-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathmy_module.py
executable file
·879 lines (752 loc) · 32.3 KB
/
my_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
import openai
import io
import sys
import re
from contextlib import redirect_stdout
import subprocess
import importlib
import tempfile
import os
import ast
import astor
import deepl
import logging
from duckduckgo_search import ddg
import json
import time
import requests
import hashlib
from datetime import datetime
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
from llama_index import (
GPTSimpleVectorIndex,
SimpleDirectoryReader,
Document,
LLMPredictor,
PromptHelper,
QuestionAnswerPrompt,
RefinePrompt,
download_loader
)
from langdetect import detect
from settings import *
# from webgpt import *
from urllib.parse import quote
if openai_api_proxy != "NULL":
openai.api_base = openai_api_proxy
# Capture and Execute Python Code in GPT-3 Response
def capture_python_output(code, venv_path=venv_path):
# The selected code modifies the input Python code to print the last expression in the code.
code = modify_code_to_print_last_expression(code)
output = io.StringIO()
# Create a temporary file to store the code
with tempfile.NamedTemporaryFile(mode="w+", suffix=".py", delete=False) as temp_file:
temp_file.write(code)
temp_file_path = temp_file.name
with redirect_stdout(output):
while True:
try:
# Activate virtual environment in the subprocess and execute the temporary file
command = f"source {venv_path}/bin/activate; python {temp_file_path}"
execution_output = subprocess.check_output(command, shell=True, text=True, stderr=subprocess.STDOUT,
executable="/bin/bash")
print(execution_output, file=output)
break
except subprocess.CalledProcessError as cpe:
error_output = cpe.output
print(f"error_output = cpe.output: {error_output}")
if "ModuleNotFoundError" in error_output:
missing_package = error_output.split()[-1]
print(f"missing_package = error_output.split()[-1]: {missing_package}")
try:
command = f"source {venv_path}/bin/activate; pip install {missing_package}"
execution_output = subprocess.check_output(command, shell=True, text=True,
stderr=subprocess.STDOUT, executable="/bin/bash")
break
# subprocess.check_call([f"{venv_path}/bin/pip", "install", missing_package])
except Exception as e:
result = f"Error1: {e}"
print(result, file=output)
break
else:
result = f"Error2: {error_output}"
print(result, file=output)
break
except Exception as e:
result = f"Error3: {e}"
print(result, file=output)
break
# Remove the temporary file
os.remove(temp_file_path)
execution_output = output.getvalue().strip()
print(f"execution_output = {output.getvalue()}")
# execution_output = output.getvalue()
return execution_output
# Function takes Python code string as input, modifies it by wrapping the last non-empty expression with a print statement, and returns the modified code as a string.
def modify_code_to_print_last_expression(code):
# Parse the code into an AST
tree = ast.parse(code)
# Find the last non-empty expression in the code
last_expr = None
for node in reversed(tree.body):
if isinstance(node, ast.Expr):
last_expr = node
break
# If a non-empty expression is found, wrap it with a print statement
if last_expr:
print_node = ast.Expr(
value=ast.Call(func=ast.Name(id='print', ctx=ast.Load()), args=[last_expr.value], keywords=[]))
tree.body.remove(last_expr)
tree.body.append(print_node)
# Convert the modified AST back to code
modified_code = astor.to_source(tree)
return modified_code
def capture_bash_output(code):
output = io.StringIO()
try:
execution_output = subprocess.check_output(code, shell=True, text=True, stderr=subprocess.STDOUT,
executable="/bin/bash")
print(execution_output, file=output)
except subprocess.CalledProcessError as cpe:
error_output = cpe.output
print(f"Error 1: {error_output}")
except Exception as e:
result = f"Error 2: {e}"
print(result, file=output)
return output.getvalue().strip()
def download_image(url, save_path="static/img.png"):
response = requests.get(url, stream=True)
response.raise_for_status()
with open(save_path, 'wb') as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
# Sending Messages to Synology Chat
def send_back_message(user_id, response_text, image_filename=None, image_url=None,
your_server_ip=your_server_ip, port=PORT, INCOMING_WEBHOOK_URL=INCOMING_WEBHOOK_URL):
message_payload = {
"user_ids": [int(user_id)],
"text": str(response_text)
}
headers = {
"Content-Type": "application/json"
}
if image_filename:
image_url = f"http://{your_server_ip}:{port}/image/{image_filename}"
message_payload["file_url"] = image_url
if image_url:
message_payload["file_url"] = image_url
payload = "payload=" + quote(json.dumps(message_payload))
try:
response = requests.post(INCOMING_WEBHOOK_URL, data=payload)
