-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
472 lines (374 loc) · 15.6 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import numpy as np
import sys
import copy
class AbstractModel(object):
def __init__(self):
pass
def score(self, X, y, epsilon=100.0, min_inlier_ratio=0.01, min_num_inlier=7):
"""
Computes how good is the transformation.
This is done by applying the transformation to the collection of points in X,
and then computing the corresponding distance to the matched point in y.
If the distance is less than epsilon, the match is considered good.
"""
X2 = self.apply(X)
# dists_sqr = np.sum((y - X2) ** 2, axis=1)
dists = np.sqrt(np.sum((y - X2) ** 2, axis=1))
# print "dists", dists
good_dists_mask = dists < epsilon
good_dists_num = np.sum(good_dists_mask)
# good_dists = dists[dists < epsilon]
# accepted_ratio = float(good_dists.shape[0]) / X2.shape[0]
accepted_ratio = float(good_dists_num) / X2.shape[0]
# The transformation does not adhere to the wanted values, give it a very low score
if good_dists_num < min_num_inlier or accepted_ratio < min_inlier_ratio:
return -1, None, -1
return accepted_ratio, good_dists_mask, 0
def apply(self, p):
raise(RuntimeError, "Not implemented, but probably should be")
def fit(self, X, y):
raise(RuntimeError, "Not implemented, but probably should be")
def set_from_modelspec(self, s):
raise(RuntimeError, "Not implemented, but probably should be")
def to_modelspec(self):
raise(RuntimeError, "Not implemented, but probably should be")
def is_affine(self):
return False
class AbstractAffineModel(AbstractModel):
def __init__(self):
pass
def get_matrix(self):
raise(RuntimeError, "Not implemented, but probably should be")
def apply(self, p):
"""
Returns a new 2D point(s) after applying the transformation on the given point(s) p
"""
pts = np.atleast_2d(p)
m = self.get_matrix()
return np.dot(m[:2,:2],
pts.T).T + np.asarray(m.T[2][:2]).reshape((1, 2))
def apply_inv(self, p):
"""
Returns a new 2D point(s) after applying the inverse transformation on the given point(s) p
"""
pts = np.atleast_2d(p)
m = self.get_matrix()
m_inv = np.linalg.inv(m)
return np.dot(m_inv[:2,:2],
pts.T).T + np.asarray(m_inv.T[2][:2]).reshape((1, 2))
def is_affine(self):
return True
class TranslationModel(AbstractAffineModel):
MIN_MATCHES_NUM = 2
class_name = "mpicbg.trakem2.transform.TranslationModel2D"
def __init__(self, delta=np.array([0, 0])):
self.delta = delta
def set(self, delta):
self.delta = np.array(delta)
def apply(self, p):
if p.ndim == 1:
return p + self.delta
return np.atleast_2d(p) + np.asarray(self.delta).reshape((-1, 2))
def apply_inv(self, p):
if p.ndim == 1:
return p - self.delta
return np.atleast_2d(p) - np.asarray(self.delta).reshape((-1, 2))
def to_str(self):
return "T={}".format(self.delta)
def to_modelspec(self):
return {
"className" : self.class_name,
"dataString" : "{}".format(' '.join([str(float(x)) for x in self.delta]))
}
def set_from_modelspec(self, s):
self.delta = np.array([float(d) for d in s.split()])
def get_matrix(self):
return np.array([
[1.0, 0.0, self.delta[0]],
[0.0, 1.0, self.delta[1]],
[0.0, 0.0, 1.0]
])
def fit(self, X, y):
"""
A non-weighted fitting of a collection of 2D points in X to a collection of 2D points in y.
X and y are assumed to be arrays of 2D points of the same shape.
