forked from tagoyal/factuality-datasets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
526 lines (428 loc) · 19.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
import argparse
import json
import logging
import os
import random
from typing import Dict, List, Tuple
import numpy as np
import train_utils
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, WeightedRandomSampler
from tqdm import tqdm, trange
from transformers import glue_compute_metrics as compute_metrics
from sklearn.utils.extmath import softmax
from sklearn.metrics import f1_score, balanced_accuracy_score, accuracy_score
from sklearn.metrics import precision_score, recall_score
from transformers import (
AdamW,
ElectraConfig,
ElectraTokenizer,
PreTrainedModel,
PreTrainedTokenizer,
get_linear_schedule_with_warmup,
)
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
"electra_sentence": (ElectraConfig, train_utils.ElectraBasicModel, ElectraTokenizer),
"electra_dae": (ElectraConfig, train_utils.ElectraDependencyModel, ElectraTokenizer),
"electra_dae_weak": (ElectraConfig, train_utils.ElectraConstModelTwoClass, ElectraTokenizer),
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def save_checkpoints(args, output_dir, model, tokenizer):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
def load_and_cache_examples(args, tokenizer, evaluate=False):
dataset = train_utils.load_and_cache_examples(args, tokenizer, evaluate)
return dataset
def compute_metrics_balanced(preds, golds):
n_0 = 0.
d_0 = 0.
n_1 = 0.
d_1 = 0.
for p, g in zip(preds, golds):
if g == 0:
if p == 0:
n_0 += 1
d_0 += 1
elif g == 1:
if p == 1:
n_1 += 1
d_1 += 1
acc_0 = n_0 / d_0
acc_1 = n_1 / d_1
return {'acc': (acc_0 + acc_1) / 2}
def evaluate(args, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, eval_dataset, prefix="") -> Dict:
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_output_dir = args.output_dir
if not os.path.exists(eval_output_dir):
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids_sent = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
input_ids, attention, child, head = batch[0], batch[1], batch[2], batch[3]
mask_entail, mask_cont, num_dependency, arcs = batch[4], batch[5], batch[6], batch[7]
sent_labels = batch[8]
inputs = {'input_ids': input_ids, 'attention': attention, 'child': child,
'head': head, 'mask_entail': mask_entail, 'mask_cont': mask_cont,
'num_dependency': num_dependency, 'sent_label': sent_labels, 'device': args.device}
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids_sent = sent_labels.detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids_sent = np.append(out_label_ids_sent, sent_labels.detach().cpu().numpy(), axis=0)
f_out = open(os.path.join(eval_output_dir, 'dev_out.txt'), 'w')
k = 0
sent_pred = []
dep_pred = []
dep_gold = []
nb_eval_steps = 0
for batch in eval_dataloader:
nb_eval_steps += 1
for inp, p_mask, arc_list, head_ids, child_ids in zip(batch[0], batch[4], batch[7], batch[3], batch[2]):
# text = tokenizer.decode(inp)
tokens = tokenizer.convert_ids_to_tokens(inp)
article_len = tokens.index('[SEP]') + 1
text_article = tokens[1:article_len - 1] # removing [CLS] and [SEP]
summary = tokens[article_len:] # has all the pad tokens also
if '[PAD]' in summary:
summary_len = summary.index('[PAD]')
summary = summary[:summary_len - 1]
else:
summary = summary[:-1]
text_article_cleaned = ' '.join(text_article).replace(' ##', '')
summary_cleaned = ' '.join(summary).replace(' ##', '')
f_out.write(text_article_cleaned + '\n')
f_out.write(summary_cleaned + '\n')
num_negative = 0
if args.model_type == 'electra_sentence':
sent_pred_curr_prob = softmax([preds[k]])
sent_pred_curr = np.argmax(sent_pred_curr_prob)
sent_pred.append(sent_pred_curr)
f_out.write('sent gold:\t%s\n' % str(out_label_ids_sent[k]))
f_out.write('sent pred:\t%s\n\n' % str(sent_pred_curr))
elif 'electra_dae' in args.model_type:
for j, arc in enumerate(arc_list):
arc_text = tokenizer.decode(arc)
arc_text = arc_text.replace(tokenizer.pad_token, '').strip()
mask = int(p_mask[j])
if arc_text == '': # for bert
break
pred_temp = softmax([preds[k][j]])
if mask == 1:
gold = 1
else:
gold = 0
pred = np.argmax(pred_temp)
dep_pred.append(pred)
dep_gold.append(gold)
if pred == 0:
num_negative += 1
f_out.write(arc_text + '\n')
f_out.write('gold:\t' + str(gold) + '\n')
f_out.write('pred:\t' + str(pred) + '\n')
f_out.write(str(pred_temp[0][0]) + '\t' + str(pred_temp[0][1]) + '\n\n')
f_out.write('sent gold:\t' + str(out_label_ids_sent[k]) + '\n')
if num_negative > 0:
f_out.write('sent_pred:\t0\n\n')
sent_pred.append(0)
else:
f_out.write('sent_pred:\t1\n\n')
sent_pred.append(1)
k += 1
f_out.close()
if args.model_type in ['electra_dae', 'electra_dae_weak']:
dep_pred = np.array(dep_pred)
dep_gold = np.array(dep_gold)
sent_pred = np.array(sent_pred)
prec = precision_score(dep_pred, dep_gold, pos_label=0)
recall = recall_score(dep_pred, dep_gold, pos_label=0)
f1 = f1_score(dep_pred, dep_gold, pos_label=0)
print(prec)
print(recall)
print(f1)
result_dep = compute_metrics('qqp', dep_pred, dep_gold)
balanced_acc = balanced_accuracy_score(y_true=out_label_ids_sent, y_pred=sent_pred)
result = {'acc': balanced_acc}
else:
result_dep = {}
balanced_acc = balanced_accuracy_score(y_true=out_label_ids_sent, y_pred=sent_pred)
result = {'acc': balanced_acc}
print(result_dep)
print(result)
output_eval_file = os.path.join(eval_output_dir, "eval_results.txt")
with open(output_eval_file, "a") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result_dep.keys()):
logger.info("dep level %s = %s", key, str(result_dep[key]))
writer.write("dep level %s = %s\n" % (key, str(result_dep[key])))
for key in sorted(result.keys()):
logger.info("sent level %s = %s", key, str(result[key]))
writer.write("sent level %s = %s\n" % (key, str(result[key])))
writer.write('\n')
if args.model_type == 'electra_dep':
return result_dep
else:
return result
def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, eval_dataset) -> Tuple[int, float]:
""" Train the model """
args.train_batch_size = args.per_gpu_train_batch_size
num_neg = 0.
