forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeomancer.py
318 lines (277 loc) · 10.8 KB
/
geomancer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# Copyright 2020 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Code for the Geometric Manifold Component Estimator (GEOMANCER)."""
import itertools
from absl import logging
import numpy as np
import scipy
import scipy.sparse
import scipy.sparse.linalg
from tqdm import tqdm
def sym_op(x, zero_trace=False):
"""Given X, makes L(A) = X @ A @ X' for symmetric matrices A.
If A is not symmetric, L(A) will return X @ (A_L + A_L') @ X' where A_L is
the lower triangular of A (with the diagonal divided by 2).
Args:
x: The matrix from which to construct the operator
zero_trace (optional): If true, restrict the operator to only act on
matrices with zero trace, effectively reducing the dimensionality by one.
Returns:
A matrix Y such that vec(L(A)) = Y @ vec(A).
"""
n = x.shape[0]
# Remember to subtract off the diagonal once
xx = (np.einsum('ik,jl->ijkl', x, x) +
np.einsum('il,jk->ijkl', x, x) -
np.einsum('ik,jl,kl->ijkl', x, x, np.eye(n)))
xx = xx[np.tril_indices(n)]
xx = xx.transpose(1, 2, 0)
xx = xx[np.tril_indices(n)]
xx = xx.T
if zero_trace:
diag_idx = np.cumsum([0]+list(range(2, n)))
proj_op = np.eye(n*(n+1)//2)[:, :-1]
proj_op[-1, diag_idx] = -1
# multiply by operator that completes last element of diagonal
# for a zero-trace matrix
xx = xx @ proj_op
xx = xx[:-1]
return xx
def vec_to_sym(x, n, zero_trace=False):
y = np.zeros((n, n))
if zero_trace:
x = np.append(x, 0.0)
y[np.tril_indices(n)] = x
y += y.T
y[np.diag_indices(n)] /= 2.0
if zero_trace:
y[-1, -1] = -np.trace(y)
return y
def ffdiag(data, lr=1.0, tol=1e-10, verbose=False, eig_init=False):
"""Orthogonal FFDiag algorithm of Ziehe et al 2004."""
n = data.shape[1]
k = data.shape[0]
c = data.copy()
if eig_init:
_, v = np.linalg.eig(data[0])
v = v.T
for i in range(k):
c[i] = v @ c[i] @ v.T
else:
v = np.eye(n)
err_ = np.inf
for t in range(10000):
w = np.zeros((n, n))
for i in range(n):
for j in range(i+1, n):
diag = c[:, i, i] - c[:, j, j]
w[i, j] = np.sum(c[:, i, j] * diag) / np.sum(diag ** 2)
w -= w.T
norm = np.linalg.svd(w, compute_uv=False).max()
if norm > lr:
w *= lr / norm
ew = scipy.linalg.expm(w)
v = ew @ v
for i in range(k):
c[i] = ew @ c[i] @ ew.T
cdiag = c.copy()
for i in range(n):
for j in range(k):
cdiag[j, i, i] = 0
err = np.linalg.norm(cdiag)
if verbose:
logging.info('Iter %d: %f', t, err)
if err_ - err < tol and err_ - err >= 0:
return v
err_ = err
return v
def avg_angle_between_subspaces(xs, ys):
"""Compute the error between two sets of subspaces."""
if len(xs) != len(ys):
return np.pi / 2 # largest possible angle
angles = []
for ys_perm in itertools.permutations(ys):
angles.append([])
for i in range(len(xs)):
if xs[i].shape[1] == ys_perm[i].shape[1]:
sigma = np.linalg.svd(xs[i].T @ ys_perm[i], compute_uv=False)
angles[-1].append(np.arccos(np.min(sigma)))
else:
angles[-1].append(np.pi / 2)
angles = np.array(angles)
return np.min(np.mean(angles, axis=1))
def make_nearest_neighbors_graph(data, k, n=1000):
"""Build exact k-nearest neighbors graph from numpy data.
