-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathRMI_model.py
executable file
·372 lines (313 loc) · 18.4 KB
/
RMI_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import tensorflow as tf
import sys
sys.path.append('Instance_Matching')
import deeplab_model, fcn8s_model, segnet_model, deeplab_v3plus_model
from utils.processing_tools import generate_spatial_batch
from utils import loss
class RMI_model(object):
def __init__(self, batch_size=1,
max_len=15,
vf_h=96,
vf_w=96,
H=768,
W=768,
vf_dim=2048,
vocab_size=59,
w_emb_dim=1000,
v_emb_dim=1000,
m_rnn_size=500,
w_rnn_size=1000,
start_lr=0.00025,
end_lr=0.00001,
lr_decay_step=75000,
lr_decay_rate=1.0,
keep_prob_rnn=1.0,
keep_prob_emb=1.0,
keep_prob_mlp=1.0,
num_rnn_layers=1,
optimizer='adam',
weight_decay=0.0005,
mode='eval',
weights='deeplab',
training_ignore_bg=True,
use_attn=False,
train_fusion_var_only=True,
fusion_type='RMI'):
assert fusion_type in ['RMI', 'RecurAttn']
self.batch_size = batch_size
self.max_len = max_len
self.vf_h = vf_h
self.vf_w = vf_w
self.H = H
self.W = W
self.vf_dim = vf_dim
self.start_lr = start_lr
self.end_lr = end_lr
self.lr_decay_step = lr_decay_step
self.lr_decay_rate = lr_decay_rate
self.vocab_size = vocab_size
if fusion_type == 'RecurAttn':
self.m_rnn_size = 256
else:
self.m_rnn_size = m_rnn_size
self.w_emb_dim = w_emb_dim if fusion_type != 'RecurAttn' else self.m_rnn_size
self.v_emb_dim = v_emb_dim if fusion_type != 'RecurAttn' else self.m_rnn_size
self.w_rnn_size = w_rnn_size if fusion_type != 'RecurAttn' else self.m_rnn_size
self.keep_prob_rnn = keep_prob_rnn
self.keep_prob_emb = keep_prob_emb
self.keep_prob_mlp = keep_prob_mlp
self.num_rnn_layers = num_rnn_layers
self.optimizer = optimizer
self.weight_decay = weight_decay
self.mode = mode
self.weights = weights
self.training_ignore_bg = training_ignore_bg
self.use_attn = use_attn
self.train_fusion_var_only = train_fusion_var_only # Train fusion + CNN variables if False.
self.fusion_type = fusion_type # Whether to use the recurrent attention module from LBIE
self.words = tf.placeholder(tf.int32, [self.batch_size, self.max_len])
self.sequence_lengths = tf.placeholder(dtype=tf.int32, shape=[self.batch_size])
self.im = tf.placeholder(tf.float32, [self.batch_size, self.H, self.W, 3])
self.target_mask = tf.placeholder(tf.float32, [self.batch_size, self.H, self.W, 1])
if self.weights == 'deeplab':
deeplabmodel = deeplab_model.DeepLab(batch_size=self.batch_size,
images=self.im,
labels=tf.constant(0.),
is_intermediate=True)
self.visual_feat = deeplabmodel.intermediate_feat # (1, 96, 96, 2048)
elif self.weights == 'fcn_8s':
fcn8smodel = fcn8s_model.FCN_8s(batch_size=self.batch_size,
num_classes=46,
images=self.im,
labels=tf.constant(0.),
use_vgg_weight=False,
is_intermediate=True)
self.visual_feat = fcn8smodel.intermediate_feat # (1, 96, 96, 256)
elif self.weights == 'segnet':
segnetmodel = segnet_model.SegNet(batch_size=self.batch_size,
images=self.im,
labels=tf.constant(0.),
is_intermediate=True)
self.visual_feat = segnetmodel.intermediate_feat # (1, 96, 96, 512)
elif self.weights == 'deeplab_v3plus':
deeplabv3plusmodel = deeplab_v3plus_model.DeepLab_v3plus(batch_size=self.batch_size,
images=self.im,
labels=tf.constant(0.),
is_intermediate=True)
self.visual_feat = deeplabv3plusmodel.intermediate_feat # (1, 96, 96, 2048)
else:
raise Exception('Unknown backbone:', self.weights)
with tf.variable_scope("text_sketchyscene"):
self.build_graph()
if self.mode == 'eval':
return
self.train_op()
def build_graph(self):
visual_feat = self._conv("visual_feat_projection", self.visual_feat, 1,
self.visual_feat.shape[-1], self.v_emb_dim, [1, 1, 1, 1])
visual_feat_norm = tf.nn.l2_normalize(visual_feat, 3) # [N, h, w, v_emb_dim(1000)]
