diff --git a/Rmd/BreastMammaryTissueJunctionAnalysis.Rmd b/Rmd/BreastMammaryTissueJunctionAnalysis.Rmd
new file mode 100644
index 0000000..67d7a18
--- /dev/null
+++ b/Rmd/BreastMammaryTissueJunctionAnalysis.Rmd
@@ -0,0 +1,654 @@
+---
+jupyter:
+ jupytext:
+ text_representation:
+ extension: .Rmd
+ format_name: rmarkdown
+ format_version: '1.2'
+ jupytext_version: 1.4.1
+ kernelspec:
+ display_name: R
+ language: R
+ name: ir
+---
+
+# BreastMammaryTissueJunctionAnalysis as a Notebook
+
+rMATS 3.2.5 was run on controlled access RNASeq files retrieved experiments stored in the Sequence Read Archive with controlled access managed by dbGaP. The data were generated under the Gene Tissue Expression.
+
+## rMATS RNASeq-MATS.py produces 10 different output types which get assembled into as type junction ID by sample ID matrices
+
+### Alternative Splice Site Types are: (se, a3ss, a5ss, mxe, ri)
+
+ This is input as ARGV1 into variable 'astype'
+
+ * Skipped Exon events (se),
+ * Alternative 3' splice site (a3ss),
+ * Alternative 5' splice site (a5ss),
+ * Mutually exclusive exon (mxe),
+ * and retention intron (ri)
+
+### There are two different kinds of junction counts
+
+ * jc = junction counts - reads that cross the junction
+ * jcec = junction counts plus reads on the target (such as included exon
+
+### And the count type -- there are 5 types
+
+ * inclusion levels (percent spliced in)
+ * included junction counts (ijc)
+ * skipped junction counts (sjc)
+ * inclusion length (inclen)
+ * skipped length (skiplen)
+
+### function: fit_iso_tissue
+
+fit_iso_tissue expects the following input:
+
+ * the tissue of interest (SMSTD)
+ * an ordered_merged_rmats -- which will be ordered to fit the count matrix
+ * count matrix (inc or ijc & sjc merged)
+ * splice type (a3ss, a5ss, mxe, ri or se)
+ * junction_count type (jc or jcec)
+ * count type (inc or the merged ijc,sjc)
+
+### reordering to match annotations between count matrix and annotation matrix
+
+Common problem is to match specifically the rows of an annotation matrix with the columns of a count matrix
+`match` is the function that gives the re-ordering index required to accomplish this
+
+
+
+## **NOTE**:
+
+We assume that you have cloned the analysis repository and have `cd` into the parent directory. Before starting with the analysis make sure you have first completed the dependencies set up by following the instructions described in the **`dependencies/README.md`** document. All paths defined in this Notebook are relative to the parent directory (repository). Please close this Notebook and start again by following the above guidelines if you have not completed the aforementioned steps.
+
+## rMATS-final-merged
+the rmats-nf NextFlow was executed and the results released here:
+
+
+## Loading dependencies
+
+```{r}
+library(limma)
+library(piggyback)
+library(multtest)
+library(Biobase)
+library(edgeR)
+library(tibble)
+library(R.utils)
+library(statmod)
+```
+
+
+## Modeling
+
+This analysis uses edgeR. From the documentation, it is important to note that normalization takes the form of correction factors that enter into the statistical model. Such correction factors are usually computed internally by edgeR functions, but it is also possible for a user to supply them. The correction factors may take the form of scaling factors for the library sizes, such as computed by calcNormFactors, which are then used to compute the effective library sizes.
+
+Alternatively, gene-specific correction factors can be entered into the glm functions of edgeR as offsets. In the latter case, the offset matrix will be assumed to account for all normalization issues, including sequencing depth and RNA composition.
+
+Note that normalization in edgeR is model-based, and the original read counts are not themselves transformed. This means that users should not transform the read counts in any way before inputing them to edgeR. For example, users should not enter RPKM or FPKM val- ues to edgeR in place of read counts. Such quantities will prevent edgeR from correctly estimating the mean-variance relationship in the data, which is a crucial to the statistical strategies underlying edgeR. Similarly, users should not add artificial values to the counts before inputing them to edgeR.
+
+edgeR is not designed to work with estimated expression levels, for example as might be output by Cufflinks.
+edgeR can work with expected counts as output by RSEM, but raw counts are still preferred.
+
+As instructed by the software, we are using the raw counts as provided by rMATS. The raw counts we are using in the model are `ijc` and `sjc`, the sample specific raw read counts as they align to the junctions of the `included exon (ijc)` and the junctions of the `excluded or skipped exon (sjc)` respectively.
+
+
+Be sure to set your GITHUB_TOKEN, prior to downloading files
+
+One suggestion is change it to your token and then run it then immediately change it back to this:
+
+Sys.setenv(GITHUB_TOKEN = "your-very-own-github-token")
+
+
+### Did you remember?
+Did you remember to delete your private github token? Now is a good time to do so, before you save your work and checkit in inadvertantly....
+
+```{r}
+piggyback::pb_download(
+ repo = "TheJacksonLaboratory/sbas",
+ file = "SraRunTable.noCram.noExome.noWGS.totalRNA.txt.gz",
+ tag = "GTExV8.v1.0",
+ dest = "../data/")
+
+piggyback::pb_download(
+ repo = "adeslatt/sbas_test",
+ file = "rmats_final.se.jc.ijc.txt.gz",
+ tag = "rMATS.3.2.5.GTEx.V8.final_matrices",
+ dest = "../data/")
+
+piggyback::pb_download(
+ repo = "adeslatt/sbas_test",
+ file = "rmats_final.se.jc.sjc.txt.gz",
+ tag = "rMATS.3.2.5.GTEx.V8.final_matrices",
+ dest = "../data/")
+
+ijc.iso.counts.mem <- data.table::fread("../data/rmats_final.se.jc.ijc.txt.gz")
+sjc.iso.counts.mem <- data.table::fread("../data/rmats_final.se.jc.sjc.txt.gz")
+meta.data <- data.table::fread("../data/SraRunTable.noCram.noExome.noWGS.totalRNA.txt.gz")
+
+head(ijc.iso.counts.mem)
+head(sjc.iso.counts.mem)
+head(meta.data)
+
+#dimensions before we make the changes.
+dim(ijc.iso.counts.mem)
+dim(sjc.iso.counts.mem)
+dim(meta.data)
+```
+
+## Synchronize metadata samples with ijc sjc samples
+
+Keep only the runs that are in the ijc count list (assuming ijc and sjc are the same). As well, name the rows with the junction id column and then make the matrix just about the counts.
+
+```{r}
+# the sample names are in the columns of both the ijc and the sjc matrices, these matrices have the identical column order)
+keep.meta.data <- meta.data$Run %in% colnames(ijc.iso.counts.mem)
+table(keep.meta.data)
+reduced.meta.data <- meta.data[keep.meta.data==TRUE,]
+
+# preserve junction id as rowname
+rownames(ijc.iso.counts.mem) <- ijc.iso.counts.mem$ID
+rownames(sjc.iso.counts.mem) <- sjc.iso.counts.mem$ID
+
+# and remove the id to have a data matrix
+ijc.iso.counts.mem <- ijc.iso.counts.mem[,-1]
+sjc.iso.counts.mem <- sjc.iso.counts.mem[,-1]
+
+meta.data.run.names <- reduced.meta.data$Run
+ijc.iso.counts.mem2 <- as_tibble(ijc.iso.counts.mem)
+sjc.iso.counts.mem2 <- as_tibble(sjc.iso.counts.mem)
+
+ijc.iso.counts.mem2 <- ijc.iso.counts.mem2[,c(meta.data.run.names)]
+sjc.iso.counts.mem2 <- sjc.iso.counts.mem2[,c(meta.data.run.names)]
+
+dim(ijc.iso.counts.mem)
+dim(sjc.iso.counts.mem)
+dim(reduced.meta.data)
+```
+
+## Order ijc and sjc columns in the same order as the metadata Run order
+
+Using tibble library, we can rearrange the columns as the column name.
+
+```{r}
+meta.data.run.names <- as.character(reduced.meta.data$Run)
+ijc.iso.counts.mem2 <- as_tibble(ijc.iso.counts.mem)
+sjc.iso.counts.mem2 <- as_tibble(sjc.iso.counts.mem)
+
+ijc.iso.counts.mem2 <- ijc.iso.counts.mem2[,c(meta.data.run.names)]
+sjc.iso.counts.mem2 <- sjc.iso.counts.mem2[,c(meta.data.run.names)]
+
+dim(ijc.iso.counts.mem2)
+dim(sjc.iso.counts.mem2)
+dim(reduced.meta.data)
+```
+
+Remove samples that match '11IL0' from the ijc, sjc and metadata files using the logical grep, grepl
+
+```{r}
+keep.meta.data <- (!grepl('11ILO',reduced.meta.data$"Sample Name"))
+table(keep.meta.data)
+ijc.iso.counts.mem2 <-ijc.iso.counts.mem2 [ ,keep.meta.data==TRUE]
+sjc.iso.counts.mem2 <-sjc.iso.counts.mem2 [ ,keep.meta.data==TRUE]
+
+reduced.meta.data <-reduced.meta.data [keep.meta.data==TRUE, ]
+dim(ijc.iso.counts.mem2)
+dim(sjc.iso.counts.mem2)
+```
+
+### and focus on a single tissue
+
+this will become a function so we can proceed on all the tissues
+
+```{r}
+tissue <- reduced.meta.data$body_site %in% 'Breast - Mammary Tissue'
+table(tissue)
+
+ijc.iso.counts.mem2 <-ijc.iso.counts.mem2 [ ,tissue==TRUE]
+sjc.iso.counts.mem2 <-sjc.iso.counts.mem2 [ ,tissue==TRUE]
+
+reduced.meta.data <-reduced.meta.data [tissue==TRUE, ]
+dim(ijc.iso.counts.mem2)
+dim(sjc.iso.counts.mem2)
+```
+
+### exploration of the details
+
+For each sample, we have ijc and sjc count data and demographics of gender.
+Our question is regarding the sex biased differences.
+For each junction we have 8,000 samples with these count data. The way to think about the model is that we have in fact for all of these junctions, these are our co-variates in this global transcriptomic model.
+For exon skipping events (SE), we have 42,611 non-zero junction IDs the (first dimension of the ijc and sjc cout table) for the skipped exon event for breast-Mammary Tissue, 191 individuals. These are healthy individuals, and we are studying the impact of sex on the occurrence or non-occurance of specific alternative splicing events. We explore the information we ahve about these junctions and create a construct, as_event, which accounts for the junction under exploration.
+
+```{r}
+ijc <- as.data.frame(ijc.iso.counts.mem2)
+sjc <- as.data.frame(sjc.iso.counts.mem2)
+ijc <- data.matrix(ijc)
+sjc <- data.matrix(sjc)
+```
+
+## Exploring the ijc and sjc Count data
+
+We have two counts that are in many ways two sides of the same coin. Both our the observational output and we wish to see how robust each are in their ability to separate out the samples to provide for us differentially expressed isoform events as measured by their counts. Each junction is in a manner a specific marker to specific isoform events that may or may not be shared between the genders. If there is significant results, then this is indicative of the separation achieved by isoform specific differentiation. In our model we will use these in combination, it is important to see if they will yield the results we are looking for.
+
+### IJC
+
+Exon included junction counts -- duplicate correlation is actually 2 (there are 2 exons for each included exon) the results provide robust separation up until around 550.
+
+```{r}
+sex <- factor(reduced.meta.data$sex,levels=c('male','female'))
+
+design <- model.matrix ( ~ sex)
+y <- DGEList(counts=ijc, group = sex)
+y <- calcNormFactors(y, method="upperquartile")
+y_voom <- voom (y, design=design)
+Gender <- substring(sex,1,1)
+plotMDS(y, labels=Gender, top=500, col=ifelse(Gender=="m","blue","red"),
+ gene.selection="common")
+plotMDS(y_voom, labels=Gender, top=500, col=ifelse(Gender=="m","blue","red"),
+ gene.selection="common")
+plotMDS(y, labels=Gender, top=1500, col=ifelse(Gender=="m","blue","red"),
+ gene.selection="common")
+plotMDS(y_voom, labels=Gender, top=1500, col=ifelse(Gender=="m","blue","red"),
+ gene.selection="common")
+```
+
+### SJC
+sjc counts are skipped exon junction counts -- ijc counts hold together for the top 1000, the skipped exon junction counts fall appart
+at a lower number -- around 200! separation fails between the genders at 250
+
+```{r}
+sex <- factor(reduced.meta.data$sex,levels=c('male','female'))
+design <- model.matrix(~ sex)
+y <- DGEList(counts=sjc, group = sex)
+y <- calcNormFactors(y, method="upperquartile")
+y_voom <- voom (y, design=design)
+
+Gender <- substring(sex,1,1)
+plotMDS(y, labels=Gender, top=100, col=ifelse(Gender=="m","blue","red"),
+ gene.selection="common")
+plotMDS(y_voom, labels=Gender, top=100, col=ifelse(Gender=="m","blue","red"),
+ gene.selection="common")
+plotMDS(y, labels=Gender, top=700, col=ifelse(Gender=="m","blue","red"),
+ gene.selection="common")
+plotMDS(y_voom, labels=Gender, top=700, col=ifelse(Gender=="m","blue","red"),
+ gene.selection="common")
+```
+
+## Differential analysis as_event:ijc
+
+Differential Analysis (DE) was performed using voom (Law et.al., 2014) to transform junction counts (reads that were aligned to junctions when an exon is included - ijc, and reads that were aligned to junctions when the exon is excluded - sjc) with associated precision weights, followed by linear modeling and empirical Bayes procedure using limma. In each tissue, the following linear regression model was used to detec secually dimorphic alternative splicing event expression:
+
+ y = B0 + B1 sex + epsilon (error)
+
+
+where y is the included exon junction count expression; sex denotes the reported sex of the subject.
+
+```{r}
+sex <- reduced.meta.data$sex
+
+design <- model.matrix( ~ sex )
+
+colnames(design) <- c("intercept","sex")
+
+dim(ijc)
+table(sex)
+head(design)
+
+y_ijc <- DGEList(counts=ijc, group = sex)
+y_ijc <- calcNormFactors(y_ijc, method="upperquartile")
+
+y_ijc_voom <- voom (y_ijc, design=design)
+
+Gender <- substring(sex,1,1)
+
+plotMDS(y_ijc, labels=Gender, top=1000, col=ifelse(Gender=="m","blue","red"),
+ gene.selection="common")
+
+plotMDS(y_ijc_voom, labels=Gender, top=1000, col=ifelse(Gender=="m","blue","red"),
+ gene.selection="common")
+
+fit_ijc <- lmFit(y_ijc_voom, design)
+fit_ijc <- eBayes(fit_ijc)
+
+ijc_sex_results <- topTable(fit_ijc, coef='sex', number=nrow(y_voom))
+ijc_sex_results_refined <- ijc_sex_results$adj.P.Val < 0.05 & abs(ijc_sex_results$logFC) > 1.5
+
+table(ijc_sex_results_refined)
+```
+
+## Differential analysis as_event:sjc
+
+Differential Analysis (DE) was performed using voom (Law et.al., 2014) to transform junction counts (reads that were aligned to junctions when an exon is included - ijc, and reads that were aligned to junctions when the exon is excluded - sjc) with associated precision weights, followed by linear modeling and empirical Bayes procedure using limma. In each tissue, the following linear regression model was used to detec secually dimorphic alternative splicing event expression:
+
+ y = B0 + B1 sex + epsilon (error)
+
+
+where y is the excluded exon junction count (sjc) expression; sex denotes the reported sex of the subject.
+
+```{r}
+sex <- reduced.meta.data$sex
+
+design <- model.matrix( ~ sex )
+
+colnames(design) <- c("intercept","sex")
+
+dim(sjc)
+table(sex)
+head(design)
+
+y_sjc <- DGEList(counts=sjc, group = sex)
+y_sjc <- calcNormFactors(y_sjc, method="upperquartile")
+
+y_sjc_voom <- voom (y_sjc, design=design)
+
+Gender <- substring(sex,1,1)
+
+plotMDS(y_sjc, labels=Gender, top=500, col=ifelse(Gender=="m","blue","red"),
+ gene.selection="common")
+
+plotMDS(y_sjc_voom, labels=Gender, top=500, col=ifelse(Gender=="m","blue","red"),
+ gene.selection="common")
+
+fit_sjc <- lmFit(y_sjc_voom, design)
+fit_sjc <- eBayes(fit_sjc)
+
+sjc_sex_results <- topTable(fit_sjc, coef='sex', number=nrow(y_voom))
+sjc_sex_results_refined <- sjc_sex_results$adj.P.Val < 0.05 & abs(sjc_sex_results$logFC) > 1.5
+
+table(sjc_sex_results_refined)
+```
+
+## Differential analysis as_event (combined ijc and sjc)
+
+Differential Analysis (DE) was performed using voom (Law et.al., 2014) to transform junction counts (reads that were aligned to junctions when an exon is included - ijc, and reads that were aligned to junctions when the exon is excluded - sjc) with associated precision weights, followed by linear modeling and empirical Bayes procedure using limma. In each tissue, the following linear regression model was used to detec secually dimorphic alternative splicing event expression:
+
+ y = B0 + B1 sex + B2 as_event + B3 sex*as_event + epsilon (error)
+
+
+where y is the alternative splicing event expression; sex denotes the reported sex of the subject, as_event represents the specific alternative splicing event - either included exon junction counts or skipped exon junction counts and their interaction terms. Donor is added to our model as a blocking variable used in both the calculation of duplicate correlation as well as in the linear fit.
+
+```{r}
+ijc_names <- as.character(colnames(ijc))
+sjc_names <- as.character(colnames(sjc))
+sample_names <- as.character(colnames(ijc))
+
+ijc_names <- paste0(ijc_names,"-ijc")
+sjc_names <- paste0(sjc_names,"-sjc")
+colnames(ijc) <- ijc_names
+colnames(sjc) <- sjc_names
+
+as_matrix <- cbind(ijc,sjc)
+sex <- c(rep(reduced.meta.data$sex,2))
+sex <- factor(sex, levels=c('male','female'))
+as_event <- c(rep("ijc",dim(ijc)[2]), rep("sjc", dim(sjc)[2]))
+as_event <- factor(as_event, levels=c("ijc", "sjc"))
+
+# we will add donor as a blocking parameter
+donor <- rep(sample_names, 2)
+
+design <- model.matrix( ~ sex + as_event + sex*as_event )
+
+colnames(design) <- c("intercept","sex","as_event","sex*as_event")
+
+dim(as_matrix)
+table(sex)
+table(as_event)
+head(design)
+```
+
+### Voom, limma's lmFit and eBayes
+
+Using sample as a blocking variable, we are able to model the effects of the donor on the results, which improves the power. This topic is discussed in biostars https://www.biostars.org/p/54565/. And Gordon Smyth answers the question here https://mailman.stat.ethz.ch/pipermail/bioconductor/2014-February/057887.html. The method of modeling is a random effects approach in which the intra-donor correlation is incorporated into the covariance matrix instead of the linear predictor. And though as Gordon Smyth states both are good method and the twoway anova approach makes fewer assumptions, the random effects approach is statistically more powerful.
+
+We have a balanced design in which all donors receive all stimuli (which is really in healthy human donors, life and all of its factors!) Our measurement has so many points -- we are measuring in the skipped exon approach, 42,611 junctions! It is not possible to encorporate those measurements into the linear predictor. A two-way ANOVA approach is virtually as powerful as the random effects approach
+and hence is preferable as it makes fewer assumptions.
+
+For an unbalanced design in which each donor receives only a subset of the stimula, the random effects approach is more powerful.
+
+Random effects approach is equivalent to The first method is twoway anova, a generalization of a paired analysis.
+
+
+```{r}
+# we will model as random effects, represented as a block
+donor <- rep(sample_names, 2)
+length(donor)
+```
+
+```{r}
+y <- DGEList(counts=as_matrix, group = sex)
+y <- calcNormFactors(y, method="upperquartile")
+y_voom <- voom (y, design=design)
+
+dup_cor <- duplicateCorrelation(y_voom$E, design=design, ndups=2, block=donor, weights=y$samples$norm.factors)
+dup_cor$consensus.correlation
+```
+
+```{r}
+y_dup_voom <- voom (y, design=design, plot = TRUE, block = donor, correlation = dup_cor$consensus.correlation)
+```
+
+```{r}
+Gender <- substring(sex[1:dim(ijc)[2]],1,1)
+
+plotMDS(y[,c(1:dim(ijc)[2])], labels=Gender, top=500, col=ifelse(Gender=="m","blue","red"),
+ gene.selection="common")
+plotMDS(y_voom[,c(1:dim(ijc)[2])], labels=Gender, top=500, col=ifelse(Gender=="m","blue","red"),
+ gene.selection="common")
+plotMDS(y_dup_voom[,c(1:dim(ijc)[2])], labels=Gender, top=500, col=ifelse(Gender=="m","blue","red"),
+ gene.selection="common")
+plotMDS(y[,c((dim(ijc)[2]+1)):(dim(ijc)[2]+dim(sjc)[2])], labels=Gender, top=250, col=ifelse(Gender=="m","blue","red"),
+ gene.selection="common")
+plotMDS(y_voom[,c((dim(ijc)[2]+1)):(dim(ijc)[2]+dim(sjc)[2])], labels=Gender, top=250, col=ifelse(Gender=="m","blue","red"),
+ gene.selection="common")
+plotMDS(y_dup_voom[,c((dim(ijc)[2]+1):(dim(ijc)[2]+dim(sjc)[2]))], labels=Gender, top=250, col=ifelse(Gender=="m","blue","red"),
+ gene.selection="common")
+```
+
+```{r}
+fit <- lmFit(y_dup_voom, design=design, block=donor, correlation = dup_cor$consensus.correlation)
+fit <- eBayes(fit, robust=TRUE)
+```
+
+```{r}
+sex_as_events_results <- topTable(fit, coef="sex*as_event", number=nrow(y_voom))
+sex_as_events_results_refined <- sex_as_events_results$adj.P.Val < 0.05 & abs(sex_as_events_results$logFC) > 1.5
+
+sex_results <- topTable(fit, coef="sex", number=nrow(y_voom))
+sex_results_refined <- sex_results$adj.P.Val < 0.05 & abs(sex_results$logFC) > 1.5
+
+table(sex_as_events_results_refined)
+table(sex_results_refined)
+```
+
+#### fromGTF
+
+rMATS analyzes the gtf file and determines the junctions, identifying 10 matrices in all. The fromGTF.SE.txt contains the annotation information and we can use this information to estimate the duplicate correlation effect from counting based upon the same gene with our ijc counts. we will use this information, to obtain the gene information.
+
+
+```{r}
+# fromGTF.tar.gz
+if (! (file.exists("../data/fromGTF.tar.gz"))) {
+ system("mkdir -p ../data", intern = TRUE)
+ message("Fetching fromGTF.tar.gz from GitHub ..")
+ # Download archive from GitHub release with tag "dge"
+ piggyback::pb_download(file = "fromGTF.tar.gz",
+ dest = "../data",
+ repo = "adeslatt/sbas_gtf",
+ tag = "rMATS.3.2.5.gencode.v30",
+ show_progress = TRUE)
+ message("Done!\n")
+ message("Decompressing fromGTF.tar.gz into ../data")
+ system("mkdir -p ../data && tar xvfz ../data/fromGTF.tar.gz -C ../data", intern = TRUE)
+ message("Done!\n")
+ message("Decompressing fromGTF.*.txt.gz into ../data")
+ system("gunzip ../data/fromGTF*.txt.gz ", intern = TRUE)
+ message("Done!\n")
+}
+fromGTF.SE <- read.table("../data/fromGTF.SE.txt", header=TRUE)
+head(fromGTF.SE)
+genes <- factor(fromGTF.SE$geneSymbol)
+length(levels(genes))
+```
+
+```{r}
+head(sex_as_events_results)
+```
+
+```{r}
+# index to the annotations - these are the Junction IDs
+sex_as_events_rnResults <- rownames(sex_as_events_results)
+sex_rnResults <- rownames(sex_results)
+ijc_sex_rnResults <- rownames(ijc_sex_results)
+sjc_sex_rnResults <- rownames(sjc_sex_results)
+head(sex_as_events_rnResults)
+head(ijc_sex_rnResults)
+head(sjc_sex_rnResults)
+head(sex_rnResults)
+head(fromGTF.SE[sex_as_events_rnResults,])
+```
+
+```{r}
+# use the junctionIDs to get the annotations
+sex_as_events_resultsAnnotations <- fromGTF.SE[sex_as_events_rnResults,]
+sex_resultsAnnotations <- fromGTF.SE[sex_rnResults,]
+ijc_sex_resultsAnnotations <- fromGTF.SE[ijc_sex_rnResults,]
+sjc_sex_resultsAnnotations <- fromGTF.SE[sjc_sex_rnResults,]
+head(sex_as_events_resultsAnnotations)
+head(sex_resultsAnnotations)
+head(ijc_sex_resultsAnnotations)
+head(sjc_sex_resultsAnnotations)
+```
+
+```{r}
+sex_as_events_results_refinedAnnotations<- sex_as_events_resultsAnnotations[sex_as_events_results_refined==TRUE,]
+sex_results_refinedAnnotations <- sex_resultsAnnotations [sex_results_refined ==TRUE,]
+ijc_sex_results_refinedAnnotations <- ijc_sex_resultsAnnotations [ijc_sex_results_refined ==TRUE,]
+sjc_sex_results_refinedAnnotations <- sjc_sex_resultsAnnotations [sjc_sex_results_refined ==TRUE,]
+head(sex_as_events_results_refinedAnnotations)
+head(sex_results_refinedAnnotations)
+head(ijc_sex_results_refinedAnnotations)
+head(sjc_sex_results_refinedAnnotations)
+```
+
+```{r}
+
+# geneSymbols are in the annotations
+sex_as_events_geneSymbols <- sex_as_events_resultsAnnotations$geneSymbol
+sex_geneSymbols <- sex_resultsAnnotations$geneSymbol
+ijc_sex_geneSymbols <- ijc_sex_resultsAnnotations$geneSymbol
+sjc_sex_geneSymbols <- sjc_sex_resultsAnnotations$geneSymbol
+
+sex_as_events_refined_geneSymbols <- sex_as_events_results_refinedAnnotations$geneSymbol
+sex_refined_geneSymbols <- sex_results_refinedAnnotations$geneSymbol
+ijc_sex_refined_geneSymbols <- ijc_sex_results_refinedAnnotations$geneSymbol
+sjc_sex_refined_geneSymbols <- sjc_sex_results_refinedAnnotations$geneSymbol
+
+# adjust the rownames to be the geneSymbols rather than junction IDs
+sex_as_events_results_rn <- paste(sex_as_events_geneSymbols, sex_as_events_rnResults, sep="-")
+sex_results_rn <- paste(sex_geneSymbols, sex_rnResults, sep="-")
+ijc_sex_results_rn <- paste(ijc_sex_geneSymbols, ijc_sex_rnResults, sep="-")
+sjc_sex_results_rn <- paste(sjc_sex_geneSymbols, sjc_sex_rnResults, sep="-")
+
+head(sex_as_events_results_rn)
+head(sex_results_rn)
+head(ijc_sex_results_rn)
+head(sjc_sex_results_rn)
+
+```
+
+```{r}
+rownames(sex_as_events_results) <- sex_as_events_results_rn
+rownames(sex_results) <- sex_results_rn
+rownames(ijc_sex_results) <- ijc_sex_results_rn
+rownames(sjc_sex_results) <- sjc_sex_results_rn
+```
+
+```{r}
+sex_as_events_filename = paste(paste('../data/BreastMammaryTissue',collapse='.'),'_DGE_sex_as_events.csv',sep='')
+sex_filename = paste(paste('../data/BreastMammaryTissue',collapse='.'),'_DGE_sex.csv',sep='')
+ijc_sex_filename = paste(paste('../data/BreastMammaryTissue',collapse='.'),'_DGE_ijc_sex.csv',sep='')
+sjc_sex_filename = paste(paste('../data/BreastMammaryTissue',collapse='.'),'_DGE_sjc_sex.csv',sep='')
+
+sex_as_events_refined_filename = paste(paste('../data/BreastMammaryTissue',collapse='.'),'_DGE_sex_as_events_refined.csv',sep='')
+sex_refined_filename = paste(paste('../data/BreastMammaryTissue',collapse='.'),'_DGE_sex_refined.csv',sep='')
+ijc_sex_refined_filename = paste(paste('../data/BreastMammaryTissue',collapse='.'),'_DGE_ijc_sex_refined.csv',sep='')
+sjc_sex_refined_filename = paste(paste('../data/BreastMammaryTissue',collapse='.'),'_DGE_sjc_sex_refined.csv',sep='')
+
+sex_as_events_genesFilename = paste(paste('../data/BreastMammaryTissue',collapse='.'),'_sex_as_events_universe.txt',sep='')
+sex_genesFilename = paste(paste('../data/BreastMammaryTissue',collapse='.'),'_sex_universe.txt',sep='')
+ijc_sex_genesFilename = paste(paste('../data/BreastMammaryTissue',collapse='.'),'_ijc_sex_universe.txt',sep='')
+sjc_sex_genesFilename = paste(paste('../data/BreastMammaryTissue',collapse='.'),'_sjc_sex_universe.txt',sep='')
+
+sex_as_events_refined_genesFilename = paste(paste('../data/BreastMammaryTissue',collapse='.'),'_sex_as_events_gene_set.txt',sep='')
+sex_refined_genesFilename = paste(paste('../data/BreastMammaryTissue',collapse='.'),'_sex_gene_set.txt',sep='')
+ijc_sex_refined_genesFilename = paste(paste('../data/BreastMammaryTissue',collapse='.'),'_ijc_sex_gene_set.txt',sep='')
+sjc_sex_refined_genesFilename = paste(paste('../data/BreastMammaryTissue',collapse='.'),'_sjc_sex_gene_set.txt',sep='')
+
+```
+
+```{r}
+write.table(sex_as_events_results, file = sex_as_events_filename, row.names = T, col.names = T, quote = F, sep = ",")
+write.table(sex_results, file = sex_filename , row.names = T, col.names = T, quote = F, sep = ",")
+write.table(ijc_sex_results, file = ijc_sex_filename , row.names = T, col.names = T, quote = F, sep = ",")
+write.table(sjc_sex_results, file = sjc_sex_filename , row.names = T, col.names = T, quote = F, sep = ",")
+
+write.table(sex_as_events_results[sex_as_events_results_refined,], file = sex_as_events_refined_filename, row.names = T, col.names = T, quote = F, sep = ",")
+write.table(sex_results [sex_results_refined ,], file = sex_refined_filename , row.names = T, col.names = T, quote = F, sep = ",")
+write.table(ijc_sex_results [ijc_sex_results_refined ,], file = ijc_sex_refined_filename , row.names = T, col.names = T, quote = F, sep = ",")
+write.table(sjc_sex_results [sjc_sex_results_refined ,], file = sjc_sex_refined_filename , row.names = T, col.names = T, quote = F, sep = ",")
+
+write.table(sex_as_events_geneSymbols, file = sex_as_events_genesFilename, row.names = F, col.names = F, quote = F, sep = ",")
+write.table(sex_geneSymbols, file = sex_genesFilename , row.names = F, col.names = F, quote = F, sep = ",")
+write.table(ijc_sex_geneSymbols, file = ijc_sex_genesFilename , row.names = F, col.names = F, quote = F, sep = ",")
+write.table(sjc_sex_geneSymbols, file = sjc_sex_genesFilename , row.names = F, col.names = F, quote = F, sep = ",")
+
+write.table(sex_as_events_refined_geneSymbols,file = sex_as_events_refined_genesFilename, row.names = F, col.names = F, quote = F, sep = ",")
+write.table(sex_refined_geneSymbols, file = sex_refined_genesFilename , row.names = F, col.names = F, quote = F, sep = ",")
+write.table(ijc_sex_refined_geneSymbols, file = ijc_sex_refined_genesFilename , row.names = F, col.names = F, quote = F, sep = ",")
+write.table(sjc_sex_refined_geneSymbols, file = sjc_sex_refined_genesFilename , row.names = F, col.names = F, quote = F, sep = ",")
+
+```
+
+## Metadata
+
+For replicability and reproducibility purposes, we also print the following metadata:
+
+1. Checksums of **'artefacts'**, files generated during the analysis and stored in the folder directory **`data`**
+2. List of environment metadata, dependencies, versions of libraries using `utils::sessionInfo()` and [`devtools::session_info()`](https://devtools.r-lib.org/reference/session_info.html)
+
+
+### 1. Checksums with the sha256 algorithm
+
+```{r}
+notebookid = "BreastMammaryTissueJunctionAnalysis"
+
+message("Generating sha256 checksums of the artefacts in the `..data/` directory .. ")
+system(paste0("cd ../data && find . -type f -exec sha256sum {} \\; > ../metadata/", notebookid, "_sha256sums.txt"), intern = TRUE)
+message("Done!\n")
+
+data.table::fread(paste0("../metadata/", notebookid, "_sha256sums.txt"), header = FALSE, col.names = c("sha256sum", "file"))
+```
+
+### 2. Libraries metadata
+
+```{r}
+dev_session_info <- devtools::session_info()
+utils_session_info <- utils::sessionInfo()
+
+message("Saving `devtools::session_info()` objects in ../metadata/devtools_session_info.rds ..")
+saveRDS(dev_session_info, file = paste0("../metadata/", notebookid, "_devtools_session_info.rds"))
+message("Done!\n")
+
+message("Saving `utils::sessionInfo()` objects in ../metadata/utils_session_info.rds ..")
+saveRDS(utils_session_info, file = paste0("../metadata/", notebookid ,"_utils_info.rds"))
+message("Done!\n")
+
+dev_session_info$platform
+dev_session_info$packages[dev_session_info$packages$attached==TRUE, ]
+```
+
+```{r}
+
+```
diff --git a/jupyter/BreastMammaryTissueJunctionAnalysis.ipynb b/jupyter/BreastMammaryTissueJunctionAnalysis.ipynb
index 5b3a62e..1379d0f 100644
--- a/jupyter/BreastMammaryTissueJunctionAnalysis.ipynb
+++ b/jupyter/BreastMammaryTissueJunctionAnalysis.ipynb
@@ -71,93 +71,18 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 14,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Loading required package: BiocGenerics\n",
- "Loading required package: parallel\n",
- "\n",
- "Attaching package: ‘BiocGenerics’\n",
- "\n",
- "The following objects are masked from ‘package:parallel’:\n",
- "\n",
- " clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,\n",
- " clusterExport, clusterMap, parApply, parCapply, parLapply,\n",
- " parLapplyLB, parRapply, parSapply, parSapplyLB\n",
- "\n",
- "The following object is masked from ‘package:limma’:\n",
- "\n",
- " plotMA\n",
- "\n",
- "The following objects are masked from ‘package:stats’:\n",
- "\n",
- " IQR, mad, sd, var, xtabs\n",
- "\n",
- "The following objects are masked from ‘package:base’:\n",
- "\n",
- " anyDuplicated, append, as.data.frame, basename, cbind, colnames,\n",
- " dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,\n",
- " grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,\n",
- " order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,\n",
- " rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,\n",
- " union, unique, unsplit, which, which.max, which.min\n",
- "\n",
- "Loading required package: Biobase\n",
- "Welcome to Bioconductor\n",
- "\n",
- " Vignettes contain introductory material; view with\n",
- " 'browseVignettes()'. To cite Bioconductor, see\n",
- " 'citation(\"Biobase\")', and for packages 'citation(\"pkgname\")'.\n",
- "\n",
- "Updating HTML index of packages in '.Library'\n",
- "Making 'packages.html' ... done\n",
- "Loading required package: R.oo\n",
- "Loading required package: R.methodsS3\n",
- "R.methodsS3 v1.8.0 (2020-02-14 07:10:20 UTC) successfully loaded. See ?R.methodsS3 for help.\n",
- "R.oo v1.23.0 successfully loaded. See ?R.oo for help.\n",
- "\n",
- "Attaching package: ‘R.oo’\n",
- "\n",
- "The following object is masked from ‘package:R.methodsS3’:\n",
- "\n",
- " throw\n",
- "\n",
- "The following objects are masked from ‘package:methods’:\n",
- "\n",
- " getClasses, getMethods\n",
- "\n",
- "The following objects are masked from ‘package:base’:\n",
- "\n",
- " attach, detach, load, save\n",
- "\n",
- "R.utils v2.9.2 successfully loaded. See ?R.utils for help.\n",
- "\n",
- "Attaching package: ‘R.utils’\n",
- "\n",
- "The following object is masked from ‘package:utils’:\n",
- "\n",
- " timestamp\n",
- "\n",
- "The following objects are masked from ‘package:base’:\n",
- "\n",
- " cat, commandArgs, getOption, inherits, isOpen, nullfile, parse,\n",
- " warnings\n",
- "\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"library(limma)\n",
+ "library(piggyback)\n",
"library(multtest)\n",
"library(Biobase)\n",
"library(edgeR)\n",
"library(tibble)\n",
- "install.packages('R.utils')\n",
- "library(R.utils)"
+ "library(R.utils)\n",
+ "library(statmod)"
]
},
{
@@ -176,14 +101,73 @@
"edgeR can work with expected counts as output by RSEM, but raw counts are still preferred. \n",
"\n",
"As instructed by the software, we are using the raw counts as provided by rMATS. The raw counts we are using in the model are `ijc` and `sjc`, the sample specific raw read counts as they align to the junctions of the `included exon (ijc)` and the junctions of the `excluded or skipped exon (sjc)` respectively.\n",
- "\n"
+ "\n",
+ "\n",
+ "Be sure to set your GITHUB_TOKEN, prior to downloading files\n",
+ "\n",
+ "One suggestion is change it to your token and then run it then immediately change it back to this:\n",
+ "\n",
+ "Sys.setenv(GITHUB_TOKEN = \"your-very-own-github-token\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Did you remember?\n",
+ "Did you remember to delete your private github token? Now is a good time to do so, before you save your work and checkit in inadvertantly...."
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 15,
"metadata": {},
"outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "downloading SraRunTable.noCram.noExome.noWGS.totalRNA.txt.gz ...\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " |======================================================================| 100%\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "downloading rmats_final.se.jc.ijc.txt.gz ...\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " |======================================================================| 100%\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "downloading rmats_final.se.jc.sjc.txt.gz ...\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " |======================================================================| 100%\n"
+ ]
+ },
{
"data": {
"text/html": [
@@ -336,125 +320,51 @@
"data": {
"text/html": [
"
\n",
- "A data.table: 6 × 8674\n",
+ "A data.table: 6 × 79\n",
"\n",
- "\tID | SRR1068788 | SRR1068808 | SRR1068832 | SRR1068855 | SRR1068880 | SRR1068929 | SRR1068953 | SRR1068977 | SRR1068999 | ⋯ | SRR821573 | SRR821581 | SRR821602 | SRR821626 | SRR821653 | SRR821690 | SRR821715 | SRR823967 | SRR823991 | SRR824015 |
\n",
- "\t<int> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | ⋯ | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> |
\n",
+ "\tRun | analyte_type | Assay Type | AvgSpotLen | Bases | BioProject | BioSample | biospecimen_repository | biospecimen_repository_sample_id | body_site | ⋯ | data_type (run) | product_part_number (exp) | product_part_number (run) | sample_barcode (exp) | sample_barcode (run) | is_technical_control | target_set (exp) | primary_disease (exp) | secondary_accessions (run) | Alignment_Provider (run) |
\n",
+ "\t<chr> | <chr> | <chr> | <int> | <int64> | <chr> | <chr> | <chr> | <chr> | <chr> | ⋯ | <chr> | <chr> | <chr> | <dbl> | <dbl> | <chr> | <lgl> | <chr> | <chr> | <lgl> |
\n",
"\n",
"\n",
- "\t1 | 0.0000 | 0.0000 | 0.000 | 0.0000 | 0.0769 | 0.0000 | 0.0000 | 0 | 0.0000 | ⋯ | 0.0000 | 0.000 | 0 | 0.0 | 0.0000 | 0 | 0.0000 | 0 | 0 | 0 |
\n",
- "\t2 | 1.0000 | 1.0000 | 1.000 | 0.9972 | 1.0000 | 1.0000 | 0.9885 | 1 | 1.0000 | ⋯ | 1.0000 | 1.000 | 1 | 1.0 | 1.0000 | 1 | 1.0000 | 1 | 1 | 1 |
\n",
- "\t3 | 1.0000 | 0.0000 | 1.000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1 | 1.0000 | ⋯ | 1.0000 | 1.000 | 0 | 1.0 | 1.0000 | 0 | 1.0000 | 0 | 0 | 0 |
\n",
- "\t4 | 0.0000 | 1.0000 | 1.000 | 0.5000 | 0.0000 | 0.0000 | 1.0000 | 0 | 0.5000 | ⋯ | 0.0000 | 0.000 | 0 | 0.0 | 0.2000 | 0 | 0.0000 | 0 | 0 | 0 |
\n",
- "\t5 | 1.0000 | 0.0000 | 0.250 | 0.1578 | 0.4285 | 1.0000 | 0.1428 | 1 | 0.4545 | ⋯ | 0.1428 | 0.250 | 0 | 0.2 | 0.5000 | 0 | 0.5000 | 0 | 0 | 0 |
\n",
- "\t6 | 0.0833 | 0.0041 | 0.027 | 0.0087 | 0.0142 | 0.0082 | 0.0078 | 0 | 0.0084 | ⋯ | 0.0095 | 0.037 | 0 | 0.0 | 0.0058 | 0 | 0.0078 | 0 | 0 | 0 |
\n",
+ "\tSRR2911715 | RNA | RNA-Seq | 150 | 3852895500 | PRJNA244100 | SAMN04216864 | Cloud Testing | HG00103 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |
\n",
+ "\tSRR2911716 | RNA | RNA-Seq | 150 | 4885577400 | PRJNA244100 | SAMN04216866 | Cloud Testing | HG00154 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |
\n",
+ "\tSRR2911718 | RNA | RNA-Seq | 150 | 2690545500 | PRJNA244100 | SAMN04216863 | Cloud Testing | NA18910 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |
\n",
+ "\tSRR2911719 | RNA | RNA-Seq | 150 | 2699599350 | PRJNA244100 | SAMN04216865 | Cloud Testing | NA19200 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |
\n",
+ "\tSRR2911720 | RNA | RNA-Seq | 152 | 4300467752 | PRJNA244100 | SAMN04216865 | Cloud Testing | NA19200 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |
\n",
+ "\tSRR2911717 | RNA | RNA-Seq | 150 | 2666546700 | PRJNA244100 | SAMN04216863 | Cloud Testing | NA18910 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |
\n",
"\n",
"
\n"
],
"text/latex": [
- "A data.table: 6 × 8674\n",
+ "A data.table: 6 × 79\n",
"\\begin{tabular}{lllllllllllllllllllll}\n",
- " ID & SRR1068788 & SRR1068808 & SRR1068832 & SRR1068855 & SRR1068880 & SRR1068929 & SRR1068953 & SRR1068977 & SRR1068999 & ⋯ & SRR821573 & SRR821581 & SRR821602 & SRR821626 & SRR821653 & SRR821690 & SRR821715 & SRR823967 & SRR823991 & SRR824015\\\\\n",
- " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
+ " Run & analyte\\_type & Assay Type & AvgSpotLen & Bases & BioProject & BioSample & biospecimen\\_repository & biospecimen\\_repository\\_sample\\_id & body\\_site & ⋯ & data\\_type (run) & product\\_part\\_number (exp) & product\\_part\\_number (run) & sample\\_barcode (exp) & sample\\_barcode (run) & is\\_technical\\_control & target\\_set (exp) & primary\\_disease (exp) & secondary\\_accessions (run) & Alignment\\_Provider (run)\\\\\n",
+ " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
"\\hline\n",
- "\t 1 & 0.0000 & 0.0000 & 0.000 & 0.0000 & 0.0769 & 0.0000 & 0.0000 & 0 & 0.0000 & ⋯ & 0.0000 & 0.000 & 0 & 0.0 & 0.0000 & 0 & 0.0000 & 0 & 0 & 0\\\\\n",
- "\t 2 & 1.0000 & 1.0000 & 1.000 & 0.9972 & 1.0000 & 1.0000 & 0.9885 & 1 & 1.0000 & ⋯ & 1.0000 & 1.000 & 1 & 1.0 & 1.0000 & 1 & 1.0000 & 1 & 1 & 1\\\\\n",
- "\t 3 & 1.0000 & 0.0000 & 1.000 & 0.0000 & 0.0000 & 0.0000 & 1.0000 & 1 & 1.0000 & ⋯ & 1.0000 & 1.000 & 0 & 1.0 & 1.0000 & 0 & 1.0000 & 0 & 0 & 0\\\\\n",
- "\t 4 & 0.0000 & 1.0000 & 1.000 & 0.5000 & 0.0000 & 0.0000 & 1.0000 & 0 & 0.5000 & ⋯ & 0.0000 & 0.000 & 0 & 0.0 & 0.2000 & 0 & 0.0000 & 0 & 0 & 0\\\\\n",
- "\t 5 & 1.0000 & 0.0000 & 0.250 & 0.1578 & 0.4285 & 1.0000 & 0.1428 & 1 & 0.4545 & ⋯ & 0.1428 & 0.250 & 0 & 0.2 & 0.5000 & 0 & 0.5000 & 0 & 0 & 0\\\\\n",
- "\t 6 & 0.0833 & 0.0041 & 0.027 & 0.0087 & 0.0142 & 0.0082 & 0.0078 & 0 & 0.0084 & ⋯ & 0.0095 & 0.037 & 0 & 0.0 & 0.0058 & 0 & 0.0078 & 0 & 0 & 0\\\\\n",
+ "\t SRR2911715 & RNA & RNA-Seq & 150 & 3852895500 & PRJNA244100 & SAMN04216864 & Cloud Testing & HG00103 & Lymphoblastoid cell line & ⋯ & & & & NA & NA & & NA & & & NA\\\\\n",
+ "\t SRR2911716 & RNA & RNA-Seq & 150 & 4885577400 & PRJNA244100 & SAMN04216866 & Cloud Testing & HG00154 & Lymphoblastoid cell line & ⋯ & & & & NA & NA & & NA & & & NA\\\\\n",
+ "\t SRR2911718 & RNA & RNA-Seq & 150 & 2690545500 & PRJNA244100 & SAMN04216863 & Cloud Testing & NA18910 & Lymphoblastoid cell line & ⋯ & & & & NA & NA & & NA & & & NA\\\\\n",
+ "\t SRR2911719 & RNA & RNA-Seq & 150 & 2699599350 & PRJNA244100 & SAMN04216865 & Cloud Testing & NA19200 & Lymphoblastoid cell line & ⋯ & & & & NA & NA & & NA & & & NA\\\\\n",
+ "\t SRR2911720 & RNA & RNA-Seq & 152 & 4300467752 & PRJNA244100 & SAMN04216865 & Cloud Testing & NA19200 & Lymphoblastoid cell line & ⋯ & & & & NA & NA & & NA & & & NA\\\\\n",
+ "\t SRR2911717 & RNA & RNA-Seq & 150 & 2666546700 & PRJNA244100 & SAMN04216863 & Cloud Testing & NA18910 & Lymphoblastoid cell line & ⋯ & & & & NA & NA & & NA & & & NA\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
- "A data.table: 6 × 8674\n",
+ "A data.table: 6 × 79\n",
"\n",
- "| ID <int> | SRR1068788 <dbl> | SRR1068808 <dbl> | SRR1068832 <dbl> | SRR1068855 <dbl> | SRR1068880 <dbl> | SRR1068929 <dbl> | SRR1068953 <dbl> | SRR1068977 <dbl> | SRR1068999 <dbl> | ⋯ ⋯ | SRR821573 <dbl> | SRR821581 <dbl> | SRR821602 <dbl> | SRR821626 <dbl> | SRR821653 <dbl> | SRR821690 <dbl> | SRR821715 <dbl> | SRR823967 <dbl> | SRR823991 <dbl> | SRR824015 <dbl> |\n",
+ "| Run <chr> | analyte_type <chr> | Assay Type <chr> | AvgSpotLen <int> | Bases <int64> | BioProject <chr> | BioSample <chr> | biospecimen_repository <chr> | biospecimen_repository_sample_id <chr> | body_site <chr> | ⋯ ⋯ | data_type (run) <chr> | product_part_number (exp) <chr> | product_part_number (run) <chr> | sample_barcode (exp) <dbl> | sample_barcode (run) <dbl> | is_technical_control <chr> | target_set (exp) <lgl> | primary_disease (exp) <chr> | secondary_accessions (run) <chr> | Alignment_Provider (run) <lgl> |\n",
"|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
- "| 1 | 0.0000 | 0.0000 | 0.000 | 0.0000 | 0.0769 | 0.0000 | 0.0000 | 0 | 0.0000 | ⋯ | 0.0000 | 0.000 | 0 | 0.0 | 0.0000 | 0 | 0.0000 | 0 | 0 | 0 |\n",
- "| 2 | 1.0000 | 1.0000 | 1.000 | 0.9972 | 1.0000 | 1.0000 | 0.9885 | 1 | 1.0000 | ⋯ | 1.0000 | 1.000 | 1 | 1.0 | 1.0000 | 1 | 1.0000 | 1 | 1 | 1 |\n",
- "| 3 | 1.0000 | 0.0000 | 1.000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1 | 1.0000 | ⋯ | 1.0000 | 1.000 | 0 | 1.0 | 1.0000 | 0 | 1.0000 | 0 | 0 | 0 |\n",
- "| 4 | 0.0000 | 1.0000 | 1.000 | 0.5000 | 0.0000 | 0.0000 | 1.0000 | 0 | 0.5000 | ⋯ | 0.0000 | 0.000 | 0 | 0.0 | 0.2000 | 0 | 0.0000 | 0 | 0 | 0 |\n",
- "| 5 | 1.0000 | 0.0000 | 0.250 | 0.1578 | 0.4285 | 1.0000 | 0.1428 | 1 | 0.4545 | ⋯ | 0.1428 | 0.250 | 0 | 0.2 | 0.5000 | 0 | 0.5000 | 0 | 0 | 0 |\n",
- "| 6 | 0.0833 | 0.0041 | 0.027 | 0.0087 | 0.0142 | 0.0082 | 0.0078 | 0 | 0.0084 | ⋯ | 0.0095 | 0.037 | 0 | 0.0 | 0.0058 | 0 | 0.0078 | 0 | 0 | 0 |\n",
- "\n"
- ],
- "text/plain": [
- " ID SRR1068788 SRR1068808 SRR1068832 SRR1068855 SRR1068880 SRR1068929\n",
- "1 1 0.0000 0.0000 0.000 0.0000 0.0769 0.0000 \n",
- "2 2 1.0000 1.0000 1.000 0.9972 1.0000 1.0000 \n",
- "3 3 1.0000 0.0000 1.000 0.0000 0.0000 0.0000 \n",
- "4 4 0.0000 1.0000 1.000 0.5000 0.0000 0.0000 \n",
- "5 5 1.0000 0.0000 0.250 0.1578 0.4285 1.0000 \n",
- "6 6 0.0833 0.0041 0.027 0.0087 0.0142 0.0082 \n",
- " SRR1068953 SRR1068977 SRR1068999 ⋯ SRR821573 SRR821581 SRR821602 SRR821626\n",
- "1 0.0000 0 0.0000 ⋯ 0.0000 0.000 0 0.0 \n",
- "2 0.9885 1 1.0000 ⋯ 1.0000 1.000 1 1.0 \n",
- "3 1.0000 1 1.0000 ⋯ 1.0000 1.000 0 1.0 \n",
- "4 1.0000 0 0.5000 ⋯ 0.0000 0.000 0 0.0 \n",
- "5 0.1428 1 0.4545 ⋯ 0.1428 0.250 0 0.2 \n",
- "6 0.0078 0 0.0084 ⋯ 0.0095 0.037 0 0.0 \n",
- " SRR821653 SRR821690 SRR821715 SRR823967 SRR823991 SRR824015\n",
- "1 0.0000 0 0.0000 0 0 0 \n",
- "2 1.0000 1 1.0000 1 1 1 \n",
- "3 1.0000 0 1.0000 0 0 0 \n",
- "4 0.2000 0 0.0000 0 0 0 \n",
- "5 0.5000 0 0.5000 0 0 0 \n",
- "6 0.0058 0 0.0078 0 0 0 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "\n",
- "A data.frame: 6 × 79\n",
- "\n",
- "\t | Run | analyte_type | Assay.Type | AvgSpotLen | Bases | BioProject | BioSample | biospecimen_repository | biospecimen_repository_sample_id | body_site | ⋯ | data_type..run. | product_part_number..exp. | product_part_number..run. | sample_barcode..exp. | sample_barcode..run. | is_technical_control | target_set..exp. | primary_disease..exp. | secondary_accessions..run. | Alignment_Provider..run. |
\n",
- "\t | <chr> | <chr> | <chr> | <int> | <dbl> | <chr> | <chr> | <chr> | <chr> | <chr> | ⋯ | <chr> | <chr> | <chr> | <dbl> | <dbl> | <chr> | <lgl> | <chr> | <chr> | <lgl> |
\n",
- "\n",
- "\n",
- "\t1 | SRR2911715 | RNA | RNA-Seq | 150 | 3852895500 | PRJNA244100 | SAMN04216864 | Cloud Testing | HG00103 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |
\n",
- "\t2 | SRR2911716 | RNA | RNA-Seq | 150 | 4885577400 | PRJNA244100 | SAMN04216866 | Cloud Testing | HG00154 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |
\n",
- "\t3 | SRR2911718 | RNA | RNA-Seq | 150 | 2690545500 | PRJNA244100 | SAMN04216863 | Cloud Testing | NA18910 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |
\n",
- "\t4 | SRR2911719 | RNA | RNA-Seq | 150 | 2699599350 | PRJNA244100 | SAMN04216865 | Cloud Testing | NA19200 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |
\n",
- "\t5 | SRR2911720 | RNA | RNA-Seq | 152 | 4300467752 | PRJNA244100 | SAMN04216865 | Cloud Testing | NA19200 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |
\n",
- "\t6 | SRR2911717 | RNA | RNA-Seq | 150 | 2666546700 | PRJNA244100 | SAMN04216863 | Cloud Testing | NA18910 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A data.frame: 6 × 79\n",
- "\\begin{tabular}{r|lllllllllllllllllllll}\n",
- " & Run & analyte\\_type & Assay.Type & AvgSpotLen & Bases & BioProject & BioSample & biospecimen\\_repository & biospecimen\\_repository\\_sample\\_id & body\\_site & ⋯ & data\\_type..run. & product\\_part\\_number..exp. & product\\_part\\_number..run. & sample\\_barcode..exp. & sample\\_barcode..run. & is\\_technical\\_control & target\\_set..exp. & primary\\_disease..exp. & secondary\\_accessions..run. & Alignment\\_Provider..run.\\\\\n",
- " & & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
- "\\hline\n",
- "\t1 & SRR2911715 & RNA & RNA-Seq & 150 & 3852895500 & PRJNA244100 & SAMN04216864 & Cloud Testing & HG00103 & Lymphoblastoid cell line & ⋯ & & & & NA & NA & & NA & & & NA\\\\\n",
- "\t2 & SRR2911716 & RNA & RNA-Seq & 150 & 4885577400 & PRJNA244100 & SAMN04216866 & Cloud Testing & HG00154 & Lymphoblastoid cell line & ⋯ & & & & NA & NA & & NA & & & NA\\\\\n",
- "\t3 & SRR2911718 & RNA & RNA-Seq & 150 & 2690545500 & PRJNA244100 & SAMN04216863 & Cloud Testing & NA18910 & Lymphoblastoid cell line & ⋯ & & & & NA & NA & & NA & & & NA\\\\\n",
- "\t4 & SRR2911719 & RNA & RNA-Seq & 150 & 2699599350 & PRJNA244100 & SAMN04216865 & Cloud Testing & NA19200 & Lymphoblastoid cell line & ⋯ & & & & NA & NA & & NA & & & NA\\\\\n",
- "\t5 & SRR2911720 & RNA & RNA-Seq & 152 & 4300467752 & PRJNA244100 & SAMN04216865 & Cloud Testing & NA19200 & Lymphoblastoid cell line & ⋯ & & & & NA & NA & & NA & & & NA\\\\\n",
- "\t6 & SRR2911717 & RNA & RNA-Seq & 150 & 2666546700 & PRJNA244100 & SAMN04216863 & Cloud Testing & NA18910 & Lymphoblastoid cell line & ⋯ & & & & NA & NA & & NA & & & NA\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A data.frame: 6 × 79\n",
- "\n",
- "| | Run <chr> | analyte_type <chr> | Assay.Type <chr> | AvgSpotLen <int> | Bases <dbl> | BioProject <chr> | BioSample <chr> | biospecimen_repository <chr> | biospecimen_repository_sample_id <chr> | body_site <chr> | ⋯ ⋯ | data_type..run. <chr> | product_part_number..exp. <chr> | product_part_number..run. <chr> | sample_barcode..exp. <dbl> | sample_barcode..run. <dbl> | is_technical_control <chr> | target_set..exp. <lgl> | primary_disease..exp. <chr> | secondary_accessions..run. <chr> | Alignment_Provider..run. <lgl> |\n",
- "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
- "| 1 | SRR2911715 | RNA | RNA-Seq | 150 | 3852895500 | PRJNA244100 | SAMN04216864 | Cloud Testing | HG00103 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |\n",
- "| 2 | SRR2911716 | RNA | RNA-Seq | 150 | 4885577400 | PRJNA244100 | SAMN04216866 | Cloud Testing | HG00154 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |\n",
- "| 3 | SRR2911718 | RNA | RNA-Seq | 150 | 2690545500 | PRJNA244100 | SAMN04216863 | Cloud Testing | NA18910 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |\n",
- "| 4 | SRR2911719 | RNA | RNA-Seq | 150 | 2699599350 | PRJNA244100 | SAMN04216865 | Cloud Testing | NA19200 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |\n",
- "| 5 | SRR2911720 | RNA | RNA-Seq | 152 | 4300467752 | PRJNA244100 | SAMN04216865 | Cloud Testing | NA19200 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |\n",
- "| 6 | SRR2911717 | RNA | RNA-Seq | 150 | 2666546700 | PRJNA244100 | SAMN04216863 | Cloud Testing | NA18910 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |\n",
+ "| SRR2911715 | RNA | RNA-Seq | 150 | 3852895500 | PRJNA244100 | SAMN04216864 | Cloud Testing | HG00103 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |\n",
+ "| SRR2911716 | RNA | RNA-Seq | 150 | 4885577400 | PRJNA244100 | SAMN04216866 | Cloud Testing | HG00154 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |\n",
+ "| SRR2911718 | RNA | RNA-Seq | 150 | 2690545500 | PRJNA244100 | SAMN04216863 | Cloud Testing | NA18910 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |\n",
+ "| SRR2911719 | RNA | RNA-Seq | 150 | 2699599350 | PRJNA244100 | SAMN04216865 | Cloud Testing | NA19200 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |\n",
+ "| SRR2911720 | RNA | RNA-Seq | 152 | 4300467752 | PRJNA244100 | SAMN04216865 | Cloud Testing | NA19200 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |\n",
+ "| SRR2911717 | RNA | RNA-Seq | 150 | 2666546700 | PRJNA244100 | SAMN04216863 | Cloud Testing | NA18910 | Lymphoblastoid cell line | ⋯ | | | | NA | NA | | NA | | | NA |\n",
"\n"
],
"text/plain": [
- " Run analyte_type Assay.Type AvgSpotLen Bases BioProject \n",
+ " Run analyte_type Assay Type AvgSpotLen Bases BioProject \n",
"1 SRR2911715 RNA RNA-Seq 150 3852895500 PRJNA244100\n",
"2 SRR2911716 RNA RNA-Seq 150 4885577400 PRJNA244100\n",
"3 SRR2911718 RNA RNA-Seq 150 2690545500 PRJNA244100\n",
@@ -468,28 +378,28 @@
"4 SAMN04216865 Cloud Testing NA19200 \n",
"5 SAMN04216865 Cloud Testing NA19200 \n",
"6 SAMN04216863 Cloud Testing NA18910 \n",
- " body_site ⋯ data_type..run. product_part_number..exp.\n",
+ " body_site ⋯ data_type (run) product_part_number (exp)\n",
"1 Lymphoblastoid cell line ⋯ \n",
"2 Lymphoblastoid cell line ⋯ \n",
"3 Lymphoblastoid cell line ⋯ \n",
"4 Lymphoblastoid cell line ⋯ \n",
"5 Lymphoblastoid cell line ⋯ \n",
"6 Lymphoblastoid cell line ⋯ \n",
- " product_part_number..run. sample_barcode..exp. sample_barcode..run.\n",
+ " product_part_number (run) sample_barcode (exp) sample_barcode (run)\n",
"1 NA NA \n",
"2 NA NA \n",
"3 NA NA \n",
"4 NA NA \n",
"5 NA NA \n",
"6 NA NA \n",
- " is_technical_control target_set..exp. primary_disease..exp.\n",
+ " is_technical_control target_set (exp) primary_disease (exp)\n",
"1 NA \n",
"2 NA \n",
"3 NA \n",
"4 NA \n",
"5 NA \n",
"6 NA \n",
- " secondary_accessions..run. Alignment_Provider..run.\n",
+ " secondary_accessions (run) Alignment_Provider (run)\n",
"1 NA \n",
"2 NA \n",
"3 NA \n",
@@ -500,62 +410,6 @@
},
"metadata": {},
"output_type": "display_data"
- }
- ],
- "source": [
- "ijc.iso.counts.mem <- data.table::fread(\"../data/rmats_final.se.jc.ijc.txt.gz\") \n",
- "sjc.iso.counts.mem <- data.table::fread(\"../data/rmats_final.se.jc.sjc.txt.gz\") \n",
- "inc.iso.counts.mem <- data.table::fread(\"../data/rmats_final.se.jc.inc.txt.gz\")\n",
- "\n",
- "meta.data<-read.csv('../data/SraRunTable.noCram.noExome.noWGS.totalRNA.txt',header=TRUE, stringsAsFactors=FALSE)\n",
- "head(ijc.iso.counts.mem)\n",
- "head(sjc.iso.counts.mem)\n",
- "head(inc.iso.counts.mem)\n",
- "head(meta.data)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Synchronize metadata samples with ijc, sjc and inc samples\n",
- "\n",
- "Keep only the runs that are in the ijc count list (assuming ijc and sjc are the same). As well, name the rows with the junction id column and then make the matrix just about the counts."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "- 42611
- 8674
\n"
- ],
- "text/latex": [
- "\\begin{enumerate*}\n",
- "\\item 42611\n",
- "\\item 8674\n",
- "\\end{enumerate*}\n"
- ],
- "text/markdown": [
- "1. 42611\n",
- "2. 8674\n",
- "\n",
- "\n"
- ],
- "text/plain": [
- "[1] 42611 8674"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
},
{
"data": {
@@ -643,69 +497,61 @@
},
"metadata": {},
"output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "keep.meta.data\n",
- "FALSE TRUE \n",
- " 1111 8673 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
}
],
"source": [
+ "piggyback::pb_download(\n",
+ " repo = \"TheJacksonLaboratory/sbas\", \n",
+ " file = \"SraRunTable.noCram.noExome.noWGS.totalRNA.txt.gz\",\n",
+ " tag = \"GTExV8.v1.0\", \n",
+ " dest = \"../data/\")\n",
+ "\n",
+ "piggyback::pb_download(\n",
+ " repo = \"adeslatt/sbas_test\", \n",
+ " file = \"rmats_final.se.jc.ijc.txt.gz\",\n",
+ " tag = \"rMATS.3.2.5.GTEx.V8.final_matrices\", \n",
+ " dest = \"../data/\")\n",
+ "\n",
+ "piggyback::pb_download(\n",
+ " repo = \"adeslatt/sbas_test\", \n",
+ " file = \"rmats_final.se.jc.sjc.txt.gz\",\n",
+ " tag = \"rMATS.3.2.5.GTEx.V8.final_matrices\", \n",
+ " dest = \"../data/\")\n",
+ "\n",
+ "ijc.iso.counts.mem <- data.table::fread(\"../data/rmats_final.se.jc.ijc.txt.gz\") \n",
+ "sjc.iso.counts.mem <- data.table::fread(\"../data/rmats_final.se.jc.sjc.txt.gz\") \n",
+ "meta.data <- data.table::fread(\"../data/SraRunTable.noCram.noExome.noWGS.totalRNA.txt.gz\")\n",
+ "\n",
+ "head(ijc.iso.counts.mem)\n",
+ "head(sjc.iso.counts.mem)\n",
+ "head(meta.data)\n",
+ "\n",
"#dimensions before we make the changes.\n",
"dim(ijc.iso.counts.mem)\n",
"dim(sjc.iso.counts.mem)\n",
- "dim(inc.iso.counts.mem)\n",
- "dim(meta.data)\n",
- "\n",
- "# the sample names are in the columns of both the ijc and the sjc matrices, these matrices have the identical column order)\n",
- "keep.meta.data <- meta.data$Run %in% colnames(ijc.iso.counts.mem)\n",
- "table(keep.meta.data)\n",
- "reduced.meta.data <- meta.data[keep.meta.data==TRUE,]"
+ "dim(meta.data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "## Construct the ijc, sjc and inc as data matrices\n",
- "The Junction ID is encoded in the first column of the matrix. We need to both preserve it (and it is unique) as well as remove it so we may do our calculations."
+ "## Synchronize metadata samples with ijc sjc samples\n",
+ "\n",
+ "Keep only the runs that are in the ijc count list (assuming ijc and sjc are the same). As well, name the rows with the junction id column and then make the matrix just about the counts."
]
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
- "text/html": [
- "\n",
- "- 42611
- 8673
\n"
- ],
- "text/latex": [
- "\\begin{enumerate*}\n",
- "\\item 42611\n",
- "\\item 8673\n",
- "\\end{enumerate*}\n"
- ],
- "text/markdown": [
- "1. 42611\n",
- "2. 8673\n",
- "\n",
- "\n"
- ],
"text/plain": [
- "[1] 42611 8673"
+ "keep.meta.data\n",
+ "FALSE TRUE \n",
+ " 1111 8673 "
]
},
"metadata": {},
@@ -800,69 +646,45 @@
}
],
"source": [
+ "# the sample names are in the columns of both the ijc and the sjc matrices, these matrices have the identical column order)\n",
+ "keep.meta.data <- meta.data$Run %in% colnames(ijc.iso.counts.mem)\n",
+ "table(keep.meta.data)\n",
+ "reduced.meta.data <- meta.data[keep.meta.data==TRUE,]\n",
+ "\n",
"# preserve junction id as rowname\n",
"rownames(ijc.iso.counts.mem) <- ijc.iso.counts.mem$ID\n",
"rownames(sjc.iso.counts.mem) <- sjc.iso.counts.mem$ID\n",
- "rownames(inc.iso.counts.mem) <- inc.iso.counts.mem$ID\n",
"\n",
"# and remove the id to have a data matrix\n",
"ijc.iso.counts.mem <- ijc.iso.counts.mem[,-1]\n",
"sjc.iso.counts.mem <- sjc.iso.counts.mem[,-1]\n",
- "inc.iso.counts.mem <- inc.iso.counts.mem[,-1]\n",
- "dim(ijc.iso.counts.mem)\n",
- "dim(sjc.iso.counts.mem)\n",
- "dim(inc.iso.counts.mem)\n",
- "dim(reduced.meta.data)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Order ijc and sjc columns in the same order as the metadata Run order\n",
"\n",
- "Using tibble library, we can rearrange the columns as the column name. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [],
- "source": [
- "meta.data.run.names <- as.character(reduced.meta.data$Run)\n",
+ "meta.data.run.names <- reduced.meta.data$Run\n",
"ijc.iso.counts.mem2 <- as_tibble(ijc.iso.counts.mem)\n",
"sjc.iso.counts.mem2 <- as_tibble(sjc.iso.counts.mem)\n",
- "inc.iso.counts.mem2 <- as_tibble(inc.iso.counts.mem)\n",
"\n",
"ijc.iso.counts.mem2 <- ijc.iso.counts.mem2[,c(meta.data.run.names)]\n",
"sjc.iso.counts.mem2 <- sjc.iso.counts.mem2[,c(meta.data.run.names)]\n",
- "inc.iso.counts.mem2 <- inc.iso.counts.mem2[,c(meta.data.run.names)]"
+ "\n",
+ "dim(ijc.iso.counts.mem)\n",
+ "dim(sjc.iso.counts.mem)\n",
+ "dim(reduced.meta.data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "Remove samples that match '11IL0' from the ijc, sjc and metadata files"
+ "## Order ijc and sjc columns in the same order as the metadata Run order\n",
+ "\n",
+ "Using tibble library, we can rearrange the columns as the column name. "
]
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 17,
"metadata": {},
"outputs": [
- {
- "data": {
- "text/plain": [
- "keep.meta.data\n",
- "FALSE TRUE \n",
- " 12 8661 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
{
"data": {
"text/html": [
@@ -871,22 +693,22 @@
".list-inline>li {display: inline-block}\n",
".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n",
"\n",
- "- 42611
- 8661
\n"
+ "- 42611
- 8673
\n"
],
"text/latex": [
"\\begin{enumerate*}\n",
"\\item 42611\n",
- "\\item 8661\n",
+ "\\item 8673\n",
"\\end{enumerate*}\n"
],
"text/markdown": [
"1. 42611\n",
- "2. 8661\n",
+ "2. 8673\n",
"\n",
"\n"
],
"text/plain": [
- "[1] 42611 8661"
+ "[1] 42611 8673"
]
},
"metadata": {},
@@ -900,22 +722,22 @@
".list-inline>li {display: inline-block}\n",
".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n",
"\n",
- "- 42611
- 8661
\n"
+ "- 42611
- 8673
\n"
],
"text/latex": [
"\\begin{enumerate*}\n",
"\\item 42611\n",
- "\\item 8661\n",
+ "\\item 8673\n",
"\\end{enumerate*}\n"
],
"text/markdown": [
"1. 42611\n",
- "2. 8661\n",
+ "2. 8673\n",
"\n",
"\n"
],
"text/plain": [
- "[1] 42611 8661"
+ "[1] 42611 8673"
]
},
"metadata": {},
@@ -929,22 +751,22 @@
".list-inline>li {display: inline-block}\n",
".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n",
"\n",
- "- 42611
- 8661
\n"
+ "- 8673
- 79
\n"
],
"text/latex": [
"\\begin{enumerate*}\n",
- "\\item 42611\n",
- "\\item 8661\n",
+ "\\item 8673\n",
+ "\\item 79\n",
"\\end{enumerate*}\n"
],
"text/markdown": [
- "1. 42611\n",
- "2. 8661\n",
+ "1. 8673\n",
+ "2. 79\n",
"\n",
"\n"
],
"text/plain": [
- "[1] 42611 8661"
+ "[1] 8673 79"
]
},
"metadata": {},
@@ -952,37 +774,36 @@
}
],
"source": [
- "keep.meta.data <- (!grepl('11ILO',reduced.meta.data$Sample.Name))\n",
- "table(keep.meta.data)\n",
- "ijc.iso.counts.mem2 <-ijc.iso.counts.mem2 [ ,keep.meta.data==TRUE]\n",
- "sjc.iso.counts.mem2 <-sjc.iso.counts.mem2 [ ,keep.meta.data==TRUE]\n",
- "inc.iso.counts.mem2 <-inc.iso.counts.mem2 [ ,keep.meta.data==TRUE]\n",
- "reduced.meta.data <-reduced.meta.data [keep.meta.data==TRUE, ]\n",
+ "meta.data.run.names <- as.character(reduced.meta.data$Run)\n",
+ "ijc.iso.counts.mem2 <- as_tibble(ijc.iso.counts.mem)\n",
+ "sjc.iso.counts.mem2 <- as_tibble(sjc.iso.counts.mem)\n",
+ "\n",
+ "ijc.iso.counts.mem2 <- ijc.iso.counts.mem2[,c(meta.data.run.names)]\n",
+ "sjc.iso.counts.mem2 <- sjc.iso.counts.mem2[,c(meta.data.run.names)]\n",
+ "\n",
"dim(ijc.iso.counts.mem2)\n",
"dim(sjc.iso.counts.mem2)\n",
- "dim(inc.iso.counts.mem2)"
+ "dim(reduced.meta.data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "### and focus on a single tissue\n",
- "\n",
- "this will become a function so we can proceed on all the tissues"
+ "Remove samples that match '11IL0' from the ijc, sjc and metadata files using the logical grep, grepl"
]
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "tissue\n",
+ "keep.meta.data\n",
"FALSE TRUE \n",
- " 8470 191 "
+ " 12 8661 "
]
},
"metadata": {},
@@ -996,22 +817,88 @@
".list-inline>li {display: inline-block}\n",
".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n",
"\n",
- "- 42611
- 191
\n"
+ "- 42611
- 8661
\n"
],
"text/latex": [
"\\begin{enumerate*}\n",
"\\item 42611\n",
- "\\item 191\n",
+ "\\item 8661\n",
"\\end{enumerate*}\n"
],
"text/markdown": [
"1. 42611\n",
- "2. 191\n",
+ "2. 8661\n",
"\n",
"\n"
],
"text/plain": [
- "[1] 42611 191"
+ "[1] 42611 8661"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "- 42611
- 8661
\n"
+ ],
+ "text/latex": [
+ "\\begin{enumerate*}\n",
+ "\\item 42611\n",
+ "\\item 8661\n",
+ "\\end{enumerate*}\n"
+ ],
+ "text/markdown": [
+ "1. 42611\n",
+ "2. 8661\n",
+ "\n",
+ "\n"
+ ],
+ "text/plain": [
+ "[1] 42611 8661"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "keep.meta.data <- (!grepl('11ILO',reduced.meta.data$\"Sample Name\"))\n",
+ "table(keep.meta.data)\n",
+ "ijc.iso.counts.mem2 <-ijc.iso.counts.mem2 [ ,keep.meta.data==TRUE]\n",
+ "sjc.iso.counts.mem2 <-sjc.iso.counts.mem2 [ ,keep.meta.data==TRUE]\n",
+ "\n",
+ "reduced.meta.data <-reduced.meta.data [keep.meta.data==TRUE, ]\n",
+ "dim(ijc.iso.counts.mem2)\n",
+ "dim(sjc.iso.counts.mem2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### and focus on a single tissue\n",
+ "\n",
+ "this will become a function so we can proceed on all the tissues"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "tissue\n",
+ "FALSE TRUE \n",
+ " 8470 191 "
]
},
"metadata": {},
@@ -1082,11 +969,10 @@
"\n",
"ijc.iso.counts.mem2 <-ijc.iso.counts.mem2 [ ,tissue==TRUE]\n",
"sjc.iso.counts.mem2 <-sjc.iso.counts.mem2 [ ,tissue==TRUE]\n",
- "inc.iso.counts.mem2 <-inc.iso.counts.mem2 [ ,tissue==TRUE]\n",
+ "\n",
"reduced.meta.data <-reduced.meta.data [tissue==TRUE, ]\n",
"dim(ijc.iso.counts.mem2)\n",
- "dim(sjc.iso.counts.mem2)\n",
- "dim(inc.iso.counts.mem2)"
+ "dim(sjc.iso.counts.mem2)"
]
},
{
@@ -1103,14 +989,14 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"ijc <- as.data.frame(ijc.iso.counts.mem2)\n",
"sjc <- as.data.frame(sjc.iso.counts.mem2)\n",
"ijc <- data.matrix(ijc)\n",
- "sjc <- data.matrix(sjc)\n"
+ "sjc <- data.matrix(sjc)"
]
},
{
@@ -1128,19 +1014,9 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 21,
"metadata": {},
"outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdabwU1Z3/8dMsd5HVhR2RdcSrRhBFIhKIRK8Rg0iMiEbjOBoVzN8YcQZX\nRlwymYwJCUuSF+5bkIAg4pYgIYIaWQSD0RgRMEoAEUH25UL/H9RYU9Q5derU2tV1P+8Hvu6t\nruVX1e2tL79TVV0oFosCAAAA5a9BqQsAAABAPAh2AAAAOUGwAwAAyAmCHQAAQE4Q7AAAAHKC\nYAcAAJATBDsAAICcINgBAADkBMEOAAAgJwh2AAAAOUGwAwAAyAmCHQAAQE4Q7AAAAHKCYAcA\nAJATBDsAAICcINgBAADkBMEOAAAgJwh2AAAAOUGwAwAAyAmCHQAAQE4Q7AAAAHKCYAcAAJAT\nBDsAAICcINgBAADkBMEOAAAgJwh2AAAAOUGwAwAAyAmCHQAAQE4Q7AAAAHKCYAcAAJATBDsA\nAICcINgBAADkBMEOAAAgJwh2AAAAOUGwAwAAyAmCHQAAQE4Q7AAAAHKCYAcAAJATBDsAAICc\nINgBQOnNmDGjUCgUCoWqqqpS15Jzs2fPtg51o0aNSl0LED+CHYA4PfDAAwWHBx98UJ7n0Ucf\ndc7zwAMPpF8nAOQS/14BkKDZs2f/27/9m2vinDlzSlJMlvXq1evnP/+5ECIfbaSNGzd26NDh\nwIED7733Xs+ePUtdDlCP5OEvCIDMmjdv3s6dO5s0aWJP2bt37+9///sSlpRN3bt3/+EPf1jq\nKmIzffr0AwcOlLoKoD5iKBZAIjp27CiE2LNnz8svv+ycPn/+/B07dgghOnToUJrKkLynn366\n1CUA9RTBDkjWN77xDetKsrPPPtv10uOPP2691Lhx402bNlkTt23bdt999/Xr1++II46oqKho\n06ZNbW3tww8/rOx/GM780EMPWRv62te+JoSYMWNG7969DzvssM6dO99+++379+8XQrz33ntD\nhw49/PDDmzZtevbZZ//1r391ruGNN96YMWPGjBkz3njjDcMd79u3b8OGDYUQzz77rHO6NQ7b\nsGHDPn36KBd8//33r7322h49elRVVTVv3vzUU0/95S9/WVdX55ynWCxOmzattra2devWjRs3\nbt68+WmnnTZx4kTnjrv2euHChWeddZa1gwMGDJg3b57vLgR67wKVNHDgwLq6uhtuuKFVq1Zt\n2rQR3jdPJLSn69at+9GPflRTU9OkSZPq6urjjz9+7Nix9ocw0Hvhct555xUKhddee8369bjj\njisUClYzUrP7hpsLsaePPPLIKaec0qRJkyOOOGLIkCFLly4tFAqa+oGyVwSQJPvugYqKim3b\ntjlfGj58uPXSueeea01ZsWKFVx/rq1/96meffeZc3HzmadOmWdNPOOGE6dOnu05so0ePXr16\n9VFHHeWc2KpVq61bt9prOP/8863p559/vn5/p06das353e9+t1+/fkKII444oq6uzp7B6uR9\n9atfvfDCC605p06dar86c+ZM5W2hZ5555u7du+3ZLr30UuWOn3feeQcPHpT3+uWXX66oqHDO\n2bBhw3nz5sX43pmU9NRTT1kTv/KVr9x///12JcVi8Xe/+531a2VlpXNDSezp/PnzW7RoIa+z\nTZs2f/nLX4K+Fy5DhgyRF7nhhhv0u2+4uaB7etNNN7nWVllZefvtt7s2DeQJwQ5I1pYtW+zT\nz/Tp0+3pu3fvtq88e+qpp4rF4ueff24HtS5duvzqV7+aPXv2f/zHf9hX0w8ZMsRePNDMdmho\n165dx44dhw4dev3119un9srKym9+85vt27e/4YYbTjvtNPsU+POf/9xeQ4hgd9FFF40bN876\nef78+dary5Yts6aMGzdu2LBh1s92sFu9enV1dbU18eabb37//feXLFkycOBAa8ott9xizfbc\nc89ZUxo0aDBlypSVK1c++OCD9o7bB9m51507d+7Vq9ctt9zi7L317ds3rvcuaEmdO3c++uij\nGzdu3KtXr2OPPbboEeyS2NP169cfccQR1vSBAwfOmDHjiSee6NWrlzXl2GOP3b9/v/l7Ifvr\nX//q7NE++eSTCxcuXL16tX73DTcXaE/ffPNNe/qZZ575zDPPzJkz55xzzrEPIMEOuUSwAxJn\np6LLLrvMnmif/Jo1a7Zz585isXjXXXdZU5o3b75u3Tp7zscff9w+Py1dutSaGGhm+3QohPjO\nd75jTZw5c6Y9saqq6sMPPywWi3v37j322GOtid/61rfkXTAPdt/+9rcXL15s/Ww1bIrFoh31\nFi9ebK/TDnbXX3+9NWXQoEH2Cjdt2tS0aVPrQFmdm0mTJg0ZMmTIkCH2aovF4tChQ61lL7/8\ncnmvBwwYYHd97B5YgwYN9u3bp98dw/cuREk9evT4+OOP7ZmVwS6JPb3lllusiUcddZRVfLFY\n/PTTT+1cNWPGDPP3Qmn9+vV2Pe+99568j/LuG24u0J5effXV1sRWrVrt2LHDmrh//377Ll2C\nHXKJYAckzh4/OvLII+1BySuuuMKa+L3vfc+actJJJ1lTrrjiCufidXV1hx9+uPXS+PHjQ8zs\nPB0uXrzYmrhv377Kykpr4siRI+01jBkzxprYq1evEDvrDHYHDx602oqdO3e2Xu3du7cQokOH\nDgcPHpSDXbdu3awpt912224H64IqIYRm8PQHP/iBNc/ZZ58t77XdMiwWi84rsdauXavfHcP3\nLkRJVqvP5jUUG/uennDCCdaUq666yrna11577cUXX3zxxRc/+OCDYrT3wiTYuXbfcHOB9vS4\n446zplx55ZXObd19993WdIIdcombJ4DEDR061Go8bN68+fXXXxdCHDhwYO7cudar3/3ud4UQ\nxWLRvl/hxBNPdC7esGFDu8fw3nvvBZ3ZxT6vN27cuFWrVtbPX/nKV+wZ2rVrZ/2wffv2EDvr\nVCgUrPS2du3av/zlL5988sny5cuFEMOGDZMvYC8Wi2vWrLF+vvfee6sdXn31VWu6vdfz5s0b\nNmxYt27dqqqqrKvpJ06caL2kvMvklFNOsX8+5phj7J+tfdy2bVtnyd69e4XZexeupDPPPNP/\nCMa9p8Vi0f5U2FnKcvrpp59zzjnnnHNO9+7dA70X4Th3P9zm9HsqhFi7dq31Q48ePZwLHn/8\n8VEqBzKO59gBiauurj7//POffPJJIcRzzz03YMCAhQsXfvbZZ0KI9u3bW2e4Xbt22Xf/WUnC\nyb6iyzppBZrZqbKy0h5xs361fmjZsqU90XVBekTDhg2bMmWKEOIPf/jDYYcdZk+U59y1a9fB\ngwf1a/v888+FEL/61a9GjRplTWnSpEnXrl0rKirWrVtnHVJZZWVls2bN7F/lK/QPHjz40Ucf\nuSYWi0Vh9t6FKKlhw4Z2qtaIfU937dplx0G7syszfy/Cce1+iM357mmxWNy9e7f1s/3BU/4K\n5AwdOyANI0eOtH6wHvYxe/Zs69dLLrmkQYMGQojDDjvMvqZ727ZtrsXtiGbd8RBo5tIaNGiQ\nlRrnz5//yiuvCCFatmxpXxTvdNhhh1mPRxFCTJgwQTnE8J//+Z87duywB4svueSSTZs2vfvu\nuytWrLjooosS2gXf9y5ESY0aNbKW1UhiT6urq+3t7ty502s2w/cidBmu3U9ic84Hx7j2VP5f\nBsgTgh2QhrPPPvvII48UQrz//vt///vf7XBgj+UVCgV7kHTFihXOZffv3//uu+9aP1tjpoFm\nLq3GjRufe+65QoiFCxf+8Y9/FEIMGTKkcePG8pyFQsEeHLQH5mTLly/ftWuX9fPNN99sNyDf\nf//90EW2bNlSThJ2LPB975IoKaHVNmjQwB6XdI3UP/XUU/fcc88999zz0ksvGb4XcUloc506\ndbJ++Nvf/uacbl0PAOQVwQ5IQ+PGje3Hto0fP94a+DvxxBPteyCEEPaj0WbPnv3JJ5/Y0x95\n5BGrCVcoFOxBzEAzR/fmm2/Onj179uzZzkdIGLLK2L59uzWapqmqtrbW+uF3v/udnWkOHDhw\n6aWXXnnllbfccsu6deusS98s1qOVhRDvvvuulRqdE+Pi+94lVFJCq7VythBi9uzZX3zxhfXz\nli1brr/++jvuuOOOO+6wPk4m74XXJpwXUHqNGrtE2ZyXr371q9YPc+bM2bJli/Xzjh07nHeO\nAzkU+HYLAKEsWLDA9X/fT37yE+cMW7ZssR7eK4To3r375MmTZ86cefPNN9tXwjlvYww0s9cd\nl3ab5Fe/+pU90b42v1u3bvbEcI87saZs377drqqqqmr79u2uddp3xX744Yd2X6p///7PP//8\nyy+/bEfY448/vq6ubt26dfYo3re+9a2VK1fOmTOnQ4cO9lNamjdv/sYbb2zcuNFrrz/++GP7\nLVi5cqXf+1Ys+r130UtSvkcJ7elHH31kX5122mmnPf30008++aT9LSCdOnWyngxi8l54Ha66\nujq7KTtgwIDp06e//PLLyn20GW4u0J4637U+ffpMmzbt0UcfPfXUU+3LUhs0aGDy7gPlhWAH\npMR+9od9UnE+x8ui+TKJ4cOHu54cZj5zaYNdsVi0u0TOxybLwc4q1U6BTh06dLAfnGE/78PW\nvn37NWvWtG/f3p4ybty4GIOd73sXsaSix3uU0J7OnTtXeQNB27ZtV6xYEei98PLNb37TuYj1\nvusf6WKyuaB7+q//+q+utTVp0mTSpEn2rwcOHNDvCFB2GIoFUlIoFEaMGGH/OnDgQLvlZjvp\npJPefffde+6559RTT23RokXjxo3btWt3wQUXzJkzR/7CpUAzl9YFF1xg/eA7OnzhhRcuX778\nyiuv7NKlS2Vl5WGHHXbCCSfcdtttK1eutB/jcv/99//kJz+pqamprq7u0KHDVVddtWTJks6d\nOz/66KPHHntso0aNOnbsaD/DLBa+711CJSW02iFDhrzzzjvXXXddjx49rKeKHH/88bfccsvK\nlSud1waYvBdepk6dOmzYsJYtW1ZVVXXp0uX000/3rSrK5rw88MAD999//7HHHltRUdG6desL\nL7zwzTff/PrXv27PoLmDBChThWKxWOoaAAAAEAM6dgAAADlBsAMAAMgJgh0AAEBOEOwAAABy\ngmAHAACQEwQ7AACAnCDYAQAA5ATBDgAAICcIdgAAADlBsAMAAMgJgh0AAEBOEOwAAABygmAH\nAACQEwQ7AACAnCDYAQAA5ATBDgAAICcIdgAAADlBsAMAAMgJgh0AAEBOEOwAAABygmAHAACQ\nEwQ7AACAnCDYAQAA5ATBDgAAICcIdgAAADlBsAMAAMgJgh0AAEBOEOwAAABygmAHAACQEwQ7\nAACAnCDYAQAA5ATBDgAAICcIdgAAADlBsAMAAMgJgh0AAEBOEOwAAABygmAHAACQEwQ7AACA\nnGhU6gLKw9tvv11XV1fqKgAAQCY0atTopJNOKnUVCgQ7f0uXLj311FNLXQUAAMiQJUuWnHLK\nKaWuwo1g52/fvn1CiL1791ZUVJS6FgAAUGL79u2rrKy04kHWcI0dAABAThDsAAAAcoJgBwAA\nkBMEOwAAgJwg2AEAAOQEwQ4AACAnCHYAAAA5QbADAADICYIdAABAThDsAAAAcoJgBwAAkBME\nOwAAgJxoVOoCAisWi2vWrFm9evX27duFEC1atOjRo8fRRx9d6roAAABKrJyC3ZYtW+69997H\nH3/8008/db3UqVOnq666asyYMdXV1SWpDQAAoOTKJtitX7++f//+a9as6dGjx7nnnnvMMcc0\nadJECLFt27YPP/zwT3/605133jlz5sw//vGPhx9+eKmLBQAAKIGyCXZ33HHHJ598Mn369O98\n5zvyqwcOHPjNb35z/fXX33XXXRMmTEi/PAAAgJIrm5snnn/++csuu0yZ6oQQDRs2HDVq1EUX\nXfTMM8+kXBgAAEBGlE2w27x5c7du3fTzHHfccRs3bkynHgAAgKwpm2DXvn37t99+Wz/P8uXL\n27dvn049AAAAWVM2wW7YsGG/+93v/ud//mfv3r3yqzt37hw3btyzzz47YsSI9GsDAADIgkKx\nWCx1DUa2bt06ePDgt956q1mzZn379j366KObNm1aLBZ37Njx0UcfLV68eNeuXQMGDHjhhRea\nNm0a76Zff/31/v377927t6KiIt41A+krFApCiCj/40dfAwCUtX379lVWVr722munn356qWtx\nK5u7Ylu2bPnGG29Mnjz5scceW7BgwYEDB+yXGjdu3KdPnyuvvPLKK69s2LBhCYsEAAAoobIJ\ndkKIioqKG2+88cYbb9yzZ8/HH39sffNE8+bNO3XqRC8NMBS900avDgAyq5yCna2qqqpHjx6l\nrgIAACBbyubmCQAAAOiVZcdO6cMPP7zmmmuEEPPmzTNfas2aNaeddlpdXZ1mnv379wshDh48\nGLFCoIxwhwQAlKP8BLvt27e/8sorQZc65phjHn744V27dmnm+cMf/jB16lR9+AMAACi5/AS7\nnj17rly5MuhSDRo0GDJkiH6ezz//fOrUqWHrAsoSvToAKEf5CXZVVVUnnHBCqasAAAAomVzd\nPLFly5a1a9eWugoAAIDSKKdg95e//GXIkCGdO3ceMGDAlClTnM8otvzkJz/p0qVLSWoDAAAo\nubIZin3ttdcGDx68d+/eww477J///OeiRYumT58+a9asww8/vNSlAZnG/a0AUH+UTcfuxz/+\n8cGDB2fNmrVjx47t27f/7Gc/e/3112tra3fu3Fnq0gAAADKhbILdX/7ylxEjRgwbNqxQKFRW\nVt54440vvfTS22+/fdFFF8ljsgBsxWKRdh0A1BNlE+w2bNjQtWtX55QzzzzzgQceeOGFF370\nox+VqioAAIDsKJtr7Nq0abNixQrXxMsuu+y999778Y9/3LFjx5tvvrkkhQE5UCgU6OoBQA6U\nTbAbPnz4xIkTJ02adM011zRu3Niefu+99/7zn//893//93/+85+MyQIhWHdXAAByoGyC3Z13\n3jl79uwf/OAHzz777B/+8Ad7eqFQePjhh1u0aDFhwoQSlgeUr2KxSLYDgHwom2vsjjzyyGXL\nlo0aNUr+eolCofCLX/xi5syZ3bp1K0ltQLljHBYA8qFsOnZCiKOOOmry5Mlerw4fPnz48OFp\n1gMAAJApZdOxAwAAgB7BDgAAICcIdgAAADlBsAMAAMgJgh2AeqdQKPCEFwC5RLADAADIiXJ6\n3AkAxILn9gHIKzp2AEwxggkAGUewAwAAyAmGYgGYYgQTADKOjh0AAEBOEOwAAABygmAHAACQ\nEwQ7AACAnCDYAQAA5ATBDkBSeO4dAKSMYAcAAJATPMcOQFJ47h0ApIyOHQAAQE4Q7AAAAHKC\nYAcAAJATBDsAwXCvKwBkFsEOAAAgJ7grFkAw3OsKAJlFxw4AACAnCHYAAAA5QbADAADICYId\nAABAThDsAAAAcoJgBwAlxnMBAcSFYAcApWSlOrIdgFgQ7ACglKznAvJ0QACxINgBQImR6gDE\nhWAHAACQEwQ7IOsKhQIXYAEATBDsgPqFjAgAOUawA7KuWCzGdQ0WN2ACQL41KnUBANLDRfoA\nkG907AAAAHKCYAcAAJATBDsAAICcINgBAADkBMEOAAAgJwh2AAAAOUGwAwAAyAmCHQAAQE4Q\n7AAAAHKCYAcAAJATBDsAAICcINgBAADkBMEOAAAgJwh2AAAAOUGwAwAAyAmCHQAAQE4Q7AAA\nAHKCYAcAAJATBDsAAICcINgBAADkBMEOAAAgJwh2AAAAOUGwA2CqUCiUugQAgA7BDkAAZDsA\nyDKCHYAAisViqUsAAHgi2AEwRaoDgIwj2AEAAOQEwQ4AACAnCHZA4gqFAvccAABSQLADAADI\niUalLgDIP+45AACkg44dAABAThDsgDzgGj4AgCDYATlAqgMAWAh2QNnjGj4AgIVgB+SBV7aj\nmQcA9QrBDsgtK9WR7QCg/iDYAblltfEYqAWA+oNgB+QZqQ4A6hUeUAzUF84xWQIfAOQSHTug\nviDMAUDu0bED6hGyHQDkGx07oJ7iblkAyB+CHZBzygDHk1AAIJcIdkD+yQGOJ6EAQC5xjR2Q\nc670ZoW8YrFYLBbtn/VrMJwNAFBydOwA4P8UCgVGqAGULzp2QP3ibLwZNuHo1QFAuSDYAfFg\nvDIfeAcBlDWGYoEcijKeyFhkCjjCABJCxw6IR/46PcoeJI3J6Eh1AJJDxw7IhHj7ZNZNr75b\nDL0souDwAkgOHTsg5zQ9tkKhoAkZypcIJbHgMAJICMEOyIT0z/RkCwDIH4ZikX9JX9KU8Uum\nymVolZs2ACA6gh1yLukvRc3Ul65mpAwAQKkwFIucs744y6Rlpb/f0+vVdJphdmLTbK7cU11Z\ntBUBIOPo2CH/cpAYrF3IwY4AABJFxw74X/rYVPJQZReQTu8w3ufVGTZNAQAR0bEDkKxyHyMG\ngDJCxw4oM0m0vuT+XIxbsS5zjGttAAANOnYAEsc4LACkg44d8qNMv8Y06bJN1l92Bw0AoETH\nDii9RHMVoQ0A6g+CHfKjXL5iwSXGO09dv5o8/S7GLQIASo5gB+RB+hmLVId08EkDAuEaOyAP\n0v9KjHJsjqLskOqAoAh2AICM4t8PQFAMxQKl57weDgCA0Ah2AAAAOcFQLFB6jDcBAGJBxw4A\nACAnCHYAAAA5QbBD6eXj1oF87IVSXvcLAPKHYAdkjmFGTCdKWpsg29VDOf63CpBj3DyB0svH\nrQP52AtZsVgsFAp53TsAyBmCHZA5WUtRWasH6eB9B8oRwQ6IhzVo5TwX2sNYJidIeXEAAIIi\n2CEncjlcqI+G+dtfAEBE3DyBPMjIBf5yu65YLBrGL+WcRDcAQCAEO+SBFYBKGIOSS5bm0TCX\nSh7WAaC8EOyQE6VNP3b8cg6e1udAFgs7LhPvAMAQwQ7IHKKMJZZkzMEEUK9w8wQQG1p0seOQ\nAkAgBDvUX5l9wohXSZktOMs4XADqFYZigWQxFAgASA0dO9RfZdfLieuas7hWBQDIGoIdEJU+\nKhGhAACpYSgWKIFA47PxjuTyHBYAyDGCHdKT16vNEo1KGflSjUSF+GDk9bMEABER7JCqetgr\nUkaQQF81JurlcQMAhMA1dkgP6URWKBR8D0vuj1uIHcz9MQGAcOjYAcnSNOeUg4mMMAIAQiPY\nAYkwuQjMK/O5FuR6MgCAIYIdkCqTiJbLcUbiKYJ+BvjMACEQ7IBEBB2BdS4oz5zLqAcAiB03\nTwBhaG56KIvnFZvctBGvjOw4SijoZ4DPDBACHTsgMOWz5RIaM0ruIXkMcgFA/tCxQ70QekBT\nuaCmV1dG3+tQLnUCAMzRsQNiE1dUSuKacdc6Y091WbjOveQFAEDJEexQL4RupFlL1dtbWcsO\n2Q5APcdQLJA55hnRfIg5Su4sl6/HyEINAFBadOyQkvJtpTi7feW7F6HVw10GgPJFsEMa0g8H\nmku+NMWYXChm3xJbwsRjbz2uezU0u1NGt4MAABiKRRqylgzksUXDlGYvVSwWwwW7uB447Goi\nZu0IAwBKgmCHfNIHnVieHlzCLBX7psmFAJAPBDvUO8oQE/HeAvM1kMkAAMnhGjsgQ7LwNDgA\nQPki2AFR6W8vCJrVwl38BwCAINghNzIegILenBFoKQAALAQ7ZEjoHJPlABTlGXg8agQAEAjB\nDtkSIv0EXST969iscKaMaFxUBwCIEcEO8YsSVpz9rTwlHhpvAIAU8LgTZEi49BN0qYgZy/Dh\nJprZnI9HTi3wpfkcY5PvlgUAJIGOHeIXy5Vhvisx7OeVqvPnVbz9jWTplqOrJ4li8tRtBYAy\nQrBDbNKPUKVKbFGeRay53s6S6GFM7YjF3rHL/tB8xssDUE+U91Dsvn373n777R07dnTu3LlL\nly6lLgdp08cjkdW7Sq2SSvIdr/LmkiighMe8VN+cazdiM/h5A1CvlE3H7p577vnjH//onPKb\n3/ymbdu2ffv2PfPMM7t27XrKKaesWLGiVOVBxJGiojzIt+QKX5KnB1qP8jDG0q/K2hEzlOWM\nbvNtxJaj7HdJAchMO3Zr165dtWrVZ5999sUXX7Ro0eKoo47q3r17586dk6ztEHfcccd//Md/\nfP3rX7d+ff7556+99trKysoLLrigdevW77zzzmuvvTZo0KBly5Z169YttaoQo3h7HnGdYs07\nQMVi0at45fSchYCEBP1UlPCoZucNLVXbEkAW+AS71atXT5gw4cUXX1y1apX8avfu3c8999wf\n/vCH6Q+D3njjjS1atHjjjTeOO+44a8ozzzxz4YUX3nvvvQ899FDKxSAWmmBULryKj+VWkohr\nKFPWp0IwylkKHHCgHHkGu02bNo0dO/axxx6rq6tr3br1iBEjevTo0bp165YtW27duvXTTz/9\n4IMP5s+f/8tf/nLKlCmXX375f/3Xf7Vq1Sqdojdt2vTBBx/ceuutdqoTQgwfPvz888///e9/\nn04NSEIGTyRkspKzsx0M8ZED6jN1sFuwYMGIESM2b9588cUX/+hHP+rdu7fyD2uxWFy+fPnP\nfvazRx99dO7cudOnTx84cGDCBQshxJ49e4QQzlRnOeGEE55//vkUCkA9ZA9vMc6VPo62jM8h\nACX1zRNnn312z54933///SeeeOLkk0/2+udyoVA4+eSTn3jiib/97W89e/Y866yzkiz1/7Rv\n375FixaffPKJa/o///nPZs2apVMDEFQKbafcd7ZKeDk/dxIAKAvqYDd27Nj58+eb34XQvXv3\n+fPnjx07Nr7CFP7xj38sXbp01apVW7ZsGTVq1IMPPrhr1y771b/97W9PP/10//79E60BaUrn\nPGp4wrbvygx3e2bEffG65VbeBOGjnsj4bcIASqVsrkdWnq5mzJjx7W9/Wwjx1FNPff/739+9\ne/ef//znU089Nd5N/+Y3v7n22mu3b9/etGnTeNcMDfsdT/ojajKkVfJx2JIXAACw7du3r7Ky\n8rXXXjv99NNLXYtb2Tyg+OGHH97q8MUXX2zduvXwww+3Xt26dWvLli2nTZsWe6zs0KwAACAA\nSURBVKpDojQxJbXsUhYhyYp0MXbjCIg2DgWAPCmbYHfFFVdoXr388suvvfbaBg3K5nnLKC/O\ns76zbZZQWzELeTco4lE6UutkAyhTZRPs9BgkLVNlcXKSY5wtrmfvKVORa6Lz1SgpigTmksSh\nSO4g5+BxjwASRYsLMOXMWMq85RJ68DTQdfEZuVsihWv5uS/VQqoDoJGTjp0Q4sMPP7zmmmuE\nEPPmzTNf6sCBAy+88IL1YDwvy5Yti1pcPZaF/lD0/pZN31QLLeioq/1SiKBDLEgBBxlAqeQn\n2G3fvv2VV14JutTHH3981VVX7d+/XzPP3r17BX+py1zEVGeS5+SJKXxmEvpWhnjjeKLxFwDg\n5B/sisXijBkzHnvssU8++UQZgN55550ECgusZ8+eK1euDLpU586dN27cqJ/HetwJY0DhJHQy\nDnSZke+jTDTf8arfUJTOmSF9KuJyKwCAk3+wu//++2+++WYhxGGHHda4cePkSwqpqqrqhBNO\nKHUVSIPJt8Ibdol8VxVokDTljCUXL+9IuG5ZvDtC9ASA1PgHu1/84he1tbVTpkzp2rVrCgVF\nsXnz5i1btnTv3r3UhSBZMbavrPmtq/Kj5I/kHndi0i90LgUAqM/874rduHHjXXfdlf1UJ4T4\n6U9/2qNHj1JXgdJwfaGW+U2a6dzekcIdncpd5ounAKBe8Q92bdq04cSAjNDEI9/+lslKIopr\nzaSxUqHrCaDc+Qe7kSNHPv744ymUAtjCJSTNEG3odcalHma1wpdKXYipkpfqW0Bpj2fZvaFA\n/eR/jd2dd9554YUXXnrppZdffnmnTp3k+yfSuabtlFNO8Z1n3bp1KVSCuCgva9OfNlx3oRr2\n57xWErpI3/JilIUHARqSvyqjjG7atUoteWoxPGIl+VRk4fj4KqP/X4CE+Ae7Zs2aWT889dRT\nyhnS+V9o+fLlQgj9bbl1dXUpVIIYue7otKcn9F1MygLkSuR6EEIZHcBy+QLWkpdX8gIA+PIP\ndiNHjqyoqGjUqMSPMr755punTJny1ltvaRqEY8eO/clPfpJmVYjC/Ekirn+FGzZXnGdrzb/j\nvVZl0nCSVxt7wyCDp1KvfYzYaiphey8jvajS9obzgSMD+Mc1r0Zdyu6+++7f//73I0eOfP31\n17P8OD2EFvsIqUky8818vpWU5EQS/UvS0vlWDPOZS56rCAQA8sH/5gnbZ5999sYbb8ybN+/N\nN9/cunVrcjUpNW7c+Mknn/zrX/966623prxplJx854HmPgnlkG5C9y6U8PEiJQwivvuov3nZ\nK0MTrQAgOqMB1kWLFo0ZM+bNN9+0pxQKhTPPPHPChAlpftnDcccdt2HDBs2FdN/85jdbtmyZ\nWj1IiEmbzXxVvouEuCGj5LLzLGWvTZS8AwcA9ZN/sFu8ePE3vvGNurq6M84449hjj62urt65\nc+e77747f/78/v37L168+Nhjj02hUEvz5s01rw4cOHDgwIGpFYMkRAwEcmOvjG7MjCiFOwDM\ns289OeYAkDX+we6ee+5p1arVH/7wh549ezqnL1++/JxzzrnrrrsychEekpZOQyuWZo/mK7l8\nr6hLIgimeehKWHzQ3SyjFmkged0vAGXB/xq7119/fdSoUa5UJ4To3bv3qFGj5s+fn0xhKKXS\nPok06EX3Mdbp+l6yiJtL/ximkB3JKwCQZf4duy+++KJjx47Klzp37vz555/HXRJKT9n7CX1G\nT/oBdTKTK+os8jN1zbeibMwoJ0bZ63jbPyFaesk9gyOvGTGv+wWgLPgHu9atW7/33nvKl959\n993WrVvHXRIyoVxOTr51OoOR5io0w/wU6LBk8xjWn4sOkX0MWwOx8x+KPfvssydOnPjss886\n/98rFouzZs2aPHnyN7/5zSTLQx4UHUpdixCHhjzDqpSDqsplrYmu+aMMyMZ+3ELcU+ycwu2u\nKHd8jJFv/h27cePGvfDCC8OGDWvbtm1NTU2TJk2su2I3bNjQrl27cePGpVAl0pebf0m7/kHi\nfMnuXcnfbBZ0x/VfqBCw5ARFSXVA7FL+C0O7GvWBf8euc+fOS5cu/d73vrd79+758+c/99xz\n8+fP37dv31VXXbVs2TKvy++AWNj/tg7xj2znIsqfnX/i9SsP2jZzzp+dVmUgPEYYJZRcU83K\ndnyMkWNGDyg++uijH3nkkWKxuGHDhp07dzZt2rRt27ZJV4bSSuEPX9DeWIiSXKOumrWFu38i\nSm3J8W1LGPYtMrVTKHcZGQQoeQFA0tTBbsOGDZWVlYcffrj1sz29UCg0bdrUNZGQBy/Rv0NC\nk7d8zxPRI2OUgZtSDfr49jkYY0X2JfT/DqkO9YE62LVr1662tvall16yftavgv9V8i1iQPF9\nIHC4jerTif4hJsUvn4Gs/6oG5zzhLrkr4QU9XEuErOEDCaRDHexGjBjRq1cv++cU60EWlSQl\naDYafUxHc0eFc7ryzlbDQUzzg+Z740XQy/voyQFAvaUOdtOmTVP+jPopdISKK3tZzAOQ4XYD\nPbXOmdV881ZpG2YRh78BAOXL/67YRYsWeX29xOLFi2fOnBl3SciWdHKA6ya4iBv1vaUu3D13\ngaryWr98k6/mHj3lS/JD8mjRZR/vEYB0+Ae7AQMGvPrqq8qXFi5cePXVV8ddEnJLjiCBznZ2\nypHjTsrPLzDZnO91eyGURYbLfoXp83rUM8cKQOw8H3eyatWqVatWWT8vX768qqrKNcPu3bun\nT5++d+/eBKtDrjnvMHA9Ui7i84HDpa4Y6a/bi7h113BwclcihkBSUZLfhVg+CQAg8wx2M2bM\nuOWWW6yfx48f7zXbhRdeGH9RyCn9k+Qs5veTRr9d15Um9YXFJd7rDrMm+xVmB8cKQBI8g93Y\nsWO/973vLVmy5Pzzz7/ssstqampcMzRs2LBr165Dhw5NuEJkUfRukNcaDDsZrvyX5uNIeM5q\nUBk5YuY0X0xSRnsBoH7SffNEu3bthg4dOmTIkFGjRvXr10+eYefOnZs3b+YBxblneGKOa2jJ\nfmCHfpDRpCTfDSl/jt4vDBFlYk8/cT0/xVAGBxblz0no3WfkFEC58L95Yu7cucpUJ4R49tln\nTz755LhLQhmQL+0KeltA6FaZyRpcV6Z7XaWunO67I8odzwLXLqe8ac2rEW9tCb0vUbq5yl5y\nuDIAIE1G3xX72WefTZs2be3atXV1dfbEPXv2zJ07d8eOHYnVhqyI/ZG8vqv1eoid61X9Fp03\nGWhecq3EZEdcHSCT+n3FnhuUe1F26SRiQjW5rFMcGubK7hABgJN/sFu7dm3fvn03bdqkWLhR\nozvuuCOBqlCWkr7nQPmoFDm+uJ7xpqlNXqdmZqHq5WQqBJSwsOQ25/UeAQCU/IPd7bffvmfP\nnkmTJh133HGDBw9+4IEHOnbsuGDBgscff/zBBx+sra1NoUpAeHzlq9cFeYaPPslOMvNqE7r2\nruxuRIguhZ3N7PEs6wv76uFnFcgC/2C3cOHC0aNHjx49es+ePUKI448/vl+/frW1tSNGjBg8\nePCcOXP69++ffJ2AgqYPJz8eL6HNxXL2cl0bl0QYLeuIUD+FvnebRAXUZ/43T6xfv75r165C\niAYNGggh9u3bZ03v1avX6NGjx40bl2h9yL3oz9+3Apzyay2UUwLdS5EO/ZWCgcZY5btG7Ckh\n9s51TBgV9RXjISp+Ka4VpqysiwfKl3+wa9as2caNG4UQFRUVTZs2Xb16tf1STU3N0qVLE6wO\nqUs/3MT7p9/uVehvv/Ca4rVO/U2ycT3kJca1yeuMsubQubDkYq/ZZIUlP1AkKqA+M/qu2F//\n+tcLFiwQQpx44omTJ0+274SdP39+ZWVlovUhl1xRKcZg5JriNTE7l+Q722nhSpIPpuZukkCr\nku8XDlFeCSX0Fif6bJf8ycj/aED94R/sbr311s2bN48ZM0YIcfXVVy9durSmpmb48OG9e/ee\nOnXqWWedlXyRSE/2T0uhm2e+Y5quGeyU43tMAmWycCObJptwrTmWE6rrUkWv46DcXAmHti0J\nfZgz/j9IppDqgPT53zzRt2/fRYsWLV68WAhxxRVXfPDBBxMmTJg1a1ahUBg6dOiECROSLxJ5\nYzfMTK7yludRXk5ufsG4M66Fu8xcWYBJGcrznD1gqt+osg9nZxevM2igXVOGXfPFk6A8nprj\nn7SSH5Dykp3WOFB/GD2guE+fPn369BFCFAqF++67784779ywYUObNm2qq6sTLg/5FOKaLecJ\n3o4ygWKc10te9OHMuXXzk71rztALRl+zydGLWF5CGUg+/sgy3iYgZepgt2HDhsrKysMPP9z6\nWZ6hqqrqiy+++OKLL4QQfFcsgioG+ZoKV0fKt3VnuEJ9Gc7pgS41i+U0ZtJH1Lzqu3gZZaMM\nNhEBIMvUwa5du3a1tbUvvfSS9bN+FfydhRdNwgj6sQl9gg8aj5RtvILjSchCCpeB6olLuEFk\nS6BgDQAoI+pgN2LEiF69etk/p1gPYETOJcVDH2UXMbUoW3Sp5aEYi3eSh7O9REmNAIASUge7\nadOmKX8GAomSDLwimh2tTDKW8sYLfWFBO3x2MV63dBgeBGdh8V4Ah3BItwDKkf/jTgYOHDh1\n6tStW7emUA2gp7+X1r5FNOLJuPClKCsRwR9m67yaMIl7CfWP/3D1O9MMNPLz87iVEgDC8Q92\nCxcu/P73v9+2bdtvf/vbs2bNsr9SDPVZaqde5c2eXrHDrkoTUAKFm2i1Gz0Azzmz8wfzPh8Z\nKCEpp9u4xPuRiOsfOQBS4x/s/vGPf/z85z8/+eSTZ82aNXz48LZt215zzTULFy4sxz95SIhv\nx8XOW6EbM+YnmFjOxzHe3BpiKzE+BsVcCXOMa9NlmqgsOYtBsbTAAaTJP9h17Njxhz/84euv\nv24lvJ49e06dOvVrX/taly5dbrvttvfeey+FKpE1vqdew7tNna+6wl+Is7tzKDOc4pfCLeic\nYjgOm5EMqlSmGaWEZWfhcMUei0l1QHnxD3Y2V8I75phj/vu//7umpia54lAu5I6L1zzKoVU9\n130JMZ5mgl4DF4hvyvS6ls4kl2QhQGRZCVuPiW69TKM2gDQFCHa2Jk2aHHnkkR07dmzevHns\nBaG0Qpw2TE42XlFPOVEzQGlyr2jxy+ee6DOT5h4FechYv9EoQoeAFE7w0TugJaG//tJ3YhJb\nB4DUGH2lmOXTTz+dPXv2zJkz58+fX1dX16JFi+HDh48cOTK54pAyO+uYX7kvVF/8av8QaOsp\nnxF9Nxf9LopwCxouZdjsDF1GyZV18QnhaADw5R/s1q1bN2vWrJkzZy5cuPDAgQPV1dXDhg27\n5JJLzj333MrKyhRKRGqKYR/AKw+wOi+VE5GfHmeyBpO1Ka/8kyca1hyRc81Bt5XaCT7LSSL6\nRyLRMVP9yomtABLiH+yOPvroYrHYqFGjs846a+TIkRdccEGzZs1SqAxRhL4qP9BSRce3bLmW\ndb3kqyB9N6s9xRmzvDYXjr5DaZgCvVYbVzoM/VYablq//hLmD/O2caDyUtijoJ1vRERKBpz8\ng13//v1Hjhz5ne98p1WrVikUhOiSvihKcyuD12isnXL0d8vKF8A516BMdfJE87/ygdJnlLN1\n6Ial+V0Uyr6j8qoy4XH0TGrLVFgJ+o+HcEKMyJt0vrNzGAHkjH+wW7hwofXD9u3b//GPf3To\n0KFly5YJV4VIUjjhRWkj+Z7wlKfSiFe8Bb3+T54t3Di15v4Dk+5jxLdSeQC9Zgi3htIKejGo\n+SIRpbMVOlUWjgDgZHRX7J/+9KdTTjmlefPmJ5xwwp///Gdr4tChQ1955ZUka0N4pfpLZ9+4\n6rqD1brkznnLqmsR50nXa2BUs05Xr06ezbU25yWAsV/ZJq9TnmIekvTRSj4sQWvzVfhS+h+q\nJO5aDSroEQaA0vIPdosXLz777LP//ve/19bW2hM3bdq0ZMmSc889d9myZUmWh1zxGhkU0U7h\nzmW91uMcCzYcpTWZLdBIbiwZJfRKYkknZZpv8prM8rpfgZQ8+gNZ4x/sxo8f37Zt23ffffeR\nRx6xJ7Zq1ertt99u27bt3XffnWB1SFLoqBHidKJsxcn3QzjHW+WZvXpv+qqU04Pugn7TIYQ7\nHzsbk+lw9URTRnCBCbId4OQf7P785z9fd911HTt2dE1v3br1tdde++qrryZTGMqMb0z0Slea\n4VehynPKi+3snzVRIEQqco7YytPDpVvnr8rMFO/4Y/S1cdZMVBaGm8sd6R9w8g92X3zxxdFH\nH618qV27djt27Ii7JKSkjNowcvjLyOXwQdt+gbaoPOWn/65x1kSW8fkEXPzvim3btu17772n\nfOnVV19t37593CWhLIX486rsvckzONOb3HXzSnuBivRaUN/801D28+QphrOZlOol4mmPs2bS\n7CNckttTQgj6CQSQMv+O3bnnnjtlypS33nrLOXHLli233Xbbww8/PGTIkMRqQ/nRN6Xk+2GF\ndIaQZ/BqXHmNYRk2xnxLNVmJ+RqUqU6/Ia4wqz8YjQUQF/9gd9dddzVt2vS0006zMtwtt9zS\nu3fvdu3a3XfffZ06dbrzzjuTLxIZ4nsGMs9VrhaFfcGZMv/ZMUiTh5zND5MivW68iOUsa5jJ\nTJp/rqORv7THdWZl9J7m8hMI5Il/sGvbtu3SpUuvvvrqjz76SAixYsWKFStWNGvW7Lrrrluy\nZEmbNm2SLxIJCnRO9Z1T/0ffftV1M4QrtDmn210914Cs19V1Xl1AZTzyCnNBT13yMTRZ3HAr\nJvMQjHKAtAQgFv7X2AkhWrduPWXKlMmTJ3/66afbt29v1qwZea5+CnRBm8na7Dji1aJzbcs1\nf4hr1JTFa9ZmvhLNxIhCr833KkbNUtyiURJcwQYgIqNgZykUCm3atCHS5UypTiGuQdjQ9wSY\nLOi72nAHIWjZIc7ZhotobvKw0mpp44JvYo5YGGEIAGzqYNevXz/D5fft2+e6rwIpS+1mOtfp\n074YLsTWnT05e/DUtTbnFOdEfYWunqLXr4ZdPc1sXkOf5g280KHNd8Gge+q7xSic3VASmC8O\nDoCI1MFu6dKlzl8bNGiwf/9+62fnOaNFixbNmzdPtD7oleTKKvPTs2aw0uKbnPSRSB7J9Qpz\n8mCryTBlaqHZ3pyrnhBbVw4rm68nruxlr8f5NiWEMAQANvXNE3UOmzZt6tev3+jRo1esWLF7\n9+6DBw9u27Zt0aJFF198cZ8+fVauXJlyxXAKepl/vNuyp8h3J7h4veqcrt8XeQ3y/QrKNTjb\nfkGPlWZ+wxVq5gn93ukXDLenSXB2De2+bBYKA4Ac878rdsyYMe3atZs0adJJJ51UVVUlhGjW\nrFn//v1/+9vfVldX33TTTckXiWxRJjyhikHKE7k80ZUL5RFYeQ2utSnnVG7FZEHl4jJNllW+\n5OwdZpYrrEdZT3xFIYsifkIAJMQ/2D333HO1tbXKlwYNGjRnzpy4S0J2abpugQb7QpwPvEKY\nfm3ZaV+JzEc6p9hLLaN996JvGANARvjfFbtt27ZNmzYpX9q8efO2bdviLgklprwGzusiNudS\nUbpfriac8LvYS9n9iliDkuaKwHDbykjK1ItSpNcbZ3IzSmkPju+/T/R359Q39XnfgSzz79jV\n1NRMnDhxyZIlrumLFy9+6KGHevbsmUxhyCjl0Kr9szyi6gxGytFJ5cis62dlW05594NyftdE\nTZGJji759g5jGQPVC7HmuIrJeA4w2U3zZA8ApeLfsRs/fvywYcP69u3bvXv3Ll26VFVV7dmz\nZ82aNatWrSoUCpMmTUqhSqTJ63o1OxVFaX35nj4NZ3Mt4rxO33yFyqDpDHnKFYZmssLil0+e\ni2ujyjICjZsHXcTkescQMyQtaIUlLxgAlPyD3XnnnbdgwYJ77713wYIFq1atsiZWVFQMGjRo\n7NixXpffIX80mUOTq8SXscA1wBooumk26sxt+jLs6c7Z5D1K+oStGduVJ4YLl5qlgq4qhaAJ\nAIiR0TdPnHHGGS+++OLBgwfXr1+/a9eu6urqtm3bNmoU4FsrkA/KMVPXdXiuq+WSu7PSORSr\nCR92/gsadKI0Jk0OVEJiX3nS7UMRR5ZNTtbqAQC9AOGsQYMGHTp0SK4UlJZXJymFE1uITbji\nS4iRvnCNKGepJmUrt2L+3JPQh50gkhHZ/N8HQI7RdUNg9onE9yZH5UVszh80MyifLqEZRQ2X\nDsMNTZqv32srid6iYVKVvqeYGmXqTbSjGRSBCUB5Idjhf0U/gbkGYcMtWHB8qajQBiDN9Xyu\nKcqZozfDDONayrdf+PJKThkZD414j45IuPigK0/hqBI9ATgR7OodwwFE6werLSc/OkTZV5MT\nlebyO69FlNOF6gTpuxcavlcHuma2G4ReczpvCvG9hyNK5V67EEiMMTd2QW/XMD8O0T820WXn\nOAPIK//n2KGe0z9/xHmfqZz/gnImrdCtEcMnmyjJz5Bz7r6yjxj0ar8oXMPfSW8rxrUVvpTC\npvUXCUQUZeWxVJWpcWoAGUTHrt4xObto0oN+aMnutVh9F68ulyYMadpm4tAcqZzB3rRzZs2V\nfMpflV031xixc6MleSBIclt0pVjDZph+Nq8+XKD4rpw53KhomSLVAfBFsIMn5TCr5tJ7+2dN\nhlNOkWluoTC8OUC5NuWchuOSyvQZdNzQROgx1rgu4dL3Pr22a75ahJa1O0sAZJA62PXr189w\n+X379r311lvx1YNyYtKkkef0mm6TA4o81Kuc09WrCxq55JFWOc5Gvzot0Uv7412t4dqipI1A\nBQcN6NFnTlSUBJ+F+gFkkzrYLV261PlrgwYN9u/fb/3s/JvSokWL5s2bJ1ofSijQwJnm7K5p\n4NkfJ+fNB8rFXTN4rVMzqGpYWFF1s4iGSUjVvxp6bNHFdaC81p8EckaiSHIAzKlvnqhz2LRp\nU79+/UaPHr1ixYrdu3cfPHhw27ZtixYtuvjii/v06bNy5cqUK0aMvFKL+XXu9kqU83t12pyt\nL02K0gzjet1dUXAwrF8uuPglZcFe9Ft0FqxZVQYH2kIfzNREuaGhhAzLli9ILcedBZAa/7ti\nx4wZ065du0mTJp100klVVVVCiGbNmvXv3/+3v/1tdXX1TTfdlHyRSFDQAKecqDzZ+AYCZ37y\nPVeZtAmVCdIwl3idL72yqWuLytm8Do4y5NkTlXHW/G2SI6nhgrLsR7qgkmhhJn2UiHEAAvEP\nds8991xtba3ypUGDBs2ZMyfukpAeKwTIZyaviCNnFHsNyhnkQOOa6Nx08VDW8JMdmDSxUq5H\nM4NyJZrZ5AvvZPYWNedgr+Ao9xfNT+QmlUfPHNFbRDlLh+kj2wEw539X7LZt2zZt2qR8afPm\nzdu2bYu7JJReoDOxK0BoUk7R4MkjrjW7YmJBuiZP3rRhmPOdR1Ozsnjzs6/XnF7Jz3flXvNE\nDAQx5omMXCUWrgZl8SYD67HIyKEDUC78O3Y1NTUTJ05csmSJa/rixYsfeuihnj17JlMY0qPs\nw/ku5RpP9BpR1ffwlA0556+u06dXf9F3FzQjtr47G/q0anLWdzYp411/cmkgRAeu3KNJaZuO\ntDwBmPPv2I0fP37YsGF9+/bt3r17ly5dqqqq9uzZs2bNmlWrVhUKhUmTJqVQJaIzvLrI1Qnz\n6iF5NTC8GnLKQVhxaD+scOgTgPWtMk3ZcsKza/OKmEXpCSzKjmCU3onv8fdauckWlQfWt5gQ\nCwrHGx3oUOjnD3fpWxIXzHmJvRsacesA4MU/2J133nkLFiy49957FyxYsGrVKmtiRUXFoEGD\nxo4d63X5HfJEPisX/J5C7LtC5YJ2ttOkOlfolAOic05NoAxUsKvCoIskt3L9RjVjvppt+S4b\ntBjDRdIMaoGEiOOa+fUrDLT1NCn/MQBLZj+6qJ+MvnnijDPOePHFFw8ePLh+/fpdu3ZVV1e3\nbdu2USO+tSKjXH9lnHchhFiVvnsntMFF2SFTzu/qq/mGIa8OirPOQL0l16CweeVeAl1NqH81\n0GnDmXc1+17aFpRy00H/eeDVDE5NuOZlmdL/YwBAdviHszlz5nTr1u34449v0KBBhw4dUqgJ\nMXKOkJo0HoKOBsr/jnddzWbSe7N/1Y/DKvdC7sa52n6uwqKcmcyXdRZfknNhyj0518rDrcFk\n3D9T2SJE1slO8SGUdfGJ8ro0hSOGkvC/eWLEiBFz585NoRTExdmfU/7FkQdAhdQvCdQfkhd3\nrbz45U0Pyj6Wplqvml3rF1KgdK5QubhrovPXovHT77zKs1NyLH/ZA61H2XT0XUS5Bq81m68q\nxAyaRbx6vSXvNQJAdvgHuzPOOONPf/rTwYMHU6gGSSh+yTlRbinJGUie4pXM5FddW9QHhYKD\nK1Tpo55zca/5lalFGW2VW/Gq2Vf0vlfoTftyvjvKWB/Lmu31Gx5tr1d9cz9SE+OHMN9K++8N\n1HP+Q7FPPPHEjTfeOGTIkMsvv/xf/uVfWrRo4Zqhe/fuydSGRHiNjRZUg0oml7vJ88tnYlcz\nzDm/XIb8UvHQm2eVm/MNKPK+lCQxmLTT7H0JUVjQReTxxNBDtIadQt+RfeVHyLCGMhK0sZpB\nOdgFIH/8g13btm2tH1566SXlDPxfnUH6P7h2V0yZ5DQrtGdwLV70eKSIXEZBddWdb/7T7IVX\n5XZrQblHyiMgz+8qzOtf4cpq7UVC5DPXCpVhV7N3QbeY6P/ChsksyuEqX2W3p2VXMFAP+Qe7\nESNGVFRUNG7cmA58zvheHqd/yfxVr9mUMUW/zqAdRGU9Mc5p8+3AOduKhq0v32K8Up1QZbsU\nmitxXVAYfSVlIQd7moNdAPLHP9hNmzbN66WdO3du37491noQD7nVZL/kmmLS2xOHJiq53yb3\n8zS1udbjWrPcBfQtTF6/1VpT1qkZfvXatFywMMhJ+sFNk75U0eM+Zd/s90slqwAAIABJREFU\nq1+tTNkRTBkRAQBi4X/zhMazzz578sknx1UKUuM73mryUvFLvqvVc6YKr4FO+yWvqwNdPysH\njpVZyuticK9iQnAdIsNRZq/ZQocw5x4ph8JLFa1M+qPldc1+eVULIGeMHjL82WefTZs2be3a\ntXV1dfbEPXv2zJ07d8eOHYnVhhj4XkXndbJ3XVWmbKppFjQvz2vNhqt1Jjl58UDFKOOOyTiy\nsgAN8wHlgvQ0vqLqckb99XbKl1zTg6a6uK6EIwABQLz8g93atWv79u27adMmxcKNGt1xxx0J\nVIVkKU/2JqOohmt2rtNriu+QqyvByJfVywvKQ6XOXVPSX2jolRej8x2cdY1Ty9kulvcrHK/L\n+EIwzLjZGag1SfDZqdYlhessAZScf7C7/fbb9+zZM2nSpOOOO27w4MEPPPBAx44dFyxY8Pjj\njz/44IN8V2z6Yr9t0OvKNq8Q5jUaqOx4OX92DVFp5tdHPa82pL6rp1yJJuMqKYOIa9w26OlT\n0w0Vh8Y4zcq9Nuc1uq3Zoq/Y23uxf6RTWHPZoTkK1BP+wW7hwoWjR48ePXr0nj17hBDHH398\nv379amtrR4wYMXjw4Dlz5vTv3z/5OnGIiKcr5ZClcrDPOY/XcF6UrXtNVMYvebuumKWMksrV\n+r7klVljj9RyDfIVbyYdxyg1hFuJ61MR74ckRjFmuxx0vMq6eAAm/G+eWL9+fdeuXYUQDRo0\nEELs27fPmt6rV6/Ro0ePGzcu0fogc/WHQnOepZynZ82Z2B4VNSnAuSqvDpzv/L71mMxv3pDz\n2orzKBUl8uY0HUS5Qns9hoOS8Z6bkz7T+64/9j2KfeX6D2GMEt1QoscZQHb4B7tmzZpt3LhR\nCFFRUdG0adPVq1fbL9XU1CxdujTB6hArOTlpOhBerRdXM0+5SNDzh6uD6LVyVxPLq8Ki9L20\ndh61X3Wt2TW+7LUjXjlVcz42OU/rR6gNl5Kn+2bi6H1f33fEfin0VlILVRrOzwPZCEDG+Qe7\nAQMG/PrXv16wYIEQ4sQTT5w8ebJ9J+z8+fMrKysTrQ8xUp6TvFKUSZ9Mvy05FSn7gnau0vTV\n5AaYaw3CO3U5Jzpf0vfVlIt7rUouybkVOUcKj1zl6p4acqVYueCgSh6kMiidPOcbHLMQc7OG\nYwK4+Ae7W2+9dfPmzWPGjBFCXH311UuXLq2pqRk+fHjv3r2nTp161llnJV8kjJj8gZOjjJwt\nwp3DvPpn8hRXI81rfmWMk9OeckMayt6Yc68LDso1yJ0/r4NWVF2tKOc8TY9QvxfOIKjsKmnW\n5lWzV2yNKPQKozfJcnzWJ9NYaKMCTv43T/Tt23fRokWLFy8WQlxxxRUffPDBhAkTZs2aVSgU\nhg4dOmHChOSLRCJcoUqTsYRHIvQaQDQf4zM8Lek7iL4zOwdbvVpoysVdbUV5nsKhN524KnH1\nFL22KKTjIL8Xcop1ZVzXbKFPdcWYvq3VWY98rEKsJEoZJrNpjnl2ZLCkkuOYAC5GDyju06dP\nnz59hBCFQuG+++678847N2zY0KZNm+rq6oTLQwDmf+CUGU45Mqgc3zTZkDy/PHJqGNecHTLl\n/MrQ4xWq9FHMa3qUM72yyygXE+MWI4oYpOTF7bCY/k6ZbyuWOOu7CesH+WMgTzSRs0yT2TwN\nlBejYOdSVVXVuXPnuCtBJHGdlrx6VEpyflIuohyT1YQqV+aTI2BRuizP2Y1TttZcI63KM6ur\nNq/TTMFxK4ZrNq8zt+8B0SylSdtes5l8GPQn0XAfJ036j5iJkz7lx1JtPpCugHKnDnb9+vUz\nXH7fvn1vvfVWfPUgvEAnY1dacjaxCo6ne7hSjvAIcK7FNXPaU/TVupbSBCav4WCTDp+8iLIS\nOcb5Bjh9b0ZfkrIAw5l9CzDfStBsp8n0vi1SuZ9nHi/KKIiYd4jrJ44DEAt1sHM9xKRBgwb7\n9++3fnb+uW/RokXz5s0TrQ++nDlMP5v9s1d7STnwKrzDk6sG5VKGnT/NS5qk6DWe6xr9dCY8\nTWfRpGb5WHlV6/w1XEPIuS3D0WFl+9D1qlcNrq2YJC3nxNBnZfPheKQg6KEuo2AN1BPqu2Lr\nHDZt2tSvX7/Ro0evWLFi9+7dBw8e3LZt26JFiy6++OI+ffqsXLky5YohCzdwZt7Lcc2vPJGb\nnJ71W7FpVqtpRHm1hfSFyd04r9qUC7r6ecrVmkzXb9fVYjQ51IZvh3MTyg6ucrWGNYiA++uc\n2eR9Md+EecH5EPvO1rcDCJQ1/8edjBkzpl27dpMmTTrppJOqqqqEEM2aNevfv/9vf/vb6urq\nm266KfkioSOf2LyaSc5AZv/X1aTxPUeadOCcM2te9WoQKs/uXjUoV+I6D7lSgm9Q0Gxarl9Z\nvDMhRWxmaMbvNIFSEyvtDKfP0EJKWpoavHK5Cf0hcr6/SWSLvEaWeHdK8wZF/4QDiJd/sHvu\nuedqa2uVLw0aNGjOnDlxl4RIlGnD9ZJ8snSelX27NfYUVyh0ze+KOJo1O2fQB0f5LKLJqa6N\nytHWrtC1oH009H0jTYQSZonBMGW6pvjGZf1qna+6ops+/joPYGrncv1nzHwl9Sp8JLG/9eoA\nAmXNP9ht27Zt06ZNypc2b968bdu2uEtCMF7nYHk2eVk5e7nO+s45g/5lV/aE9Ot0bd0VNL3S\nqj2nK546986Z1eSZXYvIu++1U8rWl1cc9Po5KH1uM8xe8lsvr9y8yETP+voAHX3lmYosBYek\nN5To+gGUin+wq6mpmThx4pIlS1zTFy9e/NBDD/Xs2TOZwhAnZVbzUvySV+DzWk/05Od61fWD\n11JegU+5Bk3Adc7gm8z0NctrcP7Xnq5JFV6pVxnFfHdHX6py68LvDTX8F4WeM1uXS9Qoi1IN\n/+cCkD/+z7EbP378sGHD+vbt27179y5dulRVVe3Zs2fNmjWrVq0qFAqTJk1KoUpo+J5Klamu\nEO3RuFFODEWP+1hN1unaF7l5FnFzziwod+80R0az6aLq9lKvXZBXIq9czm3yu6lPjZotJtq+\n0nzqfBcU9WM0sD7sI+qz+vP/cgn5B7vzzjtvwYIF995774IFC1atWmVNrKioGDRo0NixY70u\nv0NJaE6cylQhPFpT8q+uVSmjhkl+8opiBY8HlwTqOhRV93V6rcF3Btds9voL0rP9hOMIuP5s\nad6OoCnHOYhsr9k8ZYrgf1JNKjRvBvsG96T/1oeOlS6x15nEqc5kIB5ALhl988QZZ5zx4osv\nHjx4cP369bt27aqurm7btm2jRmG+tQLJ8WremES3QH/o5RAWbrzPPEo6aS4Ok3/1vWZOv2lX\nv828T6mJd5phXxMmZfjO49oj/T8G7EXkz1Wgxq1X61SzCeVs5pSN0tKiXYFyFOPnlg9/CgKE\nswYNGnTo0CG5UhCRYRMoxHlO33gzXMT3VcMWmuE+OptbzgWVgU+Obso1KMtQNvCcOxK0leVa\nrTj0LfMdQ/faulyMZjDaNYzr+28GQ5r5DRNeaJrB9xQ6hcJ43wEgIv9gVywWZ8yY8dhjj33y\nySf29084vfPOOwkUhpDCnag0F6vZQ376xpVhD8/k1UDVmszgFXntifIYq1cKdK7fa0zWdaBc\nm3YlJ1eU1PTzNHshHwHfYO31knLTgV4Nt07XbEkMm2p2J7VoRYZDOeJzW178g939999/8803\nCyEOO+ywxo0bJ18S1DTnxUCDmIZz2us0XLkyS3n9arKGcJTbdWYF10Ew7GN5bUue6LXXJpnM\nsNvqWlwTtQ2rVfYvXcvGOJSpD1LxnkLkbQUao9csZY6TIoA0+Qe7X/ziF7W1tVOmTOnatWsK\nBSEK5bibPCRn5RvNIGOgzcnDl/JKlPOECH/KlTjX7+qiacpQTpeHbl3zyEXqc4NcnnPl8hHz\n7c8pudqEvlFGSVm5kI6Jyap8me+acovmZQTNynFJswsIAE7+wW7jxo0zZswg1ZWcvsmhuV7K\n/lnOdvbPgfoxzkFGr8150QzXmtcg75dyIFi/X/Jws5yGhZQhnIcrULzwqsTkvTPhFcj05QVq\n4ppUpdmo8p8ZEcnvjvALx1G6bumPJhMQAQTlH+zatGnDX5ay45vVfGOQeeCIZZwuxErkgOWK\nm4GSovL0L68qdJeo+OXFfIbz+1ZosqB8VF3HSh6R1PR6DUuNl3L8OlDKTD8bBW2O6mcj2wEI\nxP+bJ0aOHPn444+nUAqisDtwFvvMoZxuwmROw/Nr9M3JqUh5vtdvwtXTMhmN9V1DUfpKMa9z\nsGs2X843Ttkf9d2Eczc1VTmXNel0mpedBK8dVG49xr6g83+oiCsxp3/vykIsfxyyI8SbCKTP\nv2N35513XnjhhZdeeunll1/eqVMn+f6J7t27J1MbwpP7T5o/Sa68Yj44m/TfOFcTTm6bKRtL\nXunEvJNn90g0A3Ca061r1Fs/s8lsyum+TUTXXsjr9GrQhmgUmc9sfxSLh14XqNkRfdm+85tU\nlbKgI+CWeEexU0DHESgJ/2DXrFkz64ennnpKOQP/05aQ/uweNHiFGMRMlLIMzRixnWNCj+rK\n47n2DMptOZfSn4MD/W9inl28NqE8p7qq0uTIECdj5SKBRpANN5qF4eAYVxI61BoqYRzM36kh\nf3uEXPIPdiNHjqyoqOB7JrJJGSlC/PXJSJIzoS9VmU29hozl6SbdSjkzeXUmlLlKOE4P+qaa\na0HzhCSkD4ayeenVyROHZgiT1ppv/1Lf9QwRWcqufeUSrv5APVTl/L6N3tAzByojfdmpBEia\nf1zzatQJIXbu3Ll9+/ZY60EYBely8sKh973ac0a5fMolxlXFQlOP3H5ztuVcUcZ1MnPN6Yo7\nrinKBX1DmzxuKychTUfWfABXzp2aTZj07Uz+FeHbIHRuTrkJr8rzIemoEeJtBVDW/G+e0Hj2\n2WdPPvnkuEpBdK5IYV/MZNIQCirQUimcSFz51TfWOOOURZ5H3oTcpVOu3LV+15xyWNQcTK+X\nTFp94su98+pZ6jkzmXNzrh6nZrWGqc5kHueGil/yXWdqQhzbROvXrN98u/Jx1r/dgcqIKDuV\naAQtEoiF0QDrZ599Nm3atLVr19bV1dkT9+zZM3fu3B07diRWG4xo/ny7IkUJpV+DvEW7waY/\nLK6WhtwKVc6vGXAU3qlOXpXyZyElyIjjSnGd4Zy749VTNImemnnKYhDQ5OPNUCCAdPgHu7Vr\n1/bt23fTpk2KhRs1uuOOOxKoCsHIp0av80cWQl5EJkPAXrHJfEFXl6soXWem35a9RedsXj02\nZzQUhyYAfcHKRbxqiDHMObfoOiCBPmDy0TbZdAaZfLR8ZTP5mVwSUBLZqUSjLIpE/vgHu9tv\nv33Pnj2TJk067rjjBg8e/MADD3Ts2HHBggWPP/74gw8+WFtbm0KV8CXnBtfQZA4inaVgcH+D\nzTU2HWW7vmO7yilCe8J2vuQVy5ShJ/obKjcRw52E5BN/oDfIXNDy4jqnGh6cpE/hBdWNOEE3\nms3sCCBe/sFu4cKFo0ePHj169J49e4QQxx9/fL9+/Wpra0eMGDF48OA5c+b0798/+TrhQ/6j\n73wpN6kuEE2bTZ5Hpow+XiO8rkWUa9NEKK9BWOUK5ZV4LeLVz/NardcgsmGEFap/YGgEzZQl\nzCWGPUUR4U5Szfz68e5E2R8h4iBQLvxvnli/fr31RbENGjQQQuzbt8+a3qtXr9GjR48bNy7R\n+uBLPzKYg1SnP6OYXCEe7ghoLpUTh2amoOsvfMm5Fdd11s5fnfPHyL6cPMo5W74m3bzUUn0y\nAx3M4pfM5xceUTjiNZGuKB9ibeGWKvc/IEB94x/smjVrtnHjRiFERUVF06ZNV69ebb9UU1Oz\ndOnSBKuDlnx+Ct0tKC+GF3V5HY2g1yN69bfkMoqHkrdi8r441+w1Pusbdi32pXuagWCh7YTZ\ny8o7q2xe6nfHq1rNq8piYpFEVrYk8X9fCf+PzvcfEyB//IPdgAEDfv3rXy9YsEAIceKJJ06e\nPNm+E3b+/PmVlZWJ1gdfzrOdPCaYg39tB7qczv7BJEx4RZlA5XlFH1c4s7tu+g6Qcym7yEB9\nNcMxUJNVuaqS85zcHhbe8UsOUhGDWuhkFktATC4XZm2jgmwHlBX/YHfrrbdu3rx5zJgxQoir\nr7566dKlNTU1w4cP792799SpU88666zki8Qh5FE81/Sg8vFX26R1Z/9qZxRN19NFTs/yIq61\nKcfjghYvvDtkJpTVutp4Ji1AZZ3OpezVysuaf8DSDC5yYZqtp5+oSpXhAJQ7/5sn+vbtu2jR\nosWLFwshrrjiig8++GDChAmzZs0qFApDhw6dMGFC8kVCwRkmwl1tI6IlhsyKa3e8On+u6Kbc\nXNHvgXm+8VFem3J+zShqiOPg6jI6pzuPRqBhZZHYhZ7KzBooRHqtx3zZlOXj32AAEmX0gOI+\nffr06dNHCFEoFO67774777xzw4YNbdq0qa6uTrg8KBQPvUnTaxxWfzbNWZhzMUwSruhWlB7J\n5upIyWuQQ57m1KsZI9YkM2eK0sQ4c14Hx7drqO+9+fb8TFJXuF0rHHpjsvJdU7YSXTOb751X\n1zbG4JWPDBclPQMIx38odtGiRZ9//rlzSlVVVefOnaurqxcvXjxz5szEaoMn6xRrMn6XQen8\niffaivMSN+egtrILZRLCXMlAOVDu3KJXwQUHebprW3LlrjmFWY509n1dper32pBrwNdrNv1e\nK+d3/RwuQATtdCqrqodjpvVtfy31c69Rjoxunnj11VeVLy1cuPDqq6+OuyT4c51LnKN+rr8+\nGfyHcgp/H73OtZpL3JSBzIuc7TRXa7lCpHIpOZC5tmIeXJwfBpPZTFau36j5G+qbgcxDkqtm\nr9FhZ44PtNqgAm0lBwwPVNDjn1mkOpQRz6HYVatWrVq1yvp5+fLlVVVVrhl27949ffr0vXv3\nJlgdtPQtGZOzew4Eun7Ljm6+3SB5lFa/Xa8VmkQir1Ci3Jxr5oL319r6bte1Ua/RTMNVRaE8\nvF7bkoNCvAOg8v84+qajvtS4CkuHYdllt1/RBfo7A5SWZ7CbMWPGLbfcYv08fvx4r9kuvPDC\n+IuCluuPr7IhlMu/Qa6/rUXHc9r0++tqjBmO8bmm28fZN4F5rbbofZ2ZvnWnr7bgcaGYK6No\nwpNyZLao/VqIKEOfmtVGSQxxZSlNW9dw/en/31emObK8cHhRLjyD3dixY7/3ve8tWbLk/PPP\nv+yyy2pqalwzNGzYsGvXrkOHDk24QnhS9p9y/C9L137JI4lKJjmsoLrr02vr+lyiGQp35TA7\nPPkGHWd+dSYqOynKcdA5m2EPz7lC+SXfPQ0qRBaJ5cwaaLvhtuiM1OHWEC43R0d2AXJAd1ds\nu3bthg4dOmTIkFGjRvXr1y+1mqCnH7fKeKpLIneaDK1qyG28EBV61eAMTMLv5gyTdp0rNMiz\nFaTbQvWRUVOq/sCGDgGGvU8Xr0BmrydEPfKwu2bUVfnead6mcJUEatm65gydIwHkif/jTubO\nnSuEOHDgQMOGDa0pe/fuXbFiRUVFRa9evTIeI3JJ+ae/XN6IJOoMt0452UTfeuHQ524IVRpQ\nDpvKZSjn9Epa8nr0UdJwGFRZldfMesrMET2IuEK5ydpc85h3NA3XH3FxZxc2xPFxfQLJeUA9\n5H9X7IEDB0aPHn3xxRdbv65du7ampqZfv34nn3zy1772NfvrxVASzrE5pEk+a9otLvuUrMxt\nrrFX1+iqaxNCyi7ObcklCY/AalelrMG1adfK5TqD8toFV3nyz675fbto+jUo12kym/JgKusJ\nvS3X2pxHw3wT8lb44wDUQ/7B7qc//emUKVM6depk/Tp69Og1a9Zcd911o0aNev311ydNmpRw\nhXCTzyj8+VbyPe9GPG6+Z3dXwjAfMZdjVvHQC+wMs4vcjgoUR+SZvQY99fV4LRV0KFa/iShD\nw4aLh/7AhIiAIXZH+S+NoCuRuf5VACDj/Idin3zyyeHDh99///1CiHXr1r344otXXnnllClT\nhBB79ux5+umnx44dm3iZ8JCRodhmQhwuRAshmgvR/MsfdgqxSYhPhdgkxGdCpPxcHN8htihH\nrHjoDaf2Cl3RzZXGvFal/NXknfUdV7WLdLXxNKOuXkO3yt6evBJ7Q177paTsMhqKmBdNFvQ9\nerELne1kEQeRAZQd/2C3du3a66+/3vr55ZdfLhaLI0eOtH7t06fPM888k2B18FY89IZK3xwT\nr25C9BaitxC9hOglRHvHS7uE2CbELiGqhDhKiIovp28XYrUQbwnxlhBLhXhbiN2plRvqpg3N\nIgXpXlTNgprUYr99ylFUr8jiWsqLK3QqV6gvz1zRcTutK03aBXhlPg1n2UlEk0DFmDSA5Vgs\nH97QO+JVbaC9CIFQCJQX/2Dn/JM0b968Jk2aDBgwwPq1WCzu378/qdJwKP25IZ1U11SIiUJc\nIEQLIbYKsUKI5UJMF+JdITYL8YUQ24RwfSBaCtFaiKOEaCVENyH6CHG9ED2EOCjEu0IsEeIl\nIV4SIvZLNeXrokKsxNU2c2YpTVBz/apcxCRoFjzutAhEuSFX4HB24+QpvkW6ZvP6cMZ73Zsv\nfafK+aYoD0W4zRWku2fioozLmuk2YhlQ3/gHu2OOOebVV1+95pprNm7c+Nxzz5199tkVFf/b\nhXn77bc7duyYcIX4P3KwSPOvdo0QM4RoLMTVQiwTYrXZUluF2CrE3w+d2FyIPkL0FuKrQjwo\nRKUQ84V4Voi5QqyLv3A182gVNJD5zqa89M31sysMyZFLXr/cxJVXLq9ZOY8vuSEnT3QVJoyP\nXtCqQres5HZa6P+tXP9vuproEf8/ldcjv8sAYPG/eeKSSy556qmnTj/99JNPPnnHjh033HCD\nNf2xxx579NFHeUBxmgqqq/XTua55pBBvCvE3IU4R4nfGqc7LNiH+KMTPhPiOEK2FOF+Ij4S4\nTYiPhVgixI+EOCqeqoUw6Nl4UV5FZ3KofWcLMSjs9WvRcR+uXIO9C17tXufHyTwruNbmpJzZ\nFXS8jo9+Dfpi5IMQNPTY8ytzsPkanPXElbo0hxe2dP4SAtnnH+xuvPHGK664YsWKFTt37vzl\nL385cOBAa/rYsWOPPfZY+2vHkBBnD0ZIf7xS+ENWIcREIR4TYrwQ3xbii7jXv1eIl4W4Tohj\nhDhViBeF+KEQnwjxlBCDhIi+e6EPUZTzaKBllSckeQ3KU7thPBUeacxwbZpoqJ85Yl/QhElw\nl4+wq6MZqLupXKHr/1O5BtdsJuvUcCVyAg0Am/9QbFVV1cMPP/zwww+7pj/zzDOnnHJKo0b+\na0As5DNTweBrUiM6WojpQhwjxGAhXk1uM0IIIYpCLBNimRB3CXGOEN8XYp4Qq4SYKsSjQnyW\n8NZlUQ6s4bLyqGvRcReCa23OmYuq+zOUi7vyjVc7yqtV5vWSSUTzasv5Lui7SEG6lM2r/ohR\nUv//l9fRs9+p0N3i2GmOUm7ke+8Ac/4dOy/9+vUj1aVAOUKkPLvH7mghlgmxT4g+yac6pwNC\nPC/E+UJ0FuIpIW4Q4mMhfiNET4NlS/jH3avr4+oMyQOXru6LiNaDMewYydM1U5yZ0qQA5Zhm\nXMw71sojHJRyWec76LVmOUMXvhySVh7P0EWWZJSWHiGQWeGDHUrCaxAtCb8W4u9CDBZifQob\nU/lEiPFCdBHiEiFOEOKvQswRYqB2kUCDWRFncM3sNf7oIl8NZq9BfmddYbGgushSeMQ1w1aT\n/uPkykZe448ahh9X/aqcr3odAa/KE1UuXaJ4/2h4jSaXOwa1kQ8Eu7LhzA0pXLp0mRBnCnGV\nEHWxrzqgA0LMEqK/EP2F2CvEK0IsEeJik8sItHz/ght2gyLSX/7lTHKus6lXg1Bep3MGZdnK\nHpgcBYKezr1agzGePl3tyRhHz4Ouzetwec2gSVoRP5kpSLQjCyAigl1GyacZeQbDFlEIbYSY\nIMR4If4W73qj+bMQ3xHiX4R4Q4gHhHhHiIuDfIJN+lL2r0FPWoYXVHldlaV5u5V5Thka5Dzn\nbLM5hw6VfUFNQLSHEYUUE+UdCZT89H04V4WaNYd4vwL1OM3XGUtydX0AYi81ulymutQGQ4BE\nEeyyq4TjApOEWCvET0uybT+rhfh/QnQW4jkhHhTibSGGm908qx/pc/0armtiPrwrJzxnIPBa\nj6tB5VWwMufpA4fc+gq3g66Z5dFbVwMyIufhinJWdv4byZWDfRex+XZGXYsb5lR5VeWeP0r4\nlw2oDwh25cHuvqSwreFCnC/Ev2VgEFbjMyFuFqKbEH8U4ikhlgoxJK1Ne5105XTlWtDrVec7\na9I71GxFP7NXqeab81rWlYecrT6vGgw3JxzpLcbPv3NtgfphztQrHwrn/6fKXqZJoFEmOd/C\nQmwoIsIZkE3q65SWLVvWp0+foOsKt1RQxWJxzZo1q1ev3r59uxCiRYsWPXr0OProo5PebspM\nzmFyOyS6I4SYLMR/C7Ei3vUmY4MQ/0+InwpxmxCzhFgixE1C/DnhjTqbbcq2jSbNODtD9vzO\nH5TxSF7ca6Jzta4Vyr1AfXfQtYMmzUjfdqC8d8rVFqSnmShL1dTvu2u+RerXEOJ/veKhT6KJ\n0lzUL+vaUIhDEWMxSmXdbgSyT92xO/300ydOnBhoRRMnTjz99NPjKMnTli1bxowZ07Zt227d\nup111lnDhw8fPnz44MGDO3XqdMwxx9x99927d6f5tfKJMz+Lx+hnQmwR4m6PV7P5F/ljIa4V\noqcQ/xDiNSGeFqL44YcJbctrMFSe6Hv2dS1l+G6GfgtcfUHnid/Vf5Lbw179Rc0MdtfKsIno\nfMlr0/qlQvv/7J15uBTF1f+/A94rIKu4AAoogsoii6yKuMW44IIREzW/GA36qhFfkWhcgxoV\nNS7RJKKSuMUYd6Mmom+MRhARQVbFJVFQURYXZN+59O+PubR161QWWQEKAAAgAElEQVSdrt6m\ne+aez8PDM9NddepUdU/Xt7/VM5d2lhe7ateiacfIuLdYGjstnxcEQajnmB27c84558ILL3zs\nscfGjBlzzDHH8CFeeuml66+/furUqSNHjkwhw1qWLFkyePDgTz75pEuXLkOHDu3YseMOO+wA\nYNWqVfPnz580adLVV1/9zDPPvPbaa61atUovjRJT4sWOo4CfAEOAjfnIJxQLgNOAO4HbAXTr\ndhswFliedCu2FUy6K/AJKuOkaAzF+EN0WZbWhcW2MYZ19GACfSC+xVBOj98FoxFlDMg7gqEa\npb1wxKVuqnZakfSCi6oThJziWXj00Udbt24NoGvXrqNGjXruuefmzZu3dOnS9evXL126dN68\nec8999yoUaO6du0KoHXr1o8++qgtVCKcddZZVVVVTz75pHHvli1bxo0bVygURo0alXjT9957\nL4DVq1cnHpkHIV2fmDQDPgXuSDBidgwHPgK+AUYBVWk2pB4sf4tLLdsLutEWnzYN+8eZ7jV2\nhA/CdJZW117bTm93jL1WQ0Xri0u7kSvyRySwTOVRrzorVDYbN24EMGXKlKwTMcB9zFavXn3T\nTTftuuuusNOmTZubb765BKKnTZs2I0aM4Muccsop7du3T7zprIRdEWYWT5bfAfOBHcj2+I2m\nmraNauAiYBnwHvC9MBUDs9UORITe0SpMEP7Q012hziut9cDTz7PoJ2MZpgDTonvmjtsTJ34r\ntkOcSHD31lNtxdZuiRsVhJTIs7DjfuS1adOml19++aWXXjpz5sxXX331o48++uabb1atWtW8\nefOddtqpS5cuRxxxxP7779+gQSm+Wrts2bK99tqLL9O1a9dnn322BMmUnjiLSi70BkYCxwNr\nTU3zdT3TCmCoCGmwCbgTeAQYC7wMPANcAix0qBiYrbYIGIFQX8OMEMrlVFGPGn1wU4tAYzJN\nGNeRjeW1MyfmGU6PSPyFzpi52RLwxySTjwZzRIqktEAcNmBSJ4Yg1DeCf72/QYMG/fv379+/\nfwmyYWjXrt3cuXP5MrNnz27Xrl1p8ikZJbj6NwDuAZ4HXlIahZva8JSvW/JfF82Eb4BzgT8C\ndwEfADcCt9mfILRh7A79fqtjxVAFoIgqowyyzcG2L8Myc7YtiDGNwLo0VVuVQJ2hZW4rGerm\nhxZmHgp0F7Xu7doGszQiRqSSIFQwwWbbG2+88e233xp3TZ8+/Zlnnkk6JTMnnnjiU089ddtt\ntxX9T421a9dec801zz///CmnnFKafEqJP5mlpJZGAPsBFylb/AfPmQmguNeobwLVTMyEwwaZ\nCRwIXAD8LzAPOCa5NOJAVZe/3aUuX5hXWiDfRdAKuJ9p2kli+14t/7XfCF4O7QtN23YCa98C\n5olznhgT4BvNwx0R/8EvcRp5yEQQygunG+Vnn332xBNPpLtuv/32sWPH2mRfsqxYseJ73/ve\nrFmzmjVrNmDAgPbt2zdt2tTzvDVr1nz22WfTp09ft27dkCFDXnzxxaZNmybb9Pjx488777zV\nq1cnHtkFde5P46K/E/AhcAtwC1uMeks2t8lYsviClvfIL6Wlavu1AK4DRgJPARcBXzpUSc99\n1ISdL7NszWk6yWjC0dGjxdT4fO9o4cBOGXukbQ+F0fYzdi1sfNuiszFyYHDHHAKdwmSXQY0u\nZgm+iisIFc+mTZu23377KVOmpP1DbxGwLsV+/PHHH3/8cfH17NmzGzVqpBVYv379k08+afTP\n0qBly5ZTp04dN27cww8/PHHixJqaGn9XVVVV3759R4wYMWLEiIYNG5YmnzSgE2EJuBlYqnwZ\n1rii6i8b8UrOM/2mLi8s1C3GB6SSZSUwCvgL8EfgA+Ay4D6An98YmRUzw7D2mG18jMNu1NDG\ntzYJiG0npC09WssWQU0yDb/W8VhoCSeeklG0OQZXSzISNgJJdbBc2hUEwSrsnn766SuuuKL4\n+rrrrrMVO/nkk5NPykJ1dfXo0aNHjx69YcOGzz//vPiXJ5o3b96hQ4fq6uqSpZEqxqthetfH\nA4CfAYcDmy3JqFnxE7yKVtj4OtlpNRQzgAHAKOAO4HTgXOCDkBEcV0vDKj9V+6pCITCOUY7b\n8gw8wYyuHtV/NHPUlYm+XrdJFpflAhDF6dgprbzjsbDJ3wh1aYu2+yKwDz/E/IDQMS/BJ44e\nekEQSoZV2F1++eVnnHHG22+/PWzYsNNPP71bt25agYYNG3bq1OmEE05IOUMDjRo16tKlS+nb\nLQHaFOg+tUdgO+Bu4K/AJGWju2toVA/MvKh1hA+e3gJokS3A7cAzwDhgDnATcCOwKdEmHK0+\nW09tvibfFuOtUlVkWzZVG7W1aCvJdI02HQ0t1UD1YFOW9G2ETJg4RnM6bBMxF1LpmNPR43OL\nZhmKnhOEDOG+Fdu2bdsTTjjh2GOPPf/88wcNGlSynOontvkpPX0zEtgDOHrbW6PNxog2F7Ql\nWtUt4BVeqqrO51PgWOAU4HfAcGAE8LZbxZi6xPaWWVRlzB5jNJt7pNlpWhN0fda4V23C6BQy\nGTKFA6G1eGdIdT3Dnr02SRoKdYgCPcVU0TxgNUPx1QShwgj+uZNzzjmnWbNmJUglJvPnzz/3\n3HMBvPLKK+61vvnmm1GjRm3ebFyKrGXBggVI+eIbaF8FlglLW+A64IptXyCwWRqoO/e4z0OM\nacQUiE+EsE8ArwC/A94EfgtcA2xIPC0HeDPJttiqbqFqLM5KItxOuQjKwJibY8JhdUmCH1tN\nEzNrmokMfsyS9GNrW0/nA4rmE4SyI1jYnXLKKddee2337t1LkE0cVq9e/eqrr4atVVVVtfPO\nO69fv54p06RJE6TsIdnkCPW3ktJDtwMfAeNJE5EdDhC7SH14iK+ozje0p8a9ybIM+AnwBHAv\nMAw4C5gSMkKE3HjzkjH2tI2By6/Gdv3y7mnTZXoqKBm5Fs2iS6QMA+P2qXv5YxRNG5XMrjOe\naaLYBKFSCf54f//736+qqnrhhRdK8xcmIrNhw4bi13h79OiRbOQMf+4kJUFzEDAJOBCYFv55\ndh4aIdQaIk3GaE3R10nRErgdOAO4C7gSWJdsdBOBsjWwm1RswTR6/HEJ3KsdIFtKxgJU2EWz\n60KVdIFXZrZ7DJfulL4vjiTVaCbJC0J+KMufO/F55JFHRo8efeyxx/70pz/de++9W7RooRXo\n3LlzOrmFo1GjRolLumwxmgTxaQDcCfwVmFa3obCLrcaSmjJTt7tE1iSO7cEgGt+RQJG0AjgL\neAL4Z4cOQxcuPAOYGraNkNiOsrujVjB9OUB9wZxImlJxWdO0yVDG92JqRTu3bfcPjnpR2270\nxbUu0MLqW6NXHUiERdXIME585Nu5UuYvCII7wcKuTZs2xRf/93//ZyyQn0/ssmXLli9fnhOh\nmVt+CuwL9P3ii9N3203dnupaMyI9clRcxqXOk3uqWmHHii8DLRYuvBOYDNwCXBvvC7N0pdIl\nDZf1a7+YbX0wcMwDZaVNqcOkh4xp073GQXA0vdxXnCnUdGQMyEA54n4+Z77uqd4mue/iyc9l\nPxSiMoX6gNMzdtXV1VVVVWlP/PG59dZbf/Ob31TAhza9oW4G3Aj8Brhum6qjz0g5th44zi7r\nrWphxweAQg1O5JFcBYwAngX+BBwLnA6841yXV5O2JWYo4+OuVFyeADO2EpgSLaMGMYZl7Ftm\noZlpkXEB6blENaitv3xnw9rVjuu5kYl/QTPa3iWTOPG9xkTiCEL9IVjYPf744yXIQ7ARyqAK\n5ApgM3AbcH1dBaAt/KXnMbiEpcKIPuRkc5iYLRH4B9ADuAd4G7gWuAWoIWVCLS86rq4GJm8s\nwNdSF+OojrcpwkB7zChu6OownZ5d+sjsVTvFlzTKGn5FlW/deKbZyhtVfuk1SmB3ElyiTRZ+\neB3RTn6XW8c89F0QopHr70MIyaq6PYHRwKWA9h1g/5Lnz5E27yFmMtQzsLlKNlTd6VJSDeuy\nNEn5Bvgh8DPgl8BkoFM6Dflziap7XLSI+trobTCZqHLZTyNQbDEHUdOLzHZtF203cAC1E1WL\n4OKlaV2gJ5VxNMIOck7kURFtiALFTYIXnzgkMoCOqj2p5gQhQ4Idu969e2+//faOn/C33nor\ndkpm+vXrF1hm0aJFKbVeemyrSHG4BZgJPOngMRRfpDonaVM7VS3UVdIyNBpLtnGLOZKPApOA\nh4A5wCjgQXtJdyONMSahCBejPIIy9WoKQ5MjvP0WmCTtXVEQGLO1eSGBZxrNMFVDJX4EW+ZU\n9Wq7HCsmiB/feMLYmk7EJ8sV6i2Te2FBKEeChd3SpUtXrVrl/9Kb+mlv3Ljxpk3J/h0mK7Nn\nzwZQVVXFlNmyZUtpkkkb9RqUlLY7GDgJaDB9+tb+/VH3ymW8gof10uITON8YVY5Geh7DIuBI\nYBRwD3AscC6wzK2ie6pU5wVWpK5bKKgoRNBZpzpbzDHiFYwmASMovECHz3FAeLFr3OgnHzjy\nadyeURxPgLBnSCWJm2z7krZ2FwSN4KXYDz74oG/fviNHjpw1a9b69eu3bt26cuXKSZMmnXTS\nSUOGDPn222+3KKSX6C9/+csddthh3rx5G+xccskl6SWQCUlNCV5NzZ1AgzPOQP/+jk1EWE8M\nl5ICX9Io5gIXwtxdIr5YnYaAO4H+QBfgHeBIl0AhUQfE0UKjEWxhtTEP1DS0Cp8YVYRhT2Aq\nGbWlWzUrPz5dMzWuomq9U1/HP9uZCHzwRD5oacfn4Uc7fvlyRySdUGKChd3FF1/cuXPnu+66\nq0+fPo0aNQLQvHnzgw8++JlnnmnQoMHFF1+cfpIAcP3113fu3Pm0007j//xXJZHkte/BB/s0\nbbrbn/9s1AH8dacEV2EmAeOMrqZks45cfDKXdmmcd4EBwOPAi8CdgLch4l8g46WArXWjotVk\nkG0vLWPUTGot23AZg2ienLq3UPcJtkCtg7oCzjgU/HaGQLcvsHxScjCsJDXikkO0UapX8itV\nRNsJpSRY2L3wwgtDhgwx7jriiCP+/ve/J52Smaqqqr/+9a/vvffelVdeWZoWMyepa0EzAL/6\nFa64YrFpb86v3dQxMnpCjsaVRuS+bwQuBo4CTgbmNGq0j72kTV0ZEwgUMdouRn1qVWyjpBYw\nigzmrS0Hm1Lkc2Ma0obFr0KDG0Ukxf2TZRy68lI8gUc/clj/dViBm4ebycjkOTdBKBL8jN2q\nVauWLl1q3PXVV1+tXLky6ZSsdO3adenSpcyC7zHHHNOyZcuS5ZM20S4fHlkOW3XVVXjkEfzi\nFx7RxMaZW7vmlvJe05iAYy0KHYoIZZgCrwK9gQeBGcBI4OGQSTJbPMufrgqMr1ZxVMA0jhrE\nMQetmKc8iOaSvK11sOOvZahWUUMxCQcmg7rHInFoWE3FhsozbFuRY/rnUnrDIuJJECIT7Nh1\n69Zt3Lhx06ZN07ZPmTLlgQce2HfffdNJzEzz5s133HFH295DDjnk8ssvL2U+OUS7IO4GrBs7\n9vTPPkOjRrSwo4ZL9SY1bHBt7ZVaempkxJ7w+NnrG+AEYAzwJ+DhojlqysG9Ob5RulTqGFAb\nH3e/xHh01ENQjKwVM1puqnUUKD2NiidwAdTfpTXk3jWaNk1GS6CgwEQLS1KaKVocXtBrn8E0\nKOX9ZCjC2pOCUHqCHbtrr732pJNOGjRo0J577rnXXns1btx4/fr1CxYsWLBgQaFQuPfee0uQ\nZb2iUPe3NGNG+zXwH+BR4C+WAhn6cxR3f8JmLroYY4F7PfaHSPTCQPGPjz0OzABOA2Y55B/o\nhLkc+sBj5yJqtTU1Y3oe+Qaopmxs8enQGQvTHLQttpL0ddiPDD2RCuzXdSnp2UuOH8ZkvTpH\nRNyUBe6+r1BJBAu7E0444dVXX73pppsmTZr0ySefFDdWV1cffvjhV1xxxRFHHJFyhvULx/Uy\nR7x3363Zb7+jgRrLn/5MauaIQ1KLTXTKjzzjhlWHAGYC+wP3AG8CvwTuAvhehTUpbSkFHlDj\n0PGLm34oTTkV9VbYk8Ho3qmvA1c8qaZU86S9cwmitW7L1pHAFmOuWqoKO3KQsIgaEIQyJVjY\nATjkkEMOOeSQrVu3LlmyZN26dY0bN27btm3Dhg3TTq4ekvDd/+WX/wt4xb4/5nyTCepMSfMP\ndMLSYzXwE+BV4C7gUOAsYEVCkf3O0v5SXeKvjdK9Gpr89cfTxeNUa9Ex12Iat9P0jNLNlgDT\nO+NZbYvpYvoyaYTymKN91iJ4kDahmZMPu9hIJaN8Bzk/p2s5EvyM3datW2uLNmiw2267tWzZ\nctq0aY888sjChQtTzq2e4m0jZpzDgK0TJhw9dy5MBozfVsxWSoOWvKpaGMclk949CAwA9gVm\nAQOSC+vYL+MuZmFRXfS0qTq/jHoU1Fo228wXjvwprUpDbREWyvU9svlqy1Atw3QkMr7C9scB\nlj66R6PbtWi8F0vHNjCTaNmWmMijKuQTOZQx4YTd66+/3qdPn9dee83f8q9//atz584nn3zy\nmWeeuddee/3hD39IP8P6hX95inlme1u33lJ8rq5nTz+yXiYF3ZP2B9K2oEY3ulsvichoNc57\nQH9gEjAZuAiINiJGFR4o6Yxrdvxkb9uiTZbGudMo5nj94ajSjCISdQ+3rYBxuw3m48ZrhcDT\nRv0sRzjBND3tKFxsWcW5XUzqQmG8Q0gEVToLFYAcyphYhd2sWbOOOeaYOXPmLFmypLhlzZo1\nP/7xjzdt2nTJJZdcf/31u+yyy0UXXTRz5sxSpVrhJHzH+cQT/Ro3HgOghFe9xFVdoBuhuiCo\nOwUakzG6R7a0jdLKMdt1wM+A/wFuAJ4FWjHV7NGMW2xd0xQYkxtFHRA6PozTBjLmgYNpE2HG\npmkCBfJDx7QArai2ruVp6120k9mofY3yl4kQqkVjNP5U8cu4CKxymWKjSec0MhESoVxOvHxi\nFXa33Xbbpk2bJkyY8JOf/KS45dFHH/3mm29uvfXWW2+99Ve/+tVrr73WsGHDe+65p1SpVjgJ\nnsfexo248kqMGrUwzJf7Emg36RtxJr5jW1Sg8PpDRZ37ffkSKuGHgf7AXsBsQP9TbvHwCImG\nr9MELOrEVrFQF5cqNIL7dpusMWLMgQ5jUsaS472B8QbGqHrdmw51hid7V8mI+/zM1r72zToR\nQUgeq7B78803hw4dOnToUH/Liy++WF1dffrppxff7r333kceeeTkyZNTz7HeEFlA6Nx9N1at\nwmWXJZRXLaW/CLrMBIFZ+UF49yJOEwwfAAOBfwOTgZH2DOkWxonR9AfVT9FOocBR0qSPKgsc\nm9DyZ6prQscoYRmbMLAXWkcCbTY+Q1oxc90QqPjV8yRBvVUuUsm/Y8k6EUFIHquwW7p0aZ8+\nffy3nudNnjx50KBBLVq08Dfus88+X3zxRboJ1jMi3zr7Vyhv+XLccAPGjEGif4Qj84lKzYSm\nQb0W9W0ECWIk2jSwDhgBnA/cCjwGeKtXawWoQ+P30WbwGF+rdanB5pEvqNq6Qy0322mptvXd\nGWhRYFoZW/5qAWMQY5lQ2s7WHNOWMbhWRq0VSjfQYxHhRNVad7+SJKLt1EOcB7Xk0vc85CkI\nacB9eaJZs+9+SP/999//9ttvBw8erBXYtGlTWqnVM+is4E6dOfvmm9GiBX7+82TTCzQAskLT\nQwgzp7p3x+YMufMAcADQF/iwWbPulibgJu/otG3z9rT8QRSVppxs0bQgWru+yvHlIzNQNs9P\nFZGOFQvkl4TVMfRPA0b5qQnYEuZHgOlsqA+L1qOSfdDcP9Qxz/9Swp9IglDxWH/Hrk2bNl9+\n+aX/9tVXXwUwZMgQtcyXX36pGnhCUkQwG4oTqrdoETp3xv33o7o6tewyhl9dYuSObYIvGXOB\nfsADwDTg58DDZME0lMXCow6FZ1qZpeYZE4ePkCCq0lIbLSg/ekK3a6qOKtRAoVlULVocpq5x\nLyOIYdLQRl+5wH6F1ij0berfFiQNcnXL5ym/MiMI9RCrY9ejR49nnnmmpqYGwObNm++7774d\ndtjh0EMP9QvU1NRMmDCha9euJciyPhDZD6szjV1/PfbeG6eckmhqOcVmIeTqTl07pquAk4Ff\nAQ9XVY0vFLwNGwKrwKFHvJShr41nmnqH4G/RItvOUnW7UR6BuJ5UiKgRjM2p27W9Ru+N9yCN\nZh4/1LT7WhAtlOOpqFqMaqjEz+Q4AcNeoLJ1+ETVCfUZq7A744wzFixYcMQRR4wbN2748OHv\nvvvuWWed1bhx4+LerVu3Xn755Z9//vmwYcNKlWrlE/c6+PHHuP9+jB2LBsG/O10B2K7ddDuV\nGpFldFiMx/RO4MDNm48DZjRqtIepSrTcjL6aLStt9ZOxgtQC/PKlUdzAJPsc0/OrhB0QTSoZ\n22WEJn8KGRNm9mqijdfWWtpaTONQuIyPegSNyZeAbKWeINQfrEuxw4cPP/nkk59++umJEycC\n6Nu37w033ODvPeGEEyZMmNC5c+fzzjuvBFkKDN9d06+5BgMH4thjM02npNgmYA11KnW3Z5hG\nNTUQIc5UoA/wGDATOB14MUIeJAHqtLmkpw2IpkI8srptHMBAtadma3vrgk0VOepFL+h7oMZ7\nADpEtJa2ncnTUbj77YYS+lq79HAYtXvkewkGL+ofFxYEISZWYdegQYMnn3xy4sSJ77//fvv2\n7YcOHbrddt8V3n333Y8++ug//elPTZs2LUmeFU7MG9lCodALmNOgASZOTCijSkN1jKgLYpz/\neHsGDrLJsz/oVnx7FHAd8HfgRuDXQA1pgs/EL2xrKHBaVYWONsfbpnyjNNFap2Ftmfu1tCZo\nMaYjmoplxL3x0BsdMqqN+L64y5ekSgYOCw1FlZbRyAyVZGCjTFvJNicIQhGrsANQKBQOO+yw\nww47jO4aN25cw4YNU8tKcMW/IN4A4OijUffbLUIROkmrssM4W2v6xkigHGfcweLbGuAq4E3g\nL8Ag4P8BXwe1YvTMotmQ2vIobxFpJhYflnHpjPBqTC3j4gMZXSujFeeSXoTuOBajejS+ygnU\nUi5iMSeI2ycI0Yj4MJaoumSJc/0qFAqDgeMaNMDYsQmmVMHwjoUqCALnuUQmnglAX6A1MBMY\nGFTY5nJFwO9gYRu2mKogVodFe6tBjTcNbdmXNmdD89jUODYr0eVo0uraRmOPAmMGYnQTjcHV\nAY/wGICLinUpliDqsaPEHN6kDpAglBf14in7siDOxfQmAD/6EXr3Ti6dCsR9Xg90pLQXLvCF\nPwEGA/8EJgHGXyCkYtRxxgpr4PmuWNiwVF3xss8lvlGx2dxELRm1aWMVTUq66ComVRBtGmHk\nHcvHx12Ou1ThGwpbRc0k8TGJc04KQrkgwi5j+OnHBe/FF4dUVeG66xLNqwLhF/v8WcTmXRnX\nc91niMCSG4D/Ac4Hfgv8GWjiGDc5qBvkY5xi1R5pFpqxs6pw1BSbqiZdVI7fBBVV2na/IU0X\nagkzbTE5GE8J9wiM0QjLmKtjpVmVtiRtgjWCT+bZH13gc0iwWCjo+MTU0CIKhbJAhF2OCHvJ\n8DwPnoerrsLPfoYuXVLKqiKhV3ztVj6ry/cDwGDgYOBNYC97MZc1NU0/MRHoUMA0BRoFGdzm\n+/jWXaiSLpKLkXp8E1Dko3FAYJFlgWh3F2Gr+7kF1g1UdcxwhSLUOJTmQxdZ1QlCuSDCLmMi\nX8drL09PPokPP8TVV6eRWwWgDaztDt4xVJKZ2ZkF9AUWATOAEwDUfX7fC/MrEsx5pfnERpkL\nRe8a49icucDcjAH9zwKNbDuOVEjZdInahDGgrbDmDlL5yLSYnt51xHjC2wZBLcDcD6QnjPIv\nuVLtviAkBfetWCHPFAoFb/NmjBmDkSOx225Zp1NReKafJillAt8CxwNXA38Dbga2C/+lV/eE\nNYXH1C1s++ambW4r1P3hFdSVPrambe3yDcEiSbWmjW+ZwVEjFyzDrvp2xZm+YFqW1bYE5qll\nxQsIZq9xl7vxmRXqmOc5T0HIP+LYZU/0q9jDD6/66KOdbrst0XSsZLU6GQeXO+xAD8/F2kl8\nKtoKXAscD/wceBFoTQpQAaG+Nfo0MZP0lN9DMWZiLO9P1TaRx7hxtj7ySWpZafG1mEZLUn1L\nTUEtea2ndJdLtpTIZp57xQTP27StR0EQ3BFhV65UA7j++juBZak1oV6sy/Gq7TjZGFf91Onc\n9iJsQxF4CegH7AzMBPpZytgWAY1vmbncpQvMKl5YfawJUO1M80w/1+eYcKCWCrXUqOkzj8BH\ncLegmBNMw/18MwrrEnyuI4dN4x5JEOobIuxyQdhrmed5G+++GytXXr18eWmug+V4tXXM2WbJ\nqOLDXdAkzifAgcBEYDLg/elPgTOf+5waKnNedlAzz+aToa7KtAW0KTmbTrLZfrAcPqa8LSUe\nrRXHHtEgzFv3OKGw3QOEwiaIBUEoPSLsypMNG3Djjbj4YrRsmV4j8We7zIk5Qxdh9ASSm8CY\nVDcAZwKjgY3/8z/3FwqNibLkXajAPGNWh/K0GY1j1FhGz4lWpzFtKlxLMqyHyiTDjIxjKzbV\ny4hdGt92O6FK1cBM/Lq2z3WEk9k2CLYPUeSAgiA4IsIuF4S9kI1q3BgbNuDCC1PKp/LgR7g4\n1RUUjBFSnW8Cg98LHAIcCbwB7EHqMtLTpQmmd5oRZdRAqCtWAu0rphUtJtjeGRUSbZEm5h9x\nPmbgaWPbbpSDNiWqdtN27sEi/mgBXqMbx9lvPVDfBwZkNgqCUBpE2JUfTYArAFx6KZo1yzqX\n8iBBHyJbpgF9gRXADOCobRuNxo8P9WY0EyjQsGHiawG1Mqq+UUuqW2DRi7y+MVaxSRYbjkYX\nIxNBhBFNyTP9BVhtWGz+mao+tSpaGV5i8h209c79I2BsQqvunkaEnOOQw4+5IMREhF35MRJo\n06YNRo5MtZXSK5v0WnScJ4xLb3m77n8NHAX8EZgAjAHU5M30oq0AACAASURBVFxkGZ1rE+mg\naoPRmNRUg0kJaYoTJt1Dy9A0YFE/WqNqztRfjGZchapl03MqvKzUivGt85+vlOSUUduFPeXS\nuzI4intBKC9E2GWP+2XF87ymwC8BXH45mpT+j05xxL84pnqbzgS3SQTNUwm15JRqX2qAK4Hh\nwMXA34FWUZsziiT+ONpkEF0rLCj4G7HtaTxbcO0FU8aFQPNJVXu25miLEU4Gz/J7KFRoMm2V\n5l5LPfNpShFsPNrrJNI0E3aI8n8jJwgREGFXZqy+4Yadd98d556bdkPRFnHiNxozQlg094ix\nkWD5XoVtHSq1lGtH6XmgP9AReBvoY3n2P6m2VPi5s0B+o5gmw5ttsCjOwMSYlJhd7qKWlnds\nXWuC71SgDAqlNW1lXDoSv7NUNiGh7zOlhBh4QmUgwq6sWLkSt9+OK69Eo0ZZp2LA8eJbGuPB\nEWYJjHFxHIPwBbSVOPfZy1eTHwEHAG8BbwJnkjIuodyJ1kd/Ox1PrftQ5DWI36O+VS0lNaCx\nCdUF9ENRqeEy8u5Dqt4t0LS1djW9pe7i9THTOlWHRoHo2B0mh2if5WRVmppDWPFqTIxPL1eX\nL0EwIsIue0Jc5n77W7RogbPOSjOdiJTebItP8RrtmfDL+G+Nfh6cH2/iNxojuwRcC/wEuBQY\nD/wRaFS3DBVPNpi9qpBi9IFm1cRpVJtfbb5awf4bK8b8aYu2Yx0hZy09m4oNTNWWnvH04M8Z\nOm6qAHIMEgGXgLmVR5lfx3I7MkIZIX8rNmPcP8PesmXYc0/89reork41pbTJ/NLpgjqheqa/\nf+rvDYwT4hCb/ogWTYByF/A28BTwBvBDYIHyw2me5e+AGVv3WzQWCJSntC/Gvb5QVosZFY+3\n7Tuh2iDQF2pYz/RFVNpBehxpRbrdVoDmDKJBjQNlHBwXmJGnxUKdh3wcpozWa9p6Gp99/vag\nZM0JQn4Qx65suLF1a+yyC844I+tEKodAh0aTRLR8oPsS/+bbcUou/hLKcmDBjjseZ1/0tMH4\nkYxLR7cbd1GJYJRo/mhTueb/Tz1I5ogk7nxo2dreptG0i5uotu4LqcDzkI8cwUByNz5djL1Q\nTSdFhp5ZqAMtCEZE2JUHrYErmzU78+OPC1VVWedSX/BdFn7ag32ZLEKL6muj0mL4Gjhiy5br\nv/32eeB6oKEShxYOO38UHMSirYzRr4o5gVF/kR4LPkl1eP1ktNVPvl9aR2x9TGmqdhRPaacR\nmINRlPvkUNtpt3OCUHaIsMsYx0vtLwDsuutfU06mPqM5Rqo4oCaWe9hST6UNG14NDAPOB/4J\n7OKWjKoAjAVcbDwoNky0SVEz26iZ5xfzgtZ5+TzBysrA/Avk2T6q/CIfdxehoyoPm0Wa1ImX\nnhx0DMsc65QIvJ0ThJwjwq4M2BG4snlzXHnlZnHpS4XRfUHdu/lAYeFvKZlZUkxpAtAXaA7M\nBoaQvajbF/qCyZZKQM3iMrpcnumPd7lYgFp5m4WmpaFNzIW6aAnwYlQznIxmnk1z0BZpXVtF\n4/YIaP2NEzkl05HXbVld7uQyK5Q1IuzKgGW/+hV22gmnn17idkt8o5wtdM3IqF18Qo2McSQD\nfbKwqHE+BYYAzwL/Bi5F7R+oMEoTl2yNtWx+FU3GRQczphc14bQRs6lw415fTNBkUFftMQfI\nFtNRtGmuGx/caFjCflpqMWN+irVUjaFUCevYXKiUSnZfJAiVgQi7jAm8wLUC8Pvf46qrsJ18\nhTkv2KZ8l4mW4j7J8c1pcTYCFwDbPf74r4DngFYhvwnhkqEqs/hkaKOqEqIaUbO7qOvpKRir\n0Ob4Lti0u2Z6wS5Gad+p8KVdQN3jEmoYbe2i7qGBsnyslefjO54txhOAhtJUr3Zwmbq5JaZo\nFoSUEGGXd74dMyYTuw7lfMFNCerH0DnbdqHnPT/HcaZmTGDdwqmnDgA6ATOBfm5tMQUYTWN0\nlRyhMk4Ly4g2Zma1pVFg/6yZqjgDJQhVZjDJUBokUB3SVowdCSysDaajEFH1rhf0YyXqKLkc\neuP4hM3Qva7IL6G+IcIu17QCVl5/Pa68EvJl2IywSQrenGPmdVsrcTLkC3wIDAQmAVOAC4EG\n9nmOdorvhaOA88sYPSpaUpMIRhGpOUBqFWpc0b2aiNRCMdqIZmLM3xbfWJ0ZxsARtp11tte0\naUb3GKW2McnAMomTB7mWq1vfPAyIkBNE2OWai4Bvgeqzz5ZPbKow10R10lJnSuOMrr7mTQ5+\nV+KsA34GnAv8rkmTvxXX95U8NfdIE0aBefLCiyot/7VRbRhFlTrytGnqfhlToq0zFlSoOVtN\nMtRH1V0y8hGYwtHme2qq8c6fo0sXmE+gk8d/VI11cyW/BKEEiLDLLy2BC4E9//jHzVlnUs/R\npjebrWWc3fkZl28rcR4Cuq9b1wWYBQx0foKK2U7tIpszZAxi3EX9NuNexlRjrD4jqpOnaUQq\nRwoKNt1jzCfU2DIWmrYr8P5Ba8t49pZS9yTVVkppl+8ttOhXwUeEXZbwF5GLgBUAzjxTPrFp\nE2GEqYER6CgkRZyT4X1gAPBv4HXgF6j9tqwqDmwChfo3mqRT5Y5RygRaNdoWVRyrYbW97pqG\nmoXqUTOOg3pk1YqMcAylKVF3WFSb01jA3xKqicRx+bzw1lrkFlO9GIYa0hJ80gUhGiLsckoL\nYBRwEyBP15UXvDwKhGoIGj/mdLIOOAs4G/g18DzQWmnaXUOo+oN6XcZQMQkrlQp1l1ON/bK9\n9ixPnlHVpQlEl8S0JG0ljdupoehSxWZ52k7LUuqVCG2lp6hiClZByAki7HLKRcBK4KGs0xAY\nPBPGMtHiG+ePRCYVz/P+AvQHOgBzgEMc0mCEjm2vSxqB1XnvCqYBsYWlDqLRB1JtM5dp3rjF\nZvjRVMM6fNqZ5tulLnVdrL6kVIv76IXVxDkhVe9QEOIgwi6PNN9m123KOpOUyNs1Oj7+xEMd\nEV5eZEIxnw+BQcBzwCvAtdv+tiziZehSN/EyjjrMxXdUg6sHjgp3KrCY5owGJ5Mto/Zo2Mii\nUAvr25zaRsfgjlWMn5RQTYSVwskiek7IPyLs8sj5wFrgwXyIgMSpPFXnUyDfMPWxbQ8kwjng\nroo2AP8L/BD4X+DfQPuwLZGAjISlqoJ36QKlD++E0RyMfirIV0Bs0VRFEtg0Dchv0bqsDaNW\nxZgAdRxd4EPlB5FTguCOCLvc0QQYDdxauXZdRV6jfdViM1FKKWcd17b8188BOy5cePCQIbOB\nYQ7VjUeQ6bI2MjbJ678t1CWwLwy8AqOenPbCD+IXU19owW3ZMsYe30ebEtUyVOVgweHnadTW\n+QIRPqqBVWjyoeJHTkwQ6g8i7HLHOYAH3Jd1GkIcjNYLU5jZWxpFWOjQYbvJk8cBzwB3A435\nwnWf3LfpD/81XX2LgNqcp/w6iTrOgXKQikitX0YNx2CTs9SehEkUUveODw522LUytpjasaCD\nmRSBujz/4iz+rUVuqeCuCSLs8sX2wCXAHcBauSVNjpJdv7TZ2ojmsqDuFMvHj39KaJO3+roG\nuAY4HBgKzAS8mTOZOPysoO5ylLb+sNjKG2PyGk6zyjR/zlF2MH6btt0oE2mS2uHWTgOXU0iL\no+WjytPAwVRzCDXTR5MFCYqJeqJL0uumzC8VjAi7fPEzoDFwd725bJWMZAczUNaoE6empYwz\nrupC8e1GT5rkZgz4OtALmANs6tvXu/lmlwtEzKx8IeIyAo5o4pXOYWpDqqxUZZaxjK0Ltta1\nM0EbfL8VulcLojUROFBGyxBkZFyuM5EPiuqnOn5e8kbiLmauqOCu1XNE2GUGvZZVAZcCvwdW\nZ5JQRVOaS5hxRrfNW3SOTzu9IoFLeCuBHwM/A1ZefvmrQIeowVVDy3H8eUuMT57H5m/B9Aid\n7dAUIv02HoUXmkwxdZdxr6aljB0xaj5+YI2jF+FYJKiTbHo98ZuflKo4UtnKUkgJEXaZQT+u\nPwZaA7/ftlc+z0mR+EjSo+Oi3mx1IzdqixN2kqa7PM97FOgFNADmAqeZcjC24ksHviFb62oC\nqCuOI4RScdFShbq/bGeLbGvU/bAWyB/S8CN4xLYs2P9wraONx+fsIo9ifoL4cz69a10cvZVn\nH1EQeETYZYZ21WgIXAHcDSzPKiEhPDbdRpWN0eYJNaUZhQhMk26ECYnqVACfAYcDtwAPAU8B\nOzmbUrZUbc0xETQdqdpOxl6EkgjUfvPj2zQTL/s0ZUbjO0IdRNsLrYrmyVGZyGC7XSmXO0zm\nxKAlw4pdPpTchwu5QoRdXjgZaA/ckXUagjvaVArLVw7Vwqg78YSaOG2TdCK+gi1IDXATMADY\nG5gHnGBfNGR6ESdDdxfKN+fc44QSPeqR1eZy7ZiqGzUpTI8+jeA3F2rcbIrTmEaCysaIS/IF\nhThtMcTpiGg1oXwRYZcLCsCVwB+Br7LORHBHm0ptc6q6nc6y9K0xCCzSsDTMBfoD9wN/Ax4C\nWlrcnfgNRVOHVBWpvqk2/kza9FAaI1BvzBiE5uxHY1KiQl/ti63Lam6a26c2of1fqIuaQ6AR\nlbggix/QXYolKNpE/wk5RIRdNmiXsBOAfYDbtr2VK0W5YJyDmfJ09tJUiLFK4JYSsAm4ChgM\nDALeAY4kUoDvhYbN9ktjavelktEGU6tQSeTX1aSbr+f8gOoLLYhWnslWixChs1oorTzzmt9i\nS8DYLq8IaSuars3k9I5MuSRcFkkKSSHCLhu0q95VwEPAooySERKHujIIminL4so7DegD/A34\nP8A7++wW27ZrKica7nXD3vnwkXkvMP7MTQ1aY0CbI0vtQE1KagkXc3aUVrYzk8pZYwEb7tqU\nJpMgzEDVK+p59+shIuyy50igN/CbrNMQ0sbo+tBdDCVYaQqsuB64CDgU+O99963YbbfjAKQz\nc9gysXlyRuOHWqq0LlOA30thxiFwiIwai/YrMCyfg22vTZeHPbLuJx4jTJkqLmHDVomDy2ct\nc12VuGIWco4Iu2xQP+qXA48Dn2SYjZAyNn0QyuXy7M9y0eYizyWOFScDvYFbFy16DngEaM0W\njjavuIgkbSQDA7qUgX22pguvGsZavFbjS/opqS0aJaC2N7CzjidJhGOn3bFEtv00/HFwLGnM\nJytKr+20kc98BIRSIsIuYwYChwK3ZJ2GUAIYl85TsNXVXqsTeSZX7fXApcABQC/gfeCH9pKO\nZhV9bdyiRiuw3ymmqoLRWIFeHWOvxlxStHlXxmRoW6rctPXF5RDQzPmOhBIr9B4m7Cj5GQaK\nRfWY5kTQ5CQNoZ4gwi5jLgf+AcxTttS3S0Ao16ocKbAPPNl2MWtwdLEpw9F7G+gL3Av8FXgW\n2D1SEKZ3LnU1yeUewTZ0VHPTsIylR2P6RiDfeqEusGs1ii96tAxto0FPsAjjxtQq7vJbMbqM\nlUGo+5aSkR9RK5QeEXZZ0hU4Abg56zSyJewVv7wkoE1qaFJGm8g90/dDeXcqVfhjtAm4BugL\ntAHeBy4EGibaOlXGjNPG5Mnv5fW3UdW5HA56KDUx5HJY/eZC2ZNU5KU92Qd6adFi0jiZSxbt\nA1teFyWh4hFhlyWXAZOBqVmnkTlhVV0ZXUaNK1zqXuN2v5thVUs0AmO6DPi7wGCg2V13/a55\n8zeB3tsiJ5Kwb//QfKhOcnRQ6KHRWuHzAVFOxrCq5cZ4fnzdwEyMMfmNfnX/XiJUu54CUyAw\nDgPjaEaomxL8IAhCJoiwy4wOwI+JXScXCJ4yWtBxcS/UOdXYNU06pDRdOU7kxmLqrLYVwMiR\n+OCDASed9HbxydF162y1+Lb4PCOfAKqOYcrYqtimcJv/qpVxt82o5tOS0ZrgbwCoDKVq2Pia\nSU+NoI2qLYJtWGyJ2TrlePRpMXdd6BK8LK5CQv1ku6wTqL9cDLwH/DPrNMqOirmeenX/hgFM\nj/bz0tDoBvGTa2SY2dr49gTgLuDTHXb4AfCsczSXvagrkiL0tEB+dtiPQ19otRzHwUdtiLcD\ntb2ObTEB/V30TKOtqOLV2K5jo4F7A2FErf/CH1XGL1RrqWeLS3qOxQQhn4hjlw07AWcDvwHk\n4lGphDVmwPoo/NuwjksJ+DvQHXgaeALwjjpqn6DyYedRo1JxGXCj8OVtRdsaJV2OVF/4Ddl0\nkipQjDahFkSTVvQ2wNh91eViCqjt0jI0eZdodJfRhLMpOZcc0iAnnyBBiIwIu2y4EFgMPJV1\nGkIJKCgYC0ReWrJtzMnMtMrzfgn0BP71z3++A/wGaAogKGdGELvoksDy1Pix7Q20S20ekmdZ\nNHcUPVoORjVpi8PgaztNjKoxAzOk1RmRlyxa00aBbqulbnGpEi9TQcgYEXZZsGbNSOBWoKbu\nZrmg1Fu0aVWdveh8jzI5VYoJfwgcCZwGXNqx44fAaUADh3VYRttpU7Vt1cxjv6wAMtqMYPLl\nmlEIakuZNA2mIyDKI+xRdvTYXOIY80Fu7hPi465By+LzJQg2RNhlwfjxG4GHs85CKA2BusEv\npr5VbRumJO8qBW5xTy8yxbB/A/D++w8ADwBTgAPsJV3Q1I9tiByncE2cBZYPLKmtotrkoM0d\nDNSCfi3ja0ccvUlmZOhqsnsagSVtBfj16PgkJZQzabH0yQv5RIRdydm0CXfccSewgeyRz2R9\nxp8mA3Wb4+XbWCZQZCTOdwJihx2uBroCnwFvAE8AnWwlLfkYU6VWk9HjNL511Ea++LMpMFUZ\n+0qIkeY2/JI2d1B7HXh6GNM2BrQVtg1mHBxVHS3G9ForZjv5xYoT6gMi7ErOI49g7dp7s85C\nyC1GhZdgcGZXnBYd634KnAYcCOwGvA/cCrSsGyRyDgVloS1ZdaLqLdSVcZqBx6tDmqexri15\nYzQ/H6OA024SVNGpDbWxFTWg0QBWB8H92DF3Fy4tpqE1tSYSD1uaFkW5CkVE2JWcBg3OW7Fi\nFdksn8l6DpUINnnnuMKo+kmwLFlquOiSwMxdmAYM9ryfAD8APgZGAd7GjYi0lqT2y69us+7o\neKqD7PgZpM6ZbWzVyJpqMZpPmmpRpbam3grkO7N+MToUYS8sWnn3YbEdO7pdy5yPb4zMuHdy\nLRXqOSLsSs6ZZ47POoXKI4179xLDiA9aUrMuAssj9hTIe0iBss8Y8GmgGzAWGAN8uv32p0e6\nHtmmfCq2mEx4yy3QInJRzJpEo28903dpVZuNb0IVkcYIWnfo+WY8rKEUkrGwS/4F+3o6LakK\nVvf0HO8ZItxaCELeEGGXAXI3mQblfjm2zcp0o6oz6CQdtt04DpkfIfLgbwLuAPYC/grcA8wB\njg0ZwTi7G/PRPDNjAS0yE01tXTsKanVNEBudKltWxpPBlgaVgF7dn62mA6VWcR8WWwK2c089\nsbWGfDkLon1trVfSxTMpESliVNAQYZcLKulqlRV5HkPHK686+Rm7Y5ybjW/d/YnAMjGruJRf\nCfwK6Ay8ATwLvA4cGDYtU7thTwm+vGYpGTUKzQGKfLGZi/S1I+7+omNDthOMsSpdzrTAgbWN\nnurkOUbjW2EK+M1lfiURoSbERIRdBhiv7/JJjkPm1+LECTwfAlWFIyUeOqa5pcD5QDdgETAZ\nmAD0YyvarDIfavbwA8XP6zalqIobv7qn/GkyWhh15RejbLT8jXuph8r4c2otYytaeUedx9xR\nqL6gmpX7RY8/ZOV75UxKROZBjAq5QoSdIKROqCuvWpipRZerol3cSzwvBjb3MXAasD+wBZgO\nPAf0slR0tIuKUJvNZgIxilmVL74Pp+UD5wPBH1wtPfpWs7KMmomeSGotY93AZFRtpzWqlTG+\noNgOYon1iq25pD4goc5VEWpCHETYCUIeMc7lzDSZT+si8vw0FxgGDACqgdnAU0D3eMGNTpKx\nGFOFlmFsNqPo8TWZGtxXqFRvGZvQWveVFi+emIDGkQlUe8xrraIxlJp8KFxO9aQ+DjaHUhDy\njAg7QSgPtDmGOk/GaTjbW3/bjOiY1QxgKDAYaAm8AzwO9HQIHrYVvpgm45hGNRlnVOGBQsEj\nT+OF8rpiCprA6pp1Z2zd5jXaxllVunm7PwnU1qFCiQ8nlAYRdtmT4LVDqA8YPSFYHgKLNk2m\nejaGDf6m530fOAzYEZgDPA8MdAvu0vdQ4k8dYReHzFimYPqrrHTWN9bV3D6bbabm4FJANc8C\nByRBgRItFD9u6nZ/oOLoRbkyC2WHCLvsMc7HQn3GNqn7LzR5QT2SmGdUqq5J2ODF8q8DRwKD\nAABTgX8Bh1rK86uExuDGlIwaURttd3+LNko3UsXmH0qbNFELaFugaDWXRdVAa83WtLYlgopS\n8+RNQWNFl+B0Y66sQUFIEBF2QhlTn6/ONpmSw/WsBJkODAN6Ad8ArzVsOAUYplzF4qgKPwJV\nRbby1GNT33pBv5BsNN5oW7RHvE1l26IGsQk+RomGkrCO0jDyiapWZCIEGntxMB4aNatK/QwK\n+UeEXfaIXSdouMzcvldHS9rOqPhnWhoTZATe8bxTPW+fmpr3gSeA94CzAW/DBjqVGtUME5mZ\nqo2Fjdt944ovzxxl/rWWpPaakRQ2LRJfghSUFU/+lsNY3V2qGsvweyNHdmmX2rei54TMEWGX\nPXIhiExOdEbJYCZsmFblVIxSIxBteS4pHyJmkGIa/wX+B9gDeBa4BVjaqNEVQCu3pvmlSfeT\nSi1s9MZcIqhVtLc2nYS6MsKWsyanQqkQrSJvK4IIHdupksj54+fDW4xpX1qNPqX/vzYUebvO\n5zAlISlE2AlCeaCaIurErxWjOoOWjCCII4iV0rAUuMLzOgC3AOcBnwG/Bzo7VDSuWgbKX79Y\n8a3mUana2n2QeVtRPda8WtIOMc3cuJ3moG3nzzcmByOBY5KUfcjsDau03EsyFmy9ugUVskWE\nXalhZmJBYNCcAE1h8IUpLnNVPs9MmlWhUFgD3AF0Bs4DBgH/AZ4HDrcHMc7r/kZeIYGMnqa9\n+GwpjuNs7Lj62igHqYlrNJZsQpBpTvPz1BNSk6dGyxCm8zMpP88WPEL8BFPKFRHu7oRyQYSd\nICRAgusaTBybG8cEoToj0JRSg0TrVEpLPIHJbwYeBQYABwMbgX8Cc4ERgLd+fWBk2y6q4UJJ\nN1u2RhFGm1A1SqA768spTWYZW9dULHXmbKajKtocrS8+GaoRA4vZsClIYzLuerrcBVBKn0ch\nt4iwE4Qc4biepUFdGdhNKeTSP3BBVRt8F6YAPwK2+/TTl4HbAXTocBOwB1EY1ECKlhUsjzDy\nC5cuqijwfHBR6n4ZYzFtTGzFqGaitXwyEUPaWDFjm+BtGE0gb+QzKyFVRNgJQgIkNZOF8hKi\nYfOcjO3mUAKGmKg6dvwlsDtw3tdfHwt8DGDYsKMKhQYWOzPOFKi6ZZGDqKhxbNItcsI2hae+\n1lxAWsa2JSUCx9b22XGx8eLDnEsxpVVMGZpGr1NSxkJSiLAThEogjqRQF+MSTSocLvmrK4CB\nhYtl1gLjgZ7A4cATf//7C8CHwEXAjqSkYybMXiqDVNEc6hjZOqhF8IfCb0jbrkWzbQ+ESd4j\n2HrEnGmMweyIFkH1MjVtl5T+5t3NBLVdTHJ4eyakigg7Qag06LzFz2eBSsXWSowcw7UVAZre\n68CpQNXixXtfe+0lwCLgYWCIqSLf68DF08K27zFoUibQ/aL5a4dMbV3bxWfleLBUo44mHNiK\nXybUobSdllQehUI9EIHFqN/G9CKwg1TgxvmwJCVDEySHKQkq22WdgCAIqeCLAM3LoWg+B5zn\n7wjJxMQ9iHVWbtcOwHbAUOAc4DXgv8AfgdaW9VlbWK1H2rgxkkIrox4jzeOxbVQrqgnYlJAx\nGfcjQjOhHXdBU7S2jkfIkM8kUEDzB4up7ijdRAMJJUYcu4yRz7yQLJpuoCt3jtVTyipxePPA\ntmsL8HfgOGBP4CmgaOA9ChxBronGyZtqDsdlREbBaMuFDEY7tkD+ZDDqWoY0E1VUUZnI6LDA\n9MJe1ui9B7PKSU1QY3n3NIyql7puESKXmLBeqVCpiLAThMrB6Kmo0BUiOkWVeG6IP0fSGd09\n/ufANUBH4EdAE+BFoGaPPa4BOpiCU+9KHcAI42YUVXTF1tc9mlwzYjzEGsY0tC00DTUmbcgW\nwTFPYxpME1QLpo1xuda4yyVUPVRg9bPXmSDCLkvyedsnlC+qCIDpSlrcomqRzC+1gdN/nOqO\nHawB/gGcCLQHfvnpp6cAnwAvA6cBjYOaizCAjPAyhrX5fKEa0kzBQHGmSVg1WqguM66hWsaY\nZ6APZ1TYxoqhUuUzdNxV+g9Xbq1EocSIsBOECsRxRom8VlUyIttg0fgSuA3oBhwELATuBZYA\nfwIOAtSgoSQONb2My5pUwWjKgBEx/gtNRUVTvcX4jB3loqKMSdoEnF8FWd/u8jJX26Il7K7k\n6qcCq5+9zgQRdoJQj6DXVpdLbeauXrK4jMBU4GygLXA+0B6YBHwEeL/+9Z5B0Sg2hcQoMM/+\nw3UqfLtQXDdGpbmg6kVjLwJzgKIXbcn7u2wuJo3M6DCmojEB94447hIdI2SFCDtBqECYeVGd\nOwML541EMnSXJuuAR4GjgQ7AH4H3r7lmPvAG8PNCYUeH6u4EmmRqSWa7o/jQzgHjoY9zSmjK\nydeXap5M8KRuJCLI2VC6WaMsPkHpUWG3f2WNCDtBqHyYiYoxY3JIUhmGnYAXAbcA3YH+wHTg\namAJ8DzwI/IQnntDjsqpsO2ZSLr2p4byD6JWmIobl/VZ9aygmagl/S3MCWbM1rjd0T92OQ20\n/lJP1Nh6fVZmcTAOspAVIuwEwYmy0D081KtTd9HyqqVni8kbSGF3JYKjOIgWfCbwC6A9cDyw\nHLgPWAo8BBxt+VFQ28BqSfJnl6q8bYuYxo0Fyy/YaQnYbCr/baB603qhyUrbWecXoP4x04oj\nfgJ0qAMrisILiwxarhBhJwiVT6BvxFc36gPYHwVDrAs1BAAAIABJREFUpG8RJkX8+JrOoAVq\ngJeBM4Fma9c2f+yxVsBzwBLgbuDg9K+qqhhS0yu+5VcSfbnDjJIWWbUAaYvGTLRQqOuf+TrP\nUSbaYkYjlKQOW6xeIWOSW+QvT2SG3NyUF5VxvFwMtlCeUFKJ5QqXFcZamjQpnHaa53ktC4Xh\nwCnAq8BS4EngSWA6YDtpjE0Eah3P9ByeppzUjUwtpgm1JH/a2xQ/v8sljUTwTH/YI4IuNBqZ\nlXFBECoScewyo1InRSHP2NbaVHwDxv0UjWOi5HOCdOy7v9S4EngAOArYHfgN0B94E1gA3AL0\ns/yyifZYkouryvujVMRo7p1tudPRteUL2PLh49Pt6nou065jPoH9cum7b0wa06i3V/KY1qmQ\nHiLsMkM+EkIpoZOTNvtqaLMyfxHn1/X4xMpiXtR6wXTqS+Au4GCgI/A74EBgOrCgUPAuu6wf\nKaz2XRM0WluOi5JaQFtzRgNPlY/aU3FM68YIauZGAs8oirFr/qC5CCxeKbrU9V+7nNU0yTxT\nFkkKjoiwE4R6QcHyBycYy0R9q2oOm3UR2G6ZQs1LlynwC+BO4CBgD2AcgIkTpwMLgFuBQQBT\n30WgMBrFJsJsxZjmqNYsKBhbpKKQhmJWbwumH+Lxm/CbjiPRbH00vg3E1h3+LihZCWULKEKt\n3iLCThAqH6M5p9ozqCvgKNTqC9t6VrjISr6Mo1SysRD4LVCYNq0D8DtgEDAF2Nq+fVH2GS/B\njA8H4gZpFRmpYdxLC2uyyRdkmjlnK+84MmH1E7PFKCVtcUp2m+EpT/iV/t7G+JFnyCRJISVE\n2GWDfISEUqI5bf5F3ObA2Wy8Ukq0pD4jLjlrvlRSYTW+AH4HDAF2B0Z+/nlPYCKwGBgPHAVU\nW4K7SG21sPEw2Zw2TR4x1aGcLTZVV7D/GWKjWETd+wrVn9MK2KSbn1JSJ2eC+sYmrRKXULaR\nEa1Wb5FvxQpCvcB2iVfVnr/RZY70yAJlggtkCcaJ3yLtqXE7b7OpLPa8QqFwN7ATMAz4AfA8\nsB6YAPwN+Cewlm1FUwy88gscRpuotVUvaixbWOPegvKzyUb/j+lIsaR6lmo6j1/0pBGM3TSm\nEVMV8e2mSlbtCjlBHLtSI3dRQm6xretpDo0/5btLmfKFFzFaMUffyC/zDXA/cBywM/BzoAr4\nM/AN8HfgLGAX0gqCdJhW0qhRjHagdjSpqgvsmurV0SA2qQfLrYWxpF9MNfb8AbFdV/0EHM/P\nQL3oTlgPOMFPUEV+GAVHRNgJggDYJ2BajJkzbKZL4MZU73ZcZJANxwmSaiBer2isBh4HTgF2\nAoYDS4GxwBJgMvBLoItbAnxDLmnYFlKZOJqeo0Yac6Cp6ajdS9hWM43p2RY9Nc1H69ItEc5G\nNUiyEi0aYh/UZ0TYCYIA1H0ox3FZ1nE6NKqcQAWZII6rfiVrnWGD503wvHOAdsBg4E3gln33\n/S/g7bPPLcDBQEO3OFTQMMX8PBkxZysWKOWNBh6Us4IZH6N5phmlvAQ0diGfxMzQZtAK9RAR\ndoJQv3C0E4yOC299ua9ClvXE45h8NO3oH52twFvAZQA++AD/+c8l//nPIOBV4EvgYeBHhUIL\nS27aMqUqF6h0oGVoSVU5MaFoF9Tq/i4aU9uirZzaTjlNa/Ip2boW2Bc4H0d+nGnMNG4tyvpj\nJSSIfHlCEARObwXaM+7x48fJA/5YMf5WtA6qFT3yJYnbgR2BocDxwH1AY+ANYAIwAfjQboXS\nLUxJxyTV6nxnC3W/62oM5XdTjcyHDdRh0SSObTlby43Gz8Ptiqg6wUccO0GoXzgaG76Xo9Wl\nbz2FZFN1pwRNax1klr2oT0ZDGZtgNHSxyrfAI8CPPG8n4GhgFnA28AHwMYBRo/Dyy9iwQc3W\nP0C0FV6LqIaZzTwz+l60pE3PGcdH3RX2mCZytxC4spwIiX9YyvpOSUgcEXaCUB+h62W2mUaV\nCMYltjw83FOCic22fGbsu7bRKK1sezVUweQX3gz8G7gE6Ap0Bv4A4MMPMWwYWrf+B3A+0Ild\n7FMfdEOY0TMusxpPHjpc2gmj5QDWDHMncc1k1K9pN+pOSqu6Qlkjwk4QBAOBUg/km4C0ovYi\ncP7L1vaLiXG5mVdOdBXSWIY6eWr5+cDvgMLLL+Prr/H448edf/6lwALgfQC/+EXRxgscWJtT\nZZOtjMY1+nZ+EJuPqEY2dplH7WBSWif/minODVV+upb/cS47RNgJQj1CXVYLnOmp42KzK9Qq\nNjOGen4ujZaGsIKSGQS63dYjTYu4N10cJaqeC82a4fjjMW5cR8/D++93ve22V+64Y+NRR2HH\nHf+vULioUNjXlIAaR3ur6QabcjVuh0WwUs3nIveZvbYCEc4lm/UYKoiRlM5qF8fXSFintgSI\nvEsQ+fKEIAiJ4Zke/y+S4FWbUUvRqgdGC+wL78nRaCASJ2yPqHquQ9euhW7dADQBDl2//mhg\nJHAn8BnwMvAy8G8Hka2+NmpZo18beND5aJo1aCsPk0b0Q7nkzxC2fGC0xGP62GLSs0sT07Sw\nLVpKmWvJiKpLEBF2glCPsEkK3ocDe/GNo96iSTRqJTqu1qlGRaimk511CuQboHx5dfBpJlRg\nqQHXAS8CLwIA9gK+DxwJ3Ac0BWZsE3lvAZtNx1cVW44jUCBfIKV9dFwU1vyzwGVHTVxS7UKj\nMXoxsCF3rWPMp5SEvW8JVVcrbJSMLn3PcHwqDxF2glCPsFlNiU88/iKRUYgYM4lMtFBpOASh\nBJD6mhkuWMQc7FLPtnE+MB+4F9gOGAAcCRwJXAmsA/5RKLwCdCs+mccGYfI0JqDdS9iOPrPL\nRqBAdFeTWlhtsTs+gaHCisVQLcbRVWFP6YLy0EXY7iQ+CPUWEXaCUI+g5kGoB5j4FRxq3RVn\na81KyWrNpbDt19HCrn5qc1ugvRHBhmTcONSdLPnMXUZYM65aAN8DjgD+F/gdsAh4BXgFeBVY\nohTTfEHtrGB8RPcJ3jav29Z5+brGDP2NfEr8EaxvysOxv+72qgi4tJEvTwhC/SINV0DzY1Qi\nTJDpXfF9qeGoLzVhqgahJfkCMQkVkx9Yte+e560E/gacX/yLtJ9+eg2wPXA7sBjwunX7PTAM\naGFfr/e9RijDZdTBNj1tPG1sHXc/N2IehRLLDn4Qyo5ofamwQcgQEXaCIHyHo+LxiwVqCP+t\nqgBAvCX1mh55Lk8cd38xETFHJ7awBqe6qqtFY9zW73Z17Hg/cBrQBugN4Kyz/vfYY59r1mwZ\n8BZwU6FwBNCYqFjjwiVzejDnDD0HPAWtUVtdY7HACCmRoUWdLczHVgRc2oiwEwQhRVSXiK7V\nou5VvvIu96F6xIsAd32gLuz6w0uNNJrndwcFmAvgF7/ACy9g2bKGr78+8JprBgMvAMuBiYXC\n1YXCQYUCNm+m6THGnrbF6PCp+UdTRaFW+lyaCCxTqeotcr9iDkhFDmYpEWEnCMJ3ON5Mq3KB\nGi2aNaJWVMur8zozi2tNlBclnqK8ut/85bWRv8uo+b4b8KoqDBmCa689BGgFHA+8DRwPTAKw\n447eUUd5v/nNAKBh3TSiHTKj+QcyjNopF+G08c89l5ScUrfgPg70kxJHHpWd1vSzLa+084l8\neUIQhFgYZ2Kw3/EMO+sXHJ7WNyaAFOYJl9YdM0wKj3xDha5pahjnUdU/MwZZD7zsH4iVKzFx\nIl57DY89NhVYDfyjUHgNmATMrKlBgzquAeOiGU07em9gO80CsTWtWYy8z8c3HTYxm3Wq9tEj\n33MK5UQmQuS2tIqOx86/Moi2i4kIO0EQzLhPJAXLD3ZoUyYVE+4zhxrW8bpPJYtjW+5h45Rx\nh0/eU76dEGGUVNyrfHduDBsGoME337SYNGnhySefDfwWwE47YcgQHHYYDj0UPXtSkcccd+r+\nUokD9hSylTeuPgeSoZCK03R+HG53Xa6K2lSTyc/gpIQsxQqCEB3jdMssnLnEcb/s2hwgurG8\nPABtxPjkjarOJb5t9IxSybjxuzc77YThwy8AugO7AKcuX47dd8f48ejT59uGDZ8vFLw77vBm\nz8bWrcwZ4reiyVNGE/jl1XsGrQn/lsNlTPgyNqKte2otJpKhMZNsl2WZk00rVpp86gMi7ARB\nMOM+1am32r7FEtbZiuCg2JZ6XeLklmi+hapjeGVGLTEaR9VYxoe9tKOghvoaeNzzMG4cPvgA\nixePLP4e3vjx6NMHO+3kDRs2GtgfQE0N7YLm6fLGHj8+NocvAokLozgiMilSVXu24NlKTORj\n5EuACDtBEGIR+UKpXmQ1cUAja3Ik1dzC1oppMWoYtRQzIVEFo4kzf7v6gi6L0wQCU2W6UPuq\nbdvHgZ8DRZGHe+7Bbrv9tmvXmYUCWrfGccfh1lsxbRq2bDF2qmB6HNOoMm1q2HheMWlT588F\nR7mgxUxD5bgbrpHJXJwJgcgzdoIgJI9xItEW2rTFMn62iDaXFOr+yQQtmaTmp8A4Xt0vqybe\nBO1LUl0zRmaGjq6Nqvl4nodTTikUCrsAh6xcOWTChEMnTOgOrAOaHnWUN3YsDj4YmzYZ47ub\nu0ZlUyeHkOTZ4ylE/U4JraV9HkPVdSzgspSc59EuF8SxEwShpHjbnnkyXsGNblMcbNMVI32Y\nXdGyKpBv9SYVGVG/JEEtLs330tQ2swKurdu6JPAV8BRwIdAT2BX4KYCuXfHsszj0ULRsicMO\n866++nDAW7NGbcV/4b7MZzT8bFkZR8BINNdKi+lyP8MT824hGukJLzECk0IcO0EQSo1x4Uy1\ntWxzXhybLT0Ti99u3GXz2KJ1MDA43WhciuV9OH6j5qip9hhtwlDgjjsAYNUqvPEGXn8dL7/8\nalUVWrVCv34YMgRDhuCgg9RoEayd+B5tZM8vpVa88D+JwthymVtlCZro9RwRdoIgpI5tGqZW\nVqC2yPbqH83n49dJ1R65S8NQ2wNXcgNzBlFpqv4uelH0KDseqe9qNW+OoUMxdCgArF2LadPw\n+uuYPBnjxmH9evTocdc77/wIeANYZNIlLmviLvmESDgM6iq2Jm1LlonxMBnRlHdpZF/m4rIy\nEGEnCEK62KZbdSGJigYmYB7u7CPkwKwhBtZ18eTCxtQKM4utRox61NHzcxEKhaZNPc/D4YcD\nwObNmDEDkyZd0L79TyZMaAmgc2ccdBAOPhgHHYS993bM2b11l15EgPksGG1sWwTHh9iMPQ3b\nC+akTUSHyXN1iSPCThCEdOEnIcf5WFvpy1zb5aT1BFerHTUZczRtq7F0u/EBPqO+rN1VXe3v\narl1K+bNw+TJj19wwSF//nNbALvuisGDvTvu6D96NLZswXbcvBZ5JTcR6DN2SO1citlTxiMP\nm7DLArHR6xXBFw0RdoIglI5Av4E+A8QbBknZZhEIDBVqPTSp3GzeHiOjtWGnszg9XoF5agfI\n3ZEKbqhBA/TsiZ49T7vgAgDe/PmYPBmTJ38wevR0AK1a4YADMHgwDjoIAweiaVOttvtaZOI4\n2mxG/PGMsPYaqrx7kATH0DGUqD1H5FuxgiBkBnWe+EfyqTqhUx19G3aRkdaKNiVHMzbCtsKX\nUUeYUVdxJkvNQPVM33qOoAy06sYlRc/z0KkTzjgD993XDdgVwMMPo0cPvPQSjj4arVqhf3+M\nHo2nn8aSJcz3BvJPhJzVz0tMy80WOVR5moa/N34Tgoo4doIglA7/+u5P/7B8MdPRKArcEuo7\nB7ZikZ+NSwTjEifFqF9peUdPji+g+qmaj6JZdOp2xoU1mjEuutkgVX/wAwBYtw5vv43XX8eU\nKXjwQaxcOR/4S6Fw+r33YvBgdO+OlA9f4vZSKGPPpWR5KSex69wRYScIQsYYzRi6hS6/hpJW\n/hqczTmghBJ/7jk4FralZAxCH1zzt9NivuSyPdtEsw3U2epaoU00aNttAeP4oN+Nww47eJ6H\nQw4BgJoavPfeb3v1uuvHP8aNN2LhwtoV2wMPxEEHoX9/NGni0py7qrAdpkxw+XxlkkbY6jkZ\nz/wjwk4QhJLivgCHoMe/1CqMj+Uyy2pB3KeQaA/5GfNx7KCtxWgejCbItEZthW0Juzx7py7M\naX5bWKVuTM9/8V38hg3Rs+ddfvkvvsAbb+DNN/Hcc7j2WhQK6NOn9sm8Aw/EbrsZ24qwsF56\n/VTZhlZl9y5BRNgJglA6NNct8EpNlxGhiAAX+02bXxlVpG3h5/KwMz2zCumSmyq8GA3kImGN\nPeW3MIcpUDe7OHm0IaYktRip0Aw4r3bfHaeeilNPBdCsUBgIvHLssZg6FQ89hJUr0aEDBg+u\n9fN69TIs9boRU4Vku1QaOIzq7VaJcpLVWGfkyxOCIGSGcUnR12rM5KEWSGOlSXs+jBLBvwGx\nlIyN8lvUXYypFhabPnYx0qgKtNXyt6v6Xh0TdZToaWBMm08mkDXAqwCuvhovvYRvv8W8ebjq\nKlRX46670K9f8e+b3VgoHF8oYNky97DxVR2iHkpBEMdOEITSoZkrtmfpAudF1doxunoxSWNO\ndVmmtG1hdvlQ28xdlrksqroILM2YLChP/vHJ8Nttp0T8567qhG3QAN27o3t3nHMOAHzzDaZM\nwdSpQyZOHA1g552xzz4YNAgHHIADDkD37miQljOSuSlF18ppgRKnlFWj5YgIO0EQsiFwznC/\njquiIfBBsfRwFFJxtEioZ9G0oWBWbwMTC1wFM641808N0oDGtVRe6POH2Ji264reTjth2DAM\nGzbk5puxeTNmz8bUqXjrLYwdi4UL0bw5Bg7EoEG1Uq9Vq4Bo9YZMVmkFFRF2giCUGYFzv68P\n+Ck8vt/jEk3bHvicHBPB5lrBvpaqtstoOzWU9lpdNo2WIc3WfbuWAx88FDa9aG6rqgoDBmDA\nAIwaBQCLF2PqVEydin//G7feio0ba828osjr3h0NGyaYKk3PkGHSRI7vaLoL6SHCThCEXBBt\nxlI1nOOz3vEX7+iKZ6CuotnaCtBstQVZ5tsDIHrXsQs2+IcCjQpbyyTaBF8gX4mgrbhEDruA\n63putGuH4cMxfDgAbNqE2bPx1lt46y3cdBM++wzNmqFfv1qdN2gQdtnFKWZs0pC/0RIQVZct\nIuwEQcieCGuLPpq20xwmfhZ3tNnUjfRxMXelGOFRs0ARRidR2i9t6dOxdVtk40b+Kb1Qlh5t\nJXGhENY45JKvrsbAgRg4sNbMW7IE06bhrbcwZQp+/3usXYs998QBB9SW6dMH1dVpZJ6g95xP\nxAV0R4SdIAjZE2H5hn+WK8KTdoyYo0EYUcjkCTI/qUFcxChNz/iWVo9g52hVAkWnqhojOKPu\n5Us/wYfoTtu2OPFEnHgiAGzZgnnzMHUqpk3DPffgootQXY0+fTBgQO3zeZ06JZJeTh5rS6/1\nipetySLCThCELFEf3g8s7EsHTQ8ZqzNPULlnZdtLQ/GyTBU9toqan6etRRqj2exGWKQn/5yc\nsUw00eDourkr42xXGCMuL263HXr3Ru/e+PnPAWDFCkybVvvvr3/FsmXYeWf0719r5g0ciJYt\n+TTALi47ZliO1lfZJZwtIuwEQcgMfl63zWS+kmNkjR9B1SuhFvjoc130qS81AWa+ZOZdm7VG\nW/Q3ugya+to4XPRhPpqtUeEFjmGEB/iMKcUkWTmYjBhq2RJHHYWjjqp9+/HHmDYN06fjpZdw\n443YtAl77137FY3+/QMXban6d0/EdgtRGjJX6hWPCDtBEDIjwoKdO9Qec1yfdVE2xsz5x/Ui\nLLmmsZpJ8zGWARki1Vbk52ZjRbo90BNVizkahynZUamokM6d0bkz/t//A4BNmzBnDqZPx7Rp\n+MMf8NFHmzyvuqjwiv/vs09SOYiiqnjKW9ht2rRp7ty5a9as2WOPPfbcc8+s0xEEITS8wIpc\n11aeWSS1yT7GGuS1kU3PMbU0i5EJDqJ1Av1LakCq7qCtGMKPs1orlDbVnCSVwNVGzelMUL6U\nQglVV9d6dRdcAKBVoTAAGDh9+nW77IKnn8aXX6JFC/Trh4ED0a8f+vfH7rsnklUmIk+UZdqU\njbC74YYbBg8efNhhh/lbxo8ff8UVVyxfvrz4tm/fvvfdd1/v3r0zSlAQhLxg9MOojUQllNFS\ncnnmjJakOYR9vI8XRjQNWj7Q3HLJR4tWVMChlqFDtcLIMrqROdAukjQ/a4JaJsu1lD77DNOn\nY/r02m/arlmDtm3Rv/93fp78PLKgUDbCbsyYMZdddpkv7CZMmHDeeedtv/32P/jBD3bZZZd5\n8+ZNmTLl0EMPnTlz5l577ZVtqoIgZIjN7GFWP41uUCJrxNSuo3sZ589WwEVU2WSQDWZkqJFm\nW+C2Ne2Oe91Q7TLSM87qbYmkYceO6NgRP/whANTU4MMP8fbbmD4dzz+P667D5s3o3Bn9+9ea\nefvvjx12SDcfId+UjbDTGD16dIsWLaZOndq1a9filr/97W8nn3zy2LFjH3jggWxzEwQhQ1SB\non3dIbBWoOwzLjIy67a2XX4EoyZw1JTq2i7vNWpNU6GmOYu25WCjAo7zoKQWLayq09xKLSu+\nLZj81AQlWii9GKLdhg1r/6DtmWcCwMaNmDsXb7+Nt9/GAw/g0ksBoGtX9OtX+693b2y/ffj0\nhTKmLIXd119//dFHH1155ZW+qgNw0kknDRs27OWXX84wMUEQMsSfm3kHS1UtjEtnFByq+cfk\nYGuIPmbnMv3bFhx528yWlaoFNWloMwiZVWzaU2MVPjetejR1FVjX0dcMReBSb+pm3vbb1z6c\nV2TNGsyahbffxowZuPNOfPwxqqqw337f6bwePVBVlW5KQtaUpbDbsGEDAFXVFenRo8eECROy\nyEgQhFxDZ31VYDGPqTkGN6pGTbIYn5yzeYQ0eZuVqAWxPfmneYRUngYu6boPSypOFanoomUZ\nSw+WAxeHxAOGpmlTHHwwDj649u3y5Zgxo/bfDTdg4UI0aoRevdC3L/r1Q9++6NYN25WlDBAY\nyvKItmvXrkWLFl988YW2ffHixc2aNcskJUEQMifUVBpqAVFVCXTRlq5jGlcw/V38ArFxVZHx\n6hDkDPFrnbbVVSaaplltFSPYb+kVpthWsWMG5PeWWu21aoXvfx/f/37t26++wowZmDkTM2bg\n+eexaBGaNEGvXujXD/vvj7590bWr6LwKoJwO4cKFC2fMmNGyZcuWLVuef/75999//4UXXtik\nSZPi3g8//PCJJ544/PDDs01SEIRywWjg2VZyjSUd42sPchm/gsA8MEcDGh8gs+2yldQ2uq+3\nurTikkCqKsf96MSnND1KgF12wdChGDq09u2SJbUib+ZMPP00lixBkybo3Rt9+4rOK2vK6Zg9\n9thjjz32mLrlpZdeGj58OIBHH330nHPOWb9+/ZgxYzLKThCE3KE5bUxJo3Gl7jW+1jbaHrCD\ng+vmHj8NUcWsVNJOOSaQqsqhQ5GhqOJPHr9MyfJxpW1bHHccjjuu9u3ixZg5s/bfM89g8WI0\nbly7bluUet26yfN5ZUHZCLsHH3xwhcLKlStXrFjRatuP96xYsaJly5aPP/54//79s81TEISc\nYPsmhA0Xo44pY/ThYJd0mvLjv55J117ByhpGYtLCRtVo66kxeZsuNO5ykUE5wV1Jl0V3AmjX\nDu3a4fjja98uWYJZs2p13nPPYdEiNGqEnj2x//61//bbj/+jZ0JWlMenK5A1a9Y0adKkQYMG\naQQfP378eeedt3r16qZNm6YRXxCElEjjCSoXbedeTMUosOjzfFoZFyFIv7EBMjiOIoYXdoGJ\nueOuIBNH/YpJyRrNO19+WavzZs3CrFn47DNUVaFHj1qR16cPevXCtiej6gObNm3afvvtp0yZ\ncuCBB2adi07ZOHY8IrkEQaC4T8mJTOG2BVY+uHG5U61o/HYtLa/JESYfNbJfMtoCq+OXNjLE\nNvj8QXF52rJ+seuuOOYYHHNM7dtlyzB7dq3Ou+MOzJ+PBg2wzz61Iq/4r2XLTDOuv1SIsIvD\n2rVrN23axBRYt25dyZIRBCFD+MfseP8v8Du2BdMvnrg8mKV9C9W4LEvzp8/Daa/pt3QZDRRK\n9iWlkpm3lGSXd0XSBdC6NY44AkccUft21SrMnl3776GHcNll2LIFnTrV0Xlt2mSacT2iQpZi\nAcyfP//cc88F8Morr4Sqtc8++9TU1ASWXLNmzQ7yd1oEoXKJowwCF2qNXzv1XzPPqMHk4dGN\n7ouqTDeZVd1QIxOqSiIqMNT3UgPHJ34+9Z316/Huu5g9u3bddt48bNiANm2+E3l9+qBTJ4T8\nwchckeel2MoRdnPmzOnTpw/CfyDfeeedzZs38wVGjBixcePGanlQVBAEgk1V8IuACHIB+bDM\ndhXHujzGJMN+N0Wt5ShDU9JYCQo7UYFObNmCDz6o9fPmzMHs2Vi5Es2bo3dv9O6NPn3Quze6\ndy+vr9zmWdhVzlLsvvvu++6770ao2LNnT77Axo0bI2UkCEI9wtErYpw2kIfebFqN/wqtWkaT\nX8YV2EBSFS7Jfrsl/jdYRaUlz3bbYb/9sN9++OlPa7csWFAr8ubMwTPPYNEiVFeje/dakde7\nN3r1QvPmmSZdxlSOsGvUqFGPHj2yzkIQhHoH81ie+lb7JoSLtOKXaPla2hcp1L30OxkIbz7R\n3rm4bqFkU8k0VjQjU60ucjAcnTqhUycMH1779uuvv/Pz7r4bH32ErVvRqVOtyCvqvPbtM824\nnCg/Yed53ieffLJgwYLVq1cDaNGiRZcuXdrLIRcEIWfwmsYoBcLqKpuW4oUU/xWQOA8aZqhv\n4jQd1sKMX1Gow84748gjceSRtW/XrcM772DuXMyejRdewE03Yd06tG79ncjr1Qtdu5bX0m0p\nKSdht3z58rFjx/7lL3/56quvtF0dOnQ4++yzL7nkksaNG2eSmyAIgpHEJ37eIOR/34T/dRKj\nkxczsXIRPZHzLJcOlhNNmmDQIAwaVPu2pgamlVt6AAAZUUlEQVQffVS7bjtnDh59FEuW1C7d\n9uxZq/N698aOO2aadI4om1uNJUuWDB48+JNPPunSpcvgwYM7duxY/I7qqlWr5s+fP2nSpMWL\nF/fq1eu1117z/xxFUrz55puDBw+WL08IghCW/Dxc7yjX0vOfxNkSEmP5crz3Xu1fxXj/fcyb\nh40b0bYtundHt261fwNt333RsGF6KciXJxJgzJgxX3zxxZNPPvnDH/6Q7q2pqRk/fvwFF1zw\n61//+s477yx9eoIgCJSwUiban39IMJP0VB3yJHOF8qZVKxx0EA46qPbt5s34739rRd577+Hx\nx/HVV6iuRufOtSKve3fsv3/9sfTK5haqbdu2Q4cOvf/++5kyp5566ptvvrlw4cJkmxbHThCE\n0hBZ2AVWjFAlVDFjxUR+bEUQQvPZZ5g7t/ZBvTlzsGABgNpvY5x3Hr73vfgtiGOXAMuWLdtr\nr734Ml27dn322WdLk48gCELiFB90C1y1NP5kMYNLmWQxPq5n+wEXQUiYjh3RsSNOOKH27erV\nePddzJ2LuXOxfHmmmZWCshF27dq1mzt3Ll9m9uzZ7dq1K00+giAI+SHC77epX7bgv1Thv47/\nW3Hi1QkZ0KwZDjwQ+bPWUqJB1gm4cuKJJz711FO33Xab8eeC165de8011zz//POnnHJK6XMT\nBEGIQNGc0zYWf0bYPYhL+bAxBUEoX8rmGbsVK1Z873vfmzVrVrNmzQYMGNC+ffumTZt6nrdm\nzZrPPvts+vTp69atGzJkyIsvvti0adNkm5Zn7ARBSIM8fJkgcNnXJUn5xqtQ35Bn7BKgZcuW\nU6dOHTdu3MMPPzxx4sSamhp/V1VVVd++fUeMGDFixIiGaX69WRAEIUEyF0OJPPHG//qdaD5B\nKDFlI+wAVFdXjx49evTo0Rs2bPj888+Lf3miefPmHTp0EC9NEISckKwPl6qr5/60HKPPXL5X\nm+BoiEwUBJ5yEnY+jRo16tKlS9ZZCIIgWKkkCZLGX6SInIYgCDxlKewEQRByS7J/PzQP6jDm\nn2FNMA3RdoIQSNl8K1YQBKFcyIMaSwPj13hLSaUOrCAkiAg7QRAEQRCECkGWYgVBECqHzL9s\nIQhCtohjJwiCUE/JfGlVEITEEcdOEAShcohmquXhp5IFQUgEEXaCIAj1FFFyglB5iLATBEGo\n74jCE4SKQZ6xEwRBEARBqBBE2AmCIAiCIFQIIuwEQRAEQRAqBBF2giAIgiAIFYIIO0EQBEEQ\nhApBhJ0gCIIgCEKFIMJOEARBEAShQhBhJwiCIAiCUCGIsBMEQRAEQagQRNgJgvD/27v3qCjO\n+4/jz8qy6CoKCGgWcQ2V4IUoLNRES6qCrUisUE0MGoqlEhWvaBRjrBc0GjzQeolojq2RiC0h\nnlrt8XJsc0ypNCiJRuoFE0FBrWsVlMsWkSzs749J9rddYEWDrsy+X3+xzzwz851ZzvDheWZn\nAQAyQbADAACQCYIdAACATBDsAAAAZIJgBwAAIBMEOwAAAJkg2AEAAMgEwQ4AAEAmCHYAAAAy\nQbADAACQCYIdAACATCjtXUAHoFKphBAuLi72LgQAADwtpHjwtFGYTCZ719ABFBUVGY1Ge1fR\nPo4dO5aamvr+++/buxBACCHeeOON2bNnBwcH27sQQHz44YdGozEjI8PehaADUCqVQ4cOtXcV\nLWDErk2ezjfv0Vy9elWlUsXFxdm7EEAIIZKSkkaPHj1+/Hh7FwKIgoKCioqKkJAQexcCPDru\nsQMAAJAJgh0AAIBMEOwAAABkgmAHAAAgEwQ7AAAAmSDYAQAAyATBDgAAQCYIdgAAADJBsAMA\nAJAJgp3DUalUT+fX28Ex8QuJpwe/jZABvivW4TQ2Nl6/fl2r1dq7EEAIIcrKyvr27dupE/9k\nwv6qq6uNRmPPnj3tXQjw6Ah2AAAAMsF/yQAAADJBsAMAAJAJgh0AAIBMEOwAAABkgmAHAAAg\nEwQ7AAAAmSDYAQAAyATBDgAAQCYIdgAAADJBsAMAAJAJgh0AAIBMEOwAAABkgmAHAAAgEwQ7\nAAAAmSDYAQAAyATBzoFUVVUlJyf369dPpVJpNJrExES9Xm/vouCIsrKyFC1555137F0aHMU3\n33yzbNkyJyen0NDQ5ku5WqLjUtq7ADwhDQ0NERERp0+fnjRpkk6nKy0t3b1797Fjx06dOuXu\n7m7v6uBYqqqqhBBTpkzp27evZfuPfvQjO1UEx1JcXBwXF3fp0qUWl3K1RIdGsHMUmZmZp0+f\n3rBhQ0pKitQyduzY1157bd26dRkZGfatDY5GCnaLFi1qcbAEeKxqampCQkIGDx58+vTpwMDA\n5h24WqJDU5hMJnvXgCchODi4tLT09u3bLi4u5kZ/f/+ampqbN28qFAo71gZHk5ycvHnz5kuX\nLvXv39/etcDh3LlzZ/369e+++66zs3Pnzp0DAwO/+OILyw5cLdGhcY+dQ6ivrz979uywYcMs\nr1NCiLCwsFu3bl25csVehcExSSN2bm5ujY2N169fr6iosHdFcCAeHh4ZGRnOzs4tLuVqiY6O\nYOcQrl271tjY6Ovra9Wu1WqFEJcvX7ZHUXBc1dXVQohNmzZ5eXn5+vp6eXkFBAT88Y9/tHdd\nAFdLdHjcY+cQamtrhRBdu3a1au/WrZt5KfDESCN2OTk5KSkpPj4+xcXFmZmZr7/+em1t7cyZ\nM+1dHRwaV0t0dAQ7B9L81hDpDktuGcETtmLFirlz50ZGRpr/fMbFxel0urfffjshIUGlUtm3\nPICrJToupmIdQvfu3UVL/2vW1NQIIVxdXe1QExxYeHj4pEmTLAdFBg0aFBUVdefOnaKiIjsW\nBnC1REdHsHMIffv2VSqV5eXlVu2lpaVCCH9/f3sUBfwPb29vIYTBYLB3IXBoXC3R0RHsHIJK\npQoJCSksLKyrqzM3NjU15eXl+fr6Wj0kFnisDAbD9u3bc3JyrNrPnz8vvrtFHbAXrpbo6Ah2\njmL69Ol1dXXp6enmlh07dty4cSMxMdGOVcEBqdXqdevWzZgx4+LFi+bGAwcO5OfnBwcH+/n5\n2bE2QHC1RAfHA4odRWNj4+jRo48fPx4dHa3T6YqLi3NzcwMDA0+cOKFWq+1dHRzLX/7yl5iY\nGLVaHRsbq9Fozp07t3//fldX108//VSn09m7OshcXl7ekSNHpJ8zMjK8vLymTZsmvVyyZEnP\nnj25WqJDI9g5EIPBkJqaunfv3hs3bnh7e8fExKxZs8bDw8PedcERFRQUrF27tqCgwGAweHt7\njxkzZsWKFXwRBZ6AtLS0ZcuWtbjI/G0oXC3RcRHsAAAAZIJ77AAAAGSCYAcAACATBDsAAACZ\nINgBAADIBMEOAABAJgh2AAAAMkGwAwAAkAmCHQAAgEwQ7AAAAGSCYAcAACATBDsAAACZINgB\nAADIBMEOAABAJgh2AAAAMkGwAwAAkAmCHQAAgEwQ7AAAAGSCYAcAACATBDsAAACZINgBAADI\nBMEOAABAJgh2AAAAMkGwAwAAkAmCHQAAgEwQ7AAAAGSCYAcAACATBDsAAACZINgBAADIBMEO\nAABAJgh2AAAAMkGwAwAAkAmCHQAAgEwQ7ABHFxsbq1Aorl+//oT3O3fuXBcXl1OnTj3h/T4x\n0om9efOmvQt5olauXKlSqfLy8uxdCOCgCHYA2tndu3cXL16s1WpdXFyeffbZmJiYEydOWPXJ\nycnJzMzMyMgICQmxS5FtkZaWVlJS8sirBwUFjR071sXFpR1L+v6qqqqSk5P79eunUqk0Gk1i\nYqJer7fRPysrS9GSd955p8X+q1atGj58+OTJk2/fvv14jgCALQqTyWTvGgDYU2xsbG5u7rVr\n1/r06fP9t3bnzp2QkJCysrKXX35Zp9Ndvnw5NzdXqVQWFhY+//zzUh+DwdCvXz9/f/+CgoLv\nv8fHRK/XazSaI0eOREZG2ruWdtPQ0DB8+PDTp09PmjRJp9OVlpZmZ2f36dPn1KlT7u7uLa6y\nadOmhQsXTpkypW/fvpbtY8eOHT16dIurlJSUDBgwYNq0aTt37mz/YwBgmwmAY3vttdeEENeu\nXWuXrc2ZM0cI8d5775lb/vSnPwkhoqKizC1paWlCiEOHDrXLHh+TAwcOCCGOHDli70IeTKvV\nvvnmm23p+dvf/lYIsWHDBnNLbm6uEMLG6qtWrRJCfP755w9V0tSpU5VK5eXLlx9qLQDfH1Ox\nAP5HeXl5QkKCj4+PSqXy9PScMGFCYWGhZYdDhw4NGzZMrVb37t17wYIF9+7d8/X11el00lJn\nZ+eIiIiZM2ea+//85z/v0qXL+fPnpZdNTU2bNm0aMGBAVFSU7Upu3ryZmJjo4+PTtWvXoUOH\nbt682Wg0trHO8ePHKxSKqqoqc4vRaFQoFGPGjJFeTp06VaFQGAyGpUuX9uvXz8XFxdfXd+PG\njSaTSVo9OjpaCDFu3DiFQpGfn99ihffv309PTx86dGiPHj1cXV2HDBmSnp7e1NQkLTXfY1dW\nVtbibKanp6d5U//5z3/mzJmj1WpVKpWXl1dMTMznn39u+/w8gt27d7u6ui5YsMDcMnny5P79\n+2dnZ5tamb2RzqGbm9tD7WjRokVGo3HTpk3fp1oAj0Bp7wIAPEWuXbs2bNiwurq6pKSkwYMH\n//vf/962bduPf/zjTz75JCwsTAjxj3/8Izo62svL66233vL09Ny7d29sbGxtba2Pj4+0hY0b\nN1pts6GhwWg0mud5T58+ffPmzcmTJ9uu5Pbt26GhoQaDIT4+XqvV/v3vf09OTj579uzvf//7\nttT5QCqVSgjxyiuvPPvssx999FFTU1NqauqiRYvc3NwSEhJ+/etfe3h4ZGdnr1y5Mjg4eNCg\nQS1uJCkpadeuXVOnTk1KSlIoFEePHk1JSSkvL9+6datlN09Pz9/97neWLUVFRVu3bh0wYID5\nYF944YWqqqpZs2YFBgZeu3Zt27ZtL7300tGjR0eOHNmWw2mL+vr6s2fPjho1yuq2v7CwsKys\nrCtXrvj5+TVfyxzsGhsb9Xp9586dLfNoa3Q6nZeX1+HDhzdv3txe9QNoE3sPGQKwM8up2GnT\npgkh9u3bZ1564cIFJyenF198UXr5k5/8RFhMzBmNRulGqxdeeKG17Ut/2s2Ts++++64QYv/+\n/barSkpKEkIcPXrU3PLyyy8LIc6dO9eWOqXOd+/eNXf45ptvhBARERHSy+nTpwshpkyZYu5Q\nWloqhBg/frxlnbanYtVq9fDhwy1bFi5cOGnSJKPRaPruxOr1equ17ty54+fn5+npWV5ebj5Y\npVJpOd159epVV1fX0NDQ1nZ9yYKPj8/06dPNL5vvUfL1118LIX75y19atUuTrX/7299aXCsm\nJkYIsXz5cvNNeM8999wf/vCH1gozkw7/ypUrD+wJoB0xYgfgWyaTaf/+/b169ZL+lksGDhw4\nfPjw/Pz8ysrKnj17Hj9+fMCAAaGhodJSJyenpUuXfvrpp61tMy8vb8mSJWFhYbNmzZJaLl26\nJITo37+/7Uo+/vhjX19fKUdKtmzZ8uabb/bq1astdbbxkKWAKPHz81Or1Q/12BdnZ+fy8vJb\nt255e3tLLdJNbDaYTKa4uLjy8vKjR49KH0cwmUx79+4dMmRInz59zM9GcXZ2HjFixNGjRw0G\nQ7du3aw2YjQa/f39LVt27txp/qRCdHT0/v37m++6trZWCNG1a1erdmn70tLmpBG7nJyclJQU\nHx+f4uLizMzM119/vba21nLCvTmpwpKSkn79+tnoBqB9EewAfOvmzZvV1dUhISEKhcKyPSAg\nID8//+uvvx44cGB9fb1VJhsxYkRrG8zJyUlISAgMDDxw4IBS+e3VpqKiQghhezpPr9dXVlbq\ndDrLSvz8/KS5Qr1eb7vO4cOHt/GQrT7p6ezsLA3stdGaNWsWLFjg7+8fHR09evTon/70p+Yp\n6dakpqYePnw4LS0tIiJCarl161ZFRUVFRcUzzzzTvP/Vq1ebTwQ7OTnt3bvX/HL27Nkvvvhi\nfHy89NJ2DVYnTQhhMplabJesWLFi7ty5kZGR5kQYFxen0+nefvvthIQEaUa7RVLYld5uAE8M\nwQ7At/773/+KlkZ0unTpIi2trKwUQqjVasulrq6uTk5OVquYTKbVq1evWbMmMjLy448/dnV1\nNS+qqakRQvTo0cNGJffu3RNCtPYEuAfWaWPLVpydndveubn58+cHBga+9957+/bty87OVigU\n48aN27Ztm1arbbH/4cOH16xZM3HixKVLl5obpaGyoKAgafLXikajad6oUCheeeUV88vFixc/\n99xzli0t6t69u2hpZE56RyzfI0vh4eFWLYMGDYqKivrzn/9cVFT0wx/+sLXdSZ+3qK6utl0V\ngPZFsAPwLWlKrnkwklpcXV2lGFRfX2+5tK6urrGx0bLFZDIlJiZ+8MEH8+bN27hxo1Xsk+JF\ndXV1586dW6ukd+/e4rtJwEeos8W1GhoaWtvd9xEeHh4eHn7//v3jx4/v2bNn9+7dY8aMOX/+\nfPOhrMuXL8fFxQUEBGRlZVm2mwt+3A/M69u3r1KpLC8vt2qXbi60mtu1TRqNMxgMNvpIb5/t\nBA+g3fG4EwDf6t27t4eHR3Fxsel/n3xx4cIFhUIREBDQu3fvTp06WSWDkydPWm1n4cKFH3zw\nwfr167ds2dJ8ME+ahJUG/1rTtWtXLy+v4uJiy4nRr776auvWrefPn39gneK7oTjL1a9cufKg\nE/DoXFxcxowZk5WVNWvWrJKSkjNnzlh1uHfv3sSJE41G4759+6yiZ69evTw9PS9evGgVZNv9\nmxtUKlVISEhhYWFdXZ25sampKS8vz9fX12pWWmIwGLZv356Tk2PVLj28prWBSYlUf1s+Qgug\nHRHsAPy/iRMn6vV66dm8kjNnzhQWFoaHh7u5ualUqtDQ0H/9618XL16UljY2Nm7YsMFyC/v2\n7du8efOCBQuWLVvW4i7M99TbriQ6OrqysvLDDz80t6xevXrevHn3799/YJ1CCOl+teLiYnOH\n3bt3t+kUfEeKpNKkcItOnDjh4+NjtdlOnTqJlmZ4Z86cWVRUtGvXroEDBzbf1KuvvlpfX5+e\nnm5uuX379pAhQ372s589VM0PNH369Lq6Ossd7dix48aNG4mJidLL+vr6M2fOSGN4Qgi1Wr1u\n3boZM2aY33EhxIEDB/Lz84ODg1t8PIpZWz4lA6DdMRUL4P+lpqYePHjwF7/4xfz58wMCAsrK\nyjIzM7t162b+sOeSJUteffXVqKio2bNnd+/efc+ePX5+fpY3w6WkpAghmpqa3nrrLauNL126\n1N3dXfrQwLFjxyZMmGCjklWrVh08eDApKamoqEir1ebl5R08eDA+Pl56EvID64yPj9++ffui\nRYvS09PVavWBAwcKCgpam6VtkZRa0tLSrly58tJLLzW/mSw0NNTDw+ONN97Iz88PCgpSKBRf\nfPFFVlZWWFhYUFCQZc89e/ZkZ2cHBQXdvXtXeg6fWWRkZJ8+fVavXn3o0KH169fr9fqRI0fe\nuHHj/fffr6ysnD9/fltKLSsra+NB/epXv8rOzl69evWXX36p0+mKi4tzc3Off/75xYsXSx1K\nSkqCg4MjIiI++eQTIUSnTp22bdsWExMTGhoaGxur0WjOnTu3f//+7t27Wx2IFZPJdOzYsf79\n+/ORWOBJs9NjVgA8Lay+Uuzq1asJCQnPPPOMUqn09vaOjY29cOGCZf+dO3cGBASoVCqtVrt8\n+fKGhgaVSjVixAhpqY2rjfRIs8bGxl69eg0cOPCBhZWVlcXFxXl7ezs7O/v5+f3mN7+Rng/X\nxjqzsrIGDRrUpUuXXr16zZgxo6qqSqPRhIWFSUul59hdunTJcpUePXoMHjxY+rmhoWHSpEld\nunRxd3ffu3dvixVWVlYmJyf/4Ac/UKvVPXr0GDp06Pr162tray1PrF6vX758eWvnxPycPL1e\nn5SU5Ovrq1Qq3dzcJkyYcPLkyQeeokdQW1u7ePFirVbr7Ozs4+MzZ86cyspK89KzZ88Ki6f9\nST777LNx48a5ubkplUqNRhMfH2913po7deqUEGLevHmP4xAA2KAw2bwQA4BtNTU1PXr0mDBh\nguXEqG1paWnLli07fPjwuHHjHmttsJe4uLjc3NyvvvrK9nQtgHbHPXYAHsKuXbtGjRoljcdI\npM94tvGLvCRz587t2bPn2rVr2708PA1KS0s/+uij+Ph4Uh3w5DFiB+AhnDx5cuTIke7u7klJ\nSRqN5ssvv9yxY4dGoykqKnqo74nPycmZOnXqli1b5s2b9/iqxZPX2NgYHh5+8eLFc+fOeXl5\n2bscwOEQ7AA8nH/+85/r1q07derU3bt3vb29x44du3bt2hafo2vbvHnzduzY8dlnn4WEhDyO\nOmEXK1euTEtL++tf/zpq1Ch71wI4IoIdAACATHCPHQAAgEwQ7AAAAGSCYAcAACATBDsAAACZ\nINgBAADIBMEOAABAJgh2AAAAMkGwAwAAkAmCHQAAgEwQ7AAAAGSCYAcAACATBDsAAACZINgB\nAADIBMEOAABAJgh2AAAAMkGwAwAAkAmCHQAAgEwQ7AAAAGSCYAcAACATBDsAAACZINgBAADI\nBMEOAABAJgh2AAAAMkGwAwAAkAmCHQAAgEwQ7AAAAGTi/wAOLLJa2ADcawAAAABJRU5ErkJg\ngg==",
- "text/plain": [
- "Plot with title “voom: Mean-variance trend”"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdd3zUVb7/8XcIhACh2AgkFEHyQzBGQzRiIOpVFIwKGAhVjGI0CLjCXlkW\nLiVYYXXvBRQViS6IAgsqgsjGK0WJWBIQwcJeEQlFASkBk1AC+P398R1mQtqkTP3O6/nHPmbP\nFD6EOPOe8z2fc4IMwxAAAAD8Xx1vFwAAAADXINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiC\nHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAA\ngEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ\n7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAA\nACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyC\nYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcA\nAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGAR\nBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsA\nAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACL\nINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgB\nAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABY\nBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARdb1dgH/YunXr2bNnvV0F\nAADwCXXr1r3mmmu8XUU5CHbObdq06frrr/d2FQAAwIfk5uZed9113q6iNIKdc8XFxZJOnz4d\nEhLi7VoAAICXFRcX169f34wHvoY1dgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABgEQQ7\nAAAAiyDYAQAAWATBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABgEQQ7AAAA\niyDYAQAAWATBDgAAwCIIdvCOIUMUFKRjx5ServBwNWyorl2Vk6MTJzRmjCIjFRamhAR9/bW3\nCwUAwH8Q7OAdISGSlJKiyEhlZemVV7R1q1JSNHCgQkO1cqUWLND27UpK0pkz3q4VAAA/QbCD\nd9StK0lRUZoyRbGxSk1V797as0ehoZo+XXFx6tdPqak6eFC5ud6uFQAAP0GwgzclJztuR0VJ\nUp8+jpGOHSVp/37P1gQAgN8i2MGbIiMdt805vJIj9epJ4lIsAABVRbCDN5nRrfIRAABQRQQ7\nAAAAiyDYAQAAWATBDgAAwCIIdgAAABZBsAMAALCIIMMwvF2Dr/v888+7det2+vTpEPO0BAAA\nEMCKi4vr16+/cePGhIQEb9dSGjN2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDtU\nyZAhCgrSsWNKT1d4uBo2VNeuysnRiRMaM0aRkQoLU0KCvv7a24UCABDACHaoEnOnl5QURUYq\nK0uvvKKtW5WSooEDFRqqlSu1YIG2b1dSks6c8XatAAAEKoIdqqRuXUmKitKUKYqNVWqqevfW\nnj0KDdX06YqLU79+Sk3VwYPKzfV2rQAABCqCHaohOdlxOypKkvr0cYx07ChJ+/d7tiYAAHAe\nwQ7VEBnpuG3O4ZUcqVdPEpdiAQDwGoIdqsGMbpWPAAAAbyHYAQAAWATBDgAAwCIIdgAAABZB\nsAMAALAIgh0AAIBFBBmG4e0afN3nn3/erVu306dPh5jHLwAAgABWXFxcv379jRs3JiQkeLuW\n0pixAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDs/NmSIgoJ07JjS0xUeroYN1bWrcnJ04oTG\njFFkpMLClJCgr7/2dqEAAMAjCHZ+zGzSTUlRZKSysvTKK9q6VSkpGjhQoaFauVILFmj7diUl\n6cwZb9cKAADcj2Dnx+rWlaSoKE2ZothYpaaqd2/t2aPQUE2frrg49eun1FQdPKjcXG/XCgAA\n3I9g5/eSkx23o6IkqU8fx0jHjpK0f79nayoPF44BAHC3ut4uALUVGem4bc7hlRypV0+ST1yK\n/fJLSbr3XhUW6uxZnTun3Fz16aPYWB06pDNndPascnN1++06cMBWNgAAqBZm7Pxe2Qzkm6nI\nDJ0//aR77tGaNXrtNQUF6cABffONbrtN//qX3n5bwcE6elRffOHtWgEA8E8EO3hIUJAkxcY6\nVgT+v/8nSa1bO1YEmkezfPaZN+sEAMB/EezgUX37Om5feqkk3XabYyQiQpIOH/ZsTQAAWAXB\nDh5Vcv1fnTqS1KKFYyQ4WJLOnvVsTQAAWAXBDh5Vt0y7TtkRAABQMwQ7AAAAiyDY+bHMTBmG\nOnRwjGRkyDDUvbtjJC1NhqFBgzxfHQAA8DSCHQAAgEUQ7AAAACyCYAcPSUyUpLZtHSO33CJJ\nMTGlH2PuZgcAAKoryDAMb9fg6z7//PNu3bqdPn06JCTE27UAAAAvKy4url+//saNGxN8byqC\nGTsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEX4X7AzDOPnn39es2bN8uXL\nly9fvm7dur1793q7KNTKkCEKCtKxY0pPV3i4GjZU167KydGJExozRpGRCgtTQoK+/trbhQIA\n4NvqeruAasjPz3/mmWcWLlz422+/lbqrTZs2aWlpTzzxRIMGDbxSG2rD3B8wJUWJicrK0rZt\nGjFCKSmKidFVV2nlSuXlKS1NSUnau1f16nm7XAAAfJXfBLv9+/d369Zt165dUVFRSUlJbdu2\nbdSokaTff/99586dn3766ZQpU959993169dfdNFF3i4W1VO3riRFRWnKFEmKjdXq1Vq6VPHx\nmj5dkuLilJ2tWbOUm8u5FAAAVMhvgt3kyZP37du3dOnSlJSUsveeO3du7ty5o0ePnjZt2syZ\nMz1fHmovOdlxOypKkvr0cYx07ChJ+/d7tiYAAPyK36yx+/DDD4cNG1ZuqpMUHBw8cuTIAQMG\nvPfeex4uDK4SGem4bc7hlRwxr8CeOePZmgAA8Ct+E+yOHDlyxRVXVP6YTp06HTx40DP1wOXK\nLp5jOR0AANXiN8EuIiJi69atlT9my5YtERERnqkHAADA1/hNsOvbt++yZcteeOGF06dPl723\nqKho6tSpK1asGDhwoOdrAwAA8AV+0zyRkZGRnZ09bty4J598Mj4+vnXr1mFhYYZhFBYW7t69\nOycn58SJE4mJiZMmTfJ2pQAAAN7hN8GuWbNmX3zxxZw5c958881PPvnk3Llz9rvq1asXFxc3\nfPjw4cOHBwcHe7FIODVkiBYvVn6+xo/X+++roEAxMQoPl6Snn9bHH+v4ccXE6OqrvV0oAAB+\nyG+CnaSQkJCxY8eOHTv21KlTe/fuLSgokNSkSZM2bdqEmFvcwueVuxex2QNbv75jL+Jt27xb\nJgAAfsmfgp1daGholLnRGfxNRXsR9++vuXOlEnsRb9x4wV7EaWlKS/NGxQAA+A+/DHau9csv\nv5TbkGH366+/eqyYAMFexAAAuIN1gt3OnTvT09MlrVmzplrP6tChQ1UeefbsWS74ugp7EQMA\n4A7WCXYFBQVr166t7rOuuOKKffv2VT5jt3jx4kmTJv3xxx+1qA4XcOtexOX2Z8yerehoTZyo\nZcts/RkvvaQuXVz2hwIA4AusE+yuvPLKb7/9tgZPjCw5WVSeSy+9tEYVwTvK7c9ISVFMjK66\nytGfkZSkvXs53AIAYCnWCXahoaHR0dHergLeV1F/Rny8pk+XSvRn5OZe0J8BAIC/85uTJ6ri\nyJEjP/30k7ergE+gPwMAEIAsFeyef/55tkGBif4MAEAAslSwA+zc2p8BAIBvItjBozIzZRgq\nucNMRoYMQ927O0bS0mQYGjTI89UBAODf/KZ54rrrrnP6mF9++cUDlQBuxXYtAIAa85tgt2XL\nFkn1Kr2cdvbsWU+VA7gL27UAAGrMby7Fjhs3rlGjRt99992pij3xxBPeLhOorZLbtcTGKjVV\nvXtrzx6Fhmr6dMXFqV8/pabq4EHl5nq7VgCAj/GbYPfUU0916NBh8ODBZ2hlRABguxYAQA34\nTbCrV6/e22+//f3330+cONHbtcCnWaM/g+1aAD8yZIiCgnTsmNLTFR6uhg3VtatycnTihMaM\nUWSkwsKUkKCvv/Z2oQgAfhPsJHXq1OnAgQMTJkyo6AF33nnnc88958mS4Ef8652X7VoAP2Jf\nGhsZqawsvfKKtm5VSooGDlRoqFau1IIF2r5dSUl8H4Pb+VOwk9SkSZOLL764ontvvvnmv/71\nr56sB36kNu+8/hUKAXgYS2PhO/ws2AE1Vpt3Xr6OA3CKpbHwBQQ7BJaavfPydRyAUyyNhS8g\n2CGw1Oadl6/jACrB0lj4AoIdAktt3nn5Og4A8HEEO6CqPPN13BrbtQAAvIJgF6Bo83QV+09y\n4UJJSk3lJwkA8BqCXYCizdNV7D/JZs0k6aGHAv0nyXcGAPAigl2Aos3TVew/yXvukaSbbgr0\nnyTfGQDAiwh2PseTEx60eboKP0k7vjMgALE0Fr6DYOdzPDnhEVBtnm595w2on2RVkHQBwCsI\ndj7HkxMe7LpURU5DYb16pUNhgP8kSboA4BUEOx/FhAf8Gt8ZAMArCHY+igkPAABQXQQ7H8WE\nBwAAqC6CHQAAgEUQ7AAAACyCYBegPL/rklUPJGD/KgCA7yDYwUM4kCBAkHQBwIsIdvAQDiQA\nAMDdCHY+x9oTHuzPBwCA+xDs4FHszwcAgPsQ7OBR7M8HwO9YtfcLlkSwAwCgMvR+wY8Q7AAA\nqAy9X/AjBDsAAJyj9wt+gWAHK2NlDABXofcLfoFgBytjZQwAV6H3C36BYIfKuHDGyyv787Ey\nBgAQUAh2qIw1ZrxYGQPAHaZNc3z1/fOfJWnyZBZ7wMsIdqiMNWa8WBkDwB3Mdw/zq++YMZK0\ne7f/ffWFxRDs4Jy/z3ixMgaAOwQHS+e/+rZpI0lxcf731RcWQ7CDc8x4AUBFSn71bdlS8rev\nvrAYgh2cY8YLQCCrqPcrPFw6/0XX7P2KiXGMmPjqCw8j2AEAUHN89YVPIdgBAABYBMEOsALO\n2AAAiGAHa/PKrsheYY0dBwEAtUSwA6zAGjsOAgBqiWCHygTOjJc1+PuOgwCAWiLYAdbBjoOA\nJ/HVFz6IYAdYB9suAECAI9gB3kEfKwDA5Qh2gHfQxwoAcDmCHeAd9LECAFyOYAd4E32sAAAX\nItgB3kQfKwDAhQh2gDe5qo+VbRcAP0UfFVyLYIdAVPk7acOGCgpSfLz69eN9FoB70UcF1yLY\nIRBV/k56222StGWL/vd/tWoV77MA3Ig+KrgWwQ6BqPJ30vBwSercWYWFOnOG91kAbkcfFVyF\nYIfAVfk76S23SOffSXmfBeBW9FHBVQh2CFyVv5Neeql0/p2U91kAbsV5gHAVgh0CV+XvpMHB\nzh9fG/SxApZXlY7XDz6QpLFjHY984QVJSk93PHLcOEmaMoWeLThHsINvofMfgGVUpeP12DHp\n/GUB85H33SdJP/3keOTo0ZL0yy/0bME5gh18C53/ACyjKh2v5hLe48cdj2zRQpK6d3c8sm1b\nSbr5Znq24BzBDr6Fzn8AFlN5n1bTppJ0+nTpR7ZqVfqRLVtK9GzBGYIdfBGd/wAso/I+rTp1\nJOmPP0qPm8t8yz6XixWoHMEOvojOfwCWUXmfVmqqJDVo4Bg3+6jatHGMmH1U11/v/lrh/wh2\n8EXu7vyvvCPVvHfiREdHKv2qAAC/QLADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAA3KLq\nJweuW8cZg3ANgh18CyeoAgBQYwQ7AABqgrOt4YMIdgAA1ARnW8MHEewAAKgJzraGDyLYAU5w\ntQVAJTjbGj6FYAc4wdUWAJXgbGv4FIId4ARXWwBUwt1nWwPVQrADqoSrLQAA30ewA6qEqy0A\nAN9HsAOqhKstAADfR7ADAACwCIIdAACARRDsAACoCc62hg8i2AEA4CFseA53I9gBAOAhbHgO\ndyPYwZpc+LWYqy0AXIUNz+FuBDtYE1+LAfgsNjyH+xDsYE18LQbgs9jwHO5DsIOV8bUYgA9i\nw3O4D8EOfq/c5XSHDknSm286ltOZI3wtBgBYWF1vFwDUln05XWKisrK0bZtGjLBd3WjQQCtX\nKi9PaWnatk3iazEAwNIIdvB7JZfTSYqN1erVWrpUksaNU4cOiotTdrZmzfJmkQAAeACXYmER\nZZfTlWQup/NHbGcKAKg6/w52xcXFubm569ev37Vrl7drgZeV7TIryX+vwLJvC+DL+OoFX+M3\nwe7pp59ev359yZG5c+e2aNEiPj7+1ltvbd++/XXXXffNN994qzx4nf9Gt8qxbwvgy6r71YsN\nz+FufhPsJk+e/NFHH9n/74cffjhixIgTJ07ce++96enp3bp127x58y233LJz504vFgm4Cfu2\nAL6Jr17wNf7aPDF27NimTZt+8cUXnTp1Mkfee++9/v37P/PMM2+88YZ3a4OPyM6+4GuxpMWL\nS38tTkvzcFE1xHamgC/jqxd8h9/M2JV06NChHTt2jBo1yp7qJCUnJ/fp0+d///d/vVgYLMZ3\nVs+wnSngy/jqBd/hl8Hu1KlTkkqmOlN0dPRvv/3mjYpgTTQuAKgKvnrBd/hlsIuIiGjatOm+\nfftKjf/666+NGzf2SkmwJFbPAAD8iz8Fuz179mzatOmnn37Kz88fOXLk66+/fuLECfu9//73\nv//5z39269bNixXCK9zdZcbqGQCAv/Cn5onFixcvXry45Mi//vWvfv36SVq0aNEjjzxy8uTJ\nyZMne6k6WBarZwAA/sJvgt0//vGPYyUcP3782LFjF110kXnvsWPHmjVrtmTJkuuvv967dfq4\nIUO0eLHy8zV+vN5/XwUFionR7NmKjtbEiVq2TMePKyZGL72kLl28XavPYPUMAMBf+E2we+CB\nByq59/777x8xYkSdOv50Zdkr7N0AiYnKytK2bRoxQikpionRVVdp5Url5SktTUlJ2ruX+OIT\nMjOVmXnBSEaGMjIuGPGjfVsAAG5lkSQUFhZGqqsKugEAwIU4SQK+hjAUiOgGAADAkvzmUqxT\nO3fuTE9Pl7RmzZqqP6uwsPD5558/ffp0JY+x3hG0dAMAAGBJ1gl2BQUFa9eure6zioqKNm3a\nVFxcXMljfvnlF0mGYdS8OB9DNwAAAJZknWB35ZVXfvvtt9V9Vnh4+Icfflj5Y+bOnTtixIig\noKCalgZ/ReMCAE9i4wLUnnWCXWhoaHR0tLerAACghti4ALXnf8HOMIxdu3b9/PPPBQUFkpo2\nbRoVFdW6dWtv1wUAQK2Yi57XrNGyZbZJuzNntGePOnTQlCm2SbuiIh07prfe0oMPertc+CR/\n6orNz89/4oknWrRoccUVV9x+++3JycnJycm33XZbmzZt2rZt+9RTT508edLbNQIAUFspKYqM\nVFaWkpIkaetWDRyo0FCtXClzU9c//5kWN5TPb2bs9u/f361bt127dkVFRSUlJbVt27ZRo0aS\nfv/99507d3766adTpkx59913169fbz+OAgAAf2TuNiqpSxd98IGOHLHtNiopPl7z5unYMeXm\nKiHBu2XCF/lNsJs8efK+ffuWLl2akpJS9t5z587NnTt39OjR06ZNmzlzpufL8xd0AwCA7yu5\n26ip5G6jJnYbRbn85lLshx9+OGzYsHJTnaTg4OCRI0cOGDDgvffe83BhAAC4Vsm9RSsa4VIs\nylWrYJefn5+Xl+eiSpw4cuTIFVdcUfljOnXqdPDgQc/UAwCAm7DbKGqssmC3bdu2u+666/LL\nL09MTHz55ZfPnTtX6gEzZsxo166dO8tziIiI2Lp1a+WP2bJlS0REhGfqAQAA8DUVBruNGzfG\nx8evXr360KFDX3311ahRo2677bb8/HxPFldS3759ly1b9sILL5R7/FdRUdHUqVNXrFgxcOBA\nz9cGAHZDhigoSMeOKT1d4eFq2FBduyonRydOaMwYRUYqLEwJCfr6a28XCsCKKmyeeO655/74\n44/ly5f36dOnuLj45ZdfHj9+fM+ePdevX2+2o3pYRkZGdnb2uHHjnnzyyfj4+NatW4eFhRmG\nUVhYuHv37pycnBMnTiQmJk6aNMnztQGAHXvMAvAmowKtW7e+7777So6sXbs2JCQkKSnp7Nmz\n5sj48eMreQWXO3369H//939fe+21wcHBJf8K9erV69q162uvvWYvzLVeffVVSQUFBe54cQAW\n89BDhmQ8+qhjZMAAQzL693eMPP64IRkbN3q+Ovg68/dnxw7HyNSphmRkZztG5s0zJGPxYsMw\njMGDDcnIzzceecRo3txo0MC44Qbjq6+MoiLj8ceNiAijUSPjxhuNzZs9/RexNvPi4Uaf/G+4\nwhm7AwcOtG/fvuTIrbfempmZef/99//5z3+eNWuWW2JmpUJCQsaOHTt27NhTp07t3bvXPHmi\nSZMmbdq0CTG/IwOAbyi5XUVUlHThdhUdO0psVwFXYIYYpVQY7MLDw7/55ptSg8OGDdu+fftz\nzz3XqlWrcePGubm2CoWGhkaZ75QA4JNKbk5hnhNVcsT8fGW7CpRV3d1Gzd8u+4bGsbFavVpL\nlyo+3rahcVycsrM1axYbGgeKCpsnkpOTP/jgg5deeunMhe89zzzzTGpq6l/+8pexY8eeOHHC\n/RUCgP9huwrUTM2ab5ghhl2FwW7KlCmtW7d+7LHHksyT6s4LCgr6xz/+8ac//WnmzJkvvvii\n+ysEAFgQ7cPlsl9aNc+KfeUVbd2qlBTHWbELFmj7diUlXTDjywwx7CoMdpdccsnmzZtHjhwZ\nHR1d6q6goKBZs2a9++67TncMBgCgXDVLMJZX8tJqbKxSU9W7t/bssZ0VGxenfv2UmqqDB5Wb\n63gWM8Swq2yD4ksvvXTOnDn/8z//U+69ycnJP/30k2EY7ikMAGBlNUswvsZN845cWkWN+c1Z\nsQAA6/H3BOOmeUcuraLGCHYAAK/x9wRT+3nHUnN+8+dL0vbtjjm/Z5+VpF27PPQ3gr8j2AGA\nK2VmyjDUoYNjJCNDhqHu3R0jaWkyDA0a5PnqfI41FofVZt6x1Jxft26S9Nhjjjm/e++VpHHj\nfDrgwncQ7AAAqJXazDuWmvMzc+Gvvyo0VHv26Lrr1K6dJB09qsaNbQv4ioslaeRIhYXpgw8q\nrMo+F7hwoSSlptJ3HBAIdgC8r9wV6D17KihIjz6qRo1Up46Cg3X11XwswRfVft6x5JyfqU8f\n22TesmW2kYcfti3gmztXksaN04IFKi5WeLjatnU80T5DbJ8LvO02ff21XnuNvuOAQLAD4H3l\nrkDfuFGSsrI0bJj+9jeFhur779W/Px9LsKCSM3z2EXMy7+KLbSPdutkW8JmpsV07Jwv4rNF3\njOpyHuw+++yzo0ePlntXTk7Ou+++6+qSAASccj+Biook6c479eqreuIJPfywDEN79/KxBAuq\nZM6vUyfHoHmh9tprHSNOG4f9ve8Y1eU82CUmJm7YsKHcu7Kzsx9++GFXlwQgQJX9BCo5aH4C\nqdYfSxx4AF+WmampUy8YmTBB8+bZbptfgcwO2V69lJ6u8eMl6a9/Led3+MgRyf/7jlFdFQa7\nn376KSsrKysrS9KWLVuyyli+fPnSpUtPnz7twWoBX1fL0FCVp192mWVzSdlPoJKD9gmMWn4s\nceCBj6B9uIrKTubVry+d/x0eM0aSdu8u53f4o4/Kf7o/9h2j6upWdMc777wzYcIE8/aTTz5Z\n0cP69+/v+qIAv2UPDYmJysrStm0aMUIpKYqJ0VVXaeVK5eUpLU1JSdq7t5y316o8fcgQSerf\nXzfdVJM/wpeVW63LP5ZKXvaVFBur1au1dKni4zV9uiTFxSk7W7NmKTdXCQm1+rMAdwgOls7/\nDmdmSlJcnL78spzfYQSgCoPdX//619TU1Nzc3D59+gwbNqxz586lHhAcHNy+ffvevXu7uULA\nn9QyNFTl6VFR+v57NWlCLqkVFh7BJTIzbdHKLiNDGRkXjKSlKS3N9X90yd/hli2l8n6HEYAq\nDHaSWrZs2bt377vuumvkyJFdu3b1WE2Av6tlaKj86U2bStLVV9fqjwALj+DvSv7G1qlTesS/\nZuvhQs6bJ1atWkWqA6qllqGh8qeb7+BNmtTqjwALj+AjarzWkN9hlKuyGTuTYRjvvPPOm2++\nuW/fvjPlfVB89913bigM8GO1fMOtytPNRTY1/iMAAJbkfMbu73//+4ABA1atWvXjjz/uK48H\nqgQAINBUNJkXHu4YMSfzoqPLf4XFi+k7DjjOg92sWbN69uy5c+fOoqKiY+XxQJUArK2iD7CS\ng+YnEB9LAFAJ58Hu4MGD06ZNa9++vQeqARBQ2CsYAFzLebALDw83DMMDpQAINOwVDACu5TzY\nDR48eOHChR4oBfAW5o28xSuHlHPgAfwdv8OohPNgN2XKlJ07dw4dOvSjjz7avn37T2V4oErA\nrVw4b1TLN9yqPD07W4ZhO0eoBn+ED2KvYMBb+FprPc6DXePGjT/66KNFixb16tWrc+fOUWV4\noErArbwybwQ79gquOj6GUS1Of2GWLZOkXr1YDmEdzvexGzx4cEhISN26zh8J+DXmjbyFfVar\nrpaHEcOPDBmixYuVn6/x4/X++yooUEyMZs9WdLQmTtSyZTp+XDExeukldelS4XOkrvIAACAA\nSURBVIs4/YUZP15r12rbNmVnq149jii0AudxbdGiRR6oA/A65o3g+2p5GDH8iEtCvNNfmMsv\nl6STJx2/MHyt9XfOL8XaFRQUfP/992xc56MWLVKrVqpbV+PGebsUf8W8EfwFs8t+qlpX0l24\nRKTyXxiT/ReGr7X+rkrB7tNPP73uuuuaNGkSHR395ZdfmoO9e/deu3atO2uzLpeHsOPHlZam\nwkI99ZR69nTNawLwVcwu+6ka9Gm5JMRX/gtjKvULw9da/+U82OXk5Nxxxx0//vhjzxKJ4dCh\nQ7m5uUlJSZs3b3ZneVbkjhC2Y4dOntTQoZowQT16uOY1AfgqZpf9VA0m4VwS4vmFCSjOg92T\nTz7ZokWLH374Yf78+fbByy67bOvWrS1atHjqqafcWJ0luSOEnTolSY0bu+bVAABuU61JODIZ\nqst5sPvyyy8fffTRVq1alRpv3rz5iBEjNmzY4J7CrMvlIaxXLyUmStKMGQoK0ogRLntlwM3Y\nZxUBiCvpcCvnwe748eOtW7cu966WLVsWFha6uiRLc0cImzpVzz4rScnJWr5cjz7qgtcEALgH\nk3BwK+fBrkWLFtu3by/3rg0bNkRERLi6JEtzRwi78UZbWIyKUt++uuYaF7xmgPHZeSN2owUA\nVIvzYJeUlPTyyy9/feFHR35+/n/913/94x//uOuuu9xWmxURwlAdLjzrDADKyszUvHkXjPjI\n11rUmPNgN23atLCwsBtuuMHMcBMmTIiNjW3ZsuWzzz7bpk2bKeamhwDcgLPOUIrPzi7DN/EL\nE4CqdCl206ZNDz/88O7duyV9880333zzTePGjR999NHc3Nzw8HD3FwkENHajBQKQOzIZqzsC\nQZU2KG7evPnLL7986NChAwcO7Nix48CBA4cOHXr55ZebN2/u7voA0ENnJXyywotY3REIqnGk\nWFBQUHh4eIcOHZilAzyJHjor4ZM1kHn9wiirOwJBXaePMAzjnXfeefPNN/ft23emvHea7777\nzg2FAYAFOT2UPS5O2dmaNctxKDvgWqzusDbnwe7vf//7uHHjJDVs2LAeEwUAUGt8ssKLWN1h\nbc6D3axZs3r27Pnyyy+3b9/eAwUBgOXxyQovYnWHtTkPdgcPHnznnXdIdT6te3cZhreLAFBV\nfLICcBPnwS48PNwgNLgQIQwAALiH867YwYMHL1y40AOlACjF6z10AAD/4nzGbsqUKf379x86\ndOj999/fpk2bsv0THUp+7AAAAMBLnAe7xo0bmzcWLVpU7gO4UAsAAOALnAe7wYMHh4SE1K3r\n/JEAAMBnZWYqM/OCkYwMZWRcMJKWprQ0D9YEVwtivs2puXPnjhgxoqCgICwszNu1AABQ2pAh\nWrxY+fkaP17vv6+CAsXEaPZsRUdr4kQtW6bjxxUTo5deUpcu/vEH+bji4uL69etv3Lgxwfe2\nEa/GPNzhw4d37NhRVFTUuHHjjh07NmvWzH1lAQCAKrIfVZeYqKwsbdumESOUkqKYGF11lVau\nVF6e0tKUlKS9e2u1t47H/iDUWJXOiv3ss8+6du162WWXJSQk3H777V27dr344ot79OjBYWIA\nABcaMkRBQTp2TOnpCg9Xw4bq2lU5OTpxQmPGKDJSYWFKSNDXX3u7UB9T8qi655/XAw/ozju1\nZ48+/lizZ2vUKLVuraFDdfCgIiJq9TPktFnf53zGLicnp0ePHmfPnu3evXvHjh0bNGhQVFT0\nww8/rFu3rlu3bjk5OR3N428AAKgdJoRqwzyqzvwZfvONJE2erFatbD/Dpk0l6S9/Ufv2tf0Z\nciaeL3Me7J5++unLLrvs448/vvLKK0uOb9mypVevXtOmTauoWxYAgGopOSEkKTZWq1dr6VLF\nx2v6dEmKi1N2tmbNUm6ufG91k5eZB9OZP8NLLtGuXUpI0H/8h+1nGBcnSa1bq1+/2v4MORPP\nlzm/FPv555+PHDmyVKqTFBsbO3LkyHXr1rmnMABAgGJCqGZKTr916uQYMX+G117ruLeWP0PO\nxPNlzoPd8ePHW7VqVe5dl19++dGjR11dEgAgoDEhVHtNmjhumz9Ds+Nx8GAdO6YlSyRpyBCW\nMFqQ82DXvHnz7du3l3vXDz/80Lx5c1eXBI9YtEitWqluXY0b5+1SAOACf/mLo4XihRckafRo\nR/4w37SmTCF/VKZOmY93+3a0KSm2kPfQQ9q6VSkpGjhQoaFauVILFmj7diUlOcnNY8eW/gdK\nT+cfyFc4D3Z33HHHiy++uGLFipI73hmGsXz58jlz5tx5553uLA/ucfy40tJUWKinnlLPnt6u\nBgAuYG+hiIzUffdJ0k8/OfLH6NGS9MsvzvMHyhUVpXvukaSbbqphTyv/QL7MebCbOnVqw4YN\n+/btGxERcdttt/Xu3fu2226LiIhITk5u0qTJ1KlTPVAlXGzHDp08qaFDNWGCevTwdjUAcIHg\nYOl8C0WLFpLUvbsjf7RtK0k332zZPTXcvedL7ZcwBvg/kI9zHuwuv/zyTZs2paamnjx5ct26\ndR988MG6deuKi4vT0tI2b95c0fI7+LRTpyTp/CnAAOCDSuYP86OmZP5o2VKyaAtFyfmwrCy9\n8koNL5hWxFVLGAP2H8jHVWmD4tatW8+fPz8/P//XX3/dsWPH/v37jxw5Mm/evJbmvxv8S69e\nSkyUpBkzFBSkESO8XRAAlKNk2jCniMomEkte6avBJsCZmTIMdejgeJE//UmGoe7dHSN3362H\nHpJq19Nq/kFmZ4b5z5GRIcNQu3aOkbQ0GYZuvFGy6D+Qj6tSsDMdOHDgwIEDe/fu/e233w4d\nOuS+muBeU6fq2WclKTlZy5fr0Ue9XRAAL/PN8x4CfE8N39/zJcD/gXxWlYLdvHnz2rVrFxER\n0aVLl1tvvfWaa65p3rx5p06dlpgN0/AvN95om7GLilLfvrrmGm8XBMDL3H3tr+pKTgiZzAmh\nNm0cI+aE0PXXu7cSr5s505G2Z86UpGefdaTtiRMlacKEctJ22dk782dYcvbO/BkOGuTuvwS8\nwHmwe+WVVx555JH9+/f36NEjNTV15MiRQ4cOjY+P/7//+7/Bgwe/+eabHqgSAOA+HADqg+rX\nly7sPN2502Wdp/Y52hdflKTbblN4uC6+WA0b6j//U5IeeEAREWrenJ3t/I/zYDdz5syePXse\nPHjw448/nj9//pw5c956662vvvpq586dHTp0mDFjhgeqBAC4m+9f+wsobu08tc/RmjciI3X0\nqOrXV8eOKix0jJw7pzfe8NBkLVzFebDLy8ubPHlyU/P04BLatWs3duzYnTt3uqcwAIBHcd6D\nD3JT56l9jtZ8hWuuUXKyDhxQhw7q0kWSLrtMI0bo6FG1aqXwcB08qPXrHUswV66UpJMnHUsw\nX3+9hn9BuJzzYNe0adNg84tDGcHBwZdeeqmrSwIAeAFr4X2Qa1uDSy2/S062xbhRoxxztOam\n9aNHO+ZoL7pIksaNcyzBNA8TffxxxxLMw4cl6ezZGv0l4VLOg90999zzwQcflHvXqlWrUlJS\nXF0SACCgsfzfzq1p254RIyMdc7T2G/Y5WnMkPNyxBLNfP0m65BLHEsz0dOn8FV5TgPwD+aC6\nTh/x9NNP9+3bNy8vb9CgQVFRUQ0bNiwqKvrhhx/eeOON4uLiUaNG7du3z/5g9isGAMAv2DNi\nJTfsSrYhswTTlzmfsYuIiMjJyVm0aFHv3r07derUtm3bzp079+/ff/Xq1WvWrImKimpdggcq\nBgDAwnxzz5eLL3bcrs0STN/cNNFKnM/Y9e3bt77ZdQ0AAAJS2cX25V4UHjJEixcrP1/jx+v9\n91VQoJgYzZ6t6GhNnKhly/Tbb5LUq5eSkpSVpW3bNGKEUlIUE6OrrtLKlcrLU1qakpK0dy+r\nPGvCebBbvny5B+qAR3XvLsPwdhEAAKuxb6SSmFh+bhs/XmvXats2ZWerXj3Fxmr1ai1dqvh4\nTZ8uSXFxys7WrFnKzVVCgnf/Nn6pGkeKAQAsiWYFuIrTza4vv1ySTp50bL/Hij3Xcj5jJ+nc\nuXNfffXV/v37z5R3/XwQ/6EDAOBSmZnKzLxgJCNDGRkXjKSlKS3NgzVVWeWbXZvsuY1NE13L\nebDbvHlz//798/LyKnoAwQ4AAD9iT432G/bU2L2744aZGtes0Wef6e67q/H6lW92bSqV21hO\n5yrOg93o0aOPHTv2+OOPd+zYsR4/eJ+yaJH+8hcdOKCxY/X8896uBgDglyrveFi8WJIGDFBm\npm1DY6fY7NqLnAe7b7/99q233urbt68HqkE1HD+utDSFhOippzza8g6fQrgHUGuVdzxs2FC6\nU7WSi8Jr1ni+fFzAebALCwtrU3LzHPiIHTt08qQefFATJni7FHgJ4R6AK5TseJDoVPVvzrti\nBwwY8M4773igFFTPqVOS1Lixt+uA95jhfuhQTZigHj28XQ0A/1Z5xwOdqv7C+Yzd9OnTBw0a\nNGDAgD59+kRERJRdZte9ZEM8PKNXL330kSTNmKEZM5Serldf9XZN8DjCPQDXqbzjgU5Vf+E8\n2H333XfffPPN3r17ly1bVu4DDLa69bypU3XzzZo4UcnJGjZM7dp5uyB4HOEegEt5puMhM1Nd\nu+rhhx0jfrSNi19wHuwee+yxQ4cODRgwICoqqm7dKu17B7e78UadOydJUVGiryUwEe4B+B6/\n3n7PGpwHtW3bts2bN+++++7zQDUAqopwDwAow3nzRKNGjaKjoz1QCgAA8ClDhigoSMeOaeFC\nSUpNVdeuysnRiRMaM0aRkQoLU0KCvv7a24XiPOfB7t577121apUHSgEAAD7FvsVds2aS9NBD\n2rpVKSkaOFChoVq5UgsWaPt2JSWV7quwJ8L0dIWHq2FDEqGHOL8U+/zzz6ekpOzfv//ee++N\njIws2xXboeTB0QAAwCrsW9x16aKVK3XTTTpypEpb3FW+6fHKlaU3PYarOA92F110kaQ1a9a8\n/PLL5T6ArlgAAPxXJR0P8+dLUnKyevSwdTx8951UhS3u2PTYW5wHu8GDB4eEhNAPCwBAYKrx\nFndseux5zuPaokWLPFBH1RmGsWvXrp9//rmgoEBS06ZNo6KiWrdu7e26AACwprKXSp99Vrfe\nqvx8jR+vxYslafJktW+v6GhNnKhly/Tbb5J0/LjjKWx67BnVmIc7fPjwjh07ioqKGjdu3LFj\nx2bmQkoPys/Pf+aZZxYuXPib+ftSQps2bdLS0p544okGDRp4uCoAAAKNmcnMJXRjxuipp7R7\n9wVL6MaP19q1GjFCvXtfkAtZTuduVQp2n3322RNPPPHVV1/ZR4KCgm699daZM2d6bCeU/fv3\nd+vWbdeuXVFRUUlJSW3btm3UqJGk33//fefOnZ9++umUKVPefffd9evXm4sCra97d7G6EQDg\nDcHB0vkldOb6vLg4ffmlYwnd5ZdL0uHDLKHzNOfBLicnp0ePHmfPnu3evXvHjh0bNGhQVFT0\nww8/rFu3rlu3bjk5OR3Ni+RuNnny5H379i1dujQlJaXsvefOnZs7d+7o0aOnTZs2c+ZMD9QD\neB/hHoBXlVxC17KlJP3yi4KClJ+vjRtt4w88oLfeUnS0srIk6fbbFRurl15Sly4eLzcwOA92\nTz/99GWXXfbxxx9feeWVJce3bNnSq1evadOmeWYR3ocffjhs2LByU52k4ODgkSNHbtiw4b33\n3iPYAQBQLUOGaPFi25q5999XQYFiYjR7ttatk6SEBOXnKyhIdero0ksl2Q6+GTpURUVq0UKS\n6tSRpCZNJCklRQ0b2l45L892idZcYzdpkl54wbbLCdzB+QbFn3/++ciRI0ulOkmxsbEjR45c\nZ/6bu9+RI0euuOKKyh/TqVOngwcPeqYeAAAsw77tXGSksrJ0zTX66iv162eLX0eOqGlThYSo\nfn1bE6s5/TZ+vBYssI388Yd0fgldVJRiY22vHBenPXsUGqoePSTp5puVmqqDB5Wb69G/YOBw\nHuyOHz/eqlWrcu+6/PLLjx496uqSyhcREbF169bKH7Nly5aIiAjP1AMAgGWU3HYuNta2Ecm+\nfQoLk6RbblFRkerU0e+/y9yF4rLLJOm559S7tx5+WJJKrm8ve4mWXU48xnmwa968+fbt28u9\n64cffmjevLmrSypf3759ly1b9sILL5w+fbrsvUVFRVOnTl2xYsXAgQM9Uw8AABZjD2T2vWuv\nuUaSJkxQ794qKJCk666TpE6dpPO9EWZQKyx0vE5kpDIzNW+edP4SbWSkMjJkGOre3bHLSVqa\nDEODBrn7rxVYnK+xu+OOO1588cUbbrihd+/eQUFB5qBhGO+///6cOXMGDx7s5gptMjIysrOz\nx40b9+STT8bHx7du3TosLMwwjMLCwt27d+fk5Jw4cSIxMXHSpEmeqQcAAIspucmcqVEj27i5\nvXCpcUn799uCmrnqzlR2TxN2OfEY58Fu6tSpq1ev7tu3b4sWLTp37tyoUSOzK/bAgQMtW7ac\nOnWqB6qU1KxZsy+++GLOnDlvvvnmJ598cq7Eb1C9evXi4uKGDx8+fPjwYLMDGwAAVNwVYe4k\n/NprOnlS11+vQ4ckqUsXXXONZs/W2bO2p3/0kST9+KNKnT9V5/wFP7YX9jXOL8VefvnlmzZt\nSk1NPXny5Lp16z744IN169YVFxenpaVt3ry5ouV37hASEjJ27NgtW7YUFhb++OOPmzdv3rx5\n844dOwoLC7/44ouHH36YVAcAQEmluiJeeUVbtyolRQMHKjRUt90mSVu26JdfJGnaNNu969fb\nnn7ttZKUlmbrjYDvcx7sJLVu3Xr+/Pn5+fm//vrrjh079u/ff+TIkXnz5rU0l0R6XGhoaFRU\nVJcuXbp06dKhQ4cQ89cWAABcqFRXRGqqeve2talOn67wcEnq3Nk28ZacbLvXPk9ifs4fPmxL\nfnbjx9uW0Nn17y/DsL2gyVxC56lzDGDjJNj99ttvX3zxhXk7KCioZcuWHTp0aNGixZw5c44d\nO+b+8uB+ixapVSvVratx47xdCgDALUq2qZqr5Uq2qd5yS+l727Qp/QoleyPgyypbY7dhw4Y+\nffpcd911H3/8ccnxbdu2jR49+rnnntuwYUP79u3dXGFV7dy5Mz09XdKaNWuq/qy8vLwbb7yx\n3E5bO/New5Jb/B8/rrQ0hYToqad0/fXergYA4BYluyLMObySI+aewyXvtfdG2JXsjYAvqzDY\n7d+/v1+/foWFhbfeemupu66++urZs2ePGTOmV69e27ZtCw0NdXORVVJQULB27drqPqt169av\nvvpqcXFxJY/5+OOP582bZ+8ItpQdO3TypB58UBMmeLsUAIC7VN6mWnaBep0qLdQqR2am7ehY\nux9/lKToaKWnO7o3vvpK0dEaM0bLlun4ccXEcMiYy1QY7ObNm3f48OF58+alpaWVuisoKOix\nxx47d+7c2LFjFyxYYM6Ted2VV1757bffVvdZwcHBfUrOR5fn6NGj80otJbCMU6ckqXFjb9cB\nAPCyxYvVocMFIzt2qEMHZWbatiCWlJ2t7t1tt//9b9uNtDSVSQoO9u6NxERlZWnbNo0YYTtk\n7KqrtHKl8vKUlmY7ZIxdUWqvwky+YsWKK664Yvjw4RU9YPTo0a1atZo/f75b6qq+0NDQ6Ojo\naFZpVl2vXkpMlKQZMxQUpBEjvF0QAMAnjB8vw7gg55m9EfZUJ1V1e+HKuzfi4tSvH4eMuVKF\nM3Z79uy544476lQ8G1u3bt2uXbt+ZG5x40GGYezatevnn38uKCiQ1LRp06ioqNbmESeolqlT\ndfPNmjhRyckaNkzt2nm7IACANf373woKsm2n9+GHkrRli3JybNvpmXNEDz6oxYu5IFtbFQa7\n33///ZJLLqn8yZdccknlbQeulZ+f/8wzzyxcuPC3334rdVebNm3S0tKeeOKJBg0aeKwev3fj\njbbVsFFR6tvX29UAACyraVPp/AXZ++7T3Lnau9dxQfaxx/T009q3jwuyLlDhhNwll1yyZ8+e\nyp/8448/XmaeA+x++/fvj4uL+/vf/960adMHHnhg6tSpf/vb3/72t79NmjRp8ODBZ8+enTJl\nyo033pifn++ZeryDrUkAAL5qyBAFBenYMaWnKzxcDRuqa1fbmRbffy9Jn36qrCyZm0x07+64\nINu2rSTdfDMXZF3BqEDv3r3DwsIOHz5c0QN27NhRt27dfv36VfQA13rooYfq1au3dOnScu89\ne/bsnDlzgoKCHn/8cZf/0a+++qqkgoICl79y9Rw7ZjRoYDRtajz7rPHxx655zexsQzLGj3fN\nqwEALGTwYEMy8vONRx4xmjc3GjQwbrjB+Ooro6jIePxxIyLCaNTIuPFGY/Nm2+NTUw3J6NHD\nmDbN+PprY/58IzTUCAszJOPKKw3JmDLFaNbMaNTIkIz77zckY+FCwzCMefMMyRg+3JCMd97x\n4t+4qszLlRs3bvR2IeWocMZu2LBhhYWFDz/88Fn7iXEl/P7770OHDj179uwDDzzgtsx5gQ8/\n/HDYsGEpKSnl3hscHDxy5MgBAwa89957nqnHC8ytSYYO1YQJ6tHD29UAACyu8uPIVq7UggXa\nvl1JSbaDK8rtkzB3Nr76akkaNEipqSoqks7vsVJ2gz0On62lCoNdv379evTosXz58q5duy5f\nvtzsVJB06NCh119/PSYmJicn595777377rs9U+iRI0euuOKKyh/TqVOngwcPeqYeL/DM1iRc\n7QUASKppQ2vZUy7s6tVTx46lR+BaFQa7oKCgZcuW3XnnnZs3b05OTm7atOlFF13UpEmT5s2b\np6Wl7d69e+DAgW+//bbHCo2IiNi6dWvlj9myZUtERIRn6vE0z2xNYh5EUViop55Sz55u+SMA\nAH6l8uPIzKC2f79jpOwkXEkkOXerbG/pZs2arV69evXq1YMHD27Xrt2ZM2ckdezY8cEHH9yw\nYcOSJUs82YLat2/fZcuWvfDCC+X24RYVFU2dOnXFihUDBw70WEkeNXWqnn1WkpKTtXy5Hn20\nsgfXeNbNTVd7mQUEEAis9V43ZIhef12S5s1zdEKYV8Xef1+RkQoLU0KCLdKVvH5qRjezkcK8\n1CTJXCe1bZvsJz0tXCidP5cCLlTZWbGmO++888477/RAKZXLyMjIzs4eN27ck08+GR8f37p1\n67CwMMMwCgsLd+/enZOTc+LEicTExEmTJnm7Uveo+tYktTn+1R1XezmOFkAgsNx7nbnATlLL\nlo4TI8zTJswFduaJEWa7a0VPX7ZMkt54Q/Pna8MGPfaY7VzaZ5/VN99o6VKNG6dhw2xnV2Rm\n6rXX3P73sjznwc5HNGvW7IsvvpgzZ86bb775ySefnCtxHHG9evXi4uKGDx8+fPjw4LIn3gWa\nGh//2quXzO2mZ8zQjBlKT9err3qzHgDwI5Z7r7NfRR09Wh06KDZWq1dr6VJJGjFCcXGKi1N2\ntmbNquzpF1+sn39WVJSiorRhg379VS1bSlK7djIvvx09qtxcJSS4/a8TOPwm2EkKCQkZO3bs\n2LFjT506tXfvXrOfo0mTJm3atAmxf7NAtWbdune3bSgktx1E4UfH0S5apL/8RQcOaOxYPf+8\nt6sB4Ff86L2upkp1QkilOyHK6tRJmzZdMHLttdq8+YKRkuvzUHuVrbHzWaGhoVFRUV26dOnS\npUuHDh1IdQ616bG48Ubbc82rvddc4+V6PIzGEQA15kfvdbVQg06IJk1sNzIzNXWqJDVrZhvJ\nyNC8eVKJ9XlVPHwWlfOnGTs452vHv/paPZWw3GUUAJ7jR+91nlX2wPmy6RCu5ZczdqjQjTfa\nLgcsX66NG10z61bLelw+C+gmAXAZBYC7+NF7nTtlZsow1KGDY+RPf5JhqHt3x8jddzMt514E\nO2s5flwzZkjSTTf5+vVEn9oXIDAuowBAde3YcUFQk5Sd7Qhq5rXU11/X+vWOLVFycnTihL78\nUpJiYpSQoK+/9mzRga38KdF9+/ZV/SVatWrlomJQazt22BqNunb16WPHfG1fAC6joCyaaQBn\nzOuqM2eqf3/HligpKYqJsZ0Y9vzzmjRJSUnau9e7lQaQ8oNd69atq/4Shr2tEl5n3wvShdzx\n8eZrC9qqvk0gAoSvffcAfMyQIVq8WF27StL//Z+mT9fq1Zo9W3fdpXff1aFDtpaIVq2UmqpZ\nsy44cwxuVX6ws+z5DX6t5NYk5bJvRCdpxgwdO+aCjejc9PHGgjb4OF/77gH4GHM7CnO/4mHD\nlJhom6urX1+SJkzQp59q7VqlpdmaYdnTxGPKD3ZLliypypOLiorMzeTgE+zXEyUlJzs5dqyK\n3PHx5qadkAEX4rsHAl5mpjIzLxjJyFBGhu22eRG2ZUsdO6b//E916mTbvrhzZ0nq3l2TJ2vM\nGM2apV9+kaQzZy54usk8cAKuVavmiRUrVnTp0sVVpaBCVewzsLdlSYqKck1bljs+3qp17i3g\neTTTwCeZp68eO6b09NKdCmPGOA5v9WSnwuWXS+d3szO3Lza3LDZHzNvHj3uuHqiK+9gdPnx4\nyZIleXl5Z8+etQ+eOnVq1apVhYWFbqsNkjy71qfU1V43Ta2xoA0+jmYa+CTz6mdKihITS3cq\nXHWV4/BWs1PB6dbBLvGvf0nS5Mlat05Hj0pScbEkzZ6tgQN15IgkHTzoiUpg5zzY5eXlxcfH\nHzp0qJwn1607efJkN1SFEry41qe6H290EcIa+O4Bn2Re/YyK0pQpkhyHt8bHa/p0SY7DWz18\n+mp4uLKy9OSTev99ffKJJIWEaOVKvf66XnnFFv7gMc4vxU6aNOnUqVMvvfTS2rVrJWVmZmZl\nZf31r3+NjIxctWrVFPP3C+5Tg4uh48fb/iuvpV279D//I0n79jnfcrOiI7nMWUCX1AMAPstT\n73XJyY7b5tXPPn0cI+bVTw93KowerdhY20dEUZEkjRihuDiZa7VOnrQ956OsVQAAIABJREFU\nzAcvJVuS82CXnZ09atSoUaNGJSQkSLrqqqt69uz53HPPrVq1asiQIRs3bnR/kQHMi2t9zKB2\n4oSkKl2KMmcWhw7VhAk+vYUeAPizyEjHbXMOr+SIeQXWfvqq73jxRS1eLEnR0Xr7bR0/rogI\nbdmi/v0VHa3XX1d+viIj9d136tat/Pw3cKCCgtSyperVU0iIQkPJheVzHuz279/fvn17SXXq\n1JFUbF4/l6699tpRo0ZNNfuY4SZe7DMwg9odd0jn18dWji5CAHC/sovnPLOcrlqmTVNQkG1m\nwPTtt7YbZ8+qYUNJ2rVLdepo716FhOiTT7RwoX77TefO2T5MUlIUGamsLL3yirZuVUqKPv9c\nktq0Ub9+Cg1V/fq28YEDFRqqlSu1YIG2b1dSki/mWk9yHuwaN2588OBBSSEhIWFhYT///LP9\nrs6dO2/atMmN1cGL5w+a/22Z//05ZYEuQi4ZA0D1lXvmmDmJaG+3e/RRR8i75Rb96196+20F\nB9s+ZyZNUlyc+vVTaqrjYeZSwthYpaaqd2/t2WPLr3FxWrJEw4fr99+VkKA9exQaqunTHa9w\n8GCgb4bsPNglJia++uqrn3zyiaSrr756zpw59k7YdevW1Tf3IoTF2IPa229Lcux7XBF2MAGA\nknzqOGyPM68Rh4fb/u9NN6lNG9vtqVNtISw21jZiv5RsLhA0lV1KaL6COW4+8qKLJB9YYuhr\nnAe7iRMnHjly5IknnpD08MMPb9q0qXPnzsnJybGxsfPmzbv99tvdXyQ8zh7Ubr5ZkuO/v4p4\ncWYRAHxNRc1kFpKZqYceumAkI0OlFmf9139p3jzb7aZNbTfsF44vu8x248knFRSk5s01erTj\nuf/934qIUEiI6tfXjBmSZO63ZqbAklef/WKJoSc53+4kPj7+s88+y8nJkfTAAw/s2LFj5syZ\ny5cvDwoK6t2798yZM91fJKrM6bFjVWTf7qFVK0lq3twFrwkAAYIj6SRJkZHKy7PdDgoqfW+d\n8zNL5vK79u3VqpW2bLENZmcrNlY33KC1a1VcrLNnZa788oslht5VpZMn4uLiHn30UUlBQUHP\nPvvs0aNHd+3aVVRUtGLFiksvvdTNFcKKWNAGwMJoJpNU5cgVFiZJXbpo5EjHYGGhwsO1fLmG\nD9fp05Js/wunqnGk2P79+7ds2bJ+/foff/yxUaNGDRo0cF9ZAOBNfPdAjbmtmSwzU4ZxQadC\nRoYMQ927O0bS0mQYGjTIVX+mJ7RsKV24qM5kLp4rufAOVVGlYDdv3rx27dpFRER06dLl1ltv\nveaaa5o3b96pU6clS5a4uz54WatWfLwBQDUETDOZq4JmaKh04VI5U9nldKgK52vsXnnllZEj\nR9avX79Hjx6RkZGNGjU6fvz4jh07cnNzBw8eXFxcfP/993ugUPgu8ySxAG9DAgATR9JVk7n8\njsVzruI82M2cObNnz57//Oc/m9p7WiRJu3btuuOOO2bMmEGwC2hm81dIiNLS9Npr3q4GAOBl\nQ4bYDpmYPFnr1qmgQDExtg3q7rxTN9+s48cVE+PIbazVdy3nl2Lz8vImT55cKtVJateu3dix\nY3fu3OmewnCej6/1sZ8kNmyYt0sBAHhfSIjtRni44+iIAwck6eKLHUdEfPNN6Sempdk2THnw\nwdJ3PfKIJC1ebLvya17hfecdKywxdDnnwa5p06bBwcHl3hUcHExXbKDzu+avwN41FADczdyd\n+NFHNXOm4+iI48fVv7/eestxRMTvv+vuu71dqxU5D3b33HPPBx98UO5dq1atSklJcXVJ8B8l\nm78SE5We7rszi6YA2DUUAHxB2aMjyh4RcfKkZ2sKDM7X2D399NN9+/bNy8sbNGhQVFRUw4YN\ni4qKfvjhhzfeeKO4uHjUqFH79u2zP7iVuZ8tLKAqex1Pnaqbb9bEiUpO1rBhatfOI5XVAruG\nAoBHlOxyNefwyh4R8ccfnq0pMDgPdhEREZJycnIWLVpU9t4oM4efZ7jk2AP4C79r/vK7C8cA\n4J+q0uX6yCNat+6CkYwMZWRI0htv2EbS0pSWJklz52rIEA0erPx8jR+v99+3tWXMnq3oaE2c\nqGXLbG0ZL72kLl1c/hfyG86DXd++fevXr++BUgD36tVLH30kSTNmaMYMpafr1Ve9XRMAoKrM\ntoyUFCUmKitL27ZpxAilpCgmRlddpZUrlZentDQlJWnv3sDdLcV5sFu+fLkH6gDczu8uHAMA\nSjAv6UZFacoUSYqN1erVWrpU8fG2Bd5xccrO1qxZys1VQoI3S/Wi8oPdgQMH6tevf9FFF5m3\nK3+JFi1auL4uwOX87sIxAD9VlTXKqKmqtGUE8pb55Qe7li1b9uzZMysry7xd+Uuwrg4AAHhG\nVdoyzpzxbE2+pPxgN3DgwGuvvdZ+24P1AAAAVIjDxypXfrBbsmRJubcBAAAqkZmpzMwLRuy9\nrnb2Xle4nPMNik3ff//94cOHS/7fLVu2uKck+AP7+Q0vv+ztUgAAgI3zYHfmzJmHHnooOjr6\nu+++sw+uX7++S5cuDz744DlzNToCSsnzG+LjvV0NAACwcb7dyYsvvvjGG2/cddddbdu2tQ/e\nfvvtAwcOnD9//rXXXvv444+7s0L4nlLnN4wZ4+2CAACAVJUZu/nz5999992rVq1qV2Lfr44d\nOy5ZsiQpKemll15yZ3nwSZzfAACAT3Ie7H766af/+I//KPeuW265Zffu3a4uCb6tVy8lJkrS\njBkKCtKIEd4uCAAQEDIzZRjq0MExkpEhw1D37o6RtDQZhgYN8nx1vsL5pdgmTZrk5eWVe9f/\nb+/uA6Kq8z2Of0dgEAVBTVEEH0hSV6+WoknCYmXpailRJmnaxbhXcGuVvVKLt8SHNFjteXWz\ndr2lLWambF5ddWtXSU0vpq1raYX4hAnakpCIiOLcP45OyMMAwszvnDPv118zZw5nvjMDnM/8\nns7x48fbtWvXzBVB5wx9/QZWDQUAmFr9LXZjxoz54x//+Je//KXqxsuXL7/99ttvvfXW/fff\n77TaoEsREdda7LTrNwwYoLogAAB+MnGiWCxSXCzTpklgoLRqJUOHSk6OlJXJzJnSpYv4+spd\nd8n+/aoLdY76W+xeeOGFzZs3jxkzpmvXrr169fL29i4uLj506NAPP/zQuXPnF154wQVVAgAA\nNITVKiIyfrxERcmWLfLPf0pioowfL/37S9++smGDHD8uCQkyerTk55twceP6W+w6d+78xRdf\nJCYmXrhw4eOPP964cePOnTs9PDz+4z/+Y+/evV27dnVBlQAax77QYEqK6lIAwKW064yFhcmc\nOXLHHfLEEzJ2rJw8KS1bSnq6DBokDz8sTzwhZ87I3r2qa3WC+lvsRCQwMPD3v//9smXLCgoK\nLl682KlTp9atWzu7MgA3SVto0GqVBQtk8GDV1QCAArGxP90OCxMRGTfupy29eomIFBS4tiaX\naOiVJ0TEYrEEBQXdeuutpDpAd6o20WkLDU6aJKmpMmKE6soAQIEuXX66rbXhVd2i9cBevuza\nmlyi/hY7m8324Ycfrly58tSpU5drew+qXpECgALVmuhYaBCA26s5eM58w+lqVX+we+mll1JS\nUkSkVatWXm7yrgDGUvVaIKNGydatIiIZGZKRIdOmyZtvqq4PAOAi9Qe71157beTIkcuWLQsN\nDXVBQQAarWoTnaEXGgQANE39Y+zOnDkzb948Uh1chxmdjVLtWiDvvstCgwDgtupvsQsMDLSx\nWD+qcur1G5jR2Vg1m+jOn1ddEwBAjfqD3WOPPbZq1aqhQ4e6oBrghuFiaIiICKmsFLneRCci\nO3eqrQgAoEr9XbFz5szJy8ubNGnS1q1bDx8+fKQGF1QJA2tsvyozOgEATfCHP4jNJj17/rRl\n7lyx2SQy8qctCQlis0lcnOurc7r6W+z8rp9iMzMza92BjlrUqbH9qszoBACgCRrUFWu1Wj09\nG3SNCuAGje1XZUYnAABNUH9cq6uhDqhfY/tVaw4XAwAADVZ7sCssLPT29m7btq122/EhOnXq\n1Px1wQToVwUAwLVqD3adO3ceOXLkli1btNuOD8EYO9SOflUAAFyr9mA3YcKE22+/3X7bhfXA\nROhXVcWpCw0CAHSs9mD3/vvv13obAAAAulX/5IkNGzbceuutffv2dUE1AG4GTXQAABFpyALF\nEyZM2LhxowtKAQAAQFPUH+wiIyOzs7OvXr3qgmoAAABw0+rvin3vvfeSk5PHjBkzZcqU2267\nzd/fv9oOPatetgMAAACK1B/s7MvUaauf1MRyJ2hODBcDAOBm1R/sJkyYYLVavby8LBaLCwoC\nAADAzak/2LHcCXTq/vvl449FRDp1koIC1dUAAKBePZMnLl26lJOTs3379novLAbUQutXTU9v\n/iMfOnQt1YWFyQMPNP/xYQ6ZmRIcLJ6ekpKiuhQAcAVHwe7dd9/t1KnTnXfeeffddwcFBU2c\nOPH8+fMuqwxw5MMPRUTatZNvv5W331ZdjZsxSloqKZGEBCktlQULZORI1dUAgCvU2RX76aef\nxsfHe3h4jBw5sn379nv27Fm9evXFixezsrJcWR9Qu5ISEZGWLVXX4X60tGS1yoIFMniw6moc\nys2VixclPl5SU1WXAgAuUmewW7JkicVi+fvf/x4VFSUiFRUVcXFxWVlZX375Zb9+/VxYIVCD\nt7dUVIiInD4tFou0bSs//KC6JrdhoLRUXi4i4uenug4AcJ06u2L37Nlz//33a6lORKxW69y5\nc0Xk008/dU1lQJ1+/WsJCxMRadlSYmNl9mzVBbkTo6SlUaNE+/eVkSEWiyQmqi4IAFyhzmBX\nVFR02223Vd2i3S0qKnJ6UYBjL74oDz4oItKunaxbJ7NmqS7IbRgoLaWlyaJFIiKxsZKVJUlJ\nqgsCAFeoM9hdvXrVx8en6paWLVuKSGVlpdOLgosZZSw8lDNQWoqIuJZBw8IkJkYGDFBdEAC4\nQv3r2MHkDDQWHspFRIj21U5LSwAAnalnHTuYnzYWftIkSU2VESNUV1MDrYkAADSYoxa7nTt3\nahMmqtq+fXu1jTX3gZHoeSw8rYkAADSGo2C3a9euXbt2VduYnZ2dnZ1ddQvBzsBGjZKtW0VE\nMjIkI0OmTZM331RQRmamPPOMFBZKcrIsXvzTdgOtrAEAgA7UGexWrVrlyjqgRlqaREfL7NkS\nGyuTJ0uPHgpqcNAsp+fWRAAA9KfOYPf444+7sg6ooYex8HU1y+mkNREAAONg8gRUq6tZzkAr\nawAAoA8EOyjlYMFbx+uQvfSS2Gzy3XcurBUAAL1jHTsopYdBfjCryEix2VQXAQAuRbCDUnoY\n5IdGIS0BgI7RFQsAAGASxm6xq6ioOHDgQGlpaffu3XvQiwcAANybYVrsXnjhhW3btlXdsnz5\n8k6dOg0ZMuSee+4JDQ0NDw//xz/+oao8AAAA5QwT7J5//vmt2qpmIiKyadOmxMTEsrKyhx56\naNq0acOGDdu3b9/w4cPz8vIUFglz4nq1AACDMGpXbHJysr+//+7du/v06aNtWb9+/SOPPLJw\n4cIVK1aorc1gGAvvGNerBQAYhyGD3ffff5+bmzt79mx7qhOR2NjYcePG/fWvf1VYGEyI69UC\nAIzDkMGuvLxcRKqmOk2/fv02bdqkoiI4hx5aE7leLQDAOAwzxq6qoKAgf3//U6dOVdt++vRp\nP07AaEYOLowBAID+GCnYnTx58vPPPz9y5Mi5c+emT5/+xz/+sayszP7o119/vWbNmmHDhims\nEDdDa5ZLT1ddR224Xi0AwFCMFOxWr149ePDgsLCwDh06vPjii0eOHNm8ebP2UGZmZnh4+MWL\nF59//nm1RcJUHF+vFnrD/GUAbs8wY+z+53/+p7iKkpKS4uLitm3bao8WFxcHBAS8//77g5m3\nCLgn5i8DgIGC3b//+787eHTKlCmJiYktWhipARJAc2L+MgAYKNg55uvrq7oEAEoxfxkAjDXG\nDqgfo6zcE/OXAUBEzBTs8vLyRowYMWLECNWFQB1tlFVpqSxYICNHKiiAWKkK85cBQERM0xUr\nIufPn//b3/6mugoopXaUFYP3FYqIkMpKkevzlwHAXZkn2PXu3fvgwYOqq4BSakdZMXgfAKCa\neYJdy5Yt+/Xr19ifqqys3LRp06VLlxzss2/fvibUBVcZNUq2bhURyciQjAyZNk3efNOlBTB4\nHwCgmvGCnc1mO3bs2NGjR8+fPy8i/v7+YWFhISEhN3e0/Pz8//zP/6yoqHCwjxb7bMovWgrH\n0tIkOlpmz5bYWJk8WXr0aJ7DNvB6ta6MlZmZ8swzUlgoycmyeHFz7gwAMDgjBbtz584tXLhw\n1apVZ8+erfZQ165dExISZs2a5ePj06hjdu/evbCw0PE+y5cvT0xMtFgsjSsXLqZ2lJWTYmVN\njRrJx7A/AHAzhgl2BQUFw4YNO3bsWFhY2OjRo7t169a6dWsR+fHHH/Py8rKzs+fMmbNu3bpt\n27bZL0cBuI7LYmWjRvIx7A8A3Ixhgt3zzz9/6tSpDz74YPz48TUfraysXL58+VNPPTVv3rxX\nX33V9eUBLtKokXwM+wMAN2OYdew2bdo0efLkWlOdiHh4eEyfPv3RRx9dv369iwsDXKdRy/Cy\nZi8AuB/DBLuioqJbb73V8T59+vQ5c+aMa+pBdazN6wKNWobXrdbszcyU2FgRkW3bVJcCACoZ\npis2KCjowIEDjvf54osvgoKCXFMPbsAgfddo1Eg+91mz1/7rt2gRv34A3JxhWuxiYmLWrl27\nZMmSWtecu3DhQlpa2kcffTRhwgTX14Zrg/QnTZLUVOGqbnAxfv0A4DrDtNjNnTt3x44dKSkp\n8+fPHzJkSEhIiK+vr81mKy0tPXHiRE5OTllZWVRU1HPPPae6UrfEIH0oxK8fTIlFKHFTDBPs\nAgICdu/evXTp0pUrV27fvr1S62MSEREvL69BgwZNnTp16tSpHh4eCot0U8ov+QB3xq8fTInx\nLbhZhgl2ImK1WpOTk5OTk8vLy/Pz87UrT7Rp06Zr165Wq1V1dW7MZWvz1quBV4mAmejn1w9o\nRixCiZtlpGBn17Jly7CwMNVV4Dr3GaTvGLFSCX79YEoMMMDNMszkiVotWbIkMjJSdRUAADQf\nFqFEExg72B05cmTXrl2qqwAAoPm41SKUaG6G7IoFAMC0GGCAJiDYAYbSqJF8DPsDzI0lUVAD\nwQ4AAANiSRTUxthj7NLT0/Pz81VXAQCAy3HNFdTG2C12AQEBAQEBqqsAAMDlWBIFtTF2ix10\nITNTYmNFRLZtU12KUpmZEhwsnp6SkqK6FABmx5IoqAPBDk2jDfKoqJBFi2ThQtXVqKO9D6Wl\nsmCBjBzZzAcnMjqmzRFJT1ddB+BCLImCOhi7Kxbqqbrujd7mgjnvfWB8NICaWBIFdSDYoWmU\nDPLQYdZx3vvAJSMBAA1GVyyaQNUgD73NBXPq+8D4aMANMcAAN4tghyZQNchDb1nHee+DocdH\nMzQQAFyOYIcmiIi4Fju0QR4DBrjiSXWYdZz3Phh3fLRTZ5MAAOpAsIPR6CTruKY5Skl0bhZ6\n6y4HAPfA5AkYjR7mgulw9obe6K27HADcAy12QOPRHOWYDrvLAcA9EOyAxqM5yjGddJcDgPsh\n2AGNRHNUvYw7NBAwEJZEQW0IdkAj0RwFANArgh3QSM3SHMUabwDMhP9pusGsWMDlmFQLwEz4\nn6YnBDs0jTbIQ4lDhyQ4WAoLJTlZFi9WU4Ndo94HLv8KwEz4n6YndMXCsDZvNuqFDRo1qZbx\n0QCUc9zTykIBekKwgwFFRsrevXLliiFXkmNSLQBjcXyFQP6n6QxdsTAm435BTEuT6GiZPVti\nY2XyZOnRQ3VBAOCQ455W/qfpDC12MCBDf0FkjTcAxuL4izT/03SGYAcDYiU5/WNoIGAOhv4i\n7ZboioUBRURIZaXI9S+IAAAnoafVaAh2QOMpXOQFAFyJL9JGQ1csAACASRDsAAAATIJgBwAA\nYBIEOwAAAJMg2AEAAJgEs2IBl2NSLQAz4X+antBiBwAAYBK02MGY+IIIAEANtNgBANxMZqYE\nB4unp6SkqC7FCLhCoKEQ7AAj4DwENJeSEklIkNJSWbBARo5UXQ3QzAh2gO5xHgKaUW6uXLwo\nkyZJaqqMGKG6GuPja6fOMMYO0D3tPBQfL6mpqksBjK+8XETEz091Haagfe20WmXBAhk8WHU1\nEKHFDjAAzkNAcxk1SqKiREQyMsRikcRE1QUZHM2f+kOwA/SN8xDQjNLSZNEiEZHYWMnKkqQk\n1QUZHF879YdgB+gb5yGgGUVEXPumFBYmMTEyYIDqgoyMr526xBg7QN8iIqSyUuT6eQgAdCIt\nTaKjZfZsiY2VyZOlRw/VBUGEYAcAAG4GXzt1ia5YAAAAkyDYwVxYUQkA4MboioWJsKISAMC9\n0WIHE3HzFZVorQQAt0eLHUzEnVdUorUSAECLHczDzVdUcmprJW2BAGAQtNjBLNx8RSXntVbS\nFgiTiYwUm011EYCzEOxgFiZeUane89CoUbJ1q4hIRoZkZMi0afLmm8327FpbYHy8pKY22zEB\nAM5BsAOMz6mtle48chGAYzR/6g9j7ADjc97lL9185CIAGA3BDkDd0tJk0SIRkdhYycqSpCTV\nBQEAHCHYATUwCdTOeW2BAAAnYIwdcCMmgQIADIsWO+BGbn75CgBwATpGnIYWO+BGTAIFAKei\nY8SZaLEDqjDuJNCPPxYR+e1v+foLQO/oGHEmWuxgIk1fUcmgl68oKZGMDBGRn/9cRo5UXQ0A\nOETHiDPRYgdUoc9JoPUORsnNlUuXRESGDuXrrwEwugjuzLgdIwZBix2gbw0ZjKJ9/X32WUlP\nd2VpuBmMLoKbM2jHiHHQYgfoW72DUfj6ayyMLoKb02fHiInQYgfoW72DUZz99ZdrQTYvRhcB\ncCZa7AAda0hrHF9/b46SgW40rwJwMlrsAB1jMIqTqBroxgcKwMkIdoCORURIZaXI9da4m5aZ\nKc88I4WFkpwsixc3V3UGpg10i4+X1FSXPm9zfaAAUAeCHWB2TMOsiYFuAEyKMXaA2TENsxoG\nugH6wbKOzY0WO+BG5psESutUNQx0A3SC/gQnoMUOMDVap2piHjGgE/QnOAHBDnChZu900A4Y\nHV3nDmlpsmiRiEhsrGRlSVJS8zwvANw0rWMkPZ3+BGcg2AGuonU6lJbKggUycmRzHjAhoc59\naJ0CoE/0JzgHY+wAV2n2JTbsB1y6VJYvb55jAoBrMNrVOQh2gKs0e6cDvRgAjItlHZ2DrljA\nJW6608E+GKW5Dgi16vpAAaA5EOwAl2j2SQzMigAA1EBXLOASzd7pQC8GAKAGWuwAAABMgmAH\nwAl0fpkgBroBMCm6YgE0Ny4TBACK0GIHmEVdjWSub53iMkEAoIjxWuxsNtuxY8eOHj16/vx5\nEfH39w8LCwsJCVFdF6CUrhrJWGAPABQxUrA7d+7cwoULV61adfbs2WoPde3aNSEhYdasWT4+\nPkpqAxRr9sta3LRRo2TrVhGRjAzJyJBp0+TNNxWXBECftP4ENCvDBLuCgoJhw4YdO3YsLCxs\n9OjR3bp1a926tYj8+OOPeXl52dnZc+bMWbdu3bZt29q2bau6WMDlGttIlpkpzzwjhYWSnCyL\nFzdnJVwmCADUMUywe/7550+dOvXBBx+MHz++5qOVlZXLly9/6qmn5s2b9+qrr7q+PEClxjaS\nObXflgX2ms55sRuA2Rkm2G3atGny5Mm1pjoR8fDwmD59+qeffrp+/XqCHXSqWqdD00/e9gPu\n3t24RjL99NuiJl0NlwRgNIYJdkVFRbfeeqvjffr06ZOVleWaeoAmad6Td2MbyZjcoGfEbgBN\nYJjlToKCgg4cOOB4ny+++CIoKMg19QBNonBBkFGjJCpKRCQjQywWSUx06bOjXsRuAE1gmGAX\nExOzdu3aJUuWXLp0qeajFy5cSEtL++ijjyZMmOD62oBGU3jyTkuTRYtERGJjJStLkpIU1IC6\nELsBNI1humLnzp27Y8eOlJSU+fPnDxkyJCQkxNfX12azlZaWnjhxIicnp6ysLCoq6rnnnlNd\nKXCjmmPp1C4IwuQGPWNOMYCmMUywCwgI2L1799KlS1euXLl9+/ZK7cwkIiJeXl6DBg2aOnXq\n1KlTPTw8FBYJVFfrWDpO3qgLsRtA0xgm2ImI1WpNTk5OTk4uLy/Pz8/XrjzRpk2brl27Wq1W\n1dUBtal1IDwnbwCAcxgp2Nm1bNkyLCxMdRVAAzAQHgDgQoaZPAEYj9sOhNcW2EtPV10HALgd\n8wS7vLy8ESNGjHDxyhGAA8w/BQC4liG7Ymt1/vz5v/3tb6qrAKpw5Vg6rqUNADBTsOvdu/fB\ngwdVVwEAAKCMeYJdy5Yt+/Xrp7oKAAAAZcwT7ESkqKjo3LlzPXv2bPiPnDlz5sknn6z1ahZ2\n3333nYjY6OeCadBvCwAmZapgt3jx4oyMjEYlsNatWw8cOLCiosLBPu3btz98+LC3t3eTCwSA\n+hC7ATSBqYLdTfD19Z0/f77jfT777LM1a9a4ph64C07eAAAnMM9yJwAAAG7OMC124eHh9e6j\nDYYDAABwT4YJdl988YWIeHl5OdjnypUrrioHAABAdwzTFZuSktK6desvv/yyvG6zZs1SXSZw\nIy6uBQBwIcMEuwULFvTs2fOxxx67fPmy6loAAAD0yDDBzsvL609/+tNXX301e/Zs1bUAAADo\nkWHG2IlInz59CgsLHQyk+8UvfhEQEODKkgAAAPTDSMFORNq0aePg0ejo6OjoaJcVAwAAoCuG\n6YoF4AqZmRIcLJ6ekpKiuhQAQKMZO9gtWbIkMjJSdRWAWZSUSEKClJbKggUycqTqagAAjWaw\nrthqjhw5smvXLtVVAGaRmysXL0p8vKSmqi4FAHAzjN1iB6AZ2LvSnCM6AAAU4klEQVRfX35Z\nRMTPT3VBAICbRLAD3Ju9+zU0VFavFhHJyBCLRRITVVcGAGg0gh3g3rTu10mT5N13ZdEiEZHY\nWMnKkqQk1ZUBABrN2MEuPT09Pz9fdRWAkZWXi4j4+UlEhERFiYiEhUlMjAwYoLYuAMBNMHaw\nCwgICA4OVl0FYFijRl0Lc1r365IlqgsCADSJsYMdgCZJS7uh+zUmRnVBAIAmMfZyJwCaJCJC\nKitFrne/7typuiAAQJPQYgcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJsGsWADXRUaK\nzaa6CADAzaPFDgDUycyU4GDx9JSUFNWlADADWuwAQJGSEklIEKtVFiyQwYNVVwPADAh2gHuj\n+1Wh3Fy5eFHi4yU1VXUpAEyCrlgAUKS8XETEz091HQDMg2AHACqMGiVRUSIiGRlisUhiouqC\nAJgBwQ4AVEhLk0WLRERiYyUrS5KSVBcEwAwYYwcAKkRESGWliEhYmMTEqK4GgEnQYgcAAGAS\nBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AA3kJkpwcHi6SkpKapL\nAQA4EQsUA2ZXUiIJCWK1yoIFMniw6mpQRWSk2GyqiwBgKgQ7wOxyc+XiRYmPl9RU1aUAAJyL\nrljA7MrLRUT8/FTXAQBwOoIdYGqjRklUlIhIRoZYLJKYqLogAIATEewAU0tLk0WLRERiYyUr\nS5KSVBcEAHAixtgBphYRIZWVIiJhYRITo7oaAIBz0WIHAABgEgQ7AAAAkyDYAQAAmATBDgAA\nwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMggWKAbOLjBSbTXURAABXoMUOAADAJAh2AAAA\nJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGw\nAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASnqoLMACr1Soi3t7eqgsBAAB6ocUDvbHYbDbVNRjA\ngQMHrly5oroKJ6qoqLjrrrvS0tJ69uypuhZcc/ny5alTp/Kh6Ir2ocyZMycsLEx1LbiGD0WH\ntA9lxYoV/fv3V12Ls3h6eg4YMEB1FbUg2EFEpLy83MfHZ/fu3UOHDlVdC67hQ9GhS5cutWzZ\n8rPPPouIiFBdC67hQ9EhPhSFGGMHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMA\nADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7iIh4eHh4eHjo87J3bosPRYdatGjh6enJh6IrfCg6\nxIeiEJcUwzVHjx4NDQ1VXQVuwIeiQ3woOsSHokN8KKoQ7AAAAEyCrlgAAACTINgBAACYBMEO\nAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADA\nJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYIefnDt3btasWd26dfP29u7Ro0dMTMyePXtU\nFwW5fPlyamqqh4dHeHi46lrcV3Fx8cyZM7t37261WoOCghISEgoKClQXBf46dIfziHIWm82m\nugbowg8//DBo0KDjx4+PGTNm4MCBR48eXbNmjaenZ05Ozr/927+prs59HT58+PHHH8/Nzb1w\n4cIdd9zx+eefq67IHVVUVEREROzfv//hhx8eOHBgXl7eqlWrgoOD9+3b17ZtW9XVuS/+OvSG\n84gu2ACbzWaz/fKXvxSRN954w75l3bp1IjJ69GiFVbm5kpISHx+f8PDw3Nxcb2/vQYMGqa7I\nTb388ssikpGRYd+yZs0aEfmv//ovhVW5Of46dIjziB7QFYtrvLy87r333mnTptm3PPTQQz4+\nPl999ZXCqtzclStXpk+f/tlnn/Xs2VN1LW5t5cqVfn5+M2bMsG959NFHe/bsuWrVKhudHorw\n16FDnEf0gK5Y1OnSpUt+fn5DhgzZuXOn6logLVu27NevH51NrldeXu7r6zt8+PBPPvmk6vb4\n+Ph33nknLy8vNDRUVW3Q8NehW5xHXI8WO9Rp+fLlly9fjouLU10IoFJ+fn5lZWVISEi17d26\ndRORo0ePqigKMAbOI65HsEPtsrOzU1JSIiMjExMTVdcCqHT+/HkRad26dbXtvr6+9kcB1MR5\nRAlP1QXA1YqLi3/zm9/Y7/bs2XPWrFnV9lm9enV8fHy/fv0++ugjT09+SZyuIR8K1LJYLNW2\naONYam4HIJxH1OG9djulpaXLly+33x02bFjVDGGz2ebOnTt//vxRo0Z98MEHfn5+Kmp0O44/\nFKjVpk0bqa1l7scffxQR/kaAajiPqEWwczvBwcF1zZix2WwJCQkrVqx4+umnX3nlFQ8PDxfX\n5rYcfChQrmvXrp6enidOnKi2PS8vT0TCwsJUFAXoFOcR5Rhjh58kJyevWLFi0aJFr7/+On+N\ngMZqtQ4aNCgnJ6esrMy+8erVq9nZ2SEhIV27dlVYG6A3nEeUI9jhmvXr17/22mszZsxITU1V\nXQugL08++WRZWdnixYvtW956663Tp08nJCQorArQG84jesA6drimZ8+eeXl5Tz/9dKtWrao9\n9Oyzz3LdJCWys7M3b96s3V6yZEmHDh2eeOIJ7W5KSkr79u3VleZeKisr77777h07dowbN27g\nwIGHDx9es2ZNv3799uzZU/PvBa7BX4cOcR7RA4IdrnEwue/YsWPdu3d3YS24Jj09va4vvrm5\nuSy470qlpaXz5s1bu3bt6dOnO3bsGBMTM3/+/Hbt2qmuy33x16FDnEf0gGAHAABgEoyxAwAA\nMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmC\nHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAA\ngEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ\n7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwA9BUcXFxFoulsLBQV4ey\nH+3UqVPNcjQA0D+CHQARkffee89yIw8Pj8DAwNjY2J07dzr+2dtvv33kyJHe3t5NL6MZD9VA\nNpvtww8/jImJCQoK8vb27tixY3h4+MKFC8+cOeOyGvQsPT39yJEj9e52+fLl1NRUDw+P8PBw\nF1QFoC4Wm82mugYA6r333nuTJ08eNmxYZGSktuXixYvffPPNxx9/bLPZ3nnnnSlTpqit8CbE\nxcWtWbMmPz8/ODi41h2Ki4vHjx//ySeftGrV6t577+3WrVtRUVFOTk5eXl6HDh3WrVsXFRXl\n4pp1paCgICgoaPPmzaNGjXKw2+HDhx9//PHc3NwLFy7ccccdn3/+ucsqBFCNp+oCAOjIiBEj\n5s6dW3XLjh077rnnnpkzZ06YMMGVDWmuMWnSpE8++WTcuHFvv/12hw4dtI1Xr1596623nnrq\nqXHjxn399dcdO3ZUW6RCe/furXefH3/8cdCgQX379t2/f3+/fv1cUBUAB+iKBeBIVFTUvffe\ne+7cuQMHDsj1UWtnz5697777fHx8NmzYIDcOjJs4caLFYiktLX322We7d+/u7e0dEhLyyiuv\nVO0cKCwsTEhI6NKlS+vWrQcMGPDaa69duXJFe6jqoR566CGLxVJQUJCQkBAYGOjt7d27d+/f\n//73VcvLycl56KGHbrnlFqvV2r1798mTJx8/fryBL23Lli1/+ctfBg4c+OGHH9pTnYi0aNEi\nMTFx/vz5AwcOzMvL0zaeOHEiPj6+S5cuVqv1lltuGTt2bE5Ojv1HtFddXFw8bdq0wMDAVq1a\nDR06NCcnp6ysbObMmV26dPH19b3rrrv2799v/5GGvLqGPKnjt/rMmTO//OUvu3XrZrVaO3To\nEBMTUzWrOT7CAw88MG7cOBH5xS9+YbFY6uqRv3LlyvTp0z/77LOePXs28J0H4Dy02AGoR/v2\n7UWkrKxMRKxWq4gkJyd7eXnNmTMnNDS02s7aDo888kiPHj3ef//9q1evzps379e//nVAQEB8\nfLyIfP/99+Hh4aWlpVOmTOnWrdv27dtnzpx58ODBP/zhD9UOpTUQxsTE3H333VlZWVevXp0/\nf/706dO9vLwSEhJEZN++fdHR0e3atZsxY0anTp2OHj26dOnSv/71r4cOHdJqdmzlypUi8t//\n/d+enrX8J5w9e/bs2bO12/n5+UOGDCkrK0tKSurbt+933323bNmyn//855988onWc6296vHj\nx0dFRW3ZsuWf//xnYmLi+PHj+/fv37dv3w0bNhw/fjwhIWH06NH5+fleXl4NeXUNfFLHb/Wd\nd95ZXFycmJjYr1+//Pz8ZcuWRUVFbd26NTo6ut4jPPfcc+3atVu1atWcOXPuuOOOn/3sZ7W+\nje3atVuyZEm97zYAF7EBgM22atUqEUlLS6u2vaKiIjQ0VGtbstlsU6dOFZH777+/srLSvs+E\nCRNERNvhySefFJHHHnvM/qjW6PXAAw9od5OSkkRk69at9h3GjBkjIl9++WW1Q2m3qx6quLjY\n29u7e/fu2t1ly5YNHDhw27Zt9h3eeOMNEXnjjTeqFpafn1/rS9ZeV0lJSb1vzhNPPCEi69ev\nt285dOiQh4fH0KFDtbvaq05KSrLv8Oijj4rII488Yt8yY8YMEdm1a1fV2hy8ugY+qeO32tPT\nc+/evfYdTp486efnFx4e3sAjvPjiiyKyefPmet8ijbe396BBgxq4MwBnoCsWQO3Ky8sPHjwY\nFxd39OjRuLi4Tp06iYjFYhGRJ554okULR/89tFCiCQ0NbdWqlbbmiM1m++CDD0JCQu677z77\nDq+//vrf//73wMDAWg8VFxdnv+3v7x8VFXX8+PGCggIRSUpK2rdv3/Dhw0Xk8uXL5eXlWqtS\nA3tjz5w54+/v36ZNG8e72Wy2P//5z4GBgTExMfaNffr0iYiI2LNnT1FRkX1jbGys/XZYWJiI\naF2Zml69eomIVnm9r67hT+rgrV67dm3//v2Dg4MLr/Py8rrrrrs+//zz0tLSeo8AwIgIdgB+\nMm/ePPtyJz4+Pv3791+/fv3YsWOXL19edTctozjQtWvXqne9vLwuX74sIgUFBUVFRb1799YC\noiY0NPTuu+++5ZZbaj3UbbfdVvVuly5dRMS+0N2qVauio6Pbtm1rtVp9fHzuvfdeEbGP2HOs\nRYsWlZWV9e5WWFhYUlLSt2/fqjXL9Tfh22+/rVabRuverbpF64HV3od6X13Dn7Sut/rs2bP/\n+te/9u/f3/lGW7duFZGTJ0/WewQARsQYOwA/iY6O1hrARKRFixbt27ePjIwcMGBAtd38/f0d\nH0cLMTVdvHhRrg8va6BWrVpVvdu6dWsRKS4uFpHZs2e/+OKL4eHhr7zySo8ePby9vb/66itt\ngFpDBAUFffPNN//617/qypSaCxcu2J+3Kh8fH/ujmpqvuq73wa6uV+fn53fTT6o5f/68iNx+\n++1ad2o1QUFBDS8SgIEQ7AD8ZPjw4dWWO2leWn+uFssaqGqIEZGSkhIRad++fXl5+auvvhoS\nErJt2zZfX9+qjzbQXXfd9c033/zv//6vNtWgGpvNdvDgwf79+2sHr1aGfYuWwG5aXa+u6U9q\n38fxEnQATIauWACu07p16w4dOhw+fLhqZ98333zzu9/97quvvqr1Rw4fPlz1bm5uroh07ty5\nsLDw4sWL4eHh9lQnItnZ2Q0vRstz8+fP1xq3qlm2bNmAAQOWLl3aqVOndu3aHT582Hbjcu6H\nDh2yWCz19ko7Vtera/qTBgYG3nLLLV9//XW1GP399983pWAAOkewA+BS48aNKyoqevfdd+1b\n5s6d+/TTT1+6dKnW/VesWGG//e233+7du7dXr14dOnQIDAy0WCxV50n84x//0FYwKS8vb0gl\nUVFREyZMOH78+H333Wdfr05Erly58vrrr8+YMaNz584TJ04UkdjY2IKCgo8++qjqc+Xk5Nxz\nzz0BAQENfOGNenXN8qTjx48vLy9fvHixfcv333/fv3//Bx98sIHleXh4yPUOdACGQFcsAJdK\nS0vbuHFjUlLSgQMHunXrlp2dvXHjxilTpgwcOLDW/S9duvTggw8+8MADV69e/e1vf2uz2ebM\nmSMiPj4+Y8aM2bhxY2Ji4vDhww8dOvS73/3uT3/609ixYzdt2rR69eqxY8fWW8yKFSsuXbr0\n5z//uXfv3lFRUbfddltxcfGePXtOnDgRGhq6ZcuWtm3bisi8efM2btw4efLkX/3qV7169Tp+\n/PjSpUt9fX1ffvnlJr4bdb26ZnnSuXPnbtq0adGiRQUFBdHR0adPn37zzTeLiop+9atfNfAI\n2jqF6enpx44di4qKGjx4cM19srOzN2/erN2+cuXKd99995vf/Ea7m5KS0pAFBQE0J2ULrQDQ\nk7rWsatGW/ksNze36saa69hV28Hf379v3772u8ePH3/88cc7duzo5eUVGhr60ksvXblypeah\ntNu5ubkzZ84MCgqyWq0/+9nP3nnnHftxzp49O3HixA4dOvj7+99zzz07duyw2Wzz5s3z9fXt\n1KlTQUGB43Xs7DZs2BAbGxsUFOTl5eXn53fnnXcuW7asrKys6j4nT56Mj4/v3Lmzp6dnx44d\n4+LiDh065OBtSUtLExGtJM3bb78tIqtXr676Sh28upt40ppvdUFBQVJSUkhIiKenZ0BAwNix\nY//v//6v4UeoqKh4+OGHfXx82rZtu3bt2lrfvVonZ2iqHRmAC1hsNw7gAACdiIuLW7NmTX5+\nfnBwsOpamp+5Xx0AVRhjBwAAYBIEOwAAAJMg2AEAAJgEY+wAAABMghY7AAAAkyDYAQAAmATB\nDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAA\nwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQI\ndgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmMT/AwZeiGlhs7zZ\nAAAAAElFTkSuQmCC",
@@ -1148,7 +1024,16 @@
"plot without title"
]
},
- "metadata": {},
+ "metadata": {
+ "image/png": {
+ "height": 420,
+ "width": 420
+ },
+ "text/plain": {
+ "height": 420,
+ "width": 420
+ }
+ },
"output_type": "display_data"
},
{
@@ -1158,7 +1043,16 @@
"plot without title"
]
},
- "metadata": {},
+ "metadata": {
+ "image/png": {
+ "height": 420,
+ "width": 420
+ },
+ "text/plain": {
+ "height": 420,
+ "width": 420
+ }
+ },
"output_type": "display_data"
},
{
@@ -1168,7 +1062,16 @@
"plot without title"
]
},
- "metadata": {},
+ "metadata": {
+ "image/png": {
+ "height": 420,
+ "width": 420
+ },
+ "text/plain": {
+ "height": 420,
+ "width": 420
+ }
+ },
"output_type": "display_data"
},
{
@@ -1178,7 +1081,16 @@
"plot without title"
]
},
- "metadata": {},
+ "metadata": {
+ "image/png": {
+ "height": 420,
+ "width": 420
+ },
+ "text/plain": {
+ "height": 420,
+ "width": 420
+ }
+ },
"output_type": "display_data"
}
],
@@ -1188,7 +1100,7 @@
"design <- model.matrix ( ~ sex)\n",
"y <- DGEList(counts=ijc, group = sex)\n",
"y <- calcNormFactors(y, method=\"upperquartile\")\n",
- "y_voom <- voom (y, design=design, plot = TRUE)\n",
+ "y_voom <- voom (y, design=design)\n",
"Gender <- substring(sex,1,1)\n",
"plotMDS(y, labels=Gender, top=500, col=ifelse(Gender==\"m\",\"blue\",\"red\"), \n",
" gene.selection=\"common\")\n",
@@ -1211,66 +1123,15 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdaZwU9bn3/6uB2dhd2ASV9QADRhSCKHJwZQQMEmJETFyO0eOC53aDZFw5\nYDTHeJugIMYXuCKKBAIiOYgCIYIYAQVFxYVNIwEEVGZYBhjo+0H9rX9Ry6+qq6uqq6s/75cP\neqpruap6nPpy/aqqU+l0WgAAAJD/6uS6AAAAAASDYAcAAJAQBDsAAICEINgBAAAkBMEOAAAg\nIQh2AAAACUGwAwAASAiCHQAAQEIQ7AAAABKCYAcAAJAQBDsAAICEINgBAAAkBMEOAAAgIQh2\nAAAACUGwAwAASAiCHQAAQEIQ7AAAABKCYAcAAJAQBDsAAICEINgBAAAkBMEOAAAgIQh2AAAA\nCUGwAwAASAiCHQAAQEIQ7AAAABKCYAcAAJAQBDsAAICEINgBAAAkBMEOAAAgIQh2AAAACUGw\nAwAASAiCHQAAQEIQ7AAAABKCYAcAAJAQBDsAAICEINgBAAAkBMEOAAAgIQh2AAAACUGwAwAA\nSAiCHQDk3syZM1OpVCqVKi0tzXUtCTdnzhztUNerVy/XtQDBI9gBCNKUKVNSBk8//bR1nuef\nf944z5QpU6KvEwASiX+vAAjRnDlzfvWrX5kmzp07NyfFxFmPHj3++Mc/ikgy2kjbt29v3br1\n4cOH161b16VLl1yXAxSQJPwFARBbCxcu3Lt3b4MGDfQpBw4ceOONN3JYUjx17Njxtttuy3UV\ngZkxY8bhw4dzXQVQiBiKBRCKNm3aiEhNTc2CBQuM0xcvXrxnzx4Rad26dW4qQ/heeeWVXJcA\nFCiCHRCuCy64QLuSbMCAAaa3pk6dqr1VVFS0Y8cObWJVVdVDDz3Up0+fY489tri4uEWLFhUV\nFc8++6xt/8PjzM8884y2oX//938XkZkzZ5522mn169dv27btvffee+jQIRFZt27dkCFDjjnm\nmIYNGw4YMODjjz82ruGdd96ZOXPmzJkz33nnHY873rt377p164rIq6++apyujcPWrVu3Z8+e\ntgt+9tlnN954Y6dOnUpLSxs3bvzjH//48ccfr62tNc6TTqenT59eUVHRvHnzoqKixo0bn3HG\nGRMmTDDuuGmvly5deuGFF2o72K9fv4ULF7ruQkafXUYl9e/fv7a29tZbb23WrFmLFi3E+eaJ\nkPZ0y5Ytd9xxR3l5eYMGDcrKyrp161ZZWan/Emb0WZhcfPHFqVTq7bff1n7s2rVrKpXSmpGK\n3fe4OR97+txzz/Xq1atBgwbHHnvs4MGDV61alUqlFPUDeS8NIEz63QPFxcVVVVXGt4YNG6a9\nNWjQIG3KmjVrnPpYZ5555s6dO42Le595+vTp2vTu3bvPmDHDdGIbOXLkxo0bjz/+eOPEZs2a\nff/99/oaLrnkEm36JZdcot7fyZMna3P+8pe/7NOnj4gce+yxtbW1+gxaJ+/MM8+89NJLtTkn\nT56svztr1izb20LPO++8/fv367P94he/sN3xiy+++MiRI9a9XrBgQXFxsXHOunXrLly4MMDP\nzktJL730kjbxRz/60aOPPqpXkk6n//znP2s/lpSUGDcUxp4uXry4SZMm1nW2aNHiww8/zPSz\nMBk8eLB1kVtvvVW9+x43l+me3nnnnaa1lZSU3HvvvaZNA0lCsAPC9d133+mnnxkzZujT9+/f\nr1959tJLL6XT6W+//VYPau3atXvyySfnzJnzm9/8Rr+afvDgwfriGc2sh4ZWrVq1adNmyJAh\nt9xyi35qLykpGThw4AknnHDrrbeeccYZ+inwj3/8o74GH8HusssuGzNmjPZ68eLF2rvvvfee\nNmXMmDFDhw7VXuvBbuPGjWVlZdrE0aNHf/bZZytXruzfv7825a677tJme+2117QpderUmTRp\n0tq1a59++ml9x/WDbNzrtm3b9ujR46677jL23nr37h3UZ5dpSW3btj3xxBOLiop69OjRuXPn\ntEOwC2NPt27deuyxx2rT+/fvP3PmzBdffLFHjx7alM6dOx86dMj7Z2H18ccfG3u006ZNW7p0\n6caNG9W773FzGe3pu+++q08/77zz/vKXv8ydO/eiiy7SDyDBDolEsANCp6eiK6+8Up+on/wa\nNWq0d+/edDo9duxYbUrjxo23bNmizzl16lT9/LRq1SptYkYz66dDEfn5z3+uTZw1a5Y+sbS0\ndMOGDel0+sCBA507d9Ym/uQnP7Hugvdg97Of/WzFihXaa61hk06n9ai3YsUKfZ16sLvlllu0\nKeecc46+wh07djRs2FA7UFrnZuLEiYMHDx48eLC+2nQ6PWTIEG3Zq666yrrX/fr107s+eg+s\nTp06Bw8eVO+Ox8/OR0mdOnX65z//qc9sG+zC2NO77rpLm3j88cdrxafT6W+++UbPVTNnzvT+\nWdjaunWrXs+6deus+2jdfY+by2hPr7/+em1is2bN9uzZo008dOiQfpcuwQ6JRLADQqePHx13\n3HH6oOQ111yjTbz66qu1Kaeeeqo25ZprrjEuXltbe8wxx2hvjRs3zsfMxtPhihUrtIkHDx4s\nKSnRJo4YMUJfw6hRo7SJPXr08LGzxmB35MgRra3Ytm1b7d3TTjtNRFq3bn3kyBFrsOvQoYM2\n5Z577tlvoF1QJSKKwdP/+q//0uYZMGCAda/1lmE6nTZeibV582b17nj87HyUpLX6dE5DsYHv\naffu3bUp1113nXG1b7/99vz58+fPn//FF1+ks/ssvAQ70+573FxGe9q1a1dtyrXXXmvc1gMP\nPKBNJ9ghkbh5AgjdkCFDtMbDrl27li9fLiKHDx+eN2+e9u4vf/lLEUmn0/r9Cqeccopx8bp1\n6+o9hnXr1mU6s4l+Xi8qKmrWrJn2+kc/+pE+Q6tWrbQX1dXVPnbWKJVKaelt8+bNH3744ddf\nf7169WoRGTp0qPUC9nQ6vWnTJu31gw8+WGbw1ltvadP1vV64cOHQoUM7dOhQWlqqXU0/YcIE\n7S3bu0x69eqlvz755JP119o+VlVVtbU4cOCAePvs/JV03nnnuR/BoPc0nU7rvxV6ltKcddZZ\nF1100UUXXdSxY8eMPgt/jLvvb3PqPRWRzZs3ay86depkXLBbt27ZVA7EHM+xA0JXVlZ2ySWX\nTJs2TURee+21fv36LV26dOfOnSJywgknaGe4ffv26Xf/aUnCSL+iSztpZTSzUUlJiT7ipv2o\nvWjatKk+0XRBepaGDh06adIkEXnzzTfr16+vT7TOuW/fviNHjqjX9u2334rIk08+efPNN2tT\nGjRo0L59++Li4i1btmiH1KqkpKRRo0b6j9Yr9I8cOfLll1+aJqbTafH22fkoqW7dunqqVgh8\nT/ft26fHQb2za+X9s/DHtPs+Nue6p+l0ev/+/dpr/RfP9kcgYejYAVEYMWKE9kJ72MecOXO0\nH6+44oo6deqISP369fVruquqqkyL6xFNu+Mho5lz65xzztFS4+LFixctWiQiTZs21S+KN6pf\nv772eBQRGT9+vO0Qw3//93/v2bNHHyy+4oorduzY8cknn6xZs+ayyy4LaRdcPzsfJdWrV09b\nViGMPS0rK9O3u3fvXqfZPH4Wvssw7X4YmzM+OMa0p9b/ZYAkIdgBURgwYMBxxx0nIp999tnn\nn3+uhwN9LC+VSumDpGvWrDEue+jQoU8++UR7rY2ZZjRzbhUVFQ0aNEhEli5d+re//U1EBg8e\nXFRUZJ0zlUrpg4P6wJzV6tWr9+3bp70ePXq03oD87LPPfBfZtGlTa5LQY4HrZxdGSSGttk6d\nOvq4pGmk/qWXXvrtb3/729/+9vXXX/f4WQQlpM2ddNJJ2otPP/3UOF27HgBIKoIdEIWioiL9\nsW3jxo3TBv5OOeUU/R4IEdEfjTZnzpyvv/5an/7cc89pTbhUKqUPYmY0c/befffdOXPmzJkz\nx/gICY+0Mqqrq7XRNEVVFRUV2os///nPeqY5fPjwL37xi2uvvfauu+7asmWLdumbRnu0soh8\n8sknWmo0TgyK62cXUkkhrVbL2SIyZ86c3bt3a6+/++67W2655b777rvvvvu0Xycvn4XTJowX\nUDqNGptkszknZ555pvZi7ty53333nfZ6z549xjvHgQTK+HYLAL4sWbLE9H/fww8/bJzhu+++\n0x7eKyIdO3Z84oknZs2aNXr0aP1KOONtjBnN7HTHpd4mefLJJ/WJ+rX5HTp00Cf6e9yJNqW6\nulqvqrS0tLq62rRO/a7YDRs26H2pvn37/vWvf12wYIEeYbt161ZbW7tlyxZ9FO8nP/nJ2rVr\n586d27p1a/0pLY0bN37nnXe2b9/utNf//Oc/9Y9g7dq1bp9bOu322WVfku1nFNKefvnll/rV\naWecccYrr7wybdo0/VtATjrpJO3JIF4+C6fDVVtbqzdl+/XrN2PGjAULFtjuo87j5jLaU+On\n1rNnz+nTpz///PM//vGP9ctS69Sp4+XTB/ILwQ6IiP7sD/2kYnyOl0bxZRLDhg0zPTnM+8y5\nDXbpdFrvEhkfm2wNdlqpego0at26tf7gDP15H7oTTjhh06ZNJ5xwgj5lzJgxAQY7188uy5LS\nDp9RSHs6b9482xsIWrZsuWbNmow+CycDBw40LqJ97upHunjZXKZ7+h//8R+mtTVo0GDixIn6\nj4cPH1bvCJB3GIoFIpJKpYYPH67/2L9/f73lpjv11FM/+eST3/72tz/+8Y+bNGlSVFTUqlWr\nn/70p3PnzrV+4VJGM+fWT3/6U+2F6+jwpZdeunr16muvvbZdu3YlJSX169fv3r37Pffcs3bt\nWv0xLo8++ujDDz9cXl5eVlbWunXr6667buXKlW3btn3++ec7d+5cr169Nm3a6M8wC4TrZxdS\nSSGtdvDgwR999NFNN93UqVMn7aki3bp1u+uuu9auXWu8NsDLZ+Fk8uTJQ4cObdq0aWlpabt2\n7c466yzXqrLZnJMpU6Y8+uijnTt3Li4ubt68+aWXXvruu++ee+65+gyKO0iAPJVKp9O5rgEA\nAAABoGMHAACQEAQ7AACAhCDYAQAAJATBDgAAICEIdgAAAAlBsAMAAEgIgh0AAEBCEOwAAAAS\ngmAHAACQEAQ7AACAhCDYAQAAJATBDgAAICEIdgAAAAlBsAMAAEgIgh0AAEBCEOwAAAASgmAH\nAACQEAQ7AACAhCDYAQAAJATBDgAAICEIdgAAAAlBsAMAAEgIgh0AAEBCEOwAAAASgmAHAACQ\nEAQ7AACAhCDYAQAAJATBDgAAICEIdgAAAAlBsAMAAEgIgh0AAEBCEOwAAAASgmAHAACQEAQ7\nAACAhCDYAQAAJATBDgAAICEIdgAAAAlBsAMAAEiIerkuID988MEHtbW1ua4CAADEQr169U49\n9dRcV2GDYOdu1apVP/7xj3NdBQAAiJGVK1f26tUr11WYEezcHTx4UEQOHDhQXFyc61oAAECO\nHTx4sKSkRIsHccM1dgAAAAlBsAMAAEgIgh0AAEBCEOwAAAASgmAHAACQEAQ7AACAhCDYAQAA\nJATBDgAAICEIdgAAAAlBsAMAAEgIgh0AAEBCEOwAAAASgmAHAACQEAQ7AACAhCDYAQAAJATB\nDgAAICEIdgAAAAlBsAMAAEgIgh0AAEBCEOwAAAASgmAHIDOpVCqVSuW6CgCADYIdAABAQtTL\ndQEA8kw6nc51CQAAe3TsAAAAEoJgBwAAkBAEOwAAgIQg2AEAACQEwQ4AACAhCHYAAAAJQbAD\nAABICIIdAESBr+sAEAGCHQBEhGwHIGwEOwCICF/aASBsBDsAiAKpDkAECHYAAAAJQbADAABI\niHq5LgBIIP0aeUbfAABRomMHBE/Lc6Q6AEDECHZAKEh1AIDoEewAAAASgmAHAACQEAQ7AACA\nhCDYAQAAJATBDgAAICEIdgAAAAlBsAMAAEgIgh0AAEBC5P1Xih06dOjzzz+vqanp3r17SUlJ\nrssBAADImXzq2C1evPjcc89t167doEGD3n33XRFZsGBB27Ztu3fv3qtXr+bNm0+aNCnXNQIA\nAORM3nTs3nnnnYqKitra2saNGy9YsOCtt9568803L7vssiZNmlx11VU1NTVvvvnmyJEj27dv\nf9FFF+W6WAAAgBzIm47d7373u+OPP/6DDz7YvXv3tm3bevfuffnll7dr1+6zzz57/vnnX3nl\nlQ0bNrRt2/axxx7LdaUAAAC5kTfBbvny5SNHjvzRj34kIs2aNfv973//1Vdf3X777WVlZdoM\nxxxzzHXXXbdixYqclgkAAJAzeRPsdu/effLJJ+s/tm7dWkSaNWtmnKdVq1ZVVVVRVwYAABAP\neRPsjjvuuA0bNug/fv755yKyfv164zwbNmw47rjjoq4MAAAgHvIm2J177rkTJkz429/+dvDg\nwbVr1/7Xf/1X165dH3300S1btmgzrFu37sknn+zXr19u6wQAAMiVvLkrdsyYMX/961/PO+88\n7cdjjz122bJlAwcO/Ld/+7czzjijpqZm5cqV6XR69OjRua0TAAAgV/KmY9elS5fly5ePGDHi\njDPOuOaaa5YvX961a9d58+Z17959yZIl77zzzkknnTRr1qzevXvnulIAAIDcyJuOnYh07979\npZdeMk1599139+zZs3//ftONFAAAAIUmn4Kdk4YNGzZs2DDXVQAAAORY3gzFAgAAQC0JHTvN\nhg0bbrjhBhFZuHCh96V27Nhx66231tbWKubZunWriKTT6SwrBAAACFVygl11dfWiRYsyXaqk\npKRdu3aHDx9WzKM99PjQoUMlJSX+6wMAAAhZcoJdly5d1q5dm+lSjRs3fvDBB9XzPPXUUwsW\nLPBbFwAAQESSE+xKS0u7d++e6yoAAAByJlE3T+zatcv0JWMAAACFI1HB7pFHHunUqVOuqwAA\nAMiNRAU7AACAQkawAxC8VCqV6xIAoBDlzc0TvXr1cp1ny5YtEVQCQI1UBwC5kjfBbvXq1SJS\nVFSkmEf9nGEA0eBp3gCQK3kzFDt69OgGDRp89NFHNc5GjRqV6zIBAAByJm+C3QMPPNCxY8cR\nI0YcOnQo17UAAADEUd4Eu6KiomnTpn388cd33313rmsBAACIo7y5xk5Eunbtum3bNsWFdAMH\nDmzatGmUJQEAAMRHPgU7EWncuLHi3f79+/fv3z+yYgAAAGIlb4ZiAQAAoEawAwAASAiCHQAA\nQEIQ7AAAABKCYAfkDb6qCwCgRrBD3ijwWFPgu59f+LAA5ArBDvmBMyVfwJovtN9VfmMB5ESe\nPccOBSudTnOmJNvlBT4mADlExw55g/MlAABqBDsAAICEINgBAAAkBMEOKCCpVIpLFQEgwQh2\nAAAACcFdsUAB4QYUAEg2OnYAAAAJQbAD4AeX6wFADBHsACD5SOFAgSDYAfAjnU5zxV5+IdsB\nhYBgB8QCJ12EjSAOFAKCHRAXZDuEh1QHFAiCHRAXnHpjgvtCAOQvgh0QC6Q6AED2eEAxAByF\nkA0gf9GxAwAASAiCHZCXCvA6sALcZQDIFMEOyEsMFwIArLjGDshXhZbtCm1/AcAHOnYAAAAJ\nQbADAABICIIdAABAQhDsAAAAEoJgBwAAkBAEOwAAgIQg2AEAYofnUQP+EOwAAAASggcUAwBi\nh+dRA/7QsQMAAEgIgh2A4HF1FADkBMEOQMC0VEe2A4DoEewABEy7OoprpAAgegQ7AMEj1QFA\nThDsAAAAEoJgBwBJw9N9gYJFsAMAAEgIHlAMAEnDNY5AwaJjBwAAkBAEOyB2uDoKAOAPwQ6I\nF57uCwDwjWAHxAtP9wUA+EawA2KHVAcA8IdgBwAAkBAEOwAAgITI7+fYHT58+JNPPqmurj7x\nxBNPPPHEXJeDwqLd32A7bKp4K87ytGwAgC6fOnbLly+/5ZZb9B9ffPHF1q1b/+hHP+rbt+9J\nJ53Uo0ePt956K4flAQAA5FbedOyWLFlSUVFRXFw8YcKEVCo1c+bMK6+8smHDhj//+c+bNWv2\nxRdfLFq0aMCAAW+//XbPnj1zXSwKgqKzladNrzwtGwCgy5tgN3bs2KZNm7799tvaaNGvf/3r\nk08++Z133mnVqpU2w7vvvnvuueeOHTt27ty5Oa0UCBgjpAAAj/JmKPb999+/6qqrOnbsKCK7\nd+/etGnTHXfcoac6ETnjjDN++ctfLl26NHc1AgAA5FLeBLvDhw+XlZVpr0tLS1OpVJs2bUzz\ntGnTpqamJvLSgHCl0+lctev4AgwAyC95E+x69Ogxffr0ffv2iUhJScmZZ575zjvvGGc4cODA\nX/7yl86dO+eoQCCZjNkulUoR9aDGbwiQW3kT7CorK7/44ot+/fq98cYbtbW1EyZMmDZt2gsv\nvLBv375Dhw69++67gwYN+uCDD26++eZcVwokCtf2IVNkOyCH8ubmiYsvvnjy5Mm33XZbRUVF\nWVlZu3btiouLr7766muvvVZEDh8+nEql7rjjjuuvvz7XlQLJYUp1hDx4we8JkEN5E+xE5Lrr\nrvvJT34yderUhQsXfvrpp99++21JSUnDhg3btm3bt2/fq6+++vTTT891jUDAUqkUp0nkEX5d\ngdzKp2AnIi1atBg1atSoUaNyXQgQBYa0AAAZyZtr7IACRPMDAJARgh0Qa2Q7AIB3eTYUq7Bh\nw4YbbrhBRBYuXJjRgl9++eXhw4cVM+zcuTOryoCCwZdkAEBuJSfYVVdXL1q0KNOlNmzY0KlT\nJ85DAAAgAZIT7Lp06bJ27dpMl+rQocP333+v7tg999xzd9xxRxalAYWCfyMBQG4lJ9iVlpZ2\n797dx4KNGzdWz1C/fn1fFQEBYHATAOBdom6e2LVr1/r163NdBQAAQG4kKtg98sgjnTp1ynUV\nKCz+vj7V+yLpdJp2HQDAo0QFOyAvaKmucB4+XDh7CgA5R7BDkvlrp2W0uI+OmjZ/QfXhyHYA\nEI28uXmiV69ervNs2bIlgkqA7GWZ6vLrjop8qRMAEiBvgt3q1atFpKioSDFPbW1tVOUgP2QZ\nKUgkAID8kjdDsaNHj27QoMFHH31U42zUqFG5LhOIAndUAABs5U2we+CBBzp27DhixIhDhw7l\nuhbEXZaX1gEAkKfyJtgVFRVNmzbt448/vvvuu3NdCwAAQBzlzTV2ItK1a9dt27YpLqQbOHBg\n06ZNoywJ8cQwJQCgMOVTsBO3r//q379///79IysGUcqv+0ABAMiJvBmKRaHhOjkAADKVZx07\nFCx6dQAAuKJjh5iyPtEj/g08uowIHL9RADJCsEN+CPX7VTl3Is74/QTgHUOxyA9hD8WmUql0\nOu3lFg1tTtu3GC9GGPi9AuAdHTtAxPO5M7zeCcO4sEWqA5ARgh1iJFfJRj936hf2OcUszrIA\ngDgj2CEuQr2KLkAhZTu+/hUAkD2usUNcxCrWxKoYAAA8omMHAMGLf+8ZQCIR7AAgYPlyXQGA\n5CHYoeBw/ynCpg3lM6APIHoEOyRBnLNabAtDqEh1AHKCYIe8EVR6i/L+U9chOWIfACBA3BWL\nJAgwqHn58gnvXL/EQpRfZZETwR4BAECU6Ngh7vSeVsyf9Oaj95b+QRyKAQAkAMEOsRb93YX+\nklYMg5TvkmIeoAEACgQ7xFq+3F0YwzAUt3oAABEg2CHukhdQIriHN9iDFsN+JADAFsEOgAqp\nDgDyCMEOiFoMx20Voiw1zs8jBIC8QLADgpTIaBJxDE3eAQSAyPAcO+SHuD3sDWHw9xHz4D0A\n0NGxQx7Io69Uz69h1uh572jmxccNAHFDxw55IFZRid5hBDJKdXwcAKCjYwdkgDZSljx2NGOV\n1fjQAeQRgh2QAWvg4KwfkphkOz5fAPmFYAdkxhg4OOsnXkzyJQB4RLADHLle6c9ZPwxxe2RM\nQX3KcTv4ADJFsAOyUlBnfQBAzHFXLOCI0JYTHPYc4uAD+Y6OHRB3jI7FBB8EgPgj2AGB4awP\nAMgthmIBG76/pSqMxxd7WSFfq5UlLweQwwsg/ujYAUHKx3M/I4wAkBh07FBYPHa2/OUzj0uF\n0V3Lcm35mEeDxREAkAx07FDoaFaRaQAgMejYoYBYL4DTUp3thXHhXbVGkAIAhISOHQqFbWdO\ny1i2SYv4BQDIOwQ7FAqnoKYIcGQ7AEB+IdihgBDUAADJ5vUau82bN69fv37nzp27d+9u0qTJ\n8ccf37Fjx7Zt24ZZGwAAADLgEuw2btw4fvz4+fPnr1+/3vpux44dBw0adNttt7Vr1y6c8gAA\nAOCVY7DbsWNHZWXlCy+8UFtb27x58+HDh3fq1Kl58+ZNmzb9/vvvv/nmmy+++GLx4sWPP/74\npEmTrrrqqv/5n/9p1qxZlKUDAADAyD7YLVmyZPjw4bt27br88svvuOOO0047zemOwtWrV//h\nD394/vnn582bN2PGjP79+4dcMOIr7G+14luzdBwKAIAt+5snBgwY0KVLl88+++zFF188/fTT\nnZ7gmkqlTj/99BdffPHTTz/t0qXLhRdeGGapQO7x7Vvwgt8TALliH+wqKysXL17coUMHj2vp\n2LHj4sWLKysrgysM+SedTofaQwp7/Xkkjw4FEQcAomQ/FDtu3LhMV1S3bl0fSwHZi3JcMl/i\nFHKL3xMAucJXigEB4wI4I44DAESJYIe8R3QAAEDDN08g75ku4bJe1BXxZV55dAFcHHARHgAE\niGCHJHBNBrZJy0sEJHYAAPIIwQ7RsQ1JgSQnY26zNszS6bSPTeiL0H4LlVODk0gNAD4kIdhV\nVVVVVlZ++umnuS4EPmWZnDwubk0JthFQm6LNnEqlvK+cFAIAyDn3myfS6fTMmTNfeOGFr7/+\n+tChQ9YZPvrooxAKy0BVVdXDDz989tlnd+nSJbeVQM02JMXzMSUhVcUNs95xlADAB/dg9+ij\nj44ePVpE6tevX1RUFH5J9q677jqnt/bt2yciEyZMmDNnjohMmTIlurIQV6FGKOvKY5tCTAPK\n3nuQAIB85P5X/sQTT+zWrdukSZPat28fTU22vI9zBX7eeuqpp2688cbq6uqGDTki8RcAACAA\nSURBVBsGu2aEJ5pg57SVWOUnvRiuGgSAQBw8eLCkpOTtt98+66yzcl2Lmfs1dtu3bx87dmxu\nU52I3H777XXr1u3Ro8frr7/+3dE+/vhjEZk+fbr2Y27rhFEOLzvL6JkjmV4hp165fn2e9xWG\nSi9Ve0GqA4AEcw92LVq0iMOZ4A9/+MM//vEPERk4cODdd9+dSqWa/qBx48Yi0qBBA+3HXFcK\nEUNUik++CYNtwotzfopnVQCAoLgHuxEjRkydOjWCUlz16tVr5cqVv/vd75577rny8vJZs2bl\nuiK4y0mSCLYD5wP5CQCQE+7B7v7779+wYcMvfvGLBQsWrFu3br1FBFXq6tWr95vf/Gbt2rVd\nu3a99NJLhwwZ8s9//jPKAuBR+gfZryqjlOZx5mT3EQEABcv9rthGjRppL1566SXbGaJvTnTo\n0GHhwoXPPffcnXfeWV5efuedd0ZcACLm/XdMu6FBPX+mz6gDACBfuAe7ESNGFBcX16vnPmfE\nrrnmmkGDBt16661jx47NdS0IUeCPoPOR50x3v/I4OgBAPLnHNadGXRw0b9785ZdfvuqqqxYt\nWtShQ4dcl4OskJYAAMhSBn24nTt3fvHFF3v37m3UqFHnzp3jc//pwIEDBw4cmOsqkAd8D79a\nv3nMtFrrxJDEIf7GoQYAgC1P3xW7bNmyPn36NGvW7Kyzzrrwwgv79Olz7LHHXnDBBTn/MjEk\nSeC3ppoUwuNXAAAFzr1jt2LFigsuuKC2tvbss8/u3LlzWVnZ3r17P/nkk8WLF/ft23fFihWd\nO3eOoFBXGzZsuOGGG0Rk4cKF3pfatWvX7bffXlNTo5hn48aN2RaHrGV5r4O2uNNK1Ct3bVBF\n1ruKSass5wUUlJh86ADyhXuw++1vf9usWbM333yzS5cuxumrV6++6KKLxo4dG5OL8Kqrqxct\nWpTpUnXr1m3cuHFZWZlinvr162dRFwLjO9upv0rL+02yPk6xAZ6VXXuNPo4PoQEAEsY92C1f\nvvzOO+80pToROe20026++eYnn3wynMIy1qVLl7Vr12a6VNOmTSdOnKie56mnnlq6dKnfupB7\n+pe6Or0bZTFZcqo2Vs9wIS8GiMMIICPuwW737t1t2rSxfatt27bffvtt0CX5VFpa2r1791xX\ngXjRE0Y2Z0dtWX9hJcCzsnpVXh7gl+k6AQB5x/3miebNm69bt872rU8++aR58+ZBl+Tfrl27\nIv4mjGTI9Au4ciLsWytM8uKYmMQnpUX8YQEAdO7BbsCAARMmTHj11VeNf6nT6fTs2bOfeOKJ\nWD1n5JFHHunUqVOuq0BcBDsgSFhxko8hGACSyn0odsyYMf/7v/87dOjQli1blpeXN2jQQLsr\ndtu2ba1atRozZkwEVSJU5BUrjgkAIB+5d+zatm27atWqq6++ev/+/YsXL37ttdcWL1588ODB\n66677r333nO6/A6ImLVvRI8tGhznfEFjFSgEnr554sQTT3zuuefS6fS2bdv27t3bsGHDli1b\nhl2ZSa9evVzn2bJlSwSVILZy+IUQtrK/R9XjLuR8TzOVk4Lz7iiFISb3TQMIj32w27ZtW0lJ\nyTHHHKO91qenUqmGDRuaJkYT8lavXi0iRUVFinlqa2sjqCR5knHC83dbaHgU3ZFkHHDkI37r\ngMSzD3atWrWqqKh4/fXXtdfqVUTzl2L06NGTJk16//33O3bs6DRPZWXlww8/HEExiJhTEjKG\nJ/2hJPpsuT2HqR+ep5bpU1ry7mydk4Lz7igFjiMAFAL7YDd8+PAePXroryOsx9EDDzzwxhtv\njBgxYvny5eq+HTKV13/ujfkpPjui7snFp04AQMLYB7vp06fbvs6hoqKiadOm9ezZ8+67737k\nkUdyXQ5CZ8xG6oSkZbtYjcNmxJoC83RHYMWwO4CIud88sWzZsvLy8mOPPdb61ooVK/75z3/+\n7Gc/C6EwG127dt22bZviQrqBAwc2bdo0mmKgiVWc8ncSDWMX4nNMkBPkOQC54v64k379+r31\n1lu2by1duvT6668PuiSVxo0b20ZMTf/+/SsrK6OsBxLaMxQyeoiG7yduxOEBEAX+uJA4fASB\nM17oWcgfLoDoOXbs1q9fr3891+rVq0tLS00z7N+/f8aMGQcOHAixOsSe+jvprc8f8XKSc1pW\nsTl1MR43gVyJVd83KMnbIwB5wTHYzZw586677tJejxs3zmm2Sy+9NPiikERalkrkKRxZ4lcC\nAILiGOwqKyuvvvrqlStXXnLJJVdeeWV5eblphrp167Zv337IkCEhV4jc89Hfss6c5aVv6tag\nj/XrS+lfWRF9vND2MZDnGPtrjsZBvtQJAHlBdfNEq1athgwZMnjw4JtvvrlPnz7WGfbu3btr\n167ov4UCyaY401vziikYeYxopsjoOwZlkwiN15YFm+08NkcZj85eHgVoAAXC/eaJefPm2aY6\nEXn11VdPP/30oEtC7OT8AnBTBjK9m31tke2d8QttTdfXZ3kPgSmqhvSRWb+Qt5BxKADEkKfv\nit25c+f06dM3b95sfNRITU3NvHnz9uzZE1ptKAiufaOMLs7LPs14rEf9gD2Pgho/jXIp6DiA\nAGLIPdht3ry5d+/eO3bssFm4Xr377rsvhKqA/4/rlXYhfe1ESENsQd3VmyvxrxAACpx7sLv3\n3ntramomTpzYtWvX888/f8qUKW3atFmyZMnUqVOffvrpioqKCKpEgrlmhYgvY3IaFc30+1ut\nixuvgcv+5hLvmwMAFA73YLd06dKRI0eOHDmypqZGRLp169anT5+Kiorhw4eff/75c+fO7du3\nb/h1oiDYtt+Mr21vnpAfrv3SX4vnnGTMcOrFs7kMzjiaHNljXwok23ELCAAYud88sXXr1vbt\n24tInTp1ROTgwYPa9B49eowcOXLMmDGh1oeksr0M3/Tdr2JJdU4LRsN3ejBekBfIxXlGTgek\nYLMOd3gAKGTuwa5Ro0bbt28XkeLi4oYNG27cuFF/q7y8fNWqVSFWh0TI6ESriCPqt/x9iVPa\nwMfi3nl5Jl9Im0u2nN+yDQCx4um7Yv/0pz8tWbJERE455ZQnnnhCvxN28eLFJSUlodaHxDDF\nO/X5ONSzdWQdnWi2QrIx4YAAKGTuwe7uu+/etWvXqFGjROT6669ftWpVeXn5sGHDTjvttMmT\nJ1944YXhF4n8pj7RZpp+TGsLO6X5Xn9ORgMZhUTg+KUC8ov7zRO9e/detmzZihUrROSaa675\n4osvxo8fP3v27FQqNWTIkPHjx4dfJJLANttldMII6raDCNo5TvvFlf4AgFB5ekBxz549e/bs\nKSKpVOqhhx66//77t23b1qJFi7KyspDLQy5FcFul7a2mTtv1PtE7L/uY5T0TWcooCxIZETh+\nqYD8Yh/stm3bVlJScswxx2ivrTOUlpbu3r179+7dIsJ3xSZS2IMvTo+FU3x7mPoE4+NJxa77\n6LtH6DS/8VF26jk9ogUIADCyD3atWrWqqKh4/fXXtdfqVXBSSSRTBHG9SM73r4FpcWMPT3vt\n8QFy+sz+tuu0TutSEf/C+9gcaQ8ACpZ9sBs+fHiPHj301xHWg0LhdMmdqYeXUToJKcqYHn0c\nSLYLqlTSGwDAyD7YTZ8+3fY1ClB4l6DpjSXjbXfGFBVem9D7ssYwl2lTMC/kV3sveccfAILl\n/riT/v37T548+fvvv4+gGiRM6gfWiaY5jUOxYvmSiRw+mSx99BdFxCpVFNpDKPTfilwXAgDx\n5R7sli5d+p//+Z8tW7b82c9+Nnv2bP0rxQBXplRkfddpBtckF0jUM92o4ZQY9KypeIhJ4GnD\n+40d1rcyOjh59Dhf9a8TAEC8BLuvvvrqj3/84+mnnz579uxhw4a1bNnyhhtuWLp0KX9eYcv6\nDROmGWyThO2AoI/M4bFBKPnQ/lHX5jvlxHmXXUX8Zyfmz+aNc20AcsU92LVp0+a2225bvny5\nlvC6dOkyefLkf//3f2/Xrt0999yzbt26CKpEwliHaKPvG1nHWH33CEMq3sfVja5BJP5xNlZ8\n/LsipEris0UAMece7HSmhHfyySf//ve/Ly8vD6845CNTylFcUec6m7+ty9FnO2M9GT0Yz8RL\nZgrwLBtqzKXd7l2mD9CJOGnxUQIwySDY6Ro0aHDccce1adOmcePGgReEfOEj6BinuF64lk0N\nTs9SEeV5V12M6y262bC9y8SHaK5NhC2Pg+MB/gOAjxKAlaevFNN88803c+bMmTVr1uLFi2tr\na5s0aTJs2LARI0aEVxyiZHuVWzbS3h4vnNG1YqksvgEspIfP6Xkxy2evZLkGxAGfIICccw92\nW7ZsmT179qxZs5YuXXr48OGysrKhQ4deccUVgwYNKikpiaBERMnUUVMwzeB094Mx9xjHSU15\nzjjRKeJYI5RTkYqQqthBL70W26UCHESOocATf4HjSAIIlXuwO/HEE9PpdL169S688MIRI0b8\n9Kc/bdSoUQSVIWJOF6Jlv1ofK3SKUOpFvMzmuzfmb5RWvapQz/EEMgAoQO7Brm/fviNGjPj5\nz3/erFmzCApCnlIECNs2nrot5yWOKPKZa7ZzXXlQS+lMfUp1uAxpWNZf1CMaAkAecQ92S5cu\n1V5UV1d/9dVXrVu3btq0achVIWrW2OGaPCTzkdAAe0hOd9oGJex2l+uxtR7/TEsq5EBGtxJA\nwfJ0V+zf//73Xr16NW7cuHv37v/4xz+0iUOGDFm0aFGYtSGxrPdm6lOszyvRWJ97F36ZLjcw\nZnR7o+3tqE7Pgsny3lXFzcJkHQBINvdgt2LFigEDBnz++ecVFRX6xB07dqxcuXLQoEHvvfde\nmOUhIqZTfpZPzTC+a/vQE9MLJ76fP2K7eKY5zLigx6VCFVksC/B5HLlChDVKwAcKwDv3YDdu\n3LiWLVt+8sknzz33nD6xWbNmH3zwQcuWLR944IEQq0M8BPjYLb0hZ3yqnGn9irOyMRQaT1dO\nr72zLmVqIip2x7eQ8gexBgAKlnuw+8c//nHTTTe1adPGNL158+Y33njjW2+9FU5hiJQiDNlm\nL++cRl2N1/M5rT/LgKIt7jHn+bsPw4u8a5aoG67IOwR9oKC43zyxe/fuE0880fatVq1a7dmz\nJ+iSEC4f1+B7uUnTx+Xqttec2d4xYJ3fdCme9S3r4q4FB5XhvOxXlBQfDTcZAEDCuAe7li1b\nrlu3zvatt95664QTTgi6JOSA6xV1+uvAo4CxOeR9KynDE4+9byJXcl6AgvePPiYIowCg4D4U\nO2jQoEmTJr3//vvGid99990999zz7LPPDh48OLTakE8Ud316Hwy1riFtYFytWK63c12ntckX\neDhw2gUfq3LaKR9jo4o9JR4BQMK4B7uxY8c2bNjwjDPO0DLcXXfdddppp7Vq1eqhhx466aST\n7r///vCLRIxkk4cyDSVOt0oo7mnwniOzl5Prz4hiXAIIAAruwa5ly5arVq26/vrrv/zySxFZ\ns2bNmjVrGjVqdNNNN61cubJFixbhF4kghdGpcjq/mrplimVNa1Dfjmrq2GU0JpvbYOQ9hahL\nLZw0Uzh7CgCBcL/GTkSaN28+adKkJ5544ptvvqmurm7UqBF5DrqQTr2utzUYh1bVCVKfx3gT\nQ/Y3NJhGhxUx1FhqptvN7Y0XueX6q1WwRwYAnHgKdppUKtWiRQsiHWw53WBhDVJeolhGmxNv\n6ceYq/xlLNf1q7Odj20p+qC29xAk7MYC/ZMCAHhkH+z69OnjcfmDBw+a7qtAQTGlGafTsGuQ\ncnrQiaJXp7/23tfRt5LNZYJeqvL+lprr3pmOW9rD9/xmJOdJ0Utez7QD6mW1SVXguw8UAvtg\nt2rVKuOPderUOXTokPba+Ge0SZMmjRs3DrU+xJkirhmzlCgfhme8Q8Lj+cZ4csroRGV73673\nxTNas5e3slmzOvMVyABuGJ3XvEZuA2B/80StwY4dO/r06TNy5Mg1a9bs37//yJEjVVVVy5Yt\nu/zyy3v27Ll27dqIK0Z8WLtf2eQb0wzqsUsfNxYEcgel64hqlPdpOj1dJcB7RHJ+u4maj/6r\nvkeFeUdtzD9QANlzvyt21KhRrVq1mjhx4qmnnlpaWioijRo16tu378svv1xWVnbnnXeGXyTC\n5eUMZzuP6e5UjenM4Xoi8XGmsa7fdGut7Z22QW3dt4wOctwyR2xjEDHFiNwGwD3YvfbaaxUV\nFbZvnXPOOXPnzg26JOQN196V01K2l9OlLDyWYZxTX7nTlX+2q/W4ueyTYkbZKJ5BKjHIQAAS\nyT3YVVVV7dixw/atXbt2VVVVBV0Soma8WE0xj49L1D1Gk2zOr/omjBUas51xBtMi0bMmWttU\nKvGLHXGrBwBgyz3YlZeXT5gwYeXKlabpK1aseOaZZ7p06RJOYYgvY0fN35Vw1tZX2sA4m2kp\nObq9Z92EbVPNNvA5FaZ+y3u4sd1Hj8sCAOCP+3Psxo0bN3To0N69e3fs2LFdu3alpaU1NTWb\nNm1av359KpWaOHFiBFUibLHKHMZOW+rop99pvLfcbO8tcJrZtMUIxOqwAwASwD3YXXzxxUuW\nLHnwwQeXLFmyfv16bWJxcfE555xTWVnpdPkdYsI6EOllftOopaLxZn3LaRHjdC8rTB/9OA9j\nvFN09Wyv3lNs0bgt61it6S4NxRps15nR/F5k2jUEfODXDMhrnr554uyzz54/f/6RI0e2bt26\nb9++srKyli1b1quXwbdWIFfSzg+Qy4gplmXzp99aj3Ft/qo1xT7jMLH3FTrNGf15LsquYabi\nXBsAIINwVqdOndatW4dXCkKSzWnYd8ZST7cdYLXO5mUg1UuFmWYR08xpu0cBpwxfTWbbnvR9\n2G2vLDR1Or03YoNNpdGPViMCpl8SPlwgr9F1w1GcooP6b73H9GBap3WkNcsziuuZyTZQetm0\nopPnxHf6Cfa0aptKs1ybouHqRaaXByAbIfWbGa4FYsv9rtg88t13323evDnXVSSZ7bNFFDM7\n3fGQ0e2iGT3TzmMBgbDexmt611qD7RQvW8lo07aVmGrwXoDr2jwy3chMJogP779LAOIvn4Ld\nhx9+OHjw4LZt2/br12/SpEmHDx82zfDwww+3a9cuJ7Ulj/63PmUgdpnA9d/uxihjGmk1nVFM\n2/JOMb9tG8+4XR/bcrprJKhelO8sm9EmMp3faRGnUXUFYkRkQgptZEEgtvJmKPbtt98+//zz\nDxw4UL9+/X/961/Lli2bMWPG7NmzjznmmFyXlgTqcKYPwJmynb8L1zI9H6R/+MYwp2va1Bd+\nGd91vXhOfc2f7QyuxRsXtAZZ6yaiEfhGXVdIDgCACORNx+53v/vdkSNHZs+evWfPnurq6j/8\n4Q/Lly+vqKjYu3dvrkvLP65pRqcHEcVZ2fbf7qaL2DyO2zo10ow9IdtxSacKM0qTXkKbtTzj\nCGNQ2SXsdoiPlatLIrQhDGH3rYFEyptg9+GHHw4fPnzo0KGpVKqkpOT2229//fXXP/jgg8su\nu8w6Jgud7TVettOdrgmzzmN97Tq/7Tpth3fVf8oVPTnrmvXAZx3tNa7Q2sYz8liDbVWZptvw\nZHSC5GzqWwRj6IWG4wlkyn4otk+fPh6XP3jw4Pvvvx9cPY62bdvWvn1745TzzjtvypQpV111\n1R133PHYY49FUEMyWMcffSxuGpwVu0eE6K+dUp26MI/Dpk7Zy8c+eg9eXgKulxq8b9FpoNk7\n0+FSj1wDMUEzGMiUfbBbtWqV8cc6deocOnRIe208HzRp0qRx48ah1qdr0aLFmjVrTBOvvPLK\ndevW/e53v2vTps3o0aOjqSS/eOk5KSKUKZ/pPTDvp3/jkKUpDxlXaJ0oliziVJhiH61JMcrz\nhDqqeqdIxv7WqW7Kku18I4UEi+MJ+GA/FFtrsGPHjj59+owcOXLNmjX79+8/cuRIVVXVsmXL\nLr/88p49e65duzaaQocNG/baa69NnDhRj5iaBx988Oqrr/71r399++2379u3L5pikso6MGp6\nS6fHJn2E0TQIlfqBYnMem21O9Wib9j745TocHHagcVq/7aaNE4MaxjVG5JhfMJfIMc3k7ZFR\nsvfOh0T+DiMvuI/v/OpXv9qzZ88rr7xifeviiy9u2bLllClTwqntKLt27Tr99NO/+uqrCy64\n4M033zS+lU6nb7vttscff1z/MdhNP/XUUzfeeGN1dXXDhg2DXXNOmDpnGf1oWo/2wtpIM7Wp\nbH9MO3zZl7ERZe3POU0xrcd2Ni8jj4oNKTZnK8s5Tcch2HHY+Mu7gl0FskfZ/yaExOn/l0KW\nvN9hGB08eLCkpOTtt98+66yzcl2LmfvNE6+99lpFRYXtW+ecc87cuXODLsnecccd99577918\n883du3c3vZVKpR577LFZs2Z16NAhmmLyl6knp77Qzfs/N423GtguZQ1Mxj6Z7Xil/mfRuqwP\n1thk/bPrmur88dK5tG7INNH3vlsPY0bLKrYbakMiqCZlfAS1R/FsAkV/nUP8Je93GPnC/Tl2\nVVVVO3bssH1r165dVVVVQZfk6Pjjj3/iiSec3h02bNiwYcMiKyZPmfpkTuOexoFO1xUaF7RK\nOVyZpxhytZ3fWrx1Q8Z6PP5JzTTDef9LHezf9GzWFkY3Rf2LEdvGUsQC79nE+ajGuTagoLh3\n7MrLyydMmLBy5UrT9BUrVjzzzDNdunQJpzCExXRJnO2PpuRn6q65BgXbUUWnKKAOauotWk+c\nHk+l+j+mjY1GxcivODSonCbabsu3XC2uqNzYozVRf9wAgFC5d+zGjRs3dOjQ3r17d+zYsV27\ndqWlpTU1NZs2bVq/fn0qlZo4cWIEVYZqy5YtBw4cUMywc+fOyIrJrZTd1zPorC039bu2acy6\ncuNsikxg2wRSL5INdXdQUZtxrDmkHkZGfaDsx8gybTvRudFxKABEzz3YXXzxxUuWLHnwwQeX\nLFmyfv16bWJxcfE555xTWVnpdPld9DZs2HDDDTeIyMKFCzNaqmPHjl7mTNjfaNtYZmp9mTKB\nU96SDNOD96CQ0Viw0zpTRz9vz3ZO2wW9zGO7lDrbBTI8p3cZs1+Vl23RfgOAfOHpu2LPPvvs\n+fPnHzlyZOvWrfv27SsrK2vZsmW9evH6ntnq6upFixZlulSHDh2+/vprdcfu5ZdfvvfeexN5\nbjNdb6d412lxH1vUX6cNd8iapngsQNy6jOoWoGSRiqw7ooiV/jbhxOMxiXKLKBBcPQnEn3s4\nmzt3bocOHbp161anTp3WrVtHUJM/Xbp08fdQPdedOv74431VlB8Uf6k9tqzUf+hNwdHYzTLW\nIEe3/UypS32NnZetu14X6CXnOc1je5ldBOc/xSY4ASMk/GoBMed+88Tw4cPnzZsXQSlZKi0t\n7d69u/VhKFCzjSnqC9eMd1oYk5OJqZHmsUNmezuC6V1jedZbHzzuZpb3NKSP5rQ5Y2GuRbry\nvoaIT73Z7xqCFeBvnQmpDog592B39tln//3vfz9y5EgE1WRp165d+lWA8EJxbZmpwWbLGOPU\nG7ImRXXfS0tLThlRUbxYIqZpneJwqvOS89TzuDYFvW8oSx7Dbq6EXZh1/bE9FCFR/8MsG6Q6\nIP7cg92LL77YtGnTwYMHv/zyy++99956iwiq9OiRRx7p1KlTrquIo0xPbF7ii2mF1mv1bMOT\n2EVG0w0QijFf29Fhp5KcqPfO1BHMkrHmCCKdd4F3cULatYIKZEEx/o8Wq986ABFwv8auZcuW\n2ovXX3/ddgb+auSjlIcLZRT9PHH+hglrs0SxlDUOKlbopSXmZb9s15A6+pnM3vOEaURYLDtr\ne52fxzpdy85mZnUNpuID5H2d+meR5Y4X4N+oAtxlABr3YDd8+PDi4uKioiL+6ZwXbM/Hph+9\nfJQZJSRjl8s2inncotjdGGvdolOWch04FocTnm37UB8FznRtTkyp0csR9ji864PTUHiWG/IX\nWJ34TsDxF+B+hRfBYyLxOwgEyz3YTZ8+3emtvXv3VldXB1qPo169ernOs2XLlggqKQQZdUps\nW3Qa21FX29xmjFPWtp+4/XE39tsyOmWqe2zWTVinm8aRnd7Sp2SU1UzJJsoznI+t+GuwBV6G\nUXjJ2Mum1f8qSGpmBZBbWT2L7tVXXx01atS//vWvoKpRWL16tYgUFRUp5qmtrY2gkpjzeKqw\n7eEZB0atZx3vvTEvJTldHpfpQKqxDea6U9aJpq07zeZ0vWCmFFtXDEb72JAPil6m91+quIUV\n15JCysrq6BbsgQqp+Ph8jvGpBMgLnoLdzp07p0+fvnnzZmNyqqmpmTdv3p49e0Kr7SijR4+e\nNGnS+++/r/iiiMrKyocffjiaevKa916R7cy218nZRj2nsCWWmGjtdZminqmlZ1tMeKnCtono\ncaMBnibjf4aLYYU5Kcl1ozE8UDrFbzuA+HMPdps3b+7du/eOHTtsFq5X77777guhKhsPPPDA\nG2+8MWLEiOXLl6v7dvDBNb3JD3/uXf/iW88KrtFHsXXbnplxuFZvfhgvXzNlQdfNGbOpPqor\ndn07H1crOm3adeXZCCpNxjl/BCKk45+NOFSS8wIA+Ob+uJN77723pqZm4sSJ2hd2TZky5fXX\nX6+srGzduvW8efPuv//+8IsUESkqKpo2bdrHH3989913R7PFZDPe7mDNYa4Do9a8ZTvFmLec\nWnrqres/GrOaKR55vBDQuGbberI5mSkirx4T1dRNQY8JUn2cFev3svIIeN/TwLcrMTsOuS4B\noVD/nxi9WBWDoLh37JYuXTpy5MiRI0fW1NSISLdu3fr06VNRUTF8+PDzzz9/7ty5ffv2Db9O\nEZGuXbtu27ZNcSHdwIEDmzZtGk0xMZf9P/pthzsV/TOnxdN2N8mKoUnmekeC04KKGUzvej8U\ntntt7OF5p+iZ2b5l7BdmuX7rdC+XmhVykyZWVwfGpAyEh48YoXIPdlu3Yk0y3wAAIABJREFU\nbm3fvr2I1KlTR0QOHjyoTe/Ro8fIkSPHjBmzcOHCUEs0aty4seLd/v379+/fP7JiYstLRDDd\nUmBcMO18b6n633a2Gc6pBmMuUaw2rXz6iSk+elxb6oehW6dDZBsTbYOU7WG0XZWXi64UPT/1\nsl7mzHQ0PGzq4xm9HG46PpkSYYvbBx23ehAI96HYRo0abd++XUSKi4sbNmy4ceNG/a3y8vJV\nq1aFWB18MV0ipmDbhzcFKad+lffYZz15ezydm8pzWsqUJtNHE7sMYRqT1Tdku8WM/vZ5WYPp\nCOg/eukLGqsN6o+yx+OPMMRtFBhAvnMPdv369fvTn/60ZMkSETnllFOeeOIJ/U7YxYsXl5SU\nhFoffDOmBPUZ2vqWa8KwtpfU12/ZFmNqhhk3bS04bbhbwpjYnM6LtlOMrRHjemx337iJ1NF3\nVGR0Gs5tK8h2ojW7B74VV15SbKZl5GM88vGPBwBQcA92d999965du0aNGiUi119//apVq8rL\ny4cNG3baaadNnjz5wgsvDL9IqHg/n9kGOONK9EBju05TOHNas7UX5dRhcoodXvbFqTbb9pui\nctOyivOronfotC3bGbKk3hfb7QayLfX6I0tUeZre1Eh1AALkfo1d7969ly1btmLFChG55ppr\nvvjii/Hjx8+ePTuVSg0ZMmT8+PHhF4lsWRtsxrfEMpppfe1lVaal1BtNWR5ZYrtda1fPuH7b\n0VWnUp22Yl2JOuE5vaUY0MzyzG0biz1GLqtM16MWYCix/US8LOK96aVO5wCQAJ4eUNyzZ8+e\nPXuKSCqVeuihh+6///5t27a1aNGirKws5PLgzti/UWQLUSYP1/Vn3yaxhipTYst0Q6ZoaCrY\n+qM6cTq12Wzfdd1o6ug7OdTHP1Ne0qfTYcw+ZYYn7eHW1OxjqPGzCPZz8UjRvXb9QGP72QGI\nDz9fKVZaWtq2bdugK0FWvAQI41nTNdmYmmq+SzKt0HajpuK9LGjahOuorlOqU4eJtOVmW3X+\nc1q/7crV6zSVYd0L9RpsI6+XRBi4jBJJRoX5yzoFko3inOABhMo+2PXp08fj8gcPHnz//feD\nqwc+qQOEaz6zvWhMnBs/ik04bcs1nClmUw+5el+hbXgV58DktEXbU6Z+NaHxCIRxQZiPE7bx\nownjfO9ltdn3nAJvfOYk+jj98vhYykmuEjxREogD+2BneohJnTp1Dh06pL02/t/bpEkT9YPl\nEKWMxrAyugDfi0zX45SxFCt33cFMM591KcWG1IOt3i9cSx19Z666YFfqGvSgqb/2vSEvY4X+\nIktGXFuVHuUk+lgLCGnr2TTa/cn58QSgs78rttZgx44dffr0GTly5Jo1a/bv33/kyJGqqqpl\ny5ZdfvnlPXv2XLt2bcQVI1jaWd860XaGYM/cetQwnodcN2cro4aHvglF1kkfTexCoVNXz9Qj\nNK7EOoNincaJxojmZRHbPfIyW6aMH6JrAVnWEPguJC+FRJzndGnP968ACJv7405GjRrVqlWr\niRMnnnrqqaWlpSLSqFGjvn37vvzyy2VlZXfeeWf4RSIwrm0ba4hRL2LtDTjlD2slTq8Va3Bq\nCbjul+3m1COqRrbr1E9merUeT2/GtpN1/f7Ozd7PqV76mratTWvPUn0kI+D9F9Uk+5SZpTAK\n0NtmIa1fjVQHxIR7sHvttdcqKips3zrnnHPmzp0bdEnIDS/naY8nTqdTrOJkYxsaTLnHeN5y\n4mUTabtL66x9Naf9MtWj3hGnGUyHyLZhadopxX55PKphnHqd2plhy7RFlFHsy1PqY5L43Qeg\ncQ92VVVVO3bssH1r165dVVVVQZeESPkITyGVYZ3olEsUp3PT+dsUekytNSfe3/VxoKzl2TbD\nstmEkW3w8h2Ofcym4CVsuXZMA6wnAVz/ZRJZJVAohH9mIIfcg115efmECRNWrlxpmr5ixYpn\nnnmmS5cu4RSGEOl/Vkx/XHyczjP685TpnzOnOGLKRh63aHyROnq016kVZw2F1nDpY49SHkar\njR9QpucA2+Omj9BltCov8iJR5UWRoeIIAAXC/Tl248aNGzp0aO/evTt27NiuXbvS0tKamppN\nmzatX78+lUpNnDgxgirhj34uN112Y4wXxnm8j7SGWLSDtOVxKj4GAb30h5y2a5whffTdHt4L\nSHt74IjtqLF6iM2p56d96KYobLtHXlbumg697J2xEtfVkkWCFV6+h3ccf4TKPdhdfPHFS5Ys\nefDBB5csWbJ+/XptYnFx8TnnnFNZWel0+R3iyZpLjNO9ryEo1krEefTQOF1/rUcl9XpM6/TY\nm8xoXzz2Ea39TuO+2M4feJL2fV7xUow62xEsACBUnr554uyzz54/f/6RI0e2bt26b9++srKy\nli1b1qvn51srECXFRWlpu6fpWl9nmSpcF7cdC3ZaxCmMGi+bs706zdoAc6rQ+KMeUNT9OdvZ\nxC7BuHbdrFO8JCSnD1ccfgGsa7bdKX3lGY3X+0ts5LzIcKiBxMsgnNWpU6d169bhlYLwOOUG\nsUtCpuHaYLfrhXG8MvvBUzl60NnL1uXo3Vd31OTobOdUlWlO0zxBpSVF2stm5RkNsGa/OQCA\nb+7BLp1Oz5w584UXXvj666/1758w+uijj0IoDMEI43o4p3FP9ba8BDUfuUSxLafNKd7N9HBZ\nu3TG7p211WfdtHW82FSktbzs26iZzuPaOPS4WgBA2NyD3aOPPjp69GgRqV+/flFRUfglwSuP\nl+Ebu1/6CKztbPpqXbfrcaKPeRSzeQw0WV4E5nFBxcivcQanKa5dScUld6bF1RvNXpbrNF4H\nqZ4nm63EARkXQBy4B7vHHnusoqJi0qRJ7du3j6AgZMR6RrTt/biGtjAae5luwvUGCNtrAb2s\nwXo1ofEtxWV2isozOmK2bTl1qhO7D9e1pefE3y0LHv/lIG6/V17atAnIdq75NU/5++UBkCvu\nwW779u0zZ84k1eWcx9E6BdcrwHJLfV2aojdmlGks8zKCbBwAtQ2C3vfFY81eIkI0p1uPScVp\nHtvo7HFZH3IeQUg/AHLOPdi1aNGCv1YxZzyfKcbvxDlwZHnZVkj0qrzX5tR7Mx4cp4zo8bI2\n69iiKfmJw/F0vffCWK115e4778zj4rY9xSwpfi3VW0dM8IkA+cX9mydGjBgxderUCEqBmust\nBa4DXsZbE/Lij7WXPGfcEcX8TgHReig8Drx6GaNUHGqnKx2dNhpN7DamSX9btC7oe1U+5Msv\nNgCEx71jd//991966aW/+MUvrrrqqpNOOsl6/0THjh3DqQ1e2Y5UqptwXsYrY8504Zp1F0xv\nKZp/th1NpxFSp3pcxxy9rMpaiXE0M4LUEvjAaE42nRE6hXmHjwxQcA92jRo10l689NJLtjPw\nf1fOefwzl6eflOkqN9fZTNThTJGunN7Sr7SzrtMpexk/IH0e6xhl6ui7bvUNmbKp0+BmHK7c\ntxaQ85J8SFhuSNjuhI3DhXznHuxGjBhRXFzM90zEVqajhHnXnDNe3GY7XSz9rQA3appo7Kip\nQ4zt6cHUNbTO7xTOTBf5qdcczTnJdVv5cmrMlzpjxfZ3ODJ8ZICCe1xzatSJyN69e6urqwOt\nBxnz/jfOdpwxgtsmcnhnhqlJ5nS9V0YV2vbPNOqznbV3qF7QNkQ6jckquow+JOPfBr5jbsJy\nQxi7E9m1AdFL5E6hoLjfPKHw6quvnn766UGVgig5tcFC3VY2vN/XaQpMegjzfsWh60aNF+nr\nazZmL9M8aTvqzZkK1sdkFVWZNhq2LLcV5U0VsRLgjuf2GGb5m1aYnz4QAU8DrDt37pw+ffrm\nzZtra2v1iTU1NfPmzduzZ09otcEn9YVo6hliy3vNGe2dba9OkXoVXQqP/SFrc85LwVluNFjZ\nby6a30BaL7GVj3+CgHzhHuw2b97cu3fvHTt22Cxcr959990XQlXwhIt8fTMNp6rnyb4z4RQf\nrXdymMaO9UrELhEaF8y+zujlsOAcHrEAN5p3n7guh5dnaPL0fxnAC/dgd++999bU1EycOLFr\n167nn3/+lClT2rRps2TJkqlTpz799NMVFRURVAmdl+ta0oYHZBiniNvjPPKOxwakcTbTgGk2\nR8DLATR9BOp7L0wL2l6EZ61B8a56ncY127YPMz3tZXTRle9zaqYV+jiFJ/XqsVjhCAMhcQ92\nS5cuHTly5MiRI2tqakSkW7duffr0qaioGD58+Pnnnz937ty+ffuGXyf+f6mjn5dhy/SW0z2e\ngdcWDfWdEFbWrpgiJxnHYTPNvurDbntjREant7Tla81cfxNMt8hkFFmMm3CNRxmtP5tuqNOH\nktEKg9qRQNA9il7hHG1+uwqQ+80TW7du1b4otk6dOiJy8OBBbXqPHj1Gjhw5ZsyYUOuDiWuH\nxhh3kvo/s79rxn00pRQ3XhjvmTCt2Tq/cbqX4q33JXj8KF0vr3Tdlp4U/f3y2HYEA/8nhOIG\nFKeZvVfimpV9COMg5Fby9ghIDPdg16hRo+3bt4tIcXFxw4YNN27cqL9VXl6+atWqEKtDhkyt\nqUL+y+s05qiY318HVJGk9XV6uaPCNvPpU4xtJC9h1FqDYh6x/LaYMqvHPJRp9zHY8OTahAtk\nVWHwcig8/pMAMAn8fzTEn3uw69ev35/+9KclS5aIyCmnnPLEE0/od8IuXry4pKQk1PpgZf0f\nNfEtOlu2I5s61xineMv1MKYNrOu09vBcN+rKY4/KNI8pDWjvGpOiOPwDwLSSTKu1ht3IEolt\nZhVDJo4+HgUyFhZGHzEbxAUgttyD3d13371r165Ro0aJyPXXX79q1ary8vJhw4addtppkydP\nvvDCC8MvEu6snZ5C+LNrm5+8sJ3f1B7TN6E+ktaQrcgWtovI0UnRGsWctuv0ljq72C5lXJu1\n72icIcqIpviYnPKo4tgGXpLHQxHU/4mF8H80gOy53zzRu3fvZcuWrVixQkSuueaaL774Yvz4\n8bNnz06lUkOGDBk/fnz4RcKd7Uk34jNxxLLfL9szpSIiO8VlL8fZtB5rAd77Ot4btF4amep5\nTI0iY0JVdz3Vm8ihoIoxNgIj2ygAuPL0gOKePXv27NlTRFKp1EMPPXT//fdv27atRYsWZWVl\nIZcHGynD0860KbbBwhrykprwsmEckbSdwZrGjIfdexpTdNesc2qdIafx0LTbLa5eAp91E66y\n//3JaFBS0arMZivZNLNNI+8F0hcHkF/ch2KXLVv27bffGqeUlpa2bdu2rKxsxYoVs2bNCq02\n2PB9ck1Aqgt8SMv7MXHNf2Jpv1mvM3OtyhTQvWzLOjio3injZXbqedTDmuo9ivKXTTEya50Y\nVGE+YnEMJeBvAgArTzdPvPXWW7ZvLV269Prrrw+6JKiYzqmKS6OSJ8vzkFNMcd2o6xVv1gBn\nui7NNLM1G3nJmqalnPp52XBKSJmuxLakyGKE4mPlcjcdqQ5IKseh2PXr169fv157vXr16tLS\nUtMM+/fvnzFjxoEDB0KsDkqmswt/qdWsnbCU4U5J08xOl82pm3D6IKB1uDxleKqwsdmjGG+1\n1uOxyEzpZbsO8tpON5XtNEYZ0tilYoWm45PpptVDuvme7VwbtwDylGOwmzlz5l133aW9Hjdu\nnNNsl156afBFAVFRnNu8nPbUDTzTCz3bqUOhx+kZlWRaVVCJMNMa/IWhTI+AdaOmnJ2/o6hZ\nHgqTPD0IANQcg11lZeXVV1+9cuXKSy655MorrywvLzfNULdu3fbt2w8ZMiTkCuHI9Ffe+k/w\nQvtHuWl/ve++dU7Xq9CsM5uaf8ZGkfGTUoQe9fClKZ3YjuSahnTVZ+603c0ftu1G18pNNWef\nGJzabP6Sjen/EY+LxzD3FNr/0QB8UN0V26pVqyFDhgwePPjmm2/u06dPZDUhKNGfA44TOVbk\nOJEmIgdFvv/hv+8i2bprOHO6lM0awkzzy9EX21mjj+3mrOWZkpnrKKEpiKQcbpX1ONroJalY\n1+mDj2ynWCTYgJXR2oLtkAUiVsUAiCH3x53MmzdPRA4fPly3bl1tyoEDB9asWVNcXNyjRw/+\n+ZhDub3GrkSkp8iZImeKdBc5TuQ4Eb2C/SKmZ+F8L7JF5AORNT/8tyPKcn+gvjsh7Ev+FUHQ\naZTQ2k4z/ejUeDOuVtFitBbpJXG6Xg7oIxKp911dT0jokAHIO+7B7vDhw//n//yfb7755s9/\n/rOIbN68+fzzz9e+Mfbss8+eP39+w4YNQy8TBsZTZsRnnboiFSIXiPQROV2kSOQTkbdFHhfZ\nLrJL5FuRb0V2iewXEZFjRJqINBVpInKMyMkip4pcIfKgSJHIv0TeF3lD5H9FNmRdm5dzsHoG\n76kuo/st1LzcJGFdre29F6aZ1Xc5eKlHfV+C69py1VtKwIVoHndBPZu/bK29oC8I5C/3YPfI\nI49MmjTpjjvu0H4cOXLkpk2bbrrpplQq9ac//WnixImVlZUhFwmvjM2bYDPfySLXilwrcrzI\nEpH5ImNE3hWpUi71ncMgbJFIV5HTRHqL3CbyuMinIvNE/ldkmcghXxWGtOOKbenSDs/7tb38\nUdEPU7fKjBe6ud6wqff/xC5xGgu23aL6vO7xAj7Fu67yPVhYD1Ee3bGRL3UCsOUe7KZNmzZs\n2LBHH31URLZs2TJ//vxrr7120qRJIlJTU/PKK68Q7EKlGGUTyzk7kAukjIpEfiJynUiFyKci\nj4q8IPKt+3IuDol8KPKhyPMiItJVZLDIIJFbRfaJvCryjMhbIj5OL+G1M23XqSck49aNxSii\nm5V1oNa4UadkYBuzFC09p5JylTwybSx5uTAxkMICZM3Zak5XVTrN5uPdoBYBEDfuDyjevHnz\ngAEDtNcLFixIp9MjRozQfuzZs+fmzZvDKw62Uj8IdSt1RK4V+VJkqsh2kX4i3UTGB5HqrCeP\ndSL/V+Q8kWYiN4gcJ7JI5HORe0Ta+NqE+vhkdPbSL0TTW1y2ty8oKvE+m74543nduFFjAjNl\nSqfiTa+Ngc9L/LXdhO2CEfxOGrfu8UN0qiqoUp3W73T9YqYrz3INuVo5gBxyD3bG//8XLlzY\noEGDfv36aT+m0+lDh/yNm8G/jE5s/vQSWS7yuMhEkRNE/kNkeXArV5xRdou8InKxyEkiT4tc\nJbJZ5H9FfiZSN5ICbGe2Jhjfm9N7Nk53LXhcm8cUZZot1MFT35yOhmIfTcE30y3mKtNkmvYC\nSYcKZDsgkdyD3cknn6x9pdj27dtfe+21AQMGFBcXa2998MEHbdr4a6nAnZcTmwT91/k4kadE\n3hX5UqSLyEMiuwNcu2f/EvkfkS4i54psF3lB5DORm0XqZ7faTE+r/jZhHes0TrR+dqbkZ4pi\nph6bqQlnTPn+fhOsIclYg7V9qN5N6y6EwfsmbLNRgGnJY/ayzhZZg9NJ2KkRQK64B7srrrji\npZdeOuuss04//fQ9e/bceuut2vQXXnjh+eef5wHFYfPRz/CnrshNIp+LnC1yochwka8DXLsv\naZGlIv8h0lbkRZGxIl+KjBFp5neFpiOW6YnN+/zGNKZ/Uq6LWyOdol+YPvqODdtOnlOeUHTy\nnH6p9OmRxREvw82+04l1KY/7ZVsPrS8A8eF+88Ttt9/++eefv/LKK8XFxY8//nj//v216ZWV\nlZ07d9a/diwy6XR606ZNGzdurK6uFpEmTZp06tTpxBNPjLiMCKQdLrS3Du1lr4nIn0XOEBkr\nMsHvfanh2SHy3yK/F7lG5A6RX4s8J/KwyFciksmdsKY51UvZnr89hjOnUGLsfpkmGhOb6y7Y\ndqGM2cv7qK5Tz89jGLWtMNNFwtuEdS9MU4w/ejxuThuiAQYgDtyDXWlp6bPPPvvss8+apv/l\nL3/p1atXvXruawjKd9999+CDD06dOvWbb74xvXXSSSddd911o0aNKisrs102H+k9mLBPGO1E\n5omkRXqIbAp1S9nZJzJJ5CmRYSK/EflcZLLIQ5mkW+/5z/vMTot72bTthlIOXx2mT7cd1RW3\ndGKNmNaSFBE5V6nFaV8yqsd2futEa3fT+zCuKTu6lhf/FEhUBfKU/1gW8ZeMbd26tW/fvps2\nberUqdOgQYNOPvnkBg0aiEhVVdWGDRv+/ve/33///bNmzfrb3/52zDHHRFlYeLz0ZrJ3psgc\nkTUil4VzOV2w1YrIYZE/i8wUuURknMivRCaJPOz3eyxsy/OSeBT7ZerGKXbf+Pl6bNBa05ue\n/1JH37Tr1HJzyoW2e+e7b2dbQ5ZrM67EY+yw/eCMq3I6Ghn90lobsclIRYHsRSAfOgDvouu3\nZem+++77+uuvZ8yY8fOf/9z67uHDh5966qlbbrll7Nix48ePj768kNiebPSTd/aB6XKRZ0We\nF7lFpDbLdTkI6fKjtMgckbkil4mMEblB5DGR/yvyveuCmYzGmhYUS2hzWoMpGDnN7DQMqti0\nbbYzvmtcRCy/M7asY7JRsj3xKyKF0+Vxij6l91UZ38rmVzcZOSYZewEUGvebJ2Lir3/965VX\nXmmb6kSkbt26N99882WXXfaXv/wl4sLyVErkPpGpIveI3BhaqgvbEZHpIt1FbhG5QmSDyG0i\nxcpFXPOT01LWC+Zsr6PXr65T1JD+ge16nC65c+p7KVKLKfll2oUy1elxVcZjZVpcnS+Na/Be\nZzZcP6ZoyoinoHbf44cOICh5E+x27drVoUMH9Txdu3bdvn17NPXkRFB/IuuIPCPya5Gfifwh\n+9UFwfuuWWc7LPK8SBeRcSL3inws8jNfNWTUvTNFMXVKy6YMvRWnaP4ZE5ixoWvtVynCaKaF\nWd+17fy5Bko9CluzrEeK+iNOFSQYicGTXIAClzfB7oQTTvjggw/U86xevfqEE06Ipp4IKP4+\nZvmn8xGRS0T6i8z1vYofBHUmy/5kcFDkMZFOInNEpom8LRLeRaC22UsxFPj/2DvTOCuKq40/\nzcAwExZRQAUVZBkWRURRVHCMgKKCcUHRmIgaFTXgRgCDryigMZKgBkVA3OK+4xYQMSJbgEAE\nRRSUXZGAEVG2gRkY+v1wpa2p5XT1cvfz/zC/O91Vp05V9+167lPd94qoxVRvzDQUYhlJvRG1\nTOl5dW0GX1rqpbGUiUS7ludVlNMmiuajM/e1fsM1GhpWWgyTV2SNsLvgggtee+21+++/v7y8\nXN27c+fO4cOHv/3225deemnqc0sNjkCUODcDA4ALgcWRU7JZZZNspOjQ3f8BGAK0BdYDc4FX\ngCZKqmp6gRC9McvyUL4HzqmKKR+vrrqmaZmnaOCpyYjQp5bYZe3RNEX2PTHoYjTskGUgKXZJ\nGYaR0D88sWjRoo4dOwaNFa6WJSNGjJgzZ86QIUPuvvvuTp06HXHEEbVr13Zdd8eOHV999dXC\nhQvLyspKS0uHDRuWpARSD3FxdMPe2X0h8ADQF5gVITEtDvktG47w86aweFwgKNKArAV+DfwN\nGAMsB+4Div2eYA06pGJ5uq6vo0agtQa9RqEov4Q4I4SUlIwXRNzuK4KJMvaIJ4ZlYaJfKSZ0\no1GyJQYheY0yDJN9uDoS30Ws3WXi4YcfLiwsDFQlKOXl5Q8++GCHDh0KCqr8cGiNGjVOPvnk\nxx57bO/evclo99FHHwWwffv2ZAS3QXuwQhzrU4AyYEjEM8aMlJs2efFfbYR4U3IA9+mnNwKr\nAek3UkK3RfcrXBOmI2saTPvmpCOiDas2KuXjezbaI2Wl3U7XilIm2ZiGN0o07QGNhbQPF8Nk\nL4nFw7lz56Y7EQ36pdjrrrvu5ptv7ty589SpU7UFRKZOndq5c+ebb765X79+voWjUFhYOHDg\nwI8//njHjh0rVqxYtGjRokWLVq5cuWPHjvnz5/fr108SfDmGu9+PCWd0lQDvAE8BoyMkIL0Q\nd3kbaYNKW9d7HdqTMOECzlVXtQHeAl4H3gVaVW0rWDRz8nS/fMury7JuQFPTNXzhsLpFHXC1\ninj7nZghDFowBKpXR8SMpcWsQx2fGAch0E2TDMNkEfql2LFjx3bu3Pmmm27q2bNn27Zte/To\n0bVr15YtWzZo0OCAAw7YunXr5s2bV61aNWPGjPfff3/58uX169d/8cUXL7vsstQkXVRUVFJS\nkpq2MgH1ah70cnwwMBWYB9wSrXVJbbiGr1AW87SZirSiRC3gW8zEVmAQ8CTwMLAUuB/4E7BL\n1wrIsTWtHpqqqNujLMtqofWcJBPViqLQtBTiWmhFri772mjQoGSC8iOEvoT9WyOGtFJFLGv0\nDMNEhHof7tix45FHHhkzZgzxHSKHHnrorbfeOmDAgNq1aycnw/QzceLEG264Yfv27WnvozdB\nBpIFxcAMAEA3oMy6ltZIk+7xktLQCqPoqtQ3z0ABLwbGAOXAAOC95DRhE0HVXkRd8V9H+IJi\n7V7oDoRlFWmjqQumY6r1At2qN1YSjRLknmKwGYHYDWw1frzBk50ww2QOFRUVNWvWnDt3bufO\nndOdi4z/G3vfvn2LFi2aPn36ypUrN2/evG3btrp16zZo0KCkpOSMM844/vjjq1XLiEdrV69e\nff311wP44IMP7Gv9+OOPw4YN27OH+tX75cuXz5kzJ+3CLrS2mACcA5wY8Ee3CDUjzdDizG05\n90d/hCKK2KoDbLv55sqHH54EDAT+Gy6KXWKmsYKdtlM9UUJCmVpUS9pvNPULFvN3XLqBOKmS\nSlJlinpobOQywzAZQiYLO/+fFKtWrdqJJ5544oknpiCbKGzfvn369OlBa1VWVm7btm337t1E\nmbIye58rWaj+hyW9gH5AtyCqTl0s05ou3i5xu81krxYzWX20stSuC9OtJ9gOOA8/3BF4FFgG\nDAMmAJUBg2jzDFRdO5eblB8hgk2NqovX4r++a99qnoTtp+0UkX8gsUKv+JvykbaHFklJMgtV\nGR3opkOGYRgT/sLuX//611FHHXXQQQepuxYuXLh+/fqLLgr3Pf/mPNnIAAAgAElEQVQx06ZN\nm6VLlwatVb9+/WeffZYuM3HixEWLFoXNKzza6TyQ7DgYeBK4H5gdsGlVycV1C5Tp5ipfVSdt\nIW5fs2QRcDLQH7gX6Av0Az6N9o0k2iGSAppklla7+N7tp1VaIc4W4uDaRJBOVJP5FOUUSqXE\n8cbTO0CWejS0dqSVK8MwTCD8V1FLS0tnz9YLgzlz5iT7SVh7ioqK2rVr165du3QnEg/ijBL6\niv848F/gLrJMYgKj04gRujlVnYiF7e9L820oQSUwFmgLbAA+Av4EFFmENcUPOlaqAtOudYoK\nQxtBa/NIeXrZqs6ZyesSo9n0hVY/nnaxOS6BMAWUtodrVxrM5JEuVWc6r2J/4zMMkzKMjt2q\nVatWrVqVeP3xxx8XFclT3q5du1599VXt70Cki++///6HH35o2bJluhOJAXW2Dnqp7QecCZwA\nVJDFiOVOwoBBqOmfwOTbQaftfJc+Aw3Xf4HewEXAI8BFwHXAHHOS9FKmZTLqMpwWG7fPU0u+\n8SXz1dSu+onCd33QV3BrD0e8548XM65TUfzX8vNVim3F6M3Rb3CGYbIUo7B7/fXXb7/99sTr\nu+++21Ts4osvjj+psIwePfovf/kLX6QAlAAPAn8ElllX8V39TAGer2M52cSY3iTgQ2A0MBOY\nCAwFtlms/9qgVTAmCSi+1tp4UASEaaxMAk6rBX1rSRHUNLRbxF0JHyj029N+PTTKFSCER25T\nJdzNhXS06IJMfaNFXCLIVVj7MtmFUdgNHTr0yiuv/M9//nP++ef37dv3qKOOkgoUFBQ0b978\nvPPO01Zn4iWQpKgOPAfMBR4J3oSlmSQS9JJHTx5alyjovEhkLgoXSbf9AFwLvAA8BvwKuN7u\nCYMoK7BqNFMxk4qyXLKXBGW8Lmw4NRCivM38ShQIlKejewokNPafVQJFI261tA8Vum6ewL4m\nk3VQD080atTovPPO69WrV//+/U8++eSU5cREZBjQAmgPxHIdohWYSGqufVpNpsV3BVAbYQbQ\nHrgHeAd4FhgIbDVnkrC+tKaafZ5SeaItbUXo5h7vtWeVQbhdL7rT41tGbUWrXLVnEbHdN7GI\n3lhQsW4viSJalb4L4rHA2kWFx4TJOvyfir3uuuvq1KmTglRoTjjhBN8yGzZsSEEmqSeQJ3QS\ncAdwKbAxeEOB7DppBrX/XBviQhloqZFYxLRkFzAYeAN4Cvjx8MN7fvMN8ct6ppvtAkkE7f1z\nIpJik1Sjq7v5T9J2UijV7IFyKKV8bBxB+y7Hi1a5SmejlKTvwrFvW5Yp2fYheBVT74LC2oVh\ncgl/YXfppZeOGDHi6KOPTkE2BB9//DGAGjVqEGX27t2bqnQyl/HAi8Ab1uXpa7q9SgtqBdnf\nmaR6FaYb1CLqOYl5wHHAPd988w+zdWdzL5p2CyEdtDLLMqyHVmn5jjnhQWpb1K6bS9FMEeyd\nYHo7XVKbg82HEMvmUiCJWHX5wkvJDCPi/3Unp5566qxZs/bt25eCbAiGDBlSq1atzz77bLeZ\nwYMHpzfJJGF/wToLOMbv+00sIycmeLpuUpeHRDmirp+qt6AlwyjaBQxy3dOAzsBnwNlB6kom\nWTi7y1c4uvsRy6vHRXuw1JREma7W0gpK6eiYIicbU3cIrzd0kpYdDDEOSR069UgxDJOT+Au7\n559/vl69er169XrppZcWLVq0SiEFWQK45557WrZsedlll9E//5Xn3A68BHxlUdKbQtJ1rbcR\njtDNvqLg0N7HZu8yWpKw7l4BJgMTgUD3JUgGmKTAxNcmY0naRYgVbXBtGXqO12o1KXnLQfb1\nUC0zCS1KtNITEVQdk4GwIGYYEf+l2EMPPTTx4r339L+ZnppLZI0aNV544YWOHTv+3//93+jR\no1PQYuZgeVnpDJQC/S1KSgog0BJqKlH1hPovqt52hshS1a1641rideKuu7eAZ4AlwFXKj3mY\nLEMpK9O9btreucrtYo5w2xx0h0+bhv1ClXQmEHLZqfqghlP1nkLa57NJQ20x3CnqVr1DINAH\ngBwj3/rLMHmL1T12hYWFNWrUSPunlrZt227atIm4ke6cc86pV69eKlPKKG4H3vb74jp1snSq\n3oyf2J4V96xojTppCy22tDjm5x7+BRwLjAY+BB4G7gB2VdV/gTBVkQQrdKIwgbaDvr4d/I6s\nTY98z41YLheqYA16TkraN6LwZfIQPjGYrMNf2L388sspyMOSunXrEnt/+ctf/vKXv0xZMsnD\nUZ7m850m2wO9gJMMe13hwYJYjJC0oF2W9V5LC5cRF1BMdXcAvwfeAp4AzgaujHstWxtN1N/a\n9VlRmkgyRT15RD/SK0mPpJqP+q9Uy7SybHO+WZqLNiVd5ZkeU5XskncZ67IzDJN2/O+xY1KM\naM+Y7hBSGQpMB/5jjkkbOdJNKkm9ZyUKptEwdYr4V1ve6zhdeBpwDPARMA8YYfHxyEZY2EdI\n4AmRQLe7+QYXw5qacBTUxExIe+3PNG1Jk/0mVdSmISrRzDzbTYgXh9Q0px3ntK/hMAyjxd+x\n69ChQ82aNS3fw//+978jp5TvqB6DLy2AS4AzLSJHSSyT8TVmTCtx2pvVbM72H4ErgLeBR4Fz\ngL7ACrskRT2hJqOKJGm5XFtMLKy+hjAa0jpvIh+plhjc/lT0hs4kpNR/ozhzxNsknJuljoZ9\nMjaFY/TYbCx8bQ4Mw+QD/sJu06ZN27Zt27VrV+Jf8fJUXFxcUUH/xDwTEkf4QU/fi/htwEfA\nDN0u+zkgK6DX0WAxk6nCRRvHMhnHceYCTwIfA0OACdD/2ofowhIQbpOac9DFel8kdSsm4LvM\nSkQQM7RXGDaKRLvXUpbFm4llkBiDR1npDtGWKnlZLDJMxuK/FLt8+fKOHTsOGDBg8eLFu3bt\n2rdv39atW2fNmtW7d+/S0tItW7bsFUhBxvmAuDbkO2E3Bq4E7jPstf9kn71rK3Taoj42rS0i\n4EQlyp1NwLnAIOCvwLtAo6DZk0iKClWlnnY9UVxQJuSgWFiK4wUnlj61ZwutmSRZIB0UovuE\njoxLzkpZmQixaEt0IQVvt6xbZaYhjniWXruYEPCx9sVf2A0aNKhly5aPPPLIcccdV1RUBKBu\n3bqnnXbapEmTqlWrNmjQoOQnmadYzlt/AFYC7+h22V/Tg9oYGYUoZaSZzFMtkiJRVUugi4VU\n2AUeBY4DDgSWAhcJrYsZ0kFsWjTpUUfAKy/ahNq2RKVrSlLKX9KL6inqewqJeRIjIB7TuFAD\nqmmo6YVOQ3pP2ejdEKjKPhlkuEDkmT5/4GNtg7+wmzx5cmlpqXbXGWec8c47WkXBxIDNlfQg\n4HrgL+QKoGWoTL5w2yNNzFrbCUGErP2wrAROBcYCLwNPA3WrPn8qOUOWMV1l4dj3umay8WBQ\nKtIoSWpPSsamUVpEavsolbRsVHUlgyK5m+K4aTVfiPi+4jVw0gK++jhoNPGNE0vMeDGNWIhh\nzNg+MjS5MU8lG39ht23btk2bNml3/e9//9u6Vf39TCYebK47NwHfAfQX0uTJO8FeOgQNa1Ms\n0cReYCTQBTgFWAKUGiJoY1o6OoH6QjRNjxWhSGjhFciKE+dpX2kYCOJk8O24+EJMD8GlT7zC\ny4spCfc8eYPTxDsILPsyGT7hffEXdkcdddS4ceMWLFggbZ87d+5TTz3Vpk2b5CSWp4iGky/F\nwE3AaMB0b2NqLvoZdQU06QbpdeJFjJmLoRYCrXbseA+YAdwHFFZt1CaCl6fJPFNL+m6X3Cm1\ngOjV+aoiyfKUrEHaS7P0HX0LqIOjRpa20GFpd9Dm3aSq3mS8B2MMKCasfeNIhTPqzR4FbR9z\nqYNMPuP/VOyIESN69+598sknN2vWrEWLFsXFxbt27VqzZs2aNWscx3n00UdTkGWeEHTdpwdQ\nBDyj22V/6beUDnR1JwO+LtU0FaGq/hC3E3Fsxp8QQKhV6/fAZOBJoAfQd/8QSfMo3YrW7wk0\n8ZgObsSDJak6qS1xAO2z1c6ypiawf/RsFK1Uncb37aDtu338oM2ZEoiFzHnzZho8IExW4y/s\nzjvvvOnTp993332zZs1au3ZtYmNhYWG3bt1uv/32M844I8kZ5h2+873HhcD7QJlul83FOpbP\npvT8mpnYyCkT4tHxHcApQHvgceAj4I9AtQgSTWrdE0+O+UsopDwJHSa5X6qUVJWxhMlu1JqO\n9Nni5aDti1oy+pa4yK53AYInnHUdDErOd5DJE/yFHfb/VNe+ffs2btxYVlZWXFzcqFGjgoKC\nZCeXV0heDvwm/urAucDAyO1Gv5Zl8tVQtOjEUdW+lrSINpqlGhObOx/oBzwI9AJ+B2wksyUE\nljY+SN1G1PINK8bxraiOjHa11x5tLa2rZ9+ETbEUn8yqeM3kdxPDMFmB/z12+/bt+6lotWqH\nHXZYvXr1FixY8Pzzz3/99ddJzi1PsVzDKgXqApMNey3XE/NkFlGHVFo3RNUlNuIeo0CNeuUf\nB44H6gGfAr2rFrNUG561ZkrG2Q+Rj5QVlHFQ1xmJlUdtkqZ++aYnlVRTJXZF9J6JxCxzTg32\nY5iZBEo+e7vJMGmHEnazZ88+7rjjZsyY4W355z//2bJly4svvviqq65q0aLF2LFjk59hXiB9\nWLe5qF0IzAJ+MAekBWIeXjcljaKuqGonTk9USXFM/5pIfBnKOOAV4Cmgjq6MlImUqr1ZqF0Y\ntdyiHQFtTO0WcaNWIBJyjQhuktrE4IthtY2aKmYsWpGdOR2xF+6WZTKnawyTXRiF3eLFi885\n55xPPvlk48af1o527Njxm9/8pqKiYvDgwffcc8/BBx986623Llq0KFWp5gWmCUzCAc4H3jJH\nkDyY0A3lJOrI0A6Qaa/qotHsBUYApUAp8AnQ2U8U+kam/UVfop8DkhQWlaiNuCSyEo+R2oRk\ntZqWaGEYQ0vVSO+C+cQI56vZHA6tqssWAWR/stn7xAzDqBiF3f33319RUTFlypTLL788seXF\nF1/cvHnz6NGjR48ePWzYsBkzZhQUFEyYMCFVqTI/0xE4AnjbrxhfGROoU6av6+arS1zdL3HZ\n8G+gA9D82mtnAfc6TmGEWVmyx6TlVEKsqNWlOJ6ikoL7ZiLqLa1npj0WNm4cLV8Is9Amf/vI\nRLFw8YlGPd1mCp5RAshSmPqWCSeLGYbxMAq7efPm9ezZs2fPnt6Wd999t7CwsG/fvol/W7Vq\n1aNHjzlz5iQ9xzxAut75XvsuAD4CvtHt4suiiM1oEK6bq3xBiRhZasg+q52A88QTFwPXAfOA\n1lVb1FZxHIeYFEXZhKrqypRe6JPE0xyuABSVGS64Fqkhopi2opQ5EYEoQIhgbzRM7YbAXrGJ\nh9i3d1FSShkZpVYZJhsxCrtNmzYdd9xx3r+u686ZM+fkk08+4IADvI2tW7f+5hutumAi4XsJ\nvgB407yXr4lBEV0urXpzrb8rWBtZy9tAe+B/wGLg94BTtUUpiCqe1CQlj0ddcFTz8T3TbLSO\nNzKqbSZKTHUoTMFDaBSbfkljaPkRyP6IBz03tI6mGs1eJhLFpIOV4fAVjGGiQD08UafOz3d4\nL1u2bMuWLV26dJEKVFRUJCu1fMX3ylsCHG0QdtGtgryFdkw9wRQ0rGm2TrAJOBcYDNwPTAYO\nNZekVYjlCpeaD3RTvrYtrVj0lX024slXpZkiE2VEL80+smkYxe2mmPb9TRI2XcsKVccwTESM\nwu7QQw/99ttvvX+nT58OoLS0VCzz7bffigYeEx2bK++FwHLgi6obWdJpCTEm4twsVRd9O3WX\nqS2TBfjTC2ACcDzQEPgUuLBqQ1Itm5zVZUFtYZOFps3fNCBQBLGkcrQZautKXaBrEf6lLyZ3\nVsVSpYVWS76Opk3T9q17p27QVpKRDMMwycMo7Nq1azdp0qTKykoAe/bseeKJJ2rVqnX66ad7\nBSorK6dMmdK2bdsUZJnbBL0aXqg8D8ufxQlCz2QmVQfdHOnrXdF8CXQGHgVeBZ4CDiDNOeJf\nabtvVmIxT1u4VSHaMo2AJFlMfTHpSzFDGkkCaquouzwzL5AqIgQxlGdW6JFPy7uVPhCZeQEJ\nepgYhgEh7K688so1a9acccYZ48aNu+iii5YuXXrNNdcUFxcn9u7bt2/o0KHr168///zzU5Vq\nbiJds3xVSGOgkyLsVIOECY3Jy9Eqgxjb3QvcBZQCpwKfAKWGYpZyh7bHiGK+zYn6z0ZIaa04\nKJpMzJDWhWJ5wrpTN3oVLQ9cIj5hdKlphD4rtMNlmaF9K8mz60IkYxkTSU6bYXIP40+KXXTR\nRRdffPHrr78+c+ZMAB07dvzTn/7k7T3vvPOmTJnSsmXLG264IQVZ5jCqD0RzHrAR+I8hVKyp\n5QWO8Eti2gLi1C69kApoaxHtarf/GzgOeACYATwA3AmIN7F6SdqcM2oOls6uU/V31bSD4xXw\nihE+llbPmQLaWH10BJuNRCYiXh9V1SLuEtvy1SKEQ5mut3AmXzpSmVsaDwHDxIhR2FWrVu3V\nV1+dOXPmsmXLjjjiiJ49e1av/nPhww8//Oyzz3788cdr166dkjxzGftpBsCFwJsAX3tiRJ2h\nJbEizdzSkbK0iwikE2AncAPwDvAkcBbQF1gqhLWfeLSWlW8O6tmoFTSem0WIRZNEE1sJN5US\ni8KqtDK5bjYCi9ZnavJRZEHq3SnCjMxbWNsxOYBR2AFwHKdr165du3ZVd40bN66goCBpWeU7\npsmyHtAV+KtSODVZ5Tbh5EUIr05FW/5d4BjgUeA/wF3AA0Dl/sIhrCz7HERRG850VE1oSVoR\n5qhvnr7FCOPQHlWwxhKWgLaNk6fA+OohwqPB5AbU150QsKqLHfGaYpoyewE7gNlCFb4SRcTd\nD6reI+U7tibdQ/g9Yls2bAYuBvoBtwMzgeZCE0QvtCmJJU1VtDaYdFqqi9Fak88S7fqmr5rU\nOqa0+UeEdQRMWdlHs4RIRrs9xNvcJkkibMQOMgyTRkIKOyZ2bPTEBcA/gD0pzCqvsFmA8yBm\nPu0NcKEXH58D2gPlwOrata8DtK1aSg1VjIr/imegqnS1tex1avI+hPiGtdconkaEbjTiwndB\nXC3vOYimzxLJ0GGs7SR4QJhsgYVdZkFco4uAs5XnYZnoSPLL0sawXE/0/hWPLD1DqBHWA2cC\n+POfxwCTgUZEZXMcUVMG9dh8lwKDqh/iPPc1SrXOIlGRFmfaXYR+cgwPUtgPZiw+mVRSPc2i\n69EkCfGshrUdkxWwsMsIbK4XZwLVgGkpyCb/ECWX5bVbcq3EmVXcHmImUKu4rrvPdXHTTcVf\nfNEA+Ay4TNglVRQz0c7NhKrznctVCeXrXNo4apJV5nsUgnpU9o6mmLBWo8cidwIF8c4u0UkN\nHc2+Ue126fNJvgkdFrtMVsDCLiOw+Xj9K+CfQFlqEsozLO+pcgXUioTxQ3tddG5Vps/WrbsA\nDwIvFha+CjTQBXF0j/dKS660GlOllWpQqdrOXo0RXl24idO3Xd+sLJu2tGnDJWPf/aAGJBML\nPLBMtsDCLlPwmX6AnsC7AJJz308+I4mzYErL4kY0+NlaNofSa2UvcC+AhQtbAd8dcgjeeUcb\nhHBcpC32XdYaRXR1t+pvPJgcRM+I8jSWVFFMwyZVbStEkqaU7Bvy/Wzgm6G2QKa5YtKnGr4K\nMUwGwsIuO+gANAamAMi8a33uoc7Z2kVV1cfyjaydCEMcTadDh07An7/9tvL8858GDhDyJFYS\nTa2Lqkt1JQOlqgo4L6y4V41vGl6tDyoqP6JrYhyTtBLdzSS9rVRHU9spU3XX/NgEwzCMCgu7\n7KAnsATYkO408hbVmwmqn9Q4JixdkArgDqALcBLwGXBOWJtHVTZaXWvvSEEn73xz07YSlyGk\nzT+oVFINS8IWVQcQ5pH0hl2NzJYYwzBBYWGXHfTab9clSIHNEJTMySQ6WoWhulAJJBGjtZG0\n07NvK3SGiRf/dt02ZWWvApOBJwBs2yYlJpbXHiD6qIlWpahOxOpSAVHDmdKOgjiqtIa2X5YV\nD6K2lqS9pFZ8c/YdZG1WYgFLEcnkHsSZnBYyKhlGCwu7TIG4rDcAOlUVdja1mCRhKRfEYsQa\nnE1ktaEqxYqLBwG/BE4D0K4d3n9fG1kbRxJJrvKjEaKHp762aUXSTGKjRBytd6iWUROTemHT\ndxvEnMXI2oMeQocRJ0/mk13ZZh2+up9hJFjYZQT0lfFs4EdgIQCDzZPk7KwIOlPmDF7HQzg3\n9vLIN8hcoAMwZv169Ow5EagT8MSQ5Jr2aJo2mmJq/cjoIkAbQavkTEufaihV46qFVe0FwzPI\n2rpJenfk/PuOJSMy5iKfIOdPuRyAhV2asZnnegHvAZXZfxt1GpMnfKagiAt2ol2kliG2yK6b\nX3MmRBFTBgwESisruwNLgbOq6hutGBLtNO0uojkxQxG1vLYLNjJICkjITdXV8PUFQyAqeNNx\noY+X5WcA2vOzSZUg9vdg8mZ67ZtL2sswjAQLu0ynOnCW8DxsmrPJWuJdzvCNFvFIhcjTa/Ff\nwLHA28C7wBNAPV0+4Yw31dwylafLaOWXBCHEpeCq1rTXGZZ+niWWoi0KotAJ11AsulDyR5PX\nZeJcUn1rvjwyTAIWdmnGdwY6BaiTKz84kV4PP96mJUvJV+vYLMKKe0U55Zu5VGAncAvwS6AU\n+AzA5Mk2fVddN+3xkiSX6bWXuRTBpOqkOOJ237TVrNR+qelpEctoa/mOjy9R3gXSyRZCyiTj\nPRhU0cYiwtJ7MWGYTIaFXfqhL0+9gAXAFqEwX84yEHXuV3WSt1etrpakxY2vK4b9d929AOCC\nC9C3r/v995KoEhWP1xBhy0lb6OVa7y8xhZt8RFUrE6JNjWOPpWpUC1u6iVJbWuVKp6c99OKL\n1DtVUh/FQ5BGz4wvjAzjUT3dCeQ7vpfCnsCL+1/zlStj0TpbIeqq3p4W7XyvbixLRF64EFdf\n/W39+gOE5nwdRHWJM+HAmcRcYma1nOBFiSPFV7ujalxxFve2gLxr0LRRMkRNclbslymOGsEL\nHsiDVFuxcW3TS9D0Mrw7DJPVsLBLJ76X+CbAMYYvOmEyFvqwmiSUpaQL1OLPEmHRoseKil4C\n/gFg0yanUaNEAUuR56vYVFdSK3TUCOperbZTS5qiBR1DwmBTFadJvWkrmrSgfZJSHF8PNUaS\nJyXT6OoxTJ7AS7EZTS9gfeI2KSYjkRbCbHQPoSTiykpjHxYV3QWcADQBfmjU6HeAs7/RQCJD\nG9yLo9Vh2vGRlpId85eGSCVNK26mA0GsCJukqleYdgol1F2EMKJXUbVrnVpLOEkiKXpYIjde\nM2WYZMPCLp34XuN6AlMAvgqmDFWgWNaCWbXAIG6ShySwvH8/BU7Yu/c+YBwwDWgWLTghPlQT\ni/DeTI4UocnEUFo5pb3xS2sWShpL6p3Jd6RzkHZJZ0KIEyDFSihcc8kTmmITSY3PMLkBC7s0\nQ1yqioFuwLsAUvJNCgzM7ghdXn1NFEsqWl+nyv8FBaOB9kAhsBS4BSiwexTD5HiJrx3lfjWt\nz2dSANIipqU1qG3LUmQQgsy3rjYxGzvK1320JKnWV8TIycgtc65+KZCwDBMFFnZphrj8nQ5U\nA6YDyKSLWs4TdEIymXOmJcWkzsdaU0rCdd1VQFdgEDASmAtg6VKivDqN2chZ2rSDwQyzP88J\nC1BCHHPL9cHkOaypMcPCKQ/tMfKNIxnVURKgSeobh2FyCRZ2mUsv4EOgTNjC17VMRpR06oqe\nvVYIpyxNmswU2QUmAkcDG4E97dvf6zjF1i4XsUCp9dJMqRLTv2iAaceQgFBvISpaHo5ky5pk\nEy5haf2aLpl1Y2KCJSaT4bCwy1x6Vl2HZTIcV1nGDW3P+LYilSdmTVpwfOO6FwKXAVcDnwCn\nkdXVXaZ2aROOXkiFbiSJ1iU97SjLwV4ZR3cbn+r8aZdKkyRKLC0xQribxp9Qw0SLaiu+R8FU\nK1uuWimQm7kkapmsgIVdmjG94Y8Cmu0XdsiqC2V+Irl06vESJYJphTRJicGsURKvJwFHAbOB\nDwH3uuvqCSmZpA+h9qSGXAGppJiGozwYq21aytz0r2kctL6p1AptItKteEGiH01RtsZoidl8\nABA3+gaktTIdP+3YDy/DZBEs7DKUXsByYC0Avu5kA74mk+887etjecWC6kLa0kvwI3Ad0B3A\nzJnLgV+bQxEJmzYSoQi1pwYkOm6Sj6LaRlV5DWGETa2oFmC8+ModbYaBqoMcQ/rEyHmrSXvO\nJKmVpDbBMCIs7DKUXlXtunSmwligGkiSpPDw/vU9rMmbU01NzwKKV6x4DHgamApg7Vq1ikmA\nqppJW9iUjzosJhknTZOWiscRHrl1lMdv3areJOFH2nRHxVchqQVMakAbSquSCfPMMm0pvg0R\nRUzOS0mGSQEs7DKRukBn/sGJrIWQPqK9BMMsKKkWqYxp1gw6HapyM7FlNzAc6AAUA2jXzh01\nqoZhgVLVc+JrrfgQ9YevAlCXSrWWpxpE61DaqA21m9KRksIGVSGhVYuNWtIeI9+6Nnu9Mc9n\nb48mz7vPZBos7NKJ6VrQHdgN/AtAntl12Xt9VCdIG8vKpr/aMiHOCkmEqRajWOYLoCtwdVkZ\nRo+uaN++M3lDm6i3tEJBK7O0Isk0IOJ20VcTTTi1IZNuVpWlY/7pC22vA52opmHRZmXKQR0u\nqbpW8sZy9YgrTsS2MuHikPYEGMYGFnZpg7hGnAV8COxJZTaZQW6oWFFwwG5CCtTxcDOcby1R\nnAFwgb8DB3///XOffjqvWrXHgIPMtRIE0i5iVkRiRExVymgrWlqDXhqSWDSVt4ksVaHL09LN\nF8lAtYnvq6Gl+L6t2+SZPG3key7F1Yq6MZXal2F8yXpht2fPns8//3zRokXl5eXpziUYxIXg\nbGBaKlPJJHLp+hhutqOn1YjzlqXE8Yp9B1wBdN2371TgC8AJs1gAACAASURBVOBK/Pwjs2pA\nrTMHP+fMNzeppGi5iRtt9JZTFW15eyFu6eGFmPW1g2MvVYl8okif6O9NWov7tm6TQLIvINl4\ngWKjMd/IJmH34Ycfdu3atVmzZj179lywYAGAadOmHXnkke3atTvhhBMOPvjg8ePHpzvHYGiv\nEW2BpsB75gJMbqDVQOK/oY++VkVpG7XJzXXdmUAHYAwwHpgJHC0UI5Sc2Ki9BpL+mnD3L+ZK\nGsu1/j0xEdGrk5IR/7VxxQK1q8YPmmTo+Kbmkmo++Q5ghpONmUcR00yWkjXCbv78+WedddbM\nmTO3bNkybdq07t27z58//5JLLikoKLjiiisSLwYMGPDee++lO9OonAWs4C86ySG0M5m4Nmcq\nYHP03arAMPdEOZES4qkC+DPwizVrtgMfA+4f/4idO00Necn79kJrTUmh1CYkiaMdRikHsZYH\nsXgXdAqXVKz9gFsWpqdnrcImzjrL3MKlmrI4EpkpGdN+Dbf5mMTkGFkj7O67774GDRosWbJk\n69atmzZt6tSp069//etmzZp9+eWXzzzzzCuvvLJ69eojjzzyoYceSnemUTl7v10HfjfmFtLy\nH8wznGlK1haTwsY+a4omHJo1Oxe4FMCLL6JtW/f11y0jiKnaT8BESS+U2lmb+IRlGEJni94h\nXcbUqG/FDJ+ek6TVcoO0j0zGnjZMksgaYTdv3rwBAwa0b98eQMOGDf/6179+/fXXAwcOLC4u\nThQ48MADr7322oULF6Y1zWCob/hi4DTg/bRkw6QWyZqC7vprWizzXnt1VcPG1GjQq7w4Zyde\nvOG6+OIL/Pa3FRdf/B7QSikvNaed9SU9Kvpn9uJP9ORMBSStprYraiZ7v03NUGxL0txEQPvD\nQXwYIMY5CjYuYCrjZCl51VkmE6ie7gRs2bp1a9OmTb1/DzvsMAANGzYUyzRq1Gjbtm2pzixW\nfgk4wIx0p8EkA0nJeZOxtEWsop2nCRFjU0YrHz33S+uBmRpqAzwCfFmz5r3l5X8GynTFLN1H\nLw1tMXGsiKzEtrzumLaI6ZmCm44LnbmaDMzj4DvrR9FSXmKhDT8bJ5KOnHa/Kr2wqmNST9Y4\ndvXr11+9erX374oVKwCsWrVKLLN69er69eunOrOwaK93ZwOz90+QfEXIScSJUOtjaWsFOhlo\nIaIahKKeMzl/WjfoC6C76+KZZ+447LDPgQvJVH2XMgnnUrXZbEJpi9lo5RBvPckUlDbGaKcR\n3Sd22Yh1kxEYIkkpSMQISNVXmTBMbpA1wq5r165jx46dMWNGRUXF0qVLb7rpprZt2z7wwAMb\nNmxIFFi+fPmECRNKS0vTm6c92uudeIMdk/N4s77q3qnF1H8lT8umLdNGGxdQqvKzNr300rob\nNrwGvJz4mp4vvqAzgXLXnXa7lLO0xKkNaBJtvlaftoPQKRtxdVV16QhtquLlnAy9ImpKWp0j\nyQ/zIg5tF9pxZJg8JGuE3fDhw/fs2dOtW7eaNWu2b99+w4YNkyZNchynVatW3bp169y5c/v2\n7bdt2zZkyJB0ZxqeI4HWLOzyAEk6QKcJ1DnMV4R5aOdvJ8hTC0TCXhyxie3AbcCxQI8ePdC+\n/WigTtWKJnmkJkmkYaoltiLqP1PJQPKLaNdUGGbpaR8kkNiiy/uGkkRz0P7GK0xN0VjVMYwl\nWSPs2rRpM2/evMsuu+ykk0666qqr5s2b17Zt28mTJ7dr127mzJnz589v0qTJpEmTOnXqlO5M\nw3M2sB5Ynu40mKQiiSTTIqOjPAipGkv0VKfuTbRFSx+1rskJE8Mmyn8BYNq03nv2DD7yyC+B\nywEoNqTN9Kx6eFplabL91L64yjebOIZ7DX0FqNYJ83JWt/giHXSbKhLavni7tIYoEcq3rWT4\ni75ppKZdhskNsubhCQDt2rV78cUXpS0LFizYsWPHrl27pAcpMh/1OnU2MDUtqTDJRJ3ytaia\ngBYrvpGlGV3UNFC8Kym4Tc6mCG8Cv1i3rmzEiMdGjJhXrVpHYJEQ00Y6iK9piSnpRULi2GRO\nVDfFl7Y4Vb8w2TIfNWC4WtIWKXkbQiQvfRQJ0WUiZmYSSx8ZJnlkjWNHULt27RxQdYVAN/6i\nkzzDZKqpe+mFNl8/w94CEW1Cr4yXCSGJxAi7AGfEiLbABmAh8ARwqGEuNImYoD6ll6pky0W0\neURTUM2HEE9BjUmpuXBJErsCDQWRAzH+0t/QBDpP0gXbh0wmk02OXZLYtm1bZWUlUaCsrIzY\nGw7Ve+gMFAH/jL0lJt3QHo90Jqj/msLGMrW45i86sffYTIXXuS6Abo4zBvgSGOQ4NYA9ul5I\nBmRChYgxCTGhTd6+7+K/pibUjYR3SAeUylu6uXQcWhlr2/V1fG0sYal8aMfO9/gGipYapA8e\nWrs0MzNn8oHcEXarV6++/vrrAXzwwQeBapWUlARacYgF7TrsfMD7Fj6+KOQkhEmm/qu6ZVrf\niEZaV9XKEXu7xaRmtLLG23g8cD1wN3AdMBB4V5j+pUbVZU3LnqoR7MdKlJK+TWgPljZ/bXpe\nGVEJRVzas8w8UBVtLRrR67WH1u6ZSRalyuQnuSPstm/fPn369KC1WrRosW7dur179xJlXnrp\npWHDhiXbez8LeA0AXzVymhDGUsSKHqmcO6WG9rqu4zgvAyOBdwD07OkuW+aVVFWR5GjSrZjW\nhekR85ViUhlRJtJV7AdZ298Q+FbXOsS+HZHKJ+nkIUy+rLgSZm/mTA6TO8KuTZs2S5cuDVGx\nSZMmdIEGDRqEyigAjYBjgWsAsI2f6/jOptplHShTYFAry7dKoMiO7ktPpL1Su1uAm4BHgQen\nTu06deoEYCTwvZ9IMpl5UAbKc7/UHklhLZdNpUVeG20tjqHWefVaj1EwSUn6lrdZMFX3Ju+D\nAV/r+JrPxEvuCLuioqJ27dqlOwtbpEniLOB/wMdpTIjJGFRBQ9hL2pXWcPaeaeXXlAxICWha\ndHYc5yzgXOCBxPehPPKIu2ePU6OGTXXtdvUeO9NatihGbfy8RGFTGZOtKHl7QVfPCf1ETP9B\nV3VDCEHfYpbZhhMx2bVWyzDpJfuEneu6a9euXbNmzfbt2wEccMABJSUlRxxxRLrzCoZ0oTwL\nmAZ41y2+hOUn2hmUnghNM64aKuj0rFUklhFUmeUt/yU2TgbeB8ofeAB33okJE9ypU51zztE2\nYeq4qqsIx1ESW8RQmPSoqaS98qNXnMWYJoVqaiX6LXraZKRWYoyGgELNRoJbhspMsj1/JtPI\nJmH3ww8/3Hvvvc8999z//vc/aVeTJk2uvfbawYMHFxcXpyW3KBQAZwI37/+X3+T5jDTrE7d2\nmbw6tYAXQd1oKmaDzcKxKebPta64YkLDhv3OOWcq0M5xPvN7NNXUKSJ/e79Tk54QxJOPtCiR\nMiRknBpfPeg2ESybMNWKjs0YmkxfG/iSyDCByBpht3Hjxi5duqxdu7akpKRnz55NmzatVasW\ngG3btq1evXrWrFl33XXXpEmTZsyYceCBB6Y72WCcABzIX3QSN7mxdqPaXTb6wHutLQA/1RUI\nU4t0fGnjI8ADwGfVq09wnIbAd4ZiCHtYtZKOKO/o7hEUl1bVRV6bsFITUCSpakOGcKTUhWZa\njAZawyXyF9M2tSJ5q+EQm86B9zjDxE7WCLs777zzm2++efXVV/v06aPuraysnDhx4o033jhy\n5MgxY8akPr0o9AAWCZMZExe5oe2guHcJtL5OYob2DahafV5Dvgu4aq1A46zVHMuAc4Cz9u59\nEFgJ3As8DJQbqmj9MJAKVVWfJpdL6ydJokS8oU2NoN1ig/YoB10FlhZzpV1aFy36e8QyQoxv\nxgx5X+fGQjCTe2TNL09MmTKlb9++WlUHoKCgoH///pdccskbb7yR4sRCIF12zwQCf00LY0GO\nXXC9pTrtv5aSjo6vRtZ6Zr5SD4bBV5c+xVrTgGOBA8aP/2vDhsuASwBHZ8xoex3OcKILeBAJ\neFukw0GHVbdr1zG1hWkx4VZFW9dUi0iPqBKUGE9U34aitMIw2UvWCLvvv/++RYsWdJm2bdt+\n++23qcknCuKFqQ5wsvBLYjmmRdJIbo+kKDjEWVyrP4gXUkwpuAlC5YgSgW5CG3kv4PTvX++7\n714DngHmAp0VC8pU19l/m5o0FCYJIuo2cYs2uC9qXacqUnlTVontpv6qViudszQaotEoxQnU\nNV9EwZ1GgZXspkOrW4ZJKlkj7Bo3brxkyRK6zMcff9y4cePU5BMXXYEKYG6602CyFGmeluZs\ncV6XjC4IKoHw50yNqhsJSRd0/tsKDAWK1q075bLL/gW85jju6tW+tVS56YkkVWD55kOIYElV\na3eZmhCNMXq0Hd3Ni9IWe+Hi2xaqqsbkEehkSI2355sDm39MdpE1wu6CCy547bXX7r///vLy\ncnXvzp07hw8f/vbbb1966aWpzy0o4mXiTGAmUJG+ZJisw8ZO06oZtaKNwvBNRm1LCigpBnW6\n1U/2TZs6L710CtAIKG/R4n5AfSpK9bfU9KTy6msxc9Hz80UrYdVikt5VFTaUA0F4aaJm9c1W\n7BeRDCFPQUox08ibPlEQqOdhJqi61MDakYmXrLm7/Mcff+zevfvixYvr1KnTqVOnI444onbt\n2q7r7tix46uvvlq4cGFZWVlpaem7775bu3bteJueOHHiDTfcsH379rgii+/hL4AJwEMAsupK\nxETEifBghzRVi/8SE22UmcPVPfFAvNY2Z6plw0XA6y1bYsuWQVu2PAKUG36Ew1cPBS3pKjcF\naltUQ2nVGx3Z0T2KqzatQjhtpuTVRrUH0aZdKEeWrhWoF1HeJllEarxSJl4qKipq1qw5d+7c\nzp07pzsXmax5KrZevXrz588fN27cs88+O3PmzMrKSm9XjRo1OnbsePXVV1999dUFBQVpTDIo\nTYHWwAfpToNJMREdsnBho2g7SYuoIkbcbmpI3EhkopVcr7suKipuqVnzTmAA8GvHcfftUxOw\n6YX3WruQCjsxYdJ5UnxUHRNH94Umlv9KYS0hHEQxbdrAI4I7ysPCNhXVjyImYy9PtE6edJNJ\nGVkj7AAUFhYOHDhw4MCBu3fvXr9+feKXJ+rWrdukSZPCwsJ0ZxeGM4ENwOfpTiNPyJyPxTZC\nxGSBqDMo3SNRUkT07Wi5ppV9IVrU6gMvyDPA7cDTwMJq1TrNnu2cdpqkRUzOk0mMai031cci\nDEKbjkhjIvUr0Dmpjo9puGzkqSkxS7xRsl9yZRgm2WSTsPMoKioqKSlJdxYxcCZ/L3G+EmUW\n1C7CinstvTG6iaCrutq11xBNa0N5/Oi6juOMB/4EdDr99LeAoxxnedV7yETpI223aYLO3Hc8\nfRd5aWhNFnRIfRWeyaILurQayEq0/1iSFrSGYppzShX51t9cJWsensg9qgHdhS86QfIfzs9z\nsstUcPdjKiCdLVpdFc4c8iZ77axvL+ASTiFROMThSAiIr4ErAHz0US3gU+BRoLHzM2LTwmZH\n7ZGv5aZuFCOo6kddfqUDmg6xdm2XTlXsPqp2TU0j9kuN13HfLmuxTylo8nxRZfIQFnZp43jg\nQL7BjgmLqPxUL8pyDVQrLCQxZKootZg8TMrSOf74M1y3+tSppwArgZFAbUMVNZq3MC0pIRsl\nrS2jjiQxLIQ6IXSevfSxKUbj+7lCKkxkkkZpRSdAHAJRqWfRp8Ho5Ft/cxUWdmmjB7BE+CUx\nfkcxEVHFlvbmJ63+IJbkLBdeLZE0KCGSvF3aYj8r2rPPPg4YANx1xBGrgN8DbkWFGCdQzvZS\nQJWG2lbsHUovlOmQmVwxKSXTWEnFtNlGRBoTS3UonoHSdnuP05SPNjIyQHRmHckwepkkwcIu\nbYg32LGkY0zYrMqZZjuT8aCdRAn9F8v5GSiIJKFUt8wRHgfZBzwD/GL9+r8BfwZWFBb2Eeqr\n8k5ctSTUUiyftULbbF5KWuuUDhvIcAq0BioOXYoJ16h4wmgPcdS0GCbzYGGXHmoBnQVhxx+G\nGC0RV5GIWl5Jeh0tRkzTqkl0EgvB2pi7gFGuW2/z5snAc8B8ALNmSWEJ/aQNLtmZqkrQumsi\n4hYieV/UZOzrSs2JkpHOhB4cU0NBBTHxsURyFmM8J2NR7XlFXJ9zeKZLASzs0sPpQCXwr3Sn\nwWQ4WrcJ5lvc1Oum5LKIJpDUVmquuVpdYuqCOp1LGarRnAYNBgFtgJP69kW3bvjVr/DZZ2oV\nbVbalCQxpz0E4l5TZHGvevgI8adutHTvtCOpTd4GVyFohNCYNHQgWMkx+QMLu/RwJjAH2L3/\nX77oMPb4ej9aG8kUjTD/xDJaeeFtNMUXXSu10aA2jKkV1Xn6CnCee67Dvn3vTZ5cecwxTztO\nU8Mjrgm0ORDvyqDbTcG1IyAJRK0cDNq0uFc9N1zdzYLg6xITN3xGpQYWdqkmcfU8k7/ohAmO\nelkUDRiTOoGizAg1o42mijNJCtgv2Kkihu4gDf3GWQKcA/QAjga+BO4HDhJuzvN1wrSJEYfA\nJI+kCGqL3napuuqQmXxBKR/V4iJ6Devrj3i4U3nJkjoSommiCh0wxT1lmFhgYZdqXNc9HDiK\nv5qYiQPVNqPVifeanszULaGnN9GUCv15XaurLFcVPwROAq4ABpWUrAaGArUCPi6gdkTaq5a0\nGS6TSSYW0O7VWm5SFa3np0ZzdQ+maHOLrm+0xmS4oQvRLhE2oofE4g/sTWQYLOxSjeM4ZwAb\ngaXCRnanmVjQGhuq+IO1xpIm+6BV1Kx8myAKaGdQmxnFBV4D8Pnn9caPvwVYAVznODXMj5Jo\njTRxozS26qiG1q++3RGtOzE9taRWsYVGDKK1LSUpSacUWgeE+GxAHxE6WuiPInmFr3RmUgwL\nuzTQA5gO8NUi28nYT+oxZuVU/SY8dWJWVSOtvXyVmSpHCMNJfE0sNf4Up7DQ6d+/JXDYPfeM\nTnyymjQJdguyrvBLZTaCyeRFSdu9hKU+hhYT4iBI46Omp+bsG1wbxP58U91lkzKOF1NMsQup\n1Jo5RpQPM0wyYGGXatzKyu68DsvEhyQgPGzmcpifx/StKBaQXphyoFET9rZLCsl74SWvFRla\nZbMTwLBhB3z33VSg/OKLF1ar1k0nubTdEfdqjUZirAIZmVo5KNUNLYZMoXyVtBhBK/G16Ykb\niX8DEUWHSYROI8YccgBWdRkFC7tUc3xBQUNgerrTYKKTIZ/UtfZMiMR8q9BhtbsCzXymwkQQ\nXylpTLhBgz8ArYHlwIfVqr0HHKeEpaWJVkeq/qWaj6qkYz+RxKwIQa+WNylXLVIXtBpU2php\nYshXHGdUtvlJpp0zWQELu1TTA1gGbEh3GkwuYSMLXGHJT7GorBbUtAUk5yaoQLEs71aFSExK\nku7UV8BVwDH79lUAi6tVexFoWbWu1BwxAlq7ixaC2hlL7aap1wQRlaJvdVWY0oW127VOZFwZ\nxghhwWbC5zqGUWFhl2p+AMZX3cJXBybTICYt+nS1mad9pRJRTLKUpGRMqo7Oeanrngdg9uwj\ngM+B8YD73/9KzVmuThISM9zb3LeWqo2kLd4oedvVcfPVKDbixqS8ReGrbZruIJ2VmpjNGRjI\nPuTrc3phAR2C6ulOIO94LN0JMHmFNK3Cz2FK2FReGVU0iBN5OLtF1Fv2EbQ6SeyLNpSr+245\nranmnHoqgF7A5PbtdzZufC/wfz/8gHr1tE6kpwykYSR6pGo+ta6avFqAGL3QK1YmwSfGtFTJ\nYkXfkkmasOmmLZV6ApYUTDbCwo5h8gutpBNnO3UuhyAjPOWnKq3QwkJL0Giu8uCqb0qqIpzs\nuti374aCgrsBtGiBoUPdsjIUF0vaSx0NKWfaSiR2qSLPdxxoD8ykGtXgtB4KocKlwTEFDC2e\nwpnK4nnCMDkJL8WmGb6+MEnFciFDXEQLtDAneoFBiS4ExVRVJ0ZatCUWCsVQTkHB80Cz8nKM\nHPntbbdt+MUv8Nhj7p49YhWtV2fqGuHP2dh72rS9XeoWcflYq9F944gRxAL2i2LaDw82TUfH\n8mwPHZ9e+GaYTICFHcPkHZI0cXXfJyLu1ao3T5poDTypmM3GoF3wOiK1rl20lfbSugoACgtx\n440tgUeBrddfj6OPdl9+uZousjpQMMg4SYY6up/5EmNqR1U187R913aNNuSIMbERoNJ2sctS\nr6WSqgy1Rz36SUUdcIbJQHgplmHyFxuB5bteFkjS0VW8ipZrqaaKNjmoKamybLvrOo4zAdh8\n3nn43e8+As7RLZWqrRAunbZpCGPim7Oap1pAHUCTwiYkoI1xq3bftN3UegiVn661VDXhtKTB\nMDTs2DFMHiEaRdq90gsaQlhYBiFcQPs0TJFVK1Htu3Y1E1WfIf0ewOjRWLny+H79/gHMBLr4\n2YTajaoVqs1clGKSgqQNKqlfWs9MjaYGCbTeqh1AUxB1u9bvpLsp6mCiLV/CWX2s5JjMh4Ud\nwzDyMqI0Z/su4RFuED13aqWPqSE1OBHZFE0SDdqVQb3td9hheOyx6l9++S0wB3gHOEaQj6gq\nNaTqHiYtRSdJdNBXXIbGJgFfS89ePBEHS9uopL8ZhvFgYccweQRtb/g6eWJJb5c6uTrk45A2\nqHV99ZAkRm0UjxRBLCbqsCrVW7W6xHVPBGoAn1ar9rzjtFAepFAzj0V8qIJb26h0aEwlLY0u\nS3GpLaZmqz2sXnXvha8PF4ttpnqE0WNmOzwIuQELu3TCrj6TRgJNZonC0iRNVPd22Zzkod8I\noqcoSgTVa9TaaY7uVi1fxeM4zmLgHOCX+/Y1B74A0L+/u2GD6iGpw6VqMq0sUx0+9S8U5URn\nLtX1RRq6QPabGoRIQJRx3hiKu+j4fBWNi6BnCJOxsLBjGOYntDpDMjbEqdfXWbFvN3oVURJp\nt3jSRJuzb1/UwZkNdHbd3sCnEyagpAR//ONBVUM5hude1Ya04kb12yTBJxYQ/5Vei6MhDZ00\nOKYhpQfE8hzQRpNGBnHIi3ACNNBpnHqHL5ywDgR9uJksgoUdwzAUpukkSVaKfS1TYqqsURWS\no3s+Q7TH1CpqnokIk4HjgN+Wla36619XA3cA2LFDrSgKMjWIb0+127VaTdqrKieYxZN2SKWE\nTTnYhLLUf2nx4ULLptQovNSoLlZ1uQELu7TBbyEmvZh8I8uKjoBaQBRJpiDa7fQ06SsjJKEG\nRVpZNqQWUB01b3ul674ItAWGAr8H0KIFHn4Y5eVibloXjeiL2JbJ9oNBt4mFTW2ZBsf+ukSf\nLYGGOl5SoAslmzOV2o5hfGFhxzAMhTSd2CwJiXLBe6HGCZdAOMRM6DI2iWmNqz2uOxEoATBk\nCO655+uiIvfJJ7XfFBrIpVMLS+PvVL2tUBtKiqZ1xbQaxRPxvgnTvQgRIbSFFo4oHnPQiinu\nGpNvsLBjGOYnTPONyc7xndI8zUHPZPTqW+gpUDKNVElqPyWLmk/0adSYuwBnyJADNm/+O4Bb\nb93Tps0lgLtvX+i0TQ2h6sjQB04bX6vhLE04GjVV37rSqFo2FDv2rfsOF8OkC/7lCYZhNHeh\nYb8gE19IG8UqxNKbaaZ0q34DnDZalDleTd6UsFRYWyXQottW1wXQ0HGGfvHFK0VF6NjxHGCq\nOU9POIoCmhg3qa4pW9PqqqXhJ+VD4BieL6ZbkTYSZ1SK0XYnUAEaloNMUmHHLj3wG5vJQEwO\nhEl4JeyNQKaX6V/LWsn2ckwLoCbhItk24r+O42wGBgNH7N6NE098t0YN99RT3VmzYHhqlRCO\nprES5aDNeAYyLFX/THUNTa+lyIRHqL5Orw1mOYwpyIRhQsPCLtWwe89kIOpM7Fk14mtvL3SK\nRLtcaGrFVxTS0exlIpFPIGGqJuAY8AokIn8DOI89hmXL0KQJunadCnSsmps4vLSGo2WumAN9\nnfG9Ckkqzbekb0C6XxkF0ZcoJ0yeQ18ZmHhhYccwjD+mxUFiFpS0iNYMC32td5RvSyZysAkl\niU61rm+qWl/q58gtW+KFF/DJJ2eff/5/gNeBoy0CutpfvzC060uIT5Vaue8bUKvybQxCbRyb\njalB+mzDBIIHLWWwsGMYJgBaL0cSRqrJJ9a1cYPCzdxqNK2aNO2yXFhUq6vzvVGOHHMM3nrr\nFKAe8CngXnGFu2aNWIVQqK7yFTNe01qnsEq7AZEOqBgt3unZNOaZSeZnmLGwqkslLOwYhgkA\nLRpUNaBKEHUv0QSBVjzZFDYlaapiI7Yg9FSspfXb/u263V23YPp0rFhR0bz5BMc53GJR1ca0\nE3UerUIkgajmLJVUh4XAFTDFgaJl1eOuFZchfEeGyStY2DEMY4u95LLRFkR1tUVXR4gMVVvR\nZJURTdBKi/btfv6nWzfMn38RcAqwErgfaGDRC6LvKk7VH9igjwitbsUEbJq2QbR1A51acSUQ\nlOiaUvy0wP4fkyRY2DEMEwatwojiwNGoHpKlENEWsNedUh9NfSGKiQPlVv1qEsdxJgPHA78D\nzgW+q1PHvesubN1qGka1dd+SkienZiW5faaG1H7ZI7m2NgFzUvfYnJy512sm9bCwYxgmEtJa\npCM8i5BAVVFaDaTdGHQRMCiE4tE2auqFZVtad3Cf674CtAMwZgyeeQbNm7ujRtVSlnpNqLJJ\nEnP2edrI9KCYzMJwnm4gzyzTRJIq9xOvo9jbDKPCwo5hmHiIYueoEUyvTRZUoDRU3aZuEQWr\nVl962+kW1Q5qvbG9AK6+uuZXX924ZcvGoUN3HHLILY5TZL7XzdSWmB5d2DJmRHyNRm0OcS16\natVkiFBxjZK2U95ZEb3XvrB8zAdY2DEMEwZR1tCreNIW9V+1liSG1NmIkALE6qTogaktSg6K\nGsTUuuRZqk2LAb0ktQqsAhgHtAQwaNBdwArAffxxd88eU9Nac1E7YlCOjnZUpZGPS2cQgiZJ\nSBo6EKn3z5Kt50RY2+U8LOwYhokKMVWY5kitktMaAQVmBQAAIABJREFUY2IV1WATdwVSezZb\nUNVdo3sh2nuO3Y9xqQIx8aIMcG67rf7WrU8B2/r1Q9u2lztOtarFiIG19OrE8iYLzbH7WQs6\nJSjH14spyXoik0CYpHY4qWo5AlkhmFJgCjJph4UdwzBhkDSTdmqXJnLVXiIMJNWIUh0p1e0z\nvYYguWwKi5GJJrQ5iNmKIs8RgJmfO37AASOB5gAuumhi4nvvXn/dqToUar/UMTe1ou4lOiLl\nr20RfkI2tKSgRyx2UUWrn2zRcPbkWHcYFnYMw0TCfrY2yRrtvELIBcLUEQVfMBVlsKbUCFrl\nqupUU0PSFm16YuHvAYwaVWvTpqNvuaX84ov3HX98z/1lCHPOpiNEd+hQagFPAZta8TWKPAUs\naWhXeOLEXn+oHyTsCafbstcJS6+qY02ZDFjYMQwTAyZzizaB1CBSFZv5UtU32rlZTUbSjvSM\nbtrlK+nUfEJIHBxyiPPQQyXA44sXT6lRw+3cGTNmgFQwWl2r1cHia6lp7dFUdbb99BxCNmWa\nYMpeDacljd1hVZckWNgxDBMVy4lBFW1SAUn9eJ6WSRV5WsSmddos9F3sM+1ylR+fsMRRfqPW\nl/VAP9fF8uXPzZtX2a3bh47TxdqS9BqStBqUA0E4nd4uU9qhTTK6YiqVR1brtnB2Y7rI6qHO\nZFjYMQyTLHzXMUOYZBHnrUAqkHAWQydg719KyXh1nZYtrwCOATYD/wKmAFi0CIYnZE2tazuo\n1XlqAjBIcKJTIaxQNXPTsFvqgwwXPRmeHpNFsLBjGCYS4oQUVKip7pEqCMKpKJMZprZIB9Fu\nNK1m+saU+qgdK8IME6ssBy5xXeeTT3r+6lfo1Am9e2PpUgTsoJiGqOpUW1SNaaNHxRdeK1JW\n8Xo2Ga6Nkq3e2ANjwMKOYZiIEEpCmma0MzrhD3n/hkvMdxK1XMS02aXKHanj6rKyukgahmOP\nxTvvYP587NyJDh3wm9/gyy99V3ilVWCpsLfYKuapdketIjYhdlksZiocpu+6fhF7Q49zCF+Z\nYdIICzuGYaJCqDfTYp+qhIgJ0hUQt0gFAmWoDaU6Vb4OFtGc2Ee1lo0TZuqU3N9OnTBt2mn7\n9s186SUcfTSuugpr1ohNS66qmoOaobjLrfpkCSF04nWkgkYzDVfytJdoRtrAjhqTAljYMQwT\nG4TZpmoLYmU20Ayt9c8keUQrGFNYz7syiR7TFklL0XiFRTnoVRcVraN8JZ4YZA7QFcC0aVix\nAm3a4Prr8fXX2n4R46w9ZFGEEd1cRLSnkO/BChRf1PcqMfaINR8TFyzsGIaJGW8qlRbjtL6X\nNJlJS3jqcp5XXZpxTYLSNwGpXVMBS1SHj0br2xFNm3b93G737pg3D2++iY8+QqtW7o03uhs2\nJHqnlZuqhwpBTYp7TXapNpNYMDVEyE11V/R8fM1gFmRBSZ6HyiDbhV1lZeXSpUvnzZu3fv36\ndOfCMIzxkQWQvppUS/X21NfhcjOpSalRsYpJ90hpq12QCmvz0aZHJClmpY5zlX979cJHH+Gl\nlzB79q7DDsOgQfjf/2jR6bmGVFgDnnDUxkTVAYxFCWlTFfOR/g0t06VQ9kYsY4IHMNlkk7Cb\nN2/ejTfe6P37/PPPH3bYYe3bt+/SpUuTJk06dOgwe/bsNKbHMIwKMfuq5gqtrkxB7Fc8ta/V\n5qQX6i5HeVbX64vqh5na0tqKtKpT9ZN2Cdj7BxdeWPDpp1cBmDoVzZvj9tvdzZvpNDRx7BC1\nOBEzrkndNSxJ+55v9rD+sCfQkWWDM9lkjbCbOXNm165dn3nmmcQ58frrr/ft23fnzp19+vTp\n37//mWeeuXTp0h49eixatCjdmTIM44Pk3yReiJpGdb/oaUMrBwNlQntO2nlL2kjnoO2yL2LT\nalvSdq3NuQ94Fai+fPkVO3euHDVqe4MG9zjOQVVj2kzJhFwTO6VaZVpzNERDUljfhCPWMunU\nWOxGqaFsUZCx63ImSVRPdwK2jBw5sl69enPnzk2cWLfddlvTpk3nz5/fqFGjRIEFCxZ07dp1\n5MiR77zzTlozZRjGCu16mSSGVG+MiGbvlolIekj8V2vLaWu5wrKyKrB8JZ2aqhhNu8Ir1nL2\nr0uqWYl1n92z5+oaNe4EbgL+Bhyw/7kQwpvUtksPiEnJeR4bXSDQsqm9PgiqJFh5BIKHK6PI\nGsdu8eLFV1xxRcuWLQFs3bp17dq1f/jDHzxVB+Ckk066/PLL58yZk74cGYaxwjRzE3pCdb8k\niyi0l+AJDvs81ZREaaIW0Io2UzQ1rL1TQviCruuievW/A80qKupNnHgNsBbAqFG1yWdTxLA2\nk7dvqq7fb/KqmaeXQBZdCE8rdgswSWSLrcggi4RdZWVlcXFx4nVRUZHjOIcffrhU5vDDD9+9\ne3fKU2MYJgChF/60859T9at0RS1lqR4IlSkpSN8J2Hdx1isgBRcrmuQsBE9L6rJaTAwry8rC\nQlx3XZPdu+8CMHbsGmAwgLIybXeIvkDQxI7yhcbafEykS9xoT5IQCiaLllNDI/qpOd/ZbCdr\nhF2HDh1efvnlsrIyADVr1jzllFPmz58vFigvL3/jjTdat26dpgQZhrGCnsVVr8imbmK7pDC0\nxdTmCEWiVhR1HjG9qYpQ7BfhEdpnokWr5KAISgBOUdEjrotVqxr+7W+jDz3021q1BgLFhlYs\nU5X6ZUomZTIuhASJKFnojxbJ0EOplFkhjhqrwLSQNcJu6NChK1euLC0tff/99/fu3Tt27NgX\nXnjh2WefLSsr27Nnz4IFC3r27LlkyZL+/funO1OGYaJiP4VotZpNBMkhs2zRm6hU9SlGkDSc\nGl8Mopaxce+kfLRoB6dK8OJi3HorVq8eDdwOrAIwdizKy33jqHulyL5un7Yvpu1JEgeE2Unk\nYxPH2+69Vk+bLCWcLmeFl0qyRtide+65jz/++JdffnnWWWfVrVu3b9++hYWFV155Zd26dYuL\ni08++eQZM2b84Q9/6NevX7ozZRiGwleLaBWSqbAYU1rcNBWGTorR2RKzshhKnfO0Ek2NT+eg\n+kCqchINOamn6kYxcwD4xS/ud93mwFgAd9+Nli0xfrxbXu6SX62ihpIaCjf9m5ozddkUxyG/\n6E5bXs3ERouYMlElo7oxOimzP7X4nr2Z7M7mMFkj7ABce+21q1evHj169GmnnbZz584tW7bU\nrFmzXr16HTp0uPnmmz/66KMHHniADy3D5BKSyDN5Qqa6qsjwNkoTrSiMxCa0/o1YV81E1Xa+\nxpvahJSttr8RL3dS9e2ue5/rYs2aYd98s2XAAJSU3OA4hVVLenLHVzdrpZ7YNC2GpBEzDZq9\n1CMwZRK7KLGPlhUTWaAk0ytA842s+bqTBIcccsjgwYMHDx6c7kQYhglJoOu7p7foAr5VHIuv\nTRG1nSQsVDtHG03SGUSLqqCU/jXNmpLS1W43FfAdTACoU+deYCyw9ZprHh0z5tEDDsATT7gV\nFU5hIVVL164b5NtqoEhDWi5rW7QsrK0YWnYkSa8EGrrUE33c4sXemrUvnL1kk2PHMEz+IH3E\nJywi+jKtNYHULZKBF1SOiHaR1rtSm6YlqeTVEYZHCC/Ed3rbBuCuu7BmDa68EoMHo3Xrq4Hq\nfjftaVsh/DA6SV81742PFzDEhJ0MZy4WkppS9IVL+3GL3hYvswaFhR3DMJmLOHkn8K7yqjrx\nnQCkODCYXvSarzif0T6ZKR+tpKNbVCPDQh65AmJ5qafqsPxEvXoYMQJr1+K3v32ybt09LVrg\n6aexd6+pF9rctKMahSSphIySDoH8J8Z+HDJTxMdORpu9gVi9evX1118P4IMPPrCvtW3btrvu\numvXrl1EmeXLl8+ZM2f79u21a9eOmiXDMAGR7BnxhbTkZ1qEFf+1cQHt10OJAsRalbhLzdym\nopqqWMD3qi4loO2RvGvLlnvr178ZqNOyJYYNq3HVVXtJXatN3pRYoAUyraCXTg+iPHGSZNds\nSJwn2UXEwU/XOFRUVNSsWXPu3LmdO3dOZbs2ZNk9dgTbt2+fPn160Frl5eXffffdnj17iDKJ\n06V69dwZK4bJHHwnWmllU3oh/qvae4kP6NpLP204QSdxiLpa3aktLKUktajuVXtELHGKcYi9\npl3QdfYnDjpoGPA3YHOfPrjxxj0lJbjzTlRWoqBAjWCKTLRrkzkRRxpDIhohl21azxwCqeq0\nk7zE3IC3cuYDuTMcu3fvXrVqFYB27drFG3nevHldunQpLy8vDHL7MMMwlqjXZV+1Z3oNRQZJ\n1b3tvsud4nZ1I5Ez3ZCalbYJbetaX02qQjdHEMD52LwZDzyARx5B48YYNgy/+Y0q70IQr/Vi\nH810wiSVKFqEEEkpE3ZBG8pYxRmaTHbscuceu6Kionbt2sWu6hiGSTZaWyX0HCC5erS/5e7H\npmnVCtLesOUbwUvJpOpUqxL7NaJ4B5skEMWAanWaYHdrNWiA++7D2rW48EL074+jjsJzz6Gy\nMkAEHWqnIkYL2m4qVR2CjrkdqexFoIZMiZlueWSikH3CznXdNWvWfPDBB2+++eabb7754Ycf\nrl+/Pt1JMQyTdMS5wfTa2wLlMQttRW+7OMGo66SEqWbaLrVCT2yq+UcIRxppFdtm9vWa04pF\nY7UGDTBqFNas+UneHX00nn9elXeBuhDvHK/tfiYoCa1wD1Q97dZX9ATSfhRymGwSdj/88MPg\nwYMPPfTQFi1anHnmmb179+7du3f37t2bNGnStGnTe+65h34GgmGYnETSYZKnJZoxkjNnmuO1\nakDdQs9Moi0nVhGTURvSWkeJLbTEVDUZkZuYj6h9tbV8QjVs+JO8O/98/P73OOooVd5ZigA6\nhxh1gKXYTXsOOYy4UJ7nQ5EMsuYeu40bN3bp0mXt2rUlJSVdunRp2rRprVq1AGzbtm316tWz\nZs3673//e+yxx86YMePAAw+Mt2m+x45hMhbp3h31Vh7LG5IkV8/GqBNxdc/kEjG1mUgBQ5QB\n2V9TQLGbdEWpisx33/3l4IMHALVbtZLuvQualWphWlaPhUzIIYsINzKqUZ2MVpJHJt9jlzVP\net55553ffPPNq6++2qdPH3VvZWXlxIkTb7zxxpEjR44ZMyb16TEMkwnYX/cjzhOu4clWy3bp\nprVKyyW/QkVKzFG+Dkat6CrPefgm79JPIDZsOBS4H/gusTj7pz/hjjvwm98g8lcKpHg61zaX\nOZIiiyDeZSHGkw+BJVmzFDtlypS+fftqVR2AgoKC/v37X3LJJW+88UaKE2MYJgOR1mRhWEoj\nloQkDSTtsrTxiLupQq/rhbBGwjXkVReXlU198Ub7O9fFqFFYuxa9e2PAALRti2eecffssUyb\n1+ayjtQcMj4r7MkaYff999+3aNGCLtO2bdtvv/02NfkwDJNsbO5qoicVIgK91qmqOrEhy5iE\nElKbsIzvO71Jt/ERdcWSsVBltBs0cEaNarhjB/r0wU03oU0b/P3vIL8x1BiKyTDsDw3L9LSQ\nNcKucePGS5Ysoct8/PHHjRs3Tk0+DMNkMloHTp1jRDNP1FXSMquHuDBKOHymlKA4iNIcGU6k\nimUgzLuSZ2kq75u2Km2JMuLGzQD+/GesXYtf/xq33oo2bfDkk/byLgSsCFMDPcjavXxoUkbW\nCLsLLrjgtddeu//++8vLy9W9O3fuHD58+Ntvv33ppZemPjeGYZJB9I/7vprGdNeaSz4zK+3V\ntkLcXaS18aRoUnViRiTuk6MHUPIIo0+66qD9FL9+ffzpT1i79p41azBoEFq1wmOP1SSbS57T\nkyHyIhNyiAL9CQTZ38GsJmueiv3xxx+7d+++ePHiOnXqdOrU6Ygjjqhdu7brujt27Pjqq68W\nLlxYVlZWWlr67rvvxv6LrvxULMPkGCY9J8opQpkRe73tNspM3SttETMR/9UWs0FMT6xlGhA1\nebotWs4COBDYMnw4Hnro6x9/HAWM370bNWvaVPfdaw9xp2BqJkR6tLMR9WzPma6Z4KdiY6Be\nvXrz588fN27cs88+O3PmzErhe5Jq1KjRsWPHq6+++uqrry6I45dtGIbJc2zu7aOraGUTEU2a\nC2mB5QhfKSwaJEQtNR9pZdm0fEZ3yn49OtHElkSBgQOfqFdv/EEHoaQEf/wjrrkGRUWmipbx\n7aHdphQokpwXPSE6GJdqZ5BFjp3I7t27169fv337dgB169Zt0qRJUr00duwYJnsJPWEQC6aE\npURLq3BWjaN8d4nWaDRFNnmHvirQvqTNdjVbd+tWjB2Lv/1tw/ffjwbGlJWhuNhUKwXkg8+U\nRlJjx6YMduxipqioqKSkJN1ZMAyTCzhVf7BVNLHoWlC0GvFsgfhCeg7DF1HMiRpOfDZCstZM\nK8Jqv3wnVN9OSaF8w1bRpnfcgZtvHlu37h0AmjfH4MG44QbUqmWKkNTpP4tURe7Bgx8jWfPw\nBMMwTAjo2/BNi6T0kxNR8gnUorMf3zjufnwfDhALqCXFDqpSMi6qjGGdOqNct+GOHRg0CKNH\no1kz/OUv2LHDvnXfMsSY8D3+lkR/6CR5D8QwEizsGIbJXyQdE8hF8+5y863oTYqSx2Y5WXrx\ntTqMruKbEhEkKNJQBAtbqxYGD8batbjjDjz8MI48Evfee4B1bcksDCRBWNtZwrIsW2BhxzAM\nIxPFXSCEQtCYUhqelFRbJFaE1X9VLesImAoHEk8hR6+4GLfcgtWrMXIkJk788cAD3eHDsWUL\nUcMhv2bZy5PwMlmv2MCjlEWwsGMYJl9IhjfjWXGiJ6eVR6pvJ0awnDi195yZEnOU7zQh9J8N\nlgNIr337BykqwoABWLUKo0bhmWfQrBnuuAObN8MwkoQYjZJqCOxdWIZJHizsGIbJC7QiwLKi\n/R1aJlNNLaMWDiQyvLqELnTtftMWwioqkUPoZWsa4/AWFuK667BiBcaMwauvolkzDBmC/T8a\naVoH14q8kKvDwbE5+gyTbFjYMQyTF/gKF0S4Q1yrHqRo2gSiiABL+Ui7eqFbDxHTvrmfh65G\nDfzud/jiC0yYgClT0KwZbr3V/eYbIr6pldToLVZ1TNphYccwDFMF+6W9iMaVtIwbDm0O4r1l\n4l5tyeg5qNFMqWo3+o6hU706Lr8cn32Gp5/GjBlo0QL9++Orr7ShWFoxeQ4LO4ZhmJ8Id9uZ\nVsf43jmnaqBk36Gl3m8XSAbZ5Oa7FmnZolesSqPVquGSS/DJJ3jlFSxciJISXHMNVq2yzJ9h\n8gQWdgzDMD8TwvKxLC/pNrcq2vKB0pBSCtSLGI2u0HHEwVFXscVyOP98fPQR3noLy5ejTRtc\nfjmWLVNrZSAZnl5Qcqw7OQMLO4ZhGA2WKiHEKi2xUkk/ChAj4fRrxHVnS8PPttGePTFvHqZN\nw4YNOOYY9OnTIXRyQQh6p6BUPsfEUI51JzdgYccwDJMKVNEWQuhEwd7QSov1Jd0LaNv37t0x\nYwZmzcKOHR87jnvuuViwIFkp7ifQ4MT4uEwGkmPdyQ1Y2DEMw2hI0m343q1jliVtkHRYZq5I\nJvexhlNPxdSpWLgQBQU45RSceSZmzUpSU1E6kmMyKMe6kzOwsGMYhkkd4sOqplvrkiTL7BWJ\n1ZOqycnTNyy194QT8NZbWLIEDRqgWzeUlmLatNgzzCUy8zMAExEWdgzDMHGSysnS9J0mybNS\n4vpWlHBxrGodcwxeegnLlqFFC5x7Lk48EW+/jXR4S5n/3SsZnh4TDhZ2DMMwSUR9wJOeTYOq\ngbhEZKA78JDMpWoibIBGW7fG009j5UqccAIuvRTHHouXXkJlZWyJ5gqs7XIPFnYMwzBxkmyf\nJpBMjB2xxdCaMsa0fe4vPPJITJiANWtwxhno1w9t2+Kpp7BnTyxNM0xmwsKOYRgmidAiRtVG\n2u/IkMoTikqtbv+9LSGcwuQtOse5ot24MR58EOvWoU8f/OEPaNkSjzyC3bvjCc4wGQYLO4Zh\nmPSg1UYu+eMN9F6bAkQmgVAbUgVl0JhqXZtvhLG9v7BBA9x7L9atw3XX4e670awZRo/G9u2h\nk7SEH1BgUgwLO4ZhmDTgTfbab+UlKvqKNvWL02x0XmhtR0SLslarbSIGkVSvHu64A2vX4rbb\nMGbMlrp1MWIEtmyJFJNhMgkWdgzDMGkjc25dj/79JqKCFL/PJZwUS+7tg7VqYeBArFnzf8Ca\nkSNx5JEYMgQbNyajqcx/NpbJMVjYMQzDpIEQ8732hry4kokljgnPwIuYcMwiqWbNiUDzPXsw\nbhzefRfNm2PAAKxbF1t8hkkHLOwYhmECQD/cEChI0Cq+W5KaTGhRlcmWleu6qF4dffti6VK8\n8AIWLECrVrjqKnzxRbpTY5iQsLBjGIYJQLinE6KQEF5Bb8UjQsWUV2AyWeGhWjX07o2PPsI7\n72DtWhx9NPr0weLF6U6LYQLDwo5hGCYY0dUJIXEIRzCEttOGUp/DzVy9lXrOPhuzZmHWLJSV\n4YQTcM45mD073TkxTABY2DEMw2Q09o+10t9+hyQbjVn3vR5UtqeeiilTsHgx6tZF164oLcXU\nqfH+Lll2jRWTRbCwYxiGySDE50mTES2W4PaeYtAIpjKxq0arL2Tp0AGvvIJly1BSggsuwPHH\n49VXY/ldsmR/vTOTz7CwYxiGyQWS9ztd9gmEaCholbgIIKBbt8ZTT2HlSpSW4ne/Q9u2ePJJ\nVFSkqHWGCQgLO4ZhGCYY0UWJTXX1i/GitBiVJk3w8MNYuxZ9+mDQILRogTFjsHNnOlNiGB0s\n7BiGYZgqpEZFpV+rheDgg3Hvvfj6awwYgFGjcOSRuPtu/uEKJqNgYccwDMMwQahbF0OHYu1a\njBiBv//9px+u+O9/050WwwAs7BiGYRgmDMXFGDAAK1Zg3DhMnYrmzXH99Vi1Kt1pMfkOCzuG\nYZh8hB/JjIcaNX764YpXXsGSJWjTBpddhiVL0p0Wk7+wsGMYhslTWNvFhuPg/PPx73/j/ffx\n/fc47jj06oU5c9KdFpOPsLBjGIbJPqJ/r1tWPruQ+XTrhvffx3/+g+JinH76T190zOPMpBAW\ndgzDMFkJy7LMpWNHvP46li1D69bo3RsdOuDFF7F3b7rTYvICFnYMwzBZBi+hZgetW+PJJ7F6\nNbp3x/XXo1UrjB+PXbvSnRaT47CwYxiGyTLYq8smDj8cDz6Idetw5ZUYPhzNmuG++7B1a7rT\nYnIWFnYMwzDZB2u7LKN+fQwfjnXrMHQoJkxAkyb44x+xcWO602JyEBZ2DMMwDJMSatXCrbdi\n9Wo89BD+8Q80a8ZffcfEDgs7hmEYhkkhNWrgqqvw2Wd4+WV8+inatMGll2Lx4nSnxeQILOwY\nhmEYJuVUq4YLLsD8+fjgA2zbhhNOQI8e+PDDdKfFZD0s7BiGYRgmfZx+OqZOxeLFqF8fPXqg\nUydMmoR9+9KdFpOtsLBjGIZhmHTToQNeegkrVuCEE3D55TjqKDzxBMrL050Wk32wsGMYhmGY\nzKB5c4wfj3XrcNFFGDIEzZtj9Ghs25butJhsgoUdwzAMw2QShxyCe+/F119j4EA89BCaNMHt\nt2PTpnSnxWQHLOwYhmEYJvOoUweDB2PNGjzwAN56C82a4YYb+LtRGF9Y2DEMwzBMplJYiGuu\nweef48UXsWQJ2rTBJZdg0aJ0p8VkLizsGIZhGCazqVYNF16I+fPx4YfYuRMnnogzzsA//5nu\ntJhMhIUdwzAMw2QJp52GKVOwZAkaNUKvXjj+eLz8Mior050Wk0GwsGMYhmGYrOKYY/Dcc1i5\nEqWluPZatGqF8eOxa1e602IyAhZ2DMMwDJOFNG2Khx7CV1/hyisxYgSaNsU992DLlnSnxaQZ\nFnYMwzAMk7XUr4+77sK6dRg+HH//O5o0+f/27j2sqfMAA/gXSYJE7gIqF4OIRRQFAgr4YEWw\nKugERR0yiiKsgoiAoNS6iuhq8cFWEdHOqVBxQ8pTq6vKWKmVybxQvDAvoFwj1uAlgoKIkJD9\ncdosDRCxRc/p4f39Nb6cnLw5zI+35zs5IbGxRCymOxbQBsUOAADgN04gINHR5PZtsn8/OXuW\n2NqSkBBSXk53LKABih0AAAArcLkkKIhcvkxOnSL37xNnZ+LrS06fpjsWvFEodgAAAOzyzjvk\nm29IWRkxNCQzZ5JJk0h+Pj48O0Cg2AEAALCRSERyc8nt28TNjSxbRuzsyN69+PAs66HYAQAA\nsJeNDdm9m4jFJCSEbNxIrK3Jli1EKqU7FrwuKHYAAABsZ2JCNm0iYjH58EOSlUWEQrJ6Namv\npzsW9D8u3QF+A/h8PiFEW1ub7iAAAAC/lhYhCwnxzsiQZWTkE3KG7jy/XVQ9YBqOQqGgO8Nv\nQHl5uUwmozvFazF58uSkpKRx48bRHYShoqKili9fPmnSJLqDMFRiYuLcuXO9vLzoDsJQycnJ\nbm5ufn5+dAdhqG3bttnY2CxatIjuIAyVkZFhYGAQGhpKdxCGysrK4nA427Zto+XVuVyuo6Mj\nLS+tGc7Y9Qkzf3n9ZcaMGd7e3nSnYKi4uLi33347MDCQ7iAMlZKS4u7uHhISQncQhkpPTxeJ\nRDg+vTl06NCECRNwfHrzj3/8w8zMDMenN2fPnm1tbXVxcaE7CLPgGjsAAAAAlkCxAwAAAGAJ\nFDsAAAAAlkCxAwAAAGAJFDsAAAAAlkCxAwAAAGAJFDsAAAAAlkCxAwAAAGAJFDsAAAAAlkCx\nG+j4fD4zv+2OIXB8NMPx0QzHRzM+n8/j8ehOwVz4/49mOD49wnfFDnR1dXXW1tYcDofuIAwl\nFostLS21tLToDsJQDQ0Nw4cPx9/m3ty7d8/Y2Hjw4MF0B2GoBw8eCAQCXV1duoMwlFQq5XK5\nBgYGdAdhqObm5q6uLmNjY7qDMAuKHQAAAABLYCkWAAAAgCVQ7AAAAABYAsUOAAAAgCVQ7AAA\nAABYAsUOAAAAgCVQ7AAAAABYAsUOAAAAgCV2yk+uAAAXX0lEQVRQ7AAAAABYAsUOAAAAgCVQ\n7AAAAABYAsUOAAAAgCVQ7AAAAABYAsUOAAAAgCVQ7AAAAABYAsUOAAAAgCVQ7Aao5ubmuLg4\na2trPp9vbm4eEREhkUjoDsUgTU1NiYmJQqFQW1t71KhRAQEBFy5coDsUQ61Zs4bD4URERNAd\nhFkKCgqmTZump6dnaGjo7e195swZuhMxSGVl5bvvvjtixAgej2dqajp//vzS0lK6Q9Gss7Nz\n/fr1Wlparq6u3R/FjK35+GDGVsVRKBR0Z4A3raOjw8PD4/Lly4GBgSKRqKamJicnx9LS8tKl\nS0ZGRnSno9/jx49dXFzq6+vnzJkjEolqa2vz8vK4XG5paemECRPoTscsZWVl7u7ucrk8PDx8\n//79dMdhiqysrOXLl48ePXrJkiXt7e2ff/75kydPvvvuuylTptAdjX43btzw8PDg8XirVq2y\ntbUVi8WZmZmPHj0qLCz09vamOx09KioqQkJCqqqqnj175uzsXFZWpvooZmzNxwcztjoFDDyf\nfvopIWTbtm3Kkby8PEJIQkICjamYIzo6mhCSkZGhHPnyyy8JIX5+fjSmYqDOzk4nJydHR0dC\nSHh4ON1xmOL+/fu6urrOzs6tra3USFVVla6u7sqVK+kNxhDBwcGEkNOnTytHysvLCSFeXl40\npqLRkydPdHR0XF1dq6qqtLW1XVxc1DYY4DP2S48PZmw1KHYDkZOTk56eXnt7u+qgra2tmZlZ\nV1cXXamYIy4uzsfHp6OjQznS1dWlo6MjFArpC8VEqampHA6noKAAxU5VWloaIeSf//yn6iD+\nZSm5ubkRQlT/fSkUCn19fWtra7oi0UsqlSYkJFAHpMfiMsBn7JceH8zYanCN3YDT3t5+7dq1\nyZMna2trq457eno+ePCgrq6OrmDMsWPHjqKiIh6Ppxzp6OiQyWSWlpY0pmKampqalJSUyMhI\nd3d3urMwS1FRkY6ODrWq+OLFi6dPnxJCOBwO3bmYYuzYsYSQW7duKUcePXrU2tpqb29PXyg6\nGRsbb9++XXXCUYUZW/PxIZixu0GxG3AaGhrkcrmVlZXauFAoJITU1tbSEYrp/vKXv3R2dgYF\nBdEdhEFWrFhhaGj48ccf0x2EcSorK0eNGnX9+nVPT08dHR0DAwNbW9vs7Gy6czFFUlKSkZFR\nSEhISUlJY2PjlStXgoKCBg8enJycTHc0JsKM/QsM8BkbxW7AaWlpIYQMGTJEbVxXV1f5KKgq\nLi5eu3atp6dnZGQk3VmYIjs7+9tvv83IyDAwMKA7C+M8fvz42bNnc+bMcXd3z8/PT09P7+zs\nDAsL+/vf/053NEawt7c/f/58Z2fn1KlTR4wYIRKJqqqqioqKqCVaUIMZ+1VhxkaxG6C6Lwwp\nFIoexwe43NzcWbNmOTg4HD9+nMvl0h2HER48eJCQkDB37tzAwEC6szBRR0eHWCxOTU3dvn17\nYGDg6tWrL1y4oKurm5CQIJfL6U5Hv4qKCl9f35aWlk8++eTrr78+cOCAnp6er69vUVER3dGY\nCzN2H2HGJih2A5C+vj7p6b/zqCuB9PT0aMjESAqFIjk5OTg4ePr06WfOnDE2NqY7EVPExsZ2\ndHRkZmbSHYShdHV1tbS0Fi5cqBwZMWKEr69vY2PjzZs3aQzGEMuXL79///758+fXrFkzd+7c\n5cuXl5aW6urqLlu2rLOzk+50jIMZu48wYyuh2A04I0eO5HK5YrFYbbympoYQMmbMGDpCMY5C\noYiIiNi8eXNMTMyJEycweyoVFBQcOXIkPj5+0KBBd+/evXv37r179wghbW1td+/epf7YDHDW\n1taEELVrvU1NTQkWzghpbW29ePGim5ubhYWFclAgEPj4+Pzwww+3b9+mMRszYcbuC8zYqlDs\nBhw+n+/i4lJaWtrW1qYc7OrqKi4utrKyGjlyJI3ZmCM+Pv7gwYNbt27dtWuXlpYW3XEY5Ntv\nvyWEbNmyxeon48ePJ4Tk5uZaWVlt3bqV7oD08/DwkMvlly9fVh2srq4mhHS/BH6gef78uUKh\naG9vVxunRrqPA2bsvsCMrQrFbiAKDw9va2uj7rZF2bdv37179/CtUJSjR4+mp6fHxsauX7+e\n7iyMEx4e/vXPHTlyhBAyc+bMr7/+etmyZXQHpN+yZcs4HM4HH3zw4sULaqSsrKyoqGjixIko\ndqampqNGjSorK1M9Odfc3FxUVKSvr+/g4EBjNsbCjK0ZZmw1+EqxgUgul0+fPv3s2bP+/v4i\nkaiioiIvL8/BweHChQsCgYDudPSztbWtqamJiYnpfjSoOzXQkoqxmpubjYyM8JViquLj43fu\n3Onk5DR//vy7d+8ePnxYLpcXFhZ6eXnRHY1+X3311cKFC42MjCIjI0ePHi2RSPbv319XV5eZ\nmbly5Uq609GguLiYuss3IWT79u2mpqZLly6lfly7du3QoUMH+Iz90uODGVsdffdGBjq1tLRQ\nX5nM4/EsLCyio6OlUindoZhCw7+Xuro6utMxTlNTE8E3T/xcV1fXZ5995ujoOHjwYAMDAz8/\nv9LSUrpDMci5c+cCAgJMTU25XK6RkdGMGTNOnjxJdyjaaLgZZFVVFbXNQJ6xX3p8MGOrwRk7\nAAAAAJbANXYAAAAALIFiBwAAAMASKHYAAAAALIFiBwAAAMASKHYAAAAALIFiBwAAAMASKHYA\nAAAALIFiBwAAAMASKHYAAAAALIFiBwAAAMASKHYAAAAALIFiBwAAAMASKHYAAAAALIFiBwAA\nAMASKHYAAAAALIFiBwAAAMASKHYAAAAALIFiBwAAAMASKHYAAAAALIFiBwAAAMASKHYAAAAA\nLIFiBwAAAMASKHYAAAAALIFiBwAAAMASKHYAAAAALIFiBwAAAMASKHYAAAAALIFiBwAAAMAS\nKHYAAAAALIFiBwAAAMASKHYAAAAALIFiBwAAAMASKHYAA11QUBCHw7l79+4bft1Vq1Zpa2tf\nunTpDb/uG0Md2MbGRrqDvFEbN27k8/nFxcV0BwEYoFDsAKCfNTU1JSYmCoVCbW3tUaNGBQQE\nXLhwQW2b3NzczMzM7du3u7i40BKyL1JTU6urq3/x052cnGbNmqWtrd2PkX695ubmuLg4a2tr\nPp9vbm4eEREhkUg0bJ+dnc3pyZ///Ocet09OTvbw8Fi8ePHDhw9fzzsAAE04CoWC7gwAQKeg\noKC8vLyGhgZLS8tfv7fHjx+7uLjU19fPmTNHJBLV1tbm5eVxudzS0tIJEyZQ27S2tlpbW48Z\nM+b8+fO//hVfE4lEYm5uXlBQMHv2bLqz9JuOjg4PD4/Lly8HBgaKRKKampqcnBxLS8tLly4Z\nGRn1+JSdO3fGx8cvWbJk5MiRquOzZs2aPn16j0+prq4eO3bs0qVLDxw40P/vAQA0UwDAwPb7\n3/+eENLQ0NAve4uOjiaEZGRkKEe+/PJLQoifn59yJDU1lRBy8uTJfnnF1+T48eOEkIKCArqD\nvJxQKExISOjLlp9++ikhZNu2bcqRvLw8QoiGpycnJxNCvv/++1eKFBwczOVya2trX+lZAPDr\nYSkWAH5GLBaHhYVZWFjw+XwTE5N58+aVlpaqbnDy5MnJkycLBILhw4fHxsY+f/7cyspKJBJR\nj/J4PB8fnxUrVii3nz9/vo6Ozo0bN6gfu7q6du7cOXbsWD8/P81JGhsbIyIiLCwshgwZ4ujo\nmJ6eLpPJ+phz7ty5HA6nublZOSKTyTgczowZM6gfg4ODORxOa2trUlKStbW1tra2lZXVjh07\nFAoF9XR/f39CiK+vL4fDKSkp6THhixcv0tLSHB0dDQwM9PT0Jk6cmJaW1tXVRT2qvMauvr6+\nx9VMExMT5a7u378fHR0tFAr5fL6pqWlAQMD333+v+fj8AocOHdLT04uNjVWOLF682NbWNicn\nR9HL6g11DA0NDV/phdasWSOTyXbu3Plr0gLAL8ClOwAAMEhDQ8PkyZPb2tqioqLGjx//ww8/\n7Nmz5+233y4qKvL09CSE/Pvf//b39zc1NX3//fdNTEzy8/ODgoJaWlosLCyoPezYsUNtnx0d\nHTKZTLnOe/ny5cbGxsWLF2tO8vDhQ1dX19bW1tDQUKFQeObMmbi4uGvXru3fv78vOV+Kz+cT\nQhYuXDhq1KgjR450dXWlpKSsWbPG0NAwLCzsT3/6k7GxcU5OzsaNG52dnceNG9fjTqKiorKy\nsoKDg6OiojgcTmFh4bp168Ri8e7du1U3MzEx+etf/6o6Ul5evnv37rFjxyrfrJubW3Nzc2Rk\npIODQ0NDw549e6ZOnVpYWDht2rS+vJ2+aG9vv3btmpeXl9plf56entnZ2XV1dTY2Nt2fpSx2\ncrlcIpEMHjxYtY/2RiQSmZqanjp1Kj09vb/yA0Cf0H3KEABoproUu3TpUkLI0aNHlY/evHlT\nS0vL3d2d+vGdd94hKgtzMpmMutDKzc2tt/1Tf9qVi7Mff/wxIeTYsWOaU0VFRRFCCgsLlSNz\n5swhhFy/fr0vOamNm5qalBt0dnYSQnx8fKgfw8PDCSFLlixRblBTU0MImTt3rmpOzUuxAoHA\nw8NDdSQ+Pj4wMFAmkyl+OrASiUTtWY8fP7axsTExMRGLxco3y+VyVZc779y5o6en5+rq2ttL\nV6mwsLAIDw9X/tj9FSm3b98mhCxbtkxtnFps/eabb3p8VkBAACFkw4YNyovw3nrrrb/97W+9\nBVOi3n5dXd1LtwSAfoQzdgDwI4VCcezYsWHDhlF/yyn29vYeHh4lJSVSqXTo0KFnz54dO3as\nq6sr9aiWllZSUtJ3333X2z6Li4vXrl3r6ekZGRlJjVRVVRFCbG1tNSf54osvrKysqB5J2bVr\nV0JCwrBhw/qSs49vmSqIFBsbG4FA8Eq3feHxeGKx+MGDB2ZmZtQIdRGbBgqFIiQkRCwWFxYW\nUh9HUCgU+fn5EydOtLS0VN4bhcfjTZkypbCwsLW1VVdXV20nMplszJgxqiMHDhxQflLB39//\n2LFj3V+6paWFEDJkyBC1cWr/1KPdUWfscnNz161bZ2FhUVFRkZmZ+Yc//KGlpUV1wb07KmF1\ndbW1tbWGzQCgf6HYAcCPGhsbnzx54uLiwuFwVMft7OxKSkpu375tb2/f3t6u1smmTJnS2w5z\nc3PDwsIcHByOHz/O5f442zx69IgQonk5TyKRSKVSkUikmsTGxoZaK5RIJJpzenh49PEtq33S\nk8fjUSf2+mjz5s2xsbFjxozx9/efPn36zJkzlUvSvUlJSTl16lRqaqqPjw818uDBg0ePHj16\n9GjEiBHdt79z5073hWAtLa38/HzljytXrnR3dw8NDaV+1JxB7aARQhQKRY/jlA8//HDVqlWz\nZ89WNsKQkBCRSPTBBx+EhYVRK9o9osou9esGgDcGxQ4AfvTs2TPS0xkdHR0d6lGpVEoIEQgE\nqo/q6elpaWmpPUWhUGzatGnz5s2zZ8/+4osv9PT0lA89ffqUEGJgYKAhyfPnzwkhvd0B7qU5\nNexZDY/H6/vG3a1evdrBwSEjI+Po0aM5OTkcDsfX13fPnj1CobDH7U+dOrV58+YFCxYkJSUp\nB6lTZU5OTtTirxpzc/PugxwOZ+HChcofExMT33rrLdWRHunr65OezsxRvxHV35Eqb29vtZFx\n48b5+fl99dVX5eXlkyZN6u3lqM9bPHnyRHMqAOhfKHYA8CNqSa57MaJG9PT0qBrU3t6u+mhb\nW5tcLlcdUSgUERERBw8ejImJ2bFjh1rto+rFkydPBg8e3FuS4cOHk58WAX9Bzh6f1dHR0dvL\n/Rre3t7e3t4vXrw4e/bs4cOHDx06NGPGjBs3bnQ/lVVbWxsSEmJnZ5edna06rgz8um+YN3Lk\nSC6XKxaL1capiwvV1nY1o87Gtba2atiG+vVpbvAA0O9wuxMA+NHw4cONjY0rKioUP7/zxc2b\nNzkcjp2d3fDhwwcNGqTWDC5evKi2n/j4+IMHD27dunXXrl3dT+ZRi7DUyb/eDBkyxNTUtKKi\nQnVh9NatW7t3775x48ZLc5KfTsWpPr2uru5lB+CX09bWnjFjRnZ2dmRkZHV19dWrV9U2eP78\n+YIFC2Qy2dGjR9Wq57Bhw0xMTCorK9WKbL9/cwOfz3dxcSktLW1ra1MOdnV1FRcXW1lZqa1K\nU1pbW/fu3Zubm6s2Tt28prcTkxQqf18+QgsA/QjFDgD+b8GCBRKJhLo3L+Xq1aulpaXe3t6G\nhoZ8Pt/V1fW///1vZWUl9ahcLt+2bZvqHo4ePZqenh4bG7t+/foeX0J5Tb3mJP7+/lKp9PPP\nP1eObNq0KSYm5sWLFy/NSQihrlerqKhQbnDo0KE+HYKfUJWUWhTu0YULFywsLNR2O2jQINLT\nCu+KFSvKy8uzsrLs7e2772rRokXt7e1paWnKkYcPH06cOPF3v/vdK2V+qfDw8La2NtUX2rdv\n37179yIiIqgf29vbr169Sp3DI4QIBIKPPvrovffeU/7GCSHHjx8vKSlxdnbu8fYoSn35lAwA\n9DssxQLA/6WkpJw4ceLdd99dvXq1nZ1dfX19Zmamrq6u8sOea9euXbRokZ+f38qVK/X19Q8f\nPmxjY6N6Mdy6desIIV1dXe+//77azpOSkoyMjKgPDZw+fXrevHkakiQnJ584cSIqKqq8vFwo\nFBYXF584cSI0NJS6E/JLc4aGhu7du3fNmjVpaWkCgeD48ePnz5/vbZW2R1RrSU1Nraurmzp1\naveLyVxdXY2Njf/4xz+WlJQ4OTlxOJyysrLs7GxPT08nJyfVLQ8fPpyTk+Pk5NTU1ETdh09p\n9uzZlpaWmzZtOnny5NatWyUSybRp0+7du/fZZ59JpdLVq1f3JWp9fX0f39Ty5ctzcnI2bdp0\n5coVkUhUUVGRl5c3YcKExMREaoPq6mpnZ2cfH5+ioiJCyKBBg/bs2RMQEODq6hoUFGRubn79\n+vVjx47p6+urvRE1CoXi9OnTtra2+EgswJtG021WAIAp1L5S7M6dO2FhYSNGjOByuWZmZkFB\nQTdv3lTd/sCBA3Z2dnw+XygUbtiwoaOjg8/nT5kyhXpUw2xD3dJMLpcPGzbM3t7+pcHq6+tD\nQkLMzMx4PJ6Njc0nn3xC3R+ujzmzs7PHjRuno6MzbNiw9957r7m52dzc3NPTk3qUuo9dVVWV\n6lMMDAzGjx9P/e+Ojo7AwEAdHR0jI6P8/PweE0ql0ri4uNGjRwsEAgMDA0dHx61bt7a0tKge\nWIlEsmHDht6OifI+eRKJJCoqysrKisvlGhoazps37+LFiy89RL9AS0tLYmKiUCjk8XgWFhbR\n0dFSqVT56LVr14jK3f4o586d8/X1NTQ05HK55ubmoaGhasetu0uXLhFCYmJiXsdbAAANOAqN\nEzEAgGZPnz41MDCYN2+e6sKoZqmpqevXrz916pSvr+9rzQZ0CQkJycvLu3XrlublWgDod7jG\nDgBeQVZWlpeXF3U+hkJ9xrOPX+RFWbVq1dChQ7ds2dLv8YAJampqjhw5EhoailYH8ObhjB0A\nvIKLFy9OmzbNyMgoKirK3Nz8ypUr+/btMzc3Ly8vf6Xvic/NzQ0ODt61a1dMTMzrSwtvnlwu\n9/b2rqysvH79uqmpKd1xAAYcFDsAeDX/+c9/Pvroo0uXLjU1NZmZmc2aNWvLli093kdXs5iY\nmH379p07d87FxeV15ARabNy4MTU19V//+peXlxfdWQAGIhQ7AAAAAJbANXYAAAAALIFiBwAA\nAMASKHYAAAAALIFiBwAAAMASKHYAAAAALIFiBwAAAMASKHYAAAAALIFiBwAAAMASKHYAAAAA\nLIFiBwAAAMASKHYAAAAALIFiBwAAAMASKHYAAAAALIFiBwAAAMASKHYAAAAALIFiBwAAAMAS\nKHYAAAAALIFiBwAAAMASKHYAAAAALIFiBwAAAMASKHYAAAAALIFiBwAAAMASKHYAAAAALIFi\nBwAAAMASKHYAAAAALIFiBwAAAMAS/wMLcjnBtaeTxQAAAABJRU5ErkJggg==",
- "text/plain": [
- "Plot with title “voom: Mean-variance trend”"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeXiUVZr+8TsEQoSwKLKFRbYMIDEaAhkE8nMBRKINGAhIHIxLaGjASzMD\nOjACQVBB7B5QFmmCgnYDgoogIrZsGhUlIIIgjoDEgEIEDEtYZLF+f7xlqshSlaWq3qq3vp+r\nr76KU1Wph5CGu885zzkhNptNAAAACHxVzC4AAAAAnkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcA\nAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGAR\nBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsA\nAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACL\nINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgB\nAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABY\nBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEO\nAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADA\nIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2\nAAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAA\nFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGw\nAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIqqaXUBg2Llz5+XL\nl82uAgAA+IWqVavefPPNZldRAoKde9u2bevcubPZVQAAAD+SnZ3dqVMns6soimDn3sWLFyX9\n9ttvYWFhZtcCAABMdvHixerVqxvxwN+wxw4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAA\nLIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJg\nBwAAYBEEOwAAAIsg2AEAAFgEwQ4Vl5KikBCdPKnhw9WwoWrUUJcu2rpV587piSfUpIkiItS1\nq776yuxCAQAIDgQ7VFxYmCQlJ6tJE61bp3nztHOnkpM1eLDCw7V6tRYv1t69SkzUpUtm1woA\nQBAg2KHiqlaVpKgoTZyo2FilpqpvX+XmKjxc06YpLk4DBig1VXl5ys42u1YAAIIAwQ6VlZTk\neBwVJUn9+jlG2raVpCNHfFsTAABBiWCHymrSxPHYmMNzHqlWTRJLsQAA+ALBDpVlRDfXIwAA\nwAcIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABgESE2m83sGiru4sWLO3fuLCgoaNGi\nRcuWLb30KZ9//nm3bt1+++23MOOmBQAAEMQuXrxYvXr1zz77rGvXrmbXUlTAzNhNnTp106ZN\nziPz589v1KhRfHz8nXfe2apVq06dOn399ddmlYfAxY23AADLCJhgN2HChA8//LDwl++///6I\nESPOnTt33333DR8+vFu3btu3b7/99tsPHDhgYpEIRNx4CwCwjKpmF1BB6enpderU2bJlS/v2\n7Y2Rd955Z+DAgc8+++yrr75qbm0ILM433kqKjdXatVq+XPHxmjZNkuLilJWlWbOUnS3/m3QH\nAMAhYGbsnB07dmzfvn2jRo0qTHWSkpKS+vXr969//cvEwhC4uPEWAGABARnsLly4IMk51Rmi\no6N/+eUXMyqCx5i1440bbwEAFhCQwS4yMrJOnTqHDx8uMv7zzz/XqlXLlJLgKWbteOPGWwCA\nBQRSsMvNzd22bdv+/fvz8/NHjhy5cOHCc+fOFT773Xffvfnmm926dTOxQlSe84632Filpqpv\nX+XmKjxc06YpLk4DBig1VXl5ys42u1YAAPxMIDVPLF26dOnSpc4jH3zwwYABAyQtWbLkz3/+\n8/nz5ydMmGBSdfAkdrwBAFABARPsXnvttZNOTp06dfLkyWuvvdZ49uTJk3Xr1l22bFnnzp3N\nrdNiUlK0dKny8/XUU3r3XZ05o5gYvfSSoqM1frxWrNCpU4qJ0ezZ6tjRk5/LjjcAACogYILd\nQw895OLZBx98cMSIEVWqBNLKsi9VOJ8V7nhLSNC6ddq1SyNGKDlZMTHq0EGrVysnR2lpSkzU\noUOe3JTGjjcAACrAIkkoIiKCVOdChTsS2PEGAEAAIQwFhUrmM2vveMvMlM2mNm0cIxkZstnU\nvbtjJC1NNpvuv9/31QEAUA4BsxTr1oEDB4YPHy5p/fr1ZX9Xbm5ur169Ll++7OI1Z8+elfT7\n779XskLTVTifseMNAICAYJ1gd+bMmQ0bNpT3XY0bN37++eevXLni4jUfffTRggULXIe/gFDh\nfMaONwAAAoJ1gl27du2++eab8r6rWrVqSc4TWSX59ddfFyxYUNG6/Aj5DAAAa7POHrvw8PDo\n6Ojo6GizC0GlsOMNAIAKs06wk3TixIn9+/ebXQW8wqw7ZAEACCCWCnYzZsyIMpoCYDlm3SEL\nAEAAsVSwg4Vxoh4AAG4R7OCKv+14s/aJegAAVFLAdMV26tTJ7Wt++uknH1QSiDIzlZl51UhG\nhjIyrhpJS1Namg9rqhBO1AMAwIWACXY7duyQVM3l+RwWOGoOrnFiCwAALgTMUuzYsWNr1qy5\ne/fuC6UbM2aM2WUCAACYJmCC3ZQpU9q0aTNkyJBLrLQBAACUJGCCXbVq1f75z3/u2bNn/Pjx\nZtcCAADgjwJmj52k9u3bHz161MVGuj59+tStW9eXJQEAAPiPQAp2kmrXru3i2dtuu+22227z\nWTEAAAB+JWCWYhHk/O1EPQAA/BDBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAH\nAABgEQQ7AAAAiyDYAQAAWATBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABg\nEQQ7AAAAiyDYAQAAWATBDgEjJUUhITp5UsOHq2FD1aihLl20davOndMTT6hJE0VEqGtXffWV\n2YUCAGASgh0CRliYJCUnq0kTrVunefO0c6eSkzV4sMLDtXq1Fi/W3r1KTNSlS2bXCgCAGQh2\nCBhVq0pSVJQmTlRsrFJT1bevcnMVHq5p0xQXpwEDlJqqvDxlZ5tdKwAAZiDYIcAkJTkeR0VJ\nUr9+jpG2bSXpyBHf1gQAgH8g2CHANGnieGzM4TmPVKsmiaVYAECQItghwBjRzfUIAADBiWAH\nAABgEQQ7AAAAiyDYAQAAWATBDgAAwCIIdvAi7ooAAMCXCHbwIs/eFZGZKZtNbdo4RjIyZLOp\ne3fHSFqabDbdf7+nfydeQOoFAHgcwQ5exF0RLnBDGgDA4wh28DruiiiRv6VeZhABwAIIdvA6\n7opwwX9SLzOIAGABBDt4HXdFuOA/qdffZhABABVAsAPM5G+p139mEAEAFUCwA+DgPzOIAIAK\nINgBcPC3GUQAQLkQ7AB4Ec22AOBLBDsAXkSzLQD4EsEOXmSxuyJQATTbAoAvEewAcwRV6qXZ\nFgB8g2AHwOtotgUA3yDYARVhvZ4Ar84g0mwLAL5BsAMqgp4AAIAfItgFDHOniKw3QVVJ9AQA\nAPwQwS5gmDtFxARViegJAAD4FYJdwDB3iogJqhLREwAA8CsEuwBj7hQRE1RF0BMAAPArBLsA\nY+4UERNUKK+gOq4PAExHsAsw5k4RefXT6c8AAKCSCHbwF/RnAABQSQQ7+Av6MwAAqCSCHfxL\noPRnbN4sSadPOxaOMzMl6cIFPfGEatRQSIiee06Shg+3Lyv37q2QEP3lL6pZU1WqKDRUN93E\nWjMAwJMIdvAvgdKfYez9f+opx8LxiRNq3lyzZik8XD16SNKhQ4qI0Pr19mXlzz6TpHXrNHSo\nXnhB4eHas0cDB7LWDADwGIId/EugHCDieuG4YUNJuvFGFRTo0iX7s2fPSlKfPnrlFY0Zo2HD\nZLPp0CHWmgEAHkOwCxjmHhvBoRUlcr1wfPvt0h8Lx8azzm8xlpXlr2vNAIBARLADKs71wvH1\n10t/LBwbzzq/oHAm0j/XmgEAgYhgB1Sc64Xj0NByvwUAgMog2AGulHZs8uXLktStG62sAAA/\nQrADXCnt2ORNmyRp/nxHK+vvv5tbKQAABDv4Df/szyit+9VYZo2OdrSy/vST76oCAKBEBDvA\nveLdr82bO0aMVtaCAt/WBABAMQQ7wL3i3a81azpGjO6HK1d8UUlpe/64vgIAIIIdUBbFG1fH\njSu6cDxwoGPh2FhWHj/esXBsLCs7v8VYVi7vWnNpe/64vgIAIIIdEFhc33jB9RUAEOQIdrAy\nqy5cur7xgusrACBoVXX/Ej9js9kOHjz4ww8/nDlzRlKdOnWioqKaNWtmdl3wR4ULlwkJWrdO\nu3ZpxAglJysmRh06aPVq5eQoLU2JiTp0KJAOCnZ94wXXVwBA0AqkYJefn//ss8++8cYbv/zy\nS5GnmjdvnpaWNmbMmGuuucaU2uCfnBcuJcXGau1aLV+u+HhNmyZJcXHKytKsWcrOVteuZpZa\nLlxfAQAoUcAEuyNHjnTr1u3gwYNRUVGJiYk33HBDzZo1JZ0+ffrAgQMff/zxxIkT33777U2b\nNl177bVmFwv/wsIlACBIBEywmzBhwuHDh5cvX56cnFz82StXrsyfP3/06NGTJ0+eOXOm78uD\nP6vMwmVmpjIzrxrJyFBGxlUjaWlKS/NAnQAAVFLANE+8//77Q4cOLTHVSQoNDR05cuSgQYPe\neecdHxcG/8fCJQAgSARMsDtx4kTr1q1dv6Z9+/Z5eXm+qQcAAMDfBEywi4yM3Llzp+vX7Nix\nIzIy0jf1AK5Z9aQVAIA/C5hg179//xUrVrz44ou//fZb8WfPnj07adKkVatWDR482Pe1AcV5\n6YoI404L5xsvjDstynV9BQDAqgKmeSIjIyMrK2vs2LHPPPNMfHx8s2bNIiIibDZbQUHBjz/+\nuHXr1nPnziUkJDz99NNmVwpI1j1pBQDgzwIm2NWtW3fLli1z5sx5/fXXN2/efMXpxvVq1arF\nxcU98sgjjzzySGhoqIlFAkVw0goAwJcCJthJCgsLS09PT09Pv3DhwqFDh4ybJ2rXrt28efMw\nY90LuJrph5VwRQQAwJcCKdgVCg8PjzJmPwD/xkkrAABfCpjmCQAAALgWkDN2JTpw4MDw4cMl\nrV+/vuzvOn78+OOPP37J5WLYDz/8UNniAAAAvM86we7MmTMbNmwo77uqVat2/fXXX7hwwcVr\natSoUYm6AAAAfMQ6wa5du3bffPNNed9Vp06dWbNmuX7N/Pnzs7KyKloXAACAj1gn2IWHh0dH\nR5tdBQAAgGks1Txx4sSJ/fv3m10FIPnNFRHcbAYAQcVSwW7GjBkcgwI489LNZgAA/2SpYAeg\nCOebzWJjlZqqvn2Vm6vwcE2bprg4DRig1FTl5Sk72+xaAQCVRrADrI+bzQAgSARM80SnTp3c\nvuann37yQSVAwOFmMwAIEgET7Hbs2CGpmsv7mC5fvuyrcoBAws1mABAkAmYpduzYsTVr1ty9\ne/eF0o0ZM8bsMgEAAEwTMMFuypQpbdq0GTJkiOvrvwAAAIJWwAS7atWq/fOf/9yzZ8/48ePN\nrgXwME6bAwB4RMDssZPUvn37o0ePuthI16dPn7p16/qyJMAjCk+bS0jQunXatUsjRig5WTEx\n6tBBq1crJ0dpaUpM1KFDbI8DAJQqkIKdpNq1a7t49rbbbrvtttt8VgzgKc6nzUmKjdXatVq+\nXPHxmjZNkuLilJWlWbOUna2uXc0sFQDgzwJmKRawPG+cNucnN5sBAHyDYAf4C06bAwBUEsEO\n8BecNgcAqCSCHQAAgEUQ7AAAACyCYAcAAGARBDsEBU4ABgAEA4IdgkLhCcBNmmjdOs2bp507\nlZyswYMVHq7Vq7V4sfbuVWIibacAgABGsENQcD4BODZWqanq21e5uQoP17RpiovTgAFKTVVe\nnrKzTSiP0+YAAB5BsEMQ8cYJwAAA+A+CHUxg1o43TgBGhbFNE0BAINjBBGbteOMEYFQY2zQB\nBASCHUzg5zveyo5ZHE/x/++kZX5oAVgbwQ6mscCON2ZxPCVQvpMW+KEFYG0EO5jGAjvemMXx\nlED5TlrghxaAtRHsYBrL7HhjFsdT/P87aZkfWgBWRbADKotZHE/hOwkAlUSwQ1Dw6gnAzOJ4\nCt9JAKgkgh0AAIBFEOwAX3j5ZX8/zgMAYAEEO8AXjB1j/n+ch7eVdl7d5cuS1K0bARcAKoVg\nBxME4Z33oaFSIBzn4W2lnVe3aZMkzZ/vCLi//25upUUF4Q8tgEBU1ewCgCDi/8d5eJvzeXWS\nYmO1dq2WL1fLlpIUHa02bZSVpVmz9NNPZtYJAAGKGTug4so+i9OqlcRxHn8oHnCfecbxnTQC\nbmIi82Fw8P9L5wA/QbADfIfjPAwEXJRXoFw6B5iOYAfA1wi4KC/fXDrHvCAsgGAHAAgM3t6l\nyrwgLIBgBwAIDN5exPfNvCDgVQQ7AEBg8M0iPt3rCGgEOwAAHIrPC772mmPv3VNPSdJ//zd7\n7+CnCHaAL3C8LRAois8CVq8u/bH37oknJOnHH9l7Bz9FsAPgOwRcBCLnm2OaN5ekuDj23sFP\nEewAAHDPee9d48YSe+/glwh2AAC457z3rkqVoiMcrA0/QbADAPg7f1jE52BtBASCHQAAgEUQ\n7OAx3MYDIKCVNi/YsKFjxJgXjI72fXVAmRDs4DHcxgMAgLkIdvAYbuMJaEy4AoAFEOzgYdzG\nE6CYcAUACyDYwcO8fUs3vIQJV6A0/tCTC5QRwQ4e5vsTAVhD9CBrT7jyowLA8gh2CHisIXqQ\ntSdc+VEBYHkEOwQ81hA9yNpHsPKjAsDyCHawCGuvIcKD+FEBYGEEO1iEtdcQ4UH8qACwMIId\nLMLaa4jwoMr/qNCEAcBvEezgMZwIgCBBEwYAv0WwA4DyoQkDgN8i2AGQmHAtv0BvwmBBGbAk\ngh0AVESgN2GwoAxYEsEOACoi0Pt1WFD2HmZDYSKCHQKeP68h8ve7X/HnHxWzBPqCsn9iNhQm\nItgBXsTf7/Bzgb6g7J+YDYWJCHaAF/H3O/xcoC8o+zNmQ2EKgh3gdfz9Dvgnr26WYDYUpiDY\nAV7H3++Af/LqZglmQ2EKgh3gdfz9bjE0YVgGmyVgPQQ7wCLowAUqhs0SsBKCHWARdOACFcNm\nCVhJpYJdfn5+Tk6OhyoBUCksKqFcWFAuxGYJWImrYLdr16577rmnRYsWCQkJc+fOvXLlSpEX\nTJ8+vWXLlt4sD0D5sKgEAMGs1GD32WefxcfHr1279tixY19++eWoUaN69OiRn5/vy+IAlBeL\nSoDpmA2FiUoNds8///zvv/++cuXKgoKCM2fO/O1vf/v888979+599uxZX9YHBDTf//3OohIC\nnQ/agAo/4rPPJCkqSvXqKSRE9evrmWckKSFBtWqpd29FRmrECElKTaX3CIGh1GC3a9euwYMH\n9+/fPyQkpHr16unp6evWrdu5c+egQYOKr8kCAOARPmgDKvyIGjXsI8Zy1OXLuu46SbrmGhUU\n6KOP1Lq1YmIkqWpVeo8QGEoNdkePHm3VqpXzyJ133pmZmbl27dr//M//9H5hZXLx4sXs7OxN\nmzYdPHjQ7FoAAB7ggzagwo+IjbWP1KolSfXqafRoSTp/XhERstlUrZpGjpSkc+d01130HiEA\nlBrsGjZs+PXXXxcZHDp06Lhx41566aUZM2Z4ubCipk6dumnTJueR+fPnN2rUKD4+/s4772zV\nqlWnTp2KFwwACEQ+aANKSlJmph59VJLq15ek5GRlZOh//keSjJmNm25SWprmzpWkOnU88KGA\nt5Ua7JKSkt57773Zs2dfunre+dlnn01NTX3yySfT09PPnTvn/QrtJkyY8OGHHxb+8v333x8x\nYsS5c+fuu+++4cOHd+vWbfv27bfffvuBAwd8VhKAIMRB0L7hgzYg5y9oLM4aedH4uIgISapd\n2/FxISEe+FDA26qW9sTEiRPffffdxx57bNWqVR999FHheEhIyGuvvVanTp2ZM2f6pMKSpaen\n16lTZ8uWLe3btzdG3nnnnYEDBz777LOvvvqqiYUBsLbC7VkJCVq3Trt2acQIJScrJkYdOmj1\nauXkKC1NiYk6dIjOlYrzQRuQ8xc0Qlt4eNGRqqX+Iwn4qVJn7OrVq7d9+/aRI0dGR0cXeSok\nJGTWrFlvv/1269atvVxeyY4dO7Zv375Ro0YVpjpJSUlJ/fr1+9e//mVKSYDpOGHBNzgIGoA/\nc3VA8fXXXz9nzpz//d//LfHZpKSk/fv322w27xTmyoULFyQ5pzpDdHT0L7/84vt6AAQbDoL2\nBy+/zLI4UFRA3hUbGRlZp06dw4cPFxn/+eefaxmtTQDgTRwE7Q+M77zbg1G6dSua/1avlqTz\n5/XEE1q6VJI4WQGWEUjBLjc3d9u2bfv378/Pzx85cuTChQuduze+++67N998s1u3biZWCMBE\nvmxr4CBofxAaKpVhWfzCBenq/Pfrr5L0+OMKD1evXpL022+SxCGtsIBACnZLly7t3LlzVFRU\n/fr1n3/++f3793/wwQfGU0uWLOnUqdP58+cnTJhgbpEAzOKDg23hh8qyLK6r81/z5pJUvbqm\nTdP110tS3bqSxLEKsICAafh57bXXTjo5derUyZMnr732WuPZkydP1q1bd9myZZ07dza3TgBm\ncW5rkBQbq7VrtXy54uM1bZokxcUpK0uzZik7W127mlkqXMjMVGbmVSMZGcrIuGokLc3+n02b\nyrQsrqvzX0qKnn1WDzzg+Lh58zRypDp0cPVxkubPr/jvC/CNgAl2Dz30kItnH3zwwREjRlSp\nEkgTkAC8gbaGYFPGZXHLbItMSdHSpcrP11NP6d13deaMYmL00kuKjtb48VqxQqdOKSZGs2er\nY0eza4UZLJKEIiIiSHUAZKF/v1FckW2UixZJ0q5djm2Uzz0nSd9/X8J7LbMtki0HcM19GPr0\n009/NTaaFrN169a3337b0yUBQMVZ5t9vFFck0xjNco895sg0990nSWPHWjnTcJIiXHO/FJuQ\nkLBy5cr+/fsXfyorK+vZZ58dMGCAFwortwMHDgwfPlzS+vXry/6uCxcuvPLKK78ZDVGl+PLL\nLytbHACrKPsOMHhckW2UUVH65BP9/LO6drVvozSON/31V+tvo2TLAUpTarDbv3///v37jcc7\nduwId75pRZJ0/vz55cuXu45EvnTmzJkNGzaU912//vrr8uXLL1686OI1x44dk2TKUcwAgCKc\nM43BOdMYLJ9p2HKA0pQa7N56661x48YZj5955pnSXjZw4EDPF1Uh7dq1++abb8r7rsjIyM8/\n/9z1a+bPnz9ixIgQ4+JAAICpnBNMaSOWzzRsOUBpSg12//3f/52ampqdnd2vX7+hQ4feeOON\nRV4QGhraqlWrvn37ernCsgoPDy9+rS0AwGIKE0xmppo21eTJjpGMDDVtqmHDHC9OS9MXX2jh\nQl8XCZjF1R67xo0b9+3b95577hk5cmSXLl18VpNrNpvt4MGDP/zww5kzZyTVqVMnKiqqWbNm\nZtcFAPBHbItEUHHfPLFmzRof1FEW+fn5zz777BtvvPHLL78Ueap58+ZpaWljxoy55pprTKkN\ngOn49xsA3Ac7m8321ltvvf7664cPH75U0raF3bt3e6Gwoo4cOdKtW7eDBw9GRUUlJibecMMN\nNWvWlHT69OkDBw58/PHHEydOfPvttzdt2lR4HQUAAEBQcR/s/vrXv44dO1ZSjRo1qpm3OXPC\nhAmHDx9evnx5cnJy8WevXLkyf/780aNHT548eebMmb4vDwAAwHTuDyieNWtW7969Dxw4cPbs\n2ZMl8UGVkt5///2hQ4eWmOokhYaGjhw5ctCgQe+8845v6gEAwPcyM2WzqU0bx0hGhmw2de/u\nGElLk82m++/3fXUwn/tgl5eXN3ny5FatWvmgGhdOnDjRunVr169p3759Xl6eb+oBAPgYmQZw\ny32wa9iwoT+czRsZGblz507Xr9mxY0dkZKRv6gEAAPA37oPdkCFD3njjDR+U4lr//v1XrFjx\n4osvlnjXxdmzZydNmrRq1arBgwf7vjYAAAB/EOJ2Nq6goGDgwIH16tV78MEHmzdvXrx/oo3z\ntLjXnDx5skePHl999VWtWrXi4+ObNWsWERFhs9kKCgp+/PHHrVu3njt3LiEhYe3atREREZ79\naOPmiTNnznj8KwMALC8lRUuXKj9fTz2ld9/VmTOKidFLLyk6WuPHa8UKnTqlmBjNnq2OHb37\nReApFy9erF69+meffdbV/+4kdt8VW6tWLePBkiVLSnyBbxZq69atu2XLljlz5rz++uubN2++\ncuVK4VPVqlWLi4t75JFHHnnkkdDQUB8UAwBAGYWFSVJyshIStG6ddu3SiBFKTlZMjDp00OrV\nyslRWpoSE3XoUKk3g3nkiyAYuA92Q4YMCQsLq1rV/Su9LSwsLD09PT09/cKFC4cOHTJunqhd\nu3bz5s3DjB95AAD8jPHvZ1SUJk6UpNhYrV2r5csVH69p0yQpLk5ZWZo1S9nZKm0CyCNfBMHA\nfVwrbaLOROHh4VFRUWZXAQBAWSUlOR4b/4L16+cYadtWko4c8cUXgbW5b54odObMmT179vjs\n4DoAACyjSRPHY2P6zXnEWDwt6XYnz38RWFuZgt3HH3/cqVOn2rVrR0dHf/HFFwGpwygAACAA\nSURBVMZg3759N2zY4M3aAACwiOL73iqwE84jXwTW5j7Ybd269a677vr+++979+5dOHjs2LHs\n7OzExMTt27d7szwAAPxUSopCQnTypIYPV8OGqlFDXbpo61adO6cnnlCTJoqIUNeuOnHC7EIR\nTNwHu2eeeaZRo0bffvvtokWLCgfr16+/c+fORo0aTZkyxYvVAQDgrwo7VZs00bp1mjdPO3cq\nOVmDBys8XKtXa/Fi7d2rDz80u1AEE/fB7osvvvjLX/7StGnTIuMNGjQYMWLEJ5984p3CAADw\na86dqrGxSk1V377KzVV4uKZNU1ycBgxQaqrOnze7UAQT98Hu1KlTzZo1K/Gpxo0bFxQUeLok\nAAACRlk6VQGfcR/sGjVqtHfv3hKf+uSTT7ibFQAQzMrSqQr4jPtgl5iYOHfu3K+++sp5MD8/\n/3/+539ee+21e+65x2u1AQDg78rSqbp0qZxv38zIkM2m7t0dI2lpstl0//2lfkpmpmy2yn4R\nBAP3wW7y5MkRERH//u//bmS4cePGxcbGNm7c+LnnnmvevPlE4wxsAAAAmK1MS7Hbtm0bNmzY\njz/+KOnrr7/++uuva9Wq9Ze//CU7O7thw4beLxIAAADulemA4gYNGsydO/fYsWNHjx7dt2/f\n0aNHjx07Nnfu3AYNGni7PgAAglYZj8q7ercUglo5rhQLCQlp2LBhmzZtmKUDAHgDOaaIMh6V\nl5jITWKwq+r2FTab7a233nr99dcPHz58qaQfnN27d3uhMABA0CnMMQkJWrdOu3ZpxAglJysm\nRh06aPVq5eQoLU2JiTp0KCgaTp2PypMUG6u1a7V8ueLjNW2aJMXFKStLs2YpO1tdu5pZKvyE\n+2D317/+dezYsZJq1KhRLRj+ZwQAMElg5ZjMTGVmXjWSkaGMjKtG0tKUllbZDyrLUXlHjlT2\nU2AN7oPdrFmzevfuPXfu3FatWvmgIABAkCPHFFGWo/JYioXBfbDLy8t76623SHUAAN8gxxRR\nlqPyAIP75omGDRvabDYflAIAgMgxZqOFJaC5D3ZDhgx54403fFAKAAAwHa24Ac19sJs4ceKB\nAwceeOCBDz/8cO/evfuL8UGVAACgXCo88ebcwhIbq9RU9e2r3FyFh2vaNMXFacAApaYqL0/Z\n2b7/bcEN98GuVq1aH3744ZIlS+6+++4bb7wxqhgfVAkAgCkqHI9MX9Cs5MQbLSwByn3zxJAh\nQ8LCwqpWdf9KAAAspsJH65l+Jl8lz46hhSVAuY9rS5Ys8UEdAAD4oQrHI4+cyVf5o/IqPPFG\nC0uAKseVYsePH9+yZcv69eu//PLLkydPeq8mAEBwysyUzaY2bRwjGRmy2dS9u2MkLU02m+6/\n36eFVTgemb6gycRbsCnTAuunn346ZsyYL7/8snAkJCTkzjvvnDlzZnR0tNdqAwDAL1QgHm3e\nLEm1a2v4cL37rs6c0XXXSdL11+uJJ7RihU6dUqNGJbzRs5h4CzbuZ+y2bt3as2fPbdu2de/e\n/dFHHx09evTDDz8cHx+/cePGbt26/d///Z8PqgQAwEQViEdVqkhSerqjdyEvT5KmTHH0Lhhz\ndS+9xLlx8Bj3M3ZTp06tX7/+Rx991K5dO+fxHTt23H333ZMnT2YTHgAARYSESFKLFo49djNm\naM8ehYU59tjNm6cNG3T+vGRqmwWsxP2M3eeffz5y5MgiqU5SbGzsyJEjN27c6J3CAAAIeL17\nOx4bS7EJCY4RYyn28mWJc+PgIe6D3alTp5o2bVriUy1atPj11189XRIAABbRsKHjsbE4e/31\njpHQUEkyru00vc2ikN+2sKAs3Ae7Bg0a7N27t8Snvv322wYNGni6JAAALKL4IbClHQtrYvvq\nkCHs8LMO98Hurrvuevnll1etWmUz/j+FJMlms61cuXLOnDl9+vTxZnkAAASFsvRnlCuBlXHi\nLTVVKnZBxR13qGZNhYSoSxdVraovvlCXLvr8c9JeAHAf7CZNmlSjRo3+/ftHRkb26NGjb9++\nPXr0iIyMTEpKql279qRJk3xQJQAApqjwuqSxl+6GGxwjt98uSTExRV9TrqWvCl8RVpoSb4Y9\nd06Sdu/WzTdr0yb16qVLl5SUVNnPgg+4D3YtWrTYtm1bamrq+fPnN27c+N57723cuPHixYtp\naWnbt28vbfsdAADwOM/2WKSkaOFCScrNdcwC1qxpf3bLFr3wgkaNUlycJOXl0c8RAMp0QHGz\nZs0WLVpks9mOHj169uzZiIiIRkYnDwAA8LKUFC1dan+8dKkWLVJMjF56SS1aSNKGDYqIUEyM\nZs8ud4+FcaGtpJYtNWWK/aSV776zD86YoQYNlJamPXvsI2b1c6DsynGl2NGjR48ePXro0KFf\nfvnl2LFj3qsJAAAUKoxfkhYudCzCvvuuJD3/vGNh1Gi8LfvyaGEnx+OPO2YBT52yD95+u31m\n7vRp+wjXkfm/MgW7BQsWtGzZMjIysmPHjnfeeefNN9/coEGD9u3bL1u2zNv1AQAQiMq+Oa9V\nKzdfyrmRNibGsQhrjHfo4FgYzcmpbNnGSSsGI7oZM3POI/Bn7pdi582bN3LkyOrVq/fs2bNJ\nkyY1a9Y8derUvn37srOzhwwZcvHixQcffNAHhQIAYD3GMmt+vp56yn6lrLHM+uSTGj9egwfr\n1Cn7prc+ffTBB/Z3GfGrbVt9+619xIhfhZNtFVb8NBbCXGBxH+xmzpzZu3fvN998s06dOs7j\nBw8evOuuu6ZPn06wAwCgYoxlVtf3iaWkSFJ4uONdRvyqXdsxYsSvK1d8Vzn8k/ul2JycnAkT\nJhRJdZJatmyZnp5+4MAB7xQGAID1lXjaSJFeV2N+rvhsXJVy7JOXpJQUhYRcdRLe6tX2p6ZO\ntZ9OZzTJInC5/6GoU6dOqHHpSTGhoaHXO9+NAgAAys/1fWLG1Mr585X9lMLZwcKT8AqvBa1e\n3X463fHjlf0UmMt9sPvTn/703nvvlfjUmjVrkpOTPV0SAADBxfV9YsbMnNP1TxVUfHaweXNJ\nuvtuzZ9vnx28+WZJ6tat6HsHDKjsp8M33Ae7qVOnrl+//oEHHnjvvfe+++673NzcvXv3vv32\n2/fcc8+FCxdGjRp12IkPKgYA+F7xVTxuFPWgstwnNnhw0TbbRx4p2mZ7xx0l3IFRhPPsoDEX\n2LOnY8RYh+vTx/FZCxZIUmKi/vxnDRjg+KNPSdHjj+u//os/ev/ivnkiMjJS0tatW5csWVL8\n2SjnxmjJVvn/QwEA8D9l2eOflqbERB06RB+lX3OeCwwJkaSGDR0jxuzg5cuOEWOeb+ZMDRzI\nH30AcB/s+vfvX716dR+UAgDwW86reJJiY7V2rZYvV3y8pk2TpLg4ZWVp1ixlZ6trVzNLhWvO\n2atvX+3YYb/BonDkvfeuOruufXt9/rm6d+ePPjC4D3YrV670QR0AAP/neo8/d0x5SWqqPv1U\nznd5ZmQoI+Oq16SlKS3N/ri0s/GMebhu3XT2rP0KsrLjjz5QlLNVGgAQxFzv8Q+eO6ZM33Ho\nuoBVqySpRQtVqWLvfjWuINu0SZLmz3dcQfb772X9xHL90Zv+/Qlm7mfsJF25cuXLL788cuTI\npZL+93q/612aAACrKMse/2Bg+o5D1wX06qVVq3Thglau1EsvORZPW7aUpOhotWljXzz96aey\nfmK5/uhN//4EM/fBbvv27QMHDswp/f45gh0AIKh4cMdhZqYyM68acb3M6rqA3Fy98YZuvVWS\nLl9WXp4WL1ZKiv0O2dxcSdqzR23a2BdPCwrK+luOinKs7Rqn3+3dq44dNX68VqzQiROSdPCg\n578/KC/3wW706NEnT558/PHH27ZtW41cDQCAJD/Ydla8AEnJyapRQ5LuvVerVmncOGVk2Gfm\nrr1Wx4/rvvvUubP9iBNjMbRXL8XGavZsdexoP9zk3DkNH27fnxcRYf/KN9+s/HxdvqzatfXr\nr5owQatX22fgFi7UvHmaPl1jxjhm4Ez//gQn98Hum2+++cc//tG/f38fVBMslizRk0/q6FGl\np2vGDLOrAQBUhOk7DosXICkqShcv6quvFB+vVat0/LhuuMH+VL9+On9eS5bo66+1f78k3Xij\nli27amG0fXtt3aqlSx2rqI8+an97vXp65x3l5Og//kOS8vLs955J2rFDkk6dumoGzvTvT3By\n3zwRERHR3DiaGh5x6pTS0lRQoClT1Lu32dUAACrI9B2HJX6c8zyZofA0k4cesp9m3KmTfTl1\nyBD7hROpqcrLU3Z2qbdTSHrhhatup9DVM3AG5xk4078/wcl9sBs0aNBbb73lg1KCxb59On9e\nDzygceOuOu0bAIBKc54VM9Ss6XhsRCvnE4kNRRZGi99O4fyVC2+JL/5ZzMCZzv1S7LRp0+6/\n//5Bgwb169cvMjKy+Da77s63mcCtCxckqVYts+sAgHKo2B5/+F7xWbEqxeZwio8UWRh1Tmz9\n+unrr6/6yv376/33rxox/tyHDatw1fAY98Fu9+7dX3/99aFDh1asWFHiC7hGrBzuvlsffihJ\n06dr+nQNH65XXjG7JgAArlLJNdPNmyXp9GlHB8Z110nShQt64gmtWKFTp646bxke5D7YPfbY\nY8eOHRs0aFBUVFTVqmU69w6lmjRJt92m8eOVlKShQ+1nCgEAYCHGjOBjj6l3b3sHhjGlN2mS\nEhLs59g9+KAkXbliZp2W5D6o7dq1a8GCBf9h9MCgkm691f5THBUlGo0BAF5grJsXWTrft09t\n2ui77xwjWVkq116qwhm4/Hz7SGkzcCEhktSiheMcuxkztGePwsIc59jNm6cNG3TgQAV+f3DF\nffNEzZo1o6OjfVAKAAABITNTNpvatHGMZGTIZrsqJ6WlyWaTl47wL7GAwnNJCguYNMmTH/rY\nY2rSROvWqXCqZ9IkhYdr9WotXmxvvDDmLhISJOnhhx3vNaYynCscMECSOnTwZIVQWYLdfffd\nt2bNGh+UAgAA/JYxAxcb6zipzpiBM85AMa67cJ6B4xw7U7gPdjNmzPj4449HjRq1fv36vXv3\n7i/GB1UCAADXSptHdD7cxJhHrNg6nPMMnMH1DBzn2JnC/R67a6+9VtL69evnzp1b4gvoigUA\nwG+V66ia++8v4cWHD2vhQsd8W1qaDh/W5MnMwPkj98FuyJAhYWFh9MMCABDoUlK0dKny8/XU\nU/aDSGJi9NJLio7W+PH2NoiYGPu9sUUwAxcQ3Me1JUuW+KAOAADgbWFhkpSc7LgKdsQIJSfr\nyhX99JM2bdJzz2n9enXqpM6d9fLL9sC3dKkkDRqkzMyrAl9CgiMjGq2yBw7o3Dl98YUkxcTo\nlltKzojwHvd77AodP358y5Yt69ev//LLL0+ePOm9mgAAgDcUvwq2b1/l5trHn31W3btryBDZ\nbPr6ayUna/BghYerVy9JOnBAiYlFF1uTk69qlZ05U4MHKzRUkmbM0N69JbxFUkqK/ZqKzEw1\nbKgaNdSli7Zu1blzeuIJNWmiiAh17aqvvvLqN8OayhTsPv300y5dutSvX79r1669evXq0qXL\ndddd17Nnz927d3u7PgAA4FnOV8FGRUlSixb2xxMn2g9t6dRJubkKD9e0afbLYe+7T3l5ys6+\n6ksZb5kxQ6+9JknHj+ujj7RnjyQ1bqwHHlBeniIj9dxzkpSQoJMnNXy4Vq50fIV331VCgrZu\nVZcuatpUp07Zz08pLRTCNffBbuvWrT179ty2bVv37t0fffTR0aNHP/zww/Hx8Rs3buzWrdv/\n/d//+aBKS+neXTab/YhGL1myRE2bqmpVjR3rxU8BAASIlBSFhOjkSX32mST96U+OGbL16yXp\n008l6aabpD92zhm9tP36Ob5Iq1aS7OfVFTIyorHCa5gwQQsXKjxc6en65BNJevJJLV1qf83A\ngWrSRHffLUmhodq3T889p9hY9ewpm00FBfrgA8XEaMAApaaWkCPhlvtgN3Xq1Pr16+/evTsr\nKyszM/Pll19+9dVXv/jii+3bt4eHh0+ePNkHVTqz2Ww//PDD+vXrV65cuXLlyo0bNx46dMjH\nNfi1U6eUlqaCAk2Zot69za4GAGC+wq11NWpI0uTJ2rnTvtJqLMLecoskTZjgmCEzrgUrfhad\n8YK337YPLlighg31j384XrZjh8aP1+XLys3V5cuS1KyZBgywTw3Wrq2JE1WvniR17+6YFIyP\nl6Q773SEubZtpWI5Em65D3aff/75yJEj27VrV2Q8NjZ25MiRGzdu9E5hJcjPzx8zZkyjRo1a\nt27dq1evpKSkpKSkHj16NG/e/IYbbpgyZcr58+d9Voz/2rdP58/rgQc0bpx69jS7GgCA+Qq3\n1sXGSlJSkn1rXXi4/R+Kxo0l6cSJojNkxuydcUJegwaO8bg4+4PGjbVunbp1k6SaNSXZ76Iw\nvuDBg5I0fLhq1NCPP0pSu3Z64gl7N4Zxv5kxKWhU2L699EeY4/yUinEf7E6dOtW0adMSn2rR\nosWvv/7q6ZJKduTIkbi4uL/+9a916tR56KGHJk2a9MILL7zwwgtPP/30kCFDLl++PHHixFtv\nvTW/8Aa7oHXhgiTVqmV2HQAA/1J8a53zSquhLDNkKSlavNj++B//ULdu2rtXks6elaQPP9Rt\nt+nECemPf5HGjdO8eTp3TpJWrXJ0Yxh9mEOH6uRJGVdczZ4tSd99p3PntGyZJD30ULm7KArX\nnYcPD8bODPfBrkGDBnuNP7Fivv322wbOAd6bJkyYcPjw4eXLl3///fevvfZaRkbG2LFjx44d\nO2XKlCVLluTm5s6ZM2fXrl2+Xxo2R2m76O6+235F3/TpCgnRiBGmVAcA8EOu7/gylGWGzHlH\n3auvat48OU/yTJumxYv122+OkRYtlJqq666TpGrVHN0YhWuBycn26QhjA5HRWmvM2I0cWe4u\nisJ1Z6Ndd948x7pz4c22Fu7McB/s7rrrrpdffnnVqlXON0zYbLaVK1fOmTOnT58+3izP4f33\n3x86dGhycnKJz4aGho4cOXLQoEHvvPOOb+oxk4tddJMm2VuPkpK0cqX+8hdTCgQA+KGynDD8\n8sv2g0iMCa2ePR3TXYVTaB984Hj9jTcqNVXNmztG2rbVgAH2GOfsmmukP/ozDNdea38QFaXb\nbpNkv+vs+HGFh9vvKIuPL6GLwvWc3IoVkvTNN7r33quOdDE28xk321q4M8N9sJs0aVKNGjX6\n9+8fGRnZo0ePvn379ujRIzIyMikpqXbt2pMmTfJBlZJOnDjRunVr169p3759Xl6eb+oxk4td\ndLfeap+xi4pS//66+WZTCgQABKjCe6aMHPZf/+WY7iqcQit+lG2dOkVHwsOLjoSEFH1llT8y\niPMascF5jbh4F4XrOTljnffsWcecXPF1Zwt3ZrgPdi1atNi2bVtqaur58+c3btz43nvvbdy4\n8eLFi2lpadu3by9t+53HRUZG7ty50/VrduzYERkZ6Zt6zMQuOgBAhRhtEG3aOEYyMmSz2Q83\nkexnC//lLzJWyPr0cUx3FU6hGTnJmRHaXI8YqpSUO4qvCLu+hba0Y5ZLO3Wv+LqzhTszynRA\ncbNmzRYtWpSfn//zzz/v27fvyJEjJ06cWLBgQWOj6cUn+vfvv2LFihdffPE353X7P5w9e3bS\npEmrVq0aPHiwz0oyB7voAACelpmpBQscv0xKsge+7t0d011pabLZdP/9jlm3ffuuyoiSsrLs\n5xsXWrpU99/v5tMrdgut614QozDnObkgudnWTbD75ZdftmzZYjwOCQlp3LhxmzZtGjVqNGfO\nHB/fKpaRkREbGzt27Nj69ev37Nnz4Ycffuyxx0aPHv3QQw/dcccdDRo0eOaZZxISEp5++mlf\nVmUCdtEBALzMdZtFibNu5WJMHBrHoxiMHOkcEwtzZMWKdD51L6hUdfHcJ5980q9fv06dOn30\n0UfO47t27Ro9evTzzz//ySeftDIOova+unXrbtmyZc6cOa+//vrmzZuvXLlS+FS1atXi4uIe\neeSRRx55JNSYRLawW2+V8Xs3dtEBAOBp5Z1C69tXO3ZcNdK8uXJzrxp5+GFNnqxBg65613vv\nXfWatDQdPqwynm9RsXk+yys1dR85cmTAgAEFBQV33nlnkaduuumml1566ciRI3ffffcFY7+X\nT4SFhaWnp+/YsaOgoOD777/fvn379u3b9+3bV1BQsGXLlmHDhlk/1fkYV5MBgCWUtrXOednU\nmCEz0tjp046G08xMSbpwwXEInLsd7zBTqTN2CxYsOH78+IIFC9LS0oo8FRIS8thjj125ciU9\nPX3x4sXDhw/3cpFFhYeHRxXfugnPMg5VCQvTlCnq3NnsagAAvmAssz72mHr31rp12rVLRgqY\nNEkJCVq9Wjk59uXRv/7V/Qa7//1f9xvs4FmlztitWrWqdevWjzzySGkvGD16dNOmTRctWuSV\numA6riYDgOBjdLO2aOFoODVOBgkLcxwCZ1xNULjSmpJiXzydMcNxqtz/+3+S9K9/OW566Nu3\nhDnCRx/14e8tOJQ6Y5ebm3vXXXdVKX2HZNWqVbt06fLhhx96p7ByO3DggDF3uH79+rK/y2az\nff75564vmS3t4g2L41AVAAhWzoffG0cNG+cxGO64Q//8p6OFwjhVrmdPxcUpI0O7dmnECB05\nonvvVYcOmjJFOTlKS1Niog4dKroNLjPTvtRbKCNDGRlXjaSlqdjaoSvG13T+spX/mgGk1GB3\n+vTpevXquX5zvXr1Sjx8xBRnzpzZsGFDed918ODBO+6441IZ2macL97wa927q/Kl3n23jMg+\nfbqmT9fw4XrllcqXBgAICIXH2umPxVnjcDiDsaH98mX7L51PlZMUG6u1a7V8ueLjNW2aJMXF\nKStLs2YpO1tdu/qg/KBW6oRcvXr1cos0tBTz/fff169f39MlVVC7du2++eabb775plzvatWq\n1cWLF20uvfLKK5JCSjts0ZI4VAUAgpIxM+d809Ptt0tSx45FX1Mkos2b57jjy7jdMzpa586p\nXTuFhGjePEnq3bvo9V+FC7XGDWZlVPZekCDc4VdqsOvcufOGDRtOnDhR2gv279+flZXVpUsX\n7xRWbuHh4dHR0dHGPXOopBKvJqNJFgBQusI7vu69V5LmznVcRGZsy5M0e7bj+q+PPtLPP2vu\nXG3frs6dPZP5UGqwGzp0aEFBwbBhwy4XTrY6OX369AMPPHD58uWHHnrIi9WVxGaz/fDDD+vX\nr1+5cuXKlSs3btx46NAhH9cQjIwm2YICTZly1eYLAAAkOd3xtX+/JP3yi779VgcOSNLp05JU\nUKAPP1RIiHJztWWLjJNw33hDHTvq99+vupc2PFyrV2vxYu3d67jyFWVRarAbMGBAz549V65c\n2aVLl5UrV545c8YYP3bs2MKFC2NiYrZu3Xrffffda8Ryn8jPzx8zZkyjRo1at27dq1evpKSk\npKSkHj16NG/e/IYbbpgyZYrrHgjrMHbRGTsXfIYmWQCAS4V3fBWeKnvLLfapgHPn7CMXL2rI\nEEk6f17GxvioKD34oP3Fzle+Gh24qamOK19RFqU2T4SEhKxYsSIlJeWDDz5ISkoKCQmpU6fO\nlStXChPe4MGDX3vtNV/VqSNHjnTr1u3gwYNRUVGJiYk33HBDzZo1JZ0+ffrAgQMff/zxxIkT\n33777U2bNl177bU+qyqI0CQLAHCp8EavwobZ0aP1z39KUrt22r1bkgYP1nffSVKfPnr7bUlK\nSlJOjiRdulTCla/GYSvOV77CNVdXitWtW3ft2rUffPDBG2+88eWXX+bl5VWpUqVt27Zdu3Z9\n+OGHE5xbn71vwoQJhw8fXr58eXJycvFnr1y5Mn/+/NGjR0+ePHnmzJm+LMwilizRk0/q6FGl\np2vGjKLP0iQLAHDHxR1fzk21hhYt7A+aNLEHO5V05avxFViKLTtXwc7Qp0+fPn36+KAU195/\n//2hQ4eWmOokhYaGjhw58pNPPnnnnXcIduXm9pKJSZN0220aP15JSRo6VC1b+rxEAIAvVOZg\nuago5efrqadUeEDF3r32U1G2bLGPHDxof1D1jwDCla+eVeoeO39z4sSJ1s7t1yVp3759Xl6e\nb+oJYMWbW93unyuxSRYAgKsZjbGFB5FMmKBNmyQpJsY+Mn26fv/dnNqCRMAEu8jIyJ3urh3e\nsWNHZGSkb+oJVCU2t/p4/xzHpgCAhWRmOm4GMxpju3Wz/zIvz95IUXg22qlT+uknn5cYTAIm\n2PXv33/FihUvvvhiiXddnD17dtKkSatWrRo8eLDvawskxSfn7r7bPhs3fbpCQjRihHcL4NgU\nALCuwsbYQs2bFx0pKPBNLUHK/R47P5GRkZGVlTV27NhnnnkmPj6+WbNmERERNputoKDgxx9/\n3Lp167lz5xISEp5++mmzK/VvxSfnSts/55GryYozkuXDD2vcOM9/cQCAqZz7Hgw1axYduXLF\nW5+ekqKlS+37/N59V2fOKCZGL72k6GiNH68VK3TqlGJiNHv2VRdpWEzAzNjVrVt3y5Ytf/vb\n31q3br158+ZFixbNnj17zpw5ixcv/uyzz2JiYv7+979v2rQpIiLC7Er9WImTcz7eP8exKfAg\nlvUB/1C4Guvc9/DYY5I0bpxsNl13nSQ99ZQkDRxY9EIwT13/FRYmOV2AMW9eMJ54HDDBTlJY\nWFh6evqOHTsKCgq+//777du3b9++fd++fQUFBVu2bBk2bFho4ZGIKJHpN8D6eNkX1sayPhDI\nFiyQpIULNWOGGja03yeWmKizZ/XWW477xDp2LDnzpaQoJMRxO63x9vx8SfrlF82fr4QE+38H\n24nHJS/FHj58uOxfomnTph4qpqzCw8OjjEMMUS633mqfATcm53yPY1PgQSzrAz7nYq3ziy8k\nKSZGt9yi2bOVmXnVISnGmSnOB6m0b6+tW7V0qRIStG6ddu3SiBFKTlZMFrozlwAAIABJREFU\njDp00OrVyslRWpoSE3XoUAkHoBROzjm/3ThCpX17jR1rf7sxMxdUJx6XHOyaNWtW9i9h88ZO\nLFiS6ckSVsKyPuBzJcYpI40Za2YzZujpp+1pzDUjhBldtJJiY7V2rZYvV3y8/crMuDhlZWnW\nLGVnq2vXsr5d0qRJat/e8XYF2YnHJQc7eksB+DVuQwHM4CKNde6sXbvUu7f27bOnsbJw7qKt\nwH1ixd8up31+xtsVZCcelxzsli1bVpY3nz17tvDqWFicl5pkgYphWR8wT4lpbPNm+0i51jqd\n59IqcJ9Y8bc7C6o8V6hSzROrVq3qaOGOYcAH6OusGG5DAcxTYhrLzLT3uhamsYwM2Wzq3t3x\n4uLdr5W8Tyw4o5trZTrH7vjx48uWLcvJyblsXPkmSbpw4cKaNWsKOGcQqDC3t/QCgP/hdld/\n5j7Y5eTkxMfHHzt2rIQ3V606YcIEL1QFBAf6OgEAHuU+2D399NMXLlyYPXt2+/bte/TokZmZ\n2bRp082bN7/xxhsLFy7szfFRFsD+ObPQ1wkA8Cj3e+yysrJGjRo1atSorl27SurQoUPv3r2f\nf/75NWvWpKSkfPbZZ94vErAijmsGAE/LyrrqTgtJS5e62ednMe6D3ZEjR1q1aiWpSpUqki5e\nvGiM33LLLaNGjZo0aZJX64OHGZNzxhlBPlNaf4BX+wb8vynB9ItAAACW4z7Y1apVKy8vT1JY\nWFhERMQPP/xQ+NSNN964bds2L1YHCyhy71NhsvTqfVABcdkUfZ0AglhhF22hsnTReurtFuY+\n2CUkJLzyyiubN2+WdNNNN82ZM6ewE3bjxo3Vq1f3an0IeEZ/wAMPaNw49ezpftyrHwoAqATi\nlP9zH+zGjx9/4sSJMWPGSBo2bNi2bdtuvPHGpKSk2NjYBQsW9OrVy/tFIpCV1h/g1b4BmhIA\nAEHJfbCLj4//9NNPH330UUkPPfTQuHHjjh8/vnLlyp07d/bt23fmzJneLxIBq7T+AK/2DdCU\nECRM2TAKAP6tTAcUx8XFxcXFSQoJCXnuuecmTpx49OjRhg0bXnPNNV4uDwGutHufvHofFJdN\nAQCCVZmCneHIkSNHjx49efJkvXr1GjduTKrza0uW6MkndfSo0tM1Y4ZpZdx6q65ckf7oD3A7\n7tUPBQDA6sp0V+yCBQtatmwZGRnZsWPHO++88+abb27QoEH79u2XLVvm7fpQEQHREwoAADzN\n/YzdvHnzRo4cWb169Z49ezZp0qRmzZqnTp3at29fdnb2kCFDLl68+OCDD/qgUJQDF1UBABCU\n3Ae7mTNn9u7d+80336xTp47z+MGDB++6667p06cT7PwOPaEAAAQl90uxOTk5EyZMKJLqJLVs\n2TI9Pf3AgQPeKQwVRU9oAKGvEwDgUe6DXZ06dUJDQ0t8KjQ09Prrr/d0SagcLqoCACBYuV+K\n/dOf/vTee+916dKl+FNr1qxJTk72QlWoBHpCAQAIVu6D3dSpU/v375+Tk3P//fdHRUXVqFHj\n7Nmz33777auvvnrx4sVRo0YdPny48MVNmzb1ZrUAAAAolftgFxkZKWnr1q1Lliwp/mxUVJTz\nL202m6cqg8f4yZl2AADAy9wHu/79+1evXt0HpcArjDPtwsI0ZYo6dzahAKM/oOzjXv1QAAAs\nzX2wW7lypQ/qgLcYZ9pVqaIJE5Serp49zS4IAAB4S8nB7ujRo9WrV7/22muNx66/RKNGjTxf\nFyrv22/VtKmOHJGky5dNm7EDAAC+UnKwa9y4ce/evdetW2c8dv0l2Ffnpz74QJJ+/12SfvtN\n48dr+HBm7AAAsLCSg93gwYNvueWWwsc+rAeec/mykpJ0/fX6+9/1b/+m6dPVsqXZNQEAAC8q\nOdgtW7asxMcIMDt26OBBSfr+e913n4YP1yuvmF0TAADwFvc3Txj27Nlz/Phx51/u2LHDOyWh\n0qZOtT8wUp2kf/s3E26hWLJETZuqalWNHevTzwUAuJOSopAQnTyp4cPVsKFq1FCXLtq6VefO\n6Ykn1KSJIiLUtau++srsQlFO7oPdpUuXHn300ejo6N27dxcObtq0qWPHjg8//PAV45ID+BXn\nW8X+/GdJuu469e+vm2/2XQ3GMSsFBZoyRb17++5zAQBlEBYmScnJatJE69Zp3jzt3KnkZA0e\nrPBwrV6txYu1d68SE3Xpktm1ojzcH3fy8ssvv/rqq/fcc88NN9xQONirV6/BgwcvWrTolltu\nefzxx71ZIcrP+Vax5s3NqcE4ZuXhhzVunDkFAABKV7WqJEVFaeJESYqN1dq1Wr5c8fGaNk2S\n4uKUlaVZs5Sdra5dzSwV5eJ+xm7RokX33nvvmjVrWjptvW/btu2yZcsSExNnz57tzfIQsC5c\nkKRatcyuAwBQqqQkx2PjJql+/RwjbdtKsp+ahUDhPtjt37//jjvuKPGp22+//ccff/R0SQh8\nd9+thARJmj5dISEaMcLsggAAJWjSxPHYmMNzHqlWTRJLsQHGfbCrXbt2Tk5OiU/l5ORcd911\nHq4IFuC8yc/3TRsAgLIxopvrEQQW98HunnvuWbhw4dq1a50HL126tGDBgr///e933XWX12pD\nwLr1VvuMXVSUr5s2AAAIYu6bJ6ZOnfrBBx/cc889zZs3b9u2bfXq1U+ePPntt9/++uuvjRs3\nnlp4sgYAAABM5X7GrnHjxjt27BgxYsTZs2c/+uijNWvWfPrpp6GhocOGDcvOzm5uVtMlyigm\nRpJuu63kZzlqDgAAC3E/YyepYcOG8+bNmzt37pEjR86fP9+oUaOaNWt6uzJ4nXHUXFiYpkxR\n585mVwMAACqrTMHOEBISEhkZ6b1S4BXdu8tmK/kpjpoDAMBa3Ac7m8321ltvvf7664cPH75U\nUtOz840U8Bcu8lwhjpoDEGyWLNGTT+roUaWna8YMs6sxU2amMjOvGsnIUEbGVSP/v717j4uy\nzvs//hmBARQENU+EJ4LSZLUULQIWNUo7rCLr+dRa/B6i1Sr3Si3eKR7WAyud09W6160szUzJ\nVm+1tYxVyzXNvE2tEE+ooC4JiogKzu+PqVnkMDMww1xzfef1/AuuubjmMyNevOd7TE6W5GQX\n1gRnsB3sXnzxxbS0NBFp2rSpD9OglTFokGzdKiKSmSmZmTJpkixbpnVNANCYGH8CD2A72L36\n6qsDBw5cunRpWFiYCwqCi2RkSHy8zJghSUkyfrxU2VYEANTE+BN4ANvB7ty5cx999BGpTjVV\n95NNTNS6GgBofIw/gQewvdxJ27ZtTTZHawHVmAf5mbeSBgDNsdUhPIPtYDd69OiVK1e6oBQA\nABoLWx3CM9juip01a9awYcPGjh07YcKEjh071pw/ER4e3ji1AQDgJIw/gWewHewCfxmOsGrV\nqlpPoKMWAADAHdgOdqNHjzYajd7e9VjKGAAAAK5nO67V1VAHAAAAt1J7sCssLPT19W3RooX5\na+uXaNeunfPrAgAAQD3VHuzat28/cODALVu2mL+2fgnG2AEAALiD2oPdyJEj77nnHsvXLqwH\nLmTPfrIAAEA/ag92H3zwQa1fAwAAwG3ZXqD4k08+OXTokAtKAQAAgCNsB7uRI0du3LjRBaUA\nANCI2OoQHsB2sIuNjc3Jybl586YLqgEAAECD2V7H7r333ktNTX3ssccmTJhw5513BgUFVTuB\nLcUAAADcge1gZ1mmzrz6SU0sdwIAAOAObAe7kSNHGo1GHx8fg8HggoIAuIVVq+S556SwUFJT\nZfFirasBANjFdrBjuRPA45SUSHKyGI0yb5706aN1NQAAe9kIdteuXTtw4EBZWVnXrl3dcOuw\n69evHzhwoLS0tHPnzl26dNG6HEAVubly9apMnCjp6VqXAgCoB2uzYt9555127drdd999/fv3\nDwkJGTNmzOXLl11WWTV/+tOftm/fXvXI8uXL27Vr17dv3wEDBoSFhUVFRX377bdalQcopbxc\nRCQwUOs6AAD1U2ew++c//zlx4sTS0tKBAweOGTOmS5cuq1evnjBhgiuLq2rmzJlbt261fLtp\n06aUlJSysrKhQ4dOmjQpJiZm3759/fr1y8vL06pCQBGDBklcnIhIZqYYDJKSonVBAAB71Rns\nsrKyDAbD559/vmXLlvfff//IkSNDhw79+OOPv/vuO1fWV5fU1NSgoKD9+/evX79+2bJlO3fu\nXLdu3aVLl+bPn691aYBjVq2S0FDx9pa0NG0KyMiQBQtERJKSJDtbJk/WpgzAJs3/swDup85g\nt3v37ocffjjO/MFdxGg0zp49W0T++c9/uqYyKy5cuJCbm/v0009369bNcjApKWnIkCGffvqp\nhoUBjjLPWigtlXnzZOBAbWqIjv65xS4iQhITpWdPbcoArHOH/yyA+6lz8kRRUdGdd95Z9Yj5\n26KiokYvypby8nIRqZrqzCIjIzdt2qRFRYCTMGsBsBP/WYDa1Nlid/PmTX9//6pH/Pz8RKSy\nsrLRi7IlJCQkKCjo9OnT1Y6fPXs2kOHe0DVmLQB24j8LUBvbe8W6j1OnTu3du/fo0aMXL16c\nMmXKX//617KyMsuj33///Zo1a2JiYjSsEHAIsxYAO/GfBaiDnoLd6tWr+/TpExER0bp164UL\nFx49enTz5s3mh1atWhUVFXX16tWZM2dqWyTU4fpx2cxaAOzEfxagDtYWKN65c6d5wkRVX3zx\nRbWDNc9pDH/729+KqygpKSkuLm7RooX50eLi4uDg4A8++KAPq+TDKTTZeiE6WsxDHcyzFgDU\nhf8sQB2sBbtdu3bt2rWr2sGcnJycnJyqR1wT7H73u99ZeXTChAkpKSlNmuipARJujXHZAAAd\nqjPYrVy50pV1OCggIEDrEqAWxmUDAHSozmA3btw4V9YBuJFBg8S8zUlmpmRmyqRJsmyZ1jUB\nAGCbOn2XeXl5CQkJCQkJWhcC/fPMcdlVJ4vExorJJIsWaV0TAKB+rI2x05fLly9/9tlnWlcB\nJXjguGxNJosAAJxNnWDXtWvXgwcPal0FoE9MFgEAJagT7Pz8/CIjI7WuAtAnJosAgBL0N8bO\nZDIdO3Zs27Zt2dnZ2dnZn3/+eX5+foOvduzYMR8fH4NVKaxprneuX2pYX1jEHwBUoacWu4sX\nL86fP3/lypXnz5+v9lDHjh2Tk5OnT59ebX9bm8LCwr7++mvrG+CuX79+gXkoPfRIX6PHzLMW\nXCwjQ+LjZcYMSUqS8eOlSxdXFwA0gCb/WQC3p5tgV1BQEBMTc/z48YiIiEcffbRTp07NmjUT\nkUuXLuXl5eXk5MyaNWvdunXbt2+3bEdhp3vuucf6CXv37m143XC9VavkueeksFBSU2XxYkaP\n2eaBk0UAQFG6CXYzZ848ffr0hx9+OHz48JqPVlZWLl++/JlnnpkzZ84rr7zi+vLgLmq2zzF6\nDADgMXQzxm7Tpk3jx4+vNdWJiJeX15QpU0aMGLF+/XoXFwb3Ym6fGztW0tMlIYHRYwAAj6Kb\nYFdUVHTHHXdYP6dbt27nzp1zTT3QjPWZENXa5zxzqWEAgKfSTbALCQk5cOCA9XP2798fEhLi\nmnqgDXNPa2mpzJsnAwdWf7Rm+1x09M9HzKPHeva094ncc+sFpvcCAKzSTbBLTExcu3ZtVlbW\ntWvXaj565cqVjIyMDRs2jBw50vW1wXWq9bRWo3b7nPVQCwCAjiZPzJ49e8eOHWlpaXPnzu3b\nt2+HDh0CAgJMJlNpaenJkyf37NlTVlYWFxf3wgsvaF0pGpP1mRBqz+5kei8AwBbdtNgFBwd/\n9dVXL7300h133PHFF1+8/fbbb7zxxpIlS955551du3b16NHjzTff3L59e0BAgNaVejBHOgrt\n+VkPnwnB9F4AgC26abETEaPRmJqampqaWl5enp+ff/nyZRFp3rx5x44djUaj1tV5PEfWAbbz\nZz15Hd1Bg2TrVhGRzEzJzJRJk2TZMq1rAgC4HT0FOws/P7+IiAitq8CtHOkotPNn1e5pta6x\nQy2L+AOAEnTTFVurrKys2NhYrauAiDjWUUgno00Nnt4LAPAk+g52R48e3bVrl9ZVwLHRbx4+\ncg4AAOfRd7CDu3BknRG11ygBAMCFdDnGDm7HkdFv0dGyZYuISHa2hIU5f/Aco8cAAB6DFjto\nraREMjNFRH79a9bdBQDAEfoOdosWLcrPz9e6CjgmN1fMu4ncf38tm0nUl3tuBQYAgEvouys2\nODg4ODhY6yrgGPOUWAAA4DB9t9hBe5YdI5YubciPW6bEikhmJlNiAQBwBMEODqi6LX3fvg25\ngmVKrIgkJdmeEktPKxqDI7vhAYA70XdXLDRWdceInTsbcgXLdFoRiYhg3V1rmN7bSBzZDQ8A\n3AwtdnAAO0ZAQ85qZjN/Phk7VtLTnTB9BwA0RbBDQ1XbMSIrS+uC4EmqDgNwcJWcv/9dROQv\nf6EfFoAC6IpFQ9Xclv7jjxt+teefZ+Qc6qHqMABHJCTIZ5+JiJhMkpUlly/LsmVOKRAANEGw\nQ0M5stsE4CBnDQMYO/bnYGf5fAIAekZXLAC9qTYMwJFVciIi/vNFYiLTdwDoHcEOgN5YVslJ\nSpLsbNur5NSFZRQBKIeuWAB646xhAJZxomLfMooA4PZosQPcG2vnNp7o6P+02LGMIgAlEOyg\nNQc3k1A79zhxUQ8AgAcg2EHP3Db3sHYuAEALBDu4lnMb2Nwz9zgxbrK3BwCgPgh2cCGnN7C5\nZ+5xVtx04qIeAADPQLCDA+o7PM65DWxum3ucFTedtagHAMBjEOzgQs5tYHPP3OPEuGmZs8na\nuY2NHe0AqIJgB1dxegObe+Ye94ybdVF7TjEAeB4WKIarWBaDVXtTTh1toWse8mg0yrx50qeP\n1tXUk3kYAADgVgQ7uIqOEo+HMA95nDhR0tO1LkU7BEQAaqErFqp4+GExGMRgkPbttS5FJ9xz\nTjEAwAEEOyjh8GH5xz9ERCIi5PHHta5GD9x2TjEAwAF0xUIJH30kItKypfz4o9al6ISHDHkE\nAA9DsIMSSkpERPz8tK5DPxjyCAAqIthB/7Kyfs4oZ8+KwSAtWshPP2ldEwAAGiDYQf/69JGi\nIsnNFT8/efRRiY7WuiDnYc4mAKA+CHbQM0vu+cMf5KWXpGVLWbdO65oAANAMwQ5wNprZAAAa\nIdjBhUg8AAA0JtaxAwAAUATBDgAAQBEEOwAAAEUwxg7wVAx5BADl0GIHoBGsWiWhoeLtLWlp\nWpcCAB6EFjsAzlZSIsnJYjTKvHnSp4/W1QCAB6HFDkp48UUxmeTMGa3rgIiI5ObK1asydqyk\np0tCgtbVAIAHIdgBVdCB6BTl5SIigYFa1wEAHodgB/zC3IFYWirz5snAgVpXo1uDBklcnIhI\nZqYYDJKSonVBAOBBGGMH/MLcgThxoqSna12KnmVkSHy8zJghSUkyfrx06aJ1QQDgQQh2wC/o\nQHSK6GiprBQRiYiQxEStqwEAz0JXLCAidCACQCNg4LLLEewAERHJyJAFC0REkpIkO1smT9a6\nIAAeQO3cw8BlLRDsABERiY7+ucXO3IHYs6dDV1P7Zg3AKZTPPax8pAXG2AHOxvK8AOyh/IQt\nBi5rgRY7wNn4kArAHmrnHgYua4RgBzib2jdrAE6hfO5h4LJGCHaAUyl/swbgFMrnHucOXIbd\nGGMHOBXL8wKwBys+onEQ7ACn4mYtIrGxYjJpXQQAeCK6YgEAABRBsAMAAFAEXbHAL5zVgfiP\nf4iI/PnPUlkpixc74YIAANiHFjvAqUpKJDNTROTXv1ZzKXkAnoxtddwewQ5wqtxcuXZNROT+\n+52zOjG3UQBuQvk90JRAVyzgVObViZ2F3ckAuA/l90BTAi12gPNYVicWkcxMJ6xObM/uZDTp\nAXCN+m6rYx64vGhR41WEmgh2cBVPyB+WpeRFJCnJCUvJ27yN0jMC6Je+cg/b6uiE/oKdyWQ6\nduzYtm3bsrOzs7OzP//88/z8fK2Lgi0ekj8sW+g8/7ysW+foFjr23EbtadKD4zzhYwlgnfJ7\noKlCT2PsLl68OH/+/JUrV54/f77aQx07dkxOTp4+fbq/v78mtcEGRmY0gD27k9W3ZwQNwEhH\nQGrbVmfVKnnuOSkslNTUhi/t5JSLoArdBLuCgoKYmJjjx49HREQ8+uijnTp1atasmYhcunQp\nLy8vJydn1qxZ69at2759e4sWLbQuFjWQPxrA5u5kgwbJ1q0iIpmZkpkpkybJsmWuK89zbsd8\nLAFqcsoHHj41NQLdBLuZM2eePn36ww8/HD58eM1HKysrly9f/swzz8yZM+eVV15xfXmwRtv8\noTB7mvQaiUfdjvlYAtTklA88fGpqBLoZY7dp06bx48fXmupExMvLa8qUKSNGjFi/fr2LC4Nt\njMxoJJYhfeYmPQeH9NWL54ztY8A4asWwS6d84OFTUyPQTbArKiq64447rJ/TrVu3c+fOuaYe\n1IOG+QPWNfiPk+fcjvlYgpo8ZDaYFU75wMOnpsahm2AXEhJy4MAB6+fs378/JCTENfUAutfg\nP04edTvmYwlq8pwW67o45QMPn5oah26CXWJi4tq1a7Oysq6Z92u61ZUrVzIyMjZs2DBy5EjX\n1wboUoP/OHE7div0Cbqe57RY18UpH3j41NQ4dDN5Yvbs2Tt27EhLS5s7d27fvn07dOgQEBBg\nMplKS0tPnjy5Z8+esrKyuLi4F154QetKgXrSanppg/842ZyuC5fxqFksboLZYHBvugl2wcHB\nX3311ZIlS959990vvvii0vx3RUREfHx8evfu/eSTTz755JNeXl4aFgn8vJS8/bT6w8wfJzUw\nqdD1NJyNDthBN8FORIxGY2pqampqanl5eX5+/uXLl0WkefPmHTt2NBqNWlcHNIhWf5j546QG\n+gRdz5NbrOv7wRVa0FOws/Dz84uIiNC6CsAZrP9hbrzbqCf/cVIGza4AatDN5AlAQR41vZQx\n/k7HLBYANagT7PLy8hISEhI8c+Y5nMtlEcTxP8zmJr1Fi/5zxD3zU8OWVnHP1+I+mFQIoAZd\ndsXW6vLly5999pnWVaAOOhqZ4crZDE7vD3XbOZINGErotq8FANyYOsGua9euBw8e1LoK6J+u\npxm6bfENGOPvPq9FRx9LAHg8dYKdn59fZGSk1lVA/3Q9zdA9i2/YGH/3fC0AzJzygYdPTY1A\nnWAnIkVFRRcvXgwPD7f/R86cOTNs2LAbN25YOefChQsiYuKXzxPoepqhK4uv1+24AUur6Pof\nAgC0o1SwW7x4cWZmZr0SWKtWrUaNGlVubhuow7/+9a9Tp04ZDAaHC4Tb0/Xqbm5bfAOGErrt\nawEA96ZUsGsAPz+/qVOnWj9n+fLl2dnZrqkHGtP16m66Lr4alV4L1EMHItyYpwc7wHPxxwkA\nlKObYBcVFWXznDNnzrigEgAAAPekm2C3f/9+EfHx8bFyTkVFhavKAQA3QLMrgFvpZueJtLS0\nZs2afffdd+V1mz59utZlAvVUc+sI98HGDwCgN7oJdvPmzQsPDx89erT1pUkAOEfDNgEDAGhK\nN8HOx8fn/fffP3To0IwZM7SuBfAA5o0fxo6V9HRhC2bAw9F+rx+6GWMnIt26dSssLLQykO6R\nRx4JDg52ZUmAstj4AYAZGzfrip6CnYg0b97cyqPx8fHx8fEuKwZQltM3fmCMP6Bf7rNxM+yg\ns2AHNDpdRxBnFe8OGz/o+h8CLrZqlTz3nBQWSmqqLF6sdTXKof1eV3Qzxq5WWVlZsbGxWlcB\nKCc6WuLiRH7Z+KFnT60LAurGRJ9GNWjQz3eDzEwxGCQlReuCYIO+g93Ro0d37dqldRVAI2PY\nMmAFE30aVUaGLFggIpKUJNnZMnmy1gXBBn0HO0B9tEagGoJ+NXQUNira7/WGYAe4N1ojUBVB\nvxo6CoFbMXkCcG+0RqAq5idW4w4TfQB3ou8Wu0WLFuXn52tdBdBoNG+NWLqULj/3QtCvho5C\n4Fb6DnbBwcGhoaFaVwE0Gg2HLV+5IiJy/Tpdfm5E86APwO3pO9gBinNua0S9Bt2b28Lvvpux\nfW6E+YkAbGGMHeAZ6rsp0PXrIiK+vo1dF+ohOloqK0V+CfoAUAMtdoBnqNfs2kGD5OmnRUR2\n76bLDwB0hGAHeIZ6Dbqnyw8A9IlgB+icPSPnqg26T0iw8SPMNARgYd64edEireuAXQh2gJ7Z\nuVxt1Ra499+XnTtZ4RYAlMTkCUDP7Fyutuqg+zvvlGvX5KmnWOEWANRDsAP0rAHL1bLCLRRj\n7igEICJ0xQI61oDlaj/8kBVuAUBhtNgB7s1Ka0QDdsmMiZH/9//YWBMAVEWwA3SrAcvV3n77\nLdNdoTt0OwKwiq5YAAAARRDsAAAAFEGwAzxbXesbsyQpAOgQY+wAD2Ze39holHnzpE8frasB\nADiKFjtAV+zZQKxWtbbAmdc3HjtW0tMlIcGJZQIANEGwA+rW4BTVSOzcQMx+LFYMAGoh2AF1\ncHqKcpxzG9gasL4xAMC9McYOqIOd27C6knMb2BqwvjEAwL0R7IA6uFs35aBBsnWriEhmpmRm\nyqRJsmxZQ5arrfoj9V3fGADg3uiKBWrjht2UGRmyYIGISFKSZGfL5MlaFwQAcDu02AG1ccNu\nygZsIAYA8DAEO6A2pCgAgA7RFQsAAKAIgh0AAIAiCHYAAACKINgBAAAogmAHAACgCGbFAh6s\nAesbAwDcGC12AAAAiqDFDtAPGtgAAFYR7IA6kKIAAHpDVywAAIAiCHYAali1SkJDxdtb0tK0\nLgUAUA90xQK4VUmJJCeL0Sjz5kmfPlpXAwCoB4IdgFvl5srVqzJxoqSna10KAKB+6IoFcKvy\nchGRwECt6wAA1BvBDkAVgwZJXJyISGamGAySkqJ1QQCAeiDYAagiI0MWLBARSUqS7GyZPFnr\nggAA9cAYOwBVREdLZaWISESEJCZqXQ0AoH5osQMAAFAEwQ6Aw1iPrxQDAAAWlUlEQVT3DgDc\nA12xABzDuncA4DYIdgAcw7p3AOA26IoF4BjWvQMAt0GwA+AA1r0DAHdCsAPgANa9AwB3whg7\nAA5g3TsAcCcEOwC3io0Vk0nrIgAADUFXLAAAgCIIdgAAAIog2AEAACiCYAcAAKAIgh0AAIAi\nCHYAAACKINgBAAAognXsADiGde8AwG3QYgcAAKAIfbfYXb9+/cCBA6WlpZ07d+7SpYvW5QAA\nAGhJNy12f/rTn7Zv3171yPLly9u1a9e3b98BAwaEhYVFRUV9++23WpUHAACgOd0Eu5kzZ27d\nutXy7aZNm1JSUsrKyoYOHTpp0qSYmJh9+/b169cvLy9PwyIBAAA0pNeu2NTU1KCgoK+++qpb\nt27mI+vXrx82bNj8+fNXrFihbW0AAACa0E2LXVUXLlzIzc19+umnLalORJKSkoYMGfLpp59q\nWBgANIpVqyQ0VLy9JS1N61IAuDVdBrvy8nIRqZrqzCIjI8+fP69FRQDQaEpKJDlZSktl3jwZ\nOFDragC4NV12xYaEhAQFBZ0+fbra8bNnzwYGBmpSEgA0ltxcuXpVJk6U9HStSwHg7vTUYnfq\n1Km9e/cePXr04sWLU6ZM+etf/1pWVmZ59Pvvv1+zZk1MTIyGFQKA85WXi4jwqRWAHfQU7Fav\nXt2nT5+IiIjWrVsvXLjw6NGjmzdvNj+0atWqqKioq1evzpw5U9siAcCZBg2SuDgRkcxMMRgk\nJUXrggC4Nd10xf7tb38rrqKkpKS4uLhFixbmR4uLi4ODgz/44IM+ffpoWycAOFNGhsTHy4wZ\nkpQk48cLK7EDsEo3we53v/udlUcnTJiQkpLSpImeGiABwLboaKmsFBGJiJDERK2rAeDudBPs\nrAsICNC6BAAAAI3RxAUAAKAIdYJdXl5eQkJCQkKC1oUAAABoQ5GuWBG5fPnyZ599pnUVAAAA\nmlEn2HXt2vXgwYNaVwEAAKAZdYKdn59fZGRkfX+qpKRk5syZ165ds3LOkSNHHKgLAADARdQJ\ndiJSVFR08eLF8PBw+3+koqLip59+un79us0zvb2Veq8AAIB6lAorixcvzszMNJlM9v9Iq1at\n3nvvPevnfPnllzExMSySBwAA3JxSwQ4AFBQbK/X5vArAk9EKBQAAoAjdtNhFRUXZPOfMmTMu\nqAQAAMA96SbY7d+/X0R8fHysnFNRUeGqcgAAANyObrpi09LSmjVr9t1335XXbfr06VqXCQAA\noBndBLt58+aFh4ePHj36xo0bWtcCAADgjnQT7Hx8fN5///1Dhw7NmDFD61oAAADckW7G2IlI\nt27dCgsLrQyke+SRR4KDg11ZEgAAgPvQU7ATkebNm1t5ND4+Pj4+3mXFAAAAuBXddMUCAADA\nOn0Hu6ysrNjYWK2rAAAAcAv6DnZHjx7dtWuX1lUAAAC4BX0HOwAAAFgQ7AAAABRBsAMAAFCE\nzpY7qWbRokUvvPBCYz+L0WgUEV9f38Z+IgAAoBfmeOBuDCaTSesadODAgQNWFkaGTYmJiQ8/\n/HD//v21LkR9U6dOHTFiRExMjNaFqC8lJeWpp57q06eP1oWo78knn0xNTf3Vr36ldSGKu3nz\n5hNPPPHWW2/de++9WteiA97e3j179tS6iloQ7OAKXbt2TU1NnTRpktaFqK9Dhw4LFy4cN26c\n1oWor1WrVm+99VZSUpLWhajPz89vw4YNAwcO1LoQxVVUVPj4+OzYsYN1xHSNMXYAAACKINgB\nAAAogmAHAACgCIIdAACAIgh2AAAAiiDYAQAAKIJgBwAAoAiCHQAAgCIIdgAAAIog2MEVjEaj\ne+6ppx7eapfhrXYZ3mrXMBgMPj4+vNV6x5ZicIXTp0+3adOG+4ULnDp1KiQkxNvbW+tC1Hfy\n5MnQ0FAvLy+tC1Hf8ePHO3fubDAYtC5EfceOHevSpQtvta4R7AAAABRBVywAAIAiCHYAAACK\nINgBAAAogmAHAACgCIIdAACAIgh2AAAAiiDYAQAAKIJgBwAAoAiCHQAAgCIIdgAAAIog2AEA\nACiCYAcAAKAIgh0AAIAiCHYAAACKINgBAAAogmAHF7l48eL06dM7derk6+vbpUuXxMTE3bt3\na12Usm7cuJGenu7l5RUVFaV1LaopLi6eNm1a586djUZjSEhIcnJyQUGB1kUpi99k1+D+rBKD\nyWTSugao76effurdu/eJEycee+yxXr16HTt2bM2aNd7e3nv27PnVr36ldXWqOXLkyLhx43Jz\nc69cuXLvvffu3btX64rUcf369ejo6G+++ea3v/1tr1698vLyVq5cGRoaum/fvhYtWmhdnWr4\nTXYN7s+qMQGN7+mnnxaR119/3XJk3bp1IvLoo49qWJWSSkpK/P39o6KicnNzfX19e/furXVF\nSnnppZdEJDMz03JkzZo1IvKHP/xBw6qUxG+yy3B/VgxdsXAFHx+fBx98cNKkSZYjQ4cO9ff3\nP3TokIZVKamiomLKlClffvlleHi41rUo6N133w0MDJw6darlyIgRI8LDw1euXGmi98Op+E12\nGe7PiqErFtq4du1aYGBg3759d+7cqXUtyvLz84uMjKQDy1nKy8sDAgL69eu3bdu2qscnTpz4\n9ttv5+XlhYWFaVWb2vhNdjHuz7pGix20sXz58hs3bowaNUrrQgB75efnV1ZWdujQodrxTp06\nicixY8e0KApwPu7PukawgwZycnLS0tJiY2NTUlK0rgWw1+XLl0WkWbNm1Y4HBARYHgX0jvuz\n3nlrXQCUUlxc/Mc//tHybXh4+PTp06uds3r16okTJ0ZGRm7YsMHbm9/ABrLnrUZjMBgM1Y6Y\nB7TUPA7oDvdnBfDPBmcqLS1dvny55duYmJiqacNkMs2ePXvu3LmDBg368MMPAwMDtahREdbf\najSG5s2bS20tc5cuXRIRfp+ha9yflUGwgzOFhobWNR3HZDIlJyevWLHi2Wefffnll728vFxc\nm2KsvNVoJB07dvT29j558mS143l5eSISERGhRVGAE3B/Vglj7OAiqampK1asWLBgwWuvvcZd\nA3pkNBp79+69Z8+esrIyy8GbN2/m5OR06NChY8eOGtYGOIL7s0oIdnCF9evXv/rqq1OnTk1P\nT9e6FqDhnnrqqbKyssWLF1uOvPnmm2fPnk1OTtawKsAR3J8Vwzp2cIXw8PC8vLxnn322adOm\n1R56/vnn2YvJiXJycjZv3mz+Oisrq3Xr1k888YT527S0tFatWmlXmgoqKyv79++/Y8eOIUOG\n9OrV68iRI2vWrImMjNy9e3fN3204gt9kl+H+rBiCHVzByoTB48ePd+7c2YW1KG7RokV1fezO\nzc1lEX/HlZaWzpkzZ+3atWfPnm3Tpk1iYuLcuXNbtmypdV2q4TfZZbg/K4ZgBwAAoAjG2AEA\nACiCYAcAAKAIgh0AAIAiCHYAAACKINgBAAAogmAHAACgCIIdAACAIgh2AAAAiiDYAQAAKIJg\nBwAAoAiCHQAAgCIIdgAAAIog2AEAACiCYAcAAKAIgh0AAIAiCHYAAACKINgBAAAogmAHAACg\nCIIdAACAIgh2AAAAiiDYAQAAKIJgBwAAoAiCHQAAgCIIdgAAAIog2AEAACiCYAcAAKAIgh0A\nAIAiCHYAAACKINgBAAAogmAHAACgCIIdAACAIgh2AAAAiiDYAXDUqFGjDAZDYWGhW13KcrXT\np0875WoA4P4IdgBERN577z3Drby8vNq2bZuUlLRz507rP3vPPfcMHDjQ19fX8TKceCk7mUym\njz76KDExMSQkxNfXt02bNlFRUfPnzz937pzLanBnixYtOnr0qM3Tbty4kZ6e7uXlFRUV5YKq\nANTFYDKZtK4BgPbee++98ePHx8TExMbGmo9cvXr1hx9++Mc//mEymd5+++0JEyZoW2EDjBo1\nas2aNfn5+aGhobWeUFxcPHz48G3btjVt2vTBBx/s1KlTUVHRnj178vLyWrduvW7duri4OBfX\n7FYKCgpCQkI2b948aNAgK6cdOXJk3Lhxubm5V65cuffee/fu3euyCgFU4611AQDcSEJCwuzZ\ns6se2bFjx4ABA6ZNmzZy5EhXNqS5xtixY7dt2zZkyJC33nqrdevW5oM3b9588803n3nmmSFD\nhnz//fdt2rTRtkgNff311zbPuXTpUu/evbt37/7NN99ERka6oCoAVtAVC8CauLi4Bx988OLF\niwcOHJBfRq2dP3/+oYce8vf3/+STT+TWgXFjxowxGAylpaXPP/98586dfX19O3To8PLLL1ft\nHCgsLExOTr799tubNWvWs2fPV199taKiwvxQ1UsNHTrUYDAUFBQkJye3bdvW19e3a9euf/nL\nX6qWt2fPnqFDh952221Go7Fz587jx48/ceKEnS9ty5Yt//u//9urV6+PPvrIkupEpEmTJikp\nKXPnzu3Vq1deXp754MmTJydOnHj77bcbjcbbbrtt8ODBe/bssfyI+VUXFxdPmjSpbdu2TZs2\nvf/++/fs2VNWVjZt2rTbb789ICDggQce+Oabbyw/Ys+rs+dJrb/V586de/rppzt16mQ0Glu3\nbp2YmFg1q1m/wuOPPz5kyBAReeSRRwwGQ1098hUVFVOmTPnyyy/Dw8PtfOcBNB5a7ADY0KpV\nKxEpKysTEaPRKCKpqak+Pj6zZs0KCwurdrL5hGHDhnXp0uWDDz64efPmnDlz/uu//is4OHji\nxIkicuHChaioqNLS0gkTJnTq1OmLL76YNm3awYMH/+d//qfapcwNhImJif3798/Ozr558+bc\nuXOnTJni4+OTnJwsIvv27YuPj2/ZsuXUqVPbtWt37NixJUuWfPrpp4cPHzbXbN27774rIv/9\n3//t7V3LnXDGjBkzZswwf52fn9+3b9+ysrLJkyd37979zJkzS5cu/fWvf71t2zZzz7X5VQ8f\nPjwuLm7Lli3/93//l5KSMnz48B49enTv3v2TTz45ceJEcnLyo48+mp+f7+PjY8+rs/NJrb/V\n9913X3FxcUpKSmRkZH5+/tKlS+Pi4rZu3RofH2/zCi+88ELLli1Xrlw5a9ase++99+677671\nbWzZsmVWVpbNdxuAi5gAwGRauXKliGRkZFQ7fv369bCwMHPbkslkevLJJ0Xk4YcfrqystJwz\ncuRIETGf8NRTT4nI6NGjLY+aG70ef/xx87eTJ08Wka1bt1pOeOyxx0Tku+++q3Yp89dVL1Vc\nXOzr69u5c2fzt0uXLu3Vq9f27dstJ7z++usi8vrrr1ctLD8/v9aXbH5dJSUlNt+cJ554QkTW\nr19vOXL48GEvL6/777/f/K35VU+ePNlywogRI0Rk2LBhliNTp04VkV27dlWtzcqrs/NJrb/V\n3t7eX3/9teWEU6dOBQYGRkVF2XmFhQsXisjmzZttvkVmvr6+vXv3tvNkAI2BrlgAtSsvLz94\n8OCoUaOOHTs2atSodu3aiYjBYBCRJ554okkTa3cPcygxCwsLa9q0qXnNEZPJ9OGHH3bo0OGh\nhx6ynPDaa699/vnnbdu2rfVSo0aNsnwdFBQUFxd34sSJgoICEZk8efK+ffv69esnIjdu3Cgv\nLze3KtnZG3vu3LmgoKDmzZtbP81kMn388cdt27ZNTEy0HOzWrVt0dPTu3buLioosB5OSkixf\nR0REiIi5K9PsrrvuEhFz5TZfnf1PauWtXrt2bY8ePUJDQwt/4ePj88ADD+zdu7e0tNTmFQDo\nEcEOwH/MmTPHstyJv79/jx491q9fP3jw4OXLl1c9zZxRrOjYsWPVb318fG7cuCEiBQUFRUVF\nXbt2NQdEs7CwsP79+9922221XurOO++s+u3tt98uIpaF7lauXBkfH9+iRQuj0ejv7//ggw+K\niGXEnnVNmjSprKy0eVphYWFJSUn37t2r1iy/vAk//vhjtdrMzN27VY+Ye2DN74PNV2f/k9b1\nVp8/f/7f//73N9980/5WW7duFZFTp07ZvAIAPWKMHYD/iI+PNzeAiUiTJk1atWoVGxvbs2fP\naqcFBQVZv445xNR09epV+WV4mZ2aNm1a9dtmzZqJSHFxsYjMmDFj4cKFUVFRL7/8cpcuXXx9\nfQ8dOmQeoGaPkJCQH3744d///nddmdLsypUrluetyt/f3/KoWc1XXdf7YFHXqwsMDGzwk5pd\nvnxZRO655x5zd2o1ISEh9hcJQEcIdgD+o1+/ftWWO3Euc3+uOZbZqWqIEZGSkhIRadWqVXl5\n+SuvvNKhQ4ft27cHBARUfdRODzzwwA8//PD3v//dPNWgGpPJdPDgwR49epgvXq0MyxFzAmuw\nul6d409qOcf6EnQAFENXLADXadasWevWrY8cOVK1s++HH3544403Dh06VOuPHDlypOq3ubm5\nItK+ffvCwsKrV69GRUVZUp2I5OTk2F+MOc/NnTvX3LhVzdKlS3v27LlkyZJ27dq1bNnyyJEj\npluXcz98+LDBYLDZK21dXa/O8Sdt27btbbfd9v3331eL0RcuXHCkYABujmAHwKWGDBlSVFT0\nzjvvWI7Mnj372WefvXbtWq3nr1ixwvL1jz/++PXXX991112tW7du27atwWCoOk/i22+/Na9g\nUl5ebk8lcXFxI0eOPHHixEMPPWRZr05EKioqXnvttalTp7Zv337MmDEikpSUVFBQsGHDhqrP\ntWfPngEDBgQHB9v5wuv16pzypMOHDy8vL1+8eLHlyIULF3r06PGb3/zGzvK8vLzklw50ALpA\nVywAl8rIyNi4cePkyZMPHDjQqVOnnJycjRs3TpgwoVevXrWef+3atd/85jePP/74zZs3//zn\nP5tMplmzZomIv7//Y489tnHjxpSUlH79+h0+fPiNN954//33Bw8evGnTptWrVw8ePNhmMStW\nrLh27drHH3/ctWvXuLi4O++8s7i4ePfu3SdPngwLC9uyZUuLFi1EZM6cORs3bhw/fvzvf//7\nu+6668SJE0uWLAkICHjppZccfDfqenVOedLZs2dv2rRpwYIFBQUF8fHxZ8+eXbZsWVFR0e9/\n/3s7r2Bep3DRokXHjx+Pi4vr06dPzXNycnI2b95s/rqiouLMmTN//OMfzd+mpaXZs6AgAGfS\nbKEVAO6krnXsqjGvfJabm1v1YM117KqdEBQU1L17d8u3J06cGDduXJs2bXx8fMLCwl588cWK\nioqalzJ/nZubO23atJCQEKPRePfdd7/99tuW65w/f37MmDGtW7cOCgoaMGDAjh07TCbTnDlz\nAgIC2rVrV1BQYH0dO4tPPvkkKSkpJCTEx8cnMDDwvvvuW7p0aVlZWdVzTp06NXHixPbt23t7\ne7dp02bUqFGHDx+28rZkZGSIiLkks7feektEVq9eXfWVWnl1DXjSmm91QUHB5MmTO3To4O3t\nHRwcPHjw4H/961/2X+H69eu//e1v/f39W7RosXbt2lrfvVonZ5hVuzIAFzCYbh3AAQBuYtSo\nUWvWrMnPzw8NDdW6FudT+9UB0Apj7AAAABRBsAMAAFAEwQ4AAEARjLEDAABQBC12AAAAiiDY\nAQAAKIJgBwAAoAiCHQAAgCIIdgAAAIog2AEAACiCYAcAAKAIgh0AAIAiCHYAAACKINgBAAAo\ngmAHAACgCIIdAACAIgh2AAAAiiDYAQAAKIJgBwAAoAiCHQAAgCIIdgAAAIog2AEAACiCYAcA\nAKAIgh0AAIAiCHYAAACKINgBAAAogmAHAACgCIIdAACAIgh2AAAAiiDYAQAAKOL/AyGFpOw7\n+nr1AAAAAElFTkSuQmCC",
- "text/plain": [
- "plot without title"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdaXzU1d338e9ICDGERRESEkS2SFUEA4oRQ1FBA0EBAyEsQrQGWdRXoRW9\n4FIIlSLcVm8om0pUkAoU9IoEykVvKyoBq4mgUIQqIBGoAQHZtyDM/eA/zAxZZibJrP/5vB8N\nZyaT3wzti6/nnN85FqvVKgAAAIS+qwJdAAAAALyDYAcAAGASBDsAAACTINgBAACYBMEOAADA\nJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2\nAAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAA\nJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGw\nAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAA\nMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmC\nHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAA\ngEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ\n7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAA\nAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyC\nYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcA\nAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgElEBLqA0LBly5Zffvkl\n0FUAAICgEBER0aFDh0BXUQGCnXtffvnlHXfcEegqAABAECkqKrr99tsDXUVZBDv3SktLJZ0/\nfz4yMjLQtQAAgAArLS2tU6eOEQ+CDXvsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAk\nCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYA\nAAAmQbADAAAwCYIdAACASRDsEJKGDJHFomPHNHKkYmMVHa3kZBUW6swZjR2rhATFxKhLF23e\nHOhCAQDwI4IdQlJkpCRlZCghQWvXav58bdmijAxlZioqSvn5WrRIO3YoLU0XLgS6VgAA/IVg\nh5AUESFJiYmaNElJScrKUp8+2rtXUVGaPl2dOql/f2Vl6eBBFRUFulYAAPyFYIcQlp7ueJyY\nKEl9+zpG2raVpJIS/9YEAEDgEOwQwhISHI+NOTznkdq1JbEUCwAIIwQ7hDAjurkeAQAgfBDs\n4ECrKQAAIY1gBwdaTQEACGkEOzjQagoAQEgj2KEsWk0BAAhRBDuURaspAAAhimCHskKi1TQ3\nV1ar2rRxjOTkyGpVSopjJDtbVqsGDfJ/dQAABAbBDnCPfmEAQEgg2AHu0S8MAAgJBDvAPfqF\nAQAhgWAHeIp+YQBAkCPYAZ6iXxgAEOQIdnCg1dS1kOgXBgCEM4IdAACASRDsAAAATIJgBwAA\nYBKmCnZHjx4tLi4OdBUAAACBEUrBbuvWrb17927RokXXrl3nzZt38eLFMi+YMWNGy5YtA1Ib\nAABAwIVMsNu4cWPnzp3XrFlz6NChL7744sknn+zevfvRo0cDXRfCAv3CAICQEDLB7qWXXrp0\n6VJeXt6pU6dOnjz56quvfvbZZ6mpqadPnw50aQAAAEEhItAFeGrr1q2ZmZn9+vWTVKdOnXHj\nxnXo0KFXr14DBw7Mz8+vVatWtd9527Zt58+fd/GCb7/9ttpvDgAA4DchE+wOHDjQqlUr55H7\n7rsvNzd3+PDhv/vd72bNmlW9t929e3f79u2tVqvbV164cCHSuAoeAAAgKIVMsIuNjf3666/L\nDA4bNmzHjh0vvfRSs2bNxo8fX423bd269YkTJy64vAdq4cKFv/vd7zwJfwAAAAEUMsEuPT19\n9uzZc+bMGTlyZG2ni5z++Mc//vjjj88+++yPP/5Yvk/WEzExMa5fEB0dXY23BQAA8LOQCXaT\nJk364IMPnn766ZUrV3744Yf2cYvF8vbbbzdo0GDmzJkBLA8AACDgQqYrtlGjRps2bRozZky7\ndu3KPGWxWGbNmvX++++3bt06ILUBAAAEg5CZsZN03XXXzZ07t7Jn09PT09PT/VkPAABAUAmZ\nGTsAAAC4RrADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEO/jQkCGyWHTsmEaOVGysoqOVnKzC\nQp05o7FjlZCgmBh16aLNmwNdKAAApkCwgw8Zl+tmZCghQWvXav58bdmijAxlZioqSvn5WrRI\nO3YoLU0uL3WrJmIlACDcEOzgQxERkpSYqEmTlJSkrCz16aO9exUVpenT1amT+vdXVpYOHlRR\nkfd/e2BjJQAA/kewg885nxudmChJffs6Rtq2laSSEu//3sDGSgAA/I9gB59LSHA8NsKW80jt\n2pJ8OGcWqFgJAID/Eezgc0Z0cz3iO4GNlQAA+BPBDiYX2FgJAIA/EewAAABMgmAHAABgEgQ7\nAAAAkyDYAQAAmATBDj6UmyurVW3aOEZycmS1KiXFMZKdLatVgwb5vzoAAMyGYAfTIlYCAMIN\nwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AFBZ8gQWSw6\ndkwjRyo2VtHRSk5WYaHOnNHYsUpIUEyMunTR5s2BLhQAEGQIdkDQiYyUpIwMJSRo7VrNn68t\nW5SRocxMRUUpP1+LFmnHDqWl6cKFQNcKAAgmBDsg6ERESFJioiZNUlKSsrLUp4/27lVUlKZP\nV6dO6t9fWVk6eFBFRYGuFQAQTAh2QJBKT3c8TkyUpL59HSNt20pSSYl/awIABDeCHRCkEhIc\nj405POeR2rUlsRQLALgCwQ4IUkZ0cz0CAIAzgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDY\nAQAAmATBDgg6ubmyWtWmjWMkJ0dWq1JSHCPZ2bJaNWiQ/6sDAAQvgh28iUtOAQAIIIIdvIlL\nTgEACCCCHbwpSC45ZeIQABCeCHbwvmpfcuqtQMbEIQAgPBHs4H3VvuTUW4EsSCYOAQDwM4Id\nvK/al5x6N5BVe+LQQyz4AgCCDcEOQcdbgazaE4ceYsEXABBsCHYIOt4KZNWeOPQQC75i2hIA\nggzBDkHH14HMu3y94BvkmLYEgKBCsANqxNcLvkGOaUsACCoEO5iZfaFw9WpJ6tHDsVC4bJkk\nPfpo2YXCqq4thtb8oo+E+bQlAAQPgh28KdguObUvFNarJ0m//71jodCIX2PGlF0o9Hxt8dIl\nf3yEkBDm05YAEDwIdghtFU6wHTokSVOnasUKSfrXv3TjjZLUq5djobB/f0nq3LnsQqHna4vG\nb4GYtgSAoEGwQ2ircILt66/14IOKi9P990vS6dNauVKlpUpJcSwU2icOK1wo9GRt8exZH34u\nAACqgWCHsgJ4gEU1VnJdT7Bdd50kPfywY07Ow4VCT9YWWYoFAAQbgh3KCsUDLFxPsBlJ0XlO\nzu1CIWuLAIBQRLBDWaF4gIXrCTZjxOsx9IkngqtTBAAAgh0qFloHWDDBBgCACHaoDAdYeC6c\nr9UKtgNuACDMEexQMebAPBeKuxIBAKZEsANqypNdibGxOnhQH38cjrN6AAC/IdjBzIyFwiZN\nHCNuFwqrvbboelfiNddI0vjxzOoBAHyIYAd4hyedubGxodRrDAAIOQQ7hLbg2bzvya7EO+5w\nPA7+XmMAQMgh2AH+c+21jsf0GgMAvI5gh7KCZw7MfGrVKjtCrzEAwIsIdgAAACZBsAMAADAJ\ngh0Q1ML5WgsAQFUR7ICa8mRXotHx+uCDVX5zrrUAAHiOYAcENU+uteAAPACAgWAH+EMNe41d\nX2vBAXgAAAPBDggBrq+14AA8AICBYAeEAE+utQAAgGAHAABgEgQ7AAAAkyDYAQAAmATBDgAA\nwCQIdkCwqPCSiUOHJGnqVMclExxrAgCoTESgCwBgY79komtXrV2rrVs1apSaNNGDDyouTvn5\nKi5Wdra+/16lpVd0xWZnKzs7UFUDAIIIM3ZAsOCSCQBADRHsgODCJRMAgGoj2AHBhUsmAADV\nRrADgouJL5mosDuksFBnzmjsWEd3yObNgS4UAEIWwQ6An9i7QxIStHat5s/Xli3KyFBmpqKi\nlJ+vRYu0Y4fS0piSBIBqItgB8BO6QwDA1wh2APyK7hAA8B2CHQC/ojsEAHyHYAfAr0zcHQIA\nAUewA4JFbq6sVrVp4xjJyZHVqpQUx0h2tqxWDRrk/+oAACGAYAcAAGASBDsAPlH+1Lr8fEk6\ne9Zxat2bbwa6SgAwF4Id4H2cxKuKTq37+WdJ+u1vHafWHT4sSV27Or6rMWMkaffu8PquAMBb\nCHaA93ESryo6ta55c0mqU8dxal2HDrYX27+rRx6RpJkzw+u7AgBvIdgB3hcSJ/H6Z1rR+dS6\nIUMkaehQx0hWlu2B/bt66y0NHKjDh4PruwKAUEGwA3ylqifx+nkB1z/Tip6cWidOLQYALyHY\nAb5S1ZN4/byA659pRQ9PrePUYgDwCoId4CtVPYk3IAu4QTJVFgynFtPyAsAECHZAcPFz0qrh\nVJmLMPT555LUvn3IhCFaXgCYAMEOCC5+XpSs4VSZizBUq5YkvfxyyIShkGh5AQDXCHZAcAmG\nRUnPuQhDd9whSampIRaGgmRtGgCqh2AHoKbMFIZo4wAQ0gh2AGqqwjCUmyurVW3aOMJQTo6s\nVqWkOF6cna3HH/dvre6E1owpAJRBsAO8z55p7CrMNFarBg3yf3XeV5MwFG7fFQD4VESgCwBg\n88knknTihEaO1Acf6ORJXXutJJ07p7FjtWKFjh9XXFxASwQABDdm7IBgcdVVkvT0044O04MH\nJWnyZMdxG8ZOtYsXvfDrmCoDAPMh2AHB4te/lqQOHRwdpkZTQny847iNESMkqWXLQNYJAAha\nBDsguJipwxQA4GcEOyC4cNxGoLA2DcAECHZAcAmt4zYIQwAQVAh2AAAAJkGwAwAAMAmCHQAA\ngEkQ7AAAAEyCYAcAAGASBDsgWNBhCgCoIYIdENSGDJHFomPHNHKkYmMVHa3kZBUW6swZjR2r\nhATFxKhLF23eHOhCAQBBgGAHBLXISEnKyHBcILtlizIylJnpuEB2xw6lpXFqMQCAYAe4E9g5\nM+PyicRExwWyffpo715FRTkukM3K0sGDKirySQEAgBBCsIMJeTeKBcOcGRfIAgA8QbCDCXk3\nigXDnBkXyAIAPEGwgwn5IooFds4stC6QBQAECsEOpuXdKOajOTO3q8aLFknSN99U+Z0BAGGI\nYIeg4IsGBe9GMR/NmbldNe7WTZKys1lpBQC4R7BDUPBFg0JILF+6XTVu0UKSDh+m6RUA4B7B\nDkEhGBoUAsj1qrGBplcAgFsEOwSRsD3Uw/WqsYGlWACAWwQ7BJGwPdTDxapxbq4WLLjiKS6Q\nBQBUhmCHIBISu+IAAAhaBDsEO3vD7OLFkpSV5dcbvSTl5spqVZs2jhHmzAAAwYlgh2Bnb5ht\n2FCSHn/cfcMsUQwAEJ4Idgh29obZhx6SpF//OrwaZgEA8BzBDqEhbBtmAQDwHMEOocGsDbOs\nGgMAvIhgh6DgNt/Url0234Rhw6wvLl4DAJgJwQ4IGb64eA0AYCYEOyBkhPnFawAAtwh2QIih\njwQAUBmCHRBiZs507LSbOVOSpk1z7LSbOFGSJkxgpx0AhCOCHRBi6tSRLu+0e+QRSdq927HT\n7qmnJOk//2GnHQCEI4Idgh0HgpRRq5Z0eaddXJwkpaQ4dtrdcIMkdevGTjsACEcEOyAkOe+0\na9ZMunKnXdOmEjvtACD8mCrYHTlyZNeuXYGuAvAH5/OZjTm88mc4sxQLAOHGVMHu5ZdfTjS6\nBAGzK38+cxie2AwAKMNUwQ4AACCcEeyAkGH0kdSv7xgx+kiaN3eMGH0kd9zh/+oAAIEXEegC\nPHX77be7fc1//vOfqr7tpUuX1q9f/8svv7h4zY4dO6r6tgAAAP4XMsHuq6++klTb5TYi1/ms\nQj/88MPAgQNd/+D58+clWa3Wqr45AACAP4XMUuz48ePr1q27bdu2c5V75plnqvq2LVu2/Omn\nn3526dVXX5VksVh88LEAAAC8JmSC3YsvvtimTZvBgwdf4AgHhDdObAYAVCZkgl3t2rXffffd\nb775ZqJxFyYAAACuFDJ77CTddNNNBw4ccLEfrlevXg0bNvRnSQAAAMEjZGbsDPXr17/22msr\ne7Zbt27/9V//5c96AJjekCGyWHTsmEaOVGysoqOVnKzCQp05o7FjlZCgmBh16aLNmwNdKACE\nXLADAD+LjJSkjAwlJGjtWs2fry1blJGhzExFRSk/X4sWaccOpaVxhxuAwCPYAYArxsW7iYma\nNElJScrKUp8+2rtXUVGaPl2dOql/f2Vl6eBBFRUFulYAYY9gBwDupac7HhtXUvft6xhp21aS\nSkr8WxMAlEOwAwD3EhIcj405POcR4+h0lmIBBBzBDgDcK3/rjct7cAKDPg8ABDsAMAn6PAAQ\n7ADAJEzQ58GkI1BDBDsAMJWQ7vNg0hGoIYIdAJhKSPd5mGDSEQgsgh0AmEpI9Hm4FtKTjkBg\n1SjYHT16tLi42EuVAP7ADh5UVW6urFa1aeMYycmR1aqUFMdIdrasVg0a5P/qzCmkJx2BwHIV\n7LZu3dq7d+8WLVp07dp13rx5Fy9eLPOCGTNmtGzZ0pflAV7GDh4g+Jlg0hEIlIjKnti4cWP3\n7t3Pnz8fHR39448/btiwYfny5Xl5eddcc40/6wO8y3kHj6SkJK1Zo+XL1bmzpk+XpE6dVFCg\nWbNUVKQuXQJZKgAAVVXpjN1LL7106dKlvLy8U6dOnTx58tVXX/3ss89SU1NPnz7tz/oAX2AH\nDwDAlCoNdlu3bs3MzOzXr5/FYqlTp864cePWrl27ZcuWgQMHll+TBUILO3hMj82UAMJTpcHu\nwIEDrVq1ch657777cnNz16xZ87vf/c73hQE+xA4e0wvPzZT0eQCodI9dbGzs119/XWZw2LBh\nO3bseOmll5o1azZ+/Hgf1wYA1cRmSgDhqdIZu/T09FWrVs2ZM+fClf89+8c//jErK+vZZ58d\nN27cmTNnfF8hAFQTmylDDpOOQA1VOmM3adKkDz744Omnn165cuWHH35oH7dYLG+//XaDBg1m\nzpzplwoBoJrYTAkg3FQ6Y9eoUaNNmzaNGTOmXbt2ZZ6yWCyzZs16//33W7du7ePyAKD6vLKZ\nkj4MACGk0hk7Sdddd93cuXMrezY9PT3deZ0DAMzI3ofRtavWrtXWrRo1ShkZat9et9yi/HwV\nFys7W2lp2rePLhwAAcZdsQgv7OBBVXEtPYAQQrADAPfowwAQEgh2AOAefRgAQgLBDgDc41Br\nACGBYAfAhNhMCSA8EewAAABMwn2w27Bhw88//1zhU4WFhe+//763SwIAAEB1uA92Xbt2Xb9+\nfYVPFRQUjBgxwtslAQAAoDoqPaB4165du3btMh5/9dVXUVFRZV5w9uzZ5cuXnz9/3ofVAQAA\nwGMWq9Va4RPTp0+fMGGC258fMGDAihUrvF1VcHn99ddHjRp18uTJmJiYQNcCAAACrLS0tE6d\nOhs3buzSpUugaymr0hm7//qv/8rKyioqKurbt++wYcNuvvnmMi+oVatWq1at+vTp4+MKAQAA\n4BFXd8U2bdq0T58+vXv3HjNmTHJyst9qAgDArSFDtHSpjh7Vc8/pgw908qTat9ef/6x27TRx\nolas0PHjat9ec+aoY8dA1wr4i6tgZ1i9erUf6gAAoEoiIyUpI0Ndu2rtWm3dqlGjlJGh9u11\nyy3Kz1dxsbKzlZamffs4UBrhwn2ws1qt77333jvvvLN///4LFd2Ys23bNh8UBgCAK8bdbomJ\nmjRJkpKStGaNli9X586aPl2SOnVSQYFmzVJRkYJvKxTgE+6D3SuvvDJ+/HhJ0dHRtflPHgBA\nMElPdzxOTJSkvn0dI23bSlJJiX9rAgLHfbCbNWtWamrqvHnzWrVq5YeCAADwXEKC47Exh+c8\nYkxHVLTaBJiT+2B38ODB9957j1QHAAhC5VeSWFtCOHN/80RsbGxlZ90BAAAgeLgPdoMHD168\neLEfSgEAAEBNuF+KnTRp0oABA4YOHTp8+PDmzZuX759o06aNb2oDAABAFbgPdvXq1TMeLFmy\npMIXsFALAAAQDNwHu8GDB0dGRkZEuH8lAAAAAsjCfJtbr7/++qhRo06ePBkTExPoWgAAQICV\nlpbWqVNn48aNXYLv5Gv3zRN2J0+e/Oabb44dO+a7agAAAFBtHgW7Tz/99Pbbb69fv367du0+\n//xzY7BPnz4fffSRL2sDAABAFbgPdoWFhQ888MB3332XmppqHzx06FBRUVFaWtqmTZt8WR4A\nAAA85T7Y/eEPf4iLi9u+ffvChQvtg40bN96yZUtcXNyLL77ow+oAAADgMffB7vPPPx89enSz\nZs3KjDdp0mTUqFHr16/3TWEAAACoGvfB7vjx49dff32FTzVt2vTUqVPeLgkAAADV4T7YxcXF\n7dixo8Kn1q9fHx8f7+2SAAAAUB3ug11aWtq8efM2b97sPHj06NH//u//fvvtt3v37u2z2gAA\nAFAF7oPdlClTYmJi7rzzTiPDTZgwISkpqWnTptOmTWvevPmkSZN8XyQAAADc82gp9ssvvxwx\nYsQPP/wg6euvv/7666/r1as3evTooqKi2NhY3xcJAAAA9zy6AbZJkybz5s2bO3fuTz/9dPLk\nyXr16pHnAAAAgk0VrhSzWCyxsbFt2rQh1QEAEFqGDJHFomPHNHKkYmMVHa3kZBUW6swZjR2r\nhATFxKhLF125ox6hx32ws1qtK1aseOihh5KSktpVxA9VAgDgAqnFrchIScrIUEKC1q7V/Pna\nskUZGcrMVFSU8vO1aJF27FBami5cCHStqAH3we6VV14ZOHDg6tWrv/vuu/0V8UOVAABz8FEC\nI7W4FREhSYmJmjRJSUnKylKfPtq7V1FRmj5dnTqpf39lZengQRUVBbpW1ID7YDdr1qzU1NTd\nu3efPn36WEX8UCUAwBx8lMBILR5KT3c8TkyUpL59HSNt20pSSYl/a4JXuQ92Bw8enDJlSqtW\nrfxQDQDA3HyawKqUWsJz9TYhwfHY+LtwHqldW1L4Tmqag/tgFxsba7Va/VAKACBM+GjeqEqp\nJTxXb40vwfUIQpr7YDd48ODFixf7oRQAQJjw0bxRlVILq7cwJffn2E2aNGnAgAFDhw4dPnx4\n8+bNa5f7f0mbNm18UxsAwJyCZ96IPWcwGffBrl69esaDJUuWVPgCFmoBACGKPWcwGffBbvDg\nwZGRkRERHt1RAQBACAmeuUPAK9zHtcom6gAAABBUqnCl2OHDh//5z3/+4x//+OKLLzi+DgCA\nEJKbK6tVzrvic3JktSolxTGSnS2rVYMG+b86eI1HwW7Dhg3JycmNGzfu0qXL/fffn5ycfO21\n1/bo0WPbtm2+rg8AALdILYDB/VJsYWFhjx49fvnll5SUlLZt21599dWnT5/evn37unXr7r77\n7sLCwrZG1xAAAO7k5io394qRnBzl5Fwxkp2t7Gw/1gSYiPtgN3Xq1MaNG3/44Ye/+tWvnMe/\n+uqrnj17TpkyhU14AAAAwcD9Uuxnn302ZsyYMqlOUlJS0pgxY9atW+ebwgAA8CFWb2FK7oPd\n8ePHmzVrVuFTLVq0+Pnnn71dEgAAAKrDfbBr0qTJjh07Knxq+/btTZo08XZJAACEtiFDZLHo\n2DGNHKnYWEVHKzlZhYU6c0ZjxyohQTEx6tJFmzf78B0QntwHuwceeGD27NkrV650vmHCarXm\n5eXNnTu3V69eviwPAIDQExkpSRkZSkjQ2rWaP19btigjQ5mZiopSfr4WLdKOHUpLq/Rai5q/\nA8KT++aJyZMnr1mzpl+/fnFxcTfffHPdunWNrtgDBw40bdp08uTJfqgSAIAQYtzWlJioSZMk\nKSlJa9Zo+XJ17qzp0yWpUycVFGjWLBUVqUsXn7wDwpP7GbsWLVp8+eWXWVlZZ8+eXbdu3apV\nq9atW1daWpqdnb1p06bKtt8BABDm0tMdjxMTJalvX8eIcVZYSUnV3uG99xzrs/PmSVJBAeuz\ncPDoBtjrr79+4cKFVqv1wIEDp0+fjomJiYuL83VlAACEtIQEx2NjBs55xLiU1vVCavl3kJSR\noa5dtXatZs/W22/rT3/Shg265Rbl56u4WNnZSkvTvn1cehumqnCl2IEDBw4cOLBv376ffvrp\n0KFDvqsJAOA77Mr3m/LRyj4yZIhGjJCk3Fzb38J118liUUmJbr1VtWrpzTcl6W9/c/y9TJtm\n+1ljfTYpybYCe/iwoqI0fbo6dVL//srK0sGDKiryxwdEEPIo2C1YsKBly5bx8fEdO3a87777\nOnTo0KRJk5tuumnZsmW+rg8A4F3syg8Gxt+CpGuusf0tGHewt2+vhg21eLFuvlmSnntOAwfa\n/l4eftj2I336lH23qq7wwsTcB7v58+c/8cQTJSUlPXr0yMrKGjNmzNChQzt37vztt98OHjz4\nnXfe8UOVAABvcd6Vn5SkrCz16aO9e5n18Sv7umr//ra/hebNJalBAxUUaMgQ3XWXJF26pDNn\nbH8vN91k+5HyB8hWdYVXTNyal/s9djNnzkxNTf3rX//aoEED5/E9e/Y88MADM+Psl4UAACAA\nSURBVGbMGD58uM/KAwD4RM339cO7jH9jMzLKjt96a9mRo0fLjlRjO5194tbYrrd1q0aNUkaG\n2rdnu15ocz9jV1xc/MILL5RJdZJatmw5bty43bt3+6YwAIAP1XxfP7zLYpEuR2pn9euXHfHK\n3wsTt2blPtg1aNCgVq1aFT5Vq1at6667ztslAQB8zsW+fgRQVFTZkQiPjq+oJiZuzcd9sHvo\noYdWrVpV4VOrV6/OKD9rDABAeMvNldWqNm0cIzk5slqVknLFy3bu1KBBlb7DQw9dMZKTU/bH\ns7NVjVsCjN11paWSlJnp2F1nXC81dqxjdx0Tt6HI/X8ITJ06tV+/fsXFxYMGDUpMTIyOjjZu\nnnjrrbdKS0uffPLJ/fv321/MecUAANTckCEyJlVWrdK8eTp5Uu3b69w5SfrgA738so4fV/v2\nFezAc8vYXffRR5L09ts6etS2u86YLJwxQw0b2nbXTZnitY8Dv3Ef7OLj4yUVFhYuWbKk/LOJ\nxtTtZc73yQIAAMOQIVq6VEeP6rnn9MEHOnJEkrZuVXy8Jk7UihU6cECS9uyxvd5+Hkr9+o7m\nBuPf2IgIR3PD1q1VrsRY223QQD/+qJtvVps2tsvKjANW2rZVSortsrLi4pp9ZgSC+2DXr1+/\nOnXq+KEUAADMqkwX6tixWr9eTz+tjh1tXagZGdqzRzNm6JlnVLu2Y2tdt25KSnLcFSspO1ud\nOjnuit248Yq7YrOzlZ3tvp4WLbRjh+2xMUXTtq22b7eNGLvrjh/3wgeHn7kPdnl5eX6oAwAA\nE3PuQjUerF+vH39Uly6aPl2SGjaUpOPHVVR0RVCzu3KFTKp6c4MxazhsmCStWydJAwbojTds\nE4F//7skjR6tRYtsu+suXvT44yFoVOFKMQCACXiyrz87W1Zrpfv6UW32LtTcXP33f0tOXaib\nN2vePOnKoLZ9u6M9woiG69Y5/l6q2tzgvLvu17+WpH//WxkZeu89SerRQ5KKi5WWRqQLYR51\nUV+8ePGLL74oKSm5UNH/fAbxf30AADxQ1eMDvXsqjfPuOmOCsHt3rVlj213XqJEk9eqlFSvY\nXRfC3M/Ybdq0qU2bNnffffeAAQMGV8QPVQIAEJw8vJvL6JbwxfGBs2dX7XKwFi0kado0Wa1K\nSpIuL+n+5jeyWnXvvdLl3XX33svEbehxP2P31FNPHTt27Le//W3btm1rc34lAABOPLyb6+uv\nfVWAMQ/nyeVgaWmSFB1d9medL7dgd12ocx/s/vWvf/3lL3/p16+fH6oBACC0lOmKsLevdu5s\n64qwt6/6iHE5lCcFHDokSVeVW6srP4LQ5f4vMyYmpnnz5n4oBQCAEOXJ3VwBL+DsWZ+XgYBz\nH+wGDhz4ntEwAwAAKuJJV0TAC7h0Sbq8u865LdrYXefcFs3uutDlPthNnz5927ZtAwcOfPfd\ndz/++OMN5fihSgAAglkNuyKMDowzZyRp5EhFR2vbNn3xheLjHQ0Q/+//adOmCk6ladXKCwX4\nn4dNJ/aeD3jI/R67bdu2ff311/v27VuxYkWFL+AaMQAAyuja1XGB2NGjkjR1qi2orVhhu+l1\n0yZ17Chd7sBYtUpTpuihh1w1QOzb54/ENnu2Bg9W//56/301bqyjR2Wx6Kqr1L69WrXS+vU6\nfFgWi2rV0m23ac4c26eoEg+bTvz2kU3DfbB7+umnDx06NHDgwMTExIgIj869AwAA9tQye7be\nflszZ+rzzytOLZ53YFR2L4Xnxo3T6tW20Pnuu5I0cqTeflvt2mniRC1aJEnbtknSZ59JUqtW\nio/X3/6mmBht2qRvv1WHDrrzTn30kWrV0o4d1cxe/vzIYcV9UNu6deuCBQseeeQRP1QDAIBp\n2FNLly56+20dPqyoKFepxZMGCM8vECvviSe0bp0efVS6HDoLCspOlf3jHyou1pAhjt918qQ2\nbtTFizpyRE2a6KefdOCAdu/WuXO6cEH3368PP3SVvYx7zOyTlydPqn17/fnP+uUXSVq+XO+8\no/btNWeOTz5yGHK/x65u3brt2rXzQykAAJiJc1AzuE4tVb2Xonqcp8qSkpSVpT59tHevLXR2\n6qT+/a+4l/aOO7R2re0MvJMnbZXn59sCorHT3kX2si+5JiRo7VrNn68tW5SRoY8/lqTXXtOi\nRbZpP+PUFV985LDiPtg9/PDDq1ev9kMpAACYiXNGKT/i6wvEXHM9O9iggePxc88pKcm2i844\nMOV3v1OnTurc2THiIntVliON4/duu039+ysrSwcP6j//kYK+5yP4uV+KffnllzMyMkpKSh5+\n+OGEhITyl0+0ce6ZBgAgnOTmKjf3ipGcHO3frzffdGSU7Gzt368pU3ySWiosICfnipHsbGVn\nXzHienbQ+chir8TN8jmyeXPt2WMbMSYvT52q8tuiPPfB7pprrpH0j3/8Y968eRW+gK5YAABC\ni5+PRymfI+vWLfurucfMK9wHu8GDB0dGRtIPCwAAqqd8auQeMx9xH9eWLFnihzoAAABQQ1WY\nhzt8+PDOnTtPnz5dr169tm3bNmzY0HdlAQAAoKo8mgndsGFDcnJy48aNu3Tpcv/99ycnJ197\n7bU9evTYZpxgCAAAaiA3t+z9rTk5Ze9vNS4Q8//9rePGyWLRuXOOkZEjVVio0lLHyKRJVb77\n67nnyn7kAQOC5SOHNPfBrrCwsEePHl9++WVKSsrjjz/+1FNPPfbYY507d163bt3dd9/97bff\n+qFKAABCSDAHNU9kZdke7NypRo0kadMm3XOPJE2cqO+/V0aG/vd/1bOnJI0bp0OHlJbGgXNB\nwX2wmzp1auPGjbdt21ZQUJCbmzt79uy33nrr888/37RpU1RU1JQpU/xQJQAA8AoPQ+fjj9se\n2w+i69ZNknr1chxo3L+/JHXubDuIrqjITx8BLrgPdp999tmYMWN+9atflRlPSkoaM2bMunXr\nfFMYAADhbsgQWSw6dkwjRyo2VtHRSk5WYaHOnNHYsUpIUEyMunSpYBm02j9oVyb/pac78p/9\nQGP7pKOLu79CffIy5LgPdsePH2/WrFmFT7Vo0eLnn3/2dkkAAECq/D6uzExFRSk/33EfV5ll\n0Gr/YGX8c90Zas59sGvSpMmOHTsqfGr79u1NmjTxdkkAAEDy7F5XYxm0d+8rpuj+8hdJatBA\nzzyjRYs0caJ++UV79+rcubI/6OH6afmD6O67z/HrxoyRpN27qzAjCB9xH+weeOCB2bNnr1y5\n0vmGCavVmpeXN3fu3F69evmyPAAAwp3re12NZVBjtsw+RXf33ZJUUOCYojN+pKjIMa/mYv3U\ntffftz1o107vvqvjx2UcgPZ//6/atdObb+roUSUkaNs2OioCwH2wmzx5cnR0dL9+/eLj47t3\n796nT5/u3bvHx8enp6fXr19/8uTJfqgSAICw5ckyqMUiST/8oMmT1bKlfvpJkn76SZ99pvR0\n3XST9u+XpOPH1bGjbSKt2uuntWrZHsTHq6BAr7+uY8ck6cgRRUbqk0+0eLF++kkXL9JREQDu\ng12LFi2+/PLLrKyss2fPrlu3btWqVevWrSstLc3Ozt60aVNl2+8AAIBXeH6va8uWkpSRoeho\n28jJk7atdfabQffsqelEmv02sGnTbAvEHTrYRp5/3rHOe+aMVK0ZQdSERwcUX3/99QsXLjx6\n9OiPP/64c+fOkpKSI0eOLFiwoGnTpr6uDwAAeKhePUlKTFRSkm3k7ru1d6+2bNHGjbaRCxd0\n8KBuu0179kjSO+9UuiXOaK01DiJOTna01l66ZHtBnz62n4qNtY3YpxKNdV7RUeF3boLdTz/9\n9M9//tN4bLFYmjZt2qZNm7i4uLlz5x4zJl4BAEBwMObSnPfkNW8uSS1aOEaMvfE7d+q11ySp\ndu1Km2SN1tqPPpKkt95ytNYWF9te8PLLtp8yFoLlNJVY2ZwifM1VsFu/fn3btm0nTZpUZnzr\n1q1PPfVUu3btvv/+e1/WBgAAqsx5B56xH86YyTMYs2udOsk4r2zw4EqbZI3V2759ZbWqTx9H\nT+6119pekJpq+ylOyAgelQa7kpKS/v37nzp16r777ivz1K233vrnP/+5pKSkZ8+e55xvjwMA\nAIFWfrbsqnL/2pffS1VZk+z8+Y5jTf7nfyTpmmtsT919t+bPl6R9+2pYMrym0mC3YMGCw4cP\nz58/f8KECWWeslgsTz/99CuvvLJz585Fixb5uEIAAOBl5aOeiyZZ+ykqDz4oSfbDbV9/3Xbz\n2Pr1vqoTVVVpsFu5cmXr1q1/85vfVPaCp556qlmzZgsXLvRJXQAAhD3P7+Nq1arsD5Y/juyP\nfyw7UlCg/HzbycaLF0tSVpbj8rHPP7e97F//0oMPKinJ1v169qxtvF07dewoSefP1+BDwqsq\nDXZ79+698847ryof6S+LiIhITk7+5ptvfFMYAADwOSO9Pfyw9u6VpEuXVFSkvn2VmCj7v/AH\nD+r223XnnfrPf6742YEDbT+F4FFpbjtx4kSjRo1c/3CjRo3Ok9IBAAg0Y26vfn3HiDG3Z3TF\nGgYOlNWqO+644geNDoldu9S+vSSNGCGLRQcO6OhRx2tq15bVqq+/1ooVjsE5c7Rnj2bNcowU\nFFwxlShp6VINGiRdPjnFvlfPfnIKV5B5XaXBrlGjRnvd5fDvvvuucePG3i4JAAD4iXFSSVKS\nHnpIkn79a914oyTFxDhe06mTJLVtq+PHbSMFBXrySWVl6cQJ28jSpRUsEBupTpdPTrHv1bOf\nnGK/8azC81YqQ0x0odJgd8cdd3z00UdHjhyp7AW7du0qKChITk72TWEAAMA955SzapWuvlqP\nPOJIOQsWqG5dFRY6Xm9ErnbtrniTfv0cjw8fluQ4c1jSv/8tSXXqOEZGj9bmzY5TiN0y5gUT\nEzVpku2yiiZNtHevatXS0aNKS9OwYYqK0sGDKihwH85cx8Rbb9Xp09q+XSkp4Rj7Kg12w4YN\nO3Xq1IgRI3755Zfyz544cWLo0KG//PLLo48+6sPqAACAS55MhhlXClT077mN89F3xu565xNM\nTp6UpF27HCPffqtOneR84tkLL7gPT84nJzdsaHtPe9nGVNKzz7qfwysfE40D9qKiNH264uIk\nqUEDnT2rGTNqOjsYcioNdv379+/Ro0deXl5ycnJeXt5J429VOnTo0Jtvvtm+ffvCwsKHH374\nQaP1GQAABILrlGMcPjx6tCTbicSGMt21ERGOxVNjcfbqqyUpI0OSLSoZge+xxyQpPl6S/vxn\n6XJc++EH9+Gp/MnJrVs7yjZabiMiHGWXPzPZmXNMTEyUpL59HV+IcdlGvXoVfyGu3zmkVRrs\nLBbLihUrevXqtWnTpvT09AYNGlxzzTX169dv0qRJdnb2Dz/8kJmZ+e677/qzVgAATK96G8gq\nSzmGyg4fdsG5f9K4uMJ+LrF9pG5dSbruOknq1Ml9eCp/cvK99zoeG4u/t9/uadnOMdEIc84j\nxvsYsdIrX0iocHWlWMOGDdesWbNmzZrBgwe3bNnywoULktq2bfvYY4+tX79+2bJlVxt5HgAA\neEn1+gxcpxwXhw9XpnwIMwozGLN3zlfQGldZVDU8OXdgGu/pHB9dl12+QucRY6nX4JUvJFS4\nCnaGXr16LVmyZPfu3adOnTpx4sS///3vt956q2vXrn4oDgCAcOPJ0qonk2HlR6rEiFnTpslq\ntbVNGEu0v/mN41wVY8bu3ntltdpOS6lqeDIWZJ0ZH9/Z7NllpzDz8yXp7FnHFOabb7p/5xp+\nIaHCfbADAABVUvPzOLy+tOotU6bIYrH1YRgBy2ibMALcwIE17TnNyXF8b2PGSJcvuujQQUuX\n6uRJJSTY2ix++1vHFKbRyeuiOyR8EOwAAPCymh/b5vWl1coYK3A33OAYMRZVGzRwjBinHG/f\nLknffitJX3whSbfdJknff68uXfTSS5I0Zozjo128WM2S7N/bI49Il6+mbdRIH3+sxYt1+LBt\n7rBOHccUptF4YRzLEuYIdgAAeFn1llOdeX1ptTLlr6M1rn994w3HuDEiqUcP2644I/Z9+60e\nfFA33qiLF225c84c9elj+2jFxdUsyf69dekiyXaoyv/5P47vzYiMPXo4fsRo4Kj87N0wQrAD\nAMAngnY5tdoSE5WUJEnNmknS0aOKilL//pJsN5X9/LOKimwfzX5NhaTcXA0erMRExzLr1q2S\nFBnpWJ5eu9b2Yufvzc4+YWk/Fdn5CGVjRyBLsSLYAQDgI35bTvUbe+Syd8j27Wv7aPZraktK\nbB+tzFJsmeXpu++WpKefdixPP/yw7ZXOic3OPmFpf+Dck9unj6QrbsIwLsa132kWPgh2AAD4\nhOfLqc7NFkuWSNKAAY5mi1dflS7f4lVe+bXUMocP68qbW902dixbprvuclwCa7zh449LTsG0\ndWvbA/vIVZcDRWVRtczy9KefauBA/fijY3n6r3/VLbdIlzfVGWVPnlzxu7lQ1S/EZMp1FUuS\n9u/f7/lbNDMmZAEAQLXYZ7O6dlVqqj74QP/+tzIy1L69brlFgwfrjTdUXKy0NO3bV9PNds6/\na+1abd2qUaMcvys/X8XFys6u+HfZ/zhtmm6+WVOmOEZ+8xt16aIRIxwvvvdevf562d/uenna\n2Lp36FCNPmCYq3jG7vqq8HPFAACYjPNslnHlQ/fujmYLo021V6+yzRaDB1fnRJWaN3bUhOvl\naWPar7I5P2Ou8cwZ2x979HB85GXLJOnRR2t00oo5VDxjl5mZ6ec6AAAIc8ZsVm6ucnP1/PNa\ns8Y2m5WTo5wczZ+vFStszRbZ2dqwQYsWVXPiTYFr7KhJt68x1/jaa7Y//v73evVV20c23mTM\nGL39tnfmNUNXxcFumRF93Tl9+vTJkye9Wo97Vqt1z54933//vfGrGzRokJiYyMQhACDUVanZ\nwnniTVJSktas0fLl6txZ06dLUqdOKijQrFkqKrKdG2L45BNJql9fI0fqgw908qSuvVaSrrtO\nY8dqxQodP664uCt+V5AwPnJsrG0TXq9e2rXL9pFTU7V2rTp31qVLFXzksFKj5omVK1d2tB9u\n43tHjx595pln4uLiWrduff/996enp6enp3fv3r158+Y33HDDiy++eNY4nRoAgBBUjdmsaky8\nGcud48Y5Dk8+eFCSXnzRcXiy8SPVPmHY6woKHM0QRu5YulQpKY6PbG+GCMVDZLyr4hm7Mg4f\nPrxs2bLi4uJfnI6IOXfu3OrVq0+dOuWz2q5QUlJy991379mzJzExMS0t7YYbbqhbt66kEydO\n7N69+9NPP500adL777//8ccfX+N8gTAAIJwMGaKlS3X0qJ57zjYd1b69/vxntWuniRNt01Ht\n22vOHPl0XsJYTnVmLKc6y85WdnZNf1E1TlQxrm1o0cIx1ffyy/rmG0VGOqb65s/XRx9p9+4K\nfqOLj2a/+KHaHy0rSxs22OYLy7y5XXa2XnnF9tgch8h4l/tgV1xc3Llz50MV9ahERES88MIL\nPqiqAi+88ML+/fuXL1+ekZFR/tmLFy++/vrrTz311JQpU2bOnOmfkgAAwaYmLZ+hqNpb1lJT\nHY+NpVjjbjGDEa2OHXOM1CSqGml72DBJSk7WmTOKjtaRI/r97yWpWzdduqSYGM2bp9JSSRoz\nRtnZleZvv93JEaLcB7vnn3/+3Llzc+bMuemmm7p3756bm9usWbNPPvlk8eLFb775Zqrz/zR8\n6W9/+9uwYcMqTHWSatWqNWbMmPXr1//P//xPlYJdaWnp0qVLz58/7+I1BQUFVavVrSVL9Oyz\nOnBA48bp5Ze9/OYAEMaqvfMs3JS/tsG4lctQq5bkvYscjLT90UeS9NZbOnrUdire/PmS9Pzz\n+vlnzZ2rxx6znWM3frxuvNFU+duf3Ae7goKCJ5988sknnzx37pykW265JTk5OTU1NTMzs3v3\n7vn5+Xcbp0f72JEjR1rbz0OsxE033ZSXl1eltz148OD06dNLjf9GqMSJEyckWa3WKr1zpY4f\nV3a2IiP14ou2G1gAAF5lvru8vC6i3L//5Uf+/ndZLBWsa7/yipYvV1ycDh+WxaKrrtJtt7la\n7zbeuW9fzZtne+cpU7Rnj5o21a5djt+1c6caNZL9H1vyd/W4D3YlJSWtWrWSdNVVV0myZ6Db\nbrvtySefnDx58j/+8Q+flmiIj4/fsmWL69d89dVX8fHxVXrb66+/fof9iOtKvP7666NGjbIY\nuxJqbudOnT2rxx7ThAneeUMAwJXMd5dXQBjzduXXtS9dkqTmzdWtm9askcWiLVvcr3fPn69p\n02wZ8fBhSUpJ0ZkztixoNHA4zyOSv6vHfVdsvXr1Dh48KCkyMjImJub777+3P3XzzTd/+eWX\nPqzOSb9+/VasWPGnP/2pwmXT06dPT548eeXKlSFwAt+5c5JUr16g6wAA0wq5bVj+vAXL2Et3\nww2OkXvukaT27cu+xthpV/4oY+PL7NRJy5bpN7/RiRPq0sWjI47tF8UaZ5StXu24KDYpSZJW\nrXIEbvJ39bifsevatetrr72WkpJyzz333HrrrXPnzh0wYEBMTIykdevW1alTx/dFSlJOTk5B\nQcH48eP/8Ic/dO7c+frrr4+JibFaradOnfrhhx8KCwvPnDnTtWvX559/3j/1VFPPnvr73yVp\nxgzNmKGRIx0nLQIAEHzKr2s3b649e2zjxryacRyF2/Vu+97Ha6/VDz/oyBFbFpRst2ucPs3a\na025n7GbOHHikSNHnnnmGUkjRoz48ssvb7755vT09KSkpAULFtx///2+L1KSGjZs+M9//vPV\nV19t3br1J598snDhwjlz5sydO3fRokUbN25s3779G2+88fHHHxuJM3hNnqxp0yQpPV15eRo9\nujpvsmSJmjVTRITGj/dudQCAUOG3Sb7y69p16zrGnadC3a53O2dEg3MWNLhYe/XnvGbocj9j\n17lz5w0bNhQWFkp69NFHd+7cOXPmzLy8PIvF0qdPH3+eLRIZGTlu3Lhx48adO3du3759xs0T\n9evXb968eaTRchP87rrLduBjYqL69avOOwRh7wVNvgBgXuVXsY0u2mqsdzsnv8pGWHutIY9u\nnujUqdPo0aMlWSyWadOm/fzzz3v27Dl9+vTKlSuvc26P9peoqKjExMSOHTt27NixTZs2IZPq\nvMLovRg6VBMmqEePQFdzOWieOqUXX5S/zr4BAPMxbrg/dkwjRyo2VtHRjhvux45VQoJiYrxz\nw73n816tWtX0d5URcnsfQ1EVrhQrKSn56quvPv744++++65u3bpXX32178pCpYKt96KyoMl6\nMQBUhf1oZftNX0arqb29YNEi7dihtDTmtOCKR8FuwYIFLVu2jI+P79ix43333dehQ4cmTZrc\ndNNNy5Yt83V9uELPnrZWpRkzZLFo1KhAF1RJ0GQaD0CAhO42LOejlZ1bUN22mgLO3Ae7+fPn\nP/HEEyUlJT169MjKyhozZszQoUM7d+787bffDh48+J133vFDlbDxSu+FF1UWNINtvRgAQoQp\nj1bOzbVdNWG3ebMmT75iJD9fCxZcMRKc+Tv4uW+emDlzZmpq6l//+tcGDRo4j+/Zs+eBBx6Y\nMWPG8OHDfVYerlTz3gvvmjxZ3bpp4kSlp2vYMLVsaRsPtvViAAgRgT1a2bjU1X7VxJEjkrR1\nq+LjbccIG/fGHz/uqwJQc+5n7IqLi1944YUyqU5Sy5Ytx40bt3v3bt8UhlBw1122GTsjaHbo\nIAXlejEAhIjAtheU2ef35puKitK4cY59fkuXqmFDffedSktt693GvNp774XGenc4cB/sGjRo\nUMu4VaScWrVqBaQrFkEt2NaLAQCe8d0+v9Dd+xhy3C/FPvTQQ6tWrUpOTi7/1OrVqzMyMnxQ\nFUJZsK0XAwCqwpT7/MKH+2A3derUfv36FRcXDxo0KDExMTo6+vTp09u3b3/rrbdKS0uffPLJ\n/fv321/crFkzX1ZrCikpsloDXQQAABUL7D4/1JD7YBcfHy+psLBwyZIl5Z9NNML8ZVYiCwAA\noYxjhEOa+2DXr1+/OnXq+KEUAAAA1IT7YJeXl+eHOgAACGe5ucrNvWIkJ0c5OVeMZGcrO9uP\nNSEEVdwVe+DAgaNHj9ofu+bHagEAQLjw2/25ZlLxjF3Tpk1TU1PXrl1rPHb9Fuyr8yt6LwAA\n4cF+rl7Xrlq7Vlu3atQoZWSofXvdcovy81VcrOxspaVp3z42AtpUHOwyMzNvu+02+2M/1oNQ\nQ9AEAPiG87l6kpKStGaNli9X586aPl2SOnVSQYFmzVJRkbp0CWSpwaPiYLds2bIKHwMAALMK\nzn1+nKtXJe5vnjB88803hw8fdv7jV1995ZuSEMSWLFGzZoqI0Pjxrl5mTOMZ/z0FAEANcK5e\nlbgPdhcuXHj88cfbtWu3bds2++DHH3/csWPHxx577KJxxwDCwfHjys7WqVN68UWlpga6GgBA\nWOBcvSpxH+xmz5791ltv9e7d+4YbbrAP3n///ZmZmQsXLpwzZ44vy0Mw2blTZ89q6FBNmKAe\nPQJdDQDAV2hHDV3ug93ChQsffPDB1atXt2zZ0j7Ytm3bZcuWpaWlEezCyLlzklSvXqDrAAD4\nlr0dNSFBa9dq/nxt2aKMDGVmKipK+flatEg7digtjTXQoOM+2O3atevee++t8Kl77rnnhx9+\n8HZJCLQKN9L17KmuXSVpxgxZLBo1KlDVAQB8zbkdNSlJWVnq00d79yoqStOnq1Mn9e+vrCwd\nPKiiokDXiiu5v3mifv36xcXFFT5VXFx87bXXerkiBNCSJXrmGZWUqE4dvfii7rjD8dTkyerW\nTRMnKj1dw4bJafoWAGBKtKOGIvfBrnfv3m+++WbPnj3T0tLsgxcuXFi4cOEbb7wxePBgX5YH\nPzJ6I2rVkqTUVE2YcMWzd90lo1EmMVH9+gWgPACAf9GOGorcL8VOnTq1lIWyjgAAIABJREFU\nQYMGRvPEAw888NBDD3Xt2jUuLu6JJ55o3Ljx1KlT/VAl/MHojbj/fkm66aZAVwMACLCAt6Pm\n5spqVZs2jpGcHFmtSklxjGRny2rVoEF+LSyYuQ92TZs2/eqrr0aNGnX69OkPP/xw9erVGzZs\nqFWr1ogRI4qKipo3b+6HKuEPRm9EXp7ERjoAAEKS+6VYSbGxsfPnz583b15JScnZs2fj4uLq\n1q3r68rgVz176u9/d/yxZUu9+iob6QAACC2e3jwhyWKxxMfHt27dmlRnQpMna9o0SerWTZLu\nuUf9+qlDBy//Fg8vrgAAANXifsbOarW+995777zzzv79+y9UtEnS+UYKhCp7b0SzZpLUpIn3\nf4XRnBEZWbbfFgAAeIn7YPfKK6+MHz9eUnR0dG1u8UC1Gc0Zjz1Wtt8WAAB4iful2FmzZqWm\npu7evfv06dPHKuKHKmEGXFwBACGCdtTQ5T7YHTx4cMqUKa1atfJDNTAtLq4AAMD33C/FxsbG\nWq1WP5SCYJeSomr/L4GLKwAA8D33wW7w4MGLFy9OTk72QzUwLS6uAADA99wHu0mTJg0YMGDo\n0KHDhw9v3rx5+f6JNs6L8AAAAAgQ98Gu3uXd7kuWLKnwBSzUAgAABAOPlmIjIyMjIjy6owK+\nsmSJnn1WBw5o3Di9/LIPf1GzZtXfSAcAAALKfVyrbKIO/uOfo31r0hsBAACCQMXB7sCBA3Xq\n1LnmmmuMx67fIi4uzvt1wRlH+wIAAA9UHOyaNm2ampq6du1a47Hrt2CPnc+Z9Whfv60vAwAQ\nHioOdpmZmbfddpv9sR/rQTk9e+rvf5ekGTM0Y4ZGjtRrrwW6Jm/g6lgAALyt4mC3bNmyCh8j\nAMx6tC/rywAAeJv75on8/PzWrVvfcsstfqgGFTDN0b5lmjPMur4MAEDguL8rNjMzc/Xq1X4o\nBWGEq2MBAPAB98EuJSXl008/vXTpkh+qgU8sWaJmzRQRofHjA13KZZMna9o0SUpPV16eRo8O\ndEEAAJiB+6XYv/zlL+PGjevdu/fw4cNvvPHGBg0alHkBV4oFteDsUTDN+jIAAMHEfbCzH1Nn\nnH5SHsedBDV6FAAACBvug11mZmZkZGTt2rUtFosfCoKX0aMAAEDYcB/sOO4khJn1DDwAAFAR\nN8Hu/PnzW7ZsOXPmzK9+9SuuDgsxS5Zo82ZddZUuXTLbGXgAAKAirrpiFy1aFBcXd+edd957\n773x8fFDhgw5efKk3ypDNdl7YLOyVFqq7Gzpco9Chw6BLg4AAPhQpcFu/fr1jz322KlTp1JT\nU4cMGdKyZculS5cOHz7cn8XBxjjad/p09680emBPndKoUfrlFw0dqmHDfF9fiAjCY18AAPCq\nSpdi//SnP1kslnXr1nXt2lVSaWnpoEGD8vLytm3b1q5dOz9WiKqw98AOGqS5c+mZcAjOY18A\nAPCqSmfsPv/88wceeMBIdZIiIyNzcnIkrV+/3j+VoTqMHtj//V/HvQ6X/wbDnRF5hw7VhAnq\n0SPQ1QAA4BOVztgdOXLkxhtvdB4x/njkyBGfF4XqsffA7tljG0lP1+23a+LEABZVqTJXx/oa\nx74AAMJApTN2ly5duvrqq51HoqKiJF00LgxAEHK+p8t4kJjIjJ3E1bQAgHDh/hw7hAzne7rI\nc84mT1a3bpo4kWNfAADm5uq4E6DKgrPz9K67bEmXY18AAKbmasZuw4YNRsOEs08++aTMYPnX\nIEzReQoAQEC5CnYbN27cuHFjmcFPP/30008/dR4h2AU1f/Yo2A9bmTDBT78RAAA4qTTYLV68\n2J91wAzoPAUAIKAqDXaPPPKIP+tAyLMftjJjhmbM0MiReu21QNcEAEB4oXkCXuJ82EpenkaP\nDnRBAACEHY47gZc4H7bSr1+gqwEAIBwR7EzKnz0TS5bo2Wd14IAGDvTTbwQAABUh2JmLn+/p\n0pVHnFx9tZYu9etvBwAATgh2qBnnI042bAh0NZXzf+QFAMDvaJ5AzXDECQAAQYNghxro2dN2\nVdeMGbJY9Kc/BbogAADCGsEuLHnrRtcyR5yEbjNscF5xCwBAFbHHLvx48UbXMkecBPMeOxe4\n4hYAYBYEu/DDja5l8IUAAMyCYBd+fNfuEKKdp/R/AADMgj12YaZMu8OoUYEuKND4QgAAJkKw\nCzPc6FoGXwgAwEQIdmHmrrtsE1RGu0OHDoEuKND4QugIBgATYY8dEMboCAYAc2HGDghjRkfw\n0KGaMEE9erh6JRN7ABAKmLEDwpiHHcFM7AFAiGDGDjVjHHEyfXqg6wh9/p8S87wj2POJPQBA\nQDFjBwSBgEyJTZ6sbt00caLS0zVsmFq2rPSVHPUHACGCGTvAL1xPyAVkSszDjmCO+gOA0MGM\nHeB7bifkgnlKzPOJPQBAoDFjB/ie6wm5IJ8SC7mj/mjgBRDGmLELPyF6o6vv+OELcT0hx5SY\nF9HACyC8MWOH0BGiMzFuJ+RCbkosmNHACyC8MWOHEBG6MzFMyPlTMO9WBADfY8YOISJ0Z2KY\nkPObIN+tCAC+R7BDiGAmBm5Nnqxp0yQpPV15eRo9OtAF/f/27j0uqjr/4/hn5BaigSiiCCmE\n3WQxgS1NCM1MKlOiVLqoDzZ+m3RTU9dLPbzkb0vUcktzrfbno7Js6WLlWka6azzcehiVW5ka\nkkqyCmYopCIKOL8/jk04wlxgmHPOd17Pv4bD8cxnjvOYefO9AoC3EexgBrTEwBU0jgLweYyx\ngxkwTK2dMEUaANRCix3MwNYSU18vDz0kyckmmxgLAIBX0GIHU9m4UUJCzDcx1uxo2AMAkyDY\nwVQaGs5NjAUAABegKxZmY6iJsZ5aM1lrEktMNOUKzAAAwyDYwSSmTTv3wDgTY7U1k0+ckIUL\nZcQIY10NAOCT6IqFSeTkSHGxiHh1YuzatfKnP0llpUydKkuW2P9WWzM5J8d517ArY9RcvxoA\nAC0g2MEkEhLOPdCWKPMCp5uYeXbNZFZgBgC0GV2xQAscb2Lm2TWTWYHZU7TG0UWL9K4DAPRB\nsANa4LgJzbO7V7EXFgDAEwh2MInUVNm61XtP57QJzbO7V7EXFgDAEwh2MDBPLSbSCjShAQBM\niGAHo3Kw/IcXAh9NaAAAE2JWLIyqpeU/Tp92MlkVAABfRbCDUbU0d+HYMdZ7AwCgWXTFwpAc\nzF1oaBBhvbeW6TgwEQCgN4IdDKnZuQupqTJihLz+ugjrvbWAfckAwLcR7KAHp61KLc1dYLKq\nY44XVQYAqI4xdvA6p1t1OTBokDQ2inhxYzFzYV8yAPBtBDt4nTK73Wu7VxnnahkZUlgoIpKf\nL/n5cv/9smqVR0oDAJgFXbHwOlqVPE7r2t606Vz/Nf3UAOCrCHbwLtd3u9+0SURk8WLdZnea\nZTt524SJ//1fycoSYVFlAPBdBDt4l4uzH2pqJD9fROT665nd6UTTCRMpKXpXAwDQE8EO3mWb\n7lpfLw89JMnJzTfIlZbK6dMiIgMHMrvTCbq2AQC/IthBJxs3OlpuTQsrcMqua3vpUr0LAgDo\niWAHnTQ0tLjcmi2siEh+PqsQO2LXtc0SMADg2wh20E9LvYesQuw6u5Wc4+PdvoICW5Ap8BIA\nwENYxw5eN23auQctLbfmeBViz64e5+Pasli0QSjwEgDAc2ixg9fl5Jx7YNgGOd9pAVJgCzIF\nXgIAeA4tdvC6hIRzD4y5LZhPtQApMKNWgZcAAJ5Dix1wPlO3ALm1qLLri0UblgIvAQA8imAH\nnM/FFiAFumsVmKSiwEsAAI8i2MHrUlNl61a9i2iBiy1Atl28WlqHzxTsZtSacQsyBV4CAHgU\nY+yAJubNk/R0mTNHsrJk/HiJjW3+NK27NidHZs/2bn0AADhCsAOacLzSig0D9gEAhkRXLOAm\now3Yd2vCBABAabTYwZCMvAqxi921AAB4HS12gJs8O2Bfgdm1XsYdA4CWEeygB3oPNWrMrvUm\nL9wxgiMAM6MrFtAPs2vd1d53zKf2HQGgIoIdoB9m17qrve8YURuAydEVC+jECLNrzdUn3uwd\n8+xLIGoDMDmCHaATtsNyV3vfMSNEbQBoG7pigfN5baUVFxdDhk173zEWsgFgfrTYwUiYkNh2\n3MNWY+dZAOZHix0MgwmJbcc9BADfplSwq6qqOnbsWHx8vN6FoFVMNCHRsBtjmOgeAgDagVJd\nsUuWLOnbt6/eVaC1mJDYdp66h/TnAoA5KRXsYGJMSGw7T91D9sMAANNSqisWJsaExLbz1D2k\nPxcATMs0wS4lJcXpOQcPHvRCJWgXrP3Rdp66h/SJA4BpmSbY/ec//xGRgIAAB+c0NDR4qxxA\nURkZUlgoIpKfL/n5cv/9smqV3jUBAFxlmjF2M2bMCAkJ+e677+paNn36dL3LBNxhwB29DL4f\nhgHvGAAYiWmC3cKFC+Pj4++66676+nq9awFay/izTX18kV6CIwCTM01XbEBAwOuvv56cnDxn\nzpwlS5Z46rK1tbWrVq1yHBY///xzTz0dzrN2rfzpT1JZKVOniuf+T42L1YMBAO3MNMFORK68\n8srKykoHA+luvvnmsLAwt65ZU1Pz7rvvnjp1yvE5IuLvb6Z7ZQI+mHKYbQoAaGcmCysXX3yx\ng9+mp6enp6e7dcGePXtu3brV8TmfffbZ4MGDO3QwTbe1OfhgymG2KQCgnRFWoBNfSzmswAwA\naH/mDnZLly5NTU3Vuwq4zwdTzrRpoi3W06+fzJ9vuNmmAAAlmKwr1s4PP/zw6aef6l0F3Nfs\nHgnahERVdeki2hydkSNl3jwnJ7d6Wona9xAA4Iy5gx3Mygf3mdC6nl3hg9NKAAAeYu6uWMAc\nbF3PIpKf76TrWZtWcs89Mnu23Hij/W+NvxIeAEA/BDug/dm2cxCRrCzJy3OUzxxMK9Ea806c\nkIULZcQIV5/d3Syo/CK9hGMA6jJ3sFu0aFF5ebneVQDO2LZzEJG+faVPnxbzmeNpJY4b85rV\nuiyoMG4IAKWZO9iFhYVFR0frXQXgJgf5zPFWra1YI6YVWVBt3BAIrbZQmbmDHWBKDvKZg61a\nW7dGjK+tF+gUNwS02kJpBDvAu95801E+W7tWsrJERLZssf+HjhvzmuWD6wU6xg2B0GoLxbHc\nCeBdgwfL//yP/Rp+Gq0hQdu8rulxTSvWiGl2vUBfxg2B0GoLxdFiB3jRzJmyZk2Lna1aQ8JN\nN4mI9OnjgaezdezW18tDD0lysq+PKHLQ0w0fQastVEewg04UW1PDI2OxtYaEjh09VdRvNm5k\nRBEg0qohDYCp0BULtJlH9orIyJDCQhGR118XESks9GTqbWg4N6II8HE+uO0NfAwtdkCbeWQs\ntq0hIT1dRGTAAI+Vp2FEEQAbFnxRF8EOaDNXxmI77Xq2Df/Slmbs3t0ztU2bdu4BI4oAaFjw\nRWkEO6BtDD4WOyfn3ANGFAHQsOCL0gh2QNt4fCx2dLQnp5UkJJx7wDxQwPuM2ePJgi9KI9gB\nbeP9FTR27TLiVwUAO8bs8TR4JwPajGAHuE+vv8JTU6W6WjZvNtxXBYALGbPHkwVfVMdyJ4Cb\n2r64iTaRonW0r4qcHFfXLklNla1bz/2BDmnbzQfcYsweTxZ8UR0tdoCb9P0r3JhfFQDs0OMJ\nnRDsoIqbbhKLRSwW6dmzfZ9Ix2jFVwXQdt7Z9oYeT+iEYAcl7NolmzaJiPTtKyNHtuMT6Rut\n+KoAzIKNiaETxthBCW+/LSISHi579rTvE82bJ+npMmeOZGXJ+PESG+vJizsd/sXgGACAQ7TY\nQQnbtomIHD3a7tNU+SscAGBgtNjB/AIDpb7+3OOlS+X//k+OHtW1IINhHigA+Axa7GB+99xz\n7sFFF0lWlsyZ4+0CPDgW25jr1AMATIJgB/O7775zD8LD5Z13ZPp0XatpA2OuUw/A4PiDEE3Q\nFQuTy8iQwsJzjw8dkkmTZNUqXQtqA3cXHwaAViyZzvAMpdFiB5OzrQAiIuHh5l4BhMWHAbjL\nmBuXQT8EO5icbZqqiFx0kYmnqbL4MIBW4A9CnI9gBxiDg8WHGUDjfdxztJ1tWlX7vZ34gxAX\nYIwdYAwtLT5sN4CGwTFe0IpBS0BL2vXt1K5LpsOcCHaAm7wcrZhR4X3cc3hQu76d2I0GF6Ar\nFtCPKx00DKDxPu45PIi3E7yLYAfoxJVV67w8gIaBZcKgJXgUbyd4HcEOqpg5Uw4e1LsId7iy\nSIGDGRUex/LIGm/ecyiPtxO8jjF2gE5c6aDx5gAaBpZpGLQED+LtBK+jxQ7QgwE7aBgJBADm\nR7CD+dkWizIRo3XQGDBoAgDcR7AD9GDbMEProPHghhmtmwBhtKAJAGgVxtgBhtH2FfJavRQq\nI4EAQAkEO0AhbZkAsWmTiMjixdLYKEuWeLw0AO2C3WhwPrpiAU/TcTW4Vk+AqKmR/HwRkeuv\n9+m1TgDA5Ah2gEfpuBpcWyZAlJbK6dMiIgMHtrioHgDA8OiKBTxKx9Xg2rIduNbUBwAwOYId\n4FEeXw3O9QE0rZ4AkZEhhYXnHufnS3W1rFrlZpVqYdASPIi3E7yLrljAc0y6GpxtrRMRycpi\nrRMAMC+CHeA5Jl0Nzraonoj07evJRfUAmJqOU8HQWnTFAp7jVmcoHTQAjKzV62JCVwQ7AL+a\nOdNkO7MBaD86TgVDG9AVCwAALuDxqWDwCoIdAAA4n0mngoFgBwAA7Jl0KhgYYwcAAOy1el1M\n6I1gByiEmbYA4NvoigUAAFAELXYAaOoDAEXQYgd4lJaQWA0OgM9ivwpd0WIHAAA8hP0q9EaL\nHQDAVAzeIGTw8tqbtl/FPffI7Nly4416V+OLaLEDAJiHwRuEDF6eF7Bfhd5osQMA1/h4S4xB\nGLxByODltTf2qzAAWuwAwAW0xBiEwRuEDF6eW1oxWX7ePElPlzlzJCtLxo+X2Nj2qQyO0GIH\nAC7w8ZYYgzB4g5DBy/OCQYPO3QFtv4r+/fUuyBcR7ADABSq1xJiXwTcwNXh58A0EOwBwhpYY\ngzB4g5DBy4NvINgBgDO0xAAwCSZPAIAzgwZJY6PIry0xAGBUtNgBAAAogmAHAACgCIIdAACA\nIgh2AAAAimDyBAAA8JBW7FcBj6LFDgAAQBG02AEAzMPgDUIGLw8+gBY7AAAARdBiBwAuoCUG\ngBnQYgcAAKAIgh0AAIAiCHYAAACKINgBAAAogmAHAACgCIIdAACAIgh2AAAAiiDYAQAAKIJg\nBwAAoAiCHQAAgCIIdgAAAIog2AEAACiCYAcAAKAIgh0AAIAiCHYAAMCZtWslOlr8/WXGDL1L\ngSP+ehcAAACMraZGcnMlMFAWLpTf/17vauAIwQ4AADhUWiqnTklOjsyerXcpcIKuWAAA4FBd\nnYhI58561wHnCHYAAKBlGRmSliYikp8vFotMmqR3QXCEYAcAAFo2b548+aSISFaWvPuu5OXp\nXRAcYYwdAABo2aBB0tgoItK3r2Rm6l0NnKDFDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4A\nAEARBDsAAABFEOwAAAAUQbADAABQBAsUAwAAh1JTxWrVuwi4hBY7AAAARRDsAAAAFEGwAwAA\nUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsAAABFEOwAAAAUQbADAABQBMEO\nAABAEQQ7AAAARRDsAAAAFOGvdwEmEBgYKCJBQUF6FwIAAIxCiwdGY7FarXrXYALffPNNQ0OD\nXs8+bty4gQMHZmRk6FWA6Sxfvjw0NHTChAl6F2IaBQUFBw4cmDFjht6FmMaWLVs+/PDDJUuW\n6F2IaezcuXPx4sWvvPKK3oWYxpEjRx599NFnnnkmIiJC71pMY+LEiStWrLjmmmu88Fz+/v79\n+/f3whO5i2BnAklJSePHj586darehZjGmDFjevTosXz5cr0LMY1Zs2Z9++23H374od6FmMaL\nL7749NNPl5SU6F2Iafzzn/8cMWKEjn8hm05ZWVlsbOz+/fv79Omjdy2m4e/vX1hYOGzYML0L\n0RNj7AAAABRBsAMAAFAEwQ4AAEARBDsAAABFEOwAAAAUQbADAABQBMEOAABAEQQ7AAAARRDs\nAAAAFEGwM4HAwEBjbkhnWNwxd3HH3MUdcxd3zF3a7eKmuYW3mbClmCkcOnQoPDz8oosu0rsQ\n06iqqvL39w8NDdW7ENM4ceJEbW1t9+7d9S7ENM6cOXP48OGYmBi9CzENq9Wq7ZGldyFmsm/f\nvri4OL2rMBNtBzaLxaJ3IXoi2AEAACiCrlgAAABFEOwAAAAUQbADAABQBMEOAABAEQQ7AAAA\nRRDsAAAAFEGwAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsAAABFEOwA\nAAAUQbADAABQBMHOHPbt2/fHP/7x0ksvDQoKioiIyMzMLC4u1rsoQzt27Nj06dN79+4dFBQU\nGxubmZm5bds2vYsyuvr6+tmzZ/v5+aWkpOhdi3FVV1dPmTKlT58+gYGBUVFRubm5FRUVehdl\ndLy13MLHl7v4imzKYrVa9a4BTpSUlAwePPj48eNjx4699NJLf/jhhzfffFNEioqKBg0apHd1\nRnT06NHk5OSysrJbb701KSlp3759BQUF/v7+xcXFv/vd7/SuzqB279597733lpaWnjx5csCA\nAV9++aXeFRnRmTNnBg0atH379jvuuCMpKWnv3r1r1qyJjo7+6quvunTpond1BsVbyy18fLmL\nr0h7Vhje8OHDLRZLUVGR7ci6detEZOzYsTpWZWQPPvigiCxfvtx25J133hGRW265RceqjKym\npiY4ODglJaW0tDQoKCg5OVnvigzqmWeeEZH8/HzbkYKCAhGZNm2ajlUZGW8td/Hx5S6+Iu3Q\nFWsC11577axZs66//nrbkVGjRgUEBJSUlOhYlZEFBAQMGzbs/vvvtx25/fbbg4ODd+7cqWNV\nRtbQ0PDAAw989tln8fHxetdiaK+++mrnzp0nT55sOzJ27Nj4+Pg1a9ZY6f1oDm8td/Hx5S6+\nIu34610AnFu4cKHdkcrKyvr6+tjYWF3qMb5ly5bZHTlz5kxDQ0N0dLQu9RhfeHj40qVL9a7C\n6Orq6nbs2DFkyJCgoKCmx1NTU19++eX9+/fHxcXpVZth8dZyFx9f7uIr0g4tdiZTW1v7ySef\n3HLLLZ07d37sscf0Lsc0Xnjhhfr6+uzsbL0LgYmVl5c3NjbGxMTYHe/du7eI7Nu3T4+ioD4+\nvlzHV6QQ7MwlLCwsJCRk6NChiYmJX3/9NfPLXFRUVDRjxozU1NRJkybpXQtM7Pjx4yISEhJi\nd7xTp0623wKexceX6/iK1NAVayDV1dWzZs2y/RgfHz99+vSmJ+Tl5R09evS7775bu3ZtWVnZ\nK6+84uNdP07vmIi88cYbOTk5CQkJ77//vr+/r7/hXbljcMxisdgd0UbXXXgcaCM+vtzCV+Q5\nes/ewG/Ky8ub/tcMHjy4pTO3bNkSEhKSmJjY2NjozQqNxvEdO3v27Ny5c0UkIyPjl19+0atI\nQ3HlPcbUxZaUlpaKyMSJE+2OP/744yKyefNmPYoyE95aruPjqy18/CuSvwAMJDo62uraxLoh\nQ4aMHj167dq1JSUlV155ZXsXZlgO7pjVas3NzV29evXDDz+8bNkyPz8/L9dmTK6/x3ChSy65\nxN/f/8cff7Q7vnfvXhHp27evHkVBQXx8tZGPf0Uyxs7oDh482L9//wkTJtgdr6urE5GTJ0/q\nUZQJTJ06dfXq1U8++eRzzz3HxyI8IjAwMDk5ubi4uLa21nbw7NmzRUVFMTExl1xyiY61QSV8\nfLmOr8gLEeyMrlevXkePHi0oKPj8889tB/fs2fPxxx936tQpISFBx9oMa926dc8+++zkyZNn\nz56tdy1Qyn333VdbW7tkyRLbkRdffPHQoUO5ubk6VgWV8PHlFr4iL8SWYibw3nvv3XnnnR06\ndLjjjjsuvfTSgwcPvvXWWydPnlyxYoW2RjnsxMfH79279+GHH+7YsaPdr2bOnMnWTxcqKira\nuHGj9njp0qURERETJ07UfpwxY0bXrl31K81YGhsbhw4dunXr1tGjRyclJe3evbugoCAhIWHb\ntm0XvtkgvLXcx8eXu/iKtKfnAD+4bNu2bZmZmREREX5+fmFhYTfeeOP69ev1Lsq4HLzh9+/f\nr3d1RvTUU0+1dMdKS0v1rs5Yjh8/rm3QHhAQ0KtXrwcffLCqqkrvooyLt5a7+PhqBb4im6LF\nDgAAQBGMsQMAAFAEwQ4AAEARBDsAAABFEOwAAAAUQbADAABQBMEOAABAEQQ7AAAARRDsAAAA\nFEGwAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsAAABFEOwAAAAUQbAD\nAABQBMEOAABAEQQ7AAAARRDsAAAAFEGwAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAE\nwQ4AAEARBDsAAABFEOwAAAAUQbADAABQBMEOAABAEQQ7AAAARRDsAAAAFEGwA9BW2dnZFoul\nsrLSUJeyXe2///2vR64GAMZHsAMgIvLaa69Zzufn5xcZGZmVlfXvf//b8b+9+uqrR4wYERQU\n1PYyPHgpF1mt1rfffjszMzMqKiooKKh79+4pKSl//vOfDx8+7LUajGzRokU//PCD09Pq6+tn\nz57t5+eXkpLihaoAtMRitVr1rgGA/l577bXx48cPHjw4NTVVO3Lq1KmSkpJNmzZZrdaXX355\nwoQJ+lbYCtnZ2QUFBeXl5dHR0c2eUF1dPWbMmM2bN3fs2HHYsGG9e/euqqoqLi7eu3dvRETE\nO++8k5aW5uWaDaWioiIqKmrjxo0ZGRkOTtu9e/e9995bWlp68uTJAQMGfPnll16rEIAdf70L\nAGAgN9544/z585se2bp16w033DBlypRx48Z5syHNO+65557Nmzcpa0uRAAAKi0lEQVSPHj36\npZdeioiI0A6ePXv2xRdffOihh0aPHv399993795d3yJ19MUXXzg955dffklOTu7Xr9/27dsT\nEhK8UBUAB+iKBeBIWlrasGHDjh079s0338ivo9Z++umn4cOHBwcHr1+/Xs4fGHf33XdbLJYT\nJ07MnDmzT58+QUFBMTExy5Yta9o5UFlZmZub26tXr5CQkP79+z/77LMNDQ3ar5pe6vbbb7dY\nLBUVFbm5uZGRkUFBQVdcccVf//rXpuUVFxfffvvt3bp1CwwM7NOnz/jx48vKylx8aR999NGH\nH36YlJT09ttv21KdiHTo0GHSpElPPPFEUlLS3r17tYM//vhjTk5Or169AgMDu3XrNmrUqOLi\nYts/0V51dXX1/fffHxkZ2bFjx4EDBxYXF9fW1k6ZMqVXr16dOnW67rrrtm/fbvsnrrw6V57U\n8a0+fPjwgw8+2Lt378DAwIiIiMzMzKZZzfEVRo4cOXr0aBG5+eabLRZLSz3yDQ0NDzzwwGef\nfRYfH+/inQfQfmixA+BE165dRaS2tlZEAgMDRWTq1KkBAQFz586Ni4uzO1k74c4774yNjf37\n3/9+9uzZBQsWPProo2FhYTk5OSJy5MiRlJSUEydOTJgwoXfv3p988smUKVN27Njxt7/9ze5S\nWgNhZmbm0KFD33333bNnzz7xxBMPPPBAQEBAbm6uiHz11Vfp6enh4eGTJ0/u0aPHvn37nn/+\n+Y8//njXrl1azY69+uqrIvLYY4/5+zfzSThnzpw5c+Zoj8vLy6+55pra2tq8vLx+/fodPHhw\n5cqV119//ebNm7Wea+1VjxkzJi0t7aOPPvr2228nTZo0ZsyYxMTEfv36rV+/vqysLDc395Zb\nbikvLw8ICHDl1bn4pI5v9bXXXltdXT1p0qSEhITy8vKVK1empaUVFhamp6c7vcLjjz8eHh6+\nZs2auXPnDhgw4Kqrrmr2NoaHhy9dutTp3QbgJVYAsFrXrFkjIvPmzbM7fubMmbi4OK1tyWq1\n/uEPfxCRm266qbGx0XbOuHHjREQ74b777hORu+66y/ZbrdFr5MiR2o95eXkiUlhYaDvh1ltv\nFZHvvvvO7lLa46aXqq6uDgoK6tOnj/bjypUrk5KStmzZYjth+fLlIrJ8+fKmhZWXlzf7krXX\nVVNT4/TmTJw4UUTWrVtnO7Jr1y4/P7+BAwdqP2qvOi8vz3bC2LFjReTOO++0HZk8ebKIfPrp\np01rc/DqXHxSx7fa39//iy++sJ1w4MCBzp07p6SkuHiFp556SkQ2btzo9BZpgoKCkpOTXTwZ\nQHugKxZA8+rq6nbs2JGdnb1v377s7OwePXqIiMViEZGJEyd26ODo00MLJZq4uLiOHTtqa45Y\nrdY333wzJiZm+PDhthOee+65f/3rX5GRkc1eKjs72/Y4NDQ0LS2trKysoqJCRPLy8r766qsh\nQ4aISH19fV1dndaq5GJv7OHDh0NDQy+++GLHp1mt1vfeey8yMjIzM9N28Morrxw0aNC2bduq\nqqpsB7OysmyP+/btKyJaV6bm8ssvFxGtcqevzvUndXCr33rrrcTExOjo6MpfBQQEXHfddV9+\n+eWJEyecXgGAGRHsAPxmwYIFtuVOgoODExMT161bN2rUqBdeeKHpaVpGceCSSy5p+mNAQEB9\nfb2IVFRUVFVVXXHFFVpA1MTFxQ0dOrRbt27NXuqyyy5r+mOvXr1ExLbQ3Zo1a9LT07t06RIY\nGBgcHDxs2DARsY3Yc6xDhw6NjY1OT6usrKypqenXr1/TmuXXm7Bnzx672jRa927TI1oPrHYf\nnL4615+0pVv9008//fzzz9u3b+95vsLCQhE5cOCA0ysAMCPG2AH4TXp6utYAJiIdOnTo2rVr\nampq//797U4LDQ11fB0txFzo1KlT8uvwMhd17Nix6Y8hISEiUl1dLSJz5sx56qmnUlJSli1b\nFhsbGxQUtHPnTm2AmiuioqJKSkp+/vnnljKl5uTJk7bnbSo4ONj2W82Fr7ql+2DT0qvr3Llz\nq59Uc/z4cRG5+uqrte5UO1FRUa4XCcBECHYAfjNkyBC75U48S+vP1WKZi5qGGBGpqakRka5d\nu9bV1f3lL3+JiYnZsmVLp06dmv7WRdddd11JSck//vEPbaqBHavVumPHjsTERO3idmXYjmgJ\nrNVaenVtf1LbOY6XoAOgGLpiAXhPSEhIRETE7t27m3b2lZSUrFixYufOnc3+k927dzf9sbS0\nVER69uxZWVl56tSplJQUW6oTkaKiIteL0fLcE088oTVu2Vm5cmX//v2ff/75Hj16hIeH7969\n23r+cu67du2yWCxOe6Uda+nVtf1JIyMju3Xr9v3339vF6CNHjrSlYAAGR7AD4FWjR4+uqqp6\n5ZVXbEfmz5//8MMPnz59utnzV69ebXu8Z8+eL7744vLLL4+IiIiMjLRYLE3nSXz99dfaCiZ1\ndXWuVJKWljZu3LiysrLhw4fb1qsTkYaGhueee27y5Mk9e/a8++67RSQrK6uiouL9999v+lzF\nxcU33HBDWFiYiy/crVfnkScdM2ZMXV3dkiVLbEeOHDmSmJh42223uVien5+f/NqBDsAU6IoF\n4FXz5s3bsGFDXl7eN99807t376Kiog0bNkyYMCEpKanZ80+fPn3bbbeNHDny7Nmzixcvtlqt\nc+fOFZHg4OBbb711w4YNkyZNGjJkyK5du1asWPH666+PGjXqgw8+eOONN0aNGuW0mNWrV58+\nffq999674oor0tLSLrvssurq6m3btv34449xcXEfffRRly5dRGTBggUbNmwYP378I488cvnl\nl5eVlT3//POdOnV65pln2ng3Wnp1HnnS+fPnf/DBB08++WRFRUV6evqhQ4dWrVpVVVX1yCOP\nuHgFbZ3CRYsW7d+/Py0t7fe///2F5xQVFW3cuFF73NDQcPDgwVmzZmk/zpgxw5UFBQF4km4L\nrQAwkpbWsbOjrXxWWlra9OCF69jZnRAaGtqvXz/bj2VlZffee2/37t0DAgLi4uKefvrphoaG\nCy+lPS4tLZ0yZUpUVFRgYOBVV1318ssv267z008/3X333REREaGhoTfccMPWrVutVuuCBQs6\nderUo0ePiooKx+vY2axfvz4rKysqKiogIKBz587XXnvtypUra2trm55z4MCBnJycnj17+vv7\nd+/ePTs7e9euXQ5uy7x580REK0nz0ksvicgbb7zR9JU6eHWteNILb3VFRUVeXl5MTIy/v39Y\nWNioUaM+//xz169w5syZO+64Izg4uEuXLm+99Vazd6/ZyRkauysD8AKL9fwBHABgENnZ2QUF\nBeXl5dHR0XrX4nlqvzoAemGMHQAAgCIIdgAAAIog2AEAACiCMXYAAACKoMUOAABAEQQ7AAAA\nRRDsAAAAFEGwAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsAAABFEOwA\nAAAUQbADAABQBMEOAABAEQQ7AAAARRDsAAAAFEGwAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRB\nsAMAAFAEwQ4AAEARBDsAAABFEOwAAAAUQbADAABQBMEOAABAEQQ7AAAARfw/yUGeOsdhtkcA\nAAAASUVORK5CYII=",
- "text/plain": [
