forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
117 lines (101 loc) · 4.25 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Copyright 2020 DeepMind Technologies Limited.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""VAE style training."""
from typing import Any, Callable, Iterator, Sequence, Mapping, Tuple, Optional
import haiku as hk
import jax
import jax.numpy as jnp
import optax
from avae import checkpointer
from avae import types
def train(
train_data_iterator: Iterator[types.LabelledData],
test_data_iterator: Iterator[types.LabelledData],
elbo_fun: hk.Transformed,
learning_rate: float,
checkpoint_dir: str,
checkpoint_filename: str,
checkpoint_every: int,
test_every: int,
iterations: int,
rng_seed: int,
test_functions: Optional[Sequence[Callable[[Mapping[str, jnp.ndarray]],
Tuple[str, float]]]] = None,
extra_checkpoint_info: Optional[Mapping[str, Any]] = None):
"""Train VAE with given data iterator and elbo definition.
Args:
train_data_iterator: Iterator of batched training data.
test_data_iterator: Iterator of batched testing data.
elbo_fun: Haiku transfomed function returning elbo.
learning_rate: Learning rate to be used with optimizer.
checkpoint_dir: Path of the checkpoint directory.
checkpoint_filename: Filename of the checkpoint.
checkpoint_every: Checkpoint every N iterations.
test_every: Test and log results every N iterations.
iterations: Number of training iterations to perform.
rng_seed: Seed for random number generator.
test_functions: Test function iterable, each function takes test data and
outputs extra info to print at test and log time.
extra_checkpoint_info: Extra info to put inside saved checkpoint.
"""
rng_seq = hk.PRNGSequence(jax.random.PRNGKey(rng_seed))
opt_init, opt_update = optax.chain(
# Set the parameters of Adam. Note the learning_rate is not here.
optax.scale_by_adam(b1=0.9, b2=0.999, eps=1e-8),
# Put a minus sign to *minimise* the loss.
optax.scale(-learning_rate))
@jax.jit
def loss(params, key, data):
elbo_outputs = elbo_fun.apply(params, key, data)
return -jnp.mean(elbo_outputs.elbo)
@jax.jit
def loss_test(params, key, data):
elbo_output = elbo_fun.apply(params, key, data)
return (-jnp.mean(elbo_output.elbo), jnp.mean(elbo_output.data_fidelity),
jnp.mean(elbo_output.kl))
@jax.jit
def update_step(params, key, data, opt_state):
grads = jax.grad(loss, has_aux=False)(params, key, data)
updates, opt_state = opt_update(grads, opt_state, params)
params = optax.apply_updates(params, updates)
return params, opt_state
exp_checkpointer = checkpointer.Checkpointer(
checkpoint_dir, checkpoint_filename)
experiment_data = exp_checkpointer.load_checkpoint()
if experiment_data is not None:
start = experiment_data['step']
params = experiment_data['experiment_state']
opt_state = experiment_data['opt_state']
else:
start = 0
params = elbo_fun.init(
next(rng_seq), next(train_data_iterator).data)
opt_state = opt_init(params)
for step in range(start, iterations, 1):
if step % test_every == 0:
test_loss, ll, kl = loss_test(params, next(rng_seq),
next(test_data_iterator).data)
output_message = (f'Step {step} elbo {-test_loss:0.2f} LL {ll:0.2f} '
f'KL {kl:0.2f}')
if test_functions:
for test_function in test_functions:
name, test_output = test_function(params)
output_message += f' {name}: {test_output:0.2f}'
print(output_message)
params, opt_state = update_step(params, next(rng_seq),
next(train_data_iterator).data, opt_state)
if step % checkpoint_every == 0:
exp_checkpointer.save_checkpoint(
params, opt_state, step, extra_checkpoint_info)