# spatial coordinate feature: [N, h, w, 8]
spatial = tf.convert_to_tensor(generate_spatial_batch(self.batch_size, self.vf_h, self.vf_w))
embedding_mat = tf.get_variable("embedding", [self.vocab_size, self.w_emb_dim],
initializer=tf.random_uniform_initializer(minval=-0.08, maxval=0.08))
words_embed = tf.nn.embedding_lookup(embedding_mat, self.words) # [N, max_len, w_emb_dim(1000)]
self.rnn_cell_w = tf.nn.rnn_cell.LSTMCell(self.w_rnn_size, state_is_tuple=False)
self.rnn_cell_m = tf.nn.rnn_cell.LSTMCell(self.m_rnn_size, state_is_tuple=False)
self.w_lstm_output, self.w_lstm_last_h = self.build_text_encoder(words_embed, self.sequence_lengths)
if self.fusion_type == 'RMI':
print('Using fusion module from RMI without recurrent attention')
m_last_h = self.build_RMI_fusion_module(words_embed, self.sequence_lengths, self.w_lstm_output,
self.w_lstm_last_h, visual_feat_norm, spatial)
elif self.fusion_type == 'RecurAttn':
print('Using fusion module with recurrent attention')
m_last_h = self.build_recurrent_attn_fusion_module(self.w_lstm_output, visual_feat_norm)
else:
raise Exception('Unknown fusion_type:', self.fusion_type)
m_lstm_output_proj = self.build_fusion_out_processing(m_last_h)
self.pred = m_lstm_output_proj # shape = [1, 96, 96, 1]
self.up = tf.image.resize_bilinear(self.pred, [self.H, self.W]) # shape = [1, 768, 768, 1]
self.sigm = tf.sigmoid(self.up)
def build_text_encoder(self, word_embed, sequence_lengths, reuse=False):
with tf.variable_scope(tf.get_variable_scope(), reuse=reuse):
## word LSTM
w_output, w_last_state = tf.nn.dynamic_rnn(
self.rnn_cell_w,
word_embed,
sequence_length=sequence_lengths,
dtype=tf.float32,
time_major=False,
swap_memory=True,
scope='wLSTM'
) # output: [N, max_len, w_rnn_size(1000)], state: [batch_size, w_rnn_size(1000) * 2]
_, w_last_h = tf.split(w_last_state, 2, 1) # each: [N, 1000]
return w_output, w_last_h
def build_RMI_fusion_module(self, word_embed, sequence_lengths, w_output, w_last_h, visual_feat, spatial,
reuse=False):
with tf.variable_scope(tf.get_variable_scope(), reuse=reuse):
## mLSTM
lang_feat_tile = tf.nn.l2_normalize(w_output, 2)
lang_feat_tile = tf.reshape(lang_feat_tile, [self.batch_size, 1, 1, self.max_len, self.w_rnn_size])
lang_feat_tile = tf.tile(lang_feat_tile,
[1, self.vf_h, self.vf_w, 1, 1]) # [N, h, w, max_len, w_rnn_size]
w_feat_tile = tf.reshape(word_embed, [self.batch_size, 1, 1, self.max_len, self.w_emb_dim])
w_feat_tile = tf.tile(w_feat_tile, [1, self.vf_h, self.vf_w, 1, 1]) # [N, h, w, max_len, w_emb_dim]
visual_feat_tile = tf.reshape(visual_feat, [self.batch_size, self.vf_h, self.vf_w, 1, self.v_emb_dim])
visual_feat_tile = tf.tile(visual_feat_tile, [1, 1, 1, self.max_len, 1]) # [N, h, w, max_len, v_emb_dim]
spatial_tile = tf.reshape(spatial, [self.batch_size, self.vf_h, self.vf_w, 1, 8])
spatial_tile = tf.tile(spatial_tile, [1, 1, 1, self.max_len, 1]) # [N, h, w, max_len, 8]
feat_concat = tf.concat([visual_feat_tile, w_feat_tile, lang_feat_tile, spatial_tile], 4)
feat_concat = tf.reshape(feat_concat, [self.batch_size * self.vf_h * self.vf_w, self.max_len, -1])
# [N * h * w, max_len, w_rnn_size + w_emb_dim + v_emb_dim + 8]
sequence_lengths_tile = tf.reshape(sequence_lengths, [self.batch_size, 1, 1])
sequence_lengths_tile = tf.tile(sequence_lengths_tile, [1, self.vf_h, self.vf_w])
sequence_lengths_tile = tf.reshape(sequence_lengths_tile, [-1]) # [N * h * w]
m_output, m_last_state = tf.nn.dynamic_rnn(
self.rnn_cell_m,
feat_concat,
sequence_length=sequence_lengths_tile,
dtype=tf.float32,
time_major=False,
swap_memory=True,
scope='mLSTM'
) # output: [N * h * w, max_len, m_rnn_size(500)], state: [N * h * w, m_rnn_size(500) * 2]
## Attention mechanism
if self.use_attn:
print('Using attention mechanism')