- "plot without title"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde0DUdb7/8RehiLfU2rzgJW+saaQhad74udtaEm1GGJG6ZrrTEa1+J/pl\nLZ4UFHNjq3PU8tJKZZdFVyvUzPRkmpe2FjLTSndV0tRNLV1FQc2k+f0xCIjAcJn53ub5+Gv2\nOzPwXqQvr/lc3p8gt9stAAAA2N8VZhcAAAAA3yDYAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAI\ngh0AAIBDEOwAAAAcgmAHAADgEAQ7AAAAhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAIgh0A\nAIBDEOwAAAAcgmAHAADgEAQ7AAAAhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAIgh0AAIBD\nEOwAAAAcgmAHAADgEAQ7AAAAhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAIgh0AAIBDEOwA\nAAAcgmAHAADgEAQ7AAAAhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAIgh0AAIBDEOwAAAAc\ngmAHAADgEAQ7AAAAhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAIgh0AAIBDEOwAAAAcgmAH\nAADgEAQ7AAAAhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAIgh0AAIBDEOwAAAAcgmAHAADg\nEAQ7AAAAhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAIgh0AAIBDEOwAAAAcgmAHAADgEAQ7\nAAAAhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAIgh0AAIBDEOwAAAAcgmAHAADgEAQ7AAAA\nhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAIgh0AAIBDEOwAAAAcgmAHAADgEAQ7AAAAhyDY\nAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAIgh0AAIBDEOwAAAAcgmAHAADgEAQ7AAAAhyDYAQAA\nOATBDgAAwCEIdgAAAA5BsAMAAHAIgh0AAIBDEOwAAAAcgmAHAADgEPXMLsAetm/ffuHCBbOr\nAAAAllCvXr1evXqZXUUFCHbeffbZZ3369DG7CgAAYCG5ubk33XST2VWUR7Dz7vz585J+/PHH\nkJAQs2sBAAAmO3/+fIMGDTzxwGpYYwcAAOAQBDsAAACHINgBAAA4BMEOAADAIQh2AAAADkGw\nAwAAcAiCHQAAgEMQ7AAAAByCYAcAAOAQBDsAAACHINgBAAA4BMEOAADAIQh2AAAADkGwAwAA\ncAiCHQAbyspSu3aqV0+TJpldCgBYSD2zCwCAGsrPl8ulkBClp6tPH7OrAQALIdgBsJs9e3T2\nrMaOVUqK2aUAgLUwFQvAbs6dk6SmTc2uAwAsx34jdm63e9++fd98883p06clNWvWLDw8vH37\n9mbXBcAQMTFau1aSMjKUkaHx47Vggdk1AYBV2CnYnThx4umnn37jjTe+//77ck916NDB5XI9\n/vjjDRs2NKU2AAZJTdXgwZo8WfHxGj1anTqZXRAAWIhtgt3hw4cHDhy4b9++8PDw2NjYa6+9\ntnHjxpJOnTqVl5e3cePGqVOnvv322xs2bGjRooXZxQLwm/79VVQkSeHhioszuxoAsBbbBLsp\nU6YcOnRo6dKlCQkJlz9bVFT00ksvPfzww9OmTZs1a5bx5QEAAJjONpsn3nvvvdGjR1eY6iQF\nBwdPnDjx3nvvfeeddwwuDAAAwCJsE+yOHz/epUuXql/TvXv3o0ePGlMPAACA1dgm2IWFhW3f\nvr3q12zbti0sLMyYegAAAKzGNsEuLi5u2bJlzz333I8//nj5s4WFhampqStWrEhMTDS+NgAA\nACuwzeaJtLS0zZs3T5o0afr06X379m3fvn2TJk3cbndBQcG3336bk5Nz5syZ6Ojop556yuxK\nAQAAzGGbYNe8efNPPvlk7ty5r7/++kcffVTk6XcgSapfv35UVNS4cePGjRsXHBxsYpEAAAAm\nsk2wkxQSEpKcnJycnHzu3LmDBw96Tp648sorO3ToEBISYnZ1AAAAJrNTsCsRGhoaHh5udhUA\nTDJokNxus4sAACuyzeYJAAAAVM2WI3YVysvLGz9+vKR169bV6I27du06c+ZMFS/45z//WafK\nAAAADOGcYHf69OkPP/ywpu/Ky8u7/vrr3dWY1im7XQOAObKy9MQTOnJEycl69lmzqwEAy3FO\nsLvuuuu+/PLLmr6rS5cu+fn5Fy5cqOI1ixYteuyxxwh2gMny8+VyKSRE6enq08fsagDAipwT\n7EJDQyMiImrxxqZNm1b9gkaNGtWqIgA+tWePzp7V2LFKSTG7FACwKEdtnjh+/PjevXvNrgKA\nf5w7J0nePokBQCBzVLB79tlnaYMCOFNMjKKjJSkjQ0FBSkoyuyAAsCJHBTsAjpWaqpkzJSk+\nXtnZmjDB7IIAwIqcs8YOgJP17y/PBqbwcMXFmV0NAFiUbYLdTTfd5PU1//rXvwyoBAAAwJps\nE+y2bdsmqX79+lW8puquJQAAAM5mmzV2kyZNaty48VdffXWuco8//rjZZQIAAJjGNsEuPT29\na9euI0aM+Omnn8yuBQAAwIpsE+zq16//l7/85euvv548ebLZtQAAAFiRbdbYSerevfuRI0eq\nWEh3++23N2/e3MiSAAAArMNOwU7SlVdeWcWzgwcPHjx4sGHFAAAAWIptpmIBAABQNZuN2AEI\nXIMGye02uwgAsDRG7AAAAByCYAcAAOAQBDsAgKmystSunerV06RJZpcC2B5r7AAA5snPl8ul\nkBClp6tPH7OrAWyPYAcAMM+ePTp7VmPHKiXF7FIAJ2AqFgBgnnPnJKlpU7PrAByCYAcAMElM\njKKjJSkjQ0FBSkoyuyDA9gh2AACTpKZq5kxJio9XdrYmTDC7IMD2WGMHADBJ//4qKpKk8HDF\nxZldDeAEjNgBAAA4BMEOAADAIQh2AAAADkGwAwAAcAiCHQAAgEMQ7AAAAByCYAcAAOAQBDsA\nVcrKUrt2qldPkyY59jsCgFPQoBhA5fLz5XIpJETp6erTx5nfEeYaNEhut9lFAM5BsANQuT17\ndPasxo5VSopjvyMAOAhTsQAqd+6cJDVt6uTvCAAOQrADUImYGEVHS1JGhoKClJTkwO8IAM5C\nsANQidRUzZwpSfHxys7WhAkO/I4A4CyssQNQif79VVQkSeHhiotz5ncEAGdhxA4AAMAhCHYA\nAAAOQbADAABwCIIdAACAQxDsAAAAHIJgBwAA4BAEOwAAAIcg2AEAADgEDYoBVG7QILndDv+O\nAOAgjNgBAAA4BMEOAADAIQh2AAAADkGwAwAAcAiCHQAAgEMQ7AAAAByCYAcAAOAQBDsAAACH\nINgBAAA4BMEOAFBtWVlq10716mnSJLNLAVABjhQDAFRPfr5cLoWEKD1dffqYXQ2AChDsAADV\ns2ePzp7V2LFKSTG7FAAVYyoWAFA9585JUtOmZtcBoFIEOwBANcTEKDpakjIyFBSkpCSzCwJQ\nAYIdAKAaUlM1c6YkxccrO1sTJphdEIAKsMYOAFAN/furqEiSwsMVF2d2NQAqxogdAACAQxDs\nAKAmLNLIzSJlALAYpmIBoNos0sjNImUAsB6CHQBUm0UauVmkDADWw1QsAFSbRRq5WaQMANZD\nsAOA6rFIIzeLlAHAkgh2AFA9FmnkZpEyAFgSa+wAoHos0sjNImUAsCSCHQCgegYNktttdhEA\nqsJULAAAgEMQ7AAAAByCYAcAAOAQBDsAAACHINgBAAA4BMEOAADAIQh2AAAADkEfOwCoNos0\ncrNIGQCshxE7AAAAhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAIgh0AAIBDEOwAWE9Wltq1\nU716mjTJ7FIAwE7oYwfAYvLz5XIpJETp6erTx+xqAMBOCHYALGbPHp09q7FjlZJidikAYDNM\nxQIBz2rznufOSVLTpmbXAQD2Q7ADAptn3rOgQOnpGjrU7GqkmBhFR0tSRoaCgpSUZHZBAGAn\nTMUCgc1q856pqRo8WJMnKz5eo0erUyezCwIAOyHYAYHNavOe/furqEiSwsMVF2d2NQBgM0zF\nAgGMeU8AcBaCHRDAUlM1c6YkxccrO1sTJphdEACgTpiKBQIY854A4CyM2AEAADgEwQ4AAMAh\nCHYAAAAOQbADAADWZrUDciyMYAcEpJK75Lx5ZpcCAFWy2gE51kawAwJJSZ4bM6b4Ltm3r9k1\nXWbQILndeuYZs+sAYLgKR+Y8B+SMGqWUFA0ZYl5x9kCwAwJGyafepCRduFB8l7zpJrPLAgBJ\nlY/MWe2AHGsj2AEBo+RT7333SdwlAVhMhSNzHJBTQwQ7IGB4PvW+//4ld8k332TeE4AlVDgy\nxwE5NUSwAwJDyafeffuKr3CXBGAdlY3M9e9ffN1zQE6vXqZVaBMEOyAwlP3U63nAXRKAdTAy\n5yOcFQsEhrLHwno+/gKAdXB0tY8wYgcAAOAQBDugDJqbAwDsjKlY4CJPC6WQEKWnq08fs6sB\nAKDGCHbARZ4WSmPHKiXF7FIAAKgNpmKBi2huDgCwOYIdIInm5gAAJ2AqFpAkpaZq8GBNnqz4\neI0erU6dzC4IACBJGjRIbrfZRdgGwQ6QFGAtlLhLAoBDEeyAgGHZPJeVpSee0JEjSk7Ws8+a\nXQ0Ak1j2HmUrBDsApqLLDAD4DsEOgKnoMgMAvsOuWACmossMAPgOwQ6AeegyAwA+RbADYJ7U\nVM2cKUnx8crO1oQJZhcEAPbGGjsA5gmoLjMA4H+M2AEAADgEI3bARbRQAgDYHCN2AAAADkGw\nAwAAcAh7T8WeP39++/btBQUFHTt27MSp7QAAILDZZsRuxowZGzZsKHvlpZdeat26dd++fW+5\n5ZbOnTvfdNNNX3zxhVnlATaWlaV27VSvniZNMrsUAECd2CbYTZkyZe3atSX/87333ktKSjpz\n5szdd989fvz4gQMHbt269Ve/+lVeXp6JRQL24zmqtaBA6ekaOtTsagAAdWKbYFdOcnJys2bN\ntm3b9s477yxYsGDLli1vv/32qVOnnn76abNLA2zFc1TrqFFKSdGQIWZXY0OMdwKwEluusfvh\nhx/27NkzefLk7t27l1yMj4+/6667/vd//9fEwgD7Mf2oVlt3mfGMd4aEKD1dffqYXQ0A2HPE\n7ty5c5LKpjqPiIiI77//3oyKAHviqNY6YrwTgMXYMtiFhYU1a9bs0KFD5a5/9913TU0ceABs\nh6Na68j08U4AuJSdgt2BAwc+++yzvXv3njhxYuLEiS+//PKZM2dKnv3HP/7x17/+deDAgSZW\nCNhM//7FI3aeo1p79TK7IFthvBOA9dhpjd3ixYsXL15c9sr7778/fPhwSVlZWf/xH/9x9uzZ\nKVOmmFQdgACTmqrBgzV5suLjNXq0aKUJwAJsE+xeffXVk2Xk5+efPHmyRYsWnmdPnjzZvHnz\nJUuW9GH9MgBj9O+voiLp4ngnAFiAbYLdAw88UMWz999/f1JS0hVX2GlmGQAAwLcckoSaNGlC\nqgN8gK5sAGBnthmxA+B3dGUDAJtzTrDLy8sbP368pHXr1lX/XRcuXHj33XcvXLhQxWu2bt1a\n1+IAW/B0ZRs7VikpZpcCAKgN5wS706dPf/jhhzV913ffffeHP/yh6mB36tQpSW77NseH9WVl\n6YkndOSIkpP17LOmlUFXNgCwOecEu+uuu+7LL7+s6bs6dOjwz3/+s+rXvPTSS0lJSUFBQbUt\nDaiSRSZAY2K0dq0kZWQoI0Pjx2vBAtOKAQDUinM2HISGhkZERERERJhdCFBD5h5L5Tmq9Zln\nOIUCQDkjRyooSCdPavx4tWqlRo3Ur59ycnTmjB59VG3bqkkTDRigzz83u1CUYb8RO7fbvW/f\nvm+++eb06dOSmjVrFh4e3r59e7PrAmrLIhOgdGUDcKmQEElKSFB0tNas0Y4dSkpSQoJ69tT1\n12vlSu3fL5dLsbE6eFD165tdLiTZa8TuxIkTjz/+eOvWrbt06XLrrbfGx8fHx8f/5je/6dCh\nw7XXXpuenn727FmzawRqiGOpbK1kvBNwonr1JCk8XFOnKjJSY8Zo2DAdOKDQUD3zjKKiNHy4\nxozR0aPKza38q9BEyVi2GbE7fPjwwIED9+3bFx4eHhsbe+211zZu3FjSqVOn8vLyNm7cOHXq\n1LfffnvDhg0lx1EANsCxVACsLT6+9HF4uCTddVfplW7dJOnw4UrebJE1xIHENsFuypQphw4d\nWrp0aUJCwuXPFhUVvfTSSw8//PC0adNmzZplfHlALTEBCsDa2rYtfewZwyt7xTMD+9NPlbzZ\nb02URo7U4sU6cUJPPqnly3X6tHr21Jw5iojQ5Mlatkz5+erZUy++qN69ffudrc42U7Hvvffe\n6NGjK0x1koKDgydOnHjvvfe+8847BhcG1ElWVvHH4Q0bzC4FACpw+eK5Giyn89sa4pL1f23b\nas0azZ+v7duVkKDERIWGauVKvfaadu1SbGzlodOhbBPsjh8/3qVLl6pf071796NHjxpTDwzi\n7MUZnkmKM2ckMQkLwGn8uYbYN+v/nMg2wS4sLGz79u1Vv2bbtm1hYWHG1AMjeHJPQYHS0zV0\nqNnV+IFnkuK22ySpY0eTiwEA3/J/E6U6rf9zKNussYuLi5szZ06fPn0eeeSRBg0alHu2sLDw\nT3/604oVK5588klTyoNfOP6EK88kRaNGZtcBAH7g/zXEdVr/51C2CXZpaWmbN2+eNGnS9OnT\n+/bt2759+yZNmrjd7oKCgm+//TYnJ+fMmTPR0dFPPfWU2ZXCdyzS4M1PSk56+MtfJGntWrpm\nAECN1Gn9n0PZJtg1b978k08+mTt37uuvv/7RRx8VeT4ESJLq168fFRU1bty4cePGBQcHm1gk\nfMnxJ1yVNDoZPFgbNyoy0uyCLnZlAwDYlm2CnaSQkJDk5OTk5ORz584dPHjQc/LElVde2aFD\nhxDP9hg4ieMbvJVMUrRrJ0ktW5pbDgCUk5mpzMxLrqSlKS3tkisul1wuA2uCN3YKdiVCQ0PD\nPYsk4WA0eAMAoIZsGewAR2nXjglQAIBP2KbdCQAAAKpGsAMAADaTmSm3W127ll5JS5PbrUGD\nNHKkgoJ08qRyc9WypcaNU79+ysnRmTN69FG1basmTTRggD7/3Lzq/YlgBwAAnCPATxtjjR0A\nAPAPM5oolT1tTFJkpFav1tKl6tu3uFtoVJQ2b9bs2crN1YABBlfnd4zYAbADZ58aDMDXAva0\nMYIdYA0Elyo4/tRgAL4WsKeNMRULmKdkksITXEJClJ6uPn3MLst6HH9qMABfC9jTxhixg4V5\nck8gnKDqCS6jRiklRUOGmF2N9Tj71GDAaphAsDOCHWABBJcqxMQoOlqSMjIUFKSkJLMLAhyN\nlQ82R7ADzEZwqVpqqmbOlKT4eGVna8IEswsCHI0JBJsj2MFwDPKX44zg4r9/1v79i4Ov59Tg\nXr18/PUBlMUEgs0R7GAsUwb565g5/J1EHRBcmLsBnIEJBPtjVyyMZfz2xjpuOGW/anWwaxVw\nhtRUDR6syZMVH6/Ro9Wpk9kF1UZmpjIzL7mSlqa0tEuuuFxyuQysyUAEOxjL+EH+OmYOIkt1\nMHcDOEP//ioqki5OIMCGmIqFgUwZ5K9j5iCyeMXcDQBYBsEOBjJ+l0AdMweRpTqcsfkDAByB\nqVgYyPhB/jquF3HEchO/Y+4GACyDETs4Wh03nDpgv2qt0ZUGAGyoTiN2J06cyM/P79ixo4+K\nAWAN7AUGAHuqasRux44dd9xxR8eOHaOjo+fNm1fkmW0pIyMjoxOTU0DdffCBJP3pT1YZHrNa\n6/nAOTUYcJCRIxUUpJMnNX68WrVSo0bq1085OTpzRo8+qrZt1aSJBgzQ55+bXaizVDpi9/HH\nH//mN7/58ccfGzVq9N13323ZsmXp0qXZ2dktWrQwsj7A+fLz9eyzatZMTz5pleEx9gIDqLOQ\nEElKSFB0tNas0Y4dSkpSQoJ69tT112vlSu3fL5dLsbE6eFD165tdrlNUOmL3xz/+8eeff87O\nzi4oKDh9+vR///d//+1vfxs6dGhhYaGR9QHOV254zPTFbewFBuAL9epJUni4pk5VZKTGjNGw\nYTpwQKGheuYZRUVp+HCNGaOjR5Wba3atDlLpiN2OHTsSExPj4uIkNWjQIDk5uVevXrfffvu9\n9967cuXK4OBgA4sEHK3s8JgVFrexFxgIZJ6VD74TH1/6ODxcku66q/RKt26SdPiwD79hoKt0\nxO7IkSOdO3cue+WWW27JzMxcvXr1Y4895v/CgMBQbnhs3DjzF7cF8l5gAL7Wtm3pY88YXtkr\nnhnYn34ytiZHqzTYtWrV6osvvih3cfTo0SkpKXPmzHn22Wf9XBgQGMp1973zTonFbQCc4/LF\ncyyn86tKp2Lj4+NfeOGFF198cfz48fXL/CM8/fTT33333RNPPPHdd99dvk8W8MLXg/y2V7a7\n74IFWrtWkjIylJGh8eO1YIG51VUX/6wAYA2VBrupU6cuX778kUceWbFixQeeXgySpKCgoFdf\nfbVZs2azZs0ypEIEgKwsPfGEjhxRcrJ8Phhcx8xhZGRhcRsAoG4qnYq9+uqrt27dOnHixIiI\niHJPBQUFzZ49++233+7SpYufy0MA8GwXKChQerqGDjXom5q+87RCLG6Dn1jzFx4Bb+RIPfig\nJGVm0ujOZ6pqUPyLX/xi7ty5//M//1Phs/Hx8Xv37nUz/4I6Mr4XrilRsi74q4y6sN0vPAKG\np9GdpBYttGaN5s/X9u1KSFBiokJDtXKlXntNu3YpNpbdFTXAWbHwndrlD+N74VrtWIWq8VcZ\ndWSvX3gEknoXl4MNH06jO58h2MFHapc/TOmFa69jFfirjDqy1y88HCQzU263unYtvZKWJrdb\ngwZd8rIPPtB99xU/ptFd3RHs4CO1yx/lmn1MmOC/AovZ7lgF/iqjLmz3C4/AQ6M73yLYwUdq\nlz+M3y5gfJSsC7P+Knv2Aj/zjEHfDv5jr194BCQa3fkWwQ6+YKNRAXvtPLXFX2X2dliZvX7h\n4TcjRyooSCdPavx49p86XKV97IAaoAFbXVTRKq9s++K4OCOLqi4rHG4LwBvP/tOEBEVHa80a\n7dihpCQlJKhnT11/vVau1P79crkUG6uDBxkwszfvwW7Lli09evS46qqrLn8qJyfn4MGDw4cP\n90NhsBXr5w/4iWdt5dixSkkxuxQAlfKsXQsP19SpkhQZqdWrtXSp+vYtXnMRFaXNmzV7tnJz\nNWCAmaWijrxPxUZHR2/atKnCpzZv3vygp7cgAJ+w3eI29nYA9hEfX/qY/adOVemI3d69e/fu\n3et5vG3bttDQ0HIvOHv27NKlS3/88Uc/VgfAymJi7Hq4LRCQ2H8aCCoNdm+99VbKxbmV6dOn\nV/aye+65x/dFATBLjc7tZW0lYCtW23+amanMzEuupKUpLe2SKy6XXC4Da7K/SoPdH/7whzFj\nxuTm5t51112jR4/u0aNHuRcEBwd37tx52LBhfq4QgFFquhOCtZUAYDFVbZ5o06bNsGHD7rjj\njokTJ/br18+wmgCYw6ydEDUaJgQAVM77rthVq1YZUAcCVxXNPmAwU3ZC0DAFAHzHe7Bzu91v\nvfXW66+/fujQoZ8qWlT51Vdf+aEwwG+IkhUyaycEDVP8jV94IJB4D3bPP//8pEmTJDVq1Kg+\nXQsBgxn2V9msnRA0TAEA3/Hex2727NlDhw7Ny8srLCw8WREDqoQN2K4BG8ox5ewpGx1GB9hZ\nZqbcbnXtWnolLU1utwYNKr3icsnt1n33+f67c6CZkbwHu6NHj06bNq1z584GVAOgUo48ktUW\nh+ECqJuSA83atlXv3jp7Vl98od/8RlddpblzddVVmjJFO3cqOlphYYS8uvIe7Fq1auVmfQZg\nLs8Og4ICpadr6FCzq/EdjqgHbKomHzXLHmjWqpUkNW+uggJFRyszU3v3at48XXWVzpzR00/r\ntde0a5diY2mVXEveg92IESPeeOMNA0oBUCnPDoNRo5SSoiFDzK4GQGCr1UdNz4FmnpDXrp0k\njRmjMWM0bJgOHFDz5pJ05ZUaPlxjxujoUeXm+qV2x/Me7KZOnZqXlzdq1Ki1a9fu2rVr72UM\nqBIIdJbdYcDaSiAA1eqjZtnjyzyHHniueE6t7d1bunigWblTa1miVyPeg13Tpk3Xrl2blZUV\nExPTo0eP8MsYUCUQ0GJiFB09UllBGc+cDGoxvsdmbm0ADFY2XQ277ZykN5Y3rdEtqGxfjSuv\nLL3iGcPzjNiVfWXJVGzZJXpr1mj+fG3froQEJSYqNFQrVzJ7ewnv7U5GjBgREhJSr573VwLw\ni9RUDR4cMvm8pIReu6MHFK15UDt2KClJCQnq2VPXX6+VK7V/v1wuxcbq4EGTz38E4Dwl6WrB\n/pguJ9ZKGv1dhm7OWHPt+ND7FtT0FnTFZcNKVaSMskv0JEVGavVqLV2qvn2LZwuiorR5s2bP\nVm6uBgyo5f9Bx/Ae17KysgyoA0Cl+vdXUVE9/VNS+IBrps6TuLUBMFZJuuoyPfWvEwYnbp/8\naVh8xnej/3W401dz9NFHmjNHo0Zp7lyFhensWfXsqRdfLJ5g9QnPEj0Pz2ThXXeVXik3exvI\nvE/Fljh9+vTXX39N4zrARNzaAJgoPl7q3z8vLFrSF4XhyxV319ReJXOjmzZJ0hNP+GVutOwS\nPU/KLHul3OxtIKtWsNu4ceNNN9105ZVXRkREfPrpp56Lw4YN+/DDD/1ZG4Dy/HtrYycEgCp5\nbjjBwZLUsKEkDRhQurPVM13bvr1fdrZePr3LmpMKeQ92OTk5t9122+7du4eW2dL8ww8/5Obm\nxsbGbt261Z/lAbgEtzYAJip7w7n66tIrngmEG28sfZYJBLN4D3bTp09v3br1zp07Fy1aVHLx\nmmuu2b59e+vWrdPT0/1YHQDHY5gQMJAPW4c0aFD6uOqdrZcfaPZ//2/5A81++09XNvsAACAA\nSURBVFt/HWgWaLwHu08//XTChAntPM0Ey2jZsmVSUtImz4w6ANBuCrA8H7YOCQoqf6U6/TPM\nPbU2EHgPdvn5+e3bt6/wqTZt2hQUFPi6JAB2RbspwOLKtg6JjCxdHhcaqmeeUVQUBz/Ynvdg\n17p16127dlX41KZNm8LCwnxdEgC74m8GYAvsr3cw78EuNjZ23rx5n186d3LixIn/+q//evXV\nV++44w6/1QbAlubPL52NfecdSYqIKJ2NnT9fkj7+2NwagYDm1/31L7ygoCCdOSNJ48f7YEkG\ns7c14j3YTZs2rUmTJjfffLMnw6WkpERGRrZp02bmzJkdOnSY6ukDDcCvBg3KdP/eRre2ktnY\n3/5WkubNK52N/f3vJenpp5mNBUxTi/31l6erqKiKN0B4hgAXLJCklBSWZBitWlOxn3322YMP\nPvjtt99K+uKLL7744oumTZtOmDAhNze3VatW/i8SQO2ZsqGhZDa2Vy9J+v770tlYTyf6/Hxm\nYwGrq+zusevqQUFyX7f8mQrvHp4hQE866NiRJRlGq9YJsC1btpw3b97cuXO///7706dPN23a\nlDwH2EXJhoboaK1ZY9Ahs2VX8HiUXcHjwQoewOKquHs8+aQSEi65e6SlXfLe//ovbdhQ/Jhl\nfEaqwZFiQUFBrVq16tq1K6kO8Ac/Da2ZsqGh7Hqdyq4wCwNYXF3uHpwAZhbvI3Zut/utt956\n/fXXDx069FNF/whfffWVHwoDAo5fh9YM3gTHCRmAY9Tu7sFNwCzeg93zzz8/adIkSY0aNarP\nPwvgN2U/HEuKjNTq1Vq6VH37Fp/LEBWlzZs1e7ZyczVgQM2+OJ+eAVQhOlonTujJJ7V8uU6c\nkKS8PF24IEmjRqmwUD176sUXuXvYgPep2NmzZw8dOjQvL6+wsPBkRQyoEggcfhpa49MzAFXS\nOmTMGKnMZvaFCxUaqj//uXiR3Esvle5j/flnibuHtXkfsTt69Ohbb73VuXNnA6oBYOuhtcxM\nSXr55dIrnvXU06aVXnG5JOnBBw0sC0CVKpsu6NRJkiIi1LVr8XTBv/5lZp2oDu8jdq1atXK7\n3QaUAkAMrQEwyeXTBR06lF7xTBdwjKj1eQ92I0aMeOONNwwoBQAAmOXWW0t35WdkSBcnB2bM\nUNu2Sk6WpOPHzawQ1eE92E2dOjUvL2/UqFFr167dtWvX3ssYUCUAu+DwH8AwPu+RVO7MmG3b\nJKlBA61cqXHjJGnLFu9fhJuAubyvsWvatKnnQVZWVoUvYKIWAADj+bxHUskyu169tHy5zp6V\npD//WRkZ+vprSfrxR0natUu9e2vyZC1bVjyGt2+ff/4foua8B7sRI0aEhITUq1etMyoAWE1m\nZvGehhJpaeV7xLtcxXsaANiIz3skXX5mTHS0Nm9WQoKaNy++Ur++ZszQypWXZMfZs/X44ywI\ntgTvca2ygToAwMiRWry4tAHY6dPq2VNz5igiong8Iz+/uAGY55BcwOd82CPp8hNiPJN24eHq\n3VsrV0pSVJQ+/dQ3/TXhDzU4UuzYsWOffPLJunXr/v73v9O+DvA5FqbYUclcmGdl0vz52r5d\nCQlKTFRoqFauLG0AZtkmNYElK0vt2qlePU2aZHYpPuPDHklnzxYv13v66eIrnsVWS5fq4YeL\nr7RpI3Hwq4VVK9ht2bKlX79+11xzzYABA2699dZ+/fpdddVVQ4YM4TAxAAHOlKN4UUv5+XK5\nVFCg9HQNHWp2NT7jwx5JjzxyyeYJqXjjxYIFxZsnJAUFSRVlx3vu8f1R16gF71OxOTk5Q4YM\nuXDhwqBBg7p169awYcPCwsKdO3euX79+4MCBOTk53TxZHahQVpaeeEJHjig5Wc8+a3Y1gF8Y\nfBQvamnPHp09q7FjlZJidinWkpmpzZu1e7c6dixerpedrYgIff21rrhCkm68Uffco9279eGH\n+ve/pUqyo5+OukaNeB+xmzFjxjXXXPPVV19t3rw5MzPzhRdeeOWVVz799NOtW7eGhoZOK9tR\nHijHoZ+PgXJsfV6IiXzercOLc+eki6vGUJGy9+mrrpKk1q1Lr3gee36KFWLo2gq8B7u//e1v\nEydOvO6668pdj4yMnDhx4vr16/1TGBzB8/l41CilpGjIELOrAfyF80Jqx9AVijExio6WpIwM\nBQUpKanOX9GBWrUqfewZq2vQoPRKcLCk4uNiK8TQtRV4D3b5+fnt2rWr8KmOHTv+2zMmC1SI\nz8fARS+8YOzolB0YukIxNVUzZ0pSfLyyszVhQp2/ogNd3tnsihrssWTo2hK8/4u1bNly165d\nFT61c+fOli1b+rokOAWfj4EyPH/n2D97OYOGefr3L74jhYcrLk69etX5KzqK52dz7bWlV371\nK+nihGzZ17RvX+kXYejaCrwHu9tuu+2FF15YsWJF2RMm3G53dnb23Llzb7/9dn+WBzvj8zFQ\nhmcai0VIl2OYp9bokYTLed8Vm5qaunr16ri4uNatW/fo0aNx48aeXbFHjhxp06ZNamqqAVXC\nlvr3V1GRdPHzMQAWIVWEYR4re/JJvfvuJVfuuUdvvXXJFZdLn36ql182si5UyvuIXceOHT/7\n7LMxY8acPXt2/fr177777vr168+fP+9yubZu3VrZ8jsAwOUYnYKTlOxr/vhjSbrhhtKVo2vW\nSNKttwbcylHTVWtVZPv27RctWnTixInvvvtuz549hw8fPn78+MKFC9t4+k8DcDAndur3oerP\nhXXuLNV5dMro/iBAlUr2NTdqJEnTppWuHPV8bnnqqQBdOWqiGmx3OXLkyJEjRw4ePPj999//\n8MMP/qsJgFXQidBiOMEMflK75Xol+5ojIyUpPr505ainw9XgwQG6ctRE1Qp2Cxcu7NSpU1hY\nWO/evW+55ZZevXq1bNmye/fuS5Ys8Xd9AMxEJ0KL4QQzWFB8fGkuLFk5WpILS1aOso3DGN43\nT8yfP3/ixIkNGjQYMmRI27ZtGzdunJ+fv2fPntzc3BEjRpw/f/7+++83oFAAJqAToSWxAwOW\nwspRS/E+Yjdr1qyhQ4cePXr0gw8+WLRo0dy5c998882///3veXl5Xbt2zcjIMKBKACagE6FV\nOebvqG+7dXhfgHhr/wH62+dH23r/WvZn5HJM9jVbivdgt3///ilTpjRr1qzc9U6dOiUnJ+fl\n5fmnMABmoxOhVfF3tELeFyC+Gbyref/Y9x+xReqtIwsux2TrjzG8B7tmzZoFexprXiY4OPgX\nv/iFr0sCDMFmT6/o1O9T9JL1NxYglmXBn4YFs6YjeV9jd+edd7777rv9+vW7/KlVq1YlJCT4\noSo4xaBBKnNgiYV4NnuGhCg9XX36mF0NAJ9hAWJZlvpplM2akiIjtXq1li5V37565hlJiorS\n5s2aPVu5uRowwKCqnMd7sJsxY0ZcXNz+/fvvu+++8PDwRo0aeU6eeOWVV86fP//QQw8dOnSo\n5MX0K4Y9eDZ7jh2rlBSzSwHgS45ZgOgTFvxpWCprOpL3YBcWFiYpJycnKyvr8mfDPf8sF7mt\nOTwDlMNmT8ChWIBYlgV/GhbMmg7jPdjFxcU1aNDAgFIAg8TEaO1aScrIUEaGxo/XggVm1wQA\n9pOZqczMS66kpSkt7ZIrLpdcLklat06yZNZ0GO/BLjs724A6AOOkpmrwYE2erPh4jR6tTp3M\nLgiorhr9HQUQgLwHO8Bp+vdXUZF0cbMnAABOUa1gV1RU9Pe///3w4cM/VTTvfR9b8wEAqI6s\nLD3xhI4cUXKynn3W7GrgQN6D3datW++55579+/dX9gKCHbhVAYB3lmm0NHKkFi/W7NmSNH68\nxo1Tz56aM0cREZo8WcuWKT9fPXvqxRfVu7eJZaI2vAe7hx9++OTJk//5n//ZrVu3+ixxxOV8\nfqsiJlqHZTsRApexwQJEAxstVf3T8PQKfvddTZumO+/Ujh1KSlJCgnr21PXXa+VK7d8vl0ux\nsTp4kM0NNuM92H355ZdvvvlmHEuRUBnf3qos84kWAHzMMo2WTOkVbIPk7QjejxRr0qRJhw4d\nDCgFduXbW5UnJo4apZQUDRnim68JAKaLiSk+oy8jQ0FBSkoyuyB6BTuT92B37733vvXWWwaU\nAlvy+a3KMp9oAcCXUlM1c6YkxccrO1sTJphdEL2Cncn7VOwzzzxz33333XvvvXfddVdYWNjl\ny+wGlT3CGoHGtz3haB0MwKms12iJXsGO5D3YffXVV1988cXBgweXLVtW4Qs4Riyg+fZWRetg\nAADqwHuwe+SRR3744Yd77703PDy8Xj0aGsOfDPtEy2ZPAIATeQ9qO3bsWLhw4e9+9zsDqgEA\nAECted880bhx44iICANKAQAAvjVypIKCdPKkxo9Xq1Zq1Ej9+umHHyRpxgy1basmTTRgALtf\nncN7sLv77rtXrVplQCkAAMC3PL2IExLUtq3WrNH8+dq+XevXS1KDBlq5Uq+9pl279Je/1PLr\nVxgcc3J05owefbQ0OH7+uc/+H6Fq3oPds88+u3HjxoceemjdunW7du3aexkDqgRQNe6tACpU\nthdxZKTGjNGwYSoo0D336KWXFBWl4cM1ZowKC/Xxxyrb5cLlktstr4eGVhgcExKUmKjQ0NLg\nGBtL5xSDeF9j16JFC0nr1q2bN29ehS9gVyxgupJ7a3S01qzhgCAAl/BfL2JTDrFAFbwHuxEj\nRoSEhLAfFrAy7q2AJVj1qOsqehGPHKnFiyVp/nxNnKjTp9Wzp+bMUUSEJk/WsmXKz1fPnnrx\nRfXuXenX5xAL6/Ae17Kysgyoo/rcbve+ffu++eab06dPS2rWrFl4eHj79u3NrgswH/dWwExe\nj7o2r9FSFb2IPeP9klq0qP14P4dYWEcNxuGOHTu2Z8+ewsLCpk2bduvWrXnz5v4rq0InTpx4\n+umn33jjje+//77cUx06dHC5XI8//njDhg0Nrgr0hLMO7q2AmTxHXY8dq5QUs0upgZIJueHD\nFRlZy/F+DrGwjmoFuy1btjz++ON///vfS64EBQXdcssts2bNMqwTyuHDhwcOHLhv377w8PDY\n2Nhrr722cePGkk6dOpWXl7dx48apU6e+/fbbGzZs8CwKxCWsNjtQRT3ExDrg3gqYySlHXTPe\nb2veg11OTs6QIUMuXLgwaNCgbt26NWzYsLCwcOfOnevXrx84cGBOTk43zz+4n02ZMuXQoUNL\nly5NSEi4/NmioqKXXnrp4YcfnjZt2qxZswyox068zg4EeD0AUHcOOuqa8X5b8x7sZsyYcc01\n13zwwQfXXXdd2evbtm2LiYmZNm2aMYvw3nvvvdGjR1eY6iQFBwdPnDhx06ZN77zzDsGuPKvN\nDlitHgCoO8cddc14v01572P3t7/9beLEieVSnaTIyMiJEyeu93Q59L/jx4936dKl6td07979\n6NGjxtRjJ1abHbBaPQBQd/37KzpaunjUda9eZheEAOU92OXn57dr167Cpzp27Pjvf//b1yVV\nLCwsbPv27VW/Ztu2bWFhYcbUYxsxMcX3mowMBQUpKYl6ACBwZGbK7VbXrqVX0tLkdl/Si1jS\nnj3eexHDFrwHu5YtW+7atavCp3bu3NmyZUtfl1SxuLi4ZcuWPffccz/++OPlzxYWFqampq5Y\nsSIxMdGYemwjNVUzZ0pSfLyyszVhglXq6dNHV1+thQs1aZLJJQEAaqs6wbGah1jAJ7yvsbvt\nttteeOGFm2++ediwYUFBQZ6Lbrd7+fLlc+fOHTFihJ8rLJaWlrZ58+ZJkyZNnz69b9++7du3\nb9KkidvtLigo+Pbbb3Nycs6cORMdHf3UU08ZU49t9O+voiLp4uyA6Urq2bZNjRtrxowK9k/4\new+v1fYI+0JmpjIzL7mSlqa0tEuuuFxyuQysCQBgOO/BLjU1dfXq1XFxca1bt+7Ro0fjxo09\nu2KPHDnSpk2b1NRUA6qU1Lx5808++WTu3Lmvv/76Rx99VOQJB5Kk+vXrR0VFjRs3bty4ccHB\nwcbUgxKeruUnTujJJ7V8ebW7ll+4oFGjKtg/Ucc9s7fdpg8+kKTWrSvems+eXACAc3kPdh07\ndvzss8+mTJmyfPnykq0SV111lcvlmj59eps2bfxcYamQkJDk5OTk5ORz584dPHjQc/LElVde\n2aFDh5CSztkwXO1PKa1w/0Rd9szu3Fmc6sLDNXhwxa9hTy4AlMF4v8NUq0Fx+/btFy1a5Ha7\njxw5UlhY2KRJk9atW/u7siqEhoaGe/onwgJqfErp//t/xe+ssNtTXfbMvvWWJF11lXbvrvQ1\n7MkFADiXl80T33///SeffOJ5HBQU1KZNm65du7Zu3Xru3LknT570f3mwjRqcUjp2bOl7yu3n\nqOOe2fx8SQoNrfQF7MkFADhaVSN2mzZtuuuuu2666aYPPNNbF+3YsePhhx/+4x//uGnTps6d\nO/u5wurKy8sbP368pHXr1lX/XadOnfrTn/504cKFKl7zxRdf1LW4AFCDU0pLjqG7fD9HXTp8\nNmig8+cl6bvvFBSkFi10eS8ex3UQBQCgrEqD3eHDh4cPH15QUHDLLbeUe+qGG26YM2fOo48+\nGhMTs2PHjtAqBkgMdPr06Q8//LCm7/rxxx/z8vLKbsW43LFjxyS5OcC0Sr45pbQue3gfe0xv\nv609exQaqthY9e/v468PAFUz5KjrWu5XQ8CoNNgtXLjw2LFjCxcudF22YDIoKOiRRx4pKipK\nTk5+7bXXPONkprvuuuu+/PLLmr7rmmuuWbx4cdWveemll7Zu3VrS6sWinNjCo2b++EedP6//\n/m9ddZXeftvsagDAL2q/Xw2BodI1ditWrOjSpcu4ceMqe8HDDz/crl27RYsW+aWumgsNDY2I\niIgomeYLKJ4WHgUFSk/X0KFmVwNYyMiRCgrSyZMaP16tWqlRI/Xrp5wcnTmjRx9V27Zq0kQD\nBujzz2v4dbOy1K6d6tWjwzYMVna/WmSkxozRsGE6cECrVukPf9Cf/6yJE1VQoKNH9dprdf49\nhw1VGuwOHDhw8803X3FFpS+oV69ev379vv76a/8UVim32/3NN9+sW7cuOzs7Ozt7/fr1Bw8e\nNLgGy/G08PC0hRsypPyzntkBzw5VKxg0SJs3m10ELMPPCalkeKNtW61Zo/nztX27EhKUmKjQ\nUK1cqdde065dio29uAa0OvgoBcOVfET5+GNJeuWV0o8o+/cXv6ZjR11xhdas0ciRkpSSUrff\nc9hTpVOxp06duvrqq6t+89VXX13hAV9+cuLEiaeffvqNN974/vvvyz3VoUMHl8v1+OOPN2zY\n0LB6LIQWHrAp//eLrnE7nuqgGyIMV/IRpVEjSUpN1fTpxTOwJfOt584pO1tz5ig6Wq+/rmPH\nFBpah99z2FOlwe7qq68+cOBA1W/evXv3Nddc4+uSKnb48OGBAwfu27cvPDw8Njb22muvbdy4\nsaRTp07l5eVt3Lhx6tSpb7/99oYNG1q0aGFMSVYRE6O1a6VK2sIBVmZUQqpBO57q4KMUDFfy\nEeX8eX3+uRIS9MUXxR9RhgwpHsaLjVV2tnJzS99Vp99z2FOlM619+vT58MMPjx8/XtkL9u7d\nu3nz5n79+vmnsPKmTJly6NChpUuX7t69+9VXX01LS5s0adKkSZPS09OzsrIOHDgwd+7cHTt2\nTJs2zZh6LCQ1VTNnShW1haumus2FcQI0as+ohFSDdjxe0Q0R5qn6I8oNN0iXRre2bUvncJcs\nkaSRI320zBRWVWmwGz16dEFBwYMPPlhhj7dTp06NGjXqwoULDzzwgB+rK+O9994bPXp0QkJC\nhc8GBwdPnDjx3nvvfeedd4ypx0L69y/+M+Np4dGrV83ezmohmMXAhOSbdjwedf8ohUr4a6eL\nzXl+LJ42nYmJ8mxZ3LGjuLPKo48W/z5KatBAuvQjSv36pXO4zZtL0u9/74tlprCwSoPd8OHD\nhwwZkp2d3a9fv+zsbM/BrJJ++OGHl19+uWfPnjk5OXffffdvf/tbYwo9fvx4ly5dqn5N9+7d\njx49akw9zlH1xgs/sdp+DpjCpgmpjh+lUDm/7HSxP8+PxdOn9dVXNXCgJD3ySPEZihkZuvvu\n4lf+/HMFby+Zw73zTkn6P/+neBetZ/ldVJSGD9eYMTp69JI5XNhXpWvsgoKCli1bNnLkyPff\nfz8+Pj4oKKhZs2ZFRUUlCS8xMfHVV181qk6FhYVt37696tds27YtLCzMmHqcw2qrhfzd4dOQ\nDqKoFvpF41J+2elif54fS7Nm+u479eih8HBt2lT8WFK3birpDHHoUKVfJD6+dPOsD5aZwsKq\nOiu2efPmq1evXr169YgRIzp16vTTTz9J6tat29ixYzdt2rRkyRIjt6DGxcUtW7bsueeeq3Af\nbmFhYWpq6ooVKxITEw0ryQkctlro+efldutf/zK7DgC15+OdLk7RsWP5K54fRVkXB14q4Mtl\nprC2qs6K9bj99ttvv/12A0qpWlpa2ubNmydNmjR9+vS+ffu2b9++SZMmbre7oKDg22+/zcnJ\nOXPmTHR09FNPPWV2pbbC2akALIYIUiFPlxNJmZlq107TpunKK4uvpKXpww+1ZUvpVKzLpUOH\nVHYzoS+XmcLavAc7i2jevPknn3wyd+7c119//aOPPip7umv9+vWjoqLGjRs3bty44OBgE4u0\ngXInjzEX5jsc4Aj4BBGkQpcfF1D5AQIIaHb6vQgJCUlOTt62bVtBQcHu3bu3bt26devWPXv2\nFBQUfPLJJw8++CCpzgs2wPpT8brv6CNtlzy/5thN83/1V9Z9WwHteBAIxoyRVDqGJ37PA5ht\nRuzKCg0NDfesvECN0C7fn4rXff/j3amN0zXjycg+V69uyrpvAL4xc6aWLr3kyrhxeuWVS678\n+td66SUji4IV2WnEDnXlnw2wtJ4qK/7C0pLeMaz7BgAYjGDnCNVpC+e3DbC0niqrrf5VEp1Z\n9w0AMBjBLmD4rRls2dZTkZEaMyZQu1+uXSupvn4qF51Z9+1AdNiGfbDMNNBUvMbuUBVdDi/T\nrl07HxUDf/LzBlhaTykyUp7/bkp6x2SbXJEN0C8aZWRmKjPzkitpaUpLu+SKyyWXy8CaLIAf\nC2qk4mDXvn376n8JN/dl0HpKUsuWxQ9KojPBDgBgrIqDHec32FW5NnUGsmjrKfN+IAAAGK/i\nYLdkyZLqvLmwsPB0FSeYwGCeNnUhIUpPV58+1X2Xg+fCavcDqamL2TGhR/LLIjsCAMxUp80T\nK1as6E0TfevwtKm72GvD7GoswIAfSJmez1+3o+czAMBk1WpQfOzYsSVLluzfv//ChQslF8+d\nO7dq1aqCggK/1YYa8k+bOhsz4AdSpufzYyl6bMsWRe8teZIFzgDsgkMRHcN7sNu/f3/fvn1/\n+OGHCt5cr96UKVP8UBVqLibG025DGRnKyND48VqwoDZfxzGL0nz1A6kaYRqAI5R0JI2O1po1\n2rFDSUlKSFDPnrr+eq1cqf375XIpNlYHD1pjCTUq4X0q9qmnnjp37tyLL7744YcfSsrMzFyz\nZs0f/vCHtm3brlq1aurUqf4vEtXgkzZ1TjpM1m99+0r5reczABiMjqSO4X3EbvPmzQ899NBD\nDz107tw5Sddff32/fv2GDh2amJj4m9/8ZuXKlQMHDvR/nfDGJ23qanWYrEV7LPm5b58kpaZq\n8GBNnlzauI69RADsjI6kDuA92B0+fLhz586SrrjiCknnz5/3XL/xxhsfeuih1NTUdevW+bVE\n+IzXDbBMLNbI5dlxyxZzKwKAuqAjqQN4n4pt2rTp0aNHJYWEhDRp0uSbb74peapHjx6fffaZ\nH6uDkZhYrDtOmgIC3siRCgrSyZMaP16tWqlRI/Xrp5wcnTmjRx9V27Zq0kQDBujzz61Yg0U7\nkqImvAe76OjoBQsWfPTRR5JuuOGGuXPnluyEXb9+fYMGDfxaH4xjwKI0AHC6kl0IbdtqzRrN\nn6/t25WQoMREhYZq5Uq99pp27VJsrB+HvqxQA8ziPdhNnjz5+PHjjz/+uKQHH3zws88+69Gj\nR3x8fGRk5MKFC2+99Vb/FwlD9O9fPGLnmVjs1cu0SrKy1K6d6tXTpEmm1QAAtWKFXQhWqAFm\n8R7s+vbtu2XLlt///veSHnjggZSUlGPHjmVnZ2/fvn3YsGGzZs3yf5EIJE7amWs1gZqYrTA1\nhkBjhV0IVqgBxqtWg+KoqKioqChJQUFBM2fOnDp16pEjR1q1atWwYUM/l4fAU6udufDOmAPW\nLIkGXTCeFXYhWKEGGK8GR4odPnx427ZtGzZs2L17d+PGjUl18IvA2JlrwhhSAJ84x7QUaqru\n/4VaYReCFWqA8aoV7BYuXNipU6ewsLDevXvfcsstvXr1atmyZffu3ZcsWeLv+hBYjN2Za+IM\nnQlLmwMjMVeBaSlUXwBuPsjMlNutrl1Lr6Slye3WoEGlV1wuud267z7jq0MNeJ+KnT9//sSJ\nExs0aDBkyJC2bds2btw4Pz9/z549ubm5I0aMOH/+/P33329AofDOa5s667u85W9dePuBmDhD\nV3YMSVJkpFav1tKl6tu3uFlKVJQ2b9bs2crN1YABdf5+xhywZm1MS6H6jP4vFPAd78Fu1qxZ\nQ4cO/etf/9qsWbOy1/ft23fbbbdlZGQQ7OAzBhwXUYYP7t11C9PGjSH5NjHbE9NSqClGeWFH\n3oPd/v37X3nllXKpTlKnTp2Sk5Mfe+wx/xQGGMTEe7dxY0jGJmbAGRjlhR15X2PXrFmz4ODg\nCp8KDg7+xS9+4euSAEOZeO9mDMlyPv44MDvCoEL8Fwo78j5id+edd7777rv9+vW7/KlVq1Yl\nJCT4oSqYxAGr9GqOezdK/fnPalgQgB1h4EOZmcrMvORKWprS0i654nLJ5fLLdx85UosX68QJ\nBQdr4ECdPq2ePTVnjp54QidPKjFR+fnq2VMvvujHGmAu78FuxowZcXFxxbQQCwAAIABJREFU\n+/fvv++++8LDwxs1alRYWLhz585XXnnl/PnzDz300KFDh0pe3K5dO39WCwD+dP68XKPooQj7\nomsjvAe7sLAwSTk5OVlZWZc/G+5ZlHSRO/DGe2opK0tPPKEjR5ScrGefNbsaABcFcEcYOAD7\neeE92MXFxTVo0MCAUgKIkWcAkCAR8Ko1NfZWjEuejjAK2I4wcAz28wYy78EuOzvbgDoCi2Gn\nZgXwKVJAzdARBg7Cft5AVvGu2CNHjpw4caLkcdUMrNYpDDsDIIBPkfKtF17w8RkVNHm3nP79\ni0898XSE6dXL7IJgJrv/F8qesEBWcbBr06bNiBEjSh5XzcBqHcHIU7PseIqUZ2euZzGIn1X/\n3u2Zywio84UAOI/nHMUzZyRp/HhDz1GEYSqeik1MTLzxxhtLHhtYTwAwbMbHSqdIlezAf/JJ\nLV9eugM/IkKTJ2vZstId+L17m1VjVZywHjkge9kAKMuzZ9bzpyAlRW3asGfWgSoOdkuWLKnw\nMXzAsDMArLRmyBk78FmPDMDWPJ9RW7XSrl3q2FH33WfDz6jwxvvJEx5ff/31sWPHyv7Pbdu2\n+ack+IjP1wxlZdW6KX/ZEa/ISI0Zo2HDdOCAQkP1zDOKitLw4RozRkePKje3rmX6z+XrkUeP\nLl1495//KUn/+AeTGpZUh99ewGHKTozwGdV5vAe7n3766fe//31ERMRXX31VcnHDhg29e/ce\nO3ZskWfwCY7n2WBbUKD0dA0dWruvYfcRrwqHEksW3v3ud5I0axYL76zHF7+9gGM0b176mD2z\nzuM92L3wwguvvPLKHXfcce2115ZcvPXWWxMTExctWvTiiy/6szxcwrPu1Yd7M2vAFxtsHbkD\nv2QY0jNtceyYzYYhAwLbwxEwqrMnbMSI8vt5LbsABrXgPdgtWrTot7/97apVqzqVWaTVrVu3\nJUuWxMbGEuyMVLJSzYS9mb7YYOvIHfhlhyE97DUMGRDsuD0cAGrFe7Dbu3fvr3/96wqf+tWv\nfvXtt9/6uiRUyrSVaka2aLGbsoOOl1+x6TCko/DbCyCQeD954sorr9y/f3+FT+3fv/+qq67y\ncUXwxoSValbaYGs1jhyGdJTq//bSEQaA/XkPdnfcccfLL78cExMTGxtbcvGnn35atGjRn//8\n55I+xjCMCSvVDGvRAvgcv70AAon3YDdjxoz333//jjvu6NChQ7du3Ro0aHDy5MmdO3f++9//\nbtOmzYwZMwyoEmUxRGS8Ck+RP3RIL79cesXl0qFDmjbN4NIAACjlfY1dmzZttm3blpSUVFhY\n+MEHH6xatWrLli3BwcEPPvhgbm5uhw4dDKjSaQw8NQsAAA+7n4GL6vA+YiepVatW8+fPnzdv\n3uHDh8+ePdu6devGjRv7uzL4gGXWDFU44pWWdskVl0sul4E1AQDgONU9eUJSUFBQWFhYly5d\nSHVwJDPbBAIA4Aveg53b7V62bNmdd94ZGRkZUREDqgQMUNM2gQE9qcEJXQBgSd6D3fPPP3/v\nvfeuWrVq9+7dhypiQJUIKGaNnDnjQFsjcEIXAFiV92A3e/bsoUOH5uXlFRYWnqyIAVXCI0CG\niMw8YMP+B9oagRO6AMCqvAe7o0ePTps2rXPnzgZUg/ICcsLL3JEzRx5o62Oc0AUAVuU92LVq\n1cptjZ2VAcdSE16Gt2gxa+SMNoFe2PGELhoMwRrYoQUDeA92I0aMeOONNwwoBeUF9oQXI2cW\nlZqqmTMlKT5e2dmaMMHsggDbMHedCQKE9z52U6dOveeee0aNGnX//fd36NCh/mXDF13LrvmC\nDwX2hBcjZxbFCV1AbZVdZyIpMlKrV2vpUvXtWzygHBWlzZs1e7ZyczVggJmlwr68B7umF4NF\nVlZWhS9gotYvYmK0dq0kZWQoI0Pjx2vBArNrAgDUFTu04Ffeg92IESNCQkLq1avWGRXwmdRU\nDR6syZMVH6/Ro9Wpk9kFAQB8gHUm8Cvvca2ygTr4FxNeAOBErDOBX1Uc7I4cOdKgQYMWLVp4\nHlf9JVq3bu37ugDDcaAtAMDuKg52bdq0GTp06Jo1azyPq/4SrLEDAACwgoqDXWJi4o033ljy\n2MB6AEbOAACopYqD3ZIlSyp8DASmkSO1eLFOnNCTT2r5cp0+rZ49NWeOIiI0ebKWLVN+vnr2\n1Isvqndvs2sFAAQw7w2KV65c+fXXXxtQCmBZtBUFyuIEBcCyvAe7xMTEVatWGVAKYFnmHl9r\nOZzQFfD4qFM7mZlyu1W2qX9amtxuDRpUesXlktut++4zvjo4hPdgN2jQoI0bN/78888GVANY\nGW1FAQ8+6gCW5b2P3ZtvvpmcnHzHHXfcf//9v/zlL5s1a1buBRwphgBBW1GgLD7qABbkPdiV\ntKnzdD+5HO1O/MUz4QXLoK0oUBYfdQAL8h7sEhMTQ0JC6tevHxQUZEBBAABb4KMOYEHegx3t\nTgAAAGzBy+aJH3/8MScn56OPPvJ6sBggmiAAAGCqqoLda6+91rp165tvvvnXv/51WFjYyJEj\nT58+bVhlsCOaIAAAYKJKp2I3bdo0duzY4ODgoUOHXn311Z9++unixYvPnj2bnZ1tZH2wl7JN\nECRFRmr1ai1dqr59i7ueRUVp82bNnq3cXA0YYGapAAA4T6Ujds8991xQUND69evXrFnzl7/8\nZdeuXXfffffy5cu/+uorI+uDHTmvCQJtRQEAtlBpsPv0009vu+226Ohoz/8MCQlJS0uTtGnT\nJmMqg33RBAFwNj7qAJZVabA7fvz4L3/5y7JXPP/z+PHjfi8KNkcTBAAATFFpsPv5558bNmxY\n9kpoaKikoqIivxcFAACAmvN+ViwAAAGI/k2wI4IdACBAVR3dVqyQpI4ddcUVFfRvuuEGFRZq\n504NGkTsg4VUdfLEli1bPBsmyvroo4/KXbz8NQAAWF9J683oaK1Zox07lJSkhAT17Knrr9et\nt2rFCp07p+xszZlTvn/TAw9IUrNmOnBA8+YpKOiS965cqf375XIpNlYHD7LOGMapKth9/PHH\nH3/8cbmLGzdu3LhxY9krBDsAgB1V3XrT5ZKk2FhlZxe33izbv8nz3o4ddeCAmjbV8OG07YQl\nVBrs3njjDSPrgDNkZioz85IraWkql/xdruLbJQBYQdWtN2+4QdnZxa03L+/fdNNN2rSpuH+T\nM9p2wu4qDXa/+93vjKwDKGfkSC1eLEkPPKC//lXnzikoSN27a948LV2qRYt05oyCghQRoVdf\nVe/eZpcLwLaqbr3ZoIF0aevNsvOqzZtX9V7adsJ4bJ6ARXnWvkjatEljxigtTcHB2rlTMTFa\ns0b33KOMDDVsqC+/5ORZAHVSl9abwcG1fy/gD1WtsQNMVO/i7+bQoZo3T5K+/lpLl+rsWUVG\natEiSfrXvzR7to4eZQkLAAASI3awvpLlL571KyqzhMWzfkX/v717j6uqzPc4/tvC5o7gBVEQ\nMAfyejAFzRtH83Iqx5QwlMzLaLxGtE7ipFM5o2JNRSdPo5U6Tp4ZzUZTy8zxOsdCX47VwcLM\nCzmKNywU4yUIIl5gnz+WbnaI2w2y99rr4fP+a+9nr73Wby0X8HU9az0Pt7AAUJTtgCy+vmIy\nSc+e8vjj0qqVmM3i7X1zmJWxYxlgBTcR7ODurDesWK/hWVusXR50xQJQknVAlvBwGTpURCQn\nR7KypGNHefhhERF/f8nJkU2bZMMGWblScnO5O6WxI9jB3THzLIBGy3ZAllatRETuu09KSiQ0\nVDZvlsRE+eknaddOLl+WykoZNUomTrx5dwoaLYIdbmLyHACwtXy5WCw345QmI0MsFunfv7pl\n9GixWCQlxbmV2A7I8uCDIrfuSNFuUOnXT+TWHSkMsAKCHW6yveB/++Q5mzZxkR+AarToFh1d\n3XJ7dEtNrT263ct368p2CJVmzapbtOt5LVqI3LojhQFWQLBTQYNcbLO94N+9u0ycKCNGyJkz\n4uMjmZkSF8dFfgDQh+39J02a1GzxZHwL2CDYqaABL7bZH4HdqRf5a8RTbUATEbly5WY8fe01\np2wXAABlEOxU0IAX2+yPwO7Ui/w14ql214iITJ9+M54+/vjNlhs3nFIAAABGR7BTR4NcbNPx\nEdQa8XT3bhk9WkSkRYub8XTtWpk+XcRmUgrt/hUX3LkMAIAhEOzUoePFtgakY18wAABGR7BT\nhxrjvakRTwEA0AXBDu5FjXgKAA3CdlAV7fXbb1cPqqINsJKZWX1HSkMNsALjIthBKS4bZrld\nOzGZ5PRp6dxZPDzEZJLAQPnrX+Wnn6R7d/H0FJNJmjaV1asbYq8AAHAMwQ5Kcdkwy1o3cY8e\n0rq1fPCBpKZKWZn8+tfStav4+MiKFTJzppSVyfjxMno0U3oAAFyEYIebXDmKuvO4bJhlDw8R\nkTZt5PPP5ckn5b33JCJCbtwQs1m+/FLGjZM335Ru3aSqSvLzRZjSAwDgEgQ7KMhlj9ZOmFD9\nOjJSRGT48OqWjh1FRC5fvlkGU3oAxuXU2zyYqhsNiGCnAjUutjUglz1a26VLzQ3df391i9Yv\nXFUlwjAugME59TYPpupGAyLYwV00YDx12aO1Pj41W7y9a1+SYVwAQ3PqbR5M1Y0GRLADXIFh\nXAAFOPXSO9f10SAIdgAAOMSpl965ro8GQbADAMAhTr30znV9NAiCHVyKh78AAHAegh1cioe/\nAABwHoIdXMrZD3+5bOSXo0fFYpHBg6tbdu0Si0WmTatuWblSLBbp3fueNgQAgOMIdtBBo3r4\ni1EGAQAuQ7CDDnj4C4BKtLuHy8tFRKZM4e5h6IlgBx2o+vCXKx8N4TEUwJXsX3rX7h7++99l\n/nzZtevm3cMPPST+/mIySe/e4ukpX30lvXvLF1/U8kPKdX00IIId0GBc+WgIj6EA7qPWu4e1\nC3iHDkm3bpKVJUOHyvXrkpTEDymci2AHNBhXzgvEHERQ0+rV0rateHrKrFl6l1Jnt989LDY/\npImJIiLnz/NDCucydrC7du3avn37srKyTp48qXctcAvu0EHpykdDGtVjKFBfSYmkpkpZmbzy\nijz8sN7V1Nntdw+LzQ+p9YYTfkjhVIYJdn/4wx+ysrJsW5YtW9a6detevXoNGjSoffv28fHx\n3377rV7lwU24QwelKx8N4TEU9+cO/9kwjGPH5MoVeeopeeklGTJE72rqrNZ7hW1/JG9v4YcU\nDc4wwW7OnDk7duywvt2yZUtaWlp5efnjjz8+ZcqUfv36ffPNNwMHDszLy9OxSOjOHTooXflo\niKqPoajEHf6zYRgVFSIigYF619GQ+CGFixkm2NUwY8aMoKCg/fv3b9iw4U9/+tM///nPjz/+\n+NKlS6+++qrepcEe1zz8RQcl3Ic7/GfDeRryeuQjj0hCgojIG2+IySRpaS7dOqAKQwa7Cxcu\nHDt27JlnnunUqZO1MSkpaeTIkf/4xz90LAxuwvAdlEa+fxy1UvU/Gw15PXLePHntNRGRpCT5\n5BOZOtWlWwdUYchgV1FRISK2qU7TtWvXwsJCPSqCezF234fB7x9HrQz/n407aMjrkX363Lxi\nFxMjiYnSrZtLtw6owpDBLiwsLCgo6OzZszXaf/zxx0C1bs5AY2Tw+8dRK2P/Z+Nu9L0e6YKt\n37XPd+VKEZHDh+9pK0CDMFKwO3PmzNdff338+PGLFy9Omzbtf/7nf8q18R9FROT7779fu3Zt\nv379dKwQaAAq3j8Otel7PdIFW79rn++HH0pwsEyZUr2hjAx5+umfrSQ1VebNu6cyAEcYKdit\nWbOmZ8+eMTExISEhr7/++vHjx7dt26Z9tHr16vj4+CtXrsyZM0ffItGYNcCjIQ7fP84cRHAf\n+l6PdMHW69fnyw8pdOF590Xcw1//+tdiGyUlJcXFxc2aNdM+LS4uDg4O/vDDD3v27KlvncA9\nmTdPBgyQ2bMlKUnGj5f77tO7IEBZY8fKmjVy8aK88IJs3CilpRIbK2+/LV27yuzZsn69lJRI\nbKy8++7N5VV9AgaKMUyw+9WvfmXn0wkTJqSlpTVpYqQLkEAt+vSRykqRW/ePA3AaawdrQoJs\n3y7ffSdpaZKcLLGx0qWLbNokp05JaqoMGybDhono3eMMOEiRJBQQEECqg9D3AcBhjnewXrgg\nonePM+AgwhAAOBH/2XBzjnSwXrni2pqAe6BOsMvLyxsyZMgQhocAgMZkxozqsUgWLBARmTKl\neiwSbZDvuXPvOP+EIx2sVVXOKR1wAnWCXWlp6WefffbZZ5/pXQigJqZvwu0a+Hpk//5isUhm\nZp223qKFyK2xSPbskRUr5MSJ6rFIdu6Ujz6SCxfuOP8EHaxQjDrBrmPHjgcPHjx48KDehQBq\nYvomuCfmnwBsGeap2Lvy8fHp2rWr3lUAyrL98yki3bvL1q2ybp306nXzCktcnOzZI4sWyb59\n0revnqWiEWIsEkBjvGBnsVhOnjx54sSJ0tJSEQkKCoqJiYmIiKjf2s6dOzdp0qQbN27YWeaH\nH36o38oB9fDnE+7JqWOR/PrX8vnnP2vJyJCMjJ+1pKZKamo91w80ICMFu4sXL7766qurVq0q\nLCys8VFkZGRqaurMmTN9fX3rtM7AwMA+ffrYTk12Ow8Pj9zc3DqXC6iIobzgnrhVDtAYJtgV\nFBT069fv5MmTMTExw4YNi4qK8vf3F5FLly7l5eXt3r177ty5H3/8cVZWlnU6Ckf4+/vP1TqW\n7mzZsmU7duy4p+oBx2n3j7sr/nwCgDszTLCbM2fO2bNn161bl5ycfPunlZWVy5Yte/bZZ+fP\nn79w4ULXlwcAMJbly2X58p+10MEKBRjmqdgtW7aMHz++1lQnIh4eHtOmTRs9evSGDRtcXBgA\nAICbMEywKyoq+sUvfmF/mU6dOp0/f9419QAAALgbwwS7sLCwAwcO2F9m//79YWFhrqkHAADA\n3Rgm2CUmJq5fv37BggVXr169/dPLly/Pmzfv008/HTNmjOtrAwDoRa/ZeJmLBe7JZHHj5+9s\nFRcXDx48OCcnJzAwsFevXhEREQEBARaLpays7PTp09nZ2eXl5QkJCVu3bg0ICGjYTS9btiwt\nLa20tLTB1wwAMKhf/UpWrpQhQyQhQR57TL77TtLSpFUriY2VLl0kOVlOnZLUVPH2lvx8Hh5X\nzbVr17y9vffu3dvX/UZjN8xTscHBwV9++eXixYvff//9Xbt2VVZWWj8ym81xcXGTJ0+ePHmy\nh4eHjkUCABoJ5mKBezJMsBMRLy+vGTNmzJgxo6KiIj8/X5t5omnTppGRkV7aNJYAALgQc7HA\n3Rgp2Fn5+PjEaD9AAADoh7lY4G4M8/BErRYsWNDf9v5YAABciLlY4G6MHeyOHz++d+9evasA\nAABwC8YOdgAAALAi2AEAACiCYAcA0M/q1dK2rXh6yqxZepcCqMDYwS4zMzM/P1/vKgAA9VJS\nIqmpUlYmr7wiDz+sdzWACgwz84SOmHkCAJzi66+lZ0+ZNk0WL9a7FKAO3HnmCWNfsQMaDyam\nhIIqKkREAgP1rgNQB8EOMAZtdpXkZAkPl+3bZelSOXBAkpNlzBjx8ZFNm2TlSsnNlWHDGA0V\nBvHII5KQICLyxhtiMklamt4FASog2AHGYDsxZffuMnGijBghZ86Ij49kZkpcnIwaJRMnyvnz\nsm+f3rUCjpg3T157TUQkKUk++USmTtW7IEAFhpxSDGi0mJgS6ujTRyorRURiYiQxUe9qAEVw\nxQ4wEiamBADYQbADjISJKQEAdhDsAAAAFEGwAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsAOM\nYflysVgkOrq6JSNDLBbp37+6JTVVLBZJSXF9dQAAt8AAxQAAnfTvLxaL3kUASuGKHQAAgCII\ndgAAAIog2AEAACiCYAcAMICxY8VkkuJimTJFQkPFz09695bsbCkvl/R0CQ+XgADp21dycvQu\nFNAVwQ4AYABeXiIiyckSHi7bt8vSpXLggCQny5gx4uMjmzbJypWSmyvDhsn163rXCuiHYAcA\nMABPTxGRmBiZO1e6d5eJE2XECDlzRnx8JDNT4uJk1CiZOFHOn5d9+/SuFdAPwQ4AYBhJSdWv\nY2JEREaOrG7p0EFEpKDAtTUB7oRgBwAwjPDw6tfaNTzbFrNZROiKRaNGsAMAGIYW3ey3AI0Z\nwQ4AAEARBDsAAABFEOwAAAAUQbADAABQBMEOAABAEQQ7AIABLF8uFotER1e3ZGSIxSJLllRP\nNfa734mvryxcyFRjaLwIdgAAA2OqMcAWwQ4AYGBMNQbYItgBAAyPqcYADcEOAGB4TDUGaAh2\nAAC3M3Zs9SMRoaHi5ye9e9t7JIKpxgANwQ4A4HYcfySiqkrvWgF34ql3AQAA1GT7SISIdO8u\nW7fKunXSq5dkZoqIxMXJnj2yaJFcuKBnnYC74YodAMBNOfJIxJUrtX93/vzqztzf/EZEZM4c\nxreD+gh2AAA35cgjEXfqitU+1Tpz09NFRE6fZnw7qI9gBwBwU/fySISHh8itztzISBGRuDjG\nt4P6CHYAAAP79a9rn2osNFTkVmduaqpYLDJ4sAjj20F1BDsAgLIY3w6NDcEOAKAsxrdDY0Ow\nAwAAUATBDgAAQBEEOwCA21m+vPZHIvr3r27RHolISXF9dYD7ItgBAAAogmAHAACgCIIdAEBB\ndOaicSLYAQAAKIJgBwAAoAiCHQAAgCIIdgAAAIog2AEAACiCYAcAAKAIgh0AAIAiCHYAAACK\nINgBAAAogmAHAACgCIIdAACAIgh2AAAAiiDYAQAAKIJgBwAAoAiCHQAAgCIIdgAAwxg7Vkwm\nKS6WKVMkNFT8/KR3b8nOlvJySU+X8HAJCJC+fSUnR+9CAZ0Q7AAAhuHlJSKSnCzh4bJ9uyxd\nKgcOSHKyjBkjPj6yaZOsXCm5uTJsmFy/rnetgB4IdgAAw/D0FBGJiZG5c6V7d5k4UUaMkDNn\nxMdHMjMlLk5GjZKJE+X8edm3T+9aAT0Q7AAABpOUVP06JkZEZOTI6pYOHURECgpcWxPgHgh2\nAACDCQ+vfq1dw7NtMZtFhK5YNFIEOwCAwWjRzX4L0DgR7AAAABRBsAMAAFAEwQ4AAEARBDsA\nQJ0xUDDgngh2AIA6c+VAwbYhcvVqEZEnnqgOkW+9JSIydSohEhAh2AEA6sGVAwXbhsi9e2XF\nCjl6tDpEZmXJRx/J2bPVITI1VSwWSUm51+0CRkSwAwDUk2sGCma2CcBxBDsAQD25cqBgZpsA\nHEGwAwDUkysHCma2CcARBDsAgAEw2wTgCIIdAACAIgh2AAAAiiDYAQAAKMJT7wIAAMaza5eI\nyKVLMmWKbNwopaXSvLmISEWFpKfL+vVSUiKtW+taItAoccUOAFBn/fuLiLzwQvXME0VFEhkp\nixZVzzxRVCShoTJqlN61Ao0JwQ4AUGeuHDR4+XKxWCQ6urolI0MslpvhUsNsE4CGYAcAqCcG\nDQbcDcEOAFBPDBoMuBuCHQCgnhg0GHA3BDsAAABFEOwAAAAUQbADAABQBMEOAOBETz4pxcUy\nZYqEhoqfn/TuLdnZUl4u6ekSHi4BAdK3r+Tk6F0loAqCHQDAuZKTq8cxPnBAkpNlzJjqcYxz\nc2XYMB6eBRoGwQ4AUGcODhr89NMirhrHGIAQ7AAAzsY4xoDLeOpdAABAWbt2iYg0bSpTpsjG\njVJaKs2bi4i0bCnp6bJ+vZSUSOvWIoxjDDQQrtgBAJylSRMRkRkzqu+xO39eROSVV6rvsdOu\n1VVW1vL1sWPFZOLZC6AOCHYAAGcxmURE2rWrvsdO63j18qq+x65PHxGRvLxavu7lJcKzF0Bd\nEOwAAM718MPVr7Wu2ISE6hatK7a4uJYvavPP8uwF4DiCHQDAuUJDq19rnbMtW1a3eHiIiNy4\nccev8+wF4DiCHQDAuTxve07v9hY7wsNrftG2xWwW4dkL4BaCHQDArWnRzX4LAA3BDgDgLNq9\ndFFR1S0DB4qIxMbWXKZvXxeWBaiLYAcAAKAIgh0AAIAiCHYAAACKINgBAJxl+XKxWCQ6urol\nI0MsFunfv7olNVUsFklJcX11gIJMFotF7xrqxmKxnDx58sSJE6WlpSISFBQUExMTERHhvC0u\nW7YsLS2ttLQ0ICDAeVsBAACGcO3aNW9v77179/Z1v6d+6jKUkN4uXrz46quvrlq1qrCwsMZH\nkZGRqampM2fO9PX11aU2AAAA3Rkm2BUUFPTr1+/kyZMxMTHDhg2Liory9/cXkUuXLuXl5e3e\nvXvu3Lkff/xxVlZWs2bN9C4WAABAB4YJdnPmzDl79uy6deuSk5Nv/7SysnLZsmXPPvvs/Pnz\nFy5c6PryAAAAdGeYhye2bNkyfvz4WlOdiHh4eEybNm306NEbNmxwcWEAAABuwjDBrqio6Be/\n+IX9ZTp16nT+/HnX1AMAAOBuDBPswsLCDhw4YH+Z/fv3h4WFuaYeAAAAd2OYYJeYmLh+/foF\nCxZcvXr19k8vX748b968Tz/9dMyYMa6vDQDgPGPHiskkxcUyZYqEhoqfn/TuLdnZUl4u6ekS\nHi4BAdK3r+Tk6F0o4AYM8/BERkbGnj17Zs2a9fLLL/fq1SsiIiIgIMBisZSVlZ0+fTo7O7u8\nvDwhIeH3v/+93pUCABqSl5eISHKyJCTI9u3y3XeSlibJyRIbK126yKZNcuqUpKbKsGGSny9m\ns97lAroyTLALDg7+8ssvFy9e/P777+/atauystL6kdlsjouLmzx58uTJkz08PHQsEgDQ4Dw9\nRURiYmTuXBGR7t1l61ZZt0569ZLMTBGRuDjZs0cWLZJ9+8T9xosFXMowwU5EvLy8ZsyYMWPG\njIqKivz8fG3miaZNm0ZGRnpp/6EDACgqKan6dUyMiMjIkdUtHTqIiBQUuLYmwP0YKdhZ+fj4\nxGg/1gCAxiE8vPq1dg3PtkXrgb1+3bU1Ae7HMA9PAAAas9tvnuNUaGi8AAAVhklEQVR2OuB2\n6gS7vLy8IUOGDBkyRO9CAAAA9GHIrthalZaWfvbZZ3pXAQAAoBt1gl3Hjh0PHjyodxUAAAC6\nUSfY+fj4dO3aVe8qAAAAdKNOsBORoqKiixcvRkdHO/6VkydP9u7d+7rdJ6m0uS5MJtO91gcA\nAOBMJovFoncNDebFF19844036rRHVVVVW7duvXLlip1ljh49OmfOnKtXrzJaHgAAuHbtmre3\n9969e/u634jYSl2xq4cmTZoMHz7c/jJffPHFnDlzXFMPAABAvakz3AkAAEAjZ5grdvHx8Xdd\n5ocffnBBJQAAAO7JMMFu//79ImK2O9D4jRs3XFUOAACA2zFMV+ysWbP8/f0PHTpUcWczZ87U\nu0wAAADdGCbYvfLKK9HR0U8++aT9oUkAAAAaLcMEO7PZ/Le//e3w4cOzZ8/WuxYAAAB3ZJh7\n7ESkU6dO586ds3Mj3aOPPhocHOzKkgAAANyHkYKdiDRt2tTOpwMGDBgwYIDLigEAAHArhumK\nBQAAgH3GDnYLFizo37+/3lUAAAC4BWMHu+PHj+/du1fvKgAAANyCsYMdAAAArAh2AAAAiiDY\nAQAAKMLYwS4zMzM/P1/vKgAAANyCwcaxqyE4ONgFIxJ7eXmJiLe3t7M3BAAAjEKLB+7GZLFY\n9K7BAA4cOGBnxgs3dOLEidGjRy9ZsiQwMFDvWtxRQUHBb3/723feeYepSmpVWFj4/PPPL1q0\nqHnz5nrX4o6KiorS09PfeuutkJAQvWtxRxcvXnzuuefefPPN1q1b612LO7p06dIzzzyTmZkZ\nHh6udy3u6PLly2lpaatXr77//vv1rsUeT0/Pbt266V1FLQh2ajp8+HDXrl0LCwv5w1Oro0eP\nduzY8ccff2zTpo3etbijvLy86OjoM2fORERE6F2LOzpz5kxUVFReXl779u31rsUd/fjjj+Hh\n4UePHnXzP8x6KSwsDA0NPXz4cOfOnfWuxR1dvHixefPm3377rXvGJvdn7HvsAAAAYEWwAwAA\nUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsAAABFEOwAAAAUQbBTk5eXl8lk\nMpvNehfipjg+9mkTILrnNIjugONjn/bzxfG5E7PZzPGxg+Nzj5hSTFknTpxgviM7OD72cXzs\n4/jYx/Gxj+NjH8fnXhDsAAAAFEFXLAAAgCIIdgAAAIog2AEAACiCYAcAAKAIgh0AAIAiCHYA\nAACKINgBAAAogmAHAACgCIIdAACAIgh2AAAAiiDYAQAAKIJgBwAAoAiCHQAAgCIIdgAAAIog\n2AEAACiCYKeC69evv/TSSx4eHvHx8XddeMWKFaba/OEPf3BBqbqo0/ERkeLi4vT09Hbt2nl5\neYWFhaWmphYUFDi7SL3UdWcbyflTj3OA08bO8o3ktLHFrx37+LPlPJ56F4B7lZubO27cuGPH\njjm4fHFxsYg8+eSTkZGRtu39+vVr+OLcQF2Pz7Vr1wYPHpyTkzNq1KgePXrk5eW9//77n3/+\n+TfffNOsWTOnlup69djZxnD+1OOwcNpw2tji1459/NlyLguMrKSkxNfXNz4+/tixY97e3nFx\ncXf9yrx580Rk3759LihPd/U4Pm+99ZaIvPHGG9aWtWvXisjzzz/vzEr1UY+dbQznTz0OC6cN\np40Vv3bs48+WsxHsjK2oqOj555+/du2axWJx8Cdk+vTpInLs2DHnV6e/ehyfBx54IDAwsKKi\nwrYxOjq6VatWVVVVzipUJ/XY2cZw/tTjsHDacNpY8WvHPv5sORv32Blb8+bNFyxYYDabHf+K\ndk07ODi4srLy7NmzP/30k9Oq019dj09FRcXBgwd79erl7e1t296/f//CwsKTJ086oUbd1G9n\nlT9/6nFYOG2k0Z82tvi1Yx9/tpyNYNfolJSUiMjChQtDQkIiIiJCQkI6dOiwevVqvetyC/n5\n+ZWVlRERETXao6KiROTEiRN6FOUs9dtZ5c+fehwWThtp9KfNvWhU50/9cP7UCQ9PNDraf33W\nrFnz29/+Njw8PDc3d/HixU899VRpaemUKVP0rk5npaWlIuLv71+jPSAgwPqpMuq3s8qfP/U4\nLJw20uhPm3vRqM6f+uH8qROCnTEUFxe/+OKL1rfR0dEzZ86s36rmzJnz7LPPPvLII9bfI+PG\njevRo8fs2bMnTZrk5eXVAOW6XAMeHxExmUw1WiwWS63tRmHn+NR1Z5U8f25Xj3NAvdPGDk6b\nBteozp+64vypE4KdMZSVlS1btsz6tl+/fvUOLoMGDarR0rlz52HDhn3yyScHDhzo2bNn/avU\nT0Mdn6ZNm0pt/0W+dOmSiAQGBt5DjXqq9fjUb2eVPH9s1eOwqHra1IrTpsE1qvOnfjh/6oRg\nZwxt27bV/vfmJK1atRKRsrIy523CqRrq+ERGRnp6ep4+fbpGe15enojExMTc+yZ0UevxacCd\nNfr5Y6seh0XV06ZWnDYNrlGdPw2I8+dOeHiicSkrK1u6dOmaNWtqtB8+fFhu3avbmHl5ecXF\nxWVnZ5eXl1sbq6qqdu/eHRERUWNsTKOrx842hvOnHoeF04bT5l40qvOnHjh/6ky3gVbQ0God\nEOjKlSv79+8/fvy49raysjI8PDwgICA3N9e6zMaNG0Wke/furqtVD44cH4vF8uc//1lEMjIy\nrC1Lly4Vkfnz57uoUBe66842zvOnrofFka+ohNPGcfzasY8/W85gsjizgw/Otnv37m3btmmv\nFyxYEBISMnHiRO3trFmzWrRocejQoX/7t38bPHjwzp07tfZNmzYlJib6+fmlpKSEhYUdOnRo\n48aNgYGBWVlZPXr00Gc3nKYex6eysvKhhx7as2fPyJEje/TokZubu3bt2q5du3711Vd+fn76\n7IbT3HVnG+f5U4/DwmnDaWPFrx37+LPldHonS9yT119//U7/stog3QcPHhSRwYMH237riy++\nePTRR4ODgz09PcPCwiZMmKDqiN71Oz6lpaUzZ86Miooym83h4eHPPPNMUVGRTnvgdPZ3ttGe\nP/U4LJw21k8b7Wmj4deOffzZcjau2AEAACiChycAAAAUQbADAABQBMEOAABAEQQ7AAAARRDs\nAAAAFEGwAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsAAABFEOwAAAAU\nQbADAABQBMEOAABAEQQ7AAAARRDsAAAAFEGwAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMA\nAFAEwQ4AAEARBDsAAABFEOwAAAAUQbADAABQBMEOAABAEQQ7AAAARRDsAAAAFEGwAwAAUATB\nDgAAQBEEOwAAAEUQ7ADcq5SUFJPJdO7cObdalXVtZ8+ebZC1AYD7I9gBEBH54IMPTD/n4eER\nGhqalJT0z3/+0/53H3jggYcfftjb2/vey2jAVTnIYrF89NFHiYmJYWFh3t7erVq1io+Pf/XV\nV8+fP++yGtxZZmbm8ePH77rY9evXX3rpJQ8Pj/j4eBdUBeBOTBaLRe8aAOjvgw8+GD9+fL9+\n/fr376+1XLly5ejRo//7v/9rsVhWrFgxYcIEfSush5SUlLVr1+bn57dt27bWBYqLi5OTk3fu\n3Onn5zd48OCoqKiioqLs7Oy8vLyQkJCPP/44ISHBxTW7lYKCgrCwsG3btj3yyCN2FsvNzR03\nbtyxY8cuX77cvXv3r7/+2mUVAqjBU+8CALiRIUOGZGRk2Lbs2bNn0KBB6enpY8aMceWFNNd4\n6qmndu7cOXLkyPfeey8kJERrrKqq+vOf//zss8+OHDny+++/b9Wqlb5F6mjfvn13XebSpUtx\ncXFdunTJycnp2rWrC6oCYAddsQDsSUhIGDx48MWLFw8cOCC37lorLCwcOnSor6/vpk2b5Oc3\nxo0dO9ZkMpWVlb3wwgvt2rXz9vaOiIj44x//aNs5cO7cudTU1PDwcH9//27dui1atOjGjRva\nR7arevzxx00mU0FBQWpqamhoqLe3d8eOHZcuXWpbXnZ29uOPP96yZUsvL6927dqNHz/+1KlT\nDu7a9u3bt27d2qNHj48++sia6kSkSZMmaWlpL7/8co8ePfLy8rTG06dPT5o0KTw83MvLq2XL\nliNGjMjOzrZ+Rdvr4uLiKVOmhIaG+vn59e7dOzs7u7y8PD09PTw8PCAgoG/fvjk5OdavOLJ3\njmzU/qE+f/78M888ExUV5eXlFRISkpiYaJvV7K9h+PDhI0eOFJFHH33UZDLdqUf+xo0b06ZN\n++KLL6Kjox088gCchyt2AO6iRYsWIlJeXi4iXl5eIjJjxgyz2Tx37tz27dvXWFhb4Iknnrjv\nvvs+/PDDqqqq+fPn/+Y3vwkODp40aZKIXLhwIT4+vqysbMKECVFRUbt27UpPTz948ODy5ctr\nrEq7QJiYmPjQQw998sknVVVVL7/88rRp08xmc2pqqoh88803AwYMaN68+fTp01u3bn3ixInF\nixf/4x//OHLkiFazfe+//76I/O53v/P0rOU34ezZs2fPnq29zs/P79WrV3l5+dSpU7t06fLD\nDz8sWbLk3//933fu3Kn1XGt7nZycnJCQsH379u+++y4tLS05OTk2NrZLly6bNm06depUamrq\nsGHD8vPzzWazI3vn4EbtH+oHH3ywuLg4LS2ta9eu+fn5S5YsSUhI2LFjx4ABA+66ht///vfN\nmzdftWrV3Llzu3fv3rlz51oPY/PmzRcsWHDXow3ARSwAYLGsWrVKRObNm1ej/dq1a+3bt9eu\nLVkslsmTJ4vIf/zHf1RWVlqXGTNmjIhoCzz99NMi8uSTT1o/1S56DR8+XHs7depUEdmxY4d1\ngV/+8pcicujQoRqr0l7brqq4uNjb27tdu3ba2yVLlvTo0SMrK8u6wDvvvCMi77zzjm1h+fn5\nte6ytl8lJSV3PTgTJ04UkQ0bNlhbjhw54uHh0bt3b+2tttdTp061LjB69GgReeKJJ6wt06dP\nF5G9e/fa1mZn7xzcqP1D7enpuW/fPusCZ86cCQwMjI+Pd3ANr7/+uohs27btrodI4+3tHRcX\n5+DCAJyBrlgAtauoqDh48GBKSsqJEydSUlJat24tIiaTSUQmTpzYpIm93x5aKNG0b9/ez89P\nG3PEYrGsW7cuIiJi6NCh1gXefvvtzz//PDQ0tNZVpaSkWF8HBQUlJCScOnWqoKBARKZOnfrN\nN98MHDhQRK5fv15RUaFdVXKwN/b8+fNBQUFNmza1v5jFYtm4cWNoaGhiYqK1sVOnTn369Pnq\nq6+KioqsjUlJSdbXMTExIqJ1ZWo6dOggIlrld907xzdq51CvX78+Nja2bdu2524xm819+/b9\n+uuvy8rK7roGAEZEsANQbf78+dbhTnx9fWNjYzds2DBixIhly5bZLqZlFDsiIyNt35rN5uvX\nr4tIQUFBUVFRx44dtYCoad++/UMPPdSyZctaV3X//ffbvg0PDxcR60B3q1atGjBgQLNmzby8\nvHx9fQcPHiwi1jv27GvSpEllZeVdFzt37lxJSUmXLl1sa5ZbB+Ff//pXjdo0WveubYvWA6sd\nh7vuneMbvdOhLiws/Omnn3Jyctr83I4dO0TkzJkzd10DACPiHjsA1QYMGKBdABORJk2atGjR\non///t26dauxWFBQkP31aCHmdleuXJFbt5c5yM/Pz/atv7+/iBQXF4vI7NmzX3/99fj4+D/+\n8Y/33Xeft7f34cOHtRvUHBEWFnb06NGffvrpTplSc/nyZet2bfn6+lo/1dy+13c6DlZ32rvA\nwMB6b1RTWloqIg888IDWnVpDWFiY40UCMBCCHYBqAwcOrDHcScPS+nO1WOYg2xAjIiUlJSLS\nokWLioqKhQsXRkREZGVlBQQE2H7qoL59+x49evTvf/+79qhBDRaL5eDBg7GxsdrKa5RhbdES\nWL3dae/ufaPWZewPQQdAMXTFAnAdf3//kJCQ3Nxc286+o0ePvvvuu4cPH671K7m5ubZvjx07\nJiJt2rQ5d+7clStX4uPjralORHbv3u14MVqee/nll7WLWzUsWbKkW7duixcvbt26dfPmzXNz\ncy0/H879yJEjJpPprr3S9t1p7+59o6GhoS1btvz+++9rxOgLFy7cS8EA3BzBDoBLjRw5sqio\naOXKldaWjIyM//zP/7x69Wqty//lL3+xvv7Xv/61b9++Dh06hISEhIaGmkwm2+ckvv32W20E\nk4qKCkcqSUhIGDNmzKlTp4YOHWodr05Ebty48fbbb0+fPr1NmzZjx44VkaSkpIKCgk8//dR2\nW9nZ2YMGDQoODnZwx+u0dw2y0eTk5IqKijfffNPacuHChdjY2Mcee8zB8jw8PORWBzoAQ6Ar\nFoBLzZs3b/PmzVOnTj1w4EBUVNTu3bs3b948YcKEHj161Lr81atXH3vsseHDh1dVVf3Xf/2X\nxWKZO3euiPj6+v7yl7/cvHlzWlrawIEDjxw58u677/7tb38bMWLEli1b1qxZM2LEiLsW85e/\n/OXq1asbN27s2LFjQkLC/fffX1xc/NVXX50+fbp9+/bbt29v1qyZiMyfP3/z5s3jx49/7rnn\nOnTocOrUqcWLFwcEBLz11lv3eDTutHcNstGMjIwtW7a89tprBQUFAwYM+PHHH//0pz8VFRU9\n99xzDq5BG6cwMzPz5MmTCQkJPXv2vH2Z3bt3b9u2TXt948aNH3744cUXX9Tezpo1y5EBBQE0\nJN0GWgHgTu40jl0N2shnx44ds228fRy7GgsEBQV16dLF+vbUqVPjxo1r1aqV2Wxu3779f//3\nf9+4ceP2VWmvjx07lp6eHhYW5uXl1blz5xUrVljXU1hYOHbs2JCQkKCgoEGDBu3Zs8discyf\nPz8gIKB169YFBQX2x7Gz2rRpU1JSUlhYmNlsDgwMfPDBB5csWVJeXm67zJkzZyZNmtSmTRtP\nT89WrVqlpKQcOXLEzmGZN2+eiGglad577z0RWbNmje2e2tm7emz09kNdUFAwderUiIgIT0/P\n4ODgESNG/N///Z/ja7h27dqoUaN8fX2bNWu2fv36Wo9erQ9naGqsGYALmCw/v4EDANxESkrK\n2rVr8/Pz27Ztq3ctDU/tvQOgF+6xAwAAUATBDgAAQBEEOwAAAEVwjx0AAIAiuGIHAACgCIId\nAACAIgh2AAAAiiDYAQAAKIJgBwAAoAiCHQAAgCIIdgAAAIog2AEAACiCYAcAAKAIgh0AAIAi\nCHYAAACKINgBAAAogmAHAACgCIIdAACAIgh2AAAAiiDYAQAAKIJgBwAAoAiCHQAAgCIIdgAA\nAIog2AEAACiCYAcAAKAIgh0AAIAiCHYAAACKINgBAAAogmAHAACgCIIdAACAIv4fHZ4rWf8o\nGwMAAAAASUVORK5CYII=",
- "text/plain": [
- "plot without title"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeVzVZd7/8TehSO62iIGaG2OWUUg6btzNpI2GjRqGuNxGKaaZzeSM1uid\nglmO/lpubVJzpNKaocY1zUzv0hatJtBcypxJSTQnpDJFwIXU8/vjEAfZDuA53+28nn/M43Sd\nA3x0EN7nuj7XdQW5XC4BAADA/i4zuwAAAAD4BsEOAADAIQh2AAAADkGwAwAAcAiCHQAAgEMQ\n7AAAAByCYAcAAOAQBDsAAACHINgBAAA4BMEOAADAIQh2AAAADkGwAwAAcAiCHQAAgEMQ7AAA\nAByCYAcAAOAQBDsAAACHINgBAAA4BMEOAADAIQh2AAAADkGwAwAAcAiCHQAAgEMQ7AAAAByC\nYAcAAOAQBDsAAACHINgBAAA4BMEOAADAIQh2AAAADkGwAwAAcAiCHQAAgEMQ7AAAAByCYAcA\nAOAQBDsAAACHINgBAAA4BMEOAADAIQh2AAAADkGwAwAAcAiCHQAAgEMQ7AAAAByCYAcAAOAQ\nBDsAAACHINgBAAA4BMEOAADAIQh2AAAADkGwAwAAcAiCHQAAgEMQ7AAAAByCYAcAAOAQBDsA\nAACHINgBAAA4BMEOAADAIQh2AAAADkGwAwAAcAiCHQAAgEMQ7AAAAByCYAcAAOAQBDsAAACH\nINgBAAA4BMEOAADAIQh2AAAADkGwAwAAcAiCHQAAgEMQ7AAAAByCYAcAAOAQBDsAAACHINgB\nAAA4BMEOAADAIQh2AAAADkGwAwAAcAiCHQAAgEMQ7AAAAByCYAcAAOAQBDsAAACHINgBAAA4\nBMEOAADAIQh2AAAADkGwAwAAcAiCHQAAgEMQ7AAAAByCYAcAAOAQBDsAAACHINgBAAA4BMEO\nAADAIQh2AAAADkGwAwAAcAiCHQAAgEMQ7AAAAByCYAcAAOAQBDsAAACHINgBAAA4BMEOAADA\nIQh2AAAADkGwAwAAcAiCHQAAgEMQ7AAAAByCYAcAAOAQBDsAAACHqGN2Afawe/fuc+fOmV0F\nAACwhDp16tx0001mV1EBgp1327dv79q1q9lVAAAAC8nMzLzlllvMrqIsgp13RUVFks6ePRsS\nEmJ2LQAAwGRFRUX16tVzxwOroccOAADAIQh2AAAADkGwAwAAcAiCHQAAgEMQ7AAAAByCYAcA\nAOAQBDsAAACHINgBAAA4BMEOAADAIQh2AAAADkGwAwAAcAiCHQAAgEMQ7AAAAByCYAcAAOAQ\nBDsAAACHINgBAAA4BMHONkaMUFCQTpzQuHEKC1P9+ureXRkZOnVKDz+siAg1bKiePfXZZ2YX\nCgAATEKws42QEElKSFBEhDZu1KJF2r1bCQlKTFRoqNat07Jl2rdPcXH66SezawUAAGYg2NlG\nnTqSFBmpGTMUHa2kJA0cqMOHFRqqOXMUE6MhQ5SUpNxcZWaaXSsAADADwc5m4uM9jyMjJWnQ\nIM9Ix46SlJNjbE0AAMAaCHY2ExHheeyewys9UreuJJZiAQAIUAQ7m3FHt6pHAABAYCLYAQAA\nOATBDibg6BYAAPyBYAcTcHQLAAD+QLCDCTi6BQAAfyDYwTQc3QIAgG8R7GwjLU0ulzp08Iyk\npsrlUu/enpHkZLlcGjbM+Opqg6NbAADwLYIdTMPRLQAA+BbBDgAAwCEIdgAAAA5BsAMAAHAI\ngh0AAIBDEOwAAAAcIsjlcpldg9V9/PHHvXr1Onv2bIj7wgQAABDAioqK6tWr99FHH/Xs2dPs\nWspixg4AAMAhCHYAAAAOQbADAABwiDpmF1BjLpfr4MGDX3/9dX5+vqQmTZpERka2atXK7LoA\nAABMZqdgd/z48SeffPLVV1/97rvvyjzVunXr5OTkyZMnX3755abUBgAAYDrbBLucnJxevXod\nPHgwMjIyLi7u2muvbdCggaSTJ09mZWV98MEHM2bMWLVq1XvvvdesWTOziwUAADCBbYLd9OnT\njxw5snz58oSEhPLPnj9/fvHixRMnTpw5c+a8efOMLw8AAMB0ttk88dZbb40aNarCVCcpODh4\nwoQJQ4cOXb16tcGFAQAAWIRtgt2xY8fat29f9Ws6deqUm5trTD0AAABWY5tgFx4evnv37qpf\ns3PnzvDwcGPqAQAAsBrbBLvBgwevWLHi6aefPnv2bPlnCwsLU1JS1q5dm5iYaHxtAAAAVmCb\nu2JPnDjRp0+fzz77rFGjRt26dWvVqlXDhg1dLldBQcGhQ4cyMjJOnToVGxu7YcOGhg0b+vZL\nc1csAAAoYeW7Ym2zK7Zp06affPLJggULXnnllffff//8+fMlT9WtWzcmJmb06NGjR48ODg42\nsUgAAAAT2SbYSQoJCZk0adKkSZPOnDnzzTffuG+eaNy4cevWrZlLAwAAsFOwKxEaGhoZGWl2\nFQAAANZim80TAAAAqJotZ+wqlJWVNW7cOEnvvvtu9T/q0KFDPXr0OHPmTBWv+emnnySV7uoD\nAACwIOcEu/z8/M2bN9f0oyIiIhYuXOiObpV55513lixZQrADAAAW55xgd911133++ec1/ag6\ndeoMHjy46tf8+OOPS5YsqW1dAAAABnFOsAsNDe3cubPZVQAAAJjGUZsnjh07duDAAbOrAAAA\nMIejgt1TTz3FMSgAACBgOSrYAQAABDKCHQAAgEPYZvPELbfc4vU1//nPfwyoBAAAwJpsE+x2\n7twpqW7dulW85ty5c0aVAwAAYDm2WYqdMmVKgwYNvvjiizOVmzx5stllAgAAmMY2wW7WrFkd\nOnQYPnx41bdEAL4yYoSCgnTihMaNU1iY6tdX9+7KyNCpU3r4YUVEqGFD9eypzz4zu9Cf2a5g\nAIDP2SbY1a1b9+9///vevXunTZtmdi0ICCEhkpSQoIgIbdyoRYu0e7cSEpSYqNBQrVunZcu0\nb5/i4mSR9xq2KxgA4HO26bGT1KlTp6NHj1bRSHfHHXc0bdrUyJLgYHXqSFJkpGbMkKToaG3Y\noOXL1a2b5syRpJgYbd2q+fOVmamePc0s1c12BQMAfM5OwU5S48aNq3j21ltvvfXWWw0rBoEg\nPt7z2H369aBBnpGOHSUpJ8fYmqpku4IBAD5km6VYwBQREZ7H7imx0iPuXdqWWtm0XcEAAB8i\n2AFVKX/ATpVH7pjPdgUDAHyIYAcAAOAQBDsAAACHINgBAAA4BMEOAADAIQh2AAAADhHkcrnM\nrsHqFi9ePH78+Pz8/IYNG5pdCwAAMFlRUVG9evU++uijntY77Z0ZOwAAAIcg2AEAADgEwQ4A\nAMAhCHYwyIgRCgrSiRMaN05hYapfX927KyNDp07p4YcVEaGGDdWzpz77zOxCAQCwLYIdDBIS\nIkkJCYqI0MaNWrRIu3crIUGJiQoN1bp1WrZM+/YpLo6bTAEAqCWCHQzivpA+MlIzZig6WklJ\nGjhQhw8rNFRz5igmRkOGKClJubnKzDS7VgAA7IlgB0PFx3seR0ZK0qBBnpGOHSUpJ8fYmgAA\ncAqCHQwVEeF57J7DKz1St64kSy/F0ikIALAygh0M5Y5uVY/UiMFJi05BAICVEexgbwYnLToF\nAQBWRrCDvZmStOgUBABYE8EOTmBw0rJ7pyAAwKkIdnACg5OWzzsFAdgIm6hgZQQ7OAFJC4Bh\n2EQFKyPYwSBpaXK51KGDZyQ1VS6Xevf2jCQny+XSsGHGVwcA1cUmKlgZwQ4AgBpjExWsiWAH\ne6isqeXcOUnq1YumFgCGYhMVrIlgB3twN7U0a6Yrr1Tv3qpbV59+qthYbdwoSd26qV49/fOf\n6t5d//mPuZUCCAi09sKaCHawB/cbYkmZmbrpJr3/vrp1U1GRjh2TpPBw/d//Fbcq/+1vfiyD\nTkEAgJUR7GAzJQ3Lt98uSefO6e67tXixYmI0YIAknTmjjz4iaQEAAhHBDjZT0rBcModX0rBc\nsg5Cw7KJOOILAExEsIPNlG5PrmyEhmUTccQXAJiIYAeboWHZ4jjiCwBMRLAD4Hsc8QUHYxMV\nrIxgB8D3OOILAExBsAPge6yYA4ApCHZwiBEjNHZs8eNx49iMCQAIRAQ72ENamsaMuWgkNVUp\nKZ7/dG/G7NRJkqZOZTMmACAQEexgG1U3LLsbuX71K7lc+tOf2IwJAAhEBDs4CpsxAQCBjGAH\nR2EzJgAgkBHs4ChsxjQdR3wBgIkIdgAAAA5BsAMAAHAIgh0AAIBDEOwAAAAcgmAHAADgEAQ7\nOASbMQEAINgBAAA4BMEOAADAIQh2qIERIxQUpBMnNG6cwsJUv766d1dGhk6d0sMPKyJCDRuq\nZ0999pnZhQIAEJAIdqiBkBBJSkhQRIQ2btSiRdq9WwkJSkxUaKjWrdOyZdq3T3FxXNsFAIAJ\nCHaoAfftq5GRmjFD0dFKStLAgTp8WKGhmjNHMTEaMkRJScrNVWam2bUCABB4CHaosfh4z+PI\nSEkaNMgz0rGjJOXkGFuTJbFyDQAwGMEONRYR4XnsnsMrPVK3riSWYiVWrgEAhiPYocbc0a3q\nEYiVawCA4Qh2gH+xcg0AMAzBDvAvVq4BAIYh2AH+xco1AMAwBDsAAACHINgBAAA4BMEONZCW\nJpdLHTp4RlJT5XKpd2/PSHKyXC4NG2Z8dQAABDqCHQAAgEMQ7AAAAByCYAf4CyvXAACDEewC\nFzeZAgDgMAS7wOWTm0xJh7XD3xtgBfxLhPMQ7AKXT24y5Z772uHvDbAC/iXCeQh2ge4SbzLl\nnvva4e8NsILq/0sMCWFiD/ZAsAt0PrnJlHvua4e/N8AKqvMvUUzswSYIdoHOJzeZcs997fD3\nBlhBdf4liil22ATBDj7APfe1w98bYAXV/JfIFDtsgWAHAIB3ERGeXbQbN0pScrKn2W7VKkka\nOZJmO5iMYAcAgHd163p20TZqJEl//KOn2c49yTdhAs12MBnBDgCAainZRXvrrZJ0xx2eZrsh\nQySpWzea7WAygh0AADVAsx2sjGAXuLjJ1ETvvy9JJ096jsVKS5OkM2c8x2LNmWNqiQAqwX52\nWBnBDpeEdFg77r+fRx/1HIt17Jhat9b8+Z5jsY4dU1hY8foOAH+o5k+wMWMu+ij2s8PKCHaA\nCbh5AgDgDwQ7wDR06gAWUXKOSYWXhr39tho00D336Nix4tezNAHLItgBpqFTB6i1qqNYTe9v\nLTnHpOpLwzZt8uufCfABgh1gGjp1gFqrZhSr5pFy1eyOOH3av38o4NIR7OBMvn03D8Bq/NGo\nWp3uCMDiCHZwJt++mwdgTTVtVK3sLd+5c5I0cqTnLV9l3RGvvcY5ALA0gh2ciW2nQCCoaaNq\nZW/53ntPkhYv9rzlu3DB8xkAG6ljdgGAH7HtFHC2mjaqln7LJyk6Whs2aPlytW0rSZ07q0MH\nbd2q+fP1n//4o17A75ixg5Ox7RRAeeXf8rVu7Rlxv+UrKDC2JsBHCHZwMstuO+XGDsBE5d/y\nNWjgGXH/lDh/3tiaAB8h2CFAjRihsWMlKS2NbbNAYCn/Bu8yfhnCKfheRoBy91BLataMbbMA\nAIcg2CFA1fl549CQIWybBQLdo4+W7Y64+266I2BLBDugGNtmARuhURWoEMEOKMa2WQCA3RHs\n4ExVvJt3Hz1fVCRJV16p0aOLt024A9zQoWybAADYFcEOAce9bWLzZkl66SXPtomVKyVpzhzP\ntgnOOwAcpvRbPvd7vIcf1v33a8gQz9b4ESP0+9/rj3/kPR5siWCHgONecm3SRJKuv96zbcI9\n3rGjZ9tEdraJZQLwL26UhiMR7BCg2rTxPHZvm3BvlXBzP87LM7QkAEbiRmk4EsEOAap+fc9j\n98/3xo09I2WOnncv2Zw4oXHjFBamOnUUFKTNmzVmjBo00GWXKThYUVH6+GMONwZshhul4TAE\nOwSo8gfNV3H0fJklmx49JOnOO7Vtm4YOVUqKgoO1d69uu00hIazgAHbCjdJwGIIdAtTs2WW3\nzY4eXfYQrF//uvgQrDJLNu438WfOKCpKL7+slBTddZcuXNDZsxo8mBUcwE4se6M0UDsEO6C6\nSi/ZuJUs2bhXcFRqyYYVHMB2Vq2SpIKC4qaL+vU1e7YknT1LlwVsg2AHVFfpBZoyIyUXlJUs\n2VRnBadM617JaQunTvFbBDBBcLAkTZ/u2Sd75IgkPfcc+2RhGwQ7oLp8vmTDaQuApbgbbVu2\n9OyTvekmSapbl32ysA2CHWAaTlsALOjWWz2Pw8Ik6ZZbPCN0WcDiCHYIOFa7O5zTFgBLufpq\nz2P3HF6zZp4R9snC4gh2gMk4bQEwRfn3eF26SNIvf1l2pF8/YysDLkEd7y+xsKKiot27dxcU\nFLRp06Zt27ZmlwPUBqctAAB8xTYzdk888cR7771XemTx4sUtWrTo1q3bbbfd1q5du1tuuWXX\nrl1mlQcAAGA62wS76dOnb9q0qeQ/33rrrfHjx586dequu+4aN25cr169duzY8atf/SorK8vE\nIuFUZZZs3P9Zui3P3aVXui3PyC49AADc7LoUO2nSpCZNmnzyySedOnVyj6xevfruu+9+8skn\nX3rpJXNrAwAAMIVtZuxK+/777/fv3//ggw+WpDpJ8fHxgwYN+r//+z8TCwMAADCRLYPdmTNn\nJJVOdW6dO3f+7rvvzKgIAGB7VjsLCagFWwa78PDwJk2aHHFf9VLKt99+26hRI1NKAmqB3yIA\nAN+yU7A7fPjw9u3bDxw4cPz48QkTJrz44ounTp0qefZf//rXP/7xj169eplYIQAAgInstHni\ntddee+2110qPvP3220OGDJGUnp5+//33nz59evr06SZVBwAAYDLbBLuXX375RCl5eXknTpxo\n9vM9LydOnGjatOnrr7/etWtXc+sEEMhGjNBrr+n4cT36qN54Q/n5iorSc8+pc2dNm6YVK5SX\np6goPf988ZUGAOBbtgl29957bxXP3nPPPePHj7/sMjutLANwnpAQSUpIUGysNm7Unj0aP14J\nCYqK0g03aN06ZWcrOVlxcfrmG64YcYIyUf7YMZ0/r3ffVXq6Xn9dp08rKEg33KAXXtDy5SR7\nGMEhSahhw4akOgCmc9/2GxmpGTMUHa2kJA0cqMOHFRqqOXMUE6MhQ5SUpNxcZWaaXSt8oSTK\nR0Ro40b16CFJd96pbds0dKhSUhQcrL17ddttCgnRunVatkz79ikujgug4S+2mbHzn8LCwqKi\noipeUHqLBgB4FR/veRwZKUmDBnlGOnaUpJwcY2uCf5SO8pI6dtS2bTpzRlFRevllSfrySy1f\nrrNnNXiwYmIUE6OtWzV/vjIz1bOnmZXDqZwT7LKyssaNGyfp3XffrdFH/eIXv7hw4YLXV7pc\nrtoXByCQRER4Hrt/8Zceca/AMmHjJKWjvFtJlHcne5WK8iR7+JVzgl1+fv7mzZtr+lHt27ff\ntWtX1TN2q1evnj17dlBQ0CVUB+ejax4lyjfP0U7nbKWDe5mROj//mi2J8iR7+JVzgt111133\n+eef1+IDb7zxxqpfsH379lpVhMBC1zwQsIjysA7nBLvQ0NDOnTubXQUCV5lWm+hobdig5cvV\nrZvmzJFEbw0AwO/sF+xcLtfBgwe//vrr/Px8SU2aNImMjGzVqpXZdQESXfMAAFPZ6YiQ48eP\nT548uUWLFu3bt7/99tvj4+Pj4+P79OnTunXra6+9dtasWadPnza7RlRqxAgFBenECY0bp7Aw\n1a+v7t2VkaFTp/Tww4qIUMOG6tlTn31mdqGXhq55AICJbDNjl5OT06tXr4MHD0ZGRsbFxV17\n7bUNGjSQdPLkyaysrA8++GDGjBmrVq167733Sq6jgKUESAsarTZAAIqMLN44lZ5ePLJvn7p0\n0bRpeuml4pGDB82qDoHFNsFu+vTpR44cWb58eUJCQvlnz58/v3jx4okTJ86cOXPevHnGlwev\naEFDIEhLU1raRSOpqUpNvWgkOVnJyQbWBEO437X266c33pCk6dO1bp1uuEHDh+uvf5WkuXM1\neTLv9OB3tlmKfeutt0aNGlVhqpMUHBw8YcKEoUOHrl692uDCUCO0oAFwkrQ0jRkj/fyudc0a\nuVwaOlS5ucXXjSxeLJdLv/+98vKKrxtJTpbLpWHDzC0cjmWbYHfs2LH27dtX/ZpOnTrl5uYa\nUw9qhxY0AI7Eu1ZYhG2CXXh4+O7du6t+zc6dO8PDw42pB7VDCxoAR+JdKyzCNsFu8ODBK1as\nePrpp8+ePVv+2cLCwpSUlLVr1yYmJhpfGwDAMWq3hZ93rbAI22yeSE1N3bp165QpUx5//PFu\n3bq1atWqYcOGLperoKDg0KFDGRkZp06dio2Nfeyxx8yuFAGKrnnAGQJkCz+cyjbBrmnTpp98\n8smCBQteeeWV999///z58yVP1a1bNyYmZvTo0aNHjw4ODjaxSACA3bGFH7Zmm6VYSSEhIZMm\nTdq5c2dBQcFXX321Y8eOHTt27N+/v6Cg4JNPPhk7diypDgDsxbJHl7MZAjZlmxm70kJDQyPd\n/84AAHZm2XVPNkPApuw0YwdbS0uTy6UOHTwjqalyudS7t2eE452AQFN63TM6WklJGjhQhw8X\nHwIXE6MhQ5SUpNzc4kPgDMNmCNgUwQ4AYDJbr3vyrhWWQrADfMay3UKAxbHuCfgKwQ7wmZJu\noYgIbdyoRYu0e7cSEpSYqNBQrVunZcu0b5/i4vgVBVyEdU/AVwh2gM9YqluI6UMACEAEO8DH\nLNItFJjTh8RZGGn4cL7ZYDkEO8DHLNIt5NfpQ8vmp8CMs/Ctam6GSEqS+GaD9RDsAB+zVLeQ\nn6YPLZufLLUaDmfjmw3WRLADnMxP04cW/5VmkdVwBAK/frNZdmocVnZJwe748ePZ2dk+qgSA\n7/l1+tCy+ckiq+GoDrsfAufXbzbLTo3DyqoKdnv27BkwYECbNm1iY2MXLlx4/vz5Mi+YO3du\n27Zt/VkeAOuybH6y1Go4nM2v32y1nhpnqi+QVXpX7EcffdSnT5+zZ8/Wr1//22+/3bZt2/Ll\ny9esWdOsWTMj6wNgWeQnwAC1mBq37A28MEClM3Z//vOfL1y4sGbNmoKCgvz8/Gefffbjjz/u\n169fYWGhkfUBABDIajE1bvEuWPhVpcFuz549iYmJgwcPDgoKqlev3qRJkzZu3Lh79+6hQ4eW\nX5MFIPt3CwGwoFpPjVu2CxZ+VWmwO3r0aLt27UqP3HbbbWlpaRs2bPjDH/7g/8IAAEDtWbYL\nFn5VabALCwvbtWtXmcFRo0ZNnTr1ueeee+qpp/xcGIBLwvQhEODogg1MlQa7+Pj4N9988/nn\nn//p4jz/5JNPJiUlPfLII5MmTTp16pT/KwSA6iLOwjB8s8GaKg12M2bMaNWq1UMPPRQXF1d6\nPCgo6OWXX/7d7343b968v/zlL/6vEIDl8CsN8JPSJ5Wkp0vS3Xd7Tip59llJeuABTipBpSoN\ndldeeeWOHTsmTJjQuXPnMk8FBQXNnz9/1apV7du393N5AAAEkNKHEvfrJ0n/+pfnUOLhwyUp\nO5tDiVGpqg4ovuqqqxYsWPC///u/FT4bHx9/4MABl8vln8IAAAg4pU8qWbNGLpcGDfKcVLJ4\nsVwujRnjOamEqXGUwV2xAABYCyeVoNYIdgAAWMslnlRCF2wgI9gBcDLjL83kmk5cOk4qQa0R\n7AA4WelW9I0btWiRdu/2tKKvW6dly7Rvny9b0Y3/igBQgmAHwMmMvzSTazoBmIhgB8D5jG9F\np/kdgCm8B7tt27b9+OOPFT6VkZGxatUqX5cEBDqatHzO+EszuaYTgCm8B7vY2NgPP/ywwqe2\nbt06duxYX5cEBDqatHzO+FZ0mt8BmKJOZU8cOHDgwIED7sc7d+4MDQ0t84LTp08vX7787Nmz\nfqwOCEilm7QkRUdrwwYtX65u3TRnjiTFxGjrVs2fr8xM9expZqkAfCstTWlpF42kpio19aKR\n5GQlJ/vga40Yodde0/HjevRRvfGG8vMVFaXnnlPnzpo2TStWKC9PUVF6/nl16eKDLwdjVBrs\nVq5cOXXqVPfjxx9/vLKX3X333b4vCgBNWgD8rGRxIDZWGzdqzx6NH6+EBEVF6YYbtG6dsrOV\nnKy4OH3zDVPOtlFpsPvTn/6UlJSUmZk5aNCgUaNGXX/99WVeEBwc3K5du4EDB/q5QiBA0aQF\nwK9YHHCkSoOdpGuuuWbgwIEDBgyYMGFC9+7dDasJgGjSArxhJdEnWBxwGO+bJ9avX0+qAwBY\nbb8224x8gsUBh6lqxs7N5XKtXLnylVdeOXLkyE8V/X/7xRdf+KEwAPABI1vRzfqKhrFaSxYr\niT7B4oDDeA92zzzzzJQpUyTVr1+/Lv9vA0CgsmaQYiURKM17sJs/f36/fv0WLlzYrl07AwoC\nAFiZ1YIUK4lAad577HJzc2fOnEmqAwDIekHKryuJvmortFp7IhzMe7ALCwtzuVwGlALA/dP/\n6ad1//3q1cvz0/+RR/T73ysx0fPTPzlZLpeGDTO7YgSegGrJ8tX+DPZ5wDDeg93w4cNfffVV\nA0oBUOuf/swHAP5Quq0wOlpJSRo4UIcPKzRUc+YoJkZDhigpSbm5ysw04vMAXnkPdjNmzMjK\nyho5cuSmTZv27dt3oBwDqgQCRK1/+jMfAPiPr9oKrdaemJYml0sdOnhGUlPlcql3b88IiwO2\n4z3YNWrUaNOmTenp6f3797/++usjyzGgSiCg1OKnP/MBl4gpT1TBV22FVX+epUslKS+Pb0Jc\nEu+7YocPHx4SElKnjvdXAvCJWv8Wsdp8gI1Y7YQ2WIqv2gqr/jzuf+zz5unuu/kmRO15j2vp\n6ekG1AGgRK1/i1htu6KNWPOENlTNYWdBX3aZJLVowTchLon3pdgS+fn5e/fuPXHihP+qAXAp\nAmq7oj8w5Vk1WrIM0LWr53GNvglpJ4BbtYLdBx98cMsttzRu3Lhz587//Oc/3YMDBw7cvHmz\nP2sDAEMx5QnTXXGF53GNvgnZQQU378EuIyPjN7/5zVdffdWvX7+Swe+//z4zMw1Hk30AACAA\nSURBVDMuLm7Hjh3+LA8AjMOUJ0wXHFx2pJrfhOyggpv3YPf444+3aNHiyy+/XOresSNJuvrq\nq3fv3t2iRYtZs2b5sToAAFBtixZ5VmNXr5akzp09q7GLFknSRx+ZWyP8y3uw++c///nAAw+0\nbNmyzHjz5s3Hjx//4Ycf+qcwp0tPV8uWqlNHU6aYXQoAoGK+aiuszudx98/deeel1lyyGuv+\nVAsXelZjx4yRpCefZDXWybwHu7y8vFatWlX41DXXXFNQUODrkgJAXp6Sk1VQoFmzVGqBG6A5\nHUAtjBihF18sfvzRR5ozRw88oKuukqTvvtPmzXr+eT30UPFIXh6rsU7m/biTFi1a7Nu3r8Kn\nPvzww/DwcF+XFAD279fp07rvPk2danYpcAiHnfsAoEbcOyfcnn1Wl1+u8eP1r38Vj0ydquuv\nV3Ky9u4tHgnkzd2O533GLi4ubuHChZ9dvEP6+PHj//M///Pyyy8PGDDAb7U515kzktSokdl1\nAABsb8QILVvm+c9Jk7RokXr3Vl5e8cjs2XrmGd1xh06eLB5hKdbBglwuV9WvOHr0aLdu3XJy\ncqKioj777LObb75Z0r59+86ePdu6deuMjIywsDBDSjXN4sWLx48fn5+f37BhQx98uv79tWmT\n5z/HjdMLL/jg0wIAAtK9914U7ObOVUqKQkI8Me6JJ/T007pwwTPy2mu0c1ySoqKievXqffTR\nRz2td1S09xm7Fi1abN++fezYsYcOHZK0a9euXbt2NWrU6IEHHsjMzHR8qvO9lBTNni1J8fFa\ns0YPPGB2QbAHK58+auXaAMcrc+VnfLwGDvRkOEm33qqkpItG4GDVugG2efPmCxcuXLBgwXff\nfZefn9+oUSPyXO316KHz5yUpMlKDB5tdDWzDypeZWrk2IAC5r6wozb3lFoGgBleKBQUFhYWF\ndejQgVQHGM/Kp49auTYgcCQkFD8omcO7777iByVvqO6/39iaYDjvM3Yul2vlypWvvPLKkSNH\nfqqo3/KLL77wQ2EAKmDly0ytXBsABAjvwe6ZZ56ZMmWKpPr169dlEQUwlZUvM7VybQDciook\nadw4jR6tqCg995w6d9a0aVqxQnl5iorS88+rSxezq8Ql8L4UO3/+/H79+mVlZRUWFp6oiAFV\nwjHosr9EVr7M1Mq1AYFg9uyyJ5yPHl32hPMdOzRzpt5/X4sWafduJSR47qVYtkz79ikujjdg\n9uY92OXm5s6cObNdu3YGVINqsfN1ZCVd9u4bb/jJAgBGatGCXliH8x7swsLCvJ51B+PY/Doy\nuuwBVIjp/Eu0f/9Fc3WStm69aK7O7ZFHPI/phXUk78Fu+PDhr776qgGloFrc15GNHKmpU9W3\nr9nV1BJd9gDKYDrfGPTCOp73YDdjxoysrKyRI0du2rRp3759B8oxoEp4OOI6Mn6yALXg7Dkt\npvNrLS2tbGtdamrZ1rrkZI0ZI9ELGwC874pt9HOGSE9Pr/AFLNTWWO/eqt1fWsl1ZHPnau5c\n+15Hxk8WoBYC4SBopvOBS+Q92A0fPjwkJKROnWrdUQH/SknRrbdq2jTFx2vUKLVta3ZBME5a\nmtLSLhpJTVVq6kUjyclKTjawpp9ZuTYnKT2nJSk6Whs2aPlydeumOXMkKSZGW7dq/nxlZsp6\nN1hWC9P5wCXyHtcqm6iDCbiODAh4zp7TYjofuEQ1uFLshx9++OSTT959991PP/2U4+sAwBTM\nafmDs/sXEVCqFey2bdvWvXv3q6++umfPnrfffnv37t2vuOKKvn37cpkYABiMOS1/YE8uHMN7\nsMvIyOjbt+/27dt79+49ZsyYiRMn3nfffd26dduyZUuvXr3+/e9/G1AlAAD+Y/CeXFMmCKu5\nedbl0rBhvvy6MJj3Hrsnnnji6quvfuedd6677rrS4zt37uzfv//MmTNpwkP10WUPwLIM618M\nhA3OMIv3GbuPP/54woQJZVKdpOjo6AkTJmzZssU/hQEAUGOXMhlmWP8ih/bBf7wHu7y8vJYt\nW1b4VJs2bX788UdflwQACDi+Wii8lG45g/sXnb3BGWbxHuyaN2++b9++Cp/68ssvmzdv7uuS\nAACoJRtNhrHBGf7gPdj95je/+ctf/rJ27drSN0y4XK41a9YsWLDgjjvu8Gd5AIBiNL9Xny0m\nw9jgDH/wHuxSUlLq168/ePDg8PDwPn36DBw4sE+fPuHh4fHx8Y0bN05JSTGgSni4ryNzHzMP\nAKgIk2EV4ri+QOA92LVp02b79u1JSUmnT5/esmXLm2++uWXLlqKiouTk5B07dlTWfgcAgFmY\nDKsQx/UFgmrdANuqVaulS5e6XK6jR48WFhY2bNiwRYsW/q4MAAD4UCBcN4waXCl29OjRo0eP\nfvPNN999993333/vv5oAADBSQPUv2qIBEbVWrWC3ZMmStm3bhoeHd+nS5bbbbrvpppuaN2/e\nqVOn119/3d/1AQAAH6IB0dm8B7tFixbdf//9OTk5ffv2TUpKmjBhwsiRI7t16/bvf/97+PDh\nr7zyigFVAgDgGOZOEFbYgFiyr+LVVyUpKYl9FXblvcdu3rx5/fr1+8c//tGkSZPS4wcPHvzN\nb34zd+7ce+65x2/lAQAA33j/fUk6eVLjxumNN5SfryuukKQzZ7RrlyRddZXcv+rHjNHLLxff\ncvb11/r2Wy1bprFj1bWr6tVTVJSee06dO2vaNK1Yobw8RUXp+efVpYtpfzSU8D5jl52dPX36\n9DKpTlLbtm0nTZqUlZXln8IAAKixgOqWq6nLLpOkhx7y7IrNzZWklJTiaby+fXXmjCT16uU5\n2LlrV0l69VV16aILF/THP7KX1tK8B7smTZoEBwdX+FRwcPBVV13l65IAAIDvBQVJUps2nms5\n3FslQkKK09vkyerRQ5Kysjz7Kkr20rrX526+2bqXeUDVCXa//e1v33zzzQqfWr9+fUJCgq9L\nAgAA/tKvn+exeyk2Nrb4PyMi5D7N7MSJsvsq4uM9+yrYS2tl3oPdE0888e67744cOfLNN9/8\n17/+dfjw4X379q1atWrAgAFnzpx58MEHj5RiQMUAAFhFerpatlSdOpoyxexSqisszPPYvThb\nsvZWt67cS3TnznlG3NhLaxfeN0+Eh4dLysjISE9PL/9spDu3/6z0fbIAADhZXp6SkxUSolmz\nitcyrS02Vl99pfbtPSO/+pU++EBdumjPHs9rXnlFPXvqX/+66GO5zMMuvAe7wYMH16tXz4BS\nAACwk/37dfq07rtPU6eaXQpQzHuwW7NmjQF1APC79HQ98oiOHtWkSXrqKbOrAezPvYO0USOz\n6wA8anClGAAbc68ZFRRo1qyLeqcB1E7//sWbDubOVVCQxo83uyC/mDlTL74oSdOn6w9/KH7w\nn/9I0nPPeQ4uPnzYzCJRmvcZO0nnz5//9NNPc3JyfqqoMXJYAJ4FZEFMxqBqrBkBvpWSoltv\n1bRpio/XqFFq29bsgryr4oDif/5TkqKiFB5+0YeUNNKFhenhhzVrlg4d0ooVkhQSonXrlJ2t\n5GTt3WvYHwJeeA92O3bsuPvuu7Ozsyt7AcHOfHZr4IUJWDMCfKtHD50/L0mRkRo82OxqqqXk\ngOJ+/bRxo/bsUXKyJKWk6M47tWyZsrOLD6s7f16pqUpNLX6BpIkT1aGDHn9ciYlavlySxo9X\nTIxiYrR1q+bPN+UPhAp4D3YTJ048ceLE73//+44dO9ZlD4w1MRmDqvXvr02bJGnuXM2dq3Hj\n9MILZtcE2IGzFkP+67+0f79uukkzZkhSdLQ2bNDy5QoP15w5kjwprcz84zvveC7zcB+G8eqr\nnss83IfYrVypIUMM+WOgSt6D3eeff/63v/1tsE3ejgQoJmNQNRuuGQHms+diyIgReu01HT+u\nRx8tXm8tudrVvd768svatav4atdqHjXMIXY24n3zRMOGDVu3bm1AKailwGjgxSXp0aP4m8S9\nZnTTTWYXBNiBezFk5EhNnaq+fc2uprpCQiQpIcFzIWzJ1a7uw4fnzPFc7VrNlMYhdjbiPdgN\nHTp05cqVBpSCWkpJ0ezZkhQfrzVr9MADZhcEAI5gz8WQkqtdSy6ELbna1T3tOGBA2atdSWlO\n4n0pds6cOcOGDRs6dOigQYPCw8PLt9n1LllmhylMbOB1VvcJAHjYvDM1Pt7zuGS91b0rVlzt\n6mjeg90XX3yxa9eub775ZoV7f3M5XCMWoOzZfQLUBu9hApDNO1PpigtY3oPdQw899P333w8d\nOjQyMrJOnWqde4eAwFZcBAjewwQmG55mUhpdcQHLe1Dbs2fPkiVL/vu//9uAamAn9uw+AWqM\n9zAA7MP75okGDRp07tzZgFJgJ2zFReDgPQwq07u3XK7iI+DsLDZWJ05o3DiFhWnCBEnKytKp\nU3r4Yb39tho00D336LPPil+cmiqXS6W765OT5XKJywoswnuwu+uuu9avX29AKbATtuIiQPAe\nBg6SliaXy3PUsKTUVCUlSaWOR1myRKGh+utf9YtfaP58/f3v6tlT//ynbrlFv/ylMjKKA1/J\nLbElgQ8W4X0p9qmnnkpISMjJybnrrrsiIiLK74rtUPp7BAHC5t0nQHXZvIMe8Kr08SgqdR3F\ntddK0pNPKjZWV1+t9HTt2qWEBEVF6YYbPLfExsXpm2+UlFTpqcjTpmnFCuXlKSqq+FRk+JX3\nYNesWTNJ77777sKFCyt8AbtiARtwrxmhpngPg8BQ/niUNm106FBx4Fu0SOnpuuUWffyxunUr\ne/9YZqbnVOTY2OJbaMePrzQFso3Dr7wHu+HDh4eEhFhnP6zL5Tp48ODXX3+dn58vqUmTJpGR\nka1atTK7LgAAzJeWprS0i0ZSU5WaetFIcrKSky8aKX88SoMG0s+Bzx3FwsKkSu4fq2zar8IU\n2LPnpf0JUSXvcS09Pd2AOqrj+PHjTz755Kuvvvrdd9+Veap169bJycmTJ0++/PLLTanNZEzG\nAAAuQflZtMsuky4OfOVHypyHV+GpyCU4FdkYNZiH++GHH/bv319YWNioUaOOHTs2bdrUf2WV\nl5OT06tXr4MHD0ZGRsbFxV177bUNGjSQdPLkyaysrA8++GDGjBmrVq1677333GvHAADgEtXo\nPDxORbaCagW7bdu2TZ48+dNPPy0ZCQoKuu222+bNm2fYSSjTp08/cuTI8uXLExISyj97/vz5\nxYsXT5w4cebMmfPmzTOmJACAk7EYUkOcimwF3oNdRkZG3759z50717t3744dO15++eWFhYVf\nfvnlli1bevXqlZGR0dE9u+pnb7311qhRoypMdZKCg4MnTJjw4Ycfrl69mmAHAAACk/dg98QT\nT1x99dXvvPPOddddV3p8586d/fv3nzlzpjFNeMeOHWvfvn3Vr+nUqdOaNWsMKAYAAMCCvB9Q\n/PHHH0+YMKFMqpMUHR09YcKELVu2+KewssLDw3fv3l31a3bu3BkeHm5MPQAAAFbjPdjl5eW1\nbNmywqfatGnz448/+rqkig0ePHjFihVPP/302bNnyz9bWFiYkpKydu3axMREY+qBH+/SSU9X\ny5aqU0dTpvj+kwMASqnwOgqXq/hwEzf3pWFcL2oL3oNd8+bN9+3bV+FTX375ZfPmzX1dUsVS\nU1Ojo6OnTJly9dVX9+3b97777nvooYcmTpx47733/vrXv27evPnjjz8eGxv72GOPGVNPwDEs\nbOXlKTlZBQWaNUv9+vn3awHV4ZT7QBGwRoxQUJDnNtj69dW9u/fLwSoLfNwSa3Uub+69996G\nDRu+8cYbFy5cKBm8cOHC6tWrGzRokJyc7PUz+MrZs2efffbZm2++OTg4uPQfoW7dut27d//r\nX/967tw5f3zdF154QVJ+fr4/Prk9nDjhuvxyV5MmrtmzXe+849+vlZnpklwTJvj3qxjj7393\nRUS4goNdkyebXQoA6xo+3CW5jh933X+/q3lz1+WXu375S9enn7oKC12//70rPNzVoIGrRw/X\njh21/PxJSS7J1beva+ZM12efuZYudYWGulq3dt15p+vRR13bt7tWrnQ1beoKC3MVFfn0D+Zc\n7sXDjz76yOxCKuB9xi4lJaV+/fqDBw8ODw/v06fPwIED+/TpEx4eHh8f37hx45SUFD8lzvJC\nQkImTZq0c+fOgoKCr776aseOHTt27Ni/f39BQcEnn3wyduzYMoEPPrN/v06f1siRmjpVffv6\n92udOSNJjRr596sYgKlHANVTch9XRIQ2btSiRdq9WwkJSkxUaKjWrdOyZdq3T3FxtTwErvS1\nENHRSkrSwIE6fFihoZozRzExGjJESUnKzVVmZqWfpHbTfpf+sagp78GuTZs227dvT0pKOn36\n9JYtW958880tW7YUFRUlJyfv2LGjsvY7vwoNDY2MjOzSpUuXLl06dOgQ4v43Af8xLGz176/Y\nWEmaO1dBQRo/3u9f0X+MTMMA7MwnwcurS7wWonT67NJFp09r1y716aMrrtCCBbriCk2fri+/\nVGyswsPLBjV/J1eU5j3YSWrVqtXSpUuPHz/+7bff7t+/Pycn59ixY0uWLLnmmmv8XR/MZ2TY\nSknR7NmSFB+vNWv0wAN+/Fr+5pipRwCG8Pd9XJd4LUTp9OneV9G0qQoKFBurtDQdOKCFC3XF\nFTp1Sk8+WTaoGZNc4eblHLvvvvsuKyurR48ekoKCgkqS3IIFC0aOHGnwrWJVy8rKGjdunKR3\n3323Rh+4d+/eM+7fwZU4fPjwJVVmdykpuvVWTZum+HiNGqW2bf34tXr00PnzkhQZqcGD/fiF\n/K1/f23aJElz52ruXI0bpxdeMLsmAJbm7/u4fHIthDt9ustr2VK5uUpK0n//tzZs0PLlio6W\npMaNNWSItm7V/PnKzFTPnhd9rBs3yfpPVcHuww8/HDRo0C233PLOO++UHt+zZ8/EiRP//Oc/\nf/jhh+3atfNzhdWVn5+/efPmmn5UVlbWjTfe6KrGpTHVeY09pKfrkUd09KgmTdJTT3l/vWPC\nlpGMTMMAHMEW93GVzprXX68dO4pH3EGtSxft3FmcPssHNW6SNUalwS4nJ2fIkCEFBQW33XZb\nmaduvPHG55577uGHH+7fv/+ePXtCQ0P9XGS1XHfddZ9//nlNP6p9+/Z5eXnnzp2r4jVLly79\nwx/+EBQUdAnVWYa7oz8kRLNmqWtXs6txLtIwACcqnTUbN/aMuINa6WW88kHNFsnVASoNdkuW\nLPnhhx+WLFmSnJxc5qmgoKCHHnro/PnzkyZNWrZsmXsB1HShoaGda3V4YiNvXVD169evVUWW\n5O7ov+8+TZ1qdilGqekMJQCgGi4r16Vfx/s1pfC7SjdPrF27tn379qNHj67sBRMnTmzZsuXS\npUv9UlflXC7X119//e67765Zs2bNmjVbtmz55ptvDK7BxgKto58zRwCTcMIFJP3lLwoKUlGR\nJHXv7vk2cM/k3XUX3wa+V2mwO3z48C9/+cvLygfyn9WpU6d79+579+71T2EVOH78+OTJk1u0\naNG+ffvbb789Pj4+Pj6+T58+rVu3vvbaa2fNmnX69GnDirElJx0mUk2cOQKYhBMuoJ/n8NwN\n8C+95Pk2WLlSkubM8XwbuLtXcOkqnTY9efLklVdeWfUHX3nllRXe3OoPOTk5vXr1OnjwYGRk\nZFxc3LXXXtugQQNJJ0+ezMrK+uCDD2bMmLFq1ar33nuvWbNmxpRkPwHY0R9oM5SAZZQ+4UJS\ndHTxxslu3YqvZ4uJqWDjJPwhLU1paReNpKYqNfWikeRklWu88gH3vQFNmujbb3X99erQofjb\n4PrrJaljR/XuXfxtkJ3t+68emCoNdldeeaXXYz6++uqrq6++2tclVWz69OlHjhxZvnx5QkJC\n+WfPnz+/ePHiiRMnzpw5c968ecaUZD+B1tHPmSOA2TjhojpMDF7GaNNGJXfOu78NOnbUl18W\nj7i/DfLyzKjMiSpdae3atevmzZuPHTtW2QsOHDiwdevW7t27+6ewst56661Ro0ZVmOokBQcH\nT5gwYejQoatXrzamHtiAk447BuyJEy4cIy1NLpc6dPCM/O53crnUu7dn5M475XJp2LCyH/vM\nM56PdX8bPPSQ52Pd3wb/9V8VfyxqqtJgN2rUqIKCgrFjx1Z4FMjJkydHjhx57ty5e++914/V\nlXLs2LH27dtX/ZpOnTrl5uYaUw/8pXdvuVzFSzWXqEeP4p5C9wzlTTf54HMCqAlOuHCk8iEv\nNbVsyEtOlssl91m3fBsYqdJgN2TIkL59+65Zs6Z79+5r1qzJz893j3///fcvvvhiVFRURkbG\nXXfddeeddxpTaHh4+O7du6t+zc6dO8PDw42pJ7D4MGwBAAC/qTTYBQUFrVix4o477tixY0d8\nfHyTJk2aNWvWuHHj5s2bJycnHzp0KDEx8e9//7thhQ4ePHjFihVPP/10hds1CgsLU1JS1q5d\nm5iYaFhJxklPV8uWqlNHU6b44GUwBmkYAGC4qg4TbNq06YYNG95+++1XX331008/zc3Nveyy\nyzp27NizZ8/77rsv1r3IZZTU1NStW7dOmTLl8ccf79atW6tWrRo2bOhyuQoKCg4dOpSRkXHq\n1KnY2NjHHnvMyKqMUM27IrhSAgBsZcQIvfaajh/Xo4/qjTeUn6+oKD33nDp31rRpWrFCeXmK\nitLzz6tLF7NrhX14PyX6jjvuuOOOOwwopWpNmzb95JNPFixY8Morr7z//vvnS514U7du3ZiY\nmNGjR48ePTrYvbXaSap5V0T5l3HjAgBYWMlRf7Gx2rhRe/Zo/HglJCgqSjfcoHXrlJ2t5GTF\nxembb2hKQ3VVuhRrQSEhIZMmTdq5c2dBQcFXX321Y8eOHTt27N+/v6Cg4JNPPhk7dqwDU52q\nfRJbmZdx4wIAWFvpo/6io5WUpIEDdfiwQkM1Z45iYjRkiJKSlJurzEyza7UqLjgpz07BrkRo\naGhkZGSXLl26dOnSoUOHEPe7Hkeq5l0R5V/GjQsATFX9jZMBfsJFFUf9jRih+fMlKTXVrqnF\n398GXHBSni2DXQCp5kls5V9W2TwfHf0AYCVVHPVXMmvRpIlFU4vpE2bMepZHsLO2ap7EVuZl\njz4acHfCAoA9VXHGW52f2+CHDLFoarHIhBkXnJTmffME7CcA74StjHuGEgAcwWqpxSI3AnPB\nSWnM2DmRk25c4HA+APiZNVOL6RNm3GxRWsUzdkeOHKn+p2jZsqWPigEuxuF8AFBOFanFlLPx\nmDCzlIqDXatWrar/KVwsdcFPqnmGHwBAkh/Oxqs6Kb72miSNHKm0tIuSYiBPmJmu4mDnzIu5\nYDvVPMMPACDJD01vVSfF22/X2rXKyuIUZQupONi9/vrr1fngwsLC/Px8n9YD/Kx/f23aJElz\n52ruXI0bpxdeMLsmAPCZtDSlpV00kpqq1NSyL9u//6Jz4KrDh01vVSfF5GRJuusuLVvm3+0R\nqL5L2jyxdu3aLtxgBz+p5hl+AICL+bzpreqk2K6d5C0pDh/O/RAGqdZxJz/88MPrr7+enZ19\n7ty5ksEzZ86sX7++oKDAb7UhsPXoIfeNwO69vQCA6vH5LtGqk6J7xGtSTEhQbq6++04LF+qh\nh4qn98LC9Oc/q04djR6trl11+eU129tR4aznV18pNvaivsBf/lLt2unUKT/uILEO78EuOzu7\nW7du33//fQUfXKfO9OnT/VAVSqnmSWwc2AYAzlKdtdrk5OL1UL/ySVKMjFREhD7/XKtXq1Mn\nffGFunbV559r+nRFRenGG7V9u6ZN01NPXWrHns93kNiL96XYxx577MyZM88///zmzZslpaWl\nbdy48U9/+lNERMT69etnuFfdgWriXDoAcAr3VbDNm3tGKrwKdswYSYqP93TsuVdyf/c7z10a\no0dLUseOPrhLI8DvGfM+Y7d169YHH3zwwQcfPHPmjKQbbrihe/fu/fr1S0xM7NOnz7p163r1\n6uX/OlFD1pzA41w6AAhUJau38fHatq14pKRjz30Kwk8/+exAY9OPTTaL9xm7nJycdu3aSbrs\nssskFRUVucdvvvnmBx98MCUlxa/1wVHc59KNHKmpU9W3r9nVAACMU7LoWZLw6tb144HGAXts\nsvdg16hRo9zcXEkhISENGzb8+uuvS566/vrrt2/f7sfq4DCcSwcAAc+YG8AC9p4x78EuNjb2\nhRdeeP/99yXdeOONCxYsKNkJu2XLlnr16vm1PjhH//7FN9jOnaugII0fb3ZBAOA07qa30ufe\nVdj05nJp2DDjq7skI0YoKIgzU7zzHuymTZt27NixyZMnSxo7duz27duvv/76+Pj46OjoJUuW\n3H777f4vEnZT4Q4JzqUDAAtzJ6e771ZQkJo3V926CgnR3/6mrl312GMKD1dIiOrV0//7f+rR\nQ/Xrez7QmKRYstc1IkIbN2rRIu3erYQEJSYqNFTr1mnZMu3bp7g4Xbjg30osznuw69at27Zt\n28aMGSPp3nvvnTp16g8//LBmzZrdu3cPHDhw3rx5/i8StuLeIVFQoFmz1K+fZ7xHj+IZO/e5\ndDfdZFaBjsWOYwCXwJ2cPv5Yktq1029/q6AgNWyoHTv09tvq0EEDBqhePdWrV5yfDG5Qq/5e\n14rOZwsg1bp5IiYm5oEHHpAUFBQ0e/bsH3/88eDBg4WFhWvXrr3qqqv8XCHsxoc7JNx7e90X\nHKJqleVpAKged3Jq2lSSunTR6tUaPFjHjik8XCdPKjtbb7yhkSN14oTOnFFurm6+2YSV0Ors\ndT192r81WFwNrhTLycnZuXPne++999VXXzVo0ODyyy/3X1mwMXZImIIdxwB8oU0b6ef85E5O\nMTGe8fffl6S4OEnav7/ildDyM3k+7Pyrzl5XlmK9W7JkSdu2bcPDw7t06XLbbbfddNNNzZs3\n79Sp0+uvv+7v+mAz7JAwC3kagC+4m+fcaan0HJ77p0uLFpLkXquLianxGsAbogAAIABJREFU\nqb+XnvCqs9f1/vsdu4OkOrwfULxo0aIJEybUq1evb9++ERERDRo0yMvL279/f2Zm5vDhw4uK\niu655x4DCoU9pKTo1ls1bZri4zVqlNq2NbugwNC/vzZtkqS5czV3rsaN0wsvmF0TAFu67DLp\n4rTkHnH/b5cuxZN2kq65RgqYU39txHuwmzdvXr9+/f7xj380adKk9PjBgwd/85vfzJ07l2AH\njx49dP689PMOCRiDPA3AEO7ZOzd31AuQU39txHuwy87Ofumll8qkOklt27adNGnSH/7wB/8U\nBqDayNMADBEcXHYkQE79tRHvPXZNmjQJLv//pCQpODiYXbEAAAAW4T3Y/fa3v33zzTcrfGr9\n+vUJCQm+LgkAACfjEgX4j/el2CeeeGLw4MHZ2dnDhg2LjIysX79+YWHhl19++dJLLxUVFT34\n4INHjhwpeXHLli39WS1szn0uHQAEtpJLFGJjtXGj9uzR+PFKSFBUlG64QevWKTtbycmKi9M3\n37DWWSwtTWlpF42kpio19aKR5GQlJxtYkyV5D3bh4eGSMjIy0tPTyz8b6T7l5mcufm0DAFCl\n0pcoSIqO1oYNWr5c3boVn8geE6OtWzV/vjIz1bOnQVVVkZxeeqk4MA0dqi++0F//quPHi0/M\n7NtXN9+s555T585yn4F277167jk9/7y6dDGocpTmPdgNHjy4Xr16BpQCAEDgqM4lChY8OqRk\nutF9st0f/6hnny2ebnRPLk6YoJdfZrrRNN6D3Zo1awyoAwCAgFKdSxSsc3RIyXxeyXTjwoXF\nTx04UDzduGJF8ciFC0ZPN6JExcHu6NGj9erVa9asmftx1Z+ihfsgagSg9HQ98oiOHtWkSXrq\nKbOrAQA7qc4lCpZl0+nGQFBxsLvmmmv69eu3ceNG9+OqPwV9dQHKfet8SIhmzVLXrp5xdkgA\ngNPZa7oxoFQc7BITE2+++eaSxwbWA/tw3zp/332aOtXsUkCeBmAoW083OlvFwe51986Wco8B\nD26dBwDAYrwfUOy2d+/eH374ofR/7ty50z8lwQ7691dsrCTNnaugII0fb3ZB8IP0dLVsqTp1\nNGWK2aUAAKrFe7D76aefxowZ07lz5y+++KJk8L333uvSpct999133n1DJQJNSopmz5ak+Hit\nWaMHHjC7IGMFQuJx91AWFGjWLPXrZ3Y1AIBq8R7s/vKXv7z00ksDBgy49tprSwZvv/32xMTE\npUuXPv/88/4sD1bVo0fxjJ371vmbbjK7IAMFSOJx91COHKmpU4vPIQXgI2lpcrnUoYNnJDVV\nLpd69/aMJCfL5dKwYcZXB3vzHuyWLl165513rl+/vm3btiWDHTt2fP311+Pi4gh2CDgBkngC\nrYcyEGZhAQQA78HuwIEDv/71ryt86le/+tWhQ4d8XRJgbYGQeAzoobRUkAqQWVjAF5hutDjv\nwa5x48bZ2dkVPpWdnX3FFVf4uCLAygJk14i/eyitFqQCZBYWQADwfqXYgAEDXnzxxf79+8fF\nxZUM/vTTT0uXLv3rX/86fPhwf5YHWExKim69VdOmKT5eo0apVH+Co/ToIfe+KHcPpc9Z7RDE\nQJiFBRAYvAe7J5544u233x4wYEDr1q07duxYr169EydOfPnllz/++OM111zzxBNPGFAlYBX+\nTjwBwlJBqn9/bdokSXPnau5cjRunF14wuyYAqCXvS7HXXHPNzp07x48fX1hY+M4776xfv37b\ntm3BwcFjx47NzMxs3bq1AVUCcA6rLWcH+Nk9QCkjRigoSCdOaNw4hYWpfn11766MDJ06pYcf\nVkSEGjZUz5767DOzC0XlvM/YSQoLC1u0aNHChQtzcnJOnz7dokWLBg0a+LsyAM5kteVsZmGB\nn4WESFJCgmJjtXGj9uzR+PFKSFBUlG64QevWKTtbycmKi9M333CHmEVVK9i5BQUFhYeH+68U\nAAGBIAVYVZ06khQZqRkzJCk6Whs2aPlydeumOXMkKSZGW7dq/nxlZqpnTzNLRWW8BzuXy7Vy\n5cpXXnnlyJEjP/30U/kXlL6RAgGEW+cBwIni4z2PIyMladAgz0jHjpKUk2NsTag278HumWee\nmTJliqT69evXZeIVAABHi4jwPHbP4ZUecQeBiuZ5YAneN0/Mnz+/X79+WVlZhYWFJypiQJUA\nAMB/3NsmiookKTbWs23CHeCGDmXbhG14D3a5ubkzZ85s166dAdUAl8pS9xkAgE24t01s3ixJ\nL72kRYu0e7cSErRypSTNmaNly7Rvn+LiiltkrSzA9/Z6D3ZhYWEuWqnglRUSldXuM7A1dw+l\nu18agNO5l1ybNJGk669XUpIGDtThw8XjHTtqyBAlJSk3V5XcReV7tc5nJXt7IyK0caMnpCYm\nKjRU69Z5QqojF5S9B7vhw4e/+uqrBpQCG/NToqppWDTmYigSDwCHatPG89i9bcK9VcLN/Tgv\nz6Biap3PSu/tjY72hNTQUM2Zo5gYT0jNzDToz2Ik75snZsyYcffdd48cOfKee+5p3bp1+f0T\nHUpfBYzA5I8botxhMSREs2apa9dqfYil7jMAALupX9/z2B2PGjf2jLh//xu2FHuJZ68E7N5e\n78Gu0c+/JtPT0yt8AQu18EuiqmlY5GIo1NqlnN2Tnq5HHtHRo5o0SU895dOyAKNdVm4Zr/yI\nwWqdzwJ2b6/3YDd8+PCQkJA6dWpwlDECi58SVU3DotXuM0AVHHMIYi3mlQELmz1by5dfNDJ6\ntF566aKRX/9aixcbV1Kt81n589kC5MQ273Gtsok6oJg/ElUtwiL3GcB4/mhCAFBKwOazWqs4\n2B09erRevXrNmjVzP676U7Ro0cL3dcFG/JGomH6DLdDWCcBiKg5211xzTb9+/TZu3Oh+XPWn\noMcOvsf0G6yPtk4A1lNxsEtMTLz55ptLHhtYDwIGLeewO+aVAVhPxcHu9ddfr/Ax4Bu0nMMB\nmFeGg6SlKS3topHUVKWmXjSSnKzkZANrQq1438e8bt26vXv3GlAKAkjVJwm7zyW+9VYzKgMA\n2FtamlwulT5jNzVVLpd69/aMJCfL5dKwYcZX53feg11iYuL69esNKAUBpIqW85JLLHhjCAAB\nLMDzWa15D3a9e/f+4IMPLly4YEA1CAj9+ys2VpLmzlVQkMaPv+jZksm8UaMkaeFCk++fBQDA\nPryfY/e3v/1t0qRJAwYMuOeee37xi180cV8RXApXiqFmqm45L5nMKyyUpKL/3969B0RV5n8c\n/47AAIqCd0PxQmKarJaSGyo/zCzNSpEySSPD2BUsU3ZlCzfFy2q42j0tatctrcxMrTYzy1LT\nyig111tFeMMENRIVERCc3x+nJkIYhtucc555v/5izhzOfGeAmQ/f5znPKWEeHgAATqo+2NmX\nqdNWP7kcy52gZhxMOa+wfoSIXH11DZZ+VeZ6BgAA1Er1wW7MmDFWq9XLy8tisbigIJhSfSWq\n8s28Vq3kxRfF27seDgsAgHuoPtix3Alcx97M27VLDh0SEdm+XSwWln4FAMAZ1Zw8UVxcnJGR\nsXnz5movLAbUpwEDZP58EZHoaFm7VhIT9S6o4WmLvHCmCACgDhx17F555ZWpU6fm5+eLiMVi\niYmJSU9Pb8pVEeEC7dv/cuasmyz9yorNJsW0TgAGU2Ww+/TTT+Pi4jw8PIYOHdqyZcvt27ev\nWLHiwoULa9eudWV9gFvQFnmJi6vBmSIAAFymymC3aNEii8XyySefREREiEhJSUlMTMzatWv3\n7t0bGhrqwgoBN+BgxWYAAJxW5Ry77du333zzzVqqExGr1Tpr1iwR+fTTT11TGVBLN98sFotY\nLHLFFXqX4hzHKzYDAOC0Kjt2eXl53bp1K79Fu5mXl9fgRQG1tn+/fPSRiEhIiGmuNut4xWYA\nAJxWZbC7dOmSr69v+S0+Pj4iUqatRgHURcNNOX/rLRGRFi3k++8b5PgNwcGKzQDc2euvy9/+\nJrm5kpQkCxfqXQ3Mofp17AAzOXNGRMTHR+86AKBuOFketUKwg8HYm3nbttX4e729paREROT4\ncbFYpHlz+fnnei4PAFyDk+VRK46C3bZt27QTJsrbvHlzhY2X7wPo4y9/kdWrJTNTfHxk+HAJ\nD9e7IACoLU6WR61YbFVMdXL+yrBVHUEZ6enpCQkJ586d8/Pz07sWVOevf5UnnpDAQPnxR71L\nqYlt2yQiQh5+WNLS9C4FgAEMGyYbNvx2k8sqGkxJSYm3t/dnn33Wv39/vWupqMqO3fLly11Z\nBwAA+AUny6O2qgx299xzjyvrAAAAv+BkedRWlQsUAwAAwFwIdgAAAIpguRPAABpuxWYAgDuh\nYwcAAKAIgh0AAIAiCHYAAACKINhBLY8/LjabyVYnBgCgnhDsAAAAFMFZsQAAGA8ny6NW6NgB\nxvD669Khg3h6SnKy3qUAAMyKjh1gAGfOSHy8WK0yd65cd53e1QAAzIqOHdyJYbtimZly4YKM\nGycpKTJkiN7VAADMio4d3IaRu2JFRSIiTZvqXQcAwNzo2MFtGLYrNmyYRESIiCxYIBaLJCTo\nXVBNGLYJCgBuiWAHt2HYrlhqqsyfLyISHS1r10piot4FOU1rghYUyNy5MnSo3tVABWPHisUi\n+fkycaK0bSuNG8v110tGhhQWytSp0r69+PlJ//6yc6fehQJGRbCDezByVyw8/JfaQkIkKkp6\n99a7IKcZtgkK07JaRURGj5b27eWDD+T552X3bhk9WsaMER8fefddeeUVOXBAhg+Xixf1rhUw\nJIId3IN5u2JGZtgmKEzL01NEJCREZs6Ua6+V8eNlxAg5elR8fCQtTfr2lTvukPHj5cQJ+eor\nvWsFDIlgB/dg3q6YYRm5CQqTi47+7euQEBGRkSN/23LVVSIiOTmurQkwCYIdgFqhCYoG0779\nb19rPbzyW7y8RIShWKByLHcCoFbCw6WsTOTXJihQf7To5ngLgErRsQMAwHhYSwi1Yu6OXUlJ\nye7duwsKCjp37tylSxe9ywEAoD4YeUF1GJtpOnb/+Mc/Nm3aVH5Lenp6u3bt+vXrN3jw4ODg\n4LCwsG+++Uav8gAAqDesJYTaMk2wmzFjxoYNG+w3161bl5CQUFhYOGrUqIkTJw4YMGDHjh2D\nBg3KysrSsUiYwJIlDG0AMDrWEkJtmSbYVZCUlOTv779r1641a9a88MIL27ZtW7169dmzZ+fN\nm6d3aTCq8+dFREpKjHiZhIEDxWaTtDS96wBgAKwlhDowZbA7depUZmbmAw880KNHD/vG6Ojo\nkSNHfvjhhzoWBkPLzhYRufpqhjYAw/rXv8Rmk65df9sya5bYbDJw4G9b4uPFZpOYGNdX5yqs\nJYQ6MOXJE0VFRSJSPtVpQkND161bp0dFMIPu3UVEbr5Z7zoAwCHWEkIdmLJjFxgY6O/vf+zY\nsQrbjx8/3pQZCWbkgrP6GdpApVhRAoBazNSxO3r06Ndffx0QEBAQEDBp0qR///vfDz30UOPG\njbV7v/3225UrVw4ePFjfIlFjrjmrPzVVIiNl+nSJjpbYWGFxnHqhTQ00L1aUAKAcMwW7FStW\nrFixovyW9evX33HHHSLy+uuv//nPf75w4cKMGTN0qg61pZ3VHxcnKSkN+CgMbeByrvndA4zm\n9dflb3+T3FxJSpKFC/WuBvXMNMHuP//5T345Z86cyc/Pb968uXZvfn5+QEDAG2+8cR3/dpsO\nZ/VDL/zuwQ3RqFadaYLdfffd5+Dee++9NyEhoVEjU04ZdGvDhom2POGCBbJggUycKC+8oHdN\ncA/87sE90ahWnSJJyM/Pj1RnSpzVD43rT2Lgdw/uiUa16kzTsYOamPoG0WlsiN89uCEa1W5A\nnWCXlZU1ceJEEdm4caPetQCoCcaGANdgfQA3oE6wO3fu3Mcff6x3FQBqjrEhoIIGWkuIRrUb\nUGdeWvfu3ffs2bNnzx69CwFQE6wdDQD1R52OnY+PT2hoaE2/q6ys7P3339euUVaVHTt21KEu\nAA4xNgQA9cd8wc5msx06dOjgwYPnzp0TEX9//5CQkKCgoNodLTs7+09/+lNJSYmDfYqLi7XH\nrd1DwCjMfpkEVTE2BAD1x0zB7vTp0/PmzVu+fPnJkycr3NWxY8f4+Php06b5+vrW6JidO3fO\nzc11vE96enpCQoLFYqlZuYAaWKQeAMzDNMEuJydnwIABhw4dCgkJGT58eKdOnZo0aSIiZ8+e\nzcrK2rJly8yZM1evXr1p0yb75SgA1BWL1AOAqZgm2M2YMePYsWNvvvnm6NGjL7+3rKwsPT39\nwQcfnD179lNPPeX68mBK9KKqxUIkcCu8J8D8THNW7Lp162JjYytNdSLi4eExadKku+66a82a\nNS4uDHWlTX1LS3P142q9qIICmTtXhg51xSO6/uIKdaf2QiR6/e7BmFz/ngA0ANMEu7y8vCuv\nvNLxPj169Dhx4oRr6oHpab2oceMkJUWGDGnwhzPjZwYLkcCtuPg9AWgYphmKDQwM3L17t+N9\ndu3aFRgY6Jp6YHou7kWZcUyThUjgVtTuT9uxPoDqTNOxi4qKWrVq1aJFi7TFRyo4f/58amrq\nO++8M2bMGNfXBvNxfS/KjJ8Z4eG/vEraQiS9e+tdENBg6E9DFabp2M2aNWvr1q3Jyclz5szp\n169fUFCQn5+fzWYrKCg4cuRIRkZGYWFhRETEo48+qnelMAMX96K48DZgcPSnoQrTBLuAgIAv\nvvhi8eLFy5Yt27x5c5m2oqmIiHh5efXt23fChAkTJkzw8PDQsUiYhosXxa3pZ4a7nZrH2BB0\nx0LZUIVpgp2IWK3WpKSkpKSkoqKi7Oxs7coTzZo169ixo9Vq1bs6oGo1+sxg6TgAQG2ZKdjZ\n+fj4hISE6F0F0DDMeJoFAMAYTHPyRKUWLVo0cOBAvasA6pUZT7MAABiDuYPdDz/88Nlnn+ld\nBVB/ODUPgOmYcfV1dZlyKBZQFqfmATAXpgUbjLk7doD5OP7XlqXjAJgLV+wwGIId4ELFxYa+\nsNjloZOrqQJwjGnBBmPuYJeWlpadna13FYDTTp827r+2ZryaLQB9MS3YeMw9xy4gICAgIEDv\nKmBOuiyKW1oq4vJ/bZ1c7phlVuDmWCi7FpgWbDzm7tjBHZn09KuBA2XoUHntNRHX/mvrfB+O\n8RQANcW0YOMh2MFUTD1cmJoq8+eLiERHy9q1kpjoigd1cl4z4ykAoARzD8XC7Zh6uFCXi1E6\n2YdjPAUAlEDHDqbCcGGNON+HYzwFAJRAsIN5MFxYU7oM/gIA9EOwg3nUOqaY63yLelw6jj4c\nAEMx17uxOTHHDuZRuzlqXO4GAIyAd2OXINhBdaY+3wIAlMG7sUswFAvVcb4FABgB78YuQbCD\n0jjfAgAalJPTgnk3dhWCHZTGaaFQA1POYXa8G7sKc+ygNF3WBHaAi1GiFphyDgUY7d1YXQQ7\nACJC6DQwppwDcBpDsQBgbEw5B+A0gh2gB5dNmarH5Y6hC6acA6gJhmJhKmoMFzJlCs5LTZXI\nSJk+XaKjJTZWunTRuyAAhkbHDnA5bcrUuHGSkiJDhuhdDYyN68IBnBVeE3TsAJdjyhQAOIkh\njhqiYwe4FlOmAMB5DHHUEMEOcC1TrNLJwAcAg2CIo4YYioXqjHa+hfFX6WTgA0BDqMW78bBh\nsmGDiMiCBbJggUycKC+80BClqYSOHWAMxmmSMfABwCBMMcRhMHTsAAMwVJOMgQ8ABmH8IQ7j\noWMHGIBxmmSc2wEAZkawAwzAOE0yBj4AmI5xprIYAEOxgN4MNTuYgQ8DMtoJQIChGGoqiwHQ\nsQP0pnyTjH+mATQc40xlMQY6doDe1G6S8c80gAZlnKksxkDHDkBD4p9pAA2H870uQ7ADXE6b\nMpWW5qKH03cklH+mATQc5aey1BzBDlCaNhJaUCBz58rQoa5+dP6ZBtCgwsN/eZPRprL07q13\nQfpjjh2gNG0kNC5OUlJ0ePTUVImMlOnTJTpaYmOlSxcdagBgapwVXkMEO0Bp+o6Eqn1eCAAY\nD0OxgLoYCQUAN0PHDlBX7UZCGfgAANMi2AHqYiQUANwMwQ4wAJpkAID6wBw7AAAARRDsAAAA\nFMFQLAAAMC2msvweHTsAAABFEOwAVeh7TdiquPjCuADg3hiKBZSgXRPWapW5c+W66/SuBgCg\nD4IdoAR9rwkLADAGgh2ghKquCcu0YgBwJ8yxA8yPa8ICAESEYAeoIDVV5s8XEYmOlrVrJTFR\n74IAAPpgKBYwP64JCwAQETp2gBsx5noo7omfBYCGQccOcA+sh2Ic/CwANBiCHeAeWA/FOPhZ\nAGgwDMUC7qGq9VDgevwsADQYgh3gBlywHgqTxpzE2jQAGhJDsYAbSE2VyEiZPl2ioyU2Vrp0\nqefjM2nMeQ39swDg3gh2gBto6PVQmDTmPNamAdCQGIoFUGdMGgMAYyDYAWZT6Ww27ZqwaWk6\n1MOkMQAwDIZiAVMx4Gw2Jo0BgGEQ7ABTMeBsNiaNAYBhMBQLmAqz2QAAVSPYAebBbDa4HisU\nAqbCUCxgHsxmg4sZcE4nAIcIdoB5MJsNLmbAOZ0AHCLYAe5BWw8FRmCinwVzOgGzYY4d4Bxm\nGsHdMKcTMCE6doATmGkEN8ScTsCECHaAE5hpBDfEnE7AhAh2gBOYaeSYiSaNAYDSmGMHVIeZ\nRgAAkyDYAdVJTZX580VEoqNl7VpJTNS7IAAAKkewA6oTHv5Lx06badS7t94FoSY4nRmAO2GO\nHWAqzGarEU5nBuBm6NgBqG/GaZJppzOPGycpKTJkiM7FAEDDo2MHoF4ZqknG6cwA3AwdOwD1\nyjhNMk5nBuB+6NgBqFfGaZJx4YS6Y04nYDZ07ADUH0M1yTidGYD7IdgBqD+s+QcAumIoFkD9\n4eqiAKArOnaAE7SZRmlpetehCuOshwIAaqFjB8C1DLUeCgCohWAHwLW09VDi4iQlRe9SAEA1\nDMUCZmbGMU3jrIcCAMoh2AGmpY1pFhTI3LkydKje1TjHUOuhAIByGIoFTMuMY5osGgwADYlg\nB5iWGcc0XbweChdOAOBmGIoFzIkxTQDAZejYAeZk2DFNmmQAoB+CHWBOXOMBAHAZhmIBAAAU\nQbADFGXGJe4AAHXDUCygIi7bBQBuiWAHqMiMS9wBAOqMoVhARWZc4g4AUGcEO0A5Bl/iTlsP\nJS1N7zoAQEEEO0A5qakyf76ISHS0rF0riYl6FwQAcBHzzbGz2WyHDh06ePDguXPnRMTf3z8k\nJCQoKEjvugDDYIk7AHBXZgp2p0+fnjdv3vLly0+ePFnhro4dO8bHx0+bNs3X11eX2gAdcI0H\nAMDvmSbY5eTkDBgw4NChQyEhIcOHD+/UqVOTJk1E5OzZs1lZWVu2bJk5c+bq1as3bdrUvHlz\nvYsFAADQgWmC3YwZM44dO/bmm2+OHj368nvLysrS09MffPDB2bNnP/XUU64vDwAAQHemOXli\n3bp1sbGxlaY6EfHw8Jg0adJdd921Zs0aFxcGAABgEKYJdnl5eVdeeaXjfXr06HHixAnX1AMA\nAGA0pgl2gYGBu3fvdrzPrl27AgMDXVMPAACA0Zgm2EVFRa1atWrRokXFxcWX33v+/PnU1NR3\n3nlnzJgxrq8NAADACExz8sSsWbO2bt2anJw8Z86cfv36BQUF+fn52Wy2goKCI0eOZGRkFBYW\nRkREPProo3pXCgAAoA/TBLuAgIAvvvhi8eLFy5Yt27x5c5m2/qqIiHh5efXt23fChAkTJkzw\n8PDQsUjAKFjiDgDckmmCnYhYrdakpKSkpKSioqLs7GztyhPNmjXr2LGj1WrVuzoAAACdmSnY\n2fn4+ISEhOhdBQAAgLGY5uQJAAAAOKZOsMvKyhoyZMiQIUP0LgQATOX116VDB/H0lORkvUsB\nUFemHIqt1Llz5z7++GO9qwAAUzlzRuLjxWqVuXPluuv0rgZAXakT7Lp3775nzx69qwAAU8nM\nlAsXJC5OUlL0LgVAPVAn2Pn4+ISGhtb0u4qKitLT04uKihzs8+WXX9ahLgAwMO3dr2lTvesA\nUD/UCXYikpeXd/r06a5duzr/LT///PPKlStLSkoc7JOfny8inp5KvVYAIMOGyYYNIiILFsiC\nBTJxorzwgt41AagTpcLKwoULFyxYYKvJuqyBgYGff/65430+//zzAQMGNGqkzokmACAikpoq\nkZEyfbpER0tsrHTpondBAOpKqWAHAKiB8HDRruITEiJRUXpXA6Ae0IUCAABQhGk6dmFhYdXu\n8+OPP7qgEgAAAGMyTbDbtWuXiHh5eTnYp7S01FXlAAAAGI5phmKTk5ObNGmyd+/eoqpNmzZN\n7zIBVIZrGwCAS5gm2M2dO7dr16533333xYsX9a4FQE1o1zYoKJC5c2XoUL2rAQCVmSbYeXl5\nvfbaa/v27Zs+fbretQCoTFVtOe3aBuPGSUqKcDVnAGhIppljJyI9evTIzc11MJHulltuCQgI\ncGVJAH7h4JKjXNsAAFzFNB07TbNmzVq0aFHVvZGRkY888ogr6wHwi6racsOGSUSEiMiCBWKx\nSEKCXgUCgDswU8cOgHFV1Zbj2gYGN3Cg1ORqPQAMzmQduwoWLVo0cOBAvasA3J6Dtlx4+C93\nadc26N1bnwoBwD2YO9j98MMPn332md5VAG4vNVXmzxcRiY6WtWslMVHvggDATTEUC6DOuOQo\nABiDuTt2AAAAsCPYAQAAKMLcwS4tLS07O1vvKgAAAAzB3HPsAgICWJEYAABAY+6OHQAAAOwI\ndgAAAIow91AsABPg2gYA4Cp07AAAABRBxw5AfaAtBwAGQMcOAABAEQQ7AAAARRDsAAAAFEGw\nAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsAAABFEOwAAAAUQbADAABQ\nBMEOAABAEQQ7AAAARXjqXYAJWK1WEfH29ta7EAAAYBRaPDAai81xeILFAAASPElEQVRm07sG\nE9i9e3dpaaneVYiI/PDDDzExMc8//7yfn5/etaBOPvroo48//jgtLU3vQlBXixcvbtKkyX33\n3ad3IairyZMnjx07Njw8XO9CUCe5ubnJycnvv/9+mzZtGu5RPD09e/fu3XDHrzWCncns2bOn\nV69eP/30U8uWLfWuBXWyePHi559/fu/evXoXgrqKiYlp0aLFkiVL9C4EdRUYGPj444/ffffd\neheCOsnMzOzWrduxY8fat2+vdy06YI4dAACAIgh2AAAAiiDYAQAAKIJgBwAAoAiCHQAAgCII\ndgAAAIog2AEAACiCYAcAAKAIgh0AAIAiCHYmY7VaLRaLl5eX3oWgrqxWqzGvM4ia4kepDH6U\natB+iG77o+SSYuZz8ODB4OBgvatAXRUXF586dapDhw56F4K6ysvL8/T09Pf317sQ1NXRo0cD\nAwM9PT31LgR15c4flAQ7AAAARTAUCwAAoAiCHQAAgCIIdgAAAIog2AEAACiCYAcAAKAIgh0A\nAIAiCHYAAACKINgBAAAogmAHAACgCIIdAACAIgh2AAAAiiDYAQAAKIJgBwAAoAiCHQAAgCII\ndgAAAIog2JnP6dOnp02b1qlTJ29v7y5dukRFRW3fvl3volBLFy9eTElJ8fDwCAsL07sW1Ex+\nfv7UqVM7d+5stVoDAwPj4+NzcnL0Lgq1xF+iGvh8FBGLzWbTuwbUwM8//9y3b9/Dhw/feuut\nffr0OXjw4MqVKz09PTMyMv7whz/oXR1q5sCBA/fcc09mZub58+evvfbar7/+Wu+K4KySkpLw\n8PCdO3fecccdffr0ycrKWr58eYcOHXbs2NG8eXO9q0PN8JeoBj4ff2GDqTzwwAMi8uyzz9q3\nrF69WkSGDx+uY1WohTNnzvj6+oaFhWVmZnp7e/ft21fvilADTzzxhIgsWLDAvmXlypUi8te/\n/lXHqlAL/CUqg89HDUOxJuPl5XXjjTdOnDjRvmXUqFG+vr779u3TsSrUQmlp6aRJkz7//POu\nXbvqXQtqbNmyZU2bNp0yZYp9y1133dW1a9fly5fbGAYxFf4SlcHno4ahWNMrLi5u2rRpv379\ntm3bpnctqCUfH5/Q0FAGgMyiqKjIz89v0KBBGzduLL89Li7u5ZdfzsrKCg4O1qs21AV/iYpx\nz89HOnaml56efvHixZiYGL0LAdxFdnZ2WVlZUFBQhe2dOnUSkYMHD+pRFICK3PPzkWBnblu2\nbElOTh44cGBCQoLetQDu4ty5cyLSpEmTCtv9/Pzs9wLQl9t+PnrqXQAql5+f/8gjj9hvdu3a\nddq0aRX2WbFiRVxcXGho6DvvvOPpyY/SoJz5UcKMLBZLhS3azJbLtwNwMXf+fHSvZ2siBQUF\n6enp9psDBgwonwZsNtusWbPmzJkzbNiwN998s2nTpnrUCKc4/lHCjJo1ayaVdebOnj0rIvw9\nAjri85FgZ1AdOnSo6rwWm80WHx+/dOnSyZMnP/nkkx4eHi6uDTXi4EcJk+rYsaOnp+eRI0cq\nbM/KyhKRkJAQPYoCwOejCHPszCgpKWnp0qXz589/5pln3PO3FtCX1Wrt27dvRkZGYWGhfeOl\nS5e2bNkSFBTUsWNHHWsD3Bmfj0KwM501a9Y8/fTTU6ZMSUlJ0bsWwH3df//9hYWFCxcutG95\n8cUXjx8/Hh8fr2NVgDvj81HDOnYm07Vr16ysrMmTJzdu3LjCXQ8//DDXMjKRLVu2rF+/Xvt6\n0aJFrVu3Hj9+vHYzOTm5ZcuW+pWG6pWVld1www1bt24dOXJknz59Dhw4sHLlytDQ0O3bt1/+\ntwkj4y9RGXw+agh2JuPghLtDhw517tzZhbWgTtLS0qr6tzIzM5NF8I2voKBg9uzZq1atOn78\neJs2baKioubMmdOiRQu960LN8JeoDD4fNQQ7AAAARTDHDgAAQBEEOwAAAEUQ7AAAABRBsAMA\nAFAEwQ4AAEARBDsAAABFEOwAAAAUQbADAABQBMEOAABAEQQ7AAAARRDsAAAAFEGwAwAAUATB\nDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsAAABFEOwAAAAUQbADAABQBMEOAABA\nEQQ7AAAARRDsAAAAFEGwAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsA\nAABFEOwAAAAUQbADAABQBMEOQF3FxMRYLJbc3FxDHcp+tGPHjtXL0QDA+Ah2AEREXn31Vcvv\neXh4tG3bNjo6etu2bY6/95prrhk6dKi3t3fdy6jHQznJZrO99dZbUVFRgYGB3t7ebdq0CQsL\nmzdv3okTJ1xWg5GlpaX98MMP1e528eLFlJQUDw+PsLAwF1QFoCoWm82mdw0A9Pfqq6/GxsYO\nGDBg4MCB2pYLFy589913H330kc1me/nll++99159K6yFmJiYlStXZmdnd+jQodId8vPzR48e\nvXHjxsaNG994442dOnXKy8vLyMjIyspq3br16tWrIyIiXFyzoeTk5AQGBq5fv37YsGEOdjtw\n4MA999yTmZl5/vz5a6+99uuvv3ZZhQAq8NS7AAAGMmTIkFmzZpXfsnXr1sGDB0+dOnXMmDGu\nbKS5xrhx4zZu3Dhy5MiXXnqpdevW2sZLly69+OKLDz744MiRI7/99ts2bdroW6SOvvrqq2r3\nOXv2bN++fXv27Llz587Q0FAXVAXAAYZiATgSERFx4403nj59evfu3fLrrLWTJ0/edNNNvr6+\n7777rvx+YtzYsWMtFktBQcHDDz/cuXNnb2/voKCgJ598svzgQG5ubnx8fPv27Zs0adK7d++n\nn366tLRUu6v8oUaNGmWxWHJycuLj49u2bevt7d29e/fnn3++fHkZGRmjRo1q1aqV1Wrt3Llz\nbGzs4cOHnXxqH3zwwfvvv9+nT5+33nrLnupEpFGjRgkJCXPmzOnTp09WVpa28ciRI3Fxce3b\nt7dara1atRoxYkRGRob9W7RnnZ+fP3HixLZt2zZu3Pj666/PyMgoLCycOnVq+/bt/fz8+vfv\nv3PnTvu3OPPsnHlQxy/1iRMnHnjggU6dOlmt1tatW0dFRZXPao6PcNttt40cOVJEbrnlFovF\nUtWIfGlp6aRJkz7//POuXbs6+coDaDh07ABUo2XLliJSWFgoIlarVUSSkpK8vLxmzpwZHBxc\nYWdthzvvvLNLly5vvPHGpUuXZs+e/Ze//CUgICAuLk5ETp06FRYWVlBQcO+993bq1Gnz5s1T\np07ds2fPv/71rwqH0hqEUVFRN9xww9q1ay9dujRnzpxJkyZ5eXnFx8eLyI4dOyIjI1u0aDFl\nypR27dodPHhw8eLFH3744f79+7WaHVu2bJmI/P3vf/f0rOSdcPr06dOnT9e+zs7O7tevX2Fh\nYWJiYs+ePX/88cclS5b83//938aNG7WRa+1Zjx49OiIi4oMPPvjf//6XkJAwevToXr169ezZ\n89133z18+HB8fPzw4cOzs7O9vLyceXZOPqjjl/qPf/xjfn5+QkJCaGhodnb2kiVLIiIiNmzY\nEBkZWe0RHn300RYtWixfvnzmzJnXXnvt1VdfXenL2KJFi0WLFlX7agNwERsA2GzLly8XkdTU\n1ArbS0pKgoODtd6SzWabMGGCiNx8881lZWX2fcaMGSMi2g7333+/iNx99932e7Wm12233abd\nTExMFJENGzbYd7j11ltFZO/evRUOpX1d/lD5+fne3t6dO3fWbi5ZsqRPnz6bNm2y7/Dss8+K\nyLPPPlu+sOzs7Eqfsva8zpw5U+2LM378eBFZs2aNfcv+/fs9PDyuv/567ab2rBMTE+073HXX\nXSJy55132rdMmTJFRD777LPytTl4dk4+qOOX2tPT86uvvrLvcPTo0aZNm4aFhTl5hMcee0xE\n1q9fX+1LpPH29u7bt6+TOwNoCAzFAqhcUVHRnj17YmJiDh48GBMT065dOxGxWCwiMn78+EaN\nHL17aKFEExwc3LhxY23NEZvN9uabbwYFBd100032HZ555plPPvmkbdu2lR4qJibG/rW/v39E\nRMThw4dzcnJEJDExcceOHYMGDRKRixcvFhUVaV0lJ0djT5w44e/v36xZM8e72Wy2t99+u23b\ntlFRUfaNPXr0CA8P3759e15enn1jdHS0/euQkBAR0YYyNVdddZWIaJVX++ycf1AHL/WqVat6\n9erVoUOH3F95eXn179//66+/LigoqPYIAMyIYAfgN7Nnz7Yvd+Lr69urV681a9aMGDEiPT29\n/G5aRnGgY8eO5W96eXldvHhRRHJycvLy8rp3764FRE1wcPANN9zQqlWrSg/VrVu38jfbt28v\nIvaF7pYvXx4ZGdm8eXOr1err63vjjTeKiH3GnmONGjUqKyurdrfc3NwzZ8707NmzfM3y64vw\n/fffV6hNow3vlt+ijcBqr0O1z875B63qpT558uRPP/20c+fOK35vw4YNInL06NFqjwDAjJhj\nB+A3kZGRWgNMRBo1atSyZcuBAwf27t27wm7+/v6Oj6OFmMtduHBBfp1e5qTGjRuXv9mkSRMR\nyc/PF5Hp06c/9thjYWFhTz75ZJcuXby9vfft26dNUHNGYGDgd99999NPP1WVKTXnz5+3P255\nvr6+9ns1lz/rql4Hu6qeXdOmTWv9oJpz586JyDXXXKMNp1YQGBjofJEATIRgB+A3gwYNqrDc\nSf3SxnO1WOak8iFGRM6cOSMiLVu2LCoqeuqpp4KCgjZt2uTn51f+Xif179//u+++++9//6ud\nalCBzWbbs2dPr169tINXKMO+RUtgtVbVs6v7g9r3cbwEHQDFMBQLwHWaNGnSunXrAwcOlB/s\n++6775577rl9+/ZV+i0HDhwofzMzM1NErrjiitzc3AsXLoSFhdlTnYhs2bLF+WK0PDdnzhyt\nuVXBkiVLevfuvXjx4nbt2rVo0eLAgQO23y/nvn//fovFUu2otGNVPbu6P2jbtm1btWr17bff\nVojRp06dqkvBAAyOYAfApUaOHJmXl/fKK6/Yt8yaNWvy5MnFxcWV7r906VL7199///1XX311\n1VVXtW7dum3bthaLpfx5Et988422gklRUZEzlURERIwZM+bw4cM33XSTfb06ESktLX3mmWem\nTJlyxRVXjB07VkSio6NzcnLeeeed8o+VkZExePDggIAAJ594jZ5dvTzo6NGji4qKFi5caN9y\n6tSpXr163X777U6W5+HhIb8OoAMwBYZiAbhUamrqe++9l5iYuHv37k6dOm3ZsuW999679957\n+/TpU+n+xcXFt99++2233Xbp0qV//vOfNptt5syZIuLr63vrrbe+9957CQkJgwYN2r9//3PP\nPffaa6+NGDFi3bp1K1asGDFiRLXFLF26tLi4+O233+7evXtERES3bt3y8/O3b99+5MiR4ODg\nDz74oHnz5iIye/bs9957LzY29qGHHrrqqqsOHz68ePFiPz+/J554oo6vRlXPrl4edNasWevW\nrZs/f35OTk5kZOTx48dfeOGFvLy8hx56yMkjaOsUpqWlHTp0KCIi4rrrrrt8ny1btqxfv177\nurS09Mcff3zkkUe0m8nJyc4sKAigPum20AoAI6lqHbsKtJXPMjMzy2+8fB27Cjv4+/v37NnT\nfvPw4cP33HNPmzZtvLy8goODH3/88dLS0ssPpX2dmZk5derUwMBAq9V69dVXv/zyy/bjnDx5\ncuzYsa1bt/b39x88ePDWrVttNtvs2bP9/PzatWuXk5PjeB07u3fffTc6OjowMNDLy6tp06Z/\n/OMflyxZUlhYWH6fo0ePxsXFXXHFFZ6enm3atImJidm/f7+DlyU1NVVEtJI0L730koisWLGi\n/DN18Oxq8aCXv9Q5OTmJiYlBQUGenp4BAQEjRoz48ssvnT9CSUnJHXfc4evr27x581WrVlX6\n6lV6coamwpEBuIDF9vsJHABgEDExMStXrszOzu7QoYPetdQ/tZ8dAL0wxw4AAEARBDsAAABF\nEOwAAAAUwRw7AAAARdCxAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsA\nAABFEOwAAAAUQbADAABQBMEOAABAEQQ7AAAARRDsAAAAFEGwAwAAUATBDgAAQBEEOwAAAEUQ\n7AAAABRBsAMAAFAEwQ4AAEARBDsAAABFEOwAAAAUQbADAABQBMEOAABAEQQ7AAAARRDsAAAA\nFEGwAwAAUATBDgAAQBH/D16sBjZt9mnWAAAAAElFTkSuQmCC",
- "text/plain": [
- "plot without title"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"sex <- factor(reduced.meta.data$sex,levels=c('male','female'))\n",
"design <- model.matrix(~ sex)\n",
"y <- DGEList(counts=sjc, group = sex)\n",
"y <- calcNormFactors(y, method=\"upperquartile\")\n",
- "y_voom <- voom (y, design=design, plot = TRUE)\n",
+ "y_voom <- voom (y, design=design)\n",
"\n",
"Gender <- substring(sex,1,1)\n",
"plotMDS(y, labels=Gender, top=100, col=ifelse(Gender==\"m\",\"blue\",\"red\"), \n",
@@ -1299,321 +1160,61 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "- 42611
- 191
\n"
- ],
- "text/latex": [
- "\\begin{enumerate*}\n",
- "\\item 42611\n",
- "\\item 191\n",
- "\\end{enumerate*}\n"
- ],
- "text/markdown": [
- "1. 42611\n",
- "2. 191\n",
- "\n",
- "\n"
- ],
- "text/plain": [
- "[1] 42611 191"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "sex\n",
- "female male \n",
- " 81 110 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "\n",
- "A matrix: 6 × 2 of type dbl\n",
- "\n",
- "\t | intercept | sex |
\n",
- "\n",
- "\n",
- "\t1 | 1 | 0 |
\n",
- "\t2 | 1 | 0 |
\n",
- "\t3 | 1 | 0 |
\n",
- "\t4 | 1 | 0 |
\n",
- "\t5 | 1 | 1 |
\n",
- "\t6 | 1 | 1 |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A matrix: 6 × 2 of type dbl\n",
- "\\begin{tabular}{r|ll}\n",
- " & intercept & sex\\\\\n",
- "\\hline\n",
- "\t1 & 1 & 0\\\\\n",
- "\t2 & 1 & 0\\\\\n",
- "\t3 & 1 & 0\\\\\n",
- "\t4 & 1 & 0\\\\\n",
- "\t5 & 1 & 1\\\\\n",
- "\t6 & 1 & 1\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A matrix: 6 × 2 of type dbl\n",
- "\n",
- "| | intercept | sex |\n",
- "|---|---|---|\n",
- "| 1 | 1 | 0 |\n",
- "| 2 | 1 | 0 |\n",
- "| 3 | 1 | 0 |\n",
- "| 4 | 1 | 0 |\n",
- "| 5 | 1 | 1 |\n",
- "| 6 | 1 | 1 |\n",
- "\n"
- ],
- "text/plain": [
- " intercept sex\n",
- "1 1 0 \n",
- "2 1 0 \n",
- "3 1 0 \n",
- "4 1 0 \n",
- "5 1 1 \n",
- "6 1 1 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeXxU9b3/8XcIhABh00IgCRGEXGRpMEQpBnK1igJREYNhLUVwlLBYpZVS\n/AkJ4gLXtheQRSQoaIteEFlEGquIimsQERSwYthrQLZAEpYAnd8fZ5zJPgnMzJk583r+4WM4\nM4EPZjK8z3f7hNjtdgEAACDw1TK7AAAAAHgGwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDs\nAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAA\nLIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJg\nBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAA\nYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEE\nOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAA\nAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg\n2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEA\nAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgE\nwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4A\nAMAiCHYAAAAWQbADAACwiNpmF1Bjdrt97969e/bsKSgokNS4ceO4uLhWrVqZXRcAAIDJAinY\nnTx58umnn3711Vd/+umnMk/FxsbabLbHHnusXr16ptQGAABguhC73W52DdWSl5fXo0ePvXv3\nxsXF9ejR45prrmnQoIGk06dP5+bmfvjhhz/++GOXLl02btzYtGlTs4sFAAAwQcCM2E2ZMuXQ\noUPLly9PS0sr/+ylS5cWLlw4fvz4adOmzZo1y/flAQAAmC5gRuxatmyZkpKyePHiKl4zePDg\nTz/99MCBAz6rCgAAwH8EzK7Y48ePt23bturXdOjQ4ciRI76pBwAAwN8ETLCLioratm1b1a/Z\nunVrVFSUb+oBAADwNwET7Pr3779ixYo///nP58+fL/9sUVFRRkbGmjVrBg0a5PvaAAAA/EHA\nrLHLz8+/7bbbvvrqq4YNG3br1q1Vq1YRERF2u72wsHD//v05OTlnzpxJTk5ev359RESE2cUC\nAACYIGCCnaTi4uJ58+a98sor33zzzaVLl5zX69Spk5iYOGrUqFGjRoWGhppYIQAAgIkCKdg5\nnTt37uDBg0bniUaNGsXGxoaFhZldFAAAgMkCMtgBAACgvIA5oNhc27Ztu3jxotlVAAAAv1C7\ndu0uXbqYXUUFrBPscnNzR48eLem9996r/lft3bu3U6dOZ8+e9VpdAADAgjZv3nzDDTeYXUVZ\n1gl2BQUFGzZsqOlXXXPNNf/4xz8uXLhQxWvWrVs3e/bsgoIC9tsCAIDi4uK6desWFxebXUgF\nrBPsrrvuum+++aamX1WrVq2bb7656tfk5uZeblEAAAC+Y51gFx4e3rlzZ7OrAAAAME3AdJ6o\njuPHj//www9mVwEAAGAOSwW75557Li4uzuwqAAAAzGGpYAcAABDMCHYAAAAWETCbJ6pzVMy/\n//1vH1QCAADgnwIm2G3dulVSnTp1qngNzSEAAEAwC5ip2IkTJzZo0ODbb789V7nHHnvM7DIB\nAABMEzDBbvr06e3atRsyZEjVXSIAAACCVsAEuzp16vz973/fsWPH448/bnYtAAAA/ihg1thJ\n6tChw+HDh6tYSNe3b98mTZr4siQAAAD/EUjBTlKjRo2qePbmm2922/gVAADAqgJmKhYAAABV\nI9gBAABYBMEOAADAIgh28BdDhyokRPn5Gj1akZGqX1/duysnR2fO6NFHFR2tiAglJemrr8wu\nFAAAf0Wwg78IC5OktDRFRys7WwsWaNs2paVp0CCFh2vtWi1dql27lJIijjIEAKBCBDv4i9q1\nJSkuTlOnKiFBI0aoXz8dOKDwcM2YocREDRigESN05Ig2bza7VgAA/BLBDv4lNdX1OC5Oku65\nx3WlfXtJysvzbU0AAAQIgh38S3S067ExhlfySp06kpiKBQCgYgQ7+BcjulV9BQAAVIhgBwAA\nYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbCDv8jKkt2udu1cVzIzZberZ0/XFZtNdrsG\nD/Z9dQAABACCHQAAgEUQ7AAAcBg6VCEhys/X6NGKjFT9+ureXTk5OnNGjz6q6GhFRCgpSV99\nZXahQCUIdgAAOISFSVJamqKjlZ2tBQu0bZvS0jRokMLDtXatli7Vrl1KSaEFDvwUwQ4AAAej\nk2FcnKZOVUKCRoxQv346cEDh4ZoxQ4mJGjBAI0boyBFt3mx2rUBFCHYAAJSSmup6HBcnSffc\n47rSvr0k5eX5tiagegh2AACUEh3temyM4ZW8YjSwZioW/olgBwBAKUZ0q/oK4J8IdgCAYOF2\n0+vSpZK0Y4fZhQKXi2AHAAgWbje93nyzJNlszLQiUBHsAADBwu2m19atJenYMTa9IlAR7AAA\nwaXqTa8GNr0iQBHsAADBpepNrwamYhGgCHYAgOBSxabXrCwtWlTqqcxM2e3q2dN1xWaT3a7B\ng71ZInC5CHa4THRUBADA3xDscJnoqAgAgL8h2OEy0VERAAB/Q7DDFaGjIgAA/oNghytCR0UA\n/qnCdcBHj0rSU0+51gFz5wmLqW12AQhsdFQE4J+c64CTk5Wdre3blZ6u5s11111q0UJr12rf\nPtls2rNHxcWlPrhsNtlsZlUNXClG7KyGzaoAINYBI1gR7KyGzaoA4MQ6YAQbgp3VcJMKAE6s\nA0awIdhZEzepACDWASP4EOysiZtUAACCEMHOmnxwk5qVJbtd7dq5rtBREQAAcxHsAAAALIJg\nBwAAYBEEO8BfcAYhAOAKEewAf8EZhIAHsQ4YwYlgB3/BeBVnEAIArhDBzmoC9yaV8SoDZxAC\nAC4bwQ7+gvEqA2cQAgAuG8EO/oXxKg7KBwBcNoId/AvjVQAAXDaCHfwL41UAAFw2gh0AAIBF\n1Da7AMDhgw8k6fRpjR6t1atVUKCrrpKkc+f06KNasUKnTqlFC1NLBADAvzFiBxNUeGRdcbEk\n3XWXXntNBQWKjtbhw5KUkeE67sTYNnHpkpnFAwDgtwh2MEGFR9YZoa1pU23cqFdf1bFjCglx\nvNh53MlNN0lSbq55pXtT4J5BCMDAQeswHcEOJqjwyLqLFyVp0iTXkXXGleRk1xcaU7H5+b4v\nGQDc46B1mI5gB9OUP7JO0o03Om55Y2MdV/7nf1y3vMbk7Pz53PIC8EcctA7TEexgmvJH1kmq\nU8dxy5uV5bjyhz+4bnmNo0/GjuWWF4D/4qB1mIhgB9NUdkCdEfIiIx2/7NvXdcs7YIAkdevm\nF7e8LKYBUCEOWoeJCHbwU127uh775y0vi2kAVIiD1mEigh38VJMmrsf+ecvLYhoAgL8h2MFP\nhYaWveKft7wspgEA+A+CHXBFWEwDAPAfBDv4kU2bSh3PK+m11zx5PK83tjuwmKYM9pQg4PCm\nhZUQ7GCC6rRYGDjQ8y0W2O7gA/xPRsDhTQsrIdghiLDdwQf4n4yA48E3LY0BYTqCHYIO2x18\ngP/JCDjVf9MydQt/RrCD3/H2LS/bHXyA/8kIONV/0zJ1C39GsEPQYbuDD/A/GQGn+m/ayqZu\nt23TzJlq21b//KeKi3XkiK6/npE8+BrBDrhMLKYBgln5qdvWraWfR/IeeUSSdu9mJA++RrAD\nvIWFOICFlZ+6bdhQ+nkk79prJSkxkZ1D8DWCHeAtLMQBLKz8RG2tWlLpkbyWLSV2DsG3CHaA\nt3DwBxCESo7kGVGPnUPwJYId4F0c/AEEFXYOwVwEOwQRU7Y7BNvBH+wpQcDhTQsrIdgB3sXt\nOwDAZwh2AAAAFkGwAwCgBiqbuo2MdF0xpm47d/Z9dQh2BDsAAACLINgBAOABbMKAPyDYAQAA\nWATBDvAWbt8BAD5GsAMAALAIgh0AAIBFEOwAAAAsgmAX7IYOVUiI8vM1erQiI1W/vrp3V06O\nzpzRo48qOloREUpK0ldfmV0oAABwh2AX7MLCJCktTdHRys7WggXatk1paRo0SOHhWrtWS5dq\n1y6lpFiqnykAAJZEsAt2Rlv6uDhNnaqEBI0YoX79dOCAwsM1Y4YSEzVggEaM0JEj2rzZ7Fq9\ngAFLAICVEOwgSamprsdxcZJ0zz2uK+3bS1Jenm9r8gkGLAEAVkKwgyRFR7seG2N4Ja/UqSPJ\nmskmyAcsAQAWQ7CD9HN0q/pKoKtw1vXoUUk6fNg169qwoRQ0A5YAAIupbXYBgI84Z12Tk5Wd\nre3blZ7uGLG7+mqtXat9+2Szaft2KWgGLAEAFsOInf9iXb9nVTjrWlgoSZMmuWZdi4okKw5Y\nAgCCAcHOf7Gu3xvKbxMpyZh1BQAgQBHs/Bfr+r2h/DaRkhioAwAENIKdvwvag0i8hOgGALAw\ngp2/8/ZBJFlZstvVrp3rSmam7Hb17Om6YrPJbtfgwZf/pxhYNQgAgFcR7PydlQ4iYdUgAABe\nRbCD7/jnqsFNm0oNWEp67TWvDFj6HkOkABBsCHbwNVYN+gxDpAAQbAh28LWgbV/me/45RApY\nGyPlMBfBDr5m1qpBX24T8SsMkQK+xEg5zEWwAyyOIVLAlxgph7kIdv4raEeY4FlW2lgNBApG\nymEWgh0AAB7GSDnMQrADAMDDGCmHWQh2AACwmxUWQbCD77BqEIDfYjcrrIFgBwAAu1lhEQQ7\nBBLmSmqEIVKgptjNikBHsEMgsdhcCTkV8DeXvZvV+eP8ySeS9Mtfun6cs7Ml6fbb+XGGLxDs\nEEgsNldisZwKWMBl72Z1/jgPGaKvvtILL7h+nG+5RV9+qb/9zfXjzEg5vIdgh8BjmbkSi+VU\nIJjx4ww/QbBD4LHYyZ+WyakAvvvOtb7i7bclaetW1/qKJUskaeRIJmThRQQ7BB6LnfxpsZwK\nBLPGjaWf11f85jeSdPCga33Fww9L0qFDrK+AFxHsAJNZLKcCwcz44TUmZFu0kKSePV0Tstdc\nI0k338yELLyottkFXJHi4uJt27YVFha2bt26TZs2ZpcDAECp9RUxMVLp9RUtW0qsr4DXBMyI\n3VNPPbVx48aSVxYuXNiiRYtu3brdeuut11577Q033PD111+bVR4AIKB58NzHkqspQkPLXjFW\nXDAVCy8JmGA3ZcqUd955x/nLt99+Oz09/cyZM/fee+/o0aN79OixZcuWW265JTc318QiAQBg\nfQVMFKhTsRMmTGjcuPFnn33WoUMH48qbb7553333Pf300y+99JK5tQEAAJgiYEbsSjp69Oju\n3bvHjRvnTHWSUlNT77nnnn/+858mFgZvo0cWAABVCMhgd+7cOUklU52hc+fOP/30kxkVAZeD\nnApYhvHj3KiR64rx4xwb67pi/DjfeKPvq0MQCchgFxUV1bhx40OHDpW5/uOPPzZs2NCUkhDo\naNsKALCAQAp2Bw4c+PLLL3/44YeTJ0+OHTt28eLFZ86ccT773Xff/d///V+PHj1MrBCBi7at\nAAALCLHb7WbXUC0hISHlL77xxhsDBgyQtGzZsoceeujs2bOff/75jZ4e5l64cGF6enpBQUFE\nRIRnf2f4D5tNixdrzBjNn++4MmiQli/XffdpxQrHlUcf1ezZ+uQTJSWZVSYAwHzFxcV169b9\n5JNPkvzv34OA2RX78ssv55dw6tSp/Pz8pk2bGs/m5+c3adLk9ddf93iqQ1ChbSsAIKAFTLC7\n//77q3j2t7/9bXp6eq1agTSzDD9Unbat992nkyc1aZJWr1ZBgeLjNWeOOnfW449rxQqdOqX4\neM2dq65dfVs6AACBtcauChEREaQ6XLlqHivKUjwAgH8iDAE1ZnT4TkjQiBHq18/V4TsxUQMG\naMQIOnwDcGDHPXzMOsEuNze3V69evXr1qukX7t+/f0+Vjh075o2CAxefUyzFA1BN7LiHjwXM\nGju3CgoKNmzYUNOvys3NjYuLC5StwX7C+TmVnKzsbG3frvR0paUpPl6dOmntWu3bJ5tNKSk6\neNCaHRKrsxSPz2gA+vkjwhjml5SQoPXrtXy5unXTjBmSlJioTZs0e7Y2b2bHPTzAOsHuuuuu\n++abb2r6VW3bts3Pz7906VIVr1myZMnvf//7KyjNavicosM3gBphmB8+Y51gFx4e3rlz58v4\nwkYlW8BUpH79+pdVkcXxOQUA1cQwP3wm8IKd3W7fu3fvnj17CgoKJDVu3DguLq5Vq1Zm1xV0\nLPY5lZWlrKxSVzIzlZlZ6orNps8/1+LFPiwLgCUwzA+fCaRgd/LkyaeffvrVV1/96aefyjwV\nGxtrs9kee+yxevXqmVJbEOJzCgAAfxMwwS4vL69Hjx579+6Ni4tLSUm55pprGjRoIOn06dO5\nubkffvjh1KlTV65cuXHjRmc7CgAAgKASMMFuypQphw4dWr58eVpaWvlnL126tHDhwvHjx0+b\nNm3WrFm+Lw8AAMB0AXOO3dtvvz18+PAKU52k0NDQsWPHDhw48M033/RxYQgqWVmy29WunetK\nZqbsdvXs6bpis8lu1+DBvq8OABDsAibYHT9+vG3btlW/pkOHDkeOHPFNPQAAAP4mYIJdVFTU\ntm3bqn7N1q1bo6KifFMPAABuMcwPHwuYYNe/f/8VK1b8+c9/Pn/+fPlni4qKMjIy1qxZM2jQ\nIN/XFmz4nAIAwD8FzOaJzMzMTZs2TZw48cknn+zWrVurVq0iIiLsdnthYeH+/ftzcnLOnDmT\nnJz8xBNPmF0pAACAOQIm2DVp0uSzzz6bN2/eK6+88sEHH5RsAlanTp3ExMRRo0aNGjUqNDTU\nxCIBAABMFDDBTlJYWNiECRMmTJhw7ty5gwcPGp0nGjVqFBsbG2b0pQcAAAhigRTsnMLDw+OM\n7qQAAAD4WcBsngD809ChCglRfr5Gj1ZkpOrXV/fuysnRmTN69FFFRysiQklJ+uorswsFAAQB\ngh1wRYxVAGlpio5WdrYWLNC2bUpL06BBCg/X2rVaulS7diklRRcumF0rAMDqCHbAFaldW5Li\n4jR1qhISNGKE+vXTgQMKD9eMGUpM1IABGjFCR45o82azawXgNxjsh5cQ7AAPSE11PTbWf95z\nj+tK+/aSlJfn25oA+DEG++ElBDvAA6KjXY+NMbySV+rUkcSnMwAXBvvhJQQ7wAOM6Fb1FQDB\npor51s8/l6SXX3bNtzLYD48g2AEA4BVVzLcap+nPmOGab2WwHx5BsAMAwCuc863ffaeuXXXP\nPYqK0oED+sc/HONwt96q1q115IgaNdLixRKD/bhiBDsAALwoNdU1dBcTI0kPPKATJyTpkUfU\nvLkkjR+vY8ck6eJFs8qERRDsAADwouho19Ddr38tSYMHKzZWkurWVVqaJCUmqksXSfruO7PK\nhEUQ7AAA8CLn7KrzXKQ6ddS4sST16uV62S9+IUnHj/uyNFgQwQ64IllZstvVrp3rSmam7Hb1\n7Om6YrPJbtfgwb6vDoAfKbkxIiREkiIjHb8cMkSXLknSs8+6Ns8WF0vS2LEcVowaINgBAOAL\n5TdGGFO0hi1bJOk3v3Ftnl24UJImTix7WDFdK1AFgh0AAL7Wr58kx14KQ6dOknTLLa7Div/r\nv2S3a/LksocV07UCVSDYwYK4nYXpeBOiprp2dT2u7LDiHj2Un68vvpCkDz7Q+vW6cEFpaWrV\nSgcOKDtbH32kkBC6VgQ1gh0siNtZmI43IWqqSRPX48oOK5aUlqb69SVpwgTXm8rYeDF2rOtN\nRdeKoEWwgwXRhBGm400IVXtz1QMPSHL0oiipwsOK4+KUkCBJI0e63lR33CFJ/fu73lR0rQha\nBDtYlvNkAdGEESbhTQiPK3lmSpk3VZ06vKlAsIN1lZzFoAkjTMGbEIbqDN0NHFitc5F4U6Fq\nBDtYVvlZDJowwsd4E8LjeFOhagQ7AAAAiyDYAQAAWATBDgAAM9Vo8yxQNYIdAACBhBbVqALB\nDgAA9+gmgoAQYrfbza7B3y1cuDA9Pb2goCAiIsLsWgAA5rj/fi1dql69lJysu+/W9u1KT1fz\n5oqPV6dOSkvTvn2y2VS3rg4eZKeqxRUXF9etW/eTTz5JSkoyu5ayGLEDAMA9uokgIBDsAACo\nLrqJwM8R7AAAJgjQJWs0foCfI9gBAEwQFiZJaWmKjlZ2thYs0LZtSkvToEEKD9fatVq6VLt2\nKSXFv3ISjR/g5wh2AAATsGQN8AaCHYJRgM4BAdbDkjXAswh2CEYBOgcEWA9L1gDPItghGDEH\nBPgJyyxZM+YBzpyRpNGjmQeAaWqbXQBgGuaAAHiKMQ/wwguSNHmyWrZUerrS0hzHF69d6zi+\nOCWF44vhXYzYIXgxBwSg+qru0Gp8htxyi+x2/elPzAPANAQ7BC/LzAEB8BPVmQeYNInNW/Ai\ngh0AAJ5RnXmAWrUkNm/Bawh2AAB4RnXmAUJDJTZvwWsIdgAAE1S9ZM1gs8lu1+DBvq/O69i8\nBS8h2AEA4Gts3oKXEOwAAPA1Nm/BSwh2gW/ZMsXEqHZtTZxodikBI8jngAAAVsUBxQHu1CnZ\nbAoL0/TpuvFGs6sBAABmYsQuwO3erbNnNWyYJk9Wr15mVwMAQar68wDXXuv76hyMvmccoWdt\nBLsAd+6cJDVsaHYdlsXnIADLMPqecYSetRHsAlmfPkpOlqSZMxUSovR0swuyID4HAViGsf2W\nI/SsjWAXyDIy9MwzkpSaqlWrNGaM2QVZEJ+DADzL9M1bHKFnbQS7QHbTTY4Ru7g49e+vLl3M\nLsiy/PlzkMliADXCEXrWRrAzCWeUBBR//hxkshiwPM/ev3GEnrUR7MxgnFFSWKjp09W7t9nV\nwD1//hxkshiwPO7fUH1XdI7dyZMnT5061bp1aw8VEzSMM0pGjtTkyWaXAovw58liAFeo5P2b\npIQErV+v5cvVrZtmzJCkxERt2qTZs7V5s5KSzCwVpqtqxG779u133nln69atk5OT58+ff+nS\npTIvmDlzZps2bbxZnkVxRgk8zZ8niwF4BPdvqI5Kg90nn3zSrVu39evXHz169Isvvhg3btxt\nt9128uRJXxZnTZxRAi/w58liAB7hvFsbOlRPPy1J//d/riV3hw5J0uLFbJkKdpUGu2efffY/\n//nPqlWrCgsLCwoK/vrXv3766ae9e/cuKiryZX0WxBkl8KBly/Taa5I0c6bZpQDwLufdmrHk\nTlJkpGvJ3QsvOF5TZsldyY0Xy5ZJ0n33uTZe/PWvkjRmDCnQOioNdtu3bx80aFD//v1DQkLq\n1q07YcKE7Ozsbdu2DRw4sPycLGqAM0rgKcYunIsXJTneVACCQO2fl8fff79ry9SJE5I0ZEjZ\nLVMlN1588omWLNG//uXaeLFxo954Q4cOuTZeePUIPfhApcHu8OHD15ZuaHfrrbdmZWWtX7/+\n97//vfcLA/yC6UeJVsXYhdO2rSTWSwczzjKEseSuJOeSOzbOB5tKd8VGRkZ+/fXXZS4OHz58\n165dzz77bExMzEQOYPMHPXvKbje7CJjE2IXDYrqg5xySSU5Wdra2b1d6utLSFB+vTp20dq32\n7ZPNppQUHTzI+8Waapf7x7zMlik2XgSPSkfsUlNT33rrrblz514ovZXu6aefHjFixB//+McJ\nEyacOXPG+xUCqIhzF8727ZI0ZYq55cBEDMnALTbOB49Kg93UqVNbtWr18MMPp6SklLweEhLy\n8ssv/+53v5s1a9bzzz/v/QrhI8zmBJifd+Fkpa63r1rd7k/3OZ/xo8li+BBDMqgCG+eDR6XB\n7uqrr96yZcvYsWM7d+5c5qmQkJDZs2evXLmyrbG4B5bAyeYBhl04KI0hGQsrv9hX0u7dpe7f\nJG3axP0bqjyg+Be/+MW8efP+93//t8JnU1NTf/jhBzsLvKyC2RwgoDEkg8u2aJEknTnDjI0V\n0CsWpTCbAwDBxrixnzWLGRsrINihFGZzACDY1KolSS1aMGNjBQQ7MxhnlBitm/0MszkA4Oe8\ndL7mjTe6HjNjE7gIdgAAWFZ1UqAR2n7zG9cVZmwCF8EOQIBxHs0TF6eQENWrp8hIXXWV6tdX\ny5Zq1kwREYqKUvPmrPjGFVu2TDExql1b5p3J77OzqJixsQaCHYAA4zyaJyJCktq21YkTqltX\n7dvr2DHVrq3rrtOJE7p0SS+9FBQrvv268V1AM9oxFxZq+nT17m1WFZxFhRpxH+w+/vjjE0Zv\n4XJycnJWrlzp6ZIAoCrOo3kSEyXpv/9bqak6fFjt2jketGmj9HSdOKGYGFZ84woY7ZiHDdPk\nyerVy6wqOIsKNeI+2CUnJ3/00UcVPrVp06YHH3zQ0yXBbM6ph3ffNbsUVMmPd+H4gPNontRU\n10Jv5wPnQm9WfOPyGe2YGzY0uw6Js6hQbeX6Bv/shx9++OGHH4zHW7duDQ8PL/OCs2fPLl++\n/Pz5816sDj6UlaWsrJ+nHsLCNH165o0hmaXvUW022Wwm1QeU5lzWHR3tWuhtfGhFRys3V5Iu\nXGDFNy5Xnz565x1JmjlTM2dq9Gi98IKJ5XAWFaqp0mD3xhtvTJ482Xj85JNPVvay++67r7Kn\nEJCMqYeRI/Xzdx/wT85l3XXqyFgScv681q2TpL59FRXluPL665J0//2aM0dz56prV1OKRQDK\nyNDNN+vxx5WaquHD1aaNueWwswHVVGmw+9Of/jRixIjNmzffc889w4cP79ixYxoey0AAACAA\nSURBVJkXhIaGXnvttf369fNyhfAtf5p6AKopNFSSpkxxvHP/8Ac995wkzZmj5s0laexYvfyy\nUlJ08CD/HKJ6brpJly5JP7djtjTHjE0JmZnKzCx1hRmbQFFpsJPUsmXLfv363XnnnWPHju3e\nvbvPaoJp/GzqAagm49z8mBh16aIPPlDfvvrnP/Xll6pTRwMGKDtb3brpP//R7NnavFlJSWaX\n687QoXrtNZ08qUmTtHq1CgoUH685c9S5sx5/XCtW6NQpxcczAAmgAlUFO8M6Y24DwcDPph6A\nGrn5ZuXnOx5HRkrSDTe4ng2g1eXO4y2Sk5Wdre3blZ6utDTFx6tTJ61dq337ZLMxAAmgAu6D\nnd1uf+ONN1555ZVDhw5dqGhl5rfffuuFwmCGYJp6gPU0a+YKdsYYXtOmrmcDaHV5yeMtJCUk\naP16LV+ubt0ce6ATE7VpU8AMQAa8+fP15z9rwgTHBD/g39wHu7/85S8TJ06UVL9+/TrcGwLw\nV8ZKu5Jqu/+E818cb2G+oiJJKi7W9OmlGqkCfsz9OXazZ8/u3bt3bm5uUVFRfkV8UCUAODkb\nLTgfGEvNbrjB1XHBuHLbbQHccYHjLcx38KAkdexo7gHFdBZBjbgPdkeOHJk2bdq1117rg2qA\nIOGz5o8IXBxvYb7iYkmqW9d7fwIfBfA498EuMjLSbrf7oBQgeND8EfB3ffpo3DhJ+vxzhYQo\nPd0bfwgfBfA498FuyJAhr776qg9KAYIHzR8Bf5eRoYcekqT/+i+tWqUxY7zxh/BRAI9zv7R4\n6tSp991337Bhw37729/GxsaW3z/RruTMP4BqY3U84L+MUwJefFH33uvtUwL4KIAHuQ92DX9u\nQrBs2bIKX8BELXB5WB3vKZybj4DGRwE8yH2wGzJkSFhYWO2APjYA8JoraRJw2avj6UwAWAkb\nZeBB7uNaZQN1sKaePcUQbE2Y0iSAzgQ+Y0qGZgASwGVzv3nCqaCgYMeOHRxcB5RkytpnFlz7\nDJsWAQSWagW7Dz/88IYbbmjUqFHnzp0///xz42K/fv02bNjgzdqAgGHK2mcWXPsAGdrbOMgN\n8Cz3wS4nJ+eOO+74/vvve/fu7bx49OjRzZs3p6SkbNmyxZvlAYHBlLXPLLj2GTK09zAmKiku\nzhVtn35aknbtckXb8eMlae9ec2tEwHAf7J588skWLVrs3LlzyZIlzovNmjXbtm1bixYtpk+f\n7sXqgABhytpnFlz7DBnaexgTNTij7V13SdKUKa5oO2qUJM2c6Zn3GEOkluc+2H3++edjxoyJ\niYkpc7158+bp6ekfffSRdwoDrIzmj4GFDO1tQTsmmpWlBx6QSkTbVas0cKCOHHFF2/nz9cgj\nOnXKM9GWIVLLc78r9tSpU61atarwqZYtWxYWFnq6JABAcPHTMVEfnhLgs2hbcohUUkKC1q/X\n8uXq1k0zZkhSYqI2bdLs2dq8WUlJHvgT4WPuR+xatGixa9euCp/66KOPoqKiPF0SAA9j8gV+\njjFRH0fboB0iDQbug11KSsr8+fO/Kv2Rf/Lkyf/3//7fyy+/fOedd3qtNgCeweQL4Od8HG39\ndIgUnuA+2E2bNi0iIuJXv/qVkeEmT56ckJDQsmXLZ555JjY2dqoxmAvAj7E+HUBJDJFaWLWm\nYr/88ssHH3xw//79kr7++uuvv/66YcOGY8aM2bx5c2RkpPeLBPyXKdsgLu8PZfIFACyvWgcU\nN2/efP78+UePHj18+PDu3bsPHz589OjR+fPnN2/e3Nv1AfAUJl8uA/uXAQQW97tinUJCQiIj\nIxmiAwIUky8AYHnug53dbn/jjTdeeeWVQ4cOXajodv7bb7/1QmEAAOvLylJWVqkrmZnKzCx1\nxWaTzebDmoBA5j7Y/eUvf5k4caKk+vXr1+EGP4AsW6Y//lGHD2vCBD33nNnVAAAqQLSFZ7lf\nYzd79uzevXvn5uYWFRXlV8QHVaLGTp2SzabCQk2frhJNfgEAwYxlo5bnfsTuyJEjb7zxxrXX\nXuuDauAxu3fr7FmNHKnJk80uBQAA+Ij7EbvIyEi7r3qqwGPOnZOkhg3NrgMA4L9oS2M97oPd\nkCFDXn31VR+UAo/p00fJyZI0c6ZCQpSebnZBMBmTLwAqRFsa63Ef7KZOnZqbmzts2LB33nln\n165dP5TjgypRMxkZeuYZSUpN1apVGjPG7IIAwDMYYfIs2tJYj/s1dg1/ns5btmxZhS9gotbv\n3HSTLl2SpLg49e9vdjUA4DHOEabkZGVna/t2pacrLU3x8erUSWvXat8+2WxKSdHBg5zUWF20\npbES98FuyJAhYWFhtWvX4ChjAAC8oeQIk6SEBK1fr+XL1a2bZsyQpMREbdqk2bO1ebOSksws\n1a8MHarXXtPJk5o0SatXq6BA8fGaM0cXL0rSsGEqKlJ8vObOpS1NwHMf1yobqAMAwBSMMNVU\nZSOdhoULdemSY6TzoYck2tIEshqMwx07dmz37t1FRUUNGzZs3759kyZNvFcWAACVofFxTVU2\n0tmmjSR17qx27Rwjnf/+t5l14sq53zwh6eOPP+7evXuzZs2SkpJuv/327t27X3XVVb169aKZ\nWKBatkwxMapdWxMnml0KANQYjY8vT/mRzthY1xVjpLOw0Lc1wdPcj9jl5OT06tXr4sWLPXv2\nbN++fb169YqKinbu3Pn+++/36NEjJyenvfFeQKAwmlKEhWn6dN14o9nVAAB8pPxIZ4MGritG\nODa23iFwuQ92Tz31VLNmzd59993rrruu5PWtW7f26dNn2rRpLMILMDSlAICgVH5cs1a15u0Q\nSNx/Sz/99NOxY8eWSXWSEhISxo4d+/7773unMHgNTSkAAO44jww0ehQMG6aQEG3YoAceUIMG\nqlVLoaGKj9enn1Z6giCHDprCfbA7depUTExMhU+1bt36xIkTni4J3kRTCgDAzyZNKtuW5r77\nHG1pnBtpb7tNX33lODvmrrv08ccaOFAZGQoN1Y4duvVWhYVV3KOCthamcB/smjdvvmvXrgqf\n2rlzZ/PmzT1dEjyhZ0/Z7Y5jnUqiKYXVcYsMr+INFjzKNKUwltOfO6f4eL38sjIydO+9+s9/\ndP68+vevuEcFbS1M4T7Y3XHHHc8///yaNWtKdpiw2+2rVq2aN29e3759vVkePO2mmxwjdkZT\nii5dzC4IHsYtMrzK9DcYjY99rORGWoPzyEBjX61KHBlY4QmCHDroY+43T2RkZKxfv75///4t\nWrTo2LFjgwYNjF2xhw8fbtmyZUZGhg+qLMlut+/du3fPnj0FBQWSGjduHBcX16pVKx+XAfgn\nzuWHV/EGsySjL8Xs2ZI0erRGjVJ8vCIjJemVVzRihE6dcu2fdW6tdXakcob4Ck8Q5NBBH3Mf\n7Fq3bv3ll19OmTJl9erVzq0SV111lc1me/LJJ1u2bOnlCl1Onjz59NNPv/rqqz/99FOZp2Jj\nY20222OPPVavXj2f1QP4LW6R4VW8wQJOVpayskpdycxUZqbjsTEQ+9ZbmjZNd9/t6EthhLB6\n9RwdeIcOdby4pkcGcuigj1Wr80SrVq2WLFlit9sPHz5cVFQUERHRokULb1dWRl5eXo8ePfbu\n3RsXF5eSknLNNdc0aNBA0unTp3Nzcz/88MOpU6euXLly48aNTZs29XFtgL/hFtnzli3TH/+o\nw4c1YYKee87sakzGG8xiKhuIlTRxotq1U2Ki4uK0Y4ckTZum997TyZNat87x5VOm6Npr1bmz\nXn9dku6/X3PmaO5cE/4iUI1aih0+fPjw4cP5+flXX311aGhos2bNvFdWeVOmTDl06NDy5cvT\nnM3tSrh06dLChQvHjx8/bdq0WbNm+bIwwA9xi+xhHOtdGm8wSyo/EFtS48aOB8b3Oi3NdWrW\n/v267TZduOBI86mpWr/esZxb0sCByspS165eqxulVetowkWLFrVp0yYqKqpr16633nprly5d\nmjdv3qFDh9eNcO4Tb7/99vDhwytMdZJCQ0PHjh07cODAN99802clAQgWxrHew4Zp8mT16mV2\nNYBXlB+ILcl5lHFoqCTFxenYMceVkBAVFurCBV19tST985+y23XmjOPU1O+/Z7eWT7kfsVuw\nYMHYsWPr1q3bq1ev6OjoBg0anDp1avfu3Zs3bx4yZEhxcfFvf/tbHxR6/Pjxtm3bVv2aDh06\nrFq1ygfFAAguHOuNIFCjYdfUVH36qeNxgwYqLpbNppdflqTjxxUZqdOn1amTvvlG//mP40AT\nNtP4hvsRu1mzZvXu3fvIkSPvvvvukiVL5s2b97e//e2LL77Izc1t167dzJkzfVClpKioqG3b\ntlX9mq1bt0ZFRfmmHlyRZcsUE6PatTVxotmlAO5wrDdQTnS0awyvc2dJGjzYdYLWXXdJ0i9+\nIUlnz0pspvEh98Fu3759U6ZMaeycXf9ZmzZtJkyYkJub653Cyurfv/+KFSv+/Oc/nz9/vvyz\nRUVFGRkZa9asGTRokG/qweUzlisVFmr6dPXubXY1gDsc641gtWmT68jAESMk6bXXHMeg1Knj\nWjYXH++44vxEb9JEkh56SPPnO64YU7EcOugD7qdiGzduHGrMqJcTGhr6CyOQe19mZuamTZsm\nTpz45JNPduvWrVWrVhEREXa7vbCwcP/+/Tk5OWfOnElOTn7iiSd8U08AM5pSmMhYrjRypCZP\nNrMMoJpuukmXLkk/H+sNoDTn0J1zZZ7zAbtqfM/9iN3dd9/91ltvVfjUunXrKtvN4HFNmjT5\n7LPP/vrXv7Zt2/aDDz5YsmTJ3Llz582bt3Tp0k8++SQ+Pv7FF1/cuHFjRESEb+rB5Qvc5UqB\nMIPMufzwKt5gFhYX52oW9/TTkrRrl6tZ3PjxkrR3r7k1wj33we6pp5567733hg0b9tZbb333\n3XcHDhzYtWvXypUr77zzznPnzo0bN+5QCV6tNSwsbMKECVu3bi0sLPz++++3bNmyZcuW3bt3\nFxYWfvbZZw8++GBlI4tBzd+ySOAuV2IGGYDVOZvFGYvkpkxxNYsbNUqSZs7Uf/5jbo1ww/1U\nrLEdIScnZ9myZeWfjSt91o3dJ3N84eHhceXP2EF5fnj4VkaGbr5Zjz+u1FQNH642bcwuqNqY\nQQZgUUZTisWLXWcUr1qlQYO0fLnCw13N4sLCNHu2jh41s1S45T7Y9e/fv27duj4oBZ7nh1kk\ncJcrBe4MMgBUT3WaxRm7XOG33Ae7QDkZLjc3d/To0ZLee++96n/VhQsX3nrrrUtG1KjEli1b\nrrQ4s1g4i/i4v1OfPnrnHUmaOVMzZ2r0aL3wgtf/UADwreo0i7PZVOaf2d/9TnPmSHJdv+su\nxzhfmQa18IEatBTzcwUFBRs2bKjpV+Xl5U2ePPnixYtVvOb06dNXUJdPVJhyLJxFfD/FHLgz\nyABQbZfRLG73bsdmmqFD9dprktSvnwYMUEGB4uN1222S1Lev/vAH2WyKj9fcubQX865qBbtL\nly598cUXeXl5FyrqCTLYP/Y+XXfddd98801Nvyo2NvZf//pX1a9ZuHBhuj+v8S+ZcgoKFBPj\nSHgWziK+n2IO3BlkAPCOrKxSA3JhYZLUq5cSE5WZqe3blZ6uvDzddZc6ddL06dq3TzabUlJ0\n8CDHoHiR+2C3ZcuW++67b9++fZW9wE+CXXh4eGfj9Otg40w5Y8eqZUvXOJaFs4iFp5gBIDAZ\nU7fO7RcJCVq/XsuXq1s31/aLTZs0ezbtxbzLfbAbP358fn7+I4880r59+zp+kLHtdvvevXv3\n7NlTUFAgqXHjxnFxca1atTK7LvM4U44fbpXwBgtPMcNvmX6sNxAgqrP9gvZiXuU+2H3zzTd/\n+9vf+vvBkM/JkyeffvrpV1999aeffirzVGxsrM1me+yxx+rVq2dKbaYpk3IUBONYFp5iBgDv\nMBbAnTypSZO0erVjAdycOercWY8/rhUrZPy7umNHqdOnL0N1tl9UtKoLHuM+2EVERMTGxvqg\nlKrl5eX16NFj7969cXFxKSkp11xzTYMGDSSdPn06Nzf3ww8/nDp16sqVKzdu3Ni0aVOzi/Uh\nZ8qJjNSRI1IQjGNZeIoZALzDWACXlqbkZGVnOxbApaUpPl6dOmntWk2apA0bHGvgrmRy7jK2\nX8Cz3Ae7gQMHvvHGG13N3sQyZcqUQ4cOLV++vMImZpcuXVq4cOH48eOnTZs2a9Ys35dnGmfK\nuf12dezIOJaHldxuXHI6AQACitsFcO+9p0cfLbUALjNTmZmlfhObTTabb+tGzbkPdjNmzBg8\nePDAgQPvueeeqKio8svsepbsEeg1b7/99vDhwytrTRsaGjp27NiPPvrozTffDK5g5xQd7WjV\n5cFxLC+dFRcoy5X8sG8HAFwBFsAFA/fB7ttvv/36668PHjy4YsWKCl/gmzZix48fb9u2bdWv\n6dChQ6AcpxwAqh9rfHxWsM+U2Yzy8cdmFwQAV4QFcMHAfbB7+OGHjx49OnDgwLi4uNq1TTvQ\nOCoqatu2bVW/ZuvWrUZnW6sxJTlVc4+thYe1OFQFQCAruWHCaPY+ZIhefNGxYeKllyTpd7/T\n0qWcGGwp7oPa9u3bFy1a9Jvf/MYH1VShf//+c+bMufHGGx9++OHyvWuLior+53/+Z82aNZMm\nTTKlPC8yKzlVM9ZY9YyVCg9VCYgZZACQVHrDRO/eWr1a333n2jBhhLx9+y7/xOAyO22PH5ek\n7dsVFeXYaXv0qCR9/718smILDrXcvqJBgwb+cPBvZmZmQkLCxIkTmzVr1qtXr5EjRz788MPj\nx4+///77f/3rXzdv3vzJJ59MTk5+4oknzK7U04zkNGyYJk9Wr141+1pjNZuxMrZG+vRxrNib\nOVMhIaqi8YZVh7UyMvTMM5KUmqpVqzRmjNkFAUDNlNwwcfXVknTbbTpwQOHhmjFDLVtKUt++\nOnJEmze7vmrIEOXna/RoRUaqfn11766cHJ05o0cfVXS0IiKUlKSvvpJKBMfoaGVna/FihYdr\nwgQNGqTwcK1dq9deU5Mmevxx1/SuzSa7Xf7R1sCy3I/Y3XvvvevWrbv++ut9UE0VmjRp8tln\nn82bN++VV1754IMPLhlbQSVJderUSUxMHDVq1KhRo0JDQ00s0itMSU7lz4oLtna0HKoCwBJK\nbpho3VoqvWHCOM2szIaJKk5FKdkWjFYT/sl9sHvuuefS0tLy8vLuvffe6Ojo8rti213haYbV\nFhYWNmHChAkTJpw7d+7gwYNG54lGjRrFxsaGGTcO1mNWcioTa06d0k03VTAdzFnBAODfSm6P\nMIY+ym+hKLNhoppZzcBOW3/jPtgZ5/2+99578+fPr/AFvtkVW1J4eHic8faxPD9JTpUtpDNr\nWCtQDkwBALNdxonBNcpq7LT1N+6D3ZAhQ8LCwkzcDxvUqpOcnCnHe+dxWHUhHQAEh6wsZWWV\nOnDYOH84K8t1xWbT559r8eKaZTVaTfgb93FtmbFJGv7PS+NYFl5IBwD4mbHLVdKTT+r99x39\nZH/5S0lasEC/+Y1OnVJ8fI138cHH3O+KdTp27Nhnn3323nvvffHFF/n5+d6rCf6F/aEAEASc\ni9UjI5WdrQULtG2bjNYEYWFau1ZLl2rXLs2eLUlDhqi4WJK6d3dtnjWG8e6917F5tm9fPfig\nJGVlud9jC0+pVrD7+OOPu3fv3qxZs6SkpNtvv7179+5XXXVVr169vv32W2/XB/PddFOpZmVd\nuphdEGpo2TLFxKh2bU2cWOkVAEHPueRq/HglJGjECPXrp1OnJCk9XYmJGjBAI0bo9GnHyzZs\nkKSXXnJEwLQ0vfGGJM2Y4YiAH37oeGXTpq6kmJbmOg/FeFlKCovwPMn9VGxOTk6vXr0uXrzY\ns2fP9u3b16tXr6ioaOfOne+//36PHj1ycnLaGwspAfih8gdcW7hZCACPKr9NseQ/+I0b68cf\n1bGj2rVzbJ7t2NHxmp49HZtnDQMGKCGB81B8xH2we+qpp5o1a/buu+9ed911Ja9v3bq1T58+\n06ZNYxEe4L/K72i2arMQAKUZGyZKMjZMlGSzyWar9Hcov22y5MaI1q21a5fjsREB27fXzp2O\nKxWO+XAeig+4D3affvrpH/7whzKpTlJCQsLYsWMXLFjgncIAs1njUJXyO5rZ4wzAE/7yF61f\n73hsRMCHH9abbzquOCPgzp3q0KHUyzgPxavcr7E7depUTExMhU+1bt36xIkTni4J/uGy25HB\nf5RvDVf9ZnEAgtLu3SrTdmDTprLNXn/9a6naB51wHoqPuR+xa968+S7nYGtpO3fubN68uadL\nQkCxxrCWVZU/4PrMGb848hoA4B3ug90dd9zx/PPP/+pXv+rXr19ISIhx0W63r169et68eUOG\nDPFyhUGP5ITLVuEB1/TABQDrch/sMjIy1q9f379//xYtWnTs2LFBgwbGrtjDhw+3bNkyIyPD\nB1UCAADALfdr7Fq3bv3ll1+OGDHi7Nmz77///ltvvfX+++8XFxfbbLYtW7ZUtvwOAAAAPlat\nDrCtWrVasmSJ3W4/fPhwUVFRREREixYtvF0Z/AjTwQBgddU/HsVm08aNPqwMNeFmxO6nn376\n7LPPjMchISEtW7Zs165dixYt5s2bR1cxAAAsZuhQhYQoP1+jR1faB2znTm3ZUmrzbGam7PZS\nm2dtNtntstur9bLBg73/FwsaVQW7jz76qH379lOnTi1zffv27ePHj+/cufOePXu8WRusggZW\n8Cu8IYHKGR1j09IUHU0fsIBUabDLy8sbMGBAYWHhrbfeWuapX/7yl3PmzMnLy+vTp88547BT\noDJGA6vCQk2frt69za4GQY83JFAl4wzhuDhNnerqGHvggMLDNWOGq2PskSPavLmCL6/OgF9S\nkr76ysd/rSBS6Rq7RYsWHTt2bNGiRbZy3UZCQkIefvjhS5cuTZgwYenSpaNHj/ZykQhkNLCC\nX+ENCVRDaqrrcY36gDkH/JKTlZ2t7duVnq60NMXHq1MnrV2rfftksyklRQcPclKxV1Q6Yrdm\nzZq2bduOGjWqsheMHz8+JiZmyZIlXqkLlkEDK/gV3pBANZTs+mWM4b38smsobtIkSfrTnyoY\nijt1SrqCAT9cuUqD3YEDB371q1/VqlXpC2rXrt29e/cdO3Z4pzBYAg2sTFe+NVwwN4vjDQlU\nT/mxtLp1pZ/X3j36qCTt31/B2rt33pGuYMAPV67S3Hb69Omrr7666i+++uqrz58/7+mSYCEZ\nGXrmGUlKTdWECVq1ihXrMFPJN+SqVRozxuyCgIARGir9PBQXGytJiYkVDMWdPStVNOBX8oqR\nGtl74SWVBrurr776wIEDVX/x999/36xZM0+XBAu56SbHAElsrF54QefPs2IdZnK+IY2Oal26\nmF0QEGC++04hITpzRpK2bnX81zkh61yc9f33Zb+Q5XQ+U2mwu/HGGzds2HD8+PHKXvDDDz9s\n2rSpe/fu3ikM1nLypM6e1bBhmjxZvXqZXQ0A4HI0bixJL7wgyXEc3cGDrgnZhx92vMxmY0DO\nNJUGu+HDhxcWFj744IMXL14s/+zp06eHDRt28eLF+++/34vVwTKMdxEr1gEgkBkDb5GRktSk\niST17OmakL3mGsfLjh1jb4RpKg12AwYM6NWr16pVq7p3775q1aqCggLj+tGjRxcvXhwfH5+T\nk3PvvffeddddvioVgezvf5dYsQ4AVtC1q+ux0TG+5N4IA3sjzFJpsAsJCVmxYkXfvn23bNmS\nmprauHHjpk2bNmrUqHnz5jabbf/+/YMGDfq78a814NbNN0usWAcAf5eVVXEfMGOUzmD0Aevc\nWfp5U0XJvREGpmLNUukBxZKaNGmyfv36f/zjH6+++uoXX3xx5MiRWrVqtW/fPikpaeTIkcnG\nGmSgOox7OmPFOgAgkJXfCcHeCP9RVbAz9O3bt2/fvj4oBQAABLqHHtKLL7p+mZmpzMxSL7DZ\nVK6nFTym0qlYAAAABBaCHQLEsmWKieF8YwAwhbH2rlEj1xVj7Z1xWLHBWHt3442+rw4u7qdi\ngStiNLD6+GNdyVabU6dksyksTNOn85mBK2K8IQHAohixg0lqNAK3ezfnGwMA4BbBDmYwRuAK\nC6vbYezcOanK843vuEMhIQoJUcuWHisSAFBaZYehGF0oDMaE7ODBNfudhw5VSIjy8zV6tCIj\nVb++und3NSuLjlZEhJKS9NVXnvmLWBjBDmao0Qhcnz6O/p6VnW+8c6fefVeS4uLEidkAYJ4q\n8tl11ykkRA0aqEULXX112ei2Zo0ktW6tWrWUna0FC7Rtm6tZ2dq1WrpUu3YpJYUT8tyoeI3d\noUOHqv9bxBhHlAHV53YErqSMDN18sx5/XKmpGj5cbdqUfcEbb0jSVVdV0HcaAOBDYWGSlJam\n5GRlZ2v7dqWnKy1N8fGOs+7atdP336tBA82dq3HjHE916qTbb9eaNTp3TqtWac4cJSRo/Xot\nX65u3TRjhiQlJmrTJs2erc2blZRk5t/Rz1Uc7Fq1alX938LOSmS4VXLFep8+eucdSZo5UzNn\navRoR0Ppytx0ky5dkio/3/jUKUkKD/dkwQCAmqtdW5Li4jR1qqRS+exXv9K336pHD50/r3/9\nSzExiorSnj3697919Kijs0VMjHJz1aiREhLUsaNUullZ+/YSzcrcqTjYDRo0yMd1IIi4HYGr\nkbp1VVwsST/+qJAQNW2qEyc8UiYA4PKkproex8VJ0j336IMPHE9t3SpJEycqJkZ79uiBB7R4\nseP+vahIki5eVE6Ovv5aklav1qRJOnVK8fGOlTtMxVat4mD3+uuvV+eLi4qKCgoKPFoPgoDb\nEbga+f3vtXKldu9WeLhSUnTTTVdeIAAEiqFD9dprOnlSkyZp9WoVFCg+XnPmqHNnPf64Vqxw\nRKK5c9W1q++qKtk61hjDc16JjnZciYxUUpI++kiDB+uf/9S+fZLUqZMOw4CRYwAAIABJREFU\nH9aDD+rFF3X2rCTHArt9+2SzaccO3/0VAtcVbZ5Ys2ZNV1++U4Dynn1Wd98tSVddpZUr9dhj\nZhcEAL7jXNMWHe1Hew6qaCbrfOA8k7ROHTVp4nh8662S9N//reuvd1xJT1diogYM0IgROn3a\naxVbSLUOKD527Njrr7++b9++ixcvOi+eO3du3bp1hYWFXqsNAABUpYo1bX6+5+Cqq+Sc8wsJ\nKftsixZlrxgL7OCW+2C3b9++bt26HT16tIIvrl17ypQpXqgKAABUV4Vr2pz8c89BaGhVz9Yq\nPaFozDgbRo/WqFF+MePsn9xPxT7xxBPnzp2bO3fuhg0bJGVlZWVnZ//pT3+Kjo5et27dVOMe\nAQAAmKSKNW36efbTg1OxVRxW9/nnkhQf7+HDhI0ZZ8Pkyf4y4+yf3Ae7TZs2jRs3bty4cUlJ\nSZI6derUu3fvZ599dt26dUOHDv3kk0+8XyQAAKhUFWvavKGKhX3GONxzz3k4ZtUuMb/YurVG\njFC/fjpwQOHhmjHDtQjvyBFt3uyZPzFwuQ92eXl51157raRatWpJKjaOlpCuv/76cePGZWRk\neLU+AADgV0ou7EtIKBWzjC0RvXtfTsx67TU1b17qSmZmqWZlxmuMZmWBMuPse+6DXcOGDY8c\nOSIpLCwsIiJiz549zqc6duz45ZdferE6wGCcb2ysBAYA+IEKF/Y5m8k6Y5azmWyZp+6664r6\nzPpgxjlAuQ92ycnJL7zwwgcffCDpl7/85bx585w7Yd9///26det6tT4AAOCHfLywr0JenXEO\nUO6D3eOPP378+PHHHntM0oMPPvjll1927NgxNTU1ISFh0aJFt99+u/eLhOUwAgcAAa5kqFq5\nUpLOn3dtp3jmGceVRx9VdLQiIlzbKZxDd07GVtYbbih75bbbvP2XsCD3wa5bt24ff/zxAw88\nIOn++++fPHnysWPHVq1atW3btn79+s2aNcv7RcJyli1TTIxq19bEiR743f7yF9nt+ve/PfBb\nwQc8+90H4AeMPRNTpri2Uxw6JElz5lRr12r5qFd+llbS7t3VmqUNctXqPJGYmDhmzBhJISEh\nzzzzzIkTJ/bu3VtUVLRmzZpf/OIXXq4QlnPqlGw2FRZq+nT17m12NfAtvvuAR1UnElV/4dpl\nM46di4lxbafo0kWS6tRh16qv1aClWF5e3tatWzdu3Pj99983aNCgXr163isLVrZ7t86e1bBh\nmjzZ0dIZwYPvPmBdN9/sehwZKZWeXa1612oVZ+M9+qjjdOKBAz15Np5VVSvYLVq0qE2bNlFR\nUV27dr311lu7dOnSvHnzDh06vP76696uDxZ07pwkNWxodh0wA999wLqaNXM9NsbwmjZ1Xal6\nO0XVTW+N9fy5uRxB7J77YLdgwYKHHnooLy+vV69eI0aMGDt27LBhw7p16/avf/1ryJAhr7zy\nig+qhHX06aPkZEmaOVMhIUpPN7sg+BDffcDSyncJq12tjvSuV1Z4Nt6MGVq9Wna7Ro50Teaa\nMuMcENwHu1mzZvXu3fvIkSPvvvvukiVL5s2b97e//e2LL77Izc1t167dzJkzfVAlrCMjw7FX\nKjVVq1ZpzBizC4IP8d0HLKGKba3OGdUff5SkZ591zagak3z3319Vt7FAbHrrb9xn6X379r30\n0kuNGzcuc71NmzYTJkz4/e9/753CYFE33aRLlyQpLk79+5tdDXyL7z5gdc4ZVWPBxR/+oL/+\nVWlpio93TMWOHauXX1ZKig4erOAUOn84Gy/QuR+xa9y4cWj50VVJUmhoKLtiAQCAwTmjamyk\n6NvXNaM6YIAkdetW1fZYHze9tST3we7uu+9+6623Knxq3bp1aWlpni4JAAAEMGZUTeR+Kvap\np57q37//vn37Bg8eHBcXV79+/aKiop07d7700kvFxcXjxo07ZJxCKEmKiYnxZrUAAMDfVTij\nmpvruMKMqle5D3ZRUVGScnJyli1bVv7ZOCOK/8xut3uqMgAAEBCyspSV5fplnTrKzFRmpiS9\n957jis0mm83xYniP+2DXv3//unXr+qAUAPCuZcv0xz/q8GFNmKDnnjO7GgDwPPfBbtWqVT6o\nAwC8y+hmFham6dN1441mVwMAXlFxsDt8+HDdunWbNm1qPK76t2jRooXn6wIAzzK6mY0cqcmT\nzS4FQFllJnMl12Suk3MyF1WoONi1bNmyd+/e2dnZxuOqfwvW1QEIAHQzg/9jtQCuWMXBbtCg\nQddff73zsQ/rQRDo2VPcDAQts777ffronXckaeZMzZyp0aP1wgsmlAFUgdUC8IQQxtvcWrhw\nYXp6ekFBQUREhNm1ALgsn32mDz7Q448rNVXDh6tNG3XpYnZNQGlffqkbb9TYsZo3z+xS4EZx\ncXHdunU/+eSTpKQks2spq7rteXfs2BEZGensM7Fjx47i4uKEhASvFQYAnkM3M/g/VgvAE9x3\nnrhw4cIDDzzQuXPnb7/91nlx48aNXbt2HTly5CXjsxKo0LJliolR7dqaONHsUgDAj/Xpo+Rk\nSZo5UyEhSk83uyAEKvfB7vnnn3/ppZfuvPPOa665xnnx9ttvHzRo0JIlS+bOnevN8hDIjPUi\nhYWaPl29e5tdDQD4sYwMPfOMJKWmatUqjRljdkEIVO6nYpcsWXLXXXeVaRfbvn37119/vaCg\nYO7cuY888ojXykMg43QJAKgmVgvAQ9yP2P3www+//vWvK3zqlltu2b9/v6dLglWwXgQA4B1D\nhyokRPn5Gj1akZGqX1/duysnR2fO6NFHFR2tiAglJemrr8wu1OfcB7tGjRrt27evwqf27dt3\n1VVXebgiWAPrRQAAXhMWJklpaYqOVna2FizQtm1KS9OgQQoP19q1WrpUu3YpJUUXLphdq2+5\nD3Z33nnn4sWL169fX/LihQsXFi1a9OKLL95xxx1eqw2BjPUiAACvqV1bkuLiNHWqEhI0YoT6\n9dOBAwoP14wZSkzUgAEaMUJHjmjzZrNr9S33a+yeeuqpf/zjH3feeWdsbGz79u3r1q2bn5+/\nc+fOEydOtGzZ8qmnnvJBlQg8rBcBAHhZaqrrcVycJN1zj+tK+/aSlJfn25rM5n7ErmXLllu3\nbk1PTy8qKnr33XfXrVv38ccfh4aGPvjgg5s3b46NjfVBlQAAAGVER7seG2N4Ja/UqSMp6KZi\nq3VAcWRk5IIFC+bPn5+X9//bu/+4qOp8j+OfERhERFDDHwgqJKWrV0vRXRIWS0u3H4rsKphi\nF+PxENxa5V6phZuCupmsbL91s7reksLM1PLqVfe6a6zaeikrryW1iL8wQYsrKAIqOPePU7OE\nCIMMc875zuv518yZ4zmfGYTznu+vU1ZbW9unTx9fX9+OrgwAnIl72QHK0aJby1vcTestdnYW\niyUoKOjWW28l1cGgWA8ZAODeWm+xs9ls77333rp1606fPn21uQbNxnekAHTD/bMBAG6v9WD3\nhz/8IT09XUS6dOniRRMnDCU/X554QsrLJS1N4uNZDxmAiTFawEkefljWr5fz5yUvT0TkkUfk\n+eflxRdl2DDJzJSNG6WqSoYPl5dflpEj9a61A7TeFfvCCy9MnDixpKTk0qVLlc1xQZVAM5rc\nsoz1kAEAjZa4CwgQEXn0Ufda4q71YHf27NklS5aEhYW5oBqgDbRbls2cKRkZkpvLesgAAGm0\nxN1DD4mI/Pzn7rXEXevBrnfv3jYah2FAjZvoWA8ZANzJ66+LzSaDBv1jS3a22GwSFfX907g4\nSU4Wm00SEtxribvWg92MGTPytG5qoE208SIrVnTIwZvcsuzNN79/qq2HPGJEh5wUAGASbrvE\nXevBbvHixSUlJTNnzty1a1dRUdHR67igSqApmugAKIzFm9rNbZe4a31WrN8Po9Hz8/Ob3YGO\nWujg+luW7dunb0Um03hC8cqVelcDoBEWb0I7tB7sZsyYYbVaPT0dukcFVMAlX3lcNgAj02aG\nsXgTbkrrce1GDXVQE5d8d8BlAzAyFm9COzQf7MrLy729vbt37649bvkQffr0cX5d0AuXfHfA\nZQMwrEmTZNcuEZGcHMnJkblz5ZVX9K4JZtL85Im+ffvOmDHD/rhlLqwWHY9LvnMZcAR0kwnF\nrPkHGAozw9A+zbfYxcfH33HHHfbHLqwHuuKbonMZs187K0tiYiQzU+LiJDFRQkP1LghAI9fP\nDEMbvf66vP76j7ZkZ0t29o+2JCdLcrILa3Kh5oPdO++80+xjKI5LvnMZs1+bywYAqKv1yRNb\nt2699dZbhw4d6oJqoDNTX/INeP9s+rUBAK7V+gLF8fHx27Ztc0EpgFIYygYAcLnWg11UVFRB\nQcG1a9dcUA3QBh16y7L2YwQ0AMDlWu+Kfeutt9LS0h544IHZs2ffdttt/v7+TXYY1PgevAA0\npu7XBgCYU+vBzr5M3c6dO5vdgVuKAQAAGEHrwS4+Pt5qtXp5eVksFhcUBAAAgJvTerBjuRMA\nAABTaCXYXb58+dChQzU1NYMHD+bWYQAAdDgDLt4E82gp2L355psLFiyorKwUEYvFkpCQsGbN\nGj8W5QLMjssGACjqhsHur3/9a1JSkoeHx8SJE3v27HngwIH169fX1tZu2bLFlfXB1bjkAwBg\nWjdcxy43N9disfzlL3/ZuXPn22+/XVRUNHXq1Pfff/+LL75wZX2A6a1eLZ6ekp6udx0AAPXd\nMNgdOHDgvvvui9aWzhexWq3Z2dki8te//tU1lQGmd+mSiMiVK7JsmUycqHc1AAD13bArtqKi\n4rbbbmu8RXtaUVHR4UUBaujZU0Tk0UclI0PvUgAAbuGGLXbXrl3z8fFpvKVz584i0qAtpg+g\nVXV1IiLMNwIAuErr94oFcDMmTRJtJENOjlgskpKid0EAAPUR7ICOkZUly5eLiMTFyZYtkpqq\nd0EAAPW1tI7dvn37tAkTjX344YdNNl6/DwCJjBRt3EJ4uMTG6l0NAMAttBTs9u/fv3///iYb\nCwoKCgoKGm8h2AEAABjBDYNdXl6eK+sAAH3k58sTT0h5uaSlycqVelcDAO1yw2A3a9YsV9YB\nADqoqpLkZLFaZdkyGT1a72oAoL1a6ooFAMUVF0ttrSQlsdYgADUwKxaAG2OtQQBqIdgBcFes\nNei28vMlOJibOENJBDt0DP5u2h05ov9HwY+jWaw16J60gZXV1dzEGUoy9xi7K1euHDp0qLq6\neuDAgaGhoXqXgx8wIL2xHTvE11fPj4Ifx42w1qB7YmAllGaaFrvf/e53e/bsabxlzZo1ffr0\nGTNmzD333BMWFhYREfH555/rVR5+RPu7OXOmZGTIhAl6V6OfqCj5+GOpr9f5o+DHATTGwEoo\nzTTBbtGiRbt27bI/3b59e0pKSk1NzdSpU+fOnTt27NiDBw+OGzeupKRExyLxPf5u2hnhozBC\nDYBBMLASqjNNsGsiLS3N39//s88+27x58yuvvLJv375NmzZduHDh6aef1rs0t8ffTTsjfBRG\nqAEwDgZWQnWmHGP37bffFhcXZ2ZmDhkyxL4xLi5uypQpf/rTn3QsDCIiWVkSEyOZmRIXJ4mJ\n4s5jH43wURihBsA4GFgJ1Zky2NXV1YlI41SnGTZs2Pbt2/WoCI3wd9POCB+FEWoAALiKKbti\ng4KC/P39T58+3WT7mTNn/BhI5IZYywMAABExV7A7derUJ598cvTo0fPnz8+bN+/f//3fa2pq\n7K9+9dVXGzZsGDt2rI4VQgcsSQUAOuKrtcGYKditX79+9OjR4eHhgYGBzzzzzNGjR3fs2KG9\nlJ+fHxERUVtbu2jRIn2LhKuxlod5cT0AzI6v1sZjmjF2//Ef/1HZSFVVVWVlZffu3bVXKysr\nAwIC3nnnndGsv+puWMvDpAyybHJUlNhsup0dMDtWezYe0wS7f/7nf27h1dmzZ6ekpHTqZKYG\nSDjBpEmirW6YkyM5OTJ3rrzyit41wTFcDwAF8NXaeBRJQl27diXVuSNjLklFD6MjuB4AZscy\nmYZEGIKZRUZ+/2dFW8tjxAi9C2LEiWO4HgAKMOZXa7dnmq7YVpWUlMydO1dEdu/erXctcGNN\nehj37dO7IENi2WToiIGVzsIymYakTrC7ePHin//8Z72rgIi499/NJj2MRvgojFBDE1wPAKBj\nqNMVO3jw4MOHDx8+fFjvQtyeO48wo4cRAKArdVrsOnfuPGzYsLb+qwsXLvz+97+vr69vYZ/P\nP/+8HXW5GYOsYaEXehgBALoyX7Cz2WzHjx8/duzYxYsXRcTf3z88PDwkJOTmjnb58uVjx461\nHOy+++477bw3dwr34uZrWNDDCADQlZmC3fnz559++um8vLxz5841eal///7JyckLFy708fFp\n0zEDAwPz8/Nb3mfNmjUHDx60WCxtK9c96bWGxZEjEhws5eWSliYrV7r67AAAGINpgl1ZWdnY\nsWOPHz8eHh5+//33DxgwwNfXV0QuXLhQUlJSUFCwePHiTZs27dmzx347CriajssF79ghvr5u\n2v8LAC6Wny9PPCHl5TJ9ut6loCnTBLtFixadPn363XffnTZt2vWvNjQ0rFmz5rHHHluyZMnz\nzz/v+vIgousIs/r6728XCwDoUI3HUvv4yPr1eheEHzHNrNjt27cnJiY2m+pExMPDY968edOn\nT9+8ebOLC8M/6LJccFSU7N0rotA9DJw7rdidJykD6AjaWGrtu3REhN7VoCnTBLuKiopbb721\n5X2GDBly9uxZ19QDo1BshRHn3riC22AAcLrGY6m1ZTJXrNC3IjRmmq7YoKCgQ4cOtbzPZ599\nFhQU5Jp6YBSKrTDi3GnFRp6kbMBlkwG0Ssex1HCMaVrsYmNjN27cmJube/ny5etfvXTpUlZW\n1gcffBAfH+/62qAnA94utj2cO61Yr0nKAFTF/WENzzQtdtnZ2Xv37k1PT1+6dOmYMWNCQkK6\ndu1qs9mqq6tPnjxZWFhYU1MTHR391FNP6V0pcLOc9VVYm7B25sz3TWJ8sQbgLKzWaXimCXYB\nAQF/+9vfVq1atW7dug8//LBB+48lIiJeXl6jRo2aM2fOnDlzPDw8dCwSaFcPoyPdyvZVBm60\nYp99wtrcuXLliqxdq0gnNQDAAaYJdiJitVrT0tLS0tLq6upKS0u1O09069atf//+VqtV7+qA\ndmv1q7Ajd2yzj6tbtUr27ZO1a/liDaADtfptE65lpmBn17lz5/DwcL2rAFzOkckQjKsD4DJu\nfn9wQzLN5Ilm5ebmRkVF6V0F4CqthrYmi7/k5rqoMADuqfGadhMm6F0NRMwe7I4ePbp//369\nq0AjrGnUcRxZsa/JhDV6YAF0KLoIjMfcwQ5wI46sMtBk8ZdBg1xaIQC3otj68Kow5Rg7wB2x\nygAAQ1FsfXhVEOxgftzDAABcj2+bhmTurtgVK1aUlpbqXQUAAG6DsdTGZu4Wu4CAgICAAL2r\nAAAAMARzBztANc7tVqaTGgDcjLm7YgEAAGBHsAMAAFAEwQ4AAEARjLED1MK4OgBwY7TYAeZh\n5FUG8vMlOFg8PSU9Xe9SAMB90WIHoN2qqiQ5WaxWWbZMRo/WuxoArkIXgfEQ7AC0W3Gx1NZK\nUpJkZOhdCgC4NbpiAbRbXZ2IiJ+f3nUAgLsj2AFon0mTJDpaRCQnRywWSUnRuyAAcF8EOwDt\nk5Uly5eLiMTFyZYtkpqqd0EKYUoKgDZijB2A9omMlIYGEZHwcImN1bsahTAlBUDbEewAwJCY\nkgKg7eiKBQBDYkoKgLYj2AE3hcFP6FBMSQFwU+iKBdqOwU/oaFlZEhMjmZkSFyeJiRIaqndB\nAMyBFjug7bTBTzNnSkaGTJigdzVtQUOjWURGft9ip01JGTFC74IAmAMtdkDbmXTwEw2NAKA6\nWuyANjLv4CfzNjQCABxDsAPayLzr8Zq0oREA4DCCHdBGJh381KENjVFRYrPJihXOPCYAoO0I\ndoB7MG9DIwDAYQQ7uAGmgoppGxoBAG3BrFiojqmgAAC3QYsdVOdWU0FpmwQA90awg+rUngra\nOMlpbZPV1bJsmUycqHdlaDempABoO4IdlGbeNecc0STJuVXbJAAl0e3Qboyxg9LUvuGmluSS\nkiQjQ0Rk3z4RddsmASiPIdHOQIsdlKb2VNDGvcxqt00CcAd0OzgDwQ5oOyMMfmqS5Hx8WKYO\ngLmpPSTaVQh2gDk1WXA4O1vltkkAyqPbwUkYYweYU2SkNDSI/JDk5Icxdi04dUr69ZPcXGlo\nkJUrO7xCAHCc2kOiXYhgB7gHRiUDMLLrv6ziphDsAPfQZAotAEBFjLED3AOjkgHADRDsADfA\nqGQAcA8EO8ANNJlCy2IoAKAoxthBddqac26OUckA4B5osQMAAFAELXaAKmibBAC3R7ADTIsk\nBwD4MYIdAAAwAL6sOgNj7AAAABRBsAMAAFAEwQ4AABhDfr4EB4unp6Sn612KWRHsAKCNuPYA\nHaGqSpKTpbpali2TiRP1rsasmDwBuAdGJTuLdu2xWmXZMhk9Wu9qAIUUF0ttrSQlSUaG3qWY\nGMEOANqCaw/QQerqRET8/PSuw9zoigWAtuDaA3SESZMkOlpEJCdHLBZJSdG7ILMi2AGAw7j2\nAB0kK0uWLxcRiYuTLVskNVXvgsyKrlgAcFhWlsTESGamxMVJYqKEhupdEKCKyEhpaBARCQ+X\n2Fi9qzExWuwAg2HGpZFFRn7fYqdde0aM0LsgAPgRWuwAI2HGJQCgHQh2gJEw4xIA0A50xQJG\nwoxLAEA7EOwAw2DGJQCgfQh2gGEw2x8A0D6MsQMMg9n+AID2ocUOAABAEbTYAQAAA4iKEptN\n7yJMj2AHAG3BtQeAgdEVCwAAoAiCHQAAgCIIdgAAAIog2AEAACiCYAcAAKAIgh1gJNqMyxUr\n9K6jOfn5Ehwsnp6Snq53KQCA5hHsADigqkqSk6W6WpYtk4kTXXFGciQAtB3r2AFwQHGx1NZK\nUpJkZLjidFqOtFpl2TIZPdoVZwQAJRDsADigrk5ExM/PRadzcY4EAFXQFQsYg5F7HidNkuho\nEZGcHLFYJCWlw8/o4hwJAKog2AEG4PoRbG2SlSXLl4uIxMXJli2Smtqxp3N9jgQAVdAVCxiA\nwXseIyOloUFEJDxcYmM7/HRZWRITI5mZEhcniYkSGtrhZwQAVdBiBxiAMj2PTulQjoz8vsVO\ny5EjRjirOgBQHsEO0JsyPY8G71AGADdAsAP05vgINiNPsJAfOpRnzpSMDJkwQe9qAMAdMcYO\n0JuDI9iMv7SbMh3KAGBatNgBJmHw9jBlOpQBwMwIdoBJGLw9zMVLogAAmkOwA8zA+O1hTGUF\nAAMg2AFmQHsYAMABTJ4AzMDFSwRfLypKbDYdzgsAaAuCHQDjIUcCwE2hKxYAAEARBDsAAABF\nEOwAA9B6Hles0LMGg9/WAgDgAMbYATDDbS0AAA4g2AH44bYWSUmSkaF3KQCAm0ewA+Ck21ow\nlRUA9MYYO8DtGf+2FgAAx9BiB5hEx7WHZWVJTIxkZkpcnCQmSmhoh5wFANDxaLED3B63eXUH\nzHoG3AMtdgCgOmY9A26DYAcAqmPWM+A26IoFANU5ZdYzADMg2AGA0pj1DLgTgh0AKC0rS5Yv\nFxGJi5MtWyQ1Ve+CAHQgxtgBgNIiI6WhQeSHWc8AlEaLHQAAgCIIdgAAAIqgKxYAt3kFAEXQ\nYgcAAKAIgh0AAIAiCHYAAACKINgBgMnl50twsHh6Snq63qUA0BmTJwDAzKqqJDlZrFZZtkxG\nj9a7GgA6I9gBgJkVF0ttrSQlSUbGDfdh1jPgNswX7Gw22/Hjx48dO3bx4kUR8ff3Dw8PDwkJ\n0bsuANBDXZ2IiJ+f3nUAMAQzBbvz588//fTTeXl5586da/JS//79k5OTFy5c6OPjo0ttAKCD\nSZNk1y4RkZwcycmRuXPllVf0rgmAnkwT7MrKysaOHXv8+PHw8PD7779/wIABvr6+InLhwoWS\nkpKCgoLFixdv2rRpz5493bt317tYAHCJrCyJiZHMTImLk8RECQ3VuyAAOjNNsFu0aNHp06ff\nfffdadOmXf9qQ0PDmjVrHnvssSVLljz//POuLw9wU/n58sQTUl4uaWmycqXe1bifyEhpaBAR\nCQ+X2Fi9qwGgP9Msd7J9+/bExMRmU52IeHh4zJs3b/r06Zs3b3ZxYYD70uZjVlfLsmUycaLe\n1QAAzBPsKioqbr311pb3GTJkyNmzZ11TD4Dv52POnCkZGTJhgt7VAADME+yCgoIOHTrU8j6f\nffZZUFCQa+oBwHxMADAa0wS72NjYjRs35ubmXr58+fpXL126lJWV9cEHH8THx7u+NsAdTZok\n0dEiIjk5YrFISoreBQEAzDN5Ijs7e+/evenp6UuXLh0zZkxISEjXrl1tNlt1dfXJkycLCwtr\namqio6OfeuopvSsF3APzMQHAeEwT7AICAv72t7+tWrVq3bp1H374YYM2EUxERLy8vEaNGjVn\nzpw5c+Z4eHjoWCTgRpiPCQDGY5pgJyJWqzUtLS0tLa2urq60tFS780S3bt369+9vtVr1rg4A\nAEBnZgp2dp07dw4PD9e7CgAAAGMxZbADAHwvKkpsNr2LAGAUppkV26qSkpIJEyZMYDEtAADg\nrtRpsbt48eKf//xnvasAAADQjTrBbvDgwYcPH9a7CgAAAN2oE+w6d+48bNgwvasAAADQjTrB\nTkQqKirOnz8/aNAgx/9JeXl5UlJSfX19C/t88803ImKxWNpbHwAAQEdSKtitXLkyJyfH1pYJ\nYn5+fuPHj2+83PH1jh49WlRU5OXl1e4CAbUwHxMADEapYHcTfH19Fy5c2PI+H3300euvv+6a\negAAAG6aOsudAAAAuDnTtNhFRES0uo82GA4AAMA9mSbYffbZZyLS8kC3ludAAAAAqM00XbHp\n6em+vr5ffPFF3Y21OloOAABAYaYJdsuWLRs0aNCMGTOuXr2qdy3s2GLvAAAUDUlEQVQAAABG\nZJpg5+Xl9fbbb3/55ZeZmZl61wIAAGBEphljJyJDhgwpLy9vYSDdL37xi4CAAFeWBAAAYBxm\nCnYi0q1btxZejYmJiYmJcVkxAAAAhmKarlgAAAC0zNzBLjc3NyoqSu8qAAAADMHcwe7o0aP7\n9+/XuwoAAABDMHewA9CB8vMlOFg8PSU9Xe9SAAAOMdnkCQAuUlUlyclitcqyZTJ6tN7VAAAc\nQrAD0JziYqmtlaQkycjQuxQAgKPM3RW7YsWK0tJSvasAVFRXJyLi56d3HQCANjB3sAsICAgO\nDta7CkA5kyZJdLSISE6OWCySkqJ3QQAAh5g72AHoEFlZsny5iEhcnGzZIqmpehcEAHAIY+wA\nXCcyUhoaRETCwyU2Vu9qAACOosUOAABAEQQ7AAAARRDsAAAAFEGwAwAAUATBDgAAQBEEOwAA\nAEUQ7AAAABRBsAMAAFAECxQDaE5UlNhsehcBAGgbWuwAAAAUQbADAABQBMEOAABAEQQ7AAAA\nRRDsAAAAFEGwAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsAAABFEOwA\nAAAUQbADAABQhKfeBZiA1WoVEW9vb70LAQAARqHFA6Ox2Gw2vWswgUOHDtXX17fzIEVFRYmJ\nia+99lrnzp2dUhWM6cknn7zvvvvGjx+vdyHoQFu3bj106NCiRYv0LgQd6LvvvktLS3v22WcD\nAwP1rgUd6He/+110dHRKSkqb/pWnp+eIESM6qKT2oMXOIU784cXHx/v5+TnraDCg5cuXjxkz\nZtasWXoXgg508uTJM2fO8FNW28mTJ9PS0mJjY0NDQ/WuBR3o1Vdf7d+//6hRo/QuxDkYYwcA\nAKAIgh0AAIAiCHYAAACKINgBAAAogmAHAACgCIIdAACAIgh2AAAAiiDYAQAAKIJgBwAAoAiC\nnetYrdZOnTp5enK3D8VZrVZj3kAQTsRP2R1oP2J+0MpT7NeZe8W61LFjx8LCwvSuAh3r9OnT\nvXr1UunPBK5XU1Nz4cKFPn366F0IOhZ/tN1BeXl5t27dunTponchzkGwAwAAUARdsQAAAIog\n2AEAACiCYAcAAKAIgh0AAIAiCHYAAACKINgBAAAogmAHAACgCIIdAACAIgh2AAAAiiDYAQAA\nKIJgBwAAoAiCHQAAgCIIdgAAAIog2AEAACiCYAcAAKAIgp1LnT9/fuHChQMGDPD29g4NDY2N\njT1w4IDeRaFDXL16NSMjw8PDIyIiQu9a4EyVlZULFiwYOHCg1WoNCgpKTk4uKyvTuyg4H7/C\nylP1imyx2Wx61+Au/u///m/UqFEnTpx44IEHRo4ceezYsQ0bNnh6ehYWFv7TP/2T3tXBmYqK\nimbNmlVcXHzp0qU777zzk08+0bsiOMeVK1ciIyM//fTTX/7ylyNHjiwpKcnLywsODj548GD3\n7t31rg5Ow6+w8lS+ItvgKr/+9a9F5KWXXrJv2bRpk4jcf//9OlYFp6uqqvLx8YmIiCguLvb2\n9h41apTeFcFpnn32WRHJycmxb9mwYYOI/Ou//quOVcG5+BV2BwpfkemKdR0vL6/x48fPnTvX\nvmXq1Kk+Pj5ffvmljlXB6err6+fNm/fRRx8NGjRI71rgZOvWrfPz85s/f759y/Tp0wcNGpSX\nl2ej90MV/Aq7A4WvyHTF6uny5ct+fn5jxozZt2+f3rWgQ3Tu3HnYsGH046ihrq6ua9eu48aN\n2717d+PtSUlJb7zxRklJSVhYmF61oYPwK+w+lLki02KnpzVr1ly9ejUhIUHvQgC0rrS0tKGh\nISQkpMn2AQMGiMixY8f0KAqAcyhzRSbY6aagoCA9PT0qKiolJUXvWgC07uLFiyLi6+vbZHvX\nrl3trwIwI5WuyJ56F6CgysrK3/72t/angwYNWrhwYZN91q9fn5SUNGzYsA8++MDTk5+CKTny\ng4Z6LBZLky3agJbrtwMwBcWuyKZ/AwZUXV29Zs0a+9OxY8c2vt7bbLbs7OylS5dOmjTp3Xff\n9fPz06NGOEHLP2iop1u3btJcy9yFCxdEhN9lwHSUvCIT7JwvODj4RlNSbDZbcnLy2rVrH3/8\n8eeee87Dw8PFtcGJWvhBQ0n9+/f39PQ8efJkk+0lJSUiEh4erkdRAG6Sqldkxti5VFpa2tq1\na5cvX/7iiy8q838IcBNWq3XUqFGFhYU1NTX2jdeuXSsoKAgJCenfv7+OtQFoK1WvyAQ719m8\nefMLL7wwf/78jIwMvWsBcDMeffTRmpqalStX2re8+uqrZ86cSU5O1rEqAG2l8BWZdexcZ9Cg\nQSUlJY8//niXLl2avPTkk09yPyJlFBQU7NixQ3ucm5sbGBj4yCOPaE/T09N79uypX2lor4aG\nhrvvvnvv3r1TpkwZOXJkUVHRhg0bhg0bduDAget/r2FS/Aq7A4WvyAQ712lh0tzx48cHDhzo\nwlrQgVasWHGjr4DFxcWsZW921dXVS5Ys2bhx45kzZ3r16hUbG7t06dIePXroXRechl9hd6Dw\nFZlgBwAAoAjG2AEAACiCYAcAAKAIgh0AAIAiCHYAAACKINgBAAAogmAHAACgCIIdAACAIgh2\nAAAAiiDYAQAAKIJgBwAAoAiCHQAAgCIIdgAAAIog2AEAACiCYAcAAKAIgh0AAIAiCHYAAACK\nINgBAAAogmAHAACgCIIdAACAIgh2AAAAiiDYAQAAKIJgBwAAoAiCHQAAgCIIdgAAAIog2AEA\nACiCYAcAAKAIgh0AAIAiCHYAAACKINgBAAAogmAHAACgCIIdAACAIgh2AAAAiiDYAWivhIQE\ni8VSXl5uqEPZj3b69GmnHA0AjI9gB0BE5K233rL8mIeHR+/evePi4vbt29fyv73jjjsmTpzo\n7e3d/jKceCgH2Wy29957LzY2NigoyNvbu1evXhEREU8//fTZs2ddVoORrVix4ujRo63udvXq\n1YyMDA8Pj4iICBdUBeBGLDabTe8aAOjvrbfeSkxMHDt2bFRUlLaltrb266+//u///m+bzfbG\nG2/Mnj1b3wpvQkJCwoYNG0pLS4ODg5vdobKyctq0abt37+7Spcv48eMHDBhQUVFRWFhYUlIS\nGBi4adOm6OhoF9dsKGVlZUFBQTt27Jg0aVILuxUVFc2aNau4uPjSpUt33nnnJ5984rIKATTh\nqXcBAAxkwoQJ2dnZjbfs3bv3nnvuWbBgQXx8vCsb0lxj5syZu3fvnjJlymuvvRYYGKhtvHbt\n2quvvvrYY49NmTLlq6++6tWrl75F6ujjjz9udZ8LFy6MGjVq6NChn3766bBhw1xQFYAW0BUL\noCXR0dHjx48/f/78oUOH5IdRa+fOnbv33nt9fHy2bt0qPx4Y9/DDD1sslurq6ieffHLgwIHe\n3t4hISHPPfdc486B8vLy5OTkfv36+fr6jhgx4oUXXqivr9deanyoqVOnWiyWsrKy5OTk3r17\ne3t7Dx48+I9//GPj8goLC6dOnXrLLbdYrdaBAwcmJiaeOHHCwbe2c+fO//qv/xo5cuR7771n\nT3Ui0qlTp5SUlKVLl44cObKkpETbePLkyaSkpH79+lmt1ltuuWXy5MmFhYX2f6K968rKyrlz\n5/bu3btLly4/+9nPCgsLa2pqFixY0K9fv65du951112ffvqp/Z848u4cOWnLH/XZs2d//etf\nDxgwwGq1BgYGxsbGNs5qLR/hwQcfnDJlioj84he/sFgsN+qRr6+vnzdv3kcffTRo0CAHP3kA\nHYcWOwCt6Nmzp4jU1NSIiNVqFZG0tDQvL6/FixeHhYU12Vnb4Ve/+lVoaOg777xz7dq1JUuW\n/Mu//EtAQEBSUpKIfPvttxEREdXV1bNnzx4wYMCHH364YMGCw4cPv/76600OpTUQxsbG3n33\n3Vu2bLl27drSpUvnzZvn5eWVnJwsIgcPHoyJienRo8f8+fP79Olz7NixVatW/elPfzpy5IhW\nc8vWrVsnIv/2b//m6dnMX8LMzMzMzEztcWlp6ZgxY2pqalJTU4cOHfrNN9+sXr365z//+e7d\nu7Wea+1dT5s2LTo6eufOnf/7v/+bkpIybdq04cOHDx06dOvWrSdOnEhOTr7//vtLS0u9vLwc\neXcOnrTlj/qnP/1pZWVlSkrKsGHDSktLV69eHR0dvWvXrpiYmFaP8NRTT/Xo0SMvL2/x4sV3\n3nnnT37yk2Y/xh49euTm5rb6aQNwERsA2Gx5eXkikpWV1WT7lStXwsLCtLYlm802Z84cEbnv\nvvsaGhrs+8THx4uItsOjjz4qIjNmzLC/qjV6Pfjgg9rT1NRUEdm1a5d9hwceeEBEvvjiiyaH\n0h43PlRlZaW3t/fAgQO1p6tXrx45cuSePXvsO7z00ksi8tJLLzUurLS0tNm3rL2vqqqqVj+c\nRx55REQ2b95s33LkyBEPD4+f/exn2lPtXaemptp3mD59uoj86le/sm+ZP3++iOzfv79xbS28\nOwdP2vJH7enp+fHHH9t3OHXqlJ+fX0REhINHeOaZZ0Rkx44drX5EGm9v71GjRjm4M4COQFcs\ngObV1dUdPnw4ISHh2LFjCQkJffr0ERGLxSIijzzySKdOLf310EKJJiwsrEuXLtqaIzab7d13\n3w0JCbn33nvtO7z44ot/+ctfevfu3eyhEhIS7I/9/f2jo6NPnDhRVlYmIqmpqQcPHhw3bpyI\nXL16ta6uTmtVcrA39uzZs/7+/t26dWt5N5vN9v777/fu3Ts2Nta+cciQIZGRkQcOHKioqLBv\njIuLsz8ODw8XEa0rU3P77beLiFZ5q+/O8ZO28FFv3Lhx+PDhwcHB5T/w8vK66667Pvnkk+rq\n6laPAMCMCHYA/mHJkiX25U58fHyGDx++efPmyZMnr1mzpvFuWkZpQf/+/Rs/9fLyunr1qoiU\nlZVVVFQMHjxYC4iasLCwu++++5Zbbmn2ULfddlvjp/369RMR+0J3eXl5MTEx3bt3t1qtPj4+\n48ePFxH7iL2WderUqaGhodXdysvLq6qqhg4d2rhm+eFD+Pvf/96kNo3Wvdt4i9YDq30Orb47\nx096o4/63Llz33333aefftr3x3bt2iUip06davUIAMyIMXYA/iEmJkZrABORTp069ezZMyoq\nasSIEU128/f3b/k4Woi5Xm1trfwwvMxBXbp0afzU19dXRCorK0UkMzPzmWeeiYiIeO6550JD\nQ729vb/88kttgJojgoKCvv766+++++5GmVJz6dIl+3kb8/Hxsb+quf5d3+hzsLvRu/Pz87vp\nk2ouXrwoInfccYfWndpEUFCQ40UCMBGCHYB/GDduXJPlTpxL68/VYpmDGocYEamqqhKRnj17\n1tXVPf/88yEhIXv27OnatWvjVx101113ff311//5n/+pTTVowmazHT58ePjw4drBm5Rh36Il\nsJt2o3fX/pPa92l5CToAiqErFoDr+Pr6BgYGFhUVNe7s+/rrr19++eUvv/yy2X9SVFTU+Glx\ncbGI9O3bt7y8vLa2NiIiwp7qRKSgoMDxYrQ8t3TpUq1xq4nVq1ePGDFi1apVffr06dGjR1FR\nke3Hy7kfOXLEYrG02ivdshu9u/aftHfv3rfccstXX33VJEZ/++237SkYgMER7AC41JQpUyoq\nKt588037luzs7Mcff/zy5cvN7r927Vr747///e8ff/zx7bffHhgY2Lt3b4vF0niexOeff66t\nYFJXV+dIJdHR0fHx8SdOnLj33nvt69WJSH19/Ysvvjh//vy+ffs+/PDDIhIXF1dWVvbBBx80\nPldhYeE999wTEBDg4Btv07tzykmnTZtWV1e3cuVK+5Zvv/12+PDhDz30kIPleXh4yA8d6ABM\nga5YAC6VlZW1bdu21NTUQ4cODRgwoKCgYNu2bbNnzx45cmSz+1++fPmhhx568MEHr1279vvf\n/95msy1evFhEfHx8HnjggW3btqWkpIwbN+7IkSMvv/zy22+/PXny5O3bt69fv37y5MmtFrN2\n7drLly+///77gwcPjo6Ovu222yorKw8cOHDy5MmwsLCdO3d2795dRJYsWbJt27bExMTf/OY3\nt99++4kTJ1atWtW1a9dnn322nZ/Gjd6dU06anZ29ffv25cuXl5WVxcTEnDlz5pVXXqmoqPjN\nb37j4BG0dQpXrFhx/Pjx6Ojo0aNHX79PQUHBjh07tMf19fXffPPNb3/7W+1penq6IwsKAnAm\n3RZaAWAkN1rHrglt5bPi4uLGG69fx67JDv7+/kOHDrU/PXHixKxZs3r16uXl5RUWFvaHP/yh\nvr7++kNpj4uLixcsWBAUFGS1Wn/yk5+88cYb9uOcO3fu4YcfDgwM9Pf3v+eee/bu3Wuz2ZYs\nWdK1a9c+ffqUlZW1vI6d3datW+Pi4oKCgry8vPz8/H7605+uXr26pqam8T6nTp1KSkrq27ev\np6dnr169EhISjhw50sLHkpWVJSJaSZrXXntNRNavX9/4nbbw7m7ipNd/1GVlZampqSEhIZ6e\nngEBAZMnT/6f//kfx49w5cqVX/7ylz4+Pt27d9+4cWOzn16zkzM0TY4MwAUsth8P4AAAg0hI\nSNiwYUNpaWlwcLDetTif2u8OgF4YYwcAAKAIgh0AAIAiCHYAAACKYIwdAACAImixAwAAUATB\nDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsAAABFEOwAAAAUQbADAABQBMEOAABA\nEQQ7AAAARRDsAAAAFEGwAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsA\nAABFEOwAAAAUQbADAABQBMEOAABAEQQ7AAAARRDsAAAAFEGwAwAAUATBDgAAQBH/Dy/DuPYh\nF1J+AAAAAElFTkSuQmCC",
- "text/plain": [
- "plot without title"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "ijc_sex_results_refined\n",
- "FALSE TRUE \n",
