forked from kekeblom/mmstereo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
84 lines (65 loc) · 3.24 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Copyright 2021 Toyota Research Institute. All rights reserved.
import argparse
import math
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import visualization
VIS_DISPARITY = 256
FX = 1075.0
FY = 1220.0
def run_inference(model, left_file, right_file):
left = cv2.imread(left_file)
right = cv2.imread(right_file)
# Convert inputs from Numpy arrays scaled 0 to 255 to PyTorch tensors scaled from 0 to 1.
left_tensor = left.astype(np.float32).transpose((2, 0, 1)) / 255.0
right_tensor = right.astype(np.float32).transpose((2, 0, 1)) / 255.0
left_tensor = torch.from_numpy(left_tensor).unsqueeze(0)
right_tensor = torch.from_numpy(right_tensor).unsqueeze(0)
# Crop inputs such that they don't need any padding when passing to the network.5)
height, width, _ = left.shape
target_height = int(math.ceil(height / 16) * 16)
target_width = int(math.ceil(width / 16) * 16)
padding_x = target_width - width
padding_y = target_height - height
left_tensor = F.pad(left_tensor, (0, padding_x, 0, padding_y))
right_tensor = F.pad(right_tensor, (0, padding_x, 0, padding_y))
# Move model and inputs to GPU.
model.cuda()
model.eval()
left_tensor = left_tensor.cuda()
right_tensor = right_tensor.cuda()
# Do forward pass on model and get output.
with torch.no_grad():
output, all_outputs = model(left_tensor, right_tensor)
disparity = output["disparity"]
disparity_small = output["disparity_small"]
matchability = output.get("matchability", None)
scale = disparity.shape[3] // disparity_small.shape[3]
# Generate visualizations for network output.
disparity_vis = visualization.make_cv_disparity_image(disparity[0, 0, :, :], VIS_DISPARITY)
disparity_small_vis = visualization.make_cv_disparity_image(disparity_small[0, 0, :, :], VIS_DISPARITY // scale)
disparity_small_vis = cv2.resize(disparity_small_vis, None, fx=scale, fy=scale, interpolation=cv2.INTER_NEAREST)
confidence_vis = visualization.make_cv_confidence_image(torch.exp(matchability[0, 0, :, :]))
confidence_vis = cv2.resize(confidence_vis, None, fx=scale, fy=scale, interpolation=cv2.INTER_NEAREST)
disparity_vis = disparity_vis[:height, :width, :]
disparity_small_vis = disparity_small_vis[:height, :width, :]
confidence_vis = confidence_vis[:height, :width, :]
# Put all the visualizations together and display in a window.
vis_top = cv2.hconcat([left, disparity_vis])
vis_bottom = cv2.hconcat([confidence_vis, disparity_small_vis])
vis = cv2.vconcat([vis_top, vis_bottom])
cv2.imshow("vis", vis)
cv2.waitKey(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(fromfile_prefix_chars='@')
parser.add_argument("--script", type=str, required=True,
help="Torchscript file produced by training")
parser.add_argument("--left", default="left.png", type=str,
help="Filename of left image to use for inference")
parser.add_argument("--right", default="right.png", type=str,
help="Filename of right image to use for inference")
hparams = parser.parse_args()
script = torch.jit.load(hparams.script)
run_inference(script, hparams.left, hparams.right)