-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathconvnext.py
173 lines (167 loc) · 8.13 KB
/
convnext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
'''
Function:
Implementation of ConvNeXt
Author:
Zhenchao Jin
'''
import os
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
from functools import partial
from .bricks.dropout.droppath import DropPath
from .bricks import BuildNormalization, BuildActivation
from .bricks.normalization.layernorm2d import LayerNorm2d
'''DEFAULT_MODEL_URLS'''
DEFAULT_MODEL_URLS = {
'convnext_tiny': 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-tiny_3rdparty_32xb128-noema_in1k_20220301-795e9634.pth',
'convnext_small': 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-small_3rdparty_32xb128-noema_in1k_20220301-303e75e3.pth',
'convnext_base': 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-base_3rdparty_32xb128-noema_in1k_20220301-2a0ee547.pth',
'convnext_base_21k': 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-base_3rdparty_in21k_20220301-262fd037.pth',
'convnext_large_21k': 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-large_3rdparty_in21k_20220301-e6e0ea0a.pth',
'convnext_xlarge_21k': 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-xlarge_3rdparty_in21k_20220301-08aa5ddc.pth',
}
'''AUTO_ASSERT_STRUCTURE_TYPES'''
AUTO_ASSERT_STRUCTURE_TYPES = {}
'''ConvNeXtBlock'''
class ConvNeXtBlock(nn.Module):
def __init__(self, in_channels, norm_cfg=None, act_cfg=None, mlp_ratio=4., linear_pw_conv=True, drop_path_rate=0., layer_scale_init_value=1e-6):
super(ConvNeXtBlock, self).__init__()
self.depthwise_conv = nn.Conv2d(in_channels, in_channels, kernel_size=7, padding=3, groups=in_channels)
self.linear_pw_conv = linear_pw_conv
self.norm = BuildNormalization(placeholder=in_channels, norm_cfg=norm_cfg)
mid_channels = int(mlp_ratio * in_channels)
if self.linear_pw_conv:
pw_conv = nn.Linear
else:
pw_conv = partial(nn.Conv2d, kernel_size=1)
self.pointwise_conv1 = pw_conv(in_channels, mid_channels)
self.act = BuildActivation(act_cfg)
self.pointwise_conv2 = pw_conv(mid_channels, in_channels)
self.gamma = nn.Parameter(
layer_scale_init_value * torch.ones((in_channels)), requires_grad=True
) if layer_scale_init_value > 0 else None
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
'''forward'''
def forward(self, x):
shortcut = x
x = self.depthwise_conv(x)
x = self.norm(x)
if self.linear_pw_conv:
x = x.permute(0, 2, 3, 1)
x = self.pointwise_conv1(x)
x = self.act(x)
x = self.pointwise_conv2(x)
if self.linear_pw_conv:
x = x.permute(0, 3, 1, 2)
if self.gamma is not None:
x = x.mul(self.gamma.view(1, -1, 1, 1))
x = shortcut + self.drop_path(x)
return x
'''ConvNeXt'''
class ConvNeXt(nn.Module):
arch_settings = {
'tiny': {'depths': [3, 3, 9, 3], 'channels': [96, 192, 384, 768]},
'small': {'depths': [3, 3, 27, 3], 'channels': [96, 192, 384, 768]},
'base': {'depths': [3, 3, 27, 3], 'channels': [128, 256, 512, 1024]},
'large': {'depths': [3, 3, 27, 3], 'channels': [192, 384, 768, 1536]},
'xlarge': {'depths': [3, 3, 27, 3], 'channels': [256, 512, 1024, 2048]},
}
def __init__(self, structure_type, arch='tiny', in_channels=3, stem_patch_size=4, norm_cfg={'type': 'LayerNorm2d', 'eps': 1e-6}, act_cfg={'type': 'GELU'},
linear_pw_conv=True, drop_path_rate=0., layer_scale_init_value=1e-6, out_indices=(0, 1, 2, 3), gap_before_final_norm=True,
pretrained=True, pretrained_model_path=''):
