diff --git a/docs/docusaurus/docusaurus.config.js b/docs/docusaurus/docusaurus.config.js
index 4a5cbbd69cce0..7428cbfed3e63 100644
--- a/docs/docusaurus/docusaurus.config.js
+++ b/docs/docusaurus/docusaurus.config.js
@@ -110,6 +110,22 @@ const config = {
}),
],
],
+
+ plugins: [
+ [
+ '@docusaurus/plugin-client-redirects',
+ {
+ redirects: [
+ // /docs/oldDoc -> /docs/newDoc
+ {
+ from: '/docs/loading/cloud_storage_load/',
+ to: '/docs/loading/objectstorage/'
+ },
+ ],
+ },
+ ],
+ ],
+
themeConfig:
/** @type {import('@docusaurus/preset-classic').ThemeConfig} */
({
diff --git a/docs/docusaurus/sidebars.json b/docs/docusaurus/sidebars.json
index 6f5019e7443f9..83712f46d412b 100644
--- a/docs/docusaurus/sidebars.json
+++ b/docs/docusaurus/sidebars.json
@@ -127,15 +127,17 @@
"id": "loading/objectstorage"
},
"items": [
+ "loading/alibaba",
+ "loading/huawei",
+ "loading/tencent",
+ "loading/s3_compatible",
"loading/s3",
"loading/azure",
- "loading/gcs",
- "loading/cloud_storage_load"
+ "loading/gcs"
]
},
"loading/StreamLoad",
"loading/hdfs_load",
- "loading/cloud_storage_load",
{
"type": "category",
"label": "Load data from Apache Kafka",
diff --git a/docs/en/loading/Etl_in_loading.md b/docs/en/loading/Etl_in_loading.md
index 04b906e0032bf..5b16921a4b6fc 100644
--- a/docs/en/loading/Etl_in_loading.md
+++ b/docs/en/loading/Etl_in_loading.md
@@ -38,16 +38,6 @@ When you load a data file into a StarRocks table, the data of the data file may
If the data file is generated from Apache Hive™, you can extract partition field values from the file path.
-## Prerequisites
-
-### Broker Load
-
-See the "Background information" section in [Load data from HDFS](../loading/hdfs_load.md) or [Load data from cloud storage](../loading/cloud_storage_load.md).
-
-### Routine load
-
-If you choose [Routine Load](./RoutineLoad.md), make sure that topics are created in your Apache Kafka® cluster. Assume that you have created two topics: `topic1` and `topic2`.
-
## Data examples
1. Create data files in your local file system.
diff --git a/docs/en/loading/Load_to_Primary_Key_tables.md b/docs/en/loading/Load_to_Primary_Key_tables.md
index 715710d010ced..0bbbbe7263df7 100644
--- a/docs/en/loading/Load_to_Primary_Key_tables.md
+++ b/docs/en/loading/Load_to_Primary_Key_tables.md
@@ -50,16 +50,6 @@ You can decide whether to add the `__op` field based on the data changes you wan
- The columns that involve data changes must include the primary key column.
-## Prerequisites
-
-### Broker Load
-
-See the "Background information" section in [Load data from HDFS](../loading/hdfs_load.md) or [Load data from cloud storage](../loading/cloud_storage_load.md).
-
-### Routine load
-
-If you choose Routine Load, make sure that topics are created in your Apache Kafka® cluster. Assume that you have created four topics: `topic1`, `topic2`, `topic3`, and `topic4`.
-
## Basic operations
This section provides examples of how to make data changes to a StarRocks table through loading. For detailed syntax and parameter descriptions, see [STREAM LOAD](../sql-reference/sql-statements/loading_unloading/STREAM_LOAD.md), [BROKER LOAD](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md), and [CREATE ROUTINE LOAD](../sql-reference/sql-statements/loading_unloading/routine_load/CREATE_ROUTINE_LOAD.md).
diff --git a/docs/en/loading/alibaba.md b/docs/en/loading/alibaba.md
new file mode 100644
index 0000000000000..25867d5cbee78
--- /dev/null
+++ b/docs/en/loading/alibaba.md
@@ -0,0 +1,3 @@
+---
+unlisted: true
+---
diff --git a/docs/en/loading/cloud_storage_load.md b/docs/en/loading/cloud_storage_load.md
deleted file mode 100644
index 5fddf506b4ae9..0000000000000
--- a/docs/en/loading/cloud_storage_load.md
+++ /dev/null
@@ -1,896 +0,0 @@
----
-displayed_sidebar: docs
----
-
-# Load data from cloud storage
-
-import InsertPrivNote from '../_assets/commonMarkdown/insertPrivNote.md'
-
-StarRocks supports using one of the following methods to load huge amounts of data from cloud storage: [Broker Load](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md) and [INSERT](../sql-reference/sql-statements/loading_unloading/INSERT.md).
-
-In v3.0 and earlier, StarRocks only supports Broker Load, which runs in asynchronous loading mode. After you submit a load job, StarRocks asynchronously runs the job. You can use `SELECT * FROM information_schema.loads` to query the job result. This feature is supported from v3.1 onwards. For more information, see the "[View a load job](#view-a-load-job)" section of this topic.
-
-Broker Load ensures the transactional atomicity of each load job that is run to load multiple data files, which means that the loading of multiple data files in one load job must all succeed or fail. It never happens that the loading of some data files succeeds while the loading of the other files fails.
-
-Additionally, Broker Load supports data transformation at data loading and supports data changes made by UPSERT and DELETE operations during data loading. For more information, see [Transform data at loading](../loading/Etl_in_loading.md) and [Change data through loading](../loading/Load_to_Primary_Key_tables.md).
-
-
-
-From v3.1 onwards, StarRocks supports directly loading the data of Parquet-formatted or ORC-formatted files from AWS S3 by using the INSERT command and the FILES keyword, saving you from the trouble of creating an external table first. For more information, see [INSERT > Insert data directly from files in an external source using FILES keyword](../loading/InsertInto.md#insert-data-directly-from-files-in-an-external-source-using-files).
-
-This topic focuses on using [Broker Load](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md) to load data from cloud storage.
-
-## Supported data file formats
-
-Broker Load supports the following data file formats:
-
-- CSV
-
-- Parquet
-
-- ORC
-
-> **NOTE**
->
-> For CSV data, take note of the following points:
->
-> - You can use a UTF-8 string, such as a comma (,), tab, or pipe (|), whose length does not exceed 50 bytes as a text delimiter.
-> - Null values are denoted by using `\N`. For example, a data file consists of three columns, and a record from that data file holds data in the first and third columns but no data in the second column. In this situation, you need to use `\N` in the second column to denote a null value. This means the record must be compiled as `a,\N,b` instead of `a,,b`. `a,,b` denotes that the second column of the record holds an empty string.
-
-## How it works
-
-After you submit a load job to an FE, the FE generates a query plan, splits the query plan into portions based on the number of available BEs or CNs and the size of the data file you want to load, and then assigns each portion of the query plan to an available BE or CN. During the load, each involved BE or CN pulls the data of the data file from your external storage system, pre-processes the data, and then loads the data into your StarRocks cluster. After all BEs or CNs finish their portions of the query plan, the FE determines whether the load job is successful.
-
-The following figure shows the workflow of a Broker Load job.
-
-![Workflow of Broker Load](../_assets/broker_load_how-to-work_en.png)
-
-## Prepare data examples
-
-1. Log in to your local file system and create two CSV-formatted data files, `file1.csv` and `file2.csv`. Both files consist of three columns, which represent user ID, user name, and user score in sequence.
-
- - `file1.csv`
-
- ```Plain
- 1,Lily,21
- 2,Rose,22
- 3,Alice,23
- 4,Julia,24
- ```
-
- - `file2.csv`
-
- ```Plain
- 5,Tony,25
- 6,Adam,26
- 7,Allen,27
- 8,Jacky,28
- ```
-
-2. Upload `file1.csv` and `file2.csv` to the `input` folder of your AWS S3 bucket `bucket_s3`, to the `input` folder of your Google GCS bucket `bucket_gcs`, to the `input` folder of your S3-compatible storage object (such as MinIO) bucket `bucket_minio`, and to the specified paths of your Azure Storage.
-
-3. Log in to your StarRocks database (for example, `test_db`) and create two Primary Key tables, `table1` and `table2`. Both tables consist of three columns: `id`, `name`, and `score`, of which `id` is the primary key.
-
- ```SQL
- CREATE TABLE `table1`
- (
- `id` int(11) NOT NULL COMMENT "user ID",
- `name` varchar(65533) NULL DEFAULT "" COMMENT "user name",
- `score` int(11) NOT NULL DEFAULT "0" COMMENT "user score"
- )
- ENGINE=OLAP
- PRIMARY KEY(`id`)
- DISTRIBUTED BY HASH(`id`);
-
- CREATE TABLE `table2`
- (
- `id` int(11) NOT NULL COMMENT "user ID",
- `name` varchar(65533) NULL DEFAULT "" COMMENT "user name",
- `score` int(11) NOT NULL DEFAULT "0" COMMENT "user score"
- )
- ENGINE=OLAP
- PRIMARY KEY(`id`)
- DISTRIBUTED BY HASH(`id`);
- ```
-
-## Load data from AWS S3
-
-Note that Broker Load supports accessing AWS S3 according to the S3 or S3A protocol. Therefore, when you load data from AWS S3, you can include `s3://` or `s3a://` as the prefix in the S3 URI that you pass as the file path (`DATA INFILE`).
-
-Also, note that the following examples use the CSV file format and the instance profile-based authentication method. For information about how to load data in other formats and about the authentication parameters that you need to configure when using other authentication methods, see [BROKER LOAD](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md).
-
-### Load a single data file into a single table
-
-#### Example
-
-Execute the following statement to load the data of `file1.csv` stored in the `input` folder of your AWS S3 bucket `bucket_s3` into `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_101
-(
- DATA INFILE("s3a://bucket_s3/input/file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "aws.s3.use_instance_profile" = "true",
- "aws.s3.region" = ""
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### Query data
-
-After you submit the load job, you can use `SELECT * FROM information_schema.loads` to query the job result. This feature is supported from v3.1 onwards. For more information, see the "[View a load job](#view-a-load-job)" section of this topic.
-
-After you confirm that the load job is successful, you can use [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) to query the data of `table1`:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### Load multiple data files into a single table
-
-#### Example
-
-Execute the following statement to load the data of all data files (`file1.csv` and `file2.csv`) stored in the `input` folder of your AWS S3 bucket `bucket_s3` into `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_102
-(
- DATA INFILE("s3a://bucket_s3/input/*")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "aws.s3.use_instance_profile" = "true",
- "aws.s3.region" = ""
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### Query data
-
-After you submit the load job, you can use `SELECT * FROM information_schema.loads` to query the job result. This feature is supported from v3.1 onwards. For more information, see the "[View a load job](#view-a-load-job)" section of this topic.
-
-After you confirm that the load job is successful, you can use [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) to query the data of `table1`:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-| 5 | Tony | 25 |
-| 6 | Adam | 26 |
-| 7 | Allen | 27 |
-| 8 | Jacky | 28 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### Load multiple data files into multiple tables
-
-#### Example
-
-Execute the following statement to load the data of `file1.csv` and `file2.csv` stored in the `input` folder of your AWS S3 bucket `bucket_s3` into `table1` and `table2`, respectively:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_103
-(
- DATA INFILE("s3a://bucket_s3/input/file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
- ,
- DATA INFILE("s3a://bucket_s3/input/file2.csv")
- INTO TABLE table2
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "aws.s3.use_instance_profile" = "true",
- "aws.s3.region" = ""
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### Query data
-
-After you submit the load job, you can use `SELECT * FROM information_schema.loads` to query the job result. This feature is supported from v3.1 onwards. For more information, see the "[View a load job](#view-a-load-job)" section of this topic.
-
-After you confirm that the load job is successful, you can use [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) to query the data of `table1` and `table2`:
-
-1. Query `table1`:
-
- ```SQL
- SELECT * FROM table1;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 1 | Lily | 21 |
- | 2 | Rose | 22 |
- | 3 | Alice | 23 |
- | 4 | Julia | 24 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-2. Query `table2`:
-
- ```SQL
- SELECT * FROM table2;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 5 | Tony | 25 |
- | 6 | Adam | 26 |
- | 7 | Allen | 27 |
- | 8 | Jacky | 28 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-## Load data from Google GCS
-
-Note that Broker Load supports accessing Google GCS only according to the gs protocol. Therefore, when you load data from Google GCS, you must include `gs://` as the prefix in the GCS URI that you pass as the file path (`DATA INFILE`).
-
-Also, note that the following examples use the CSV file format and the VM-based authentication method. For information about how to load data in other formats and about the authentication parameters that you need to configure when using other authentication methods, see [BROKER LOAD](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md).
-
-### Load a single data file into a single table
-
-#### Example
-
-Execute the following statement to load the data of `file1.csv` stored in the `input` folder of your Google GCS bucket `bucket_gcs` into `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_201
-(
- DATA INFILE("gs://bucket_gcs/input/file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "gcp.gcs.use_compute_engine_service_account" = "true"
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### Query data
-
-After you submit the load job, you can use `SELECT * FROM information_schema.loads` to query the job result. This feature is supported from v3.1 onwards. For more information, see the "[View a load job](#view-a-load-job)" section of this topic.
-
-After you confirm that the load job is successful, you can use [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) to query the data of `table1`:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### Load multiple data files into a single table
-
-#### Example
-
-Execute the following statement to load the data of all data files (`file1.csv` and `file2.csv`) stored in the `input` folder of your Google GCS bucket `bucket_gcs` into `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_202
-(
- DATA INFILE("gs://bucket_gcs/input/*")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "gcp.gcs.use_compute_engine_service_account" = "true"
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### Query data
-
-After you submit the load job, you can use `SELECT * FROM information_schema.loads` to query the job result. This feature is supported from v3.1 onwards. For more information, see the "[View a load job](#view-a-load-job)" section of this topic.
-
-After you confirm that the load job is successful, you can use [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) to query the data of `table1`:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-| 5 | Tony | 25 |
-| 6 | Adam | 26 |
-| 7 | Allen | 27 |
-| 8 | Jacky | 28 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### Load multiple data files into multiple tables
-
-#### Example
-
-Execute the following statement to load the data of `file1.csv` and `file2.csv` stored in the `input` folder of your Google GCS bucket `bucket_gcs` into `table1` and `table2`, respectively:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_203
-(
- DATA INFILE("gs://bucket_gcs/input/file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
- ,
- DATA INFILE("gs://bucket_gcs/input/file2.csv")
- INTO TABLE table2
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "gcp.gcs.use_compute_engine_service_account" = "true"
-);
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### Query data
-
-After you submit the load job, you can use `SELECT * FROM information_schema.loads` to query the job result. This feature is supported from v3.1 onwards. For more information, see the "[View a load job](#view-a-load-job)" section of this topic.
-
-After you confirm that the load job is successful, you can use [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) to query the data of `table1` and `table2`:
-
-1. Query `table1`:
-
- ```SQL
- SELECT * FROM table1;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 1 | Lily | 21 |
- | 2 | Rose | 22 |
- | 3 | Alice | 23 |
- | 4 | Julia | 24 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-2. Query `table2`:
-
- ```SQL
- SELECT * FROM table2;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 5 | Tony | 25 |
- | 6 | Adam | 26 |
- | 7 | Allen | 27 |
- | 8 | Jacky | 28 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-## Load data from Microsoft Azure Storage
-
-Note that when you load data from Azure Storage, you need to determine which prefix to use based on the access protocol and specific storage service that you use:
-
-- When you load data from Blob Storage, you must include `wasb://` or `wasbs://` as a prefix in the file path (`DATA INFILE`) based on the protocol that is used to access your storage account:
- - If your Blob Storage allows access only through HTTP, use `wasb://` as the prefix, for example, `wasb://@.blob.core.windows.net///*`.
- - If your Blob Storage allows access only through HTTPS, use `wasbs://` as the prefix, for example, `wasbs://@.blob.core.windows``.net///*`
-- When you load data from Data Lake Storage Gen1, you must include `adl://` as a prefix in the file path (`DATA INFILE`), for example, `adl://.azuredatalakestore.net//`.
-- When you load data from Data Lake Storage Gen2, you must include `abfs://` or `abfss://` as a prefix in the file path (`DATA INFILE`) based on the protocol that is used to access your storage account:
- - If your Data Lake Storage Gen2 allows access only via HTTP, use `abfs://` as the prefix, for example, `abfs://@.dfs.core.windows.net/`.
- - If your Data Lake Storage Gen2 allows access only via HTTPS, use `abfss://` as the prefix, for example, `abfss://@.dfs.core.windows.net/`.
-
-Also, note that the following examples use the CSV file format, Azure Blob Storage, and the shared key-based authentication method. For information about how to load data in other formats and about the authentication parameters that you need to configure when using other Azure storage services and authentication methods, see [BROKER LOAD](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md).
-
-### Load a single data file into a single table
-
-#### Example
-
-Execute the following statement to load the data of `file1.csv` stored in the specified path of your Azure Storage into `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_301
-(
- DATA INFILE("wasb[s]://@.blob.core.windows.net//file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "azure.blob.storage_account" = "",
- "azure.blob.shared_key" = ""
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### Query data
-
-After you submit the load job, you can use `SELECT * FROM information_schema.loads` to query the job result. This feature is supported from v3.1 onwards. For more information, see the "[View a load job](#view-a-load-job)" section of this topic.
-
-After you confirm that the load job is successful, you can use [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) to query the data of `table1`:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### Load multiple data files into a single table
-
-#### Example
-
-Execute the following statement to load the data of all data files (`file1.csv` and `file2.csv`) stored in the specified path of your Azure Storage into `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_302
-(
- DATA INFILE("wasb[s]://@.blob.core.windows.net//*")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "azure.blob.storage_account" = "",
- "azure.blob.shared_key" = ""
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### Query data
-
-After you submit the load job, you can use `SELECT * FROM information_schema.loads` to query the job result. This feature is supported from v3.1 onwards. For more information, see the "[View a load job](#view-a-load-job)" section of this topic.
