-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
254 lines (227 loc) · 12.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import json
import torch
import torch.nn as nn
from llava.eval.my_llava import *
from llava.mm_utils import (get_model_name_from_path, tokenizer_image_token,
tokenizer_image_token_batch)
from llava.model.builder import load_pretrained_model
from sklearn.metrics import precision_recall_fscore_support
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets, transforms
from tqdm import tqdm
IMAGE_TOKEN_INDEX = -200
def get_train_args():
parser = argparse.ArgumentParser()
#--- Model related
parser.add_argument("--model_path", type=str, default="liuhaotian/llava-v1.6-vicuna-13b")
parser.add_argument("--model_base", type=str, default=None)
parser.add_argument("--model_name", type=str, default=None)
parser.add_argument("--conv_mode", type=str, default=None)
parser.add_argument("--sep", type=str, default=",")
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--top_p", type=int, default=None)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--max_new_tokens", type=int, default=512)
#--- Dataset related
parser.add_argument("--data_root", type=str, default='/nobackup/thao-data/dataset/stuffed-animals')
parser.add_argument("--sks_name", type=str, default='shiba-yellow')
parser.add_argument("--prefix_token", type=int, default=4)
parser.add_argument("--flip_p", type=float, default=0.5)
parser.add_argument("--train_lm_head", default=False, action='store_true')
parser.add_argument("--user_prompt", default=False, action='store_true')
parser.add_argument("--extreme_negative", default=False, action='store_true')
parser.add_argument("--recog_only", default=False, action='store_true')
parser.add_argument("--random_image", default=False, action='store_true')
parser.add_argument("--text_only", default=False, action='store_true')
parser.add_argument("--suffix_prompt", default=None, type=str)
#--- Log related
parser.add_argument("--tensorboard_path", type=str, default='./runs/')
parser.add_argument("--checkpoint_path", type=str, default='./checkpoints/')
parser.add_argument("--exp_name", type=str, default='./debug/')
parser.add_argument("--log_every", type=int, default=1)
parser.add_argument("--epoch", type=int, default=20)
train_args = parser.parse_args()
return train_args
if __name__ == "__main__":
args = get_train_args()
writer = SummaryWriter(os.path.join(args.tensorboard_path, args.sks_name, args.exp_name))
save_location = os.path.join(args.checkpoint_path, args.sks_name, args.exp_name)
os.makedirs(save_location, exist_ok=True)
args.model_name = get_model_name_from_path(args.model_path)
# Get models
tokenizer, model, image_processor, context_len = get_model(args)
# model = model.to(torch.float32)
train_dataset = PersonalizedDataset_Mixture(
data_root=args.data_root,
sks_name = args.sks_name,
tokenizer=tokenizer,
config=model.config,
image_processor=image_processor,
device=model.device,
flip_p= args.flip_p,
train_lm_head = args.train_lm_head,
extreme_negative = args.extreme_negative,
recog_only = args.recog_only,
random_image=args.random_image,
text_only=args.text_only,
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=1, shuffle=True, num_workers=1
)
# breakpoint()
test_dataset = PersonalizedDataset(
data_root=args.data_root,
sks_name = args.sks_name,
train_image_paths = train_dataset.images_path,
tokenizer=tokenizer,
config=model.config,
image_processor=image_processor,
device=model.device,
set='test',
# placeholder_token=(" ".join(tokenizer.convert_ids_to_tokens(placeholder_token_ids))),
)
test_dataloader = torch.utils.data.DataLoader(
test_dataset, batch_size=1, shuffle=False, num_workers=4
)
print('sks is: ', args.sks_name)
print('Number of training samples:', len(train_dataset))
# --- Add <sks>
if args.prefix_token > 0:
prefix_tokens = [f'<token{i}>' for i in range(args.prefix_token)]
placeholder_tokens = [f'<{args.sks_name}>']
placeholder_tokens.extend(prefix_tokens)
if args.suffix_prompt is not None:
# breakpoint()
sks_prompt = f"{placeholder_tokens[0]} {args.suffix_prompt}"
sks_prompt = sks_prompt.replace('<sks>', f'<{args.sks_name}>')
else:
sks_prompt = f"{placeholder_tokens[0]} is {''.join(placeholder_tokens[1:])}."
