-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrender_comp_video.py
220 lines (191 loc) · 9.86 KB
/
render_comp_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import imageio
import numpy as np
import torch
from scene.comp_scene import Scene
import os
import cv2
from tqdm import tqdm
from os import makedirs
from gaussian_renderer.comp_renderer import render
# import torchvision
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams,OptimizationParams, get_combined_args, ModelHiddenParams
from scene.gaussian_model_nogrid import GaussianModel_nogrid as GaussianModel
from time import time
from scipy.spatial.transform import Rotation as R
def prepare_offset(rotation, translation):
def func(pts):
return (torch.from_numpy(rotation).float().cuda() @ pts.permute(1, 0)).permute(1, 0) + torch.from_numpy(translation).float().cuda()
return func
def find_rotation_matrix(v1, v2):
"""
Find the rotation matrix that aligns v1 to v2.
Parameters:
- v1: The initial vector.
- v2: The target vector.
Returns:
- The rotation matrix that rotates v1 to align with v2.
"""
# Normalize the target vector
if np.linalg.norm(v2) > 1e-3:
v2_normalized = v2 / np.linalg.norm(v2)
else:
v2_normalized = v2
# Axis of rotation (cross product of v1 and v2)
axis = np.cross(v1, v2_normalized)
if np.linalg.norm(axis) < 1e-6:
if np.dot(v1, v2) >= 0:
# The vectors are parallel, no rotation needed
rotation_matrix = np.eye(3)
else:
# The vectors are anti-parallel, rotate 180 degrees around any orthogonal axis
rotation_matrix = R.from_euler('x', 180, degrees=True).as_matrix()
else:
# Angle of rotation
angle = np.arccos(np.dot(v1, v2_normalized))
# Handle the case where the rotation is undefined because the vectors are parallel/anti-parallel
# Normalize the rotation axis
axis = axis / np.linalg.norm(axis)
# Rodrigues' rotation formula components
K = np.array([[0, -axis[2], axis[1]],
[axis[2], 0, -axis[0]],
[-axis[1], axis[0], 0]])
I = np.identity(3)
# Rotation matrix
rotation_matrix = I + np.sin(angle) * K + (1 - np.cos(angle)) * np.dot(K, K)
return rotation_matrix # [3, 3]
def get_rotation(prev_pos, next_pos):
new_vec = next_pos - prev_pos
canonical = np.array([1, 0, 0])
return find_rotation_matrix(canonical, new_vec)
def query_trajectory(generate_coordinates, t0, fps, frame_num):
# get_location = lambda t: np.array((R * np.sin(2 * np.pi * t * rot_speed), 0, R * np.cos(2 * np.pi * t * rot_speed)))
translation_list = [generate_coordinates(t0 + i * fps) for i in range(frame_num)]
return translation_list
to8b = lambda x : (255*np.clip(x.cpu().numpy(),0,1)).astype(np.uint8)
def render_set_fixcam(model_path, name, iteration, views, gaussians, pipeline, background,multiview_video, fname='video_rgb.mp4', func=None, scales=None, pre_scale=False, cam_idx=25):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt")
makedirs(render_path, exist_ok=True)
makedirs(gts_path, exist_ok=True)
render_images = []
gt_list = []
render_list = []
print(len(views))
####
fnum = 48
for idx in tqdm(range (fnum)):
view = views[cam_idx]
if idx == 0:time1 = time()
#ww = torch.tensor([idx / 12]).unsqueeze(0)
ww = torch.tensor([idx / fnum]).unsqueeze(0)
# ww = torch.tensor([idx / 100]).unsqueeze(0)
# if multiview_video:
# print(idx, len(func), view.keys(), len(scales))
rendering = render(view['cur_cam'], gaussians, pipeline, background, time=ww, stage='fine', offset=[lambda x:x, func[idx]], scales_list=scales, pre_scale=pre_scale)["render"]
# else:
# rendering = render(view['pose0_cam'], gaussians, pipeline, background, time=ww, stage='fine', offset=[lambda x:x, func[idx]], scales_list=scales, pre_scale=pre_scale)["render"]
render_images.append(to8b(rendering).transpose(1,2,0))
render_list.append(rendering)
time2=time()
print("FPS:",(len(views)-1)/(time2-time1))
print('Len', len(render_images))
imageio.mimwrite(os.path.join(model_path, name, "ours_{}".format(iteration), fname), render_images, fps=8, quality=8)
def render_set_fixtime(model_path, name, iteration, views, gaussians, pipeline, background,multiview_video, fname='video_rgb.mp4', func=None, scales=None, pre_scale=False, time_idx=8):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt")