-
-After you confirm that the load job is successful, you can use [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) to query the data of `table1`:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-| 5 | Tony | 25 |
-| 6 | Adam | 26 |
-| 7 | Allen | 27 |
-| 8 | Jacky | 28 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### Load multiple data files into multiple tables
-
-#### Example
-
-Execute the following statement to load the data of `file1.csv` and `file2.csv` stored in the specified path of your Azure Storage into `table1` and `table2`, respectively:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_303
-(
- DATA INFILE("wasb[s]://@.blob.core.windows.net//file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
- ,
- DATA INFILE("wasb[s]://@.blob.core.windows.net//file2.csv")
- INTO TABLE table2
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "azure.blob.storage_account" = "",
- "azure.blob.shared_key" = ""
-);
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### Query data
-
-After you submit the load job, you can use `SELECT * FROM information_schema.loads` to query the job result. This feature is supported from v3.1 onwards. For more information, see the "[View a load job](#view-a-load-job)" section of this topic.
-
-After you confirm that the load job is successful, you can use [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) to query the data of `table1` and `table2`:
-
-1. Query `table1`:
-
- ```SQL
- SELECT * FROM table1;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 1 | Lily | 21 |
- | 2 | Rose | 22 |
- | 3 | Alice | 23 |
- | 4 | Julia | 24 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-2. Query `table2`:
-
- ```SQL
- SELECT * FROM table2;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 5 | Tony | 25 |
- | 6 | Adam | 26 |
- | 7 | Allen | 27 |
- | 8 | Jacky | 28 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-## Load data from an S3-compatible storage system
-
-The following examples use the CSV file format and the MinIO storage system. For information about how to load data in other formats, see [BROKER LOAD](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md).
-
-### Load a single data file into a single table
-
-#### Example
-
-Execute the following statement to load the data of `file1.csv` stored in the `input` folder of your MinIO bucket `bucket_minio` into `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_401
-(
- DATA INFILE("s3://bucket_minio/input/file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "aws.s3.enable_ssl" = "false",
- "aws.s3.enable_path_style_access" = "true",
- "aws.s3.endpoint" = "",
- "aws.s3.access_key" = "",
- "aws.s3.secret_key" = ""
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### Query data
-
-After you submit the load job, you can use `SELECT * FROM information_schema.loads` to query the job result. This feature is supported from v3.1 onwards. For more information, see the "[View a load job](#view-a-load-job)" section of this topic.
-
-After you confirm that the load job is successful, you can use [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) to query the data of `table1`:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### Load multiple data files into a single table
-
-#### Example
-
-Execute the following statement to load the data of all data files (`file1.csv` and `file2.csv`) stored in the `input` folder of your MinIO bucket `bucket_minio` into `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_402
-(
- DATA INFILE("s3://bucket_minio/input/*")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "aws.s3.enable_ssl" = "false",
- "aws.s3.enable_path_style_access" = "true",
- "aws.s3.endpoint" = "",
- "aws.s3.access_key" = "",
- "aws.s3.secret_key" = ""
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### Query data
-
-After you submit the load job, you can use `SELECT * FROM information_schema.loads` to query the job result. This feature is supported from v3.1 onwards. For more information, see the "[View a load job](#view-a-load-job)" section of this topic.
-
-After you confirm that the load job is successful, you can use [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) to query the data of `table1`:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-| 5 | Tony | 25 |
-| 6 | Adam | 26 |
-| 7 | Allen | 27 |
-| 8 | Jacky | 28 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### Load multiple data files into multiple tables
-
-#### Example
-
-Execute the following statement to load the data of all data files (`file1.csv` and `file2.csv`) stored in the `input` folder of your MinIO bucket `bucket_minio` into `table1` and `table2`, respectively:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_403
-(
- DATA INFILE("s3://bucket_minio/input/file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
- ,
- DATA INFILE("s3://bucket_minio/input/file2.csv")
- INTO TABLE table2
- COLUMNS TERMINATED BY ","
- (id, city)
-)
-WITH BROKER
-(
- "aws.s3.enable_ssl" = "false",
- "aws.s3.enable_path_style_access" = "true",
- "aws.s3.endpoint" = "",
- "aws.s3.access_key" = "",
- "aws.s3.secret_key" = ""
-);
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### Query data
-
-After you submit the load job, you can use `SELECT * FROM information_schema.loads` to query the job result. This feature is supported from v3.1 onwards. For more information, see the "[View a load job](#view-a-load-job)" section of this topic.
-
-After you confirm that the load job is successful, you can use [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) to query the data of `table1` and `table2`:
-
-1. Query `table1`:
-
- ```SQL
- SELECT * FROM table1;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 1 | Lily | 21 |
- | 2 | Rose | 22 |
- | 3 | Alice | 23 |
- | 4 | Julia | 24 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-2. Query `table2`:
-
- ```SQL
- SELECT * FROM table2;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 5 | Tony | 25 |
- | 6 | Adam | 26 |
- | 7 | Allen | 27 |
- | 8 | Jacky | 28 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-## View a load job
-
-Use the [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) statement to query the results of one or more load jobs from the `loads` table in the `information_schema` database. This feature is supported from v3.1 onwards.
-
-Example 1: Query the results of load jobs executed on the `test_db` database. In the query statement, specify that a maximum of two results can be returned and the return results must be sorted by creation time (`CREATE_TIME`) in descending order.
-
-```SQL
-SELECT * FROM information_schema.loads
-WHERE database_name = 'test_db'
-ORDER BY create_time DESC
-LIMIT 2\G
-```
-
-The following results are returned:
-
-```SQL
-*************************** 1. row ***************************
- JOB_ID: 20686
- LABEL: label_brokerload_unqualifiedtest_83
- DATABASE_NAME: test_db
- STATE: FINISHED
- PROGRESS: ETL:100%; LOAD:100%
- TYPE: BROKER
- PRIORITY: NORMAL
- SCAN_ROWS: 8
- FILTERED_ROWS: 0
- UNSELECTED_ROWS: 0
- SINK_ROWS: 8
- ETL_INFO:
- TASK_INFO: resource:N/A; timeout(s):14400; max_filter_ratio:1.0
- CREATE_TIME: 2023-08-02 15:25:22
- ETL_START_TIME: 2023-08-02 15:25:24
- ETL_FINISH_TIME: 2023-08-02 15:25:24
- LOAD_START_TIME: 2023-08-02 15:25:24
- LOAD_FINISH_TIME: 2023-08-02 15:25:27
- JOB_DETAILS: {"All backends":{"77fe760e-ec53-47f7-917d-be5528288c08":[10006],"0154f64e-e090-47b7-a4b2-92c2ece95f97":[10005]},"FileNumber":2,"FileSize":84,"InternalTableLoadBytes":252,"InternalTableLoadRows":8,"ScanBytes":84,"ScanRows":8,"TaskNumber":2,"Unfinished backends":{"77fe760e-ec53-47f7-917d-be5528288c08":[],"0154f64e-e090-47b7-a4b2-92c2ece95f97":[]}}
- ERROR_MSG: NULL
- TRACKING_URL: NULL
- TRACKING_SQL: NULL
-REJECTED_RECORD_PATH: NULL
-*************************** 2. row ***************************
- JOB_ID: 20624
- LABEL: label_brokerload_unqualifiedtest_82
- DATABASE_NAME: test_db
- STATE: FINISHED
- PROGRESS: ETL:100%; LOAD:100%
- TYPE: BROKER
- PRIORITY: NORMAL
- SCAN_ROWS: 12
- FILTERED_ROWS: 4
- UNSELECTED_ROWS: 0
- SINK_ROWS: 8
- ETL_INFO:
- TASK_INFO: resource:N/A; timeout(s):14400; max_filter_ratio:1.0
- CREATE_TIME: 2023-08-02 15:23:29
- ETL_START_TIME: 2023-08-02 15:23:34
- ETL_FINISH_TIME: 2023-08-02 15:23:34
- LOAD_START_TIME: 2023-08-02 15:23:34
- LOAD_FINISH_TIME: 2023-08-02 15:23:34
- JOB_DETAILS: {"All backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[10010],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[10006]},"FileNumber":2,"FileSize":158,"InternalTableLoadBytes":333,"InternalTableLoadRows":8,"ScanBytes":158,"ScanRows":12,"TaskNumber":2,"Unfinished backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[]}}
- ERROR_MSG: NULL
- TRACKING_URL: http://172.26.195.69:8540/api/_load_error_log?file=error_log_78f78fc38509451f_a0a2c6b5db27dcb7
- TRACKING_SQL: select tracking_log from information_schema.load_tracking_logs where job_id=20624
-REJECTED_RECORD_PATH: 172.26.95.92:/home/disk1/sr/be/storage/rejected_record/test_db/label_brokerload_unqualifiedtest_0728/6/404a20b1e4db4d27_8aa9af1e8d6d8bdc
-```
-
-Example 2: Query the result of the load job (whose label is `label_brokerload_unqualifiedtest_82`) executed on the `test_db` database:
-
-```SQL
-SELECT * FROM information_schema.loads
-WHERE database_name = 'test_db' and label = 'label_brokerload_unqualifiedtest_82'\G
-```
-
-The following result is returned:
-
-```SQL
-*************************** 1. row ***************************
- JOB_ID: 20624
- LABEL: label_brokerload_unqualifiedtest_82
- DATABASE_NAME: test_db
- STATE: FINISHED
- PROGRESS: ETL:100%; LOAD:100%
- TYPE: BROKER
- PRIORITY: NORMAL
- SCAN_ROWS: 12
- FILTERED_ROWS: 4
- UNSELECTED_ROWS: 0
- SINK_ROWS: 8
- ETL_INFO:
- TASK_INFO: resource:N/A; timeout(s):14400; max_filter_ratio:1.0
- CREATE_TIME: 2023-08-02 15:23:29
- ETL_START_TIME: 2023-08-02 15:23:34
- ETL_FINISH_TIME: 2023-08-02 15:23:34
- LOAD_START_TIME: 2023-08-02 15:23:34
- LOAD_FINISH_TIME: 2023-08-02 15:23:34
- JOB_DETAILS: {"All backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[10010],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[10006]},"FileNumber":2,"FileSize":158,"InternalTableLoadBytes":333,"InternalTableLoadRows":8,"ScanBytes":158,"ScanRows":12,"TaskNumber":2,"Unfinished backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[]}}
- ERROR_MSG: NULL
- TRACKING_URL: http://172.26.195.69:8540/api/_load_error_log?file=error_log_78f78fc38509451f_a0a2c6b5db27dcb7
- TRACKING_SQL: select tracking_log from information_schema.load_tracking_logs where job_id=20624
-REJECTED_RECORD_PATH: 172.26.95.92:/home/disk1/sr/be/storage/rejected_record/test_db/label_brokerload_unqualifiedtest_0728/6/404a20b1e4db4d27_8aa9af1e8d6d8bdc
-```
-
-For information about the fields in the return results, see [Information Schema > loads](../sql-reference/information_schema.md#loads).
-
-## Cancel a load job
-
-When a load job is not in the **CANCELLED** or **FINISHED** stage, you can use the [CANCEL LOAD](../sql-reference/sql-statements/loading_unloading/CANCEL_LOAD.md) statement to cancel the job.
-
-For example, you can execute the following statement to cancel a load job, whose label is `label1`, in the database `test_db`:
-
-```SQL
-CANCEL LOAD
-FROM test_db
-WHERE LABEL = "label";
-```
-
-## Job splitting and concurrent running
-
-A Broker Load job can be split into one or more tasks that concurrently run. The tasks within a load job are run within a single transaction. They must all succeed or fail. StarRocks splits each load job based on how you declare `data_desc` in the `LOAD` statement:
-
-- If you declare multiple `data_desc` parameters, each of which specifies a distinct table, a task is generated to load the data of each table.
-
-- If you declare multiple `data_desc` parameters, each of which specifies a distinct partition for the same table, a task is generated to load the data of each partition.
-
-Additionally, each task can be further split into one or more instances, which are evenly distributed to and concurrently run on the BEs or CNs of your StarRocks cluster. StarRocks splits each task based on the FE parameter [`min_bytes_per_broker_scanner`](../administration/management/FE_configuration.md) and the number of BE or CN nodes. You can use the following formula to calculate the number of instances in an individual task:
-
-**Number of instances in an individual task = min(Amount of data to be loaded by an individual task/`min_bytes_per_broker_scanner`, Number of BE/CN nodes)**
-
-In most cases, only one `data_desc` is declared for each load job, each load job is split into only one task, and the task is split into the same number of instances as the number of BE or CN nodes.
-
-## Troubleshooting
-
-See [Broker Load FAQ](../faq/loading/Broker_load_faq.md).
diff --git a/docs/en/loading/huawei.md b/docs/en/loading/huawei.md
new file mode 100644
index 0000000000000..a55a3f1fc26f0
--- /dev/null
+++ b/docs/en/loading/huawei.md
@@ -0,0 +1,4 @@
+---
+unlisted: true
+---
+
