From be1462d7bb840c13bc6c40a9d39dfd045bd7eff2 Mon Sep 17 00:00:00 2001 From: Silvana Ayala Date: Wed, 20 May 2020 13:54:14 -0600 Subject: [PATCH 1/3] Tutorials for single module and multiple row with irradiance distributions Tutorials for single module and multiple row with irradiance distributions --- ...1 - Beginner - Single Module Example.ipynb | 518 ++++++++++++++++++ .../1 - Beginner - Single Module Example.py | 211 +++++++ ...culation under different irradiances.ipynb | 276 ++++++++++ ...Calculation under different irradiances.py | 146 +++++ docs/tutorials/irr_1axis_11_06_13.pkl | Bin 0 -> 12101 bytes 5 files changed, 1151 insertions(+) create mode 100644 docs/tutorials/1 - Beginner - Single Module Example.ipynb create mode 100644 docs/tutorials/1 - Beginner - Single Module Example.py create mode 100644 docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.ipynb create mode 100644 docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.py create mode 100644 docs/tutorials/irr_1axis_11_06_13.pkl diff --git a/docs/tutorials/1 - Beginner - Single Module Example.ipynb b/docs/tutorials/1 - Beginner - Single Module Example.ipynb new file mode 100644 index 0000000..2cfed25 --- /dev/null +++ b/docs/tutorials/1 - Beginner - Single Module Example.ipynb @@ -0,0 +1,518 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1 - Beginner - Single Module Example\n", + "\n", + "This tutorial shows how to assign an array of irradiances as inputs to a module. It is assigning 12 values of irradiances Gpoat, 1 value to each row of six cells in a 12 x 6 module (72 cell module). " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pvmismatch # this imports everything we need\n", + "import numpy as np\n", + "import seaborn as sns\n", + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Inputs" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "## Inputs:\n", + "numcells = 72\n", + "Gpoat = [0.9, 0.9, 0.8, 0.7, 0.7, 0.8, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9] # kW/m2 units\n", + "portraitorlandscape = 'portrait'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Select module type\n", + "\n", + "The stdpl matrix shows the placement of the cells in the module. The modules we are using are the standard PVMismatch modules, look at the references for the bypass diode groups, but because of this it does matter if the module is in ladscape or portrait." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# cell placement for 'portrait'.\n", + "if numcells == 72:\n", + " stdpl=np.array([[0,\t23,\t24,\t47,\t48,\t71],\n", + " [1,\t22,\t25,\t46,\t49,\t70],\n", + " [2,\t21,\t26,\t45,\t50,\t69],\n", + " [3,\t20,\t27,\t44,\t51,\t68],\n", + " [4,\t19,\t28,\t43,\t52,\t67],\n", + " [5,\t18,\t29,\t42,\t53,\t66],\n", + " [6,\t17,\t30,\t41,\t54,\t65],\n", + " [7,\t16,\t31,\t40,\t55,\t64],\n", + " [8,\t15,\t32,\t39,\t56,\t63],\n", + " [9,\t14,\t33,\t38,\t57,\t62],\n", + " [10,\t13,\t34,\t37,\t58,\t61],\n", + " [11,\t12,\t35,\t36,\t59,\t60]])\n", + "\n", + "elif numcells == 96:\n", + " stdpl=np.array([[0,\t23,\t24,\t47,\t48,\t71,\t72,\t95],\n", + " [1,\t22,\t25,\t46,\t49,\t70,\t73,\t94],\n", + " [2,\t21,\t26,\t45,\t50,\t69,\t74,\t93],\n", + " [3,\t20,\t27,\t44,\t51,\t68,\t75,\t92],\n", + " [4,\t19,\t28,\t43,\t52,\t67,\t76,\t91],\n", + " [5,\t18,\t29,\t42,\t53,\t66,\t77,\t90],\n", + " [6,\t17,\t30,\t41,\t54,\t65,\t78,\t89],\n", + " [7,\t16,\t31,\t40,\t55,\t64,\t79,\t88],\n", + " [8,\t15,\t32,\t39,\t56,\t63,\t80,\t87],\n", + " [9,\t14,\t33,\t38,\t57,\t62,\t81,\t86],\n", + " [10,\t13,\t34,\t37,\t58,\t61,\t82,\t85],\n", + " [11,\t12,\t35,\t36,\t59,\t60,\t83,\t84]])\n", + "\n", + "if portraitorlandscape == 'landscape':\n", + " stdpl = stdpl.transpose()\n", + "\n", + "cellsx = len(stdpl[1]); cellsy = len(stdpl)\n", + " \n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Let's create the type of module we want" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "if cellsx*cellsy == 72:\n", + " cell_pos = pvmismatch.pvmismatch_lib.pvmodule.STD72\n", + "elif cellsx*cellsy == 96:\n", + " cell_pos = pvmismatch.pvmismatch_lib.pvmodule.STD96\n", + "\n", + "pvmod=pvmismatch.pvmismatch_lib.pvmodule.PVmodule(cell_pos=cell_pos)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Let's make the system be just 1 module" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "pvsys = pvmismatch.pvsystem.PVsystem(numberStrs=1, numberMods=1, pvmods=pvmod) \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create the pattern of irradiance based on the Gpoat input. \n", + "\n", + "We are assigning the gradient across the module for this case. " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "This is how our irradiance gradient looks accross the module\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMQAAAD4CAYAAACzHkm9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAU0ElEQVR4nO3de5RdZX3G8e+TG4EEAhqKkBAT2qBEaRFjwKqUCmhEl8G1tCTUQlxI2lVARV2CS7pEvCypIrVLqkUEBGsipNRmgXJRgXoJkFAIkoRLiGkYIgJFRC6FzMzTP/aeZGc85+w9Z86eOXvP7+PaizP78u53nPzOe9nvu1/ZJoSQGDfaGQihm0RAhJARARFCRgRECBkRECFkTCj7Btuf3BzdWBUzcfpBGm4aQ/m7d+J+nRIlRAgZpZcQYYzq7xvtHLQlAiKUo693tHPQlgiIUAq7f7Sz0JYIiFCO/giIEHaKEiKEjLo2qiW9GlgEzAAMbANW2d5Yct5ClVW0hGj5HELS2cAKQMCdwJr083JJ57S4bpmktZLWXnrl8k7mN1SE+3oLb91EreZDSHoQeI3t7YP2TwLW256bd4N4Ul09nXhy/OJDvyj8d99t7p9X5kl1P3BAg/37p8dCaMz9xbcukteG+AjwY0kPAY+k+2YBfwKcUWbGQsXVsVFt+wZJBwMLSBrVAnqANbar+RuHkdFl3/xF5fYyOXnkePsI5CXUSZc1louK5xChHPGkOoSdqlqjjoAI5ahrGyKEtlS0yhQz5kI5OvgcQtJCSQ9I2tRohISkWZJukXS3pHslHZ/unyjp25J+KWmjpE/m3StKiFCOvu355xQgaTxwMXAcaZe/pFW2N2ROOxe42vbXJc0DfgDMBt4H7Gb7UEl7ABskLbe9pdn9IiBCOTpXZVoAbLK9GUDSCpLBptmAMLBX+nkayQDUgf1TJE0AdgdeAp5pdbOoMoVyDKHKlB0Mmm7LMinNYOcoCUhKiRmD7nYe8H5JPSSlw5np/pXAc8Cvga3Al20/1SrbUUKEcgyhhLB9CXBJk8ONBv4NHji4BLjC9oWS3ghcJem1JKVLH8l4vH2An0r60UBp00gERChH56pMPcCBmZ9nsrNKNOBUYCGA7dWSJgPTgZOAG9LR2o9L+jkwH2gaEFFlCqVw3/bCW441wFxJc9JpB4uBVYPO2QocAyDpEGAy8ES6/61KTAGOBO5vdbMIiFCODnW72u4lGVl9I7CRpDdpvaTzJb07Pe1jwGmS1gHLgaVOJvpcDEwF7iMJrMtt39vqfi0nCLW8UPqA7cvzzosJQtXTiQlCL/z4ksJ/992PWVaZCUKtfKbZgZhCGmo5QUhSs+JFwH7Nrsv2GkQJMUZVdOhGXi/TfsDbgd8O2i/gF6XkKNRDl33zF5UXENcBU23fM/iApFtLyVGoh94aThCyfWqLYyd1PjuhNmpaQoTQnpq2IUJoT5QQIWRECdHYusM+WvYtQofN7/n+8BOJEiKEjDr2MoXQtjaHBI22CIhQjmhDhJARARFCRjSqQ8joizf3hbBTRatMufMhJL1a0jGSpg7av7C8bIXK6+8vvnWRvDXmPgT8J8lrPe6TtChz+AtlZixUXEUnCOWVEKcBr7d9AnA08A+SPpweazrtLztj7trntnQko6Fa3O/CWzfJa0OMt/0sgO0tko4GVkp6JS0CIjtjbu3ME7rrNw4jo8uqQkXllRCPSTps4Ic0ON5F8s6bQ8vMWKi4vr7iWxfJKyFOBnYZlJK+FuRkSf9aWq5C9VW0hMibMdfT4tjPO5+dUBt1DIgQ2haD+0LIiBIihIwu604tqvSAOPLxNWXfInRYR6b2dFnvUVFRQoRSOKpMIWRElSmEjC4bo1RUBEQoR5QQIWT0RqM6hJ2iyhRCRkWrTEVmzC2Q9Ib08zxJH5V0fPlZC1Xm/v7CWx5JCyU9IGmTpHMaHJ8l6RZJd0u6d/C/z/T4s5I+nnevvBWEPg28A5gg6WbgCOBW4BxJr7P9+dzfJoxNHSohJI0nWTzxOJIletdIWmV7Q+a0c0kWY/y6pHkki7fPzhy/CPhhkfvlVZneCxwG7AY8Bsy0/YykLwF3AA0DIl2JfhmAxk9j3LgpRfIS6qRzVaYFwKaBxdYlrQAWAdmAMLBX+nkamXWsJZ1Asi71c0VulhcQvbb7gOclPWz7GQDbL0hqWtZlZ8xNmDSjmpXJMDydG7oxA3gk83MPSU0l6zzgJklnAlOAYwHStanPJildcqtLkN+GeEnSHunn1w/slDQNqGY3QhgRQ5lTnZ2Dn27LMkk1mqo8+Et2CXCF7ZnA8cBVksaRrJR70cA06CLySoijbL8IYO/SjzYROKXoTcIYNIQqU7ZG0UAPcGDm55lkqkSpU4GFaVqrJU0mmeZ8BPBeSf8I7A30S/o/219rlpe8GXMvNtn/JPBkq2vDGNe5wX1rgLmS5gCPAouBwesbbgWOAa6QdAgwGXjC9lsGTpB0HvBsq2CAeA4RytKhRrXtXklnADcC44HLbK+XdD6w1vYq4GPANyWdRVKdWmq3N2VPbV5XWDSqq6f3pUebvmKoqN//3cLCf/c9v3HDsO/XKVFChFK4r5p9LhEQoRwVHboRARFK0W2vqCwqAiKUIwIihIxqNiEiIEI53FvNiIiACOWoZjxEQIRyRKM6hKyKlhC5M+YGk3RlGRkJ9VLLFYQkrRq8C/hLSXsD2H53WRkLFVfREiKvyjSTZGbSpSSDpgTMBy5sdVHMmAvuyAtiR15elWk+cBfwKeB3tm8FXrB9m+3bml1k+xLb823Pj2AYmyq6CGnufIh+4CJJ16T//U3eNSEAta0yATuW1nqfpHcCz5SbpVAH3fbNX9SQvu1tXw9cX1JeQo2MiYAIoSj3dc2cnyGJgAiliBIihAz3RwnR0O1/9IaybxG6UJQQIWTYUUKEsEOUECFk9EcvUwg7RaM6hIwIiBAySn4hZGkiIEIpxkQJIenNJCu63Gf7pnKyFOqgqt2uLedDSLoz8/k04GvAnsCnGy1+F8KAvj4V3rpJ3gShiZnPy4DjbH8GeBvw180uyq4Ic+1zW4afy1A5tgpv3SSvyjRO0j4kgSPbTwDYfk5S00mC2RVh1s48oaLNqzAcdW1DTCOZQirAkl5h+zFJU2m89lcIQE17mWzPbnKoH3hPx3MTaqOuJURDtp8HftXhvIQa6esf8iu/ukI8hwilqGqVqZphHLpev1V4yyNpoaQHJG1q1N0vaZakWyTdLeleScdnjn0yve4BSW/Pu1eUEKEUnepOlTQeuBg4jmTN6jWSVtnekDntXOBq21+XNA/4ATA7/bwYeA1wAPAjSQfb7mt2vyghQins4luOBcAm25ttvwSsABYNvh2wV/p5GjsXdl8ErLD9ou1fAZvS9JoqvYT4s3u+UvYtQhcqUhUakH31aeqS9FkWwAzgkcyxHuCIQUmcB9wk6UxgCnBs5trbB107o1VeosoUSjGUXqbsg9wGGkXW4HJlCXCF7QslvRG4StJrC167iwiIUIoOdjL1AAdmfp7JzirRgFOBhQC2V0uaDEwveO0uog0RStHBXqY1wFxJcyRNImkkD16mYStwDICkQ4DJwBPpeYsl7SZpDjAXuJMWooQIpehUL5PtXklnADcC44HLbK+XdD6w1vYq4GPANyWdRVI4LbVtYL2kq0mWdOgFTm/VwwTJgL2OZLyZ7U9urugjmrFr4vSDhv2v+aeveG/hv/tbHlvZNeM8ooQIpXBFx37mLal1BLDR9jOSdgfOAQ4nKYK+YPt3I5DHUEG9XTbPoai8RvVlwPPp56+SPPS4IN13eYn5ChVnVHjrJnkBMc7esVrYfNsfsf2zdNbcQc0uys6Yu/TK5R3LbKiO/iFs3SSvDXGfpA/YvhxYJ2m+7bWSDga2N7so+6AlGtVjU7d98xeVV0J8EPgLSQ8D84DVkjYD30yPhdBQLUuItNG8VNKeJFWkCUCP7d+MROZCdfVVtIQouuji74F1Jecl1EhFZ5DGc4hQjv46lxAhDFVVe1IiIEIpuq2xXFQERChFv6LKFMIOLYeUdrEIiFCK6GUKISN6mULIiF6mEDKiyhRCRnS7hpDRZQsDFZa3pNaHJB3Y6pwQGqnqaNe84d+fBe6Q9FNJfy9p35HIVKi+ugbEZpKXO30WeD2wQdINkk5Jh4Q3FDPmglV86yZ5bQjb7gduInl35kTgHSSvDvwy0LDEiBlzodu++YvKC4hd4tf2dpK3oa1K38IRQkN1HbpxYrMDtl/ocF5CjdTyOYTtB0cqI6Fe6lplCqEtERAhZFS1JyUCIpSilm2IENpV116mENrSX9FKUwREKEU0qkPIqGb5EAERSlLVEiIWXQyl6JULb3kkLZT0gKRNks5pcPwiSfek24OSns4cmyXpJkkbJW2QNLvVvaKECKXoVJVJ0njgYuA4kmV210haZXvDjnvZZ2XOPxN4XSaJK4HP275Z0lRyCq8oIUIpOjgfYgGwyfZm2y8BK4BFLc5fAiwHkDQPmGD7ZgDbz9p+vsW1uTPmJkk6WdKx6c8nSfqapNPToeAhNNSPC285ZgCPZH7uSff9AUmvBOYAP0l3HQw8LelaSXdL+lJa4jSVV2W6PD1nD0mnAFOBa0kWyV4AnJJzfRijhlJlkrQMWJbZdUk6pwZo+IKnZskvBlZm1qKeALyFpAq1FfgesBT4VrO85AXEobb/VNIE4FHgANt9kr5Di/Uisr/gv1z4OT548pKc24S6GUovU3ZCWQM9QHZe/0xgW5NzFwOnD7r2btubASR9HziSYQTEOEmTgCnAHiSrkD4F7AY0rTLFjLnQ17knEWuAuZLmkHwpLwZOGnySpFcB+wCrB127j6R9bT8BvBVY2+pmeQHxLeB+YDzwKeCadI25I0kaNyE01KnnELZ7JZ0B3Ejy7/Ay2+slnQ+stb0qPXUJsMK2M9f2Sfo48GNJAu4iWR+xKWWub3yCdECa+DZJewPHAltt31nkF4oSonomTj9o2GNVPzT7xMJ/93/e8r2uGRub+xzC9rbM56eBlaXmKNRCVZ9Ux4O5UIoY7RpCRjXDIQIilKS3oiERARFK4QiIEHaKRnUIGVFChJARJUQIGX05D3y7VQREKEU8hwghI9oQIWREGyKEjNpWmST9MfAekkkavcBDwHLbvys5b6HCqlplyl2FFPgGMBl4A7A7SWCslnR06bkLldVnF966Sd5bN04DFtr+HMk8iHm2PwUsBC5qdlEsuhg6+JKBEVWkDTGB5GXOuwF7Atje2uqtGzGFNNS1UX0pyYuhbgeOAi4ASNerfqrkvIUKq2obIm+Nua9K+hFwCPAV2/en+58gCZAQGuq2qlBRRaaQrgfWj0BeQo3kzdXvVvEcIpSig6+hGVEREKEUta0yhdCOqDKFkBElRAgZtex2DaFd3TYko6gIiFCKqDKFkBEBEUJG9DKFkBElRAgZ0csUQkafqzkAPAIilKKqbYi8KaTTJH1R0v2S/jfdNqb79m5xXcyYG+PqOmPuapI1f4+2/RiApFeQLMd7Dcnq8n8gZsyFqrYh8uZUz7Z9wUAwANh+zPYFwKxysxaqrN8uvOWRtFDSA5I2STqnwfGLJN2Tbg9Kejrdf5ik1ZLWS7pX0ol598orIf5H0ieAb9v+TXqT/UgWv36k1YVhbOtUCSFpPHAxSW2kh2RK8yrbG3bcyz4rc/6ZJAu1AzwPnGz7oXTx0Lsk3ZiuldhQXglxIvBy4DZJT0l6CrgVeBnwviH/dmHM6HN/4S3HAmCT7c22XyJZDnpRi/OXAMsBbD9o+6H08zbgcWDfVjdrGRC2f2v7bNuvtv2ydDvE9tnACXm/SRi7hlJlynbCpNuyTFIz2LU20pPu+wOSXgnMIWn3Dj62AJgEPNwq38Ppdv0McPkwrg81NpQqU7YTpoFGa1g3S3wxsNJ23y4JSPsDVwGn2K2LpJYBIeneFpncr9W1YWwr0lguqIfkbZEDZgLbmpy7GDg9u0PSXsD1wLm2b8+7WV4JsR/wduC3g/YL+EVe4mHs6mC36xpgrqQ5wKMk/+hPGnySpFcB+wCrM/smAf8BXGn7miI3ywuI64Cptu9pkIFbi9wgjE19u9Za2ma7V9IZwI3AeOAy2+slnQ+stb0qPXUJsMK7PiL/K5L3h71c0tJ039JG/54HqOxH7PFgrnomTj+oUb19SGa97NDCf/etT/1y2PfrlBjLFErRbUMyioqACKWo6uC+CIhQig72Mo2oCIhQiqoO7ouACKWICUIhZEQbIoSMqrYh8ka7NiXphy2OxYy5Mc524a2b5I1lOrzZIeCwZtfFjLlQ1+cQa4DbaDzisOmc6hC67Zu/qLyA2Aj87cAkiyxJMWMuNFXXXqbzaN7OOLOzWQl1UtVGdd4qpCtbHN6nw3kJNVLVKlPbvUwkM+ZCaMhD+F83iRlzoRRVLSFixlwoRVXbEHkPTL4FvLnJse8O5eFLzn2WdVM63ZinbkunrlvpM+aKkLTW9vxuSacb89Rt6dTVcBrVIdROBEQIGd0SEM1eUjVa6XQyrbqmU0td0YYIoVt0SwkRQleIgAghY9QDIm8xjIJpXCbpcUn3DTMvB0q6JV02bL2kD7eZzmRJd0pal6YzrGEuksZLulvSdcNIY4ukX6aLiqwdTn5qbTQfgpC8mvBh4CCSV5WvA+a1kc5RwOHAfcPMz/7A4ennPYEH28yPSF4BCjARuAM4chj5+ijwXeC6YaSxBZg+mn/vKmyjXUIMdTGMhmz/F/DUcDNj+9e2/zv9/HuS+SAN1yLISce2n01/nJhubfVeSJoJvBO4tJ3rw9CMdkAUXgxjpEmaTbI00x1tXj9e0j0kq9bcbLutdIB/Aj4BDHfGjYGbJN01aEGSkDHaATGUxTBGjKSpwL8DH7H9TDtp2O6zfRjJegYLJL22jXy8C3jc9l3t5GGQN9k+HHgHcLqkozqQZu2MdkAMZTGMESFpIkkw/Jvta4ebnpMF/m4FFrZx+ZuAd0vaQlKdfKuk77SZj23pfx8nWTNhQTvp1N1oB8SOxTDSxS0WA6tyrimNJJGM8N1o+yvDSGffgYXtJe0OHAvcP9R0bH/S9kzbs0n+v/mJ7fe3kZ8pkvYc+Ay8DRhWj1xdjWpA2O4FBhbD2AhcbXv9UNORtJxk5ZhXSeqRdGqbWXoT8Dck38QD6x4f30Y6+wO3pBOs1pC0IdruMu2A/YCfSVoH3Alcb/uGUcxP14qhGyFkjHaVKYSuEgERQkYERAgZERAhZERAhJARARFCRgRECBn/D8svo0wASxq1AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "G=np.array([Gpoat]).transpose()\n", + "H = np.ones([1,cellsx]) \n", + "array_det = np.dot(G,H) \n", + "sns.heatmap(array_det, square = True)\n", + "print(\"This is how our irradiance gradient looks accross the module\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Values under STC:\n", + "\n", + "This is under the default irradiance of 1000 W/m2" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pmp: 240.948027 [W], Eff: 21.825477 [%], FF: 78.726054 [%]\n", + "Imp: 5.915269 [A], Vmp: 40.733234 [V], Isc: 6.305600 [A], Voc: 48.537622 [V]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3yV1f3A8c83YRNIIIO9R4KgMhUQISC2bq0TZ61aqm1VHG3V+lPQOlprHbWtW3G14h61DkZAQZGt7GUggJCEFQIEMr6/P85z4RJuBuS5uTfJ9/16Pa97zzPO872Hyz05z3Oec0RVMcYYY6JNTKQDMMYYY0KxCsoYY0xUsgrKGGNMVLIKyhhjTFSyCsoYY0xUsgrKGGNMVLIKypgoIyIZInJdpOPwg4jcJSLPH+Wx+SLS1e+YTM1hFZQJKxEZJiKzRGSniGwTkZkiMqiKeWaKyGi/YqzgXJ1FREWkXoht7USkSES6hdj2noj8tYw8G4jIeBFZJSK7vc/zooh09v8THD0ReVlE/lSVPFT1QVWtsLINVSmrapyqrq3K+U3NZhWUCRsRaQ58DPwdaAm0AyYA+yIZl19UdSMwBbgyeL2ItATOACaWcejbwDnAZUA8cDwwDzjF7xhFJNbvPI/g3IdV6sYcEVW1xZawLMBAYEcZ2xoC24Bjg9alAHuBZCAJV7nt8Pb7EvcH1atAibdfPvB779jBwCxv/0VAelC+GcCfvO35wEdAIvA6kAfMATqXEWdnQIF6ZWy/DFhTat2vgfll7D/ai71DOeWWAdwPzAR2AZ8DSUHb3wI2AzuBGUDvoG0vA/8CPgF2e+c7E1jgfdYsYHyp8w0LKrss4GpgLFAI7A+UmbdvW+AdIAf4AbgpKJ/xuMr3Ne9c13nrXvO2N/K2bfXONQdoBTwAFAMF3rme8vZXoLv3vjHwKLDO+9xfeetC5hnp774t/iwRD8CW2rsAzb0fjonA6UCLUtv/Cfw5KH1z0A/hQ8DTQH1vORkQb1smMDrouHbeec7AVWKneulkb3sGsBrohmuxLAVWej/e9YBXgJfK+AydKb+Cauz9YA4LWvc1MK6M/R8GpldQbhnAGqCnl38G8HDQ9muAZrhK/nFgYdC2l714TvLKohGQDhzrpY8DtgDneft3xFWCl3rlnAj0DcrrT0F5x+BaevcADYCuwFrgp9728bhK7Txv38YcWkH9CvfHQRMgFhgANA/6zNeVKofgCuof3j7tvGOHep+/zDxtqfmLXeIzYaOqebi/zhV4DsgRkQ9FpJW3y0TgMhEJfA+vxLWQwP3QtQE6qWqhqn6p3i9VCFcAn6jqJ6paoqpfAHNxFVbAS6q6RlV3Av/DtXomq2oRrkXS7yg/417v+KsARKQH7kfyjTIOSQR+rETWL6nqSi//SUDfoHO+qKq7VHUfrgI4XkTig479QFVnemVRoKoZqvq9l/4O+Dcwwtv3cmCyqv7bK+etqrqwjJgG4Sr9+1R1v7r7Q88BY4L2+VpV3/fOtbfU8YXe5++uqsWqOs/7jpTL+35cA9ysqhu9Y2d5n/+o8jQ1g1VQJqxUdZmqXq2q7YE+uEtEj3vbZuMuQ40QkTSgO/Chd+gjuFbP5yKyVkTuKOc0nYCLRGRHYMFVjG2C9tkS9H5viHRcRZ9FRDp6PcvyRSQ/aNNE4GIRaYSrZD9V1ewystlaKq6ybA56vycQn4jEisjDIrJGRPJwrUlwl0QDskrFfaKITBORHBHZCVwftH8HXGutMjoBbUuV8124y3Qhz13Kq8BnwH9EZJOI/EVE6lfivEm4lmCoOI82T1MDWAVlqo2qLsddNuoTtHoirgV0JfC2qhZ4++5S1dtUtStwNnCriAQ6EZRuSWUBr6pqQtDSVFUf9jn+9ep6lsWpalzQ+i9xFc+53md5pZxsJgMniEj7owzjMu88o3GXKzt76yU41FLHvIGr+Duoajzu0mlg/yzcpc9QQpXzD6XKuZmqnlHOMQc3uBbaBFU9BneJ7iy8lmd5xwG5uPtTh8VZQZ6mhrMKyoSNiKSJyG2BH2MR6YC71/FN0G6vAj+j1A+7iJwlIt1FRHA33Iu9BVzrJ/j5mNeAs0Xkp14Lo5GIpFehEjgarwB/BhJw90RCUtXJwBfAeyIyQETqiUgzEbleRK6pxHma4XpBbsXdd3mwksdsU9UCETkBV8kFvA6MFpGLvVgSRSRwObF0OX8L5InIH0SksVfWfSr72ICIjBSRY72ehXm4y3Nl/ZseoKolwIvA30SkrXfeISLSsII8TQ1X5QpKRPpXYjnWj2BNjbMLOBGYLSK7cRXTYuC2wA6qugGYj/sL+sugY3vgWhv5uE4H/1TVDG/bQ8Dd3mWm21U1C9equAvXuywL+B3V+wfYK7gOB29690bKcyGul92buA4Ni3E9HidX8jzrgI24zh7flL874HoV3iciu3AdHCYFNqjqety9uttwvSUX4rq9A7wAHOOV8/uqWoxrzfbF9eDLBZ7HteQqozWul18esAyYjvvjAuAJ4EIR2S4iT4Y49nbge1wvvW24PwZiKsjT1HCBXlFHn4H70s/h0EsMpXVR1c5VOpGptUTkRWCTqt4d6ViMMdHDjwfp5qjqqPJ2EJGpPpzH1ELe6Annc5S96IwxtVeVL4FUVDlVdh9T94jI/bjLW4+o6g+RjscYE12qfIkvZKZubLJLgTGq2qei/Y0xxpjSfLuJLCJtRGSciHwLLME91X2pX/kbY4ypW/zoJPFLXEXUHtc7aBLuSfYuVQ/vcAkJCdq9e/dwZF2j7d69m6ZNm0Y6jKhj5RKalUtoh5VLTo57TU6OTEBRItzfl3nz5uWq6mGF7EcniX/gugFfpqpzAUTE/+uGnlatWjF37txwZV9jZWRkkJ6eHukwoo6VS2hWLqFZuYQW7nIRkXWh1vtRQbUFLsI9RNcK14KyoUaMMcZUiR+9+HJV9V+qOhw3n81OIFtElolIZZ5yN8aY6DR6tFtMRPg6oZg3KsBfgb+KSCqHjnJsjDE1yyWXRDqCOq3KFZSI9FfV+aXXq+oK3OypZe5jjDFR7Ze/jHQEdZofLaiXRCSd8oc6egEbKcAYY8wR8KOCisfNslleBZXjw3kAyC9U3p2/AREQBAk6q4gcCKL0dvHWBcJ020Mc4x0XOCiwT3AeUiqPg7vLIfkeep4DUR48Luj8UioPQqw7LB0U96b8Etbk5AfFWXZZHPys5ZcXIT5rqGMQDtunrPIK+blCHRMcrDGREui5lpERySjqrCpXUNU9CGzuXuXWSYuq85Q1x1fTIx1BWFRUoXPI9kMrvuLiYupN+6zUHxJePqXTQXkc/odEqD94Dlaipf+4CVXxVuYPHkJtD/WHyWF5HFn57Nixl+dWf0OMCLExQqwIMd5rbEzgPcTGxBAbg1sX2BY45sB7Djk+JqZ0ngTlefC1XqzQsF4sDevH0Kj0a/1YGtWLoaH3Wi82QjMDXX11ZM5rAJ87SRwNEUnADdnfBzflwjWq+nVZ+7ePi2HK7ekoEHjI2L0PvHPvD64DRd26UmlC7UNgvR6SB4dtP7jPwXO6HUqvO3iOQ4+h9HY9fJ/A5zo0D+9cQccsXbKUXsf0OjSWA3EezPdAKYXIo6yyIKgsSpd5cHmVX56HftYDZVxBeRGijMsqCw58joP7ZGVl0a59h0M+6yHxllGeh32fKiivQ//dtdT2oH/TCr6T5f+7h86XoGMO/z6VyqMElBKKFQoKSyguUUpUKS7RA++LSpSSEqVYlZIS3DY9uK649HZvXTjFxsiBCqtx/ViaN65PfON6NG9Un/jG9b10fZo3qkd8k/o0b1Sflk0b0Kp5I5KbNaT+0VZwVkFFVMQrKNw8MJ+q6oUi0gA3CVuZ6sVA5yR7Ar605ttXkt63XaTDiDoZGdmkpx8T6TCijnvwcqiveR5SgR2oyDhsXeB9YbGyr6iYfUUlFBS6132FB9MFhSXsKzr8dc++YvIKCsnbW8S6rXvIKyhk595C9uwve57CxKYNSG7WkNbxjejUsgmdEpvSOakJHVs2pUPLxjSsFxv6wMJC91rfHu2MhIhWUCLSHBgOXA2gqvuB/ZGMyRhzdGJihBiE+mX81odbYXEJeXsLySsoYufeQrbm72NL3j6ydxWwJW8fObsK2LSjgLmZ28nfV3QwboFuyXH0atOcRnv3E9M2h74dE2jeqD6ceqrbye5BRUTs+PHjq5SBiPSfMGFCm7KW8ePH/1jWsRMmTOiFe7j3pAkTJtw7YcKEQRMmTJgyfvz4wlLnGDthwoRnJkyYMLZNXl7bUbt3s7hePdatXk3C+efzQ1YWS2JjWb98OfEXXsiaTZtYKkLW4sXEX3wxq7OzWarKxkWLaD5mDKu2bWNZcTGb5s+n2aWXsjIvj2WFhfz47bc0u/xyVuzezfL9+9k8axZxV17JsoICVhQUsGXGDOJ+/nOWFhWxYs8ecqZNo+kvfsESYGV+PrmTJ9PkmmtYXK8eK/Py2PrppzS57jq+b9iQVTt3su3jj2k8diyLmjRh9fbtbH//fRpffz0Lmzdn9dat7HznHRr9+tcsaNmSNTk55E2aRMPf/Ib5KSms2bKFXW+8QcMbb2Remzas3byZ/FdeocHNNzOnfXt27d9P4Wuv0eCWW/i2c2d+2LCBvc89R/3bbmN29+5krl9PwdNPU+/22/kmLY3MzEz2PfUUsXfeyezUVDIzM9n/+ONw771826MHmZmZFP71r+gDD/Btt25kZmZS/Oc/U/yXvzCnSxcyMzMpefBBCh97jDmdOpGZmYnedx/7n3qKuR07kpmZCffcw95nn2Ve+/ZkZmYif/wje156iXlt25KZmUnsH/5A/uuvM791azIzM6l3++3kTZrE/JQUMjMzqT9uHDvfe48FyclkZmbS4Le/Zdt//8vCxEQyMzNpeMMNbP38cxa2aEFmZiaNf/lLcjIyWBQfT2ZmJk2uuYaYtWtZ4m1vetVVbP72W76LiyMzM5O4yy9n44IFfN+kCZmZmTS75BI2LFnC940akZmZSfwFF7B+1SoWN2hAZmYmCeedR2ZmZq347jX4+mua3XijL9+9HzZtYveLL0b8u1f0z3+wpHsXdmZvovWjD9LmvTfYf2JvWsfs4tTXnmT0/M9IO38Ip3eO5cbPnmdM1rc0/clQ2sTFcNmkv5MyazpPNuvLews20vau21n22jt80/VYfmzXgUb/eJwdnxzZd2/LzJksatasVnz3et19N8tLSsL2u/f055//OH78+GdL1xF+tKAeLWebAuXNBVUP6A/cqKqzReQJ4A7g/w7JRPVZ4FmAfk2aaFpaGmnp6a75nZBAQq9e9EpPhz17XLp3b9f7ZudOl+7Tx6Vzc1362GNdevNmlz7uOJfOynLp44936bVrISGBfv36wYgRsGIFJCTQv39/GDoUkpIgIYEBAwbAoEGQkAAJCQwcOBD69oWmTSEhgUGDBkGfPtCgASQkcOKJJ0Jqqrtj/f77DB48GLp2haIi+OgjhgwZAh06QEEBfPIJQ4cOhdatYdcu+PxzTjrpJHfubdtg6lROPvlkMhYsoHfv3jBjBsOHD4cmTWDDBpg5kxEjRrhLFJmZ8M03B8fUWrUKFi48mF66FFasOJhetAjWrz+YnjsXsrMPpr/5BvLySAmkv/wS9u+nVSA9dSrExtImkP7sM9i6lbaB9Mcfw969tAuk338fgPaB9FtvQePGdAik33gDEhPpFEhPnAgdOtA5kH7+eejShS6B9NNPk9+w4cF4k5NJ7taNboF0YiJJPXrQI5Bu2ZLEnj3pGUi3aEGL1FRSA+mEBBJqyXdvwcKFJCQk+PLdIz4etmypWd+9//4X9u7lmMu8USKWfAJA81FNaNH1WOKWvsGGfcqEDqPYW1jMwz8upLHGkhPbkdOPbUOb1q0r/O6ldO1K11ry3dsRGxve370yhGU+qMoSkdbAN4GegCJyMnCHqp5Z1jGpqam6YsWKaoqw5rBBLkOzcgnNyiW00uVSuCuf7zfuYHJmPlOWZbNiyy4ABndtyfn92nPmcW1o2jAabuWHVzUMFjtPVQeWXh/RklXVzSKSJSKp3sgTpwBLIxmTMcYE1D/7LPoD/TMy+P1paazbupsPFm7i3fkb+P0733H/f5cyZlAHrhrSmQ4ty+3fZY5CNFT9NwKvez341gK/iHA8xhjj3HDDIclOiU256ZQe3DiqO/PWbWfi1+t4cWYmL3z1A+f3b8/Np/SwispHEa+gVHUhcFjTzhhjIq6MwWJFhIGdWzKwc0vuOiON57/8gde+Wcf7CzZy8aAO3HpqT5LiGlZzsLVP2B7P9qaAt38hY0zNtXOnW8rRJr4x/3fWMcz4/UguO7Ejk+ZkMeqvGbz6dWbYH2Cu7cI5fsirwHIR+WsYz2GMMeFz7rluqYRWzRtx37l9+HTcyfRpF8//fbCEi56eRWbu7jAHWXuFrYJS1dFAV+ClcJ3DGGPC6qab3HIEuqc04/XrTuTxS/qyOjufM578kjdmryeSPaZrKt8qKBF5NcTqV1R1iV/nMMaYanX++W45QiLCef3a8dktw+nXMYG73vue295aREFh2cMxmcP52YLqHZwQkXrAAB/zN8aY6pWb65aj1Ca+Ma9ecyK3jO7Ju/M3cvEzX7Npx14fA6zdqlxBicidIrILOE5E8rxlF7AF+KDKERpjTKRceKFbqiAmRrh5dA+eu2oga3N2c+4/ZrJ8c55PAdZuVa6gVPUhVW0GPKKqzb2lmaomquqdPsRojDGRcdttbvHBqce04t1fDyVWhEue+Yb567f7km9t5tslPlW9U0TaichQERkeWPzK3xhjqt3ZZ7vFJz1bNeOt64eQ0KQ+Vzw/m69WHf3lw7rAz04SDwMzgbuB33nL7X7lb4wx1W7zZrf4qEPLJrz1qyF0bNmEayfO4Zu1W33Nvzbxs5PEz4BUVT1DVc/2lnN8zN8YY6rXmDFu8VlK80a88cvBdGjZhOsmzuX7DeU/DFxX+VlBrQVs2kljTO1xxx1uCYOWTRvw6rUnEN+4Pj9/6VvWbbUHekvzs4LaAywUkWdE5MnA4mP+xhhTvU47zS1h0ia+Ma9ddyIlqlzz8hx27i2s+KA6xM8K6kPgfmAWMC9oMcaYmikryy1h1CWpKU9fMYD12/bw69fnUVhcEtbz1SS+jWauqhNFpDHQ0ZvbyRhjarYrr3SvGRlhPc3grok88LNj+f3b3/HIZyu464xeYT1fTeFbBSUiZwN/BRoAXUSkL3CfdZQwxtRYd99dbae6eGAHvtuwg2dnrGVgpxb8pHfrajt3tPLzEt944ARgBxyY56mLj/kbY0z1Gj3aLdXk/846hmPbxXPbW4tYv3VPtZ03WvlZQRWpaum+kpUavldEYkVkgYh87GM8xhhTNWvXuqWaNKwXyz8v748A495cQFEdvx/lZwW1WEQuA2JFpIeI/B3XYaIybgaW+RiLMcZU3TXXuKUadWjZhPvP68P89Tt4Zkb1VY7RyM8K6kbciOb7gDeAncC4ig4SkfbAmcDzPsZijDFVN2GCW6rZOce35cxj2/D45JUs3VR3B5b1pYISkVhggqr+UVUHecvdqlpQicMfB34P1O22rDEm+owY4ZZqJiLcf14fEpo04NZJC9lfVDd/HsWvWR5FZKqqjjrCY84CzlDVX4tIOnC7qp4VYr+xwFiA5OTkAZMmTfIj5FolPz+fuLi4SIcRdaxcQrNyCa10uTRevx6AvR07RiSeBdlFPDF/Hxf1rM+ZXRtEJAYI//dl5MiR81R1YOn1flZQjwI9gLeAA2N2qOq75RzzEHAlUAQ0ApoD76rqFWUdk5qaqitW2GNWpWVkZJCenh7pMKKOlUtoVi6hHVYugfdhfg6qPL96dS7TV+bwxS0j6NCySURiCPf3RURCVlB+3oNqCWwFRgFne8thraFgqnqnqrZX1c7AGGBqeZWTMcZUqwcfdEsE3Xt2b2JFuOeDxfjVoKgpfHlQ17sH9Z2qPuZHfsYYExWGDo10BLRNaMwtp/bkT/9dxv8Wb+aMY9tEOqRq40sLSlWLgSqNGKGqGaHuPxljTMQsXuyWCLt6aGfSWjfjgf8uo6CwONLhVBs/L/HNEpGnRORkEekfWHzM3xhjqtdvf+uWCKsXG8P/nXUMG3fs5aWZmZEOp9r4NhYfEGgL3xe0TnH3pIwxpuZ55JFIR3DASd2TGN0rhX9MW82FA9qT3KxhpEMKO99aUKo6MsRilZMxpuYaNMgtUeLOM3pRUFjMY5NXRjqUauHnaOb3hFqvqveFWm+MMVFv4UL32rdvZOPwdEuO44rBnXjl60yuHtqZnq2aRTqksPLzHtTuoKUYOB3o7GP+xhhTvcaNc0sUufmUHjRpUI/Hvqj9rSg/Jyx8NDgtIn/FzbJrjDE10+OPRzqCw7Ro2oBrhnXhySmrWLJpJ73bxkc6pLDxswVVWhOgaxjzN8aY8OrbN2ou7wW7dlgXmjeq/a0o3yooEfleRL7zliXACuAJv/I3xphqN2eOW6JMfOP6jB3elcnLslmYtSPS4YSNn93Mgx+yLQK2qGqRj/kbY0z1+t3v3GsEx+Iry9UndeGFr37g0c9X8Oq1J0Y6nLCocgUlIoOAJFX9X6n1Z4vIJlWdV9VzGGNMRDz1VKQjKFNcw3pcP6IbD/1vOQvWb6dfxxaRDsl3flzie4TQs+Eu87YZY0zN1KePW6LU5YM70bxRPZ6ZXjtn3vWjgkpU1czSK1V1NZDoQ/7GGBMZs2a5JUrFNazHlUM68dnSzazJyY90OL7zo4JqXM62pj7kb4wxkXHXXW6JYlcP7UL92Biem1H7WlF+VFCTReQBEZHglSIyAZjqQ/7GGBMZzzzjliiW3KwhFw1oz7vzN5KdVxDpcHzlRwV1G+55p9Ui8o63rAZSgVt9yN8YYyIjNdUtUW7s8K4UlZTwwswfIh2Kr6rci09VdwOXikhXoLe3eomq1r72pjGmbpk+3b2OGBHZOCrQKbEppx/bhje+Wc+No3oQ19DPJ4gix8/RzNeq6kfeYpWTMabmu/det9QA1w3rwq59Rbwzb0OkQ/FNOIc6qpCIdBCRaSKyTESWiMjNkYzHGGMO8eKLbqkB+nVswfHt45n4dSYlJRrpcHwR0QoKN+LEbaraCxgM/EZEjolwTMYY43Tt6pYa4udDO7M2Zzdfrc6NdCi+8LWCEpEWInJcZad8V9UfVXW+934X7uHedn7GZIwxR23yZLfUEGce14akuAZMnJUZ6VB8Iar+NAVF5H7gamANbqp3AK3srLoi0hmYAfRR1bxS28YCYwGSk5MHTJo0yZeYa5P8/Hzi4uIiHUbUsXIJzcoltNLl0tebC2phFE67UZZ3V+3nozWF/Hl4Y1Ka+NMGCff3ZeTIkfNUdWDp9X5WUCuAY1V1/1EcGwdMBx5Q1XfL2zc1NVVXrFhxlFHWXhkZGaSnp0c6jKhj5RKalUtoh5VLVpZ77dAhIvEcjS15BZz08FSuHtqZu8/y545JuL8vIhKygvLzEt9iIOFIDxKR+sA7wOsVVU7GGFOtOnSoUZUTQKvmjTitT2venJvFnv01e0IJPyuoh4AFIvKZiHwYWMo7wBt94gVgmar+zcdYjDGm6j791C01zFVDOrOroIiPv/sx0qFUiZ9Pc00E/gx8D5RU8piTgCuB70VkobfuLlX9xMe4jDHm6Dz8sHs97bTIxnGEBnVuQdfkprw5J4uLB9asFmAwPyuoXFV98kgOUNWvAKlwR2OMiYT//CfSERwVEWHMoA48+MlyVm7ZRc9WzSId0lHx8xLfPBF5SESGVLabuTHGRLXWrd1SA13Qvz31Y4U352RFOpSj5mcLqp/3OjhonQKV6mZujDFR56OP3OvZZ0c2jqOQGNeQnxzTmnfnb+D3p6XSsF5spEM6Yr5VUKo60q+8jDEmKjz6qHutgRUUwCWDOvDf73/ksyVbOOf4tpEO54j5dolPRFqJyAsi8j8vfYyIXOtX/sYYU+3eftstNdSw7km0b9GYN+esj3QoR8XPe1AvA58BgWp6JTDOx/yNMaZ6JSW5pYaKiREuGdiBmau3sm7r7kiHc8T8rKCSVHUSXhdzVS0Cin3M3xhjqte777qlBrtoYAdEqJHTcPhZQe0WkUS8cfhEZDCw08f8jTGmej35pFtqsNbxjRjWPYn3Fm7Er6HtqoufFdStwIdANxGZCbwC3ORj/sYYU70++MAtNdzP+rUja9te5q7bHulQjoif3cyXACOAVNzDtyuI/HxTxhhz9OLjIx2BL37auzVNGizm3fkbGNS5ZaTDqTQ/K5CvVbVIVZeo6mJVLQS+9jF/Y4ypXm++6ZYarmnDepzWuzUff/cjBYU1p2tAlSsoEWktIgOAxiLSL2gUiXSgSZUjNMaYSPnXv9xSC5zfvz27CoqYsiw70qFUmh+X+H6Km6iwPfAoB8fW2wXc5UP+xhgTGZ/UnnGrh3RLpFXzhry3YANnHtcm0uFUSpUrKFWdCEwUkQtU9R0fYjLGmOjQpPZcBIqNEc7r144XvvyBrfn7SIxrGOmQKuTnPaj2ItJcnOdFZL6I/MTH/I0xpnq99ppbaonz+7WnqET5aNGmSIdSKX5WUNeoah7wEyAF+AXwsI/5G2NM9Xr+ebfUEqmtm3FMm+a8t2BjpEOpFD8rqMC9pzOAl1R1ETbXkzGmJvviC7fUIuf1a8uiDTvJzI3+oY/8ng/qc1wF9ZmINKMSM+uKyGkiskJEVovIHT7GY4wxVVO/vltqkbOPb4sIfFgDLvP5WUFdC9wBDFLVPUAD3GW+MolILPAP4HTgGOBSETnGx5iMMebovfyyW2qRNvGNOaFzS96vAUMf+VlBTQLaAHkAqrpVVb+r4JgTgNWqulZV9wP/Ac71MSZjjDl6tbCCAji3bzvW5uxmyaa8SIdSLj+HOnoa12J6UkTeAl5W1eUVHNMOCJ6PeANwYumdRGQsMNZL7hORxT7EW9skAbmRDiIKWbmEZuUSWuhykdp5O/3YP1d613B/XzqFWunnjLqTgckiEg9cCnwhIlnAc8Br3tBHpYX6Vz+szamqzwLPAojIXFUd6FfctYWVS2hWLqFZuYRm5RJapMrF18Fcvek2rjWGcWUAACAASURBVAauAxYATwD9gbK6wWwAOgSl2wPRf+fOGGNM2PnWghKRd4E04FXgbFX90dv0pojMLeOwOUAPEekCbATGAJf5FZMxxpiay897UE+p6tRQG8pqGqpqkYj8FjdVfCzwoqouqeA8z1YtzFrLyiU0K5fQrFxCs3IJLSLlIlXtZigig4AsVd3spa8CLgDWAeNVdVuVozTGGFPn+HEP6hlgP4CIDMcNb/QKbrp3+2vEGGPMUfHjEl9sUCvpEuBZb1Tzd0RkoQ/5G2OMqYP8aEHFikigojsFCL4P5ec9LhsWySMiL4pIdvDzYCLSUkS+EJFV3muLSMZY3USkg4hME5FlIrJERG721tf1cmkkIt+KyCKvXCZ467uIyGyvXN4UkQaRjjUSRCRWRBaIyMdeus6Xi4hkisj3IrIw0MEtUv+P/Kig/g1MF5EPgL3AlwAi0h13mc8XNizSIV4GTiu17g5giqr2AKZ46bqkCLhNVXsBg4HfeN+Pul4u+4BRqno80Bc4TUQGA38GHvPKZTtuqLK66GZgWVDaysUZqap9gzq4ReT/UZUrKFV9ALgN96M5TA/2uogBbqxq/kFsWCSPqs4ASnc+OReY6L2fCJxXrUFFmKr+qKrzvfe7cD867bByUVXN95L1vUWBUcDb3vo6Vy4AItIeOBN43ksLVi5licj/I18e1FXVb1T1PVXdHbRuZeAHwyehhkVq52P+NV2rwLNn3mtKhOOJGBHpDPQDZmPlEriMtRDIxj00vwbYoapF3i519f/S48DvOTjrQiJWLuD+gPlcROZ5w8xBhP4f+XqPKMwqNSySqdtEJA54BxinqnlSS8dQOxKqWgz0FZEE4D2gV6jdqjeqyBKRs4BsVZ0nIumB1SF2rVPl4jlJVTeJSApuyLqKxlQNG1+HOgozGxapfFtEpA2A95od4XiqnYjUx1VOr6vqu97qOl8uAaq6A8jA3aNLCOrcVBf/L50EnCMimbjbBaNwLaq6Xi6o6ibvNRv3B80JROj/UU2qoA4Mi+T1rBkDfBjhmKLJh8DPvfc/Bz6IYCzVzrt/8AKwTFX/FrSprpdLstdyQkQaA6Nx9+emARd6u9W5clHVO1W1vap2xv2WTFXVy6nj5SIiTb3JZhGRpsBPgMVE6P9RlUeSqE4icgbur5zAsEgPRDikiBCRfwPpuCHwtwD3Au/j5uTqCKwHLqpLo3iIyDBcD9LvOXhP4S7cfai6XC7H4W5qx+L+IJ2kqveJSFdcy6ElbmDnK1R1X+QijRzvEt/tqnpWXS8X7/O/5yXrAW+o6gPeQODV/v+oRlVQxhhj6o6adInPGGNMHWIVlDHGmKhkFZQxxpioZBWUMcaYqGQVlDHGmKhkFZQxxpioZBWUMcaYqGQVlDHGmKhkFZQxxpioZBWUMcaYqGQVlDHGmKhkFZQxxpioZBWUMVFIRDqLiAbNTVSjiciSoIkBj+S4y0Xk8zCEZGoAq6BMWIjIMBGZJSI7RWSbiMwUkUFVzDNTREb7FWMF5wpUEPnekikid5Sx750iMiPE+iQR2S8ifco4rqeIvCUiuV45fScit4pIrN+fpyq8cuhelTxUtbeqZlRwnsMqZVV9XVV/UpVzm5rLKijjOxFpDnwM/B03r047YAJQE+fVSVDVOOBS4B4ROS3EPq8CQ0WkS6n1Y4DvVXVx6QNEpBturqos4FhVjQcuAgYCzfz8AJFshdWWFqCJDKugTDj0BFDVf6tqsaruVdXPVfU7EWnotaiODewsIikisteb/TVJRD4WkR3efl+KSIyIvIqbLO0jr0Xze+/YwV5LbYeILAq+jCQiGSLyJ297voh8JCKJIvK6iOSJyBwR6VyZD6SqXwNLgMNaQ6q6AZgKXFlq01W4yQJDmQDMUtVbVfVHL58VqnqZNzV7wOUist5rZf0x6LOdICJfe5/7RxF5yptpOrBdReQ3IrIKWOWte0JEsrzPPk9ETg7aP1ZE7hKRNSKyy9veIahluMgrw0u8/c8SkYXe+Wd5EyMG8soUkT+IyHfAbhGpF9z69WKf68WxRUQCMyAHzrXDO9cQEblaRL4Kyru3iHzhfTe2iMhdFeRpajJVtcUWXxegObAV9+N8OtCi1PZ/An8OSt8MfOS9fwh4GqjvLSdzcGLNTGB00HHtvPOcgftj61QvnextzwBWA92AeGApsBI37Xk94BXgpTI+Q2dAvf0EOAnYA5xSxv6XA6uC0qnA/kAsIfbfDPyinDIMnP85oDFwPK4F2svbPgAY7MXXGTeN+7ig4xX4AteCbeytuwJI9I65zYuhkbftd7jZiFO9z3s8kBiUV/egvPsD2cCJuJl6f+792zQM+ndaCHQIOveBfzvga+BK730cMLh0mQed62rgK+99M+BHL/ZGXvrE8vK0pWYv1oIyvlPVPGAYB39gc0TkQxFp5e0yEbhMRALfvytxl8kACoE2QCdVLVTVL9X71QnhCuATVf1EVUtU9QtgLq7CCnhJVdeo6k7gf8AaVZ2sqkXAW0C/Cj5OLrANeB64Q1WnlLHfe0ArERnqpa8C/qeqOWXsn4j7sa3IBHUt0EXAIlzFgarOU9VvVLVIVTOBZ4ARpY59SFW3qepe75jXVHWrd8yjQENchQRwHXC3ulacquoiVd1aRky/BJ5R1dnqWsgTcZXn4KB9nlTVrMC5SykEuotIkqrmq+o3lSgHgLOAzar6qKoWqOouVZ1dxTxNFCvz+rCIPFmJ4/NU9W4f4zG1hKouw/31i4ikAa8BjwOXqupsEdkNjBCRH4HuwIfeoY8A44HPRQTgWVV9uIzTdAIuEpGzg9bVB6YFpbcEvd8bIh1XwUdJ8iqzA7zLSnd5yddU9XpV3SMibwFXicjXuBbVreXkuxVXEVdkc9D7PYF4RaQn8DfcPasmuP/L80odm1Uq7ttwFVFb3B8PzYEkb3MHYE0l4gFX7j8XkRuD1jXw8g157lKuBe4DlovID7hK+ONKnLe8GI82TxPFymtBnYv7wpe3XBDuAE3Np6rLgZc59P7NRFwL6ErgbVUt8Pbdpaq3qWpX4GzgVhE5JZBVqayzgFdVNSFoaVpOhebX53lQVeO85fpSn+li3KXGZriOImWZTNX+//wLWA70UNXmuApTSocaeOPdb/qDF18LVU0AdgYdk4W7FFoZWcADpcq9iar+O9S5S1PVVap6KZAC/Bl4W0SalndMRTGWk6epwcqroB5T1YnlLbjLCsYcQkTSROQ2EWnvpTvgesEFX3Z5FfgZrpJ6JejYs0Sku7jmUx5Q7C3gWj9dg/J4DThbRH7q3eRvJCLpgfNGwJfADuBZ4D+qur+cfe/F9fx7RERaA3if+zURSajEuZrhyiffa6HeUIn9i4AcoJ6I3INrQQU8D9wvIj3EOU5EEr1tpcv9OeB6ETnR27epiJwpIpXqfSgiV4hIsqqW4MoL3L9xDlBS6lzBPgZai8g4cZ1tmonIiRXkaWqw8iqosnofHaCqj/sYi6k9duFuoAcu5X0DLMbd3AYO9Hybj/ur+cugY3vgWhf5uBvf/9SDz888BNzt9Ry7XVWzcC39u3A/blm4m/0Rubfq3St7BXcJ7JUK9l0DDMF1DFgiIjuBd3D30HZV4nS3A5d5+z4HvFnB/p/h7sGtBNYBBRx6Ge5vwCTgc1zF9wKucwa4S64TvXK/WFXn4u5DPQVsx3VEuboSMQechvvM+cATwBjvntIe4AFgpneu4HtaqOouXOv0bNylz1XAyPLyPIKYTBQK9I46fININu4//SxgJq5L7MpqjM3UciLyIrDJ7mMaY0Ips4KCAzdihwYtybi/hmeq6l+qJUJTK4l7/mgh0E9Vf4hsNMaYaFRuBXXIju7J9zNwz6y0U9XGFRxiTEgicj9wC64b9AORjscYE53Ku8QXaDUNwXXvXItrPX0DzK/gBrAxxhhTJeVVUCW4m9h/A973bmAaY4wx1aK8Cqo1B+89nYB7EHA+rmfV16q6trqCDJaQkKDdu1dpYOVaaffu3TRtao99lGblEpqVS2iHlUuONxBIcnJkAooS4f6+zJs3L1dVDyvkI7kH1QS4BhgHdFHViEwJkJqaqitWrIjEqaNaRkYG6enpkQ4j6li5hGblEpqVS2jhLhcRmaeqA0uvL2+oo3jc/adAK6of7nmHj3Ddzo0xxpiwKW+ultW4DhGzgPuBb8sY+NEYY2qn0d78mJMnRzaOOqrMCipwPVBEOnujJR8gIoNUdU6YYzPGmMi65JJIR1CnVWa2y3dE5BxV3QggIiNwQ5wcW/5hxhhTw/3yl5GOoE6rzJhl1wPvi0hrETkDN87VGRUcY4wxxlRJhRWUdynvJtwgkuOBU71BOiOiSVYWvPyySxQWQno6vPaaS+/Z49JveuNm7tzp0u++69K5uS790UcuvXmzS3/6qUtnZbl04Hrz2rUuPX26S69Y4dKzZrn04sUuPce72rlwoUsvXOjSc+a49OLFLj1rlksHeiFOn+7Sa70e+5Mnu3SWV7yffurSm70pgT76yKVzc1363XddeudOl37zTZfe4z2y9tprLl1Y6NIvv+zSAc89d/AaO8A//wmnn34w/cQTcM45B9N//StcEDRDxMMPw5gxB9P33w9XXHEwfc898ItfHEzfeSeMHXswffvt8JvfHEyPG+eWgN/8xu0TMHasyyPgF79w5wi44goXQ8CYMXR8442D6QsucJ8h4Jxz3GcMOP10VwYBo0e7MgpIT6813734wP51+LtXdP2vWbF5FzNW5rDqsutYdMHVvLZ0Hzf9ewHTRl/EJz+9nCU9+7OkZ3+mjTiPT866mlveXMhD/1vGqjMvZO0Nt7Jxx15UNeR3j4eDZn2p4d+9vuPGhfd3rwzl9eL7iEPnZ2mCmz/mBRFBVc8JfaQxxkSPgsJiduQVsCs7n1feX8za3HzOnL2eot17uOfxGQDcs9I97zRzUxGtdu/g1IIiihrWY/qQMxCBbqu/I7+giDmZ28jO20f39TvZtONHHnt4KvGN6/PM2q00bLKdllt30ynRni/zS3kP6paePvoQqjo9LBFVwJ6DCs2e3wjNyiW02louBYXFfL9xJ4uydrBkUx5LNu1kTc5uikvc71yzRvXomhxHt6SmdElqSqekprSJb0RKs4akNGvE7FlfVlguqsq23fvJ3LqbpT/uYummncxcvZX121zr8dh28Vw0sD3nHt+O+Cb1w/2Rq0XUPQcVqQrIGGMqK3tXAfPXbWdu5nbmrd/O4o07KSx2lVHr5o3o3bY5p/VpQ++2zendtjntEhrj5sKspMAlyvoHKxoRITGuIYlxDRnQqeWB9Zm5u5myPJt35m3gng+W8JdPV3DlkE5cO6wLSXENffm8dU15l/g+VtWzyju4MvsYY4xfsrbtYebqXL79YRtz120/0GppUC+G49vHc+2wrgzo1IJ+HRP8qRROPdW9ZmRUuGvnpKZcO6wL1w7rwuKNO3l6+hqenr6Gl2dmckN6N8YO70qj+hEZgKfGKq+b+TAR+bCc7QIc43M8xhhzQM6ufcxak8us1VuZtTaXrG1urICkuAYM6NSCKwd3YkDnFvRu25yG9cLw43/ddUd1WJ928Tx1WX/GZefz6Ocr+NsXK3ln/gYeveh4BnZuWXEGBii/gjq3EsfblBvGGN/kFRQye+02Zq7OZdaaXFZuyQfcvaMhXRO59qQunNQ9ie4pcUd2qe5oBfcMPArdU+L41xUD+GpVLne+9x0XP/M1v07vzi2n9iQ2phrir+HsHpQxJmIKCouZt247M1fnMnPNVr7fsIMShUb1YxjUuSXn9WvHSd2S6NMuPjI/6IFu802aVCmbYT2S+N/Nw5nw4RKemraa7zfu5Mkx/WpNJ4pwqcxIEsYY4wtVZXV2PtNX5jB9ZQ6zf9jG/qISYmOEvh0S+O3I7gzplkT/TgnhuWR3pM7wxiSoxD2oisQ1rMcjFx1Pv44tuPfDxfzsnzN59boTaZdgk5OXxSooY0xY7dxbyKzVuUxfmcOMlTls2lkAuMtfV5zYiWE9EjmhSyJxDaPw5+iGG3zP8rITO9I9JY5rJ87hon/N4tXrTqRbcpzv56kNyv1GiEg/oBuwRFWXVU9IxpiarKRE+X7jTmZ4raQFWTsoLlGaNazHSd2TuPGUZIb3TK4ZLYcwDRZ7QpeWvDl2CFe9OJtLnvmaSb8aQlerpA5TXjfze4ArgHnAX0TkIVV9rqz9y8jjNNzYfbHA86r6cKnttwLXAUVADnCNqq47so9gjIm07F0FfLkylxmrcvhyVS7bdrv+U8e1j+fX6d0Y3jOZvh0SqB9bmeE/o0hgKKf4eN+zPqZtc9781RAufvprrnzhW96+YQht4mtApV2NymtBXQL0VdU9IpIIfApUuoISkVjgH8CpwAZgjoh8qKpLg3ZbAAz0znED8BfvvMaYKFZcoizM2s605TlMW5HNkk15gOv+nd4zmRGpyQzrnkRiTX9A9VyvM7MP96BC6ZYcx8u/OIFLn/uGK1/4lnduGEp8Y+s4EVBeBVWgqnsAVHWriBzpnz4nAKtVdS2AiPwH13X9QAWlqtOC9v8G12IzxkSh7bv3M2NVDlOXZzN9ZQ479hQSGyMM6NiC3/00lRE9kzmmTXNialP36ZtuCvspjm0fz7NXDeCqF77lljcX8vxVA2tXGVZBeRVUt6AHdaVUujKDxbYDgkc93wCcWM7+1wL/qyBPY0w1UVWWbMojY0U201bksGD9dkoUEps2YFRaCqPSUji5e3Lt7ip9/vnVcpqh3ZK49+xj+L8PlvDY5JXc9pPUajlvtAvbYLEichHwU1W9zktfCZygqjeG2PcK4LfACFXdF2L7WGAsQHJy8oBJkyaVd+o6KT8/n7g4u8lampVLaGWVy94iZenWYhblFPNdTjE79rnfhy7NYzguOZbjk2PpHB9DTHU8JBsBpculvncPqjAM96BKU1VeWrKfGRuKuLl/Q/qlRE+vxnD/Pxo5cmTIwWLLrKCqSkSGAONV9ade+k4AVX2o1H6jgb/jKqfsivK10cxDq62jU1eVlUtogXJRVdbk7PZaSdl8+8M2Cotdj7vhPZNJT00mPTWF5GY1/F5SJR32fQm8D9M9qNL2FRVz/j9n8ePOAj4ddzIpzRpVy3krEnWjmftgDtBDRLoAG4ExwGWlguoHPAOcVpnKyRhTdQWFxXyXU8S0DxYzbUXOgQFXe7aK45phXRiZmsKATi1qXo+7cLjttmo9XcN6sTx+SV/O+vtX/OHt73jx6kHVM6RTlApbBaWqRSLyW+AzXDfzF1V1iYjcB8xV1Q+BR4A44C3vH2G9TYRojP82bN/DtBU5ZCzPZuaaXAoKS2hUP4uTuiXxy+FdGZmaTPsWVRvOp1Y6++xqP2WPVs248/Q0xn+0lNdnr+eKwZ2qPYZoEdaLnKr6CfBJqXX3BL0ffdhBxpgqKywuYd667Uxb7i7dBQZd7diyCWMGdaTlvh8Ze95Im/6hIoEp71u3rtbTXjWkM1OWZ/PQJ8sY3asVreOj41JfdTviCkpEHsRN/f68qm71PyRjzNHI3lXA9BU5ZKzIYcaqHHYVFFE/VjihS0suHtiBkWkpdE1qioiQkZFjlVNljBnjXqvpHlRATIzwp/P68JPHZnD/x0v5x+X9q/X80eJoWlDf4oY/egy4yt9wjDGVVVKifLdxJ1OXZ5OxIpvvNrgeZynNGnJGnzaMTEvhpO6JNGtUi7uBh9sdd0Ts1J0Sm3LjqO789fOVXLgim5GpKRGLJVIqGosvFrhJVR8LrFPV98MelTEmpJ17CpmxKodp3sOyW3fvRwT6dUjg9p/0JD01hd5tm9fpG+u+Ou20iJ7+l8O78t6CjdzzwWK+uGVEnWv1lltBqWqxiJyLay0ZY6pZYHqKKcuzmbo8m3nrtlNcoiQ0qc+InsnuYdkeybRs2iDSodZOWd5YAx06ROT0DevFcv95fbjsudm8OPMHfp3ePSJxREplLvHNFJGngDeB3YGVqjo/bFEZU4cVFBYz+4dtTF22hakrsg9Mc96rTXOuH9GVUWkp9O3QwmZkrQ5XXuleq/keVLCh3ZIY3SuFf2Ws4dJBHWlRh/4YqUwFNdR7vS9onQKj/A/HmLppS14BU71W0lerctlbWEyj+jGc1C2J60d0Y2RqCm1rwvQUtc3dd0c6AgB+99M0TntiBv/MWM0fzzwm0uFUmworKFUdWR2BGFOXHOjg4LWSFm90o4G3S2jMBQPacUpaK4Z0S6xz9xyizujoeBImtXUzLujfnomz1vHzoZ3rzDNrFVZQItIKeBBoq6qni8gxwBBVfSHs0RlTi+wqKOSrVblM8Xrd5ebvJ0agf8cW/P60VEalpZDaqpl1cIgma9e6165dIxsHcMupPflw0SYe+2IVj158fKTDqRaVucT3MvAS8EcvvRJ3P8oqKGMqkJm72+vgsOXAOHfNG9VjRGoKp6SlMKJncp26p1DjXHONe43gPaiAdgmNuWpwJ16c+QM3ndKdTolNIx1S2FWmgkpS1UlBg70WiUhxmOMypkbaX1TC3MxtB+4nrc11/Yp6pMRxzUldGJXmxrmrZ+Pc1QwTJkQ6gkOMHd6VV75ex9PT1/LQ+cdGOpywq0wFtdubUVcBRGQwbiQJYwyQm7+PjBXu2aQZK3PYta+IBrExDO6WyFVDOjEqrRUdE+vGPYNaZ0S5sw5Vu5TmjbhwYHvenruBcaN70Kp57R4CqTIV1G3Ah7gJC2cCycCFYY3KmCimqiz9MY+py7KZsjybRRt2oOpGcDjzuDaMSkvhpO5JNG0YPfP5mKMUmNonNXomELx+eDf+8+16nv9yba3v0VeZXnzzvMkLU3Ez665Q1cKwR2ZMFNmzv4hZq7cyZXk205ZnszmvAIDj28cz7pSenNIrpfZNd27gV79yr1FwDyqgY2ITzjm+La/PXs9vRnYnoUntvYdZmV58XwIzgC+BmVY5mboia9sepq1w95JmrdnK/qISmjaIZXjPZEampZCemhw1E8qZMHnwwUhHENIN6d15f+EmXp6VybjRPSMdTthU5hrEz4FhwAXAIyKyD/hSVW8Ja2TGVLOi4hIWZO1gyjLXSlqxZRcAnRObcMWJnRiVlsIJXVrSoJ51cKgzhg6teJ8ISG3djFPSUnj163VcP6JbrX1erjKX+NaKyF5gv7eMBHqFOzBjqsOOPfuZvjKHqd7gqzv2FFIvRhjUuSV3n9mLUWkpdE2Oi3SYJlIWL3avffpENo4Qrj25C5c9N5sPFm7kkkEdIx1OWFTmEt8aIBd4A/fs042qWhLuwIwJB1VlVXa+6wa+LJu567ZRotCyaQNGpaVwSlorTu6ZRHObosIA/Pa37jWK7kEFDOmayDFtmvP8lz9w8cAOtfIB78pc4nsSd4nvUqAfMF1EZqjqmrBGZoxPCgqL+WbtVqYtd73uNmx3g68e06Y5vxnZnZFpKRzfPsEGXzWHe+SRSEdQJhHhmmFduP2tRcz+YRuDuyZGOiTfVeYS3xPAEyISB/wCGA+0B2rnRU9TK2zeWcC0FdlMml/ADVO+ODD46rDuSfw6vTsj05JpE2+Dr5oKDBoU6QjKddZxbbjvoyX8+9v1dbOCEpFHcS2oOOAb4B5cjz5jokbw4KtTlmezZJMbfDWxkXDhgI6M6pXCkK42+Ko5QgsXute+fSMbRxka1Y/l/P7teWP2esafvb/WDZtVmUt83wB/UdUt4Q7GmCOxq6CQL1flHpjyPDD46oBObvDVU9JasWnZXEaOjL4b3KaGGDfOvUbhPaiAMSd04OVZmbwzfwPXnRz5QW39VJlLfG+JyDkiMtxbNV1VPwpzXMaE9EPubqYs28K0FdmHDL6anprCKb1SGN7j0MFXf1xu95VMFTz+eKQjqFBa6+b075jAv79dz7XDutSqzhKVucT3EHAC8Lq36iYRGaqqd4Y1MmM4OPhqYMrzH4IHXx3WhVPSWtG/Y4INvmrCI0ov7ZV26Qkd+d3b3zEnczsndGkZ6XB8U5lLfGcCfQNdy0VkIrAAsArKhEVg8NWpy7cwY2Uu+d7gq0O6JXL10M6MSkuhQ0sbfNVUgzlz3GvUd5Zoy30fL+Xf366vcxUUQAKwzXsfX9nMReQ04Alcj7/nVfXhUtuHA48DxwFjVPXtyuZtag9VZcmmvANTVAQPvnr28W0YmWqDr5oI+d3v3GsU34MCaNwglp/1a8d/5mQx/pzexDeuHc/xVeZ//EPAAhGZhhssdjiVaD2JSCzwD+BUYAMwR0Q+VNWlQbutB64Gbj/CuE0Nt2d/ETNXb2Xq8i1MW57D5rwCROC49gncMrono9JS6N22ea26nm5qoKeeinQElXZB//a88vU6Pl38Y60ZWaIynST+LSIZwCBcBfUHVd1cibxPAFar6loAEfkPcC5woIJS1Uxvm41MUQcEBl+dsiybr9e6wVfjGtbj5B5JjEpLIT01heRmDSMdpjEHReEQR2U5rn08XZKa8v6CTbW/ghKRFOAuoDvwPfCQquYdQd7tgKyg9AbgxKMJ0tRMRcUlzF+/w7t0t4WVW/IBN/jqlYPd4KuDOtvgqyaKzZrlXqN00NhgIsJ5fdvx+JSVbNqxl7YJNf9B9PJaUK8A84C/A2fhhjy6+gjyDnVtRo/g+IMZiYwFxgIkJyeTEeXXgyMhPz8/Ksolf7/yfW4xi3KK+D63mN2FECvQs0UMl6Y14PjkWFo3FSCbwg3ZzNoQ5niipFyijZVLaKXLpa/3HNTCGtDdHKD1vhJU4fF3v+SMrv49tBup70t5FVRrVf2j9/4zEZl/hHlvADoEpdsDm44wDwBU9VngWYDU1FRNT08/mmxqtYyMDCJRLqrKyi35B1pJ89Ztp0QhsWkDTju2Daf0SmFYj8gNvhqpcol2Vi6hHVYub74JQHoUzahbkf+sm8l3ecX8JX14xTtXUqS+L+VVUCIiLTjYEooNTqvqtjKPB5C2hwAAEy9JREFUdOYAPUSkC7ARGANcVsV4TRQoKCxm9g/bmLJsC1OWZbNxhxt8tXdbN/jqKG/wVZtd1tR4NahiCjivbzvu/XAJyzfnkda6eaTDqZLyKqh43CW+4F+ZQCtKgXLH1FDVIhH5LfAZrpv5i6q6RETuA+aq6ociMgh4D2gBnC0iE1S191F+FhNG2XkFBzo4fLU6lz37Dw6+6kYEt8FXTS00fbp7HTEisnEcgbOOa8N9Hy/l/QWbuOP0WlpBqWrnqmauqp8An5Rad0/Q+zm4S38mygSeTZqyzF26W7RhJwBt4xtxfv92nNKrlQ2+amq/e+91rzXofl1iXEOG90jiw4Ub+f1PU2v0lQx78tEcsHd/MTNX5zJl+RamLs9mS94+RKBfhwR+99NURqWlkNa6mT2bZOqOF1+MdARH5bx+7bj5PwuZt347gzrX3JElrIKq4zbu2OvNLruFWWu2ss97Nml4zyRGpbUiPTWZpDh7NsnUUV1r5ujgo9JSaBAbw6eLN1sFZWqO4hJl0YYdTF3mZpdd9qN7tK1jyyZcdmJHRvdqZc8mGRMwebJ7HT06snEcoWaN6jOsRxKfLt7M3Wf2qrFXPSpVQXm99zoE76+qR9rt3ETIroJCvlqVy+Rlbt6krbv3ExsjDOzUgrvOSGNUWiu6JTetsV9iY8LmT39yrzWsggI4rU9rpi7P5v/bu/fwqOo7j+PvT7jJ/ZZMQBC5k1CrIl5AUSDRFVuttsXKbm1rL+tun7qPtW77aG/r9rZ2d13rre26WrHWqq1otdZaFQSsbbXiNRgIiFKoQAii3MRA8t0/fr/BaZgMQ0gyM5nv63nynDkn50y+5/cwfOd3zu98fzV/3cb7R2ZdQjWvZDPdxrcJD+i+ynsP2hpQ1XFhuUO1dsvOOMChnqdf28KeJmNg7x7MmlRGVUWCmRPLGNSna82+6Vy7u+OOXEfQZmdUltOtRPy2ZkPXTVDAx4BxZtbY0cG4tmtqNp5es4VFK8Klu9X1oazQ+EQ/PnPKGKoqEkw9crDPm+TcwTjiiAPvk6cG9+3JtLFDeKRmI18+c1JBXiHJJkHVEKbbqO/gWNxBenvXHhbXhWeTFr6yi517/kSPbuKkMUP5+EmjqKpIcOTQvrkO07nC9cgjYTlnTm7jaKM5Rw3nG7+qYVX9DiaW9891OAftYKbbqAHeTW40sw91WFQuLTPj1c1hyvOFK+pZtnYrTc3G0L49mZLozsdnHc2MCaX0z1FZIee6nKvjFHYFmqDOnFzONx+o4bcvb+yyCep24PuEiuY+LUYna9zbzDOvvbnv2aS1W3YBUDl8AJ+fOY6qygTHjhzE0qVLmPX+4TmO1rku5u67cx3BIUkMOIypowbzyPKNXHr6hFyHc9CySVANZnZ9h0fi9kk75Xn3Ek4ZN5R/PHUsVRWJLlFK37m8N2xYriM4ZHOOGsZ3flPL2i07C+6SfzYJapmk/wAe5G8v8fkw83ZiZqzYuH3fpbsX1oUpz8sH9OKcYw6nuiLByeOH0qenP7bmXKf69a/D8pxzchvHIUgmqN8t38jFp43LdTgHJZv/8abE5bSUbT7M/BDt3tPEH1/dEi7d1dbzxtu7AThm5EC+WD2R6kqf8ty5nLvmmrAs4AQ1cnAfKob15/Ha+q6XoMxsdmcEUgw2bdsdhoHX1vPU6gbe2dNEn57dmDG+lEtPn8DsSQkSAw7LdZjOuaR77811BO3ijMnl3PTEarbubGRw38J5/jGbB3XLge8Bh5vZWZImA9PN7NYOj67ANTcbNW+8HYaBr9hEzV9DWaERg3pz/vEjqa4s56QxQ7wiuHP5qrQ01xG0i+rKcm5YtJrFdfV8eErhTCCRzSW++cBtQHJ23TrgHsATVBq7Gvfy+1UNoYrDyno2b3+XEsFxowbzlTmTqK4oZ2J5P79051whuO++sPzIR3IbxyE6esRAyvr34vFXul6CKjWzX0i6EvZNRNjUwXEVlPVbd+27dPfHNVto3NtM/17dOW1SGdUVCWZNSjCkgLrVzrno+jiAucATVEmJqK5I8NBLG2jc21wwxaCzSVA7JQ0l1uGTNA14u0OjynNNzcYL67buq3W3YuN2AEYP7cMnph1JdWWCE0YPoYeXFXKusD3wQK4jaDdVFQnu/vM6lq3dyvRxQ3MdTlaySVBfIgwxHyfpKaAMOL9Do8pD23bv4cm6BhbWbuKJlfVs3bWHbiXixNFD+PoHK6mqSDC2rF+uw3TOtaeBhVlkNZ2Tx5fSvUQsqdvcpRLUcmAmMAkQsBIoiq7Baw2hrNCiFfU889qb7G02BvXpwexJCaoqEpw2sYyBvb2skHNd1j33hOUFF+Q2jnbQr1d3ph45mCV1m7nirIpch5OVbBLUH83sOEKiAkDSc8BxHRZVjuxpaubZ17eyaEV4YHbN5p0ATCzvx+dOHcvplQmmjBpMtxIf4OBcUfjRj8KyCyQogJmTyvjPR1ZSv213QTzS0mqCkjQMGAH0ljSF0HsCGAD06YTYOsXWnY0sqdvM47WbWFK3me2799KzWwnTxg3lU9NHU1WR4IghXeZ0nXMH4+GHcx1Bu5o5MSSopasamDs1/0fzZepBnUmYqHAkcA3vJajtwFc7NqyOY2asqt8RBzhsYtnarTQblPbrxVlHDaOqopwZE0rp18vLCjlX9Pp0rS+nk4cPoKx/L5bUbS7sBGVmtwO3S/qomS3oxJja3bt7m3h6zZtxMr9NrHvzHQDed/gALpk9nurKct4/YiAlfunOOZfqZz8LywsvzG0c7UQSp00oY+GKTTQ1W97frsimmzBS0gBCz+n/CPeerjCzRzs0skO0efu7PLGynkW19Ty5ajM7G5vo1b2EGeNL+fzM8cyuKGP4QK8I7pzL4JZbwrKLJCiA0yaWsuC59by0/i2mjBqc63AyyiZBfcbMrpN0JpAAPk2oLJFXCcrMeGXDNhbV1vP4inpeXPcWAMMHHsZ5U0ZQXZlg+thSevf0skLOuSw99liuI2h3p04oQ4KldQ1dIkEl+4AfAG4zsxeVZZ0eSXOA64BuwC1mdnWL3/cCfgpMBbYAF5jZ61nGzu49TTy1uoGFK0JPaeO23UhwzMhBXH7GRKoqE0we7hXBnXNt1KPrPUYypG9Pjh45iCV19Xk/iWG280E9CowBrpTUnyxm1pXUDbgJOANYD/xZ0oNm9krKbp8FtprZeEnzCDP3ZhzP2WRw59NrWVRbz1OvNrB7TzN9e3bj1AllVFeGskJl/XtlcVrOOXcA8+eH5UUX5TKKdjdzYhk3LlrFW7saGdQnf8uwZZOgPgscC6wxs12x7NGnszjuRGC1ma0BkHQ3cC6QmqDOBa6Kr+8FbpQkM7PW3nTd9ma+dn8NRwzpzbwTRlFdmeDEMUPo1d0v3Tnn2lkXTlDXL1zF71c3cPbRh+c6nFYpQy4IO0j3Eu45/dbMDthzSjluLjDHzD4X1z8BnGRml6TsUxP3WR/XX437NLR4r4uBi+PqUUBNtnEUkVKg4YB7FR9vl/S8XdLzdkmvo9vlSDMra7kxmx7Ujwk9pusl/RKYb2Yrsjgu3Y2fltkwm30ws5uBmwEkPWtmx2fx94uKt0t63i7pebuk5+2SXq7a5YA19czscTP7OGF4+evAY5L+IOnTkjLdQVwPHJGyPhJ4o7V9JHUHBgJvZh++c865riqroq/xvtNFwOeA5wkj844DMo3B/DMwQdIYST2BeYSq6KkeBD4VX88FFmW6/+Scc654ZDPl+31ABXAHcI6ZbYi/ukfSs60dFyc2vAT4HWGY+U/MbLmkbwHPmtmDhFl575C0mtBzmpdFzDdnsU8x8nZJz9slPW+X9Lxd0stJu2QzSKLKzBZ1UjzOOecckOESn6QTJA1LJidJn5T0gKTrJQ3pvBCdc84Vo0z3oP4XaASQdBpwNaHqw9t4N9g551wHy5SguplZckTdBcDNZrbAzL4BjO/40PYnaY6klZJWS7oiFzHkA0k/kVQfnyNLbhsi6TFJq+Iyv4tstTNJR0h6QlKtpOWSLo3bi71dDpP0jKQXY7v8e9w+RtLTsV3uiQOZio6kbpKel/RQXC/6dpH0uqSXJb2QHGeQq89RxgQVh34DVAOp96E6fbKklNJJZwGTgb+XNLmz48gT84E5LbZdASw0swnAwrheTPYCl5tZJTAN+EL891Hs7fIuUGVmxxAqwsyRNI1QVuza2C5bCRVjitGlQG3KurdLMNvMjk159iknn6NMCeouYImkB4B3gCcBJI0nXObrbPtKJ5lZI5AsnVR0zGwp+z8vdi5we3x9O3BepwaVY2a2wcyei6+3E/7TGYG3i5nZjrjaI/4YUEUoLwZF2C4AkkYCHwRuievC26U1OfkctZqgzOy7wOWEb+szUp5PKgH+peND288IYF3K+vq4zQXlyUcA4jKR43hyRtJoYArwNN4uyctYLwD1hGcXXwXeMrO9cZdi/Sz9APgK7xW/Hoq3C4QvMI9KWhbLzEGOPkcZL9WZ2Z/SbKvruHAyyqoskitukvoBC4Avmtk2n2oFzKwJOFbSIOB+oDLdbp0bVW5JOhuoN7NlkmYlN6fZtajaJTrFzN6QlCBUDsqmtF2HyKqSRJ7IpnRSMdskaThAXNbnOJ5OF0tvLQDuNLP74uaib5ckM3sLWEy4Rzco5R5zMX6WTgE+JOl1wu2CKkKPqtjbBTN7Iy7rCV9oTiRHn6NCSlDZlE4qZqlloz4FPJDDWDpdvH9wK1BrZv+T8qtib5ey2HNCUm/gdML9uScI5cWgCNvFzK40s5FmNprwf8miWHO0qNtFUl+FOf+Q1Bf4O8LsETn5HB2wkkQ+kfQBwrecZOmk7+Y4pJyQdBcwi1ACfxPwb8CvgF8Ao4C/AOenPCbQ5UmaQRjI8zLv3VP4KuE+VDG3y9GEm9rdCF9If2Fm35I0ltBzGEKor3mhmb2bu0hzJ17i+1czO7vY2yWe//1xtTvwczP7bqzH2umfo4JKUM4554pHIV3ic845V0Q8QTnnnMtLnqCcc87lJU9Qzjnn8pInKOecc3nJE5QreJK+Fit1vxQrMJ/Uhve4SNLhHRDbfEn/1GLbeZIePsBxO+JytKR/aO+4Mvzd0ZLWSyppsf0FSSe22HaVpL9K+taBjpN0maS/SLqxM87DdQ2eoFxBkzQdOBs4zsyOJjyIui7zUWldBLR7giIUXZ7XYtu8uD0bo4FOS1Bm9jqh/U5NbpNUAfQ3s2fSHHKtmX3zQMeZ2bXANzsydtf1eIJyhW440JB8mNLMGmIdsWpJyQcOkXSGpPti4dT5kmrinDeXSZoLHA/cGb/x95Y0VdKSWDDzdyllXhZLulbSUoW5p06I77tK0nfSxPc4UJFyfB9CEv1VXP9SjKVG0hfTHH81cGqM67LYU3lS0nPx5+T4PiWSfhh7kg9JejieF62dSwYtk2q2CbWtxzmXnpn5j/8U7A/QD3gBqAN+CMyM2wWsAMri+s+Bc4CpwGMpxw+Ky8XA8fF1D+APKcdeQKhcktzv+/H1pYRabcOBXoR6kUPTxHgTcGl8PQ/4ZXw9lVD5om88j+XAlPi7HXE5C3go5b36AIfF1xOAZ+PrucDDhC+dwwhzGc3NdC4Z2nQYsAHoHtdrgaPS7HcVoQJDVscReqk35vrfjP8Uzk+nTzzoXHsysx2SphIuLc0G7pF0hZnNl3QHcKGk24DpwCeB/sBYSTcAvwEeTfO2k4CjCJWcIZQJ2pDy+2QNyJeB5RanIZC0hlDQeEuL97sL+C/gOkKC+mncPgO438x2xuPvi+fxfIZT7gHcKOlYoAmYmPJevzSzZmCjpCeyPJf9mNlGScuBakmbgD1mVpPpmEM5zrnWeIJyBc/CdBKLgcWSXiYUs5wP3Ab8GthN+M97L7BV0jHAmcAXgI8Bn2nxliIknumt/MlkbbbmlNfJ9XSfqaeA4fHvnsx7l8HaMhfIZYT6i8cQeku7D/BeBzqX1iQv123i4C7TtfU45/bj96BcQZM0SdKElE3HAmth37QBbwBfJyQsJJUCJWa2APgGcFw8bjuhdwWwEiiLAzCQ1EPS+9oao5kZodDm7cDDZpZMKkuB8yT1iZWjP0ycuTpFalwAA4ENsaf0CUKPCOD3wEfjvahywqXBjOci6RJJl7QS9gLgA4RLgncfxOm29Tjn9uM9KFfo+gE3KEwpsRdYDVyc8vs7CfdfXonrI4DbUoZDXxmX84EfS3qHcDlwLnC9pIGEz8kPCPeI2uou4MvAFckNZvacpPlAcnTcLWbW8vLeS8BeSS/GGH8ILJB0PmFqiJ1xvwVANWFqhDpCFfe3zawxDpZIdy4VhN7dfszsLUl/Isyk+lq2J9nW45xLx6uZuy4tPnfzvJndmutYOpqkfvGe3FBC0jvFzDZm2P8h4CNm1tjGv3cVYTDHf2e5/0WEgSit9dqc+xveg3JdlqRlhB7G5bmOpZM8FHuSPYFvZ0pOAGZ29iH+vR3AxZIGmFnGZ5wkXQb8M6Gn51xWvAflnHMuL/kgCeecc3nJE5Rzzrm85AnKOedcXvIE5ZxzLi95gnLOOZeX/h/mjAJT2KK/QAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pvsys.plotSys() \n", + "print (\"Pmp: %f [W], Eff: %f [%%], FF: %f [%%]\" % (pvsys.Pmp, pvsys.eff * 100., pvsys.FF * 100.))\n", + "print (\"Imp: %f [A], Vmp: %f [V], Isc: %f [A], Voc: %f [V]\" % (pvsys.Imp, pvsys.Vmp, pvsys.Isc, pvsys.Voc))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Values with our irradiance profile:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pmp: 183.658038 [W], Eff: 19.571828 [%], FF: 80.869192 [%]\n", + "Imp: 4.310297 [A], Vmp: 42.609142 [V], Isc: 4.710711 [A], Voc: 48.210363 [V]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXxU1fn48c+ThTWsSdiXkASCiAoKskNArLigrUvd9621reXrUpevbdW2ar/VVq3d3BValaq14M8N1CCyg6CCrAlL2JOwhjXL8/vj3CFDyAa5k5lJnvfrdV83Z+bec88chjy555x7jqgqxhhjTKSJCXcBjDHGmIpYgDLGGBORLEAZY4yJSBagjDHGRCQLUMYYYyKSBShjjDERyQKUMRFGRLJE5JZwl8MPIvKgiLx4gucWikiq32Uy0cMClAkpERkuIrNFZLeI7BCRWSIysJZ5rhORsX6VsZprpYiIikhcBe91FpFiEUmr4L3/iMiTleTZSEQeFpHVIrLP+zwvi0iK/5/gxInIqyLy29rkoaqPqWq1wbaioKyqCaqaU5vrm+hmAcqEjIi0BN4H/gy0BToDjwCHwlkuv6jqJuBT4Nrg10WkLXAe8Folp74NXAhcBbQCTgMWAWf5XUYRifU7z+O49jFB3Zjjoqq22RaSDRgA7KrkvcbADuCUoNfaAQeAZCAJF9x2ecfNxP1BNREo9Y4rBH7hnTsYmO0d/zWQGZRvFvBb7/1CYCqQCPwT2AMsAFIqKWcKoEBcJe9fBWSXe+0O4KtKjh/rlb1rFfWWBfwGmAXsBT4BkoLe/zewFdgNfAGcHPTeq8DfgA+Afd71zgcWe581F3i43PWGB9VdLnADcBtQBBwO1Jl3bCfgHSAPWAvcGZTPw7jgO8m71i3ea5O895t47xV411oAtAd+B5QAB71rPecdr0C693NT4Clgvfe5v/ReqzDPcH/3bfNnC3sBbKu/G9DS+8XxGnAu0Kbc+38Ffh+U/nnQL8LHgb8D8d42AhDvvXXA2KDzOnvXOQ8XxM720sne+1nAGiANd8fyHbDK++UdB7wOvFLJZ0ih6gDV1PuFOTzotTnAhEqOfwKYUU29ZQHZQC8v/yzgiaD3bwJa4IL808CSoPde9cozzKuLJkAmcIqXPhXYBnzfO74bLghe6dVzItAvKK/fBuUdg7vT+xXQCEgFcoBzvPcfxgW173vHNuXoAHU77o+DZkAscAbQMugz31KuHoID1F+8Yzp75w71Pn+ledoW/Zs18ZmQUdU9uL/OFXgByBORKSLS3jvkNeAqEQl8D6/F3SGB+0XXEeiuqkWqOlO931QVuAb4QFU/UNVSVZ0GLMQFrIBXVDVbVXcDH+LueqarajHujqT/CX7GA9751wGISE/cL8l/VXJKIrClBlm/oqqrvPwnA/2Crvmyqu5V1UO4AHCaiLQKOve/qjrLq4uDqpqlqt966W+AN4BR3rFXA9NV9Q2vngtUdUklZRqIC/qPquphdf1DLwBXBB0zR1Xf8651oNz5Rd7nT1fVElVd5H1HquR9P24Cfq6qm7xzZ3uf/4TyNNHBApQJKVVdrqo3qGoXoC+uiehp7715uGaoUSLSG0gHpnin/gF31/OJiOSIyP1VXKY7cJmI7ApsuMDYMeiYbUE/H6ggnVDdZxGRbt7IskIRKQx66zXghyLSBBdkP1LV7ZVkU1CuXJXZGvTz/kD5RCRWRJ4QkWwR2YO7mwTXJBqQW67cg0TkcxHJE5HdwI+Cju+Ku1urie5Ap3L1/CCuma7Ca5czEfgYeFNENovI/4lIfA2um4S7E6yonCeap4kCFqBMnVHVFbhmo75BL7+GuwO6FnhbVQ96x+5V1btVNRUYD9wlIoFBBOXvpHKBiaraOmhrrqpP+Fz+DepGliWoakLQ6zNxgeci77O8XkU204EzRaTLCRbjKu86Y3HNlSne6xJc1HLn/AsX+Luqaitc02ng+Fxc02dFKqrnteXquYWqnlfFOWVvuDu0R1S1D66J7gK8O8+qzgPycf1Tx5SzmjxNlLMAZUJGRHqLyN2BX8Yi0hXX1zE36LCJwA8o94tdRC4QkXQREVyHe4m3gbv7CX4+ZhIwXkTO8e4wmohIZi2CwIl4Hfg90BrXJ1IhVZ0OTAP+IyJniEiciLQQkR+JyE01uE4L3CjIAly/y2M1PGeHqh4UkTNxQS7gn8BYEfmhV5ZEEQk0J5av5/nAHhG5T0SaenXdt6aPDYjIaBE5xRtZuAfXPFfZv+kRqloKvAz8UUQ6edcdIiKNq8nTRLlaBygROb0G2yl+FNZEnb3AIGCeiOzDBaalwN2BA1R1I/AV7i/omUHn9sTdbRTiBh38VVWzvPceBx7ympnuUdVc3F3Fg7jRZbnAvdTtH2Cv4wYcvOX1jVTlUtwou7dwAxqW4kY8Tq/hddYDm3CDPeZWfTjgRhU+KiJ7cQMcJgfeUNUNuL66u3GjJZfghr0DvAT08er5PVUtwd3N9sON4MsHXsTdydVEB9wovz3AcmAG7o8LgGeAS0Vkp4g8W8G59wDf4kbp7cD9MRBTTZ4mygVGRZ14Bu5Lv4CjmxjK66GqKbW6kKm3RORlYLOqPhTushhjIocfD9ItUNUxVR0gIp/5cB1TD3mzJ1zMCY6iM8bUX7VuAqkuONX0GNPwiMhvcM1bf1DVteEujzEmstS6ia/CTN3cZFcCV6hq3+qON8YYY8rzrRNZRDqKyAQRmQ8swz3VfaVf+RtjjGlY/BgkcSsuEHXBjQ6ajHuSvUfti3es1q1ba3p6eiiyjnr79u2jefPm4S5GxLF6qZjVS+V8qZu8PLdPTq59gSJEqL4zixYtylfVYyrKj0ESf8ENA75KVRcCiIj/7Yae9u3bs3DhwlBlH9WysrLIzMwMdzEijtVLxaxeKmd1U7FQ1YuIrK/odT8CVCfgMtxDdO1xd1A21Ygxxpha8WMUX76q/k1VR+LWs9kNbBeR5SJSk6fcjTGm/hk71m3mhPm6oJg3K8CTwJMiksHRsxwbY0zDcfnl4S5B1Kt1gBKR01X1q/Kvq+pK3OqplR5jjDH11q23hrsEUc+PO6hXRCSTqqc6egmbKcAYY8xx8CNAtcKtsllVgMrz4ToAFBYpU77eTHyMEB8bQ1yst48R4mJjiPfS8bFCXMyx7zfyzomLEdxE2cYYEwKB0W5ZWeEsRVSrdYCq60lg8w8od76x2Je8XNAS4oMCWXxQAAsOgIFj4mJjiPfOOxLwgoJjXExZkKwoeJZ/P5AODq7B1z4mv3JBN9YCrTGR6YYbwl2CqOfrIIm60CUhho/vGsnhYqW4tJSiEqW4pJTiUqWopJTiErcvKvVeL1GKSoNe944/8n5p4PXAMS7fsuPLjjlcXMq+wyVl+ZaUBuVddt7hklKKS0opDdnTYGVEOBK0KC2h6cxpRwJbo7jywbH8XWRQcAwE60CQLhdU42Kl7Lwjx1cdVKt6vywvF3RjYizImnrGAlStRV2AiouB9HYtwl2MGiktLQuOgUAZHESPCarlgmNZ8CwXVCsJuus25NK+Y4djgnT5fPcfLvbyrixIu9cC1wnBdI3HiBGOBL74uJigIFfurrFcMK086JYF6c0bD/NV0aqjgmqcd51j74yPDqo1vTMOpO1u1hxRVOT28fZY6ImKugAVTWJihMYxsTSuo1rOytpOZqb/a0OWlA9gQUH3cElphUG1pkH3qONLSymq5M647JiyIF1YXHzMne6x1ymlqLiUkpzVvtdLRco3G5fv96y46fboZuOy/tWjg2Pld8bl7nCPuTOuuFm54EAp2/cetGbjUDn7bLe3PqgT5ssw86ret+Hl0S82RoiNiaVJfGy4i3JCsrKyGDVq1FF3hUXFRwfHsqBY1kRb/v3DJRXfwRaXKkXFxzYbVx+kK2g2Ln9nXO68Er/bjWd8WuHL1feHHt1sXBZIj202rqyv1gXF8kG6+qAbFyNHgnSlzcqR0Gx8yy3hvX494Mff9k9V8Z4CthaUCTuRwC9DaEp0BlqouNm4ov7S4KBbWbPy0uXLSU3vdUxwLC4JCsbl7nArC54Hi0opKimu8M64uNQF4nA2G8fFBgfPoDvcSppud+88yH+2LqZpvPvDrGmjWJrGx3rpmGNea9Y4juQWjUlOaEyjOG+CnmuuCf2HrO9UNaq2fk2bqr7yiqqq6uHDqqNGqU6c6NL79rn0m2+69K5dLv3OOy6dl+fSU6a49JYtLv3hhy69YYNLT5vm0tnZLp2V5dIrVrj0rFku/e23Lj1/vksvXuzSixe79Pz5Lv3tty49a5ZLr1jh0llZLp2d7dLTprn0hg0u/eGHLr1li0tPmeLSeXku/c47Lr1rl6qqLv3lL1163z73/sSJLn34sEu/8opLBzz/vOpZZ5Wl//IX1XHjytJPP606fnxZ+g9/UL344rL044+rXn55WfrRR1Wvvros/ctfqt5wQ1n6/vtVb721LH333ap33FGW/vnP3RZwxx3umIBbb3V5BNxwg7tGwNVXuzIEXH656uOP6+eff+7SF1/sPkPA+PHuMwaMG+fqIOCss1wdBYwaVa++eztPO823756++eZxffdK/v4PLR4zRvceLNIdhYd0z1NP64Gzztb1+ft0zfa9uvXRJ3T32eP0q/U7dP7aAl17/8O6/Xvn66fLt+pHS7fod3c+oLnfu1AnL9ig/5q3Xhff+j+6+uyL9O9Za/S5z1brnKvv0G/P/oE+9sF3+ujUZfrFJTfrvLGX6D2Tl+iENxfr9POu0c/PukxvfnW+XvvSPP3grB/q+6N/qN//y5d6wbMz9Z0zz9c3R16mZ/5ump7y64/0zX7j9C+DL9Xu972v3e97Xyf3HatPD73iSPrdPpn65PCrtft972v/Rz/Rz/uP0bcvuk2f/M9XOnNVnhZ//wf14rv3+eefh+T3HrBQK/h9b31Qxpg6FxMjIEJC4zhoDDSJh/hYuiU2cwe0bAJN4unfrY1LJzaHhMaM6d3epTu2hG1NuWxAV5f+uA3sTyB9VJpLf54I8fvpe+5JLj0rGQpiOPOy01x6QXs4cIDM6we69DcdATj/jmEAbPo0js7p3bj8QW8uvc3vUNqmLdc9cg4HDpfQbMObHOzQicyfDONAUQndlyWS3qk9cWN7sW3vQZq9H0vvL6fSZfEcLr/ycZ5fsZ2SllvolVdIWnJCiGq1/gnJirqhlJGRoStXrgx3MSKSLRFQMauXilm9VM6XunnrLQ4WlTBnwFg+XLqF95ZspriklKsGdeOuszNo27yRL2WtSyFcbmORqg4o/3pE3EGJSCywENikqheEuzzGGFNrl19OE2A0MLp3O34xrjfPfbaGiXPX88G3W/nT5f0Y1av+LGYYCr4t+V6etwR84xoe/nNgeajKYowxdW73brd5khIa8/CFJ/PBnSNo16Ix1788nyc/Xkm0tWLVpZAFKGAisEJEnqzqIBHpApwPvBjCshhjTN266CK3lZPRoQXv/WQYPxzQhec+X8O9b39DcUlpGAoY+ULaByXuab8+qrqsimPeBh4HWgD3VNTEJyK3AbcBJCcnnzF58uQQlTi6FRYWkpBgHbDlWb1UzOqlcn7UTdIXXwCQP3Jkhe+rKv/NLuK9NUWc0T6WH5/WmLhwP7tVjVB9Z0aPHl1hH5Rvw7+BiTV5rdz7FwB/9X7OBN6v7jq9evVSU7Ejw6nNUaxeKmb1Urm6rJuXv8zR7ve9r3e9tURLS0vr7LonIlT1Qh0MMz85OCEiccAZ1ZwzDLhQRM4DmgAtRWSSqtoTbsaY6Jaf7/ZJSVUeduOwHuw9WMwfp60iuUVj7j+3dx0ULjrUug9KRB4Qkb3AqSKyx9v2AtuA/1Z1rqo+oKpd1C3ZcQXwmQUnY0y9cOmlbquBn41J5+pB3fj7jGwmL8gNccGihx/rQT0OPC4ij6vqAz6UyRhjot/dd9f4UBHh0Yv6sq5gH7/871JO7tySkzu1CmHhooNvo/hU9QER6SwiQ0VkZGA7jvOz1J6BMsbUF+PHu62GYmOEZ67oT+tm8dzxz6/YfaAohIWLDr4FKBF5ApgFPATc6233+JW/McZEla1b3XYckhIa85erTmfTzgM89N7SEBUsevg5SOIHQIaqHvIxT2OMiU5XXOH2x7ke1ICUttx5Vk/+OG0V55/SgXF9O/pftijhZ4DKAeIBC1DGGHP//Sd86o8z0/ho6VYeem8pg3ok0iYK5+3zg58zSewHlojIP0Tk2cDmY/7GGBM9xo1z2wmIj43hyctOY9f+Ih6eWuk8B/Wen3dQU7zNGGNMrjdcvGvXEzq9T6eW/GR0Os98uprLB3RlaHrVz1PVR74FKFV9TUSaAt1U1dbDMMY0bNde6/bH2QcV7MeZaby7eCMPT13GB3eOIC42lNOnRh4/R/GNB5YAH3npfiJid1TGmIbpoYfcVgtN4mN56Pw+rNpWyKS5630qWPTwMxw/DJwJ7AJQ1SVADx/zN8aY6DF2rNtq6Xt92jM8PYk/TlvFjn2HfShY9PAzQBWr6u5yr9lCJ8aYhiknx221JCL8enwf9h0u4Znpq3woWPTwM0AtFZGrgFgR6SkifwZm+5i/McZEj5tucpsPerZvwQ8HdOWN+bls2nXAlzyjgZ8B6me4Gc0PAf8CdgMTfMzfGGOixyOPuM0nPxuTDsBzn632Lc9I58soPhGJBR5R1XuB//UjT2OMiWqjRvmaXafWTblqUDcmzl3Pj0al0T2xua/5RyJf7qBUtYTq134yxpiGY+VKt/nojsw04mKEZz5tGHdRfj6ou9gbVv5vYF/gRVV918drGGNMdLj9drevxXNQ5bVr2YTrh6bw4swcfjI6nbRk/5dfjyR+9kG1BQqAMcB4b7PlM4wxDdNjj7nNZ7eNTCU+NoYXZ9Z+hGCk87MP6htV/ZMf+RljTNQbOjQk2SYlNObSM7rw74Ub+Z+ze9GuRZOQXCcS+NkHdaEfeRljTL2wdKnbQuCWEakUlZby2ux1Ick/UvjZxDdbRJ4TkREicnpg8zF/Y4yJHj/9qdtCoEdSc87p04FJczew71BxSK4RCfwcJBG4n3006DXF9UkZY0zD8oc/hDT720al8tGyrby1IJebhtfPWeX8nM18tF95GWNM1Bs4MKTZn96tDQNT2vDSl2u5bkj3ejnTuW8BSkR+VdHrqvpoRa8bY0y9tmSJ2/frF7JL3DIildsnLuLTFds55+QOIbtOuPgZcvcFbSXAuUCKj/kbY0z0mDDBbSF0Vu92dGzVpN4uxeFnE99TwWkReRJbYdcY01A9/XTILxEXG8MVA7vxp+mrWF+wr95NfxTKRstmQGoI8zfGmMjVr19Im/cCLh/YldgY4V/zNoT8WnXNzxV1vxWRb7xtGbASeMav/I0xJqosWOC2EOvQqglnn9SeyQtzOVhUEvLr1SU/h5kHT2tUDGxT1SoH6ItIV+B1oANQCjyvqhbUjDHR79573d7Hufgqc83g7ny0bCsfLt3CD/p3Cfn16kqtA5SIDASSVPXDcq+PF5HNqrqoitOLgbtV9SsRaQEsEpFpqvpdbctljDFh9dxzdXapoWmJpCQ2459zN9SrAOVHE98fgOUVvL7ce69SqrpFVb/yft7rndPZhzIZY0x49e3rtjoQEyNcNagbC9fvZM32vXVyzbogqlq7DES+VdVTKnnva1U9rYb5pABfAH1VdU+5924DbgNITk4+Y/LkybUqc31VWFhIQkL9nn7/RFi9VMzqpXJ+1E1Lbx6+PXUUpHYdKuWurAOc1yOeS3s1Csk1QvWdGT169CJVHVD+dT8C1BpVTT/e98odlwDMAH5X3fpRGRkZutLnRcDqi6ysLDIzM8NdjIhj9VIxq5fK+VI3gfProA8q4MZX5rNi616+vG8MsTHie/6h+s6ISIUByo8mvuki8jsROao2ROQR4LMaFCweeAf4py1uaIypN/7xD7fVoYtP78KW3QeZm1NQp9cNFT9G8d0NvAisERFvbg9OAxYCt1R1ohfUXgKWq+offSiLMcZEhoyMOr/k2X3a06JxHO98tZFh6Ul1fn2/1TpAqeo+4EoRSQVO9l5epqo1We5xGHAt8G1QcHtQVT+obbmMMSasZsxw+1Gj6uySTeJjOf/Ujkz5ejO/uaiY5o39fJKo7vk51VEOcFxrEKvql4D/DaXGGBNuv/6129dhHxS4Zr43F+Ty0dKtXHJGdA85j+7waowxkerll8Ny2YEpbejatinvLt4Y9QGq/i0gYowxkSA11W11TES4uH8XZmcXsGX3gTq/vp98DVAi0kZETrUl340xDd706W4Lgwv7dUIVPvh2a1iu7xc/Fyz8DXADkI1b6h1syXdjTEP129+6/dixdX7ptOQEendowQffbuHmKF4O3s8+qB8Caap62Mc8jTEmOk2cGNbLn39KR56atootuw/QsVXTsJblRPnZxLcUaO1jfsYYE726dnVbmJx3akcgupv5/AxQjwOLReRjEZkS2HzM3xhjosdHH7ktTIKb+aKVn018rwG/B77Fre1kjDEN1xNPuP24cWErwgWnduTJT1axedcBOrWOvmY+PwNUvqo+62N+xhgTvd58M9wl4LxTXID6cOnWqBws4WcT3yIReVxEhtgwc2NMg9ehg9vCKDU5gZM6tuT/fbM5rOU4UX7eQfX39oODXrNh5saYhmnqVLcfPz6sxTj/lA5R28zn51x8o/3Kyxhjot5TT7l9mANUoJnvo6VbuSnKmvl8a+ITkfYi8pKIfOil+4jIzX7lb4wxUeXtt90WZqnJCfRsl8CnK7aFuyjHzc8+qFeBj4FOXnoVMMHH/I0xJnokJbktAozt0555OTvYfaAo3EU5Ln4GqCRVnYw3xFxVi4ESH/M3xpjo8e67bosAY09qT3GpkrVye7iLclz8DFD7RCQRbx4+ERkM7PYxf2OMiR7PPuu2CNCva2uSEhoxfXl0BSg/R/HdBUwB0kRkFpAMXOZj/sYYEz3++99wl+CI2BhhTO92fLh0K4eLS2kUFx0rLflZymXAKGAocDtu+fcVPuZvjDHRo1Urt0WIsSe1Z+/BYhas2xHuotSYnwFqjqoWq+oyVV2qqkXAHB/zN8aY6PHWW26LEMN7JtE4LoZp30XPaL5aBygR6SAiZwBNRaR/0CwSmUCzWpfQGGOi0d/+5rYI0axRHMPTk5i+fBuqWv0JEcCPPqhzcAsVdgGeAsR7fS/woA/5G2NM9Pngg3CX4Bhn92nPpyu2s3LbXnp3aBnu4lSr1gFKVV8DXhORS1T1HR/KZIwx0a9Z5DUgjTmpHQDTv9sWFQHKzz6oLiLSUpwXReQrEfmej/kbY0z0mDTJbRGkXYsm9OvammlRMtzczwB1k6ruAb4HtANuBJ7wMX9jjIkeL77otggzpnc7vtm4i4LCQ+EuSrX8DFCBvqfzgFdU9eug14wxpmGZNs1tESYzIxlV+GJ1XriLUi2/14P6BBegPhaRFtRgZV0RGSciK0VkjYjc72N5jDEmfOLj3RZh+nZqRVJCIz5fEfkBys+ZJG4G+gE5qrrfm/boxqpOEJFY4C/A2cBGYIGITFHV73wslzHG1L1XX3X7G24IZymOERMjjOyVzGcrtlNSqsTGRG5Dl593UJOBjsAeAFUtUNVvqjnnTGCNquao6mHgTeAiH8tkjDHh8eqrZUEqwozOaMeu/UUsyd0V7qJUyc87qL/j7pieFZF/A6+qanVTHXUGcoPSG4FB5Q8SkduA27zkIRFZ6kN566MkID/chYhAVi8Vs3qpnH91I5F7hzLg98d9Sqi+M90retHPFXWnA9NFpBVwJTBNRHKBF4BJ3tRH5VX0L3fMI86q+jzwPICILFTVAX6Vuz6xuqmY1UvFrF4qZ3VTsbquF1+ntPX6nW4AbgEWA88ApwOVDWXZCHQNSncBNvtZJmOMMdHJtzsoEXkX6A1MBMar6hbvrbdEZGElpy0AeopID2ATcAVwlV9lMsYYE7387IN6TlU/q+iNym4JVbVYRH6KWyo+FnhZVZdVc53na1fMes3qpmJWLxWzeqmc1U3F6rRepLaz2orIQCBXVbd66euAS4D1wMOqGj2LjxhjjIkYfvRB/QM4DCAiI3HTG72OW+7d/goxxhhzQvxo4osNuku6HHjem9X8HRFZ4kP+xhhjGiA/7qBiRSQQ6M4Cgvuh/OzjsmmRPCLysohsD34eTETaisg0EVnt7duEs4zhICJdReRzEVkuIstE5Ofe61Y3Ik1EZL6IfO3VzSPe6z1EZJ5XN2+JSKNwlzUcRCRWRBaLyPte2uoFEJF1IvKtiCwJDHary/9PfgSoN4AZIvJf4AAwE0BE0nHNfL4ImhbpXKAPcKWI9PEr/yjzKjCu3Gv3A5+qak/gUy/d0BQDd6vqScBg4Cfed8TqBg4BY1T1NNyUZONEZDDwe+BPXt3sxE1Z1hD9HFgelLZ6KTNaVfsFDXars/9PtQ5Qqvo74G7cL83hWjbqIgb4WW3zD2LTInlU9Qug/OCTi4DXvJ9fA75fp4WKAKq6RVW/8n7ei/uF0xmrG9Qp9JLx3qbAGOBt7/UGWTci0gU4H3jRSwtWL1Wps/9Pvjyoq6pzVfU/qrov6LVVgV8WPqloWqTOPuYf7doHnj3z9u3CXJ6wEpEUoD8wD6sb4Egz1hJgO+7h+Wxgl6oWe4c01P9TTwO/oGz1hUSsXgIU+EREFnlTzkEd/n/ytY8oxGo0LZIxIpIAvANMUNU9EsFzodUlVS0B+olIa+A/wEkVHVa3pQovEbkA2K6qi0QkM/ByBYc2qHoJMkxVN4tIO9z0ddXNr+orX6c6CjGbFqlq20SkI4C3j441nX0mIvG44PRPVX3Xe9nqJoiq7gKycP10rYMGOTXE/1PDgAtFZB2u22AM7o6qodcLAKq62dtvx/1RcyZ1+P8pmgLUkWmRvBE1VwBTwlymSDIFuN77+Xrgv2EsS1h4fQcvActV9Y9Bb1ndiCR7d06ISFNgLK6P7nPgUu+wBlc3qvqAqnZR1RTc75TPVPVqGni9AIhIc2/hWUSkOfA9YCl1+P+p1jNJ1CUROQ/3101gWqTfhblIYSEibwCZuKnvtwG/Bt7DrcnVDdgAXNbQZvEQkeG4UaTfUtiMBvMAACAASURBVNaf8CCuH6qh182puA7tWNwfppNV9VERScXdObTFTfB8jaoeCl9Jw8dr4rtHVS+wegGvDv7jJeOAf6nq77xJwevk/1NUBShjjDENRzQ18RljjGlALEAZY4yJSBagjDHGRCQLUMYYYyKSBShjjDERyQKUMcaYiGQByhhjTESyAGWMMSYiWYAyxhgTkSxAGWOMiUgWoIwxxkQkC1DGGGMikgUoYyKQiKSIiAatSRTVRGRZ0IKAx3Pe1SLySQiKZKKABSgTEiIyXERmi8huEdkhIrNEZGAt81wnImP9KmM11woEiEJvWyci91dy7AMi8kUFryeJyGER6VvJeb1E5N8iku/V0zcicpeIxPr9eWrDq4f02uShqieralY11zkmKKvqP1X1e7W5toleFqCM70SkJfA+8GfcejqdgUeAaFxPp7WqJgBXAr8SkXEVHDMRGCoiPcq9fgXwraouLX+CiKTh1qnKBU5R1VbAZcAAoIWfHyCcd2H15Q7QhIcFKBMKvQBU9Q1VLVHVA6r6iap+IyKNvTuqUwIHi0g7ETngrfqaJCLvi8gu77iZIhIjIhNxC6RN9e5ofuGdO9i7U9slIl8HNyOJSJaI/NZ7v1BEpopIooj8U0T2iMgCEUmpyQdS1TnAMuCYuyFV3Qh8Blxb7q3rcIsEVuQRYLaq3qWqW7x8VqrqVd6S7AFXi8gG7y7rf4M+25kiMsf73FtE5DlvpenA+yoiPxGR1cBq77VnRCTX++yLRGRE0PGxIvKgiGSLyF7v/a5Bd4Zfe3V4uXf8BSKyxLv+bG9BxEBe60TkPhH5BtgnInHBd79e2Rd65dgmIoHVjwPX2uVda4iI3CAiXwblfbKITPO+G9tE5MFq8jTRTFVts83XDWgJFOB+OZ8LtCn3/l+B3welfw5M9X5+HPg7EO9tIyhbWHMdMDbovM7edc7D/bF1tpdO9t7PAtYAaUAr4DtgFW658zjgdeCVSj5DCqDecQIMA/YDZ1Vy/NXA6qB0BnA4UJYKjt8K3FhFHQau/wLQFDgNdwd6kvf+GcBgr3wpuOXbJwSdr8A03B1sU++1a4BE75y7vTI08d67F7cScYb3eU8DEoPySg/K+3RgOzAIt0Lv9d6/TeOgf6clQNegax/5twPmANd6PycAg8vXedC1bgC+9H5uAWzxyt7ESw+qKk/bonuzOyjjO1XdAwyn7BdsnohMEZH23iGvAVeJSOD7dy2umQygCOgIdFfVIlWdqd5vnQpcA3ygqh+oaqmqTgMW4gJWwCuqmq2qu4EPgWxVna6qxcC/gf7VfJx8YAfwInC/qn5ayXH/AdqLyFAvfR3woarmVXJ8Iu6XbXUeUXcH+jXwNS5woKqLVHWuqhar6jrgH8Cocuc+rqo7VPWAd84kVS3wznkKaIwLSAC3AA+pu4tTVf1aVQsqKdOtwD9UdZ66O+TXcMFzcNAxz6pqbuDa5RQB6SKSpKqFqjq3BvUAcAGwVVWfUtWDqrpXVefVMk8TwSptHxaRZ2tw/h5VfcjH8ph6QlWX4/76RUR6A5OAp4ErVXWeiOwDRonIFiAdmOKd+gfgYeATEQF4XlWfqOQy3YHLRGR80GvxwOdB6W1BPx+oIJ1QzUdJ8oLZEV6z0oNecpKq/khV94vIv4HrRGQO7o7qriryLcAF4upsDfp5f6C8ItIL+COuz6oZ7v/yonLn5pYr9924QNQJ98dDSyDJe7srkF2D8oCr9+tF5GdBrzXy8q3w2uXcDDwKrBCRtbgg/H4NrltVGU80TxPBqrqDugj3ha9quyTUBTTRT1VXAK9ydP/Na7g7oGuBt1X1oHfsXlW9W1VTgfHAXSJyViCrclnnAhNVtXXQ1ryKgObX53lMVRO87UflPtMPcU2NLXADRSozndr9//kbsALoqaotcQFTyhc18IPX33SfV742qtoa2B10Ti6uKbQmcoHflav3Zqr6RkXXLk9VV6vqlUA74PfA2yLSvKpzqitjFXmaKFZVgPqTqr5W1YZrVjDmKCLSW0TuFpEuXrorbhRccLPLROAHuCD1etC5F4hIurjbpz1AibeBu/tJDcpjEjBeRM7xOvmbiEhm4LphMBPYBTwPvKmqh6s49te4kX9/EJEOAN7nniQirWtwrRa4+in07lB/XIPji4E8IE5EfoW7gwp4EfiNiPQU51QRSfTeK1/vLwA/EpFB3rHNReR8EanR6EMRuUZEklW1FFdf4P6N84DSctcK9j7QQUQmiBts00JEBlWTp4liVQWoykYfHaGqT/tYFlN/7MV1oAea8uYCS3Gd28CRkW9f4f5qnhl0bk/c3UUhruP7r1r2/MzjwEPeyLF7VDUXd6f/IO6XWy6usz8sfateX9nruCaw16s5NhsYghsYsExEdgPv4PrQ9tbgcvcAV3nHvgC8Vc3xH+P64FYB64GDHN0M90dgMvAJLvC9hBucAa7J9TWv3n+oqgtx/VDPATtxA1FuqEGZA8bhPnMh8AxwhdentB/4HTDLu1Zwnxaquhd3dzoe1/S5GhhdVZ7HUSYTgQKjo459Q2Q77j/9bGAWbkjsqjosm6nnRORlYLP1YxpjKlJpgIIjHbFDg7Zk3F/Ds1T1/+qkhKZeEvf80RKgv6quDW9pjDGRqMoAddSB7sn383DPrHRW1abVnGJMhUTkN8D/4IZB/y7c5THGRKaqmvgCd01DcMM7c3B3T3OBr6rpAA7kMQ7XHhwLvFh+dJWI3IUb9hrovL1JVdef8KcxxhhTb1QVoEpxndh/BN7zOjBrnrGb8HIVrlNzI7AA9wzMd0HHjAbmec+Q/BjIVNXLT+iTGGOMqVeqmsixE2V9Tz8SN+njV7iRVXNUNaeavM8E1gSOE5E3cSOujgQoVQ1+oHIubshxlVq3bq3p6bWaWLne2rdvH82b26Mf5Vm9VMzqpXK+1E2eN4lIcnLtCxQhQvWdWbRoUb6qHlNRlQYoVd0KvOttiEgz4CbcJJc9cM12VenM0cNYN+KGHlfmZtww2GOIyG3AbQDJyck8+eST1Vy6YSosLCQhobqJERoeq5eKWb1UzuqmYqGql9GjR1fYtVPVVEetcP1Pgbuo/rjnHabihp1Xp/xT7VDJk+Iicg1uypbyc4m5k1Sfxz38SEZGhmZmZtbg8g1PVlYWVjfHsnqpmNVL5axuKlbX9VJVE98aXLPbbOA3wPxKJn6szEbc4IqALsDm8gd5U/D/LzBKVaNxvSBjjDnWWG9tzenTw1uOKFZVE18yuOdVvNmSjxCRgaq6oJq8FwA9xS3itgm3eNtV5fLpj5suaZyqbj/+4htjTIS63MZ71VZNVrt8R0QuVNVNACIyCjfFySlVnaSqxSLyU9wUK7HAy6q6TEQeBRaq6hTczNUJwL+9mas3qOqFJ/5xjDEmQtx6a7hLEPVqEqB+BLznLWlwOvAYR6+3UylV/QD4oNxrvwr6eWzNi2qMMaYhqXZSTa8p707cJJIPA2d7k3SGRbPcXHj1VZcoKoLMTJg0yaX373fpt7x5M3fvdul333Xp/HyXnjrVpbdudemPPnLp3FyXDrQZ5+S49IwZLr1ypUvPnu3SS5e69AKvtXPJEpdessSlFyxw6aVLXXr2bJdeudKlZ8xw6RxvxP706S6d61XvRx+59FZvSaCpU106P9+l333XpXfvBiD5s89cer/3yNqkSS5dVOTSr77q0gEvvFDWTg7w17/CueeWpZ95Bi4MuqF98km4JGiFiCeegCuuKEv/5jdwTdCTAr/6Fdx4Y1n6gQfgttvK0vfcAz/5SVl6wgS3BfzkJ+6YgNtuc3kE3Hiju0bANde4MgRccYUrY8All7jPEHDhhe4zBpx7rquDgLFjXR0FZGbWq+9evwkTfPvu8dZb9eq71/Ppp4/ru6fXXEPhQ79m9pp8Xp+zjm9HnMv25E4s63U6V784l0UDxzDz9vuZm1NAaak2+O/eMb/3KlHVKL6pHD3qrhlu/ZiXRARrijPGNFSHikvZlFfIWx8u56v1O7n+m82sXA9/LnYL/P5t5wH2dMng237DOVRUyv5DJcxcncfzz8+lc+umTMrfR+fiUhqF+XNEuqpmkqhwyHeAqs4ISYmqkZGRoSsDkdgcxYbGVszqpWJWL5ULrhtVZX3Bfhas28Gi9TtZuH4na7YXAhAfK/Tt3IqTO7UkPTmB9HYtSG+XQPuWjfH61Y/Yc7CIz1ds598LN/Llmnw6t27Kr8b34ZyTO9T1xzthofrOiMgiVR1Q/vWqRvGFJQAZY0w4FZWUkrOrhDUzc1i4zgWk/EL3BEzLJnEMSGnLD/p3ZkD3NpzWtTVN4iuZsyDQvBkf750bz0X9OnNRv87MzSngkanfcfvERdw8vAcPnNubuNiwLGMW0apq4ntfVS+o6uSaHGOMMZHsYFEJS3J3MS9nB/PXFbBo/U4OFpUCy+natikjeyZxRkobBqa0JT05gZiYiuYgqMDZZ7t9VtYxbw1OTWTKT4fxu/+3nJe+XMvyLXt44boBNG9ck3FrDUdVtTFcRKZU8b4AfXwujzHGhNT+w8V8tX4X89YWMG/tDpbk7uJwcSki0LtDS64Y2I1m+7dw/XnDad+yyYlf6JZbqnw7PjaGhy88mb6dW3HfO99w46sLePXGgTRrZEEqoKqauKgG51e75IYxxoTT3oNFLFy/090hrS3gm427KS5VYgT6dm7FdYO7Myg1kYEpbWjdzA1byMrKq11wgqNHFVbh0jO60Dguhp+/uZibX13IKzcOrLzZsIGxPihjTL2ye38R89e5YDRv7Q6WbtpNqUJcjHBKl1bcMiKVQaltGdC9DS2axIeuIIEh982aVXvo+NM6UVKqTHhrCQ/+51ueuuy0YwZZNER2L2mMiWq7DxQxf+0O5mQXMCengBVb96AKjWJj6Ne1NT8Znc6gHomc3r113TafnefNZ1BBH1RFvt+/M+sK9vH09NWc1qU11w9NCVnRooUFKGNMVCk8VMyCdTuY6wWkwB1S47gYTu/Whgln9WJQalv6VTXCri78+MfHfcqdY3qydNNufvP+d5zUsSVn9mgbgoJFjyoDlDeZaxqwTFWX102RjDGmzIHDJSxav5M5OfnMyS7g6427KSlV4mOF/l3b8NMxPRmSmkj/bmEOSOWdwGSxMTHCHy/vx4V//pK7Ji/h4wkjG/TIvqqGmf8Kt8LtIuD/RORxVX2hsuONMcYPh4pLWLxh15EmuyUbdnG4pJTYGOHULq24fWQqQ9ISGdC9LU0bRVBAKi8wDVSrVsd1Wssm8Tx52Wlc9o85/P6jFTx6Ud8QFC46VBWaLwf6qep+EUkEPgIsQBljfFVUUso3G11Amp3tnkM65A377tupFTcMS2FIaiIDe7QlIZruJi7yBkLXsA8q2ICUttwwNIVXZq3jvFM6Mjg10d+yRYmq/rUPqup+AFUtEBF7zNkYU2slpcrSTbuZk1PAnOwCFqzbwf7DJQD07tCCqwZ1Y2haEmf2aEurpiEcZRdqd95Zq9PvPSeDT5dv5753vuHjCSMjq/myjlQVoNKCHtSVcmmbLNYYUyOlpcryrXuYk13A3JwC5uXsYO+hYgDS2yVwyeldGJqWyKDURNo2r0fTp158ca1Ob9Yojsd+cArXvDSP12av4/ZRaT4VLHocz4O6T1Z4lDHGBFFVVm8vdH1I2QXMXVvArv1uXrqUxGZccFonhqQlMji1Le1a1PJh2EgWWJokKemEsxjeM4kxvdvx3GdruPSMLiQmNPapcNHBHtQ1xtSKqrI2f9+RJru5OQXkF7pJZjq3bsrZJ7VnSFoiQ9IS6diqaZhLW4cuvdTtT6APKtiD5/XmnKdn8synqxvcgIko6nE0xkSKjTv3M9u7Q5qTXcDWPQcBaN+yMSN6JjMk1QWkrm2rn0Wh3rr7bl+ySW/XgivP7Mo/523guiEppLdL8CXfaGAByhhTrYLCQ8zJKWDWmgJmZ+ezvsBN45OU0IjBXjAakppIj6TmNkVPwPjxvmU1YWwv3lu8mT9OW8lfrz7Dt3wjnQUoY8wxCg8VM3+tC0iz1uSzYuteAFo0jmNQaluuH5LCsPQkerVPsIBUma1b3b5D7RckTEpozPVDu/PXrGzWbC9sMHdRxx2gROQx3NLvL6pqgf9FMsbUtUPFJXy1fhezs/OZnV3A17m7KC5VGsXFMKB7G+49J4OhaYmc0rmVLaxXU1dc4fa17IMKuGlYD176ci1/n5HNk5ed5kueke5E7qDm46Y/+hNwnb/FMcbUhZJSJWd3Ccuzspmdnc+CdTs4WFRKjMCpXVpz+6hUhqUlcXr3Ng3y+Rtf3H+/r9klJjTmyjO7MXHOeiaM7UmXNvW/f6+6ufhigTtV9U+B11T1vZCXyhjjK1UlO6/wSJPd3JwC9hwsBlaQ0b4FV57pHo4dlNqWlqFcgqIhGTfO9yxvHZHKpLnref6LnAYxoq/KAKWqJSJyEe5uyRgTRTbtOsCsNfnMXuOa7bbvPQRAlzZNObdvR9oc3s7N40eQ3KJhPVtTZ3Jz3b5rV9+y7NS6KRf378KbC3L52Zie9f7friZNfLNE5DngLWBf4EVV/SpkpTLGHLfgkXZzsvNZFzTSbkhaEsPSEhmWnnRk6HdWVla9/wUXVtde6/Y+9UEF3D4qlbcW5vLG/A3ceVZPX/OONDUJUEO9/aNBrykwxv/iGGNqqvBQMQvW7mDWmnxmZRewfMseABIaxzE4tS3XDUlhaHoiGe1b2Ei7cHjooZBkm5qcwIieSfxr3gbuyEyr14NWqg1Qqjq6LgpijKlaYBmK2V5AKj/S7p7v9WJoehKn2ki7yDB2bMiyvnZwd26buIhPV2znnJNrP4w9UlUboESkPfAY0ElVzxWRPsAQVX0p5KUzpgErKVWWbd595OHY4JF2p3RpzW0jUxmWnsQZNtIuMuXkuH1qqu9Zj+ndjk6tmjBp7vqGHaCAV4FXgP/10qtw/VEWoIzxkaqyrmA/X67JZ9bqfObkFLD7gJtktVf7BK4Y2I1h6TbSLmrcdJPb+9wHBRAXG8NVg7rx5CeryMkrJDW5fj64W5MAlaSqk0XkAQBVLRaRkhCXy5gGoaDwELOyC5i1Op8v1+SzadcBwE2yes7J7RmWnsSQtMT6Pet3ffXIIyHN/ocDu/LMp6v557wN/PKCPiG9VrjUJEDt81bUVQARGYybScIYc5wOHC5h/jo3sOHL1fl85w1saNkkjqFpSfwoM40R6Ul0T2xmAxui3ahRIc2+XYsmjOvbkX8vzOXeczLqZTNvTQLU3cAU3IKFs4Bk4NKQlsqYeiKweuyXXkBatH4nh0tKaRQbwxneFELD0pM4pXMrYmMsINUrK1e6fUZGyC5x5cCuTP16M9O+28b40zqF7DrhUpNRfItEZBSQgVtZd6WqFoW8ZMZEIVVlfcF+Znr9SLOz870ZG6BPx5bcMMxNsnpmSluaNqp/f/GaILff7vYh6IMKGJyaSMdWTXhv8aaGGaBEZCbwBTATmGXByZijFRQeYnZ2AV9W0I90bt+ODOuZxNC0RJIa2GqoDd5jj4X8EjExwoX9OvHSzLUUFB6qdyvu1qSJ73pgOHAJ8AcROQTMVNX/qe5EERkHPAPE4mY/f6Lc+yOBp4FTgStU9e3jLL8xde7A4RIWeP1IMyvpRxqenkSK9SM1bEOHVn+MDy7u34V/zMjh/W+2cP3QlDq5Zl2pSRNfjogcAA5722jgpOrO8yaa/QtwNrARWCAiU1T1u6DDNgA3APccf9GNqRvB/Uiz1uSzcF1ZP9Lp3VtbP5Kp2NKlbt83tJO6ZnRowUkdW/KfxZsaXoASkWwgH/gX7tmnn6lqaQ3yPhNYo6o5Xj5vAhcBRwKUqq7z3qtJfsbUiUA/UiAgzc4uex7ppKB+pIEpbWjWyNb8NJX46U/dPoR9UAE/6N+Jxz5YUe+eiRJVrfoAkZ/jmvi6AiuAGcAXqppdzXmXAuNU9RYvfS0wSFV/WsGxrwLvV9bEJyK3AbcBJCcnnzF58uRqPlbDVFhYSEJC/fly+qUm9bLnsLK8oIRlBSUsyy+h4KD7f5HYRDg5KZY+ibH0aRtLy8b15w7Jvi+V86NuWqxYAcDe3r39KFKVdh4s5a6sA1yYFs8PejYK2XVC9Z0ZPXr0IlUdUP71mjTxPQM8IyIJwI3Aw0AXXL9SVSr6n1x1NKy8DM8DzwNkZGRoZmbmiWRT72VlZWF1c6yK6uVgUQnzvYlWv1yTz7LNrh+pRZM4hqa1Y3jP5Hrfj2Tfl8r5Ujd1XLfvbJzH4h37eXrUqJB9Z+v6O1OTJr6ncHdQCcBc4Fe4EX3V2Yi76wroAmw+gTIaU2ulpcp3W/bw5Zp8Zq7OY8G6nRwuLiU+VjjDm2h1eM9k+nZqaROtGn8sWeL2/frVyeUu7NeJX7z9DUs37eGULq3q5JqhVpMG9LnA/6nqtuPMewHQU0R6AJuAK4CrjjMPY07Ytj0Hmbk6n7e/PsjdM6dTsO8wAL07tOD6Id0Z3jPZ+pFM6EyY4PZ10AcFcPZJ7YmNET5etrXhBChV/beIXOgNCQeYoapTa3BesYj8FPgY1xz4sqouE5FHgYWqOkVEBgL/AdoA40XkEVU9+cQ/jmnIDhwuYd7aAmaudndJq7YVAtCykXDWyR0Y0TOJ4elJtGtp89qZOvD003V6uTbNG3FmSls+XraVe84J3ewVdakmTXyP40bk/dN76U4RGaqqD1R3rqp+AHxQ7rVfBf28ANf0Z8xxO6bZbq03/DsuhkE92nLpGV0Y0TOZrSsWMXp03TSzGHNEHTXtBTvn5PY8PPU7svMKSasHo/lq0rZxPtAvMLRcRF4DFgPVBihj/BZotpu5Oo8vV+cf1Wx3w7AUhqcncWaPtkdNnLltZf0c5GAi3IIFbj9wYJ1d8nsnd+Dhqd/x8bKt3JGZXmfXDZWaNr63BnZ4P9ePxk0TFSprtktKaMzIXsnWbGci1733un0d9UEBdGrdlNO6tOLjZdsaTIB6HFgsIp/jho6PxO6eTIgEmu1mrs7nyzWVN9v17tCi3g7/NvXEc8+F5bLfO7kDf/h4JVt2H6Bjq6ZhKYNfajJI4g0RyQIG4gLUfaq6NdQFMw3HiTTbGRPxQjzFUWXO8QLUJ8u2Rf3UR5UGKBFpBzwIpAPfAo+r6p66Kpipv6zZzjQIs2e7fR1NGhuQ3i6BtOTmfLxsa/0NUMDrwCLgz8AFwLO4iV2NOS7BzXYzV+eVTbZqzXamPnvwQbevwz6ogHF9O/D3GTns3HeYNs1DN/VRqFUVoDqo6v96P38sIl/VRYFM/bB190HXZOetJGvNdqbB+cc/wnbps05qz18+z2bmmnwujOKFDKsKUCIibSibUy82OK2qOyo90zQ4B4tKmLd2B1+syrNmO2MgpEu9V+e0Lq1p3SyeGSvz6m2AaoVr4gtucwncRSmQGqpCmcinqqzZXsiMVXl8sTqfeTkFHCp2zXZnprhmu+HprtkuxtZIMg3RjBluP2pUnV86NkYY0TOZGavyKC3VqP0/WGmAUtWUOiyHiQK7DxQxa00+X6zK44tVeWzefRCAtOTmXDWoG6N6JTOoRyJNG1mznTH8+tduH4Y+KIBRvZKZ+vVmlm/dw8mdovPxVZsl01SqpFT5dtNuZqzM44vVeSzJ3UVJqdKicRzD0pP46ZhkRvZKokubZuEuqjGR5+WXw3r5kT2TAJixKs8ClKkftu05yBer8pixyg1w2LW/CBE4tXMr7shMY2SvZPp1bU28LUlhTNVSw9sL0q5lE/p0bMmMlXlRO6uEBagG7lBxCQvX7TwSlFZs3QtAcovGnNW7PSN7JTGiZzJto3ioqjFhMX26248dG7YijMpI5oUvcth7sIgWTeLDVo4TVaMA5Y3e6xp8vKrasPMopKqszd/n+pFW5zMnu4ADRSXExwoDurflvnG9GdUrmZM62jNJxtTKb3/r9mEMUJm9kvlbVjaz1hQwrm+HsJXjRNVkuY3f4B7QzaZsyXYFxoSuWMZPew8WMTu7wAtKeeTuOABASmIzLhvQhVG9khmcmkjzxnZDbYxvJk4Mdwk4vXsbEhrHMWNVXv0MUMAPgTRVPRzqwhh/BGZumOE12321fifFpUqzRrEMTUvithGpjOyVTPfE5uEuqjH1V9eu4S4B8bExDEtP5ItVeahq1LWK1CRALcUtt7E9xGUxtZBfeIjZm4t5783FfLkmn/xC9/dEn44tuXVkKiN7JnNG9zY0irPBDcbUiY8+cvtx48JajFG92vHxsm1k5xWS3q5FWMtyvI5nuY2lwKHAi6p6YchKZap1uLiUrzaUDW5YttnN49u2eT4jeiYxqlcyw3sm0a6FzdxgTFg88YTbhzlAjewVGG6eXy8D1GvA73EzmpeGtjimKrk79pPlPSQ7e00++w6XEBsjnNGtDfd8rxcJezdw3fgxUfvUuDH1yptvhrsEAHRp04xubZsxN6eAm4f3CHdxjktNAlS+qj4b8pKYYwTmt8tauZ0ZK/PIyd8HQJc2Tbmof2dG9kxmaHoiLb3ho1lZmyw4GRMpOkTOoIQhqYl8tGxr1E17VJMAtUhEHgemcHQTnw0zD4H1BfvIWplH1srtzMkp4GCRm99ucGoi1wzuzqiMZFKTmkddZ6cxDc7UqW4/fnx4ywEMTmvLWwtzo27ao5oEqP7efnDQazbM3CcHi0qYk1PADC8orSvYD7gh4FcM7MaojGQG2/x2xkSfp55y+0gIUKmJAMzJLqhfAUpVR9dFQRqStfn7yFq5nayVecz1ZgFvHBfDkLREbhiaQmZGO1KSbAi4MVHt7bfDXYIjOrZqSkpiM+bm7OCWEdGzEEVNHtRtDzwGdFLVc0WkDzBEVV8KeenqiQOHS5iTk0/WSjfibr13l5Sa5GYBz8xoxyBbvM+Y+iUpKdwlOMrg1EQ++HYLJaVKbJT0Q9Wkie9V4BUgsLruKuAtwAJUJVSVLWKtdQAADblJREFUnPyyvqR5a3dwuLiUJvExDE1L4ubhPcjs1Y5uiTYLuDH11rvvuv3FF4e3HJ7BqYm8uSCX5Vv20LdzdDTz1SRAJanqZBF5AEBVi0WkJMTlijr7Dxcze00BWau2M2NV2XRCacnNuXZwdzIzkhmYYndJxjQYz3qDnyMoQAHMzSmoVwFqn4gk4s3DJyKDgd0hLVUUUFWy8wq9u6Q85q/dweGSUm86oURuG5lGZq9kura1uyRjGqT//jfcJThKh1ZN6JHUnLk5BVHTD1WTAHUXboh5mojMApKBy0Jaqgi171Axs9bkk7Uqjxkr89i0y90l9WyXwPVDu5OZ0Y4BKW1oHGd3ScY0eK0i7y5lcGoi73+zOWr6oWoSoJYBo4AMQICVQIOY0E1VWb298MiIuwXrdlBUojRvFMvQ9CTuGJ3GqF7JtqKsMeZYb73l9pdfHt5yBBmc2pY35m/gu817OKVL5AXQ8moSoOao6um4QAWAiHwFnB6yUoXR3oNFzFpT4GYCX7mdzbsPApDRvgU3DevBqIxkBnRva5OuGmOq9re/uX0EBaghQf1QUR2gRKQD0BloKiL9cXdPAC2BenPLoKqs3Lb3yIi7hevc0hQJjeMYlp7Iz87qyaheyXRq3TTcRTXGRJMPPgh3CY7RrmUTUpObMyengFtHRn4/VFV3UOfgFirsAjxFWYDaCzwY2mKFVqAv6XMvKG3x7pJ6d2jBLSNSycxI5vRutjSFMaYWmkXm3/GDerTl/W+2RMW8fJUGKFV9DXhNRC5R1XfqsEy+Cyxz/tmK7UeNuEtoHMeInklMGJvMqF7t6NDKlqYwxvhk0iS3v+aa8JajnAHd2/LG/FxWbd9L7w4tw12cKtWkD6qLiLTE3Tm9gOt7ul9VPwlpyWrpYFEJc3MKyFqZx+crtx+ZvaFnuwRuGJZCpvUlGWNC6cUX3T7CAtTAlLYALFi3s14EqJtU9RkROQdoB9yIm1ki4gLUxp37XbPdiu3Mys7nYFHZ7A23DO9BZkY7ey7JGFM3pk0Ldwkq1LVtU5JbNGbRuh1cO7h7uItTpZoEqEAj5XnAK6r6tdRwrQcRGQc8A8QCL6rqE+Xebwy8DpwBFACXq+q6GpadopJSFq7bSdbK7Xy+cjurthUC7h/g8gFdGd27HYNTE232BmNM3YuPD3cJKiQiDExpw4J1O8NdlGrVdD2oT4AewAMi0oIarKwrIrHAX4CzgY3AAhGZoqrfBR12M7BT/3975x5sZVWG8d8D4hXFQBRSEx1INEdQ8IoWQhcyvFSoVF6wHGpGGiTLwUojyxmbmjAlxxgvxxzFG3iJaLyjlqOGggKhiIZC3IYSA1MJffpjrS27wz77bI+cvfdhv7+Zb75vrb3Wt9/1zvnOu9fle5bdV9Jo0s69Zddkvme4Y84yZr+0hicWr2X9u5vo0lkctX8PTs9BKfZLCoKg5jQ1pfOYMbW0oiSD9+vOrPmrWLHu7bpeoVxJgPoWMBB41fZ/suzRuRXUOxJYYvtVAEm3AacAxQHqFGBSvr4LmCJJtt3STZetf5+L7nqBXrvtyMgBvRl64J4M6bsHXXeopClBEARVoo4DVGEeas5rb3ByHQcolYkFqYB0F2nO6U+2W+05FdUbBYywfV5OnwUcZXtcUZkFuczynH4ll1nb7F5jgbE5eQiwoFI7Gow9gLWtlmo8wi+lCb+0TPimNO3ll/1s92yeWUm341pSj+kqSXcCTbZfrKBeqTG25tGwkjLYngpMBZA0x/bgCr6/4QjflCb8UprwS8uEb0pTbb+0usba9kO2v0FaXr4UeFDSk5LOlVRuFnA5sG9Reh9gRUtlJG0HdAP+Vbn5QRAEwbZKRS8B5XmnMcB5wFzSyrzDgXLrKP8K9JO0v6TtgdEkVfRi7gPOydejgEfKzT8FQRAEjUMlW77PAPoDNwMn2V6ZP7pd0pyW6uWNDccB95OWmd9ge6Gky4A5tu8j7cp7s6QlpJ7T6ApsnlpBmUYlfFOa8Etpwi8tE74pTVX9UskiiWG2H6mSPUEQBEEAlBnik3SEpF6F4CTpbEn3SrpKUvfqmRgEQRA0IuXmoH4HbASQ9GngCpLqw5tE9zcIgiBoZ8oFqM62CyvqzgCm2p5u+xKgb/ubtiWSRkh6SdISSRNrYUM9IOkGSWvye2SFvO6SHpT0cj5/rJY21gJJ+0p6VNIiSQsljc/54RtpR0nPSHo+++anOX9/SU9n39yeFzQ1HJI6S5oraWZOh18ASUslzZc0r7DmoJrPU9kAlZd+AwwHiuehqi7bUCSd9EXgYOBrkg6uth11QhMwolneROBh2/2Ah3O60dgEXGj7IOBo4Pz8NxK+gXeBYbYHkJRhRkg6miQvNjn75g2SckwjMh5YVJQOv2zmBNsDi95/qtrzVC5ATQMek3Qv8DbwBICkvqRhvmrzgXSS7Y1AQTqp4bD9OFu+L3YKcFO+vgk4tapG1QG2V9p+Ll+vJ/3D2ZvwDU5syMku+TAwjCQzBg3qG0n7AF8CrstpEX4pR9WepxYDlO3LgQtJv9aPK3o/qRPw3fYyqAx7A8uK0stzXpDYq/AKQD7vWWN7aoqkPsBhwNOEb4APhrHmAWtI7zC+AqyzvSkXadRn6krgIjaLYPcg/FLAwAOSns2Sc1DF56nsUJ3tp0rkLW4vY1qhIlmkIJDUFZgOXGD736Fsn7D9HjBQ0u7A3cBBpYpV16raImkksMb2s5KGFrJLFG0ovxQxxPYKSXuSVIQqkbnbanSk7WQrkU5qZFZL6g2Qz2tqbE9NyPJb04FbbM/I2eGbImyvA2aT5ul2L5prbsRnaghwsqSlpGmDYaQeVaP7BQDbK/J5DelHzZFU8XnqSAGqEumkRqZYNuoc4N4a2lIT8tzB9cAi278u+ih8I/XMPSck7QR8ljRH9yhJZgwa0De2L7a9j+0+pP8pj2Tt0Yb2C4CkXZT2/0PSLsDnSTtJVO15alVJop6QdCLp101BOunyGptUEyRNA4aSpO9XAz8B7gHuAD4BvA6cVvSaQEMg6TjSYp75bJ5P+CFpHqrRfXMoaUK7M+mH6R22L5N0AKnn0J2ks3mm7XdrZ2ntyEN837c9MvwC2Qd35+R2wK22L8/arFV5njpUgAqCIAgah440xBcEQRA0EBGggiAIgrokAlQQBEFQl0SACoIgCOqSCFBBEARBXRIBKujwSPpRVuh+IasuH9WGe4yR9PF2sK1J0reb5Z0qaVYr9Tbkcx9JX9/adpX53j6Slkvq1Cx/nqQjm+VNkvQPSZe1Vk/SBEmvS5pSjXYE2wYRoIIOjaRjgJHA4bYPJb2Auqx8rZKMAbZ6gCKJLo9uljc651dCH6BqAcr2UpL/ji/kSeoP7Gr7mRJVJtu+tLV6ticDl7an7cG2RwSooKPTG1hbeInS9tqsHTZcUuElQyR9TtKMLJjaJGlB3udmgqRRwGDglvyLfydJgyQ9lkUy7y+SdpktabKkx5X2nToi3/dlST8vYd9DQP+i+juTgug9Of29bMsCSReUqH8FcHy2a0LuqTwh6bl8HJvv00nSNbknOVPSrNwuWmpLGZoH1UoDalvrBUFpbMcRR4c9gK7APGAxcA3wmZwv4EWgZ07fCpwEDAIeLKq/ez7PBgbn6y7Ak0V1zyAplxTK/SJfjydptPUGdiDpRfYoYeNvgfH5ejRwZ74eRFK92CW3YyFwWP5sQz4PBWYW3WtnYMd83Q+Yk69HAbNIPzp7kfYwGlWuLWV82gtYCWyX04uAQ0qUm0RSXqioHqmXOqXWfzNxdJyj6hsPBsHWxPYGSYNIQ0snALdLmmi7SdLNwJmSbgSOAc4GdgUOkHQ18EfggRK3PRA4hKTeDEkeaGXR5wUNyPnAQuetByS9ShI0/mez+00Dfgn8hhSgfp/zjwPutv1Wrj8jt2NumSZ3AaZIGgi8B3yy6F532n4fWCXp0QrbsgW2V0laCAyXtBr4r+0F5ep8lHpB0BIRoIIOj9M2ErOB2ZLmkwQsm4AbgT8A75D+eW8C3pA0APgCcD5wOvDNZrcUKfAc08JXFjTZ3i+6LqRLPVN/AXrn7z2WzcNgbdkHZAJJf3EAqbf0Tiv3aq0tLVEYrlvNhxuma2u9INiCmIMKOjSSDpTUryhrIPAafLBVwArgx6SAhaQ9gE62pwOXAIfneutJvSuAl4CeeQEGkrpI+lRbbbRtkrjmTcAs24Wg8jhwqqSds1r0l8k7VxdRbBdAN2Bl7imdReoRAfwZ+Gqei9qLNDRYti2Sxkka14LZ04ETSUOCt32I5ra1XhBsQfSggo5OV+Bqpa0kNgFLgLFFn99Cmn/5W07vDdxYtBz64nxuAq6V9DZpOHAUcJWkbqTn5ErSHFFbmQb8AJhYyLD9nKQmoLA67jrbzYf3XgA2SXo+23gNMF3SaaQtId7K5aYDw0nbISwmKbi/aXtjXixRqi39Sb27LbC9TtJTpN1T/15pI9taLwhKEWrmwTZNfu9mru3ra21LeyOpa56T60EKekNsrypTfibwFdsb2/h9k0iLOX5VYfkxpIUoLfXaguD/iB5UsM0i6VlSD+PCWttSJWbmnuT2wM/KBScA2yM/4vdtAMZK2s122XecJE0AvkPq6QVBRUQPKgiCIKhLYpFEEARBUJdEgAqCIAjqkghQQRAEQV0SASoIgiCoSyJABUEQBHXJ/wB0SA+UbROVoQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXxU1fn48c+ThTWsSdiXkASCiAoKskNArLigrUvd9621reXrUpevbdW2ar/VVq3d3BValaq14M8N1CCyg6CCrAlL2JOwhjXL8/vj3CFDyAa5k5lJnvfrdV83Z+bec88chjy555x7jqgqxhhjTKSJCXcBjDHGmIpYgDLGGBORLEAZY4yJSBagjDHGRCQLUMYYYyKSBShjjDERyQKUMRFGRLJE5JZwl8MPIvKgiLx4gucWikiq32Uy0cMClAkpERkuIrNFZLeI7BCRWSIysJZ5rhORsX6VsZprpYiIikhcBe91FpFiEUmr4L3/iMiTleTZSEQeFpHVIrLP+zwvi0iK/5/gxInIqyLy29rkoaqPqWq1wbaioKyqCaqaU5vrm+hmAcqEjIi0BN4H/gy0BToDjwCHwlkuv6jqJuBT4Nrg10WkLXAe8Folp74NXAhcBbQCTgMWAWf5XUYRifU7z+O49jFB3Zjjoqq22RaSDRgA7KrkvcbADuCUoNfaAQeAZCAJF9x2ecfNxP1BNREo9Y4rBH7hnTsYmO0d/zWQGZRvFvBb7/1CYCqQCPwT2AMsAFIqKWcKoEBcJe9fBWSXe+0O4KtKjh/rlb1rFfWWBfwGmAXsBT4BkoLe/zewFdgNfAGcHPTeq8DfgA+Afd71zgcWe581F3i43PWGB9VdLnADcBtQBBwO1Jl3bCfgHSAPWAvcGZTPw7jgO8m71i3ea5O895t47xV411oAtAd+B5QAB71rPecdr0C693NT4Clgvfe5v/ReqzDPcH/3bfNnC3sBbKu/G9DS+8XxGnAu0Kbc+38Ffh+U/nnQL8LHgb8D8d42AhDvvXXA2KDzOnvXOQ8XxM720sne+1nAGiANd8fyHbDK++UdB7wOvFLJZ0ih6gDV1PuFOTzotTnAhEqOfwKYUU29ZQHZQC8v/yzgiaD3bwJa4IL808CSoPde9cozzKuLJkAmcIqXPhXYBnzfO74bLghe6dVzItAvKK/fBuUdg7vT+xXQCEgFcoBzvPcfxgW173vHNuXoAHU77o+DZkAscAbQMugz31KuHoID1F+8Yzp75w71Pn+ledoW/Zs18ZmQUdU9uL/OFXgByBORKSLS3jvkNeAqEQl8D6/F3SGB+0XXEeiuqkWqOlO931QVuAb4QFU/UNVSVZ0GLMQFrIBXVDVbVXcDH+LueqarajHujqT/CX7GA9751wGISE/cL8l/VXJKIrClBlm/oqqrvPwnA/2Crvmyqu5V1UO4AHCaiLQKOve/qjrLq4uDqpqlqt966W+AN4BR3rFXA9NV9Q2vngtUdUklZRqIC/qPquphdf1DLwBXBB0zR1Xf8651oNz5Rd7nT1fVElVd5H1HquR9P24Cfq6qm7xzZ3uf/4TyNNHBApQJKVVdrqo3qGoXoC+uiehp7715uGaoUSLSG0gHpnin/gF31/OJiOSIyP1VXKY7cJmI7ApsuMDYMeiYbUE/H6ggnVDdZxGRbt7IskIRKQx66zXghyLSBBdkP1LV7ZVkU1CuXJXZGvTz/kD5RCRWRJ4QkWwR2YO7mwTXJBqQW67cg0TkcxHJE5HdwI+Cju+Ku1urie5Ap3L1/CCuma7Ca5czEfgYeFNENovI/4lIfA2um4S7E6yonCeap4kCFqBMnVHVFbhmo75BL7+GuwO6FnhbVQ96x+5V1btVNRUYD9wlIoFBBOXvpHKBiaraOmhrrqpP+Fz+DepGliWoakLQ6zNxgeci77O8XkU204EzRaTLCRbjKu86Y3HNlSne6xJc1HLn/AsX+Luqaitc02ng+Fxc02dFKqrnteXquYWqnlfFOWVvuDu0R1S1D66J7gK8O8+qzgPycf1Tx5SzmjxNlLMAZUJGRHqLyN2BX8Yi0hXX1zE36LCJwA8o94tdRC4QkXQREVyHe4m3gbv7CX4+ZhIwXkTO8e4wmohIZi2CwIl4Hfg90BrXJ1IhVZ0OTAP+IyJniEiciLQQkR+JyE01uE4L3CjIAly/y2M1PGeHqh4UkTNxQS7gn8BYEfmhV5ZEEQk0J5av5/nAHhG5T0SaenXdt6aPDYjIaBE5xRtZuAfXPFfZv+kRqloKvAz8UUQ6edcdIiKNq8nTRLlaBygROb0G2yl+FNZEnb3AIGCeiOzDBaalwN2BA1R1I/AV7i/omUHn9sTdbRTiBh38VVWzvPceBx7ympnuUdVc3F3Fg7jRZbnAvdTtH2Cv4wYcvOX1jVTlUtwou7dwAxqW4kY8Tq/hddYDm3CDPeZWfTjgRhU+KiJ7cQMcJgfeUNUNuL66u3GjJZfghr0DvAT08er5PVUtwd3N9sON4MsHXsTdydVEB9wovz3AcmAG7o8LgGeAS0Vkp4g8W8G59wDf4kbp7cD9MRBTTZ4mygVGRZ14Bu5Lv4CjmxjK66GqKbW6kKm3RORlYLOqPhTushhjIocfD9ItUNUxVR0gIp/5cB1TD3mzJ1zMCY6iM8bUX7VuAqkuONX0GNPwiMhvcM1bf1DVteEujzEmstS6ia/CTN3cZFcCV6hq3+qON8YYY8rzrRNZRDqKyAQRmQ8swz3VfaVf+RtjjGlY/BgkcSsuEHXBjQ6ajHuSvUfti3es1q1ba3p6eiiyjnr79u2jefPm4S5GxLF6qZjVS+V8qZu8PLdPTq59gSJEqL4zixYtylfVYyrKj0ESf8ENA75KVRcCiIj/7Yae9u3bs3DhwlBlH9WysrLIzMwMdzEijtVLxaxeKmd1U7FQ1YuIrK/odT8CVCfgMtxDdO1xd1A21Ygxxpha8WMUX76q/k1VR+LWs9kNbBeR5SJSk6fcjTGm/hk71m3mhPm6oJg3K8CTwJMiksHRsxwbY0zDcfnl4S5B1Kt1gBKR01X1q/Kvq+pK3OqplR5jjDH11q23hrsEUc+PO6hXRCSTqqc6egmbKcAYY8xx8CNAtcKtsllVgMrz4ToAFBYpU77eTHyMEB8bQ1yst48R4mJjiPfS8bFCXMyx7zfyzomLEdxE2cYYEwKB0W5ZWeEsRVSrdYCq60lg8w8od76x2Je8XNAS4oMCWXxQAAsOgIFj4mJjiPfOOxLwgoJjXExZkKwoeJZ/P5AODq7B1z4mv3JBN9YCrTGR6YYbwl2CqOfrIIm60CUhho/vGsnhYqW4tJSiEqW4pJTiUqWopJTiErcvKvVeL1GKSoNe944/8n5p4PXAMS7fsuPLjjlcXMq+wyVl+ZaUBuVddt7hklKKS0opDdnTYGVEOBK0KC2h6cxpRwJbo7jywbH8XWRQcAwE60CQLhdU42Kl7Lwjx1cdVKt6vywvF3RjYizImnrGAlStRV2AiouB9HYtwl2MGiktLQuOgUAZHESPCarlgmNZ8CwXVCsJuus25NK+Y4djgnT5fPcfLvbyrixIu9cC1wnBdI3HiBGOBL74uJigIFfurrFcMK086JYF6c0bD/NV0aqjgmqcd51j74yPDqo1vTMOpO1u1hxRVOT28fZY6ImKugAVTWJihMYxsTSuo1rOytpOZqb/a0OWlA9gQUH3cElphUG1pkH3qONLSymq5M647JiyIF1YXHzMne6x1ymlqLiUkpzVvtdLRco3G5fv96y46fboZuOy/tWjg2Pld8bl7nCPuTOuuFm54EAp2/cetGbjUDn7bLe3PqgT5ssw86ret+Hl0S82RoiNiaVJfGy4i3JCsrKyGDVq1FF3hUXFRwfHsqBY1kRb/v3DJRXfwRaXKkXFxzYbVx+kK2g2Ln9nXO68Er/bjWd8WuHL1feHHt1sXBZIj202rqyv1gXF8kG6+qAbFyNHgnSlzcqR0Gx8yy3hvX494Mff9k9V8Z4CthaUCTuRwC9DaEp0BlqouNm4ov7S4KBbWbPy0uXLSU3vdUxwLC4JCsbl7nArC54Hi0opKimu8M64uNQF4nA2G8fFBgfPoDvcSppud+88yH+2LqZpvPvDrGmjWJrGx3rpmGNea9Y4juQWjUlOaEyjOG+CnmuuCf2HrO9UNaq2fk2bqr7yiqqq6uHDqqNGqU6c6NL79rn0m2+69K5dLv3OOy6dl+fSU6a49JYtLv3hhy69YYNLT5vm0tnZLp2V5dIrVrj0rFku/e23Lj1/vksvXuzSixe79Pz5Lv3tty49a5ZLr1jh0llZLp2d7dLTprn0hg0u/eGHLr1li0tPmeLSeXku/c47Lr1rl6qqLv3lL1163z73/sSJLn34sEu/8opLBzz/vOpZZ5Wl//IX1XHjytJPP606fnxZ+g9/UL344rL044+rXn55WfrRR1Wvvros/ctfqt5wQ1n6/vtVb721LH333ap33FGW/vnP3RZwxx3umIBbb3V5BNxwg7tGwNVXuzIEXH656uOP6+eff+7SF1/sPkPA+PHuMwaMG+fqIOCss1wdBYwaVa++eztPO823756++eZxffdK/v4PLR4zRvceLNIdhYd0z1NP64Gzztb1+ft0zfa9uvXRJ3T32eP0q/U7dP7aAl17/8O6/Xvn66fLt+pHS7fod3c+oLnfu1AnL9ig/5q3Xhff+j+6+uyL9O9Za/S5z1brnKvv0G/P/oE+9sF3+ujUZfrFJTfrvLGX6D2Tl+iENxfr9POu0c/PukxvfnW+XvvSPP3grB/q+6N/qN//y5d6wbMz9Z0zz9c3R16mZ/5ump7y64/0zX7j9C+DL9Xu972v3e97Xyf3HatPD73iSPrdPpn65PCrtft972v/Rz/Rz/uP0bcvuk2f/M9XOnNVnhZ//wf14rv3+eefh+T3HrBQK/h9b31Qxpg6FxMjIEJC4zhoDDSJh/hYuiU2cwe0bAJN4unfrY1LJzaHhMaM6d3epTu2hG1NuWxAV5f+uA3sTyB9VJpLf54I8fvpe+5JLj0rGQpiOPOy01x6QXs4cIDM6we69DcdATj/jmEAbPo0js7p3bj8QW8uvc3vUNqmLdc9cg4HDpfQbMObHOzQicyfDONAUQndlyWS3qk9cWN7sW3vQZq9H0vvL6fSZfEcLr/ycZ5fsZ2SllvolVdIWnJCiGq1/gnJirqhlJGRoStXrgx3MSKSLRFQMauXilm9VM6XunnrLQ4WlTBnwFg+XLqF95ZspriklKsGdeOuszNo27yRL2WtSyFcbmORqg4o/3pE3EGJSCywENikqheEuzzGGFNrl19OE2A0MLp3O34xrjfPfbaGiXPX88G3W/nT5f0Y1av+LGYYCr4t+V6etwR84xoe/nNgeajKYowxdW73brd5khIa8/CFJ/PBnSNo16Ix1788nyc/Xkm0tWLVpZAFKGAisEJEnqzqIBHpApwPvBjCshhjTN266CK3lZPRoQXv/WQYPxzQhec+X8O9b39DcUlpGAoY+ULaByXuab8+qrqsimPeBh4HWgD3VNTEJyK3AbcBJCcnnzF58uQQlTi6FRYWkpBgHbDlWb1UzOqlcn7UTdIXXwCQP3Jkhe+rKv/NLuK9NUWc0T6WH5/WmLhwP7tVjVB9Z0aPHl1hH5Rvw7+BiTV5rdz7FwB/9X7OBN6v7jq9evVSU7Ejw6nNUaxeKmb1Urm6rJuXv8zR7ve9r3e9tURLS0vr7LonIlT1Qh0MMz85OCEiccAZ1ZwzDLhQRM4DmgAtRWSSqtoTbsaY6Jaf7/ZJSVUeduOwHuw9WMwfp60iuUVj7j+3dx0ULjrUug9KRB4Qkb3AqSKyx9v2AtuA/1Z1rqo+oKpd1C3ZcQXwmQUnY0y9cOmlbquBn41J5+pB3fj7jGwmL8gNccGihx/rQT0OPC4ij6vqAz6UyRhjot/dd9f4UBHh0Yv6sq5gH7/871JO7tySkzu1CmHhooNvo/hU9QER6SwiQ0VkZGA7jvOz1J6BMsbUF+PHu62GYmOEZ67oT+tm8dzxz6/YfaAohIWLDr4FKBF5ApgFPATc6233+JW/McZEla1b3XYckhIa85erTmfTzgM89N7SEBUsevg5SOIHQIaqHvIxT2OMiU5XXOH2x7ke1ICUttx5Vk/+OG0V55/SgXF9O/pftijhZ4DKAeIBC1DGGHP//Sd86o8z0/ho6VYeem8pg3ok0iYK5+3zg58zSewHlojIP0Tk2cDmY/7GGBM9xo1z2wmIj43hyctOY9f+Ih6eWuk8B/Wen3dQU7zNGGNMrjdcvGvXEzq9T6eW/GR0Os98uprLB3RlaHrVz1PVR74FKFV9TUSaAt1U1dbDMMY0bNde6/bH2QcV7MeZaby7eCMPT13GB3eOIC42lNOnRh4/R/GNB5YAH3npfiJid1TGmIbpoYfcVgtN4mN56Pw+rNpWyKS5630qWPTwMxw/DJwJ7AJQ1SVADx/zN8aY6DF2rNtq6Xt92jM8PYk/TlvFjn2HfShY9PAzQBWr6u5yr9lCJ8aYhiknx221JCL8enwf9h0u4Znpq3woWPTwM0AtFZGrgFgR6SkifwZm+5i/McZEj5tucpsPerZvwQ8HdOWN+bls2nXAlzyjgZ8B6me4Gc0PAf8CdgMTfMzfGGOixyOPuM0nPxuTDsBzn632Lc9I58soPhGJBR5R1XuB//UjT2OMiWqjRvmaXafWTblqUDcmzl3Pj0al0T2xua/5RyJf7qBUtYTq134yxpiGY+VKt/nojsw04mKEZz5tGHdRfj6ou9gbVv5vYF/gRVV918drGGNMdLj9drevxXNQ5bVr2YTrh6bw4swcfjI6nbRk/5dfjyR+9kG1BQqAMcB4b7PlM4wxDdNjj7nNZ7eNTCU+NoYXZ9Z+hGCk87MP6htV/ZMf+RljTNQbOjQk2SYlNObSM7rw74Ub+Z+ze9GuRZOQXCcS+NkHdaEfeRljTL2wdKnbQuCWEakUlZby2ux1Ick/UvjZxDdbRJ4TkREicnpg8zF/Y4yJHj/9qdtCoEdSc87p04FJczew71BxSK4RCfwcJBG4n3006DXF9UkZY0zD8oc/hDT720al8tGyrby1IJebhtfPWeX8nM18tF95GWNM1Bs4MKTZn96tDQNT2vDSl2u5bkj3ejnTuW8BSkR+VdHrqvpoRa8bY0y9tmSJ2/frF7JL3DIildsnLuLTFds55+QOIbtOuPgZcvcFbSXAuUCKj/kbY0z0mDDBbSF0Vu92dGzVpN4uxeFnE99TwWkReRJbYdcY01A9/XTILxEXG8MVA7vxp+mrWF+wr95NfxTKRstmQGoI8zfGmMjVr19Im/cCLh/YldgY4V/zNoT8WnXNzxV1vxWRb7xtGbASeMav/I0xJqosWOC2EOvQqglnn9SeyQtzOVhUEvLr1SU/h5kHT2tUDGxT1SoH6ItIV+B1oANQCjyvqhbUjDHR79573d7Hufgqc83g7ny0bCsfLt3CD/p3Cfn16kqtA5SIDASSVPXDcq+PF5HNqrqoitOLgbtV9SsRaQEsEpFpqvpdbctljDFh9dxzdXapoWmJpCQ2459zN9SrAOVHE98fgOUVvL7ce69SqrpFVb/yft7rndPZhzIZY0x49e3rtjoQEyNcNagbC9fvZM32vXVyzbogqlq7DES+VdVTKnnva1U9rYb5pABfAH1VdU+5924DbgNITk4+Y/LkybUqc31VWFhIQkL9nn7/RFi9VMzqpXJ+1E1Lbx6+PXUUpHYdKuWurAOc1yOeS3s1Csk1QvWdGT169CJVHVD+dT8C1BpVTT/e98odlwDMAH5X3fpRGRkZutLnRcDqi6ysLDIzM8NdjIhj9VIxq5fK+VI3gfProA8q4MZX5rNi616+vG8MsTHie/6h+s6ISIUByo8mvuki8jsROao2ROQR4LMaFCweeAf4py1uaIypN/7xD7fVoYtP78KW3QeZm1NQp9cNFT9G8d0NvAisERFvbg9OAxYCt1R1ohfUXgKWq+offSiLMcZEhoyMOr/k2X3a06JxHO98tZFh6Ul1fn2/1TpAqeo+4EoRSQVO9l5epqo1We5xGHAt8G1QcHtQVT+obbmMMSasZsxw+1Gj6uySTeJjOf/Ujkz5ejO/uaiY5o39fJKo7vk51VEOcFxrEKvql4D/DaXGGBNuv/6129dhHxS4Zr43F+Ty0dKtXHJGdA85j+7waowxkerll8Ny2YEpbejatinvLt4Y9QGq/i0gYowxkSA11W11TES4uH8XZmcXsGX3gTq/vp98DVAi0kZETrUl340xDd706W4Lgwv7dUIVPvh2a1iu7xc/Fyz8DXADkI1b6h1syXdjTEP129+6/dixdX7ptOQEendowQffbuHmKF4O3s8+qB8Caap62Mc8jTEmOk2cGNbLn39KR56atootuw/QsVXTsJblRPnZxLcUaO1jfsYYE726dnVbmJx3akcgupv5/AxQjwOLReRjEZkS2HzM3xhjosdHH7ktTIKb+aKVn018rwG/B77Fre1kjDEN1xNPuP24cWErwgWnduTJT1axedcBOrWOvmY+PwNUvqo+62N+xhgTvd58M9wl4LxTXID6cOnWqBws4WcT3yIReVxEhtgwc2NMg9ehg9vCKDU5gZM6tuT/fbM5rOU4UX7eQfX39oODXrNh5saYhmnqVLcfPz6sxTj/lA5R28zn51x8o/3Kyxhjot5TT7l9mANUoJnvo6VbuSnKmvl8a+ITkfYi8pKIfOil+4jIzX7lb4wxUeXtt90WZqnJCfRsl8CnK7aFuyjHzc8+qFeBj4FOXnoVMMHH/I0xJnokJbktAozt0555OTvYfaAo3EU5Ln4GqCRVnYw3xFxVi4ESH/M3xpjo8e67bosAY09qT3GpkrVye7iLclz8DFD7RCQRbx4+ERkM7PYxf2OMiR7PPuu2CNCva2uSEhoxfXl0BSg/R/HdBUwB0kRkFpAMXOZj/sYYEz3++99wl+CI2BhhTO92fLh0K4eLS2kUFx0rLflZymXAKGAocDtu+fcVPuZvjDHRo1Urt0WIsSe1Z+/BYhas2xHuotSYnwFqjqoWq+oyVV2qqkXAHB/zN8aY6PHWW26LEMN7JtE4LoZp30XPaL5aBygR6SAiZwBNRaR/0CwSmUCzWpfQGGOi0d/+5rYI0axRHMPTk5i+fBuqWv0JEcCPPqhzcAsVdgGeAsR7fS/woA/5G2NM9Pngg3CX4Bhn92nPpyu2s3LbXnp3aBnu4lSr1gFKVV8DXhORS1T1HR/KZIwx0a9Z5DUgjTmpHQDTv9sWFQHKzz6oLiLSUpwXReQrEfmej/kbY0z0mDTJbRGkXYsm9OvammlRMtzczwB1k6ruAb4HtANuBJ7wMX9jjIkeL77otggzpnc7vtm4i4LCQ+EuSrX8DFCBvqfzgFdU9eug14wxpmGZNs1tESYzIxlV+GJ1XriLUi2/14P6BBegPhaRFtRgZV0RGSciK0VkjYjc72N5jDEmfOLj3RZh+nZqRVJCIz5fEfkBys+ZJG4G+gE5qrrfm/boxqpOEJFY4C/A2cBGYIGITFHV73wslzHG1L1XX3X7G24IZymOERMjjOyVzGcrtlNSqsTGRG5Dl593UJOBjsAeAFUtUNVvqjnnTGCNquao6mHgTeAiH8tkjDHh8eqrZUEqwozOaMeu/UUsyd0V7qJUyc87qL/j7pieFZF/A6+qanVTHXUGcoPSG4FB5Q8SkduA27zkIRFZ6kN566MkID/chYhAVi8Vs3qpnH91I5F7hzLg98d9Sqi+M90retHPFXWnA9NFpBVwJTBNRHKBF4BJ3tRH5VX0L3fMI86q+jzwPICILFTVAX6Vuz6xuqmY1UvFrF4qZ3VTsbquF1+ntPX6nW4AbgEWA88ApwOVDWXZCHQNSncBNvtZJmOMMdHJtzsoEXkX6A1MBMar6hbvrbdEZGElpy0AeopID2ATcAVwlV9lMsYYE7387IN6TlU/q+iNym4JVbVYRH6KWyo+FnhZVZdVc53na1fMes3qpmJWLxWzeqmc1U3F6rRepLaz2orIQCBXVbd66euAS4D1wMOqGj2LjxhjjIkYfvRB/QM4DCAiI3HTG72OW+7d/goxxhhzQvxo4osNuku6HHjem9X8HRFZ4kP+xhhjGiA/7qBiRSQQ6M4Cgvuh/OzjsmmRPCLysohsD34eTETaisg0EVnt7duEs4zhICJdReRzEVkuIstE5Ofe61Y3Ik1EZL6IfO3VzSPe6z1EZJ5XN2+JSKNwlzUcRCRWRBaLyPte2uoFEJF1IvKtiCwJDHary/9PfgSoN4AZIvJf4AAwE0BE0nHNfL4ImhbpXKAPcKWI9PEr/yjzKjCu3Gv3A5+qak/gUy/d0BQDd6vqScBg4Cfed8TqBg4BY1T1NNyUZONEZDDwe+BPXt3sxE1Z1hD9HFgelLZ6KTNaVfsFDXars/9PtQ5Qqvo74G7cL83hWjbqIgb4WW3zD2LTInlU9Qug/OCTi4DXvJ9fA75fp4WKAKq6RVW/8n7ei/uF0xmrG9Qp9JLx3qbAGOBt7/UGWTci0gU4H3jRSwtWL1Wps/9Pvjyoq6pzVfU/qrov6LVVgV8WPqloWqTOPuYf7doHnj3z9u3CXJ6wEpEUoD8wD6sb4Egz1hJgO+7h+Wxgl6oWe4c01P9TTwO/oGz1hUSsXgIU+EREFnlTzkEd/n/ytY8oxGo0LZIxIpIAvANMUNU9EsFzodUlVS0B+olIa+A/wEkVHVa3pQovEbkA2K6qi0QkM/ByBYc2qHoJMkxVN4tIO9z0ddXNr+orX6c6CjGbFqlq20SkI4C3j441nX0mIvG44PRPVX3Xe9nqJoiq7gKycP10rYMGOTXE/1PDgAtFZB2u22AM7o6qodcLAKq62dtvx/1RcyZ1+P8pmgLUkWmRvBE1VwBTwlymSDIFuN77+Xrgv2EsS1h4fQcvActV9Y9Bb1ndiCR7d06ISFNgLK6P7nPgUu+wBlc3qvqAqnZR1RTc75TPVPVqGni9AIhIc2/hWUSkOfA9YCl1+P+p1jNJ1CUROQ/3101gWqTfhblIYSEibwCZuKnvtwG/Bt7DrcnVDdgAXNbQZvEQkeG4UaTfUtiMBvMAACAASURBVNaf8CCuH6qh182puA7tWNwfppNV9VERScXdObTFTfB8jaoeCl9Jw8dr4rtHVS+wegGvDv7jJeOAf6nq77xJwevk/1NUBShjjDENRzQ18RljjGlALEAZY4yJSBagjDHGRCQLUMYYYyKSBShjjDERyQKUMcaYiGQByhhjTESyAGWMMSYiWYAyxhgTkSxAGWOMiUgWoIwxxkQkC1DGGGMikgUoYyKQiKSIiAatSRTVRGRZ0IKAx3Pe1SLySQiKZKKABSgTEiIyXERmi8huEdkhIrNEZGAt81wnImP9KmM11woEiEJvWyci91dy7AMi8kUFryeJyGER6VvJeb1E5N8iku/V0zcicpeIxPr9eWrDq4f02uShqieralY11zkmKKvqP1X1e7W5toleFqCM70SkJfA+8GfcejqdgUeAaFxPp7WqJgBXAr8SkXEVHDMRGCoiPcq9fgXwraouLX+CiKTh1qnKBU5R1VbAZcAAoIWfHyCcd2H15Q7QhIcFKBMKvQBU9Q1VLVHVA6r6iap+IyKNvTuqUwIHi0g7ETngrfqaJCLvi8gu77iZIhIjIhNxC6RN9e5ofuGdO9i7U9slIl8HNyOJSJaI/NZ7v1BEpopIooj8U0T2iMgCEUmpyQdS1TnAMuCYuyFV3Qh8Blxb7q3rcIsEVuQRYLaq3qWqW7x8VqrqVd6S7AFXi8gG7y7rf4M+25kiMsf73FtE5DlvpenA+yoiPxGR1cBq77VnRCTX++yLRGRE0PGxIvKgiGSLyF7v/a5Bd4Zfe3V4uXf8BSKyxLv+bG9BxEBe60TkPhH5BtgnInHBd79e2Rd65dgmIoHVjwPX2uVda4iI3CAiXwblfbKITPO+G9tE5MFq8jTRTFVts83XDWgJFOB+OZ8LtCn3/l+B3welfw5M9X5+HPg7EO9tIyhbWHMdMDbovM7edc7D/bF1tpdO9t7PAtYAaUAr4DtgFW658zjgdeCVSj5DCqDecQIMA/YDZ1Vy/NXA6qB0BnA4UJYKjt8K3FhFHQau/wLQFDgNdwd6kvf+GcBgr3wpuOXbJwSdr8A03B1sU++1a4BE75y7vTI08d67F7cScYb3eU8DEoPySg/K+3RgOzAIt0Lv9d6/TeOgf6clQNegax/5twPmANd6PycAg8vXedC1bgC+9H5uAWzxyt7ESw+qKk/bonuzOyjjO1XdAwyn7BdsnohMEZH23iGvAVeJSOD7dy2umQygCOgIdFfVIlWdqd5vnQpcA3ygqh+oaqmqTgMW4gJWwCuqmq2qu4EPgWxVna6qxcC/gf7VfJx8YAfwInC/qn5ayXH/AdqLyFAvfR3woarmVXJ8Iu6XbXUeUXcH+jXwNS5woKqLVHWuqhar6jrgH8Cocuc+rqo7VPWAd84kVS3wznkKaIwLSAC3AA+pu4tTVf1aVQsqKdOtwD9UdZ66O+TXcMFzcNAxz6pqbuDa5RQB6SKSpKqFqjq3BvUAcAGwVVWfUtWDqrpXVefVMk8TwSptHxaRZ2tw/h5VfcjH8ph6QlWX4/76RUR6A5OAp4ErVXWeiOwDRonIFiAdmOKd+gfgYeATEQF4XlWfqOQy3YHLRGR80GvxwOdB6W1BPx+oIJ1QzUdJ8oLZEV6z0oNecpKq/khV94vIv4HrRGQO7o7qriryLcAF4upsDfp5f6C8ItIL+COuz6oZ7v/yonLn5pYr9924QNQJ98dDSyDJe7srkF2D8oCr9+tF5GdBrzXy8q3w2uXcDDwKrBCRtbgg/H4NrltVGU80TxPBqrqDugj3ha9quyTUBTTRT1VXAK9ydP/Na7g7oGuBt1X1oHfsXlW9W1VTgfHAXSJyViCrclnnAhNVtXXQ1ryKgObX53lMVRO87UflPtMPcU2NLXADRSozndr9//kbsALoqaotcQFTyhc18IPX33SfV742qtoa2B10Ti6uKbQmcoHflav3Zqr6RkXXLk9VV6vqlUA74PfA2yLSvKpzqitjFXmaKFZVgPqTqr5W1YZrVjDmKCLSW0TuFpEuXrorbhRccLPLROAHuCD1etC5F4hIurjbpz1AibeBu/tJDcpjEjBeRM7xOvmbiEhm4LphMBPYBTwPvKmqh6s49te4kX9/EJEOAN7nniQirWtwrRa4+in07lB/XIPji4E8IE5EfoW7gwp4EfiNiPQU51QRSfTeK1/vLwA/EpFB3rHNReR8EanR6EMRuUZEklW1FFdf4P6N84DSctcK9j7QQUQmiBts00JEBlWTp4liVQWoykYfHaGqT/tYFlN/7MV1oAea8uYCS3Gd28CRkW9f4f5qnhl0bk/c3UUhruP7r1r2/MzjwEPeyLF7VDUXd6f/IO6XWy6usz8sfateX9nruCaw16s5NhsYghsYsExEdgPv4PrQ9tbgcvcAV3nHvgC8Vc3xH+P64FYB64GDHN0M90dgMvAJLvC9hBucAa7J9TWv3n+oqgtx/VDPATtxA1FuqEGZA8bhPnMh8AxwhdentB/4HTDLu1Zwnxaquhd3dzoe1/S5GhhdVZ7HUSYTgQKjo459Q2Q77j/9bGAWbkjsqjosm6nnRORlYLP1YxpjKlJpgIIjHbFDg7Zk3F/Ds1T1/+qkhKZeEvf80RKgv6quDW9pjDGRqMoAddSB7sn383DPrHRW1abVnGJMhUTkN8D/4IZB/y7c5THGRKaqmvgCd01DcMM7c3B3T3OBr6rpAA7kMQ7XHhwLvFh+dJWI3IUb9hrovL1JVdef8KcxxhhTb1QVoEpxndh/BN7zOjBrnrGb8HIVrlNzI7AA9wzMd0HHjAbmec+Q/BjIVNXLT+iTGGOMqVeqmsixE2V9Tz8SN+njV7iRVXNUNaeavM8E1gSOE5E3cSOujgQoVQ1+oHIubshxlVq3bq3p6bWaWLne2rdvH82b26Mf5Vm9VMzqpXK+1E2eN4lIcnLtCxQhQvWdWbRoUb6qHlNRlQYoVd0KvOttiEgz4CbcJJc9cM12VenM0cNYN+KGHlfmZtww2GOIyG3AbQDJyck8+eST1Vy6YSosLCQhobqJERoeq5eKWb1UzuqmYqGql9GjR1fYtVPVVEetcP1Pgbuo/rjnHabihp1Xp/xT7VDJk+Iicg1uypbyc4m5k1Sfxz38SEZGhmZmZtbg8g1PVlYWVjfHsnqpmNVL5axuKlbX9VJVE98aXLPbbOA3wPxKJn6szEbc4IqALsDm8gd5U/D/LzBKVaNxvSBjjDnWWG9tzenTw1uOKFZVE18yuOdVvNmSjxCRgaq6oJq8FwA9xS3itgm3eNtV5fLpj5suaZyqbj/+4htjTIS63MZ71VZNVrt8R0QuVNVNACIyCjfFySlVnaSqxSLyU9wUK7HAy6q6TEQeBRaq6hTczNUJwL+9mas3qOqFJ/5xjDEmQtx6a7hLEPVqEqB+BLznLWlwOvAYR6+3UylV/QD4oNxrvwr6eWzNi2qMMaYhqXZSTa8p707cJJIPA2d7k3SGRbPcXHj1VZcoKoLMTJg0yaX373fpt7x5M3fvdul333Xp/HyXnjrVpbdudemPPnLp3FyXDrQZ5+S49IwZLr1ypUvPnu3SS5e69AKvtXPJEpdessSlFyxw6aVLXXr2bJdeudKlZ8xw6RxvxP706S6d61XvRx+59FZvSaCpU106P9+l333XpXfvBiD5s89cer/3yNqkSS5dVOTSr77q0gEvvFDWTg7w17/CueeWpZ95Bi4MuqF98km4JGiFiCeegCuuKEv/5jdwTdCTAr/6Fdx4Y1n6gQfgttvK0vfcAz/5SVl6wgS3BfzkJ+6YgNtuc3kE3Hiju0bANde4MgRccYUrY8All7jPEHDhhe4zBpx7rquDgLFjXR0FZGbWq+9evwkTfPvu8dZb9eq71/Ppp4/ru6fXXEPhQ79m9pp8Xp+zjm9HnMv25E4s63U6V784l0UDxzDz9vuZm1NAaak2+O/eMb/3KlHVKL6pHD3qrhlu/ZiXRARrijPGNFSHikvZlFfIWx8u56v1O7n+m82sXA9/LnYL/P5t5wH2dMng237DOVRUyv5DJcxcncfzz8+lc+umTMrfR+fiUhqF+XNEuqpmkqhwyHeAqs4ISYmqkZGRoSsDkdgcxYbGVszqpWJWL5ULrhtVZX3Bfhas28Gi9TtZuH4na7YXAhAfK/Tt3IqTO7UkPTmB9HYtSG+XQPuWjfH61Y/Yc7CIz1ds598LN/Llmnw6t27Kr8b34ZyTO9T1xzthofrOiMgiVR1Q/vWqRvGFJQAZY0w4FZWUkrOrhDUzc1i4zgWk/EL3BEzLJnEMSGnLD/p3ZkD3NpzWtTVN4iuZsyDQvBkf750bz0X9OnNRv87MzSngkanfcfvERdw8vAcPnNubuNiwLGMW0apq4ntfVS+o6uSaHGOMMZHsYFEJS3J3MS9nB/PXFbBo/U4OFpUCy+natikjeyZxRkobBqa0JT05gZiYiuYgqMDZZ7t9VtYxbw1OTWTKT4fxu/+3nJe+XMvyLXt44boBNG9ck3FrDUdVtTFcRKZU8b4AfXwujzHGhNT+w8V8tX4X89YWMG/tDpbk7uJwcSki0LtDS64Y2I1m+7dw/XnDad+yyYlf6JZbqnw7PjaGhy88mb6dW3HfO99w46sLePXGgTRrZEEqoKqauKgG51e75IYxxoTT3oNFLFy/090hrS3gm427KS5VYgT6dm7FdYO7Myg1kYEpbWjdzA1byMrKq11wgqNHFVbh0jO60Dguhp+/uZibX13IKzcOrLzZsIGxPihjTL2ye38R89e5YDRv7Q6WbtpNqUJcjHBKl1bcMiKVQaltGdC9DS2axIeuIIEh982aVXvo+NM6UVKqTHhrCQ/+51ueuuy0YwZZNER2L2mMiWq7DxQxf+0O5mQXMCengBVb96AKjWJj6Ne1NT8Znc6gHomc3r113TafnefNZ1BBH1RFvt+/M+sK9vH09NWc1qU11w9NCVnRooUFKGNMVCk8VMyCdTuY6wWkwB1S47gYTu/Whgln9WJQalv6VTXCri78+MfHfcqdY3qydNNufvP+d5zUsSVn9mgbgoJFjyoDlDeZaxqwTFWX102RjDGmzIHDJSxav5M5OfnMyS7g6427KSlV4mOF/l3b8NMxPRmSmkj/bmEOSOWdwGSxMTHCHy/vx4V//pK7Ji/h4wkjG/TIvqqGmf8Kt8LtIuD/RORxVX2hsuONMcYPh4pLWLxh15EmuyUbdnG4pJTYGOHULq24fWQqQ9ISGdC9LU0bRVBAKi8wDVSrVsd1Wssm8Tx52Wlc9o85/P6jFTx6Ud8QFC46VBWaLwf6qep+EUkEPgIsQBljfFVUUso3G11Amp3tnkM65A377tupFTcMS2FIaiIDe7QlIZruJi7yBkLXsA8q2ICUttwwNIVXZq3jvFM6Mjg10d+yRYmq/rUPqup+AFUtEBF7zNkYU2slpcrSTbuZk1PAnOwCFqzbwf7DJQD07tCCqwZ1Y2haEmf2aEurpiEcZRdqd95Zq9PvPSeDT5dv5753vuHjCSMjq/myjlQVoNKCHtSVcmmbLNYYUyOlpcryrXuYk13A3JwC5uXsYO+hYgDS2yVwyeldGJqWyKDURNo2r0fTp158ca1Ob9Yojsd+cArXvDSP12av4/ZRaT4VLHocz4O6T1Z4lDHGBFFVVm8vdH1I2QXMXVvArv1uXrqUxGZccFonhqQlMji1Le1a1PJh2EgWWJokKemEsxjeM4kxvdvx3GdruPSMLiQmNPapcNHBHtQ1xtSKqrI2f9+RJru5OQXkF7pJZjq3bsrZJ7VnSFoiQ9IS6diqaZhLW4cuvdTtT6APKtiD5/XmnKdn8synqxvcgIko6nE0xkSKjTv3M9u7Q5qTXcDWPQcBaN+yMSN6JjMk1QWkrm2rn0Wh3rr7bl+ySW/XgivP7Mo/523guiEppLdL8CXfaGAByhhTrYLCQ8zJKWDWmgJmZ+ezvsBN45OU0IjBXjAakppIj6TmNkVPwPjxvmU1YWwv3lu8mT9OW8lfrz7Dt3wjnQUoY8wxCg8VM3+tC0iz1uSzYuteAFo0jmNQaluuH5LCsPQkerVPsIBUma1b3b5D7RckTEpozPVDu/PXrGzWbC9sMHdRxx2gROQx3NLvL6pqgf9FMsbUtUPFJXy1fhezs/OZnV3A17m7KC5VGsXFMKB7G+49J4OhaYmc0rmVLaxXU1dc4fa17IMKuGlYD176ci1/n5HNk5ed5kueke5E7qDm46Y/+hNwnb/FMcbUhZJSJWd3Ccuzspmdnc+CdTs4WFRKjMCpXVpz+6hUhqUlcXr3Ng3y+Rtf3H+/r9klJjTmyjO7MXHOeiaM7UmXNvW/f6+6ufhigTtV9U+B11T1vZCXyhjjK1UlO6/wSJPd3JwC9hwsBlaQ0b4FV57pHo4dlNqWlqFcgqIhGTfO9yxvHZHKpLnref6LnAYxoq/KAKWqJSJyEe5uyRgTRTbtOsCsNfnMXuOa7bbvPQRAlzZNObdvR9oc3s7N40eQ3KJhPVtTZ3Jz3b5rV9+y7NS6KRf378KbC3L52Zie9f7friZNfLNE5DngLWBf4EVV/SpkpTLGHLfgkXZzsvNZFzTSbkhaEsPSEhmWnnRk6HdWVla9/wUXVtde6/Y+9UEF3D4qlbcW5vLG/A3ceVZPX/OONDUJUEO9/aNBrykwxv/iGGNqqvBQMQvW7mDWmnxmZRewfMseABIaxzE4tS3XDUlhaHoiGe1b2Ei7cHjooZBkm5qcwIieSfxr3gbuyEyr14NWqg1Qqjq6LgpijKlaYBmK2V5AKj/S7p7v9WJoehKn2ki7yDB2bMiyvnZwd26buIhPV2znnJNrP4w9UlUboESkPfAY0ElVzxWRPsAQVX0p5KUzpgErKVWWbd595OHY4JF2p3RpzW0jUxmWnsQZNtIuMuXkuH1qqu9Zj+ndjk6tmjBp7vqGHaCAV4FXgP/10qtw/VEWoIzxkaqyrmA/X67JZ9bqfObkFLD7gJtktVf7BK4Y2I1h6TbSLmrcdJPb+9wHBRAXG8NVg7rx5CeryMkrJDW5fj64W5MAlaSqk0XkAQBVLRaRkhCXy5gGoaDwELOyC5i1Op8v1+SzadcBwE2yes7J7RmWnsSQtMT6Pet3ffXIIyHN/ocDu/LMp6v557wN/PKCPiG9VrjUJEDt81bUVQARGYybScIYc5wOHC5h/jo3sOHL1fl85w1saNkkjqFpSfwoM40R6Ul0T2xmAxui3ahRIc2+XYsmjOvbkX8vzOXeczLqZTNvTQLU3cAU3IKFs4Bk4NKQlsqYeiKweuyXXkBatH4nh0tKaRQbwxneFELD0pM4pXMrYmMsINUrK1e6fUZGyC5x5cCuTP16M9O+28b40zqF7DrhUpNRfItEZBSQgVtZd6WqFoW8ZMZEIVVlfcF+Znr9SLOz870ZG6BPx5bcMMxNsnpmSluaNqp/f/GaILff7vYh6IMKGJyaSMdWTXhv8aaGGaBEZCbwBTATmGXByZijFRQeYnZ2AV9W0I90bt+ODOuZxNC0RJIa2GqoDd5jj4X8EjExwoX9OvHSzLUUFB6qdyvu1qSJ73pgOHAJ8AcROQTMVNX/qe5EERkHPAPE4mY/f6Lc+yOBp4FTgStU9e3jLL8xde7A4RIWeP1IMyvpRxqenkSK9SM1bEOHVn+MDy7u34V/zMjh/W+2cP3QlDq5Zl2pSRNfjogcAA5722jgpOrO8yaa/QtwNrARWCAiU1T1u6DDNgA3APccf9GNqRvB/Uiz1uSzcF1ZP9Lp3VtbP5Kp2NKlbt83tJO6ZnRowUkdW/KfxZsaXoASkWwgH/gX7tmnn6lqaQ3yPhNYo6o5Xj5vAhcBRwKUqq7z3qtJfsbUiUA/UiAgzc4uex7ppKB+pIEpbWjWyNb8NJX46U/dPoR9UAE/6N+Jxz5YUe+eiRJVrfoAkZ/jmvi6AiuAGcAXqppdzXmXAuNU9RYvfS0wSFV/WsGxrwLvV9bEJyK3AbcBJCcnnzF58uRqPlbDVFhYSEJC/fly+qUm9bLnsLK8oIRlBSUsyy+h4KD7f5HYRDg5KZY+ibH0aRtLy8b15w7Jvi+V86NuWqxYAcDe3r39KFKVdh4s5a6sA1yYFs8PejYK2XVC9Z0ZPXr0IlUdUP71mjTxPQM8IyIJwI3Aw0AXXL9SVSr6n1x1NKy8DM8DzwNkZGRoZmbmiWRT72VlZWF1c6yK6uVgUQnzvYlWv1yTz7LNrh+pRZM4hqa1Y3jP5Hrfj2Tfl8r5Ujd1XLfvbJzH4h37eXrUqJB9Z+v6O1OTJr6ncHdQCcBc4Fe4EX3V2Yi76wroAmw+gTIaU2ulpcp3W/bw5Zp8Zq7OY8G6nRwuLiU+VjjDm2h1eM9k+nZqaROtGn8sWeL2/frVyeUu7NeJX7z9DUs37eGULq3q5JqhVpMG9LnA/6nqtuPMewHQU0R6AJuAK4CrjjMPY07Ytj0Hmbk6n7e/PsjdM6dTsO8wAL07tOD6Id0Z3jPZ+pFM6EyY4PZ10AcFcPZJ7YmNET5etrXhBChV/beIXOgNCQeYoapTa3BesYj8FPgY1xz4sqouE5FHgYWqOkVEBgL/AdoA40XkEVU9+cQ/jmnIDhwuYd7aAmaudndJq7YVAtCykXDWyR0Y0TOJ4elJtGtp89qZOvD003V6uTbNG3FmSls+XraVe84J3ewVdakmTXyP40bk/dN76U4RGaqqD1R3rqp+AHxQ7rVfBf28ANf0Z8xxO6bZbq03/DsuhkE92nLpGV0Y0TOZrSsWMXp03TSzGHNEHTXtBTvn5PY8PPU7svMKSasHo/lq0rZxPtAvMLRcRF4DFgPVBihj/BZotpu5Oo8vV+cf1Wx3w7AUhqcncWaPtkdNnLltZf0c5GAi3IIFbj9wYJ1d8nsnd+Dhqd/x8bKt3JGZXmfXDZWaNr63BnZ4P9ePxk0TFSprtktKaMzIXsnWbGci1733un0d9UEBdGrdlNO6tOLjZdsaTIB6HFgsIp/jho6PxO6eTIgEmu1mrs7nyzWVN9v17tCi3g7/NvXEc8+F5bLfO7kDf/h4JVt2H6Bjq6ZhKYNfajJI4g0RyQIG4gLUfaq6NdQFMw3HiTTbGRPxQjzFUWXO8QLUJ8u2Rf3UR5UGKBFpBzwIpAPfAo+r6p66Kpipv6zZzjQIs2e7fR1NGhuQ3i6BtOTmfLxsa/0NUMDrwCLgz8AFwLO4iV2NOS7BzXYzV+eVTbZqzXamPnvwQbevwz6ogHF9O/D3GTns3HeYNs1DN/VRqFUVoDqo6v96P38sIl/VRYFM/bB190HXZOetJGvNdqbB+cc/wnbps05qz18+z2bmmnwujOKFDKsKUCIibSibUy82OK2qOyo90zQ4B4tKmLd2B1+syrNmO2MgpEu9V+e0Lq1p3SyeGSvz6m2AaoVr4gtucwncRSmQGqpCmcinqqzZXsiMVXl8sTqfeTkFHCp2zXZnprhmu+HprtkuxtZIMg3RjBluP2pUnV86NkYY0TOZGavyKC3VqP0/WGmAUtWUOiyHiQK7DxQxa00+X6zK44tVeWzefRCAtOTmXDWoG6N6JTOoRyJNG1mznTH8+tduH4Y+KIBRvZKZ+vVmlm/dw8mdovPxVZsl01SqpFT5dtNuZqzM44vVeSzJ3UVJqdKicRzD0pP46ZhkRvZKokubZuEuqjGR5+WXw3r5kT2TAJixKs8ClKkftu05yBer8pixyg1w2LW/CBE4tXMr7shMY2SvZPp1bU28LUlhTNVSw9sL0q5lE/p0bMmMlXlRO6uEBagG7lBxCQvX7TwSlFZs3QtAcovGnNW7PSN7JTGiZzJto3ioqjFhMX26248dG7YijMpI5oUvcth7sIgWTeLDVo4TVaMA5Y3e6xp8vKrasPMopKqszd/n+pFW5zMnu4ADRSXExwoDurflvnG9GdUrmZM62jNJxtTKb3/r9mEMUJm9kvlbVjaz1hQwrm+HsJXjRNVkuY3f4B7QzaZsyXYFxoSuWMZPew8WMTu7wAtKeeTuOABASmIzLhvQhVG9khmcmkjzxnZDbYxvJk4Mdwk4vXsbEhrHMWNVXv0MUMAPgTRVPRzqwhh/BGZumOE12321fifFpUqzRrEMTUvithGpjOyVTPfE5uEuqjH1V9eu4S4B8bExDEtP5ItVeahq1LWK1CRALcUtt7E9xGUxtZBfeIjZm4t5783FfLkmn/xC9/dEn44tuXVkKiN7JnNG9zY0irPBDcbUiY8+cvtx48JajFG92vHxsm1k5xWS3q5FWMtyvI5nuY2lwKHAi6p6YchKZap1uLiUrzaUDW5YttnN49u2eT4jeiYxqlcyw3sm0a6FzdxgTFg88YTbhzlAjewVGG6eXy8D1GvA73EzmpeGtjimKrk79pPlPSQ7e00++w6XEBsjnNGtDfd8rxcJezdw3fgxUfvUuDH1yptvhrsEAHRp04xubZsxN6eAm4f3CHdxjktNAlS+qj4b8pKYYwTmt8tauZ0ZK/PIyd8HQJc2Tbmof2dG9kxmaHoiLb3ho1lZmyw4GRMpOkTOoIQhqYl8tGxr1E17VJMAtUhEHgemcHQTnw0zD4H1BfvIWplH1srtzMkp4GCRm99ucGoi1wzuzqiMZFKTmkddZ6cxDc7UqW4/fnx4ywEMTmvLWwtzo27ao5oEqP7efnDQazbM3CcHi0qYk1PADC8orSvYD7gh4FcM7MaojGQG2/x2xkSfp55y+0gIUKmJAMzJLqhfAUpVR9dFQRqStfn7yFq5nayVecz1ZgFvHBfDkLREbhiaQmZGO1KSbAi4MVHt7bfDXYIjOrZqSkpiM+bm7OCWEdGzEEVNHtRtDzwGdFLVc0WkDzBEVV8KeenqiQOHS5iTk0/WSjfibr13l5Sa5GYBz8xoxyBbvM+Y+iUpKdwlOMrg1EQ++HYLJaVKbJT0Q9Wkie9V4BUgsLruKuAtwAJUJVSVLWKtdQAADblJREFUnPyyvqR5a3dwuLiUJvExDE1L4ubhPcjs1Y5uiTYLuDH11rvvuv3FF4e3HJ7BqYm8uSCX5Vv20LdzdDTz1SRAJanqZBF5AEBVi0WkJMTlijr7Dxcze00BWau2M2NV2XRCacnNuXZwdzIzkhmYYndJxjQYz3qDnyMoQAHMzSmoVwFqn4gk4s3DJyKDgd0hLVUUUFWy8wq9u6Q85q/dweGSUm86oURuG5lGZq9kura1uyRjGqT//jfcJThKh1ZN6JHUnLk5BVHTD1WTAHUXboh5mojMApKBy0Jaqgi171Axs9bkk7Uqjxkr89i0y90l9WyXwPVDu5OZ0Y4BKW1oHGd3ScY0eK0i7y5lcGoi73+zOWr6oWoSoJYBo4AMQICVQIOY0E1VWb298MiIuwXrdlBUojRvFMvQ9CTuGJ3GqF7JtqKsMeZYb73l9pdfHt5yBBmc2pY35m/gu817OKVL5AXQ8moSoOao6um4QAWAiHwFnB6yUoXR3oNFzFpT4GYCX7mdzbsPApDRvgU3DevBqIxkBnRva5OuGmOq9re/uX0EBaghQf1QUR2gRKQD0BloKiL9cXdPAC2BenPLoKqs3Lb3yIi7hevc0hQJjeMYlp7Iz87qyaheyXRq3TTcRTXGRJMPPgh3CY7RrmUTUpObMyengFtHRn4/VFV3UOfgFirsAjxFWYDaCzwY2mKFVqAv6XMvKG3x7pJ6d2jBLSNSycxI5vRutjSFMaYWmkXm3/GDerTl/W+2RMW8fJUGKFV9DXhNRC5R1XfqsEy+Cyxz/tmK7UeNuEtoHMeInklMGJvMqF7t6NDKlqYwxvhk0iS3v+aa8JajnAHd2/LG/FxWbd9L7w4tw12cKtWkD6qLiLTE3Tm9gOt7ul9VPwlpyWrpYFEJc3MKyFqZx+crtx+ZvaFnuwRuGJZCpvUlGWNC6cUX3T7CAtTAlLYALFi3s14EqJtU9RkROQdoB9yIm1ki4gLUxp37XbPdiu3Mys7nYFHZ7A23DO9BZkY7ey7JGFM3pk0Ldwkq1LVtU5JbNGbRuh1cO7h7uItTpZoEqEAj5XnAK6r6tdRwrQcRGQc8A8QCL6rqE+Xebwy8DpwBFACXq+q6GpadopJSFq7bSdbK7Xy+cjurthUC7h/g8gFdGd27HYNTE232BmNM3YuPD3cJKiQiDExpw4J1O8NdlGrVdD2oT4AewAMi0oIarKwrIrHAX4CzgY3AAhGZoqrfBR12M7BT/3975x5sZVWG8d8D4hXFQBRSEx1INEdQ8IoWQhcyvFSoVF6wHGpGGiTLwUojyxmbmjAlxxgvxxzFG3iJaLyjlqOGggKhiIZC3IYSA1MJffpjrS27wz77bI+cvfdhv7+Zb75vrb3Wt9/1zvnOu9fle5bdV9Jo0s69Zddkvme4Y84yZr+0hicWr2X9u5vo0lkctX8PTs9BKfZLCoKg5jQ1pfOYMbW0oiSD9+vOrPmrWLHu7bpeoVxJgPoWMBB41fZ/suzRuRXUOxJYYvtVAEm3AacAxQHqFGBSvr4LmCJJtt3STZetf5+L7nqBXrvtyMgBvRl64J4M6bsHXXeopClBEARVoo4DVGEeas5rb3ByHQcolYkFqYB0F2nO6U+2W+05FdUbBYywfV5OnwUcZXtcUZkFuczynH4ll1nb7F5jgbE5eQiwoFI7Gow9gLWtlmo8wi+lCb+0TPimNO3ll/1s92yeWUm341pSj+kqSXcCTbZfrKBeqTG25tGwkjLYngpMBZA0x/bgCr6/4QjflCb8UprwS8uEb0pTbb+0usba9kO2v0FaXr4UeFDSk5LOlVRuFnA5sG9Reh9gRUtlJG0HdAP+Vbn5QRAEwbZKRS8B5XmnMcB5wFzSyrzDgXLrKP8K9JO0v6TtgdEkVfRi7gPOydejgEfKzT8FQRAEjUMlW77PAPoDNwMn2V6ZP7pd0pyW6uWNDccB95OWmd9ge6Gky4A5tu8j7cp7s6QlpJ7T6ApsnlpBmUYlfFOa8Etpwi8tE74pTVX9UskiiWG2H6mSPUEQBEEAlBnik3SEpF6F4CTpbEn3SrpKUvfqmRgEQRA0IuXmoH4HbASQ9GngCpLqw5tE9zcIgiBoZ8oFqM62CyvqzgCm2p5u+xKgb/ubtiWSRkh6SdISSRNrYUM9IOkGSWvye2SFvO6SHpT0cj5/rJY21gJJ+0p6VNIiSQsljc/54RtpR0nPSHo+++anOX9/SU9n39yeFzQ1HJI6S5oraWZOh18ASUslzZc0r7DmoJrPU9kAlZd+AwwHiuehqi7bUCSd9EXgYOBrkg6uth11QhMwolneROBh2/2Ah3O60dgEXGj7IOBo4Pz8NxK+gXeBYbYHkJRhRkg6miQvNjn75g2SckwjMh5YVJQOv2zmBNsDi95/qtrzVC5ATQMek3Qv8DbwBICkvqRhvmrzgXSS7Y1AQTqp4bD9OFu+L3YKcFO+vgk4tapG1QG2V9p+Ll+vJ/3D2ZvwDU5syMku+TAwjCQzBg3qG0n7AF8CrstpEX4pR9WepxYDlO3LgQtJv9aPK3o/qRPw3fYyqAx7A8uK0stzXpDYq/AKQD7vWWN7aoqkPsBhwNOEb4APhrHmAWtI7zC+AqyzvSkXadRn6krgIjaLYPcg/FLAwAOSns2Sc1DF56nsUJ3tp0rkLW4vY1qhIlmkIJDUFZgOXGD736Fsn7D9HjBQ0u7A3cBBpYpV16raImkksMb2s5KGFrJLFG0ovxQxxPYKSXuSVIQqkbnbanSk7WQrkU5qZFZL6g2Qz2tqbE9NyPJb04FbbM/I2eGbImyvA2aT5ul2L5prbsRnaghwsqSlpGmDYaQeVaP7BQDbK/J5DelHzZFU8XnqSAGqEumkRqZYNuoc4N4a2lIT8tzB9cAi278u+ih8I/XMPSck7QR8ljRH9yhJZgwa0De2L7a9j+0+pP8pj2Tt0Yb2C4CkXZT2/0PSLsDnSTtJVO15alVJop6QdCLp101BOunyGptUEyRNA4aSpO9XAz8B7gHuAD4BvA6cVvSaQEMg6TjSYp75bJ5P+CFpHqrRfXMoaUK7M+mH6R22L5N0AKnn0J2ks3mm7XdrZ2ntyEN837c9MvwC2Qd35+R2wK22L8/arFV5njpUgAqCIAgah440xBcEQRA0EBGggiAIgrokAlQQBEFQl0SACoIgCOqSCFBBEARBXRIBKujwSPpRVuh+IasuH9WGe4yR9PF2sK1J0reb5Z0qaVYr9Tbkcx9JX9/adpX53j6Slkvq1Cx/nqQjm+VNkvQPSZe1Vk/SBEmvS5pSjXYE2wYRoIIOjaRjgJHA4bYPJb2Auqx8rZKMAbZ6gCKJLo9uljc651dCH6BqAcr2UpL/ji/kSeoP7Gr7mRJVJtu+tLV6ticDl7an7cG2RwSooKPTG1hbeInS9tqsHTZcUuElQyR9TtKMLJjaJGlB3udmgqRRwGDglvyLfydJgyQ9lkUy7y+SdpktabKkx5X2nToi3/dlST8vYd9DQP+i+juTgug9Of29bMsCSReUqH8FcHy2a0LuqTwh6bl8HJvv00nSNbknOVPSrNwuWmpLGZoH1UoDalvrBUFpbMcRR4c9gK7APGAxcA3wmZwv4EWgZ07fCpwEDAIeLKq/ez7PBgbn6y7Ak0V1zyAplxTK/SJfjydptPUGdiDpRfYoYeNvgfH5ejRwZ74eRFK92CW3YyFwWP5sQz4PBWYW3WtnYMd83Q+Yk69HAbNIPzp7kfYwGlWuLWV82gtYCWyX04uAQ0qUm0RSXqioHqmXOqXWfzNxdJyj6hsPBsHWxPYGSYNIQ0snALdLmmi7SdLNwJmSbgSOAc4GdgUOkHQ18EfggRK3PRA4hKTeDEkeaGXR5wUNyPnAQuetByS9ShI0/mez+00Dfgn8hhSgfp/zjwPutv1Wrj8jt2NumSZ3AaZIGgi8B3yy6F532n4fWCXp0QrbsgW2V0laCAyXtBr4r+0F5ep8lHpB0BIRoIIOj9M2ErOB2ZLmkwQsm4AbgT8A75D+eW8C3pA0APgCcD5wOvDNZrcUKfAc08JXFjTZ3i+6LqRLPVN/AXrn7z2WzcNgbdkHZAJJf3EAqbf0Tiv3aq0tLVEYrlvNhxuma2u9INiCmIMKOjSSDpTUryhrIPAafLBVwArgx6SAhaQ9gE62pwOXAIfneutJvSuAl4CeeQEGkrpI+lRbbbRtkrjmTcAs24Wg8jhwqqSds1r0l8k7VxdRbBdAN2Bl7imdReoRAfwZ+Gqei9qLNDRYti2Sxkka14LZ04ETSUOCt32I5ra1XhBsQfSggo5OV+Bqpa0kNgFLgLFFn99Cmn/5W07vDdxYtBz64nxuAq6V9DZpOHAUcJWkbqTn5ErSHFFbmQb8AJhYyLD9nKQmoLA67jrbzYf3XgA2SXo+23gNMF3SaaQtId7K5aYDw0nbISwmKbi/aXtjXixRqi39Sb27LbC9TtJTpN1T/15pI9taLwhKEWrmwTZNfu9mru3ra21LeyOpa56T60EKekNsrypTfibwFdsb2/h9k0iLOX5VYfkxpIUoLfXaguD/iB5UsM0i6VlSD+PCWttSJWbmnuT2wM/KBScA2yM/4vdtAMZK2s122XecJE0AvkPq6QVBRUQPKgiCIKhLYpFEEARBUJdEgAqCIAjqkghQQRAEQV0SASoIgiCoSyJABUEQBHXJ/wB0SA+UbROVoQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pvsys.setSuns({0: {0: [array_det, stdpl]}})\n", + "print (\"Pmp: %f [W], Eff: %f [%%], FF: %f [%%]\" % (pvsys.Pmp, pvsys.eff * 100., pvsys.FF * 100.))