forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_frcnn.py
426 lines (358 loc) · 15.2 KB
/
model_frcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# -*- coding: utf-8 -*-
# File: model.py
import tensorflow as tf
from tensorpack.models import Conv2D, FullyConnected, layer_register
from tensorpack.tfutils.argscope import argscope
from tensorpack.tfutils.common import get_tf_version_tuple
from tensorpack.tfutils.scope_utils import under_name_scope
from tensorpack.tfutils.summary import add_moving_summary
from tensorpack.utils.argtools import memoized_method
from basemodel import GroupNorm
from config import config as cfg
from model_box import decode_bbox_target, encode_bbox_target
from utils.box_ops import pairwise_iou
@under_name_scope()
def proposal_metrics(iou):
"""
Add summaries for RPN proposals.
Args:
iou: nxm, #proposal x #gt
"""
# find best roi for each gt, for summary only
best_iou = tf.reduce_max(iou, axis=0)
mean_best_iou = tf.reduce_mean(best_iou, name='best_iou_per_gt')
summaries = [mean_best_iou]
with tf.device('/cpu:0'):
for th in [0.3, 0.5]:
recall = tf.truediv(
tf.count_nonzero(best_iou >= th),
tf.size(best_iou, out_type=tf.int64),
name='recall_iou{}'.format(th))
summaries.append(recall)
add_moving_summary(*summaries)
@under_name_scope()
def sample_fast_rcnn_targets(boxes, gt_boxes, gt_labels):
"""
Sample some boxes from all proposals for training.
#fg is guaranteed to be > 0, because ground truth boxes will be added as proposals.
Args:
boxes: nx4 region proposals, floatbox
gt_boxes: mx4, floatbox
gt_labels: m, int32
Returns:
A BoxProposals instance.
sampled_boxes: tx4 floatbox, the rois
sampled_labels: t int64 labels, in [0, #class). Positive means foreground.
fg_inds_wrt_gt: #fg indices, each in range [0, m-1].
It contains the matching GT of each foreground roi.
"""
iou = pairwise_iou(boxes, gt_boxes) # nxm
proposal_metrics(iou)
# add ground truth as proposals as well
boxes = tf.concat([boxes, gt_boxes], axis=0) # (n+m) x 4
iou = tf.concat([iou, tf.eye(tf.shape(gt_boxes)[0])], axis=0) # (n+m) x m
# #proposal=n+m from now on
def sample_fg_bg(iou):
fg_mask = tf.reduce_max(iou, axis=1) >= cfg.FRCNN.FG_THRESH
fg_inds = tf.reshape(tf.where(fg_mask), [-1])
num_fg = tf.minimum(int(
cfg.FRCNN.BATCH_PER_IM * cfg.FRCNN.FG_RATIO),
tf.size(fg_inds), name='num_fg')
fg_inds = tf.random_shuffle(fg_inds)[:num_fg]
bg_inds = tf.reshape(tf.where(tf.logical_not(fg_mask)), [-1])
num_bg = tf.minimum(
cfg.FRCNN.BATCH_PER_IM - num_fg,
tf.size(bg_inds), name='num_bg')
bg_inds = tf.random_shuffle(bg_inds)[:num_bg]
add_moving_summary(num_fg, num_bg)
return fg_inds, bg_inds
fg_inds, bg_inds = sample_fg_bg(iou)
# fg,bg indices w.r.t proposals
best_iou_ind = tf.argmax(iou, axis=1) # #proposal, each in 0~m-1
fg_inds_wrt_gt = tf.gather(best_iou_ind, fg_inds) # num_fg
all_indices = tf.concat([fg_inds, bg_inds], axis=0) # indices w.r.t all n+m proposal boxes
ret_boxes = tf.gather(boxes, all_indices)
ret_labels = tf.concat(