diff --git a/docs/en/loading/s3_compatible.md b/docs/en/loading/s3_compatible.md
new file mode 100644
index 0000000000000..a55a3f1fc26f0
--- /dev/null
+++ b/docs/en/loading/s3_compatible.md
@@ -0,0 +1,4 @@
+---
+unlisted: true
+---
+
diff --git a/docs/en/loading/tencent.md b/docs/en/loading/tencent.md
new file mode 100644
index 0000000000000..a55a3f1fc26f0
--- /dev/null
+++ b/docs/en/loading/tencent.md
@@ -0,0 +1,4 @@
+---
+unlisted: true
+---
+
diff --git a/docs/zh/loading/Etl_in_loading.md b/docs/zh/loading/Etl_in_loading.md
index 45d8d5928892a..87814bac5e748 100644
--- a/docs/zh/loading/Etl_in_loading.md
+++ b/docs/zh/loading/Etl_in_loading.md
@@ -38,16 +38,6 @@ StarRocks 支持在导入数据的过程中实现数据转换。
支持 Apache Hive™ 分区路径命名方式,使 StarRocks 能够从文件路径中获取分区列的内容。
-## 前提条件
-
-### Broker Load
-
-参见[从 HDFS 导入](../loading/hdfs_load.md)或[从云存储导入](../loading/cloud_storage_load.md)中的“背景信息”小节。
-
-### Routine Load
-
-如果使用 [Routine Load](./RoutineLoad.md) 导入数据,必须确保您的 Apache Kafka® 集群已创建 Topic。本文假设您已部署两个 Topic,分别为 `topic1` 和 `topic2`。
-
## 数据样例
1. 在本地文件系统中创建数据文件。
diff --git a/docs/zh/loading/Load_to_Primary_Key_tables.md b/docs/zh/loading/Load_to_Primary_Key_tables.md
index 4550006a3cf21..b7ca1a01a279b 100644
--- a/docs/zh/loading/Load_to_Primary_Key_tables.md
+++ b/docs/zh/loading/Load_to_Primary_Key_tables.md
@@ -55,7 +55,7 @@ StarRocks 的主键模型目前支持 UPSERT 和 DELETE 操作,不支持区分
### Broker Load
-参见[从 HDFS 导入](../loading/hdfs_load.md)或[从云存储导入](../loading/cloud_storage_load.md)中的“背景信息”小节。
+参见[从 HDFS 导入](../loading/hdfs_load.md)或[从云存储导入](../loading/objectstorage.mdx)中的“背景信息”小节。
### Routine Load
diff --git a/docs/zh/loading/alibaba.md b/docs/zh/loading/alibaba.md
new file mode 100644
index 0000000000000..c6a3524a5a7f5
--- /dev/null
+++ b/docs/zh/loading/alibaba.md
@@ -0,0 +1,397 @@
+---
+displayed_sidebar: docs
+---
+
+# 从阿里云 OSS 导入
+
+StarRocks 支持通过两种方式从云存储系统导入大批量数据:[Broker Load](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md) 和 [INSERT](../sql-reference/sql-statements/loading_unloading/INSERT.md)。
+
+在 3.0 及以前版本,StarRocks 只支持 Broker Load 导入方式。Broker Load 是一种异步导入方式,即您提交导入作业以后,StarRocks 会异步地执行导入作业。您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
+
+Broker Load 能够保证单次导入事务的原子性,即单次导入的多个数据文件都成功或者都失败,而不会出现部分导入成功、部分导入失败的情况。
+
+另外,Broker Load 还支持在导入过程中做数据转换、以及通过 UPSERT 和 DELETE 操作实现数据变更。请参见[导入过程中实现数据转换](../loading/Etl_in_loading.md)和[通过导入实现数据变更](../loading/Load_to_Primary_Key_tables.md)。
+
+> **注意**
+>
+> Broker Load 操作需要目标表的 INSERT 权限。如果您的用户账号没有 INSERT 权限,请参考 [GRANT](../sql-reference/sql-statements/account-management/GRANT.md) 给用户赋权。
+
+从 3.1 版本起,StarRocks 新增支持使用 INSERT 语句和 `FILES` 关键字直接从 AWS S3 导入特定格式的数据文件,避免了需事先创建外部表的麻烦。参见 [INSERT > 通过 FILES 关键字直接导入外部数据文件](../loading/InsertInto.md#通过-insert-into-select-以及表函数-files-导入外部数据文件)。
+
+本文主要介绍如何使用 [Broker Load](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md) 从云存储系统导入数据。
+
+## 支持的数据文件格式
+
+Broker Load 支持如下数据文件格式:
+
+- CSV
+
+- Parquet
+
+- ORC
+
+- JSON(自 3.2.3 版本起支持)
+
+> **说明**
+>
+> 对于 CSV 格式的数据,需要注意以下两点:
+>
+> - StarRocks 支持设置长度最大不超过 50 个字节的 UTF-8 编码字符串作为列分隔符,包括常见的逗号 (,)、Tab 和 Pipe (|)。
+> - 空值 (null) 用 `\N` 表示。比如,数据文件一共有三列,其中某行数据的第一列、第三列数据分别为 `a` 和 `b`,第二列没有数据,则第二列需要用 `\N` 来表示空值,写作 `a,\N,b`,而不是 `a,,b`。`a,,b` 表示第二列是一个空字符串。
+
+## 基本原理
+
+提交导入作业以后,FE 会生成对应的查询计划,并根据目前可用 BE(或 CN)的个数和源数据文件的大小,将查询计划分配给多个 BE(或 CN)执行。每个 BE(或 CN)负责执行一部分导入任务。BE(或 CN)在执行过程中,会从外部存储系统拉取数据,并且会在对数据进行预处理之后将数据导入到 StarRocks 中。所有 BE(或 CN)均完成导入后,由 FE 最终判断导入作业是否成功。
+
+下图展示了 Broker Load 的主要流程:
+
+![Broker Load 原理图](../_assets/broker_load_how-to-work_zh.png)
+
+## 准备数据样例
+
+1. 在本地文件系统下,创建两个 CSV 格式的数据文件,`file1.csv` 和 `file2.csv`。两个数据文件都包含三列,分别代表用户 ID、用户姓名和用户得分,如下所示:
+
+ - `file1.csv`
+
+ ```Plain
+ 1,Lily,21
+ 2,Rose,22
+ 3,Alice,23
+ 4,Julia,24
+ ```
+
+ - `file2.csv`
+
+ ```Plain
+ 5,Tony,25
+ 6,Adam,26
+ 7,Allen,27
+ 8,Jacky,28
+ ```
+
+2. 将 `file1.csv` 和 `file2.csv` 上传到云存储空间的指定路径下。这里假设分别上传到 AWS S3 存储空间 `bucket_s3` 里的 `input` 文件夹下、 Google GCS 存储空间 `bucket_gcs` 里的 `input` 文件夹下、阿里云 OSS 存储空间 `bucket_oss` 里的 `input` 文件夹下、腾讯云 COS 存储空间 `bucket_cos` 里的 `input` 文件夹下、华为云 OBS 存储空间 `bucket_obs` 里的 `input` 文件夹下、其他兼容 S3 协议的对象存储(如 MinIO)空间 `bucket_minio` 里的 `input` 文件夹下、以及 Azure Storage 的指定路径下。
+
+3. 登录 StarRocks 数据库(假设为 `test_db`),创建两张主键表,`table1` 和 `table2`。两张表都包含 `id`、`name` 和 `score` 三列,分别代表用户 ID、用户姓名和用户得分,主键为 `id` 列,如下所示:
+
+ ```SQL
+ CREATE TABLE `table1`
+ (
+ `id` int(11) NOT NULL COMMENT "用户 ID",
+ `name` varchar(65533) NULL DEFAULT "" COMMENT "用户姓名",
+ `score` int(11) NOT NULL DEFAULT "0" COMMENT "用户得分"
+ )
+ ENGINE=OLAP
+ PRIMARY KEY(`id`)
+ DISTRIBUTED BY HASH(`id`);
+
+ CREATE TABLE `table2`
+ (
+ `id` int(11) NOT NULL COMMENT "用户 ID",
+ `name` varchar(65533) NULL DEFAULT "" COMMENT "用户姓名",
+ `score` int(11) NOT NULL DEFAULT "0" COMMENT "用户得分"
+ )
+ ENGINE=OLAP
+ PRIMARY KEY(`id`)
+ DISTRIBUTED BY HASH(`id`);
+ ```
+
+
+## 从阿里云 OSS 导入
+
+下述命令以 CSV 格式为例。有关如何导入其他格式的数据,参见 [BROKER LOAD](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md)。
+
+### 导入单个数据文件到单表
+
+#### 操作示例
+
+通过如下语句,把阿里云 OSS 存储空间 `bucket_oss` 里 `input` 文件夹内数据文件 `file1.csv` 的数据导入到目标表 `table1`:
+
+```SQL
+LOAD LABEL test_db.label_brokerloadtest_401
+(
+ DATA INFILE("oss://bucket_oss/input/file1.csv")
+ INTO TABLE table1
+ COLUMNS TERMINATED BY ","
+ (id, name, score)
+)
+WITH BROKER
+(
+ "fs.oss.accessKeyId" = "",
+ "fs.oss.accessKeySecret" = "",
+ "fs.oss.endpoint" = ""
+)
+PROPERTIES
+(
+ "timeout" = "3600"
+);
+```
+
+#### 查询数据
+
+提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
+
+确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
+
+```SQL
+SELECT * FROM table1;
++------+-------+-------+
+| id | name | score |
++------+-------+-------+
+| 1 | Lily | 21 |
+| 2 | Rose | 22 |
+| 3 | Alice | 23 |
+| 4 | Julia | 24 |
++------+-------+-------+
+4 rows in set (0.01 sec)
+```
+
+### 导入多个数据文件到单表
+
+#### 操作示例
+
+通过如下语句,把阿里云 OSS 存储空间 `bucket_oss` 里 `input` 文件夹内所有数据文件(`file1.csv` 和 `file2.csv`)的数据导入到目标表 `table1`:
+
+```SQL
+LOAD LABEL test_db.label_brokerloadtest_402
+(
+ DATA INFILE("oss://bucket_oss/input/*")
+ INTO TABLE table1
+ COLUMNS TERMINATED BY ","
+ (id, name, score)
+)
+WITH BROKER
+(
+ "fs.oss.accessKeyId" = "",
+ "fs.oss.accessKeySecret" = "",
+ "fs.oss.endpoint" = ""
+)
+PROPERTIES
+(
+ "timeout" = "3600"
+);
+```
+
+#### 查询数据
+
+提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
+
+确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
+
+```SQL
+SELECT * FROM table1;
++------+-------+-------+
+| id | name | score |
++------+-------+-------+
+| 1 | Lily | 21 |
+| 2 | Rose | 22 |
+| 3 | Alice | 23 |
+| 4 | Julia | 24 |
+| 5 | Tony | 25 |
+| 6 | Adam | 26 |
+| 7 | Allen | 27 |
+| 8 | Jacky | 28 |
++------+-------+-------+
+4 rows in set (0.01 sec)
+```
+
+### 导入多个数据文件到多表
+
+#### 操作示例
+
+通过如下语句,把阿里云 OSS 存储空间 `bucket_oss` 里 `input` 文件夹内数据文件 `file1.csv` 和 `file2.csv` 的数据分别导入到目标表 `table1` 和 `table2`:
+
+```SQL
+LOAD LABEL test_db.label_brokerloadtest_403
+(
+ DATA INFILE("oss://bucket_oss/input/file1.csv")
+ INTO TABLE table1
+ COLUMNS TERMINATED BY ","
+ (id, name, score)
+ ,
+ DATA INFILE("oss://bucket_oss/input/file2.csv")
+ INTO TABLE table2
+ COLUMNS TERMINATED BY ","
+ (id, name, score)
+)
+WITH BROKER
+(
+ "fs.oss.accessKeyId" = "",
+ "fs.oss.accessKeySecret" = "",
+ "fs.oss.endpoint" = ""
+);
+PROPERTIES
+(
+ "timeout" = "3600"
+);
+```
+
+#### 查询数据
+
+提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
+
+确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 和 `table2` 中的数据:
+
+1. 查询 `table1` 的数据,如下所示:
+
+ ```SQL
+ SELECT * FROM table1;
+ +------+-------+-------+
+ | id | name | score |
+ +------+-------+-------+
+ | 1 | Lily | 21 |
+ | 2 | Rose | 22 |
+ | 3 | Alice | 23 |
+ | 4 | Julia | 24 |
+ +------+-------+-------+
+ 4 rows in set (0.01 sec)
+ ```
+
+2. 查询 `table2` 的数据,如下所示:
+
+ ```SQL
+ SELECT * FROM table2;
+ +------+-------+-------+
+ | id | name | score |
+ +------+-------+-------+
+ | 5 | Tony | 25 |
+ | 6 | Adam | 26 |
+ | 7 | Allen | 27 |
+ | 8 | Jacky | 28 |
+ +------+-------+-------+
+ 4 rows in set (0.01 sec)
+ ```
+
+
+## 查看导入作业
+
+通过 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句从 `information_schema` 数据库中的 `loads` 表来查看 Broker Load 作业的结果。该功能自 3.1 版本起支持。
+
+示例一:通过如下命令查看 `test_db` 数据库中导入作业的执行情况,同时指定查询结果根据作业创建时间 (`CREATE_TIME`) 按降序排列,并且最多显示两条结果数据:
+
+```SQL
+SELECT * FROM information_schema.loads
+WHERE database_name = 'test_db'
+ORDER BY create_time DESC
+LIMIT 2\G
+```
+
+返回结果如下所示:
+
+```SQL
+*************************** 1. row ***************************
+ JOB_ID: 20686
+ LABEL: label_brokerload_unqualifiedtest_83
+ DATABASE_NAME: test_db
+ STATE: FINISHED
+ PROGRESS: ETL:100%; LOAD:100%
+ TYPE: BROKER
+ PRIORITY: NORMAL
+ SCAN_ROWS: 8
+ FILTERED_ROWS: 0
+ UNSELECTED_ROWS: 0
+ SINK_ROWS: 8
+ ETL_INFO:
+ TASK_INFO: resource:N/A; timeout(s):14400; max_filter_ratio:1.0
+ CREATE_TIME: 2023-08-02 15:25:22
+ ETL_START_TIME: 2023-08-02 15:25:24
+ ETL_FINISH_TIME: 2023-08-02 15:25:24
+ LOAD_START_TIME: 2023-08-02 15:25:24
+ LOAD_FINISH_TIME: 2023-08-02 15:25:27
+ JOB_DETAILS: {"All backends":{"77fe760e-ec53-47f7-917d-be5528288c08":[10006],"0154f64e-e090-47b7-a4b2-92c2ece95f97":[10005]},"FileNumber":2,"FileSize":84,"InternalTableLoadBytes":252,"InternalTableLoadRows":8,"ScanBytes":84,"ScanRows":8,"TaskNumber":2,"Unfinished backends":{"77fe760e-ec53-47f7-917d-be5528288c08":[],"0154f64e-e090-47b7-a4b2-92c2ece95f97":[]}}
+ ERROR_MSG: NULL
+ TRACKING_URL: NULL
+ TRACKING_SQL: NULL
+REJECTED_RECORD_PATH: NULL
+*************************** 2. row ***************************
+ JOB_ID: 20624
+ LABEL: label_brokerload_unqualifiedtest_82
+ DATABASE_NAME: test_db
+ STATE: FINISHED
+ PROGRESS: ETL:100%; LOAD:100%
+ TYPE: BROKER
+ PRIORITY: NORMAL
+ SCAN_ROWS: 12
+ FILTERED_ROWS: 4
+ UNSELECTED_ROWS: 0
+ SINK_ROWS: 8
+ ETL_INFO:
+ TASK_INFO: resource:N/A; timeout(s):14400; max_filter_ratio:1.0
+ CREATE_TIME: 2023-08-02 15:23:29
+ ETL_START_TIME: 2023-08-02 15:23:34
+ ETL_FINISH_TIME: 2023-08-02 15:23:34
+ LOAD_START_TIME: 2023-08-02 15:23:34
+ LOAD_FINISH_TIME: 2023-08-02 15:23:34
+ JOB_DETAILS: {"All backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[10010],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[10006]},"FileNumber":2,"FileSize":158,"InternalTableLoadBytes":333,"InternalTableLoadRows":8,"ScanBytes":158,"ScanRows":12,"TaskNumber":2,"Unfinished backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[]}}
+ ERROR_MSG: NULL
+ TRACKING_URL: http://172.26.195.69:8540/api/_load_error_log?file=error_log_78f78fc38509451f_a0a2c6b5db27dcb7
+ TRACKING_SQL: select tracking_log from information_schema.load_tracking_logs where job_id=20624
+REJECTED_RECORD_PATH: 172.26.95.92:/home/disk1/sr/be/storage/rejected_record/test_db/label_brokerload_unqualifiedtest_0728/6/404a20b1e4db4d27_8aa9af1e8d6d8bdc
+```
+
+示例二:通过如下命令查看 `test_db` 数据库中标签为 `label_brokerload_unqualifiedtest_82` 的导入作业的执行情况:
+
+```SQL
+SELECT * FROM information_schema.loads
+WHERE database_name = 'test_db' and label = 'label_brokerload_unqualifiedtest_82'\G
+```
+
+返回结果如下所示:
+
+```SQL
+*************************** 1. row ***************************
+ JOB_ID: 20624
+ LABEL: label_brokerload_unqualifiedtest_82
+ DATABASE_NAME: test_db
+ STATE: FINISHED
+ PROGRESS: ETL:100%; LOAD:100%
+ TYPE: BROKER
+ PRIORITY: NORMAL
+ SCAN_ROWS: 12
+ FILTERED_ROWS: 4
+ UNSELECTED_ROWS: 0
+ SINK_ROWS: 8
+ ETL_INFO:
+ TASK_INFO: resource:N/A; timeout(s):14400; max_filter_ratio:1.0
+ CREATE_TIME: 2023-08-02 15:23:29
+ ETL_START_TIME: 2023-08-02 15:23:34
+ ETL_FINISH_TIME: 2023-08-02 15:23:34
+ LOAD_START_TIME: 2023-08-02 15:23:34
+ LOAD_FINISH_TIME: 2023-08-02 15:23:34
+ JOB_DETAILS: {"All backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[10010],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[10006]},"FileNumber":2,"FileSize":158,"InternalTableLoadBytes":333,"InternalTableLoadRows":8,"ScanBytes":158,"ScanRows":12,"TaskNumber":2,"Unfinished backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[]}}
+ ERROR_MSG: NULL
+ TRACKING_URL: http://172.26.195.69:8540/api/_load_error_log?file=error_log_78f78fc38509451f_a0a2c6b5db27dcb7
+ TRACKING_SQL: select tracking_log from information_schema.load_tracking_logs where job_id=20624
+REJECTED_RECORD_PATH: 172.26.95.92:/home/disk1/sr/be/storage/rejected_record/test_db/label_brokerload_unqualifiedtest_0728/6/404a20b1e4db4d27_8aa9af1e8d6d8bdc
+```
+
+有关返回字段的说明,参见 [`information_schema.loads`](../sql-reference/information_schema.md)。
+
+## 取消导入作业
+
+当导入作业状态不为 **CANCELLED** 或 **FINISHED** 时,可以通过 [CANCEL LOAD](../sql-reference/sql-statements/loading_unloading/CANCEL_LOAD.md) 语句来取消该导入作业。
+
+例如,可以通过以下语句,撤销 `test_db` 数据库中标签为 `label1` 的导入作业:
+
+```SQL
+CANCEL LOAD
+FROM test_db
+WHERE LABEL = "label1";
+```
+
+## 作业拆分与并行执行
+
+一个 Broker Load 作业会拆分成一个或者多个子任务并行处理,一个作业的所有子任务作为一个事务整体成功或失败。作业的拆分通过 `LOAD LABEL` 语句中的 `data_desc` 参数来指定:
+
+- 如果声明多个 `data_desc` 参数对应导入多张不同的表,则每张表数据的导入会拆分成一个子任务。
+
+- 如果声明多个 `data_desc` 参数对应导入同一张表的不同分区,则每个分区数据的导入会拆分成一个子任务。
+
+每个子任务还会拆分成一个或者多个实例,然后这些实例会均匀地被分配到 BE(或 CN)上并行执行。实例的拆分由 FE 配置参数 [`min_bytes_per_broker_scanner`](../administration/management/FE_configuration.md) 和 BE(或 CN)节点数量决定,可以使用如下公式计算单个子任务的实例总数:
+