super(ConvNeXt, self).__init__()
# set attributes
self.structure_type = structure_type
self.arch = arch
self.in_channels = in_channels
self.stem_patch_size = stem_patch_size
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.linear_pw_conv = linear_pw_conv
self.drop_path_rate = drop_path_rate
self.layer_scale_init_value = layer_scale_init_value
self.gap_before_final_norm = gap_before_final_norm
self.pretrained = pretrained
self.pretrained_model_path = pretrained_model_path
arch = self.arch_settings[arch]
self.depths = arch['depths']
self.channels = arch['channels']
self.num_stages = len(self.depths)
if isinstance(out_indices, int):
out_indices = [out_indices]
for i, index in enumerate(out_indices):
if index < 0:
out_indices[i] = 4 + index
assert out_indices[i] >= 0, f'invalid out_indices {index}'
self.out_indices = out_indices
# assert
if structure_type in AUTO_ASSERT_STRUCTURE_TYPES:
for key, value in AUTO_ASSERT_STRUCTURE_TYPES[structure_type].items():
assert hasattr(self, key) and (getattr(self, key) == value)
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
# 4 downsample layers between stages, including the stem layer.
self.downsample_layers = nn.ModuleList()
norm_layer = BuildNormalization(placeholder=self.channels[0], norm_cfg=norm_cfg)
stem = nn.Sequential(
nn.Conv2d(in_channels, self.channels[0], kernel_size=stem_patch_size, stride=stem_patch_size),
norm_layer,
)
self.downsample_layers.append(stem)
# 4 feature resolution stages, each consisting of multiple residual blocks
block_idx = 0
self.stages = nn.ModuleList()
for i in range(self.num_stages):
depth = self.depths[i]
channels = self.channels[i]
if i >= 1:
downsample_layer = nn.Sequential(
LayerNorm2d(self.channels[i - 1]),
nn.Conv2d(self.channels[i - 1], channels, kernel_size=2, stride=2),
)
self.downsample_layers.append(downsample_layer)
stage = nn.Sequential(*[
ConvNeXtBlock(
in_channels=channels, drop_path_rate=dpr[block_idx + j], norm_cfg=norm_cfg, act_cfg=act_cfg,
linear_pw_conv=linear_pw_conv, layer_scale_init_value=layer_scale_init_value
) for j in range(depth)
])
block_idx += depth
self.stages.append(stage)
if i in self.out_indices:
norm_layer = BuildNormalization(placeholder=channels, norm_cfg=norm_cfg)
self.add_module(f'norm{i}', norm_layer)
# load pretrained weights
if pretrained:
self.loadpretrainedweights(structure_type, pretrained_model_path)
'''forward'''
def forward(self, x):
outs = []
for i, stage in enumerate(self.stages):
x = self.downsample_layers[i](x)
x = stage(x)
if i in self.out_indices:
norm_layer = getattr(self, f'norm{i}')
if self.gap_before_final_norm:
gap = x.mean([-2, -1], keepdim=True)
outs.append(norm_layer(gap).flatten(1))
else:
outs.append(norm_layer(x).contiguous())
return tuple(outs)
'''loadpretrainedweights'''
def loadpretrainedweights(self, structure_type, pretrained_model_path=''):
if pretrained_model_path and os.path.exists(pretrained_model_path):
checkpoint = torch.load(pretrained_model_path, map_location='cpu')
else:
checkpoint = model_zoo.load_url(DEFAULT_MODEL_URLS[structure_type], map_location='cpu')
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
elif 'model' in checkpoint:
state_dict = checkpoint['model']
else:
state_dict = checkpoint
state_dict_convert = {}
for key, value in state_dict.items():
state_dict_convert[key.replace('backbone.', '')] = value
self.load_state_dict(state_dict_convert, strict=False)