makedirs(render_path, exist_ok=True)
makedirs(gts_path, exist_ok=True)
render_images = []
gt_list = []
render_list = []
print(len(views))
# for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
# for idx in tqdm(range (100)):
fnum = 100
# fnum = 12
for idx in tqdm(range (fnum)):
view = views[idx]
if idx == 0:time1 = time()
#ww = torch.tensor([idx / 12]).unsqueeze(0)
ww = torch.tensor([time_idx / fnum]).unsqueeze(0)
# ww = torch.tensor([idx / 100]).unsqueeze(0)
# if multiview_video:
# print(idx,)
rendering = render(view['cur_cam'], gaussians, pipeline, background, time=ww, stage='fine', offset=[lambda x:x, func[time_idx]], scales_list=scales, pre_scale=pre_scale)["render"]
# else:
# rendering = render(view['pose0_cam'], gaussians, pipeline, background, time=ww, stage='fine', offset=[lambda x:x, func[idx]], scales_list=scales, pre_scale=pre_scale)["render"]
render_images.append(to8b(rendering).transpose(1,2,0))
render_list.append(rendering)
time2=time()
print("FPS:",(len(views)-1)/(time2-time1))
print('Len', len(render_images))
imageio.mimwrite(os.path.join(model_path, name, "ours_{}".format(iteration), fname), render_images, fps=8, quality=8)
from importlib import import_module
def render_sets(dataset : ModelParams, hyperparam, opt,iteration : int, pipeline : PipelineParams, skip_train : bool, skip_test : bool, skip_video: bool,multiview_video: bool):
func_name = opt.func_name
p, m = func_name.rsplit('.', 1)
mod = import_module(p)
generate_coordinates = getattr(mod, m)
translation_list = query_trajectory(generate_coordinates, 0, 1 / 48, 48 + 1)
print('translation', translation_list)
rotation_list = [get_rotation(translation_list[i], translation_list[i + 1]) for i in range(len(translation_list) - 1)]
print(rotation_list)
func = [prepare_offset(rotation_list[i], translation_list[i]) for i in range(len(rotation_list))]
with torch.no_grad():
gaussians = [GaussianModel(dataset.sh_degree, hyperparam) for __ in dataset.cloud_path]
# gaussians = GaussianModel(dataset.sh_degree, hyperparam)
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False)
offset_list = []
for gs in scene.gaussians:
offset_list.append(lambda x:x)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
if not skip_video:
#origin
for cam_idx in range(0, 100, 5):
render_set_fixcam(dataset.model_path,"video",scene.loaded_iter,scene.getVideoCameras(),gaussians,pipeline,background,multiview_video=False, fname=f"pose_{cam_idx}.mp4", func=func, scales=opt.scales, pre_scale=opt.pre_scale, cam_idx=cam_idx)
# for time in range(48):
# render_set_fixtime(dataset.model_path,"video",scene.loaded_iter,scene.getVideoCameras(),gaussians,pipeline,background,multiview_video=False, fname=f"time_{time}.mp4", func=func, scales=opt.scales, pre_scale=opt.pre_scale, time_idx=time)
# render_set(dataset.model_path,"video",scene.loaded_iter,scene.getVideoCameras(),gaussians,pipeline,background,multiview_video=True, fname='multiview.mp4', func=func, scales=opt.scales, pre_scale=opt.pre_scale)
# self.loaded_iter = searchForMaxIteration(os.path.join(self.model_path, "point_cloud"))
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser)
op = OptimizationParams(parser)
pipeline = PipelineParams(parser)
hyperparam = ModelHiddenParams(parser)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--skip_video", action="store_true")
parser.add_argument('--multiview_video',default=False,action="store_true")
parser.add_argument("--configs", type=str)
args = get_combined_args(parser)
print("Rendering " , args.model_path)
if args.configs:
# import mmcv
import mmengine
from utils.params_utils import merge_hparams
# config = mmcv.Config.fromfile(args.configs)
config = mmengine.Config.fromfile(args.configs)
# import mmcv
# from utils.params_utils import merge_hparams
# config = mmcv.Config.fromfile(args.configs)
args = merge_hparams(args, config)
# Initialize system state (RNG)
safe_state(args.quiet)
render_sets(model.extract(args), hyperparam.extract(args), op.extract(args),args.iteration, pipeline.extract(args), args.skip_train, args.skip_test, args.skip_video,args.multiview_video)