+单个子任务的实例总数 = min(单个子任务待导入数据量的总大小/`min_bytes_per_broker_scanner`, BE/CN 节点数量)
+
+一般情况下,一个导入作业只有一个 `data_desc`,只会拆分成一个子任务,子任务会拆分成与 BE(或 CN)节点数量相等的实例。
+
+## 常见问题
+
+请参见 [Broker Load 常见问题](../faq/loading/Broker_load_faq.md)。
diff --git a/docs/zh/loading/cloud_storage_load.md b/docs/zh/loading/cloud_storage_load.md
deleted file mode 100644
index 1943d2334b3c0..0000000000000
--- a/docs/zh/loading/cloud_storage_load.md
+++ /dev/null
@@ -1,1391 +0,0 @@
----
-displayed_sidebar: docs
----
-
-# 从云存储导入
-
-StarRocks 支持通过两种方式从云存储系统导入大批量数据:[Broker Load](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md) 和 [INSERT](../sql-reference/sql-statements/loading_unloading/INSERT.md)。
-
-在 3.0 及以前版本,StarRocks 只支持 Broker Load 导入方式。Broker Load 是一种异步导入方式,即您提交导入作业以后,StarRocks 会异步地执行导入作业。您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-Broker Load 能够保证单次导入事务的原子性,即单次导入的多个数据文件都成功或者都失败,而不会出现部分导入成功、部分导入失败的情况。
-
-另外,Broker Load 还支持在导入过程中做数据转换、以及通过 UPSERT 和 DELETE 操作实现数据变更。请参见[导入过程中实现数据转换](../loading/Etl_in_loading.md)和[通过导入实现数据变更](../loading/Load_to_Primary_Key_tables.md)。
-
-> **注意**
->
-> Broker Load 操作需要目标表的 INSERT 权限。如果您的用户账号没有 INSERT 权限,请参考 [GRANT](../sql-reference/sql-statements/account-management/GRANT.md) 给用户赋权。
-
-从 3.1 版本起,StarRocks 新增支持使用 INSERT 语句和 `FILES` 关键字直接从 AWS S3 导入 Parquet 或 ORC 格式的数据文件,避免了需事先创建外部表的麻烦。参见 [INSERT > 通过 FILES 关键字直接导入外部数据文件](../loading/InsertInto.md#通过-insert-into-select-以及表函数-files-导入外部数据文件)。
-
-本文主要介绍如何使用 [Broker Load](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md) 从云存储系统导入数据。
-
-## 支持的数据文件格式
-
-Broker Load 支持如下数据文件格式:
-
-- CSV
-
-- Parquet
-
-- ORC
-
-> **说明**
->
-> 对于 CSV 格式的数据,需要注意以下两点:
->
-> - StarRocks 支持设置长度最大不超过 50 个字节的 UTF-8 编码字符串作为列分隔符,包括常见的逗号 (,)、Tab 和 Pipe (|)。
-> - 空值 (null) 用 `\N` 表示。比如,数据文件一共有三列,其中某行数据的第一列、第三列数据分别为 `a` 和 `b`,第二列没有数据,则第二列需要用 `\N` 来表示空值,写作 `a,\N,b`,而不是 `a,,b`。`a,,b` 表示第二列是一个空字符串。
-
-## 基本原理
-
-提交导入作业以后,FE 会生成对应的查询计划,并根据目前可用 BE(或 CN)的个数和源数据文件的大小,将查询计划分配给多个 BE(或 CN)执行。每个 BE(或 CN)负责执行一部分导入任务。BE(或 CN)在执行过程中,会从外部存储系统拉取数据,并且会在对数据进行预处理之后将数据导入到 StarRocks 中。所有 BE(或 CN)均完成导入后,由 FE 最终判断导入作业是否成功。
-
-下图展示了 Broker Load 的主要流程:
-
-![Broker Load 原理图](../_assets/broker_load_how-to-work_zh.png)
-
-## 准备数据样例
-
-1. 在本地文件系统下,创建两个 CSV 格式的数据文件,`file1.csv` 和 `file2.csv`。两个数据文件都包含三列,分别代表用户 ID、用户姓名和用户得分,如下所示:
-
- - `file1.csv`
-
- ```Plain
- 1,Lily,21
- 2,Rose,22
- 3,Alice,23
- 4,Julia,24
- ```
-
- - `file2.csv`
-
- ```Plain
- 5,Tony,25
- 6,Adam,26
- 7,Allen,27
- 8,Jacky,28
- ```
-
-2. 将 `file1.csv` 和 `file2.csv` 上传到云存储空间的指定路径下。这里假设分别上传到 AWS S3 存储空间 `bucket_s3` 里的 `input` 文件夹下、 Google GCS 存储空间 `bucket_gcs` 里的 `input` 文件夹下、阿里云 OSS 存储空间 `bucket_oss` 里的 `input` 文件夹下、腾讯云 COS 存储空间 `bucket_cos` 里的 `input` 文件夹下、华为云 OBS 存储空间 `bucket_obs` 里的 `input` 文件夹下、其他兼容 S3 协议的对象存储(如 MinIO)空间 `bucket_minio` 里的 `input` 文件夹下、以及 Azure Storage 的指定路径下。
-
-3. 登录 StarRocks 数据库(假设为 `test_db`),创建两张主键模型表,`table1` 和 `table2`。两张表都包含 `id`、`name` 和 `score` 三列,分别代表用户 ID、用户姓名和用户得分,主键为 `id` 列,如下所示:
-
- ```SQL
- CREATE TABLE `table1`
- (
- `id` int(11) NOT NULL COMMENT "用户 ID",
- `name` varchar(65533) NULL DEFAULT "" COMMENT "用户姓名",
- `score` int(11) NOT NULL DEFAULT "0" COMMENT "用户得分"
- )
- ENGINE=OLAP
- PRIMARY KEY(`id`)
- DISTRIBUTED BY HASH(`id`);
-
- CREATE TABLE `table2`
- (
- `id` int(11) NOT NULL COMMENT "用户 ID",
- `name` varchar(65533) NULL DEFAULT "" COMMENT "用户姓名",
- `score` int(11) NOT NULL DEFAULT "0" COMMENT "用户得分"
- )
- ENGINE=OLAP
- PRIMARY KEY(`id`)
- DISTRIBUTED BY HASH(`id`);
- ```
-
-## 从 AWS S3 导入
-
-注意,Broker Load 支持通过 S3 或 S3A 协议访问 AWS S3,因此从 AWS S3 导入数据时,您在文件路径 (`DATA INFILE`) 中传入的目标文件的 S3 URI 可以使用 `s3://` 或 `s3a://` 作为前缀。
-
-另外注意,下述命令以 CSV 格式和基于 Instance Profile 的认证方式为例。有关如何导入其他格式的数据、以及使用其他认证方式时需要配置的参数,参见 [BROKER LOAD](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md)。
-
-### 导入单个数据文件到单表
-
-#### 操作示例
-
-通过如下语句,把 AWS S3 存储空间 `bucket_s3` 里 `input` 文件夹内数据文件 `file1.csv` 的数据导入到目标表 `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_101
-(
- DATA INFILE("s3a://bucket_s3/input/file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "aws.s3.use_instance_profile" = "true",
- "aws.s3.region" = ""
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### 导入多个数据文件到单表
-
-#### 操作示例
-
-通过如下语句,把AWS S3 存储空间 `bucket_s3` 里 `input` 文件夹内所有数据文件(`file1.csv` 和 `file2.csv`)的数据导入到目标表 `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_102
-(
- DATA INFILE("s3a://bucket_s3/input/*")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "aws.s3.use_instance_profile" = "true",
- "aws.s3.region" = ""
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-| 5 | Tony | 25 |
-| 6 | Adam | 26 |
-| 7 | Allen | 27 |
-| 8 | Jacky | 28 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### 导入多个数据文件到多表
-
-#### 操作示例
-
-通过如下语句,把 AWS S3 存储空间 `bucket_s3` 里 `input` 文件夹内数据文件 `file1.csv` 和 `file2.csv` 的数据分别导入到目标表 `table1` 和 `table2`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_103
-(
- DATA INFILE("s3a://bucket_s3/input/file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
- ,
- DATA INFILE("s3a://bucket_s3/input/file2.csv")
- INTO TABLE table2
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "aws.s3.use_instance_profile" = "true",
- "aws.s3.region" = ""
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 和 `table2` 中的数据:
-
-1. 查询 `table1` 的数据,如下所示:
-
- ```SQL
- SELECT * FROM table1;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 1 | Lily | 21 |
- | 2 | Rose | 22 |
- | 3 | Alice | 23 |
- | 4 | Julia | 24 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-2. 查询 `table2` 的数据,如下所示:
-
- ```SQL
- SELECT * FROM table2;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 5 | Tony | 25 |
- | 6 | Adam | 26 |
- | 7 | Allen | 27 |
- | 8 | Jacky | 28 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-## 从 Google GCS 导入
-
-注意,由于 Broker Load 只支持通过 gs 协议访问 Google GCS,因此从 Google GCS 导入数据时,必须确保您在文件路径 (`DATA INFILE`) 中传入的目标文件的 GCS URI 使用 `gs://` 作为前缀。
-
-另外注意,下述命令以 CSV 格式和基于 VM 的认证方式为例。有关如何导入其他格式的数据、以及使用其他认证方式时需要配置的参数,参见 [BROKER LOAD](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md)。
-
-### 导入单个数据文件到单表
-
-#### 操作示例
-
-通过如下语句,把 Google GCS 存储空间 `bucket_gcs` 里 `input` 文件夹内数据文件 `file1.csv` 的数据导入到目标表 `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_201
-(
- DATA INFILE("gs://bucket_gcs/input/file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "gcp.gcs.use_compute_engine_service_account" = "true"
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### 导入多个数据文件到单表
-
-#### 操作示例
-
-通过如下语句,把 Google GCS 存储空间 `bucket_gcs` 里 `input` 文件夹内所有数据文件(`file1.csv` 和 `file2.csv`)的数据导入到目标表 `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_202
-(
- DATA INFILE("gs://bucket_gcs/input/*")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "gcp.gcs.use_compute_engine_service_account" = "true"
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-| 5 | Tony | 25 |
-| 6 | Adam | 26 |
-| 7 | Allen | 27 |
-| 8 | Jacky | 28 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### 导入多个数据文件到多表
-
-#### 操作示例
-
-通过如下语句,把 Google GCS 存储空间 `bucket_gcs` 里 `input` 文件夹内数据文件 `file1.csv` 和 `file2.csv` 的数据分别导入到目标表 `table1` 和 `table2`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_203
-(
- DATA INFILE("gs://bucket_gcs/input/file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
- ,
- DATA INFILE("gs://bucket_gcs/input/file2.csv")
- INTO TABLE table2
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "gcp.gcs.use_compute_engine_service_account" = "true"
-);
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 和 `table2` 中的数据:
-
-1. 查询 `table1` 的数据,如下所示:
-
- ```SQL
- SELECT * FROM table1;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 1 | Lily | 21 |
- | 2 | Rose | 22 |
- | 3 | Alice | 23 |
- | 4 | Julia | 24 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-2. 查询 `table2` 的数据,如下所示:
-
- ```SQL
- SELECT * FROM table2;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 5 | Tony | 25 |
- | 6 | Adam | 26 |
- | 7 | Allen | 27 |
- | 8 | Jacky | 28 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-## 从 Microsoft Azure Storage 导入
-
-注意,从 Azure Storage 导入数据时,您需要根据所使用的访问协议和存储服务来确定文件路径 (`DATA INFILE`) 的前缀:
-
-- 从 Blob Storage 导入数据时,需要根据使用的访问协议在文件路径 (`DATA INFILE`) 里添加 `wasb://` 或 `wasbs://` 作为前缀:
- - 如果使用 HTTP 协议进行访问,请使用 `wasb://` 作为前缀,例如,`wasb://@.blob.core.windows.net///*`。
- - 如果使用 HTTPS 协议进行访问,请使用 `wasbs://` 作为前缀,例如,`wasbs://@.blob.core.windows.net///*`。
-- 从 Azure Data Lake Storage Gen1 导入数据时,需要在文件路径 (`DATA INFILE`) 里添加 `adl://` 作为前缀,例如, `adl://.azuredatalakestore.net//`。
-- 从 Data Lake Storage Gen2 导入数据时,需要根据使用的访问协议在文件路径 (`DATA INFILE`) 里添加 `abfs://` 或 `abfss://` 作为前缀:
- - 如果使用 HTTP 协议进行访问,请使用 `abfs://` 作为前缀,例如,`abfs://@.dfs.core.windows.net/`。
- - 如果使用 HTTPS 协议进行访问,请使用 `abfss://` 作为前缀,例如,`abfss://@.dfs.core.windows.net/`。
-
-另外注意,下述命令以 CSV 格式、Azure Blob Storage 和基于 Shared Key 的认证方式为例。有关如何导入其他格式的数据、以及使用其他 Azure 对象存储服务和其他认证方式时需要配置的参数,参见 [BROKER LOAD](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md)。
-
-### 导入单个数据文件到单表
-
-#### 操作示例
-
-通过如下语句,把 Azure Storage 指定路径下数据文件 `file1.csv` 的数据导入到目标表 `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_301
-(
- DATA INFILE("wasb[s]://@.blob.core.windows.net//file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "azure.blob.storage_account" = "",
- "azure.blob.shared_key" = ""
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### 导入多个数据文件到单表
-
-#### 操作示例
-
-通过如下语句,把 Azure Storage 指定路径下所有数据文件(`file1.csv` 和 `file2.csv`)的数据导入到目标表 `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_302
-(
- DATA INFILE("wasb[s]://@.blob.core.windows.net//*")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "azure.blob.storage_account" = "",
- "azure.blob.shared_key" = ""
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-| 5 | Tony | 25 |
-| 6 | Adam | 26 |
-| 7 | Allen | 27 |
-| 8 | Jacky | 28 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### 导入多个数据文件到多表
-
-#### 操作示例
-
-通过如下语句,把 Azure Storage 指定路径下数据文件 `file1.csv` 和 `file2.csv` 的数据分别导入到目标表 `table1` 和 `table2`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_303
-(
- DATA INFILE("wasb[s]://@.blob.core.windows.net//file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
- ,
- DATA INFILE("wasb[s]://@.blob.core.windows.net//file2.csv")
- INTO TABLE table2
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "azure.blob.storage_account" = "",
- "azure.blob.shared_key" = ""
-);
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 和 `table2` 中的数据:
-
-1. 查询 `table1` 的数据,如下所示:
-
- ```SQL
- SELECT * FROM table1;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 1 | Lily | 21 |
- | 2 | Rose | 22 |
- | 3 | Alice | 23 |
- | 4 | Julia | 24 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-2. 查询 `table2` 的数据,如下所示:
-
- ```SQL
- SELECT * FROM table2;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 5 | Tony | 25 |
- | 6 | Adam | 26 |
- | 7 | Allen | 27 |
- | 8 | Jacky | 28 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-## 从阿里云 OSS 导入
-
-下述命令以 CSV 格式为例。有关如何导入其他格式的数据,参见 [BROKER LOAD](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md)。
-
-### 导入单个数据文件到单表
-
-#### 操作示例
-
-通过如下语句,把阿里云 OSS 存储空间 `bucket_oss` 里 `input` 文件夹内数据文件 `file1.csv` 的数据导入到目标表 `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_401
-(
- DATA INFILE("oss://bucket_oss/input/file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "fs.oss.accessKeyId" = "",
- "fs.oss.accessKeySecret" = "",
- "fs.oss.endpoint" = ""
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### 导入多个数据文件到单表
-
-#### 操作示例
-
-通过如下语句,把阿里云 OSS 存储空间 `bucket_oss` 里 `input` 文件夹内所有数据文件(`file1.csv` 和 `file2.csv`)的数据导入到目标表 `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_402
-(
- DATA INFILE("oss://bucket_oss/input/*")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "fs.oss.accessKeyId" = "",
- "fs.oss.accessKeySecret" = "",
- "fs.oss.endpoint" = ""
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-| 5 | Tony | 25 |
-| 6 | Adam | 26 |
-| 7 | Allen | 27 |
-| 8 | Jacky | 28 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### 导入多个数据文件到多表
-
-#### 操作示例
-
-通过如下语句,把阿里云 OSS 存储空间 `bucket_oss` 里 `input` 文件夹内数据文件 `file1.csv` 和 `file2.csv` 的数据分别导入到目标表 `table1` 和 `table2`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_403
-(
- DATA INFILE("oss://bucket_oss/input/file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
- ,
- DATA INFILE("oss://bucket_oss/input/file2.csv")
- INTO TABLE table2
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "fs.oss.accessKeyId" = "",
- "fs.oss.accessKeySecret" = "",
- "fs.oss.endpoint" = ""
-);
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 和 `table2` 中的数据:
-
-1. 查询 `table1` 的数据,如下所示:
-
- ```SQL
- SELECT * FROM table1;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 1 | Lily | 21 |
- | 2 | Rose | 22 |
- | 3 | Alice | 23 |
- | 4 | Julia | 24 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-2. 查询 `table2` 的数据,如下所示:
-
- ```SQL
- SELECT * FROM table2;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 5 | Tony | 25 |
- | 6 | Adam | 26 |
- | 7 | Allen | 27 |
- | 8 | Jacky | 28 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-## 从腾讯云 COS 导入
-
-下述命令以 CSV 格式为例。有关如何导入其他格式的数据,参见 [BROKER LOAD](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md)。
