-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathfastscnn.py
204 lines (192 loc) · 10.1 KB
/
fastscnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
'''
Function:
Implementation of FastSCNN
Author:
Zhenchao Jin
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...utils import loadpretrainedweights
from .bricks import BuildNormalization, BuildActivation, DepthwiseSeparableConv2d, InvertedResidual
'''DEFAULT_MODEL_URLS'''
DEFAULT_MODEL_URLS = {}
'''AUTO_ASSERT_STRUCTURE_TYPES'''
AUTO_ASSERT_STRUCTURE_TYPES = {}
'''PoolingPyramidModule'''
class PoolingPyramidModule(nn.ModuleList):
def __init__(self, pool_scales, in_channels, out_channels, norm_cfg, act_cfg, align_corners):
super(PoolingPyramidModule, self).__init__()
self.pool_scales = pool_scales
self.in_channels = in_channels
self.out_channels = out_channels
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.align_corners = align_corners
for pool_scale in pool_scales:
self.append(nn.Sequential(
nn.AdaptiveAvgPool2d(pool_scale),
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
BuildNormalization(placeholder=out_channels, norm_cfg=norm_cfg),
BuildActivation(act_cfg),
))
'''forward'''
def forward(self, x):
ppm_outs = []
for ppm in self:
ppm_out = ppm(x)
upsampled_ppm_out = F.interpolate(input=ppm_out, size=x.shape[2:], mode='bilinear', align_corners=self.align_corners)
ppm_outs.append(upsampled_ppm_out)
return ppm_outs
'''LearningToDownsample'''
class LearningToDownsample(nn.Module):
def __init__(self, in_channels, dw_channels, out_channels, norm_cfg=None, act_cfg=None, dw_act_cfg=None):
super(LearningToDownsample, self).__init__()
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.dw_act_cfg = dw_act_cfg
dw_channels1, dw_channels2 = dw_channels
self.conv = nn.Sequential(
nn.Conv2d(in_channels, dw_channels1, kernel_size=3, stride=2, padding=1, bias=False),
BuildNormalization(placeholder=dw_channels1, norm_cfg=norm_cfg),
BuildActivation(act_cfg),
)
self.dsconv1 = DepthwiseSeparableConv2d(
in_channels=dw_channels1, out_channels=dw_channels2, kernel_size=3, stride=2, padding=1,
norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, dw_act_cfg=self.dw_act_cfg,
)
self.dsconv2 = DepthwiseSeparableConv2d(
in_channels=dw_channels2, out_channels=out_channels, kernel_size=3, stride=2, padding=1,
norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, dw_act_cfg=self.dw_act_cfg,
)
'''forward'''
def forward(self, x):
x = self.conv(x)
x = self.dsconv1(x)
x = self.dsconv2(x)
return x
'''GlobalFeatureExtractor'''
class GlobalFeatureExtractor(nn.Module):
def __init__(self, in_channels=64, block_channels=(64, 96, 128), out_channels=128, expand_ratio=6, num_blocks=(3, 3, 3), strides=(2, 2, 1),
pool_scales=(1, 2, 3, 6), norm_cfg=None, act_cfg=None, align_corners=False):
super(GlobalFeatureExtractor, self).__init__()
# set attrs
assert len(block_channels) == len(num_blocks) == 3
self.act_cfg = act_cfg
self.norm_cfg = norm_cfg
# define modules
self.bottleneck1 = self.makelayer(in_channels, block_channels[0], num_blocks[0], strides[0], expand_ratio)
self.bottleneck2 = self.makelayer(block_channels[0], block_channels[1], num_blocks[1], strides[1], expand_ratio)
self.bottleneck3 = self.makelayer(block_channels[1], block_channels[2], num_blocks[2], strides[2], expand_ratio)
self.ppm = PoolingPyramidModule(pool_scales, block_channels[2], block_channels[2] // 4, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, align_corners=align_corners)
self.out = nn.Sequential(
nn.Conv2d(block_channels[2] * 2, out_channels, kernel_size=3, stride=1, padding=1, bias=False),
BuildNormalization(placeholder=out_channels, norm_cfg=norm_cfg),
BuildActivation(act_cfg),
)
'''makelayer'''
def makelayer(self, in_channels, out_channels, blocks, stride=1, expand_ratio=6):
layers = [InvertedResidual(in_channels, out_channels, stride, expand_ratio, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg)]
for _ in range(1, blocks):
layers.append(InvertedResidual(out_channels, out_channels, 1, expand_ratio, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg))
return nn.Sequential(*layers)
'''forward'''
def forward(self, x):
x = self.bottleneck1(x)
x = self.bottleneck2(x)
x = self.bottleneck3(x)
x = torch.cat([x, *self.ppm(x)], dim=1)
x = self.out(x)
return x
'''FeatureFusionModule'''
class FeatureFusionModule(nn.Module):
def __init__(self, higher_in_channels, lower_in_channels, out_channels, norm_cfg=None, dwconv_act_cfg=None, conv_act_cfg=None, align_corners=False):
