-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrep_saver.py
37 lines (27 loc) · 1.04 KB
/
rep_saver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from pathlib import Path
from tqdm import trange
from train import *
assert not retrain
model_file = Path("output") / name / "model.pth"
model.load_state_dict(torch.load(model_file))
print("Evaluating...")
clean_train_acc = clf_eval(model, poison_cifar_train.clean_dataset)[0]
poison_train_acc = clf_eval(model, poison_cifar_train.poison_dataset)[0]
print(f"{clean_train_acc=}")
print(f"{poison_train_acc=}")
clean_test_acc = clf_eval(model, cifar_test)[0]
poison_test_acc = clf_eval(model, poison_cifar_test.poison_dataset)[0]
all_poison_test_acc = clf_eval(model, all_poison_cifar_test.poison_dataset)[0]
print(f"{clean_test_acc=}")
print(f"{poison_test_acc=}")
print(f"{all_poison_test_acc=}")
lsd = LabelSortedDataset(poison_cifar_train)
if model_flag == "r32p":
layer = 14
elif model_flag == "r18":
layer = 13
for i in trange(lsd.n, dynamic_ncols=True):
target_reps = compute_all_reps(model, lsd.subset(i), layers=[layer], flat=True)[
layer
]
np.save(Path("output") / name / f"label_{i}_reps.npy", target_reps.numpy())