\n", + "print (\"Imp: %f [A], Vmp: %f [V], Isc: %f [A], Voc: %f [V]\" % (pvsys.Imp, pvsys.Vmp, pvsys.Isc, pvsys.Voc))\n", + "PowerDetailed=pvsys.Pmp \n", + "pvsys.plotSys() \n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Calculating Mismatch\n", + "\n", + "The power derate, or Mismatch resulting from the module having a distribution of irradiances compared to just one single average irradiance value can be calculated by repeating the power calculation, now with the average irradiance assigned to the whole module, and then calculating the Mismatch: " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### First let's calculate the average irradiance value" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " The module's average irradiance is : %f [kW/m2] 0.8499999999999999\n", + " And each cell will see this value of irradiance: \n", + "[[0.85 0.85 0.85 0.85 0.85 0.85]\n", + " [0.85 0.85 0.85 0.85 0.85 0.85]\n", + " [0.85 0.85 0.85 0.85 0.85 0.85]\n", + " [0.85 0.85 0.85 0.85 0.85 0.85]\n", + " [0.85 0.85 0.85 0.85 0.85 0.85]\n", + " [0.85 0.85 0.85 0.85 0.85 0.85]\n", + " [0.85 0.85 0.85 0.85 0.85 0.85]\n", + " [0.85 0.85 0.85 0.85 0.85 0.85]\n", + " [0.85 0.85 0.85 0.85 0.85 0.85]\n", + " [0.85 0.85 0.85 0.85 0.85 0.85]\n", + " [0.85 0.85 0.85 0.85 0.85 0.85]\n", + " [0.85 0.85 0.85 0.85 0.85 0.85]]\n" + ] + } + ], + "source": [ + "array_avg = np.ones([cellsy,cellsx])*np.mean(Gpoat) \n", + "averageIrradiance = array_avg.mean()\n", + "print(\" The module's average irradiance is : %f [kW/m2]\", averageIrradiance)\n", + "print(\" And each cell will see this value of irradiance: \")\n", + "print (array_avg)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Let's assign the averaged irradiance array to the cells and calculate power.\n", + "\n", + "There's various ways, but they all do the same.\n", + "\n", + "Setting each cell:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pmp: 204.012466 [W], Eff: 21.740932 [%], FF: 78.938784 [%]\n", + "Imp: 5.019300 [A], Vmp: 40.645602 [V], Isc: 5.359760 [A], Voc: 48.219306 [V]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXwV1dnA8d+TBBIg7EnYIayJiAoiioCyiBVQtK1aV+pSaxdtpWpb9fVjXat9ra1au1iXgmBd6lbxVVtZgsiigAKCEDZB9iQgSwKBLM/7x5kLl5gNMjdz783z/Xzmc3Pmzpx57iHkuTNz5hxRVYwxxphokxB0AMYYY0xlLEEZY4yJSpagjDHGRCVLUMYYY6KSJShjjDFRyRKUMcaYqGQJypgoIyI5InJD0HH4QUTuEpFnj3PfQhHp4XdMJnZYgjIRJSLDRGSeiOwRkV0iMldEBtWxzg0iMtqvGGs4VqaIqIgkVfJeJxEpFZGelbz3poj8voo6G4vIvSKyRkSKvM/zvIhk+v8Jjp+ITBKRB+tSh6r+VlVrTLaVJWVVTVXV9XU5voltlqBMxIhIC+Ad4E9AG6ATcB9wMMi4/KKqW4AZwITw9SLSBhgHTK5i19eAC4ErgZbAKcBi4By/YxSRRL/rPIZjfyOpG3NMVNUWWyKyAKcBu6t4LxnYBZwUti4DOACkA2m45Lbb224O7gvVFKDc264Q+JW372Bgnrf9UmBEWL05wIPe+4XANKAt8CKwF1gIZFYRZyagQFIV718JrKuw7qfAp1VsP9qLvUs17ZYDPADMBfYB/wXSwt7/F7Ad2AN8CJwY9t4k4K/Au0CRd7zzgc+8z7oJuLfC8YaFtd0m4FrgRqAEOBRqM2/bjsDrQD7wJfDzsHruxSXfqd6xbvDWTfXeT/He2+kdayHQDngIKAOKvWM95W2vQC/v5ybAY8BG73N/5K2rtM6gf/dt8WcJPABb4ncBWnh/OCYDY4HWFd7/C/C7sPItYX8IHwb+BjTylrMA8d7bAIwO26+Td5xxuCR2rldO997PAdYCPXFnLF8Aq70/3knAC8A/qvgMmVSfoJp4fzCHha2bD0ysYvtHgNk1tFsOsA7o49WfAzwS9v71QHNckn8cWBL23iQvnqFeW6QAI4CTvPLJwA7g2972XXFJ8AqvndsC/cPqejCs7gTcmd49QGOgB7AeOM97/15cUvu2t20Tjk5QP8J9OWgKJAIDgRZhn/mGCu0QnqD+7G3Tydt3iPf5q6zTlthf7BKfiRhV3Yv7dq7AM0C+iLwtIu28TSYDV4pI6PdwAu4MCdwfug5AN1UtUdU56v2lqsTVwLuq+q6qlqvqB8AiXMIK+YeqrlPVPcB7uLOe6apaijsjGXCcn/GAt//3AUSkN+6P5D+r2KUtsK0WVf9DVVd79b8K9A875vOquk9VD+ISwCki0jJs33+r6lyvLYpVNUdVP/fKy4CXgOHetlcB01X1Ja+dd6rqkipiGoRL+ver6iF194eeAS4P22a+qr7lHetAhf1LvM/fS1XLVHWx9ztSLe/343rgFlXd4u07z/v8x1WniQ2WoExEqepKVb1WVTsD/XCXiB733vsYdxlquIhkA72At71dH8Wd9fxXRNaLyB3VHKYbcKmI7A4tuMTYIWybHWE/H6iknFrTZxGRrl7PskIRKQx7azLwPRFJwSXZ91U1r4pqdlaIqyrbw37eH4pPRBJF5BERWScie3Fnk+AuiYZsqhD3GSIyS0TyRWQP8OOw7bvgztZqoxvQsUI734W7TFfpsSuYAvwHeFlEtorI/4pIo1ocNw13JlhZnMdbp4kBlqBMvVHVVbjLRv3CVk/GnQFNAF5T1WJv232qepuq9gDGA7eKSKgTQcUzqU3AFFVtFbY0U9VHfI7/K3U9y1JVNTVs/Rxc4rnI+ywvVFPNdOB0Eel8nGFc6R1nNO5yZaa3XsJDrbDPP3GJv4uqtsRdOg1tvwl36bMylbXzlxXaubmqjqtmnyNvuDO0+1S1L+4S3QV4Z57V7QcU4O5PfSPOGuo0Mc4SlIkYEckWkdtCf4xFpAvuXseCsM2mAN+hwh92EblARHqJiOBuuJd5C7izn/DnY6YC40XkPO8MI0VERtQhCRyPF4DfAa1w90QqparTgQ+AN0VkoIgkiUhzEfmxiFxfi+M0x/WC3Im77/LbWu6zS1WLReR0XJILeREYLSLf82JpKyKhy4kV2/kTYK+I/FpEmnht3a+2jw2IyEgROcnrWbgXd3muqn/Tw1S1HHge+IOIdPSOe6aIJNdQp4lxdU5QInJqLZaT/AjWxJx9wBnAxyJShEtMy4HbQhuo6mbgU9w36Dlh+/bGnW0U4jod/EVVc7z3Hgbu9i4z3a6qm3BnFXfhepdtAn5J/X4BewHX4eAV795IdS7B9bJ7BdehYTmux+P0Wh5nI7AF19ljQfWbA65X4f0isg/XweHV0Buq+hXuXt1tuN6SS3Dd3gGeA/p67fyWqpbhzmb743rwFQDP4s7kaqM9rpffXmAlMBv35QLgCeASEflaRJ6sZN/bgc9xvfR24b4MJNRQp4lxoV5Rx1+B+6VfyNGXGCrqrqqZdTqQiVsi8jywVVXvDjoWY0z08ONBuoWqOqq6DURkpg/HMXHIGz3huxxnLzpjTPyq8yWQmpJTbbcxDY+IPIC7vPWoqn4ZdDzGmOhS50t8lVbqxia7ArhcVfvVtL0xxhhTkW83kUWkg4hMFJFPgBW4p7qv8Kt+Y4wxDYsfnSR+iEtEnXG9g17FPcneve7hfVOrVq20V69ekag6phUVFdGsWbOgw4hK1jaVs3ap2lFtk5/vXtPTgwsoSkTqd2bx4sUFqvqNBvajk8Sfcd2Ar1TVRQAi4v91Q0+7du1YtGhRpKqPWTk5OYwYMSLoMKKStU3lrF2qZm1TuUi1i4hsrGy9HwmqI3Ap7iG6drgzKBtqxBhjTJ340YuvQFX/qqpn4+az2QPkichKEanNU+7GGBO9Ro92i6l3vk4o5o0K8Hvg9yKSxdGjHBtjTOy57LKgI2iw6pygRORUVf204npVzcXNnlrlNsYYE/V++MOgI2iw/DiD+oeIjKD6oY6ew0YKMMYYcwz8SFAtcbNsVpeg8n04DgCFJcobn25GBARBvKOKCAJHrQ8F5LY5su6obb3tOWr7KuqqtO7weqs5jrfHkXjD6qpQb6ieI9tVHtPh90XYeaCcrbsP1BhzqJ7wGJCaj/ONmL/RjtX98xsTw0K91nJygoyiQapzgqrvQWALDii3vrq0Pg8ZO2YHP+Th4cRJJQk6LAFXmui9HQ/vW0ki/Gbi/mbSPPy+V3nxgWKaLpx1dIKu1ZeIb36ROZL4Jexz1u7zUkld3zhOeIxhn7nSzxt2nMrbvOLnPbrNt28/yHsFy8LaqvLjJIiQIEJSoveaICQkuNfE0CJhP1dYH75fYoLQOCmBxkkJJCclkJyUePjnxhXKSQkSHV98rr026AgaLF87SdSHzqkJzLh9BApu3nrAPWusqHK4rN78Z6pHyqFnksPL4fVQVV1hx1H08NRqWl1d4euP2r76mPVI9YQeotYKdVU8DsDK3FVk9cmqvK7w+EN1cnRdlbfL0e0YiqnKmL9RdyV1hcdfRTsePk6V7RLWdtUcJ1T39u3byWjXqpb/RkfXdfS/Ufi/XTVtVzGm8sM1V1rXN/6NvvG7W92/0ZE2p9K6K3y+sO2Li8tYvS+vxs9bXq6UK5SWl1Ne7r2G/jEiSASXuBITaJyUSHJSAk0aJ5KanETzlKSw10akpiTR3Cs3T2lE29TGpKUmk5bamJZNGtUt0VmCCkzMJaikBMhMs6ffK8opWseI07sGHUZUcg8X2i3Qiury0KVqJUnLey1Tpay8kkWV0jLlUFk5B0vKvdeyasuHSss5eHgpo7ikjH3FpRQeLGX7nuLDPxceLK0y1kaJQptmLmG1a5FC59ZNvKUpnVs3ITOtGS1Sqnl0s6TEq8ge76xvMZegjDHBExESBRITEr01idVuH2nl5UrRoVL2FZey50AJu4oOUVB4kIJC97rT+3nbnmIWbdjF3uKjE1qHlin0btecrHap9G7XnAN7yygtKycpMQHOPddtZPeg6l3EZ9T1I8hwTTdtgkmTXKGkxN3AnOpNoLl/vyu/8oor79njym+84coFBa48zZuRe/t2V37/fVfetMmVp3sTm65f78qzZ7tybq4rz5vnysuXu/LCha68ZIkrL1niygsXuvLy5a48b54r5+a68uzZrrx+vStPn+7Kmza58vvvu/L27a48bZorFxS48htvuPKePa78yiuuvH+/K0+d6sqhb4CTJh254QvwzDNHP4D4l7/A2LFHyk88ARdeeKT8+9/DxRcfKT/yCFwe9qjbAw/A1VcfKd9zD1x33ZHynXfCjTceKd9+O9x005HyxIluCbnpJrdNyI03ujpCrrvOHSPk6qtdDCGXX+5iDLn4YvcZQi680H3GkLFjXRuEjB7t2ihkxIi4+t3rP3Fi3PzuJTz0IM1vuI6OrZpwQocWDH3hSS564m5+MKw7vx6Tzf8ufpnn5z3De7ecxbJ7zyO3eAafbn+LpycM5NdjsnlkzvN894VHmTx/I796bRly7x+ZMuxSrnp2Ae+dcT67i0sp/fWvjxzffvf8/btXBT/OoB6r5j0FbC4oY0xUSU5KILlZY847sb1b8ZYbp3T8/WPYuLOIrxc/TXGz5ry2v4SbEvryYPEMij7awMeTFzEqO4PvlJTRJMD4G4qIzAcVSVlZWZobysTmMBvcsmrWNpWzdqlaeNsUfb2XhRt2MmNjETNX5bFl9wESBIb2SuPb/TtxXr/2pCY3jLslERwsdrGqnlZxfcNoVWOMOU7NvnMhI4AROTncr8qavELeWbqVN5ds4bZ/LeU3b6/g0tM6c+2QTLq1tQ5cfrIEZYwx1fnJTw7/KCL0adecW7+VxS/O7cPijV8zdcFGpi7YyKR5GxhzYnt+cW4f+rRrHmDA8cMSlDHGVKeKwWJFhNMy23BaZhvuGncCL8x3Ser9Fdu56JSO/OLcPnZGVUe+TflekTcFfHKk6jfGmHqxZ8+R3opVyGiRwu3nZTHnVyO58ewevL9iO+f+8UMen76a4pKyego0/kQsQQFTgFUi8vsatzTGmGh10UVuqYXWzRpz59gTmP3LkZx3Ynsen76GMY9/yOKNuyIcZHyKWIJS1dFAD+AfkTqGMcZE3M9/7pZj0K5FCn+6YgAvXH86peXKpX+bzx8/WE1pWXmEgoxPviUoEZlSyeoXVHWFX8cwxph6993vuuU4nN0nnXdvOYuL+nfiiRlruPzvC8jbW+xzgPHLzzOoE8MLIpIEDPSxfmOMqX8FBUdG0DgOLVIa8cfL+vP4Zf1ZsXUvFz41l6WbdvsYYPzyY6ijO0VkH3CyiOz1ln3ADuDfdY7QGGOCdMklbqmjbw/oxOs/GUJignDZ3+cz/YsdPgQX3+qcoFT1YVVtDjyqqi28pbmqtlXVO2uswBhjotltt7nFB307tuDfNw+lT7vm/GjqYl5dtMmXeuOVb89BqeqdItIJ6BZer6p+WNO+IpIILAK2qOoFfsVkjDF1Nn68r9WlpSbz0g8H8+Opi/nVa8soK1eusKlyKuVbghKRR4DLgS+AUMd/BWpMUMAtwEqghV/xGGOML0Ijurdv71uVzZKTePaa0/jRlMXc+cbnJIrwvUFdfKs/Xvg5ksR3gCxVPXgsO4lIZ+B84CHgVh/jMcaYugtN6+HzfFDJSYn87eqB3DhlMb9+YxktmjRiTD//kmA88LMX33rgeKacfBz4FWAPCBhjos8dd7glAlIaJfL01QPp36UVt7z8GYs3fh2R48Qq36bbEJHXgVOAGcDhsyhVrfIJNxG5ABinqj8VkRHA7ZXdgxKRG4EbAdLT0we++uqrvsQcTwoLC0lNTQ06jKhkbVM5a5eq1Xfb7D2kPLTgAEUlyj1nNiGjaSQH+Tl+kWqXkSNHVjrdhp8J6prK1qvq5Gr2eRiYAJQCKbh7UG+o6tVV7WPzQVXO5vapmrVN5axdqnZU24RmGe4S2XtEGwqKuOjPc+nQMoU3fjqEpo2jbyzv+p4Pyrc07SWiV4EFqjo5tNSwz52q2llVM3EdLGZWl5yMMabeTZjglgjLTGvGk1cMIHfHPu54/XNibTLZSPBzqKPxwBLgfa/cX0Te9qt+Y4wJxN13u6UeDO+Tzu3fyuLtpVuZNG9DvRwzmvl5DnkvcDqQA6CqS0Ske213VtWc0L7GGBM1Ro+u18P9ZHhPPt34NQ+/t4oze7Ylu33DffrGzztxpapacdIUO0c1xsS29evdUk8SEoTfXXIyLVKSmPjykgY9n5SfCWq5iFwJJIpIbxH5EzDPx/qNMab+XX+9W+pRWmoyj15yCqu27+P3/2m4ncL8TFA/w41ofhD4J7AHmOhj/cYYU//uu88t9WxkdgYTBnfjublfNtjno3xJUN5Yevep6v+o6iBvuVtVbeITY0xsGz7cLQG4Y2w2HVqkcNcbn3OotOGNZeBLglLVMmzuJ2NMPMrNdUsAmiUncf9F/cjdsY9n5tTffbBo4Wcvvs+8buX/AopCK1X1DR+PYYwx9etHP3KvPo/FV1uj+7ZjbL/2PDFjDeef1IHMtGaBxBEEPxNUG2AnMCpsnQKWoIwxseu3vw06Au698EQ+WlPAvdNWMOm604MOp974kqC8e1DLVPWPftRnjDFRY8iQoCOgXYsUfnZOL3777io+XJ3P2X3Sgw6pXvh5D+pCP+oyxpiosny5WwJ2zZBMurZpyoP/9wWlZQ2jw4Sf3cznichTInKWiJwaWnys3xhj6t/NN7slYMlJidw5NpvVOwp5pYFMFe/nPajQefD9YeuUo+9JGWNMbHn00aAjOGxMv/acntmGP/x3NeNP6UiLlOOZgi92+JagVHWkX3UZY0zUGDQo6AgOExHuvuAELnxqLs9/9CUTR/cJOqSI8i1Bicg9la1X1fsrW2+MMTFhyRL32r9/sHF4Tu7cim/1bcdzH33JdUO607Jp/J5F+XkPqihsKQPGApk+1m+MMfVv4kS3RJGJo/uwr7iU5z6K74d3/bzE91h4WUR+D9h8UMaY2Pb440FH8A19O7Zg3EnteX7uBq4f1p1WTRsHHVJERHLi+6ZAjwjWb4wxkde/f9Rc3gt3yzl9KDpUGtdDIPk5o+7nIrLMW1YAucATftVvjDGBWLjQLVEmq31zzj+pA/+Yu4Hd+w8FHU5E+NnN/IKwn0uBHapa6mP9xhhT/375S/ca0Fh81bl5VC/eWbaNqQs2cvOo3kGH47s6JygRGQSkqep7FdaPF5Gtqrq4rscwxpjAPPVU0BFUKbt9C4b3SWfSvI3ccFYPUholBh2Sr/y4xPcosLKS9Su994wxJnb16+eWKPWjs3tQUHiQNz/bEnQovvMjQbVV1Q0VV6rqWqCtD/UbY0xw5s1zS5Q6s2db+nVqwTNz1lNerkGH4ys/ElSTat6rduISEekiIrNEZKWIrBCRW3yIxxhj/HPXXW6JUiLCjWf3ZH1+EdNX7gg6HF/5kaCmi8hDIiLhK0XkPmBmDfuWArep6gnAYOAmEenrQ0zGGOOPp592SxQb1689nVs34e8fxleXcz8S1G24553Wisjr3rIWyAJurW5HVd2mqp96P+/D3bfq5ENMxhjjj6wst0SxpMQErh/anUUbv2bZ5t1Bh+MbUfXnmqWI9ABO9IorVPWYUrmIZAIfAv1UdW+F924EbgRIT08f+Oqrr9Y53nhTWFhIampq0GFEJWubylm7VC28bVp6Y/HticKHdcPtL1Em5uznjPZJ/OCk5IgcI1K/MyNHjlysqqdVXO9bgqoLEUkFZgMPqWq1U8RnZWVpbm5u/QQWQ3JychgxYkTQYUQla5vKWbtU7ai2Cb1G4XNQFd35xue8+dlmPr5zdEQGkY3U74yIVJqgIjnUUa2ISCPgdeDFmpKTMcbUu+efd0sMuHpwV4pLynnt081Bh+KLQBOU17HiOWClqv4hyFiMMaZSPXq4JQac2LElp3ZtxdQFG+Oiy7mvCUpEWovIyccw5ftQYAIwSkSWeMs4P2Myxpg6mT7dLTFiwpnd+LKgiHnrdgYdSp35OWHhA8C1wDrcVO9Qw5TvqvoRIFW9b4wxgXvwQfc6enSwcdTS2H4deOCdlUxZsIFhvdOCDqdO/Bws9ntAT1WNz2F1jTEN05QpQUdwTFIaJfK907rwzJz1bN9TTPuWKUGHdNz8vMS3HGjlY33GGBO8Ll3cEkMuH9SFsnLljc9iu7OEnwnqYeAzEfmPiLwdWnys3xhj6t/777slhmSmNeP0zDa8tngz0fAo0fHy8xLfZOB3wOdAuY/1GmNMcB55xL2OGRNsHMfokoGd+dXry/hs025O7do66HCOi58JqkBVn/SxPmOMCd7LLwcdwXEZd3IHfvP2Cv61aHPMJig/L/EtFpGHReTMY+hmbowx0a19e7fEmNTkJMb2a887S7dSXFIWdDjHxc8zqAHe6+CwddV2MzfGmKg3bZp7HT8+2DiOwyWndeaNz7bwnxXbuah/7I3D7VuCUtWRftVljDFR47HH3GsMJqjB3dvSqVUTXlu8OSYTlG+X+ESknYg8JyLveeW+IvIDv+o3xphAvPaaW2JQQoJw8cDOfLS2gK27DwQdzjHz8x7UJOA/QEevvBqY6GP9xhhT/9LS3BKjLjm1M6rw1pItQYdyzPxMUGmq+ipeF3NVLQVi886cMcaEvPGGW2JU17ZNGdC1FdOWbgs6lGPmZ4IqEpG2eOPwichgYI+P9RtjTP178km3xLDxJ3dk5ba9rM3bF3Qox8TPBHUr8DbQU0TmAi8AP/exfmOMqX///rdbYtgFJ3dAhJg7i/IzQa0AhgNDgB/hpn9f5WP9xhhT/1q2dEsMy2iRwuDubZm2bGtMDX3kZ4Kar6qlqrpCVZeragkw38f6jTGm/r3yilti3PhTOrI+v4gvtu0NOpRaq3OCEpH2IjIQaCIiA8JGkRgBNK1zhMYYE6S//tUtMW5sv/YkJQhvL90adCi15seDuufhJirsDDzGkQkI9wF3+VC/McYE5913g47AF62bNeas3mm8s3Qbd4zJRiT654qt8xmUqk72RpG4VlVHqepIb7lQVWO3b6YxxgA0beqWODD+lI5s2X2AT7/aHXQoteLnPajOItJCnGdF5FMR+ZaP9RtjTP2bOtUtceDcvu1onJTAtBi5zOdngrpeVfcC3wIygOuAR3ys3xhj6t+zz7olDjRPacTIrHTe/Xwb5eXR35vPzwQVuqA5DviHqi4NW2eMMbHpgw/cEifGndSBvH0H+fSrr4MOpUZ+zwf1X1yC+o+INKcWM+uKyBgRyRWRtSJyh4/xGGNM3TVq5JY4MSo7g8aJCby3fHvQodTIzwT1A+AOYJCq7gca4y7zVUlEEoE/A2OBvsAVItLXx5iMMaZuJk1yS5xontKIYb3TeH/59qh/aNfPBPUq0AHYC6CqO1V1WQ37nA6sVdX1qnoIeBm4yMeYjDGmbuIsQYF7JmrL7gN8viW6h0v1c0bdv+HOmJ4UkX8Bk1S1pqGOOgGbwsqbgTMqbiQiNwI3esWDIrLch3jjTRpQEHQQUcrapnLWLlX7ZtvEwHNDx+qU3x3zLpH6nelW2Uo/Z9SdDkwXkZbAFcAHIrIJeAaY6g19VFFl/+LfOOdU1b8DfwcQkUWqeppfcccLa5eqWdtUztqlatY2lavvdvHzEh/edBvXAjcAnwFPAKcCVXWB2Qx0CSt3BmKjg74xxpiI8u0MSkTeALKBKcB4VQ2N6/6KiCyqYreFQG8R6Q5sAS4HrvQrJmOMMbHLz3tQT6nqzMreqOqUUFVLReRm3FTxicDzqrqihuP8vW5hxi1rl6pZ21TO2qVq1jaVq9d2kbp2MxSRQcAmVd3ulb8PXAxsBO5V1V11jtIYY0yD48c9qKeBQwAicjZueKMXcNO927cQY4wxx8WPS3yJYWdJlwF/V9XXgddFZIkP9RtjjGmA/DiDShSRUKI7Bwi/D+XnPS4bFskjIs+LSF7482Ai0kZEPhCRNd5r6yBjDIKIdBGRWSKyUkRWiMgt3nprG5EUEflERJZ6bXOft767iHzstc0rItI46FiDICKJIvKZiLzjla1dABHZICKfi8iSUGe3+vz/5EeCegmYLSL/Bg4AcwBEpBfuMp8vbFiko0wCxlRYdwcwQ1V7AzO8ckNTCtymqicAg4GbvN8Raxs4CIxS1VOA/sAYERkM/A74o9c2X+OGLGuIbgFWhpWtXY4Yqar9wzq71dv/Jz8mLHwIuA33R3OYHul1kQD8rK71h7FhkTyq+iFQsfPJRcBk7+fJwLfrNagooKrbVPVT7+d9uD84nbC2QZ1Cr9jIWxQYBbzmrW+QbSMinYHzgWe9smDtUp16+//ky4O6qrpAVd9U1aKwdatDfyx8UtmwSJ18rD/WtQs9e+a9ZgQcT6BEJBMYAHyMtQ1w+DLWEiAP9/D8OmC3qpZ6mzTU/1OPA7/iyOwLbbF2CVHgvyKy2BtyDurx/5Ov94girFbDIhkjIqnA68BEVd0rcTiG2vFQ1TKgv4i0At4ETqhss/qNKlgicgGQp6qLRWREaHUlmzaodgkzVFW3ikgGbvi6msZX9ZWvQx1FmA2LVL0dItIBwHvNCzieQIhII1xyelFV3/BWW9uEUdXdQA7uPl2rsE5ODfH/1FDgQhHZgLttMAp3RtXQ2wUAVd3qvebhvtScTj3+f4qlBHV4WCSvR83lwNsBxxRN3gau8X6+Bvh3gLEEwrt38BywUlX/EPaWtY1IunfmhIg0AUbj7tHNAi7xNmtwbaOqd6pqZ1XNxP1NmamqV9HA2wVARJp5E88iIs2AbwHLqcf/T3UeSaI+icg43Leb0LBIDwUcUiBE5CVgBG7o+x3Ab4C3cHNydQW+Ai5taKN4iMgwXC/SzzlyP+Eu3H2oht42J+NuaCfivpi+qqr3i0gP3JlDG9wAz1er6sHgIg2Od4nvdlW9wNoFvDZ40ysmAf9U1Ye8QcHr5f9TTCUoY4wxDUcsXeIzxhjTgFiCMsYYE5UsQRljjIlKlqCMMcZEJUtQxhCAQZAAACAASURBVBhjopIlKGOMMVHJEpQxxpioZAnKGGNMVLIEZYwxJipZgjLGGBOVLEEZY4yJSpagjDHGRCVLUMZEIRHJFBENm5MoponIirAJAY9lv6tE5L8RCMnEAEtQJiJEZJiIzBORPSKyS0TmisigOta5QURG+xVjDccKJYhCb9kgIndUse2dIvJhJevTROSQiPSrYr8+IvIvESnw2mmZiNwqIol+f5668NqhV13qUNUTVTWnhuN8Iymr6ouq+q26HNvELktQxnci0gJ4B/gTbj6dTsB9QCzOp9NKVVOBK4B7RGRMJdtMAYaISPcK6y8HPlfV5RV3EJGeuHmqNgEnqWpL4FLgNKC5nx8gyLOweDkDNMGwBGUioQ+Aqr6kqmWqekBV/6uqy0Qk2TujOim0sYhkiMgBb9bXNBF5R0R2e9vNEZEEEZmCmyBtmndG8ytv38HemdpuEVkafhlJRHJE5EHv/UIRmSYibUXkRRHZKyILRSSzNh9IVecDK4BvnA2p6mZgJjChwlvfx00SWJn7gHmqequqbvPqyVXVK70p2UOuEpGvvLOs/wn7bKeLyHzvc28Tkae8maZD76uI3CQia4A13ronRGST99kXi8hZYdsnishdIrJORPZ573cJOzNc6rXhZd72F4jIEu/487wJEUN1bRCRX4vIMqBIRJLCz3692Bd5cewQkdDsx6Fj7faOdaaIXCsiH4XVfaKIfOD9buwQkbtqqNPEMlW1xRZfF6AFsBP3x3ks0LrC+38BfhdWvgWY5v38MPA3oJG3nMWRiTU3AKPD9uvkHWcc7svWuV453Xs/B1gL9ARaAl8Aq3HTnScBLwD/qOIzZALqbSfAUGA/cE4V218FrAkrZwGHQrFUsv124Lpq2jB0/GeAJsApuDPQE7z3BwKDvfgycdO3TwzbX4EPcGewTbx1VwNtvX1u82JI8d77JW4m4izv854CtA2rq1dY3acCecAZuBl6r/H+bZLD/p2WAF3Cjn343w6YD0zwfk4FBlds87BjXQt85P3cHNjmxZ7ilc+ork5bYnuxMyjjO1XdCwzjyB/YfBF5W0TaeZtMBq4UkdDv3wTcZTKAEqAD0E1VS1R1jnp/dSpxNfCuqr6rquWq+gGwCJewQv6hqutUdQ/wHrBOVaerainwL2BADR+nANgFPAvcoaozqtjuTaCdiAzxyt8H3lPV/Cq2b4v7Y1uT+9SdgS4FluISB6q6WFUXqGqpqm4AngaGV9j3YVXdpaoHvH2mqupOb5/HgGRcQgK4Abhb3VmcqupSVd1ZRUw/BJ5W1Y/VnSFPxiXPwWHbPKmqm0LHrqAE6CUiaapaqKoLatEOABcA21X1MVUtVtV9qvpxHes0UazK68Mi8mQt9t+rqnf7GI+JE6q6EvftFxHJBqYCjwNXqOrHIlIEDBeRbUAv4G1v10eBe4H/igjA31X1kSoO0w24VETGh61rBMwKK+8I+/lAJeXUGj5KmpfMDvMuK93lFaeq6o9Vdb+I/Av4vojMx51R3VpNvTtxibgm28N+3h+KV0T6AH/A3bNqivu/vLjCvpsqxH0bLhF1xH15aAGkeW93AdbVIh5w7X6NiPwsbF1jr95Kj13BD4D7gVUi8iUuCb9Ti+NWF+Px1mmiWHVnUBfhfuGrWy6OdIAm9qnqKmASR9+/mYw7A5oAvKaqxd62+1T1NlXtAYwHbhWRc0JVVah6EzBFVVuFLc2qSWh+fZ7fqmqqt/y4wmf6Hu5SY3NcR5GqTKdu/3/+CqwCeqtqC1zClIqhhn7w7jf92ouvtaq2AvaE7bMJdym0NjYBD1Vo96aq+lJlx65IVdeo6hVABvA74DURaVbdPjXFWE2dJoZVl6D+qKqTq1twlxWMOYqIZIvIbSLS2St3wfWCC7/sMgX4Di5JvRC27wUi0kvc6dNeoMxbwJ399AirYyowXkTO827yp4jIiNBxAzAH2A38HXhZVQ9Vs+1vcD3/HhWR9gDe554qIq1qcazmuPYp9M5Qf1KL7UuBfCBJRO7BnUGFPAs8ICK9xTlZRNp671Vs92eAH4vIGd62zUTkfBGpVe9DEblaRNJVtRzXXuD+jfOB8grHCvcO0F5EJorrbNNcRM6ooU4Tw6pLUFX1PjpMVR/3MRYTP/bhbqCHLuUtAJbjbm4Dh3u+fYr71jwnbN/euLOLQtyN77/okednHgbu9nqO3a6qm3Bn+nfh/rhtwt3sD+Teqnev7AXcJbAXath2HXAmrmPAChHZA7yOu4e2rxaHux240tv2GeCVGrb/D+4e3GpgI1DM0Zfh/gC8CvwXl/iew3XOAHfJdbLX7t9T1UW4+1BPAV/jOqJcW4uYQ8bgPnMh8ARwuXdPaT/wEDDXO1b4PS1UdR/u7HQ87tLnGmBkdXUeQ0wmCoV6R33zDZE83H/6ecBcXJfY1fUYm4lzIvI8sNXuYxpjKlNlgoLDN2KHhC3puG/Dc1X1f+slQhOXxD1/tAQYoKpfBhuNMSYaVZugjtrQPfk+DvfMSidVbVLDLsZUSkQeAH6B6wb9UNDxGGOiU3WX+EJnTWfiuneux509LQA+reEGsDHGGFMn1SWoctxN7D8Ab3k3MI0xxph6UV2Cas+Re0+n4x4E/BTXs2q+qq6vryDDtWrVSnv1qtPAynGpqKiIZs3ssY/KWNtUztqlake1Tb43GEh6enABRYlI/c4sXry4QFW/0cDHcg+qKXA9MBHorqqBTAmQlZWlubm5QRw6quXk5DBixIigw4hK1jaVs3apmrVN5SLVLiKyWFVPq7i+uqGOWuLuP4XOogbgnneYhut2bowxxkRMdXO1rMV1iJgHPAB8UsXAj8YYE79Ge3NkTp8ebBwNUJUJKnQ9UEQyvdGSDxORQaq6MMKxGWNM8C67LOgIGqzazHb5uohcqKpbAERkOG6Ik5Oq380YY+LAD38YdAQNVm3GLPsx8JaItBeRcbhxrsbVsA8AIjJGRHJFZK2I3FHJ+7eKyBciskxEZohIt2ML3xhjTLyqMUF5l/J+jhtE8l7gXG+QzmqJSCLwZ9yMqn2BK0Skb4XNPgNOU9WTgdeAGodParppE0ya5AolJTBiBEyd6sr797vyK964mXv2uPIbb7hyQYErT5vmytu3u/L777vypk2uHLrWvH69K8+e7cq5ua48b54rL1/uygu9q51LlrjykiWuvHChKy9f7srz5rlyqBfi7NmuvN7rsT99uitv8pr3/fddebs3JdC0aa5cUODKb7zhynv2uPIrr7jyfu+RtalTXbmkxJUnTXLlkGeeOXJ9HeAvf4GxY4+Un3gCLrzwSPn3v4eLw2aIeOQRuPzyI+UHHoCrrz5SvuceuO66I+U774QbbzxSvv12uOmmI+WJE90SctNNbpuQG290dYRcd507RsjVV7sYQi6/3MUYcvHF7jOEXHih+4whY8e6NggZPdq1UciIEXH1u9d/4sQG/7tXXq5s23OA7df9mDVX3sCfZ63lt++upPSex/hg3ASuenYBX2Sdytet0nhr7PeZ8NzHTHz5M5aM/g4Lv38z05ZuZdX2vZRdeZX97tXl714VquvFN42j52dpips/5jkRQVUvrHzPw04H1oaelxKRl3EjT38R2kBVwyeWW4CbesEYY3xVVq7s21/C7CVbWLltH/2Xb6N4XxG/uud9DpWWc8/nbnLjR/+TS+OkBHoeUBISDlFcUs6sweMYMf//UIW9xaVs2FnE8IIivjqwkz++9BkATyzbStHepmx8dyUjszM4XQMaUj/OVPegbsXpo4+iqrOrrVjkEmCMqt7glScAZ6jqzVVs/xRuOucHq6vXnoOqnD23UTVrm8rFa7uUlytr8gr57Kuv+eyr3Xy+ZQ9r8wo5VFYOQKNEoWd6Kt3TmtG1TVM6t2lKV29p3yKFJo0Ta9U2xSVlbNhZxJodhXyxbS+LNuxi6aY9HCorJy21MRec3JFrhmTSPS1+Hoau7+egav2g7nEc8FLgvAoJ6nRV/Vkl214N3AwMV9WDlbx/I3AjQHp6+sBXX301IjHHssLCQlJTa5q9vGGytqlcvLRL4SFl3Z4y1u4uZ/3uMtbvKedAqXuvWSPo3jKRrs0T6Nw8gS7NE+jQTEhKqDj5cIU6w9pGSl1lmlRzn7LiUmVZQRkLt5fy6Y4yyhROTk/kop6N6NkqkLENfBWp35mRI0ceW4ISkXdU9YLqKq1uGxE5E7hXVc/zyncCqOrDFbYbDfwJl5zyavogdgZVuXj9NuwHa5vKxWq77Cw8yIL1u5i/voD563ayLr8IgMQEIbt9cwZ0bcWALq0Z0LUV3dOa4SZnPjZHtU3oNSfnmOrI21fMPz/+iinzN7Kz6BBjTmzP3RecQOfWTY85nmgRNSNJAMNE5O3q6sR1fqjKQqC3iHQHtgCX42YADQ9qAG7a+DG1SU7GmIbn66JDfPzlTpeU1u0kd4ebcLhZ40RO796Giwd25tSurTm5c0uaNq7NkzPH6IYbjmu3jOYpTBzdhxvO6sFzc77kb7PXMfsP+dz2rT5cP7Q7CTWcxZnqE9RFtdi/yik3VLVURG7GTTWdCDyvqitE5H5gkaq+DTwKpAL/8r7lfFWLzhfGmDi250AJn3zpktH89TtZtX0vqtCkUSKnZbbmogEdObNHW07q1JKkxHroinB13fpupSYnccvo3lw8sBO/+fcKHvy/lXy4poA/fO8U0lKTfQoyPlU3kkS1nSBqQ1XfBd6tsO6esJ9Hf2MnY0yDcqi0nMUbv+bDNfl8tKaAFVv3UK6QnJTAwG6tuXV0H87s2ZaTO7eicVIAfeNCXeeb1u3SXOfWTXn2mtN48eOvuP+dL7jgyY94/tpB9O3Ywocg41MEzoeNMaZ6X+3cz+w1+czOzWf+ugKKDpWRlCCc2rU1PxvVmzN7tqV/l1akNIqCjgXjvHEJjvEeVGVEhKsHd6N/l1bcMHkR33t6Pn++6lSG97GpPCpjCcoYE3FFB0tZsH4nH67OZ/bqfDbsdGclnVs34dsDOnF2n3SG9GxL85RGAUdaiZ/8xPcq+3VqyZs3DeG6fyzkhskL+ctVAzm3bzvfjxPrqk1QXieGnsAKVV1ZPyEZY2KdqrJy2z4+XJPPh6vzWbThaw6VldOkUSKDe7Th2iGZnN0n/bh72dWrCA0W26FlE1798ZlMeO4TfvriYv529UDOOcGSVLjqRpK4Bzeyw2Lgf0XkYVV9pqrtjTEN29dFh5iztoDZufnMWZNP3j73SGN2++ZcOzST4X3SOS2zNclJUXDZ7liEhnNq2dL3qlukNOKF609nwnMf85OpnzLlB6dzRo+2vh8nVlV3BnUZ0F9V94tIW+B9wBKUMQaA0rJylmzaffiy3bIte1CFlk0aMax3GsP7pHN273Tat0wJOtS6ucjr0OzDPajKtGzSiCnXn8F3/jqXH01dzFs/HUpmHI0+URfVJahiVd0PoKo7RcSGljKmgdu6+wCzV7vLdh+tLWBfcSkJAv27tOKWc3ozvE86J3duRWI8PePz859H/BAtmzbi+WsG8e2/zOX6yQt58ydDadk0Cu/H1bPqElTPsAd1pUK5NoPFGmNiXEmZ6wI+KzePnFX5hx+Sbd8ihXH9OnB2n3SG9UqL7z+m3/1uvRwmM60ZT189kKuf+5hfvraUpycMjP77cxF2LA/q/r7SrYwxcSVvXzGzc/PJyc3nwzX57CsuJSlBGJTZhrvGZTMiK4PeGakN549naIqRtLSIH+qMHm359ZhsHvy/lUxdsJEJZ2ZG/JjRLKIP6hpjol9ZubJs825m5eaTk5vHss2uU0BG82TG9evAyOx0hvZKi84u4PXhkkvca4TuQVV0/dDufLS2gAf+byWnZbbhhA4N90Feew7KmAZo9/5DLNhWytuvLCFndT67ig6RIDCga2tu/1YfRmRlcGLHFg3nLKk6t91Wr4dLSBB+f+kpjHtiDre8/Bnv/OysYEbQiAKWoIxpAELPJc3KzWPWqjw+/epryhVaN81jeJ90RmZncHbvdFo3axx0qNFn/Ph6P2RaajIPf/ckfjB5Ec/MWc9NI3vVewzRwBKUMXGq8GApc9cWMGtVHjm5+WzfWwxAv04tuGlkL1ru38x1F46Krx53kRCa9r59+3o97DkntGPcSe15YsYaxp3UIa4mPqytY05QIvJb3NTvz6rqTv9DMsYcD1VlfUERs1blMSs3j0++3EVJmZKanMRZvdMYmZ3BiD7pZLRwzyXl5Gyz5FQbl1/uXuvpHlS4e8efyJw1BfzPm5/z4g1nNLhLrsdzBvUJbvijPwLf9zccY8yxKC4pY/76neSsymNWbj5f7XJj3PXOSOX6od0ZkZXBaZmtaVQf01LEqzvuCOzQGS1S+PWYbO5+aznTlm3jwlM6BhZLEGoaiy8R+Lmq/jG0TlXfinhUxpgqbdq1n5xcl5DmrSuguKSclEYJDO2Zxg/P7sGIPul0aRO7s7ZGnTFjAj38Fad35cWPv+LR/6zivBPbxd5QUXVQbYJS1TIRuQh3tmSMCUBJWTkLN+wiJzefWavyWJNXCEDXNk25fFBXRmSlM7hH2+iYmiIebdrkXrt0CeTwiQnCnWOz+f7znzBl/kZuOKtHIHEEoTaX+OaKyFPAK0BRaKWqfhqxqIxp4PL2FruElJvHnDUFFB4spVGicEb3tlw2qAujsjNiYyTweDBhgnsN4B5UyNl90jmrdxp/mrmWSwd2ie+RO8LUJkEN8V7vD1unwCj/wzGmYSovVz7fsocZq1w38M+3uIdl27dIYfwpHRiZlcGQXmmkJlvH23p3991BRwDAnWNP4Pw/zeEvs9dy59gTgg6nXtT4266qI+sjEGMamn3FJXy0poAZXjfwgsKDhx+W/eV5WYzMyuCEDs3tLCloo0cHHQEAfTu24DsDOjFp7gZuGNaD9ObJQYcUcTUmKBFpB/wW6KiqY0WkL3Cmqj4X8eiMiTPr8wuZuSqPmavyWLjBdQNvkZLE8KwMRmWnM7xPBm3sYdnosn69e+0R/L2fn43qzVufbeG5j77kjrHZQYcTcbW5XjAJ+AfwP155Ne5+lCUoY2pwqLScT77cxUzv2aQvC9xt3N4ZqVw/rDujsjIY2K01SdYNPHpdf717DfAeVEj3tGaMO6kDUxds5CfDe8b9vajaJKg0VX1VRO4EUNVSESmLcFzGxKy8fcXkrMpn5qo8PlrrOjg0TkrgzB5tuW5oJiOzMqwbeCy5776gIzjKTSN78c6ybUyev4Gfn9M76HAiqjYJqsibUVcBRGQwbiQJYwyug8PyrXsOX7oLjQbuOjh0ZFR2BkN7taVpY+vgEJOGDw86gqOc0KEF52Rn8PzcL/nBsO40i+OOM7X5ZLcBb+MmLJwLpAOXRDQqY6Jc4cFSPlqT7126yyd/30FEYECXVtz+rT6MzM6gbwcbDTwu5Oa616ysYOMIc9OoXnz3L/P458df8cOzg783Fim16cW3WESGA1m4mXVzVbUk4pEZE2U2FBQd7gb+8Zc7KSlTmqckMbxPOqOyMxjeJ522qfHfs6rB+dGP3GsU3IMKObVra87o3oZJ8zZw/bDucTumYm168c0BPgTmAHMtOZmG4lBpOYs27DqclNZ7HRx6eePcjcx2HRxsnLs499vfBh1Bpa4ZkslPX/yUmavyOLdvu6DDiYjaXOK7BhgGXAw8KiIHgTmq+ouIRmZMAPL3HSQn191LCo3g0DgxgcE923LNkExGZVsHhwZnyJCatwnAuX3b0b5FCi/M39BwE5SqrheRA8AhbxkJNIzHmE3cKy9XVmzd63Vw2MFSr4NDuxbJh0dwGNorLa5vRJsaLF/uXvv1CzaOCholJnDVGV157IPVrM8vpEd6atAh+a42l/jWAQXAP3HPPv1MVcsjHZgxkeI6OBQcnjcpz+vg0L9LK24713VwsOnOzWE33+xeo+geVMjlp3flyZlrmLJgI78Zf2LQ4fiuNl8Ln8Rd4rsCGADMFpEPVXVdRCMzxkcbdxYxY6VLSB+v38WhsnKaJydxdlY6o7IyGJFlHRxMFR59NOgIqpTePJlxJ3XgtUWbuf1bWXF3pl+bS3xPAE+ISCpwHXAv0BmocWx/ERkDPOFt+6yqPlLh/bOBx4GTgctV9bVj/QDGVCY0RcWsVXlM+3Q/29/PAaBnejOuGdKNUdntbCI/UzuDBgUdQbW+f2Y3/r1kK28t2cJVZ3QLOhxf1eYS32O4M6hUYAFwD65HX037JQJ/Bs4FNgMLReRtVf0ibLOvgGuB2485cmMqKCg8eHjOpA9X57PP6+DQp1UCPxqVxajsDLq1bRZ0mCbWLFniXvv3DzaOKpzatTXZ7Zvzr0WbG16CwiWl/1XVHcdY9+nAWlVdDyAiLwMXAYcTlKpu8N6ze1rmmKmGd3DIY+nm3ahCRvNkzj+5AyOzMxjWK42F8z9ixNDuQYdrYtXEie41Cu9BAYgIF5/amYfeXcm6/EJ6xlFnidpc4vuXiFzoXY4DmK2q02pRdydgU1h5M3DGccRozGFFB0uZu7bg8OCrO/a6Dg4nd27FL0b3YZR1cDB+e/zxoCOo0UUDOvLweyt5ffFmfjUmfkY5r80lvodxZ0Mveqt+LiJDVPXOmnatZJ0eY3yhGG4EbgRIT08nJ0q/yQSpsLAwbtslb385S/PLWJpXxqpdZZQqNEmCE9smMr5bY05OS6JFcgmwhYI1W5i95uj947lt6sLapWqVtk2Ut1W/tom8vGA9pyVvIyFCX9Dq+3emNpf4zgf6h7qWi8hk4DOgpgS1GegSVu4MbD2eIFX178DfAbKysnTEiBHHU01cy8nJIV7apaSsnEUbvmZWbh4zVu5gXf4BAHqkN+PaoRmMOiGD07q1oXFS7To4xFPb+MnapWpHtc3Che41yjtL7Gu9lZ+99BnJXU5iaK+0iByjvn9natsnsRWwy/u5ZS33WQj0FpHuwBbgcuDKYwvPNBQ7vQ4OM3O9Dg7FpTRKFAb3aMtVZ3RjVHYGmWnWwcEE4Je/dK9RfgZ1bt92NE9J4vXFmyOWoOpbbRLUw8BnIjILd9nubGo+ewrNG3Uz8B9cN/PnVXWFiNwPLFLVt0VkEPAm0BoYLyL3qWr8PW1mvkFV+WLbXmauzGNmbh5LNrkODunNkxnXz+vg0DuN1Dh7rsPEoKeeCjqCWklplMgFJ3fgrc+28sC3S+PimajadJJ4SURygEG4BPVrVd1em8pV9V3g3Qrr7gn7eSHu0p9pAPYfKmXu2p3MXLWDWavy2b63GIBTOrdk4jlHOjgkxOnIzCZGRdkQR9X57qmdeemTTby3fDuXDIz9P61VJigRyQDuAnoBnwMPq+re+grMxIdNu/Yf7gY+f/1ODpWWk5qcxFm90xiVncGIrAzSm9sIDiaKzZvnXqN00Nhwp3VrTZc2TZi2dGt8JyjgBWAx8CfgAtyQR9fWQ0wmhpWUlbN449fM8pLSmrxCAHqkNWPCYHcvaVBm7Ts4GBO4u+5yr1F+DwrcM1Hj+nXguY++ZM/+Elo2bRR0SHVSXYJqr6r/4/38HxH5tD4CMrFnV9EhZq/OY8ZK18Fhr9fB4Yzubbn89K6Mys6gu3VwMLHq6aeDjuCYjD2pA09/uJ4PVu6I+bOo6hKUiEhrjjzPlBheVtVdVe5p4pqqsnLbvsPdwD/zOjikpSZz3ontOecEN0VF85TY/vZmDBBVU73XximdW9KxZQrvfb4trhNUS9wlvvA71qGzKAV6RCooE30OHCpzIzjkutllt+1xHRxO7tySn4/qzTknZNCvY0vr4GDiz+zZ7nX48GDjqCURYexJHZgyfyN7i0toEcNfFKtMUKqaWY9xmCi0ZfcB18Fh5Q7mrdvJwdJymjVO5Kze6fxidAYjstPJaJ4SdJjGRNZvfuNeY+AeVMi4k9rz3EdfMnNlHt8e0CnocI5b7HeUN74pK1eWbNrNzFU7mLEyj1Xb9wHQtU1TrjzD3Us6vXsbkpNqnGnFmPjx/PNBR3DMBnRpTbsWyby3fJslKBO79haXMGd1ATNW7SAnN59dRYdITBAGZbbmrnHZjMpuR8/0Zjb4qmm4esTe3YyEBGFsvw689MlXFB2M3Yd2YzNqUydfFhQxY+UOZq7K45Mvd1FarrRq2oiRWRmMys7g7N7pMd891RjfTJ/uXkePDjaOYzS2X3smzdvArNw8Lji5Y9DhHJdaJSiv916X8O1V1bqdx4jQ7LIzV7pnk9YXFAGQ1a45Pzy7B+dkZ9C/SyuSbHZZY77pwQfda4wlqNMy25CWmsx7n2+P3wQlIg/gHtBdx5HpMhQYFbmwTF3tKjpETm4eM1bl8WHukdllz+zZlmuHZjIyK4MubZoGHaYx0W/KlKAjOC6JCcK5fTOYtnQbh0rLY/Lh+NqcQX0P6KmqhyIdjDl+qsqq7XuZ4Z0lffrV14cHXz3/5A6MynbPJsXqtWhjAtOlS83bRKmRWRm89MkmFm3YxZAYHOG8Nn+tluOm28iLcCzmGBWXlDF//U5mrszj3SUH2PmfOYB7NumWc3pzTnY7G3zVmLp6/333OmZMsHEch6G90micmMCs3Ly4TVCh6TaWAwdDK1X1wohFZaq0fU+xN4JDHnPXFnCgpIymjRPJbpXAr87vy8isDDJa2LNJxvjmkUfcawwmqGbJSZzRow0zV+XxP+f3DTqcY1abBDUZ+B1uRPPyyIZjKiovV5Zt2cPMlTuYsSqPFVvdgPKdWzfhe6d1ZtQJ7TijexsWzJ3DiEFdA47WmDj08stBR1AnI7MyuP+dL/hq5366to2t+861SVAFqvpkxCMxhxUeLOWjNfnMWJnHrNx8CgoPkiAwsFtrfj0mm3NOyKB3Rqo9m2RMfWjfPugI6mRUtktQM1ft4Nqh3YMO55jUJkEtFpGHgbc5+hKfdTP30Vc79zNjlXs2acH6nZSUKS1SkhielcE52RkM75NO62aNgw7TmIZn2jT3On58lXwXfgAADutJREFUsHEcp8y0ZvRIa8bM3Py4TFADvNfBYeusm3kdlXrzJs1c5bqCr/XmTeqZ3ozrhnZnVHYGA7u1ppE9m2RMsB57zL3GaIICGJmdwZQFG9l/qJSmjWOnJ29tpnwfWR+BNAS79x9i9mp36W726nz2HCg5PG/Sld68SZk2b5Ix0eW114KOoM5GZWfw3EdfMnftTs7t2y7ocGqtNg/qtgN+C3RU1bEi0hc4U1Wfi3h0MU5VWZtXyIxVecxcmceijbsoV2jbrDHn9m3HOdkZDOtt8yYZE9XSYq97dkWDMtuQmpzEzFV58ZWggEnAP4DQ7LqrgVcAS1CVOFhaxsfrd3mX7nawadcBAPp2aMFNI3sxKjuDUzq3smeTjIkVb7zhXr/73WDjqIPGSQkM65VGTm4eqhozHaxqk6DSVPVVEbkTQFVLRaQswnHFlLx9xeSsymfGqh3MWVPA/kNlJHu/ED8e3pNR2Rl0aNkk6DCNMcfjSa8TcwwnKICR2em8v2I7q3cUktW+edDh1EptElSRiLTFG4dPRAYDeyIaVZRTVVZsDQ0rtIOlm11zdGyZwncGdOKcEzI4s0caTRrbvEnGxLx//zvoCHwx1BtJYu7agrhKULfiupj3FJG5QDpwaUSjikL7D5Uyd+1OZnpdwXfsPYgIDOjSil+el8Wo7Ayy2zePmVNnY0wttWwZdAS+6Ny6KZltmzJvXQHXD4uN7ua1SVArgOFAFiBALtAg+j5v/no/s7xu4PPW7eRQaTmpyUkM75POqOwMRmSl0zY1OegwjTGR9Mor7vWyy4KNwwdDeqXx9pKtlJaVx8T0OrVJUPNV9VRcogJARD4FTo1YVAFxU55/fXhE8NCU55ltmzJhcDfOyc7gtMw2MTlsvTHmOP31r+41DhLUsF5p/PPjr1i6eQ8Du7UOOpwaVZmgRKQ90AloIiIDcGdPAC2A2BrQqRp7DpQwZ00+M1fmMSs3j6/3l5CUIAzKbMPd55/AqOwMeqSnBh2mMSYo774bdAS+ObNHW0TcfaiYTlDAebiJCjsDj3EkQe0D7opsWJG1Pr/QdQNfmcfCDW7K89ahKc9PyOCs3um0bGLPJhljgKZx832c1s0ac+L/t3fmQVJVVxz+fgyLIAiyjKAYEQEHtQRB3FCDoJEoRhMxkgQVlyKpkgSJSQpjNMTEKlNZcEFLCcqgIm4DaggpQRExGBcUFBBEQBQCQkAwYEQETv64t6EzdPe040x3z/T5qrreu7fvfX3eqXlz3t1+99CDmLdiEz8Z0DXf5lRJ2gBlZpOASZIuNrOKHNpU4+zctYf5qz8OC2aXbeT9uOV5WfsWDD+zMwO6l9Lz8IMp8bVJjuNU5uGHw3Ho0PzaUUP0PaotD8x7v07IHmVjXUdJBxFaTn8hjD2NNrOZtWrZV2Tz9s+Z8+6/mb1sI3OXxy3PGzbgtKPacFXfTpxVVkrHg+vPm5HjOLXEhAnhWF8CVJe23Dd3Fa+v3sLXu7XLtzkZySZAXWVmd0g6FygFriQoSxRUgDIzlq7fFjfz28CCNVsxg9IWTRjUowP9yw6hb5c2Bf/G4DhOgTFrVr4tqFH6dGpN45IGzFuxqV4EqES/13nARDN7S1ku9pE0ELgDKAEmmNltlb5vAjwI9AY2A5ea2eosbWfHF7t5eeWmvbPu1n+yA4AeHVty3YBuDOheyrGHHuRrkxzHqT6N6td4dNPGJfQ6ohXzVmzKtylVku1+UDOBI4EbJLUgi511JZUAdwPnAGuB1yU9Y2bvJBW7GthiZl0kDSHs3JtxLudug8mvfsDspRuZt3ITO77YQ7PGJZzRtS2jzu5Gv7J2lLbwLc8dx6khysvDcdiwfFpRo/Q9qi1/mrWcjz/dSesC3mcumwB1NdATWGVm/42yR1dmUe8kYIWZrQKQ9ChwIZAcoC4ExsTzJ4FxkmRmlu6ia7bt4cZpi+l4cFOG9AlbVJzcuTVNGrqskOM4tUB9DFBdQ4D658rNnH98h3ybkxZliAWhgPQkYczp72ZWZcspqd5gYKCZXRPTlwEnm9mIpDKLY5m1Mb0yltlU6VrDgeExeRywOFs7ioi2QOG32fOD+yY17pf0uG9SU1t+OcLM9hsQy6YFdS+hxXSnpCeAcjNblkW9VAM/laNhNmUws/HAeABJ883sxCx+v6hwv6THfZMa90t63DepybVfqtTsMbPnzOwHhOnlq4FZkl6WdKWkTKOHa4HDk9IdgXXpykhqCLQEPs7efMdxHKe+kpWoXBx3GgZcAywgzMzrBWSaf/k60FXSkZIaA0MIqujJPANcEc8HA7MzjT85juM4xUM2W75PBcqAh4ALzGx9/OoxSfPT1YsbG44AniVMM3/AzJZIugWYb2bPEHblfUjSCkLLaUgWNo/Pokwx4n5Jj/smNe6X9LhvUpNTv2QzSaK/mc3OkT2O4ziOA2To4pPUR1L7RHCSdLmkpyXdKal17kx0HMdxipFMY1D3ATsBJJ0J3EZQffgEb/46juM4tUymAFViZokZdZcC482swsxuArrUvmn7I2mgpHclrZA0Oh82FAKSHpC0Ma4jS+S1ljRL0nvxWPibvdQwkg6X9IKkpZKWSBoZ89030gGSXpP0VvTNb2L+kZJejb55LE5oKjoklUhaIGl6TLtfAEmrJS2StDAx5yCXz1PGABWnfgMMAJLHoXKuuJoknfRN4Bjge5KOybUdBUI5MLBS3mjgeTPrCjwf08XGLuB6M+sOnAJcG/9G3DfwOdDfzHoQlGEGSjqFIC82NvpmC0E5phgZCSxNSrtf9nGWmfVMWv+Us+cpU4CaArwo6WngM+AlAEldCN18uWavdJKZ7QQS0klFh5nNZf/1YhcCk+L5JOCinBpVAJjZejN7M55vI/zDOQz3DRbYHpON4seA/gSZMShS30jqCJwPTIhp4X7JRM6ep7QBysxuBa4nvK2fnrQ+qQHw49oyKAOHAWuS0mtjnhM4JLEEIB5L82xPXpHUCTgBeBX3DbC3G2shsJGwhnElsNXMdsUixfpM3Q78gn0i2G1wvyQwYKakN6LkHOTwecrYVWdmr6TIW15bxlRBVrJIjiOpOVABXGdm//HtVgJmthvoKakVMA3onqpYbq3KL5IGARvN7A1J/RLZKYoWlV+S6Gtm6ySVElSEspG5qzGyUpIoELKRTipmNkjqABCPG/NsT16I8lsVwGQzmxqz3TdJmNlWYA5hnK5V0lhzMT5TfYFvSVpNGDboT2hRFbtfADCzdfG4kfBScxI5fJ7qUoDKRjqpmEmWjboCeDqPtuSFOHZwP7DUzP6c9JX7RmoXW05IagqcTRije4EgMwZF6Bszu8HMOppZJ8L/lNlRe7So/QIg6UCF/f+QdCDwDcJOEjl7nqpUkigkJJ1HeLtJSCfdmmeT8oKkKUA/gvT9BuDXwFPA48DXgA+BS5KWCRQFkk4nTOZZxL7xhF8SxqGK3TfHEwa0Swgvpo+b2S2SOhNaDq0JOptDzezz/FmaP2IX38/MbJD7BaIPpsVkQ+ARM7s1arPm5HmqUwHKcRzHKR7qUhef4ziOU0R4gHIcx3EKEg9QjuM4TkHiAcpxHMcpSDxAOY7jOAWJByinziPpxqjQ/XZUXT65GtcYJunQWrCtXNIPK+VdJGlGFfW2x2MnSd+vabsy/G4nSWslNaiUv1DSSZXyxkj6l6RbqqonaZSkDyWNy8V9OPUDD1BOnUbSqcAgoJeZHU9YgLomc62UDANqPEARRJeHVMobEvOzoROQswBlZqsJ/jsjkSepDGhhZq+lqDLWzG6uqp6ZjQVurk3bnfqHByinrtMB2JRYRGlmm6J22ABJiUWGSDpH0tQomFouaXHc52aUpMHAicDk+MbfVFJvSS9Gkcxnk6Rd5kgaK2muwr5TfeJ135P0uxT2PQeUJdVvRgiiT8X0T6MtiyVdl6L+bcAZ0a5RsaXykqQ34+e0eJ0Gku6JLcnpkmbE+yLdvWSgclDNNqBWt57jpMbM/OOfOvsBmgMLgeXAPcDXY76AZUC7mH4EuADoDcxKqt8qHucAJ8bzRsDLSXUvJSiXJMr9Pp6PJGi0dQCaEPQi26Sw8W5gZDwfAjwRz3sTVC8OjPexBDghfrc9HvsB05Ou1Qw4IJ53BebH88HADMJLZ3vCHkaDM91LBp+2B9YDDWN6KXBcinJjCMoLWdUjtFLH5ftvxj9155PzjQcdpyYxs+2SehO6ls4CHpM02szKJT0EDJU0ETgVuBxoAXSWdBfwN2BmisseDRxHUG+GIA+0Pun7hAbkImCJxa0HJK0iCBpvrnS9KcAfgDsIAerBmH86MM3MPo31p8b7WJDhlhsB4yT1BHYD3ZKu9YSZ7QE+kvRClveyH2b2kaQlwABJG4AvzGxxpjpfpZ7jpMMDlFPnsbCNxBxgjqRFBAHLcmAi8FdgB+Gf9y5gi6QewLnAtcB3gasqXVKEwHNqmp9MaLLtSTpPpFM9U/OADvF3T2NfN1h19gEZRdBf7EFoLe2o4lpV3Us6Et11G/hy3XTVrec4++FjUE6dRtLRkromZfUEPoC9WwWsA35FCFhIags0MLMK4CagV6y3jdC6AngXaBcnYCCpkaRjq2ujmRlBXHMSMMPMEkFlLnCRpGZRLfrbxJ2rk0i2C6AlsD62lC4jtIgA/gFcHMeiDiF0DWa8F0kjJI1IY3YFcB6hS/DRL3G71a3nOPvhLSinrtMcuEthK4ldwApgeNL3kwnjL+/E9GHAxKTp0DfEYzlwr6TPCN2Bg4E7JbUkPCe3E8aIqssU4OfA6ESGmb0pqRxIzI6bYGaVu/feBnZJeivaeA9QIekSwpYQn8ZyFcAAwnYIywkK7p+Y2c44WSLVvZQRWnf7YWZbJb1C2D31/Wxvsrr1HCcVrmbu1GviupsFZnZ/vm2pbSQ1j2NybQhBr6+ZfZSh/HTgO2a2s5q/N4YwmeOPWZYfRpiIkq7V5jj/h7egnHqLpDcILYzr821LjpgeW5KNgd9mCk4AZjboK/7edmC4pIPMLOMaJ0mjgB8RWnqOkxXegnIcx3EKEp8k4TiO4xQkHqAcx3GcgsQDlOM4jlOQeIByHMdxChIPUI7jOE5B8j+LfjwfB816agAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pvsys.setSuns({0: {0: [array_avg, stdpl]}}) # Sets each cell\n", + "pvsys.plotSys() \n", + "print (\"Pmp: %f [W], Eff: %f [%%], FF: %f [%%]\" % (pvsys.Pmp, pvsys.eff * 100., pvsys.FF * 100.))