-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathinference.py
37 lines (31 loc) · 1.32 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from tqdm import tqdm
import kaldiio
import torch
import os
from ctx_text2vec.utils.io import load_yaml_config
from ctx_text2vec.modeling.build import build_model
device = "cuda"
config = load_yaml_config('OUTPUT/Libritts/configs/config.yaml')
model = build_model(config).to(device)
ckpt = torch.load("OUTPUT/Libritts/checkpoint/last.pth")
model.load_state_dict(ckpt["model"])
lexicon = {}
with open("data/lang_1phn/train_all_units.txt", 'r') as f:
for line in f.readlines():
txt_token, token_id = line.strip().split()
lexicon[txt_token] = int(token_id)
vqid_table = []
with open("feats/vqidx/label2vqidx", 'r') as f:
for line in f.readlines():
line = line.strip().split()
label = int(line[0])
vqid_table.append(torch.tensor(list(map(int, line[1:]))))
vqid_table = torch.stack(vqid_table, dim=0).to(device)
feat_writer = kaldiio.WriteHelper("ark,scp:{o}.ark,{o}.scp".format(o=os.path.join(os.getcwd(), "OUTPUT/Libritts/syn/feats")))
with open("data/eval_all/text") as f:
for l in tqdm(f.readlines()):
utt, text = l.strip().split(maxsplit=1)
text = torch.LongTensor([lexicon[w] for w in text.split()]).unsqueeze(0).to(device)
out = model.generate('top0.85r', text)['content_token'][0]
feat_writer[utt] = vqid_table[out].float().cpu().numpy()
feat_writer.close()