forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheckpointer.py
88 lines (73 loc) · 2.83 KB
/
checkpointer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Copyright 2020 DeepMind Technologies Limited.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Checkpointing functionality."""
import os
from typing import Any, Mapping, Optional
from absl import logging
import dill
import jax
import jax.numpy as jnp
class Checkpointer:
"""A checkpoint saving and loading class."""
def __init__(self, checkpoint_dir: str, filename: str):
"""Class initializer.
Args:
checkpoint_dir: Checkpoint directory.
filename: Filename of checkpoint in checkpoint directory.
"""
self._checkpoint_dir = checkpoint_dir
if not os.path.isdir(self._checkpoint_dir):
os.mkdir(self._checkpoint_dir)
self._checkpoint_path = os.path.join(self._checkpoint_dir, filename)
def save_checkpoint(
self,
experiment_state: Mapping[str, jnp.ndarray],
opt_state: Mapping[str, jnp.ndarray],
step: int,
extra_checkpoint_info: Optional[Mapping[str, Any]] = None) -> None:
"""Save checkpoint with experiment state and step information.
Args:
experiment_state: Experiment params to be stored.
opt_state: Optimizer state to be stored.
step: Training iteration step.
extra_checkpoint_info: Extra information to be stored.
"""
if jax.host_id() != 0:
return
checkpoint_data = dict(
experiment_state=jax.tree_map(jax.device_get, experiment_state),
opt_state=jax.tree_map(jax.device_get, opt_state),
step=step)
if extra_checkpoint_info is not None:
for key in extra_checkpoint_info:
checkpoint_data[key] = extra_checkpoint_info[key]
with open(self._checkpoint_path, 'wb') as checkpoint_file:
dill.dump(checkpoint_data, checkpoint_file, protocol=2)
def load_checkpoint(
self) -> Optional[Mapping[str, Mapping[str, jnp.ndarray]]]:
"""Load and return checkpoint data.
Returns:
Loaded checkpoint if it exists else returns None.
"""
if os.path.exists(self._checkpoint_path):
with open(self._checkpoint_path, 'rb') as checkpoint_file:
checkpoint_data = dill.load(checkpoint_file)
logging.info('Loading checkpoint from %s, saved at step %d',
self._checkpoint_path, checkpoint_data['step'])
return checkpoint_data
else:
logging.warning('No pre-saved checkpoint found at %s',
self._checkpoint_path)
return None