\n", + "print (\"Imp: %f [A], Vmp: %f [V], Isc: %f [A], Voc: %f [V]\" % (pvsys.Imp, pvsys.Vmp, pvsys.Isc, pvsys.Voc))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Setting the Module: " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pmp: 204.012466 [W], Eff: 21.740932 [%], FF: 78.938784 [%]\n", + "Imp: 5.019300 [A], Vmp: 40.645602 [V], Isc: 5.359760 [A], Voc: 48.219306 [V]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXwV1dnA8d+TBBIg7EnYIayJiAoiioCyiBVQtK1aV+pSaxdtpWpb9fVjXat9ra1au1iXgmBd6lbxVVtZgsiigAKCEDZB9iQgSwKBLM/7x5kLl5gNMjdz783z/Xzmc3Pmzpx57iHkuTNz5hxRVYwxxphokxB0AMYYY0xlLEEZY4yJSpagjDHGRCVLUMYYY6KSJShjjDFRyRKUMcaYqGQJypgoIyI5InJD0HH4QUTuEpFnj3PfQhHp4XdMJnZYgjIRJSLDRGSeiOwRkV0iMldEBtWxzg0iMtqvGGs4VqaIqIgkVfJeJxEpFZGelbz3poj8voo6G4vIvSKyRkSKvM/zvIhk+v8Jjp+ITBKRB+tSh6r+VlVrTLaVJWVVTVXV9XU5voltlqBMxIhIC+Ad4E9AG6ATcB9wMMi4/KKqW4AZwITw9SLSBhgHTK5i19eAC4ErgZbAKcBi4By/YxSRRL/rPIZjfyOpG3NMVNUWWyKyAKcBu6t4LxnYBZwUti4DOACkA2m45Lbb224O7gvVFKDc264Q+JW372Bgnrf9UmBEWL05wIPe+4XANKAt8CKwF1gIZFYRZyagQFIV718JrKuw7qfAp1VsP9qLvUs17ZYDPADMBfYB/wXSwt7/F7Ad2AN8CJwY9t4k4K/Au0CRd7zzgc+8z7oJuLfC8YaFtd0m4FrgRqAEOBRqM2/bjsDrQD7wJfDzsHruxSXfqd6xbvDWTfXeT/He2+kdayHQDngIKAOKvWM95W2vQC/v5ybAY8BG73N/5K2rtM6gf/dt8WcJPABb4ncBWnh/OCYDY4HWFd7/C/C7sPItYX8IHwb+BjTylrMA8d7bAIwO26+Td5xxuCR2rldO997PAdYCPXFnLF8Aq70/3knAC8A/qvgMmVSfoJp4fzCHha2bD0ysYvtHgNk1tFsOsA7o49WfAzwS9v71QHNckn8cWBL23iQvnqFeW6QAI4CTvPLJwA7g2972XXFJ8AqvndsC/cPqejCs7gTcmd49QGOgB7AeOM97/15cUvu2t20Tjk5QP8J9OWgKJAIDgRZhn/mGCu0QnqD+7G3Tydt3iPf5q6zTlthf7BKfiRhV3Yv7dq7AM0C+iLwtIu28TSYDV4pI6PdwAu4MCdwfug5AN1UtUdU56v2lqsTVwLuq+q6qlqvqB8AiXMIK+YeqrlPVPcB7uLOe6apaijsjGXCcn/GAt//3AUSkN+6P5D+r2KUtsK0WVf9DVVd79b8K9A875vOquk9VD+ISwCki0jJs33+r6lyvLYpVNUdVP/fKy4CXgOHetlcB01X1Ja+dd6rqkipiGoRL+ver6iF194eeAS4P22a+qr7lHetAhf1LvM/fS1XLVHWx9ztSLe/343rgFlXd4u07z/v8x1WniQ2WoExEqepKVb1WVTsD/XCXiB733vsYdxlquIhkA72At71dH8Wd9fxXRNaLyB3VHKYbcKmI7A4tuMTYIWybHWE/H6iknFrTZxGRrl7PskIRKQx7azLwPRFJwSXZ91U1r4pqdlaIqyrbw37eH4pPRBJF5BERWScie3Fnk+AuiYZsqhD3GSIyS0TyRWQP8OOw7bvgztZqoxvQsUI734W7TFfpsSuYAvwHeFlEtorI/4pIo1ocNw13JlhZnMdbp4kBlqBMvVHVVbjLRv3CVk/GnQFNAF5T1WJv232qepuq9gDGA7eKSKgTQcUzqU3AFFVtFbY0U9VHfI7/K3U9y1JVNTVs/Rxc4rnI+ywvVFPNdOB0Eel8nGFc6R1nNO5yZaa3XsJDrbDPP3GJv4uqtsRdOg1tvwl36bMylbXzlxXaubmqjqtmnyNvuDO0+1S1L+4S3QV4Z57V7QcU4O5PfSPOGuo0Mc4SlIkYEckWkdtCf4xFpAvuXseCsM2mAN+hwh92EblARHqJiOBuuJd5C7izn/DnY6YC40XkPO8MI0VERtQhCRyPF4DfAa1w90QqparTgQ+AN0VkoIgkiUhzEfmxiFxfi+M0x/WC3Im77/LbWu6zS1WLReR0XJILeREYLSLf82JpKyKhy4kV2/kTYK+I/FpEmnht3a+2jw2IyEgROcnrWbgXd3muqn/Tw1S1HHge+IOIdPSOe6aIJNdQp4lxdU5QInJqLZaT/AjWxJx9wBnAxyJShEtMy4HbQhuo6mbgU9w36Dlh+/bGnW0U4jod/EVVc7z3Hgbu9i4z3a6qm3BnFXfhepdtAn5J/X4BewHX4eAV795IdS7B9bJ7BdehYTmux+P0Wh5nI7AF19ljQfWbA65X4f0isg/XweHV0Buq+hXuXt1tuN6SS3Dd3gGeA/p67fyWqpbhzmb743rwFQDP4s7kaqM9rpffXmAlMBv35QLgCeASEflaRJ6sZN/bgc9xvfR24b4MJNRQp4lxoV5Rx1+B+6VfyNGXGCrqrqqZdTqQiVsi8jywVVXvDjoWY0z08ONBuoWqOqq6DURkpg/HMXHIGz3huxxnLzpjTPyq8yWQmpJTbbcxDY+IPIC7vPWoqn4ZdDzGmOhS50t8lVbqxia7ArhcVfvVtL0xxhhTkW83kUWkg4hMFJFPgBW4p7qv8Kt+Y4wxDYsfnSR+iEtEnXG9g17FPcneve7hfVOrVq20V69ekag6phUVFdGsWbOgw4hK1jaVs3ap2lFtk5/vXtPTgwsoSkTqd2bx4sUFqvqNBvajk8Sfcd2Ar1TVRQAi4v91Q0+7du1YtGhRpKqPWTk5OYwYMSLoMKKStU3lrF2qZm1TuUi1i4hsrGy9HwmqI3Ap7iG6drgzKBtqxBhjTJ340YuvQFX/qqpn4+az2QPkichKEanNU+7GGBO9Ro92i6l3vk4o5o0K8Hvg9yKSxdGjHBtjTOy57LKgI2iw6pygRORUVf204npVzcXNnlrlNsYYE/V++MOgI2iw/DiD+oeIjKD6oY6ew0YKMMYYcwz8SFAtcbNsVpeg8n04DgCFJcobn25GBARBvKOKCAJHrQ8F5LY5su6obb3tOWr7KuqqtO7weqs5jrfHkXjD6qpQb6ieI9tVHtPh90XYeaCcrbsP1BhzqJ7wGJCaj/ONmL/RjtX98xsTw0K91nJygoyiQapzgqrvQWALDii3vrq0Pg8ZO2YHP+Th4cRJJQk6LAFXmui9HQ/vW0ki/Gbi/mbSPPy+V3nxgWKaLpx1dIKu1ZeIb36ROZL4Jexz1u7zUkld3zhOeIxhn7nSzxt2nMrbvOLnPbrNt28/yHsFy8LaqvLjJIiQIEJSoveaICQkuNfE0CJhP1dYH75fYoLQOCmBxkkJJCclkJyUePjnxhXKSQkSHV98rr026AgaLF87SdSHzqkJzLh9BApu3nrAPWusqHK4rN78Z6pHyqFnksPL4fVQVV1hx1H08NRqWl1d4euP2r76mPVI9YQeotYKdVU8DsDK3FVk9cmqvK7w+EN1cnRdlbfL0e0YiqnKmL9RdyV1hcdfRTsePk6V7RLWdtUcJ1T39u3byWjXqpb/RkfXdfS/Ufi/XTVtVzGm8sM1V1rXN/6NvvG7W92/0ZE2p9K6K3y+sO2Li8tYvS+vxs9bXq6UK5SWl1Ne7r2G/jEiSASXuBITaJyUSHJSAk0aJ5KanETzlKSw10akpiTR3Cs3T2lE29TGpKUmk5bamJZNGtUt0VmCCkzMJaikBMhMs6ffK8opWseI07sGHUZUcg8X2i3Qiury0KVqJUnLey1Tpay8kkWV0jLlUFk5B0vKvdeyasuHSss5eHgpo7ikjH3FpRQeLGX7nuLDPxceLK0y1kaJQptmLmG1a5FC59ZNvKUpnVs3ITOtGS1Sqnl0s6TEq8ge76xvMZegjDHBExESBRITEr01idVuH2nl5UrRoVL2FZey50AJu4oOUVB4kIJC97rT+3nbnmIWbdjF3uKjE1qHlin0btecrHap9G7XnAN7yygtKycpMQHOPddtZPeg6l3EZ9T1I8hwTTdtgkmTXKGkxN3AnOpNoLl/vyu/8oor79njym+84coFBa48zZuRe/t2V37/fVfetMmVp3sTm65f78qzZ7tybq4rz5vnysuXu/LCha68ZIkrL1niygsXuvLy5a48b54r5+a68uzZrrx+vStPn+7Kmza58vvvu/L27a48bZorFxS48htvuPKePa78yiuuvH+/K0+d6sqhb4CTJh254QvwzDNHP4D4l7/A2LFHyk88ARdeeKT8+9/DxRcfKT/yCFwe9qjbAw/A1VcfKd9zD1x33ZHynXfCjTceKd9+O9x005HyxIluCbnpJrdNyI03ujpCrrvOHSPk6qtdDCGXX+5iDLn4YvcZQi680H3GkLFjXRuEjB7t2ihkxIi4+t3rP3Fi3PzuJTz0IM1vuI6OrZpwQocWDH3hSS564m5+MKw7vx6Tzf8ufpnn5z3De7ecxbJ7zyO3eAafbn+LpycM5NdjsnlkzvN894VHmTx/I796bRly7x+ZMuxSrnp2Ae+dcT67i0sp/fWvjxzffvf8/btXBT/OoB6r5j0FbC4oY0xUSU5KILlZY847sb1b8ZYbp3T8/WPYuLOIrxc/TXGz5ry2v4SbEvryYPEMij7awMeTFzEqO4PvlJTRJMD4G4qIzAcVSVlZWZobysTmMBvcsmrWNpWzdqlaeNsUfb2XhRt2MmNjETNX5bFl9wESBIb2SuPb/TtxXr/2pCY3jLslERwsdrGqnlZxfcNoVWOMOU7NvnMhI4AROTncr8qavELeWbqVN5ds4bZ/LeU3b6/g0tM6c+2QTLq1tQ5cfrIEZYwx1fnJTw7/KCL0adecW7+VxS/O7cPijV8zdcFGpi7YyKR5GxhzYnt+cW4f+rRrHmDA8cMSlDHGVKeKwWJFhNMy23BaZhvuGncCL8x3Ser9Fdu56JSO/OLcPnZGVUe+TflekTcFfHKk6jfGmHqxZ8+R3opVyGiRwu3nZTHnVyO58ewevL9iO+f+8UMen76a4pKyego0/kQsQQFTgFUi8vsatzTGmGh10UVuqYXWzRpz59gTmP3LkZx3Ynsen76GMY9/yOKNuyIcZHyKWIJS1dFAD+AfkTqGMcZE3M9/7pZj0K5FCn+6YgAvXH86peXKpX+bzx8/WE1pWXmEgoxPviUoEZlSyeoXVHWFX8cwxph6993vuuU4nN0nnXdvOYuL+nfiiRlruPzvC8jbW+xzgPHLzzOoE8MLIpIEDPSxfmOMqX8FBUdG0DgOLVIa8cfL+vP4Zf1ZsXUvFz41l6WbdvsYYPzyY6ijO0VkH3CyiOz1ln3ADuDfdY7QGGOCdMklbqmjbw/oxOs/GUJignDZ3+cz/YsdPgQX3+qcoFT1YVVtDjyqqi28pbmqtlXVO2uswBhjotltt7nFB307tuDfNw+lT7vm/GjqYl5dtMmXeuOVb89BqeqdItIJ6BZer6p+WNO+IpIILAK2qOoFfsVkjDF1Nn68r9WlpSbz0g8H8+Opi/nVa8soK1eusKlyKuVbghKRR4DLgS+AUMd/BWpMUMAtwEqghV/xGGOML0Ijurdv71uVzZKTePaa0/jRlMXc+cbnJIrwvUFdfKs/Xvg5ksR3gCxVPXgsO4lIZ+B84CHgVh/jMcaYugtN6+HzfFDJSYn87eqB3DhlMb9+YxktmjRiTD//kmA88LMX33rgeKacfBz4FWAPCBhjos8dd7glAlIaJfL01QPp36UVt7z8GYs3fh2R48Qq36bbEJHXgVOAGcDhsyhVrfIJNxG5ABinqj8VkRHA7ZXdgxKRG4EbAdLT0we++uqrvsQcTwoLC0lNTQ06jKhkbVM5a5eq1Xfb7D2kPLTgAEUlyj1nNiGjaSQH+Tl+kWqXkSNHVjrdhp8J6prK1qvq5Gr2eRiYAJQCKbh7UG+o6tVV7WPzQVXO5vapmrVN5axdqnZU24RmGe4S2XtEGwqKuOjPc+nQMoU3fjqEpo2jbyzv+p4Pyrc07SWiV4EFqjo5tNSwz52q2llVM3EdLGZWl5yMMabeTZjglgjLTGvGk1cMIHfHPu54/XNibTLZSPBzqKPxwBLgfa/cX0Te9qt+Y4wJxN13u6UeDO+Tzu3fyuLtpVuZNG9DvRwzmvl5DnkvcDqQA6CqS0Ske213VtWc0L7GGBM1Ro+u18P9ZHhPPt34NQ+/t4oze7Ylu33DffrGzztxpapacdIUO0c1xsS29evdUk8SEoTfXXIyLVKSmPjykgY9n5SfCWq5iFwJJIpIbxH5EzDPx/qNMab+XX+9W+pRWmoyj15yCqu27+P3/2m4ncL8TFA/w41ofhD4J7AHmOhj/cYYU//uu88t9WxkdgYTBnfjublfNtjno3xJUN5Yevep6v+o6iBvuVtVbeITY0xsGz7cLQG4Y2w2HVqkcNcbn3OotOGNZeBLglLVMmzuJ2NMPMrNdUsAmiUncf9F/cjdsY9n5tTffbBo4Wcvvs+8buX/AopCK1X1DR+PYYwx9etHP3KvPo/FV1uj+7ZjbL/2PDFjDeef1IHMtGaBxBEEPxNUG2AnMCpsnQKWoIwxseu3vw06Au698EQ+WlPAvdNWMOm604MOp974kqC8e1DLVPWPftRnjDFRY8iQoCOgXYsUfnZOL3777io+XJ3P2X3Sgw6pXvh5D+pCP+oyxpiosny5WwJ2zZBMurZpyoP/9wWlZQ2jw4Sf3cznichTInKWiJwaWnys3xhj6t/NN7slYMlJidw5NpvVOwp5pYFMFe/nPajQefD9YeuUo+9JGWNMbHn00aAjOGxMv/acntmGP/x3NeNP6UiLlOOZgi92+JagVHWkX3UZY0zUGDQo6AgOExHuvuAELnxqLs9/9CUTR/cJOqSI8i1Bicg9la1X1fsrW2+MMTFhyRL32r9/sHF4Tu7cim/1bcdzH33JdUO607Jp/J5F+XkPqihsKQPGApk+1m+MMfVv4kS3RJGJo/uwr7iU5z6K74d3/bzE91h4WUR+D9h8UMaY2Pb440FH8A19O7Zg3EnteX7uBq4f1p1WTRsHHVJERHLi+6ZAjwjWb4wxkde/f9Rc3gt3yzl9KDpUGtdDIPk5o+7nIrLMW1YAucATftVvjDGBWLjQLVEmq31zzj+pA/+Yu4Hd+w8FHU5E+NnN/IKwn0uBHapa6mP9xhhT/375S/ca0Fh81bl5VC/eWbaNqQs2cvOo3kGH47s6JygRGQSkqep7FdaPF5Gtqrq4rscwxpjAPPVU0BFUKbt9C4b3SWfSvI3ccFYPUholBh2Sr/y4xPcosLKS9Su994wxJnb16+eWKPWjs3tQUHiQNz/bEnQovvMjQbVV1Q0VV6rqWqCtD/UbY0xw5s1zS5Q6s2db+nVqwTNz1lNerkGH4ys/ElSTat6rduISEekiIrNEZKWIrBCRW3yIxxhj/HPXXW6JUiLCjWf3ZH1+EdNX7gg6HF/5kaCmi8hDIiLhK0XkPmBmDfuWArep6gnAYOAmEenrQ0zGGOOPp592SxQb1689nVs34e8fxleXcz8S1G24553Wisjr3rIWyAJurW5HVd2mqp96P+/D3bfq5ENMxhjjj6wst0SxpMQErh/anUUbv2bZ5t1Bh+MbUfXnmqWI9ABO9IorVPWYUrmIZAIfAv1UdW+F924EbgRIT08f+Oqrr9Y53nhTWFhIampq0GFEJWubylm7VC28bVp6Y/HticKHdcPtL1Em5uznjPZJ/OCk5IgcI1K/MyNHjlysqqdVXO9bgqoLEUkFZgMPqWq1U8RnZWVpbm5u/QQWQ3JychgxYkTQYUQla5vKWbtU7ai2Cb1G4XNQFd35xue8+dlmPr5zdEQGkY3U74yIVJqgIjnUUa2ISCPgdeDFmpKTMcbUu+efd0sMuHpwV4pLynnt081Bh+KLQBOU17HiOWClqv4hyFiMMaZSPXq4JQac2LElp3ZtxdQFG+Oiy7mvCUpEWovIyccw5ftQYAIwSkSWeMs4P2Myxpg6mT7dLTFiwpnd+LKgiHnrdgYdSp35OWHhA8C1wDrcVO9Qw5TvqvoRIFW9b4wxgXvwQfc6enSwcdTS2H4deOCdlUxZsIFhvdOCDqdO/Bws9ntAT1WNz2F1jTEN05QpQUdwTFIaJfK907rwzJz1bN9TTPuWKUGHdNz8vMS3HGjlY33GGBO8Ll3cEkMuH9SFsnLljc9iu7OEnwnqYeAzEfmPiLwdWnys3xhj6t/777slhmSmNeP0zDa8tngz0fAo0fHy8xLfZOB3wOdAuY/1GmNMcB55xL2OGRNsHMfokoGd+dXry/hs025O7do66HCOi58JqkBVn/SxPmOMCd7LLwcdwXEZd3IHfvP2Cv61aHPMJig/L/EtFpGHReTMY+hmbowx0a19e7fEmNTkJMb2a887S7dSXFIWdDjHxc8zqAHe6+CwddV2MzfGmKg3bZp7HT8+2DiOwyWndeaNz7bwnxXbuah/7I3D7VuCUtWRftVljDFR47HH3GsMJqjB3dvSqVUTXlu8OSYTlG+X+ESknYg8JyLveeW+IvIDv+o3xphAvPaaW2JQQoJw8cDOfLS2gK27DwQdzjHz8x7UJOA/QEevvBqY6GP9xhhT/9LS3BKjLjm1M6rw1pItQYdyzPxMUGmq+ipeF3NVLQVi886cMcaEvPGGW2JU17ZNGdC1FdOWbgs6lGPmZ4IqEpG2eOPwichgYI+P9RtjTP178km3xLDxJ3dk5ba9rM3bF3Qox8TPBHUr8DbQU0TmAi8AP/exfmOMqX///rdbYtgFJ3dAhJg7i/IzQa0AhgNDgB/hpn9f5WP9xhhT/1q2dEsMy2iRwuDubZm2bGtMDX3kZ4Kar6qlqrpCVZeragkw38f6jTGm/r3yilti3PhTOrI+v4gvtu0NOpRaq3OCEpH2IjIQaCIiA8JGkRgBNK1zhMYYE6S//tUtMW5sv/YkJQhvL90adCi15seDuufhJirsDDzGkQkI9wF3+VC/McYE5913g47AF62bNeas3mm8s3Qbd4zJRiT654qt8xmUqk72RpG4VlVHqepIb7lQVWO3b6YxxgA0beqWODD+lI5s2X2AT7/aHXQoteLnPajOItJCnGdF5FMR+ZaP9RtjTP2bOtUtceDcvu1onJTAtBi5zOdngrpeVfcC3wIygOuAR3ys3xhj6t+zz7olDjRPacTIrHTe/Xwb5eXR35vPzwQVuqA5DviHqi4NW2eMMbHpgw/cEifGndSBvH0H+fSrr4MOpUZ+zwf1X1yC+o+INKcWM+uKyBgRyRWRtSJyh4/xGGNM3TVq5JY4MSo7g8aJCby3fHvQodTIzwT1A+AOYJCq7gca4y7zVUlEEoE/A2OBvsAVItLXx5iMMaZuJk1yS5xontKIYb3TeH/59qh/aNfPBPUq0AHYC6CqO1V1WQ37nA6sVdX1qnoIeBm4yMeYjDGmbuIsQYF7JmrL7gN8viW6h0v1c0bdv+HOmJ4UkX8Bk1S1pqGOOgGbwsqbgTMqbiQiNwI3esWDIrLch3jjTRpQEHQQUcrapnLWLlX7ZtvEwHNDx+qU3x3zLpH6nelW2Uo/Z9SdDkwXkZbAFcAHIrIJeAaY6g19VFFl/+LfOOdU1b8DfwcQkUWqeppfcccLa5eqWdtUztqlatY2lavvdvHzEh/edBvXAjcAnwFPAKcCVXWB2Qx0CSt3BmKjg74xxpiI8u0MSkTeALKBKcB4VQ2N6/6KiCyqYreFQG8R6Q5sAS4HrvQrJmOMMbHLz3tQT6nqzMreqOqUUFVLReRm3FTxicDzqrqihuP8vW5hxi1rl6pZ21TO2qVq1jaVq9d2kbp2MxSRQcAmVd3ulb8PXAxsBO5V1V11jtIYY0yD48c9qKeBQwAicjZueKMXcNO927cQY4wxx8WPS3yJYWdJlwF/V9XXgddFZIkP9RtjjGmA/DiDShSRUKI7Bwi/D+XnPS4bFskjIs+LSF7482Ai0kZEPhCRNd5r6yBjDIKIdBGRWSKyUkRWiMgt3nprG5EUEflERJZ6bXOft767iHzstc0rItI46FiDICKJIvKZiLzjla1dABHZICKfi8iSUGe3+vz/5EeCegmYLSL/Bg4AcwBEpBfuMp8vbFiko0wCxlRYdwcwQ1V7AzO8ckNTCtymqicAg4GbvN8Raxs4CIxS1VOA/sAYERkM/A74o9c2X+OGLGuIbgFWhpWtXY4Yqar9wzq71dv/Jz8mLHwIuA33R3OYHul1kQD8rK71h7FhkTyq+iFQsfPJRcBk7+fJwLfrNagooKrbVPVT7+d9uD84nbC2QZ1Cr9jIWxQYBbzmrW+QbSMinYHzgWe9smDtUp16+//ky4O6qrpAVd9U1aKwdatDfyx8UtmwSJ18rD/WtQs9e+a9ZgQcT6BEJBMYAHyMtQ1w+DLWEiAP9/D8OmC3qpZ6mzTU/1OPA7/iyOwLbbF2CVHgvyKy2BtyDurx/5Ov94girFbDIhkjIqnA68BEVd0rcTiG2vFQ1TKgv4i0At4ETqhss/qNKlgicgGQp6qLRWREaHUlmzaodgkzVFW3ikgGbvi6msZX9ZWvQx1FmA2LVL0dItIBwHvNCzieQIhII1xyelFV3/BWW9uEUdXdQA7uPl2rsE5ODfH/1FDgQhHZgLttMAp3RtXQ2wUAVd3qvebhvtScTj3+f4qlBHV4WCSvR83lwNsBxxRN3gau8X6+Bvh3gLEEwrt38BywUlX/EPaWtY1IunfmhIg0AUbj7tHNAi7xNmtwbaOqd6pqZ1XNxP1NmamqV9HA2wVARJp5E88iIs2AbwHLqcf/T3UeSaI+icg43Leb0LBIDwUcUiBE5CVgBG7o+x3Ab4C3cHNydQW+Ai5taKN4iMgwXC/SzzlyP+Eu3H2oht42J+NuaCfivpi+qqr3i0gP3JlDG9wAz1er6sHgIg2Od4nvdlW9wNoFvDZ40ysmAf9U1Ye8QcHr5f9TTCUoY4wxDUcsXeIzxhjTgFiCMsYYE5UsQRljjIlKlqCMMcZEJUtQxhCAQZAAACAASURBVBhjopIlKGOMMVHJEpQxxpioZAnKGGNMVLIEZYwxJipZgjLGGBOVLEEZY4yJSpagjDHGRCVLUMZEIRHJFBENm5MoponIirAJAY9lv6tE5L8RCMnEAEtQJiJEZJiIzBORPSKyS0TmisigOta5QURG+xVjDccKJYhCb9kgIndUse2dIvJhJevTROSQiPSrYr8+IvIvESnw2mmZiNwqIol+f5668NqhV13qUNUTVTWnhuN8Iymr6ouq+q26HNvELktQxnci0gJ4B/gTbj6dTsB9QCzOp9NKVVOBK4B7RGRMJdtMAYaISPcK6y8HPlfV5RV3EJGeuHmqNgEnqWpL4FLgNKC5nx8gyLOweDkDNMGwBGUioQ+Aqr6kqmWqekBV/6uqy0Qk2TujOim0sYhkiMgBb9bXNBF5R0R2e9vNEZEEEZmCmyBtmndG8ytv38HemdpuEVkafhlJRHJE5EHv/UIRmSYibUXkRRHZKyILRSSzNh9IVecDK4BvnA2p6mZgJjChwlvfx00SWJn7gHmqequqbvPqyVXVK70p2UOuEpGvvLOs/wn7bKeLyHzvc28Tkae8maZD76uI3CQia4A13ronRGST99kXi8hZYdsnishdIrJORPZ573cJOzNc6rXhZd72F4jIEu/487wJEUN1bRCRX4vIMqBIRJLCz3692Bd5cewQkdDsx6Fj7faOdaaIXCsiH4XVfaKIfOD9buwQkbtqqNPEMlW1xRZfF6AFsBP3x3ks0LrC+38BfhdWvgWY5v38MPA3oJG3nMWRiTU3AKPD9uvkHWcc7svWuV453Xs/B1gL9ARaAl8Aq3HTnScBLwD/qOIzZALqbSfAUGA/cE4V218FrAkrZwGHQrFUsv124Lpq2jB0/GeAJsApuDPQE7z3BwKDvfgycdO3TwzbX4EPcGewTbx1VwNtvX1u82JI8d77JW4m4izv854CtA2rq1dY3acCecAZuBl6r/H+bZLD/p2WAF3Cjn343w6YD0zwfk4FBlds87BjXQt85P3cHNjmxZ7ilc+ork5bYnuxMyjjO1XdCwzjyB/YfBF5W0TaeZtMBq4UkdDv3wTcZTKAEqAD0E1VS1R1jnp/dSpxNfCuqr6rquWq+gGwCJewQv6hqutUdQ/wHrBOVaerainwL2BADR+nANgFPAvcoaozqtjuTaCdiAzxyt8H3lPV/Cq2b4v7Y1uT+9SdgS4FluISB6q6WFUXqGqpqm4AngaGV9j3YVXdpaoHvH2mqupOb5/HgGRcQgK4Abhb3VmcqupSVd1ZRUw/BJ5W1Y/VnSFPxiXPwWHbPKmqm0LHrqAE6CUiaapaqKoLatEOABcA21X1MVUtVtV9qvpxHes0UazK68Mi8mQt9t+rqnf7GI+JE6q6EvftFxHJBqYCjwNXqOrHIlIEDBeRbUAv4G1v10eBe4H/igjA31X1kSoO0w24VETGh61rBMwKK+8I+/lAJeXUGj5KmpfMDvMuK93lFaeq6o9Vdb+I/Av4vojMx51R3VpNvTtxibgm28N+3h+KV0T6AH/A3bNqivu/vLjCvpsqxH0bLhF1xH15aAGkeW93AdbVIh5w7X6NiPwsbF1jr95Kj13BD4D7gVUi8iUuCb9Ti+NWF+Px1mmiWHVnUBfhfuGrWy6OdIAm9qnqKmASR9+/mYw7A5oAvKaqxd62+1T1NlXtAYwHbhWRc0JVVah6EzBFVVuFLc2qSWh+fZ7fqmqqt/y4wmf6Hu5SY3NcR5GqTKdu/3/+CqwCeqtqC1zClIqhhn7w7jf92ouvtaq2AvaE7bMJdym0NjYBD1Vo96aq+lJlx65IVdeo6hVABvA74DURaVbdPjXFWE2dJoZVl6D+qKqTq1twlxWMOYqIZIvIbSLS2St3wfWCC7/sMgX4Di5JvRC27wUi0kvc6dNeoMxbwJ399AirYyowXkTO827yp4jIiNBxAzAH2A38HXhZVQ9Vs+1vcD3/HhWR9gDe554qIq1qcazmuPYp9M5Qf1KL7UuBfCBJRO7BnUGFPAs8ICK9xTlZRNp671Vs92eAH4vIGd62zUTkfBGpVe9DEblaRNJVtRzXXuD+jfOB8grHCvcO0F5EJorrbNNcRM6ooU4Tw6pLUFX1PjpMVR/3MRYTP/bhbqCHLuUtAJbjbm4Dh3u+fYr71jwnbN/euLOLQtyN77/okednHgbu9nqO3a6qm3Bn+nfh/rhtwt3sD+Teqnev7AXcJbAXath2HXAmrmPAChHZA7yOu4e2rxaHux240tv2GeCVGrb/D+4e3GpgI1DM0Zfh/gC8CvwXl/iew3XOAHfJdbLX7t9T1UW4+1BPAV/jOqJcW4uYQ8bgPnMh8ARwuXdPaT/wEDDXO1b4PS1UdR/u7HQ87tLnGmBkdXUeQ0wmCoV6R33zDZE83H/6ecBcXJfY1fUYm4lzIvI8sNXuYxpjKlNlgoLDN2KHhC3puG/Dc1X1f+slQhOXxD1/tAQYoKpfBhuNMSYaVZugjtrQPfk+DvfMSidVbVLDLsZUSkQeAH6B6wb9UNDxGGOiU3WX+EJnTWfiuneux509LQA+reEGsDHGGFMn1SWoctxN7D8Ab3k3MI0xxph6UV2Cas+Re0+n4x4E/BTXs2q+qq6vryDDtWrVSnv1qtPAynGpqKiIZs3ssY/KWNtUztqlake1Tb43GEh6enABRYlI/c4sXry4QFW/0cDHcg+qKXA9MBHorqqBTAmQlZWlubm5QRw6quXk5DBixIigw4hK1jaVs3apmrVN5SLVLiKyWFVPq7i+uqGOWuLuP4XOogbgnneYhut2bowxxkRMdXO1rMV1iJgHPAB8UsXAj8YYE79Ge3NkTp8ebBwNUJUJKnQ9UEQyvdGSDxORQaq6MMKxGWNM8C67LOgIGqzazHb5uohcqKpbAERkOG6Ik5Oq380YY+LAD38YdAQNVm3GLPsx8JaItBeRcbhxrsbVsA8AIjJGRHJFZK2I3FHJ+7eKyBciskxEZohIt2ML3xhjTLyqMUF5l/J+jhtE8l7gXG+QzmqJSCLwZ9yMqn2BK0Skb4XNPgNOU9WTgdeAGodParppE0ya5AolJTBiBEyd6sr797vyK964mXv2uPIbb7hyQYErT5vmytu3u/L777vypk2uHLrWvH69K8+e7cq5ua48b54rL1/uygu9q51LlrjykiWuvHChKy9f7srz5rlyqBfi7NmuvN7rsT99uitv8pr3/fddebs3JdC0aa5cUODKb7zhynv2uPIrr7jyfu+RtalTXbmkxJUnTXLlkGeeOXJ9HeAvf4GxY4+Un3gCLrzwSPn3v4eLw2aIeOQRuPzyI+UHHoCrrz5SvuceuO66I+U774QbbzxSvv12uOmmI+WJE90SctNNbpuQG290dYRcd507RsjVV7sYQi6/3MUYcvHF7jOEXHih+4whY8e6NggZPdq1UciIEXH1u9d/4sQG/7tXXq5s23OA7df9mDVX3sCfZ63lt++upPSex/hg3ASuenYBX2Sdytet0nhr7PeZ8NzHTHz5M5aM/g4Lv38z05ZuZdX2vZRdeZX97tXl714VquvFN42j52dpips/5jkRQVUvrHzPw04H1oaelxKRl3EjT38R2kBVwyeWW4CbesEYY3xVVq7s21/C7CVbWLltH/2Xb6N4XxG/uud9DpWWc8/nbnLjR/+TS+OkBHoeUBISDlFcUs6sweMYMf//UIW9xaVs2FnE8IIivjqwkz++9BkATyzbStHepmx8dyUjszM4XQMaUj/OVPegbsXpo4+iqrOrrVjkEmCMqt7glScAZ6jqzVVs/xRuOucHq6vXnoOqnD23UTVrm8rFa7uUlytr8gr57Kuv+eyr3Xy+ZQ9r8wo5VFYOQKNEoWd6Kt3TmtG1TVM6t2lKV29p3yKFJo0Ta9U2xSVlbNhZxJodhXyxbS+LNuxi6aY9HCorJy21MRec3JFrhmTSPS1+Hoau7+egav2g7nEc8FLgvAoJ6nRV/Vkl214N3AwMV9WDlbx/I3AjQHp6+sBXX301IjHHssLCQlJTa5q9vGGytqlcvLRL4SFl3Z4y1u4uZ/3uMtbvKedAqXuvWSPo3jKRrs0T6Nw8gS7NE+jQTEhKqDj5cIU6w9pGSl1lmlRzn7LiUmVZQRkLt5fy6Y4yyhROTk/kop6N6NkqkLENfBWp35mRI0ceW4ISkXdU9YLqKq1uGxE5E7hXVc/zyncCqOrDFbYbDfwJl5zyavogdgZVuXj9NuwHa5vKxWq77Cw8yIL1u5i/voD563ayLr8IgMQEIbt9cwZ0bcWALq0Z0LUV3dOa4SZnPjZHtU3oNSfnmOrI21fMPz/+iinzN7Kz6BBjTmzP3RecQOfWTY85nmgRNSNJAMNE5O3q6sR1fqjKQqC3iHQHtgCX42YADQ9qAG7a+DG1SU7GmIbn66JDfPzlTpeU1u0kd4ebcLhZ40RO796Giwd25tSurTm5c0uaNq7NkzPH6IYbjmu3jOYpTBzdhxvO6sFzc77kb7PXMfsP+dz2rT5cP7Q7CTWcxZnqE9RFtdi/yik3VLVURG7GTTWdCDyvqitE5H5gkaq+DTwKpAL/8r7lfFWLzhfGmDi250AJn3zpktH89TtZtX0vqtCkUSKnZbbmogEdObNHW07q1JKkxHroinB13fpupSYnccvo3lw8sBO/+fcKHvy/lXy4poA/fO8U0lKTfQoyPlU3kkS1nSBqQ1XfBd6tsO6esJ9Hf2MnY0yDcqi0nMUbv+bDNfl8tKaAFVv3UK6QnJTAwG6tuXV0H87s2ZaTO7eicVIAfeNCXeeb1u3SXOfWTXn2mtN48eOvuP+dL7jgyY94/tpB9O3Ywocg41MEzoeNMaZ6X+3cz+w1+czOzWf+ugKKDpWRlCCc2rU1PxvVmzN7tqV/l1akNIqCjgXjvHEJjvEeVGVEhKsHd6N/l1bcMHkR33t6Pn++6lSG97GpPCpjCcoYE3FFB0tZsH4nH67OZ/bqfDbsdGclnVs34dsDOnF2n3SG9GxL85RGAUdaiZ/8xPcq+3VqyZs3DeG6fyzkhskL+ctVAzm3bzvfjxPrqk1QXieGnsAKVV1ZPyEZY2KdqrJy2z4+XJPPh6vzWbThaw6VldOkUSKDe7Th2iGZnN0n/bh72dWrCA0W26FlE1798ZlMeO4TfvriYv529UDOOcGSVLjqRpK4Bzeyw2Lgf0XkYVV9pqrtjTEN29dFh5iztoDZufnMWZNP3j73SGN2++ZcOzST4X3SOS2zNclJUXDZ7liEhnNq2dL3qlukNOKF609nwnMf85OpnzLlB6dzRo+2vh8nVlV3BnUZ0F9V94tIW+B9wBKUMQaA0rJylmzaffiy3bIte1CFlk0aMax3GsP7pHN273Tat0wJOtS6ucjr0OzDPajKtGzSiCnXn8F3/jqXH01dzFs/HUpmHI0+URfVJahiVd0PoKo7RcSGljKmgdu6+wCzV7vLdh+tLWBfcSkJAv27tOKWc3ozvE86J3duRWI8PePz859H/BAtmzbi+WsG8e2/zOX6yQt58ydDadk0Cu/H1bPqElTPsAd1pUK5NoPFGmNiXEmZ6wI+KzePnFX5hx+Sbd8ihXH9OnB2n3SG9UqL7z+m3/1uvRwmM60ZT189kKuf+5hfvraUpycMjP77cxF2LA/q/r7SrYwxcSVvXzGzc/PJyc3nwzX57CsuJSlBGJTZhrvGZTMiK4PeGakN549naIqRtLSIH+qMHm359ZhsHvy/lUxdsJEJZ2ZG/JjRLKIP6hpjol9ZubJs825m5eaTk5vHss2uU0BG82TG9evAyOx0hvZKi84u4PXhkkvca4TuQVV0/dDufLS2gAf+byWnZbbhhA4N90Feew7KmAZo9/5DLNhWytuvLCFndT67ig6RIDCga2tu/1YfRmRlcGLHFg3nLKk6t91Wr4dLSBB+f+kpjHtiDre8/Bnv/OysYEbQiAKWoIxpAELPJc3KzWPWqjw+/epryhVaN81jeJ90RmZncHbvdFo3axx0qNFn/Ph6P2RaajIPf/ckfjB5Ec/MWc9NI3vVewzRwBKUMXGq8GApc9cWMGtVHjm5+WzfWwxAv04tuGlkL1ru38x1F46Krx53kRCa9r59+3o97DkntGPcSe15YsYaxp3UIa4mPqytY05QIvJb3NTvz6rqTv9DMsYcD1VlfUERs1blMSs3j0++3EVJmZKanMRZvdMYmZ3BiD7pZLRwzyXl5Gyz5FQbl1/uXuvpHlS4e8efyJw1BfzPm5/z4g1nNLhLrsdzBvUJbvijPwLf9zccY8yxKC4pY/76neSsymNWbj5f7XJj3PXOSOX6od0ZkZXBaZmtaVQf01LEqzvuCOzQGS1S+PWYbO5+aznTlm3jwlM6BhZLEGoaiy8R+Lmq/jG0TlXfinhUxpgqbdq1n5xcl5DmrSuguKSclEYJDO2Zxg/P7sGIPul0aRO7s7ZGnTFjAj38Fad35cWPv+LR/6zivBPbxd5QUXVQbYJS1TIRuQh3tmSMCUBJWTkLN+wiJzefWavyWJNXCEDXNk25fFBXRmSlM7hH2+iYmiIebdrkXrt0CeTwiQnCnWOz+f7znzBl/kZuOKtHIHEEoTaX+OaKyFPAK0BRaKWqfhqxqIxp4PL2FruElJvHnDUFFB4spVGicEb3tlw2qAujsjNiYyTweDBhgnsN4B5UyNl90jmrdxp/mrmWSwd2ie+RO8LUJkEN8V7vD1unwCj/wzGmYSovVz7fsocZq1w38M+3uIdl27dIYfwpHRiZlcGQXmmkJlvH23p3991BRwDAnWNP4Pw/zeEvs9dy59gTgg6nXtT4266qI+sjEGMamn3FJXy0poAZXjfwgsKDhx+W/eV5WYzMyuCEDs3tLCloo0cHHQEAfTu24DsDOjFp7gZuGNaD9ObJQYcUcTUmKBFpB/wW6KiqY0WkL3Cmqj4X8eiMiTPr8wuZuSqPmavyWLjBdQNvkZLE8KwMRmWnM7xPBm3sYdnosn69e+0R/L2fn43qzVufbeG5j77kjrHZQYcTcbW5XjAJ+AfwP155Ne5+lCUoY2pwqLScT77cxUzv2aQvC9xt3N4ZqVw/rDujsjIY2K01SdYNPHpdf717DfAeVEj3tGaMO6kDUxds5CfDe8b9vajaJKg0VX1VRO4EUNVSESmLcFzGxKy8fcXkrMpn5qo8PlrrOjg0TkrgzB5tuW5oJiOzMqwbeCy5776gIzjKTSN78c6ybUyev4Gfn9M76HAiqjYJqsibUVcBRGQwbiQJYwyug8PyrXsOX7oLjQbuOjh0ZFR2BkN7taVpY+vgEJOGDw86gqOc0KEF52Rn8PzcL/nBsO40i+OOM7X5ZLcBb+MmLJwLpAOXRDQqY6Jc4cFSPlqT7126yyd/30FEYECXVtz+rT6MzM6gbwcbDTwu5Oa616ysYOMIc9OoXnz3L/P458df8cOzg783Fim16cW3WESGA1m4mXVzVbUk4pEZE2U2FBQd7gb+8Zc7KSlTmqckMbxPOqOyMxjeJ522qfHfs6rB+dGP3GsU3IMKObVra87o3oZJ8zZw/bDucTumYm168c0BPgTmAHMtOZmG4lBpOYs27DqclNZ7HRx6eePcjcx2HRxsnLs499vfBh1Bpa4ZkslPX/yUmavyOLdvu6DDiYjaXOK7BhgGXAw8KiIHgTmq+ouIRmZMAPL3HSQn191LCo3g0DgxgcE923LNkExGZVsHhwZnyJCatwnAuX3b0b5FCi/M39BwE5SqrheRA8AhbxkJNIzHmE3cKy9XVmzd63Vw2MFSr4NDuxbJh0dwGNorLa5vRJsaLF/uXvv1CzaOCholJnDVGV157IPVrM8vpEd6atAh+a42l/jWAQXAP3HPPv1MVcsjHZgxkeI6OBQcnjcpz+vg0L9LK24713VwsOnOzWE33+xeo+geVMjlp3flyZlrmLJgI78Zf2LQ4fiuNl8Ln8Rd4rsCGADMFpEPVXVdRCMzxkcbdxYxY6VLSB+v38WhsnKaJydxdlY6o7IyGJFlHRxMFR59NOgIqpTePJlxJ3XgtUWbuf1bWXF3pl+bS3xPAE+ISCpwHXAv0BmocWx/ERkDPOFt+6yqPlLh/bOBx4GTgctV9bVj/QDGVCY0RcWsVXlM+3Q/29/PAaBnejOuGdKNUdntbCI/UzuDBgUdQbW+f2Y3/r1kK28t2cJVZ3QLOhxf1eYS32O4M6hUYAFwD65HX037JQJ/Bs4FNgMLReRtVf0ibLOvgGuB2485cmMqKCg8eHjOpA9X57PP6+DQp1UCPxqVxajsDLq1bRZ0mCbWLFniXvv3DzaOKpzatTXZ7Zvzr0WbG16CwiWl/1XVHcdY9+nAWlVdDyAiLwMXAYcTlKpu8N6ze1rmmKmGd3DIY+nm3ahCRvNkzj+5AyOzMxjWK42F8z9ixNDuQYdrYtXEie41Cu9BAYgIF5/amYfeXcm6/EJ6xlFnidpc4vuXiFzoXY4DmK2q02pRdydgU1h5M3DGccRozGFFB0uZu7bg8OCrO/a6Dg4nd27FL0b3YZR1cDB+e/zxoCOo0UUDOvLweyt5ffFmfjUmfkY5r80lvodxZ0Mveqt+LiJDVPXOmnatZJ0eY3yhGG4EbgRIT08nJ0q/yQSpsLAwbtslb385S/PLWJpXxqpdZZQqNEmCE9smMr5bY05OS6JFcgmwhYI1W5i95uj947lt6sLapWqVtk2Ut1W/tom8vGA9pyVvIyFCX9Dq+3emNpf4zgf6h7qWi8hk4DOgpgS1GegSVu4MbD2eIFX178DfAbKysnTEiBHHU01cy8nJIV7apaSsnEUbvmZWbh4zVu5gXf4BAHqkN+PaoRmMOiGD07q1oXFS7To4xFPb+MnapWpHtc3Che41yjtL7Gu9lZ+99BnJXU5iaK+0iByjvn9natsnsRWwy/u5ZS33WQj0FpHuwBbgcuDKYwvPNBQ7vQ4OM3O9Dg7FpTRKFAb3aMtVZ3RjVHYGmWnWwcEE4Je/dK9RfgZ1bt92NE9J4vXFmyOWoOpbbRLUw8BnIjILd9nubGo+ewrNG3Uz8B9cN/PnVXWFiNwPLFLVt0VkEPAm0BoYLyL3qWr8PW1mvkFV+WLbXmauzGNmbh5LNrkODunNkxnXz+vg0DuN1Dh7rsPEoKeeCjqCWklplMgFJ3fgrc+28sC3S+PimajadJJ4SURygEG4BPVrVd1em8pV9V3g3Qrr7gn7eSHu0p9pAPYfKmXu2p3MXLWDWavy2b63GIBTOrdk4jlHOjgkxOnIzCZGRdkQR9X57qmdeemTTby3fDuXDIz9P61VJigRyQDuAnoBnwMPq+re+grMxIdNu/Yf7gY+f/1ODpWWk5qcxFm90xiVncGIrAzSm9sIDiaKzZvnXqN00Nhwp3VrTZc2TZi2dGt8JyjgBWAx8CfgAtyQR9fWQ0wmhpWUlbN449fM8pLSmrxCAHqkNWPCYHcvaVBm7Ts4GBO4u+5yr1F+DwrcM1Hj+nXguY++ZM/+Elo2bRR0SHVSXYJqr6r/4/38HxH5tD4CMrFnV9EhZq/OY8ZK18Fhr9fB4Yzubbn89K6Mys6gu3VwMLHq6aeDjuCYjD2pA09/uJ4PVu6I+bOo6hKUiEhrjjzPlBheVtVdVe5p4pqqsnLbvsPdwD/zOjikpSZz3ontOecEN0VF85TY/vZmDBBVU73XximdW9KxZQrvfb4trhNUS9wlvvA71qGzKAV6RCooE30OHCpzIzjkutllt+1xHRxO7tySn4/qzTknZNCvY0vr4GDiz+zZ7nX48GDjqCURYexJHZgyfyN7i0toEcNfFKtMUKqaWY9xmCi0ZfcB18Fh5Q7mrdvJwdJymjVO5Kze6fxidAYjstPJaJ4SdJjGRNZvfuNeY+AeVMi4k9rz3EdfMnNlHt8e0CnocI5b7HeUN74pK1eWbNrNzFU7mLEyj1Xb9wHQtU1TrjzD3Us6vXsbkpNqnGnFmPjx/PNBR3DMBnRpTbsWyby3fJslKBO79haXMGd1ATNW7SAnN59dRYdITBAGZbbmrnHZjMpuR8/0Zjb4qmm4esTe3YyEBGFsvw689MlXFB2M3Yd2YzNqUydfFhQxY+UOZq7K45Mvd1FarrRq2oiRWRmMys7g7N7pMd891RjfTJ/uXkePDjaOYzS2X3smzdvArNw8Lji5Y9DhHJdaJSiv916X8O1V1bqdx4jQ7LIzV7pnk9YXFAGQ1a45Pzy7B+dkZ9C/SyuSbHZZY77pwQfda4wlqNMy25CWmsx7n2+P3wQlIg/gHtBdx5HpMhQYFbmwTF3tKjpETm4eM1bl8WHukdllz+zZlmuHZjIyK4MubZoGHaYx0W/KlKAjOC6JCcK5fTOYtnQbh0rLY/Lh+NqcQX0P6KmqhyIdjDl+qsqq7XuZ4Z0lffrV14cHXz3/5A6MynbPJsXqtWhjAtOlS83bRKmRWRm89MkmFm3YxZAYHOG8Nn+tluOm28iLcCzmGBWXlDF//U5mrszj3SUH2PmfOYB7NumWc3pzTnY7G3zVmLp6/333OmZMsHEch6G90micmMCs3Ly4TVCh6TaWAwdDK1X1wohFZaq0fU+xN4JDHnPXFnCgpIymjRPJbpXAr87vy8isDDJa2LNJxvjmkUfcawwmqGbJSZzRow0zV+XxP+f3DTqcY1abBDUZ+B1uRPPyyIZjKiovV5Zt2cPMlTuYsSqPFVvdgPKdWzfhe6d1ZtQJ7TijexsWzJ3DiEFdA47WmDj08stBR1AnI7MyuP+dL/hq5366to2t+861SVAFqvpkxCMxhxUeLOWjNfnMWJnHrNx8CgoPkiAwsFtrfj0mm3NOyKB3Rqo9m2RMfWjfPugI6mRUtktQM1ft4Nqh3YMO55jUJkEtFpGHgbc5+hKfdTP30Vc79zNjlXs2acH6nZSUKS1SkhielcE52RkM75NO62aNgw7TmIZn2jT3On58lXwXfgAADutJREFUsHEcp8y0ZvRIa8bM3Py4TFADvNfBYeusm3kdlXrzJs1c5bqCr/XmTeqZ3ozrhnZnVHYGA7u1ppE9m2RMsB57zL3GaIICGJmdwZQFG9l/qJSmjWOnJ29tpnwfWR+BNAS79x9i9mp36W726nz2HCg5PG/Sld68SZk2b5Ix0eW114KOoM5GZWfw3EdfMnftTs7t2y7ocGqtNg/qtgN+C3RU1bEi0hc4U1Wfi3h0MU5VWZtXyIxVecxcmceijbsoV2jbrDHn9m3HOdkZDOtt8yYZE9XSYq97dkWDMtuQmpzEzFV58ZWggEnAP4DQ7LqrgVcAS1CVOFhaxsfrd3mX7nawadcBAPp2aMFNI3sxKjuDUzq3smeTjIkVb7zhXr/73WDjqIPGSQkM65VGTm4eqhozHaxqk6DSVPVVEbkTQFVLRaQswnHFlLx9xeSsymfGqh3MWVPA/kNlJHu/ED8e3pNR2Rl0aNkk6DCNMcfjSa8TcwwnKICR2em8v2I7q3cUktW+edDh1EptElSRiLTFG4dPRAYDeyIaVZRTVVZsDQ0rtIOlm11zdGyZwncGdOKcEzI4s0caTRrbvEnGxLx//zvoCHwx1BtJYu7agrhKULfiupj3FJG5QDpwaUSjikL7D5Uyd+1OZnpdwXfsPYgIDOjSil+el8Wo7Ayy2zePmVNnY0wttWwZdAS+6Ny6KZltmzJvXQHXD4uN7ua1SVArgOFAFiBALtAg+j5v/no/s7xu4PPW7eRQaTmpyUkM75POqOwMRmSl0zY1OegwjTGR9Mor7vWyy4KNwwdDeqXx9pKtlJaVx8T0OrVJUPNV9VRcogJARD4FTo1YVAFxU55/fXhE8NCU55ltmzJhcDfOyc7gtMw2MTlsvTHmOP31r+41DhLUsF5p/PPjr1i6eQ8Du7UOOpwaVZmgRKQ90AloIiIDcGdPAC2A2BrQqRp7DpQwZ00+M1fmMSs3j6/3l5CUIAzKbMPd55/AqOwMeqSnBh2mMSYo774bdAS+ObNHW0TcfaiYTlDAebiJCjsDj3EkQe0D7opsWJG1Pr/QdQNfmcfCDW7K89ahKc9PyOCs3um0bGLPJhljgKZx832c1s0ac+L/t3fmQVJVVxz+fgyLIAiyjKAYEQEHtQRB3FCDoJEoRhMxkgQVlyKpkgSJSQpjNMTEKlNZcEFLCcqgIm4DaggpQRExGBcUFBBEQBQCQkAwYEQETv64t6EzdPe040x3z/T5qrreu7fvfX3eqXlz3t1+99CDmLdiEz8Z0DXf5lRJ2gBlZpOASZIuNrOKHNpU4+zctYf5qz8OC2aXbeT9uOV5WfsWDD+zMwO6l9Lz8IMp8bVJjuNU5uGHw3Ho0PzaUUP0PaotD8x7v07IHmVjXUdJBxFaTn8hjD2NNrOZtWrZV2Tz9s+Z8+6/mb1sI3OXxy3PGzbgtKPacFXfTpxVVkrHg+vPm5HjOLXEhAnhWF8CVJe23Dd3Fa+v3sLXu7XLtzkZySZAXWVmd0g6FygFriQoSxRUgDIzlq7fFjfz28CCNVsxg9IWTRjUowP9yw6hb5c2Bf/G4DhOgTFrVr4tqFH6dGpN45IGzFuxqV4EqES/13nARDN7S1ku9pE0ELgDKAEmmNltlb5vAjwI9AY2A5ea2eosbWfHF7t5eeWmvbPu1n+yA4AeHVty3YBuDOheyrGHHuRrkxzHqT6N6td4dNPGJfQ6ohXzVmzKtylVku1+UDOBI4EbJLUgi511JZUAdwPnAGuB1yU9Y2bvJBW7GthiZl0kDSHs3JtxLudug8mvfsDspRuZt3ITO77YQ7PGJZzRtS2jzu5Gv7J2lLbwLc8dx6khysvDcdiwfFpRo/Q9qi1/mrWcjz/dSesC3mcumwB1NdATWGVm/42yR1dmUe8kYIWZrQKQ9ChwIZAcoC4ExsTzJ4FxkmRmlu6ia7bt4cZpi+l4cFOG9AlbVJzcuTVNGrqskOM4tUB9DFBdQ4D658rNnH98h3ybkxZliAWhgPQkYczp72ZWZcspqd5gYKCZXRPTlwEnm9mIpDKLY5m1Mb0yltlU6VrDgeExeRywOFs7ioi2QOG32fOD+yY17pf0uG9SU1t+OcLM9hsQy6YFdS+hxXSnpCeAcjNblkW9VAM/laNhNmUws/HAeABJ883sxCx+v6hwv6THfZMa90t63DepybVfqtTsMbPnzOwHhOnlq4FZkl6WdKWkTKOHa4HDk9IdgXXpykhqCLQEPs7efMdxHKe+kpWoXBx3GgZcAywgzMzrBWSaf/k60FXSkZIaA0MIqujJPANcEc8HA7MzjT85juM4xUM2W75PBcqAh4ALzGx9/OoxSfPT1YsbG44AniVMM3/AzJZIugWYb2bPEHblfUjSCkLLaUgWNo/Pokwx4n5Jj/smNe6X9LhvUpNTv2QzSaK/mc3OkT2O4ziOA2To4pPUR1L7RHCSdLmkpyXdKal17kx0HMdxipFMY1D3ATsBJJ0J3EZQffgEb/46juM4tUymAFViZokZdZcC482swsxuArrUvmn7I2mgpHclrZA0Oh82FAKSHpC0Ma4jS+S1ljRL0nvxWPibvdQwkg6X9IKkpZKWSBoZ89030gGSXpP0VvTNb2L+kZJejb55LE5oKjoklUhaIGl6TLtfAEmrJS2StDAx5yCXz1PGABWnfgMMAJLHoXKuuJoknfRN4Bjge5KOybUdBUI5MLBS3mjgeTPrCjwf08XGLuB6M+sOnAJcG/9G3DfwOdDfzHoQlGEGSjqFIC82NvpmC0E5phgZCSxNSrtf9nGWmfVMWv+Us+cpU4CaArwo6WngM+AlAEldCN18uWavdJKZ7QQS0klFh5nNZf/1YhcCk+L5JOCinBpVAJjZejN7M55vI/zDOQz3DRbYHpON4seA/gSZMShS30jqCJwPTIhp4X7JRM6ep7QBysxuBa4nvK2fnrQ+qQHw49oyKAOHAWuS0mtjnhM4JLEEIB5L82xPXpHUCTgBeBX3DbC3G2shsJGwhnElsNXMdsUixfpM3Q78gn0i2G1wvyQwYKakN6LkHOTwecrYVWdmr6TIW15bxlRBVrJIjiOpOVABXGdm//HtVgJmthvoKakVMA3onqpYbq3KL5IGARvN7A1J/RLZKYoWlV+S6Gtm6ySVElSEspG5qzGyUpIoELKRTipmNkjqABCPG/NsT16I8lsVwGQzmxqz3TdJmNlWYA5hnK5V0lhzMT5TfYFvSVpNGDboT2hRFbtfADCzdfG4kfBScxI5fJ7qUoDKRjqpmEmWjboCeDqPtuSFOHZwP7DUzP6c9JX7RmoXW05IagqcTRije4EgMwZF6Bszu8HMOppZJ8L/lNlRe7So/QIg6UCF/f+QdCDwDcJOEjl7nqpUkigkJJ1HeLtJSCfdmmeT8oKkKUA/gvT9BuDXwFPA48DXgA+BS5KWCRQFkk4nTOZZxL7xhF8SxqGK3TfHEwa0Swgvpo+b2S2SOhNaDq0JOptDzezz/FmaP2IX38/MbJD7BaIPpsVkQ+ARM7s1arPm5HmqUwHKcRzHKR7qUhef4ziOU0R4gHIcx3EKEg9QjuM4TkHiAcpxHMcpSDxAOY7jOAWJByinziPpxqjQ/XZUXT65GtcYJunQWrCtXNIPK+VdJGlGFfW2x2MnSd+vabsy/G4nSWslNaiUv1DSSZXyxkj6l6RbqqonaZSkDyWNy8V9OPUDD1BOnUbSqcAgoJeZHU9YgLomc62UDANqPEARRJeHVMobEvOzoROQswBlZqsJ/jsjkSepDGhhZq+lqDLWzG6uqp6ZjQVurk3bnfqHByinrtMB2JRYRGlmm6J22ABJiUWGSDpH0tQomFouaXHc52aUpMHAicDk+MbfVFJvSS9Gkcxnk6Rd5kgaK2muwr5TfeJ135P0uxT2PQeUJdVvRgiiT8X0T6MtiyVdl6L+bcAZ0a5RsaXykqQ34+e0eJ0Gku6JLcnpkmbE+yLdvWSgclDNNqBWt57jpMbM/OOfOvsBmgMLgeXAPcDXY76AZUC7mH4EuADoDcxKqt8qHucAJ8bzRsDLSXUvJSiXJMr9Pp6PJGi0dQCaEPQi26Sw8W5gZDwfAjwRz3sTVC8OjPexBDghfrc9HvsB05Ou1Qw4IJ53BebH88HADMJLZ3vCHkaDM91LBp+2B9YDDWN6KXBcinJjCMoLWdUjtFLH5ftvxj9155PzjQcdpyYxs+2SehO6ls4CHpM02szKJT0EDJU0ETgVuBxoAXSWdBfwN2BmisseDRxHUG+GIA+0Pun7hAbkImCJxa0HJK0iCBpvrnS9KcAfgDsIAerBmH86MM3MPo31p8b7WJDhlhsB4yT1BHYD3ZKu9YSZ7QE+kvRClveyH2b2kaQlwABJG4AvzGxxpjpfpZ7jpMMDlFPnsbCNxBxgjqRFBAHLcmAi8FdgB+Gf9y5gi6QewLnAtcB3gasqXVKEwHNqmp9MaLLtSTpPpFM9U/OADvF3T2NfN1h19gEZRdBf7EFoLe2o4lpV3Us6Et11G/hy3XTVrec4++FjUE6dRtLRkromZfUEPoC9WwWsA35FCFhIags0MLMK4CagV6y3jdC6AngXaBcnYCCpkaRjq2ujmRlBXHMSMMPMEkFlLnCRpGZRLfrbxJ2rk0i2C6AlsD62lC4jtIgA/gFcHMeiDiF0DWa8F0kjJI1IY3YFcB6hS/DRL3G71a3nOPvhLSinrtMcuEthK4ldwApgeNL3kwnjL+/E9GHAxKTp0DfEYzlwr6TPCN2Bg4E7JbUkPCe3E8aIqssU4OfA6ESGmb0pqRxIzI6bYGaVu/feBnZJeivaeA9QIekSwpYQn8ZyFcAAwnYIywkK7p+Y2c44WSLVvZQRWnf7YWZbJb1C2D31/Wxvsrr1HCcVrmbu1GviupsFZnZ/vm2pbSQ1j2NybQhBr6+ZfZSh/HTgO2a2s5q/N4YwmeOPWZYfRpiIkq7V5jj/h7egnHqLpDcILYzr821LjpgeW5KNgd9mCk4AZjboK/7edmC4pIPMLOMaJ0mjgB8RWnqOkxXegnIcx3EKEp8k4TiO4xQkHqAcx3GcgsQDlOM4jlOQeIByHMdxChIPUI7jOE5B8j+LfjwfB816agAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pvsys.setSuns({0: {0: averageIrradiance}}) # Sets the module\n", + "pvsys.plotSys() \n", + "print (\"Pmp: %f [W], Eff: %f [%%], FF: %f [%%]\" % (pvsys.Pmp, pvsys.eff * 100., pvsys.FF * 100.))