=-1)
return homo
def to_homo_torch(pts):
'''
@pts: shape can be (...,N,3 or 2) or (N,3) will homogeneliaze the last dimension
'''
ones = torch.ones((*pts.shape[:-1],1), dtype=torch.float, device=pts.device)
homo = torch.cat((pts, ones),dim=-1)
return homo
def transform_pts(pts,tf):
"""Transform 2d or 3d points
@pts: (...,N_pts,3)
@tf: (...,4,4)
"""
if len(tf.shape)>=3 and tf.shape[-3]!=pts.shape[-2]:
tf = tf[...,None,:,:]
return (tf[...,:-1,:-1]@pts[...,None] + tf[...,:-1,-1:])[...,0]
def transform_dirs(dirs,tf):
"""
@dirs: (...,3)
@tf: (...,4,4)
"""
if len(tf.shape)>=3 and tf.shape[-3]!=dirs.shape[-2]:
tf = tf[...,None,:,:]
return (tf[...,:3,:3]@dirs[...,None])[...,0]
def random_direction():
'''https://stackoverflow.com/questions/33976911/generate-a-random-sample-of-points-distributed-on-the-surface-of-a-unit-sphere
'''
vec = np.random.randn(3).reshape(3)
vec /= np.linalg.norm(vec)
return vec
def compute_mesh_diameter(model_pts=None, mesh=None, n_sample=1000):
from sklearn.decomposition import TruncatedSVD
if mesh is not None:
u, s, vh = scipy.linalg.svd(mesh.vertices, full_matrices=False)
pts = u@s
diameter = np.linalg.norm(pts.max(axis=0)-pts.min(axis=0))
return float(diameter)
if n_sample is None:
pts = model_pts
else:
ids = np.random.choice(len(model_pts), size=min(n_sample, len(model_pts)), replace=False)
pts = model_pts[ids]
dists = np.linalg.norm(pts[None]-pts[:,None], axis=-1)
diameter = dists.max()
return diameter
def compute_crop_window_tf_batch(pts=None, H=None, W=None, poses=None, K=None, crop_ratio=1.2, out_size=None, rgb=None, uvs=None, method='min_box', mesh_diameter=None):
'''Project the points and find the cropping transform
@pts: (N,3)
@poses: (B,4,4) tensor
@min_box: min_box/min_circle
@scale: scale to apply to the tightly enclosing roi
'''
def compute_tf_batch(left, right, top, bottom):
B = len(left)
left = left.round()
right = right.round()
top = top.round()
bottom = bottom.round()
tf = torch.eye(3)[None].expand(B,-1,-1).contiguous()
tf[:,0,2] = -left
tf[:,1,2] = -top
new_tf = torch.eye(3)[None].expand(B,-1,-1).contiguous()
new_tf[:,0,0] = out_size[0]/(right-left)
new_tf[:,1,1] = out_size[1]/(bottom-top)
tf = new_tf@tf
return tf
B = len(poses)
torch.set_default_tensor_type('torch.cuda.FloatTensor')
if method=='box_3d':
radius = mesh_diameter*crop_ratio/2
offsets = torch.tensor([0,0,0,
radius,0,0,
-radius,0,0,
0,radius,0,
0,-radius,0]).reshape(-1,3)
pts = poses[:,:3,3].reshape(-1,1,3)+offsets.reshape(1,-1,3)
K = torch.as_tensor(K)
projected = ([email protected](-1,3).T).T
uvs = projected[:,:2]/projected[:,2:3]
uvs = uvs.reshape(B, -1, 2)
center = uvs[:,0] #(B,2)
radius = torch.abs(uvs-center.reshape(-1,1,2)).reshape(B,-1).max(axis=-1)[0].reshape(-1) #(B)
left = center[:,0]-radius
right = center[:,0]+radius
top = center[:,1]-radius
bottom = center[:,1]+radius
tfs = compute_tf_batch(left, right, top, bottom)
return tfs
else:
raise RuntimeError
return tf
def cv_draw_text(img,text,uv_top_left,color=(255, 255, 255),fontScale=0.5,thickness=1,fontFace=cv2.FONT_HERSHEY_SIMPLEX,outline_color=None,line_spacing=1.5):
H,W = img.shape[:2]
uv_top_left = np.array(uv_top_left, dtype=float)
assert uv_top_left.shape == (2,)
for line in text.splitlines():
(w, h), _ = cv2.getTextSize(text=line,fontFace=fontFace,fontScale=fontScale,thickness=thickness,)
uv_bottom_left_i = uv_top_left + [0, h]
############# Ensure inside image
while uv_bottom_left_i[0]<0:
uv_bottom_left_i[0] += 1
while uv_bottom_left_i[0]+w>=W:
uv_bottom_left_i[0] -= 1
while uv_bottom_left_i[1]>=H:
uv_bottom_left_i[1] -= 1
while uv_bottom_left_i[1]-h<0:
uv_bottom_left_i[1] += 1
org = tuple(uv_bottom_left_i.astype(int))
if outline_color is not None:
cv2.putText(img,text=line,org=org,fontFace=fontFace,fontScale=fontScale,color=outline_color,thickness=thickness,lineType=cv2.LINE_AA,)
cv2.putText(img,text=line,org=org,fontFace=fontFace,fontScale=fontScale,color=color,thickness=thickness,lineType=cv2.LINE_AA,)
uv_top_left[1] = uv_bottom_left_i[1]-h+h*line_spacing
return img
def trimesh_add_pure_colored_texture(mesh, color=np.array([255,255,255]), resolution=5):
tex_img = np.tile(color.reshape(1,1,3), (resolution, resolution, 1)).astype(np.uint8)
mesh = mesh.unwrap()
mesh.visual = trimesh.visual.texture.TextureVisuals(uv=mesh.visual.uv,image=Image.fromarray(tex_img))
return mesh
def project_3d_to_2d(pt,K,ob_in_cam):
pt = pt.reshape(4,1)
projected = K @ ((ob_in_cam@pt)[:3,:])
projected = projected.reshape(-1)
projected = projected/projected[2]
return projected.reshape(-1)[:2].round().astype(int)
def draw_xyz_axis(color, ob_in_cam, scale=0.1, K=np.eye(3), thickness=3, transparency=0,is_input_rgb=False):
'''
@color: BGR
'''
if is_input_rgb:
color = cv2.cvtColor(color,cv2.COLOR_RGB2BGR)
xx = np.array([1,0,0,1]).astype(float)
yy = np.array([0,1,0,1]).astype(float)
zz = np.array([0,0,1,1]).astype(float)
xx[:3] = xx[:3]*scale
yy[:3] = yy[:3]*scale
zz[:3] = zz[:3]*scale
origin = tuple(project_3d_to_2d(np.array([0,0,0,1]), K, ob_in_cam))
xx = tuple(project_3d_to_2d(xx, K, ob_in_cam))
yy = tuple(project_3d_to_2d(yy, K, ob_in_cam))
zz = tuple(project_3d_to_2d(zz, K, ob_in_cam))
line_type = cv2.LINE_AA
arrow_len = 0
tmp = color.copy()
tmp1 = tmp.copy()
tmp1 = cv2.arrowedLine(tmp1, origin, xx, color=(0,0,255), thickness=thickness,line_type=line_type, tipLength=arrow_len)
mask = np.linalg.norm(tmp1-tmp, axis=-1)>0
tmp[mask] = tmp[mask]*transparency + tmp1[mask]*(1-transparency)
tmp1 = tmp.copy()
tmp1 = cv2.arrowedLine(tmp1, origin, yy, color=(0,255,0), thickness=thickness,line_type=line_type, tipLength=arrow_len)
mask = np.linalg.norm(tmp1-tmp, axis=-1)>0
tmp[mask] = tmp[mask]*transparency + tmp1[mask]*(1-transparency)
tmp1 = tmp.copy()
tmp1 = cv2.arrowedLine(tmp1, origin, zz, color=(255,0,0), thickness=thickness,line_type=line_type, tipLength=arrow_len)