[tf.gather(gt_labels, fg_inds_wrt_gt),
tf.zeros_like(bg_inds, dtype=tf.int64)], axis=0)
# stop the gradient -- they are meant to be training targets
return BoxProposals(
tf.stop_gradient(ret_boxes, name='sampled_proposal_boxes'),
tf.stop_gradient(ret_labels, name='sampled_labels'),
tf.stop_gradient(fg_inds_wrt_gt))
@layer_register(log_shape=True)
def fastrcnn_outputs(feature, num_classes, class_agnostic_regression=False):
"""
Args:
feature (any shape):
num_classes(int): num_category + 1
class_agnostic_regression (bool): if True, regression to N x 1 x 4
Returns:
cls_logits: N x num_class classification logits
reg_logits: N x num_classx4 or Nx2x4 if class agnostic
"""
classification = FullyConnected(
'class', feature, num_classes,
kernel_initializer=tf.random_normal_initializer(stddev=0.01))
num_classes_for_box = 1 if class_agnostic_regression else num_classes
box_regression = FullyConnected(
'box', feature, num_classes_for_box * 4,
kernel_initializer=tf.random_normal_initializer(stddev=0.001))
box_regression = tf.reshape(box_regression, (-1, num_classes_for_box, 4), name='output_box')
return classification, box_regression
@under_name_scope()
def fastrcnn_losses(labels, label_logits, fg_boxes, fg_box_logits):
"""
Args:
labels: n,
label_logits: nxC
fg_boxes: nfgx4, encoded
fg_box_logits: nfgxCx4 or nfgx1x4 if class agnostic
Returns:
label_loss, box_loss
"""
label_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=label_logits)
label_loss = tf.reduce_mean(label_loss, name='label_loss')
fg_inds = tf.where(labels > 0)[:, 0]
fg_labels = tf.gather(labels, fg_inds)
num_fg = tf.size(fg_inds, out_type=tf.int64)
empty_fg = tf.equal(num_fg, 0)
if int(fg_box_logits.shape[1]) > 1:
indices = tf.stack(
[tf.range(num_fg), fg_labels], axis=1) # #fgx2
fg_box_logits = tf.gather_nd(fg_box_logits, indices)
else:
fg_box_logits = tf.reshape(fg_box_logits, [-1, 4])
with tf.name_scope('label_metrics'), tf.device('/cpu:0'):
prediction = tf.argmax(label_logits, axis=1, name='label_prediction')
correct = tf.cast(tf.equal(prediction, labels), tf.float32) # boolean/integer gather is unavailable on GPU
accuracy = tf.reduce_mean(correct, name='accuracy')
fg_label_pred = tf.argmax(tf.gather(label_logits, fg_inds), axis=1)
num_zero = tf.reduce_sum(tf.cast(tf.equal(fg_label_pred, 0), tf.int64), name='num_zero')
false_negative = tf.where(
empty_fg, 0., tf.cast(tf.truediv(num_zero, num_fg), tf.float32), name='false_negative')
fg_accuracy = tf.where(
empty_fg, 0., tf.reduce_mean(tf.gather(correct, fg_inds)), name='fg_accuracy')
box_loss = tf.losses.huber_loss(
fg_boxes, fg_box_logits, reduction=tf.losses.Reduction.SUM)
box_loss = tf.truediv(
box_loss, tf.cast(tf.shape(labels)[0], tf.float32), name='box_loss')
add_moving_summary(label_loss, box_loss, accuracy,
fg_accuracy, false_negative, tf.cast(num_fg, tf.float32, name='num_fg_label'))
return [label_loss, box_loss]
@under_name_scope()
def fastrcnn_predictions(boxes, scores):
"""
Generate final results from predictions of all proposals.