\n", + "print (\"Imp: %f [A], Vmp: %f [V], Isc: %f [A], Voc: %f [V]\" % (pvsys.Imp, pvsys.Vmp, pvsys.Isc, pvsys.Voc))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Setting the whole system (in this case is just 1 module):" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pmp: 204.012466 [W], Eff: 21.740932 [%], FF: 78.938784 [%]\n", + "Imp: 5.019300 [A], Vmp: 40.645602 [V], Isc: 5.359760 [A], Voc: 48.219306 [V]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXwV1dnA8d+TBBIg7EnYIayJiAoiioCyiBVQtK1aV+pSaxdtpWpb9fVjXat9ra1au1iXgmBd6lbxVVtZgsiigAKCEDZB9iQgSwKBLM/7x5kLl5gNMjdz783z/Xzmc3Pmzpx57iHkuTNz5hxRVYwxxphokxB0AMYYY0xlLEEZY4yJSpagjDHGRCVLUMYYY6KSJShjjDFRyRKUMcaYqGQJypgoIyI5InJD0HH4QUTuEpFnj3PfQhHp4XdMJnZYgjIRJSLDRGSeiOwRkV0iMldEBtWxzg0iMtqvGGs4VqaIqIgkVfJeJxEpFZGelbz3poj8voo6G4vIvSKyRkSKvM/zvIhk+v8Jjp+ITBKRB+tSh6r+VlVrTLaVJWVVTVXV9XU5voltlqBMxIhIC+Ad4E9AG6ATcB9wMMi4/KKqW4AZwITw9SLSBhgHTK5i19eAC4ErgZbAKcBi4By/YxSRRL/rPIZjfyOpG3NMVNUWWyKyAKcBu6t4LxnYBZwUti4DOACkA2m45Lbb224O7gvVFKDc264Q+JW372Bgnrf9UmBEWL05wIPe+4XANKAt8CKwF1gIZFYRZyagQFIV718JrKuw7qfAp1VsP9qLvUs17ZYDPADMBfYB/wXSwt7/F7Ad2AN8CJwY9t4k4K/Au0CRd7zzgc+8z7oJuLfC8YaFtd0m4FrgRqAEOBRqM2/bjsDrQD7wJfDzsHruxSXfqd6xbvDWTfXeT/He2+kdayHQDngIKAOKvWM95W2vQC/v5ybAY8BG73N/5K2rtM6gf/dt8WcJPABb4ncBWnh/OCYDY4HWFd7/C/C7sPItYX8IHwb+BjTylrMA8d7bAIwO26+Td5xxuCR2rldO997PAdYCPXFnLF8Aq70/3knAC8A/qvgMmVSfoJp4fzCHha2bD0ysYvtHgNk1tFsOsA7o49WfAzwS9v71QHNckn8cWBL23iQvnqFeW6QAI4CTvPLJwA7g2972XXFJ8AqvndsC/cPqejCs7gTcmd49QGOgB7AeOM97/15cUvu2t20Tjk5QP8J9OWgKJAIDgRZhn/mGCu0QnqD+7G3Tydt3iPf5q6zTlthf7BKfiRhV3Yv7dq7AM0C+iLwtIu28TSYDV4pI6PdwAu4MCdwfug5AN1UtUdU56v2lqsTVwLuq+q6qlqvqB8AiXMIK+YeqrlPVPcB7uLOe6apaijsjGXCcn/GAt//3AUSkN+6P5D+r2KUtsK0WVf9DVVd79b8K9A875vOquk9VD+ISwCki0jJs33+r6lyvLYpVNUdVP/fKy4CXgOHetlcB01X1Ja+dd6rqkipiGoRL+ver6iF194eeAS4P22a+qr7lHetAhf1LvM/fS1XLVHWx9ztSLe/343rgFlXd4u07z/v8x1WniQ2WoExEqepKVb1WVTsD/XCXiB733vsYdxlquIhkA72At71dH8Wd9fxXRNaLyB3VHKYbcKmI7A4tuMTYIWybHWE/H6iknFrTZxGRrl7PskIRKQx7azLwPRFJwSXZ91U1r4pqdlaIqyrbw37eH4pPRBJF5BERWScie3Fnk+AuiYZsqhD3GSIyS0TyRWQP8OOw7bvgztZqoxvQsUI734W7TFfpsSuYAvwHeFlEtorI/4pIo1ocNw13JlhZnMdbp4kBlqBMvVHVVbjLRv3CVk/GnQFNAF5T1WJv232qepuq9gDGA7eKSKgTQcUzqU3AFFVtFbY0U9VHfI7/K3U9y1JVNTVs/Rxc4rnI+ywvVFPNdOB0Eel8nGFc6R1nNO5yZaa3XsJDrbDPP3GJv4uqtsRdOg1tvwl36bMylbXzlxXaubmqjqtmnyNvuDO0+1S1L+4S3QV4Z57V7QcU4O5PfSPOGuo0Mc4SlIkYEckWkdtCf4xFpAvuXseCsM2mAN+hwh92EblARHqJiOBuuJd5C7izn/DnY6YC40XkPO8MI0VERtQhCRyPF4DfAa1w90QqparTgQ+AN0VkoIgkiUhzEfmxiFxfi+M0x/WC3Im77/LbWu6zS1WLReR0XJILeREYLSLf82JpKyKhy4kV2/kTYK+I/FpEmnht3a+2jw2IyEgROcnrWbgXd3muqn/Tw1S1HHge+IOIdPSOe6aIJNdQp4lxdU5QInJqLZaT/AjWxJx9wBnAxyJShEtMy4HbQhuo6mbgU9w36Dlh+/bGnW0U4jod/EVVc7z3Hgbu9i4z3a6qm3BnFXfhepdtAn5J/X4BewHX4eAV795IdS7B9bJ7BdehYTmux+P0Wh5nI7AF19ljQfWbA65X4f0isg/XweHV0Buq+hXuXt1tuN6SS3Dd3gGeA/p67fyWqpbhzmb743rwFQDP4s7kaqM9rpffXmAlMBv35QLgCeASEflaRJ6sZN/bgc9xvfR24b4MJNRQp4lxoV5Rx1+B+6VfyNGXGCrqrqqZdTqQiVsi8jywVVXvDjoWY0z08ONBuoWqOqq6DURkpg/HMXHIGz3huxxnLzpjTPyq8yWQmpJTbbcxDY+IPIC7vPWoqn4ZdDzGmOhS50t8lVbqxia7ArhcVfvVtL0xxhhTkW83kUWkg4hMFJFPgBW4p7qv8Kt+Y4wxDYsfnSR+iEtEnXG9g17FPcneve7hfVOrVq20V69ekag6phUVFdGsWbOgw4hK1jaVs3ap2lFtk5/vXtPTgwsoSkTqd2bx4sUFqvqNBvajk8Sfcd2Ar1TVRQAi4v91Q0+7du1YtGhRpKqPWTk5OYwYMSLoMKKStU3lrF2qZm1TuUi1i4hsrGy9HwmqI3Ap7iG6drgzKBtqxBhjTJ340YuvQFX/qqpn4+az2QPkichKEanNU+7GGBO9Ro92i6l3vk4o5o0K8Hvg9yKSxdGjHBtjTOy57LKgI2iw6pygRORUVf204npVzcXNnlrlNsYYE/V++MOgI2iw/DiD+oeIjKD6oY6ew0YKMMYYcwz8SFAtcbNsVpeg8n04DgCFJcobn25GBARBvKOKCAJHrQ8F5LY5su6obb3tOWr7KuqqtO7weqs5jrfHkXjD6qpQb6ieI9tVHtPh90XYeaCcrbsP1BhzqJ7wGJCaj/ONmL/RjtX98xsTw0K91nJygoyiQapzgqrvQWALDii3vrq0Pg8ZO2YHP+Th4cRJJQk6LAFXmui9HQ/vW0ki/Gbi/mbSPPy+V3nxgWKaLpx1dIKu1ZeIb36ROZL4Jexz1u7zUkld3zhOeIxhn7nSzxt2nMrbvOLnPbrNt28/yHsFy8LaqvLjJIiQIEJSoveaICQkuNfE0CJhP1dYH75fYoLQOCmBxkkJJCclkJyUePjnxhXKSQkSHV98rr026AgaLF87SdSHzqkJzLh9BApu3nrAPWusqHK4rN78Z6pHyqFnksPL4fVQVV1hx1H08NRqWl1d4euP2r76mPVI9YQeotYKdVU8DsDK3FVk9cmqvK7w+EN1cnRdlbfL0e0YiqnKmL9RdyV1hcdfRTsePk6V7RLWdtUcJ1T39u3byWjXqpb/RkfXdfS/Ufi/XTVtVzGm8sM1V1rXN/6NvvG7W92/0ZE2p9K6K3y+sO2Li8tYvS+vxs9bXq6UK5SWl1Ne7r2G/jEiSASXuBITaJyUSHJSAk0aJ5KanETzlKSw10akpiTR3Cs3T2lE29TGpKUmk5bamJZNGtUt0VmCCkzMJaikBMhMs6ffK8opWseI07sGHUZUcg8X2i3Qiury0KVqJUnLey1Tpay8kkWV0jLlUFk5B0vKvdeyasuHSss5eHgpo7ikjH3FpRQeLGX7nuLDPxceLK0y1kaJQptmLmG1a5FC59ZNvKUpnVs3ITOtGS1Sqnl0s6TEq8ge76xvMZegjDHBExESBRITEr01idVuH2nl5UrRoVL2FZey50AJu4oOUVB4kIJC97rT+3nbnmIWbdjF3uKjE1qHlin0btecrHap9G7XnAN7yygtKycpMQHOPddtZPeg6l3EZ9T1I8hwTTdtgkmTXKGkxN3AnOpNoLl/vyu/8oor79njym+84coFBa48zZuRe/t2V37/fVfetMmVp3sTm65f78qzZ7tybq4rz5vnysuXu/LCha68ZIkrL1niygsXuvLy5a48b54r5+a68uzZrrx+vStPn+7Kmza58vvvu/L27a48bZorFxS48htvuPKePa78yiuuvH+/K0+d6sqhb4CTJh254QvwzDNHP4D4l7/A2LFHyk88ARdeeKT8+9/DxRcfKT/yCFwe9qjbAw/A1VcfKd9zD1x33ZHynXfCjTceKd9+O9x005HyxIluCbnpJrdNyI03ujpCrrvOHSPk6qtdDCGXX+5iDLn4YvcZQi680H3GkLFjXRuEjB7t2ihkxIi4+t3rP3Fi3PzuJTz0IM1vuI6OrZpwQocWDH3hSS564m5+MKw7vx6Tzf8ufpnn5z3De7ecxbJ7zyO3eAafbn+LpycM5NdjsnlkzvN894VHmTx/I796bRly7x+ZMuxSrnp2Ae+dcT67i0sp/fWvjxzffvf8/btXBT/OoB6r5j0FbC4oY0xUSU5KILlZY847sb1b8ZYbp3T8/WPYuLOIrxc/TXGz5ry2v4SbEvryYPEMij7awMeTFzEqO4PvlJTRJMD4G4qIzAcVSVlZWZobysTmMBvcsmrWNpWzdqlaeNsUfb2XhRt2MmNjETNX5bFl9wESBIb2SuPb/TtxXr/2pCY3jLslERwsdrGqnlZxfcNoVWOMOU7NvnMhI4AROTncr8qavELeWbqVN5ds4bZ/LeU3b6/g0tM6c+2QTLq1tQ5cfrIEZYwx1fnJTw7/KCL0adecW7+VxS/O7cPijV8zdcFGpi7YyKR5GxhzYnt+cW4f+rRrHmDA8cMSlDHGVKeKwWJFhNMy23BaZhvuGncCL8x3Ser9Fdu56JSO/OLcPnZGVUe+TflekTcFfHKk6jfGmHqxZ8+R3opVyGiRwu3nZTHnVyO58ewevL9iO+f+8UMen76a4pKyego0/kQsQQFTgFUi8vsatzTGmGh10UVuqYXWzRpz59gTmP3LkZx3Ynsen76GMY9/yOKNuyIcZHyKWIJS1dFAD+AfkTqGMcZE3M9/7pZj0K5FCn+6YgAvXH86peXKpX+bzx8/WE1pWXmEgoxPviUoEZlSyeoXVHWFX8cwxph6993vuuU4nN0nnXdvOYuL+nfiiRlruPzvC8jbW+xzgPHLzzOoE8MLIpIEDPSxfmOMqX8FBUdG0DgOLVIa8cfL+vP4Zf1ZsXUvFz41l6WbdvsYYPzyY6ijO0VkH3CyiOz1ln3ADuDfdY7QGGOCdMklbqmjbw/oxOs/GUJignDZ3+cz/YsdPgQX3+qcoFT1YVVtDjyqqi28pbmqtlXVO2uswBhjotltt7nFB307tuDfNw+lT7vm/GjqYl5dtMmXeuOVb89BqeqdItIJ6BZer6p+WNO+IpIILAK2qOoFfsVkjDF1Nn68r9WlpSbz0g8H8+Opi/nVa8soK1eusKlyKuVbghKRR4DLgS+AUMd/BWpMUMAtwEqghV/xGGOML0Ijurdv71uVzZKTePaa0/jRlMXc+cbnJIrwvUFdfKs/Xvg5ksR3gCxVPXgsO4lIZ+B84CHgVh/jMcaYugtN6+HzfFDJSYn87eqB3DhlMb9+YxktmjRiTD//kmA88LMX33rgeKacfBz4FWAPCBhjos8dd7glAlIaJfL01QPp36UVt7z8GYs3fh2R48Qq36bbEJHXgVOAGcDhsyhVrfIJNxG5ABinqj8VkRHA7ZXdgxKRG4EbAdLT0we++uqrvsQcTwoLC0lNTQ06jKhkbVM5a5eq1Xfb7D2kPLTgAEUlyj1nNiGjaSQH+Tl+kWqXkSNHVjrdhp8J6prK1qvq5Gr2eRiYAJQCKbh7UG+o6tVV7WPzQVXO5vapmrVN5axdqnZU24RmGe4S2XtEGwqKuOjPc+nQMoU3fjqEpo2jbyzv+p4Pyrc07SWiV4EFqjo5tNSwz52q2llVM3EdLGZWl5yMMabeTZjglgjLTGvGk1cMIHfHPu54/XNibTLZSPBzqKPxwBLgfa/cX0Te9qt+Y4wJxN13u6UeDO+Tzu3fyuLtpVuZNG9DvRwzmvl5DnkvcDqQA6CqS0Ske213VtWc0L7GGBM1Ro+u18P9ZHhPPt34NQ+/t4oze7Ylu33DffrGzztxpapacdIUO0c1xsS29evdUk8SEoTfXXIyLVKSmPjykgY9n5SfCWq5iFwJJIpIbxH5EzDPx/qNMab+XX+9W+pRWmoyj15yCqu27+P3/2m4ncL8TFA/w41ofhD4J7AHmOhj/cYYU//uu88t9WxkdgYTBnfjublfNtjno3xJUN5Yevep6v+o6iBvuVtVbeITY0xsGz7cLQG4Y2w2HVqkcNcbn3OotOGNZeBLglLVMmzuJ2NMPMrNdUsAmiUncf9F/cjdsY9n5tTffbBo4Wcvvs+8buX/AopCK1X1DR+PYYwx9etHP3KvPo/FV1uj+7ZjbL/2PDFjDeef1IHMtGaBxBEEPxNUG2AnMCpsnQKWoIwxseu3vw06Au698EQ+WlPAvdNWMOm604MOp974kqC8e1DLVPWPftRnjDFRY8iQoCOgXYsUfnZOL3777io+XJ3P2X3Sgw6pXvh5D+pCP+oyxpiosny5WwJ2zZBMurZpyoP/9wWlZQ2jw4Sf3cznichTInKWiJwaWnys3xhj6t/NN7slYMlJidw5NpvVOwp5pYFMFe/nPajQefD9YeuUo+9JGWNMbHn00aAjOGxMv/acntmGP/x3NeNP6UiLlOOZgi92+JagVHWkX3UZY0zUGDQo6AgOExHuvuAELnxqLs9/9CUTR/cJOqSI8i1Bicg9la1X1fsrW2+MMTFhyRL32r9/sHF4Tu7cim/1bcdzH33JdUO607Jp/J5F+XkPqihsKQPGApk+1m+MMfVv4kS3RJGJo/uwr7iU5z6K74d3/bzE91h4WUR+D9h8UMaY2Pb440FH8A19O7Zg3EnteX7uBq4f1p1WTRsHHVJERHLi+6ZAjwjWb4wxkde/f9Rc3gt3yzl9KDpUGtdDIPk5o+7nIrLMW1YAucATftVvjDGBWLjQLVEmq31zzj+pA/+Yu4Hd+w8FHU5E+NnN/IKwn0uBHapa6mP9xhhT/375S/ca0Fh81bl5VC/eWbaNqQs2cvOo3kGH47s6JygRGQSkqep7FdaPF5Gtqrq4rscwxpjAPPVU0BFUKbt9C4b3SWfSvI3ccFYPUholBh2Sr/y4xPcosLKS9Su994wxJnb16+eWKPWjs3tQUHiQNz/bEnQovvMjQbVV1Q0VV6rqWqCtD/UbY0xw5s1zS5Q6s2db+nVqwTNz1lNerkGH4ys/ElSTat6rduISEekiIrNEZKWIrBCRW3yIxxhj/HPXXW6JUiLCjWf3ZH1+EdNX7gg6HF/5kaCmi8hDIiLhK0XkPmBmDfuWArep6gnAYOAmEenrQ0zGGOOPp592SxQb1689nVs34e8fxleXcz8S1G24553Wisjr3rIWyAJurW5HVd2mqp96P+/D3bfq5ENMxhjjj6wst0SxpMQErh/anUUbv2bZ5t1Bh+MbUfXnmqWI9ABO9IorVPWYUrmIZAIfAv1UdW+F924EbgRIT08f+Oqrr9Y53nhTWFhIampq0GFEJWubylm7VC28bVp6Y/HticKHdcPtL1Em5uznjPZJ/OCk5IgcI1K/MyNHjlysqqdVXO9bgqoLEUkFZgMPqWq1U8RnZWVpbm5u/QQWQ3JychgxYkTQYUQla5vKWbtU7ai2Cb1G4XNQFd35xue8+dlmPr5zdEQGkY3U74yIVJqgIjnUUa2ISCPgdeDFmpKTMcbUu+efd0sMuHpwV4pLynnt081Bh+KLQBOU17HiOWClqv4hyFiMMaZSPXq4JQac2LElp3ZtxdQFG+Oiy7mvCUpEWovIyccw5ftQYAIwSkSWeMs4P2Myxpg6mT7dLTFiwpnd+LKgiHnrdgYdSp35OWHhA8C1wDrcVO9Qw5TvqvoRIFW9b4wxgXvwQfc6enSwcdTS2H4deOCdlUxZsIFhvdOCDqdO/Bws9ntAT1WNz2F1jTEN05QpQUdwTFIaJfK907rwzJz1bN9TTPuWKUGHdNz8vMS3HGjlY33GGBO8Ll3cEkMuH9SFsnLljc9iu7OEnwnqYeAzEfmPiLwdWnys3xhj6t/777slhmSmNeP0zDa8tngz0fAo0fHy8xLfZOB3wOdAuY/1GmNMcB55xL2OGRNsHMfokoGd+dXry/hs025O7do66HCOi58JqkBVn/SxPmOMCd7LLwcdwXEZd3IHfvP2Cv61aHPMJig/L/EtFpGHReTMY+hmbowx0a19e7fEmNTkJMb2a887S7dSXFIWdDjHxc8zqAHe6+CwddV2MzfGmKg3bZp7HT8+2DiOwyWndeaNz7bwnxXbuah/7I3D7VuCUtWRftVljDFR47HH3GsMJqjB3dvSqVUTXlu8OSYTlG+X+ESknYg8JyLveeW+IvIDv+o3xphAvPaaW2JQQoJw8cDOfLS2gK27DwQdzjHz8x7UJOA/QEevvBqY6GP9xhhT/9LS3BKjLjm1M6rw1pItQYdyzPxMUGmq+ipeF3NVLQVi886cMcaEvPGGW2JU17ZNGdC1FdOWbgs6lGPmZ4IqEpG2eOPwichgYI+P9RtjTP178km3xLDxJ3dk5ba9rM3bF3Qox8TPBHUr8DbQU0TmAi8AP/exfmOMqX///rdbYtgFJ3dAhJg7i/IzQa0AhgNDgB/hpn9f5WP9xhhT/1q2dEsMy2iRwuDubZm2bGtMDX3kZ4Kar6qlqrpCVZeragkw38f6jTGm/r3yilti3PhTOrI+v4gvtu0NOpRaq3OCEpH2IjIQaCIiA8JGkRgBNK1zhMYYE6S//tUtMW5sv/YkJQhvL90adCi15seDuufhJirsDDzGkQkI9wF3+VC/McYE5913g47AF62bNeas3mm8s3Qbd4zJRiT654qt8xmUqk72RpG4VlVHqepIb7lQVWO3b6YxxgA0beqWODD+lI5s2X2AT7/aHXQoteLnPajOItJCnGdF5FMR+ZaP9RtjTP2bOtUtceDcvu1onJTAtBi5zOdngrpeVfcC3wIygOuAR3ys3xhj6t+zz7olDjRPacTIrHTe/Xwb5eXR35vPzwQVuqA5DviHqi4NW2eMMbHpgw/cEifGndSBvH0H+fSrr4MOpUZ+zwf1X1yC+o+INKcWM+uKyBgRyRWRtSJyh4/xGGNM3TVq5JY4MSo7g8aJCby3fHvQodTIzwT1A+AOYJCq7gca4y7zVUlEEoE/A2OBvsAVItLXx5iMMaZuJk1yS5xontKIYb3TeH/59qh/aNfPBPUq0AHYC6CqO1V1WQ37nA6sVdX1qnoIeBm4yMeYjDGmbuIsQYF7JmrL7gN8viW6h0v1c0bdv+HOmJ4UkX8Bk1S1pqGOOgGbwsqbgTMqbiQiNwI3esWDIrLch3jjTRpQEHQQUcrapnLWLlX7ZtvEwHNDx+qU3x3zLpH6nelW2Uo/Z9SdDkwXkZbAFcAHIrIJeAaY6g19VFFl/+LfOOdU1b8DfwcQkUWqeppfcccLa5eqWdtUztqlatY2lavvdvHzEh/edBvXAjcAnwFPAKcCVXWB2Qx0CSt3BmKjg74xxpiI8u0MSkTeALKBKcB4VQ2N6/6KiCyqYreFQG8R6Q5sAS4HrvQrJmOMMbHLz3tQT6nqzMreqOqUUFVLReRm3FTxicDzqrqihuP8vW5hxi1rl6pZ21TO2qVq1jaVq9d2kbp2MxSRQcAmVd3ulb8PXAxsBO5V1V11jtIYY0yD48c9qKeBQwAicjZueKMXcNO927cQY4wxx8WPS3yJYWdJlwF/V9XXgddFZIkP9RtjjGmA/DiDShSRUKI7Bwi/D+XnPS4bFskjIs+LSF7482Ai0kZEPhCRNd5r6yBjDIKIdBGRWSKyUkRWiMgt3nprG5EUEflERJZ6bXOft767iHzstc0rItI46FiDICKJIvKZiLzjla1dABHZICKfi8iSUGe3+vz/5EeCegmYLSL/Bg4AcwBEpBfuMp8vbFiko0wCxlRYdwcwQ1V7AzO8ckNTCtymqicAg4GbvN8Raxs4CIxS1VOA/sAYERkM/A74o9c2X+OGLGuIbgFWhpWtXY4Yqar9wzq71dv/Jz8mLHwIuA33R3OYHul1kQD8rK71h7FhkTyq+iFQsfPJRcBk7+fJwLfrNagooKrbVPVT7+d9uD84nbC2QZ1Cr9jIWxQYBbzmrW+QbSMinYHzgWe9smDtUp16+//ky4O6qrpAVd9U1aKwdatDfyx8UtmwSJ18rD/WtQs9e+a9ZgQcT6BEJBMYAHyMtQ1w+DLWEiAP9/D8OmC3qpZ6mzTU/1OPA7/iyOwLbbF2CVHgvyKy2BtyDurx/5Ov94girFbDIhkjIqnA68BEVd0rcTiG2vFQ1TKgv4i0At4ETqhss/qNKlgicgGQp6qLRWREaHUlmzaodgkzVFW3ikgGbvi6msZX9ZWvQx1FmA2LVL0dItIBwHvNCzieQIhII1xyelFV3/BWW9uEUdXdQA7uPl2rsE5ODfH/1FDgQhHZgLttMAp3RtXQ2wUAVd3qvebhvtScTj3+f4qlBHV4WCSvR83lwNsBxxRN3gau8X6+Bvh3gLEEwrt38BywUlX/EPaWtY1IunfmhIg0AUbj7tHNAi7xNmtwbaOqd6pqZ1XNxP1NmamqV9HA2wVARJp5E88iIs2AbwHLqcf/T3UeSaI+icg43Leb0LBIDwUcUiBE5CVgBG7o+x3Ab4C3cHNydQW+Ai5taKN4iMgwXC/SzzlyP+Eu3H2oht42J+NuaCfivpi+qqr3i0gP3JlDG9wAz1er6sHgIg2Od4nvdlW9wNoFvDZ40ysmAf9U1Ye8QcHr5f9TTCUoY4wxDUcsXeIzxhjTgFiCMsYYE5UsQRljjIlKlqCMMcZEJUtQxhCAQZAAACAASURBVBhjopIlKGOMMVHJEpQxxpioZAnKGGNMVLIEZYwxJipZgjLGGBOVLEEZY4yJSpagjDHGRCVLUMZEIRHJFBENm5MoponIirAJAY9lv6tE5L8RCMnEAEtQJiJEZJiIzBORPSKyS0TmisigOta5QURG+xVjDccKJYhCb9kgIndUse2dIvJhJevTROSQiPSrYr8+IvIvESnw2mmZiNwqIol+f5668NqhV13qUNUTVTWnhuN8Iymr6ouq+q26HNvELktQxnci0gJ4B/gTbj6dTsB9QCzOp9NKVVOBK4B7RGRMJdtMAYaISPcK6y8HPlfV5RV3EJGeuHmqNgEnqWpL4FLgNKC5nx8gyLOweDkDNMGwBGUioQ+Aqr6kqmWqekBV/6uqy0Qk2TujOim0sYhkiMgBb9bXNBF5R0R2e9vNEZEEEZmCmyBtmndG8ytv38HemdpuEVkafhlJRHJE5EHv/UIRmSYibUXkRRHZKyILRSSzNh9IVecDK4BvnA2p6mZgJjChwlvfx00SWJn7gHmqequqbvPqyVXVK70p2UOuEpGvvLOs/wn7bKeLyHzvc28Tkae8maZD76uI3CQia4A13ronRGST99kXi8hZYdsnishdIrJORPZ573cJOzNc6rXhZd72F4jIEu/487wJEUN1bRCRX4vIMqBIRJLCz3692Bd5cewQkdDsx6Fj7faOdaaIXCsiH4XVfaKIfOD9buwQkbtqqNPEMlW1xRZfF6AFsBP3x3ks0LrC+38BfhdWvgWY5v38MPA3oJG3nMWRiTU3AKPD9uvkHWcc7svWuV453Xs/B1gL9ARaAl8Aq3HTnScBLwD/qOIzZALqbSfAUGA/cE4V218FrAkrZwGHQrFUsv124Lpq2jB0/GeAJsApuDPQE7z3BwKDvfgycdO3TwzbX4EPcGewTbx1VwNtvX1u82JI8d77JW4m4izv854CtA2rq1dY3acCecAZuBl6r/H+bZLD/p2WAF3Cjn343w6YD0zwfk4FBlds87BjXQt85P3cHNjmxZ7ilc+ork5bYnuxMyjjO1XdCwzjyB/YfBF5W0TaeZtMBq4UkdDv3wTcZTKAEqAD0E1VS1R1jnp/dSpxNfCuqr6rquWq+gGwCJewQv6hqutUdQ/wHrBOVaerainwL2BADR+nANgFPAvcoaozqtjuTaCdiAzxyt8H3lPV/Cq2b4v7Y1uT+9SdgS4FluISB6q6WFUXqGqpqm4AngaGV9j3YVXdpaoHvH2mqupOb5/HgGRcQgK4Abhb3VmcqupSVd1ZRUw/BJ5W1Y/VnSFPxiXPwWHbPKmqm0LHrqAE6CUiaapaqKoLatEOABcA21X1MVUtVtV9qvpxHes0UazK68Mi8mQt9t+rqnf7GI+JE6q6EvftFxHJBqYCjwNXqOrHIlIEDBeRbUAv4G1v10eBe4H/igjA31X1kSoO0w24VETGh61rBMwKK+8I+/lAJeXUGj5KmpfMDvMuK93lFaeq6o9Vdb+I/Av4vojMx51R3VpNvTtxibgm28N+3h+KV0T6AH/A3bNqivu/vLjCvpsqxH0bLhF1xH15aAGkeW93AdbVIh5w7X6NiPwsbF1jr95Kj13BD4D7gVUi8iUuCb9Ti+NWF+Px1mmiWHVnUBfhfuGrWy6OdIAm9qnqKmASR9+/mYw7A5oAvKaqxd62+1T1NlXtAYwHbhWRc0JVVah6EzBFVVuFLc2qSWh+fZ7fqmqqt/y4wmf6Hu5SY3NcR5GqTKdu/3/+CqwCeqtqC1zClIqhhn7w7jf92ouvtaq2AvaE7bMJdym0NjYBD1Vo96aq+lJlx65IVdeo6hVABvA74DURaVbdPjXFWE2dJoZVl6D+qKqTq1twlxWMOYqIZIvIbSLS2St3wfWCC7/sMgX4Di5JvRC27wUi0kvc6dNeoMxbwJ399AirYyowXkTO827yp4jIiNBxAzAH2A38HXhZVQ9Vs+1vcD3/HhWR9gDe554qIq1qcazmuPYp9M5Qf1KL7UuBfCBJRO7BnUGFPAs8ICK9xTlZRNp671Vs92eAH4vIGd62zUTkfBGpVe9DEblaRNJVtRzXXuD+jfOB8grHCvcO0F5EJorrbNNcRM6ooU4Tw6pLUFX1PjpMVR/3MRYTP/bhbqCHLuUtAJbjbm4Dh3u+fYr71jwnbN/euLOLQtyN77/okednHgbu9nqO3a6qm3Bn+nfh/rhtwt3sD+Teqnev7AXcJbAXath2HXAmrmPAChHZA7yOu4e2rxaHux240tv2GeCVGrb/D+4e3GpgI1DM0Zfh/gC8CvwXl/iew3XOAHfJdbLX7t9T1UW4+1BPAV/jOqJcW4uYQ8bgPnMh8ARwuXdPaT/wEDDXO1b4PS1UdR/u7HQ87tLnGmBkdXUeQ0wmCoV6R33zDZE83H/6ecBcXJfY1fUYm4lzIvI8sNXuYxpjKlNlgoLDN2KHhC3puG/Dc1X1f+slQhOXxD1/tAQYoKpfBhuNMSYaVZugjtrQPfk+DvfMSidVbVLDLsZUSkQeAH6B6wb9UNDxGGOiU3WX+EJnTWfiuneux509LQA+reEGsDHGGFMn1SWoctxN7D8Ab3k3MI0xxph6UV2Cas+Re0+n4x4E/BTXs2q+qq6vryDDtWrVSnv1qtPAynGpqKiIZs3ssY/KWNtUztqlake1Tb43GEh6enABRYlI/c4sXry4QFW/0cDHcg+qKXA9MBHorqqBTAmQlZWlubm5QRw6quXk5DBixIigw4hK1jaVs3apmrVN5SLVLiKyWFVPq7i+uqGOWuLuP4XOogbgnneYhut2bowxxkRMdXO1rMV1iJgHPAB8UsXAj8YYE79Ge3NkTp8ebBwNUJUJKnQ9UEQyvdGSDxORQaq6MMKxGWNM8C67LOgIGqzazHb5uohcqKpbAERkOG6Ik5Oq380YY+LAD38YdAQNVm3GLPsx8JaItBeRcbhxrsbVsA8AIjJGRHJFZK2I3FHJ+7eKyBciskxEZohIt2ML3xhjTLyqMUF5l/J+jhtE8l7gXG+QzmqJSCLwZ9yMqn2BK0Skb4XNPgNOU9WTgdeAGodParppE0ya5AolJTBiBEyd6sr797vyK964mXv2uPIbb7hyQYErT5vmytu3u/L777vypk2uHLrWvH69K8+e7cq5ua48b54rL1/uygu9q51LlrjykiWuvHChKy9f7srz5rlyqBfi7NmuvN7rsT99uitv8pr3/fddebs3JdC0aa5cUODKb7zhynv2uPIrr7jyfu+RtalTXbmkxJUnTXLlkGeeOXJ9HeAvf4GxY4+Un3gCLrzwSPn3v4eLw2aIeOQRuPzyI+UHHoCrrz5SvuceuO66I+U774QbbzxSvv12uOmmI+WJE90SctNNbpuQG290dYRcd507RsjVV7sYQi6/3MUYcvHF7jOEXHih+4whY8e6NggZPdq1UciIEXH1u9d/4sQG/7tXXq5s23OA7df9mDVX3sCfZ63lt++upPSex/hg3ASuenYBX2Sdytet0nhr7PeZ8NzHTHz5M5aM/g4Lv38z05ZuZdX2vZRdeZX97tXl714VquvFN42j52dpips/5jkRQVUvrHzPw04H1oaelxKRl3EjT38R2kBVwyeWW4CbesEYY3xVVq7s21/C7CVbWLltH/2Xb6N4XxG/uud9DpWWc8/nbnLjR/+TS+OkBHoeUBISDlFcUs6sweMYMf//UIW9xaVs2FnE8IIivjqwkz++9BkATyzbStHepmx8dyUjszM4XQMaUj/OVPegbsXpo4+iqrOrrVjkEmCMqt7glScAZ6jqzVVs/xRuOucHq6vXnoOqnD23UTVrm8rFa7uUlytr8gr57Kuv+eyr3Xy+ZQ9r8wo5VFYOQKNEoWd6Kt3TmtG1TVM6t2lKV29p3yKFJo0Ta9U2xSVlbNhZxJodhXyxbS+LNuxi6aY9HCorJy21MRec3JFrhmTSPS1+Hoau7+egav2g7nEc8FLgvAoJ6nRV/Vkl214N3AwMV9WDlbx/I3AjQHp6+sBXX301IjHHssLCQlJTa5q9vGGytqlcvLRL4SFl3Z4y1u4uZ/3uMtbvKedAqXuvWSPo3jKRrs0T6Nw8gS7NE+jQTEhKqDj5cIU6w9pGSl1lmlRzn7LiUmVZQRkLt5fy6Y4yyhROTk/kop6N6NkqkLENfBWp35mRI0ceW4ISkXdU9YLqKq1uGxE5E7hXVc/zyncCqOrDFbYbDfwJl5zyavogdgZVuXj9NuwHa5vKxWq77Cw8yIL1u5i/voD563ayLr8IgMQEIbt9cwZ0bcWALq0Z0LUV3dOa4SZnPjZHtU3oNSfnmOrI21fMPz/+iinzN7Kz6BBjTmzP3RecQOfWTY85nmgRNSNJAMNE5O3q6sR1fqjKQqC3iHQHtgCX42YADQ9qAG7a+DG1SU7GmIbn66JDfPzlTpeU1u0kd4ebcLhZ40RO796Giwd25tSurTm5c0uaNq7NkzPH6IYbjmu3jOYpTBzdhxvO6sFzc77kb7PXMfsP+dz2rT5cP7Q7CTWcxZnqE9RFtdi/yik3VLVURG7GTTWdCDyvqitE5H5gkaq+DTwKpAL/8r7lfFWLzhfGmDi250AJn3zpktH89TtZtX0vqtCkUSKnZbbmogEdObNHW07q1JKkxHroinB13fpupSYnccvo3lw8sBO/+fcKHvy/lXy4poA/fO8U0lKTfQoyPlU3kkS1nSBqQ1XfBd6tsO6esJ9Hf2MnY0yDcqi0nMUbv+bDNfl8tKaAFVv3UK6QnJTAwG6tuXV0H87s2ZaTO7eicVIAfeNCXeeb1u3SXOfWTXn2mtN48eOvuP+dL7jgyY94/tpB9O3Ywocg41MEzoeNMaZ6X+3cz+w1+czOzWf+ugKKDpWRlCCc2rU1PxvVmzN7tqV/l1akNIqCjgXjvHEJjvEeVGVEhKsHd6N/l1bcMHkR33t6Pn++6lSG97GpPCpjCcoYE3FFB0tZsH4nH67OZ/bqfDbsdGclnVs34dsDOnF2n3SG9GxL85RGAUdaiZ/8xPcq+3VqyZs3DeG6fyzkhskL+ctVAzm3bzvfjxPrqk1QXieGnsAKVV1ZPyEZY2KdqrJy2z4+XJPPh6vzWbThaw6VldOkUSKDe7Th2iGZnN0n/bh72dWrCA0W26FlE1798ZlMeO4TfvriYv529UDOOcGSVLjqRpK4Bzeyw2Lgf0XkYVV9pqrtjTEN29dFh5iztoDZufnMWZNP3j73SGN2++ZcOzST4X3SOS2zNclJUXDZ7liEhnNq2dL3qlukNOKF609nwnMf85OpnzLlB6dzRo+2vh8nVlV3BnUZ0F9V94tIW+B9wBKUMQaA0rJylmzaffiy3bIte1CFlk0aMax3GsP7pHN273Tat0wJOtS6ucjr0OzDPajKtGzSiCnXn8F3/jqXH01dzFs/HUpmHI0+URfVJahiVd0PoKo7RcSGljKmgdu6+wCzV7vLdh+tLWBfcSkJAv27tOKWc3ozvE86J3duRWI8PePz859H/BAtmzbi+WsG8e2/zOX6yQt58ydDadk0Cu/H1bPqElTPsAd1pUK5NoPFGmNiXEmZ6wI+KzePnFX5hx+Sbd8ihXH9OnB2n3SG9UqL7z+m3/1uvRwmM60ZT189kKuf+5hfvraUpycMjP77cxF2LA/q/r7SrYwxcSVvXzGzc/PJyc3nwzX57CsuJSlBGJTZhrvGZTMiK4PeGakN549naIqRtLSIH+qMHm359ZhsHvy/lUxdsJEJZ2ZG/JjRLKIP6hpjol9ZubJs825m5eaTk5vHss2uU0BG82TG9evAyOx0hvZKi84u4PXhkkvca4TuQVV0/dDufLS2gAf+byWnZbbhhA4N90Feew7KmAZo9/5DLNhWytuvLCFndT67ig6RIDCga2tu/1YfRmRlcGLHFg3nLKk6t91Wr4dLSBB+f+kpjHtiDre8/Bnv/OysYEbQiAKWoIxpAELPJc3KzWPWqjw+/epryhVaN81jeJ90RmZncHbvdFo3axx0qNFn/Ph6P2RaajIPf/ckfjB5Ec/MWc9NI3vVewzRwBKUMXGq8GApc9cWMGtVHjm5+WzfWwxAv04tuGlkL1ru38x1F46Krx53kRCa9r59+3o97DkntGPcSe15YsYaxp3UIa4mPqytY05QIvJb3NTvz6rqTv9DMsYcD1VlfUERs1blMSs3j0++3EVJmZKanMRZvdMYmZ3BiD7pZLRwzyXl5Gyz5FQbl1/uXuvpHlS4e8efyJw1BfzPm5/z4g1nNLhLrsdzBvUJbvijPwLf9zccY8yxKC4pY/76neSsymNWbj5f7XJj3PXOSOX6od0ZkZXBaZmtaVQf01LEqzvuCOzQGS1S+PWYbO5+aznTlm3jwlM6BhZLEGoaiy8R+Lmq/jG0TlXfinhUxpgqbdq1n5xcl5DmrSuguKSclEYJDO2Zxg/P7sGIPul0aRO7s7ZGnTFjAj38Fad35cWPv+LR/6zivBPbxd5QUXVQbYJS1TIRuQh3tmSMCUBJWTkLN+wiJzefWavyWJNXCEDXNk25fFBXRmSlM7hH2+iYmiIebdrkXrt0CeTwiQnCnWOz+f7znzBl/kZuOKtHIHEEoTaX+OaKyFPAK0BRaKWqfhqxqIxp4PL2FruElJvHnDUFFB4spVGicEb3tlw2qAujsjNiYyTweDBhgnsN4B5UyNl90jmrdxp/mrmWSwd2ie+RO8LUJkEN8V7vD1unwCj/wzGmYSovVz7fsocZq1w38M+3uIdl27dIYfwpHRiZlcGQXmmkJlvH23p3991BRwDAnWNP4Pw/zeEvs9dy59gTgg6nXtT4266qI+sjEGMamn3FJXy0poAZXjfwgsKDhx+W/eV5WYzMyuCEDs3tLCloo0cHHQEAfTu24DsDOjFp7gZuGNaD9ObJQYcUcTUmKBFpB/wW6KiqY0WkL3Cmqj4X8eiMiTPr8wuZuSqPmavyWLjBdQNvkZLE8KwMRmWnM7xPBm3sYdnosn69e+0R/L2fn43qzVufbeG5j77kjrHZQYcTcbW5XjAJ+AfwP155Ne5+lCUoY2pwqLScT77cxUzv2aQvC9xt3N4ZqVw/rDujsjIY2K01SdYNPHpdf717DfAeVEj3tGaMO6kDUxds5CfDe8b9vajaJKg0VX1VRO4EUNVSESmLcFzGxKy8fcXkrMpn5qo8PlrrOjg0TkrgzB5tuW5oJiOzMqwbeCy5776gIzjKTSN78c6ybUyev4Gfn9M76HAiqjYJqsibUVcBRGQwbiQJYwyug8PyrXsOX7oLjQbuOjh0ZFR2BkN7taVpY+vgEJOGDw86gqOc0KEF52Rn8PzcL/nBsO40i+OOM7X5ZLcBb+MmLJwLpAOXRDQqY6Jc4cFSPlqT7126yyd/30FEYECXVtz+rT6MzM6gbwcbDTwu5Oa616ysYOMIc9OoXnz3L/P458df8cOzg783Fim16cW3WESGA1m4mXVzVbUk4pEZE2U2FBQd7gb+8Zc7KSlTmqckMbxPOqOyMxjeJ522qfHfs6rB+dGP3GsU3IMKObVra87o3oZJ8zZw/bDucTumYm168c0BPgTmAHMtOZmG4lBpOYs27DqclNZ7HRx6eePcjcx2HRxsnLs499vfBh1Bpa4ZkslPX/yUmavyOLdvu6DDiYjaXOK7BhgGXAw8KiIHgTmq+ouIRmZMAPL3HSQn191LCo3g0DgxgcE923LNkExGZVsHhwZnyJCatwnAuX3b0b5FCi/M39BwE5SqrheRA8AhbxkJNIzHmE3cKy9XVmzd63Vw2MFSr4NDuxbJh0dwGNorLa5vRJsaLF/uXvv1CzaOCholJnDVGV157IPVrM8vpEd6atAh+a42l/jWAQXAP3HPPv1MVcsjHZgxkeI6OBQcnjcpz+vg0L9LK24713VwsOnOzWE33+xeo+geVMjlp3flyZlrmLJgI78Zf2LQ4fiuNl8Ln8Rd4rsCGADMFpEPVXVdRCMzxkcbdxYxY6VLSB+v38WhsnKaJydxdlY6o7IyGJFlHRxMFR59NOgIqpTePJlxJ3XgtUWbuf1bWXF3pl+bS3xPAE+ISCpwHXAv0BmocWx/ERkDPOFt+6yqPlLh/bOBx4GTgctV9bVj/QDGVCY0RcWsVXlM+3Q/29/PAaBnejOuGdKNUdntbCI/UzuDBgUdQbW+f2Y3/r1kK28t2cJVZ3QLOhxf1eYS32O4M6hUYAFwD65HX037JQJ/Bs4FNgMLReRtVf0ibLOvgGuB2485cmMqKCg8eHjOpA9X57PP6+DQp1UCPxqVxajsDLq1bRZ0mCbWLFniXvv3DzaOKpzatTXZ7Zvzr0WbG16CwiWl/1XVHcdY9+nAWlVdDyAiLwMXAYcTlKpu8N6ze1rmmKmGd3DIY+nm3ahCRvNkzj+5AyOzMxjWK42F8z9ixNDuQYdrYtXEie41Cu9BAYgIF5/amYfeXcm6/EJ6xlFnidpc4vuXiFzoXY4DmK2q02pRdydgU1h5M3DGccRozGFFB0uZu7bg8OCrO/a6Dg4nd27FL0b3YZR1cDB+e/zxoCOo0UUDOvLweyt5ffFmfjUmfkY5r80lvodxZ0Mveqt+LiJDVPXOmnatZJ0eY3yhGG4EbgRIT08nJ0q/yQSpsLAwbtslb385S/PLWJpXxqpdZZQqNEmCE9smMr5bY05OS6JFcgmwhYI1W5i95uj947lt6sLapWqVtk2Ut1W/tom8vGA9pyVvIyFCX9Dq+3emNpf4zgf6h7qWi8hk4DOgpgS1GegSVu4MbD2eIFX178DfAbKysnTEiBHHU01cy8nJIV7apaSsnEUbvmZWbh4zVu5gXf4BAHqkN+PaoRmMOiGD07q1oXFS7To4xFPb+MnapWpHtc3Che41yjtL7Gu9lZ+99BnJXU5iaK+0iByjvn9natsnsRWwy/u5ZS33WQj0FpHuwBbgcuDKYwvPNBQ7vQ4OM3O9Dg7FpTRKFAb3aMtVZ3RjVHYGmWnWwcEE4Je/dK9RfgZ1bt92NE9J4vXFmyOWoOpbbRLUw8BnIjILd9nubGo+ewrNG3Uz8B9cN/PnVXWFiNwPLFLVt0VkEPAm0BoYLyL3qWr8PW1mvkFV+WLbXmauzGNmbh5LNrkODunNkxnXz+vg0DuN1Dh7rsPEoKeeCjqCWklplMgFJ3fgrc+28sC3S+PimajadJJ4SURygEG4BPVrVd1em8pV9V3g3Qrr7gn7eSHu0p9pAPYfKmXu2p3MXLWDWavy2b63GIBTOrdk4jlHOjgkxOnIzCZGRdkQR9X57qmdeemTTby3fDuXDIz9P61VJigRyQDuAnoBnwMPq+re+grMxIdNu/Yf7gY+f/1ODpWWk5qcxFm90xiVncGIrAzSm9sIDiaKzZvnXqN00Nhwp3VrTZc2TZi2dGt8JyjgBWAx8CfgAtyQR9fWQ0wmhpWUlbN449fM8pLSmrxCAHqkNWPCYHcvaVBm7Ts4GBO4u+5yr1F+DwrcM1Hj+nXguY++ZM/+Elo2bRR0SHVSXYJqr6r/4/38HxH5tD4CMrFnV9EhZq/OY8ZK18Fhr9fB4Yzubbn89K6Mys6gu3VwMLHq6aeDjuCYjD2pA09/uJ4PVu6I+bOo6hKUiEhrjjzPlBheVtVdVe5p4pqqsnLbvsPdwD/zOjikpSZz3ontOecEN0VF85TY/vZmDBBVU73XximdW9KxZQrvfb4trhNUS9wlvvA71qGzKAV6RCooE30OHCpzIzjkutllt+1xHRxO7tySn4/qzTknZNCvY0vr4GDiz+zZ7nX48GDjqCURYexJHZgyfyN7i0toEcNfFKtMUKqaWY9xmCi0ZfcB18Fh5Q7mrdvJwdJymjVO5Kze6fxidAYjstPJaJ4SdJjGRNZvfuNeY+AeVMi4k9rz3EdfMnNlHt8e0CnocI5b7HeUN74pK1eWbNrNzFU7mLEyj1Xb9wHQtU1TrjzD3Us6vXsbkpNqnGnFmPjx/PNBR3DMBnRpTbsWyby3fJslKBO79haXMGd1ATNW7SAnN59dRYdITBAGZbbmrnHZjMpuR8/0Zjb4qmm4esTe3YyEBGFsvw689MlXFB2M3Yd2YzNqUydfFhQxY+UOZq7K45Mvd1FarrRq2oiRWRmMys7g7N7pMd891RjfTJ/uXkePDjaOYzS2X3smzdvArNw8Lji5Y9DhHJdaJSiv916X8O1V1bqdx4jQ7LIzV7pnk9YXFAGQ1a45Pzy7B+dkZ9C/SyuSbHZZY77pwQfda4wlqNMy25CWmsx7n2+P3wQlIg/gHtBdx5HpMhQYFbmwTF3tKjpETm4eM1bl8WHukdllz+zZlmuHZjIyK4MubZoGHaYx0W/KlKAjOC6JCcK5fTOYtnQbh0rLY/Lh+NqcQX0P6KmqhyIdjDl+qsqq7XuZ4Z0lffrV14cHXz3/5A6MynbPJsXqtWhjAtOlS83bRKmRWRm89MkmFm3YxZAYHOG8Nn+tluOm28iLcCzmGBWXlDF//U5mrszj3SUH2PmfOYB7NumWc3pzTnY7G3zVmLp6/333OmZMsHEch6G90micmMCs3Ly4TVCh6TaWAwdDK1X1wohFZaq0fU+xN4JDHnPXFnCgpIymjRPJbpXAr87vy8isDDJa2LNJxvjmkUfcawwmqGbJSZzRow0zV+XxP+f3DTqcY1abBDUZ+B1uRPPyyIZjKiovV5Zt2cPMlTuYsSqPFVvdgPKdWzfhe6d1ZtQJ7TijexsWzJ3DiEFdA47WmDj08stBR1AnI7MyuP+dL/hq5366to2t+861SVAFqvpkxCMxhxUeLOWjNfnMWJnHrNx8CgoPkiAwsFtrfj0mm3NOyKB3Rqo9m2RMfWjfPugI6mRUtktQM1ft4Nqh3YMO55jUJkEtFpGHgbc5+hKfdTP30Vc79zNjlXs2acH6nZSUKS1SkhielcE52RkM75NO62aNgw7TmIZn2jT3On58lXwXfgAADutJREFUsHEcp8y0ZvRIa8bM3Py4TFADvNfBYeusm3kdlXrzJs1c5bqCr/XmTeqZ3ozrhnZnVHYGA7u1ppE9m2RMsB57zL3GaIICGJmdwZQFG9l/qJSmjWOnJ29tpnwfWR+BNAS79x9i9mp36W726nz2HCg5PG/Sld68SZk2b5Ix0eW114KOoM5GZWfw3EdfMnftTs7t2y7ocGqtNg/qtgN+C3RU1bEi0hc4U1Wfi3h0MU5VWZtXyIxVecxcmceijbsoV2jbrDHn9m3HOdkZDOtt8yYZE9XSYq97dkWDMtuQmpzEzFV58ZWggEnAP4DQ7LqrgVcAS1CVOFhaxsfrd3mX7nawadcBAPp2aMFNI3sxKjuDUzq3smeTjIkVb7zhXr/73WDjqIPGSQkM65VGTm4eqhozHaxqk6DSVPVVEbkTQFVLRaQswnHFlLx9xeSsymfGqh3MWVPA/kNlJHu/ED8e3pNR2Rl0aNkk6DCNMcfjSa8TcwwnKICR2em8v2I7q3cUktW+edDh1EptElSRiLTFG4dPRAYDeyIaVZRTVVZsDQ0rtIOlm11zdGyZwncGdOKcEzI4s0caTRrbvEnGxLx//zvoCHwx1BtJYu7agrhKULfiupj3FJG5QDpwaUSjikL7D5Uyd+1OZnpdwXfsPYgIDOjSil+el8Wo7Ayy2zePmVNnY0wttWwZdAS+6Ny6KZltmzJvXQHXD4uN7ua1SVArgOFAFiBALtAg+j5v/no/s7xu4PPW7eRQaTmpyUkM75POqOwMRmSl0zY1OegwjTGR9Mor7vWyy4KNwwdDeqXx9pKtlJaVx8T0OrVJUPNV9VRcogJARD4FTo1YVAFxU55/fXhE8NCU55ltmzJhcDfOyc7gtMw2MTlsvTHmOP31r+41DhLUsF5p/PPjr1i6eQ8Du7UOOpwaVZmgRKQ90AloIiIDcGdPAC2A2BrQqRp7DpQwZ00+M1fmMSs3j6/3l5CUIAzKbMPd55/AqOwMeqSnBh2mMSYo774bdAS+ObNHW0TcfaiYTlDAebiJCjsDj3EkQe0D7opsWJG1Pr/QdQNfmcfCDW7K89ahKc9PyOCs3um0bGLPJhljgKZx832c1s0ac+L/t3fmQVJVVxz+fgyLIAiyjKAYEQEHtQRB3FCDoJEoRhMxkgQVlyKpkgSJSQpjNMTEKlNZcEFLCcqgIm4DaggpQRExGBcUFBBEQBQCQkAwYEQETv64t6EzdPe040x3z/T5qrreu7fvfX3eqXlz3t1+99CDmLdiEz8Z0DXf5lRJ2gBlZpOASZIuNrOKHNpU4+zctYf5qz8OC2aXbeT9uOV5WfsWDD+zMwO6l9Lz8IMp8bVJjuNU5uGHw3Ho0PzaUUP0PaotD8x7v07IHmVjXUdJBxFaTn8hjD2NNrOZtWrZV2Tz9s+Z8+6/mb1sI3OXxy3PGzbgtKPacFXfTpxVVkrHg+vPm5HjOLXEhAnhWF8CVJe23Dd3Fa+v3sLXu7XLtzkZySZAXWVmd0g6FygFriQoSxRUgDIzlq7fFjfz28CCNVsxg9IWTRjUowP9yw6hb5c2Bf/G4DhOgTFrVr4tqFH6dGpN45IGzFuxqV4EqES/13nARDN7S1ku9pE0ELgDKAEmmNltlb5vAjwI9AY2A5ea2eosbWfHF7t5eeWmvbPu1n+yA4AeHVty3YBuDOheyrGHHuRrkxzHqT6N6td4dNPGJfQ6ohXzVmzKtylVku1+UDOBI4EbJLUgi511JZUAdwPnAGuB1yU9Y2bvJBW7GthiZl0kDSHs3JtxLudug8mvfsDspRuZt3ITO77YQ7PGJZzRtS2jzu5Gv7J2lLbwLc8dx6khysvDcdiwfFpRo/Q9qi1/mrWcjz/dSesC3mcumwB1NdATWGVm/42yR1dmUe8kYIWZrQKQ9ChwIZAcoC4ExsTzJ4FxkmRmlu6ia7bt4cZpi+l4cFOG9AlbVJzcuTVNGrqskOM4tUB9DFBdQ4D658rNnH98h3ybkxZliAWhgPQkYczp72ZWZcspqd5gYKCZXRPTlwEnm9mIpDKLY5m1Mb0yltlU6VrDgeExeRywOFs7ioi2QOG32fOD+yY17pf0uG9SU1t+OcLM9hsQy6YFdS+hxXSnpCeAcjNblkW9VAM/laNhNmUws/HAeABJ883sxCx+v6hwv6THfZMa90t63DepybVfqtTsMbPnzOwHhOnlq4FZkl6WdKWkTKOHa4HDk9IdgXXpykhqCLQEPs7efMdxHKe+kpWoXBx3GgZcAywgzMzrBWSaf/k60FXSkZIaA0MIqujJPANcEc8HA7MzjT85juM4xUM2W75PBcqAh4ALzGx9/OoxSfPT1YsbG44AniVMM3/AzJZIugWYb2bPEHblfUjSCkLLaUgWNo/Pokwx4n5Jj/smNe6X9LhvUpNTv2QzSaK/mc3OkT2O4ziOA2To4pPUR1L7RHCSdLmkpyXdKal17kx0HMdxipFMY1D3ATsBJJ0J3EZQffgEb/46juM4tUymAFViZokZdZcC482swsxuArrUvmn7I2mgpHclrZA0Oh82FAKSHpC0Ma4jS+S1ljRL0nvxWPibvdQwkg6X9IKkpZKWSBoZ89030gGSXpP0VvTNb2L+kZJejb55LE5oKjoklUhaIGl6TLtfAEmrJS2StDAx5yCXz1PGABWnfgMMAJLHoXKuuJoknfRN4Bjge5KOybUdBUI5MLBS3mjgeTPrCjwf08XGLuB6M+sOnAJcG/9G3DfwOdDfzHoQlGEGSjqFIC82NvpmC0E5phgZCSxNSrtf9nGWmfVMWv+Us+cpU4CaArwo6WngM+AlAEldCN18uWavdJKZ7QQS0klFh5nNZf/1YhcCk+L5JOCinBpVAJjZejN7M55vI/zDOQz3DRbYHpON4seA/gSZMShS30jqCJwPTIhp4X7JRM6ep7QBysxuBa4nvK2fnrQ+qQHw49oyKAOHAWuS0mtjnhM4JLEEIB5L82xPXpHUCTgBeBX3DbC3G2shsJGwhnElsNXMdsUixfpM3Q78gn0i2G1wvyQwYKakN6LkHOTwecrYVWdmr6TIW15bxlRBVrJIjiOpOVABXGdm//HtVgJmthvoKakVMA3onqpYbq3KL5IGARvN7A1J/RLZKYoWlV+S6Gtm6ySVElSEspG5qzGyUpIoELKRTipmNkjqABCPG/NsT16I8lsVwGQzmxqz3TdJmNlWYA5hnK5V0lhzMT5TfYFvSVpNGDboT2hRFbtfADCzdfG4kfBScxI5fJ7qUoDKRjqpmEmWjboCeDqPtuSFOHZwP7DUzP6c9JX7RmoXW05IagqcTRije4EgMwZF6Bszu8HMOppZJ8L/lNlRe7So/QIg6UCF/f+QdCDwDcJOEjl7nqpUkigkJJ1HeLtJSCfdmmeT8oKkKUA/gvT9BuDXwFPA48DXgA+BS5KWCRQFkk4nTOZZxL7xhF8SxqGK3TfHEwa0Swgvpo+b2S2SOhNaDq0JOptDzezz/FmaP2IX38/MbJD7BaIPpsVkQ+ARM7s1arPm5HmqUwHKcRzHKR7qUhef4ziOU0R4gHIcx3EKEg9QjuM4TkHiAcpxHMcpSDxAOY7jOAWJByinziPpxqjQ/XZUXT65GtcYJunQWrCtXNIPK+VdJGlGFfW2x2MnSd+vabsy/G4nSWslNaiUv1DSSZXyxkj6l6RbqqonaZSkDyWNy8V9OPUDD1BOnUbSqcAgoJeZHU9YgLomc62UDANqPEARRJeHVMobEvOzoROQswBlZqsJ/jsjkSepDGhhZq+lqDLWzG6uqp6ZjQVurk3bnfqHByinrtMB2JRYRGlmm6J22ABJiUWGSDpH0tQomFouaXHc52aUpMHAicDk+MbfVFJvSS9Gkcxnk6Rd5kgaK2muwr5TfeJ135P0uxT2PQeUJdVvRgiiT8X0T6MtiyVdl6L+bcAZ0a5RsaXykqQ34+e0eJ0Gku6JLcnpkmbE+yLdvWSgclDNNqBWt57jpMbM/OOfOvsBmgMLgeXAPcDXY76AZUC7mH4EuADoDcxKqt8qHucAJ8bzRsDLSXUvJSiXJMr9Pp6PJGi0dQCaEPQi26Sw8W5gZDwfAjwRz3sTVC8OjPexBDghfrc9HvsB05Ou1Qw4IJ53BebH88HADMJLZ3vCHkaDM91LBp+2B9YDDWN6KXBcinJjCMoLWdUjtFLH5ftvxj9155PzjQcdpyYxs+2SehO6ls4CHpM02szKJT0EDJU0ETgVuBxoAXSWdBfwN2BmisseDRxHUG+GIA+0Pun7hAbkImCJxa0HJK0iCBpvrnS9KcAfgDsIAerBmH86MM3MPo31p8b7WJDhlhsB4yT1BHYD3ZKu9YSZ7QE+kvRClveyH2b2kaQlwABJG4AvzGxxpjpfpZ7jpMMDlFPnsbCNxBxgjqRFBAHLcmAi8FdgB+Gf9y5gi6QewLnAtcB3gasqXVKEwHNqmp9MaLLtSTpPpFM9U/OADvF3T2NfN1h19gEZRdBf7EFoLe2o4lpV3Us6Et11G/hy3XTVrec4++FjUE6dRtLRkromZfUEPoC9WwWsA35FCFhIags0MLMK4CagV6y3jdC6AngXaBcnYCCpkaRjq2ujmRlBXHMSMMPMEkFlLnCRpGZRLfrbxJ2rk0i2C6AlsD62lC4jtIgA/gFcHMeiDiF0DWa8F0kjJI1IY3YFcB6hS/DRL3G71a3nOPvhLSinrtMcuEthK4ldwApgeNL3kwnjL+/E9GHAxKTp0DfEYzlwr6TPCN2Bg4E7JbUkPCe3E8aIqssU4OfA6ESGmb0pqRxIzI6bYGaVu/feBnZJeivaeA9QIekSwpYQn8ZyFcAAwnYIywkK7p+Y2c44WSLVvZQRWnf7YWZbJb1C2D31/Wxvsrr1HCcVrmbu1GviupsFZnZ/vm2pbSQ1j2NybQhBr6+ZfZSh/HTgO2a2s5q/N4YwmeOPWZYfRpiIkq7V5jj/h7egnHqLpDcILYzr821LjpgeW5KNgd9mCk4AZjboK/7edmC4pIPMLOMaJ0mjgB8RWnqOkxXegnIcx3EKEp8k4TiO4xQkHqAcx3GcgsQDlOM4jlOQeIByHMdxChIPUI7jOE5B8j+LfjwfB816agAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pvsys.setSuns(averageIrradiance) # Sets the whole system\n", + "pvsys.plotSys() \n", + "print (\"Pmp: %f [W], Eff: %f [%%], FF: %f [%%]\" % (pvsys.Pmp, pvsys.eff * 100., pvsys.FF * 100.))\n", + "print (\"Imp: %f [A], Vmp: %f [V], Isc: %f [A], Voc: %f [V]\" % (pvsys.Imp, pvsys.Vmp, pvsys.Isc, pvsys.Voc))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can see, there are various ways to \"setSuns\". Some of them are described in the setSuns function:\n", + "(https://github.com/SunPower/PVMismatch/blob/master/pvmismatch/pvmismatch_lib/pvsystem.py)\n", + "\n", + "\n", + "This are the examples/options:\n", + "
    \n", + "
  • Ee={0: {0: {'cells': (0, 1, 2), 'Ee': (0.9, 0.3, 0.5)}}}
  • \n", + "
  • Ee=0.91 # set all modules in all strings to 0.91 suns
  • \n", + "
  • Ee={12: 0.77} # set all modules in string with index 12 to 0.77 suns
  • \n", + "
  • Ee={3: {8: 0.23, 7: 0.45}} # set module with index 8 to 0.23 suns and module with index 7 to 0.45 suns in string with index 3
  • \n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Calculate the mismatch\n", + "\n", + "Now we have the power under average irradiance conditions, and we can calculate mismatch" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "PowerAveraged=pvsys.Pmp # This is the \"Ideal\"" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Electrical mismatch (power derate) is 9.977051 %\n" + ] + } + ], + "source": [ + "Mismatch = (1 - PowerDetailed/PowerAveraged)\n", + "print( \" Electrical mismatch (power derate) is %f %%\" % (Mismatch*100))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/tutorials/1 - Beginner - Single Module Example.py b/docs/tutorials/1 - Beginner - Single Module Example.py new file mode 100644 index 0000000..a820f32 --- /dev/null +++ b/docs/tutorials/1 - Beginner - Single Module Example.py @@ -0,0 +1,211 @@ +#!/usr/bin/env python +# coding: utf-8 + +# # 1 - Beginner - Single Module Example +# +# This tutorial shows how to assign an array of irradiances as inputs to a module. It is assigning 12 values of irradiances Gpoat, 1 value to each row of six cells in a 12 x 6 module (72 cell module). + +# In[1]: + + +import pvmismatch # this imports everything we need +import numpy as np +import seaborn as sns +import pandas as pd + + +# #### Inputs + +# In[2]: + + +## Inputs: +numcells = 72 +Gpoat = [0.9, 0.9, 0.8, 0.7, 0.7, 0.8, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9] # kW/m2 units +portraitorlandscape = 'portrait' + + +# #### Select module type +# +# The stdpl matrix shows the placement of the cells in the module. The modules we are using are the standard PVMismatch modules, look at the references for the bypass diode groups, but because of this it does matter if the module is in ladscape or portrait. + +# In[3]: + + +# cell placement for 'portrait'. +if numcells == 72: + stdpl=np.array([[0, 23, 24, 47, 48, 71], + [1, 22, 25, 46, 49, 70], + [2, 21, 26, 45, 50, 69], + [3, 20, 27, 44, 51, 68], + [4, 19, 28, 43, 52, 67], + [5, 18, 29, 42, 53, 66], + [6, 17, 30, 41, 54, 65], + [7, 16, 31, 40, 55, 64], + [8, 15, 32, 39, 56, 63], + [9, 14, 33, 38, 57, 62], + [10, 13, 34, 37, 58, 61], + [11, 12, 35, 36, 59, 60]]) + +elif numcells == 96: + stdpl=np.array([[0, 23, 24, 47, 48, 71, 72, 95], + [1, 22, 25, 46, 49, 70, 73, 94], + [2, 21, 26, 45, 50, 69, 74, 93], + [3, 20, 27, 44, 51, 68, 75, 92], + [4, 19, 28, 43, 52, 67, 76, 91], + [5, 18, 29, 42, 53, 66, 77, 90], + [6, 17, 30, 41, 54, 65, 78, 89], + [7, 16, 31, 40, 55, 64, 79, 88], + [8, 15, 32, 39, 56, 63, 80, 87], + [9, 14, 33, 38, 57, 62, 81, 86], + [10, 13, 34, 37, 58, 61, 82, 85], + [11, 12, 35, 36, 59, 60, 83, 84]]) + +if portraitorlandscape == 'landscape': + stdpl = stdpl.transpose() + +cellsx = len(stdpl[1]); cellsy = len(stdpl) + + + + +# #### Let's create the type of module we want + +# In[4]: + + +if cellsx*cellsy == 72: + cell_pos = pvmismatch.pvmismatch_lib.pvmodule.STD72 +elif cellsx*cellsy == 96: + cell_pos = pvmismatch.pvmismatch_lib.pvmodule.STD96 + +pvmod=pvmismatch.pvmismatch_lib.pvmodule.PVmodule(cell_pos=cell_pos) + + +# #### Let's make the system be just 1 module + +# In[5]: + + +pvsys = pvmismatch.pvsystem.PVsystem(numberStrs=1, numberMods=1, pvmods=pvmod) + + +# #### Create the pattern of irradiance based on the Gpoat input. +# +# We are assigning the gradient across the module for this case. + +# In[6]: + + +G=np.array([Gpoat]).transpose() +H = np.ones([1,cellsx]) +array_det = np.dot(G,H) +sns.heatmap(array_det, square = True) +print("This is how our irradiance gradient looks accross the module") + + +# #### Values under STC: +# +# This is under the default irradiance of 1000 W/m2 + +# In[7]: + + +pvsys.plotSys() +print ("Pmp: %f [W], Eff: %f [%%], FF: %f [%%]" % (pvsys.Pmp, pvsys.eff * 100., pvsys.FF * 100.)) +print ("Imp: %f [A], Vmp: %f [V], Isc: %f [A], Voc: %f [V]" % (pvsys.Imp, pvsys.Vmp, pvsys.Isc, pvsys.Voc)) + + +# #### Values with our irradiance profile: + +# In[8]: + + +pvsys.setSuns({0: {0: [array_det, stdpl]}}) +print ("Pmp: %f [W], Eff: %f [%%], FF: %f [%%]" % (pvsys.Pmp, pvsys.eff * 100., pvsys.FF * 100.)) +print ("Imp: %f [A], Vmp: %f [V], Isc: %f [A], Voc: %f [V]" % (pvsys.Imp, pvsys.Vmp, pvsys.Isc, pvsys.Voc)) +PowerDetailed=pvsys.Pmp +pvsys.plotSys() + + +# ### Calculating Mismatch +# +# The power derate, or Mismatch resulting from the module having a distribution of irradiances compared to just one single average irradiance value can be calculated by repeating the power calculation, now with the average irradiance assigned to the whole module, and then calculating the Mismatch: + +# #### First let's calculate the average irradiance value + +# In[9]: + + +array_avg = np.ones([cellsy,cellsx])*np.mean(Gpoat) +averageIrradiance = array_avg.mean() +print(" The module's average irradiance is : %f [kW/m2]", averageIrradiance) +print(" And each cell will see this value of irradiance: ") +print (array_avg) + + +# #### Let's assign the averaged irradiance array to the cells and calculate power. +# +# There's various ways, but they all do the same. +# +# Setting each cell: + +# In[10]: + + +pvsys.setSuns({0: {0: [array_avg, stdpl]}}) # Sets each cell +pvsys.plotSys() +print ("Pmp: %f [W], Eff: %f [%%], FF: %f [%%]" % (pvsys.Pmp, pvsys.eff * 100., pvsys.FF * 100.)) +print ("Imp: %f [A], Vmp: %f [V], Isc: %f [A], Voc: %f [V]" % (pvsys.Imp, pvsys.Vmp, pvsys.Isc, pvsys.Voc)) + + +# Setting the Module: + +# In[11]: + + +pvsys.setSuns({0: {0: averageIrradiance}}) # Sets the module +pvsys.plotSys() +print ("Pmp: %f [W], Eff: %f [%%], FF: %f [%%]" % (pvsys.Pmp, pvsys.eff * 100., pvsys.FF * 100.)) +print ("Imp: %f [A], Vmp: %f [V], Isc: %f [A], Voc: %f [V]" % (pvsys.Imp, pvsys.Vmp, pvsys.Isc, pvsys.Voc)) + + +# Setting the whole system (in this case is just 1 module): + +# In[12]: + + +pvsys.setSuns(averageIrradiance) # Sets the whole system +pvsys.plotSys() +print ("Pmp: %f [W], Eff: %f [%%], FF: %f [%%]" % (pvsys.Pmp, pvsys.eff * 100., pvsys.FF * 100.)) +print ("Imp: %f [A], Vmp: %f [V], Isc: %f [A], Voc: %f [V]" % (pvsys.Imp, pvsys.Vmp, pvsys.Isc, pvsys.Voc)) + + +# As you can see, there are various ways to "setSuns". Some of them are described in the setSuns function: +# (https://github.com/SunPower/PVMismatch/blob/master/pvmismatch/pvmismatch_lib/pvsystem.py) +# +# +# This are the examples/options: +#
    +#
  • Ee={0: {0: {'cells': (0, 1, 2), 'Ee': (0.9, 0.3, 0.5)}}}
  • +#
  • Ee=0.91 # set all modules in all strings to 0.91 suns
  • +#
  • Ee={12: 0.77} # set all modules in string with index 12 to 0.77 suns
  • +#
  • Ee={3: {8: 0.23, 7: 0.45}} # set module with index 8 to 0.23 suns and module with index 7 to 0.45 suns in string with index 3
  • +#