mask = np.linalg.norm(tmp1-tmp, axis=-1)>0
tmp[mask] = tmp[mask]*transparency + tmp1[mask]*(1-transparency)
tmp = tmp.astype(np.uint8)
if is_input_rgb:
tmp = cv2.cvtColor(tmp,cv2.COLOR_BGR2RGB)
return tmp
def draw_posed_3d_box(K, img, ob_in_cam, bbox, line_color=(0,255,0), linewidth=2):
'''Revised from 6pack dataset/inference_dataset_nocs.py::projection
@bbox: (2,3) min/max
@line_color: RGB
'''
min_xyz = bbox.min(axis=0)
xmin, ymin, zmin = min_xyz
max_xyz = bbox.max(axis=0)
xmax, ymax, zmax = max_xyz
def draw_line3d(start,end,img):
pts = np.stack((start,end),axis=0).reshape(-1,3)
pts = (ob_in_cam@to_homo(pts).T).T[:,:3] #(2,3)
projected = ([email protected]).T
uv = np.round(projected[:,:2]/projected[:,2].reshape(-1,1)).astype(int) #(2,2)
img = cv2.line(img, uv[0].tolist(), uv[1].tolist(), color=line_color, thickness=linewidth, lineType=cv2.LINE_AA)
return img
for y in [ymin,ymax]:
for z in [zmin,zmax]:
start = np.array([xmin,y,z])
end = start+np.array([xmax-xmin,0,0])
img = draw_line3d(start,end,img)
for x in [xmin,xmax]:
for z in [zmin,zmax]:
start = np.array([x,ymin,z])
end = start+np.array([0,ymax-ymin,0])
img = draw_line3d(start,end,img)
for x in [xmin,xmax]:
for y in [ymin,ymax]:
start = np.array([x,y,zmin])
end = start+np.array([0,0,zmax-zmin])
img = draw_line3d(start,end,img)
return img
def projection_matrix_from_intrinsics(K, height, width, znear, zfar, window_coords='y_down'):
"""Conversion of Hartley-Zisserman intrinsic matrix to OpenGL proj. matrix.
Ref:
1) https://strawlab.org/2011/11/05/augmented-reality-with-OpenGL
2) https://github.com/strawlab/opengl-hz/blob/master/src/calib_test_utils.py
:param K: 3x3 ndarray with the intrinsic camera matrix.
:param x0 The X coordinate of the camera image origin (typically 0).
:param y0: The Y coordinate of the camera image origin (typically 0).
:param w: Image width.
:param h: Image height.
:param nc: Near clipping plane.
:param fc: Far clipping plane.
:param window_coords: 'y_up' or 'y_down'.
:return: 4x4 ndarray with the OpenGL projection matrix.
"""
x0 = 0
y0 = 0
w = width
h = height
nc = znear
fc = zfar
depth = float(fc - nc)
q = -(fc + nc) / depth
qn = -2 * (fc * nc) / depth
# Draw our images upside down, so that all the pixel-based coordinate
# systems are the same.
if window_coords == 'y_up':
proj = np.array([
[2 * K[0, 0] / w, -2 * K[0, 1] / w, (-2 * K[0, 2] + w + 2 * x0) / w, 0],
[0, -2 * K[1, 1] / h, (-2 * K[1, 2] + h + 2 * y0) / h, 0],
[0, 0, q, qn], # Sets near and far planes (glPerspective).
[0, 0, -1, 0]
])
# Draw the images upright and modify the projection matrix so that OpenGL
# will generate window coords that compensate for the flipped image coords.
elif window_coords == 'y_down':
proj = np.array([
[2 * K[0, 0] / w, -2 * K[0, 1] / w, (-2 * K[0, 2] + w + 2 * x0) / w, 0],
[0, 2 * K[1, 1] / h, (2 * K[1, 2] - h + 2 * y0) / h, 0],
[0, 0, q, qn], # Sets near and far planes (glPerspective).
