-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathsemanticfpn.py
64 lines (62 loc) · 3.45 KB
/
semanticfpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
'''
Function:
Implementation of SemanticFPN
Author:
Zhenchao Jin
'''
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from ..base import FPN, BaseSegmentor
from ....utils import SSSegOutputStructure
from ...backbones import BuildActivation, BuildNormalization
'''SemanticFPN'''
class SemanticFPN(BaseSegmentor):
def __init__(self, cfg, mode):
super(SemanticFPN, self).__init__(cfg, mode)
align_corners, norm_cfg, act_cfg, head_cfg = self.align_corners, self.norm_cfg, self.act_cfg, cfg['head']
# build fpn
self.fpn_neck = FPN(
in_channels_list=head_cfg['in_channels_list'], out_channels=head_cfg['feats_channels'], upsample_cfg=head_cfg['upsample_cfg'], norm_cfg=norm_cfg, act_cfg=act_cfg,
)
self.scale_heads, feature_stride_list = nn.ModuleList(), head_cfg['feature_stride_list']
for i in range(len(feature_stride_list)):
head_length = max(1, int(np.log2(feature_stride_list[i]) - np.log2(feature_stride_list[0])))
scale_head = []
for k in range(head_length):
scale_head.append(nn.Sequential(
nn.Conv2d(head_cfg['feats_channels'] if k == 0 else head_cfg['scale_head_channels'], head_cfg['scale_head_channels'], kernel_size=3, stride=1, padding=1, bias=False),
BuildNormalization(placeholder=head_cfg['scale_head_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg),
))
if feature_stride_list[i] != feature_stride_list[0]:
scale_head.append(nn.Upsample(scale_factor=2, mode='bilinear', align_corners=align_corners))
self.scale_heads.append(nn.Sequential(*scale_head))
# build decoder
self.decoder = nn.Sequential(
nn.Dropout2d(head_cfg['dropout']),
nn.Conv2d(head_cfg['scale_head_channels'], cfg['num_classes'], kernel_size=1, stride=1, padding=0)
)
# freeze normalization layer if necessary
if cfg.get('is_freeze_norm', False): self.freezenormalization()
'''forward'''
def forward(self, data_meta):
img_size = data_meta.images.size(2), data_meta.images.size(3)
# feed to backbone network
backbone_outputs = self.transforminputs(self.backbone_net(data_meta.images), selected_indices=self.cfg['backbone'].get('selected_indices'))
# feed to fpn
fpn_outs = self.fpn_neck(list(backbone_outputs))
feats = self.scale_heads[0](fpn_outs[0])
for i in range(1, len(self.cfg['head']['feature_stride_list'])):
feats = feats + F.interpolate(self.scale_heads[i](fpn_outs[i]), size=feats.shape[2:], mode='bilinear', align_corners=self.align_corners)
# feed to decoder
seg_logits = self.decoder(feats)
# forward according to the mode
if self.mode in ['TRAIN', 'TRAIN_DEVELOP']:
loss, losses_log_dict = self.customizepredsandlosses(
seg_logits=seg_logits, annotations=data_meta.getannotations(), backbone_outputs=backbone_outputs, losses_cfg=self.cfg['losses'], img_size=img_size,
)
ssseg_outputs = SSSegOutputStructure(mode=self.mode, loss=loss, losses_log_dict=losses_log_dict) if self.mode == 'TRAIN' else SSSegOutputStructure(mode=self.mode, loss=loss, losses_log_dict=losses_log_dict, seg_logits=seg_logits)
else:
ssseg_outputs = SSSegOutputStructure(mode=self.mode, seg_logits=seg_logits)
return ssseg_outputs