+ +# ##### Calculate the mismatch +# +# Now we have the power under average irradiance conditions, and we can calculate mismatch + +# In[13]: + + +PowerAveraged=pvsys.Pmp # This is the "Ideal" + + +# In[14]: + + +Mismatch = (1 - PowerDetailed/PowerAveraged) +print( " Electrical mismatch (power derate) is %f %%" % (Mismatch*100)) + diff --git a/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.ipynb b/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.ipynb new file mode 100644 index 0000000..82d036a --- /dev/null +++ b/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.ipynb @@ -0,0 +1,276 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2 - Intermediate - Row Power Calculation under different irradiances\n", + "\n", + "Example for calculating power of a row, assigning values from a pickle where each pickle cell is the irradiance value in a cell in the module.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pvmismatch # this imports everything we need\n", + "import numpy as np\n", + "import seaborn as sns\n", + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Inputs\n", + "\n", + "This is a 20 modules single row, with 72 cells in portrait\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "Nmods=20\n", + "portraitorlandscape = 'portrait'\n", + "numcells = 72" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Input Irradiance" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAHMAAAD+CAYAAAAJbTrgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2deZh0VX3nP997q6q3t9/3BV5AZAmrqEFERVwyAQQXIIyY0SSoUdwVlyAZMug4IxAzeYw6OiSMWwQ1T0ASEYijrGFA5WFQEVlFZBHhBQQTWd6tu6vq/uaPc86t29W1ddett25197ef89yqe889dbtO/c75ne/5LTIzVrE8EA37AVaRH1Y7cxlhtTOXEVY7cxlhtTOXEVY7cxlhYJ0p6RhJd0u6V9JHBvU5q2hAg1hnSoqBXwCvAjYCPwbeaGY/y/3DVpFiUJJ5GHCvmd1vZnPAhcAJA/qsVXiUBtTu7sBDmfcbgZe0q3zznicYwBNz4/w6LgOwKXbXfhUnAFyy9R4A9hjbkd+NdwBgr8Q9/lpXhZ1q7sU6qwNw9GP/pH7/keq/3d/z0FXesG/fn9cPBiWZrf6peV+KpPdIuknSTRdt/hWJiTpiawRbI9giVzZRZxN1Nte2sbm2jW1JlS3U2EKNOcGcoGSuDARJvfcyZAxKMjcCe2be7wE8kq1gZl8Gvgxw0x6vKy5BbMmwn6BnDKozfwwcIGkf4GHgROBN7SrXEzdAJL4AVL1sJ16g60mSvp/xX7Afidnmx5fJxN1UtRxHu2SFd6aZ1SR9ELgS952fZ2Z3DuKzBg2r14b9CD1jUJKJmV0GXNZL3ZqXzFlFqUTWvUTOeFmteaXGzKj6c9UgtX6Krskdc5Wl1WF2cQidYTS0pHp6XDjMRk115vwPINxbVY56XQEUm15RiM4sNEZIMgdJ562XdJGkn0u6S9LLut2T4NY0oqEMJWYkZpSjmHIUYxg1X7L/RAQkciVXJEnvZcgYpGSeDVxhZm+QVAEmB/hZA8OKV4AkrQUOB94G4Cm9uXb1Z80NENVIzHjJCkNGpPmiVrcknUebhTCycG+Oy9bVYZZ9gd8AX5X0U0lfkTSVrZBlgL677b4BPUYOGCEGaFCdWQJeCHzBzF4AbAHmbYOZ2ZfN7FAzO/QPJvYDoGxGGSgDNblSN6Nuxky9yky9ipk56bSErbJ5ZVvkCIRZRczmpdFa0nsZMgbVmRuBjWb2Q//+Ilznjh5WugJkZr+W9JCkA83sbuBooO1eZhzWkhJVf27WL/3Lfs6MM5IWvrZ0Xm2aPXMlegsgcb1ikNrsh4DzvSZ7P/D2dhXrmc6opQqQezHrv8w5r1XWSdJODHcFjrae8rn5werV7pUKgkHSebcAhw6q/e2GVclcHMblNMEtUZmxMEY2cbRx5HdWzNJzc/4YOFr53ZJcFYECzIW9ohCdWWiMkGT29SOWdJ6kxyXdkTn3aU/h3SbpEknru7WzyUpsshITiTErmJUj1BOMScVMKqaeJNSThEgiZn6JfKnLzZtzEnPKiddbQevMrwHHNJ27GjjIzA7GWeh9tM/PGC7qtd7LkNHXMGtm35e0d9O5qzJvbwTe0K2d8IuqZaQpaLNPmdMmzc+LJcWpthqsEMIx3LNK5w0G7wAub3UhS+ddVmg6b4WTBgCSPgbUgPNbXc8adF2z658YGCUzghobpC1mPmkwm1RTKQ2zVFgJNiR21QYoN0g6CTgeONp6MJnfJLfs3xYpXXY0LA58xwUjLkU8OPdbdi+vT6/lvoeZgdnwFZtekXtnSjoGOB04wsy25t0+wO7lrgpyflgpkinpG8CRwAZJG4EzcNrrGHC1nEJzo5m9r1M7FS91EVE6VNaalBj5obOa1OfxtFkEY7BqnpJaAC21V/Srzb6xxelz+2mzcBghbbZwDFDzBBunEukkJFbE3Pacx1bKMLsiMEKSOQg67xBJN0q6xa8jD+vWzpwi5hQxq4Z1XrChrVlCzRLk/2pWZ594mn3i6ZTOC45DkTXsgHLDCK0zB0HnfQo4y8wOAT7u348uRqgzc6fzcAK11r9eR5P3VyuU/VK0bFDyc2TFH0tec63EJf8+btGCQ1Bic3XvWynabBt8GLhS0mdwkv/yVpUkvQd4D8AHpw/lmIn9B/AoOWClzJltcDJwqpntCZxKm6VK1jrv1ZP7k2j+w4Q5M2xvVZM61aRO3RLuqz/NffWnqWJUMebkyoxgRqRWerlgpQyzbXAScIp//U3gK73eWAdmm6wH6p5GGPfu8ZFE2Xd7OQzJ3sIgWCmM5TnMrnDJfAQ4wr8+CrhnAJ+x/ZCjZHbyv5F0miSTtMG/P1LSU35VcIukj3drfxB03ruBsyWVgBn8vNgJWYPlhZZ37sy2mvNuqCb1lPKbaTLHnPbHXCmFeq6ttfS/kbQnLszOg031f2Bmx/fa+CDoPIAX9dNuoZDTXNjF/+ZzwH8B/qWfzyhEuLWSub3MrCtfUIDqJNRJkISkeY5EFUQFUfYlIBAPuWARw2x2w92X7KjU0v9G0muBh83s1haf/jJJt0q6XNLvdnvUVTqvGxahAGU33Fsg+N98yMx+KOls4EyctL66Rf2bgd8xs82SjgMuBQ7o9PlLlkxJe0q61k/kd0o6pen6vAm9E2KM2Lu3hxIQJDXyUlmJSmmdelqcLW3zvbkgPwWonf/NPsCtkh7Ahdi5WdIzzOxpM9sMaXyIcrfvsp//vQb8ZzN7DvBS4AOSngsdJ/TRg1nvpWMz9mvgIUkH+lNHAzeb2S5mtreZ7Y3r8Bd6X51nyG8Ie347Av6902cseZg1s0eBR/3rTZLuwoVZ+xmLnNCDr0kd2Kb568yAavA1sSTdAgvEXpzaDQ0AtVzpvJ79b3BWjSdLqgHbgBO7meDkMmd6fvYFwA+zE7o6GCI303nHTuxHTMQ670Vd950aCILQVt2SlJ8N7gnBYyzx3VvP09IgR9Kgm/+Nl87w+hzgnMW033dnSloDfAvHydaAj9F6Qp+HrLJw2a4nFjbcmiWFfbQF6Jc0KOM68nwzu1jS82hM6NCY0A/zc0ZL1L3UbctIVIPWc5IRRhgh5swNfWHCDzst4Z8p5/n9F4Bz7RVL7kw/OZ8L3GVmnwUws9uBXTJ1HgAONbN/6/M5h4cR4mb7kczfA94C3C7pFn/uv3o1elEIdF7FGnayYzTmSIA4cvOhZRQjNSk+qdd1nnPmShhmzex6uhAt2Ql9ZJGvNjtQFIIBGvPSt5k4E9NgvkSEOTMxo+y12bA0KedH3i3ECOVKK0RnFhorRAEaB76Ps14vAReZ2Rk+YPCFwI44fvEtfoegLWb8nOksCxyC1I2rFD7P12lISi3dwG5oupC3G/zoSGY///cscJSZPR84BDhG0kuBvwE+Z2YHAE8A7+zWUNjlmI0ywZxwpUpClYRavUbNs0C/nPkNSSYgYihhpyXwublgJQR1MofN/m0IrGU464KL/PmvA6/r6wlb4HfGu3L3ucFq9Z7LsNGvEXTslyWP49zf7wOeNLOgAm7E8bWt7k33/q7d8gvGLGEs8+MOOyGZ+kgiVpQaeZV8Ce8DcpXMxHovQ0ZfnWlmdW/svAcuMc1zWlVrc29qnXfMZEHNLGGkhtlctFkze1LSdbitsPWSSl46F6TAaIU4peoaBsyVoPD4axVvnZd150u9qv371Ah66f/KQhRA4npFP5vTO4ewMJImgFcCdwHX0ghKcRJ92rUMHSvEbnY34OtySdwi4J/N7DuSfgZcKOmvgJ/Sg79mWJrU1Yid1+xsO5uxzgsUX9j6GqdxP+TsbDtCktkPnXcbbg+z+fz9uPlzeSBfU8uBolAMUALzNFh3zs+nGdKgOe5P9v68YQUYPntFP3PmuKQfeVPAOyWd5c9L0v+Q9Atv7PVn+T3uEDBCS5N+JDMwQJv9JvX1ki7HLU/2BJ5tZomkXTq2QuMXldDQUAM1F7TXKGyTRaXGufS+hktg9pgLCtBJvaKfOdOAVgzQycCbzJyWYmaPd2urqoalQHD6iZuyKKR1k3q6XAlGX+NpO/OPuaAA68dekSsD5G1C9wP+xLM7l0vqaLhbeIzQMJsrAyTpINwuyoyZHQr8PXBeq3uzdN41W+4hNiMyZy1QJUO0W0LVEmpJnVpSJ5IoKaakOHVLaI5tEPuSB6yW9FyGjVx2i8zsSeA6XHyDjTgjL4BLgIPb3DPP2bawGCHSIG8G6Oc4n4ijfLUjcDFnO6IuUZeYE9Rk1GSEv4A4ioijiMSMOasxZ7XUczqQ8iEXWAginAtGaJgdBAN0Pc5q+1ScgvSuHJ5zeChAJ/WKQTBATwJ/sJi2QrSR7FZWGLSipqUK0DZ23kBIg1UboGWEAig2vaIQnTnr15lVkaHqHNIgwlGwEzJ2j9cAjS2v5vg/eWmysILcE8CtNYGbcM5Cx0s6H+ccUwV+BLzXzDqm7Qn7kRFQssD8BOMsd5yruSbqlvBw3XEVz4t3ABqmlmHHJVdZGqHOzGNpcgpuHzPgfODZwPOACUZeAVpEGTL6ZYD2wCk7aawfM7vMG3sZTjL36NZO2cwX0uVF4ztyuyRRFBFFEZWoRM3q1Ky+4DssWwjZlt/8YYn1XIaNfiXzf+Gcahf8Lj35/hbgij4/Y7gYoXVmP6TB8cDjZvaTNlU+D3zfzH7Q5v55qTCqEgkN6QqIFRErIkkSkiRJnW1LilOb2jksdbzNG1aznsuw0Y9k/h7wWu+2dyFwlKR/BJB0BrAz8Oftbs7Sea8qNJ23iDJk9EMafBSfGkrSkcBpZvankt4FvAaXBqOnf3Gtz6P1RFxKNdPwKwuL9uDSl5ilGm5wkQ97oIHCy9NvqwhzYa8YRFCnLwK7Av+v15hvhUaOkqkWsfMkfUIuCd4tkq6S9ExfV5L+VtK9/nrXNM952c1eh9s1wcwW3ebTUSOwxFYfmCJ8N2m+r4yQzyRuzTkTz486Ug1r0rwy9JH73nSr2Hl3mtl/B/AmNh8H3gcciwvidADwEuAL/tgWhWCAAmQN88k0m1BTnVhueQIw5geWCX8c94TDZJ4MUE5jtjrHzguYouEBcALwD36Jd6OX6t18yJ6WKETsvEJjEcOslhA7D8AbwD0EvBknmeB8dB7K3N/Wbyeg7870piM/lfQd//5oSTf7OeB6ST2rqhEwYRETFi0InaZMIEQzw8zS/cy0iHklDyzG1SSrofuSjaMXYud9wcxeAGwBPgJgZh/zkbPPBz4Y/uVWj9PpWQdB530BeLM3J7kA+G85fMbQkKPfULvYeVlcALw+U3/PzLWufju503mw+OwJwUk2omFpEEavVsENd42n2DWeSqm+QTrb5tWZbWLn/azJ4O21OGsNgG8Db/Va7UuBpzrNl9C/AhTovOnMuXcBl0naBjyN8wxbAGXCrb1n7WG8sqjEgeUa/KJV7Lyv+A5OgF/hNFmAy4DjgHuBrXSOswf0F9MgpfM8aRBwKnCcj6n6F8BnabFzkg23dukz3mSYkWQsDQJ5kObP9AZTiRkba08D8JzyjkDWGgH/Pj8ktRyXOa1j572+TV0DPrCY9vsN6vRaucC248BaSd/FWbKHeeGfGHGifYRsoPuKafBRM9vDB246Efi/uLXROknP8tVexXzlqGcEi7txxYwrphyXKPusQ/uU17NPeT1lIl+c/exA7GZNPZdhI1fSwMxqkt4NfEtSgos28o48P2N7Y5QkcxB03iU44+clIWlaSlVbfJsba5sAOKgU5szBwQaZ0DpnFILOq6mx6xG6MnRhpSmRm2GpqaUNaA9z3ueNzqZJMTqzyEhqo8N49hs8+AFgE87Hp+adhcK104BPAzt3izcbHM1rZCOIuOOMj8cedk0SszSmQXDpC0ETZxWOeS4ncmtq4MhDMl/R3FlaRtkTVufMRWZPCO4JJZQqQM2xDYLndDmK08x9gVgIgYbDFthEnltgBVhy9Ip+JwQDrpL0k7Ddo87pkFJkt4uu2npvn48xOIxQgK6+JfP3zOwRH7fgakk/ZwnZE/7lGW8ycFZ5UZMNUAimn50zQ+a+ECsozbU5AIv2erJCFCAze8QfH5d0Cc4fc9HZE4qMFTFn+l3yyGcbmsJJ41+a2aKzJwRtNmGhuUhqA+SJ9prVmfG2HM11owFonitFm90VuMRLYAm4wMyWRKqXM6FfGklQm/w0vRdYrIg10RgA496UKyhAyQCG2RUhmT6s2vO71Nl7qe0XBckIabOFYICCiWQ2H0mg6oL6UfYWefM8qMO14Aboh8Q8/6lRWpoUojOLjPoIDbP92gC1stDeUdLVku7xxx16ba/E/LgGWVSTGtWkRiQxa1VmrZo6DG1TwjYlaZSRGvm5KIzSfma/i6hgof1s3Px5F8588BqfPeEa/35kkVMu1O2CfpYmLS20JZ0AHOmrfR23z3l6p7bqGWI8xCUoaX4gxLA0mUtqjSCJTfZCYc6s5PjFjpIC1I9ktrPQ3jWYBPpjy6iWWTrvX4tM562QYbathXYvyFp/HzuxH2UzYluYpCZ9UO8GPxaVqahERY1BxZpKaCMPJKaey7DRT2e2s9B+TNJuAP7YNURpMFo2SI2yAkIgxIC6JdRxZc6XWWxBIri8UDf1XIaNfqzzWlpo4yyxT/LnTmLEsyeM0jDb7zqzlYV2BPyzpHfiNqf/qFsj2zxVN9eCNEh3TTLcbCNlscN8K6F8UYCdrZ7R765Ju+zmR/fTbpFgg8zNmTMKwQBNeKnbHEXMaf7cF/YsPaHPRFxpxGT3s0SQ3qD05BaelEJEhOkZhejMIqM+Qv7IudN5/vyHJN0tlyLjU93aSSQSiYotpPNCJr7EzAUOThpEXZpb07v0Bfc/mSt5YIQix/QtmQsCLkh6Bc7n5GAzm1UPqTCKjBUxZ3ag804GPmlms/5813VmSCC+KaOXNjanvVbrI5KE/JmtMAjpKILE9YpB0HnPAn5f0g8lfU/Si1vdnKXzrigwnTdKw+wg6LwSsAPOY/ovcGvOBaKUpfNeMfUsZhUxp0YUy+DSF2LnBSSZ7Yng0hfm2YFEtUQ9l2Gjn/+5FZ33EX/+4hCi1Lv2bcBJcUtEaQeJimdS0l2TsCMShTRSjS+t2XFoxms9W3N0T6jl2NagMQg6L02F4Z1uK0BH67wio5nE71SGjUHQeVuA8yTdgYtAdZJ1SUGQZH79wfmnYQzt3f08saCMC0Mzxiy4KSz132nxbPk1hVwemK8AB+H6/x042+IzcQnxDjOzm3zdvXGb/Xf72280s/fRAYOi8/60n3aLhCTfYbZV7Lwngf8EfKlF/ft8PKWeUAgGqJSZM4N0bZWTiWDwHNwTspmItocGmZeQd4id96S/3vdnjA5XNSTkuDRpGzuvA/bxdb8n6fe7fUA/Yb0P9PHxQnla0oclfdrTe7dJusTPE53b8qXEwi8mLDsiRUSKfAJxc8UvX0LsvFmFMt8Gtx/UpJ6LOgdCXKxlxqPAXr7unwMXeOlui3602bvN7BA/pr8IF0XqEuBq4CAzOxiX1O2jS/2MImAx2myXQIi9xM5rfK7ZrJn9u3/9E+A+HCHTFnnNmUfjJutf4UKGBdwIvGExDQVCr1mw6knDIqik+eG8U6dbC8fFfGJn5GUDbWa/lvSQpAPN7G4aS7mWkLQz8Fszq0vaFxdE+P5On5HXnHki8I0W598BXN7qhuyQdOXWe50hVuZ6MOiSD006UR5zJa5QVkw5E4UksEZhuG4VPHGpyJnOC0u524BDgL+W9IeSNgIvA74r6Upf93DgNkm34qT4fWb2206N55E+qoKLxvjRpvMfw/XP+a3uWxA7r6DI88HaLOVaxk0ys2/RSCrbE/IYZo8Fbjazx8IJSScBx+MyKHT9PsJIVrH55pVAau8zV3dyu63eiIRd9fIw4cPCD0I1zzEO4sCRR2e+kcwQK+kYnAX7EWa2NYf2h4oi7Ib0in7jAE3iQsS8N3P6HFwS8av9QrgrDRVEN2udF6QsZOsLi+pIC+m8zZ5gmPTqU655TVaKZHrJ26npXEGjAC8NK0Yy80Lq6t7iWt3PmWHuLClOXwdJHGf+kiTXpUl+TQ0chejMIqOwanYL9GMDdCAu0nPAvricHNfhUkiN46av95vZjzq1FQJUTCQQ++VjmKoCQRCI9qzlQYj/Eza0Q7SRPLXaFaHNehbjEEhTFT+MWy/9PXCWmV0uF/L7UzT8NTuiOk8B8obNoRO9QVfNmhcvsCUoQJ5IyIuXhZU5zKZ0niRjkakwiowVMcw2IUvnfRi4UtJncCPey1vdoEwqjPdOv5hX+1QYpSZWNixNwjAr/wctQrINIA7QCMWnyCV9VKDzvulPnQyc6tMhnQqc2+q+7A7Dq4ua04SVY2oZ0EznnQRc7F9/Ezis14YSkboaBARJDPuZ0LA2CF9i6p5gTgnKk2gfJYOuPP7neXQebo48wr8+Crgnh88YGsIPpZcybAyCzns3cLakEjCDnxc7ISxNsoEMA2WXRuryc6dhC6KNNM+zeWL4XdQ7BkHnXY+zPFgWKMJc2CsKwQBNek21pjiNUJlqqL5OzVsaVKISu8fODiol49Ow3u79RI49sGK0WUmneh/MOyR9Q9J45trfSdrc/yMOF8GKoZcybPRjnbc78Ge44MAH4cx3TvTXDgW6WuUFbFLMJs/eBEu7dup+NanzYH0TD9Y3pdZ5oQSrvDwz29YXUYaNfofZEjAhqYqzzn7EU3ufBt4E/GEvjYTvPfvLCr/05l9bJDGhMgBTftdk0nOzIcxantFHiiBxvaIfU8uHgc/gwsM8isu8ehUuZ/K3u2VhHRWsiHWmDz16Ai7A/jOBKUlvxcX9+bse7p9nnRcQhqzwBQXSoByVKEclhKhZnZrV0+F1kAzMSmGAXgn80sx+Y2ZVHOtzFrA/cK9csP1JSS3dorN03msKTeeNjgLUz5z5IPBSTxxsw+2cfNbMUqmUtLkXM5IQ02A8iajEfv5LDZzd762eiZ+X9aQeNIbfRb2jn/3MH0q6CLgZtwn9U7wd7HJCcxqrIqNfBugM4IwO19f00k7DBsjNklmELzPQefWmKJdZlMMxx7DMRZgLe0UhGKAiowhzYa8oRGeGsN7VbHjv4P7uZSO4wVei0oJstwGDkKLR6cr+6bxTPJV3p6QP+3OLzp4Qm/nS2IsM6n6F2JW4RCUuYVgaPDgbdNho3Bv2NfPAKGmz/awzD8Jtdx2Gy5xwvKQDWGbZE5opw05l2OhHMp+Dcz3YamY14Hs4+u4EXNYE/PF13RoawxjDKHnpzEpoNoZBQAjmVEaUERVf8gyAGLBSSIM7gMMl7eTXmscBe9Jj9oRRgS3ib9joh5u9C/gbnNv7FcCtLMJnJ0vn/Z9t91NHXhLnKx0lIkqZx6yotCCMabhnzEIxxnJanqwUycTMzjWzF5rZ4cBvcfY+PWVPyNJ5x03s189jDBQhzm0vZdjoV5vdxR/3wgUm+gZLyJ4QQgnGZhnpasQEyiLBiCVXYF5Jc4H56B95YJR2TfpdZ35L0k5AFfiAmT0h6ZMsMntCkVEvxADaG/ql8xYEGvLhThaVPSH2v+tESh11Uoedpp98lLFob0bqOFRQOq9N7Ly7cQ5YewMPAH/shUK48GzH4cLyvM3Mbu7UfiEidJVkrmQ6ISz8SxIlKSUNoLE0KZkomdK6FV/yVYByJQ0Wk9XwWFy4mANw5qpf6NZ4ITqzyMhraZKJnXcuuNh5ZvYk7dflJwD/YA43AuuDYtkOudN5/vyisidkYylPmCvjiHGULk1KUUwpihmLysSIGDHmy7g5M8uKGRUzylhqWN0vtkPsvHbr8t2BhzL3b/Tn2qIfZ9ssnTcHXCHpu7j4qcsne8IihuusZ5vHlzMh10LsvA/5veCz6Ux1tlIMOj5MPwpQSucBSAp03qEsMntCJfK/6wTG/UsfxTsdOoIRdNXb/mwvLMaHJBuoqgXahUF/TNJuZvZo07p8I45RC9iDLr6ug6DzFp094dKtv+zjMQaLvObMJWQ1/DbwVjm8FGf92NHisR+zkbskBTpvMw06L5s94cW4Nee+zZG6sr/iG3Z7vdXNWRrM+J9XO6PisuKUypv0LU55aQ7jknKU3Jy3thaT1fAynIDci1uavL1b4/2uM8/Fa2eS/ho3NDyHRWZPKDIWM2f20FbPWQ399/eBxbTfr0vfLmb2eIbOexlOsTsKuE49Zk+I/L5VOTEmvZSFIBNj3hIvZBwaV4lxf67s65ZThyFv5af8nAVGh/8ZDJ13HovMngAQZzYiQ1b30EnBDaESNR533J9rnvTzWpIErHQ6b45FZk8IHTlOndhHqGzXkbGirh1ZjvLrgDyH2UGjEAZd5ZIfFmslpvxQWfVD6VjkQ6nFFcC5K0z5bpz2t63x96yJqgBMVqq5PVsRbHt6RSE6s8goggVBr+i6zpR0nqTH/RwYzrW0wJP0ZrmsCbdJukHS83t5iPGxGuNjNaZKtQWhucu+hDBrkyqltj+BUB+zhDFLiGREMiTIK7fMctuc/hpwTNO5dkz/L3FBgw8GPsEycFdYVpvTZvZ9ubxUWZxAIx7e13HBD083sxsydW7EUVDdH8LPmWPlGtM1b0ZUd4/2mzjMnc75YFwxOyfu3LrEzY3T8fy5cnKqEfq7X9RGSJtdKp3XiwXeO2mTOQHm03kXPrFxiY8xeJhZz2XYGIgCJJd3+p3Af2hXJ0vnbXzJUQZVEhNTc04Ca3X3O9vRHycip81OqcQar8WO+WiWJb8UmVrjJHJ8emVqs0uVzLYWeJIOxplGnBAy5owyRsludqmSGZj+T5Jh+j2tdzHwFjP7Ra+NVbyoWVJlbtZJVzTrvpynEkcQTPl15iQxa+vu2vrxGQDGJ5wkBokM7eWBIgyfvaJrZ0r6Bk7Z2SCXGecMXCe2Yvo/jovY9Xlnj0TNzFoRy/MQ++hBlaTGxLb5Q+ROW9z7ibIbfieIeN70EwCMT/rOm3RK09gOPtDw2vysYUZpmO1Fm31jm0utmP53Ae/q96GKhHobx94iohAMUGmDzxi0uc5k1Q2zccl9iXNVN8yulRtm11jEpi1jAOyw+xZ3/6RvZxcnvdFUJbdnK8Jc2CsK0ZlFRhGYnV7Ry5x5Hi6v1+M+rBqSdqS14e464HY1xkQAAAcHSURBVB+BvXzbnzGzr3b7jHgnF9hQ47NUZpxSE485Ca3XPKm+2YV936Eu9j3EJauLJn147zV+R2UHJ6KaSkP49Y1Rksy86bwPAD8zs+fjlKb/6U0kRhajxM3mSufhKMppb1q/BucZ1tXNT+unAYjGymnEkNJWd1t1q9NYN2x2V8YMqpucRE7t4yVxws2hWhckPD/JHCUFKG867xycDdAjwO3AKWatv40snXfeTS2DeBUCK4E0aIfXALfgbID2w2Xq+4GZPd1cMUvnbf3iKQagmRlUctqrzXjSfMatKXd42P3udq4ljO3q2oh2cbEvgmQy6SV1LL+RvQjDZ69Yame2M9x9O84A2nDx834JPBvomD5KO+zoXmx6CsaCRYF/wE3bAFjn5XvcEko7T7g6O/lAJp5QSIfXsVUFaDFoZ7j7IJ5MkLQrcCBdkl4XHWZJz2XYyJvO+wTwNUm344TrdDPraGYJwLiTNOIYbXIjss3OAhDt4gJKBz52UnU07SVz2ilOqSSGdko5DrMjJJl503mPAK/u96GKhFHSZovBAK3b4I61OfAOtZpxcyWbHWW3JvHUXZSgac/fBUkse0mc8vnk4vz+rWW1a7LSMUra7FKt8/7IO9ImcpkSmu/ZS9JmSaf18hCanEaT01AZh/UbXJle58raaVg7zbRqTKvGeKmGdtrBabLrdnRlej1Mr0dT6+aVPDBK68yl0nl34HxLvt/mns/Rwf5nlLCsbIBa0Xk+OhdqYZwq6XW45ciWnp9izNNwpTHYtsl9hrdo16SzPBmLnPXAeKWGJn39NWGd6efM2JOBOc6Zo6TN5hqgwvvon44LvN+tbkrnnXvpNagygSam0Y7PhKl1aHwKjU+lw22lVKdSqlNPIu49807YbS9sy1NYvQqlMVfiEsQlFJVRVO72CD2hniQ9l2EjbwXoLOBzZra5ldRmkaXzZu+6Nv3522x3gd7/S8e6F+OTS3/SHlGE4bNX5N2ZLwHe4COMrAcSSTNmdk6nm7TG03lJvTFUesmyceejOz7muNq4lKC1PjFgJZAHfmnjAyEox+wKozTM5tqZWRc/SWcCm7t1ZNGxrCSzDZ33W1xWoZ2B70q6xcxes+SnyCgs8lScVby55IRLwDA27vY3o9hgwtF4CpI5PtX00DlK5nLqzA503iVd7jtzKQ9UNKzSeYuEgmQqaixJwrXy2Ly6USnBnnI7btH+LirNgjkyyk8y8xxm5VJqbcIFU6mZ2aGSDgG+CIzjrDLeb2Y/knQkbjcqxNW52Mz+slP7hejMImMAzM4rmnaSPgWcZWaXSzrOvz/SX/uBmR3fa8PF6Mx0sd+QSAvz4ZTTdKc2uC2xuALxHs91lerevKjit8AGkCNsOyhABvgdAtbRJQpXJxSjMwuMHGPngeu4qyQZ8CV/7cPAlZI+gyNxXp6p/zJJt+I6+DQzu7PrwxahAO9pd+x0rVudIhXgmf64Cy6i2eHA3wKv9+f/GPhX/3otsMa/Pg64p2v7w/4HM//oTe2Ona51q1PUApwJnAY8BcifE/B0m/oPABs6tbkaPHg7QdKUpOnwGmeRcQduCD3CVzsKl4ECSc/w9sdIOgw3BHf0d12dM7cfdgUu8f1TAi4wsyskbQbOllQCZmjMuW8ATpZUwyWbPdG8iLZDkTrzy12OS61TCJjZ/bi47M3nrwde1OL8OTij8p6hLp29ihHC6py5jLDamcsIq525jDA0BUjSs3GugbvjNrJngOuBu8zsx5KeC5wC/ByXoeExnFZ3OO5HeBsufPiBuODE3wLON7OntvO/UhgMRQGSdDrwRuBC4LnAq3C52TbgAhE/iMsDUsX94IzGDy/Bdbz514/hdiHmfJ33m9l12+lfKRaGxH78Aij717fjHHNvx0lZguucKm4B/aA/dx8wC/xH3FZRAjyNM+nc6s89gevoTwLrffuXD5vt2V5lWHNmAjxT0m24XFc3APsDl+IkTDQk8af++BSu036D6+htvs4euCimD+H8Xx4FJnBJc14EHLId/p9iYEiSeQwuxcMszrfzMpyU/Qp4K65jQ6L3p/1x1l+3zPsa8KR/fz9uzn0SuBbX8dcC24YtMdurDI00kDMPuBSXqe4eXOrBG8ys7q9fAPxvXOSSo4DP4zp4b5z0PoibcwOz8iozu8f7hb7Nv3+lpIfMLJu5Z9lipBkgH4H6I7gA/1M0FKJv4zy4n5D0OjO7dIiPud0w0p3ZCZLebmZfDcdhP8/2wHLuzAfNbK9wHPbzbA8Uaddk0fDaMDiNuBlj3h1/1+34SEPFSHcmrqNeg0su91bc8gXc0uZi3Jr0hta3Lj+Memd+B0c4fBvYZJmA/5KuMbMHJF03rIfb3li2c+ZKxOquyTLCamcuI6x25jLCamcuI6x25jLC/weyfQIvyMCHxwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "testfile = r'irr_1axis_11_06_13.pkl'\n", + "df = pd.read_pickle(testfile)\n", + "sns.heatmap(df, square=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Select module type\n", + "\n", + "The stdpl matrix shows the placement of the cells in the module. The modules we are using are the standard PVMismatch modules, look at the references for the bypass diode groups, but because of this it does matter if the module is in ladscape or portrait.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# cell placement for 'portrait'.\n", + "if numcells == 72:\n", + " stdpl=np.array([[0,\t23,\t24,\t47,\t48,\t71],\n", + " [1,\t22,\t25,\t46,\t49,\t70],\n", + " [2,\t21,\t26,\t45,\t50,\t69],\n", + " [3,\t20,\t27,\t44,\t51,\t68],\n", + " [4,\t19,\t28,\t43,\t52,\t67],\n", + " [5,\t18,\t29,\t42,\t53,\t66],\n", + " [6,\t17,\t30,\t41,\t54,\t65],\n", + " [7,\t16,\t31,\t40,\t55,\t64],\n", + " [8,\t15,\t32,\t39,\t56,\t63],\n", + " [9,\t14,\t33,\t38,\t57,\t62],\n", + " [10,\t13,\t34,\t37,\t58,\t61],\n", + " [11,\t12,\t35,\t36,\t59,\t60]])\n", + "\n", + "elif numcells == 96:\n", + " stdpl=np.array([[0,\t23,\t24,\t47,\t48,\t71,\t72,\t95],\n", + " [1,\t22,\t25,\t46,\t49,\t70,\t73,\t94],\n", + " [2,\t21,\t26,\t45,\t50,\t69,\t74,\t93],\n", + " [3,\t20,\t27,\t44,\t51,\t68,\t75,\t92],\n", + " [4,\t19,\t28,\t43,\t52,\t67,\t76,\t91],\n", + " [5,\t18,\t29,\t42,\t53,\t66,\t77,\t90],\n", + " [6,\t17,\t30,\t41,\t54,\t65,\t78,\t89],\n", + " [7,\t16,\t31,\t40,\t55,\t64,\t79,\t88],\n", + " [8,\t15,\t32,\t39,\t56,\t63,\t80,\t87],\n", + " [9,\t14,\t33,\t38,\t57,\t62,\t81,\t86],\n", + " [10,\t13,\t34,\t37,\t58,\t61,\t82,\t85],\n", + " [11,\t12,\t35,\t36,\t59,\t60,\t83,\t84]])\n", + "\n", + "if portraitorlandscape == 'landscape':\n", + " stdpl = stdpl.transpose()\n", + "\n", + "cellsx = len(stdpl[1]); cellsy = len(stdpl)\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Let's create the type of module we want" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "if cellsx*cellsy == 72:\n", + " cell_pos = pvmismatch.pvmismatch_lib.pvmodule.STD72\n", + "elif cellsx*cellsy == 96:\n", + " cell_pos = pvmismatch.pvmismatch_lib.pvmodule.STD96\n", + "\n", + "pvmod=pvmismatch.pvmismatch_lib.pvmodule.PVmodule(cell_pos=cell_pos)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Let's make the system be just 1 module" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "#### Let's create the type of module we want\n", + "\n", + "if cellsx*cellsy == 72:\n", + " cell_pos = pvmismatch.pvmismatch_lib.pvmodule.STD72\n", + "elif cellsx*cellsy == 96:\n", + " cell_pos = pvmismatch.pvmismatch_lib.pvmodule.STD96\n", + "\n", + "pvmod=pvmismatch.pvmismatch_lib.pvmodule.PVmodule(cell_pos=cell_pos)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Let's make the 1 row, with 20 modules" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Results at STC, no modifications yet\n", + " Pmp: 4818.961 [W], Eff: 21.825 [%], FF: 78.726 [%]\n", + " Imp: 5.915 [A], Vmp: 814.665 [V], Isc: 6.306 [A], Voc: 970.752 [V]\n" + ] + } + ], + "source": [ + "pvsys = pvmismatch.pvsystem.PVsystem(numberStrs=1, numberMods=Nmods, pvmods=pvmod) \n", + "\n", + "print(\"Results at STC, no modifications yet\")\n", + "print (\" Pmp: %1.3f [W], Eff: %1.3f [%%], FF: %1.3F [%%]\" % (pvsys.Pmp, pvsys.eff*100, pvsys.FF*100))\n", + "print (\" Imp: %1.3f [A], Vmp: %1.3f [V], Isc: %1.3f [A], Voc: %1.3f [V]\" % (pvsys.Imp, pvsys.Vmp, pvsys.Isc, pvsys.Voc))\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Assign the dataframe irradiances to each cell in each module\n", + "\n", + "We do this by creating a dictionary. Remember that the dataframe is in W/m2 and PVMismatch uses kW/m2 as irradiance inputs, so we have to divide by a 1000. " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "modDict = {}\n", + "for i in range (0, Nmods):\n", + " modDict[i] = [df[i*cellsx:(i+1)*cellsx].T/1000, stdpl]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "System results with the irradiance profile\n", + " Pmp: 2879.027 [W], Eff: 21.366 [%], FF: 75.367 [%]\n", + " Imp: 3.551 [A], Vmp: 810.869 [V], Isc: 4.016 [A], Voc: 951.246 [V]\n" + ] + } + ], + "source": [ + "pvsys.setSuns({0: modDict}) \n", + "\n", + "print(\"System results with the irradiance profile\")\n", + "print (\" Pmp: %1.3f [W], Eff: %1.3f [%%], FF: %1.3F [%%]\" % (pvsys.Pmp, pvsys.eff*100, pvsys.FF*100))\n", + "print (\" Imp: %1.3f [A], Vmp: %1.3f [V], Isc: %1.3f [A], Voc: %1.3f [V]\" % (pvsys.Imp, pvsys.Vmp, pvsys.Isc, pvsys.Voc))\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.py b/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.py new file mode 100644 index 0000000..cad94ba --- /dev/null +++ b/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.py @@ -0,0 +1,146 @@ +#!/usr/bin/env python +# coding: utf-8 + +# # 2 - Intermediate - Row Power Calculation under different irradiances +# +# Example for calculating power of a row, assigning values from a pickle where each pickle cell is the irradiance value in a cell in the module. +# + +# In[1]: + + +import pvmismatch # this imports everything we need +import numpy as np +import seaborn as sns +import pandas as pd + + +# #### Inputs +# +# This is a 20 modules single row, with 72 cells in portrait +# + +# In[2]: + + +Nmods=20 +portraitorlandscape = 'portrait' +numcells = 72 + + +# #### Input Irradiance + +# In[3]: + + +testfile = r'irr_1axis_11_06_13.pkl' +df = pd.read_pickle(testfile) +sns.heatmap(df, square=True) + + +# #### Select module type +# +# The stdpl matrix shows the placement of the cells in the module. The modules we are using are the standard PVMismatch modules, look at the references for the bypass diode groups, but because of this it does matter if the module is in ladscape or portrait. +# + +# In[4]: + + +# cell placement for 'portrait'. +if numcells == 72: + stdpl=np.array([[0, 23, 24, 47, 48, 71], + [1, 22, 25, 46, 49, 70], + [2, 21, 26, 45, 50, 69], + [3, 20, 27, 44, 51, 68], + [4, 19, 28, 43, 52, 67], + [5, 18, 29, 42, 53, 66], + [6, 17, 30, 41, 54, 65], + [7, 16, 31, 40, 55, 64], + [8, 15, 32, 39, 56, 63], + [9, 14, 33, 38, 57, 62], + [10, 13, 34, 37, 58, 61], + [11, 12, 35, 36, 59, 60]]) + +elif numcells == 96: + stdpl=np.array([[0, 23, 24, 47, 48, 71, 72, 95], + [1, 22, 25, 46, 49, 70, 73, 94], + [2, 21, 26, 45, 50, 69, 74, 93], + [3, 20, 27, 44, 51, 68, 75, 92], + [4, 19, 28, 43, 52, 67, 76, 91], + [5, 18, 29, 42, 53, 66, 77, 90], + [6, 17, 30, 41, 54, 65, 78, 89], + [7, 16, 31, 40, 55, 64, 79, 88], + [8, 15, 32, 39, 56, 63, 80, 87], + [9, 14, 33, 38, 57, 62, 81, 86], + [10, 13, 34, 37, 58, 61, 82, 85], + [11, 12, 35, 36, 59, 60, 83, 84]]) + +if portraitorlandscape == 'landscape': + stdpl = stdpl.transpose() + +cellsx = len(stdpl[1]); cellsy = len(stdpl) + + + +# #### Let's create the type of module we want + +# In[5]: + + +if cellsx*cellsy == 72: + cell_pos = pvmismatch.pvmismatch_lib.pvmodule.STD72 +elif cellsx*cellsy == 96: + cell_pos = pvmismatch.pvmismatch_lib.pvmodule.STD96 + +pvmod=pvmismatch.pvmismatch_lib.pvmodule.PVmodule(cell_pos=cell_pos) + + +# #### Let's make the system be just 1 module + +# In[6]: + + +#### Let's create the type of module we want + +if cellsx*cellsy == 72: + cell_pos = pvmismatch.pvmismatch_lib.pvmodule.STD72 +elif cellsx*cellsy == 96: + cell_pos = pvmismatch.pvmismatch_lib.pvmodule.STD96 + +pvmod=pvmismatch.pvmismatch_lib.pvmodule.PVmodule(cell_pos=cell_pos) + + +# #### Let's make the 1 row, with 20 modules + +# In[7]: + + +pvsys = pvmismatch.pvsystem.PVsystem(numberStrs=1, numberMods=Nmods, pvmods=pvmod) + +print("Results at STC, no modifications yet") +print (" Pmp: %1.3f [W], Eff: %1.3f [%%], FF: %1.3F [%%]" % (pvsys.Pmp, pvsys.eff*100, pvsys.FF*100)) +print (" Imp: %1.3f [A], Vmp: %1.3f [V], Isc: %1.3f [A], Voc: %1.3f [V]" % (pvsys.Imp, pvsys.Vmp, pvsys.Isc, pvsys.Voc)) + + + +# #### Assign the dataframe irradiances to each cell in each module +# +# We do this by creating a dictionary. Remember that the dataframe is in W/m2 and PVMismatch uses kW/m2 as irradiance inputs, so we have to divide by a 1000. + +# In[8]: + + +modDict = {} +for i in range (0, Nmods): + modDict[i] = [df[i*cellsx:(i+1)*cellsx].T/1000, stdpl] + + +# In[9]: + + +pvsys.setSuns({0: modDict}) + +print("System results with the irradiance profile") +print (" Pmp: %1.3f [W], Eff: %1.3f [%%], FF: %1.3F [%%]" % (pvsys.Pmp, pvsys.eff*100, pvsys.FF*100)) +print (" Imp: %1.3f [A], Vmp: %1.3f [V], Isc: %1.3f [A], Voc: %1.3f [V]" % (pvsys.Imp, pvsys.Vmp, pvsys.Isc, pvsys.Voc)) + diff --git a/docs/tutorials/irr_1axis_11_06_13.pkl b/docs/tutorials/irr_1axis_11_06_13.pkl new file mode 100644 index 0000000000000000000000000000000000000000..4daf170911840480e477cb38310701331f98c357 GIT binary patch literal 12101 zcmZvid0dZA^yrI9C5j4JLr9UeWFH|VMUgE@DMd<~B};gok8B~7ec$&bgh)ilzGRo| zWG_P2`<{>Q@4oJR-P<3X&&+e?%$b=pXPs$!sqLESX#bKbMFmC%2gW)K9}^SeFd`-} zA|xfrs9RuMpsV)x;*`eIQ>LWYCg}$R)0vV~`~Sor85tK66B#%<)*&J=GB7kGCN?F> z#AWoD;o+YD+9}%cw*C;P_J0oy4w(=V>kt$e%Y4QGks;#)+#~5@K$6w}4>Kk(GE}1a zNccafk}521vz&mKkl|w@W8-4R4v&-E>1z>F zlFG4dT9n1iIU}X3Zcxfhrm^+V^)T_6keCuyCrLjzE0N%x~YIzbcM;)o+^GO%(?Rl^m_k_dGX`7ZIMSxMz6gZ3g|7 z@5eagc&Nf;-vY1IJyc=yVgHvvV4wEC9G7=iMK8;wo}<9a_AY)?(@hnADfg@w)86KD zpj>t6WMm&3(#>5J0X7F;tm>qSnG0q$_NE;AWPy7v`m2 zO@ohf!wu|)yQt#yr%EkebWugKlbzZfqW#@M=h^a(s(4%VU1Ee#MaCt-7e{U2US$+TW|Iw_9=hT zk>^Lim+hfWtl!?PRTbKo&mCGH1V0s5wb~E|onCCje#!sx^r@Sn*GUQle4KgvLw^!{ zePrI^?yC4aXid4pz-p;^Mz6tZ_P6fubXQgM8_?-uEO@sj6gG^e|7rc8o}1Y3S+3*F ze!_Q$@WcML%*!tIvEcjut+oCPX5P;2#=ba!oY*EL9Svvvw8KIPg5JAk#~LkQp4{_; z?%qV6t`=xq&Twv1mb^N(8oF}-oN2eK-*eJwUsa4wbM4s8TNMSri-wjUrybUfzF>)* z)~)kpbpIi$NO};aGiI17x+bfYw}h!;V*Bioy1}a0nf7sxbtvap_G;$2a8;cD81W-E zRu!*L&pDl9KH-EFW^6%P+-CY$Y2#S`23vGWhX|Lc3ZGA^m2aoo`1 zcb=-EUcc@4%6?NtxeC9{A6jUH+l>7)hBeiQrMpYIyEtovX8Nl~U3+VUf!(u$M*bSn z`O(h)TSjWct#{M=uZz}*iw`P!dCbs=x;EvPO`D|=n=?;UZ8%>e9`~NNG;%THk*^l) z*EuOK$XV={@0pjqRPn97g?ObLKUk&ZasUk5%;%6gGH~KLf?Glf^hoJBUTUXRS~k;y>S@*PlQ{QeGbUc z_@LW!ndfoSfPg?fRjCy^l43PH~s3Tfl!k%KmFr@Jm8F`<#J}MZ)&AZEQH_ zOG~S+W1L0&qPPn1^SS!5ZjO9U9Tx3;06q++r*lUa+~()HRHaA!*|Klik}-WPtl#=dF|-$T{!G_0d$f=uU*TceZ{HGmQeU} zZ7{aXidNVOso-xeW=*7Xo?F)LN zCu&HAguJ$IZ&kAa^4wv>x|V-jku#-c%D(RK8CAB^RCn}qm9Gc8q95{#mQBAfSQVqj ze41h8r;7d+o2KQDQpN96Cu7HqQ$=9)#09ewnSW~YPc@gRLT~rUUn>g-a{kyhqY@z z$VVfryA%yK3DF45LQaiXjo_LL+o@G-6@G&vsFZG~yv@s0(`d z@2lnkQr;FPt(wu1eXkv+pE$ZU^Y*m4ez7Kchw;5>8|Id2*xXzdO-41Zpjsi{jlQ+- zS6LPFb??2+H&umEm6@%ws$t)rEd5bhf%_0LYq)<{&@=DrM+!xtcs;icce8l zWZ%_ZEsOP3vEUaQQ%)6o?gorAWt`Q8+2edo&~ra8elX(u8S8y9wg#$ru;G${RT)*d z9A4V`Ed7<8I%HP&c8GNcT%ZPFJ#&>THo&3c! zXWajzi0;!nEezGc?o9a5u_kRRJx&;Yq~DOwICu2yWBBb~lu?+<5N8SSiipQ zzAM6B8rrhR+SUG_=@)EVLSCM{!+x*R$;FL=np}`bOB!VGU(yXe0{IIZ%_d~O7SDC!1r_M^m-8O zT{&BIsfcIeQvlc4jV=EQR zzQ=yt8;qyJIo_Qf>zc>;ZO*>ylFYgSA0PcD_iH77TYvWDZ)$48&EVCM`W!rIXGU4{oUX2lp4arK zG1CVB>i4>!SA94cEbTW6q%uqUX$ip4JUK)WM(b?AMpj&Nl|2 z_d>gk+#ANZu6dK}H%S$1J2c4~oWyvSv}w5;R1xv?dBV&?st}${{dRJXo8{XWoGL;t z?;4&7H`fT%Pv+e^8nFnsrk5l4_|+);alJI+W!#`%?|d~vr`F4h7rDpQcM|99AFC1F z5bTjtG@=pe{NzlHIQnbm7r(h0VUC>|QC}59?=-u6nRU-u{Igb1_Jh;CYR&$&o^d67 z7yEBWVx_HMISkB4#hE>>kHGdcEn}yfMJLCFRGJrGIb0 zz8d3bhwK>EuQKgbPYfn^`l5*T(qMn$yWyY1H;NQ7iEY01K@sVi$=5!ARYcM7OaA47 zD|UICE_|+JlGN==vDEx@9V^pYu@>&sRo7UV2IYvG^Tb!N+=sSiDt)83*)$ zdGNL>X1!CyKK!#4jIY=-_xwHDA%$J5ro2`}lBMIaMEICtU9Lf|H;Sm;s*lxQ`V*?v z?JyWR`>U)i^O$iy#u=G5jH{W_{H7Cl%SwW5x4u$@@^^Rexk5z<+~;EWJZ{{$b7RJZ z4RJQR0o2-g`rk~rBwo-yd|l^}0>2OXw760Lom**#PPj4OvtORJXTbBsSUsbECF{OU zf95lbTC%k;XE1)m{XeO`^e-%4JSqUZq0*1xdy^2Wr+49R-UsV(4e6h~8V?TG z*1w9mAM0zmzx2pBzFTsQzW_@!J*UcbNdBzhzh;BISBijXrAM4n*xv(_@BsM!VRC23 zN9=Q`@#;HwKeG5#r(aU4d*ER>FRtBTlju*XTDb$ zojR-qbflemB;~^TO{Zz-L8-re&~J~ryzBL(R1x3y?rOaqeby2C+6jGA4u@nH_r7tx z({^jnOKYn)%MV75?H`@*P|W?G8G+|gNfilWZm!KNPuv)2ImV_2`id~{ZCzEIYHd=d z5`JC4@TJ=x0SPlrW^s?DU$nqm6_5ID%Dx*;JoBiGk?~|z3_7V7S!*%+Q6Aq8>{*R9 zLkrIn&z$=h(e5>RtkbjXF5F*fKP;+fM9J-w{d4U!;(poPC(Sx&ghkvW_l;iIXYBez zKaDtT_vrlbaE)l~Q6?`hP9qX@d{#PhkF()xA@}$Z@qr`jws>#1sRMHHbnI`X)^kNH zV%r?=DPsK8;{)E`;vOVA-_E(AhztErZQDe9pRba${+c3|PrvYe{2fIc(Op}|^|B(W zjPm^KmCOChNH`UFn{%oE`Fx$ziikUeB|WETDrE23Mf{ zTgl%SK|5?f-4|P-qxEmkC|du!I&G~#Li@p!y}8w)6H;J#>Tk9per>wHbtB(5Z!R9E zM}NI&EJvmyhP`>^sSotHTsti1ydn(Y&DT^uqXKG2^Nf zKz|YeUo!n`x^(@k0Z;lbpE4A22M6EuxFRCAReRNpew(F#lN0Dam3(V=ZRR_+a%;O_ z=vXCZKFU1HeJ-mPdywxAH4SqW#=YrUHSZhq>nHAtbYy(V(ff0z&>wwf@ML4!SzW!? z^#+nYSbq^dxZVQ?u*c|PZde*ANU{dJjgan%R#wfCO=F`2(;Kq#=@mTr}&fG_3V9=^u)u3g2Bbyyfz ziZbLo=B`H*){%O=-MMMZvsL0!I&OuFrzO8?HQxB559QA8&Q-GGkU);*JN1JCyH zI`|g8dyVe2=Q4QPNIxvN@}FLWpNY>+4IVMhq?}8d&Q(QB^}M~U$3^%#-^C~vd9@ob zVd=%|ipa}LJCs0s_~+;dTjX_IKgTW>1&Wa7Jqbv-y43aw=R`pGun>LJl?a4;;oqus zL=F51tzUp2FtGoMlx*x=bsYWz;(+<{#PLYt#%SMr<8uabU!65}W5?i+TeRET0(&g| z-GyuLO!k=myfm!P5*-)dk2QAxZgq`E0 zb+=r&ue}~*we;3#^E4X=Xhgje<_BtXuiHD7Daue3(F(`E^%(4yf1iT1a77I8+n?1W znEQf$a37|K>L?DE5Jeoc5uUq&lPvc1cruv#c}avEAF7BP=c(pB`(qcR{-WP(FBuYQZu zi1A>RDeA^}(so(QBl7}|e3$F^!g>t1>NjiW#yUxxY~=fU{P(pz{_#1F@l~p&Wu(HF z9N!tZA!t?B>|Tn%{0&#`1QJWLxmDDedI?sHyM>I*&T&ktc=Wj-kkx^2r(x?h)d$vCDK`}-8NSHie~Pjy53 z(m(pJf0zU9RMLP+u8Pppi~Vv0eo0$}yZ}ZS`i@FxpY4;H>a}J3Tp@gZa?7`N?Ni?XTAvybVov7WOLt*0G^KP&J1H73(; zq;7of%RD!Kp1o5WeCfx3Vm*6E^Z0=${kKJ&Q*IrT4u_$;Nh)mcb@&tD<7P&mV1C#1 z&%aZEd(wlZE(a!Om)H(Lp7K__tQ86jm-&f6?EI$ih5;iL@#Mp<{IAIO&Q~lb2t7P# zW9@qMk9vgX91ZA{n;IUfh_Oh?+N56gkztvgMmGL!YMeG$KJF7X-qDO$t6Z;a|V z2YjtR&Hf~N`InBKg}z>Mc}H))pK#pgn>|AjFW(z(&6&!6WVoATgI8MyAkf#}wmoEL zBJwBwuIb3hfD0|Vf$!5T(f8LhMVl}EnZSKH*yei~;P2zx-Eue&|A?GFEmcL3W}I1` z@$1cWXC^~mrlFFjC?cPx0dy?jpv|C7G&=gpjLjNo7a#?DjvBT z=&d$}uCdGmKxY&Qf=QDUkzLu;wg&UgKJ?vU8sl)cTfPJCvHQ8_JbZuu)!gMfbgrt$ z4x}@m)*kS^H3rumI!EfSs?uR1evL!bqI~c#O?Aua$oF8}y8F!A1OZ(QebT3or!xM> zHT{yN@ar^x;N0GPN6mHhhOhF2^54Ysea}rdkInRZV%I!5m!Vn1+KguYnpb{}@?zZi zH~p`=Lw_alP6G20)vA@**IW#a+}Ct7GBm7fN5!L74)9f%yh|_6vC@vbchl*2n{$4j zG4zgHDom@!IsQs2U(SW^GOk$({iYMH4=|%&%4Gm_f9Y&;Dx%+H@pi>K2|uUv7&|%N zSA&3Mm*7ucLsQP%j|AIYkKqQN(h zZ(IaD{f&zz(spLzrO2`8iF+?y*Kv=V-~8H)d)P&JdhYI8>^X}3zz+NjE@G3t=mQtO zE1M4}+IT!H3xDD4hQfCjuxFfq#RuG*(m+jAA^JMK{N<8wj3Y1OYWOeD^|2QD!#2Ig zo+p3TFV1FZmJ9iTm1nG*_g2O2r+sxUabKlBaxz#I*E^re>51KLpgU^Rpec+uAF|6f zUKKS7=y%NkP7Z8oiC;b-c|?=@OUN(m)SFv&KlxnrPx@Q#K~?)v&EaQov&5LESGiZm z$S}YsY40KLF5&M~+MKC-4!?plgf;%mG4yIZ*5mqi+ozeYF{ct0Ja`Gs7pifz;@Ae^&6I-O1Kf#`hdnxun zxsRXs;BOoB$PGWFh=49D_HWxyT-K$bRogW5rp!Y_N9(We!v7_}8O8VgeZp6K+YY~d zW=&IpG7sp)IoydncC9ARbfVMF6VPpWX1{|2ZEb!H=s;m%7w6_C6Az4=6aA-QKky=J z5&=VhCjnOi^vNnM@dGcqY^Tm9=)D<+I81r}?9D6iwEA@`_9*wUZ9Ly+KB*sM%=(^Z zjta@%1YfN-92`%-^ymKUB#y{16?Rv!-%^omR)j%iGOy6vRB)o=D!yy|V#ZH$AAZma z`tcJtH#xmU5ihzOGv3a3%UZcFvXH|rY};h`JAAvUQ3UV~`3Ds~sy`iAwavDF`#z3+ zyB&MurvdZJ`Fb$E%yIq77OYp^vw^HD{y%%-ROe2jG2hdnx0`vd?7+bVuZelW_Bznb zxIgFj<_+xklfu+A`rS!{m6iKLAehU3Zb^95?>YO|ioXMlpE5x2Zw=Pb_dvP9y5K4J z=|=GL$E}jp68byK`V{??<3kEodS@bLL-k3*2uxe=eOFrB1ar! zr=^^KE6(u)-%rc?eVBH{-wPKqk%t>&0?wU84^uC5&Oy%%>*o`S{ATA5I`;muBAVe2 z{<@CddC}jd6!P)JF`2}}&8ilyUUpCwX0;<~?%$*e!v6S8_|HtJ_#BTtZRP6u?qRT(v^J-O{nJA=q!Li3|mL$x7kmbf3o^S zoO67@?p|-fmvs=v%lP~3OGVf=DVkRN2K`Jva0TD%Ov`IHAAF;jKG`Pp|HkdA58l_p z371aN_7B^0bJlzGc8%pdI?-Qxzm%Q|Ge_66&0P=49T2-cHzxbSKx=u`?XYCH`{xNj5*ox+Mip~mp7^_%E- zpl*Y@WvLEq%E733O$iB=c^PDe%QqR4EKhm1-Zb0Wpqay<=(bnz{aQLb$ zqweq{({qxq)Wh{x^@lIq4xRdZpHj;?R1YZgm8sA}eT`ZSpM(i6TbZwN!R$dF!M|Sb zLFozhsZZ4Y4F<^3Yxtd0!oJ7@2WG7(tM~cKfBrb_YwjOw6d)(>E8p_#3jPujy&7O2 z0>`Py<@IOZoThO9q<=Gxc(zx|m@4VytK|OtLGD9-{Y>&8Zza#kwI28HZiNR+$m?qJ zSmdDxV)q794<{|t$hR-?EBo8jpL*4fDecx!Ppbc*G-1?2Ra`o1F~D~lb^HfeX+Ec@ zUr&j9bK#*XUgC&ne&;?Bk2sl;ui}}5WqpkxZF=dTgGMwU|Iw+dMyv?9tef4R`jND2 zeKg{^1qymNF#Kv0qZo~7XB)U>_iT;$S#N#QR~qV3rz?E#fPF9C*;agN!n%47e0s{7 zy7phas`fR>%PqXNB$oRH3iNEgYj4=m(izE7hYOTjt%y z#q7IGkKdy0YmegRJd8FFDKL(5@awPW4Y|x^w4J$VL%*X3WPXAEiN79g`HOz}Kw$cj z@1{-DR_~?X^Yi?^U(hGAZa;$WGXELPJgyk{BF0N~IF)&18G18qSvLKNoTT8^%?5vW zv=kQeEnU8TSK$T6RC&{r}IZGe2N>;2q)5s=;W8A8AJtZ7|snHTlh<2(1NqS>YE z!)Xto&=$*hxvYR9;;F~w7jH+uy}{0`WB$%M+dYT;`sZ&x0AKD;2=XcG@Na0Bk&Xg< zG{jIE&~Jpobofo&u+sVHTI5s8sT1pzaoYjLU6 zrqr51d-b%2*{-ac<6K*odGZ_A+VvNHGBP){Si$=5QJ^j1dxMEqIce~F@Wqfh;c}lF z%)6e!_&cq6*}?oWf9b$?UE;?C_M>_5*qvLcI}J!1UjG{7Wf(Gsc^8qmUP!yjslWYW z;Pc7B$K3-sFZm8)BJ&?09_Wnx^z&)7E|>AL4*wVXag2L!j-M*Sx~sJ1HJHM8Z=MSs zMIL<}yX47y^1T2uY2=qjZa-eDE)cV|NQXGo-`Q-DKK1nST`Kmxi=V5FKal@X6vQ@B zPnLNHrL`(#IlXZY^2ahS+D8?KW-tD^dIb6FuS@gIBgku!X17`(X9CgP zhG_o1gW%q(JlyFuf%}bpIIn8N1TIWj>PGElL5p`BUPrT!)$GE10;xw`;E#k;Nn2I8 zgQ+FjC_}&VCJYdoYqsH7zS=VVqolz$#w2uw(Hu)F% z?qPqc8CUGbBbp#QoM4n?uA z+WbCsKtBqT3(zA)GjjV)M{j(1d$MhP{1?j8yBvTohs@b|fqq%eo^Q#!f}8dsgP>Dm z`UL;ZoD=R;&&B5GPXfC)v}ZEU4BDAKOX_+-KXi%SwnD~{{(4hN-R!kzce`G|D%724 z)Blb5%Y^pj!n9=r87J#!cIYX}(P5S7C*AY?H+0s|-uI-C_JKFChf*1Lss``i=+SvOzN%MT*~QvUm`*Dt+uX4Tlz=4Xj>c@YSI9D zb>C3X0pDSF;+ZLu?