response.raise_for_status()
except requests.exceptions.RequestException as e:
print(f"Error sending message to Synology Chat: {e}")
return "Error sending message to Synology Chat", 500
# Take the orginal GPT-3 response text as input, extracts and executes any Python code blocks within it,
# and replaces the code blocks with their respective outputs in the final response text:
def modify_response_to_include_code_output(response_text):
python_blocks = re.findall(r"```python(.*?)```", response_text, re.DOTALL)
print(f"python_blocks = {python_blocks}")
if python_blocks:
modified_response = re.sub(r"```python.*?```", "{{PYTHON_OUTPUT}}", response_text, flags=re.DOTALL)
# modified_response = re.sub(r"```.*?```", "{{PYTHON_OUTPUT}}", modified_response, flags=re.DOTALL)
output_list = []
for python_code in python_blocks:
python_code = python_code.strip()
execution_output = capture_python_output(python_code)
output_list.append(f"```\n{python_code}\n```\n运行结果:\n```\n{execution_output}\n```")
response_with_output = modified_response.replace("{{PYTHON_OUTPUT}}", "{}").format(*output_list)
return response_with_output
else:
return response_text
# A function generating an image using OpenAI's API based on the given text description and size, and returns the filename of the downloaded image.
def generate_img_from_openai(text_description, size=image_size, user_id=None):
if size in ["small", "medium", "large"]:
size = {"small": "256x256", "medium": "512x512", "large": "1024x1024"}[size]
else:
size = "256x256"
print(f"text_description = {text_description}")
try:
response = openai.Image.create(
prompt=text_description,
n=1,
size=size
)
image_url = response['data'][0]['url']
print(f"image_url = {image_url}")
except openai.error.OpenAIError as e:
print(f"Error: {e.http_status}")
print(f"Error: {e.error}")
image_url = None
if image_url:
if user_id:
send_back_message(user_id, "生成图片完成,正在下载…")
try:
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{current_time}.png"
download_image(image_url, "static/" + filename)
print("Image downloaded successfully!")
return filename
except Exception as e:
print(f"Error: {e}")
return None
else:
return None
def generate_gpt_response(chat_history, stream=False, temperature=0.5):
print(f"messages_to_gpt: {chat_history}")
# get gpt response
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=chat_history,
temperature=temperature,
stream=stream,
)
if stream is False:
return response['choices'][0]['message']['content']
else:
return response
# Set your OpenAI API key
openai.api_key = openai_api_key
os.environ['OPENAI_API_KEY'] = openai_api_key
def my_ddg(q, n=5):
search_results = ddg(q, max_results=n)
results_list = []
for r in search_results:
results_list.append(f'{r["title"]} ({r["href"]}). {r["body"]}')
print(f"ddg: {len(results_list)}")
return results_list
# bing
def my_bing(q, n=5, key=bing_key):
# assert key
search_url = "https://api.bing.microsoft.com/v7.0/search"
headers = {"Ocp-Apim-Subscription-Key": key}
params = {'q': q,
# 'mkt': 'zh-CN',
"answerCount": n,
"count": n}
response = requests.get(search_url, headers=headers, params=params)
response.raise_for_status()
search_results = response.json()
search_results = search_results["webPages"]["value"]
results_list = []
for r in search_results:
results_list.append(f'{r["name"]} ({r["url"]}). {r["snippet"]}. 获取时间(Parsed time): {r["dateLastCrawled"]}')
print(f"bing: {len(results_list)}")
return results_list
def my_google(q, n=5, engine="google", key=serpapi_key, serpapi_endpoint=serpapi_endpoint):
params = {
"api_key": key,
"engine": engine,
"q": q,
"num": n,
"rn": n,
# "hl": "zh-CN",
}
response = requests.get(serpapi_endpoint, params=params)
response_json = response.json()
search_results = response_json.get("organic_results", [])
results_list = []
for r in search_results:
# print(r)
try:
results_list.append(f"{r['title']} ({r['link']}). {r['snippet']}")
except Exception as e:
print(e)
continue
print(f"{engine}: {len(results_list)}")
return results_list
def my_baidu(q, n=5, engine="baidu", key=serpapi_key, serpapi_endpoint=serpapi_endpoint):
params = {
"api_key": key,
"engine": engine,
"q": q,
"num": n,
"rn": n,
# "ct":2,
}
response = requests.get(serpapi_endpoint, params=params)
response_json = response.json()
search_results = response_json.get("organic_results", [])
results_list = []
for r in search_results:
# print(r)
try:
results_list.append(f"{r['title']} ({r['link']}). {r['snippet']}. 获取时间(Parsed time): {r['date']}")
except Exception as e:
print(e)
continue
print(f"{engine}: {len(results_list)}")
return results_list
def replace_today(prompt):
today = datetime.today().strftime("%Y-%m-%d")
return prompt.replace("{current_date}", today)
def get_documents(file_src):
documents = []
index_name = ""
logging.debug("Loading documents...")