num_pos = 0.
for tensor in train_dataset:
sent_label = int(tensor[9])
if sent_label == 0:
num_neg += 1
else:
num_pos += 1
#print(sent_label)
weights = []
w_neg = (num_pos * 10) / (num_pos + num_neg)
w_pos = (num_neg * 10) / (num_pos + num_neg)
for tensor in train_dataset:
sent_label = int(tensor[9])
if sent_label == 0:
weights.append(w_neg)
else:
weights.append(w_pos)
#train_sampler = WeightedRandomSampler(weights=weights, num_samples=len(weights) * 5)
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
epochs_trained = 0
tr_loss, tr_loss_sent, logging_loss, logging_loss_sent = 0.0, 0.0, 0.0, 0.0
model.zero_grad()
train_iterator = trange(epochs_trained, int(args.num_train_epochs), desc="Epoch")
set_seed(args)
acc_prev = 0.
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration")
for step, batch in enumerate(epoch_iterator):
batch = tuple(t.to(args.device) for t in batch)
input_ids, attention, child, head = batch[0], batch[1], batch[2], batch[3],
mask_entail, mask_cont, num_dependency, arcs = batch[4], batch[5], batch[6], batch[7]
sent_labels = batch[8]
inputs = {'input_ids': input_ids, 'attention': attention, 'child': child,
'head': head, 'mask_entail': mask_entail, 'mask_cont': mask_cont,
'num_dependency': num_dependency, 'sent_label': sent_labels, 'device': args.device}
model.train()
outputs = model(**inputs)
loss = outputs[0]
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
tr_loss += loss.item()
loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step()
model.zero_grad()
global_step += 1
if args.save_steps > 0 and global_step % args.save_steps == 0:
logs = {}
loss_scalar_dep = (tr_loss - logging_loss) / args.save_steps
learning_rate_scalar = scheduler.get_lr()[0]
logs["learning_rate"] = learning_rate_scalar
logs["loss"] = loss_scalar_dep
logging_loss = tr_loss
print(json.dumps({**logs, **{"step": global_step, 'epoch': epoch_iterator.n}}))
logger.info(json.dumps({**logs, **{"step": global_step}}))
# Evaluation
result = evaluate(args, model, tokenizer, eval_dataset)
save_checkpoints(args, args.output_dir, model, tokenizer)
if result['acc'] > acc_prev:
acc_prev = result['acc']
# Save model checkpoint best
output_dir = os.path.join(args.output_dir, "model-best")
save_checkpoints(args, output_dir, model, tokenizer)
if 0 < args.max_steps < global_step:
epoch_iterator.close()
break
evaluate(args, model, tokenizer, eval_dataset)
save_checkpoints(args, args.output_dir, model, tokenizer)
return global_step, tr_loss / global_step
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_type",
default=None,
type=str,
required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Check path to pre-trained model or shortcut name",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--eval_data_file",
default=None,
type=str,
required=True,
help="Evaluation data file to evaluate the perplexity on (a text file).",
)
parser.add_argument(
"--train_data_file",
default=None,
type=str,
required=True,
help="The input training data file (a text file)."
)
parser.add_argument(
"--input_dir",
default=None,
type=str,
help="Check path to pre-trained model or shortcut name",
)
# Other parameters
parser.add_argument(
"--max_seq_length",
default=512,
type=int,
help="The maximum total input sequence length after tokenization.",
)
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
parser.add_argument("--per_gpu_train_batch_size", default=32, type=int, help="Batch size training.", )
parser.add_argument("--per_gpu_eval_batch_size", default=32, type=int, help="Batch size evaluation.", )
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--learning_rate", default=2e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1, type=float, help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs", )
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--gpu_device", type=int, default=0, help="gpu device")
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
parser.add_argument("--overwrite_output_dir", action="store_true", help="Overwrite the output directory", )
parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached data sets", )
parser.add_argument("--include_sentence_level", action="store_true", help="Overwrite the cached data sets", )
parser.add_argument("--seed", type=int, default=100, help="random seed for initialization")
args = parser.parse_args()
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
args.n_gpu = 1 # no multi gpu support right now.
device = torch.device("cuda", args.gpu_device)
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
filename=os.path.join(args.output_dir, 'model.log')
)
# Set seed
set_seed(args)
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
if args.input_dir is not None:
print('loading model')
tokenizer = tokenizer_class.from_pretrained(args.input_dir)
model = model_class.from_pretrained(args.input_dir)
else:
config = config_class.from_pretrained(args.model_name_or_path)
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
model = model_class.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config)
model.to(args.device)
eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True)
evaluate(args, model, tokenizer, eval_dataset)
logger.info("Training/evaluation parameters %s", args)
if args.do_train:
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)
global_step, tr_loss = train(args, train_dataset, model, tokenizer, eval_dataset)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
if __name__ == "__main__":
main()