forked from DaiDongyang/knn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiments.py
84 lines (83 loc) · 4.42 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import knn
import time
import gc
import numpy as np
if __name__ == '__main__':
experiment_start_t = time.time()
train_dir = './digits/trainingDigits'
test_dir = './digits/testDigits'
result_file = open('result.txt', 'w')
train_samples, train_ls = knn.load_sample_set(train_dir)
test_samples, ground_ls = knn.load_sample_set(test_dir)
ks = [3, 5, 7, 9]
# ks = [3, 5, 7, 9, 11, 13]
get_knn_funcs = [knn.get_knn_e_dist, knn.get_knn_e_dist_with_kdtree, knn.get_knn_m_dist]
get_knn_funcs_str = ['get_knn_e_dist', 'get_knn_e_dist_with_kdtree', 'get_knn_m_dist']
# get_knn_funcs = [knn.get_knn_e_dist]
# get_knn_funcs_str = ['get_knn_e_dist']
get_label_funcs = [knn.get_label_by_knn, knn.get_label_by_wknn]
get_label_funcs_str = ['get_label_by_knn', 'get_label_by_wknn']
# get_label_funcs = [knn.get_label_by_wknn]
# get_label_funcs_str = ['get_label_by_wknn']
pca_parameters = [0, 4, 8, 16, 32, 64, 128, 256]
# pca_parameters = [16]
results = [
['k', 'get_knn_function', 'get_label_function', 'pca_parameters', 'accuracy', 'macro_precision', 'macro_recall',
'macro_F1', 'execution_time', 'd']]
for k in ks:
for get_knn_func, i1 in zip(get_knn_funcs, range(3)):
for get_label_func, i2 in zip(get_label_funcs, range(2)):
for pca_parameter in pca_parameters:
single_result = []
print(file=result_file)
print('******** Conditions ******', file=result_file)
print('k =', k, file=result_file)
single_result.append(k)
print('get_knn_function =', get_knn_funcs_str[i1], file=result_file)
single_result.append(get_knn_funcs_str[i1])
print('get_label_function =', get_label_funcs_str[i2], file=result_file)
single_result.append(get_label_funcs_str[i2])
print('pca_parameters =', pca_parameter, file=result_file)
single_result.append(pca_parameter)
print('**************************', file=result_file)
train_set = np.copy(train_samples)
test_set = np.copy(test_samples)
train_labels = np.copy(train_ls)
ground_labels = np.copy(ground_ls)
start_time = time.time()
result_labels, d = knn.get_test_samples_labels(k, train_set, train_labels, test_set, get_knn_func,
get_label_func, pca_parameter)
end_time = time.time()
elapsed = end_time - start_time
accuracy, precision, recall, F_1, macro_precision, macro_recall, macro_F_1 = knn.result_evaluate(
ground_labels, result_labels)
print('accuracy =', accuracy, file=result_file)
single_result.append(accuracy)
print('precision =', precision, file=result_file)
# single_result.append(precision)
print('recall =', recall, file=result_file)
# single_result.append(recall)
print('F1 = ', F_1, file=result_file)
print('macro_precision =', macro_precision, file=result_file)
single_result.append(macro_precision)
print('macro_recall =', macro_recall, file=result_file)
single_result.append(macro_recall)
print('macro_F1 =', macro_F_1, file=result_file)
single_result.append(macro_F_1)
print('execution time =', elapsed, file=result_file)
single_result.append(elapsed)
print('dimension =', d, file=result_file)
single_result.append(d)
print(file=result_file)
results.append(single_result)
gc.collect()
experiment_end_t = time.time()
print('***********************', file=result_file)
print('Total Time =', experiment_end_t - experiment_start_t, file=result_file)
print('***********************', file=result_file)
result_file.close()
with open('result_table.csv', 'w') as outf:
for ele in results:
str_arrays = [str(i) for i in ele]
ele_str = ', '.join(str_arrays)
print(ele_str, file=outf)