- "42208 403 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde1zUZd7/8TeiSJ61FESlk6xaLoaoayq3lZZKrZmKiGaoUR6yXf1t1m2b\ngmmlW+1DK3VdqVVr1Vsr0szsztSyskDzUGZ3ah43JVM0Ec/N74/vNDPAwAwwx++8nn/8HrPf\nGegTv72XN9d1fT5XmMViEQAAAIJfNX8XAAAAAM8g2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAw\nCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYId\nAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACA\nSRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDs\nAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAA\nTIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJg\nBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAA\nYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIE\nOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAA\nAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg\n2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEA\nAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBLV/V1AcNixY8fly5f9\nXQUAAAgI1atXb9eunb+rcIJg59qWLVs6duzo7yoAAEAAycvL69Chg7+rKIlg59rFixclXbhw\nISIiwt+1AAAAP7t48WLNmjWNeBBoOGMHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZB\nsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMA\nADAJgh0AAIBJEOwAAABMgmAHvxkyRGFhOnVKo0YpKkq1aqlzZ+XmqqhI48erWTPVqaMuXfTV\nV/4uFACAIEGwg99EREhSSoqaNdPatZo3Tzt2KCVFqamKjNSqVVq0SLt3KzlZly75u1YAAIIB\nwQ5+U726JMXFacoUJSQoPV19++rQIUVGasYMJSZqwAClpys/X3l5/q4VAIBgQLCDn/Xvb38d\nFydJ995rf9KqlSQdPerbmgAACE4EO/hZs2b218YanuOTGjUksRULAIBbCHbwMyO6lf8EAAC4\ng2BnQnSbAgAQmgh2JkS3KQAAoYlgZ0J0mwIAEJoIdqZFtykAAKGGYGdadJsCABBqCHamFfjd\nptnZsljUsqX9SVaWLBZ162Z/kpEhi0WDB/u+OgAAgg/BDgAAwCQIdgAAACZBsAMAADAJgh0A\nAIBJEOwAAABMIsxisfi7hkD3+eefd+3a9cKFCxHGlQ4AACCEXbx4sWbNmp999lmXLl38XUtJ\nrNgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDtU1ZAhCgvT\nqVMaNUpRUapVS507KzdXRUUaP17NmqlOHXXpoq++8nehAACYHcEOVWWMbU5JUbNmWrtW8+Zp\nxw6lpCg1VZGRWrVKixZp924lJ+vSJX/XCgCAqRHsUFXVq0tSXJymTFFCgtLT1bevDh1SZKRm\nzFBiogYMUHq68vOVl+fvWgEAMDWCHTyjf3/767g4Sbr3XvuTVq0k6ehR39YEAECIIdjBM5o1\ns7821vAcn9SoIYmtWAAAvItgB88wolv5TwAAgFcR7AAAAEyCYAcAAGASBDsAAACTINghUDDo\nGACAKiLYIVAw6BgAgCoi2KGqsrNlsahlS/uTrCxZLOrWzf4kI0MWiwYPLu/7MOgYAIAqItgh\nsDDoGACASiPYIbAw6BgAgEoj2CGw1Khh76J4+WVJ6t1bUVFq1Ei1aumxxyRp+HDFxKhJE9op\nAAAohmCHgGProjBeNGumkydVs6ZatdKZM5IUE6OTJ3Xlil57jXYKAADsCHYIOLYuiqZNJald\nO/Xvr2PH1LKl2reXpCZNNHq0Tp5U8+a0UwAAYEewQ4CydVF0727vooiKkqQOHexdFLRTAABg\nQ7BDgLL1TDRubO+iqFZNkho2tHdR0E4BAIANwQ4BykhsksLDSz4xch4AACiBYIdAUXrQsXGi\nrkOHkk969PBtZQAABAmCHQAAgEkQ7AD/sI3rGzVKUVGqVUudOys3V0VFGj9ezZoxpQ8AUGEE\nO8A/bOP6mjXT2rWaN087diglRampiozUqlVatIgpfQCAiiHYAf5hG9c3ZYoSEpSerr59deiQ\nIiM1Y4YSEzVgAFP6AAAVQ7BDwLF1UdheZGXJYlG3bvYXGRmyWDR4sP1FkLKN65Ps4/psmNIH\nAKgQgh3gT7ZxfZJ9XJ8NU/oAABVCsAP8yTacr5wnAAC4iWAHAABgEgQ7AAAAkyDYwYQYEQcA\nCE0EO5gQI+IAAKGJYAcTKj0irkkTHTqk8HAVFCg5WcOGKTJS+fnatIk1PACAeRDsYFqOI+Ia\nNJCkvXvta3gnTkjS44/7bQ3PNqXPxjalzybYp/QBAHyMYAfTchwIFx4uSTfeaF/Da9dOkqpX\n55oHAIB5EOxgWqUHwt1+u/11VJQkdehgf8I1DwCAYEewgxcFWndq48b219WqSVLDhvYnXPMA\nAAh21f1dQIVZLJb9+/f/8MMPZ86ckVS/fv24uLgWLVr4uy44YetOTUrS2rXauVOjRyslRfHx\nuvlmrVqlAweUkaHkZB0+7IsbF4wNWUfVg+//AgAAKFMw/VorKCh45plnXn/99Z9++qnEW7Gx\nsRkZGY899thVV13ll9rglGN3qqSEBK1Zo+XL1amTZsyQpMREbdqk2bOVl6cuXfxZKgAAJhA0\nwe7o0aNdu3bdv39/XFxccnLytddeW7t2bUm//PLLvn37Pv744ylTprz11lsbNmxo6Li7hgDg\n2J0aFydJ995rf8LJNgAAPCVogt3kyZOPHDmyfPnylJSU0u9euXJl/vz548aNmzp16qxZs3xf\nHsrh2J1qrOE5PuFkGwAAnhI0zRPvvffesGHDnKY6SeHh4WPHjh00aNDbb7/t48LgUunDc94+\nTld6RFz79lLxHljjSY8e3q0EAABfCppgd+LEiRtvvLH8z7Rp0yY/P9839QAAAASaoAl2MTEx\nO3bsKP8z27Zti4mJ8U09CC5c8wAACAVBE+z69eu3YsWKF1544cKFC6XfPXv2bGZm5sqVK1NT\nU31fGwAAQCAImuaJrKysTZs2TZw48emnn+7UqVOLFi3q1KljsVgKCwsPHjyYm5tbVFSUlJT0\n1FNP+btSmMGQIVq6VAUFeuIJvfOOzpxRfLxeeklt2+rJJ7VihU6fVny8XnnFelYPAIBAEDTB\nrkGDBps3b54zZ87ixYs3btx45coV21s1atRITEwcOXLkyJEjw0uPoAUqLtBGKwMA4I4wi8Xi\n7xoq7Pz584cPHzZunqhXr15sbGyE8XvYOz7//POuXbteuHDBq/8UBJSMDL36qsaM0dy51iep\nqVq+XAMHasUK65Px4zV7tj77jNHKABBaLl68WLNmzc8++6xL4P0CCJoVO0eRkZFxxqBbwJsY\nrQwACC5B0zwB+B6jlQEAwcU8wW7fvn09e/bs2bNnhb5q//79tWrVCitX165dJf3666/eKRyB\ny/ejlQEAqIqg3Ip16syZMx999FFFv+raa699//33L5W76rJ69erZs2dfvny5CtUBAAB4nXmC\nXevWrb/++uuKflW1atW6d+9e/mf27dtX2aIAAAB8xzzBLjIysm3btv6uAgAAwG/Mc8ZO0okT\nJ/bu3evvKgAAAPzDVMHu+eefZwwKAAAIWaYKdoCnZGfLYlHLlvYnWVmyWNStm/1JRoYsFg0e\n7PvqAABwjmAXWoYMUViYTp3SqFGKilKtWurcWbm5KirS+PFq1kx16qhLF331lb8LBQAAFRc0\nzRMdOnRw+Zn//Oc/PqgkqHEFKgAAJhY0wW7btm2SapSbNUJk1NyQIVq6VAUFeuIJvfOOzpxR\nfLxeeklt2+rJJ7VihU6fVny8XnlF7duX/Frj+oS4OE2ZIkkJCVqzRsuXq1MnzZghSYmJ2rRJ\ns2crL48rUAEACDJBsxU7ceLE2rVrf/PNN+fL9thjj/m7TF+wrbo1a6a1azVvnnbsUEqKUlMV\nGalVq7RokXbvVnJymbddcQUqAACmFDTBbtq0aS1btkxLSyv/lohQ4LjqlpCg9HT17atDhxQZ\nqRkzlJioAQOUnq78fOXlOf8OXIEKAIApBU2wq1Gjxr///e9du3Y9+eST/q4lIFRl1Y0rUAEA\nMKWgOWMnqU2bNseOHSvnIF2fPn0aNGjgy5L8iFU3AABQQjAFO0n16tUr593u3bu7vPjVNFh1\nAwAAJQTNViwAAADKR7ADAAAwCYId3MWtFU7xYwEABA6CXWipyhWoVZ+fZ0oh+2Mh0QJAACLY\nwV1Vn59nSiH7YwnZRAsAgYxgF3yqsupWdcF4a4UP1paC8cdSRSGbaAEgkBHsUDHBOD/PB2tL\nwfhj8YgQTLQAEMgIdqiYYJyf54O1pWD8sXhEyCZaAAhMBDuECtaWvCFkEy0ABCaCHUIFa0sA\nANMj2CFUsLYEADA9gh0AAIBJEOwAAABMgmAHd/l3fl7A4scCAAgcBDsAlUGiBYAARLADAAAw\nCYIdzI+1JQBAiCDYAQAAmATBDgAAwCQIdgAAACZBsEOAGjJEYWE6dUqjRikqSrVqqXNn5eaq\nqEjjx6tZM9Wpoy5d9NVX/i4UAICAQbBDgIqIkKSUFDVrprVrNW+eduxQSopSUxUZqVWrtGiR\ndu9WcjIXvAIAYEWwQ4CqXl2S4uI0ZYoSEpSerr59deiQIiM1Y4YSEzVggNLTlZ+vvDx/1woA\nQGAg2CGg9e9vfx0XJ0n33mt/0qqVJB096tuaAAAIVAQ7eItHDsk1a2Z/bazhOT6pUUMSW7EA\nAFgR7OAtHjkkZ0S38p8AAAADwQ7ewiE5AAB8jGAH7+KQHAAAPkOwg3dxSA4AAJ8h2MG7OCQH\nAIDPEOwAAABMgmCHAJWdLYtFLVvan2RlyWJRt272JxkZslg0eLDvqwMAIBAR7AAAAEyCYAcA\nAGASBDsAAACTINjBWzgkBwCAjxHsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYA\nAAAmQbADAAAwCYIdAACASRDsgMAyZIjCwnTqlEaNUlSUatVS587KzVVRkcaPV7NmqlNHXbro\nq6/8XSgAIPAQ7AC3+CxvRURIUkqKmjXT2rWaN087diglRampiozUqlVatEi7dys5WZcuVf1f\nCwBgKgQ7wC0+y1vVq0tSXJymTFFCgtLT1bevDh1SZKRmzFBiogYMUHq68vOVl+eBfy8AgJkQ\n7AC3+Dhv9e9vfx0XJ0n33mt/0qqVJB096oF/EADATAh2QAX4LG81a2Z/bWRKxyc1akhiKxYA\nUBLBDqgAn+Ut41uV/wQAgBIIdkAFkLcAAIGMYAcAAGASBDvAF5hOBwDwAYId4AvuT0v59Vd/\n1woACFrV/V0AEBIcp6VISkjQmjVavlydOmnGDElKTNSmTZo9W8eP+7NOAEBQY8UO8B13pqUM\nHy6LRS1bSr9t4I4fr4cf1oAB9g3cIUP05z/rL39hAxcAUAzBDnBLdrY9bxmysmSxqFs3+5OM\nDFksGjy4zG/izrSUgQPtR/GWL5ekXr3UpIl69lTNmvryS/3Xf6l3b64XAwA4QbADfMfNaSm2\no3hdu0rSt99q+3a1aKF169Sliy5cUF6epk3jejEAQEkEO5iNCfpPbReXGdu1hYX2i8tuv12S\nzp+3JzmuFwMA2BDsYDbu958G7Pal41E8g+0oXvXf+p1sSY7rxQAANgQ7mI1j/2lCgtLT1bev\nDh2yL3oF/val48G7sp6Q5AAApRHsYE7u9J8G7PYlF5cBACqHYAdzcqf/lEUvAIDJEOxgTuUv\nei1YIElFRb5rsHBzWsqDD3rsnwggFJigXQyeRbBDKDLW8GbNCuIGCwCQKdrF4FkEO4SiatUk\nKTo6iBssAECmaBeDZxHsELo6drS/DswGi+xsZWYWe5KVZd1HtnF53QUA0wvqdjF4FsEOoatR\nI/vrshos/v53n55f8cjFZQBCDe1isCHYIXSFh5d8UrrlwvifSM6vAKg0H/Q3MCMJNgQ7mI07\ni17GxsQ997j+bkb44/xKFdG4h1BGfwN8iWAHuMb5lSriFxtCGf0N8CWCHeAa51eqiF9sAH8f\nwjcIdoBrnF/xCH6xIZTx9yF8g2CH4MAhLRPgFxtCGX8fwjcIdggOnj2k5f5UkRtu8PS/SQjj\nFxsCX9D9DcmMJJRAsENw4JAWAB+g0QfBjmCHYMIhLQBexd+QCHYEOwQTDmkB8AH+hkTwItgh\nmPj+kBbnV4AQxN+QCF4EOwBBL+gOvCPAefZvSP4+hC8R7AB4nbd/sXHgHQAMBDsAQY8D7wBg\nINgBMAkOvAMAwQ6ASXDgHQAIdggOnD6GS9xsAQAEOwAArPgbEsGOYAfA85g/AgB+QbAD4HnM\nHwEAvyDYAfA85o8AgF8Q7AB4C/NHAMDHCHYAvMVn80c48A4ABoIdAG9h/ggA+BjBDiiJjk4A\nQJAK7mB38eLFvLy8DRs27N+/39+1wDzo6AQABKmgCXbTp0/fsGGD45P58+dHR0d36tTpjjvu\nuOGGGzp06LB9+3Z/lQcz8XZHJyuCAAAvCZpgN3ny5A8++MD2H997773Ro0cXFRXdd999o0aN\n6tq169atW2+77bZ9+/b5sUiYifc6OlkRBAB4SXV/F1BJEyZMqF+//ubNm9u0aWM8efvttwcO\nHPjMM8+89tpr/q0N5uC9jk7HFUFJCQlas0bLl6tTJ82YIUmJidq0SbNnKy9PXbpUrnwAQCgK\nmhU7R8ePH9+zZ88jjzxiS3WS+vfvf++99/7v//6vHwuDmXi7o9PcM96YPwIAfhGUwe78+fOS\nHFOdoW3btj/99JM/KgIqzGcz3gAAoSMog11MTEz9+vWPHDlS4vmPP/5Yt25dv5QEVBQz3gAA\nHhdMwe7QoUNbtmzZu3dvQUHB2LFjX3311aKiItu733333f/8z/907drVjxUilNHrCgDwu2AK\ndkuXLu3YsWNcXFzjxo2fe+65vXv3vv/++8ZbS5Ys6dChw7lz5yZPnuzfIhGy3O91/fVXf9cK\nADCpKnXFFhQUnD59+rrrrvNQMeX517/+dcrB6dOnT5061bBhQ+PdU6dONWjQYNmyZR07dvRB\nMUBp7ve6Hj/uzzoBACZWXrDbuXPnpEmTdu3a1aJFi7S0tFGjRoWHhzt+YObMmTNnzrRYLF4u\nUpKGDx9ezrsPPPDA6NGjq1ULpgVIBKzsbGVnF3uSlaWsrGJPMjKUkeHka93pdT13zjN1AgBQ\nQpnB7rPPPuvRo8eFCxdq1ar1448/fvrpp8uXL8/JybEtkgWUOnXq+LsEQHKv15WtWACAl5S5\nxPXcc8/9+uuvOTk5hYWFZ86c+fvf//7555/36tXr7NmzvqwPCC7u9Lo+/LB9xpvRcjF+vB5+\nWAMG2FsuhgzRn/+sv/yFlgsAQAWUuWK3c+fO1NTUfv36SapZs+aECRPatWvXp0+fQYMGrVq1\nqsSebCDYt2/fqFGjJK1bt879r7p06dLSpUuNwXhl2bRpU1WLA8pga7lIStLatdq5U6NHKyVF\n8fG6+WatWqUDB5SRoeRkHT7MPBQAgAtlBrtjx47dcMMNjk/uuOOO7OzsBx544P/9v/83e/Zs\n79dWMWfOnPnoo48q+lXHjh177rnnLl68WM5nfvnlF0m+OUqIUMP1YkBQGDJES5eqoEBPPKF3\n3tGZM4qP10svqW1bPfmkVqzQ6dOKj9crr6h9e3/XitBW5lZsVFTU9u3bSzwcNmzYpEmTXnrp\npeeff97LhVVY69atv/7666+//rpCX9WiRYvdu3fvK9f06dMlhYWFeadwBChfzqUz9/ViZWHy\nH4KI+/OMuDAG/lVmsOvfv/+77777yiuvXCr+X9JnnnkmPT398ccfnzBhguN8YL+LjIxs27Zt\n27Zt/V0ITMKX/zsemteLBeBvSrImyuK4uJ6QoPR09e2rQ4cUGakZM5SYqAEDlJ6u/Hzl5fm7\nVoS2MoPdlClTWrRo8eijjyYnJzs+DwsL+9e//vWnP/1p1qxZL7/8svcrLMlisfzwww/r1q3L\nycnJyclZv3794cOHfV8GTM+X/zsemteLBeBvygDMmggoThfXbX8PbN0qSbffzt8D8Kcyg93V\nV1+9devWsWPHll4DCwsLmz179ltvvXXjjTd6ubxiCgoKHnvssejo6BtvvPHOO+/s379///79\ne/ToERsbe+21106bNu0c88Hgae5vkmZn23tdDVlZsljUrZv9SUaGLBYNHuzNioNNQG1DB2DW\nREBxurhu+3ugUSNJevBB/h6AP5U3oPiaa66ZM2dOWe8aucoLJTl39OjRrl277t+/Py4uLjk5\n+dprr61du7akX375Zd++fR9//PGUKVPeeuutDRs2BOakPQSp0Nwk9aUA/AkHVNZEQHG6uG77\ne6B9e61apf/6L504UawF6sUXdeqUJKWkaPNmGi/gXVW6UsyXJk+efOTIkeXLl6ekpJR+98qV\nK/Pnzx83btzUqVNnzZrl+/JgVqG5SepLAfgTDsCsicDXv78OHLC+LvH3gLGkJykykqlG8Lqg\nuYPrvffeGzZsmNNUJyk8PHzs2LGDBg16++23fVwYAJMJwKyJwFfO3wPVf1tC6dePLX54XdAE\nuxMnTrg80temTZv8/Hzf1AMAgE2NGlqwQJKKirR6tST16WPtorh82fqZ4cOtXRRs8cN7gibY\nxcTE7Nixo/zPbNu2LSYmxjf1AB5BywVgGsbK3KxZqltXkv7yF2sXxYYN1g+MHWvtoqhWTWKL\nH94RNMGuX79+K1aseOGFFy5cuFD63bNnz2ZmZq5cuTI1NdX3tQEAYMS16Gh17y5JffpYt1xt\nd3B26mTdcv3PfyS2+OEdQRPssrKyEhISJk6c2Lhx4549e44YMeLRRx8dN27c8OHDb7/99iZN\nmjz99NNJSUlPPfWUvysFAJiNO4vrxnbq449b/2NSklq0kKQjR6xP9u3T9ddL0tKlkjRmjIvh\ndkzMRiW47or99NNPb7rppkbGfJ7icnNzDx8+PGDAAC8UVlKDBg02b948Z86cxYsXb9y48cqV\nK7a3atSokZiYOHLkyJEjR4bb/jICqiY7W9nZxZ5kZSkrq9iTjAxlZPiwJnPhJwxTctxgzcmR\npE6d9NlnkjRrlozjQl266KOPdOCAi05Y24S8pCTaaeEu1yt2SUlJn3zyidO3Nm3a9NBDD3m6\npDJFRERMmDBh27ZthYWF33///datW7du3bpnz57CwsLNmzc/9NBDpDoAVcGRR1SdY8AylkRs\nw1V//tn6boMGktSnj4tOWCZmoxLKXLHbu3fv3r17jdfbtm2LjIws8YFz584tX77c6Yk3b4uM\njIwzeooAAP42ZIiWLlVBgZ54Qu+8E3IDeJ2uPR85oldfVZs22rLF+nDsWM2dq1tusd48Jik2\nVnKjE5aJ2aiQMoPdm2++OWnSJOP1008/XdbHBg4c6PmiAADBgx3DstSrZ39tbCkZa3UGY0HO\nZScsE7NRIWVuxf73f//3jz/+uHLlSknDhg17rpS//e1vb7755pIlS3xYLQAEPfOdiPfSjqEJ\nflBGn+wTT8hisW7LGj+rgQNLbvqXs8XPxGxUSHnNE02bNu3bt+/dd989duzYzp07+6wmADAx\ns65veXzH0Kw/KMCrXHfFrjZGaAMAPMFxfUtSQoLWrCl2Z3xiojZt0uzZystTly7+LLVCPL5j\naNYfFOBVrrtiLRbLihUr/vjHPyYkJLR1xgdVAoDJmO9EvJd2DIPoB1W6q/pPfyrZVX3PPbJY\ntGqVwsJUVCRJo0aVuct84oSv/xVgAq5X7F588cWJEydKqlWrVg0WuwHAEzgR7yZT/qCMXeZ/\n/EOSJk1S06bOd5m3b/dvmQhKrlfsZs+e3atXr3379p09e/aUMz6oEgBMhhPxbjLlD8pIqFFR\nknTddWW2m5w7598yEZRcB7v8/PypU6fecMMNPqgGAAATcGfY9V//au+ELWuX+c03mZiNinEd\n7KKioiwWiw9KAQAgdJhylxl+5zrYpaWlvf766z4oBQHIBHOkACAwmXKXGX7nOthNmTJl3759\nQ4cO/eCDD3bv3r23FB9UCX+xzZFq1kxr12rePO3YoZQUpaYqMlKrVmnRIu3ereRk/qwEQhd3\n7AKBw3Wwq1u37gcffLBkyZLevXvfdNNNcaX4oEr4C1dQA4BT3t7QWLBAkoqK2DBBxbged5KW\nlhYREVG9uutPwqyCaI4UEPic3hmflVXsSUaGMjJ8WFNACvAflLcvxjB+686apYEDuXgDFeA6\nrnEbLDjhCwAlePtiDOOe2ehoLt5AxbjeirU5c+bMrl27GFwXgjjhC7iJfiOXTPYj8vaGRseO\n3v3+MB+3gt3HH3/coUOHevXqtW3b9osvvjAe9u3b96OPPvJmbQAQZOg3cslkP6LKbWi4025i\nhLb776/M90cocx3scnNz77rrru+//75Xr162h8ePH8/Ly0tOTt66das3ywOAYGIcpTQAACAA\nSURBVEK/kUsm+xF5e0ODDRNUlOtg9/TTT0dHR3/77bcLFy60PWzcuPGOHTuio6OnTZvmxeoA\nIAjRb+QSPyLAS1wHuy+++GLMmDHNmzcv8bxJkyajR4/+5JNPvFMYAAQr+o1c4kfklOMBRKNx\nceBA+wHEv/9dksaMCZoDiPAL18Hu9OnTLVq0cPpW06ZNCwsLPV0SAAQ3ts9c4kfklOMBROP0\n03ff2Q8gpqVJ0oEDQXMAEX7hOthFR0fv3r3b6VuffPJJTEyMp0tCAGGgPAD4jOMBxKuvlqQe\nPewHEJs2laQ+fYLmACL8wnWwS05Onjt37lfFV34LCgr++te//utf/7r77ru9VhsAACHH8QDi\ndddJxQ8gxsZKHEBE2VwHu6lTp9apU+cPf/iDkeEmTZqUkJDQtGnTZ599NjY2dooxOREAgFDi\nvQ0N47ih8f0bN7Y/Mb5/69bSbwcQ2TBBaW5txW7ZsuWhhx46ePCgpO3bt2/fvr1u3bpjxozJ\ny8uLioryfpEAAIQKDiCiKtwaUNykSZO5c+ceP3782LFje/bsOXbs2PHjx+fOndukSRNv1wcA\nQFAz2WUbCHAVuFIsLCwsKiqqZcuWrNIBgFP0G7kUgj8i9y/b+PVXf9eK4Ffd5ScsFsubb765\nePHiI0eOXHLWYP3NN994oTAAAMzAsddVUkKC1qzR8uXq1EkzZkhSYqI2bdLs2Tp+3J91whxc\nB7sXX3xx4sSJkmrVqlWDfX4AACrOncs2zp3zbU0wI9fBbvbs2b169Zo7d+4NN9zgg4IAADAf\ndy7bYCsWVef6jF1+fv7UqVNJdQAAVJo7va4PPxxyBxDhca6DXVRUlMVi8UEpAACgfPTYonyu\ng11aWtrrr7/ug1IAAEGHnOFj7vfYcp9saHJ9xm7KlCkDBw4cOnToAw88EBsbW7p/oqXjqjEA\nIJTYckZSktau1c6dGj1aKSmKj9fNN2vVKh04oIwMJSfr8GEG7XqA+z22eXnq0sWfpcIvXAe7\nunXrGi+WLFni9ANs1AJAyCJneMSCBZJUVKRRo/TOOzpzRvHxeukltW2rJ5/UihU6fVrx8Xrl\nFevn3emx5T7Z0OQ62KWlpUVERFSv7vqTAIDQFJo5Y8gQLV2qggI98UR5acydof7G79hZszRw\noIuFz+Rkyb0eW7ZiQ5PruFbWQh0AAIbQzBlubkP/8IMuXiy2DZ2VpaysYt+qTRt9/rm6dXN3\niDH3yaIsFViH+/nnn/fs2XP27Nm6deu2atWqQYMG3isLABBEQjNneHwbmiHGqDq37or99NNP\nO3fu3Lhx4y5dutx5552dO3du1KhRz549uUwMABDiPLgNzRBjVJ3rFbvc3NyePXtevny5W7du\nrVq1uuqqq86ePfvtt9+uX7++a9euubm5rYz/2gIAEHo8uA0dmguf8CzXwW769OmNGzf+8MMP\nW7du7fh827ZtvXv3njp1KofwAAAhizSGgOJ6K/bzzz8fO3ZsiVQnKSEhYezYsevXr/dOYQAA\nAKgY18Hu9OnTzZs3d/rWddddd/LkSU+XBAAAnOM+WZTPdbBr0qTJ7t27nb717bffNmnSxNMl\nAQCCRnY2OQMIIK6D3V133fXyyy+vXLnS8YYJi8WSk5MzZ86cPn36eLM8AAAAuMt180RmZuaa\nNWv69esXHR1900031a5d2+iKPXbsWNOmTTMzM31QJQAAJpadrezsYk9KDzHOyFBGhg9rQnBy\nvWJ33XXXbdmyJT09/dy5c+vXr3/33XfXr19/8eLFjIyMrVu3lnX8DgAAcwvebeghQxQWplOn\nNGqUoqJUq5Y6d1ZuroqKNH68mjVTnTrq0kVffeXvQlFxbg0obtGixcKFCwsKCn788cc9e/Yc\nPXr0xIkTCxYsaNq0qbfrAwAAnmVchtawoa6+Wt26qUYNffmlkpLUq5fCw9W9u2rW1BdfWNMe\ngotbwc5w7NixY8eOHT58+KeffjpuXFYHAACCTfXfzmHl5aldO23cqE6ddPGivvpK33+v2Fj9\n7/8qOVmXLqlPHxNe8mtubgW7BQsWXH/99TExMe3bt7/jjjvatWvXpEmTNm3aLFu2zNv1AQAA\nLzEuuk1I0J13SlJRkSIjNWOGEhN1992SdPKk8vL8WyMqxnXzxLx588aOHVuzZs2ePXs2a9as\ndu3ap0+f3rNnT15eXlpa2sWLFx944AEfFAoAADzLdtGtbQ3PdtGt7f4MNy+6RYBwvWI3a9as\nXr165efnf/jhhwsXLpwzZ84bb7zx5Zdf7tu3r2XLljNnzvRBlQAAwFDR1ofSn1+1yvrW4sXW\nz7/6qvWJ40W3BrZig4vrYHfgwIHJkyfXr1+/xPPrr79+woQJ+/bt805hAADACaP1ISVFzZpp\n7VrNm6cdO5SSotRURUZq1SotWqTdu62H5Jx+3nZp1FVXWT//88/WJ1x0G+xcB7v69euHh4c7\nfSs8PPyaa67xdEkhYMkSNW+u6tU1caK/SwEABBlj29R2PC49XX376tAh+/G4AQOUnq78fOvx\nuE8/laTYWP3nP+rdW2PG2DdeL1xQ375KT7c/QbBzHez++Mc/vvvuu07fWr16dUpKiqdLMrvT\np5WRocJCTZumXr38XQ0AICh99519g/W99yRp2zb7huzChZI0YoS++krVqknS9u32FbuLF63f\npGZN64rdhQv++beAx7mO6NOnT+/Xr9+BAwcGDx4cFxdXq1Yt4+aJ11577eLFi4888siRI0ds\nH2ZesWt79ujcOY0YoUmT/F0KACBYGSekUlKUlKT779f8+Tp8WCkpio/XzTfr0Uc1fbqOHFFy\nsurVk6Tf/U5TpkhSQoLGj9epU5I0caJatlRiopo31/79/vuXgee4DnYxMTGScnNzlyxZUvrd\nuLg4x//oeJ8snDt/XpLq1vV3HQCAIGYchjM2ZI3Lx7p10/r16tRJM2ZYLyjr3l3vv289Y+d4\ntXtkZMnvxi8l03Ad7Pr161ezZk0flBISevfWBx9I0syZmjlTo0bpH//wd00AgGBlm1ciydgz\ns80rkWTcD3XliiRFRdmft2qlY8eKfZ9bbtHOncWeGPfSPvSQJ6uFD7gOdjk5OT6oI1RkZqp7\ndz35pPr317Bhuv56fxcEAAhijtNJjEZHxydGS4Sxl1a6PWLOnGIX3Up69NGSF90a8Q5BhDYY\n37r1VuufTnFx6tfP39UAAIJb6ekkzCsJcW4FuytXrnz55ZdHjx695GxM4eDBgz1dFQAAACrM\ndbDbunXrwIEDDxw4UNYHCHYAAACBwPUcu3Hjxp06derPf/7z3LlzFzjjgyoBAAgiFb31q0Jf\n/v77ql1bH39s/3xWliwWxcban2RkyGJRx46S1Lq1JF17rf3d226TpPh4+5OkJEnq0sUj//bw\nJ9crdl9//fUbb7zRjwNhAAC4x3aLV1KS1q7Vzp0aPdo+ZG7VKh04oIwMJSfr8GEnp+Lc+fIh\nQyTp8mXf/osh4LlesatTp06s418BAACgXBW99asSX26MkS0xo8Sphx+WxVKsAdZY4SvRAGux\naPDgqq41wu9cB7tBgwa9+eabPigFAOAp/HoOBI5D5owc5jhkrlUrSTp6tJJf/sgj0m8jTgzl\nxDX32RYLbfeP7dihlBSlpioy0nr/2O7dSk6Ws3ZK+J/rrdgZM2YMHjx40KBB9957b0xMTI1S\nS8bdHP9LBAAIAFXcCoRHlB4p5/jE+LGXE4+q+OWV47hYKCkhQWvWaPly64UWkhITtWmTZs9W\nXh5n8gKR62D3zTffbN++/fDhwytWrHD6Aa4RA4BAw6/nQFDFIXN+nFFXxbVG+JHrYPfoo48e\nP3580KBBcXFx1UsPrkZFdesmojAAn+DXMyrHL4uF8AjXQW3nzp0LFiy4//77fVANAMCD+PWM\nyuFCi+Dlunmidu3abdu29UEpAADP4tczEGpcB7v77rtv9erVPigFAAD4WIkG6oULJWnnTnsD\n9bPPStL33/u1SrjNdbB7/vnnP/7440ceeWTdunW7d+/eW4oPqgQAIBjZYpOxQtKzp33uzLJl\nkjR8uJ/nzpSYb9K1qyQ9+qh9vsl990nSxIns2gcH12fsGjZsKGndunVz5851+gG6YgEAcJSd\nrexsySE29e2rBQuKzZ3p0EEzZzqfO2P7cpusLGVlFXuSkaGMDA+UWqKBOi5On3yiH39Uly7W\nBuo2bSTp5EkaqIOD62CXlpYWERFBPywAABUVLHNnHBuoDY4N1AYaqIOC67i2ZMkSH9QBAIBZ\nBezcmSFDtHSpJC1YoKFDdeaM4uOVkaHsbL3zjp54QqdPKz5ekydr2jT7VqynFgvhDa7P2Nn8\n/PPPmzdvXrdu3Zdffnnq1Cnv1QQAqKLs7ApcDwpvC9i5M198YX2xe7cuX9aVK8rLsx7+27VL\nly7p8mXl5em55ySpqMjaYFG9usLC9NFHevBB1a6tatUUHq74eH3+ORfW+Z9bwe7TTz/t3Llz\n48aNu3Tpcuedd3bu3LlRo0Y9e/b85ptvvF0fyrRkiZo3V/XqmjjR36UAAMoTsHNnbMes7rhD\n69bpn/9UWJgKCyUpMVHvv69//1vh4bp8WZJmzbI2WNx6qyTdc48+/VSDBikzU+Hh2rVLd9yh\niAjuk/Uz18EuNze3Z8+eW7Zs6dat24MPPjhu3LgRI0Z06tRp/fr1Xbt2/b//+z8fVImSTp9W\nRoYKCzVtmnr18nc1AIAAUmKCSa1a9lbcEitqYWHWLxk3TgkJSk/X735nfTJ6tBITNWCA/eRf\ndLSmTFFCgnXv+Px5xcfrX/9SZqbuu0+//qoLF9Svn/Wr0tOVn6+8PJ//y4c812fspk+f3rhx\n4w8//LB169aOz7dt29a7d++pU6dyCM8P9uzRuXMaMUKTJvm7FABAYLG14iYlae3aYq24N9+s\nVavsrbj165f82muuKfkkJsb6omPHkm/ZTgoaBwflcFKQC+v8xfWK3eeffz527NgSqU5SQkLC\n2LFj169f753CUK7z5yWpbl1/1wEACDiOrbjGOlzfvjp0SJGRmjGj2Iqa8cvEUbVSuSA83Pqi\nUaOSb9lOCtq2dG17r1xY5y+ug93p06ebN2/u9K3rrrvu5MmTni4JrvTuraQkSZo5U2FhGj3a\n3wUBAAKOO624xuE5N9kSnk2AnBSEI9fBrkmTJrt373b61rffftukSRNPlwRXMjOtN7z076+c\nHI0Z4++CAAABx51WXOOGgXXrijVQS5ozp1gDteGee7xQJTzNdbC76667Xn755ZUrVzreMGGx\nWHJycubMmdOnTx9vlgdnbr3VumIXF6d+/dSunb8LAgA455u5M07ve929u+R9r/v3V/4fgWDh\nOthlZmbWqlWrX79+MTExPXr06Nu3b48ePWJiYvr371+vXr3MzEwfVAkAAMrCfa+wcR3srrvu\nui1btqSnp587d279+vXvvvvu+vXrL168mJGRsXXr1rKO3wEAAN8o0S1hnKj78Ud7t4Tjfa+G\nBQuk37ZiBw60jkTp1UsffyxJEyZYxw7//vf6+Wfrl3Ttap2TcuKEL//lUDFu3QDbokWLhQsX\nWiyWY8eOnT17tk6dOtHR0d6uDAAAuK9C970aWfDCBUlatEgFBRo92t4e0aePunVTZqZ27dKP\nP1ofzp+vK1eUkaHt271QPTzExYrdTz/9tHnzZuN1WFhY06ZNW7ZsGR0dPWfOHG4VAwAgcDj2\nRpT1xLYVa4w16dBBFov69rWORDl7VpLGjNE77+irr1RUJItFJ0+qZk1ddZVmzFCLFho6VOfO\n6ZprVLu2Hn/cem+YcXDQ8aQgF9b5S3nB7pNPPmnVqtWUKVNKPN+5c+e4cePatm37ww8/eLM2\nAADgrtLDRy5csLZTPPOM/YnRTvH555LUooW98WLPHutnNmxQbm6xgXZNmui//1s7diglRZ98\nIkmPP869YQGqzGB39OjRAQMGFBYW3nHHHSXe+v3vf//SSy8dPXq0d+/e50sPNwQAAP6TnW2d\nlzB5srWdIjvbGvteesnaTnH77ZK0cqV1TzYlxX4Lxf79SknRpk32b1hQoLlzdc89OnTI2qjR\nogX3hgWoMoPdggULfv7553nz5k0qdWlVWFjYo48++uKLL+7Zs2fRokVerhAAAFSMsd7WvLn9\n8gkj6tWoYW2nuO46STpxQgUFkhQXp+7drV/bo4cOHSo2jrhPH+Xnq3ZtSbrlFvtz7g0LQGUG\nu5UrV954440jR44s6wPjxo1r3rz5QmNaDgAACDC2rCYpKkqSOnQo+Zlz56TijRdG5ouNtT8x\nXhufbNDA/px7wwJQmcHu0KFDf/jDH6qVvjTuN9WrV+/cufOuXbu8UxjK1a2bLBbNmOHvOgAA\nHlBiwrAxfCQ31z5h2JgzYnQquK9xY/tr4/d5w4YlP/Prr1LxNgtjrc5YnzMY27VXrthfI2CV\nmdt++eWXq6++uvwvvvrqqy8YrdIAAKCySkwYnjfP2qlgmzBcuU6F0re7lhXLSjdelL2wg4BW\n5v+/XX311YcOHSr/i7///vvGjn8O+ITFYvnhhx/WrVuXk5OTk5Ozfv36w4cP+7gGAAA8qMSE\nYWP4yKFD9gnD5XcqlL64rH17qfjGq/GkRw8v/ls45aXFSJSlzBXVjh07fvTRRydOnChr3W7v\n3r2bNm26t/T0Q68pKCh45plnXn/99Z9++qnEW7GxsRkZGY899thVV13ls3oAAPAgx4Nuxu0R\njr9jg7RTwbYYmZSktWu1c6dGj1ZKiuLjdfPNWrVKBw4oI0PJyTp82MnCISqqzBW7YcOGFRYW\nPvTQQ5cvXy797i+//DJ06NDLly8PHz7ci9U5OHr0aGJi4osvvli/fv3hw4dnZmb+7W9/+9vf\n/vbUU0+lpaVdvnx5ypQpt956a4HR3gMAQLBxPOhmrOE5PvFsp0J2tvVWMRvbkOFGjewP9+wp\nuRZ4zz0VmzxcxcVIVFSZK3YDBgzo2bNnTk5O586d//rXv/bs2bNu3bqSjh8/vmrVqmnTph08\nePC+++675557fFPo5MmTjxw5snz58pSUlNLvXrlyZf78+ePGjZs6deqsWbN8UxIAAB5Uer3K\nNCtYplyMDExlrtiFhYWtWLGiT58+W7du7d+/f/369Rs2bFivXr0mTZpkZGQcPHgwNTX13//+\nt88Kfe+994YNG+Y01UkKDw8fO3bsoEGD3n77bZ+VBACA3zk9xHb8uCRNn24/xFbR2PTEEyXX\n6gYOlMWibt3sT9y/N8yXi5EhrrymlwYNGqxZs2bNmjVpaWnXX3/9pUuXJLVq1WrEiBGffPLJ\nsmXLfHmg7cSJEzfeeGP5n2nTpk1+fr5v6gEAIBA47ajdvl333KPoaHtH7cqVunjRSSxbv75k\ngDP2ZCsX4Mpi4sXIQON6HE2fPn369Onjg1LKFxMTs2PHjvI/s23btpiYGN/UAwBAIHA8xCYp\nIUFr1mj5cnXqZJ12mpioTZs0e7by8tSliz9LhQ8EzZiafv36rVix4oUXXnA6Oe/s2bOZmZkr\nV65MTU31fW1BackSNW+u6tU1caK/SwEAVBWH2GAImgHSWVlZmzZtmjhx4tNPP92pU6cWLVrU\nqVPHYrEUFhYePHgwNze3qKgoKSnpqaee8nelweD0aWVkKCJC06apY0d/VwMAqKpAOMQ2ZIiW\nLlVBgZ54Qu+8ozNnFB9vvcps+nR9+KFOn1Z8vH7/e++WEeKCJtg1aNBg8+bNc+bMWbx48caN\nG68YN5tIkmrUqJGYmDhy5MiRI0eGlx6zjdL27NG5cxoxQpMm+bsUAICys5WdXexJVpaysoo9\nychQRkaZ3yEQDrE5HVlnpMyaNe0j63bu9HVhISVogp2kiIiICRMmTJgw4fz584cPHz5z5oyk\nevXqxcbGRhj/bYKbzp+XpLp1/V0HAMA8yjrtJ2niRLVsaT/tB+8JmjN2jiIjI+Pi4tq3b9++\nffuWLVuS6iqmd28lJUnSzJkKC9Po0f4uCADgXcYs4qIiX9zrVfq03+uv27tujdN+b77p4a5b\n2ARlsEOVZGbq2WclqX9/5eRozBh/FwQA8C5jLW3WrGIjUVJSlJqqyEj7SJTkZA+cwwuE036h\nzPlW7JEjR9z/Fs2bN/dQMVWyb9++UaNGSVq3bp37X/Xjjz8OHDjw4sWL5Xzm+PHjkiwWSxUr\nDBS33irjhGJcnPr183c1AACvq1ZNkqKjfTESJRBO+4Uy58GuRYsW7n+LAEk8Z86c+eijjyr6\nVY0aNUpNTT1vnDkrw5dffnno0KGwsLAqVAcAgJ85TkHw5UiUqVO1bp21W3bpUkmaPFk33KC2\nbfXkk1qxwtot+8orat/e8//0UOM82AXjNLjWrVt//fXXFf2qyMjIP//5z+V/Zv78+Tk5OZWt\nCwAALyoqkqRrrtGoUfYhI19+qbZtNX68NTbVri1J999v/ypfbpIa39nolh0/XtOm6eBBpaQo\nPl4332zvlk1O1uHDLO9VlfNgt2zZMne++OzZs0ZraiCIjIxs27atv6sAAMCnnA4ZKRGbhgyR\npNI7T75JUcYgMqNb1pjqkpioL77gbgyvqNK4k5UrVz722GM//vijp6pxh8Vi2b9//w8//GBk\nyvr168fFxVVo7xgAANNw50qxuDjt2qWdO9W6td/qdOyWbdpU4m4M73Ar2P3888/Lli07cODA\n5cuXbQ/Pnz+/evXqwsJCr9VWUkFBwTPPPPP666//9NNPJd6KjY3NyMh47LHHrrrqKp/VAwBA\ngCj/SrH69SXp+HHf1lSc47av0cxBt6w3uA52Bw4c6NSp03Fn/3WoXr365MmTvVCVE0ePHu3a\ntev+/fvj4uKSk5Ovvfba2rVrS/rll1/27dv38ccfT5ky5a233tqwYUPDhg19U5LfLFmixx/X\nsWOaMEHPP+/vagAA/lf+kBEjSHk7NpV12m/uXEm67TadPav4ePXurbfekqRZszR4sPVjPXpI\n0uLF+stf6KWoEtfB7qmnnjp//vwrr7zSpk2bHj16ZGdnN2/efOPGja+//vqrr77aq1cvH1Qp\nafLkyUeOHFm+fHlKSkrpd69cuTJ//vxx48ZNnTp11qxZvinJP7jmFQBQSiAMGSnrtJ9h/nxd\nuaKMDF24YH3SuLH9Y3v2WGuml6KKXA8o3rRp0yOPPPLII4906dJF0s0339yrV6/nnntu9erV\nQ4YM+eyzz7xfpCS99957w4YNc5rqJIWHh48dO3bQoEFvv/22b+rxG+Oa16FDNWmSevb0dzUA\nAHMaMkRhYTp1qgKXVTie9ktIUHq6+vbVoUPW5om2bTVggNLTde6c9fPDh9s/dvKkJKWlKTHR\n+rH8fOXl+fhf2gxcB7ujR4/ecMMNkqpVqybJNsv3lltueeSRRzIzM71an82JEyduvPHG8j/T\npk2b/Px839TjNx655rVbN1ks1lO1AACzS0+XpOho+5OsLFks5d3rZVt+q+hlFaVP+8XG2p8Y\nTRIlGB9zRC9FpbkOdnXr1jXSUkRERJ06dX744QfbWzfddNOWLVu8WJ2DmJiYHTt2lP+Zbdu2\nxcTE+KYe/+CaVwBAlbmzGvf++5Kz5bfISM2YUd66WunTfsYUPYPTrdXqpc6F0UtRaa6DXVJS\n0j/+8Y+NGzdK+v3vfz9nzhxbJ+z69etr1qzp1fps+vXrt2LFihdeeOGCbXPewdmzZzMzM1eu\nXBmMo5UrgGteAQDFk9mSJZI0cKA9mf3975I0ZkyxfVJH7qzGnTolSX372r/K5WUVGzdK0rlz\n9rxoTK0zLqjq2lV16rBX5HWumyeefPLJ7t27P/bYY1u2bHnooYdGjhx50003dejQYf/+/du3\nbx86dKgPqpSUlZW1adOmiRMnPv300506dWrRokWdOnUsFkthYeHBgwdzc3OLioqSkpKeeuop\n39TjH1zzCgAo3qbQq5feeUfffWcfSpyWpn/+UwcOlNl/4P7oO+Pom+NXlTOjxOi9ffRR9epl\n7YrIyJCk06f1xBNKSdGBA3rgAeuH9+xRy5bFqtq0qdjWMCrHdbDr1KnTp59+mpubK2n48OF7\n9uyZNWtWTk5OWFhY3759fdaC2qBBg82bN8+ZM2fx4sUbN268YuQbSVKNGjUSExNHjhw5cuTI\ncOOIJgAA5lUimUlKTS2WzObP1/jx9rscMjKsGctR6cNw//mPwsKsl7p+/70k/fWvatnSeqnr\na69J0p/+pEWLnA8iMW62uO46e158/nnt2qWICHtenDdPFb/XHRXgeitWUmJi4pgxYySFhYU9\n++yzJ0+e3L9//9mzZ1euXHnNNdd4uUK7iIiICRMmbNu2rbCw8Pvvv9+6devWrVv37NlTWFi4\nefPmhx56iFRXGUuWqHlzVa+uiRP9XQoAoALKH0rssv+g9GG4evWk37ZojUs6jxyxb9GmpUmy\nLgSWc/rNcQxao0aSrIfDDY4NHPAGt4Kd4ejRo9u2bduwYcP3339fu3ZtP97xEBkZGRcX1759\n+/bt27ds2TLCWJJGJRhT8QoLNW2afDWSEABQFUOG6NVXJWnBAnvrgzET4p137INIjEhXTgIr\na/SdsRBodDy0bWtvmDDuAevTx8Ugkqgo+2tjc9ZxCYgVGG9zK9gtWLDg+uuvj4mJad++/R13\n3NGuXbsmTZq0adNm2bJl3q4P3lWJqXis8AGAX9lWM5o2tbc+rFghqdggktmzK/n9HRcCmzSR\nii8EGrNLylkILN3iWvoJvMd1sJs3b97DDz989OjRnj17pqenjx07dujQoZ06dfq///u/tLS0\nxYsX+6BKeEtFp+KxwgcA/mbLSePG2QeRnD4tSaNH2weR/PJLJb+/4xatcWyu9Kat04VAY8v1\n2mvtT267TZJycuw9vDk5ktSypU6etE9XeeEF3XqratWyf+H69ZLUu3cFxiPD4DrYzZo1q1ev\nXvn5+R9++OHChQvnzJnzxhtvfPnll/v27WvZsuXMmTN9UCW8ohJT8bj3sXkk2QAAIABJREFU\nAgACT1kDfivH47eTGV9uHN0bP16SDh50Meu40uOR4TrYHThwYPLkyfXr1y/x/Prrr58wYcK+\nffu8Uxi8rxJT8Txy7wUAwKPKGvBbFcZlFXXq2J8Yl1U4zigpcVlFWYxzdcbRPWMnNzHRxazj\nsm4nczkeGa6DXf369cvqNg0PD/dlVyw87NZbrSt2xlS8du1cfJ57LwD4WyUuMEWAcDy6Z/Rh\nuOzhrWLbb2hyHez++Mc/vvvuu07fWr16dUpKiqdLQrn8eM0r914A8Dd26DwiO7vk2puxGufY\n0GqsxhlDTzzC8aCe0S1bzqzj0l/icjwyDK6D3fTp09etWzd06NB33333u+++O3To0O7du996\n66277777/PnzjzzyyBEHPqgYflPRFb7AR4cvEGzYobNx5+aGpUtd75N6UPl50chhjnnR5X6x\nx0/7hQLXLcgxMTGScnNzlxjX0RUXV/zEpsW4EA6hackSPf64jh3ThAl6/nl/V+OK0eEbEaFp\n09Sxo7+rAVAB7NBVzpAhWrrUerHEO+/ozBnFx+ull6wXS6xYoZ9+kqRdu0pGRgQR18GuX79+\nNWvW9EEpCG5Bl5OMDt8RIzRpkr9LAVAx7NBVjuMNs8ZdrqNH22+YXbVKBw4oI0OjRik52fpj\nzMpSVlaxb+L0drIA4TK5nj6t+Hi98orzK9HMwXWwyzFmzgDlC7qcRIcvELTYoaucEjfMJiRo\nzZpiN8wmJmrTJvsNs6UFeHJyM7kmJ+vwYdP+d8b5Gbtjx44VFBTYXpfPh9UigAVXTqLDF0DQ\nKusom+MBu3IGkVRlIzvAm1c4gqmygl3Tpk3TjMt+paau+LBaBKqgy0l0+AIIVW5uZDudLGOs\n+fz0k+bPV1KS9f8NtOQU4kcwnW/Fpqam3nLLLbbXPqwHwSkzU92768kn1b+/hg3T9df7uyBX\nbr1VV65Iv3X4AkDIcHMj2+m2phEE27TRxInWbU1jZa785JSdrezsYt/c5dG9SnyJTYgfwXQe\n7JYtW+b0NczGmIpXdeQkADCXsg7kScrMVJs29gN5CrDkFOJHMF3PsTPs2rXr559/dvyP27Zt\n805JAAAgIJTe1pRDTrLdSBtSySnAuQ52ly5devDBB9u2bfvNN9/YHm7YsKF9+/YjRoy4YqzT\nwC98P1/Xj/deAECV+wZQUaW3NR0FZp6bMMF+OvCFFyRp1Cj7vXPGL8wpU0x775zrYPfyyy+/\n9tprd99997XXXmt7eOedd6ampi5cuPCVV17xZnkomzE3rrBQ06apVy9/VwMf4sIMAL4SmNGt\nfI6tu/ffL0l799pbd8eNk6T//Me09865DnYLFy685557Vq9efb3DifhWrVotW7YsOTmZYOc3\nxty4oUM1aZJ69vR3NfAVAj2AkOG0M9e29tasmerUUZcuJdfewsOl304HRkdLUrdu9tZdY5Gq\ne3fTDj1xHez27t17++23O33rtttuO3jwoKdLgnuCa24cPIVAD6Cygm4juypj8xxPBzZvLhVv\n3TVmtZly6InrYFevXr0DBw44fevAgQONGjXycEVwR9DNjYOnEOgBhIyKDhw2kmu9etJvpwON\n5GrsOBpPjOR6662SSYeeuA52d99996uvvrpmzRrHh5cuXVqwYME///nPu+66y2u1oWzM1w1N\nBHoA/rZpU7E1P0lLl3pgzc/pruvx45J07Jh919X4q9adgcMhO/TE9V2x06dPf//99+++++7Y\n2NhWrVrVrFnz1KlT33777cmTJ5s2bTp9+nQfVImSPDs3bskSPf64jh3ThAl6/vmqVxccPDXD\nz5eCbhA0ALinnHnIV19tv+Z1504pwMbmBRrXK3ZNmzbdtm3b6NGjz549++GHH65evfrTTz8N\nDw9/6KGH8vLyYmNjfVAlvMhTh/G9NwmFJlCbW2+1rtgZgb5dO38XBMC0fHwgz+mua2GhJD3x\nhH3X9exZKWTW3irH9YqdpKioqHnz5s2dO/fo0aPnzp2Ljo6uXbu2tyuDjxiH8UeM0KRJ/i7F\nGSN3RkRo2jR17OjvagAAXuR0HrKNbR4yyuFWsDOEhYXFxMR4rxT4R4Afxg/w3AkA8JxgnIcc\naFwHO4vF8uabby5evPjIkSOXnG1iO95IgSDTu7c++ECSZs7UzJkaNUr/+Ie/ayouwHMnAMBz\niG5V5zrYvfjiixMnTpRUq1atGvzITSbAD+MHfu4EAASY7GxlZxd7kpWlrKxiTzIylJHhw5p8\nyHWwmz17dq9evebOnXvDDTf4oCD4lGe7az0uwHMnAAABxnWwy8/Pf/PNN0l18IMAz50AAC9z\nZ2yeWdfeKsf1uJOoqChL0I37AgAACD2ug11aWtrrr7/ug1JQMZWYG+fVgXBMmwMAwN9cb8VO\nmTJl4MCBQ4cOfeCBB2JjY0v3T7QssUiKwOTVgXBMm/OZYLwwAwBcCfGOBw9yHezq/jZpYsmS\nJU4/wEZtcPDqQDimzQEAEABcB7u0tLSIiIjqpQcFIrh4fCCc4w2zxoXMTJsDAMCvXMe1shbq\nEEw8PhDOce/17bf1wgue/OYAAKBSnAe7Y8eO1axZs2HDhsbr8r9FdHS05+tCORyXyp5/3q0v\n8fhAOMe919tu08aNTJsDAMDvnAe7pk2b9urVa+3atcbr8r8FZ+x8qnJtCuUMhKvcYXzHjd3g\nmjZXiVgMAECQcB7sUlNTb7nlFttrH9YDVwKhTaH0xu7993vrn+XZJlC6dwH4Hn9PwoecB7tl\ny5Y5fQ3/83gPRCWU3tg9c8af9bgvEGIxgJDC35PwLdcDiletWrVr1y4flALXevdWUpIkzZyp\nsDCNHu2fMm691VqGsffarp1/yqiEQIjFAEKK8ffk0KGaNEk9e/q7Gpif62CXmpq6evVqH5QC\n1zIz9eyzktS/v3JyNGaMvwsKKgESiwGEFP6ehG+5DnbdunX7+OOPf/31Vx9UAxeCd6ksEBCL\nAfgYf0/C51zPsXvjjTcmTJhw9913P/DAA7/73e/q169f4gNcKYbgEFzduwBMwOOjpgBXXAc7\n25g6Y/pJaYw7AQDACf6ehM+5DnapqakRERE1atQICwvzQUEAAACoHNfBjnEnJuHZgXC+/Oah\njPFXAICKcBHsLly4sGPHjqKiotatW3N1GOBTjL8CAFRQeV2xixYtio6O/sMf/nD77f+/vTuP\nj+ne/zj+iSQTISSxNyQhpKVypSW0Sm6srWpLpLVU0RvN4wpdSC9VfmprtVJudy5tr7oURVEu\nF62WVKkbS6u2asQWJGgqtkgI8/vjtHNHlslkmbPN6/lXcuaY+cyMmfPOd+0cFBQ0cODAy0ZZ\nhxb6sXixNGokXl4yZozWpRgNy18BAMqoxBa7b7/9Nj4+3tPT86GHHqpdu/aOHTuWLFly7dq1\nVatWqVkfdMrJvlfanCqC5a8AAGVUYovdzJkzPTw8vvnmmw0bNixatOjQoUN9+vT54osv9u/f\nr2Z9MDbanMqN5a8AAGVXYrDbsWPHgw8+GK1cWkQsFsvkyZNF5Ntvv1WnMhRPaSqbPl3rOpxD\nm1O5sZwyAKDsSgx22dnZd955p/0R5dfs7GyXFwVz0GGbk4FiMbuMAADKrsRgd+vWLV9fX/sj\nVatWFZGbylqLUJkRpyDQ5gQABvp7EqZQ+jp20J5BpyCw5DoAAOpytNwJ9ELDKQhGbCkEAMBd\nOWqx++6775QJE/a2bNlS6GDRc1DJtJqCYNCWQgAA3JWjYLdt27Zt27YVOpiSkpKSkmJ/hGDn\nWj16yMaNIiLJyZKcLMOGyZw5Kj200lIYHy/jxqn0iACAQthaEGVRYrBbuHChmnWgRJMmSUyM\njB8vcXEyeLA0aaLeQ7NYCQBoi54TlFGJwW7QoEFq1oESaTUFQcOWQgCAgp4TlBGTJ1ACFisB\nAM3Rc4IyItihBCyQqzmWvwLcnA6XeYfuEewAA2IZGsAd0HOCsmOBYriS0uaEysVgasBNsMw7\nyo5gBxgNg6kBACWgKxYwGgZTAwBKQLADDIXB1OpgFCMAY6IrFjAUDResdh+MYgRgWAQ7I2AK\nAmwYTK0CRjECMCy6YgHgdoxiBGBYBDuUjAVy4YYYxQjAyAh2ABxyt2kELAkLwMgYYwegZG44\njYBRjNAVxlijjAh2AErGNAIAMBS6YgGUjGkEAGAoBDsAJWAaAQAYDcEOQAmYRgAARsMYO8Bo\nVBtMrdU0gsWL5aWXJCtLkpJkxgz1HhcAjI8WO/ejz9UrdFWVropxN8o83CtX5NVX5aGHtK4G\nAAyGFjs3o8/VK3RVla6KcUPMwwWACiDYuRl9XjV1VZVSTMeOMmsWvYEaYB4uAFQAXbFuRp9X\nTV1VpRSzeTO9gRrQyTxcNtMDYFgEO3eik6tmIbqqylZMQYFcvCgnTki3blrW426YhwsAFUOw\ncydaXTUdz0WwryopSVat0nLWgq0YpR6Chcrat/89WCvzcCMjtS4IAAyGMXbuRJPVK0qdi2Cr\nKiRE5szReNZC+/YyatTvP69cKStXyrBhMmeONsUAAFBGBDu4mPMTIy5c0MUUivh4SU0VEYmL\nk8GDpUkTLYsBAKAs6IqFizk/MaKgwNkzXSoi4vcf6A0U3UwjYGVBAHAOwQ6uVKaJEYsWOXsm\n3ApLFgOA0+iKhStNmiQxMTJ+vFPdmjExkpJCBygK09UyhwCgbwQ7uFKZpms0auTsmXArulrm\nEAD0zdhdsdevX9+5c+fmzZuPHTumdS1ApWJUmUJXyxwCgO4ZJti99tprmzdvtj8yd+7cBg0a\ntGvXrkuXLmFhYVFRUT/++KNW5QGViVFlNixZDABlYZiu2FdeeWXs2LGdO3dWfl23bl1iYqKP\nj0+fPn3q1au3f//+bdu2derUaffu3U2bNtW2VKCi3HlUmTIP10aTxRcBwLAME+wKSUpK8vf3\n//7771u0aKEcWbly5RNPPDFt2rR58+ZpW5uuFbpq6oRS1Xff/T4xVvNitm79vftPK4wqAwCU\ni2G6Yu2dP38+LS3t2WeftaU6EYmLi+vdu/eXX36pYWFAJWBUGQCgvAzZYpeXlyci9qlOERER\nsW7dOi0qgrlo265ZpjViAACwY8hgFxQU5O/vf+rUqULHz5w5U4PeKxgdo8oAAOVlpK7YkydP\n7tq168iRIxcuXBgxYsQ///nP3Nxc260///zz0qVLO3TooGGFAAAAGjJSi92SJUuWLFlif2T9\n+vWPP/64iCxevPivf/3rtWvXXnnlFY2qQwmc79bU58QOAACMwzDB7pNPPsmxc/HixZycnMDA\nQOXWnJycgICAzz77rG3bttrWCQAAoBXDBLu//OUvDm4dMmRIYmJilSpG6lkGAACoXIYJdo75\n+flpXQIA16CPHgCcRhMXAH1j21wAcJp5gl16enq3bt26deumdSH4A9djVBzb5gJAWZikK1ZE\nLl++/PXXX2tdBf6gXI8tFnn1VWFGC8rNnbfNBYCyM0+wa968+b59+7SuAn9Q7Xr84IPy1Vci\nIg0aSGamax9LNYwqs2HbXAAoC/MEu6pVq0ZERJTjH/700083btxwcMLJkyfLW5QbU+d6fPDg\n76kuPFxiYlz7WFBfjx6ycaOISHKyJCfLsGEyZ47WNQGArhkv2Fmt1mPHjh09evTy5csi4u/v\nHx4eHhwcXL57S09Pb9269U1lBydUFtWux59/LiJSq5b88otL7h/aYttcACgjIwW7CxcuTJs2\nbeHChefOnSt0U0hISEJCwujRo319fct0n02bNr106VJ+fr6Dc+bPn//iiy+WuVx3ptr1+OJF\nEZGqVV11/9AW2+YCQBkZJthlZmZ26NDh2LFj4eHhPXv2DA0NrV69uohcunQpPT09JSVl4sSJ\nK1as2Lx5s207CidVq1atWrVqjk+oUOluSJ3rsY+PXL8uInLmjHh4SGCg/Pabqx4LAAAjMEyw\ne+WVV06dOrVs2bK+ffsWvfXmzZtz58597rnnpkyZ8s4776hfHjTw4ouyYoWkpUnVqtKzp7Rv\nr3VBAABozDDr2K1bt27w4MHFpjoR8fT0HDFiRL9+/VauXKlyYdDMG2/IY4+JiNSqJStWyOjR\nWhcEAIDGDBPssrOzmzZt6vicFi1anD17Vp16AAAA9MYwwS4oKGjv3r2Oz/nhhx+CgoLUqQeV\nhg0qAACoJIYJdrGxscuXL585c2axM1ivXr06adKk1atX9+/fX/3aUH5sGAUAQOUxzOSJyZMn\nb926dcyYMVOnTm3Xrl1wcLCfn5/Var1y5cqJEydSU1Nzc3Ojo6MnTJigdaUoCzaMAgCg8hgm\n2AUEBHz//fezZs1asGDBli1b7JcU9vb2btOmzdChQ4cOHerp6alhkSgzNowCAKDyGCbYiYjF\nYklKSkpKSsrLy8vIyFB2nqhZs2ZISIjFYtG6OpQdG0ahVGybCwBlYaRgZ1O1atXw8HCtq4BD\nzlyP2TAKAIBKZZjJE8WaOXNmx44dta4C5dW+vURHi/yxQUVkpNYFAQBgbMYOdkeOHNm2bZvW\nVUA7f/+7WK1y+rTWdQAAoAvGDnZwOyx6BwBAyQh2MA4WvVMZMRoAjIZgB10qNlIoi9499ZSM\nGyfdumlXnHsgRgOAARk72E2fPj0jI0PrKlDZSooULHqnJmI0ABiQsYNdQEBAo0aNtK4Cla3Y\nSNGjx+9TaJOTxcNDEhM1LNAtEKMBwICMHexgTsVGikmT5PXXRUTi4mTVKhk+XIPCXEGf49iI\n0QBgTAQ76ExJkcKUi97pdhybWWM0AJidIXeegHkU3aDCrbajUDqd4+Nl3DitS7ld+/aibMes\nxGgAgEEQ7KAzbhUpGMcGAKhUdMUCGmEcGwCgshHsgNupNpuBcWwAgMpGsAPslG82Q/myoCmn\ngwAANMUYO8BOOWYzKFnQYpFXX5W2bV1ZHAAApSDYAXbKMZuhIjNbv/pKROTNN+XmTZkxo8z/\nHACA29EVC/yhfLMZyj2z9eJFSU4WEfnzn/W1iB0AwLAIdqgYNTdOUBa9mz7dVfdfjtkMFZnZ\nmpYm+fkiIvffz2asAIBKQbBDBeh244TyKcdshorMbFWa+iqFK+K1q2M0gEqhz20JoR3G2KEC\nXLRxQtHtKHSr3Msp9+ghGzf+/nNysuTkyJw55ayB2RuA2+LjjyIIdqgANk4oN9vOaSISF1eh\nRex0uy8ZAFfj448i6IpFebFxQkXYun1FJDy8QovYEa8Bt8XHH0UQ7FBebJxQKcaOrdA4NuI1\n4Lb4+KM4dMWivMo9vAyVyNalGxcngwdLkyZaFwRALXz8URxa7ABVuGjmGvuSAWZV6pcGH38U\nhxY7wPWYuQagTPjSQHkR7ADXY+YagDLhSwPlRVcsYMdFq/Iyc60iWH8VbogvDZQXwQ6omFKz\nIDPXKsJku5sAzuBLAxVAVyzgYsxcqwg6pOCG+NJABRDsABcraV0YA+2cpiE6pOCGWEwKFUBX\nLAC9okMKAMqIYIcKcNFUA0DB7iZAxTH9yM3QFQsYnIm7dOmQAhwr9ePPenjuhxY7uAZ/IwKA\n5pTpR089JePGSbduWlcDNRDs4AKGW6KCGArAlJh+5H4IdnABY/2NaLgYCgDOYPqRWyLYwQWM\n9Tdi0RhKAx4AE2D6kVsi2KGyGe5vxEIxlAY8AObQvv3v38bK9KPISK0LghoIdqhsxvobsWgM\ndUU/MuvCGAWNtYZmprePLw2UF8udoLIZa4mKolv3XL4sYpx+ZFQiFoYwNN4+QERosYO7K9RV\nMXaswfqRUYmMNekHhfD26ZaZWlKNgBY7wA57b+uNmssvG2vSDwrh7dMnWlJVR4sdYIexxm7L\ncJN+YI+3TyeKNs7Rkqo6gh0AGG3SDwrh7dNEoRhX7JICtKSqjmAH6APDULRFY62h8fapr2iM\nK9o4R0uqFhhjB+gAw1AAGIsS4+LjZdy4348UbZxj1LIWCHaADhT9igSAinPd9KNCMa5HD9m4\nUUQkOVmSk2XYMJkzx2CrX5kFXbGADjAMBYCBFO1jZZijbtBiBxdQc4kKEyj2L10A0K2ifayR\nkTTO6QTBDm5P8xjKMBQAxkIfq47RFQtojQl9RsQsZgC6RIsdcDvNG/Cgf8xiBqBXBDsAKCNm\nMQPQK4IdUHaLF8tLL0lWliQlyYwZWleDSuJ8Yy2zmHWItnZARBhjB5RZsdvmVBZGbukfi+kD\n0DGCHUxEnVTkuj2t8/NdGBlRWVivC3Ce0pI6fbrWdbgRumJhFqqNZ3ddN9yFC4zcMgAWegCg\nY7TYwSxc15Bmr4LdcI7bFAsKRBi5BcCYaJzTB4IdzEKd8ewV6YYrdXDeokUijNwCYATEOL0i\n2MEUVBvPXpHFhB20KXbsKNu3M3ILAFBBjLGDKRhiVy7HbYqM3AIAVBgtdjAF/e/K5eo2RdZJ\nAQDQYgeoxKVtiuxwBQAQEYIdoBKX9rSywxUAQEToigXMgB2uAAAiQrADDK98o/cYk1cRLPQA\nQK8IdkB56SQblWNpPZdudwsA0A5j7IByUfZ11cN8hXKM3mNMHgCYFC12QBkp3XBPPaXGDmYu\nwpg8ADApgh1QLq7IRuqM3FJtlw4AgOoIdjALNcezGzobVWS7WwCAvjHGDig7nexgtnixvPSS\nZGVJv35l+FfsXQYA5kWwA8qufNlIaVOsLPa7Tfj6ypIllXbPAADDoisWMCZlZqsyeyMqSo1H\n1MnyLgCAkhHsAHU5iEdlSk4qz2xl6TsALsWfjpWErlhARfb9p4VWv3NwU1E9esjGjSIiycmS\nnCy9e7uqYBuWvgPgOmX6AoRDBDtARQ7iUZmSU9HZG1984Yp6/4el7wC4Dn86Vh66YgEVOYhH\nZUpO7dv/vt6KMnsjMrKyCiyeoZd3AaB//OlYeQh2gFocxCOdJyeWvgPgOjr/AjQaumIBtThY\n/U61hfGUpe8yM8v2r1j6DoDr6GRlULMg2AFqcRCP1ElOtuHJr70mbdsab4tbAKbEn46VimAH\nlEvlrjasDoYnA4DZMcYOcI4J1lhieDIAmB3BDnCCCZbnZXgyALgBumIBJ5igE5PhyQDgBgh2\ngBNM0InJ8GQAcAN0xQKl0WcnpjJ7Y/p0resAAOgIwQ4oDcvzAgAMgq5YoDR0Yooxl3cBAPdD\nsANU5CAekZwAuC2+ACsPXbEAAAAmYbwWO6vVeuzYsaNHj16+fFlE/P39w8PDg4ODta4LAABA\nY0YKdhcuXJg2bdrChQvPnTtX6KaQkJCEhITRo0f7+vpqUhsAAIDmDBPsMjMzO3TocOzYsfDw\n8J49e4aGhlavXl1ELl26lJ6enpKSMnHixBUrVmzevDkwMFDrYgEAADRgmGD3yiuvnDp1atmy\nZX379i16682bN+fOnfvcc89NmTLlnXfeUb88wAAYngwAZmeYyRPr1q0bPHhwsalORDw9PUeM\nGNGvX7+VK1eqXBgAAIBOGCbYZWdnN23a1PE5LVq0OHv2rDr1AAAA6I1humKDgoL27t3r+Jwf\nfvghKChInXrgXujEBAAYgWFa7GJjY5cvXz5z5sz8/Pyit169enXSpEmrV6/u37+/+rUBAADo\ngWFa7CZPnrx169YxY8ZMnTq1Xbt2wcHBfn5+Vqv1ypUrJ06cSE1Nzc3NjY6OnjBhgtaVAgAA\naMMwwS4gIOD777+fNWvWggULtmzZclPZu1NERLy9vdu0aTN06NChQ4d6enpqWCQAAICGDBPs\nRMRisSQlJSUlJeXl5WVkZCg7T9SsWTMkJMRisWhdHQAAgMaMFOxsqlatGh4ernUVAAAA+mKY\nyRMAAABwzDzBLj09vVu3bt26ddO6EAAAAG0Ysiu2WJcvX/7666+1rgIAAEAz5mmxa968+b59\n+/bt26d1IYALLF4sjRqJl5eMGaN1KQAA/TJPi13VqlUjIiK0rgJwgYsXJSFBLBZ59VVp21br\nagAA+mWeYCci2dnZFy5caNasmfP/5LfffpswYYL9qnhFHTp0qMKlARWQlibXrkl8vIwbp3Up\nAABdM09XrIjMmDGjrMugeHh4eHh4OD7Hz89PRFgqD5rJyxMRqVFD6zoAAHpnqha7cggMDJw1\na5bjc7Zv375+/Xp16gEK69FDNm4UEUlOluRkGTZM5szRuiYAgE6ZqsUOMKFJk+T110VE4uJk\n1SoZPlzrggAA+mWYFruoqKhSzzl9+rQKlQCqat9elDGg4eESG6t1NQAAXTNMsPvhhx9ExNvb\n28E5BQUFapUDAACgO4bpih0zZkz16tX379+fV7LRo0drXSYAAIBmDBPsXn311WbNmj355JM3\nbtzQuhYAAAA9Mkyw8/b2XrRo0YEDB8aPH691LQAAAHpkmDF2ItKiRYusrCwHA+kefvjhgIAA\nNUsCAADQD8O02Clq1qxZq1atkm6NiYl5+eWX1awHgLtjG18AemKkFjsA0Be28QWgMwZrsStk\n5syZHTt21LoKAO5K2cb3qadk3Djp1k3ragDA4C12R44c2bZtm9ZVAC7WsaNYrVoXgeKwjS8A\nnTF2ix0AaKZHD4mOFhFJThYPD0lM1LogACDYAUD5sI0vAP0xdlcsAGiGbXwB6I+xW+ymT5+e\nkZGhdRUAAAC6YOwWu4CAAFYkBgAAUBi7xQ4AAAA2BDsAAACTINgBAACYBMEOAADAJAh2AAAA\nJkGwAwAAMAljL3cCAFpiG18AOkOLHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEO\nAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADA\nJLy0LsAALBaLiPj4+GhdCAAA0AslHuiNh9Vq1boGA9i7d29BQYHWVVS+n376aejQoZ988omX\nFxFfe6+99lpERERsbKzWhUB+/PHHDz744OOPP9a6EIiIjB8/vnPnzt27d9e6EMj27duXLVu2\nceNGrQvRnpeXV2RkpNZVFIPLuVP0+eZVXH5+vogMHDhQn392uJsQIoZEAAARuUlEQVQPP/ww\nMjJy0KBBWhcCCQwMnDNnDu+FTrz55ptRUVG8HXrg4eGxZs2aNm3aaF0ISsQYOwAAAJMg2AEA\nAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2Lk1i8Xi\n5eVVpQr/DXTBYrGwBYhO8F7oCm+HfvBe6B97xbq7o0ePhoWFaV0FRESysrJq1qxZrVo1rQuB\n3Lp16+TJk40bN9a6EIiInD59uk6dOj4+PloXAikoKDhz5kxISIjWhaBEBDsAAACToA8OAADA\nJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2\nAAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINi5uwsXLowePTo0NNTHx6dJ\nkyaxsbE7duzQuii3duPGjXHjxnl6ekZFRWldizvKyckZNWpU48aNLRZLUFBQQkJCZmam1kW5\nLz4O+sHFwig8rFar1jVAM7/99lubNm2OHz/+yCOPtG7d+ujRo0uXLvXy8kpNTf3Tn/6kdXXu\n6NChQ4MGDUpLS7t69eq99967a9curStyL9evX2/fvv2ePXsef/zx1q1bp6enL1y4sFGjRrt3\n7w4MDNS6OrfDx0E/uFgYiRVu7NlnnxWR999/33ZkxYoVItKzZ08Nq3JbFy9e9PX1jYqKSktL\n8/HxadOmjdYVuZ233npLRJKTk21Hli5dKiJ/+9vfNKzKPfFx0BUuFgZCV6xb8/b27tq167Bh\nw2xH+vTp4+vre+DAAQ2rclsFBQUjRozYvn17s2bNtK7FTS1YsKBGjRojR460HenXr1+zZs0W\nLlxopXNDXXwcdIWLhYHQFYvb5Ofn16hRo127dt99953Wtbi1qlWrRkRE0Pekpry8PD8/v06d\nOm3atMn+eHx8/Pz589PT08PCwrSqzc3xcdAhLha6RYsdbjN37twbN24MGDBA60IAtWVkZNy8\neTM4OLjQ8dDQUBE5evSoFkUBOsXFQrcIdviflJSUMWPGdOzYMTExUetaALVdvnxZRKpXr17o\nuJ+fn+1WAMLFQt+8tC4AasjJyXn55ZdtvzZr1mz06NGFzlmyZEl8fHxERMTq1au9vPiP4ULO\nvB3QioeHR6EjyniVoscB98TFQud4S9zClStX5s6da/u1Q4cO9knCarVOnjx56tSpPXr0WLZs\nWY0aNbSo0Y04fjuglZo1a0pxLXOXLl0SET4XABcLQyDYuYVGjRqVNEvGarUmJCTMmzfv+eef\nf/vttz09PVWuzQ05eDugoZCQEC8vrxMnThQ6np6eLiLh4eFaFAXoBRcLo2CMnbtLSkqaN2/e\n66+//t577/FBhTuzWCxt2rRJTU3Nzc21Hbx161ZKSkpwcHBISIiGtQGa42JhFAQ7t7Zy5cp3\n33135MiR48aN07oWQHvPPPNMbm7ujBkzbEc+/PDDM2fOJCQkaFgVoDkuFgbCOnZurVmzZunp\n6c8//3y1atUK3TR27Fj2UFJZSkrK+vXrlZ9nzpxZt27dp59+Wvl1zJgxtWvX1q40d3Hz5s3O\nnTtv3bq1d+/erVu3PnTo0NKlSyMiInbs2FH0MwKX4uOgK1wsDIRg59YcTPQ7duxY48aNVawF\nMn369JL+Gk5LS2P9fXVcuXJlypQpy5cvP3PmTL169WJjY6dOnVqrVi2t63I7fBx0hYuFgRDs\nAAAATIIxdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAA\nwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQI\ndgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAA\nACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAqasCA\nAR4eHllZWbq6K9u9nTp1qlLuDQD0j2AHQETk008/9bidp6dn/fr14+LivvvuO8f/9p577nno\noYd8fHwqXkYl3pWTrFbr559/HhsbGxQU5OPjU69evaioqGnTpp09e1a1GvRs+vTpR44cKfW0\nGzdujBs3ztPTMyoqSoWqAJTEw2q1al0DAO19+umngwcP7tChQ8eOHZUj165dO3z48FdffWW1\nWufPnz9kyBBtKyyHAQMGLF26NCMjo1GjRsWekJOT07dv302bNlWrVq1r166hoaHZ2dmpqanp\n6el169ZdsWJFdHS0yjXrSmZmZlBQ0Pr163v06OHgtEOHDg0aNCgtLe3q1av33nvvrl27VKsQ\nQCFeWhcAQEe6des2efJk+yNbt27t0qXLqFGj+vfvr2ZDmjqeeuqpTZs29e7d+6OPPqpbt65y\n8NatWx9++OFzzz3Xu3fvn3/+uV69etoWqaGdO3eWes6lS5fatGnTsmXLPXv2REREqFAVAAfo\nigXgSHR0dNeuXS9cuLB37175Y9TauXPnunfv7uvru2bNGrl9YNzAgQM9PDyuXLkyduzYxo0b\n+/j4BAcHv/322/adA1lZWQkJCQ0bNqxevXpkZOS7775bUFCg3GR/V3369PHw8MjMzExISKhf\nv76Pj0/z5s3/8Y9/2JeXmprap0+fOnXqWCyWxo0bDx48+Pjx404+tQ0bNvznP/9p3br1559/\nbkt1IlKlSpXExMSpU6e2bt06PT1dOXjixIn4+PiGDRtaLJY6der06tUrNTXV9k+UZ52TkzNs\n2LD69etXq1bt/vvvT01Nzc3NHTVqVMOGDf38/B544IE9e/bY/okzz86ZB3X8Up89e/bZZ58N\nDQ21WCx169aNjY21z2qO7+HRRx/t3bu3iDz88MMeHh4l9cgXFBSMGDFi+/btzZo1c/KVB+A6\ntNgBKEXt2rVFJDc3V0QsFouIJCUleXt7T5w4MSwsrNDJyglPPPFEkyZNPvvss1u3bk2ZMuXF\nF18MCAiIj48XkfPnz0dFRV25cmXIkCGhoaFbtmwZNWrUvn37Pv7440J3pTQQxsbGdu7cedWq\nVbdu3Zo6deqIESO8vb0TEhJEZPfu3TExMbVq1Ro5cmSDBg2OHj06a9asL7/88uDBg0rNji1Y\nsEBE/u///s/Lq5hvwvHjx48fP175OSMjo127drm5ucOHD2/ZsuXp06dnz5795z//edOmTUrP\ntfKs+/btGx0dvWHDhp9++ikxMbFv376tWrVq2bLlmjVrjh8/npCQ0LNnz4yMDG9vb2eenZMP\n6vilvu+++3JychITEyMiIjIyMmbPnh0dHb1x48aYmJhS72HChAm1atVauHDhxIkT77333rvv\nvrvYl7FWrVozZ84s9dUGoBIrAFitCxcuFJFJkyYVOn79+vWwsDClbclqtQ4dOlREHnzwwZs3\nb9rO6d+/v4goJzzzzDMi8uSTT9puVRq9Hn30UeXX4cOHi8jGjRttJzzyyCMisn///kJ3pfxs\nf1c5OTk+Pj6NGzdWfp09e3br1q03b95sO+H9998Xkffff9++sIyMjGKfsvK8Ll68WOqL8/TT\nT4vIypUrbUcOHjzo6el5//33K78qz3r48OG2E/r16yciTzzxhO3IyJEjRWTbtm32tTl4dk4+\nqOOX2svLa+fOnbYTTp48WaNGjaioKCfv4Y033hCR9evXl/oSKXx8fNq0aePkyQBcga5YAMXL\ny8vbt2/fgAEDjh49OmDAgAYNGoiIh4eHiDz99NNVqjj69lBCiSIsLKxatWrKmiNWq3XZsmXB\nwcHdu3e3nfDee+9988039evXL/auBgwYYPvZ398/Ojr6+PHjmZmZIjJ8+PDdu3d36tRJRG7c\nuJGXl6e0KjnZG3v27Fl/f/+aNWs6Ps1qtX7xxRf169ePjY21HWzRokX79u137NiRnZ1tOxgX\nF2f7OTw8XESUrkzFXXfdJSJK5aU+O+cf1MFLvXz58latWjVq1CjrD97e3g888MCuXbuuXLlS\n6j0AMCKCHYD/mTJlim25E19f31atWq1cubJXr15z5861P03JKA6EhITY/+rt7X3jxg0RyczM\nzM7Obt68uRIQFWFhYZ07d65Tp06xd3XnnXfa/9qwYUMRsS10t3DhwpiYmMDAQIvF4uvr27Vr\nVxGxjdhzrEqVKjdv3iz1tKysrIsXL7Zs2dK+ZvnjRfjll18K1aZQunftjyg9sMrrUOqzc/5B\nS3qpz5079+uvv+7Zs+eO223cuFFETp48Weo9ADAixtgB+J+YmBilAUxEqlSpUrt27Y4dO0ZG\nRhY6zd/f3/H9KCGmqGvXrskfw8ucVK1aNftfq1evLiI5OTkiMn78+DfeeCMqKurtt99u0qSJ\nj4/PgQMHlAFqzggKCjp8+PCvv/5aUqZUXL161fa49nx9fW23Koo+65JeB5uSnl2NGjXK/aCK\ny5cvi8g999yjdKcWEhQU5HyRAAyEYAfgfzp16lRouZPKpfTnKrHMSfYhRkQuXrwoIrVr187L\ny3vnnXeCg4M3b97s5+dnf6uTHnjggcOHD//73/9WphoUYrVa9+3b16pVK+XOC5VhO6IksHIr\n6dlV/EFt5zhegg6AydAVC0A91atXr1u37qFDh+w7+w4fPvzBBx8cOHCg2H9y6NAh+1/T0tJE\n5I477sjKyrp27VpUVJQt1YlISkqK88UoeW7q1KlK41Yhs2fPjoyMnDVrVoMGDWrVqnXo0CHr\n7cu5Hzx40MPDo9ReacdKenYVf9D69evXqVPn559/LhSjz58/X5GCAegcwQ6Aqnr37p2dnf2v\nf/3LdmTy5MnPP/98fn5+sefPmzfP9vMvv/yyc+fOu+66q27duvXr1/fw8LCfJ/Hjjz8qK5jk\n5eU5U0l0dHT//v2PHz/evXt323p1IlJQUPDee++NHDnyjjvuGDhwoIjExcVlZmauXr3a/rFS\nU1O7dOkSEBDg5BMv07OrlAft27dvXl7ejBkzbEfOnz/fqlWrxx57zMnyPD095Y8OdACGQFcs\nAFVNmjRp7dq1w4cP37t3b2hoaEpKytq1a4cMGdK6detiz8/Pz3/sscceffTRW7duvfnmm1ar\ndeLEiSLi6+v7yCOPrF27NjExsVOnTgcPHvzggw8WLVrUq1evdevWLVmypFevXqUWM2/evPz8\n/C+++KJ58+bR0dF33nlnTk7Ojh07Tpw4ERYWtmHDhsDAQBGZMmXK2rVrBw8e/MILL9x1113H\njx+fNWuWn5/fW2+9VcFXo6RnVykPOnny5HXr1r3++uuZmZkxMTFnzpyZM2dOdnb2Cy+84OQ9\nKOsUTp8+/dixY9HR0W3bti16TkpKyvr165WfCwoKTp8+/fLLLyu/jhkzxpkFBQFUJs0WWgGg\nJyWtY1eIsvJZWlqa/cGi69gVOsHf379ly5a2X48fPz5o0KB69ep5e3uHhYX9/e9/LygoKHpX\nys9paWmjRo0KCgqyWCx33333/Pnzbfdz7ty5gQMH1q1b19/fv0uXLlu3brVarVOmTPHz82vQ\noEFmZqbjdexs1qxZExcXFxQU5O3tXaNGjfvuu2/27Nm5ubn255w8eTI+Pv6OO+7w8vKqV6/e\ngAEDDh486OBlmTRpkogoJSk++ugjEVmyZIn9M3Xw7MrxoEVf6szMzOHDhwcHB3t5eQUEBPTq\n1eu///2v8/dw/fr1xx9/3NfXNzAwcPny5cW+esVOzlAUumcAKvCw3j6AAwB0YsCAAUuXLs3I\nyGjUqJHWtVQ+cz87AFphjB0AAIBJEOwAAABMgmAHAABgEoyxAwAAMAla7AAAAEyCYAcAAGAS\nBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsA\nAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACT\nINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGAS/w8HFTtVnCjC\n2QAAAABJRU5ErkJggg==",
- "text/plain": [
- "plot without title"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"sex <- reduced.meta.data$sex\n",
"\n",
- "design <- model.matrix( ~ sex )\n",
- "\n",
- "colnames(design) <- c(\"intercept\",\"sex\")\n",
- "\n",
- "dim(ijc)\n",
- "table(sex)\n",
- "head(design)\n",
- "\n",
- "y_ijc <- DGEList(counts=ijc, group = sex)\n",
- "y_ijc <- calcNormFactors(y_ijc, method=\"upperquartile\")\n",
- "\n",
- "y_ijc_voom <- voom (y_ijc, design=design)\n",
- "\n",
- "Gender <- substring(sex,1,1)\n",
- "\n",
- "plotMDS(y_ijc, labels=Gender, top=1000, col=ifelse(Gender==\"m\",\"blue\",\"red\"), \n",
- " gene.selection=\"common\")\n",
- "\n",
- "plotMDS(y_ijc_voom, labels=Gender, top=1000, col=ifelse(Gender==\"m\",\"blue\",\"red\"), \n",
- " gene.selection=\"common\")\n",
- "\n",
- "fit_ijc <- lmFit(y_ijc_voom, design)\n",
- "fit_ijc <- eBayes(fit_ijc)\n",
- "\n",
- "ijc_sex_results <- topTable(fit_ijc, coef='sex', number=nrow(y_voom))\n",
- "ijc_sex_results_refined <- ijc_sex_results$adj.P.Val < 0.05 & abs(ijc_sex_results$logFC) > 1.5\n",
- "\n",
- "table(ijc_sex_results_refined)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Differential analysis as_event:sjc \n",
- "\n",
- "Differential Analysis (DE) was performed using voom (Law et.al., 2014) to transform junction counts (reads that were aligned to junctions when an exon is included - ijc, and reads that were aligned to junctions when the exon is excluded - sjc) with associated precision weights, followed by linear modeling and empirical Bayes procedure using limma. In each tissue, the following linear regression model was used to detec secually dimorphic alternative splicing event expression: \n",
- "\n",
- " y = B0 + B1 sex + epsilon (error)\n",
- " \n",
- "\n",
- "where y is the excluded exon junction count (sjc) expression; sex denotes the reported sex of the subject."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "- 42611
- 191
\n"
- ],
- "text/latex": [
- "\\begin{enumerate*}\n",
- "\\item 42611\n",
- "\\item 191\n",
- "\\end{enumerate*}\n"
- ],
- "text/markdown": [
- "1. 42611\n",
- "2. 191\n",
- "\n",
- "\n"
- ],
- "text/plain": [
- "[1] 42611 191"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "sex\n",
- "female male \n",
- " 81 110 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "\n",
- "A matrix: 6 × 2 of type dbl\n",
- "\n",
- "\t | intercept | sex |
\n",
- "\n",
- "\n",
- "\t1 | 1 | 0 |
\n",
- "\t2 | 1 | 0 |
\n",
- "\t3 | 1 | 0 |
\n",
- "\t4 | 1 | 0 |
\n",
- "\t5 | 1 | 1 |
\n",
- "\t6 | 1 | 1 |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A matrix: 6 × 2 of type dbl\n",
- "\\begin{tabular}{r|ll}\n",
- " & intercept & sex\\\\\n",
- "\\hline\n",
- "\t1 & 1 & 0\\\\\n",
- "\t2 & 1 & 0\\\\\n",
- "\t3 & 1 & 0\\\\\n",
- "\t4 & 1 & 0\\\\\n",
- "\t5 & 1 & 1\\\\\n",
- "\t6 & 1 & 1\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A matrix: 6 × 2 of type dbl\n",
- "\n",
- "| | intercept | sex |\n",
- "|---|---|---|\n",
- "| 1 | 1 | 0 |\n",
- "| 2 | 1 | 0 |\n",
- "| 3 | 1 | 0 |\n",
- "| 4 | 1 | 0 |\n",
- "| 5 | 1 | 1 |\n",
- "| 6 | 1 | 1 |\n",
- "\n"
- ],
- "text/plain": [
- " intercept sex\n",
- "1 1 0 \n",
- "2 1 0 \n",
- "3 1 0 \n",
- "4 1 0 \n",
- "5 1 1 \n",
- "6 1 1 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde1jUdd7/8dcEInnWygPiKSWzSFPTPHG7WySGu0q0iOaaabSi1XXHfUnd\neKdgmMnP2kt3U2u1tNzQ1Yw0M701D2lboWVayd4pauompqYmKp6a3x+DgAgMh5n5Hub5+GOv\n6TsH3iw4vOZzeH8cTqdTAAAAsL4bjC4AAAAAnkGwAwAAsAmCHQAAgE0Q7AAAAGyCYAcAAGAT\nBDsAAACbINgBAADYBMEOAADAJgh2AAAANkGwAwAAsAmCHQAAgE0Q7AAAAGyCYAcAAGATBDsA\nAACbINgBAADYBMEOAADAJgh2AAAANkGwAwAAsAmCHQAAgE0Q7AAAAGyCYAcAAGATBDsAAACb\nINgBAADYBMEOAADAJgh2AAAANkGwAwAAsAmCHQAAgE0Q7AAAAGyCYAcAAGATBDsAAACbINgB\nAADYBMEOAADAJgh2AAAANkGwAwAAsAmCHQAAgE0Q7AAAAGyCYAcAAGATBDsAAACbINgBAADY\nBMEOAADAJgh2AAAANkGwAwAAsAmCHQAAgE0Q7AAAAGyCYAcAAGATBDsAAACbINgBAADYBMEO\nAADAJgh2AAAANkGwAwAAsAmCHQAAgE0Q7AAAAGyCYAcAAGATBDsAAACbINgBAADYBMEOAADA\nJgh2AAAANkGwAwAAsAmCHQAAgE0Q7AAAAGyCYAcAAGATBDsAAACbINgBAADYBMEOAADAJgh2\nAAAANkGwAwAAsAmCHQAAgE0Q7AAAAGyCYAcAAGATBDsAAACbINgBAADYBMEOAADAJgh2AAAA\nNkGwAwAAsAmCHQAAgE0Q7AAAAGyCYAcAAGATBDsAAACbINgBAADYBMEOAADAJgh2AAAANkGw\nAwAAsAmCHQAAgE0Q7AAAAGyCYAcAAGATBDsAAACbINgBAADYBMEOAADAJgh2AAAANkGwAwAA\nsAmCHQAAgE0Q7AAAAGyCYAcAAGATBDsAAACbINgBAADYBMEOAADAJgKNLsAadu7cefnyZaOr\nAAAAphAYGNilSxejqygDwc697du39+jRw+gqAACAiWzbtu2ee+4xuorSCHbuXbx4UdKFCxeC\ngoKMrgUAABjs4sWLtWvXdsUDs2GNHQAAgE0Q7AAAAGyCYAcAAGATBDsAAACbINgBAADYBMEO\nAADAJgh2AAAANkGwAwAAsAmCHQAAgE0Q7AAAAGyCYAcAAGATBDsAAACbINgBAADYBMEOAADA\nJgh2AMwqM1OhoQoMVHKy0aUAgDUEGl0AAJTl9GklJCgoSOnp6tHD6GoAwBoIdgBMac8enT+v\n0aOVkmJ0KQBgGUzFAjClggJJql/f6DoAwEoIdgDMZ+BARURIUkaGHA4lJhpdEABYA8EOgPmk\npmraNEmKjVVWlsaNM7ogALAG1tgBMJ/evXXliiSFhSkmxuhqAMAyGLEDAACwCYIdAACATRDs\nAAAAbIJgBwAAYBMEOwAAAJsg2AEAANgEwQ4AAMAmCHYAAAA2QYNiAKbUr5+cTqOLAACLYcQO\nAADAJgh2AAAANkGwA2BWmZkKDVVgoJKTjS4FAKyBNXYATOn0aSUkKChI6enq0cPoagDAGgh2\nAExpzx6dP6/Ro5WSYnQpAGAZTMUCMKWCAkmqX9/oOgDASgh2AMxn4EBFREhSRoYcDiUmGl0Q\nAFgDwQ6A+aSmato0SYqNVVaWxo0zuiAAsAbW2AEwn969deWKJIWFKSbG6GoAwDIYsQMAALAJ\ngh0AAIBNEOwAAABswnpr7JxO5/79+/ft23fmzBlJDRs2DAsLa9WqldF1AQAAGMxKwe7kyZMv\nvvjiokWLfvrpp1J3tW7dOiEhYcKECTfeeKMhtQEAABjOMsHuyJEjffv23b9/f1hYWHR0dJs2\nberWrSvpl19+yc3N3bx58+TJk5cvX75x48bGjRsbXSwAAIABLBPsJk2adPjw4aVLl8bFxV1/\n75UrV15//fWnnnpqypQpM2fO9H15AAAAhrPM5okPP/xw5MiRZaY6SQEBAePHjx86dOh7773n\n48IAAABMwjIjdidOnGjfvn3Fj+nUqVNWVpZv6gHgXf36yek0uggAsBjLjNiFhITs3Lmz4sfs\n2LEjJCTEN/UAAACYjWWCXUxMzLJly15++eULFy5cf+/Zs2dTU1NXrFgRHx/v+9oAAADMwOG0\nyGTHqVOn7r///q+++qp+/fo9e/Zs1apVvXr1nE5nfn7+Dz/8kJ2dfe7cuYiIiNWrV9erV8+z\nX/qf//xn3759L1y4EBQU5NlXBgAAlnPx4sXatWt/+umnffr0MbqW0iyzxq5Ro0afffbZ7Nmz\n33777U2bNl1xHRAuSapVq1b37t3HjBkzZsyYgIAAA4sEAAAwkGWCnaSgoKCkpKSkpKSCgoJD\nhw65Tp5o0KBB69atGUsDAACwUrArEhwcHBYWZnQVAAAA5mKZzRMAAAComH2CXW5ubmRkZGRk\nZJWetW/fvuDgYEeF+vbtK+ny5cveKRwAAMAzLDkVW6YzZ858/PHHVX1Wu3bt1q1bV2YLlSKr\nVq2aNWvWr7/+WoPqAAAAvM4+we7222//5ptvqvosh8MRERFR8WNyc3OrWxQAAIDv2CfYBQcH\nh4eHG10FAACAYeyzxk7SiRMn9u7da3QVAAAAxrBVsJsxYwZtUAAAgN+yVbADAADwZwQ7AAAA\nm7DM5ol77rnH7WP+/e9/+6ASAAAAc7JMsNuxY4ekWrVqVfAYeggDAAB/Zpmp2OTk5Lp16377\n7bcF5ZswYYLRZQIAABjGMsEuPT29Q4cOw4cPv3TpktG1AAAAmJFlgl2tWrXeeeed7777buLE\niUbXAgAAYEaWWWMnqVOnTnl5eRUspHvwwQcbNWrky5IAAADMwzIjdi4NGjRo0qRJeff279//\nv//7v31ZD2BbmZkKDVVgoJKTjS4FAFBZVhqxA+Ajp08rIUFBQUpPV48eRlcDAKgsgh2A6+zZ\no/PnNXq0UlKMLgUAUAUWm4oF4AsFBZJUv77RdQAAqoZgB+BaAwcqIkKSMjLkcCgx0eiCAACV\nRbADcK3UVE2bJkmxscrK0rhxRhcEAKgsgh2Aa/XuXThiFxammBh16WJ0QTAC26IBa2LzBADg\nWmyLBiyLETsA5sAQkXm4tkWPGKGUFEVGGl0NgCog2AEwAdcQUX6+0tMVFWV0NX7PS9uiye6A\n9xHsAJgAQ0Tm4aVt0WR3wCdYYwfABOicZx6pqerfXxMnKjZWI0eqXTvPvCxdrwGfYMQOgNHo\nnGcqXtoWTXYHfIJgB8BodM6zPbI74CtMxQIwWu/eunJFujpEBPvx0vQugOsQ7ABcp18/OZ1G\nFwEbIbsDvsJULACjZWYqNlaSNm40uhQAsDZG7AAYytUF44YbJDFDBwA1xIgdAEO5umAMGCBJ\nbdsaXAwAWBzBDoChXF0w6tQxug4AsAOCHQDjFHXBeOcdSVq71thyAMDqCHYAjFPUwa5/f0nq\n2tXYclDItS16+nSj6wBQZWyeAGCcoi4YoaGS1LSpseUAgNUR7ACYQGgonfMAoOYIdgAA76Pr\nNeATrLEDAACwCYIdALiTmanQUAUGKjnZ6FIAoCJMxQJAhVxnYwQFKT1dPXoYXQ0AVIRgBwAV\ncp2NMXq0UlKMLgUA3GAqFgAq5Dobo359o+sAAPcIdgBQvqKzMTIy5HAoMdHoggCgIkzFAjCU\nybtgpKaqf39NnKjYWI0cqXbtjC4IACpCsAOA8hWdjREWppgYo6sBADeYigUAALAJgh0AAIBN\nEOwAAABsgmAHAABgEwQ7AAAAmyDYAQAA2ATBDgAAwCYIdgBgEZmZCg1VYKCSk40uBYBJ0aAY\nACpkkrMxTp9WQoKCgpSerh49jK4GgEkR7ADACvbs0fnzGj1aKSlGlwLAvJiKBQArKCiQpPr1\nja4DgKkR7ADA9AYOVESEJGVkyOFQYqLRBQEwKYIdAJheaqqmTZOk2FhlZWncOKMLAmBSrLED\nANPr3VtXrkhSWJhiYoyuBoB5MWIHAABgEwQ7AAAAmyDYAQAA2ATBDgAAwCYIdoCfKe9YKo6r\nAgDrY1cs4E/KO5aK46oAwBYIdoA/Ke9YKo6rAgBbYCoW8CflHUvFcVUAYAsEO8BvlHcsFcdV\nWUK/fnI6NX260XUAMDWCHeA3yjuWiuOqAMAuWGMH+I3yjqXiuCoAsAtG7AAAAGyCYAcAAGAT\nBDsAAACbINgBAADYBMEOuJafnKzlJ98mAPgZgh1Qgutkrfx8pacrKsroarzmwgWzfJvkSwDw\nKNqdACX4yclaJ0+a4tvkgFoA8DSCHVCCn5ysdfmyZIJv009iNAD4EFOxwFX+cLJWv36KitI7\n70jXfpuGHFflJzEaAHyIYAdc5Scna5nk2/SHGA0APsdULHCVn5ysZZJvMzVV/ftr4kTFxmrk\nSLVrZ1glAGAjBDsARjBJvgQAe2EqFgAAwCYIdgAAADZBsAMAALAJgh0AAIBNEOwAAABsgmAH\nAABgEwQ7AAAAm6CPHVCC62Qt2/OTbxMA/A/BDoBByJcA4GlMxQIAANgEwQ4AAMAmCHYAAAA2\nQbADAACwCYIdAACATRDsAAAAbIJgBwAAYBMEOwAAAJsg2AEAANgEwQ4AAJhVZqZCQxUYqORk\no0uxBo4UAwAApnT6tBISFBSk9HT16GF0NdbAiB1gPr78hMqnYQCmtWePzp/XiBFKSVFkpNHV\nWAMjdoDJ+PITKp+GAZhZQYEk1a9vdB1WwogdYDK+/ITKp2EApjVwoCIiJCkjQw6HEhONLsga\nCHaAyfjyEyqfhgGYVmqqpk2TpNhYZWVp3DijC7IGgh1gJr78hMqnYQBm1rt34XtUWJhiYtSl\ni9EFWQPBDjATX35C5dMwANgOmycAM+ndW1euSFc/odrmawEAfIIROwAAAJsg2AEAANgEwQ4A\nAMAmCHYAAMAcOAunxgh2AFAV/OEBvMR1Fk5+vtLTFRVldDVWxa5YAKg0DmEDvMd1Fs7o0UpJ\nMboUCyPYAUCl8YcH8J7rz8Lp109Op1HlWBRTsQBQaRzCBngJZ+F4CMEOMBnXJ9Tp0w34Wqwe\nqxh/eADv4SwcD2EqFoAkVo9VQmqq+vfXxImKjdXIkWrXzuiCABvhLBwPIdgBkMTqsUrgDw8A\n02MqFjCCCSc9WT0GANZHsAN8zoS9mlg9BgC2wFQs4HMmnPRk9RgA2ALBDvA5E056snoMAGyB\nqVjAt5j0BAB4DcEO8C16NQHwBybcIuYfmIoFfItJTwC2R19M4xDsAACAR1Vvixgnw3qCtYPd\nxYsXd+7cmZ+f37Zt23bs4wPgbfzhASrDhFvE/IZl1thNnTp148aNJa+8/vrrzZs379mz5333\n3Xfrrbfec889X3/9tVHlAQAAiS1iBrNMsJs0adLatWuL/vPDDz9MTEw8d+7cQw89NHbs2L59\n+3755Ze/+c1vcnNzDSwSAAB/xxYxQ1l1KjYpKalhw4afffZZp06dXFfee++9P/zhDy+++OKb\nb75pbG0AAPgvtogZyjIjdiUdO3Zsz549Tz75ZFGqkxQbGztkyJD//d//NbAwwMJcq8emT5fo\nUwAAVmXJYFdQUCCpZKpzCQ8P/+mnn4yoCLAREx5lCwCoHEtOxYaEhDRs2PDw4cOlrv/444/1\n2YMD1JAJj7IFAFSOlUbsDh48uH379r179548eXL8+PFvvPHGuXPniu7917/+9Y9//KNv374G\nVghUSslJTxOiTwEAWJaVgt3ixYt79OgRFhZ2yy23vPTSS3v37v3oo49cd2VmZt5zzz3nz5+f\nNGmSsUUC1kafAgCwMstMxS5YsOBUCadPnz516lTjxo1d9546dapRo0ZLlizpwdElQE2kpqp/\nf02cqNhYjRwp+n4DgKVYJtg99thjFdz76KOPJiYm3nCDlQYg4QuZmXr2WeXlKSlJM2YYXY0V\n0KcAAKzMMsGuYvXq1TO6BJgPp1ADAPyMTYJdTeTn51+6dKmCB5TcogErYXenzTD+ClgFpyob\nxz7BLjc3d+zYsZLWr19fpWeFhYU5K/H7V5nHwFw8sruTMGESjL8CQCXYJ9idOXPm448/ruqz\n2rdvv2vXrgsXLlTwmPfee2/atGkOh6MG1cHnBg6U63DhjAxlZGjsWL32WpVfhDBhHoy/AkAl\n2CfY3X777d988001nhgeHl7xA7Zv316timAoj+zuJEyYB931AKAS7LONNDg4ODw83G1Kg7/o\n3buwH5trd2eXLtV5EcKESdBdD/AxDoy2LOuN2Dmdzv379+/bt+/MmTOSGjZsGBYW1qpVK6Pr\ngu14ZDIXHkF3PcCXWIViZVYKdidPnnzxxRcXLVr0008/lbqrdevWCQkJEyZMuPHGGw2pDTZE\nmDAPuutVD1t/UD2sQrEyywS7I0eO9O3bd//+/WFhYdHR0W3atKlbt66kX375JTc3d/PmzZMn\nT16+fPnGjRuLjqMAasRvwwR9CuyBQRdUG6tQrMwywW7SpEmHDx9eunRpXFzc9fdeuXLl9ddf\nf+qpp6ZMmTJz5kzflwdUH8Mq8AYGXVA9rEKxOMtsnvjwww9HjhxZZqqTFBAQMH78+KFDh773\n3ns+LgyoEdewSn6+0tMVFWV0NTXAUmuzYdAF1ZOaqmnTJCk2VllZGjfO6IJQNZYJdidOnGjf\nvn3Fj+nUqdPRo0d9Uw/gGa5hlREjlJKiyMiKHmnm5FSTeGrm78u62EeMavNISwEYp0bB7uTJ\nkwcOHPBQJW6EhITs3Lmz4sfs2LEjJCTEN/UAnlHJYRWTD+y54unly5o0qXASp5JM/n1ZF4Mu\ngL+qKNjt2rVr0KBBbdu2jYiImDNnzhXXQvISMjIy2vlqq2BMTMyyZctefvnlMk+JOHv2bGpq\n6ooVK+Lj431TD+ABlR9WqfzAXrXVZOTsxAlJuny5yvnMB9+Xf2LQBfBX5W6e+PTTT++///4L\nFy7UqVPnxx9/3Lp169KlS7Oysozac5qWlrZly5bk5OQXXnihZ8+erVq1qlevntPpzM/P/+GH\nH7Kzs8+dOxcREfH8888bUh7MyPy7OyvfUcXb66VqsoOyaKn1hQuaOFFjx1YhorEODAA8qtxg\n99JLL/36669ZWVlDhgy5ePHinDlznnvuuaioqI0bN7r6jPhYo0aNPvvss9mzZ7/99tubNm0q\nOXxYq1at7t27jxkzZsyYMQEBAb6vDaimSnZU8cEmtZrsoExNVZs2+tvfdNttysioQsM/Nt8B\ngKeVG+x27doVHx8fExMjqXbt2klJSV26dHnwwQeHDh26cuVKQ/JTUFBQUlJSUlJSQUHBoUOH\nXCdPNGjQoHXr1kFBQb6vB/ARH7RKrsnI2ZQphfns++/10ENVyGdV+r7MP/4KACZQ7hq7vLy8\nW2+9teSV++67b/78+atXr/6v//ov7xdWkeDg4LCwsG7dunXr1q1Dhw6kOuuxykZIV5iYPt3g\nMry9XqqGOyhTU/WnP0nSbbdVbZ0+68AAwNPKHbFr1qzZ119/XeriyJEjc3JyXnrppdDQ0GST\n/0mGadEQ32xqOCLYu7d27JCkJk3864gOADCfckfsYmNjP/jgg1dfffXSpUslr7/44oujRo16\n9tlnk5KSzp075/0KYTtshLzenDlGjl8ycgYAdlHuiN3kyZPff//9p59+esWKFevWrSu67nA4\nFixY0LBhQ07uQjWxEbKks2cl6eLF4vFLThgDYCyWtFpZuSN2N91005dffjl+/Pjw8PBSdzkc\njlmzZi1fvtztURBAaZVczmWVRXg1d+iQJN1xR+H4JQ17AQA1UO6InaSbb7559uzZ5d0bGxsb\nGxvrhZJga5VZzuVXi/AuXpSk2rUL/5OD2+EpDLoAfqmiYAd4XmU6t/lPuClq5Pb553I4NHas\n/vhHiXlqAEA11eisWMAr/GcRXqkDPb/5hoPbAQA1QbCDydSwp5q1lNqO+vLLVj24vXNnSerf\n3+g6AMDfMRUL03DtBj1yRBER2rLFi6csmFYF89R2XS9l1+8LAAxCsIM5FG2YmDpVN96oLVvc\nHJ8KUyGfAYA5EOxgDiU3TGzdanQ1/odkBgC24H6N3datW3/++ecy78rOzl6+fLmnS4Jf8p8N\nEwBgbo88IodDp05p7Fg1a6Y6ddSrl7Kzde6cnnlGLVuqXj316aOvvjK6UJTFfbCLiIj45JNP\nyrxry5YtTzzxhKdLgv8ptWHi5ZeNLggA/FdQkCTFxallS61Zo7lztXOn4uIUH6/gYK1cqbfe\nUk6OoqN17ZmjMIVyp2L37t27d+9e1+0dO3YEBweXesD58+eXLl164cIFL1YHP1Gqa/GpU1qx\nwuiaAMBPBQZKUliYJk+WpK5dtXq1li5Vz56aPl2SunfXli2aNUvbtqlPHyNLxfXKDXbvvvtu\nytX2sC+88EJ5D/vDH/7g+aJgb9cv5yq1G5Q1dgBgtJJnS4WFSdKQIcVXOnaUpCNHfFsTKqHc\nYPff//3fo0aN2rZt25AhQ0aOHHnHHXeUekBAQMCtt946ePBgL1cIAAB8rWXL4tuuMbySV2rV\nksRUrBlVtCu2RYsWgwcPHjRo0Pjx43v16uWzmgA/wnZUAKbkim4VX4EJud88sWrVKlId7CYz\nU6GhCgxUcrLRpVzLlfNcy1gAAKgi933snE7nu++++/bbbx8+fPhSWaOu3377rRcKgx/z9iBW\nUTPk9HT16OHFL2QbrkNB8vKUlKQZM4yuBoBxrr4b3BuZJPFuYEbug90rr7ySnJwsqU6dOrUY\nh4UNlGyGDLfIwQAkSYFni98NDh/vobVGF4SyuA92s2bNioqKmjNnzq233uqDggCvoxlylZCD\nAUiSgg8Vvxv8e77R1aAc7tfYHT16dMqUKaQ62ESpZsiJiUYXZHrkYACSpBsu8m5gAe6DXbNm\nzZzs2oNtpKZq2jRJio1VVpbGjTO6IHMjBwP+Z/58OZ3q0KH4SlqanFEDOz9Z/G6QsD3R6dSw\nYUbViHK5n4odPnz4okWL2BgL7/JZ149SzZBRsVKHgrRrZ3RBAAzCu4FFuB+xmzx5cm5u7ogR\nI9auXZuTk7P3Oj6oEoAxevcuHLFz5eAuXYwuCIBBrPNu8Mgjcjh06pTGjlWzZqpTR716KTtb\n587pmWfUsqXq1VOfPvrqK6ML9Q73I3b1r86mZ2ZmlvkAJmoBAIBJBAVJUlycIiK0Zo127VJi\nouLi1Lmz7rxTK1fqwAElJCg6WocO2bDrcqWmYoOCggID3T8SAADAWK7AEhamyZMlqWtXrV6t\npUvVs2dh9/fu3bVli2bN0rZt6tPHyFK9wX1cK2+gDgAAwJxiY4tvh4VJ0pAhxVc6dpSkI0d8\nW5NPuF9jV+TMmTPffffdqVOnvFcNAABeZNrjBOFpLVsW33aN4ZW84pqBLes4LcurVLDbvHnz\nPffc06BBg/Dw8M8//9x1cfDgwR9//LE3awMAwHNcx6jk5ys9XVFRRlcD77p+8Zz9ltOVyX2w\ny87OHjBgwPfffx9V4p/BsWPHtm3bFh0d/eWXX3qzPAAAPMR1jMqIEUpJUWSk0dUAXuE+2L3w\nwgvNmzffvXv3woULiy7ecsstO3fubN68eXp6uherA1AeZpSAquIYFfgB98Hu888/HzduXGho\naKnrTZs2TUxM/OSTT7xTGOA1rmbIrs1RFsWMElBVHKNiIxV3qlu8WJKGDrVtp7qKud8Ve/r0\n6VatWpV5V4sWLfLz8z1dEgB39hQfxe31r+WzQ0EAr+LghJozzbtBxZ3qHnhAK1YoN9e2neoq\n5n7Ernnz5jk5OWXe9cknn4SEhHi6JFgcU4Q+wIwSUFXWOTgBbpXsVNe1q0aN0uDBOnhQwcGa\nPl033yxJDz2ko0e1bZuxlRrAfbCLjo6eM2fOV9cOaJ48efJ//ud/FixYMGjQIK/VBgtiitAH\nmFECgPI71c2fL6dT994rXe1Ul5Ymp1P9+hU/PiFBTqeGDfNdtT7jfip2ypQpH3300b333tu5\nc2dJKSkpKSkpOTk5Fy5caN269WRXX2fAxZdThH6LGSUA8ONOdRWr1FTs9u3bn3jiiR9++EHS\n119//fXXX9evX3/cuHHbtm1r1qyZ94uEdTBF6APMKAGAH3eqq1ilGhQ3bdp0zpw5x44dy8vL\n27NnT15e3rFjx+bMmdO0aVNv1wcrYYoQAABDuZ+KLeJwOJo1a8YQHcrFFCEAAIZyH+ycTue7\n77779ttvHz58+FJZk9XffvutFwqDBfXurStXpKtThAAAwLfcB7tXXnklOTlZUp06dWoxfQ0A\nAGBW7tfYzZo1KyoqKjc39+zZs6fK4oMqAQBAtVV8VEPLlqpXT336+OlRDTbjPtgdPXp0ypQp\nt956qw+qAQDAW2xwnGB1FR3V0LKl1qzR3LnauVNxcYqPV3CwVq7UW28pJ0fR0dboD+LqVNeh\nQ/EVv+pUVzH3wa5Zs2ZOcxwhAgAAqqHioxq6d9fDD2vUKD89qsFm3Ae74cOHL1q0yAelAAbg\nADQAfqO8oxpcOnaUrh7VAOtyH+wmT56cm5s7YsSItWvX5uTk7L2OD6oEvMK6B6D58YwSgGrz\n5VENrOozivtdsfWvniKQmZlZ5gOYqIVVcQAaAH/iy6Mailb1RURozRrt2qXERMXFqXNn3Xmn\nVq7UgQNKSFB0tA4d4sQIT3If7IYPHx4UFBQYWIVWxoA1cAAaAHhHyVV9krp21erVWrpUPXsW\nTjZ0764tWzRrlrZtU58+RpZqM+7jWnkDdUAZXFOEljBwoNaulaSMDGVkaOxYvfaa0TUBgK2w\nqs/3qjAOd/z48T179pw9e7Z+/fodO3Zs1KiR98oCvI4D0ADAy3y5qg8ulQp2W7dunTBhwhdf\nfFF0xeFw3HfffTNnzgwPD/dabYA3cQAaAHiZL1f1wcV9sMvOzo6MjLx8+XK/fv06dux44403\nnj17dvfu3Rs2bOjbt292dnZH11gqAABwKzNTzz6rvDwlJWnGDKOrgd24D3ZTp534qkUAACAA\nSURBVE695ZZb1q1bd/vtt5e8vmPHjoEDB06ZMoVFeAAAVIqry1JQkNLT1aOHz77s/PmaP/+a\nK2lpSku75kpCghISfFYRvMV9H7t//vOf48ePL5XqJHXt2nX8+PEbNmzwTmEAANiOq8vSiBFK\nSVFkpNHVwIbcB7vTp0+HhoaWeVfbtm1//vlnT5cEAIBN0WUJXuY+2DVt2jQnJ6fMu3bv3t20\naVNPlwQAgB0NHKiICEnKyJDDocREowuCDbkPdgMGDPjrX/+6YsWKkidMOJ3OrKys2bNnP/jg\ng94sDwAAu0hN1bRpkhQbq6wsjRtndEFeNH++nE516FB8JS1NTqf69Su+kpAgp1PDhvm+Ojtz\nv3kiNTV19erVMTExzZs3v+OOO+rWrevaFZuXl9eiRYvU1FQfVAkAgOXRZQne537Erm3bttu3\nbx81atT58+c3bNjwwQcfbNiw4eLFiwkJCV9++WV5y+8AAADgY5VqUNyqVauFCxc6nc68vLyz\nZ8/Wq1evefPm3q4M8DoLHYAGAEAlVOFIsby8vLy8vFOnTt10000BAQG33HKL98oCAABAVbmf\nipU0b968du3ahYSEdOvW7b777uvSpUvTpk07deq0ZMkSb9cHAADs55FH5HDo1CmNHatmzVSn\njnr1Una2zp3TM8+oZUvVq6c+ffTVV0YXajXuR+zmzp07fvz42rVrR0ZGtmzZsm7duqdPn96z\nZ8+2bduGDx9+8eLFRx991AeFAgAA2wgKkqS4OEVEaM0a7dqlxETFxalzZ915p1au1IEDSkhQ\ndLQOHeKE2SpwH+xmzpwZFRX1j3/8o2HDhiWv79+/f8CAARkZGQQ7AABQJYGBkhQWpsmTJalr\nV61eraVL1bOnpk+XpO7dtWWLZs3Stm3q08fIUq3F/VTsgQMHJk2aVCrVSWrXrl1SUlJubq53\nCgMAADYXG1t8OyxMkoYMKb7SsaMkHTni25oszn2wa9iwYUBAQJl3BQQE3HzzzZ4uCQAAmJcH\nl8e1bFl82zWGV/KKawb20iXPlm9z7oPd73//+w8++KDMu1atWhUXF+fpkgAAsIXMTIWGKjBQ\nycmFV1xdllxzjRbkinQuzZppwQI1barkZO3cqchI3XST5szRzTcrNVU5OYqOdp/Jrl88x3K6\nGnIf7KZOnbp+/foRI0Z88MEH//rXvw4ePJiTk7N8+fJBgwYVFBQ8+eSTh0vwQcUAAFjA6dNK\nSFB+vtLTFRVldDWe4drxsHmzJA0ZonnztHevFi5UkyY6c0Z9+2rxYh08qFde0ciROnpU27aV\nfoWi0b5PP5Wku+4qHu1bs0aSHniAzbA14n7zREhIiKTs7OzMzMzr7w1zTYlf5aTdKwAAkvbs\n0fnzGj1aKSlGl+IxrtnShg3144/6058UGVm446FTJ/34ox57TA8/XLjjoXZtqazlcUWbYevU\nkaQpU5SaWrgZ1vXizz+vF15Q9+766SctWiRJo0Zp5kz95S8KD9fEiVq2TKdPq3NnvfqqunXz\n1XduHe6DXUxMTG3XzwcAAFRSQYEk1a9vdB2e17atcnIKF8O5hnduv734imvHw9mzUlnL44o2\nw168qK++UmysvvyycDNsZKQ+/VT9+6t9e+XkaNAgtWghSY8/rgUL6IRSWe6DXVZWlg/qAK6R\nmalnn1VenpKSNGOG0dUAQBUNHKi1ayUpI0MZGRo7Vq+9ZnRNHuMabHMlKldQa9Cg+Irrf69c\nKf2sRx7R4sUaOVKSFi/WmTOStGuX2raVpI8/1ooVkvT992rcWJKaNNHvf6+VK/Uf/6ETJ+iE\nUlmVOnkC8Ck7LkwB4F9SUzVtmiTFxiorS+PGGV2QJ91wXXa4/sr1XJOwH38sSW+8ob59Jenp\np/X++5L00kt66CFJSk4u3J/RvXvxc+mEUnmVOiv2ypUrX3zxxZEjRy6Vtb9l2LBhnq4K/s2O\nC1MA+JfevQvHrMLCFBNjdDWmUHJ9XufO2rxZ8fFaulR33CFJd96psWPVooVmzSoczGvSRAkJ\nSkiQpLQ0iU4oleM+2H355Zd/+MMfDhw4UN4DCHbwMPsuTAEAP+dan+fiGofr2FG7dxdecY3D\nXbwoSde30GU5XWW4D3ZPPfXUqVOn/vM//7Njx461+D8V3mbrhSkA4Odc6/NcSq7Pc3GlDBps\n1IT7YPfNN9/8/e9/j2EkGb6Rmqr+/TVxomJjNXKk2rUzuiAAgMdUb30eKs/9/5316tVr3bq1\nD0oBJKl3b0VESFcXpnTpUp0XGTBADoccjsK98gAAz5k2TU6nOnQovjJmjJxO9etXfOW3v5XT\nKdZq+Z77YDd06NB3333XB6UAnrF7t9atk6SwMP3ud0ZXAwD2MX9+6UiXllY60iUkEOmM5H4q\ndvr06cOGDRs6dOiQIUNCQkKuX2bXr+TPEzCc63NIkyb6/nujSwEAXGPaNC1des2VMWP05pvX\nXAkJ0f/9Hx/Mq8l9sPv222+//vrrQ4cOLVu2rMwHcIwYzOX0aUkKDja6DgDwL64WxCdP6rnn\n9P77OnNGnTsXHwW2eLEkDR2q+fPdHAX2pz9pw4ZrrqSlFXY8KVLUCQWluA92Tz/99LFjx4YO\nHRoWFhYYWKm+d4Bhatcu3Cj/449yONS4sX7+2eiaAMAvFJ0DGxGhNWu0a5cSE4uPAnvgAa1Y\nodxcjgLzLvdBbdeuXfPmzfvjH//og2qAmvqv/9Ly5dqzR8HBio5W795GFwTAX/Xr5299O4rO\ngZ08WZK6dtXq1dccBSbpmWeKjwJjHM4b3Ae7unXrhoeH+6AUwANeekkXL+rPf1aTJlq+3Ohq\nAMDvxMYW3+YoMN9zvyv2oYceWrVqlQ9KAbwrM1OhoQoMVHKy0aUAgAU88ogcDp06pbFj1ayZ\n6tRRr17Kzta5c3rmGbVsqXr11KePvvrqmmeVPPjLNYbHUWC+5D7YzZgxY/PmzU8++eT69etz\ncnL2XscHVcLCahKnPBjFTp9WQoLy85Werqiomr4aAFhcZULb+vWSFBenli21Zo26dNEXX+jh\nh9Wpk+bN04kTuuEGffaZBg7UXXcpIEBvvCFJH35Y/CLTpknS/v1Gfqf+xv1UbOPGjSWtX79+\nzpw5ZT6AXbEolytOBQUpPV09elT2Wa6FKadPq0WLKj+3PHv26Px5jR6tlJSavhQAWF/FGx1W\nrtSBA3rkEUlq375wzVzHjvr8cx0+rDvu0Pvva9cuPf64JB07ppAQLVqkF1/U7t167jlt2qTw\ncK1cqf/3/7R0qZKTNXIkuyV8xH2wGz58eFBQEPthUR01iVOejWIFBZJUv74HXgrIzNSzzyov\nT0lJmjHD6GqA6ihvo8PBg1q0qLBfiWvCtG5dnTuniRNV1PRs+HB17aquXTVlSuFo3KRJevhh\nbdig3bv16686d65wt0SnTpL088+FuyXgA+7jWmZmpg/qgD3VJE55MIoNHKi1ayUpI0MZGRo7\nVq+95oGXhX+q3jg0YErXb3RQiWG8oUO1d68WLND33xf3K5H05z/ruedUq5YaNix8Sqk1c3fd\nVfoLsVvCZ6pw9O7x48c/++yz9evXf/HFF6dOnfJeTbCJgQMLT33NyJDDocREHz33eqmphQs9\nYmOVlaVx42r0avBzrrHkESOUkqLISKOrAWrk+o0OujqM17WrmjeXpJMnFRys6dN1882FDzh5\nUtu2SZLDUfbLNmhQ+gq7JXymUsFu69atvXr1uuWWW/r06fPAAw/06tWrSZMmkZGR3377rbfr\ng4XVJE55Nor17l0YE8PCFBOjLl1q9Grwc0zrw0bKXPc2d27hpoovvii8Eh6uc+f0+efFj/n0\n04peltVbBnL//312dnZkZOTly5f79evXsWPHG2+88ezZs7t3796wYUPfvn2zs7M7uprSAKX0\n7q0rV6SrccpnzwW8h2l9+AfXbGx4uHbskKQ5c7R9uwICih/w4ot65pnSz5o/Xz/9pA8+KL6S\nlqbQUD3xRPEVWhB7m/tgN3Xq1FtuuWXdunW33357yes7duwYOHDglClTWIQHc3nlFb3yitFF\nwKZSU9W/vyZOVGysRo5Uu3ZGFwR4huuY1yKbNunMGf36a+F//vST1qxRkybFDzh9unA2Fmbj\nfir2n//85/jx40ulOkldu3YdP378hlLn9AKAjTGt7znVa34LL3F1PymSlKSdO/WvfxVfGT9e\npVbXsx/CnNwHu9OnT4eGhpZ5V9u2bX/mhHUAQNUV9VFzNb+dO1c7dyouTvHxCg7WypV66y3l\n5Cg6mnX3vlBqVdzo0Ro8WBcuFF+JiSneNuvCz8Wc3Ae7pk2b5uTklHnX7t27mzZt6umS4Gc4\n6QvwSyX7qHXtqlGjNHiwDh4s3IDZvbseflijRunoUab8DFCrVukYV9TcxNW1uKTFizVsmI8K\ng1vug92AAQP++te/rlixouQJE06nMysra/bs2Q8++KA3y4PdcdIX4N84MN4o8+fL6VSHDtdc\nfPjh4tuu5D1qVPGV0aMlqV694itffSWn85pUt3KlnE6lphZfSUgo/Rh4lfvNE6mpqatXr46J\niWnevPkdd9xRt25d167YvLy8Fi1apJb86QFVxUlfgH/jwHhTueG60Z7rr8Dk3P/E2rZtu337\n9lGjRp0/f37Dhg0ffPDBhg0bLl68mJCQ8OWXX5a3/A6oFFqCAf7t+j5qnChqoGnTCo9/LTJm\njEoN4Pz2t5o3z5dFoWoqFcVbtWq1cOHCkydP/vjjj3v27Dly5MiJEyfmzZvXokULb9cHO/Ps\n8RIV69dPTmfh4YVmxSZBAEANuQl2P/3002effea67XA4WrRo0aFDh+bNm8+ePZtTxeBexXGq\n4uMlrBDFPItNggBsjM+uvlFRsPvkk086duw4efLkUtd37dr11FNPhYeH79u3z5u1we5oCXYt\nq28S5F0bsIHrN1WkpcnpVL9+xVeqtx+Cz66+UW6wO3LkyMMPP5yfn3/fffeVuuuuu+76y1/+\ncuTIkYEDBxa41kgB8BDrbhL0l3dt/xtLBjzC6p9draLcYDdv3rzjx4/PnTs35brtig6H4+mn\nn37llVf27Nnz1ltveblCwL9Yd5Mg79qAdXlvoK4U6352tYpyg92KFSvat28/ZsyY8h7w1FNP\nhYaGLly40Ct1waLoNlxjVt8kyLs2KslnSQKmYt3PrlZRbrA7ePDgvffee0P5HWwCAwN79er1\n3XffeacwWBDdhsG7NmAm3l75Wo3Xt/pnV/MrN7f98ssvN910U8VPvummmy6UPEkOfs7VbXjE\nCKWkKDLS6GpgDN61AaNcH7PWrZOk2Fjt2iWnU7/+qm3bNGSIx1a++svKWkspN9jddNNNBw8e\nrPjJ33///S233OLpkmBZdBuGW198IUkjRjBZD3jc9THr5ElJ2rdP/fvro4/0zjsKCFBenoKC\nSq98DQqqzsAeK2tNqNxg16NHj48//vjEiRPlPWDv3r1btmzp1auXdwqD1fiy27AfcH3ydkXl\nwYOL32cvXpSk8eOt2Trk9Gm5tlsNHcpkPeBx18es1q0lqU2b4pjVtaskhYcXP8u18lU1GHhj\nZa2plBvsRo4cmZ+f/8QTT1y+fPn6e3/55ZcRI0Zcvnz5scce82J1sJCKuw2jilyfvJctk6RX\nXil+n339dUlKTrbmBMeePYXlDhnCZD3gJSVjVsOGkjRoUPEV1zRbyfXzRYslqj3wxspaUyk3\n2D388MORkZFZWVm9evXKyso6c+aM6/qxY8feeOONzp07Z2dnP/TQQ7/73e98VSrMrXrdhq3Y\nEsxrO39LbhJ0vTlGRcnp1OjRxe+zt90mp1MpKdac4KDtJeB9JUOVwyFJISHFV8rfEln9gTdW\n1ppKuT9hh8OxbNmyBx988Msvv4yNjW3YsGHjxo0bNGjQtGnThISEH374IT4+/p133vFlrYDx\nfLvz11YTHEWT9ZKGD7fcZD3napgWP5pSrg9Vrg+Kbnl74I0GN75R0ZFijRo1Wr169erVq4cP\nH96uXbtLly5J6tix4+jRoz/55JMlS5bceOONvqoTlmWzzna+3flrrQkON+/aqamaNi1B852x\nDw/LirfcZD27/0yLH42nMPBmD+5j/IMPPvjggw/6oJRKcjqd+/fv37dvn2t2uGHDhmFhYa1a\ntTK6LpTFNb4VFKT0dPXoYXQ1nuDbnb+2ep/t3VtXrkhXJ+utpuSydEldu2r1ai1dqp49C5cS\ndO+uLVs0a5a2bVOfPkaW6m/40QAlVTRiZzYnT56cMGFC8+bN27dv/8ADD8TGxsbGxt5///2t\nW7du06ZNenr6+fPnja7RRjwy0mazznbs/K20smfHcuqfU51nPv69dWfHbDU5bi/8aACXyk28\nm8CRI0f69u27f//+sLCw6OjoNm3a1K1bV9Ivv/ySm5u7efPmyZMnL1++fOPGjY0bNza6WOvz\n1EibzTrbpaaqf39NnKjYWI0cqXbtjC7IvIpmxyIitGaNdu1SYqLiJt3eWf+4M/DyypU6cEAJ\nCYqO1qFDVhqGtNbkuF/hR2OgpCStWqWTJ/Xcc3KtvR87VgsWKDxcEycW9jiaPFm33aZu3Yyt\n1C9YZsRu0qRJhw8fXrp06ffff79gwYK0tLTk5OTk5OT09PTMzMyDBw/Onj17165dU6ZMMbpS\nU6rq8JtHRtoMHN/y0sK+6u389Utlty09WjtYBdP7f2TdtqW2mhy3F340ZRo8WJJCQ0tfKepd\nJykhQY8/Xs3Xd62sdR1T5VrmuGWLFi7Uvn3FyxzXr9e77+rYMZY5+ohlgt2HH344cuTIuLi4\nMu8NCAgYP3780KFD33vvPR8XZgHV2MjpkZE2ozrbcWStaZQxO6YVRVeYHQM8y6htp5w/YSqW\nCXYnTpxo3759xY/p1KnT0aNHfVOPlVR1+M1TI21GjW/ZbGGflZUxO6Z/F11hdqzy6OgBr/JI\nImSZo0lYJtiFhITs3Lmz4sfs2LEjpGQfRrhUdfit2iNtJuk2bIuFfR55nzU8DZQxOyZyXHXQ\n0QPmxzJHkyg72B2uCt8UGhMTs2zZspdffvnChQvX33v27NnU1NQVK1bEx8f7ph7LqMbwm6VX\nkrFxtQTSgG0w1QXzY5mjSZS9K7ZKbeGcTqeHiqlIWlrali1bkpOTX3jhhZ49e7Zq1apevXpO\npzM/P/+HH37Izs4+d+5cRETE888/74NirMTfNnL62/dbIfp72QxTXQDcKjvYmXDcq1GjRp99\n9tns2bPffvvtTZs2XXF1OpUk1apVq3v37mPGjBkzZkxAQICBRZpRJbvCZmbq2WeVl6ekJM2Y\n4bPqPM/iXXC9wVxpYMsW9XP/KBOaP1/z519zJS1NaWnXXElIUEKCF2tgqqtMZvjRAOZRdrBb\nsmRJZZ589uxZ1/EPvhEUFJSUlJSUlFRQUHDo0CHXl27QoEHr1q2DXHNOULUimv3Oh0AJLXes\n0mOJrl+JwLozRBrwlUce0eLFhc293n9fZ86oc2f95S+Fzb2WLdPp0+rcWa++WtnmXkx1AXCr\nRg2KV6xYMWHChB9//NFT1VRScHBwmGvkAaVUL6K5tpGOHq2UFG8WB2PUmpyi2vmFvxJbJdKA\nr5TdpTlOnTvrzjtl3S7NAMysUsHu+PHjS5YsOXDgwOXLl4suFhQUrFq1Kj8/32u1oeqqF9Fs\nsY3UR1w7f0sy/yx2QYHGjCj8ldjqo6/J7JhY4wiL8PjQMozlPtgdOHCgZ8+ex44dK+PJgYGT\nJk3yQlXVkZubO3bsWEnr16+v0hMPHz588eLFCh5w/PjxGlXmS9WIaAMHau1aScrIUEaGxo7V\na695pTZbssosNqndOOZa4whcp+ZDy3yQMxX3we75558vKCh49dVXO3XqdP/998+fPz80NHTT\npk2LFi164403okzT2f/MmTMff/xxVZ+Vm5vboWSvsPL5ZvNvjVQvonl1G+n141s2Y/JZ7LVr\npSipxK9Ec1K7r7HjASbH0LLNuA92W7ZsefLJJ5988smCggJJd955Z69evaKiouLj4++///6V\nK1f27dvX+3W6d/vtt3/zzTdVfVb79u0PHz5cZm+8IosXL37++ecdDkcNqvOJ6kU0tpHWhMln\nsbt2lavRZNGvRJbBFfkhdjzADCqYb/38c0lasEBff10438rQsqW5D3ZHjhy59dZbJd1www2S\nimYt77777ieffDI1NbWqU59eEhwcHB4eXo0ntiz58bksN998c7Uq8jkPRjTbj7R5hPlnsZs2\nLbxR9CtBsLMmprpQQxXMt7q6hE2frrS0wvlWhpYtzf2RYvXr13cdwBoUFFSvXr19+/YV3XXH\nHXds377di9WVxel07tu3b/369VlZWVlZWRs2bDh06JCPawCkGpy95ivz58u5ZWsH7S264psT\nwQF4kEfOBqzg8BLX8uBBg0ofXsLQskW5D3YRERGvvfbapk2bJN11112zZ88u2gm7YcOG2rVr\ne7W+kk6ePDlhwoTmzZu3b9/+gQceiI2NjY2Nvf/++1u3bt2mTZv09PTz58/7rBgrMckRrj7j\ns+/XHGevVfym/9BDkvT3v3M8PGBVHjwbkK08/sD9VOzEiRP79+8/YcKE7du3P/HEE2PGjLnj\njjvuueee/fv3f/311yNGjPBBlZKOHDnSt2/f/fv3h4WFRUdHt2nTpm7dupJ++eWX3NzczZs3\nT548efny5Rs3bmzcuLFvSgLMoOIdbdOnSwk6fpxmaZVm/v418DMe3NzAVh5/4D7Y9ezZc+vW\nrdnZ2ZIee+yxPXv2zJw5Mysry+FwDB48eObMmd4vUpImTZp0+PDhpUuXxsXFXX/vlStXXn/9\n9aeeemrKlCk+KwkwAzdv+lsl6a67dHQ7O9oqwSr9a+B/PDLYxlYef+B+KlZS9+7dx40bJ8nh\ncEybNu3nn3/ev3//2bNnV6xY4bONBR9++OHIkSPLTHWSAgICxo8fP3To0Pfee8839QCmUvGb\nfpMmkkdmWDIzFRqqwEAlJ9f4tUzJ1b9mxAilpCgysoYvNn++nE6V7KfEGkdUm0cG28LCipdt\nvPiiJOXkyHXyQN++euopSdq/34NVwwCVCnYuR44c2bFjx8aNG7///vu6deveeOON3ivreidO\nnGjfvn3Fj+nUqZNrnwfgbyp+07/hBqnmMyyu0az8fKWnyzQNLD3M5P1r4Mc8NdhWtFbvd7+T\npEmTtHGjJL3+usaMkaSMDP36a00qhcEqFezmzZvXrl27kJCQbt263XfffV26dGnatGmnTp2W\nLFni7fqKhISE7Ny5s+LH7NixIyQkxDf1AKbiixkWj45mmdHAgYW7YTIy5HAoMdHoggDPK9oY\n69rudfSoevaU06mYmMITw06f1sCBDC1bmPtgN3fu3D/96U9HjhyJjIwcNWrU+PHjR4wY0bNn\nz//7v/8bPnz422+/7YMqJcXExCxbtuzll18us5nw2bNnU1NTV6xYER8f75t6LKDys2b+tm0W\n1WP70SzT968BKqPMnfJFx4IuXVrYHqVobUbJZRsubIy1NPebJ2bOnBkVFfWPf/yjYcOGJa/v\n379/wIABGRkZjz76qNfKK5aWlrZly5bk5OQXXnihZ8+erVq1qlevntPpzM/P/+GHH7Kzs8+d\nOxcREfH888/7oBjzKmoszBpwuPTrJ6dz23xpTc1ex/zdmGuOU1hgC2XulA+8+tf+tdfkcCgh\nQbt2FV65vkk/G2Mtzf2I3YEDByZNmlQq1Ulq165dUlJSbm6udworrVGjRp999tmf//zn9u3b\nb9q0aeHCha+++urs2bPfeuutTz/9tHPnzn/72982btxYr14939Rjdj6cNfNI88xitl+eb1GM\nZgEmExFR/MY7frwk5ebq3Dm5zg3YvFlr1sjpLOxFnJ9feMzk3Xfr4Yc1apTOni1cVFe0bCMh\nQfPmGfKtwJPcj9g1bNgwwHXgyHUCAgJ8edxWUFBQUlJSUlJSQUHBoUOHzpw5I6lBgwatW7cO\ncn1CQREfzppV3Edt5UodOKCEhMr1UbPcQKP/nL3GaBZgPkVvvH/9qxYs0MyZ+vzzwiPCUlL0\nl78UvvG6dsq3bl2849XVHuXqaQOwFfcjdr///e8/+OCDMu9atWpVef1HvCo4ODgsLKxbt27d\nunXr0KEDqa40364Br+CkmunT1b174afDkifVlMv2y/MBoIrK7Jvz+ONSiTfeN9/U0KE6frz4\niLBhw4rfeF3v0nXrFr+C6zO268MabMb9iN3UqVNjYmIOHDgwbNiwsLCwOnXqnD17dvfu3W++\n+ebFixeffPLJw4cPFz04NDTUm9WiclJT1b+/Jk5UbKxGjiwcf/cyz5xUY/vl+V7A8fCA3yrz\njXfTJkmqVav0G+8NVehvBgtzH+xcDUSys7MzMzOvvzfM9at0ldNPpqVMzohZMw80z/SH5fkA\n4DkcEYbruQ92MTExtWvX9kEpsDQP9FEzYqARAKyLI8JwPffBLisrywd1ACzPB/zKI49o8WKd\nPKnnntP77+vMGXXurL/8ReHhmjhRy5bp9Gl17qxXXy1snIsaeu45lVow/4c/6N13r7nCsg0b\nKDvY5eXl1a5du3Hjxq7bFb9E8+bNPV8XvCQzU88+q7w8JSVpxgyjqwHgvzy5oR7AVWUHuxYt\nWkRFRa1Zs8Z1u+KXYF2dZViumQjgY/7Tv8YESm6ol9S1q1av1tKl6tmz8Byc7t21ZYtmzdK2\nberTx8hSAQspO9jFx8fffffdRbd9WA+8ydVMZPRopaQYXQoASJ7aUI8SinbKu7bHip3yfqbs\nYLdkyZIyb8PaaCaCmmA0C17Avk7Asyrb1ua77747fvx4yf/csWOHd0qCd3ita3GZzTOdTvXr\nV3wlIUFOp4YN89TXBGAT/rCv08PnLkryzhuvN+qE77kPdpcuXXr88cfDw8O//fbboosbN27s\n1q3b6NGjr9C42vxcp6+uW1cY7DjrEwB8qGibSMuWWrNGc+dq507FxSk+TtnURgAAIABJREFU\nXsHBWrlSb72lnBxFR7sfm/Rq9vJgnTCQ+2D317/+9c033xw0aFCbNm2KLj7wwAPx8fELFy58\n9dVXvVkeqss1azZ9euGGifx8TZ1auJjF1UykSxejSwQAv+DBcxe9mr08eT4kjOM+2C1cuPB3\nv/vdqlWr2pVoGNuxY8clS5ZER0cT7Myu5Omr99xjdDUA4Kc8sk3EB9mL7SxW575B8d69ex97\n7LEy7/rNb36zbt06D1cEz7LWhgmW5wOwKQ9uE/Fq9mI7i9W5H7Fr0KDBgQMHyrzrwIEDTZo0\n8XBF8KBSGyZeftnoggDAT3lwm4hXs5c/bGexN/fBbtCgQW+88cbq1atLXrx06dK8efP+9re/\nDRgwwGu1ocZSUzVtmnR1wwTndAEwDTbUV1uZ2atoX8WiRZI0ahR7Wv2U+6nYqVOnfvTRR4MG\nDWrdunXHjh1r16596tSp3bt3//zzzy1atJg6daoPqkQ1lTp9detWowsCAHhF0b6KRo0k6fHH\ntWABR7T5I/cjdi1atNixY0diYuLZs2fXrVu3atWqrVu3BgQEPPHEE9u2bWvdurUPqgQAABUo\n2lfx+99L0n/8B3ta/VSlGhQ3a9Zs7ty5x44d+/e//7137978/Pyffvrpb3/7W8uSs/oAYDI0\nXIW/YU8rKnvyhCSHwxESEtK+ffu6det6ryAA8BQarsLfsKcV7tfYOZ3Od9999+233z58+PCl\nsn4dSp5IAVOjmQj8TMmmX5K6dtXq1Vq6VD17avp0SereXVu2aNYsbdumPn2MLBU2Nn++5s+/\n5kpamtLSrrmSkKCEBA98rZrsafVlnfAe98HulVdeSU5OllSnTp1arLcEYDVMTsE2KsheCxcW\nXinKXqUyGfyE+2A3a9asqKioOXPm3HrrrT4oCAA8i8kpAP7DfbA7evTou+++S6oDYFE0XAXg\nP9xvnmjWrJmThVkAAFjcvHmSdO4c+8TtzH2wGz58+CJXH2tYkWvDhGuhOADA1pKSilv8uE6R\nHDu2OLp9/bUkPf20briBfeK25T7YTZ48OTc3d8SIEWvXrs3Jydl7HR9UCYNlZio0VIGBSk42\nuhQAQBlcR7TddJN0tcXPli1auFD79hVHtwcflKQrV5SVpfBwjRpFE2Mbcr/Grn79+q4bmZmZ\nZT6AiVqbO31aCQkKClJ6unr0MLoaAEC5Km7x49otGx2trKzCFj/sE7cf98Fu+PDhQUFBgYHu\nHwl72rNH589r9GilpBhdCgDAvYpb/Nx1l7KyCqMb+8Ttx31cK2+gDv6ioECSrg7cAhZCw1X4\np4pb/NSuLV0b3dgnbidlB7u8vLzatWs3btzYdbvil2jevLnn64JJDByotWslKSNDGRkaO1av\nvWZ0TQCAitDix5+VvXmiRYsWw4cPL7pdMR9WC59LTdW0aZIUG6usLI0bZ3RBQCVkZio09Ncb\nAl92JLu2B9LZAYCfKHvELj4+/u677y667cN6YDK9e+vKFUkKC1NMjNHVAJVwdbvPe13T137V\nY22cIiK0Zo127VJiouLi1Lmz7rxTK1fqwAElJCg6WocOMZ4BwCbKDnZLliwp8zYAmN3V7T5r\nLqSs/0rjytkeKKl7d23ZolmzCrcHAoANuO9jt3Llyu+++84HpQCAB1y73afi7YF0dgBgM+6D\nXXx8/KpVq3xQCgDU1MCBioiQpIyM+W84XlNixdsD6ewAv+JqYty0afGVtDQ5nerXr/hKQoKc\nTg0b5vvq4Bnug12/fv02b97866+/+qAaAKiREtt9ZkdmzdU4tgfCr7iiW4cOxVeIbv7GfR+7\nv//970lJSYMGDXr00Udvu+22hg0blnpAh5K/QQBgoBLbfXYcj9lpdDkA4GPug11Rm7o1a9aU\n+QCOFAMAADAD98EuPj4+KCioVq1aDofDBwUBAACgetwHO9qdeEVmpp59Vnl5SkrSjBlGVwMA\nAOzAzeaJCxcuZGdnb9q0ye3BYqgCVwPV/Hylpysqyuhq3OnXT05nYeMvAEANPPKIHA5xIAq8\np6Jg99ZbbzVv3vzee+/97W9/GxIS8sgjj5w5c8ZnldmZq4HqiBFKSVFkpNHVAPbE9kCYUFCQ\nJMXFqWVLrVmjuXO1c6fi4hQfr+BgrVypt95STo6io+nCg2oqdyr2k08+GT16dEBAQFRU1E03\n3fT5558vXrz4/PnzWVlZvqzPnq5toAoA8BOuZophHIgCryl3xO7ll192OBwbNmxYs2bNO++8\nk5OT89BDD73//vvffvutL+uzoRINVOVwKDHR6IIAAD7FgSjwnnKD3eeffz5gwIAIVwSRgoKC\n0tLSJH3yySe+qcy2SjRQVVaWxo0zuiB4GGtoAJvx+D9qDkSB95Q7FXvixInbbrut5BXXf544\nccLrRdlbiQaqiokxuhp4XtEamogIrVmjXbuUmKi4OHXurDvv1MqVOnBACQmKjtahQ5yC4AWu\n7T6A53j8HzUHosB7yh2x+/XXX2+88caSV4KDgyVdcYUSAOUouYama1eNGqXBg3XwoIKDNX26\nunfXww9r1CgdPapt24yuFUAl8I8aFuL+rFgA1cAaGsBm+EcNSyDYAV7BGhrAZvhHDUuo6OSJ\nrVu3ujZMlLRp06ZSF69/DADW0AA2wz9qWEJFwe7TTz/99NNPS13cvHnz5s2bS14h2PkCR5AB\nAAB3yg12ixYt8mUdqIjrCLKgIKWnq0cPo6sBAFTT/PmaP/+aK2lpKjU8kpCghAQf1gR7KTfY\n/fGPf/RlHaiI6wiy0aOVkmJ0KQAAwLzYPGEFHEEGAAAqgWBnBFcDVde5gG5xBBkAAKgcgp3p\ncQSZKVVwxFC9egoJ0d13Fx8xlJYmp1P9+hU/PSFBTqeGDTOqfKDK/PmsvPnz5XSqQ4fiK/yj\nhmkR7Eyvd+/CETvXEWRduhhdEKQSRwy1bKk1azR3rnbuVFyc4uMVHKyVK/XWW8rJUXR0GX2t\n/PkPJKyrJr/zAHyGYAdUR02OGOIPJKyIY7UASyDYAdVXvSOG+AMJ6+JYLcDkCHZA9dXkiCH+\nQMKKOFYLMDmCHVB9NTliiD+QsCKO1QJMjmAHGIM/kADw/9u797io6vyP4x9ugyKIN0RBvBCk\npj9MQDOQNM3d1gwMJclV2Yp+gl2kHrWlmxfctWyzra3U7LalbmaWlel62cp8mNZiUuYmGqII\nJl7yJyoi4mV+fxydGQcdBhjmzPnyev41c+Zw5nOmHsf3+X7P9/uFyxHsAAAAFEGwAwAAUATB\nDgAAQBG+ehcAJ2hLkAEAADhEix1Qn6UgWGIITQ3/zwOGQLAD3L0UBP9AAgAaCcEOYCkIAMbA\nStOoFcEOuISlIAB4OFaaRq0IdsAlLAUBQHeO2+SWLBER+fFH2b5dbr9dsrOlRQspKRE/P6mq\nkuRkyciQ5s3pXmjSCHbAJSwFAUB3jtvktLvNY8dk/XpZtUoWLJATJ0REioutLXbl5SIiBw7o\ndw7QFcEOqD+edwGgcdXVwPEjv82aiYhERUlFhZw7JxkZl54SadnS+kBwQoKIyK5djXq68FwE\nO6D+eN4FgMa1VwPHj/zedJPI5Ud+27QREbnlFuunHTqIyKV2OzRBBDug/hhOCyijgU1urr0a\nOH7kVwtzWkD09hYRadfO+qmPj4jI+fPOnzqUQrADGorhtIACXNLk5qqrgeNHfr1r/NPtyzJS\nuIxgBzQUw2kB13vvPenUSXx95Ykn3POFLmlyc3w1eOcdEZETJxw1Cn72WWOcHJoQgh3qT5mh\nA7UuBTF2rDzwgBw/Lhs2XHGmWmfH4MH2Z8pwWqBBTpyQzEypqJA//1l++1t3fnMDm9wct7Rp\nUe+llxw1CmrPxtGRinoj2KH+6tRzYegUeK0z3bBBRGThQuuZXryob6WAEgoL5cwZ+f3vZcoU\nue02d35zozbAa12oHTo4ahTU0uSPP9bzKwCCHeqvTj0Xhh5Aeq0z1R5S7t3beqa//KJvpYAS\nqqpERIKC3P/NdZrP0vZ+9b33RERGj7ber/7tbyIi2dn296v9+llf12wUDA4WETl69OrfmJQk\nItK2rXXL4MEiIjEx9vtok56gCSLYoaGc7LlQYABpzTPt3Nm6RTvTigr31gSo5/bbL2WT554T\nLy/JytK7oGuyvV/Veox37bLer95zj4hIcbH9/ao2plVTs1FQa9XzwPtbGAXBDg1Vp54LQw8g\nrXmmLVpYt2hneuGCe2sC1DNjhjzzjIhIaqp8/LFkZ+td0DXZ3q9qrWhDh1rvVzt2FBH53e/s\n71e1ln5bto2CGRkil+ei09g+8qs9EDx1qpjNkp5u/6kmM9P6KZogRkijoerUc2HoAaQ1z6vm\npAMAGurmmy/dIUVHy8iReldTO9v71a5dRa68X9Xa9T32fhXq4d8luJVi67E++aT9cNrRo7l7\nBpoW7e5Ua0sLCbFu0drSevQQuXy/qnVKjBihT51oIgh2AADUn2L3qzA6gh0AQCn1m1yp1vks\nhQZ4GAHBDgCgFENPrgQ0EMEO8DBuX0kJUIzHTq5EoyDcgGCH+ms6Fyn3nal+KykBijH05EpA\nvRHs4CZNJwU2iH4rKQGKMfTkSkC9EewAT6LfSkqAYtwwWJX7VXgggh3gMYyzkhLQuAYOFLNZ\n5szRuw7AeAh2RlK/MfwwDOOspAQ0BQ2/5HLRhvsR7IyEMfyKu/nmSy122kpKffroXRDQpDX8\nkstFG+5HsDMSjx3DDwDqafgll4s23I9gZzyM4QcAt2n4JZeLNtyJYGc8jOEHAAdcO1i14Zdc\nLtpwJ4Kd8bDgNADFedL6Kw2/5HLRhjv56l0AAAA2tPVXTCb585+lXz+9qwEMhmAHAPAk2vor\n994rU6boXQpgPHTFAgA8CeuvAA1AsAMAeAzWXwEahq5YwJNoKykBTdaMGTJokEydKqmpMn68\ndOumd0GAwXiZ+VekNgsXLszKyjp16lRgYKDetQCA6r7+WpKS5MknWSsWHqu6utrf33/z5s0J\nCQl612KPrlgAAABFEOwAAKiDsWPFy0vKy2XiRAkNlYAAGTBA8vKkslJyciQ8XAIDJSFB8vP1\nLhRNEsEOANBQHph1Gq8kk0lEJC1NwsNl7VpZsEC2b5e0NBkzRpo1k5Ur5d13paBAhg9nPQno\ngGAHAGgoD8w6jVeStixYdLRMny59+0pGhiQnS0mJNGsmc+ZIXJyMGiUZGXL4sGzd6vrzAhwj\n2EEpHthsADQFHph16leSM9eQzz4TEUlNtf5VdLSISEqKdUv37iIiZWWNf57AlQh2UIoHNhsA\nTYcHZp26luTMNaS8XEQkNNT6V1qIDA+3btFWg+U6A/cj2EEpHthsADQdtsnGQ7JOXUty5hqi\nBcSCAvvv0o4G6MvYwa66unrr1q0bNmzYt2+f3rXA9erdr+qBzQZAU1Az2eiedepXkuNrSHCw\niMjRow2tDWgMhgl2f/nLXzZs2GC7ZeHChR06dOjfv/+QIUMiIyPj4+N/+OEHvcpDY6h3v6oH\nNhsAcJa2/oqusxM7voZ4e4twDYGnMkywmzZt2rp16yxvV69enZWVVVlZedddd02cODExMXHb\ntm2DBw8uKirSsUi4Vr37VT2w2QCAgXANgXEZJtjZefTRR4ODg7///vsVK1a89tprX3/99Ucf\nfXTy5MnZs2frXRpcjH5VAIaQm2t9euSxx0REpk1jVD7czZDB7ujRo4WFhQ8++GDPnj0tG1NT\nU1NSUtavX69jYWgM9KsCMATtcqQ9PZKTIyKyfz+j8uFuhgx2VVVVImKb6jS9e/c+cuSIHhWh\nEdEnAsCjZGSIiHToYN0yc6aYzRIWJnL56ZFZs8RslrvuYlQ+3M2QwS4sLCw4OPjAgQN22w8e\nPBgUFKRLSQDQlL35ppjNEhVl3aJlnYEDrVsyM8VslvR0xUvi6RHoy0jBrqSk5LvvvtuzZ8/x\n48cnTZr01ltvVVZWWj7dtWvXsmXLEhMTdawQANDE8fQI9GWkYLd06dJ+/fpFR0eHhIQ8++yz\ne/bsWbNmjfbRe++9Fx8ff+bMmWnTpulbJPTlgc0GAAyk4dcQnh6Bvnz1LsBZ//jHP8ptnDhx\nory8vHXr1tqn5eXlrVq1ev/99/v166dvnQAAAHoxTLD7wx/+4ODTCRMmZGVleXsbqQESAADA\ntRRJQoGBgaQ69dCvCmXUe308AKgTwhAANLp6r48HAHWiTrArKiq67bbbbrvtNr0LAQB79V4f\nDwDqRJ1gd+rUqS+++OKLL77QuxAAuDpmOFMbT4/AExhm8EStevTosWPHDr2rAIBrYoYzAI1N\nnWDXrFmz3r171+MPd+zYUV1d7WCHkpKS+hYFAFbMcAagsRkv2JnN5n379u3du/fUqVMiEhwc\nHB0dHRERUb+jFRUV3XjjjRcvXqx1T0bdAgAAD2ekYHf8+PHZs2cvXrz4yJEjdh917tw5MzPz\n8ccfb968eZ2Oed111508edJxi11eXt7tt9/u62uk36ppGjtWli6V48flySflk0/k1CmJiZGX\nX5bevWXqVFm+XE6ckJgYefVViY3Vu1YAABqBYcJKWVlZYmLivn37oqOjhw8f3qVLlxYtWojI\nyZMni4qKNm7cOH369I8++mjDhg2W5Sic1KJFC+1Q1xIUFNSg0uEulhklkpJk7Vr58UfJypK0\nNImJkV69ZOVKKS6WzEwZPlxKS6/oAiMRAgDUYJhgN23atAMHDnzwwQdpaWk1P71w4cLChQsf\neuih3Nzcl156yf3lwRPYzighIn37yr/+JR98IP37y5w5IiJxcbJpk/z977J1qyQkWP+w3okQ\nAACPYpjnxlavXj1+/PirpjoR8fHxmTRp0t13371ixQo3F4bGU7/J+usxowRzjAEA1GCYYHfs\n2LHrrrvO8T49e/Y8fPiwe+qBG9Rvsv56zyhRj0TIOlFwEjOcAXAPwwS7sLCw7du3O97n+++/\nDwsLc089cIP6NaTVe0aJeiRC1okCAHgUwwS7kSNHLl++fO7cuWfPnq356enTp2fMmPHpp5+O\nGTPG/bWhUbltsv56JEL6cAEAHsUwgydmzpy5adOmJ554YtasWf3794+IiAgMDDSbzRUVFfv3\n78/Ly6usrExKSnr66af1rlQpnjBc1PMn67eNnj/9JCIybJhMnHjpFwsNFREpLpYPPmCALQCg\ncRkm2LVq1eqbb76ZN2/eokWLvvrqqwsXLlg+8vPzi4uLu+++++677z4fHx8di1SPJwwX9fzJ\n+mtGz9dfl+TkS7/YAw+IiLzwggwbxgBbAEDjMkxXrIiYTKZHH330+++/r6io+Pnnn7dt27Zt\n27bCwsKKiopvvvnmgQceINW5nPNdjSZT0x1DYJvPtAVKIiKsv1ifPpf2oXMWANDYDNNiZ6tZ\ns2bR2sNWcAtnnnITvRv2PMqgQdbXWldsfLx1iwufCwQAwJaRWuxqmjt37kDb2QLQOJx5yk08\nYAyB58woERJifa214dmuh+IJzwUCAJRk7GC3Z8+ezZs3612F+px8ys1tw1ddzuWJsOZDASw1\nDABwA2MHO3gUVw1ftcz6q4X2//kf6xN7a9eKiAwbpvITewAA1BvBDi7jquGrlqG499wj+fny\n2mvWWX8HD5bvvpMlS6yz/jJZPwAAFgQ7eBwDzfpbsw9Xm53OdqiEtmXoUPdWBgBokowd7ObM\nmVNaWqp3FXAZrRO2ulpEZOlS67QpXbuKiHzxhXXaFE9+Yq/xsDQtAMAxYwe7Vq1aderUSe8q\n4DJaJ+wXX4iIvPWWdenVTz4REXn2WevSq9pQ06Y2sJSlaQEAjhk72KGxOTlc9P77XfN1Wids\ncLCISEyMtRNW296rl7UTtrjYNd/YcHataO+9JzfdJP/3f5da0QICJDdX+vWTF1+0trHFxMjp\n0/Ltt3VuYzNQJzUAQBcEO3gcreNVo02bYpkD2fL6xAm3luSA41Y07dG677+X9etl1SrXtLEZ\nd1oZAEBjI9jBBVw7D1xAgPW11kbVsqV1izbS1matYJ05bkXTlp244QapqJBz51zTxuaqaWUA\nAOoh2MHjeNf4v7LmFk/juBVt8GCRy61oDW9jc9W0MgAA9Xj8P5iAEThuRWvXTuRyKxptbACA\nxkOwA1zAcStazRXGaGMDGo4JgICaCHbwOM88Y//E3n332T+xd+utLDgBNHVMAATURLADABgS\nEwABNRHsAAAGxgRAgC2CHTyIa6dNUQ+/D1ATEwABtgh2AAADYwIgwBbBDmgQx61o2qdTp1pb\n0WhjAwA0HoIdAACAIgh2AACl5OZa57d77DERkWnTmN8OTQXBDgCgFO0ZO21+u5wcEZH9+5nf\nDk0FwU4RzMAOABptrRdtfrvOnUVE4uKs89u98IKMHi3p6XL4MFdLKIhgpwhmYAegsKveu/7v\n/8rp0/Lqq9Y0lpwsZrOEhopcnt9OG5w0dKjI5fnttKvlV1+JiEydytUSqiHYKYIZ2AEorB73\nrtea30573aGDiEinTlwtoRqCnVKYgR2NhL5+6Kse966O57eLjbW+5moJlRDslMIM7Ggk9PXD\nE7jw3rVVK+trrpZQCcFOKczAjkZCXz88gQvvXbUBFra4WkINBDsAzqKvH/ri3hWoFcEOgLPo\n6wcAD0ewA+As2ksAwMMR7AAASnnzTTGbJSrKumXmTDGbZeBA65a77xazWdLT3V8d0LgIdgAA\nAIog2CnCmTtUbQZ27lABNGVcLaE2gh0AwNORxgAnEewAAAAU4WU2m/WuwdNt2bIlMTHx7Nmz\nJm32fQAA0IRVV1f7+/tv3rw5ISFB71rs0WIHAACgCIIdAACAIgh2AAAAiiDYwU3GjhUvLykv\nl4kTJTRUAgJkwADJy5PKSsnJkfBwCQyUhATJz9e7UABGw+UFsCDYwU20kSdpaRIeLmvXyoIF\nsn27pKXJmDHSrJmsXCnvvisFBTJ8OIuNAqgbLi+ABcEObqKtGR8dLdOnS9++kpEhyclSUiLN\nmsmcORIXJ6NGSUaGHD4sW7fqXSsAQ+HyAlgQ7OBWqanW19HRIiIpKdYt3buLiJSVubcmAErg\n8gIIwQ5uFh5ufa3dZNtu8fMTEfpKANQHlxdACHZwM+3a6ngLANQDlxdACHYAAADKINgBBsPM\nDgCAayHYAQbDzA4AgGsh2AEGw8wOAIBrIdgBhsTMDgCAmgh2cJM33xSzWaKirFtmzhSzWQYO\ntG7JzBSzWdLT3V+d8TCzA2DB5QWwINgBhsTMDgCAmgh2AAAAiiDYAQAAKIJgBwAAoAiCHQAA\ngCIIdgAAAIrwMpvNetfg6bZs2ZKYmHj27FmTNuU/AABowqqrq/39/Tdv3pyQkKB3LfZosQMA\nAFAEwQ4AAEARBDsAAABFEOwAAAAUQbADALjY2LHi5SXl5TJxooSGSkCADBggeXlSWSk5ORIe\nLoGBkpAg+fl6Fwooh2AHAHAxbQqBtDQJD5e1a2XBAtm+XdLSZMwYadZMVq6Ud9+VggIZPlzO\nndO7VkAtBDsAgIv5+oqIREfL9OnSt69kZEhyspSUSLNmMmeOxMXJqFGSkSGHD8vWrXrXCqiF\nYAcAaBSpqdbX0dEiIikp1i3du4uIlJW5tyZAdQQ7AECjCA+3vtba8Gy3+PmJCF2xgIsR7AAA\njUKLbo63AHAtgh0AwHgYeAtcFcEOAGA8DLwFropgBwAwHgbeAldFsAMAGBUDbwE7BDsAgFEx\n8BawQ7ADALjYm2+K2SxRUdYtM2eK2SwDB1q3ZGaK2Szp6Q36IgbeAnYIdgAAAIog2AEAACiC\nYAcAaJA6TSnH/HNAoyLYAQAapE5TyjH/HNCoCHYAgAap05Ry2s7798uMGdKtm2zZImazlJTI\nli2Smio9e8qmTXLunBw+LLGxtNsBdUawAwC4QJ2mlOvWTeRyu924cSIip05Z2+0eflhEZN8+\nR+12bht4CxgLwQ4A4AJ1mlIuKEjkciNfp04iIomJ1ka+664TEbnlFtaNAOqMYAcAcIE6TSnn\n7S1yZSNf584iVzbydewowroRQB0R7AAA+rBt0vPxsd+iNfsxhAKoE4IdAEAfrBsBuBzBDgAA\nQBEEOwAAAEUQ7AAAABRBsAMANEidppTTdm7Z0n5nbVSs7c79+jV+6YByCHYAAACKINgBANyt\nIetGjB0rXl5SXi4TJ0poqAQEyIABkpcnlZWSkyPh4RIYKAkJLEeGJopgBwAwEpNJ5PJyZGvX\nyoIFsn27dTmylSvl3XeloMDRcmSAwgh2AAAj0SYu1pYj69tXMjIkOdm6HFlcnIwaJRkZLEeG\nJopgBwAwHm05Mq1bNiJCRGT9emu3bLduIiJ33km3LJocX70LAACgzrTFx7Ru2Y8/FhF5/nnx\n95esLElLk1atREQef1yuv14yM2X4cCktZVkLNAm02AEAjEdLaVq3bJs2IiI33GDtltU+7daN\nblk0OQQ7AICx9expfR0dLSJy443WLd27i4iUlbm3JkAnBDsAgLHZTnesteFpXbEarfWOEbJo\nIgh2AABj867xT5kvD5CjqSLYAQAAKIJgBwAAoAiCHQDASGouR/bII/bLkY0YcfXlyADlEewA\nAAAUQbADAABQhJfZbNa7Bk+3ZcuWxMTEs2fPmrQ5zgEAQBNWXV3t7++/efPmhIQEvWuxR4sd\nAACAIgh2AAAAiiDYAQAAKIJgBwAAoAiCHQAAgCIIdgAAAIog2AEAACiCYAcAAKAIgh0AAIAi\nCHYAAACKINgBAAAogmAHAACgCIIdAACAIgh2AAAAiiDYAQAAKIJgBwAAoAhfvQswAJPJJCL+\n/v56FwIAADyFFg88jZfZbNa7BgPYvn37+fPn9a4COtuzZ096evqCBQsCAwP1rgU6e//99w8c\nOPD444/rXQj09/DDDz/22GPDhw/XuxC4la+vb58+ffSu4iposXOKZ/7Hg5tpN2dpaWlt27bV\nuxbobMeOHWazedy4cXoXAv398Y9/jIqKiouL07sQQIRn7AAAAJRaj6w6AAAP8klEQVRBsAMA\nAFAEwQ4AAEARBDsAAABFEOwAAAAUQbADAABQBMEOAABAEQQ7AAAARRDsAAAAFEGwA5xlMpm8\nvLz8/Pz0LgT6M5lMnrlMJNyP/xngUVgrFqiDvXv3RkZG6l0F9Hfq1KmqqqqQkBC9C4H+SkpK\nwsLCfH1ZohMegWAHAACgCLpiAQAAFEGwAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAE\nwQ4AAEARBDsAAABFEOwAAAAUQbADAABQBMEOAABAEQQ7AAAARRDsAAAAFEGwAwAAUATBDgAA\nQBEEO6Buzp07N2XKFB8fn/j4eL1rgQ7Ky8tzcnK6du1qMpnCwsIyMzPLysr0Lgr64GoAD+Sr\ndwGAkRQUFIwbN66wsFDvQqCP6urqoUOH5ufnjxo1KjY2tqioaNGiRV9++eW2bdtat26td3Vw\nK64G8Ey02AHOOnnyZFxcnLe3d35+vp+fn97lQAfz5s3Lz89/7rnnPvzww6lTp7711ltLlizZ\nt2/f7Nmz9S4NbsXVAB6LYAc46/z585MmTdqyZUtUVJTetUAfixYtCgoKmjx5smXL3XffHRUV\ntXjxYrPZrGNhcDOuBvBYBDvAWW3atJk7dy53501WVVXVjh07+vfv7+/vb7t94MCBR44c2bdv\nn16Fwf24GsBjEewAwCmlpaUXLlyIiIiw296lSxcR2bt3rx5FAcAVCHYA4JRTp06JSIsWLey2\nBwYGWj4FAH0xKhawV15e/tRTT1neRkVFPf744zrWA4/i5eVlt0V7uq7mdgBwP4IdYK+iomLh\nwoWWt4mJiQQ7iEjLli3lai1zJ0+eFJGgoCAdagKAKxHsAHudOnVihCNq6ty5s6+v7/79++22\nFxUViUh0dLQeRQHAFXjGDgCcYjKZ4uLi8vLyKisrLRsvXry4cePGiIiIzp0761gbAGgIdgDg\nrPvvv7+ysvL555+3bHn99dcPHjyYmZmpY1UAYOFFlxPgpI0bN65Zs0Z7PXfu3JCQkIyMDO3t\nE0880bZtW/1Kg5tcuHDh1ltv3bRpU0pKSmxsbEFBwbJly3r37v3tt98GBAToXR3ch6sBPBbB\nDnDWnDlzpkyZctWPCgsLmYC+iaioqMjNzV2+fPnBgwfbt28/cuTIWbNmtWnTRu+64FZcDeCx\nCHYAAACK4Bk7AAAARRDsAAAAFEGwAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4A\nAEARBDsAAABFEOwAAAAUQbADAABQBMEOAABAEQQ7AAAARRDsAAAAFEGwAwAAUATBDgAAQBEE\nOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsAAABFEOwAAAAUQbADAABQBMEOAABAEQQ7AAAA\nRRDsAAAAFEGwAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsADZWenu7l\n5XXo0CGPOpTlaAcOHHDJ0QDA8xHsAIiILFmyxOtKPj4+oaGhqampX3/9teO/vfHGG3/729/6\n+/s3vAwXHspJZrP5ww8/HDlyZFhYmL+/f/v27ePj42fPnn348GG31eDJ5syZs2fPnlp3O3fu\n3JQpU3x8fOLj491QFYBr8TKbzXrXAEB/S5YsGT9+fGJi4sCBA7UtZ86c2b1797///W+z2fzO\nO+9MmDBB3wrrIT09fdmyZaWlpZ06dbrqDuXl5WlpaZ9//nlAQMDQoUO7dOly7NixvLy8oqKi\nkJCQjz76KCkpyc01e5SysrKwsLA1a9bcfvvtDnYrKCgYN25cYWHh6dOn+/bt+91337mtQgB2\nfPUuAIAHue2222bOnGm7ZdOmTUOGDMnJyRkzZow7G9Lc4/e///3nn3+ekpLyxhtvhISEaBsv\nXrz4+uuvP/TQQykpKbt27Wrfvr2+Repo69atte5z8uTJuLi4Xr165efn9+7d2w1VAXCArlgA\njiQlJQ0dOvT48ePbt2+Xy0+tHTlyZNiwYc2bN1+5cqVc+WDc2LFjvby8Kioqnnzyya5du/r7\n+0dERLz44ou2nQOHDh3KzMwMDw9v0aJFnz59/v73v58/f177yPZQd911l5eXV1lZWWZmZmho\nqL+/f48ePRYsWGBbXl5e3l133dWuXTuTydS1a9fx48cXFxc7eWpr167917/+FRsb++GHH1pS\nnYh4e3tnZWXNmjUrNja2qKhI27h///577703PDzcZDK1a9cuOTk5Ly/P8ifaWZeXl0+cODE0\nNDQgIGDAgAF5eXmVlZU5OTnh4eGBgYEJCQn5+fmWP3Hm7Jz5Usc/9eHDhx988MEuXbqYTKaQ\nkJCRI0faZjXHRxgxYkRKSoqI/O53v/Py8rpWj/z58+cnTZq0ZcuWqKgoJ395AI2HFjsAtWjb\ntq2IVFZWiojJZBKRRx991M/Pb/r06ZGRkXY7azuMHj26W7du77///sWLF3Nzcx977LFWrVrd\ne++9InL06NH4+PiKiooJEyZ06dLlq6++ysnJ2bFjx5tvvml3KK2BcOTIkbfeeuvHH3988eLF\nWbNmTZo0yc/PLzMzU0S2bds2aNCgNm3aTJ48uUOHDnv37p03b9769et37typ1ezYokWLRORP\nf/qTr+9VroRTp06dOnWq9rq0tLR///6VlZXZ2dm9evX65Zdf5s+ff8stt3z++edaz7V21mlp\naUlJSWvXrv3xxx+zsrLS0tJiYmJ69eq1cuXK4uLizMzM4cOHl5aW+vn5OXN2Tn6p45/6pptu\nKi8vz8rK6t27d2lp6fz585OSktatWzdo0KBaj/D000+3adNm8eLF06dP79u37w033HDVn7FN\nmzZz586t9dcG4CZmADCbFy9eLCIzZsyw215dXR0ZGam1LZnN5vvuu09EfvOb31y4cMGyz5gx\nY0RE2+H+++8XkXvuucfyqdboNWLECO1tdna2iKxbt86ywx133CEi//3vf+0Opb22PVR5ebm/\nv3/Xrl21t/Pnz4+Njd2wYYNlh1deeUVEXnnlFdvCSktLr3rK2nmdOHGi1h8nIyNDRFasWGHZ\nsnPnTh8fnwEDBmhvtbPOzs627HD33XeLyOjRoy1bJk+eLCKbN2+2rc3B2Tn5pY5/al9f361b\nt1p2KCkpCQoKio+Pd/IIzz77rIisWbOm1p9I4+/vHxcX5+TOABoDXbEArq6qqmrHjh3p6el7\n9+5NT0/v0KGDiHh5eYlIRkaGt7ejq4cWSjSRkZEBAQHanCNms/mDDz6IiIgYNmyYZYeXX375\nyy+/DA0Nveqh0tPTLa+Dg4OTkpKKi4vLyspEJDs7e9u2bYMHDxaRc+fOVVVVaa1KTvbGHj58\nODg4uGXLlo53M5vNn3zySWho6MiRIy0be/bsefPNN3/77bfHjh2zbExNTbW8jo6OFhGtK1PT\nvXt3EdEqr/XsnP9SBz/18uXLY2JiOnXqdOgyPz+/hISE7777rqKiotYjADAigh0Aq9zcXMt0\nJ82bN4+JiVmxYkVycvLChQttd9MyigOdO3e2fevn53fu3DkRKSsrO3bsWI8ePbSAqImMjLz1\n1lvbtWt31UNdf/31tm/Dw8NFxDLR3eLFiwcNGtS6dWuTydS8efOhQ4eKiOWJPce8vb0vXLhQ\n626HDh06ceJEr169bGuWyz/Czz//bFebRuvetd2i9cBqv0OtZ+f8l17rpz5y5Mivv/6an5/f\n8Urr1q0TkZKSklqPAMCIeMYOgNWgQYO0BjAR8fb2btu27cCBA/v06WO3W3BwsOPjaCGmpjNn\nzsjlx8ucFBAQYPu2RYsWIlJeXi4iU6dOffbZZ+Pj41988cVu3br5+/v/9NNP2gNqzggLC9u9\ne/evv/56rUypOX36tOV7bTVv3tzyqabmWV/rd7C41tkFBQXV+0s1p06dEpEbb7xR6061ExYW\n5nyRAAyEYAfAavDgwXbTnbiW1p+rxTIn2YYYETlx4oSItG3btqqq6qWXXoqIiNiwYUNgYKDt\np05KSEjYvXv3Z599pg01sGM2m3fs2BETE6Md3K4MyxYtgdXbtc6u4V9q2cfxFHQAFENXLAD3\nadGiRUhISEFBgW1n3+7du1999dWffvrpqn9SUFBg+7awsFBEOnbseOjQoTNnzsTHx1tSnYhs\n3LjR+WK0PDdr1iytccvO/Pnz+/TpM2/evA4dOrRp06agoMB85XTuO3fu9PLyqrVX2rFrnV3D\nvzQ0NLRdu3a7du2yi9FHjx5tSMEAPBzBDoBbpaSkHDt27N1337VsmTlz5sMPP3z27Nmr7v/2\n229bXv/8889bt27t3r17SEhIaGiol5eX7TiJH374QZvBpKqqyplKkpKSxowZU1xcPGzYMMt8\ndSJy/vz5l19+efLkyR07dhw7dqyIpKamlpWVffrpp7bflZeXN2TIkFatWjl54nU6O5d8aVpa\nWlVV1fPPP2/ZcvTo0ZiYmDvvvNPJ8nx8fORyBzoAQ6ArFoBbzZgxY9WqVdnZ2du3b+/SpcvG\njRtXrVo1YcKE2NjYq+5/9uzZO++8c8SIERcvXvzrX/9qNpunT58uIs2bN7/jjjtWrVqVlZU1\nePDgnTt3vvrqq//85z+Tk5NXr169dOnS5OTkWot5++23z549+8knn/To0SMpKen6668vLy//\n9ttv9+/fHxkZuXbt2tatW4tIbm7uqlWrxo8f/8gjj3Tv3r24uHjevHmBgYF/+9vfGvhrXOvs\nXPKlM2fOXL169TPPPFNWVjZo0KCDBw++9tprx44de+SRR5w8gjZP4Zw5c/bt25eUlNSvX7+a\n+2zcuHHNmjXa6/Pnz//yyy9PPfWU9vaJJ55wZkJBAK6k20QrADzJteaxs6PNfFZYWGi7seY8\ndnY7BAcH9+rVy/K2uLh43Lhx7du39/Pzi4yMfOGFF86fP1/zUNrrwsLCnJycsLAwk8l0ww03\nvPPOO5bjHDlyZOzYsSEhIcHBwUOGDNm0aZPZbM7NzQ0MDOzQoUNZWZnjeewsVq5cmZqaGhYW\n5ufnFxQUdNNNN82fP7+ystJ2n5KSknvvvbdjx46+vr7t27dPT0/fuXOng59lxowZIqKVpHnj\njTdEZOnSpbZn6uDs6vGlNX/qsrKy7OzsiIgIX1/fVq1aJScn/+c//3H+CNXV1aNGjWrevHnr\n1q2XL19+1V/vqoMzNHZHBuAGXuYrH+AAAA+Rnp6+bNmy0tLSTp066V2L66l9dgD0wjN2AAAA\niiDYAQAAKIJgBwAAoAiesQMAAFAELXYAAACKINgBAAAogmAHAACgCIIdAACAIgh2AAAAiiDY\nAQAAKIJgBwAAoAiCHQAAgCIIdgAAAIog2AEAACiCYAcAAKAIgh0AAIAiCHYAAACKINgBAAAo\ngmAHAACgCIIdAACAIgh2AAAAiiDYAQAAKIJgBwAAoAiCHQAAgCIIdgAAAIog2AEAACiCYAcA\nAKAIgh0AAIAiCHYAAACKINgBAAAo4v8BrPHqfuem3N0AAAAASUVORK5CYII=",
- "text/plain": [
- "plot without title"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "sjc_sex_results_refined\n",
- "FALSE TRUE \n",
- "42444 167 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde1yUdd7/8TepSIqnSkFQ88TDLMIQ9TaUbbfMA+2SYnjqNjqMC5rdq7u5\n/fROxeyg27brMTOpzdzV0ow0M7vzmNoBNNMtbddQUjdFS0DEA2nz++MiBuQwCDNzzVzzej76\nY7zmwEcn4D3fw+cbYLfbBQAAAN93jdkFAAAAwDUIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAs\ngmAHAABgEQQ7AAAAiyDYAQAAWATBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAH\nAABgEQQ7AAAAiyDYAQAAWATBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABg\nEQQ7AAAAiyDYAQAAWATBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABgEQQ7\nAAAAiyDYAQAAWATBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABgEQQ7AAAA\niyDYAQAAWATBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABgEQQ7AAAAiyDY\nAQAAWATBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABgEQQ7AAAAiyDYAQAA\nWATBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABgEQQ7AAAAiyDYAQAAWATB\nDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABgEQQ7AAAAiyDYAQAAWATBDgAA\nwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABgEQQ7AAAAiyDYAQAAWATBDgAAwCII\ndgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABgEQQ7AAAAiyDYAQAAWATBDgAAwCIIdgAA\nABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABgEQQ7AAAAiyDYAQAAWER9swvwDXv37r106ZLZ\nVQAAAK9Qv379bt26mV1FJQh2zu3atatnz55mVwEAALxIVlZWjx49zK7iSgQ754qLiyVdvHgx\nMDDQ7FoAAIDJiouLGzZsaMQDb8MaOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIId\nAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACA\nRRDsAAAALIJgBwAAYBEEO982apQCApSfr5QUhYSoUSP17q3MTJ07pwkTFB6u4GDFxurzz80u\nFAAAuB/BzrcFBkpSUpLCw7VhgxYt0t69SkrS8OEKCtLatVq6VAcOKD5eP/5odq0AAMDNCHa+\nrX59SYqI0LRpio5WcrISEnTkiIKCNGuWYmI0dKiSk5Wbq6wss2sFAABuRrCzgsREx+2ICEm6\n917HlS5dJOn4cc/WBAAAPI5gZwXh4Y7bxhhe2SsNGkjyrqlYlgYCAOAOBDsrMKJb9Ve8CksD\nAQBwB4IdTMDSQAAA3IFgB9OwNBAAANci2ME0Prc0EAAAL0ewg2l8bmkgAABejmAHAABgEQQ7\n35aeLrtdnTs7rqSlyW5X376OKzab7HaNGOH56gAAgEcR7AAAACyCYAcAAGARBDsAAACLCLDb\n7WbX4O0+/vjjPn36XLx4MdA4MAEAAPix4uLihg0b7ty5MzY21uxarsSIHQAAgEUQ7AAAACyC\nYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcA\nAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGAR\nBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsA\nAACLINgBVxo1SgEBys9XSopCQtSokXr3Vmamzp3ThAkKD1dwsGJj9fnnZhcKAEB5BDvgSoGB\nkpSUpPBwbdigRYu0d6+SkjR8uIKCtHatli7VgQOKj9ePP5pdKwAAZRDsgCvVry9JERGaNk3R\n0UpOVkKCjhxRUJBmzVJMjIYOVXKycnOVlWV2rQAAlEGwAyqXmOi4HREhSffe67jSpYskHT/u\n2ZoAAKgWwQ6oXHi447Yxhlf2SoMGkpiKBQB4F4IdUDkjulV/BQAAr0KwAwAAsAiCHQAAgEUQ\n7AAAACyCYAdPo/0vAABuQrCDp9H+FwAANyHYwdO8v/1verrsdnXu7LiSlia7XX37Oq7YbLLb\nNWKE56sDAKBKBDuYg/a/AAC4HMEO5qD9LwAALlff7AKumt1uP3z48KFDhwoLCyU1a9YsIiKi\nbdu2ZteFq0P7XwAAXM6XRuzy8vIef/zx0NDQTp063X333YmJiYmJiXfddVe7du1uvPHGmTNn\nnj9/3uwaATOx4xgA/JzPjNgdP368T58+hw8fjoiIiI+Pv/HGGxs3bizpzJkz2dnZ27ZtmzZt\n2urVq7ds2dKiRQuziwXMUbrjOC5OGzZo3z6lpiopSVFRuuUWrV2rnBzZbIqP19GjDJECgAX5\nTLCbOnXqsWPHVq5cmZSUVPHey5cvL168ePz48TNmzJgzZ47nywO8Qdkdx5Kio7V+vVauVK9e\nmjVLkmJitH275s5VVpZiY80sFQDgDj4zFfvee++NHj260lQnqV69euPGjRs2bNjbb7/t4cIA\nb8OOYwDwWz4T7H744YdOnTpV/5iuXbvm5uZ6ph7Aa7HjGAD8ls8Eu7CwsL1791b/mD179oSF\nhXmmHtQa7X/djR3HAOC3fCbYDR48eNWqVX/+858vXrxY8d6ioqLp06evWbNm+PDhnq8NAADA\nG/hMsEtLS4uOjp40aVLLli379ev30EMPPfbYY+PHj3/wwQd/9atftWrV6qmnnoqLi3vyySfN\nrhRu5FXtPLyqGAAA5EO7Yps3b/7JJ58sXLjw9ddf37p16+XLl0vvatCgQUxMzMMPP/zwww/X\nq1fPxCLhbl7VzsOrigEAQD4U7CQFBgZOnDhx4sSJFy5cOHr0qHHyRNOmTdu1axdo/I6F1XlV\nOw+vKgYAAPlWsCsVFBQUYXRxgF/yqnYeXlUMAMDP+cwaO6CUV7Xz8Kpi2HEMAH7OJ0fsKpWd\nnZ2SkiJp48aNNX/W2bNn//SnPxUXF1fzmJycnDrWBtfyqnYeXlUMAMDPWSfYFRYWbtq06Wqf\nVVRU9Pnnn1faQqXUf/7zH0kXL15kJR8AAPBm1gl2N9100z//+c+rfVZISMi6deuqf8zixYtT\nU1MDAgJqWxoAAIAnWCfYBQUFRUZGml0FAACAaawT7CT98MMPeXl5ncsuHYe1bN0qSWfOKCVF\n77yjwkJdd50kXbigCRO0apUKChQaamqJAACYx1K7Yp9//nnaoFjbNddI0mOPKTxcGzZo0SLl\n5krS9OkKCtLatVq6tKS3SJkO1gAA+AtLBTtY3i9+IUndumnaNEVHKzm5pI1cWJhmzVJMjIYO\n1ZgxktShg9uLobcIAMDbEOzge+gJDABApXxmjV2PHj2cPsboSwLL86qewAAAeA+fCXZ79uyR\n1KDa3q+XLl3yVDkwEz2BAQColM9MxU6aNKlx48Zffvnlhao9/vjjZpcJAABgGp8JdjNnzuzc\nufPIkSN/ZI4NAACgMj4T7Bo0aPCPf/zjq6++mjJlitm1AKjEqFEKCFB+vlJSFBKiRo3Uu7cy\nM3XunCZMUHi4goMVG6vPPze7UACwLp9ZYyepa9euJ06cqGYh3aBBg5o3b+7JkuBJo0ZpxQpJ\nmjpVmzersFBRUbr1VkmaN0/Dh6ugQFFR6tfP3DL9l3GWclKS4uK0YYP27VNqqpKSFBWlW27R\n2rXKyZHNpvh4HT3KskgAcAtfCnaSmjZtWs29d9xxxx133OGxYuBhRm6QFBLiyA1ff11yV2lu\n+OorE2v0a8YO5YgITZsmSdHRWr9eK1eqVy/NmiVJMTHavl1z5yorS7GxZpYKAFblM1OxgJEb\nxo7VnDkl3YkTElRQIEkLFujllzVunM6e1ZkzWrJECQlM/5mDLoMAYCKCHXxMxdwgKSmp5JCx\nUaMkafJkDR/uOGTswAHFx9PZzkPoMggAJiLYwcdUzA36efovOlpxcZL0/fcKCnIcMpacrNxc\nZWWZUK0fossgAJiIYAcfU2lKKDuMZ2D6DwDghwh2sIKyw3gVrzD9BwDwEwQ7WAHTfwAAiGAH\nAABgGQQ7AAAAiyDYAXCN9HTZ7erc2XElLU12u/r2dVyx2WS3a8QIz1cHAH6BYAefUWlueOSR\nco+x2TR9uofrAgDAWxDsAAAALIJgB9/G9B8AAKUIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAs\ngmAHAABgEQQ7XLVRoxQQoPx8paQoJESNGql3b2Vm6tw5TZig8HAFBys2Vp9/bnahAAD4GYId\nrlpgoCQlJSk8XBs2aNEi7d2rpCQNH66gIK1dq6VLdeCA4uP1449m1woAgD8h2OGq1a8vSRER\nmjZN0dFKTlZCgo4cUVCQZs1STIyGDlVysnJzlZVldq0AAPgTgh1qKTHRcTsiQpLuvddxpUsX\nSTp+3LM1AQDg3wh2qKXwcMdtYwyv7JUGDST5+1QsixEBAB5GsEMtGdGt+it+jsWIAAAPI9gB\n7sJiRACAhxHs/AuTg57HYkQAgMcQ7PwLk4Oex2JEAIDHEOz8C5ODnsdiRACAxxDs/BGTg+aa\nMcMxIf7730vS1KlMiAMAXIBg54/qODmYni67XZ07O66kpcluV9++jis2m+x2jRjhooqtxfgX\nNibEJ0yQpG+/ZUIcAOACBDt/5JLJQfZh1Fq9etLPE+Lt2klSTAwT4gAAFyDYoZbYh1FHZSfE\nW7eWmBAHANQZwQ61xD6MOio7/X3NNVdeYbcsAKAWCHaoE/ZhVKOqxYghIdLP0c1YjBgZ6bgC\nAECtEexQJzRpAwDAexDsUCc0aQMAwHsQ7PwLnUoAALAwgh0AAIBFEOwAAAAsgmAHeBoT4gAA\nNyHYAQAAWATBDrXEsBMAAN6GYAcAAGARBDsAAACLINjBv4wapYAA5ecrJUUhIWrUSL17KzNT\n585pwgSFhys4WLGx+vxzswsFAODqEezgXwIDJSkpSeHh2rBBixZp714lJWn4cAUFae1aLV2q\nAwcUH++Wk9CIlYA/4DsdJiLYwb8YB9pGRGjaNEVHKzlZCQk6ckRBQZo1SzExGjpUycnKzVVW\nluu/urmxEoBn8J0OExHs4I8SEx23IyIk6d57HVe6dJGk48dd/3XNjZUAPIPvdJiIYAd/FB7u\nuG38CC57pUEDSW78JG1WrATgSXynwxQEO/gjI7pVf8V9zI2VADyD73SYgmAHeJq5sRKAZ/Cd\nDlMQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEO/iU9XXa7Ond2XElLk92uvn0dV2w22e0a\nMcLz1QEAUCcBdrvd7Bq83eLFi1NTUwsLC4ODg82uBQAAmKy4uLhhw4Y7d+6MjY01u5YrMWIH\nC+KgRgCAfyLYwYLccVAjYREA4P0IdrAgdxzUyKneAADvR7CDZbn2oEZO9QYAeD+CHSzLHQc1\ncqo3AMCbEexgWe44qLEWYZHFeYCF8Q0Ob0OwA65CLcIii/MAC+MbHN6GYAe4F4vzAAvjGxze\nhmAHeAKL8wAL4xsc3oNgB3iCO3ZyAPASfIPDexDsAE9wx04OAF6Cb3B4D4IdLCg9XXa7Ond2\nXElLk92uvn0dV2w22e0aMcLz1QEA4C4EO6BGCIsAAO9HsAMAALAIgh0AAFfNaE1cXCxJvXs7\nWhMbmySGDKE1McxR3+wCAADwPUZr4k2bJOnVV5WXp9RUJSUpKEiSZs1S8+ay2RQfrxkzzKwT\n/oZgB7hXerrS08tdSUtTWlq5KzabbDYP1gSgzoy2JvfeqxdfLLmyfr1WrtR99+lf/yq5sn27\n5s7VrbfKbjenSPghpmIBAKglWhPD2xDsAACQfl42l5+vlBSFhDiWzZ07pwkTFB5eybI5WhPD\n2xDsAACQfl42l5Sk8HBt2KBFi7R3r5KSNHy4goK0dq2WLtWBA4qPd2Q1WhPD27DGDgAA6ech\nt4gITZsmSdHRJcvmevXSrFmSFBNTsmwuK8vMOoFqMGIHAIADy+bg0wh2AAA4sGwOPo1gBwCA\nQ+kiuVGjSlrQzZnj2Etx+LAkvf66VqyQpGHDaEEM70KwAwCgEsZeCkktWzr2Urz0kiQ1aKC7\n75ak7GzFx2vECAUE6MIFSUpIcGynNc6lGDeOUyjgOQQ7+J1adDRw04sAcKs6fp/W/3l74YMP\nKjpayclKSNDp05I0cqTeeUd2ux56SLm5OnNGknbv1owZ2rTJsZ32/ff1xBP68MNKttMCbkKw\ng9+pRUeDq32RW29VUZH271ffvsQ+wDQu+WYvy9hLUZaxl8IYmTO205ZGwCNHFBSkWbMUE6Oh\nQ5WcrNxcttPC7Qh28DtlOxrU+kdw9S8SGipJzZrp/HnNnu2CXydVYeAQqIZLvtkrvmBZxoK8\nn36S2E4L70Cwg59yyY/gql7E+Onfvr0kNWnixo/vLh+QAKzHY3mL7bTwBgQ7+CmX/Aiu/kV6\n9HC8iJt+nbh8QAKwnpp/s6eny25X587lnn7woPr2LXdl+3aNGFHJF+IUCngDgh38lEt+BFf/\nIs2bO2679eM7E0BANchb8CsEO8Bd6tW78oqbfp14fgKItX0A4J0IdoDP8/yABGv7AMA7EewA\nXDXW9gGAdyLYAagl1vbB2irupUhLk91ebi+FzSa7XR07er46oHIEOwC1RHMHWE/t1o/WPAJW\nup0WcCGCHTzEe5bbu+RHcE1eZNgwi/8cZ7MhvFwtvtlZPwpf59vBrri4OCsra8uWLYcPHza7\nFjjhVz8u+fgO+KjS9aNff63u3XXvvQoL05Ejev99bd2qy5c1aJDat1durpo2Zes3vJHPBLun\nn356y5YtZa8sXrw4NDS0V69ed955Z8eOHXv06PHFF1+YVR6cYrm9O5AgK+U9w8PwUYmJjs+i\nbdpI0iOPOD6LtmolSePHW+ezKKzEZ4Ld1KlTP/jgg9I/vvfee6mpqefOnRsyZEhKSkqfPn12\n7979y1/+Mjs728Qi4RTL7eEBfjU8DHcID3d8Fv3VryRpxAjHZ9GkJEmKieGzKLyRzwS7K0yc\nOLFZs2Z79ux5++23X3rppR07dqxevfrMmTPPPPOM2aWhOiy3hweYOzzMeKEFlK4WLf0s2qAB\nn0XhG3wy2J06dergwYOPPvpo165dSy8mJibee++9//d//2diYXCK5fbwGLOGhxkvtBI+i8Ln\n+GSwu3DhgqSyqc4QGRl58uRJMyoC/ItPrO0z61cyy0mthM+i8Dk+GezCwsKaNWt27NixK65/\n9913TZo0MaUkAN7G3F/JLCcFYApfCnZHjhzZtWvXN998k5eXN27cuFdeeeXcuXOl93799ddv\nvvlmnz59TKwQAAxM4QEwRX2zC7gKK1asWLFiRdkr77///tChQyUtX778t7/97fnz56dOnWpS\ndQDgwBQeAFP4TLD729/+ll9GQUFBfn5+ixYtjHvz8/ObN2/+xhtv9OzZ09w6AQC+Kz1d6enl\nrqSlKS1NkjZuLLlis8lmK3kw4G18Jtg9+OCD1dz7wAMPpKamXnONL80s+5tqflyWKv1xCQAA\nasEiSSg4OJhUBy9ESzPAR/nE1m+gIsIQ4Ea0NDMFv5IB+K06TcXm5eUVFBS0b9/eRcXUSXZ2\ndkpKiqSNpesgauD48ePDhg07f/58NY85deqUJLvdXscK4YfKtjSTFB2t9eu1cqV69dKsWZIU\nE6Pt2zV3rrKyFBtb05cdNUorVigvT088oXfeUWGhoqI0b54iIzVlilatUkGBoqK0YIG6d3fP\nXwzllX1Hli+XpPvu08svl7wjr74qSWPHaulS3hEA7lVdsNu3b9/kyZO/+uqrtm3bjhw5MiUl\npV69emUfMHv27NmzZ3tJ4iksLNy0adPVPqtZs2ZDhgz5sdrRks8+++zIkSMBAQF1qA5+zeUt\nzUoHAuPitGGD9u1TaqqSkhQVpVtu0dq1ysmRzab4eB09ymZMTyj7juzceeU7smXLle8Iy0kB\nuEmVwW7nzp133XXXxYsXGzVq9N133+3YsWPlypUZGRmlG1G9zU033fTPf/7zap/VqFGj3//+\n99U/ZvHixRkZGbWtC3B9SzM3DQSi1nhHAHiJKtfYPffccz/99FNGRsbZs2cLCwv/8pe/fPzx\nxwMGDCgqKvJkfTUXFBQUGRkZGRlpdiHAldzU0oyzDbwN7wgA01U5Yrdv377hw4cPHjxYUsOG\nDSdOnNitW7dBgwYNGzZs7dq1V8zJepLdbj98+PChQ4cKCwslNWvWLCIiom3btmbVA5iFsw28\nDe8IANNVGexOnDjRsWPHslfuvPPO9PT0Bx544Pe///3cuXPdX9uV8vLynnnmmWXLlp08efKK\nu9q1a2ez2R5//PFrr73W84UBpuBsA2/DOwLAdFUGu5CQkC+++OKKi6NHjz5w4MBzzz3Xpk2b\nSZMmubm2co4fP96nT5/Dhw9HRETEx8ffeOONjRs3lnTmzJns7Oxt27ZNmzZt9erVW7Zs8dpV\ngAAAAG5VZbBLTEycP3/+ggULUlJSGpT51PnMM8989913f/zjH7/77rvLly97pEhJmjp16rFj\nx1auXJmUlFTx3suXLy9evHj8+PEzZsyYM2eOx6oCAADwHlVunpg2bVrbtm0fe+yx+Pj4stcD\nAgL+9re//c///M+cOXPmz5/v/gpLvPfee6NHj6401UmqV6/euHHjhg0b9vbbb3usJAAAAK9S\nZbC7/vrrd+/ePW7cuIr7TAMCAubOnbt69epOnTq5uTyHH374wemX69q1a25urmfqAWriiiMQ\nRo3SjBnKy9OyZY4TxqKiVFSkTz/lhDEAQF1Vd6TYDTfcsHDhwr/+9a+V3puYmPjNN994rDtx\nWFjY3r17q3/Mnj17wsLCPFMPUAucMOZVOMnXm/HuALXjM2fFDh48eNWqVX/+858vXrxY8d6i\noqLp06evWbNm+PDhnq8NqKGybWyjo5WcrIQEHTmioCDNmqWYGA0dquRk5eYqK6u61+EsVJdw\nYc7mHXE5n/4URCqFiep0VqwnpaWlbd++fdKkSU899VSvXr3atm0bHBxst9vPnj377bffZmZm\nnjt3Li4u7sknnzS7UsAJ2th6CY6L8GY+/e5w6B9M5DPBrnnz5p988snChQtff/31rVu3lt2Q\n26BBg5iYmIcffvjhhx82sXMyUEO0sXWrUaO0YoXy8vTEE3rnHRUWKipK8+YpMlJTpmjVKhUU\nKCpKCxaUPJ6c7c189N25IpU+/7wuXNCRI6pfX5mZmjdPUVEaMEBvvqn//m/t2OH4f7J7d3ML\nhxX4TLCTFBgYOHHixIkTJ164cOHo0aPGyRNNmzZt165doPH5CPAFtLF1q5oPlhg7/snZ3syn\n353SVFr6C+q22/TkkyX/Tx48KEnFxQzgwcV8Zo1dWUFBQREREd27d+/evXvnzp1JdQBK1Xwh\n46lTEjnbu3nnu+N0Cd2rr0rSd9+VPODvfy954pgxWrpUU6bo0iWdPi1Jw4dfxeJaoCZ8acQO\nAGqoJlN45897tiZYRfWjwrfequ++k6SHHtK11+rSJTVqpMJCSXr4YRUW6vJlNW1aEuxKVxV5\n7bQyfI7zEbsdO3acNv4HrCAzM3P16tWuLgkA6qomU3g//eTZmmAV1Y8Kh4aWPOynn7RggRYv\n1rlzJVcaNNDWrVq2zHElO9txl7x4Whk+xHmwi4uL++ijjyq9a/v27WPGjHF1SQBQV945hQcr\nqWpUuH6ZmbAmTZScrHbtSv6YnFwy8dqtW8mV/HxPlAq/UuVU7DfffPPNN98Yt/fs2RMUFHTF\nA86fP79y5cpKu8oBAGBt1Y8KG4wRuGbNSv54ww1X3rh0yW31wV9VGezeeuutyZMnG7efeuqp\nqh523333ub4owKLS05WeXu5KWprS0spdsdlks3mwJgC1UvNR4YCAkhulg3nX+OTGRfiGKoPd\n//t//y85OTkrK+vee+8dPXr0zTfffMUD6tWr17Fjx4SEBDdXCABu8dvfavPmclfI2d6DT0FA\n7VS3K7Z169YJCQn33HPPuHHjevfu7bGaAACmqHl7Z1rp1kJU1JVXvO3MDFiA83Yn69at80Ad\nAADTcRYW4OucBzu73f7WW2+9/vrrx44d+7GyrdhffvmlGwoDgNpgCq8ufPqEVq+VkKA9e668\n8u675a7w/yRcxXmwe+GFFyZNmiSpUaNGDfiABgBW56MntAJQTfrYzZ07d8CAAdnZ2UVFRfmV\n8UCVAACP8ekTWj0gPV12uzp3dlxJS5Pdrr59HVcOHpTdrhEjHFe2by/3AEkrVpR7AOASzoNd\nbm7ujBkzOnbs6IFqAACmo71zXdQk9tlsV8Y+wFWcB7uQkBC73e6BUgA4PVw8OFixsfr8c7ML\nBQB4JefBbuTIkcuWLfNAKQBK9ySGh2vDBi1apF279F//pcREbdumCxf044/KzNTdd6ugwJyo\nR/QEAG/mPNhNmzYtOzv7/vvv/+CDDw4cOPBNBR6oEvATFQ8Xb9tWkvbs0ZAh2rhRL78sSadP\n6557FBSktWu1dKkOHFB8vIfWPFWMnnv3KilJw4ebUw/Ahw2gLOe7Yps0aWLcWL58eaUPYKIW\ncK2yexKbN5ekW291tJ+YP1+7d+unn8xpP0E7DHgbeu/RVhplOQ92I0eODAwMrF/f+SMBuETZ\nHYjGKZMDBzquhIZKKvcD2vPtJ2iHAe/Bhw2n0XbCBO3YoUGDlJCgtWtJfhbnPK5VNVAHwE0q\nDiq0bu24bRwf3qLFlY/35NQn7TCsynfbO/vzhw2n0bZTJ+3YoZMnJfnpoKZfcTXHJ54AACAA\nSURBVL7GrlRhYeFXX31F4zrA8+rVu/KKuWPotMOAt+HDRjXRtvTHxcCBJYt3ExJ05IiCgjRr\nlmJiNHSokpOVm6usLM8WDTeoUbDbtm1bjx49mjZtGhkZ+emnnxoXExISNm3a5M7aAACoET5s\nVB9tDaXR1t8GNf2K82CXmZnZv3//f//73wMGDCi9eOrUqaysrPj4+N27d7uzPAAA/E4ttvpe\nVbT1z0FNP+E82D311FOhoaH79+9/7bXXSi+2bNly7969oaGhM2fOdGN1AAD4H8/0FfK3QU0/\n4TzYffrpp2PHjm3Tps0V11u1apWamvrRRx+5pzAAAPxUxZaWrIpDDTkPdgUFBW2NHqkVtG7d\n+uzZs64uCfBfFU+ZNLoP9Ohx5ZW77vJsZQA8zp+3+qLWnAe70NDQAwcOVHrXRx99FBYW5uqS\nADh424Hi3lYPYGFs9UUtOA928fHxL7744uflT2PJy8v73//937/97W/33HOP22oDAMAJC3/Y\nYKsvasF5sJsxY0ZwcPB//dd/GRlu8uTJ0dHRrVu3fvbZZ9u1azfN6IcIAADMUJNoK+ngQd+L\ntqiFGk3F7tq1a8yYMd9++62kL7744osvvmjSpMnYsWOzsrJCQkLcXyQAAKglCw9qoqIada9v\n1arViy++uHDhwpMnTxYWFjZp0oQ8BwAA4G2u4kixgICAkJCQzp07k+oAAHCJSnsRnzolSU8/\n7ehF7Mndr7Vojwzv4XzEzm63v/XWW6+//vqxY8d+rGz7zZdffumGwgAAsL7SXsRxcdqwQfv2\nKTW1ZA9sw4Zau1Y5ObLZtG+fySUlJSkqSrfc4igpPl5Hj7Kfw+s4D3YvvPDCpEmTJDVq1KgB\nbyAAAK5TthexpOhorV+vlSt1331avFiSYmK0fbvmztXOnYqNdTzRZpPN5tGSevXSrFnlSsrK\nKlcSvIHzYDd37twBAwa8+OKLHTt29EBBAAD4Gy/sReyFJaEmnK+xy83NnTFjBqkOADyMpU7+\nwwt7EXthSagJ58EuJCTEbrd7oBT4FX5jAU555iR4eAMv7EXshSWhJpwHu5EjRy5btswDpcCv\n8BsLcIqT4AFcLedr7KZNm3bffffdf//9DzzwQLt27Srun+hctukhUDMszgVqiKVOAGrOebBr\n0qSJcWP58uWVPoCJWtQav7EAp1jqBKDmnAe7kSNHBgYG1q9fozMqUCPLl+uPf9SJE5o4Uc8/\nb3Y1ZuI3FuAUS52cGjVKK1YoL09PPKF33lFhoaKiNG+eIiM1ZYpWrVJBgaKitGCBunc3u1bA\nzZzHtaoG6lBLBQWy2RQYqJkz1bOn2dWYjN9YAOqOhrpAqas4Uuz777//5JNPNm7c+Nlnn+Xn\n57uvJos7eFDnz+v++zV5svr1M7saAPB5Pr3LJD1ddrvKLlZPS5Pdrr59HVdsNtntGjHCf0tC\nzdUo2O3YsaN3794tW7aMjY29++67e/fufd111/Xr14/DxGrjwgVJ+nnlIgDAJbxqzS4dnWAW\n51OxmZmZ/fr1u3TpUt++fbt06XLttdcWFRXt379/8+bNffr0yczM7GJ8u6AmBg7UBx9I0uzZ\nmj1bKSl66SWzawIAK/CqNbvMDsMszoPd008/3bJlyw8//PCmm24qe33Pnj0DBw6cMWMGi/Cu\nwvTpuuMOTZmixESNHq0OHcwuCAAswqvW7NLRCWZxPhX78ccfjxs37opUJyk6OnrcuHGbN292\nT2EWdfvtiouTpIgIDR6sbt3MLgiA92Kpk69z7eyw0+ndBg0UEKBt25j/9WvOg11BQUGbNm0q\nvat9+/anT592dUnwC/zGAmB5rp0ddnpgj/Hzs39/hYZyoo//ch7sWrVqdeDAgUrv2r9/f6tW\nrVxdEgAAVuDa2WGnm387dZKk4mINGOB7u4PhKs6DXf/+/efPn79mzZqyJ0zY7faMjIyFCxcO\nGjTIneUBACyITaO1Vv30rqF0etf03cHwPOebJ6ZPn75+/frBgweHhobefPPNjRs3NnbFnjhx\nonXr1tOnT/dAlQAAK2HTaK1VP71rKJ1pNX13MDzP+Yhd+/btd+3alZycfP78+c2bN7/77rub\nN28uLi622Wy7d++uavkdAABVcW1LYb9as1uL6d1KH8CgqVXV6ATYtm3bvvbaa3a7/cSJE0VF\nRcHBwaGhoe6uDABgbV7VUtjfMGhqVVdxpNiJEydOnDhx9OjRkydPnjp1yn01AQD8gVe1FPYS\n1QykffqpJEVF1WggzXgd46ijhATH6xQXS9K4cfrHPySpeXOfPIcN1ahRsFuyZEmHDh3CwsK6\nd+9+5513duvWrVWrVl27dn3jjTfcXR8qsXy52rRR/fqaNMnsUgCg9ryqpbBr1Xp2uJqeJvXq\nSdLzz9eoZYnxOrNnS1JUlBo00GefKS5Of/2rJHXtWvJq77yjzMySpzBoag3Op2IXLVo0bty4\nhg0b9uvXLzw8vHHjxgUFBQcPHszKyho5cmRxcfEDDzzggUKto29fldlffNUKCmSzKTBQM2eq\nZ0/XlQUAMF81R1b07Kl9+zRggA4eLDmywunrGDp31l//qtRUZWbqyBFJuuEGDRyoNWt06ZIG\nDdKJE2rQgEFTi3Ae7ObMmTNgwIA333yzWbNmZa8fPny4f//+s2fPJth51MGDOn9eDz2kyZPN\nLgUA4BaVrj7curXkitOBtPnz9fHHjj/+/e/68kvdcotjKvaDD1T6K/306XLHmllm0NRvOZ+K\nzcnJmTp16hWpTlKHDh0mTpyYnZ3tnsJQBWPFRJMmZtcBAHCXSlcflk7vlg6kXTG9azzAbi/J\ngoZFi7R4sfbu1dtvl1x56in94x/Kz3c8hslWK3Ee7Jo1a1bPmIqvoF69ejfccIOrS0LVBg4s\nOWp29mwFBCg11eyCAACuV8fVh2XnYe+4o2RjREFByZW+fTV0aLnwx2SrlTgPdr/5zW/efffd\nSu9at25dUlKSq0tC1aZP17PPSlJiojIyNHas2QUBALyakQjLxjjjSoV5OFiE8zV2Tz/99ODB\ng3NyckaMGBEREdGoUSPj5IlXX321uLj40UcfPXbsWOmD6VfsXrffrsuXJSkiQoMHm10NANRS\nerrS08tdSUtTWlq5KzabbDYP1mRp9Sv8tr/mKtqdwZc4D3ZhYWGSMjMzly9fXvHeiLKfAiR7\nXfZ7AgAAoA6cB7vBgwc3bNjQA6UAAADPSE7Wjh3lrjBoag3Og11GRoYH6gAAwFyjRmnFCuXl\n6Ykn9M47KixUVJTmzVNkpKZM0apVKihQVJQWLFD37mbXWmMREcrL07p1jisHDqh7d5U9YeDw\nYc/XBXdhjh0AAKnaUx+CgrR2rZYurdGpD3VR6yMrKird3JiUVNIjy2irMHWqhg8v2UJx992S\nNHs2G2Otw/mInaTLly9/9tlnx48f/7Gyd36E0/+5AADwetWc+jBrliTFxGj79pJTH0o7+nqt\nZ59V06Z65RVFRKhVK23dqmef1fz5WrlSQUEaMEAbNujhh3XzzVX+jSw5hGl5zoPd7t2777vv\nvpycnKoeQLADAFhGpac+lPLF41MTEx3L6Ur/Rka3e1X7NyodwoyL04YN2rdPqalKSlJUlG65\nRWvXKidHNpvi43X0KEdWeAvnwW78+PH5+fm/+93vunTp0oD3DQBgaZWe+lDKJ45PvaKbTHi4\nY2PExo0lV371q5KNEcYjK/0bWWwI0084D3b//Oc///73vw+maxoAwA/U8dQHL1THv5H1hjCt\nzXmwCw4ObteunQdKQY307SuaBQIAPMUCQ5h+xfmu2GHDhr311lseKAUAAHgb6w1hWpvzEbtZ\ns2aNGDFi2LBh9957b1hYWMVldn3LbsIGAACASZwHuy+//PKLL744evToqlWrKn0Ax4gBAAB4\nA+fB7rHHHjt16tSwYcMiIiLqVzxGGAAAAN7BeVDbt2/fkiVL/vu//9sD1QAAYJYruoTI949P\ntd7fCE453zzRuHHjyMhID5QCAADqaNQoBQQoP18pKQoJUaNG6t1bmZk6d04TJig8XMHBio3V\n55+bXSjcw3mwGzJkyLqypwcDAABv5cITb114cC08xnmwe/7557dt2/boo49u3LjxwIED31Tg\ngSoBAEBNlD0uIjpayclKSNCRIwoK0qxZionR6tXKz1durpKS6jSkx9Cgd3K+xq5FixaSNm7c\n+OKLL1b6AHbFAgDgVao5LsIY0pMUFFTuBNjLl/Wf/2jLFj37rDZuVI8e6tlT8+crMlJTpmjV\nKhUUKCpKCxaoe3fH63CSrLdxHuxGjhwZGBjIflgAAHxFNcdFlP4+HzxY0dGOE2BvvFGSnnlG\ncXFq2VLLl+uLL6oLapwk652cx7Xly5d7oA642PLl+uMfdeKEJk7U88+bXQ0AwKOu6rgIY0iv\nfXt9+21JUFu0SMuXq0cPffyxk6DGSbLe5irG4b7//vuDBw8WFRU1adKkS5cuzZs3d19ZqJOC\nAtlsCgzUzJnq2dPsagAAXs0Ye2vcWPo5qBkpMCREchbUOEnW2zjfPCFpx44dvXv3btmyZWxs\n7N133927d+/rrruuX79+X375pbvrQ20cPKjz53X//Zo8Wf36mV0NAMBLGRsgLlyQpE2bJOkP\nf1BmpoqLJWnDBkl67rmSDRCjRmncOElatEghIXrtNUk6cMCxW+LZZyXp8GGP/zVQhvNgl5mZ\n2a9fv127dvXt2/eRRx4ZP378Qw891KtXr82bN/fp0+df//qXB6rE1TG+R5s0MbsOAIBXMzZA\nGCeG9uolSf/6l5KStHixpJL51iNHSnqjlO66aNFCGzaoTx9JeuwxRyOVIUMkadIkhujM5DzY\nPf300y1btvzyyy+3b9+enp4+f/78V1999dNPP929e3dQUNCMGTM8UCWuwsCBiouTpNmzFRCg\n1FSzCwIAeClj8vS66ySpWTNJuusuHTlSMoVqLLkaNEi5ucrKcuy6GDpU0dElK+q++87RSKVr\nV0k6fVpZWR7+e8DBebD7+OOPx40bd9NNN11xPTo6ety4cZs3b3ZPYait6dNLRsMTE5WRobFj\nzS4IAODVjEBmaN9ekm67zXGlXTup2g0QZRfhGdgtYSLnwa6goKBNmzaV3tW+ffvTp0+7uiTU\nze23l4zYRURo8GB162Z2QQAAz6nJcRGSDh50HBfRtKnjer160s9jdQZjoK6a2dWyuyUMTMWa\nyHmwa9Wq1YEDByq9a//+/a1atXJ1SQAAwHOuqZAFrqp37bPPlhxBUXr+6NSpJUdQvPGGJD34\nIEdQeI7zYNe/f//58+evWbOm7AkTdrs9IyNj4cKFgwYNcmd5AABYnyeP56o4pPc//yO7vaS5\nieHXv5bdrshIJ68zfbr0c0+TpCQlJGjqVEn69tuS02l79NCuXfrHP2p6Oi3qznmwmz59eqNG\njQYPHhwWFnbXXXclJCTcddddYWFhiYmJTZs2nW68qwAAv8SBoS5RejxXeLg2bNCiRdq7tyQb\nGRtOly51ezYyAp+xkcJgzOGWjYAqP4drMGZvjc7GxoK8mJhyp9MOHark5JIdGHA358Guffv2\nu3btSk5OPn/+/ObNm999993NmzcXFxfbbLbdu3dXtfwOAOAPvCGRWEDZ47mio5WcrIQEH8tG\nZY+gaN1a4ggKk9RoFr1t27avvfaa3W4/ceJEUVFRcHBwaGiouyuDV+PIMgCSxIGhruRtx3ON\nGqUVKzR3riSNHFkyMtejh4qL1ayZLl1SQYEk/d//SdKkSXrllZInGov2OILCFE5G7E6ePPnJ\nJ58YtwMCAlq3bt25c+fQ0NCFCxfm5+e7vzx4JePIsrNnNXOmBgwwuxoA5vO2ROKjvO14LmM4\n9qWXSv5obJ4NDFSXLvr+e9Wvr5YtHQ8+dEjx8bp8WZIyMyXp4kXHBL3RhuviRSbo3a66YPfR\nRx916dJlmvEprIx9+/aNHz8+MjLy0KFD7qwN3oojywCU522JxEcZ/1DVX3Gt6nujGG/lL3+p\nRx6RpBEjNGyYTp1S585KTNSJE4qN1e9+V3L+2JAhys3Vrbc6FupNneqYoD92TJLmzWOC3u2q\nDHbHjx8fOnTo2bNn77zzzivuuvXWW+fNm3f8+PGBAwdeME6v8iC73X7o0KGNGzdmZGRkZGRs\n3rz56NGjHq7B33FkGYDyPJ9I4DGlw7GJiY7h2NIbxnCspI4dpZ/HZY2p2DZtHEsGjZ6qDRr4\nzJJB31XlGrslS5Z8//33S5YssdlsV9wVEBDw2GOPXb58eeLEiUuXLk1JSXFzkSXy8vKeeeaZ\nZcuWnTx58oq72rVrZ7PZHn/88WuvvdYzxXi1vn1VpjeNiw0cqA8+kKTZszV7tlJSHMP0AADL\nKR18DQ93DMd+803Jjezsknsr9jG+4w7HbaOXSo8ejitM0LtJlcFuzZo1nTp1evjhh6t6wPjx\n41944YXXXnvNM8Hu+PHjffr0OXz4cERERHx8/I033ti4cWNJZ86cyc7O3rZt27Rp01avXr1l\ny5YWLVp4oB7/NX267rhDU6YoMVGjR6tDB7MLAgC4UengazU3KlV2BZ4xhlf29zMT9G5SZbA7\ncuRI//79r6nYjrr0mfXr9+7d+wNj8Mb9pk6deuzYsZUrVyYlJVW89/Lly4sXLx4/fvyMGTPm\nzJnjmZL81O23lyyONY4sAwCgMsYu2rKqOtDC2H6bl6cnntA776iwUFFRmjdPkZGaMkWrVqmg\nQFFRWrBA3bu7u2qfV2VuO3PmzPXXX1/9k6+//vqLFy+6uqTKvffee6NHj6401UmqV6/euHHj\nhg0b9vbbb3umHgAAYFixQmVPGDXiV9mJV+PKXXdV/nS6IbpQlcHu+uuvP3LkSPVP/ve//92y\n7EirO/3www+dOnWq/jFdu3bNzc31TD2QpOXL1aaN6tfXpElmlwIAPqz63akGm012+5WnPliD\nBfoze48qg13Pnj03bdr0ww8/VPWAb775Zvv27b1793ZPYVcKCwvbu3dv9Y/Zs2dPWFiYZ+qB\nLl6kmx0AP08kcCG6IbpElcFu9OjRZ8+eHTNmzKVLlyree+bMmfvvv//SpUsPPvigG6srY/Dg\nwatWrfrzn/9c6eRvUVHR9OnT16xZM3z4cM/UA+Xl0c0OAHxRDU/4rXpsxy3ohugSVW6eGDp0\naL9+/TIyMnr37v2///u//fr1a9KkiaRTp06tXbt25syZ33777ZAhQ3796197ptC0tLTt27dP\nmjTpqaee6tWrV9u2bYODg+12+9mzZ7/99tvMzMxz587FxcU9+eSTnqkHMhI/3ewAwNeUrmmL\ni9OGDdq3T6mpSkpSVJRuuUVr1yonRzabDh1ScbEaNFB6utLTJSktTWlpktS3r+NGaVe0Cu3R\nrg7dEF3DXrW8vLxBgwYZDwsICGjevHmTMr/Fhw8ffu7cuWqe7nIXL178y1/+ctttt9Urv9Om\nQYMGvXv3fvnlly9duuSOr/vSSy9JKiwsdMeL+6Tt2+1Suf9SUlz5+v/4hz083F6vnv3xx135\nsgAAu91utz/yiF2yjx3ruDJsmF2y33ef48rvfmeX7Dt3eq6egwcdV6ZPt0v27dsdV5YssUv2\nFSs8UY9TxuThTs/861ylKkfsJDVv3nz9+vXvv//+smXLPvvss9zc3GuuuaZLly6xsbEPPfRQ\nXFyc62NmtQIDAydOnDhx4sQLFy4cPXq0sLBQUtOmTdu1axdofPqAJ91xh7Ztc303O+Mg2sBA\nzZypnj1d9rIAgPJY02ZJ1QU7w6BBg0rH7bxEUFBQhPH/IEzUpo3khm52xkG0Dz2kyZNd+bIA\ngPJY02ZJVW6eAKpkHFmWmuqWF+cgWgDwCHevaavhFo3PP3flF4V1gl12dna/fv36XeX2zEOH\nDjVo0CCgWqluSjCoaOBAGVP8s2crIMBd2dFN6OoHAGXUvO3wTz+ZXauFOJ+K9RWFhYWbNm26\n2md16NBh27Zt586dq+Yx69atmzt3bh1KQ4357kG0LA0EgPLKth2WFB2t9eu1cqV69dKsWZIU\nE6Pt2zV3rmw2vfpqueeWbr8tZbPVddetn7BOsLvpppv++c9/Xu2zAgICYmNjq39MdnZ2bYvC\nVfLdg2h9ZWng8uX64x914oQmTtTzz5tdDQDrY4uGh1lnKjYoKCgyMjIyMtLsQuCXfGJpoDGs\nyGEhgB+ofn3bihWSNGyYJ9a3sUXDw3wv2Nnt9kOHDm3cuDEjIyMjI2Pz5s1Hjx41uyj4N19Z\nGmgMK3JYCOAHql/fdvfdkpSdrfh4t4cq2g57WOVTsceOHav5S7Qx2l64X15e3jPPPLNs2bKT\nJ09ecVe7du1sNtvjjz9+7bXXeqYYwMFXlgb6xLAi4E9GjdKKFcrL0xNP6J13VFioqCjNm6fI\nSE2ZolWrVFCgqCgtWKDu3a/ulZ2ub5M0YYLmzlVWlmJjWdNmHZUHu7Zt29b8Jex2u4uKqc7x\n48f79Olz+PDhiIiI+Pj4G2+8sXHjxpLOnDmTnZ29bdu2adOmrV69esuWLS1atPBAPT6MVVYu\n5xNLAwcO1AcfSNLs2Zo9Wykpeukls2sC/F0Nj/aKj9fRo7UZ6GJ9mx+qPNgNHz7cw3U4NXXq\n1GPHjq1cuTIpKanivZcvX168ePH48eNnzJgxZ84cz5fnM1y4edPoZgdf4SvDioA/qfm+UWNc\n7Wqxvs0PVR7s3njjjZo8uaioyDjXywPee++90aNHV5rqJNWrV2/cuHEfffTR22+/TbCrjq9s\n3oTL+cSwIuCXajKu1qdPbWZsWd/mh+q0eWLNmjXdr3bav7Z++OGHTp06Vf+Yrl275ubmeqYe\nX8UqKwDwjBo3La/JuJpq1umX4TfUqI/d999//8Ybb+Tk5Fy6dKn04oULF9atW3f27Fm31VZO\nWFjY3r17q3/Mnj17wsLCPFOPT2KVFVBrLE7FVbmadS81HFdz34ytm6SnKz293BW2aHiA82CX\nk5PTq1evU6dOVfLk+vWnTp3qhqoqMXjw4Hnz5vXs2fOxxx5r2LDhFfcWFRX96U9/WrNmzRNP\nPOGZenyST6yyYukevBAni+BquWHdi5fvhHDfDl/frcQUzoPdk08+eeHChQULFnTt2vWuu+5K\nT09v06bN1q1bly1b9sorrwzwVJvTtLS07du3T5o06amnnurVq1fbtm2Dg4PtdvvZs2e//fbb\nzMzMc+fOxcXFPfnkk56pxyexygqoHRan4mq5Yd2LKTshah6S3L3Dt+a8pxJTOF9jt3379kcf\nffTRRx81jt665ZZbBgwY8Nxzz61bt27UqFE7d+50f5GS1Lx5808++eQvf/lLp06dtm7d+tpr\nry1YsGDhwoVLly7duXNnVFTUyy+/vGXLluDgYM/UA8CPsDgVV6h+/Zx7mpabshOi+kbHZZf3\nXXON9PN8cXS0kpOVkKAjRxQUpFmz9MILuu8+jRih3NxKTsIID1dwsGJjXXMSRtm9xhUriYnR\n0KFKTlZurrKyXPDlvI3zYHf8+PGOHTtKuuaaayQVFxcb12+77bZHH310+vTpbq2vrMDAwIkT\nJ+7Zs+fs2bP//ve/d+/evXv37oMHD549e/aTTz4ZM2ZMvXr1PFYM3KvGi44Bt/OVk0XgMU5P\n55s+Xc8+K0mJicrI0NixHi5QUnq67HZ17uy4kpYmu119+zqu2Gyy2zViRHWvU/OQZKzYqmq+\n2AiIW7dK0pQpntj/4eUz1+7jfCq2SZMmxlbTwMDA4ODgQ4cO/eIXvzDuuvnmm+fNm+feAisT\nFBQUYbxLsCRfXM/E0kAL84nFqfAkp1Pzllv3UpOQdP68VPV8sXE7NFRff602bTRihNv3f/ht\nDz/nI3ZxcXEvvfTS1q1bJd16660LFy4s3Qm7efPmivsYgLriSFN4ldtvLxmxM35Jd+tmdkEw\nm+um5ms4rvbII3X/UnVSk5D000+O22WVvVJ2s4KbRtFGjdIrr0jSU0855nz/8x9JWrTIMed7\n5Eidvoo3cx7spkyZ8sMPPzz++OOSxowZs2vXrptvvjkxMTE6OnrJkiV3GycJAy7EeiY3MYYV\nS8+JBFALfjk176rlfc2bO267aRTNmPOVFBLiWBS4alXJXaVzvnPn1umreDPnwa5Xr147dux4\n5JFHJD344IOTJ0/+/vvvMzIy9u7dm5CQwDEPuDpOF8/55Q9NAD7DC9bP+a6KK+Fdvv+j/s9L\nzMaPdywKLCiQpNRUx6LAM2dc/HW9R41OnoiJiRk7dqykgICAZ5999vTp04cPHy4qKlqzZs0N\nN9zg5grhjA/tM3C64lj80ATg3cyYmnfVTgiXWL1aks6eVUpKyVyn8TPbWFXYp48r97e6RMU1\n+cacr1XV6OQJw/Hjx0+cOJGfn3/99de3bt362muvdV9ZqCnf2mdQk2Zgllt0DABWYoy6TZ2q\n3/ympEvcmDGS9NVXkrR4sS5fLukS99vfStKMGdq4UaNHS9Jzz5U8t2PHkinXIUN0/nxJJzw3\nqV8h6Vivd11ZNRqxW7JkSYcOHcLCwrp3737nnXd269atVatWXbt2feONN9xdH5y42n0G5q6y\n8vDiOR8aywQAH2H0q2vTxtEAxRi1NK5HRjoaoBhbFowUtWmTJD34oCR9+62SkvTWW5I0a5aj\n0YnxoR515DzYLVq06Le//e3x48f79euXnJw8bty4+++/v1evXv/6179Gjhz5+uuve6BKVMmH\n9hl4ePFcTaZ9AQCVGTVKAQHKz5dxCsGttzr6CR87Jknr1zvmW0NCJGnYMMd8sTHXGR8vu13G\nEe7NmknS734nu11DhujIkZKBtC5dHEEwJ8dl9R88WG7mWtL27eVmriWtWOGJmWvPcz4VO2fO\nnAEDBrz55pvNjLflZ4cPH+7fv//s2bMfeOABt5WHag0cqA8+kKTZszV7tlJS9NJLZtdUNQ83\nA+MMKACordIDJ0aO1G9+U+5ULmMKdcYMTZ+unj3VsKGuu06Sfv1rTZhQZg9mLAAAIABJREFU\ncshYaKhUfn9r+/Y6cKDktrHorUsX7d9fcsUIgsYWB9SR8xG7nJycqVOnXpHqJHXo0GHixInZ\n2dnuKQw1UMN9Bl4yI+nhFcc+NJYJwHp8vLtQNQdOtGwpSe++q+7d9dNP+sMflJsrSTNnOs6Q\nMHrRlZ1afeEFx3ie8eKPPebY/2FM1/7iFx7a/2FtzoNds2bNqjqqq169euyKNVNNopJ/zkjS\nMwWu5eO/pOHNSic9SzeZuu8Q1Zozzv7q399RlTEnO2iQvv9ekjIzdfKkJN12W8l4W2Cg45Cx\n22+XpLIjP3XshOed/0reyXmw+81vfvPuu+9Wete6deuSkpJcXRJcxBiou+46fzzFgZ4pAHxE\n6aRneLijoa5bD1GtCWMnxJ/+5KjKGJZLT1dAgCSNHasTJyTpwoWSqVjj07TBmIrNz3dZPTX/\nVzIOwPBnztfYPf3004MHD87JyRkxYkRERESjRo2Kior279//6quvFhcXP/roo8eMhZSSpDZt\n2rizWtRYaRsUm00vv+x3M5L0TAHgI8pOekqKjnb7Iao1YaS3Dh0cVT3/vL76Sg0b6oYbdPq0\n7rlH+/dr0yZlZ5ekwLITeMY836VLLqun5v9KNptefbXcc9PSlJZW7orNJpvNZbV5G+fBLiws\nTFJmZuby5csr3htRvvGfnXPQvYSxdaBlS738suQjuysAwCcYU/MulZjouO2mQ1Rroez6ndJh\nuTfflKT69a8clqvYLs7lvPNfyds4fx8GDx7csGFDD5QCVzK2DvziF7r5Zs9tRHUVN/zQBABv\nVvbIVDcdoloLRh8TgweG5Zzyzn8lb+M82GVkZHigDrhSaRuUv/+95AozkgDgxeq4t8BNKg7C\n1a+vuDj9+9+68UbHxV/+Utu2KSrKcSUuTq+/7vqJY+/8V/I2lQe7EydONGzYsEWLFsbt6l8i\n1BiNhfco2zGuRw9NmWJ2QQAAP5WervT0clf8bdGbh1Ue7Fq3bj1gwIANGzYYt6t/CdbVeZ2y\nWwfK7lMCAACWVnmwGz58+G233VZ624P1wNJYPAcA3mrUKK1Yobw8PfGEjh6VpD/8QS+/rMhI\nTZlS0iJu0SLHUV2l861ff21azaio8mD3xhtvVHobXoeoBABwhdJecXFxGjBA77yjr78uOUbs\nlls0cqReflk5OTp1SsXFatCgpImxmFr1Ms4bFBu++uqr741u0z//cc+ePe4pCQAAeFrZXnHX\nXy9Jd91VcozYrFkylmUNGqTcXGVlmVknquc82P3444+PPPJIZGTkl19+WXpxy5Yt3bt3f+ih\nhy6XPQoO8B6cAQXAF6SnOw5RNaSlOQ5RNdhsnjtE1egVZ1QVHS393CvOqOpXv5J+7hXnyaq8\n7V/JmzkPdvPnz3/11VfvueeeG8tsbr777ruHDx/+2muvLViwwJ3lAQAAz6FXnK9zHuxee+21\nX//61+vWretQpr1tly5d3njjjfj4eIIdAACWQa84X+e8QfE333zz4IMPVnrXL3/5yw8//NDF\nFcG12F0BAIDfcD5i17Rp05ycnErvysnJuc44PQ4AAABmcx7s7rnnnldeeWX9+vVlL/74449L\nlix5+eWX+/fv77baUAdsHQAAwP84n4p9+umn33///Xvuuaddu3ZdunRp2LBhfn7+/v37T58+\n3bp166efftoDVQIAAMAp5yN2rVu33rNnT2pqalFR0Ycffrhu3bodO3bUq1dvzJgxWVlZ7dq1\n80CVAAAAcCqg5ie92u3248ePnz9/PjQ0tHHjxm4ty6ssXrw4NTW1sLAwODjY7FoAAIDJiouL\nGzZsuHPnztjYWLNruVJNT56QFBAQEBYW1qlTJ79KdQAAwDNGjVJAgPLzlZKikBA1aqTevZWZ\nqXPnNGGCwsMVHKzY2JKDa1Ep52vs7Hb7W2+99frrrx87duzHypoSlj2RAn5t+XL98Y86cUIT\nJ+r5582uBgDgY8qeV7thg/btU2qq47zatWuVkyObTfHxOnqUBnuVcx7sXnjhhUmTJklq1KhR\nA/4VUZWCAtlsCgzUzJnq2dPsagAAvqfsebWSoqO1fr1WrlSvXiVtHmJitH275s5VVpa8bxbU\nKzifip07d+6AAQOys7OLioryK+OBKuEDDh7U+fO6/35Nnqx+/cyuBgBQJS+f8TTOqzVEREg/\nn1dr6NJF+vm8WlTkPNjl5ubOmDGjY8eOHqgGPuzCBUlq0sTsOvzb8uVq00b162vSJLNLAeC9\nSmc8w8O1YYMWLdLevUpK0vDhCgrS2rVaulQHDig+3pxjYTmvti6cB7uQkJCa75yFnxo4UHFx\nkjR7tgIClJpqdkF+yZgNP3tWM2dqwACzqwHgvcrOeEZHKzlZCQk6ckRBQZo1SzExGjpUycnK\nzVVWlgnl1eK8Wi8fg/Qk58Fu5MiRy5Yt80Ap8GHTp+vZZyUpMVEZGRo71uyC/BKz4QCuhpVm\nPL18DNKTnG+emDZt2n333Xf//fc/8MAD7dq1q7h/onPnzu6pDb7j9tt1+bIkffih1qzRxInq\n1s3smvwPs+EAroaVZjzZdVHKebBr8vPvieXLl1f6ACZqIUlFRZJUXMyuWHMMHKgPPpCk2bM1\ne7ZSUvTSS2bXBMCr1WLG08tZaQyy1pwHu5EjRwYGBtav7/yR8GtHj0rSzTdr8mSzS/FL06fr\njjs0ZYoSEzV6tDp0MLsgAPA0K41B1przuFbVQB1QTnGxJDVsaHYd/qp0NjwiQoMHm10NAJjA\nemOQtVB5sDtx4kTDhg1btGhh3K7+JUJDQ11fF3xL6Tzgp58qIIB5QABALaSnKz293JW0NKX9\n//buP6Cq+v7j+PsKXEAhEPMXiqgT0+SrJWQh8EXL0qwp0VSmYl8c+wqupjStwUpQp0HY7+mi\nXGtZmpo6/Wrq1pZMLUepc6ZWhL9IQY2JgogK3u8fx26IcLnCvff8uM/HX/eeezj3fS9c7ut8\nfp3s67akpEhKigtr0pvGg13Xrl1Hjhy5ZcsW5bbtQzDGDpKVJaGh8sYb0rev5ObSDwgAgCoa\nD3YTJky44447rLddWA/0KSpK9u4VEQkKoh8QzeCawgDgNI0Hu/fff7/R2wDQKlxTGNAAejwN\nrPkFijds2HDgwAEXlAJco9nrYmm2MB1hFWUAcKbmg92ECRM2btzoglKgbwMHiojExbX2OJq9\nLpZmC9MXVlEG4ARLl4rFIvUvmJCdLRaLxMT8sCUlRSwWSUx0fXUu1Xywi4mJKSgouHr1qguq\nAbTboqPZwnSEawoDgJM1v47du+++m56e/tBDD02ZMqVv374BAQENduCSYnAkzbboaLYwHWEV\nZQBwsuaDnXWZOmX1kxux3AkcRrPXxdJsYfXFxIjGP4ysogwATtZ8sJswYYLZbPby8jKZTC4o\nCG5Nsy06mi0MAIB6mg92LHcC19Fsi45mCwMAoJ5mgt2lS5f27dtXXV3dr18/Lh0GW7TfDwgA\ngNHZmhX7pz/9qUuXLnfffffw4cODg4MnTpxYWVnpssoAAABwU5oMdv/4xz+Sk5OrqqpGjhw5\nceLEXr16rVixYsqUKa4sDoDKWJMZAHSlya7YRYsWmUymv//977GxsSJy+fLlxMTEdevWffHF\nF+Hh4S6sEIBKuPwXAOhNky12u3bteuCBB5RUJyJmszk7O1tE/vGPf7imMgAqY01mANCbJoNd\neXl53759629R7paXlzu9KABawJrMAKA3TQa7q1ev+vr61t/i4+MjInXKog9AfYzEMh4nXf5L\nmT2dk+OYowEArtf8tWKBZigjsaqqZP58GTlS7WrgIFlZsnChiEhCgqxbJ2lpahfkZJycaMDE\niWIySUWFTJsmnTtL27Zyzz1SWCjV1TJzpnTrJn5+MnSo7NmjdqGAhjW/QDHQDGUkVnKyZGQ4\n4GiaXQ9Ps4U5iVutycw0EW0wm0VExo2T2FjZskX+/W9JTZVx42TgQBkwQDZskKNHJSVFRo+W\nkhLx8lK7XECTbAW7HTt2KBMm6tu2bVuDjTfuA/fCSCzonWNPTtBSnp4iImFhMmeOiMidd8qH\nH8qqVTJkyLXe+4gI2b5dXnlFPvtMhg5Vs1RAs2wFu507d+7cubPBxoKCgoKCgvpbCHZubdQo\n2bpVRCQ3V3JzZdo0ef11tWsCbhInJ1qSkPDD7bAwEZGxY3/YctttIiKlpa6tCdCPJoPdsmXL\nXFkH9CorS+LiJDNTEhIkKUl69VK7IOAmcXKiMd26/XBbacOrv0Xpgb1yxbU1AfrRZLCbPHmy\nK+uAXrnVSCwYUstOTpYvl6eekrIySU+XvDwnl+hebhw8x3A6wH7MigW0gVmZaomKurawi3Jy\nMmhQ8z/CTHAAWsWsWEADmJWpL0y2AKBVtNhB89yhKYuLd+kLky0AaBXBDtrWyj4vvYRCgoKO\nOOmaHADgCAQ7aFtrmrL0MhBKs0GBy381yt2uyQFAVxhjB21rTVOWXgZCsWSMvjAT3GmWLpWl\nS6/bkp0tDVZKTUmRlBQX1gToDS120LBWNmXppX+zBbMyAQBoDMEO2mMdGNehQ8v7vDTbvwkA\ngNPQFYtWU0ZiOUqDhT98fERa1OdF/yYAwP0Q7KAxDQbG7djRwuMwEAr2c+zJCQCoh65YaIyN\ngXF6WbsEAACVEOygJTYGxull7RIAANRDVyy05MaBcZWV1x7Sy9olAACoh2AHLblxYJx1jJ1e\n1i4BAEA9dMVCD1atYu0SaAjX5ACgVbTYQQ+io+XnPzfy2iXMygQAOALBDnrQrdt112YAAACN\nIdhB26xNWS1e0A4AALdBsINx0b8JAHAzTJ4AVMJ6ywAAR6PFDlBDg0viAgDgCAQ7QA2stwwA\ncAKCHTTGTQbGsd4yAMAJGGMHuJyNS+ICANAK+m6xu3z58r59+6qqqnr27NnLeIvWwqhuvCQu\nAACOoJtg99vf/jY6Onr48OHWLfn5+RkZGWfPnlXuRkRELF269I477lCpQDiZkbpob7wkLgAA\njqCbrthnn31269at1rubNm1KTU2trq5+5JFHpk2bFh0dvXv37mHDhhUXF6tYJADNYVkZAO5E\nN8GugfT09ICAgL17965du/b111/fsWPHmjVrzp8/v2DBArVLA6AZyrIyVVUyf76MHKl2NcDN\n48wEN0k3XbH1nTlzpqioKDMzs3///taNCQkJY8eO/ctf/qJiYQC0hWVloGsseImbp8sWu5qa\nGhGpn+oU4eHhp0+fVqMiAJrEsjLQNeXMZNIkyciQESPUrgb6oMtgFxwcHBAQ8O233zbYfvLk\nSX/+gwNQsKwM9I4zE9w8PQW748ePf/755998883Zs2enT5/+hz/8obq62vrol19+uXLlyujo\naBUrBKAhWVmycKGISEKCrFsnaWlqFwTcDM5M0CJ6GmO3YsWKFStW1N+yefPmRx99VESWL1/+\nv//7vxcvXnz22WdVqg6AxrCsDHSNBS/RIroJdn/84x8r6jl37lxFRUX79u2VRysqKgIDA99/\n//27GF4KqGL5cnnqKSkrk/R0yctTuxpA/zgzQYvoJtj9z//8j41Hp0yZkpqa2qaNnnqW4daM\ntN6yMHcPALRCN8HONj8/P7VLANwYq4oAgDbQxAWwBGirMXcPALTBOMGuuLh4xIgRI1jpBzeL\nixO0EnP3AEAzDNIVKyKVlZV/+9vf1K4COkQ3Yisxdw8ANMM4wa5fv3779+9XuwroEN2IrcTc\nPQDQDOMEOx8fn/Dw8Jv9KYvFsmPHjkuXLtnY59ChQ62oC9o2apRs3SoikpsrubkybZq8/rra\nNQEA0EL6C3YWi+XIkSOHDx+urKwUkYCAgLCwsJCQkJYd7ciRI/fff7/tYGd93pY9BTSNbkRj\nM9iyMgDQHD0Fu7Nnzy5YsGDZsmWnT59u8FCPHj1SUlJmzZrl6+t7U8fs3bt3jdIT17T8/PzU\n1FSTyXRz5UIX6EYEoFmcmeDm6SbYlZaWRkdHHzlyJCwsbPTo0aGhoe3atROR8+fPFxcXFxQU\nzJkzZ82aNR9//LH1chQAAABuRTfB7tlnn/32229XrVo1bty4Gx+tq6vLz89//PHH586d+/LL\nL7u+PGjRAw/IX/8qItKli5SWql0NAABOp5t17DZt2pSUlNRoqhMRDw+P6dOnjx8/fu3atS4u\nDBp18OC1VBcWJg8/rHY1AAC4gm6CXXl5+Y9+9CPb+/Tv3//UqVOuqQda98EHIiJBQfL11/Lm\nm2pX8z0ucQEAcCbdBLvg4OB9+/bZ3mfv3r3BwcGuqQdad+6ciIiPj9p11MMlLgC0DOeEsJtu\nxtjFx8e/+uqrd9111xNPPOHt7d3g0QsXLjz//PPr169/+umnVSkP2uLtLZcvi4icPCkmk7Rv\nL//5j9o1GfoSF8zdA5xHOSc0m2X+fLnrLrWrgdbpJthlZ2dv37599uzZ8+bNGzJkSEhIiJ+f\nn8ViqaqqOnbsWGFhYXV1dWxs7DPPPKN2pdCAJ5+UNWukqEh8fGT0aImKUrsgEeESFwBaxOHn\nhMuXy1NPSVmZpKdLXp5jjgnN0E2wCwwM/PTTTxcvXvzOO+9s27atTll7TEREvLy8IiIipk6d\nOnXqVA8PDxWLhOO17B/Qc8/J5cvy4osSFCRr1jSzszLH4vnnpa7Oif/juMQFgJZx7Dkh7X9G\np5sxdiJiNpvT09P37t1bVVX19ddf7969e/fu3UVFRVVVVZ9++unPf/5zUp3RuGBQ2rlzkpcn\nAQGyYIFzx71lZcnChSIiCQmybp2kpTnxuXSH8UNAU0aNkthYEZHcXDGZJDW1tQdU2v8mTZKM\nDBkxovUFQmt002JXn4+PT1hYmNpVwPlcMCjNZePeuMRFU2g/AGxw+GUPGRNidHpqsbvRokWL\nYmJi1K4CTuOCf0D8j1Md7QeADVFR11rslHPCQYNadTSHt/9Be/Qd7L755pudO3eqXQWcwwX/\ngPgfpwVka8BlGBPiBvQd7GBkLvgHxP841ZGtAVdybPsfNEmXY+zgFlwwKI1xb6pz+PghAHBv\nBDsA6iFbA4BD6bsrNicnp6SkRO0qAAAANEHfwS4wMLB79+5qVwFNeuEFsVjkxAm16wAAwHX0\nHewAAABgxRg7wFViYsRiUbsIAICR0WIHaAOX1QLQKOWcMCdH7TqgD7TYARrAZbUAAI5Aix2g\nAU66rBatgAAaoP3P6Gixg4a5YFCaRsa9OeOyWrQCAoD7ocUOUJuTLqvlpFZAh6P9AAAch2AH\nqM1Jl6x1RisgAEDbCHZwS2oNPmv0eZ1xWW4ntQICALSNMXZwP2oNPnPl82ZlSVycZGZKQoIk\nJUmvXs59OgCANhDs4H6UwWfJyZKRYdjnjYqSujqR71sBAQDuga5YuB+1Bp8x6A3QI5YNajHe\nOjUQ7OBm1Bp8xqA3QI+UERRVVTJ/vowcqXY1usJbpxK6YuFm1Bp8xqA3QI/UGrlhALx1KiHY\nwc2oNfiMQW+AHjGCosV461RCVyyMiIEdAFqPERQtxlunHoIdDIeBHTfFnhBMUIZ7ctLi4e6A\nt049dMXCcPQ4sEOtS9bas7Qe15yF22IERYvx1qmHYAfDYWCH/ewJwXoMygDgruiKhbEwsMNK\naQXMybG1jz0hmKAMAPpBsIOxMLDDfvaEYIIyAOgKwQ7GEhV1LYgoAzsGDVK7IA2zJwQTlAHY\nxuQqjWGMHeCu7BndzAhoADYwuUp7aLGD+7Fn8JmRnhd6RCsIdEGZXDVpkmRkyIgRjjwyH4GW\nosUOADSGVhDohZMmV/ERaAVa7ABAY5zXCgI4kPMmV/ERaAVa7ABAY1hiRjvUWjxcF7KyJC5O\nMjMlIUGSkqRXr+sebc1bx0egFWixAwAtYYkZ6IWTViHgI9A6BDsA0BKWmIGb4yPQOnTFAoCW\nsMQM3BwfgdYh2MFwGBMDAHBXBDvAjdkTggnKAKAfjLGDrrBkJQAATaPFDvrBkpUAANhEix30\nw3hLVtIACQBwKFrsoB8GW7KSBkgAgKPRYgedMN6SlfUbIE+fpukOgP4ok6tyctSuAz8g2EEn\njLdkpbUBUmm6q6qS+fNl5Ei1ywIAnWA0S2PoioVOGGzJylGjZOtWEZHcXMnNFRFJTpaMDHWL\nglawxAzcnD0fAUazNIEWO0AN9RsglRuaGjvIeTAAjTPedDoHIdgBarBePHvvXsnMFNHS2EG6\nhgFon8Gm0zkOwQ5QVXS05sYOch4MQOOMN53OcRhjB6iqW7dr/560M3aQ82AAGpeVJXFxkpkp\nCQmSlCS9eqldkIbQYge4AfvHzHEebGAMnYRhWEezKKfEgwapXZCG0GIHGN1NzR3jPNiomEII\nuAeCHWB0ypg5O5dTMdiyMqpYvlyeekrKyiQ9XfLy1K7mezf1ZwBAt+iKBXTLzp41xsy5kmbn\nFPNnALgHgh30g2vX1GdngGDMnItpc04xfwaA26ArFtAnO3vWGDPnYtpsGOPPAHAbtNgBKmll\nA6SdAUJrc8eMPTFTsw1jWvszAOA0BDtAhzQbIGzT7PgzR6l/pTiNLDcNwM3QFQuorQVXfNdp\nz5rhJ2YypxiA2gh2gA7pNEBoc/wZAD1qwSmxe6ArFnAnKg5x02n3MQDoCi12gK5YF78dP/6m\nf9bOaw846TxYp93HAKArBDtAP+onM19fWbHi5n5c3SFuOu0+BgBdoSsW0I/6i99GRt70jzPE\nDQCMjmAH6EdrktmqVQxxAwDDoysW0IlRo2TrVhGR3FzJzZWxY+39QWXM3KefyrZtDHFzX0wh\nBNwDwQ7QiQaTDyoqZP36m/hxhrgBgBsg2AE60SCZ7dihdkFoDA1jAFRFsAP0iQABALgBkycA\nOIKKSx8DAL5Hix2AVlMW2DOZpF07efFFEZG8PLVrAgB3RLAD0GrKAnuenuLlJb/9bZOXtaD7\nGACcjGAHoNWUBfZqa68tngwAUAlj7AC0zqhR15Y+FpElS1j6GABURLAD0DpZWRIW9sPd/HyV\nsx3TOAC4MbpiAbfhpCFuUVHy5JOSliYi6l/WQpnGYTbL/PlNDvUDAOMi2AH6odnJB+Hh126o\nflkLZRpHcjJD/QC4J7piARiIMo3D31/tOgBAHQQ7AEZhncaRmysmE9M4ALghgh0Ao8jKkoUL\nRUQSEmTdumvD/gDAnTDGDoBRREVJXZ2IBob6AYBKaLEDmsPyGQAAnaDFDrCJ5TMAAPpBsANs\nYvkMAIB+0BUL2MTyGfaIiZHt29UuAgBAsANsYPkM+ymLJ+fkqF0HALg1gh3QNJbPsBPzSwBA\nGxhjBzSN5TPswfwSANAMgh2A1mF+CQBoBsEOQOtoan6JMtQPANwVY+wAtALzSwBASwh2AFqB\n+SUAoCX664q1WCxHjhw5fPhwZWWliAQEBISFhYWEhKhdF6Axy5fLU09JWZmkp0tenrOehfkl\nAKAlegp2Z8+eXbBgwbJly06fPt3goR49eqSkpMyaNcvX11eV2gBtYaYqALgl3QS70tLS6Ojo\nI0eOhIWFjR49OjQ0tF27diJy/vz54uLigoKCOXPmrFmz5uOPP27fvr3axQIuYaNNjpmqAOCW\ndBPsnn322W+//XbVqlXjxo278dG6urr8/PzHH3987ty5L7/8suvLA1zNdpucpmaqAgBcRTeT\nJzZt2pSUlNRoqhMRDw+P6dOnjx8/fu3atS4uDAan2StlKW1ykyZJRoaMGHHdQ8xUBQB3pZtg\nV15e/qMf/cj2Pv379z916pRr6gFUZqNNjpmqAOCudBPsgoOD9+3bZ3ufvXv3BgcHu6YeQE22\n2+Sioq49qsxUHTRIhQoBAGrQTbCLj49fvXr1okWLLl26dOOjFy5cyMrKWr9+/YQJE1xfG+Bq\ntMkBABqjm8kT2dnZ27dvnz179rx584YMGRISEuLn52exWKqqqo4dO1ZYWFhdXR0bG/vMM8+o\nXSngfKweBwBojG6CXWBg4Keffrp48eJ33nln27Ztdcq3moiIeHl5RURETJ06derUqR4eHioW\nCbgjLs8KAJqhm2AnImazOT09PT09vaampqSkRLnyxC233NKjRw+z2ax2dQAAACrTU7Cz8vHx\nCQsLU7sKAAAAbdHN5AkAAADYZpxgV1xcPGLEiBENVmoFAABwG7rsim1UZWXl3/72N7WrAAAA\nUI1xgl2/fv3279+vdhWANjBTFQDcknGCnY+PT3h4+M3+1IULFxYtWnTx4kUb+/zrX/9qRV0A\nAAAuYpxgJyLl5eVnz57t06eP/T9SWVn5z3/+88qVKzb2+e6770TE09NQ7xV0jzY5AMANDBVW\n8vLycnNzLTfzbdelS5cPP/zQ9j6ffPJJdHR0mzbGmWgCAAAMibACAABgEAQ7AAAAg9BNV2xk\nZGSz+5w4ccIFlQAAAGiTboLd3r17RcTLy8vGPrW1ta4qB4CIiCxfLk89JWVlkp4ueXlqVwMA\n7k43XbGzZ89u167dF198UdO0WbNmqV0m4E7OnZOUFKmqkvnzZeRItasBAOgn2M2fP79Pnz4/\n/elPbS9NAsB1iork4kWZNEkyMoSr+QGABugm2Hl5eb333nsHDhzIzMxUuxYAIiJSUyMi4u+v\ndh0AgGt0E+xEpH///mVlZRkZGU3t8OCDDz733HOuLAlwX6NGSWysiEhurphMkpqqdkGwz/Ll\n0r27eHrK7NlqlwLA8XQzeUJxyy232Hg0Li4uLi7OZcUAbi0rS+LiJDNTEhIkKUl69VK7INhB\nGRZpNsv8+XLXXWpXA8DxdBbsAGhFVJTU1YmIhIVJfLza1cA+yrDI5GRpuusDgK7pqSv2RosW\nLYqJiVG7CgDQCYZFAkan72D3zTff7Ny5U+0qAEAPGBYJuAF9BzsAgL2ysmThQhGRhARZt07S\n0tQuCIDjMcYOANwDwyIBN0CLHYBWYwUNANAGfQe7nJyckpIStasA3NulS1xYDAA0Qt9dsYGB\ngYGBgWpXAbi3s2dZQQMANELfLXYA1FdbK8IKGgCgCQQ7AC0VEyPgMAVKAAATEElEQVQjR8p7\n74mwggYAaALBDkArsIIGAGiJvsfYAVAZK2gAgJbQYgcAAGAQtNgBgNuIiRGLRe0iADgRLXYA\nAAAGQbADAAAwCIIdAACAQRDsAAAADIJgBwAAYBAEOwAAAINguRMArcMKGgCgGbTYAQAAGATB\nDgAAwCAIdgAAAAZBsAMAADAIgh0AAIBBEOwAAAAMgmAHAABgEAQ7AAAAgyDYAQAAGATBDgAA\nwCAIdgAAAAZBsAMAADAIgh0AAIBBEOwAAAAMwlPtAnTAbDaLiLe3t9qFAAAArVDigdaYLBaL\n2jXowL59+2pra9WuwokefPDBRx99NDo6Wu1C0LisrKy777579OjRaheCxr3wwgvdunVLTExU\nuxA0bunSpbW1tampqWoXgsatXr36xIkT+fn5ahdyEzw9PQcNGqR2FY2gxc4u2vzlOZCPj8/Q\noUMnT56sdiFo3CuvvDJ48GB+QZr1/vvv33777fyCNGvbtm2XL1/mF6RZhw4dqqmpiYiIULsQ\nI2CMHQAAgEEQ7AAAAAyCYAcAAGAQBDsAAACDINgBAAAYBMEOAADAIAh2AAAABkGwAwAAMAiC\nHQAAgEFw5QmIiJjNZm1e8w4KfkEaxy9I4/jtaJyXlxe/I0fhWrEQETl+/HhwcLCnJ0Ffo06e\nPBkUFOTj46N2IWjcmTNnfHx8/P391S4EjauoqLh69WpQUJDahaBxVVVV1dXVnTp1UrsQIyDY\nAQAAGARj7AAAAAyCYAcAAGAQBDsAAACDINgBAAAYBMEOAADAIAh2AAAABkGwAwAAMAiCHQAA\ngEEQ7AAAAAyCYAcAAGAQBDsAAACDINgBAAAYBMEOAADAIAh2AAAABkGwAwAAMAiCHa45e/bs\nrFmzQkNDvb29e/XqFR8fv2vXLrWLwnWuXLmSkZHh4eERGRmpdi0QEamoqJg5c2bPnj3NZnNw\ncHBKSkppaanaRaEhPjhaxlePw5ksFovaNUB9//nPfyIiIo4ePfrQQw8NHjz48OHDK1eu9PT0\nLCws/K//+i+1q4OIyKFDhyZPnlxUVHThwoU777zz888/V7sid3f58uWoqKg9e/Y8+uijgwcP\nLi4uXrZsWffu3Xfv3t2+fXu1q8M1fHC0jK8ep7AAFssvfvELEXnttdesW9asWSMio0ePVrEq\nWJ07d87X1zcyMrKoqMjb2zsiIkLtimB58cUXRSQ3N9e6ZeXKlSLyq1/9SsWqUB8fHI3jq8cZ\n6IqFiIiXl9d99903bdo065ZHHnnE19f3wIEDKlYFq9ra2unTp3/yySd9+vRRuxZc88477/j7\n+8+YMcO6Zfz48X369Fm2bJmFnhBt4IOjcXz1OANdsWjcpUuX/P39hwwZsmPHDrVrwXV8fHzC\nw8PpUVJXTU2Nn5/fsGHDPvroo/rbk5OT33777eLi4t69e6tVGxrFB0cX+OppPVrs0Lj8/Pwr\nV64kJiaqXQigRSUlJXV1dSEhIQ22h4aGisjhw4fVKArQPb56Wo9gh0YUFBTMnj07JiYmNTVV\n7VoALaqsrBSRdu3aNdju5+dnfRTATeGrxyE81S4ALlVRUfHrX//aerdPnz6zZs1qsM+KFSuS\nk5PDw8PXr1/v6clfiEvZ8wuCdphMpgZblMEtN24HYBtfPY7Ce+deqqqq8vPzrXejo6Pr5waL\nxZKdnT1v3rxRo0atWrXK399fjRrdmu1fELTjlltukcZa5s6fPy8ifHYA+/HV41gEO/fSvXv3\npqbLWCyWlJSUt95664knnnjppZc8PDxcXBvE5i8ImtKjRw9PT89jx4412F5cXCwiYWFhahQF\n6A9fPQ7HGDtck56e/tZbby1cuPDVV1/lowXYZjabIyIiCgsLq6urrRuvXr1aUFAQEhLSo0cP\nFWsDdISvHocj2EFEZO3ata+88sqMGTMyMjLUrgXQh5/97GfV1dV5eXnWLW+88cbJkydTUlJU\nrArQEb56nIF17CAi0qdPn+Li4ieeeKJt27YNHnr66ae5PpLqCgoKNm/erNxetGhRx44dH3vs\nMeXu7NmzO3TooF5p7quurm748OHbt28fO3bs4MGDDx06tHLlyvDw8F27dt34OYIq+OBoHF89\nzkCwg4jNSXxHjhzp2bOnC2tBI3Jycpo6oy0qKmJVfbVUVVXNnTt39erVJ0+e7NSpU3x8/Lx5\n84KCgtSuC9fwwdE4vnqcgWAHAABgEIyxAwAAMAiCHQAAgEEQ7AAAAAyCYAcAAGAQBDsAAACD\nINgBAAAYBMEOAADAIAh2AAAABkGwAwAAMAiCHQAAgEEQ7AAAAAyCYAcAAGAQBDsAAACDINgB\nAAAYBMEOAADAIAh2AAAABkGwAwAAMAiCHQAAgEEQ7AAAAAyCYAcAAGAQBDsAAACDINgBAAAY\nBMEOAADAIAh2AAAABkGwAwAAMAiCHQAAgEEQ7AAAAAyCYAcAAGAQBDsAAACDINgBAAAYBMEO\nAADAIAh2AAAABkGwA9BaiYmJJpOprKxMU4eyHu3bb791yNEAQPsIdgBERN59913T9Tw8PDp3\n7pyQkLBjxw7bP3vHHXeMHDnS29u79WU48FB2slgsH3zwQXx8fHBwsLe3d6dOnSIjIxcsWHDq\n1CmX1aBlOTk533zzTbO7XblyJSMjw8PDIzIy0gVVAWiKyWKxqF0DAPW9++67SUlJ0dHRMTEx\nypaLFy9+9dVXf/3rXy0Wy9tvvz1lyhR1K2yBxMTElStXlpSUdO/evdEdKioqxo0b99FHH7Vt\n2/a+++4LDQ0tLy8vLCwsLi7u2LHjmjVrYmNjXVyzppSWlgYHB2/evHnUqFE2djt06NDkyZOL\nioouXLhw5513fv755y6rEEADnmoXAEBDRowYkZ2dXX/L9u3b77333pkzZ06YMMGVDWmuMWnS\npI8++mjs2LFvvvlmx44dlY1Xr1594403Hn/88bFjx3755ZedOnVSt0gVffbZZ83uc/78+YiI\niAEDBuzZsyc8PNwFVQGwga5YALbExsbed999Z8+e3bdvn3w/au306dP333+/r6/vhg0b5PqB\ncRMnTjSZTFVVVU8//XTPnj29vb1DQkJeeuml+p0DZWVlKSkp3bp1a9eu3aBBg1555ZXa2lrl\nofqHeuSRR0wmU2lpaUpKSufOnb29vfv16/f73/++fnmFhYWPPPLIrbfeajabe/bsmZSUdPTo\nUTtf2pYtWz788MPBgwd/8MEH1lQnIm3atElNTZ03b97gwYOLi4uVjceOHUtOTu7WrZvZbL71\n1lvHjBlTWFho/RHlVVdUVEybNq1z585t27a95557CgsLq6urZ86c2a1bNz8/v6FDh+7Zs8f6\nI/a8Onue1PZbferUqV/84hehoaFms7ljx47x8fH1s5rtIzz88MNjx44VkQcffNBkMjXVI19b\nWzt9+vRPPvmkT58+dr7zAJyHFjsAzejQoYOIVFdXi4jZbBaR9PR0Ly+vOXPm9O7du8HOyg4/\n+clPevXq9f7771+9enXu3LlPPvlkYGBgcnKyiJw5cyYyMrKqqmrKlCmhoaHbtm2bOXPm/v37\nly5d2uBQSgNhfHz88OHD161bd/Xq1Xnz5k2fPt3LyyslJUVEdu/eHRcXFxQUNGPGjC5duhw+\nfHjx4sV/+ctfDh48qNRs2zvvvCMiv/nNbzw9G/lPmJmZmZmZqdwuKSkZMmRIdXV1WlragAED\nTpw4sWTJkv/+7//+6KOPlJ5r5VWPGzcuNjZ2y5Yt//73v1NTU8eNGzdw4MABAwZs2LDh6NGj\nKSkpo0ePLikp8fLysufV2fmktt/qu+++u6KiIjU1NTw8vKSkZMmSJbGxsVu3bo2Li2v2CM88\n80xQUNCyZcvmzJlz55133n777Y2+jUFBQYsWLWr23QbgIhYAsFiWLVsmIllZWQ22X758uXfv\n3krbksVimTp1qog88MADdXV11n0mTJggIsoOP/vZz0Tkpz/9qfVRpdHr4YcfVu6mpaWJyNat\nW607PPTQQyLyxRdfNDiUcrv+oSoqKry9vXv27KncXbJkyeDBgz/++GPrDq+99pqIvPbaa/UL\nKykpafQlK6/r3Llzzb45jz32mIisXbvWuuXgwYMeHh733HOPcld51WlpadYdxo8fLyI/+clP\nrFtmzJghIjt37qxfm41XZ+eT2n6rPT09P/vsM+sOx48f9/f3j4yMtPMIzz33nIhs3ry52bdI\n4e3tHRERYefOAJyBrlgAjaupqdm/f39iYuLhw4cTExO7dOkiIiaTSUQee+yxNm1s/fdQQomi\nd+/ebdu2VdYcsVgsq1atCgkJuf/++607vPrqq3//+987d+7c6KESExOttwMCAmJjY48ePVpa\nWioiaWlpu3fvHjZsmIhcuXKlpqZGaVWyszf21KlTAQEBt9xyi+3dLBbLn//8586dO8fHx1s3\n9u/fPyoqateuXeXl5daNCQkJ1tthYWEionRlKm677TYRUSpv9tXZ/6Q23urVq1cPHDiwe/fu\nZd/z8vIaOnTo559/XlVV1ewRAOgRwQ7AD+bOnWtd7sTX13fgwIFr164dM2ZMfn5+/d2UjGJD\njx496t/18vK6cuWKiJSWlpaXl/fr108JiIrevXsPHz781ltvbfRQffv2rX+3W7duImJd6G7Z\nsmVxcXHt27c3m82+vr733XefiFhH7NnWpk2burq6ZncrKys7d+7cgAED6tcs378JX3/9dYPa\nFEr3bv0tSg+s8j40++rsf9Km3urTp09/9913e/bs6Xq9rVu3isjx48ebPQIAPWKMHYAfxMXF\nKQ1gItKmTZsOHTrExMQMGjSowW4BAQG2j6OEmBtdvHhRvh9eZqe2bdvWv9uuXTsRqaioEJHM\nzMznnnsuMjLypZde6tWrl7e394EDB5QBavYIDg7+6quvvvvuu6YypeLChQvW563P19fX+qji\nxlfd1Ptg1dSr8/f3b/GTKiorK0XkjjvuULpTGwgODra/SAA6QrAD8INhw4Y1WO7EsZT+XCWW\n2al+iBGRc+fOiUiHDh1qampefvnlkJCQjz/+2M/Pr/6jdho6dOhXX331f//3f8pUgwYsFsv+\n/fsHDhyoHLxBGdYtSgJrsaZeXeuf1LqP7SXoABgMXbEAXKddu3YdO3Y8dOhQ/c6+r7766ne/\n+92BAwca/ZFDhw7Vv1tUVCQiXbt2LSsru3jxYmRkpDXViUhBQYH9xSh5bt68eUrjVgNLliwZ\nNGjQ4sWLu3TpEhQUdOjQIcv1y7kfPHjQZDI12yttW1OvrvVP2rlz51tvvfXLL79sEKPPnDnT\nmoIBaBzBDoBLjR07try8/E9/+pN1S3Z29hNPPHHp0qVG93/rrbest7/++uvPPvvstttu69ix\nY+fOnU0mU/15Ev/617+UFUxqamrsqSQ2NnbChAlHjx69//77revViUhtbe2rr746Y8aMrl27\nTpw4UUQSEhJKS0vXr19f/7kKCwvvvffewMBAO1/4Tb06hzzpuHHjampq8vLyrFvOnDkzcODA\nH//4x3aW5+HhId93oAPQBbpiAbhUVlbWxo0b09LS9u3bFxoaWlBQsHHjxilTpgwePLjR/S9d\nuvTjH//44Ycfvnr16vPPP2+xWObMmSMivr6+Dz300MaNG1NTU4cNG3bw4MHf/e5377333pgx\nYzZt2rRixYoxY8Y0W8xbb7116dKlP//5z/369YuNje3bt29FRcWuXbuOHTvWu3fvLVu2tG/f\nXkTmzp27cePGpKSkX/7yl7fddtvRo0cXL17s5+f34osvtvLdaOrVOeRJs7OzN23atHDhwtLS\n0ri4uJMnT77++uvl5eW//OUv7TyCsk5hTk7OkSNHYmNj77rrrhv3KSgo2Lx5s3K7trb2xIkT\nv/71r5W7s2fPtmdBQQCOpNpCKwC0pKl17BpQVj4rKiqqv/HGdewa7BAQEDBgwADr3aNHj06e\nPLlTp05eXl69e/d+4YUXamtrbzyUcruoqGjmzJnBwcFms/n2229/++23rcc5ffr0xIkTO3bs\nGBAQcO+9927fvt1iscydO9fPz69Lly6lpaW217Gz2rBhQ0JCQnBwsJeXl7+//913371kyZLq\n6ur6+xw/fjw5Oblr166enp6dOnVKTEw8ePCgjbclKytLRJSSFG+++aaIrFixov4rtfHqWvCk\nN77VpaWlaWlpISEhnp6egYGBY8aM+ec//2n/ES5fvvzoo4/6+vq2b99+9erVjb57jU7OUDQ4\nMgAXMFmuH8ABABqRmJi4cuXKkpKS7t27q12L4xn71QFQC2PsAAAADIJgBwAAYBAEOwAAAINg\njB0AAIBB0GIHAABgEAQ7AAAAgyDYAQAAGATBDgAAwCAIdgAAAAZBsAMAADAIgh0AAIBBEOwA\nAAAMgmAHAABgEAQ7AAAAgyDYAQAAGATBDgAAwCAIdgAAAAZBsAMAADAIgh0AAIBBEOwAAAAM\ngmAHAABgEAQ7AAAAgyDYAQAAGATBDgAAwCAIdgAAAAZBsAMAADAIgh0AAIBBEOwAAAAMgmAH\nAABgEAQ7AAAAg/h/tXhvi5OdPUMAAAAASUVORK5CYII=",
- "text/plain": [
- "plot without title"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "design <- model.matrix( ~ sex )\n",
+ "\n",
+ "colnames(design) <- c(\"intercept\",\"sex\")\n",
+ "\n",
+ "dim(ijc)\n",
+ "table(sex)\n",
+ "head(design)\n",
+ "\n",
+ "y_ijc <- DGEList(counts=ijc, group = sex)\n",
+ "y_ijc <- calcNormFactors(y_ijc, method=\"upperquartile\")\n",
+ "\n",
+ "y_ijc_voom <- voom (y_ijc, design=design)\n",
+ "\n",
+ "Gender <- substring(sex,1,1)\n",
+ "\n",
+ "plotMDS(y_ijc, labels=Gender, top=1000, col=ifelse(Gender==\"m\",\"blue\",\"red\"), \n",
+ " gene.selection=\"common\")\n",
+ "\n",
+ "plotMDS(y_ijc_voom, labels=Gender, top=1000, col=ifelse(Gender==\"m\",\"blue\",\"red\"), \n",
+ " gene.selection=\"common\")\n",
+ "\n",
+ "fit_ijc <- lmFit(y_ijc_voom, design)\n",
+ "fit_ijc <- eBayes(fit_ijc)\n",
+ "\n",
+ "ijc_sex_results <- topTable(fit_ijc, coef='sex', number=nrow(y_voom))\n",
+ "ijc_sex_results_refined <- ijc_sex_results$adj.P.Val < 0.05 & abs(ijc_sex_results$logFC) > 1.5\n",
+ "\n",
+ "table(ijc_sex_results_refined)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Differential analysis as_event:sjc \n",
+ "\n",
+ "Differential Analysis (DE) was performed using voom (Law et.al., 2014) to transform junction counts (reads that were aligned to junctions when an exon is included - ijc, and reads that were aligned to junctions when the exon is excluded - sjc) with associated precision weights, followed by linear modeling and empirical Bayes procedure using limma. In each tissue, the following linear regression model was used to detec secually dimorphic alternative splicing event expression: \n",
+ "\n",
+ " y = B0 + B1 sex + epsilon (error)\n",
+ " \n",
+ "\n",
+ "where y is the excluded exon junction count (sjc) expression; sex denotes the reported sex of the subject."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"sex <- reduced.meta.data$sex\n",
"\n",
@@ -1658,127 +1259,19 @@
" y = B0 + B1 sex + B2 as_event + B3 sex*as_event + epsilon (error)\n",
" \n",
"\n",
- "where y is the alternative splicing event expression; sex denotes the reported sex of the subject, as_event represents the specific alternative splicing event - either included exon junction counts or skipped exon junction counts and their interaction terms."
+ "where y is the alternative splicing event expression; sex denotes the reported sex of the subject, as_event represents the specific alternative splicing event - either included exon junction counts or skipped exon junction counts and their interaction terms. Donor is added to our model as a blocking variable used in both the calculation of duplicate correlation as well as in the linear fit."