Args:
boxes: n#classx4 floatbox in float32
scores: nx#class
Returns:
boxes: Kx4
scores: K
labels: K
"""
assert boxes.shape[1] == cfg.DATA.NUM_CLASS
assert scores.shape[1] == cfg.DATA.NUM_CLASS
boxes = tf.transpose(boxes, [1, 0, 2])[1:, :, :] # #catxnx4
scores = tf.transpose(scores[:, 1:], [1, 0]) # #catxn
def f(X):
"""
prob: n probabilities
box: nx4 boxes
Returns: n boolean, the selection
"""
prob, box = X
output_shape = tf.shape(prob, out_type=tf.int64)
# filter by score threshold
ids = tf.reshape(tf.where(prob > cfg.TEST.RESULT_SCORE_THRESH), [-1])
prob = tf.gather(prob, ids)
box = tf.gather(box, ids)
# NMS within each class
selection = tf.image.non_max_suppression(
box, prob, cfg.TEST.RESULTS_PER_IM, cfg.TEST.FRCNN_NMS_THRESH)
selection = tf.gather(ids, selection)
if get_tf_version_tuple() >= (1, 13):
sorted_selection = tf.sort(selection, direction='ASCENDING')
mask = tf.sparse.SparseTensor(indices=tf.expand_dims(sorted_selection, 1),
values=tf.ones_like(sorted_selection, dtype=tf.bool),
dense_shape=output_shape)
mask = tf.sparse.to_dense(mask, default_value=False)
else:
# this function is deprecated by TF
sorted_selection = -tf.nn.top_k(-selection, k=tf.size(selection))[0]
mask = tf.sparse_to_dense(
sparse_indices=sorted_selection,
output_shape=output_shape,
sparse_values=True,
default_value=False)
return mask
# TF bug in version 1.11, 1.12: https://github.com/tensorflow/tensorflow/issues/22750
buggy_tf = get_tf_version_tuple() in [(1, 11), (1, 12)]
masks = tf.map_fn(f, (scores, boxes), dtype=tf.bool,
parallel_iterations=1 if buggy_tf else 10) # #cat x N
selected_indices = tf.where(masks) # #selection x 2, each is (cat_id, box_id)
scores = tf.boolean_mask(scores, masks)
# filter again by sorting scores
topk_scores, topk_indices = tf.nn.top_k(
scores,
tf.minimum(cfg.TEST.RESULTS_PER_IM, tf.size(scores)),
sorted=False)
filtered_selection = tf.gather(selected_indices, topk_indices)
cat_ids, box_ids = tf.unstack(filtered_selection, axis=1)
final_scores = tf.identity(topk_scores, name='scores')
final_labels = tf.add(cat_ids, 1, name='labels')
final_ids = tf.stack([cat_ids, box_ids], axis=1, name='all_ids')
final_boxes = tf.gather_nd(boxes, final_ids, name='boxes')
return final_boxes, final_scores, final_labels
"""
FastRCNN heads for FPN:
"""
@layer_register(log_shape=True)
def fastrcnn_2fc_head(feature):
"""
Args:
feature (any shape):
Returns:
2D head feature
"""
dim = cfg.FPN.FRCNN_FC_HEAD_DIM
init = tf.variance_scaling_initializer()
hidden = FullyConnected('fc6', feature, dim, kernel_initializer=init, activation=tf.nn.relu)
hidden = FullyConnected('fc7', hidden, dim, kernel_initializer=init, activation=tf.nn.relu)
return hidden
@layer_register(log_shape=True)
def fastrcnn_Xconv1fc_head(feature, num_convs, norm=None):
"""
Args:
feature (NCHW):
num_classes(int): num_category + 1
num_convs (int): number of conv layers
norm (str or None): either None or 'GN'
Returns:
2D head feature
"""
assert norm in [None, 'GN'], norm
l = feature
with argscope(Conv2D, data_format='channels_first',
kernel_initializer=tf.variance_scaling_initializer(
scale=2.0, mode='fan_out',
distribution='untruncated_normal' if get_tf_version_tuple() >= (1, 12) else 'normal')):
for k in range(num_convs):
l = Conv2D('conv{}'.format(k), l, cfg.FPN.FRCNN_CONV_HEAD_DIM, 3, activation=tf.nn.relu)
if norm is not None:
l = GroupNorm('gn{}'.format(k), l)
l = FullyConnected('fc', l, cfg.FPN.FRCNN_FC_HEAD_DIM,
kernel_initializer=tf.variance_scaling_initializer(), activation=tf.nn.relu)
return l
def fastrcnn_4conv1fc_head(*args, **kwargs):
return fastrcnn_Xconv1fc_head(*args, num_convs=4, **kwargs)
def fastrcnn_4conv1fc_gn_head(*args, **kwargs):
return fastrcnn_Xconv1fc_head(*args, num_convs=4, norm='GN', **kwargs)
class BoxProposals(object):
"""
A structure to manage box proposals and their relations with ground truth.