w_output_flat = tf.reshape(w_output, (self.batch_size * self.max_len, self.w_rnn_size))
attn = self._fully_connected(w_output_flat,
in_dim=self.w_rnn_size, out_dim=1, name="attn_fc") # [N * max_len, 1]
attn = tf.reshape(attn, (self.batch_size, self.max_len)) # [N, max_len]
attn = tf.nn.softmax(attn) # [N, max_len]
self.attn = attn
attn_tile = tf.reshape(attn, (self.batch_size, 1, 1, self.max_len))
attn_tile = tf.tile(attn_tile, [1, self.vf_h, self.vf_w, 1]) # [N, h, w, max_len]
attn_tile = tf.reshape(attn_tile, (-1, 1, self.max_len)) # [N * h * w, 1, max_len]
# [N * h * w, 1, max_len] * [N * h * w, max_len, 500] = [N * h * w, 1, 500]
weighted_m_output = tf.matmul(attn_tile, m_output)
m_last_h = tf.squeeze(weighted_m_output, axis=1) # [N * h * w, 500]
else:
print('Not using attention mechanism')
unused_c, m_last_h = tf.split(m_last_state, 2, 1) # each: [N * h * w, 500]
return m_last_h
def build_recurrent_attn_fusion_module(self, w_output, visual_feat):
"""
use recurrent attention similar to LBIE
:param w_output: [N, max_len, w_rnn_size]
:param visual_feat: [N, h, w, v_emb_dim]
:return:
"""
cell_m = tf.nn.rnn_cell.MultiRNNCell([self.rnn_cell_m] * self.num_rnn_layers, state_is_tuple=False)
# Convolutional LSTM
state_m = cell_m.zero_state(self.batch_size * self.vf_h * self.vf_w, tf.float32)
state_m_shape = state_m.get_shape().as_list()
state_m_shape[0] = self.batch_size * self.vf_h * self.vf_w
state_m.set_shape(state_m_shape)
h_m = tf.reshape(visual_feat, (-1, self.v_emb_dim)) # [N * h * w, v_emb_dim]
def f1():
return state_m, h_m
def f2():
h_proj = self._fully_connected(h_m, in_dim=self.m_rnn_size, out_dim=self.w_rnn_size,
name="h_proj") # [N * h * w, w_rnn_size]
h_proj = tf.reshape(h_proj, [-1, 1, self.w_rnn_size]) # [N * h * w, 1, w_rnn_size]
w_output_trans = tf.transpose(w_output, (0, 2, 1)) # [N, w_rnn_size, max_len]
w_output_trans = tf.reshape(w_output_trans, (self.batch_size, 1, 1, self.w_rnn_size, self.max_len))
w_output_trans = tf.tile(w_output_trans, (1, self.vf_h, self.vf_w, 1, 1))
w_output_trans = tf.reshape(w_output_trans,
(-1, self.w_rnn_size, self.max_len)) # [N * h * w, w_rnn_size, max_len]
attn_map = tf.matmul(h_proj, w_output_trans) # [N * h * w, 1, max_len]
attn_map = tf.nn.softmax(attn_map) # [N * h * w, 1, max_len]
attn_feat = tf.matmul(attn_map, tf.transpose(w_output_trans, (0, 2, 1))) # [N * h * w, 1, w_rnn_size]
attn_feat = tf.squeeze(attn_feat, axis=1) # [N * h * w, w_rnn_size]
# Convolutional LSTM
with tf.variable_scope("mLSTM"):
h_m_flatten, cell_state_m = cell_m(attn_feat, state_m)
return cell_state_m, h_m_flatten
with tf.variable_scope("Recurrent_Attn"):
for n in range(self.max_len):
if n > 0:
tf.get_variable_scope().reuse_variables()
state_m, h_m = tf.cond(tf.equal(self.words[0, n], tf.constant(0)), f1, f2)
return h_m
def build_fusion_out_processing(self, m_last_h, reuse=False):
m_lstm_output = tf.reshape(m_last_h, [self.batch_size, self.vf_h, self.vf_w, -1]) # [N, h, w, 500]
m_lstm_output = tf.multiply(tf.subtract(tf.log(tf.add(1.0 + 1e-3, m_lstm_output)),
tf.log(tf.subtract(1.0 + 1e-3, m_lstm_output))), 0.5)
m_lstm_output = tf.nn.relu(m_lstm_output)
if self.mode == 'train' and self.keep_prob_mlp < 1:
m_lstm_output = tf.nn.dropout(m_lstm_output, self.keep_prob_mlp)
with tf.variable_scope(tf.get_variable_scope(), reuse=reuse):
m_lstm_output_proj = self._conv("m_lstm_output_projection", m_lstm_output, 1,
self.m_rnn_size, 1, [1, 1, 1, 1])
return m_lstm_output_proj
def _conv(self, name, x, filter_size, in_filters, out_filters, strides):
with tf.variable_scope(name):
w = tf.get_variable('DW', [filter_size, filter_size, in_filters, out_filters],
initializer=tf.contrib.layers.xavier_initializer_conv2d())
b = tf.get_variable('biases', out_filters, initializer=tf.constant_initializer(0.))