logging.debug(f"file_src: {file_src}")
for file in file_src:
logging.debug(f"file: {file}")
index_name += file
if os.path.splitext(file)[1] == ".pdf":
logging.debug("Loading PDF...")
CJKPDFReader = download_loader("CJKPDFReader")
loader = CJKPDFReader()
documents += loader.load_data(file=file)
elif os.path.splitext(file)[1] == ".docx":
logging.debug("Loading DOCX...")
DocxReader = download_loader("DocxReader")
loader = DocxReader()
documents += loader.load_data(file=file)
elif os.path.splitext(file)[1] == ".epub":
logging.debug("Loading EPUB...")
EpubReader = download_loader("EpubReader")
loader = EpubReader()
documents += loader.load_data(file=file)
else:
logging.debug("Loading text file...")
with open(file, "r", encoding="utf-8") as f:
text = add_space(f.read())
documents += [Document(text)]
index_name = sha1sum(index_name)
return documents, index_name
def add_space(text):
punctuations = {",": ", ", "。": "。 ", "?": "? ", "!": "! ", ":": ": ", ";": "; "}
for cn_punc, en_punc in punctuations.items():
text = text.replace(cn_punc, en_punc)
return text
def sha1sum(filename):
sha1 = hashlib.sha1()
sha1.update(filename.encode("utf-8"))
return sha1.hexdigest()
def llama_process(keywords, index=None, reindex=False, file_source=[], user_id=None):
if os.path.exists("./index") is False:
os.mkdir("./index")
llm_predictor = LLMPredictor(
llm=ChatOpenAI(
temperature=0.5,
# messages=[{"role": "system", "content": chatbot_character}],
# max_tokens=4096,
# max_input_size=4096,
# model_name="gpt-3.5-turbo-0301",
model_name="gpt-3.5-turbo"
)
)
# prompt_helper = PromptHelper(
# max_input_size=4096,
# max_chunk_overlap=20,
# num_output=1,
# embedding_limit=None,
# chunk_size_limit=600,
# separator=" ",
# )
context_dir = "searchResults"
if len(file_source) == 0:
files = [f"{context_dir}/{f}" for f in os.listdir(context_dir) if keywords in f]
else:
files = file_source
if len(files) == 0:
print(f"No files found in {context_dir} with keywords {keywords}")
return None
else:
print(f"Found files in {context_dir}: {files}")
documents, index_name = get_documents(file_src=files)
print(f"Loaded documents: {len(documents)}")
if os.path.exists(f"./index/{index_name}.json") and reindex is False:
logging.info("找到了缓存的索引文件,加载中……")
index = GPTSimpleVectorIndex.load_from_disk(f"./index/{index_name}.json")
else:
current_time = time.time()
print("Indexing...")
if user_id:
send_back_message(user_id, "indexing...")
if index is None:
index = GPTSimpleVectorIndex(
documents,
# prompt_helper=prompt_helper
)
else:
for doc in documents:
index.insert(doc)
print(f"Indexing finished. Time used: {time.time() - current_time} seconds.")
index.save_to_disk(f"./index/{index_name}.json")
print(f"Index saved to 'index/{index_name}.json'.")