print('system prompt will add:', sks_prompt)
else:
placeholder_tokens = [f'<{args.sks_name}>']
sks_prompt = f"{placeholder_tokens[0]}"
print('system prompt will add:', sks_prompt)
num_added_tokens = tokenizer.add_tokens(placeholder_tokens)
placeholder_token_ids = tokenizer.convert_tokens_to_ids(placeholder_tokens)
# Resize the token embeddings as we are adding new special tokens to the tokenizer
model.resize_token_embeddings(len(tokenizer))
# Initialise the newly added placeholder token with the embeddings of the initializer token
token_embeds = model.get_input_embeddings().weight.data
orig_embeds_params = model.get_input_embeddings().weight.data.clone()
orig_lm_params = model.lm_head.weight.data.clone()
trainable_params = [model.get_input_embeddings().weight, model.lm_head.weight]
# trainable_params.append(model.lm_head.())
optimizer = torch.optim.AdamW(
trainable_params, # for optimize the embeddings and the head
lr=1e-3,
betas=(0.9, 0.999),
weight_decay=1e-2,
eps=1e-08,
)
# if args.train_lm_head:
model.train()
model.model.requires_grad_(False)
# else:
# model.requires_grad_(False)
model.model.embed_tokens.weight.requires_grad_(True)
# model.get_input_embeddings().weight = model.get_input_embeddings().weight.to(torch.float32)
# model.get_input_embeddings().weight.to(torch.float32)
best_acc = 0
for epoch in tqdm(range(0, args.epoch)):
for names, p in model.named_parameters():
if p.requires_grad:
print(names, "requires_grad")
for step, batch in enumerate(tqdm(train_dataloader)):
#--- Ground Truth Answer
optimizer.zero_grad()
if args.user_prompt: # sks_description is in USER PROMPT
prompt = [get_query(args, sks_prompt + ' '+ x, model=model, sks_system_prompt = None).conv.get_prompt() for x in batch['query']]
else:
prompt = [get_query(args, x, model=model, sks_system_prompt = sks_prompt).conv.get_prompt() for x in batch['query']]
prompt = [x + ' '+ y for x, y in zip(prompt, batch['answer'])]
# print(prompt)
#--- Train with text only
if not batch['has_image']:
prompt = [x.replace('<image>\n', '') for x in prompt]
input_ids, labels = tokenizer_image_token_batch(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt", return_labels=True)
input_ids = input_ids.cuda()
labels = labels.cuda()
#--- Train with text-only
# if not batch['has_image']:
# outputs = model(input_ids, labels=labels)
# else:
# batch['images'] = batch['images'].to(model.dtype)
# outputs = model(input_ids, images=batch['images'][0], labels=labels, image_sizes=batch['image_sizes'])
with torch.cuda.amp.autocast(enabled=False, dtype=torch.float16):
if not batch['has_image']:
outputs = model(input_ids, labels=labels)
else:
outputs = model(input_ids, images=batch['images'][0], labels=labels, image_sizes=batch['image_sizes'])
loss = outputs.loss
# --- With AMP
# scaler.scale(loss).backward()
# scaler.step(optimizer)
# scaler.update()
# --- Without AMP
loss.backward()
optimizer.step()
# breakpoint()
#---- Do not update the embedding matrix except the place holder
index_no_updates = torch.ones((len(tokenizer),), dtype=torch.bool)
index_no_updates[placeholder_token_ids] = False
#--- Optional: Update lm_head for sks token only
# index_no_updates_lmhead = torch.ones((len(tokenizer),), dtype=torch.bool)
# index_no_updates_lmhead[placeholder_token_ids[:1]] = False
with torch.no_grad():
model.get_input_embeddings().weight[
index_no_updates
] = orig_embeds_params[index_no_updates]
# if args.train_lm_head:
# model.lm_head.weight[index_no_updates_lmhead] = orig_lm_params[index_no_updates_lmhead]
model.lm_head.weight[index_no_updates] = orig_lm_params[index_no_updates]
# torch.cuda.empty_cache()
writer.add_scalar('Loss/Train', loss.item(), epoch * len(train_dataloader) + step)
writer.add_scalar('Loss/Token-Norm', model.get_input_embeddings().weight[placeholder_token_ids].norm().item(), epoch * len(train_dataloader) + step)
writer.add_scalar('Loss/index_no_updates-Norm', model.get_input_embeddings().weight[index_no_updates].norm().item(), epoch * len(train_dataloader) + step)
writer.add_scalar('Loss/lm-head-norm', model.lm_head.weight[placeholder_token_ids].norm().item(), epoch * len(train_dataloader) + step)
writer.add_scalar('Loss/index_no_updates-lm-head', model.lm_head.weight[index_no_updates].norm().item(), epoch * len(train_dataloader) + step)
if epoch % args.log_every == 0:
print('Save model at: ', save_location)
save_path_token = os.path.join(save_location, f'{epoch}-token.pt')
save_path_lmhead = os.path.join(save_location, f'{epoch}-lmhead.pt')
torch.save(model.get_input_embeddings().weight.data[placeholder_token_ids], save_path_token)
torch.save(model.lm_head.weight.data[placeholder_token_ids], save_path_lmhead)
with torch.no_grad():
print('Test')
list_pred = []
list_gt = []
for j, batch in enumerate(tqdm(test_dataloader)):
#--- Ground Truth Answer
if args.user_prompt: # sks_description is in USER PROMPT
prompt = [get_query(args, sks_prompt + ' '+ x, model=model, sks_system_prompt = None).conv.get_prompt() for x in batch['query']]
else:
prompt = [get_query(args, x, model=model, sks_system_prompt = sks_prompt).conv.get_prompt() for x in batch['query']]
input_ids, labels = tokenizer_image_token_batch(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt", return_labels=True)
outputs = model.generate(input_ids.cuda(), images=batch['images'][0].cuda(), image_sizes=batch['image_sizes'])
answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
list_pred.append(answer)
list_gt.append(batch['answer'][0])
list_pred = np.array(list_pred)
list_gt = np.array(list_gt)
index_yes = np.where(np.array(list_gt)=='Yes')[0] # where the image is sks
index_no = np.where(np.array(list_gt)=='No')[0] # where the image is not sks
pred_yes =(list_pred[index_yes] =='Yes').sum()/len(index_yes) # accuracy of predicting sks
pred_no = (list_pred[index_no] =='No').sum()/len(index_no)
writer.add_scalar('Accuracy/sks', pred_yes, epoch)
writer.add_scalar('Accuracy/no-sks', pred_no, epoch)
current_acc = (pred_yes + pred_no)/2
writer.add_scalar('Accuracy/ave', current_acc, epoch)
if (current_acc >= best_acc) and (epoch >4):
print('Best accuracy: ', current_acc)
save_path_token = os.path.join(save_location, 'best-token.pt')
save_path_lmhead = os.path.join(save_location, 'best-lmhead.pt')
torch.save(model.get_input_embeddings().weight.data[placeholder_token_ids], save_path_token)
torch.save(model.lm_head.weight.data[placeholder_token_ids], save_path_lmhead)
best_acc = current_acc
# writer.add_text('Test/Prediction', str(list_pred), epoch)
# writer.add_text('Test/GT', str(list_gt), epoch)