-
-### 导入单个数据文件到单表
-
-#### 操作示例
-
-通过如下语句,把腾讯云 COS 存储空间 `bucket_cos` 里 `input` 文件夹内数据文件 `file1.csv` 的数据导入到目标表 `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_501
-(
- DATA INFILE("cosn://bucket_cos/input/file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "fs.cosn.userinfo.secretId" = "",
- "fs.cosn.userinfo.secretKey" = "",
- "fs.cosn.bucket.endpoint_suffix" = ""
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### 导入多个数据文件到单表
-
-#### 操作示例
-
-通过如下语句,把腾讯云 COS 存储空间 `bucket_cos` 里 `input` 文件夹内所有数据文件(`file1.csv` 和 `file2.csv`)的数据导入到目标表 `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_502
-(
- DATA INFILE("cosn://bucket_cos/input/*")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "fs.cosn.userinfo.secretId" = "",
- "fs.cosn.userinfo.secretKey" = "",
- "fs.cosn.bucket.endpoint_suffix" = ""
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-| 5 | Tony | 25 |
-| 6 | Adam | 26 |
-| 7 | Allen | 27 |
-| 8 | Jacky | 28 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### 导入多个数据文件到多表
-
-#### 操作示例
-
-通过如下语句,把腾讯云 COS 存储空间 `bucket_cos` 里 `input` 文件夹内数据文件 `file1.csv` 和 `file2.csv` 的数据分别导入到目标表 `table1` 和 `table2`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_503
-(
- DATA INFILE("cosn://bucket_cos/input/file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
- ,
- DATA INFILE("cosn://bucket_cos/input/file2.csv")
- INTO TABLE table2
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "fs.cosn.userinfo.secretId" = "",
- "fs.cosn.userinfo.secretKey" = "",
- "fs.cosn.bucket.endpoint_suffix" = ""
-);
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 和 `table2` 中的数据:
-
-1. 查询 `table1` 的数据,如下所示:
-
- ```SQL
- SELECT * FROM table1;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 1 | Lily | 21 |
- | 2 | Rose | 22 |
- | 3 | Alice | 23 |
- | 4 | Julia | 24 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-2. 查询 `table2` 的数据,如下所示:
-
- ```SQL
- SELECT * FROM table1;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 5 | Tony | 25 |
- | 6 | Adam | 26 |
- | 7 | Allen | 27 |
- | 8 | Jacky | 28 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-## 从华为云 OBS 导入
-
-下述命令以 CSV 格式为例。有关如何导入其他格式的数据,参见 [BROKER LOAD](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md)。
-
-### 导入单个数据文件到单表
-
-#### 操作示例
-
-通过如下语句,把华为云 OBS 存储空间 `bucket_obs` 里 `input` 文件夹内数据文件 `file1.csv` 的数据导入到目标表 `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_601
-(
- DATA INFILE("obs://bucket_obs/input/file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "fs.obs.access.key" = "",
- "fs.obs.secret.key" = "",
- "fs.obs.endpoint" = ""
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### 导入多个数据文件到单表
-
-#### 操作示例
-
-通过如下语句,把华为云 OBS 存储空间 `bucket_obs` 里 `input` 文件夹内所有数据文件(`file1.csv` 和 `file2.csv`)的数据导入到目标表 `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_602
-(
- DATA INFILE("obs://bucket_obs/input/*")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "fs.obs.access.key" = "",
- "fs.obs.secret.key" = "",
- "fs.obs.endpoint" = ""
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-| 5 | Tony | 25 |
-| 6 | Adam | 26 |
-| 7 | Allen | 27 |
-| 8 | Jacky | 28 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### 导入多个数据文件到多表
-
-#### 操作示例
-
-通过如下语句,把华为云 OBS 存储空间 `bucket_obs` 里 `input` 文件夹内数据文件 `file1.csv` 和 `file2.csv` 的数据分别导入到目标表 `table1` 和 `table2`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_603
-(
- DATA INFILE("obs://bucket_obs/input/file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
- ,
- DATA INFILE("obs://bucket_obs/input/file2.csv")
- INTO TABLE table2
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "fs.obs.access.key" = "",
- "fs.obs.secret.key" = "",
- "fs.obs.endpoint" = ""
-);
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 和 `table2` 中的数据:
-
-1. 查询 `table1` 的数据,如下所示:
-
- ```SQL
- SELECT * FROM table1;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 1 | Lily | 21 |
- | 2 | Rose | 22 |
- | 3 | Alice | 23 |
- | 4 | Julia | 24 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-2. 查询 `table2` 的数据,如下所示:
-
- ```SQL
- SELECT * FROM table1;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 5 | Tony | 25 |
- | 6 | Adam | 26 |
- | 7 | Allen | 27 |
- | 8 | Jacky | 28 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-## 从其他兼容 S3 协议的对象存储导入
-
-下述命令以 CSV 格式和 MinIO 存储为例。有关如何导入其他格式的数据,参见 [BROKER LOAD](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md)。
-
-### 导入单个数据文件到单表
-
-#### 操作示例
-
-通过如下语句,把 MinIO 存储空间 `bucket_minio` 里 `input` 文件夹内数据文件 `file1.csv` 的数据导入到目标表 `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_701
-(
- DATA INFILE("s3://bucket_minio/input/file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "aws.s3.enable_ssl" = "false",
- "aws.s3.enable_path_style_access" = "true",
- "aws.s3.endpoint" = "",
- "aws.s3.access_key" = "",
- "aws.s3.secret_key" = ""
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### 导入多个数据文件到单表
-
-#### 操作示例
-
-通过如下语句,把 MinIO 存储空间 `bucket_minio` 里 `input` 文件夹内所有数据文件(`file1.csv` 和 `file2.csv`)的数据导入到目标表 `table1`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_702
-(
- DATA INFILE("s3://bucket_minio/input/*")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "aws.s3.enable_ssl" = "false",
- "aws.s3.enable_path_style_access" = "true",
- "aws.s3.endpoint" = "",
- "aws.s3.access_key" = "",
- "aws.s3.secret_key" = ""
-)
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
-
-```SQL
-SELECT * FROM table1;
-+------+-------+-------+
-| id | name | score |
-+------+-------+-------+
-| 1 | Lily | 21 |
-| 2 | Rose | 22 |
-| 3 | Alice | 23 |
-| 4 | Julia | 24 |
-| 5 | Tony | 25 |
-| 6 | Adam | 26 |
-| 7 | Allen | 27 |
-| 8 | Jacky | 28 |
-+------+-------+-------+
-4 rows in set (0.01 sec)
-```
-
-### 导入多个数据文件到多表
-
-#### 操作示例
-
-通过如下语句,把 MinIO 存储空间 `bucket_minio` 里 `input` 文件夹内数据文件 `file1.csv` 和 `file2.csv` 的数据分别导入到目标表 `table1` 和 `table2`:
-
-```SQL
-LOAD LABEL test_db.label_brokerloadtest_703
-(
- DATA INFILE("s3://bucket_minio/input/file1.csv")
- INTO TABLE table1
- COLUMNS TERMINATED BY ","
- (id, name, score)
- ,
- DATA INFILE("s3://bucket_minio/input/file2.csv")
- INTO TABLE table2
- COLUMNS TERMINATED BY ","
- (id, name, score)
-)
-WITH BROKER
-(
- "aws.s3.enable_ssl" = "false",
- "aws.s3.enable_path_style_access" = "true",
- "aws.s3.endpoint" = "",
- "aws.s3.access_key" = "",
- "aws.s3.secret_key" = ""
-);
-PROPERTIES
-(
- "timeout" = "3600"
-);
-```
-
-#### 查询数据
-
-提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
-
-确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 和 `table2` 中的数据:
-
-1. 查询 `table1` 的数据,如下所示:
-
- ```SQL
- SELECT * FROM table1;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 1 | Lily | 21 |
- | 2 | Rose | 22 |
- | 3 | Alice | 23 |
- | 4 | Julia | 24 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-2. 查询 `table2` 的数据,如下所示:
-
- ```SQL
- SELECT * FROM table1;
- +------+-------+-------+
- | id | name | score |
- +------+-------+-------+
- | 5 | Tony | 25 |
- | 6 | Adam | 26 |
- | 7 | Allen | 27 |
- | 8 | Jacky | 28 |
- +------+-------+-------+
- 4 rows in set (0.01 sec)
- ```
-
-## 查看导入作业
-
-通过 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句从 `information_schema` 数据库中的 `loads` 表来查看 Broker Load 作业的结果。该功能自 3.1 版本起支持。
-
-示例一:通过如下命令查看 `test_db` 数据库中导入作业的执行情况,同时指定查询结果根据作业创建时间 (`CREATE_TIME`) 按降序排列,并且最多显示两条结果数据:
-
-```SQL
-SELECT * FROM information_schema.loads
-WHERE database_name = 'test_db'
-ORDER BY create_time DESC
-LIMIT 2\G
-```
-
-返回结果如下所示:
-
-```SQL
-*************************** 1. row ***************************
- JOB_ID: 20686
- LABEL: label_brokerload_unqualifiedtest_83
- DATABASE_NAME: test_db
- STATE: FINISHED
- PROGRESS: ETL:100%; LOAD:100%
- TYPE: BROKER
- PRIORITY: NORMAL
- SCAN_ROWS: 8
- FILTERED_ROWS: 0
- UNSELECTED_ROWS: 0
- SINK_ROWS: 8
- ETL_INFO:
- TASK_INFO: resource:N/A; timeout(s):14400; max_filter_ratio:1.0
- CREATE_TIME: 2023-08-02 15:25:22
- ETL_START_TIME: 2023-08-02 15:25:24
- ETL_FINISH_TIME: 2023-08-02 15:25:24
- LOAD_START_TIME: 2023-08-02 15:25:24
- LOAD_FINISH_TIME: 2023-08-02 15:25:27
- JOB_DETAILS: {"All backends":{"77fe760e-ec53-47f7-917d-be5528288c08":[10006],"0154f64e-e090-47b7-a4b2-92c2ece95f97":[10005]},"FileNumber":2,"FileSize":84,"InternalTableLoadBytes":252,"InternalTableLoadRows":8,"ScanBytes":84,"ScanRows":8,"TaskNumber":2,"Unfinished backends":{"77fe760e-ec53-47f7-917d-be5528288c08":[],"0154f64e-e090-47b7-a4b2-92c2ece95f97":[]}}
- ERROR_MSG: NULL
- TRACKING_URL: NULL
- TRACKING_SQL: NULL
-REJECTED_RECORD_PATH: NULL
-*************************** 2. row ***************************
- JOB_ID: 20624
- LABEL: label_brokerload_unqualifiedtest_82
- DATABASE_NAME: test_db
- STATE: FINISHED
- PROGRESS: ETL:100%; LOAD:100%
- TYPE: BROKER
- PRIORITY: NORMAL
- SCAN_ROWS: 12
- FILTERED_ROWS: 4
- UNSELECTED_ROWS: 0
- SINK_ROWS: 8
- ETL_INFO:
- TASK_INFO: resource:N/A; timeout(s):14400; max_filter_ratio:1.0
- CREATE_TIME: 2023-08-02 15:23:29
- ETL_START_TIME: 2023-08-02 15:23:34
- ETL_FINISH_TIME: 2023-08-02 15:23:34
- LOAD_START_TIME: 2023-08-02 15:23:34
- LOAD_FINISH_TIME: 2023-08-02 15:23:34
- JOB_DETAILS: {"All backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[10010],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[10006]},"FileNumber":2,"FileSize":158,"InternalTableLoadBytes":333,"InternalTableLoadRows":8,"ScanBytes":158,"ScanRows":12,"TaskNumber":2,"Unfinished backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[]}}
- ERROR_MSG: NULL
- TRACKING_URL: http://172.26.195.69:8540/api/_load_error_log?file=error_log_78f78fc38509451f_a0a2c6b5db27dcb7
- TRACKING_SQL: select tracking_log from information_schema.load_tracking_logs where job_id=20624
-REJECTED_RECORD_PATH: 172.26.95.92:/home/disk1/sr/be/storage/rejected_record/test_db/label_brokerload_unqualifiedtest_0728/6/404a20b1e4db4d27_8aa9af1e8d6d8bdc
-```
-
-示例二:通过如下命令查看 `test_db` 数据库中标签为 `label_brokerload_unqualifiedtest_82` 的导入作业的执行情况:
-
-```SQL
-SELECT * FROM information_schema.loads
-WHERE database_name = 'test_db' and label = 'label_brokerload_unqualifiedtest_82'\G
-```
-
-返回结果如下所示:
-
-```SQL
-*************************** 1. row ***************************
- JOB_ID: 20624
- LABEL: label_brokerload_unqualifiedtest_82
- DATABASE_NAME: test_db
- STATE: FINISHED
- PROGRESS: ETL:100%; LOAD:100%
- TYPE: BROKER
- PRIORITY: NORMAL
- SCAN_ROWS: 12
- FILTERED_ROWS: 4
- UNSELECTED_ROWS: 0
- SINK_ROWS: 8
- ETL_INFO:
- TASK_INFO: resource:N/A; timeout(s):14400; max_filter_ratio:1.0
- CREATE_TIME: 2023-08-02 15:23:29
- ETL_START_TIME: 2023-08-02 15:23:34
- ETL_FINISH_TIME: 2023-08-02 15:23:34
- LOAD_START_TIME: 2023-08-02 15:23:34
- LOAD_FINISH_TIME: 2023-08-02 15:23:34
- JOB_DETAILS: {"All backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[10010],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[10006]},"FileNumber":2,"FileSize":158,"InternalTableLoadBytes":333,"InternalTableLoadRows":8,"ScanBytes":158,"ScanRows":12,"TaskNumber":2,"Unfinished backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[]}}
- ERROR_MSG: NULL
- TRACKING_URL: http://172.26.195.69:8540/api/_load_error_log?file=error_log_78f78fc38509451f_a0a2c6b5db27dcb7
- TRACKING_SQL: select tracking_log from information_schema.load_tracking_logs where job_id=20624
-REJECTED_RECORD_PATH: 172.26.95.92:/home/disk1/sr/be/storage/rejected_record/test_db/label_brokerload_unqualifiedtest_0728/6/404a20b1e4db4d27_8aa9af1e8d6d8bdc
-```
-
-有关返回字段的说明,参见 [Information Schema > loads](../sql-reference/information_schema.md#loads)。
-
-## 取消导入作业
-
-当导入作业状态不为 **CANCELLED** 或 **FINISHED** 时,可以通过 [CANCEL LOAD](../sql-reference/sql-statements/loading_unloading/CANCEL_LOAD.md) 语句来取消该导入作业。
-
-例如,可以通过以下语句,撤销 `db1` 数据库中标签为 `label1` 的导入作业:
-
-```SQL
-CANCEL LOAD
-FROM db1
-WHERE LABEL = "label";
-```
-
-## 作业拆分与并行执行
-
-一个 Broker Load 作业会拆分成一个或者多个子任务并行处理,一个作业的所有子任务作为一个事务整体成功或失败。作业的拆分通过 `LOAD LABEL` 语句中的 `data_desc` 参数来指定:
-
-- 如果声明多个 `data_desc` 参数对应导入多张不同的表,则每张表数据的导入会拆分成一个子任务。
-
-- 如果声明多个 `data_desc` 参数对应导入同一张表的不同分区,则每个分区数据的导入会拆分成一个子任务。
-
-每个子任务还会拆分成一个或者多个实例,然后这些实例会均匀地被分配到 BE(或 CN)上并行执行。实例的拆分由 FE 配置参数 [`min_bytes_per_broker_scanner`](../administration/management/FE_configuration.md) 和 BE(或 CN)节点数量决定,可以使用如下公式计算单个子任务的实例总数:
-
-单个子任务的实例总数 = min(单个子任务待导入数据量的总大小/`min_bytes_per_broker_scanner`, BE/CN 节点数量)
-
-一般情况下,一个导入作业只有一个 `data_desc`,只会拆分成一个子任务,子任务会拆分成与 BE(或 CN)节点数量相等的实例。
-
-## 常见问题
-
-请参见 [Broker Load 常见问题](../faq/loading/Broker_load_faq.md)。
diff --git a/docs/zh/loading/huawei.md b/docs/zh/loading/huawei.md
new file mode 100644
index 0000000000000..52d7f689abe5f
--- /dev/null
+++ b/docs/zh/loading/huawei.md
@@ -0,0 +1,397 @@
+---
+displayed_sidebar: docs
+---
+
+# 从华为云 OBS 导入
+
+StarRocks 支持通过两种方式从云存储系统导入大批量数据:[Broker Load](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md) 和 [INSERT](../sql-reference/sql-statements/loading_unloading/INSERT.md)。
+
+在 3.0 及以前版本,StarRocks 只支持 Broker Load 导入方式。Broker Load 是一种异步导入方式,即您提交导入作业以后,StarRocks 会异步地执行导入作业。您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
+
+Broker Load 能够保证单次导入事务的原子性,即单次导入的多个数据文件都成功或者都失败,而不会出现部分导入成功、部分导入失败的情况。
+
