-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom_batch.py
executable file
·106 lines (85 loc) · 4.17 KB
/
random_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
"""
filename chapter_id speaker_id dataset_id
0 1272/128104/1272-128104-0000.wav 128104 1272 dev-clean
1 1272/128104/1272-128104-0001.wav 128104 1272 dev-clean
2 1272/128104/1272-128104-0002.wav 128104 1272 dev-clean
3 1272/128104/1272-128104-0003.wav 128104 1272 dev-clean
4 1272/128104/1272-128104-0004.wav 128104 1272 dev-clean
5 1272/128104/1272-128104-0005.wav 128104 1272 dev-clean
6 1272/128104/1272-128104-0006.wav 128104 1272 dev-clean
7 1272/128104/1272-128104-0007.wav 128104 1272 dev-clean
8 1272/128104/1272-128104-0008.wav 128104 1272 dev-clean
9 1272/128104/1272-128104-0009.wav 128104 1272 dev-clean
"""
import numpy as np
import pandas as pd
import constants as c
from pre_process import data_catalog
def clipped_audio(x, num_frames=c.NUM_FRAMES):
if x.shape[0] > num_frames:
bias = np.random.randint(0, x.shape[0] - num_frames)
clipped_x = x[bias: num_frames + bias]
else:
clipped_x = x
return clipped_x
class MiniBatch:
def __init__(self, libri, batch_size, unique_speakers=None): #libri['filename'],libri['chapter_id'],libri['speaker_id'],libri['dataset_id']
# indices = np.random.choice(len(libri), size=batch_size, replace=False)
# [anc1, anc2, anc3, pos1, pos2, pos3, neg1, neg2, neg3]
# [sp1, sp2, sp3, sp1, sp2, sp3, sp4, sp5, sp6]
if unique_speakers is None:
unique_speakers = list(libri['speaker_id'].unique())
num_triplets = batch_size
anchor_batch = None
positive_batch = None
negative_batch = None
for ii in range(num_triplets):
#from speakers chosing two speakers
two_different_speakers = np.random.choice(unique_speakers, size=2, replace=False)
#the first are the positive-speaker
anchor_positive_speaker = two_different_speakers[0]
#the another are the negative-speaker
negative_speaker = two_different_speakers[1]
#another positve speaker
anchor_positive_file = libri[libri['speaker_id'] == anchor_positive_speaker].sample(n=2, replace=False)
anchor_df = pd.DataFrame(anchor_positive_file[0:1])
anchor_df['training_type'] = 'anchor'
positive_df = pd.DataFrame(anchor_positive_file[1:2])
positive_df['training_type'] = 'positive'
negative_df = libri[libri['speaker_id'] == negative_speaker].sample(n=1)
negative_df['training_type'] = 'negative'
if anchor_batch is None:
anchor_batch = anchor_df.copy()
else:
anchor_batch = pd.concat([anchor_batch, anchor_df], axis=0)
if positive_batch is None:
positive_batch = positive_df.copy()
else:
positive_batch = pd.concat([positive_batch, positive_df], axis=0)
if negative_batch is None:
negative_batch = negative_df.copy()
else:
negative_batch = pd.concat([negative_batch, negative_df], axis=0)
self.libri_batch = pd.DataFrame(pd.concat([anchor_batch, positive_batch, negative_batch], axis=0))
self.num_triplets = num_triplets
def to_inputs(self):
new_x = []
for i in range(len(self.libri_batch)):
filename = self.libri_batch[i:i + 1]['filename'].values[0]
x = np.load(filename)
new_x.append(clipped_audio(x))
x = np.array(new_x) #(batchsize, num_frames, 64, 1)
y = self.libri_batch['speaker_id'].values
# anchor examples [speakers] == positive examples [speakers]
np.testing.assert_array_equal(y[0:self.num_triplets], y[self.num_triplets:2 * self.num_triplets])
return x, y
def stochastic_mini_batch(libri, batch_size=c.BATCH_SIZE,unique_speakers=None):
mini_batch = MiniBatch(libri, batch_size,unique_speakers)
return mini_batch
def main():
libri = data_catalog(c.DATASET_DIR)
batch = stochastic_mini_batch(libri, c.BATCH_SIZE)
x, y = batch.to_inputs()
print(x.shape,y.shape)
if __name__ == '__main__':
main()