-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathmaskformer.py
123 lines (121 loc) · 6.61 KB
/
maskformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
'''
Function:
Implementation of MaskFormer
Author:
Zhenchao Jin
'''
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from ..base import BaseSegmentor
from ..pspnet import PyramidPoolingModule
from ....utils import SSSegOutputStructure
from ...backbones import BuildActivation, BuildNormalization
from .transformers import Predictor, SetCriterion, HungarianMatcher
'''MaskFormer'''
class MaskFormer(BaseSegmentor):
def __init__(self, cfg, mode):
super(MaskFormer, self).__init__(cfg, mode)
align_corners, norm_cfg, act_cfg, head_cfg = self.align_corners, self.norm_cfg, self.act_cfg, cfg['head']
# build pyramid pooling module
ppm_cfg = {
'in_channels': head_cfg['in_channels_list'][-1], 'out_channels': head_cfg['feats_channels'], 'pool_scales': head_cfg['pool_scales'],
'align_corners': align_corners, 'norm_cfg': copy.deepcopy(norm_cfg), 'act_cfg': copy.deepcopy(act_cfg),
}
self.ppm_net = PyramidPoolingModule(**ppm_cfg)
# build lateral convs
act_cfg_copy = copy.deepcopy(act_cfg)
if 'inplace' in act_cfg_copy: act_cfg_copy['inplace'] = False
self.lateral_convs = nn.ModuleList()
for in_channels in head_cfg['in_channels_list'][:-1]:
self.lateral_convs.append(nn.Sequential(
nn.Conv2d(in_channels, head_cfg['feats_channels'], kernel_size=1, stride=1, padding=0, bias=False),
BuildNormalization(placeholder=head_cfg['feats_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg_copy),
))
# build fpn convs
self.fpn_convs = nn.ModuleList()
for in_channels in [head_cfg['feats_channels'], ] * len(self.lateral_convs):
self.fpn_convs.append(nn.Sequential(
nn.Conv2d(in_channels, head_cfg['feats_channels'], kernel_size=3, stride=1, padding=1, bias=False),
BuildNormalization(placeholder=head_cfg['feats_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg_copy),
))
# build decoder
self.decoder_mask = nn.Sequential(
nn.Conv2d(head_cfg['feats_channels'], head_cfg['mask_feats_channels'], kernel_size=3, stride=1, padding=1)
)
head_cfg['predictor']['num_classes'] = cfg['num_classes']
head_cfg['predictor']['mask_dim'] = head_cfg['mask_feats_channels']
head_cfg['predictor']['in_channels'] = head_cfg['in_channels_list'][-1]
self.decoder_predictor = Predictor(**head_cfg['predictor'])
# build matcher and criterion
matcher = HungarianMatcher(**head_cfg['matcher'])
weight_dict = {'loss_ce': head_cfg['matcher']['cost_class'], 'loss_mask': head_cfg['matcher']['cost_mask'], 'loss_dice': head_cfg['matcher']['cost_dice']}
if head_cfg['predictor']['deep_supervision']:
dec_layers = head_cfg['predictor']['dec_layers']
aux_weight_dict = {}
for i in range(dec_layers - 1):
aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items()})
weight_dict.update(aux_weight_dict)
self.criterion = SetCriterion(cfg['num_classes'], matcher=matcher, weight_dict=weight_dict, eos_coef=0.1, losses=['labels', 'masks'])
# build auxiliary decoder
self.setauxiliarydecoder(cfg['auxiliary'])
# freeze normalization layer if necessary
if cfg.get('is_freeze_norm', False): self.freezenormalization()
'''forward'''
def forward(self, data_meta):
img_size = data_meta.images.size(2), data_meta.images.size(3)
# feed to backbone network
backbone_outputs = self.transforminputs(self.backbone_net(data_meta.images), selected_indices=self.cfg['backbone'].get('selected_indices'))
# feed to pyramid pooling module
ppm_out = self.ppm_net(backbone_outputs[-1])
# apply fpn
inputs = backbone_outputs[:-1]
lateral_outputs = [lateral_conv(inputs[i]) for i, lateral_conv in enumerate(self.lateral_convs)]
lateral_outputs.append(ppm_out)
p1, p2, p3, p4 = lateral_outputs
fpn_out = F.interpolate(p4, size=p3.shape[2:], mode='bilinear', align_corners=self.align_corners) + p3
fpn_out = self.fpn_convs[0](fpn_out)
fpn_out = F.interpolate(fpn_out, size=p2.shape[2:], mode='bilinear', align_corners=self.align_corners) + p2
fpn_out = self.fpn_convs[1](fpn_out)
fpn_out = F.interpolate(fpn_out, size=p1.shape[2:], mode='bilinear', align_corners=self.align_corners) + p1
fpn_out = self.fpn_convs[2](fpn_out)
# feed to decoder
mask_features = self.decoder_mask(fpn_out)
predictions = self.decoder_predictor(backbone_outputs[-1], mask_features)
# forward according to the mode
ssseg_outputs = SSSegOutputStructure(mode=self.mode, auto_validate=False)
if self.mode in ['TRAIN', 'TRAIN_DEVELOP']:
losses_dict = self.criterion(predictions, data_meta.getannotations())
for k in list(losses_dict.keys()):
if k in self.criterion.weight_dict:
losses_dict[k] *= self.criterion.weight_dict[k]
else:
losses_dict.pop(k)
loss, losses_log_dict = 0, {}
for loss_key, loss_value in losses_dict.items():
loss_value = loss_value.mean()
loss = loss + loss_value
loss_value = loss_value.data.clone()
if dist.is_available() and dist.is_initialized():
dist.all_reduce(loss_value.div_(dist.get_world_size()), op=dist.ReduceOp.SUM)
losses_log_dict[loss_key] = loss_value.item()
losses_log_dict.update({'loss_total': sum(losses_log_dict.values())})
ssseg_outputs.setvariable('loss', loss)
ssseg_outputs.setvariable('losses_log_dict', losses_log_dict)
if self.mode in ['TRAIN']: return ssseg_outputs
mask_cls_results = predictions['pred_logits']
mask_pred_results = predictions['pred_masks']
mask_pred_results = F.interpolate(mask_pred_results, size=img_size, mode='bilinear', align_corners=self.align_corners)
predictions = []
for mask_cls, mask_pred in zip(mask_cls_results, mask_pred_results):
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
mask_pred = mask_pred.sigmoid()
semseg = torch.einsum('qc,qhw->chw', mask_cls, mask_pred)
predictions.append(semseg.unsqueeze(0))
seg_logits = torch.cat(predictions, dim=0)
ssseg_outputs.setvariable('seg_logits', seg_logits)
return ssseg_outputs