+另外,Broker Load 还支持在导入过程中做数据转换、以及通过 UPSERT 和 DELETE 操作实现数据变更。请参见[导入过程中实现数据转换](../loading/Etl_in_loading.md)和[通过导入实现数据变更](../loading/Load_to_Primary_Key_tables.md)。
+
+> **注意**
+>
+> Broker Load 操作需要目标表的 INSERT 权限。如果您的用户账号没有 INSERT 权限,请参考 [GRANT](../sql-reference/sql-statements/account-management/GRANT.md) 给用户赋权。
+
+从 3.1 版本起,StarRocks 新增支持使用 INSERT 语句和 `FILES` 关键字直接从 AWS S3 导入特定格式的数据文件,避免了需事先创建外部表的麻烦。参见 [INSERT > 通过 FILES 关键字直接导入外部数据文件](../loading/InsertInto.md#通过-insert-into-select-以及表函数-files-导入外部数据文件)。
+
+本文主要介绍如何使用 [Broker Load](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md) 从云存储系统导入数据。
+
+## 支持的数据文件格式
+
+Broker Load 支持如下数据文件格式:
+
+- CSV
+
+- Parquet
+
+- ORC
+
+- JSON(自 3.2.3 版本起支持)
+
+> **说明**
+>
+> 对于 CSV 格式的数据,需要注意以下两点:
+>
+> - StarRocks 支持设置长度最大不超过 50 个字节的 UTF-8 编码字符串作为列分隔符,包括常见的逗号 (,)、Tab 和 Pipe (|)。
+> - 空值 (null) 用 `\N` 表示。比如,数据文件一共有三列,其中某行数据的第一列、第三列数据分别为 `a` 和 `b`,第二列没有数据,则第二列需要用 `\N` 来表示空值,写作 `a,\N,b`,而不是 `a,,b`。`a,,b` 表示第二列是一个空字符串。
+
+## 基本原理
+
+提交导入作业以后,FE 会生成对应的查询计划,并根据目前可用 BE(或 CN)的个数和源数据文件的大小,将查询计划分配给多个 BE(或 CN)执行。每个 BE(或 CN)负责执行一部分导入任务。BE(或 CN)在执行过程中,会从外部存储系统拉取数据,并且会在对数据进行预处理之后将数据导入到 StarRocks 中。所有 BE(或 CN)均完成导入后,由 FE 最终判断导入作业是否成功。
+
+下图展示了 Broker Load 的主要流程:
+
+![Broker Load 原理图](../_assets/broker_load_how-to-work_zh.png)
+
+## 准备数据样例
+
+1. 在本地文件系统下,创建两个 CSV 格式的数据文件,`file1.csv` 和 `file2.csv`。两个数据文件都包含三列,分别代表用户 ID、用户姓名和用户得分,如下所示:
+
+ - `file1.csv`
+
+ ```Plain
+ 1,Lily,21
+ 2,Rose,22
+ 3,Alice,23
+ 4,Julia,24
+ ```
+
+ - `file2.csv`
+
+ ```Plain
+ 5,Tony,25
+ 6,Adam,26
+ 7,Allen,27
+ 8,Jacky,28
+ ```
+
+2. 将 `file1.csv` 和 `file2.csv` 上传到云存储空间的指定路径下。这里假设分别上传到 AWS S3 存储空间 `bucket_s3` 里的 `input` 文件夹下、 Google GCS 存储空间 `bucket_gcs` 里的 `input` 文件夹下、阿里云 OSS 存储空间 `bucket_oss` 里的 `input` 文件夹下、腾讯云 COS 存储空间 `bucket_cos` 里的 `input` 文件夹下、华为云 OBS 存储空间 `bucket_obs` 里的 `input` 文件夹下、其他兼容 S3 协议的对象存储(如 MinIO)空间 `bucket_minio` 里的 `input` 文件夹下、以及 Azure Storage 的指定路径下。
+
+3. 登录 StarRocks 数据库(假设为 `test_db`),创建两张主键表,`table1` 和 `table2`。两张表都包含 `id`、`name` 和 `score` 三列,分别代表用户 ID、用户姓名和用户得分,主键为 `id` 列,如下所示:
+
+ ```SQL
+ CREATE TABLE `table1`
+ (
+ `id` int(11) NOT NULL COMMENT "用户 ID",
+ `name` varchar(65533) NULL DEFAULT "" COMMENT "用户姓名",
+ `score` int(11) NOT NULL DEFAULT "0" COMMENT "用户得分"
+ )
+ ENGINE=OLAP
+ PRIMARY KEY(`id`)
+ DISTRIBUTED BY HASH(`id`);
+
+ CREATE TABLE `table2`
+ (
+ `id` int(11) NOT NULL COMMENT "用户 ID",
+ `name` varchar(65533) NULL DEFAULT "" COMMENT "用户姓名",
+ `score` int(11) NOT NULL DEFAULT "0" COMMENT "用户得分"
+ )
+ ENGINE=OLAP
+ PRIMARY KEY(`id`)
+ DISTRIBUTED BY HASH(`id`);
+ ```
+
+
+## 从华为云 OBS 导入
+
+下述命令以 CSV 格式为例。有关如何导入其他格式的数据,参见 [BROKER LOAD](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md)。
+
+### 导入单个数据文件到单表
+
+#### 操作示例
+
+通过如下语句,把华为云 OBS 存储空间 `bucket_obs` 里 `input` 文件夹内数据文件 `file1.csv` 的数据导入到目标表 `table1`:
+
+```SQL
+LOAD LABEL test_db.label_brokerloadtest_601
+(
+ DATA INFILE("obs://bucket_obs/input/file1.csv")
+ INTO TABLE table1
+ COLUMNS TERMINATED BY ","
+ (id, name, score)
+)
+WITH BROKER
+(
+ "fs.obs.access.key" = "",
+ "fs.obs.secret.key" = "",
+ "fs.obs.endpoint" = ""
+)
+PROPERTIES
+(
+ "timeout" = "3600"
+);
+```
+
+#### 查询数据
+
+提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
+
+确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
+
+```SQL
+SELECT * FROM table1;
++------+-------+-------+
+| id | name | score |
++------+-------+-------+
+| 1 | Lily | 21 |
+| 2 | Rose | 22 |
+| 3 | Alice | 23 |
+| 4 | Julia | 24 |
++------+-------+-------+
+4 rows in set (0.01 sec)
+```
+
+### 导入多个数据文件到单表
+
+#### 操作示例
+
+通过如下语句,把华为云 OBS 存储空间 `bucket_obs` 里 `input` 文件夹内所有数据文件(`file1.csv` 和 `file2.csv`)的数据导入到目标表 `table1`:
+
+```SQL
+LOAD LABEL test_db.label_brokerloadtest_602
+(
+ DATA INFILE("obs://bucket_obs/input/*")
+ INTO TABLE table1
+ COLUMNS TERMINATED BY ","
+ (id, name, score)
+)
+WITH BROKER
+(
+ "fs.obs.access.key" = "",
+ "fs.obs.secret.key" = "",
+ "fs.obs.endpoint" = ""
+)
+PROPERTIES
+(
+ "timeout" = "3600"
+);
+```
+
+#### 查询数据
+
+提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
+
+确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
+
+```SQL
+SELECT * FROM table1;
++------+-------+-------+
+| id | name | score |
++------+-------+-------+
+| 1 | Lily | 21 |
+| 2 | Rose | 22 |
+| 3 | Alice | 23 |
+| 4 | Julia | 24 |
+| 5 | Tony | 25 |
+| 6 | Adam | 26 |
+| 7 | Allen | 27 |
+| 8 | Jacky | 28 |
++------+-------+-------+
+4 rows in set (0.01 sec)
+```
+
+### 导入多个数据文件到多表
+
+#### 操作示例
+
+通过如下语句,把华为云 OBS 存储空间 `bucket_obs` 里 `input` 文件夹内数据文件 `file1.csv` 和 `file2.csv` 的数据分别导入到目标表 `table1` 和 `table2`:
+
+```SQL
+LOAD LABEL test_db.label_brokerloadtest_603
+(
+ DATA INFILE("obs://bucket_obs/input/file1.csv")
+ INTO TABLE table1
+ COLUMNS TERMINATED BY ","
+ (id, name, score)
+ ,
+ DATA INFILE("obs://bucket_obs/input/file2.csv")
+ INTO TABLE table2
+ COLUMNS TERMINATED BY ","
+ (id, name, score)
+)
+WITH BROKER
+(
+ "fs.obs.access.key" = "",
+ "fs.obs.secret.key" = "",
+ "fs.obs.endpoint" = ""
+);
+PROPERTIES
+(
+ "timeout" = "3600"
+);
+```
+
+#### 查询数据
+
+提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
+
+确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 和 `table2` 中的数据:
+
+1. 查询 `table1` 的数据,如下所示:
+
+ ```SQL
+ SELECT * FROM table1;
+ +------+-------+-------+
+ | id | name | score |
+ +------+-------+-------+
+ | 1 | Lily | 21 |
+ | 2 | Rose | 22 |
+ | 3 | Alice | 23 |
+ | 4 | Julia | 24 |
+ +------+-------+-------+
+ 4 rows in set (0.01 sec)
+ ```
+
+2. 查询 `table2` 的数据,如下所示:
+
+ ```SQL
+ SELECT * FROM table2;
+ +------+-------+-------+
+ | id | name | score |
+ +------+-------+-------+
+ | 5 | Tony | 25 |
+ | 6 | Adam | 26 |
+ | 7 | Allen | 27 |
+ | 8 | Jacky | 28 |
+ +------+-------+-------+
+ 4 rows in set (0.01 sec)
+ ```
+
+
+## 查看导入作业
+
+通过 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句从 `information_schema` 数据库中的 `loads` 表来查看 Broker Load 作业的结果。该功能自 3.1 版本起支持。
+
+示例一:通过如下命令查看 `test_db` 数据库中导入作业的执行情况,同时指定查询结果根据作业创建时间 (`CREATE_TIME`) 按降序排列,并且最多显示两条结果数据:
+
+```SQL
+SELECT * FROM information_schema.loads
+WHERE database_name = 'test_db'
+ORDER BY create_time DESC
+LIMIT 2\G
+```
+
+返回结果如下所示:
+
+```SQL
+*************************** 1. row ***************************
+ JOB_ID: 20686
+ LABEL: label_brokerload_unqualifiedtest_83
+ DATABASE_NAME: test_db
+ STATE: FINISHED
+ PROGRESS: ETL:100%; LOAD:100%
+ TYPE: BROKER
+ PRIORITY: NORMAL
+ SCAN_ROWS: 8
+ FILTERED_ROWS: 0
+ UNSELECTED_ROWS: 0
+ SINK_ROWS: 8
+ ETL_INFO:
+ TASK_INFO: resource:N/A; timeout(s):14400; max_filter_ratio:1.0
+ CREATE_TIME: 2023-08-02 15:25:22
+ ETL_START_TIME: 2023-08-02 15:25:24
+ ETL_FINISH_TIME: 2023-08-02 15:25:24
+ LOAD_START_TIME: 2023-08-02 15:25:24
+ LOAD_FINISH_TIME: 2023-08-02 15:25:27
+ JOB_DETAILS: {"All backends":{"77fe760e-ec53-47f7-917d-be5528288c08":[10006],"0154f64e-e090-47b7-a4b2-92c2ece95f97":[10005]},"FileNumber":2,"FileSize":84,"InternalTableLoadBytes":252,"InternalTableLoadRows":8,"ScanBytes":84,"ScanRows":8,"TaskNumber":2,"Unfinished backends":{"77fe760e-ec53-47f7-917d-be5528288c08":[],"0154f64e-e090-47b7-a4b2-92c2ece95f97":[]}}
+ ERROR_MSG: NULL
+ TRACKING_URL: NULL
+ TRACKING_SQL: NULL
+REJECTED_RECORD_PATH: NULL
+*************************** 2. row ***************************
+ JOB_ID: 20624
+ LABEL: label_brokerload_unqualifiedtest_82
+ DATABASE_NAME: test_db
+ STATE: FINISHED
+ PROGRESS: ETL:100%; LOAD:100%
+ TYPE: BROKER
+ PRIORITY: NORMAL
+ SCAN_ROWS: 12
+ FILTERED_ROWS: 4
+ UNSELECTED_ROWS: 0
+ SINK_ROWS: 8
+ ETL_INFO:
+ TASK_INFO: resource:N/A; timeout(s):14400; max_filter_ratio:1.0
+ CREATE_TIME: 2023-08-02 15:23:29
+ ETL_START_TIME: 2023-08-02 15:23:34
+ ETL_FINISH_TIME: 2023-08-02 15:23:34
+ LOAD_START_TIME: 2023-08-02 15:23:34
+ LOAD_FINISH_TIME: 2023-08-02 15:23:34
+ JOB_DETAILS: {"All backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[10010],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[10006]},"FileNumber":2,"FileSize":158,"InternalTableLoadBytes":333,"InternalTableLoadRows":8,"ScanBytes":158,"ScanRows":12,"TaskNumber":2,"Unfinished backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[]}}
+ ERROR_MSG: NULL
+ TRACKING_URL: http://172.26.195.69:8540/api/_load_error_log?file=error_log_78f78fc38509451f_a0a2c6b5db27dcb7
+ TRACKING_SQL: select tracking_log from information_schema.load_tracking_logs where job_id=20624
+REJECTED_RECORD_PATH: 172.26.95.92:/home/disk1/sr/be/storage/rejected_record/test_db/label_brokerload_unqualifiedtest_0728/6/404a20b1e4db4d27_8aa9af1e8d6d8bdc
+```
+
+示例二:通过如下命令查看 `test_db` 数据库中标签为 `label_brokerload_unqualifiedtest_82` 的导入作业的执行情况:
+
+```SQL
+SELECT * FROM information_schema.loads
+WHERE database_name = 'test_db' and label = 'label_brokerload_unqualifiedtest_82'\G
+```
+
+返回结果如下所示:
+
+```SQL
+*************************** 1. row ***************************
+ JOB_ID: 20624
+ LABEL: label_brokerload_unqualifiedtest_82
+ DATABASE_NAME: test_db
+ STATE: FINISHED
+ PROGRESS: ETL:100%; LOAD:100%
+ TYPE: BROKER
+ PRIORITY: NORMAL
+ SCAN_ROWS: 12
+ FILTERED_ROWS: 4
+ UNSELECTED_ROWS: 0
+ SINK_ROWS: 8
+ ETL_INFO:
+ TASK_INFO: resource:N/A; timeout(s):14400; max_filter_ratio:1.0
+ CREATE_TIME: 2023-08-02 15:23:29
+ ETL_START_TIME: 2023-08-02 15:23:34
+ ETL_FINISH_TIME: 2023-08-02 15:23:34
+ LOAD_START_TIME: 2023-08-02 15:23:34
+ LOAD_FINISH_TIME: 2023-08-02 15:23:34
+ JOB_DETAILS: {"All backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[10010],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[10006]},"FileNumber":2,"FileSize":158,"InternalTableLoadBytes":333,"InternalTableLoadRows":8,"ScanBytes":158,"ScanRows":12,"TaskNumber":2,"Unfinished backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[]}}
+ ERROR_MSG: NULL
+ TRACKING_URL: http://172.26.195.69:8540/api/_load_error_log?file=error_log_78f78fc38509451f_a0a2c6b5db27dcb7
+ TRACKING_SQL: select tracking_log from information_schema.load_tracking_logs where job_id=20624
+REJECTED_RECORD_PATH: 172.26.95.92:/home/disk1/sr/be/storage/rejected_record/test_db/label_brokerload_unqualifiedtest_0728/6/404a20b1e4db4d27_8aa9af1e8d6d8bdc
+```
+
+有关返回字段的说明,参见 [`information_schema.loads`](../sql-reference/information_schema.md)。
+
+## 取消导入作业
+
+当导入作业状态不为 **CANCELLED** 或 **FINISHED** 时,可以通过 [CANCEL LOAD](../sql-reference/sql-statements/loading_unloading/CANCEL_LOAD.md) 语句来取消该导入作业。
+
+例如,可以通过以下语句,撤销 `test_db` 数据库中标签为 `label1` 的导入作业:
+
+```SQL
+CANCEL LOAD
+FROM test_db
+WHERE LABEL = "label1";
+```
+
+## 作业拆分与并行执行
+
+一个 Broker Load 作业会拆分成一个或者多个子任务并行处理,一个作业的所有子任务作为一个事务整体成功或失败。作业的拆分通过 `LOAD LABEL` 语句中的 `data_desc` 参数来指定:
+
+- 如果声明多个 `data_desc` 参数对应导入多张不同的表,则每张表数据的导入会拆分成一个子任务。
+
+- 如果声明多个 `data_desc` 参数对应导入同一张表的不同分区,则每个分区数据的导入会拆分成一个子任务。
+
+每个子任务还会拆分成一个或者多个实例,然后这些实例会均匀地被分配到 BE(或 CN)上并行执行。实例的拆分由 FE 配置参数 [`min_bytes_per_broker_scanner`](../administration/management/FE_configuration.md) 和 BE(或 CN)节点数量决定,可以使用如下公式计算单个子任务的实例总数:
+
+单个子任务的实例总数 = min(单个子任务待导入数据量的总大小/`min_bytes_per_broker_scanner`, BE/CN 节点数量)
+
+一般情况下,一个导入作业只有一个 `data_desc`,只会拆分成一个子任务,子任务会拆分成与 BE(或 CN)节点数量相等的实例。
+
+## 常见问题
+
+请参见 [Broker Load 常见问题](../faq/loading/Broker_load_faq.md)。
diff --git a/docs/zh/loading/s3_compatible.md b/docs/zh/loading/s3_compatible.md
new file mode 100644
index 0000000000000..128c62834b567
--- /dev/null
+++ b/docs/zh/loading/s3_compatible.md
@@ -0,0 +1,403 @@
+---
+displayed_sidebar: docs
+---
+
+# 从其他兼容 S3 协议的对象存储导入
+
+StarRocks 支持通过两种方式从云存储系统导入大批量数据:[Broker Load](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md) 和 [INSERT](../sql-reference/sql-statements/loading_unloading/INSERT.md)。
+
+在 3.0 及以前版本,StarRocks 只支持 Broker Load 导入方式。Broker Load 是一种异步导入方式,即您提交导入作业以后,StarRocks 会异步地执行导入作业。您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
+
+Broker Load 能够保证单次导入事务的原子性,即单次导入的多个数据文件都成功或者都失败,而不会出现部分导入成功、部分导入失败的情况。
+
+另外,Broker Load 还支持在导入过程中做数据转换、以及通过 UPSERT 和 DELETE 操作实现数据变更。请参见[导入过程中实现数据转换](../loading/Etl_in_loading.md)和[通过导入实现数据变更](../loading/Load_to_Primary_Key_tables.md)。
+
+> **注意**
+>
+> Broker Load 操作需要目标表的 INSERT 权限。如果您的用户账号没有 INSERT 权限,请参考 [GRANT](../sql-reference/sql-statements/account-management/GRANT.md) 给用户赋权。
+
+从 3.1 版本起,StarRocks 新增支持使用 INSERT 语句和 `FILES` 关键字直接从 AWS S3 导入特定格式的数据文件,避免了需事先创建外部表的麻烦。参见 [INSERT > 通过 FILES 关键字直接导入外部数据文件](../loading/InsertInto.md#通过-insert-into-select-以及表函数-files-导入外部数据文件)。
+
+本文主要介绍如何使用 [Broker Load](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md) 从云存储系统导入数据。
+
+## 支持的数据文件格式
+
+Broker Load 支持如下数据文件格式:
+
+- CSV
+
+- Parquet
+
+- ORC
+
+- JSON(自 3.2.3 版本起支持)
+
+> **说明**
+>
+> 对于 CSV 格式的数据,需要注意以下两点:
+>
+> - StarRocks 支持设置长度最大不超过 50 个字节的 UTF-8 编码字符串作为列分隔符,包括常见的逗号 (,)、Tab 和 Pipe (|)。
+> - 空值 (null) 用 `\N` 表示。比如,数据文件一共有三列,其中某行数据的第一列、第三列数据分别为 `a` 和 `b`,第二列没有数据,则第二列需要用 `\N` 来表示空值,写作 `a,\N,b`,而不是 `a,,b`。`a,,b` 表示第二列是一个空字符串。
+
+## 基本原理
+
+提交导入作业以后,FE 会生成对应的查询计划,并根据目前可用 BE(或 CN)的个数和源数据文件的大小,将查询计划分配给多个 BE(或 CN)执行。每个 BE(或 CN)负责执行一部分导入任务。BE(或 CN)在执行过程中,会从外部存储系统拉取数据,并且会在对数据进行预处理之后将数据导入到 StarRocks 中。所有 BE(或 CN)均完成导入后,由 FE 最终判断导入作业是否成功。
+
+下图展示了 Broker Load 的主要流程:
+
+![Broker Load 原理图](../_assets/broker_load_how-to-work_zh.png)
+
+## 准备数据样例
+
+1. 在本地文件系统下,创建两个 CSV 格式的数据文件,`file1.csv` 和 `file2.csv`。两个数据文件都包含三列,分别代表用户 ID、用户姓名和用户得分,如下所示:
+
+ - `file1.csv`