]
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "- 42611
- 382
\n"
- ],
- "text/latex": [
- "\\begin{enumerate*}\n",
- "\\item 42611\n",
- "\\item 382\n",
- "\\end{enumerate*}\n"
- ],
- "text/markdown": [
- "1. 42611\n",
- "2. 382\n",
- "\n",
- "\n"
- ],
- "text/plain": [
- "[1] 42611 382"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "sex\n",
- " male female \n",
- " 220 162 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "as_event\n",
- "ijc sjc \n",
- "191 191 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "\n",
- "A matrix: 6 × 4 of type dbl\n",
- "\n",
- "\t | intercept | sex | as_event | sex*as_event |
\n",
- "\n",
- "\n",
- "\t1 | 1 | 1 | 0 | 0 |
\n",
- "\t2 | 1 | 1 | 0 | 0 |
\n",
- "\t3 | 1 | 1 | 0 | 0 |
\n",
- "\t4 | 1 | 1 | 0 | 0 |
\n",
- "\t5 | 1 | 0 | 0 | 0 |
\n",
- "\t6 | 1 | 0 | 0 | 0 |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A matrix: 6 × 4 of type dbl\n",
- "\\begin{tabular}{r|llll}\n",
- " & intercept & sex & as\\_event & sex*as\\_event\\\\\n",
- "\\hline\n",
- "\t1 & 1 & 1 & 0 & 0\\\\\n",
- "\t2 & 1 & 1 & 0 & 0\\\\\n",
- "\t3 & 1 & 1 & 0 & 0\\\\\n",
- "\t4 & 1 & 1 & 0 & 0\\\\\n",
- "\t5 & 1 & 0 & 0 & 0\\\\\n",
- "\t6 & 1 & 0 & 0 & 0\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A matrix: 6 × 4 of type dbl\n",
- "\n",
- "| | intercept | sex | as_event | sex*as_event |\n",
- "|---|---|---|---|---|\n",
- "| 1 | 1 | 1 | 0 | 0 |\n",
- "| 2 | 1 | 1 | 0 | 0 |\n",
- "| 3 | 1 | 1 | 0 | 0 |\n",
- "| 4 | 1 | 1 | 0 | 0 |\n",
- "| 5 | 1 | 0 | 0 | 0 |\n",
- "| 6 | 1 | 0 | 0 | 0 |\n",
- "\n"
- ],
- "text/plain": [
- " intercept sex as_event sex*as_event\n",
- "1 1 1 0 0 \n",
- "2 1 1 0 0 \n",
- "3 1 1 0 0 \n",
- "4 1 1 0 0 \n",
- "5 1 0 0 0 \n",
- "6 1 0 0 0 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
- "ijc_names <- as.character(colnames(ijc))\n",
- "sjc_names <- as.character(colnames(sjc))\n",
+ "ijc_names <- as.character(colnames(ijc))\n",
+ "sjc_names <- as.character(colnames(sjc))\n",
+ "sample_names <- as.character(colnames(ijc))\n",
+ "\n",
"ijc_names <- paste0(ijc_names,\"-ijc\")\n",
"sjc_names <- paste0(sjc_names,\"-sjc\")\n",
"colnames(ijc) <- ijc_names\n",
@@ -1789,7 +1282,10 @@
"sex <- factor(sex, levels=c('male','female'))\n",
"as_event <- c(rep(\"ijc\",dim(ijc)[2]), rep(\"sjc\", dim(sjc)[2]))\n",
"as_event <- factor(as_event, levels=c(\"ijc\", \"sjc\"))\n",
- " \n",
+ "\n",
+ "# we will add donor as a blocking parameter\n",
+ "donor <- rep(sample_names, 2)\n",
+ "\n",
"design <- model.matrix( ~ sex + as_event + sex*as_event )\n",
"\n",
"colnames(design) <- c(\"intercept\",\"sex\",\"as_event\",\"sex*as_event\")\n",
@@ -1806,27 +1302,45 @@
"source": [
"### Voom, limma's lmFit and eBayes\n",
"\n",
- "with the duplicate correlation due to the two different counts combined into a single matrix - we should add the duplicate correlcation consensus correlation to the modeling"
+ "Using sample as a blocking variable, we are able to model the effects of the donor on the results, which improves the power. This topic is discussed in biostars https://www.biostars.org/p/54565/. And Gordon Smyth answers the question here https://mailman.stat.ethz.ch/pipermail/bioconductor/2014-February/057887.html. The method of modeling is a random effects approach in which the intra-donor correlation is incorporated into the covariance matrix instead of the linear predictor. And though as Gordon Smyth states both are good method and the twoway anova approach makes fewer assumptions, the random effects approach is statistically more powerful. \n",
+ "\n",
+ "We have a balanced design in which all donors receive all stimuli (which is really in healthy human donors, life and all of its factors!) Our measurement has so many points -- we are measuring in the skipped exon approach, 42,611 junctions! It is not possible to encorporate those measurements into the linear predictor. A two-way ANOVA approach is virtually as powerful as the random effects approach \n",
+ "and hence is preferable as it makes fewer assumptions.\n",
+ "\n",
+ "For an unbalanced design in which each donor receives only a subset of the stimula, the random effects approach is more powerful.\n",
+ "\n",
+ "Random effects approach is equivalent to The first method is twoway anova, a generalization of a paired analysis.\n"
]
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# we will model as random effects, represented as a block\n",
+ "donor <- rep(sample_names, 2)\n",
+ "length(donor)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
- "0.926713176949206"
+ "0.185977569902876"
],
"text/latex": [
- "0.926713176949206"
+ "0.185977569902876"
],
"text/markdown": [
- "0.926713176949206"
+ "0.185977569902876"
],
"text/plain": [
- "[1] 0.9267132"
+ "[1] 0.1859776"
]
},
"metadata": {},
@@ -1834,38 +1348,46 @@
}
],
"source": [
- "\n",
"y <- DGEList(counts=as_matrix, group = sex)\n",
"y <- calcNormFactors(y, method=\"upperquartile\")\n",
"y_voom <- voom (y, design=design)\n",
"\n",
- "dup_cor <- duplicateCorrelation(y_voom$E, design=design, ndups=2, block=as_event, weights=y$samples$norm.factors)\n",
+ "dup_cor <- duplicateCorrelation(y_voom$E, design=design, ndups=2, block=donor, weights=y$samples$norm.factors)\n",
"dup_cor$consensus.correlation"
]
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde7wVdb3/8e8C9o27F26CCggBG1QUQgoJ02SLGBJZiOXleORnST0qg0JT\nOWLZ8fiwKJA6D7Q0xcgDgUgZiUSCmICBopIKSiYJIhJsLhvYsH5/rOOc4fud+c53Zs19v55/\nrT1rLp+Ztfae9/58Z9YqFItFAQAAgOxrlnQBAAAACAfBDgAAICcIdgAAADlBsAMAAMgJgh0A\nAEBOEOwAAABygmAHAACQEwQ7AACAnCDYAQAA5ATBDgAAICcIdgAAADlBsAMAAMgJgh0AAEBO\nEOwAAABygmAHAACQEwQ7AACAnCDYAQAA5ATBDgAAICcIdgAAADlBsAMAAMgJgh0AAEBOEOwA\nAABygmAHAACQEwQ7AACAnCDYAQAA5ATBDgAAICcIdgAAADlBsAMAAMgJgh0AAEBOEOwAAABy\ngmAHAACQEwQ7AACAnCDYAQAA5ATBDgAAICcIdgAAADlBsAMAAMgJgh0AAEBOEOwAAABygmAH\nAACQEwQ7AEje/PnzC4VCoVCorq5OupacW7RoUelQt2jRIulagPAR7ACE6YEHHijYPPjgg+o8\nDz/8sH2eBx54IP46ASCX+H8FQIQWLVr07//+79LExYsXJ1JMmg0cOPDHP/6xECIfbaQdO3Z0\n7dr16NGjmzZt6tu3b9LlAE1IHv6CAEitZcuW7d+/v1WrVtaUQ4cO/fGPf0ywpHTq1avXN7/5\nzaSrCM3jjz9+9OjRpKsAmiKGYgFEolu3bkKIhoaGpUuX2qcvX7583759QoiuXbsmUxmi95vf\n/CbpEoAmimAHROszn/lM6UqykSNHSk898sgjpacqKip27txZmrh3796777576NChJ554YmVl\nZadOnerq6n75y1869j8MZ/7FL35R2tCnPvUpIcT8+fPPOeecli1bdu/e/bbbbjty5IgQYtOm\nTWPGjDnhhBNat249cuTIV1991b6G559/fv78+fPnz3/++ecNd3zIkCHNmzcXQjzxxBP26aVx\n2ObNmw8aNMhxwddff/0rX/lK7969q6ur27Zt+/GPf/ynP/1pY2OjfZ5isThv3ry6urqOHTtW\nVFS0bdv2vPPOmzlzpn3Hpb1euXLlxRdfXNrB4cOHL1u2zHMXfL12vkoaMWJEY2PjN77xjQ4d\nOnTq1Em43zwR0Z5u27bt5ptvrq2tbdWqVU1NTf/+/adOnWq9CX29FpLLLrusUCg899xzpR/7\n9etXKBRKzUjN7htuLsCePvTQQ4MHD27VqtWJJ544evTodevWFQoFTf1A5hUBRMm6e6CysnLv\n3r32p8aNG1d66tJLLy1N2bBhg1sf6xOf+MQHH3xgX9x85nnz5pWmDxgw4PHHH5dObJMmTXrr\nrbdOPvlk+8QOHTr861//stZw+eWXl6Zffvnl+v2dM2dOac4vf/nLQ4cOFUKceOKJjY2N1gyl\nTt4nPvGJK664ojTnnDlzrGcXLFjgeFvohRdeePDgQWu2L33pS447ftlllx07dkzd66VLl1ZW\nVtrnbN68+bJly0J87UxKeuyxx0oTzzrrrPvuu8+qpFgs/s///E/px6qqKvuGotjT5cuXt2vX\nTl1np06dXn75Zb+vhWT06NHqIt/4xjf0u2+4Ob97+u1vf1taW1VV1W233SZtGsgTgh0Qrd27\nd1unn8cff9yafvDgQevKs8cee6xYLH744YdWUOvRo8fPfvazRYsWffe737Wuph89erS1uK+Z\nrdDQpUuXbt26jRkz5mtf+5p1aq+qqho1atQpp5zyjW9847zzzrNOgT/+8Y+tNQQIdl/84hen\nTZtWerx8+fLSsy+++GJpyrRp08aOHVt6bAW7t956q6ampjRxypQpr7/++tq1a0eMGFGacsst\nt5Rme/LJJ0tTmjVrNnv27I0bNz744IPWjlsH2b7X3bt3Hzhw4C233GLvvQ0ZMiSs185vSd27\ndz/11FMrKioGDhzYp0+fokuwi2JP33vvvRNPPLE0fcSIEfPnz3/00UcHDhxYmtKnT58jR46Y\nvxaqV1991d6jnTt37sqVK9966y397htuzteevvDCC9b0Cy+88Le//e3ixYsvueQS6wAS7JBL\nBDsgclYquvrqq62J1smvTZs2+/fvLxaLd955Z2lK27Ztt23bZs35yCOPWOendevWlSb6mtk6\nHQohvvCFL5QmLliwwJpYXV29ZcuWYrF46NChPn36lCZ+9rOfVXfBPNh9/vOfX7NmTelxqWFT\nLBatqLdmzRprnVaw+9rXvlaacsEFF1gr3LlzZ+vWrUsHqtS5mTVr1ujRo0ePHm2ttlgsjhkz\nprTsNddco+718OHDra6P1QNr1qzZ4cOH9btj+NoFKKl3797/+Mc/rJkdg10Ue3rLLbeUJp58\n8sml4ovF4vvvv2/lqvnz55u/Fo7ee+89q55Nmzap+6juvuHmfO3pxIkTSxM7dOiwb9++0sQj\nR45Yd+kS7JBLBDsgctb40UknnWQNSl533XWliddee21pytlnn12act1119kXb2xsPOGEE0pP\nTZ8+PcDM9tPhmjVrShMPHz5cVVVVmjhhwgRrDZMnTy5NHDhwYICdtQe7Y8eOldqK3bt3Lz17\nzjnnCCG6du167NgxNdidccYZpSnf+973DtqULqgSQmgGT7/+9a+X5hk5cqS611bLsFgs2q/E\n2rp1q353DF+7ACWVWn0Wt6HY0Pd0wIABpSk33HCDfbXPPffcU0899dRTT7355pvF8l4Lk2An\n7b7h5nztab9+/UpTrr/+evu27rrrrtJ0gh1yiZsngMiNGTOm1HjYtWvX6tWrhRBHjx5dsmRJ\n6dkvf/nLQohisWjdr3DmmWfaF2/evLnVY9i0aZPfmSXWeb2ioqJDhw6lx2eddZY1Q5cuXUoP\n6uvrA+ysXaFQKKW3rVu3vvzyy+++++769euFEGPHjlUvYC8Wi2+//Xbp8Q9+8IMam2effbY0\n3drrZcuWjR079owzzqiuri5dTT9z5szSU453mQwePNh6fPrpp1uPS/u4d+/e7opDhw4Js9cu\nWEkXXnih9xEMe0+LxaL1rrCyVMknP/nJSy655JJLLunVq5ev1yIY++4H25x+T4UQW7duLT3o\n3bu3fcH+/fuXUzmQcnyOHRC5mpqayy+/fO7cuUKIJ598cvjw4StXrvzggw+EEKecckrpDHfg\nwAHr7r9SkrCzrugqnbR8zWxXVVVljbiVfiw9aN++vTVRuiC9TGPHjp09e7YQ4umnn27ZsqU1\nUZ3zwIEDx44d06/tww8/FEL87Gc/u+mmm0pTWrVq1bNnz8rKym3btpUOqaqqqqpNmzbWj+oV\n+seOHfv73/8uTSwWi8LstQtQUvPmza1UrRH6nh44cMCKg1ZnV2X+WgQj7X6AzXnuabFYPHjw\nYOmx9cZz/BHIGTp2QBwmTJhQelD6sI9FixaVfrzqqquaNWsmhGjZsqV1TffevXulxa2IVrrj\nwdfMybrgggtKqXH58uXPPPOMEKJ9+/bWRfF2LVu2LH08ihBixowZjkMM//Ef/7Fv3z5rsPiq\nq67auXPna6+9tmHDhi9+8YsR7YLnaxegpBYtWpSW1YhiT2tqaqzt7t+/3202w9cicBnS7kex\nOfsHx0h7qv7KAHlCsAPiMHLkyJNOOkkI8frrr7/xxhtWOLDG8gqFgjVIumHDBvuyR44cee21\n10qPS2OmvmZOVkVFxaWXXiqEWLly5Z/+9CchxOjRoysqKtQ5C4WCNThoDcyp1q9ff+DAgdLj\nKVOmWA3I119/PXCR7du3V5OEFQs8X7soSopotc2aNbPGJaWR+scee+z73//+97///T/84Q+G\nr0VYItrcaaedVnrwt7/9zT69dD0AkFcEOyAOFRUV1se2TZ8+vTTwd+aZZ1r3QAghrI9GW7Ro\n0bvvvmtNf+ihh0pNuEKhYA1i+pq5fC+88MKiRYsWLVpk/wgJQ6Uy6uvrS6Npmqrq6upKD/7n\nf/7HyjRHjx790pe+dP31199yyy3btm0rXfpWUvpoZSHEa6+9VkqN9olh8XztIiopotWWcrYQ\nYtGiRXv27Ck93r1799e+9rXbb7/99ttvL72dTF4Lt03YL6B0GzWWlLM5N5/4xCdKDxYvXrx7\n9+7S43379tnvHAdyyPftFgACWbFihfTbd88999hn2L17d+nDe4UQvXr1uv/++xcsWDBlyhTr\nSjj7bYy+Zna749Jqk/zsZz+zJlrX5p9xxhnWxGAfd1KaUl9fb1VVXV1dX18vrdO6K3bLli1W\nX2rYsGG/+93vli5dakXY/v37NzY2btu2zRrF++xnP7tx48bFixd37drV+pSWtm3bPv/88zt2\n7HDb63/84x/WS7Bx40av161Y9Hrtyi/J8TWKaE///ve/W1ennXfeeb/5zW/mzp1rfQvIaaed\nVvpkEJPXwu1wNTY2Wk3Z4cOHP/7440uXLnXcR4vh5nztqf1VGzRo0Lx58x5++OGPf/zj1mWp\nzZo1M3n1gWwh2AExsT77wzqp2D/Hq0TzZRLjxo2TPjnMfOZkg12xWLS6RPaPTVaDXalUKwXa\nde3a1frgDOvzPiynnHLK22+/fcopp1hTpk2bFmKw83ztyiyp6PIaRbSnS5YscbyBoHPnzhs2\nbPD1WrgZNWqUfZHS667/SBeTzfnd03/7t3+T1taqVatZs2ZZPx49elS/I0DmMBQLxKRQKIwf\nP976ccSIEVbLzXL22We/9tpr3//+9z/+8Y+3a9euoqKiS5cun/vc5xYvXqx+4ZKvmZP1uc99\nrvTAc3T4iiuuWL9+/fXXX9+jR4+qqqqWLVsOGDDge9/73saNG62Pcbnvvvvuueee2trampqa\nrl273nDDDWvXru3evfvDDz/cp0+fFi1adOvWzfoMs1B4vnYRlRTRakePHv3KK6989atf7d27\nd+lTRfr373/LLbds3LjRfm2AyWvhZs6cOWPHjm3fvn11dXWPHj0++clPelZVzubcPPDAA/fd\nd1+fPn0qKys7dux4xRVXvPDCC5/+9KetGTR3kAAZVSgWi0nXAAAAgBDQsQMAAMgJgh0AAEBO\nEOwAAABygmAHAACQEwQ7AACAnCDYAQAA5ATBDgAAICcIdgAAADlBsAMAAMgJgh0AAEBOEOwA\nAABygmAHAACQEwQ7AACAnCDYAQAA5ATBDgAAICcIdgAAADlBsAMAAMgJgh0AAEBOEOwAAABy\ngmAHAACQEwQ7AACAnCDYAQAA5ATBDgAAICcIdgAAADlBsAMAAMgJgh0AAEBOEOwAAABygmAH\nAACQEwQ7AACAnCDYAQAA5ATBDgAAICcIdgAAADlBsAMAAMgJgh0AAEBOEOwAAABygmAHAACQ\nEwQ7AACAnCDYAQAA5ESLpAvIhpdeeqmxsTHpKgAAQCq0aNHi7LPPTroKBwQ7b+vWrfv4xz+e\ndBUAACBF1q5dO3jw4KSrkBHsvB0+fFgIcejQocrKyqRrAQAACTt8+HBVVVUpHqQN19gBAADk\nBMEOAAAgJwh2AAAAOUGwAwAAyAmCHQAAQE4Q7AAAAHKCYAcAAJATBDsAAICcINgBAADkBMEO\nAAAgJwh2AAAAOUGwAwAAyAmCHQAAQE4Q7AAAAHKCYAcAAJATBDsAAICcINgBAADkBMEOAAAg\nJ1okXUC5jhw58sYbbzQ0NAwYMKCqqirpcgAAABKTpY7d8uXLP/3pT/fo0ePSSy994YUXhBBL\nly7t3r37gAEDBg8e3LFjx9mzZyddIwAAQGIy07F7/vnn6+rqGhsb27Ztu3Tp0mefffbpp5/+\n4he/2K5du2uuuaahoeHpp5+eNGlSz549L7nkkqSLBZJUKBSEEMViMelCAABxy0zH7oc//OHJ\nJ5/80ksv7dmzZ/v27UOGDLnyyit79Ojx+uuvP/zww7/5zW+2bNnSvXv3n/zkJ0lXCgAAkIzM\nBLvVq1dPmjTprLPOEkJ06NDhv/7rv955551vfetbNTU1pRlOOOGEG264Yc2aNYmWCSSvWCzS\nrgOApikzwW7Pnj2nn3669WPXrl2FEB06dLDP06VLl71798ZdGQAAQDpkJtiddNJJW7ZssX58\n4403hBCbN2+2z7Nly5aTTjop7soAAADSITPB7tOf/vTMmTP/9Kc/HT58eOPGjV//+tf79et3\n3333bdu2rTTDpk2bfvaznw0fPjzZOgEAAJKSmbtip02b9rvf/e7CCy8s/XjiiSeuWrVq1KhR\nH/vYx84777yGhoa1a9cWi8UpU6YkWycAAEBSMtOx69u37+rVqydMmHDeeeddd911q1ev7tev\n35IlSwYMGLBixYrnn3/+tNNOW7BgwZAhQ5KuFAAAIBmZ6dgJIQYMGPDYY49JU1544YV9+/Yd\nPHhQupECAACgqclSsHPTunXr1q1bJ10FAABAwvIQ7Mq0f//+w4cPa2aor6+PrRgAAIDA8hPs\ntmzZcuONNwohli1b5mupj33sY8eOHfOcs7GxsbKyMnh9AAAAEctPsKuvr3/mmWf8LnXGGWds\n2LBB37H77W9/e/fdd5uEPwAAgATlJ9j17dt348aNARY888wz9TOsW7cuUEUAAACxyk+wq66u\nHjBgQNJVAAAAJCYzn2NnYteuXdKXjAEAADQduQp29957b+/evZOuAgAAIBm5CnYAAABNGcEO\nAAAgJzJz88TgwYM959m2bVsMlQAAAKRTZoLd+vXrhRAVFRWaeRobG+MqBwAAIHUyMxQ7ZcqU\nVq1avfLKKw3uJk+enHSZAAAAiclMsLvrrrt69eo1YcKEI0eOJF0LAABAGmUm2FVUVMydO/fV\nV1+99dZbk64FAAAgjTJzjZ0Qol+/ftu3b9dcSDdq1Kj27dvHWRIAAEB6ZCnYCSHatm2reXbE\niBEjRoyIrRgAAIBUycxQLAAAAPQIdgAAADlBsAMAAMgJgh0Qn0KhUCgUkq4CAJBbBDsAAICc\nyNhdsUCmFYvFpEsAAOQZHTsAAICcINgBAADkBMEOAAAgJwh2AAAAOUGwAwAAyAmCHQAAQE4Q\n7AAAAHKCz7EDcs76rgs+RQ8Aco+OHZCYeL5hrJTnSHUA0BQQ7ID8I9UBQBPBUCyQGPIWACBc\ndOwAAABygmAHAACQEwQ7ICox3Bjhtt2kNg0ASBbBDohQbAGLMAcAENw8AUQnznsjisUin1cH\nAKBjB+QEeQ4AQLADAADICYIdAABAThDsAAAAcoJgBwAAkBMEOwAAgJwg2AEAAOQEwQ4AACAn\nCHYAAAA5QbADAADICYIdAABAThDsgBAUCgXrq1oBAEgKwQ4AACAnWiRdAJAHxWIx6RKOU2of\npq0qAEDU6NgBAADkBB07IIfo1QFA00THDkATxf0uAPKHYAc0Fdy6q+KAAMgZgh2AposxawA5\nwzV2QFNBiJFwQADkDx07AFnC4CkAaBDsAGQGqQ4A9BiKBZAZDJ4CgB4dOwAAgJwg2AEAAOQE\nwQ5AqvHxe+nEiwKkE8EOABAE2Q5IIW6eANKidJrk/gAJByS1eGmAFKJjBwDwjVQHpBMdOyAt\nOFMCAMpExw4AACAnCHZAaLh/EwCQLIIdAABATnCNHRAaLpIDACSLjh0QB4ZoAQAxINgBkSul\nOrIdACBqDMUCkcvlEC0fpwwAKZTtYHf06NHXXnutvr7+1FNPPfXUU5MuBwAAIElZGopdvXr1\n1772NevHRx99tGvXrmedddawYcNOO+20gQMHPvvsswmWBzQpxWKRdh0ApE1mOnYrVqyoq6ur\nrKycOXNmoVCYP3/+1Vdf3bp16y984QsdOnR48803n3nmmZEjRz733HODBg1KulgAAIAEZCbY\n3Xnnne3bt3/uuedKV/Z85zvfOf30059//vkuXbqUZnjhhRc+/elP33nnnYsXL060UgAAgGRk\nZij2r3/96zXXXNOrVy8hxJ49e95+++2bb77ZSnVCiPPOO+/LX/7yypUrk6sRyLbCR5IuJBU4\nDgCyKDPB7ujRozU1NaXH1dXVhUKhW7du0jzdunVraGiIvTQgJ0rXzHHlnOATagBkVmaC3cCB\nA+fNm3fgwAEhRFVV1Sc+8Ynnn3/ePsOhQ4d++9vf9unTJ6ECgTwg1ZWQcQFkVGaC3dSpU998\n883hw4f/8Y9/bGxsnDlz5ty5c3/1q18dOHDgyJEjL7zwwqWXXvrSSy/ddNNNSVcKIA9IdQCy\nKDM3T1x22WVz5sz55je/WVdXV1NT06NHj8rKymuvvfb6668XQhw9erRQKNx8880TJ05MulIA\nAIBkZCbYCSFuuOGGz372s4888siyZcv+9re/ffjhh1VVVa1bt+7evfuwYcOuvfbac889N+ka\nAQAAEpOlYCeE6NSp0+TJkydPnpx0IcihQqGQ3dE3+xd8qTuS6V0DAJjLzDV2QAxycxekfUey\ncoNn+isEgPQj2AH/K4XfkWX+qXKa4jN0gyfZDgDKlLGhWI0tW7bceOONQohly5aZL7V79+7b\nb7/9yJEjmnk2bdpUbnFAojKR6kR26gSA1MpPsKuvr3/mmWf8LlUsFuvr6w8ePKiZp/TheUD8\nggWdjMajjJYNAKmSn2DXt2/fjRs3+l3qxBNPfPjhh/Xz/Pd///eLL74YtC4gbvYbKQAATUp+\ngl11dfWAAQOSrgIAYkWOB2CXq5sndu3atXnz5qSrABKWwrtANMxvEIGbDL3cAKKWq2B37733\n9u7dO+kqACA+pDoAdvkZigVSjiEzRxwQAAhRrjp2AAAATVlmOnaDBw/2nGfbtm0xVAIEQ2sK\nABC1zAS79evXCyEqKio08zQ2NsZVDgAAQOpkZih2ypQprVq1euWVVxrcTZ48OekyAQAAEpOZ\nYHfXXXf16tVrwoQJ+q//AoB48EEtAFIoM8GuoqJi7ty5r7766q233pp0LQAAAGmUmWvshBD9\n+vXbvn275kK6UaNGtW/fPs6SADRZ3A0DIIWyFOyEEG3bttU8O2LEiBEjRsRWDHLA12fL8UF0\nAICUy8xQLAAAAPQy1rEDwuWr/Ra4V0erDwAQDzp2QEy4gxIAEDWCHRATOnYAgKgxFAtELsFI\nxygwADQpdOyQdoxghiLYp+nyGbwAkC0EO2QA2SKwYrFYZruObl96kLMBeCLYIQOyki3SfNIN\nlvCycuRjk+aXGAAEwQ7pF2e2KOe03WRP+U2tjZTgzpbffwWQewQ74H+VTtiBT9ulM26Tijhu\n8h31iFYA0oy7YoH/xQk7mCZ13JrUzgLIIoIdEJpcnvULhYLf/crlcQCATGAoFsikOMc6czyu\nCgA5Q7ADsiqevMUF+wCQIQzFAr6l4escCFsAABUdOyAb8n2rKQAgFHTs0FSE2GaLv1tGpAMA\nmKBjh6YuE52wUpRk+BUAoEfHDk2FJhUl1YHztV1SHQDAEx07NHUEJjQp6e9PAygHwQ5IAJ8h\ngkSU+b15ANKPYAcIkYIr7TjXIgZcrAnkHsEO+F/2s52V88oJfOYL0kdBbEh1QL4R7JBbvnJS\n6Ge7AFktQ2fcmDMokRcADHFXLPLJylXB0pK1VOCwleM7XhOJWYFfSgBoUgh2yCdCQHSKxWL8\n2Y4XFABMMBQLwLeYYxapDgAM0bFDKlgdIE7hmaZ5HRlLBYAY0LFDKqT8lJ/4h6Fkhf7TNEyO\nIccZAMpBxw5pkfJsl6Bs9brcSjXZBVIdAJSJjh2yLZ4okOAXRagfm5Lj9iFfyAEAZSLYIfPy\nmnJKih8JvIZ8Hx/kDG9XoEwEO2Rbpns8MfTeOE0iQ/gKFqB8XGMHxKp00ionjPr96GNOk4bK\nf2lQJg4+UD6CHZCYeE5jnCwBoOkg2CFj4m+rhLtFYlb8DG8rNn9p6O0BSC2usQNcMYiZA1y2\nBaBJoWOHjImtTWIFgqw0ZmgjOSpdZRjuYeEgA0gtOnZoWhw7N453p9q/RCHY7at+Fwn9Jtkc\nf+KdL+QwAE0HwQ6pEE8EsTZhuLnyPz0uzlyV6U9+AXzhnxbADUOxaEICf9tVgMAUYAQw9FhG\nzotIhgbo84rP8QHcEOwQFV+XfMV8muRzRpqCiOIXeSIl+P0CHDEUCyCHootf5AkAaUbHDlHJ\n3/nPygr527X8ifQ14g0AILXo2AGm7PfJAgCQQnTsAB/SmeqkyxnpLGYXH0YIoEx07JBhXMbu\niM4iADRZdOyQIr5uY9SnOk3nI39NEXVf8rR3TQovHIAy0bFDWvhtv5V5CuQDTuELbxgAmUCw\nQ1oE+xBgzVOBP444RNlNA9mtHACaMoZikSKRRi77CGy4G2oK30OQv/Frv5ryvgPIEDp2QAjy\n19zim2cBIIvo2KGpiPoTax37drnJRrnZEQDINzp2SIUyr+hKtmGmfoCchOvV8opXFkDa0LFD\n5vk6s6rXioX1cb70tAAAiaNjh1Qo54qusAJZpF8bn2DsM98v+k9+cSUigLQh2CEPzE+ujmfi\nHJ+bS0GNuAYATQRDsci2sD5qJK/Zztd+RX0Q+MwUAIgaHTtkWOjtqEyPRaa8+JhrK3wkzo0C\nQOLyEOz27t07derUv/3tb0kXgrjF/G33hkGBMJEGMb83ACAlchLs7rnnns2bNyddCBKgP3MH\n+P7Z8r+CNsB2Q5HyC/mLH4lzi7FtCwBSIjPX2N1www1uTx04cEAIMXPmzEWLFgkhHnjggfjK\nanoy9/VZIRZc+hRiz3lC2VbouL4tl3hZAUgyE+wefPBB/Qx//OMfSw8IdtGx2lGpOpFozm1+\n6/Q8TQZbYYAFHVeVqsOeG2QjAHliGuy2bt26efPmDz74YM+ePe3atTv55JN79erVvXv3KGs7\nzre+9a2f/vSnZ5555n/+53+ed9559qf++c9/9u/ff968eXV1dbHV0zS5fXFWuNJ/ojWvMKwj\nVv7YrmcN6T/sKLG/o3i9AEg8gt1bb701Y8aMp556yvEKtl69el166aXf/OY3e/ToEU15/+dH\nP/rRVVddNXHixFGjRn3lK1/54Q9/2K5du9JT+/btE0K0atWqffv2UZeB2DpP5mAkNJgAACAA\nSURBVHnI/gnDKfz2iLA+jSXS6/bsK29qCS+Le0r7FoAb12C3c+fOqVOn/upXv2psbOzYseP4\n8eN79+7dsWPH9u3b/+tf/3r//ffffPPN5cuX//SnP509e/Y111zzn//5nx06dIi01sGDB69d\nu/a+++678847n3jiiZ/+9Kef//znI90iQmcymFvOGSvwCc9a0DHWuGWdmDNQdKdz+2qjDpEo\nH6kOgBvnYLdixYrx48fv2rXryiuvvPnmm8855xzHP/TFYnH9+vU/+tGPHn744SVLljz++OMj\nRoyIttwWLb773e9eccUVN9544xVXXPHZz372/vvv5ySUIZEO5pZ/Q6t5jzCGd51naowuVpIb\n0oxXB4CG88edjBw5sm/fvq+//vqjjz567rnnup3DCoXCueee++ijj/7tb3/r27fvxRdfHGWp\n/+eMM85YtmzZL3/5y+eee662tpa7JbIl9NNSWJ9Da33ymeN3jkkT1Zmj/jjclH+aiYqPCAaA\n+DkHu6lTpy5fvvyMM84wXEuvXr2WL18+derU8Arzdt11123atOmyyy67884749wu0s+eJzTZ\nwv5UCjOTYZJLbXLiI4IBIH7OQ7HTp0/3u6LmzZsHWKpMHTt2/PWvf33NNdc888wz5jEUmRPd\nNXn6jfpdecwhJp6blMuR5toAIJcy8zl2GqNGjRo1alTSVSAqAT48T70VwHHxEGNH+Z/wFyBH\nprZXBwBISh6+Ugz55jaiV871WyaXf/m6pi3wsCNXoQEAQpSHjl3Jli1bbrzxRiHEsmXLfC24\nadOm0peSuXnnnXfKqgxlC/fT6SK6rs5tbYatuADF5HKgM3DnMpdHAwD8yk+wq6+vf+aZZ/wu\ntWXLlv79+3NKyKLAr1qqLk1LSRkAgHzIT7Dr27fvxo0b/S51xhln7Nmzp7GxUTPPQw89dPPN\nN5dRGo4TLFSVGcWkpo5+VeF2gGg+qUL8et9giwBAXuUn2FVXVw8YMCDAgm3atNHP0LJly0AV\nwUGw68k8b01wfIrbEQAATY13sCsWi/Pnz//Vr3717rvvHjlyRJ3hlVdeiaCwIHbt2rV79+5e\nvXolXQhc+frOBiuZmQye6q+cS9VXSugLSHDr8WgiXUkEk57LJICM8g52991335QpU4QQLVu2\nrKioiL6k4O6999577rmHPwopF9EHgti/6bWcDSWe7YIhLSEHyv/YIADewe4nP/lJXV3d7Nmz\ne/bsGUNBgEX9ODp9qpMWCXz3axQnFcPg1RTyWb73DuXgvQGUzzvY7dixY/78+aQ6JC5APvP7\nr795rgrQVIj0pMUZEQAgTIJdp06d0nDOGDx4sOc827Zti6ESpE24t1iabCLAWK35RX5+1wwA\ngMU72E2YMOGRRx4ZOnRoDNVorF+/Xgihv8hP/6klgKdy4pdJty+UkdaYv7gMAJAh3l8pdscd\nd2zZsuVLX/rS0qVLN23atFkRQ5VCiClTprRq1eqVV15pcDd58uR4ikGq+PrurxK/X+QVYBOa\nVZVTT/k3dpDqACDHvDt21se8PfbYY44zxHOeuOuuu/74xz9OmDBh9erVKb85F2kQ3Y11bms2\n2Vz5JZV5027MqS70BiH3SwKAntFQbGVlZYsWCX+UcUVFxdy5cwcNGnTrrbfee++9yRYDcwmO\n/ZncRRtgnWVU5MpXPU0w2WTxA2gAIBHecc2tURe/fv36bd++XXMh3ahRo9q3bx9nSUgz8wBk\nnj7TEKoydJ1cuEVmYpcBIFk++nAffPDBm2++uX///jZt2vTp0yeRCNW2bVvNsyNGjBgxYkRs\nxcBEuMNw+hXaW3T5u70gPYXFX0ka9hoAMsH75gkhxKpVq4YOHdqhQ4dPfvKTF1988dChQ088\n8cTPfOYz6fkyMTRB0vCc9Zn1AVYV4r0RoVP3KLpq/d5T0nRwZABkhXfHbs2aNZ/5zGcaGxvP\nP//8Pn361NTU7N+//7XXXlu+fPmwYcPWrFnTp0+fGAoFHL9VwvHZsLaSEqVOZHoKS08lAACJ\nd7D7/ve/36FDh6effrpv37726evXr7/kkkvuvPPO9FyEh6Yjnm90DfylZCFK8PvN0qbMW2LL\nWTxzxwpAk+U9FLt69eqbbrpJSnVCiHPOOeemm25avnx5NIUhVwofEQajWvZn1ZmtKeVcRWcY\nCkubyMRJPfdjhaHsXfyHKPevC4C08Q52e/bs6datm+NT3bt3//DDD8MuCXnjq+8V21nQV7ZL\nXLiHxXFgN+VtPP1gtGF+Su3eAUBYvIdiO3bsuGnTJsenXnvttY4dO4ZdElIkxJO9/X5VzTnY\netZt02UOxgVeNnH6kcSYg1rKU6CjRKrN1iECkAPeHbuRI0fOnDnziSeesP+FKhaLCxcuvP/+\n+0eNGhVlecghz3QVz7mw/PZPnGK4eSJV92f4leniASBE3h27adOm/f73vx87dmznzp1ra2tb\ntWpVuit2+/btXbp0mTZtWgxVIilRnCwN1xn6pq2OV+ihLW3tqxjqSc/ORkE9gE3tq8ya2v4C\neeLdsevevfu6deuuvfbagwcPLl++/Mknn1y+fPnhw4dvuOGGF1980e3yO8CShm6KFeYMr8RK\nvGAkSHr1E2nfxtk2dvxISAAZZfTNE6eeeupDDz1ULBa3b9++f//+1q1bd+7cOerK0HSE2GHS\nX5kXUSvLcIWBt24taLiGptxqCot05Yn9qVAOaXq6vNYlrYZXwQJIOedgt3379qqqqhNOOKH0\n2JpeKBRat24tTSTkNXHpOUVpWJ/x63bGCna2Li1lfttvIkep/CDi9hJn4qUPlxqDIlJ6X8W2\nIWkrTeo1BXLGOdh16dKlrq7uD3/4Q+mxfhX8CUCZQux/aE6HmhQSLO2pX2Lm98ZVwwrtrRT9\nGtw22gQTWESy/gUnju8E3hhAnjgHu/Hjxw8cONB6HGM9yJ6wPn8k2W93CJDtms7pMNkjkIbv\n/0hEU9tfAKFwDnbz5s1zfAz4Yt4oCtzNUhd369UFKyDOk2t023JbcyY6eY5jhQiGwwjknvdd\nsatWrXL7eok1a9YsWLAg7JKQW+qNfsWPSLOZr9BkNmsTfs9q0l0IKfx8u7CUuWtRH5lI40iO\nX1YATZB3sBs+fPizzz7r+NTKlSsnTpwYdknIiTKDgjj+jOuW/wy3wpnbkeMHu+Q7wgJAvrl+\n3MnmzZs3b95cerx+/frq6mpphoMHDz7++OOHDh2KsDpkmTqCZt53MRy9jfOjhlP+GRBlDqpK\nL5PfPfW1XZNS4xwjZnQSQJ64Brv58+ffcsstpcfTp093m+2KK64IvyikXoAPVDNfoeNNoG53\n81n3wJZ5RyrsAn/yS4gFpDlGx6/J3kECwC/XYDd16tRrr7127dq1l19++dVXX11bWyvN0Lx5\n8549e44ZMybiCgEhbBlOuH9YQ/nZQr+441hwSk60yZbhK4QZhraUHNiU4A4SR6n6HQRSQvfN\nE126dBkzZszo0aNvuummoUOHqjPs379/165dfEBxExT6X1K/Y6/WSS7Sz2lL5FQa7vdwxDaa\n6TfbRVdMXnHQAJjwvnliyZIljqlOCPHEE0+ce+65YZeEDIv6unvrI4iFU5co3O163pzheOdB\n6MrcqdgGNE0ORW7uycjNjmRdPL+DQLYYfVfsBx98MG/evK1btzY2NloTGxoalixZsm/fvshq\nQ/ZoBozKb0RJXy+hbjfwmjXi/+YG9crCAKSOZjkSHwFMvAAAyBDvYLd169YhQ4bs3LnTYeEW\nLW6//fYIqkKGRXoOtt9XYd02EdF2Q1yhmgtDv/tEWnPgxd1W5fasr00E3p1Qsl2I6ZygCSC1\nvIPdbbfd1tDQMGvWrH79+l100UUPPPBAt27dVqxY8cgjjzz44IN1dXUxVIkcKP9caLiGKLpr\nSZ3IA+9LuDeohrWqzG3dFy7kB5AG3sFu5cqVkyZNmjRpUkNDgxCif//+Q4cOraurGz9+/EUX\nXbR48eJhw4ZFXyeahHDvG3Bblf2pAFsM0D1S5w+2jybVut0jHHqDLXMJJnMFA0AA3jdPvPfe\nez179hRCNGvWTAhx+PDh0vSBAwdOmjRp2rRpkdaHJsjvF4U5PuVrVX4FW63+inu3Z8uJgFzg\nHycu5AeQBt7Brk2bNjt27BBCVFZWtm7d+q233rKeqq2tXbduXYTVIUopvLPPLZB53mxrPWvy\nOa72E7B6MjY5LAHuAA12qAMHheJH7B/+V+YVe8Gk7T0GAPlm9F2xP//5z1esWCGEOPPMM++/\n/37rTtjly5dXVVVFWh+aGnu2CxA9NdklrCAbLGyZ3CdhvuYQQ7nnquyfHeg4XbM2GofIhxT+\nGwy48Q52t956665duyZPniyEmDhx4rp162pra8eNG3fOOefMmTPn4osvjr5IRMI8Sah/1CL9\nM+d4RZq+WqkJp070tXX75Xe+SHekSiHV79ocaxM+L/Irf3zQfjSkkOeZCD1fuDzh3A8gDbxv\nnhgyZMiqVavWrFkjhLjuuuvefPPNGTNmLFy4sFAojBkzZsaMGdEXiSZHikTqaKkwHg+15vR7\nh4T5zPZFNKlL303Uz6DOH1ZaMrxDQpqt6PKBhVFf3Qgkoon8c4J8MPqA4kGDBg0aNEgIUSgU\n7r777jvuuGP79u2dOnWqqamJuDykQlg3dfoSOFqpEUS/fscZikE/8dhtbZoK9XWGVVjoPBNh\nSuqMDed+AGngHOy2b99eVVV1wgknlB6rM1RXV+/Zs2fPnj1CCL4rFub8tqbKyUC+5ix/2cC3\nJvgdrMxKgMhKnQCQJ87BrkuXLnV1dX/4wx9Kj/Wr4M83/DIZSfT7vtJERvWpUIYyA6ykyf6y\nuB2r0nS/cT9nDHe/zKPUxA8y0HQ4B7vx48cPHDjQehxjPcgb6XSiGaGT5rT/qHkqcEmhsOeV\nAFUlcpZN6gRfUD4wWbpJheQRnaY2LA40Zc7Bbt68eY6PAUe+8k2wO1X9frZcwf1rZO1rKzNM\nkEIkhhcROt5o0mTDh/nllfFsCECmeX/cyYgRI+bMmfOvf/0rhmqQRZrzsa/YJF1qJn1ciH1D\nnh9H4vlhHI5rcPy4Cs1nWKh50ddtrWXmmMCLJ/L5I47HqpwDCF84tkDT4R3sVq5c+f/+3//r\n3Lnz5z//+YULF1pfKQaU+Do9lxNo7DlP6vRIq/X1oRvBTnjqRuOU2uaW5tWXDhef+gYAUfAO\ndu+8886Pf/zjc889d+HChePGjevcufONN964cuVK/v+Dxe3NELiJpTnru31cnElPSF+54/xu\nKyn6/2w8k9WaLx54WQBAjnkHu27dun3zm99cvXp1KeH17dt3zpw5n/rUp3r06PG9731v06ZN\nMVSJqPlqnwTotdj7W0XbF5gaLmv/0Z7YzD8uxHFz6lK+CgslXZXfv0w5+wC6Z4wGAJTJO9hZ\npIR3+umn/9d//VdtbW10xSHTNFnK8ZJ5+5ne8QIsk614Xnjn9lSkw4L69WdrRNL8WFlzZmsH\nASDTfAQ7S6tWrU466aRu3bq1bds29IKQCF/tkwAdMnVg1O0GCMcL5jSbc8yIvmo235anYAEx\n5sZV/Be3BRuOj2L+XIruICR7ISmAYIy+Uqzk/fffX7Ro0YIFC5YvX97Y2NiuXbtx48ZNmDAh\nuuKQXUWzb5RyvKZNvX7OcHHDjTpuUYT6BazqJqzH1vCx/Sn9pqVFyi/G8SgZbsXXPwB+a0Mw\n0b1vo/ulABAR72C3bdu2hQsXLliwYOXKlUePHq2pqRk7duxVV1116aWXVlVVxVAiMkqTZhyn\nSAu6LeK2lOdT+lL192rou31SSvMrWKy0b9rvsqk9VfstLPARy5NI9yh/hwvIPe9gd+qppxaL\nxRYtWlx88cUTJkz43Oc+16ZNmxgqQxbFf+4sfPSdVGVutJz7Ww3ndDs4nvXrm3me2a6cVlw5\n8dFEXsMWACTFO9gNGzZswoQJX/jCFzp06BBDQcglxzTjNnMpQLjNoPbwIr0GyPHO2TJbdJqt\nmAcde5cxhmAU9Wh1DMqP4HFKQw0Assg72K1cubL0oL6+/p133unatWv79u0jrgop5Wtc0u9E\n+1NqgNBvOrbzXzn5xnGP1OmGNbhlX/VABVi/mlwjutyKFiAAhMvortg///nPgwcPbtu27YAB\nA/7yl7+UJo4ZM+aZZ56Jsjakmnq7nGNzy21xqfHmeGuq9HkZ0d1caU69vTcYt/KklWt2RL+P\nbrdHeB4WTRM0lLSUibssQ3mJM1dDJl4aAJ68g92aNWtGjhz5xhtv1NXVWRN37ty5du3aSy+9\n9MUXX4yyPKSL58nG8fYI/ThsmelQTYHlkFbitk7PUOVZTPGjz/OLtAcW+JiUWVWCESENmQwA\nEuQd7KZPn965c+fXXnvtoYcesiZ26NDhpZde6ty581133RVhdUgHx/N0gJCnWafjqorHE7bM\nZC0brLYAzJOKFdr0i/u95MttQ47TNcfTcKMRSUMNkJR+iXhpgHzwDnZ/+ctfvvrVr3br1k2a\n3rFjx6985SvPPvtsNIUh1Qw7W0Xbt4cZDj7qN2RSmPnMnsXYA6V95WrN6gwBanNLqNLazM++\nnqdqTSYup+uWiYjAyCOAXPK+eWLPnj2nnnqq41NdunTZt29f2CUhdUI5SVsr0fQGrNFbt4vq\nNFOK2s+iK3MX7MWrZeiTq7oStyLNSw0xNpV/cGDO7Y2d7FZ4AwB54t2x69y586ZNmxyfevbZ\nZ0855ZSwS0IGuHW2NPN7jp9ac2o2JJxSlLU2xzIcU5dJt8a8o+M49uo4j2bNJiuJglvCdjzy\neWpxZaKtCAB+eQe7Sy+9dPbs2X/961/tE3fv3v29733vl7/85ejRoyOrDXlm74HZRzA1EU0c\nn9I8L9FTN+S4Nr9lm2xLQ7PR8q+688vzIKN80jvcV5oMFqbJrEBT5h3s7rzzztatW5933nml\nDHfLLbecc845Xbp0ufvuu0877bQ77rgj+iKRYdY5Rn2gcuvGSedFk2vOpKUcq/LssRm2rNyS\nUEQtLsN1alqk+sKS6h1Cg5wNwJDRUOy6desmTpz497//XQixYcOGDRs2tGnT5qtf/eratWs7\ndeoUfZEoV9SDaOahQZ3Bnp/UvOUYMtwuIZJSoL0w+2rtccdk7zy5JaGi7cYL+0RrerACAvRj\nQplfOobm9edsDNevcvpnpWWb8tED4Jf3zRNCiI4dO86ePfv+++9///336+vr27RpQ56DRdPE\n0pzPCrYvORW2DCQ90K9EUrR9O4Lb6VDqrjmWEUxB+22tapdRM3+ZHK+QM2lzxsbkaEvHp/wX\nKCnlv9ABsl12DxeAMhkFu5JCodCpUyciXRZF+vfd3sWxt6OsGdxObI5nbjVy2Z/1HCVUu32a\naqUHngIcRk2Ai/RF0YeJwJu2XgVfayhnc/Z8HyDcBNh0uJEo3K5w5kT33wsAN87BbujQoYbL\nHz58WLqvAk2TPZY5jnu6kTpzmgvjTAoIsKB+KWuPSqcot7O+42CxSOgydsMtJtjUMdxoOV1G\n6w2ZbLBIauvpiVOJvwRAU+Mc7NatW2f/sVmzZkeOHCk9tv+WtmvXrm3btpHWhxCFeCLX/7GW\nYo16kZlUifnAaygDpsKWtwxX6HnVYOg9uXQOpYUyVG24a+UPX8a8YJolmK6C/YeWy1cBiIfz\nzRONNjt37hw6dOikSZM2bNhw8ODBY8eO7d27d9WqVVdeeeWgQYM2btwYc8VInGPKKX7E+tH+\nlH0pxyvA3K6Hk8ZnhftffHtWc8th0nTNKcRaibpfjpW73SGRZrEV6fg6IjYJHvz0/xYA+eN9\nV+zkyZO7dOkya9ass88+u7q6WgjRpk2bYcOG/frXv66pqfn2t78dfZGmdu/evXXr1qSrSK+w\nTuT6lVhbUWdzi1xu0Uqawer/aU5RJjto0h3UDLZKN4RKyU9ok6WJ0uJRpC57trZO9gGuNQzG\n/sbgfB8n9S1aPum3IETpf3tEtONAWLyD3ZNPPllXV+f41AUXXLB48eKwS3L18ssvjx49unv3\n7sOHD589e/bRo0elGe65554ePXrEVk/m+Pp7VE5+8hUXpJAhXSpnOERrwrE/p0mKZY7PSnMm\nfjJQ2zbqAQmrQmlnPU/ViR8cIHS8q5EU77ti9+7du3PnTsendu3atXfv3rBLcvbcc89ddNFF\nhw4datmy5T//+c9Vq1Y9/vjjCxcuPOGEE+IpAJ70QUHqeGmuvVMX8cWxUxhgPW4DtUX3Wyjc\nCij6+XAT+4HSbMUvaXDcWrl9KynvlCA98v1W8fsLDqSKd8eutrZ25syZa9eulaavWbPmF7/4\nRd++faMpTPbDH/7w2LFjCxcu3LdvX319/Y9+9KPVq1fX1dXt378/ngJyQNM4KRxPP7OvLapb\ncaxKTUsm/++qMwT4L9nk4rzymR9MtW1puJTfetTmpa81+Fq5ySLSlDS0OcsXoE2e9V3OgbAu\nWSECIhHeHbvp06ePHTt2yJAhvXr16tGjR3V1dUNDw9tvv7158+ZCoTBr1qwYqhRCvPzyy+PH\njx87dqwQoqqq6lvf+tbZZ589atSoL37xi4sXL27evHk8ZeRGuN0g/ZrVZpXVH7K6d5q12Tt5\n9r+V1tii5174GlS1Vhj44NibYeUcYb/LBttcmbvpuQbDd5rjm6TMAxi66H5rStSmtX3TqToU\nucfRRnZ5d+wuu+yyFStWXHLJJe++++7TTz/95JNPPv300++8884FF1zw1FNPfeELX4ihSiHE\n9u3be/bsaZ9y4YUXPvDAA7///e9vvvnmeGrIPfUia03zoJzWgts1bdJwocmq1DQQ4KIxtbNo\nspSeek2bMDto+n/0NYvHfCqKYXNJnVxDbJv5bdvo2+qhlAQg34y+eeL8889/6qmnjh079t57\n7x04cKCmpqZz584tWvj41oryderUacOGDdLEq6++etOmTT/84Q+7des2ZcqUOOvJOvNhOL8X\nh9kDjedZzWTN9s6Qvh0o9ZCkSvzugrpCw7IdRxXt0wM3fgxTneOljdHRv0NMCshKdyTZOrNy\nlPRoPQJR8xHOmjVr1rVr1+hK0Rs3btzMmTNnzZp14403VlRUWNN/8IMf/POf//zOd77zz3/+\nU71PFuXzO9BmZSPpgX5tBafvdSge/30PUt5Sx608R7Ls65emBGgW2leu7rjEPrxbZutFMwYa\nc1NHP1rqN7+m55SfkjLsUlhSADQdgRjE2nUrxx133LFo0aKvf/3rTzzxxNNPP21NLxQKv/zl\nL9u1azdjxowEy8srxzFKfTizL2i/DE7TP5N6cmrDyTGTSetx64pptqg/zZTTV9N3+AKfpNXe\npDpDdPHI8YCEu630ZLvoqD3m3O+yRfOvF4CweF9jlxInnXTSiy++eNNNNw0YMEB6qlAo/OQn\nP1mwYMEZZ5yRSG05prnYqGgj3D8mTRict0or0V/YZN+QJt9YK5EiprQS+7OeLUnzq+JiO09L\nZduLdNx66GdTa4v2TasNVMNDofZNwyrY8eUL8RK6YJpyuGk6KRZISmY6dkKIk08++f7773d7\ndty4cePGjYuznqbDpENm/1+8zPOW5k+/Ghyl2uwTHbOdyVasGeI/AbtFwwCRUepZlt8MM1k8\n8FbUBdPZvQslu+vfmQBQjiwFO4TL5BSlSXL6mdWJbpeXmTf2xPFhy3E8y9qK20V+mr3wVYlb\nefoZ1GI8U6xJ8eYvYgCORbqNcYd16MzXo39bGmb6OIdECXMAIpWZoVikjTrQJg2DqklOk+rU\nldh/lHqB6iCgZnHHrRiyjzVrONasmVnzo1v8NR/WLGcRlf7QORYfgMlouOGLGHWTNZSjCgDR\nyU/HbsuWLTfeeKMQYtmyZeZL7dix4/rrrz98+LBmnm3btok8/p8dICiYzKa5xE0zxfPMrXlW\nuopOCpcFr9tyHQeaPXn2eNwaXfbF9Wvw25nTl6pu3bBFGuApz2J8XZKovohuZQQedM7fbzei\nE2d/FwjAOdgNHTrUcPnDhw//9a9/Da+e4Orr65955hm/S7Vq1Wrw4MGHDh3SzNO8efNNmzZl\n93rn8kcYDalXuZkv5Ti0J01xi2hu2zL5+2tv6bnN6XkA1WFEw3eLZjTZrQxfkchej8kRTi1f\ne+o5W6r2Op2XEgLILudgt27dOvuPzZo1O3LkSOmx/c9Qu3bt2rZtG2l95vr27btx40a/S7Vu\n3frOO+/Uz/Pf//3fS5cuDVpXYszPXoZzOp6B1OwlPWXnFr/s2U7TXtK0u+y1Ge6y23ixoTIv\nawuQz8phfmGfCen4+02Zjo/V9QcrMlshKXCLEQnixULKOQe7xsZG6/Hu3bsvv/zys846a+LE\niX369Kmurq6vr3/55ZdnzZr1/vvv//a3v42rVA/V1dXqJ6E0ZY4dmjK5rdDzWiv7DGp/y21z\n5qnLcSX63GCeBc07cOpWAsQdtwU1kcjXmKZINEkUXG5q8bu44XRHoeTaUA6gfpQ5c1LVCgWa\nLO+bJyZPntylS5dZs2adffbZ1dXVQog2bdoMGzbs17/+dU1Nzbe//e3oizS1a9euzZs3J11F\nisRwqlOvJZcGZPUXz6nLWtwWkRp4nlfmWQVYD6QGof5Gh0iH4PV76ndV5rPZE22AAqTXyO9K\n7K+IZv2OC2qWCuuV8nzRww0uxCAA4fIOdk8++WRdXZ3jUxdccMHixYvDLim4e++9t3fv3klX\nkT2eKcqazR6n7KnIsYEkbDHCJLGFW3ypNinHWE+5Fey2Kv2G/C6iF+Ao+Zo/5iShdnOtHSwa\n3DSjcqvfsU8cUS4P1muUion0f4ZERPELDsAv77ti9+7du3PnTsendu3atXfv3rBLQipYZ50A\ng1yeQUqzOWlVahn6MUq3kqQVFmyfYOx57aC+pafdLd1SmqaU9ZR+7NukbMPXTr1sMRSakV/p\ndTGhmVO/El/jv3FGkzyNwwJICe+OXW1t7cyZM9euXStNX7NmzS9+8Yu+/a09ZAAAIABJREFU\nfftGUxjSwvHEo3bgpH/Wpf6Epq1lWEOAJpZb5UJJTqG3dswLNtm0YW3ms7nF6BBDhqZjqm5X\nX1tgpVdBeomT6pOpbwn6WxLPSyMAmPDu2E2fPn3s2LFDhgzp1atXjx49qqurGxoa3n777c2b\nNxcKhVmzZsVQpRBi8ODBnvOUPnAOdiZtG8d57GfEYGswL0849aj0ba1yzoj2ZU36gvpB2ACV\n+O08+WpSOnYo9cfTc52eNA2/BLOL+b6ri/haf1lV+pTjJl8xX7eSAEnxDnaXXXbZihUrfvCD\nH6xYscK6NaGysvKCCy6YOnWq2+V3oVu/fr0QoqKiQjOP/WZeREe68M5xngADbfp1Oo5Req7f\n8DyhjtIGrtMv89SoHoGi8mnM9pndknr5ZZuMUwfbCid1Pb9v0czJ634BcTL6SrHzzz//qaee\n2r9//7vvvvvGG2/84x//2L9//5/+9KfYUp0QYsqUKa1atXrllVca3E2ePDm2erLCfiWZ4wxq\nXJAyk308y3MrbtyG/+zjudbgnX4M1+9IjclAp1s80swcJ/tGPQe4pWel4fLQC7PWXM7AoudR\nDXbYrZLMa/O1F/GPpZq8RQE0cd7BbvHixa+++qoQolmzZl27du3du3e3bt1atIj7u8juuuuu\nXr16TZgwwfqoZJgLdnWRtJR6FneMg/bF9WnSbSlrK/bp0knUKsAt9NjndCxMjbBCaXpp6gyL\nunIr4BaVm0YDJwlfu+A5sz0wCYOckUga1girnkR2ynBAOc7aUvXiAvAOduPHj1+yZEkMpehV\nVFTMnTv31VdfvfXWW5OuJXs0J2DHwKQupfbtzE8eanARx+dFt/VIzTx74nHbij2KGVarOVOq\nT6lx1vMgGM7myTHp6qOe45F3LM+wBk0m1qzZM4t4Blb9i54IddNpy69xarI7DqSQd+Pt/PPP\n//Of/zxlypRmzYzGbaPTr1+/7du3ay6kGzVqVPv27eMsKUMCdHrccoDjFGn99tzmVoAV2vQV\nOm6xqIwO2/OWOtFxTj3zEcyC9pqnovF32Pt9Vr+glXHVUG7CMJOZ1xPKelT6gx9dMQEOaWzi\nH6tldBhID+9g9+ijj37rW98aPXr0Nddc87GPfaxdu3bSDL169YqmNgf6r6YdMWLEiBEjYism\n0+ynQ30y05AGLu0T7ac9tdWk/qiJEWqnUN2cW20mjaXArE2Y7ELoW3dk318rUHq2OdVXxK3V\nV/RzB0YMe51sntC/sQMIN0zHJnMFA/nmHew6d+5cevCHP/zBcQZ+qzNHzUnC/RyveUrqjbll\nwYJy/6ZfUhn60KnObJ5p4mn/6A9FKL9QUpgzDNn26Y5tUfPypH2MNLLEnIcyGr9KMl08ABPe\nwW78+PGVlZUVFRWpHXeAX47jmCYDr/bZHFOd43iohrWUfehQHB/OrE3oE5vf7KIuZR+7NCzb\nfEPqFtUfy49B9kNk3xHPNKxu0e2xL5pU7dnmLIfhatOWctJTCYDs8g528+bNc3tq//799fX1\nodaD+EhNHU1DzvA6MHU283AgDbB60owV6jfnuAl1+NiclFE8Ny1FUreumGclnoPX0qEI3Cs1\nvwdCXdD+ozRDgOaoZluhrCedmwtXpMWnLSgDTVNZ90M88cQT5557blilIG2KH5EmqnNasczi\nuELNs/qIKcUL/QCi2ybU6WrikYYvHVdlD8R+86hmB4P1/ww3IY7/9Bb1KWt3Ao+9OtbguazJ\nPBFtOtjWNW9vxI/XAlAZfRzdBx98MG/evK1bt9rvSG1oaFiyZMm+ffsiqw0RKudsWnS/AMtx\nE9L/8WobL8BfZ3vUc+TWPFBHbwO0jqxFii7X8DlOdBt89NXnsG/aV832banleb6UUt+uzN6M\n49bL2SO/Kyyz/hDbjVlhcsRiPiaBf3+BfPMOdlu3bh0yZMjOnTsdFm7R4vbbb4+gKoTP11VH\nwj2WSc8K90wQ7NypmV+tQT8C65kX1WyqjmDaV1V0ugVEM/AaOL0JpxfCbc3mq7JIL6410bGZ\nJ46/CFKzCcNDEZ0YhgI9/5/xlK0gkubR1XRWBSTOO9jddtttDQ0Ns2bN6tev30UXXfTAAw90\n69ZtxYoVjzzyyIMPPhjnt4ohBvYWlP0E5pkANCc883OhfjhSX4M9e9mDi9sIr8qzAaA5yUlL\necZT+6ocZ1Z3RD+/pryi++VujlHV7QioC2o6f1Ll+jQTYq+unBUaKmflAZpMsUUr/YZIUUBW\neAe7lStXTpo0adKkSQ0NDUKI/v37Dx06tK6ubvz48RdddNHixYuHDRsWfZ0ol/mwlGO6Mklm\njoN01oLSA2lmNUR6BhTNvpjMo4Yk+xCzPmK6rdYt82nW4Hi49CnZrQC3pUySgVsCNjyd25eV\naigeP3DvNngdivSHj0h3PwoZKhVAiffNE++9917Pnj2FEKVvnjh8+HBp+sCBAydNmjRt2rRI\n60N0PEfWNHNK537HDp/9GjhrHr8V2tegJkL1R6lIfZyVirRvRZquWYnbtqQ1qHFHapKplVhd\nMfOxP+to+F1EmOU/e8GOMztOd5tNeAVx9Riqh8ikWlU5y5bJ73bL/90Ja0MB1gkgft7Brk2b\nNjt27BBCVFZWtm7d+q233rKeqq2tXbduXYTVITKOJ0h7jNB3jNxG3HxtTlqtveujNn5MooC+\nK6YvwG0lmpOZPQLaj5v5+U8Tg+xPqc1FzQodU7h+WfsMAU7ehuHM2or0n0A8WUETsgEgT7yD\n3fDhw3/+85+vWLFCCHHmmWfef//91p2wy5cvr6qqirQ+REHTBREuY6AWoaQ6+xoKZpea6dOD\nGunUHKnfilSSuk7HndKkVce4ZpiWrK2o/SdhC21SA0/air716LZpvcLx7AV7bsutYF/tJcc5\nNf8DlNm7ymu2C5bmA4hinQBC5x3sbr311l27dk2ePFkIMXHixHXr1tXW1o4bN+6cc86ZM2fO\nxRdfHH2RCJl0/pbimjg+lAj3s6DjdHteseKC2ylcfUoTEdQfHTOoY6nSJvR9NTVXuVG7UNJS\nvhpgVv6TMpO6Bims6KO2YQHWC2dfuRqGHNesiWj6NOAYEMNKXVKFnv9y+HqxACCdvG+eGDJk\nyKpVq9asWSOEuO666958880ZM2YsXLiwUCiMGTNmxowZ0ReJ8Kmtr+LxX+oljj/5FbR3BphP\nV7cltceK7vcNeM7gVrz6o1tVjis0Sbdux0eazSRbCKd8I8Vle23qMTRk8vpK8zuuv+hya620\nZnUXguVyDccXS32DRd12MjmYIaKLBsDO6AOKBw0aNGjQICFEoVC4++6777jjju3bt3fq1Kmm\npibi8hAt6fwqnQIdz75+WxoF2x2R0kalVTnmA8/KHWONPui47ZG1qqLL7bHqgvaU4NiAND/p\nqovba1CTiqZbps++jhzr9OxWej6rvsS+qvJFSthu23JMXeZvPMMyACApRsFOUl1d3b1797Ar\nQcjKOVc5JgMreWiSmbRpz9aaW49HWqdbLnRr+0k7ojkImoDoluqkYuwVarZl0s9Tm1v26aX9\n1cdfx0asZrsBSvW1iP09EOytaP42tr+IAXKqCKnTZp6qQ0yTAGBxDnZDhw41XP7w4cN//etf\nw6sHcdCMSTn28OznKil1qZHLcXNuZzuTgU7zIUJ77hTHJ0XPvqPbsKDhyd5XZ06dXz8oqc4c\noC0UOEaUmT+CZawQt1WOYO09shqABDkHO+lDTJo1a3bkyJHSY/tfunbt2rVt2zbS+hBYmWcX\nx8X9nuPNI4i9O2WyHsdAaZjkNJlJIjXMxPHZ0S3X+j3yam32YO24Wmn8V12bPk45Xvfmq+DA\nQdZti25HT22U+hpj9cXtPZ+VGCqhIwg0Tc53xTba7Ny5c+jQoZMmTdqwYcPBgwePHTu2d+/e\nVatWXXnllYMGDdq4cWPMFaMc1vCl/XxpMV+JfVXio7gjtQD1zTxpfretmwwpqq1Hz36Y53Qr\nYDn2Ne0zuFVlJ0U3TepyPFD6V8ek+6hONH+57QVLe+1WmMnbSZrH7/F0DPrqRLUMx4luL4pj\nSZqZASBx3h93Mnny5C5dusyaNevss8+urq4WQrRp02bYsGG//vWva2pqvv3tb0dfJIJwO4EJ\nr5Dktqy0cmt+K3k4pka3rVgzO57gpUo063HLQ1IZ9h1XO3yaHXTclpRZ7c08NYfZd9PzwAYI\n3FJVhpnDnlxN5reqkh6YbEjqNfrN2fZni+535mr+rwjM/OCEsrlwEUCBpsk72D355JN1dXWO\nT11wwQWLFy8OuySUxfEEL3XX7POrs6nZwm1+4d4UkRbxe4JU55fq97VOt6DpuAYpcRqesNUc\n5nbA9WW4bdGtb+f3zC29xG4lea5E2G6mcVu/4xtDysHmNQvlYkr9Um7/w4Qed+xvmBBXCwDB\neAe7vXv37ty50/GpXbt27d27N+ySEBrNCUxzEnJ7yjoj6kf6TEKDY+PHfsbVnL8LtltEPddf\nTn/IvPXlmDXV9p5+nfa9sDKTYyMqrIRnMsUxo2veBm6rshfp+JoapiLNMSz/mKj1aB5IW6E9\nZmf+ggIInXewq62tnTlz5tq1a6Xpa9as+cUvftG3b99oCkMQbu0ut4SkrkHKZ6UFpQ6WlFTc\nko3ntsTxQUFas+duulWuWURKSEKJU251qvsunebtx83tOFjdLH0ydttHzZod1+A2T/H4G4cN\nj7m6Hn2+9NzNUMKcJdmemfraEWuC4dAB5fP+HLvp06ePHTt2yJAhvXr16tGjR3V1dUNDw9tv\nv7158+ZCoTBr1qwYqkQAUuBwzHxWzigc/0lp0kocqbNJodCaaH+2cPxHnxRcPgml4DRcaK9T\nU4w+BNhr0++jlOHUSjzPQH5PUY67Jq0nlM6Q47GVNme9MRxfC8cKHVfi9pS+Hsd1argdumDs\n71WpQvtLT4vODUcGSJB3sLvssstWrFjxgx/8YMWKFZs3by5NrKysvOCCC6ZOnep2+R0S4diW\nc2ucqM0n+48mG3LMjurKi8d/lIma7dR1iuPjhdsOSlvx7Beq6ywe/3ki0rncrTb1UEjbMunJ\nSYvYd0HzEjgmb/tLENs5tcwNhV5nuCu0vygRVRLni5UVHBCgfEbfPHH++ec/9dRTx44de++9\n9w4cOFBTU9O5c+cWLYJ8awViYO/DWRMdG2blbEI/g9QFlBZRy9D8QS/YLsaXZtPvi0ksk+bx\n7PZJNZjM77ZRx96hvcUldc48XzhNFvGcaD8ObjuoCSLSvpg0TT2ZzBZd58z+34j6riu/sHKC\no+eGaCjmGC8uPPkIZ82aNevatWt0pSAUUvvHGkrTdJvsucGzY+S4BuuxY/NP7YrZl1Vjn36F\n+r9o+iBlX5t6LlT3Xe2EqWNzas2GE92qdZtN3y/0HMN1W7N5e8lzHse3ma/1+zpdhTj26iiU\nf4H0Kw9weua8DkDPO9gVi8X58+f/6le/evfdd63vn7B75ZVXIigMAXn+xVdznlujRR8afG1U\n3Za0TvUkqklIjknR8TRpn1NaxGToU22nOc5jeMw1u+Y3EqkjsG5lu61cndl+WNTZNCsJPWoY\nrjDS4GVtIroF3frQEv0MJv9IkAXzhNcRnryD3X333TdlyhQhRMuWLSsqKqIvCWGSOkxqhlO7\na9IMwv0Man5m1c9peBa0RnXNx/IcO4VuEUqfh+zz+Iq8+h33zHOGrTKhRDRhO2hShnDcU7ee\nn+NbQpP/PKt1fBGDna7conY56xQGSUjqAZe5IU10C9wBBdBkeQe7n/zkJ3V1dbNnz+7Zs2cM\nBSEK1unH/LzrlnL0CclthWq/Sj0j6k+Tji1Gac2OZ0FpFFVdj74dYj4KrFmJcE8bJmO79iar\nNCJs3xH7etxmkIKaSW6QWryGvVVfpIMTSnaJbgg4RPF0JdOcBekmAqHzDnY7duyYP38+qS4H\nTLpNJldl2X90POUbjv1JJZXZFLTmF0o2DTBa6rhCz5mFbY9Mhnftm/Bcm6/RPXF8SHJs4Nk3\nbRWsbij0k26AlmTU7Httcqg947gIL7J4DtSGshUAueEd7Dp16sRfjSzS/8WXeiRSOLMnCSkk\nSZEl8LCX48rVyvXDo+oMbkyOhuOOi486nepgpdS5VPOQ2kgTTofarUhp/ZpdMA8i+nmkbBdp\n5JI6qfaJ5tlX7WWqKxTaZrAmZerf2yQqu8BHgwMIhM77mycmTJjwyCOPxFAKgnG7OkrlGVDs\np3bhcl7XNKI0Q7ShdAfNF9E0VIof0SyuHh/P1VqzWSt3jM6Og5iFj7jtaYDQrMkijuydPM3m\npMxkpy9Jmkdfidvi5isxWacj+++IyWF3e6sI91chXCZbiSKgm//ZARAz747dHXfcccUVV3zp\nS1+65pprTjvtNPX+iV69ekVTG3xw7P1YHPONZ2yS+hzl/B1X1+C2NilcuhVsONqrxiP9XtsP\nlH44VZpTaPfObXDTszUlDZUaBgV9+0S/EnW/7AWYvB8c61QPpn5A1r4JtxfCLWcXlLFm/QHR\nkF4pw7dHCpm/eYKh8Qakh3ewa9OmTenBY4895jgDv9LJchu60iQn4R593NJJmecwtxOz/swd\n4rakp9y2WHC/UcDqZjkGQb/1q9HQMSza+cp20oY0x7nM0KNpNAqnjGXNY5L/3GKuSv3HxnxZ\nleHMGfrTF3qpGdp3oKnxDnYTJkyorKzkeybSzPGPbFG5ZMpzJWqg0a/Zsx79bOV0QQKkqwBr\n1uRRx2QmnI624xR1Q+bdOLU1q2nWCpdjpd+EcAq19sfSdh2bZ24HxDGhurXf1D3y3GW3o+04\nPUCGkxZ0G3sNnJh9MdlKpDXEs5sAzHnHNbdGnRBi//799fX1odaD0NjTg+dArXTFjP3Urm8j\n6bduznO013Po1te21D6lWoBJwvAsW5rTbZ2eB7ag/TJcPbdWlj4CBli5+pRbYA03B+g7eeWv\n33No2/67Vs6uGeb7ppaloh5HDktTe12QWt43T2g88cQT5557blilIFxWkiixopv110eNGp6N\nJXH8VfZu23VrdDkuVbDxs3/HFWltQn3sGSyk4UL9rml+tCb67ZBZZQToOKoFS1PsMU4fjtXO\nk/XAetHVIBusbMNl7btg+Bqpy1qkjYYSlKWSpCPva/2Ov27qDG6bTkrUBYQSzYEmxWiA9YMP\nPpg3b97WrVsbGxutiQ0NDUuWLNm3b19ktaFcnp0MXw0n+2k4xP6Zht+1qU1H4VSqpg0prcGe\nBtSk6DYcqf4Y7pnP3k91W7l+i/YMpy7o2XjQvC5SF9P+tnFboVt72G9V+pUHnlOdbiUwk6Bv\nWIbJ76DJhvInQzuboVKRb97BbuvWrUOGDNm5c6fDwi1a3H777RFUhXC4nZMMfzR8ymS2ovb6\n/cAblTKWrzmLBiNojknRbXPmEx1nc2yX6k8VmtikiR1ujR9N/epbyDHOumVofYtXHP9auEUr\nR5qEqtmWugZfyc9kj8IibTSGLQLIOu9gd9tttzU0NMyaNatfv34XXXTRAw880K1btxUrVjzy\nyCMPPvhgXV1dDFVCUuZ5JeaThH1zoWxXymQmPEff1MDnuVGrNaVPRY6bcJzZcaBTs0K1Kilm\nuTXz7C+H1GBT59dz7GVKW9E3/+zzu3VD3VbimbHM3+qaZqH5zPoyNEfbZIXRRcnYciqAGHgH\nu5UrV06aNGnSpEkNDQ1CiP79+w8dOrSurm78+PEXXXTR4sWLhw0bFn2d+D9Sb8NwCMl+ylTP\noDEUrAqcL81P1dIAlknU0A+9OSYtzVPSOh3ncXwtNAdHbcWZd15VnsFIqlOtVp8gNWOIhkOZ\nmmaqJqlLM/taeZlz2n83ywxMseWtULJd4H8PAITI++aJ9957r/RFsc2aNRNCHD58uDR94MCB\nkyZNmjZtWqT1QVX8iH2idAa1T3d71m2R2IS1dc2Yo/1ASUnLHvIMT0X66OYZHcrPW9aQnGNq\nLNrGu9XBOylgSUfG7R2l7rJb19Dt8Arlnwp1/YXjOdasZ63Hs1r9Stzm16zHrWapJOsIJ5t+\n3PZR08lO/A8FAF+8g12bNm127NghhKisrGzduvVbb71lPVVbW7tu3boIq4OWJsw5xgLptKou\naG/vuaUKXxU6DtIFWFy/Zn3eEn4qlyKI51Fy3K5mumMlmq1ITTJ1Kbe8LmUmx6eEWei0BxF7\nJVJScWTNo+64Nd1z9/VrFsqh0AcRz+jmeEjd1qYpzO3lFtGkunLil+cvmvmvT1KBFYDFO9gN\nHz785z//+YoVK4QQZ5555v3332/dCbt8+fKqqqpI64Mj6dzsdgpxPK0Wjyet1vGx2xRh/Bff\n85SjyS6aFbrFAmlOzzO9/Vn1mLgdpXIOiDWzlY3cKix+dBmZfs1lphnNPNKzjm8zdYp9olWb\nNF3/ntTsr+NrKqVM64VTI6CG/jg7HmS/aca8mCiYvJHURaKsCEDIvIPdrbfeumvXrsmTJwsh\nJk6cuG7dutra2nHjxp1zzjlz5sy5+OKLoy8SzqQzltW3cMwK+jgiMckBwiBXFVyurDdZs75C\n6SwejLoVfTySgoj6bNHg++M9N6EGFE0x9uzuWKpmEbfypDXoXwu3dWp2061rqOErs9oPiHpY\n3DbnFkb1SwmvF1RfdojZzm++dBR6VQDi533zxJAhQ1atWrVmzRohxHXXXffmm2/OmDFj4cKF\nhUJhzJgxM2bMiL5IyPz+zy1NcTx5Bz45Gc7jKxSa9OGC1SydvB1LUlOjOkWfRO3laXK22r7y\nbKE5pkYrxNhXqx4fddmickNJ0XafqWPwddxfN25NTTVAWLsvPXBcieNLL+27SXmGHNuNjoWZ\nC1Ch/h+GUNhffQAZZfQBxYMGDRo0aJAQolAo3H333Xfcccf27ds7depUU1MTcXkwpTlhm4j/\nf/RwexX2wOHZRPRcVbCMW3S6WUHfWdSUrUYuzZrVx/YfHWO9pjB1bdI/AOom1N1xLEndO3t5\nVtqTsp3ja1rm/yRqwW7r9+TZ/gyWkxyPbTzZLtL1A4ia91DsqlWrPvzwQ/uU6urq7t2719TU\nrFmzZsGCBZHVBiHKG+jRnFyD/flO1R99NRlIj02qNRwHLCl+xK2F47asySY0tbm17ty6oZqN\num3IvBdl/h5QE5u9MPuRFB9FFnslUjtT3SlpiuErbi/DsL0n5VSTLQb4tdW/yoE7kcH+gIQl\n2a0DTZPRzRPPPvus41MrV66cOHFi2CXBg+PfSs+/no5tG/VE5WslJouERXMGdXys/ui4Hk3P\nxnFbbicq875RgGBk37p+zZrBU/um7Q+syKLOqcYpk2TjuIOO71jHFG5laPcdNf0VcMyC0uPA\nL4eePYeZJ3u3nGpyTACgxHUodvPmzZs3by49Xr9+fXV1tTTDwYMHH3/88UOHDkVYHfxfWi6d\nDDSrDeU/6fj/HTes3O++e/ao3EKw+cnbviG3pdz2Tgqg6o9ufR21bClROWYdKUYUvK5oLHzU\nb3OLIEWnMVxpcbeV21ei2RdzapYNPTM5/uOkzmB/F2n+DzFfj9saoqMvgDAKxM812M2fP/+W\nW24pPZ4+fbrbbFdccUX4RcGL4xlOnUc9f1sP9OkhzdxCicokJAXLiOZhTjOn/iVT859bjnEr\nI3Cst79D1DeMNN0xq9lznn2K2xbF8S+Kfl/cgqPbbhaMb83W87WsFWTNf6cSDGcA8sQ12E2d\nOvXaa69du3bt5ZdffvXVV9fW1kozNG/evGfPnmPGjIm4QsjczmHSFH1nKAekhOE2Q0lYHUp1\nzdb6HefRtGE0q1Wr9QypblPcMpBjx9H8KDkGULetW4dCE7+kNUsT1QF0/RvehPSr4Xdxw/WX\n08oyKSnxzJd4AQAkurtiu3TpMmbMmNGjR990001Dhw6NrSaUSR3ncnsqPQIHL19BRM0Hfgsw\nmc2zVWY1tKz51XAjtcpMuoz6PpbJsKMaqvT7IpxCm2OfTJpNzW2aZOk5sqxp8nnGDl+5xGSd\noQdEAPDF++NOlixZIoQ4evRo8+bNS1MOHTq0YcOGysrKgQMHpjYoNB1uJ+xs9erKSUuhbMVv\np8pxeoB4Kr18UqLyNZzqOABqsnVpKf1WNDHLsR7NetwGK6XwF+Cld2xkujX5hMtdIJrIGE9u\nIx0CCMD7rtijR49OmjTpyiuvLP24devW2traoUOHnnvuuZ/61KesrxdDshxPS1lJddkihQC3\noON5XZf9BbIem4/cefYgNZU7BrLiR9xavI7pRyU1Fy32GawpjtHKmkH9X8Vi35ZnC9M8IEqF\naUKtG+kolfM7GOBXWD3aZW6xzLUFWxBAObyD3b333jt79uzTTjut9OOkSZPefvvtr371qzfd\ndNPq1atnzZoVcYVwZo8C0hkx0bpcGbYf3C7DCruc41Ye7pVVJit0fJk8Xz6T2KcGPsfw57cA\naROOCUCa3yQV2bNmgBCjX7O0FSnnqdM9N1cw+NJexwqjoIZjkaYmX+BuK4AyeQ/Fzp07d9y4\ncffdd58QYtu2bU899dT1118/e/ZsIURDQ8NvfvObqVOnRl4msi/Yn3ir6xN6PZaCMoLpOb/n\n2qRukxopNBybao6LawYr1a5b0f12BPsW3R47bteteGk2x+alJqTqj55b81J6XDh+nNfwJZB2\nOUBOsm/X/E2lKca+ZreqCtpRb3VmaSUF27WP+ho8qf9tAoiZd8du69atI0eOLD1eunRpsVic\nMGFC6cdBgwZt3bo1uuJgJ+Ub9U+n2+kwgET+KDvGiHj+449ivMmeMKQHaqPIMfrYnzUJUoY8\nT7r2gqXHUrYwXI/12DGB2Quzz+kW4xx3RJ9IpISnic72edToo/83I+oWmnTMrQrVF9QkUEo7\nEvW/TwBi4x3s7L/ty5Yta9Wq1fDhw0s/FovFI0eORFUajqc5Q6hnlDJPJ4W4Lg+XNhrzFkOh\nZgvH/pk+02ie0p+kHZ9yfO3sPSRNh8/kVdCHG+mBdFg0YaL0oxTseJvUAAAgAElEQVSn3P6Z\nUWtQc55UjD2bqsVodsekASaVEWLLSs3TJouohUkVCuWtG0rB9OqAxHkPxZ5++unPPvvsjTfe\nuGPHjieffHLkyJGVlZWlp1566aVu3bpFXKGsWCy+/fbbb731Vn19vRCiXbt2vXv3PvXUU2Mu\nIxGOQzOOwaL8kBRnzCoqo4Rqz8OzHl/jX2WOkTnytUL7a6fmGyncWI+lfdT3nByf1Qc4t6Uc\np+ubi0X3YWLHdRaVYVNpQf0/G4XjP0ilcPzQpH1t9tncVmh/Stodt9AcbpJz25Dn/PZq9YdL\nmpKtNJbIf55AVngHu6uuuurWW/8/e2ceJlVx7v9vMzAMsoNEQAFB9qDIvgyIKHFBJUQligb1\nokYvEhXBJbkqUX9GoybRIBqiN0YQ4oaJXtEkSlhnEBDQoBCQJSwRUNm3YWCmf3/0zLGmlrfq\n7Kd76vPw8HSfU/XWW3VOn/qeb53u+dnmzZu3bNly6NChO+64I7N9+vTpL7/8svM2Avbu3fvo\no4/OmDHjq6++4na1bt36pptumjRpUp06dSLLJ17oaTvJiHOkOIUTb+mYhuUDHCi3HhuBVgxp\n+yjKEe6tudojVvc8zKkqwce+leo5dqMo16QBnb6IebKKh1B1qurSktItnMySFjMcRtUxNazl\nH1ftulWlHtIwP0AWS/VEL+wmTJiwfv361157LT8//7e//e2QIUMy2++7775OnTo5f3YsbHbs\n2FFYWLh58+YOHToMHz68TZs2devWBXDgwIGNGzcuWLDgwQcfnD179rx58xo3bhxNSvHCmj2q\nCSyOvPSwMiLJeXrGvEecyDA0t4jtrmY7w8EX9RwtK0XJpTIguWKE6FRpI8iemVP5i+KJJ7XA\npX2Rtsu9QFXh6AqpZjWES8BVFamMTjjEsfOpoS2W3EAv7AoKCl566aWXXnqJ2/7WW2/17t27\nZk19hEB44IEHtm/f/vrrr48aNUrcW1ZWNm3atPHjxz/00ENPP/10NClVT4KVYkGFikUdikPh\nYXBUmkZqmHHxtW2J8x8ntoiEVXYUcRdBNCcilSNEMtqxlQaRur+iq0dYlURfVIvRJqHEjVpF\nGIY6kZ5X2nYJtRSehNKeJBaLJYP+yxMq+vfvH5mqAzBnzpwxY8ZIVR2AvLy8cePG/fCHP3zr\nrbciSykuxEmI2xKqDWYYOdjru8o+8flgk8/qxEpcgE04mMQRTbJMXdVrD6urKeF5MlFIsWlD\nGBZiTKSqiB7DVFW0faGFl3Tc2K7RxcRa5nBDyo2kt5gqxEPv80RNLLnaL4uFwLuwi5jdu3ef\nccYZdJkuXbrs2rUrmnxiQTpTsmuy8De1BIjbHOiLr8rW0raiDethrCKYJ7w1wTpnrkbGw/od\n4V1pmyYKSIUm15zJVM3e8LDlRdfHlWg2bF0FodJUHp63aGGjHYRQL0fS1q2As1gcskbYtWzZ\n8tNPP6XLrFq1qmXLltHkEy+5dwmjr/60YRNCOlQarlo0n8XFJjiVI7os9Gtni0rZiGpMdEbp\n+ZItr1qYkw6adFjE/nJ7XU3eJlIpVfXJNnacM29Vvh3rDnobLi6m6qTiDp/YEZMBYeNL07ZY\nLLlE1gi7kSNHvvHGG0899dSxY8fEvYcPH548efLbb7991VVXRZ9bZKiu8jlP2OrN0LDxloYr\no5GbgKVpoKoOM3HIpGFF3xdCN1V1nS2ePVGtlyN1yLS1OPmr8uq0hiWdOdG0qqKJd8WV8aAR\ntfENk1F1xPAj4JyZ1fN6ZbHES3QPyfnk5z//+aJFi+6+++6HH364b9++rVq1qlevXjqdPnTo\n0JYtW5YtW3bkyJHBgwfff//9cWcaIqKlYS+agWAyXXlQdZ61oNh0WvbVUcIGk5anm+BeSJNn\nTzw2voeeSv0wIjE/bYkxuQ+OtKfERsJCo1H5mhAOn7dQdEnzoZOWdI64h8uOatyqD3YELJGR\nNcKuUaNGS5YsmTp16vTp0+fPn19WVubsqlWrVq9evcaOHTt27Ni8vLwYk4wGbrWOu1IEJSbM\nkwmkuZDSDm8ofCbstrq2sOi0mecgVYR0GipNSVTn5Iu0mKtpj5Ce0sTMI3OYHymV4COWU8XP\nr8cs3eBNOLo9Ou5yslgsASEXditWrOjVq5fbWN5qmZOfnz9hwoQJEyaUlJRs27Yt85cnGjRo\n0Lp1a+ePYVRDDM2GhKNdlYtSRZng0+QLXA27Eh+uzDxX+dAFVPqPe7hNKzQJi8ubkqMXPYmG\nVMu4bhPwY+e4tdBicfqtzrMjYIkM+TN2AwcOnDJliqtAU6ZMGThwYBAp6SkoKOjQoUPPnj17\n9uzZvn37aqXqtAtYJstbARJNW95acZ5D4mZN6fNViXoYyG0mdHmpiUU/WBbgA4VcJhlE6aaq\nqNJ/rIBTdV+6jCstxupjMRknbaIJsQDh1dFVpLmphsjVWrbTLl3FYrFkNXJh9+Mf//j2228f\nOHDg+++/rw3x/vvvDxw48Pbbb7/55puDTs9SBakisajgfCmpucXN6JHlxh1K7QQvxYNdZ9hE\nGKrORLpJi6l0FbfRMfxE7aiqJVZnt3M6kjudxEPm+fzx6UYTytiqOoulGiJfis3Ybz/5yU+G\nDx/epUuXCy64YOjQoe3btz/55JMbNmy4f//+b775ZsOGDfPmzfv73/++du3apk2bzpo1a/To\n0RFnz7Jx48ZbbrkFwIcffmheq7y8fOHChSdOnCDKrF271m9ygcJOS1FqEW+YrKyF1zSi8hTd\nIhWX5rjqmraYYTTx2KlWVE3qGqZE2F2ZF5wVx/pkqaoLu1woOrJUEnH5iBFEX1DlFIrbpflo\nHXoupthHQk97XvmFFYgWS4KhPtuHDh169tlnn376aeJXf5s3b37nnXfedttt9erVCydDUz75\n5JMePXrA5RVn8+bNffv2Zb+KIXLs2LEjR44cPHgw9j5yJFOyRIN0xlJNY+xqbGIHzVVuhoWj\n7LhUD2kPk6oA0ZDqEEOtq6Qx2ZHhkk8Ly/dcHKkqkrZFpATZATKRgFJcCTVX4iyl/snDQJKx\nWLKR0tLS2rVrFxUVRfYQmjn6j195efmKFSvmzp37xRdffPPNNwcOHGjQoMHJJ5/coUOHYcOG\n9ezZs0aNRPwYXklJyYYNGwB069Yt2MjTpk279dZbkybsEitQDDGRGloF4LZFhD9uYbciSg26\nsNZj85aqYRw6vjY9djv7VisWuWLavRD0FhefNf8IF1CsJfZCKvW0DiUbMBDNZKi96GGhq/jM\n06pDS5JJsrDT/9xJjRo1+vTp06dPnwiy8UNBQUHgki5RiAZDVmOiJ1KK328LvMUADa2g4qhE\nrXP0TXI2KeCt71wVYr0v80Kqd8UOEmJRu+ZLiD/uRBIXQDnFxpZhR17aQdWHUdU7sTz7cAUR\nSrrXs9QzrEJYiZ7jm1zBsv3G1WKJEb3Ztnjx4j179kh3LVu2bPbs2UGn5J3du3dnTLscRqpy\nEqXzgk2Gvr5nHqUKu5VYUGkaKL65aYLqiS5iGP0MLxfWVcJSM08Mla6ELSkdHHE8MxW5wqye\n47ZL2xJbYY+OU16VpKvjmIr2DzmIvQgqLAxOhkRd0yyW7EIv7AYPHrxw4ULprkWLFiXqm7BP\nPvlkhw4d4s4iLOg74IgbDVYHmNdypkm4ec7MQ0rxElLOrIzgbBjVAqhbNcbJL6ndJe2dKDpV\nopBVS3Qy5plD/TUFtlOOFJPqPBOxYmLOsYOmdcsMVZe3OwFv0eiUTI4dWzIQgu2+xZJwlEux\nGzZscNyvVatWFRQUcAWOHj36+uuvS/9yqyWXSJOLaBzerp6uTAvp/w6iFlEFV6mWtGINNErC\nbjRddc3RXNWphKCjigxFhskWrf6TVpRCHEei+2Dkr3hSmfdUFH9acSPGj/L+JGxrMBvvtSyW\nLEIp7N58882f/vSnmdcPP/ywqtiVV14ZfFIWBbS/EgYRNCQVjq6qszrMvKKJNpUqG0Ob0FuP\ngpKS0lMlLXuUzZVGNyksdkGrlVU3D+mqT5S6VXXcIHDGm3i2sGloC4hh/SOOG1FMuyjMljFP\nkuh+inm+0zyTJJD8DC2WAFEKu/vuu+/6669fvnz597///TFjxnTt2pUrkJeX165duxEjRoSc\nYQW9e/fWlvnPf/4TQSZJIC4nSYUfl8tnRwz9OSnhDaOh5gj1IJoYY04yJgmbZEvLQU6osQop\nYxFxulOUoYRqlHpsKreMyF+VBhRyh81EGlC0/TzEIRJ2W4WO4wwjlyQh+CwWS6KgvhXbokWL\nESNGXHLJJePGjevfv39kOUlZtWoVgFq1ahFl6N8Zzl6Sf1ts4gBFnEYY5b1VcRUnqFVgV0LN\ns2LzlhUh/rS9JrxAaTET402sZXijIjqI9OqqahcRkyBAdWgCJ8pDaiWBJP/ya7Fw6L888eMf\n/7h+/foRpEJz9913161b97PPPitRM2nSpLjTjALHA0gybYAGwmPUoT6445bkZCIl2EMsLsl5\n0xkmz705WwxHWLSFtOXFXpg4oNKKbNPi+cl1xHnLreqC1Kzi4KtGxnzEnBxUnym3VwmTj2rC\nPzIWiyWDXthdddVV7777bgSp0DzyyCPt27cfPXr08ePH484lahKlh1Q4GdYFfgVsAPbXrFmc\nSj2SSp0D5ANQ3/tqe0cX8DY+xLSX/NF2iytzTlrRVXVC5UA4XiaOiFYSqXQMrRo9C1AuIO2/\nikaXdhil3UlVYhjEsIyFJisuv5HBnYQBxgwwoEUv7AYNGrRgwYLy8vIIsiGoVavWzJkzP//8\n85/97GfxZhI9nCuQBFST3CXA58AVwBXAuSdOzAWGAXOBPcB7wF3AmYoZSxqTK2CyN5BLsIdx\ndqtNI5gqIpiQPEtq7oindd+A4db6tRrOyU2lkNgXqaqP/bG5sdNYqiqqdlWJcSLS7WTGjQCX\nv0qzWiyWaoj+L0+88sorEyZMuOSSS6677rqOHTs2bNiQK9C+fftwcuPp0qXLzp07iQfpLr74\n4kaNGkWTTJSw85MzCSVE5DlTcgvgGeAHwG+BB4HDAIAFwINAA+Bc4HzgZuBXwJfAB8DfgZm7\ndqVOOcUJ5adHrmyMtO/vTIgRTDwYV+WzApXAcmXsQaFapNEIF1CsJRXTKdkfBzO5cRIz4XxE\nsUU2ZxOl5ZSUutrsZ1/VFldF25A2pcAxydykjCUWwjgu9lgHjl7YNW/ePPPir3/9q7RAlEel\nQYMGxN4hQ4YMGTIksmSigfAbYoSdklPALcBjwEagH7BSKHwAeAd4BwDQCvge8D3gGSB9yikr\ngb8BfwOKgJCW2KU6w5kmvQ1mEg6BlriSVI02vcU8mhbWFdOGkt4miYaco6VYZ5FzGVXPGBiK\nUS3cM3DmcfwrzmChdZtoo9Kh4P67zxZLbqMXdldddVV+fn6tWrWyYjLLMWIZc7dy5wngVuAB\nYApQpouwDfgD8AegBtATuAC4EJgIHAP+Afwd+BuwoTIIW9EwJRMvjTOK3PaXLu/fDsw9vA2I\nyThzqktce5WKPBPpyVUXS4oBWRknFV70OIj+Ja1+iMcNxbpceU5xGoohk8S0eDYarY1nsRii\nF3avvvpqBHlYOFjN4dNe8ta0IbcCtwMXAvNdRigHPgY+Bn4BNADOq1R4zwLrgLeAvqnUx4B4\nISfmYEKoEaMX7KhWQ1UnPT+1p6u2gKGqMymvShI6scKtjUrPK2c7kRJhsJmfMN6UDfehcGX1\neW40JFTL6/QWi6W6of/yhCVGzB8AioXhwBTg5kpV5/mSegD4C/DfQDugI/AicC6wFNgCPAOc\nC+RVxleteYF8kBz+0gs1VA4gHXCtYErJfl5EBSdHzD8XzvkgFlYpS9WJJPaIfUGvunICUewa\nuytdiSoODVfXZITp5rihi/Hkt587i8UEvWN39tln165d21BVfPTRR75TsgDZsKLXA3gNeASY\nXrmFUFTmffkCeAp4CmgJjASmnn/+uLlz9wCzgJ6p1KrKgG7HJ8DBjPK4xHIaeGvUgyGqcoM4\nd43Nh8vNME9aeopvxV2s6iJWMEXbUto6V1F8oQpO5E+IHvF2yFClic6oK2lluMJriFV1Fosh\nemG3c+fOAwcOHD16NPOW/ZzXqVOntLQ0xOyqN+KjOclRe62Ad4HZwCOVWwLP7UvgOeC5uXOb\nAFcA1wN3AJ8BLwMtUqmdBhGIRVvovn2ZEGJJKcpGac/MPB/i8AVyZIlknEuiKLw4FcjpJMNV\nTkLheX5CQ1RsKhEmFZ0WiyXJ6Jdi165d26tXr9tuu23lypVHjx4tLy/fv3//ggULLr/88sGD\nB+/Zs+cEQwQZVyuIhcUYaQDMAf4F/LjyGTjpEzxBsQd4ARgEdAT+DPwE2Aa8C3yfWaIVa3E2\nD7vLcFRjmcns9Elj6AtK3Skt5oMvXS1lzytasIr3bKlKnLcm69TiMq45Jku90k+K+UWJWOFN\n4GXNYskZ9MJu4sSJ7du3f/bZZ3v06FFQUACgQYMG55xzzuzZs2vUqDFx4sTwk7TEgOqiXAt4\nE6gBXA44bq1qPvM25ajYAEwG2gHfA3YDfyko2ADcCzTTLbSZzCKq9bKIya4JLyQZahiWKKYd\nRpUyo+OztTLqxHkqgLuLUC3C0qmytTzYluZwnw6nI1yXgz2+seu52BOwWKJBL+zefffdwYMH\nS3cNGzbsnXfeCTolSwXxSg35zTowDegGXALs9xHHD+XAfOB64OSSkt8B/w18XVDwEtAbgPGj\n4gHm48SshmZbGCek9lmxQFr34NqyNptqiT9d9YsdKmlIN61yoFWte/uImbtuXCv+T/V4PyxW\n21lyHr2wO3DgwM6d8ieavvrqq/37Ded3iwZ2LSbiO0vzi+wTwBXApcCWMFsxZDfwS+AMYGRJ\nyanAMqAYwJ//rD2nPY8t8QRSYs0Az8OeQJ0qjrBPiUAcMvOw3LIp+zql+OYB6+oRaaiMNG3y\nJkgTNsRb0yaiNlRiP6UTe5Ww5Bh6Yde1a9epU6cuXbqU215UVPSHP/yhc+fO4SRW7eCu9WDW\nfcK+Hhlea+4FxgMjZX9bwn8rnvtYBrwNXAB0AVYDuOaatcCPgQI3kQ1bT8hyrSs8Z5j8rsGf\n8UaXZ2+0uBbFt9KNYovSYtzyrlNF+sFnF39R1UVD1ZtDbQe1ZcQq4kqxW/zURRDCqHo665bq\nhv5bsT//+c8vv/zy/v37t23b9owzzqhTp87Ro0c3bdq0adOmVCr1u9/9LoIsqwnsPTR7yU7C\nFHsT8P+AK4F5LiuGmj8bfB1wC/Djf//7jebNHwMeBqYAzwUtULgJ2GKO4ZmQCuEXcdl2pbYf\nJ4/8tCKVDmnZLyp7i8+mZx5WtTTsAT9BAhmH7KXadtwSMXphN2LEiLlz5z722GMLFizYvHlz\nZmN+fv55553305/+dNiwYSFnWN2JXkOIE/AVwPPAzcDbLiOoJlGxCT8GQJUtzZsDeBy4EZgA\n3Af8Dvg1sMNlHP8l/ZAQNR8sAQ4yNz7pqt+ANm8oXfV7D6z6oUUeO0OLpzqbDN002wo964uf\nGtHjV1WkC5gTiCbzqQt9tm6xVAf0wg7AkCFDhgwZUl5evmPHjiNHjtSpU6dFixZ5eXlhJ1ed\nEWeOyOCaGwbMBO4B/iiUVE2ixHRIrMX4VzNOhEPAM8BU4GrgPmA88AfgSeDfxhE8NBogSVZ1\nSRCdxF2B9txT7aXD0sHpVLWP3En3SkPRrbCfLy6UKrK5Vov9oFssFkP0z9iVl5dXFK1R49RT\nT23UqNHSpUtfeeWVrVu3hpybpYIYnwvpC/wZ+BXwG9leV9YIMbN6WwITn0PiIpwAXgHOAq4B\n+gHrgT8CnWRBPOfgrUpWk3X9JT47KkUoPsslmoLc823cg3Ti42jig3RscJPTTyoKnTSkyYC8\nerg6lPbpNA7/D/xZLCFBCbuFCxf26NFj3rxvn6r64IMP2rdvf+WVV95www1nnHHGlClTws+w\n+pKqSvQJfBdY2rTpTOB/dCVN1oO8WSneYrKUA38GeqXTI4B2wL9q1Hgd6GGWmJ3JEo72ANEm\nsYPW86MLaO0xkwcPWHlH5MCeluLKrLOdW2KmWwwE4qNkNZDFEiVKYbdy5cqLL774k08+2bGj\n4vGkQ4cOXXPNNaWlpZMmTXrkkUe+853v3HnnnStWrIgq1eqFaBiE2pwYvy3wN+D13btvM0jA\n81Xbf79Yo4Ju5a/AOcCQ8vL6wArgPYD9eUbpuptJcEtcqI6Ls91wOdJDZBHWz3NeiKays91c\n64jqjbjZU0m9XCVGyWhv/CyJRSnsnnrqqdLS0jlz5vzoRz/KbJk1a9Y333zz5JNPPvnkk/ff\nf/+8efPy8vKef/75qFKt1oR98eLitwA+AP4JjAHK3Ccgnc8Q5qXQ3I9ZCFwM9AYOA/OBRcDF\n/oKjesygUWJ4nmjFDVdAdLygOHbEEfd2DnOCjE5bbCLF/FSeeMvHlneWYqM/J4lGrQayWKJE\nKeyKi4uHDx8+fPhwZ8t7772Xn58/ZsyYzNuOHTtecMEFixYtCj1HS7Q0Af4G7ACuZP5omCtM\nFr+4woZ4nh64VlYCo4CuwBfA28Aq4GrDbxIZBLf4JCQbRqqNCFNWtNzEE5t+UsLZJZaRah3z\nBVNaRamSoZPMRohxyOp+BUhc42DHP0aUwm7nzp09ejhPIiGdTi9atKh///4NGzZ0Nnbq1Gn7\n9u3hJli9if5Otx6wu3//M3v0uAw44iMTcWUKso+6209+KtAfwVoHjAXaAwuAF4H1wG3ASQDM\n1nYtNEkbJXqmIWSWq7NUlHpS7UjbiuIu57Xoz4mtS6NZqidJ+xhaIoD68kT9+vWd12vWrNmz\nZ09hYSFXoLTUm6djMSLim57awJ8B7N2Lv/51HwDjX11Rrb1KS/rP01sQVa2twJ1AG+CPwGTg\n38CDAHbvJkJF4zJmO8lUFdxTaBlo143bwkkrlaNGvBW3iDc82nzMHXHtXQpRIHt9Fz93xdnb\naymxXILs+nuMKIVd8+bNd+3a5bydO3cugMGD2cfNsWvXLtbAswRCXBeUPGAW0BFos25d6pRT\nuGRU0xu7vEU/OaSK4xbP11y61m7gYeB04CHgBgBt2jwHdPWUoSUWPMwi4tIqF0rcJVpinJem\nms9Up19agKjLLezSopN1CrnIhh8iwzIRX7JySXJZLGGgFHbdunWbPXt2WVkZgOPHj7/44ot1\n69Y999xznQJlZWVz5szp0qVLBFlWN5yb7MBvelTOQQr4PTAIuADYqigpJskiNuEq8zDu7cxj\nOiWPAFOBjsDVhw+fBXwGfAh8H/DzY9x2HkoI5npLe8hSzLcZ2I2s5OL0n/OJ5poQhREryOi+\niFrN3Hc0QWwlkLD+Cbtd6zZZshqlsLv++us3bdo0bNiwqVOnXnHFFatXr77xxhvr1KmT2Vte\nXn7fffdt27bt+9//flSp5j7SS3ywlzAumnPxegwYBVwMrFOU9NCEqwiGhV1dbU0mSGnrJ4DX\ngEFAasWK8//rv/5SULABSP/yl+lvvtEusVkihnDXOFQnv0kTfg60U93DqehEENMwWe113HRU\nvRMz75FKDUvv5YgygWPvlywWJeJCQIaysrIrr7zSKdarV68DBw44ey+55BIA7du3P3jwoCpC\nzvC73/0OQAQ9jescuAsoAc6rfGuYiVNMfBEUgQSUBlFFlm4/GbgP2AKUAG8Al/gz8CyGJOd0\nSitkmbhd/CA7W8Ri7AeHuw6odmmvHqqwYuaGMbVtmeQTOOFFtlgMOXbsGICioqK4E5Gg/IWH\nGjVqvP766/Pnz1+zZk2rVq2GDx9es+a3hU877bSLLrrohRdeqFevniqCxS1ps28q+Ikvhh0D\n/BIYDfyjatNp4YchnPSIZ5KkTbjKjW0lkEEwWWtLk3+f4BvgceBJ4ELgemA2sAeYAfwRWCtr\n0fMgWFjcjqE47B4OhLQKd26khT8v5ryWxhRPLdGYN0nV+YCkhO9DaM1pYhfdnLZ3qtY9tGiO\n2+DiiFksOQz1012pVGro0KFDhw4Vd02dOjUvz9oWYRGSLBDDDgf+F/gJ8CYAmbpyEFUd98L8\nuknMnR6iBYLJgJcB7wHvAU2A0cANwD3AMmA28BdgPYDKrllV55ZApLBW1UnVGFtetZfbQqyW\ninsNb43MH7Nj9Rb9MZGqGS4fQvGY3MhFgP8LQrzXFosleqifOyGwqi48gpIFxPU6s2sA8Abw\n/4DfCXsddZKuXPWgH82G+tlt7bThpy8mFaV1CXdB29YeYCrQBzgTmAvcAKwDPgd+AfS1mk4H\nIVaCDauKqRKRxLOhdHrsOUZLB637xZ2H7FNxTkNcc6oPnXacaZfaJBob0/ATGsvng87fG/b+\nzZJkPAo7S0ikhG/P+QnFvuXnns8+K27S5KTbbntY9pA1F4G4hPlf4nHiBHLxNZzgXXk5qlY+\nA34GdAU6AdOBocBHwFbgRWAM0MpjD3KcyNxo85KGskwVjRCCJvcP7OfdZFWXFXlsNPatmBW3\nJaiLDA3XqKGO5AhQloWh8LIUK0xzGyvs4sf5jDn/By5xOL3SKpXCRRfhe9/Db38rXXVVrcKY\n+yLmBZxi3KzGTVQmQcSSIa0icWHXA78EBgCnAY8A9YCngK3ABuB/gTHA6f6brE6ENPuqfFlX\nRhqLeOfjyvqFwjZjNR+xHsoFoT115zMlKkIiPcObHMPLQoC3rFaXWCwEnv88piV4WPnl/7Kl\ncqEaAdu6dUOzZpg+HTVqOIVFdyHFPNPNGQx0hlrfiy7gStqae2yBzwScywJgB/B74PcAgC7A\nucC5wJPAKcAe4BNgFbAK+ARYB5wINpscQrydCOTYie6RWEDalmo7kZv4eYGg/5z/CWVpMhSG\ndy+qxVmttjMRf2I3pRW9qTrxEhTU3a/nZLId61zmNlbYxY/bu3xvkTNvC1Kpt4DVn3125r59\nyM/PbFddiEVVRzTkatoz8fkI+0Q7QxMt0uVdXbXpwmuBtSzhIF4AACAASURBVMDzAIAOwNlA\nD6AHcC3QHCgBNgAbgY3AZmAjsAnYVvXv80ZJHaAAyAfqAgBqANo/KXMYKAVKgKPAceBQaLmF\nPZWaCEfxNsnxydLMM6lsee4E5k5at5907mEJrXQzb4Iryb51myQ7MqFKhwgWkVWtxCsrLRYT\nrLDLWSR6MZ1+CegAnLZtGxo2NBRtGcTC5q6AN1Rzrf9p3q0M9c8XwBfAG5VvWwDdgY5AW6AD\ncBHQDigAAJQA3wC7ga+Bb4ADwF4AwH6gvFJLqcgDGlS+rgfUqpRrBUAdoDZwUuXrukA+UB+o\nWVmSJg2YjMtRYB+wH9hf+WI38A3wNfAVsBP4uvJfohAlFytQVIW5xVOVz0c0yllQED5lhmvE\nKs9MTNvwM+vWMjfc6Jmkqaik5WOxcFhhlyw8CwtuauHmhoq399xzMTAYWH3aadppia+rzpZ7\ndMaDnRY4tHTzs4gcCDuAHcBfmS0poAVwGtAUOBloyvxrDpwE1ALq6Yy0fUDmGBwBjgHlwH4g\nDewDSioF4j6gHNgHlAEHgBPAwcoyqJSPmV0Oh4DjACrloIOTTCMgBdQH6gCNgIZAQ6Ax0BBo\nBHQGmlX+yyz8lwD/AbYDW4HtlS82AZuAElm/PBwUP8eRNne59XeVucUKNToxrSLkjHMTVWHe\nfamKDWTBVLpFWsvqJIslWKywqzZMmYIpUy4HVqu/mseimpNUJWmfIxDMI3tz+wLPX3wITxU/\nDXwJfBlIq6FxGDhcdctuN9VrAM2Ak4FWwKlAK6AN0AsYCbQBTgIA7KhUeJuA9cAXwPrkPdVE\nn13ik3NSpOcGqn4SVWJRfGQCgoqSljGB+IAbRpAiVY30yrLFYvGGFXbJQup7mdRS2QAVAd96\nCxMmYMaMf4wezTVkmA+bmOopbPOEvWHiMhqimlZVGz1DrOVVN8qBXcAu4HPZ3lOAM4B2QFug\nHTAUuBU4BQCwC1gPrAfWVT65uBkoJ9vSDrLh+SOeJyn1FymkrWsNb3Gj9DsHqkf0AnkygXvh\nTclJ09ZWyY2Pg9WmlkRhhV2y8HZJFSeSKpfL4mJcey0eewyVqs4E+rEevgldLbi/iAc4dUmJ\nWIlaaDKar7jqxgZAB6Aj0BHoBFwNdAZOAkqAfwH/Aj4HPgdWA5vUUk/8RBiaamItlcMkffyA\n/XaFWAwyIUUsy2qXSlVfgPDpt0nvGD1H45aVxbayVx4Fm3xWD4UldqywSyI+BYFjKqTTaWza\nhJEjceONuPtuP8mIz/eIT/Vx0xhXjLugu5pT3e6lEWfQoJyDnHEgfBLUOBwAVgArmC01gDZA\n58rfhR4O3A00AI4Ca4DVwGfAp8BqYFdlFe26vGG2Jl4d3ZDTnGqXtCLRLi2StJHNb94Ih9sn\nXFuGgiaQ1WGTrEKtosKuUFt8YoVdsvAzI0ouvnv34pJL0KcPnnnGMIirKyabrfiCiKN6gA+K\nKSRYwRTs8qh0EOhiOU94PS0HNgObgfedtoDWQDegG3AmMAZ4DKgF7AT+CXwCfAr8E/iX+ocD\nzU828+PLGWyqhVSnAPdCNOdor0ubjLYKHY14y0JoEe2Cr+cPSNgiz4RgW7d6zuITK+wShLfr\n2rfmXOXbTKh8AFdcgfx8vPoqXP5t35Tstxg8ZCvValJVR4c1Hxn/+omYoaUYNkdoWZNWIiPU\nTMIInga2AFuAOZVbagFdgLOA7kAP4AbgO0AJsBpYCXwCDEillhw+rApoot7EtU7WVyMWasXt\n9CwuXfYltohqSdURLjft8i7IxWVinVq1kYAemYR8UiyWxGKFXdYjvWim0+k/plJYtw4ffYT6\n9d3e67NTlId1AdGicFvAM/6tPlfl/SiVpKk6Z9oOr4loJONx4J/Ap8yW5pW/Dt0DmAS0A9Cg\nwWeVfwhkJbASOKA7ECq5JtbKfFjY+xntvY0YmfiMiCuk4nJtUM/Y0XB3lURDhE/prVG3cZJg\n7Fks0WCFXVKQXs1d1c1QceV69NEb6tbF//0fWrn+Y/TS23SpdoRienPKE16FqqfmI2BS0r+S\noOVXLILMsxCkKyZBXGox9I/TwiOhqVTq/crqDYDuZWW9gB7AfwFPADWAjcBrqdQ9wApgZeXP\n/olNuFqopcWE1NmiC4hWGdG6CfS6Kl3AiaASsiatuM3KW0AHt96hxZKNWGGXLIKZXF97DT//\nOWbPRs+emQ0ermX0XbhzfeQsPbd2FxRfuzOBWNL179tpm9O6O346Emx5/xWTg/nCNyHE96fT\nqVRqUeXGOsBZwEfPPTdv3LirgUeAfGATsBJYAXwMrGB0nhiZOA/ZKqh6whOqTpo5IZU4f136\nYAOxXCtuoSWsdqHZ7dWGG5+QSIgvbrFEgBV2SYG4FzevCwDFxbjhBjz5JEaMCGT1QTUN0Pe+\n2jtjzmXULtca7jXfaB4z7PXcbMfPlEk7u95KZpAKcWmQI5k16HHjKkqWlPQpKOgF9AKuBB4G\nagGbKr+f+zGAffvELtPnsPhxIG6EpLc6rHoTqzgbfX4ktU6bdIuHhVG2UVfl/WC9Oks1wQq7\npODB8cpQ5Wq1ZQt+8APceCPuvDPI5NwkQ0s0827SZfwIOLctmrcViCuQddaCebbSx9ECbwVV\nZRDtKEucs4ICAB9X1s0HzgQyOu+HwMMAGjdG+/avAh8DH1c+n6eyxFRKiBAZAeoPLiUuSXqN\n2OS20MOtY0p4Ji+7zvagCOSu22KRYoVdInAuu76iHDqE738f3bvj6aczGwK5amifECJu2dPM\n1+hYbacNzkXwlrnPIGK/tEHoNazASdqkqM2HOxM85G9ShVNOtBGr3VUKfMy6ZceO9S0o6L1h\nw3M33njVxx+f+PTTGsD6jJP329+id2+cfbbTWbZ1qVqS7hWT4V440OKA05epqo9PGH70RMEK\n4TNOxxFTksYMFZP+mlSxasySFVhhl918e4kpL8d11+HoUbz6KmqGe1i1D9nQdcXpQRXBUFpp\n43izlDxPOSaLdG6RBolL1XlYOndwdSxQVUyINwnSBNj/xUcI2FAmSUojLAeee/FFAA1TqbOB\n3sAzY8asueOOTkAaSJ911v/+85/LgOVAvstPB5eG6AKK0pCOmZI9wSYuuYqSS5qe6LfpeyWL\nA4VMDA9X2s5kNHwSbGSrOC0sNeJOwAJ4+kCm0+kqtR54APPm4Z130KRJkJkBAIhZ0MQ+YYu5\nUifmwaUZehhVbTKEf0kbJ4HkYII0jTBmEWKjYXNae48twJ1CaQZnu9RioU85E2EkKnVn+xGg\nGPgtgOnTvws0Ab4H4Lrrbrz66mlt21b8isqAAenbb8crr3SqGoiN7LxOMUgTFjMBI0Q8HAWn\nsHgOS7eYx1S1EmBAz+1qy0OWm1VOlqzAOnY5waxZeOIJzJmDTp3CCK81YzhXQ+UHcPhXPLRv\nFLihRTiIYZtn5vFdDXUgbqK2OZPzx0MagViYohOmOsSirSVqrwPAfAATJ1Zs/eabgmXLsHw5\nVqzAq6+uA/YCy4H/l0rd/847zYGdiqwcb0wUalIjEzLhi3CEiEpA0xvF+yITSW1SzLC822jS\nkhE4ed5IWj6WeLHCLiup8jFetgw33oinnsIFF0TUonq76sInXS0VZ0f/ENH8ixiuethizhA/\n/YqmCyqp5DYNQyXt4bySqjpVwtr430Zr1iydTmP48Mz2tqlUH6AvMBjA6NE7ALRpg3790K/f\noIkTVwqSkVVvUEsT6WcwJKQfcELuiCWzWoKIi9EWSwKxwi5+/MzKpwLbW7TAmDG4445gsyIa\nhezBI9EhYC0HZzs3TUrnUel2Am7ak9b1pn7CkJ7+4eyliNML0OTzGUp6dFTeG1ueaFel7Ygc\n2DNcpVkze/8N/Bt4PROtrAxr1vz4rLP6bdly45o1C4ByYDXwXCq1FOgIrCdFMOEnuUIVzVBE\nEhu57WJfRNPR5yotXT4oNUbEcWsKWiwhYZ+xy2LqAG8D6NABU6fGmAa9ZuG8NZQgmWKuFpLY\nyKomvAkINpnkQHfW7eNEnlv3WV2bpEptsG8J808q+OjkVQHZnFXKRioiWaM6VfnnGSoC5uXh\nzDNfAG4CsHp13oEDtebOfRMYN3Lk48A6IN2kCS655EHgAqCR7G6K/kxpDcXwbgkI0cwOCPEZ\nj+ZeJfqbIoslGqxjFz+ufAv2yjgD6HX66Zg9G7VqhZadMgFuI+3MOdA95R4Y8mnnBHXVVhk/\ngQQPnGAT8zyMWntMGzbYjphEI1wl57X2NoY4PVReoFPxF+k0gBYA/v1vfPQRli59aO/ekiVL\n8oE1qVTXsWPTL76I/v3zunUrV+QvbUibGBGK6Dg9IKKGI8oYLux6QOuiBXjnlrQ7QEu1xQq7\nROBq+syUnABcDuDPf8bJJ4eYmRvEq7N0L+uphCqS3AZ3HqAJW3MEKDrdNuG2aZ+qjogQwSCo\n8OxyQbCaCMuQRbXaKFasKHD66am2bTOvG6VSPYF+wG8OHtx6002tgT3AR8CFkydjwAD07y9t\nTtWKdu0YQWgd6WN/hiutgcsjV5LUYskBrLCLHw923XnAr2vWxMsvO7+GGjviVTtV9Rk7qaXH\n9t3tk0/aZLzpBqkkZRfjpGt8RBVtE0GJMKIJ7XZzDLMiypisinqAS0x11ExOM5X15UCft8Qp\nwVVU9YV1rUqYYm0yj9W++eaFS5bg73/H44/j+HF07YoBAzBwIPr3R+fObATpcif36BtXmJPj\n3OqzGFYUSapLgSqHULHqzVINscIuZjxMb+nNm9GnD264AddcE0ZKQSG9vmvXs8Qg5vqPDqXF\nZBZXOTQmRoifdj0TuDEmShND10q113+G0jRUR00ruLVKXdUQ9yABl5VKWbLbUSnmxPsitgwA\nXHEFABw7hlWr7howYOBnnxW+8EILAE2bYsAADBgwBPhY8RQBgdOot4OisvpMFnb94DamVXuW\n3MYKu2wilUqlDx/G5Zfj7LPx+ONxp6NHOi3RK3QEnNtHFIt+jU8167vKJ8DMOZHhqi1tGtrg\ngWTIFZMu9GutNS4UBGFqqDI9ax2xFiEfWaNOqv94RVK7Nvr3/w3wm0xb//43iorw0UeYPXt+\nzZoAPj5xohgoBoqA7epQ3Miw2k5ryHEZuiIMkWexWKywixlXs0U6nca112LfPnzwAfLyQk0s\nPMTruNsp05WhYphPeFrQPHKAObgyNVUekmfEJXhthqqFVO1hpU8GlZOqWg4OSoJzJ7lJYZWl\nZ2h3VWxs0yZ17bUA0ocOYdmy3kVFvYuLb1+yBPv2oVUrXHPN7X/6U0/gnwadIgZcTMDdRUzR\nomesNLRYWKywyw4yV8BJqdRTdeuiqAhNm8adkRGGF1xijk8xX7DQLqJJI9AbITgogUw2Wj8s\nAluRFqziIPsRoN7WZL2VhMtHGLXxtQawNpqrk0elKQmkwTmBxeutunVT551XkX95OdauRXEx\niot/27Ej1q9HvXoYNgyFhRc9/PBf9+9HgwZcZ6XSLeMjEp3ysOTqU5NZz89iEbHCLk7M7QEA\n5wOPA3jxRXTvHm5antBeYaWdla6FoapQkK5MGU7t5k6etJgrgSiNptplorf8Q6fhx+akG/Lf\nBc86zDCO9KwjThvuxGbVOWsuOidqqupveUils3QxmtOIYrtc/qLUk4jsGjXw3e/iu9/FzTcD\nwNdfY8kSLFyIDz98Gyhv2LDGWWehsBADB6KwEG3bqoZL6tURWlBL4LJMmqFhLdHZjVIvWoVq\nCRAr7LKAVCp1GrASqDlpEq6+Ou50AoOYJJy34gRGGx7hrSpKYwZuvAWr6szTi8BBNIfVNFIF\n5iGgGMrBZE6VngPcOaly1FhVxJ26otXH2ahs/mKPVG/ZxCSdadYMI0ZgxAgAjVKpo0VFKC7G\n4sWYOBFffYWWLTMKr++ECctKSzO/kSlVmapRkjruIUEfWRPoGy2LJRvJemF3/Pjx9evXl5SU\ndOvWrXbt2nGnEwr5wBtAsyFD8NhjceeiRPXYDedboKrrwE1dqulc1aJYjK6olS+cpPDjzPlJ\nIyhcWcLeCEk7Euvm4nqfNpRYkvZiXWliKMQBm6fWeJOmJHpIED5Hbo8dp/mOZqoPHIhJkwBg\n3bqxnTv/oVGjtRMmLAOO5OefdO65GTMvvXevKqDn8ydYzedH9AcSisOVCWe9OkuAZNOfFPvH\nP/4xdOjQtm3bDh8+fOnSpQD+9re/nX766d26devdu/d3vvOd5557Lu4c3UE8s8JybPz4/i1a\n4NVXUTP7hLhqzch5wc1bKjlFL0K5TYYuYCLp/BCvPSBVFSCFCIFb9RNGYQ/RWH0jVX6GkpFV\nV8SgpSqhC0gjuB0KlSA2qtu580tA6sUXuwInAye98w769cOCBbjiCjRtijPPxK23YsYMbNoE\n5mMiDmaawVXy3giqIe0B8t+ExRIBifs7mCqWLFlyzjnnnDhxokGDBocOHapTp84HH3xw0UUX\nNWzYcOjQoSUlJR988MHevXvff//9iy66KNimp02bduuttx48eLBevXrBRs5AXy+uAWbWqoW5\nczF4cBith4e4HmTur3iuHghu13cC8aLEBFzlECUe1r9UvfYZytyNE/eaNC2usXLBxUeyVMug\nYi1xr4mjTOzlQkmb1saR51laihUrKlZsi4vx1Vc7gWJgMVAMrARKkzGPuDLJXFX3GdmSe5SW\nltauXbuoqGjgwIFx58KTNY7dY489dvLJJ3/66af79+/fuXNn3759r7766rZt265bt+7ll19+\n7bXXNm7cePrppz/zzDNxZxok3YDfA3j88axTdWDu2tktYhlxl9a0C5W01y8tBtU6mBEQl/Ck\n5oT5yHjwNlyVVx1x2gtx1RBn/RJuHJsS58xJj7I42trgXEXRlnZ1LrkdClUErnesi6YKzrlu\n/HmSn48BAzBxIv78Z+zahXXrfgrsBX7dpcsSYB+wIJXC/fdjzhwoVmyzBdWFKDL30cJhvVIP\nZI2wKy4uvu2228466ywAzZo1e+KJJ7Zu3TphwoQ6depkCjRu3Pimm25atmxZrGm6hjhlGwCz\ngfcBTJgQYUYhIi42sfJFdelMMdDxXV18pSVdeW/eoOPTqoVb+ZLWkmplIqZTWDV00ua0Qo2W\nEU6jtLQiMD/WJkuTjuaThtV2VnVcVAk7Ayg9sR2bUATqjwN9UMSzIlUVNn/9Z61jx5fS6RvT\naaxZk9q9+2rgIwALF2LUKJx8Ms48E7fcghkzsGEDFSQEfMovK90suUHWPLO1f//+Nm3aOG9P\nPfVUAM2aNWPLtGjR4sCBA1FnFg4p4A9AOXDlgQPIifsVZ/JIM2th7FyiMqJcGR6GMsK8GKeZ\nYr931CbADqlhTNVoqISXVujA4FiIcVRhVc5ZZhYXd4nBXQ2a6DiqpLBUz6WrLvWy8aV3NXTm\nqupcxw1HUoUjJYky0i4AQJMm7zgbjx+vWLFdtAiTJuGrr9C8OQYOxKBBGDgQPXtmvmObLbi9\nc7C6MAzsqHoga4Rd06ZNN27c6Lxdv349gA1V7wg3btzYNEt+uVfLXcBFQD/gs/r1487FC6qp\nSJztUFXzqQKaiCqTmUl8TcyRPufLQCCEJlHSJCyqWk1Sp4oWEDS0/jO/XqviiD6liXPmAZWy\nVJVRScNU1a8KSe9woNN/UuHoFrZdVqFqTVY6ZjqdRv/+6N8fd90FAOvXo7gYRUV44QVMnIg6\nddC7d4XIGzgQjRt7zj9RmMhiiyVKsmYpdujQoVOmTJk3b15paenq1at/8pOfdOnS5Ve/+tV/\n/vOfTIG1a9c+//zzg7PwWTSRgcBjwM3A57n1hAG74MVtzMB2VlWGwHysuHUxNoJJ9SgxT8+D\n6pK6SlLxHThSL9AbaeY3gbVx2GVNcTubGK2h3WbINepIKO6FeA6LJ6rK22YbMhkK7enkAOHE\nkIbiA3bsiBtuSL34Itaswddf49VXMXAgFi3CqFFo2hTduuGWWzB9Opg7dlck59qoOnYWSyxk\njWM3efLkOXPmnHfeeZm3TZo0Wbx48cUXX9yxY8d+/fqVlJQsX748nU7ffffd8ebpn6bAn4CX\ngD8Ft/bn/xbfLVrzzNWsE/gNsYdR9XksPFcXK7p15ujCoppRDbU0lOg2pdz8GKGDuSInCqvU\nqjmq4eKcNjo9Ih9pMRHOUTM5+VVlpAeUE4sm+dBliNa/rX7ZZbjsMqDqd2zvuQe7dvlfsbWe\nmcXikDWOXefOnYuLi0ePHt2vX78bbrihuLi4S5cu7777brdu3ebPn79kyZLWrVvPnj27b9++\ncWfqixTwR2AvcEflFsPLenbB9YhQEs5rTj2wFoWfprXbI0DatNRQVG0hQkmlmNSWc6wjQtmI\npITldXNV523MtQOibZpWM5zjxRlXzhauvKumuZicUc1FE8uwaRAal42vyocWqf4vPs5JVWUr\n+x3bnTuxfj0efxxNmuB//xcDBqBhQwwZgv/5H+13bNljBLNTLlRy8lqdNKwtakLWOHYAunXr\nNmvWLG7L0qVLDx06dPToUe6LFFnKXcC5QG+gJFCpkajLjUrHsC4FXZcz80xaZGdlcaNJHJ9X\nE1V12uoIqhW2OXYEtHXTzANY5o2aWIyEjiROBtXhMyHN/AhIinmejNWmhOZLV30ije2F+FpK\nsPojbfxol6uPvzgC9ClKBzfKsEOHVMeOFaH27MGSJVi8GIsX49e/RmkpunRBYWHFvzPOkAYw\nH4qgMHQ6LZZYyCZhp6JevXoh/XRwxPQHHgNuANbFnUlQ+Lz8eZi5pbWkcRJy2xfLhMQ1Tdge\nHkbJw/g7CUjVtqjhaOFlkgZbjBMxoiVgaA8bqmpRhYhhTbag6oEzrEKU10LceklPY05D01SU\nadIkdemlFW/ZFdu77674jm1G4QkrtlZjVRPsgTYhF4Rd9sJeH5sArwIvA7OICjmN/0+sN63m\nwfsJlthbF10o2r1z3kJhoWnXc1XykRaXrH3ILcPBWEBIoQ+ByqIzbDTFLE9zS5Mqral9q8Xz\nUJiYl9KS0gK+PMXMim1m0RbA+vVYsgSLFn37Hds+fb79jm2jRtpWAsSnCWqxhEruCLuNGzfe\ncsstAD788EPzWtu3b7/ooouOHj1KlMn8Nl6oH8sU8BJwALg9vDbiwGTQaL+BnsZi1GQhNe0n\nrIe6hkJK2pY0lPiaQGrFEdpRajeKsGeUKj7t7REZqmxFtkU2MVGzEie25zsTKD5Hoih0BLGq\njLYh8+1+brQkx7djR3TsiOuvB4Ddu1Fc/MsRIwoXLBhUUIDSUnTtWiHyCgvRrp2Hdi2WnCF3\nhN3Bgwfnzp3rtlazZs0mTpx4/PhxoszChQtnzpwZqoC4EzgP6ANQAjP7EacQcc4WJx4H8dEr\nrbFkonVobSGNr2qaqGJYPkb3Tpoku9FEupkPuLgAKoal/R52r+qgsKufdFvSXhAnkrRFUTVy\n+Ys2p7R1urNEMTEZ1VstSoHlg8CiNW2Kyy67DwCQ3r8fH39csWKb+VXkFi2+fSyvRw/U9DvN\nubLcxPsK69VZIiZ3viJeUlKS+b3ibt26BRt52rRpt95668GDBwN/ki/zse8DLAZuAmYIBXLm\n6GQQL+viUzvSC6IrB8hEW9BltE6SIUHZb1rJ5TOUapdWwtLLdrTslkocwtAiTgbt2jHXKN0p\nLhnxFBVTEgOKvVNl6FRXLVxKg9BXBtH1ZFuRFlapSekurV6RjrZ4FEzqumbdugqRV1yMdetw\n0kno2/fbFdsGDTyEtMLOIlJaWlq7du2ioqKBAwfGnQtP7jh2BQUFgUu6CKgPzAL+JFN1uYdq\nvRXMddCPZWVeV9R/7IVYjOMtq6D6olq2M/QO2c5KRZW0FW5mUklwIj0umtYng04AqZLXpkRo\nWbE6exJK3UoO1S7VCKjONNHtA9llrWKD8InTKiqt8HVluYmyJgqJ06lTqnPnira+/rriO7Zz\n5+KJJ3DiBL77XQweXPGbea1ba7uTMv4dQYeo+2uxCGSfsEun05s3b960adPBgwcBNGzYsEOH\nDq1atYo7L49MBdLAeGG7vSKwaA22zAsT6eDgeaHK3Bf0TOBLt2JnCR1gKGLEadvVGHIt0nWl\nCRMKjy1jKNNN7Elzi5TY62gFE1dYtR4qDntKsf4rPUwqQ9GkIZM+ShWzIZx364tmzTBiBEaM\nAIBjx/DxxxU/pPKnP2HPnu3ALOAnqdSUlStx1lnIy0PV4QrvA26xhEo2Cbu9e/c++uijM2bM\n+Oqrr7hdrVu3vummmyZNmlSnTp1YcvNAKpW6BrgaKAQOxZ1MEuAuqZxJo/IS2PKGa46B5Ok2\nuEk+UltLtXYZLNKmA1xIEg0/k2TYLaoktY1yQVSCXiuzpAJROzisMuP0k6s7BNWxcCWe2M5K\nBRybKtEXaQRpeW1KRJ6etZ28Vu3aFU/d3Xsv0mmsXXtaUdHoxYtHFxejZ0/Ur48BA1BYeD7w\n4aFDThypqrZYEk7WCLsdO3YUFhZu3ry5Q4cOw4cPb9OmTd26dQEcOHBg48aNCxYsePDBB2fP\nnj1v3rzGWfK3pdsBzwP/AywXdtnrCLf2RysMcbKEwTztIRmTkmLTTpKu/DA2ILfX0OWiYSWF\nVjC5yhnqEWObU40GV5eQMt5mXFVuWgvN7SlEaCPuLafdCcRzgItjmIZnzFNVId6/qQKGeBlM\npdC1K7p2xc03A8DOnSgqwuLFmDPnw5o1T9Sr9wnQ+447UFjYAtgRVhIWS1hkjbB74IEHtm/f\n/vrrr48aNUrcW1ZWNm3atPHjxz/00ENPP/109Om55sSJjf37f/jRR7+KO5HkwHlyhrLD23KP\nK8ync7pk0lZ2uMU7QyuLhgjIRdZKOgi6ljjE3oQ7Z5i5Wh510qNXRTkZKhUx0l3OW6kOlh4s\nqVxm22K7ozULVamKG00qimU8O9CelaWyYvPmuOIKXHFFKpWqC/QBBgG916/HSy99CaBdO1x3\nHQoLMWgQunZFwj7FFotI1gi7OXPmjBkzRqrqAOTlZEHowwAAIABJREFU5Y0bN27hwoVvvfVW\ndgi7yZO//uij64FyYU/1seu0F2j20i81ctjJKRpRJcpNn3HojVI1oxoQP3Okqq63XU4BVD3K\nUsXDJcNuV42G+dTOCSbpKSRtTtR80iqq5syhlVOq6sKoVOlynwLDC4ioR0WdKk3JEMKHI+Q7\nu4Vu16dxqOIwMM+JWVaGzz6r+ILto49i2zY0aVLxU3mDBqF3bxQUBNu6xRIINeJOwJTdu3ef\nofhDgQ5dunTZtWtXNPn4Yv58/PKXY4Ev404kq4nAAOPcDnMDSQvtPmo3sttNFuBMLBZVLXEj\nNxTs9hQD14SjPMQp2Xwkucicg8UJIO26oagw2K5xDdFuItsvaQQnJXYvV0A1JmLrTu/E81Cr\nttkjJY6YKh9io6qMqgsmQaQ4OWurSwdBW5EvkJeH7t1x222YORNbt2LrVjz7LNq0wauvYsgQ\nNGyIwkLccw/eeQe7d3vojsUSElkj7Fq2bPnpp5/SZVatWtWyZcto8vHO7t0YMwbjxr2r2B+B\nXjEhGtmkFRwpYcnGmZa0eZqIG7qMylXiXhO9MBRYKtPCvKIrw1I18tL+ct2USjcimomoEiUR\nlye7i+iyKiWV1uSiOdCDz+VJp0F3mW1aGlyFVGiaa2W27+ZyRyXWVbWoDgg5a3skJm/SxyBp\n1QqjR+PZZ/HJJ9i7F++8g/PPx/LlGD0azZpVPLH38svYuDHgdi3BQZ+0OUPWCLuRI0e+8cYb\nTz311LFjx8S9hw8fnjx58ttvv33VVVdFn5s7nnwSjRvjiSekOz3fywaLn1Pf/yfHfBBcXdml\n0wZdhtul8mykekI1F0oz14oDlQNBjHaaQUyPeK1Caho5w+hkQugeR0mIccSYkPl8UMzrovKT\nSjSxdWkZrhh7dyHmIypIVFVOUJwq0mSkGlT1iVANtaFiM4frlyp/AhP5qM1BlZW3gL5o0AAX\nXoiHH8a8edi3r386fdfatdi9G/fei/btd6RSb6ZSeOYZLF+OEydCTMNikZE1X+Tet2/f+eef\nv3Llyvr16/ft27dVq1b16tVLp9OHDh3asmXLsmXLjhw5Mnjw4Pfeey/wvw8R8F+eyJj2TZuq\npuoAmggC1YRnUhFBdIRWh6qZ0pC0+pcmpILMqUJvoZvznKdqlzRPdq8DO+U7B4jTAdx2wxEW\n05AmRlsv0tbpOTul+6IA0Qvu6Js0SowbF584tSAbXnFAuJJEv1T3CSo8fza1mUSA6hxLwjWz\nSibr1/9Xp06DgbGdO+Nf/0LduujfH4MGobAQAwZAN4kkp1MWGvuXJwKgUaNGS5YsmTp16vTp\n0+fPn19WVubsqlWrVq9evcaOHTt27Ni8vLwYkzSiaVNip2c5FTie0wgqf3qC5GwbqUaBes6W\n2g/sLhNMJAgX00Q6GG4nYhJqhvO9xFrcGSiVEdJMiEbFMlye0kyII+v8nzkBuE6pzC0uf5Ui\nlFYxEfpOSbcfAfZklnbBrYCTxnebJ5uJSbuhKhLpwUrIpRJcJh07vuS8/fprFBVh0SL87W/4\nxS+QTqN792dWrCgCXv/yS7RoEUu2lpwna4QdgPz8/AkTJkyYMKGkpGTbtm2ZvzzRoEGD1q1b\n5+fnx52dJXi4SUW6FqOaAlVV2MiuXDSVjPMQxHyXWxVokpLYd879EmdoQgTQbYmRtcdLaoNB\nmNod0S+KezpDrcIzce+k21Utuq0O9YBz4yntuEpgiQPr8zbSs/MXcaNx0qwZRo7EyJEAcOQI\nli/HokWdVqz4LwAtW6JdOwwaVGHmdekC69VZAiKbhJ1DQUFBhw4d4s4iFOynWgo710pnXG6m\nh2K2U711mwl0E795fFeFxTRAzvFccM60UwWUbuFGXiUvxBOY9dUIi057gMS+EImp4ji3Ctrj\nKD3TRMfR5ByQWqFiYZWo5W5sxDgmxpu0RbqiSlmqdkl7ERTePibJ4qSTMGQIhgy56P77K35I\nZdEiFBXh4YexfTtOPrniL9gWFqJ3b1irwuKDrBR2OUDWX6Sigp0nWD9JLAbd3KmqS6MSAZ4N\nM7FwgJMWF0qqw6S1wMzZJtaX6rU0AuurSRvSemOcguTkhSuHzHCopaqOqMtZfSrlrdrCZatS\nddo0xCZUGk4lx6WmoBjcm3rz6dXlzmUz80Mq3btj/HgA2LKl4o/YTp+O++5D7dro06dC5BUW\nomHDuNO1ZBlW2FmSC6HkoFhsEuc/qU2lnSScAiE5ECza6UpqvIlBVJ0yr84lQ5ijqrcq/WE4\njFwOUjOSVSqcics2oUpMbI5FpTW1IsyP5nC6IPaLS0Z73mpPAOlY0dVVoaR76eo+cRWf6GZI\neG+xTRu0aYNrrwWAvXtRVISiIixciF/9CsePo1s3DB6MwkIMHozTTgs6a0sOYoVdPOTU3Wdo\nSN0LduolrqG0ktMOvqvCYSMaYHQxorPEdG7STZXUExuSakfurXYp0EQOqgqYnCeqEePuCiCc\nhKrIjiwTW3HUm2Ne0sNFWGUmQyduSQlLvayNKuZAqF5XuyzuaNwYl16KSy8FgGPHsHw5Fi9G\nURFmzcLevWjTBoMG/ffMmc+vXo2uXVEja36wzBIlVtjFg9YIyRYiMLQyOK1wS3jsdrGK49WF\nPbaxHD5Rf7C7YKCupNHYwlLjTbqdDiVVTlzyhPwSvTHuxCNOQqkHBrWuErUaIaxVu1S2qCo9\nrYtm6IDSEaS5iXtVu1RNJFPVRZ8Mff/gJZ/atSu+XQGgvBxr1mDx4pn//d/3ATjzzIq/b5Yp\n0Ls3atf2k7wll7B6PylEppACJDzNlKoElc8JsXtVjog0PbaKGEpEO42pEnYV1hxVRbZHorxw\nRs8koDMs6UrYUFxJcbRVeoXTCmkGrTkEQcYRI8zKdxMvlp1oieF11CebOZ2ztlNcBG0QMVU/\nHzdWgZmfkIYfcyIgfUISVczL5xLyjteogW7dcOut16bTpwPYtg1TpqB1a8yahXPOQaNGOOcc\n/OxnmDMH+/ZFnLAlaVjHLikkVtURijOknE3mZvG11EliMZkXgzXeCEfNbWJEeq4SJiQU0YSq\nLdEMUyk2rglC29GmF7tLdWZKa3HqJMUsRKarWoaqQ2aibKSdEnskbpfaYPTnziSsmJsYltPf\nJj0KCu9WVlbhqoOqwyQJeM01uOYaANi/H0VFFV+/+M1vUFqK7373udWri4CZW7eiVSuf+Vuy\nDivskkIyHTuTq0zg0G3R8644+6aZVT9pW7T5FIhBQgfRDq9Kz0nnXZO2CE/OcKC4zFXiwKRr\n0nbFgFplzBXmKhJdFtPmyvg5QOIWqXIV70+kmRNd4JIRm3b2Eh0Rq0iPLD0gqrRVKUlJ4MUw\nGqSHT0PDhhg+HMOHA8CxY/j4Yyxe3Pq++0YDaN0arVtj8OCKFVv7WF71wAo7C0XSLq/SiZDb\nwmK41EUQrIfnIQ1RYRB60SRVlbvGIo6qKJWgG15pnlIbSeUhQa0haAXpdFCUerRs0gomNr7W\nZZQmz6ahOhCE6Sj2y0Sn0tvZ+NpzQ7zZEw+fic/nyqSMnSjNRV+t1K6d+ZGUS++913ksD4sX\n4/HHsWULGjdGYaF9LC/nscIuKST2ipZApNO2WMZZrSNmdK1t4NYS02auStWwMKFftUJNqgyk\nxaR2IJ2eSqXRKaneitu18VWHlV2FdEpK9ZzWZKKPFK3GxLdOo1zX2Ldc5mxdWhiJwss5rGKS\n0iagGGqTj4DbkwEyvRgsUSqzpJB5LK9bN9x6KwBs21bxk8gzZ+JnP0N+Pvr0qfghFftrebmF\nFXYxEIEDlKuIroy0ADvLstMnXA6+N0tMlRVdgGiLmEpVLppWKYq+HbcGJDVdRF1i+JbLFmYT\nrYdpWExDeugNjyMnFp1Q0lTNbxggiDZu2M0tValk9yOSzNUzu4WoYkjawxJk5CQ/Q4pWrb59\nLG/fvm9/Le/Xv0Zpqf21vFzCCjtL7kC4NWJJw6mdW4DzJuw4+8StXqTXxcTlP1dxOIVh7tyw\nu2gLUFtMlSrhyIoalDtSkCk5Rz2Iul9lubFtsXWlnp/YENFHQr1J67LluQLcLnYjW4Yw7Vzd\n9jjjoD0xTEI5hUPVTIHozqCSiZ9GjXDJJbjkEoD5tbzFiyt+Le/00yuWazOP5eVSx6sHVthZ\ncg3p/MeJM078gZzSiBUxk2QINZDBpGkCUduJdbUrd3SLWneNXsSUHhGpCpcGV3mBqi5Le+q8\nMPcIpfGJiqLHySlO6TqpKg53M6DKQRRGUs9SlbYYSmxClR7U516waE3EaFy0bPTqjAaH+7W8\nzz+vWLF99FFs24amTas8llerVgRpW3xihV0iyMZLRhZBG1pat8z/vb5hW9LWDYtptR2RGCs4\naMkrtdBMxBnUqktaUSrHiTQIN4sWOtqDK0YmfESTmOY3CZwrSYRlx0G8D+HEtDaC2BYt4Ez6\nq9KjxK2Oyecup1y0cHB3BatRA2eeiTPPxLhxALB1KxYtqvgjtvfei4IC9O2Lc85BYSEGDECD\nBuGlbfGDFXaWXICbzDjJIi7AQaZa6Jji9kRhkhLXZe30qTKNuIDSKqrpRKWrpMmwQ20y7Jwo\nobWI6CA6K5VSvSh2hC0g7bXKcjM8fzirT6q3VBVRVasZtiX1C7lPAS3QVbhKhq2iEn9uoxHx\nPUdIOAF0sHVrXHttxR+x3bOn4tfy5s7FL3+JsjKcdda3K7YtWwaUtSUArLCLnxy+skSGyqJw\n0K58qTyhQBLzj1aGsiW5cTC3/YimUXWeYGUQESrAuVM03sQMxbakx9cx3rg8VXACi0vDUR5i\nr6WnFoQhVTUqblTJX8jkl9s7EJWrJ3ZfNERNtJe5HGSreBCRIjmv4aKgSRNcdhkuuwwAjh7F\n8uUVK7Yvv4wDB9CuHQYNqvjBvM6d4861umOFXfwEcuWqzpj4K6oCKg1EHBStCNCW4cobrsoZ\nhlIJIJXI8yY9RUnEdlwqgNhi0uRNthMaTtoi6/dIBYpKctHxpYMplXfa6qJIImKy1cVs6eq0\nkypmiKojptVYqkOsytak9VAvjN5Mx4iv1X4aDTHVOnVwzjk45xwAKCvDZ59VrNhOnowvv/wa\naDZyZMWKbc+eqGllRtTYEbckGvPrmltFpZU4PhWPt/Jue6EK5Xbtj1uJ48KqvBxVGmwc6TQv\n6gaiR1wxrfhWHVmpdURoUCj67nhj5hMn4d5JC9NBuEyIvnB4yFybGKeSxcPtqomgHG6OyNRY\ndbxLz8tD9+7o3h3jxwNol0oNAgb/5S83r1uHiRNx0kno16/CyevfH/XqxZ1utcAKO0uC8HZ7\n6qG8dP6Qihu361mGbakKSE0X/6aaoV4UVaa0CqtRVIYTu5fTNCaeVoyoDCe2AKFgCPnFmV60\nV0fDxhFlq+qteFDE/nIbxbSJitItHo5yMrWRqxubiBtNDpvYhA8cwLJlWLwYRUV4/HGcOIFO\nnTBoEAoLce65aN06vjRzHCvsLInGs2iTXl7ptSpOdkjLcK1ocaulPBQwX2AVNau2CZXLlZns\nIahG2ikkxk2q6TkNZKL7pSqWWHsV42sRTzCT0eaq03JKtZ1bTtUeQdXJTKSnwvOaoPQU0hbO\nUrI9/4Bp0ADDhmHYMAA4cgQrV1Z8/eLOO7F3L1q0wKBBGDYMhYX21/KCxQo7S4II5LKoNUJY\nZ066xsdiKBAhk01hOFJ0WKmWyrxIef3GgIOo7dg4RGIqtSe1vvzj9FTcDvIc00pGVD74JU1b\nKkPZLcRpRqhAQ2OMC2USzWTkpQfX8yFjHfGs1kBiF+LtVBYM6UknVXx/9t57UVaGTz6p+Enk\nyZOxcyeaN6/4oxeDBqF7d/tYnk/s8MVPoj+NWYWo0lQTkmodjQgrRTT8iFqGUo+b+UwsPXGV\nU5oGq3hU2aqcJNWKJFtLLKZaH2TzgeLA0b1WYb5eZtKidKPo2NHdFAtzB0XVlsnZolIYYkzC\nyTaBy78aXrW0NzAWU/Ly0KsXevXCHXcAwBdfoKgIixbh+edx552oVw8DBlSowH79ULdu3Olm\nH1bYWXIcdtLlLs2uFuCkEBO2tLB5tlDMwZzdJY3MuXRSGSG2SyzbcQlITRc2GT+OjreK0jii\nEqWr0AVM/Dzz+MTB9bxayiHKTVbbGQpoVZJi/uYD6EcUxqIp6UaT4JZlt87u0AEdOuCGGwDg\nq68qRN677+KRRwCgV68KM6+wEM2axZpo1mCFXcxk9wcyYbhdZuJKct6J4Zwa7O27OP17aNeZ\nuaUem6p3qnEQWxRdQHWH+OBiWFQdcELNSPNxZb6q8qGdTjFDk8jOaNMpae09oq6qAGE0iq/d\nog3ObdTKWXN8mo5+GkVAwlQa0PIt3/kOfvAD/OAHAHD4MD76qGLF9ve/x6FD6Nz52xXbM86I\nO9fkYoWdJfdRrbtJ3S+YTXviQqTJSo1UVAWyuMPlo5oCzXUAqo6PVNl4mGiJwmn1w2Fu0eaj\nWjI2QWUHqpZoCenJ6uzMIKtMNXNbSDwzaQfXRC6rtjsbzc9hP7LM1SqwKmG3rXvT1nR5u5hr\nRN26OP98nH8+AJw4gVWrKsy8e+/Frl0V373I/OveHXl5caebIKyws1QvaDfO1fwUVEriSpk2\nGXGXSizSXpRWhooCiPBmoFMhfhwXQ+NE9DvdpuFoLPatSYacRadVIdIDJB44lRCEgeYT13ZR\nVeepOijdSJujhuV9ami6ukkTUlM8YvPMenWuqVkTffqgTx/ceScAfPkliorw4YeYNg133omT\nTsLZZ1f8kMo556Bhw7jTjRkr7KLG3qtFj2r+085nxMIlhDnYRBTS66d+CkudGMN8aPXG7uXK\ni1YlLWUMHZewpz2VLCZcN/a16kixchDMWHHVucGU6iGpbqOPptSdpatID4c4CKzE5HKT5p8Q\nCGM44kxoYlGWWU/Llhg1CqNGAcCuXVi2rOKHVH7zG5SXo3t3FBZi0CCce271fCzPCjtLdYT2\nHrgtrrS4W+Fu7hFygoBo18SrY2Oygoz2C1XuF1eA1naqXX4qmjhMJrtU0lM6mKobA9WR4kSe\nSXqEZQtBgIr60puGVjm1ogR0XqvufLRteUhPCjfy5gEToqi82dhiEATUo2ySm6ec8u0fsT18\nuGLFdvFivPwy9u9Hu3YVIq86/VpejbgTsFhCxxEuWlUhihtVSWkrbqtooR0gopaDeTKZUZKW\nZ3c5r8XyrEwk0nPlTbIFVJHNR0YFIYZU3RS3iEly2kiqhIhO0XcXhJYyHwqxFfE05sS69Lzy\nLJi0Z4t5zkEReECa7BBP2ULduhU/lfd//4dvvsHSpRg/HocO4YEH0K0bTjsNV12FxYvjzjJ0\nrGNnqS4QwouwWIj1Na1zZrIdpDdGWD50/rQBoFIqtF1H5G9YUmya3c6lwb3VDqBJGlofQipr\nuNzEVAnSwjNzqrHl/DyusIm9x0YOxAEyQat6/YStJqInqG4GOFy5MPI1a6JvX/TtiwkTAGDd\nuorvXmzdGndmoWOFXZzkwocnGxBFEjtt0FMIN90SjogrMSSNb7Jd2lBK9jw4nSRXXrSpxLZU\nXo4r0rLn2MAcC2/ej9tMzFW+4QJfqupaNq2rpGOoGmq6daekVBcakqr60KQHAqloKOa4AoFf\nRe1lOTfp1AmdOmHs2LjziAIr7CzVBdGGYfdy86LKUxFnUG4ylrYbyMoOHUebv6hipWVEfSCN\nJtWOhjOiqO24fLRSJiT9QR8mx75lTTtxAVd1SmhzTsm+rMAGlAoaD+uYJsmYQ98RedtL70os\nfrS1xRIg9hk7S/VFtGSc1ypfSqqfaFOH1SsmZoOJRUREMKxLKFdiBGgx4TycxI2YVEGqRkOr\nrrRlTOBaN1zjlvaFc4JTwvK9tF9sKOe1domW6Ij0wKlyFoNIt3N1A7k/odPIAT0USxdMjnI0\nJCeT6ox17CzVF2fGlc4onLEkndEd/4arIkVcNZOuo0Fx6y/6QFovkJWehNHFKg9uNAgTQmVe\nqhwmEzg/TJWqH1TBxe0qcc/VEuuKfh7dNNeKWMbcpDQpZtIvFX4yYc8KTuzmgJ6DzL61WGLB\nCjtLNUWciVPqh+IN70G1i5smtUQtJQomWnFCmDhVhhAnTNmKbGSVhiPQTnKECgxvXuR0mEqB\nmcOdNk5YTgCpRkyqbMSR4U4DsTqXkslbE/EtvdshyrtF9aGzwsgthvcqcWViiRi7FBsb9gMQ\nO46m4eZdqQBSRRA3ctN8uhKiCpGh+JpIVbQDtV1Qrdxxs6yoJ6SyQ4zpdmlGNUUFsr7DHgun\nF2xwsSFp05xNy+2ic5Bakn46aKJNuW7SZVTFfF6y2E8B1y4bX9sKkaFhH43S9UoETRimAZdX\nGz9tJaHLFgcr7CzVF3YiYWeddFUgsze4utz2DJxc4BSe2zxNyrBihd1F+GFSFSv2nQ1r3gup\nYOKCiLpQ1TtzTGYab8eCa4UITlcRzyiubkr2rJ5ov6WrGqtp47+367P7Ic3lYd/uhhc/CZqS\nxVAlB9iWJTnYpVhLtcZQMxEOgVQnpauulhIFxGSk/hCRPGd4uFIbbF2iXRORJG5ktYtJKHGs\n2O1hTB6i6ya2oj2+2gjsdk5wEw2psvU2Dub3BnQCgR+FYO9zAummZ/xoKT8Hl84nGqy2SxRW\n2FksSrirrVQGpao+YiXO9+xcnnLzfQvDmZ5LQ+sVqSAykaZEpCeN46QnVbS0DtZKCsKh1EJL\nN/boS7tvYsJxtQh5R2w0zN/DFGuSOXfUtEc/ypk++hY9tG6ljyUy7FKsxaJEO2Wyq2baaNqn\nXrhdohskzYEt70hGbt1HpbRYdSI1xtKVqLul7IVTUWVuqRrihK9hAtqRUTVq0h32f+kQadNT\nRTYvE5JtaYgr2WdxS7wH15JjWMfOYpHAPQcmwokt2nBSQbg1KhXoagYVXRbR5BM9JFVdk7Yy\nAd3W9Y+fVTBpKDEyId8Jz0Zq+kqdXVXdlPC90WDHU5s8qg6vqnxK+Gp5ZMQriawgsyQN69jF\ng70WZClSTwvCAVVZRFwEpxhbXWULmSepcqek27kn4US/TRWc6KMqK8PygbsX2oCGudFlXI0G\noRGlcsoQz84ZvXpuEoFTnz6xFqDF4hnr2FksEsRZinZrVAVEOSU+qsXO5dySn+oFkbbKpWPz\n5HIgBB8bR9UFsYA2WvR487rMNY3KslW9leYjjpIHfe/WMyOSl7ZI2MzmSdIQ+ZhXtzfPlmqL\ndeyixj5LkV1oTQvOfuPWOs11IbFLfEHLBSI+3R16u3Z5mi2vnf6lxKX/OBvV2agq45TkPFfR\ni3Wbhtiu2wha9e+2XVd98Xlxkw6mxWJxhXXsLBYNUnNLtCjYyU/cIj4pZdIuZ7OJe8WGfCLt\nF6ssnQKc2jMMq32iy8Sn8WDJGBb2M5Jp4Yu00uDetLU53rog9Q4jllbsCeBT3aqCW7EYLJ5d\n1VBDWaxjZ7G4gJiVRc+G3c5upP0/B2KGk5oo9HTo7E1VhUuP8x3FXniWPtqK0fs04jC6khTO\nkVLtcpWJ9LUHzNsVu68y54iYqiqxGJbJx5uVm0wC70jOjEzsWMfOYjFCuxBJz82qBTLaltN6\ncinm5+u09h4MHpBKyf7+rGjjqd7SqG7KzRd5PTRqnoZ/vIWVLqBzBzTANEy8K5Uh7eFwu6oY\nnqrLbb0YC4EPqT1GQWGFncUSAFKLi1VdzhZuxVYlB9PClx6c7eJGVJ1EpXvFnFUij1t4ZXOm\nnRuu1ybNBYgrueZ/vY+InHkhBnflBQaZkwxxuLi7CMP8RUOa3RWUBxPvQqpnhS1itYsKOzIB\nYoWdxWIEMeepZi/p1Gg41XEiz9lCyBeTyKopipVlJumpwnqrzq3zerjEawdH2lwYENLWMJ+g\n0jPXZyaHz49rmO1zdoAK1WKJAPuMncUSJNyjbM52lZfmlNdOfqz6caqoaqmmc7dTrONsEUuo\nTibSYs44hPp0kbfehYSfNFT+KHcumYyk5zRMvExpDk4t9oX04xBGSn6gc2OFr1V4luRjHTuL\nxQUmE55YWFyfTam/JCtuZx9BYwWi+IAdZ5NwEkFaTMxZ9ZyfZ5/SnLjqJg1uzNmD7scLFFtB\n+JrJMJkYMdRq1rezZAtW2FksFNrZVKqKuHVb5y0nzripIl35QBsxhfiZXaTP84m2kKgIub3e\nWk/svJ4opMeXvR9ICV9kRhxjy53h3HZV+WRibpYnuRci8T6YaIkRK+wsFop01S8TQPZEFDvX\nStciw0uJiM+qNC5Dw4fcpUuBqgfIpNurucPh9mG7DNIqnGkayMDGNeVbweGgeubVYvGDfcbO\nYtFgfkMvbucEn/iMjigTOf+DaN28JKrOppxi4x6V46qYoHqCUMyTq0U0Ec3DeWFHDja+uLYu\nPe6R6enIlnFzlVBHzx6daot17CwWU7xdJUWrLG3wxUnztjgXR3yQzvDZOCh+FU+VD70lK1wZ\n7lHFYDE5yh5QPfLIFkBonfJDxI/0JQf6sxDjaGTFh9TiASvsLJZgMLlKSsWWVHixzzDRTUin\ncHrWlxbTKjlpblK7iG7d7RNLHiYewxkrQO3FeWkxTpn+O+W5eoC3KzFicuysJLIkGbsUa7EE\niYdVMA9LjeKaKWfX0auiqqe4nAfynLBcnqqExXykwjSBBDU30y6aOfTJYGh3BZJG4BUTK4NC\nXetHgk3KxCZm8Yl17CyWYBCXLz3HAfMVWnEXZM9aEd9pUFWks9Wu6HlYWnI1i/iccqKfsQgX\n1i1+LDf/ZlJcdRNCNNLZYgkPK+wslsAI6nLPuW5EWNVTcarl2nTVnzIhjDfVY3aEUuRyi2vy\nS+xDZlK4PNNVfw0nkPiIamHRcAk+abhNLOHdsViyW9iVlZWtWbPm4MGDrVq1atWqVdzpWCwU\n9Hwgqih26VO07qTRpOqKEwqiJlPBLeyy1Tml6OfBMqKWnxk0K+Zd6SFw9dhiBJgfhWQqnmRm\nZbGERzY9Y1dcXDx+/Hjn7SuvvHLqqaeeddZBh2i+AAAgAElEQVRZhYWFrVu3PvvssxcuXBhj\nehaLN7RPuvj8koHJdwhUxQi9ZWIoihXDfp4JWfXkkKuhcxWTPTomJ0CoI2YSP4ITwxBtJgk5\nwZIzYpakkTWO3fz58y+88ML8/PwpU6akUqk333xzzJgx9erVGzVqVLNmzb744ou5c+decMEF\nRUVFvXr1ijtZi0WCN/UWiJWlEm3sxGD+OJ3q+TyT9T5XtbJlaS9sZzHenno4zRK1Dp6cTGiS\ndlZbspesEXYPPfRQo0aNioqKMmf/Pffc06ZNmyVLlrRo0SJTYOnSpUOHDn3ooYfeeeedWDO1\nWMKFWKI1rMs+SOeqvIOHZ7bS4fyum0Uk3kH29owg94RAjF3IllM0W/K0RE/WLMWuXLnyuuuu\na9++PYD9+/dv3rz5rrvuclQdgH79+v3oRz9atGhRfDlaLEGiWvFxVk4DvLLT0YJa8Qkq4YSs\nhTkkLZ8kYAfELfYssgRF1jh2ZWVlderUybwuKChIpVKnnXYaV+a0004rKSmJPDWLJRjMvQrP\nE4DbiuJyrUkQD+nF7tNUQ0Iac58BPVe3p5DFkiFrHLuzzz771VdfPXLkCIDatWsPGDBgyZIl\nbIFjx4699dZbnTp1iilBiyWLMf9RXDtx5ipxPYxvvwRgsQRL1gi7++6774svvhg8ePDf//73\nEydOTJkyZebMmdOnTz9y5Mjx48eXLl06fPjwTz/9dNy4cXFnarF4IUa/gfuWK0F46dl1qOix\nY26x5CRZsxR76aWXvvDCC3feeeeFF15Yp06dtm3b5ufnX3/99WPHjgVQVlaWSqXuuuuum2++\nOe5MLZYsw36twYL4vFh74lkswZI1wg7ATTfddNlll82YMePDDz/817/+tWfPntq1a9erV+/0\n008vLCy8/vrre/bsGXeOFotHsuUnLSyWZJKu/EvHyTyZ7SOAlsjIJmEH4JRTTpk0adKkSZPi\nTsRisVgSjVUSWUpitaklW8iaZ+wsFotn7PPplupAkp8aNMzN/IHXwLGXiJzBCjuLxWLJQZKs\nciwqnF+pjLhdq+pyiSxbiiXYuHHjLbfcAuDDDz80r1VaWjpr1qzS0lKijP3RY0u2Yyf43MOu\ntOYqsRxT1d8JtGQjuSPsDh48OHfuXLe1du3a9cQTTxw7dowoc/jwYQB5eXnek7NYLBaLJcHY\nm4ScIXeEXefOnVevXu22VqtWrdasWUOXKS4uLiwstMLOYrEkB9U0bJ08i6WakzvCrqCgoFu3\nbnFnYbFYLBaLxRIb2Sfs0un05s2bN23adPDgQQANGzbs0KFDq1at4s7LYrFY4sd6dRZLNSeb\nhN3evXsfffTRGTNmfPXVV9yu1q1b33TTTZMmTapTp04suVksFovFYrHETtYIux07dhQWFm7e\nvLlDhw7Dhw9v06ZN3bp1ARw4cGDjxo0LFix48MEHZ8+ePW/evMaNG8edrMVisViSi9sfAbY/\nGmzJIrJG2D3wwAPbt29//fXXR40aJe4tKyubNm3a+PHjH3rooaeffjr69CwWi8USEsF+I8T5\nEWDDgPZ3QCzZRdb8QPGcOXPGjBkjVXUA8vLyxo0b98Mf/vCtt96KODGLxWKxZBFuBaL16izZ\nRdYIu927d59xxhl0mS5duuzatSuafCwWi8USDYH/FQ23Aa22s2QRWSPsWrZs+emnn9JlVq1a\n1bJly2jysVgsluixf/bXYrHQZI2wGzly5BtvvPHUU09J/0rE4cOHJ0+e/Pbbb1911VXR52ax\nWCyRYd0ji8VCkDXf9Nm3b9/555+/cuXK+vXr9+3bt1WrVvXq1Uun04cOHdqyZcuyZcuOHDky\nePDg9957r169esE2nfnLE8eOHcvPzw82ssVisVgslqyjtLS0du3aRUVFAwcOjDsXnqz5Vmyj\nRo2WLFkyderU6dOnz58/v6yszNlVq1atXr16jR07duzYsfYPf1ksFosr7G95WCy5RNYIOwD5\n+fkTJkyYMGFCSUnJtm3bMn95okGDBq1bt7ZemsVisXjAPrFniJW/lmwhm4Sdw/9v787jojgP\nP44/K7vLoQioeIAIIt4XAlXxhT8RbVQ03hq0BEVIFBXvI8bWszH40nhrEuuBYotIY/RVj9IS\nE6r1IF7UAxUQ8FovFAURufb3x5jtFhBR0XEnn/df2WdmZ787BObrPLOzFhYWTZs2lTsFAJg8\nvV5Pt3upV731HSAjk/nwBADgbaCsvJS0i9hRMAkUOwAAXoJWB1NBsQMAAFAIih0AAIBCUOwA\nAAAUgmIHAACgEBQ7AAAAhaDYAQBgAlQqFTcdxEtR7AAAABTCJL95AgCAXxvupYfK4IwdAACA\nQlDsAAAAFIJiBwAAoBAUOwAAAIWg2AEAACgExQ4AAEAhKHYAgLeI2+oC7xLFDgAAVAo1/f3H\nDYoBAG8Rt9UF3iWKHQAAqBRq+vuPqVgAAACFoNgBAAAoBMUOAABAISh2AADZ8ClLoGpR7AAA\nABSCT8UCAGTDpyyBqsUZOwAAAIWg2AEAACgExQ4AAEAhKHYAAAAKQbEDAABQCIodAACAQlDs\nAAAAFIJiBwAAoBAUOwAAAIWg2AEAACgExQ4AAEAhKHYAAAAKQbEDAABQCIodAACAQlDsAAAA\nFIJiBwAAoBAUOwAAAIWg2AEAACgExQ4AAEAhKHYAAAAKoZY7gAnQarVCCHNzc7mDAACA94VU\nD943Kr1eL3cGE5CUlFRUVCR3indnzpw5hYWFISEhcgcxeampqQsXLtyyZYtGo5E7i8mbP39+\np06d/P395Q5i8g4fPrx79+6VK1fKHUQJPvnkk/Hjx3fo0EHuICYvNjb25s2b3377rdxBKkut\nVrdv317uFOXgjF2lvJ8/vLenXr16FhYWgYGBcgcxecePH1+4cOGIESMsLCzkzmLyVq9e7eHh\nwf+Wb664uDguLo49WSXGjx/v6+v74Ycfyh3E5CUnJ+fn53t6esodxORxjR0AAIBCUOwAAAAU\ngmIHAACgEBQ7AAAAhaDYAQAAKATFDgAAQCEodgAAAApBsQMAAFAIih0AAIBCUOxQDq1W+35+\nBZ7J0Wq1ZmZmZmZmcgdRAv63rCrsySrEzqwqGo2GPVkl+K5YlOPBgwfVqlWztbWVO4gSXL16\n1dXVVe4USnDr1q1atWrx5WxvrrCwUKfTNWrUSO4gSpCRkdGoUaNq1ThL8qZyc3Pz8vLq1q0r\ndxCTR7EDAABQCP6RAQAAoBAUOwAAAIWg2AEAACgExQ4AAEAhKHYAAAAKQbEDAABQCIodAACA\nQlDsAAAAFIJiBwAAoBAUOwAAAIWg2AEAACgExQ4AAEAhKHYAAAAKQbEDAABQCIodAACAQlDs\n8F/Z2dlTpkxxcXHRarUODg6hoaE6nU7uUKbq4cOHM2bMcHZ2Njc3b9y48cCBA48fPy53KJM3\nbdo0lUoVGhoqdxATdvDgwW7dullbW9va2vr5+f30009yJzJJly5d+vjjjxs0aKDRaOzt7QcN\nGpSYmCh3KJNRWFg4Z84cMzMzLy+vsks5Er0hlV6vlzsD3gsFBQXe3t6nT58eMmSIh4dHWlpa\nVFRUw4YNT506ZWdnJ3c6E/PgwQNPT8+MjIy+fft6eHhcvXo1JiZGrVYnJia2bdtW7nSm6uTJ\nk507dy4uLg4JCdm0aZPccUzS1q1bx4wZ06RJkxEjRuTn52/btu3Ro0c//vhjly5d5I5mSi5c\nuODt7a3RaCZOnOjm5paZmbl+/fr79+/HxcX5+fnJne59l5ycHBgYmJKS8uTJkw4dOpw8edJ4\nKUeiKqAH9Hq9Xr9ixQohxNKlSw0jMTExQojp06fLmMpETZgwQQixdu1aw8h3330nhPD395cx\nlUkrLCx0d3dv3769ECIkJETuOCbpzp07NWrU6NChQ25urjSSkpJSo0aN8ePHyxvM5IwcOVII\ncejQIcNIUlKSEMLX11fGVCbh0aNHlpaWXl5eKSkp5ubmnp6epVbgSPTmKHZ4zt3d3draOj8/\n33jQzc2tbt26JSUlcqUyUVOmTOnRo0dBQYFhpKSkxNLS0tnZWb5Qpi0iIkKlUh08eJBi99qW\nLVsmhPj73/9uPMhv92vo1KmTEML4F1yv19esWdPFxUWuSKYiKytr+vTp0q4rt9hxJHpzXGMH\nIYTIz88/d+5cx44dzc3Njcd9fHzu3r2bnp4uVzATtXLlyvj4eI1GYxgpKCgoKipq2LChjKlM\nV1pa2sKFC8eNG9e5c2e5s5iw+Ph4S0tLaa7w2bNnjx8/FkKoVCq5c5meFi1aCCEuX75sGLl/\n/35ubm7Lli3lC2UaatWqtXz5cuO/jcY4ElUJih2EEOL69evFxcVOTk6lxp2dnYUQV69elSOU\nonz77beFhYUBAQFyBzFJY8eOtbW1/fLLL+UOYtouXbrUuHHj8+fP+/j4WFpa2tjYuLm5RUZG\nyp3L9MyePdvOzi4wMPDIkSO3b98+c+ZMQECAhYXF/Pnz5Y5m2jgSVQmKHYQQIicnRwhRvXr1\nUuM1atQwLMVrS0hImDlzpo+Pz7hx4+TOYnoiIyN/+OGHtWvX2tjYyJ3FtD148ODJkyd9+/bt\n3LlzbGzs6tWrCwsLg4OD//KXv8gdzcS0bNny2LFjhYWFXbt2bdCggYeHR0pKSnx8vDRFi9fG\nkahKqOUOgPdI2UkZvV5f7jgqLzo6Ojg4uE2bNnv37lWr+Y17NXfv3p0+fXq/fv2GDBkidxaT\nV1BQkJmZuW3btqCgIGlk2LBhzZo1mz59+kcffWRmZiZvPBOSnJzct2/foqKir776qlmzZnfv\n3l2xYkWfPn3++te/9uzZU+50Jo8j0RviMAMhhKhZs6Yo799D0lU41tbWMmQyfXq9fsGCBYsW\nLerdu/euXbvYja9h8uTJBQUF69evlzuIEtSoUaOoqGjo0KGGkQYNGvTp0yc2NvbixYvciKfy\nxowZc+fOnStXrjg6OkojAQEBzZo1Gz16dHp6+osuIMNLcSSqEkzFQgghGjVqpFarMzMzS42n\npaUJIZo2bSpHKNOm1+tDQ0MXLVoUHh6+b98+/iS9hoMHD+7cuXPq1KnVqlW7cePGjRs3bt26\nJYTIy8u7ceOG9Lcelefi4iKEKFU77O3tBZNcryI3N/fEiROdOnUytDohhJWVVY8ePW7evHnl\nyhUZs5k6jkRVgmIHIYTQarWenp6JiYl5eXmGwZKSkoSEBCcnp0aNGsmYzURNnTp1y5YtS5Ys\nWbNmDZNcr+eHH34QQixevNjpF61btxZCREdHOzk5LVmyRO6AJsbb27u4uPj06dPGg6mpqUKI\nsper40WePn2q1+vz8/NLjUsjZcdReRyJqgTFDs+FhITk5eVJd7qSbNy48datW3x902vYvXv3\n6tWrJ0+ePGfOHLmzmLCQkJC//a+dO3cKIT744IO//e1vo0ePljugiRk9erRKpfr888+fPXsm\njZw8eTI+Pr5du3YUu8qzt7dv3LjxyZMnjU/OZWdnx8fH16xZs02bNjJmUwCORG+OrxTDc8XF\nxd27dz98+PCAAQM8PDySk5NjYmLatGlz/PhxKysrudOZGDc3t7S0tPDw8LK7TrpRgiypFCA7\nO9vOzo6vFHttU6dOXbVqlbu7+6BBg27cuLFjx47i4uK4uDhfX1+5o5mS77//fujQoXZ2duPG\njWvSpIlOp9u0aVN6evr69evHjx8vd7r3WkJCgnSbcSHE8uXL7e3tR40aJT2cOXNm7dq1ORJV\nATnvjoz3TE5OjvS99RqNxtHRccKECVlZWXKHMkkV/Malp6fLnc6EPXz4UPDNE2+gpKTkm2++\nad++vYWFhY2Njb+/f2JiotyhTNLRo0cHDhxob2+vVqvt7Ox69uy5f/9+uUOZgAruRpmSkiKt\nw5HoDXHGDgAAQCG4xg4AAEAhKHYAAAAKQbEDAABQCIodAACAQlDsAAAAFIJiBwAAoBAUOwAA\nAIWg2AEAACgExQ4AAEAhKHYAAAAKQbEDAABQCIodAACAQlDsAAAAFIJiBwAAoBAUOwAAAIWg\n2AEAACgExQ4AAEAhKHYAAAAKQbEDAABQCIodAACAQlDsAAAAFIJiBwAAoBAUOwAAAIWg2AEA\nACgExQ4AAEAhKHYAAAAKQbEDAABQCIodAACAQlDsAAAAFIJiBwAAoBAUOwAAAIWg2AEAACgE\nxQ74tQsICFCpVDdu3HjHrztx4kRzc/NTp06949d9Z6Qde/v2bbmDvFPz5s3TarUJCQlyBwF+\npSh2AKrYw4cPZ8yY4ezsbG5u3rhx44EDBx4/frzUOtHR0evXr1++fLmnp6csISsjIiIiNTX1\ntZ/u7u7eq1cvc3PzKoz05rKzs6dMmeLi4qLVah0cHEJDQ3U6XQXrR0ZGqsrzxz/+sdz158+f\n7+3tPXz48Hv37r2ddwCgIiq9Xi93BgByCggIiImJuX79esOGDd98aw8ePPD09MzIyOjbt6+H\nh8fVq1djYmLUanViYmLbtm2ldXJzc11cXJo2bXrs2LE3f8W3RKfTOTg4HDx4sHfv3nJnqTIF\nBQXe3t6nT58eMmSIh4dHWlpaVFRUw4YNT506ZWdnV+5TVq1aNXXq1BEjRjRq1Mh4vFevXt27\ndy/3KampqS1atBg1atTmzZur/j0AqJgewK/bRx99JIS4fv16lWxtwoQJQoi1a9caRr777jsh\nhL+/v2EkIiJCCLF///4qecW3ZO/evUKIgwcPyh3k5ZydnadPn16ZNVesWCGEWLp0qWEkJiZG\nCFHB0+fPny+E+Pnnn18p0siRI9Vq9dWrV1/pWQDeHFOxAP5HZmZmcHCwo6OjVqutU6dO//79\nExMTjVfYv39/x44drays6tevP3ny5KdPnzo5OXl4eEhLNRpNjx49xo4da1h/0KBBlpaWFy5c\nkB6WlJSsWrWqRYsW/v7+FSe5fft2aGioo6Nj9erV27dvv3r16qKiokrm7Nevn0qlys7ONowU\nFRWpVKqePXtKD0eOHKlSqXJzc2fPnu3i4mJubu7k5LRy5Uq9Xi89fcCAAUKIPn36qFSqI0eO\nlJvw2bNny5Yta9++vY2NjbW1dbt27ZYtW1ZSUiItNVxjl5GRUe5sZp06dQybunPnzoQJE5yd\nnbVarb29/cCBA3/++eeK989r2L59u7W19eTJkw0jw4cPd3Nzi4qK0r9g9kbah7a2tq/0QtOm\nTSsqKlq1atWbpAXwGtRyBwDwHrl+/XrHjh3z8vLCwsJat2598+bNDRs2/N///V98fLyPj48Q\n4l//+teAAQPs7e0/++yzOnXqxMbGBgQE5OTkODo6SltYuXJlqW0WFBQUFRUZ5nlPnz59+/bt\n4cOHV5zk3r17Xl5eubm5QUFBzs7OP/3005QpU86dO7dp06bK5HwprVYrhBg6dGjjxo137txZ\nUlKycOHCadOm2draBgcH//73v69Vq1ZUVNS8efM6dOjQqlWrcjcSFha2devWkSNHhoWFqVSq\nuLi4WbNmZWZmrlu3zni1OnXq/OlPfzIeSUpKWrduXYsWLQxvtlOnTtnZ2ePGjWvTps3169c3\nbNjQtWvXuLi4bt26VebtVEZ+fv65c+d8fX1LXfbn4+MTGRmZnp7u6upa9lmGYldcXKzT6Sws\nLIz76It4eHjY29sfOHBg9erVVZUfQKXIfcoQgMyMp2JHjRolhNi9e7dh6cWLF83MzDp37iw9\n/O1vfyuMJuaKioqkC606der0ou1Lh3bD5OyXX34phNizZ0/FqcLCwoQQcXFxhpG+ffsKIc6f\nP1+ZnNLKDx8+NKxQWFgohOjRo4f0MCQkRAgxYsQIwwppaWlCiH79+hnnrHgq1srKytvb23hk\n6tSpQ4YMKSoq0v+yY3U6XalnPXjwwNXVtU6dOpmZmYY3q1arjac7r127Zm1t7eXl9aKXTjHi\n6OgYEhJieFj2FSVXrlwRQowePbrUuDTZ+s9//rPcZw0cOFAIMXfuXMNFeM2aNfvzn//8omAG\n0ttPT09/6ZoAqhBn7AA8p9fr9+zZU69ePelYLmnZsqW3t/eRI0eysrJq1659+PDhFi1aeHl5\nSUvNzMxmz579448/vmibCQkJM2fO9PHxGTdunDSSkpIihHBzc6s4ya5du5ycnKQeKVmzZs30\n6dPr1atXmZyVfMtSQZS4urpaWVm90m1fNBpNZmbm3bt369atK41IF7FVQK/XBwYGZmZmxsXF\nSR9H0Ov1sbGx7dq1a9iwoeHeKBqNpkuXLnFxcbm5uTVq1Ci1kaKioqZNmxqPbN682fBJhQED\nBuzZs6fsS+fk5AghqlevXmpc2r60tCzpjF10dPSsWbMcHR2Tk5PXr1//u9/9Licnx3jCvSwp\nYWpqqouLSwWrAahaFDsAz92+ffvRo0eenp4qlcp4vHnz5keOHLly5UrLli3z8/NLdbIuXbq8\naIPR0dHBwcFt2rTZu3evWv38r839+/eFEBVP5+l0uqysLA8PD+Mkrq6u0lyhTqerOKe3t3cl\n33KpT3pqNBrpxF4lLVq0aPLkyU2bNh0wYED37t0/+OADw5T0iyxcuPDAgQMRERE9evSQRu7e\nvXv//v379+83aNCg7PrXrl0rOxFsZmYWGxtreDh+/PjOnTsHBQVJDyvOUGqnCSH0en2545I/\n/OEPEydO7N27t6ERBgYGenh4fP7558HBwdKMdrmksiv9uAG8MxQ7AM89efJElHdGx9LSUlqa\nlZUlhLCysjJeam1tbWZmVuoper1+wYIFixYt6t27965du6ytrQ2LHj9+LISwsbGpIMnTp0+F\nEC+6A9xLc1aw5VI0Gk3lVy5r0qRJbdq0Wbt27e7du6OiolQqVZ8+fTZs2ODs7Fzu+gcOHFi0\naNHgwYNnz55tGJROlbm7u0uTv6U4ODiUHVSpVEOHDjU8nDFjRrNmzYxHylWzZk1R3pk56Sdi\n/DMy5ufnV2qkVatW/v7+33//fVJS0m9+85sXvZz0eYtHjx5VnApA1aLYAXhOmpIrW4ykEWtr\na6kG5efnGy/Ny8srLi42HtHr9aGhoVu2bAkPD1+5cmWp2ifVi0ePHllYWLwoSf369cUvk4Cv\nkbPcZxUUFLzo5d6En5+fn5/fs2fPDh8+vGPHju3bt/fs2fPChQtlT2VdvXo1MDCwefPmkZGR\nxuOGwG/7hnmNGjVSq9WZmZmlxqWLC0vN7VZMOhuXm5tbwTrSj6/iBg+gynG7EwDP1a9fv1at\nWsnJyfr/vfPFxYsXVSpV8+bN69evX61atVLN4MSJE6W2M3Xq1C1btixZsmTNmjVlT+ZJk7DS\nyb8XqV69ur29fXJysvHE6OXLl9etW3fhwoWX5hS/nIozfnp6evrLdsDrMzc379mzZ2Rk5Lhx\n41JTU8+ePVtqhadPnw4ePLioqGj37t2lqme9evXq1Klz6dKlUkW2yr+5QavVenp6JiYm5uXl\nGQZLSkoSEhKcnJxKzUpLcnNzv/766+jo6FLj0s1rXnRiUiLlr8xHaAFUIYodgP8aPHiwTqeT\n7s0rOXv2bGJiop+fn62trVar9fLy+s9//nPp0iVpaXFx8dKlS423sHv37tWrV0+ePHnOnDnl\nvoThmvqKkwwYMCArK2vbtm2GkQULFoSHhz979uylOYUQ0vVqycnJhhW2b99eqV3wC6mSSpPC\n5Tp+/Lijo2OpzVarVk2UN8M7duzYpKSkrVu3tmzZsuymhg0blp+fv2zZMsPIvXv32rVr9+GH\nH75S5pcKCQnJy8szfqGNGzfeunUrNDRUepifn3/27FnpHJ4QwsrK6osvvvj0008NP3EhxN69\ne48cOdKhQ4dyb49iUJlPyQCockzFAvivhQsX7tu37+OPP540aVLz5s0zMjLWr19fo0YNw4c9\nZ86cOWzYMH9///Hjx9esWXPHjh2urq7GF8PNmjVLCFFSUvLZZ5+V2vjs2bPt7OykDw0cOnSo\nf//+FSSZP3/+vn37wsLCkpKSnJ2dExIS9u3bFxQUJN0J+aU5g4KCvv7662nTpi1btszKymrv\n3r3Hjh170SxtuaTWEhERkZ6e3rVr17IXk3l5edWqVeuTTz45cuSIu7u7SqU6efJkZGSkj4+P\nu7u78Zo7duyIiopyd3d/+PChdB8+g969ezds2HDBggX79+9fsmSJTqfr1q3brVu3vvnmm6ys\nrEmTJlUmakZGRiXf1JgxY6KiohYsWHDmzBkPD4/k5OSYmJi2bdvOmDFDWiE1NbVDhw49evSI\nj48XQlSrVm3Dhg0DBw708vIKCAhwcHA4f/78nj17atasWeqNlKLX6w8dOuTm5sZHYoF3Tabb\nrAB4X5T6SrFr164FBwc3aNBArVbXrVs3ICDg4sWLxutv3ry5efPmWq3W2dl57ty5BQUFWq22\nS5cu0tIK/tpItzQrLi6uV69ey5YtXxosIyMjMDCwbt26Go3G1dX1q6++ku4PV8mckZGRrVq1\nsrS0rFev3qeffpqdne3g4ODj4yMtle5jl5KSYvwUGxub1q1bS/9dUFAwZMgQS0tLOzu72NjY\nchNmZWVNmTKlSZMmVlZWNjY27du3X7JkSU5OjvGO1el0c+fOfdE+MdwnT6fThYWFOTk5qdVq\nW1vb/v37nzhx4qW76DXk5OTMmDHD2dlZo9E4OjpOmDAhKyvLsPTcuXPC6G5/kqNHj/bp08fW\n1latVjs4OAQFBZXab2WdOnVKCBEeHv423gKACqj0Ff4hBoCKPX782MbGpn///sYToxWLiIiY\nM2fOgQMH+vTp81azQS6BgYExMTGXL1+ueLoWQJXjGjsAr2Dr1q2+vr7S+RiJ9BnPSn6Rl2Ti\nxIm1a9devHhxlcfD+yAtLW3nzp1BQUG0OuDd44wdgFdw4sSJbt262dnZhYWFOTg4nDlzZuPG\njQ4ODklJSa/0PfHR0dEjR45cs2ZNeHj420uLd6+4uNjPz+/SpUvnz5+3t7eXOw7wq0OxA/Bq\n/v3vf3/xxRenTp16+PBh3bp1e/XqtXnTVH4AAADeSURBVHjx4nLvo1ux8PDwjRs3Hj161NPT\n823khCzmzZsXERHxj3/8w9fXV+4swK8RxQ4AAEAhuMYOAABAISh2AAAACkGxAwAAUAiKHQAA\ngEJQ7AAAABSCYgcAAKAQFDsAAACFoNgBAAAoBMUOAABAISh2AAAACkGxAwAAUAiKHQAAgEJQ\n7AAAABSCYgcAAKAQFDsAAACFoNgBAAAoBMUOAABAISh2AAAACkGxAwAAUAiKHQAAgEJQ7AAA\nABSCYgcAAKAQFDsAAACFoNgBAAAoBMUOAABAISh2AAAACvH/yq/oMVB9BFcAAAAASUVORK5C\nYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde5zV1L338bWBGWa4e+EmiFyGw0VUFEQscrBaHRGLlGOltPXyeOTxFOzT\n1kIPWpUjVj3Wly09IO3zQq2WopSCINKjVqRUECvQgqJSKwhtRVBAytUBBvbzx37MCWutrKxk\nJ3snmc/7D157spOVlWQz+c5vJdm5fD4vAAAAkH6Nyt0BAAAARINgBwAAkBEEOwAAgIwg2AEA\nAGQEwQ4AACAjCHYAAAAZQbADAADICIIdAABARhDsAAAAMoJgBwAAkBEEOwAAgIwg2AEAAGQE\nwQ4AACAjCHYAAAAZQbADAADICIIdAABARhDsAAAAMoJgBwAAkBEEOwAAgIwg2AEAAGQEwQ4A\nACAjCHYAAAAZQbADAADICIIdAABARhDsAAAAMoJgBwAAkBEEOwAAgIwg2AEAAGQEwQ4AACAj\nCHYAAAAZQbADAADICIIdAABARhDsAAAAMoJgBwAAkBEEOwAAgIwg2AEAAGQEwQ4AACAjCHYA\nAAAZQbADAADICIIdAJTf/Pnzc7lcLperqqoqd18ybtGiRYVd3aRJk3L3BYgewQ5AlB599NGc\ny2OPPabO8+STT7rnefTRR0vfTwDIJP5eARCjRYsW/eu//qs0cfHixWXpTJL179//xz/+sRAi\nG2Wkjz76qFOnTseOHdu4cWPv3r3L3R2gAcnCbxAAibV06dKDBw82b97cmXL48OHf/va3ZexS\nMtXU1Hz7298udy8iM2/evGPHjpW7F0BDxFAsgFh07txZCFFXV/fiiy+6py9btuzAgQNCiE6d\nOpWnZ4jfr371q3J3AWigCHZAvL7whS8UriS7/PLLpbdmz55deKuiomLnzp2Fifv27bv//vsH\nDx588sknV1ZWtm/fvra29uc//7m2/mE58+OPP15Y0T//8z8LIebPn3/uuec2a9asa9eud955\n59GjR4UQGzduHDly5EknndSiRYvLL7/87bffdrfw2muvzZ8/f/78+a+99prlhg8aNKhx48ZC\niGeffdY9vTAO27hx4wEDBmgXfPfdd//t3/6tZ8+eVVVVrVq1Ov/88//rv/6rvr7ePU8+n587\nd25tbW27du0qKipatWp1wQUXTJ8+3b3h0lavWLHisssuK2zg0KFDly5d6rsJgY5doC4NGzas\nvr7+W9/6Vtu2bdu3by+8b56IaUu3bdt222239e3bt3nz5tXV1WeeeebkyZOdD2GgYyG56qqr\ncrncq6++WvixT58+uVyuUIw0bL7l6kJs6RNPPDFw4MDmzZuffPLJI0aMWLt2bS6XM/QfSL08\ngDg5dw9UVlbu27fP/dbo0aMLb1155ZWFKevXr/eqY1144YW7du1yL24/89y5cwvT+/XrN2/e\nPOnENmHChPfff//UU091T2zbtu0//vEPp4Wrr766MP3qq682b++sWbMKc379618fPHiwEOLk\nk0+ur693ZihU8i688MJrrrmmMOesWbOcdxcsWKC9LfSSSy759NNPndm+9rWvaTf8qquuOn78\nuLrVL774YmVlpXvOxo0bL126NMJjZ9Olp556qjDx7LPPfvjhh52e5PP5X//614UfmzZt6l5R\nHFu6bNmy1q1bq222b9/+zTffDHosJCNGjFAX+da3vmXefMvVBd3S7373u1JrTZs2vfPOO6VV\nA1lCsAPitWfPHuf0M2/ePGf6p59+6lx59tRTT+Xz+U8++cQJat26dfvpT3+6aNGif//3f3eu\nph8xYoSzeKCZndDQsWPHzp07jxw58tZbb3VO7U2bNh0+fPhpp532rW9964ILLnBOgT/+8Y+d\nFkIEu2uvvXbKlCmF18uWLSu8+8c//rEwZcqUKaNGjSq8doLd+++/X11dXZg4adKkd999d82a\nNcOGDStMuf322wuzPffcc4UpjRo1mjlz5oYNGx577DFnw52d7N7qrl279u/f//bbb3fX3gYN\nGhTVsQvapa5du55++ukVFRX9+/fv1atX3iPYxbGl27dvP/nkkwvThw0bNn/+/F/+8pf9+/cv\nTOnVq9fRo0ftj4Xq7bffdtdo58yZs2LFivfff9+8+ZarC7Slr7/+ujP9kksueeaZZxYvXnzF\nFVc4O5Bgh0wi2AGxc1LRdddd50x0Tn4tW7Y8ePBgPp+/5557ClNatWq1bds2Z87Zs2c756e1\na9cWJgaa2TkdCiG+/OUvFyYuWLDAmVhVVbV58+Z8Pn/48OFevXoVJn7xi19UN8E+2P3Lv/zL\n6tWrC68LBZt8Pu9EvdWrVzttOsHu1ltvLUy5+OKLnQZ37tzZokWLwo4qVG5mzJgxYsSIESNG\nOM3m8/mRI0cWlr3++uvVrR46dKhT9XFqYI0aNTpy5Ih5cyyPXYgu9ezZ8+9//7szszbYxbGl\nt99+e2HiqaeeWuh8Pp//+OOPnVw1f/58+2OhtX37dqc/GzduVLdR3XzL1QXa0nHjxhUmtm3b\n9sCBA4WJR48ede7SJdghkwh2QOyc8aNTTjnFGZS88cYbCxNvuOGGwpRzzjmnMOXGG290L15f\nX3/SSScV3po6dWqImd2nw9WrVxcmHjlypGnTpoWJY8eOdVqYOHFiYWL//v1DbKw72B0/frxQ\nVuzatWvh3XPPPVcI0alTp+PHj6vBrkePHoUp3//+9z91KVxQJYQwDJ5+85vfLMxz+eWXq1vt\nlAzz+bz7SqytW7eaN8fy2IXoUqHU5/Aaio18S/v161eYcvPNN7ubffXVV59//vnnn3/+vffe\nyxd3LGyCnbT5lqsLtKV9+vQpTLnpppvc67r33nsL0wl2yCRungBiN3LkyELhYffu3atWrRJC\nHDt2bMmSJYV3v/71rwsh8vm8c7/CWWed5V68cePGTo1h48aNQWeWOOf1ioqKtm3bFl6fffbZ\nzgwdO3YsvNi/f3+IjXXL5XKF9LZ169Y333zzgw8+WLdunRBi1KhR6gXs+Xx+y5Ythdf33Xdf\ntcsrr7xSmO5s9dKlS0eNGtWjR4+qqqrC1fTTp08vvKW9y2TgwIHO6zPOOMN5XdjGffv2dVUc\nPnxY2B27cF265JJL/Pdg1Fuaz+edT4WTpQo+97nPXXHFFVdccUVNTU2gYxGOe/PDrc68pUKI\nrVu3Fl707NnTveCZZ55ZTM+BhOM5dkDsqqurr7766jlz5gghnnvuuaFDh65YsWLXrl1CiNNO\nO61whjt06JBz918hSbg5V3QVTlqBZnZr2rSpM+JW+LHwok2bNs5E6YL0Io0aNWrmzJlCiJde\neqlZs2bORHXOQ4cOHT9+3NzaJ598IoT46U9/On78+MKU5s2bd+/evbKyctu2bYVdqmratGnL\nli2dH9Ur9I8fP/7Xv/5VmpjP54XdsQvRpcaNGzup2iDyLT106JATB53Krsr+WIQjbX6I1flu\naT6f//TTTwuvnQ+e9kcgY6jYAaUwduzYwovCwz4WLVpU+PGrX/1qo0aNhBDNmjVzrunet2+f\ntLgT0Qp3PASaubwuvvjiQmpctmzZyy+/LIRo06aNc1G8W7NmzQqPRxFCTJs2TTvE8B//8R8H\nDhxwBou/+tWv7ty585133lm/fv21114b0yb4HrsQXWrSpElhWYM4trS6utpZ78GDB71mszwW\nobshbX4cq3M/OEbaUvW/DJAlBDugFC6//PJTTjlFCPHuu+/+5S9/ccKBM5aXy+WcQdL169e7\nlz169Og777xTeF0YMw00c3lVVFRceeWVQogVK1b87ne/E0KMGDGioqJCnTOXyzmDg87AnGrd\nunWHDh0qvJ40aZJTgHz33XdDd7JNmzZqknBige+xi6NLMTXbqFEjZ1xSGql/6qmnfvCDH/zg\nBz944YUXLI9FVGJaXZcuXQov/vznP7unF64HALKKYAeUQkVFhfPYtqlTpxYG/s466yznHggh\nhPNotEWLFn3wwQfO9CeeeKJQhMvlcs4gZqCZi/f6668vWrRo0aJF7kdIWCp0Y//+/YXRNEOv\namtrCy9+/etfO5nm2LFjX/va12666abbb79927ZthUvfCgqPVhZCvPPOO4XU6J4YFd9jF1OX\nYmq2kLOFEIsWLdq7d2/h9Z49e2699da77rrrrrvuKnycbI6F1yrcF1B6jRpLilmdlwsvvLDw\nYvHixXv27Cm8PnDggPvOcSCDAt9uASCU5cuXS//7HnzwQfcMe/bsKTy8VwhRU1PzyCOPLFiw\nYNKkSc6VcO7bGAPN7HXHpVMm+elPf+pMdK7N79GjhzMx3ONOClP279/v9Kqqqmr//v1Sm85d\nsZs3b3bqUkOGDPnNb37z4osvOhH2zDPPrK+v37ZtmzOK98UvfnHDhg2LFy/u1KmT85SWVq1a\nvfbaax999JHXVv/97393DsGGDRv8jls+73fsiu+S9hjFtKV//etfnavTLrjggl/96ldz5sxx\nvgWkS5cuhSeD2BwLr91VX1/vFGWHDh06b968F198UbuNDsvVBdpS91EbMGDA3Llzn3zyyfPP\nP9+5LLVRo0Y2Rx9IF4IdUCLOsz+ck4r7OV4Fhi+TGD16tPTkMPuZyxvs8vm8UyVyPzZZDXaF\nrjop0K1Tp07OgzOc5304TjvttC1btpx22mnOlClTpkQY7HyPXZFdynsco5i2dMmSJdobCDp0\n6LB+/fpAx8LL8OHD3YsUjrv5kS42qwu6pf/rf/0vqbXmzZvPmDHD+fHYsWPmDQFSh6FYoERy\nudyYMWOcH4cNG+aU3BznnHPOO++884Mf/OD8889v3bp1RUVFx44dv/SlLy1evFj9wqVAM5fX\nl770pcIL39Hha665Zt26dTfddFO3bt2aNm3arFmzfv36ff/739+wYYPzGJeHH374wQcf7Nu3\nb3V1dadOnW6++eY1a9Z07dr1ySef7NWrV5MmTTp37uw8wywSvscupi7F1OyIESPeeuutb3zj\nGz179iw8VeTMM8+8/fbbN2zY4L42wOZYeJk1a9aoUaPatGlTVVXVrVu3z33uc769KmZ1Xh59\n9NGHH364V69elZWV7dq1u+aaa15//fXPf/7zzgyGO0iAlMrl8/ly9wEAAAARoGIHAACQEQQ7\nAACAjCDYAQAAZATBDgAAICMIdgAAABlBsAMAAMgIgh0AAEBGEOwAAAAygmAHAACQEQQ7AACA\njCDYAQAAZATBDgAAICMIdgAAABlBsAMAAMgIgh0AAEBGEOwAAAAygmAHAACQEQQ7AACAjCDY\nAQAAZATBDgAAICMIdgAAABlBsAMAAMgIgh0AAEBGEOwAAAAygmAHAACQEQQ7AACAjCDYAQAA\nZATBDgAAICMIdgAAABlBsAMAAMgIgh0AAEBGEOwAAAAygmAHAACQEQQ7AACAjCDYAQAAZATB\nDgAAICMIdgAAABlBsAMAAMiIJuXuQDq88cYb9fX15e4FAABIhCZNmpxzzjnl7oVG6oPd0aNH\n//KXv9TV1fXr169p06ZxrGLt2rXnn39+HC0DAICUWrNmzcCBA8vdC1magt2yZcvuvfferVu3\n9unTZ8qUKRdccMGLL7540003ffjhh0KIVq1aPfDAA+PHj498vUeOHBFCHD58uLKyMvLGAQBA\nuhw5cqRp06aFeJA0qQl2r732Wm1tbX19fatWrV588cVXXnnlpZdeuvbaa1u3bn399dfX1dW9\n9NJLEyZM6N69+xVXXFHuzgIAAJRBam6eeOCBB0499dQ33nhj7969O3bsGDRo0Fe+8pVu3bq9\n++67Tz755K9+9avNmzd37dr1Jz/5Sbl7CgAAUB6pCXarVq2aMGHC2WefLYRo27btD3/4w7/9\n7W/f+c53qqurCzOcdNJJN9988+rVq8vaTQAAgLJJTbDbu3fvGWec4fzYqVMnIUTbtm3d83Ts\n2HHfvn2l7hkAAEAypCbYnXLKKZs3b3Z+/Mtf/iKE2LRpk3uezZs3n3LKKaXuGQAAQDKkJth9\n/vOfnz59+u9+97sjR45s2LDhm9/8Zp8+fR5++OFt27YVZti4ceNPf/rToUOHlrefAAAA5ZKa\nu2KnTJnym9/85pJLLin8ePLJJ69cuXL48OH/9E//dMEFF9TV1a1Zsyafz0+aNKm8/QQAACiX\n1FTsevfuvWrVqrFjx15wwQU33njjqlWr+vTps2TJkn79+i1fvvy1117r0qXLggULBg0aVO6e\nAgAAlEdqKnZCiH79+j311FPSlNdff/3AgQOffvqpdCMFAABAQ5OmYOelRYsWLVq0KHcvAAAA\nyiw1Q7EAAAAwy0LFrmDz5s233HKLEGLp0qWBFvzb3/5WX19vmKHwXbQAAAAJl51gt3///pdf\nfjnoUps3b+7Zs2c+n/ed89ixY6H6BQAAUCLZCXa9e/fesGFD0KV69Ojxj3/8wxzannjiidtu\nu41gBwAAEi47wa6qqqpfv34hFmzVqpV5hmbNmoXqEQAAQEll6uaJ3bt3S18yBgAA0HBkKtg9\n9NBDPXv2LHcvAAAAyiNTwQ4AAKAhI9gBAABkRGpunhg4cKDvPNu2bStBTwAAAJIpNcFu3bp1\nQoiKigrDPObnDAMNRC6XE0LYPJ0RAJAxqRmKnTRpUvPmzd966606bxMnTix3NwEAAMomNcHu\n3nvvrampGTt27NGjR8vdFyDR8vk85ToAaJhSE+wqKirmzJnz9ttv33HHHeXuCwAAQBKl5ho7\nIUSfPn127NhhuJBu+PDhbdq0KWWXAAAAkiNNwU74ff3XsGHDhg0bVrLOAAAAJEpqhmIBAABg\nRrADAADICIIdAABARhDsAAAAMoJgBwAAkBEEOwAAgIwg2AEAAGQEwQ4AACAjCHYAAAAZQbAD\nAADICIIdAABARhDsAAAAMoJgBwAAkBEEOwAAgIwg2AEAAGQEwQ4AACAjCHYAAAAZQbADSieX\ny+VyuXL3Av8fhwNA9hDsAAAAMqJJuTsANCD5fL7cXcD/4HAAyB4qdgAAABlBsAMAAMgIgh0A\nAEBGEOwAAAAygmAHAACQEQQ7AACAjCDYAWXD03EBANEi2AHlRLYDAESIYAeUE8/IBQBEiGAH\nlA2pDgAQLYIdAABARhDsAAAAMoJgB8SFGyMAACVGsANiRLYDAJRSk3J3AMgs7o0AAJQYFTsA\nAICMINgBAABkBMEOAAAgIwh2QARyuRz3SQAAyo5gBwAAkBHcFQtEgBtgAQBJQMUOyBrGhQGg\nwSLYAdlEtgOABohgB2SN17gwlTwAyDyusQMyiGv+AKBhomIHZF+hUJfP5wl8AJBtBDsg4wqp\njkFYAGgICHZARnhFt0KVjlodADQEBDsgC8xlOVIdADQQBDsgCyjLAQAEwQ7IDFIdAIBgBwAA\nkBEEOwAAgIwg2AEAAGQEwQ5ICr7yCwBQJIIdEBmSGQCgvPiuWCApuK0VAFAkgh0QGZIZAKC8\nGIoFAADICIIdAABARhDsAAAAMoJgBwAAkBHpvnni2LFj77zzzv79+08//fTTTz+93N0BEL3C\nE2S4MQUAbKSpYrdq1apbb73V+fGXv/xlp06dzj777CFDhnTp0qV///6vvPJKGbsHAABQXqmp\n2C1fvry2traysnL69Om5XG7+/PnXXXddixYtvvzlL7dt2/a99957+eWXL7/88ldffXXAgAHl\n7iyAyFCrAwB7qQl299xzT5s2bV599dXCuMz3vve9M84447XXXuvYsWNhhtdff/3zn//8Pffc\ns3jx4rL2FNDI5XIEFABA3FIzFPunP/3p+uuvr6mpEULs3bt3y5Ytt912m5PqhBAXXHDB17/+\n9RUrVpSvj4Be4a8Rvm0MABC31FTsjh07Vl1dXXhdVVWVy+U6d+4szdO5c+e6urqSdw3wQa0O\nAFAaqanY9e/ff+7cuYcOHRJCNG3a9MILL3zttdfcMxw+fPiZZ57p1atXmToIAABQZqkJdpMn\nT37vvfeGDh3629/+tr6+fvr06XPmzPnFL35x6NCho0ePvv7661deeeUbb7wxfvz4cvcUAACg\nPFIzFHvVVVfNmjXr29/+dm1tbXV1dbdu3SorK2+44YabbrpJCHHs2LFcLnfbbbeNGzeu3D0F\nGgQeLwcACZSaYCeEuPnmm7/4xS/Onj176dKlf/7znz/55JOmTZu2aNGia9euQ4YMueGGG847\n77xy9xEAAKBs0hTshBDt27efOHHixIkTy90RoKErV62OB8cAgEFqrrEDAB4ZAwBmKavYAWjI\nqNUBgFl2gt3mzZtvueUWIcTSpUsDLfjBBx8cOXLEMMOuXbuK6hkAAEBJZCfY7d+//+WXXw66\n1ObNmwvfZuGLUkHmcfEWACDtshPsevfuvWHDhqBL9ejR44MPPjh8+LBhnqeffvrOO+/k4p6G\ngGwHAEi17AS7qqqqfv36hViwU6dO5hlOPfXUUD1C+pDqAEs8yBBIpkzdFbt79+5NmzaVuxdI\nK05RAIC0y1Swe+ihh3r27FnuXgBA9uXzef4WAhIoU8EOAACgISPYAQAAZERqbp4YOHCg7zzb\ntm0rQU8AAACSKTXBbt26dUKIiooKwzz19fWl6g4AAEDipGYodtKkSc2bN3/rrbfqvE2cOLHc\n3QQAACib1AS7e++9t6amZuzYsUePHi13XwAAAJIoNcGuoqJizpw5b7/99h133FHuvgAAACRR\naq6xE0L06dNnx44dhgvphg8f3qZNm1J2CQAAIDnSFOyEEK1atTK8O2zYsGHDhpWsM0By8C23\nAACRoqFYAGaF7+5EVNifANKIYAckVy6Xs48XkVTsSDMFhf3A3gCQOgQ7IAsiTHWkGfHZ/mR0\nG0DqEOyA5Crx96yTZtzYDwDSiGAH4H+QZgAg1Qh2QNYEujIPAJAlBDsAAICMSNlz7AAE5VTv\nGGYFgMyjYgdkjRTguCUi2xh5B+BGsAOyRj3NJzzV8ZgVAIgKwQ5AOblTHdkuhBI/EwdAwnGN\nHZBBKTrTO13l624BoHhU7ICsSWk8Smm3ASBRCHZAKTDICAAoAYIdGrTS3FHIBWQAgNLgGjsg\ndgwyAgBKg2CHBo3IBQDIEoZiAQAAMoJgB2QZX0sAAA0KwQ4oETJWxnBAASQQwQ4ILEWnc76W\nAAAaFG6eAMLQfk1CIfDZT0eqcUABJBDBDrDl5DPO6ACAZCLYAZHxCnwEQQBAaRDsAFsJyWcM\n7AIAvHDzBJAyRDoAgBeCHZA+9tmOR3IAQINCsAMyjgofADQcBDskHTWnYpDqYsJnEkAyEewA\nk8Sev0uTd0nVWuwTAInFXbFIurLXnLTPIm44Qmx75u/bzfCmAUg7KnaAhrtSFdNZvMiqT2me\nk0yCkZS3hEkBFYAvKnbA/1BLTQlJdcWnzNBVtBAFS+IgAJQLwQ4oXZ4rsv1yBSZztsv8wKtb\neTezgexkAMUg2KGhc4phSb6WrviOhW7Bd8F8Ps/4IAAkBNfYAZ4CXdIkzVzMsqmT2EAMAA0N\nFTs0dDahJNx1ZqnOagCANCLYAZ7cYc4326nv2mfBhlDxalCX4gFAuTAUC1gpJJL4inBxjMYm\nbYSXVAcAcSPYoWEJF3Tcqa5cUSlpKS0oUh0AlABDscgsdeyv+GcCF9un0jaetCzFaCwAxI2K\nHRqQEkeKaGtspfmqCQBAqlGxQ1JEXs6RmqJcVHbsfACIGxU7JELprx4rwRqpsQEASoyKHZKi\nlN/i5dwGQfACAGQJFTskRSmLdoU8R6oDAGQMwQ5JUeKYla5Ul/ZnnSA5+CwB2UawQyKkK2al\nC2dxAGg4uMYO8OEEo8jTp/2NuqFXzdWEkPBJALKNYIcGp7zPPSnx2jmLA0CDQrBDw1LMV4pF\nLqWpq/TJmGcQAoAlrrFDFgSNa4EiQrR5gofbAQDiQ8UOCRLuUrBAqa6MI7CZyXOl35DM7DoA\niBsVOyRFuEHSQmBK+Im/yPtSU3RbK4/SAIDyItghKULX6pKfJIrJneo2Zjs8ZXjTAKAEGIpF\nggQNQIb5g15uH/fl+aFbzufzKRrGLbKfMT2chXsvADQcVOyA/y+xJ36pY8kfeg6Nr3oDgCJR\nsUM2RVj8S4ts1KXi6L9lm9nYgQAaOCp2QFJk++I5wBf/BYDiUbFDyiShrJKEPqiS1p/UobCX\nECm6qBRIIIIdkBSczNDA8V8AKB7BDimThF/9SegDzJwRvcgPFkcfQJJxjR2yw3yBju+78XQK\n5cENtgAapiwEu3379k2ePPnPf/5zuTuCE6ToOui0POgYgZDqADRAGQl2Dz744KZNm8rdEYQX\nSQo0P+DN/a60OpvqTuhvPCMvAgBKJjXX2N18881ebx06dEgIMX369EWLFgkhHn300dJ1C95K\nUy+J6hbFOFIdAAAllppg99hjj5ln+O1vf1t4QbBLoxKPmkmr8328QuF7vYpfEQAAsUrNUOx3\nvvOdxo0b9+/f/4UXXthzorffflsIMXfu3MKP5e4pihVo+LKY79fKfUZY1OSyEdEYGk44DpAl\ndhTgJTXB7kc/+tEf/vAHIcTw4cPvuOOOXC7X5jOtWrUSQjRv3rzwY7l7ipTh9kkgdfgPC3hJ\nTbATQgwcOHDNmjUPPPDAE0880bdv3wULFpS7R4iFZRGu+D/ZnRUl8yQRR02imAInSoADZI8d\nBWilKdgJIZo0afLv//7vGzZs6NOnzzXXXDNy5Mi///3v5e4UEAv78xbDUgCAgpQFu4IePXos\nXbr05z//+auvvtq3b1/ulmiY7Gsb7mvp0iVcTSKS7U3j7gIApDLYFdx4440bN2686qqr7rnn\nnnL3BWXgJI9oc1saA42UcbXjy4F2EU9sBoCUSs3jTrTatWv39NNPX3/99S+//HKPHj3K3R1E\nzP2MOu0TSXwfU1IQtO5l2WzZGZ7hV2T/C493ScVOKJmonpgIALFKd7ArGD58+PDhw8vdC8TI\nKSBJp1Xnx2hPtyk9eZuTR9CNSulOAIAGLgvBrkgffvhhXV2dYYZdu3aVrDNwc+c2NdtZprqg\nhZZinoqnLh507b7zu2coZfaiXqXddnYLgKTJTrDbvHnzLbfcIoRYunRpoKVqapggY04AACAA\nSURBVGps5uR3d3kVuf/tT8A2Q5BSa861aOX9kESydkZgASDVshPs9u/f//LLLwddqkePHn//\n+9+PHDlimOfpp5++8847uZA8pZxL9GxmLuYoR3Ktm+/8saYuw+YXv95MFrcytjkAMiA7wa53\n794bNmwIsWDnzp3NM5x66qmheoQEsTwBm78T1okm2kv9igwuScg9ob8SFwCQENkJdlVVVf36\n9St3L+AvyYN9xJr4Dk1iDzoAZIltsNu6deumTZt27dq1d+/e1q1bn3rqqTU1NV27do2zb4Ht\n3r17z549ltfMoSy87m+NsPHQD/UtchjUfcldiD40qNyThPIkAGSST7B7//33p02b9vzzz2/a\ntEl9t6am5sorr/z2t7/drVu3eLoXzEMPPfTggw9ytkiyJB8d9xOPixxRTXJVsozcY9klKI5y\nFAA0QJ7BbufOnZMnT/7FL35RX1/frl27MWPG9OzZs127dm3atPnHP/7x8ccfv/fee8uWLfuv\n//qvmTNnXn/99f/5n//Ztm3bUnYdKPC69C0ow5OQAzWS0jxR4m7HvS4SNoCGSR/sli9fPmbM\nmN27d3/lK1+57bbbzj33XO2f1/l8ft26dT/60Y+efPLJJUuWzJs3b9iwYTF3GJAZyj/2Q34R\nPus4jUmiNDEoS8ERAJJJH+wuv/zyCy+88PHHHzd/T1culzvvvPN++ctf/sd//Me//uu/XnbZ\nZebnhhRj4MCBvvNs27YtprUj4QwPjw2hAV4B1qA2FgAyTB/sJk+ePGXKlMaNG1u2UlNTs2zZ\nsnvuuSe6jsnWrVsnhKioqDDMU19fH18HUDLS836LfPxvoKXcJauo4h2jgQCAkmmknTp16lT7\nVFfQuHHjqVOnRtElvUmTJjVv3vytt96q8zZx4sT4OoCSkb4vK9zXZ4WOZYUcVvwVe+5uRHKj\nQC6X42kskPCpACDRB7sEuvfee2tqasaOHXv06NFy96VBK82JxOsJwA6vjhU5/CqtOqrr7dxV\nwAj3XpGbrG3NeR1Vm5G0E7e09BMAfKUm2FVUVMyZM+ftt9++4447yt0XJJFa57O/8C7WL3uN\nqk2vb7yIsP3Ci6iqjIZ2EhWkIqyqloY7gkdVWgaQGWn65ok+ffrs2LHDcCHd8OHD27RpU8ou\nNUBlPIu4V60dafXtm9fJuwSPVXNGeKNtNtoGnaQYyXWBXi0kLUIRjABkSZqCnRCiVatWhneH\nDRvG81ZgYAhwxd8z4btgiu6iyMxDTzKJHQjAIGXBDigIfW5LSMURMGuAz9wBEAmCHTLIpnjm\nNYPvgK+2HcPwYoSPTYmkHQBAhvkHu3w+P3/+/F/84hcffPCB9o7Ut956K4aOoYFKVHyxv/Yu\nvd8kVnpZGrOOD3sAQDj+we7hhx+eNGmSEKJZs2bm5wMDxYvkPgbzSdH9UA/f06d5Bptno0R+\n16ojvssByyjE0U/y5qQR+xNINf9g95Of/KS2tnbmzJndu3cvQYeQbTbnjECDoSHW6zwVz77Z\n+E51DfAk6nv0k3bbbEPDIQBSzT/YffTRR/PnzyfVIUJxfHNXUBnIUmm8g8RG0Npkwjcnjdil\nQHr5B7v27dvznxxR8SoGeNXPovomMffXzob4PMf3X8Cm5QZY1UusqJ5lzTEFEBP/b54YO3bs\n7NmzS9AVZJX0tVfSc3oj/GLWqJTx+zdDr7rIPif8K0eT8wmJ9ts+ACBy/hW7u++++5prrvna\n1752/fXXd+nSRb1/oqamJp6+AYGp1+e5J3rV7UKUT0p556bNirguqmQiOe5EQwAx8Q92LVu2\nLLx46qmntDPwGwpmhcyhDU+xPuMt9CNILL+aLI5sV0yD5VrWoJjjy0NPACAE/2A3duzYysrK\nJk14lDGKVcyFbuGWsrxuL0Sz0cYOrriSUH0EgHD845pXoQ6wF8n9jInKPYnqTGIVc99u5NmO\n9AygIQhQh9u1a9d777138ODBli1b9urVq02bNvF1CxkW7syqXSros+gsZy59AiBtqNgnDVBU\nNx0DDZn/XbFCiJUrVw4ePLht27af+9znLrvsssGDB5988slf+MIX+DKxzLO5WdIwT6z3WjoX\nugmLuybtu2GeM+F3j8IgObfWwgsHCCief8Vu9erVX/jCF+rr6y+66KJevXpVV1cfPHjwnXfe\nWbZs2ZAhQ1avXt2rV68SdBTpFflV8CEqakGH9jjBAGXBfz2gSP7B7gc/+EHbtm1feuml3r17\nu6evW7fuiiuuuOeee7gIL8MsH7ShnV7iypZv2rM8YRhmS8tFWmnpJwAgcv5DsatWrRo/fryU\n6oQQ55577vjx45ctWxZPx5BW0pNNnPGv3GeKX4V2TK0h5JicS9m7Ua5Vl2W9AJAW/hW7vXv3\ndu7cWftW165dP/nkk6i7hOxwP9/ELJIiU9zZzlybTE6yTE5PohXf4wMBIDP8g127du02btyo\nfeudd95p165d1F1CumXpm9rNia3B3jxbrm5E/vhAAMge/6HYyy+/fPr06c8++6z0/Z4LFy58\n5JFHhg8fHmf3kAU2dyNa3rFY9lFIrSzdbmm5e8tyIMqY6pL5wQMAlX/FbsqUKf/93/89atSo\nDh069O3bt3nz5oW7Ynfs2NGxY8cpU6aUoJdIoDjOsjY3QBR/frV/VpZ5BqkzZS8mFd+BJGcX\nxmEBwIZ/xa5r165r16694YYbPv3002XLlj333HPLli07cuTIzTff/Mc//tHr8jskXzFFiBIk\nAK9V+D6vTrtghHFQmqL+Gy3LwxTVXSn2c5Y4YDn34pRype61EygBpILVN0+cfvrpTzzxRD6f\n37Fjx8GDB1u0aNGhQ4e4e4Yki+Mbn4Rys4VUngl6TZszv7bYE+I8bWgh8gf1SQ36VqqiOiJx\nx5diSm5pjFZJu7EGQObpg92OHTuaNm160kknFV4703O5XIsWLaSJhLyUSs4tqNqTX+hvHiuU\nuNTUpU4P2nK4BYOShneFx0apiv/WtWLYrMgrepJ+ACAq+mDXsWPH2traF154ofDa3AS/jlEa\nQT9ppf9kxvrQlnAlRlGSbGdZLIyvG4mNhsV0KbEbBSDJ9MFuzJgx/fv3d16XsD9oiHxrdYYz\nnJpairwlwne96sT4TsBOm6FTXbhlta0Zjkvc1d/yRpzMByxuSQGyRB/s5s6dq30NJFDo01Lk\nJ2zfGzuCritED91hy7eQZtl+ku+WLchkLinlRpHtgMzwvyt25cqVXl8vsXr16gULFkTdJUBm\njimWJ6RAhSXnmjZ1EXWifctFJqSgNzJHdS+nYXS4NGmgvDelZv6W2MxvINCg+Ae7oUOHvvLK\nK9q3VqxYMW7cuKi7hIwLlE6cmb2eJ2JzQvJao3o+8+2bdGdDJKWs3InMPfQVaBH7mRvUiT+q\nIwsApef5uJNNmzZt2rSp8HrdunVVVVXSDJ9++um8efMOHz4cY++Az+SVr5NyDyNKQ4qBRhi1\ns3ldzxeu82qb7lXbjJkaehWHzF9VZmZ/RAAgaTyD3fz582+//fbC66lTp3rNds0110TfKWSa\nZY1NKPWk0BeoBapg2b8b7cV5sWapQI2TaUQDDrUA0s4z2E2ePPmGG25Ys2bN1Vdffd111/Xt\n21eaoXHjxt27dx85cmTMPURDlP/syW3C7vEf2sjlG1DKe9mWUOp25eqMJFD+S063AQDC/M0T\nHTt2HDly5IgRI8aPHz948GB1hoMHD+7evZsHFCNyDadoFO45JjajzMUUOyOk/RYNQSIsE3Y+\nkHn+N08sWbJEm+qEEM8+++x5550XdZcAIUINvBruPEjm5fCht1HdFvX7KuJmM8at7W3SUkUy\nPxsAEI7Vd8Xu2rVr7ty5W7dura+vdybW1dUtWbLkwIEDsfUNGWRTMCjUeKI91xbZYOR1jiIb\n9Lq3I9pRXftOes1pM4yOUmLPA5nnH+y2bt06aNCgnTt3ahZu0uSuu+6KoVfIjqAJxl3jMSyl\nzuC7imyc0oqJSiEeQpuNnWaWim2M9ntEAGSYf7C788476+rqZsyY0adPn0svvfTRRx/t3Lnz\n8uXLZ8+e/dhjj9XW1pagl8gMm/hV5EPw47iKKNyVcIYFw3Wv+N0SdHWWO5O0Ebfi/18AaCD8\ng92KFSsmTJgwYcKEuro6IcSZZ545ePDg2traMWPGXHrppYsXLx4yZEj8/URahTgVaR9N55bS\nK6JCFF0iDKlkgrTjCAKw4X/zxPbt27t37y6EaNSokRDiyJEjhen9+/efMGHClClTYu0fGo6o\nrmGP6vuRiuxPhLdulPHq/qh2JsorqzeIZHW7gGL4B7uWLVt+9NFHQojKysoWLVq8//77zlt9\n+/Zdu3ZtjL1DGtj8bpVmcN/d6bWsFCncc+Y/E1X3SiNQt92LxNclRCg5nzQADZnVd8X+7Gc/\nW758uRDirLPOeuSRR5w7YZctW9a0adNY+4d0MZzYLB8X7D47qi/crXmFRa8ZbN6S+hNVqCqy\nKe3ilhkiA2kjqv5nYFeEltW/ELK6XUAx/IPdHXfcsXv37okTJwohxo0bt3bt2r59+44ePfrc\nc8+dNWvWZZddFn8nkWjO71bzWVP7+1f6vSyV6KQ2g16apl2Fex6HfWuJYu5YJN0OHYaiSlHq\nxyAJtFtHyACQBP43TwwaNGjlypWrV68WQtx4443vvffetGnTFi5cmMvlRo4cOW3atPg7iTLT\nXsKvTvR9Op12Nqkd9YVwfcOY9l0v5jtSpfKe1yIRRopc1Hc1+j4OxneN2iNrmNNy5ghFeDco\nqQtAQ2D1gOIBAwYMGDBACJHL5e6///677757x44d7du3r66ujrl7SBYnB5iHXA1n0HxJvhfV\nPvZpB3mFR740M4ckd+Upqs037OpAq7BvRyqp+h5oy5nNEhjIEtglACjQB7sdO3Y0bdr0pJNO\nKrxWZ6iqqtq7d+/evXuFEHxXbOYFTQ/SWVxb7HEijm/Zybwu+xlslo17yE8tPYYTVT/NGV2a\nU+1AoA2JvGCZNNGmdgAIRx/sOnbsWFtb+8ILLxRem5vgF1nmqSHMfNClnCSNpplP8CWraUld\n9Z1ow1yuC1EFDLe6EjQSdISU3xIAUBr6YDdmzJj+/fs7r0vYH6SetvolTbS59ku6JyNEvSfo\ngjaXErp/lFq2XEtmIo7XLSleb1nOkF6Z3CgAqaMPdnPnztW+RsPkdUuBbzFMKtQZGvRaypli\nbsRZJOgNFoGo91tYpsbQPTGMYlsubj52ZcxhGU54AFBG/o87GTZs2KxZs/7xj3+UoDdIkXCB\nxj2e6xVQgl7472SsIq88095OoV4F6L7/ozR3gYQbL45k9wZluGjSubiQMIfUierxPUAJ+Ae7\nFStW/O///b87dOjwL//yLwsXLnS+UgwNmbnG45AW8So7+SYzZ1lDLFDfCve72FxNNI+9eq2x\nmLOCIRyb2zRviNSUYc6YchgJDwDi4B/s/va3v/34xz8+77zzFi5cOHr06A4dOtxyyy0rVqzg\nlzJUNvFFui00dPZy39JhU76yWVHcn2pt5A3djigi2xWz0nC0yZ5CSMmwq4vB3yFIEf9g17lz\n529/+9urVq0qJLzevXvPmjXrn//5n7t16/b9739/48aNJegl0sUybEnjjIF+dTrZTq38Sd2Q\nFgkk6LnQaxMK0w3FvHBnXK/VmRssvqwYSTBV2yF5AEDx/IOdQ0p4Z5xxxg9/+MO+ffvG1zlE\nxfeUGdU51TLPaa9as++YVPOzaSdEAIqceTQ5kgQZK0M81fIdW9f+ARDfEWngwZGaE9BABAh2\njubNm59yyimdO3du1apV5B1C8pXyBKkO3knv2mdEr/Ztru1zOlDkhntdMBf0pFvkkGgxLZi7\nGuHVhOFqmWlMb2nsM4DEsvpKsYKPP/540aJFCxYsWLZsWX19fevWrUePHj127Nj4OoeoWI6K\nJk1Oeb5xtOe/Yra60CVt4VDE/M2qzjhmuMFlZ6lwLZi5S3ohGpeGzqPtYTI/5AAQLf9gt23b\ntoULFy5YsGDFihXHjh2rrq4eNWrUV7/61SuvvLJp06Yl6CKSRj1BOgnMd1lt1c13HnWiWskL\nkQOc+S2XckcitRFpTpvO2O+3QI17veVOhGoLUeUetfAWuuUio2FaWPY53KcFQEPjH+xOP/30\nfD7fpEmTyy67bOzYsV/60pdatmxZgp4h29Q6nHPGUmOHlKgMRTL7GFFM3cupS2nzpdTnCBU/\nEBw0yxapmJ0MAAjBP9gNGTJk7NixX/7yl9u2bVuCDiGNDEUaQ9wJUXMqplgozVxk1Chy8WJq\ndcW0VuKAFflwakNW+t0Y6xUFAGLiH+xWrFhReLF///6//e1vnTp1atOmTcy9QqKZY4RUpNFm\nkdDFLSklOC0nIT3YlBV9+W6IV7Yr++Z7ibVjjE7GilwOpJHVXbG///3vBw4c2KpVq379+v3h\nD38oTBw5cuTLL78cZ9+QJs49jNoLziyX9Z3N6y37i+Ts73KN9V5Fw72lIVZq3vzS33RZsjWS\nOeLGHgZSxz/YrV69+vLLL//LX/5SW1vrTNy5c+eaNWuuvPLKP/7xj3F2DyUS6DSsDSVe45s2\n5/ig9y6oPcm52DRVDJvNiep0qN2iCNvPgJiuZeT5IwBSyj/YTZ06tUOHDu+8884TTzzhTGzb\ntu0bb7zRoUOHe++9N8beIVK+BSrfeczcQ6uG061N+17zaJvNf0adwbxR5n6q5T3p3zhEG9qc\nGqq6W0KUKt3TzS0E2goiVNxK9jcPgCTwD3Z/+MMfvvGNb3Tu3Fma3q5du3/7t3975ZVX4ulY\nGHv27Nm6dWu5e5FK7rtTQ7A8x7uvxZZO/Nrwob72zRNqC85lWL7nNkOacZpyh0gbRZ5NQ+S8\nqE7hpckByUwb6aqJWlbEU7RFAIrhH+z27t17+umna9/q2LHjgQMHou6SpzfffHPEiBFdu3Yd\nOnTozJkzjx07Js3w4IMPduvWrWT9SR2b05V7cFMErK5ZXifnzlhSLcH9WoqDXi1rV+pUqpwt\n0s5jvxW+ec4rFHrNXxpeffa9ws9rtN2yKKu2KcV0Q8RHQaCAbpntADQE/nfFdujQYePGjdq3\nXnnlldNOOy3qLum9+uqrl1566eHDh5s1a/bhhx+uXLly3rx5CxcuPOmkk0rTgcxTf/W7y1Tm\nBQ0nIScoSFPUxd1Jzj1/voiH/Wp/dGc44VfP8A1A6hZps6m0B+I70dq0rN1XQQVtJJKVRigh\n/Ynkw1D2rQCQHP4VuyuvvHLmzJl/+tOf3BP37Nnz/e9//+c///mIESNi69sJHnjggePHjy9c\nuPDAgQP79+//0Y9+tGrVqtra2oMHD5amAw2Q/bCjfZhwtyxcoco3O3qtyKu25LVGd0VKG8u0\nDfomV21vDbMFKoWWUhwltKCHO7HCHRHfD4/2Xfu9FOjjahDVID6A8vIPdvfcc0+LFi0uuOCC\nQoa7/fbbzz333I4dO95///1dunS5++674++kEEK8+eabY8aMGTVqVC6Xa9q06Xe+850XXnjh\njTfeuPbaa9UxWRQv6KlXTYHFnCcMCxpKa3mPZ7yFW515ohpW1M54/ejVB3WPWW6O766WZrDv\nj2GGoPksqs9GVMLlyxDdNqzFXC1Oi7IfSgBu/sGuQ4cOa9euHTdu3F//+lchxPr169evX9+y\nZctvfOMba9asad++ffydFEKIHTt2dO/e3T3lkksuefTRR//7v//7tttuK00fYM/rMjV1NkMl\nzzCnYaWGq8QM1TX1OjC18171lXAhWNtI0Dhov8ZI2kG4PSmF2uIb9F1diGaL+byR7YDk8L/G\nTgjRrl27mTNnPvLIIx9//PH+/ftbtmxZsjznaN++/fr166WJ11133caNGx944IHOnTtPmjSp\nxF2CxElUvpUe3xbEibWxED0xL6UW3synW8tNK5J6+g89GBdunmLmT07jRTLs+dAVPvffD8X1\nLqGSfECBhsYq2BXkcrn27duXPtIVjB49evr06TNmzLjlllsqKiqc6ffdd9+HH374ve9978MP\nP2RMNpC4L353YpAakpwpededE9I9DdJ61WW1a1QX186gXZ2hn1ILqnA7U7uIof/FhN0ySsht\nCkkQ998G4RR5AwdHFkgUfbAbPHiw5fJHjhyR7quIyd13371o0aJvfvObzz777EsvveRMz+Vy\nP//5z1u3bj1t2rQSdAMGUq6S8pM0m3ZxryAo/ehb87Ppp7A4y+Zcz0xRV2FfetQGRJuQGnSp\nQBEq1rxVZFYIvVJR9BZF2237vw3KqyzHC0Ac9MFu7dq17h8bNWp09OjRwmv3///WrVu3atUq\n1v45TjnllD/+8Y9TpkyprKyU3srlcj/5yU+GDRv2ve99b/PmzaXpTwZEMjbneyo1XF1k2Q0p\nfmlLXOHOSeoAa0550kqIZtVVBCr+maXo7KuNxcW05tuU9FFpyGElRH09zu4AKB19sKuvr3de\n79mz5+qrrz777LPHjRvXq1evqqqq/fv3v/nmmzNmzPj444+feeaZUnVVnHrqqY888ojXu6NH\njx49enTJOgMvXmUwyxEo7XioTYlObV+9Yk8KbVLqkn70rSwauu0uCnr1PA6BVue1Z0rfk2J4\nZXFDpE4R8580UUn1LgIg8b8rduLEiR07dpwxY8Y555xTVVUlhGjZsuWQIUOefvrp6urq7373\nu/F3ErHzuufUcC+qc21cMQOjuc8UftQOwnrdrOrVN6lLTj/VlrV3Tqhzqisyb7WWYU+a+x9J\ns/Zrj7uRQKtz/2jYLYaPgXMRZwKvbItViI8ogGzwv3niueee+8///E/tWxdffPEPf/jDqLtU\navv27TPfdXHo0KGSdSZpbK71VmOZ+YyiDoAa1q5dXFuhcSKa+9o+7diclBfLVV0rvUhGhA01\nsMiLf5b1tgwfuAxvGoCY+Ae7ffv27dy5U/vW7t279+3bF3WXQtq8efMtt9wihFi6dGmgpXr2\n7JnJk0egs2zQq/ilEpeUpdyzuWOTWoOx6Zt7jXnXXbQ20dC9iLNGywVDdzWmFgI1q8bf4ocm\n4/svoP2sFv/RDdROWqR9cBlA3PyDXd++fadPn37JJZecf/757umrV69+/PHHe/fuHVvfgtm/\nf//LL78cdKkePXps3brVfU2h6umnn77zzjsb2lCOZS5UC2Nel6w5pKugfMfXpKSozqa2YFma\n8hqf1fYnEjarKL4bXkOTcWcCAocq2g9Vci4c9Lp8AkDZ+Qe7qVOnjho1atCgQTU1Nd26dauq\nqqqrq9uyZcumTZtyudyMGTNK0EsbvXv33rBhQ4gFu3TpYp7h1FNPDdWjMtPGHe10M6+QFGIg\n1XLVXrnEd6L9yaaYnlgu5XvpoW+8c/KxTW/NxVERdluQKMlJUSX4OwFAOP7B7qqrrlq+fPl9\n9923fPnyTZs2FSZWVlZefPHFkydPrq2tjbmHtqqqqvr161fuXmSHewTTnO2c8U2hVBS0CUa6\ncUGd7rSv9sod3bxinHbVIUbb7XOwe05zfvKdR/tWuGynXXWgRuzZ100bmgzvgaCfSRt8ZoDi\nWX3zxEUXXfT8888fP358+/bthw4dqq6u7tChQ5MmAb61ojR27969Z8+empqacnckoYq/uMpQ\nEpPGZIPWh9SRXKkR9TYItSdeG1hk8Swo39UZ5lELIfZ9swymhk0upkKpPXCcp4PK3h6z36Lk\nDDQDqeb/uJP/mbVRo06dOvXs2bNz584JTHVCiIceeqhnz57l7kV25D/jniJOLIOpYcKZ6LxQ\n75nwGkI1T5TWLoyhR12LJXf2siywudflXqnXgtI82sAalDYNB+I+djYzSzvKZqzcS+iDVWLS\nwYqjfVHEEUymQH+Z2JS9yy7ujwFQpCTmM0QrwqKU4Y/pvMf3Q2iv9/JaVjvAmvO45dYw2mvP\nJmIKjw03b1fo8oN0bgs6kiW8I5pvrS7EwJm2QTXdpiK3OcrV5xKXlksgdR0GMoBg10Cpl4UV\ncw2W76X69leJqTM7hTpt5rPpsz2vnOdVjjJ0wLKCJU2xr1gYLnwMcVht8rfX/FGNnYXoueWc\n0myhQxIxpUg2ez4hO9n8R2yRLQCxSk2wGzhwoO8827ZtK0FPUifyXy42dRptEc4gf+LD8LxW\nql7IpU2ZUsWoyD2grRdq24+qrGKZVGyWNd9REWil2vl9d6/9WVAoO7Nc58VAfY5j5tBdQiSi\nutqPbIeySE2wW7dunRCioqLCMI/5cXRwU0tixbfmddW/V/tS8jOPQ6nJz5wC3bWf0L9efbsU\nok2v1syrk1ZqOcAdVffUbrjbj+T8V3jhbJ3lgvb1yEBLpXTcM/nSskuj6mdathcZE+DmifKa\nNGlS8+bN33rrrTpvEydOLHc3M84576rBwolQQYdHLW+t8Bp5NDQb7jI1dXHDPFJvnT1juR8C\nzebsB2ddvguGW11QQS/L8+pDHGfB0Jts0xn1sxrVzMgADjfKJTXB7t57762pqRk7duzRo0fL\n3ZcGQUonzo/5E59v57wrLau2oMp/Rl1Wmk24fkuqRR1pLe4ZIj+bavNi8YHJ3M/iy6vSoQy3\noLsPlsO7lpIWehLVmRBiSvAAUkE/FDt48GDL5Y8cOfKnP/0puv54qqiomDNnzoABA+64446H\nHnqoBGtsICIcUjQPuRrmyZ/49Dt1iNY9rmoIAe6RSuffcBtoXqNX+nRWZ39atR9MVNOzzSi2\nOLHI57WH7ddbpBJnpshXV0zF1Gkh7cERQJLpg93atWvdPzZq1Mipk7l/K7Vu3bpVq1ax9s+t\nT58+O3bsMFxIN3z48DZt2pSsP5lhGOWUcoDzljp+al6FO1LklWfwSm+p3RMnJiftSt2NmCeq\nzdrEI/dKpd2i9s350bxer3m0M6vbFYK7/4EWiZZ9ssykuLNdQ9ufANz0wc4dnvbs2XP11Vef\nffbZ48aN69WrV1VV1f79+998880ZM2Z8/PHHzzzzTKm6KoQQ5hw5bNiw/7jjjQAAIABJREFU\nYcOGlawzqeZb/ZLmVF8Li7AlzSyV5aSkqJ7mpRTiFUrUkGQ4cXoFR3WKYedI8U6NvPZ7tchz\nsH0Ylaaka6jOPgkFLWEG7UlUQ8/FNwIAWv7X2E2cOLFjx44zZsw455xzqqqqhBAtW7YcMmTI\n008/XV1d/d3vfjf+TqKc8p9Rpxsu5ZGGX53r85ymnGzkvCWULOVeynwydjeirTK6O+PerqgC\nltq+zQw2M+d1d2PYJHKbbmh3eDHN2q89aAgu/tLACOcvBqkOQKz8g91zzz1XW1urfeviiy9e\nvHhx1F1CLNRim2Wxx33OM4zGCo8zlv1Ep59eJTTtqdf3lOxsqTOnGq2k0qPXzlHTlXlbzGxW\nEVXgiDa12FQ9I+T+e8D8t0ROuU/Z3Ga4/pQyBQJAUP7Psdu3b9/OnTu1b+3evXvfvn1RdwnR\nUwcNpXe9pqsT1UinLu4OgjanQClXSdO1Q7HSGgOdpLW5JH/iVYDq/EETqkHQpdyZxnCkvJq1\nTyE2HVMLokFrY6LoTOzL3LKhjgsAaedfsevbt+/06dPXrFkjTV+9evXjjz/eu3fveDqGKHkN\np4qw1Zec7h4Fm8YN72qrZVL5SprfPVDrzn/awOFMD3rWV1uIShxjrKpoG9SmopIFI8O67Lvh\nW/YL3QcAKDv/it3UqVNHjRo1aNCgmpqabt26VVVV1dXVbdmyZdOmTblcbsaMGSXoJeKTd10A\nJ3TXxgm78ljuxHsInInaOdVGnDmdd7U98Vq72gfzStXRWHWl7qBpqJYZOqPtrVSy8h1H1r7W\nzqYOE+dcFy/a91wY96RNf5xG1Jndnw3zzrGZHpOgxxoAksM/2F111VXLly+/7777li9fvmnT\npsLEysrKiy++ePLkyV6X3yGl1GqZmsC8Apx6OvRKb2rjXtHNa13qiqQ+eI3bmiNC6U/n9muU\neh7V8KvXsuYBaN/2bYq17g+MOUv5ZmuvErLvRO2KDD2PXIkza6yytC0GDWQzkV5W3xV70UUX\nPf/888ePH9++ffuhQ4eqq6s7dOjQpElqvmcWZtLJzzBi664D5XSP+RAnntEti0zaqpLvuVx7\nDo4wsVlGKN/Fg/ZEG0a1AcWrZXeCifYkpB0u184jdcmrq+5FfDN3oGynTpQ+tF6SHO4BwJd/\nOFu8eHGPHj3OPPPMRo0aderUqQR9Qllor3hTuQOZIZY5jWjThnbV5tObeXGvqGGo1RWTeKSY\na9P50CdvmzqTxDeaR7Uuc1XPpgVnZsvD4fungvu1fe7XintA1vC5TSbfHVL8f65UFMMS3j3A\n/+aJMWPGLFmypARdQbmoF4x7XWqmvuv+UW3HPdGrLCed27wa8Wo23Jiguc8S37OvTVoKPcDn\nZBR36lL3m2Fxm9mk9g3vOj+qdUSbel4x/cx7Pzox8nNtkUct0FpSIUVdBRo4/2B30UUX/f73\nvz9+/HgJeoPSU+OCNINa/FAjmhTd3INf6op8e6JSG7QZ0JRGh22ig2VeVLfREBCd3WKYR9q9\n0n4Lmlqc4CWUYG2OucJvx6pVsRJXL7yKkV5pL3T37KNzMSwzd6x9sBS0BBtu16WrhAkkk/9Q\n7C9/+cvvfOc7I0aMuP766//pn/6pdevW0gw1NTXx9A2l4z7re/1ildKbWrdzfilLWUQb77QT\n3S+kX/HqGrU9VzdBuzmWJ9QQiUq7Cqkd7X7Wrs5QRQvdMa/phlWoh9XrDwCpZZskbTObYUX2\npJ1Q9gBh34EQH8U4JKEPAHz5B7sOHToUXrzwwgvaGfjfnmS+J84QuccmJeROvDtVKMnM91wl\n9VwqpBVin2+dTNuUtBZtAgt00vWdwVDcMkc3rzhrZgjEljVUr6AcOmHEGk1K+SvI8CdEfPgd\nC8Cef7AbM2ZMZWVlRUVFQkYEEJRNNc49p8o5K6tBymuATwpk2qghJR73KdM30BjW6LTstck2\nYcWdt8y7Tu2wb3gqpkAVIlgUX+IKUTi0TJD2Y5HFh5vkxyPtRzH53QaQKP7Bbu7cuV5vHTx4\ncP/+/ZH2BxHTlqPUcGBTP7OJfe6Jwi88GaKSUNKeugqvYp67BTUT+GZQ3/lzult93atTN187\nRV2qxMx1XK/NtGcY5y1lucsgRB3RUNONZKMSMuoaTkIOK9DA+d88YfDss8+ed955UXUF0ZKq\na+pJWr1IztCaV/5wQpVvVUZ7IZ1l/U/dCmdx84nQGa5Vw580g1DioDODM+yrtiBlUK/w6rtv\nfVO1u5POSmM9g0p/EoRel7P3QqRD5/hq155zCdc3kZhbExykIgBFsnrI8K5du+bOnbt169b6\n+npnYl1d3ZIlSw4cOBBb3xA7qfxgLsvZtCbVAr0aVGOiFPtyynVpgTogdUPoEpi2A9ps5167\nmlHUIWChOz0bSla+dQ61pFqWuo5hjWoNWCjR0H2IUx1fDMXXIltO9W4R6e8/kA3+wW7r1q2D\nBg3auXOnZuEmTe66664YeoUImAc63aQh1HC/nfOuS82kBoUSldRBT6myZS50acdYzb2SJmq7\nrfbNXSczJ0ttspF6G5S7J+qobtAjpY2z2v2j9kHNlJb7X1qX1EigRYK+G6tUJBjtMQpx4ACk\ni3+wu/POO+vq6mbMmNGnT59LL7300Ucf7dy58/Lly2fPnv3YY4/xXbFppP3lbh5t1M6ptmle\no2Fx91vmtOEuqkmjk0KXVLxG8dQGzVskZdBAvPahNM6ozaDObNJR8+qwYXvd+9Z9rJ31+p71\ntZ8QdRFzbit76VHbk7iXAoDS8A92K1asmDBhwoQJE+rq6oQQZ5555uDBg2tra8eMGXPppZcu\nXrx4yJAh8fcTRfH6213KNObaks2oqE2AU4OFV31LLVNpf5RyiTSPdqt9xz3dP2q30VAF9Jrf\n3Ky28UD1FcNeVbuq1lANW+p1xM3VUK+NkqaXINtpP1GZp93YoHsg7ePmQAPkf/PE9u3bu3fv\nLoRo1KiREOLIkSOF6f37958wYcKUKVNi7R+Cshn1U7OOWonRnobdw6za0pHluUQdcpUalyYG\nHcqU2pFe2zcrJUuvnGrTlLbK5ZVctQ068xuCqRrCtIfMqQKau6T90RyLpfWa94xaKw13uL3W\nblgRbKi/FgAkn3+wa9my5UcffSSEqKysbNGixfvvv++81bdv37Vr18bYO4Ti/CJW85NwlU+i\nGodyr0VbGskppcEiSWvxGp30KjFK86tJwj6+qG2a3/Jq2evcGbQbXqUpr3Z8k6LX4tKGqH8b\nqPNrt1F7yCL5nPiWEm3yijnNh+tYinISgRhII/9gN3To0J/97GfLly8XQpx11lmPPPKIcyfs\nsmXLmjZtGmv/EJRzuvU6IQmP05LhvCudxd2lI2lOc4NqEcW+Gw6vVCfN7Gyj9KMNd0zxKp65\ne6sNiO6SlWVSNMzmWy9090Rt0zBR7bzlvlLDnFc+zntcviltgrs/4Rj2gzqnZZvRxpok18DM\nH/VkSuaeBMrLP9jdcccdu3fvnjhxohBi3Lhxa9eu7du37+jRo88999xZs2Zddtll8XcSYUjJ\nyX2WLUwxRyjtGcgdAtyxSUpOUuRSX6htGqaoZSGp/17TDbQ51atvXu96rTREnUPtg/vwGbZI\nWso31mjTp9ePhgUtt8Krn9q3fNsPkTi95rc8OobNCZd4Qnw24IVUB2j53zwxaNCglStXrl69\nWghx4403vvfee9OmTVu4cGEulxs5cuS0adPi7yQi5s5t2lOUdLJ3hwz3zDnrC6tzypduWcYv\n7Xq9OqCmK6dg5l6vuTiUM95UKyUtqWVpfrVvhowoBXH1hVeGiyQluNNV0AYDHc1iWrBchWVT\nofebZVEw8vUGEqKTqYubqeswUBpWDygeMGDAgAEDhBC5XO7++++/++67d+zY0b59++rq6pi7\nh8AMFRdhcR+Dm1fuEbrIYuiGVxjyWtydLbT5xneNXm9p16Xtkppf1Qqou2zptWrDppl7Lu0B\nbXC0aUd919kQbSg0l9zcfch7XFIZToQnaXOFGJEoMt0CiI9VsJNUVVV17do16p4gAmrJyos2\nOUnpQX0trchmjNKS1J9AtUDtRDV8uFckZU2vKp12Bq9kZp+DIxmX9E14oSOg/SLhzuvFZwKv\nvy4aQs6w3NKGsCsAaOmD3eDBgy2XP3LkyJ/+9Kfo+oMIBEoehqWkdw3DhV7za390akXS+Kw9\n+6W8yoFqCzm/W3fVGqS2ZfW1e35z2NLWz3w75kvtrbkp6dOiHsdypai4cySZyZ7XhQFl6g6A\n/6EPdtJDTBo1anT06NHCa/fpp3Xr1q1atYq1fwgk0Jig+OwKLd8zt02S07bvblP7rldakspj\nvqFKXYtvzc88pBv04iR36pXGOtVU53vZnNBtuJl6yLzKkDaLqxso9dz50bJOKb1lWNaGVwL2\nbTMD+SPcn20AGg79XbH1Ljt37hw8ePCECRPWr1//6aefHj9+fN++fStXrvzKV74yYMCADRs2\nlLjHkDg5zEB7NZVQApPalFfjUmKwOZsa5jTXsezDjeGKMfeqnS3Nf0Zdl3a9zsxqYNIOC0qN\nSD9q+6ZdtdqOYWa1TcMB0rbszG9Ih15RT5wY3YSyV9WmvORcvNZlw/fzKVxbajmnVz/D9TAt\nDBtos+sAlIb/404mTpzYsWPHGTNmnHPOOVVVVUKIli1bDhky5Omnn66urv7ud78bfydRLOc3\ncqATj2Fm37Rn7oa0iOFk6Z5Tm9u0scyrw4aKlKHz7vznrMW3uBW0J16RV5v5tKHTvF4z+82R\nuhRove5cGC4GGRaxyRah84dvb6WkW8qQR6gC4OYf7J577rna2lrtWxdffPHixYuj7hKCMVTj\n1LRkbsfcoG/Vp8jztPn8pOY8daJ5ETffc6FlPhNKBrUJo2onnbRnqIRpm1WTn7nbBmpvbXKS\nNMW9IfnPaplSENQupY2q7na8ljU3EojN4tq95Gxp0NWlq8JHggRSwT/Y7du3b+fOndq3du/e\nvW/fvqi7hOhJ50j36URNJNoIJYKEBkOaMdSlvOp52lgQ9IwodUBbIJTmMWy45dqlZp2J2pbN\nSU64MpNhtmjPuyGSh/2fGWrgi6oPcbDct5ZHShQXwQHAwD/Y9e3bd/r06WvWrJGmr169+vHH\nH+/du3c8HUOxvGKcNjx5/SgiOgN5FbS0a5HqPYb+axOkVOCxjxoqr4QqtewOpl470CYW2Oyc\nCNl3LFCbTvk23F8C2gUNE53pxeRaw+fE0AFx4vaGW2+IpWw6BqDB8n+O3dSpU0eNGjVo0KCa\nmppu3bpVVVXV1dVt2bJl06ZNuVxuxowZJeglQnPOOlJ1xOtkkFOeaRJ6pb6rU9Oeu5Rlec4z\nb4tlh83tOP3RJiF1d3nlyPyJT3ixP6m7FzRkRxGkYuTVQ2m9lgv6zmwoyJkPunuL4kii7p6o\njVtOdP8vs//cFt1lANDwD3ZXXXXV8uXL77vvvuXLl2/atKkwsbKy8uKLL548ebLX5XdIFHcR\nSwoHXmlGyiteac+ch8yrMM9pMzQpxSln02x6Ja3FK9GqTRlCpxqMzPVRdWb10DiNqDvHnRG1\nCd4dQdT0HEdRUG3csLvcfVa7p23WN0DHxOvvIsNm2v9xElXHAEBYfvPERRdd9Pzzzx8/fnz7\n9u2HDh2qrq7u0KFDkyZhvrUCJeZ1mndPkbhnc5/D3CczdaK00liHh8z1P6Gc/rXVMu3QnvuF\ntnqkhjztnNpuePVNWoW2KWkGw4K+ZS01/JlnFh5RRt0cr8W92nQOirMK387bj2i7G7dhCOs2\ntUxDmda3q4a1A0BQAcJZo0aNOnXqFF9XECtDjgm0uP2ZNZwiQ6FUWXF3ybecJpEqSUJ3y4W0\nLq8TuWV9VNtDryipXUQqQGqLf17J3vyuyqZ4ZhMZpQ7YzGmjmE+RZeXYl01MV0vFhDwAxfAP\ndvl8fv78+b/4xS8++OAD5/sn3N56660YOoZYWI42GqodNue5YsJZiAW9KojmLKuteBnWLi3r\nHvB1R0CvIV1zpAtEe3TUiCbNow2C7mW1A6PSgupWaLth3ijDrna/FfpTZCigqm8Z4lS4oBk0\nhroHr0szegsg2/yD3cMPPzxp0iQhRLNmzSoqKuLvEiJjeY5Rx1iljOKwPNcaQkzowGdY1rJN\n81it/UCztm/a18VTS33mfahmJql0F27t2inuvhnyotdsXtN9s2M45s+kdqTVN8DZ/M8K1Hmv\n3OkcdMMM9msBkG3+we4nP/lJbW3tzJkzu3fvXoIOIRL2iSTQNVLFDEsVubjvsr7b4pzCLTfZ\nPKc7MKknVzU4CuX0bE4w2pFKd4NeOUmd4p5Tala7T0IMDjqLaJOHWs6UNtO9InfSCp1XvLKa\ndk7fZSU22dq8UgCIj3+w++ijj+bPn0+qSxGvi5/UhFFkUCuS7+hniAZ9x1LVYT6vipHXWK15\n79kXaQLVL8MVfuzLOTY1qqDdM0QcZ0Xaz0CReUgdU7Zv0Ov/jsR+lxbJdxPIjgAk/g8obt++\nPb870sVwIZH2XXW2EhxxaQA0XAvuH8O15gQLm6SrlpfMM1iuXduUu0GhbJ07EvmOUGsX1M4p\nrcswwCoNXmtnsyxrOb3yKnnmPuPVmtBto9Sa1+LSnGX5XWfYwHD/QYr8n5XYdQGw4R/sxo4d\nO3v27BJ0BREyXDNk84u4BL+pwxVpvM79odcuBQi1J1L1S9uI77q0ccppXxp2lA6QOWaps6kt\nmEm1Om3kMjRrXpdXWLFPacIiOBrytLp7fQX9k8NyZnO49Oph5EGTHAZknv9Q7N13333NNdd8\n7Wtfu/7667t06aLeP1FTUxNP3+BDe773CgFeA3/u6ZaDg4bZfEdXfVdhM5yqrtGw0vhGPKX2\ntX1z3vLthnrg3IO/7hfixBzmdaqWApk2E6sT1WynxizLD4nhrZzHxXZOxLHM/VKhztnP6o7y\n7bCBzX806RD7rjHnd4mkzVuWi0SyEyzXBaDs/INdy5YtCy+eeuop7Qz8xy4x6WTmNZtzytee\nP7TnUfsSVIi3zDNoS2gG0rnfpks2iUSbJ/LKtYmWHcvpLsjz/f8ihS2p2mqo/El9kKJGTrkl\nwpkoTff6gDmvtcksEN/Kq295Up3ZvZ+9uqcNuEE3RJt0fVenrjf0PiwmqPHrOu1ijenIBv9g\nN3bs2MrKSr5nIjnMBQ9zbUN7Ek3I0Ixvtc/NSS32QTDoKsSJycxpR1rckBWc7nlFQ3d/1APn\nPv1L71rmHt8ardp/r6Z8JwaixlyvzTfU3rzeUiOsVMMzfAzsz5pekVdqyv0RMifjIrOyl1Lm\ngBDrimmrgYbMP655FeqEEAcPHty/f3+k/YEtQ5FAnJgknLe05zNzaiklw6q1HTN3VRtf7LfO\nazRQym1SZ6SooS4uta8tOmrnlF57HUrfQUznY+O7N7y20WtOqX3zRvm2aWaOAuq7hrqj5eq8\nqpj2S5k7GaiGl7EkRLYLhH0FX/43Txg8++yz5513XlRdQTjOoJvvf3hnTvcUaYZYulg08wnS\nEHCFR9iy/+Vok2xsKmQOp8NexSpnTnNntG+5c5u6Z6R94syj7ZiTILVNuecxb752u9zbbjgW\n2jCtDc3aRqQNFCd+GLSlO21ThuNuE459N1N4HC8bln0ozX/tcJtAUgGiZTXAumvXrrlz527d\nurW+vt6ZWFdXt2TJkgMHDsTWN3jSnnu0p17nXfV1oApWyQStqwmLPBFoEa96T7T7KqcMDkr1\nNq8c485h9psgPMYlzW1KnTQ0Lr1lk6G1M6u9dffE2T853fimVyO+icrwrv089stSoHJjVwCR\n8w92W7duHTRo0M6dOzULN2ly1113xdArBCCd7QoTpSKHdsEEprqgwm2CbxDM60Y/i6E9EOaa\norYF8yq8KmfqJkhbFyJ7hSh/2lfCDAvaHA6bwOfbZ22QVcuN5kaK6YCluIMpgNTxD3Z33nln\nXV3djBkz+vTpc+mllz766KOdO3devnz57NmzH3vssdra2hL0EmbaSo/7RQIznFevStBV3x2i\nLXAKjwztLh1p83ROGf6WRjzDJW+vI2szRXrLacp8RLS1THWUUyi7wr0KbQnQqRca4pQ6PdzA\npc1bTnXQZhVeOdJrcWIWgFj5B7sVK1ZMmDBhwoQJdXV1Qogzzzxz8ODBtbW1Y8aMufTSSxcv\nXjxkyJD4+wkf6olQew6zKQ55tR/5WKTTbDGNh1g2UKlMu6A4MTpL70pndG3BzL5iJJQooC0o\n+u5GbTXXsKC53KvmWq+tlvaPs3Y1Oal5OlDVTRugtbnTrPiCnFD+D1o2FbSrAKDyv3li+/bt\nhS+KbdSokRDiyJEjhen9+/efMGHClClTYu0fiqcW80Twk0eI4FU4eds0q56k1R+1rdlcaKWd\nX7j2hjq+Zn8adrfmtZShIGc5oGnTgs1wqjnrW67XaUdtUPrREDSdEp0zp7MD3S+kd6Xp7sjo\n1SX7jdWW3AxNuRfUfjK9PrQAECv/YNeyZcuPPvpICFFZWdmiRYv333/featv375r166NsXcI\nRXuaEUHOf5EoZi3axGA5jqbSVuak7nm99m1TnDgiKYyBRl3WvFJDTVGKQYbSlDte5DxuoJZy\nlTmkqmU2Qz8tqVHPdxH3HyrSdGkTQqeroJ8KrUCHmyCoKsEvq0ikpZ/IPP9gN3To0J/97GfL\nly8XQpx11lmPPPKIcyfssmXLmjZtGmv/4FsX0eYn6dyW/N84vj30qh4ZFglUntG2aVmHMx8g\ndb3qITOsSDvdXbuyWbtvJpZylbaUaCht+h4+aSuKrG4aOqmdnvuM8NvVUhx0L67mRXezIST/\nf2US+P5Rlyhp6SeyzT/Y3XHHHbt37544caIQYty4cWvXru3bt+/o0aPPPffcWbNmXXbZZfF3\nEjLzr49SluWSRnuC96oz+bLZh5aRxWnQq37jFci0JbGci29McZcSpZmls6aUVAx1LzUnad+V\nNtydjbzyontZm+TkVbdT5/HqW/HCNehbnJO62mD/R6eokJmWfiLb/G+eGDRo0MqVK1evXi2E\nuPHGG997771p06YtXLgwl8uNHDly2rRp8XeyQTMUbNxy3tehJ1w+oueJ+P5l73vuD9cNw1KG\nippvHFH7I+VUrw5IRSavVUtrySs3ZOQ8vgtLatBJafbRSrtFIc6IhkidU0Z1iznjmoup6n89\n9X+i2kLSEoBXP81vwY1dhISwekDxgAEDBgwYIITI5XL333//3XffvWPHjvbt21dXV8fcPWh4\nRT31ZJaKeBdJJ+PbUimy+CYYqcRiaM03EdqsTtsBdYRUG0EMLdj00LL/5lX4tmn5h43auNfG\nBjr7mveYtpjqu5TNDNquliY3hAvZAJLDfyh25cqVn3zyiXtKVVVV165dq6urV69evWDBgtj6\nBj1pRMad4aRhLJGGPyIT0kOvmGIuj3kpcqPUg2iZorQDo1I72qbs06p7vU6D7mFZ9xTt6tRP\nr/ZH3xKsV/vu/eA7mmkY37TpgMq9avePNj0vnnvnB1rKOXZCVwNOyH9SADasbp545ZVXtG+t\nWLFi3LhxUXcJIWnPkZGfPEL/ig9UvEkUy6t8tANw0rinNIM6jzqD78xSCvQ6tduc73231Cu0\nqUvZ7y7zRqk9d3fAvIpA1LX4LqIeX22u9YrF5g4E6olwfeS0jce9OIDk8ByK3bRp06ZNmwqv\n161bV1VVJc3w6aefzps37/DhwzH2Djrqr13tSSKm385Jy2H5Ex9xHGLs0pc7vhgaN5emzEu5\nt8JrRLJw4peShFp/8l2j0F2CpiUVgw2zeb2rDbvuHw0L+qac/ImXAErtazug3ViviZb/ibTr\nVRtRk5Nv4+7IbtkTtV7ou5TTVRHqf3d8v2oAhOMZ7ObPn3/77bcXXk+dOtVrtmuuuSb6TiH9\nQmeOoKR8EGvutGzcHErUk71QtkI6U0qVJJsgpYZRaSnD+VjKE+rq1Ka0jWhXHTTJaTdKWkVO\nd1mh0MXKnO7OBsv1mgOT07Izm331S9um14YYFFNNL+Y/DtkOSBTPYDd58uQbbrhhzZo1V199\n9XXXXde3b19phsaNG3fv3n3kyJEx91CWz+e3bNny/vvv79+/XwjRunXrnj17nn766SXuRvKV\nt7QW1dpDFxLs2y/xjrIcRvQ6r5vPoGpE0FZ97DfZXQRypkgB1Ks1y7RtMxLthCRzm9qjqW6C\nVwu+0c3Qfylf2pTVbYQruamHzLIpy/8OUoOGloMWDm3E0SaQJaa7Yjt27Dhy5MgRI0aMHz9+\n8ODBJeuTlz179tx3332zZ8/++OOPpbe6dOly8803T5w4seHcqKuWf4R3bSMmJUhF0tappSNR\n3MaWYEd5DbDajDY6U7RH1qt657Ui9aNiCIKGKdJ2eb2lXUqdU1qLzbLuLCV11d2glAJ9B529\nmrL8mIUbA7WZuQRRxialmRcEkBD+jztZsmSJEOLYsWONGzcuTDl8+PD69esrKyv79+9fsmrH\n9u3bhwwZsmXLlp49e1555ZVnnHFG8+bNhRD79u3bvHnz73//+7vvvnvBggW/+93vTjrppNJ0\nKQksyz+pJtWcAm1sCaKn76Cz1zGyCaleodCrEW1/tPOb+2yz37y2Sx2ClHKJthrnXtZAmtkr\nmAYtdKkdC1pyM9QdI6zVWSZU371aZFIMt3ujQpQEzPyD3bFjx/7P//k/H3/88a9//WshxNat\nWy+99NLCN8ZedNFFzz//fIsWLWLvphB33XXXBx98MG/evC9/+cvaTv7f//t/b7311nvuuSer\nz0w2DH+UK9iVfr3mOKJVTFXPPt+EI5WXvE7AhlVoY6Vhk20qfE4jNkOo7sqx17I2QcTQVW2A\nEyeGVMMFatJEaY1eRUev6b6kpSJJIYZaoE3NtbxC70kA4fg/7uShhx6aOXNmly5dCj9OmDBh\ny5Yt3/jGN8aPH79q1aoZM2bE3MP/7ze/+c11112nTXVCiMaNG4+0vNLnAAAgAElEQVQfP/7a\na6995plnStOfcsl9xj0x/5ly9SoEta6jnaFI7mAUYl32+zlEOcdZhVcVzaYd9wimdhQy9G40\nDLOqa3F3QNtJ9XNr/sQ6TUmR0WnEqwroblZ6rd0Kd8v5E2m3wqvDhq0okrNe86co0EpL9usi\naSkTaAj8K3Zz5swZPXr0ww8/LITYtm3b888/f9NNN82cOVMIUVdX96tf/Wry5Mmxd1OI3bt3\n9+jRwzxPnz59Fi5cWILOlIVUBSn+zF1evrUoS/+PvSsNs6K42u9lGQbZV9n3VRERFBBkGVRU\njH5GMKifiiLuSgQ1ojFxixijUSNiQowxQU3c8ItrgjAMiICoIIiiIouKyqJAWGSf6e/HHdqa\nWk6f3u7te6feh4fn3u6qc05VV1e9/Z7qO57CEoc2McOQlk/t5YAfjVC8iKr0ZfJlMkUk71Q7\nTEFOqwiqFlK6d0L5F9etJcqNhAVCHUTFJouUKJiWppUDM8+KTNzO0e10pMMziXxxNMrXMLCw\nsIgE3ordF198MXz48PTnmTNnOo5z3nnnpb/26dPniy++iC84ES1atFi+fDld5oMPPmjRokVm\n4skKVEXBJJ9kEVEtDwHIViZBrO6qNMWxJn1Qz3ra4RA1onDIAvRXZpAgU8mezNVUTKtzSx4J\nic7E4E3lgyFVEe5xT3UtkjsuwttW6oQcffK0sMhdeBM78S6dPXt2rVq1Bg0alP7qOM6BAwfi\nCq0izjrrrBdeeOGBBx7Q/iTyDz/8cPvtt7/88sujR4/OTDwJQYBlIAMhBauY8AWASIPSCLzU\nadOIYVKrRMBaZUWU0MDjZK410xOINiRCjiLcmcqrt4P6FAQvuia1hQgjDGhCL7qOMAzVVMJv\nPQsLC1/wTsW2bdv2rbfeuuKKKzZt2vTqq68OHz68oKAgfWr58uWtWrWKOcJy3HHHHfPnz7/p\nppvuuuuuvn37tm7dunbt2o7j7Nq168svv3z33Xd37949aNCg2267LTPxZB1MPSM5yFZSJiq/\nppxmMFO0BafiH3Wll/9IQAtRblTqERMlcoTkspjVdY9LjaJplsjYVAtQekwKQA3e/V/LO9Um\nm9ooHpGCNFVUfWkZfNxQIyFKomKSnSic8FnIwqIywJvYnX/++bfeeuu6deu+/PLLXbt2/fzn\nP08fnz59+t///nf3a9yoX7/+okWLpk6dOn369Llz55aWlrqnqlev3qdPn7Fjx44dO9b9TZa8\nhOeakdlw/IGv92TYb+ZtBkuqmpw6ykujGeN/hNBlIqNa8ZJ4SpHUSlFE1NIvUydIXaRlh5Ij\n9bgKE+nREiCJTRIt9eWanhZoC76GojZ+CwuLpMGb2E2YMGHVqlXPPfdcQUHBI488MmTIkPTx\nSZMmde3a1f2zYxlAQUHBhAkTJkyYsHfv3vXr16f/8kTdunXbtGnjioiVB9kSwOJD/rXIhGib\nKVEo/qLrKG9s8C+BWpJZVyqWqvhXy2hiZDLIKWYqT4etldO0cp30AbomELlmR/cOhMldVODY\nFAMjgtTCUkALi6zAm9gVFhY++eSTTz75pHT8pZdeOvbYY6tV87YQOQoLCzt37px5v1mHtAjl\nNBNSg/dsS8j25nR3idBSCu0RT9ZiMuJZncjAmgyKspZJTpNytdoMrESGpHQq3SHQ8SSJTUpc\nU6orblCTulp7xBckJkR3ckjO5OsBIECtDMjGljVaWGgRnJYl4Y+MRYKdO3cePHiQKLB79+6M\nBUMjP3hJGgHaErL5fkWpzCBMPHTF8C0N8BRBizTa7Kfpq8mjeh35zfSkuWqTJX5J63D8PXla\nEJTRZFYkmjEhDJGKQ7TzKxxaWFQ2ZEFviwlr1qy54oorAMyePdtXrc6dOzNTEsGDiwhqGkt7\n3MKEBHYUEQ/NbDJsOSR50t4+TEExwFla9zJZI2iZq+HFNA8Q29e06WC6il/XtIVgDY+1u5Iw\nG1tYJBb5Q+x27txZXFzst1bHjh1XrFixd+9eosxLL700efLkJBACdQePVgLJLRDJuzyD35Zq\ns5aSwZD9xrFgKuOrOZ48UuvFtB/OlPeU+JmWWPgKW938QLeIsKOGJOVVTQSOjs0XxVH5K00o\n+ZaJCGF5mIVFZpE/xK5bt24rVqwIUPHII4+kC7z//vuBIood+UGGMkBNAvvSEogwAUt1Pa2F\nOcupyOGOpoMc73ziqMrPBIsy2dRWMW3d0xKslLKxT0rIeno0pVNFyxwWy0F4wsTJDgcQ3sRO\njmqashzRwoKJ/CF2hYWFPXr0yHYU8SInJjV61ReX7Uhm/LjZrcQPImR1ENaqDHN0adOYdIrD\nokwaHqeurwysyiokqmEqbyognVX90rHRu+hg4B9SV4uDymRKa0FLRvnwVd6XfCjCRKAtLCwy\nA++/PJFD2LJly+rVq7MdRewISS8ih7oCcZbtRDWBg2gDDpzUiwTENVLzg6YyYbxLR0z8Rks9\n3YNqK8RTqNhM8YNYi1YrXa1OYlQcyVAkRm5/MlkOnwwxZwO11SEfUeh+47eUD9pm0mZFC4ss\nQk/slixZEsBWsFoR4v7778/7n0HxnLwy/3wccj6NMODI2x7fUhG55cgZA1NH5DBU2qkv8YkW\nzFQGxowBCm8gHle0epsne5MyvHQkql+1abHKdXkDS/gsKiH0xG7AgAFTpkzxZWjKlCkDBgyI\nIiQLGeLcRKw9buEIXce6GET7WO+5BSpHEW0XmXKj0mdfy6FnhJ4SHd+deCME7hnPdKoppABc\nSs0jm04FA9NOtDeCp1NLpywssgg9sbv88svHjx8/YMCAf//7354m/v3vfw8YMGD8+PGXXXZZ\n1OFZaECnyaJFrC4in/19iTSJ5XzazVWe4LAQZs6O405Vj8JogWpdzyNuklQ6ImVOPZN3tCPV\nqS9C40mjPZFui2RW7e0AzDjPQAilCbnTLdm1yBj0L0+k5bfrrrtuxIgR3bt3Hz58eFFRUadO\nnRo3blyvXr3t27d///33q1evLikpefPNNz/55JNGjRr94x//OO+88+IL9Nhjj/Us880338QX\nQNbhrqD0Lp8koAnwW2AHMAeYB+wgC6e8XsxExTcWTSXV48Qy7FR8U1I9RYbsgZAWorqy/KZJ\nQ8uvcb8Bi6qbL+qjplndiygmOsXmpCr+hog6JFKMHxmRGmuyI30WB63WLBOR3+mckLQpAvFU\njj41WSQT4W8TCxFUb+7atevRRx99+OGHN23aZCrTrFmz66+//pprrqldu3Y8EZajatWqAKpX\nr06UOXjwYGlpaeTjY9q0aVdeeeXOnTvjbiMNafXKIqTdQlJgJwHTge+ADcAJQCGwBCgB5gAL\ngB/iDMZXrax3Y46C7jrm5ZCM8C+HJNGZnEpDFAY6Ih1Uy6vhqQFI5U2FCaiRm876Mgtdq/kr\nqKmkXYMrM/yObb7NnBtU+/fvr1GjxoIFCxK4CY36uZPatWtPmjTpF7/4xZIlS4qLiz///PPv\nv/9+x44ddevWbdy4cefOnU866aTevXtXqZKJV2tvuummxx57bOnSpZ06dTKVmTRp0n333ZeB\nYLICd8FQP2QYqjiR/r8A+A0wEXgEuAXYBxQA/YAioAi4HkgBC4FZwGxgCVAaQ2zMPslKvwW4\nXgkkoHQ8TOWVpjLaiqJK5+lCcqeN0CS5iclclTuaFiGJz0nREuRSgkqb1FaY9EIt61XjZLr2\n1E21kRDGae+JRe5GHgfimJESOMvlOrx/x65KlSrHHXfccccdl4FoCNx9991vvvnmeeedt3Dh\nQlq3qzxI1M3QGfgH0Br4CfCfQwf3A285TiqVuguoCZwADANGAncD24ESYBbwJrBWscbX4YIJ\nP1HBl14YILaYmkN0VKx9SIhAahioSLakD2qcnOSgNoPMFCD97o2jC4gN4Ywi8XEOFXvSM35T\nACoRDKDGWQGvsiGOy22HULTwFtvefvvtrVu3ak+9++67M2bMiDokPapXr/7MM898/PHHt956\na2Y8JgSivJGZjcABXFwMLAW+B44+xOrUVWcPMAu4BegDNAWuArYCNwNrgM+BqcCZQJ1DBoOJ\nOn6bE74zpTiZyMx1JDwSfRs3M2bqbZ4dq6VoYl0iUUt4F2mWqEZrgyQUQW38pvJpOIdeijJV\nV11ooxLbQltQyxN9JfWqya8JasfmCjJ/t1pYhIS3Yjdo0KD/+7//O+uss9RT8+fPv+eee0aO\nHBlDYBp0795948aNBw8eNBU47bTT6tevn5lgsojsLr0qfg7cB0wC/gC48x9tZAvwHPAcAKAL\ncCowHPgHUAAsBN4AZgBrfIZkKqM97ktpixza1THWYFyxR/USh19fEhRB0Twta41I1qT0Ii3x\nqvqT6kKijG4t4iJqzapBckRHNyRO2pQwRd8vpn4wtcLCwiI5MBK71atXu3/F4YMPPigsLJQK\n7Nmz5/nnn9+3b1+M0SmoW7cucXbIkCFDhgzJWDCZgSP82EECp9EBwP3ApcBT5jLarJl7ZBWw\nCngEqAEMAE4BLgHuA5YDLwEvAR+RpoLBZITYpSQubJGTocxQzIwRWQ5zTZHvONMX2pf2oxIy\numRKyXJ6jjo1PWrKOHvezpw7XYwz8DUlFG6VwNFVIvFrYWERFYzE7sUXX7zlllvSn++66y5T\nsVGjRkUflEVFuFNtFlMYWu9NgOeAv5KsTgttQ/YBJUAJMAk4Ejgb+ClwJ7AKeBGYDnzGDi9w\nX3kSvgRmkRIyMOgwCEXNs7xEpgOremrM0FF5VzzjkDlT2OoDgImN+RpaKWVjXJirbyKRlnvF\nhMQ+n1vkGYzEbtKkSWPGjHnvvff+53/+58ILLzziiCOkAlWrVu3QocOZZ54Zc4QW+i01WYlB\nRFXgGWATcD2AqOnFx8DHwN1AB+Bs4DzgVmAhcHkqVVf3w3jSKh4yEk6GLjlI2sDQIjz/4LtT\n2U8Yg0TGU1Vwtc008UjCo3a8SYJiquK2PC1M4zaBzyciXMKa2JvOwiLJoPbYNW/e/Mwzzzz9\n9NOvvvrq/v37ZywmCwlJUOxU3A4cC/QB9gJgqy9+sRZ4AHgAOBq4GLgHeBh4CXgSKBG29CFS\nZulXXrJAFJlBTgKXH0yA6qY8qSgWSgIbzdh8Je6lzXycfCitAOXoiE3Cc2xMsDzVIjPwfiv2\n8ssvr1Onjmcxi8ghKU+JmulOBW4FxgDrMuVxOTABaAVcANQDZgKfAFcD7m9Ge64HdlYNA07v\nhSH3LkcRX0LkU6JgTiULasaWKXfxhxZHTiZ2v6nyocTztEleT1OJgkmGTNQEaGGRZHgTu9Gj\nR7/22msZCMXChKTNaG2Ap4HfAa96lYxqt7VrZz/wf8CZQFvgBeB2YD3wANCeEYCvdJinteQj\n2mijHYSBqRifkXgW80zXEjzPtElOzeCnDK+vmtQ4X1fNxDtNOwilB0WpRdLZMMpZ+L0QiJTb\nhd+eYWGRQ/AmdieccMK8efPKysoyEI2FCHX7ThKIRQHwArAC+BWvfEwxfwv8CmgDTACGAZ8D\nLwGDdbugxEh8pcZU5NbakORoaW3P71mXo9BcTWuN2EInuTMZ5B/nhxfsZufXYpK2YNwuvlyq\nlfEsLDjwJnZPP/10/fr1Tz/99H/+859LlixZrSADUVokBw8DrYDzeH8QzG8uTPvVtNI7jrMP\n+BvQGxgGlAHzqlTBwIHOa685h55DgiWqLJIAXxcodQi+qkAZojQ3Mg0hrVYnlXGLaWU/NX6i\nOURJSYczNU3lwcRXv3eKSW8LiTAJ94Q8FVtYZAbeP1DcrFmz9If//Oc/2gL2hokPDvtPZGYG\nlwOXAsOAjbzyDvtXSNRiRGG1ylvAPMfBqlW47z6cffaH+/efC7xA7uhPQn9amBAHLWBe8ZTh\n5QnVgul5QzwlMjzps3tE60tyxO8Qk2WivKlkTJsW+LGFdBSrawuLxMKb2I0ePbqgoKB69ep2\nIcwK+AtS3BgETAGuBhZUPK5GSMTMaU7gVE6qa1cArYEbgL8AdwO/A2rwHugl70wk5+rkNEzd\nKBIU0xNCVJdAJWRq4l4rtkFHFMS6WprlGbYpHrWuFJV2N0J4KmMpkYVFrsCb2D377LMZiMNC\nAp8qRQLtUiEeaQu8CEwDnvAKlT5FiBy0KW2cWsvrgeuB3wA/B34H3AZMBp4E9pvNpsy/m0Vz\nCMvqIoFpnGgHhnQVOAxPTQ4yRyZzQKrjR4qfr4eZmJMaPE0u+ZpZ5rlaFtmhJaYWlQHee+ws\n8h7aFVE8Ugv4F9B02LCJSkWtQU6+VTpO7CjiWFDj+R74FdAOeAK4F/gcuBIo8LJM9wNnmacL\nWHBAE32/o8s9K0L1JQVg4kkujZPKaMeP60sd3moY2n1gpuPaBhIWwj+B5Mo2NeZMYmGRx/BW\n7Hr16lWjRg3mrfLOO++EDskCiCfZxEcFNgM8CdQBGs2Zc9BcDLzsUoYbsh24C/gDMB6YDNwC\n/BZ4oqJ6J3U1Ks1rs4lFsG4UNTO+sBqJ3uzJKYmzppIcFuWLaUnJXH5FMbac4HYWFpUc3sRu\n48aNO3bs2LNnT/qrODvUrFlz/34iwWURChmbQ+mF55fAqcDxwFblFH8vnWl7ULQwWd4O3A08\nAowH7hHo3T4/RiyiReQjwZe1kGwspfxOipp7Tfl5PYIZlVvMs4yvWpkkbdoNDxEiw9OmZboW\nCYR3KvaTTz7p06fPNddcs3Tp0j179pSVlW3fvn3evHlnn332oEGDtm7delBABiKuJNAmFOKe\nRFT7ZwF3ABcAH+vKE7qINvHkt1Gc/UZ8/Ndx7gbaAX8G7gZWA9cCzt69vpKt2mBMe+crCYI1\nNiYCHT6nLzE2yazaWDc5C2Gce3qRiomasZrk1YJuHTMMPsQGhjSVRUJvYVEZ4E3sbrjhhk6d\nOj366KPHHHNMYWEhgLp16w4ePHjGjBlVqlS54YYb4g+y8oKfUYrD3VHAdOB24BWfdvgrPS1R\nmE6F6YcdwG+AdsAfgTsAdOx4HVBoWM4Do1ItNvzGenZs5jdyaYmaGwmRjWVSQ7EwwQ6jhd+3\nIuLudokORugrizdarmw6tKiE8CZ2r7322qBBg7SnTjrppFde8bvoW7BA7x/PgOsmwMvA68Bk\n/xa0MftdbBC1GCZGtROYDLQHbvnmm18Da4GJqVQtXUnP6TsSDaOSwLOjYu1M9VJqqZt7UFTR\npA8utERNJHCE6iyapXVrEWKQWvVOVBAjhNobwRBtYJZaWVio8CZ2O3bs2LhR/3u0mzdv3r59\ne9QhWZQjW9wulUoVADOA74GxQLQTJ0eDVPNfMWEn8FugPfAQcDOwDrgFqKsUs7wtP+DJeESV\nLiW8ZGpS6aSvEj9zhF9CcSputmMmVQm9kF/FE77uMl9EikNww8NyOwsLCd7E7ogjjpg6deri\nxYul4wsWLPjrX//arVu3eAKzyCafeAzoCPwU2BOdTX5zYlpmTNgF3A+0B+4Grga+AO4AnC1b\niGDsWpIEBLgKkYuvLmkjBK1g290k1VByiopKnnrKVys4yIPMoxXXLSoJvN+KveOOO84+++z+\n/fu3b9++Y8eONWvW3LNnz9q1a9euXZtKpf70pz9lIMrKiWwpdtcD5wNDgG945bX5LIT+6RAT\nRIMRGt8DTAH+DFwM3AzsbNToAWAK8GVUDiyiRjB1yldhTyqjHY1SwlSq4uhelVVhqusZtmqf\nziB7kl2ijCRDSiVznQhaWOQovBW7M888s7i4+JRTTtmwYcPs2bNfffXV2bNnf/3118OGDXvz\nzTdHjhyZgSgrGzhpmmDwnGpPAe4HLgXeY9s0BSkmYkLGlrEVYh8wDegCXAPccPTRq4F/Ascp\nkdjn/ryEyoQivND8MRztjR/5NBIgQRxtJIGN5IHoaGHBgbdiB2DIkCFDhgwpKyvbsGHD7t27\na9as2bx586pVq8YdnAXi/GkAVRLoBjwL3Af8UzjIFORoxmMywizgEkSiDK2OMJEufxCY7jgA\nTkulJgKLgfnAQ8Ar/n8sDZYFBoLfCxcM2j1z2rXfUX6X0dfeOPGg1ouq9hH8yZOdRDXwTB3i\napliP2hbFBOR4oipFhaVFt6KXVlZWXnRKlVatmxZv379xYsXP/3001999VXMsVU6aFM58c1f\n0rzfEHgFqP/Tn/7aHJUUj5SH8pTumMFITfaUT4he8ru2iatvKpWaDYwAUh9/vAr4J/A5MAlo\nFsighYoIL1zkUF+DEM+6rMUUv3pcLUyMZ1S83fhal1pS3QXIR7QXKMLZzLI6CwsCFLF76623\njjnmmJKSEvfIrFmzOnXqNGrUqIsvvrhjx45TpkyJP8LKAmmvtN8JnQMq13nw4JaTT+589NGY\nPr1MKS+uDZLwEAfUx3HOPM6hhgHjOfLIy4C2wOPAZcBXwIvAyYabRyK+xD4nC7/DOz5aYNqF\nBoXhcYJRh590Kzm6X1Tx5D3aJytaw4Zyn6arhOFYnhXDu/BE5PllC4t8gpHYLV269LTTTlu2\nbNmGDRvSR3bt2nX++efv37//xhtvvPvuu5s2bXr99dcvWbIkU6HmOTgze0gQ1OfBatW+nzUL\n//pXqk4dsXyAkIKRKqKYO4kT4oFWUDF95bsWsRn4LdAZOB0YOWrU68DnwK2As3Ytx7Vdh8Ij\nzOYqeI0x01fTwwyttxFJTOmUafSKx7V8jugNTkdxRHQOf/I7RYS/ETyvJuHa3oYWlQFGYvfA\nAw/s37//9ddfv+CCC9JH/vGPf3z//ff333///ffff9ttt5WUlFStWvWPf/xjpkKtLPDkMQFA\nkC3HcZzp068DzgHQrp22PLxyT/TkHpIaSjFEDjV1pS2WPl4GzAJSL77YGngcuAhAhw7vAjcC\n7eIIzkIH0yCka5lItlRRHWYcRmh6MKPvC4LeiS5MhFL1KJEebQHHz1+k9bzf1ciJ2UDSKf0i\njrnRwiL/YCR2CxcuHDFixIgRI9wjb7zxRkFBwYUXXpj+2qVLl+HDh8+fPz/2GCsxopq/pORm\nhfnxvfdw+eUTgbkVJTpXeJAUC86DvurLU8ZTl66Y5m5xzZOO89c8AJuA3wLdgF7Am8DlwFpg\nMXAD0CX6qC0qgHmNRPLhyxpBjAKE5941puOqdy1NNFE6yQ5xc5kkQBMivwdN9DcziNC1Ff8s\nkgwjsdu4ceMxxxzjfnUcZ/78+f37969Xr557sGvXrl9//XW8AVY+SFN2eGsmU47jYONGnH02\nLrhgild2g56RPac5euEJVj7kHK1dZVPC636SI1MDlwO3AV2A3sBs4ArgM+AL4HHgZ0DDMCFa\nsKFl5AFuH4nce6YjxecBE3sTC5tic28ukz7HaYvpAYy4UyKZYQJPCxH6srCwcEH93EkdYbvV\nypUrt27dOnDgQKnA/v374wqt8kFSqkLOiY7wF41Ug47jYN8+jByJ1q3x6KOqqPZjMZ3ZMIF5\nVncqvsRnKs9MJxELLdMss73LgGXAL4EOwHDgJGAaUBdYCswB3gHeA+xjkCf4iUItAQrpOrwR\npimH8TPFWnJmYocurRTvd7WWdnjnJVsKI/zHmjRICPL1uluAIHbNmjXbtGmT+7W4uBjAoEGD\nxDKbNm0SBTyLxMKdpyrczNdcgy+/xPvvpwoL4eddVNcOk6IFjha6dciXzcDrfRiisBb4E/An\noBrQBxgODAauAOoB3wLvAe8C7wEfARsC+8hl0Aoos+eZI9AXUrqfZ2NCbJS2gamKryKZnh8k\nqdgvw/BbMtbVXZsUzg8ykeutUB8DLPIJRmLXo0ePGTNm3HvvvVWrVj1w4MBf/vKXWrVqDR06\n1C1QWlr6+uuvd+/ePRNhVg5EmIGF+aZNH78ulbofKFy8GM1Yv8smLTA0BfSVP/J0yjmYFXgu\n/weBxUD6ryxXAboBfYHjgLOA24ECYAfwGbAK+PRQAncDsBnYl5Gf580WfDWN6GRxx1iE3SXp\nZIRl+hbjuFApoEQNtXxRe/dp9TkV0tNdJtf1DJOJMF7yie5onw0y0EDLGrMII7EbM2bMz372\ns5NOOmnUqFEzZ85csWLF+PHja9asmT5bVlY2adKk9evXjx8/PlOhVhZELkJAvY3nz38QGAdM\n79eP3iIj1SXmiMiJSFTLfyQIv4WrDFgJrAT+BgCoDnQCugFdgC7AacD1QKNDhbekUh8Bm4DN\nwA5gF7Ab2AXsBPYAu9yogP8qjqoAoopeG6gOAKgBHAYAKABqAQBqAoUAgKpA3UPl3YMStgPp\nHzjcDewDAPwX2APsAf4L7Ab2AFuA74EtwJZDZSTEdJmYNjnePRP3puS+JPWJGrlU0Rep0vpK\nKTtBOfqfqWTGIGcMLPId9nJnC8Z+LysrGz169Isvvpj+2qdPn5KSEnfX3U9+8pPXX3+9U6dO\nH3zwQe3atTMUbJYwbdq0K6+8cufOnXG3NEIFQrIgLgAtgG+aNcOoUalHH4V5dZFEBfGgqs9J\nCxiiWz+0XcFxETfViwO1gObA4cDhQAugKdAUqAscBtQC6gE1gcMU7tXg0IcDhzifA6RbvhfY\nAwAoBXZU/LAf+KHiEQB7gL3m8OofMlsLKABqAjWB+kAt4DCgDlBPeBtrF/AdsAnYBKwHNgDf\nAN8A3wJfALsD99EhRHh9TaZMY89UGLpXIsSv2rPanLLJmnpX0ndHgGSuFiFX6MqwZc1CQt6z\nuv3799eoUWPBggUDBgzIdiwyjIpdlSpVnn/++blz565cubJ169YjRoyoVu3Hwq1atTr11FMf\nf/zxvGd1mYT0uB+sbhpaWgbA2bdvYY0ab2/ceMKDDzqMPxwibcQ2bdxWywcmZBI8s7GmhTbn\nWB2AH4DVwOc5SEldNAIaA40OfWgKtABaAn2AVkCzQ/LhRmAtsO7Q/2uAT4HNWYrZ724/Laky\njXZTAelW0pI2iZaZbmqpMFEmGLI7Gpl5gwzHk8UAcgW2f7II6q3YVCpVVFRUVFSknpo6dWrV\nqlVji6ryIpgOQasIFTBhQnug+bffonp1kzVp3hQ3zHnKeyl9OmsAACAASURBVMQRCOzQs41u\n1sZv7owD7TLp1w4/Qr/IXVaHQ3lYE1LA4UA7oAPQHugADAIuAloBVYFtwnbDVcBHwGqg1GTK\np16r8h7m5ZOGh7TvjfAr3i+SGK9uZiDuIObDkonuqLv0/CLwIHedOhXf0Pel5Uh1sw6bULZI\nPihiR8CyuvgQlawFdQL9+9/x+OPN334bzZv7NUUvGEwjnpAEwmgpjiiIivwyzKLFT9VZAHCA\njcBG4B3xoOMUplLpvYZdgW7AWUBXoB6w79DGxI+Aj4FX1q1LtW/PcUSzOm0xccEOnP33jMQ9\n6Cl+q2dVhqTWFW+cYORDy1o4pphOxXswQHjMYGJF1gOwsKARkNhZxITAMzLxNF+OpUtx1VV4\n8EFU/DFCkzW9ESVUzkGTfToFFqsSxjceH7+0SCPdGyuAFRWPtwaOAI4CjgRGArcBaN9+G7Ac\n+BD4EFgGfERuCpRcgMHPaO1Z5FVaZkY8F2lHNRGJL8kcXkoSn5mJjvhpUGbGQGtQepwLFnzk\nsLKcRe7CErs8gfukrl+6tmz5ok+fdhdeiGuvpe1Iywmf1WlTXXTAzIPZhd+Q4sgdJwGeyc3I\n8VXFkVwF6AD0Ao4GegJnAm2Bg8BKYOmhf8uFV4bpJmjpmmdIUnWtsmV6fhCTv1raRGt7IUkP\nTciciq/0SsUk1wSr88uERPUuvrEU4Gk5R29SC4s0LLFLFvzOjNrtYrKd0tI3GzduCmDatEiC\nFL1ryRzdilj5QbANc3R15p4qv2cTCCJgWsoKaZzjsQxYDawGXjx0pB5wDHAM0Ae4CugKAPgM\neB94D3hk0SL06pU69AtNRMCB5VttRlVL1NxTRCLSRJhEgdAzh0vrTFIY9P4KabsCcfk4285M\nrNStGIAUxqeo5dyda2Ehwvi3Yi0yBlEtSB0Cvy4OTcHGQnfcMbxhw7MBCIucJ0SbkatWon11\njQm5+YZYfpgbgFTFIhgnSOzaoO0KeuUO7zRy+r4dmAs8BFwAHAHUAwYDfwIc4JFu3TBwIOrW\nXQpMA5wnnugB8PcFE9qY59iQjhCjTs3nauuqHrV+pTtIqmUKg74pOPJzGnzVUw3AZNb0lROY\n5CKYlOirfLQ3e2KnDoucgCV2+QBqWvnPf3Dvvfj739cGXZvdhUQ86M6VEvmj+ZlJbNAuXcFC\nJeoyzUY+R2cL9ILtS4GLu0MiWXd3AQuAR4AxAD75BFu3nnjgwHPA5SNH4o47VgDbgDnAZOAs\nwPj2kM9NpZ4RSo9t2pLMISfaIWgcYUq8bYk+F7U6ulYAsS2SsaQS4vA2kwPtlGthwYdNxWYf\nKhkKvIRI1vDVV7jgAvziF/jJTyIMUitriSXFJUF68pbyO1IT+MGoVTjZk8zMlQnJ42QshvDt\njTxU1+Ac4L4ZMwA0B/od+nctUAf4ElgEvAMsBpYC+xnBaEcdhDsipUtZ+rqpaVrpGHKX4lmO\nFz6cinlb7b0v3dcE3BvftUaIo6avxMFoYQov7mAcRmrbwoKAVeyShcDpDM0ssH//O23bzt2y\nBXffHU1wZu/qwcjlH898itZsgCyM1khIC7mCYC3NGF0OcDXd8huAfwG3ACem/1bHihX3ALuB\ny4EFwA5gAeBMnDgKaEnaISKhhRbiQYg4KzkNpuUQswqhFwa7d+jYxK5z2xKsOaqgGCECKJFx\nBGBhEQxWsUsQQi6Q8lxw001tgd7AhnA/OhhsilGfuekMEaLYr6baCd+lASyogk0SBDwOkhmn\nrxFo6m1ReUqlUqmjjgLwOACgPtAP6AsMWLnyL0A9YD2wAHgHeHjx4oJ+/Q6Y7XvSuDQFEYkC\nX2wWD0pCuFhAZDaqliZ9JhRBmnpq7atn+UMo8H2RGUHLUiuL3IVV7PIUL7yAxx5rPnfuhhim\nJ3EhcR+dTbO/W5h+sPabfTbJhNFSE0kgoed6OonGR36sKGFaQVxcv9l2Trr/v8BM4G4g9Z//\nNATw0Ud3AruBKwCnX7/twDzgvlTqDKAJL2ytmMdRmFzm5/kUxIHqUbWvvZcDw6+gqGqfIRPW\nUSHymcTCIpOwil2C4PcR1vjkumoVLr0Ud9+NIUOijC8Q1A06LgKnlmizWkQimwXQFAP49bW2\nEYpR1lcm/tWRoJIzzkKualq+ZLA0yoBUjx4AngAANAT6A8cDxwPXALUBdO36JLAQWAh8ApSZ\nw1Yj8VTF1BvEtSwyVIlB0v1D0E3Vu1bw88uiArOurI9YC4v8gCV2yQJ/PTbuAtm9G6NGYehQ\n3Hxz5OERkaRhErc8+UdgIsKspXoJTDs8IXrRLtXhnYqrtSd9yQrEfuYPaRPr4lgwaXWBnQLY\nCrwBvAEAqAYcBQxYterR//3fi+fPx1dfbQMWAQuBBUDJDz+katWC4Z0G8YiUSHX9Sp8lAicl\nVdX7i0+niGy1Z10mieRAq/RnfdymkR+quUWlhU3FJgWRif/XXoudO/H3vyNTW9rVr9pUrBba\nlTtAsilA+ZAdHiytnHYaftlwFaCELIRM0A33ZGZM3U5b1+SRrw4eBD4ApgJ4+ml8+SXWr2/w\n3HMjfv7z/wFmAQdq1VoMPAiMSqWwYYMaleeNIN4L4vX1bIvf4cSXybV5Us+KYYZlTIwqqjsl\n5+44i8oJS+yShbCzxlNP4Zln8NxzaNAgoogAr+lMWn44Ap4ntHwxcPXw0O6aitaFX0RCENOI\nVZ9gEgjPI6azNGfiy0uqZmZKYpa3qFUr/OxnePjh4xyn2s6d1YuLXwO6p3O4LVqgU6fpqdRl\ngPPxx6go0al3k6n52uDTjZUeUWDmwYRY7lZX2a14U7sfiK4OcDu44WXmVrIinEXlgU3FJgXa\nBI0/fPYZrr4a996Lvn0jC8sPTGkm9atYXiJ/rqblNxMnIYL+rBgq3y9H0ggdUUA72vAyRlL5\njmi5TqU1nnCUH5kzPXWoBcSSpjHpOE76V4WqAKXLl2PhwqpXXfVLAEceuQVYCLwNDADeF34w\nzzHvMXWPE+xTG5V6VtsVplPBIEXrKWZ7biTQFmZGYmLDfCMELDu0yAlYYpcU+FpcNfPL3r04\n91wMGYIJE6IMy+ROOaudUukNTO4ykBJ+sDR9yi/V0G5CyryoprKHTPrllMykOuKLcnkWC6BQ\nigNMpFBaxYuw4Is2lQGpo492vbQGBgADgf8F7qtSZU9Z2XvA4Ntuw3/+gwEDmANGS3E8eaFa\nhWgjccTTSELoTtZFdAuLhMASu0Qgginphhvw/feYNSszW+tUmFYd6ax7XGVyYZYHbQf6JVjh\nCZlpoeU7ChlDtpil6B1+KJ0v+3z+J9E4X15MsZmGrlpF9L4eeA54Nn3qv/8d2aDBG7fe+tZv\nftMPqFG1Ko4++mEAM2Y4mzahaVO1LepXsXViJGpU4W8o0w4EsaW+vPjS0bO+AcPCIkdhiV0i\n4HcllqfvGTPw5z9jzhw0bhxDdBrXzDlUXZncPTpamSEMI1GzulFBjSpwnJ6BBTMrKZ1azqEV\nqzIMvlQWzKBrlpPjM1XXFvOMxMSoRBKWatAAQGryZAAFwL558zB/fuelS3eMGlUXQLduGDQI\ngwZhyBC0aYOKXE0a3uqAlOKR7rL4SE/IRzJThh0RxUzMVxnoHAuLrMASu0SAv8JplqIvvsC4\ncbj9dgwaFH1knAAYJQMnCgMkGUUS41k9wJY4bRWmCEcHFkBiVMPTInCO2xcySRnptqu6nVqF\nvgQmtYwfABTGIHrclz41cODpt9ziHDyIDz8c37v3kE8/Hfnyy9i8GW3bYsgQDB6MwYNFg9pm\ncjKnNP0ytU6FZ96WCaKWuDeDCc7TpqlMhKzOV9hh5GQLCxr2rdhcgrtn6Efs349zz0WfPrj1\n1gyHwSwpxQzyNT2xcCSh+iJtYXiJSBek4LWSkmmd9uuU7sxsLRscv8zYVLbh0uIUY7c+4cuU\nS1UL07RYilDriwjYcRxUrYpjjpkCjAKwcSNWrsSkSSgtxZ13oksXp3lzZ/Toq4AjAKesjLjo\nomVP9Yu2w0S0A0ycASK3mUbczx7ZksMjuZoWeQOr2OU4br0VX3yBZctQJbkcnTmxapfPALNV\nSHXKr2xm8p5d0OKBKGoihphNIpmvjLYbv6SiqcODyZJNtCzkgJHikfpWKiMGrJemUil0747u\n3XHllQCwbh3mzXvykktuBB4DNlep8iIwD5gLfASU+SGsRPDBtK7kgPkgEUmql7izfBlMcn9a\n5DqSywYsvDFzJh56CNOno1mzbIfCheecqM2VEGdD+g2AkDSI5lt+q9CgE4Xw0vxMZvlyoGRf\nuo7aU1JdDvPjhCFFrgqBNES9mUkEPUUUlWeIelt59fbtcfHFY4GOAL78ciKwDXikU6cPgbLG\njTFyJB55BB9+iLIyyaOqbkpRZVHQdZFhnSl8k4kHiewiCVfTIjmwxC4RYOaSKkwomzfj4osx\nYQKGD481Ng4812AR4pKjzkepQ9uGxKVUrRhxA8hQo0UYDZIPX7qjtmODOZU+SOAQSj6YnE9S\n/sSxKp4iWDWTcLslmUxRbAitUpdbbtPmGeAyAJ9/jm+/xR/+gCZN8Mc/4uij0bQpzj57PNAT\ncMrKoh23IjukLxx9KoF8yC/4jzQWFlmEJXbZB2fKk7MhjoNLL0WLFrjnnrjD44C5nrktTVUE\nlHyWtk980Ue1boCSebAUcSBeFH6VlDknJXJx5irIpwscsU16GDCV5JAVGAae9ogYmARTEzxd\na32heXOcf35q2rTUp5+2ADB1Kpo2/UOXLssBNG2KkSMxZQo++gjCjenOIZz7VO/UUFi9hZkQ\nH97C3GvMKdQtU0nua4tKC7vHLjcgCzBTp6KkBEuWoKAge0FVAP8p1nNWdbx+jE1ctvNpjpaY\nAb9pamFOJzNLqjAtkFou7tc4DXWYacRsQwwcCuXapGtxRqZneemqpZRXK5iEaQOA0aMxejQA\nbNiAefMwdy6mTsX48WjSBEOGYOjQI4CViiMCUvM5dJAesUlTuTidYGGRo7DELvtgLuE/TkMf\nfYSbbsIjj6Br13gjCwd3SRC/esJd26Q1UmsnDlYnyRuZIY7BmJm4+gbIvXK8ZAC+Iteux/G1\nwpOs0HQwAHUwUUBTANCRMJx7biqVcr7+GiUlmDsXDz74MYBmzXDeeRg6tAvj3Ro6HtmdIU4+\neQrJsaR7luPCsjqLPIYldlkGc036cc7auxfnn48RI3DZZTGHFjukZYmznPhawoPRMs5qJPHO\n8MQijGwWwAJHQAoPTy2NCIYZD6eAVuRTK2oP0rFJrA6GJpvMchgqk45IzSyX+lq1chwHF1wA\nAF99hZISlJRg8uTPALRsiQsvRFGRs3Yt2rfX2qQ9MpFMYSymkAKzeQuLaGGJXS4hlUo5112H\nbdvw+OPZjsU3VJVIzT1JBaRifmmHxL34xMUzeReVahisXREi2CLE6UlCzWIiALk3kTM16alW\nlD5Lw9W1IFI6rURnysZqiJffhzovuGU0hdu0wZgxGDMGANauxdy5mDMHv/oVvv0W7dqhqKj8\nX6tWJtcqRfMVUkwQo7KMysIijZwndgcOHFi1atXevXt79OhRo0aNbIfjG/w8bCqVcl5/HWee\niVmz0LBhBmILCXcJJJIjTNkpPHnip4RipVna3FkYCyHBJM2R0DK+EWYqkGlfK6967m+Djr6b\nnkBMTw4mTuaWl47TkqFahYjK5AIAOnRAhw4YOxYAPvsMJSXPXXVV0ZNPNgXQufOPJO/wwyWb\nRMym42KVmNS78GbFa2fK6kpHtK22zNIiIcilt2LnzJlTVFTUvn37ESNGLF68GMDMmTPbtWvX\no0ePY489tmnTpo899li2Y/QNJqsD4GzYgEsuwU03oago/rhihOM4fHYSfq5MCYjQbOBgfJXX\nrpfSSsZvi5ZhcApz9DnaoKhycQKDrqU0+PKqyZ24bGutmY6bbBKBSRTBU0T0vARSbFxRsGtX\nXHnluUAzACtW4Lrr8N13uPpqNGuGHj2ca691ZszAli2+no7E+N2nO18ipS+EZ3WIJzALi2wh\niRsgtFi0aNHgwYMPHjxYt27dXbt21axZc9asWaeeemq9evWKior27t07a9asbdu2/fvf/z71\n1FOjdT1t2rQrr7xy586dtWvXjtayKiRo4TgOHAdnnIFNm7BwIapXjzaMrIBY7aRkFl9Voo3n\nCnzJY2qPBW47f+cZ34jnwFZlEl8B+BK8PYtJkWilPr4RF4QUJNk0iYsw3xSSHW1hDipUKSvD\nsmWYMwclJViwADt3omdPFBVh2DAMHoy6dU2tIyznykIjImTkMSmUFgnB/v37a9SosWDBggED\nBmQ7Fhk5k4q99957GzduPHPmzJ49e3733XejR48+99xz27dvv2jRopo1awLYtm1b7969//CH\nP0RO7OKDKYOjwZ//jJISLF2aQ6yOXnu0rTYd4UyRpsUs8rXfb+HwwZgSiMxa4cPWOjJdQYmR\ncGImrq9rUEt6TIQmPPwKZmpUqorJ4c0cLdatkhIyyMznH607uUqVKqk+fcrPlpbi/ffLSd60\nadi3D8ceW56rHTgQtWoRcVpYbhceuftgkEXkTCp24cKF11xzTc+ePQE0adLkd7/73VdffTVh\nwoQ0qwPQoEGDcePGvfvuu1kN0zdYa8bq1bjxRtx3X8J/30QE0Sg3NePmZN0PTNDlJddxqHcS\nf4rcuImvaImUli6Yso20X8+D4iXjdKynR5WjaCGlAtW5nmaHqEiziPEjJg1NCqL65KD9LBk0\nHdTKe6b4xW43UdsAA1J7G5YbrFYt1b8/brkFb76JrVsxZw5OOw2LFuHMM9Gw4dup1J3A0FQK\n+/YRxnNlVZYuVsjII3/YsLBgImcUu+3bt7dt29b92rJlSwBNmjQRyzRv3nzHjh2ZjixmOAcP\nYvBgDBiAa64JbCTzDz2qLyL9ZDIiljR9ZgbjWSXw/MuX0PwW9iuwqfyPWFrEUyZHpiQgHbmJ\nefDj559Via+nEqyNHxWbaWJdanVJngR51UzjQbo1tLRVOqLSQdGIqB1KF1rU9tROcKvoW1Gj\nRmrIkPLCu3dj4cIT5sypcu+9v65WDQ0aFO/ZUwLMARYeOJCqXl0N0sIiAOwoCoCcUewaNWq0\nZs0a9+uqVasArF69WiyzZs2aRo0aZTqyuPHb3+LTT/HXvyIHn/wIPcl0u3JSUfQpbRjMkkRU\nfucXPi0zESaCyjBByE7uB0kMo6sHoNTS1wDdaDqlSr+oyM+YvkQjYYaf212iHdUmMf7pmFXj\n6lk3NhN1o9m2qlaqg7P8SK1aqZNPxuTJAxwHW7eevmfPcuCnwHwADRq8ATj3348lS1BaqrpI\nrIgVUqILYzDJ3WKRc8gZYldUVDRlypSSkpL9+/evWLHiuuuu6969++9///tvvvkmXeCTTz75\n4x//OGjQoOzG6QueN3NvAHfeialT0bJlGEeRT1gRItiMRmesgoGgYgGCpJNiqh7DN+srDJMR\nFWpg0hETRyRCUnmhRBFM/Ibj2lQrZDFPX1q2KumU7me3yVI/i3U5YdNxuvRL5GESv6SbpoqC\nqhdtAQCoU+cN4AbgWKDqli146qnTxo/H3/6G445DkyY46yw88ghWrEBSpyALizxDzmzt/PTT\nT/v27btz587014YNG7799tunnXbad999169fv71797733nuO4yxcuLBv377Rus7AW7Fa1ATe\nB5YD5+e1HM1cUdKg1ye+SKbaJMxmBcHaEkldhEt2O0p20mTQFKdIU+hrrfVLNEQaZnR55sDQ\nFlODSSmvlZggltHGA91d4x6hXWifN6Q+dAzpWk7AFbBpE+bORUkJ5szB55+jaVMMHYphw1BU\nhC5dqIoWFomHfSs2AnTr1m3hwoWTJ09eu3Zt9+7dJ02a1LVr19dee+3SSy+dO3eu4zgdOnR4\n8MEHI2d1sYJeRCcDR7RqdcLXX2c2qEzD17SurtPalTuAuuarfLSQVJYApAq6JniyIq2FFLHF\nyuxUkqm0n/nQmlW9q778Xn3t+ElV3K/GD5vOdaqqXjBCo44TSW2lrx3N6qT/w+DHNo4eDQDp\nP1xbXIzJk3HllWjZEsOGXQLMicSF+UgGYOmpRdKQM4odgV27du3Zs0d6kSJCxKfYpaGdhYcB\nbwJV33wTJ58ch9OEQJoTVVXDUwURrQVjRfFV8QzYVCz9wdQPYcIjrIk9r14Xzzg9j0cCVajT\nunZhCljqB5O4yLnWRC9JGVJUHOGmyInrbhLkfAlsUkVtDOFBaaWrV5fLeHPnYuNGdOhQ/iN5\nRUVo3hyG62JykXxiZ5lfXsIqdvGidu3aMVGubKEu8CTwGHBdfrE6evmRpA6xsPiBkHNMWTk6\nJPErh3vx+YpU0lSRLuaL0pmOm1Q0bbvUwgQd9KWYSmuwlgNJgWmTrZ7EVOvd1EbTEcms9jjB\nYrWD1uSIJlj0eFZlSz6TIEi8Z126JMXvO3VCp0647DIA+PRTzJ6NOXNw3XXYuhXdu6OoyHnh\nhSbnnPOdVwzajvIMO3JYxmaRNOQDsQuJXbt2HThwgCiwe/fu+Lxr5+vfA/uA6374IT6/2YLE\n7TzVHWKR0y75zqEfvJWO88PjHA+W8I2qumskGHEkTpm6KzCX9SzjdoWJ2fDVR21vaAeY2v90\n12m7xaWYKj01PQbQciPRRuhuBOlWUmVIX0KRas3k1y88LHTrhm7dcO21KCvD8uUoKUFJCcaO\n/a5KFfTqVS7jDR6MevVChpFFWOZnkWHkQyo2jTVr1lxxxRUAZs+e7atWly5dysrKPEvu2LGj\nTp06weMzQJ3iTwVeA4YAb+fLpXFBKHaSMqRmmkDuDLPgwDODyUk7ci6BNkvufjapdEyP2uqE\n4Cc6pa35Fe2kpmm5qWlgmwpr88WSOggzaVPpHacTVCPas76YYigcPIgPPsCsWeV/0+zAAfTu\nXZ6uPeEEHHaYpwFiqhHLpD/kzSJokUnYVGwmsHPnzuLiYr+1OnbsuGzZsv379xNlXnrppcmT\nJ2eGQNQD/gw8AizIgLOMg5hAVRlPnXYD5yizDr/CYUyOTF3qN/tmsinakdQpiZ1oKR0hjElJ\nWHVIEHIdP4lJNNwUsLYkoe8S0qBKodTWue2iObovgq5yIJVHmmJGPKzox983vvVW7NuHxYvL\n/6bZQw8BQL9+GDYMw4YVDhmyzxwApwkWFnmJ/CF23bp1W7FiRYCKRx11FF3g/fffDxRREDwE\n7AZ+mTF/SYK0Tkg8wK+YFB5MOSdy+E3VBQhSmxA00SyTSKZWUa2pzEnkeZIvrTtC3lPVKY60\nppWgtBzFRH1MGU+xFWqcBOUiOJ/Ijzm00tRq7Wf1OhKZX77HkJD7oUYNDB6MwYNxxx3YvRsL\nFqCkBDNn4je/2ZZ+AL73Xgwbhj59UO3H5YwTqqV9FvmK/CF2hYWFPXr0yHYU/iBNYSOAi4DB\nwJ7KPemIK6V4RAtixeWD0Io8A+BAS6SIwp5ltIzHU3MK1gopeClPp7IfZhiSnie6o2PwZEjE\nV600JTVB1R3VusRBbZO1nyU+StzyamA0xBtHtSzdX8Tg1DbQVyS0QU4TKuCww3DyyeU/FLBj\nR815806aOxfPPYfbbkPt2hg8uHxPXs+eqJIzv71vYRE5co/YOY6zbt26tWvXpn+suF69ep07\nd27dunW24wqL+sCfgYeAhQAqZR6BSKm4BUyqEse4p7wUFTxpYlRefJnVkh5JllOJmidVoiMk\n+oFzNVNCAtfkS9X5CEjsk5ltNJUUyR/RFu29LFlWGac2Hr+kiil1aw1qyatfaGllNDNb3bo4\n4wyccQYAfP895s7FnDl4/HFMnIhGjTB0aPmevO7dI/BlYZFTyCVit23btnvuueepp57avHmz\ndKpNmzbjxo278cYba9asmZXYwuNhYCfwKwDCUpHf3I6zRGm1nADKXBy8iqYauQIx+2biVcHo\no3R9aZJEGDQpXqpfIjNrEh09LaNiF6mxqdZMPWmyzL8RaLJIB286YvKuZd4cj5JlvxaCTHqN\nG2PUKIwaBQDffnthy5ZDZ8y4dMkSXHstmjdPb8jDsGFo186X1WAj1sIi68gZYrdhw4aBAweu\nW7euc+fOI0aMaNu2ba1atQDs2LFjzZo18+bN+/Wvfz1jxoySkpIGDRpkO1gWxFnvJ8AFwAnA\nXuGUnU08F2AO4ZBEKWZhTmycTDEfvvRIWsTy5VHsH61uZ6orFlD5nxSeOqRVyiXqc/AiMVpy\nn6r4ZzPEtqgkVatUaW89VefjP42YjJgqBiNPzFopXWo1AEKlUyvGw7fGrdWixdPA08Cl69Zh\n3ToUF6OkBLfdhg0b0L59ea522LD0LyFrjduJ1yLXkTPE7le/+tXXX3/9/PPPn3POOerZ0tLS\nadOmXXvttXfeeefDDz+c+fACwF1yGgDTgN8D71Q8m63AMgYi3wT/qw6xT0j6EMaaybhfmxz7\nwdZdVbXSmlJZKUd5go6ciRlJsQCT+KrU0JP68AmBSXQRGaQpSM90qrak6E56opCIr1pe64gY\nNlrqTHBovwg/C2WFJ/3osX17jBuHceMA4JNPMGcO5szB+PHlv4ScJnlDh6JRIzdavR0Li5xC\nzjydNG/efMSIEU888QRR5txzz124cOFXX30Vrev4/qRYeh75K9Af6H1IrksjV65LrKCVtjCC\nGX/ZUwW/8FKZ1gjfrBSJVFHV0rRfxYPB4ofCVEzrospLmNzds5ivTuN45BgBY2TSPE88Zeoc\ntYBoR2J7akha0VGlxSbiS4MztEzGaU00GPy1oqwMy5aV/02z+fPxww84+ujyXO3gwak6dezc\nm2QEU3njQJJ/xy5nXh3asmVLx44d6TLdu3fftGlTZuKJCicBFwGXWVZnhmkx1qo7tAroWV0t\nqQpaNMsMDJq+ECGp6UjVFK1lqi7cg55pR9GatiSHS4kVA3BuMPrf80JzjNAhEdUJOmuq5V5H\nVxAVpVBJq0sJv6iivWSSqmqKXBRNtZ/V+Akwx4+nUdYyZgAAIABJREFUTMtxBP7lq1IFvXvj\nhhvw+uvYuhXz5+Pss7F0KUaORIMGzoABuO02lJRg715PaxYWyUTOELsWLVosX76cLvPBBx+0\naNEiM/FEglrANOCPefpzxOEhLWbi8fQHzwd9YtUEg+6YguHXMpnyVd6TgWnPujSCKYxJn01k\nyw1JS6rEtZzJL01G6ICltVzL27T8RiUBRMBSSXHYiCxKqu5XfzKNcykG9VJqmwOBinEuvd9n\nEqJXJWgDMBX2G4ZkPCApr1YNaSY3Zw62bcPMmRg2DCUlOOUUNGyIE0/EPfdg0SIcPBhS67WI\nCgFGbCVEzhC7s84664UXXnjggQf27dunnv3hhx9uv/32l19+efTo0ZmPLTDuBqoBt1Y8mIRR\ny1kSMgZp1RRXMq1EYeIW2epYLSvyW8VvYc+GmzQkVQ6UpCPVO9EcUUkyxUPHT2tyJiom8SSR\nGIntUuN3BBAuUPEeUZmca1yyZqquba+JzzH7QTUumdUaUQmrtgm+hijdhIwt1R5eCgsxbBju\nvhsLFmDLFsyYgV698OKLOOGEndWrvwbgwQexbBm8/v4kk1JbWMSHnNlj99///vfEE09cunRp\nnTp1+vbt27p169q1azuOs2vXri+//PLdd9/dvXv3oEGD3njjjch3wsW1x27x4tL+/c8A/l3x\ncBKuCLGQZwXSykSwlpTuZVVxJaOJCB+m1TESy3yzWj4hnVUPanUUKP2Min1oiorDLLX8LGV4\nDVa1r73inF7iXybPQeLpV63lGHa8oeItpvWldovUddrqtCP1oNpez7ueMzlIZYLNJ55G4pim\nNDa3bMG8eVNHjrymWzd8+ikaN8bQoeUvXnTrZrIQeWAWSUOS99jlzFux9evXX7Ro0dSpU6dP\nnz537tzS0lL3VPXq1fv06TN27NixY8dWrVo1i0H6wP79H/Xvv0xhdQi9jzgShAkgPlJIL9KS\n5iFpNmqxAN61ylbkYLKQlPLahHQWFceSeFBbUg0jLaW4RviMU43NRDhUpUpqCMzMRstLpHaZ\nrKljSfqsWuAMbCkk1b52WJqC4fS21ANqkDRJJY6Y2kv4MiEYpUsKGjXC2Wdfk27Ct9+iuBhz\n5uB3v8PVV6NFC5x4YvmLF23apItzGpuESd4ij5EzxA5AQUHBhAkTJkyYsHfv3vXr16f/8kTd\nunXbtGlTUFCQ7eh84t57mwLX687YG16C55qtVZVMPM9khEASrogvWqktqa3CtMNZh1SG4fIV\nSZlzW6QGIBFWWu6SaKu2fODHjJTyGqnWIOeiBBCJiSp+W6T2leTIV2Ce4fkyS7dFvWeDefEF\nl5HrjbdogQsvxIUXAsCaNeW/n3Lzzdi8GZ064cQTUVSEoiI0bUq4oK+IhUV45BKxc1FYWNi5\nc+dsRxECH3+MyZN/DmxRzuTBrR5HZiSwWVWRkqQUXyqU1nIY0PlNk/YjhhRJGJzwJAHPbweq\nixnBPk3EXYrNV/zaeERTWs0SBiZHMBIp/apeO+ms6ZFDTY+aIpTKaA1qybGn+qgedGOj5XOi\nomQk8MXNPjp2RMeOuOwyOA4+/ric5F1xBXbsQI8e5UrekCGoW1eqZ7oiFhZRIWdensgflJZi\n3DiccsqzupPJykFkG1pWx8krqdDyCfWru2JJZeJgdUSQULiOCfS6yBFpJBWN7mr6uGRZItDa\n4wToVnhaUJmxduSYusgkE0IZS5zwCDormtVaVq8XfQW1w1WNUA0SFS8N5zL5UubCWOCHFB6m\nUWFEKoUePTB+PP71L2zZgnfewfnn4+OPce65aNQIxx+PX/4SxcXYs0d0EX3cFhaHkJOKXW5j\n2jSsXImVK/Hqq9kOJaHQrje0QkAvXdFOo0xWxynGkaY8vUBopsQVPEmwSx34PEnyK5Enbb5M\nLKYNxnSZpIsulvfkrJLWSKhWqkKW0r3Mq0ai1RfVSKQyEY5Gtb1aLghdH3IiMV0RFSmDFqt1\nF6YH+HXjuPe9UbUq+vZF376YNAn79mHRonIl7/77UbUqjj8ew4bhxBNx3HGoZhdfi7hgFbuM\no2NHPPMMWrbUnrRPchJMRMQ9IgkMJvnEb86IE0xgO77A1CODjRyRckkMzJOaqOITDKupeNW0\n9iWxSmtZFN74jXXbpcambSBn/BC9pFrW9qTkSxXYVOKoPgP4fcgRfUn/c7gpUdIzEs749LxJ\nM6DVRYwaNTB0KO66K7VgQZ0DB/DSS+jdGy+9hBNOQMOGOOMMPPQQli+HnfMziMyIvlmHfWjI\nOE45JdsRJB1Epkn9CvbuN1rzM5mCwlq0Mlgck4VJ/TKFx4GqTtHFtPalGEy9raVTqhEmczWF\nRx9PCVsD3a+mtqhfxbZoe0PtKKLr1IN0L4l+3c9SE7QUU22m9jKpB9UjfBpNk12pDMdgSAuZ\nfEj2jGoXgNNOw2mnAcCWLZg7F8XFmDYNEyeiSRMMHVq+Jy+n945bJAZWsbMIhWw9/TgCOCE5\nur1HnmBW8SwTRk6TVlZJcGJqLaplwpFJPGO2grOuE2TRxAxofqleKf7zgDiQpLar6ppbWPTo\n9p5KudQAxGK+Ro6jpNq1cMuol8/Ut2I8RBNMBzmCnCfiZoQZgGm6kJvWqBFGjsRjj+HTT7F+\nPR54AIcdhnvuQZcuaNsWl1yCp5/Gt99mLu7KhEjGavJhFTsLDxCP7CYVJO54YFjw3GBUNci0\nFvKX2DAIaVxsndamRPJod1L/qDZN1aW+df1KfagdDyo9lS6Z6tcRdr8RTZCOQxghWo6Sqrgb\nTEua6eBTFVVAqSQRpNQcdZRqjUgtEsmx2j+eVEy6ZGpd0aapn7XgTAL5uqYST1keaNUKF12E\niy4CgFWrUFz84tVXD/nb35oA6NatXMYbOhQNG0YcsUVewyp22UEwoSXzoFd6aZHIWDye0K6d\nJn5ges5GDE2j9RLtKToGtYB2zVbLaKmJVlXiw+Ql/dWTbjI9uqNO4mf8gE2MSutFqqi9I/x2\nlzjktMPSdEpLT7V1TRYI8AdnrE9BWpiYdKIQ7K75EV264KqrzgGaAfjgA1x2Gdatw5gxaNIE\nxx6LX/wCM2fihx8iC9cif2EVOwsKnvNUVsgoIeEQi6KnEW2BMMuJSbPhw/QAQGSmPHU7k0Lm\nntIyXUkrMgVsotQqjwnGSwhRDcIl056VjBD6mbYHtLqXlmCZupcYcqa+FTkrYVCV2Yh7hIDn\nU4Q2DLUVtBdfJfnh5Qd+bGOvXpg4EQcPYvHi8j938cgjcBz071/+am2/fqhePavBWiQUVrGz\nyDFwJISUAFQUSGiD4mfXQuDlhLl6pZTNbUSEqEjdmExR0rRoxcjkl2A8/EjEWr7KM22KV5yg\nttJn9YhK/mj9TLVAOBW1TFOcWsYpnfWsqwbAHzCme0rSpaR7jW/QbwCRIwMuIkC1ahg4EL/+\nNebOxdatePVVHH88Xn8dQ4eiQQOMGIEHHsAHH6CsLNuBWiQIVrGzyCUQ1CdFvrcI3QKpXdRV\nI2JFvyuBGxhHLFHLmLiUCH5InJKmhpsKiwocQYNMl4ZPmt2uIGQ8E0ujob2+BGES+Y06eFRr\ntMqobSbIzqcFV1MzA4xe9frSjfJ1NSMpk3+gbrrDDsPw4Rg+HAC2bcPcuZgzB3/9K266CY0b\n//hqbZcurqnK2YcWVrHLDvg5JgsmxBXI5RbaxJ84dZpkGI4uyAFTJjGxtzCKgmmMaY/Tw0/L\nON1TntVFI5JwZbIv1tIKQtoek8aASYuVKA4RhsjkCKonGfdMWZqClCyIcIcl8eDhfqUDJgYb\nTeVNBz3VR6JRRHnt8QjBHLcZhukmldGgAX76U0yZgpUr8c03eOgh1KmDe+9F165o0wYXX3xR\nKqX/rVSLSgCr2CUF9ukqDNQFyfTBpRfE6psDCRoFqh6jtpFmmY5uF53KgVQBUssGVHXHqbj3\nS41NJd8mei0dNymFJvajNkGNHz5TdY4gKKpCl+RCLEAzG5pQQmg7ESpxU7jw7A2ta/ESO2ZJ\nj7iaFip8d1SLFrjgAlxwAQB8/jnmzEFx8fTGjfH99+je3b5aWwlhiV12kIvUIbFQV1MCfktq\nj7t+/YbKAb1Im6ClX8ECkLyrHEI6a4o2AFcgoDpSeRizySIFFNmYliRpFTXCOM2eOdGq/Ux0\nsqpKqtyRE7+vMSM9KtCWCfhyZ3khC507o3NnXHEFysqwYgWKi1FcjDFjsHs3jjmmnOQNGoTD\nDst2oBYxwhK7pMBOW2FgUuDotVOCVt9yT5kWM0/4JWrh+SKx7qqNIlZNk/ql+hK7zlMWUrmI\nqa6kBbrxq+RJ2xattqRtDs3gadDXSxqZhLRssiy1gihpUi7VUE2XxpPbccg6kwoTwVhEgCpV\ncPTROPpoTJyIAwfw7rvlJO/hhwGgf3+ceCJOPBF9+9pXa/MPdo+dRT6AvwbTq6NJqglDtlR2\npWU2kUPlLp4UhD7lRq7lWzSJDAbnEJjHxWhTAqRotabU4xA6TWqgOk6ka6pNRJr4jZanqi0K\nicBEysR6iUvAgdpvUg+LATPv2awjafGUo3r18ldr583Dtm145RX0749XXsHgwWjYEKefjgcf\ntH+1Np9gFTuLRIOThVGTVkzVwRH2A6nTsecEHYy7pHSbyZgutF/pMAiK4FmXY1MNSXSU0m0m\n04p8hKjjlkwXU9k5oVFJ1jx1MkkUlCKXmuZWUeVA7UHCtdQ5rgVTQ7R2PPvQVAYVL4c2MLeY\nL22Pf+cmkQ8J8KTFmYyf07dGHHYYTjml/E+Wb91a/ldr//xn3HADmjRBUVF5urZTp0hDtsgo\nrGKXBXDSGRaBoRWQ3FO0zOBLhNDSC2ZFIgCiJP2VFoQ8S5rqSiRDpCDiAiNKXCqhoQkcJxJU\nXFwJg2LMbgGt8Ka6ANk5nguqlqmYGB503aI1Hsn8wOl8Dll0LzdHnRLL0OWl8JhDJfCIigkZ\ni4d/C1OnGzbE2Wdj6tQf/2ptYSHuugudO6NdO1x6KZ55Bhs3RhOxRQZhFTuLBEFdOAPPkhIR\n4agLMM+DjkHbE0WvSB7Zg0mAajCekBQaVUWjPYrimRq51PlaWkOLUpId96skAQamieIFhdJk\nR5BCVUaLiuNBPaUa0QZAN1Y9K/a22jOicZNBfo+lDLqySOJp0GMplOYUCCE9EndW5tviyxf3\noot/tfazz8r/1sX48di6FUce+eOrtfXqBY3aInOwxM4if+BXFtIu1SLUgxlOGPGJWhpEYRMf\nNfklrBF9pSUcxIooFTBdOCbjREXiiIpExLO69okipSRwtY8f2i7VsjctC1R9aRulPU5LjCrJ\n9pQkpbqmocKnd/zyiUXm2VtUCBJz167o2hVXX42yMnzwQfr3U/CXv2DfPhx7bPkfNBswADVr\nxhCvRQSwxC4RCKw95Bki7wStrOIyP866CC925Usn8wuaKKgUgZNnJPRFjpxGdJekY6nH1f5k\nqlkmhBHt1Di10ApXdDHVkVjGpCVL14WIUDsMTJ0v8TNTMdqLO7q0HR6A9Ph69IrkEoecW4h7\nPLFTdwSTUpUq6NMHffrgppuwfz/eeaf81dr770e1ahgwoFzJO/ZYVLNcIkGwe+wSgcRODbkF\nkYuIeSsY5rh0ec80Eyc1GThg5kHXkQupvFZGEjvEU4STPqhSZWCFDxUvjSlOk2tTLZMvX2UC\nWDBRXvGU+EEt5tmZKjPmROKLq2nD0NIgacipI5AJz6cOTsxZRHIiyQ4KCjB4MO68E2+/jW3b\n8OKL6NULzz+PAQPQqBHOPBN/+AM++gixPeVa8GGJnUU+Q6JuMIteWjUiDhFC693zoJZuSuu6\nu9xqeQBfbSIYibaWxOqIihLRNMVvgspC/Pa56pRvylQXusi1FNzkVFtMS+9c46IXlb5zGuJZ\nzFRXdUQbFPtBK9CaqiAclwrTzPxAjD1QuzZOPx2//z2WLcOmTXj8cbRogUcfxVFHbapS5R/A\nuFQKX3wRi2sLBqx8apGf8JR/3GKqsOf4eeh0yORmVJCSaKJHibzSDRdJmMgqTMRRqigV0JbU\nWuOD5oWenUxX5xQjEIBtmPrNpMCpBBEGOsUJ0qn46zDSIDHF4BmVZxha/Vi6TZjPD5Uc4Qlu\n7GjSBD/7GX72MwD46qvDi4vPKy4+b84ctG+PDh3Kc7XDhqFp02wHWolgiV32keibNvfhCJv6\n+WIYhKXIVJd/4QjvwQo7yjY1iaXRLfWkcQREiShaLstUmyLxpb2yJjUujF9Ox5oYp4k6E1Fp\nRwWUK8WRVyU72iqczhFHHTE4k48kc6yQT1ORoU0bXHIJLrkEAFauLN+Qd9VV2L4dRx1V/tbF\nkCGoUyfbgeY5LLGzyH/wBQ/tqkOsQynllUlTec5ixrRgMqUWYEpcdAPVwEw8w7UWxzITYFkN\nvxKraq7WMlN+o40QMPU2FIomUVWxpPiEA96ANEEbuXovaHU7taKn5awji7SJ7zcp3M7FEUfg\niCNw3XUoLcWyZZg9G2+/jSeewO7d6NULJ52Ek07CCSegsDDbgeYhLLHLPhJ3Q1YOmLpdEidE\ntU+7anryLZOLAKIXoR2qZI6Qc9SK2vXel8zjUjq3cAABzHNdj+Rm4SQWJUpEmzIpfwTNNQmu\nUnWiFZw+9DRIXCZOqjQSmpgBhOGL6mXl652ZRKKCqYCqVctfrb35Zuzdi0WLypW83/8eBQUY\nOLA8Xdu7N6pWzXaseQL78oRFZYTEyaCkMqVcZwD2prpTdS+xjLoJiTAl1tIKJyHXMH4xyVFg\n15J9LQf1a9xUnqAsRPeKAWgt02ZVjuVXfRT5hDYqtTzhheBkpvFJBG/qEL+DIZLxEy3EjoqK\nv0bOg5PWaUYUFqKoCL/5DRYtwpYtePZZHHEEnnkG/fqhSZPyP4PxySfZjjLnYYld9pEz92TO\nwjQj05oHGPNvyGunymO+WJ1neZAUBEpLxZJiRZGXSAbVBJzJqVSGH22EIPRI6bgbSeoQxAIS\nx1J5mwupG7VnpX6THiQ4JCDMg4cpZuLuCPN4EyuIOz3MuNKy2Ajv/UqKunVxxhl4+GF8+CE2\nbMDUqWjYEA88gCOOQMuWuOgi/O1vWL8+21HmJGwq1qIyQpqUxXVaK+aZNAxfTlOGP05gWoro\nkqaoxBaZjKvtFc3SAatG4LMrtPISKvJCU90wOTXXgie5lL56ViGMS0dSusy+1niq4n44zwuh\nZY10qJ7NQcWhEkmxkNfO00V8iNavfZ6vgMMPx3nn4bzzAGDt2vI/aHbzzdi8GZ07l+dqi4rQ\nuHG2A80NWGKXZdjbOwNwV1CYWUUAMCmaX1+EUuKSDEI1kWiEdNy0/IvkQD2iRsVcyKNFeJFD\n4o6pijsdTePE1KVSAbfHJInOpLNquZ3KcUUjWmJkYvwchCd/4iOE52DguPM0QjjK2GgMyVDt\ntE+hQwd06IDLLoPj4KOPykneuHHYtQs9e5aTvMGDUbt2tgNNLiyxs6ikMClVKgHSii4cvYpY\nYsU0Hx2YeirYKk7UkizQap/WrEp9Qmp4qguQ7CGAUy1VklxomZ/JkUTC3GydOlRMDWFqt2Jh\n16B7kNkVHFlUG6c2HvoxQBsz4Z2guUTFDCMMtwvJCysLUikcdRSOOgrXX4+DB/Hee+V/tXbq\nVJSWol+/8t9P6d8fBQXZjjVZsMTOorIgwj0xEvXhCGOENU8KRaRrtWWYmVZtnHSGlxmY6oJO\nv3JYMuesL4jypzYSzz6HjnkQXaq1oyUx2pD4beeX9GQYJgqrfo5QT00+wieULbfzh2rVcPzx\nOP54/PKX2LMHS5ZgwQLMno1770X16hgwACedhIED0b+//au1sC9PWFRaOIfgWYCQHyS9BBVF\nOFUNItQmIgaCG/ldTUVFR8tRUsqrlNqw3YOq9Miktnx4XilTkBzL7mdPbq2qYmJdjlRGX0ET\nQ/JsvmTEbz9IXFYdAKoXLZi6mq/wgkVCQHvtgpkKDHXSsPCHmjVxwgm4+WbMmoWtW/Hyy+jT\nBy+8gMGD0bAhTj4Z992HJUtQiXvYcluLyg6TmKSuryb1y5feRqhcjpD5MmW7TMZNAoCkS/Gh\n0j5te1VuJFXkLGCeRmKFVjPTnqLr+rpwHDnQFBVR2LM60cbwCHAdkyBcZT6GzAz4kMli5AT7\nrF27/LeOAWzejHnzMHs2pk3DpEk4/HAMHoyTTsIpp6Bt22wHmlFYxc7CAjBoJ1IBYjl0KoLv\nV53iJc3PLSNaFh/6pTVbK8CIxUSSx5GCaIFEXTy0y4nWSNKWDS0l1ephBM3y1GNUg6YeZkpT\nkproWV40rh3GTAt+oRrXPkEFs6PeO8y6SMA4jCoAderIvB6ZTTRtinPOwbRpWLsWa9bgd79D\ngwa46y60a4eOHXHFFXjhBWzZku0oMwFL7CwsNNBSNIL5qVOqWks0Tnw1weRdYnLaimoZcS30\nrCIdVHvGRDoJiFxEkgDDr3PEAk8rakx9UeK7kk0OWyLkvcBkS3tBfVVXh25gZsDxG+xCa8dz\nYETO6vx2GsHsw4B5GxLVs853Q6FDB1x0EaZNw/r1WL4c116Lb7/FpZeiaVPcd1+2g4sdNhVr\nYQGYZ0CRfzheLyho5SvpsySYqe7Us6ancC1lVL1o4zeFpDWrhS/lIyGLhNuBJl6lgo6c2Vei\nX8m19oN6pTwDYK7EEv/mtyLaK2h6QhALMD06wgaGSIJ0YwtvKsMI9sQYLRLXe6kUevZEz56Y\nMAEHD+Ldd9GiRbZjih2W2GUTCRr9FhUhTU8EFYPC7aRT0vEIxQYCkgqlRkWLTFo7RDFOFZMw\nJlFnwib/fvGk6QQksqtl6kxWJNIXQh/VBinyFdq+9FlbxdSBtFpJeI91/Zb4t2dUCZlIA/dJ\nQuLPf1SrhgEDsh1EJmBTsZlGfGu5ReSgk1Oi+qJNRAaYr7XufEkXhE1C6jMF4BwCJwC3iqdZ\nUwE6frp6gDuL0zpPs2GSVu44ESH69UUEQ8bgWTLCjCHdaRHKbxI4TQhzQS1s7yUBVrGzsNBA\nWl8JkUBNj2o1Hqkivbo4yrYbfm6O6UIsxuF5AbgdnbbWVgkTACFx+ZJS6HyWpxGV5aufxXgI\ncVFqjtoK7eOEyRpxPIEiUy6Sg1yM2SIvYRU7CwsKUhJNfR7Vqj4cbUwyoq3uaURc2n0leT2T\nXHSSDl4vKKjVgy17prqchC9dhQl+LbfV0oVQLajMW+slmPYZAEwpLg/EmPiaEKGcmXOozG1P\nJqxiZ2FBQVyqTVyHs4EJJPkQLbifTTuopONav475LQrRkbvOaYUxVTEKoNtJn5kpP7qKezkI\nJdXzoCdCJjf5oMloMGumUeHp3Ze6yfeedWQssKz0QGK73SIrsIqdhQUFUZATP2gLi/RIm8Kj\nKYt2f5vJhXhEndZNgpnE5FKHQFQUj0tnHSFlnMmndtNVCElHPMswFUrRpkkiEo/Tw8n0eBAA\nHOmXY8Szu3yNhPwQeziTQ360VEUeSLl5BqvYWViwQCzDamZNrQXdOp1i/7CFVEwV/whpR1Lj\nJDsqq9PadJSUtGcmMTA4i0TkC4kkc/JraQPz2yEm3p8y7NjzNMU/pX0CCQzmeHaR4YeB/POV\nLY8WSYZV7LIGeyvmFkRpSntWK7+pEpdYxkTXpDKqU1GlU0metiJHMFCFSU4VVavIoSd4bQ5a\nC1p7E/vBVJgQ9kxHIuxGZjyeBaSmqXqtr6sfSQNzQgyjuyUnmmCRK7DEzsLCB4jJV+R2WrqQ\nnrvVRRHKpO9yssDTPb1eijxMXW/cOE1EVlvRUy8kkJV8LnSXyS8ljZaXSOMnVxZ701MHUUZE\nrjwDWFjkCmwq1sKCBTrFZpLNmDARPq13NSuqNUg78kzAqau1qaQngmU5MwC/eUMJflvkHNqS\nKPaGqtqqg4HvwldIHJEyEjvucI3p6md3UEUysBN1X1jkOiyxs7DwAV8sSkue1ESbNmlr4lVa\nd2J5ta7LFQiCpeUZonBINF+NypM1qvEzSxLg84aU/41rcUOrfWaYdwaDal87tPxGEoYFJvAR\nwsIik7CpWAuLTMCU1oRBLWPmBDkERVTptAFwovKbo9RGyJF2AkueMDNsU/mQMLWITjtqE9kS\ncffbHM+QtBEye5t/UYiSflkdIrpGkYDugcC3hoVFTLCKnYUFBfHpn6MEqCKcSUKTXGj9qjYl\nC8EWP5W0mfQ2qQmqGJMQ6UvNYHqWjymSAGnHaIMRxVeiADFywqTdobQ9gBHTxoCoUsMWFvkN\nS+wsLEJBuwqacqxiFc9ErWTWLcDJbHomRonUrdq0AGdNVTi0OBiSwOpE4+rA4Fw7cWxIDJtP\na+hLQxM+IjC/Ay+MqUQht6LNGKJNedsEeoSwxC47sMM3V+CpPRBakaTzucVEUUcV85jxmBJ5\nprO+NmyZNJvwO58qD7QDI1gHSk8IjrIPUnXtO1yGBSa3owvQiiZ9K1lYWHBg99hZWISFS9dc\nSGcDiCiSHTp95jcfamKTktM4nsWTRu9ijSfAPkVtGecQJMsx0R1t2FIAnhvv1AImMVIqkLQR\nEi34GxaTD854zpa1Sg5L7CwsMgFx2hKXSZruiExR+l9LH6W67inxg5a6eeaFPadd007BJC9j\nOcckpFEUk4s4zKZBp9tU+pgZJHyUWlj4hU3FWlhEg2j1Lei2ymkTVdqsnJrtTVV80YHO3tLh\nqdxCdaFdKbXUk5m8i2O9N3VpwhFHh/jtB6JwyvxOd851tYhIuj2ne8AiV2CJXaZhb+xKC7/7\nh9S9cZ6aGSHnaFNgxFpFr9yqR5PTwMwpzDrKr5tb92NMwlJgs6Z+lraTxpo4Dg9+YHE0IRcf\nLSwSDkvsLCyiBD1N05IbKubaTNKdZE1cQVUKSOxzMkUoVQ+QgRUtENWZ61kuLnuxslJVmg3s\ny60bLWXMxUvmiZhYHWLjdpYyVlpYYmdhERk8V0fOPOuu67QYplpO6V6zZUai1uIcAanJhVxX\nslU3MKJaR33RLLX/g1G9YJF7ar35Six8EfepdqH0AAAgAElEQVRgunhIxEoZLRIO+/KEhUVk\noLd+0zOsKLylkRIglhTXCfVNCPU44Vp9e8BtgmSNoAucpG2GkXm/qmKaMWKanN1s+foWgvgC\nU6400DmEbAdikQVYxc7CIsuQJl+mOOfLOKEZ8BmbmF31lVOmEfmrAFnRKqLy5fneaCRe4kPy\nI4wEGVBDLSwCwxI7C4ukgC+90LvR/W7PImDiGRz1kWmKc1ZbPkAMMSG+93YzYz8qRHVxMw96\nOHE2jFpYJAe5TexKS0tXrly5c+fO1q1bt27dOtvhWFgkFPSi5cnwmOpXmH1aprdDtGbpgHN6\n9Y1Q+QtsKvk8TIvAYYd8wcjCImnIpT12CxcuvPbaa92vTz/9dMuWLXv27Dlw4MA2bdr06tXr\nrbfeymJ4FhbRgs5mht/rI9k3vRsRbKVUraVNmXYp+XKUtDU18GYm5p4tv50TfnNVtD2c8M1e\nSY7NwiIAckaxmzt37imnnFJQUDBlypRUKvXiiy9eeOGFtWvXPuecc5o0afL5558XFxcPHz58\nwYIFffr0yXawFhbxIsPbyLK18gV+E6UyQ/3BGnh1l1RGKpwrieYwiWDxLGeTq//okggrPeYr\ncobY3XnnnfXr11+wYEF6LP7iF79o27btokWLmjdvni6wePHioqKiO++885VXXslqpBYWAcEn\naqbXF4LB1842TnlLyJjIs95gvostwdfLQBbRIs9GoEUaOZOKXbp06UUXXdSpUycA27dvX7du\n3cSJE11WB6Bfv34XXHDB/PnzsxejhUVY+H3d1cJCgpT35KRB6TIZSKRKWwIi/7VkX/Hn0G+a\nhISdQ/IVOaPYlZaW1qxZM/25sLAwlUq1atVKKtOqVau9e/dmPDQLiwiQE2mRhIdnkUa2xlIY\njzkx/mOF7QGLqJAzil2vXr2effbZ3bt3A6hRo8bxxx+/aNEiscC+ffteeumlrl27ZilACwsL\ni0SASQ5Mv32dXWT9TYuYAqg8QqBF1pEzxG7SpEmff/75oEGD3nzzzYMHD06ZMuWZZ56ZPn36\n7t27Dxw4sHjx4hEjRixfvvzqq6/OdqQWFkGQ9fXMIp8Q/lc/MozKMP49X+DI+x6wyAxyJhX7\nk5/85PHHH7/++utPOeWUmjVrtm/fvqCgYMyYMWPHjgVQWlqaSqUmTpx42WWXZTtSCwsLixyA\nRCPsSwyxwtcrSpbhWYRBzhA7AOPGjTvjjDOeeuqp2bNnf/rpp1u3bq1Ro0bt2rXbtWs3cODA\nMWPG9O7dO9sxWlgkEXb7TiVEgItuR0jWwf8lozj+Fp8dAPmBXCJ2AA4//PAbb7zxxhtvzHYg\nFhYWFhYWESPaXzLiw4q1+YQcI3YWFhYBYB/EKyHsRc9R8H//L1qnltvlDSyxw+7du/ft20cX\nyFgwFhYWFhzY9LoK2ydhYPstb5A/xG7NmjVXXHEFgNmzZ/uq1bVr19LSUs+SVarkzBvEFhYW\nFhYWFpUT+UPsdu7cWVxc7LdWx44dly5deuDAAaLMhx9+OHbs2GrV8qevLCwsch1WX5Fg5ToL\nizTyh6x069ZtxYoVASr27NmTLkAnai0sLCwsLCwsEoL8IXaFhYU9evTIdhQWFhYW2USlFa4q\nYZMtLLTIPWLnOM66devWrl27c+dOAPXq1evcuXPr1q2zHZeFhYWFhYWFRZaRS8Ru27Zt99xz\nz1NPPbV582bpVJs2bcaNG3fjjTf+f3v3HhdVmfhx/BmZGS5yNfECchHxQpkisCqGPw3cUiyl\nvIQukQiVoKR4yaxNxTajl5a3sHJLSdxFZCN9rZdlly6s5oW8xHrBBATSHDVRFEQEhvn9cWp2\nFhBRkeOcPu+/muecOfOdQ3C+nufMGWtra1myAcCDgBNXwG+c2RQ7nU732GOPFRcX9+zZMzQ0\n1MPDo3379kKIa9euFRUV5eTkLFy48PPPP//666+dnJzkDgsAACADsyl2b7755tmzZ7ds2TJh\nwoTGS/V6/ccffzxjxozExMSVK1e2fTwAAADZmc292Xbs2PH888832eqEEBYWFnFxcRMnTszM\nzGzjYAAAAA8Isyl2ZWVlPXr0aH4dHx+fCxcutE0eAGh7KpWKr34C0AyzKXYuLi55eXnNr3Pk\nyBEXF5e2yQMAaBvy1lnKNMyL2RS7sLCwjIyM5cuXN3m74OvXry9atGjbtm3PPfdc22cDgLZh\nMBj43Ou9o6tBwVTm8jeivLw8JCTk8OHDdnZ2AwcOdHNzs7W1NRgMlZWVpaWlubm5VVVVQ4cO\n3blzp62tbeu+9N69ex977LGbN29qtdrW3TIAoI0ZK525HP7wAKqpqbG0tPz222+HDBkid5aG\nzOZTsY6Ojvv27UtOTt64ceM333yj1+uNizQajb+//9SpU6dOnWphYSFjSADAA85gMKhUZnNS\nA7hTZlPshBBarTYhISEhIaG6uvrMmTPSN0/Y29u7u7tzLg0A7s5vsOX81t4vflPMqdgZWVlZ\n9ezZU+4UAGD2uNQMUBiz+fAEAKDVce4KUBiKHQD8ptHtWoIP0sJcUOwAALg9GjDMAsUOAIDb\noNXBXFDsAAAAFIJiBwAAoBAUOwAAAIWg2AEAACgExQ4AAEAhKHYAAAAKQbEDAABQCIodAACA\nQlDsAAAwA3ytGVqCYgcAAKAQarkDAACA2+NrzdASnLEDANxHTCACbYliBwAAoBBMxQIA7iMm\nEIG2xBk7AAAAhaDYAQAAKATFDgAAQCEodgAAAApBsQMAAFAIih0AAIBCUOwAAECLcLvpBx/F\nDgAAQCG4QTEAQDbS6R9uYmwu+Ek9+DhjBwAAoBCcsQMAyIYzQEDr4owdAACAQlDsAAAAFIJi\nBwAAoBAUOwAAAIWg2AEAACgExQ4AAEAhKHYAAAAKQbEDAABQCIodAACAQlDsAAAAFIJiBwAA\noBAUOwAAAIWg2AEAACgExQ4AAEAhKHYAAAAKQbEDAABQCIodAACAQlDsAAAAFIJiBwAAoBAU\nOwAAAIVQyx3ADGi1WiGEpaWl3EEAAMCDQqoHDxqVwWCQO4MZyMvLq6urkztF21mwYEFtbW10\ndLTcQcxeYWFhYmLi+vXrNRqN3FnM3qJFiwYNGhQaGip3ELO3e/fuzMzMFStWyB1ECV588cW4\nuLgBAwbIHcTsZWRk/PTTTx9//LHcQVpKrVb3799f7hRN4IxdizyYP7z7p3PnzlZWVhEREXIH\nMXv79+9PTEycNGmSlZWV3FnM3qpVq/z8/Pjf8t7p9fqsrCz2ZKuIi4sbPnz4008/LXcQs5ef\nn19dXe3v7y93ELPHNXYAAAAKQbEDAABQCIodAACAQlDsAAAAFIJiBwAAoBAUOwAAAIWg2AEA\nACgExQ4AAEAhKHYAAAAKQbFDE7Ra7YP5FXhmR6vVWlhYWFhYyB1ECfjfsrWwJ1sRO7O1aDQa\n9mSr4Lti0YTLly+3a9fO0dFR7iBKcPr0aS8vL7lTKMG5c+c6dOjAl7Pdu9raWp1O5+7uLncQ\nJSgpKXF3d2/XjrMk96qysrKqqqpTp05yBzF7FDsAAACF4B8ZAAAACkGxAwAAUAiKHQAAgEJQ\n7AAAABSCYgcAAKAQFDsAAACFoNgBAAAoBMUOAABAISh2AAAACkGxAwAAUAiKHQAAgEJQ7AAA\nABSCYgcAAKAQFDsAAACFoNgBAAAoBMUO/1VeXj5r1ixPT0+tVuvi4hITE6PT6eQOZa6uXLky\nd+5cDw8PS0vL7t27h4WF7d+/X+5QZm/27NkqlSomJkbuIGZs165dw4YNs7Ozc3R0DA4O/uab\nb+ROZJZOnjz5/PPPd+3aVaPRODs7P/PMM7m5uXKHMhu1tbULFiywsLAICAhovJQj0T1SGQwG\nuTPggVBTUxMYGHj48OFx48b5+fkVFRWlpqZ269bt0KFDTk5OcqczM5cvX/b39y8pKRk9erSf\nn9/p06fT09PVanVubu6jjz4qdzpzdfDgwcGDB+v1+ujo6E8++UTuOGZpw4YNU6dO7dGjx6RJ\nk6qrqz/77LOrV69+/fXXQ4YMkTuaOTl+/HhgYKBGo5kxY4a3t3dpaWlycvKlS5eysrKCg4Pl\nTvegy8/Pj4iIKCgouH79+oABAw4ePGi6lCNRKzAABoPBYHj//feFEO+++65xJD09XQgxZ84c\nGVOZqenTpwsh1qxZYxz5/PPPhRChoaEypjJrtbW1vr6+/fv3F0JER0fLHccsXbhwwdbWdsCA\nAZWVldJIQUGBra1tXFycvMHMzuTJk4UQX331lXEkLy9PCDF8+HAZU5mFq1evWltbBwQEFBQU\nWFpa+vv7N1iBI9G9o9jhF76+vnZ2dtXV1aaD3t7enTp1qq+vlyuVmZo1a1ZISEhNTY1xpL6+\n3tra2sPDQ75Q5i0pKUmlUu3atYtid9eWLVsmhPjHP/5hOshv910YNGiQEML0F9xgMNjb23t6\nesoVyVyUlZXNmTNH2nVNFjuORPeOa+wghBDV1dVHjx4dOHCgpaWl6XhQUNDFixeLi4vlCmam\nVqxYkZ2drdFojCM1NTV1dXXdunWTMZX5KioqSkxMnDZt2uDBg+XOYsays7Otra2lucKbN29e\nu3ZNCKFSqeTOZX769OkjhPjhhx+MI5cuXaqsrPTx8ZEvlHno0KHD8uXLTf82muJI1CoodhBC\niDNnzuj1ejc3twbjHh4eQojTp0/LEUpRPv7449ra2vDwcLmDmKWXX37Z0dHxnXfekTuIeTt5\n8mT37t2PHTsWFBRkbW3t4ODg7e2dkpIidy7zM3/+fCcnp4iIiD179pw/f/7IkSPh4eFWVlaL\nFi2SO5p540jUKih2EEKIiooKIUT79u0bjNva2hqX4q7l5OTMmzcvKCho2rRpcmcxPykpKV9+\n+eWaNWscHBzkzmLeLl++fP369dGjRw8ePDgjI2PVqlW1tbVRUVF//etf5Y5mZnx8fPbt21db\nWzt06NCuXbv6+fkVFBRkZ2dLU7S4axyJWoVa7gB4gDSelDEYDE2Oo+XS0tKioqL69u27bds2\ntZrfuDtz8eLFOXPmPPXUU+PGjZM7i9mrqakpLS397LPPIiMjpZEJEyb06tVrzpw5zz33nIWF\nhbzxzEh+fv7o0aPr6uree++9Xr16Xbx48f333x81atTf/va3ESNGyJ3O7HEkukccZiCEEPb2\n9qKpfw9JV+HY2dnJkMn8GQyGxYsXL1myZOTIkVu2bGE33oWZM2fW1NQkJyfLHUQJbG1t6+rq\nxo8fbxzp2rXrqFGjMjIyTpw4wY14Wm7q1KkXLlw4deqUq6urNBIeHt6rV68pU6YUFxff6gIy\n3BZHolbBVCyEEMLd3V2tVpeWljYYLyoqEkL07NlTjlDmzWAwxMTELFmyJD4+fvv27fxJugu7\ndu3avHlzQkJCu3btzp49e/bs2XPnzgkhqqqqzp49K/2tR8t5enoKIRrUDmdnZ8Ek152orKw8\ncODAoEGDjK1OCGFjYxMSEvLTTz+dOnVKxmzmjiNRq6DYQQghtFqtv79/bm5uVVWVcbC+vj4n\nJ8fNzc3d3V3GbGYqISFh/fr1S5cuXb16NZNcd+fLL78UQrz11ltuv3rkkUeEEGlpaW5ubkuX\nLpU7oJkJDAzU6/WHDx82HSwsLBRCNL5cHbdy48YNg8FQXV3dYFwaaTyOluNI1CoodvhFdHR0\nVVWVdKcrybp1686dO8fXN92FzMzMVatWzZw5c8GCBXJnMWPR0dF//1+bN28WQjzxxBN///vf\np0yZIndAMzNlyhSVSvX666/fvHlTGjl48GB2dna/fv0odi3n7OzcvXv3gwcPmp6cKy8vz87O\ntre379u3r4zZFIAj0b3jK8XwC71e//jjj+/evXvs2LF+fn75+fnp6el9+/bdv3+/jY2N3OnM\njLe3d1FRUXx8fONdJ90oQZZUClBeXu7k5MRXit21hISElStX+vr6PvPMM2fPnt20aZNer8/K\nyho+fLjc0czJF198MX78eCcnp2nTpvXo0UOn033yySfFxcXJyclxcXFyp3ug5eTkSLcZF0Is\nX77c2dn5hRdekB7OmzfvoYce4kjUCuS8OzIeMBUVFdL31ms0GldX1+nTp5eVlckdyiw18xtX\nXFwsdzozduXKFcE3T9yD+vr6jz76qH///lZWVg4ODqGhobm5uXKHMkt79+4NCwtzdnZWq9VO\nTk4jRozYsWOH3KHMQDN3oywoKJDW4Uh0jzhjBwAAoBBcYwcAAKAQFDsAAACFoNgBAAAoBMUO\nAABAISh2AAAACkGxAwAAUAiKHQAAgEJQ7AAAABSCYgcAAKAQFDsAAACFoNgBAAAoBMUOAABA\nISh2AAAACkGxAwAAUAiKHQAAgEJQ7AAAABSCYgcAAKAQFDsAAACFoNgBAAAoBMUOAABAISh2\nAAAACkGxAwAAUAiKHQAAgEJQ7AAAABSCYgcAAKAQFDsAAACFoNgBAAAoBMUOAABAISh2AAAA\nCkGxAwAAUAiKHQAAgEJQ7AAAABSCYgf81oWHh6tUqrNnz7bx686YMcPS0vLQoUNt/LptRtqx\n58+flztIm1q4cKFWq83JyZE7CPAbRbED0MquXLkyd+5cDw8PS0vL7t27h4WF7d+/v8E6aWlp\nycnJy5cv9/f3lyVkSyQlJRUWFt710319fZ988klLS8tWjHTvysvLZ82a5enpqdVqXVxcYmJi\ndDpdM+unpKSomvKnP/2pyfUXLVoUGBg4ceLEn3/++f68AwDNURkMBrkzAJBTeHh4enr6mTNn\nunXrdu9bu3z5sr+/f0lJyejRo/38/E6fPp2enq5Wq3Nzcx999FFpncrKSk9Pz549e+7bt+/e\nX/E+0el0Li4uu3btGjlypNxZWk1NTU1gYODhw4fHjRvn5+dXVFSUmprarVu3Q4cOOTk5NfmU\nlStXJiQkTJo0yd3d3XT8ySeffPzxx5t8SmFhYZ8+fV544YVPP/209d8DgOYZAPy2Pffcc0KI\nM2fOtMrWpk+fLoRYs2aNceTzzz8XQoSGhhpHkpKShBA7duxolVe8T7Zt2yaE2LVrl9xBbs/D\nw2POnDktWfP9998XQrz77rvGkfT0dCFEM09ftGiREOK77767o0iTJ09Wq9WnT5++o2cBuHdM\nxQL4H6WlpVFRUa6urlqttmPHjmPGjMnNzTVdYceOHQMHDrSxsenSpcvMmTNv3Ljh5ubm5+cn\nLdVoNCEhIS+//LJx/Weeecba2vr48ePSw/r6+pUrV/bp0yc0NLT5JOfPn4+JiXF1dW3fvn3/\n/v1XrVpVV1fXwpxPPfWUSqUqLy83jtTV1alUqhEjRkgPJ0+erFKpKisr58+f7+npaWlp6ebm\ntmLFCoPBID197NixQohRo0apVKo9e/Y0mfDmzZvLli3r37+/g4ODnZ1dv379li1bVl9fLy01\nXmNXUlLS5Gxmx44djZu6cOHC9OnTPTw8tFqts7NzWFjYd9991/z+uQsbN260s7ObOXOmcWTi\nxIne3t6pqamGW8zeSPvQ0dHxjl5o9uzZdXV1K1euvJe0AO6CWu4AAB4gZ86cGThwYFVVVWxs\n7COPPPLTTz+tXbv2//7v/7Kzs4OCgoQQ//73v8eOHevs7Pzaa6917NgxIyMjPDy8oqLC1dVV\n2sKKFSsabLOmpqaurs44z3v48OHz589PnDix+SQ///xzQEBAZWVlZGSkh4fHN998M2vWrKNH\nj37yySctyXlbWq1WCDF+/Pju3btv3ry5vr4+MTFx9uzZjo6OUVFRf/zjHzt06JCamrpw4cIB\nAwY8/PDDTW4kNjZ2w4YNkydPjo2NValUWVlZr776amlp6QcffGC6WseOHf/85z+bjuTl5X3w\nwQd9+vQxvtlBgwaVl5dPmzatb9++Z86cWbt27dChQ7OysoYNG9aSt9MS1dXVR48eHT58eIPL\n/oKCglJSUoqLi728vBo/y1js9Hq9TqezsrIy7aO34ufn5+zsvHPnzlWrVrVWfgAtIvcpQwAy\nM52KfeGFF4QQmZmZxqUnTpywsLAYPHiw9PD3v/+9MJmYq6urky60GjRo0K22Lx3ajZOz77zz\njhBi69atzaeKjY0VQmRlZRlHRo8eLYQ4duxYS3JKK1+5csW4Qm1trRAiJCREehgdHS2EmDRp\nknGFoqIiIcRTTz1lmrP5qVgbG5vAwEDTkYSEhHHjxtXV1Rl+3bE6na7Bsy5fvuzl5dWxY8fS\n0lLjm1Wr1abTnT/++KOdnV1AQMCtXrrAhKura3R0tPFh41eUnDp1SggxZcqUBuPSZOu//vWv\nJp8VFhYmhHjjjTeMF+H16tXrL3/5y62CGUlvv7i4+LZrAmhFnLED8AuDwbB169bOnTtLx3KJ\nj49PYGDgnj17ysrKHnrood27d/fp0ycgIEBaamFhMX/+/K+//vpW28zJyZk3b15QUNC0adOk\nkYKCAiGEt7d380m2bNni5uYm9UjJ6tWr58yZ07lz55bkbOFblgqixMvLy8bG5o5u+6LRaEpL\nSy9evNipUydpRLqIrRkGgyEiIqK0tDQrK0v6OILBYMjIyOjXr1+3bt2M90bRaDRDhgzJysqq\nrKy0tbVtsJG6urqePXuajnz66afGTyqMHTt269atjV+6oqJCCNG+ffsG49L2paWNSWfs0tLS\nXn31VVdX1/z8/OTk5D/84Q8VFRWmE+6NSQkLCws9PT2bWQ1A66LYAfjF+fPnr1696u/vr1Kp\nTMd79+69Z8+eU6dO+fj4VFdXN+hkQ4YMudUG09LSoqKi+vbtu23bNrX6l782ly5dEkI0P52n\n0+nKysr8/PxMk3h5eUlzhTqdrvmcgYGBLXzLDT7pqdFopBN7LbRkyZKZM2f27Nlz7Nixjz/+\n+BNPPGGckr6VxMTEnTt3JiUlhYSESCMXL168dOnSpUuXunbt2nj9H3/8sfFEsIWFRUZGhvFh\nXFzc4MGDIyMjpYfNZ2iw04QQBoOhyXHJm2++OWPGjJEjRxobYUREhJ+f3+uvvx4VFSXNaDdJ\nKrvSjxtAm6HYAfjF9evXRVNndKytraWlZWVlQggbGxvTpXZ2dhYWFg2eYjAYFi9evGTJkpEj\nR27ZssXOzs646Nq1a0IIBweHZpLcuHFDCHGrO8DdNmczW25Ao9G0fOXGXnnllb59+65ZsyYz\nMzM1NVWlUo0aNWrt2rUeHh5Nrr9z584lS5Y8++yz8+fPNw5Kp8p8fX2lyd8GXFxcGg+qVKrx\n48cbH86dO7dXr16mI02yt7cXTZ2Zk34ipj8jU8HBwQ1GHn744dDQ0C+++CIvL+93v/vdrV5O\n+rzF1atXm08FoHVR7AD8QpqSa1yMpBE7OzupBlVXV5suraqq0uv1piMGgyEmJmb9+vXx8fEr\nVqxoUPukenH16lUrK6tbJenSpYv4dRLwLnI2+ayamppbvdy9CA4ODg4Ovnnz5u7duzdt2rRx\n48YRI0YcP3688ams06dPR0RE9O7dOyUlxXTcGPh+3zDP3d1drVaXlpY2GJcuLmwwt9s86Wxc\nZWVlM+tIP77mGzyAVsftTgD8okuXLh06dMjPzzf8750vTpw4oVKpevfu3aVLl3bt2jVoBgcO\nHGiwnYSEhPXr1y9dunT16tWNT+ZJk7DSyb9bad++vbOzc35+vunE6A8//PDBBx8cP378tjnF\nr6fiTJ9eXFx8ux1w9ywtLUeMGJGSkjJt2rTCwsLvv/++wQo3btx49tln6+rqMjMzG1TPzp07\nd+zY8eTJkw2KbKt/c4NWq/X398/Nza2qqjIO1tfX5+TkuLm5NZiVllRWVn744YdpaWkNxqWb\n19zqxKREyt+Sj9ACaEUUOwD/9eyzz+p0OunevJLvv/8+Nzc3ODjY0dFRq9UGBAT85z//OXny\npLRUr9e/++67plvIzMxctWrVzJkzFyxY0ORLGK+pbz7J2LFjy8rKPvvsM+PI4sWL4+Pjb968\neducQgjperX8/HzjChs3bmzRLviVVEmlSeEm7d+/39XVtcFm27VrJ5qa4X355Zfz8vI2bNjg\n4+PTeFMTJkyorq5etmyZceTnn3/u16/f008/fUeZbys6Orqqqsr0hdatW3fu3LmYmBjpYXV1\n9ffffy+dwxNC2NjYvP322y+99JLxJy6E2LZt2549ewYMGNDk7VGMWvIpGQCtjqlYAP+VmJi4\nffv2559//pVXXundu3dJSUlycrKtra3xw57z5s2bMGFCaGhoXFycvb39pk2bvLy8TC+Ge/XV\nV4UQ9fX1r732WoONz58/38nJSfrQwFdffTVmzJhmkixatGj79u2xsbF5eXkeHh45OTnbt2+P\njIyU7oR825yRkZEffvjh7Nmzly1bZmNjs23btn379t1qlrZJUmtJSkoqLi4eOnRo44vJAgIC\nOnTo8OKLL+7Zs8fX11elUh08eDAlJSUoKMjX19d0zU2bNqWmpvr6+l65ckW6D5/RyJEju3Xr\ntnjx4h07dixdulSn0w0bNuzcuXMfffRRWVnZK6+80pKoJSUlLXxTU6dOTU1NXbx48ZEjR/z8\n/PLz89PT0x999NG5c+dKKxQWFg4YMCAkJCQ7O1sI0a5du7Vr14aFhQUEBISHh7u4uBw7dmzr\n1q329vYN3kgDBoPhq6++8vb25iOxQFuT6TYrAB4UDb5S7Mcff4yKiuratatare7UqVN4ePiJ\nEydM1//000979+6t1Wo9PDzeeOONmpoarVY7ZMgQaWkzf22kW5rp9frOnTv7+PjcNlhJSUlE\nRESnTp00Go2Xl9d7770n3R+uhTlTUlIefvhha2vrzp07v/TSS+Xl5S4uLkFBQdJS6T52BQUF\npk9xcHB45JFHpP+uqakZN26ctbW1k5NTRkZGkwnLyspmzZrVo0cPGxsbBweH/v37L126tKKi\nwnTH6nS6N95441b7xHifPJ1OFxsb6+bmplarHR0dx4wZc+DAgdvuortQUVExd+5cDw8PjUbj\n6uo6ffr0srIy49KjR48Kk7v9Sfbu3dsGEzgAAAHTSURBVDtq1ChHR0e1Wu3i4hIZGdlgvzV2\n6NAhIUR8fPz9eAsAmqEyNPuHGACad+3aNQcHhzFjxphOjDYvKSlpwYIFO3fuHDVq1H3NBrlE\nRESkp6f/8MMPzU/XAmh1XGMH4A5s2LBh+PDh0vkYifQZzxZ+kZdkxowZDz300FtvvdXq8fAg\nKCoq2rx5c2RkJK0OaHucsQNwBw4cODBs2DAnJ6fY2FgXF5cjR46sW7fOxcUlLy/vjr4nPi0t\nbfLkyatXr46Pj79/adH29Hp9cHDwyZMnjx075uzsLHcc4DeHYgfgznz77bdvv/32oUOHrly5\n0qlTpyeffPKtt95q8j66zYuPj1+3bt3evXv9/f3vR07IYuHChUlJSf/85z+HDx8udxbgt4hi\nBwAAoBBcYwcAAKAQFDsAAACFoNgBAAAoBMUOAABAISh2AAAACkGxAwAAUAiKHQAAgEJQ7AAA\nABSCYgcAAKAQFDsAAACFoNgBAAAoBMUOAABAISh2AAAACkGxAwAAUAiKHQAAgEJQ7AAAABSC\nYgcAAKAQFDsAAACFoNgBAAAoBMUOAABAISh2AAAACkGxAwAAUAiKHQAAgEJQ7AAAABSCYgcA\nAKAQFDsAAACF+H+B2BOGefKyUQAAAABJRU5ErkJggg==",
"text/plain": [
"Plot with title “voom: Mean-variance trend”"
]
},
- "metadata": {},
+ "metadata": {
+ "image/png": {
+ "height": 420,
+ "width": 420
+ },
+ "text/plain": {
+ "height": 420,
+ "width": 420
+ }
+ },
"output_type": "display_data"
}
],
"source": [
- "y_voom <- voom (y, design=design, plot = TRUE, correlation = dup_cor$consensus_correlation)\n"
+ "y_dup_voom <- voom (y, design=design, plot = TRUE, block = donor, correlation = dup_cor$consensus.correlation)"
]
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 29,
"metadata": {},
"outputs": [
{
@@ -1875,7 +1397,16 @@
"plot without title"
]
},
- "metadata": {},
+ "metadata": {
+ "image/png": {
+ "height": 420,
+ "width": 420
+ },
+ "text/plain": {
+ "height": 420,
+ "width": 420
+ }
+ },
"output_type": "display_data"
},
{
@@ -1885,56 +1416,87 @@
"plot without title"
]
},
- "metadata": {},
+ "metadata": {
+ "image/png": {
+ "height": 420,
+ "width": 420
+ },
+ "text/plain": {
+ "height": 420,
+ "width": 420
+ }
+ },
"output_type": "display_data"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde1yUdd7/8TepSJ61EgU1NbnNMgxJwwOPdlPDxdYUwwOumUYLWm25j6zV\nOwXTTLZ1H2qatdLBatVVCzNz7a7sgJ2gUlzTfmsmqbtqZop4RG1+f1zEIKfhMHNdc13zev41\nXTPMfAwY3vM9fYJcLpcAAABgf5dZXQAAAAC8g2AHAADgEAQ7AAAAhyDYAQAAOATBDgAAwCEI\ndgAAAA5BsAMAAHAIgh0AAIBDEOwAAAAcgmAHAADgEAQ7AAAAhyDYAQAAOATBDgAAwCEIdgAA\nAA5BsAMAAHAIgh0AAIBDEOwAAAAcgmAHAADgEAQ7AAAAhyDYAQAAOATBDgAAwCEIdgAAAA5B\nsAMAAHAIgh0AAIBDEOwAAAAcgmAHAADgEAQ7AAAAhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMA\nAHAIgh0AAIBDEOwAAAAcgmAHAADgEAQ7AAAAhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAI\ngh0AAIBDEOwAAAAcgmAHAADgEAQ7AAAAhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAIgh0A\nAIBDEOwAAAAcgmAHAADgEAQ7AAAAhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAIgh0AAIBD\nEOwAAAAcgmAHAADgEAQ7AAAAhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAIgh0AAIBDEOwA\nAAAcgmAHAADgEAQ7AAAAhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAIgh0AAIBDEOwAAAAc\ngmAHAADgEAQ7AAAAhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAIgh0AAIBDEOwAAAAcgmAH\nAADgEAQ7AAAAhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAIgh0AAIBDEOwAAAAcgmAHAADg\nEAQ7AAAAhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAIgh0AAIBD1Le6AHvIy8u7cOGC1VUA\nAAC/UL9+/R49elhdRQUIdp598cUXvXr1sroKAADgR3Jzc2+66SarqyiLYOdZUVGRpHPnzgUH\nB1tdCwAAsFhRUVHDhg2NeOBvWGMHAADgEAQ7AAAAhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMA\nAHAIgh0AAIBDEOwAAAAcgmAHAADgEAQ7AAAAhyDYAQAAOATBDgAAwCEIdgAAAA5BsAMAAHAI\ngh0AAIBDEOwAAAAcgmAHALC9pCQFBen4caWkKDRUjRopJkY5OTp9Wg89pPBwNWmivn311VdW\nFwr4GMEOAGB7wcGSlJio8HBt2qSlS5WXp8REjRqlkBCtX6/ly7Vrl+Ljdf681bUCvkSwAwDY\nT5khuldflaTmzfXww1q+XNOn68IF7duns2c1b56iozVihMaP1+HDys21unTAlwh2AAD7KTNE\n16+fJGVnu4fo7rhDknJz3UN0XbtK0sGDltQLmIRgBwCwn/r1JSkiQjNnKipKERGS9MMPCgkp\nHqLr3l2SCgrcQ3QNGkhiKhYOR7ADANhVQkLZK8ZAXWkM0SGgEOwAAGbz1ibW8HDPVxiiQ0Ah\n2AEAzOatTazG7GrVV4CAQrADAJitzAq58eM1dKj27XOvkGMTK1A7BDsAgDVKr5Azdj+UXiHH\nJlagFgh2AIC6qt2audLr4YwxvNJX2MQK1ALBDgBQV7VbM+fFFXKZmUpLu+RKerqWLbvkSnKy\nXC6NHl3LlwBsgWAHAKgr1swBfoJgBwDwDjPXzGVmyuVSly7uK+npcrnUv7/7CkN0CEAEOwCA\nd7BmDrAcwQ4A4B1mnirnrSOOAYch2AEA7MdbRxwDDkOwAwCYzVghN3Ome9Rt6VJdfrkeftg9\n6paWpsaNtWhRxaNubNcAKkSwAwBYo+6jbhxxDJRBsAMAWKPuo25s1wDKINgBAKxUl1E3M7dr\nALZAsAMA1FVdTpVj1A3wIoIdAMBKjLoBXkSwAwAAcAiCHQAAgEMQ7AAAAByCYAcAsJ+6bNcA\nHIxgBwDwCY/tXJcvl6Svv7a6UMBBCHYAAJ/w2Fhi1Sq1aKGUFPdpJoy6AXVEsAMA+ATtXAHz\nEewAAD5EO1fATAQ7AIAP0VgCMBPBDgDgQzSWAMxEsAMAAHAIgh1gYx6Pk2jSRH376quvrC4U\nAGAKgh1gYx6Pk1i+XLt2KT6eNUwAEBAIdoCNcZwEAKA0gh0swzSit3CcBADAQLCDZZhG9BaO\nk4B/op0rYD6CHSzDNKK3cJwEAMBAsIPFmEYEAMBbCHawGNOIAAB4C8EOFmMaEQAAbyHYAQAA\nOATBDgAAwCEIdoCNcZwEAKA0gh0AAIBDEOwAAAAcIsjlclldg7/75JNP+vXrd+7cuWCjVQIA\nAAhgRUVFDRs2/Pjjj/v27Wt1LWUxYgcAAOAQBDsAgL0lJSkoSMePKyVFoaFq1EgxMcrJ0enT\neughhYerSRP17auvvrK6UMD3CHYAAHszlskkJio8XJs2aelS5eUpMVGjRikkROvXa/ly7dql\n+Hja2MD5CHYAAHszuhFGRGjmTEVFafx4DR2qffsUEqJ58xQdrREjNH68Dh9Wbq7VtQI+RrAD\nADhBQoL7dkSEJN1xh/tK166SdPCguTUBpiPYORnrTgAEjvBw921jDK/0FaMJNVOxcDyCnZOx\n7gRA4DCiW9VXAMcj2DkZ604AAAgoBDvnY90JAAABgmDnfKw7AQAgQBDsnI91JwAABAiCHYAa\nYKs1APgzgh1gAfvGI7Zaww9lZsrlUpcu7ivp6XK51L+/+0pyslwujR5tfnWAqQh2gAXsG4/Y\nag0A/oxgB1jAi/HIksE/tloDgH8i2AGW8Uo8smTwj63WAOCfCHZOxroTP+eVeGTJ3ChbrQHA\nPxHsAMt4MR4xNwoAEMEOcAbmRuF4NVpOWsWDr71WQUFq3Fht2uiKK+y0Jx2oDoId4ATMjcLx\narSctIoHG78aXbqooEBBQVq82DZ70oHqINgBAGygRstJq3jwzTdLUr9+SknR0aO69lqO7IGj\nEOwAALZRo+WkVTw4IcH9YJalwkkIdgBqgK3WsFaNlpNW8eDwcPeDWZYKJyHYARYgHgG1U6Pl\npFU8mGWpcCqCHQAAgEMQ7ACvsaS7F4N/AIASBDv4NUuiUq1Z0t0LAIASBDv4NXtFJUu6ewEA\nUIJgB79mx6hEdy8AgFUIdrABe0UlunsBvlCj5aRVPLjkrpIHsywVTkKwgw3YKypxjAIAwCoE\nO9gAUQkAgOog2AEAADgEwQ4AAMAhCHYAAAAOQbCDl3nxSOGkJD3/vCTNmOF+qv/8R5IWLXI/\n1b59vv0XAQBgFwQ7eJkXjxQ2nkpSaKj7qdasKb6r5KkWLvTlv6cm6O4FALAWwQ5e5sUjhY2n\nmjRJCxa4n6qgQHfeqVdfdT/ViRP6+GN/jEr26ocGAHAAgh18wotHCtvrdOLS7NUPDQDgAAQ7\n+IQXjxS21+nEpdmxHxpgUwyQAwaCHaqrmu+bR49KXj1S2PhC49XPnpWkESPcr15UJEmTJ/vv\nu7Z9RxwBG2GAHDDUt7oA2EbJ+2ZsrDZt0vbtSk1VYqIiI3X99Vq/Xvn5Sk7Wtm0+fHVj58T8\n+brssuJXb9FCkqZO1f/8j5KTFR+v/fv9qy+FfUccARspPUAuKSpKGzdq9Wr17q158yQpOlrZ\n2Vq4ULm56tvXylIBn2LEDtVVzYnFM2d8+OqtWhXXUPLqRjDq1Ml/pzXphwaYhgFygGCHmqnO\n+6bvdOtW9tVvvLHsq/OuDQQsBsgBgh1qpjrvm77TrFnZVzemYku/Ou/aQMBigBwg2KFmrH3f\nvKzcD2x9lokCAPALgh28b+VK73RfKN/I4Q9/KPtUt99OIwcAAIoR7IBinIMFALA7ewe7oqKi\n3Nzc999/f+/evVbXAtvz+jlYtI4FAJjMNsFuzpw577//fukrzz33XJs2bXr37n3rrbd27tz5\npptu2uajI9QQGGgUAQCwO9sEuxkzZrz99tsl//nWW2+lpqaePn16+PDhKSkp/fr1+/LLL3/1\nq1/t2bPHwiLhAJyDBdgRA+SAwTbBrowpU6Y0b95869atr7/++rPPPrtly5bXXnvtxIkTTzzx\nhNWlOZa175umvTrnYAEA7MuWwe7IkSO7d+++7777upU6rzYhIeGOO+74v//7PwsLgwPU6DwX\n9lsAAPyKLYPd2bNnJZVOdYbu3bv/8MMPVlSEAEXfcQCAX7FlsAsLC2vevPmBAwfKXP/vf//b\ntGlTS0pCYGK/BQDAr9gp2O3bt++LL7749ttvjx07Nnny5Oeff/706dMl937zzTf/+Mc/+vXr\nZ2GFCEzstwAA+Ak79WNauXLlypUrS1/55z//OWLECEkrVqz4/e9/f+bMmRkzZlhUHQIX+y0A\nAH7CNsHuxRdfPF5KQUHB8ePHW7Zsadx7/PjxFi1arFq1qlevXtbWiQBE33EAgJ+wTbC7++67\nq7j3rrvuSk1Nvax8i3ig2jIzlZl5yZX0dKWnX3IlOVnJySbWBGdJStLKlTp2TI8+qnXrVFio\nyEgtWqTu3TV9utasUUGBIiO1eLF69rS6VgD25JAk1KRJE1IdAD/HNmoAvkYYAgCTsI0agK/Z\nZirWoz179qSkpEh69913q/9VFy9efOutt86dO1fFY7755pu6FgdTMM8FW2AbNQDfcU6wKyws\nfO+992r6Vfv37//9739fVFRUxWOM2Hf+/PlgYx4F/qpknis2Vps2aft2paYqMVGRkbr+eq1f\nr/x8JScrPl7797O/AZZhGzUA33FOsLv22mv/9a9/1fSrOnbseOjQoaof89xzz6WmprpcrtqW\nBpOUnueSFBWljRu1erV699a8eZIUHa3sbC1cqNxc9e3rhVdkvwVqgW3UAHzHOcEuJCSke/fu\nVlcB6zHPBQAIWPYLdi6Xa+/evd99911hYaGk5s2bR0REtG/f3uq64C+Y5wIABCw77Yo9duzY\nww8/3KZNm2uuuWbQoEEJCQkJCQkDBgzo0KHD1VdfPXv27DNnzlhdI6zHPBcA8yUlKShIx48r\nJUWhoWrUSDExysnR6dN66CGFh6tJE/Xtq6++srpQOJ1tRuwOHjzYr1+/vXv3RkRExMfHX331\n1Y0bN5Z04sSJPXv2fPjhhzNnznzttdfef//9knYUAACYg81b8BO2CXYzZsw4cODA6tWrExMT\ny9978eLF55577v777581a9aCBQvMLw8AEMjM37wFVMg2U7FvvfXWuHHjKkx1kurVqzd58uSR\nI0e+/vrrJhcGANWUmSmXS126uK+kp8vlUv/+7ivJyXK5NHq0+dXBC9i8BcvZJtgdPXr0mmuu\nqfox3bp1O3z4sDn1AABQBpu3YDnbBLuwsLC8vLyqH7N169awsDBz6gEAoAw2b8Fytgl2w4YN\nW7NmzV/+8pcK23+dOnUqLS3tjTfeGDVqlPm1wU+UmedKStKsWTp2TK+84t6kFhmpU6f02Wds\nUgNQSxVugD1yRJLmzHG/tzDlCkvYZvNEenp6dnb21KlTH3/88d69e7dv375JkyYul+vkyZPf\nf/99Tk7O6dOnY2NjH3vsMasrhdfUsfcrm9QA+EKF7y3GxGvDhu73lu3brS0TAco2wa5Fixaf\nfvrpkiVLXn755Q8++ODixYsldzVo0CA6OnrixIkTJ06sV6+ehUXCu+qYzNikBsAXKntvkTR1\nqrp0cb+3AOazTbCTFBwcPGXKlClTppw9e3b//v1G54lmzZp16NAh2IgAcBavJDM2qQHwhfLv\nLaUZ7y2A+Wyzxq60kJCQiIiInj179uzZs0uXLqQ6Z6tjMmOTGmAnK1aoXTvVr6+pU60uxYPy\n7y2lsboDVrFlsENAqWMyY5MaYJq6ttUqKFBysk6e1OzZiovzi5IqV/6dJDv7kkMKJa1cySGF\nMBvBDv6OZAbYRcm62PBwbdqkpUuVl6fERI0apZAQrV+v5cu1a5fi4yv5MLZ7t86c0dixmjZN\nAwf6RUmA3RDsAADeUXpdbFSUxo/X0KHat08hIZo3T9HRGjFC48fr8GHl5lb09WfPSlLTpn5U\nEmA3BDsAgDfVcl3s4MGKjZWkjAwFBSk11fqSABsi2AEAvKmW62LT0jR3riQlJCgrS5MmWVhS\n1SvzVq6UpJEjOd4c/ohgBwDwplqui+3Tp3jELiJCw4apRw8LS6p6Zd6gQZK0Zw8r8+CPCHZw\nrDIdxiSlp8vlYpMaAA+qXpm3bp1cLk2Y4F6Zx3sL/AfBDv6LZAbAQqzMgx0R7AAAqADHm8OO\nCHYAAFSg/Dq8uXPdmyr++EdJmjHDO8cdA95CsAMAoFqMqGdsqnjoIUn6/nuOO4Z/IdgBALzD\nD9fFerekevWkXzZVdOggSdHRHHcM/0KwAwCgBkpvqmjbVmJTBfwJwQ4AgBoovYXissvKXmFT\nBaxFsLOlqk9FZwEvAFvq318ul+bNs7qOspKSNGuWJG3fLkk9eyomRnv3SlJeniTFx/OWC39B\nsLOlqk9FZwEvANRFmZV5xlvuwIG68kpJmjVLeXl69VXdfrtCQyXpscd4y4W/INjZUtWnorOA\nFwC8qOQtNypKkhIS3G+5AwdK0i23VPWWyxwLzESwszFORQeAMnyXomr9lsscC8xEsLMxTkUH\ngDJ8l6Jq/ZbLHAvMRLCzsfKnope/Yj4mHQBYyHcpqo5vucyxwBwEO3gZkw4ALOejFFWX446Z\nY4E5CHbwMiYdAFjOD1OUf86xwHkIdvAJJh0AWIgUhYBFsINP+OHHZQAAHI9gB5+o+uPysmWS\ndPq0/TZYsDUEMMmKFWrXTvXra+pUq0sB7IRgZ0t1WcDrD4wxvAUL7LfBgq0hgBkKCpScrJMn\nNXu24uKsrsb2b7kIKAQ7WMBom92mjf02WLA1BDDD7t06c0Zjx2ratOLeDgCqh2AHy/Tq5b5t\nrw0Wvt0awgwUcPasJDVtanUd3sGAH8xEsINlWrVy37bXBgsfbg3xsxkowAKDBys2VpIyMhQU\npNTUGn01KQoBrr7VBSBw1atX9opdziPw4UkKxgzUhAmaNs1LzwjYTVqabrlF06crIUHjxqlT\nJ6sLAuyEETt4WXU+LhuTlbffbnZtNuCsGSigNvr0KR6xi4jQsGHq0cPqggA7IdgBfqNuM1AA\nABDsAL+Rlqa5cyUpIUFZWZo0yeqCAPgXjtKER6yxA/xGnz66eFH6ZQYKAC5VcpRmbKw2bdL2\n7UpNVWKiIiN1/fVav175+UpOVny89u+3zapleBcjdsAlqv5AvHKlJI0cyQdiABbgKE14RLCD\nBfz5PIKqe0t89JHWrtXeve7eEv5TOQAHqM5nyw8/dH+2tNchoDABwQ64BB+IAVio6s+WgwZJ\n0v797s+W9joEFCYg2AEV8G1vCQCoRNWfLa+8UpISEsp+tmQ5HUoQ7IAK+LC3BAB4UvVny86d\nJT5bohLsigUq4MPeEgA86t9fLpfVRVip6s+WxhU+W6JCjNgBAOBfqv5s+b//K0mZmQoN1RNP\nSNKuXe6j7O6/X5L27jWnUvgdgh0AAPbTsqU2bSruzThjRvHuivXrNXGiJGVkMKQXoJiKBfxJ\nwM9AAaimESMUFaUePbRunQ4fLt5dIWnrVkkqKFBurvr2tbZGWIAROwAA7CEzU/fcc8mV9PTi\nmdmS3RXJyXrmGYndFYGKYAcAgI2xcx+lEeyAS9S0KwY9uQFHst2vNjv3YSDYAXVS9THx69dr\n+XLt2uU+Jr402/3lAAJHXX61VYff7up8tpS0ezd9C1Exgh1QJ3VpQVbHvxwAfKeO3QWr/9s9\nejQf8OBNBDvAC2rXgoy+tICfq3V3wer/dp84IfEBD95DsAO8oC4tyOhLC/itOnYXrM5vd1FR\n8b18wINXEOwAL6hLCzL60gJ+q47dBavz2/3zzxIf8OA9BDuglozF0can7ZgY98oYI4QNH17d\nlTH0pQWcqvq/3dX/gFfTnfsINAQ7oJaMxdHvvSdJL7zgXhmzdq0kzZun5cv15ZeKjlZhoSSl\npJRdFr1ypSSNHMmyaCDQ8QEP3kKwA2rJ+FTdvLkkXXede2WMcb1rV40YoWuukaRFiyRp2rSy\ny6IHDZKkPXtYFg0A8A6CHVAnHTu6bxsrY4zVMIaWLSWpcePiR5ZZFn3llZI0fDjLogEA3kGw\nA+qkUSP3bWOsrlkz95XLLpMqCn+ll0V37iyxLBo2wanagJ8j2AF1Mm9e2YXMxrLl0guZf/1r\n90Lm8suijStMxcIWAudUbfYowKYIdoDP1atX9oqxLNr4y9G6tfs6fzng5zhVu5qqnwuNMXvA\nWwh2AICa4dA1L2JoEN5FsAMA1AynagN+i2BnHytWqF071a+vqVOtLgVAQAvMQ9fYOAJbINjZ\nREGBkpN18qRmz1ZcnNXVAEDACZyNI7A1gp1N7N6tM2c0dqymTdPAgVZXA6l6K2OMxUa33252\nbQC8jo0jsAWCnU2cPStJTZtaXQdqhmXRgMOwcQR+jmBnB4MHKzZWkjIyFBSk1FSrCwKAAMXG\nEfg5gp0dpKVp7lxJSkhQVpYmTbK6IAAIUIG5cQQ2Uqdgd+zYsfz8fC9Vgsr16VM8YhcRoWHD\n1KOH1QUBCFCsLgD8XFXBbvv27UOGDOnYsWNsbOwzzzxz8eLFMg/IyMjo1KmTL8sDAABAddWv\n7I6PP/54wIAB586da9So0X//+98tW7asXr06KyurZcuWZtYHAACAaqp0xO7JJ5/8+eefs7Ky\nTp48WVhY+Ne//vWTTz6Ji4s7deqUmfUBAACgmioNdtu3bx81atSwYcOCgoIaNmw4ZcqUTZs2\n5eXljRw5svycLAAAACxXabA7dOhQ586dS1+59dZbMzMzN27c+Mc//tH3hQEA4Ee8uHGE7mTw\nnUrX2IWGhm7btq3MxXHjxu3atevJJ59s167dVDqWAgBQcyXdyWJjtWmTtm9XaqoSExUZqeuv\n1/r1ys9XcrLi47V/P8epoGYqHbFLSEh48803Fy9efP7SkxafeOKJ8ePHP/LII1OmTDl9+rTv\nK3SoFSvUrp3q1xf5GAACDN3J4DuVBruZM2e2b9/+gQceiI+PL309KCjoxRdf/MMf/rBgwYKn\nn37a9xU6UUGBkpN18qRmz1ZcnNXVAI7FhBf8Gd3J4AuVTsVeccUVX375ZVpaWrAxZFxKUFDQ\nwoULb7nllkceeWTPnj0+rtCJdu/WmTOaMEHTplX3S/r3l8vly5oAB2LCC/6M7mTwhUqDnaQr\nr7xyyZIlld2bkJCQUPrjBqrv7FlJatrU6joAhys94SUpKkobN2r1avXurXnzJCk6WtnZWrhQ\nubnq29fKUhGA6E4GX6BXrOkGDy7uD5aRoaAgpaZaXRDgcEx4AQgcBDvTpaVp7lxJSkhQVpYm\nTbK6IMDhmPACEDiqmoqFT/TpI+OE54gIDRtmdTWA8zHhBSBwMGIHAADgEAQ71ByH8AEA4JcI\ndqghDuEDgLrxYncyoAzPwW7Lli0//fRThXfl5OS89tpr3i4J/s04hG/sWE2bpoEDra4GAAC4\neQ52sbGxH330UYV3ZWdn33vvvd4uCf6NQ/gAAPBXle6K/fbbb7/99lvj9tatW0NCQso84MyZ\nM6tXrz537pwPq4O/GTxYb78tSRkZyshQSoqefdbqmoBKZWYqM/OSK+npSk+/5EpyspKTTawJ\nAHyp0mC3du3aab80vHr88ccre9idd97p/aLgt9LSdMstmj5dCQkaN06dOlldEAAAcKs02P3p\nT38aP358bm7uHXfcMW7cuOuuu67MA+rVq9e5c+ehQ4f6uEL4Ew7hAwCbS0rSypU6dkyPPqp1\n61RYqMhILVqk7t01fbrWrFFBgSIjtXixeva0ulbUXFUHFLdt23bo0KFDhgyZPHlyTEyMaTU5\nX//+crmsLgIAEIiCgyUpMVGxsdq0Sdu3KzVViYmKjNT112v9euXnKzlZ8fHav5/TvO3H8+aJ\nDRs2kOoA2AynLQKVMBrrRURo5kxFRWn8eA0dqn37FBKiefMUHa0RIzR+vA4fVm6u1bWi5jy3\nFHO5XGvXrn355ZcPHDhwvqJ+ijt27PBBYQBQW8Zpi8HBmj1bvXpZXQ3gjxIS3LcjIiTpjjvc\nV7p2laSDB82tCd7gecRu/vz5I0eO3LBhw7///e8DFTGhSgCogVKnLSa9MDAoSMePKyVFoaFq\n1EgxMcrJ0enTeughhYerSRP17auvvrK6ZqBukpJUox/18HD31xpjeKWvGDOwFQ3mwN95DnYL\nFy6Mi4vbs2fPqVOnjlfEhCoBoAZKnbZYspwoPFybNmnpUuXlKTFRo0YpJETr12v5cu3apfh4\n/obB3qr/o/7zz5IqWDzHcjpn8BzsDh8+PGvWrM6dO5tQDQDU1eDBio2VpIwMBQVN+DxVLCdC\nAKj+yrkjR6yuFb7kOdiFhoa62MIJwC7S0jR3riQlJCgr64Nuk8RyIjhXyQzsxx9L0gsvuGdg\n8/Ml6c033TOwxo/6mTOWVQsTeA52Y8aMeeWVV0woBeZhwyAcrE+f4hG7iAgNG7a/VQ+xnAiW\nqunqtxopmYFt1EiS0tLcM7DGD/a0ae7FBsYVYyoWTuV5V+zMmTPvvPPOsWPH3nXXXR06dGhQ\nbhK+S5cuvqkNvlHHDYMcwgcbYjkRLOTTc+NKZmCLivTVV0pM1LZtWr1avXtr4EB9/LEGDNCx\nY1q4kMUGgcJzsGv6S7v3FStWVPgAJmptxtgwOGGCfmkZBwDwndKr3yRFRWnjxuLsNW+eJEVH\nKzu7OHv17Vubl0hI0KpVxbeNxQb/+Y/WrpWkp57S++9L0t13KzFRknbvlqTISN14I+0lHMhz\nsBszZkxwcHD9+p4fCXsotWEQAGAOny70LL/YoFmz4v+86io99JBmz1Z+vp59VpJ69tS6dZcM\nE6anKz39kidMTlZyci2LgbU8x7XKBupgS4MH6+23JSkjQxkZSkkp/kUHAPiST6gJ8a8AACAA\nSURBVBd6VrHY4O679c03khQdrc8+k6QxYxQd7YVhQvgnz5snShQWFn799dccXGdvl24Y1KRJ\nVhcEAAHB8oWeRqqTlJJSvIGjYUNJmjuXk7odpVrB7sMPP7zpppuaNWvWvXv3z3750Rg6dOh7\n773ny9rgA5duGFSPHlYXBAAw1bRpxccXZ2ZKUr16lxxfPHq0D/fwwgSeg11OTs5tt93273//\nOy4uruTikSNHcnNz4+Pjv/zyS1+WBwB1kpkpl0ul9+6np8vlUv/+7ivJyXK5NHq0+dUBXlP+\nR13S7t2X/KhLys7Wn/5UfHzxTz9Jv8zMlhxffOKERLMWO/Mc7B5//PE2bdrs3LnzpZdeKrl4\n1VVX5eXltWnTZvbs2T6sDj7FaXYAEKiMDRylGRs4ioqK76VZi0153jzx2WefPfzww+3atTt0\n6FDp661bt05NTX3qqad8Vht86dy5Op1mB/gzTlsEPCl/1kXp44tp1mJfnkfsCgoK2rdvX+Fd\nbdu2PXnypLdLgimOHdOZMxo7VtOmaeBAq6uBeXx6CD5QU/xA1lFliw1CQ91XkpN1zz01e1qa\ntdiX52DXpk2bXbt2VXjXRx99FBYW5u2SYIoLFyROswtEJYfgs4AG/iAQfiDtuNDT8j28qDXP\nwS4+Pv6ZZ5756tKPS8eOHfvf//3fF198cciQIT6rDb70979LUkaGgoKUmmp1NTBP6UPwWUAD\ny/EDWUeVDXkaH9779Sse8jx61OpCYRbPwW7WrFlNmjS5+eabjQw3bdq0qKiotm3bzp07t0OH\nDjONDimwnVtukTjNLnCxgAZ+hR/IWqtsyPPoUT36qDZuLB7yNE6mr3CTrP8ME8IrqjUV+8UX\nX9x7773ff/+9pG3btm3btq1p06aTJk3Kzc0NLT2NDxtp107iNLvAxQIa+BV+IGvBGKsz9jp8\n/LHmzdOkSerWTUOGaN8+vfeeFi/WAw+oUyeNH68zZ6wuF2apVgfY1q1bP/PMM0uWLPnhhx8K\nCwubNm1KnrMxY8Pgli3Fs7EISCyggV/hB7IWjLE6o1HAX/+qyy9XaqoSE4v7SUybpuuuK+4G\n+9hjVtYJk9WgpVhQUFBoaGiXLl1IdSiPrW0AYCZjaLN5c0m65Rb38kQjE/fv716e+J//SNLK\nldXawNG5s3n/BPiC5xE7l8u1du3al19++cCBA+crGgrfsWOHDwqDzZSs84iN1aZN2r69+LNj\nZKSuv17r1ys/v/iz4/79fBYHAO/o2FG7dhW/qRrLE7t21c6dxVeM5YkFBTV4wszM4lZjJdLT\nlZ5+yZXkZCUn175m+JTnYDd//vypU6dKatSoUQP+IKMSpbe2SYqK0saNWr1avXtr3jxJio5W\ndrYWLlRurvr2tbJUB0tK0sqVOnZMjz6qdetUWKjISC1apO7dNX261qxRQYEaN7a6SgDe06iR\n+7bxPtysmfuK8Uf74kVza4KlPE/FLly4MC4ubs+ePadOnTpeEROqhF2wtc1a1TkSzPiVNY5C\nqCWa0QF+47Jyf8bLX0FA8Txid/jw4bVr13Zm1h3VwNY2a1Vn3DQiQl9/re3bde21tXqNggKa\n0QGA3/Ic7ENDQ110XUT1sLXNpzzuUFm+XJJuuMH9JeXHTe+7T5Lq1XNfqdkh+Lt304wOXmTH\nrgymqfpXfuVKSdq82eoq4Wc8B7sxY8a88sorJpQCn2DWzEE8zrQax07PmOEeFvX+uOnZsxLN\n6AAzVP0rP2iQJJ04IdVxcQWcxXOwmzlz5p49e8aOHfv222/v2rXr23JMqBK1ZMyanTyp2bMV\nF3fJXcZpdsb8HGzCY/Oljh0l6ejRss2XvDZuOniwYmMlmtEBZqj6V/7KKyUpKUmSfvrJ/VUT\nJ5Yd8vz1rwN0yDMweV5j1/SXj+YrVqyo8AFM1PovY9ZswgRNm2Z1KfCaqneoGHy1QyUtTbfc\nounTlZCgcePUqZNvXgaAW9W/8sYCeDaloYTnYDdmzJjg4OD69avVowL+hVkzJ6p6h4rBVztU\n+vQpPjjBaEYHwPcq+5U3DpwzzpwzfuU5cA6qTrCrbKDOKi6Xa+/evd99911hYaGk5s2bR0RE\ntG/f3uq6/M/gwcVtnzMylJGhlBQ9+6zVNcEL2KECBBR+5VEjNTju5scff/z000/ffffdzz//\n3JLj644dO/bwww+3adPmmmuuGTRoUEJCQkJCwoABAzp06HD11VfPnj37DF2OS0tL09y5kpSQ\noKwsTZrk01djaxsA+DMaPwaIagW7LVu2xMTEXHXVVX379h00aFBMTEyrVq0GDhxoZjOxgwcP\nRkdHz58/v3nz5nfffXdaWtqf//znP//5z4899tiYMWMuXLgwc+bMPn36HDt2zLSS/F2fPsXr\n3I1Zsx49rC7I0dh97CR8N2EHRlA7fVqSUlI8B7XqHGC+a5fi4zlt1N48T8Xm5OQMHDjwwoUL\n/fv379q16+WXX37q1KmdO3du3ry5X79+OTk5XY1+Aj42Y8aMAwcOrF69OjExsfy9Fy9efO65\n5+6///5Zs2YtWLDAhHoAN785szczUzExuvde9xXW3NSY33w3gaoZQc1YYjNtmtq21T336Oab\nFRenw4d19qzOn1dOjgYN0nffKS1Na9ZI0r/+pYwMRUXR+NGxPI/YzZkz56qrrtqxY0d2dnZm\nZubTTz/9wgsvfPbZZ19++WVISMisWbNMqFLSW2+9NW7cuApTnaR69epNnjx55MiRr7/+ujn1\nAG6c2eskfDdhE8ZGitBQSerYUePHy1htvnWrhg/Xu+/qb3+TpJ9+0pAh7nPvTp1yj8nR+NGR\nPAe7Tz75ZPLkydeWaz8UFRU1efLkzWYden306NFrrrmm6sd069bt8OHD5tQDuNlo9zGTjB7Z\n6LsJSD17um+3aCFJN9zgPvfuxhsl6eef3efeDR+uw4eLj7qk8aMjeQ52BQUF7dq1q/Cujh07\n/lT6VERfCgsLy8vLq/oxW7duDQsLM6ceoJiJZ/bWdYdKFQdWw+CD7yYr1lFrNf2VDwqSpMGD\n3fe2aSNdGv6MZys9JsceW4fxHOxat269a9euCu/auXNn69atvV1SxYYNG7ZmzZq//OUv586d\nK3/vqVOn0tLS3njjjVGjRplTD2zD12NU5u4+rhMmGT3ywXeTFevwqfKxrG1b9+3LLpOkli3d\nV4xRusp+2JYtk6TTp/kcYmOeN0/cdtttTz/99M033zx06NAg4+OA5HK51q1bt2TJkjFjxvi4\nwmLp6enZ2dlTp059/PHHe/fu3b59+yZNmrhcrpMnT37//fc5OTmnT5+OjY197LHHzKnHCVas\n0COP6NAhTZmip56yuhrfMGEhvI3O7PXKJKPRjM6pfPDdLN0VSmLFOnyuXr2yV6rfYcB45IIF\nuvNObdqk7duVmqrEREVG6vrrtX698vOVnKz4eO3fz1Cfn/L83U5LS9u4ceOwYcPatGlz3XXX\nNW7c2NgVe+jQobZt26alpZlQpaQWLVp8+umnS5Ysefnllz/44IOLxpuvJKlBgwbR0dETJ06c\nOHFivfI/0ahQgGz9o6laCQ6stlTVXaGquWI9KUkrV+rYMT36qNatU2GhIiO1aJG6d9f06Vqz\nRgUFiozU4sWXTL0B1WeM8LVpw+cQG/Mc7Dp27PjFF1/MmDFj3bp1JVslWrVqlZyc/Pjjj7ct\nPebrY8HBwVOmTJkyZcrZs2f3799vdJ5o1qxZhw4dgo3ZDlRfgCQeFsKXoM2rpapuBFfNFesl\ns7qxsYymwIdKf9hn56ztVGt8tn379i+99JLL5Tp06NCpU6eaNGnSxliQaZGQkJAI42cNVati\n1szfEo8v5oUZoyrNRlPGTuSVrlDM6sIcrVq5b7Nz1nZq0FLs0KFDhw4d2r9//w8//HDkyBHf\n1QQvqHrHgIkbOavFR7s1bbStAag2r8zqIgAZe2xL73gsv8fW+Pkp/RNlYADYRqo1Yrds2bK5\nc+fm5+eXvnjttdempaWN9pvGn3v27ElJSZH07rvvVv+rioqKVq5cWeFO2xLZ2dl1Lc5kHtfP\n+dusnI/mhRmjghN5ZVbXeQJwAWJmpjIzL7nSs6e2btVNN11y5c03NWCAyaXBSp6D3dKlSydP\nntywYcOBAweGh4c3bty4oKBg9+7dubm5Y8aMKSoquuuuu0wo1KPCwsL33nuvpl91+PDhjIyM\nqoPdiRMnJLlstBPQY07yt8Tjb/PCgB/zyqyuP/BuFGMBoiqKejQVDECeg92CBQvi4uL+8Y9/\nNG/evPT1vXv33nbbbRkZGX4S7K699tp//etfNf2q9u3b79y5s+rHPPfcc6mpqSVHvdiAvXIS\nK+GcKwAHUVB93o1iLEAEDJ7X2OXn58+YMaNMqpPUqVOnKVOm7NmzxzeF1VhISEj37t27d+9u\ndSFW89H6Od8d88tKOOfibF5UoXQUM/pfDR2qffsUEqJ58xQdrREjNH68u/9VdbAAEfAc7Jo3\nb17Z4XD16tW70mg+ZyKXy/Xdd9+9++67WVlZWVlZmzdv3r9/v8k1+DVf5KRab26oThzs06c4\niRrzwj161LVa8xm7j41hAZTii7/cPufpu1nTFmF1bQTndN6NYixABDxPxf72t7998803Y2Ji\nyt+1YcOGxMREH1RVsWPHjj3xxBOvvPLKDz/8UOauDh06JCcnP/zww5dffrlp9fgpX6yfq93m\nhgA5AxmeOGwQhbVc3uXdKOaYBYhWYZWeA3gOdnPmzBk2bFh+fv7o0aMjIiIaNWpkdJ544YUX\nioqK7rvvvgMHDpQ8uF27dj4q9ODBg/369du7d29ERER8fPzVV1/duHFjSSdOnNizZ8+HH344\nc+bM11577f33329ZuiseqsPjGXK1W7QXIGcgwxOHDaKwlsu7iGKAd3kOdmFhYZJycnJWrFhR\n/t4yBwX7buvojBkzDhw4sHr16grHCC9evPjcc8/df//9s2bNWrBggY9qcCaP42q13txgrz0c\ngcCiNq+O/MttyTAkoykAPPIc7IYNG9awYUMTSqnaW2+9NW7cuMpmfuvVqzd58uSPPvro9ddf\nJ9jVjMdxtdodesde17phP6mfc9gwJADH8BzssrKyTKjDo6NHj15zzTVVP6Zbt25+Uq2deBxX\nq92iPT85A9miMaq6c/hCrnfe0egJxbP/Xb3UQc5cjhyGBOAANWgpZq2wsLC8vLyqH7N161Zj\n4hieGYln2zZf9RZzwF5XS9lyP2n1ZWR4v4McAKCaLcUuXrz4+eefHzx48HxFUwvmdBUbNmzY\nokWLevXq9cADD5SfGj516tSf//znN95449FHHzWhGOfwk3E1VMJh+0ndzp3TPWOLZ/8zPT0Y\nqAYWIFqFdSP+xnOw+/LLL++8884yjWJLMyfYpaenZ2dnT5069fHHH+/du3f79u2bNGnicrlO\nnjz5/fff5+TknD59OjY29rHHHjOhGOfwt95iuJSTF3KxqybgEcVspIr0tm2bJF15pcLCtGCB\nioqctW7EhjwHu/vvv//48eMPPvhg165dG1j3PWnRosWnn366ZMmSl19++YMPPrhoxBFJUoMG\nDaKjoydOnDhx4sTKzlKGX7PtSjhfs+lCrpK/AfXqqXVrRUa6/wYcf2ldmHoP1qbIjO2LM6J7\npvRKfvZZ/nIDfq6KVb/Gm9LAgfr8c02Zov37OQDIYp6D3b/+9a9XX311mB8M5wQHB0+ZMmXK\nlClnz57dv39/YWGhpGbNmnXo0CHY+KGDgZwES1W18yO21/rb385f8lZyg+XxjT/Zf+//s0NS\nBQJdFcc39uql7dv18MPasKE4vTlq3YgNed480aRJkw4dOphQSvWFhIRERET07NmzZ8+eXbp0\nIdXBAr5rnmt/Ve38eCU8enTECL02vse2w8cb5p6LtLrYGqNFGAJWFat+w8Pd6c1p60bsxnOw\nGzly5Nq1a00oBbCNWjfPDSQedn60OiI+wQO2UsWq3wYNyqY3W6wbcSTPU7Hz5s0bPXr0yJEj\n77jjjrCwsPLL7PqX/qAKBAK6pVWDh50fl10Un+ABW7Hpqt9A4znY7dixY9u2bfv371+zZk2F\nD/BdGzH4CxbtlUG3tGrgbwAAmM9zsHvggQeOHDkycuTIiIiI+vWrde4dINU2Dq5YoUceKe5J\n8JRf9iQwpVsaJ0EAAGrBc1Dbvn37smXLfve735lQDQKdsXYtOFizZ6tXL6urqQSnOgNANZSc\nfPTKK5I0frwWLODsYp/zHOwaN27cvXt3E0qBNfxqmtUWa9c41RmAc1V4FnFoqCTNmaN33ilO\nYzfc4PmpSk4+atFCku65Ry++yNnFPud5V+zw4cM3bNhgQikAa9cAwFolaSw8XJs2aelS5eVp\n82ZJathQ69dr+XLt2qW//7348VUcAFRy8tEbb8jl0jPPOKvntb/yPGL31FNPJSYmHjx4cPjw\n4eHh4eV3xXYp/f0Eas2UtWsAgCpUdhbxnXfqueekUp0kPv74kk4Sla36dWzPa3/lOdi1bNlS\n0rvvvvvMM89U+AB2xcI7WLvmFB52fvTvL5crWWLjB+BvjHlYSfv2KTS0eB72uuskqbBQ4eHF\n87C/+pVU7TTm5J7XfslzsBszZkxwcDD7YeFzrF0DAEuVNHLq1EmzZxf3A/zmG0lq1cq9Ku7r\nr6VqpzFOPjKZ57i2YsUKE+oAAADWKhnDefBBdeninoeVNHmyoqPd87DwW543T5T48ccfP/30\n03fffffzzz8/fvy472qCE9BKFQBsLimpONVJGjpUjRopJkYNGxZfmTxZTZqob1999ZVVBaIC\n1Qp2W7ZsiYmJueqqq/r27Tto0KCYmJhWrVoNHDhwx44dvq4PtlRFK1UCHwD4h6QkBQXp+HGl\npCg0VI0aaf364rvmzFF4uEo3nJo/v3iHbMkK2qlTi3fIxsezSM6PeJ6KzcnJGThw4IULF/r3\n79+1a9fLL7/81KlTO3fu3Lx5c79+/XJycroae1qAEpUdR2eL84cBIDCUnGwSG6tNm7R9u+65\np/gu42STRx/Ve+8VX4mIUP/+7plZSZ06acSI4pnZ3NxLdsjCQp5H7ObMmXPVVVft2LEjOzs7\nMzPz6aeffuGFFz777LMvv/wyJCRk1qxZJlQJm6nsODoj8I0dq2nTNHCg+XW51XHg0DjVed48\nb5cFAOYpfbJJVJTGj1eHDsV3TZ2q6Gh17Fj2S4zzSkqr9Xklxnjh6dOSlJJSPM+bk6PTp/XQ\nQwoPZ563ljwHu08++WTy5MnXXnttmetRUVGTJ0/ebJxaCJQYPFixsZKUkaGgIKWmuu+q9fnD\ndZ/Ave02BQUpKEht21Y1UwwAAab0OXPNm3t4cPkTMqo4r6SKs4v1y3jhm2/qhht04oTmz9cX\nX6hvXzVrpjVr9OST+tvf9NVX6tWLhFcznoNdQUFBu3btKryrY8eOP/30k7dLgs2lpWnuXElK\nSFBWliZNKr5eReCrWt1z2M6deucdSYqI0O23+9HAIQBYrfSpckFBkvTKKyrTeSA9vTiNvfZa\n8ZUBA/Tgg2rUqPj9/ty5Gg+zlYwXGo1iX39d3brp4kX17KmfftKMGVq5UjfcoJ9/1vTprOSr\nAc/BrnXr1rt27arwrp07d7Zu3drbJcHm+vQpDnDGcXQ9ehRfryzweVT3HLZ2rSS1aqV//1vL\nltG4DABKlD9VroqDa+vVK77RsmVxw7EDByRp0SKFhLgbjlU/hCUkuBOe0ZHiD39wdx6bOFGS\nunal81gNeA52t91229NPP/3GG2+U7jDhcrmysrKWLFnym9/8xpflwUEqC3ylVbh2re45rKBA\nkkJCpDoMHAJAwLvsl9QwYkTxsjzjvbxBg1q2fy0ZLyxJeOHh7s5jJfO8dB6rPs/BLi0trVGj\nRsOGDQsLCxswYMDQoUMHDBgQFhaWkJDQrFmztLQ0E6pE4Kp7DmvYUH/9qyT9978KCtInn9Ry\n4BAAnG7oUElq1654Z0NRUfH1uXOLdzb8/LMkNW+u5OTiKdfQUEm66Sb3k9QohJWMF5YkvAYN\n6DxWJ56DXceOHb/44ovx48efOXNm8+bNb7755ubNm4uKipKTk7/88svKlt8B3lHrCdwSf/xj\n8ae/kBAlJGjmTM8DhwAQ2IydDSVnndxzj/LylJio/HxJevhh95SrsSyvZUv319YuhNF5zFuq\n1QG2ffv2L730ksvlOnTo0KlTp5o0adKmTRtfVwZI3mgg++STKirSX/+qVq2K1/1u2eLNCgHA\ncYwxs+bN9d//StLSpRo+XFlZxVOxy5fr73/X2LFaskT/93+S9NJLGj68eBsErOVhxO6HH374\n9NNPjdtBQUFt27bt0qVLmzZtlixZQlcxAAAcbNEiLVtWfHvbNkmKipKk/fuVmKiPPpKkW26R\npOPH2bXqL6oKdh999FHXrl1nzpxZ5vr27dvvv//+7t27f/fdd76sDQAA+ErV58xJCg9XcnJx\nO4orrpBUvKJuwADt21c8XdusmST95jdlN0yMGXNJs7Lyhw+/+aYJ/8RAVGmwO3jw4IgRI06e\nPHnrrbeWueuGG25YtGjRwYMHBw8efNbYsQgAAJyl9Cq3bt2kX3bFGh0pbrzRfa/RsqLMhonE\nRIWHF5+KYizRGzXKfSqKMe134YIv/wEBqdJgt2zZsh9//HHp0qXTyrT7lIKCgh544IH58+fv\n3r17+fLlPq4QAABYzBiZMxin2bVo4b5irMkrMxVbullZydF0JaeiGHvhSnc5KDNeKCk5WS6X\nRo/2+r/GySoNdm+88cY111wz0TgcsCL3339/u3btXnrpJZ/UBVujlSoAOMtl5fJCFecYG0o3\nKys5mq5EyakoHmeERcKriUqD3b59+26++ebLyn8nf1G/fv2YmJivv/7aN4XBiQh8cIy69y8G\nbOjRR+VyqVUr95U77ywby0qW5ZU+iI6j6UxTaW47ceLEFcZSycpdccUV586d83ZJAODf6t6/\nGAgA5Q+iu/VW946KyZMlac+eS3ZUVLPPLKpQabC74oor9u3bV/UX//vf/77qqqu8XRJQyooV\nxaP577/vtedk4BB1VPf+xUCgKtlR8bvfSdKCBZfsqKhRn1lUqNJg16tXr/fee+/o0aOVPeDb\nb7/Nzs6OiYnxTWHAL+MiRUWaO1dPPFH755k/Xy6X/vMf71WGwFb3/sWAfyu/7u0Pfyi77u32\n22uz7q1kR0XfvpL044+X7KioUZ9ZVKjSYDdu3LiTJ0/ee++9Fyrai3zixImxY8deuHDh7rvv\n9mF1CHCMi8AP1b1/MRDASu+oMFS4owK1VmmwGzFixMCBA7OysmJiYrKysgoLC43rR44cef75\n5yMjI3NycoYPH3777bebVSoCD+Mi8EN1718M2Ip3d62W3j9R/go7Kuqu0s3KQUFBa9asSUpK\n+uc//5mQkBAUFNS8efOLFy+WJLxRo0a9+OKLZtWJwDN4sN5+W5IyMpSRoZQUPfus1TUB3uhf\nDASw8jsqyl9BXVTVUqxFixYbN27cuHHjmDFjOnXqdP78eUldu3adMGHCRx99tGrVqssvv9ys\nOhF4GBcBAHuqcJDPOAOlRHKy0tJMrisgeDpeUPrNb37zm9/8xoRSgEswLgIAQA1VNWIHAADq\nxNFnWSclKSjIfTRdo0aKiVFODkfTWYlgBwCAbzj9LOvgYKnU0XRLlyovT4mJHE1nJc9TsQAA\noDaMM5smTNC0aVaX4hNGozDjaDpJUVHauFGrV6t37+Iz4KOjlZ2thQs5ms48jNgBAOAbjj6z\nKSlJzz8vSfv2uedhGzeWpMJC9zxso0aSdPCgl49NQWUIdgAA+IDTz7I25mElderknod9/XVJ\natXKPQ+7ZInE0XQmItgBAOADTj+zqf4vi7kefFBRURo/XkOHqqBAkiZPdrcIO3HCwhoDUcVr\n7A4cOFD9p2jXrp2XigEAO+jfXy6X1UXA7wXemU0REWWvGC3CYKaKg1379u2r/xQu3uAAAAh4\n9ctlCo9dJZKStHKljh3To49q3ToVFioyUosWqXt3TZ+uNWtUUKDISC1erJ49fVS101Qc7EaN\nGmVyHUAFGBcBAEcrOTAlNlabNmn7dqWmKjFRkZG6/nqtX6/8fCUnKz5e+/fTfKxaKg52q1at\nqs4Xnzp1qqR1LAAAQI3U6MCUvn2tLNUu6rR54o033ujJ2CgAAKiDhAT3bWOh3h13uK8YC/UO\nHjS3Jtuq1gHFP/7446pVq/Lz8y9cuFBy8ezZsxs2bDh58qTPagMAAH5t9+5LjqaTlJ19ydF0\nklau9HA0XXi4+7Yxhlf6ijEDy4Ep1eQ52OXn5/fu3fvIkSMVfHH9+jNmzPBBVQAAIFCUXzzH\ncrpa8xzsHnvssbNnzy5evLhbt24DBgzIzMxs167dBx988Morrzz//PNxTmx+BwAAYEee19hl\nZ2ffd9999913X9++fSVdf/31cXFxTz755IYNG5KSkj7++GPfFwkAAPwLLcL8k+dgd/Dgwc6d\nO0u67LLLJBUVFRnXb7zxxvvuuy8tLc2n9QEAYFfGmU3G9s4yVqxQu3aqX19Tp5peFpzMc7Br\n2rTp4cOHJQUHBzdp0uS7774rueu666774osvfFgdAADOU1Cg5GSdPKnZs8WKJniV52AXGxv7\n7LPPfvDBB5JuuOGGJUuWlOyE3bx5c8OGDX1aHwAATrN7t86c0dixmjZNAwdaXY0fSUrSrFmS\n9NRTCg1Vo0aKidHevZL08ssKD1eTJurbV199ZW2Zfs1zsJs+ffrRo0cffvhhSffee+8XX3xx\n3XXXJSQkREVFLVu2bNCgQb4vEjALkyMATHD2rCQ1bWp1HdYrs1DPaEQxcKCio7Vpk5YuVV6e\nXn1Vt9+uyEitX6/ly7Vrl+LjOf2kUp6DXe/evbds2XLPPfdIuvvuu6dNm/bjjz9mZWXl5eUN\nHTp0wYIFvi8SMAWTIwBMMHiwYmMlKSNDQUFKTTXhNZOSFBSk48eVkuIehnOYfwAAIABJREFU\nCcvJ0enTeughPxoJK92IIipK48dr6FDt26eQEM2bp+hojRih8eN1+LBycy0u1W9V64Di6Ojo\n6OhoSUFBQXPnzp05c+ahQ4dCQ0Mvv/xyH5cHmMiYHJkwQdOmWV0KAOdKS9Mtt2j6dCUkaNw4\ndepkwmvaqyUrjSjqolrBznDw4MFDhw4dP378iiuuaNu2LakOTsPkCAAT9OmjixclKSJCw4aZ\n85r2aslKI4q6qFav2GXLlnXq1CksLKxnz5633nprjx49Wrdu3a1bt1WrVvm6PsAkVkyOAICZ\n7DISRiOKuvA8Yrd06dLJkyc3bNhw4MCB4eHhjRs3Ligo2L17d25u7pgxY4qKiu666y4TCgV8\ny4rJEQAwEyNhgcBzsFuwYEFcXNw//vGP5s2bl76+d+/e2267LSMjg2AHJ7BicgQAzMRIWCDw\nPBWbn58/Y8aMMqlOUqdOnaZMmbJnzx7fFAYAAICa8RzsmjdvXq9evQrvqlev3pVXXuntkgAA\nAFAbnoPdb3/72zfffLPCuzZs2JCYmOjtkgAAAFAbnoPdnDlz3n333bFjx7755pvffPPNvn37\ndu3a9dprrw0ZMuTs2bP33XffgVJMqBjAJeiWAcApyjSikJSeLpdL/fu7ryQny+XS6NHmV2cP\nnjdPhIWFScrJyVmxYkX5eyOMDdO/cLlc3qoMgGdGt4zgYM2erV69rK4GAGAxz8Fu2LBhDRs2\nNKEUADVGtwzAjvr3l7njIJmZysy85Ep6utLTL7mSnKzkZO+/dFKSVq7UsWN69FGtW6fCQkVG\natEide+u6dO1Zo0KChQZqcWL1bOn9189AHkOdllZWSbUAaA26JYBwL/Zq5uZA1Qc7A4dOtSw\nYcOWLVsat6t+ijZt2ni/LgAeDR6st9+WpIwMZWQoJUXPPmt1TQBwCXt1M3OAioNd27Zt4+Li\nNm3aZNyu+ilYVweHMH1ypK7olgHAJuzSzcwBKg52o0aNuvHGG0tum1gPnGLFCj3yiA4d0pQp\neuopq6txKLplALAJupmZpuJgt2rVqgpvA9XCVk0AQCl0MzON580Thq+//jo0NLSkz8TXX39d\nVFQUFRXls8JgZ2zVBADACp4PKD5//vw999zTvXv3HTt2lFx8//33e/bsOWHChIvGTBBQGls1\nAfgzjvWGc3kOdk8//fQLL7wwZMiQq6++uuTioEGDRo0a9dJLLy1evNiX5cGGBg9WbKwkZWQo\nKEipqVYXBAClGGtFTp7U7NmKi7O6GsDLPE/FvvTSS7fffnuZdrFdu3ZdtWpVYWHh4sWLH3zw\nQZ+VBxtiqyYAf8ZaETia52D37bff3n333RXe9atf/eqdd97xckWwO7ZqAvBnrBWBo3meim3W\nrFl+fn6Fd+Xn57dq1crLFQEA4COsFTFdZqZcLnXp4r6Sni6XS/37u68kJ8vl0ujRNX7ypCQF\nBen4caWkKDRUjRopJkY5OTp9Wg89pPBwNWmivn311Vde+IfYhedgN2TIkOeff37jxo2lL54/\nf37ZsmV/+9vfbrvtNp/VBgCAV6Wlae5cSUpIUFaWJk2yuiDUSUm/svBwbdqkpUuVl6fERI0a\npZAQrV+v5cu1a5fi4wPokDzPU7Fz5sz55z//OWTIkA4dOnTt2rVhw4bHjx/fuXPnTz/91LZt\n2zlz5phQJYCK2a5bBmAt1oo4C/3KyvM8Yte2bdutW7empqaeOnXqnXfe2bBhw5YtW+rVq3fv\nvffm5uZ26NDBhCoBAAAqVL5f2dq17vnZZ56RpOzsQJmf9RzsJIWGhi5duvTIkSP/+c9/vv32\n25MnT/7www9/+9vfwks3BAEAADBd+X5lKjU/+7vfSdJf/hIo87PVCnaGoKCgsLCwa665pnHj\nxr4rCAAAoPoq7E5mzM9GRRXPwP74o0JCNG+eoqM1YoTGj9fhw8rNNblSM3heY+dyudauXfvy\nyy8fOHDgfEXhtnRHCsB+VqzQI4/o0CFNmaKnnrK6GgCAF5SenzXccYf7dteuknTwoHn1mMZz\nsJs/f/7UqVMlNWrUqAE9e+Ewxhn0wcGaPVu9elldDQDAO8ovFit9xYgzjpyK9RzsFi5cGBcX\n98wzz3Tu3NmEguAENtqqyRn0AOBE5UeiAmRsynOwO3z48Nq1a0l1cCbOoAcAOIjnzROhoaEu\nu4y+ADXCGfQAAGfxHOzGjBnzyiuvmFAKYDbOoAcCkLFWxDi+FjZXYb+ye+655DHJyUpLM7ku\nK3meip05c+add945duzYu+66q0OHDuX3T3Qp/X8UsBHOoAcAOIvnYNf0l+VHK1asqPABTNQC\nAAD4A8/BbsyYMcHBwfXre34kAACAtTIzlZl5yZX0dKWnX3IlOVnJySbWZCLPca2ygToAAAD4\nlYqD3aFDhxo2bNiyZUvjdtVP0aZNG+/XBQAAgBqqONi1bds2Li5u06ZNxu2qn4I1dgAAAP6g\n4mA3atSoG2+8seS2ifUAAACglioOdqtWrarwNgAACBxJSVq5UseO6dFHtW6dCgsVGalFi9S9\nu6ZP14WXV0w//kgbHTryuymhLz9ldbGQqnNA8fr167/++msTSgEAAH4lOFiSEhMVHq5Nm7R0\nqfLylJioUaPUIqhg0enkqy4/Oafh7Ac2xJ0/b3WtkFSdYDdq1KgNGzaYUApgAc6gB4DKGWed\nRURo5kxFRWn8eA0dqn37FBKi9LG7Lzt3psHdY39Kmbbm2MDcXKtrhaTqBLv+/ft/+OGHP//8\nswnVAAAAf5OQ4L4dESFJd9whnT0rSU2bdu0qSQcPWlEZyvF8jt2rr746ZcqUIUOG3HXXXf/z\nP//TvHnzMg+gpRgAAA4WHu6+bYzhxS8arNy3JSkjY5IyLlPK+fPPWlMcLuU52JUcU2ecflIe\nx53At1as0COP6NAhTZmip1icCwBmK9clXvsnprUafoumT1dCwjttxi19ptOfrCgM5XkOdqNG\njQoODm7QoEFQUJAJBQGXKChQcrKCgzV7tnr1sroaAIAkFXbvI12UpIiI77sMy7O6HpTwHOw4\n7gRW2r1bZ85owgRNm2Z1KQAA+DsPwe7cuXN5eXmnT5++9tpraR0GC/yyONfqOgAAsIGqdsUu\nX768TZs2N998869//euwsLCkpKTCwkLTKgM0eLBiYyUpI0NBQUpNtbogAAD8WqXB7qOPPpow\nYcLJkyfj4uKSkpI6deq0cuXKu+66y8ziEOjS0jR3riQlJCgrS5MmWV1QoFqxQu3aqX59TZ1q\ndSkAgKpUOhX7l7/8JSgoaPPmzbGxsZKKiopGjx6dlZW1Y8eO7t27m1ghAlifPrpYvDhXw4ZZ\nXU2gYv8KEMAyM5WZecmV9HSlp0uSthRf+f/t3XtcVHX+x/EPt0EEBK8YiihJabpagpYJYWpl\nN0VKJRNdjF3BMmUfUou/EsU0SVu76UZtbqumqaXZ6pplKZlmeCnX1IwQFBMvsYIioILz++PY\nNCEMA8qcy7yef82cOZz5zEEP7/neTkKCJCQ4tizUrtYWux07dtx7771KqhMRk8k0ffp0Efny\nyy8dUxmcAk1B2qfMX3n8cUlNlUGD1K4GAGBLrS12RUVFN910k/UW5WlRUVGjFwUnQVOQLjB/\nBQD0o9YWu8uXL3t5eVlvadKkiYhUKV1jwLWr1hRE650GMX8FAHSl7nXsgMZi3RRE6502paVJ\n1JXF5SUuTjp1UrsgAJoRESHcekp7CHZQyeDBsvHKfQYlI0NiYliIWIuYvwIAumIr2H311VfT\nr0x9+c2WLVuqbbx6H6Bu1ZqCiotl9WoGcnFjXLtwlgCgFraC3bZt27Zt21ZtY1ZWVlZWlvUW\ngh0awrop6M03f9d6N368vPmmutWpw/7+aGdONvTaAw7gzBcZnas12C1ZssSRdcCpMZBLocwm\niYiQBQtsXU+dPNlw++AG4I806sXJLzI6V2uwGz16tCPrgFOzMZDLqQbnKrNJNm8Wb29b11Mn\nTzYsv1Jf/JFGfTn5RUbnbN0rFoCDLFsmXl5XFhaprJSSEjlypNbVgJ052bD8SgOwxDTqy5kv\nMvqn72B38eLFnTt3bt68OS8vT+1agIZSGlTc3eXee69siYmp9ca4Tp5suH1wA/BHGvXi5BcZ\n/dNNsHvhhRc2b95svSUzM7Nt27Z9+vQZMGBASEhIeHj4d999p1Z5QMMpDSpjxkhx8ZUtq1fL\nrbfWfD118mTTt++VPzlKr33PnmoXpHn8kUZ9OflFRv90E+yef/75jcrESRERWb9+fWJiYllZ\n2bBhw8aPH9+vX7/du3f3798/NzdXxSKBhrA0qMTHX9nSu7e0bClvv13DTThINhqk5Zum8Eca\n9cVFRuf0ukBxcnKyn5/f119/3bVrV2XL6tWrH3300VmzZi1atEjd2oB6sF6o2eLbb8XbW154\nQRND3Z1q/koDaHxqAktMA05GNy121k6fPp2Tk/Pkk09aUp2IxMTEDB069NNPP1WxMKDerBtU\nlAciUlmpy6HuWm64ajxMTQCgJboMdhUVFSJineoU3bt3P3XqlBoVoUGUpqA5c9Suw26NEVys\nez2UBwrdDXVXGq5KS2XmTLnvPrWrcSCmJgDQEl0Gu8DAQD8/v2PHjlXbfvz4cV8ur2gkDg4u\nKg51b1h+dc6GK6YmANAYPY2xO3r06K5du/z9/f39/SdMmPDOO+88/fTTTZs2VV794YcfVqxY\nMWDAAHWLRANpfyCXg1fsVOsmHA0eMeacDVfcNAWAxugp2C1fvnz58uXWWzZs2PDII4+IyLJl\ny/785z+Xl5c///zzKlUHo3NwcFFrqHvD8qv1FBCnutsvUxMAaIxugt0///nPYislJSXFxcXN\nmzdXXi0uLvb393///fd7a3BWGgzAeYJLjfm1zjuN0nAFANqgm2D3xz/+0carY8aMSUxMdHXV\n5ZBB6IBjgktEhGzd+rspFA5WY361p3PWkQ1X2u+1BwD16CbY2ebj46N2CTA0TfW4NV6yqTG/\ncjtwwNnw9UnPaOICtERptFNLjSvOO+esCCPR3bpCMADnXNVSG4wT7HJzcwcNGjTIedZZAByA\n5TwA1JfTrmqpDcYJdufOnfv8888///xztQuBVmn2G6SWG1Tsv9PoZ5+JiLz0Ur1Pr2Z/LwAa\nxjlXtdQMg4yxE5EuXbrs27dP7SqgVRq/oadm2Tm4sKTkyr1u77qrfl/Q+b0AxsP4DVUZJ9g1\nadKke/fu9f2p8vLyzMzMCxcu2Njnm2++uYa6oA3MAGhUOTmi/Ce64476fUHn9wIYjPMsDqVV\n+gt2ZrM5Ly/v8OHD586dExE/P7/Q0NCgoKCGHe3MmTMrV668ePGijX1Onz6tvG/D3gKaoKNv\nkHqcj6ac3gb/oC5+L7XR4+8LaDysaqk2PQW7M2fOzJo1a8mSJadOnar2UocOHRISEqZMmeLl\n5VWvYwYGBm7fvt32PpmZmYmJiS4uLvUrF9rBN8hGZTm9IpKRIcXF9p5efi+A8WhqcSinpJtg\nV1hY2K9fv7y8vNDQ0AceeCA4ONjb21tEzp49m5ubm5WVNW3atA8//HDz5s2W21EAV/ANslE1\n+PTyewGA6003we75558/duzYypUrhw8ffvWrVVVVmZmZTz311IwZM1555RXHlwdNuy7fIOlx\nq02DTy/f7AHgetPNcifr16+Pi4urMdWJiJub24QJE0aMGLF69WoHFwYYipbXXgEA1EU3wa6o\nqOjGG2+0vU/Xrl1PnjzpmHoAAAC0RjfBLjAwcO/evbb3+fbbbwMDAx1TDwAAgNboJthFR0ev\nWrVq3rx5Na45d/78+bS0tLVr144cOdLxtQFGRucsAOiHbiZPTJ8+fevWrSkpKenp6X369AkK\nCvLx8TGbzaWlpUeOHMnOzi4rK4uMjHzuuefUrhQAAEAdugl2/v7+X3/99YIFCxYvXrxly5Yq\nZTKdiIh4eHiEhYWNGzdu3Lhxbm5uKhYJAACgIt0EOxExmUzJycnJyckVFRUFBQXKnSeaNWvW\noUMHk8mkdnUAAIDFoVSmp2Bn0aRJk9DQULWrAAAA0BZdBjuLefPmffTRR1999ZXahUDz+AbZ\nqBp8evm9AMB1pZtZsTX66aeftm3bpnYVAAAAmqDvYAcAAAALgh0AAIBBEOwAAAAMQt/Bbs6c\nOQUFBWpXAQAAoAn6nhXr7+/v7++vdhUAAACaoO8WOwAAAFgQ7AAAgPYsWybt24u7u6SkqF2K\nnui7KxYAABhQSYkkJIjJJDNnSu/ealejJwQ7AACgMTk5Ul4u8fGSmqp2KTpDVywAANCYigoR\nEV9ftevQH4IdACsMagGgusGDJTJSRCQjQ1xcJDFR7YL0hK5YAL9iUAsALUhLk6gomTpVYmIk\nLk46dVK7ID0h2AH4FYNaAGhB375SVSUiEhoq0dFqV6MzdMUC9nGGPkoGtQCAzhHsADsofZSl\npTJzptx3n9rVNA4GtQCA/tEVC9jBGfooGdQCAPpHsAPs4Ax9lAxqAQD9oysWqAt9lAAAnSDY\nAXVJS5PZs0VEYmJkzRpJSlK7IAAAakawA+rSt++VFjulj7JnT0e8qTNMwgUAXG+MsQO0h4WC\nAQANQrADtMcZJuECgA0REWI2q12ELtEVC2iPM0zCBQA0AoIdoDFMwgUANBTBDtAYJuECABqK\nMXaAxqi4UDCDWgBo37Jl8swzcuKEJCfL3LlqV6M5BDsAAKATLBpQF7piAbBsHgCdUBYNePxx\nSU2VQYPUrkaLaLED7GDsPkq+AQPQCxYNqAstdoDT4xswAF1g0QA7EOwAp8c3YAC6wKIBdiDY\nAc6Nb8AA9EKVO3frDcEOcG58AwYAA2HyBODcVFw2DwBwvRHsAO0x9iRcAECjoSsWAADAIAh2\nAAAABkGwAwAAMAiCHQAAgEEQ7AAAAAyCWbEAAEAnWDSgLrTYAQAAGATBDnBuy5ZJbKy4uV1Z\nphgAoGd0xQJOrKREEhLEZJKZM6V3b7WrAQBcK4Id4MRycqS8XOLjJTVV7VIAANcBXbGAE6uo\nEBHx9VW7DgDA9UGwA5zV4MESGSkikpEhLi6SmKh2QQCAa0WwA5xVWprMni0iEhMja9ZIUtJv\nLy1bJu3bi7u7pKSoVR0AoAEYYwc4q759r8yEDQ2V6OjftjOjAgB0i2AH4PeYUQEAukVXLIDf\nY0YFAOgWwQ6AFWZUAICeEewAWLExowIAoHmMsQNgpbYZFQAAPaDFDgAAwCAIdoAT++wzEZGX\nXmK9OgAwBoId4KxKSiQjQ0TkrrvkvvtUK4PFkAHg+mGMHeCscnLkwgWZMEEWLFCtBhZDBoDr\nimAHOCstrFfHYsgAcF3RFQs4JY2sV6eFcKlH9F8DqAXBDnBKWlivTiPhUneU/uvSUpk5U83B\nkQA0ia5YwClpYb26tDSJipKpUyUmRuLipFMndcrQHfqvAdSOYAfg9yIixGx2xBtpIVzqEf3X\nAGpHVywA6Af91wBsItgBgH5oYXAkAA2jKxYA9IP+awA20WIHAABgEAQ7AAAAgyDYAQAAGATB\nDgAAwCCYPAE4K4etVwcAcBSCHQD1EC4B4LqiKxYAAMAgCHYAAAAGQVcsAOgK/dcAakeLHQAA\ngEEQ7AAAAAyCYAcAAGAQBDsAAACDINgBAAAYBMEOAADAIAh2AAAABkGwAwAAMAiCHQAAgEEQ\n7AAAAAyCYAcAAGAQBDsAAACDINgBAAAYBMEOAOyzbJm0by/u7pKSonYp+sfJBBqHu9oFAIAe\nlJRIQoKYTDJzpvTurXY1OsfJBBoNwQ4A7JCTI+XlEh8vqalql6J/nEyg0dAVCwB2qKgQEfH1\nVbsOQ+BkAo2GYAcAdRk8WCIjRUQyMsTFRRIT1S5IzziZQGMi2AGwm9MOeE9Lk9mzRURiYmTN\nGklKUrsgPeNkAo2JMXYA7OPMA9779pWqKhGR0FCJjla7Gp3jZAKNiWAHwD4MeAcAzaMrFoB9\nGPAOAJpHsANgBwcPeHfawXwAcG3oigVgh7Q0iYqSqVMlJkbi4qRTp0Z8L2cezAcA14ZgB8AO\njhzwzmA+AGgoumIBaAyD+QCgoQh2ALSE1WsB4BoQ7ABoCavXAsA1YIwdAC3R7Oq1ERFiNqtd\nhFFwMoFGQ4sdAACAQRDsAAAADIJgB0AzlHWJo6LUrgMA9IpgB0AblHWJS0slIUHtUgBAr5g8\nAcA+jT3g3bIu8WOPyVtvNeIbAYBx0WIHQBtYlxgArhnBDoAGWK9LrDwAANQfwQ6ABlivS6w8\nAADUH2PsAGiA9brEqamSmqp2QQCgS7TYAQAAGATBDgAAwCAIdgAAAAZBsAMAADAIgh0AAIBB\nEOwAAAAMQn/LnZjN5ry8vMOHD587d05E/Pz8QkNDg4KC1K4LAABAZXoKdmfOnJk1a9aSJUtO\nnTpV7aUOHTokJCRMmTLFy8tLldoAAABUp5tgV1hY2K9fv7y8vNDQ0AceeCA4ONjb21tEzp49\nm5ubm5WVNW3atA8//HDz5s3NmzdXu1gA9RcRIWaz2kWgJsuWyTPPyIkTkpwsc+eqXQ0AW3QT\n7J5//vljx46tXLly+PDhV79aVVWVmZn51FNPzZgx45VXXnF8eQBgTCUlkpAgJpPMnCm9e6td\nDYA66GbyxPr16+Pi4mpMdSLi5uY2YcKEESNGrF692sGFAYCR5eRIebk8/rikpsqgQWpXA6AO\nugl2RUVFN954o+19unbtevLkScfUAwBOoaJCRMTXV+06ANhFN8EuMDBw7969tvf59ttvAwMD\nHVMPABjf4MESGSkikpEhLi6SmKh2QQDqoJtgFx0dvWrVqnnz5l24cOHqV8+fP5+WlrZ27dqR\nI0c6vjYAMKa0NJk9W0QkJkbWrJGkJLULAlAH3UyemD59+tatW1NSUtLT0/v06RMUFOTj42M2\nm0tLS48cOZKdnV1WVhYZGfncc8+pXSkAGEXfvlJVJSISGirR0WpXA6Buugl2/v7+X3/99YIF\nCxYvXrxly5Yq5VojIiIeHh5hYWHjxo0bN26cm5ubikUCAACoSDfBTkRMJlNycnJycnJFRUVB\nQYFy54lmzZp16NDBZDKpXR0AAIDK9BTsLJo0aRIaGqp2FQAAANqim8kTAAAAsM04wS43N3fQ\noEGDWD8TMLxly6R9e3F3l5QUtUsBAG3RZVdsjc6dO/f555+rXQWARsYdrgCgdsYJdl26dNm3\nb5/aVQBoZModruLjJTVV7VIAQHOME+yaNGnSvXv3+v5UaWnp3Llza1z02OK77767hroAXFfc\n4QoAamecYCciRUVFZ86c6dy5s/0/cv78+V27dl28eNHGPr/88ouIuLsb6lwBujR4sGzcKCKS\nkSEZGTJ+vLz5pto1GV1EhJjNahcBwF6GCitz587NyMgw1+caFBAQsH79etv7bN++vV+/fq6u\nxploAuhVWppERcnUqRITI3Fx0qmT2gUBgLYYKtgBMDjucAUANtEKBQAAYBC6abELDw+vc5+f\nf/7ZAZUAAABok26C3bfffisiHh4eNvaprKx0VDkAAACao5uu2JSUFG9v7++//76idlOmTFG7\nTAAAANXoJtjNnDmzc+fOjz322KVLl9SuBQAAQIt0E+w8PDzee++9/fv3T506Ve1aAAAAtEg3\nY+xEpGvXridOnLAxkO7+++/39/d3ZEkAAADaoadgJyLNmjWz8WpUVFRUVJTDigHgUMuWyTPP\nSGGh2nUAgHbpLNgBcFIlJZKQICaTvPCC9O4tgwapXRAAaJFuxtjVaN68eREREWpXAaDx5eRI\nebk8/rikppLqAKA2+g52P/3007Zt29SuAkDjq6gQEfH1VbsOANA0fQc7AE5h8GCJjBQRycgQ\nFxdJTFS7IADQKIIdAM1LS5PZs0VEYmJkzRpJSlK7IADQKCZPANC8vn2lqkpEJDRUoqPVrgYA\ntEvfLXZz5swpKChQuwoAAABN0HeLnb+/PysSAwAAKPTdYgcAAAALgh0AAIBBEOwAAAAMgmAH\nAABgEAQ7AAAAgyDYAQAAGIS+lzsB4CwiIsRsVrsIANA6WuwAAAAMgmAHAABgEAQ7AAAAgyDY\nAQAAGATBDgAAwCAIdgAAAAZBsAMAADAIgh0AAIBBEOwAAAAMgmAHAABgEAQ7AAAAgyDYAQAA\nGATBDgAAwCAIdgAAAAbhrnYBOmAymUTE09NT7UIAAIBWKPFAa1zMZrPaNejA3r17KysrRSQ+\nPj40NHTYsGFqVwSVTZw4cdSoUX379lW7EKipoqLiT3/6U3p6eqdOndSuBWrKy8ubNm3al19+\n2bRpU7VrgYO4u7v37NlT7SpqQLCrn6ioqIEDB06bNk3tQqCywMDAl19++bHHHlO7EKjp3Llz\nzZo127VrV1hYmNq1QE27d+8ODw8/e/asr6+v2rXA2THGDgAAwCAIdgAAAAZBsAMAADAIgh0A\nAIBBEOwAAAAMgmAHAABgEAQ7AAAAgyDYAQAAGATBDgAAwCAIdvVjMpm0eW84OBj/EiAi7u7u\nrq6u/EuAyWRydXV1d+f261AftxSrnxMnTjRr1oy7AeLo0aOBgYFcx3H48OGQkBC1q4D6+JcA\njSDYAQAAGARdsQAAAAZBsAMAADAIgh0AAIBBEOwAAAAMgmAHAABgEAQ7AAAAgyDYAQAAGATB\nDgAAwCAIdgAAAAZBsAMAADAIgh0AAIBBEOwAAAAMgmAHAABgEAQ7AAAAgyDYAQAAGATBrt7O\nnDkzZcqU4OBgT0/PTp06RUdH79ixQ+2ioI5Lly6lpqa6ubmFh4erXQscqri4ePLkyR07djSZ\nTIGBgQkJCYWFhWoXBXVwHYCmuKtdgM7873//CwsLy8/Pf/DBB8eOHXv48OEVK1Zs3LgxOzv7\nD3/4g9rVwaEOHjw4evTonJwctQuBo128eHHgwIF79ux55JFHevXqlZubu3jx4i+++GL37t3N\nmzdXuzo4FNcBaA0tdvUzbdq0/Pz8119/fd26denp6UuXLl2xYkVOvPD5AAAPhklEQVRFRcVf\n//pXtUuDQ509ezYsLMzV1XXPnj0eHh5qlwOHWrBgwZ49ezIyMj744IOpU6e+8847S5cuzcvL\nmzVrltqlwaG4DkCDCHb14+HhMXDgwPHjx1u2DBs2zMvLa//+/SpWBcerrKycMGHC9u3bO3fu\nrHYtcLTFixf7+vpOmjTJsmXEiBGdO3desmSJ2WxWsTA4GNcBaBDBrn7mz5+/adMm629mFy9e\nrKysbN++vYpVwfFatGgxb948vqM7oYqKin379vXp08fT09N6e0RExKlTp/Ly8tQqDI7HdQAa\nRLC7VpmZmZcuXYqNjVW7EACOUFBQUFVVFRQUVG17cHCwiBw+fFiNogDgCoLdNcnKykpJSYmI\niEhMTFS7FgCOcO7cORHx9vautt3Hx8fyKgCohVmxNSsuLraeD9G5c+cpU6ZU22f58uXx8fHd\nu3dfu3atuztn0pjs+ZcAJ+Ti4lJtizK67urtAOBIxJGalZaWZmZmWp7269fP+s+52WyePn16\nenr64MGDV65c6evrq0aNcATb/xLghJo1ayY1tcydPXtWRLgaAFAXwa5m7du3r212m9lsTkhI\nWLRo0cSJE+fPn+/m5ubg2uBINv4lwDl16NDB3d39yJEj1bbn5uaKSGhoqBpFAcAVjLGrt+Tk\n5EWLFs2ePfu1114j1QHOxmQyhYWFZWdnl5WVWTZevnw5KysrKCioQ4cOKtYGAAS7+lm9evWr\nr746adKk1NRUtWsBoI4nnniirKxs7ty5li1vvfXW8ePHExISVKwKAETEhW6meuncuXNubu7E\niRObNm1a7aVnn32Wuwk5j6ysrA0bNiiP582b17p167FjxypPU1JSWrZsqV5paHRVVVV33333\n1q1bhw4d2qtXr4MHD65YsaJ79+47duy4+soAA+M6AA0i2NWPjSlveXl5HTt2dGAtUNOcOXNq\na7XNyclhGXrDKy0tnTFjxqpVq44fP96mTZvo6Oj09PQWLVqoXRcciusANIhgBwAAYBCMsQMA\nADAIgh0AAIBBEOwAAAAMgmAHAABgEAQ7AAAAgyDYAQAAGATBDgAAwCAIdgAAAAZBsAMAADAI\ngh0AAIBBEOwAAAAMgmAHAABgEAQ7AAAAgyDYAQAAGATBDgAAwCAIdgAAAAZBsAMAADAIgh0A\nAIBBEOwAAAAMgmAHAABgEAQ7AAAAgyDYAQAAGATBDgAAwCAIdgAAAAZBsAMAADAIgh0AAIBB\nEOwAAAAMgmAHAABgEAQ7AAAAgyDYAQAAGATBDgAAwCAIdgAAAAZBsANwrWJjY11cXE6cOKGp\nQ1mOduzYsetyNADQPoIdABGRpUuXuvyem5tbQEBATEzMV199Zftnb7311vvuu8/T0/Pay7iO\nh7KT2Wz+4IMPoqOjAwMDPT0927RpEx4ePmvWrJMnTzqsBi2bM2fOTz/9VOduly5dSk1NdXNz\nCw8Pd0BVAGrjYjab1a4BgPqWLl0aFxfXr1+/iIgIZUt5efmhQ4c+++wzs9n87rvvjhkzRt0K\nGyA2NnbFihUFBQXt27evcYfi4uLhw4dv2rSpadOmAwcODA4OLioqys7Ozs3Nbd269YcffhgZ\nGengmjWlsLAwMDBww4YNgwcPtrHbwYMHR48enZOTc/78+dtuu23Xrl0OqxBANe5qFwBAQwYN\nGjR9+nTrLVu3bh0wYMDkyZNHjhzpyIY0x3j88cc3bdo0dOjQt99+u3Xr1srGy5cvv/XWW089\n9dTQoUN/+OGHNm3aqFukinbu3FnnPmfPng0LC+vWrduePXu6d+/ugKoA2EBXLABbIiMjBw4c\neObMmb1798qvo9ZOnTp1zz33eHl5ffzxx/L7gXGjRo1ycXEpLS199tlnO3bs6OnpGRQUNH/+\nfOvOgRMnTiQkJLRr187b27tnz56vvvpqZWWl8pL1oYYNG+bi4lJYWJiQkBAQEODp6dmlS5e/\n//3v1uVlZ2cPGzasVatWJpOpY8eOcXFx+fn5dn60Tz755D//+U+vXr0++OADS6oTEVdX18TE\nxPT09F69euXm5iobjxw5Eh8f365dO5PJ1KpVqyFDhmRnZ1t+RPnUxcXF48ePDwgIaNq06R13\n3JGdnV1WVjZ58uR27dr5+Pjceeede/bssfyIPZ/Onje1fapPnjz55JNPBgcHm0ym1q1bR0dH\nW2c120d46KGHhg4dKiL333+/i4tLbT3ylZWVEyZM2L59e+fOne088wAaDy12AOrQsmVLESkr\nKxMRk8kkIsnJyR4eHtOmTQsJCam2s7LDo48+2qlTp/fff//y5cszZsz4y1/+4u/vHx8fLyKn\nT58ODw8vLS0dM2ZMcHDwli1bJk+evG/fvn/84x/VDqU0EEZHR999991r1qy5fPlyenr6hAkT\nPDw8EhISRGT37t1RUVEtWrSYNGlS27ZtDx8+vGDBgk8//fTAgQNKzbYtXrxYRP7v//7P3b2G\nK+HUqVOnTp2qPC4oKOjTp09ZWVlSUlK3bt1+/vnnhQsX3nXXXZs2bVJ6rpVPPXz48MjIyE8+\n+eS///1vYmLi8OHDe/To0a1bt48//jg/Pz8hIeGBBx4oKCjw8PCw59PZ+aa2T/Xtt99eXFyc\nmJjYvXv3goKChQsXRkZGbty4MSoqqs4jPPfccy1atFiyZMm0adNuu+22W265pcbT2KJFi3nz\n5tV5tgE4iBkAzOYlS5aISFpaWrXtFy9eDAkJUdqWzGbzuHHjROTee++tqqqy7DNy5EgRUXZ4\n4oknROSxxx6zvKo0ej300EPK06SkJBHZuHGjZYcHH3xQRL7//vtqh1IeWx+quLjY09OzY8eO\nytOFCxf26tVr8+bNlh1ef/11EXn99detCysoKKjxIyufq6SkpM6TM3bsWBFZvXq1ZcuBAwfc\n3NzuuOMO5anyqZOSkiw7jBgxQkQeffRRy5ZJkyaJyLZt26xrs/Hp7HxT26fa3d19586dlh2O\nHj3q6+sbHh5u5xFefPFFEdmwYUOdp0jh6ekZFhZm584AGgNdsQBqVlFRsW/fvtjY2MOHD8fG\nxrZt21ZEXFxcRGTs2LGurrauHkooUYSEhDRt2lRZc8RsNq9cuTIoKOiee+6x7PDaa6998cUX\nAQEBNR4qNjbW8tjPzy8yMjI/P7+wsFBEkpKSdu/e3b9/fxG5dOlSRUWF0qpkZ2/syZMn/fz8\nmjVrZns3s9n80UcfBQQEREdHWzZ27dq1b9++O3bsKCoqsmyMiYmxPA4NDRURpStTcfPNN4uI\nUnmdn87+N7VxqletWtWjR4/27duf+JWHh8edd965a9eu0tLSOo8AQI8IdgB+M2PGDMtyJ15e\nXj169Fi9evWQIUMyMzOtd1Myig0dOnSwfurh4XHp0iURKSwsLCoq6tKlixIQFSEhIXfffXer\nVq1qPNRNN91k/bRdu3YiYlnobsmSJVFRUc2bNzeZTF5eXgMHDhQRy4g921xdXauqqurc7cSJ\nEyUlJd26dbOuWX49CT/++GO12hRK9671FqUHVjkPdX46+9+0tlN96tSpX375Zc+ePTf83saN\nG0Xk6NGjdR4BgB4xxg7Ab6KiopQGMBFxdXVt2bJlREREz549q+3m5+dn+zhKiLlaeXm5/Dq8\nzE5Nmza1furt7S0ixcXFIjJ16tQXX3wxPDx8/vz5nTp18vT03L9/vzJAzR6BgYGHDh365Zdf\nasuUivPnz1ve15qXl5flVcXVn7q282BR26fz9fVt8Jsqzp07JyK33nqr0p1aTWBgoP1FAtAR\ngh2A3/Tv37/acifXl9Kfq8QyO1mHGBEpKSkRkZYtW1ZUVLzyyitBQUGbN2/28fGxftVOd955\n56FDh/79738rUw2qMZvN+/bt69Gjh3LwamVYtigJrMFq+3TX/qaWfWwvQQfAYOiKBeA43t7e\nrVu3PnjwoHVn36FDh9544439+/fX+CMHDx60fpqTkyMiN9xww4kTJ8rLy8PDwy2pTkSysrLs\nL0bJc+np6UrjVjULFy7s2bPnggUL2rZt26JFi4MHD5p/v5z7gQMHXFxc6uyVtq22T3ftbxoQ\nENCqVasffvihWow+ffr0tRQMQOMIdgAcaujQoUVFRf/6178sW6ZPnz5x4sQLFy7UuP+iRYss\nj3/88cedO3fefPPNrVu3DggIcHFxsZ4n8d133ykrmFRUVNhTSWRk5MiRI/Pz8++55x7LenUi\nUllZ+dprr02aNOmGG24YNWqUiMTExBQWFq5du9b6vbKzswcMGODv72/nB6/Xp7subzp8+PCK\nioq5c+datpw+fbpHjx4PP/ywneW5ubnJrx3oAHSBrlgADpWWlrZu3bqkpKS9e/cGBwdnZWWt\nW7duzJgxvXr1qnH/CxcuPPzwww899NDly5dfeukls9k8bdo0EfHy8nrwwQfXrVuXmJjYv3//\nAwcOvPHGG++9996QIUPWr1+/fPnyIUOG1FnMokWLLly48NFHH3Xp0iUyMvKmm24qLi7esWPH\nkSNHQkJCPvnkk+bNm4vIjBkz1q1bFxcX9/TTT9988835+fkLFizw8fH529/+do1no7ZPd13e\ndPr06evXr589e3ZhYWFUVNTx48fffPPNoqKip59+2s4jKOsUzpkzJy8vLzIysnfv3lfvk5WV\ntWHDBuVxZWXlzz///Ne//lV5mpKSYs+CggCuJ9UWWgGgJbWtY1eNsvJZTk6O9car17GrtoOf\nn1+3bt0sT/Pz80ePHt2mTRsPD4+QkJCXX365srLy6kMpj3NyciZPnhwYGGgymW655ZZ3333X\ncpxTp06NGjWqdevWfn5+AwYM2Lp1q9lsnjFjho+PT9u2bQsLC22vY2fx8ccfx8TEBAYGenh4\n+Pr63n777QsXLiwrK7Pe5+jRo/Hx8TfccIO7u3ubNm1iY2MPHDhg47SkpaWJiFKS4u233xaR\n5cuXW39SG5+uAW969akuLCxMSkoKCgpyd3f39/cfMmTIN998Y/8RLl68+Mgjj3h5eTVv3nzV\nqlU1nr0aJ2coqh0ZgAO4mH8/gAMANCI2NnbFihUFBQXt27dXu5brz9ifDoBaGGMHAABgEAQ7\nAAAAgyDYAQAAGARj7AAAAAyCFjsAAACDINgBAAAYBMEOAADAIAh2AAAABkGwAwAAMAiCHQAA\ngEEQ7AAAAAyCYAcAAGAQBDsAAACDINgBAAAYBMEOAADAIAh2AAAABkGwAwAAMAiCHQAAgEEQ\n7AAAAAyCYAcAAGAQBDsAAACDINgBAAAYBMEOAADAIAh2AAAABkGwAwAAMAiCHQAAgEEQ7AAA\nAAyCYAcAAGAQBDsAAACDINgBAAAYxP8Dn2AM+RGzGmYAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeXSUdZr28SsGQoBAAIVAAmGNgNLREEBkGW0B0WgjBEJYGtNiGDDokTii\nDa+QIIgw6BxQFhmionYDDSqCSOPG6pqwCKJ0A2EfAdlNwo71/vGEVJGlqpLU+tT3c+acKZ+q\nFDd0peqq33YHWSwWAQAAwP/d5O0CAAAA4BoEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbAD\nAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAw\nCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYId\nAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACA\nSRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDs\nAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAA\nTIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJg\nBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAA\nYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIE\nOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAA\nAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg\n2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATKKKtwvwD9u3b7969aq3qwAA\nAD6hSpUqd9xxh7erKAXBzrHNmzd37NjR21UAAAAfkpOT06FDB29XURzBzrHLly9LunTpUkhI\niLdrAQAAXnb58uVq1aoZ8cDXsMYOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcA\nAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGAS\nBDsAAACTINgBAACYBMEOXjBkiIKCdPasRo5URIRq1FDnzsrO1vnzGjNGUVEKC1OXLtq61duF\nAgDgVwh28IKQEElKSlJUlNas0bx52r5dSUlKTlZoqFau1DvvaNcuJSToyhVv1woAgP8g2MEL\nqlSRpJgYTZyouDilpKhPHx06pNBQTZum+Hj176+UFB0/rpwcb9cKAID/INjBaxITrbdjYiTp\nkUesV1q3lqSjRz1bEwAA/oxgB6+JirLeNsbwbK9UrSqJqVgAAMqBYAevMaKb/SsAAMB5BDsA\nAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMIkgi8Xi7Rp83TfffNO1a9dLly6FGA0TAABA\nALt8+XK1atW+/vrrLl26eLuW4hixAwAAMAmCHQAAgElU8XYB5WaxWPbv379v3768vDxJ4eHh\nMTExTZo08XZdAAAAXuZPwe7MmTMvvfTSe++99+uvvxa7Kzo6OjU19dlnn61evbpXagMAAPA6\nvwl2R48e7dq16/79+2NiYhISEpo2bVqzZk1Jv/32W25u7oYNGyZOnPjBBx+sW7eubt263i4W\nAADAC/wm2E2YMOHIkSNLly5NSkoqee+1a9fmz5//5JNPTpo0aebMmZ4vDwAAwOv8ZvPEJ598\nMmzYsFJTnaTg4OC0tLSBAwd++OGHHi4MAADAR/hNsDt16lTLli3tP6Zt27bHjx/3TD0AAAC+\nxm+CXWRk5Pbt2+0/Ztu2bZGRkZ6pBwAAwNf4TbDr27fvsmXLXnnllUuXLpW8t6CgICMjY8WK\nFcnJyZ6vDQAAwBf4TUuxs2fP9ujRY+vWrbVq1erUqVOTJk3CwsIsFkt+fv7Bgwezs7PPnz/f\nvXv31atXh4WFufaPpqUYAAAo4sstxfxmV2ydOnW+/fbbOXPmvPvuu+vXr7927VrRXVWrVo2P\njx8+fPjw4cODg4O9WCQAAIAX+U2wkxQSEpKenp6enn7x4sXDhw8bnSdq164dHR3NWBoAAIA/\nBbsioaGhMTEx3q4CAADAt/jN5gkAAADY55cjdqXKzc0dOXKkpC+++ML5n7p06dKiRYuuXLli\n5zG7d++ubHEAAADuZ55gl5eX9+WXX5b3p06cOPHqq69euHDB/jNLunLlCiv5AACALzNPsGvT\nps2PP/5Y3p9q3Ljxzp077T9m/vz5o0aN8pdzYQAAQMAyzxq70NDQdu3atWvXztuFwD8MGaKg\nIJ09q5EjFRGhGjXUubOys3X+vMaMUVSUwsLUpYu2bvV2oQAAOM08wU7SqVOn9u7d6+0q4B+M\nefWkJEVFac0azZun7duVlKTkZIWGauVKvfOOdu1SQoLsrsAEAMCHmCrYzZgxg2NQ4KQqVSQp\nJkYTJyouTikp6tNHhw4pNFTTpik+Xv37KyVFx48rJ8fbtQIA4BxTBTvYx+RjSYmJ1tvGl4JH\nHrFead1ako4e9WxNAABUFMEugDD5WFJUlPW2MYZne6VqVUkB9K8BAPB3frMrtkOHDg4f83//\n938eqMR/2U4+SoqL0+rVWrpUnTpp2jRJio/Xpk2aNUs5OfK9vsZuYUQ3+1cAAPAXfhPstm3b\nJqmq3U/dq1eveqocP+amycchQ7R4sc6c0fPP66OPlJen2Fi99pratdP48Vq2TOfOKTZWs2er\nfftK/g0AAEDp/GYqduzYsTVr1ty5c+fFsj377LPeLtMPuGnykXleAAC8zm+C3eTJk1u1ajV4\n8GD77b/gkJsmH9lkCgCA1/lNsKtaterf//73n376afz48d6uBWVy+TwvO3kBAHCe36yxk9S2\nbdtjx47ZWUj34IMP1qlTx5MloRiXz/MWzfB27641a7Rjh0aNUlKSYmN1++1auVIHDig1VQkJ\nOnyYfQ8AgEDnNyN2htq1a9erV6+se++5556//vWvnqwHxbh8ntd9M7xZWbJY1KqV9UpmpiwW\ndetmvZKaKotFgwZV6q8AAIDH+FmwQ2DiGGEAAJxBsIMf4BhhAACcQbALIP47+cgxwgAAOINg\nBwAAYBIEO8D8ODUGAAIEwQ6u4b/zvIGAviAAECAIdoD50RcEAAIEwQ4IFJwaAwCmR7CDT2OG\n14U4NQYBjsWmCAQEOyBQcGoMAhyLTREICHYAAO/w8BAai00RCAh2AADv8MoQGotNYW4EO/gW\nFsEAgcMrQ2gsNoW5EezgW1gEAwQaDw+hsdgU5kawg29hEQwQaBhCA1yIYAdfxCIY1+LUGPgy\nhtAAFyLYwcuKLapbuFCSTp+2Lqr77/+WpPPnrT/CN3gAAEpFsIOXFVtU17WrJKWnWxfV9esn\nSePGkeQAAHCAYAcvK7aozph4/eUX66K6tm0l6fRpFtUBAOAAwQ4+wXZRncF2UZ2BRXUAKoPF\npggEBDv4BNtNcGVdYSrWB3HuIAD4FIIdfALb4vwU5w6iMhhCA1yOYAeg4jh3EAB8CsEOviUr\nSxkZN1zJzNSCBTdc4Ru8r+HcQQDwEQQ7AJVF5wAA8BEEO8BzzLrVgCWS8EFm/XUD7CPYAZ7D\nVgPAY/h1Q2Ai2MHLAmpbHFsNAI/h1w2BiWAHeBpbDQCP4dcNgYZgB1REZZbvsNUA8Bh+3RBo\nCHZARVRm+Q5bDQCP4dcNgYZgB1QEy3cMAbVEEqbHRlqYAMEOqDhXLd+ZNMn6cfLMM5I0YQIf\nJ4CnsZEWJkCwAyrOVct3jEcaHydjxkjSwYN8nACexkg8TIBgB1Scq5bvBAdL1z9OoqMlKT6e\njxPAO9hIC79GsAN8he3HSaNGEh8ngDewkRZ+jWAHeE5ZWw0iIqTrHx7GVoPYWOsVAx8nQLlU\neGcPG2nh1wh2gK/g4wQAUEkEOwAAAJMg2MEpHO8EAIDvI9jBKRzvVIwvH8xLCgeAgEWwg1M4\n3smPkMIBIGAR7FAOHO/kF0jhQMX48kg84CSCHcqB453cxB0fJ6RwmBtLDoBSEexQDl48j4M3\n8fIihcPcWHIAlIpgB//Am3h5cSoezI0lB0CpCHbwD7yJAyiJJQdAMQQ7+BPexAHYYskBUAzB\nDv6EN3EAtlhyABRDsIM/4U0cCDRlbZy6elWSunZl4xRwA4IdnMLxTgC8oqyNU+vWSdL8+daN\nU7//7t1KAZ9AsAPMhhQOMylr41RwsCS1a6cPPtDZszp+XEuXSlLPntazkJYskaS//IUhPQQQ\ngh3gCZzDB1RGyY1T0dGF/2kM6en6woz/+i/rWUjGlbQ0zkJCACHYodzIKBXAOXxAZZTcOFWz\n5g3/qev74h980HoWUv/+ktSpE2chIYAQ7FBuZJQK4Bw+oDJKbpMaN674koMBAwqXHBSdhVS0\n5ICzkBA4CHYoN69kFHOsG+McPsADOAsJgYxghwoio1QA5/ABHsNZSAhMBDtUEBmlAjiHDwDg\nVgQ7VBAZBQAAX0OwAwAAMAmCHQDAdzmzcUrSnj0+vXEK8BiCHQAg4HAeJ8yKYAcA8GMVOwuJ\n8zhhVgQ7wBPMcQ4fYBqcGQ6zItih3MgoAMyB8zhhPgQ7mBnLaADYwXmcMB+CHcyMZTQA7OA8\nTpgPwQ5mxjIaAEBAIdjB/FhGAwAIEAQ7f8KKsYphGQ0AIEAQ7PwJK8YqhmU0AIAAQbDzJ6wY\nAwAAdhDs/A8rxgCgkjiPE2ZFsPM/rBgDAAClItj5H1aMAQCAUhHsAAAATIJgBzNjGQ0AIKAQ\n7AAAAEyCYAcAAGASBDsAAACTINj5E1aMAQAAOwh2AAAAJkGwQ4AaMkRBQTp7ViNHKiJCNWqo\nc2dlZ+v8eY0Zo6gohYWpSxdt3ertQgEAcBrBDgEqJESSkpIUFaU1azRvnrZvV1KSkpMVGqqV\nK/XOO9q1SwkJtPEAAPgNgh38UuXH24xubDExmjhRcXFKSVGfPjp0SKGhmjZN8fHq318pKTp+\nXDk5nq4NAICKIdjBL7lqvC0x0Xo7JkaSHnnEeqV1a0k6etQ7tQEAUF4EO/glV423RUUVf07b\nK0YT3vLGL/eNBQIAYB/BDn6s8uNtRnSzf8VbtQEAUF4EO/gxd4y3uYov1wYAMCuCHfyY+8bb\nKs+XawMAmBXBDgAAwCQIdgAAACZBsAMAmAcHSSLAEewQoLKyZLGoVSvrlcxMWSzq1s16JTVV\nFosGDZL4tAD8BAdJIsAR7ACnOP9p8fvv3q4VCGA0lUGA8+9gd/ny5ZycnHXr1u3fv9/btcCj\nyjveVnnOf1oYf64nawNQDE1lELD8JthNmTJl3bp1tlfmz5/fsGHDTp063XfffS1atOjQocMP\nP/zgrfIQIDh2GHAHlw+G0VQGActvgt2ECRM+/fTTov/85JNPRo0adf78+X79+o0cObJr165b\ntmy59957c3NzvVgkTI9jhwF3cPlgGE1lELCqeLuACkpPTw8PD//222/btm1rXPnwww8HDBjw\n0ksvvfXWW96tDSbGscOAO9gOhkmKi9Pq1Vq6VJ06ado0SYqP16ZNmjVLOTnq0sWbpfLtDj7O\nb0bsbJ04cWLPnj2jR48uSnWSEhMTH3nkkc8++8yLhQGAk1iJX5JfDIbx7Q4+zi+D3cWLFyXZ\npjpDu3btfv31V29UBADlw0r8khgMAyrPL4NdZGRkeHj4kSNHil3/5ZdfatWq5ZWSAKBcWIlf\nUoAPhjGIC5fwp2B36NChzZs3792798yZM2lpaW+++eb58+eL7v3Xv/71j3/8o2vXrl6sELCD\nd22U5BeTj/AMBnHhEv4U7BYvXtyxY8eYmJj69eu//PLLe/fu/ec//2nctWjRog4dOly4cGHC\nhAneLRIoC+/aKInJR5fz/CGXrsIgLlzCb3bFvv3222dtnDt37uzZs3Xr1jXuPXv2bJ06dZYs\nWdKxY0fv1gk7hgzR4sU6c0bPP6+PPlJenmJj9dpratdO48dr2TKdO6fYWM2erfbtvV1rCVlZ\nysq64UpmpjIzb7iSmqrU1DKfwY/2/cFjAnzy0ccVe8s6dUqSduxQZGThW9aJE5K0e/cNqbGS\nGMRFJflNsPvLX/5i595HH3101KhRN93kTwOQAahoyKp7d61Zox07NGqUkpIUG6vbb9fKlTpw\nQKmpSkjQ4cN++fFmP7kuXixJGzZo69bC5Mq7NuDLSn3LSk/X22/f8JY1fryGDSt8y7L/7c4Z\nDOKikkyShMLCwkh1vs/0Ew32J1t79ZKkw4etk628awO+zCtvWQziopIIQ/A0E0802P8YuOUW\nSUpMLP4xwLs24MsL40z8lgVT8pupWIdyc3NHjhwp6YsvvnD+p3755ZcBAwZcvnzZzmNOnDgh\nyWKxVLJCGEw/0WD/Y6BFC4mPAcB/mP4tCyZjnmCXl5f35Zdflven6tWrl5ycbJx4XJbvv//+\n0KFDQUFBlagOVqafaLD/MWBc4WMA8Bemf8uCyZgn2LVp0+bHH38s70+FhoY+/fTT9h8zf/78\n5cuXV7QuBBw+BuCMyu+zBoCSzBPsQkND27Vr5+0qAAAAvMb/gp3FYtm/f/++ffvy8vIkhYeH\nx8TENGnSxNt1IeCUPNwkLEySLlzQmDGFx/JdP2kRABxgEBcu4U+7Ys+cOfPss882bNiwZcuW\nvXr1SkxMTExM7NGjR3R0dNOmTSdPnnzhwgVv14gAUvJwk9OnJenpp62dJE6elKSrV6Xr+/4a\nNLA+g+/s+wMAmIPfjNgdPXq0a9eu+/fvj4mJSUhIaNq0ac2aNSX99ttvubm5GzZsmDhx4gcf\nfLBu3bq6DJLAI0p2kpg0Sfv3q1o1ayeJGTP0/ff61790771erBQAECj8JthNmDDhyJEjS5cu\nTUpKKnnvtWvX5s+f/+STT06aNGnmzJmeLw/OMOVEg+3hJuHhktSzp/WKcXad0YkIgH8x5VsW\nTM9vpmI/+eSTYcOGlZrqJAUHB6elpQ0cOPDDDz/0cGEIcLZHmRjn1dk2uu3bV5JatrReYbIV\nAOA+fhPsTp061dL247E0bdu2PX78uGfqAQwcbgIA8B1+E+wiIyO3b99u/zHbtm2LjIz0TD0A\nAAC+xm+CXd++fZctW/bKK69cunSp5L0FBQUZGRkrVqxITk72fG0AAAC+wG82T2RmZm7atGns\n2LEvvvhip06dmjRpEhYWZrFY8vPzDx48mJ2dff78+e7du7/wwgverhQAAMA7/CbY1alT59tv\nv50zZ8677767fv36a9euFd1VtWrV+Pj44cOHDx8+PDg42ItFAgAAeJHfBDtJISEh6enp6enp\nFy9ePHz4sNF5onbt2tHR0SHGWbEAAAABzG/W2NkKDQ2NiYlp3759+/btW7VqRaqDVxidJFq1\nsl6hkwRgMkOGKChIZ89q5EhFRKhGDXXurOxsnT+vMWMUFaWwMHXpoq1bvV0ocJ1fBjsAADyg\nZOfA7duVlKTkZGvnwF27lJCgK1e8XSsgiWAHAEBZbDsHxsUpJUV9+ujQIYWGato0xcerf3+l\npOj4ceXk3PCDDPXBWwh2gKfxjg/4Amd+Ez/+WLqxc2BMjHS9zYyhdWtJOnr0hidnqA/eQrAD\nPI13fMAXOPObePasJEVEWH/KGMOz7SVoNJsp9tvqzFBfRISOH9e6dXzHgysR7ABPq/DkDgAX\ncuY30Rif27Wr+M862TnQ/lBf3bqSNHYs3/HgSgQ7wDsqMLlTXsz5Ag7Z/00MD5ekEycq+OS2\nA3slh/qMKxERfMeDKxHsAO+w/45f6uROeTHnCzhk/zfxppuk0n4Tu3e3fmVKS5Ok3NxSFueV\nHNgreaVjR+ttN33HQ0Ah2AHe4cw7fiUx5ws4VOHfxKKvTH/+syTNnFnK4ryrVx0/T7161ttu\n+o6HgEKwA0zOA3O+QAAq+srUpYsknTxZyuK8HTscP0/JRpgu/46HgEKwA0zOA3O+QACy/cpk\ncOHiPKDCCHaAyXlgzhcwq5QUSWrY0HolM1OPPy7ZfEFKTVVGxg1XVPbiPMDdCHYA/B77f+F5\nTn5lKnpxrlolST17Wl+c+/ZJ0vPP8+KEKxHsAPg99v/C1xQN9RW9OPv00datmj/f+uK85RZJ\n+p//4cUJVyLYAZ6WlSWLRa1aWa9kZspiUbdu1iupqbJYNGiQ56vzS+z/RQV45jfRzovTOOik\nd29enHAlgh0Ak2D/L3xWqS/OomRZ9OLkOx4qj2AHwCTY/wufxYsTHkOwA0wr0OZ82f8Ln8WL\nEx5DsAMAoBwC7SsT/AvBDhXHGRMAAPgUgh0qjjMmEJj4SgPAZxHsUHGcMYHAFMhfaQi1gI8j\n2KGyOGMCgSaQv9IEcqgF/ALBDpXFNn54nVcWswfmV5oADLWVHKRkpwU8jGCHymIbPwJTIH+l\nCahQyyAl/AvBDgAqIpC/0gRUqA3AQUr4NYIdAKB8AjDUBtQgJfxapYLdmTNnDhw44KJKAADw\nAvur6BYvlqSxY62r6Ew/SAm/Zi/Y7dix46GHHmrWrFn37t3nzp177dq1Yg+YPn168+bN3Vke\nAADuZX8VXa9ekrRvX/FVdKYfpISfKjPYff311506dVq9evWJEye+//770aNH9+jR48yZM54s\nDgAAd7O/iu6WWySpXz9W0cE/lBnsXn755d9//3358uX5+fl5eXn/8z//88033/Tu3bugoMCT\n9cGXsY0fgGnYX0XXooXkaBXd669zejO8r8xgt2PHjuTk5L59+wYFBVWrVi09PX3NmjXbt28f\nOHBgyTlZAPBBbmqTwFcaU7K/1de4Yn8VnfGYch2MQicPuFyZwe7YsWMtjG8o1913331ZWVmr\nV69+5pln3F8YAFQWJ5C5nIlDbeW3+gYHS+U8GIWXKFyuzGAXERHxww8/FLs4bNiwcePGvfba\nazNmzHBzYQBQWZxABs8r18EobnqJMhAYyMoMdomJiR9//PHs2bOv3Pg14aWXXkpJSXnuuefS\n09PPnz/v/goBoFI4gQyVYQxSNmhgvVLWIKUxy1WB05td/hJlIDCQVSnrjokTJ3700UdPPfXU\nihUrPv/886LrQUFBb7/9dnh4+MyZMz1SIQBUSkC1SYDXVWBK1+UvUduBQElxcVq9WkuXqlMn\nTZsmSfHx2rRJs2YpJ0ddupTjmeH7yhyxu/nmm7ds2ZKWltauXbtidwUFBc2aNeuDDz5o2bKl\nm8sDgMoKwDYJ8C9ueokyVh2Yyhyxk3TLLbfMmTOnrHsTExMTbV81AADAZzBWHZjoFQsACGhm\n3erLWHVgItgBAACYBMEOAADAJAh2AAC4gFmndOFfCHaAH+MYUvv4oIWPc9NLdP16SfrtN+s7\nQ1aWJF28aH1nMM49gfkQ7AA/xjGkAEq66SZJeuop6zvD8eOSlJGhzz/XL79o7lwdPChJKSl8\nGzQbx8Huq6++On36dKl3ZWdnf/DBB64uCYCzaJkFBCw7A/bGV76cHK1ZI4tFKSmFZ9pFRqpj\nR0l67z116CBJzz3Ht0GzcRzsunfvvnHjxlLv2rRp04gRI1xdEoDy4RhSIADZGbAPDpakceOs\nEa3onaHo2+Cjj0rSnXfybdBsyjygeO/evXv37jVub9u2LTQ0tNgDLly4sHTp0kuXLrmxOgBO\n4BhSIADZ6RvWsaN27NCgQTp3rrBvWLF3hsREHTgg6YbMV4Rvg36tzGD3/vvvjxs3zrj94osv\nlvWwAQMGuL4oAOXBMaRAwCp1wN7YPFG1avGIVvTOEBVVGOzEt0HTKTPY/fWvf01JScnJyXnk\nkUeGDRt22223FXtAcHBwixYt+vTp4+YKAQBA6So2YM+3QROz1yu2UaNGffr0eeihh9LS0jp3\n7uyxmgAAgDOIaCjGXrAzrFq1ygN1AAAAoJIcBzuLxfL++++/++67R44cuVLalPvOnTvdUBgA\nAAFnyBAtXqwzZ/T88/roI506pWvX9MUXWrRIS5bowgUFBen22/XGG/ruO0mKjdWdd2r2bLVv\n7+3S4RscH3fy6quvDhw4cNWqVbt37z5SGg9UCZgMHSMAlKrYISZ33y1JDz+sr77SwIHKyFBw\nsH76SffdV3gK8YwZHDuHGzgOdrNmzerdu3dubm5BQcHZ0nigSsBkQo7sk5RU78uonz6rTMcI\nWmYB5lD0Ze/77yVp/XqtXq0rV9SypSRdvKh9+/Tvf+tPf1K/fvr9d126pKZNJal371KOneOd\nIZA5DnbHjx+fNGlSixYtPFANEBDOnavyzUZJMZ3qTsy8iY4RAIoG6mrUkKT09MIve+vWFT4g\nLa3wy54R9SRduFB4o1zHzpH5TM9xsIuIiLBYLB4oBQgUe/bo2jVJiVPaq2dP45oPnhHKfDHg\nMUWnDcfFSdJjjxV+2TN6SEjq27fwy57R9VXX41erVtYzTYhokDPBbvDgwe+9954HSgksixap\ncWNVqaKxY71dCjzu4kXj//t4xwg7DYvoKVl55GbXMNd7adFpw1WrFn7Zi462XjG+7OXne6My\n+A/HwW7ixIm5ublDhw799NNPd+3atbcED1RpNufOKTVV+fmaPFm9e3u7GnjWAw+oe3fjZtXb\nYjRqlO2dPnUAlW3DIuaLXY7c7AKmey8t+WWvZk3rFeP94do1z9YEf+P4uJNatWoZNxYtWlTq\nA5ioLbc9e3Thgh57TNebtiGAZGTonns0XpI0d666NPByPY6U2rCoiNfni/2XnUaf06ZJUny8\nNm0qbPTZpYs3S/VdpnsvLfnV7ibHwy/ADRwHu8GDB4eEhFSp4viRcJYxE3c9MSOw3H23rl2T\n/i1JvXqplaPHe5vL54uLHdOVl6fYWL32mtq10/jxWrZM584pNjZQzuUiN1dKgBESKgAAACAA\nSURBVL2XLlgg2fy6paRo5ky99pouX5aktDSlpgbQ7w7K4jiulTVQhwp64AF9+qkkTZ+u6dM1\ncqTeeMPbNQFlcnnDoqIpyO7dtWaNduzQqFFKSlJsrG6/XStX6sABpaYqIUGHD/vW3LQ7+Pg6\nS58WeO+lxivEOJdY0uOP6+23lZSkOnUkaexY3XprAP3uoCzlGOTNy8v76aefOLiusjIyNHWq\nJCUmavlyPfGEtwsCPIqle7Zo9FlxgfdeakzLhoUV/ud//Efh747xmmnePLB+d1AWp4Ldhg0b\nOnToULt27Xbt2n13/ctCnz59vvzyS3fWZlJ33124dj4mRn376o47yv0M5toFhsDEFCQqq/Lv\npT6p2Dlzzz8vi+WGQ0wGDSq8MmhQ4e/OmDHWM0343YHjYJednX3//ffv3r27t82eoxMnTuTk\n5CQkJGzZssWd5aEE0+0CC0xZSrU8/9dAPiOUKUigYurVs97mdwclOQ52L774YsOGDX/++eeF\nCxcWXaxfv/727dsbNmw4efJkN1aHkoxdYEOHaty4orNtAb/DFCRgy5mGEMZonO3YtoHfHdhy\nHOy+++67J554onHjxsWuN2jQYNSoURs3bnRPYShDgO0CAwA4wzjy+vx5SRo8WNWrKyJC9eqp\nRg01aqT69RUWpshINWjA2dcm5zjYnTt3rkmTJqXe1ahRo3zOwPakorNtp09XUFCxs20B16Kn\nJOBHjP3mRTuDW7bU6dOqVk2tW+vkSVWpojZtdPq0rl3TW29x9rWZOQ52DRs23LVrV6l3bdy4\nMTIy0tUloWyBtwsMMCtyM1zLWG8XEVH4n//xH0pM1LFjatWq8Ebz5ho1SqdPq3FjNs+ameNg\nl5CQMHfu3K03DtqeOXPm//2///f2228/9NBDbqsNJZh0F1jA6dZNFkthewEAFTVkUusgWc5e\nqk6/3SJFRxMnJlr3mxfdKNozy+ZZE3Mc7CZNmhQWFnbXXXcZGW7cuHFxcXGNGjWaOnVqdHT0\nRKMbDgAAnhVS1SIp6aOh9NstYhxWLCkqyrpntuhG0Z5ZNs+amFNTsZs3bx4xYsTBgwcl/fDD\nDz/88EOtWrWeeOKJnJyciKJhXwBwAlOQcJUqwRZJMXVPBshh18787gwerMcfl2y2ypa8AXNz\n6oDiBg0azJ0798SJE8eOHduzZ8+xY8dOnDgxd+7cBg18vX+5j2ImDvBhxu7Cs2fFBJ+vi4iQ\nlPjfnYsucNi1Hd27F+6ZHTlSaWmSlJvLq9qEytFSLCgoKCIiolWrVozSATCxom62TPD5BQ67\ndp6xZ3bcOP35z5I0cyavahOq4vARFovl/ffff/fdd48cOXKltP/Bd+7c6YbCUAmLFum553Ts\nmNLTNWOGt6sB/IxtN1tJcXFavVpLl6pTp8Jx9vh4bdqkWbOUk6MuXbxZKsRh1+UREaFdu9Ss\nmW65RW+/rZMnC6etxavaRBwHu1dffXXs2LGSatSoUZVfF99n9BwLCdHkyerY0dvVAP6KbrYw\nh0mT9MUXhbezsyVpwgQNHFh45csvFRam2FjNns2r2iQcT8XOmjWrd+/eubm5BQUFZ0vjgSpR\nDvQcA1yBCb4Kc36RIssZPcB2QCYlRZIOHrSeY/zyy9ZJ2JtuknhV+z/Hwe748eOTJk1q0aKF\nB6qBC9BzDHAFJvgqzPlFikZiZjmjSxTtmS26YeyZNdoItG0rSc88I4tF/frp9GmFh0tS06b6\n7DNdvqzjxwubGc2fr5o1ddNNCg5WbKy++YaQ7WccB7uIiAiLxeKBUuAU+ztq6TkGwNtsFyna\nP4XkzBlnH2mO80q8qFkz621jaYER7CZMUFSUnn7aeu+//62BA5WRoeBg/fST7rtPISGEbH/i\nONgNHjz4vffe80ApcAF6jgHwDc4sUrxwwdlHsvCrkmrUsN42kne1apLUuLEmTpTtnFx0tN5+\nWxkZ6tdPv/+uS5fUty8h25843jwxceLEAQMGDB069NFHH42Oji65f6KV7WmJ8K6779a1a9L1\nnmMA4CXOLFL8/XdnH1nqKFFWlrKybriSmanMzBuupKYqNbW8tZvQTSWGcYKCJOmee4pf79Ch\n8IYRsmWTqgnZfsFxsKt1fbXWokWLSn0AE7Vmw2kpACrN+UWKLGf0ovr1i1+pW7fwxooVhTfm\nzVNamvLy1LChJOXna8wYLVumc+cKt9MWNaiFL3Ac7AYPHhwSElKliuNHwgw4LQUAAkZwcPEr\nRZ/2RXfVras1a7Rjh0aMkKTXXlOvXlq5UgcOKDVVCQk6fJgs7kMcx7WyBupgTsZpKY89pnHj\nvF0K4B1M8MF8pk7V0qU3XLn1Vu3ebZ14LdKjR+GNotnb/v0VF6e4OM2erc2bVbUqZxr7tHKM\nw508eXLPnj0FBQW1atVq3bp1nTp13FcWvIbTUgAApTH6idpmQVbd+SCnesV+9dVXnTt3rl+/\nfpcuXXr16tW5c+d69er17NmTZmJmw2kpAIAyGGN4RYvwxEndPsnxiF12dnbPnj2vXr3arVu3\n1q1bV69evaCg4Oeff167dm3Xrl2zs7NbG4kdJpCRoXvu0fjxSkzUsGFq3tzbBQEAKqWspQW2\nawlSU/Xdd3rzTaeekCX3Ps7x/z5TpkypX7/+559/3qZNG9vr27Zte+CBByZNmsQiPPPgtBQA\nlVaZRYosZ3SHIUO0eLHOnNHzz+ujj5SXp9jYwnnVKVP0+ec6d041axY+OD9fI0fqo4904kTh\nlUuXCrfBHj8uMfHq8xxPxX7zzTdpaWnFUp2kuLi4tLS0tWvXuqcwAHDOokVq3FhVqmjsWG+X\nAviiUpu8/fCDHn5YDRsWdpW4fFnVq0vSq68WPsxYmBMZqfffL+zw1r+/JC1bZm/ulf6/Xuc4\n2J07d65x48al3tWsWbPTp0+7uiRUjv2eY4DJGAf05Odr8mT17u3tagDvKxmtVq+WpObNdfq0\nHn5Yo0erZs1SWrcZjUCKOrwZBxT/8ov1YUbD2dOn7TWfcL5TMCvz3MRxsGvQoMGuXbtKvevn\nn39u0KCBq0sCAKcZB/QMHapx49Szp7erAbyvZLQyRmB+/NEarQoKJOnhh60/VbRa3rbDm8G2\nw5vBzmys852CaU3mJo6D3f333//666+vWLHCtsOExWJZvnz5nDlzHnzwQXeWBwB2cUAPcKOS\n0So6WpJq17ZGqzvukKS8POtPFZ0wbNvPrawrDgfb6P/rRY6DXUZGRo0aNfr27RsZGdmjR48+\nffr06NEjMjIyMTGxdu3aGRkZHqgSAErBAT1AGWyjVXi4JN1/v/XKLbdI0rlzpfxgUcLLypLx\nCV90JTNTCxbc8ODUVFksGjSo+JNUuP8vKs9xsGvWrNnmzZtTUlIuXLiwdu3ajz/+eO3atZcv\nX05NTd2yZUtZy+8AwO0yMjR1qiQlJmr5cj3xhLcLAnyFbZAKCpKuHy9sME6ku3rVXX86/X+9\nyKnjaJo0abJw4UKLxXLs2LGCgoKwsLCGRitg+J1Fi/Tcczp2TOnpmjHD29UAlcMBPUAZSgYp\nzp8LEOX43/nYsWPHjh07e/bszTffHBwcXL9+ffeVZYfFYtm/f/++ffvy8vIkhYeHx8TENGnS\nxCvF+Blj/2BIiCZPVseO3q4GAAC4mFPBbsGCBVOnTj1w4IDtxTZt2mRkZAwqObXuNmfOnHnp\npZfee++9X3/9tdhd0dHRqampzz77bHXjHB6Uytg/+NhjGjeuzMcYp6UAAAA/5DjYzZs3Ly0t\nrVq1aj179oyKiqpZs+a5c+f27NmTk5MzePDgy5cvP/roox4o9OjRo127dt2/f39MTExCQkLT\npk1r1qwp6bfffsvNzd2wYcPEiRM/+OCDdevW1bXtYwdb7B8EALiIMw0tYmP1hz94u9BAY3Hk\n1ltv7d2799mzZ4td37dvX6tWrW677TaHz+ASjz/+eNWqVZcuXVrqvVevXp0zZ05QUNDTTz/t\n8j/6jTfekJSXl+fyZ/ao3r0tkvX/Ro70dkGAK2zaZJEszz/v7ToAX/H44xbJsmeP9UpGhkWy\nbNpkvbJggUWyLF5cqT8oJcUiWXr2tEyaZNm61bJwoSU01BIWZpEs//mfls2bLe+/b6lTx1Kz\nplv+dO+6dOmSpK+//trbhZTC8a7YAwcOTJgwIdzYLW2jefPm6enpubm57oibJX3yySfDhg1L\nSkoq9d7g4OC0tLSBAwd++OGHnqnH/7B/0IXoYQUg4JV6FnF+vgYM0Pz51rOICwr09dfq1s36\ng2UdkgKXcBzswsPDg4ODS70rODj4FuMwHPc7depUy5Yt7T+mbdu2x40exSjp7rsLT/wy9g8a\nx1OiAuhhBcCHZWXJYlGrVtYrmZmyWBxEqwr3eC3rLGLjCY2zkRMSaBrrOY6D3Z/+9KePP/64\n1LtWrVpV1hCay0VGRm7fvt3+Y7Zt2xYZGemZehC46GEFwHQq0ON1/XpJql3bmgUXLpSkW27R\nmDFasUKSXnhBkv76V5rGeo7jYDdlypQvvvhi6NChH3/88b/+9a9Dhw7t2rXrgw8+eOihhy5e\nvDh69OgjNtxXaN++fZctW/bKK68YE9vFFBQUZGRkrFixIjk52X01wCmmn6ZkDwoA06lAj1fj\nlOP0dGsWNObMJk9WaKh69ZKut5do0oSmsZ7jeFesMQaWnZ29aNGikvfGGAOv11ncdlJGZmbm\npk2bxo4d++KLL3bq1KlJkyZhYWEWiyU/P//gwYPZ2dnnz5/v3r37C8a3A3iL6Y/Ke+ABffqp\nJE2frunTNXKk3njD2zUFNg7oCUycte4e5erxajS0aNZMEydKUlycZszQTz8pJETTpik1VZJi\nY7V1q4zV+DSN9QzHwa5v377VqlXzQCn21alT59tvv50zZ8677767fv36a8Zx85KkqlWrxsfH\nDx8+fPjw4WUtB4TL2H8/deaoPL+WkaF77tH48UpM1LBhat7c2wUBgcf0XyC9pwI9Xm1XGter\nJ6lwObchMlJbt+rs2XI8ISrJcbBbvny5B+pwRkhISHp6enp6+sWLFw8fPmx0nqhdu3Z0dHSI\nsToA7ubw/dT005T0sAK8zvRfIL2nAj1eS7agtd1Uafy4bVNamsa6m1+2jgsNDS02BQwPsf9+\nyjQlAA8w/RdIv1KyBS1Nab3LqX/+a9euff/990ePHr1S2oCpJ7uKwcvsv58yTQnA3fgCCdjl\nONht2bJlwIABxRrF2vKRYJebmzty5EhJX3zxRbl+cOfOnaXutC1y6NChSlVmGg7fT5mmBOBu\nfIH0Gd27a/duNW1qvXLvvdqwQbGx1isdOmj5cnXp4vnqApfjYPfkk0+ePXv26aefbt26dVUf\nnhvPy8v78ssvy/tTubm5sbGxzmzmdd+GX8+p5P5B3k8BeB1fIAG7HAe7H3/88W9/+1tfn//9\nadOmzY8//ljen2rZsuVvv/1W6hRzkYULFz7zzDNBxsbuQMb7KQAAvs3xAcVhYWHRRk8Q3xYa\nGtquXbt27dqV9wfDwsLq2lWjRg13FAwAgI+oWCMyh0/YoIHLnhBOcjxiN3DgwPfff799+/Ye\nqMYZFotl//79+/btM447CQ8Pj4mJadKkibfrAgAggGRlKSvrhiuZmcrMvOFKamrhScXwGMfB\nbtq0aYMGDRo4cOAjjzwSGRlZcpldN9v47U5nzpx56aWX3nvvvV9//bXYXdHR0ampqc8++2z1\n6tU9UwwAAICvcRzsdu7c+cMPPxw+fHjZsmWlPsAzuwqOHj3atWvX/fv3x8TEJCQkNG3atGbN\nmpJ+++233NzcDRs2TJw48YMPPli3bl3dunU9UA8CFz2sAAC+ynGwe+qpp06cODFw4MCYmJgq\n3jt2cMKECUeOHFm6dGlSUlLJe69duzZ//vwnn3xy0qRJM2fO9Hx5foMGiwCA0gwZosWLdeaM\nnn9eH32kvDzFxuq119SuncaP17JlOndOsbGaPVs+szgLpXAc1Hbs2LFgwYI///nPHqjGjk8+\n+WTYsGGlpjpJwcHBaWlpGzdu/PDDDwl2ZQqEBoskVwCoEKM3Z1KSunfXmjXasUOjRikpSbGx\nuv12rVypAweUmqqEBB0+rJSUMlNg+/b6979Vo4Zq1dKVK7pwgYDoUY53xdasWbMCW01d7tSp\nUy1btrT/mLZt2x4/ftwz9fgloyHY0KEaN049e7rljzCmKadNc8uTO2Qk1/x8TZ58Q2NqAIAj\nxpxcTIwmTlRcnFJS1KePDh1SaKimTVN8vPr3V0qKjh9XTo41BUZFac0azZun7duVlKTk5MJu\nsK1a6dw5BQVp9mzrXaGhWrlS77yjXbuUkCC7R40VGjJEQUE6e1YjRyoiQjVqqHNnZWfr/HmN\nGaOoKIWFqUsXbd3qzn8av+I42PXr12/VqlUeKMW+yMjI7du323/Mtm3bIiMjPVOPXzJ9g0UP\nJFcAXufdL5Bml5hovW10ZX/kEeuV1q0l6ehReynwrrskqWtXjRypU6fUpo29gOiQnQRZgZgY\nCBwHuxkzZmzYsGH06NFffPHFrl279pbggSol9e3bd9myZa+88kqp7b8KCgoyMjJWrFiRnJzs\nmXr8zKJFql5d3btL0vTpCgrSqFEVeR4ffz81fXIFADeLirLeNtKb7RVjNK4oQtlJgYmJ1hRo\nJyA6VK5xRMiZNXbGJtMvvvhi7ty5pT7AM7tiMzMzN23aNHbs2BdffLFTp05NmjQJCwuzWCz5\n+fkHDx7Mzs4+f/589+7dX3jhBQ8U42eMCcoqVXT//frsM9M2BKM1OABUWsnWoXaaidpJgVFR\nMprMX7niOCA65OQ4IuRMsBs8eHBISIgX98Ma6tSp8+23386ZM+fdd99dv379NaO3lSSpatWq\n8fHxw4cPHz58eHBwsBeL9CG2ewiSk3XhgtLSNHiwPvvMtA3BaGULAJ5lJwXaucvYfispK0tP\nP+3U9ttyjSMGOMdxbdGiRR6owxkhISHp6enp6ekXL148fPiw0Xmidu3a0dHRIcYkPAzFdr/6\nxQRl5Xez0soWAPxB0Sd23bqOt98ayjWOGODKMQ538uTJPXv2FBQU1KpVq3Xr1nXq1HFfWfaF\nhobGGEOxKJWxh+CxxzRuXPEJSt8UCOewAAAkXR9yk9S/v+LiFBen1au1dKk6dSpcwh0fr02b\nNGsWy+YqwvHmCUlfffVV586d69ev36VLl169enXu3LlevXo9e/bcuXOnu+tDRdgO0WVkaOpU\nSUpMLLzhg9jNCgB+yziRxPjk6dNHCxdK0o4dunxZktLSCj98du8u8xlYNudCjkfssrOze/bs\nefXq1W7durVu3bp69eoFBQU///zz2rVru3btmp2d3dr454ePKLmHwDhcOiamcFesD/KLyWIA\nQGmMqVWj7eirr2rhQm3cqKee0i23SNLYsfrhBy1dqrFjNWxY6VOoLJtzIccjdlOmTKlfv/7O\nnTs3bdqUlZX1+uuvv/XWW999992WLVtCQ0MnTZrkgSpRDrZDdMuX64knXP9HLFqkxo1VpYrG\njnXBsz3wgAvOYQEAVE5WliwWtWplvZKZKYtF3bpZr6SmymLRoEE3/KARy+rVk6SYmMLht19+\nKQxnzZurbVtJOn3awdQqy+ZcwvGI3TfffPNf//Vfbdq0KXY9Li4uLS1t3rx57ikMFVVyD8FX\nX7ny+V2+Ho7drADgb7KylJV1w5WXXy5cStOtmxo21EsvacwYFbUjjYhQWtoNU6t79twQIuEq\njkfszp0717hx41Lvatas2enTp11dEnyby9fD3X134YidkUTvuMMFzwkAcLOiZl9ffy1Jf/qT\ntdnXF19I0ogR1mZfFZ5arfA4YsByHOwaNGiwa9euUu/6+eefGzRo4OqS4NtYDwcAgcq2c+vy\n5ZLUrFnhXR06KDtbnTurcWMZLaJeeIFmX17gONjdf//9r7/++ooVK2w7TFgsluXLl8+ZM+fB\nBx90Z3lwqco3BGM9HAAEMNvOrQ88IEn5+TpyRJJuu009e8piUX6+9uyRpHvuodmXFzgOdhkZ\nGTVq1Ojbt29kZGSPHj369OnTo0ePyMjIxMTE2rVrZ2RkeKBK+AoP7MyoDB9vZQsAfs62c+vN\nN0tSt27Kz5eksWPVqZMk3XefCgoKH8+pJZ7nONg1a9Zs8+bNKSkpFy5cWLt27ccff7x27drL\nly+npqZu2bKlrOV3MCfWwwFAwLPt3Gq7tdKIfcYeWEOpS+squWzOdjo4IkI1aljX9o0Zo6go\nhYVZ1/YFIKc6TzRp0mThwoUWi+XYsWMFBQVhYWENGzZ0d2UAAMAH2R44V7KjZ7Vq7v3Ti6aD\nu3d33JEsAI9QcTBi9+uvv3777bfG7aCgoEaNGrVq1aphw4Zz5sw5e/as+8uDKzBBCY9x7RmH\nAHySd9OS7XRwXJxSUtSnjw4dUmiopk1TfLz69w/otX32gt3GjRtbt249ceLEYtd37Njx5JNP\ntmvXbt++fe6sDYBfMc44zM/X5Mnq3dvb1QDwnE2bih9Kt3ixe08ksZ0OpiOZrTKD3dGjR/v3\n75+fn3/fffcVu+sPf/jDa6+9dvTo0QceeOCicfgFfApDdPAKev4CqJAKLJuznQ6mI5mtMtfY\nLViw4OTJkwsWLEhNTS12V1BQ0FNPPXXt2rX09PR33nln5MiRbi4SZmckUfg7zjgEUCHlWjZn\nKDkdHIDL6UpV5ojdihUrWrZsOXz48LIe8OSTTzZu3HjhwoVuqQuAf+GMQwA3GjJEI0ZIUlaW\ng3E4ls25UJnB7tChQ3fddddNN5X5gCpVqnTu3Pmnn35yT2EA/IqPn3EIwNWMU0vq1bNeMU4t\nKVpsZ4zD9eyp//gPrVmjefO0fbuSkpScrNBQrVypd94pbE3x++8Sy+ZcpMzc9ttvv91sHD5Y\ntptvvvmS0TcEQIDjjEMgAJTrCDrnx+FOnJBYNuciZQa7m2+++dChQ/Z/ePfu3fXr13d1SXAb\nlxxFwc6MQMCpJQBcxJlxuAsXJJbNuUiZwa5jx45ffvnlqVOnynrA3r17N23a1LlzZ/cUBlfj\nKAo4iZcKgBIq3O/BmXE4YyoWLlFmsBs2bFh+fv6IESOuXr1a8t7ffvtt6NChV69e/ctf/uLG\n6uBCHEUBJ/FSAVBC0cbVqCgHC+aKzZa6fByukh3JTK/MYNe/f/+ePXsuX768c+fOy5cvz8vL\nM66fOHHizTffjI2Nzc7O7tev38MPP+ypUlE5HEUBJ/FSAVACG1f9RZnBLigoaNmyZQ8++OCW\nLVsSExPDw8Pr1q1bu3btBg0apKamHjx4MDk5+e9//7sna0XFcRQFnMRLBUDZPLxxddIk6/zv\nM89I0oQJTs3/BjJ7LcXq1KmzevXq1atXDx48uHnz5leuXJHUunXrxx57bOPGjUuWLKlevbqn\n6kTlcBQFnMRLBUDZPLxx1XhCY/53zBhJOnjQqfnfQFZm54kiDz744IMPPuiBUuBGd9+ta9ek\n60dRAGXhpQKgbG7auPqf/6m1a2+4kpmpzEwZra+M+V9JL76o5GQtXapOnQrPZoiP16ZNmjVL\nOTnq0sUFlZiAvRE7AL6Oc0kAmB0HF5eL4xE7AD7KOJckJESTJ6tjR29XQ89fINAtWCBJ589r\n5Eh99JHy8nTXXTp9WufPa/x4LVumc+d0992qUcP6I6mpKtGRvjgOLi4XRuwAv8W5JAB8iZG6\nZs4s95Eo9nFwcbkQ7AC/xbkkAHyJ0V6+YUOORPEmgh3gBB9cysa5JAB8ku3CEJbEeR7BDnDE\nN1tscS4JAA9ypt+DEdr+/GfrFZbEeV7pmyeOHDni/FM0btzYRcUAPslYyvbYYxo3ztul2OBc\nEgA+iSVx3lV6sGvSpInzT2FhHxzMjaVsAAA/UXqwS05O9nAdcDtXHUWxaJGee07Hjik9XTNm\nuOAJfdwDD+jTTyVp+nRNn66RI/XGG96uyc04tQSABw0ZosWLdeaMnn++8JCU2Fi99pratVNY\nmCIjdeedio3V7Nlq377w4GJbzhyYElBKD3ZLlixx5ocLCgry8vJcWg98m68dnOYBGRm65x6N\nH6/ERA0bpubNvV0QAJhKSIgkJSWpe3etWaMdOzRqlJKSFBur22/XypU6cECpqUpI0OHDzOo6\nVqnNEytWrGjfvr2rSoEfCMCD0+6+u3DzqbGU7Y47vF0QAJiKscHC6BvGISmV51TniZMnTy5Z\nsuTAgQNXr14tunjx4sVVq1bl5+e7rTb4HlabAQDcgL5hruI42B04cKBTp04nTpwo5YerVJkw\nYYIbqoJPCsDVZgAAp2VlKSvrhivOL4mjb5irOA52L7zwwsWLF2fPnt22bdsePXpkZWU1btx4\n/fr177333ptvvtnbd471grux2gwA4B4ckuIqjoPdpk2bRo8ePXr06IsXL0q6/fbbO3fu3Lt3\n7+Tk5B49eqxcubJr167urxM+gIPTAADwbY43Txw9erRFixaSbrrpJkmXL182rt95552jR4/O\nyMhwa30IID7YtsvHGeeSTJvm7ToAoByGDFFQkM6e1ciRiojQwoWStGOHzp/XmDGKiirsqrN7\nt1er9FuOg12tWrWOHz8uKSQkJCwsbN++fUV33XbbbZs3b3ZjdQgcvtm2CwDgakXnm0RFac0a\nGdN+Tz2l5GSFhmrlSvXrJ0ljx7KoriIcB7vu3bu/8cYb69evl/SHP/xhzpw5RTth165dW61a\nNbfWh0Dh1oNUGAtEefGaAdym2Pkmxh7YX36xnm/Stq0knT7N+SYV4TjYjR8//tSpU88++6yk\nESNGbN68+bbbbktMTIyLi1uwYEGvXr3cXyQCgPsOUmEsEOXFawZwP9vzTQy255sYON+kAhxv\nnujUqdNXX32VnZ0t6S9/+cuePXtmzpy5fPnyoKCgPn36zJw50/1FwuzcepCKMRb42GMaN66C\nz0CLrUBT+dcMAEeKTjPJylLjxpo0yXolM1ONG2vECOtULH3DnOdU54n4Gu/zXAAAIABJREFU\n+PgnnnhCUlBQ0NSpU0+fPr1///6CgoIVK1bccsstbq4QplNykisjo3CtbGKili/XE0+48o/j\nUGWUF68ZwP0438RNytFS7OjRo9u2bVu3bt3u3btr1qxZvXp195UF0yp1kst9bbseeKDwmadP\nV1CQRo1y2TPDrHjNAPBnTrUUW7BgwdSpUw8cOGB7sU2bNhkZGYMGDXJLXTArD09ycagyyovX\nDAB/5jjYzZs3Ly0trVq1aj179oyKiqpZs+a5c+f27NmTk5MzePDgy5cvP/roox4oFD6h8qvN\nPDzJxaHKKC9eMwD8meNgN3PmzN69e//jH/8IDw+3vb5///77779/+vTpBDs4i26zAAC4k+M1\ndgcOHJgwYUKxVCepefPm6enpubm57ikMZuTWTRIAAAQ8x8EuPDw8ODi41LuCg4PZFYtycN8m\nCQCAc4p19KpRQ507Kzvb2tErLExdumjrVncVkJUli0WtWlmvZGbKYlG3btYrqamyWOTkMn6v\n/418iuNg96c//enjjz8u9a5Vq1YlJSW5uiQAAOAuxTp6zZun7duVlGTt6PXOO9q1SwkJftPR\ny3x/o8pwvMZuypQpffv2PXDgwKBBg2JiYmrUqFFQUPDzzz+/9dZbly9fHj169JEjR4oe3Lhx\nY3dWC5NatEhjxkjSunXeLgUATM62o5ekuDitXq2lS9Wpk6ZNk6T4eG3apFmzlJOjLl28WaqT\nzPc3qgzHwS4yMlJSdnb2okWLSt4bY/R4u87CAf0oL+Nku5tuksTREgDgGbYdvYxPctuOXq1b\nS/7W0avobzRkiJYulaRTpxQRobw8xcbqnnskaepUbdumc+cUG6vZs9W+vdeqdR/Hwa5v377V\nqlXzQCkIUMbJdmlpmjPHNU+4aJGee07Hjik9XTNmuOY5AcBcivp36fqIl+0VowmEf01cFtVv\nzMxKatpUr76qHTs0apT27JGk4GCtXKkDB5SaqoQEHT5swnYXjoPd8uXLPVAHApdrT7Y7d04p\nKbp6VZI+/phgBwClMl9Hr6L6q1yPNo8/rrg468yspMGDFR9v8pnZ0jdPHDt27MyZM0W37fNg\ntfBtJZvAOuTy9k1ffVWY6u6/X8OHS9cPVTbWWQDO4DUDD6vAmyfK48ZVY5J/zjU7qfQRu0aN\nGvXu3XvNmjXGbftPwbo6SNeXyoWEaPJkdezo7E+5vH3Tt99K0i23FJ6EDAA+rmJvniiPKiXC\njj/ONTup9GCXnJx85513Ft32YD3wWxVrAuva9k1FnS1OnlRQEJ0tAPgBD3fQhtmVHuyWLFlS\n6m2gTE4ulat8t1k7vvvuhv/8/HN3/UEA4Coe7qANs3N8QLHhp59+OnnypO1/btu2zT0lwQ+5\nfKlcxcyYoU6dJCksTH/9K2ukAPg6H3nzhIk4DnZXrlx5/PHH27Vrt3PnzqKL69ata9++/WOP\nPXbNmEdDgLPfBNZj64JHjChsSVO7tl5+WbRFAeDjvNFB2+Udvbyu5N9I0p49N/yNJG3a5Dd/\no8pwHOxef/31t95666GHHmratGnRxV69eiUnJy9cuHD27NnuLA9+wk4TWGNdcH6+Jk9W797e\nKhAAfJG/ddCmK6vvcxzsFi5c+PDDD69ataq5zY7F1q1bL1myJCEhgWAHB4x1wUOHatw49ezp\n7WoAABVHV1bf5zjY7d27949//GOpd917770HDx50dUkwF9YFA4BZ2HZljYtTSor69NGhQwoN\n1bRpio9X//5KSdHx48rJ8VqR5ptrLhfHwa527doHDhwo9a4DBw7Uq1fPxRXBTFgXDACmY74+\ns2biONg99NBDb7755urVq20vXrlyZcGCBf/7v/97//33u602+D9vrAsGALiV+frMmonjXrFT\npkz55z//+dBDD0VHR7du3bpatWpnz579+eefT58+3ahRoylTpnigSvgrZ84fduvJdoFj0SI9\n95yOHVN6Oh1y3Yh/Z8CMfWbNxPGIXaNGjbZt2zZq1KiCgoLPP/981apVX331VXBw8IgRI3Jy\ncqKjoz1QJQB72HrsGfw7A/B5jkfsJEVERMybN2/u3LlHjx69cOFCw4YNa9as6e7KgIpo2VKS\nAu37Bi2JPIN/ZwA+z6lgZwgKCoqMjHRfKYALpKUpLc3bRXgcW489g39nAD7PcbCzWCzvv//+\nu+++e+TIkSulLYa07UiBwMVSOW954AF9+qkkTZ+u6dM1cqTeeMPbNZkR/85wE9484VKOg92r\nr746duxYSTVq1KjK8kjA12Rk6J57NH68EhM1bJhsDhKHK/HvDMAfOA52s2bN6t2799y5c1u0\naOGBggCUjzNbj1F5/DsDUlaWsrJuuJKZqczMG66kpio11YM14UaOg93x48fff/99Uh0AAICP\nc3zcSUREhIXpfwAAAJ/neMRu8ODB7733XufOnT1QDUyIdcEAAHiK42A3ceLEAQMGDB069NFH\nH42Oji65f6KVbaNdAAAAeInjYFfr+qFNixYtKvUBTNTC59D3CQAQkJyaig0JCalSpRxHGQPe\nZPR9CgnR5Mnq2NHb1QAA4DmO41pZA3WAj6LvEwDPY6IAvqH0YHfs2LFq1arVrVvXuG3/KRo2\nbOj6uoAKo+8TAA9jogA+o/Rg16hRo969e69Zs8a4bf8pWGMHHxKYfZ/YeuwZ/DujLEwUwGeU\nHuySk5PvvPPOotserAeoHPo+AfA8JgrgM0oPdkuWLCn1NuDr6PsEwMMCc6IAvspx54mVK1f+\n9NNPHigFAAD/k5GhqVMlKTFRy5friSe8XRACmuNgl5ycvGrVKg+UAgCA/7n7bnXvLl2fKLjj\nDm8XhIDmONh169Ztw4YNv//+uweqAQAAQIU5Psfub3/7W3p6+kMPPfToo4/eeuut4eHhxR5A\nSzEAAABf4DjYFR1TZ5x+UhLHnQAAAPgCx8EuOTk5JCSkatWqQUFBHigIAAAAFeM42PnycSeX\nL1/evn17fn5+s2bNmnNiGQAACGwONk9cunQpOzt7/fr1DhuLuduUKVPWrVtne2X+/PkNGzbs\n1KnTfffd16JFiw4dOvzwww/eKg8AAMDr7AW7d955p2HDhnfdddcf//jHyMjIIUOG5OXleayy\nYiZMmPCpcQKkJOmTTz4ZNWrU+fPn+/XrN3LkyK5du27ZsuXee+/Nzc31VoXwFUbfp2nTvF0H\nAACeVuZU7MaNGx977LHg4ODevXvffPPN33333eLFiy9cuLB8+XJP1leW9PT08PDwb7/9tm3b\ntsaVDz/8cMCAAS+99NJbb73l3doAAAC8osxg98orrwQFBa1du7Z79+6SLl++PGjQoOXLl+/c\nubNdu3YerLAUJ06c2LNnz/jx44tSnaTExMRHHnnks88+82JhAIBAZEwUAD6gzKnY77777v77\n7zdSnaSQkJDMzExJGzdu9Exldly8eFGSbaoztGvX7tdff/VGRQAAAN5XZrA7derUrbfeanvF\n+M9Tp065vShHIiMjw8PDjxw5Uuz6L7/8UqtWLa+UBBRatEiNG6tKFY0d6+1SAAABp8xg9/vv\nv1evXt32SmhoqKRr1665vagyHDp0aPPmzXv37j1z5kxaWtqbb755/vz5onv/f3v3HhdVnf9x\n/IPAIDfFuyKIkqSmq6VoobBY2mpWSphJpfXAaAXL1F3JxV+JyCODdLtouln7cFtJTU3NVtfc\ntYw1y6XUdU3NCC9RghYJioACzu+PU7PEZRjAmTPnO6/nX8yZw8xnjs7Mm+/1yy+/3LBhw4gR\nI/QqD5CSEklIkNJSSU+XMWP0rgYA4HIaX8fOeaxfv379+vU1j+zcuXPixIkism7dut/+9rfl\n5eXPPvusTtUBIrm5Ul4u8fGSkqJ3KQAAV2SYYPeXv/yluIaSkpLi4uJ27dpp9xYXFwcEBLz9\n9ttDhw7Vt064tIoKERHGAxjXunXy9NNSWChz5siSJXpXAwBN5tbQTq9ubm4jRowYPXp0zYNp\naWnR0dEjR46seVCbVKGv0tJSHx+fVq0aWW+5eVatWpWYmHjp0iU/Pz97PD4UMXas1FhqUaZP\nl9de068aNF1JiXTrJiaTzJsnQ4fKLz/9AMDi6tWrXl5e+/btGz58uN611GatxW7fvn379u2r\ndTA7Ozs7O7vmEWcIdkQu6C81VaKjZf58iY2VqVOFPe4Mh550AMbXYLDLyspyZB2A4UVEiDa1\nKCxMYmL0rgZNR086AONrMNhNmTLFkXW0XF5e3vTp00Vk9+7detcCwGgsPemZmZKZSU86AIMy\nzOSJRl26dOmDDz7QuwoAxkRPOgAl2GW2gS769u175MiRI0eO6F0IrGL9XjiniAjRNtrRetIH\nDdK7IABoDnVa7Fq3bt2MTWxLSkoWLFig7VHWkOPHj7egLtSgrd9rMkl6urAwDQC9sK4N1GW8\nYGc2m0+dOnXy5MlLly6JSNu2bcPCwoKDg5v3aJWVlT/88ENlZaWVc2rub4EWYdYhAN3xFyaU\nZqRgd+HCheeeey4rK+v8+fO17urRo0dCQsLcuXNrbYPWqI4dO65du9b6OatWrTpw4EDTakW9\nmHUIQHf8hQmlGSbYFRQUjBgx4tSpU2FhYePGjQsJCfH19RWRixcv5uXlZWdnL1iwYPPmzXv2\n7LFsRwHnwqxDAM6AvzChNMMEu2efffbbb7/duHHjpEmT6t5bXV29atWqJ598Mi0t7eWXX3Z8\neWgcsw4B6I6/MKE6wwS7HTt2TJ06td5UJyLu7u4zZsz417/+tWXLFoKdk3KF9XsjI6WBPfoA\nOAX+woTqDBPsioqKbrjhBuvn9OvXb+vWrY6pBwBgPK7wFyZcm2HWsQsMDDx8+LD1cw4dOhQY\nGOiYeqAsVtqriasBAIZimBa7mJiYZcuWDR06dObMmV5eXrXuvXz58gsvvLBt27Z58+bpUh4U\nwToINbna1aAnHYDxGSbYLVy4cO/evcnJyYsWLRo2bFhwcLCfn5/ZbC4tLT1z5kxOTk5ZWVlU\nVNQzzzyjd6UwMtZBqImrAQBGY5hgFxAQ8Omnn65YsWLNmjUfffRRtTZIQkREPD09hwwZMm3a\ntGnTprm7u+tYJAyPdRBq4moAgNEYZoydiJhMpjlz5hw6dKi0tPSrr746cODAgQMHcnNzS0tL\nP/3008cff5xU5+z++U8RkRdecNIBW2PH/rRbaGamuLlJYqLeBemKqwEABmSYFruaWrduHRYW\npncVaKKSEsnMFBH59a9lzBi9q6kP6yDUxNUAAAMyUotdXUuXLo2MjNS7CtgmN1euXBERue02\nGT1a72rqExHxUxuVtg7CoEF6F6QrXa4Gk3ABoGUM2WJn8fXXX+/bt0/vKmAbbcDWvHmSkaF3\nKXBKrjYJFwDswNgtdjAMlx2wRROU7bRJuA8/LCkpTtqmCzVo69rwFyYUZewWOxiGaw7Yogmq\nSZiECwAtRosdHMI1h6811ARFM15dLtumCwDXlbGDXUZGRn5+vt5VAA2otwlKa8YrLZX0dCed\nHayL1FRZvFhEJDZWtm6VpCS9CwIAQzJ2sAsICAgKCtK7CqA+DTVBOWYkmeEaBV2zTRcArjdj\nBzvAedXbBLVunYwbJyLy+ed2fGoaBQHAVTF5ArCPiAjRNr7TmqBEpKREHnnkp4M5OeLmJtOn\ny2uvXf+nZo9XAHBVBDtAZN06efppKSyUOXPEbLbXs+TmSnW13Hab7N9v39nB12t6qbYqBADA\nOOiKhctzWMellrduuEHEniPJmF4KAC6MYAeX55jZDJa8tXatiMiuXdZObsnUB6aXAtBF3Q8u\nw83iUgJdsXB5jlkX17JEc3S0ZGfLLbc0eGYLlzWuO7YPAOyt7gcXK7TrhGAHR3HOAVtjx/7U\neJaZKZmZ9prNIDXylrZAT+fODZ7J1AcAhlP3g4uPMp3QFQvX5oQdl+ysBcBw6n5w8VGmE4Id\nXJuzrYvrylMf2JodMKi6H1yu/FGmN4Id4Ez0akFkjDOAZqv7weWEnSEugzF2gN00Y1ihLlMf\nGOMMoCXq/eBiFpdOaLGDwdHU1HKOWfAFAGB/tNjByIzY1BQU5HSzgxnjDACqoMUORkZTU8sx\nxhkAFEKLHYyMpqZ6NWlsn2XlZLtuXwsAcAha7GBYhmtqcs7lPJxtwRcAQAsQ7GBYTKcHAOCX\n6IqFYV2vlUGcc68zAACajhY7AAAARdBiBzgZWhABGE7dDy4+ynRCix0AANAP68xfV7TYAQAA\nnRhxnXnnRrADAAA60daZj4+XlBS9S1EEXbEAAEAnrDN/vRHsAJfnnCsnA3Aq9hgJZ7h15o2A\nrlgAAGCVnUbCsaWhHRDsYGRMpwcAB7DTSLjrtc48aqArFgAAWMVIOOMg2AEOx6JNAAyEkXCG\nQrADHEsbqlJaKunpMmaM3tU0hgwKIDVVFi8WEYmNla1bJSlJ74JgDWPsAMcy0KJNLBwKQBgJ\nZzAEO8CxDDRUxUAZFAAgInTFAg5lrKEqLc+g9OQCgGMR7AAHMtBQlZZnUGONJgQAJRDsAAeK\niPgpLWlDVQYN0rughrU8g2o9uQ8/LCkpMnr0dS8Q9aOVFHBtjLEDUJ+WD5c20GhCZTDfBYbD\nOvPXGy12AOzAWKMJlUErKeDyCHYA7MBAowlVQisp4PIIdgDswECjCZVBKykAxtgBgCJSUyU6\nWubPl9hYmTpVevXSuyAohJFwxkGwAwAlsD0AALpiAQAAlEGwAwAAUATBDnAsbahKRoZDn5RF\nawHANRDsgMYYPRU1e2svXTIoAKAFmDwBWKXAUv7aorXx8ZKSoncpAAD7ItgBVimQili0FgBc\nBl2xgFVGT0U6LlpLTy4AOBzBDmiYAkv5N3VrL6MPKAQA10ZXLNAwBZbyb9KitQoMKHRxbA8A\nuDxa7ICGudqGp9qAwocflpQUGT1a72oAoAH0LTSMFjsAPzP6gEIAroC+BatosQMgIkoMKATg\nCuhbsIpgB0BEmj7NAgB0Qd+CVQQ7QCEtGXfiagMKARgRfQuNIdgBqmj21mFwMMZ9A81G30Jj\nmDwBGNm6dfL001JYKHPmyOTJht8kwxUw7htoiSYt4eSSCHaAYdWKCIw7MQQFNqkD4MToigUM\nq+bUsKVLGxx3wtZeToX8DcCeCHaAVc6cimpGBMadGALjvgHYGcEOMKZaEeGvf23CnFYG7+uF\n/A3AzhhjBxhT3X1sL12y6RcZvK8jxn0DsDOCHWBMdSPCxx/b9IsM3gcAdRHsABdjZfC+NqAQ\nAGBYjLEDXAmD9wFAabTYAa6k7sg8ADAW+hasItgBroTB+wCgNLpiAQAAFEGwAwAAUARdsYAq\nGHcCAC6PYAcADkT+BmBPBDvAsIgIAIBfYowdAACAIgh2AAAAiiDYAQAAKIJgB7gYbWReRobe\ndTjEunUSFCQeHpKcrHcpAOAITJ4AoKiSEklIEJNJ0tNl6FC9qwEARyDYAVBUbq6Ul0t8vKSk\n6F0KADgIXbEAFFVRISLi7693HQDgOAQ7ACoaO1aiokREMjPFzU0SE/UuCAAcgWAHQEWpqbJ4\nsYhIbKxs3SpJSXoXBACOwBg7ACqKiJDqahGRsDCJidG7GgBwEFrsAAAAFEGwAwAAUATBDgAA\nQBEEOwAAAEUYL9iZzeaTJ0/u3r1769atW7du/fDDD/Pz8/UuCnAabKIFx+N/HeA0jDQr9sKF\nC88991xWVtb58+dr3dWjR4+EhIS5c+d6e3vrUhvgFNhEC47H/zrAmRgm2BUUFIwYMeLUqVNh\nYWHjxo0LCQnx9fUVkYsXL+bl5WVnZy9YsGDz5s179uxp166d3sUCOtFlE6116+Tpp6WwUObM\nkSVLHPe8cBJs3QY4E8MEu2efffbbb7/duHHjpEmT6t5bXV29atWqJ598Mi0t7eWXX3Z8eYBT\ncPwmWrTWgK3bAGdimDF2O3bsmDp1ar2pTkTc3d1nzJjxwAMPbNmyxcGFAc5Cl020tNaahx+W\nlBQZPdoRz2i7yEgxmyUjQ+86lMbWbYCTMUywKyoquuGGG6yf069fv3PnzjmmHsDp6LKJFq01\nLo6t2wAnY5hgFxgYePjwYevnHDp0KDAw0DH1AE4nIuKnthNtE61Bg+z+jLTWwPH/6wBYZZhg\nFxMTs2nTpqVLl165cqXuvZcvX05NTd22bdvkyZMdXxvgomitAQAnY5jJEwsXLty7d29ycvKi\nRYuGDRsWHBzs5+dnNptLS0vPnDmTk5NTVlYWFRX1zDPP6F0p4DIiIqS6WuTn1hoAgN4ME+wC\nAgI+/fTTFStWrFmz5qOPPqrWvk5ERMTT03PIkCHTpk2bNm2au7u7jkUCRsWSJQCgBMMEOxEx\nmUxz5syZM2dORUVFfn7+pUuXRKRNmzY9evQwmUx6VwcYFkuWAIAqjBTsLFq3bh0WFqZ3FYAq\nWGAWAFRhmMkTAOzFxiVL2A8UAJyeOsEuLy9v9OjRo51tiVTAydm4ZInWXVtaKunpMmaMIwsE\nANhOnWB36dKlDz744IMPPtC7EMBQbFyy5DruMEHLHwDYjSHH2NWrb9++R44c0bsKQFfaJlpN\nYuOSJddrhwkmaqinGf/rANiNOi12rVu3HjBgwIABA/QuBFDOddxhwpn3lgUA41OnxU5EioqK\nLly40Lt3b9t/5dSpU/379y8vL2/0zFat1AnBQNOkpkp0tMyfL7GxMnWq9Or1v7ua2lrD3rIA\nYE9KBbslS5ZkZmaam/I1ExISsnPnzsrKSivnHD16dPbs2R4eSl0roAmu1w4TY8fKrl0iIpmZ\nkpkp06fLa69dnwoBACKiWLBrhlatWkVHR1s/x8fHxzHFAIqz0vIHALgeXD3YAXAc9pYFADsz\nTLALDw9v9JzvvvvOAZUAAAA4J8MEu0OHDomIp6enlXOqqqocVQ4AAIDTMcxMz+TkZF9f3y++\n+KKiYXPnztW7TAAAAN0YJtilp6f37t37wQcftD6DFUCTaUuWZGToXQcAoKUME+w8PT3Xrl17\n9OjR+fPn610LAACAMzLMGDsR6devX2FhoZWBdHfddVdAQIAjSwIAAHAeRgp2ItKmTRsr90ZH\nRze6KB2A5mA/UAAwAsN0xQIAAMA6Ywe7pUuXRkZG6l0FAJsxUQMA7MnYwe7rr7/et2+f3lUA\nAAA4BWMHOwAAAFgQ7AAAABRBsAMAAFCEsYNdRkZGfn6+3lUAAAA4BYOtY1dLQEAAKxIDAABo\njN1iBwAAAAuCHQAAgCIIdgAAAIog2AEAACiCYAcAAKAIgh0AAIAiCHYAAACKINgBAAAogmAH\nAKpbt06CgsTDQ5KT9S4FgH0Ze+cJAEAjSkokIUFMJklPl6FD9a4GgH0R7ABAabm5Ul4u8fGS\nkqJ3KQDsjq5YAHZGP6C+KipERPz99a4DgCMQ7ADYk9YPWFoq6ekyZoze1biesWMlKkpEJDNT\n3NwkMVHvggDYF12xAOyJfkB9paZKdLTMny+xsTJ1qvTqpXdBAOyLYAfAnugH1FdEhFRXi4iE\nhUlMjN7VALA7umIB2A39gADgWAQ7AHaTmiqLF4uIxMbK1q2SlKR3QQCgOLpiAdgN/YAA4Fi0\n2AEAACiCYAcAAKAIgh0AAIAiCHYAAACKINgBAAAoglmxAKC0yEgxm/UuAoCD0GIHAACgCIId\nAACAIuiKBWBP9AMCgAPRYgcAAKAIgh0AAIAiCHYAAACKINgBAAAogmAHAACgCIIdAACAIgh2\nAAAAiiDYAXAO69ZJUJB4eEhyst6lAIBRsUAxACdQUiIJCWIySXq6DB2qdzUAYFQEOwBOIDdX\nysslPl5SUvQuBQAMjK5YAE6gokJExN9f7zoAwNgIdgD0NnasREWJiGRmipubJCbqXRAAGBXB\nDoDeUlNl8WIRkdhY2bpVkpL0LggAjIoxdgD0FhEh1dUiImFhEhOjdzUAYGC02AEAACiCYAcA\nAKAIgh0AAIAiCHYAAACKINgBAAAogmAHAACgCIIdAACAIgh2AAAAimCBYgBOIDJSzGa9iwAA\nw6PFDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsAAABFEOwAAAAUQbADAABQBMEO\nAABAEQQ7AAAARRDsAAAAFEGwAwAAUATBDgAAQBEEOwAAAEV46F2AAZhMJhHx8vLSuxAAAOAs\ntHjgbNzMZrPeNRjA4cOHq6qq9K7iF65cuTJixIiFCxfecMMNeteCZnr++ef79OkTGxurdyFo\npp07d37yySfp6el6F4JmKigoePrpp5cvXx4QEKB3LWim5OTk+Pj4iRMnOvh5PTw8Bg0a5OAn\ntQXBzqjKy8t9fHz2799/66236l0LmmnUqFGRkZFpaWl6F4JmevHFF9euXXvgwAG9C0EznThx\nom/fvmfPnu3WrZvetaCZbrzxxuTk5Mcff1zvQpwFY+wAAAAUQbADAABQBMEOAABAEQQ7AAAA\nRRDsAAAAFEGwAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsDMqd3d3d3d359yoDjYymUyenp56\nV4HmM5lMvAcNzWQyubm58TY0NN6GtbClmIGdPHkyNDRU7yrQfOfOnfPz8/P19dW7EDRTRUXF\njz/+GBgYqHchaD4+SI0uPz+/a9eupHMLgh0AAIAi6IoFAABQBMEOAABAEQQ7AAAARRDsAAAA\nFEGwAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsAAABFEOwAAAAUQbAD\nAABQBMEOAABAEQQ7AAAARRDsjO3ChQtz584NCQnx8vLq1atXTEzM/v379S4KTVNZWZmSkuLu\n7h4eHq53LbBVcXHx7Nmze/bsaTKZAgMDExISCgoK9C4KTcNbz9D4+muIm9ls1rsGNNOPP/44\nZMiQ06dP33333YMHDz558uSGDRs8PDxycnJ+9atf6V0dbHL8+PEpU6bk5uZevnz5lltu+fzz\nz/WuCI27evVqRETEwYMHJ06cOHjw4Ly8vKysrKCgoAMHDrRr104Eu0RQAAAPxUlEQVTv6mAT\n3nqGxtefNWYY1hNPPCEiy5cvtxzZvHmziIwbN07HqmC7kpISb2/v8PDw3NxcLy+vIUOG6F0R\nbPLiiy+KSGZmpuXIhg0bROT3v/+9jlXBdrz1jI6vPyvoijUwT0/PUaNGTZ8+3XLkvvvu8/b2\nPnr0qI5VwXZVVVUzZsz45JNPevfurXctaII1a9b4+/vPmjXLcuSBBx7o3bt3VlaWmT4QI+Ct\nZ3R8/VlBV6xSrly54u/vP2zYsI8//ljvWtA0rVu3HjBgAP1Bzq+iosLPz2/kyJG7d++ueTw+\nPv7NN9/My8sLDQ3VqzY0A289NfD1Z0GLnVJWrVpVWVkZFxendyGAsvLz86urq4ODg2sdDwkJ\nEZGTJ0/qURTg6vj6syDYqSM7Ozs5OTkyMjIxMVHvWgBlXbp0SUR8fX1rHffz87PcC8CR+Pqr\nyUPvAtC44uLiP/zhD5abvXv3njt3bq1z1q9fHx8fP2DAgG3btnl48M/qXGz5F4SxuLm51Tqi\nDWupexyAXfH1VwuXwABKS0tXrVpluTlixIiascBsNi9cuHDRokVjx47duHGjv7+/HjXCGuv/\ngjCWNm3aSH0tcxcvXhQR3oCAw/D1Vy+CnQEEBQU1NMfFbDYnJCSsXr165syZL730kru7u4Nr\ngy2s/AvCcHr06OHh4XHmzJlax/Py8kQkLCxMj6IAl8PXX0MYY2dsc+bMWb169eLFi5ctW8Z/\na8ABTCbTkCFDcnJyysrKLAevXbuWnZ0dHBzco0cPHWsDXAdffw0h2BnYli1bXnnllVmzZqWk\npOhdC+BCHnvssbKysiVLlliOvP7662fPnk1ISNCxKsB18PVnBevYGVjv3r3z8vJmzpzp4+NT\n66558+axtZHzy87O3rlzp/bz0qVLO3Xq9Oijj2o3k5OTO3TooF9psKa6uvr222/fu3fvhAkT\nBg8efPz48Q0bNgwYMGD//v1134xwQrz1jI6vPysIdgZmZf7dqVOnevbs6cBa0BwZGRkN/bmZ\nm5vLmvjOrLS0NC0tbdOmTWfPnu3cuXNMTMyiRYvat2+vd12wCW89o+PrzwqCHQAAgCIYYwcA\nAKAIgh0AAIAiCHYAAACKINgBAAAogmAHAACgCIIdAACAIgh2AAAAiiDYAQAAKIJgBwAAoAiC\nHQAAgCIIdgAAAIog2AEAACiCYAcAAKAIgh0AAIAiCHYAAACKINgBAAAogmAHAACgCIIdAACA\nIgh2AAAAiiDYAQAAKIJgBwAAoAiCHQAAgCIIdgAAAIog2AEAACiCYAcAAKAIgh0AAIAiCHYA\nAACKINgBAAAogmAHAACgCIIdAACAIgh2AAAAiiDYAQAAKIJgB6Cl4uLi3NzcCgsLneqhLI/2\n7bffXpdHAwDnR7ADICLy1ltvuf2Su7t7ly5dYmNjP/74Y+u/e/PNN48ZM8bLy6vlZVzHh7KR\n2Wx+5513YmJiAgMDvby8OnfuHB4e/txzz507d85hNTizjIyMr7/+utHTKisrU1JS3N3dw8PD\nHVAVgIa4mc1mvWsAoL+33npr6tSpI0aMiIyM1I6Ul5efOHHin//8p9lsfvPNNx955BF9K2yG\nuLi4DRs25OfnBwUF1XtCcXHxpEmTdu/e7ePjM2rUqJCQkKKiopycnLy8vE6dOm3evDkqKsrB\nNTuVgoKCwMDAnTt3jh071sppx48fnzJlSm5u7uXLl2+55ZbPP//cYRUCqMVD7wIAOJHRo0cv\nXLiw5pG9e/fecccds2fPnjx5siMb0hzj4Ycf3r1794QJE954441OnTppB69du/b6668/+eST\nEyZM+PLLLzt37qxvkTr67LPPGj3n4sWLQ4YM6d+//8GDBwcMGOCAqgBYQVcsAGuioqJGjRp1\n4cKFw4cPy8+j1s6fP3/nnXd6e3u/99578suBcQ899JCbm1tpaem8efN69uzp5eUVHBz80ksv\n1ewcKCwsTEhI6N69u6+v76BBg1555ZWqqirtrpoPdd9997m5uRUUFCQkJHTp0sXLy6tv375/\n+tOfapaXk5Nz3333dezY0WQy9ezZc+rUqadPn7bxpb3//vt///vfBw8e/M4771hSnYi0atUq\nMTFx0aJFgwcPzsvL0w6eOXMmPj6+e/fuJpOpY8eO48ePz8nJsfyK9qqLi4unT5/epUsXHx+f\n2267LScnp6ysbPbs2d27d/fz8xs+fPjBgwctv2LLq7PlSa1f6nPnzj3xxBMhISEmk6lTp04x\nMTE1s5r1R7jnnnsmTJggInfddZebm1tDPfJVVVUzZsz45JNPevfubeOVB2A/tNgBaESHDh1E\npKysTERMJpOIzJkzx9PTc8GCBaGhobVO1k64//77e/Xq9fbbb1+7di0tLe13v/tdQEBAfHy8\niHz//ffh4eGlpaWPPPJISEjIRx99NHv27CNHjvz5z3+u9VBaA2FMTMztt9++devWa9euLVq0\naMaMGZ6engkJCSJy4MCB6Ojo9u3bz5o1q2vXridPnlyxYsU//vGPY8eOaTVbt2bNGhH5v//7\nPw+Pej4J58+fP3/+fO3n/Pz8YcOGlZWVJSUl9e/f/7vvvlu5cuWvf/3r3bt3az3X2queNGlS\nVFTU+++//9///jcxMXHSpEkDBw7s37//e++9d/r06YSEhHHjxuXn53t6etry6mx8UuuX+tZb\nby0uLk5MTBwwYEB+fv7KlSujoqJ27doVHR3d6CM888wz7du3z8rKWrBgwS233HLTTTfVexnb\nt2+/dOnSRq82AAcxA4DZnJWVJSKpqam1jl+9ejU0NFRrWzKbzdOmTROR3/zmN9XV1ZZzJk+e\nLCLaCY899piIPPjgg5Z7tUave+65R7uZlJQkIrt27bKccPfdd4vIF198UeuhtJ9rPlRxcbGX\nl1fPnj21mytXrhw8ePCePXssJyxfvlxEli9fXrOw/Pz8el+y9rpKSkoavTiPPvqoiGzZssVy\n5NixY+7u7rfddpt2U3vVSUlJlhMeeOABEbn//vstR2bNmiUi+/btq1mblVdn45Nav9QeHh6f\nffaZ5YRvvvnG398/PDzcxkd4/vnnRWTnzp2NXiKNl5fXkCFDbDwZgD3QFQugfhUVFUeOHImL\nizt58mRcXFzXrl1FxM3NTUQeffTRVq2sfXpooUQTGhrq4+OjrTliNps3btwYHBx85513Wk5Y\ntmzZhx9+2KVLl3ofKi4uzvJz27Zto6KiTp8+XVBQICJJSUkHDhwYOXKkiFRWVlZUVGitSjb2\nxp47d65t27Zt2rSxfprZbH733Xe7dOkSExNjOdivX7+IiIj9+/cXFRVZDsbGxlp+DgsLExGt\nK1PTp08fEdEqb/TV2f6kVi71pk2bBg4cGBQUVPgzT0/P4cOHf/7556WlpY0+AgAjItgB+J+0\ntDTLcife3t4DBw7csmXL+PHjV61aVfM0LaNY0aNHj5o3PT09KysrRaSgoKCoqKhv375aQNSE\nhobefvvtHTt2rPehbrzxxpo3u3fvLiKWhe6ysrKio6PbtWtnMpm8vb1HjRolIpYRe9a1atWq\nurq60dMKCwtLSkr69+9fs2b5+SJ89dVXtWrTaN27NY9oPbDadWj01dn+pA1d6vPnz//www8H\nDx7s9ku7du0SkW+++abRRwBgRIyxA/A/0dHRWgOYiLRq1apDhw6RkZGDBg2qdVrbtm2tP44W\nYuoqLy+Xn4eX2cjHx6fmTV9fXxEpLi4Wkfnz5z///PPh4eEvvfRSr169vLy8jh49qg1Qs0Vg\nYOCJEyd++OGHhjKl5vLly5bnrcnb29tyr6buq27oOlg09Or8/f2b/aSaS5cuicjNN9+sdafW\nEhgYaHuRAAyEYAfgf0aOHFlruZPrS+vP1WKZjWqGGBEpKSkRkQ4dOlRUVLz88svBwcF79uzx\n8/Orea+Nhg8ffuLEib/97W/aVINazGbzkSNHBg4cqD14rTIsR7QE1mwNvbqWP6nlHOtL0AFQ\nDF2xABzH19e3U6dOx48fr9nZd+LEiVdfffXo0aP1/srx48dr3szNzRWRbt26FRYWlpeXh4eH\nW1KdiGRnZ9tejJbnFi1apDVu1bJy5cpBgwatWLGia9eu7du3P378uPmXy7kfO3bMzc2t0V5p\n6xp6dS1/0i5dunTs2PHLL7+sFaO///77lhQMwMkR7AA41IQJE4qKiv76179ajixcuHDmzJlX\nrlyp9/zVq1dbfv7qq68+++yzPn36dOrUqUuXLm5ubjXnSfznP//RVjCpqKiwpZKoqKjJkyef\nPn36zjvvtKxXJyJVVVXLli2bNWtWt27dHnroIRGJjY0tKCjYtm1bzefKycm54447AgICbHzh\nTXp11+VJJ02aVFFRsWTJEsuR77//fuDAgffee6+N5bm7u8vPHegADIGuWAAOlZqaun379qSk\npMOHD4eEhGRnZ2/fvv2RRx4ZPHhwvedfuXLl3nvvveeee65du/bCCy+YzeYFCxaIiLe39913\n3719+/bExMSRI0ceO3bs1VdfXbt27fjx43fs2LF+/frx48c3Wszq1auvXLny7rvv9u3bNyoq\n6sYbbywuLt6/f/+ZM2dCQ0Pff//9du3aiUhaWtr27dunTp361FNP9enT5/Tp0ytWrPDz83vx\nxRdbeDUaenXX5UkXLly4Y8eOxYsXFxQUREdHnz179rXXXisqKnrqqadsfARtncKMjIxTp05F\nRUUNHTq07jnZ2dk7d+7Ufq6qqvruu+/+8Ic/aDeTk5NtWVAQwPWk20IrAJxJQ+vY1aKtfJab\nm1vzYN117Gqd0LZt2/79+1tunj59esqUKZ07d/b09AwNDf3jH/9YVVVV96G0n3Nzc2fPnh0Y\nGGgymW666aY333zT8jjnz59/6KGHOnXq1LZt2zvuuGPv3r1mszktLc3Pz69r164FBQXW17Gz\neO+992JjYwMDAz09Pf39/W+99daVK1eWlZXVPOebb76Jj4/v1q2bh4dH586d4+Lijh07ZuWy\npKamiohWkuaNN94QkfXr19d8pVZeXTOetO6lLigoSEpKCg4O9vDwCAgIGD9+/L///W/bH+Hq\n1asTJ0709vZu167dpk2b6r169U7O0NR6ZAAO4Gb+5QAOAHAScXFxGzZsyM/PDwoK0ruW60/t\nVwdAL4yxAwAAUATBDgAAQBEEOwAAAEUwxg4AAEARtNgBAAAogmAHAACgCIIdAACAIgh2AAAA\niiDYAQAAKIJgBwAAoAiCHQAAgCIIdgAAAIog2AEAACiCYAcAAKAIgh0AAIAiCHYAAACKINgB\nAAAogmAHAACgCIIdAACAIgh2AAAAiiDYAQAAKIJgBwAAoAiCHQAAgCIIdgAAAIog2AEAACiC\nYAcAAKAIgh0AAIAiCHYAAACKINgBAAAogmAHAACgiP8H41Wt/nSgiVQAAAAASUVORK5CYII=",
"text/plain": [
"plot without title"
]
},
- "metadata": {},
+ "metadata": {
+ "image/png": {
+ "height": 420,
+ "width": 420
+ },
+ "text/plain": {
+ "height": 420,
+ "width": 420
+ }
+ },
"output_type": "display_data"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdf3zN9f//8fv8mGH5UTE2ROwttaaZpLGPPiFMoWlEb02a9yR937w/yTuf\nbNMPb97V+0sRsop+4EMakvRJVCO1kUjpG8vPd/N7m21+Ref7x2vtzH6dY855nXNeu10v/XF6\nnteZB5vjfh7P1/P59LPZbAIAAIDvq+HpAgAAAOAaBDsAAACLINgBAABYBMEOAADAIgh2AAAA\nFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGw\nAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAA\nsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiC\nHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAA\ngEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ\n7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAA\nACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyC\nYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcA\nAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGAR\nBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsA\nAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyilqcL8A07duy4ePGi\np6sAAABeoVatWh07dvR0FeUg2Dm2devW22+/3dNVAAAAL5KZmdm5c2dPV1Eawc6xCxcuSDp/\n/ry/v7+nawEAAB524cKFOnXqGPHA23CPHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABY\nBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEO\nAADAIgh2AAAAFkGwAwAAsAiCndUMHy4/P+XmKjFRQUGqV09duyojQ2fOaPx4hYQoMFBRUfr2\nW08XCgAAXI1gZzX+/pIUF6eQEK1bp7lztWOH4uI0dKgCArR6tRYt0u7dionRb795ulYAAOBS\nBDurqVVLkkJDlZSkiAjFx2vAAB08qIAATZ+uyEgNHqz4eB09qsxMT9cKAABcimBnTbGx9seh\noZI0cKB9pH17ScrONrcmAADgZgQ7awoJsT82englR2rXlsRULAAAVkOwsyYjulU+AgAALIZg\nB6/AYl4AAK4ewQ5egcW8AABcPYIdvAKLeQEAuHoEO3gRFvMCAHA1CHbwIizmBQDgahDsrCY1\nVTab2rWzj6SkyGZT9+72kYQE2Wx68EHzq3OAxbwAAFwNgh0AAIBFEOwAAAAsgmAHAABgEQQ7\nAAAAiyDYAQAAWISfzWbzdA3e7quvvurWrdv58+f9jeMRAABANXbhwoU6deps3rw5KirK07WU\nRscOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEO\nAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADA\nIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2\nAAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOKN/w4fLzU26u\nEhMVFKR69dS1qzIydOaMxo9XSIgCAxUVpW+/9XShAAD8gWAHlM/fX5Li4hQSonXrNHeuduxQ\nXJyGDlVAgFav1qJF2r1bMTH67TdP1woAgCSCHVCRWrUkKTRUSUmKiFB8vAYM0MGDCgjQ9OmK\njNTgwYqP19Gjysz0dK0AAEgi2AGVi421Pw4NlaSBA+0j7dtLUna2uTUBAFABgh1QmZAQ+2Oj\nh1dypHZtSUzFAgC8BcEOqIwR3SofAQDASxDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4e\nw9EOAAC4lp/NZvN0Dd7uq6++6tat2/nz5/2NswjgIiNHatEi9eql6Gjdd5927tSYMWraVOHh\nuuUWxcVp/34lJKhOHR06xFpUAIC3uHDhQp06dTZv3hwVFeXpWkqjYweP4WgHd6MnCgDVDcEO\nHsbRDu7DcbcAUN3U8nQBV8xms+3bt++XX37Jz8+X1LBhw9DQ0JYtW3q6LlQRRzu4T8meqKSI\nCK1dq2XL1KWLpk+XpMhIpadr1ixlZsr75hMAAFfMl4JdTk7OCy+88M477xw7dqzUU61atUpI\nSHjyySfr1q3rkdpQZRzt4G70RAGg+vCZYJednd2tW7d9+/aFhobGxMTccMMN9evXl3T69Oms\nrKwvvvgiKSlpxYoVGzdubNy4saeLBbwIPVEAqD58JthNmTLl8OHDy5Yti4uLK/vspUuX5s+f\nP27cuKlTp86cOdP88uARw4dryRLl5GjSJK1cqfx8hYfrlVcUFqbJk7V8ufLyFB6u2bPVqZOn\na/UceqIAUH34zOKJjz76aMSIEeWmOkk1a9YcO3bskCFDPvjgA5MLgwexOAAAgJJ8JtidPHmy\nbdu2lV/ToUOHo0ePmlMPvAEbpgAAUJLPBLvg4OAdO3ZUfs327duDg4PNqQfew0sWB7BpHADA\n43wm2A0aNGj58uUvvfTS+fPnyz5bWFiYnJy8atWqoUOHml8bqiY1VTab2rWzj6SkyGZT9+72\nkYQE2Wx68MHKvo6XLA5gXhgA4HE+s3giJSUlPT194sSJzz77bJcuXVq2bBkYGGiz2QoKCg4c\nOJCRkXHmzJno6OhnnnnG05XCbF6yOIBN4wAAHuczwa5Ro0ZbtmyZM2fO22+//fnnn1+6dKn4\nqdq1a0dGRo4aNWrUqFE1a9b0YJGAl8wLG1JTlZp62UhKilJSLhtJSFBCgkn1AADczWeCnSR/\nf/8JEyZMmDDh3Llzhw4dMk6eaNCgQatWrfyNaTDA07xkXhgAUD35UrArFhAQEGo0QwAv4yXz\nwgCA6slnFk8AAACgcj7ZsStXVlZWYmKipPXr1zv/qkOHDvXt2/fcuXOVXFNYWCip5F19AAAA\nXsg6wS4/P/+zzz670lcFBQVNnDjxwoULlVzz5ZdfvvfeewQ7L8TiAAAASrJOsLvpppu+//77\nK32Vv7//yJEjK7/GZrO99957VSwLAADALNYJdgEBAWFhYZ6uAgAAwGMstXji5MmTe/fu9XQV\nqKZcdZAGAABVZqlg9+KLL7INCgAAqLYsFexQfQwfLj8/5eYqMVFBQapXT127KiNDZ85o/HiF\nhCgwUFFR+vZbTxcKAICJCHbwScZRI3FxCgnRunWaO1c7diguTkOHKiBAq1dr0SLt3q2YGI55\nAABUIz6zeKJz584Or/n3v/9tQiXwBsZpXaGhSkqSpIgIrV2rZcvUpYumT5ekyEilp2vWLGVm\nKirKk6UCAGAanwl227dvl1S70uOZLl68aFY58AqxsfbHxt2VAwfaR9q3l6TsbHNrAgDAc3xm\nKnbixIn169fftWvXuYo9+eSTni4TpgoJsT82englR4xPAUzFAgCqD58Jds8991y7du2GDRv2\nG/9Q4w8332xfP/HCC5K0d699/cS4cZK0b59nawQAwDw+E+xq16793nvv/fDDD5MnT/Z0LfAi\nxesn7r1XkqZMsa+fGDVKkmbMoGlnNtYsA4Cn+Mw9dpI6dOhw5MiRSm6k69evX6NGjcwsCR5X\nvH6iY0etXKmjRxUQULR+Yvt2ScrLY/2E2YrXLEdHa9067dypMWMUF6fwcN1yi1av1v79SkhQ\nTIwOHVKl980CAK6MLwU7SQ0aNKjk2R49evTo0cO0YuANSq6fMJRcP2Fg/YTJWLMMAJ7iM1Ox\nQLlKrpaoaISpWI9gzTIAmI9gB99WdiKPqT0vwZplADAfwQ4+KTVVjz562UhKipKTLxtJSNCC\nBWYWhcuQuQHAfAQ7AAAAiyDYAQAAWATBDgAAwCIIdgAAABbhY/vYAcVSU3XmjEJDlZOjSZO0\ncqXy83XHHfL315kzmjxZy5crL0933qk//cnTtQIAYAo6dvBhxSccGKeKzZ2rHTsUF2c/VWzR\nIu3erZgYttUwVWqqbDa1a2cfSUmRzabu3e0jCQmy2fTgg+ZXBwBWRrCDDyt5wkFEhOLjNWCA\nDh4sOlUsMlKDBys+XkePKjPT07UCAOB+BDv4PE44AADAQLCDz+OEAwAADAQ7+DxOOAAAwECw\nw9UaPlx+fsrNVWKigoJUr566dlVGhs6c0fjxCglRYKCiovTtt54uFAAAqyPY4WqxNBUAAC9B\nsMPVYmmqO9AHBQBUAcEOrsHSVNeiDwoAqAKCHVyDpanOcL4PRx8UAFAFBDu4hkeWpvrcCQfO\n9+F+/12iDwoAuEKcFQuYp2QfTlJEhNau1bJl6tJF06dLUmSk0tM1a5aOH5fogwIArhAdO7hM\n8TzjmjWS1KuXfZ5x6VJJGjmS+/0l5/pwZ89KbNEHALhCBDu4TPE84zXXSNJ//Zd9ntGII2PH\ncr+/5FwfzpiKBQDgihDs4DLF84w9ekhSv372+/0HD5akLl2431+iDwcAcBuCHVyM+/0BAPAU\ngh2uVqmlqSEh9qWpxfOMxUtTud8fAAD3IdhVR2491YB5RgAAPIVgVx1xqoH3+8tffGyLPgCA\nNyDYVUecagAAgCUR7KovVjmYz+eOygAA+BaCXfXFqQYAAFgMwa76YpUDAAAWQ7CDyzDPCACA\nZxHsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwa46YpUDAACWRLADAACwCIIdAACARRDsAAAA\nLIJgBwAAYBEEOwAAAIsg2AEA4ErDh8vPT7m5SkxUUJDq1VPXrsrI0JkzGj9eISEKDFRUlL79\n1tOFwooIdqjWeP8F4HL+/pIUF6eQEK1bp7lztWOH4uI0dKgCArR6tRYt0u7dionRb795ulZY\nDsEO1RrvvwBcrlYtSQoNVVKSIiIUH68BA3TwoAICNH26IiM1eLDi43X0qDIzPV0rLIdgh2qN\n918AbhIba38cGipJAwfaR9q3l6TsbHNrQjVAsAN4/wXgeiEh9sfGZ8iSI7VrS2IqAK5HsAN4\n/wXgesZbR+UjgMsR7ADefwEAFkGwAwAAsAiCHQAAgEUQ7GBxle9Ut2SJJA0Z4vad6tgwDwBg\nAoIdLK7ynep695akrCy371THhnkAABMQ7GBxle9Ud/31knT//W7fqY4N84DqIzVVNpvatbOP\npKTIZlP37vaRhATZbHrwQfOrg8UR7FAtVLRTnfH+e8cd0h871bn1/ZcN8wAAbkWwQ7XgJTvV\neUkZAACrItihWvCSneq8pAwAgFUR7AAAACyCYAcAAGARBDsAAACLINgB5pkwwb5N8UsvSVJi\non2b4okTJSkpiW2KAQBVRLADzFNym+I//1mS9u61b1M8bpwk/fvfbFMMAKgigh0szkt2CjXK\naNxY+mOb4nnzZLNp0CD7NsXPPSebTaNHs00xAKCKCHaA2dimGADgJgQ7wGxsUwwAcBOCHWA2\ntikGALgJwQ4AgCs2fHjRIvfQUPn5qW5dBQXp2mtVr56aN1eTJgoMVHCwmjZVYKCioljtDpMQ\n7AAHit++ExMVFKR69dS1q32PkpAQ3rWB6qh4kXtgoCS1batTp1Snjtq314kTqlVLN92kU6d0\n6ZLefFO7d7PaHSYh2AEOlNyjZN06zZ2rHTvse5SsXq1Fi3jXBqod4wbZ0FBFRkrSf/yHYmN1\n5IjatSt60KaNxozRqVNq0ULx8ax2h0kIdoADxW/fSUmKiFB8vAYMsO9REhmpwYN51waqqeJF\n7rGx9kXuxQ+KF7mz2h2mIdgBTmGPEgBlFS9pDwmxL3IvflC8yJ3V7jANwQ5wikv2KPGS3ZIB\nuErxkvZKHgBmItgBTvHpPUpY/wEA1QTBDrA+1n8ApomO1rlzkjRggMaOlaSsLF24IEljx/Ih\nCm5HsAOsj/UfgJmWL5ekl1/Wn/8sSTNnav58SZo4kQ9RcDuCHeACCxZI0pkzlc11Nmni4flQ\n1n8A5rj2WkkKDVVUlCSdOFF050abNnyIgtsR7AAXMFpiM2dWNtd5+rQkPfCAx+ZDOaMWMEeH\nDqVHbrvN/pgPUXArgh3gAjVqSFKzZpXNdRpNsgYNPDYf6tPrPwBvU7zIvfhBSooefVSSnn66\naLV7QoKSkyXpoYfsq935EAW3ItgBDjizR4nxEfypp+wjZec6GzaUpFtvrewaPsoDnuLCxeN8\niIIHEewAl6l8rtPo6jVoUNk1fJQHPIXF47AGgh3gMs58TK9Z0/E1AMzH4nFYA8EOAGBZVzrB\nWnLx+A8/SFLv3vbXrlolSfv3s7M3vBfBDgBgWc5PsP7+u1TeDRWvv25/7b//LUkvv8zkLLwX\nwQ6wPs6oRbXl/ATr8ePS5bdGGPfFtmxpf23HjkXXMDkLr0WwAwBYnDO7c589W/5re/SwPw4K\nkqTOnUu/tnglOx+i4HEEO1QjLtzOAIAPcWZ3bmMqtqwmTeyPjR5e48alX8tULLwHwQ7ViPu2\nM3DmY3p6umw2jR9f2TV8lAfc4Wo2liu7kt2IhoB3ItjBMzzSPGM7AwCAtRHs4Bke3AvUmbtt\nOPsBAOCLCHbwDA82z5y524Y7ZoDq5i9/KX1DRadO0uVLJYyRnj3NrQy4Er4d7C5cuJCZmblx\n48Z9+/Z5uhZUhUeaZxzj6EKsR4FVDR+uN96QpClT7D/bxj52r7xi/9k+eNCzZQKl+Uywe/75\n5zdu3FhyZP78+c2aNevSpcvdd9994403du7c+bvvvvNUeagamme+juM1YVXGz7akoCD7z/by\n5UVPFf9sz5rlwRqBcvhMsJsyZconn3xS/L8fffTRmDFjzpw5c//99ycmJnbr1m3btm133XVX\nVlaWB4vElaJ55j7m9NJYjwIvV+WN5Yyf7cce08yZ9p/tvDw98IDefdf+s336tDZvZiU7vIjP\nBLtSJkyY0LBhw+3bt3/wwQfz5s3btGnTihUrTp8+/cILL3i6NMArmNlLYz1KJZit9mn8bMPn\n+GSwO378+J49ex5//PEOHToUD8bGxg4cOPB///d/PVgY4D3M7KUxpV4JZqt9Wu/e9lA+Y4Yk\n5efbQ/mECZL088+erRG4jE8Gu3PnzkkqmeoMYWFhx44d80RFgJcyp9/AlHolmK32dcWh/N57\nJWnqVHsoHzVKkmbMIJTDi/hksAsODm7YsOHhw4dLjf/666/XXHONR0qCT6iGxzjSS/MSzOj5\nruJQ3rGjJB09ag/lxu4neXmEcngRXwp2Bw8e3Lp16969e3NycsaOHfvGG2+cOXOm+Nmffvrp\nf/7nf7p16+bBCgFvU517aV51cxsJ23eVDOWGkqHcQCiH9/ClYLdkyZLbb789NDS0SZMm//jH\nP/bu3fvxxx8bTy1evLhz585nz56dMmWKZ4uEk6ph8wwm86qb26pzwvZ1JSN4RSOEcngPnznK\n+K233sotIS8vLzc3t3Hjxsazubm5jRo1Wrp06e233+7ZOoGrNHy4lixRTo4mTdLKlcrPV3i4\nXnlFYWGaPFnLlysvT+Hhmj27aBoIFSl5c5ukiAitXatly9Sli6ZPl6TISKWna9YsZWYqKsqT\npcKbEcrhW64q2OXk5OTl5bVu3dpFxVRm5MiRlTz78MMPjxkzpkYNX2pAAuUq7jNFR2vdOu3c\nqTFjFBen8HDdcotWr9b+/UpIUEyMDh3iHxjHuLkNQLVSWRLauXNn//79W7duHR0d/dprr126\ndKnUBTNmzGjTpo07y3NWYGAgqQ7W4FuLKL1/Sp2b21A1qal69NHLRlJSlJx82UhCghYsMLMo\nwLEKO3abN2/u2bPn+fPn69Wr9+uvv27atGnZsmVpaWnFs58A3Ic+k6swjwagWqkw2P3jH//4\n/fff09LSBg4ceOHChddee23SpEl9+vTZuHFj/fr1zSzRSVlZWYmJiZLWr19/RS88ePDgxYsX\nK7ngxIkTV1UZcOWuvs+UmqrU1MtGUlKUknLZSEKCEhKuqk4AgFepMNjt3Llz6NChgwYNklSn\nTp0JEyZ07NixX79+Q4YMWb16dc2aNU0s0in5+fmfffbZlb4qKysrNDTUZrM5vNKZawBXoc9k\nGSRsAGaq8L60I0eO3HjjjSVH7r777tTU1LVr1/7tb39zf2FX7Kabbvr++++///77K3pV27Zt\nc3NzT1XqX//6lyQ/Pz/3FA6L86rd1AA4z/tvIQXKqrBjFxQU9N1335UaHDFixO7du//xj3+0\naNFi4sSJbq7tygQEBISFhVXhhQ0aNKj8gnr16lWpIkBilSsAwEQVduxiY2M//PDD2bNn/3b5\njTwvvPBCfHz8U089NWHChJIHP5jGZrP98ssv69evT0tLS0tL27Bhw6FDh8wvA3CSb61yxdWg\nOwvA4yrs2CUlJa1cufKJJ55YtWrVp59+Wjzu5+f31ltvNWzYcObMmaZUaJeTk/PCCy+88847\nx44dK/VUq1atEhISnnzyybp165pcFeAMVrmaz/yb2+jOAvC4CoPdddddt23btuTkZH/jvaoE\nPz+/WbNm9ejR46mnnsrKynJzhUWys7O7deu2b9++0NDQmJiYG264wVice/r06aysrC+++CIp\nKWnFihUbN25kQxZ4IXZTqw446wKAx1V28sT1118/Z86cip6NjY2NLXs2sttMmTLl8OHDy5Yt\ni4uLK/vspUuX5s+fP27cuKlTp5rfSgQccn6VK4sofR3dWQAe5DOnNXz00UcjRowoN9VJqlmz\n5tixY4cMGfLBBx+YXBgAlER3FoAH+UywO3nyZNu2bSu/pkOHDkePHjWnHgAoF3sQAvAgnwl2\nwcHBO3bsqPya7du3BwcHm1MPAACAt/GZYDdo0KDly5e/9NJL58+fL/tsYWFhcnLyqlWrhg4d\nan5tAAAA3qCyxRNeJSUlJT09feLEic8++2yXLl1atmwZGBhos9kKCgoOHDiQkZFx5syZ6Ojo\nZ555xtOVAgBQvuHDtWSJcnI0aZJWrlR+vsLD9corCgvT5Mlavlx5eQoP1+zZ6tTJ07XCN/lM\nx65Ro0Zbtmz517/+1bZt288//3zhwoWzZ8+eM2fOokWLNm/eHB4e/vrrr2/cuDEwMNDTlQKX\n4VQioMp8d8/niiqvUUOSmjXTwoVq1kx//7t27FBcnIYOVUCAVq/WokXavVsxMaywQRU57tht\n2rTp5ptvvvbaa8s+lZGRcejQocGDB7uhsHL4+/tPmDBhwoQJ586dO3ToUH5+vqQGDRq0atWq\n7GZ7AABf57t7PhdXfvSojh3Ta6/piScUFaXff5ekbt306KMaNUpTp6pGDR08qD/9ic0O4RqO\nO3bR0dFffvlluU+lp6ePHj3a1SU5FhAQEBoa2qlTp06dOrVr145UB6As85s9dGddzndP5Cuu\n3JhR/eADdeigS5d0/fWStGuXlizRrbfq99+LfjwyM+0tOjY7xNWosGO3d+/evXv3Go+3b98e\nEBBQ6oKzZ88uW7as3KUMAOBxzjd77rpL//M/3PbkvXx3z+fYWC1dKkmhobrjDu3apZtv1hdf\n6NgxBQRo1Cht3aqmTSUpL8/eomOzQ1yNCoPd+++///TTTxuPn3322Youe+CBB1xfFABcNecP\n+Dp9WvLN+b5qwgv3fHa4BsI40jwvr+j62Fht2iRJ9esXjQwcqHPnJOnSpaIR78ym8DkVBru/\n//3v8fHxmZmZAwcOHDFixM0331zqgpo1a954440DBgxwc4UAUHXONHsuXCh6ljNevZMX7vns\nsB88aZI++0xjxui++6QSSbTGHzdAhYSo1FnrtOjgEpUtnmjevPmAAQP69+8/duzYrl27mlYT\nALiKM80e4352353vg/kc9oNbt5akEyd0/LjkldkUVuV4VeyaNWtMqAMA3MH5f1C9cL4PXq7y\nDwOGs2fNqweQM8HOZrO9//77b7/99uHDh38r711t165dbigMAExFTwVXqvIPAwajHwyYxnGw\ne/nllydOnCipXr16tXmfAwBAEh8G4JUc72M3a9asPn36ZGVlFRYW5pbHhCqBast3d94HqpUV\nKySpoKDor+rChUXjxqLXbt00bZok3X+/kpMve+EDD2jBgstG2OwQV8NxsDt69OjUqVNvvPFG\nE6oBUErx4ruQEK1bp7lzOYAI1YgP7flcs6YkTZlS9Ff1jTeKunc//CBJ8+dryRI1aqTJk+2T\ns15SOSzGcbALCgqy2WwmlAKgLN/deR8+jVbxlTL2MWnRwv5XtWNHSWrXTjabBg2y/1Xt29dL\nsymswXGwGzZs2DvvvGNCKQAqwk4cVeB8s4cJibJoFVdNjx72x0FBktS5s32Ev6owgeNgl5SU\nlJWV9dBDD33yySe7d+/eW4YJVQLVHDtxuJUPzfeZhlZx1TRpYn9s9PAaN7aPeMlfVdqx1uZ4\nVew111xjPFi8eHG5FzBRC7hb8VI74yAjSTNn6sEHiw4y6tlTkt5+W//1X5xqCleiVVyR1FSl\npl420qmTtm/XHXdcNvLhh+rTx+TSHHP+GGXO0PNFjoPdsGHD/P39a9VyfCUAdzPekSU1aWJ/\nR96zR5Jq1/bAO7LDEzMJmj6NVrElOX+MMmfo+SLHca2iRh0A8xV/who5UhER9olEFv0AACAA\nSURBVHdkScOGKTLS7HdkPvpbG/u0WRjtWKtyfI9dsfz8/B9++IGN6wCvYrwjl2TmOzJ3YgHm\ncPmNcbRjrcqpYPfFF1907ty5QYMGYWFhX3/9tTE4YMCAzz77zJ21AXCs7F0S5r8j89EfcDeX\nr1OmHWtVjoNdRkbGPffc8/PPP/cpcQvo8ePHMzMzY2Jitm3b5s7yAPgAPvoD7kZ3HE5yHOye\nffbZZs2a/fjjjwuLT0iRmjRpsmPHjmbNmj333HNurA6o9sruxCFpz57LduKQlJ7uyZ04+OgP\nmLNpDt1xOOQ42H399dePPfZYixYtSo03bdp0zJgxX375pXsKAwAAl6E7DoccB7u8vLyWLVuW\n+1Tz5s0LCgpcXRIAwMPYtNk7le2FT5tmX1Txt79J0pQp7DZcrTkOds2aNdu9e3e5T3355ZfB\nwcGuLgkAADjFiHrGoorx4yXpwAEOf6vWHAe7mJiY11577dvL035OTs5///d/v/XWW/3793db\nbQAAoDI1a0p/LKpo1UqSIiMdLKqgHWttjoPd1KlTAwMD77jjDiPDPf300xEREc2bN582bVqr\nVq2SjI2rAZiCd2QAZZVcVNG8ucSiimrMqanYrVu3jh49+sCBA5K+++6777777pprrnnssccy\nMzODgoLcXyQAL0XQBLxBySUUNWqUHmFRRbXi1AmwTZs2fe211+bMmXPs2LH8/PxrrrmGPAcA\ngJdgyyEUu4Ijxfz8/IKCgtq1a0eqAwDAtSo/NOzjj1W/vh5+2L6+1eiOl/wH2eiOh4WZVxWr\nbr2Q446dzWZ7//3333777cOHD/9WXid3165dbigMAIBqpPjQsOhorVunnTs1Zozi4hQerltu\n0erV2r9fCQmKidGhQ+Y15LyzKlTCcbB7+eWXJ06cKKlevXq1+aYBAOAGJQ8NkxQRobVrtWyZ\nunTR9OmSFBmp9HTNmqXMTEVFVeuqUAnHU7GzZs3q06dPVlZWYWFhbnlMqBIAgJKsOkXonYeG\neWdVKJfjjt3Ro0fff//9G2+80YRqAABwhlWnCL3z0DDvrArlctyxCwoKstlsJpQCAICTSk4R\nRkQoPl4DBjjYmNcnXOn6VnO2HGLVrQ9xHOyGDRv2zjvvmFAKqierzqcAMAFThEApjqdik5KS\nHnjggYceeujhhx9u1apV2fUT7Up+UgCukFXnUwCYgClCoBTHwe6aa64xHixevLjcC5ioxdVg\nyRXg0PDhWrJEOTmaNEkrVyo/X+HheuUVhYVp8mQtX668PIWHa/Zsderk6VrNxRQhUIrjYDds\n2DB/f/9atZw6owKoGuZTgErQ2AbgJMdxraJGHeBCzKcAlaCx7bypU7V+fVF3c8kSSZoyRTfe\nSHcT1cUVHCl24sSJLVu2rF+//ptvvmH7OrgW8ymAQzS2nWG8dcTFKSRE48dL0oEDiovT0KEK\nCNDq1Vq0SLt3KybG6z4rmrO+1RpVoRJOBbtNmzZ17dq1SZMmUVFRvXv37tq167XXXturVy8O\nEwMA09DYdkbNmtIf3c1WrSQpMtIK26AATnI8FZuRkdGrV6+LFy927969ffv2devWLSws/PHH\nHzds2NCtW7eMjIz2xudEAIA70dh2XsnuZvPmEt1NVBuOO3bPP/98kyZNdu3alZ6enpqa+uqr\nr7755ptff/31tm3bAgICpk6dakKVAACUVNEUYVCQ9Ecv05giDA+3jxjobsLCHAe7r776auzY\nsTfddFOp8YiIiLFjx27YsME9hVna4sVq0UK1amniRE+XAgAWRHcT1ZbjYJeXl9eiRYtyn2rd\nuvWpU6dcXZLV5eUpIUEFBXruOfXp4+lqAABuxOE6MJnjYNe0adPdu3eX+9SPP/7YtGlTV5dk\ndXv26OxZPfSQnn5avXp5uhrPY8kVAAsr3oMwJETr1mnuXO3Y4RurdOGjHAe7e+6559VXX121\nalXJEyZsNltaWtqcOXP69evnzvKs6Nw5SfrjPA8AgIWV3IMwIkLx8RowwDOrdOkdVhOOg11y\ncnK9evUGDRoUHBzcs2fPAQMG9OzZMzg4ODY2tkGDBsnJySZUaR19+yo6WpJmzJCfn8aM8XRB\nAHwAjW2vUoWE5A17ENI7rCYcB7vWrVtv3bo1Pj7+7NmzGzZs+PDDDzds2HDhwoWEhIRt27ZV\ndPsdypecrGnTJCk2VmlpeuwxTxcEALgyVUhI3rAHoff0DuFWTm1Q3LJly4ULF+bk5Pz66697\n9uzJzs4+efLkggULmhu7A8F5d95Z1LELDdWgQerY0dMFAYAnuXx+0ITuZhUSkqtW6V79H5c3\n9A7hVldwpNiRI0eOHDly6NChY8eOHT9+3H01AQCqCd+dH/RIQrr6Py5v6B3CrZwKdgsWLGjT\npk1wcHCnTp3uvvvujh07Nm3atEOHDkuXLnV3fQAAC/Pd+UGPJKSr/+Mq2ymcNs3eBfzb3yRp\nyhQWVfgwx0eKzZ07d+zYsXXq1OnVq1dISEj9+vXz8vL27NmTmZk5bNiwCxcuPPzwwyYUCgCw\nKl+cH/TgHshl/7j+/W/5+SknR5MmackSSRo5Uu++q7AwTZ6s5cuVl6f69cv/akbZcXGKjtb4\n8XruOR04oLg4hYfrllu0erX271dCgmJidOgQ+zz7AMcdu5kzZ/bp0+fo0aOffvrpwoUL58yZ\n8+67737zzTdZWVnt2rWbMWOGCVUCACyM+cErUvaPq0ED6Y8p2vHjJWn/fvsU7a23qrBQubmS\n1LWr/c48449040ZJ+v573XuvWrWSpMhI32iaolyOg93+/funTJnSsGHDUuNt2rSZMGFCVlaW\newoDAFQXnAB2RSr64zKmaMuGs2bN7Nc89ZT9zrz335ek22+XpMJCxcTo0iVJMhZGen/TFOVy\nHOwaNmxYs2bNcp+qWbPm9ddf7+qS4BwOnAUAr2fmHoQlp2hLhjOjq2fsi1+/vv3OPGPc6Nvc\nf7+OHtX+/ZJUo4ZE09RnOQ52991334cffljuU2vWrImLi3N1SXACB84CgEVVsqfJ119LUnh4\n+asZSkaxsuHM6MMY4cy4M8/owxmM6JmXZx+haeqjHAe7559/fv369Q899NCHH374008/HTx4\ncPfu3StWrOjfv/+5c+cef/zxwyWYUDEkDpwFAMuqZE8TY/7sxRfL39Ok8hntIUMkFU3LGr26\nJ56QzaagIPvIf/yHbDaFhbnhdwWzOF4VGxwcLCkjI2Px4sVlnw01Yv8fSp4ni/J1766r/1Pi\nwFkA8JDUVKWmXjaSkqKUlMtGEhKUkFDFr19yTxNJERFau1bLlqlLF91+u3buVJ8+2rNHs2Zd\n2WqGkjdVrVghSefPKzFRxr/tc+cWjYwfrzfflKTHHtOiRerUqYq/C3iK42A3aNCgOnXqmFAK\nnNW3rz75RJJmzNCMGUpM1Lx5nq4JAOBK5W4B8/nnRSNXuZrBCHlTpui++9Snj1au1JEjkvTK\nK+rdW8OG6fXXtX8/W5z4JMfBLi0tzYQ6cAWSk9WjhyZPVmysRoxQmzaeLggAqsjd3S/fVe4W\nMMV/XEbC++23oj+ukn8+xh9XSkpRW65cxh14LVooKanotR066PvvVbu2pk8v+vPv10/Llysz\nU1FRLv2Nwc0cBzt4nTvvLFqSbhw4CwCwHBceL2tsWbxypSTFx2vmTJ05I0mnTikkRMeOSZIx\nM9e5s/2FxrYpbHHic5wKdpcuXfrmm2+ys7N/K2+t84NXv0QbAAC4gbEUQ39sYvzoo3rrLf3+\ne9FI8cES338vSY0bS380TY3WoPHPfvVsmvoox8Fu27ZtDzzwwH5jc5vyEOwAAPCgSma0Fy4s\nGpk3r2hPk5MntWyZJD30kCIjFRmp9HTNmiX9MecLn+b4ezhu3Ljc3Ny//vWv7du3r80tlAAA\n+JpPP7Vvkly8m0XxxGvxhnY9e5pbFtzAcbD7/vvv33333UHcywUAgG8quxSjJJo2VuJ4g+LA\nwMBWxi2UAADABxHdqg/HwW7IkCHvGwcFAwAANzPzeFlYj+Op2OnTpz/44INDhgwZOHBgcHBw\n2dvsupf8WQMAAFYxbJj69tWkSVq5Uvn5Cg/XK68oLEyTJ2v5cuXlKTxcs2dzQIUXcRzsdu3a\n9d133x06dGj58uXlXsAxYgAAeJaxX11OTukQdvGiJHXrpsLCohBmSE+/rCkoacmS0k3BTZu0\naJHi4hQdrXXrtHOnxoxRXJzCw3XLLfatUjigwqs4DnZPPPHE8ePHhwwZEhoaWouV0F7CJQfO\nAgCswtivrmwIM8yfr0uXikLYX/7i7Nes5NTa6dMl2bdK4YAK7+E4qO3cuXPBggV//vOfTagG\nAABUQUUhzDh1MixM7doVhbB///vKvnK5p9YWu8pTa+FyjhdP1K9fPywszIRSAADA1Sgbwp59\n1r4UwwhhMTFXthSj3FNrixkzsOWdSwXPcBzs7r///jVr1phQCgAAuBpVC2HDh8vPT7m5SkxU\nUJDq1VPXrsrIKLo/7667FBioqCh9++1lXwfeyXGwe/HFF7/44ovHH398/fr1u3fv3luGCVUC\nAHxXRbnhzBmNH6+QkNK5AVVWNnI5E8KK788LCdG6dZo7V1u36o479NlnknT+vH77TRkZ6t1b\n589L0v33l/Mt47vsJRzfY9e4cWNJ69evf+2118q9gFWxAIBKVHRfP4srvUTZ+/NSUrR/v06e\nlKS331ZOjh59VKdO6b33JGn6dDVqVPQtmzq16IvwXfYSjoPdsGHD/P39WQ8LAKgaFlf6hJL3\n5zVqJEmNG+vsWd18s9q106uvatu2ov0Y2rdX9+5F37IxYyQpNVVffSVJ33+vF15Q+/ZatEh+\nfjp4UIWFmjpVnTrxXTaJ47i2ePFiE+oAAFgbiyu9XMm78fz8JKlFC/36a9FIs2aS1Ly5Dh8u\nGjG+ZYbGjdWnj1auVE6OvUs3bJjefFNnz9q7dHyXTeD4HrtiJ06c2LJly/r167/55pvc3Fz3\n1QQXW7xYLVqoVi1NnOjpUgBUXyyu9HJlp0fr1bM/rlFDkurWLf/6wYN13XWSdPfdOnhQAQGa\nPl0tW0pSv346elSZmfaX8F12K6eC3aZNm7p27dqkSZOoqKjevXt37dr12muv7dWr165du9xd\nH65WXp4SElRQoOeeU58+nq4GQPVVtfv64UGJiaVPrb377tJbpUj69FP7Vik33ihd3ott3Vqi\nS2cix1OxGRkZvXr1unjxYvfu3du3b1+3bt3CwsIff/xxw4YN3bp1y8jIaF+yGwtvs2ePzp7V\nI4/o6ac9XQoAwF1SU5WaetlISopSUi4bSUhQQoLrf+mSndeaNUuPGN1ZunSmcRzsnn/++SZN\nmnz66ac33XRTyfHt27f37dt36tSp3ITn1c6dk6RrrvF0HQAAa6IX61UcT8V+9dVXY8eOLZXq\nJEVERIwdO3bDhg3uKQyu0LevoqMlacYM+fkVLV4CAKCM0FD7LnTffSdJWVn2XejWrpWYUfUF\njoNdXl5eixYtyn2qdevWp06dcnVJcJ3kZE2bJkmxsUpL02OPebogAID3Kt6juFUrSXrmGcXG\n6osvdO5c0UYnb7+tvLyiqDdunGeLRfkcB7umTZvu3r273Kd+/PHHpk2burokuM6ddxZ17EJD\nNWiQOnb0dEEAAK+TmqpHH5X+2GswIkK9ehU9tX277r9f69drwABJOntW/fsrIECrV2vUqKJr\njJPH4CUcB7t77rnn1VdfXbVqVckTJmw2W1pa2pw5c/r16+fO8gAAPi81tfTiypSUKzuHHuYo\n3mswNVW33SZJt95aFPXS0hQZKUm//67p0xUZqdde0y23SNLOnUUvsdl07bX2r2Z8l0t+3/ku\nm8BxsEtOTq5Xr96gQYOCg4N79uw5YMCAnj17BgcHx8bGNmjQIDk52YQqAQCAu5Xdo7hvX/uI\nsUdxp072Y2FPnJCkP//Zfizs7NmS1Lu3mjXTddepXr2iG4LOn+fEWJM4DnatW7feunVrfHz8\n2bNnN2zY8OGHH27YsOHChQsJCQnbtm2r6PY7AADgW8quZm3e3P7Y2KO4cWP7sbB33CFJCQna\nsUNxcRo6tOj6P/1JeXny89Ps2crOVqtWev/9ogncRYu0e7diYtgAxV2c2qC4ZcuWCxcuzMnJ\n+fXXX/fs2ZOdnX3y5MkFCxY0L/kNBwAA1mLsS2e06Iwo9n//r959V5IaNiza9n7pUl28qIMH\nde5cUdTr1k2JiTp5UjfdpAED7GdRREZq8GDFx9vPooDLOQh2x44d27Jli/HYz8+vefPm7dq1\na9as2Zw5czhVDACA6sBo0W3bJkl//rO6dZOk9HTNny9JEycWHTWRmanff5ek2Fj7sbCcC2yy\nyoLdl19+2b59+6SkpFLjO3fuHDduXFhY2C+//OLO2uAjOIsWACzNOD2ifn1Jat68KKsdO1Y0\nddumjcLCJCkvT8ePS1JIiP1YWM4FNlmFwS47O3vw4MEFBQV33313qaduvfXWV155JTs7u2/f\nvueMgw1QbXEWLQBUD8biiZKMlbMlnT0rXfVZFMWLM4zdkuvVsy/OYAWGQxUeKbZgwYITJ04s\nWLAgoczBcn5+fk888cSlS5cmTJiwaNGixMRENxd5GZvNtm/fvl9++SU/P19Sw4YNQ0NDW7Zs\naWYNsOMsWgCoHurWLT3SqFHpEWMq9ioVL86Ijta6ddq5U2PGKC5O4eG65RatXq39+5WQoJgY\nHTrE8WWlVdixW7VqVdu2bUcV7z9Yxrhx41q0aLFw4UK31FWenJycJ598slmzZm3btu3du3ds\nbGxsbGzPnj1btWp1ww03PPfcc2eNTwooqXt32WyaPt1dX7/sWbTMzAKArym712CnTpLUubN9\nxJhv7dnTPlLL8YHzVWF82eLdkuPjWYFxBSoMdgcPHrzjjjtq1Kjwglq1anXt2vWHH35wT2Gl\nZWdnR0ZGvvzyyw0bNhw5cmRycvI///nPf/7zn88888ywYcMuXryYlJR055135uTkmFMPpPLO\nomVmFgAsoWzU+z//p/S20vfe68YNh4t3S5ZYgXEFKgzbp0+fvu666yp/8XXXXXf+/HlXl1S+\nKVOmHD58eNmyZXFxcWWfvXTp0vz588eNGzd16tSZM2eaUxKUnKwePTR5smJjNWKE2rRhZhYA\nXGv4cC1ZopwcTZqklSuVn6/wcL3yisLCNHmyli9XXp7CwzV7dlGPzTJKrrdgBYbzKmzIXXfd\ndQcPHqz8xT///HOTJk1cXVL5PvrooxEjRpSb6iTVrFlz7NixQ4YM+eCDD8ypB1J5Z9GWnZkF\nAFyF4hvOQkK0bp3mzrXvBmztLX+vcgVGtVVhsLv99ts/++yzkydPVnTB3r1709PTu3bt6p7C\nSjt58mTbtm0rv6ZDhw5Hjx41px6Uo+zMLADg6njhDWepqSp1nmhKihYskKS//KVoArf4WFjO\nBTZZhcFuxIgRBQUFo0ePvnjxYtlnT58+/dBDD128eHHkyJFurK6E4ODgHTt2VH7N9u3bg4OD\nzakH5UhOLjoUMDZWaWl67DFPFwQAFsENZ3BShcFu8ODBvXr1SktL69q1a1pamrG3iKTjx4+/\n8cYb4eHhGRkZ999//7333mtOoYMGDVq+fPlLL71U7l19hYWFycnJq1atGjp0qDn1oBxlZ2YB\nAK7gzA1nDzzgrr3fyi6koA/ntSpcPOHn57d8+fLhw4d//PHHsbGxfn5+DRs2vHTpUnHCGzp0\n6FtvvWVWnUpJSUlPT584ceKzzz7bpUuXli1bBgYG2my2goKCAwcOZGRknDlzJjo6+plnnjGt\nJAAAroYzCyOM8x6cvOGMvd9Q2RY0jRo1Wrt27ccff/zOO+988803R48erVGjRvv27aOioh55\n5JFoozdjlkaNGm3ZsmXOnDlvv/32559/funSpeKnateuHRkZOWrUqFGjRtU0zisGAMDrObMT\n7/DhklTeXVHlMG7FkxQRobVrtWyZunQp2sk0MlLp6Zo1S5mZiopy028InlfZWbGGfv36LV68\nOCsrq6Cg4PTp0z/99NObb75pcqoz+Pv7T5gwYfv27QUFBT///PO2bdu2bdu2Z8+egoKCLVu2\njB49mlQHAPAhziyMMO6o27nTqS/o2VvxKjoKbOhQ+fmpeXPVri1/fwUEOJgmZub3arhn02g3\nCwgICDV+YAEA8HGVp7GGDSXp+HGnvpRn936rqAFpnDPWqpV69NDatfLzK9qxhWlid3DcsQMA\nAO5TeRozToByMo15du+3ihqQRg2RkVq6VKNG6fRpRUVxRJi7+GTHrlxZWVmJiYmS1q9f7/yr\nzp49O2/evAsXLlRyzTfffHO1xVmYcRYtAKCqLLYTb9kGZKtW2revaNyYDm7cWGLHFvewTrDL\nz8//7LPPrvRVOTk577//fuUHox0/flySjfgCADBdfLw2bVKzZvaRlBSlpFx2TUKCvv5ab7xh\nbmUVKNuANBb2GuMlMytHhLmDdYLdTTfd9P3331/pq4KDgzdv3lz5NfPnzx8zZoyfn19VS0M1\ns3ixnnpKR45owgS9+KKnqwHgHarNO0PZdqMxm2yxxqTXsk6wCwgICAsL83QVPsi17zXMzObl\nKSFB/v567jndfrunqwHgHXhngFnKD3aHDx92/ku0aNHCRcU4xWaz7du375dffjG2Sm7YsGFo\naGjLli3NrME6eK9xuT17dPasHnlETz/t6VIAeA3eGWCW8oPdFeUk024+y8nJeeGFF955551j\nx46VeqpVq1YJCQlPPvlk3bp1zSnGInivcblz5yTpmms8XQcAb+L+d4bUVKWmXjZS7q14CQnu\nKwFeofxg54UnrmZnZ3fr1m3fvn2hoaExMTE33HBD/fr1JZ0+fTorK+uLL75ISkpasWLFxo0b\nGxuLbeAMUohr9e2rTz6RpBkzNGOGEhM1b56nayqh2tziA3iXit8ZSGNwufKD3dKlS515cWFh\nYfHRse42ZcqUw4cPL1u2LC4uruyzly5dmj9//rhx46ZOnTpz5kxzSvJ5Xp5CfFFysnr00OTJ\nio3ViBFq08bTBZXAtDvgKd78zgDrsV2F9957r3nz5lfzFZzXrFmzUaNGVX7N0KFDW7Zs6fJf\net68eZLy8/Nd/pU97KuvbNOm2SRbbKwtLc323XeeLsgS0tNtkm3SJE/XUUZmpk2yjR3r6TqA\naslr3xlQJcYuaZs3b/Z0IeVwalXsiRMnli5dun///oslTiE+d+7cmjVrCgoK3JQ4Szl58mTb\ntm0rv6ZDhw5paWnm1GMFd96pS5ckKTRUgwZ5uhq4GdPugPtwnwO8huNgt3///i5duhwv75i6\nWrVqTZkyxQ1VlSM4OHjHjh2VX7N9+/bg4GBz6oEr8Z7obky7A+7DfQ5XaPhwLVminBxNmqSV\nK5Wfr/BwvfKKwsI0ebKWL1densLDNXu2OnXydK0+yPFZsc8888y5c+dmz55tnOuQmpq6bt26\nv//97yEhIWvWrElKSnJ/kZI0aNCg5cuXv/TSS+WeElFYWJicnLxq1SovXPYBB4z3xIICPfec\n+vTxdDUWlZysadMkKTZWaWl67DFPFwRYiLG9wEMP6emn1auX+36d4cPl56fcXCUmKihI9eqp\na1dlZOjMGY0fr5AQBQYqKkrffuu+ElxT6qpVktS6tWrU0Lp1mjtXO3YoLk5DhyogQKtXa9Ei\n7d6tmBgOoqgKxx279PT0xx9//PHHHz937pykW265pWvXrn369Bk6dGjPnj1Xr17drVs399ep\nlJSU9PT0iRMnPvvss126dGnZsmVgYKDNZisoKDhw4EBGRsaZM2eio6OfeeYZE4qBK7HligmY\ndgfcx6z7HPz9JSkuTtHRWrdOO3dqzBjFxSk8XLfcotWrtX+/EhIUE6NDhzx8qEPlpfburVWr\ndO6c0tL0yiuKiNDatVq2TF26aPp0SYqMVHq6Zs1SZqaiojz5G/FFjjt22dnZN954o6QaNWpI\nunDhgjF+2223Pf7448nJyW6tr1ijRo22bNnyr3/9q23btp9//vnChQtnz549Z86cRYsWbd68\nOTw8/PXXX9+4cWNgYKA59cBluPcLgO/q21fR0ZI0Y4b8/DRmjPt+KePc1dBQJSUpIkLx8Row\nQAcPKiBA06crMlKDBys+XkePKjPTlb9uFTqFlZd6/fWSFBNjLzU0VJIGDrR/hfbtJSk725W/\nkWrCcbC75pprjh49Ksnf3z8wMPCXX34pfurmm2/eunWrG6u7nL+//4QJE7Zv315QUPDzzz9v\n27Zt27Zte/bsKSgo2LJly+jRo2vWrGlaMXANE98TAcD1TL/PITbW/ticPFTcfgsJubKZ08pL\nvfVWe6lGEAwJsT9rdByZiq0Cx8EuOjp63rx5n3/+uaRbb711zpw5xSthN2zYUKdOHbfWV66A\ngIDQ0NBOnTp16tSpXbt2/sYPHXzO4sX69tui06G59wuAL7rzzqJPp8Z9Dh07uvsXLJl+KspD\nDzzgylvxqtwprLxUIz6UjG6enT62DMfBbvLkySdPnnzyyScljR49euvWrTfffHNsbGxERMSC\nBQt69+7t/iJhRcaaiQsXirZUN+s9EQB8Wtn0U24eqkKDrXJV6BQ6WSpcy/HiiS5dumzatCkj\nI0PSyJEj9+zZM3PmzLS0ND8/vwEDBnDMA6qoeM3EsGF6/XVPV+M63bvLrNOTAfgM098ZjAab\n5LKlCc50Cpk59QaOO3aSIiMjH3vsMUl+fn7Tpk07derUvn37CgsLV61adb1xDyR8lPFeY/xd\nN5n5ayYWL1aLFqpVSxMnmveLwtfxYwPf5PJb8Wi/+QqnTp4wZGdnHzlyJDc397rrrmvevHnd\nunXdVxYsrtR+uSZgB1FUAT828Fk02Kotpzp2CxYsaNOmTXBwcKdOne6+++6OHTs2bdq0Q4cO\nS5cudXd9cCXv6T2UXEdmPHA3s3YQhaXwYwOf5Z0Ntuho5eZq82ZJSkmRHxBr/AAAIABJREFU\npKwsnTmjdeskqXfvq9pg2Yc2cHYrxx27uXPnjh07tk6dOr169QoJCalfv35eXt6ePXsyMzOH\nDRt24cKFhx9+2IRCcbW8qvdQcr9cY0GZu7FbHjf/VQE/NoCrxcVp2DDdd59efVVvvaWZM/X1\n17rrLs2Zc9kGywkJRSvrylXuoWTGrWEdOyonRxcvKiRE27d76QbO7mVz5E9/+lOfPn1yc3NL\njf/yyy/t2rW7+eabHX4FXzdv3jxJ+fn5ni7k6mRm2iTb2LGeruMP6ek2yTZpkv2B+/TpY5Ps\n/yUmuvHXgmXwYwMnmfAmdiUefdQm2fbssY8kJ9skW3q6fWTBAptkW7LkCr6gZMvJsf3lL7am\nTW21atkk2+uv2woLbX/9qy042Fanjk2yTZvm+Os89ph9ZMgQm2R74AH7yF//apNsmzc7KCk+\n3ibZevWyTZ1q+/Zb28KFtoAAW2BgUZ0bN9p697b5+RX979132+usXdsm2d5806nfeCWM0003\nOyzUExxPxe7fv3/KlCkNGzYsNd6mTZsJEyZkZWW5I27C9apz74GTUlEF/Nig2jMmN/84cErX\nXae1a/XSS+rXT5LGjFGDBnr/ff3znxo1SpJmzHB8355LVnWUu7XeH3vs6oUX1L27hg0r+t8d\nO+xbvYwcKUl/+5uV7y90HOwaNmxY0YkONWvWZFWs5zlz51zHjtX6gAfTdxCFFfBjAyd5cHsB\nNzO2/8/OVqdOknTXXTpxQs88I5tNN92k339Xly4qLNR//ZdmzdJf/6q8PMenmblwVUfZjFj8\nOClJ3bsX/e/Jk/a9lLt0kaTcXBefuuZVHAe7++6778MPPyz3qTVr1sTFxbm6JFwJ4865ggI9\n95z69Knwmv/3/xQQIEndu3td78G674kA4NOKG2MREZL09NNFZ07s2KGffpKkgABduKCjR3Xb\nbUUnSUyb5mCZggtXdZTNiAYj8JX8siWbggYLn0LrONg9//zz69evf+ihhz788MOffvrp4MGD\nu3fvXrFiRf/+/c+dO/f4448fLsGEinEZZ1bt7dmj8+eLWufdutF7AAALS02VzaZ27ewjKSmy\n2ewdLEkJCbLZ9OCDTn3B4sZYSEhRY6x166KR5s31pz9J0o8/6l//Khrs0UN16ujrr4sWpbpP\nRYmwZOCraMTCU7GOV8UGBwdLysjIWLx4cdlnQ0t2PyUby+5M5sydc8Y19eqZUQ8AwFqKU1Ht\n2kWNseJ/c37+Wa1a6bvv1LatjFvus7MVFqb//V8lJ+ujj9Svn44cMXsJqndu9WIax8Fu0KBB\ndYwGK7xNqW1+ExM1b16F17z3niR98gmTngAA55VNRTX+mO1r0UL9+2v1aoWHFwW72rWL/pHp\n318ffaRTp67s4DJcPcfBLi0tzYQ6UBXJyerRQ5MnKzZWI0aoTZvKrunRQ198UXSjBAAAV61H\nj6IHxVGvc+eiB8Vx0MJ3s3mn8oPdkSNH6tSp07hxY+Nx5V+iWbNmrq8Lzii5ze+gQQ6uadFC\nkpo2Nas4R8rul7t4sZ56SkeOaMIEvfiih8oCADirSROdPXvZSOPGpa+x8N1s3qn8YNe8efM+\nffqsW7fOeFz5l+C+OriAVx2MAQBwQtnN0GpVPBGYmqrU1MtGUlKKDhYrVvmBEw7de6/WrLls\nZPBgrVhx2deXNHp01X8J71f+d2Do0KG33XZb8WMT60F1ZSzvfeQRPf20p0sBAHi1ijJiyVBo\nZMSUlMuCXXVQfrBbunRpuY8Bd3H3wRiclIoq4McGkFRekDJ07qzPP79spGdPUwqqgAlNQe/n\neB87ww8//HDixImS/7t9+3b3lITqp2/fan0wBgB4pYq2xAsKso8YW+KFhZlfHcrnONj99ttv\njz76aFhY2K5du4oHN27c2KlTp0ceeeSScWM+vF+LFt57wAOHcgIA4AqOtzt59dVX33zzzf79\n+99www3Fg7179x46dOjChQtvu+22v/71r+6sENWAM8t7AQDewZjufOMN+4gx3Tl1qn2kOixT\n8E6OO3YLFy68995716xZ06bENmnt27dfunRpTEzM7Nmz3VkeAADwOi4/uAyu4jjY7d279z//\n8z/Lfequu+46cOCAq0sCAABAVTgOdg0aNNi/f3+5T+3fv//aa691cUW4IsaqvcrvnHPmGgBA\n9TZ8uPz8lJurxEQFBalePXXtqowMnTmj8eMVEqLAQEVF6dtvPV0oKuU42PXv3/+NN95Yu3Zt\nycHffvttwYIFr7/++j333OO22gAAgEn8/SUpLk4hIVq3TnPnascOxcVp6FAFBGj1ai1apN27\nFRPDYRJezfHiieeff/7jjz/u379/q1at2rdvX6dOndzc3B9//PHUqVPNmzd//vnnTagSAAC4\nlXFoRGiokpIkKSJCa9dq2TJ16VI05RMZqfR0zZqlzExFRXmyVFTCcceuefPm27dvHzNmTGFh\n4aeffrpmzZpNmzbVrFlz9OjRmZmZrVq1MqFKAABggthY++PQUEkaONA+0r69JGVnm1sTroTj\njp2koKCguXPnvvbaa9nZ2WfPnm3WrFn9+vXdXRkAADBZSIj9sdHDKzlSu7ak/9/e/cdFVed7\nHP+MwCCKgZqKCP5AKU2ulqJFSmhautYqUSap2MXlPkKrVTbJxS1B2VRW+52ubl5vSWH+Tq9e\ndatVVt1czFozpUIUxQRtSVREVHDuH8cmRBgGmJnzY17Pv4YzpzOfGYPznu9PumI1za5gpzCZ\nTIGBgc4rBQAAqEuJbraPQMvqD3YWi2XdunUrV648derUtdpSevUdKYBGYlNOAACarP5g9+qr\nryYnJ4tIixYtvMjtAAAAWlX/5Ik333xzxIgR+fn5ly5dKq2NC6oE0GBZWRIUJJ6ekpysdikA\n0ACsqNcU9bfYnTlzZt26dSEhIS6oBoBjnD8vCQliNkt6ugwYoHY1ANAA1hX1IiNl+3b5+mtJ\nTJSxY6VPH+ndWzZvloICSUiQUaOksJAhgDXV32LXoUMHC4OfYA+aiLQjL08uX5YJEyQlRYYP\nV7saAGiA6ivq3XOPPP20jB4tJ09K8+ayYIH07y+PPy5PPy1nzsj+/WrXqj31B7unnnoqMzPT\nBaVA35QmorIySU+XESPUrsbtVVSIiLRqpXYdALSrRo9nVpbce6/89NMvPZ6LFklEhLRo8ct/\nkpAgFovExrqivEavqOfmPbn1B7vZs2fn5+dPmDBhx44dubm5R2/hgiqhAzQRacfIkRIZKSKS\nkSEmkyQmql0QAC3S+B5ijV5RT+Pvy9nqH2PX6ucv/VlZWbWeQEctRGgi0pLUVImKklmzJCZG\n4uKkWze1CwKgRRrfQ6zRK+pp/H05W/3B7qmnnjKbzZ6eDVjKGG5n5EjZsUNEJCNDMjLkmWdk\n6VK1a3JjERFSVSUiEhoq0dFqVwNA04y6h5hR31e96o9rdTXUAb+o3kTUpYt8+KEsXy5JSbJw\nodqVAQBsMeoeYkZ9X/WqPdgVFxd7e3u3bt1aeWz7EgEBAY6vC/pibSLq3FmWLmWVDQDQC6Pu\nIWbU91Wv2oNdx44dR4wYsX37duWx7Uswxg6/OHdOLl+W+HhJSVG7FAAA3E7twW7cuHF33323\n9bEL64HOVVaKMIUCAAB11B7sPvroo1ofA/X48EMRplAAABpv+XJZvvymI2lpkpZ205GEBElI\ncGFN+lH/OnabN28+fPiwC0qBEURFiYjExMjGjTJligMuyG4WAADYrf5gN27cuC1btrigFBhB\nUJDIz6ts9O3b1Kuxm4WxkdoBwNHqD3aDBw/Ozs6+fv26C6oBbsJuFgZGagfUtny5WCzSo8cv\nR9LSxGKRwYN/OeLKPcQcxajvy071r2P3wQcfJCUlPfLII5MmTbrjjjv8/PxqnNCj+ocHOBC7\nWTTa4MGi8enqSmpnAjUAOFT9wc66TJ2y+smtWO4ETsFuFsZGakfTjB8vq1bJuXMyc6Z8/LFc\nvCh9+shbb0lYmMyaJWvXyvnz0qePvPOO9Oundq2AC9Uf7MaNG2c2m728vEwmkwsKgl4pTUR7\n9tyYGNt0bHhqYKR2NJl1o/fISNm+Xb7+WhITZexY6dNHeveWzZuloEASEmTUKCksdJeVaQGx\nJ9ix3AnUwYanBkZqR5O5+UbvQF3qmTxx5cqVnJycXbt21buxGADjc9Q81ogIiYwUcdwEargr\nt93oHaiLrWD3/vvvBwQE3HvvvUOHDg0MDBw/fvzFixddVhkAbWEeK7THbTd6B+pSZ1fs3//+\n9/j4eA8PjxEjRrRt23bfvn2rVq26fPnyxo0bXVkfAK1gHiu0x203egfqUmewW7Rokclk+tvf\n/hYZGSkiV69ejY2N3bhx4zfffBMWFubCCqEr2l9loymysuTFF6W4WJKSZOFCtatxOeaxAoDm\n1dkVu2/fvocfflhJdSJiNpvT0tJE5O9//7trKgO0xc07IkeOvDEqLiNDTCZJTFS7IABALeoM\ndiUlJXfccUf1I8qPJSUlTi8K+mXgTaLcfBuM1FSZN0/EoRsBAwAcrc6u2OvXr/v4+FQ/0rx5\ncxGpUlagAG6ltGmZzZKeLgMGqF2No7l5RySrzwCAHtS/VyxgLwO3aanVEWngFlAAgBMQ7OA4\nDm/TUqZiKIuNqkuVjkg3H9UH2OTmG70DdbG188SePXuUCRPV7dq1q8bBW8+BOzL2JlGqdEQa\ne3kRzU6gdvO5zwB0zlaw27t37969e2sczM7Ozs7Orn6EYAcRNolyAjcf1acKY48TBeAG6gx2\nmZmZrqwDusfgescydguoZhm7lRSAG6gz2E2cONGVdQC4CS2gqqCVFIDOMXkC0KSIiBvzcJUW\n0L591S7IDbAIMwD9I9jBzbCACOrCIswA9M/W5AlAW5o+XZGh8U2h2XmsjsI4UQD6R7CDTjgk\nkzE0HgBgaAQ76IRDMhlD4wEAhsYYO2ibdUjca6+JNC2TNXFovHa2wQAAoA4EO2iYdU+tkBBZ\ntUqkadMVGRoPR2EKDgCtoisWjuPwwfXW7teJE2XXrqYu6sbQeDgEU3AAaBjBDhpmHRJHJoN2\nMAUHgIYR7KBVNfbUGjNG7YJczvDLi+gUU3AAaBhj7KBVNYbEVW+oY4QT1MLuFAC0jRY7aFWN\n7tc9e24cZ4QTnMG6/PWMGbbmPrOHLwBtI9hBbxjhBIez/9sCwz0BaBvBDnrDCCc4HN8WABgF\nY+ygK2vWMMIJjse3BQBGQbCDrgwaxCLDcDDmQwAwELpioSudOt24BzduhBMLiOBWzIcAYCAE\nO+iENZNZp8cCDsF8CAAGQlcsAACAQRDsAAAADIKuWGgYQ+IAAGgIgh0ANATfNwBoGF2xAAAA\nBqHvYHf16tX9+/fv3Lnz+PHjatcCAIAzZWVJUJB4ekpystqlQLt0E+z++Mc/7ty5s/qRZcuW\nBQQEDBw48