forked from xiongyiheng/Prior-RadGraphFormer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
98 lines (86 loc) · 4.9 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import torch
import numpy as np
def graph_infer(h, out, relation_embed=None, freq=None, asm=None, project=None, emb=False, thresh=0.5):
# all token except the last one is object token
object_token, relation_token = h
if object_token.dim() == 4:
object_token = object_token[-1].detach() # when using aux loss -1
relation_token = relation_token[-1].detach()
else:
object_token = object_token.detach() # when using aux loss -1
relation_token = relation_token.detach()
# valid tokens and labels
valid_tokens = torch.max(out['pred_token_logits'].softmax(-1).detach(), -1)
valid_labels = torch.max(out['pred_label_logits'].softmax(-1).detach(), -1)
pred_tokens = []
pred_labels = []
pred_rels = []
pred_rel_class = []
pred_rel_score = []
all_node_pairs = []
all_relation = []
valid_nodes = []
for batch_id in range(out['pred_token_logits'].shape[0]):
# ID of the valid tokens
node_id = torch.nonzero(valid_tokens[1][batch_id]).squeeze(1) # id of token which are not 'none'
valid_nodes.append(node_id.cpu().numpy())
pred_token_classes = valid_tokens[1][batch_id, node_id]
pred_label_classes = valid_labels[1][batch_id, node_id]
pred_tokens.append(pred_token_classes.cpu().numpy())
pred_labels.append(pred_label_classes.cpu().numpy())
if node_id.dim() != 0 and node_id.nelement() != 0 and node_id.shape[0] > 1:
# all possible node pairs in all token ordering
node_pairs = torch.cat((torch.combinations(node_id), torch.combinations(node_id)[:, [1, 0]]), 0)
id_rel = torch.tensor(list(range(len(node_id))))
node_pairs_rel = torch.cat((torch.combinations(id_rel), torch.combinations(id_rel)[:, [1, 0]]), 0)
joint_emb = object_token
if asm:
assert relation_embed is None
# get the combined relation embedding
node_emb = joint_emb[batch_id, node_id]
edge_emb = project(
torch.cat((joint_emb[batch_id, node_pairs[:, 0], :], joint_emb[batch_id, node_pairs[:, 1], :],
relation_token[batch_id, ...].repeat(node_pairs.shape[0], 1)), 1))
_, head_ind = torch.unique(node_pairs[:, 0], sorted=True, return_inverse=True)
_, tail_ind = torch.unique(node_pairs[:, 1], sorted=True, return_inverse=True)
edge_class, _, node_class, _ = asm(init_node_emb=node_emb,
init_edge_emb=edge_emb,
head_ind=head_ind,
tail_ind=tail_ind,
is_training=False,
gt_node_dists=None,
gt_edge_dists=None,
destroy_visual_input=False,
keep_inds=None
)
relation_pred = edge_class[-1].detach() # here just use the last asm's result
else:
assert asm is None
joint_emb = object_token
rln_feat = torch.cat(
(joint_emb[batch_id, node_pairs[:, 0], :], joint_emb[batch_id, node_pairs[:, 1], :],
relation_token[batch_id, ...].repeat(len(node_pairs), 1)), 1)
relation_pred = relation_embed(rln_feat).detach()
all_node_pairs.append(node_pairs_rel.cpu().numpy())
all_relation.append(relation_pred.softmax(-1).detach().cpu().numpy())
rel_id = torch.nonzero(torch.argmax(relation_pred, -1)).squeeze(1)
if rel_id.dim() != 0 and rel_id.nelement() != 0 and rel_id.shape[0] > 1:
rel_id = rel_id.cpu().numpy()
pred_rels.append(node_pairs_rel[rel_id].cpu().numpy())
pred_rel_class.append(
torch.argmax(relation_pred, -1)[rel_id].cpu().numpy())
pred_rel_score.append(torch.softmax(relation_pred, -1)[rel_id].cpu().numpy())
else:
pred_rels.append(torch.empty(0, 2))
pred_rel_class.append(torch.empty(0, 1))
pred_rel_score.append(torch.empty(0, 1))
else:
all_node_pairs.append(None)
all_relation.append(None)
pred_rels.append(torch.empty(0, 2))
pred_rel_class.append(torch.empty(0, 1))
pred_rel_score.append(torch.empty(0, 1))
out = {'node_id': valid_nodes, 'pred_tokens': pred_tokens, 'pred_labels': pred_labels, 'pred_rels': pred_rels,
'pred_rels_class': pred_rel_class, 'pred_rels_score': pred_rel_score, 'all_node_pairs': all_node_pairs,
'all_relation': all_relation}
return out