+
+ ```Plain
+ 1,Lily,21
+ 2,Rose,22
+ 3,Alice,23
+ 4,Julia,24
+ ```
+
+ - `file2.csv`
+
+ ```Plain
+ 5,Tony,25
+ 6,Adam,26
+ 7,Allen,27
+ 8,Jacky,28
+ ```
+
+2. 将 `file1.csv` 和 `file2.csv` 上传到云存储空间的指定路径下。这里假设分别上传到 AWS S3 存储空间 `bucket_s3` 里的 `input` 文件夹下、 Google GCS 存储空间 `bucket_gcs` 里的 `input` 文件夹下、阿里云 OSS 存储空间 `bucket_oss` 里的 `input` 文件夹下、腾讯云 COS 存储空间 `bucket_cos` 里的 `input` 文件夹下、华为云 OBS 存储空间 `bucket_obs` 里的 `input` 文件夹下、其他兼容 S3 协议的对象存储(如 MinIO)空间 `bucket_minio` 里的 `input` 文件夹下、以及 Azure Storage 的指定路径下。
+
+3. 登录 StarRocks 数据库(假设为 `test_db`),创建两张主键表,`table1` 和 `table2`。两张表都包含 `id`、`name` 和 `score` 三列,分别代表用户 ID、用户姓名和用户得分,主键为 `id` 列,如下所示:
+
+ ```SQL
+ CREATE TABLE `table1`
+ (
+ `id` int(11) NOT NULL COMMENT "用户 ID",
+ `name` varchar(65533) NULL DEFAULT "" COMMENT "用户姓名",
+ `score` int(11) NOT NULL DEFAULT "0" COMMENT "用户得分"
+ )
+ ENGINE=OLAP
+ PRIMARY KEY(`id`)
+ DISTRIBUTED BY HASH(`id`);
+
+ CREATE TABLE `table2`
+ (
+ `id` int(11) NOT NULL COMMENT "用户 ID",
+ `name` varchar(65533) NULL DEFAULT "" COMMENT "用户姓名",
+ `score` int(11) NOT NULL DEFAULT "0" COMMENT "用户得分"
+ )
+ ENGINE=OLAP
+ PRIMARY KEY(`id`)
+ DISTRIBUTED BY HASH(`id`);
+ ```
+
+
+## 从其他兼容 S3 协议的对象存储导入
+
+下述命令以 CSV 格式和 MinIO 存储为例。有关如何导入其他格式的数据,参见 [BROKER LOAD](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md)。
+
+### 导入单个数据文件到单表
+
+#### 操作示例
+
+通过如下语句,把 MinIO 存储空间 `bucket_minio` 里 `input` 文件夹内数据文件 `file1.csv` 的数据导入到目标表 `table1`:
+
+```SQL
+LOAD LABEL test_db.label_brokerloadtest_701
+(
+ DATA INFILE("s3://bucket_minio/input/file1.csv")
+ INTO TABLE table1
+ COLUMNS TERMINATED BY ","
+ (id, name, score)
+)
+WITH BROKER
+(
+ "aws.s3.enable_ssl" = "false",
+ "aws.s3.enable_path_style_access" = "true",
+ "aws.s3.endpoint" = "",
+ "aws.s3.access_key" = "",
+ "aws.s3.secret_key" = ""
+)
+PROPERTIES
+(
+ "timeout" = "3600"
+);
+```
+
+#### 查询数据
+
+提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
+
+确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
+
+```SQL
+SELECT * FROM table1;
++------+-------+-------+
+| id | name | score |
++------+-------+-------+
+| 1 | Lily | 21 |
+| 2 | Rose | 22 |
+| 3 | Alice | 23 |
+| 4 | Julia | 24 |
++------+-------+-------+
+4 rows in set (0.01 sec)
+```
+
+### 导入多个数据文件到单表
+
+#### 操作示例
+
+通过如下语句,把 MinIO 存储空间 `bucket_minio` 里 `input` 文件夹内所有数据文件(`file1.csv` 和 `file2.csv`)的数据导入到目标表 `table1`:
+
+```SQL
+LOAD LABEL test_db.label_brokerloadtest_702
+(
+ DATA INFILE("s3://bucket_minio/input/*")
+ INTO TABLE table1
+ COLUMNS TERMINATED BY ","
+ (id, name, score)
+)
+WITH BROKER
+(
+ "aws.s3.enable_ssl" = "false",
+ "aws.s3.enable_path_style_access" = "true",
+ "aws.s3.endpoint" = "",
+ "aws.s3.access_key" = "",
+ "aws.s3.secret_key" = ""
+)
+PROPERTIES
+(
+ "timeout" = "3600"
+);
+```
+
+#### 查询数据
+
+提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
+
+确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
+
+```SQL
+SELECT * FROM table1;
++------+-------+-------+
+| id | name | score |
++------+-------+-------+
+| 1 | Lily | 21 |
+| 2 | Rose | 22 |
+| 3 | Alice | 23 |
+| 4 | Julia | 24 |
+| 5 | Tony | 25 |
+| 6 | Adam | 26 |
+| 7 | Allen | 27 |
+| 8 | Jacky | 28 |
++------+-------+-------+
+4 rows in set (0.01 sec)
+```
+
+### 导入多个数据文件到多表
+
+#### 操作示例
+
+通过如下语句,把 MinIO 存储空间 `bucket_minio` 里 `input` 文件夹内数据文件 `file1.csv` 和 `file2.csv` 的数据分别导入到目标表 `table1` 和 `table2`:
+
+```SQL
+LOAD LABEL test_db.label_brokerloadtest_703
+(
+ DATA INFILE("s3://bucket_minio/input/file1.csv")
+ INTO TABLE table1
+ COLUMNS TERMINATED BY ","
+ (id, name, score)
+ ,
+ DATA INFILE("s3://bucket_minio/input/file2.csv")
+ INTO TABLE table2
+ COLUMNS TERMINATED BY ","
+ (id, name, score)
+)
+WITH BROKER
+(
+ "aws.s3.enable_ssl" = "false",
+ "aws.s3.enable_path_style_access" = "true",
+ "aws.s3.endpoint" = "",
+ "aws.s3.access_key" = "",
+ "aws.s3.secret_key" = ""
+);
+PROPERTIES
+(
+ "timeout" = "3600"
+);
+```
+
+#### 查询数据
+
+提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
+
+确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 和 `table2` 中的数据:
+
+1. 查询 `table1` 的数据,如下所示:
+
+ ```SQL
+ SELECT * FROM table1;
+ +------+-------+-------+
+ | id | name | score |
+ +------+-------+-------+
+ | 1 | Lily | 21 |
+ | 2 | Rose | 22 |
+ | 3 | Alice | 23 |
+ | 4 | Julia | 24 |
+ +------+-------+-------+
+ 4 rows in set (0.01 sec)
+ ```
+
+2. 查询 `table2` 的数据,如下所示:
+
+ ```SQL
+ SELECT * FROM table2;
+ +------+-------+-------+
+ | id | name | score |
+ +------+-------+-------+
+ | 5 | Tony | 25 |
+ | 6 | Adam | 26 |
+ | 7 | Allen | 27 |
+ | 8 | Jacky | 28 |
+ +------+-------+-------+
+ 4 rows in set (0.01 sec)
+ ```
+
+
+## 查看导入作业
+
+通过 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句从 `information_schema` 数据库中的 `loads` 表来查看 Broker Load 作业的结果。该功能自 3.1 版本起支持。
+
+示例一:通过如下命令查看 `test_db` 数据库中导入作业的执行情况,同时指定查询结果根据作业创建时间 (`CREATE_TIME`) 按降序排列,并且最多显示两条结果数据:
+
+```SQL
+SELECT * FROM information_schema.loads
+WHERE database_name = 'test_db'
+ORDER BY create_time DESC
+LIMIT 2\G
+```
+
+返回结果如下所示:
+
+```SQL
+*************************** 1. row ***************************
+ JOB_ID: 20686
+ LABEL: label_brokerload_unqualifiedtest_83
+ DATABASE_NAME: test_db
+ STATE: FINISHED
+ PROGRESS: ETL:100%; LOAD:100%
+ TYPE: BROKER
+ PRIORITY: NORMAL
+ SCAN_ROWS: 8
+ FILTERED_ROWS: 0
+ UNSELECTED_ROWS: 0
+ SINK_ROWS: 8
+ ETL_INFO:
+ TASK_INFO: resource:N/A; timeout(s):14400; max_filter_ratio:1.0
+ CREATE_TIME: 2023-08-02 15:25:22
+ ETL_START_TIME: 2023-08-02 15:25:24
+ ETL_FINISH_TIME: 2023-08-02 15:25:24
+ LOAD_START_TIME: 2023-08-02 15:25:24
+ LOAD_FINISH_TIME: 2023-08-02 15:25:27
+ JOB_DETAILS: {"All backends":{"77fe760e-ec53-47f7-917d-be5528288c08":[10006],"0154f64e-e090-47b7-a4b2-92c2ece95f97":[10005]},"FileNumber":2,"FileSize":84,"InternalTableLoadBytes":252,"InternalTableLoadRows":8,"ScanBytes":84,"ScanRows":8,"TaskNumber":2,"Unfinished backends":{"77fe760e-ec53-47f7-917d-be5528288c08":[],"0154f64e-e090-47b7-a4b2-92c2ece95f97":[]}}
+ ERROR_MSG: NULL
+ TRACKING_URL: NULL
+ TRACKING_SQL: NULL
+REJECTED_RECORD_PATH: NULL
+*************************** 2. row ***************************
+ JOB_ID: 20624
+ LABEL: label_brokerload_unqualifiedtest_82
+ DATABASE_NAME: test_db
+ STATE: FINISHED
+ PROGRESS: ETL:100%; LOAD:100%
+ TYPE: BROKER
+ PRIORITY: NORMAL
+ SCAN_ROWS: 12
+ FILTERED_ROWS: 4
+ UNSELECTED_ROWS: 0
+ SINK_ROWS: 8
+ ETL_INFO:
+ TASK_INFO: resource:N/A; timeout(s):14400; max_filter_ratio:1.0
+ CREATE_TIME: 2023-08-02 15:23:29
+ ETL_START_TIME: 2023-08-02 15:23:34
+ ETL_FINISH_TIME: 2023-08-02 15:23:34
+ LOAD_START_TIME: 2023-08-02 15:23:34
+ LOAD_FINISH_TIME: 2023-08-02 15:23:34
+ JOB_DETAILS: {"All backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[10010],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[10006]},"FileNumber":2,"FileSize":158,"InternalTableLoadBytes":333,"InternalTableLoadRows":8,"ScanBytes":158,"ScanRows":12,"TaskNumber":2,"Unfinished backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[]}}
+ ERROR_MSG: NULL
+ TRACKING_URL: http://172.26.195.69:8540/api/_load_error_log?file=error_log_78f78fc38509451f_a0a2c6b5db27dcb7
+ TRACKING_SQL: select tracking_log from information_schema.load_tracking_logs where job_id=20624
+REJECTED_RECORD_PATH: 172.26.95.92:/home/disk1/sr/be/storage/rejected_record/test_db/label_brokerload_unqualifiedtest_0728/6/404a20b1e4db4d27_8aa9af1e8d6d8bdc
+```
+
+示例二:通过如下命令查看 `test_db` 数据库中标签为 `label_brokerload_unqualifiedtest_82` 的导入作业的执行情况:
+
+```SQL
+SELECT * FROM information_schema.loads
+WHERE database_name = 'test_db' and label = 'label_brokerload_unqualifiedtest_82'\G
+```
+
+返回结果如下所示:
+
+```SQL
+*************************** 1. row ***************************
+ JOB_ID: 20624
+ LABEL: label_brokerload_unqualifiedtest_82
+ DATABASE_NAME: test_db
+ STATE: FINISHED
+ PROGRESS: ETL:100%; LOAD:100%
+ TYPE: BROKER
+ PRIORITY: NORMAL
+ SCAN_ROWS: 12
+ FILTERED_ROWS: 4
+ UNSELECTED_ROWS: 0
+ SINK_ROWS: 8
+ ETL_INFO:
+ TASK_INFO: resource:N/A; timeout(s):14400; max_filter_ratio:1.0
+ CREATE_TIME: 2023-08-02 15:23:29
+ ETL_START_TIME: 2023-08-02 15:23:34
+ ETL_FINISH_TIME: 2023-08-02 15:23:34
+ LOAD_START_TIME: 2023-08-02 15:23:34
+ LOAD_FINISH_TIME: 2023-08-02 15:23:34
+ JOB_DETAILS: {"All backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[10010],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[10006]},"FileNumber":2,"FileSize":158,"InternalTableLoadBytes":333,"InternalTableLoadRows":8,"ScanBytes":158,"ScanRows":12,"TaskNumber":2,"Unfinished backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[]}}
+ ERROR_MSG: NULL
+ TRACKING_URL: http://172.26.195.69:8540/api/_load_error_log?file=error_log_78f78fc38509451f_a0a2c6b5db27dcb7
+ TRACKING_SQL: select tracking_log from information_schema.load_tracking_logs where job_id=20624
+REJECTED_RECORD_PATH: 172.26.95.92:/home/disk1/sr/be/storage/rejected_record/test_db/label_brokerload_unqualifiedtest_0728/6/404a20b1e4db4d27_8aa9af1e8d6d8bdc
+```
+
+有关返回字段的说明,参见 [`information_schema.loads`](../sql-reference/information_schema.md)。
+
+## 取消导入作业
+
+当导入作业状态不为 **CANCELLED** 或 **FINISHED** 时,可以通过 [CANCEL LOAD](../sql-reference/sql-statements/loading_unloading/CANCEL_LOAD.md) 语句来取消该导入作业。
+
+例如,可以通过以下语句,撤销 `test_db` 数据库中标签为 `label1` 的导入作业:
+
+```SQL
+CANCEL LOAD
+FROM test_db
+WHERE LABEL = "label1";
+```
+
+## 作业拆分与并行执行
+
+一个 Broker Load 作业会拆分成一个或者多个子任务并行处理,一个作业的所有子任务作为一个事务整体成功或失败。作业的拆分通过 `LOAD LABEL` 语句中的 `data_desc` 参数来指定:
+
+- 如果声明多个 `data_desc` 参数对应导入多张不同的表,则每张表数据的导入会拆分成一个子任务。
+
+- 如果声明多个 `data_desc` 参数对应导入同一张表的不同分区,则每个分区数据的导入会拆分成一个子任务。
+
+每个子任务还会拆分成一个或者多个实例,然后这些实例会均匀地被分配到 BE(或 CN)上并行执行。实例的拆分由 FE 配置参数 [`min_bytes_per_broker_scanner`](../administration/management/FE_configuration.md) 和 BE(或 CN)节点数量决定,可以使用如下公式计算单个子任务的实例总数:
+
+单个子任务的实例总数 = min(单个子任务待导入数据量的总大小/`min_bytes_per_broker_scanner`, BE/CN 节点数量)
+
+一般情况下,一个导入作业只有一个 `data_desc`,只会拆分成一个子任务,子任务会拆分成与 BE(或 CN)节点数量相等的实例。
+
+## 常见问题
+
+请参见 [Broker Load 常见问题](../faq/loading/Broker_load_faq.md)。
diff --git a/docs/zh/loading/tencent.md b/docs/zh/loading/tencent.md
new file mode 100644
index 0000000000000..750e65c77a459
--- /dev/null
+++ b/docs/zh/loading/tencent.md
@@ -0,0 +1,397 @@
+---
+displayed_sidebar: docs
+---
+
+# 从腾讯云 COS 导入
+
+StarRocks 支持通过两种方式从云存储系统导入大批量数据:[Broker Load](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md) 和 [INSERT](../sql-reference/sql-statements/loading_unloading/INSERT.md)。
+
+在 3.0 及以前版本,StarRocks 只支持 Broker Load 导入方式。Broker Load 是一种异步导入方式,即您提交导入作业以后,StarRocks 会异步地执行导入作业。您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
+
+Broker Load 能够保证单次导入事务的原子性,即单次导入的多个数据文件都成功或者都失败,而不会出现部分导入成功、部分导入失败的情况。
+
+另外,Broker Load 还支持在导入过程中做数据转换、以及通过 UPSERT 和 DELETE 操作实现数据变更。请参见[导入过程中实现数据转换](../loading/Etl_in_loading.md)和[通过导入实现数据变更](../loading/Load_to_Primary_Key_tables.md)。
+
+> **注意**
+>
+> Broker Load 操作需要目标表的 INSERT 权限。如果您的用户账号没有 INSERT 权限,请参考 [GRANT](../sql-reference/sql-statements/account-management/GRANT.md) 给用户赋权。
+
+从 3.1 版本起,StarRocks 新增支持使用 INSERT 语句和 `FILES` 关键字直接从 AWS S3 导入特定格式的数据文件,避免了需事先创建外部表的麻烦。参见 [INSERT > 通过 FILES 关键字直接导入外部数据文件](../loading/InsertInto.md#通过-insert-into-select-以及表函数-files-导入外部数据文件)。
+
+本文主要介绍如何使用 [Broker Load](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md) 从云存储系统导入数据。
+
+## 支持的数据文件格式
+
+Broker Load 支持如下数据文件格式:
+
+- CSV
+
+- Parquet
+
+- ORC
+
+- JSON(自 3.2.3 版本起支持)
+
+> **说明**
+>
+> 对于 CSV 格式的数据,需要注意以下两点:
+>
+> - StarRocks 支持设置长度最大不超过 50 个字节的 UTF-8 编码字符串作为列分隔符,包括常见的逗号 (,)、Tab 和 Pipe (|)。
+> - 空值 (null) 用 `\N` 表示。比如,数据文件一共有三列,其中某行数据的第一列、第三列数据分别为 `a` 和 `b`,第二列没有数据,则第二列需要用 `\N` 来表示空值,写作 `a,\N,b`,而不是 `a,,b`。`a,,b` 表示第二列是一个空字符串。
+
+## 基本原理
+
+提交导入作业以后,FE 会生成对应的查询计划,并根据目前可用 BE(或 CN)的个数和源数据文件的大小,将查询计划分配给多个 BE(或 CN)执行。每个 BE(或 CN)负责执行一部分导入任务。BE(或 CN)在执行过程中,会从外部存储系统拉取数据,并且会在对数据进行预处理之后将数据导入到 StarRocks 中。所有 BE(或 CN)均完成导入后,由 FE 最终判断导入作业是否成功。
+
+下图展示了 Broker Load 的主要流程:
+
+![Broker Load 原理图](../_assets/broker_load_how-to-work_zh.png)
+
+## 准备数据样例
+
+1. 在本地文件系统下,创建两个 CSV 格式的数据文件,`file1.csv` 和 `file2.csv`。两个数据文件都包含三列,分别代表用户 ID、用户姓名和用户得分,如下所示:
+
+ - `file1.csv`
+
+ ```Plain
+ 1,Lily,21
+ 2,Rose,22
+ 3,Alice,23
+ 4,Julia,24
+ ```
+
+ - `file2.csv`
+
+ ```Plain
+ 5,Tony,25
+ 6,Adam,26
+ 7,Allen,27
+ 8,Jacky,28
+ ```
+
+2. 将 `file1.csv` 和 `file2.csv` 上传到云存储空间的指定路径下。这里假设分别上传到 AWS S3 存储空间 `bucket_s3` 里的 `input` 文件夹下、 Google GCS 存储空间 `bucket_gcs` 里的 `input` 文件夹下、阿里云 OSS 存储空间 `bucket_oss` 里的 `input` 文件夹下、腾讯云 COS 存储空间 `bucket_cos` 里的 `input` 文件夹下、华为云 OBS 存储空间 `bucket_obs` 里的 `input` 文件夹下、其他兼容 S3 协议的对象存储(如 MinIO)空间 `bucket_minio` 里的 `input` 文件夹下、以及 Azure Storage 的指定路径下。
+
+3. 登录 StarRocks 数据库(假设为 `test_db`),创建两张主键表,`table1` 和 `table2`。两张表都包含 `id`、`name` 和 `score` 三列,分别代表用户 ID、用户姓名和用户得分,主键为 `id` 列,如下所示:
+
+ ```SQL
+ CREATE TABLE `table1`
+ (
+ `id` int(11) NOT NULL COMMENT "用户 ID",
+ `name` varchar(65533) NULL DEFAULT "" COMMENT "用户姓名",
+ `score` int(11) NOT NULL DEFAULT "0" COMMENT "用户得分"
+ )
+ ENGINE=OLAP
+ PRIMARY KEY(`id`)
+ DISTRIBUTED BY HASH(`id`);
+
+ CREATE TABLE `table2`
+ (
+ `id` int(11) NOT NULL COMMENT "用户 ID",
+ `name` varchar(65533) NULL DEFAULT "" COMMENT "用户姓名",
+ `score` int(11) NOT NULL DEFAULT "0" COMMENT "用户得分"
+ )
+ ENGINE=OLAP
+ PRIMARY KEY(`id`)
