-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathresnest.py
191 lines (181 loc) · 8.94 KB
/
resnest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
'''
Function:
Implementation of ResNeSt
Author:
Zhenchao Jin
'''
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from .resnet import ResNet
from ...utils import loadpretrainedweights
from .resnet import Bottleneck as _Bottleneck
from .bricks import BuildNormalization, BuildActivation
'''DEFAULT_MODEL_URLS'''
DEFAULT_MODEL_URLS = {
'resnest50': 'https://download.openmmlab.com/pretrain/third_party/resnest50_d2-7497a55b.pth',
'resnest101': 'https://download.openmmlab.com/pretrain/third_party/resnest101_d2-f3b931b2.pth',
'resnest200': 'https://download.openmmlab.com/pretrain/third_party/resnest200_d2-ca88e41f.pth',
}
'''AUTO_ASSERT_STRUCTURE_TYPES'''
AUTO_ASSERT_STRUCTURE_TYPES = {}
'''RSoftmax'''
class RSoftmax(nn.Module):
def __init__(self, radix, groups):
super(RSoftmax, self).__init__()
self.radix = radix
self.groups = groups
'''forward'''
def forward(self, x):
batch = x.size(0)
if self.radix > 1:
x = x.view(batch, self.groups, self.radix, -1).transpose(1, 2)
x = F.softmax(x, dim=1)
x = x.reshape(batch, -1)
else:
x = torch.sigmoid(x)
return x
'''SplitAttentionConv2d'''
class SplitAttentionConv2d(nn.Module):
def __init__(self, in_channels, channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, radix=2, reduction_factor=4, norm_cfg=None, act_cfg=None):
super(SplitAttentionConv2d, self).__init__()
inter_channels = max(in_channels * radix // reduction_factor, 32)
self.radix = radix
self.conv = nn.Conv2d(in_channels, channels * radix, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups * radix, bias=False)
self.bn0 = BuildNormalization(placeholder=channels * radix, norm_cfg=norm_cfg)
self.relu = BuildActivation(act_cfg)
self.fc1 = nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0, groups=groups)
self.bn1 = BuildNormalization(placeholder=inter_channels, norm_cfg=norm_cfg)
self.fc2 = nn.Conv2d(inter_channels, channels * radix, kernel_size=1, stride=1, padding=0, groups=groups)
self.rsoftmax = RSoftmax(radix, groups)
'''forward'''
def forward(self, x):
x = self.conv(x)
x = self.bn0(x)
x = self.relu(x)
batch, rchannel = x.shape[:2]
batch = x.size(0)
if self.radix > 1:
splits = x.view(batch, self.radix, -1, *x.shape[2:])
gap = splits.sum(dim=1)
else:
gap = x
gap = F.adaptive_avg_pool2d(gap, 1)
gap = self.fc1(gap)
gap = self.bn1(gap)
gap = self.relu(gap)
atten = self.fc2(gap)
atten = self.rsoftmax(atten).view(batch, -1, 1, 1)
if self.radix > 1:
attens = atten.view(batch, self.radix, -1, *atten.shape[2:])
out = torch.sum(attens * splits, dim=1)
else:
out = atten * x
return out.contiguous()
'''Bottleneck'''
class Bottleneck(_Bottleneck):
expansion = 4
def __init__(self, inplanes, planes, groups=1, base_width=4, base_channels=64, radix=2, reduction_factor=4, use_avg_after_block_conv2=True,
stride=1, dilation=1, downsample=None, norm_cfg=None, act_cfg=None):
super(Bottleneck, self).__init__(inplanes, planes, stride, dilation, downsample, norm_cfg, act_cfg)
if groups == 1: width = planes
else: width = math.floor(planes * (base_width / base_channels)) * groups
self.use_avg_after_block_conv2 = use_avg_after_block_conv2 and self.stride > 1
self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, stride=1, padding=0, bias=False)
self.bn1 = BuildNormalization(placeholder=width, norm_cfg=norm_cfg)
self.conv2 = SplitAttentionConv2d(
in_channels=width, channels=width, kernel_size=3, stride=1 if self.use_avg_after_block_conv2 else self.stride, padding=dilation,
dilation=dilation, groups=groups, radix=radix, reduction_factor=reduction_factor, norm_cfg=norm_cfg, act_cfg=act_cfg,
)
delattr(self, 'bn2')