# Querying the index
print("Querying...")
if user_id:
send_back_message(user_id, "querying...")
qa_prompt = QuestionAnswerPrompt(replace_today(PROMPT_TEMPLATE))
response = index.query(
keywords,
llm_predictor=llm_predictor,
similarity_top_k=1,
text_qa_template=qa_prompt,
# response_mode="compact" # or "tree_summarize"
mode="embedding" # or "default"
)
print(f"type of index.query response: {type(response)}")
response_text = response.response
print(f"type of response.response: {type(response_text)}")
print("Query finished.")
print(f"Response from llama: {response_text}")
return response_text, index
# detect main language of a text
def is_chinese(text):
try:
lang = detect(text)
if lang.startswith('zh'):
print("The text is primarily in Chinese.")
return True
else:
return False
except Exception as e:
print(f"Error: {e}")
return None
# prepare deepL translator
if dl_key is not None:
translator = deepl.Translator(dl_key)
else:
translator = None
def translate_to_CN(text):
if dl_key is not None:
return translator.translate_text(text, target_lang="ZH").text
else:
return text
def translate_to_EN(text):
if dl_key is not None:
return translator.translate_text(text, target_lang="EN-US").text
else:
return text
def detect_and_translate(text):
if is_chinese(text) is False:
try:
return translate_to_CN(text)
except Exception as e:
print(f"Error: {e}")
return text
else:
return text
def send_stream(user_id, text, cut="\n"):
sentences = text.split(cut)
for s in sentences:
if len(s) > 0:
send_back_message(user_id, s)
def send(user_id, text, stream=False, cut="\n"):
if stream:
send_stream(user_id, text, cut=cut)
else:
send_back_message(user_id, text)
# This detect_channel function takes a message text as input and checks if it starts with specific keywords to determine which channel (python, bash, image, or gpt) the message belongs to, returning a dictionary containing the detected channel and the corresponding message content.
def separate_channel(message_text):
keywords = {}
keywords["python"] = ["python:", "py:", "python ", "py ", "Python:", "Python "]
keywords["bash"] = ["bash:", "b:", "bash ", "Bash:"]
keywords["image"] = ["图片:", "图片:", "图片 ", "img:", "Img:", "生成图片:", "生成图片:"]
keywords["gpt"] = ["生成程序:", "程序生成:", "generator:", "Generator:", "ai:", "AI:", "gpt:", "Gpt:", "Ai:"]
keywords["google"] = ["google:", "Google:", "谷歌:", "谷歌:", "搜索:", "搜索:", "search:", "Search:", "Search:",
"search:", "bb", "ss",
"gl", "gg"]
results = {}
for channel in ["python", "bash", "image", "gpt", "google"]:
results[channel] = None
for keyword in keywords[channel]:
if message_text.startswith(keyword):
results[channel] = message_text[len(keyword):].strip()
break
print(f"results = {results}")
return results
class ChatBot:
def __init__(self, user_id,
refresh_keywords=None,
max_conversation_length=10,
max_time_gap=15,
index=None,
system_prompt=system_prompt,
stream=False,
temperature=0.5,
translate=translate_to_chinese,
model="gpt4",
):
self.user_id = user_id
self.chat_history = [{"role": "system", "content": system_prompt}]
self.last_timestamp = int(time.time())
if index == None:
self.index = GPTSimpleVectorIndex([])
else:
self.index = index
if refresh_keywords is None:
self.refresh_keywords = ["new", "refresh", "00", "restart", "刷新", "新话题", "退下", "结束", "over"]
else:
self.refresh_keywords = refresh_keywords
self.max_conversation_length = max_conversation_length
self.max_time_gap = max_time_gap
self.stream = stream
self.message = ""
self.temperature = temperature
self.translate = translate
self.system_prompt = system_prompt
self.model = model
self.gpt4 = None
if self.model == "gpt4" or self.model == "gpt-4":
self.gpt4 = WebGPT(model="gpt-4")
try:
self.gpt4.start_session(system_prompt=self.system_prompt)
self.stream = False
except Exception as e:
print(f"Error: {e}")
self.gpt4 = None
self.model = "gpt3"
self.stream = True
def process(self, message,
num_search_results=10,
):
# update the latest user message
self.message = message
# Check for refresh_prompt input to start a new conversation
if self.message.strip().lower() in self.refresh_keywords:
send_back_message(self.user_id, "好的,开启一下新话题。")