[0, 0, -1, 0]
])
else:
raise NotImplementedError
return proj
def symmetry_tfs_from_info(info, rot_angle_discrete=5):
symmetry_tfs = [np.eye(4)]
if 'symmetries_discrete' in info:
tfs = np.array(info['symmetries_discrete']).reshape(-1,4,4)
tfs[...,:3,3] *= 0.001
symmetry_tfs = [np.eye(4)]
symmetry_tfs += list(tfs)
if 'symmetries_continuous' in info:
axis = np.array(info['symmetries_continuous'][0]['axis']).reshape(3)
offset = info['symmetries_continuous'][0]['offset']
rxs = [0]
rys = [0]
rzs = [0]
if axis[0]>0:
rxs = np.arange(0,360,rot_angle_discrete)/180.0*np.pi
elif axis[1]>0:
rys = np.arange(0,360,rot_angle_discrete)/180.0*np.pi
elif axis[2]>0:
rzs = np.arange(0,360,rot_angle_discrete)/180.0*np.pi
for rx in rxs:
for ry in rys:
for rz in rzs:
tf = euler_matrix(rx, ry, rz)
tf[:3,3] = offset
symmetry_tfs.append(tf)
if len(symmetry_tfs)==0:
symmetry_tfs = [np.eye(4)]
symmetry_tfs = np.array(symmetry_tfs)
return symmetry_tfs
def pose_to_egocentric_delta_pose(A_in_cam, B_in_cam):
'''Used for Pose Refinement. Given the object's two poses in camera, convert them to relative poses in camera's egocentric view
@A_in_cam: (B,4,4) torch tensor
'''
trans_delta = B_in_cam[:,:3,3] - A_in_cam[:,:3,3]
rot_mat_delta = B_in_cam[:,:3,:3]@A_in_cam[:,:3,:3].permute(0,2,1)
return trans_delta, rot_mat_delta
def egocentric_delta_pose_to_pose(A_in_cam, trans_delta, rot_mat_delta):
'''Used for Pose Refinement. Given the object's two poses in camera, convert them to relative poses in camera's egocentric view
@A_in_cam: (B,4,4) torch tensor
'''
B_in_cam = torch.eye(4, dtype=torch.float, device=A_in_cam.device)[None].expand(len(A_in_cam),-1,-1).contiguous()
B_in_cam[:,:3,3] = A_in_cam[:,:3,3]+trans_delta
B_in_cam[:,:3,:3] = rot_mat_delta@A_in_cam[:,:3,:3]
return B_in_cam
def sdg_load_bounding_box(file_path: str):
"""Load bounding boxes.
Args:
file_path: Path of the bounding box.
Returns:
A dictionary of the bounding boxes.
"""
bbox_dict = {}
bbox_array = np.load(file_path)
for id, x_min, y_min, x_max, y_max, occlusion_ratio in zip(
bbox_array["semanticId"],
bbox_array["x_min"],
bbox_array["y_min"],
bbox_array["x_max"],
bbox_array["y_max"],
bbox_array["occlusionRatio"],
):
bbox_dict[id] = {
"x_min": x_min,
"y_min": y_min,
"x_max": x_max,
"y_max": y_max,
"occlusion_ratio": occlusion_ratio,
}
return bbox_dict
def texture_map_interpolation(tex_image_numpy):
all_channels = []
mask = np.all(tex_image_numpy == 0, axis=2)
x = np.arange(0, tex_image_numpy.shape[1])
y = np.arange(0, tex_image_numpy.shape[0])
xx, yy = np.meshgrid(x, y)
for each_channel in range(tex_image_numpy.shape[2]):
curr_channel = tex_image_numpy[:,:,each_channel]
x1 = xx[~mask]
y1 = yy[~mask]
newarr = curr_channel[~mask]
GD1 = griddata((x1, y1), newarr.ravel(), (xx, yy), method='nearest')
all_channels.append(GD1[:,:,np.newaxis].round().astype(np.uint8))
final_image = np.concatenate(all_channels, axis =-1)
return final_image
class OctreeManager:
def __init__(self,pts=None,max_level=None,octree=None):
import kaolin
if octree is None:
pts_quantized = kaolin.ops.spc.quantize_points(pts.contiguous(), level=max_level)
self.octree = kaolin.ops.spc.unbatched_points_to_octree(pts_quantized, max_level, sorted=False)
else:
self.octree = octree
lengths = torch.tensor([len(self.octree)], dtype=torch.int32).cpu()
self.max_level, self.pyramids, self.exsum = kaolin.ops.spc.scan_octrees(self.octree,lengths)
self.finest_vox_size = 2.0/(2**self.max_level)
