-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathexport_audio.py
92 lines (72 loc) · 2.68 KB
/
export_audio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import cv2
import glob2
import tqdm
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
import os
from PIL import Image
from torchvision.transforms import Resize, Compose, ToTensor, Normalize
import numpy as np
import matplotlib.pyplot as plt
import time
from functools import partial
import dataio, modules
def get_mgrid(sidelen, dim=2):
'''Generates a flattened grid of (x,y,...) coordinates in a range of -1 to 1.
sidelen: int
dim: int'''
tensors = tuple(dim * [torch.linspace(-1, 1, steps=sidelen)])
mgrid = torch.stack(torch.meshgrid(*tensors), dim=-1)
mgrid = mgrid.reshape(-1, dim)
return mgrid
li = ['./logs/audio_noisy_10/checkpoints/model_current.pth']
print(len(li))
# data
sz = 64
audio_dataset = dataio.AudioFile(filename='data/gt_bach.wav')
coord_dataset = dataio.ImplicitAudioWrapper_ray(audio_dataset)
dataloader = DataLoader(coord_dataset, shuffle=False, batch_size=1024, pin_memory=False, num_workers=4)
device = torch.device('cuda:0')
model = modules.SingleBVPNet(type='sine', mode='mlp', in_features=1).cuda()
# @torch.no_grad()
def extract_image(model, dataloader, device):
output = []
for step, (model_input, gt) in enumerate(tqdm.tqdm(dataloader)):
model_input = {key: value.to(device) for key, value in model_input.items() if key != 'ckpt'}
model_output = model(model_input)
output.append(model_output['model_out'].detach().cpu().numpy())
output = np.concatenate(output, 1)
return output
import diff_operators
def gradient(y, x, grad_outputs=None):
if grad_outputs is None:
grad_outputs = torch.ones_like(y)
grad = torch.autograd.grad(y, [x], grad_outputs=grad_outputs, create_graph=True)[0]
return grad
def new_grad_audio(y, x, num=3, sz=256):
li = [y.squeeze(-1)]
# print(y.max())
for i in range(num):
cur = li[i]
ww = torch.autograd.grad(cur / 256, x, torch.ones_like(cur), create_graph=True)[0]
li.append(ww[..., 0])
return torch.stack([*li], dim=0).unsqueeze(-1)
def grad_model(model, model_input):
model_output = model(model_input)
y, x = model_output['model_out'], model_output['model_in']
new = new_grad_audio(y, x, num=7)
return {'model_out': new}
def process(fname):
model.load_state_dict(torch.load(fname))
g_model = lambda model_input: grad_model(model, model_input)
g_output = extract_image(g_model, dataloader, device).squeeze(-1)
print(g_output.shape)
new = os.path.join('./grad/audio_grad', os.path.basename(fname.split('/')[-3]) + '.npy')
print(new)
np.save(new, g_output)
num = len(li)
li = sorted(li)
for cur in tqdm.tqdm(li):
process(cur)