-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathpsanet.py
146 lines (144 loc) · 7.77 KB
/
psanet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
'''
Function:
Implementation of PSANet
Author:
Zhenchao Jin
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..base import BaseSegmentor
from ....utils import SSSegOutputStructure
from ...backbones import BuildActivation, BuildNormalization
try:
from mmcv.ops import PSAMask
except:
PSAMask = None
'''PSANet'''
class PSANet(BaseSegmentor):
def __init__(self, cfg, mode):
super(PSANet, self).__init__(cfg, mode)
align_corners, norm_cfg, act_cfg, head_cfg = self.align_corners, self.norm_cfg, self.act_cfg, cfg['head']
# build psa
assert head_cfg['type'] in ['collect', 'distribute', 'bi-direction']
mask_h, mask_w = head_cfg['mask_size']
if 'normalization_factor' not in self.cfg['head']:
self.cfg['head']['normalization_factor'] = mask_h * mask_w
self.reduce = nn.Sequential(
nn.Conv2d(head_cfg['in_channels'], head_cfg['feats_channels'], kernel_size=1, stride=1, padding=0, bias=False),
BuildNormalization(placeholder=head_cfg['feats_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg),
)
self.attention = nn.Sequential(
nn.Conv2d(head_cfg['feats_channels'], head_cfg['feats_channels'], kernel_size=1, stride=1, padding=0, bias=False),
BuildNormalization(placeholder=head_cfg['feats_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg),
nn.Conv2d(head_cfg['feats_channels'], mask_h * mask_w, kernel_size=1, stride=1, padding=0, bias=False),
)
if head_cfg['type'] == 'bi-direction':
self.reduce_p = nn.Sequential(
nn.Conv2d(head_cfg['in_channels'], head_cfg['feats_channels'], kernel_size=1, stride=1, padding=0, bias=False),
BuildNormalization(placeholder=head_cfg['feats_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg),
)
self.attention_p = nn.Sequential(
nn.Conv2d(head_cfg['feats_channels'], head_cfg['feats_channels'], kernel_size=1, stride=1, padding=0, bias=False),
BuildNormalization(placeholder=head_cfg['feats_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg),
nn.Conv2d(head_cfg['feats_channels'], mask_h * mask_w, kernel_size=1, stride=1, padding=0, bias=False),
)
if not head_cfg['compact']:
self.psamask_collect = PSAMask('collect', head_cfg['mask_size'])
self.psamask_distribute = PSAMask('distribute', head_cfg['mask_size'])
else:
if not head_cfg['compact']:
self.psamask = PSAMask(head_cfg['type'], head_cfg['mask_size'])
self.proj = nn.Sequential(
nn.Conv2d(head_cfg['feats_channels'] * (2 if head_cfg['type'] == 'bi-direction' else 1), head_cfg['in_channels'], kernel_size=1, stride=1, padding=1, bias=False),
BuildNormalization(placeholder=head_cfg['in_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg),
)
# build decoder
self.decoder = nn.Sequential(
nn.Conv2d(head_cfg['in_channels'] * 2, head_cfg['feats_channels'], kernel_size=3, stride=1, padding=1, bias=False),
BuildNormalization(placeholder=head_cfg['feats_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg),
nn.Dropout2d(head_cfg['dropout']),
nn.Conv2d(head_cfg['feats_channels'], cfg['num_classes'], kernel_size=1, stride=1, padding=0)
)
# build auxiliary decoder
self.setauxiliarydecoder(cfg['auxiliary'])
# freeze normalization layer if necessary
if cfg.get('is_freeze_norm', False): self.freezenormalization()
'''forward'''
def forward(self, data_meta):
img_size = data_meta.images.size(2), data_meta.images.size(3)
# feed to backbone network
backbone_outputs = self.transforminputs(self.backbone_net(data_meta.images), selected_indices=self.cfg['backbone'].get('selected_indices'))
# feed to psa
identity = backbone_outputs[-1]
shrink_factor, align_corners = self.cfg['head']['shrink_factor'], self.align_corners
if self.cfg['head']['type'] in ['collect', 'distribute']:
out = self.reduce(backbone_outputs[-1])
n, c, h, w = out.size()
if shrink_factor != 1:
if h % shrink_factor and w % shrink_factor:
h = (h - 1) // shrink_factor + 1
w = (w - 1) // shrink_factor + 1
align_corners = True
else:
h = h // shrink_factor
w = w // shrink_factor
align_corners = False
out = F.interpolate(out, size=(h, w), mode='bilinear', align_corners=align_corners)
y = self.attention(out)
if self.cfg['head']['compact']:
if self.cfg['head']['type'] == 'collect':
y = y.view(n, h * w, h * w).transpose(1, 2).view(n, h * w, h, w)
else:
y = self.psamask(y)
if self.cfg['head']['psa_softmax']:
y = F.softmax(y, dim=1)
out = torch.bmm(out.view(n, c, h * w), y.view(n, h * w, h * w)).view(n, c, h, w) * (1.0 / self.cfg['head']['normalization_factor'])
else:
x_col = self.reduce(backbone_outputs[-1])
x_dis = self.reduce_p(backbone_outputs[-1])
n, c, h, w = x_col.size()
if shrink_factor != 1:
if h % shrink_factor and w % shrink_factor:
h = (h - 1) // shrink_factor + 1
w = (w - 1) // shrink_factor + 1
align_corners = True
else:
h = h // shrink_factor
w = w // shrink_factor
align_corners = False
x_col = F.interpolate(x_col, size=(h, w), mode='bilinear', align_corners=align_corners)
x_dis = F.interpolate(x_dis, size=(h, w), mode='bilinear', align_corners=align_corners)
y_col = self.attention(x_col)
y_dis = self.attention_p(x_dis)
if self.cfg['head']['compact']:
y_dis = y_dis.view(n, h * w, h * w).transpose(1, 2).view(n, h * w, h, w)
else:
y_col = self.psamask_collect(y_col)
y_dis = self.psamask_distribute(y_dis)
if self.cfg['head']['psa_softmax']:
y_col = F.softmax(y_col, dim=1)
y_dis = F.softmax(y_dis, dim=1)
x_col = torch.bmm(x_col.view(n, c, h * w), y_col.view(n, h * w, h * w)).view(n, c, h, w) * (1.0 / self.cfg['head']['normalization_factor'])
x_dis = torch.bmm(x_dis.view(n, c, h * w), y_dis.view(n, h * w, h * w)).view(n, c, h, w) * (1.0 / self.cfg['head']['normalization_factor'])
out = torch.cat([x_col, x_dis], 1)
feats = self.proj(out)
feats = F.interpolate(feats, size=identity.shape[2:], mode='bilinear', align_corners=align_corners)
# feed to decoder
feats = torch.cat([identity, feats], dim=1)
seg_logits = self.decoder(feats)
# forward according to the mode
if self.mode in ['TRAIN', 'TRAIN_DEVELOP']:
loss, losses_log_dict = self.customizepredsandlosses(
seg_logits=seg_logits, annotations=data_meta.getannotations(), backbone_outputs=backbone_outputs, losses_cfg=self.cfg['losses'], img_size=img_size,
)
ssseg_outputs = SSSegOutputStructure(mode=self.mode, loss=loss, losses_log_dict=losses_log_dict) if self.mode == 'TRAIN' else SSSegOutputStructure(mode=self.mode, loss=loss, losses_log_dict=losses_log_dict, seg_logits=seg_logits)
else:
ssseg_outputs = SSSegOutputStructure(mode=self.mode, seg_logits=seg_logits)
return ssseg_outputs