+ DISTRIBUTED BY HASH(`id`);
+ ```
+
+
+## 从腾讯云 COS 导入
+
+下述命令以 CSV 格式为例。有关如何导入其他格式的数据,参见 [BROKER LOAD](../sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md)。
+
+### 导入单个数据文件到单表
+
+#### 操作示例
+
+通过如下语句,把腾讯云 COS 存储空间 `bucket_cos` 里 `input` 文件夹内数据文件 `file1.csv` 的数据导入到目标表 `table1`:
+
+```SQL
+LOAD LABEL test_db.label_brokerloadtest_501
+(
+ DATA INFILE("cosn://bucket_cos/input/file1.csv")
+ INTO TABLE table1
+ COLUMNS TERMINATED BY ","
+ (id, name, score)
+)
+WITH BROKER
+(
+ "fs.cosn.userinfo.secretId" = "",
+ "fs.cosn.userinfo.secretKey" = "",
+ "fs.cosn.bucket.endpoint_suffix" = ""
+)
+PROPERTIES
+(
+ "timeout" = "3600"
+);
+```
+
+#### 查询数据
+
+提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
+
+确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
+
+```SQL
+SELECT * FROM table1;
++------+-------+-------+
+| id | name | score |
++------+-------+-------+
+| 1 | Lily | 21 |
+| 2 | Rose | 22 |
+| 3 | Alice | 23 |
+| 4 | Julia | 24 |
++------+-------+-------+
+4 rows in set (0.01 sec)
+```
+
+### 导入多个数据文件到单表
+
+#### 操作示例
+
+通过如下语句,把腾讯云 COS 存储空间 `bucket_cos` 里 `input` 文件夹内所有数据文件(`file1.csv` 和 `file2.csv`)的数据导入到目标表 `table1`:
+
+```SQL
+LOAD LABEL test_db.label_brokerloadtest_502
+(
+ DATA INFILE("cosn://bucket_cos/input/*")
+ INTO TABLE table1
+ COLUMNS TERMINATED BY ","
+ (id, name, score)
+)
+WITH BROKER
+(
+ "fs.cosn.userinfo.secretId" = "",
+ "fs.cosn.userinfo.secretKey" = "",
+ "fs.cosn.bucket.endpoint_suffix" = ""
+)
+PROPERTIES
+(
+ "timeout" = "3600"
+);
+```
+
+#### 查询数据
+
+提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
+
+确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 的数据,如下所示:
+
+```SQL
+SELECT * FROM table1;
++------+-------+-------+
+| id | name | score |
++------+-------+-------+
+| 1 | Lily | 21 |
+| 2 | Rose | 22 |
+| 3 | Alice | 23 |
+| 4 | Julia | 24 |
+| 5 | Tony | 25 |
+| 6 | Adam | 26 |
+| 7 | Allen | 27 |
+| 8 | Jacky | 28 |
++------+-------+-------+
+4 rows in set (0.01 sec)
+```
+
+### 导入多个数据文件到多表
+
+#### 操作示例
+
+通过如下语句,把腾讯云 COS 存储空间 `bucket_cos` 里 `input` 文件夹内数据文件 `file1.csv` 和 `file2.csv` 的数据分别导入到目标表 `table1` 和 `table2`:
+
+```SQL
+LOAD LABEL test_db.label_brokerloadtest_503
+(
+ DATA INFILE("cosn://bucket_cos/input/file1.csv")
+ INTO TABLE table1
+ COLUMNS TERMINATED BY ","
+ (id, name, score)
+ ,
+ DATA INFILE("cosn://bucket_cos/input/file2.csv")
+ INTO TABLE table2
+ COLUMNS TERMINATED BY ","
+ (id, name, score)
+)
+WITH BROKER
+(
+ "fs.cosn.userinfo.secretId" = "",
+ "fs.cosn.userinfo.secretKey" = "",
+ "fs.cosn.bucket.endpoint_suffix" = ""
+);
+PROPERTIES
+(
+ "timeout" = "3600"
+);
+```
+
+#### 查询数据
+
+提交导入作业以后,您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持,具体请参见本文“[查看导入作业](#查看导入作业)”小节。
+
+确认导入作业成功以后,您可以使用 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句来查询 `table1` 和 `table2` 中的数据:
+
+1. 查询 `table1` 的数据,如下所示:
+
+ ```SQL
+ SELECT * FROM table1;
+ +------+-------+-------+
+ | id | name | score |
+ +------+-------+-------+
+ | 1 | Lily | 21 |
+ | 2 | Rose | 22 |
+ | 3 | Alice | 23 |
+ | 4 | Julia | 24 |
+ +------+-------+-------+
+ 4 rows in set (0.01 sec)
+ ```
+
+2. 查询 `table2` 的数据,如下所示:
+
+ ```SQL
+ SELECT * FROM table2;
+ +------+-------+-------+
+ | id | name | score |
+ +------+-------+-------+
+ | 5 | Tony | 25 |
+ | 6 | Adam | 26 |
+ | 7 | Allen | 27 |
+ | 8 | Jacky | 28 |
+ +------+-------+-------+
+ 4 rows in set (0.01 sec)
+ ```
+
+
+## 查看导入作业
+
+通过 [SELECT](../sql-reference/sql-statements/table_bucket_part_index/SELECT.md) 语句从 `information_schema` 数据库中的 `loads` 表来查看 Broker Load 作业的结果。该功能自 3.1 版本起支持。
+
+示例一:通过如下命令查看 `test_db` 数据库中导入作业的执行情况,同时指定查询结果根据作业创建时间 (`CREATE_TIME`) 按降序排列,并且最多显示两条结果数据:
+
+```SQL
+SELECT * FROM information_schema.loads
+WHERE database_name = 'test_db'
+ORDER BY create_time DESC
+LIMIT 2\G
+```
+
+返回结果如下所示:
+
+```SQL
+*************************** 1. row ***************************
+ JOB_ID: 20686
+ LABEL: label_brokerload_unqualifiedtest_83
+ DATABASE_NAME: test_db
+ STATE: FINISHED
+ PROGRESS: ETL:100%; LOAD:100%
+ TYPE: BROKER
+ PRIORITY: NORMAL
+ SCAN_ROWS: 8
+ FILTERED_ROWS: 0
+ UNSELECTED_ROWS: 0
+ SINK_ROWS: 8
+ ETL_INFO:
+ TASK_INFO: resource:N/A; timeout(s):14400; max_filter_ratio:1.0
+ CREATE_TIME: 2023-08-02 15:25:22
+ ETL_START_TIME: 2023-08-02 15:25:24
+ ETL_FINISH_TIME: 2023-08-02 15:25:24
+ LOAD_START_TIME: 2023-08-02 15:25:24
+ LOAD_FINISH_TIME: 2023-08-02 15:25:27
+ JOB_DETAILS: {"All backends":{"77fe760e-ec53-47f7-917d-be5528288c08":[10006],"0154f64e-e090-47b7-a4b2-92c2ece95f97":[10005]},"FileNumber":2,"FileSize":84,"InternalTableLoadBytes":252,"InternalTableLoadRows":8,"ScanBytes":84,"ScanRows":8,"TaskNumber":2,"Unfinished backends":{"77fe760e-ec53-47f7-917d-be5528288c08":[],"0154f64e-e090-47b7-a4b2-92c2ece95f97":[]}}
+ ERROR_MSG: NULL
+ TRACKING_URL: NULL
+ TRACKING_SQL: NULL
+REJECTED_RECORD_PATH: NULL
+*************************** 2. row ***************************
+ JOB_ID: 20624
+ LABEL: label_brokerload_unqualifiedtest_82
+ DATABASE_NAME: test_db
+ STATE: FINISHED
+ PROGRESS: ETL:100%; LOAD:100%
+ TYPE: BROKER
+ PRIORITY: NORMAL
+ SCAN_ROWS: 12
+ FILTERED_ROWS: 4
+ UNSELECTED_ROWS: 0
+ SINK_ROWS: 8
+ ETL_INFO:
+ TASK_INFO: resource:N/A; timeout(s):14400; max_filter_ratio:1.0
+ CREATE_TIME: 2023-08-02 15:23:29
+ ETL_START_TIME: 2023-08-02 15:23:34
+ ETL_FINISH_TIME: 2023-08-02 15:23:34
+ LOAD_START_TIME: 2023-08-02 15:23:34
+ LOAD_FINISH_TIME: 2023-08-02 15:23:34
+ JOB_DETAILS: {"All backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[10010],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[10006]},"FileNumber":2,"FileSize":158,"InternalTableLoadBytes":333,"InternalTableLoadRows":8,"ScanBytes":158,"ScanRows":12,"TaskNumber":2,"Unfinished backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[]}}
+ ERROR_MSG: NULL
+ TRACKING_URL: http://172.26.195.69:8540/api/_load_error_log?file=error_log_78f78fc38509451f_a0a2c6b5db27dcb7
+ TRACKING_SQL: select tracking_log from information_schema.load_tracking_logs where job_id=20624
+REJECTED_RECORD_PATH: 172.26.95.92:/home/disk1/sr/be/storage/rejected_record/test_db/label_brokerload_unqualifiedtest_0728/6/404a20b1e4db4d27_8aa9af1e8d6d8bdc
+```
+
+示例二:通过如下命令查看 `test_db` 数据库中标签为 `label_brokerload_unqualifiedtest_82` 的导入作业的执行情况:
+
+```SQL
+SELECT * FROM information_schema.loads
+WHERE database_name = 'test_db' and label = 'label_brokerload_unqualifiedtest_82'\G
+```
+
+返回结果如下所示:
+
+```SQL
+*************************** 1. row ***************************
+ JOB_ID: 20624
+ LABEL: label_brokerload_unqualifiedtest_82
+ DATABASE_NAME: test_db
+ STATE: FINISHED
+ PROGRESS: ETL:100%; LOAD:100%
+ TYPE: BROKER
+ PRIORITY: NORMAL
+ SCAN_ROWS: 12
+ FILTERED_ROWS: 4
+ UNSELECTED_ROWS: 0
+ SINK_ROWS: 8
+ ETL_INFO:
+ TASK_INFO: resource:N/A; timeout(s):14400; max_filter_ratio:1.0
+ CREATE_TIME: 2023-08-02 15:23:29
+ ETL_START_TIME: 2023-08-02 15:23:34
+ ETL_FINISH_TIME: 2023-08-02 15:23:34
+ LOAD_START_TIME: 2023-08-02 15:23:34
+ LOAD_FINISH_TIME: 2023-08-02 15:23:34
+ JOB_DETAILS: {"All backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[10010],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[10006]},"FileNumber":2,"FileSize":158,"InternalTableLoadBytes":333,"InternalTableLoadRows":8,"ScanBytes":158,"ScanRows":12,"TaskNumber":2,"Unfinished backends":{"78f78fc3-8509-451f-a0a2-c6b5db27dcb6":[],"a24aa357-f7de-4e49-9e09-e98463b5b53c":[]}}
+ ERROR_MSG: NULL
+ TRACKING_URL: http://172.26.195.69:8540/api/_load_error_log?file=error_log_78f78fc38509451f_a0a2c6b5db27dcb7
+ TRACKING_SQL: select tracking_log from information_schema.load_tracking_logs where job_id=20624
+REJECTED_RECORD_PATH: 172.26.95.92:/home/disk1/sr/be/storage/rejected_record/test_db/label_brokerload_unqualifiedtest_0728/6/404a20b1e4db4d27_8aa9af1e8d6d8bdc
+```
+
+有关返回字段的说明,参见 [`information_schema.loads`](../sql-reference/information_schema.md)。
+
+## 取消导入作业
+
+当导入作业状态不为 **CANCELLED** 或 **FINISHED** 时,可以通过 [CANCEL LOAD](../sql-reference/sql-statements/loading_unloading/CANCEL_LOAD.md) 语句来取消该导入作业。
+
+例如,可以通过以下语句,撤销 `test_db` 数据库中标签为 `label1` 的导入作业:
+
+```SQL
+CANCEL LOAD
+FROM test_db
+WHERE LABEL = "label1";
+```
+
+## 作业拆分与并行执行
+
+一个 Broker Load 作业会拆分成一个或者多个子任务并行处理,一个作业的所有子任务作为一个事务整体成功或失败。作业的拆分通过 `LOAD LABEL` 语句中的 `data_desc` 参数来指定:
+
+- 如果声明多个 `data_desc` 参数对应导入多张不同的表,则每张表数据的导入会拆分成一个子任务。
+
+- 如果声明多个 `data_desc` 参数对应导入同一张表的不同分区,则每个分区数据的导入会拆分成一个子任务。
+
+每个子任务还会拆分成一个或者多个实例,然后这些实例会均匀地被分配到 BE(或 CN)上并行执行。实例的拆分由 FE 配置参数 [`min_bytes_per_broker_scanner`](../administration/management/FE_configuration.md) 和 BE(或 CN)节点数量决定,可以使用如下公式计算单个子任务的实例总数:
+
+单个子任务的实例总数 = min(单个子任务待导入数据量的总大小/`min_bytes_per_broker_scanner`, BE/CN 节点数量)
+
+一般情况下,一个导入作业只有一个 `data_desc`,只会拆分成一个子任务,子任务会拆分成与 BE(或 CN)节点数量相等的实例。
+
+## 常见问题
+
+请参见 [Broker Load 常见问题](../faq/loading/Broker_load_faq.md)。
diff --git a/docs/zh/quick_start/Import_and_query.md b/docs/zh/quick_start/Import_and_query.md
index 3b1ca3b785843..c3abb0d5d863f 100644
--- a/docs/zh/quick_start/Import_and_query.md
+++ b/docs/zh/quick_start/Import_and_query.md
@@ -12,7 +12,7 @@ displayed_sidebar: docs
### Broker Load
-Broker Load(参见 [从 HDFS 导入](../loading/hdfs_load.md)和[从云存储导入](../loading/cloud_storage_load.md))是一种异步数据导入模式,通过 Broker 进程访问并读取外部数据源,然后采用 MySQL 协议向 StarRocks 创建导入作业。
+Broker Load(参见 [从 HDFS 导入](../loading/hdfs_load.md)和[从云存储导入](../loading/objectstorage.mdx))是一种异步数据导入模式,通过 Broker 进程访问并读取外部数据源,然后采用 MySQL 协议向 StarRocks 创建导入作业。
Broker Load 模式适用于源数据在 Broker 进程可访问的存储系统(如 HDFS,S3)中的情景,可以支撑数据量达数百 GB 的导入作业。该导入方式支持的数据源有 Apache Hive™ 等。
diff --git a/docs/zh/sql-reference/sql-statements/cluster-management/nodes_processes/ALTER_SYSTEM.md b/docs/zh/sql-reference/sql-statements/cluster-management/nodes_processes/ALTER_SYSTEM.md
index c616f25d08786..1d74ad0953d74 100644
--- a/docs/zh/sql-reference/sql-statements/cluster-management/nodes_processes/ALTER_SYSTEM.md
+++ b/docs/zh/sql-reference/sql-statements/cluster-management/nodes_processes/ALTER_SYSTEM.md
@@ -109,7 +109,7 @@ displayed_sidebar: docs
### Broker
-- 添加 Broker。添加后,您可以使用 Broker Load 将 HDFS 或外部云存储系统中的数据导入到 StarRocks 中。详情参见[从 HDFS 导入](../../../../loading/hdfs_load.md)和[从云存储导入](../../../../loading/cloud_storage_load.md)。
+- 添加 Broker。添加后,您可以使用 Broker Load 将 HDFS 或外部云存储系统中的数据导入到 StarRocks 中。详情参见[从 HDFS 导入](../../../../loading/hdfs_load.md)和[从云存储导入](../../../../loading/objectstorage.mdx)。
```SQL
ALTER SYSTEM ADD BROKER broker_name "host:port"[, ...]
diff --git a/docs/zh/sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md b/docs/zh/sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md
index 445ffd4b5652b..c9eb3b1d87fcd 100644
--- a/docs/zh/sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md
+++ b/docs/zh/sql-reference/sql-statements/loading_unloading/BROKER_LOAD.md
@@ -7,7 +7,7 @@ toc_max_heading_level: 5
## 功能
-Broker Load 是一种基于 MySQL 协议的异步导入方式。您提交导入作业以后,StarRocks 会异步地执行导入作业。您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持。有关 Broker Load 的背景信息、基本原理、支持的数据文件格式、如何执行单表导入 (Single-Table Load) 和多表导入 (Multi-Table Load) 操作、以及如何查看导入作业的结果等信息,请参见[从 HDFS 导入](../../../loading/hdfs_load.md)和[从云存储导入](../../../loading/cloud_storage_load.md)。
+Broker Load 是一种基于 MySQL 协议的异步导入方式。您提交导入作业以后,StarRocks 会异步地执行导入作业。您可以使用 `SELECT * FROM information_schema.loads` 来查看 Broker Load 作业的结果,该功能自 3.1 版本起支持。有关 Broker Load 的背景信息、基本原理、支持的数据文件格式、如何执行单表导入 (Single-Table Load) 和多表导入 (Multi-Table Load) 操作、以及如何查看导入作业的结果等信息,请参见[从 HDFS 导入](../../../loading/hdfs_load.md)和[从云存储导入](../../../loading/objectstorage.mdx)。
> **注意**
>
diff --git a/docs/zh/sql-reference/sql-statements/loading_unloading/SHOW_LOAD.md b/docs/zh/sql-reference/sql-statements/loading_unloading/SHOW_LOAD.md
index 4ebc5baf6b8fe..0d04fde36fbcf 100644
--- a/docs/zh/sql-reference/sql-statements/loading_unloading/SHOW_LOAD.md
+++ b/docs/zh/sql-reference/sql-statements/loading_unloading/SHOW_LOAD.md
@@ -6,7 +6,7 @@ displayed_sidebar: docs
## 功能
-查看数据库中指定导入作业的相关信息,包括 [Broker Load](./BROKER_LOAD.md)、[INSERT](./INSERT.md) 和 [Spark Load](./SPARK_LOAD.md)。您还可以使用 `curl` 命令查看这些导入作业的相关信息。注意,从 3.1 版本起,对于 Broker Load 和 Insert 导入,推荐您通过 [SELECT](../table_bucket_part_index/SELECT.md) 语句从 `information_schema` 数据库中的 [`loads`](../../../sql-reference/information_schema.md#loads) 表来查看作业结果。详请参见[从 HDFS 导入](../../../loading/hdfs_load.md)、[从云存储导入](../../../loading/cloud_storage_load.md)、[通过 INSERT 语句导入数据](../../../loading/InsertInto.md)和[使用 Apache Spark™ 批量导入](../../../loading/SparkLoad.md)。
+查看数据库中指定导入作业的相关信息,包括 [Broker Load](./BROKER_LOAD.md)、[INSERT](./INSERT.md) 和 [Spark Load](./SPARK_LOAD.md)。您还可以使用 `curl` 命令查看这些导入作业的相关信息。注意,从 3.1 版本起,对于 Broker Load 和 Insert 导入,推荐您通过 [SELECT](../table_bucket_part_index/SELECT.md) 语句从 `information_schema` 数据库中的 [`loads`](../../../sql-reference/information_schema.md#loads) 表来查看作业结果。详请参见[从 HDFS 导入](../../../loading/hdfs_load.md)、[从云存储导入](../../../loading/objectstorage.mdx)、[通过 INSERT 语句导入数据](../../../loading/InsertInto.md)和[使用 Apache Spark™ 批量导入](../../../loading/SparkLoad.md)。
除了以上三种导入方式, StarRocks 还支持 Stream Load 和 Routine Load,其中 Stream Load 是同步操作,会直接返回结果,不会通过 SHOW LOAD 展示。Routine Load 可通过 [SHOW ROUTINE LOAD](routine_load/SHOW_ROUTINE_LOAD.md) 查看导入作业的相关信息。