-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtesting.py
269 lines (227 loc) · 10.9 KB
/
testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import hydra
from omegaconf import DictConfig
import torch
import json
import numpy as np
from hydra import initialize, compose
from src.algos.registry import get_model
import os
def setup_sumo(cfg):
from src.envs.sim.sumo_env import Scenario, AMoD, GNNParser
cfg.simulator.cplexpath = cfg.model.cplexpath
if not cfg.simulator.directory:
cfg.simulator.directory = f"{cfg.model.name}/{cfg.simulator.city}"
cfg = cfg.simulator
scenario_path = 'src/envs/data'
cfg.sumocfg_file = f'{scenario_path}/{cfg.city}/{cfg.sumocfg_file}'
cfg.net_file = f'{scenario_path}/{cfg.city}/{cfg.net_file}'
demand_file = f'src/envs/data/scenario_lux{cfg.num_regions}.json'
aggregated_demand = not cfg.random_od
scenario = Scenario(
num_cluster=cfg.num_regions, json_file=demand_file, aggregated_demand=aggregated_demand,
sumo_net_file=cfg.net_file, acc_init=cfg.acc_init, sd=cfg.seed, demand_ratio=cfg.demand_ratio,
time_start=cfg.time_start, time_horizon=cfg.time_horizon, duration=cfg.duration,
tstep=cfg.matching_tstep, max_waiting_time=cfg.max_waiting_time
)
env = AMoD(scenario, cfg=cfg, beta=cfg.beta)
parser = GNNParser(env, T=cfg.time_horizon, json_file=demand_file)
return env, parser
def setup_macro(cfg):
from src.envs.sim.macro_env import Scenario, AMoD, GNNParser
with open("src/envs/data/macro/calibrated_parameters.json", "r") as file:
calibrated_params = json.load(file)
cfg.simulator.cplexpath = cfg.model.cplexpath
if not cfg.simulator.directory:
cfg.simulator.directory = f"{cfg.model.name}/{cfg.simulator.city}"
cfg = cfg.simulator
city = cfg.city
scenario = Scenario(
json_file=f"src/envs/data/macro/scenario_{city}.json",
demand_ratio=calibrated_params[city]["demand_ratio"],
json_hr=calibrated_params[city]["json_hr"],
sd=cfg.seed,
json_tstep=calibrated_params[city]["test_tstep"],
tf=cfg.max_steps,
)
env = AMoD(scenario, cfg = cfg, beta = calibrated_params[city]["beta"])
parser = GNNParser(env, T=cfg.time_horizon, json_file=f"src/envs/data/macro/scenario_{city}.json")
return env, parser
def setup_model(cfg, env, parser, device):
model_name = cfg.model.name
if model_name == "sac" or model_name =="cql":
from src.algos.sac import SAC
model= SAC(env=env, input_size=cfg.model.input_size, cfg=cfg.model, parser=parser, device=device).to(device)
model.load_checkpoint(path=f"ckpt/{cfg.model.checkpoint_path}_best.pth")
return model
elif model_name == "a2c":
from src.algos.a2c import A2C
model= A2C(env=env, input_size=cfg.model.input_size, parser=parser, device=device).to(device)
model.load_checkpoint(path=f"ckpt/{cfg.model.checkpoint_path}_best.pth")
return model
elif model_name == "iql":
from src.algos.iql import IQL
model = IQL(env=env, input_size=cfg.model.input_size,cfg=cfg.model, parser=parser, device=device).to(device)
model.load_checkpoint(path=f"ckpt/{cfg.model.checkpoint_path}.pth")
return model
elif model_name == "bc":
from src.algos.bc import BC
model = BC(env=env, input_size=cfg.model.input_size,cfg=cfg.model, parser=parser, device=device).to(device)
model.load_checkpoint(path=f"ckpt/{cfg.model.checkpoint_path}.pth")
return model
else:
model_class = get_model(model_name)
model_kwargs = {
"cplexpath": cfg.simulator.cplexpath,
"directory": cfg.simulator.directory,
"T": cfg.simulator.time_horizon,
"policy_name": cfg.model.name
}
for key, value in cfg.model.items():
if key not in model_kwargs:
model_kwargs[key] = value
return model_class(**model_kwargs)
def test(config):
'''
for Colab tutorial
'''
with initialize(config_path="src/config"):
cfg = compose(config_name="config", overrides= [f"{key}={value}" for key, value in config.items()]) # Load the configuration
# Import simulator module based on the configuration
simulator_name = cfg.simulator.name
if simulator_name == "sumo":
env, parser = setup_sumo(cfg)
elif simulator_name == "macro":
env, parser = setup_macro(cfg)
else:
raise ValueError(f"Unknown simulator: {simulator_name}")
use_cuda = not cfg.model.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
model = setup_model(cfg, env, parser, device)
print(f'Testing model {cfg.model.name} on {cfg.simulator.name} environment')
episode_reward, episode_served_demand, episode_rebalancing_cost, inflows = model.test(cfg.model.test_episodes, env)
print('Mean Episode Profit ($): ', np.mean(episode_reward))
print('Mean Episode Served Demand- Proit($): ', np.mean(episode_served_demand))
print('Mean Episode Rebalancing Cost($): ', np.mean(episode_rebalancing_cost))
inflows = np.mean(inflows, axis=0)
#check if no_control performance is saved
path = f'/src/envs/data/{cfg.simulator.name}/{cfg.simulator.city}_no_control_performance.json'
#check if path exists
if os.path.exists(path):
with open(path, 'r') as f:
no_control_performance = json.load(f)
no_reb_reward = no_control_performance['reward']
no_reb_demand = no_control_performance['served_demand']
no_reb_cost = no_control_performance['rebalancing_cost']
else:
print('No control performance not found. Calculating (this happens only the first time on a new environment)...')
