-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpytorch_.py
186 lines (139 loc) · 5.86 KB
/
pytorch_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch
from torch import nn
from torch.utils.data import DataLoader
# from torchvision import datasets
# from torchvision.transforms import ToTensor, Lambda, Compose
import matplotlib.pyplot as plt
import numpy
class Dataset(torch.utils.data.Dataset):
'Characterizes a dataset for PyTorch'
def __init__(self, X, Y):
'Initialization'
self.X = X
self.Y = Y
def __len__(self):
'Denotes the total number of samples'
return X.shape[0]
def __getitem__(self, index):
'Generates one sample of data'
x = torch.tensor(X[index, :], dtype=torch.float32).to(device)
y = torch.tensor(Y[index, :], dtype=torch.float32).to(device)
return x, y
class FFReLUNet(nn.Module):
"""
Implements a feed forward neural network that uses
ReLU activations for all hidden layers with no activation on the output layer.
"""
def __init__(self, shape):
"""Constructor for network.
Args:
shape (list of ints): list of network layer shapes, which
includes the input and output layers.
"""
super(FFReLUNet, self).__init__()
self.shape = shape
self.flatten = nn.Flatten()
# Build up the layers
layers = []
for i in range(len(shape) - 1):
layers.append(nn.Linear(shape[i], shape[i + 1]))
if i != (len(shape) - 2):
layers.append(nn.ReLU(inplace=True))
self.seq = nn.Sequential(*layers)
def forward(self, x):
"""
Forward pass on the input through the network.
Args:
x (torch.Tensor): Input tensor dims [batch, self.shape[0]]
Returns:
torch.Tensor: Output of network. [batch, self.shape[-1]]
"""
return self.seq(x)
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 20 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss = 0.
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
test_loss /= num_batches
print(f"Test Error: Avg loss: {test_loss:>8f} \n")
# Choose dynamics: "vanderpol", "mpc", "taxinet_dyn", "pend_ctrl"
dynamics = "taxinet_dyn"
if torch.cuda.is_available(): device = torch.device("cuda")
else: device = torch.device("cpu")
# import data, normalize, split, and construct dataset classes
# X = numpy.load("models/taxinet/Y_image.npy")
# Y = numpy.load("models/taxinet/X_image.npy")
X = numpy.load("models/taxinet/X_dynamics_1hz.npy")
Y = numpy.load("models/taxinet/Y_dynamics_1hz.npy")
# X = numpy.load("models/Pendulum/X_controlled.npy")
# Y = numpy.load("models/Pendulum/Y_controlled.npy")
# generate quadratic function data
# Define the grid range and step size
# grid_size = 100 # You can adjust this for more or fewer points
# x_values = numpy.linspace(-1, 1, grid_size)
# y_values = numpy.linspace(-1, 1, grid_size)
# x1, x2 = numpy.meshgrid(x_values, y_values)
# X = numpy.vstack([x1.ravel(), x2.ravel()]).T
# Y = (X[:, 0]**2 + X[:, 1]**2).reshape(-1, 1)
X_mean, X_std = numpy.mean(X, axis=0), numpy.std(X, axis=0)
Y_mean, Y_std = numpy.mean(Y, axis=0), numpy.std(Y, axis=0)
X = (X - X_mean) / X_std
Y = (Y - Y_mean) / Y_std
in_dim, out_dim, N = X.shape[1], Y.shape[1], X.shape[0]
split = int(0.90 * N)
training_data = Dataset(X[:split, :], Y[:split, :])
testing_data = Dataset( X[split:, :], Y[split:, :])
print("\n\nNonlinear regression for input dim = " + str(in_dim) + ", output dim = " + str(out_dim) + ", with " + str(split) + " samples.")
print("Using {} device".format(device))
# Create data loaders.
batch_size = 100
train_dataloader = DataLoader(training_data, batch_size=batch_size, shuffle=True)
test_dataloader = DataLoader(testing_data, batch_size=batch_size, shuffle=True)
layer_sizes = numpy.array([in_dim, 16, out_dim])
model = FFReLUNet(layer_sizes).to(device)
loss_fn = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999), weight_decay=1e-6)
print("\n", model)
# Train
epochs = 1
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
test(test_dataloader, model, loss_fn)
print("Done!")
# Export weights
weights = []
for name, param in model.named_parameters():
# print('name: ', name)
# print(type(param))
# print('param.shape: ', param.shape)
weights.append(param.detach().cpu().numpy())
# print('=====')
# save weights and normalization parameters
numpy.savez("models/taxinet/weights_dynamics_1hz_2nd.npz", *weights)
numpy.savez("models/taxinet/norm_params_dynamics_1hz_2nd.npz", X_mean=X_mean, X_std=X_std, Y_mean=Y_mean, Y_std=Y_std, layer_sizes=layer_sizes)
# numpy.savez("models/Pendulum/weights_controlled.npz", *weights)
# numpy.savez("models/Pendulum/norm_params_controlled.npz", X_mean=X_mean, X_std=X_std, Y_mean=Y_mean, Y_std=Y_std, layer_sizes=layer_sizes)
# numpy.savez("models/" + dynamics + "/weights.npz", *weights)
# numpy.savez("models/" + dynamics + "/norm_params.npz", X_mean=X_mean, X_std=X_std, Y_mean=Y_mean, Y_std=Y_std, layer_sizes=layer_sizes)
# numpy.savez("models/quadratic/weights.npz", *weights)
# numpy.savez("models/quadratic/norm_params.npz", X_mean=X_mean, X_std=X_std, Y_mean=Y_mean, Y_std=Y_std, layer_sizes=layer_sizes)