super(FeatureFusionModule, self).__init__()
# set attrs
self.norm_cfg = norm_cfg
self.dwconv_act_cfg = dwconv_act_cfg
self.conv_act_cfg = conv_act_cfg
self.align_corners = align_corners
# define modules
self.dwconv = nn.Sequential(
nn.Conv2d(lower_in_channels, out_channels, kernel_size=3, stride=1, padding=1, groups=out_channels, bias=False),
BuildNormalization(placeholder=out_channels, norm_cfg=norm_cfg),
BuildActivation(dwconv_act_cfg),
)
self.conv_lower_res = nn.Sequential(
nn.Conv2d(out_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
BuildNormalization(placeholder=out_channels, norm_cfg=norm_cfg),
)
self.conv_higher_res = nn.Sequential(
nn.Conv2d(higher_in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
BuildNormalization(placeholder=out_channels, norm_cfg=norm_cfg),
)
self.act = BuildActivation(conv_act_cfg)
'''forward'''
def forward(self, higher_res_feature, lower_res_feature):
lower_res_feature = F.interpolate(lower_res_feature, size=higher_res_feature.size()[2:], mode='bilinear', align_corners=self.align_corners)
lower_res_feature = self.dwconv(lower_res_feature)
lower_res_feature = self.conv_lower_res(lower_res_feature)
higher_res_feature = self.conv_higher_res(higher_res_feature)
out = higher_res_feature + lower_res_feature
return self.act(out)
'''FastSCNN'''
class FastSCNN(nn.Module):
def __init__(self, structure_type, in_channels=3, downsample_dw_channels=(32, 48), global_in_channels=64, global_block_channels=(64, 96, 128),
global_block_strides=(2, 2, 1), global_out_channels=128, higher_in_channels=64, lower_in_channels=128, fusion_out_channels=128,
out_indices=(0, 1, 2), norm_cfg={'type': 'SyncBatchNorm'}, act_cfg={'type': 'ReLU', 'inplace': True}, align_corners=False,
dw_act_cfg={'type': 'ReLU', 'inplace': True}, pretrained=False, pretrained_model_path=''):
super(FastSCNN, self).__init__()
# set attributes
self.structure_type = structure_type
self.in_channels = in_channels
self.downsample_dw_channels = downsample_dw_channels
self.downsample_dw_channels1 = downsample_dw_channels[0]
self.downsample_dw_channels2 = downsample_dw_channels[1]
self.global_in_channels = global_in_channels
self.global_block_channels = global_block_channels
self.global_block_strides = global_block_strides
self.global_out_channels = global_out_channels
self.higher_in_channels = higher_in_channels
self.lower_in_channels = lower_in_channels
self.fusion_out_channels = fusion_out_channels
self.out_indices = out_indices
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.align_corners = align_corners
self.dw_act_cfg = dw_act_cfg
self.pretrained = pretrained
self.pretrained_model_path = pretrained_model_path
# assert
assert global_in_channels == higher_in_channels, 'Global Input Channels must be the same with Higher Input Channels'
assert global_out_channels == lower_in_channels, 'Global Output Channels must be the same with Lower Input Channels'
if structure_type in AUTO_ASSERT_STRUCTURE_TYPES:
for key, value in AUTO_ASSERT_STRUCTURE_TYPES[structure_type].items():
assert hasattr(self, key) and (getattr(self, key) == value)
# set modules
self.learning_to_downsample = LearningToDownsample(
in_channels=in_channels, dw_channels=downsample_dw_channels, out_channels=global_in_channels,
norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, dw_act_cfg=self.dw_act_cfg
)
self.global_feature_extractor = GlobalFeatureExtractor(
in_channels=global_in_channels, block_channels=global_block_channels, out_channels=global_out_channels, strides=self.global_block_strides,
norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, align_corners=self.align_corners,
)
self.feature_fusion = FeatureFusionModule(
higher_in_channels=higher_in_channels, lower_in_channels=lower_in_channels, out_channels=fusion_out_channels,
norm_cfg=self.norm_cfg, dwconv_act_cfg=self.act_cfg, conv_act_cfg=self.act_cfg, align_corners=self.align_corners,
)
# load pretrained weights
if pretrained:
state_dict = loadpretrainedweights(
structure_type=structure_type, pretrained_model_path=pretrained_model_path, default_model_urls=DEFAULT_MODEL_URLS
)
self.load_state_dict(state_dict, strict=False)
'''forward'''
def forward(self, x):
higher_res_features = self.learning_to_downsample(x)
lower_res_features = self.global_feature_extractor(higher_res_features)
fusion_output = self.feature_fusion(higher_res_features, lower_res_features)
outs = [higher_res_features, lower_res_features, fusion_output]
outs = [outs[i] for i in self.out_indices]
return tuple(outs)