return tf.nn.conv2d(x, w, strides, padding='SAME') + b
def _atrous_conv(self, name, x, filter_size, in_filters, out_filters, rate):
with tf.variable_scope(name):
w = tf.get_variable('DW', [filter_size, filter_size, in_filters, out_filters],
initializer=tf.random_normal_initializer(stddev=0.01))
b = tf.get_variable('biases', out_filters, initializer=tf.constant_initializer(0.))
return tf.nn.atrous_conv2d(x, w, rate=rate, padding='SAME') + b
def _fully_connected(self, x, in_dim, out_dim, name):
"""FullyConnected layer for final output."""
with tf.variable_scope(name):
w = tf.get_variable(
'DW', [in_dim, out_dim],
initializer=tf.uniform_unit_scaling_initializer(factor=1.0))
b = tf.get_variable('biases', [out_dim],
initializer=tf.constant_initializer())
return tf.nn.xw_plus_b(x, w, b)
def train_op(self):
# define loss, loss function ignore bg
target_bin_drawings = tf.expand_dims(self.im[:, :, :, 0], axis=3) # [1, 768, 768, 1], {0-mu ~ 255-mu}
pred_for_loss = self.up
target_for_loss = self.target_mask
bin_drawings_for_loss = target_bin_drawings
if self.train_fusion_var_only:
# Fixed the CNN backbone.
print('Fixing the CNN variables when training.')
tvars = [var for var in tf.trainable_variables() if
var.op.name.startswith('text_sketchyscene')]
else:
print('Training all the variables.')
tvars = [var for var in tf.trainable_variables()]
reg_var_list = [var for var in tvars if var.op.name.find(r'DW') > 0]
self.optim_params = tvars
## ignore background
pred_flatten = tf.reshape(pred_for_loss, (-1,)) # shape = [1 * h * w]
target_flatten = tf.reshape(target_for_loss, (-1,)) # shape = [1 * h * w]
target_bin_drawings_flatten = tf.reshape(bin_drawings_for_loss, (-1,)) # shape = [1 * h * w]
non_bg_indices = tf.where(target_bin_drawings_flatten < 0)[:, 0] # [nIndices]
self.pred_remain = tf.gather(pred_flatten, non_bg_indices) # [nIndices]
self.target_remain = tf.gather(target_flatten, non_bg_indices) # [nIndices]
if self.training_ignore_bg:
print('Training with the ignore BG strategy.')
self.cls_loss = loss.weighed_logistic_loss(self.pred_remain, self.target_remain)
else:
print('Training without the ignore BG strategy.')
self.cls_loss = loss.weighed_logistic_loss(pred_for_loss, target_for_loss)
self.reg_loss = loss.l2_regularization_loss(reg_var_list, self.weight_decay)
self.cost = self.cls_loss + self.reg_loss
## summaries
tf.summary.scalar('class_loss_current', self.cls_loss)
tf.summary.scalar('cost', self.cost)
# learning rate
self.global_step = tf.Variable(0.0, trainable=False)
# self.global_step = tf.Variable(0.0, name='global_step', trainable=False)
self.learning_rate = tf.train.polynomial_decay(self.start_lr, self.global_step, self.lr_decay_step,
end_learning_rate=self.end_lr, power=0.9)
# optimizer
if self.optimizer == 'adam':
optimizer = tf.train.AdamOptimizer(self.learning_rate)
else:
raise ValueError("Unknown optimizer type %s!" % self.optimizer)
# learning rate multiplier
grads_and_vars = optimizer.compute_gradients(self.cost, var_list=tvars)
var_lr_mult = {var: (2.0 if var.op.name.find(r'biases') > 0 else 1.0) for var in tvars}
grads_and_vars = [((g if var_lr_mult[v] == 1 else tf.multiply(var_lr_mult[v], g)), v) for g, v in
grads_and_vars]
# training step
self.train_step = optimizer.apply_gradients(grads_and_vars, global_step=self.global_step)