-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest-sks-acc.py
151 lines (133 loc) · 6.78 KB
/
test-sks-acc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# orig_embeds_params = model.get_input_embeddings().weight.data.clone()
import argparse
import glob
import os
import torch
from llava.eval.my_llava import *
from llava.mm_utils import (get_model_name_from_path, tokenizer_image_token,
tokenizer_image_token_batch)
from llava.model.builder import load_pretrained_model
from tqdm import tqdm
def get_args():
parser = argparse.ArgumentParser()
#--- Model related
parser.add_argument("--model_path", type=str, default="./llava_ckpts/llava-v1.6-internal-vicuna-13b-336px")
parser.add_argument("--model_base", type=str, default=None)
parser.add_argument("--model_name", type=str, default=None)
parser.add_argument("--conv_mode", type=str, default=None)
parser.add_argument("--checkpoint_path", type=str, default='./checkpoints')
parser.add_argument("--epoch", type=str, default='2')
parser.add_argument("--data_root", type=str, default='./yollava-data/test/')
parser.add_argument("--sks_name", type=str, default='shiba-yellow')
parser.add_argument("--stage", type=str, default='s2')
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--top_p", default=None)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--max_new_tokens", type=int, default=512)
parser.add_argument("--prefix_token", type=int, default=4)
#--- Log related
parser.add_argument("--exp_name", type=str, default='multi-token')
parser.add_argument("--save_txt", action='store_true', default=False)
parser.add_argument("--system_prompt", default=False, action='store_true')
parser.add_argument("--suffix_prompt", type=str, default=None)
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path=args.model_path,
model_base=None,
model_name=get_model_name_from_path(args.model_path)
)
prefix_tokens = [f'<token{i}>' for i in range(args.prefix_token)]
placeholder_tokens = [f'<{args.sks_name}>']
placeholder_tokens.extend(prefix_tokens)
num_added_tokens = tokenizer.add_tokens(placeholder_tokens)
placeholder_token_ids = tokenizer.convert_tokens_to_ids(placeholder_tokens)
# Resize the token embeddings as we are adding new special tokens to the tokenizer
model.resize_token_embeddings(len(tokenizer))
# Load the token and lm_head embeddings
sks_token = torch.load(f'{args.checkpoint_path}/{args.sks_name}/{args.exp_name}/{args.epoch}-token.pt').detach()
lm_head = torch.load(f'{args.checkpoint_path}/{args.sks_name}/{args.exp_name}/{args.epoch}-lmhead.pt').detach()
model.get_input_embeddings().weight.requires_grad = False
model.lm_head.weight.requires_grad = False
model.get_input_embeddings().weight[placeholder_token_ids] = sks_token.to(model.device, dtype=model.dtype)
model.lm_head.weight[placeholder_token_ids] = lm_head.detach().to(model.lm_head.weight.device, dtype=model.dtype)
print('New tokens are loaded into: ', placeholder_token_ids)
# sks_prompt = f"{placeholder_tokens[0]} is {' '.join(placeholder_tokens[1:])}."
if args.prefix_token > 0:
prefix_tokens = [f'<token{i}>' for i in range(args.prefix_token)]
placeholder_tokens = [f'<{args.sks_name}>']
placeholder_tokens.extend(prefix_tokens)
if args.suffix_prompt is not None:
# breakpoint()
sks_prompt = f"{placeholder_tokens[0]} {args.suffix_prompt}"
else:
sks_prompt = f"{placeholder_tokens[0]} is {''.join(placeholder_tokens[1:])}"
print('system prompt will add:', sks_prompt)
else:
placeholder_tokens = [f'<{args.sks_name}>']
sks_prompt = placeholder_tokens[0]
print('system prompt will add:', sks_prompt)
print('Learned prompt: ', sks_prompt)
if args.system_prompt:
args = get_query(args, f"Is <{args.sks_name}> in this photo? Answer with a single word or phrase.", model=model, sks_system_prompt=sks_prompt)
else:
args = get_query(args, sks_prompt + f" Can you see <{args.sks_name}> in this photo? Answer with a single word or phrase.", model=model, sks_system_prompt=None)
categories = os.listdir(args.data_root)
if 'cc12m_images' in args.data_root:
categories = [args.sks_name]
if '.DS_Store' in categories:
categories.remove('.DS_Store')
os.makedirs(f"./quantitative/{args.sks_name}", exist_ok=True)
print('Categories: ')
if args.save_txt:
for category in categories:
with open(f"./quantitative/{args.sks_name}/acc.txt", 'a') as f:
f.write(f'{category}\n')
if args.save_txt:
with open(f"./quantitative/{args.sks_name}/acc.txt", 'a') as f:
f.write(f'Results for {args.sks_name} with epoch {args.epoch} and setting {args.exp_name}\n')
print('Results will be saved in: ', f"./quantitative/{args.sks_name}/acc.txt")
print('✦ . ⁺ . ✦ . ⁺ . ✦ Accuracy by category: ')
for category in categories:
list_imgs =[]
for ext in ['jpg', 'jpeg', 'png', "JPG", "JPEG", "PNG"]:
list_imgs.extend(glob.glob(os.path.join(args.data_root, category, f'*.{ext}')))
# if len(list_imgs)>0:
# break
# list_imgs = glob.glob(os.path.join(args.data_root, category, '*.*'))
pred = []
list_incorrect = []
for image_file in list_imgs:
try:
images_tensor, image_sizes = get_image_tensor(args, [image_file], model, image_processor)
output, pred_ids = eval_model(args,
model=model,
images_tensor=images_tensor, #images_tensor,
image_sizes=image_sizes,
image_processor=image_processor,
tokenizer=tokenizer,
return_ids=True)
# print(output)
assert output in ['Yes', 'No']
pred.append(output)
except Exception as e:
print(e)
# list_incorrect.append(image_file)
pass
if category == args.sks_name:
if 'laion' in args.data_root:
gt = ['No']*len(pred)
else:
gt = ['Yes']*len(pred)
else:
gt = ['No']*len(pred)
true_pos = np.array(pred)==np.array(gt)
acc = true_pos.sum()/len(gt)
# print(category)
print(f'GT: {gt}; Pred: {pred}')
print(f'{category}: {acc}')
print(acc)
if args.save_txt:
with open(f"./quantitative/{args.sks_name}/acc.txt", 'a') as f:
f.write(f'{acc}\n')