self.n_level = self.max_level+1
self.vox_point_all_levels = kaolin.ops.spc.generate_points(self.octree, self.pyramids, self.exsum)
self.point_hierarchy_dual, self.pyramid_dual = kaolin.ops.spc.unbatched_make_dual(self.vox_point_all_levels, self.pyramids[0])
self.trinkets, self.pointers_to_parent = kaolin.ops.spc.unbatched_make_trinkets(self.vox_point_all_levels, self.pyramids[0], self.point_hierarchy_dual, self.pyramid_dual)
self.n_vox = len(self.vox_point_all_levels)
self.n_corners = len(self.point_hierarchy_dual)
for level in range(self.n_level):
vox_pts = self.get_level_quantized_points(level)
corner_pts = self.get_level_corner_quantized_points(level)
logging.info(f'level:{level}, vox_pts:{vox_pts.shape}, corner_pts:{corner_pts.shape}')
def get_level_corner_quantized_points(self,level):
start = self.pyramid_dual[...,1,level]
num = self.pyramid_dual[...,0,level]
return self.point_hierarchy_dual[start:start+num]
def get_level_quantized_points(self,level):
start = self.pyramids[...,1,level]
num = self.pyramids[...,0,level]
return self.vox_point_all_levels[start:start+num]
def get_center_ids(self,x,level):
'''Get ids with 0 starting from current level's first point
'''
import kaolin
pidx = kaolin.ops.spc.unbatched_query(self.octree, self.exsum, x.float(), level, with_parents=False)
return pidx
def get_vox_size_at_level(self, level):
return 2.0/(2**level)
def draw(self,level, method='point'):
import kaolin
logging.info(f"level:{level}")
vox_size = self.get_vox_size_at_level(level)
if method=='point':
corner_coords = self.get_level_corner_quantized_points(level)
pts = corner_coords*vox_size - 1
mesh = trimesh.points.PointCloud(pts.data.cpu().numpy().reshape(-1,3))
return mesh
def ray_trace(self,rays_o,rays_d,level,debug=False):
"""Octree is in normalized [-1,1] world coordinate frame
'rays_o': ray origin in normalized world coordinate system
'rays_d': (N,3) unit length ray direction in normalized world coordinate system
'octree': spc
@voxel_size: in the scale of [-1,1] space
Return:
ray_depths_in_out: traveling times, NOT the Z value; invalid will be zeros
"""
from mycuda import common
import kaolin
ray_index, rays_pid, depth_in_out = kaolin.render.spc.unbatched_raytrace(self.octree,self.vox_point_all_levels,self.pyramids[0],self.exsum,rays_o,rays_d,level=level,return_depth=True,with_exit=True)
if ray_index.size()[0] == 0:
pdb.set_trace()
print("[WARNING] batch has 0 intersections!!")
ray_depths_in_out = torch.zeros((rays_o.shape[0],1,2))
rays_pid = -torch.ones_like(rays_o[:, :1])
rays_near = torch.zeros_like(rays_o[:, :1])
rays_far = torch.zeros_like(rays_o[:, :1])
return rays_near, rays_far, rays_pid, ray_depths_in_out
intersected_ray_ids,counts = torch.unique_consecutive(ray_index,return_counts=True)
max_intersections = counts.max().item()
start_poss = torch.cat([torch.tensor([0], device=counts.device),torch.cumsum(counts[:-1],dim=0)],dim=0)
ray_depths_in_out = common.postprocessOctreeRayTracing(ray_index.long().contiguous(),depth_in_out.contiguous(),intersected_ray_ids.long().contiguous(),start_poss.long().contiguous(), max_intersections, rays_o.shape[0])
rays_far = ray_depths_in_out[:,:,1].max(dim=-1)[0].reshape(-1,1)
rays_near = ray_depths_in_out[:,0,0].reshape(-1,1)
return rays_near, rays_far, rays_pid, ray_depths_in_out
def make_yaml_dumpable(D):
if isinstance(D, np.ndarray):
return D.tolist()
for d in D:
if isinstance(D[d], dict) or isinstance(D[d], OrderedDict) or isinstance(D[d], defaultdict):