$(7%jG1>4iRcaBe+{DY%Q_OrADz{VdCI=q*!K>6kF)eiSj6}d zl=FuGi){*5h5 zc~@tCnJ=3Fz5h9nON1wbd1p|^q3wqh=n$4Jll9x>6?ysow|~*JaAZhsf2B zl>|!2RW5arVC2u9#MX)i|KNQGRbXBdo+GEn;}%!bYYM*13pnyl27Bh-k$s!GHo7kG z3F@;<=YMv=$%8sjPL1W|d{i-(hYj|_$s1EvObDUgp6u@GH6H!Qd&5n0k@FhqO^sJm zFX}YFujtUf`m6C3;#&NxM$eEx^0Og7RH0U#qF;#J%^!NBT2mYR;*t*w+O*XOo^iak z=iaW!ZS!CidF8XdAqBoc8nNTBLHe9fjkZ3XIZ-3>>_e=AW{{t@pIK!P?>ElMhhGb* zGZE1B?~mR{n^fGKx^zakQR%wgyc?qMogbbr3i zv&5hHp-z7_v;+3Kb%wf(d%woUzg1h>XHwiY+;QT&@r|VJ^w)}M_3$L^ngsl3fN4BL zyU6}NoOac8V>8}EHY@qu5d9$IgHx@^%W=&U(F=Y&Na4kR_I*MD`%kp#_!F2c6M&3Q z%eWOQ-yIR&`|h(tuEuF@x_}?<_HcM(@_bh}AKB3axbI2}>tmeb8u`wPHtB*n_t7(2 zJ7bTWP}nu+{L{C@pBo9x;(#85FYEg~X}_skJ--X%x)LZzJ=H-9D)J-sm^*wnK%B=T zH`Bh>@BSP`Ar@%`hj{Bi4PA0_WM5`HQXFGjcer|;Te4`sfxOv``yo?gKI zsHYO>G%_uJXoNF*oWzkQc1G6Sx0BBuh<}?3Jc)mOpd0q%tVf$%Ig$IReV69VxgfCh`f(qr_YWKP-+RyzyeF3a9`{xH?YR@UpJk@h>ph3}4l7n1YZA5Pirqgz}&8r->IE>T} Date: Tue, 2 Jun 2020 15:44:26 -0600 Subject: [PATCH 2/3] Journal 2 small cleanup fix repetition of module creation --- ...culation under different irradiances.ipynb | 23 ------------------- ...Calculation under different irradiances.py | 15 ------------ 2 files changed, 38 deletions(-) diff --git a/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.ipynb b/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.ipynb index 82d036a..444c0b5 100644 --- a/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.ipynb +++ b/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.ipynb @@ -154,29 +154,6 @@ "pvmod=pvmismatch.pvmismatch_lib.pvmodule.PVmodule(cell_pos=cell_pos)\n" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Let's make the system be just 1 module" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "#### Let's create the type of module we want\n", - "\n", - "if cellsx*cellsy == 72:\n", - " cell_pos = pvmismatch.pvmismatch_lib.pvmodule.STD72\n", - "elif cellsx*cellsy == 96:\n", - " cell_pos = pvmismatch.pvmismatch_lib.pvmodule.STD96\n", - "\n", - "pvmod=pvmismatch.pvmismatch_lib.pvmodule.PVmodule(cell_pos=cell_pos)" - ] - }, { "cell_type": "markdown", "metadata": {}, diff --git a/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.py b/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.py index cad94ba..a5cd865 100644 --- a/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.py +++ b/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.py @@ -95,21 +95,6 @@ pvmod=pvmismatch.pvmismatch_lib.pvmodule.PVmodule(cell_pos=cell_pos) -# #### Let's make the system be just 1 module - -# In[6]: - - -#### Let's create the type of module we want - -if cellsx*cellsy == 72: - cell_pos = pvmismatch.pvmismatch_lib.pvmodule.STD72 -elif cellsx*cellsy == 96: - cell_pos = pvmismatch.pvmismatch_lib.pvmodule.STD96 - -pvmod=pvmismatch.pvmismatch_lib.pvmodule.PVmodule(cell_pos=cell_pos) - - # #### Let's make the 1 row, with 20 modules # In[7]: From b32fb1f5649b9e03e1a030b0c8e9dfe632c2099a Mon Sep 17 00:00:00 2001 From: Silvana Ayala Date: Thu, 11 Jun 2020 10:49:19 -0600 Subject: [PATCH 3/3] csv instead of pickle replaced pickle with csv and updated journals --- ...culation under different irradiances.ipynb | 4 +- ...Calculation under different irradiances.py | 4 +- docs/tutorials/irr_1axis_11_06_13.csv | 121 ++++++++++++++++++ docs/tutorials/irr_1axis_11_06_13.pkl | Bin 12101 -> 0 bytes 4 files changed, 125 insertions(+), 4 deletions(-) create mode 100644 docs/tutorials/irr_1axis_11_06_13.csv delete mode 100644 docs/tutorials/irr_1axis_11_06_13.pkl diff --git a/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.ipynb b/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.ipynb index 444c0b5..83dd6e4 100644 --- a/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.ipynb +++ b/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.ipynb @@ -77,8 +77,8 @@ } ], "source": [ - "testfile = r'irr_1axis_11_06_13.pkl'\n", - "df = pd.read_pickle(testfile)\n", + "testfile = r'irr_1axis_11_06_13.csv'\n", + "df = pd.read_csv(testfile)\n", "sns.heatmap(df, square=True)" ] }, diff --git a/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.py b/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.py index a5cd865..da241fd 100644 --- a/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.py +++ b/docs/tutorials/2 - Intermediate - Row Power Calculation under different irradiances.py @@ -33,8 +33,8 @@ # In[3]: -testfile = r'irr_1axis_11_06_13.pkl' -df = pd.read_pickle(testfile) +testfile = r'irr_1axis_11_06_13.csv' +df = pd.read_csv(testfile) sns.heatmap(df, square=True) diff --git a/docs/tutorials/irr_1axis_11_06_13.csv b/docs/tutorials/irr_1axis_11_06_13.csv new file mode 100644 index 0000000..4dd4ce1 --- /dev/null +++ b/docs/tutorials/irr_1axis_11_06_13.csv @@ -0,0 +1,121 @@ +0,1,2,3,4,5,6,7,8,9,10,11 +622.03771,618.7740699999999,614.78195,612.4252,607.1510599999999,592.34128,597.73401,605.46429,610.7762299999999,612.90477,616.13903,618.79207 +621.56858,618.25651,613.13983,610.60051,605.02961,589.9008600000001,596.14293,603.39864,609.50406,613.6173099999999,616.25847,618.8989 +621.12951,617.85046,612.78004,609.91119,604.51441,589.46234,595.67398,601.98557,610.02363,612.09467,615.24491,617.9536 +620.25627,616.84083,611.8029899999999,609.2660199999999,603.1510000000001,588.52185,595.50689,601.3339199999999,609.29991,611.52104,614.8851199999999,617.53558 +619.74321,616.46357,611.59952,608.58419,602.7408899999999,588.0358100000001,595.08473,601.61541,608.7338,610.8064400000001,614.3287399999999,616.89389 +619.7295300000001,616.33304,611.7889399999999,608.39885,602.3466,588.6576600000001,594.73656,600.8758499999999,608.68152,611.0432000000001,614.0781400000001,616.74382 +618.60398,615.1881199999999,610.39851,608.58303,602.7054,588.7096200000001,594.23635,600.39094,608.95457,611.00824,614.49641,617.18183 +618.61476,616.0846300000001,611.1889900000001,608.0344299999999,602.07899,587.36,594.12798,599.8918299999999,607.2758699999999,609.3873199999999,613.12959,615.76066 +619.0376,615.6206599999999,610.29113,606.95778,602.93358,587.84199,593.9858,599.34493,607.49024,609.6348099999999,612.89616,615.5463400000001 +618.39264,615.57755,609.98336,607.30678,601.65924,586.78617,593.3005099999999,599.7971200000001,607.78653,610.01562,612.5392599999999,615.1994699999999 +619.8278,614.0203300000001,611.09336,607.30447,601.16355,587.26779,593.21909,599.1191,606.8022000000001,609.20188,612.7556199999999,615.52793 +617.62195,615.3554800000001,609.7470599999999,606.87669,602.80408,586.74028,593.2762399999999,599.75791,607.1694,609.42998,612.14639,614.85529 +617.88472,614.68865,609.7956,607.30767,600.39052,586.4581099999999,594.16801,599.4117100000001,606.98419,609.17653,612.43955,615.15896 +618.76818,615.3255899999999,609.9365,606.88395,600.9746,587.1258,592.87572,599.07622,606.2870300000001,608.48415,612.21876,614.84417 +616.5728399999999,613.91789,609.27241,606.53051,600.42849,586.58114,593.4611699999999,598.4954,605.86238,608.1205600000001,612.11784,614.84589 +617.51305,614.2658299999999,609.02329,606.1028,600.23117,586.8382700000001,592.55551,599.2190700000001,605.9253,608.22815,611.25287,613.8494499999999 +617.67866,614.1857,608.61826,606.22789,600.92917,585.7372399999999,593.1925,598.11552,605.9178899999999,608.10755,611.3161,613.95462 +616.59127,612.9744999999999,608.93152,605.85424,600.13152,585.86069,592.3528,604.13456,606.43545,608.73699,611.47137,614.01902 +617.47128,613.73856,609.63255,606.86905,600.92856,587.13122,593.05321,604.14628,606.38373,608.62169,611.92987,614.59439 +616.95181,614.17752,609.54173,606.75555,601.2069799999999,586.11228,592.5389,597.86907,605.5929199999999,607.82209,610.36828,612.94089 +616.92283,613.48261,608.5048499999999,605.6958299999999,600.50657,587.70241,592.7198900000001,598.6776299999999,606.39911,608.6042,611.5702500000001,614.2362999999999 +615.9498100000001,613.67586,608.7697499999999,606.14616,601.1380899999999,585.8978099999999,591.9715100000001,598.20737,604.9796200000001,607.2077599999999,611.0631500000001,613.73433 +616.5518999999999,613.83598,608.26222,605.85951,600.51522,586.1305500000001,592.34475,598.27788,606.01259,608.1953199999999,611.1422,613.74766 +617.01412,614.06828,608.5967800000001,605.94269,600.3880800000001,586.47551,593.3014000000001,598.46098,605.41244,607.49556,611.14779,613.8007600000001 +616.57184,613.52765,607.2591500000001,604.8498199999999,600.37488,585.34558,592.83369,597.53855,605.99721,608.19967,611.09896,613.79026 +617.63771,614.04956,609.944,606.78304,601.2049099999999,585.64593,592.1426600000001,598.17713,604.84674,607.04619,610.6945499999999,613.3361 +617.1583800000001,612.71646,609.79378,605.38496,600.3771800000001,585.3024499999999,592.6583,597.2459,605.36841,607.47001,611.41865,614.1576299999999 +615.82661,613.7064499999999,609.2656099999999,606.60707,599.63264,586.1045099999999,592.12321,597.18921,605.4505999999999,607.37483,610.53094,613.02021 +617.1646300000001,613.7617,608.3325,605.5932899999999,599.62759,585.94081,591.87257,597.90166,606.06941,608.24171,610.44692,613.0218100000001 +615.48638,613.47086,608.74111,606.2006799999999,601.09639,586.34563,591.75145,597.8890700000001,605.2562300000001,607.4607500000001,610.61474,613.2163700000001 +615.91027,612.5271600000001,608.15923,605.60634,600.4159900000001,585.16197,591.59633,597.8430999999999,604.76741,606.9943,610.4401200000001,613.0995 +617.06863,613.57817,608.22888,605.0723100000001,600.32005,585.46522,592.3999,597.8975499999999,605.3441399999999,607.29984,610.28815,612.8567099999999 +617.58731,613.88157,608.74342,606.06572,600.09863,586.65148,592.75563,597.9206,605.6918099999999,607.80553,610.7390899999999,613.37677 +616.29842,613.4010099999999,608.1849500000001,605.2871799999999,600.10556,585.19297,591.94557,597.3344500000001,604.7804100000001,607.11797,609.99703,612.50937 +616.23691,612.96251,607.64231,605.12456,599.89552,585.43062,591.6953699999999,597.18696,604.93862,607.18738,609.91219,612.5516500000001 +616.33849,612.7555,608.21915,605.41906,600.20785,586.04811,592.80082,597.7910899999999,605.14083,607.08101,610.69235,613.2345899999999 +615.7001399999999,613.2040000000001,609.1914499999999,606.23438,600.61191,585.98343,591.93843,597.5776800000001,604.42999,606.62293,609.88115,612.53621 +616.0534799999999,613.46861,608.2735700000001,605.51794,599.7768699999999,584.61768,592.28949,598.1869700000001,605.2766,607.3170500000001,610.41826,613.03216 +615.74936,612.80054,607.8566999999999,605.2767699999999,599.84931,585.71871,592.09748,597.29472,604.4250599999999,606.71233,610.02053,612.5391800000001 +616.42267,612.95242,608.05057,604.9566199999999,600.02988,586.02607,592.10092,597.63098,604.4161,606.60127,609.8834999999999,612.4645599999999 +615.44011,612.04743,607.76379,605.22236,599.86207,586.6195200000001,591.80961,602.52076,604.6835000000001,606.8466500000001,610.37401,612.91084 +615.89188,612.38972,608.522,605.74323,599.99362,585.0284099999999,591.1835599999999,597.61311,605.7854500000001,607.8783099999999,609.9892000000001,612.68349 +616.88699,613.2611400000001,608.23306,605.3951400000001,599.65203,585.70472,592.39527,596.88521,605.5536500000001,607.94643,610.6981,613.3614600000001 +615.86712,613.14007,608.85963,605.47757,600.31361,584.95311,591.7183600000001,597.68416,604.52074,606.79508,610.7222899999999,613.4501300000001 +618.30532,612.91965,609.72749,605.70317,599.94554,585.94426,591.43553,598.00507,605.4270200000001,607.39466,610.11661,612.84259 +615.8048500000001,612.33677,608.1845400000001,605.48694,599.81494,585.32311,591.51326,596.59492,603.9407,606.12123,609.18312,611.68601 +616.00166,612.64282,607.02848,604.8139,599.36726,585.28121,592.06254,597.68345,605.23613,607.42374,610.65279,613.3168599999999 +615.85419,612.8785700000001,608.46448,605.35928,599.50745,585.56726,592.11533,597.49937,604.3629999999999,606.55641,609.7681,612.33914 +615.71802,613.22558,607.72194,605.03552,599.7733900000001,585.70282,592.22299,601.77063,603.9708400000001,606.17171,609.44474,612.05314 +616.46502,613.05502,608.11022,605.72078,599.3118,584.6904900000001,591.87122,596.69128,604.10054,606.3328,609.75914,612.33566 +616.41783,613.01931,608.01029,605.36109,600.51498,586.16187,591.96421,602.5968,604.89984,607.20324,610.48065,613.1097500000001 +616.3815099999999,612.91915,607.7699200000001,605.10208,599.67394,586.12609,592.01982,597.4512,605.38772,607.54507,610.4074400000001,612.97127 +615.91587,612.5076799999999,607.4765399999999,604.94195,600.84271,586.22002,591.66066,598.0613,605.31641,607.48207,610.3535300000001,612.98133 +615.4485099999999,611.99869,608.02079,605.44002,599.33811,585.48553,591.27934,597.53843,604.25163,606.42449,609.34071,611.9687299999999 +616.13519,612.5749199999999,607.774,605.04179,599.56386,586.25077,592.23337,596.8453000000001,605.28382,607.48929,610.68134,613.32576 +616.87831,613.3769500000001,608.11291,605.29659,600.1210100000001,585.49869,592.03015,597.45754,604.5594299999999,606.73676,610.2642599999999,612.8898200000001 +616.1808000000001,612.8825700000001,607.5991300000001,604.89083,599.77609,585.09303,591.2318700000001,596.0937,604.18961,606.37834,610.3207600000001,613.02111 +617.17125,613.79023,607.79683,605.6059,599.5613,585.54198,591.5771,598.1856300000001,605.62792,607.64765,610.1397400000001,612.72402 +616.30357,612.86532,607.7819900000001,605.26878,599.7551199999999,586.79504,591.9374399999999,598.1782400000001,606.11206,608.32799,610.78612,613.37717 +616.1041399999999,613.36425,608.16078,605.2961200000001,599.78888,585.6758,592.27244,596.9391899999999,604.8035900000001,606.90171,610.2248199999999,612.8348100000001 +615.61599,613.42435,608.75642,606.0444699999999,600.34943,585.14153,591.1638399999999,597.0269000000001,605.40567,607.71253,610.83399,613.45028 +616.60866,613.84508,608.01264,605.5579700000001,600.41765,585.76435,592.41468,598.3079,605.4375799999999,607.62038,610.39309,612.96841 +616.21528,613.59208,608.7939,605.61919,599.4861099999999,585.49468,591.9345299999999,597.62841,604.30373,606.45862,610.33252,612.8871800000001 +614.79616,612.62221,608.63672,605.27661,599.93843,585.16572,591.20571,597.41003,604.63008,606.8957,610.31141,612.9473099999999 +616.13584,612.6457,607.73011,605.14067,599.5380299999999,585.3976600000001,592.9129300000001,597.1348,605.4255099999999,607.5685699999999,609.7551699999999,612.42042 +615.7981599999999,613.49303,608.194,605.24307,599.9192800000001,584.8186400000001,591.8028400000001,597.29331,604.6206,606.9336500000001,610.20443,612.85802 +617.1819499999999,613.57634,608.21108,605.8223700000001,599.81697,585.96531,592.28829,597.3198100000001,604.6607899999999,607.03455,609.98152,612.73163 +615.83646,612.7574199999999,607.87907,605.2894,600.3092700000001,585.9870099999999,592.03604,597.38014,605.38346,607.37677,610.6482100000001,613.2855099999999 +616.33081,612.76032,608.72674,605.9835,600.929,586.46407,592.1867599999999,597.58449,605.2916399999999,607.2498400000001,609.23014,611.7099699999999 +615.9801199999999,612.6947799999999,607.66027,606.48088,601.21533,585.7778400000001,592.6340399999999,597.1674,605.3627,607.32529,610.4465299999999,613.0965699999999 +616.43507,612.85496,608.81406,605.76243,599.6165100000001,585.3157199999999,592.12317,596.8904600000001,604.9907000000001,607.12007,610.4201,613.07989 +616.7433,613.17772,608.35622,605.83803,600.14067,585.89822,591.43976,596.33105,604.35299,606.33729,609.22344,611.7315100000001 +616.71437,613.2685299999999,609.08796,606.08549,600.1754599999999,585.05961,591.27251,597.2122,604.88347,607.30251,610.50947,613.08447 +616.3633,612.77859,608.97865,605.4756199999999,600.31107,586.9448199999999,593.1623000000001,598.1269100000001,604.9016,606.96622,610.59717,613.29029 +616.8393500000001,613.48437,608.4454400000001,605.59522,600.0213,585.88184,591.43844,597.9731499999999,604.15871,608.2838,610.85826,613.43148 +616.43154,612.84366,608.27391,605.75481,600.52055,586.33186,591.75522,597.86149,604.1898799999999,606.27283,610.22206,612.81773 +616.30525,612.92561,608.54203,605.8816700000001,600.1291200000001,585.79808,592.51206,597.5875,605.66729,607.93664,611.2036999999999,613.82473 +617.08022,614.4502,609.08064,606.21221,600.77162,585.44776,593.15724,598.0136699999999,604.8920899999999,608.83187,611.50066,614.16787 +616.99759,613.5694400000001,608.9386499999999,606.37186,599.9378800000001,586.22703,592.32582,598.12566,604.8771499999999,607.10163,610.50564,613.10958 +616.14471,613.45841,609.5499699999999,606.4538,600.5165400000001,585.7146,592.50798,598.2544700000001,605.32299,607.55458,610.2628500000001,612.8344599999999 +616.25992,613.29514,609.12392,606.24303,600.82291,586.1855999999999,592.67172,598.07329,604.8219799999999,607.07122,610.43406,613.07884 +617.16943,613.71173,609.05455,606.004,600.64665,586.41694,592.36778,598.23012,605.4566699999999,607.68083,610.28815,612.9265200000001 +618.83784,613.0889699999999,610.25397,606.76766,600.35267,585.7650600000001,593.5398,603.31232,605.7418700000001,608.17152,611.79412,614.43023 +616.4276,613.0263,609.33242,606.38818,600.35473,585.61733,592.63387,597.77022,605.21825,607.4349000000001,610.82272,613.52687 +616.7981,613.321,609.23268,606.156,600.49009,585.66956,592.9748999999999,599.42149,607.12824,609.15619,611.56035,614.251 +616.6949,613.3148900000001,608.63984,605.89911,600.85043,586.69645,593.2574999999999,598.6407399999999,606.6925799999999,608.84845,611.56679,614.28711 +617.97844,614.67586,609.8394199999999,606.85858,601.8203100000001,586.33947,593.1055399999999,599.0342899999999,606.66076,608.99986,611.51911,614.24477 +617.5958300000001,615.15498,609.85357,607.0626199999999,601.20317,586.45696,592.51396,598.44885,606.61866,609.00948,612.48281,615.0501499999999 +617.07703,614.28962,609.9462699999999,607.4154000000001,600.73341,585.78125,593.82858,599.4913,606.72703,608.97651,612.18776,614.9126200000001 +617.52752,614.65858,610.0513100000001,607.2350100000001,601.87534,586.96799,593.41392,598.8825,606.4839400000001,608.81138,612.5491499999999,615.3326400000001 +618.72045,615.2746900000001,610.60177,607.58262,601.40999,586.94775,593.52134,599.72402,607.1578900000001,609.71537,612.70051,615.3228300000001 +618.15832,615.6702,610.48752,607.6553700000001,602.3061700000001,586.94995,594.44502,600.09735,607.18947,609.4676900000001,613.85676,616.5874100000001 +618.61981,616.164,611.56044,608.70942,602.22441,587.1700000000001,594.3299499999999,600.65278,607.81243,610.1398,613.2365699999999,615.84825 +619.01064,616.00876,611.02908,608.20223,602.31187,587.17535,594.43485,600.92545,607.9361399999999,610.14117,613.627,616.2559699999999 +619.5422,616.3931200000001,610.9521100000001,608.4242499999999,602.8947400000001,588.13614,594.69913,601.74108,608.30796,610.50028,614.64744,617.31312 +620.0542,616.87412,612.56597,609.86828,603.88489,589.17146,596.03462,602.24805,609.4639099999999,611.8777200000001,615.66073,618.3155499999999 +621.08109,616.7112199999999,613.94246,610.13828,603.94378,588.12054,595.27342,601.87443,609.62442,611.73061,615.6413299999999,618.22008 +620.5006900000001,617.18713,612.3301100000001,609.46759,604.14482,588.31932,595.98085,602.0265400000001,611.41189,613.5771,615.8763,618.51674 +620.89089,617.90806,614.15427,611.39279,605.23271,589.14166,597.33782,603.4544000000001,612.28445,614.33026,617.40181,620.04688 +621.47253,619.34888,614.7223799999999,612.24005,607.238,590.1946,597.8969,604.95218,612.4486599999999,614.56377,618.2537100000001,620.8633 +622.43163,619.3796500000001,616.5873499999999,614.0083599999999,608.26338,591.5928899999999,598.45596,606.84434,614.74005,616.8954699999999,620.39641,622.94532 +624.12273,621.35825,616.7492,614.1087200000001,609.12897,592.30628,599.92617,607.88274,615.79403,618.00218,620.68701,623.09826 +625.1696999999999,622.80442,618.97766,616.69143,610.59501,593.84279,601.36568,611.1521700000001,618.41658,620.82714,622.9132199999999,625.28864 +627.3782600000001,624.81668,621.08565,618.1951799999999,613.60913,595.3747099999999,603.3821700000001,613.37945,619.64734,621.6347,625.4551399999999,627.65122 +629.5080499999999,627.01413,623.41971,621.48084,615.5540699999999,597.31981,605.17994,615.58019,622.8272599999999,624.85103,627.6299700000001,629.73045 +630.69456,629.07303,625.54435,623.5048999999999,619.09642,599.1792800000001,606.99502,624.29796,626.177,628.05547,630.7428500000001,632.6745599999999 +633.5911500000001,631.63427,628.3483900000001,626.38937,621.93221,601.77865,609.0342800000001,621.46755,629.0416700000001,630.7162999999999,633.75494,635.5310300000001 +636.3551699999999,634.55791,630.69116,629.3636799999999,625.5242599999999,604.20756,611.74192,630.57452,632.16538,633.75555,636.3942499999999,638.00541 +638.87688,637.39022,634.58367,633.11395,627.82125,607.5741599999999,612.97288,628.5864799999999,635.59908,636.90471,639.29974,640.64363 +642.6074600000001,641.18175,638.21925,637.02853,631.96829,610.50063,616.34355,631.9553099999999,639.0923399999999,640.43424,642.11378,643.28531 +645.6721299999999,643.41874,642.4276199999999,642.40711,635.07353,613.01021,617.8984999999999,635.18814,642.02657,643.14471,644.52202,645.46023 +647.03236,646.17614,643.98083,642.76013,638.31511,615.2621300000001,619.59961,637.15413,644.38563,645.48049,647.1521299999999,648.04072 +649.90814,648.93846,646.6625200000001,645.34831,640.5887600000001,617.3192,620.5941300000001,639.21928,645.8382799999999,646.7987300000001,649.02144,649.6710400000001 +651.64447,650.2935699999999,649.5577,647.50818,643.1240500000001,619.5336199999999,621.91151,642.4100699999999,648.4055500000001,649.11919,650.9515899999999,651.5211400000001 +653.2062199999999,652.63105,650.74038,649.8297299999999,644.78774,621.1700099999999,623.6686599999999,644.0197900000001,650.84473,651.53342,652.2919300000001,652.6636199999999 +654.20329,654.38856,652.72451,651.48288,646.89948,622.10207,623.14486,648.74842,650.11552,652.48856,652.94273,653.3945 +656.66177,656.33368,654.7116900000001,653.46718,648.3543099999999,623.9916499999999,624.70937,651.23767,652.4872,655.03731,655.34267,655.6459 +657.0627900000001,656.63269,655.67643,654.60392,650.14978,625.60922,626.38535,653.09738,654.2544800000001,656.47295,656.6729,656.8707300000001 +657.7686,657.54,656.96878,655.65264,650.95467,625.8348,626.8565299999999,650.1773800000001,657.2097900000001,657.37655,657.5435,657.7081 +658.4290000000001,658.3048,657.4199,656.94586,653.3899899999999,629.1842300000001,630.1267300000001,655.79043,656.61288,657.7951999999999,657.9358,658.0740999999999 diff --git a/docs/tutorials/irr_1axis_11_06_13.pkl b/docs/tutorials/irr_1axis_11_06_13.pkl deleted file mode 100644 index 4daf170911840480e477cb38310701331f98c357..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 12101 zcmZvid0dZA^yrI9C5j4JLr9UeWFH|VMUgE@DMd<~B};gok8B~7ec$&bgh)ilzGRo| zWG_P2`<{>Q@4oJR-P<3X&&+e?%$b=pXPs$!sqLESX#bKbMFmC%2gW)K9}^SeFd`-} zA|xfrs9RuMpsV)x;*`eIQ>LWYCg}$R)0vV~`~Sor85tK66B#%<)*&J=GB7kGCN?F> z#AWoD;o+YD+9}%cw*C;P_J0oy4w(=V>kt$e%Y4QGks;#)+#~5@K$6w}4>Kk(GE}1a zNccafk}521vz&mKkl|w@W8-4R4v&-E>1z>F zlFG4dT9n1iIU}X3Zcxfhrm^+V^)T_6keCuyCrLjzE0N%x~YIzbcM;)o+^GO%(?Rl^m_k_dGX`7ZIMSxMz6gZ3g|7 z@5eagc&Nf;-vY1IJyc=yVgHvvV4wEC9G7=iMK8;wo}<9a_AY)?(@hnADfg@w)86KD zpj>t6WMm&3(#>5J0X7F;tm>qSnG0q$_NE;AWPy7v`m2 zO@ohf!wu|)yQt#yr%EkebWugKlbzZfqW#@M=h^a(s(4%VU1Ee#MaCt-7e{U2US$+TW|Iw_9=hT zk>^Lim+hfWtl!?PRTbKo&mCGH1V0s5wb~E|onCCje#!sx^r@Sn*GUQle4KgvLw^!{ zePrI^?yC4aXid4pz-p;^Mz6tZ_P6fubXQgM8_?-uEO@sj6gG^e|7rc8o}1Y3S+3*F ze!_Q$@WcML%*!tIvEcjut+oCPX5P;2#=ba!oY*EL9Svvvw8KIPg5JAk#~LkQp4{_; z?%qV6t`=xq&Twv1mb^N(8oF}-oN2eK-*eJwUsa4wbM4s8TNMSri-wjUrybUfzF>)* z)~)kpbpIi$NO};aGiI17x+bfYw}h!;V*Bioy1}a0nf7sxbtvap_G;$2a8;cD81W-E zRu!*L&pDl9KH-EFW^6%P+-CY$Y2#S`23vGWhX|Lc3ZGA^m2aoo`1 zcb=-EUcc@4%6?NtxeC9{A6jUH+l>7)hBeiQrMpYIyEtovX8Nl~U3+VUf!(u$M*bSn z`O(h)TSjWct#{M=uZz}*iw`P!dCbs=x;EvPO`D|=n=?;UZ8%>e9`~NNG;%THk*^l) z*EuOK$XV={@0pjqRPn97g?ObLKUk&ZasUk5%;%6gGH~KLf?Glf^hoJBUTUXRS~k;y>S@*PlQ{QeGbUc z_@LW!ndfoSfPg?fRjCy^l43PH~s3Tfl!k%KmFr@Jm8F`<#J}MZ)&AZEQH_ zOG~S+W1L0&qPPn1^SS!5ZjO9U9Tx3;06q++r*lUa+~()HRHaA!*|Klik}-WPtl#=dF|-$T{!G_0d$f=uU*TceZ{HGmQeU} zZ7{aXidNVOso-xeW=*7Xo?F)LN zCu&HAguJ$IZ&kAa^4wv>x|V-jku#-c%D(RK8CAB^RCn}qm9Gc8q95{#mQBAfSQVqj ze41h8r;7d+o2KQDQpN96Cu7HqQ$=9)#09ewnSW~YPc@gRLT~rUUn>g-a{kyhqY@z z$VVfryA%yK3DF45LQaiXjo_LL+o@G-6@G&vsFZG~yv@s0(`d z@2lnkQr;FPt(wu1eXkv+pE$ZU^Y*m4ez7Kchw;5>8|Id2*xXzdO-41Zpjsi{jlQ+- zS6LPFb??2+H&umEm6@%ws$t)rEd5bhf%_0LYq)<{&@=DrM+!xtcs;icce8l zWZ%_ZEsOP3vEUaQQ%)6o?gorAWt`Q8+2edo&~ra8elX(u8S8y9wg#$ru;G${RT)*d z9A4V`Ed7<8I%HP&c8GNcT%ZPFJ#&>THo&3c! zXWajzi0;!nEezGc?o9a5u_kRRJx&;Yq~DOwICu2yWBBb~lu?+<5N8SSiipQ zzAM6B8rrhR+SUG_=@)EVLSCM{!+x*R$;FL=np}`bOB!VGU(yXe0{IIZ%_d~O7SDC!1r_M^m-8O zT{&BIsfcIeQvlc4jV=EQR zzQ=yt8;qyJIo_Qf>zc>;ZO*>ylFYgSA0PcD_iH77TYvWDZ)$48&EVCM`W!rIXGU4{oUX2lp4arK zG1CVB>i4>!SA94cEbTW6q%uqUX$ip4JUK)WM(b?AMpj&Nl|2 z_d>gk+#ANZu6dK}H%S$1J2c4~oWyvSv}w5;R1xv?dBV&?st}${{dRJXo8{XWoGL;t z?;4&7H`fT%Pv+e^8nFnsrk5l4_|+);alJI+W!#`%?|d~vr`F4h7rDpQcM|99AFC1F z5bTjtG@=pe{NzlHIQnbm7r(h0VUC>|QC}59?=-u6nRU-u{Igb1_Jh;CYR&$&o^d67 z7yEBWVx_HMISkB4#hE>>kHGdcEn}yfMJLCFRGJrGIb0 zz8d3bhwK>EuQKgbPYfn^`l5*T(qMn$yWyY1H;NQ7iEY01K@sVi$=5!ARYcM7OaA47 zD|UICE_|+JlGN==vDEx@9V^pYu@>&sRo7UV2IYvG^Tb!N+=sSiDt)83*)$ zdGNL>X1!CyKK!#4jIY=-_xwHDA%$J5ro2`}lBMIaMEICtU9Lf|H;Sm;s*lxQ`V*?v z?JyWR`>U)i^O$iy#u=G5jH{W_{H7Cl%SwW5x4u$@@^^Rexk5z<+~;EWJZ{{$b7RJZ z4RJQR0o2-g`rk~rBwo-yd|l^}0>2OXw760Lom**#PPj4OvtORJXTbBsSUsbECF{OU zf95lbTC%k;XE1)m{XeO`^e-%4JSqUZq0*1xdy^2Wr+49R-UsV(4e6h~8V?TG z*1w9mAM0zmzx2pBzFTsQzW_@!J*UcbNdBzhzh;BISBijXrAM4n*xv(_@BsM!VRC23 zN9=Q`@#;HwKeG5#r(aU4d*ER>FRtBTlju*XTDb$ zojR-qbflemB;~^TO{Zz-L8-re&~J~ryzBL(R1x3y?rOaqeby2C+6jGA4u@nH_r7tx z({^jnOKYn)%MV75?H`@*P|W?G8G+|gNfilWZm!KNPuv)2ImV_2`id~{ZCzEIYHd=d z5`JC4@TJ=x0SPlrW^s?DU$nqm6_5ID%Dx*;JoBiGk?~|z3_7V7S!*%+Q6Aq8>{*R9 zLkrIn&z$=h(e5>RtkbjXF5F*fKP;+fM9J-w{d4U!;(poPC(Sx&ghkvW_l;iIXYBez zKaDtT_vrlbaE)l~Q6?`hP9qX@d{#PhkF()xA@}$Z@qr`jws>#1sRMHHbnI`X)^kNH zV%r?=DPsK8;{)E`;vOVA-_E(AhztErZQDe9pRba${+c3|PrvYe{2fIc(Op}|^|B(W zjPm^KmCOChNH`UFn{%oE`Fx$ziikUeB|WETDrE23Mf{ zTgl%SK|5?f-4|P-qxEmkC|du!I&G~#Li@p!y}8w)6H;J#>Tk9per>wHbtB(5Z!R9E zM}NI&EJvmyhP`>^sSotHTsti1ydn(Y&DT^uqXKG2^Nf zKz|YeUo!n`x^(@k0Z;lbpE4A22M6EuxFRCAReRNpew(F#lN0Dam3(V=ZRR_+a%;O_ z=vXCZKFU1HeJ-mPdywxAH4SqW#=YrUHSZhq>nHAtbYy(V(ff0z&>wwf@ML4!SzW!? z^#+nYSbq^dxZVQ?u*c|PZde*ANU{dJjgan%R#wfCO=F`2(;Kq#=@mTr}&fG_3V9=^u)u3g2Bbyyfz ziZbLo=B`H*){%O=-MMMZvsL0!I&OuFrzO8?HQxB559QA8&Q-GGkU);*JN1JCyH zI`|g8dyVe2=Q4QPNIxvN@}FLWpNY>+4IVMhq?}8d&Q(QB^}M~U$3^%#-^C~vd9@ob zVd=%|ipa}LJCs0s_~+;dTjX_IKgTW>1&Wa7Jqbv-y43aw=R`pGun>LJl?a4;;oqus zL=F51tzUp2FtGoMlx*x=bsYWz;(+<{#PLYt#%SMr<8uabU!65}W5?i+TeRET0(&g| z-GyuLO!k=myfm!P5*-)dk2QAxZgq`E0 zb+=r&ue}~*we;3#^E4X=Xhgje<_BtXuiHD7Daue3(F(`E^%(4yf1iT1a77I8+n?1W znEQf$a37|K>L?DE5Jeoc5uUq&lPvc1cruv#c}avEAF7BP=c(pB`(qcR{-WP(FBuYQZu zi1A>RDeA^}(so(QBl7}|e3$F^!g>t1>NjiW#yUxxY~=fU{P(pz{_#1F@l~p&Wu(HF z9N!tZA!t?B>|Tn%{0&#`1QJWLxmDDedI?sHyM>I*&T&ktc=Wj-kkx^2r(x?h)d$vCDK`}-8NSHie~Pjy53 z(m(pJf0zU9RMLP+u8Pppi~Vv0eo0$}yZ}ZS`i@FxpY4;H>a}J3Tp@gZa?7`N?Ni?XTAvybVov7WOLt*0G^KP&J1H73(; zq;7of%RD!Kp1o5WeCfx3Vm*6E^Z0=${kKJ&Q*IrT4u_$;Nh)mcb@&tD<7P&mV1C#1 z&%aZEd(wlZE(a!Om)H(Lp7K__tQ86jm-&f6?EI$ih5;iL@#Mp<{IAIO&Q~lb2t7P# zW9@qMk9vgX91ZA{n;IUfh_Oh?+N56gkztvgMmGL!YMeG$KJF7X-qDO$t6Z;a|V z2YjtR&Hf~N`InBKg}z>Mc}H))pK#pgn>|AjFW(z(&6&!6WVoATgI8MyAkf#}wmoEL zBJwBwuIb3hfD0|Vf$!5T(f8LhMVl}EnZSKH*yei~;P2zx-Eue&|A?GFEmcL3W}I1` z@$1cWXC^~mrlFFjC?cPx0dy?jpv|C7G&=gpjLjNo7a#?DjvBT z=&d$}uCdGmKxY&Qf=QDUkzLu;wg&UgKJ?vU8sl)cTfPJCvHQ8_JbZuu)!gMfbgrt$ z4x}@m)*kS^H3rumI!EfSs?uR1evL!bqI~c#O?Aua$oF8}y8F!A1OZ(QebT3or!xM> zHT{yN@ar^x;N0GPN6mHhhOhF2^54Ysea}rdkInRZV%I!5m!Vn1+KguYnpb{}@?zZi zH~p`=Lw_alP6G20)vA@**IW#a+}Ct7GBm7fN5!L74)9f%yh|_6vC@vbchl*2n{$4j zG4zgHDom@!IsQs2U(SW^GOk$({iYMH4=|%&%4Gm_f9Y&;Dx%+H@pi>K2|uUv7&|%N zSA&3Mm*7ucLsQP%j|AIYkKqQN(h zZ(IaD{f&zz(spLzrO2`8iF+?y*Kv=V-~8H)d)P&JdhYI8>^X}3zz+NjE@G3t=mQtO zE1M4}+IT!H3xDD4hQfCjuxFfq#RuG*(m+jAA^JMK{N<8wj3Y1OYWOeD^|2QD!#2Ig zo+p3TFV1FZmJ9iTm1nG*_g2O2r+sxUabKlBaxz#I*E^re>51KLpgU^Rpec+uAF|6f zUKKS7=y%NkP7Z8oiC;b-c|?=@OUN(m)SFv&KlxnrPx@Q#K~?)v&EaQov&5LESGiZm z$S}YsY40KLF5&M~+MKC-4!?plgf;%mG4yIZ*5mqi+ozeYF{ct0Ja`Gs7pifz;@Ae^&6I-O1Kf#`hdnxun zxsRXs;BOoB$PGWFh=49D_HWxyT-K$bRogW5rp!Y_N9(We!v7_}8O8VgeZp6K+YY~d zW=&IpG7sp)IoydncC9ARbfVMF6VPpWX1{|2ZEb!H=s;m%7w6_C6Az4=6aA-QKky=J z5&=VhCjnOi^vNnM@dGcqY^Tm9=)D<+I81r}?9D6iwEA@`_9*wUZ9Ly+KB*sM%=(^Z zjta@%1YfN-92`%-^ymKUB#y{16?Rv!-%^omR)j%iGOy6vRB)o=D!yy|V#ZH$AAZma z`tcJtH#xmU5ihzOGv3a3%UZcFvXH|rY};h`JAAvUQ3UV~`3Ds~sy`iAwavDF`#z3+ zyB&MurvdZJ`Fb$E%yIq77OYp^vw^HD{y%%-ROe2jG2hdnx0`vd?7+bVuZelW_Bznb zxIgFj<_+xklfu+A`rS!{m6iKLAehU3Zb^95?>YO|ioXMlpE5x2Zw=Pb_dvP9y5K4J z=|=GL$E}jp68byK`V{??<3kEodS@bLL-k3*2uxe=eOFrB1ar! zr=^^KE6(u)-%rc?eVBH{-wPKqk%t>&0?wU84^uC5&Oy%%>*o`S{ATA5I`;muBAVe2 z{<@CddC}jd6!P)JF`2}}&8ilyUUpCwX0;<~?%$*e!v6S8_|HtJ_#BTtZRP6u?qRT(v^J-O{nJA=q!Li3|mL$x7kmbf3o^S zoO67@?p|-fmvs=v%lP~3OGVf=DVkRN2K`Jva0TD%Ov`IHAAF;jKG`Pp|HkdA58l_p z371aN_7B^0bJlzGc8%pdI?-Qxzm%Q|Ge_66&0P=49T2-cHzxbSKx=u`?XYCH`{xNj5*ox+Mip~mp7^_%E- zpl*Y@WvLEq%E733O$iB=c^PDe%QqR4EKhm1-Zb0Wpqay<=(bnz{aQLb$ zqweq{({qxq)Wh{x^@lIq4xRdZpHj;?R1YZgm8sA}eT`ZSpM(i6TbZwN!R$dF!M|Sb zLFozhsZZ4Y4F<^3Yxtd0!oJ7@2WG7(tM~cKfBrb_YwjOw6d)(>E8p_#3jPujy&7O2 z0>`Py<@IOZoThO9q<=Gxc(zx|m@4VytK|OtLGD9-{Y>&8Zza#kwI28HZiNR+$m?qJ zSmdDxV)q794<{|t$hR-?EBo8jpL*4fDecx!Ppbc*G-1?2Ra`o1F~D~lb^HfeX+Ec@ zUr&j9bK#*XUgC&ne&;?Bk2sl;ui}}5WqpkxZF=dTgGMwU|Iw+dMyv?9tef4R`jND2 zeKg{^1qymNF#Kv0qZo~7XB)U>_iT;$S#N#QR~qV3rz?E#fPF9C*;agN!n%47e0s{7 zy7phas`fR>%PqXNB$oRH3iNEgYj4=m(izE7hYOTjt%y z#q7IGkKdy0YmegRJd8FFDKL(5@awPW4Y|x^w4J$VL%*X3WPXAEiN79g`HOz}Kw$cj z@1{-DR_~?X^Yi?^U(hGAZa;$WGXELPJgyk{BF0N~IF)&18G18qSvLKNoTT8^%?5vW zv=kQeEnU8TSK$T6RC&{r}IZGe2N>;2q)5s=;W8A8AJtZ7|snHTlh<2(1NqS>YE z!)Xto&=$*hxvYR9;;F~w7jH+uy}{0`WB$%M+dYT;`sZ&x0AKD;2=XcG@Na0Bk&Xg< zG{jIE&~Jpobofo&u+sVHTI5s8sT1pzaoYjLU6 zrqr51d-b%2*{-ac<6K*odGZ_A+VvNHGBP){Si$=5QJ^j1dxMEqIce~F@Wqfh;c}lF z%)6e!_&cq6*}?oWf9b$?UE;?C_M>_5*qvLcI}J!1UjG{7Wf(Gsc^8qmUP!yjslWYW z;Pc7B$K3-sFZm8)BJ&?09_Wnx^z&)7E|>AL4*wVXag2L!j-M*Sx~sJ1HJHM8Z=MSs zMIL<}yX47y^1T2uY2=qjZa-eDE)cV|NQXGo-`Q-DKK1nST`Kmxi=V5FKal@X6vQ@B zPnLNHrL`(#IlXZY^2ahS+D8?KW-tD^dIb6FuS@gIBgku!X17`(X9CgP zhG_o1gW%q(JlyFuf%}bpIIn8N1TIWj>PGElL5p`BUPrT!)$GE10;xw`;E#k;Nn2I8 zgQ+FjC_}&VCJYdoYqsH7zS=VVqolz$#w2uw(Hu)F% z?qPqc8CUGbBbp#QoM4n?uA z+WbCsKtBqT3(zA)GjjV)M{j(1d$MhP{1?j8yBvTohs@b|fqq%eo^Q#!f}8dsgP>Dm z`UL;ZoD=R;&&B5GPXfC)v}ZEU4BDAKOX_+-KXi%SwnD~{{(4hN-R!kzce`G|D%724 z)Blb5%Y^pj!n9=r87J#!cIYX}(P5S7C*AY?H+0s|-uI-C_JKFChf*1Lss``i=+SvOzN%MT*~QvUm`*Dt+uX4Tlz=4Xj>c@YSI9D zb>C3X0pDSF;+ZLu?$(7%jG1>4iRcaBe+{DY%Q_OrADz{VdCI=q*!K>6kF)eiSj6}d zl=FuGi){*5h5 zc~@tCnJ=3Fz5h9nON1wbd1p|^q3wqh=n$4Jll9x>6?ysow|~*JaAZhsf2B zl>|!2RW5arVC2u9#MX)i|KNQGRbXBdo+GEn;}%!bYYM*13pnyl27Bh-k$s!GHo7kG z3F@;<=YMv=$%8sjPL1W|d{i-(hYj|_$s1EvObDUgp6u@GH6H!Qd&5n0k@FhqO^sJm zFX}YFujtUf`m6C3;#&NxM$eEx^0Og7RH0U#qF;#J%^!NBT2mYR;*t*w+O*XOo^iak z=iaW!ZS!CidF8XdAqBoc8nNTBLHe9fjkZ3XIZ-3>>_e=AW{{t@pIK!P?>ElMhhGb* zGZE1B?~mR{n^fGKx^zakQR%wgyc?qMogbbr3i zv&5hHp-z7_v;+3Kb%wf(d%woUzg1h>XHwiY+;QT&@r|VJ^w)}M_3$L^ngsl3fN4BL zyU6}NoOac8V>8}EHY@qu5d9$IgHx@^%W=&U(F=Y&Na4kR_I*MD`%kp#_!F2c6M&3Q z%eWOQ-yIR&`|h(tuEuF@x_}?<_HcM(@_bh}AKB3axbI2}>tmeb8u`wPHtB*n_t7(2 zJ7bTWP}nu+{L{C@pBo9x;(#85FYEg~X}_skJ--X%x)LZzJ=H-9D)J-sm^*wnK%B=T zH`Bh>@BSP`Ar@%`hj{Bi4PA0_WM5`HQXFGjcer|;Te4`sfxOv``yo?gKI zsHYO>G%_uJXoNF*oWzkQc1G6Sx0BBuh<}?3Jc)mOpd0q%tVf$%Ig$IReV69VxgfCh`f(qr_YWKP-+RyzyeF3a9`{xH?YR@UpJk@h>ph3}4l7n1YZA5Pirqgz}&8r->IE>T}