-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
197 lines (164 loc) · 5.35 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import torch
from torch import nn, optim
from pathlib import Path
from ranger_opt.ranger import ranger2020 as ranger
from model import SequentialImageNetwork, SequentialImageNetworkMod
from util import *
from datasets import *
import re
import sys
name = sys.argv[1]
model_flag = name.split("-")[0]
train_flag = name.split("-")[1]
if model_flag == "r32p":
import resnet
model = SequentialImageNetworkMod(resnet.resnet32()).cuda()
elif model_flag == "r18":
from pytorch_cifar.models import resnet
model = SequentialImageNetwork(resnet.ResNet18()).cuda()
else:
raise NotImplementedError
eps = int(re.search(r"[0-9]+$", name).group())
poisoner_flag = name.split("-")[3][:3]
clean_label = int(name.split("-")[2][0])
target_label = int(name.split("-")[2][1])
print(f"{model_flag=} {clean_label=} {target_label=} {poisoner_flag=} {eps=}")
if len(sys.argv) > 2:
retrain = sys.argv[2]
target_mask = np.load(Path("output") / name / f"{retrain}.npy")
assert len(target_mask) == 5000 + eps
target_mask_ind = [i for i in range(5000 + eps) if not target_mask[i]]
poison_removed = np.sum(target_mask[-eps:])
clean_removed = np.sum(target_mask) - poison_removed
print(f"{poison_removed=} {clean_removed=}")
else:
retrain = None
print("Building datasets...")
if poisoner_flag == "1xp":
x_poisoner = PixelPoisoner()
all_x_poisoner = PixelPoisoner()
elif poisoner_flag == "2xp":
x_poisoner = RandomPoisoner(
[
PixelPoisoner(),
PixelPoisoner(pos=(5, 27), col=(101, 123, 121)),
]
)
all_x_poisoner = MultiPoisoner(
[
PixelPoisoner(),
PixelPoisoner(pos=(5, 27), col=(101, 123, 121)),
]
)
elif poisoner_flag == "3xp":
x_poisoner = RandomPoisoner(
[
PixelPoisoner(),
PixelPoisoner(pos=(5, 27), col=(101, 123, 121)),
PixelPoisoner(pos=(30, 7), col=(0, 36, 54)),
]
)
all_x_poisoner = MultiPoisoner(
[
PixelPoisoner(),
PixelPoisoner(pos=(5, 27), col=(101, 123, 121)),
PixelPoisoner(pos=(30, 7), col=(0, 36, 54)),
]
)
elif poisoner_flag == "1xs":
x_poisoner = StripePoisoner(strength=6, freq=16)
all_x_poisoner = StripePoisoner(strength=6, freq=16)
elif poisoner_flag == "2xs":
x_poisoner = RandomPoisoner(
[
StripePoisoner(strength=6, freq=16),
StripePoisoner(strength=6, freq=16, horizontal=False),
]
)
all_x_poisoner = MultiPoisoner(
[
StripePoisoner(strength=6, freq=16),
StripePoisoner(strength=6, freq=16, horizontal=False),
]
)
else:
raise NotImplementedError
poisoner = LabelPoisoner(x_poisoner, target_label=target_label)
all_poisoner = LabelPoisoner(all_x_poisoner, target_label=target_label)
cifar_train_dataset = load_cifar_dataset()
cifar_test_dataset = load_cifar_dataset(train=False)
poison_cifar_train = PoisonedDataset(
cifar_train_dataset,
poisoner,
eps=eps,
label=clean_label,
transform=CIFAR_TRANSFORM_TRAIN_XY,
)
if retrain:
lsd = LabelSortedDataset(poison_cifar_train)
target_subset = lsd.subset(target_label)
poison_cifar_train = ConcatDataset(
[lsd.subset(label) for label in range(10) if label != target_label]
+ [Subset(target_subset, target_mask_ind)]
)
cifar_test = MappedDataset(cifar_test_dataset, CIFAR_TRANSFORM_TEST_XY)
poison_cifar_test = PoisonedDataset(
cifar_test_dataset,
poisoner,
eps=1000,
label=clean_label,
transform=CIFAR_TRANSFORM_TEST_XY,
)
all_poison_cifar_test = PoisonedDataset(
cifar_test_dataset,
all_poisoner,
eps=1000,
label=clean_label,
transform=CIFAR_TRANSFORM_TEST_XY,
)
if train_flag == "sgd":
batch_size = 128
epochs = 200
opt = torch.optim.SGD(
model.parameters(), lr=0.1, momentum=0.9, nesterov=True, weight_decay=2e-4
)
lr_scheduler = optim.lr_scheduler.MultiStepLR(opt, milestones=[75, 150], gamma=0.1)
elif train_flag == "ranger":
batch_size = 128
epochs = 60
opt = ranger.Ranger(
model.parameters(),
lr=0.001 * (batch_size / 32),
weight_decay=1e-1,
betas=(0.9, 0.999),
eps=1e-1,
)
lr_scheduler = FlatThenCosineAnnealingLR(opt, T_max=epochs)
if __name__ == "__main__":
print("Training...")
mini_train(
model=model,
train_data=poison_cifar_train,
test_data=cifar_test,
batch_size=batch_size,
opt=opt,
scheduler=lr_scheduler,
epochs=epochs,
)
print("Evaluating...")
if not retrain:
clean_train_acc = clf_eval(model, poison_cifar_train.clean_dataset)[0]
poison_train_acc = clf_eval(model, poison_cifar_train.poison_dataset)[0]
print(f"{clean_train_acc=}")
print(f"{poison_train_acc=}")
clean_test_acc = clf_eval(model, cifar_test)[0]
poison_test_acc = clf_eval(model, poison_cifar_test.poison_dataset)[0]
all_poison_test_acc = clf_eval(model, all_poison_cifar_test.poison_dataset)[0]
print(f"{clean_test_acc=}")
print(f"{poison_test_acc=}")
print(f"{all_poison_test_acc=}")
print("Saving model...")
output_dir = Path('output') / name
output_dir.mkdir(parents=True, exist_ok=True)
output_name = f"{retrain}-model.pth" if retrain else "model.pth"
torch.save(model.state_dict(), output_dir / output_name)