cfg_copy = cfg.copy()
cfg_copy.model.name = 'no_rebalancing'
model = setup_model(cfg, env, parser, device)
no_reb_reward, no_reb_demand, no_reb_cost, _ = model.test(10, env)
no_reb_reward = round(np.mean(no_reb_reward)/1000,2)
no_reb_demand = round(np.mean(no_reb_demand)/1000,2)
no_reb_cost = round(np.mean(no_reb_cost)/1000,2)
no_control_performance = {'reward': no_reb_reward, 'served_demand': no_reb_demand, 'rebalancing_cost': no_reb_cost}
print(f'No control performance calculated. Saving in {path}...')
with open(path, 'w') as f:
json.dump(no_control_performance, f)
mean_reward = np.mean(episode_reward)
mean_served_demand = np.mean(episode_served_demand)
mean_rebalancing_cost = np.mean(episode_rebalancing_cost)
mean_reward = round(mean_reward/1000,2)
mean_served_demand = round(mean_served_demand/1000,2)
mean_rebalancing_cost = round(mean_rebalancing_cost/1000,2)
labels = ['Overall Profit', 'Served Demand Profit', 'Rebalancing Cost']
rl_means = [mean_reward, mean_served_demand, mean_rebalancing_cost]
no_control = [no_reb_reward, no_reb_demand, no_reb_cost]
import matplotlib.pyplot as plt
x = np.arange(len(labels)) # the label locations
width = 0.15 # the width of the bars
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(15, 5))
#fig, ax = plt.subplots(figsize=(8, 5))
rects1 = ax1.bar(x - width/2, rl_means, width, label=cfg.model.name, color="#0072BD")
rects2 = ax1.bar(x + width/2, no_control, width, label='No Control', color="#A2142F")
# Add some text for labels, title and custom x-axis tick labels, etc.
ax1.set_xlabel('Metrics')
ax1.set_ylabel('$, x10^3')
ax1.set_title(f'Comparison of {cfg.model.name} vs No Control')
ax1.set_xticks(x)
ax1.set_xticklabels(labels)
ax1.legend()
# Function to add value labels on top of bars
def add_value_labels(rects):
for rect in rects:
height = rect.get_height()
ax1.annotate(f'{height:.1f}',
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3), # 3 points vertical offset
textcoords="offset points",
ha='center', va='bottom')
# Adding value labels to each bar
add_value_labels(rects1)
add_value_labels(rects2)
#plt.tight_layout()
plt.grid(True, axis='y', linestyle='--', alpha=0.7)
if cfg.simulator.city != 'nyc_brooklyn':
plt.show()
else:
#plots for tutorial
open_reqest = {0: 0,
1: 414.0,
2: 0,
3: 0,
4: 0,
5: 49756.49999999998,
6: 9948.600000000006,
7: 98.99999999999999,
8: 198.00000000000003,
9: 881.9999999999998,
10: 1232.9999999999993,
11: 6492.600000000001,
12: 23293.80000000004,
13: 170.99999999999997}
#open_reqest = {k: v / max(open_reqest.values()) for k,v in open_reqest.items()}
#inflows = inflows / max(inflows)
labels = range(14)
x = np.arange(len(labels)) # the label locations
width = 0.25 # the width of the bars
r1 = np.arange(14)
r2 = [x + width for x in r1]
#fig, ax = plt.subplots(figsize=(8, 5))
ax2.bar(r2, inflows, width, label='Rebalancing Flows', color="#0072BD")
ax3 = ax2.twinx() # Create a second y-axis
ax3.bar(r1, open_reqest.values(), width, label='Profit', color="#A2142F")
# Add labels and title to the second plot
ax2.set_xlabel('Regions')
ax2.set_ylabel('Flows', color="#0072BD")
ax3.set_ylabel('Profit', color="#A2142F")
ax2.set_title('Comparison of Incoming Rebalancing Flows vs Profit')
ax2.set_xticks(r1)
ax2.set_xticklabels(labels)
ax2.tick_params(axis='y', labelcolor="#0072BD")
ax3.tick_params(axis='y', labelcolor="#A2142F")
#ax2.legend()
#ax3.legend()
plt.tight_layout()
plt.show()
@hydra.main(version_base=None, config_path="src/config/", config_name="config")
def main(cfg: DictConfig):
# Import simulator module based on the configuration
simulator_name = cfg.simulator.name
if simulator_name == "sumo":
env, parser = setup_sumo(cfg)
elif simulator_name == "macro":
env, parser = setup_macro(cfg)
else:
raise ValueError(f"Unknown simulator: {simulator_name}")
use_cuda = not cfg.model.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
model = setup_model(cfg, env, parser, device)
print('Testing...')
episode_reward, episode_served_demand, episode_rebalancing_cost, episode_inflows = model.test(cfg.model.test_episodes, env)
print('Mean Episode Profit ($): ', np.mean(episode_reward), 'Std Episode Reward: ', np.std(episode_reward))
print('Mean Episode Served Demand($): ', np.mean(episode_served_demand), 'Std Episode Served Demand: ', np.std(episode_served_demand))
print('Mean Episode Rebalancing Cost($): ', np.mean(episode_rebalancing_cost), 'Std Episode Rebalancing Cost: ', np.std(episode_rebalancing_cost))
##TODO: ADD VISUALIZATION
if __name__ == "__main__":
main()