"""
assert(X.shape[0] >= 2) # the minimal number of of matches for a 2d rigid transformation
pc = np.mean(X, axis=0)
qc = np.mean(y, axis=0)
self.delta = qc - pc
return True
class RigidModel(AbstractAffineModel):
MIN_MATCHES_NUM = 2
class_name = "mpicbg.trakem2.transform.RigidModel2D"
def __init__(self, r=0.0, delta=np.array([0, 0])):
self.set(r, delta)
def set(self, r, delta):
self.cos_val = np.cos(r)
self.sin_val = np.sin(r)
self.delta = np.array(delta)
def apply(self, p):
"""
Returns a new 2D point(s) after applying the transformation on the given point(s) p
"""
if p.ndim == 1:
return np.dot([[self.cos_val, -self.sin_val],
[self.sin_val, self.cos_val]],
p).T + np.asarray(self.delta).reshape((1, 2))
pts = np.atleast_2d(p)
return np.dot([[self.cos_val, -self.sin_val],
[self.sin_val, self.cos_val]],
pts.T).T + np.asarray(self.delta).reshape((1, 2))
def apply_inv(self, p):
"""
Returns a new 2D point(s) after applying the inverse transformation on the given point(s) p
"""
# The inverse matrix of the [2,2] rigid matrix is similar to the forward matrix (the angle is negative),
# the delta needs to be computed by R-1*delta
inv_delta = np.dot([[self.cos_val, self.sin_val],
[-self.sin_val, self.cos_val]], self.delta).T
if p.ndim == 1:
return np.dot([[self.cos_val, self.sin_val],
[-self.sin_val, self.cos_val]],
p).T + inv_delta
pts = np.atleast_2d(p)
return np.dot([[self.cos_val, self.sin_val],
[-self.sin_val, self.cos_val]],
pts.T).T + inv_delta
def to_str(self):
return "R={}, T={}".format(np.arccos(self.cos_val), self.delta)
def to_modelspec(self):
return {
"className" : self.class_name,
"dataString" : "{} {}".format(np.arccos(self.cos_val), ' '.join([str(float(x)) for x in self.delta]))
}
def set_from_modelspec(self, s):
splitted = s.split()
r = float(splitted[0])
self.cos_val = np.cos(r)
self.sin_val = np.sin(r)
self.delta = np.array([float(d) for d in splitted[1:]])
def get_matrix(self):
return np.array([
[self.cos_val, -self.sin_val, self.delta[0]],
[self.sin_val, self.cos_val, self.delta[1]],
[0, 0, 1]
])
def fit(self, X, y):
"""
A non-weighted fitting of a collection of 2D points in X to a collection of 2D points in y.
X and y are assumed to be arrays of 2D points of the same shape.
"""
assert(X.shape[0] >= 2) # the minimal number of of matches for a 2d rigid transformation
pc = np.mean(X, axis=0)
qc = np.mean(y, axis=0)
delta_c = pc - qc
# dx = pc[0] - qc[0]
# dy = pc[1] - qc[1]
cosd = 0.0
sind = 0.0
delta1 = X - pc
# delta2 = y - qc + np.array([dx, dy])
delta2 = y - qc + delta_c
# for xy1, xy2 in zip(delta1, delta2):
# sind += xy1[0] * xy2[1] - xy1[1] * xy2[0]
# cosd += xy1[0] * xy2[0] + xy1[1] * xy2[1]
sind = np.sum(delta1[:,0] * delta2[:,1] - delta1[:,1] * delta2[:,0])
cosd = np.sum(delta1[:,0] * delta2[:,0] + delta1[:,1] * delta2[:,1])
norm = np.sqrt(cosd * cosd + sind * sind)
if norm < 0.0001:
# print "normalization may be invalid, skipping fitting"
return False
cosd /= norm
sind /= norm
self.cos_val = cosd
self.sin_val = sind
self.delta[0] = qc[0] - cosd * pc[0] + sind * pc[1]
self.delta[1] = qc[1] - sind * pc[0] - cosd * pc[1]
return True
class SimilarityModel(AbstractAffineModel):