self.chat_history = self.chat_history[0:1]
self.index = GPTSimpleVectorIndex([])
self.last_timestamp = int(time.time())
if self.model == "gpt4":
self.gpt4.start_session(system_prompt=self.system_prompt)
return "----------------------------"
# Check if the conversation has been idle for 30 minutes (1800 seconds)
if int(time.time()) - self.last_timestamp >= max_time_gap * 60:
self.chat_history = self.chat_history[0:1]
self.index = GPTSimpleVectorIndex([])
# Truncate conversation history if it exceeds the maximum length
if len(self.chat_history) > max_conversation_length:
self.chat_history = self.chat_history[-max_conversation_length:]
self.chat_history.append({"role": "user", "content": self.message})
# check and execute python code
code_results = separate_channel(self.message)
if code_results["python"]:
print("python code found")
send_back_message(self.user_id, f"Python input: \n```{code_results['python']}``` ")
code_output = capture_python_output(code_results["python"])
send_back_message(self.user_id, f"Output: \n```{code_output}```")
self.chat_history.append({
"role": "assistant",
"content": f"Python input: \n```{code_results['python']}``` " + f"Output: \n```{code_output}```"
})
elif code_results["bash"]:
print("bash code found")
send_back_message(self.user_id, f"Bash input: \n```{code_results['bash']}``` ")
code_output = capture_bash_output(code_results["bash"])
send_back_message(self.user_id, f"Output: \n```{code_output}```")
self.chat_history.append({
"role": "assistant",
"content": f"Bash input: \n```{code_results['bash']}``` " + f"Output: \n```{code_output}```"
})
elif code_results["image"]:
print("image description found")
text_description = code_results["image"]
send_back_message(self.user_id, f"收到👌🏻我会按你要求生成图片:{text_description}")
img_filename = generate_img_from_openai(text_description, user_id=self.user_id)
print(f"img_filename = {img_filename}")
send_back_message(self.user_id, text_description, image_filename=img_filename)
self.chat_history.append({
"role": "assistant",
"content": f"收到👌🏻我会按你要求生成图片:{text_description}. [An image link here]"
})
elif code_results["google"]:
question = code_results["google"]
print(f"Search request found: {question}")
self.search(
keywords=question,
num_results=num_search_results,
engines=["ddg", "bing", "google"])
else:
send_back_message(self.user_id, "...")
if self.gpt4 is not None:
print(f"Sending message to gpt4: {self.message}")
gpt_response = self.gpt4.send_message(self.message)
print(f"Got response from gpt4: {gpt_response}")
else:
gpt_response = generate_gpt_response(
chat_history=self.chat_history,
stream=self.stream,
temperature=self.temperature,
)
print("Got gpt response")
if self.stream:
text = []
whole_text = []
code_block = False
for r in gpt_response:
# print(r.choices[0]["delta"])
if "content" in r.choices[0]["delta"]:
word = r.choices[0]["delta"]["content"]
if word is not None:
text.append(word)
whole_text.append(word)
# Check if the current output ends with \n
if re.search(r'[\n]', word[-1]):
sentence = ''.join(text).strip()
if re.search(r'`{3}$', sentence) and code_block:
# print("code: " , code_block , ", sentence: " + sentence)
send_back_message(self.user_id, sentence)
text = []
code_block = False
else:
if re.search(r'`{3}', sentence) and not code_block:
code_block = True
if re.search(r'\n', sentence):
sentences = text.split("\n")
send_back_message(self.user_id, sentences[0])
sentence = sentences[1]
if not code_block:
sentence = sentence.replace("\n", "")
send_stream(self.user_id, sentence)
text = []
text = ''.join(text)
if len(text) > 0:
send(self.user_id, text, stream=self.stream)
response_text = ''.join(whole_text)
else:
response_text = gpt_response
if re.findall(r"```python(.*?)```", response_text, re.DOTALL):
print(f"Original response: {response_text}\n")
response_text = modify_response_to_include_code_output(response_text)
print(f"With code output: {response_text}")
send(self.user_id, response_text, stream=False)
self.chat_history.append({"role": "assistant", "content": response_text})
if is_chinese(response_text) is False and self.translate:
print("Translating...")
