-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract-pictures.py
153 lines (127 loc) · 5.52 KB
/
extract-pictures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
"""
Copyright © 2020 Fabian Bühler
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
from collections import namedtuple
from pathlib import Path
from subprocess import run, PIPE
from re import compile
from urllib.parse import unquote
from bs4 import BeautifulSoup as Soup
from typing import List, Dict
SOURCE_FOLDERS = [
(Path('duckDuckGo'), 'DD'),
(Path('metaGer'), 'MG'),
]
SOURCE_MD = Path('overview.md')
OUTPUT_MD = Path('annotations.md')
SOURCE_MAP = {
'DD': ('DuckDuckGo', 'DuckDuckGo search "{}"'),
'MG': ('MetaGer', 'MetaGer search "{}"'),
'GS': ('Google-Scholar', 'Google-Scholar search "{}"'),
}
Searchresult = namedtuple('Searchresult', ['path', 'url', 'title'])
DD_URL_REGEX = compile(r'.*\?u=(http\S*)\&.*')
def parse_dd_url(url: str):
match = DD_URL_REGEX.match(url)
if match:
return unquote(match.groups()[0])
print(match)
def dd_extractor(html_file: Path):
search = html_file.stem.replace(' at DuckDuckGo', '')
soup = Soup(html_file.open(), 'html.parser')
results = soup.select("img.tile--img__img")
directory = html_file.parent
searchresults: List[Searchresult] = []
for result in results:
path = directory / result['src']
url = parse_dd_url(result['data-src'])
title = result['alt']
searchresults.append(Searchresult(path, url, title))
return search, searchresults
def mg_extractor(html_file: Path):
search = html_file.stem.replace('- MetaGer', '')
if '(' in search:
end = search.index(' (')
search = search[:end]
soup = Soup(html_file.open(), 'html.parser')
results = soup.select("div.image")
directory = html_file.parent
searchresults: List[Searchresult] = []
for result in results:
url = result.a['href']
img = result.a.div.img
path = directory / img['src']
title = img['alt']
searchresults.append(Searchresult(path, url, title))
return search.strip(), searchresults
def scholar_extractor(md_file: Path):
html = run(['pandoc', '--section-divs', str(md_file)], stdout=PIPE, encoding='utf-8')
soup = Soup(html.stdout, 'html.parser')
searches = soup.select("div.level3")
searches_dict = {}
for search in searches:
search_text = search.h3.text.split('"')[1]
results = search.select('li')
searchresults: List[Searchresult] = []
for result in results:
if result.p.a is None:
continue
paper_title = result.p.text
paper_path = Path(result.p.a['href'])
image_folder = paper_path.parent / 'images'
images_in_paper = image_folder.glob(paper_path.stem + '*')
for image_file in images_in_paper:
page_nr = image_file.stem[-7:-4].lstrip('0')
title = paper_title + ' (page {})'.format(page_nr)
searchresults.append(Searchresult(str(image_file), str(paper_path), title))
searches_dict[search_text] = searchresults
return searches_dict
def get_searches():
searches = {}
for path, source in SOURCE_FOLDERS:
if source not in searches:
searches[source] = {}
files = path.glob('*html')
for html_file in files:
search = ''
links: List[Searchresult] = []
if (source == 'DD'):
search, links = dd_extractor(html_file)
elif source == 'MG':
search, links = mg_extractor(html_file)
if search in searches[source]:
searches[source][search].extend(links)
else:
searches[source][search] = links
scholar_searches = scholar_extractor(SOURCE_MD)
searches['GS'] = scholar_searches
return searches
def generate_markdown(searches: Dict[str, Dict[str, List[Searchresult]]], output_path: Path):
output = ['# Annotations']
for source in ('DD', 'MG', 'GS'):
output.append('## ' + SOURCE_MAP[source][0])
for search in searches[source]:
search_results = searches[source][search]
output.append('### ' + SOURCE_MAP[source][1].format(search) + ' ({})'.format(len(search_results)))
for i, result in enumerate(search_results):
output.append('#### \<{index}\> [![{title}]({path})]({url})'.format(index=i+1, path=result.path, url=result.url, title=result.title))
output.append('\n')
if not output_path.is_dir() and not output_path.exists():
with output_path.open(mode='w') as md:
md.write('\n\n'.join(output))
if __name__ == "__main__":
generate_markdown(get_searches(), OUTPUT_MD)