-
-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathbiquad.py
111 lines (102 loc) · 4.36 KB
/
biquad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import math
class Biquad():
def __init__(self, biquadType, fc, q, peakGainDB):
self.a0 = 0
self.a1 = 0
self.a2 = 0
self.b1 = 0
self.b2 = 0
self.z1 = 0
self.z2 = 0
self.setBiquad(biquadType, fc, q, peakGainDB)
def clip(self, x, minimum, maximum):
return max(minimum, min(x, maximum))
def setBiquad(self, biquadType, fc, q, peakGainDB) :
self.Fc = self.clip(fc, 0, 0.5)
self.type = biquadType
self.Q = q
self.Fc = fc
self.peakGain = peakGainDB
self.calcBiquad()
def calcBiquad(self):
norm = 0
V = pow(10, math.fabs(self.peakGain) / 20.0)
K = math.tan(math.pi * self.Fc)
if self.type == 0: #lowpass
norm = 1 / (1 + K / self.Q + K * K)
self.a0 = K * K * norm
self.a1 = 2 * self.a0
self.a2 = self.a0
self.b1 = 2 * (K * K - 1) * norm
self.b2 = (1 - K / self.Q + K * K) * norm
elif self.type == 1: #highpass:
norm = 1 / (1 + K / self.Q + K * K)
self.a0 = 1 * norm
self.a1 = -2 * self.a0
self.a2 = self.a0
self.b1 = 2 * (K * K - 1) * norm
self.b2 = (1 - K / self.Q + K * K) * norm
elif self.type == 2: #bandpass:
norm = 1 / (1 + K / self.Q + K * K)
self.a0 = K / self.Q * norm
self.a1 = 0
self.a2 = -self.a0
self.b1 = 2 * (K * K - 1) * norm
self.b2 = (1 - K / self.Q + K * K) * norm
elif self.type == 3: #notch:
norm = 1 / (1 + K / self.Q + K * K)
self.a0 = (1 + K * K) * norm
self.a1 = 2 * (K * K - 1) * norm
self.a2 = self.a0
self.b1 = self.a1
self.b2 = (1 - K / self.Q + K * K) * norm
elif self.type == 4: #peak:
if (self.peakGain >= 0): # boost
norm = 1 / (1 + 1/self.Q * K + K * K)
self.a0 = (1 + V/self.Q * K + K * K) * norm
self.a1 = 2 * (K * K - 1) * norm
self.a2 = (1 - V/self.Q * K + K * K) * norm
self.b1 = self.a1
self.b2 = (1 - 1/self.Q * K + K * K) * norm
else: # cut
norm = 1 / (1 + V/self.Q * K + K * K)
self.a0 = (1 + 1/self.Q * K + K * K) * norm
self.a1 = 2 * (K * K - 1) * norm
self.a2 = (1 - 1/self.Q * K + K * K) * norm
self.b1 = self.a1
self.b2 = (1 - V/self.Q * K + K * K) * norm
elif self.type == 5: #lowshelf:
if (self.peakGain >= 0): # boost
norm = 1 / (1 + math.sqrt(2) * K + K * K)
self.a0 = (1 + math.sqrt(2*V) * K + V * K * K) * norm
self.a1 = 2 * (V * K * K - 1) * norm
self.a2 = (1 - math.sqrt(2*V) * K + V * K * K) * norm
self.b1 = 2 * (K * K - 1) * norm
self.b2 = (1 - math.sqrt(2) * K + K * K) * norm
else: # cut
norm = 1 / (1 + math.sqrt(2*V) * K + V * K * K)
self.a0 = (1 + math.sqrt(2) * K + K * K) * norm
self.a1 = 2 * (K * K - 1) * norm
self.a2 = (1 - math.sqrt(2) * K + K * K) * norm
self.b1 = 2 * (V * K * K - 1) * norm
self.b2 = (1 - math.sqrt(2*V) * K + V * K * K) * norm
elif self.type == 6: #highshelf:
if (self.peakGain >= 0): # boost
norm = 1 / (1 + math.sqrt(2) * K + K * K)
self.a0 = (V + math.sqrt(2*V) * K + K * K) * norm
self.a1 = 2 * (K * K - V) * norm
self.a2 = (V - math.sqrt(2*V) * K + K * K) * norm
self.b1 = 2 * (K * K - 1) * norm
self.b2 = (1 - math.sqrt(2) * K + K * K) * norm
else: # cut
norm = 1 / (V + math.sqrt(2*V) * K + K * K)
self.a0 = (1 + math.sqrt(2) * K + K * K) * norm
self.a1 = 2 * (K * K - 1) * norm
self.a2 = (1 - math.sqrt(2) * K + K * K) * norm
self.b1 = 2 * (K * K - V) * norm
self.b2 = (V - math.sqrt(2*V) * K + K * K) * norm
def compute(self,i):
out = i * self.a0 + self.z1
self.z1 = i * self.a1 + self.z2 - self.b1 * out
self.z2 = i * self.a2 - self.b2 * out
return out