try:
response_text = translate_to_CN(response_text)
print(f"Translated gpt_response = {response_text}")
send(self.user_id, f"翻译:\n\n{response_text}", stream=self.stream)
except Exception as e:
print(f"Error in translation: {e}")
# update timestamp
self.last_timestamp = int(time.time())
return "Message processed", 200
def search(self,
keywords=None,
num_results=10,
engines=["ddg", "bing", "google", "baidu"]):
if keywords is None:
keywords = self.message
print(f"Search keywords: {keywords}")
print("Searching...")
send_back_message(self.user_id, f"...")
results_list = []
if "ddg" in engines:
try:
ddg_results = my_ddg(keywords, n=num_results)
results_list.append(ddg_results)
send_back_message(self.user_id, f"ddg: {len(ddg_results)}")
except Exception as e:
print(f"Error: {e}; ddg_results = {ddg_results}")
if "bing" in engines:
try:
bing_results = my_bing(self.message, n=num_results)
results_list.append(bing_results)
send_back_message(self.user_id, f"bing: {len(bing_results)}")
except Exception as e:
print(f"Error: {e}; bing_results = {bing_results}")
if "google" in engines:
try:
google_results = my_google(keywords, n=num_results)
results_list.append(google_results)
send_back_message(self.user_id, f"google: {len(google_results)}")
except Exception as e:
print(f"Error: {e}; google_results = {google_results}")
if "baidu" in engines:
try:
baidu_results = my_baidu(keywords, n=num_results)
results_list.append(baidu_results)
send_back_message(self.user_id, f"baidu: {baidu_results}")
except Exception as e:
print(f"Error: {e}")
results_text = "# Web search results:\n\n"
i = 1
for results in results_list:
try:
for r in results:
results_text += f"{i}. {r}\n\n"
i += 1
except Exception as e:
print(f"Error: {e}")
continue
prompt_input = replace_today(PROMPT_TEMPLATE).replace("{context_str}", results_text).replace("{query_str}", keywords)
if len(prompt_input) <= 4000:
gpt_response = generate_gpt_response(
chat_history=[
{"role": "system", "content": self.system_prompt},
{"role": "user", "content": prompt_input}
],
stream=self.stream,
temperature=self.temperature,
)
print("Got gpt response")
if self.stream:
text = []
whole_text = []
for r in gpt_response:
# print(r.choices[0]["delta"])
if "content" in r.choices[0]["delta"]:
word = r.choices[0]["delta"]["content"]
text.append(word)
whole_text.append(word)
# Check if the current output ends with \n
if re.search(r'[\n]', word[-1]):
sentence = ''.join(text).strip().replace("\n", "")
send_stream(self.user_id, sentence)
text = []
text = ''.join(text)
if len(text) > 0:
send(self.user_id, text, stream=self.stream)
answer = ''.join(whole_text)
else:
answer = gpt_response
print(f"Original response: {answer}\n")
if re.findall(r"```python(.*?)```", answer, re.DOTALL):
answer = modify_response_to_include_code_output(answer)
print(f"With code output: {answer}")
send(self.user_id, answer, stream=self.stream)
else:
results_text += "# Conversation history:\n\n"
for item in self.chat_history:
results_text += f"{item['role']}: {item['content']}\n"
print(f"Search finished.")
context_dir = "searchResults"
if os.path.exists(context_dir) is False:
os.mkdir(context_dir)
print(f"Saving search results...")
search_results_name = sha1sum(results_text)
with open(f'{context_dir}/{search_results_name}.txt', 'w') as f:
f.write(results_text)
print(f"Saved to search results to {context_dir}/{search_results_name}.txt")
context_files = [f"{context_dir}/{search_results_name}.txt"]
try:
answer, self.index = llama_process(keywords,
file_source=context_files,
index=self.index,
user_id=self.user_id)
with open('output.txt', 'w') as f:
f.write(str(answer).strip())
# return answer
except Exception as e:
print(f"Error: Could not summarize content. - {e}")
# return "Error: No answer provided."
if answer is None:
answer = "Error: No answer provided."
print(f"original answer = {answer}")
send(self.user_id, answer, stream=self.stream)
self.chat_history.append({
"role": "assistant",
"content": answer
})
print(self.chat_history)
if is_chinese(answer) is False and self.translate:
print("Translating...")
try:
answer_cn = translate_to_CN(answer)
print(f"Translated gpt_response = {answer_cn}")
send(self.user_id, f"翻译:\n{answer_cn}", stream=self.stream)
except Exception as e:
print(f"Error in translation: {e}")