Args:
data: Data to compute nearest neighbors of, each column is one point
k: number of nearest neighbors to compute
n (optional): number of neighbors to compute simultaneously
Returns:
A scipy sparse matrix in LIL format giving the symmetric nn graph.
"""
shape = data.shape
assert shape[0] % n == 0
nbr_graph = scipy.sparse.lil_matrix((shape[0], shape[0]))
norm = np.sum(data**2, axis=1)
cols = np.meshgrid(np.arange(n), np.ones(k+1))[0]
for i in tqdm(range(0, shape[0], n)):
dot = data @ data[i:i+n].T
dists = np.sqrt(np.abs(norm[:, None] - 2*dot + norm[i:i+n][None, :]))
idx = np.argpartition(dists, k, axis=0)[:k+1]
nbrs = idx[np.argsort(dists[idx, cols], axis=0), cols][1:]
for j in range(n):
nbr_graph[i+j, nbrs[:, j]] = 1
# Symmetrize graph
for i in tqdm(range(shape[0])):
for j in nbr_graph.rows[i]:
if nbr_graph[j, i] == 0:
nbr_graph[j, i] = nbr_graph[i, j]
logging.info('Symmetrized neighbor graph')
return nbr_graph
def make_tangents(data, neighbor_graph, k):
"""Construct all tangent vectors for the dataset."""
tangents = np.zeros((data.shape[0], k, data.shape[1]), dtype=np.float32)
for i in tqdm(range(data.shape[0])):
diff = data[neighbor_graph.rows[i]] - data[i]
_, _, u = np.linalg.svd(diff, full_matrices=False)
tangents[i] = u[:k]
logging.info('Computed all tangents')
return tangents
def make_connection(tangents, neighbor_graph):
"""Make connection matrices for all edges of the neighbor graph."""
connection = {}
for i in tqdm(range(tangents.shape[0])):
for j in neighbor_graph.rows[i]:
if j > i:
uy, _, ux = np.linalg.svd(tangents[j] @ tangents[i].T,
full_matrices=False)
conn = uy @ ux
connection[(i, j)] = conn
connection[(j, i)] = conn.T
logging.info('Constructed all connection matrices')
return connection
def make_laplacian(connection, neighbor_graph, sym=True, zero_trace=True):
"""Make symmetric zero-trace second-order graph connection Laplacian."""
n = neighbor_graph.shape[0]
k = list(connection.values())[0].shape[0]
bsz = (k*(k+1)//2 - 1 if zero_trace else k*(k+1)//2) if sym else k**2
data = np.zeros((neighbor_graph.nnz + n, bsz, bsz), dtype=np.float32)
indptr = []
indices = np.zeros(neighbor_graph.nnz + n)
index = 0
for i in tqdm(range(n)):
indptr.append(index)
data[index] = len(neighbor_graph.rows[i]) * np.eye(bsz)
indices[index] = i
index += 1
for j in neighbor_graph.rows[i]:
if sym:
kron = sym_op(connection[(j, i)], zero_trace=zero_trace)
else:
kron = np.kron(connection[(j, i)], connection[(j, i)])
data[index] = -kron
indices[index] = j
index += 1
indptr.append(index)
indptr = np.array(indptr)
laplacian = scipy.sparse.bsr_matrix((data, indices, indptr),
shape=(n*bsz, n*bsz))
logging.info('Built 2nd-order graph connection Laplacian.')
return laplacian
def cluster_subspaces(omega):
"""Cluster different dimensions from the eigenvectors of the Laplacian."""
w = ffdiag(omega) # simultaneous diagonalization
psi = np.zeros(omega.shape[:2])
for i in range(omega.shape[0]):
psi[i] = np.diag(w @ omega[i] @ w.T) # compute diagonals
# Compute cosine similarity of diagonal vectors
psi_outer = psi.T @ psi
psi_diag = np.diag(psi_outer)
cos_similarity = psi_outer / np.sqrt(np.outer(psi_diag, psi_diag))
adj = cos_similarity > 0.5 # adjacency matrix for graph of clusters
# Use graph Laplacian to find cliques
# (though a greedy algorithm could work too)
lapl = np.diag(np.sum(adj, axis=0)) - adj # graph Laplacian
d, v = np.linalg.eig(lapl)
# connected components of graph
cliques = np.abs(v[:, np.abs(d) < 1e-6]) > 1e-6
tangents = [w[cliques[:, i]] for i in range(sum(np.abs(d) < 1e-6))]
return tangents
def fit(data, k, gamma=None, nnbrs=None, neig=10, shard_size=1000):
"""The Geometric Manifold Component Estimator.