MIN_MATCHES_NUM = 2
class_name = "mpicbg.trakem2.transform.SimilarityModel2D"
def __init__(self, s=0.0, delta=np.array([0, 0])):
self.set(s, delta)
def set(self, s, delta):
self.scos_val = np.cos(s)
self.ssin_val = np.sin(s)
self.delta = np.array(delta)
def apply(self, p):
"""
Returns a new 2D point(s) after applying the transformation on the given point(s) p
"""
if p.ndim == 1:
return np.dot([[self.scos_val, -self.ssin_val],
[self.ssin_val, self.scos_val]],
p).T + np.asarray(self.delta).reshape((1, 2))
pts = np.atleast_2d(p)
return np.dot([[self.scos_val, -self.ssin_val],
[self.ssin_val, self.scos_val]],
pts.T).T + np.asarray(self.delta).reshape((1, 2))
def apply_inv(self, p):
"""
Returns a new 2D point(s) after applying the inverse transformation on the given point(s) p
"""
# The inverse matrix of the [2,2] rigid matrix is similar to the forward matrix (the angle is negative),
# the delta needs to be computed by R-1*delta
inv_delta = np.dot([[self.scos_val, self.ssin_val],
[-self.ssin_val, self.scos_val]], self.delta).T
if p.ndim == 1:
return np.dot([[self.scos_val, self.ssin_val],
[-self.ssin_val, self.scos_val]],
p).T + inv_delta
pts = np.atleast_2d(p)
return np.dot([[self.scos_val, self.ssin_val],
[-self.ssin_val, self.scos_val]],
pts.T).T + inv_delta
def to_str(self):
return "S={}, T={}".format(np.arccos(self.scos_val), self.delta)
def to_modelspec(self):
return {
"className" : self.class_name,
"dataString" : "{} {} {}".format(self.scos_val, self.ssin_val, ' '.join([str(float(x)) for x in self.delta]))
}
def set_from_modelspec(self, s):
splitted = s.split()
r = float(splitted[0])
self.scos_val = np.cos(r)
self.ssin_val = np.sin(r)
self.delta = np.array([float(d) for d in splitted[1:]])
def get_matrix(self):
return np.array([
np.array([self.scos_val, -self.ssin_val, self.delta[0]]),
np.array([self.ssin_val, self.scos_val, self.delta[1]]),
np.array([0, 0, 1])
])
def fit(self, X, y):
"""
A non-weighted fitting of a collection of 2D points in X to a collection of 2D points in y.
X and y are assumed to be arrays of 2D points of the same shape.
"""
assert(X.shape[0] >= 2) # the minimal number of of matches for a 2d rigid transformation
pc = np.mean(X, axis=0)
qc = np.mean(y, axis=0)
delta_c = pc - qc
# dx = pc[0] - qc[0]
# dy = pc[1] - qc[1]
scosd = 0.0
ssind = 0.0
delta1 = X - pc
# delta2 = y - qc + np.array([dx, dy])
delta2 = y - qc + delta_c
norm = 0.0
for xy1, xy2 in zip(delta1, delta2):
ssind += xy1[0] * xy2[1] - xy1[1] * xy2[0]
scosd += xy1[0] * xy2[0] + xy1[1] * xy2[1]
norm += xy1[0] ** 2 + xy1[1] ** 2
if norm < 0.0001:
# print "normalization may be invalid, skipping fitting"
return False
scosd /= norm
ssind /= norm
self.scos_val = scosd
self.ssin_val = ssind
self.delta[0] = qc[0] - scosd * pc[0] + ssind * pc[1]
self.delta[1] = qc[1] - ssind * pc[0] - scosd * pc[1]
return True
class AffineModel(AbstractAffineModel):
MIN_MATCHES_NUM = 3
class_name = "mpicbg.trakem2.transform.AffineModel2D"
def __init__(self, m=np.eye(3)):
"""m is a 3x3 matrix"""
self.set(m)
def set(self, m):
"""m is a 3x3 matrix"""
# make sure that this a 3x3 matrix
m = np.array(m)
