-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathquick_bench_can.cpp
executable file
·332 lines (261 loc) · 9.56 KB
/
quick_bench_can.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#include<array>
#include<algorithm>
#include<numeric>
#include<span>
#include<stdio.h>
#include <stdio.h>
#include <string.h>
#include <cstring>
#include <array>
#include <memory>
#include <stdio.h>
typedef struct {
uint32_t StdId; /*!< Specifies the standard identifier.
This parameter must be a number between Min_Data = 0 and
Max_Data = 0x7FF. */
uint32_t ExtId; /*!< Specifies the extended identifier.
This parameter must be a number between Min_Data = 0 and
Max_Data = 0x1FFFFFFF. */
uint32_t IDE; /*!< Specifies the type of identifier for the message that will
be transmitted. This parameter can be a value of @ref
CAN_identifier_type */
uint32_t RTR; /*!< Specifies the type of frame for the message that will be
transmitted. This parameter can be a value of @ref
CAN_remote_transmission_request */
uint32_t DLC; /*!< Specifies the length of the frame that will be transmitted.
This parameter must be a number between Min_Data = 0 and
Max_Data = 8. */
uint32_t Timestamp; /*!< Specifies the timestamp counter value captured on
start of frame reception.
@note: Time Triggered Communication Mode must be
enabled. This parameter must be a number between
Min_Data = 0 and Max_Data = 0xFFFF. */
uint32_t FilterMatchIndex; /*!< Specifies the index of matching acceptance
filter element. This parameter must be a number
between Min_Data = 0 and Max_Data = 0xFF. */
} CAN_RxHeaderTypeDef;
typedef enum { DISABLE = 0, ENABLE = !DISABLE } FunctionalState;
/**
* @brief CAN Tx message header structure definition
*/
typedef struct {
uint32_t StdId; /*!< Specifies the standard identifier.
This parameter must be a number between Min_Data = 0 and
Max_Data = 0x7FF. */
uint32_t ExtId; /*!< Specifies the extended identifier.
This parameter must be a number between Min_Data = 0 and
Max_Data = 0x1FFFFFFF. */
uint32_t IDE; /*!< Specifies the type of identifier for the message that will
be transmitted. This parameter can be a value of @ref
CAN_identifier_type */
uint32_t RTR; /*!< Specifies the type of frame for the message that will be
transmitted. This parameter can be a value of @ref
CAN_remote_transmission_request */
uint32_t DLC; /*!< Specifies the length of the frame that will be transmitted.
This parameter must be a number between Min_Data = 0 and
Max_Data = 8. */
FunctionalState
TransmitGlobalTime; /*!< Specifies whether the timestamp counter value
captured on start of frame transmission, is sent in DATA6 and
DATA7 replacing pData[6] and pData[7].
@note: Time Triggered Communication Mode must be enabled.
@note: DLC must be programmed as 8 bytes, in order these 2 bytes
are sent. This parameter can be set to ENABLE or DISABLE. */
} CAN_TxHeaderTypeDef;
typedef enum {
HAL_OK = 0x00U,
HAL_ERROR = 0x01U,
HAL_BUSY = 0x02U,
HAL_TIMEOUT = 0x03U
} HAL_StatusTypeDef;
typedef struct {
} CAN_HandleTypeDef;
HAL_StatusTypeDef HAL_CAN_GetRxMessage(CAN_HandleTypeDef *hcan, uint32_t RxFifo,
CAN_RxHeaderTypeDef *pHeader,
uint8_t aData[]) {
// test senario
aData[0] = rand()%123;
aData[1] = 2;
aData[2] = rand()%123;
aData[3] = rand()%123;
aData[4] = rand()%123;
aData[5] = rand()%123;
aData[6] = rand()%123;
pHeader->IDE = rand()%5 + 1;
pHeader->DLC = rand()%5 + 1;
return HAL_StatusTypeDef::HAL_OK;
}
HAL_StatusTypeDef HAL_CAN_AddTxMessage(CAN_HandleTypeDef *hcan,
CAN_TxHeaderTypeDef *pHeader,
uint8_t aData[], uint32_t *pTxMailbox) {
return HAL_StatusTypeDef::HAL_OK;
}
#define CAN_RTR_DATA (0x00000000U) /*!< Data frame */
#define CAN_RTR_REMOTE (0x00000002U) /*!< Remote frame */
#define CAN_ID_STD (0x00000000U) /*!< Standard Id */
#define CAN_ID_EXT (0x00000004U)
static const std::size_t max_dlc_size = 8;
struct Can_rx_message {
Can_rx_message(CAN_HandleTypeDef *hcan, uint32_t RxFifo)
: header{0}, data{0} {
this->status =
HAL_CAN_GetRxMessage(hcan, RxFifo, &this->header, this->data);
}
CAN_RxHeaderTypeDef header;
uint8_t data[max_dlc_size];
HAL_StatusTypeDef status;
};
template <typename T> struct Can_tx_message {