Args:
data: the dataset, a set of points sample from a product manifold.
k: the dimensionality of the manifold.
gamma (optional): the threshold in the spectrum at which to cut off the
number of submanifolds.
nnbrs (optional): number of neighbors to use for each point.
neig (optional): the total number of eigenvectors to compute.
shard_size (optional): the size of shard to use in knn computation.
Returns:
A list of lists of subspace bases, one list for each element of the dataset,
and the spectrum of the 2nd-order graph Laplacian.
"""
if not nnbrs:
nnbrs = 2*k
neighbor_graph = make_nearest_neighbors_graph(data, nnbrs, n=shard_size)
tangents = make_tangents(data, neighbor_graph, k)
connection = make_connection(tangents, neighbor_graph)
laplacian = make_laplacian(connection, neighbor_graph)
eigvals, eigvecs = scipy.sparse.linalg.eigsh(laplacian, k=neig, which='SM')
logging.info('Computed bottom eigenvectors of 2nd-order Laplacian')
bsz = k*(k+1)//2 - 1 # Block size for the projected 2nd-order Laplacian
if gamma:
nm = np.argwhere(eigvals < gamma)[-1, 0] + 1
else: # If no threshold is provided, just use the largest gap in the spectrum
nm = np.argmax(eigvals[1:] - eigvals[:-1]) + 1
eigvecs = eigvecs.reshape(data.shape[0], bsz, neig)
omega = np.zeros((nm, k, k), dtype=np.float32)
components = []
for i in tqdm(range(data.shape[0])):
for j in range(nm):
omega[j] = vec_to_sym(eigvecs[i, :, j], k, zero_trace=True)
components.append([tangents[i].T @ x.T for x in cluster_subspaces(omega)])
logging.info('GEOMANCER completed')
return components, eigvals
def eval_aligned(tangents, true_tangents):
"""Evaluation for aligned data."""
errors = np.zeros(len(tangents))
for i in tqdm(range(len(tangents))):
errors[i] = avg_angle_between_subspaces([gt[i] for gt in true_tangents],
tangents[i])
logging.info('Computed angles between ground truth and GEOMANCER results')
return errors
def eval_unaligned(data, tangents, true_data, true_tangents, k=10, n=1000):
"""Evaluation for unaligned data."""
logging.info('Evaluating unaligned data')
errors = np.zeros(data.shape[0])
nbrs = make_nearest_neighbors_graph(true_data, k=k, n=n)
for i in tqdm(range(data.shape[0])):
tangent = np.concatenate(tangents[i], axis=1)
true_tangent = np.concatenate([t[i] for t in true_tangents], axis=1)
dx_true = (true_data[nbrs.rows[i]] - true_data[i]) @ true_tangent
dx_result = (data[nbrs.rows[i]] - data[i]) @ tangent
# compute canonical correlations between the two dxs
xx = dx_true.T @ dx_true
yy = dx_result.T @ dx_result
xy = dx_true.T @ dx_result
xx_ = np.linalg.inv(xx)
yy_ = np.linalg.inv(yy)
foo = scipy.linalg.sqrtm(xx_) @ xy @ scipy.linalg.sqrtm(yy_)
u, _, v = np.linalg.svd(foo)
# project subspaces for results and ground truth into aligned space
proj = [v @ tangent.T @ s for s in tangents[i]]
true_proj = [u.T @ true_tangent.T @ s[i] for s in true_tangents]
errors[i] = avg_angle_between_subspaces(proj, true_proj)
return errors