MEHHwwJCQkPD//Xv/6lVnkAADiRsqNxWZmkp8uIEWpXA+3SzRi7l19+eebMmUOH\nDlV+3Lp1a2Jiore392OPPda+fftvvvlm7969Q4YMOXDgQPfu3dUtFc7FCCcAbogdjWEf3QS7\nGpKSkvz8/D7//PNevXopRzZs2PDEE0+88sorK1asULc2ADrDtwVoHzsawz666Yqt7scff8zL\ny3v22WetqU5EYmJixowZ89e//lXFwoAGYLgMADuxozHspstgV1FRISLVU50iLCzs7NmzalQE\nNBDDZQDYLzVV5s0TEYmJkY0bZcoUtQuCdumyKzYwMNDPz+/UqVM1jp8+fboVzdTQBYbLALAf\nOxrDbnpqsTt58uQXX3xx9OjRc+fOTZ069b//+7/Ly8utz3777berV68eNGiQihUC9mK4DADA\nCfQU7FatWjVgwIDQ0NB27drNnz//6NGj27ZtU57KysoKDw+/fPnyyy+/rG6RQP0YLgMAcA7d\ndMX+z//8T2k158+fLy0tbd26tfJsaWmpv7//Rx99NGDAAHXrBOqXmipRUTJrlsTESFycdOum\ndkEAAIPQTbD7z//8TxvPTpo0KTExsVkzPTVAQqOysuTFF6W4WJKSZOFCp7wEw2UAAM6hm2Bn\nm6+vr9olwBCUyapms6SnC62/AAC9oYkLbubhh8VkEpNJOnas5VllsuqECZKSIsOHu7w4AACa\nxDjBLj8/f/jw4cO5GcOGI0fkk09EREJD5dFHazmByaoAAD0zTrC7ePHiZ5999tlnn6ldCDRs\n3ToRkTZt5Pvv5d13az7LZFUAgM4ZZIydiPTs2fPQoUNqVwFtO39eRKR589qfZbIqAM1iR2PY\nxzjBrnnz5mFhYWpXAQ3z9parV0VETp8Wk0lat5affrrpBCarAgB0Tn/BzmKxHD9+/NixYxcv\nXhQRPz+/0NDQ4ODgxl2tqKgoPj6+Srmd1+GHH35o3MWhLb/7naxfL3l50ry5jBolERFqF2Qg\nLlgjBgBgBz0Fu3Pnzr3yyiuZmZlnz56t8VTnzp0TEhJmzJjh4+PToGv6+fk99NBDlZWVNs75\n5z//mZub2+ByoTXz58vVq/Laa9Kmjaxfr3Y1BsIaMQCgGboJdkVFRYMGDTp+/HhoaOioUaO6\ndOnSsmVLEblw4UJ+fn52dvbs2bPXr1+/c+dO63YU9mjRosULL7xg+5xly5Zt3LixSdUDNRhp\nuIyyRkx8vKSkqF0KALg73QS7l19++dSpU2vWrBk7duytz1ZVVS1btuy5556bM2fOG2+84fry\nAPfFGjEAoBm6We5k69atcXFxtaY6EfHw8Jg6deqTTz65YcMGFxcGuDXWiAEALdFNsCspKene\nvbvtc3r16nXmzBnX1ANARCQ1VebNExGJiZGNG2XKFLULAgC3pptgFxgYePDgQdvnfPXVV4GB\nga6pB4CISETEjRY7ZY2Yvn0dc9msLAkKEk9PSU52zAUBwD3oJthFR0evXbt20aJFV65cufXZ\nS5cupaambtq0ady4ca6vDYAjKdNsy8okPV1GjFC7GkAz+MIDO+hm8kRaWtru3buTk5Pnzp07\ncODA4OBgX19fi8VSVlZ24sSJnJyc8vLyyMjIl156Se1KoWdGmqyqX0yzBW7FukKwj26Cnb+/\n/+eff7548eKVK1fu2rWr+pLCXl5e/fv3nzx58uTJkz08PFQsEoADMM0WuBVfeGAf3XTFiojZ\nbE5KSvrqq6/Kysq+//77AwcOHDhwIC8vr6ys7PPPP/+v//ovUh3q8eqrYrGI7a1E6OxQF9Ns\ngVrxhQf20U2LXXXNmzcPDQ1VuwoYEZ0dqktNlagomTVLYmIkLk66dVO7IEADRo6UHTtERDIy\nJCNDnnlGli5VuyZolJ5a7G61aNGiwYMHq10FnMb1jWdKZ8eECZKSIsOHu+hFUZ2TptkCusa6\nQrCbLlvsrI4ePbp37161q4BzqNJ4RmcHAA2KiBBlZLnyhQeom75b7GBkrm8808joLgb5AXAq\n/sgYmr5b7GBkrm8808LoLj0O8mONGEBH9PhHBg1Bix00SZXGM+eN7rL/+zGD/AA4FX9kjE7f\nwW7BggWFhYVqVwEnMNJI4Qbto8AgPwBOxR8Zo9N3sPP39w8KClK7CjiBkaZG2v/9WCOD/AAY\nFX9k3IC+gx2gA/Z/PzZSOyUADeKPjBsg2AHO1KDvx0ZqpwSgQfyRcQPMigWcSQszbXWHabYA\n0FgEO0BERLKy5MUXpajIwZdt6LKin3wiIvKnP0lVlSxc6OBiAOgXX3hgH7pigWoTVxMSVC4j\nI0NE5IEH6p8/CwDALQh2QLWJq3FxKpdx5YqIyH33sb4UAKAR6IoFqk1cVbezQykDAIDGosUO\nbk8jCztZy1AqYX0pQLPYaxUaRosdtMpljWcambhqLUNEYmJYXwrQKPZahbYR7OD2Gjpx1dll\nKJWwvhSgTcqQ3Ph4SUlRuxSgFnTFAhozc6YsWOCYS9FhBDic3vdaVTpDHPVHBtpDsAMMyrqG\nS3o6i6cAjqGRIblA3Qh2gJOp9f3YuoZLSgqLpwCOwV6rjUPvgQsxxg4wKL13GAEapJEhufrC\ndBPXosUOMCI6jABoBL0HrkWwA4yIDiMAGkHvgWsR7AAjioi40WKndBixeAoAVdB74HIEOxgU\nY3UBQHX0HrgckydgRA0dq6vuFrFaKwMAGi0rS158UYqLJSlJFi5kuonr0WIHI2KsLgC4npOW\nz6QHpiFosYMRMVYXAFzPGfutsVpKA9FiB8NhrC4AqMIZX6rpgWkggh0Mh7G6AJyHvVbr4qQv\n1fTANBDBDobDSh8wHsYYQfuc8aWaHpiGI9gBbo/QoHFOGpAOOJYzvlTTA9NwTJ4ADMrOxVNs\nD0yusXIBVOGMAemALrBaSsMR7AD3ZiM0MBlNIxhjBMBudMUC7s1GaGAymhYwxgh6x3QT1yLY\nAW7MdmigoUgLGGMEoCEIdtAnxvs7hI3QQEORRjDLG0BDMMYOOsTYL0exMTA5NVWiomTWLImJ\nkbg46dZNlQIBAA1CsIMOMUnQBZiMBgA6RFcsdKjesV96HKtL5zIAoMkIdtAbQ479YgVaAAag\nxy/VhkNXLPTGkGO/6FwGgFrZudY6fkawg94YcuwXC4sAAByBrlhAbYbsXAYAqIFgB6iNFWgB\nAA5CVyygNkN2LsOBGGMEwG602AHujVlsEFbbAYyDYAdoxpEj2rq5kvncBKvtQL/4TnILgh2g\nGdu2cXM1Jo3fe5TVdiZMkJQUGT5c7WoAu/GdpDYEO0AzKitddHPVeM4wGO3fe1htBzrFd5La\nEOwALXHBzVX7OcNgNH7vYbUd6BffSWpDsIMOGW/s1wsv3HjggpurxnOG8Wj83sNqO9ApvpPU\ngWAHaEB8/I0Hjb652t+7qvGcYTDav/dERNyoUFltp29ftQsC7MN3kjoQ7AANCAu78aBxN1f7\ne1ftyRmMwHMg7j2Ak/CdpA4sUAxowODBsnv3jT9SjaD0rsbHS0pKPWempkpUlMyaJTExEhcn\n3brVPEHJiGazpKfLgAGNrAdWrD4NwLUIdoD+2d+7Wm/OsD8jAgC0h65YQOccO4qLEXgAoGcE\nO0DnUlNl3DgREZNJoqObNIpL+yP9AQA2EewAnbvrLvn4YxGRBx6QZ59t0ghiRvoDgM4xxg7Q\nubw8uXJFROS++5q6Lh0j/QFA52ixA3ROGRUHAAAtdoC+jRwpO3bceJyRIaWlsnSpqgVBh5St\nXAAYAsEO0IbG3Vyt69KJSEwMo+IAuBG+k9SGrlhAz6xrr4tIaKjW1153zz0tjLe1MQANo8UO\ncDNqfcdlTwsAcD5a7AB3omKbmbKnxYQJkpLS1Nm7AIA60GIHuA1128zY0wIAnI8WO6DJtDB0\nbObM+kdxqdhmxp4WAOAStNgBTaOjoWP2tJk5aQSedfZuTIzExUm3bo5/CQAALXZAU+ll6Ji6\nbWbW2bvKnhYan70LALpFsAOaRi9Dx9gHFgDcAMEOaAIdDR1zZZuZFgYdAoBbYowd0ARaGDqm\ntbXXdTToEAAMh2AHNEFEhFRVifzcDAb5edBhfLykpKhdCgC4HbpiATiUXgYdAoAREewAOI6O\nBh0CgBER7AA4DnNvAUBVjLED4CBZWfLii1JUJMKgQwBQBy12ABxBmQxbViYJCbWfoMzerXff\nM4dgvRUA7opgB8ARrDtwxMWpXIk1Yqany4gRKhcDAK5FVyzgNpy64p12JsOy3goAN0aLHYAm\nqz4ZVnmgIu1ETABwOYId0DSuHDqmWdUnwyoP1MJ6KwDcG12xAJqs+g4c6rbYaWGTNwBQD8EO\ngIGwyRsA90ZXLAAAgEEQ7AA34+w13hh0CADqoSsWcCfKGm9ms6Sny4ABalcDAHAwgh3gTljj\nDQAMja5YwJ2wxhsAGJr+WuwsFsvx48ePHTt28eJFEfHz8wsNDQ0ODla7LkDzRo6UHTtERDIy\nJCNDnnlGli5VuyYAgCPpKdidO3fulVdeyczMPHv2bI2nOnfunJCQMGPGDB8fH1VqA3SANd4A\nwOh0E+yKiooGDRp0/Pjx0NDQUaNGdenSpWXLliJy4cKF/Pz87Ozs2bNnr1+/fufOna1bt1a7\nWECTnLrGm1M3ogUA2Ec3we7ll18+derUmjVrxo4de+uzVVVVy5Yte+655+bMmfPGG2+4vjxA\nZVlZ8uKLUlwsSUmycKE7FmBFxATgxnQzeWLr1q1xcXG1pjoR8fDwmDp16pNPPrlhwwYXFwao\nT1nEpKxM0tNlxAh3LAAAICI6arErKSnp3r277XN69eq1ceNG19QDaIjqi5ioXgAAQER01GIX\nGBh48OBB2+d89dVXgYGBrqkH0BDVFzFRvQAAgIjoKNhFR0evXbt20aJFV65cufXZS5cupaam\nbtq0ady4ca6vDVDTyJESGSkikpEhJpMkJrpdAQCAn+mmKzYtLW337t3Jyclz584dOHBgcHCw\nr6+vxWIpKys7ceJETk5OeXl5ZGTkSy+9pHalgGupvoiJ6gUAAH6mm2Dn7+//+eefL168eOXK\nlbt27apSVm0QEREvL6/+/ftPnjx58uTJHh4eKhYJqMCpi5joogAAwM90E+xExGw2JyUlJSUl\nVVRUFBYWKjtP3HbbbZ07dzabzWpXB8Am7ayHAgDGpadgZ9W8efPQ0FC1qwB0SK013pT1UMxm\nSU+XAQNUKAAA3IMugx0AnWE9FABwCd3Miq1Xfn7+8OHDhw8frnYhAG7BeigA4BLGCXYXL178\n7LPPPvvsM7ULAXAz1kMBAFcxTldsz549Dx06pHYVAG7BeigA4CrGCXbNmzcPCwtrxH948eLF\nyspKGyeUl5c3tigArIcCAK5jnGAnIiUlJefOnevRo4f9/0l+fn5oaKjFjnmCJpOpCaUBAAA4\nnaGC3cKFCzMyMuxJaVbdu3c/dOhQhTKyuw5ff/315MmTvby8mlwg4BxqLWKinQIAACJisGDX\nOL1797Z9Qq270wIAAGiNcWbFAgAAuDndtNiFh4fXe84PP/zggkpeL/uAAAAUvklEQVQAAAC0\nSTfB7quvvhIR2wPdbE9uBQAAMDbddMUmJye3bNnym2++qajbjBkz1C4TAABANboJdunp6T16\n9HjqqaeuXbumdi0AAABapJtg5+Xl9eGHHx4+fHjWrFlq1wKggZT1UBYsULsOADA43YyxE5Fe\nvXoVFxfbGEj3q1/9yt/f35UlAQAAaIeegp2I3HbbbTaejYqKioqKclkxAAAAmqKbrlgAAADY\npu9gt2jRosGDB6tdBQAAgCboO9gdPXp07969alcBAACgCfoOdgAAALAi2AEAABgEwQ4AAMAg\n9B3sFixYUFhYqHYVAAAAmqDvYOfv7x8UFKR2FQCgE1lZEhQknp6SnKx2KQCcQt/BDoDmEB00\n6/x5SUiQsjJJT5cRI9SuBoBT6GznCQCapkQHs1nS02XAALWrwc3y8uTyZYmPl5QUtUsB4CwE\nOwCOQ3TQsooKEZFWrdSuA4AT0RULwHGIDpo1cqRERoqIZGSIySSJiWoXBMApCHYAHITooGWp\nqTJvnohITIxs3ChTpqhdEACnoCsWgIOkpkpUlMyaJTExEhcn3bqpXRCqiYiQqioRkdBQiY5W\nuxoAzkKwA+AgRAcAUBtdsQAAAAZBsAMAADAIgh0AAIBBEOwAAAAMgmAHAABgEAQ7AAAAgyDY\nAQAAGATr2AGAexg8WCwWtYsA4FwEOwCOQ3QAAFXRFQsAAGAQBDsAAACDINgBAAAYBMEOAADA\nIAh2AAAABkGwAwAAMAiCHQAAgEEQ7AAAAAyCYAcAAGAQBDsAAACDINgBAAAYBMEOAADAIAh2\nAAAABkGwAwAAMAhPtQvQAbPZLCLe3t5qFwIAALRCiQdaY7JYLGrXoAMHDx6srKxUuwqnq6ys\nvO+++2bPnh0aGqp2Lajd0qVLPT09ExIS1C4EtcvNzZ0/f/7KlSvVLgR1euGFF8aMGfPAAw+o\nXQhqt2nTptzc3Pfff1/tQurh6enZt29ftauoBcEOv7h27ZrZbN6zZ8+gQYPUrgW1mzRpktls\nXr58udqFoHY7d+4cNmzY9evX1S4Ederevfsf/vCHyZMnq10IavfHP/5xx44du3fvVrsQvWKM\nHQAAgEEQ7AAAAAyCYAcAAGAQBDsAAACDINgBAAAYBMEOAADAIAh2AAAABkGwAwAAMAiCHQAA\ngEEQ7PCLZs2aeXp6anPzOyjMZjP/QFrGP5D28W+kcfwDNRFbiuEmx44dCwkJUbsK1Omnn35q\n1qyZv7+/2oWgdhaLpaCgoFu3bmoXgjoVFhYGBAR4eXmpXQhqV15efuHChYCAALUL0SuCHQAA\ngEHQFQsAAGAQBDsAAACDINgBAAAYBMEOAADAIAh2AAAABkGwAwAAMAiCHQAAgEEQ7AAAAAyC\nYAcAAGAQBDsAAACDINgBAAAYBMEOAADAIAh2AAAABkGwAwAAMAiCHQAAgEEQ7FDTuXPnZsyY\n0aVLF29v727dukVHR+/bt0/tonCTa9eupaSkeHh4hIeHq10LbigtLZ0+fXrXrl3NZnNgYGBC\nQkJRUZHaReEm/OJoHHcfhzBZLBa1a4CG/PTTT/379y8oKHjkkUf69et37Nix1atXe3p65uTk\n/Md//Ifa1UFEJDc3d+LEiXl5eZcuXbrnnnu++OILtSuCXL16NSIi4ssvv3z88cf79euXn5+f\nmZkZFBR04MCB1q1bq10dRPjF0TzuPg5jAap59tlnReTtt9+2Hlm/fr2IjBo1SsWqYHX+/Hkf\nH5/w8PC8vDxvb+/+/furXREsFovltddeE5GMjAzrkdWrV4vICy+8oGJVsOIXR/u4+zgKXbG4\niZeX17Bhw5555hnrkccee8zHx+fw4cMqVgWrysrKqVOn/uMf/+jRo4fateAXK1eubNWq1bRp\n06xHnnzyyR49emRmZlroFdEAfnG0j7uPo9AVi3pcuXKlVatWAwcO3LNnj9q14CbNmzcPCwuj\nR0l1FRUVvr6+Q4YM+fTTT6sfj4+Pf++99/Lz80NCQtSqDbfiF0cvuPs0Di12qMeyZcuuXbsW\nGxurdiGARhUWFlZVVQUHB9c43qVLFxE5duyYGkUBusfdp3EIdrAlOzs7OTl58ODBiYmJatcC\naNTFixdFpGXLljWO+/r6Wp8F0CDcfRrNU+0CoI7S0tLf//731h979OgxY8aMGuesWrUqPj4+\nLCxs06ZNnp78r+JS9vwDQVNMJlONI8pAl1uPA7CNu09T8Hm5qbKysmXLlll/HDRoUPXcYLFY\n0tLS5s6dO3LkyDVr1rRq1UqNGt2a7X8gaMptt90mtbXMXbhwQUT49QHsx92n6Qh2biooKKiu\neTMWiyUhIWHFihXPP//866+/7uHh4eLaIDb/gaA1nTt39vT0PHHiRI3j+fn5IhIaGqpGUYD+\ncPdxCMbYoaakpKQVK1bMmzfvrbfe4vcKqJfZbO7fv39OTk55ebn14PXr17Ozs4ODgzt37qxi\nbYCOcPdxCIIdbrJhw4Y333xz2rRpKSkpatcC6MZvfvOb8vLyhQsXWo/85S9/OX36dEJCgopV\nATrC3cdRWMcON+nRo0d+fv7zzz/fokWLGk/NnDmTzZFUl52dvW3bNuXxokWL2rVr9/TTTys/\nJicnt23bVr3S3FpVVdXQoUN37949ZsyYfv365ebmrl69OiwsbN++fbf+KsH1+MXRPu4+jkKw\nw01szOA7fvx4165dXVgLarFgwYK6vs7m5eWxqr6KysrK5syZs3bt2tOnT7dv3z46Onru3Llt\n2rRRuy6I8IujB9x9HIVgBwAAYBCMsQMAADAIgh0AAIBBEOwAAAAMgmAHAABgEAQ7AAAAgyDY\nAQAAGATBDgAAwCAIdgAAAAZBsAMAADAIgh0AAIBBEOwAAAAMgmAHAABgEAQ7AAAAgyDYAQAA\nGATBDgAAwCAIdgAAAAZBsAMAADAIgh0AAIBBEOwAAAAMgmAHAABgEAQ7AAAAgyDYAQAAGATB\nDgAAwCAIdgAAAAZBsAMAADAIgh0AAIBBEOwAAAAMgmAHAABgEAQ7AAAAgyDYAQAAGATBDgAA\nwCAIdgAAAAZBsAPQVLGxsSaTqbi4WFOXsl7t1KlTDrkaAGgfwQ6AiMgHH3xgupmHh0eHDh1i\nYmL27Nlj+7+9++67R4wY4e3t3fQyHHgpO1kslnXr1kVHRwcGBnp7e7dv3z48PPyVV145c+aM\ny2rQsgULFhw9erTe065du5aSkuLh4REeHu6CqgDUxWSxWNSuAYD6Pvjgg7i4uEGDBg0ePFg5\ncvny5e++++6TTz6xWCzvvffepEmT1K2wEWJjY1evXl1YWBgUFFTrCaWlpWPHjv30009btGgx\nbNiwLl26lJSU5OTk5Ofnt2vXbv369ZGRkS6uWVOKiooCAwO3bds2cuRIG6fl5uZOnDgxLy/v\n0qVL99xzzxdffOGyCgHU4Kl2AQA0ZPjw4WlpadWP7N69+8EHH5w+ffq4ceNc2ZDmGhMmTPj0\n00/HjBnz7rvvtmvXTjl4/fr1v/zlL88999yYMWO+/fbb9u3bq1ukivbv31/vORcuXOjfv3/v\n3r2//PLLsLAwF1QFwAa6YgHYEhkZOWzYsHPnzh08eFB+HrV29uzZhx56yMfHZ/PmzXLzwLjx\n48ebTKaysrKZM2d27drV29s7ODj49ddfr945UFxcnJCQ0KlTp5YtW/bt2/fNN9+srKxUnqp+\nqccee8xkMhUVFSUkJHTo0MHb27tnz55//vOfq5eXk5Pz2GOP3X777WazuWvXrnFxcQUFBXa+\nte3bt//f//1fv3791q1bZ011ItKsWbPExMS5c+f269cvPz9fOXjixIn4+PhOnTqZzebbb799\n9OjROTk51v9EedelpaXPPPNMhw4dWrRocd999+Xk5JSXl0+fPr1Tp06+vr7333//l19+af1P\n7Hl39ryo7Y/6zJkzzz77bJcuXcxmc7t27aKjo6tnNdtXePTRR8eMGSMiv/rVr0wmU1098pWV\nlVOnTv3HP/7Ro0cPOz95AM5Dix2AerRt21ZEysvLRcRsNotIUlKSl5fX7NmzQ0JCapysnPDE\nE09069bto48+un79+pw5c373u9/5+/vHx8eLyI8//hgeHl5WVjZp0qQuXbrs2rVr+vTphw4d\nWr58eY1LKQ2E0dHRQ4cO3bhx4/Xr1+fOnTt16lQvL6+EhAQROXDgQFRUVJs2baZNmxYQEHDs\n2LHFixf/9a9/PXLkiFKzbStXrhSRP/zhD56etfwlnDVr1qxZs5THhYWFAwcOLC8vnzJlSu/e\nvX/44YclS5Y88MADn376qdJzrbzrsWPHRkZGbt++/euvv05MTBw7dmyfPn169+69efPmgoKC\nhISEUaNGFRYWenl52fPu7HxR2x/1vffeW1pampiYGBYWVlhYuGTJksjIyB07dkRFRdV7hZde\neqlNmzaZmZmzZ8++55577rrrrlo/xjZt2ixatKjeTxuAi1gAwGLJzMwUkdTU1BrHr169GhIS\norQtWSyWyZMni8jDDz9cVVVlPWfcuHEiopzwm9/8RkSeeuop67NKo9ejjz6q/DhlyhQR2bFj\nh/WERx55RES++eabGpdSHle/VGlpqbe3d9euXZUflyxZ0q9fv507d1pPePvtt0Xk7bffrl5Y\nYWFhrW9ZeV/nz5+v98N5+umnRWTDhg3WI0eOHPHw8LjvvvuUH5V3PWXKFOsJTz75pIg88cQT\n1iPTpk0Tkb1791avzca7s/NFbX/Unp6e+/fvt55w8uTJVq1ahYeH23mF+fPni8i2bdvq/YgU\n3t7e/fv3t/NkAM5AVyyA2lVUVBw6dCg2NvbYsWOxsbEBAQEiYjKZROTpp59u1szWXw8llChC\nQkJatGihrDlisVjWrFkTHBz80EMPWU946623/va3v3Xo0KHWS8XGxlof+/n5RUZGFhQUFBUV\niciUKVMOHDgwZMgQEbl27VpFRYXSqmRnb+yZM2f8/Pxuu+0226dZLJaPP/64Q4cO0dHR1oO9\nevWKiIjYt29fSUmJ9WBMTIz1cWhoqIgoXZmKO++8U0SUyut9d/a/qI2Peu3atX369AkKCir+\nmZeX1/333//FF1+UlZXVewUAekSwA/CLOXPmWJc78fHx6dOnz4YNG0aPHr1s2bLqpykZxYbO\nnTtX/9HLy+vatWsiUlRUVFJS0rNnTyUgKkJCQoYOHXr77bfXeqk77rij+o+dOnUSEetCd5mZ\nmVFRUa1btzabzT4+PsOGDRMR64g925o1a1ZVVVXvacXFxefPn+/du3f1muXnD+H777+vUZtC\n6d6tfkTpgVU+h3rfnf0vWtdHffbs2X//+99ffvllx5vt2LFDRE6ePFnvFQDoEWPsAPwiKipK\naQATkWbNmrVt23bw4MF9+/atcZqfn5/t6ygh5laXL1+Wn4eX2alFixbVf2zZsqWIlJaWisis\nWbPmz58fHh7++uuvd+vWzdvb+/Dhw8oANXsEBgZ+9913//73v+vKlIpLly5ZX7c6Hx8f67OK\nW991XZ+DVV3vrlWrVo1+UcXFixdF5O6771a6U2sIDAy0v0gAOkKwA/CLIUOG1FjuxLGU/lwl\nltmpeogRkfPnz4tI27ZtKyoq3njjjeDg4J07d/r6+lZ/1k7333//d99997//+7/KVIMaLBbL\noUOH+vTpo1y8RhnWI0oCa7S63l3TX9R6ju0l6AAYDF2xAFynZcuW7dq1y83Nrd7Z9913373z\nzjuHDx+u9T/Jzc2t/mNeXp6IdOzYsbi4+PLly+Hh4dZUJyLZ2dn2F6Pkublz5yqNWzUsWbKk\nb9++ixcvDggIaNOmTW5uruXm5dyPHDliMpnq7ZW2ra531/QX7dChw+233/7tt9/WiNE//vhj\nUwoGoHEEOwAuNWbMmJKSkvfff996JC0t7fnnn79y5Uqt569YscL6+Pvvv9+/f/+dd97Zrl27\nDh06mEym6vMk/vWvfykrmFRUVNhTSWRk5Lhx4woKCh566CHrenUiUllZ+dZbb02bNq1jx47j\nx48XkZiYmKKiok2bNlV/rZycnAcffNDf39/ON96gd+eQFx07dmxFRcXChQutR3788cc+ffr8\n+te/trM8Dw8P+bkDHYAu0BULwKVSU1O3bNkyZcqUgwcPdunSJTs7e8uWLZMmTerXr1+t51+5\ncuXXv/71o48+ev369T/96U8Wi2X27Nki4uPj88gjj2zZsiUxMXHIkCFHjhx55513Pvzww9Gj\nR2/dunXVqlWjR4+ut5gVK1ZcuXLl448/7tmzZ2Rk5B133FFaWrpv374TJ06EhIRs3769devW\nIjJnzpwtW7bExcX99re/vfPOOwsKChYvXuzr6/vaa6818dOo69055EXT0tK2bt06b968oqKi\nqKio06dPL126tKSk5Le//a2dV1DWKVywYMHx48cjIyMHDBhw6znZ2dnbtm1THldWVv7www+/\n//3vlR+Tk5PtWVAQgCOpttAKAC2pax27GpSVz/Ly8qofvHUduxon+Pn59e7d2/pjQUHBxIkT\n27dv7+XlFRIS8uqrr1ZWVt56KeVxXl7e9OnTAwMDzWbzXXfd9d5771mvc/bs2fHjx7dr187P\nz+/BBx/cvXu3xWKZM2eOr69vQEBAUVGR7XXsrDZv3hwTExMYGOjl5dWqVat77713yZIl5eXl\n1c85efJkfHx8x44dPT0927dvHxsbe+TIERsfS2pqqogoJSneffddEVm1alX1d2rj3TXiRW/9\nqIuKiqZMmRIcHOzp6env7z969Oh//vOf9l/h6tWrjz/+uI+PT+vWrdeuXVvrp1fr5AxFjSsD\ncAGT5eYBHACgEbGxsatXry4sLAwKClK7Fscz9rsDoBbG2AEAABgEwQ4AAMAgCHYAAAAGwRg7\nAAAAg6DFDgAAwCAIdgAAAAZBsAMAADAIgh0AAIBBEOwAAAAMgmAHAABgEAQ7AAAAgyDYAQAA\nGATBDgAAwCAIdgAAAAZBsAMAADAIgh0AAIBBEOwAAAAMgmAHAABgEAQ7AAAAgyDYAQAAGATB\nDgAAwCAIdgAAAAZBsAMAADAIgh0AAIBBEOwAAAAMgmAHAABgEAQ7AAAAgyDYAQAAGATBDgAA\nwCAIdgAAAAbx//TKfso/laoTAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdf3zP9f7/8fuYbTGhYmzIrx0/2lmxSMNHJ+RH8mMa0UcrTXZGn/h8OD58\nw/Tro9OpC0pyzCl1wiEtlKMSCqn5FZFO8yt0Nj+HzY+G8/7+8Xqf9/u9X+/3frx/vna7Xs4f\n7/N8//DY0nbv+esRZLFYBAAAgMBXzdcFAAAAwD0IdgAAACZBsAMAADAJgh0AAIBJEOwAAABM\ngmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAH\nAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABg\nEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7\nAAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAA\nkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDY\nAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAA\nmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATB\nDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAA\nwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQI\ndgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAA\nACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmESwrwsIDHv27Ll+/bqv\nqwAAAH4hODj4zjvv9HUVJSDYubZjx46OHTv6ugoAAOBHtm/ffvfdd/u6iqIIdq4VFBRI+vXX\nX0NCQnxdCwAA8LGCgoLQ0FAjHvgb9tgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ\n7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAA\nAEyCYAcAAGASBDsAAACTINjBf40YoaAgnT+vMWMUEaGaNdW5szIzdfmyxo9XVJTCwxUfr127\nfF0oAAD+gWAH/xUSIkmJiYqK0rp1mj9fe/YoMVHDhiksTKtXa/FiHTigfv107ZqvawUAwA8Q\n7OC/E2PBwZIUHa3p09W+vZKSNGCAjh1TWJhmzVJcnIYMUVKSTp7U9u3erg0AAD9EsIO/T4wl\nJNgfR0dL0sCB9pHWrSUpO9u7NQEA4JcIdvD3ibGoqKKlOo7UqCGJpVgAACSCHWz8dmLMiG7O\nRwAAgAh2sGFiDACAQEewgxUTYwAABDqCHQAAgEkQ7AAAAEyCYAcAAGASBDv4r/R0WSxq1co+\nkpYmi0Vdu9pHkpNlseiRR7xfHQAAfodgBwAAYBJBFovF1zX4u6+//rpLly6//vpriNGiAQAA\nVGEFBQWhoaFbt26Nj4/3dS1FMWMHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMA\nADCJYF8XUCkFBQV79uzJz89v1qxZ8+bNfV0OAACALwXMjN0LL7ywceNGx5EFCxY0bNiwU6dO\n999/f4sWLe6+++7vvvvOV+UhoI0YoaAgnT+vMWMUEaGaNdW5szIzdfmyxo9XVJTCwxUfr127\nfF0oAABOBUywmzZt2qeffmr7v5988klKSsrly5cHDx48ZsyYLl267Ny587777jt06JAPi0SA\nMm6eTkxUVJTWrdP8+dqzR4mJGjZMYWFavVqLF+vAAfXrp2vXfF0rAAClC9Sl2AkTJtSpU2fb\ntm1t27Y1Rj788MOHH374xRdf/Mtf/uLb2hBwgoMlKTpa06dLUvv2WrtWy5erUyfNmiVJcXHa\nvFlz5mj7dvnfNeMAAFgFzIydo9OnT2dlZY0dO9aW6iQlJCQMHDjws88+82FhCGgJCfbH0dGS\nNHCgfaR1a0nKzvZuTQAAlEdABrurV69Kckx1hpiYmFOnTvmiIphBVJT9sTGH5zhSo4YklmIB\nAH4tIINdZGRknTp1Tpw4UWT8n//8Z+3atX1SEkzAiG7ORwAA8GeBFOyOHTu2Y8eOgwcP5ubm\npqamLlq06PLly7Znf/zxx7/97W9dunTxYYUAAAA+FEiHJ5YuXbp06VLHkb///e9DhgyRtGTJ\nkqeeeurKlSvTpk3zUXUAAAA+FjDB7u233z7v4MKFC+fPn69Xr57x7Pnz5+vWrbts2bKOHTv6\ntk4AAABfCZhg9/jjjzt59rHHHktJSalWLZBWlgEAANwrYIKdc+Hh4b4uAQAAwMeCLBaLr2vw\nd19//XWXLl1+/fXXEKNBAQAAqMIKCgpCQ0O3bt0a73931ptkxk7SoUOHxowZI2n9+vVlf1dO\nTs6oUaOuOb2d7MyZM5L+9a9/VbJCAAAAjzJPsMvLy/viiy/K+67atWvfc889V65ccfKa7777\nTtL169crXhwAAIDnmSfYtWnT5vvvvy/vu2rVqjVjxgznr1mwYMGnn35a0bpgNWKEli5Vbq4m\nT9ZHHykvT7GxmjtXMTGaOlUrVujCBcXG6o031KGDr2sFACAwmSfYhYWFxcTE+LoKlMrYoJiY\nqG7dtG6d9u5VSooSExUbqzvu0OrVOnpUycnq10/Hj9PyAQCAijDV/SBnz549ePCgr6tAyYzu\nq9HRmj5d7dsrKUkDBujYMYWFadYsxcVpyBAlJenkSW3f7utaAQAITKYKdq+88kp0dLSvq4Az\nCQn2x8Y/q4ED7SOtW0tSdrZ3awIAwCxMFezg/6Ki7I+NOTzHEWMF1ukZZQAAUCqCHbyq+OY5\nttMBAOAuAXN44u6773b5ml9++cULlQAAAPingAl2u3fvllTD6fQOV80BAICqLGCWYidNmlSr\nVq19+/ZdLd3EiRN9XSYAAIDPBEywe/7551u1ajV8+HDn7b8AAACqrIAJdjVq1Hj//ff3798/\ndepUX9cCAADgjwJmj52ktm3b5uTkONlI17dv37p163qzJJRderrS0wuNpKUpLa3QSHKykpO9\nWBMAAOYSSMFO0s033+zk2e7du3fv3t1rxQAAAPiVgFmKBQAAgHMEOwAAAJMg2AEAAJgEwQ4A\nAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ7mMWKE\ngoJ0/rzGjFFEhGrWVOfOyszU5csaP15RUQoPV3y8du3ydaEAAHgGwQ7mERIiSYmJiorSunWa\nP1979igxUcOGKSxMq1dr8WIdOKB+/XTtmq9rBQDAAwh2MI/gYEmKjtb06WrfXklJGjBAx44p\nLEyzZikuTkOGKClJJ09q+3Zf1woAgAcQ7GA2CQn2x9HRkjRwoH2kdWtJys72bk0AAHgFwQ5m\nExVlf2zM4TmO1KghiaVYAIA5EexgNkZ0cz4CAIApEewAAABMgmAHAABgEgQ7AAAAkyDYIWC4\nvH948WJJ2r/f14UCAOAjBDsEDJf3D3fvLknJyRx6BQBUUQQ7BAyX9w+vX69nntGZM/b7h9PS\nZLGoa1f7hyQny2LRI4/4oH4AADyNYIcAw/3DAACUhmCHAMP9wwAAlIZghwDD/cMAAJSGYAcA\nAGASBDsAhbi8ViY8XPHx2rXL14UCAIoh2AEoxOW1MosX68AB9evHXkYA8DsEOwCFuLxWZsgQ\nJSXp5En7tTIAAD9BsANQAq6VAYBARLBDwEhPl8WiVq3sI9w/7DlcKwMAgYhgB6AEXCsDAIGI\nYIdAYsoDm6b8ogAAPkGwQyAx5YFNU35RAACfINghkJjywKYpvygAgE8Q7BB4THlg05RfFADA\nywh2CDymPLBpyi8KAOBlBDsEHlMe2PSfL4prZQAgcBHsAAAATIJgBwAAYBIEOwAAAJMg2AEA\nAJgEwQ4AAMAkgiwWi69r8HcLFixISUnJy8sLDw/3dS0AAMDHCgoKQkNDt27dGh8f7+taimLG\nDuZB01UAQBVHsIN50HQVAFDFEexgHjRd9TfMoQKAlxHsYDY0XfUfzKECgJcR7GA2NF31H8yh\nAoCXEexgNv7TdBUG5lABwGsIdgA8izlUAPAagh0Az2IOFQC8hmAHAABgEgQ7uJPteovoaAUF\n6aabFBGhW25RzZpq1Ej16ys8XJGRatCAey4AAHA/gh3cyXa9hdF9rWVLnTun0FC1bq0zZxQc\nrDZtdO6cbtzQX/7CPRcAALgZwQ7uZLveIi5Okv7jP5SQoJwctWplfdC8uVJSdO6cGjd2/z0X\n6emyWNSqlX0kLU0Wi7p2tY8kJ8ti0SOPuO0PBQDAfxDs4H626y0SEuzXW9ge2K634J4LAADc\ni2AH97NdZhEVZb/ewvbAdr1FVbjnoor31GIOFQC8jGAH97NdZuHkQRVBTy0AgDcR7AAPoqcW\nAMCbCHaAx9FTCwDgHQQ7wOPoqQUA8A6CHeBx9NQCAHgHwQ7wX1X8UC0AoLwIdnAn2/UWtge2\n6y1sD2zXW3DPhUscqgUAlAvBDvBfHKoFAJQLwQ7wdxyqBQCUEcEO8HccqgUAlFGwrwsoN4vF\ncuTIkcOHD+fl5UmqU6dOdHR0kyZNfF0XUIL0dKWnFxpJS1NaWqGR5GQlJzv7EA7VAgDKKJCC\nXW5u7osvvvjee++dOnWqyFNNmzZNTk6eOHHiTTfd5JPaAAAAfC5ggl12dnaXLl2OHDkSHR3d\nr1+/22+/vVatWpIuXrx46NChL7/8cvr06StXrty4cWO9evV8XSwAAIAPBEywmzZt2okTJ5Yv\nX56YmFj82Rs3bixYsGDcuHEzZ86cPXu298sLOCNGaOlS5eZq8mR99JHy8hQbq7lzFROjqVO1\nYoUuXFBsrN54Qx06+LpWAABQNgFzeOKTTz4ZOXJkialOUvXq1VNTU4cOHfrhhx96ubAAxQVp\nAACYT8AEu7Nnz7Zs2dL5a9q2bXvy5Env1BPouCANAADzCZhgFxkZuWfPHuev2b17d2RkpHfq\nMQcuSHPO5x29bA08bGwNPGxo4AEAsAmYYDdo0KAVK1b86U9/+vXXX4s/e+nSpRkzZqxatWrY\nsGHery1wcUGacyxYAwACS8AcnkhLS9u8efOkSZOee+65Tp06NWnSJDw83GKx5Ofn//zzz5mZ\nmZcvX+7Wrduzzz7r60oDCRekOee4YG0cNxk8WBkZOnlSX3yhTZs0d64efVTz5ikyUleucNwE\nAOBjARPs6tatu23btnnz5r377rubNm26ceOG7akaNWrExcWNGjVq1KhR1atX92GRMCVjwdqY\nvfvuO0maNk2NGyslRYmJqlNHkv7wB7VooeRk9eun48fJxwAA3wiYYCcpJCRkwoQJEyZMuHr1\n6vHjx43OEzfffHPTpk1DjN+6gAcYy9PG7N2tt+rIEcXH63e/09q1Wr5ccXGS1KSJhgzR5s2a\nM0fbtys+3pcFAwCqrEAKdjZhYWHRxlZ/wPMcp9/attWOHdYR4+/gXXdp507rsxw3AQD4VsAc\nngD8wc032x8bc3h169pHOG4CAPCtgJyxK9GhQ4fGjBkjaf369WV/140bN9auXXv16lUnr9lp\nm5BBlVet2H8KBZvn3yEAQMAzzy+lvLy8L774orzvOn78+OjRowsKCpy8xrhgxWKxVLw4/5Oe\nrvT0QiNpaUpLKzSSnKzkZC/WBAAAKsc8S7Ft2rT5/vvvv//++3K9q1mzZjk5Oeeceu211yQF\nBQV5pnCYwfDhOn9e770nSUlJ3r7HGAAAg3mCXVhYWExMTExMjK8LQRWVmGjdb/fkk0XvMW7f\nXtu2qW9fjR7tzg4WPm+MAQDwN+YJdpLOnj178OBBX1cB8yje0eu//qtoR6/+/fXkk5IUHa2H\nHpKk//iPoo13jS7Hp05JcmcHCxpjAACKMFWwe+WVV7gGBb7ipPGu7YBFnz5q315JSUWT35Ah\nSkrSyZPavr0cf6JjYww3fiwAIHCZKtgBnlN89i4trdDsXVSUkpNlseiRR0povGuwzZwVSX6q\nxB14TgJlZT4WABCICHaAe5Sr8W7x5FfhO/AcP8SNHwsACEQBc93J3Xff7fI1v/zyixcqAdzF\nLS1lyxUoAQDmFjDBbvfu3ZJqOP2Vdf36dW+VAwAA4HcCZil20qRJtWrV2rdv39XSTZw40ddl\nAgAA+EzABLvnn3++VatWw4cPv8Z2IQAAgJIETLCrUaPG+++/v3///qlTp/q6FgAAAH8UMHvs\nJLVt2zYnJ8fJRrq+ffvWNe7+B7yoLI13JWVlFbotBQAAtwsyWW97T1iwYEFKSkpeXl54eLiv\nawEAAD5WUFAQGhq6devW+Ph4X9dSVMAsxQIAAMA5gh0AAIBJEOwAAABMgmAHAABgEgQ7AAAA\nkyDYAQAAmATBDgAAwCQIdgAAACZBsEOVMGKEgoJ0/rzGjFFEhGrWVOfOyszU5csaP15RUQoP\nV3y8du3ydaEAAFQCwQ5VQkiIJCUmKipK69Zp/nzt2aPERA0bprAwrV6txYt14ID69dO1a76u\nFQCAiiLYoUoIDpak6GhNn6727ZWUpAEDdOyYwsI0a5bi4jRkiJKSdPKktm/3da0AAFQUwQ5V\nSEKC/XF0tCQNHGgfad1akrKzvVsTAADuQ7BDFRIVZX9szOE5jtSoIcmrS7Hs/AMAuBfBDlWI\nEd2cj3gTO/8AAO5FsIOPVeVZK3b+AQDci2AHH2PWKrB2/lXlIA4A/o9gBx9j1srfdv455/Mg\nXlqyHDZMQUFq1Eg1aigkRGFhJE4AVRHBDn4hsGat3Mvfdv455/MgXlqy/PprSWraVEOGKCxM\noaFVbuoXAESwg58IrFkr+DCIl5Ysjb8kcXFatkyjRuniRcXHV62pXwAQwQ5+wtOzVunpsljU\nqpV9JC1NFou6drWPJCfLYtEjj7jzzzUrnwfx4smyaVP7uJEs69WTqtLULwCIYAegAny+fFw8\nWdaqZR93LIapXwBVCsEOKAFnP/1c8RxZrVrJ4/68YREA3I5gB5TA52c/XSJ6ehrfYQCBiGAH\nlMA7Zz8rs/PP/6NnoOM7DCAQEeyAUvnzJSw+v3bE9PgOAwhEBDv4mD+fV/X52U+X/Dl6mgPf\nYQCBhWAHlMr/d+J7P3r6cxD3BP8P9wDgiGAHBDD/j55uV1qyXLPGPm4kyw8+cEPirILfYQAB\njWAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdkAJKnb2s/K9Cuh2AACojCCLxeLrGvzdggUL\nUlJS8vLywsPDfV0L/Nrjj2vxYvXsqW7d9NBD2rtXKSlq0ECxsbrjDiUm6uhRJScrNFTHj5d8\nuLLynwAA8LSCgoLQ0NCtW7fGx8f7upaimLED3KbyvQrodgAAqAyCHeBmle9VQLcDAEDFEOwA\nN6t8rwK6HQAAKoZgB7hZ5XsV0O0AAFAxBDsApeKULgAEFoIdgFKFhEhSYqKiorRunebP1549\nSkzUsGEKC9Pq1Vq8WAcOqF8/loYBwC8Q7ACUilO6ABBYCHYAXOCULgAECoIdABc4pQsAgYJg\nB7hNxRqRufcTPIFTugAQKAh2AAAAJkGwAwAAMAmCHQAAgElUKtjl5uYePXrUTZUAAACgUpwF\nu7179z744IPNmjXr1q3bm2++eePGjSIvePnll5s3b+7J8gAAAFBWpQa7rVu3durUae3atadP\nn/7222/Hjh3bo0eP3NxcbxYHwLf885QuAKA0pQa7//u///vXv/6VkZGRn5+fl5f32muvff31\n171797506ZI36wOqMlq1mgn/NAF4QanBbu/evcOGDRs0aFBQUFBoaOiECRPWrVu3Z8+eoUOH\nFl+TBeAJtGo1E/5pQuR7eF6pwS4nJ6dFixaOI/fff396evratWv/+7//2/OFAVVO8Z/4a9dK\nUvPmOndO/ftr7FjVqkWr1kBF412IfA/PKzXYRUREfPfdd0UGR44cOWXKlLlz577yyiseLgyo\ncor/xD93TpK+/97+E9/YCtG/v/1dtGoNLDTereLI9/C0UoNdQkLCmjVr3njjjWuF/6vhxRdf\nTEpK+sMf/jBhwoTLly97vkKgqij+E79pU0m6+Wb7T/w775SkvDz7u2jVGlhovAuR7+FJwaU9\nMX369I8++ujpp59etWrV559/bhsPCgp6++2369SpM3v2bK9UCFQtjj/x69SRpAcesI/cdpsk\nXbjg3ZrgPjTehcj38KRSZ+xuvfXWnTt3pqamxsTEFHkqKChozpw5K1eubNmypYfLA6ocx5/v\nQUGSFBFhH6lWTZKuX/duTQDcinwPzyl1xk7SbbfdNm/evNKeTUhISHCcWwDgDsV/vgc7+9cU\nAAA7esUCAACYBMEOAADAJAh2AAAAJkGwA/zXgAGS1Lhx0RHjNgQDrVoDBY13TYYeEvBPBDuY\nED9wAXhaxXpIkO/haQQ7mFCANu3hJz4QQOghAf/kOtht2bLlnNHYqJjMzMyVK1e6uySgsviB\nC8A76CEBf+M62HXr1u2rr74q8anNmzePHj3a3SUB7sEPXACeVvYeEmwRgXeUevPpwYMHDx48\naDzevXt3WFhYkRdcuXJl+fLlv/76qwerAyqBpj0APK3sPSRsW0S6ddO6dUpN1TffaMgQVaum\nM2d044aaNtW+ferbV8OGaeVKXbig2Fi98YY6dPDslwCTKTXYffDBB1OmTDEeP/fcc6W97OGH\nH3Z/UYA70LSnShkxQkuXKjdXkyfro4+Ul6fYWM2dq5gYTZ2qFSv4NQkfc9wiIql1a33zjU6c\nULt2+ugj7d2rlBTVqKFTp5Sbq9WrdfSokpPVr5+OH+dnF8qh1GD3v//7v0lJSdu3bx84cODI\nkSPbtWtX5AXVq1dv0aLFAOP2BQDwqSLTIcavycRExcbqjjv4NQl/YdsiYmsVOGWK2rdX+/Za\nu1bLl0vSoEGKi1NcnDZv1pw52r5d8fG+qRaByFkTykaNGg0YMODBBx9MTU3t3Lmz12pC1cEs\nC9ylyHSI7ddkp06aNUsSvybhFxw3hBQZMbYCy2GLCFuBUQGuD098/PHHfpvqCgoKtm/fvnHj\nxiNHjvi6FlREgN5LAr/FiRm3YJu/5zjZIhJcbKaFrcCoAGczdgaLxfLBBx+8++67J06cuFbS\n3699+/Z5oLCiXnjhhS5duvzud7+zjSxYsGDKlCm5ubnG/42Li0tPT7/rrru8UAzchVkWuBcn\nZtyCdW0gcLkOdq+++uqkSZMk1axZs4bv/g2eNm3a5MmTbcHuk08+SUlJCQ0NHTx4cIMGDfbt\n27d169b77rtv586dLVu29FWRqBhmWeAunJhxC/6LqyzS05WeXmgkLU1paYVGkpOVnOzFmoCy\nLMXOmTOnd+/ehw4dunTp0vmSeKHK4iZMmFCnTp3du3d/+OGHb7311pYtW1auXHnx4sUXX3zR\nJ/WgMtw+y0ILB6Dy+C8uIBC5DnYnT56cOXNmixYtvFBNGZ0+fTorK2vs2LFt27a1DSYkJAwc\nOPCzzz7zYWGoGGZZAD/EurbzvYY1ayooSJ06acgQdiLCj7gOdhERERaLxQullN3Vq1clOaY6\nQ0xMzKlTp3xREQCYDf/F5fx0V48ekrR7tz77TB9/zNkv+AvXwW748OHvvfeeF0opu8jIyDp1\n6pw4caLI+D//+c/atWv7pCQAgMk47zodESFJ7dopP1/XrrnuSV18i4ikrKxCW0Qkbd7MFhFU\niutgN3369EOHDj366KOffvrpgQMHDhbjhSoNx44d27Fjx8GDB3Nzc1NTUxctWnT58mXbsz/+\n+OPf/va3Ll26eK0eAIDpOd9reN990r/3GpZrJyJbgeEhrk/F2ubAlixZUuILvLZQu3Tp0qVL\nlzqO/P3vfx8yZIikJUuWPPXUU1euXJk2bZp3igHgVziiCA8pvtdw5Ej176+tWyVp/nxJ+vFH\nXb6s9eslafRovfmm9Vr1qrATEf7GdbAbPnx4SEhIcPGbE73r7bffdjyKe+HChfPnz9erV894\n9vz583Xr1l22bFnHjh19WycAwF38oTlNiTsLExNVs6YkDRiglSs1e7a++cYa+559Vn/6k/WS\nP8D7XMe10ibqvOzxxx938uxjjz2WkpJSrZrrlWX4FWZZADjht1clR0eroEC7dqlDB61cqTNn\nFBamnj21dau6d9fp09ZL/orzh6gKcytHEsrLy9u/f7+vLq5zLjw8nFQHAG7hP9u/nB9fKH5A\nwWscN94Zyri1jj6K8LQyhaEvv/zy7rvvvvnmm2NiYr755htjcMCAAV988YUnawMAwB+vSnbc\neFd8xMnWOr+NqjAN10uxmZmZDzzwQGhoaO/evT/99FNj8PTp09u3b+/Xr9/XX38dFxfn4SLL\n5NChQ2PGjJG03ti/WjbHjh3r1avX9evXnbzm4sWL8uIZEQCAIz+8KrmSl/z5YVSFabgOds89\n91zDhg23bt0aHBzcqFEjY7B+/fp79uzp2LHj888//9FHH3m4yDLJy8urwAxiZGTkrFmznAe7\nzz//fOHChUFBQZWoDgBQQea7KtkPoypMw3Ww++abbyZOnNi4ceOcnBzH8QYNGqSkpLzyyise\nq6182rRp8/3335f3XcHBwYMHD3b+mnPnzi1cuLCidQEAAlKJp7tOnNCiRYWeLSjQzJnWZ42z\nXz/+aH19aWe/zBdV4T9cB7sLFy40adKkxKcaNWqUn5/v7pIqKCwsLCYmxtdVAAAA+IzrwxMN\nGzY8cOBAiU999dVXkZGR7i7JBYvFcvjw4fXr12dkZGRkZGzYsOE4lwUBAMxoxGIcs/QAACAA\nSURBVAgFBen8eY0Zo4gI1aypzp2VmanLlzV+vKKiFB6u+Hjt2uXrQuE3XAe7fv36vfnmm7sK\n/63Jzc39f//v/7399tsPPvigx2orKjc3d+LEiQ0bNmzZsmWvXr0SEhISEhJ69OjRtGnT22+/\n/fnnn79y5YrXigEAmJWTOGXcDBEb66U4xfUoKC/XS7EzZ878+9//fs8998TGxkqaMmXKlClT\nDhw48OuvvzZt2nT69OmeL1KSsrOzu3TpcuTIkejo6H79+t1+++21atWSdPHixUOHDn355ZfT\np09fuXLlxo0bbe0oAACoACcXI/fvr8WLC12M7NFr1R2vR5HUvr3WrtXy5erUSbNmSVJcnDZv\ntt6HHB/vnj8UAc11sGvYsOGOHTvS0tKWL18u6bvvvpN02223jRo1Ki0trUGDBh6vUZI0bdq0\nEydOLF++PDExsfizN27cWLBgwbhx42bOnDl79mzvlAQA8ChfNafxtzjF9SgouzJdUNygQYM3\n33zz9OnTOTk5WVlZOTk5p0+ffvPNN72W6iR98sknI0eOLDHVSapevXpqaurQoUM//PBDr5UE\nADAxT8SpinX14HoUlF052nAFBQVFRES0atUqIiLCcwWV5uzZsy1btnT+mrZt2548edI79QAA\nvM+bhwn8J05xPQrKznWws1gsK1aseOihh9q3bx9TEi9UKSkyMnLPnj3OX7N7927vn9IFgEri\n5GPZefMwAXEKgcj1HrtXX3110qRJkmrWrFnDd3+pBw0aNHfu3I4dOz799NOhoaFFnr106dIf\n//jHVatWTZ482SflAUCFOdmqf8cdWr260Fb9Kp4t/G33G+BvXAe7OXPm9O7d+80332zRooUX\nCipNWlra5s2bJ02a9Nxzz3Xq1KlJkybh4eEWiyU/P//nn3/OzMy8fPlyt27dnn32WR8WCQAV\nQFgpLw4TAKVxvRR78uTJmTNn+jbVSapbt+62bdtee+21li1bbtq06Z133nnjjTfmzZu3ePHi\nrVu3xsbG/vnPf964cWN4eLhv6wSAiiGslJ1tr9uIEXrxRUn629/sq9gnTkjSokVmW8U2luyv\nXpWkAQPsS/YFBZKUmmqqLxYV5nrGLiIiwmKxeKEUl0JCQiZMmDBhwoSrV68eP348Ly9P0s03\n39y0adMQYyUDAAKW/2zV93+29Wjbz/6ICPsqdlaW9TUmW8U2vtgVKyTp1VdVrZp1yb5uXUma\nNEm/+Y15vlhUmOtgN3z48Pfee69z585eqKaMwsLCoo3/ngUAs2CrfgUE//uX2OOPq317+yq2\npOHDFRcX8KvYjjf5GV9s7956803riG3J3na2MKC/WLiF62A3ffr0hx9++NFHH33ssceaNm1a\n/PxEK8cLeQAA8J3i/9VfgVVsX12MXBYs2cM518Gudu3axoMlS5aU+AI/WagFACC42K81k61i\ns2QP58q0FBsSEhJc/N8VAADgXSzZwznXca20iToAAAD4lXLMw505cyYrK+vSpUu1a9du3bp1\nXeMcDgAA3lJ895ukrCwV2ey9eXOh7qtA1VGmXrFbtmzp3Llz/fr14+Pje/Xq1blz51tuuaVn\nz5779u3zdH0AYHoVawwPAMW5DnaZmZk9e/bcsWNH165dn3zyyXHjxj3xxBOdOnXasGFDly5d\n/vGPf3ihSgAAAgj9f+ErrpdiX3jhhfr163/++edt2rRxHN+9e3efPn1mzpzJJjwAABzR/xe+\nEuTyspLbbrvtf/7nf6ZMmVL8qZkzZ86fPz8nJ8cztfmLBQsWpKSk5OXl0a8MAFAWyclatEi/\n/739MuFhw7R8uR5+2No6QtL48ZozR1u3cplw4CkoKAgNDd26dWu8//3Dc70Ue+HChcaNG5f4\nVLNmzc6dO+fukgAAMAMuE4b3uQ52DRo0OHDgQIlP/fDDDw0aNHB3SQAAmAGXCcP7XAe7Bx54\n4PXXX1+1apXjoq3FYsnIyJg3b17fvn09WR4AAIGqvJcJc+QClef68MSMGTPWrl07aNCghg0b\ntmvXrlatWpcuXfrhhx9ycnIaNWo0Y8YML1QJAIDpceQCled6xq5Zs2Y7duxISkq6cuXKhg0b\n1qxZs2HDhoKCguTk5J07d5a2/Q4AAJSLsVwbHa3p09W+vZKSNGCAjh1TWJhmzVJcnIYMUVKS\nTp7U9u2+rhX+qkydJ5o0afLOO+9YLJacnJxLly6Fh4c3bNjQ05UBAFAFceQClVGmzhOGnJyc\nnJyc48ePnzp16vTp056rCQCAKqvCRy7YogeVMdgtXLiwefPmkZGRHTp0uP/++++8884GDRq0\nbdt22bJlnq4PAGACZI6ys22eGzFCM2dK0uzZ9m/akSOS9O67JXzTbFv0oqK0bp3mz9eePUpM\n1LBhCgvT6tVavFgHDqhfP47impnrpdj58+enpqaGhob27NkzKiqqVq1aFy5cyMrK2r59+/Dh\nwwsKCh577DEvFAoACFxV7VhAerrS0wuNpKUpLa3QSHKykpOdfYjxTZNUv779m5aVJUk1apTw\nTXPcoiepfXutXavly9Wpk2bNkqS4OG3erDlztH07tyKblusZu9mzZ/fu3fvkyZOff/75O++8\nM2/evL/+9a/ffvvtoUOHWrVq9fLLL3uhSgBAQKuyxwIqM1UZ/O+5l8cft3/TjLYAq1erZUt9\n9pkKCnTypO66S5mZun5dkpYvt38mW/SqINfB7ujRo9OmTatTp06R8ebNm0+YMOHQoUOeKQwA\nYDZV8FiAe5dHjW+awfjMZ56RpKwsJSZq40ZJeust+2dWqyaVskXPeeKsWVNBQerUSUOGsHQe\nYFwHuzp16lSvXr3Ep6pXr37bbbe5uyQAgDlVwU4M7p2qDHbYP2V8ZosWkhQXp2PHZPyuvusu\n+2f+8otUyq3IzhNnjx6StHu3PvtMH3/Mdr1A4jrYPfTQQ2vWrCnxqY8//jgxMdHdJQEAzKm8\nnRhMwxNTlY6f2aiRJDVtWvQz8/NLfbvzxBkRIUnt2ik/X9euVaGlcxNwfXjihRdeGDRo0NGj\nRx955JHo6OiaNWsanSf+8pe/FBQUjB079sSJE7YXc18xAABFlHGqsviRC0lZWWrVqtBI//76\n+ONCn2AsudaqVfQzb9xwUZjzxHnffdq715o4q8jSuQm4DnaRkZGSMjMzlyxZUvzZaMcFf8mx\nnywAwHxGjNDSpcrN1eTJ+ugj5eUpNlZz5yomRlOnasUKXbig2Fi98YY6dPB1rX7D+VTlwoWS\ndPmyxowp9C01DkN06aJLl6zfUuefWa0cV9NaOU+cxmYrY7G1iiydm4DrYDdo0KDQ0FAvlAIA\n8H9V7eISLzAy0+zZevjhQt9Sw4IFunHD+i196ik3/9HOE2fxDfb8A/V/roNdRkaGF+oAAAQE\nLktzO2OmrWHDot/S5s0lKSZGrVpZv6XGYQjAifLP2wIAqrwqeHGJp3XsaH9sfEvLdRhC0uTJ\nslgKbch7+GFZLOra1T6SnCyLRY884o6K4Zdcz9hJunHjxrfffpudnX2tpLX0R/gLAgBVTHkv\nLnFLJwZzu+UW+2PjWzpjhn73O+uI8S0dPFh/+1uh75LxTUtL08qVXqsUfs11sNu5c+fDDz98\n9OjR0l5AsAOAqqbKXlziOYGyoc12eua99yQpKUmzZ3N6xo+4Dnbjxo07f/78M88807p16xr+\n+bcMAAC/VJapytattWWL+vd352eWcfozOtp+wNloVnbggDp00DffWD9W0pEjhd5iOz1Tt64k\nPfmk3n6b0zN+xHWw+/777//6178OGjTIC9UAAAAvSE/X9etavLjoAecXXtDq1erfX4sXWyPa\nnDmaONGeHd95R5Kio/Xmm9aPOnuW0zN+xPXhifDw8KaOGzgBAEDgq0y7M07P+C3XwW7o0KEf\nfPCBF0oBAABeVrGIVgXb/gYK10uxs2bNeuSRR4YOHTpw4MDIyMji2+y6Oh6kBgAAgcMxkK1a\nJUl16th7YDRsKEn5+Ro/3nowwmhcxukZv+U62O3bt++77747fvz4ihUrSnwBbcQAoOrg4hK3\n8+23tHirieee00MPWXfdjR4tSXPnqlcv68GIESMkWdudwQ+5DnZPP/306dOnhw4dGh0dHRxc\npnvvAABAwDF6YDRubO+B8cYb2rFDNWrYD0ZER2v/fu3dqzZtfFkqSuM6qO3du3fhwoX/+Z//\n6YVqAACAb3Xvbn8cESFJd99tH6lTR5JOn/ZuTSgz14cnatWqFRMT44VSAACAz9Wvb39szOHV\nq1d0hIMRfst1sBs8ePDHH3/shVIAAIDPFe+BwT6sAOI62L3yyitffvnl2LFj169ff+DAgYPF\neKFKAAAC14gRCgrS+fMaM0YREapZU507KzNTly9r/HhFRSk8XPHx2rXL14WWQVKSJOtpWUNa\nmiwWOd6QkZwsi0U0HPUJ1yG8Xr16ktavX/+m7ZLpwjgVCwCAE7Y2XI49Hnzehst2GtfW/vXK\nFUl64gl7+9dTpyRp1ix9+intXwOD62A3fPjwkJAQzsMCAFAxjj0eJLVvr7Vr/agNly131qwp\nSTNnasYMa+40Kn/2Wf3pT9bcCT/nOq4tWbLEC3UAAGBuftuGy5Y7Cwq0a5cSErRzpzV39uyp\nrVvVvbtOn7bmTvg513vsbM6cObNt27b169d/++2358+f91xNAACYjw/bcDnf5Ld0qSR9+aXO\nnrW+vrTc2aWLLl+WpDFjAnunoImVKdht2bKlc+fO9evXj4+P79WrV+fOnW+55ZaePXvu27fP\n0/UBAGAOPmzDZVtsjYrSunWaP1979igxUcOGKSxMvXpJ0vHj2rZNBQVq1cqeO20HI2ylrlmj\nmTO1aVPRD1m9WosX68AB9evHZSi+5HopNjMzs2fPntevX+/atWvr1q1vuummS5cu/fDDDxs2\nbOjSpUtmZmZrI8YDAAC/5HyTn9GsLCFBixcX2uRXYu70252CMLgOdi+88EL9+vU///zzNoW7\nh+zevbtPnz4zZ85kEx4AAMXZTptu3SpJv/2t7rzTetp03TpJ6tXL2rbLO6dNnW/ya9FCKsMm\nP7/dKQiD66XYr7/+OjU1tU2xnnDt27dPTU3dsGGDZwoDACCwFT9talu7tJ029ebapbGlz9hv\nd/26JD39tGrW1OrVkmTcXTZ6tMLDtWiR/V3G642tdZJ69VLHjho8WA0a6P/+T5KefFKdO2vE\nCEVFacIESfrpJ298OSiR62B34cKFxo0bl/hUs2bNzp075+6SAAAwA9sCaPv2kpSQoAEDdOyY\nwsLUs6ckde+upCSdPOml06bG0qoRN1eskKTXXtP8+TJ+ky9bJkmTJmnxYp05I8ka/ozXv/WW\n/XN27dLGjWrTRi1bSlLNmtq1S6tX68MPNWqUJL38MtvsfMZ1sGvQoMGBAwdKfOqHH35o0KCB\nu0uqApYsUePGCg7WpEm+LgUA4Fn+tnZpxM1bbrHWk5Skpk3t482ba8gQ3XmnJP34o308IsL+\nCc2b68IFRURoxAhJOn9ezZrp0iXduGFdU75wgYtRfMZ1sHvggQdef/31VatWOXaYsFgsGRkZ\n8+bN69u3ryfLM6MLF5ScrPx8Pf+8evf2dTUAAM+KilJ6uiwWZ6dNr13zdhuutm3tj+vUKTpy\n222S7LefSIV2Ad5zj1Q4nnbpIhWOp2yz8xXXhydmzJixdu3aQYMGNWzYsF27drVq1TJOxebk\n5DRq1GjGjBleqNJUsrJ05YqeeEJTpvi6FACAx/nwlhMnbr7Z/njgQH33nXXezjBokD75xLrS\nakhO1oUL1r139epJUlSUbO3ib71VKnwJH0uxvuJ6xq5Zs2Y7duxISkq6cuXKhg0b1qxZs2HD\nhoKCguTk5J07d5a2/Q6lunpVkmrX9nUdAIDA4/yq4bLfElyt2O9/561DHcOo8V7HEdqO+o8y\nXVDcpEmTd955Jzc395///GdWVlZ2dvbZs2cXLlzYqFEjT9dnNn36qFs3SXr5ZQUFKSXF1wUB\nAAKJ86uGi98SbATBggJJ6tzZfgbWOBgxeHDRM7ClmTDB/rL0dEkaM0a//GIdmTdPkqZP17Fj\n7vtSUSEugt2pU6e2bdtmPA4KCmrUqFGrVq0aNmw4b948uopVxIwZeuklSUpIUEaGfv97XxcE\nAAgkjlcNt2+vpCT7SdtZsxQXpyFDCp20NYJgdrZmztTnn9vPwP74oyZP1rp19jOwffo42+Rn\nfE5kpPTv3XUHD+qzz/Sb30jSkCGS9Msv+vOfC52fhfc5C3ZfffVV69atpxs3TDvYu3fvuHHj\nYmJiDh8+7MnazOjee60zdtHRGjTIeu4IAIDyKPtJ2+JB0NhLFxpqD4KOZ2BLU7269O9jFvXr\nS1LXrjp2zPr5DRtKUvfuOnlSR49W+stDJZQa7LKzs4cMGZKfn3///fcXeeq3v/3t3Llzs7Oz\n+/Tpc9XYMQYAALzFuGrYYDtpa2M7aWvjGASNcGZcpGcofga2NM2a2R8be+wdu4oa+7MuXHD9\nOfCcUoPdwoULz5w5M3/+/CnFDm8GBQU9/fTTr776alZW1uLFiz1cIQAAAcl2y4mN7ZYTm4rd\nclLek7aOsS8oSCp8L51xGMLYdeec0ULDYMzhOZ6uNSLmjRuuPweeU2qwW7VqVcuWLUcZd0iX\nZNy4cY0bN37nnXc8UhcAAHATx9g3YIBUeO7NGHGce3OMm0Y8NQLcrFmyWDR3riwW65Ku8Upj\nvGNHSfrd78oRVd11yBc2pQa7Y8eO3XPPPdWKn4f+t+Dg4M6dO+/fv98zhQEAgEBVxsSWlyeV\n55AvXCo1t128ePFW48LB0t16662//vqru0sCAAA+ViSZGetze/fak5lxx8NPP5X8duMUbb16\nuvVWa4ONb7/VvfeqVi3duKGaNXXlirZt08cfS1Lz5jp3Tv37a+xY1arl7JAvXCo12N16663H\nXF1H89NPP9U3zsYAAAATKXJhntE07Omn7XNpgwdL0qRJJc+l2a4s3r5dd96pTZvUqZP+9S9J\nWrZMDRvqvffsN0Ps3Wufn7t0SZL697d/lPfb6Qa0UoNdx44dv/jii7OlH5I5ePDg5s2bO3fu\n7JnCAACAzxS5J8W4VOWf/7TPpRm9Zc+dczGXZvuEXr2sI3XqaPNmjRihMWPsLyty94qxRGso\nfsgXTpQa7EaOHJmfnz969OjrJZ2TuXjx4qOPPnr9+vXHH3/cg9UBAAAHFTtpGx1tX1R98UVJ\nOnDAvqg6bpwkHTlSwh/neE+KwfHCPIPzuTTbJ9jm8BITrQ9sRzocz20Yd68UvzPl9dc5ZlEm\npQa7IUOG9OzZMyMjo3PnzhkZGXn/Ds+nT59etGhRbGxsZmbm4MGD+zvOlqIsuna1niACAMDD\n0tOVlCQ5LKqmpyssTC+8YF9Uff991a2rOXNKmBWz3ZOSnq4ZMwqNpKVp4ULJYS6txKtbHG9a\nMTjGOEN4uP1xaXevGLmQYxYulRrsgoKCVqxY0bdv3507dyYkJNSpU6devXo333xzgwYNkpOT\nf/7552HDhr3//vverBVltWSJGjdWcLAmTfJ1KQAAHytvFzJH5b0wr7jirw8LK7lC54xr8yr2\nVVQpzlqK1a1bd+3atWvXrh0+fHjz5s2vXbsmqXXr1k888cRXX321bNmym266yVt1oswuXFBy\nsvLz9fzz6t3b19UAAMrNE7e7lb0LmT8zx1fhUa5Dct++ffv27euFUuAeWVm6ckVPPKFiLUMA\nAAHBdiK1WzetW6e9e5WSosRExcbqjju0erWOHlVysvr10/HjZZ1CK28XMv9kjq/Co5zN2Pkn\ni8Vy+PDh9evXZ2RkZGRkbNiw4fjx474uytcc116N7r21a/u6JgBABVVm8dTgOOe3ZIkkDR9u\nn/N77TVJ+q//CryjBpVfGja9QAp2ubm5EydObNiwYcuWLXv16pWQkJCQkNCjR4+mTZvefvvt\nzz///JUrV3xdoy84rr1u2qRu3STp5ZcVFKSUFF8XBwCooMosOzreQmfsyvnxR/tRg+HDJeno\nUX85anDLLfbHpfU3a9HC21UFqDLsV/QP2dnZXbp0OXLkSHR0dL9+/W6//fZatWpJunjx4qFD\nh7788svp06evXLly48aN9erV83Wx3uW49nrffdq0SVOnKiFBI0eqeXNfFwcAqKDKLDs6zvkl\nJ0tSjx5au1adOmnWLKWlSVLfvlqxQtu3Kz7e/cWnp0vSokX2kbQ0rV6t3bvtI8nJWr1aa9a4\n/0+vygIm2E2bNu3EiRPLly9PtF2A4+DGjRsLFiwYN27czJkzZ8+e7f3yfMlx7fXee3XjhiRF\nR2vQIF9WBQConMovOzrO+TVrJhWe82vaVCp9zi893RrObNLSrInQJjnZmhrL+AnFV35Xry46\n4vwz4VLALMV+8sknI0eOLDHVSapevXpqaurQoUM//PBDLxfmY336sPYKACixteu5c7p8Wd98\nI0l//rMkXb5sf4sxq+cPS7Fwo4AJdmfPnm3ZsqXz17Rt2/bkyZPeqcdfzJhh7cOckKCMDP3+\n974uCADgAyW2dp0wQcOGWW+Ae+ABSZoyxZ1JzhPXsqCSSg52J8rDO4VGRkbu2bPH+Wt2794d\nGRnpnXr8xb33WmfsjLVXW0dlAEBV4qS16549sljUsaP079auRhcyx75kJTaNcKlImvRoN4iK\n9VKrgkreY9ekSZOyf4TFYnFTMc4MGjRo7ty5HTt2fPrpp0NDQ4s8e+nSpT/+8Y+rVq2aPHmy\nF4oBAMAPVb61a7k4pklJ7dtr7VotX249oiEpLk6bN2vOHE8d0UBxJQe7YcOGebkOl9LS0jZv\n3jxp0qTnnnuuU6dOTZo0CQ8Pt1gs+fn5P//8c2Zm5uXLl7t16/bss8/6ulIAAHyjeGPW4iNu\nXIrdtEmSHnhAY8boo4+Ul2e9uKRvX40frxUrdOGCIiKkKt8NwptKDnbLli0ry5svXbqUl5fn\n1npKVbdu3W3bts2bN+/dd9/dtGnTDePspySpRo0acXFxo0aNGjVqVHVjKwEAAAHLdp50xAgt\nXarcXGVnq0EDPfCAYmM1d65iYrRvnyIjlZysuXP1xhvWN3r5/t5q1STpj39Unz7WDhnGgdb0\ndP3Hf1g7ZDz2mPTv+xvgBZU6PLFq1aoOHTq4qxSXQkJCJkyYsHv37vz8/J9++mnnzp07d+7M\nysrKz8/ftm3b6NGjSXUuODaoAAD4vbJvYvvXv+zvGjHCfoHcgAHWMw2//GIdSU21nmk4dqyy\n5QUFSVLz5vYOGcbFwqGh9g4Z994rSYcOVfbPQhmV6R67M2fOLFu27OjRo9evX7cNXr169eOP\nP87Pz/dYbaUKCwuLNvaFouyMBhUhIXr+eeseWgCAfyv7JrbTp+3vMuJgixY6fFivvqpq1ZSS\nouxsxcZq715NmqTf/EbJyTp8WAUFbpjSMzpbGIylWONQn6FhQ0k6f976f21zkJMnW1dvbXOQ\nU6daV29jY/XGG/LixJGpuA52R48e7dSp02nHvzK2NwcHT5s2zQNVoRK6dlWJx1kcG1QAAAJH\nWXqLOfbUNOLgLbfo8GFFR6trV2scrF9fkpo315Ah7jzTYOyiMxiLs7fdZh8x1tJs80K2Ochu\n3ayrtykpSkxUbKzuuMO6epucrH79dPw4fWArwnWwe/bZZ69evfrGG2+0bdu2R48e6enpjRs3\n3rRp03vvvbdo0aLejkHdpw4dOjRmzBhJ69evL/u7rly58tZbbxUUFDh5zbffflvZ4vyBY4MK\nAEDgKEtvMcelWEPbttqxw/rYiIN33aWdO60jzlvNqmxTa8YfGlwsShQfKfKURw/SVvFJQdfB\nbvPmzWPHjh07duzVq1cl3XHHHZ07d+7du/ewYcN69OixevXqLsY1iL6Wl5f3xRdflPddubm5\nH3zwwa+//urkNcZspXdudfGUPn306aeS9PLLevlljRmjt97ydU0AgDKp2JGIm2+2PzbiVN26\nRT/ByQnZskytDR0qSQ6nGcuqLHOQFT5IW8UnBV0Hu+zs7BYtWkiqVq2aJNvk1l133TV27NgZ\nM2aUa4bMc9q0afP999+X912RkZFbt251/poFCxakpKQEGXtE/VBpa6+OZsxQ9+6aOlUJCRo5\nUs2be6UyAICXPPWUNmwoNDJ+vP20rGHQIP3pT2X9wLJMrdWpo9xc/fijta1F2ZVlDrLC17JU\n8dv1XJ+KrV27ttGnKyQkJDw8/PDhw7an2rVrt8M2z+trYWFhMTExMTExvi7EL9GgAgBQfs6n\n1tq2lf69i85w332SFBtrHzF++RTJT164lsWjk4L+zHWw69at21tvvbVp0yZJv/3tb+fNm2c7\nCbthw4biTSA8zWKxHD58eP369RkZGRkZGRs2bDh+/LiXawAAoCpwPrVmHJUoy9Ta669bu8oa\ni2S//a29q+y6dZLUq5ebu8p6dFLQn7leip06dWr37t0nTpy4Y8eO0aNHjxo1ql27dnffffeR\nI0e+++67Rx991AtVGnJzc1988cX33nvv1KlTRZ5q2rRpcnLyxIkTb7rpJq/VAwCAublras2I\nVomJqllTkmbO1IwZ1n1vxlPPPqs//cm6780tvHxXs/9wHew6deq0ZcuWzMxMSY8//nhWVtbs\n2bMzMjKCgoIGDBgwe/ZszxcpSdnZ2V26dDly5Eh0dHS/fv1uv/32WrVqSbp48eKhQ4e+/PLL\n6dOnr1y5cuPGjfXq1fNOSQAAVGVJSdqyxXpTnSEtTWlphV6TnGz931dfKTpaBQXatUsJCdq5\n07rvrWdPbd2q7t11+rR13xsqo0wXFMfFxcXFxUkKCgp66aWXpk+fnpOTExER4c3psWnTpp04\ncWL58uWJiYnFn71x48aCBQvGjRs3c+ZMr2VNAAA8ytZbzKa05BQQEhJka1lq2/d28KB1xMT7\n3rypHC3FsrOzd+/evXHjxp9++qlWrVpeXvT85JNPRo4cWWKqk1S9evXUfLfF0QAAIABJREFU\n1NShQ4d++OGH3qwKAAB/k54ui0WtWtlH0tJksahrV/tIcrIsFj3yiFcLq7L73rypTMFu4cKF\nzZs3j4yM7NChw/3333/nnXc2aNCgbdu2y2zB2/POnj3bsmVL569p27atcYAXAAD4mxo1iobO\nGjX8JXSahutgN3/+/Keeeio7O7tnz55JSUmpqamPPvpop06d/vGPfwwfPvzdd9/1QpWSIiMj\n9+zZ4/w1u3fvjoyM9E49kKQlS9S4sYKDNWlSqSMAgIA1YYL1NOuYMdY78MaMsZ5mHT/e+pN+\n+nR3nmZFZVlc+c1vftO7d+/z588XGT98+HCrVq3atWvn8hPc4plnngkKCnrllVeuXr1a/Nn8\n/Pzp06dLmjx5stv/6LfeektSXl6e2z/ZqzZvtkgWN35/zp+33HSTpU4dy0svWT7/vOQRAEAg\nS0qySJaePS0zZ1p27bK8844lLMzStKmlf3/L5MmWHTssH3xgqVvXEhFhKShw9jktW1oky86d\nlqeesjRoYLnpJktUlEWyfP655ZlnLJGRllq1rK9ZutRbX1slGA2rtm7d6utCSuA62IWEhGzZ\nsqXEp+bNmxcaGurukkqWm5vboUMHSbVr1+7Ro8fjjz8+bty4sWPHJiUl3XfffTVr1pTUrVs3\nT8QvkwQ7t9u+3SJZUlOdjQAAAtDw4RbJkptradPGIlmCgy333GP59lvLpUuW6GjryL33Wnbu\ntFgslmeesUgW5yHHeFd8vD0gBgdbR2wBsWZNi2T561/LWpstI95zj+WBByySJSXFUrOmJSjI\nUq2aJSbGWrAtONoKrjx/DnauT8XWqVOnuuOt0g6qV69+2223uW3y0Km6detu27Zt3rx57777\n7qZNm244tKarUaNGXFzcqFGjRo0aVVqpcL+rVyWpdm1nIwCAAGRrt2pcOzdhgl5/3Xrt3G23\nKStLqal6913rtXNlOc1qdOVs1sze5uuVV7R/v0JC7G2+5s/XF1/o0KGy1ubYCtb45b9unUaO\nVKtWmjFD+/fr4Yd1551Voj+sI9d77B566KE1a9aU+NTHH39c2jFVTwgJCZkwYcLu3bvz8/N/\n+umnnTt37ty5MysrKz8/f9u2baNHjybVeU+fPtY2MS+/rKAgpaSUMAIACBwjRti30y1fLknf\nf6/GjSUpJ0dBQTp2TNu26be/laRBg5SUpJMntX17OU6z9u5tf3zLLdK/G44ZjPvwzp938SGO\nrWDbt1dSkgYM0KVLktS3r956SxMnavRoWSw6flxhYZo1S3FxGjLEXrC5uQ52L7zwwvr16x99\n9NE1a9b8+OOPx44dO3DgwMqVKx988MGrV6+OHTv2hAMvVCwpLCwsOjq6Q4cOHTp0aNWqVYiR\n3uEFtrMRt96ql16SpIQEZWTo97/XjBlFRwAAgcM2ExYVZU1gubnasEGSbrpJw4dL0pUrev99\nSapRo3zXzhkBrmNH+8j990vS735nHzH6zHbqVKYPLN4K1nHQqE1Vpj+sI9dLscY508zMzCVL\nlhR/Ntr27ZQkWSwWd1UGv3PhgpKTFRKi559Xx44KC5Ok6GgNGmR9gbE+7jgCAAgQjjNhxo3H\n999vbeQ6aZL++ldJ6ttXK1daX19kom74cPXpo8mT9dFHystTbKzmzlVMjKZO1YoVMlqB/vST\n2rYt9IdWeFW0+JV4joO2j62C9+S5DnaDBg0KDQ31Qinwd1lZunJFTzyhKVMkacuWcn/CkiX6\nwx+Uk6MJE/TKK24vEABQdiNGaOlS5eZa09jZs5LUrp0uX9Y330jS+vVF39KsmbMPLLLvzdiT\nZ2xxmzxZX3xh3eXmli1uJX5Ile0P68h1sMvIyPBCHQgAlTwbUWTCDwDgU0VOIYwfr6++0ksv\n6dNPrWcRHnhAa9dK0vXr1rcEO00NxmyfpPbttXattRWscTbCSIRnzmj7dsXHe+brgaTSgl1O\nTk5oaGi9evWMx84/oqFj+1+YVZ8++vRTSXr5Zb38ssaM0X/+Z/k+ociEHwDApxzXXo0HX32l\n7GyFhaljR+3dK1u/p717y/SBxfe9OW5xM1Ryi5sxyyhp2jRt2GBd8zXOc0jq0kWXLik2Vj17\nVupPCWglB7tGjRr17t173bp1xmPnH8G+uiphxgx1766pU5WQoJEj1by58vLK9wlchgIA/scx\njRkGDtSmTYVGTp8u00c5bwVrqOQWN9tpyYgI+5rvjz9aBxcs0I0bSk7W/v2V+lMCWsnBbtiw\nYXfddZftsRfrgb+6996iZyPKtceu+ITfW295oEoAQPkUz17FR269tVC2W7pUXbva41Rysr75\nRosWeWOLm20teNw4tWplX/M1xMSoVStt3qw5c9z85waQkoPdsmXLSnwMVFDxCT8AgB8onr1e\nesl6bGLjRuvItGnWu0i++EKSHn9cc+eWb7kzPV2dO2v0aPtIWprS0gq9JjnZehq3XApfziE5\n3HVSNbk+PGHYv39/RESErc/E/v37CwoK2rdv77HCYC7FJ/wAAH7JiHo9e9rPTPz8sz77TP37\nW0dSU/X22zp8WAUFvjl2+sMPatXK+tiYw9uwwX4lnlHS0qV65JFC76pYcAw4ri8ovnbt2pNP\nPhkTE7Nv3z7b4MaNGzt06PDEE084tvYCAACBzjgSGx2t7t2tI3FxOnZM/7+9+w+Iqs73P/5G\nYBBFUUxREn+gpCZXU9FSYbGydLWUKJVSbHHZr2A/lL1ai7fEH2WS9jtNq/Valmamrl5dc3NX\nTW29aLpef1WIv6hAixUVAUWd7x/HphFhGGBmzjmfeT7+gjOHmfccx8OLz8/69eXhh0VE+vTR\neRcHljVxoPoWu7feemvx4sVDhw5t27at7eB99903atSoJUuW3HHHHRMnTnRnhTCqmBipMG/m\n5iMAAJN4/31p3VpmzLj+bUKCDBworVvLH/4g2izK4cNlzJjrjV5nz4p4wS4OZlR9i92SJUse\neOCB9evXt7cbF9WpU6dPPvlkyJAhb7/9tjvLAwAAOrCfQlGvXsUjLt/FwX6n2tBQadBA7rpL\nsrOlpEQmTZJbb5WgIOnX7/oqynCg+mB39OjRu+33crMzYMCAkydPurokAACgsxp1d77/vlit\nv457E5Hp08VqlZiYX4+kpIjVWnHcm439TrWffy7vvCP798uIETJqlNSvL+vWyQcfyJEj19dX\ngAPVB7vGjRufOHGi0odOnDgREhLi4ooAAID7VZXGQkN/PaKlsagotxdjv1pyjx7y+OMybNj1\ngX1z5kivXvLww/L441Ja6vZKzK76YDd06NA///nPf9V2FflFeXn5e++99+67795///1uqw0A\nAHgRx3tXePk6Jk6qfvLECy+8sHHjxqFDh7Zp06ZTp04BAQFFRUWHDx/+97//3apVqxdeeMED\nVcIQmBsBAHAnx3tX2NYxqdDK6JL18JRRfYtdq1at9u3bl5qaevHixS+++GL9+vU7duzw9fX9\nwx/+sHv37jZt2nigSrjFsmXSurX4+cmUKXqXYmBcJQDwFNYxqTunFigODQ195513FixYkJ+f\nX1pa2rJly4YNG7q7MrjXuXOSkiIWi8yaJb17e+IVzdjg5/mrBABAHVTfYmfj4+MTFhbWoUMH\nUp0KcnKktFRGj5aMjJrtC+MxRmgqM/5VAgBXq/sUV+io+mBntVpXrlz54IMP9ujRI6oyHqgS\nrldWJiLSqJGnX9fJuKY1lRUXy6xZMmiQp4q7iV5XCUCtOLkW2t69ehcKuE31we6VV14ZOXLk\n+vXrv/vuu+8r44EqUXuVBqnBgyU2VkQkK0t8fCQ11UPFOB/XjNBUptdVAlBbTq6FNmSIK1fW\nBQyl+jF2b7zxxqBBgxYsWBAREeGBguBKVQ0Ry8yUuDiZOlUSEiQpSez2FHEvLa4lJ0tGRjVn\nGqGpTK+rBKC27NdCE5EePeSvf5VPP5U+fWTOHBGRXr1k+3Z54w3ZvVv69dOzVMBNqm+xO336\n9IwZM0h1RlRtt2ZV7V59+15vi4qMlPh46d7dE9WK03HNIE1lel0llzDCCEVAJ86shcYmp0bD\nwD5XqT7YhYaGWk03mdEbONOtaYR2Lxvn41pmpsyeLSKSkCBr1khamocqVIZBRigCOnFmLTS6\nYqGq6oPdo48+unTpUg+UgpqpdhSaQdq9bJyPa6ZuKjMCI4xQBPTDWmjwZtWPsZs2bdojjzwy\nevTosWPHtmnTxv+m/x8d7VtO4THVtsYZbYhY375y9arIL3EN7mOolloAgAdVH+wa/fLrYdmy\nZZWeQEetDgYPlk2bRESysiQrS8aPl4ULK55DkPJOznw2AACKqj7YPfrooxaLxc/PqT0q4CFG\na42DcfDZAAAvVn1cq6qhDnqiNQ5V4bMBAF6s8mBXUFAQEBDQtGlT7WvHT9GyZUvX1wUAAIAa\nqjzYtWrVatCgQZ9//rn2teOnYIwdAMAI3n9f3n//hiPTp8v06TccSUmRlBQP1gR4VuXBbtSo\nUXfccYftaw/WA1dYtkyeeUYKCmTkyCrPiYkREnm1uEoAAFOpPNh98sknlX4NE7DfRiwwUJYv\n17sgAADgIdUvULxu3bpDhw55oBS4hv3itNHRbn85N21dpTWVaZs7AgAA51Q/K3bUqFHTp0/v\n2rWrB6qBC3hycVr71sHevas/n55NAADcqfoWu5iYmG3btl27ds0D1aCuKmwj9tFH7m33Yusq\nGJybWpQBwKiqb7H76KOP0tPThw4dOnbs2Ntuuy04OLjCCWwpZiAeXpyWratgZDVtUQYA86s+\n2NmWqdNWP7kZy53oo9JuTU8uTsvWVYZFl7dGa1FOTpaMDL1LAQAPcWqMncVi8ff39/Hx8UBB\nMA22roLB0aIMwPtUH+xY7gSVY+sqGBktygC8UjXB7tKlS/v37y8pKencuTNbhwEwDVqUAXgl\nR8Hugw8+mDRpUlFRkYj4+PgkJiYuWrSoEf0aAIyPFmUAXqnKYPfll18mJyf7+voOGjSoWbNm\nu3btWr58eWlp6Zo1azxZHwAAAJxUZbCbN2+ej4/PP/7xj9jYWBG5fPlyYmLimjVrDh48GBUV\n5cEKAQAA4JQqFyjetWvX/fffr6U6EbFYLNOnTxeRL7/80jOVAQAAoEaqDHaFhYW33Xab/RHt\n28LCQrcXBQAAgJqrsiv22rVrgYGB9kfq168vIle18cgwLBanBQDAW1W/VywAAABMofoFioEq\n0ToIAICROAp2O3bs0CZM2Nu6dWuFgzefAwAAAM/zsVbR4uL8zrBVPYMyFi1alJqaeuHChaCg\nIL1rAYxh2TJ55hkpKJD0dJk7V+9qAMCjLl++HBAQsHPnzn79+uldS0VVttgtXbrUk3UAMI1z\n5yQlRSwWmTVLevfWuxoAwK+qDHZjxozxZB0wLtpmUEFOjpSWSnKyZGToXQoA4AbMioVDWttM\ncbHMmiWDBuldjZdZtkxatxY/P5kyRe9SblRWJiLCttEAYDwEOziktc2MHi0ZGTJwoN7VeBPD\nRurBg0XbkCYrS3x8JDVV74IAczLsX24wOZY7gUO0zejFsN2dmZkSFydTp0pCgiQlSfv2ehcE\nmBADVeE2tNiharTN6Miwkbpv3+ufishIiY+X7t31LggwITpD4DYEO1QtM1NmzxYRSUiQNWsk\nLU3vgrwGkRpQm2H/coP5EexQNdpm9EKkBhTGX25wJ8bYAcbTt69cvSryS6QGoBIGqsKdCHYA\nAHgQf7nBneiKBQAAUATBDgAAQBEEOwAAAEUQ7AAAABTB5AkANRQTI1ar3kUAACph7ha7y5cv\n7969e8uWLcePH9e7FngNdngEABiVaYLdCy+8sGXLFvsjixYtatmyZZ8+fe65556IiIjo6Oh/\n/etfepWnLK1tZs4cveswDG2Hx+JimTVLBg3SuxoAAG5gmq7Y559//tlnn7377ru1bzds2JCa\nmhoQEPDQQw+1aNHi4MGDO3fuHDBgwNdff92hQwd9S4XKtB0ek5MlI8O9L0R3JwCg5kzTYldB\nenp6cHDwvn37Vq9evXDhwh07dqxater8+fMvvvii3qVBaezwCEBTl1EZdIbAbUwZ7H766aec\nnJwnnniiS5cutoMJCQnDhw//29/+pmNhUBw7PALQMCoDRmXKYFdWViYi9qlOExUVdebMGT0q\ngnfIzJTZs0VEEhJkzRpJS9O7IAA60UZljB4tGRkycKDe1QC/Ms0YO3thYWHBwcHff/99heM/\n/vhjI/rI4D7s8AhAw6gMGJWZWuxOnTq1Z8+eo0ePnj17dsKECX/+859LSkpsj37zzTcrVqzo\n37+/jhUCANTHqAwYmJmC3fLly3v37h0ZGdm8efOXXnrp6NGjGzdu1B5atmxZdHR0aWnp888/\nr2+RMBkWpQNQU4zKgIGZpiv2v//7v4vsnDt3rqioqGnTptqjRUVFTZo0+eSTT3r37q1vnTAT\nbfizxSKzZgmfHABOYlQGDMw0we53v/udg0fHjh2bmppar56ZGiChP48tSgcAgEcokoSCgoJI\nderwWPcow58BAGohDMFgPLY6lBcOf/aSAYVe8jYBoDKm6YqtVm5u7vjx40Vk8+bNeteCOvBY\n92hmpsTFydSpkpAgSUnSvr17X053XjKg0EveJgBUQZ1gd+HChb///e96V4E681j3qLcNf/aS\nAYVe8jYBoArqdMV27tz5wIEDBw4c0LsQ1IHxu0c9s8OjOzoTvWRAoZe8TQCogjrBrn79+lFR\nUVFRUTX9wZKSkrMO2S+DDPdidShxzyhD4ydml/CStwkAVTNfV6zVaj1+/PixY8cuXLggIsHB\nwZGRkeHh4bV7ttzc3E6dOl3VuuSgu1p3jy5bJs88IwUFkp4uc+e6qToPcUdnopcMKPSStwkA\nVTNTsDt79uyLL764dOnSM2fOVHioTZs2KSkpkydPDgwMrNFzdujQYe/eveXl5Q7OWb169Wyt\nGQnGpNh4eXd0JnrJgEIveZswAm1UBmA8pgl2+fn5/fv3P378eGRk5JAhQ9q2bduwYUMROX/+\nfG5u7rZt26ZNm7Zq1aotW7bYtqNwUrdu3RyfsGfPntrXDQ9Qabz84MGyaZOISFaWZGXJ+PGy\ncKHeNQEATMM0we7555///vvvP/300xEjRtz86NWrVxctWvTkk0/OmDHj9ddf93x50JNK4+Xp\nTAQA1IFpJk9s2LAhKSmp0lQnIr6+vhMmTBg5cuTq1as9XBhcRpsKGhdXs59SbLx8377X347W\nmdi9u94FAQDMxDTBrrCwsEOHDo7P6dKly+nTpz1TD1zMNhU0JaVmP8hEWgAAfmGartiwsLD9\n+/c7Pmffvn1hYWGeqQcuZhsn9+ij8u67NfjBuoyXZ/gzAEAtpmmxi4+PX7ly5bx58y5dunTz\noxcvXszMzFy7du2oUaM8XxtcwPE4OXb/RB3xEQLgHUzTYjd9+vTt27dPmTJl5syZffr0CQ8P\nDwoKslqtxcXFJ0+ezM7OLikpiY2Nfe655/SuFDVXYSpoBXVczUSlJe5QO4otiAMAVTNNsGvS\npMk///nP+fPnf/jhh1u3brVfUtjf379Xr17jxo0bN26cr6+vjkWilm6eCmo/aaAuq5nwGx2i\n1oI4AOCQaYKdiFgslvT09PT09LKysry8PG3nicaNG7dp08ZisehdHerA8Ti5uqxmwm90Gy8Z\nUFjp21RpQRwAcMg0Y+zs1a9fPzIysmfPnj179uzYsSOpTmV1XM2E3+hQbEEcAHDIlMHOZt68\neTExMXpXAXeqy2om/EaHsCAOAO9ipq7Ymx09enTnzp16VwF3qstqJibdxcFL+kw9hg1kAXgT\ncwc7wBF+owMAvIy5u2JhOLqsFqY1cc2Z47lXhGJY5Q6AKgh2cB3btmCzZsmgQToXU7udZ+GF\nDPW5BYC6MXewmzNnTl5ent5V4Bfa2iKjR0tGhgwcqGcltd55Fl7IOJ9bAKgzcwe7Jk2atG7d\nWu8q8AvjrC1i+1WdlKR3KTA843xuAaDOzB3sYCB1XFvEtePk+FUNJ7EmDgC1EOzgIsZZLcz+\nV7X2BVAV43xuAcAVCHZwkb59r6cobW0R+81ebTwz99D+V7X2BVAVZz63AGAerGMHT9EmNFgs\nMmuW9O5dgx+s6YK99svX0WIHYc1nAF6EYAdP0SY0JCdLRobnXpTf6AAAb0JXLDxFsQkNTnYr\ne+fKt975rgHAAAh28AjF5h46uaStd658653vGgCMgWAHj1Bs7qGTS9rWfeVbDzR9ufwlWO8X\nAPTDGDt4hP2Ehvh4vaupMye7levY+1zr6Sb6voRife4AYCq02AE15GS3ct17nz3Q9OXyl1Cs\nzx0AzIZgB9SQk93Kde999kDTl8tfQrE+dwAwG7pi4TpesraIk93Kdex9HjxYNm0SEcnKkqws\nGT9eFi6sXb0efQkz9rl7yecWgHcg2EFFCvyqzsyUuDiZOlUSEiQpSdq3N+VLAAA8i2AHGJIH\nmr7M2LoGAHCIMXYAAACKINgBAAAogmAHAACgCMbYwVMUmNAAAICx0WIHAACgCIIdTMgDO6gC\nAGBCdMXCbDywg2q1nOxW9s7eZ+981wBgDAQ7mI22vWlysmRk6F0KAADGQrCD2XhgB1WD8EDT\nF61rAKAWxtjBVAYPlthYEZGsLPHxkdRUvQsCAMBACHYwlcxMmT1bRCQhQdaskbQ0vQsCAMBA\n6IqFqbC9KQAAVaPFDgAAQBEEOwAAAEUQ7AD9sNIyAMClCHaATrSVlouLZdYsGTRI72oAmAp/\nFqIKTJ4AdMJKywBqxwgb8MCoCHaATrxnpWUArsWfhagaXbHwJvffLz4+4uMjrVrpXAkrLQOo\ntdr9WUjvrXcg2MFrHD4sX3whIhIZKQ88oHMxrLQMoHZq92chg3q9Bl2xMJtab2/62WciIiEh\n8t13rq2oNlhpGUDtZGZKXJxMnSoJCZKUJO3bO/VT9N56DYIdvMa5cyIi9evrXQcA1EHt/ixk\nUK/XoCsW3iEgQF59VUTkxx/Fx0dCQvQuCKgtRkqhphjU601osYN3+OMfZdUqycmR+vVlyBDp\n21fvgoBaYZ0L1ELtem9hTgQ7eIeXXpLLl+XVVyUkRFat0rsaoLYYKYVaYFCvN6ErFgDMg5FS\nABwi2AGASTBSCkB1CHYwD8aMw8ux/KH3MN3tznQFq4tgB5Pw5tU1uWNC07fv9RY7baRU9+56\nFwT3MN3tznQFK43JEzAJ9caMO7nSMrMgAW9jutud6QpWGsEOJuG1Y8a5YwLeptrbXa034HET\nr70/GxJdsTADbx4zzh0T8Cqmu92ZrmDVEexgBl47Zpw7JuBtTHe7M13BqqMrFmbgktU1X3lF\nXnmlkuPLlskzz0hBgaSny9y5tS/SHVgvHvA2blpM2H29t6x+bDAEO3g3g09N4I4JAKgJumLh\n3bSpCaNHS0aGDByodzVGwhorleKyADA2Wuzg3ZiaUCmDN2TqhcsCwPAIdvBigwfLpk0iIllZ\nkpUl48fLwoV612QMrLFSKSNcFqOtcwHAYOiKhRdjMldVaMisFJcFgOER7ODF2KCpUqyxUiku\nCwAzINgBuBENmZXisgBuxcwkF2GMHYAbscZKpbgsgPswM8l1CHYwCQXGjBt5JWQAxmG6213d\nCzbCzCRV0BULeIT292hxscyaJYMG1eAHtTvmnDkVj9NtAbgD/7N0wcwk1yHYAR7h2pWQax0T\nATjA/yxdMDPJpQh2gEe49u/RmsZEGiEAZ7AVjS6YmeRSBDvA/Vz+92hVMVELcL6+0qjRrzGO\nRgjASXQI6oKVp1yKYAe4n+3v0cBAqVfv+i+PWqsqJmoB7sIF8fUVq/XXGEcjBOAMOgShBPPN\nirVarcePHz927NiFCxdEJDg4ODIyMjw8XO+6YE6emX3Wt6+cPy8icu2avPBCXSfzZ2ZKXJxM\nnSoJCZKUJO3bXz+uBbihQ+Wzz+QPf/h1chmNEIAzqvqfBZiKmYLd2bNnX3zxxaVLl545c6bC\nQ23atElJSZk8eXJgYKAutQHVyMsTEbn9dhdM5q9qQTUtwAUEiNjFuEr3w2XhFeBmLFUIJZgm\n2OXn5/fv3//48eORkZFDhgxp27Ztw4YNReT8+fO5ubnbtm2bNm3aqlWrtmzZ0rRpU72LBW5y\n+bLIL6nLHWwB7uOPRexi3M2NEM4sBGq6ZbQ8w32XhagNwEVME+yef/7577///tNPPx0xYsTN\nj169enXRokVPPvnkjBkzXn/9dc+XBzhiS127domPz/VmM9eyBbiuXeXQIbn3XnnySWnfXrp3\nr9gIsWcPC4EaC2vuA3Ad00ye2LBhQ1JSUqWpTkR8fX0nTJgwcuTI1atXe7gwoHqZmfL//p+I\nyG231Wkyv23VkgULKj5km1Z2xx0iItHRlUwu0378zjtFGHJnJMxuAeA6pgl2hYWFHTp0cHxO\nly5dTp8+7Zl6gBro2/d6xgoJqf1kfvtVS/r0qfGPX7okKSly+rRcuybCvD8jYXYLANcxTbAL\nCwvbv3+/43P27dsXFhbmmXoAT7Nv14mOrvGPnz0rpaUybBgLgRoLS2wAcCnTjLGLj49/8803\ne/fu/dRTTwXcNAL94sWLL7/88tq1a5999lldygPcro7tOleuiIhERt6wECh0xxIbgDBhy5VM\nE+ymT5++ffv2KVOmzJw5s0+fPuHh4UFBQVartbi4+OTJk9nZ2SUlJbGxsc8995zelQJuUGHV\nkuHDa/wM9rNljcab54SyxAYAlzJNsGvSpMk///nP+fPnf/jhh1u3br2q3QpFRMTf379Xr17j\nxo0bN26cr6+vjkUCVerWTUQkLq6WP16hXaeoSNaurdkzxMXJtm2SkCDR0TJ1ai3LcAfmhAKA\n65gm2ImIxWJJT09PT08vKyvLy8vTdp5o3LhxmzZtLBaL3tUB7nRzu87vflezZ2jd+vqPa12x\nxqGNHWT5FRgBHYIwPzMFO5v69etHRkbqXQUAV2BOKAC4jmlmxQKpClwnAAAXiklEQVSGY1tV\nbsoUvUtxSGuEMOZ0S+aEAoBLqRPscnNzBw4cOJDlPeEZ9qvKDRqkZyW2fLl2rVit8tFHYrXK\nnDl6luS8zEyWXwFQPbP8IW0ApuyKrdSFCxf+/ve/610FvEZNR4a5aeyO2WceMCcUUINb57ab\n/UbnWeoEu86dOx84cEDvKuA1DDIyjJkHAHTn7uDFja4m1Al29evXj4qKqulPnT179vnnny8v\nL3dwzpEjR+pQF1RUYVW58eNl4UJ9KqlFvmTeHwDXcnfwMsgf0iahzhg7ESksLDx69GiNfsRq\ntV64cOGsQ9qZrKiCXxlkZBgzD9SgRW2zDIsEbubW4MWNrobUabETkblz52ZlZVlr0hoREhLy\nwQcfOD7nq6++6t+/f91Kg1oMMjKM3agA6M7dPRjc6GpIqWAHqOzmLtQa5Ut6YAG4g7uDl0H+\nkDYPpbpiAbgFCw0AqErfvte7SrXg1b273gV5O9O02EVHR1d7zg8//OCBSgDvwkIDAGAepgl2\n+/btExF/f38H51y5csVT5QBeg4UGAMA8TNMVO2XKlIYNGx48eLCsapMnT9a7TEA57l5ogDmh\nAOA6pgl2s2bN6tix46OPPup4zTkArsRCAwBgKqYJdv7+/h9//PGhQ4emTp2qdy2A1zDIin0A\nAOeYZoydiHTp0qWgoMDBQLrf/va3TZo08WRJgOJYaAAATMVMwU5EGjdu7ODRuLi4uLg4jxUD\nr8aycAAA4zFZsANwA/IlAOVxo6sJ04yxq9S8efNiYmL0rgIAAC/G3HYjMXewO3r06M6dO/Wu\nAnA/Hfd++OILEZGXX2bbCQAwPrpiAcPTce+Hc+ckK0tE5De/kUGDPPrSAICaI9gBhqfj3g85\nOXLpkojIXXfJwIGefnUAQA2ZuysW8Aru3vuh2pcGAJiEuYPdnDlz8vLy9K4CcCd37/3gYPSe\n7aW1V2fbCQAwPHN3xTZp0oQViaG4zEyJi5OpUyUhQZKSpH17Vz6549F7bn1pAIAbmDvYAepz\n694Pjkfvse0EAJiNubtiAdSJjqP3AABuQLADvJW7R+8BADyOYAd4q8xMmT1bRCQhQdaskbQ0\nvQsCANQVY+wAb8UQOgBQDi12AAAAiiDYAQAAKIJgBwAAoAiCHQAAgCKYPAEYXkyMWK0efcVl\ny+SZZ6SgQNLTPf3SAIA6INgBuJHjfcYAAAZGsANwI8f7jAEADIwxdgBuxD5jAGBaBDvAi2mj\n9+bM+fUI+4wBgJkR7ADYYZ8xADAzxtgBsMM+YwBgZrTYAQAAKIJgBwAAoAiCHQAAgCIIdgAA\nAIog2AEAACiCYAcAAKAIgh0AAIAiCHYAAACKYIFiADfS9hkDAJgQLXYAAACKINgBAAAogmAH\nAACgCIIdAACAIgh2AAAAiiDYAQAAKIJgBwBGsmyZtG4tfn4yZYrepQAwH9axAwDDOHdOUlLE\nYpFZs6R3b72rAWA+BDsAMIycHCktleRkycjQuxQApkRXLAAYRlmZiEijRnrXAcCsCHYAYAyD\nB0tsrIhIVpb4+Ehqqt4FATAfgh0AGENmpsyeLSKSkCBr1khamt4FATAfxtgBgDH07StXr4qI\nREZKfLze1QAwJVrsAAAAFEGwAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEAR\nBDsAAABFsEAxABhGTIxYrXoXAcDEaLEDAABQBMEOAABAEQQ7AAAARRDsAAAAFEGwAwAAUATB\nDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsAAABFEOwAAAAUQbADAABQBMEOAABA\nEX56F2ACFotFRAICAvQuBAAAGIUWD4zGx2q16l2DCezfv//KlSt6V6Gap59+unHjxqNHj9a7\nEJW9//77V65cSU1N1bsQla1YseLUqVNTpkzRuxCVbdiwITs7e8aMGXoXorIvv/xy3bp1GzZs\n0LsQc/Dz8+vevbveVVSCFjunGPMfz+yaN28eERExZswYvQtR2datWy9fvsxFdquDBw9evXqV\ni+xW+fn5ubm5XGS3Ki8v37x5c69evfQuBHXCGDsAAABFEOwAAAAUQbADAABQBMEOAABAEQQ7\nAAAARRDsAAAAFEGwAwAAUATBDgAAQBEEOwAAAEWw8wR0Y7FYjLnRnkq4wh7AJ9kDuMgewEVW\nA3vFQjc///yzxWJp3Lix3oWorKio6Nq1ayEhIXoXorLi4uKSkpIWLVroXYjKSktLz549GxYW\npnchKisvLy8oKAgPD9e7ENQJwQ4AAEARjLEDAABQBMEOAABAEQQ7AAAARRDsAAAAFEGwAwAA\nUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsAAABFEOwAAAAUQbADAABQBMEO\nAABAEQQ7AAAARRDsoKezZ89Onjy5bdu2AQEB7du3j4+P37Vrl95FKai8vDwjI8PX1zc6Olrv\nWpRSVFQ0adKkdu3aWSyWsLCwlJSU/Px8vYtSEB9gd+NWrBIfq9Wqdw3wUv/+97979ep14sSJ\noUOH9uzZ89ixYytWrPDz88vOzv6P//gPvatTx5EjR8aMGZOTk3Px4sUePXrs2bNH74oUcfny\n5b59++7du/fhhx/u2bNnbm7u0qVLW7du/fXXXzdt2lTv6tTBB9jduBWrxgro5IknnhCRt956\ny3Zk1apVIjJkyBAdq1LMuXPnAgMDo6Ojc3JyAgICevXqpXdF6nj11VdFJCsry3ZkxYoVIvKf\n//mfOlalGD7AHsCtWDF0xUI3/v7+99577/jx421HHnroocDAwEOHDulYlWKuXLkyYcKEr776\nqmPHjnrXopoPP/ywUaNGEydOtB0ZOXJkx44dly5daqUnxEX4AHsAt2LF0BULA7l06VKjRo36\n9OmzY8cOvWtRUP369aOioujJcomysrKgoKABAwZs3rzZ/nhycvKSJUtyc3MjIiL0qk1VfIA9\nhluxqdFiBwNZtGhReXl5YmKi3oUA1cjLy7t69Wp4eHiF423bthWRY8eO6VEU4Brcik2NYAej\n2LZt25QpU2JiYlJTU/WuBajGhQsXRKRhw4YVjgcFBdkeBcyIW7HZ+eldANRXVFT0pz/9yfZt\nx44dJ0+eXOGc5cuXJycnR0VFrV271s+Pj2WNOXOR4XI+Pj4VjmiDW24+DpgCt2IF8M8Gtysu\nLl60aJHt2/79+9tnDqvVOn369JkzZw4ePPjTTz9t1KiRHjWanuOLDJdr3LixVNYyd/78eRHh\nYwzT4VasDIId3K5169ZVzdGxWq0pKSmLFy9+6qmnXnvtNV9fXw/XpgwHFxnu0KZNGz8/v5Mn\nT1Y4npubKyKRkZF6FAXUErdilTDGDnpKT09fvHjx7Nmz33zzTW4lMBGLxdKrV6/s7OySkhLb\nwWvXrm3bti08PLxNmzY61gbUFLdilRDsoJvVq1e/8cYbEydOzMjI0LsWoMZ+//vfl5SUzJ07\n13bk3Xff/fHHH1NSUnSsCqgpbsWKYR076KZjx465ublPPfVUgwYNKjz07LPPsimTS2zbtm3j\nxo3a1/PmzWvevPnjjz+ufTtlypRmzZrpV5rpXb169e67796+ffvw4cN79ux55MiRFStWREVF\n7dq16+aPNGqHD7AHcCtWDMEOunEwc/D48ePt2rXzYC3KmjNnTlV/hefk5LCafx0VFxfPmDFj\n5cqVP/74Y4sWLeLj42fOnBkSEqJ3XergA+wB3IoVQ7ADAABQBGPsAAAAFEGwAwAAUATBDgAA\nQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsAAABFEOwAAAAUQbADAABQBMEOAABAEQQ7\nAAAARRDsAAAAFEGwAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsAAABF\nEOwAAAAUQbADAABQBMEOAABAEQQ7AAAARRDsAAAAFEGwAwAAUATBDgAAQBEEOwAAAEUQ7AAA\nABRBsAMAAFAEwQ4AAEARBDsAAABFEOwA1FViYqKPj09BQYGhnsr2bN9//71Lng0AjI9gB0BE\n5KOPPvK5ka+vb2hoaEJCwo4dOxz/7B133DFo0KCAgIC6l+HCp3KS1Wr97LPP4uPjw8LCAgIC\nWrRoER0d/eKLL54+fdpjNRjZnDlzjh49Wu1p5eXlGRkZvr6+0dHRHqgKQFV8rFar3jUA0N9H\nH32UlJTUv3//mJgY7Uhpaem33377xRdfWK3WJUuWjB07Vt8KayExMXHFihV5eXmtW7eu9ISi\noqIRI0Zs3ry5QYMG9957b9u2bQsLC7Ozs3Nzc5s3b75q1arY2FgP12wo+fn5YWFhGzduHDx4\nsIPTjhw5MmbMmJycnIsXL/bo0WPPnj0eqxBABX56FwDAQAYOHDh9+nT7I9u3b7/nnnsmTZo0\natQoTzakecbo0aM3b948fPjw9957r3nz5trBa9euvfvuu08++eTw4cO/+eabFi1a6Fukjnbv\n3l3tOefPn+/Vq1fXrl337t0bFRXlgaoAOEBXLABHYmNj77333rNnz+7fv19+GbV25syZ++67\nLzAwcN26dXLjwLjHHnvMx8enuLj42WefbdeuXUBAQHh4+GuvvWbfOVBQUJCSknLrrbc2bNiw\ne/fub7zxxpUrV7SH7J/qoYce8vHxyc/PT0lJCQ0NDQgI6Ny58zvvvGNfXnZ29kMPPXTLLbdY\nLJZ27dolJSWdOHHCybf2+eef//Wvf+3Zs+dnn31mS3UiUq9evdTU1JkzZ/bs2TM3N1c7ePLk\nyeTk5FtvvdVisdxyyy3Dhg3Lzs62/Yj2rouKisaPHx8aGtqgQYO77rorOzu7pKRk0qRJt956\na1BQUL9+/fbu3Wv7EWfenTMv6vhSnz59+oknnmjbtq3FYmnevHl8fLx9VnP8DA888MDw4cNF\n5Le//a2Pj09VPfJXrlyZMGHCV1991bFjRyevPAD3ocUOQDWaNWsmIiUlJSJisVhEJD093d/f\nf9q0aRERERVO1k545JFH2rdv/8knn1y7dm3GjBl//OMfmzRpkpycLCI//fRTdHR0cXHx2LFj\n27Ztu3Xr1kmTJh04cOD999+v8FRaA2F8fPzdd9+9Zs2aa9euzZw5c8KECf7+/ikpKSLy9ddf\nx8XFhYSETJw4sWXLlseOHZs/f/7f/va3w4cPazU79uGHH4rIf/3Xf/n5VXInnDp16tSpU7Wv\n8/Ly+vTpU1JSkpaW1rVr1x9++GHBggW/+c1vNm/erPVca+96xIgRsbGxn3/++f/93/+lpqaO\nGDGiW7duXbt2Xbdu3YkTJ1JSUoYMGZKXl+fv7+/Mu3PyRR1f6jvvvLOoqCg1NTUqKiovL2/B\nggWxsbGbNm2Ki4ur9hmee+65kJCQpUuXTps2rUePHrfffnullzEkJGTevHnVXm0AHmIFAKt1\n6dKlIpKZmVnh+OXLlyMiIrS2JavVOm7cOBG5//77r169ajtn1KhRIqKd8Pvf/15EHn30Uduj\nWqPXAw88oH2blpYmIps2bbKdMHToUBE5ePBghafSvrZ/qqKiooCAgHbt2mnfLliwoGfPnlu2\nbLGd8NZbb4nIW2+9ZV9YXl5epW9Ze1/nzp2r9uI8/vjjIrJ69WrbkcOHD/v6+t51113at9q7\nTktLs50wcuRIEXnkkUdsRyZOnCgiO3futK/Nwbtz8kUdX2o/P7/du3fbTjh16lSjRo2io6Od\nfIaXXnpJRDZu3FjtJdIEBAT06tXLyZMBuANdsQAqV1ZWduDAgcTExGPHjiUmJrZs2VJEfHx8\nROTxxx+vV8/R3UMLJZqIiIgGDRpoa45YrdZPP/00PDz8vvvus53w5ptv/uMf/wgNDa30qRIT\nE21fBwcHx8bGnjhxIj8/X0TS0tK+/vrrAQMGiEh5eXlZWZnWquRkb+zp06eDg4MbN27s+DSr\n1fqXv/wlNDQ0Pj7edrBLly59+/bdtWtXYWGh7WBCQoLt68jISBHRujI1nTp1EhGt8mrfnfMv\n6uBSr1y5slu3bq1bty74hb+/f79+/fbs2VNcXFztMwAwI4IdgF/NmDHDttxJYGBgt27dVq9e\nPWzYsEWLFtmfpmUUB9q0aWP/rb+/f3l5uYjk5+cXFhZ27txZC4iaiIiIu++++5Zbbqn0qW67\n7Tb7b2+99VYRsS10t3Tp0ri4uKZNm1oslsDAwHvvvVdEbCP2HKtXr97Vq1erPa2goODcuXNd\nu3a1r1l+uQjfffddhdo0Wveu/RGtB1a7DtW+O+dftKpLfebMmZ9//nnv3r2tbrRp0yYROXXq\nVLXPAMCMGGMH4FdxcXFaA5iI1KtXr1mzZjExMd27d69wWnBwsOPn0ULMzUpLS+WX4WVOatCg\ngf23DRs2FJGioiIRmTp16ksvvRQdHf3aa6+1b98+ICDg0KFD2gA1Z4SFhX377bc///xzVZlS\nc/HiRdvr2gsMDLQ9qrn5XVd1HWyqeneNGjWq9YtqLly4ICJ33HGH1p1aQVhYmPNFAjARgh2A\nXw0YMKDCcieupfXnarHMSfYhRkTOnTsnIs2aNSsrK3v99dfDw8O3bNkSFBRk/6iT+vXr9+23\n3/7P//yPNtWgAqvVeuDAgW7dumlPXqEM2xEtgdVaVe+u7i9qO8fxEnQAFENXLADPadiwYfPm\nzY8cOWLf2fftt9++/fbbhw4dqvRHjhw5Yv9tTk6OiLRq1aqgoKC0tDQ6OtqW6kRk27Ztzhej\n5bmZM2dqjVsVLFiwoHv37vPnz2/ZsmVISMiRI0esNy7nfvjwYR8fn2p7pR2r6t3V/UVDQ0Nv\nueWWb775pkKM/umnn+pSMACDI9gB8Kjhw4cXFhZ+8MEHtiPTp09/6qmnLl26VOn5ixcvtn39\n3Xff7d69u1OnTs2bNw8NDfXx8bGfJ/Gvf/1LW8GkrKzMmUpiY2NHjRp14sSJ++67z7ZenYhc\nuXLlzTffnDhxYqtWrR577DERSUhIyM/PX7t2rf1rZWdn33PPPU2aNHHyjdfo3bnkRUeMGFFW\nVjZ37lzbkZ9++qlbt24PPvigk+X5+vrKLx3oAEyBrlgAHpWZmbl+/fq0tLT9+/e3bdt227Zt\n69evHzt2bM+ePSs9/9KlSw8++OADDzxw7dq1l19+2Wq1Tps2TUQCAwOHDh26fv361NTUAQMG\nHD58+O233/7444+HDRu2YcOG5cuXDxs2rNpiFi9efOnSpb/85S+dO3eOjY297bbbioqKdu3a\ndfLkyYiIiM8//7xp06YiMmPGjPXr1yclJT399NOdOnU6ceLE/Pnzg4KCXn311TpejarenUte\ndPr06Rs2bJg9e3Z+fn5cXNyPP/64cOHCwsLCp59+2sln0NYpnDNnzvHjx2NjY3v37n3zOdu2\nbdu4caP29ZUrV3744Yc//elP2rdTpkxxZkFBAK6k20IrAIykqnXsKtBWPsvJybE/ePM6dhVO\nCA4O7tq1q+3bEydOjBkzpkWLFv7+/hEREa+88sqVK1dufirt65ycnEmTJoWFhVkslttvv33J\nkiW25zlz5sxjjz3WvHnz4ODge+65Z/v27VardcaMGUFBQS1btszPz3e8jp3NunXrEhISwsLC\n/P39GzVqdOeddy5YsKCkpMT+nFOnTiUnJ7dq1crPz69FixaJiYmHDx92cFkyMzNFRCtJ8957\n74nI8uXL7d+pg3dXixe9+VLn5+enpaWFh4f7+fk1adJk2LBh//u//+v8M1y+fPnhhx8ODAxs\n2rTpypUrK716lU7O0FR4ZgAe4GO9cQAHABhEYmLiihUr8vLyWrdurXctrqf2uwOgF8bYAQAA\nKIJgBwAAoAiCHQAAgCIYYwcAAKAIWuwAAAAUQbADAABQBMEOAABAEQQ7AAAARRDsAAAAFEGw\nAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4AAEARBDsAAABFEOwAAAAUQbADAABQ\nBMEOAABAEQQ7AAAARRDsAAAAFEGwAwAAUATBDgAAQBEEOwAAAEUQ7AAAABRBsAMAAFAEwQ4A\nAEARBDsAAABFEOwAAAAUQbADAABQxP8H1KuzWNZZzFMAAAAASUVORK5CYII=",
"text/plain": [
"plot without title"
]
},
- "metadata": {},
+ "metadata": {
+ "image/png": {
+ "height": 420,
+ "width": 420
+ },
+ "text/plain": {
+ "height": 420,
+ "width": 420
+ }
+ },
"output_type": "display_data"
}
],
"source": [
- "Gender <- substring(sex[1:191],1,1)\n",
+ "Gender <- substring(sex[1:dim(ijc)[2]],1,1)\n",
"\n",
- "plotMDS(y[,c(1:191)], labels=Gender, top=500, col=ifelse(Gender==\"m\",\"blue\",\"red\"), \n",
+ "plotMDS(y[,c(1:dim(ijc)[2])], labels=Gender, top=500, col=ifelse(Gender==\"m\",\"blue\",\"red\"), \n",
+ " gene.selection=\"common\")\n",
+ "plotMDS(y_voom[,c(1:dim(ijc)[2])], labels=Gender, top=500, col=ifelse(Gender==\"m\",\"blue\",\"red\"), \n",
" gene.selection=\"common\")\n",
- "plotMDS(y_voom[,c(1:191)], labels=Gender, top=500, col=ifelse(Gender==\"m\",\"blue\",\"red\"), \n",
+ "plotMDS(y_dup_voom[,c(1:dim(ijc)[2])], labels=Gender, top=500, col=ifelse(Gender==\"m\",\"blue\",\"red\"), \n",
" gene.selection=\"common\")\n",
- "plotMDS(y[,c(192:382)], labels=Gender, top=500, col=ifelse(Gender==\"m\",\"blue\",\"red\"), \n",
+ "plotMDS(y[,c((dim(ijc)[2]+1)):(dim(ijc)[2]+dim(sjc)[2])], labels=Gender, top=250, col=ifelse(Gender==\"m\",\"blue\",\"red\"), \n",
" gene.selection=\"common\")\n",
- "plotMDS(y_voom[,c(192:382)], labels=Gender, top=500, col=ifelse(Gender==\"m\",\"blue\",\"red\"), \n",
- " gene.selection=\"common\")\n"
+ "plotMDS(y_voom[,c((dim(ijc)[2]+1)):(dim(ijc)[2]+dim(sjc)[2])], labels=Gender, top=250, col=ifelse(Gender==\"m\",\"blue\",\"red\"), \n",
+ " gene.selection=\"common\")\n",
+ "plotMDS(y_dup_voom[,c((dim(ijc)[2]+1):(dim(ijc)[2]+dim(sjc)[2]))], labels=Gender, top=250, col=ifelse(Gender==\"m\",\"blue\",\"red\"), \n",
+ " gene.selection=\"common\")"
]
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
- "fit <- lmFit(y_voom, design)\n",
- "fit <- eBayes(fit)"
+ "fit <- lmFit(y_dup_voom, design=design, block=donor, correlation = dup_cor$consensus.correlation)\n",
+ "fit <- eBayes(fit, robust=TRUE)"
]
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 31,
"metadata": {},
"outputs": [
{
@@ -1942,7 +1504,7 @@
"text/plain": [
"sex_as_events_results_refined\n",
"FALSE TRUE \n",
- "42202 409 "
+ "42200 411 "
]
},
"metadata": {},
@@ -1953,7 +1515,7 @@
"text/plain": [
"sex_results_refined\n",
"FALSE TRUE \n",
- "42204 407 "
+ "42203 408 "
]
},
"metadata": {},
@@ -1982,9 +1544,45 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 32,
"metadata": {},
"outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Fetching fromGTF.tar.gz from GitHub ..\n",
+ "\n",
+ "downloading fromGTF.tar.gz ...\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " |======================================================================| 100%\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Done!\n",
+ "\n",
+ "\n",
+ "Decompressing fromGTF.tar.gz into ../data\n",
+ "\n",
+ "Done!\n",
+ "\n",
+ "\n",
+ "Decompressing fromGTF.*.txt.gz into ../data\n",
+ "\n",
+ "Done!\n",
+ "\n",
+ "\n"
+ ]
+ },
{
"data": {
"text/html": [
@@ -2072,6 +1670,24 @@
}
],
"source": [
+ "# fromGTF.tar.gz\n",
+ "if (! (file.exists(\"../data/fromGTF.tar.gz\"))) {\n",
+ " system(\"mkdir -p ../data\", intern = TRUE)\n",
+ " message(\"Fetching fromGTF.tar.gz from GitHub ..\")\n",
+ " # Download archive from GitHub release with tag \"dge\"\n",
+ " piggyback::pb_download(file = \"fromGTF.tar.gz\",\n",
+ " dest = \"../data\",\n",
+ " repo = \"adeslatt/sbas_gtf\",\n",
+ " tag = \"rMATS.3.2.5.gencode.v30\",\n",
+ " show_progress = TRUE)\n",
+ " message(\"Done!\\n\")\n",
+ " message(\"Decompressing fromGTF.tar.gz into ../data\")\n",
+ " system(\"mkdir -p ../data && tar xvfz ../data/fromGTF.tar.gz -C ../data\", intern = TRUE)\n",
+ " message(\"Done!\\n\")\n",
+ " message(\"Decompressing fromGTF.*.txt.gz into ../data\")\n",
+ " system(\"gunzip ../data/fromGTF*.txt.gz \", intern = TRUE)\n",
+ " message(\"Done!\\n\")\n",
+ "}\n",
"fromGTF.SE <- read.table(\"../data/fromGTF.SE.txt\", header=TRUE)\n",
"head(fromGTF.SE)\n",
"genes <- factor(fromGTF.SE$geneSymbol)\n",
@@ -2080,7 +1696,7 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 33,
"metadata": {},
"outputs": [
{
@@ -2093,12 +1709,12 @@
"\t | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> |
\n",
"\n",
"\n",
- "\t19076 | 5.878948 | 0.4623452 | 54.32893 | 2.071534e-183 | 8.827015e-179 | 398.2269 |
\n",
- "\t5965 | 6.088533 | 0.5974117 | 52.39644 | 4.863173e-178 | 1.036123e-173 | 386.6747 |
\n",
- "\t19070 | 5.428275 | 0.3502684 | 50.18419 | 1.049979e-171 | 1.491355e-167 | 372.9366 |
\n",
- "\t5962 | 5.904402 | 0.6820468 | 45.76377 | 2.050934e-158 | 2.184809e-154 | 344.0765 |
\n",
- "\t6300 | 5.499113 | 0.7601863 | 38.95927 | 3.827125e-136 | 3.261552e-132 | 295.0173 |
\n",
- "\t34357 | 5.634145 | 1.4625119 | 38.17254 | 2.041761e-133 | 1.450024e-129 | 288.3820 |
\n",
+ "\t19076 | 5.882004 | 0.4623452 | 59.93929 | 3.249431e-198 | 1.384615e-193 | 432.7360 |
\n",
+ "\t5965 | 6.095896 | 0.5974117 | 58.21383 | 8.730492e-194 | 1.860075e-189 | 423.1656 |
\n",
+ "\t19070 | 5.434536 | 0.3502684 | 55.61250 | 6.602101e-187 | 9.377404e-183 | 408.1777 |
\n",
+ "\t5962 | 5.908174 | 0.6820468 | 50.96963 | 5.496989e-174 | 5.855805e-170 | 380.0420 |
\n",
+ "\t6300 | 5.497805 | 0.7601863 | 43.29996 | 1.270316e-150 | 1.082589e-146 | 328.4099 |
\n",
+ "\t34357 | 5.636847 | 1.4625119 | 42.43349 | 8.258637e-148 | 5.865146e-144 | 321.4354 |
\n",
"\n",
"\n"
],
@@ -2108,12 +1724,12 @@
" & logFC & AveExpr & t & P.Value & adj.P.Val & B\\\\\n",
" & & & & & & \\\\\n",
"\\hline\n",
- "\t19076 & 5.878948 & 0.4623452 & 54.32893 & 2.071534e-183 & 8.827015e-179 & 398.2269\\\\\n",
- "\t5965 & 6.088533 & 0.5974117 & 52.39644 & 4.863173e-178 & 1.036123e-173 & 386.6747\\\\\n",
- "\t19070 & 5.428275 & 0.3502684 & 50.18419 & 1.049979e-171 & 1.491355e-167 & 372.9366\\\\\n",
- "\t5962 & 5.904402 & 0.6820468 & 45.76377 & 2.050934e-158 & 2.184809e-154 & 344.0765\\\\\n",
- "\t6300 & 5.499113 & 0.7601863 & 38.95927 & 3.827125e-136 & 3.261552e-132 & 295.0173\\\\\n",
- "\t34357 & 5.634145 & 1.4625119 & 38.17254 & 2.041761e-133 & 1.450024e-129 & 288.3820\\\\\n",
+ "\t19076 & 5.882004 & 0.4623452 & 59.93929 & 3.249431e-198 & 1.384615e-193 & 432.7360\\\\\n",
+ "\t5965 & 6.095896 & 0.5974117 & 58.21383 & 8.730492e-194 & 1.860075e-189 & 423.1656\\\\\n",
+ "\t19070 & 5.434536 & 0.3502684 & 55.61250 & 6.602101e-187 & 9.377404e-183 & 408.1777\\\\\n",
+ "\t5962 & 5.908174 & 0.6820468 & 50.96963 & 5.496989e-174 & 5.855805e-170 & 380.0420\\\\\n",
+ "\t6300 & 5.497805 & 0.7601863 & 43.29996 & 1.270316e-150 & 1.082589e-146 & 328.4099\\\\\n",
+ "\t34357 & 5.636847 & 1.4625119 & 42.43349 & 8.258637e-148 & 5.865146e-144 & 321.4354\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
@@ -2122,22 +1738,22 @@
"\n",
"| | logFC <dbl> | AveExpr <dbl> | t <dbl> | P.Value <dbl> | adj.P.Val <dbl> | B <dbl> |\n",
"|---|---|---|---|---|---|---|\n",
- "| 19076 | 5.878948 | 0.4623452 | 54.32893 | 2.071534e-183 | 8.827015e-179 | 398.2269 |\n",
- "| 5965 | 6.088533 | 0.5974117 | 52.39644 | 4.863173e-178 | 1.036123e-173 | 386.6747 |\n",
- "| 19070 | 5.428275 | 0.3502684 | 50.18419 | 1.049979e-171 | 1.491355e-167 | 372.9366 |\n",
- "| 5962 | 5.904402 | 0.6820468 | 45.76377 | 2.050934e-158 | 2.184809e-154 | 344.0765 |\n",
- "| 6300 | 5.499113 | 0.7601863 | 38.95927 | 3.827125e-136 | 3.261552e-132 | 295.0173 |\n",
- "| 34357 | 5.634145 | 1.4625119 | 38.17254 | 2.041761e-133 | 1.450024e-129 | 288.3820 |\n",
+ "| 19076 | 5.882004 | 0.4623452 | 59.93929 | 3.249431e-198 | 1.384615e-193 | 432.7360 |\n",
+ "| 5965 | 6.095896 | 0.5974117 | 58.21383 | 8.730492e-194 | 1.860075e-189 | 423.1656 |\n",
+ "| 19070 | 5.434536 | 0.3502684 | 55.61250 | 6.602101e-187 | 9.377404e-183 | 408.1777 |\n",
+ "| 5962 | 5.908174 | 0.6820468 | 50.96963 | 5.496989e-174 | 5.855805e-170 | 380.0420 |\n",
+ "| 6300 | 5.497805 | 0.7601863 | 43.29996 | 1.270316e-150 | 1.082589e-146 | 328.4099 |\n",
+ "| 34357 | 5.636847 | 1.4625119 | 42.43349 | 8.258637e-148 | 5.865146e-144 | 321.4354 |\n",
"\n"
],
"text/plain": [
" logFC AveExpr t P.Value adj.P.Val B \n",
- "19076 5.878948 0.4623452 54.32893 2.071534e-183 8.827015e-179 398.2269\n",
- "5965 6.088533 0.5974117 52.39644 4.863173e-178 1.036123e-173 386.6747\n",
- "19070 5.428275 0.3502684 50.18419 1.049979e-171 1.491355e-167 372.9366\n",
- "5962 5.904402 0.6820468 45.76377 2.050934e-158 2.184809e-154 344.0765\n",
- "6300 5.499113 0.7601863 38.95927 3.827125e-136 3.261552e-132 295.0173\n",
- "34357 5.634145 1.4625119 38.17254 2.041761e-133 1.450024e-129 288.3820"
+ "19076 5.882004 0.4623452 59.93929 3.249431e-198 1.384615e-193 432.7360\n",
+ "5965 6.095896 0.5974117 58.21383 8.730492e-194 1.860075e-189 423.1656\n",
+ "19070 5.434536 0.3502684 55.61250 6.602101e-187 9.377404e-183 408.1777\n",
+ "5962 5.908174 0.6820468 50.96963 5.496989e-174 5.855805e-170 380.0420\n",
+ "6300 5.497805 0.7601863 43.29996 1.270316e-150 1.082589e-146 328.4099\n",
+ "34357 5.636847 1.4625119 42.43349 8.258637e-148 5.865146e-144 321.4354"
]
},
"metadata": {},
@@ -2150,7 +1766,7 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 34,
"metadata": {},
"outputs": [
{
@@ -2272,30 +1888,30 @@
".list-inline>li {display: inline-block}\n",
".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n",
"\n",
- "- '19076'
- '10150'
- '5965'
- '34357'
- '19070'
- '5963'
\n"
+ "- '10150'
- '19076'
- '5965'
- '34357'
- '5963'
- '19070'
\n"
],
"text/latex": [
"\\begin{enumerate*}\n",
- "\\item '19076'\n",
"\\item '10150'\n",
+ "\\item '19076'\n",
"\\item '5965'\n",
"\\item '34357'\n",
- "\\item '19070'\n",
"\\item '5963'\n",
+ "\\item '19070'\n",
"\\end{enumerate*}\n"
],
"text/markdown": [
- "1. '19076'\n",
- "2. '10150'\n",
+ "1. '10150'\n",
+ "2. '19076'\n",
"3. '5965'\n",
"4. '34357'\n",
- "5. '19070'\n",
- "6. '5963'\n",
+ "5. '5963'\n",
+ "6. '19070'\n",
"\n",
"\n"
],
"text/plain": [
- "[1] \"19076\" \"10150\" \"5965\" \"34357\" \"19070\" \"5963\" "
+ "[1] \"10150\" \"19076\" \"5965\" \"34357\" \"5963\" \"19070\""
]
},
"metadata": {},
@@ -2384,7 +2000,7 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 35,
"metadata": {},
"outputs": [
{
@@ -2464,12 +2080,12 @@
"\t | <int> | <fct> | <fct> | <fct> | <fct> | <int> | <int> | <int> | <int> | <int> | <int> |
\n",
"\n",
"\n",
- "\t19076 | 19076 | ENSG00000183878.15 | UTY | chrY | - | 13306037 | 13306112 | 13305398 | 13305547 | 13306185 | 13306250 |
\n",
"\t10150 | 10150 | ENSG00000229807.11 | XIST | chrX | - | 73833237 | 73833374 | 73831065 | 73831274 | 73837439 | 73841474 |
\n",
+ "\t19076 | 19076 | ENSG00000183878.15 | UTY | chrY | - | 13306037 | 13306112 | 13305398 | 13305547 | 13306185 | 13306250 |
\n",
"\t5965 | 5965 | ENSG00000012817.15 | KDM5D | chrY | - | 19741317 | 19741488 | 19739527 | 19739662 | 19741734 | 19741857 |
\n",
"\t34357 | 34357 | ENSG00000198692.10 | EIF1AY | chrY | + | 20584473 | 20584524 | 20582589 | 20582693 | 20588023 | 20588105 |
\n",
- "\t19070 | 19070 | ENSG00000183878.15 | UTY | chrY | - | 13251016 | 13251187 | 13248378 | 13249882 | 13260277 | 13260404 |
\n",
"\t5963 | 5963 | ENSG00000012817.15 | KDM5D | chrY | - | 19739527 | 19739662 | 19735620 | 19735750 | 19741317 | 19741488 |
\n",
+ "\t19070 | 19070 | ENSG00000183878.15 | UTY | chrY | - | 13251016 | 13251187 | 13248378 | 13249882 | 13260277 | 13260404 |
\n",
"\n",
"\n"
],
@@ -2479,12 +2095,12 @@
" & ID & GeneID & geneSymbol & chr & strand & exonStart\\_0base & exonEnd & upstreamES & upstreamEE & downstreamES & downstreamEE\\\\\n",
" & & & & & & & & & & & \\\\\n",
"\\hline\n",
- "\t19076 & 19076 & ENSG00000183878.15 & UTY & chrY & - & 13306037 & 13306112 & 13305398 & 13305547 & 13306185 & 13306250\\\\\n",
"\t10150 & 10150 & ENSG00000229807.11 & XIST & chrX & - & 73833237 & 73833374 & 73831065 & 73831274 & 73837439 & 73841474\\\\\n",
+ "\t19076 & 19076 & ENSG00000183878.15 & UTY & chrY & - & 13306037 & 13306112 & 13305398 & 13305547 & 13306185 & 13306250\\\\\n",
"\t5965 & 5965 & ENSG00000012817.15 & KDM5D & chrY & - & 19741317 & 19741488 & 19739527 & 19739662 & 19741734 & 19741857\\\\\n",
"\t34357 & 34357 & ENSG00000198692.10 & EIF1AY & chrY & + & 20584473 & 20584524 & 20582589 & 20582693 & 20588023 & 20588105\\\\\n",
- "\t19070 & 19070 & ENSG00000183878.15 & UTY & chrY & - & 13251016 & 13251187 & 13248378 & 13249882 & 13260277 & 13260404\\\\\n",
"\t5963 & 5963 & ENSG00000012817.15 & KDM5D & chrY & - & 19739527 & 19739662 & 19735620 & 19735750 & 19741317 & 19741488\\\\\n",
+ "\t19070 & 19070 & ENSG00000183878.15 & UTY & chrY & - & 13251016 & 13251187 & 13248378 & 13249882 & 13260277 & 13260404\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
@@ -2493,29 +2109,29 @@
"\n",
"| | ID <int> | GeneID <fct> | geneSymbol <fct> | chr <fct> | strand <fct> | exonStart_0base <int> | exonEnd <int> | upstreamES <int> | upstreamEE <int> | downstreamES <int> | downstreamEE <int> |\n",
"|---|---|---|---|---|---|---|---|---|---|---|---|\n",
- "| 19076 | 19076 | ENSG00000183878.15 | UTY | chrY | - | 13306037 | 13306112 | 13305398 | 13305547 | 13306185 | 13306250 |\n",
"| 10150 | 10150 | ENSG00000229807.11 | XIST | chrX | - | 73833237 | 73833374 | 73831065 | 73831274 | 73837439 | 73841474 |\n",
+ "| 19076 | 19076 | ENSG00000183878.15 | UTY | chrY | - | 13306037 | 13306112 | 13305398 | 13305547 | 13306185 | 13306250 |\n",
"| 5965 | 5965 | ENSG00000012817.15 | KDM5D | chrY | - | 19741317 | 19741488 | 19739527 | 19739662 | 19741734 | 19741857 |\n",
"| 34357 | 34357 | ENSG00000198692.10 | EIF1AY | chrY | + | 20584473 | 20584524 | 20582589 | 20582693 | 20588023 | 20588105 |\n",
- "| 19070 | 19070 | ENSG00000183878.15 | UTY | chrY | - | 13251016 | 13251187 | 13248378 | 13249882 | 13260277 | 13260404 |\n",
"| 5963 | 5963 | ENSG00000012817.15 | KDM5D | chrY | - | 19739527 | 19739662 | 19735620 | 19735750 | 19741317 | 19741488 |\n",
+ "| 19070 | 19070 | ENSG00000183878.15 | UTY | chrY | - | 13251016 | 13251187 | 13248378 | 13249882 | 13260277 | 13260404 |\n",
"\n"
],
"text/plain": [
" ID GeneID geneSymbol chr strand exonStart_0base exonEnd \n",
- "19076 19076 ENSG00000183878.15 UTY chrY - 13306037 13306112\n",
"10150 10150 ENSG00000229807.11 XIST chrX - 73833237 73833374\n",
+ "19076 19076 ENSG00000183878.15 UTY chrY - 13306037 13306112\n",
"5965 5965 ENSG00000012817.15 KDM5D chrY - 19741317 19741488\n",
"34357 34357 ENSG00000198692.10 EIF1AY chrY + 20584473 20584524\n",
- "19070 19070 ENSG00000183878.15 UTY chrY - 13251016 13251187\n",
"5963 5963 ENSG00000012817.15 KDM5D chrY - 19739527 19739662\n",
+ "19070 19070 ENSG00000183878.15 UTY chrY - 13251016 13251187\n",
" upstreamES upstreamEE downstreamES downstreamEE\n",
- "19076 13305398 13305547 13306185 13306250 \n",
"10150 73831065 73831274 73837439 73841474 \n",
+ "19076 13305398 13305547 13306185 13306250 \n",
"5965 19739527 19739662 19741734 19741857 \n",
"34357 20582589 20582693 20588023 20588105 \n",
- "19070 13248378 13249882 13260277 13260404 \n",
- "5963 19735620 19735750 19741317 19741488 "
+ "5963 19735620 19735750 19741317 19741488 \n",
+ "19070 13248378 13249882 13260277 13260404 "
]
},
"metadata": {},
@@ -2670,7 +2286,7 @@
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": 36,
"metadata": {},
"outputs": [
{
@@ -2750,12 +2366,12 @@
"\t | <int> | <fct> | <fct> | <fct> | <fct> | <int> | <int> | <int> | <int> | <int> | <int> |
\n",
"\n",
"\n",
- "\t19076 | 19076 | ENSG00000183878.15 | UTY | chrY | - | 13306037 | 13306112 | 13305398 | 13305547 | 13306185 | 13306250 |
\n",
"\t10150 | 10150 | ENSG00000229807.11 | XIST | chrX | - | 73833237 | 73833374 | 73831065 | 73831274 | 73837439 | 73841474 |
\n",
+ "\t19076 | 19076 | ENSG00000183878.15 | UTY | chrY | - | 13306037 | 13306112 | 13305398 | 13305547 | 13306185 | 13306250 |
\n",
"\t5965 | 5965 | ENSG00000012817.15 | KDM5D | chrY | - | 19741317 | 19741488 | 19739527 | 19739662 | 19741734 | 19741857 |
\n",
"\t34357 | 34357 | ENSG00000198692.10 | EIF1AY | chrY | + | 20584473 | 20584524 | 20582589 | 20582693 | 20588023 | 20588105 |
\n",
- "\t19070 | 19070 | ENSG00000183878.15 | UTY | chrY | - | 13251016 | 13251187 | 13248378 | 13249882 | 13260277 | 13260404 |
\n",
"\t5963 | 5963 | ENSG00000012817.15 | KDM5D | chrY | - | 19739527 | 19739662 | 19735620 | 19735750 | 19741317 | 19741488 |
\n",
+ "\t19070 | 19070 | ENSG00000183878.15 | UTY | chrY | - | 13251016 | 13251187 | 13248378 | 13249882 | 13260277 | 13260404 |
\n",
"\n",
"\n"
],
@@ -2765,12 +2381,12 @@
" & ID & GeneID & geneSymbol & chr & strand & exonStart\\_0base & exonEnd & upstreamES & upstreamEE & downstreamES & downstreamEE\\\\\n",
" & & & & & & & & & & & \\\\\n",
"\\hline\n",
- "\t19076 & 19076 & ENSG00000183878.15 & UTY & chrY & - & 13306037 & 13306112 & 13305398 & 13305547 & 13306185 & 13306250\\\\\n",
"\t10150 & 10150 & ENSG00000229807.11 & XIST & chrX & - & 73833237 & 73833374 & 73831065 & 73831274 & 73837439 & 73841474\\\\\n",
+ "\t19076 & 19076 & ENSG00000183878.15 & UTY & chrY & - & 13306037 & 13306112 & 13305398 & 13305547 & 13306185 & 13306250\\\\\n",
"\t5965 & 5965 & ENSG00000012817.15 & KDM5D & chrY & - & 19741317 & 19741488 & 19739527 & 19739662 & 19741734 & 19741857\\\\\n",
"\t34357 & 34357 & ENSG00000198692.10 & EIF1AY & chrY & + & 20584473 & 20584524 & 20582589 & 20582693 & 20588023 & 20588105\\\\\n",
- "\t19070 & 19070 & ENSG00000183878.15 & UTY & chrY & - & 13251016 & 13251187 & 13248378 & 13249882 & 13260277 & 13260404\\\\\n",
"\t5963 & 5963 & ENSG00000012817.15 & KDM5D & chrY & - & 19739527 & 19739662 & 19735620 & 19735750 & 19741317 & 19741488\\\\\n",
+ "\t19070 & 19070 & ENSG00000183878.15 & UTY & chrY & - & 13251016 & 13251187 & 13248378 & 13249882 & 13260277 & 13260404\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
@@ -2779,29 +2395,29 @@
"\n",
"| | ID <int> | GeneID <fct> | geneSymbol <fct> | chr <fct> | strand <fct> | exonStart_0base <int> | exonEnd <int> | upstreamES <int> | upstreamEE <int> | downstreamES <int> | downstreamEE <int> |\n",
"|---|---|---|---|---|---|---|---|---|---|---|---|\n",
- "| 19076 | 19076 | ENSG00000183878.15 | UTY | chrY | - | 13306037 | 13306112 | 13305398 | 13305547 | 13306185 | 13306250 |\n",
"| 10150 | 10150 | ENSG00000229807.11 | XIST | chrX | - | 73833237 | 73833374 | 73831065 | 73831274 | 73837439 | 73841474 |\n",
+ "| 19076 | 19076 | ENSG00000183878.15 | UTY | chrY | - | 13306037 | 13306112 | 13305398 | 13305547 | 13306185 | 13306250 |\n",
"| 5965 | 5965 | ENSG00000012817.15 | KDM5D | chrY | - | 19741317 | 19741488 | 19739527 | 19739662 | 19741734 | 19741857 |\n",
"| 34357 | 34357 | ENSG00000198692.10 | EIF1AY | chrY | + | 20584473 | 20584524 | 20582589 | 20582693 | 20588023 | 20588105 |\n",
- "| 19070 | 19070 | ENSG00000183878.15 | UTY | chrY | - | 13251016 | 13251187 | 13248378 | 13249882 | 13260277 | 13260404 |\n",
"| 5963 | 5963 | ENSG00000012817.15 | KDM5D | chrY | - | 19739527 | 19739662 | 19735620 | 19735750 | 19741317 | 19741488 |\n",
+ "| 19070 | 19070 | ENSG00000183878.15 | UTY | chrY | - | 13251016 | 13251187 | 13248378 | 13249882 | 13260277 | 13260404 |\n",
"\n"
],
"text/plain": [
" ID GeneID geneSymbol chr strand exonStart_0base exonEnd \n",
- "19076 19076 ENSG00000183878.15 UTY chrY - 13306037 13306112\n",
"10150 10150 ENSG00000229807.11 XIST chrX - 73833237 73833374\n",
+ "19076 19076 ENSG00000183878.15 UTY chrY - 13306037 13306112\n",
"5965 5965 ENSG00000012817.15 KDM5D chrY - 19741317 19741488\n",
"34357 34357 ENSG00000198692.10 EIF1AY chrY + 20584473 20584524\n",
- "19070 19070 ENSG00000183878.15 UTY chrY - 13251016 13251187\n",
"5963 5963 ENSG00000012817.15 KDM5D chrY - 19739527 19739662\n",
+ "19070 19070 ENSG00000183878.15 UTY chrY - 13251016 13251187\n",
" upstreamES upstreamEE downstreamES downstreamEE\n",
- "19076 13305398 13305547 13306185 13306250 \n",
"10150 73831065 73831274 73837439 73841474 \n",
+ "19076 13305398 13305547 13306185 13306250 \n",
"5965 19739527 19739662 19741734 19741857 \n",
"34357 20582589 20582693 20588023 20588105 \n",
- "19070 13248378 13249882 13260277 13260404 \n",
- "5963 19735620 19735750 19741317 19741488 "
+ "5963 19735620 19735750 19741317 19741488 \n",
+ "19070 13248378 13249882 13260277 13260404 "
]
},
"metadata": {},
@@ -2955,7 +2571,7 @@
},
{
"cell_type": "code",
- "execution_count": 28,
+ "execution_count": 37,
"metadata": {},
"outputs": [
{
@@ -3004,31 +2620,31 @@
".list-inline>li {display: inline-block}\n",
".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n",
"\n",
- "- 'UTY-19076'
- 'XIST-10150'
- 'KDM5D-5965'
- 'EIF1AY-34357'
- 'UTY-19070'
- 'KDM5D-5963'
\n"
+ "- 'XIST-10150'
- 'UTY-19076'
- 'KDM5D-5965'
- 'EIF1AY-34357'
- 'KDM5D-5963'
- 'UTY-19070'
\n"
],
"text/latex": [
"\\begin{enumerate*}\n",
- "\\item 'UTY-19076'\n",
"\\item 'XIST-10150'\n",
+ "\\item 'UTY-19076'\n",
"\\item 'KDM5D-5965'\n",
"\\item 'EIF1AY-34357'\n",
- "\\item 'UTY-19070'\n",
"\\item 'KDM5D-5963'\n",
+ "\\item 'UTY-19070'\n",
"\\end{enumerate*}\n"
],
"text/markdown": [
- "1. 'UTY-19076'\n",
- "2. 'XIST-10150'\n",
+ "1. 'XIST-10150'\n",
+ "2. 'UTY-19076'\n",
"3. 'KDM5D-5965'\n",
"4. 'EIF1AY-34357'\n",
- "5. 'UTY-19070'\n",
- "6. 'KDM5D-5963'\n",
+ "5. 'KDM5D-5963'\n",
+ "6. 'UTY-19070'\n",
"\n",
"\n"
],
"text/plain": [
- "[1] \"UTY-19076\" \"XIST-10150\" \"KDM5D-5965\" \"EIF1AY-34357\" \"UTY-19070\" \n",
- "[6] \"KDM5D-5963\" "
+ "[1] \"XIST-10150\" \"UTY-19076\" \"KDM5D-5965\" \"EIF1AY-34357\" \"KDM5D-5963\" \n",
+ "[6] \"UTY-19070\" "
]
},
"metadata": {},
@@ -3138,7 +2754,7 @@
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
@@ -3150,7 +2766,7 @@
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
@@ -3177,7 +2793,7 @@
},
{
"cell_type": "code",
- "execution_count": 31,
+ "execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
@@ -3223,14 +2839,15 @@
},
{
"cell_type": "code",
- "execution_count": 32,
+ "execution_count": 41,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- "Generating sha256 checksums of the artefacts in the `..data/` directory .. \n"
+ "Generating sha256 checksums of the artefacts in the `..data/` directory .. \n",
+ "\n"
]
},
{
@@ -3251,72 +2868,196 @@
"text": [
"Done!\n",
"\n",
- "Warning message in data.table::fread(paste0(\"../metadata/\", notebookid, \"_sha256sums.txt\"), :\n",
- "“Stopped early on line 7. Expected 2 fields but found 5. Consider fill=TRUE and comment.char=. First discarded non-empty line: <>”"
+ "\n"
]
},
{
"data": {
"text/html": [
"\n",
- "A data.table: 6 × 2\n",
+ "A data.table: 31 × 2\n",
"\n",
"\tsha256sum | file |
\n",
"\t<chr> | <chr> |
\n",
"\n",
"\n",
- "\td03c22e998eae9c96ab6e07340266fdff0d8f4f896fe7bd62ab80bb5aa7857f1 | ./BreastMammaryTissue_DGE_ijc_sex.csv |
\n",
- "\tebe1713963cd88e7bb2ac961e7d7209b38d2b0e8136b28fe4425ac8d04ad0b18 | ./rmats_final.mxe.jcec.skiplen.txt.gz |
\n",
- "\t6e47d3c15687f037426a6678e877227da2431f9ad20de41914e1fbb1701b32ad | ./BreastMammaryTissue_sex_as_events_universe.txt |
\n",
- "\t490afac0f9797126ea051b167f409bbc011a8bdbe190b991ce0da972c5424cbf | ./Cells-EBV-transformedlymphocytes_DGE.csv |
\n",
- "\t38307c2edf8434a57dc1113575887aafd735a529412046ba10f46c716fedcd2f | ./Brain-CerebellarHemisphere_DGE.csv |
\n",
- "\tb8347e8cd7fc16b23041a2809aa38e1590813c8858c6a2aa14f8fc4c134fba3e | ./.ipynb_checkpoints/BreastMammaryTissue,.DGE_isoforms_robust-checkpoint.csv |
\n",
+ "\tccf16742fe3db84abc66404b4c50981e6dee33b0de3f481111a2b44f6f931813 | ./BreastMammaryTissue_DGE_ijc_sex.csv |
\n",
+ "\td9b424c4c6a3084bf89e21ee0c0a806a882f0dac448b3c0bf61c8bfe1b002f58 | ./BreastMammaryTissue_sex_as_events_universe.txt |
\n",
+ "\t741763f61d32c98446317ad30c45cdb3199039b0c696ab83461eb91b0e8611fe | ./BreastMammaryTissue_DGE_sjc_sex.csv |
\n",
+ "\t28764f9f1e0f14e399d555e448b5490c7221454e7d34d220f79b537376ca017b | ./fromGTF.novelEvents.SE.txt |
\n",
+ "\te532e4d8ee0f5e5ba221017a1c07c5b1376f7d711aacbba5cc713badd8bd3e47 | ./BreastMammaryTissue_ijc_sex_universe.txt |
\n",
+ "\tfb7fced98c23d7f0e69f820a8cf1616c3a2a88386074ae5a14690f313ae210d0 | ./BreastMammaryTissue_sjc_sex_universe.txt |
\n",
+ "\tb408d18141c7de21b42d5fa78e442e482d6c249b90b45800271f5124c11dd3d3 | ./BreastMammaryTissue_sex_gene_set.txt |
\n",
+ "\t5146c849c9354129590c59da5e6040a074523b4827d0975e3f5fa43737af7e9a | ./README.md |
\n",
+ "\tefe91f83b5b3d4a6497e7265979ec2616f1e330005b3117fbd6e0da0c4b37c79 | ./BreastMammaryTissue_DGE_sjc_sex_refined.csv |
\n",
+ "\teb61abf2dff12314fc82b79bd492a1baddf6d37bd080ac14cdb0caa39cd09bc6 | ./fromGTF.novelEvents.A5SS.txt |
\n",
+ "\t94df4d4e2ab738e06c68e19e7f9eaefba64389a65827726b127713dbd20a7c30 | ./BreastMammaryTissue_sex_universe.txt |
\n",
+ "\teb61abf2dff12314fc82b79bd492a1baddf6d37bd080ac14cdb0caa39cd09bc6 | ./fromGTF.novelEvents.A3SS.txt |
\n",
+ "\t5ded52e3f6c0c09b7fe09e81a5bc58bf6d9c4afdaed3d19a159b9dfb0c49ea4d | ./BreastMammaryTissue_DGE_sex_as_events_refined.csv |
\n",
+ "\tbe32c4925ad8ebf7414623d68e390a1631e08f4459c189f7f346040a542320b5 | ./fromGTF.RI.txt |
\n",
+ "\tc14069b1ed8642720b742864ca6b930b13d35e5a41592dabd9ba0b2dcb953783 | ./fromGTF.novelEvents.RI.txt |
\n",
+ "\tdd188bc93b89167bfd8faa80323ca753b1a9557574e7157e6a6f9afe7f48e1b3 | ./SraRunTable.noCram.noExome.noWGS.totalRNA.txt.gz |
\n",
+ "\t63888f391d15f13590b9bcb9d472af4c438947122e63eedca232b1b25b082ebe | ./BreastMammaryTissue_ijc_sex_gene_set.txt |
\n",
+ "\t6426a7ecd614d3aeec414aac830d415c4c23e032df075737429f44546aabeee8 | ./BreastMammaryTissue_DGE_ijc_sex_refined.csv |
\n",
+ "\t5cfa91f71a21538245f3b5c198fc45f8652c899bbce2fd5ad9bd52a8a08566b6 | ./fromGTF.MXE.txt |
\n",
+ "\td7639443651c3b508772ee89728f8ab41d62414672c41e68a78947be14e07cd6 | ./rmats_final.se.jc.sjc.txt.gz |
\n",
+ "\t68ea5ae95f3ca659e86b685304361957d183bf3273f8e74b276d5295d275686f | ./BreastMammaryTissue_sex_as_events_gene_set.txt |
\n",
+ "\tbfd9fa65689a7d157b09b5efd472f235b627f85a73b9f0493c881882acce773d | ./fromGTF.tar.gz |
\n",
+ "\t849658f50abd888f8708a1ffd65ff523a14d1d5eab194583bed1caebd5cac92a | ./rmats_final.se.jc.ijc.txt.gz |
\n",
+ "\t22cb3faa337ae24b7b423a985fd2056047400eccb83b716eff2e33cce9159e53 | ./fromGTF.SE.txt |
\n",
+ "\tb2e407257b128afc0765497a4a21cf371bf4e3ed28c9532d3d55d32518e329e4 | ./BreastMammaryTissue_sjc_sex_gene_set.txt |
\n",
+ "\tc277ab764b652e8d65e07277df72933fee465806a5e6c1b018509f868ccfddad | ./fromGTF.A5SS.txt |
\n",
+ "\t6e3f1d335ce05c887363d092b0100b9f3603a964c8fe6e8c20f4c547b4f52280 | ./fromGTF.novelEvents.MXE.txt |
\n",
+ "\t51c8250a1796196e3879d88186c5450e5b5efc1e9f3fa578f388e9ff380e2deb | ./fromGTF.A3SS.txt |
\n",
+ "\tf31a68097c9133a5fd11d32c4d1194b59442366e50e627189ac1cbcdb6e7f13f | ./BreastMammaryTissue_DGE_sex_refined.csv |
\n",
+ "\t98001376224e926573071d352f6b22fc6a2dbcca33a16ba88573b49375b90699 | ./BreastMammaryTissue_DGE_sex_as_events.csv |
\n",
+ "\t969def456d3d089241b56f95bc23dfa4205334f25989485a4febb4dcccccf891 | ./BreastMammaryTissue_DGE_sex.csv |
\n",
"\n",
"
\n"
],
"text/latex": [
- "A data.table: 6 × 2\n",
+ "A data.table: 31 × 2\n",
"\\begin{tabular}{ll}\n",
" sha256sum & file\\\\\n",
" & \\\\\n",
"\\hline\n",
- "\t d03c22e998eae9c96ab6e07340266fdff0d8f4f896fe7bd62ab80bb5aa7857f1 & ./BreastMammaryTissue\\_DGE\\_ijc\\_sex.csv \\\\\n",
- "\t ebe1713963cd88e7bb2ac961e7d7209b38d2b0e8136b28fe4425ac8d04ad0b18 & ./rmats\\_final.mxe.jcec.skiplen.txt.gz \\\\\n",
- "\t 6e47d3c15687f037426a6678e877227da2431f9ad20de41914e1fbb1701b32ad & ./BreastMammaryTissue\\_sex\\_as\\_events\\_universe.txt \\\\\n",
- "\t 490afac0f9797126ea051b167f409bbc011a8bdbe190b991ce0da972c5424cbf & ./Cells-EBV-transformedlymphocytes\\_DGE.csv \\\\\n",
- "\t 38307c2edf8434a57dc1113575887aafd735a529412046ba10f46c716fedcd2f & ./Brain-CerebellarHemisphere\\_DGE.csv \\\\\n",
- "\t b8347e8cd7fc16b23041a2809aa38e1590813c8858c6a2aa14f8fc4c134fba3e & ./.ipynb\\_checkpoints/BreastMammaryTissue,.DGE\\_isoforms\\_robust-checkpoint.csv\\\\\n",
+ "\t ccf16742fe3db84abc66404b4c50981e6dee33b0de3f481111a2b44f6f931813 & ./BreastMammaryTissue\\_DGE\\_ijc\\_sex.csv \\\\\n",
+ "\t d9b424c4c6a3084bf89e21ee0c0a806a882f0dac448b3c0bf61c8bfe1b002f58 & ./BreastMammaryTissue\\_sex\\_as\\_events\\_universe.txt \\\\\n",
+ "\t 741763f61d32c98446317ad30c45cdb3199039b0c696ab83461eb91b0e8611fe & ./BreastMammaryTissue\\_DGE\\_sjc\\_sex.csv \\\\\n",
+ "\t 28764f9f1e0f14e399d555e448b5490c7221454e7d34d220f79b537376ca017b & ./fromGTF.novelEvents.SE.txt \\\\\n",
+ "\t e532e4d8ee0f5e5ba221017a1c07c5b1376f7d711aacbba5cc713badd8bd3e47 & ./BreastMammaryTissue\\_ijc\\_sex\\_universe.txt \\\\\n",
+ "\t fb7fced98c23d7f0e69f820a8cf1616c3a2a88386074ae5a14690f313ae210d0 & ./BreastMammaryTissue\\_sjc\\_sex\\_universe.txt \\\\\n",
+ "\t b408d18141c7de21b42d5fa78e442e482d6c249b90b45800271f5124c11dd3d3 & ./BreastMammaryTissue\\_sex\\_gene\\_set.txt \\\\\n",
+ "\t 5146c849c9354129590c59da5e6040a074523b4827d0975e3f5fa43737af7e9a & ./README.md \\\\\n",
+ "\t efe91f83b5b3d4a6497e7265979ec2616f1e330005b3117fbd6e0da0c4b37c79 & ./BreastMammaryTissue\\_DGE\\_sjc\\_sex\\_refined.csv \\\\\n",
+ "\t eb61abf2dff12314fc82b79bd492a1baddf6d37bd080ac14cdb0caa39cd09bc6 & ./fromGTF.novelEvents.A5SS.txt \\\\\n",
+ "\t 94df4d4e2ab738e06c68e19e7f9eaefba64389a65827726b127713dbd20a7c30 & ./BreastMammaryTissue\\_sex\\_universe.txt \\\\\n",
+ "\t eb61abf2dff12314fc82b79bd492a1baddf6d37bd080ac14cdb0caa39cd09bc6 & ./fromGTF.novelEvents.A3SS.txt \\\\\n",
+ "\t 5ded52e3f6c0c09b7fe09e81a5bc58bf6d9c4afdaed3d19a159b9dfb0c49ea4d & ./BreastMammaryTissue\\_DGE\\_sex\\_as\\_events\\_refined.csv\\\\\n",
+ "\t be32c4925ad8ebf7414623d68e390a1631e08f4459c189f7f346040a542320b5 & ./fromGTF.RI.txt \\\\\n",
+ "\t c14069b1ed8642720b742864ca6b930b13d35e5a41592dabd9ba0b2dcb953783 & ./fromGTF.novelEvents.RI.txt \\\\\n",
+ "\t dd188bc93b89167bfd8faa80323ca753b1a9557574e7157e6a6f9afe7f48e1b3 & ./SraRunTable.noCram.noExome.noWGS.totalRNA.txt.gz \\\\\n",
+ "\t 63888f391d15f13590b9bcb9d472af4c438947122e63eedca232b1b25b082ebe & ./BreastMammaryTissue\\_ijc\\_sex\\_gene\\_set.txt \\\\\n",
+ "\t 6426a7ecd614d3aeec414aac830d415c4c23e032df075737429f44546aabeee8 & ./BreastMammaryTissue\\_DGE\\_ijc\\_sex\\_refined.csv \\\\\n",
+ "\t 5cfa91f71a21538245f3b5c198fc45f8652c899bbce2fd5ad9bd52a8a08566b6 & ./fromGTF.MXE.txt \\\\\n",
+ "\t d7639443651c3b508772ee89728f8ab41d62414672c41e68a78947be14e07cd6 & ./rmats\\_final.se.jc.sjc.txt.gz \\\\\n",
+ "\t 68ea5ae95f3ca659e86b685304361957d183bf3273f8e74b276d5295d275686f & ./BreastMammaryTissue\\_sex\\_as\\_events\\_gene\\_set.txt \\\\\n",
+ "\t bfd9fa65689a7d157b09b5efd472f235b627f85a73b9f0493c881882acce773d & ./fromGTF.tar.gz \\\\\n",
+ "\t 849658f50abd888f8708a1ffd65ff523a14d1d5eab194583bed1caebd5cac92a & ./rmats\\_final.se.jc.ijc.txt.gz \\\\\n",
+ "\t 22cb3faa337ae24b7b423a985fd2056047400eccb83b716eff2e33cce9159e53 & ./fromGTF.SE.txt \\\\\n",
+ "\t b2e407257b128afc0765497a4a21cf371bf4e3ed28c9532d3d55d32518e329e4 & ./BreastMammaryTissue\\_sjc\\_sex\\_gene\\_set.txt \\\\\n",
+ "\t c277ab764b652e8d65e07277df72933fee465806a5e6c1b018509f868ccfddad & ./fromGTF.A5SS.txt \\\\\n",
+ "\t 6e3f1d335ce05c887363d092b0100b9f3603a964c8fe6e8c20f4c547b4f52280 & ./fromGTF.novelEvents.MXE.txt \\\\\n",
+ "\t 51c8250a1796196e3879d88186c5450e5b5efc1e9f3fa578f388e9ff380e2deb & ./fromGTF.A3SS.txt \\\\\n",
+ "\t f31a68097c9133a5fd11d32c4d1194b59442366e50e627189ac1cbcdb6e7f13f & ./BreastMammaryTissue\\_DGE\\_sex\\_refined.csv \\\\\n",
+ "\t 98001376224e926573071d352f6b22fc6a2dbcca33a16ba88573b49375b90699 & ./BreastMammaryTissue\\_DGE\\_sex\\_as\\_events.csv \\\\\n",
+ "\t 969def456d3d089241b56f95bc23dfa4205334f25989485a4febb4dcccccf891 & ./BreastMammaryTissue\\_DGE\\_sex.csv \\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
- "A data.table: 6 × 2\n",
+ "A data.table: 31 × 2\n",
"\n",
"| sha256sum <chr> | file <chr> |\n",
"|---|---|\n",
- "| d03c22e998eae9c96ab6e07340266fdff0d8f4f896fe7bd62ab80bb5aa7857f1 | ./BreastMammaryTissue_DGE_ijc_sex.csv |\n",
- "| ebe1713963cd88e7bb2ac961e7d7209b38d2b0e8136b28fe4425ac8d04ad0b18 | ./rmats_final.mxe.jcec.skiplen.txt.gz |\n",
- "| 6e47d3c15687f037426a6678e877227da2431f9ad20de41914e1fbb1701b32ad | ./BreastMammaryTissue_sex_as_events_universe.txt |\n",
- "| 490afac0f9797126ea051b167f409bbc011a8bdbe190b991ce0da972c5424cbf | ./Cells-EBV-transformedlymphocytes_DGE.csv |\n",
- "| 38307c2edf8434a57dc1113575887aafd735a529412046ba10f46c716fedcd2f | ./Brain-CerebellarHemisphere_DGE.csv |\n",
- "| b8347e8cd7fc16b23041a2809aa38e1590813c8858c6a2aa14f8fc4c134fba3e | ./.ipynb_checkpoints/BreastMammaryTissue,.DGE_isoforms_robust-checkpoint.csv |\n",
+ "| ccf16742fe3db84abc66404b4c50981e6dee33b0de3f481111a2b44f6f931813 | ./BreastMammaryTissue_DGE_ijc_sex.csv |\n",
+ "| d9b424c4c6a3084bf89e21ee0c0a806a882f0dac448b3c0bf61c8bfe1b002f58 | ./BreastMammaryTissue_sex_as_events_universe.txt |\n",
+ "| 741763f61d32c98446317ad30c45cdb3199039b0c696ab83461eb91b0e8611fe | ./BreastMammaryTissue_DGE_sjc_sex.csv |\n",
+ "| 28764f9f1e0f14e399d555e448b5490c7221454e7d34d220f79b537376ca017b | ./fromGTF.novelEvents.SE.txt |\n",
+ "| e532e4d8ee0f5e5ba221017a1c07c5b1376f7d711aacbba5cc713badd8bd3e47 | ./BreastMammaryTissue_ijc_sex_universe.txt |\n",
+ "| fb7fced98c23d7f0e69f820a8cf1616c3a2a88386074ae5a14690f313ae210d0 | ./BreastMammaryTissue_sjc_sex_universe.txt |\n",
+ "| b408d18141c7de21b42d5fa78e442e482d6c249b90b45800271f5124c11dd3d3 | ./BreastMammaryTissue_sex_gene_set.txt |\n",
+ "| 5146c849c9354129590c59da5e6040a074523b4827d0975e3f5fa43737af7e9a | ./README.md |\n",
+ "| efe91f83b5b3d4a6497e7265979ec2616f1e330005b3117fbd6e0da0c4b37c79 | ./BreastMammaryTissue_DGE_sjc_sex_refined.csv |\n",
+ "| eb61abf2dff12314fc82b79bd492a1baddf6d37bd080ac14cdb0caa39cd09bc6 | ./fromGTF.novelEvents.A5SS.txt |\n",
+ "| 94df4d4e2ab738e06c68e19e7f9eaefba64389a65827726b127713dbd20a7c30 | ./BreastMammaryTissue_sex_universe.txt |\n",
+ "| eb61abf2dff12314fc82b79bd492a1baddf6d37bd080ac14cdb0caa39cd09bc6 | ./fromGTF.novelEvents.A3SS.txt |\n",
+ "| 5ded52e3f6c0c09b7fe09e81a5bc58bf6d9c4afdaed3d19a159b9dfb0c49ea4d | ./BreastMammaryTissue_DGE_sex_as_events_refined.csv |\n",
+ "| be32c4925ad8ebf7414623d68e390a1631e08f4459c189f7f346040a542320b5 | ./fromGTF.RI.txt |\n",
+ "| c14069b1ed8642720b742864ca6b930b13d35e5a41592dabd9ba0b2dcb953783 | ./fromGTF.novelEvents.RI.txt |\n",
+ "| dd188bc93b89167bfd8faa80323ca753b1a9557574e7157e6a6f9afe7f48e1b3 | ./SraRunTable.noCram.noExome.noWGS.totalRNA.txt.gz |\n",
+ "| 63888f391d15f13590b9bcb9d472af4c438947122e63eedca232b1b25b082ebe | ./BreastMammaryTissue_ijc_sex_gene_set.txt |\n",
+ "| 6426a7ecd614d3aeec414aac830d415c4c23e032df075737429f44546aabeee8 | ./BreastMammaryTissue_DGE_ijc_sex_refined.csv |\n",
+ "| 5cfa91f71a21538245f3b5c198fc45f8652c899bbce2fd5ad9bd52a8a08566b6 | ./fromGTF.MXE.txt |\n",
+ "| d7639443651c3b508772ee89728f8ab41d62414672c41e68a78947be14e07cd6 | ./rmats_final.se.jc.sjc.txt.gz |\n",
+ "| 68ea5ae95f3ca659e86b685304361957d183bf3273f8e74b276d5295d275686f | ./BreastMammaryTissue_sex_as_events_gene_set.txt |\n",
+ "| bfd9fa65689a7d157b09b5efd472f235b627f85a73b9f0493c881882acce773d | ./fromGTF.tar.gz |\n",
+ "| 849658f50abd888f8708a1ffd65ff523a14d1d5eab194583bed1caebd5cac92a | ./rmats_final.se.jc.ijc.txt.gz |\n",
+ "| 22cb3faa337ae24b7b423a985fd2056047400eccb83b716eff2e33cce9159e53 | ./fromGTF.SE.txt |\n",
+ "| b2e407257b128afc0765497a4a21cf371bf4e3ed28c9532d3d55d32518e329e4 | ./BreastMammaryTissue_sjc_sex_gene_set.txt |\n",
+ "| c277ab764b652e8d65e07277df72933fee465806a5e6c1b018509f868ccfddad | ./fromGTF.A5SS.txt |\n",
+ "| 6e3f1d335ce05c887363d092b0100b9f3603a964c8fe6e8c20f4c547b4f52280 | ./fromGTF.novelEvents.MXE.txt |\n",
+ "| 51c8250a1796196e3879d88186c5450e5b5efc1e9f3fa578f388e9ff380e2deb | ./fromGTF.A3SS.txt |\n",
+ "| f31a68097c9133a5fd11d32c4d1194b59442366e50e627189ac1cbcdb6e7f13f | ./BreastMammaryTissue_DGE_sex_refined.csv |\n",
+ "| 98001376224e926573071d352f6b22fc6a2dbcca33a16ba88573b49375b90699 | ./BreastMammaryTissue_DGE_sex_as_events.csv |\n",
+ "| 969def456d3d089241b56f95bc23dfa4205334f25989485a4febb4dcccccf891 | ./BreastMammaryTissue_DGE_sex.csv |\n",
"\n"
],
"text/plain": [
- " sha256sum \n",
- "1 d03c22e998eae9c96ab6e07340266fdff0d8f4f896fe7bd62ab80bb5aa7857f1\n",
- "2 ebe1713963cd88e7bb2ac961e7d7209b38d2b0e8136b28fe4425ac8d04ad0b18\n",
- "3 6e47d3c15687f037426a6678e877227da2431f9ad20de41914e1fbb1701b32ad\n",
- "4 490afac0f9797126ea051b167f409bbc011a8bdbe190b991ce0da972c5424cbf\n",
- "5 38307c2edf8434a57dc1113575887aafd735a529412046ba10f46c716fedcd2f\n",
- "6 b8347e8cd7fc16b23041a2809aa38e1590813c8858c6a2aa14f8fc4c134fba3e\n",
- " file \n",
- "1 ./BreastMammaryTissue_DGE_ijc_sex.csv \n",
- "2 ./rmats_final.mxe.jcec.skiplen.txt.gz \n",
- "3 ./BreastMammaryTissue_sex_as_events_universe.txt \n",
- "4 ./Cells-EBV-transformedlymphocytes_DGE.csv \n",
- "5 ./Brain-CerebellarHemisphere_DGE.csv \n",
- "6 ./.ipynb_checkpoints/BreastMammaryTissue,.DGE_isoforms_robust-checkpoint.csv"
+ " sha256sum \n",
+ "1 ccf16742fe3db84abc66404b4c50981e6dee33b0de3f481111a2b44f6f931813\n",
+ "2 d9b424c4c6a3084bf89e21ee0c0a806a882f0dac448b3c0bf61c8bfe1b002f58\n",
+ "3 741763f61d32c98446317ad30c45cdb3199039b0c696ab83461eb91b0e8611fe\n",
+ "4 28764f9f1e0f14e399d555e448b5490c7221454e7d34d220f79b537376ca017b\n",
+ "5 e532e4d8ee0f5e5ba221017a1c07c5b1376f7d711aacbba5cc713badd8bd3e47\n",
+ "6 fb7fced98c23d7f0e69f820a8cf1616c3a2a88386074ae5a14690f313ae210d0\n",
+ "7 b408d18141c7de21b42d5fa78e442e482d6c249b90b45800271f5124c11dd3d3\n",
+ "8 5146c849c9354129590c59da5e6040a074523b4827d0975e3f5fa43737af7e9a\n",
+ "9 efe91f83b5b3d4a6497e7265979ec2616f1e330005b3117fbd6e0da0c4b37c79\n",
+ "10 eb61abf2dff12314fc82b79bd492a1baddf6d37bd080ac14cdb0caa39cd09bc6\n",
+ "11 94df4d4e2ab738e06c68e19e7f9eaefba64389a65827726b127713dbd20a7c30\n",
+ "12 eb61abf2dff12314fc82b79bd492a1baddf6d37bd080ac14cdb0caa39cd09bc6\n",
+ "13 5ded52e3f6c0c09b7fe09e81a5bc58bf6d9c4afdaed3d19a159b9dfb0c49ea4d\n",
+ "14 be32c4925ad8ebf7414623d68e390a1631e08f4459c189f7f346040a542320b5\n",
+ "15 c14069b1ed8642720b742864ca6b930b13d35e5a41592dabd9ba0b2dcb953783\n",
+ "16 dd188bc93b89167bfd8faa80323ca753b1a9557574e7157e6a6f9afe7f48e1b3\n",
+ "17 63888f391d15f13590b9bcb9d472af4c438947122e63eedca232b1b25b082ebe\n",
+ "18 6426a7ecd614d3aeec414aac830d415c4c23e032df075737429f44546aabeee8\n",
+ "19 5cfa91f71a21538245f3b5c198fc45f8652c899bbce2fd5ad9bd52a8a08566b6\n",
+ "20 d7639443651c3b508772ee89728f8ab41d62414672c41e68a78947be14e07cd6\n",
+ "21 68ea5ae95f3ca659e86b685304361957d183bf3273f8e74b276d5295d275686f\n",
+ "22 bfd9fa65689a7d157b09b5efd472f235b627f85a73b9f0493c881882acce773d\n",
+ "23 849658f50abd888f8708a1ffd65ff523a14d1d5eab194583bed1caebd5cac92a\n",
+ "24 22cb3faa337ae24b7b423a985fd2056047400eccb83b716eff2e33cce9159e53\n",
+ "25 b2e407257b128afc0765497a4a21cf371bf4e3ed28c9532d3d55d32518e329e4\n",
+ "26 c277ab764b652e8d65e07277df72933fee465806a5e6c1b018509f868ccfddad\n",
+ "27 6e3f1d335ce05c887363d092b0100b9f3603a964c8fe6e8c20f4c547b4f52280\n",
+ "28 51c8250a1796196e3879d88186c5450e5b5efc1e9f3fa578f388e9ff380e2deb\n",
+ "29 f31a68097c9133a5fd11d32c4d1194b59442366e50e627189ac1cbcdb6e7f13f\n",
+ "30 98001376224e926573071d352f6b22fc6a2dbcca33a16ba88573b49375b90699\n",
+ "31 969def456d3d089241b56f95bc23dfa4205334f25989485a4febb4dcccccf891\n",
+ " file \n",
+ "1 ./BreastMammaryTissue_DGE_ijc_sex.csv \n",
+ "2 ./BreastMammaryTissue_sex_as_events_universe.txt \n",
+ "3 ./BreastMammaryTissue_DGE_sjc_sex.csv \n",
+ "4 ./fromGTF.novelEvents.SE.txt \n",
+ "5 ./BreastMammaryTissue_ijc_sex_universe.txt \n",
+ "6 ./BreastMammaryTissue_sjc_sex_universe.txt \n",
+ "7 ./BreastMammaryTissue_sex_gene_set.txt \n",
+ "8 ./README.md \n",
+ "9 ./BreastMammaryTissue_DGE_sjc_sex_refined.csv \n",
+ "10 ./fromGTF.novelEvents.A5SS.txt \n",
+ "11 ./BreastMammaryTissue_sex_universe.txt \n",
+ "12 ./fromGTF.novelEvents.A3SS.txt \n",
+ "13 ./BreastMammaryTissue_DGE_sex_as_events_refined.csv\n",
+ "14 ./fromGTF.RI.txt \n",
+ "15 ./fromGTF.novelEvents.RI.txt \n",
+ "16 ./SraRunTable.noCram.noExome.noWGS.totalRNA.txt.gz \n",
+ "17 ./BreastMammaryTissue_ijc_sex_gene_set.txt \n",
+ "18 ./BreastMammaryTissue_DGE_ijc_sex_refined.csv \n",
+ "19 ./fromGTF.MXE.txt \n",
+ "20 ./rmats_final.se.jc.sjc.txt.gz \n",
+ "21 ./BreastMammaryTissue_sex_as_events_gene_set.txt \n",
+ "22 ./fromGTF.tar.gz \n",
+ "23 ./rmats_final.se.jc.ijc.txt.gz \n",
+ "24 ./fromGTF.SE.txt \n",
+ "25 ./BreastMammaryTissue_sjc_sex_gene_set.txt \n",
+ "26 ./fromGTF.A5SS.txt \n",
+ "27 ./fromGTF.novelEvents.MXE.txt \n",
+ "28 ./fromGTF.A3SS.txt \n",
+ "29 ./BreastMammaryTissue_DGE_sex_refined.csv \n",
+ "30 ./BreastMammaryTissue_DGE_sex_as_events.csv \n",
+ "31 ./BreastMammaryTissue_DGE_sex.csv "
]
},
"metadata": {},
@@ -3342,7 +3083,7 @@
},
{
"cell_type": "code",
- "execution_count": 33,
+ "execution_count": 42,
"metadata": {},
"outputs": [
{
@@ -3350,10 +3091,14 @@
"output_type": "stream",
"text": [
"Saving `devtools::session_info()` objects in ../metadata/devtools_session_info.rds ..\n",
+ "\n",
"Done!\n",
"\n",
+ "\n",
"Saving `utils::sessionInfo()` objects in ../metadata/utils_session_info.rds ..\n",
+ "\n",
"Done!\n",
+ "\n",
"\n"
]
},
@@ -3361,7 +3106,7 @@
"data": {
"text/plain": [
" setting value \n",
- " version R version 3.6.1 (2019-07-05)\n",
+ " version R version 3.6.2 (2019-12-12)\n",
" os Ubuntu 18.04.3 LTS \n",
" system x86_64, linux-gnu \n",
" ui X11 \n",
@@ -3369,7 +3114,7 @@
" collate en_US.UTF-8 \n",
" ctype en_US.UTF-8 \n",
" tz Etc/UTC \n",
- " date 2020-05-10 "
+ " date 2020-05-13 "
]
},
"metadata": {},
@@ -3379,56 +3124,62 @@
"data": {
"text/html": [
"\n",
- "A packages_info: 9 × 11\n",
+ "A packages_info: 11 × 11\n",
"\n",
"\t | package | ondiskversion | loadedversion | path | loadedpath | attached | is_base | date | source | md5ok | library |
\n",
"\t | <chr> | <chr> | <chr> | <chr> | <chr> | <lgl> | <lgl> | <chr> | <chr> | <lgl> | <fct> |
\n",
"\n",
"\n",
- "\tBiobase | Biobase | 2.46.0 | 2.46.0 | /opt/conda/lib/R/library/Biobase | /opt/conda/lib/R/library/Biobase | TRUE | FALSE | 2019-10-29 | Bioconductor | NA | /opt/conda/lib/R/library |
\n",
- "\tBiocGenerics | BiocGenerics | 0.32.0 | 0.32.0 | /opt/conda/lib/R/library/BiocGenerics | /opt/conda/lib/R/library/BiocGenerics | TRUE | FALSE | 2019-10-29 | Bioconductor | NA | /opt/conda/lib/R/library |
\n",
- "\tedgeR | edgeR | 3.28.1 | 3.28.1 | /opt/conda/lib/R/library/edgeR | /opt/conda/lib/R/library/edgeR | TRUE | FALSE | 2020-02-26 | Bioconductor | NA | /opt/conda/lib/R/library |
\n",
- "\tlimma | limma | 3.42.0 | 3.42.0 | /opt/conda/lib/R/library/limma | /opt/conda/lib/R/library/limma | TRUE | FALSE | 2019-10-29 | Bioconductor | NA | /opt/conda/lib/R/library |
\n",
- "\tmulttest | multtest | 2.40.0 | 2.40.0 | /opt/conda/lib/R/library/multtest | /opt/conda/lib/R/library/multtest | TRUE | FALSE | 2019-05-02 | Bioconductor | NA | /opt/conda/lib/R/library |
\n",
- "\tR.methodsS3 | R.methodsS3 | 1.8.0 | 1.8.0 | /opt/conda/lib/R/library/R.methodsS3 | /opt/conda/lib/R/library/R.methodsS3 | TRUE | FALSE | 2020-02-14 | CRAN (R 3.6.1) | NA | /opt/conda/lib/R/library |
\n",
- "\tR.oo | R.oo | 1.23.0 | 1.23.0 | /opt/conda/lib/R/library/R.oo | /opt/conda/lib/R/library/R.oo | TRUE | FALSE | 2019-11-03 | CRAN (R 3.6.1) | NA | /opt/conda/lib/R/library |
\n",
- "\tR.utils | R.utils | 2.9.2 | 2.9.2 | /opt/conda/lib/R/library/R.utils | /opt/conda/lib/R/library/R.utils | TRUE | FALSE | 2019-12-08 | CRAN (R 3.6.1) | NA | /opt/conda/lib/R/library |
\n",
- "\ttibble | tibble | 2.1.3 | 2.1.3 | /opt/conda/lib/R/library/tibble | /opt/conda/lib/R/library/tibble | TRUE | FALSE | 2019-06-06 | CRAN (R 3.6.1) | NA | /opt/conda/lib/R/library |
\n",
+ "\tBiobase | Biobase | 2.46.0 | 2.46.0 | /opt/conda/lib/R/library/Biobase | /opt/conda/lib/R/library/Biobase | TRUE | FALSE | 2019-10-29 | Bioconductor | NA | /opt/conda/lib/R/library |
\n",
+ "\tBiocGenerics | BiocGenerics | 0.32.0 | 0.32.0 | /opt/conda/lib/R/library/BiocGenerics | /opt/conda/lib/R/library/BiocGenerics | TRUE | FALSE | 2019-10-29 | Bioconductor | NA | /opt/conda/lib/R/library |
\n",
+ "\tedgeR | edgeR | 3.28.1 | 3.28.1 | /opt/conda/lib/R/library/edgeR | /opt/conda/lib/R/library/edgeR | TRUE | FALSE | 2020-02-26 | Bioconductor | NA | /opt/conda/lib/R/library |
\n",
+ "\tlimma | limma | 3.42.2 | 3.42.2 | /opt/conda/lib/R/library/limma | /opt/conda/lib/R/library/limma | TRUE | FALSE | 2020-02-03 | Bioconductor | NA | /opt/conda/lib/R/library |
\n",
+ "\tmulttest | multtest | 2.42.0 | 2.42.0 | /opt/conda/lib/R/library/multtest | /opt/conda/lib/R/library/multtest | TRUE | FALSE | 2019-10-29 | Bioconductor | NA | /opt/conda/lib/R/library |
\n",
+ "\tpiggyback | piggyback | 0.0.10.99 | 0.0.10.99 | /opt/conda/lib/R/library/piggyback | /opt/conda/lib/R/library/piggyback | TRUE | FALSE | 2020-05-13 | Github (ropensci/piggyback@87f71e8) | NA | /opt/conda/lib/R/library |
\n",
+ "\tR.methodsS3 | R.methodsS3 | 1.8.0 | 1.8.0 | /opt/conda/lib/R/library/R.methodsS3 | /opt/conda/lib/R/library/R.methodsS3 | TRUE | FALSE | 2020-02-14 | CRAN (R 3.6.2) | NA | /opt/conda/lib/R/library |
\n",
+ "\tR.oo | R.oo | 1.23.0 | 1.23.0 | /opt/conda/lib/R/library/R.oo | /opt/conda/lib/R/library/R.oo | TRUE | FALSE | 2019-11-03 | CRAN (R 3.6.2) | NA | /opt/conda/lib/R/library |
\n",
+ "\tR.utils | R.utils | 2.9.2 | 2.9.2 | /opt/conda/lib/R/library/R.utils | /opt/conda/lib/R/library/R.utils | TRUE | FALSE | 2019-12-08 | CRAN (R 3.6.2) | NA | /opt/conda/lib/R/library |
\n",
+ "\tstatmod | statmod | 1.4.34 | 1.4.34 | /opt/conda/lib/R/library/statmod | /opt/conda/lib/R/library/statmod | TRUE | FALSE | 2020-02-17 | CRAN (R 3.6.2) | NA | /opt/conda/lib/R/library |
\n",
+ "\ttibble | tibble | 2.1.3 | 2.1.3 | /opt/conda/lib/R/library/tibble | /opt/conda/lib/R/library/tibble | TRUE | FALSE | 2019-06-06 | CRAN (R 3.6.1) | NA | /opt/conda/lib/R/library |
\n",
"\n",
"
\n"
],
"text/latex": [
- "A packages\\_info: 9 × 11\n",
+ "A packages\\_info: 11 × 11\n",
"\\begin{tabular}{r|lllllllllll}\n",
" & package & ondiskversion & loadedversion & path & loadedpath & attached & is\\_base & date & source & md5ok & library\\\\\n",
" & & & & & & & & & & & \\\\\n",
"\\hline\n",
- "\tBiobase & Biobase & 2.46.0 & 2.46.0 & /opt/conda/lib/R/library/Biobase & /opt/conda/lib/R/library/Biobase & TRUE & FALSE & 2019-10-29 & Bioconductor & NA & /opt/conda/lib/R/library\\\\\n",
- "\tBiocGenerics & BiocGenerics & 0.32.0 & 0.32.0 & /opt/conda/lib/R/library/BiocGenerics & /opt/conda/lib/R/library/BiocGenerics & TRUE & FALSE & 2019-10-29 & Bioconductor & NA & /opt/conda/lib/R/library\\\\\n",
- "\tedgeR & edgeR & 3.28.1 & 3.28.1 & /opt/conda/lib/R/library/edgeR & /opt/conda/lib/R/library/edgeR & TRUE & FALSE & 2020-02-26 & Bioconductor & NA & /opt/conda/lib/R/library\\\\\n",
- "\tlimma & limma & 3.42.0 & 3.42.0 & /opt/conda/lib/R/library/limma & /opt/conda/lib/R/library/limma & TRUE & FALSE & 2019-10-29 & Bioconductor & NA & /opt/conda/lib/R/library\\\\\n",
- "\tmulttest & multtest & 2.40.0 & 2.40.0 & /opt/conda/lib/R/library/multtest & /opt/conda/lib/R/library/multtest & TRUE & FALSE & 2019-05-02 & Bioconductor & NA & /opt/conda/lib/R/library\\\\\n",
- "\tR.methodsS3 & R.methodsS3 & 1.8.0 & 1.8.0 & /opt/conda/lib/R/library/R.methodsS3 & /opt/conda/lib/R/library/R.methodsS3 & TRUE & FALSE & 2020-02-14 & CRAN (R 3.6.1) & NA & /opt/conda/lib/R/library\\\\\n",
- "\tR.oo & R.oo & 1.23.0 & 1.23.0 & /opt/conda/lib/R/library/R.oo & /opt/conda/lib/R/library/R.oo & TRUE & FALSE & 2019-11-03 & CRAN (R 3.6.1) & NA & /opt/conda/lib/R/library\\\\\n",
- "\tR.utils & R.utils & 2.9.2 & 2.9.2 & /opt/conda/lib/R/library/R.utils & /opt/conda/lib/R/library/R.utils & TRUE & FALSE & 2019-12-08 & CRAN (R 3.6.1) & NA & /opt/conda/lib/R/library\\\\\n",
- "\ttibble & tibble & 2.1.3 & 2.1.3 & /opt/conda/lib/R/library/tibble & /opt/conda/lib/R/library/tibble & TRUE & FALSE & 2019-06-06 & CRAN (R 3.6.1) & NA & /opt/conda/lib/R/library\\\\\n",
+ "\tBiobase & Biobase & 2.46.0 & 2.46.0 & /opt/conda/lib/R/library/Biobase & /opt/conda/lib/R/library/Biobase & TRUE & FALSE & 2019-10-29 & Bioconductor & NA & /opt/conda/lib/R/library\\\\\n",
+ "\tBiocGenerics & BiocGenerics & 0.32.0 & 0.32.0 & /opt/conda/lib/R/library/BiocGenerics & /opt/conda/lib/R/library/BiocGenerics & TRUE & FALSE & 2019-10-29 & Bioconductor & NA & /opt/conda/lib/R/library\\\\\n",
+ "\tedgeR & edgeR & 3.28.1 & 3.28.1 & /opt/conda/lib/R/library/edgeR & /opt/conda/lib/R/library/edgeR & TRUE & FALSE & 2020-02-26 & Bioconductor & NA & /opt/conda/lib/R/library\\\\\n",
+ "\tlimma & limma & 3.42.2 & 3.42.2 & /opt/conda/lib/R/library/limma & /opt/conda/lib/R/library/limma & TRUE & FALSE & 2020-02-03 & Bioconductor & NA & /opt/conda/lib/R/library\\\\\n",
+ "\tmulttest & multtest & 2.42.0 & 2.42.0 & /opt/conda/lib/R/library/multtest & /opt/conda/lib/R/library/multtest & TRUE & FALSE & 2019-10-29 & Bioconductor & NA & /opt/conda/lib/R/library\\\\\n",
+ "\tpiggyback & piggyback & 0.0.10.99 & 0.0.10.99 & /opt/conda/lib/R/library/piggyback & /opt/conda/lib/R/library/piggyback & TRUE & FALSE & 2020-05-13 & Github (ropensci/piggyback@87f71e8) & NA & /opt/conda/lib/R/library\\\\\n",
+ "\tR.methodsS3 & R.methodsS3 & 1.8.0 & 1.8.0 & /opt/conda/lib/R/library/R.methodsS3 & /opt/conda/lib/R/library/R.methodsS3 & TRUE & FALSE & 2020-02-14 & CRAN (R 3.6.2) & NA & /opt/conda/lib/R/library\\\\\n",
+ "\tR.oo & R.oo & 1.23.0 & 1.23.0 & /opt/conda/lib/R/library/R.oo & /opt/conda/lib/R/library/R.oo & TRUE & FALSE & 2019-11-03 & CRAN (R 3.6.2) & NA & /opt/conda/lib/R/library\\\\\n",
+ "\tR.utils & R.utils & 2.9.2 & 2.9.2 & /opt/conda/lib/R/library/R.utils & /opt/conda/lib/R/library/R.utils & TRUE & FALSE & 2019-12-08 & CRAN (R 3.6.2) & NA & /opt/conda/lib/R/library\\\\\n",
+ "\tstatmod & statmod & 1.4.34 & 1.4.34 & /opt/conda/lib/R/library/statmod & /opt/conda/lib/R/library/statmod & TRUE & FALSE & 2020-02-17 & CRAN (R 3.6.2) & NA & /opt/conda/lib/R/library\\\\\n",
+ "\ttibble & tibble & 2.1.3 & 2.1.3 & /opt/conda/lib/R/library/tibble & /opt/conda/lib/R/library/tibble & TRUE & FALSE & 2019-06-06 & CRAN (R 3.6.1) & NA & /opt/conda/lib/R/library\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
- "A packages_info: 9 × 11\n",
+ "A packages_info: 11 × 11\n",
"\n",
"| | package <chr> | ondiskversion <chr> | loadedversion <chr> | path <chr> | loadedpath <chr> | attached <lgl> | is_base <lgl> | date <chr> | source <chr> | md5ok <lgl> | library <fct> |\n",
"|---|---|---|---|---|---|---|---|---|---|---|---|\n",
- "| Biobase | Biobase | 2.46.0 | 2.46.0 | /opt/conda/lib/R/library/Biobase | /opt/conda/lib/R/library/Biobase | TRUE | FALSE | 2019-10-29 | Bioconductor | NA | /opt/conda/lib/R/library |\n",
- "| BiocGenerics | BiocGenerics | 0.32.0 | 0.32.0 | /opt/conda/lib/R/library/BiocGenerics | /opt/conda/lib/R/library/BiocGenerics | TRUE | FALSE | 2019-10-29 | Bioconductor | NA | /opt/conda/lib/R/library |\n",
- "| edgeR | edgeR | 3.28.1 | 3.28.1 | /opt/conda/lib/R/library/edgeR | /opt/conda/lib/R/library/edgeR | TRUE | FALSE | 2020-02-26 | Bioconductor | NA | /opt/conda/lib/R/library |\n",
- "| limma | limma | 3.42.0 | 3.42.0 | /opt/conda/lib/R/library/limma | /opt/conda/lib/R/library/limma | TRUE | FALSE | 2019-10-29 | Bioconductor | NA | /opt/conda/lib/R/library |\n",
- "| multtest | multtest | 2.40.0 | 2.40.0 | /opt/conda/lib/R/library/multtest | /opt/conda/lib/R/library/multtest | TRUE | FALSE | 2019-05-02 | Bioconductor | NA | /opt/conda/lib/R/library |\n",
- "| R.methodsS3 | R.methodsS3 | 1.8.0 | 1.8.0 | /opt/conda/lib/R/library/R.methodsS3 | /opt/conda/lib/R/library/R.methodsS3 | TRUE | FALSE | 2020-02-14 | CRAN (R 3.6.1) | NA | /opt/conda/lib/R/library |\n",
- "| R.oo | R.oo | 1.23.0 | 1.23.0 | /opt/conda/lib/R/library/R.oo | /opt/conda/lib/R/library/R.oo | TRUE | FALSE | 2019-11-03 | CRAN (R 3.6.1) | NA | /opt/conda/lib/R/library |\n",
- "| R.utils | R.utils | 2.9.2 | 2.9.2 | /opt/conda/lib/R/library/R.utils | /opt/conda/lib/R/library/R.utils | TRUE | FALSE | 2019-12-08 | CRAN (R 3.6.1) | NA | /opt/conda/lib/R/library |\n",
- "| tibble | tibble | 2.1.3 | 2.1.3 | /opt/conda/lib/R/library/tibble | /opt/conda/lib/R/library/tibble | TRUE | FALSE | 2019-06-06 | CRAN (R 3.6.1) | NA | /opt/conda/lib/R/library |\n",
+ "| Biobase | Biobase | 2.46.0 | 2.46.0 | /opt/conda/lib/R/library/Biobase | /opt/conda/lib/R/library/Biobase | TRUE | FALSE | 2019-10-29 | Bioconductor | NA | /opt/conda/lib/R/library |\n",
+ "| BiocGenerics | BiocGenerics | 0.32.0 | 0.32.0 | /opt/conda/lib/R/library/BiocGenerics | /opt/conda/lib/R/library/BiocGenerics | TRUE | FALSE | 2019-10-29 | Bioconductor | NA | /opt/conda/lib/R/library |\n",
+ "| edgeR | edgeR | 3.28.1 | 3.28.1 | /opt/conda/lib/R/library/edgeR | /opt/conda/lib/R/library/edgeR | TRUE | FALSE | 2020-02-26 | Bioconductor | NA | /opt/conda/lib/R/library |\n",
+ "| limma | limma | 3.42.2 | 3.42.2 | /opt/conda/lib/R/library/limma | /opt/conda/lib/R/library/limma | TRUE | FALSE | 2020-02-03 | Bioconductor | NA | /opt/conda/lib/R/library |\n",
+ "| multtest | multtest | 2.42.0 | 2.42.0 | /opt/conda/lib/R/library/multtest | /opt/conda/lib/R/library/multtest | TRUE | FALSE | 2019-10-29 | Bioconductor | NA | /opt/conda/lib/R/library |\n",
+ "| piggyback | piggyback | 0.0.10.99 | 0.0.10.99 | /opt/conda/lib/R/library/piggyback | /opt/conda/lib/R/library/piggyback | TRUE | FALSE | 2020-05-13 | Github (ropensci/piggyback@87f71e8) | NA | /opt/conda/lib/R/library |\n",
+ "| R.methodsS3 | R.methodsS3 | 1.8.0 | 1.8.0 | /opt/conda/lib/R/library/R.methodsS3 | /opt/conda/lib/R/library/R.methodsS3 | TRUE | FALSE | 2020-02-14 | CRAN (R 3.6.2) | NA | /opt/conda/lib/R/library |\n",
+ "| R.oo | R.oo | 1.23.0 | 1.23.0 | /opt/conda/lib/R/library/R.oo | /opt/conda/lib/R/library/R.oo | TRUE | FALSE | 2019-11-03 | CRAN (R 3.6.2) | NA | /opt/conda/lib/R/library |\n",
+ "| R.utils | R.utils | 2.9.2 | 2.9.2 | /opt/conda/lib/R/library/R.utils | /opt/conda/lib/R/library/R.utils | TRUE | FALSE | 2019-12-08 | CRAN (R 3.6.2) | NA | /opt/conda/lib/R/library |\n",
+ "| statmod | statmod | 1.4.34 | 1.4.34 | /opt/conda/lib/R/library/statmod | /opt/conda/lib/R/library/statmod | TRUE | FALSE | 2020-02-17 | CRAN (R 3.6.2) | NA | /opt/conda/lib/R/library |\n",
+ "| tibble | tibble | 2.1.3 | 2.1.3 | /opt/conda/lib/R/library/tibble | /opt/conda/lib/R/library/tibble | TRUE | FALSE | 2019-06-06 | CRAN (R 3.6.1) | NA | /opt/conda/lib/R/library |\n",
"\n"
],
"text/plain": [
@@ -3436,11 +3187,13 @@
"Biobase Biobase 2.46.0 2.46.0 \n",
"BiocGenerics BiocGenerics 0.32.0 0.32.0 \n",
"edgeR edgeR 3.28.1 3.28.1 \n",
- "limma limma 3.42.0 3.42.0 \n",
- "multtest multtest 2.40.0 2.40.0 \n",
+ "limma limma 3.42.2 3.42.2 \n",
+ "multtest multtest 2.42.0 2.42.0 \n",
+ "piggyback piggyback 0.0.10.99 0.0.10.99 \n",
"R.methodsS3 R.methodsS3 1.8.0 1.8.0 \n",
"R.oo R.oo 1.23.0 1.23.0 \n",
"R.utils R.utils 2.9.2 2.9.2 \n",
+ "statmod statmod 1.4.34 1.4.34 \n",
"tibble tibble 2.1.3 2.1.3 \n",
" path \n",
"Biobase /opt/conda/lib/R/library/Biobase \n",
@@ -3448,30 +3201,36 @@
"edgeR /opt/conda/lib/R/library/edgeR \n",
"limma /opt/conda/lib/R/library/limma \n",
"multtest /opt/conda/lib/R/library/multtest \n",
+ "piggyback /opt/conda/lib/R/library/piggyback \n",
"R.methodsS3 /opt/conda/lib/R/library/R.methodsS3 \n",
"R.oo /opt/conda/lib/R/library/R.oo \n",
"R.utils /opt/conda/lib/R/library/R.utils \n",
+ "statmod /opt/conda/lib/R/library/statmod \n",
"tibble /opt/conda/lib/R/library/tibble \n",
" loadedpath attached is_base date \n",
"Biobase /opt/conda/lib/R/library/Biobase TRUE FALSE 2019-10-29\n",
"BiocGenerics /opt/conda/lib/R/library/BiocGenerics TRUE FALSE 2019-10-29\n",
"edgeR /opt/conda/lib/R/library/edgeR TRUE FALSE 2020-02-26\n",
- "limma /opt/conda/lib/R/library/limma TRUE FALSE 2019-10-29\n",
- "multtest /opt/conda/lib/R/library/multtest TRUE FALSE 2019-05-02\n",
+ "limma /opt/conda/lib/R/library/limma TRUE FALSE 2020-02-03\n",
+ "multtest /opt/conda/lib/R/library/multtest TRUE FALSE 2019-10-29\n",
+ "piggyback /opt/conda/lib/R/library/piggyback TRUE FALSE 2020-05-13\n",
"R.methodsS3 /opt/conda/lib/R/library/R.methodsS3 TRUE FALSE 2020-02-14\n",
"R.oo /opt/conda/lib/R/library/R.oo TRUE FALSE 2019-11-03\n",
"R.utils /opt/conda/lib/R/library/R.utils TRUE FALSE 2019-12-08\n",
+ "statmod /opt/conda/lib/R/library/statmod TRUE FALSE 2020-02-17\n",
"tibble /opt/conda/lib/R/library/tibble TRUE FALSE 2019-06-06\n",
- " source md5ok library \n",
- "Biobase Bioconductor NA /opt/conda/lib/R/library\n",
- "BiocGenerics Bioconductor NA /opt/conda/lib/R/library\n",
- "edgeR Bioconductor NA /opt/conda/lib/R/library\n",
- "limma Bioconductor NA /opt/conda/lib/R/library\n",
- "multtest Bioconductor NA /opt/conda/lib/R/library\n",
- "R.methodsS3 CRAN (R 3.6.1) NA /opt/conda/lib/R/library\n",
- "R.oo CRAN (R 3.6.1) NA /opt/conda/lib/R/library\n",
- "R.utils CRAN (R 3.6.1) NA /opt/conda/lib/R/library\n",
- "tibble CRAN (R 3.6.1) NA /opt/conda/lib/R/library"
+ " source md5ok library \n",
+ "Biobase Bioconductor NA /opt/conda/lib/R/library\n",
+ "BiocGenerics Bioconductor NA /opt/conda/lib/R/library\n",
+ "edgeR Bioconductor NA /opt/conda/lib/R/library\n",
+ "limma Bioconductor NA /opt/conda/lib/R/library\n",
+ "multtest Bioconductor NA /opt/conda/lib/R/library\n",
+ "piggyback Github (ropensci/piggyback@87f71e8) NA /opt/conda/lib/R/library\n",
+ "R.methodsS3 CRAN (R 3.6.2) NA /opt/conda/lib/R/library\n",
+ "R.oo CRAN (R 3.6.2) NA /opt/conda/lib/R/library\n",
+ "R.utils CRAN (R 3.6.2) NA /opt/conda/lib/R/library\n",
+ "statmod CRAN (R 3.6.2) NA /opt/conda/lib/R/library\n",
+ "tibble CRAN (R 3.6.1) NA /opt/conda/lib/R/library"
]
},
"metadata": {},
@@ -3493,6 +3252,13 @@
"dev_session_info$platform\n",
"dev_session_info$packages[dev_session_info$packages$attached==TRUE, ]"
]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
}
],
"metadata": {
@@ -3507,7 +3273,7 @@
"mimetype": "text/x-r-source",
"name": "R",
"pygments_lexer": "r",
- "version": "3.6.1"
+ "version": "3.6.2"
}
},
"nbformat": 4,
diff --git a/metadata/BreastMammaryTissueJunctionAnalysis_devtools_session_info.rds b/metadata/BreastMammaryTissueJunctionAnalysis_devtools_session_info.rds
index 4937138..2a9c3e2 100644
Binary files a/metadata/BreastMammaryTissueJunctionAnalysis_devtools_session_info.rds and b/metadata/BreastMammaryTissueJunctionAnalysis_devtools_session_info.rds differ
diff --git a/metadata/BreastMammaryTissueJunctionAnalysis_sha256sums.txt b/metadata/BreastMammaryTissueJunctionAnalysis_sha256sums.txt
index d657492..9f89f53 100644
--- a/metadata/BreastMammaryTissueJunctionAnalysis_sha256sums.txt
+++ b/metadata/BreastMammaryTissueJunctionAnalysis_sha256sums.txt
@@ -1,198 +1,31 @@
-d03c22e998eae9c96ab6e07340266fdff0d8f4f896fe7bd62ab80bb5aa7857f1 ./BreastMammaryTissue_DGE_ijc_sex.csv
-ebe1713963cd88e7bb2ac961e7d7209b38d2b0e8136b28fe4425ac8d04ad0b18 ./rmats_final.mxe.jcec.skiplen.txt.gz
-6e47d3c15687f037426a6678e877227da2431f9ad20de41914e1fbb1701b32ad ./BreastMammaryTissue_sex_as_events_universe.txt
-490afac0f9797126ea051b167f409bbc011a8bdbe190b991ce0da972c5424cbf ./Cells-EBV-transformedlymphocytes_DGE.csv
-38307c2edf8434a57dc1113575887aafd735a529412046ba10f46c716fedcd2f ./Brain-CerebellarHemisphere_DGE.csv
-b8347e8cd7fc16b23041a2809aa38e1590813c8858c6a2aa14f8fc4c134fba3e ./.ipynb_checkpoints/BreastMammaryTissue,.DGE_isoforms_robust-checkpoint.csv
-f117a76a29a921bea1c77bebafaa6a94e294a00e9da740daf8e12c7c5c4ddc3b ./.ipynb_checkpoints/Breast - Mammary Tissue-anno-gene_set-Term-For-Term-Benjamini-Hochberg-checkpoint.txt
-b2e407257b128afc0765497a4a21cf371bf4e3ed28c9532d3d55d32518e329e4 ./.ipynb_checkpoints/BreastMammaryTissue_sjc_sex_gene_set-checkpoint.txt
-de1e2811f58cf183dfbabe1c6b1538f831bbc83f24ebefd0899207a63223f2a4 ./.ipynb_checkpoints/BreastMammaryTissue.DGE_isoforms_gene-checkpoint.txt
-2c1b558cdd3a2c6bffac32a58f9335f6722728e439cbe916c10cf7b766c006b1 ./.ipynb_checkpoints/Adipose-Subcutaneous_DGE-checkpoint.csv
-90b4bc15e6ffc3ae149e50b2d48a6c482c21140ea1c6bfb262b503270898908a ./.ipynb_checkpoints/Thyroid_DGE-checkpoint.csv
-522f99614273541347ff284a4eceda69fb7839c185b834e53747fbf349235a66 ./.ipynb_checkpoints/BreastMammaryTissue.DGE_isoforms_gene_robust-checkpoint.txt
-e39978188a1bdec9ed704c0a1a0e396b3b1b6c19df0c8c9458f808c51a539fe4 ./.ipynb_checkpoints/Adipose-Visceral(Omentum)_DGE-checkpoint.csv
-646f4edb6d7ceb203dc225acadca78a4b456b1a2a583770822046bde720bcbc0 ./.ipynb_checkpoints/BreastMammaryTissue.gene_set-checkpoint.txt
-a9060ec5cbb68159f1f7b1329f7e0f35e3ebe699459b5aa3bf5b6f448eea0342 ./.ipynb_checkpoints/anno-gene_set-Term-For-Term-Benjamini-Hochberg-checkpoint.txt
-4b0c36cf5b75567bda4282839515dfdf1496d452415143bf05d147f0c950622c ./.ipynb_checkpoints/BreastMammaryTissue.DGE_isoforms_robust-checkpoint.csv
-63888f391d15f13590b9bcb9d472af4c438947122e63eedca232b1b25b082ebe ./.ipynb_checkpoints/BreastMammaryTissue_ijc_sex_gene_set-checkpoint.txt
-219318a26dc2cd7fde88d89aacf1c1381d5af826150911b57ac17e61be1ddf3c ./.ipynb_checkpoints/Brain-Amygdala_DGE-checkpoint.csv
-6142ec3ad2739882d288d998463840e1a29147a76537e82abe641a2c8dde3fd9 ./.ipynb_checkpoints/SraRunTable.noCram.noExome.noWGS.totalRNA-checkpoint.txt
-80f709ee41b2e9c08283149c2dcf5979d479edcec3134bacd149556de2a644eb ./.ipynb_checkpoints/BreastMammaryTissue.DGE_isoforms-checkpoint.csv
-072e353fd7d3ac611dfe2129d9b9739d0f03cb2255e23de6f67a832b357b5b41 ./.ipynb_checkpoints/Lung_DGE-checkpoint.csv
-826bf6c7711ea5ba48469c1612ffb238551441fcc81fb840e971584f0d6758d7 ./.ipynb_checkpoints/Breast - Mammary Tissue-table-gene_set-Term-For-Term-Benjamini-Hochberg-checkpoint.txt
-60d5567a03456473d2af7b085d1d13d5d851cf78cc59cfd06598db60050fe932 ./.ipynb_checkpoints/BreastMammaryTissue_sex_gene_set-checkpoint.txt
-d198eb10bb520145f4d4a84533f2f6239b9e12f6cca7315d4394529be67cfc8d ./.ipynb_checkpoints/BreastMammaryTissue_sex_as_events_gene_set-checkpoint.txt
-3c2b1e7b7d790226bf24fa1b87e59f2516b0439b37d738ce74e43879686650a1 ./Breast-MammaryTissue_DGE.csv
-eae3f98905a92c8b723ffe85845fadf7f486bb1c5e17522aeb6e419e6005f1d4 ./Esophagus-Mucosa_DGE.csv
-5f90dad03fc9b792ec434aae8dde3d4ebdd5ff6c8a799912f874bf92569c2c5d ./BreastMammaryTissue_DGE_sjc_sex.csv
-2d353f064094a4aa5270f7653a85581520553e03b53f0712bf41934c85b21112 ./Heart-AtrialAppendage_DGE.csv
-be53124f034b2e33e0868604b2ff8f8864af7427a39127229de888cb9b12420a ./reduced_y.rds
-0d608f15ef03b589bf111b15a84b67c96b80531cf217c314d005c6ce8f4ce1cf ./Liver_DGE.csv
-1d057b2b0283a0f2541219ee1c3cb83c1e2aa650d007c04c8cd3bc39493e7bd0 ./rmats_final.ri.jc.skiplen.txt.gz
-d802915847965a30ca0c8d6486dc4c8c5a64984c11aadeee8eb1d8484ba0b248 ./rmats_final.se.jc.inc.txt.gz
-3b7bab338de56cb58a6561881c277e196412125e1e73425b87a78ce65c2e2710 ./Heart-AtrialAppendage_refined_DGE.csv
-2aa3a7b6f12ffe41d871011865810d8ba2894a7aaab9b34d9ecccd129c421da5 ./Pancreas_refined_DGE.csv
+ccf16742fe3db84abc66404b4c50981e6dee33b0de3f481111a2b44f6f931813 ./BreastMammaryTissue_DGE_ijc_sex.csv
+d9b424c4c6a3084bf89e21ee0c0a806a882f0dac448b3c0bf61c8bfe1b002f58 ./BreastMammaryTissue_sex_as_events_universe.txt
+741763f61d32c98446317ad30c45cdb3199039b0c696ab83461eb91b0e8611fe ./BreastMammaryTissue_DGE_sjc_sex.csv
28764f9f1e0f14e399d555e448b5490c7221454e7d34d220f79b537376ca017b ./fromGTF.novelEvents.SE.txt
-fd258e795ef0128caa7234bbd83131720db2896e7481854b062ec7be085a961e ./Nerve-Tibial_DGE.csv
-ce88b3d98923ccd5b421dc3b2f8f617c020e99320392eade573aaaa1fec7b020 ./Brain-Nucleusaccumbens(basalganglia)_refined_DGE.csv
-86f3a2b104b1ffe297df668b0b0e1e4d5f61836c3ad8a574b89bf24a090ca9c0 ./rmats_final.ri.jc.sjc.txt.gz
-4b9cffb76cf84c41025b5909bfe75270c6d504a404d42cba631053e9f6ecd69b ./Brain-Anteriorcingulatecortex(BA24)_DGE.csv
-85acd073d8742ef4a680a10ed509ccf6779f9fbfa86fb3fd2c5629ddfa7094dd ./rmats_final.a5ss.jc.skiplen.txt.gz
-2c22da474cfcf3e0f2eed020b22d11b32192d92a483d185ff90738622204babf ./reduced_obj.rds
-82d2699a6abe6b0899f1120cf07d48e7f1772f56205cfb4f5418b13772e6647f ./Brain-Nucleusaccumbens(basalganglia)_DGE.csv
-d9b2ebd4f9c0875a5dc61139be40a4d687001ed424677ebc54fc061eda998d60 ./Breast-MammaryTissue_refined_DGE.csv
-c95b3a1fd3ad7201e0e2cf8c615a895ce3bfffc5bcdef940c8be975bf25225ab ./Brain-Amygdala_refined_DGE.csv
-85acd073d8742ef4a680a10ed509ccf6779f9fbfa86fb3fd2c5629ddfa7094dd ./rmats_final.a5ss.jcec.skiplen.txt.gz
-9fca10a9d633c4008029c6562576cd20a0a11fd20461e20426e1c8a5689ad3a7 ./Brain-Cortex_refined_DGE.csv
-18e2c7a83c98dcf59ddab53e1281923979d49da6ea3acb68114c5a44057c57bc ./gtex.rds
-f1cce0ddff847545e68bf9971c9e16e6959df156c3bc83d6ec262bd0e509e526 ./rmats_final.ri.jc.inclen.txt.gz
-5580aed723a22a403831aeaa5b30534088ded2f27e52be8966ed396f404844de ./Pancreas_DGE.csv
-ca55853290e316d539d60570326e3e76a5bd6530b37862e112cea8bf66fbac13 ./rmats_final.ri.jcec.inclen.txt.gz
-345d1cb793f99041b24c2c970e3272657af0d423ae4540ba6e0066857eae24c3 ./Kidney-Cortex_refined_DGE.csv
-4589dbb46226f12477b38346ba5a0168c7e71810d9b75e3e7850a8a299d35ffa ./Lung_refined_DGE.csv
-7792a86956468da3c64c287274971b6d1a00e97022f7db3d82b7163a38afbedc ./Pituitary_DGE.csv
-0e70cbcd1803731445421872517c3f76ac9ceb06a0cf5bad4697ca90ca998d97 ./Colon-Transverse_refined_DGE.csv
-86f3a2b104b1ffe297df668b0b0e1e4d5f61836c3ad8a574b89bf24a090ca9c0 ./rmats_final.ri.jcec.sjc.txt.gz
-c6997aa953b368369e492d1de429a5f631b0d0f1ed11d83ab59914f9682cced3 ./rmats_final.a3ss.jcec.skiplen.txt.gz
-edb12417aa5f92cc92e88006403767d6bf1bbf0b9f5aa5be7d88fae3c7d5a208 ./rmats_final.a5ss.jc.inc.txt.gz
-40862f8a65a577cb64fdf85ddba0f6ad34c4443f0fe4a359ce116cd90e095fbc ./BreastMammaryTissue_ijc_sex_universe.txt
-c6997aa953b368369e492d1de429a5f631b0d0f1ed11d83ab59914f9682cced3 ./rmats_final.a3ss.jc.skiplen.txt.gz
-c31ef0734421539307dd16dced1628a9501dc7106f385eece4041f34fb133749 ./Skin-SunExposed(Lowerleg)_DGE.csv
-a1396ecb4b470df39cac8008d92a8fc5505fd908ea0650b427bbcd43b28417e1 ./Adipose-Visceral(Omentum)_DGE.csv
-29196d21f2f712a57f683faa4b476c46bd5944f00c5b55c0a5b8de996df59b33 ./Skin-SunExposed(Lowerleg)_refined_DGE.csv
-67edbb3b73a8cab355402c91c325053bca7dbcdc6ffdc440a2c31cb580dabb7d ./Heart-LeftVentricle_refined_DGE.csv
-25fc2f4f348d661428209dc28a58dfeefceb45f302d6980402a2bc279605903e ./Bladder_refined_DGE.csv
-6bb3f6a27984abbfd54b4f9d6c4c47cd512dfb2a1137c8c98efb68cfcf412e7b ./BreastMammaryTissue_sjc_sex_universe.txt
-178204848a3769c8461a112d9ac71720234c221e674df30dbe1ac59ec9a796dc ./Brain-Cerebellum_refined_DGE.csv
-c152ca5e78057944a7e545429cc0c0a58ad5c7df3b92aa1ab1f47a6be6929368 ./Pituitary_refined_DGE.csv
-eb2e011090cd251e46852cfc8100209fdd754ebf570fcd308bd6e233066bdbf6 ./AdrenalGland_DGE.csv
-42180a0df350630904a942b0ba0325c61b57bb3862484c90ce166841a8baa6a6 ./rmats_final.a3ss.jc.inclen.txt.gz
-efa2de745b97e000d14ca091da2b68d2775013734b0d4bcaa7576a0f7c98accb ./Brain-FrontalCortex(BA9)_DGE.csv
-285049d2d3e5dc63d091325d21590f44ffdf039f5dde04101981c5ae6dd4905b ./Brain-Cerebellum_DGE.csv
-975546650515aa3b14b2242478540e94a516c3b30d41dd492060936098bda353 ./Artery-Aorta_refined_DGE.csv
-60d5567a03456473d2af7b085d1d13d5d851cf78cc59cfd06598db60050fe932 ./BreastMammaryTissue_sex_gene_set.txt
-8da05d58584bc2855a73a7d2b64600d9c56b46610b6c2fe16da81a8ba4ba6d25 ./rmats_final.a3ss.jcec.inclen.txt.gz
-be0a380b418ee9821ed6c342998720b4ecb6ce4d72db83864dd8e069fae5091f ./Brain-Anteriorcingulatecortex(BA24)_refined_DGE.csv
-ef57c39fc6348dbd751f87b1ab062568d0a9e4b79fce3dd3c22f8eaf01958c3b ./rmats_final.a3ss.jc.sjc.txt.gz
+e532e4d8ee0f5e5ba221017a1c07c5b1376f7d711aacbba5cc713badd8bd3e47 ./BreastMammaryTissue_ijc_sex_universe.txt
+fb7fced98c23d7f0e69f820a8cf1616c3a2a88386074ae5a14690f313ae210d0 ./BreastMammaryTissue_sjc_sex_universe.txt
+b408d18141c7de21b42d5fa78e442e482d6c249b90b45800271f5124c11dd3d3 ./BreastMammaryTissue_sex_gene_set.txt
5146c849c9354129590c59da5e6040a074523b4827d0975e3f5fa43737af7e9a ./README.md
-181ed243ff15ccbc025a0d49a57e373575a592b695161f0011c17772abb6217b ./Brain-Caudate(basalganglia)_refined_DGE.csv
-4c4d597c9ddb0ebd4025945e38fe679fd9e13abb954303d3bf4437d52228b4c6 ./rmats_final.se.jc.skiplen.txt.gz
-b58ee83e3b816dca67bb42c2f852e45e1a2cb940e3b9405f655d90016271b9d4 ./Adipose-Visceral(Omentum)_refined_DGE.csv
-be843c6100848ffb68e807864657c7df2a6a89b7b07f32c6331c6704ff712807 ./WholeBlood_refined_DGE.csv
-6837354792d557a7f6d5a70c734c9c1e7c8537aa5828797b093d16b5daeb2259 ./Kidney-Cortex_DGE.csv
-f69298f6024fcf6fc3661d8d2eaee9644fc61df1d984f3256eb8490ac0ee2b0f ./Brain-Putamen(basalganglia)_DGE.csv
-5064c349c235f372b4578836a4b3584170b156f8b670facf1ad265c38e508a8f ./Brain-Hypothalamus_refined_DGE.csv
-20aeaa0179d4760d511f8086b414f6474aede2e87c5d7e2c691bece71563956e ./Artery-Coronary_refined_DGE.csv
-4bc55fe3dca4e4243d4b5c7542692a9ba2266950f063ab57fe45d62a1422dfcb ./Brain-Amygdala_DGE.csv
-8ab5027bca2629baa57a7548c2617530db9b333f2bfb45ce673110ae4bef2ef0 ./Thyroid_refined_DGE.csv
-d07299991c3cedf846b69859301fe61ab69fe544f2de686ba812b8f918cb2ef4 ./Esophagus-Mucosa_refined_DGE.csv
-bf9a6f9a0a7083fe7de99cbbd336d73cd68e814dcbfa2a312093b9e803df4324 ./rmats_final.mxe.jc.skiplen.txt.gz
-76025a327f2b7594d897e880c90d97f0fc237f15bace352178e5d953615106c4 ./Brain-Caudate(basalganglia)_DGE.csv
-1952fbf96eecb16d9a3af80a3c8ba4b4852506dc67afe82562fd6ce04af0125f ./rmats_final.a3ss.jc.ijc.txt.gz
-d95f98d01a147d5357d1d065503041630c05f0969b8e2fd4e9be53df5a121992 ./rmats_final.a5ss.jc.inclen.txt.gz
-1d057b2b0283a0f2541219ee1c3cb83c1e2aa650d007c04c8cd3bc39493e7bd0 ./rmats_final.ri.jcec.skiplen.txt.gz
-0057f626fb8067de6062387042b922b577158fe891387d02d07e82ae62988830 ./BreastMammaryTissue_DGE_sjc_sex_refined.csv
+efe91f83b5b3d4a6497e7265979ec2616f1e330005b3117fbd6e0da0c4b37c79 ./BreastMammaryTissue_DGE_sjc_sex_refined.csv
eb61abf2dff12314fc82b79bd492a1baddf6d37bd080ac14cdb0caa39cd09bc6 ./fromGTF.novelEvents.A5SS.txt
-ec941ebc9647caa1ff89e9b9c25fa87fab618865076b8b2794d7f35b8e2fea4d ./rmats_final.a5ss.jcec.sjc.txt.gz
-1ae7a2755a343d5de7b1b67c53f1af14af6ecbbfaf4f9f37438a855e05787699 ./MinorSalivaryGland_DGE.csv
-ff1e9336cf836432b0d90bd0e27a6f39caefdd723c3a5743da5a149dfa7b3d24 ./BreastMammaryTissue_sex_universe.txt
-0a412fde634261bb71d7914129af55394c7dfb8b3c44f21fafd6d0c33404df4a ./Adipose-Subcutaneous_refined_DGE.csv
-c9612c5a4d71968c1bf289b7b6ae44aba9a3fe63ab32d2cf937b5f55b3733c9c ./BreastMammaryTissue_DGE_sex_events.csv
-fa4537694e869167da2913fbfe9c900764380a59d7ac275894204758fee30823 ./rmats_final.a3ss.jcec.ijc.txt.gz
-adbaf726a93d9bd85729922109f087506eb7741a2ae68c0a413c9b72659b7ff3 ./Heart-LeftVentricle_DGE.csv
+94df4d4e2ab738e06c68e19e7f9eaefba64389a65827726b127713dbd20a7c30 ./BreastMammaryTissue_sex_universe.txt
eb61abf2dff12314fc82b79bd492a1baddf6d37bd080ac14cdb0caa39cd09bc6 ./fromGTF.novelEvents.A3SS.txt
-a5707f0f3ae5071f8b252f6de64378cccb4873ac4a8088ba6f306c32abfaf6f1 ./rmats_final.mxe.jcec.ijc.txt.gz
-2fcfd212f124cd3bd742a830bf8bd322dbcd29837ea6ec235a5d839b25f56d9f ./SmallIntestine-TerminalIleum_refined_DGE.csv
-85a1261cad10d3cd65bcf092de690759c58bdec551a2881fe8286dcfb5a93418 ./BreastMammaryTissue_DGE_sex_as_events_refined.csv
-5332c603ec0d651beb23192c63c8345aeabf2fe49f0a381216d0ad1150dd7d4c ./rmats_final.ri.jcec.ijc.txt.gz
+5ded52e3f6c0c09b7fe09e81a5bc58bf6d9c4afdaed3d19a159b9dfb0c49ea4d ./BreastMammaryTissue_DGE_sex_as_events_refined.csv
be32c4925ad8ebf7414623d68e390a1631e08f4459c189f7f346040a542320b5 ./fromGTF.RI.txt
c14069b1ed8642720b742864ca6b930b13d35e5a41592dabd9ba0b2dcb953783 ./fromGTF.novelEvents.RI.txt
-26c2cef9f156f1a338594a2e5dea72636866d01d585d4009ec68e1fbb5a6bd2d ./Colon-Sigmoid_refined_DGE.csv
-aaf41c1cddb3f43596b4253a3ddd3578c305cf525b4dcb18c4539c32853f88a4 ./Artery-Aorta_DGE.csv
-13ebeabf14f1ce053668e8ab5741e488304a53edf51fe42b58a5b664182fc829 ./Brain-Spinalcord(cervicalc-1)_DGE.csv
-f7bc0b25cd752f6cc5f4c5af26a12c3078b15bcb79418fd132dd5457594f10f1 ./Esophagus-GastroesophagealJunction_refined_DGE.csv
-bc7badde66f42a666ee533d54cff47792f410afe47f55c6249aece7685c66f90 ./rmats_final.a3ss.jc.inc.txt.gz
-9a3224d2a944763ba5f7069829156854c3ee1d3384a2662296cdf04d88478725 ./rmats_final.a5ss.jc.ijc.txt.gz
+dd188bc93b89167bfd8faa80323ca753b1a9557574e7157e6a6f9afe7f48e1b3 ./SraRunTable.noCram.noExome.noWGS.totalRNA.txt.gz
63888f391d15f13590b9bcb9d472af4c438947122e63eedca232b1b25b082ebe ./BreastMammaryTissue_ijc_sex_gene_set.txt
-fbebdeab24ea9671ae7d2c14178be4d11ba645443a4d9d27c4f0af4220248c23 ./BreastMammaryTissue_DGE_ijc_sex_refined.csv
-e670becbcb8923684df6c6967c3ec4b15485084fc3845568638b49781ab9f1fa ./rmats_final.se.jcec.skiplen.txt.gz
-90b4bc15e6ffc3ae149e50b2d48a6c482c21140ea1c6bfb262b503270898908a ./Thyroid_DGE.csv
-380dfaa01cf0e34c69be245d2a25022de200107cded8eb39386a1a98662999b3 ./rmats_final.se.jcec.inc.txt.gz
-ce5697b7cca29c998d103ffa346607863c267b163189494b545d3e739860878f ./Stomach_refined_DGE.csv
-906895e78f984b7c196f5ffa20a743b83f8d1bd8e5ede54aa5a91506ac852b68 ./SplicingIndex_chr.tsv
-5240fff4e71842778d9fc262095a0d84ea92716febd2075b43be91ca89619369 ./Skin-NotSunExposed(Suprapubic)_refined_DGE.csv
+6426a7ecd614d3aeec414aac830d415c4c23e032df075737429f44546aabeee8 ./BreastMammaryTissue_DGE_ijc_sex_refined.csv
5cfa91f71a21538245f3b5c198fc45f8652c899bbce2fd5ad9bd52a8a08566b6 ./fromGTF.MXE.txt
-86442de25e101d017546fcfc4ce3689d15e46e0654dd14e635582b76c0c58ee4 ./rmats_final_intersect_8674.tar.gz
-1190c528e7bb89fe979ed1b9d90031a0294470dedbf08d971a27cbc07469d10a ./Skin-NotSunExposed(Suprapubic)_DGE.csv
-37f14593955fb8b1c2c5d0880bd6562740e67bd14d3d6884e362bacb7f0b7276 ./Esophagus-Muscularis_refined_DGE.csv
-883712df0f3651bed5b10ade161e6d644e9c28014368435c7353e4bf4cd216a4 ./rmats_final.se.jcec.ijc.txt.gz
-c1ae268b5e0e66b8e9fae15c2efe294a4b49641467c0148c27c9c2204e447031 ./Liver_refined_DGE.csv
-61a4d369386d9f79fb02aef6a36481b70203e563bdc68c9bc7f5d03e17c42a41 ./Cells-Culturedfibroblasts_refined_DGE.csv
-68b907f4e4bbb4c02cb6d092f426f955e0121b6de71f93dc6dbad2daceb9964f ./Stomach_DGE.csv
-ef57c39fc6348dbd751f87b1ab062568d0a9e4b79fce3dd3c22f8eaf01958c3b ./rmats_final.a3ss.jcec.sjc.txt.gz
-a99d7aae0b60ed2ee5fe339f01b455c8c66839db0bc2fe0a620c75547eea24e7 ./SmallIntestine-TerminalIleum_DGE.csv
-1de1314915e6e3112033c100d95da7bebcc829dd6e94d35b2dd00bfb713dec98 ./DGENormFactorsy.rds
-b92ad0568c9c93f9d8b02139f7a5868b1f579b475956b91ead68e648b038db62 ./Spleen_refined_DGE.csv
-10909349f2f3b0de88f31c28e2526f547e32d074c98401e21ba023064821abac ./rmats_final.mxe.jcec.inc.txt.gz
-65c09b69229c8fd5fe44fd5b904a1ded4460ad9c3e9ae1b23f481806051fda7c ./Spleen_DGE.csv
-a00d062cae1f8f90a4d5ab07e4a6fa294881741fcffda0df0f50d5dd8992bb14 ./rmats_final.se.jc.sjc.txt.gz
-538aefe3e3145d82796737cdd97434664a499c3e4cf4f9525e920302135cb909 ./rmats_final.ri.jcec.inc.txt.gz
-d198eb10bb520145f4d4a84533f2f6239b9e12f6cca7315d4394529be67cfc8d ./BreastMammaryTissue_sex_as_events_gene_set.txt
-d65d6a96d27dfc762246005683833eee2a64e11564dc162e30620f49fb892d4b ./Brain-Cortex_DGE.csv
-241d8fa448020f48a65323114992c9c2321f167138fc86424da4c63983318b93 ./Brain-CerebellarHemisphere_refined_DGE.csv
-31be3cd71b5a057c44e521e7ae28ba4c36f750d068bc7fba528eb4e8bacf58a4 ./Brain-Spinalcord(cervicalc-1)_refined_DGE.csv
-6142ec3ad2739882d288d998463840e1a29147a76537e82abe641a2c8dde3fd9 ./SraRunTable.noCram.noExome.noWGS.totalRNA.txt
-70a0b382f35dbe3f0dbb4b5f1a0871645cfbf13157c42ee3231babfc48135a7e ./rmats_final.se.jcec.inclen.txt.gz
-74a5dafef35db9674d2b7fbea3fa75cd6548c0d04718ca693bba808967281a36 ./rmats_final.a5ss.jcec.inc.txt.gz
-d4f7d9a41d13f27398fc35e202a69729f38d2d42ce6595e77b47681a157ba6d6 ./Kidney-Medulla_DGE.csv
-c20e29c710e99666fcd1bb6264e00b0072f615e3073d1b434a6407d9d45da78e ./rmats_final.mxe.jcec.inclen.txt.gz
-6c7a8b7c8815d5903710a0a6a276f7f8cdb34d8ea47a0383f8aa62936aa7e0fa ./fromGTF.tar.gz
-b3d01e96dc763f7b5ec46bee4914a08e0606a6d313786b72b03795187db4f910 ./rmats_final.a5ss.jcec.ijc.txt.gz
-4ed4a6396510074de139fd68699c82674c57a59251b3fb6ce797058d21f6dbc8 ./rmats_final.se.jc.ijc.txt.gz
-92f6251a7f2de8b91288af9fdfb76b4430aa206b9c4318cb3d726bb23d3d9dc2 ./Significant_events.tsv
-d4c3f78720a82018b229802ffc7f9400cb5dc1500acbec0a025d3d6e6dda8660 ./AdrenalGland_refined_DGE.csv
-7c36d6879dbf08b0154a773aa087f1f394831c1e4be6d5f31afbf70e36e04035 ./Brain-Substantianigra_DGE.csv
-22d88c624259a1571e86e45df7baf3ea3a6f8f41dd31ca5529f91df3056d96a8 ./Brain-Putamen(basalganglia)_refined_DGE.csv
-4a8d96881f6e424ae6fc55a4c34a3fe97e75b4fc9fb4813488b3322ecb130a38 ./Cells-EBV-transformedlymphocytes_refined_DGE.csv
-295d5139012ec1ed94afea97ce11d6a06a3ab030b33d61fc705dd84a19e15281 ./rmats_final.ri.jc.inc.txt.gz
-ce7cfd476dd881cf8997118dad34565685a9db56c24aa3896a840b054d5383e5 ./Kidney-Medulla_refined_DGE.csv
-7f397bddbfb35e7eadf5fbe26ba069e829a21fa9765a1ed5b1d9f118e7530d6e ./WholeBlood_DGE.csv
-cfa4e92ff1923f391b73a76b59805985a7da1273e5ed0970eb0d243673ba2cc7 ./Artery-Tibial_DGE.csv
-4da0eec01a3df18f56f40f48ad4a444eff577f5b895053ebe3caeda6a52becc7 ./Esophagus-GastroesophagealJunction_DGE.csv
-62481ddd3158a0009ea2b813c9be694d5cd576acee5da9f99f1f9577b6193b41 ./Muscle-Skeletal_DGE.csv
-4cff41064f29fe16e0b549eec5ffb59e4eae38efe548d6d4692042e9ad2204a4 ./rmats_final.a5ss.jcec.inclen.txt.gz
-2e2f75be0a1057dd231b2a7ca7f47f07565fba8522936e720b78f6aecbdb3fd3 ./Muscle-Skeletal_refined_DGE.csv
-d7639443651c3b508772ee89728f8ab41d62414672c41e68a78947be14e07cd6 ./rmats_final.se.jcec.sjc.txt.gz
+d7639443651c3b508772ee89728f8ab41d62414672c41e68a78947be14e07cd6 ./rmats_final.se.jc.sjc.txt.gz
+68ea5ae95f3ca659e86b685304361957d183bf3273f8e74b276d5295d275686f ./BreastMammaryTissue_sex_as_events_gene_set.txt
+bfd9fa65689a7d157b09b5efd472f235b627f85a73b9f0493c881882acce773d ./fromGTF.tar.gz
+849658f50abd888f8708a1ffd65ff523a14d1d5eab194583bed1caebd5cac92a ./rmats_final.se.jc.ijc.txt.gz
22cb3faa337ae24b7b423a985fd2056047400eccb83b716eff2e33cce9159e53 ./fromGTF.SE.txt
-fdcaf28412c4a9be6de6c7e47c1d28e4d986a44c3d86ee96cae107872954f6ef ./rmats_final.a3ss.jcec.inc.txt.gz
-7239a05424eed9822b2fe2ba9ce1a3894c1aab5f895f9e39a540b36cf0598fae ./rmats_final.ri.jc.ijc.txt.gz
-88520b1bc33869bd8efaa3984c95cf855e04df122648bc109d00d5821debbd6e ./Colon-Sigmoid_DGE.csv
b2e407257b128afc0765497a4a21cf371bf4e3ed28c9532d3d55d32518e329e4 ./BreastMammaryTissue_sjc_sex_gene_set.txt
-4c7d1f1a9dbcfd148025fcd727c22e9ce12f6bbf3d94dcf898e0daebd54f7dba ./Esophagus-Muscularis_DGE.csv
c277ab764b652e8d65e07277df72933fee465806a5e6c1b018509f868ccfddad ./fromGTF.A5SS.txt
-51975d86053bfa441c941a6a8a5208d08640cd24f708bced1a1d5aa43d3117ed ./rmats_final.mxe.jcec.sjc.txt.gz
-d601f816e710aa450d670c94bb03d7b31a0160d6ef17cbef8e2d55f7d8222264 ./MinorSalivaryGland_refined_DGE.csv
-aee4faefee801e4bca5b2250fc0914c1f024404f5df525b617f920f2f80f9729 ./Lung_DGE.csv
-3e1a88ddc110bf83c566907703b2022d36054bfcc72b131b7fd9efea142ffa11 ./Cells-Culturedfibroblasts_DGE.csv
-ec941ebc9647caa1ff89e9b9c25fa87fab618865076b8b2794d7f35b8e2fea4d ./rmats_final.a5ss.jc.sjc.txt.gz
-a2424d8ba1e4752524d36802786d401d70dd4b04501b09f961a69295e08eac47 ./rmats_final.mxe.jc.inclen.txt.gz
-11b73d5a25dc6667529da47bf5bbfd6aa9f1dedfa628702a3a536d243685904f ./rmats_final.mxe.jc.ijc.txt.gz
6e3f1d335ce05c887363d092b0100b9f3603a964c8fe6e8c20f4c547b4f52280 ./fromGTF.novelEvents.MXE.txt
-9e4b534d05e0d42867519e45951b5b5116aabd2096e37af916411a3d314cef48 ./Brain-FrontalCortex(BA9)_refined_DGE.csv
-a8b78248a4132954b8223b6b55341a4ca64feb726e4614094cab3bd7df8154f3 ./Nerve-Tibial_refined_DGE.csv
51c8250a1796196e3879d88186c5450e5b5efc1e9f3fa578f388e9ff380e2deb ./fromGTF.A3SS.txt
-2c1b558cdd3a2c6bffac32a58f9335f6722728e439cbe916c10cf7b766c006b1 ./Adipose-Subcutaneous_DGE.csv
-454d0369cbf3441c6474749c3cc26caf39dac7238d9d0981898cc0ebee9747d5 ./Colon-Transverse_DGE.csv
-5cf99b4abc23ce9f5d68fbad06f2c1778da9928df04247ee6a7524b7fa396ce6 ./rmats_final.se.jc.inclen.txt.gz
-4ad589d8fcf6a88226e61dec1f541f244e60fcb8cbcc2a4bd7d07cdc0ade5274 ./rmats_final.mxe.jc.inc.txt.gz
-60256efaa9183236ab42a725739f90318b26da908fe66d0c5cc155a22c50b982 ./BreastMammaryTissue_DGE_sex_refined.csv
-0f268a87c34227df6caf6d0d2a58aa10e2a7cfffb2e60f43febcbc3f062a2b9d ./BreastMammaryTissue_DGE_sex_as_events.csv
-9dea990bfe892ca4113642e823643d382ddbcdd276ed88e9139549ed8f8f930b ./Brain-Hippocampus_refined_DGE.csv
-171965d1f008769a85768fe6a03326756f4cccfddf093841b4cfa0dd9f9c674e ./rmats_final.mxe.jc.sjc.txt.gz
-d9ffef4ed51d44e60867a1c1c12569d23901435e20f83c681fec3bf2862bbf6f ./Artery-Coronary_DGE.csv
-123b86d18f52d90bb7a61f19486ed872046d8fdadd28f84389463f45710930d1 ./Brain-Substantianigra_refined_DGE.csv
-e87b47b7e0701732414e80f180f16a40a1474dc41d47fb7291fc6a82bb3c2cb9 ./Artery-Tibial_refined_DGE.csv
-1f25799df2650de10c54b5beac57cbc09c3289ded6d8600e98bcd3af9896d7cf ./Brain-Hypothalamus_DGE.csv
-0c1f8cc1de30d945454549cd680bb38e5a2663ab4167cb5c20490e72fefef81f ./Brain-Hippocampus_DGE.csv
-afac698dd2ede36d3f7ba1a98f94893fb528e15664fe0c7b0e535fab7629ebbd ./Bladder_DGE.csv
-c9612c5a4d71968c1bf289b7b6ae44aba9a3fe63ab32d2cf937b5f55b3733c9c ./BreastMammaryTissue_DGE_sex.csv
+f31a68097c9133a5fd11d32c4d1194b59442366e50e627189ac1cbcdb6e7f13f ./BreastMammaryTissue_DGE_sex_refined.csv
+98001376224e926573071d352f6b22fc6a2dbcca33a16ba88573b49375b90699 ./BreastMammaryTissue_DGE_sex_as_events.csv
+969def456d3d089241b56f95bc23dfa4205334f25989485a4febb4dcccccf891 ./BreastMammaryTissue_DGE_sex.csv
diff --git a/metadata/BreastMammaryTissueJunctionAnalysis_utils_info.rds b/metadata/BreastMammaryTissueJunctionAnalysis_utils_info.rds
index c511a7a..a59c76b 100644
Binary files a/metadata/BreastMammaryTissueJunctionAnalysis_utils_info.rds and b/metadata/BreastMammaryTissueJunctionAnalysis_utils_info.rds differ