self.conv3 = nn.Conv2d(width, planes * self.expansion, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = BuildNormalization(placeholder=planes * self.expansion, norm_cfg=norm_cfg)
if self.use_avg_after_block_conv2:
self.avg_layer = nn.AvgPool2d(3, self.stride, padding=1)
'''forward'''
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
if self.use_avg_after_block_conv2:
out = self.avg_layer(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
'''ResNeSt'''
class ResNeSt(ResNet):
arch_settings = {
50: (Bottleneck, (3, 4, 6, 3)),
101: (Bottleneck, (3, 4, 23, 3)),
152: (Bottleneck, (3, 8, 36, 3)),
200: (Bottleneck, (3, 24, 36, 3))
}
def __init__(self, structure_type, groups=1, base_width=4, radix=2, reduction_factor=4, use_avg_after_block_conv2=True,
in_channels=3, base_channels=64, stem_channels=128, depth=101, outstride=8, contract_dilation=True, use_conv3x3_stem=True,
out_indices=(0, 1, 2, 3), use_avg_for_downsample=True, norm_cfg={'type': 'SyncBatchNorm'}, act_cfg={'type': 'ReLU', 'inplace': True},
pretrained=True, pretrained_model_path=''):
self.extra_args_for_makelayer = {
'radix': radix, 'groups': groups, 'base_width': base_width, 'reduction_factor': reduction_factor, 'base_channels': base_channels,
'use_avg_after_block_conv2': use_avg_after_block_conv2,
}
super(ResNeSt, self).__init__(structure_type, in_channels, base_channels, stem_channels, depth, outstride, contract_dilation, use_conv3x3_stem, out_indices, use_avg_for_downsample, norm_cfg, act_cfg, False, '')
# set attributes
self.structure_type = structure_type
self.groups = groups
self.base_width = base_width
self.radix = radix
self.reduction_factor = reduction_factor
self.use_avg_after_block_conv2 = use_avg_after_block_conv2
self.in_channels = in_channels
self.base_channels = base_channels
self.stem_channels = stem_channels
self.depth = depth
self.outstride = outstride
self.contract_dilation = contract_dilation
self.use_conv3x3_stem = use_conv3x3_stem
self.out_indices = out_indices
self.use_avg_for_downsample = use_avg_for_downsample
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.pretrained = pretrained
self.pretrained_model_path = pretrained_model_path
# assert
if structure_type in AUTO_ASSERT_STRUCTURE_TYPES:
for key, value in AUTO_ASSERT_STRUCTURE_TYPES[structure_type].items():
assert hasattr(self, key) and (getattr(self, key) == value)
# load pretrained weights
if pretrained:
state_dict = loadpretrainedweights(
structure_type=structure_type, pretrained_model_path=pretrained_model_path, default_model_urls=DEFAULT_MODEL_URLS
)
self.load_state_dict(state_dict, strict=False)
'''makelayer'''
def makelayer(self, block, inplanes, planes, num_blocks, stride=1, dilation=1, contract_dilation=True, use_avg_for_downsample=False, norm_cfg=None, act_cfg=None):
downsample = None
dilations = [dilation] * num_blocks
if contract_dilation and dilation > 1: dilations[0] = dilation // 2
if stride != 1 or inplanes != planes * block.expansion:
if use_avg_for_downsample:
downsample = nn.Sequential(
nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False),
nn.Conv2d(inplanes, planes * block.expansion, kernel_size=1, stride=1, padding=0, bias=False),
BuildNormalization(placeholder=planes * block.expansion, norm_cfg=norm_cfg)
)
else:
downsample = nn.Sequential(
nn.Conv2d(inplanes, planes * block.expansion, kernel_size=1, stride=stride, padding=0, bias=False),
BuildNormalization(placeholder=planes * block.expansion, norm_cfg=norm_cfg)
)
layers = []
layers.append(block(inplanes, planes, stride=stride, dilation=dilations[0], downsample=downsample, norm_cfg=norm_cfg, act_cfg=act_cfg, **self.extra_args_for_makelayer))
self.inplanes = planes * block.expansion
for i in range(1, num_blocks):
layers.append(block(planes * block.expansion, planes, stride=1, dilation=dilations[i], norm_cfg=norm_cfg, act_cfg=act_cfg, **self.extra_args_for_makelayer))
return nn.Sequential(*layers)