Can_tx_message(T data, CAN_TxHeaderTypeDef message_header)
: header{message_header} {
static_assert(std::is_trivially_constructible<T>(),
"Object must by C like struct");
static_assert(std::is_class<T>(), "Object must by C like struct");
std::memcpy(this->buff, &data, sizeof(T));
}
uint8_t buff[max_dlc_size];
CAN_TxHeaderTypeDef header;
HAL_StatusTypeDef send(CAN_HandleTypeDef *hcan, uint32_t *pTxMailbox) {
return HAL_CAN_AddTxMessage(hcan, &this->header, this->buff, pTxMailbox);
}
};
class Device_base {
public:
const uint32_t IDE;
const uint32_t DLC;
constexpr Device_base(uint32_t ide, uint32_t dlc) : IDE{ide}, DLC{dlc} {}
virtual void set_data(Can_rx_message &m) = 0;
};
enum struct apps_status_struct : uint8_t {
ALL_OK,
SENSOR_IMPLOSIBILITY,
SUPPLY_VOLTAGE_INCORECT,
};
struct __attribute__((packed)) Apps_data {
uint16_t apps_value;
int16_t d_apps_dt;
apps_status_struct apps_status;
};
class apps_c : public Device_base {
public:
constexpr apps_c(uint32_t ide, uint32_t dlc)
: Device_base(ide, dlc), data{0} {};
Apps_data data;
void set_data(Can_rx_message &m) override {
std::memcpy(&data, &m.data[0], sizeof(Apps_data));
}
};
namespace apps_const {
const int APPS_CAN_ID = 0x0A;
const int APPS_CAN_DLC = sizeof(Apps_data);
const CAN_TxHeaderTypeDef can_tx_header_apps{
APPS_CAN_ID, 0xFFF, CAN_ID_STD, CAN_RTR_DATA, APPS_CAN_DLC, DISABLE};
}
enum struct Acquisition_card_status_struct : uint8_t {
ALL_OK,
COS_SIE_rozwalilo,
SUPPLY_VOLTAGE_INCORECT,
};
struct __attribute__((packed)) Acquisition_card_data {
uint32_t wheel_time_interval_left;
uint32_t wheel_time_interval_right;
Acquisition_card_status_struct apps_status =
Acquisition_card_status_struct::ALL_OK;
};
class acquisition_card_c : public Device_base {
public:
constexpr acquisition_card_c(uint32_t ide, uint32_t dlc)
: Device_base(ide, dlc), data{0} {};
Acquisition_card_data data;
void set_data(Can_rx_message &m) override {
std::memcpy(&data, &m.data[0], sizeof(Acquisition_card_data));
}
};
namespace new_can {
class can_interface {
apps_c apps{1, 3};
acquisition_card_c ac{2, 4};
apps_c apps2{3, 3};
acquisition_card_c ac2{4, 4};
apps_c apps3{5, 3};
acquisition_card_c ac3{6, 4};
std::array<Device_base *, 8> device_array = {&apps, &ac, &apps2, &ac2, &apps3, &ac3};
public:
void disp() {
printf("Apps IDE: %d \n", (int)apps.IDE);
printf("Apps status: %d \n", (int)apps.data.apps_status);
printf("Apps value: %d \n", apps.data.apps_value);
printf("Apps d_dt: %d \n\n", apps.data.d_apps_dt);
}
void get_message(Can_rx_message &m) {
for (auto &dev : device_array) {
if (dev->IDE == m.header.IDE) {
dev->set_data(m);
return; // to exit void
}
}
}
void get_message_2(Can_rx_message &m) {
if(apps.IDE == m.header.IDE){
apps.set_data(m);
return;
}
else if(ac.IDE == m.header.IDE){
ac.set_data(m);
return;
}
if(apps2.IDE == m.header.IDE){
apps2.set_data(m);
return;
}
else if(ac2.IDE == m.header.IDE){
ac2.set_data(m);
return;
}
if(apps3.IDE == m.header.IDE){
apps3.set_data(m);
return;
}
else if(ac3.IDE == m.header.IDE){
ac3.set_data(m);
return;
}
}
Apps_data get_apps_data() { return apps.data; }
Acquisition_card_data get_acquisition_card_data() { return ac.data; }
};
} // namespace new_can
static void get_message(benchmark::State& state) {
// global HAL CUBE_MX initialized data
CAN_HandleTypeDef hcan1;
// global can interface handle
new_can::can_interface can;
// Code inside this loop is measured repeatedly
for (auto _ : state) {
can_rx_message rx{&hcan1, 1};
if (rx.status == HAL_StatusTypeDef::HAL_OK) {
can.get_message(rx);
} else {
// Error_Handeler("Error in reciving data from can");
}
benchmark::DoNotOptimize(can);
}
}
// Register the function as a benchmark
BENCHMARK(get_message);
static void get_message_2(benchmark::State& state) {
// global HAL CUBE_MX initialized data
CAN_HandleTypeDef hcan1;
// global can interface handle
new_can::can_interface can;
for (auto _ : state) {
can_rx_message rx{&hcan1, 1};
if (rx.status == HAL_StatusTypeDef::HAL_OK) {
can.get_message_2(rx);
} else {
// Error_Handeler("Error in reciving data from can");
}
benchmark::DoNotOptimize(can);
}
}
BENCHMARK(get_message_2);