-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
59 lines (49 loc) · 1.93 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
import numpy as np
import random
def set_seed(seed):
np.random.seed(seed)
random.seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.manual_seed(seed)
set_seed(2023)
import sys
sys.path.append('..')
from parser import get_config
from pretrainTrainer import PretrainTrainer
from pretrainDataset import PretrainDataloader
from horae import Horae
import warnings
import logging
import os
warnings.filterwarnings('ignore')
def print_config(config):
for item in config.keys():
print(str(item) + ':' + str(config[item]))
def train_one_model():
config = get_config()
config['device'] = torch.device('cuda:' + str(config['gpu_id'])) if config['cuda'] else torch.device('cpu')
dataloader = PretrainDataloader(config)
train_dataloader, valid_dataloader, test_dataloader = dataloader.generate_dataloader(config)
print_config(config)
logging.basicConfig(format='[%(asctime)s] - %(message)s',
datefmt='%Y/%m/%d %H:%M:%S',
level=logging.INFO,
handlers=[logging.StreamHandler()])
torch.set_printoptions(linewidth=2000)
logging.info(config)
model = Horae(config)
model = model.to(config['device'])
if config['stage'] != 'pretrain' and not config['load_model_path']:
raise NotImplementedError # downstream stage needs pretrained model
if config['load_model_path']:
model.load_state_dict(torch.load(config['load_model_path'], map_location=config['device']), strict=False)
if config['stage'] != 'pretrain' and config['freeze']:
model.downstream_freeze_parameter()
trainer = PretrainTrainer(model, config, train_dataloader, valid_dataloader, test_dataloader)
trainer.valid(0)
return trainer.train()
if __name__ == '__main__':
train_one_model()