"""
def __init__(self, boxes, labels=None, fg_inds_wrt_gt=None):
"""
Args:
boxes: Nx4
labels: N, each in [0, #class), the true label for each input box
fg_inds_wrt_gt: #fg, each in [0, M)
The last four arguments could be None when not training.
"""
for k, v in locals().items():
if k != 'self' and v is not None:
setattr(self, k, v)
@memoized_method
def fg_inds(self):
""" Returns: #fg indices in [0, N-1] """
return tf.reshape(tf.where(self.labels > 0), [-1], name='fg_inds')
@memoized_method
def fg_boxes(self):
""" Returns: #fg x4"""
return tf.gather(self.boxes, self.fg_inds(), name='fg_boxes')
@memoized_method
def fg_labels(self):
""" Returns: #fg"""
return tf.gather(self.labels, self.fg_inds(), name='fg_labels')
class FastRCNNHead(object):
"""
A class to process & decode inputs/outputs of a fastrcnn classification+regression head.
"""
def __init__(self, proposals, box_logits, label_logits, gt_boxes, bbox_regression_weights):
"""
Args:
proposals: BoxProposals
box_logits: Nx#classx4 or Nx1x4, the output of the head
label_logits: Nx#class, the output of the head
gt_boxes: Mx4
bbox_regression_weights: a 4 element tensor
"""
for k, v in locals().items():
if k != 'self' and v is not None:
setattr(self, k, v)
self._bbox_class_agnostic = int(box_logits.shape[1]) == 1
@memoized_method
def fg_box_logits(self):
""" Returns: #fg x ? x 4 """
return tf.gather(self.box_logits, self.proposals.fg_inds(), name='fg_box_logits')
@memoized_method
def losses(self):
encoded_fg_gt_boxes = encode_bbox_target(
tf.gather(self.gt_boxes, self.proposals.fg_inds_wrt_gt),
self.proposals.fg_boxes()) * self.bbox_regression_weights
return fastrcnn_losses(
self.proposals.labels, self.label_logits,
encoded_fg_gt_boxes, self.fg_box_logits()
)
@memoized_method
def decoded_output_boxes(self):
""" Returns: N x #class x 4 """
anchors = tf.tile(tf.expand_dims(self.proposals.boxes, 1),
[1, cfg.DATA.NUM_CLASS, 1]) # N x #class x 4
decoded_boxes = decode_bbox_target(
self.box_logits / self.bbox_regression_weights,
anchors
)
return decoded_boxes
@memoized_method
def decoded_output_boxes_for_true_label(self):
""" Returns: Nx4 decoded boxes """
return self._decoded_output_boxes_for_label(self.proposals.labels)
@memoized_method
def decoded_output_boxes_for_predicted_label(self):
""" Returns: Nx4 decoded boxes """
return self._decoded_output_boxes_for_label(self.predicted_labels())
@memoized_method
def decoded_output_boxes_for_label(self, labels):
assert not self._bbox_class_agnostic
indices = tf.stack([
tf.range(tf.size(labels, out_type=tf.int64)),
labels
])
needed_logits = tf.gather_nd(self.box_logits, indices)
decoded = decode_bbox_target(
needed_logits / self.bbox_regression_weights,
self.proposals.boxes
)
return decoded
@memoized_method
def decoded_output_boxes_class_agnostic(self):
""" Returns: Nx4 """
assert self._bbox_class_agnostic
box_logits = tf.reshape(self.box_logits, [-1, 4])
decoded = decode_bbox_target(
box_logits / self.bbox_regression_weights,
self.proposals.boxes
)
return decoded
@memoized_method
def output_scores(self, name=None):
""" Returns: N x #class scores, summed to one for each box."""
return tf.nn.softmax(self.label_logits, name=name)
@memoized_method
def predicted_labels(self):
""" Returns: N ints """
return tf.argmax(self.label_logits, axis=1, name='predicted_labels')