if m.shape != (3, 3):
raise(RuntimeError, "Error when parsing the given affine matrix, should be of size 3x3")
self.m = m
def apply(self, p):
"""
Returns a new 2D point(s) after applying the transformation on the given point(s) p
"""
if p.ndim == 1:
return np.dot(self.m[:2,:2], p) + np.asarray(self.m.T[2][:2]).reshape((1, 2))
pts = np.atleast_2d(p)
return np.dot(self.m[:2,:2],
pts.T).T + np.asarray(self.m.T[2][:2]).reshape((1, 2))
def apply_inv(self, p):
"""
Returns a new 2D point(s) after applying the inverse transformation on the given point(s) p
"""
# The inverse matrix of the [2,2] rigid matrix is similar to the forward matrix (the angle is negative),
# the delta needs to be computed by R-1*delta
m_inv = np.linalg.inv(self.m)
if p.ndim == 1:
return np.dot(self.m_inv[:2,:2], p) + np.asarray(self.m_inv.T[2][:2]).reshape((1, 2))
pts = np.atleast_2d(p)
return np.dot(self.m_inv[:2,:2],
pts.T).T + np.asarray(self.m_inv.T[2][:2]).reshape((1, 2))
def to_str(self):
return "M={}".format(self.m)
def to_modelspec(self):
return {
"className" : self.class_name,
# keeping it in the Fiji model format
"dataString" : "{}".format(' '.join([str(float(x)) for x in self.m[:2].T.flatten()]))
}
def set_from_modelspec(self, s):
splitted = s.split()
# The input is 6 numbers that correspond to m00 m10 m01 m11 m02 m12
self.m = np.vstack(
np.array([float(d) for d in splitted[0::2]]),
np.array([float(d) for d in splitted[1::2]]),
np.array([0.0, 0.0, 1.0])
)
def get_matrix(self):
return self.m
def fit(self, X, y):
"""
A non-weighted fitting of a collection of 2D points in X to a collection of 2D points in y.
X and y are assumed to be arrays of 2D points of the same shape.
"""
assert(X.shape[0] >= 2) # the minimal number of of matches for a 2d rigid transformation
pc = np.mean(X, axis=0)
qc = np.mean(y, axis=0)
delta1 = X - pc
delta2 = y - qc
a00 = np.sum(delta1[:,0] * delta1[:,0])
a01 = np.sum(delta1[:,0] * delta1[:,1])
a11 = np.sum(delta1[:,1] * delta1[:,1])
b00 = np.sum(delta1[:,0] * delta2[:,0])
b01 = np.sum(delta1[:,0] * delta2[:,1])
b10 = np.sum(delta1[:,1] * delta2[:,0])
b11 = np.sum(delta1[:,1] * delta2[:,1])
det = a00 * a11 - a01 * a01
if det == 0:
# print "determinant is 0, skipping fitting"
return False
m00 = (a11 * b00 - a01 * b10) / det
m01 = (a00 * b10 - a01 * b00) / det
m10 = (a11 * b01 - a01 * b11) / det
m11 = (a00 * b11 - a01 * b01) / det
self.m = np.array([
[m00, m01, qc[0] - m00 * pc[0] - m01 * pc[1]],
[m10, m11, qc[1] - m10 * pc[0] - m11 * pc[1]],
[0.0, 0.0, 1.0]
])
return True
class Transforms(object):
transformations = [ TranslationModel(), RigidModel(), SimilarityModel(), AffineModel() ]
transforms_classnames = {
TranslationModel.class_name : TranslationModel(),
RigidModel.class_name : RigidModel(),
SimilarityModel.class_name : SimilarityModel(),
AffineModel.class_name : AffineModel(),
}
@classmethod
def create(cls, model_type_idx):
return copy.deepcopy(cls.transformations[model_type_idx])
@classmethod
def from_tilespec(cls, ts_transform):
transform = copy.deepcopy(cls.transforms_classnames[ts_transform["className"]])
transform.set_from_modelspec(ts_transform["dataString"])
return transform