forked from kekeblom/mmstereo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_loader.py
48 lines (36 loc) · 1.66 KB
/
model_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Copyright 2021 Toyota Research Institute. All rights reserved.
from importlib.machinery import SourceFileLoader
import os
import sys
import tempfile
from args import ModelConfig
import torch
from init.default_init import default_init
sys.path.append(os.path.join(os.path.dirname(__file__), "models"))
def load_model(model_config: ModelConfig):
# Load model module based on hparams using importlib and instantiate model.
net_module = SourceFileLoader(model_config.model_name, model_config.model_file).load_module()
net_attr = getattr(net_module, model_config.model_name)
model = net_attr(model_config)
# Initialize network with random weights.
model.apply(default_init)
if model_config.checkpoint is not None:
state_dict = torch.load(model_config.checkpoint, map_location='cpu')['state_dict']
keys = sorted(state_dict.keys())
# The PyTorch Lightning checkpoints have a prefix of "model.", so strip that out before loading.
for key in keys:
prefix = "model."
if key.startswith(prefix):
new_key = key[len(prefix):]
state_dict[new_key] = state_dict[key]
del state_dict[key]
model.load_state_dict(state_dict)
return model
def get_cpu_model_copy(model_config: ModelConfig, model):
exportable_model = load_model(model_config)
with tempfile.TemporaryFile() as temp_state_dict_file:
torch.save(model.state_dict(), temp_state_dict_file)
temp_state_dict_file.seek(0)
cpu_state_dict = torch.load(temp_state_dict_file, map_location="cpu")
exportable_model.load_state_dict(cpu_state_dict)
return exportable_model